
 

  

Title Page  

Data-Driven HTS Strategies for Selection of Drug Combinations and 3D Models for 

Physiologically Relevant Drug Discovery  

 

 

 

 

 

 

 

 

by 

 

Stanton Joseph Kochanek  

 

Bachelor’s of Science, John Carroll University, 2013 

 

 

 

 

 

 

 

 



 ii 

 

 

 

Submitted to the Graduate Faculty of 

 

The University of Pittsburgh, School of Pharmacy 

  

of the requirements for the degree of 

 

Doctor of Philosophy 

 

 

 

 

 

 

 

 

 

University of Pittsburgh 

 

2019



 ii 

Committee Membership Page  

UNIVERSITY OF PITTSBURGH 

 

SCHOOL OF PHARMACY 

 

 

 

 

 

 

 

 

 

This thesis/dissertation was presented 

 

by 

 

 

Stanton Joseph Kochanek 

PhD 

 

It was defended on 

 

July 8, 2019 



 iii 

 

and approved by 

 

Jan Beumer PharmD and PhD, Professor, Pharmaceutical Sciences 

 

Philip Empey PharmD and PhD, Assistant Professor, Pharmacy and Therapeutics 

 

Edwin Jackson PhD, Professor, Pharmacology and Chemical Biology 

 

Barry Gold PhD, Professor, Pharmaceutical Sciences 

 

Samuel Poloyac PharmD and PhD, Associate Dean for Graduate and Postdoctoral 

Programs, Pharmaceutical Sciences  

 

Paul A. Johnston PhD: Associate Professor, Pharmaceutical Sciences 

  



 iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © by Stanton Joseph Kochanek  

2019 



 v 

Abstract 

Data-Driven HTS Strategies for Selection of Drug Combinations and 3D 

Models for Physiologically Relevant Drug Discovery 

Stanton Joseph Kochanek, PhD, University of Pittsburgh, 2019 

Currently, the approval rate for cancer drugs is dismal, where only ~ 5% of 

candidates that enter phase I clinical trials become therapies. To address this, it is 

necessary to improve our preclinical strategies. In particular, the leading clinical 

observation for patient treatment is that drug combinations more consistently provide 

better therapeutic outcomes and reduce or delay the emergence of drug resistance as 

opposed to monotherapy alone. What’s more, models that better recapitulate tumor 

biology are more likely to be predictive of therapeutic success. Therefore, it was 

necessary for our laboratory to use data-driven high-throughput / content screening 

strategies to confirm synergistic drug-drug interactions and optimize cell culture 

conditions in 3D for drug discovery, to address these preclinical limitations. Specifically, 

we developed a strategy to confirm and evaluate the synergistic interaction between DCs 

identified in a pilot screen of 20 drugs performed in pairwise combinations. We were able 

to both confirm synergism across 4 DCs and develop a mechanism of synergistic action. 

We also characterized 11 head and neck squamous cell carcinoma cell lines as 

multicellular tumor spheroids (MCTSs) looking at changes in cellular viability and spheroid 

diameter over time as well as other microenvironmental characteristics of a solid tumor.  

Lastly, we applied our MCTSs to screen 19 FDA approved drugs to determine drug 

sensitivity in both 2D and 3D models. We observed that 2D was consistently more 

sensitive than 3D and that it was necessary to implement several metrics to adequately 

evaluate drug effect in 3D.  
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1.0 Drug Combinations in Cancer Therapy: An Overview of the History, Methods 

for Identification, and Current Advances  

1.1 A History of Drug Combinations in Cancer Pharmacology 

Drug combinations in cancer therapy represent an improvement on standard 

monotherapy treatment modalities, especially when the combination performs in an 

additive or synergistic way, thereby augmenting the overall therapeutic effect.1, 2 In early 

oncology (1900-1940s), few therapeutic options existed save for surgery and radiation, 

and even then, most surgical options were limited to the treatment of localized tumors. It 

wasn’t until the 1940’s when Charles Huggins and Sidney Farber both demonstrated the 

ability of chemical compounds to successfully target susceptibilities within specific 

cancers; the use of estrogens to cause regression of prostatic tumors in humans and the 

use of aminopterin, a folic acid derivative, to induce partial remission in childhood 

leukemia, respectively.3, 4  Following these milestones in cancer therapy, nitrogen 

mustard (1949) and other chemotherapeutics were identified as being capable of 

cytoxicity and became included in the standard regimen for the treatment of oncological 

malignancies.5 6 

Many of the early clinical studies introducing single chemotherapeutic agents for 

treatment of cancers elicited partial regression or remission rather than full removal of 

tumor burden. Because of this roadblock it became necessary for others in the field of 

oncology and cancer pharmacology to propose new strategies, specifically, the use of 

two or more agents to block different enzymes within the same metabolic pathway to 
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produce potentiation of antiproliferative effects.7  Several laboratories demonstrated the 

improved effects of dual therapy in mice through the use antimetabolites and antileukemic 

drugs.8-10  However, it wasn’t until Emil Frei, Emil Freireich, and James Holland that 

clinical efficacy of drug combinations was demonstrated when they used combination 

therapy to treat patients with acute myelocytic and lymphocytic leukemia.11  This group 

determined that the combined effects of methotrexate and 6-mercaptopurine in patients 

with acute leukemia, by either continuous or intermittent treatment schedules, was able 

to produce remission in 42 of the 65 patients (either partial or complete). Within the study 

only 17 deaths were reported, of which, only 5 were shown to be caused by marrow 

hypoplasia associated with antimetabolite drug toxicity. This study did not provide a direct 

comparison to monotherapy alone but does demonstrate that in order for combination 

therapy to be maximally effective, both drugs must be able to produce an antineoplastic 

effect. Despite limitations outlined by the authors, this was the first study to illustrate the 

therapeutic utility of drug combinations. Furthermore, this study provided a springboard 

for the selection of chemotherapeutic agents to be used in combination with a biological 

rationale generated from information gathered in both animal studies and clinical use, and 

for the selection of 6-mercaptopurine instead of 8-azaguanine.6, 8, 10     

One of the major challenges to adequately treat cancer especially in the selection 

and prioritization of drugs for use in combinations, is to minimize toxicity while maximizing 

efficacy in patients. A publication by Sartorelli in 1969, less than a decade after Frei, 

outlines the primary goal and rationale of using combination therapies, which is to 

capitalize on the metabolic susceptibilities of cancer by “rational modification” of a current 

chemotherapeutic to improve efficacy or to achieve a greater level of disruption / alteration 
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of metabolic processes by using drugs in combination.12 Furthermore, Satorelli’s review 

illustrates the utility of selecting drugs of differing toxicities to be more effective in a tumor 

population while sparing the healthy normal cellular population. Attempts at minimizing 

toxicity provided a major challenge during the 1950-1970s, when few documented 

biological differences existed between malignant and normal cells in terms of potential 

exploitable susceptibilities, save for differences in cellular proliferation.12, 13  DeVita et. al 

1975 highlighted the importance of providing a sufficient level of effect with 

monotherapies to cause a “lethal blockade” of metabolic pathways but that given the 

complexity of such pathways, alteration or inhibition of a single biological site may not be 

sufficient.2   This article also presents a potential hazard of using drugs in combination, 

mainly, that without sufficient biological rationale or clinical evidence of antineoplastic 

effect, empirically pairing drugs may cause interference and antagonism, thereby, limiting 

efficacious effects and producing greater associated toxicity.2    

To test if a combination of four drugs could be more efficacious with prolonged 

therapeutic impact in patients than monotherapies,  Freireich and colleagues  used a 

combination known as VAMP (vincristine, amethopterin, 6-mercaptopurine, and 

prednisone) for the treatment of acute lymphoblastic leukemia.14, 15 They noticed a 

marked increase in remission within the patient population with the application of VAMP 

treatment upwards of ~ 60% and with an increase in the duration of remission better than 

the currently available treatment modalities at the time.14, 15 The rationale for the use of 

the combination was that each compound was capable of an inhibitory effect individually, 

in both murine models and patients. The empirical prediction for using the drugs in 

combination was that a when used together, these antineoplastic agents would provide 
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greater patient responses and prolonged remission. Each drug’s individual mechanism of 

action is as follows: vincristine is a vinca alkaloid capable of blocking β-tubulin from 

polymerizing during microtubule formation, and causes mitotic arrest;  amethopterin is an 

antimetabolite of folic acid that is capable of disrupting the metabolic conversion of folic 

acid into tetrahydrofolate, which is required for addition of methyl groups to purine 

ribonucleotides and thereby inhibits DNA replication; 6-mercaptopurine is an analog of 

the natural purine hypoxanthine, and gets incorporated into DNA which causes strand 

breaks pending a functioning mismatch repair system; and prednisone is a glucocorticoid 

found to be capable of lympolytic effects which suppress mitosis of lymphocytic cells.  

Following in Freireich’s footsteps, DeVita et. al 1970 also demonstrated the utility of using 

drugs in combination for the treatment of Hodgkin’s disease, whereby vincristine, nitrogen 

mustard or cyclophosphamide, procarbazine hydrochloride, and prednisone were used 

to provide complete remission in 81% of their patients, and prolonged the median survival 

within the responding group to greater than 42 months.16  Furthermore, the authors were 

able to demonstrate that through the use of this combination 47% of the remitted patients 

were disease free at 4 years post treatment and 77% remained alive.16  Additionally, 

Einhorn and Donohue (1977) demonstrated the success of a three-drug combination 

consisting of cis-platinum, vinblastine, and bleomycin in patients suffering from 

disseminated testicular cancer, and reported complete remission in 74% and partial 

remission in 26% of patients (55 patients total), with 32 remaining disease-free 6 to 30 

months after the study.17  

Given the success of these drug combinations, the components of which are still 

vital regimens in the treatment of many cancers, it has been important to develop better 
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methods to select and prioritize drugs given both the complexities of cancers and the 

potential drug-drug interactions that might exist.  

1.2 Development of Screening Methods for Antineoplastic Agents in Cancer 

In 1949 several murine models of solid tumors were developed, in particular the 

L1210 murine leukemia model. The introduction of this model provided an invaluable tool 

for screening therapeutics pre-clinically and became the standard for screening 

compounds for efficacy in leukemias.10, 18, 19 Through the use of the L1210 and P388 

leukemias, B16 melanoma and Lewis lung carcinoma mouse models, more than 45 

compounds were identified as having antineoplastic activity.20  In a review by Shoemaker, 

the author illustrated the utility of the many mouse models and also their limitations, 

mainly, the inability to efficiently screen for compounds with a sufficient amount of 

throughput. In an attempt to better screen for antineoplastic compounds within a broader 

spectrum of tumors, specifically, solid tumors, a panel of 60 cell lines was developed by 

the National Cancer Institute (NCI) across 9 tumor types: leukemia, colon, lung, brain 

(CNS), renal, melanoma, ovarian, breast, and prostate.21  

With the use of the new panel, aptly named the “NCI-60”, several projects spanning 

decades provided an abundance of information that was previously absent in the research 

community. In particular, the creation of practical microtiter plate cytotoxicity assays 

during the 1980’s to 1990’s allowed for more robust assays and enabled the 

determination of cell sensitivity against putative antineoplastic compounds.22 Both MTT 

and XTT assays allowed for the measurement of cell viability through the reduction of 
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tetrazolium salts to formazan and the proceeding conversion can be measured via a 

colorimeter. For their purposes, the NCI wanted a non-tetrazolium method to improve 

both the throughput and ease of use of their viability reagent so a method using 

sulphorhodamine B (SRB) was developed which met the necessary requirements, 

needing only a chemical fixation step, and allowed for differentiation between cell kill and 

growth inhibition.22-24 In addition, a T0 plate was included to allow a comparison point 

between early cell viability and at the assay endpoint.22-25 Through the use of the NCI-60 

and growth inhibition assays, more antineoplastic compounds could be assessed. 

However, during the 1980s and 1990s the demand for the NCI was 10,000 compounds 

per year and presented a logistical challenge that required assay miniaturization and 

optimization.25  In particular, duration in culture and cell seeding density had to be 

optimized  in an attempt to produce minimal spurious results, specifically, compounds that 

required many cell cycles were not overlooked and also so that cell lines with fast doubling 

times don’t seem suspiciously hypersensitive to particular compounds.  In an effort to 

accommodate this during optimization, the NCI used a high initial cell inoculum (e.g., 

20,000cells/well) and a brief preincubation and treatment period (e.g., 1-2 days).25   

For their preliminary screens the NCI decided to implement seeding densities 

between 5000-40,000 cells per well within a 96-well microtiter plate, where plates were 

preincubated 24hrs, followed by drug treatment for an additional 48hrs and culminating 

with SRB as the endpoint assay.25 Several natural products / crude extracts were 

prescreened at a single concentration before being included in the full screen, where all 

compounds and extracts were tested with five log10-spaced concentrations, starting in the 

majority of compounds at 100µM, and natural product extracts starting at 100µg/mL.25 
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Through their optimized screening protocol, the NCI was able to identify 9-methoxy-N2-

methylellipticinium acetate, which demonstrated higher sensitivity in the CNS / brain 

tumor cell line subpanel than in any other cell lines.26, 27 In addition, the NCI also identified 

cephalostatin 1 as a lead with broad activity across several solid tumor derived cell lines, 

with an “undefined” mechanisms of action and as such merited follow-up.28, 29 Overall, 

during the 5yr period of time from 1990 to 1995, over 100,000 materials, both pure 

compounds and natural products, were tested against the 60 cell line panel and provided 

a basis for assay miniaturization for high-throughput screening of antineoplastic drugs, 

many aspects of which are still used today. 

1.3 Prioritizing Drug Combinations for Cancer Treatment 

Traditionally, the selection of compounds for combination therapy in patients was 

done empirically, often without a specific rationale. Drug combinations were selected on 

the basis of experimentation and observation, because more in-depth information was 

unavailable, such as tumor genetic / mutational information. An early example of an 

empirically selected drug combination was with the combination VAMP, which consisted 

of vincristine, amethopterin, 6-mercaptopurine, and prednisone. This combination was 

utilized in leukemias because the compounds had displayed effectiveness individually in 

both murine models and patients.14, 30 In addition, the drugs did not have overlapping 

mechanisms of action, and as such were combined with the goal of producing a greater 

more durable effect than was experienced with monotherapy.14, 30   
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Through the glimmer of hope provided to patients by this combination and many 

others, we observed an impetus within the NCI and the research community to develop 

more sophisticated screening strategies from the early leukemia mouse models to the 

NCI60 cell line panel, with the goal to prioritize preclinical compounds and natural 

products for clinical translation. Given the development of an established screening 

methodology by the NCI in the 1990s, the next logical research step was to develop 

strategies for identifying drugs that could be used in combination, especially those that 

were capable of favorable drug-drug interactions vis-à-vis supra-additive effectiveness. 

The use of combination therapy is rationalized by both the vast molecular complexity of 

and the vast intra- & inter-tumoral genetic diversity seen in all cancers. There is 

overwhelming evidence, that in order to effectively treat cancers, the use of at least two 

or more anti-neoplastic agents in combination is required. The rationale being, to target 

different molecular susceptibilities within individual patients’ tumors and with the hope to 

use these therapies to reduce the emergence of drug resistance or at-least to prolong its 

development.  

Importantly, with the advent of molecularly targeting agents (MTAs), molecular 

vulnerabilities within cancer types / patient tumors are able to be targeted with more 

specificity and less toxic side effects.31 The utility of MTAs was demonstrated by the drug 

imatinib (Gleeve/Glivec; Novartis) capable of inhibiting an oncogenic fusion of BCR-ABL. 

Fusion of ABL to BCR was caused by a chromosomal translocation via the breakage of 

chromosome 9 at the ABL gene and fusion to chromosome 22 at the BCR gene, which 

produced a tyrosine kinase with constitutive activity present in cases of both chronic 

myeloid leukemia and gastrointestinal stromal tumors; patients treated with imatinib in 
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both conditions responded extremely well, superior to the standard chemotherapeutic 

regimens with minimal side-effects.32-34 Despite the overwhelming success of the 

introduction of MTAs, such as imatinib, using a monotherapy for treatment of a 

heterogenous cancer population has the potential to select for unresponsive clonal 

populations of tumor cells or create selective pressure against cells within the population 

influencing the development of drug resistance and thereby, causing reemergence of the 

disease.35, 36    

In a review by Dancey and Chen, the authors illustrate that “with few exceptions” 

drug regimens that have proven curative in cancer treatment have been a combination of 

individually potent agents, with non-overlapping toxicity, at ideal doses and on a schedule 

adapted to coincide with normal cell recovery.31 To demonstrate this the authors have 

included several successful drug combinations in patients containing both a molecularly 

targeted agent in conjunction with a standard chemotherapeutic drug regimen in the 

treatment of breast (trastuzumab), colorectal (bevacizumab) and non-small lung 

(bevacizumab) cancers.37-39 Furthermore, drugs when used in combination have the 

possibility to produce  synergistic effects either through overlapping mechanisms of action 

or by off-target effects that enhance and augment the overall pharmacological impact of 

the drugs beyond their individual effect levels. By identifying these drug-drug interactions 

through screening we can provide preclinical combinations earlier for potential clinical 

translation. 

To better prioritize the potential of a prospective drug combination we must first 

identify whether the pharmacological interactions of the drugs are favorable or otherwise. 

Drugs are capable of interacting pharmacologically to produce an additive, antagonistic, 
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or synergistic response. Additivity occurs when the effect of two or more drugs is 

summative, where the sum of the effects of drug A or drug B individually is equivalent to 

the effects of the same concentrations of A and B together. Antagonism occurs when the 

effect of two or more drugs is negative, where the combination of drug A plus drug B is 

less effective than the sum of the effects of the individual drugs. Synergism occurs when 

the effect of two or more drugs in combination is greater than the additive effects of the 

individual drugs.  In order to identify such pharmacological relationships, different 

analytical models and methodologies have been created and utilized in high throughput 

screening, such as Bliss and Loewe additivity models, isobologram analysis, Chou-

Talalay median effect models and population-based lifetime modeling.40-44  

In addition to qualifying a potential drug-drug interaction, we can use different 

“omics” (genomics, proteomics, metabolomics…etc) approaches to provide a more 

feasible biological rationale and testable hypothesis when attempting to advance a drug 

combination from in vitro to in vivo.45 In particular, by sequencing and analyzing the whole 

transcriptome of different cancers, mutational “hotspots” can be identified that allude to 

susceptible oncogenic drivers and alterations in tumor suppressors. A study by Wood and 

colleagues in 2007 performed whole exome analysis with the DNA extracted from 11 

breast and colorectal tumors, and illustrated commonality in several receptor tyrosine 

kinases (RTK) as well as the PI3K pathway, as well as some less common differences 

for example, in pathways responsible for cell adhesion.46 Proteomic analysis of several  

RTKs with in the PI3K pathway by Stommel et. al 2007 revealed downstream activation 

and contribution by coactivators of PI3K in a multitude of glioblastoma multiforme (GBM) 

cell lines, and that in order to provide sufficient inhibition of downstream signaling within 
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the PI3K pathway, it was necessary to target at least two components within the PI3K 

pathway as demonstrated by the authors.47  

Altogether, these different methodologies provide a more analytical and precise 

manner of targeting specific susceptibilities at the tumor-level in patients, but effectively 

facilitating such treatment in patients has some limitations. Specifically, the tumor 

population is not just a single homogeneous population of cells but rather several smaller 

heterogenous populations of tumor cell subclones, tumor stem cells, and tumor-

associated cells, that will each respond differently to stimuli or applied pressures.45 Given 

this information, it is easy to see that a true representation of the total population by 

genomic, proteomic, and /or metabolomic analysis may be skewed towards expression 

from the larger cellular population.  Another limitation that can restrict the proper 

implementation of “omics” approaches in treatment, is the presence of parallel 

contributors to downstream activation in major oncogenic pathways. For instance, several 

reports have illustrated how mutations in K-RAS and PI3K contribute to a poor overall 

response to compounds that target RTKs.48, 49 

1.4 Where Do We Go Now: Data-driven Approaches for Drug Discovery 

While the rationale for combining antineoplastic agents seems logical, the 

practicality and feasibility of ensuring the success of these drug combinations is another 

challenge entirely. A review by Dancey and Chen on combining targeted agents with 

standard chemotherapeutic modalities outline several contributing factors that have either 

resulted in success or failure in the clinic. Namely, the authors outline three key factors: 



 12 

the nature of how the drug exerts its effects individually or in combination, the functionality 

and presence of the target in question, and any cellular factors that affect the drug’s 

function and/or biological consequences of modulating the specific target.31 One of our 

greatest challenges as researchers is to use the resources we have available to interpret 

the information from data generation to create research questions, and advance our 

knowledge for clinical applications. For instance, given the sophistication of more modern 

techniques and technologies, the scientific community has been able to incorporate data 

accumulated from cancer patients, tumors, and cancer cell lines into various databases. 

These resources include the cancer genome atlas (TCGA), the cancer cell line 

encyclopedia (CCLE), and catalogue of somatic mutations in cancer (COSMIC) 

databases, which have all been utilized to advance the quality of cancer research.50-52 It 

is through the use of these resources in conjunction with solid experimentation and 

innovation that we can push the bounds of cancer research and increase our reach to the 

clinic.   

 

Dissertation Overview: 

In chapter 2 of this document, I will review the efforts of our laboratory to confirm 

the identified synergistic drug-drug interactions identified in an unbiased drug combination 

high throughput screening campaign contracted by the NCI. In particular, our goal was to 

design a strategy  using  isobologram plot analysis, the Chou-Talalay median effect model 

and the pharmacodynamic drug interaction model to generate data for identifying, 

confirming, and prioritizing drug combinations that display synergistic growth inhibitory 

effect towards cancer cell population of the NCI-60 panel.53, 54 It is through our data-driven 
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methodologies that we were able to develop a mechanistic hypothesis to posit the 

potential mechanism of synergistic action for several drug combinations, and to design 

an imaging assay to follow up with this hypothesis.  

Chapter 3 is a review and introduction to the use of 3D cell culture as a more 

physiologically relevant model for drug discovery. In addition, this chapter outlines the 

advantages and disadvantages within several 3D methodologies as well as advances 

that provide elements of physiological relevance and clinical translation within an in vitro 

3D model.  Lastly, chapter 3 outlines some of our laboratory’s previous use with ultra-low 

attachment (ULA) conditions to lead into our use of ULA for the characterization of 

multicellular tumor spheroids (MCTS) of head and neck squamous cell carcinoma 

(HNSCC) cell lines.  

Chapter 4 represents characterization studies for HNSCC where our goals were 

to determine changes in diameter, viability, and tumor microenvironmental characteristics 

over time in culture in ULA conditions. Furthermore, we wanted to optimize MCTS cell 

culture conditions for the purpose of drug screening.   

Chapter 5 outlines the use of our optimized HNSCC MCTSs to determine drug 

sensitivity across 19 FDA approved compounds with 2D as a comparator. Our goal was 

to determine any changes in sensitivity between 2D and 3D and highlight effective drugs 

in 3D alone or both 2D and 3D. In addition, we designed a metric to evaluate the overall 

effect that drugs have across several parameters including morphology, diameter, and 

changes in cellular viability as imaging alone or CTB alone seemed to be insufficient to 

evaluate drug effect.   
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Chapter 6 is an overview of the implications, limitations, and future directions of 

the accumulated work from this dissertation. In particular, this chapter seeks to explore 

the major conclusions and rationalize the significance of this body of work as it pertains 

to cancer drug discovery.  
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2.0 Confirmation of Selected Synergistic Cancer Drug Combinations Identified in 

an HTS Campaign and Exploration of Drug Efflux Transporter Contributions to 

the Mode of Synergy. 

2.1 NCI ALMANAC and its Influence on Drug Combination Screening 

The NCI has previously published their analysis of data generated by our 

laboratory and a second contracted laboratory to screen drugs in pairwise drug 

combinations as an HTS of 100 FDA-approved compounds. The goal of generating such 

a large amount of data was for the production of a database to be used as a resource for 

the scientific community, in order to prioritize or categorize favorable (greater than 

additive) drug-drug interactions and otherwise, dubbed the ALMANAC (A Large Matrix of 

Anti-Neoplastic Agent Combinations).55  The NCI established their own method of activity 

scoring amongst drug combinations and named their method “ComboScore”, the authors 

were able to analyze the combined activity of approximately 5,232 drug pairs tested 

against the NCI-60 cell line panel composed of 9 different tumor types: Breast, CNS, 

Colon, Leukemia, Melanoma, NSC Lung, Ovarian, Prostate, and Renal.55 Through these  

efforts, the authors identified twenty combinations that merited a follow-up in vivo using 

mouse xenografts of tumor cells from the NCI-60 cell line panel, and two that went on to 

phase I clinical trials: clofarabine (antimetabolite) & bortezomib (proteasome inhibitor), 

and nilotinib (tyrosine kinase receptor inhibitor) & paclitaxel (mitotic inhibitor).55 Overall, 

the authors were able to develop a database resource where there was a great unmet 

need, and the possibility for translation through logical progression by performing 
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experiments from contracted in vitro screening, to their own in vivo animal studies, and 

finally, culminating in clinical trials.    

2.2 HTS Campaign to Identify Synergistic Drug-Drug Interactions for Confirmation 

As mentioned above, our laboratory was one of the contracted groups, tasked with 

the development and implementation of a screening strategy to identify greater than 

additive drug-drug interactions across the NCI-60 cell line panel and across 100 FDA 

approved drugs.56 With such a screening effort comes challenges, in particular, being 

able to create a strategy that could: scale up in throughput; ensure that a robust and 

reproducible signal window with adequate performance statistics above passable for each 

assay existed; analyze the pharmacological relationship between two drugs in 

combination, and avoid compound handling & tracking errors.56  In order to efficiently 

screen 100 compounds in pairwise combinations, we had to revise the traditional NCI 60 

assay paradigm of 96-well plate format, 48hr compound exposure, in 5% fetal bovine 

serum (FBS), with endpoint measurements from fixing and staining with sulforhodamine 

B to 384-well plate format, 72hr compound exposure, 10% FBS, and endpoint 

measurements with CellTiter-Glo homogenous viability detection reagent.56  

Given the changes implemented to the traditional NCI screening campaign, it was 

also necessary for the selection of seeding density across the 60 cell line panel to 

represent a cellular density that allowed for active proliferation over the 96hr period of 

incubation, and as such, conditions were optimized through two independent seeding 

density experiments to allow for such observations of active cellular proliferation during 
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compound exposure.56 Through the selection of optimal seeding densities, we were also 

able to observe the assay performance statistics which both aided in our selection of 

seeding densities and allowed us to identify potential poor performers for the future 

growth inhibition assays for selection of concentrations for the screening campaign.  To 

appropriately select concentrations for each individual compound prior to the screen, 5-

point, 10-fold serial dilution growth inhibition assays were performed across each cell line, 

with GI50 curves representing the % growth response observed with each compound.56 

With the pilot screen of 20 compounds, we were able to observe clusters of response 

linked to drug mechanisms of action and their effect across the panel of cell lines as seen 

in figure 1 (Figure 1).  

To determine the effects of drugs in pairwise combination, we determined 

individual growth inhibition 50 (GI50) values of each compound, and selected 

concentrations for pairwise combinations within a 4x4 matrix configuration (Figure 2); all 

growth inhibitory effects produced in combination were scored and categorized vs 

individual GI50’s using a novel drug interaction score (DI) which takes into account the 

observed growth inhibitory effect for each drug combination and the measured replicates 

within the drug combination matrix as a modification of the Bliss independence model, 

and uses the pooled variance of the sample means between drugs A and B, to provide a 

score representative of the number of standard deviations away from the sample mean 

the observed drug effect is for each combination.56 The DI score represents the Bliss 

independence formula divided by the square root of pooled variance between replicate 

measurements of individual drug effect from each drug matrix. The end result is a value 

representative of a number of standard deviations away from the drug effect mean. A DI 
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score of >3 indicates synergy, < -3 indicates antagonism, and a score between -3 and 3 

indicates an additive relationship. This score allowed us to prioritize putative synergistic 

drug-drug interactions for follow up.56 We performed initial confirmation studies with a 

single combination between a drug designed and created at the University of Pittsburgh’s 

 

Figure 1 Hierarchical Clustering Analysis of the Individual GI50 data for the Pilot 

HTS Screen 

A two-way hierarchical clustering analysis of the individual GI50s for the 20 pilot drugs and 

doxorubicin against the 60 cell lines grouped by tumor type shows drug clusters that 

respond with similar growth response patterns across tissue types and cell lines.   
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Figure 2 4 x 4 Drug Combination Matrices 

Each individual Drug Combination Matrix included 3 x 3 DC wells (9 total) together with 

three wells (6 total) containing each of the corresponding individual drug concentrations, 

and one DMSO control well. 
 

School of Pharmacy in collaboration with Dr. Barry Gold’s laboratory, an 

apurinic/apyrimidinic endonuclease-1/redox effector factor-1 (APE-1) inhibitor called 

AJAY-4 and the BRAF V600E kinase inhibitor vemurafenib, using the combination index 

(CI) plot analysis.53   Through our efforts we decided to expand our analysis in the pilot 

screen to include two additional drug-drug interaction analysis methods in following up 

with prioritized combinations flagged as synergistic, to be discussed later in this chapter. 
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In the pilot phase of the NCI-60 DC HTS campaign, 190 individual 4 x 4 drug combination 

matrices (DCMs) of all possible pairwise combinations of 20 cancer drugs were screened 

against all NCI 60 tumor cell lines.56 Although there was no obvious tissue type or cell 

line bias in the distribution of synergistic DI scores (DI scores >3) from the pilot HTS, 

eleven (5.8%) DCMs formed between six drugs accounted for 54% of DI scores >3 with 

each of the individual drugs participating in 3-4 DCMs; megestrol acetate, mitoxantrone, 

vinorelbine tartrate, raloxifene, gefitinib and daunorubicin.56 It is standard practice in any 

screening campaign to confirm primary HTS actives as qualified hits before they progress 

into follow up assays and MOA studies. We previously reported the confirmation in vitro 

of the synergistic drug interaction between the vinca-alkaloid microtubule assembly 

inhibitor vinorelbine (Navelbine®) tartrate and epidermal growth factor-receptor (EGF-R) 

tyrosine kinase inhibitor (TKI) gefitinib (Iressa®) in the SK-MEL-5 melanoma cell line 

(Figure 3A-D).56  In the studies presented herein, we applied the following criteria to select 

additional DCs flagged in the pilot DC HTS with DI scores >3 for confirmation of synergy 

in vitro: 1) DCs that exhibited DI scores >3  against multiple tumor cell lines; 2) DCs where 

more than one well in the DCM produced DI scores >3; 3) DCs that were cytotoxic rather 

than growth inhibitory or cytostatic; and 4) DCs where the individual drugs in the DC 

exhibited concentration dependent growth inhibition in the selected tumor cell lines. Four 

DCs from the pilot DC HTS met these criteria (Table 1).  

Through searching the available scientific literature to determine a potential MOA 

that could explain the observed synergism, we discovered that a publication by Szakacs 

and colleagues (2004) established efflux transporter expression across the NCI60 cell 

line panel, and implicated several of the cell lines within our confirmation studies as 
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Figure 3 Confirmation of Gefitinib-Vinorelbine Flagged Synergy 

A) Pilot HTS Drug Combination Matrix Data Vinorelbine (Drug A) was screened 

individually and in DC wells at concentrations of 1.0 (A1), 0.1 (A2), and 0.01 µM (A3), 

while the gefitinib (Drug B) concentrations were 10.0 (B1), 1.0 (B2), and 0.1 (B3) µM. The 

% growth indicated on the Y axis for the 3 individual drug concentrations of vinorelbine 

(light grey bars) and gefitinib (dark grey bars) together with the 9 DC wells (black and 

white bars) from the 4 x 4 DCM are presented along with the means ± SD (n=19) of the 

replicate data from the 3 individual drug concentrations screened in other DCMs. The 3 

DC wells with DI scores >3 are indicated by the white bars (A2-B1, A2-B2, and A2-B3). 

Whether the bar represents an individual drug concentration of A or B or drug combination 

(A-B) well from the DCM, or the average of 19 replicates of the individual drug 

concentrations is indicated on the X axis. B) Combination Index Analysis The growth 

inhibition/fraction of SK-MEL-5 cells affected data from a more extensive 10 x 10 
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vinorelbine and gefitinib DCM was analyzed in the Chou-Talalay median effects model 

using the COMPUSYN software to calculate combination index (CI) scores and fit curves 

for the 20:1 and 10:1 fixed ratios of gefitinib and vinorelbine. CI scores <1.0 indicate that 

two drugs interact synergistically. C) Isobologram Plot The data from the 10 x 10 

vinorelbine and gefitinib DCM was plotted as an isobologram contour graph. The concave 

contour lines of the isobologram plot indicate that vinorelbine and gefitinib interacted 

synergistically. D) Drug-Drug Interaction Surface Response The data from the 10 x 10 

vinorelbine and gefitinib DCM was analyzed using the pharmacodynamic drug-drug 

interaction model to fit the experimental data and construct a three-dimensional graph of 

the data. The fitted α parameter of the pharmacodynamic drug-drug interaction model 

was 0.77, which is >0 and indicates that vinorelbine and gefitinib interacted 

synergistically. 

 

overexpressing ATP binding cassette transporters (ABC) ABCB1, ABCC1, and/or 

ABCG2, which have been implicated as playing a role in cancer drug resistance.57 

Furthermore, within each combination was the presence of an ABC transporter substrate 

and inhibitor as indicated in Table 2. This chapter describes the process used to confirm 

that the DCs interacted synergistically to inhibit selected tumor cell line growth in vitro, 

and our exploration of drug interactions with ABC transporters as a plausible MOA for the 

observed synergies.  
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Table 1 Selected Drug Combinations, NCI-60 Cell Lines, Tumor Histology’s, 

Individual Drug GI50s, and Drug Interaction Analysis Summary 

 

 

DC = drug combination 
# = DC number 
NCI-60 = National Cancer Institute 60 tumor cell line panel. 
GI50 = drug concentration at which cell growth was inhibited by 50%. 
DC Ratio = fixed concentration ratio of drug A:drug B. 
CI = combination index score 
CMPYSUN = COMUSYN freeware online software program  
DIC = drug interaction classification 
Synergy = synergistic drug interaction 
Pot. = potentiation. 
ISBG = Isobologram contour graph 
PDI = Pharmacodynamic Drug Interaction model 
α-Param. = fitted α parameter of the pharmacodynamic drug interaction model 
Mean = average of replicate independent IC50 determinations, n = 2-4. 
SD = standard deviation of the mean 
 

 
 
 
 

  



 24 

2.3 Materials and Methods 

Reagents 

Formaldehyde 37% was purchased from Sigma-Aldrich (St. Louis, MO). Hoechst 

33342 was purchased from Life Technologies (Thermo Fisher Scientific, Waltham, MA). 

