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Abstract  

The Adherens Junction Interactome and the Role of Vinculin in Cytoskeletal 
Integration at the Cardiomyocyte ICD 

 
Chelsea DeAnn Merkel, PhD 

 
University of Pittsburgh, 2019 

 
 
 
 

The primary function of the heart is to contract and pump oxygenated blood 

throughout the body. Coordinated contraction between individual cardiomyocytes 

requires mechanical and electrical coupling through a specialized adhesive structure 

called the intercalated disc (ICD). The ICD joins cardiomyocytes and is comprised of 

adherens junctions (AJ), desmosomes, and gap junctions. The core of the AJ is the 

cadherin-catenin complex and it links the myofibrils of neighboring cells. Much work has 

been performed in epithelial cells to study the role of force in regulating complex formation 

and ligand recruitment. However, the range and scale of forces experienced in epithelial 

cells is far less than what is produced in the heart, yet the same molecules are responsible 

to maintain adhesion and tissue integrity. Our studies sought to understand the 

specialization of the AJ in cardiomyocytes to uncover mechanisms of resilience in tissues. 

Our group used proximity based proteomics and mass spectrometry to investigate the N-

cadherin interactome in primary neonatal mouse cardiomyocytes. We found that 

cardiomyocytes share core molecular components compared to epithelial cells, however, 

they recruit a host of unique adapter proteins. Additionally, we demonstrated cross-talk 

between the ICD and the Z-disk that was previously unreported. From our proximity 

proteomics data set, I chose to investigate two characterized AJ ligands previously 

studied in epithelial cells for their roles in mechanotransduction. I found that both vinculin 
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and afadin are localized at the ICD and can be selectively enriched through the 

introduction of N-cadherin:αE-catenin fusion constructs. With these constructs, I 

determined that vinculin enhances the stability of AJs and is necessary and sufficient to 

link the AJ to the myofibril network. Lastly, I demonstrated that vinculin recruitment is 

necessary to drive the maturation of the ICD by recruiting desmosomes. Our work 

demonstrates that tissue-specific differences in the AJ interactome give rise to its 

specialization and that the known αE-catenin ligand, vinculin, plays an integral role in 

bridging the AJ-myofibril interface. Together, these data provide a repository for future 

work into novel ICD proteins and a novel function for vinculin, providing insight for 

declining cardiomyocyte function and remodeling in disease states.  
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1.0 Introduction 

Understanding how multicellular organisms remain intact has fascinated scientists 

for hundreds of years. While we have made great strides in our understanding since the 

discovery of cellular junctions, there are still areas of research that have remained elusive. 

This certainly applies to the field of mechanobiology, for which we have only recently 

developed the tools necessary to address questions of force and their impact on cellular 

and molecular biology. These questions have almost exclusively been investigated in 

epithelial cells, which provide an easily manipulated system to address areas of force-

induced conformational changes, signaling events, and cell movements. Epithelial cells 

experience forces between 50-100 nN when in a non-motile state (1, 2). Cardiomyocytes 

are estimated to experience forces in excess of 1000 nN, 10-20 times greater than that 

measured in epithelial cells (3). This force bearing and transmission is essential for life in 

multicellular organisms. It is not known how the adherens junction maintains adhesion 

under extreme and cyclical amounts of force. The work presented here describes our 

efforts to define the molecular composition of the cardiomyocyte adherens junction and 

determine how it is coupled to the actin cytoskeleton. 
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1.1 Cardiomyocytes and the ICD 

Cardiomyocytes, the force producing muscle cells of the heart, are responsible for 

providing the contractile forces necessary to pump oxygenated blood throughout the 

entire organism. Proper heart function requires individual cardiomyocytes to be coupled 

together to form a mechanical cardiac syncytium. Cardiomyocytes accomplish 

mechanical and electrical transduction through a complex adhesive structure known as 

the intercalated disc (ICD) (4–8). The ICD allows for individual cardiomyocytes to function 

as a syncytium. In skeletal muscle, individual myoblasts fuse to form large, multinucleated 

muscle fibers (9). This developmental process is necessary to allow for rapid signal 

transmission and response of skeletal muscle (10). In cardiac tissue, fusion of individual 

cells to form a true syncytium would be disastrous should a cell fail. In contrast, a 

functional syncytium would retain the properties of rapid signal transmission and 

response without the dangers of whole organ failure (11).  The ICD contains three major 

junctional components: the adherens junction (AJ), desmosome, and gap junction 

(Figure 1.1, (11)). The AJ and desmosome provide mechanical linkage by integrating the 

actin and intermediate filaments, respectively, of neighboring cells. Gap junctions provide 

electrical continuity with the free flow of ions (12).  

Myofibrils are the force-generating structures within cardiomyocytes, and these 

massive actin-myosin complexes are integrated at the ICD through AJs (3, 13, 14). The 

AJ core is comprised of the cadherin/catenin complex (15, 16). N-cadherin, the sole 

classical (AJ) cadherin expressed in cardiomyocytes, forms homotypic interactions with 

cadherins on neighboring cells through its extracellular domain (17). The N-cadherin 

cytoplasmic domain interacts with a pool of catenins: p120- catenin, β-catenin, and α-
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catenin. p120-catenin functions to regulate the trafficking of N-cadherin (18–20), while β-

catenin binds to α-catenin and α-catenin serves as the primary link to the actin 

cytoskeleton (21). In the amniotic heart, there are two different isoforms of α-catenin 

expressed, αE and αT-catenin (22). αE-catenin has been studied extensively in epithelial 

cells, but less so in cardiomyocytes. 

 

Figure 1-1 Junctional Complexes at the ICD 

Cartoon schematic of a desmosome, adherens junction, and gap junction. 

1.2 Components of the ICD 

1.2.1  The Adherens Junction 

The core of the AJ is the cadherin-catenin complex (15, 16). N-cadherin is a 

member of the classical cadherin family and is the sole classical cadherin expressed in 
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the heart (11). The extracellular domain forms calcium-dependent homotypic interactions 

with cadherins on neighboring membranes (23, 24). The N-cadherin intracellular domain 

is unstructured and binds two different catenins: p120-catenin and β-catenin/plakoglobin 

(discussed below) (25). N-cadherin is critical for heart development. Loss of N-cadherin 

is embryonically lethal, in part due to a lack of proper heart formation (26). Adult 

conditional knock-out of N-cadherin demonstrates that this molecule is the master 

regulator of the ICD. N-cadherin excision results in the loss of all AJ, desmosome, and 

gap junctional proteins from the ICD (17). Replacement of N-cadherin with E-cadherin in 

N-cadherin null hearts during development allows the animals to develop normally, but 

adult mice developed dilated cardiomyopathy earlier than wild-type mice and with 

increased mortality (27, 28). 

β-catenin plays a dual role in cells; it is a core member of the AJ and a key factor 

in the Wnt signaling pathway (29). The signaling component of β-catenin is crucial for 

proper development and plays a role in regulating hypertrophic growth in the adult 

myocardium (30, 31). β-catenin and the desmosomal protein, plakoglobin, are both 

members of the armadillo family of proteins. Armadillo proteins contain these 42 amino 

acid repeat structures first seen in the Drosophila protein, Armadillo. In mammals, the 

Armadillo homologue is β-catenin, and β-catenin underwent a duplication event in its 

evolution, giving rise to plakoglobin (32). Conditional loss of β-catenin in adult 

myocardium results in an upregulation of plakoglobin to compensate (33). However, the 

converse is not true; a loss of plakoglobin is not rescued by β-catenin (34). This is most 

likely due to the inability of β-catenin to function within the desmosome, whereas 

plakoglobin can bind α-catenin and ultimately complete the AJ linkage to actin (32, 35).  
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p120-catenin is another member of the Armadillo family of proteins and binds to 

the juxtamembrane portion of the cadherin tail, whereas β-catenin binds the distal end 

(32). p120-catenin does not have a role in joining the AJ to the actin cytoskeleton, 

however, it plays integral roles in cadherin trafficking and turnover (36). During N-cadherin 

biogenesis, p120-catenin binds N-cadherin, which is unique amongst all classical 

cadherins (19, 37). p120-catenin can interact with the microtubule motor, kinesin, to 

transport N-cadherin to the plasma membrane (38). Once there, p120-catenin remains 

bound to block internalization of classical cadherins (39). For N-cadherin, the precise 

mechanism of regulation is unknown, but other classical cadherin studies have 

demonstrated that the binding site for p120-catenin on the classical cadherin tail also 

contains a binding motif for AP-2, a necessary member of the clathrin endocytosis 

machinery (40). Dissociation of p120-catenin reveals the AP-2 site and allows for 

internalization of classical cadherins.   