Dimethyl sulfoxide (DMSO) 99.9% high-performance liquid chromatography grade was 

obtained from Alfa Aesar (Ward Hill, MA). Dulbecco’s Mg2+- and Ca2+-free phosphate-

buffered saline (PBS), Minimum Essential Medium (MEM) supplemented with both 

GlutaMax and Earle’s salts, and Geneticin was purchased from Gibco (Grand Island, 

NY). Dulbecco’s modified Eagle’s medium (DMEM) and Roswell Park Memorial Institute 

Medium (RPMI-1640) were purchased from Corning (Manassas, VA). Fetal bovine serum 

(FBS), L-glutamine, penicillin and streptomycin (P/S) were purchased from Thermo Fisher 

Scientific. FDA approved anticancer compounds were obtained from commercial sources 

and shipped to the University of Pittsburgh by the National Cancer Institute (NCI) 

Developmental Therapeutics Program (DTP), as previously reported. The ABCG2 

inhibitor KO-143 was kindly provided by Lisa C. Rohan PhD (University of Pittsburgh, 

School of Pharmacy). 

Cells and Cell Culture Methods 

The NCI-60 cell lines were obtained from the NCI DTP Tumor Repository which 

performed Applied Biosystems AmpFLSTR® Identifiler® testing with PCR amplification 

to confirm consistency with the published Identifiler® STR profile for each of the NCI-60 

cell lines and tested them for mycoplasma contamination.  NCI-60 cell lines were 

maintained as previously described and cultured at 37°C in 5 % CO2 and 95% humidity 

in either RPMI-1640 or DMEM supplemented with 10% FBS, 1% 2mM L-glutamine, and 
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100 U/mL penicillin and streptomycin.56  NCI-60 cell line 384-well growth inhibition assays 

were conducted as described previously.  Madin-Darby Canine Kidney  II (MDCKII) cell 

lines stably expressing human ABCG2 (MDCKII-ABCG2) or transfected with empty vector 

(MDCKII-EV) were kindly provided by Dr. Patrick McNamara  (University of Kentucky, 

College of Pharmacy) and were cultured in MEM supplemented with 5% FBS, 1% P/S, 

and 800µg/mL Geneticin as described previously. 58, 59  

NCI-60 Cell Line Growth Inhibition Assays. 

The 384-well NCI-60 cell line growth inhibition assays using the Cell Titer Glo® 

(CTG) (Promega Corporation, Madison, WI) homogeneous cellular ATP detection 

reagent have been described previously.56 On day 1 of the assay the NCI-60 cell lines 

were harvested by trypsinization, centrifugation, and viable trypan blue excluding cells 

were counted using a hemocytometer.  45 μL of cells at the appropriate cell density were 

seeded into the wells of white opaque clear bottomed 384-well barcoded assay plates 

(Greiner BioOne, Cat # 781098) using a Matrix™ multichannel pipettor (ThermoFisher, 

Waltham, MA) or a Microflo (BioTek, Winooski, VT) bulk reagent dispenser. Assay plates 

were then incubated at 37 °C in 5% CO2 and 95% humidity for 24 h. On day 2  GI50 replica 

daughter plates containing 2 μL of each compound concentration in 100% DMSO were 

thawed at 37 °C and the compounds were diluted in 98 μL of serum free RPMI-1640 

media to an intermediate drug concentration (2 % DMSO), and then 5 μL were transferred 

into the test wells of the assay plate (0.2% DMSO final) using the 384-well transfer head 

on a Janus MDT Mini (Perkin Elmer, Waltham, MA) robotic liquid handling platform, plates 

were centrifuged at 100 x g for 1 minute and returned to an incubator at 37 °C in 5% CO2 

and 95% humidity for 72 h. On day 5, compound treated assay plates were removed from 
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the incubator, 25 μL of CTG was added to the wells using a Microflo bulk reagent 

dispenser and after 15 min the relative light units (RLUs) were read on the SpectraMax 

M5e (Molecular Devices, LLC, Sunnyvale, CA). To analyze the growth inhibition data, we 

normalized the growth of compound-treated wells relative to the corresponding mean 

growth of our DMSO (0.2%) assay plate control wells (n= 64) and used GraphPad Prism 

5 software to plot and fit data to curves using the sigmoidal dose response variable slope 

equation Y = Bottom + [Top-Bottom]/[1+10^(LogGI50-X)*HillSlope]. Where bottom is the 

Y value at the bottom plateau, top is the Y value at the top plateau, Log GI50 is the X 

value when the response is halfway between the bottom and top and the HillSlope 

describes the steepness of the curve. The growth inhibition 50 (GI50) value represents the 

concentration at which cell growth was inhibited by 50%. 

Confirmation of Drug Combinations Scored Synergistic in the Pilot DC HTS  

We arrayed 10 x 10 drug combination matrices (DCMs) onto 384-well master 

plates (Chapter 2 Figure 4). Each DCM included 9 x 9 DC wells (81 total) together with 

nine wells (18 total) containing each of the corresponding individual drug concentrations, 

and one DMSO control well. Two 10 x 10 DCMs were matrices were arrayed in columns 

3 to 22 of the 384-well plates, together with DMSO (0.2%) controls in columns 1, 2, 23, 

and 24 (n=64). We used three distinct methods to analyze the interactions between the 

two drugs in the DCMs as described previously.56  

The Chou-Talalay Median-Effect model accounts for the dose responses of the 

two interacting drugs to determine the combination effect.60, 61  The combination index 

(CI) score CI = (D1/DX1) + (D2/DX2), where D1 and D2 denote the doses of compound 1 

and compound 2 required to reach an effect of X% as individual drug treatments, while 
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DX1 and DX2 are the doses needed in combination to inhibit X% respectively. DCs with CI 

> 1 exhibit antagonistic interactions, DCs with CI = 1 exhibit additivity, and DCs with CI < 

1 exhibit synergistic interactions. The COMPUSYN freeware program was utilized to 

calculate CI values and evaluate DC synergy as described previously. 53, 56  

Isobologram plots can be used to determine whether drug interactions are additive. 

62 In a plot of equally effective dose pairs termed isoboles for a single effect, when a 

specific effect level such as 50% of maximum is selected, the doses of drug A and drug 

B alone that produce this effect are plotted as axial points in a Cartesian plot. When a 

combination of drugs is additive, then the locus of points (dose pairs) that produce this 

effect form a straight-line connecting A to B. If the line connecting the actual dose pairs 

that produces the selected effect level experimentally significantly diverges from a straight 

line between A and B, then the drug combination is not additive. Isobologram plots were 

constructed in MATLAB® as described previously.56 

The pharmacodynamic drug interaction (PDI) model has been used to describe 

the relation between drug effects such as % growth inhibition (%GI) or cell loss fraction 

(CLF).63  The drug interaction effect F = Fmax x (CA/IC50A + CB/IC50B + α x CA/IC50A x 

CB/IC50B)n / (CA/IC50A + CB/IC50B + α x CA/IC50A x CB/IC50B)n + 1. Where Fmax is the maximal 

effect of drug A and drug B, CA and CB are the concentration of drug A and drug B, IC50A 

and IC50B are the individual drug concentrations that induce 50% of the max growth 

inhibition or cell loss, n is the slope of the response surface, and α is a parameter which 

characterizes the synergistic status of drug interaction. When α =0 the drug interaction is 

additive, for α >0 the drug interaction is synergistic, and for α <0 the drug interaction is 
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antagonistic. The PDI analysis and plots were produced in MATLAB® as described 

previously.56 

High Content Imaging Hoechst Accumulation Assays  

MDCKII-ABCG2 and MDCKII-EV cells were harvested, counted and seeded at 

20,000 cells per well in 384-well black walled clear bottom microtiter plates (Greiner 

BioOne, # 781091) and were cultured at 37°C in 5 % CO2 and 95% humidity overnight to 

allow cells adhere and form monolayers. After 8-12 h in culture, MDCKII-ABCG2 and 

MDCKII-EV adherent monolayers were exposed to the ABCG2 substrate Hoechst 33342 

at 8µg/mL for 60 minutes at 37°C in 5 % CO2 and 95% humidity before being fixed with 

3.7% formaldehyde for 30 minutes, washed 3 times with 80µL PBS, and then two 

fluorescent images were acquired per well  in the DAPI channel using a 10x Plan Fluor 

0.3 NA objective the ImageXpress Micro (IXM) (Molecular Devices LLC, Sunnyvale, CA) 

imaging platform.  The IXM is an automated wide field high content imaging platform 

integrated with the MetaXpress Imaging and Analysis software (Molecular Devices LLC). 

The IXM optical drive includes a 300 W Xenon lamp broad spectrum white light source 

and a 1.4-megapixel 2/3" chip Cooled CCD Camera and optical train for standard 

fluorescence imaging and a transmitted light module with phase contrast. The IXM has 

the following Zero Pixel Shift filter sets; DAPI, FITC/ALEXA 488, CY3/TRITC, CY5, and 

Texas Red. To acquire images of Hoechst-stained nuclei in MDCKII-ABCG2 and MDCKII-

EV cells we used the IXM automated image-based focus algorithm to acquire both a 

coarse focus (large µm steps) set of images of Hoechst stained objects in the DAPI 

channel in the first well to be imaged, followed by a fine (small µm steps) set of images 
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to select the best focus image. In all subsequent wells, only the fine focus set of images 

were acquired to select the best focus Z-plane. 

The IXM is integrated with the MetaXpress Imaging and Analysis software 

(Molecular Devices LLC, Sunnyvale, CA) and we used the multi-wavelength cell scoring 

(MWCS) image analysis module to quantify the integrated fluorescent intensities of the 

Hoechst-stained nuclei in digital images acquired on the IXM. The MWCS module image 

segmentation identified and classified Hoechst 33342 stained fluorescent objects in the 

DAPI channel that exhibited appropriate fluorescent intensities above background and 

morphology (size, width, length, and area) characteristics of MDCKII nuclei and used 

these objects to create nuclear masks for each cell.  For MDCKII-ABCG2 and MDCKII-

EV monolayers we defined the approximate minimum width of Hoechst stained nuclei to 

be 8 µm and the approximate maximum width to be 15 µm, and the threshold intensity 

above local background to be >50. The nuclear mask from in the DAPI channel was then 

used to quantify the mean integrated and mean average fluorescence intensity of Hoechst 

within the nuclear regions of MDCKII-ABCG2 or MDCKII-EV cells, and to count the 

number of cells per image. We utilized the well averaged mean integrated fluorescence 

intensity data from replicate wells to quantify and compare Hoechst accumulation in 

MDCKII-ABCG2 and MDCKII-EV cells.  We exported the mean integrated and mean 

average fluorescence intensity data on a per cell basis and analyzed the frequency 

distributions of the MDCKII-ABCG2 and MDCKII-EV populations using the Spotfire 

analytics software (TIBECO, Somerville, MA). 

To investigate the effects of known and presumed ABCG2 drug efflux inhibitors on 

Hoechst accumulation in MDCKII-ABCG2 and MDCKII-EV monolayers, compounds were 
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added simultaneously with Hoechst and incubated for 60 minutes at 37°C in 5 % CO2 and 

95% humidity.  Test compounds included the ABCG2 inhibitor KO-143 in the 0.02 to 10 

µM range, and either Gefitinib or Raloxifene at 10 µM.  

Imaging Data Visualizations 

 Pseudo-color fluorescence intensity data visualizations were used to illustrate 

Hoechst 33342 uptake and accumulation in MDCKII-EV and MDCKII-ABCG2 monolayer 

cultures. Pseudo-color fluorescence intensity data visualizations present the relative 

fluorescent intensities in the image indicated as distinct colors with the “hotter” and 

“brighter” colors (low to high, yellow, red, white) representing higher intensity signals and 

cooler colors (low to high, purple, cyan, green) representing lower intensity signals.64 

Statistical Analysis of Hoechst Accumulation Experiments  

Hoechst accumulation experiments were performed in triplicate with at least 3 

independent experiments where either ABCG2 overexpressing MDCKII cells or EV 

expressing cells were used to determine a baseline for fluorescent substrate 

accumulation. Statistically significance differences in Hoechst accumulation between the 

two populations was determined via a Student’s t-test performed on GraphPad Prism 8 

software.  Statistical significance in MDCKII cell lines after DMSO, KO-143, Gefitinib, or 

Raloxifene exposure was determined between treatments using a one-way ANOVA with 

Tukey’s multiple comparisons as a post hoc test performed on GraphPad Prism 8 

software.   
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2.4 Confirmation of Selected Synergistic Drug Combinations Flagged in the Pilot 

Phase of the NCI-60 DC-HTS Campaign 

Table 1 in Chapter 2 lists four DCs identified in the pilot DC HTS campaign that 

were chosen for follow up confirmation of synergistic growth inhibition interactions in 

selected tumor cell lines. DC-1 between the EGF-R TKI gefitinib and the topoisomerase 

inhibitor mitoxantrone met our selection criteria in four cell lines representing different 

tumor histologies; colon, breast, ovarian and prostate. In contrast, DC-2 between the 

selective estrogen receptor modifier (SERM) raloxifene in combination with mitoxantrone 

met the criteria in four colon cancer cell lines. DC-3 between raloxifene and the 

topoisomerase inhibitor daunorubicin satisfied the criteria in one prostate cancer cell line 

and two non-small cell lung cancer cell lines. Finally, DC-4 between gefitinib and the 

microtubule assembly inhibitor vinorelbine fulfilled the criteria in two melanoma and three 

leukemia cell lines.   

To determine whether the pharmacological interactions between two drugs are 

antagonistic, additive or synergistic involves the testing of a matrix of both drugs over a 

broad range of concentrations and fixed DC ratios to provide a pairwise interaction 

surface that is compared to the individual agent responses.43, 60, 62, 63  To confirm the 

synergistic interactions between the DCs 1-4 (Table 1) we prepared 10 x 10 DCMs (Figure 

4) and analyzed the fraction of cells affected by fixed DC  

ratios to calculate CI values, plotted the data in isobologram contour graphs, and 

applied the PDI model to create three-dimensional (3D) graphs of the data and calculate 

the fitted α parameter (Figures 5-8 and Table 1).56  A 10 x 10 DCM provides a 9 x 9 drug 

interaction surface with multiple fixed DC ratios for CI analysis  (Figure 4).53, 56  We 
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selected maximal drug concentrations for the DCMs based on the individual drug GI50s 

in the NCI-60 cell lines previously determined in the DC HTS campaign.56 Figures 5-8 in 

chapter 2 illustrate a representative example of each of the drug combination confirmation 

analyses. Figure 5 represents DC-1 of gefitinib plus mitoxantrone in the OVCAR-5 cell 

line, Figure 6 represents DC-2 of raloxifene plus mitoxantrone in the KM12 colon cancer 

cell line, Figure 7 represents DC-3 of raloxifene plus daunorubicin in the NCI-H23 non-

small cell lung cancer cell line, and Figure 8 represents DC-4 of gefitinib plus vinorelbine 

in the MDA-MB-435 melanoma cell line (Figures 5-8 and Table 1). 

2.5 Analysis and Confirmation of Drug Combination 1 

We used maximal drug concentrations of 50µM and 1 µM for gefitinib and 

mitoxantrone respectively (Figure 4), because individually these concentrations inhibited 

OVCAR-5, KM12, MDA-MB-468, and PC-3 growth by >50% and they were within the 

range of concentrations used in the DCM of the pilot DC HTS that produced DI scores >3 

The central diagonal wells of the 10 x 10 DCM for DC-1 represents a fixed ratio of gefitinib 

to mitoxantrone of 50:1 (Figure 4), and when the fraction of OVCAR-5 cells that were 

affected at this fixed DC ratio were analyzed using the COMUSYN software the CI values 

were <1 and the drug interaction was classified as synergistic (Figure 5A and Table 1). 

The isobologram contour map of the DC-1 data in OVCAR-5 cells displayed characteristic 

non-linear contours bending towards the lower left corner of the graph also indicating that 

the interactions of DC-1 were synergistic (Figure 5B). Finally, the 3D plot of the DC-1 data 

produced by the PDI model exhibited a sail that projected outward together with a positive 



 33 

fitted α-parameter of 74.4 which both indicated that the interactions in DC-1 were 

synergistic. All three models classified the interactions between gefitinib and mitoxantrone 

in the OVCAR-5 cell line as synergistic. (Figure 5 and Table 1).  

  

Figure 4. 10 X 10 Drug Combination Matrix for Confirmation of the Synergy 

between Gefitinib and Mitoxantrone in OVCAR-5 Ovarian Cancer Cell Line 

Each individual DCM included 9 x 9 DC wells (81 total) together with nine wells (18 total) 

containing each of the corresponding individual drug concentrations, and one DMSO 

control well. The relative growth of the OVCAR-5 cells in each DCM well was normalized 

(%) relative to the mean growth of the DMSO control wells on the assay plate (=64). The 

% of growth was colored by conditional formatting using a red to green gradient 

representing low to high growth relative to the mean DMSO controls. 
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Figure 5. Confirmation of Drug Combination 1 between Gefitinib and Mitoxantrone 

in OVCAR-5 Ovarian Cancer Cell Line 

A) Combination Index Analysis 
The growth inhibition fraction of 

OVCAR-5 cells affected by a 10 x 

10 gefitinib and mitoxantrone 

DCM was analyzed in the Chou-

Talalay median effects model 

using the COMPUSYN software 

to calculate combination index 

(CI) scores () and fit the data for 

the 50:1 gefitinib to mitoxantrone 

fixed drug ratio. CI scores <1.0 

indicate that the two drugs 

interacted synergistically. B) 
Isobologram Plot The data from 

the 10 x 10 gefitinib and 

mitoxantrone DCM in OVCAR-5 

cells was plotted as an 

isobologram contour graph. The 

non-linear concave contour lines 

of the isobologram plot indicate 

that gefitinib and mitoxantrone 

interacted synergistically in 

OVCAR-5 cells. C) Drug-Drug 
Interaction Surface Response 
The data from the 10 x 10 gefitinib 

and mitoxantrone DCM in 

OVCAR-5 cells was analyzed 

using the pharmacodynamic drug-drug interaction model to fit the experimental data and 
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construct a three-dimensional graph of the data. The fitted α parameter of the 

pharmacodynamic drug-drug interaction model was 0.77, which is >0 and indicates that 

gefitinib and mitoxantrone interacted synergistically. 

2.6 Analysis and Confirmation of Drug Combination 2 

We used maximal drug concentrations of 100 µM and 1 µM for raloxifene and 

mitoxantrone respectively, because these concentrations were capable of >50% growth 

inhibition across the selected cell lines HCT-116, HCT-15, KM12, and SW-620 (see GI50 

values in Table 1) and they  were also within the range of concentrations used in the DCM 

of the pilot DC HTS that produced DI scores >3. When the fraction of KM-12 cells affected 

at this 100:1 fixed DC ratio were analyzed using the COMUSYN software the CI values 

were <1 and the drug interaction was classified as synergistic (Figure 6A, and Table 1). 

In addition, isobologram analysis of the raloxifene and mitoxantrone DC revealed non-

linear contours bending towards the lower left corner of the graph indicating that the 

interactions were synergistic (Figure 6B, and Table 1). Lastly, with our PDI model, we 

were able to identify a drug-drug interaction relationship that demonstrated a sail that 

projected outward, in conjunction with a positive fitted α-parameter of 1.20, 1, 0.92, 0.06 

in KM12, HCT-116, HCT-15, and SW-620 respectively, all of which are indicative of a 

synergistic relationship between the two compounds (Figure 6C, and Table 1). 
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Figure 6 Confirmation of Drug Combination 2 between Raloxifene and Mitoxantrone 

in the KM12 Colon Cancer Cell Line. A) Combination Index Analysis The growth 

inhibition fraction of KM12 

cells affected data by a 10 x 10 

raloxifene and mitoxantrone 

DCM was analyzed in the 

Chou-Talalay median effects 

model using the COMPUSYN 

software to calculate 

combination index (CI) scores 

() and to fit the data for the 

100:1 raloxifene to 

mitoxantrone fixed drug ratio. 

CI scores <1.0 indicate that 

the two drugs interacted 

synergistically. B) 

Isobologram Plot The data 

from the 10 x 10 raloxifene and 

mitoxantrone DCM in KM12 

cells was plotted as an 

isobologram contour graph. 

The non-linear concave 

contour lines of the  
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isobologram plot indicate that raloxifene and mitoxantrone interacted synergistically. C) 

Drug-Drug Interaction Surface Response The data from the 10 x 10 raloxifene and 

mitoxantrone DCM in KM12 cells was analyzed using the pharmacodynamic drug-drug 

interaction model to fit the experimental data and construct a three-dimensional graph of 

the data. The fitted α parameter of the pharmacodynamic drug-drug interaction model 

was 1.2, which is >0 and indicates that raloxifene and mitoxantrone interacted 

synergistically. 

2.7 Analysis of Drug Confirmation 3 

We used maximal drug concentrations of 200 µM and 1 µM for raloxifene and 

daunorubicin respectively, as these concentrations were capable of >50% growth 

inhibition across the selected cell lines DU-145, NCI-H23, and NCI-H522, as indicated by 

their mean GI50 values in Table 1. Additionally, the selection of these compounds was in 

following with the results obtained from the pilot screen as each combination produced a 

DI score >3. Using the combination index plot we observed a trend that produced a curve 

fitted to our data points where the greater the fraction of cells affected beyond ~0.1 FA, 

produced a CI values less than one for the NCI-H23, and an overall synergistic 

relationship was observed across all other cell lines tested with this combination (Figure 

7A, and Table 1). In isobologram plots, the plots arced towards the lower left corner of 

the graph in a concave downward fashion consistent with a synergistic interaction (Figure 

7B, and Table 1).  Lastly, using the PDI model we observed a positive fitted α-parameters 

of 4.80 in NCI-H23, with an outwardly projected sail that indicated a synergistic 
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relationship, even with only modest inhibitory activity observed in raloxifene as indicated 

by the cooler blue and dark blue colors (Figure 7C, and Table 1). For the other cell lines, 

we observed positive fitted α-parameters of 41.0 and 1 in DU-145 and NCI-H522 cell lines 

respectively, confirming the synergistic relationship between raloxifene and daunorubicin. 

(Table 1). 
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Figure 7 Confirmation of Drug Combination 3 between Raloxifene and 

Daunorubicin in the NCI-H23 Non-Small Cell Lung Cancer Cell Line 

A) Combination Index Analysis 
The growth inhibition fraction of 

NCI-H23 cells affected data by a 

10 x 10 raloxifene and 

daunorubicin DCM was analyzed 

in the Chou-Talalay median 

effects model using the 

COMPUSYN software to 

calculate combination index (CI) 

scores () and to fit the data for 

the 100:1 raloxifene to 

daunorubicin fixed drug ratio. CI 

scores <1.0 indicate that the two 

drugs interacted synergistically. 

B) Isobologram Plot The data 

from the 10 x 10 raloxifene and 

daunorubicin DCM in NCI-H23 

cells was plotted as an 

isobologram contour graph. The 

non-linear concave contour lines 

of the isobologram plot indicate 

that raloxifene and daunorubicin 

interacted synergistically in NCI-

H23 cells. C) Drug-Drug 
Interaction Surface Response The data from the 10 x 10 raloxifene and daunorubicin 

DCM in NCI-H23 cells was analyzed using the pharmacodynamic drug-drug interaction 

model to fit the experimental data and construct a three-dimensional graph of the data. 
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The fitted α parameter of the pharmacodynamic drug-drug interaction model was 4.8, 

which is >0 and indicates that raloxifene and daunorubicin interacted synergistically. 

 

2.8 Analysis and Confirmation of Drug Combination 4 

As previously described in Close et. al, the drug combination between gefitinib and 

vinorelbine was confirmed synergistic in the OVCAR-5 cell line using all three analytical 

methods (Figure 3A-D).56 In Figure 8, we illustrate the  confirmation of synergy between 

vinorelbine and gefitinib in the MDA-MB-435  melanoma cell line.. In the CI plot, we 

observed that the majority of data points produced a CI scores below 1 and the drug 

interaction was classified as synergistic (Figure 8A). As indicated in Table 1, all cell lines 

exposed to this combination of gefitinib and vinorelbine displayed CI score <1, indicating 

synergism.  Additionally, our isobologram plot illustrated similar trends, whereby a 

synergistic effect was present across all effect levels with moderate effect levels (orange) 

displaying the deepest arc bending towards the southwest corner of the graph (Figure 

8B). This would indicate that a more potent synergistic effect was achieved when drugs 

were used at a concentration that was not so high as to achieve high kill on its own. Lastly, 

using our PDI model, we observed that an outward inflated sail with a positive fitted α-

parameter of 3.19, and all other cell lines displayed a similar positive value which 

confirmed the synergistic relationship between gefitinib and vinorelbine in both melanoma 

and leukemia cell lines (Figure 8C, Table 1).   
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Figure 8 Confirmation of Drug Combination 4 between Gefitinib and Vinorelbine 

in the MDA-MB-485 Melanoma Cell Line 

A) Combination Index Analysis 
The growth inhibition fraction of 

MDA-MB-435 cells affected data by 

a 10 x 10 gefitinib and vinorelbine 

DCM was analyzed in the Chou-

Talalay median effects model using 

the COMPUSYN software to 

calculate combination index (CI) 

scores () and fit the data for the 

10:1 gefitinib to vinorelbine fixed 

drug ratio. CI scores <1.0 indicate 

that the two drugs interacted 

synergistically in MDA-MB-435 

cells. B) Isobologram Plot The 

data from the 10 x 10 gefitinib and 

vinorelbine DCM in MDA-MB-435 

cells was plotted as an isobologram 

contour graph. The non-linear 

concave contour lines of the 

isobologram plot indicate that 

gefitinib and vinorelbine interacted 

synergistically in MDA-MB-435 

cells. C) Drug-Drug Interaction 
Surface Response The data from 

the 10 x 10 gefitinib and vinorelbine 

DCM in MDA-MB-435 cells was analyzed using the pharmacodynamic drug-drug 

interaction model to fit the experimental data and construct a three-dimensional graph of 
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the data. The fitted α parameter of the pharmacodynamic drug-drug interaction model 

was 3.19, which is >0 and indicates that gefitinib and vinorelbine interacted 

synergistically. 

2.9 Development and Validation of the High Content Imaging ABCG2 Drug Efflux 

Transporter Hoechst Accumulation Assay 

Various assay formats have been developed to measure and compare ABC 

transporter drug efflux activity in control and ABC transporter expressing cell lines. They 

include the use of flow cytometry to measure and compare the accumulation of 

fluorescent ABC transporter substrates in cells, or Transwell™ assays that measure the 

permeability and bi-directional, apical to basolateral and vice versa, passage of 

substrates through monolayer cultures separating substrate donor and acceptor 

chambers.58, 59, 65, 66  We developed an imaging assay to measure the accumulation of 

the ABCG2 substrate Hoechst 33342 in MDCKII-EV and MDCKII-ABCG2 cell lines that 

have previously been used in both Transwell™ and flow cytometry assay formats.58, 59 

Assay development experiments established the following optimal 384-well assay 

conditions for the imaging based Hoechst accumulation assay: a cell seeding density of 

20,000 MDCKII-EV or MDCKII-ABCG2 cells per well; a Hoechst 33342 concentration of 

8 µg/mL;  a dye accumulation period of 60 minutes at 37°C in 5 % CO2 and 95% humidity; 

acquisition of two fluorescent images per well in the DAPI channel using a 10x Plan Fluor 

0.3 NA objective on the IXM HCS platform; and image analysis using the MWCS module. 

Figure 9A shows representative grayscale 10x images of the Hoechst-stained nuclei 

acquired in the DAPI channel and the corresponding pseudo-color fluorescent pixel 
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intensity visualizations of MDCKII-EV and MDCKII-ABCG2 cells exposed to Hoechst 

using these assay conditions. Images of the Hoechst-stained nuclei of MDCKII-EV cells 

were brighter and more intense than those of MDCKII-ABCG2 cells, which was 

corroborated by the “hotter” and “brighter” colors (yellow, red, white) representing higher 

intensity signals in the pseudo-color pixel intensity visualizations of MDCKII-EV cells  

compared to the cooler colors (purple, cyan, green) representing the lower intensity 

signals observed in MDCKII-ABCG2 cells. We used the mean integrated fluorescent 

intensity (MIFI) data output of the MWCS image analysis module to quantify and compare 

Hoechst accumulation in MDCKII-ABCG2 and MDCKII-EV cell populations (Figure 9B), 

and on a well-averaged basis (Figure 9C). The results frequency distribution of the binned 

cellular MIFI data for the MDCKII-ABCG2 and MDCKII-EV populations exhibited different 

profiles that were substantially shifted in MIFI values relative to each other (Figure 9B). 

The MDCKII-ABCG2 population MIFI values were distributed in a single non-symmetrical 

peak around a median of ~100,000 that exhibited an extended tail towards higher MIFI 

values. The MDCKII-EV population MIFI values were distributed between two conjoined 

peaks with medians of ~200,000 and ~400,000, that would be consistent with 1n (Go/G1) 

and 2n (G2/M) DNA peaks characteristic of the normal cell cycle. Although there was 

some overlap between the MIFI values in the MDCKII-ABCG2 and MDCKII-EV 

populations, the MDCKII-ABCG2 population was substantially shifted to lower MIFI 

values relative to the majority of the MDCKII-EV population. At the well averaged level, 

the Hoechst MIFI values observed in MDCKII-ABCG2 wells were significantly (Student’s 

t-test, p <0.05) lower than those detected in MDCKII-EV wells (Figure 9C). Collectively 

these data indicated that the expression of the ABCG2 drug efflux transporter in MDCKII 
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cells significantly reduced Hoechst accumulation levels compared to control cells (Figure 

9). 

Ko143 is a potent and less toxic analog of the fungal toxin fumitremorgin C which 

is a selective inhibitor of the ABCG2 efflux transporter.    

 

Figure 9 High Content Imaging Assay to measure the Accumulation of the ABCG2 

Substrate Hoechst 33342 in MDCKII-EV and MDCKII-ABCG2 Cell Lines 

A) Grayscale Images of Hoechst-stained Nuclei and Pseudo-color Fluorescent 
Pixel Intensity Visualizations of MDCKII-EV and MDCKII-ABCG2 Cells.  
Representative 10x greyscale fluorescent images and the corresponding pseudo-color 

fluorescent pixel intensity visualizations of the Hoechst stained nuclei of MDCKII-EV and 

MDCKII-ABCG2 cells seeded into 384-well plates at 20,000 cell per well and exposed to 

8 µg/mL Hoechst 33342 for 60 minutes at 37°C in 5 % CO2 and 95% humidity. Images 
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were acquired on the ImageXpress Micro HCS platform using a 10x Plan Fluor 0.3 NA 

objective. The corresponding pseudo-color fluorescence pixel intensity data 

visualizations present the relative fluorescent intensities as distinct colors with the “hotter” 

and “brighter” colors (low to high, yellow, red, white) representing higher intensity pixels 

and cooler colors (low to high, purple, cyan, green) representing lower intensity pixels. 

 

 

B) Results Frequency Distribution of the Mean Integrated Fluorescent Intensities 
of the Hoechst-stained Nuclei in MDCKII-EV and MDCKII-ABCG2 Cell Populations. 
The binned cellular mean integrated Hoechst fluorescent intensity (MIFI) data output of 

the multiwavelength cell scoring (MWCS) image analysis module was plotted to quantify 

and compare the profiles of Hoechst accumulation in MDCKII-ABCG2 (■) and MDCKII-

EV (■) cell populations. The Y-axis represents the number of cells detected in each MIFI 

bin plotted on the X-axis. 
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C) Well-averaged Mean Integrated Fluorescent Intensities of the Hoechst-stained 
Nuclei in MDCKII-EV and MDCKII-ABCG2 Cell Populations The well-based Hoechst 

average MIFI data for the MDCKII-ABCG2 and MDCKII-EV populations seeded in 384-

well microtiter plates are presented as the mean MIFI values ± SD (n = 5) of replicate 

wells. A Student’s t-test was performed to determine whether there was a statistically 

significant difference in Hoechst accumulation between MDCKII-ABCG2 and MDCKII-EV 

cell lines, p < 0.05. Representative data from one of at least 3 independent experiments 

each performed in 5 replicate wells are shown. 
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Figure 10 shows the effects of co-administration of 10 µM Ko143 on the 

accumulation of Hoechst 33342 in MDCKII-EV and MDCKII-ABCG2 cells. Relative to 

DMSO controls, exposure of MDCKII-EV cells to 10 µM Ko143 had no discernable effect 

on the brightness and intensity of the Hoechst stained nuclei apparent in the grayscale 

images and corresponding pseudo-color pixel intensity visualizations (Figure 10A).  In 

marked contrast, 10 µM Ko143 increased the brightness and intensity of the Hoechst 

stained nuclei in the images and pseudo-color pixel intensity visualizations of MDCKII-

ABCG2 cells relative to DMSO control cells. The images and pseudo-color pixel intensity 

visualizations of MDCKII-ABCG2 cells treated with Ko143 were very similar to those of 

MDCKII-EV cells ± Ko143. The results frequency distribution of the binned cellular MIFI 

data for MDCKII-EV cell populations ± Ko143 exposure exhibited overlapping profiles with 

two conjoined peaks with median MIFI values ~160,000 and ~340,000 (Figure 10B). In 

MDCKII-ABCG2 cells treated with DMSO, the binned cellular MIFI data were distributed 

in a single non-symmetrical peak around a median MIFI value ~80,000 with an extended 

tail towards higher MIFI values (Figure 10C). However, exposure of MDCKII-ABCG2 cells 

to Ko143 altered the MIFI distribution profile and shifted the MIFI values higher (Figure 

10C).  In MDCKII-ABCG2 cells exposed to Ko143, the binned cellular MIFI data were 

distributed between two conjoined peaks with median MIFI values ~ 180,000 and 

~360,000 (Figure 10C), very similar to the profiles of MDCKII-EV cells ± Ko143 (Figure 

10B).  Figure 10D shows the time dependent change in well averaged Hoechst 

accumulation MIFI values in MDCKII-EV or MDCKII-ABCG2 cells ± exposure to 10 µM 

Ko143. In MDCKII-EV and MDCKII-ABCG2 cells treated with DMSO there was a gradual 

linear increase in Hoechst accumulation in both populations over time, 
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Figure 10 Effects of Exposure to the ABCG2 Inhibitor Ko143 on Hoechst 33342 

Accumulation in MDCKII-EV and MDCKII-ABCG2 Cell Lines 

A) Grayscale Images of Hoechst-stained Nuclei and Pseudo-color Fluorescent 
Pixel Intensity Visualizations of MDCKII-EV and MDCKII-ABCG2 Cells ± Ko143.  
Representative 10x greyscale fluorescent images and the corresponding pseudo-color 

fluorescent pixel intensity visualizations of the Hoechst stained nuclei of MDCKII-EV and 

MDCKII-ABCG2 cells seeded into 384-well plates at 20,000 cell per well and exposed to 

8 µg/mL Hoechst 33342 ± 10 µM Ko143 for 60 minutes at 37°C in 5 % CO2 and 95% 

humidity. Images were acquired on the ImageXpress Micro HCS platform using a 10x 

Plan Fluor 0.3 NA objective. The corresponding pseudo-color fluorescence pixel intensity 

data visualizations present the relative fluorescent intensities as distinct colors with the 

“hotter” and “brighter” colors (low to high, yellow, red, white) representing higher intensity 

pixels and cooler colors (low to high, purple, cyan, green) representing lower intensity 

pixels. 
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B) Results Frequency Distribution of the Mean Integrated Fluorescent Intensities 
of the Hoechst-stained Nuclei in MDCKII-EV Cell Populations ± 10 µM Ko143.  The 

binned cellular mean integrated Hoechst fluorescent intensity (MIFI) data output of the 

multiwavelength cell scoring (MWCS) image analysis module was plotted to quantify and 

compare the profiles of Hoechst accumulation in MDCKII-EV cell populations in the 

presence (■) or absence (■) of 10 µM Ko143 for 60 minutes at 37°C in 5 % CO2 and 

95% humidity. The Y-axis represents the number of cells detected in each MIFI bin plotted 

on the X-axis.  
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C) Results Frequency Distribution of the Mean Integrated Fluorescent Intensities 
of the Hoechst-stained Nuclei in MDCKII-ABCG2 Cell Populations ± 10 µM Ko143.  
The binned cellular mean integrated Hoechst fluorescent intensity (MIFI) data output of 

the multiwavelength cell scoring (MWCS) image analysis module was plotted to quantify 

and compare the profiles of Hoechst accumulation in MDCKII-ABCG2 cell populations in 

the presence (■) or absence (■) of 10 µM Ko143 for 60 minutes at 37°C in 5 % CO2 and 

95% humidity. The Y-axis represents the number of cells detected in each MIFI bin plotted 

on the X-axis. 
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D) Time Course of Hoechst Accumulation in MDCKII-EV and MDCKII-ABCG2 Cells 
± 10 µM Ko143.   The time dependent changes in well-averaged Hoechst MIFI values for 

MDCKII-ABCG2 and MDCKII-EV cells in the presence or absence of 10 µM Ko143 

throughout a 60-minute incubation period at 37°C in 5 % CO2 and 95% humidity are 

presented as the mean MIFI values ± SD (n = 3) of triplicate wells versus time in minutes. 