αE-catenin serves as the primary link between the AJ and actin (21, 41–45). It has 

an N-terminal domain that can bind β-catenin/plakoglobin or dimerize, a 

middle/modulatory (M) domain that can bind a host of ligands, including vinculin, afadin, 

α-actinin, ZO-1, and a C-terminal actin binding domain (46–49). αE-catenin is a force 

sensitive protein and functions as a mechanosensor at the AJ (discussed below) (50). As 

a homodimer, αE-catenin binds to actin filaments to prevent branched networks from 

forming and promotes stable actin bundles in epithelial cells (42, 51, 52) The role of the 

homodimer pool in cardiomyocytes has yet to be investigated. However, given that the 

homodimer promotes linear actin bundles and prevents branching, it could play a role in 

the genesis of myofibrils, which are dependent upon linear actin stress fibers (13). 
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Conditional loss of αE-catenin in the heart leads to gross morphological changes in the 

left and right ventricles and increased susceptibility to cardiac wall rupture after a 

myocardial infarction (53).   

αT-catenin was identified over fifteen years ago in the testes (T) and found to 

localize to the ICD of cardiomyocytes (22). Subsequent work has demonstrated 

properties of αT-catenin unique among the α-catenin family. It can interact with 

plakophilin (54), resulting in a hypothesis that αT-catenin can link the AJ and the 

desmosome in the heart creating a hybrid junction known as the area composita (55). αT-

catenin is dispensable in the heart and is incapable of rescuing αE-catenin loss in 

cardiomyocytes (53, 56). Mutations in αT-catenin have been directly linked to 

arrhythmogenic ventricular cardiomyopathy in patients (57). αT-catenin constitutively 

binds actin with high affinity as a monomer and in complex with β-catenin (58). The 

function of αT-catenin in the heart remains unclear, but it is interesting that αT-catenin 

appears to have arisen with the 4-chambered heart, suggesting that the physical 

demands of organisms with 4-chambered hearts required an additional AJ catenin. On-

going work in our lab and others seeks to determine the role of αT-catenin at the AJ, 

specifically its response to force and its ability to bind known αE-catenin ligands, like 

plakoglobin and vinculin.  

1.2.2  The Desmosome 

Desmosomes are another mechanical linkage complex found specifically in 

tissues under high levels of mechanical stress: the skin and heart. The desmosome is 
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composed of three gene family members: cadherins, armadillo proteins, and plakins (59). 

The desmosomal cadherins, like classical cadherins, are single pass transmembrane 

proteins that interact through the extracellular domains to form trans dimers (60). There 

are two desmosomal cadherins, desmocollin (DSC2) and desmoglein (DSG2), and they 

can form hetero-or-homotypic interactions (61, 62). Desmosomal cadherin binding is 

calcium-dependent, but they can change to a hyper-adhesive state once calcium is 

removed (63). Intracellularly, the desmosome cadherin tail binds plakoglobin (a 

homologue of β-catenin) and plakophilin (related to p120-catenin) (64, 65). Plakoglobin is 

responsible for clustering the cadherins and binding to desmoplakin, which then binds the 

intermediate filament cytoskeleton (66, 67). Plakophilin is necessary for proper cadherin 

trafficking to the plasma membrane (68). 

Desmosomes and AJs are intimately connected, especially in the heart. First, data 

in epithelial cells demonstrate that the formation of desmosomes is dependent upon the 

formation of AJs (69, 70). In the heart, a loss of N-cadherin results in a loss of all 

desmosomal components (17). Cellular data has suggested that desmosomal and AJ 

cadherins can interact (71, 72). Recent biophysical data showed that the DSG2 can 

interact directly with the extracellular domain of E-cadherin to provide stability for DSG2 

and promote desmosome formation (73). In the heart, the desmosome and AJ intermingle 

to form the area composita (55, 74). N-cadherin can bind plakoglobin in place of β-catenin, 

or αT-catenin can bind plakophilin and integrate the actin cytoskeleton with desmosomes 

(54, 75). The formation of these hybrid junctions is thought to increase mechanical 

stability and cross-talk between the junctional components (76).  
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Mutations in desmosomes are the primary cause of a genetic form of 

cardiomyopathy: arrhythmogenic right ventricular cardiomyopathy (ARVC). ARVC affects 

1 in 5,000 individuals and is marked by progressive cardiac decline, increased fibrotic 

and fatty deposits in the right ventricle, and has an increased prevalence in sudden 

cardiac death (77–79). All components of the desmosome contain mutations that have 

been linked to ARVC cases from around the world, varying in their severity. Desmoplakin 

was the first protein associated with ARVC, with mutations resulting in classical ARVC or 

increased left ventricular defects (11, 80, 81). Plakophilin 2 mutations account for the 

highest number of ARVC cases, with estimates of approximately 70% of patients (82). 