MDCKII-EV cells in the presence (■) or absence (□) of 10 µM Ko143, and MDCKII-

ABCG2 cells in the presence (●) or absence (○) of 10 µM Ko143. Representative data 

from one of 3 independent experiments each performed in triplicate wells are shown.  E) 
Concentration Dependent Effects of Ko143 Exposure on Hoechst Accumulation in 
MDCKII-EV and MDCKII-ABCG2 Cells.   The well-averaged Hoechst MIFI values of 

MDCKII-ABCG2 and MDCKII-EV cells exposed to the indicated concentrations of Ko143 

for 60-minutes at 37°C in 5 % CO2 and 95% humidity are presented as the mean MIFI 

values ± SD (n = 3) of triplicate wells versus Ko143 concentration in µM. MDCKII-EV cells 

(○) versus MDCKII-ABCG2 cells (●). The data represent one of 3 independent 

experiments each performed in triplicate wells. 
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with MDCKII-ABCG2 cells consistently exhibiting > 2-fold lower Hoechst accumulation 

MIFI values than MDCKII-EV cells. In MDCKII-EV cells co-administered Ko143, the linear 

rate of accumulation of Hoechst appeared to be marginally higher than in DMSO control 

wells. In MDCKII-ABCG2 cells however, exposure to Ko143 dramatically increased the 

linear rate of accumulation of Hoechst such that after 60 min, Hoechst accumulation MIFI 

values approached those observed in MDCKII-EV cells ± Ko143 (Figure 10D).  In 

MDCKII-EV cells, Hoechst accumulation increased in a roughly linear fashion as Ko143 

concentrations were increased (Figure 10E). In MDCKII-ABCG2 cells however, the 

concentration dependent increase in Hoechst accumulation produced by Ko143 exposure 

could be fit to a sigmoidal curve (r2 = 0.9) and exhibited an IC50 of 0.54 µM for inhibition 

of ABCG2-mediated Hoechst efflux (Figure 10E). Collectively these data demonstrated 

that exposure to Ko143 inhibited ABCG2-mediated Hoechst efflux in a concentration and 

time dependent manner in MDCKII-ABCG2 cells but not MDCKII-EV cells (Figure 10), 

thereby validating the ABCG2 efflux transporter HCS assay. 

2.10 Do Gefitinib and Raloxifene Inhibit ABCG2 Transporter Substrate Efflux? 

Figure 11 shows the effects of co-administration of 10 µM of either Ko143, gefitinib 

or raloxifene on the accumulation of Hoechst 33342 in MDCKII-EV and MDCKII-ABCG2 

cells. Relative to DMSO controls, exposure of MDCKII-EV cells to 10 µM Ko143, gefitinib 

or raloxifene had no discernable effect on the brightness and intensity of the Hoechst 

stained nuclei apparent in the grayscale images and corresponding pseudo-color pixel 

intensity visualizations (Figure 11A).  In MDCKII-ABCG2 cells however, treatment with 10 
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µM Ko143, gefitinib or raloxifene all enhanced the brightness and intensity of the Hoechst 

stained nuclei in the images and pseudo-color pixel intensity visualizations relative to cells 

exposed to DMSO (Figure 11B). Exposure of MDCKII-EV cells to 10 µM gefitinib or 

raloxifene produced no discernable effects on the results frequency distribution profiles 

of the binned cellular MIFI population data which exhibited two conjoined peaks with 

median MIFI values ~200,000 and ~400,000 (Figure 11C, and Figure 12A).  As expected, 

in MDCKII-ABCG2 cells treated with DMSO the binned cellular MIFI data were distributed 

in a single non-symmetrical peak around a median MIFI value ~60,000 with an extended 

tail towards higher MIFI values (Figure 11D, and Figure 12B). Exposure of MDCKII-

ABCG2 cells to 10 µM gefitinib or raloxifene altered the MIFI distribution profile and shifted 

the MIFI values higher (Figure 11D and Figure 12B). Although the changes in the MIFI 

distribution profiles and the extent to which the MIFI values were shifted higher in MDCKII-

ABCG2 cells by gefitinib or raloxifene were less dramatic than with Ko143 (Figure 10C), 

both drugs enhanced Hoechst accumulation (Figure 11D, and Figure 12B). At the well 

averaged level, exposure of MDCKII-EV cells to 10 µM Ko143, gefitinib or raloxifene had 

no apparent effect on the Hoechst accumulation MIFI values (Figure 11E).  In MDCKII-

ABCG2 cells however, Hoechst accumulation MIFI values were significantly higher in 

wells that were treated with Ko-143 or gefitinib relative to DMSO controls (one-way 

ANOVA with multiple comparisons, p < 0.001) (Figure 11F). Although the well averaged 

Hoechst accumulation MIFI  
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Figure 11 Effects of Exposure to Ko143, Gefitinib or Raloxifene on Hoechst 33342 

Accumulation in MDCKII-EV and MDCKII-ABCG2 Cell Lines 

A) Grayscale Images of Hoechst-stained Nuclei and Pseudo-color Fluorescent 
Pixel Intensity Visualizations of MDCKII-EV Cells Exposed to Ko143, Gefitinib or 
Raloxifene.  Representative 10x greyscale fluorescent images and the corresponding 

pseudo-color fluorescent pixel intensity visualizations of the Hoechst stained nuclei of 

MDCKII-EV cells seeded into 384-well plates at 20,000 cell per well and exposed to 8 

µg/mL Hoechst 33342 ± 10 µM Ko143, Gefitinib or Raloxifene for 60 minutes at 37°C in 

5 % CO2 and 95% humidity. Images were acquired on the ImageXpress Micro HCS 

platform using a 10x Plan Fluor 0.3 NA objective. The corresponding pseudo-color 

fluorescence pixel intensity data visualizations present the relative fluorescent intensities 

as distinct colors with the “hotter” and “brighter” colors (low to high, yellow, red, white) 

representing higher intensity pixels and cooler colors (low to high, purple, cyan, green) 

representing lower intensity pixels. 
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B) Grayscale Images of Hoechst-stained Nuclei and Pseudo-color Fluorescent 
Pixel Intensity Visualizations of MDCKII-ABCG2 Cells Exposed to Ko143, Gefitinib 
or Raloxifene.  Representative 10x greyscale fluorescent images and the corresponding 

pseudo-color fluorescent pixel intensity visualizations of the Hoechst stained nuclei of 

MDCKII-ABCG2 cells seeded into 384-well plates at 20,000 cell per well and exposed to 

8 µg/mL Hoechst 33342 ± 10 µM Ko143, Gefitinib or Raloxifene for 60 minutes at 37°C 

in 5 % CO2 and 95% humidity. Images were acquired on the ImageXpress Micro HCS 

platform using a 10x Plan Fluor 0.3 NA objective. The corresponding pseudo-color 

fluorescence pixel intensity data visualizations present the relative fluorescent intensities 

as distinct colors with the “hotter” and “brighter” colors (low to high, yellow, red, white) 

representing higher intensity pixels and cooler colors (low to high, purple, cyan, green) 

representing lower intensity pixels. 
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C) Results Frequency Distribution of the Mean Integrated Fluorescent Intensities 
of the Hoechst-stained Nuclei in MDCKII-EV Cell Populations ± 10 µM Gefitinib.  The 

binned cellular mean integrated Hoechst fluorescent intensity (MIFI) data output of the 

multiwavelength cell scoring (MWCS) image analysis module was plotted to quantify and 

compare the profiles of Hoechst accumulation in MDCKII-EV cell populations in the 

presence (■) or absence (■) of 10 µM Gefitinib for 60 minutes at 37°C in 5 % CO2 and 

95% humidity. The Y-axis represents the number of cells detected in each MIFI bin plotted 

on the X-axis. 
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D) Results Frequency Distribution of the Mean Integrated Fluorescent Intensities 
of the Hoechst-stained Nuclei in MDCKII-ABCG2 Cell Populations ± 10 µM Gefitinib.  
The binned cellular mean integrated Hoechst fluorescent intensity (MIFI) data output of 

the multiwavelength cell scoring (MWCS) image analysis module was plotted to quantify 

and compare the profiles of Hoechst accumulation in MDCKII-ABCG2 cell populations in 

the presence (■) or absence (■) of 10 µM Gefitinib for 60 minutes at 37°C in 5 % CO2 

and 95% humidity. The Y-axis represents the number of cells detected in each MIFI bin 

plotted on the X-axis.  
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E) Hoechst Accumulation in MDCKII-EV Cells ± 10 µM Ko143, Gefitinib or 

Raloxifene.   The well-averaged Hoechst MIFI values (□) for MDCKII-EV cells incubated 

in the presence or absence of 10 µM Ko143, Gefitinib or Raloxifene for 60 minutes at 

37°C in 5 % CO2 and 95% humidity are presented as the mean MIFI values ± SD (n = 3) 

of triplicate wells versus time in minutes. F) Hoechst Accumulation in MDCKII-ABCG2 
Cells ± 10 µM Ko143, Gefitinib or Raloxifene.   The well-averaged Hoechst MIFI values 

(■) for MDCKII-ABCG2 cells incubated in the presence or absence of 10 µM Ko143, 

Gefitinib or Raloxifene for 60 minutes at 37°C in 5 % CO2 and 95% humidity are presented 

as the mean MIFI values ± SD (n = 3) of triplicate wells versus time in minutes. We 

performed one-way ANOVA with Tukey’s multiple comparisons as a post hoc test to 

determine whether there was a statistically significant difference in Hoechst accumulation 

between MDCKII-ABCG2 cells lines incubated in the presence or absence of 10 µM 

Ko143, Gefitinib or Raloxifene; **** p < 0.001, *** p < 0.01, ** p < 0.05. Representative 

data from one of at least 3 independent experiments each performed in 3 replicate wells 

are shown.   
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Figure 12 Effects of Exposure to Raloxifene on Hoechst 33342 Accumulation in 

MDCKII-EV and MDCKII-ABCG2 Cell Lines 

A) Results Frequency Distribution of the Mean Integrated Fluorescent Intensities 
of the Hoechst-stained Nuclei in MDCKII-EV Cell Populations ± 10 µM Raloxifene.  
The binned cellular mean integrated Hoechst fluorescent intensity (MIFI) data output of 

the multiwavelength cell scoring (MWCS) image analysis module was plotted to quantify 

and compare the profiles of Hoechst accumulation in MDCKII-EV cell populations in the 

presence (■) or absence (■) of 10 µM Raloxifene for 60 minutes at 37°C in 5 % CO2 and 

95% humidity. The Y-axis represents the number of cells detected in each MIFI bin plotted 

on the X-axis. 
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B) Results Frequency Distribution of the Mean Integrated Fluorescent Intensities 
of the Hoechst-stained Nuclei in MDCKII-ABCG2 Cell Populations ± 10 µM 
Raloxifene.  The binned cellular mean integrated Hoechst fluorescent intensity (MIFI) 

data output of the multiwavelength cell scoring (MWCS) image analysis module was 

plotted to quantify and compare the profiles of Hoechst accumulation in MDCKII-ABCG2 

cell populations in the presence (■) or absence (■) of 10 µM Raloxifene for 60 minutes 

at 37°C in 5 % CO2 and 95% humidity. The Y-axis represents the number of cells detected 

in each MIFI bin plotted on the X-axis. 
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values were also consistently higher in wells treated with raloxifene compared to 

DMSO, the differences were not considered statistically significant and merits follow up 

at a higher compound concentration or duration of exposure to investigate the potential 

for statistically significant inhibition of Hoechst accumulation. Cumulatively these data 

demonstrated that exposure to 10 µM Ko143, gefitinib or raloxifene enhanced Hoechst 

accumulation in MDCKII-ABCG2 cells but not in MDCKII-EV cells (Figure 11). Either 

gefitinib and potentially raloxifene are direct inhibitors of the ABCG2 drug efflux 

transporter, or they are substrates that competitively inhibit ABCG2-mediated Hoechst 

efflux. 

2.11 Discussion 

The NCI-60 panel of tumor cell lines encompass nine cancer lineages that for >30 

years have been used to screen small molecule and natural product extract libraries for 

compounds that inhibit tumor cell line growth and might then be optimized and developed 

into cancer drugs.55, 57, 67-69 Growth inhibition patterns across the 60 cell lines are similar 

for drugs with closely related MOAs, and the COMPARE algorithm can be used to predict 

the MOAs of novel molecules that exhibit similar sensitivity and resistance profiles to 

known anticancer agents.68, 69 Over the years, the NCI-60 cell lines have been extensively 

characterized; exome sequencing, DNA methylation, mRNA expression, microRNA 

expression, protein levels and modifications, ABC drug efflux transporter mRNA 

expression levels, enzyme activities and metabolomics profiling.55, 67-69  Recently the NCI 

established the ALMANAC database which contains data from a DC HTS campaign of 
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100 FDA approved cancer drugs that were screened in pairwise DCs across the 60 cell 

lines.55, 56  Since 75% of the DCs in the ALMANAC database are not listed in the clinical 

trials database, the data can be mined to identify novel DCs that might be suitable starting 

points for future clinical development as effective DC regimens.55, 56  However, primary 

HTS actives need to be confirmed as qualified hits before they progress into follow up 

studies designed to determine MOAs and establish value. Using criteria described above, 

we selected four DCs that were flagged as synergistic interactions in the pilot phase of 

the DC HTS campaign for confirmation of synergy in vitro (Table 1).56 We prepared 10 x 

10 DCMs and analyzed the fraction of cells affected by fixed DC ratios to calculate CI 

values, plotted the data in isobologram contour graphs, and applied the PDI model to 

create 3D graphs and calculate the fitted α parameter (Figure 3, Figures 5-8, and Table 

1).  All 19 (100%) of the DC and tumor cell line sets were confirmed and classified as 

synergistic interactions in three distinct pharmacological interaction models (Table 1).  

Queries of the ClinicalTrials.Gov database for DC-1 retrieved two clinical trials that 

are open for enrollment. Gefitinib and mitoxantrone are two of 75 FDA approved drugs in 

a genomics-based assignment of therapy clinical trial in patients with advanced urothelial 

carcinoma, NCT02788201. The Co-eXpression ExtrapolatioN (COXEN) model algorithm 

will be used to determine the best therapy from among the 75 agents (single agent or 

combination) for urothelial carcinoma patients that have progressed on at least one 

chemotherapy regimen. Gefitinib and mitoxantrone are also among the agents in a high 

throughput drug sensitivity assay and genomics-guided treatment clinical trial in patients 

with relapsed or refractory acute leukemia, NCT02551718. Treatment options will be 

selected based on high throughput ex vivo drug sensitivity assays in combination with 
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mutation analysis of patients with acute leukemia that has returned after a period of 

improvement or does not respond to treatment. There is also pre-clinical in vitro data 

which corroborates that the gefitinib and mitoxantrone combination might be more 

effective against tumor cell lines than single agent treatments. Gefitinib increased the 

growth inhibitory effect of mitoxantrone in the MCF-7 estrogen receptor alpha-positive 

human breast cancer cell line, and also in a fulvestrant-resistant cell line (MCF-7/F) 

derived from MCF-7 cells.70 The combination of mitoxantrone with gefitinib and 

cyclopamine produced supra-additive anti-proliferative effects in androgen-sensitive and 

androgen-independent prostate cancer cell lines.71 In contrast however, gefitinib did not 

enhance the cytotoxicity of mitoxantrone, or several other antitumor agents, in a panel of 

5 oral squamous cell carcinoma cell lines.72  

Queries of the ClinicalTrials.Gov database failed to return any clinical trials for DC-

2. In pre-clinical in vitro studies, a raloxifene analogue partially reversed drug resistance 

to mitoxantrone in an estrogen receptor beta-positive A2780 ovarian cancer cell line 

stably transfected with splicing factor SPF45.73 Queries of the ClinicalTrials.Gov database 

also didn’t return any clinical trials for DC-3. In pre-clinical in vitro studies, exposure to 

raloxifene for 48 hours partially restored the sensitivity of K562/A02 cells to daunorubicin. 

The K562/A02 cell line is a multidrug resistant variant of the K562 chronic myelogenous 

leukemia (CML) cell line which is ~100-fold resistant to daunorubicin.74 Although queries 

of the ClinicalTrials.Gov database for DC-4 returned 10 clinical trials where these drugs 

were listed in the treatment regimen, gefitinib and vinorelbine appeared in different 

comparator treatment arms, never in combination. In pre-clinical in vitro studies, gefitinib 

and vinorelbine DCs have been investigated in Head and Neck Squamous cell Carcinoma 



 64 

(HNSCC), NSCLC and melanoma tumor cell line models.56, 75, 76  In HNSCC tumor cell 

lines, DC-4 had a supra-additive cytotoxic effect in 4/6 cell lines, and additive cytotoxic 

effects in the other two.75 It was suggested that since gefitinib and vinorelbine are both 

metabolized by CYP3A4 P450 isoenzymes, drug-drug interactions may alter their 

respective exposure levels in vivo.75  In seventeen NSCLC cell lines which included four 

that overexpressed the ATP binding cassette (ABC) drug efflux transporter ABCB1 

(Pgp/MDR1) and three with sensitizing EGF-R mutations, DC-4 exhibited synergism in 

cell lines lacking EGF-R mutations.76 Although the synergy between gefitinib and 

vinorelbine was more robust in ABCB1 overexpressing NSCLC cell lines, it was also 

apparent in cell lines with efflux transporter expression levels below detection limits.76 

Since gefitinib is an ABCB1 inhibitor and vinorelbine is an ABCB1 substrate, it was 

considered probable that blocking the efflux transporter active resistance mechanism 

contributed to the synergy between the two drugs in ABCB1 overexpressing NSCLC cell 

lines, but that other MOAs of resistance were likely affected in cell lines with no detectable 

efflux transporter expression.76  The gefitinib and vinorelbine combination was also 

confirmed to be synergistic in vitro in the SK-MEL-5 melanoma cell line.56   

Several factors prompted us to investigate drug efflux transporter interactions as 

a potential MOA for the synergistic inhibition of tumor cell line growth by DCs 1-4 (Tables 

1 and 2).  ABC transporters actively extrude cancer drugs with diverse chemical 

structures from tumor cells thereby conferring resistance to these agents, and increased 

expression of ABC efflux transporter superfamily members contributes to multidrug 

resistance (MDR) and therapeutic failure.69, 77, 78  
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Table 2 Selected Drug Combinations, NCI-60 Cell Lines, Drug Efflux Transporter 

mRNA Expression Levels and Compound Functional Activities 

 

 

DC = drug combination number 

NCI-60 = National Cancer Institute 60 tumor cell line panel. 

ABCG2 = ATP-binding cassette super-family G member 2, also known as breast 

cancer resistance protein (BCRP) or multi-xenobiotic resistance transporter (MXR). 

ABCB1 = ATP-binding cassette sub-family B member 1, also known as 

permeability glycoprotein 1 (P-gp) and multidrug resistance protein 1 (MDR1) 

ABCC1 = ATP-binding cassette sub-family C member 1, also known as multidrug 

resistance protein 1 (MRP1). 

 

Relative drug efflux transporter mRNA expression levels are based on Szakacs et. 

al, Cancer Cell, 2004, 6: 129-137. The mRNA expression levels of 47 ABC transporters 

were measured across the NCI-60 tumor cell lines using real-time quantitative RT-PCR 

with specific oligonucleotide primers for each transporter. Individual ABC transporter 

mRNA expression data were normalized relative to their mean expression across the 60 

cell lines. The data was mean centered and multiplied by -1 to generate values relative 

to the average expression of each transporter in the 60 cell lines: cell lines with scores <-

2 exhibited lower than average ABC transporter expression; cell lines with scores >-2 but 

<2 had moderate expression levels; and cell lines with scores >2 displayed high 

expression levels. 
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There is considerable evidence in the literature that gefitinib inhibits both the 

ABCG2 (BCRP) and ABCB1 (Pgp/MDR1) transporters and can reverse the resistance of 

cancer cells expressing these proteins to chemotherapeutic agents that are efflux 

substrates.79-82 There is also evidence in the literature that raloxifene inhibits ABCB1 

(Pgp/MDR1) mediated substrate efflux, and to a lesser extent that of ABCG2 (BCRP).83-

85 However, raloxifene has also been reported to be a substrate of ABCB1.85 

 

ABCB1, ABCC1 and ABCG2 transporters efflux a broad and partially redundant 

set of cancer drug substrates.78 For example, mitoxantrone and daunorubicin, the two B 

drugs in DCs 1-3, are substrates of ABCG2, ABCB1 and ABCC1, and vinorelbine the B 

drug in DC-4, is a substrate of ABCB1 and ABCC1. The most extensively characterized 

MDR transporters include: ATP-binding cassette sub-family B member 1 (ABCB1) also 

known as permeability glycoprotein 1 (P-gp) or multidrug resistance protein 1 (MDR1); 

ATP-binding cassette sub-family C member 1 (ABCC1) also known as multidrug 

resistance protein 1 (MRP1); and ATP-binding cassette super-family G member 2 

(ABCG2) also known as breast cancer resistance protein (BCRP) or multi-xenobiotic 

resistance transporter (MXR).78 Correlations between the growth inhibition profiles of 

drugs and the mRNA expression levels of ABC efflux transporter members in the NCI-60 

tumor cell lines have been used to infer which transporters mediated resistance to 

selected agents.77 The in vitro sensitivity of NCI-60 tumor cell lines to cancer drugs that 

are substrates of ABC transporters is inversely correlated with transporter expression 

levels, and efflux transporter inhibitors can reverse drug resistance in vitro.69, 77, 78  We 

therefore developed an HCS assay to measure and compare the accumulation of the 

ABCG2 efflux transporter substrate Hoechst 33342 in MDCKII-EV and MDCKII-ABCG2 
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cell lines and demonstrated that the ABCG2 inhibitor Ko143 enhanced Hoechst 

accumulation in MDCKII-ABCG2 but not MDCKII-EV cells (Figures 9 & 10).   Similarly, 

we demonstrated that exposure to gefitinib or raloxifene also enhanced Hoechst 

accumulation in MDCKII-ABCG2 cells but not in MDCKII-EV cells (Figure 11). Our data 

suggest that gefitinib and potentially raloxifene if a higher concentration is tested and 

proven statistically significant, are either inhibitors of the ABCG2 drug efflux transporter, 

or they are substrates that competitively inhibit ABCG2-mediated Hoechst efflux. There 

is considerable evidence that gefitinib inhibits both the ABCG2 (BCRP) and ABCB1 

(Pgp/MDR1) transporters and can reverse the resistance of cancer cells expressing these 

proteins to chemotherapeutic agents that are efflux substrates.65, 66, 79-82, 86 Although 

gefitinib inhibits ABCG2 ~10-fold more potently than ABCB1, both efflux transporters 

were inhibited at clinically relevant drug concentrations in vivo.65 There is also evidence 

that raloxifene inhibits ABCB1 (Pgp/MDR1) mediated substrate efflux, and to a lesser 

extent that of ABCG2 (BCRP).83-85 However, raloxifene has also been reported to be a 

substrate of ABCB1.85  Thus, the two A drugs in DCs 1-4, gefitinib and raloxifene, are 

inhibitors of ABCG2 (BCRP) and ABCB1 (Pgp/MDR1) drug efflux (Table 2).77  ABCB1, 

ABCC1 and ABCG2 transporters efflux a broad and partially redundant set of cancer drug 

substrates.78 For example, mitoxantrone and daunorubicin, the two B drugs in DCs 1-3, 

are substrates of ABCG2, ABCB1 and ABCC1, and vinorelbine the B drug in DC-4, is a 

substrate of ABCB1 and ABCC1.78  Furthermore, the NCI-60 cell lines in which DCs 1-4 

synergistically inhibited growth (Table 1), express moderate to high levels of one or more 

of the ABCG2, ABCB1 and ABCC1 efflux transporters (Table 2).  It seems plausible 

therefore that the combination of an ABC efflux inhibitor that has anti-cancer activity with 



 68 

a chemotherapeutic agent which is a transporter substrate contributes to the synergistic 

inhibition of tumor cell line growth observed with DCs 1-4. However, we cannot exclude 

the possibility that other MOAs also contributed to the synergistic effects of DCs 1-4.   

The pharmacological inhibition of ABC drug efflux transporters has been actively 

pursued as a strategy to reverse cancer drug resistance and enhance clinical efficacy.69 

However clinical trials that have used ABC transporter inhibitors to enhance cancer drug 

efficacy have largely been disappointing, in part because the inhibitors altered the 

pharmacokinetics of the anticancer agents decreasing their systemic clearance and 

increasing the severity and/or incidence of adverse events.69 In addition to exogenous 

xenobiotics, ABC transporters also mediate the efflux of endogenous molecules and 

metabolites from cells, and inhibition of these processes may be detrimental to normal 

cells.69 Systematic unbiased HTS of DCs in panels of well characterized tumor cell lines 

provides a means to identify DCs that exhibit greater than additive activity against 

selected tumor cell lines. The studies presented herein demonstrate that novel synergistic 

DCs identified in a DC HTS campaign can be selected and confirmed in vitro, and 

plausible MOAs can be explored. Since the drugs in the DC HTS campaign used to create 

the ALMANAC database are FDA approved anti-cancer agents, effective DCs that are 

confirmed in vitro would have the potential to be advanced rapidly into clinical translation. 

DC confirmation and MOA data would be used to prioritize specific DCs for testing in 

mouse xenograft human cancer models, and for any DCs that exhibited superior efficacy 

in vivo, the cumulative data would support their clinical evaluation in patients. Overall, we 

were able to demonstrate the utility of our confirmation strategy, and the ability to generate 

testable hypotheses in a data-driven manner. Furthermore, we were able to follow-up and 
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design an assay to test one such hypothesis for the synergistic mechanism of action 

between our top drug combination matrices.   
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3.0 Multicellular Tumor Spheroids: Physiological Relevance and Application in 

Cancer Drug Discovery 

3.1 MCTSs An Improvement to 2D Cell Culture 

The American Cancer Society estimates that in 2019, approximately 1,762,450 

new cases of cancer will arise, with 606,880 cancer-related deaths occurring in the United 

States.87 Cancer ranks as the second leading cause of death, and unfortunately, the 

probability of success for cancer drug candidates to progress from clinical trials into 

patient treatment is a mere 3.4% (averaged from 2000-2015).88 The low probability for 

drug candidates to be successful echoes several major challenges: at the in vivo and in 

vitro levels of preclinical drug discovery, current animal and cellular models are incapable 

of accurately predicting treatment outcomes in humans, primarily due to physiological 

limitations in animal models, and the limited ability of 2D cell culture models to adequately 

recapitulate tumor physiology, microenvironmental characteristics, and heterogeneity; at 

the patient level, the design and facilitation of oncological clinical trials is both complex 

and increasingly rigorous, requiring overall survival as a primary endpoint and the 

inclusion of patient treatment crossover arms, which makes maintaining an appropriately 

controlled phase 3 trial difficult.89-91      

Human tumors are complex cellular structures, composed of both cell-cell and cell-

extracellular matrix interactions, which maintain the 3D structure and allow for the 

development of physiological barriers capable of limiting the diffusion of nutrients, waste, 

gases, growth factors, and the penetration of drugs into the deeper regions of the tumor.92, 
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93 Solid tumors are capable of interacting with a stroma, essentially a cellular milieu of 

different cell types associated with the tumor, such as fibroblasts, immune cells, and 

endothelial cells which contribute to the generation of  microenvironments.92, 94 The 

microenvironments of  solid tumors contribute to  innate resistance mechanisms or 

respond to the selective pressures of chemotherapy  to resist and/or survive the influence 

of a drug by a variety of means. In particular,  tumor cells further from blood vessels tend 

to be less proliferative, decreasing the effectiveness of drugs that target actively dividing 

cells.93, 95 In addition, size-limiting diffusion of nutrients and oxygen create a hypoxic and 

eventually necrotic region of cells, with limited diffusion of drug into the tumor causing an 

uneven distribution of chemotherapeutics and reducing the overall exposure to distant 

cells within the tumor.93, 95 Furthermore, a gradient of high to low extracellular pH from 

outside of the tumor to its core limits weakly basic drugs from being taken up, such as 

5’FU which when ionized at the hydroxyl group on carbon 4, which will have markedly 

reduced cellular uptake.93, 95 All of these factors have contributed to the complexity of 

tumors, and the difficulty in recapitulating such characteristics in vitro.  In an article 

published by Hirschhaeuser and colleagues, the authors outline that 3D cell culture is 

capable of recapitulating the tumor microenvironment, indicating that physiological 

gradients of nutrients, oxygen, pH, and drug penetration were created by cells in 3D.96 

They also demonstrated that cells as 3D MCTSs displayed differential zones of 

proliferation, with a quiescent middle sector, and necrotic core, which are all 

physiologically relevant characteristics resembling a solid tumor.96 Furthermore, we and 

several other  laboratories have demonstrated that multicellular tumor spheroids 

(MCTSs), with their high degree of cell-cell interactions and  production of  



 72 

microenvironments, exhibit differential drug penetration and distribution gradients when 

compared to  their 2D counterparts for anthracycline drugs such as doxorubicin.64, 97  

Antineoplastic drug screening has historically been performed in microtiter plates 

that supported the growth of cells in 2D monolayers, given their relative simplicity, ease 

of use, scalability and cost effectiveness. As described in chapter 1, the NCI pioneered  

the use of miniaturized growth inhibition assays for drug screening that allowed tens to 

hundreds of thousands of compounds to be screened across a wide spectrum of cell lines 

and cancer types that were cultured in  2D.20, 25 This innovation was introduced at time 

when new methods in drug screening were desperately needed, especially given that 

other methods lacked the necessary throughput to screen large libraries of drugs 

efficiently and economically. Despite this milestone, 2D cell culture is still an incomplete 

representation of a solid tumor. Currently, 3D multicellular tumor spheroids (MCTSs) 

produced through ultra-low attachment (ULA) conditions or hanging drop methods have 

been proven to be an innovate cell culture tool with technical flexibility, capable of 

increasing the success of high throughput screening approaches by more accurately 

mimicking the complexities of a solid tumor and better capable of translating results from 

in vitro to in vivo. 
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3.2 Comparison of Methods for Generating 3D Cell Culture Conditions 

3.2.1  Anchorage-dependent Models 

In order to adequately analyze various physiological solid tumor conditions in vitro, 

a multitude of 3D cell culture models have been developed, namely:  anchorage-

dependent models, and anchorage-independent models.94, 98, 99  Anchorage-dependent 

models typically require the production and design of a synthetic or biological scaffold 

capable of encouraging ECM formation and support to the 3D cellular structure.98, 99 

Commonly, scaffold addition via hydrogel encapsulation of cells is used to stimulate ECM 

formation, and assay cell adhesion, proliferation, and migration as a means of observing 

tumorgenicity and malignancy in vitro.100, 101 Anchorage-dependent methods provide a 

more meaningful observation of ECM components related to the tumor microenvironment, 

and allow for cellular migration and related metastatic characteristics to be assayed 

outside of a human tumor or xenograft model. Despite these advantages, methods using 

hydrogel scaffolds can have batch-to-batch variability, making reproduction of appropriate 

conditions challenging; compound or detection reagent penetration into the substrate can 

be unequal, thereby causing a gradient and leading to inconclusive results; and the 

production and maintenance of cells in hydrogel scaffolds is both labor intensive and time 

consuming, which may limit the utility and convenience.98  
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3.2.2   Anchorage-Independent Methods for 3D 

Anchorage-independent methods rely on the ability of cells to self-assemble 

without specific attachment cues to a substrate and include two main classes of methods, 

soft agar colony formation, and spheroid generation through spontaneous aggregation, 

one example is the use of ultra-low attachment (ULA) microtiter plates to generate 

spheroids.98, 99  One of the most mainstream methods often heralded as a gold standard 

for determining cellular transformation and clonogenicity, is the soft agar colony formation 

assay; comprised of cells grown in soft agar with culture medium, where any transformed 

cells will form colonies independent of specific attachment cues from the ECM, but normal 

cells will not form any colonies unless such cues exist.102  This assay has been adapted 

to include several different approaches capable of highlighting key tumor suppressor or 

oncogenic contributors to malignancy in transfected cell lines.102  Some of the major 

limitations of the soft agar colony formation assay are the time intensive nature (2-3 weeks 

/ assay) of performing and maintaining the assay conditions, and the potential for 

diminished cell viability after seeding in heated agar.98 

3.2.3  Introduction to Spheroid Generating Methods for 3D 

Spheroid generating methods represent the more commonly used 3D cell culture 

approaches in cancer drug discovery, as many of them were designed and adapted for 

high throughput and high content screening projects / campaigns. These approaches 

include rotary or rotative cell culture, hanging drop, liquid overlay, and ULA microtiter 

plates.94, 98, 99 Similar to the soft agar colony formation assay, no attachment cues are 
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provided in ULA culture environments, and rather, cell-cell interactions are encouraged 

to occur spontaneously and predominate vs cell-substrate interactions. What’s more, 3D 

MCTSs have been extensively documented as having the ability to adequately 

recapitulate the characteristics of an avascular tumor nodule, micro-metastases, and or 

the intervascular regions of a solid tumor.103-105 These tumor relevant characteristics 

include: appropriate cell-ECM assembly, cell-ECM and cell-cell binding interactions, 

gradients of oxygen and nutrients distribution, accumulation of catabolites, and differential 

zones of cellular proliferation. Among the anticipated benefits of implementing more 

physiologically relevant MCTS models for cancer drug screening is to better predict the 

in vivo success of drug candidates in the preclinical stage of drug discovery. Two 

examples where 3D has provided an application of demonstrating a clinical relevance 

beyond 2D are in Pickl & colleagues (2009) and Wenzel & colleagues (2014), where the 

former used 3D to illustrate a clinically relevant response of the monoclonal antibody 

trastuzumab whereby only 3D was able to demonstrate the appropriate HER dimerization 

to allow successful inhibition; Wenzel et. al was able to perform a drug screen in 3D 

MCTSs that utilized the ability of 3D to maintain dormant cells within the inner region of 

the MCTSs, something cell culture in 2D is unable to accomplish.106, 107 
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3.3 Overview of Spontaneous Aggregation Methods of 3D 

3.3.1  Rotative / Rotary Cell Culture 

Rotative / rotary cell culture represents a method to produce 3D MCTSs using 

rotational stirring via bioreactor / gyratory rotation and is meant to accommodate a larger 

suspension of cells in a biological-relevant and controlled environment for pH, media 

exchange, oxygen, and removal of waste.108 This method is very capable of recapitulating 

conditions within a solid tumor, save for microvasculature, but manages to perform similar 

functions as vasculature with regard to supplying fresh nutrients, oxygen, and removal of 

waste to the spheroids.109 Despite the sophistication of this method, its biggest limitations 

would be scalability for higher throughput, the tendency for irregular 3D aggregates to 

form, and negative impacts of the rotational shear force on spheroid morphology.98, 110 

3.3.2  Hanging Drop Method 

The hanging drop technique relies on immersing a cell suspension in a droplet of 

culture media to prevent substrate-cell interactions. Without any adhesion substrates to 

interact with, the cells begin to self-aggregate and over time are capable of forming multi-

layered spheroids with the outermost layer being reminiscent of a tumor in a region near 

vasculature. It is a cost-effective method that does not require specialized equipment in 

order to generate size and shape-controlled spheroids, however, both the throughput and 

duration of time in culture are limiting; as well, the technique is very labor intensive and 

does not scale well up for larger drug screening campaigns.98, 110  
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3.3.3  Liquid Overlay Technique 

The liquid overlay technique represents another method that prevents cell-

substrate interactions, but instead of using agitation or suspension in media to prevent 

such interactions, the liquid overlay method relies on using non-adherent biomaterials 

such as agar, agarose, and poly-HEMA to coat plates before seeding cancer cells in an 

attempt to form aggregates.98, 110 By coating the well bottom with a non-adherent surface, 

cell-cell interactions become more prominent and as such within 1-3 days spheroids will 

form. Of note, Costa et. al indicated that development of a spherical cellular aggregate 

required adaptation of the overlaid well shape, where a flat bottom led to variety of cellular 

structures not necessarily favoring spheroid architecture, while a concave bottom 

promoted  spheroid formation.110 This method has been reported to be cost-effective, and 

easy to handle without the need of specialized equipment for spheroid formation, 

however, it is limited by its prep time for biomaterials, potential variability in spheroid size 

or shape depending on the plate / well surface shape, and it is also labor intensive.98, 110   

3.3.4  Magnetic Levitation  

Magnetic levitation and/or bioprinting represents a scaffold-free technology that 

also utilizes low or ultra-low attachment conditions. Instead of seeding in a microtiter plate 

with a defined well shape, this technique relies on the uptake of innocuous magnetic 

nanoparticles by incubated cells prior to harvesting and seeding. After  cellular uptake of 

magnetic nanoparticles , an external magnetic field is applied after cells are seeded into 

96-well or 384-well microtiter plates, and the cells  form aggregates which encourages 
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cell-cell interactions and spheroid formation, documented to occur within 12-24hrs, and 

cultures have been indicated to last for at least 12 weeks.111, 112   This technique is capable 

of providing consistent spheroids but with two minor limitations: cultures require 

approximately 8 days for cell-cell attachments to be independent of the magnetic 

nanoparticles, and FeO may color the media brown which could limit any brown 

colorimetric reagents from being appropriately read.112   

3.4 Overview of ULA for Production of 3D Cell Culture 

ULA microtiter plate methods in 3D cell culture represent a simple method 

compatible with high throughput conditions, automation and a variety of high content 

applications. Cells are seeded into 96-well or 384-well microtiter plate wells treated with 

a hydrophilic neutrally charged coating which prevents cells from attaching to the well 

bottom thereby allowing cell-cell interactions to predominate while suspended in media. 

Several laboratories including our own have published on the use and characterization of 

cancer cell lines as MCTSs using ULA conditions.64, 98, 104, 113, 114 In Vinci et. al 2012, the 

authors establish the use of ULA plates to create MCTSs and established a set of 

morphological classifications for 3D structure and compactness as modeled after the 

Ivascu classifications in breast cancer spheroids.104, 115 Furthermore, Vinci was able to 

demonstrate that the creation of spheroids was rapid, consistent, and reproducible, 

especially with regard to generating a consistent size of spheroid.104  Selby et. al 2017 

have illustrated the utility of ULA technology with the NCI60 cell line panel, whereby, they 

characterized both the morphology of the 60 cell lines and 9 tumor types as 3D MCTSs.113  
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In addition, the authors were able to demonstrate many different drug responses between 

2D vs 3D: 2D showed more sensitivity than 3D, a similar sensitivity was experienced 

between both 2D and 3D, and limited or no drug sensitivity was observed in both 

models.113  

Our laboratory has also demonstrated the utility of U-bottom well ULA microtiter 

plates to produce spheroids with consistent and distinct morphologies with regards to 

size, shape and compaction.64, 98, 114 These spheroids were capable of being cultured for 

a up to 12 days with media changes, suitable for a multitude different applications 

including cancer drug screening.64, 98, 114 Furthermore, we have illustrated the ability of 

our head and neck squamous cell carcinoma models to demonstrate differential zones of 

proliferation, the formation of a necrotic core, and the reduced penetration of cytotoxic 

drugs into the spheroids.64, 114 These characteristics are both representative and 

indicative of the diverse population of cells observed in avascular tumors / distal cells of 

a vascularized tumor; where cell-cell and cell-ECM interactions limit drug penetration to 

target the entire tumor population. Of note, we selected HNSCC as our cancer type, as 

there is an unmet need for therapeutics outlined by many researchers, in addition to little 

to no change in the 5-year survival over the past 30 years.116, 117  Some challenges using 

ULA are that not all cancer types, patient samples, and / or xenografts will form a 

spheroid, in addition, given the structure of the individual wells within the plate only a 

single spheroid can be formed per well.  For our purposes, we selected ULA given its 

ease of use and compatibility with the equipment and parameters we used for assay 

development. Furthermore, the ensuing chapters present both our characterization of 

head and neck squamous cell carcinoma cell lines as 3D MCTSs and their use in a 
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miniature drug screen with 19 FDA approved cancer drugs of varying mechanisms of 

action. 

3.5 Beyond MCTS Models, a Vision of the Future 

Microfluidic plates represent a bioengineered method of incorporating faux 

vasculature in the form of fluidic chambers to microtiter plates, which enable the creation 

of interstitial pressure, removal of waste, and the addition of fresh media to the cultured 

spheroid / tumoroids.118, 119 In particular, the presence of fluid shear stress not innate in 

traditional 3D models, has been linked to changes in endothelial cell transcription, 

proliferation, barrier function and changes in actin skeleton rearrangement and  

contributes to the tumor microenvironment and invasion front.118, 120-124 These conditions 

aid in the study of tumor aggression and invasion, as interstitial flow and pressure 

contribute to the formation of a tumor invasion front. A paper published by Aw Yong and 

colleagues, demonstrated the utility of such a technique for studying tumor invasion in 

prostate cancer cell lines.118 In addition, the authors also illustrate the ability to keep a 

spheroid of sufficient size (500µm) over 3 weeks in culture, using their molded fluidic 

channel embedded in a collagen hydrogel, which served to provide nutrients and 

interstitial flow to the “tumoroid” continually, thus allowing measurements to be taken up 

to 22 days in culture.118  

Co-culture methods have demonstrated the ability of multicellular-tumor spheroids 

to form a heterogenous population of cells, with the potential to include different cell types 

to observe and reproduce the behavior and microenvironmental characteristics of an in 
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vivo tumor.  In particular, Lazzari et. al have illustrated that through triple co-culture 

(pancreatic cancer cells, fibroblasts, endothelial cells), the formation of a distinct 

heterogenous microenvironment complete with ECM production without the requirement 

of a synthetic scaffold.125  The authors also describe the necessity of crosstalk between 

the tumor and stroma for mimicking tumor aggressiveness and behavior, and through 

their methods demonstrated that their construct was reminiscent of the complexity,  

architecture, and behavior of a pancreatic tumor.125  In addition to the presence of 

fibroblasts and endothelial cells, other laboratories have included immune cells in order 

to incorporate both migration and association of immune cells to their 3D models.126, 127 

A paper by Sherman and colleagues demonstrated the ability their novel 3D immune 

oncology model to produce immune cell homing, 3D tumor cytotoxicity, and tumor 

immune invasion via a 96-well plate complete with both a ULA component and a 

permeable transwell support that allowed for immune cell migration to the spheroids.126 

Another paper, by Courau et. al 2019, established the ability to coculture human 

colorectal tumor samples as tumor spheroids with both T and NK immune cells.127 The 

authors were able to take their coculture model and illustrate that both allogenic T and 

NK cells were capable of infiltrating the spheroid, and that with tumor infiltrating 

lymphocytes in the presence of interleukin 15 stimulation, immune mediated spheroid 

destruction occurred.127 Furthermore, the authors were able to demonstrate in this model 

that the combined  application of anti-NKG2A and MICA/B antibodies produced 

immunomodulatory effects in conjunction to the presence of tumor infiltrating 

lymphocytes, capable of immune-mediated destruction.127    



 82 

Organoids represent a patient-derived application of 3D culture, whereby tumor 

“tissue fragments” are obtained and seeded for the purpose of recapitulating and 

observing a patient’s disease state at a miniaturized level and differ from spheroids as 

they are not derived from cells grown in monolayers.128 Because the cells from a patient’s 

tumor or a xenograft developed from a patient’s tumor are inherently diverse, and already 

contain their own microenvironment, they are often capable of replicating these 

characteristics in organoid cultures, allowing for a close facsimile or “avatar” of the 

disease state.  As such, a growing interest in precision medicine through genomic 

analysis and organoid creation of patient samples has led to an attempt to prioritize and 

select patient treatments based on the generated genomic and drug screening data. Pauli 

et. al 2017, have demonstrated such a method by pairing whole exome sequencing 

(WES) with organoid creation of patient tumor samples.129 The authors were able to 

determine that using WES alone, while informative, is not sufficient to make informed 

decisions about therapeutic selection for patients. Rather by pairing patient-derived tumor 

organoids with the WES information, an informed high-throughput drug screen can be 

performed that provides unbiased information about potential successful mono and 

combination therapies, which are then validated in vivo PDX models.129  

In conclusion, the use of side-by-side organoid to xenograft approach paired with 

genomic sequencing allows for informed selection of putative treatment options using an 

avatar of the patients very own disease state. However, this approach is still in its 

nascence and is not without some limitations, such as, the requirement of a sufficient 

amount of tumor material with viable cancer cells for organoid creation, this may prove 

difficult with certain cancer types and tumor locations as extraction of cells may not be an 
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option; culture media requires optimization on a per sample basis, which also requires a 

sufficient amount of cellular material to perform; the turnover time for such a screening 

method could be limiting, as evaluation of laboratory treatment candidates may occur 

after a patient has already succumbed to their cancer; lastly, given the stringency of 

clinical trials in oncology, it may be insufficient to have an N of 1, to provide actionable 

information from such a screen.129  Given what these particular 3D models have to offer, 

they represent a clinically relevant stepping stone for drug discovery, and the latter has 

demonstrated the feasibility of a personalized / precision medicine approach albeit with 

limitations that can be overcome with time and sufficient data.  

3.6 3D Conclusions and Future 

All of these 3D methods provide the ability to recapitulate key aspects of the 

physiological and microenvironmental characteristics of an avascular solid tumor. They 

represent more relevant models for cancer drug discovery and have provided unique 

insight into tumor biology without the need of an animal.  Several laboratories have used 

3D culture methodologies to demonstrate the physiological relevance of 3D in a variety 

of cancers, such as brain, head and neck, pancreatic and other cancer types. 109, 114, 125 

As such, 3D tumor cultures have proven to be a more relevant model than 2D cultures, 

and 3D technologies and techniques have begun to reach a greater level of clinical 

relevance. While 3D cell culture has previously been limited by the absence of several 

key conditions, such as the inability of vasculature to be incorporated, the absence of 

surrounding stroma & associated cell types, and the inability to maintain patient-derived 
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tissues in 3D culture for prolonged periods of time in vitro. With the advent of microfluidic 

technologies, co-culture techniques, and organoid cultures, respectively, we have been 

able to overcome these challenges.  
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4.0 High Content Screening Characterization of Head and Neck Squamous Cell 

Carcinoma Multicellular Tumor Spheroid Cultures Generated in 384-well Ultra-low 

Attachment Plates to Screen for Better Cancer Drug Leads 

4.1 Challenges and Unmet Needs in Head and Neck Drug Discovery 

Head and neck cancers (HNC) are the 8th leading cause of cancer worldwide with 

~600,000 new cases and ~300,000 deaths occurring per annum.130-132  In 2018, it’s 

estimated that 51,540 people in the USA will develop oral cavity or pharynx cancer and 

10,030 will die of these cancers. Smoking, alcohol, genetics and human papillomavirus 

(HPV) infection are major risk factors for the development of head and neck squamous 

cell carcinoma (HNSCC).130-132 HNC incidence is rising in developed countries despite 

reductions in cigarette smoking rates, with much of the increase attributable to HPV 

infection.130-133 Surgical resection and chemo-radiotherapy are the front-line therapies for 

localized HNC.134-138 Although surgical and radiation therapies have improved, cure rates 

have remained stationary at approximately 50% for >30 years.130-132, 136, 138, 139  Patients 

with advanced, recurrent or metastatic HNC have a poor prognosis with median survival 

rates of 6-12 months.130, 131, 138 The Federal Drug Administration (FDA) has approved only 

seven drugs for HNC; methotrexate and 5-fluorouracil in the 1950s, bleomycin and 

cisplatin in the 1970s, docetaxel and cetuximab in 2006, and pembrolizumab in 2016. 

However, only 10-25% of HNC patients respond to mono-therapy with the five older 

chemotherapeutics and/or the EGF-receptor targeted antibody, and these agents have 

failed to significantly improve either 5-year survival or cure rates.130, 131 The FDA approved 
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the monoclonal antibody pembrolizumab (Keytruda®) in patients with recurrent or 

metastatic HNSCC that continued to progress despite standard-of-care chemotherapy. 

Pembrolizumab blocks the immune checkpoint anti-programmed death-ligand 1 (PD-1) 

receptor interactions with its ligands, PD-L1 and PD-L2.140-142 The FDA accelerated 

Keytruda® approval based on early clinical trials where it was well tolerated and produced 

clinically relevant antitumor activity in recurrent or metastatic HNSCC.140-142  Although 

tumor responses lasted ≥ 6 months in 82% of responders, and some patients experienced 

lasting (>2 years) and/or complete responses, only 16% of HNSCC patients responded 

to Keytruda treatment.140-142 Despite Keytruda®’s success, its low response rate together 

with the overall lack of efficacy of the other approved drugs for HNSCC underscores the 

urgent unmet need to discover new and effective HNSCC therapies. 

4.1.1  Necessity of Physiologically Relevant Models for Improved Clinical 

Translation 

Despite significant investments in cancer research, drug discovery and 

development, <5% of all new small molecule cancer drugs entering phase I clinical trials 

gain FDA approval.137, 143-146 New cancer drug leads are usually discovered in growth 

inhibition (GI) assays conducted in tumor cell line panels maintained and assayed in two 

dimensional (2D) culture conditions that are compatible with high throughput screening 

(HTS).137, 147-149  2D GI HTS assays typically utilize low cell numbers to reduce the cell 

culture burden and to maximize drug sensitivity by promoting exponential growth during 

the compound exposure period.64, 135, 149, 150 Cells in 2D GI assays experience uniform 

drug concentrations in a homogenous environment where cell interactions with the extra 
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cellular matrix (ECM) and cell-cell contacts are either non-existent or substantially 

reduced.64, 135, 149, 150 Genomic comparisons of established HNC cell lines to primary 

tumors revealed that although 51% of genetic alterations were shared at similar mutation 

frequencies, sub-sets of mutations were unique to patient tumors and cell lines 

respectively136. Mutations unique to cell lines favored immortalization and continuous 

maintenance in tissue culture136. In addition,  tumor cell lines adapted to growth in 2D 

proliferate faster than cells from primary tumors, display altered drug resistance patterns, 

and respond preferentially to anti-proliferative agents while overlooking the self- and 

population-renewing tumor stem cells which contribute to recurrence and metastasis64, 

151-155  2D tumor GI assays fail to recapitulate the complex 3-dimensional (3D) 

architecture, cell-cell and cell-ECM interactions, microenvironments, drug diffusion 

kinetics, and drug responses of solid tumors in vivo.64, 96, 98, 144, 151, 152, 155-161  To identify 

better leads that have the potential to improve the clinical development success rates of 

new cancer drugs for solid tumors like HNSCC, more physiologically relevant in vitro 3D 

tumor models that better represent the growth and tumor microenvironments observed in 

preclinical in vivo mouse models and patient tumors are being deployed for lead 

generation.64, 98, 152, 154, 155, 157-159, 161-168 

4.1.2  HNSCC MCTS Production using Ultra-low Attachment Technology 

We have shown that the production of HNSCC MCTSs in 384-well ULA-plates is 

both compatible with automation and scalable for HTS because MCTSs form within 1-3 

days, require relatively few cells (≤2.5K) per well, and both compound exposure and 

homogeneous assay detection can be performed in situ. 98, 157 We have used Cal33 and 
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FaDu HNSCC MCTSs generated in 384-well ULA-plates to demonstrate that cancer drug 

accumulation increases as cell numbers and MCTS sizes increase, and that drugs exhibit 

restricted penetration and distribution gradients, accumulating preferentially in cells in the 

outer layers of MCTSs relative to those in the inner cores.64  In addition, 2D Cal33 

monolayers are  6-fold, 20-fold, 10-fold and 16-fold more sensitive than Cal33 MCTSs to 

growth inhibition produced by ellipticine, idarubicin, daunorubicin, and doxorubicin 

respectively.64  The present chapter extends these studies to characterize the distinct 

morphologies, viability, and growth phenotypes of MCTSs formed in 384-well ULA-plates 

by eleven HNSCC cell lines and an immortalized human “normal” esophageal epithelial 

cell line. For five HNSCC cell lines with distinct MCTS growth phenotypes, we show the 

development of microenvironments and uneven drug accumulation in different regions of 

MCTSs and demonstrate that these more physiologically relevant 3D tumor models can 

be readily adapted to measure drug-induced cytotoxicity. 

4.2 Materials and Methods 

Reagents 

Thirty-seven percent formaldehyde was purchased from Sigma-Aldrich (St. Louis, 

MO). Hoechst 33342 was purchased from Life Technologies (Thermo Fisher Scientific, 

Waltham, MA). Dimethyl sulfoxide (DMSO) 99.9% high-performance liquid 

chromatography grade was obtained from Alfa Aesar (Ward Hill, MA). Dulbecco’s Mg2+- 

and Ca2+-free phosphate-buffered saline (PBS) was purchased from Gibco (Grand 

Island, NY). Dulbecco’s modified Eagle’s medium (DMEM) and Dulbecco’s modified 



 89 

Eagle’s medium / Ham’s F12 50/50 (DMEM/F12) was purchased from Corning (Manassa, 

VA). Fetal bovine serum (FBS), L-glutamine, penicillin, and streptomycin (P/S) were 

purchased from Thermo Fisher Scientific. CellTiter-Blue (CTB) was purchased from 

Promega Corporation (Madison, WI). Calcein AM (CAM), Ethidium Homodimer (EHD), 

MitoTracker Orange (MTO) a thiol-reactive chloromethyl derivative of tetra-methyl-

rosamine, Tetra-methyl-rhodamine methyl ester (TMRM), Click-iT 5-ethynyl-2'-

deoxyuridine (EdU), and (5-(and-6)-(((4-chloromethyl)benzoyl)amino)-tetra-methyl-

rhodamine CellTracker Orange (CTO) were all purchased from Life Technologies 

(Thermo Fisher Scientific, Waltham, MA). Doxorubicin was provided by the National 

Cancer Institute (NCI). 

Cells and Tissue Culture 

Eleven human head and neck squamous cell carcinoma (HNSCC) cell lines were 

provided by Dr. Jennifer Grandis of the Head and Neck Cancer (HNC) Spore at the 

University of Pittsburgh Medical Center Hillman Cancer Center and were maintained in a 

humidified incubator at 37°C, 5% CO2, and 95% humidity; Cal33, Cal27, FaDu, UM-22B, 

BICR56, OSC-19, PCI-13, PCI-52, Detroit-562, UM-SCC-1, and SCC-9. The human Het-

1A (CRL-2692™) esophageal squamous epithelial cell line transfected with the SV40 

large T antigen was purchased from the American Type Culture Collection (ATCC®, 

Manassas, VA). All cell lines except SCC-9 were cultured in DMEM supplemented with 

10% FBS, 1% L-glutamine, and 1% P/S. The culture medium for the FaDu and OSC-19 

cell lines was also supplemented with 1% non-essential amino acids, and the medium for 

the BICR56 and UM-SCC-1 cell lines was supplemented with 0.4µg/mL hydrocortisone. 

The SCC-9 cell line was cultured in DMEM/F-12 medium supplemented with 10% FBS, 
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1% L-glutamine, and 1% P/S.  HNSCC cell lines were passaged or used to generate 

multicellular tumor spheroid (MCTSs) after isolated cell suspensions were prepared from 

tissue culture flasks by dissociating cells with trypsin and centrifugation at 270 x g for 5 

min at room temperature, and resuspension in growth media. The number of viable trypan 

blue excluding cells in the cell suspension was counted using a hemocytometer. 

Generation of HNSCC Multicellular Tumor Spheroids in Ultra-low Attachment 

Microtiter Plates 

We have previously described the generation of MCTSs after seeding several 

HNSCC cell lines into 384-well U-bottomed ultra-low attachment (ULA-plates) microtiter 

plates (Corning, Tewksbury, MA, Cat. No 4516).64, 98, 157 Briefly, 384-well ULA-plates were 

rehydrated by the addition of 50 µL of serum free culture medium to each well and 

incubation in a humidified incubator for 15 minutes. Media was removed from the wells of 

the ULA-plates and 45μL of a  single-cell suspension of the HNSCC cell lines at different 

seeding densities (625, 1250, 2500, 5000, 10000, or 20000 cells/well) in the appropriate 

growth medium were transferred into each well using a Matrix automated  multichannel 

pipette (Thermo Fisher Scientific, Waltham, MA), ULA-plates were centrifuged at 17 x g 

for 1 minute, and then placed in an incubator at 37°C, 5% CO2 and 95% humidity for the 

indicated time periods.  In time course experiments where HNSCC MCTS cultures were 

maintained in the ULA-plates beyond 3 days, spent media was exchanged for fresh 

medium every 3 days using a Janus MDT Mini (PerkinElmer, Waltham, MA) automated 

liquid handler platform equipped with a 384-well transfer head. Each medium exchange 

cycle consisted of 2 x 20 µL aspiration and discard steps followed by 2 x 20 µL fresh 
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media dispense steps.  Three media exchange cycles were performed to achieve ~ 85% 

exchange of fresh medium for spent medium and a uniform volume of 45uL per well. 

Investigation of HNSCC Multicellular Tumor Spheroid Morphology, Viability and 

Growth in Ultra-low Attachment Microtiter Plates by High Content Imaging. 

We used an ImageXpress Micro (IXM) automated wide field high content imaging 

platform integrated with MetaXpress Imaging and Analysis software (Molecular Devices 

LLC, Sunnyvale, CA) to acquire and analyze images of HNSCC MCTSs. The IXM optical 

drive uses a 300 W Xenon lamp broad spectrum white light source and a 1.4-megapixel 

2/3" chip Cooled CCD Camera and optical train for standard fluorescence imaging and a 

transmitted light module with phase contrast. The IXM is equipped with Zero Pixel Shift 

(ZPS) filter sets; DAPI, FITC/ALEXA 488, CY3/TRITC, CY5, and Texas Red. A 4-position 

objective turret can be loaded with various objectives; a 4X Plan Apo 0.20 NA objective, 

a 10X Plan Fluor 0.3 NA objective, a 20X Ph1 Plan Fluor ELWD DM objective, a 20X S 

Plan Fluor ELWD 0.45 NA objective, and a 40X S Plan Fluor ELWD 0.60 NA objective. 

Single images of HNSCC MCTSs were sequentially acquired using a 4X Plan Apo 

0.20 NA  objective in both the transmitted light (TL) and fluorescent image acquisition 

modes; DAPI, FITC and TRITC.64, 98, 157, 169 To acquire best focus images of MCTSs we 

used the IXM automated image-based focus algorithm to acquire both a coarse focus 

(large µm steps) set of images of Hoechst stained objects in the DAPI channel for the first 

MCTS to be imaged, followed by a fine (small µm steps) set of images to select the best 

focus image. For all subsequent wells and channels to be imaged only a fine focus set of 

images were acquired to select the best focus Z-plane.64, 98, 157, 169 MCTS morphology and 

growth were assessed daily by the acquisition of 4X TL images on the IXM,  and we used 
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the line-scan tool of the MetaXpress image analysis software to measure the diameters 

of the HNSCC MCTSs.169 The change in MCTS diameter over time in culture was used 

as an indicator of MCTS growth or death. 

To label viable and/or dead cells within the HNSCC MCTS cultures, we incubated 

HNSCC MCTSs with a cocktail of the Hoechst (8µg/mL) DNA stain, the Calcein AM 

(2.5µM) live reagent, and the Ethidium Homodimer (5µM) dead reagent for 1h, and single 

images of HNSCC MCTSs were sequentially acquired on the IXM using a 4X objective in 

both the TL and fluorescent image acquisition modes; DAPI, FITC and Texas Red 

channels. We used the multiwavelength cell scoring (MWCS) image analysis module to 

analyze the HNSCC MCTS fluorescent images as described previously. 64, 98, 157  To 

create a whole MCTS mask we set the approximate minimum width of the Hoechst 

stained nuclei of the MCTS to be 150 µm with an approximate maximum width to be 550 

µm and applied a threshold intensity above local background of 70. The total MCTS mask 

from the Hoechst channel was used to count the number of MCTSs per image, typically 

one. After applying user defined background average intensity thresholds, typically 50-70 

in both the FITC and Texas Red channels, the MWCS module image segmentation then 

created total MCTS masks in all three fluorescent channels.  The derived HNSCC total 

MCTS masks in channels 2 and 3 were then used to quantify the mean integrated 

fluorescence intensity (MIFI) of the CAM live cell signal in the FITC channel and the EHD 

dead cell signal in the Texas Red channel. The MIFI values represent the total pixel 

fluorescent intensities in channels 1, 2 or 3 within the total MCTS masks of positively 

stained MCTSs above the pre-set background thresholds.   
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Pseudo-color fluorescence intensity data visualizations were also used to illustrate 

fluorescent dye/drug uptake, accumulation and distribution in HNSCC MCTS cultures.64 

The relative fluorescent intensities of the pixels in the image were represented as distinct 

colors with the “hotter” and “brighter” colors (low to high, yellow, red, white) representing 

higher intensity signals and cooler colors (low to high, purple, cyan, green) representing 

lower intensity signals. Line-scan fluorescence intensity plots were also used to portray  

fluorescent dye/drug uptake, accumulation and distribution in HNSCC MCTS cultures.64  

Line-scan fluorescence intensity plots were created using the line scanning tool of the 

MetaXpress image analysis software to draw a line across the image and plot the 

fluorescent intensity values versus distance in µm across the image to provide an intensity 

profile graph. 

Determination of HNSCC Multicellular Tumor Spheroid Proliferation  

After 3 days of culture in ULA-plates to allow MCTSs to form, the cell culture 

medium was exchanged and the HNSCC MCTSs were exposed to 5-ethynyl-2′-

deoxyuridine T (EdU) reagent (Life Technologies) according to the manufacturer’s 

instructions for 12, 24 and 48 h prior to fixation in 3.7% formaldehyde and 

permeabilization with 0.1% Triton-X-100. The modified nucleoside EdU which becomes 

incorporated into DNA by proliferating cells undergoing DNA synthesis that is detected 

using an Alexa Fluor 488 picolyl azide fluorescent label which is incorporated via a quick 

“click chemistry” reaction. Images of HNSCC MCTSs were sequentially acquired on the 

IXM using a 4X objective in both the transmitted light and FITC channels. 

Characterization of HNSCC Multicellular Tumor Spheroid Mitochondrial Mass and 

Membrane Potential 
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After 3 days of culture in ULA-plates to allow MCTSs to form, the cell culture 

medium was exchanged and the HNSCC MCTSs were exposed to 500nM Mitotracker 

Orange (MTO) or 250 nM Tetramethylrhodamine Methyl Ester (TMRM) (Life 

Technologies) for 1h at 37°C, 5% CO2, and 95% humidity. MTO labeled HNSCC MCTSs 

were fixed and stained with 3.7% formaldehyde containing 8 µg/mL Hoechst and then 

washed 3x with PBS before images were acquired on the IXM using a 4X objective in the 

TL, DAPI and TRITC channels. Images of TMRM labeled live HNSCC MCTSs were 

acquired on the IXM using a 4X objective in both the TL and TRITC channels. HNSCC 

MCTSs images were analyzed using the MWCS image analysis module described above 

to quantify the MIFI of the MTO and TMRM fluorescent dyes, and both pseudo-color 

visualizations and line scan plots were used to illustrate their distribution throughout the 

HNSCC MCTSs.  

Drug Penetration and Distribution in HNSCC Multicellular Tumor Spheroids 

Analysis of drug penetration was performed as previously described for the Cal33 

and FaDu HNSCC cell lines.64 Briefly, HNSCC cell lines were cultured for 3 days to allow 

MCTSs to form before a media exchange was performed and the MCTSs were then 

exposed to 10 µM doxorubicin and incubated at 37°C, 5% CO2, and 95% humidity for  

0.5, 3, 6, 12, and 24h prior to fixation in 3.7% formaldehyde for 30-45 minutes, 3x washes 

with PBS, and acquisition of 4X images on the IXM in the transmitted light and TRITC 

channels. The MWCS image analysis module described above was used to quantify the 

fluorescent intensity of doxorubicin in HNSCC MCTSs TRITC channel images by using 

the doxorubicin stained nuclei in the TRITC channel to identify and define the whole 

MCTS mask. The MIFI parameter represents the total pixel fluorescent intensity of 
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doxorubicin within the MCTS.64 Pseudo-color visualizations and line scan plots were also 

used to illustrate doxorubicin accumulation and distribution throughout HNSCC MCTSs.  

Analysis of HNSCC Multicellular Tumor Spheroid Viability and Growth using the 

Cell Titer Blue® Reagent.    

The homogeneous CellTiter-Blue® (CTB) cell viability reagent provides a 

fluorescent method for monitoring cell viability and/or growth inhibition that is based on 

the ability of living cells to convert the redox dye resazurin into a fluorescent end-product 

resorufin.  HNSCC cell lines were seeded at the indicated cell densities into 384-well 

ULA-plates in 45μL of growth medium incubated at 37°C, 5% CO2 and 95% humidity for 

the indicted time periods. After the prescribed time in culture 10 μL of the CTB cell viability 

detection reagent was dispensed into the wells of HNSCC MCTS assay plates, and 

incubated for 4h at 37°C, 5% CO2 and 95% humidity before capturing the relative 

fluorescent unit (RFUs) signals (Ex. 560 nm/ EM. 590 nm) on a SpectraMax M5e 

(Molecular Devices, LLC, Sunnyvale, CA) micro-titer plate reader platform. 

Data Processing, Analysis and Curve Fitting 

For HNSCC MCTS growth assays in 384-well ULA-plates, the measured 

diameters of the HNSCC MCTSs and their corresponding CTB RFU signals were fit to a 

linear regression model. The MIFI data from HNSCC MCTSs exposed to CAM, EHD, 

MTO, TMRM or doxorubicin are presented as the mean ± SD (n = 3).  For HNSCC MCTS 

growth inhibition (GI50) assays, the DMSO control wells (Max controls n=14) and 200μM 

doxorubicin control wells (Min controls, n=32) were used to represent uninhibited growth 

and 100% cytotoxicity, respectively. The mean maximum and minimum plate control CTB 

RFUs were used to normalize the RFU data from the compound treated wells as % 
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inhibition of growth. The GI50 data were fit to a non-linear sigmoidal log (inhibitor) vs. 

normalized response variable slope model using the equation: Y=100/(1+10^((LogIC50-

X) *Hillslope))), where y was the percent growth inhibition and x was the corresponding 

log10 of the compound concentration. The GI50 is the concentration of compound that 

gives a 50% response, half way between 0% and 100%.  The Hillslope describes the 

steepness of the curve. All curve fitting, linear regression analysis, and graphs were 

created using the GraphPad Prism 6 software. 