Both of the desmosomal cadherins, DSG2 and DSC2, have documented 

mutations, with the DSC2 mutations showing an advanced stage of ARVC (77, 83). 

Plakoglobin is responsible for a subset of ARVC called Naxos Disease, which includes a 

cardiac phenotype along with skin and hair phenotypes (84). All ARVC mutations result 

in a disrupted ICD organization and are accompanied by a loss of gap junctions, indicating 

that part of the arrhythmia is due to poor electrical communication between individual 

cardiomyocytes (11).     

1.2.3  The Gap Junction 

While AJs and desmosomes are responsible for mechanical continuity across 

cardiomyocytes, gap junctions (GJs) are responsible for electrical communication (85). 

GJs are made of connexin proteins which are four-pass transmembrane proteins. 21 

connexins have been identified in the human genome (86). All connexin names are  based 

on their approximate molecular weight and Connexin 43 (Cx43) is both the most 
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ubiquitously expressed and the most important isoform in the heart (87, 88). Connexins 

oligomerize, where six of them interact to form a connexon. Connexons form 

hemichannels, whereas a full gap junction forms when hemichannels on neighboring cells 

interact (89, 90). These channels allow for the passage of small metabolites, ions, and 

water between cells (91). GJs allow for electrical propagation between individual cells 

(92). 

GJs are targeted to the ICD in an AJ-dependent, ZO-1 dependent manner (93, 94). 

Microtubules can directly target GJs to AJs, where GJs interact with ZO-1 for stability 

(95). Indeed, when N-cadherin is knocked out during development or conditionally in the 

adult heart, GJs fail to remain at the ICD (17, 26, 96). Desmosomal mutations resulting in 

ARVC also cause a loss of GJ localization (97, 98). Mutations in Cx43 itself are linked to 

oculodentodigital dysplasia, and a subset of these patients exhibit cardiac development 

or rhythm disturbances (99). The relocalization of GJ proteins does not appear to be a 

direct result of a disease, but is instead a cellular response to improper mechanical protein 

localization, or a response post-myocardial infarction (11, 88, 100, 101). In most of these 

cases, expression of GJs disappear altogether, or GJs are relocalized to the lateral (long) 

membrane of cardiomyocytes, ultimately resulting in a decrease in electrical coupling.  
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1.3 The Roles of Force in Adherens Junction Biology 

1.3.1  Force and Adhesive Homeostasis 

The cadherin molecule is the portion of the AJ furthest removed from the actin 

cytoskeleton; it requires intracellular tension to be transmitted through two catenins before 

it could be experienced by the cytoplasmic tail. However, the extracellular domain of the 

cadherin would be the first portion of the AJ to experience extracellular tension (102). The 

cadherin extracellular domain is comprised of five extracellular (EC) repeats that form 

calcium dependent homotypic interactions in trans through the most distal EC1 (23). 

Cadherin molecules on the same cell can form cis interactions through an EC1-EC2 

binding interface, and this is thought to provide intracellular organization to AJs to create 

a lattice-like structure (24). 

Extracellular interactions of the cadherin trans homodimer require two steps for the 

dimer to form. Initial interaction is through a transitional X-dimer that is short lived before 

it transitions into a stable strand-swap dimer (103, 104). Structural studies have 

demonstrated that the X-dimer is a catch bond, which is strengthened under tension. The 

X-dimer transitions to a slip-bond strand-swap dimer that is weakened under force, but 

the binding affinity is overall higher than that seen in the X-dimer (102). These steps are 

thought to allow cadherin molecules to withstand force changes through the X-dimer and 

then mature to strand-swap dimers as tissues mature and undergo less tensile forces. 

These studies have been performed across multiple cadherin types, and the most 

interesting aspect to cardiomyocyte biology is that the X-dimer of N-cadherin is as strong 

as the strand-swap dimer, which is not seen in E (epithelial)-cadherin (104). The unique 
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extracellular structure of N-cadherin could make it specifically poised to handle the 

increased force demands of the AJ in the heart. When N-cadherin is genetically replaced 

by E-cadherin in transgenic mice, these mice develop early onset dilated cardiomyopathy, 

indicating that the individual cardiomyocytes were incapable of producing or transmitting 

the force necessary for proper heart function (27). These results could be explained, in 

part, by the differences in the biophysical structures between cadherin molecules. 
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Figure 1-2 N-cadherin is under tension at cardiomyocyte cell-cell contacts 
 
A. Schematic of the N-cadherin tension sensor (left, middle) and the N-cadherin control sensor that 

cannot experience force (right). B. Ratio of FRET intensities between N-cadTSMod and TSMod-

Control. Student’s t test, p<0.0001, error bars represent standard deviation. C. Representative 

images of the donor channel (TFP), acceptor channel (Venus/FRET), and β-catenin to demonstrate 

proper construct localization.  