4.3 Results 

4.3.1  Morphology and viability of HNSCC Multicellular Tumor Spheroids formed 

in 384-well U-bottomed Ultra Low Attachment Microtiter Plates 

We have previously shown that six HNSCC tumor cell lines form MCTSs within 

24h of seeding into 384-well ULA-plates.64, 98, 157  To extend these studies, we selected 

five  additional HNSCC cell lines that have previously been used for HNC drug 

discovery.135, 136, 150 The Het-1A SV40 T-antigen immortalized human esophageal 

epithelial cell line was included to represent a “normal” control cell line model, since these 

cells do not grow as xenograft tumors in immuno-deficient mice170-173  To characterize the 

morphology and viability of the HNSCC MCTSs formed, 11 HNSCC cell lines and Het-1A 

cells were seeded into 384-well ULA-plates and cultured for 3 days before they were 

stained with live cell CAM and dead cell EHD reagents, and 4X images were acquired on 

the IXM in the TL, FITC and Texas Red channels (Figure 13).  Although some HNSCC 
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cell lines formed MCTSs within 24h of seeding into 384-well ULA-plates, others required 

2-3 days to self-assemble. The morphologies (shape and compact-ness) and sizes of the  

 

Figure 13 Characterization of HNSCC multicellular tumor spheroid morphology 

and viability in Ultra-low Attachment Plates 

11 HNSCC cell lines and Het-1A cells were seeded at 2,500 cells per well in 384-well 

ULA-plates and cultured for 3 days. MCTSs were then stained with the live cell CAM and 

dead cell EHD reagents and 4X images were acquired on the IXM in the TL, FITC and 

Texas Red channels. Greyscale TL images are presented along with color composite 

fluorescent images of live cell CAM and dead cell EHD staining depicted as green and 
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red, respectively. Representative images from multiple independent experiments are 

presented.  All scale bars represent 300 µm. 

 

MCTSs varied with each HNSCC cell line (Figure 13). After 72h in culture, FaDu, 

Cal33, Cal27 and PCI-13 cell lines formed condensed MCTSs with a smooth and even 

periphery. OSC19, Detroit 562, BICR56, PC1-52 and UMSCC1 cell lines produced 

rounded MCTSs with uneven perimeters, and the Het-1A, UM22B and SCC9 cell lines 

formed cell aggregates with irregular outer margins. FaDu, Cal33, OSC19 and Detroit 562 

cells formed larger MCTSs ~ 350-400 µm in diameter, while BICR56, Cal27, PC13, PCI-

52 and UMSCC1 formed smaller MCTSs with ~ 200-250 µm diameters. FaDu, Cal33, 

BICR56, and PC1-52 MCTSs and UM22B aggregates exhibited strong CAM staining with 

little or no EHD staining, indicating that all the cells were viable. OSC19, Detroit 562, and 

PCI-52 MCTSs also exhibited strong CAM staining, and although there was some EHD 

staining, most cells were viable. In contrast, UMSCC1 MCTSs exhibited strong EHD 

staining and much lower CAM staining, indicating that most cells were dead. The SCC9 

and Het-1A irregular aggregates exhibited strong CAM staining together with some 

significant EHD staining. 

4.3.2  HNSCC Multicellular Tumor Spheroid Growth Phenotypes in ULA-plates 

To further characterize the morphologies, viability, and growth behavior of HNSCC 

MCTSs cultured in 384-well ULA-plates over time, we conducted a series of cell seeding 

density and time course experiments. The eleven HNSCC cell lines were seeded into 

384-well ULA-plates at densities ranging between 625 and 20,000 cells per well and were 
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cultured for 12-14 days, with media exchanges every 3 days.  MCTS growth and viability 

were evaluated by TL imaging, CAM/EHD staining, and CTB RFUs. The 11 HNSCC cell 

lines exhibited six distinct MCTS growth phenotypes; rapid growth (FaDu), moderate 

growth (UM22B), slow growth (Cal33), dormant (BICR56, Cal27, Detroit 562, & PCI-13), 

progressive slow death (OSC19, PCI-52, & SCC9), and rapid death (UMSCC1).  Figure 

4.14 shows time course data for 5 HNSCC cell lines seeded at 2,500 cells per well in 384-

well ULA-plates that represent five of the MCTS growth phenotypes. Consistent with 

Figure 13, the TL images indicated that MCTS morphologies and sizes were different for 

each HNSCC cell line, and furthermore that these changed with time in culture (Figure 

14A). In general, HNSCC MCTS TL images became progressively darker with longer time 

in culture, especially in the MCTS core regions, perhaps indicating that the cells were 

becoming more densely packed. The UM22B line exhibited the most dramatic change in 

morphology with increasing time in culture, coalescing from a loose aggregate of cells 

into a compact MCTS with a smooth and even periphery after several days (Figure 14A). 

To assess the changes in HNSCC MCTS size over time we used the line-scan tool of the 

image analysis software to measure the diameters of the HNSCC MCTSs in TL images 

acquired daily (Figure 14B). The diameters of the FaDu, UM22B and Cal33 MCTSs 

increased linearly with respect to time in culture throughout the 10-14-day culture period. 

In contrast, BICR56 MCTSs exhibited almost no change in diameter, and OSC19 MCTSs 

diameters became progressively smaller with extended time in culture. Based on the 

observed changes in MCTS diameter over time the rank order of HNSCC MCTS growth 

was FaDu>UM22B>>Cal33. BICR56 MCTS diameters remained constant over time, 

while OSC19 MCTS diameters declines gradually with time in culture. 
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The homogeneous Cell Titer Glo® (CTG) ATP detection reagent has frequently 

been used to measure growth and compound mediated cytotoxicity in MCTS cultures 

produced and maintained in 96- and 384-well ULA-plates.64, 98, 152, 157, 162, 167 

 

Figure 14 Growth phenotypes of multicellular tumor spheroids produced by five 

representative HNSCC cell lines seeded and maintained in Ultra-low Attachment 

Plates 

(A) Five HNSCC cell lines were seeded at 2,500 cells per well in 384-well ULA-plates and 

were cultured for 12 days with fresh media exchanges performed every 3 days. MCTSs 

were stained after 1, 3, 6 or 12 days in culture with the live cell CAM and dead cell EHD 

reagents and 4X images were acquired on the IXM in the TL, FITC and Texas Red 

channels. Greyscale TL images are presented along with color composite fluorescent 

images of live cell CAM and dead cell EHD staining depicted as green and red, 

respectively. Representative images from multiple independent experiments are 

presented.  All scale bars represent 300 µm. 

  



 101 

 
(B) The line-scan tool of the MetaXpress image analysis software was used to measure 

the diameters of the five HNSCC MCTSs in TL images that were acquired daily 

throughout the 10- to 14-day culture period. (C) Cell Titer-Blue™ RFU signals of the five 

HNSCC MCTS cultures were measured at the indicated time points throughout the 10- to 

14-day culture period. MCTS diameters in µm (B) and CTB RFUs (C) were measured in 

triplicate wells (n=3) and are presented as the mean ± SD for the following HNSCC cell 

lines; UM-22B(), OSC-19(), FaDu(), BICR56(), and Cal33 (). A linear regression 

of the mean MCTS diameter and CTB RFU data for each of the HNSCC cell lines was 

performed using the GraphPad Prism 6 software. Representative data from three 

independent experiments are presented. 
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However we switched to CTB when we found that the RLUs produced by CTG for the 

same number of cells in 2D and 3D cultures was ~10-fold lower in 3D cultures, whereas 

we observed little or no difference in the CTB RFUs between 2D and 3D cultures 

comprised of the same cell numbers (data not shown). To illustrate the correlation 

between CTB RFUs and the number of viable HNSCC cells in MCTS cultures we seeded 

between 625 and 20,000 FaDu cells per well into 384-well ULA-plates and cultured them 

for 24h to allow MCTSs to form. After 24h we acquired 4X TL images of the MCTSs on 

the IXM (Figure 15A), measured the diameters of the MCTSs using the line-scan tool, 

and measured the CTB RFUs 4h after reagent addition (Figure 15B). In the 625 to 5,000 

cells per well range, MCTS diameters and CTB RFUs increased similarly with respect to 

the number of viable FaDu cells seeded per well, and although MCTS diameters and CTB 

RFUs continued to increase as more cells were added to wells, the increase was no 

longer linear with respect to cell number (Figure 15B). The MCTS diameter and CTB RFU 

data were almost superimposable indicating that they are closely correlated (Figure 15B). 

Similar CTB data were observed for all HNSCC MCTS cultures (data not shown).  Based 

on the observed changes in CTB signal over time the rank order of MCTS growth rates 

was the same as that indicated by the change in MCTS diameter (Figures 14B and 14C).  

The corresponding CAM/EHD time course images suggest that at most timepoints 

a large majority of cells in the FaDu, UM22B, Cal33 and BICR56 MCTSs were viable, 

although FaDu MCTSs appeared to develop necrotic cores by day 6 through 12 as they 

became progressively larger, and OSC19 MCTSs appeared to have a necrotic core at all 

timepoints (Figure 14A). To further explore the development of necrotic cores in HNSCC 

MCTSs, we seeded the FaDu and OSC19 cell lines into 384-well ULA-plates and cultured 
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Figure 15 Correlation between FaDu cell seeding density multicellular tumor 

spheroid diameter and Cell Titer Blue ® RFU Signals 

 

 

(A) FaDu HNSCC cells were seeded at seeding densities ranging from 625 to 20,000 

cells per well into 384-well ULA-plates and after 24h in culture 4X TL images of the 

MCTSs were acquired on the IXM. All scale bars represent 300 µm. (B) We measured 

the diameters of the FaDu MCTSs in the TL images using the line-scan tool and measured 

the CTB RFUs 4h after reagent addition. The mean ± SD (n=3) of the FaDu MCTS 

diameter measurements in µm () and CTB RFU signals () from three wells for each 

seeding density are presented. The MCTS diameter measurements in µm are plotted on 

the Y axis on the left and the CTB RFUs are plotted on the Y axis on the right. 

Representative experimental data from multiple independent experiments are shown. 
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them for up to 12 days, with media exchanges every 3 days.  MCTS growth and viability 

were evaluated by TL microscopy and CAM/EHD staining (Figure 16A), and we used the 

MWCS image analysis module to quantify and compare the CAM and EHD MIFI signals 

in FaDu (Figure 16B) and OSC-19 (Figure 16C) MCTSs.  Consistent with its rapid growth 

phenotype (Figure 14), FaDu MCTS size increased over time in culture (Figure 16A), and 

the corresponding CAM MIFI signals also increased (Figure 16B).  At most time points 

the FaDu MCTS CAM MIFIs were greater than the corresponding EHD MIFIs, but after 

day 4 the development of a necrotic core was indicated by both the CAM/EHD images 

and by an apparent larger increase in EHD MIFIs (Figure 16A and 16B). The slow 

progressive death phenotype of OSC19 cell line was illustrated by the decrease in MCTS 

size observed in the TL and CAM/EHD images (Figure 16A), the lack of any change in 

CAM MIFIs between day 2 and 12, with a trend towards increased EHD MIFIs over the 

same period (Figure 16C).  

Images of HNSCC MCTSs stained with the live cell CAM reagent exhibited a 

donut-like staining pattern, where cells in the outer edges of the MCTSs exhibited higher 

intensities relative to cells in the inner cores, irrespective of MCTS size or HNSCC cell 

line (Figures 13, 14A, and 16A). To show that the differential distribution of CAM observed 

in the outer layers of HNSCC MCTSs was not due to an imaging artifact caused by 

inefficient excitation light penetration and/or fluorescent emission light detection, we 

prelabeled HNSCC cell lines with cell tracker orange (CTO) prior to seeding them into  
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Figure 16 Development of a necrotic core in multicellular tumor spheroids formed 

by the FaDu and OSC19 HNSCC cell lines seeded and maintained in Ultra-low 

Attachment Plates 

(A) The FaDu and OSC19 HNSCC cell lines were seeded at 2,500 cells per well 

in 384-well ULA-plates and were cultured for 12 days with fresh media exchanges 

performed every 3 days. MCTSs were stained after the indicated days in culture with the 

live cell CAM and dead cell EHD reagents and 4X images were acquired on the IXM in 

the TL, FITC and Texas Red channels. Greyscale TL images are presented along with 

color composite fluorescent images of live cell CAM and dead cell EHD staining depicted 

as green and red, respectively. Representative images from multiple independent 

experiments are presented. All scale bars represent 300 µm. 

  



 106 
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The multiwavelength cell scoring (MWCS) image analysis module of the 

MetaXpress software was used to quantify the live cell CAM and dead cell EHD mean 

integrated fluorescent intensity (MIFI) signals in (B) FaDu and (C) OSC-19 MCTSs over 

time in culture.  The MWCS image module segmented Hoechst channel images to create 

a whole MCTS mask and then applied user defined background average intensity 

thresholds to create whole MCTS masks for the FITC and Texas Red channels. The 

whole MCTS masks were used to quantify the MIFIs of the CAM live cell signal () in the 

FITC channel and the EHD dead cell signal () in the Texas Red channel. MIFIs were 

measured in triplicate wells (n=3) at the indicated time points and are presented as the 

mean ± SD. Representative data from three independent experiments are presented. 

 

384-well ULA-plates to form MCTSs (Figure 17). The TRITC images, pseudo-color 

visualizations, and line-scan plots showed that CTO fluorescence was distributed 

uniformly throughout the MCTSs, or if anything, the fluorescent intensities were slightly 

higher in the inner cores of MCTSs relative to the outer layers. Since the CAM reagent 

must be metabolized by live cells into the fluoresent end-product, it is possible that the 

higher CAM fluorescent intensities observed in cells in the outer layers of HNSCC MCTSs 

reflects their higher metabolic activity relative to cells in the inner cores.  

4.3.3  HNSCC Multicellular Tumor Spheroid Cell Proliferation 

To investigate whether cells in HNSCC MCTSs formed and maintained in ULA-

plates exhibited different rates of cell proliferation in distinct MCTS regions, we seeded 

2,500 HNSCC cell lines into 384-well ULA-plates and allowed MCTSs to form for 3 days 

before the culture media was exchanged and during the next 3 days MCTSs were 

exposed to EdU for 12h, 24h or 48h (Figure 18).  Six-day FaDu MCTS cultures that were 
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exposed to EdU for 12h, 24h or 48h exhibited a distinct gradient of EdU staining, with 

cells in the outer layers of the MCTSs exhibiting higher intensities relative to cells in the 

inner cores at all EdU exposure periods (Figure 18A). In six-day HNSCC MCTS cultures 

representing the five growth phenotypes, only the rapidly (FaDu) and moderately 

(UM22B) growing MCTSs displayed evidence of detectable EdU incorporation after 24h 

of exposure (Figure 18B). Similar results were observed after 48h of EdU exposure (data 

not shown). These data indicate that in HNSCC MCTSs that exhibit rapid and moderate 

growth rates in ULA-plates, the more quiescent cells in the interior are surrounded by 

outer layers of proliferating cells. 

 

Figure 17 Distribution of the fluorescence in multicellular tumor spheroids formed 

from HNSCC cell lines pre-labeled with Celltracker Orange® prior to cell seeding 

into Ultra-low Attachment plates 
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Prior to cell harvesting, counting and seeding into ULA-plates, the five HNSCC cell lines 

were prelabeled with the Celltracker Orange (CTO) reagent according to the 

manufacturer’s instructions. The five HNSCC cell lines were seeded at 2,500 cells per 

well in 384-well ULA-plates and cultured for 3 days, before 4X images were acquired on 

the IXM in the TL and Texas Red channels. Greyscale TL and CTO fluorescent images 

are presented along with presented along with the corresponding pseudo-color pixel 

intensity visualizations, and line-scan fluorescent intensity profiles. Representative 

images and data from multiple independent experiments are shown. All scale bars 

represent 300 µm. 
 

Figure 18 Cell proliferation in HNSCC multicellular tumor spheroids produced and 

cultured in Ultra-low Attachment Plates
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HNSCC cell lines were seeded at 2,500 cells per well into 384-well ULA-plates and 

allowed to form MCTSs for 3 days before the culture media was exchanged and over the 

next 3 days MCTSs were exposed to EdU for the indicated time periods and developed 

with the Click-iT® reagent according to the manufacturer’s recommendations. MCTSs 

were fixed in 3.7% formaldehyde and 4X images were acquired on the IXM in the TL and 

FITC channels to capture the Click-iT EdU (green) fluorescent signal. (A) Six-day FaDu 

MCTS cultures that were exposed to EdU for 12h, 24h or 48h before fixation. (B) Six-day 

MCTS cultures prepared from each of the five representative HNSCC cell lines (UM-22B, 

OSC-19, FaDu, BICR56 and Cal33) that were exposed to EdU for 24h before fixation. All 

scale bars represent 300 µm. 

4.3.4  HNSCC Multicellular Tumor Spheroid Mitochondrial Mass and Membrane 

Potential 

We used the mitotracker orange (MTO) and tetramethyl-rhodamine methyl ester 

(TMRM) dyes to determine the mass and membrane potential of active mitochondria in 

the cells of HNSCC MCTS cultures (Figure 19).174, 175 HNSCC cell lines were seeded into 

384-well ULA-plates and after 3 days in culture the culture media was exchanged and 

MCTS were exposed to MTO (Figure 19A and 19B) or TMRM (Figure 19C and 19D) for 

1h. The TRITC images, pseudo-color visualizations, and line-scan plots showed that the 

MTO fluorescence was distributed uniformly throughout formaldehyde fixed HNSCC 

MCTSs, although the fluorescent intensities were perhaps marginally higher in cells in the 

inner cores of MCTSs relative to the outer layers (Figure 19A). These data indicate that 

cells in HNSCC MCTS cultures contain active mitochondria irrespective of their location 

within the MCTS. Using the MWCS image analysis module to quantify MCTS MTO MIFI 

showed that mitochondrial mass tracks with MCTS size; 
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FaDu>OSC19>UM22B>Cal33>BICR56 (Figure 19B).  In contrast, TRITC images, 

pseudo-color visualizations, and line-scan plots of HNSCC MCTSs stained with the live 

cell TMRM mitochondrial potential dye exhibited a differential staining pattern, where cells 

in the outer layers of MCTSs exhibited higher intensities relative to cells in the inner cores, 

irrespective of MCTS size or HNSCC cell line (Figure 19C). These data show that 

mitochondria in cells in the outer layers of the  

 

Figure 19 Mitochondrial mass and Membrane potential in HNSCC multicellular 

tumor spheroids produced in Ultra-low Attachment Plates 

2,500 cells of the five representative HNSCC cell lines were seeded into 384-well ULA-

plates and after 3 days in culture the culture media was exchanged and MCTS were 

exposed to 500 nM mitotracker orange (MTO) or 250 nM tetra-methyl-rhodamine methyl 

ester (TMRM) for 1h. (A) HNSCC MCTSs that were stained with MTO were fixed in 3.7% 
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formaldehyde and 4X images were acquired on the IXM in the TL and TRITC channels. 

Representative grey scale TL and MTO (TRITC) images are presented along with the 

corresponding pseudo-color pixel intensity visualizations and line-scan fluorescent 

intensity plots. In pseudo-color pixel intensity visualizations, the relative fluorescent 

intensities of the pixels in the images are indicated as distinct colors. The “hotter” and 

“brighter” colors (low to high, yellow, red, white) represent higher intensity signals and 

cooler colors (low to high, purple, cyan, green) represent lower intensity signals. In line-

scan fluorescence intensity plots the line scanning tool of the MetaXpress image analysis 

software to draw a line across the image and plot the fluorescent intensity values versus 

distance in µm across the image to provide an intensity profile graph. All scale bars 

represent 300 µm.  

 

(B) The multiwavelength cell scoring (MWCS) image analysis module was used to create 

a whole MCTS mask and quantify MTO mean integrated fluorescent intensity (MIFI) 

signals in the HNSCC MCTSs.  HNSCC MCTS MTO MIFIs were measured in triplicate 

wells (n=3) and are presented as the mean ± SD. Representative data from three 

independent experiments are presented. 
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C) 4X images HNSCC MCTSs that were stained with TMRM were acquired on the IXM 

in the TL and TRITC channels. Representative grey scale TL and TMRM (TRITC) images 

are presented along with the corresponding pseudo-color pixel intensity visualizations 

and line-scan fluorescent intensity plots. All scale bars represent 300 µm. 
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(D) The MWCS image analysis module was used to create a whole MCTS mask and 

quantify TMRM MIFI signals in the HNSCC MCTSs.  HNSCC MCTS TMRM MIFIs were 

measured in triplicate wells (n=3) and are presented as the mean ± SD. Representative 

data from three independent experiments are presented. 

 

HNSCC MCTSs had higher membrane potentials than mitochondria in cells in the 

inner regions, indicating that mitochondria in cells in the outer layers were more 

functionally active. MCTS TMRM MIFI values among the 5 HNSCC cell lines did not 

however track with MCTS size; FaDu>OSC19=UM22B=Cal33>BICR56 (Figure 19D). 

4.3.5  Doxorubicin Penetration and Cytotoxicity in HNSCC Multicellular Tumor 

Spheroid Cultures 

To investigate cancer drug uptake, penetration and distribution in HNSCC MCTS 

we seeded 2,500 cells of the HNSCC cell lines into 384-well ULA-plates and after 3 days 

the culture media was exchanged and MCTSs were exposed to 10 µM doxorubicin for 

0.5h (Figure 20A) and 24h (Figure 20B). As expected, the TRITC images, pseudo-color 

visualizations, and line-scan plots of all five HNSCC MCTSs exposed to doxorubicin for 

0.5h exhibited an apparent donut-like staining pattern, where cells in the outer edges of 

the MCTSs had higher doxorubicin staining intensities relative to cells in the inner cores 

(Figure 20A). After 24h of doxorubicin exposure however, the TRITC images, pseudo-

color visualizations, and line-scan plots showed that doxorubicin fluorescence was 

distributed throughout the HNSCC MCTSs and was perhaps slightly higher in cells in the 

inner cores of MCTSs relative to cells in the outer layers (Figure 20A).  A comparison of 

the TL images of HNSCC MCTS exposed to 10 µM doxorubicin for 0.5h (Figure 20A) and 
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24h (Figure 20B), revealed that the longer drug exposure had a significant morphological 

impact producing less rounded MCTSs with uneven perimeters surrounded by a halo of 

single cells and generally darker inner cores. Furthermore, in time course TL images for  

 

Figure 20 Doxorubicin Drug Distribution in multicellular tumor spheroids formed 

in Ultra-low Attachment Plates 

HNSCC cell lines were seeded at 2,500 cells per well into 384-well ULA-plates and after 

3 days in culture the culture media was exchanged and MCTS were then exposed to 10 

µM doxorubicin for either 0.5h (A) or 24h (B). HNSCC MCTSs that were exposed to 10 

µM doxorubicin were then fixed in 3.7% formaldehyde and 4X images were acquired on 

the IXM in the TL and TRITC channels. Representative grey scale TL and doxorubicin 

(TRITC) images are presented along with the corresponding pseudo-color pixel intensity 

visualizations and line-scan fluorescent intensity plots. Representative data from three 

independent experiments are presented. All scale bars represent 300 µm.   
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each of the five cell lines exposed to doxorubicin, we observed that the most distinctive 

morphological changes occurred between 12h and 24h post treatment, as indicated by 

changes in MCTS size, loss of roundedness, and a reduction of inner core density (Figure 

21). Interestingly, UM-22B MCTSs only displayed modest morphological changes over 

time in comparison to the other cell lines (Figure 21).    

To investigate doxorubicin-induced cytotoxicity in HNSCC MCTS we seeded 2,500 

cells of the HNSCC cell lines into 384-well ULA-plates and after 3 days in culture the 

culture media was exchanged. The MCTSs were then exposed to 0.01 to 200 µM 

doxorubicin for 72h prior to the addition of the CTB detection reagent and subsequent 

measurement of the RFU signals. To define the dynamic range of the 72h compound 
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exposure in HNSCC MCTS assays, we used 0.2% DMSO control wells to represent 

uninhibited growth (Max controls, n=32), and 200μM Doxorubicin + 0.2% DMSO control 

wells to represent 100% growth inhibition (Min controls, n=32) respectively. Doxorubicin 

inhibited the growth of all five HNSCC MCTS cultures in a concentration dependent 

manner with GI50s in the low to sub-micromolar range; 0.31, 0.42, 1.59, 1.97 and 2.07 µM 

for the UM22B, Cal33, FaDu, BICR56 and OSC19 cell lines respectively (Figure 22A). To 

determine the effects of 72h doxorubicin exposure on HNSCC MCTS morphology and 

viability, we acquired TL and CAM/EHD fluorescent images of doxorubicin treated 

HNSCC MCTSs (Figure 22B). All five HNSCC MCTSs were totally disrupted after 72h 

exposure to the top three concentrations of doxorubicin tested (200, 66.7 and 22.2 µM) 

and the images provided no additional information (not shown). After 72h exposure to 7.4 

µM doxorubicin however, the TL and CAM/EHD images reveal profound differences when 

compared to images acquired from DMSO control wells. In TL images of DMSO control 

wells, FaDu, Cal33, and UM22B cell lines formed condensed MCTSs with a smooth and 

even periphery, while OSC19 and BICR56 formed rounded MCTSs with uneven 

perimeters. Exposure to 7.4 µM doxorubicin for 72h dramatically altered HNSCC MCTS 

morphologies: OSC19 MCTSs became irregular loose cell aggregates; BICR56 MCTSs 

became dark irregular cell aggregates with uneven outlines surrounded by single cells; 

Cal33 and UM22B MCTS became smaller and less rounded with dark inner cores and 

uneven perimeters surrounded by a halo of single cells; and FaDu MCTSs became bigger 

and darker with a rounded uneven perimeter. However, the CAM/EHD images revealed 

the most dramatic differences between doxorubicin treated and DMSO control wells.   
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Figure 21 MCTS Morphological Effects by Doxorubicin Treatment Over Time 

Five HNSCC cell lines were seeded at 2,500 cells per well into ULA-plates and allowed 

to form spheroids. After 72h media was exchanged, and cells were then exposed to 10 

µM doxorubicin for 0.5h, 3h, 6h, 12h, and 24h, followed by acquisition of 4X TL images 

on the IXM platform to determine changes in spheroid morphology. Representative 

images from multiple experiments are shown. All scale bars represent 300 µm. 
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Figure 22 Doxorubicin-induced cytotoxicity in multicellular tumor spheroids 

formed in Ultra-low Attachment Plates 

HNSCC cell lines were seeded at 2,500 cells per well in 384-well ULA-plates and after 3 

days in culture the culture media was exchanged, and then MCTSs were exposed to the 

indicated concentrations of doxorubicin for 72h prior to the addition of the CTB detection 

reagent and subsequent measurement of the RFU signals. (A) The mean maximum 

(0.5% DMSO) and minimum (200 µM doxorubicin + 0.5% DMSO) plate control CTB RFUs 

were used to normalize the RFU data from the compound treated wells as % inhibition of 

growth and the GI50 data were fit to a non-linear sigmoidal log inhibitor concentration 

versus the normalized response variable slope model using the GraphPad Prism 6 

software. The normalized mean ± SD (n=3) growth inhibition data from triplicate wells for 

each compound concentration are presented. Representative experimental data from one 

of four independent experiments are shown. 
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(B) To examine the effects of 72h doxorubicin exposure on HNSCC MCTS morphology 

and viability we acquired 4X TL and CAM/EHD fluorescent images of HNSCC MCTSs 

exposed to 7.4 µM doxorubicin for 72h. Greyscale TL images are presented along with 

color composite fluorescent images of live cell CAM and dead cell EHD staining depicted 

as green and red, respectively. Representative images from four independent 

experiments are presented.  All scale bars represent 300 µm.  
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The strong CAM and almost non-existent EHD fluorescence in the CAM/EHD composite 

images of the five HNSCC MCTSs from DMSO control wells indicated that most of the 

cells in the MCTSs were viable. In sharp contrast, the very weak CAM and strong EHD 

fluorescence in the CAM/EHD composite images of the five HNSCC MCTSs from wells 

exposed to 7.4µM doxorubicin indicated that most of the cells in the MCTSs were dead. 

These data demonstrate that although different HNSCC cell lines seeded into ULA-plates 

produced MCTSs with distinct morphologies and growth phenotypes, these more 

physiologically relevant 3D tumor models can be readily adapted to measure compound 

mediated cytotoxicity.   

4.4 Discussion 

MCTS cultures represent more physiologically relevant in vitro cell tumor models 

that recapitulate the microenvironments and cell-cell or cell-ECM interactions which occur 

in solid tumors. 98, 159, 166, 167, 176 We set out to characterize the morphologies, viability, and 

growth behaviors of MCTSs produced by 11 different HNSCC cell lines seeded into and 

cultured in ULA-plates over extended periods of time (Figures 13 & 14). The eleven 

HNSCC cell lines form xenografts in immuno-deficient mice, have similar genetic profiles 

to patient tumors, and have previously been used for HNSCC drug discovery.135, 136, 150 

The  Het-1A SV40 T-antigen immortalized human esophageal epithelial cell line does not 

grow as xenograft tumor in immuno-deficient mice.170-173  We characterized the 

development of distinct microenvironments and the penetration and distribution of drugs 

in different regions of the MCTSs (Figures 16 and 18-20) and investigated drug-induced 
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cytotoxicity (Chapter 4. Figures 21 and 22). Our goal was to obtain a better understanding 

of how HNSCC MCTS cultures behaved so that we could apply these models in HTS 

campaigns designed to identify cancer drug leads that will be more translatable into 

efficacy in in vivo animal models and patients.  

Nine of the eleven HNSCC cell lines seeded into 384-well ULA plates formed 

condensed MCTSs with either a smooth or uneven periphery after 3 days. The UM22B 

and SCC9 HNSCC cell lines and Het-1A esophageal epithelial cell line formed cell 

aggregates with irregular outer margins. After several days in culture however, the 

UM22B cell line coalesced into a compact MCTS with an even periphery. The HNSCC 

MCTS morphologies are consistent with our previous observations,64, 98, 157 and similar 

HNSCC MCTS morphologies were described in studies conducted in 96-well ULA-

plates.167, 177  In a study of six HNSCC cell lines, that included the Cal27 and Detroit 562 

cell lines of the present study, four formed tight spheroids and two formed compact cell 

aggregates.167 In a study of ten HNSCC cell lines, that included the Cal27 and FaDu cell 

lines of the present study, six formed tight compact spheroids, three formed intermediate 

spheroids, and one produced loose irregular cell aggregates.177  It’s been reported that 

H-RAS-transformed fibroblast cell lines form MCTSs that grow when seeded into 96-well 

ULA-plates, whereas non-transformed fibroblasts do not.178 It was suggested that the 

ability to form MCTS in ULA-plates was similar to soft agar colony formation clonogenicity 

assays, where only transformed cells can form colonies. In our study however, both the 

SCC9 HNSCC cell line and the Het-1A SV40 T-antigen immortalized human esophageal 

epithelial cell line formed irregularly shaped cell aggregates in ULA-plates that did not 

self-assemble into MCTSs. Some HNSCC MCTSs, most noticeably those formed by the 
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FaDu, Cal33, Cal27 and PCI-13 cell lines, exhibited two distinct spheroid regions, a 

darker or denser inner core surrounded by lighter outer layers that were two to several 

layers of cells thick depending upon the cell line. The two distinct spheroid regions have 

been observed previously in MCTSs formed by the FaDu and Cal33 cell lines.64, 177  In 

addition to morphology differences, we observed that HNSCC cell lines produced MCTSs 

of two different size ranges when they were seeded into ULA-plates at the same cell 

number; either smaller more compact MCTSs ~200-250 µm in diameter, or larger MCTSs 

~350-400 µm in diameter. HNSCC develops at multiple anatomic sites in different cell 

types within the head and neck region; paranasal sinuses, nasal cavity, oral cavity, 

pharynx, larynx, salivary gland and thyroid.132, 179-181 Histology, molecular characteristics 

and clinical outcomes vary widely across different sites.132, 179-181  In the present study, 

UMSCC1, SCC9, PCI-13, Cal33, Cal27 and BICR56 HNSCC cell lines were established 

from oral cavity tumors, the OSC-19 tumor originated in the tongue but the cell line was 

established from a metastatic site in the cervical lymph node, the FaDu and UM22B cell 

lines were established from hypopharynx tumors, the PCI-52 cell line was established 

from a larynx tumor, and the Detroit 562 tumor originated in the larynx but the cell line 

was established from a pleural effusion metastasis.136 HNSCC patient tumors have on 

average 130 coding mutations and 141 gene copy number alterations (gains/deletions) 

per tumor,132, 180, 181 and exhibit four gene expression signature subtypes; basal, 

mesenchymal, atypical, and classical.182 It is likely that the complexity and heterogeneity 

of HNSCC contributes to the variety in MCTS sizes and morphologies that we observed.  

We measured the changes in MCTS diameters and CTB RFUs over time in culture 

to assess the growth of HNSCC MCTS cultures in ULA-plates (Figure 14B & 14C).  MCTS 
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diameters and CTB RFUs both increased linearly over time in culture throughout the 10-

14-day culture period for FaDu, UM22B and Cal33 MCTSs. In contrast, BICR56 MCTSs 

were static and OSC19 MCTSs exhibited gradual declines for both indicators over time. 

Time course CAM/EHD images demonstrated that most of the cells in UM22B, Cal33 and 

BICR56 MCTSs were viable at all timepoints (Figures 14A & 16A). FaDu MCTSs 

appeared to develop necrotic cores as they became progressively larger, and OSC19 

MCTSs appeared to have a necrotic core at all timepoints.  The presence of necrotic 

cores in OSC19 and FaDu MCTSs were confirmed by both the CAM/EHD images and 

the quantitative MIFI data presented in Figure 16A. The necrotic core in FaDu MCTSs 

developed between day 4 and 6 in culture after the MCTSs reached ~ 500 µm in diameter 

(Figure 14B), and we speculate that diffusion was no longer able to support efficient 

nutrient and/or oxygen uptake and distribution to interior cells, and/or to remove waste 

products. Several methods have been used to label actively proliferating cells in MCTS 

cultures including Ki67 staining and the incorporation of either H3-thymidine or H3-bromo-

deoxyuridine incorporation into DNA.98, 104, 165, 166, 183  Previous MCTS proliferation studies 

have shown that MCTS cultures exhibit differential zones of proliferation characterized by 

outer layers of proliferating cells surrounding inner layers of quiescent cells, and inner 

cores that may become necrotic.98, 104, 165, 166, 183  Consistent with these observations, cells 

in the outer layers of the FaDu and UM22B MCTSs exhibited EdU incorporation (Figure 

18). However, none of the cells in Cal33, BICR56 and OSC19 MCTSs exhibited 

detectable levels of EdU incorporation, even with 48h EdU exposure. Only HNSCC 

MCTSs that showed substantial increases in MCTS diameters and CTB RFUs with time 

in culture contained actively proliferating cells detectable by EdU incorporation. Despite 
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the apparent viability of the cells in Cal33 and BICR56 MCTSs demonstrated by the 

CAM/EHD (live/dead) stains, their rates of proliferation were below the detection limits of 

EdU incorporation. OSC19 MCTSs exhibit a slow progressive death phenotype, and none 

of the cells in OSC19 MCTSs were positive for EdU incorporation. Based on Ki67 staining, 

the rates of proliferation of eight of nine HNSCC cell lines that formed MCTS cultures in 

96-well ULA-plates decreased substantially compared to the corresponding 2D cultures, 

especially for those that formed tight spheroids.177 Only the FaDu cell line exhibited 

comparable Ki67 staining in 2D and 3D cultures.177   

The rates of proliferation and growth of HNSCC cell lines in ULA-plate MCTS 

cultures is dramatically different from that in 2D cultures. 135, 150  When HNSCC cell lines 

are seeded at 1,000 cells per well into standard tissue culture treated 384-well microtiter 

plates, they proliferate exponentially throughout a 96h culture period, and typically 

undergo >2 but <3 doublings. 135, 150 Tumor cell lines adapted to growth in 2D proliferate 

faster than cells from primary tumors, exhibit altered drug response profiles, and are very 

sensitivity to anti-proliferative agents while under-representing the self- and population-

renewing tumor stem cells that contribute to recurrence and metastasis.64, 151-155 Dormant 

or quiescent tumor cells which have stopped replicating, or that proliferate slowly due to 

reduced nutrient and/or oxygen microenvironments, are resistant to molecules targeting 

cell proliferation mechanisms.184-186 The reduced proliferation and growth of HNSCC cell 

lines that we observed in MCTS culture conditions may more accurately align with tumor 

growth in vivo,  which may be critical to screening for new solid tumor cancer drug leads 

that will translate better in in vivo animal models and in patients.  
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Images of CAM stained HNSCC MCTS cultures indicated that cells in the outer 

layers of MCTSs exhibited higher intensities relative to cells in the interior, irrespective of 

MCTS size or HNSCC cell line (Figures 13, 14A, and 16A). The uniform distribution of 

fluorescence observed in HNSCC MCTSs prelabeled with CTO prior to MCTS formation 

(Figure 17) suggests that the gradient of CAM fluorescence was not due to an imaging 

artifact caused by inefficient excitation light penetration into MCTS cores and/or 

fluorescent emission light detection from these regions. Since the CAM reagent is 

metabolized by live cells into a fluorescent end-product, the higher CAM signals in cells 

in the outer layers of HNSCC MCTSs may be due to their higher metabolic activity relative 

to cells in the inner cores. We cannot however exclude the possibility that poor CAM 

reagent permeability might have produced uneven reagent penetration and distribution 

within the MCTSs, and that the apparent gradient of CAM staining was due to its 

preferential uptake, accumulation and metabolism by cells in the outer layers of HNSCC 

MCTSs. Mitochondria are critical to cellular energy production, and we used the MTO and 

TMRM dyes to evaluate the mass and membrane potential of active mitochondria in the 

cells of HNSCC MCTS cultures (Figure 19).174, 175 The MTO data indicated that all of the 

cells in HNSCC MCTS cultures contain active mitochondria irrespective of their location 

within the MCTS (Figure 19A), and that MCTS mitochondrial mass appears to track with 

MCTS size (Figure 19B). The TMRM data indicated that the mitochondria in cells in the 

outer layers of HNSCC MCTSs had higher membrane potentials than mitochondria in 

cells in the inner regions, indicating that cells in the outer layers of MCTS have more 

functionally active mitochondria. Both the CAM and TMRM data indicated that cells in the 
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outer layers of HNSCC MCTSs were more metabolically active than cells in the interior 

regions. 

When MCTSs are initially exposed to doxorubicin, cells in the outer layers of 

HNSCC MCTSs exhibit higher doxorubicin fluorescent intensities than cells in the inner 

cores (Figure 20A). After 24h however, doxorubicin alters the integrity and morphologies 

of MCTSs, and becomes uniformly distributed throughout MCTSs (Figure 20B). These 

data are consistent with our previous observations that Cal33 and FaDu MCTSs exhibited 

permeability barriers that resulted in uneven drug distribution and exposure gradients 

which coincided with enhanced resistance relative to monolayer cultures.64 Adhesion 

junctions between adjacent cells, cell-ECM contacts, and high tumor cell packing 

densities constitute drug permeability barriers that limit cancer drug penetration, 

distribution, and efficacy.184-189 Drug physiochemical properties also affects their 

distribution in tissues, and cells in solid tumors which are distal to blood vessels 

experience lower drug concentrations due to reduced drug access 186-188  Exposure to 

doxorubicin for 72h inhibited the growth and viability of all five HNSCC MCTS cultures in 

a concentration dependent manner with GI50s in the low to sub-micromolar range; 0.31, 

0.42, 1.59, 1.97 and 2.07 µM for the UM22B, Cal33, FaDu, BICR56 and OSC19 MCTSs 

respectively (Figure 21A). The top three concentrations of doxorubicin totally disrupted 

the integrity and viability of all five HNSCC MCTSs. At 7.4 µM doxorubicin, HNSCC MCTS 

integrity and morphologies were profoundly altered and the CAM/EHD images indicated 

that most of the cells were dead (Figure 22B). 

HNSCC MCTS cultures develop microenvironments which result in differences in 

proliferation rates, metabolic activity, and mitochondrial functional activity between cells 
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located in the outer layers of the MCTS and cells in the interior. Some HNSCC MCTS 

cultures have necrotic cores that gradually increase as MCTS size and viability decline, 

while others develop necrotic cores surrounded by viable layers of cells as MCTSs 

achieve a critical size threshold. HNSCC MCTS cultures also exhibit drug penetration and 

distribution gradients that coincide with enhanced resistance. Perhaps the most profound 

effect of culturing HNSCC cell lines in MCTS cultures was their dramatically altered and 

varied growth phenotypes. Instead of the exponential growth that are characteristic of 2D 

HNSCC growth inhibition assays, some MCTS cultures displayed linear growth rates, 

categorized as either rapid, moderate or slow, dormant MCTSs remained viable but did 

not grow, and some MCTSs exhibited death phenotypes that were either progressive and 

slow or rapid.  The ability of MCTS cultures to develop microenvironments and to display 

a variety of different growth phenotypes provide in vitro models that are more closely 

aligned with solid tumors in vivo.  We anticipate that the implementation MCTS models to 

screen for new cancer drugs for solid tumors like HNSCC will produce leads that will 

translate better in in vivo animal models and patients. Overall, we demonstrated our ability 

to characterize several aspects of a multicellular tumor spheroids both specific to 3D cell 

culture and relevant to an avascular solid tumor, therefore providing a more 

physiologically relevant in vitro model for drug discovery.   
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5.0 Determination of Drug Sensitivity in Head and Neck Squamous Cell 

Carcinoma using Multicellular Tumor Spheroids and 2D Cell Culture Models 

5.1 Overview of Head and Neck Squamous Cell Carcinoma 

As described in more detail in chapter 4, head and neck squamous cell carcinoma 

(HNSCC) represents the sixth most common cancer worldwide, presenting over 600,000 

new cases annually, and 65,410 cases projected to occur in the United States alone with 

14,620  deaths anticipated (Cancer.net).190  Risk factors for cancers of the head and neck 

include the consumption of alcohol, use of tobacco products, exposure to human 

papilloma virus, and innate genetic factors. Because of the location and complex nature 

of the anatomical sites (lip, tongue, nasopharynx, oropharynx, larynx, hypopharynx) 

where HNSCC can develop, facilitating appropriate surgical and/or radiological treatment 

can be challenging and potentially deforming in patients. Given both the etiologies and 

the various anatomical sites that HNSCC can arise from, researchers have documented 

vast heterogeneity with major influence from genetic alterations in TP53, Rb, CDKN2A, 

CASP8, PIK3CA, EGFR, NOTCH1, HRas and many others; with alterations in tumor 

suppressor pathways appearing to be the most prevalent.117, 190-192  Pharmacological 

treatment of HNSCC has remained a challenge and has stagnated for the past 3 decades, 

even with advent of molecularly targeting agents (MTA), patient responses are  variable 

and often very modest. For example, only 13% of patients receiving therapy with the 

epidermal growth factor receptor (EGFR) MTA cetuximab exhibit a response.193, 194   
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5.1.1  MCTS as Physiological Relevant In Vitro Models for Screening Drug 

Candidates 

Cancer drug approval rates have been and continue to be abysmal, with a recent 

report summarizing that from 2000 to 2015 the probability of new chemical agent success 

in oncology was on average only 3.4%.88  One of the major factors limiting the success 

of drug candidates in the clinic is the physiological relevance of preclinical models, which 

currently, fail to adequately recapitulate the characteristics of a solid tumor.96, 104 In cancer 

drug discovery the more accurately we can mimic the characteristics of a solid tumor, the 

more accurately we can predict the success of a drug candidate at effectively targeting a 

malignancy. There is a large body of evidence in support of using 3-dimensional (3D) cell 

culture models for the purpose of drug discovery given their ability to better recapitulate 

in vivo characteristics, gene expression, and tumor physiology than traditional 2D 

models.107, 109, 195 In particular, the cell-cell / cell-extracellular matrix interactions created 

in 3D conditions are capable of producing physiological gradients of nutrients, oxygen, 

waste, and drugs; conditions which lend themselves to produce differential zones of 

proliferation within the multicellular tumor spheroids (MCTSs) and better recapitulate the 

tumor microenvironment.96, 196 Furthermore, use of drug screening and compound 

treatment in 3D models has identified unique applications, undetected in 2D culture 

systems, such as  clinically relevant responses to the HER2 inhibitor trastuzumab 

observed in 3D but not 2D cultures, and effectively targeting dormant cells within 

MCTSs.106, 107  
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5.1.2  Overview and Review of MCTS Characterization 

Chapter 4 described  the characterization of 11 different HNSCC cell lines in 3D  

MCTSs for the purposes of conducting more physiologically relevant cancer drug 

screening.114  We optimized both MCTS cell seeding density and time in culture based 

on CellTiter-Blue viability reagent RFU’s, morphology and diameter measurements, 

live/dead imaging, and staining for mitochondrial mass and functional activity. HNSCC 

MCTS cultures develop microenvironments which result in differences in proliferation 

rates, metabolic activity, and mitochondrial functional activity between cells located in the 

outer layers of the MCTS and cells in the interior.  Some HNSCC MCTS cultures have 

necrotic cores that gradually increase as MCTS size and viability decline, while others 

develop necrotic cores surrounded by viable layers of cells as MCTSs achieve a critical 

size threshold. HNSCC MCTS cultures also exhibit drug penetration and distribution 

gradients that coincided with enhanced resistance to doxorubicin. Perhaps the most 

profound effect of culturing HNSCC cell lines in MCTS cultures was their dramatically 

altered and varied growth phenotypes. Some MCTS cultures displayed linear growth 

rates, categorized as either rapid, moderate or slow, dormant MCTSs remained viable 

but did not grow, and some MCTSs exhibited death phenotypes that were either 

progressive and slow or rapid. Only cells in the outer layers of MCTSs with rapid or 

moderate growth phenotypes incorporated click-it Edu reagent, indicating that the more 

quiescent cells in the MCTS interior were surrounded by outer layers of proliferating cells 

that were actively replicating DNA.114 The ability of HNSCC MCTS cultures to develop 

microenvironments and to display a variety of different growth phenotypes provide in vitro 

models that are more closely aligned with solid tumors in vivo.  We anticipate that the 
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implementation MCTS models to screen for new cancer drugs for solid tumors like 

HNSCC will produce leads that will translate better in in vivo animal models and patients. 

This chapter describes the use of 2D and MCTS HNSCC cultures to perform a drug 

screen with 19 FDA approved cancer compounds and the use of a high content imaging 

approaches to investigate the differential drug sensitivities observed between the two 

models.       

 

5.2 Materials and Methods 

Reagents 

Thirty-seven percent formaldehyde was purchased from Sigma-Aldrich (St. Louis, 

MO). Hoechst 33342 was purchased from Life Technologies (Thermo Fisher Scientific, 

Waltham, MA). Dimethyl sulfoxide (DMSO) 99.9% high-performance liquid 

chromatography grade was obtained from Alfa Aesar (Ward Hill, MA). Dulbecco’s Mg2+- 

and Ca2+-free phosphate-buffered saline (PBS) was purchased from Gibco (Grand 

Island, NY). Dulbecco’s modified Eagle’s medium (DMEM) was purchased from Corning 

(Manassa, VA). Fetal bovine serum (FBS), L-glutamine, penicillin, and streptomycin (P/S) 

were purchased from Thermo Fisher Scientific. CellTiter-Blue (CTB) was purchased 

from Promega Corporation (Madison, WI). Calcein AM (CAM), Ethidium Homodimer 

(EHD), were all purchased from Life Technologies (Thermo Fisher Scientific, Waltham, 

MA). All nineteen compounds (Chapter 5. Table 5.3) where Doxorubicin was provided by 

the National Cancer Institute (NCI). 
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Cells and Tissue Culture 

Five human head and neck squamous cell carcinoma (HNSCC) cell lines were 

provided by Dr. Jennifer Grandis of the Head and Neck Cancer (HNC) Spore at the 

University of Pittsburgh Medical Center Hillman Cancer Center and were maintained in a 

humidified incubator at 37°C, 5% CO2, and 95% humidity; Cal 33, FaDu, UM-22B, 

BICR56, and OSC-19. All cell lines were cultured in DMEM supplemented with 10% FBS, 

1% L-glutamine, and 1% P/S. The culture medium for the FaDu and OSC-19 cell lines 

was also supplemented with 1% non-essential amino acids, and the medium for the 

BICR56 cell line was supplemented with 0.4µg/mL hydrocortisone.  HNSCC cell lines 

were passaged or used to generate multicellular tumor spheroids (MCTSs) after isolated 

cell suspensions were prepared from tissue culture flasks by dissociating cells with trypsin 

and centrifugation at 1,200 rpm for 5 min at room temperature, and resuspension in 

growth media. The number of viable trypan blue excluding cells in the cell suspension 

was counted using a hemocytometer. 

Generation of HNSCC Multicellular Tumor Spheroids in Ultra-low Attachment 

Microtiter Plates 

We have previously described the generation of MCTSs after seeding several 

HNSCC cell lines into 384-well U-bottomed ultra-low attachment (ULA-plates) microtiter 

plates (Corning, Tewksbury, MA, Cat. No 4516).64, 98, 114, 157 Briefly, 384-well ULA-plates 

were rehydrated by the addition of 50 µL of serum free culture medium to each well and 

incubation in a humidified incubator for 15 minutes. Media was removed from the wells of 

the ULA-plates and 45μL of a  single-cell suspension of the HNSCC cell lines at different 

seeding densities 2500 cells/well) in the appropriate growth medium were transferred into 
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each well using a Matrix automated  multichannel pipette (Thermo Fisher Scientific, 

Waltham, MA), ULA-plates were centrifuged at 100 rpm for 1 minute, and then placed in 

an incubator at 37°C, 5% CO2 and 95% humidity for the indicated time periods.  In time 

course experiments where HNSCC MCTS cultures were maintained in the ULA-plates 

beyond 3 days, spent media was exchanged for fresh medium before compound addition 

using a Janus MDT Mini (PerkinElmer, Waltham, MA) automated liquid handler platform 

equipped with a 384-well transfer head. Each medium exchange cycle consisted of 2 x 

20 µL aspiration and discard steps followed by 2 x 20 µL fresh media dispense steps.  

Three media exchange cycles were performed to achieve ~ 85% exchange of fresh 

medium for spent medium and a uniform volume of 45uL per well. 

Growth Inhibition Studies in HNSCC Multicellular Tumor Spheroids Produced via 

Ultra-low Attachment Microtiter Plates with High Content Imaging. 

Individual drug GI / IC50 values were determined in 10pt 3-fold serial dilutions, with 

only cisplatin as a 2-fold serial dilution all conducted in triplicate per concentration. The 

maximum starting concentration for each compound is displayed in Table 1. Compound 

addition was performed to assay plates via two daughter plates with 10 compounds per 

plate and 32 wells each of maximum (0.2% DMSO) and minimum (200µM Doxorubicin) 

signal controls. Five microliters were delivered to each well of the assay plate with the 

appropriate compound / control using the Janus automated Janus MDT Mini 

(PerkinElmer, Waltham, MA) automated liquid handler platform with specific liquid 

handling protocols we developed for this set of assays.  

For imaging cell viability, we used an ImageXpress Micro (IXM) automated wide 

field high content imaging platform integrated with MetaXpress Imaging and Analysis 
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software (Molecular Devices LLC, Sunnyvale, CA) to acquire and analyze images of 

HNSCC MCTSs. The IXM optical drive uses a 300 W Xenon lamp broad spectrum white 

light source and a 1.4-megapixel 2/3" chip Cooled CCD Camera and optical train for 

standard fluorescence imaging and a transmitted light module with phase contrast. The 

IXM is equipped with Zero Pixel Shift (ZPS) filter sets; DAPI, FITC/ALEXA 488, 

CY3/TRITC, CY5, and Texas Red. A 4-position objective turret can be loaded with various 

objectives; a 4X Plan Apo 0.20 NA objective, a 10X Plan Fluor 0.3 NA objective, a 20X 

Ph1 Plan Fluor extra-long working distance (ELWD) dark medium objective, a 20X S Plan 

Fluor ELWD 0.45 NA objective, and a 40X S Plan Fluor ELWD 0.60 NA objective. 

Single images of HNSCC MCTSs were sequentially acquired using a 4X Plan Apo 

0.20 NA  objective in both the transmitted light (TL) and fluorescent image acquisition 

modes; DAPI, FITC and TRITC.64, 98, 157, 169 To acquire best focus images of MCTSs we 

used the IXM automated image-based focus algorithm to acquire both a coarse focus 

(large µm steps) set of images of Hoechst stained objects in the DAPI channel for the first 

MCTS to be imaged, followed by a fine (small µm steps) set of images to select the best 

focus image. For all subsequent wells and channels to be imaged only a fine focus set of 

images were acquired to select the best focus Z-plane.64, 98, 114, 157, 169  

To label viable and/or dead cells within the HNSCC MCTS cultures, we incubated 

HNSCC MCTSs with a cocktail of the Hoechst (8µg/mL) DNA stain, the Calcein AM 

(2.5µM) live reagent, and the Ethidium Homodimer (5µM) dead reagent for 1h, and single 

images of HNSCC MCTSs were sequentially acquired on the IXM using a 4X objective in 

both the TL and fluorescent image acquisition modes; DAPI, FITC and Texas Red 
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channels. We used the multiwavelength cell scoring (MWCS) image analysis module to 

analyze the HNSCC MCTS fluorescent images as described previously. 64, 98, 114, 157   

Analysis of HNSCC Multicellular Tumor Spheroid Viability and Growth using the 

Cell Titer Blue® Reagent.    

The homogeneous CellTiter-Blue® (CTB) cell viability reagent provides a 

fluorescent method for monitoring cell viability and/or growth inhibition that is based on 

the ability of living cells to convert the redox dye resazurin into a fluorescent end-product 

resorufin.  HNSCC cell lines were seeded at the indicated cell densities into 384-well 

ULA-plates in 45μL of growth medium incubated at 37°C, 5% CO2 and 95% humidity for 

the indicted time periods. After the prescribed time in culture 10 μL of the CTB cell viability 

detection reagent was dispensed into the wells of HNSCC MCTS assay plates, and 

incubated for 4h at 37°C, 5% CO2 and 95% humidity before capturing the relative 

fluorescent unit (RFUs) signals (Ex. 560 nm/ EM. 590 nm) on a SpectraMax M5e 

(Molecular Devices, LLC, Sunnyvale, CA) micro-titer plate reader platform. 

Data Analysis and Curve Fitting 

For HNSCC MCTS growth inhibition assays in 384-well ULA-plates, % inhibition 

was calculated as follows: % activity – 100, where % activity is = (experimental well – 

minimum control) / (Maximum control – minimum control) *100. The GI50 data were fit to 

a non-linear sigmoidal log (inhibitor) vs. normalized response variable slope model using 

the equation: Y=100/(1+10^((LogIC50-X) *Hillslope))), where y was the percent growth 

inhibition and x was the corresponding log10 of the compound concentration. The GI50 is 

the concentration of compound that gives a 50% response, half way between 0% and 
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100%.  The Hillslope describes the steepness of the curve. All curve fitting, linear 

regression analysis, and graphs were created using the GraphPad Prism 6 software. 

MCTS Drug Impact Scoring  

MCTS Drug impact was assessed by scoring several qualifiers as either 0 or 1 

where 0 indicated no change compared to our DMSO control and 1 indicates a change 

that was greater than our set thresholds which include the ability of a drug to; induce 

growth inhibitory effects sufficient to generate a calculable GI50 value from the CTB RLU 

data; the presence of a decrease in live stain, the presence of an increase in dead stain, 

changes in morphology, and changes in diameter. Changes in live and dead stain were 

only qualified as impactful if they were 2 standard deviations from our DMSO control mean 

live and dead stain mean fluorescent integrated intensity values.  

Table 3 CellTiter Blue Drug GI50 Comparison HNSCC 2D Monolayers Vs MCTS 

Cultures 

 

Compounds are ordered by FDA approved for HNSCC as indicated with an asterisk *, 

tyrosine kinase inhibitor, topoisomerase and PI3K inhibitors, and miscellaneous targeted 

agents. Top concentrations are represented in µM, and compound effect is presented 

with conditional formatting where green to yellow to red indicates low values to moderate 
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to high GI50. Both mean and standard deviation values are representative of at least 3 

independent experiments, with docetaxel only having one available data set, as its top 

concentration was adjusted in the final run due to little or no observed activity in previous 

runs at a much lower concentration. MOA = Mechanism of action, DNA-Syn = disruptor 

of DNA synthesis, MT-Stb = microtuble stabilizer, DNA-Rep = inhibition or disruption of 

DNA repair, EGF-TKI = Epidermial growth factor tyrosine kinase inhibitor, SRC-TKI = Src 

tyrosine kinase inhibitor, RTKI = receptor tyrosine kinase inhibitor, JAK-TKI = Janus 

kinase inhibitor, TOPO-II = Topoisomerase 2 inhibitor, TOPO-I = Topoisomerase 1 

inhibitor, PI3K = phosphoinositide 3-kinase inhibitor, HDAC = Histone deacetylase 

inhibitor, 26S = 26S proteasome inhibitor, mTOR = mammalian target of rapamycin 

inhibitor, HSP90 = heat-shock protein 90 inhibitor. 

5.3 Results and Discussion 

5.3.1  3D and 2D Drug Screen Assay Development and Performance 

Previously, our laboratory has published on the characterization and optimization 

of cell culture techniques for the use of HNSCC cell lines as MCTSs for screening 

compounds.64, 114, 157  5 HNSCC cell lines were selected to  represent 5 of the 6  distinct  

MCTS morphologies and growth phenotypes observed across the 11 cell lines.114  These 

phenotypes included: rapid growth (FaDu), moderate growth (UM-22B), slow growth (Cal 

33), dormant (BICR56), and slow-progressive death (OSC-19) as previously described 

by Kochanek et. al 2019.114  We  implemented a comparative study to determine the 

effectiveness of 19 FDA approved compounds, 5 of which have been approved by the 

FDA for the treatment of HNSCC, and compare the  sensitivity of  MCTS cultures to the 

2D cultures more typically employed for cancer drug growth inhibition studies.  Through 
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our assay development and optimization experiments we determined that the best 

seeding density was 2,500 cells/well and 500 cells/well for the 384-well 3D and 2D growth 

inhibition assays respectively (data not shown). After seeding HNSCC cells into 384-well 

ULA microtiter plates we cultured them for three days to allow MCTSs to form before 

performing a media exchange and adding test compounds. For 2D growth inhibition 

assays, cell seeding occurred 24h before compound transfer. For both 3D and 2D growth 

inhibition assays, plates were incubated for an additional 72h after compounds were 

transferred from the daughter plate (Figure 23A).  

We observed the same distinct MCTS growth phenotypes and morphologies 

during time in culture as previously reported, and our general 3D assay workflow is 

depicted in Figure 23A.114 In particular, after 3 days in culture, MCTS formation is visible 

across all cell lines, save for the UM-22B cell line, which displayed an unorganized 

periphery that became sharper and more nuanced after 6 days in culture. This 

observation was especially true in the rapid and moderate growth phenotypes as changes 

in size, shape, and compactness were most prominent over time (Figure 23A).114 The 

FaDu cell line developed tight and compact spheroids with an organized outer periphery 

that became larger over time in culture, whereby the size-dependent development of a 

necrotic core was visible after 6 days in culture via dead staining (Figure 23A). As for the 

other cell lines, only minor differences were observed with Cal 33 forming a tight and 

compact spheroid with a clear, organized periphery, and BICR56 showing a slight change 

in spheroid shape after 6 days in culture (Figure 23A). OSC-19 became a more diffuse 

spheroid after time in culture which was also demonstrated in our previous studies.114  
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As previously reported in Kochanek et. al 2019, MCTS morphology, diameter, 

viability, and live & dead staining intensity were analyzed to examine HNSCC MCTS 

phenotypes (Figure 23B-D).114 We observed that the FaDu cell line had the largest 

increase in diameter, and after the UM-22B cell line forms an organized spheroid it also 

increases in size over time, the Cal 33 and BICR56 cell lines demonstrated only a minor 

increase in diameter from day 3 to 6, and the OSC-19 cell line remained unchanged  

 

Figure 23 Assay work flow and representative images and quantitative data of 

HNSCC multicellular tumor spheroids 

(A) Work flow schematic of growth inhibition assays within the 19-compound drug screen 

with representative TL and LD images on days 3 and 6, which were acquired on the IXM 

at 4X in the TL, FITC, and Texas Red channels. Images were represented as Greyscale 

TL, or color composite including both live CAM stain in green and dead ETHD stain in red 
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indicating the presence of either live or dead cells within the field of view.

 
(B), cellular viability via CTB signal (C), and changes in live and dead staining intensity 

(D) were graphed as a grouped plot, representative of day 3 with the unfilled bars and 

day 6 with the filled bars. Representative images from multiple independent experiments 

are presented.  All scale bars represent 300 µm. All bar graphs are representative of 

triplicate (n=3) samples and error bars are indicative of mean ± SD. 

 

(Figure 23B). Using CellTiter-Blue (CTB) homogenous viability reagent, we were able to 

observe a correlation between increase in spheroid diameter and # of viable cells as seen 

with the FaDu cell line and Cal 33, with the UM-22B & OSC-19 cell lines remaining 

unchanged and BICR56 displaying a modest decrease from day 3 to 6 (Figure 23C). 

Through image analysis of our MCTS’s live and dead staining intensity, we were able to 

observe changes over time in culture in all five HNSCC MCTS cultures (Figure 23D). In 

DMSO control wells the relative Calcein AM live staining intensity increased in all five 

HNSCC MCTS cultures on day 6 compared to day 3, demonstrating that cell viability 

increased over the 72h compound exposure period.  Under the same conditions we 

observed an increase in dead staining in both the FaDu and UM-22B MCTS DMSO 

controls, consistent with the development of a necrotic core (Figure 23D).  
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5.3.2  Drug Sensitivity in 2D and 3D HNSCC Cell Culture 

We have previously shown that 2D HNSCC monolayer cultures are significantly 

more sensitive that the corresponding MCTS cultures to growth inhibition by ellipticine 

and anthracycline antibiotics including doxorubicin.64, 114 We selected 19 FDA approved 

cancer drugs for our test set with several rationales in mind (Table 3). The first 5 

compounds listed in Table 3 are specifically approved for HNSCC as indicated by an 

asterisk, and include several classical chemotherapeutics; gefitinib and erlotinib were 

selected to replicate the EGFR inhibitory effects of the monoclonal antibody cetuximab, 

which is also approved for HNSCC as well; dasatinib, a src family kinase inhibitor (SRC-

TKI) was selected because of its ability to mediate EGFR ligand cleavage and other 

molecular characteristics related to HNSCC as published by Zhang et. al 2004; sunitinib, 

a multi-receptor tyrosine kinase inhibitor with an ability to target vascular endothelial 

growth factor receptors (VEGFRs) was also selected on the basis of published 

information about reported expression levels of VEGFRs in HNSCC;  ruxolitinib, a Janus 

kinase inhibitor was selected as it is capable of modulating the JAK/STAT pathway, 

specifically affecting STAT 3, a signal transducer and activator of transcription (STAT) 

commonly associated with cell proliferation and survival; doxorubicin, was selected as 

part of the classical chemotherapeutics regimen consistently shown to be effective at 

growth inhibition in several cancers;  etoposide and topotecan were both included as 

topoisomerase inhibitors / modulators commonly used for cancer treatment; 

Phosphoinositide 3-Kinase (PI3K) pathway inhibitors dactolisib and buparlisib were 

included in the screen given that the PI3K is frequently mutated in HNSCC; bortezomib, 

a 26S proteasome inhibitor was selected for its ability to induce pro-apoptotic pathways 
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in HNSCC; Everolimus, an mTOR inhibitor, was included given that one of the most 

commonly altered pathways in HNSCC is PI3K / mTOR; and lastly ganetespib, a heat-

shock protein 90 inhibitor, was included as HSP90 inhibition has been shown to sensitize 

HNSCC to radiotherapy and chemotherapy.197-203 

To measure drug-induced cytotoxicity in our 2D and 3D Cell Titer Blue (CTB) 

growth inhibition assays, we used 0.2% DMSO as our maximum plate controls (n=32) 

and 200µM doxorubicin as our minimum plate controls (n=32) to normalize the CTB 

signals from treated wells to % inhibition (Figure 24 and Table 4).  Each compound was 

tested in 10-point, 3-fold serial dilution (2-fold for cisplatin) concentration response 

assays, in three to four independent experiments. We used a Janus MDT mini automated  

 

Figure 24 QC values of maximum and minimum controls in both 3D and 2D 

culture conditions 
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Representative graphs of the quantitative CTB viability data present between FaDu (A), 
UM-22B (B), Cal 33 (C), BICR56 (D), and OSC-19 (E) cell lines where filled bars 

represent the maximum control of 0.2% DMSO in both 3D and 2D cell culture, and unfilled 

bars represent the minimum control of 200µ doxorubicin in both 3D and 2D cell culture 

as well. All bar graphs are representative of triplicate (n=3) samples and error bars are 

indicative of mean ± SD. 

 

liquid handler to generate several daughter plates from compound master plates, with 

2µL aliquots that were diluted in 98µL of SFM before transfer of 5 µL into assay plates. 

To determine if our 2D and MCTS growth inhibition assays were performing robustly and 

were compatible with HTS, we calculated both signal-to-background (S:B) ratios and Z’-

factor coefficients (Table 4). The S:B ratios for the majority of cell lines was noticeably 

higher (~2-fold) in 2D cultures compared to the corresponding MCTS cultures, with OSC-

19 having the closest 2D vs 3D S:B ratio comparison (Table 4). In addition, with Z’-factor 

coefficients ≥ 0.5 for both the 2D and MCTS CTB growth inhibition assays, the assay 

signal window separations were robust and reproducible enough to be classified excellent 

for HTS.    HNSCC cell lines cultured in 2D monolayers under these conditions exhibited 

exponential growth rates and based on their doubling times their growth rates were 

ranked as, Cal33=UM22B=FaDu<BIRC56<<OSC19 (Data not shown). In marked 

contrast, MCTS growth rates were only linear and were ranked as 

FaDu<UM22B<<Cal33, with BIRC56 remaining static but viable and OSC19 declining 

over time in culture (Chapter 4). Compounds either effectively inhibited the growth of both 

2D and MCTS cultures, were only effective against 2D monolayers, or were ineffective in 

both culture formats (Table 3). Of the 19 drugs tested, 14 produced calculable GI50 values 

in 2D cultures of FaDu and Cal 33 cell lines, UM22B and BIRC56 were sensitive to 13 of 
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the agents, and OSC-19 only responded to 10 (Table 4). In the same cell lines grown as 

MCTS cultures, we observed significantly diminished growth inhibitory effects across the 

five cell lines with 7 out of 19 producing calculable GI50 values in UM-22B MCTSs, 6 in 

BIR56 MCTSs, 5 in FaDu and OSC-19 MCTSs, and only 4 in Cal 33 MCTSs (Table 4). 

Overall, only 4 compounds consistently inhibited the growth all cell lines in both 2D 

monolayers and 3D MCTSs; cisplatin, sunitinib, doxorubicin, and everolimus (Table 3).  

Table 4 Screening Statistics for QC Evaluation of Assay Performance 

 

 

Representative signal-to-background (S:B) and Z-factor coefficient screening statistics 

which are barometers of assay performance and quality, whereby, the signal-to-

background ratio represents the separation between an obtained signal from a particular 

assay condition or treatment vs an established baseline; and the Z-factor coefficient 

represents a statistical parameter that takes into account the assay signal dynamic range 

with any calculated values failing in this range 1 > Z ≥ 0.5 considered an excellent assay. 

In addition, we also analyzed how the drugs impacted the morphology (shape, 

compactness and diameter) and live/dead staining intensity as HNSCC MCTSs (Tables 



 146 

5 & 6, respectively).  Interestingly, while only 4-7 drugs produced calculable GI50s in the 

CTB MCTS growth inhibition assays (Table 3), 10-19 drugs produced changes in 

spheroid morphology across the HNSCC cell lines (Table 5). 

5.3.3  Determination of Overall Drug Impact Across All Five Cell Lines 

In order to assess the global effect of each of the drugs in our 19 compound screen, 

we determined several qualifiers for drug impact: the ability of the drug to produce a GI50 

in CTB growth inhibition assays, decrease in live stain integrated intensity greater than 2 

standard deviations below the DMSO control mean, increase in dead stain integrated 

intensity greater than 2 standard deviations above the DMSO control mean, change in 

morphology versus DMSO control treated MCTS, and any change in diameter versus 

MCTS control treated MCTS (Table 5, Table 6, Table 7 and 8, respectively). A score of 

either 1 or 0 was applied depending on if the drug impact requirements were met, where 

a score of 1 indicates that the drug had an effect / impact and a score of 0 indicates no 

change or an inability to produce a measurable impact. Each individual score provided 

insight into the ability of the drug to produce an effect in metabolic viability via CTB, 

physiological response by live / dead staining, and impact on cell-cell interactions and 

cellular organization indicated by changes in morphology and diameter, respectively. A 

maximum score of 5 indicates that the drug elicited a measurable effect in all categories, 

and score of 0 indicates that the drug had no effect on any of the categories.  
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Table 5 Drug Mediated Effects on HNSCC MCTS Morphology 

 

Described effects of drug impact of all 19 compounds included in our screen against the 

morphology and size of the 5 HNSCC cell lines as MCTSs. The DMSO control treated 

shape and compactness of MCTSs are included in bold below the Shape and 

Compactness columns, with the proceeding drug effects listed in the same row as the 

signified compound at the Max concentration. Any changes in morphology were 

conditionally formatted in green for “yes a change was present”, orange for “no a change 

was not present”, and if both morphology and size were unchanged the two fields were 

highlighted in red. We described two distinct spheroid morphologies present, either 
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rounded, if we observed an organized circular structure in contrast to irregular, whereby 

the outer periphery was considered unorganized and without a clear shape; compaction 

was categorized as tight, loose, or dispersed, whereby tight represents a very compact 

spheroid, loose represents a mildly compact spheroid, and dispersed represents little or 

no compaction present. Drugs with an asterisk beside them represent FDA approved 

compounds for HNSCC. ∆ Diam and ∆ Morph columns represent change in either 

diameter or morphology. 

Table 6 Drug Mediated Effects on HNSCC MCTS Live/Dead Staining 

 

 

Calculated fold changes in live / dead staining intensity vs DMSO control treated HNSCC 

spheroids across all five cell lines. Both fold change in live and dead stain were 

conditionally formatted so that values with a decrease in fold-change were cooler greens 

and values that displayed an increase in fold-change were warmer reds, respectively.  

MOA stands for mechanism of action. NACl indicates that these set of values was not 

able to be calculated by our conventional image analysis algorithm and had to be 

manually analyzed. Drugs with an asterisk beside them represent FDA approved 

compounds for HNSCC. 
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Table 7 Ranked Scores of Drug Impact on HNSCC MCTS By Compound 

 
Ranked scores of drug impact using our qualifiers: the ability of the drug to produce a GI50 

value through CTB fluorescence detection, decrease in live stain integrated intensity 

greater than 2 standard deviations of the DMSO control mean, increase in dead stain 

integrated intensity greater than 2 standard deviations of the DMSO control mean, change 

in morphology versus DMSO control treated MCTS, and any change in diameter versus 

MCTS control treated MCTS. Drugs were scored on an individual cell line basis and the 

cumulative score is displayed and ranked out of 25 across all 19 compounds. Drugs with 

an asterisk beside them represent FDA approved compounds for HNSCC. 
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Table 8 Representative Example of Drug Impact Scoring in UM-22B Cell Line 

 
Representative drug impact scoring in the UM-22B cell line, ranked by highest drug 

impact score to lowest drug impact score. Scores were based on the ability of the drug to 

produce a GI50 value through CTB fluorescence detection, decrease in live stain 

integrated intensity greater than 2 standard deviations of the DMSO control mean, 

increase in dead stain integrated intensity greater than 2 standard deviations of the 

DMSO control mean, change in morphology versus DMSO control treated MCTS, and 

any change in diameter versus MCTS control treated MCTS.  Drugs with an asterisk 

beside them represent FDA approved compounds for HNSCC. 

5.3.4  FDA Approved Drugs for Head and Neck Cancer 

All 5 of the drugs approved by the FDA for HNSCC therapy produced GI50s in 2D 

monolayer growth inhibition assays in all five cell lines, with only cisplatin and docetaxel 

also producing GI50s in MCTSs across all cell lines (Table 3, Figures 25B-H and 26B-H,). 

Of note, MCTSs generated with the UM-22B cell line were sensitive to growth inhibition 
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by 4 of the 5 FDA approved drugs, with only methotrexate failing to achieve > 50% growth 

inhibition (Table 3).  

5.3.5  HNSCC Sensitivity to Cisplatin 

Cisplatin is approved by the FDA for HNSCC therapy and represents a classical 

chemotherapeutic agent that binds to purine bases within the DNA strand and creates 

adducts which eventually leads to DNA strand breaks and cell death.95  Figure 25A  

compares the effects of 72h exposure to 500 µM cisplatin to DMSO vehicle on HNSCC 

MCTS morphology and cell viability in transmitted light (TL) images and fluorescence 

images of Hoechst stained nuclei (DAPI channel) and cells stained with the live (CAM, 

FITC channel) and dead (ETHD, Texas Red channel) reagents.  Figure 25B to 25F 

compares the concentration dependent inhibition of 2D monolayer and MCTS HNSCC 

growth determined in CTB growth inhibition assays. Figure 24G and 24H compare the 

effects of 72h exposure to 500 µM cisplatin to DMSO vehicle on HNSCC MCTS diameters 

and the mean integrated intensities of the live/dead staining respectively.  

 The TL images indicated that the morphologies of 4 out of the 5 HNSCC MCTSs 

were dramatically altered after 72h exposure to 500 µM cisplatin (Figure 25A, Table 3). 

In particular the FaDu, UM-22B, and OSC-19 cell lines, which formed tight compact 

spheroids with defined edges in DMSO control wells, exposure to cisplatin resulted in 

diffuse, cloudy structures lacking the cell-cell interactions that maintain MCTS structural 

integrity and architecture. (Figure 25A and Table 5). The UM-22B cell line was particularly 

affected morphologically with a spheroid structure that was blown out forming a cloudy 

and dispersed aggregate (Figure 25A). Except for the BICR56 cell line, images of the 
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MCTS Hoechst staining indicated that exposure to cisplatin substantially reduced the 

staining intensity or altered the staining pattern (FaDu). This was also true for the HNSCC 

MCTS live cell staining, where cisplatin exposure obliterated CAM staining except in 

BICR56 MCTSs. In contrast, cisplatin treatment increased the levels of ETHD dead 

staining in all five of the HNSCC MCTS cultures.  

Cisplatin exposure effectively inhibited the growth of 2D monolayer and MCTS 

cultures of the five HNSCC cell lines in a concentration dependent manner (Figure 25B-

25F). In the 2D CTB growth inhibition assays, cisplatin exhibited average GI50s of 11.1, 

7.1, 6.0, 6.7, and 17.0 µM in the FaDu, UM22B, Cal33, BICR56 and OSC19 HNSCC cell 

lines respectively. In the MCTS CTB growth inhibition assays, cisplatin exhibited average 

GI50s of 99.8, 52.2, 88.4, 80.5, and 114 µM in the FaDu, UM-22B, Cal33, BICR56 and 

OSC-19 HNSCC cell lines respectively. The apparent reduction in sensitivity  

 

Figure 25 Cisplatin sensitivity in HNSCC 3D multicellular tumor spheroids and 2D 

cell culture conditions 
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(A) Representative images of 5 HNSCC cell lines seeded at 2,500 cells / well after 3 days 

of cisplatin treatment and 6 total days in culture, acquired at 4X on the IXM with the TL, 

DAPI, FITC, and Texas Red channels. Greyscale TL images are presented along with, 

Hoechst nuclear stain in blue, and color composite fluorescent images of live cell CAM 

and dead cell EHD staining depicted as green and red, respectively. All scale bars 

represent 300 µm. 

 
Corresponding CTB viability measurements displayed as % growth inhibition were 

graphed as XY plots with symbols () and () representative of 2D and 3D culture 

conditions, respectively, across FaDU (B), UM-22B (C), Cal 33 (D), BICR56 (E), and 

OSC-19 (F) cell lines. (G) The line-scan tool of the MetaXpress image analysis software 

was used to measure the diameters and values were plotted in a bar graph where unfilled 

bars represent the DMSO control, and filled bars represent cisplatin treatment at its top 

concentration after 72hrs. (H) Live and dead staining intensity across all five HNSCC 

MCTSs after 5’FU treatment were obtained using the MetaXpress image analysis 

software, plotted as % of control live and dead staining intensity, with live stain 

represented as green filled bars and dead stain represented as red filled bars. 

Representative images from multiple independent experiments are presented.  Data is 

representative of multiple independent experiments, and at least triplicate (n=3) well 
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measurements. All bar graphs are representative of triplicate (n=3) samples and error 

bars are indicative of mean ± SD. 

 

(rightward shift in GI50s) between MCTS cultures and 2D monolayers was 9-fold in FaDu, 

6-fold in UM-22B, 14.7-fold in Cal 33, 12-fold in BICR56, and 6.7-fold in OSC-19 (Figure 

25B-F). Consistent with the morphological effects of cisplatin exposure observed in the 

TL images, MCTSs formed by 4 of the five HNSCC cell lines displayed an increase in 

diameter, with only BICR56 MCTSs exhibiting a minor decrease in diameter (Figure 25G). 

Similarly, quantifying the mean integrated intensities of the live and dead stains in MCTSs 

was also consistent with their respective images, with all five cell lines exhibiting cisplatin-

induced decreased CAM staining relative to DMSO controls and corresponding increases 

in ETHD staining (Figure 25H and Table 6). In terms of a drug impact score against 

HNSCC MCTS’s, cisplatin scored 4/5 against four of the cell lines, but only 3/4 in BIRC56 

MCTSs, for an overall impact score of 18/25 making it the fifth most effective drug against 

HNSCC MCTSs in our test set (Table 7). 

5.3.6  HNSCC Sensitivity to Docetaxel 

Docetaxel is approved by the FDA for HNSCC therapy and represents one of the 

most commonly used chemotherapeutics for the treatment of cancer, it is capable of 

disrupting mitosis in the cell cycle via inhibition of microtubular depolymerization which 

ultimately leads to apoptosis as the primary mechanisms of cell death.95 Figure 26 

summarizes the results from a similar multi-parameter comparison and analysis of the 

effects of docetaxel treatment of 2D monolayer and MCTS HNSCC cultures as described 
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for Figure 25. We observed effects on MCTSs’ morphology with docetaxel similarly to 

cisplatin, whereby, spheroids that traditionally resembled compact and tight spheroids 

became diffuse and cloudy cellular aggregates after 72hr exposure to 100µM docetaxel. 

(Figure 26A and Table 5). Furthermore, docetaxel was capable of more severely 

distorting the spheroid morphology as 4 of the 5 cell lines became cellular aggregates 

after compound exposure, but all 5 were classified as having a change in morphology vs 

DMSO control, with only the BICR56 cell line displaying an irregular spheroid morphology 

rather than complete disruption (Figure 26A and Table 5).  

CAM live stain was severely diminished after docetaxel exposure across all cell 

lines vs DMSO control, with FaDU, UM-22B, and OSC-19 cell lines being impacted the 

greatest with little or no remaining stained cells (Figure 26A). In contrast, small viable 

aggregates of cells were visible in Cal33 and BICR56 that still maintained CAM stain, and 

Hoechst nuclei staining outlined these structures (Figure 26A). ETHD staining was visibly 

increased across all 5 cell lines, with UM-22B demonstrating the largest change vs DMSO 

control, followed by Cal 33, and similar changes in FaDu, BICR56, and OSC-19 

respectively, which was also corroborated by image analysis and quantification of the 

mean integrated intensity (Figure 26A and H). Given that the FaDu cell line has been 

characterized to develop a necrotic core as indicated in Chapter 4, we observed this in 

its DMSO control vs docetaxel treatment, which is why the change is not as dramatic as 

observed in the LD images (Figure 26A and H).  

In both 2D monolayers and MCTSs we observed that docetaxel was capable of 

producing a measurable growth inhibitory effect across all cell lines in 2D but only 4 out 

of the 5 cell lines in 3D, with GI5o values in 2D of 1.2, 1.4, 0.7, 0.8, and 2.3µM 
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corresponding with the FaDu, UM-22B, Cal 33, BICR56, and OSC-19 cell lines, 

respectfully (Figure 26B-F). In comparison to 2D monolayer culture GI50 values in 3D 

were shifted right, indicating less sensitivity with values of 20.1, 6.1, N/A, 3.73, and 

17.7µM in the FaDu, UM-22B, Cal 33, BICR56, and OSC-19 cell lines, respectfully, as 3D 

which were 17.2-fold less sensitive in FaDu, 4.36-fold less sensitive in UM-22B, no effect 

in Cal 33 3D, 4.66-fold less sensitive in BICR56, and 7.70-fold less sensitive in OSC-19 

(Figure 26B-F and Table 3). These results indicate that of the MCTSs capable of a 

measurable GI50, FaDu are the least sensitive to docetaxel.  Cal 33 consistently produced 

no measurable growth inhibitory affects with CTB, despite clear morphological changes 

and a prominent increase in cell death staining (Figure 26A-F). This incidence highlighted 

one of the limitations we experienced with CTB, whereby, despite measurable response 

with our imaging and image analysis, no detectable change in viability via CTB could be 

determined.  

We observed an increase in diameter vs DMSO control treated spheroids in 4 of 

the 5 spheroids, similarly to cisplatin treatment, and as mentioned before, this increase is 

associated with the destruction of the spheroid structure and breakdown of cell-cell 

interactions (Figure 26A and G). The increase in diameter was most distinct in the OSC-

19, UM-22B, and FaDu as seen in by the TL imaging and diameter measurements, but 

not as clear in the BICR56 which only displayed modest morphological changes (Figure 

26A and G).  Through analysis of the mean integrated intensity of both CAM we observed 

that all cell lines registered a decrease in live stain and FaDu, UM-22B, and OSC-19 cell 

lines were the most prominent (Figure 26H). Analysis of ETHD integrated intensity 
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illustrated that all 5 cell lines were severely impacted by docetaxel producing greatly 

increased dead stain beyond what was present in any of the DMSO control treated wells 

 

Figure 26 Docetaxel sensitivity in HNSCC 3D multicellular tumor spheroids and 

2D cell culture conditions 

(A) Representative images of 5 HNSCC cell lines seeded at 2,500 cells / well after 3 days 

of docetaxel treatment and 6 total days in culture, acquired at 4X on the IXM with the TL, 

DAPI, FITC, and Texas Red channels. Greyscale TL images are presented along with, 

Hoechst nuclear stain in blue, and color composite fluorescent images of live cell CAM 

and dead cell EHD staining depicted as green and red, respectively.  
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Corresponding CTB viability measurements displayed as % growth inhibition were 

graphed as XY plots with symbols () and () representative of 2D and 3D culture 

conditions, respectively, across FaDU (B), UM-22B (C), Cal 33 (D), BICR56 (E), and 

OSC-19 (F) cell lines. (G) The line-scan tool of the MetaXpress image analysis software 

was used to measure the diameters and values were plotted in a bar graph where unfilled 

bars represent the DMSO control, and filled bars represent docetaxel treatment at its top 

concentration after 72hrs. (H) Live and dead staining intensity across all five HNSCC 

MCTSs after docetaxel treatment were obtained using the MetaXpress image analysis 

software, plotted as % of control live and dead staining intensity, with live stain 

represented as green filled bars and dead stain represented as red filled bars. 

Representative images from multiple independent experiments are presented.  All scale 

bars represent 300 µm. Data is representative of multiple independent experiments, and 

at least triplicate (n=3) well measurements. All bar graphs are representative of triplicate 

(n=3) samples and error bars are indicative of mean ± SD. 

 

(Figure 26H). In terms of MCTS drug impact, docetaxel was scored as 5/5 in UM-22B 4/5 

in FaDu, BICR56, OSC-19, and 3/5 in Cal 33 (Table 7). These results indicate that despite 
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not producing a GI50 in Cal 33 MCTSs, docetaxel still ranks as the third most effective 

compound against HNSCC MCTSs with a drug impact score of 20/25. 

5.3.7  HNSCC Sensitivity to Methotrexate 

Methotrexate represents an approved drug for HNSCC, and a classic antifolate 

compound that functions by competitively inhibiting dihydrofolate reductase, an essential 

enzyme in the folate metabolism pathway, and by extension limiting DNA and RNA 

synthesis.95 Through TL imaging we observed that methotrexate exposure for 72hr at 

20µM was incapable of disrupting spheroid morphology in the same way that either 

cisplatin or docetaxel did (Figure 27A). Instead, we observed that the size and 

morphology of the FaDu and UM-22B cell lines became truncated in comparison to their 

DMSO treated control spheroids (Figure 27A and Table 5). For FaDu, spheroid 

morphology and diameter were altered from tight and round, to a loose, rounded spheroid 

with less well-defined edges (Figure 27A). For UM-22B, exposure to methotrexate 

actually caused the spheroid to become more compact and organized than its traditionally 

unorganized cellular periphery (Figure 27A). No observable changes were present in the 

Cal 33 or BICR56 cell lines, with the OSC-19 demonstrating only a change in its periphery, 

from organized and defined edges of the spheroid periphery to disorganized with diffuse 

aggregates of cells surrounding the periphery (Figure 27A). CAM staining in all of the cell 

lines showed a noticeable decrease in intensity, which was most prominent in both the 

FaDu and UM-22B cell lines (Figure 27A). ETHD staining showed an increase in cell 

death across 4 out of the 5 cell lines, with FaDu, and OSC-19 displaying the highest 
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increases in staining, and no visible change was observed in the BICR56 cell line (Figure 

27A). 

 

Figure 27 Methotrexate sensitivity in HNSCC 3D multicellular tumor spheroids 

and 2D cell culture conditions 

A) Representative images of 5 HNSCC cell lines seeded at 2,500 cells / well after 3 days 

of methotrexate treatment and 6 total days in culture, acquired at 4X on the IXM with the 

TL, DAPI, FITC, and Texas Red channels. Greyscale TL images are presented along 

with, Hoechst nuclear stain in blue, and color composite fluorescent images of live cell 

CAM and dead cell EHD staining depicted as green and red, respectively. 
  



 161 

 

Corresponding CTB viability measurements displayed as % growth inhibition were 

graphed as XY plots with symbols () and () representative of 2D and 3D culture 

conditions, respectively, across FaDU (B), UM-22B (C), Cal 33 (D), BICR56 (E), and 

OSC-19 (F) cell lines. (G) The line-scan tool of the MetaXpress image analysis software 

was used to measure the diameters and values were plotted in a bar graph where unfilled 

bars represent the DMSO control, and filled bars represent methotrexate treatment at its 

top concentration after 72hrs. (H) Live and dead staining intensity across all five HNSCC 

MCTSs after methotrexate treatment were obtained using the MetaXpress image analysis 

software, plotted as % of control live and dead staining intensity, with live stain 

represented as green filled bars and dead stain represented as red filled bars. 

Representative images from multiple independent experiments are presented.  All scale 

bars represent 300 µm. Data is representative of multiple independent experiments, and 

at least triplicate (n=3) well measurements. All bar graphs are representative of triplicate 

(n=3) samples and error bars are indicative of mean ± SD. 

 

In 2D monolayers methotrexate was capable of growth inhibitory effects in all 5 

cell lines, but not capable of producing growth inhibition beyond ~55% in any of the cell 

lines (Figure 27B-F).  In contrast, methotrexate was incapable of producing an impactful 
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growth inhibitory response in 3D, as no calculable GI50 values were present (Figure 27B-

F). Despite the lack of inhibition of CTB signal, we did observe that methotrexate was 

able to measurably decrease the diameter of both the FaDu and UM-22B cell lines, but 

not in any of the other 3 (Figure 5.27G). As corroborated by our LD images, image 

analysis of the mean integrated intensity of our live stain indicated a decrease in all of the 

5 cell lines, with both FaDu, UM-22B, and BICR56 being most impacted, and only a minor 

decrease in both Cal 33 and OSC-19. In contrast, increase in ETHD staining was highest 

in the Cal 33 cell line, followed by FaDu, OSC-19, and UM-22B respectfully (Figure 27H). 

Of note, there was a decrease in dead stain in the BICR56 cell line and the LD images 

indicate this as well, as the DMSO treated control displays a greater presence of dead 

stain than the methotrexate treated (Figure 27A and H). Despite being an FDA approved 

drug for HNSCC, methotrexate was only capable of modest cytostatic effects, with MCTS 

impact scores of 3/5 in both FaDu and UM-22B cell lines, 1/5 in Cal 33 and BICR56 cell 

lines, and 0 in the OSC-19 cell line for an overall impact score of 8 (Table 7). The overall 

MCTS impact score of 8/25 indicate that methotrexate is the least impactful of the 19 

drugs against HNSCC MCTSs. 

5.3.8  HNSCC Sensitivity to Bleomycin 

Bleomycin represents an antitumor antibiotic that was discovered from 

Stretomyces verticillus and is capable of producing DNA damage through oxidative 

cleaveage.204  Despite being approved for HNSCC, bleomycin was not able to 

demonstrate consistent effectiveness in the majority of cell lines as MCTS at 20µM over 

72hrs (Figure 28A and C). Through TL imaging, we observed that morphology was only 
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impacted in the UM-22B and OSC-19 cell lines, and spheroid size was reduced in UM-

22B, Cal 33, and OSC-19 cell lines as MCTSs (Figure 28A).  UM-22B and OSC-19 

MCTSs displayed changes in morphology from their DMSO control treated spheroids 

becoming small dispersed cellular aggregates, lacking in both the defined peripheries and 

rounded features of spheroids (Figure 28A). A decrease in CAM staining was observed 

in all 5 cell lines vs their DMSO treated controls, with FaDu, UM-22B, and OSC-19 cell 

lines being most noticeably impacted (Figure 28A). Only UM-22B and OSC-19 cell lines 

demonstrated an increase in ETHD dead stain vs control as indicated by the increased 

presence of red stain in both the dead stain and color composite images (Figure 28A). 

HNSCC cells lines cultured as 2D monolayers all produced a GI50 value for 

methotrexate treatment, but only capable of 100% growth inhibition in the UM-22B cell 

line (Figure 28B-F). In contrast, only 3 of the 5 cell lines as MCTSs displayed sensitivity, 

with only the UM-22B MCTSs producing a consistent GI50 value (Figure 28B-F). 

 

Figure 28 Bleomycin sensitivity in HNSCC 3D multicellular tumor spheroids and 

2D cell culture conditions 
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(A) Representative images of 5 HNSCC cell lines seeded at 2,500 cells / well after 3 days 

of bleomycin treatment and 6 total days in culture, acquired at 4X on the IXM with the TL, 

DAPI, FITC, and Texas Red channels. Greyscale TL images are presented along with, 

Hoechst nuclear stain in blue, and color composite fluorescent images of live cell CAM 

and dead cell EHD staining depicted as green and red, respectively. 

 
Corresponding CTB viability measurements displayed as % growth inhibition were 

graphed as XY plots with symbols () and () representative of 2D and 3D culture 

conditions, respectively, across FaDU (B), UM-22B (C), Cal 33 (D), BICR56 (E), and 

OSC-19 (F) cell lines. (G) The line-scan tool of the MetaXpress image analysis software 

was used to measure the diameters and values were plotted in a bar graph where unfilled 

bars represent the DMSO control, and filled bars represent bleomycin treatment at its top 

concentration after 72hrs. (H) Live and dead staining intensity across all five HNSCC 

MCTSs after bleomycin treatment were obtained using the MetaXpress image analysis 

software, plotted as % of control live and dead staining intensity, with live stain 

represented as green filled bars and dead stain represented as red filled bars. 

Representative images from multiple independent experiments are presented.  All scale 

bars represent 300 µm. Data is representative of multiple independent experiments, and 

at least triplicate (n=3) well measurements. All bar graphs are representative of triplicate 

(n=3) samples and error bars are indicative of mean ± SD. 
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The BICR56 and OSC-19 cell lines both demonstrated growth inhibitory effects 

with bleomycin that approached ~47% and 42%, respectfully, in several independent 

experiments (Figure 28E and F).  Furthermore, only the UM-22B, Cal 33, and OSC-19 

cell lines displayed a measurable decrease in diameter, with UM-22B displaying the 

largest decrease of ~100µ (Figure 28G). In analyzing the integrated intensity of our live 

stain, we were able to corroborate that bleomycin decreased the CAM signal substantially 

in FaDu, UM-22B, and OSC-19 with only a modest decrease present in the Cal 33 and 

BICR56 cell lines (Figure 28H). In contrast, ETHD staining intensity showed an increase 

in only the UM-22B and OSC-19 cell lines as corroborated by our LD images (Figure 28A 

and H). In terms of MCTS drug impact, bleomycin scored 4/5 in UM-22B, 2/5 in Cal 33 

and OSC-19, 1/5 in FaDu, and 0/5 in BICR56, for an overall drug impact score of 9 (Table 

7). These results indicate that bleomycin was one of the least impactful compounds in our 

screen across all 5 cell lines as MCTSs, despite being FDA approved for HNSCC. 

5.3.9  HNSCC Sensitivity to 5’FU 

5’ Fluorouracil represents a classical chemotherapeutic, that is an FDA approved 

antineoplastic agent for HNSCC which acts as a pyrimidine analogue capable of both 

disrupting DNA synthesis through enzymatic inhibition as well as having its metabolite 

incorporated into RNA rather than uracil, leading to inhibition of cellular proliferation as 

the end result.95  Through TL imaging of our 5 HNSCC cell lines as MCTSs, exposed to 

500µM 5’FU for 72hrs, we observed that 5’FU was capable of producing an effect that 

altered spheroid morphology in 3 of the 5 cell lines showing a visible differences vs DMSO 

controls (Figure 29A). The FaDu cell line displayed a substantial decrease in spheroid 
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size and compaction, UM-22B developed a more disorganized outer periphery and no 

longer maintaining its compaction, and the OSC-19 cell line seemed to become more 

irregular in shape and greatly dispersed compared to its tight and more well-defined 

DMSO treated control spheroid (Figure 29A and Table 5). We observed that CAM live 

staining intensity was visibly decreased in five cell lines, with the FaDu cell line 

demonstrating the most marked reduction in staining intensity and only a modestly 

reduction in the other 4. (Figure 29A). ETHD dead staining was increased in 3 of the 5 

cell lines, with the Cal 33 cell line demonstrating the largest increase vs DMSO control 

treated wells, with apparent dead staining present all throughout the spheroid rather than 

focused on any specific region (Figure 29A) This trend was also observed in both the UM-

22B and OSC-19, though, staining in the UM-22B cell line was much more dispersed 

rather than tightly focused across a large region, as see in the OSC-19 cell line (Figure 

29A).  

Despite the increase in cell death via ETHD stain, CTB viability detection did not 

consistently correlate with these observations. While all cell lines in 2D demonstrated 

sensitivity to the effects of 5’FU as seen in the increase of % growth inhibition in Figure 

7B-F, there were mixed responses for the cell lines as MCTS (Figure 29B-F). In particular, 

the FaDu, UM-22B, BICR56, and OSC-19 cell lines all demonstrated measurable CTB 

signals of ~40, 60, 20, and 18% growth inhibition respectfully (Figure 29B-F). In 

comparison, the Cal 33 cell line as an MCTS did not display growth inhibition via CTB 

signal (Figure 29A and D). Though measurements of the spheroid diameter, we observed 

that only FaDu and OSC-19 cell lines were reduced in size after exposure to 5’FU for 

72hrs by  ~50µm and ~20µm respectively (Figure 29G). 
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Figure 29 5’FU sensitivity in HNSCC 3D multicellular tumor spheroids and 2D cell 

culture conditions 

(A) Representative images of 5 HNSCC cell lines seeded at 2,500 cells / well after 3 days 

of 5’FU treatment and 6 total days in culture, acquired at 4X on the IXM with the TL, DAPI, 

FITC, and Texas Red channels. Greyscale TL images are presented along with, Hoechst 

nuclear stain in blue, and color composite fluorescent images of live cell CAM and dead 

cell EHD staining depicted as green and red, respectively. 
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Corresponding CTB viability measurements displayed as % growth inhibition were 

graphed as XY plots with symbols () and () representative of 2D and 3D culture 

conditions, respectively, across FaDU (B), UM-22B (C), Cal 33 (D), BICR56 (E), and 

OSC-19 (F) cell lines. (G) The line-scan tool of the MetaXpress image analysis software 

was used to measure the diameters and values were plotted in a bar graph where unfilled 

bars represent the DMSO control, and filled bars represent 5’FU treatment at its top 

concentration after 72hrs. (H) Live and dead staining intensity across all five HNSCC 

MCTSs after 5’FU treatment were obtained using the MetaXpress image analysis 

software, plotted as % of control live and dead staining intensity, with live stain 

represented as green filled bars and dead stain represented as red filled bars. 

Representative images from multiple independent experiments are presented.  All scale 

bars represent 300 µm. Data is representative of multiple independent experiments, and 

at least triplicate (n=3) well measurements. All bar graphs are representative of triplicate 

(n=3) samples and error bars are indicative of mean ± SD. 

 

measurable decrease in size after exposure to 5’FU for 72hrs, with FaDu reduced by 

~50µm and OSC-19 by ~20µm (Figure 29G). Image analysis of our LD images 

corroborated our observations that there was a decrease in live stain across all of the cell 

lines especially in the FaDu (Figure 29H). While the OSC-19 cell line indicated a visual 

change in the presence of CAM staining from LD images, this was determined to be only 

a small change in staining intensity after image analysis of replicate wells (Figure 29H). 

Similarly, the ETHD staining intensity also confirmed our observations that Cal 33 had the 

largest increase in dead staining intensity with OSC-19 also demonstrating a large 

presence of cell death almost equivalent to what was observed in the Cal 33 (Figure 29H). 

In terms of drug impact in our screen, 5’FU was only able to achieve a total score of 10, 

with 3/5 for FaDu, UM-22B, and OSC-19 but only a 1 and 0/5 in Cal 33 and BICR56, 

respectfully (Table 7). Despite being an approved drug for HNSCC, it did not consistently 
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provide sufficient growth inhibitory effects and ranks in the bottom 6 of the 19 compounds 

(Table 7). 

5.3.10  HNSCC Sensitivity to Gefitinib as a Proxy of Cetuximab  

Geftinib represents a small-molecule competitive inhibitor of ATP binding in the 

EGFR that was used to mimic the effects of FDA approved monoclonal antibody 

cetuximab in our compound screen.95 Through TL imaging we were able to determine 

that 4 of the 5 HNSCC cell lines were morphologically impacted by gefitinib treatment at 

100µM over 72hrs (Figure 30A and Table 5). In particular, the FaDu, Cal 33, and OSC-

19 cell lines all demonstrated changes from their DMSO control morphologies, to greatly 

diffuse but still rounded spheroids, and the UM-22B cell line became a dispersed 

aggregate of cells that no longer resembled its original morphology (Figure 30A and Table 

5).  CAM staining revealed that all 5 cell lines had a substantial decrease in the presence 

of live cells, with little indication that live staining remained, which correlated with our 

observation of the morphological impact of gefitinib exposure (Figure 30A). Additionally, 

consistent with the decrease in live stain, all 5 cell lines also demonstrated a marked 

increase in the presence of dead cells as indicated by ETHD staining intensity in our LD 

images (Figure 30A). Despite our observations with CAM and ETHD staining, CTB 

viability detection was unable to relate the presence of growth inhibition in 4 out of the 5 

cell lines.    

CTB viability detection revealed that in 2D all cell lines were affected by gefitinib, 

capable of producing a measurable GI50 value in 4 out of 5 cell lines, with UM-22B 

inconsistently able to produce a growth inhibitory effects beyond 42% in our replicates 
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(Figure 30B-F). Interestingly, gefitinib sensitivity in 3D produced only modest growth 

inhibitory effects, with UM-22B, OSC-19 and BICR56 displaying sensitivity and BICR56 

demonstrating the highest growth inhibitory effect of ~35% (Figure 30B-F). In contrast, 

the FaDu cell line was unable to demonstrate any effects with CTB (Figure 30B-F).  

Through image analysis of diameter and LD staining intensity we observed that at its 

highest concentration of 100µM, gefitinib was capable of producing cell kill sufficient to 

disrupt morphology, and shrink both the FaDu and OSC-19 cell lines, and both decrease 

live and increase dead staining intensity greater than the DMSO control across all cell 

lines (Figure 30G, H and Table 6).  In particular, the UM-22B cell line seemed to produce 

the largest increase in dead stain vs control, followed by OSC-19 and BICR56, FaDu, and 

Cal 33 cell lines, respectfully (Figure 30A and H). These results demonstrate a similar  

 

Figure 30 Gefitinib sensitivity in HNSCC 3D multicellular tumor spheroids and 2D 

cell culture conditions 

(A) Representative images of 5 HNSCC cell lines seeded at 2,500 cells / well after 3 days 

of gefitinib treatment and 6 total days in culture, acquired at 4X on the IXM with the TL, 
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DAPI, FITC, and Texas Red channels. Greyscale TL images are presented along with, 

Hoechst nuclear stain in blue, and color composite fluorescent images of live cell CAM 

and dead cell EHD staining depicted as green and red, respectively. 

 
Corresponding CTB viability measurements displayed as % growth inhibition were 

graphed as XY plots with symbols () and () representative of 2D and 3D culture 

conditions, respectively, across FaDU (B), UM-22B (C), Cal 33 (D), BICR56 (E), and 

OSC-19 (F) cell lines. (G) The line-scan tool of the MetaXpress image analysis software 

was used to measure the diameters and values were plotted in a bar graph where unfilled 

bars represent the DMSO control, and filled bars represent gefitinib treatment at its top 

concentration after 72hrs. (H) Live and dead staining intensity across all five HNSCC 

MCTSs after gefitinib treatment were obtained using the MetaXpress image analysis 

software, plotted as % of control live and dead staining intensity, with live stain 

represented as green filled bars and dead stain represented as red filled bars. 

Representative images from multiple independent experiments are presented.  All scale 

bars represent 300 µm. Data is representative of multiple independent experiments, and 



 172 

at least triplicate (n=3) well measurements. All bar graphs are representative of triplicate 

(n=3) samples and error bars are indicative of mean ± SD. 

 

effect as observed in methotrexate, whereby, the effects present in imaging and image 

analysis did not correlate well with what was observed by CTB viability reagent. In terms 

of MCTS drug impact, gefitinib was able to produce a score of 4/5 across FaDu, UM-22B, 

and OSC-19 cell lines, a 3/5 in the Cal 33 cell line and a 2/5 in the BICR56 cell line, for 

an overall score of 17/25, making it the 6th most effective compound despite not producing 

GI50 values (Table 7). 

5.3.11  HNSCC Sensitivity to Sunitinib 

The drug sunitinib represents a small molecule inhibitor of multiple receptor 

tyrosine kinases in particular with effects targeting VEGFRs and platelet-derived growth 

factors.95 Through TL imaging we observed that 100µM sunitinib over 72hrs was capable 

of altering spheroid morphology in 3 of the 5 cell lines, and notably decreasing spheroid 

size in the two actively proliferating growth phenotypes, FaDu and UM-22B (Figure 31A). 

As seen in the TL light images of UM22B, Cal 33, and OSC-19, these cell lines no longer 

resembled organized, tight and compact spheroids but rather a diffuse aggregate of cells, 

in comparison the BICR56 cell line still resembled a compact spheroid, and FaDu became 

a looser but still rounded spheroid, with a marked reduction in size (Figure 31A). CAM 

live staining was decreased across all 5 cell lines, without a distinguishable presence of 

live cells visible in LD images, and both FaDu and UM-22B cell lines displaying the 

greatest decrease in staining intensity after 72hrs of compound exposure (Figure 31A). 
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ETHD dead stain was increased in all cell lines with similar trends observed as live stain, 

whereby, the rapid (FaDU) and moderate (UM-22B) growth phenotypes had the largest 

increase in dead staining intensity with distribution of ETHD throughout the aggregate of 

cells rather than focused to a specific region (Figure 31A and H).       

We observed that sunitinib was capable of growth inhibitory effects greater than 

50% inhibition in both 2D and 3D, with relatively close GI50 values across all cell lines with 

values in MCTSs of 21.7 in FaDu, 14.5 in UM-22B, 12.5 in Cal 33, 15.3 in BICR56, and 

19.8µM in OSC-19 (Figure 31A-F and Table 3). In comparison to cisplatin (Figure 25) and 

doxorubicin in Chapter 4, the separation between GI50 values 3D to 2D was much closer, 

where FaDu was 4.01-fold less sensitive, UM-22B was 2.73-fold less sensitive, Cal 33 

was 1.09-fold less sensitive, BICR56 was 2.59-fold less sensitive, and OSC-19 was 2.30-

fold less sensitive (Table 3). We suspect that the observed close growth inhibitory 

relationship in 3D is due in part to the nature of these dose response relationships and 

their steep hillslopes. In particular, only the top two concentrations of sunitinib (100 and 

33.3µM) seems to produce measurable growth inhibitory effects in 3D, and the top 3-4 

producing measurable effects in the majority of cell lines in 2D (Figure 31B-H and Table 

3).  

In comparison to docetaxel and cisplatin, sunitinib treatment of MCTSs did not 

produce as robust of a dose-response relationship whereby drug effect was seen across 

several concentrations (Figure 25B-F, 26B-F, and 31B-F and Table 3). The effect 

produced in 2D seemed to be consistent across all cell lines, with a concentration 

dependent dose-response relationship observed in all 5 cell lines (Figure 31B-F). 

Additionally, sunitinib was able capable of decreasing spheroid diameter in the FaDu, 
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UM-22B, and BICR56 cell lines but only modestly affecting Cal 33, and increasing the 

diameter of OSC-19 slightly due to spheroid disruption (Figure 31G).  

 

Figure 31 Sunitinib sensitivity in HNSCC 3D multicellular tumor spheroids and 2D 

cell culture conditions 

(A) Representative images of 5 HNSCC cell lines seeded at 2,500 cells / well after 3 days 

of sunitinb treatment and 6 total days in culture, acquired at 4X on the IXM with the TL, 

DAPI, FITC, and Texas Red channels. Greyscale TL images are presented along with, 

Hoechst nuclear stain in blue, and color composite fluorescent images of live cell CAM 

and dead cell EHD staining depicted as green and red, respectively. 
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Corresponding CTB viability measurements displayed as % growth inhibition were 

graphed as XY plots with symbols () and () representative of 2D and 3D culture 

conditions, respectively, across FaDU (B), UM-22B (C), Cal 33 (D), BICR56 (E), and 

OSC-19 (F) cell lines. (G) The line-scan tool of the MetaXpress image analysis software 

was used to measure the diameters and values were plotted in a bar graph where unfilled 

bars represent the DMSO control, and filled bars represent sunitinib treatment at its top 

concentration after 72hrs. (H) Live and dead staining intensity across all five HNSCC 

MCTSs after sunitinib treatment were obtained using the MetaXpress image analysis 

software, plotted as % of control live and dead staining intensity, with live stain 

represented as green filled bars and dead stain represented as red filled bars. 

Representative images from multiple independent experiments are presented.  All scale 

bars represent 300 µm. Data is representative of multiple independent experiments, and 

at least triplicate (n=3) well measurements. All bar graphs are representative of triplicate 

(n=3) samples and error bars are indicative of mean ± SD.  

 

Sunitinib also both reduced the live and increased the dead staining intensities of 

all cell lines as MCTSs (Figure 31H). The increase in dead stain was determined to be 
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unimpactful in the FaDu cell line as established by our set thresholds. (Figure 31H, Table 

6, and 7) In terms of drug impact, sunitinib was capable of producing a drug impact score 

in FaDu of 4/5, in UM-22B 5/5, in Cal33 3/5, in BICR56 4/5, and in OSC-19 3/5 for a total 

drug impact score of 19 (Table 7). These results indicate that at its highest concentration, 

sunitinib is capable of dramatically impacting the 5 HNSCC cell lines as MCTS. 

5.3.12  HNSCC Sensitivity to Everolimus 

Everolimus represents an inhibitor of the mTOR pathway, a prominent player in 

mitogenic signaling.205   Through TL we were able to identify that everolimus’s effect at 

100µM over 72hrs was capable of altering spheroid morphology in all cell lines as MCTSs, 

and furthermore, disrupting the spheroid structural integrity in the majority of cell lines 

(Figure 32A).  As indicated by the change present in DMSO controls, we observed 

changes in morphology from compact or organized spheroids to cloudy, dispersed 

aggregates with undefined outer spheroid peripheries (Figure 32A). The BICR56 cell line, 

seemed to be the least affected morphologically, as it still retained some of its structure 

as a spheroid, but no longer resembled the rounded and compact structure present in its 

DMSO control (Figure 32A).  Changes in observed CAM live staining intensity indicated 

that 4/5 HNSCC cell lines as spheroids contained few live cells capable of CAM metabolic 

conversion to its fluorescence metabolite, save for the BICR56 cell line which still 

contained a small aggregate of live cells (Figure 32A).  Similarly, we observed an increase 

in ETHD dead staining intensity across all five cell lines, as demonstrated by a substantial 

increase in the presence of dead cells with in the MCTSs (Figure 32A). Dead staining did 
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not seem to be focused to any particular region of the spheroids, but rather seemed 

evenly dispersed throughout the entire spheroid (Figure 32A).  

Analysis of cell viability using CTB demonstrated that everolimus was capable of 

inhibiting growth in both 2D and 3D, whereby greater than 50% inhibition was achieved 

at the top concentration (Figure 32B-F and Table 3). Similar, to sunitinib, the GI50 values 

of everolimus between 3D and 2D were much closer than what was observed with 

cisplatin, with changes in sensitivity in FaDu of 2.97-fold less sensitive, UM-22B of 1.13-

fold less sensitive, Cal 33 of 1.41-fold less sensitive, BICR56 of 2.35-fold less sensitive, 

and OSC-19 of 2.25-fold less sensitive (Figure 32B-F). A clear dose-response 

relationship was not observed whereby, inhibitory effects were observed to decrease in 

a progressive manner as concentration decreased, this trend was absent in both 3D and 

2D (Figure 32B-F). In particular, only the top 2 concentrations (100 and 33.33µM) of 

everolimus provided consistently measurable growth inhibitory effects beyond 50% in 2D 

across all cell lines (Figure 32B-F). Similar to what was observed with the cytotoxic drugs 

cisplatin and docetaxel, diameter measurements of MCTSs showed an increase, 

indicative of the loss of cell-cell interactions and overall spheroid architecture (Figure 

32G). These observations were most pronounced in the UM-22B and OSC-19 cell lines, 

as morphologically, they showed the greatest level of disruption (Figure 32A and G). Of 

all the cell lines in 3D, it seemed that UM-22B was the most sensitive to everolimus, which 

produced a GI50 value of 32.5µM, its morphology was completely disrupted as indicated 

in the TL images, and UM-22B had the largest increase in cell death with a fold-change 

of 10.4 in comparison to the control, as analyzed by image analysis of mean integrated 

intensity(Figure 32A-H and Table 3, 5, & 6). Image analysis of live staining integrated 
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intensity corroborated our observations in LD imaging of both the FaDu and OSC-19 cell 

lines, but through analysis of replicate well measurements, the observed decrease in live 

stain was less pronounced in UM-22B and Cal 33 cell lines (Figure 32H). In contrast, the 

image analysis of dead stain was able to corroborate our observations in the LD images, 

whereby, the presence of dead cells was increased in all cell lines as MCTSs after 

compound exposure with everolimus, and this increase was most pronounced in the UM-

22B and Cal 33 cell lines vs their respective DMSO controls (Figure 32H).  In terms of 

MCTS drug impact everolimus was scored as having 5/5 drug impact in FaDu, 4/5 in UM-

22B, 4/5 in Cal 33, 4/5 in BICR56, and 5/5 in the OSC-19 cell lines, for a total score of 

22/25, making it the second most impactful drug by our metrics. 

 

Figure 32 Everolimus sensitivity in HNSCC 3D multicellular tumor spheroids and 

2D cell culture conditions 

(A) Representative images of 5 HNSCC cell lines seeded at 2,500 cells / well after 3 days 

of everolimus treatment and 6 total days in culture, acquired at 4X on the IXM with the 

TL, DAPI, FITC, and Texas Red channels. Greyscale TL images are presented along 
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with, Hoechst nuclear stain in blue, and color composite fluorescent images of live cell 

CAM and dead cell EHD staining depicted as green and red, respectively. 

 
Corresponding CTB viability measurements displayed as % growth inhibition were 

graphed as XY plots with symbols () and () representative of 2D and 3D culture 

conditions, respectively, across FaDU (B), UM-22B (C), Cal 33 (D), BICR56 (E), and 

OSC-19 (F) cell lines. (G) The line-scan tool of the MetaXpress image analysis software 

was used to measure the diameters and values were plotted in a bar graph where unfilled 

bars represent the DMSO control, and filled bars represent everolimus treatment at its 

top concentration after 72hrs. (H) Live and dead staining intensity across all five HNSCC 

MCTSs after everolimus treatment were obtained using the MetaXpress image analysis 

software, plotted as % of control live and dead staining intensity, with live stain 

represented as green filled bars and dead stain represented as red filled bars. 

Representative images from multiple independent experiments are presented.  All scale 

bars represent 300 µm. Data is representative of multiple independent experiments, and 

at least triplicate (n=3) well measurements. All bar graphs are representative of triplicate 

(n=3) samples and error bars are indicative of mean ± SD. 



 180 

5.4 Discussion: The Necessity of Assessing Drug Impact on Multiple Fronts: 

Compound Sensitivity and Insensitivity in both 3D and 2D HNSCC Cell Lines 

Through our efforts we were able to identify a wide spectrum of drug responses 

across all 5 HNSCC cell lines with compounds capable of growth inhibition in both 3D 

and 2D such as, docetaxel, cisplatin, sunitinib, everolimus, and doxorubicin (Figures 25, 

26, 31, 32 and Chapter 4. Figure 22 from Kochanek et. al 2019, Table 3).114 Furthermore, 

effective drugs like docetaxel were capable of severely disrupting spheroid morphology, 

consistently producing a measurable GI50 value, and especially decreasing live stain in 

the actively proliferating phenotypes, as well as increasing dead stain across all cell lines, 

which allowed them to score high in terms of MCTS impact (Figure 26A-H, Table 6, and 

Table 7). In contrast, we were able to observe that the effects produced by less effective 

drugs such as methotrexate in 3D, might indicate that the exertion of cytostatic effects, 

rather than cytotoxic. In methotrexate these effects seemed to be most impactful in the 

rapid (FaDu) and moderate (UM-22B) growth phenotypes, with cell death present on the 

cells of the outer spheroid periphery as indicated by the FaDu, and UM-22B cell lines 

which displayed this trend (Figure 27A). Both FaDu and UM-22B also had a marked 

decrease in spheroid diameter compared to controls, but interestingly, these effects were 

not enough to dampen the CTB viability signal and so even at its top concentration, no 

dose-dependent growth inhibitory response was observed in 3D (Figure 27A-H).  Given 

our observations using both CTB as a proxy of viability, and live / dead imaging as another 

indicator of drug effect in 3D, we determined that it is necessary to have at least two 

different methods to quantify drug effect as CTB or imaging alone is insufficient to capture 

the full effects of compounds as seen in Table 3 and 5. Just because a compound does 
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not produce a measurable effect with CTB, does not mean that pharmacological effect is 

absent, which is why we found it necessary to determined other means of establishing 

drug effect especially the observation of changes in spheroid morphology as this 

demonstrates the presence of compound effects at the cellular level.  

Another unique case where we found it absolutely necessary to use several 

metrics for drug impact and effect was in 5’FU, as LD images demonstrated that the FDA 

approved drug was sufficient to cause cell death, especially as seen in Cal 33 with the 

tremendous increase in staining intensity, it was insufficient in reducing the number of 

metabolically active live cells to a point where CTB viability reagent signal was affected 

(Figure 29A, D, and H). In contrast, the OSC-19 cell line showed a similar level of both 

live and dead staining intensity as the Cal 33 cell line, but detection of growth inhibition 

via CTB demonstrated that 5’FU was at least capable of detecting minor growth inhibitory 

effects reaching ~ 10% inhibition (Figure 29A, F, and H). As we illustrated previously, 

while both imaging and CTB are useful metrics for drug effect and impact, they are 

insufficient at conveying the whole picture when used individually.  

Of the 19 compounds that we screened for growth inhibitory effect and overall drug 

impact, we observed that across 4 of the 5 cell lines 16 drugs demonstrated morphological 

effects that we qualified as distinct from their DMSO control treated morphologies (Table 

5). In particular, one of the more effective drugs at producing morphological effects 

despite minimal CTB inhibitory effects was gefitinib, which was meant to mimic the EGFR 

inhibition of HNSCC approved drug cetuximab. Overall, gefitinib demonstrated a variety 

of responses in both 2D and 3D, whereby, effects produced in 3D were shown to be less 

sensitive than 2D and, in some circumstances, no measurable CTB effects were seen, 
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as indicated in the FaDu cell line (Figure 30B). However, 4 out of the 5 cell lines as MCTSs 

demonstrated morphological effects and 5/5 cell lines showed an increase in dead stain 

beyond our MCTS drug impact threshold, both of which would indicate a level of sensitivity 

in 3D, or level of dependence to EGFR that would explain the observed effects produced 

by gefitinib. We also accessed the effects of erlotinib as another mimetic of cetuximab’s 

effects, but at its highest concentration, we observed issues with solubility, limiting the 

evaluation of drug effect (data not shown). 

5.4.1  Challenges of HNSCC Treatment in Patients and the Necessity of 

Physiologically Relevant Preclinical Models 

The pharmacological treatment of HNSCC has remained mostly the same with 

only seven drugs approved to date, and the current patient cure rates stagnating at 

approximately 50% for the past 30 years.130-132, 136, 138, 139 Despite the introduction of 

cetuximab in 2006, and pembrolizumab in 2016, and the use of cisplatin, bleomycin, 5’FU, 

docetaxel and methotrexate as monotherapies, the remaining 5-year survival for patients 

with HNSCC remains poor. 130, 131   Our observation of drug sensitivity in HNSCC cell 

lines as MCTSs indicates that only 2 of the 5 included FDA approved drugs for HNSCC, 

cisplatin and docetaxel, were capable of producing sufficient growth inhibition and overall 

drug impact to be identified as hits preclinically (Figure 25 and 26). It was our expectation 

that drugs approved by the FDA for HNSCC would all rank the highest after in vitro 

evaluation of drug effect. What we observed, was that in 2D cell culture, this observation 

was true, whereby, drug sensitivity was observed across all 5 (Cisplatin, Docetaxel, 

Methotrexate, Bleomycin, and 5’FU) approved compounds and methotrexate 
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demonstrating cytostatic effects rather than highly cytotoxic (Figure 27B-F and Table 3). 

When we observed the effects produced by compounds from our screen in 3D however, 

we observed that only 2 of the 5 drugs were deemed “impactful” by our set standards, the 

other 3 were at the bottom of the ranks (Table 7). When we delved into the clinical 

responses evaluated in HNSCC, we observed why this might be the case. As reported in 

Brockstein 2011, patient response amongst the standard chemotherapeutic drugs was 

shown to be ~10-35%, with combination chemotherapy producing higher response rates 

but not higher survival rates vs single-agent therapy.206 Patient response to FDA 

approved compounds included in our screen are as follows as reported by Brockstein 

2011, with 35% in Docetaxel, 20-25 in Cisplatin, 13% in 5’FU, 20-25% in Methotrexate, 

and 30% in Bleomycin.206  

Further analysis of other clinical trials indicated a similar result. Cisplatin 

monotherapy has not proven to be particularly effective against HNSCC. In a phase II 

clinical trial of 26 HNSCC patients published in 1977,  only 2 had a full response, 6 

showed partial responses, 10 had minor responses, with 8 exhibited no change in 

disease.207 In a phase II clinical trial of HNSCC using only docetaxel IV at 100mg/m2 for 

a period of 21 days, in patients with locoregionally advanced HNSCC of the  31 patients 

enrolled only 4 achieved complete response, 9 achieved partial response, 9 had stable 

disease and 7 experienced progression of the disease, overall the reported “major 

response rate” was 42%, with a median response of 5 months (range 2 to 14 months).208 

Of note, while combination therapy of chemotherapeutic drugs in HNSCC has not 

consistently shown a greater improvement in patient survival, as an addition to the 

standard induction chemotherapy treatment of 5’FU and cisplatin, docetaxel was 
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illustrated to improve both progression-free and overall survival by ~3 and 4 months 

respectively, albeit, with some greater incidences of grade 3 and 4 events like leukopenia 

and thrombocytopenia.209  What we observed in 3D was a decrease in drug sensitivity 

across all FDA approved compounds, and through the development of our MCTS drug 

impact score we were better able to evaluate drug response across our compounds. 

What’s more, we observed a similar trend as in many clinical studies of HNSCC response, 

whereby, drugs were not always capable of a total growth inhibitory response across all 

cell lines as MCTSs and rather just because a response was measurable did not indicate 

that a drug was affecting cell viability as assessed with CTB.    

Our characterization of HNSCC cell lines as MCTSs have illustrated several key 

features of a solid tumor, namely, differential gradients of proliferation, the presence of a 

tumor microenvironment, and the ability of 3D to form a drug penetration barrier.64, 114 

These characteristics lend themselves to the decrease in sensitivity we have observed 

2D to 3D. As several of these FDA approved chemotherapeutic drugs rely on targeting 

highly proliferative cells for maximum effect, it is not surprising that we see more selective 

effects in drugs such as methotrexate and 5’FU, whereby the most proliferative cell lines 

as MCTS displayed the greatest change vs DMSO controls (Figures 27 and 29). In 

Chapter 4, we identified that the outer layer of cells in the FaDu and UM-22B cell lines 

were actively proliferating via Click-it Edu incorporation, which indicate a population of 

cells of various microenvironments and phenotypic characteristics all present within a 

single spheroid, with most proliferative cells on the outside, followed by regions of 

quiescent, and necrotic cells as increasing size and compaction limit the exchange of 

gases, waste, and  nutrients within the MCTSs. These observations were corroborated 
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by a study published by Laurent et. al 2013, who characterized MCTSs progression 

through the cell cycle and the differential zones of proliferation that exist within an MCTS, 

where cells closer to the center of the spheroid progress through the cell cycle more 

slowly than those in the outermost region.210 In comparison to 2D, 3D represents a more 

physiologically-relevant cell culture model capable of demonstrating characteristics of an 

avascular solid tumor, and as such provided us with a more accurate depiction of drug 

response in HNSCC. Furthermore, the inclusion of our drug impact score, using multiple 

parameters to assess the effects produced in 3D by our screened compounds, allowed 

for a more complete picture of what was occurring at the cellular level and provided a 

metric more in line with clinical observations than using 2D cell culture. As this 

assessment is still in its nascence, it is not perfect and will potentially require additional 

avenues of evaluation to find the missing link between analysis of changes in CTB signal 

and analysis of live and dead staining intensity. Overall, we were able to use our optimized 

cell culture conditions to perform a more physiologically relevant drug screen using 2D as 

our comparator. We observed that with the majority of compounds, 2D was consistently 

more sensitive than 3D. Importantly, through our efforts, we established a method as the 

basis for evaluating overall compound impact and effectiveness on HNSCC spheroids, 

as an individual metric for evaluating compound effect is insufficient to convey the whole 

picture.  
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5.4.2  Clinical Translation with MCTS: Relationship of In Vitro Drug 

Concentrations to Patient Treatment  

In a report published by Smith and Houghton, the authors outline the relevance of 

in vitro studies using 2D cell culture models of various cancers as they pertain to 

predicting clinically effective drug concentrations in patients.211 In particular, the authors 

describe the interpretation of IC50 results of various FDA approved cancer agents such as 

sorafenib. The reported opinion is that observed cell kill with sorafenib beyond the low to 

high nanomolar range approaching the micromolar range in cancer cell lines displays a 

relationship akin to cytotoxic agents. Essentially, off-target effects related to the inhibition 

of key cellular functions are incurred when cells reach the micromolar concentration of 

sorafenib inducing cell death in a global manner. Related to our observations of several 

of the targeted reagents specifically, gefitinib and sunitinib, we saw drug impact was 

achieved capable of altering spheroid morphology and viability. This observation was 

more impactful in sunitinib but at the top concentration of 100µM, capable of producing 

growth inhibitory effects beyond 50% inhibition. In an article published by Liston and 

Davis, the authors characterize the clinically relevant pharmacokinetic parameters 

obtained from patient data.212 They report that for gefitinib and sunitinib the Cmax 

concentrations were 0.356 and 0.181µM/L, respectfully.212 In our evaluation of growth 

inhibitory effects of both gefitinib and sunitinib, with only IC50 values being achieved with 

suntinib at 22µM, which far exceed the human Cmax, would indicate that the effects 

produced are the result of off-target inhibition leading to cell death rather than a result of 

specific inhibition of their higher affinity targets. Therefore, while these drugs have an 
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established clinical effect as indicated by their FDA approved status for other cancers, 

they were not capable of specific inhibition in HNSCC, and as such would not befit follow-

up in an in vivo model or clinical setting. 
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6.0 Implications, Limitations, and Future Directions 

6.1 Data-Driven Strategies for Drug Discovery and Screening  

Through our efforts our laboratory has been able to highlight the design and 

characterization of several data-driven approaches in Chapters 2 Synergism 

Confirmation, 4 HNSCC MCTS Characterization, and 5 HNSCC Drug Sensitivity 2D vs 

3D, covering both high content and high throughput screening methodologies. The goal 

of such strategies is to rationalize the data and derive testable hypotheses to advance 

the findings for potential pre-clinical and clinical translation. As described in chapter 2, we 

were able to identify and confirm the synergistic relationship of 4 drug combinations 

across several cancer cell lines highlighted by our laboratories high throughput screening 

campaign contracted by the NCI. With both data from the scientific community and data 

obtained through our own experimentation we developed a suitable hypothesis to 

propose a mechanism of synergistic action amongst the drug combinations observed to 

be synergistic within our confirmation studies. We proposed that drug efflux was being 

inhibited at the transporter level which increased overall exposure of chemotherapeutic 

substrates to the cells. With a little ingenuity, we were able to design a simple, reliable, 

and economical high content screening strategy that was able to determine Hoechst 

fluorescent substrate accumulation in MDCKII cell lines. Furthermore, we were able to 

quantify changes in fluorescent substrate accumulation in the presence of inhibitors of 

the ABCG2 efflux transporter identified in our 4 drug combinations.  What we observed 

was the ability of raloxifene and gefitinib, two drugs that appeared consistently in many 
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of our pilot screen combinations, to increase fluorescence accumulation through either 

direct competition of ABCG2, or by inhibition of a different mechanism such as allosteric 

modulation and these results were previously corroborated by other laboratories as cited 

in chapter 2. 

We were able to generate a testable hypothesis in our study and carry out the 

necessary experiments to test it in vitro, but without the appropriate facilities to carry out 

animal studies it would be up to collaboration to advance our findings to in vivo and 

eventually the clinical settings. Of note, the NCI has been able to illustrate the ability to 

translate the results of such data-driven strategies from in vitro to in vivo. As indicated in 

Chapter 2, the NCI ALMANAC represents a compendium of data acquired through in vitro 

experimentation of pairwise combinations of drugs and the observed activity of drug 

combinations across 60 different cell lines and 9 distinct tumor types.55 Through their 

efforts the NCI was able to take two drug combinations into phase I clinical trials. By 

following a logical progression from in vitro, to in vivo, and culminating in treatment of 

patients.  In addition, their study was able to identify a possible synergistic mechanism of 

action between clofarabine and bortezomib which relates to reduction of survivin levels 

dependent of or independent of p53.55  

It is our hope that through the development of our synergism confirmation and 

MOA imaging strategy that we can accomplish similar translation in the future, perhaps 

with collaboration of a laboratory that focuses on in vivo experimentation. Additionally, 

given the dire state of drug discovery in oncology and the need to provide better 

therapeutic strategies, developing a screen through drug repurposing of FDA approved 

compounds paired with our screening, confirmation, and imaging strategy may provide a 
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potential avenue to overcome both the economic and innovative challenges stagnating 

the preclinical stage of drug discovery.213 Furthermore, inclusion of drugs traditionally not 

identified as having antineoplastic effects may demonstrate potentiation or synergism 

through alternative mechanisms of action when paired with an approved antineoplastic 

agent with cytotoxic or cytostatic effects, which would make them ideal as candidates 

using our screening strategy.    

6.1.1  3D Application of Data-Driven Strategies 

To provide a more physiologically relevant and translatable model of a tumor, we 

employed 3D MCTSs, as they have been illustrated to demonstrate the characteristics of 

a solid, avascular tumor despite being an in vitro model.  As a screening tool, current 3D 

models have been adapted for both throughput and convenience in comparison to using 

animal models. Through our efforts we have characterized the morphological, growth, 

and cellular phenotypes of 11 different HNSCC cell lines derived from various patient 

samples in chapter 4. Our goal was to establish a more accurate baseline of 3D for the 

purpose of screening FDA approved antineoplastic agents and other compounds in a 

more physiologically relevant model.  We observed several phenotypes echoic of the 

diversity and heterogeneity observed in patient tumors. Upon further inspection, we were 

able to discern the development of key tumor microenvironmental characteristics, 

inherent to a what is observed in both animals and patients; in particular, we observed 

the development of a necrotic core in both the FaDu and OSC-19 cell lines, differential 

zones of proliferation in FaDu and UM-22B with Click-it EDU and limited penetration of 

doxorubicin across the spheroid boundary across the majority of cell lines. These 
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observations indicate that we are capable of replicating physiological characteristics and 

as such, that 3D MCTSs embody a more complex and representative model for drug 

discovery if the goal is animal and eventually patient translation.  

Through our efforts to determine drug sensitivity across our 5 characterized 

HNSCC cell lines in both 2D and 3D with 19 FDA approved antineoplastic compounds 

we observed that drug impact could not be solely determined via CTB signal but rather 

through determination of changes in morphology, diameter, and with changes in live / 

dead staining intensity via image acquisition and analysis. We developed a drug impact 

score to determine the overall effectiveness of a compound across each the above 

qualifiers. By scoring drug impact we were able to observe that not all drugs were capable 

of providing an impact to CTB metabolic viability, but that consistently morphology and 

diameter were influenced by 16 compounds in FaDu and UM-22B cell lines, 13 

compounds in OSC-19, 7 compounds in Cal 33, and 6 compounds in BICR56. It seemed 

that the most observable trend was seen in the rapid and moderate growth phenotypes 

versus any other phenotype.    

3D represents a stepping stone in preclinical drug discovery, whereby, logical 

selection of putative drug candidates can occur working from simpler models like 2D cell 

culture and biochemical assays to more complex models such as 3D and eventually 

including patient xenografts as a means of predicting drug effect for prioritization and 

selection of drug candidates for clinical trials. In addition, use of 3D paired with patient 

samples as indicated in introductory chapter 3, represents a precision medicine 

application whereby 3D organoids are derived from patient samples and can model 
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potential drug efficacy on a personalized level.129  These methods truly illustrate the utility 

and translational ability that 3D has to offer. 

6.2 Limitations 

6.2.1  Challenges in Cancer Drug Screening 

The primary goal of a cancer drug screen is to identify potential hits, for follow up, 

and eventually, translation to a more clinically relevant model and culminating in the 

treatment of patients. The physiological relevance of a model will dictate the feasibility of 

translation, and classically the ideology of drug screening has been to start with a less 

complex model and triage hits progressing through models of greater complexity and 

physiological relevance. With our drug screening campaign and confirmation studies, we 

utilized 2D cell cultures of the NCI 60 cell line panel as our main source of cancer 

heterogeneity. While it does represent a diverse collection of cell lines and tumor types, 

its use has been dated since the 1980’s; given the adaptive nature of cancer cell cultures, 

especially in an environment that is only a reduced representation of in vivo conditions, it 

is a distinct inevitability that the phenotype and genetic profile of these cell lines has 

changed.20, 25 As such, it may become necessary to assess any impactful genetic 

changes over time within these cell lines, as the results of a drug screen may depend on 

alterations of key genetic pathways that changed from previous reports years prior. While 

this does represent a limitation of the model itself, it does not mean that the information 

cannot be of use in drug screening, especially when we consider the trends obtained from 
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such a large and diverse panel of cell lines and the ability of the NCI to clinically translate 

the results during the ALMANAC campaign.55  Furthermore, Ling and colleagues have 

outlined that one advantage of using a larger and more diverse panel of cell lines with a 

smaller set of compounds, is that the trends present will provide a stronger potential 

relationship between drug effect and any related genetic susceptibilities.214   

6.2.2  Challenges with MCTS 

Multicellular tumor spheroids, represent a more complex in vitro model that is 

capable of recapitulating tumor architecture and microenvironmental characteristics.96, 104, 

196 These characteristics allow for more physiologically relevant drug screening and 

analyses of cancer cell lines or patient tumor samples, but they aren’t perfect. As it stands, 

our use of 3D has been limited given that neither an adequate stromal cell population 

including tumor associate cells, fibroblasts, and immune cells are present in our models. 

The presence of these different cells associated as stroma and crosstalk between the 

tumor have been linked with changes to the tumor microenvironment as well as drug 

resistance.215, 216 Furthermore, no vascularization within our MCTSs exist, which also 

contributes to the tumor microenvironment and characteristics of the surrounding cells as 

well as tumor aggression as indicated in the microfluidic models section of chapter 3.118, 

120-123 Both the absence of stroma, and microvasculature prevent our MCTSs from being 

more complete representations of in vivo conditions.   

One of the biggest challenges faced in trying to characterize the HNSCC spheroids 

is the inability to more adequately analyze the internal cellular population beyond image 

analysis of intact whole spheroids. Through imaging of whole spheroids, we have been 
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able to look several molecular characteristics, namely, active proliferation, mitochondrial 

activity, the presence of dead and viable cells and lastly drug penetration. However, when 

trying to assay the presence of hypoxia at the innermost region of the spheroids we were 

unable to detect the presence of any hypoxic regions in the spheroid and posit several 

potential issues: the possibility that there is limited penetration of larger molecules such 

as antibodies into the deeper regions of the spheroid could prevent us from detecting 

hypoxic regions despite harsher permeabilization protocols; with a lack of either a hypoxic 

chamber or chemical induction of hypoxia, we were  unable to provide a control to 

determine if hypoxic detection is limited to the quality of the antibody or our inability to 

achieve hypoxic conditions. Several other laboratories have illustrated their success of 

detecting hypoxia through using paraffin embedded spheroid sections to determine 

regions within the spheroid that hypoxia develops, especially in larger spheroids where 

size-dependent diffusion of oxygen occurs.217  It is a limitation with the equipment 

available in our laboratory that we could not perform similar sectioning and hypoxia 

detection.    

In addition, trying to assay the entire cellular population of a spheroid has also 

been a challenge when determining drug effect using CellTiter-Blue homogenous assay. 

In Chapter 5, we determined the impact and effectiveness of 19 different FDA approved 

cancer drugs, only 5 of which are approved for HNSCC, and determined the ability of 

these drugs to impact morphology, cell viability, and metabolic activity.  What we 

observed was that only using CellTiter-Blue alone was insufficient to qualify drug 

effectiveness in 3D. CellTiter-Blue represents a reagent that requires metabolic redox 

conversion from resazurin to resorufin, whereby the less viable a cell is the lower the 
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amount of metabolic conversion. Given that spheroids have been illustrated as having 

differential zones of proliferation, with proliferative, quiescent and necrotic regions 

sequentially, the further cells are from the surface, each having theoretically reduced 

metabolic function dependent on spheroid size. As such, we would expect that if the 

outermost region of the spheroid was compromised by drug effects, that metabolic 

viability would be reduced vis-à-vis CellTiter-Blue signal. What we have observed is that 

similar to understanding a patient’s tumor population, the cellular population of a spheroid 

is complex and does not respond as we might predict and as such, requires additional 

analytical methods to adequately observe and assess. This is why we selected several 

different methods to determine the level of effect that cancer drugs have on HNSCC 

spheroids. 

6.3 Future Directions 

Given our experience with screening drug combinations for synergism and 

performing confirmation studies for the identification of favorable drug-drug interactions 

between drug pairs, it would be prudent to conduct a drug combination screen using a 

more physiologically relevant model, namely, 3D MCTSs. We could use 3D MCTSs to 

analyze synergism amongst both FDA approved antineoplastic agents as well as any 

synthetic or natural product compounds of interest capable of producing a growth-

inhibitory effect. In order to appropriately perform such a drug combination screen, we 

would need to characterize the growth phenotype, morphology, and viability over time of 

any cancer cell lines that we plan on using, to both establish a baseline and identify which 
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cell lines would provide an adequate recapitulation of physiological conditions of a an 

avascular solid tumor, similarly to our published research in Kochanek et. al 2019.114  

Furthermore, this  screen would follow in suit with our previous work and would be 

performed in an unbiased manner, set on screening drugs in pairwise combinations 

across a representation of several cancer cell lines and tumor types as characterized 3D 

MCTSs.  We would also seek to confirm any hits flagged as synergistic, as our laboratory 

has a published strategy for this as indicated in more detail in chapter 2. 

Additionally, we could expand our pilot screen of 19 FDA approved antineoplastic 

agents in HNSCC from chapter 5, 2D vs 3D drug sensitivity comparison, to encompass a 

wider range of compounds, perhaps including a set of FDA approved compounds 

repurposed from other applications to determine if antineoplastic effects are present. In 

addition, we would like to perform an unbiased pilot screen of the already used 19 FDA 

approved compounds in pairwise combinations to determine if any favorable drug-drug 

interactions exist that could increase the effectiveness of compounds beyond their 

individual use. As we have already obtained information about the effectiveness of the 19 

compounds and their appropriate top concentrations this avenue seems most likely. 

Furthermore, given our experiences with analysis of drug impact on 3D MCTSs, we would 

seek to find or compare alternative methods of determining cellular viability vs CTB, for 

determination of changes in viability for whole spheroid. 
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