 

The intracellular tails of classical cadherins are also capable of experiencing force. 

This was demonstrated by the use of a FRET-based tension sensor placed between the 

transmembrane and cytoplasmic domains of E-cadherin. Changes in the activity of the 

actomyosin network resulted in changes in the amount of force experienced on the 
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cadherin molecule, demonstrating that the force was being transduced through the 

catenin molecules, ultimately resulting in increased tension across E-cadherin. While this 

did not result in any demonstrable changes in the conformation of the cadherin molecule, 

it was shown that E-cadherin inserted into a free membrane of the cell (i.e. not localized 

to a cell-cell contact) was still under tension (105). This indicates that the catenins are still 

localized to a cadherin molecule not undergoing trans interactions and remain connected 

to the cortical network. This could provide additional anchoring points for the actin 

cytoskeleton and increase overall cellular structure and rigidity. We utilized this strategy 

to create an N-cadherin FRET based tension sensor with a similar methodology used for 

the E-cadherin sensors. In cardiomyocytes, we demonstrated that N-cadherin is also 

under tension at cell-cell contacts (Figure 1-2).  

 

Figure 1-3 Domains and force unfolding of αE-catenin 

A) Cartoon schematic of αE-catenin domains, including the approximate location of vinculin and 

afadin binding domains and amino acid locations. B) Conformational change of αE-catenin with the 
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application of force. 5pN of force opens αE-catenin, resulting in the unfurling of M1 and revealing the 

vinculin binding site. 

 

To this date, there is no data suggesting that the cadherin molecule is the main  

mechanotransducer in the AJ. That role appears to belong to α-catenin, the link between 

the AJ and actin. The bond between α-catenin and actin is a catch bond where, under 

low tension, the affinity of α-catenin for actin is relatively low (42, 43). However, when 

force is applied to actin, the affinity and bond strength increase, resulting in a stable AJ 

(21). Not only is the α-catenin-actin bond strengthened upon force, but the whole 

conformation of α-catenin changes in response to it. α-Catenin has three domains: the 

N-terminal head domain that binds β-catenin, the C-terminal actin binding domain, and 

the M (middle/modulatory) domain that contains multiple binding sites for various different 

actin-binding ligands (Figure 1-3A) (106). The M-domain is comprised of three 4-helix 

bundles held in a closed conformation through a series of salt bridges (107). Upon the 

application of force, the salt bridges are broken, and the M-domain opens to reveal a 

cryptic binding site for the α-catenin ligand, vinculin (Figure 1-3B) (108–110). The amount 

of force required to open α-catenin, 5pN, is approximately the amount of force produced 

by a myosin motor, and the calculated amount of force that E-cadherin experiences (105, 

111). Vinculin binding stabilizes the conformational change of α-catenin and is thought to 

provide additional stability for the AJ under tension (109, 112). Notably, the α-catenin-

vinculin interaction persists after tension is released from α-catenin (110). In the heart, 

this phenomenon would prove useful as the heart undergoes cyclical contraction, 

presumably stretching and relaxing α-catenin with every beat. The ability for vinculin to 
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maintain engagement for several minutes beyond the loss of tension indicates that 

vinculin would maintain association with the AJ at all times in the heart, perpetually 

providing reinforcement with the myofibril network.  

1.3.2  Force and the Cytoskeletal Linkage 

The textbook drawings of AJs demonstrate a very simple interaction between three 

proteins and the actin cytoskeleton; but the path to get there included many struggles. In 

vivo data demonstrated that the cadherin and catenins were in close proximity to each 

other (42). Biochemical data demonstrated that each component could individually bind 

the suggested partner (43, 44). However, the proposed model came into question when 

it was demonstrated that αE-catenin binding to β-catenin decreased its affinity for actin, 

suggesting that αE-catenin did not bind actin when part of the cadherin-catenin complex 

(42, 43). Increasing the complexity was a demonstration that the homodimer of αE-

catenin had the highest actin-binding affinity, but the homodimer could not exist within the 

AJ (42, 43, 51). This problem remained unsolved for nearly a decade until it was 

demonstrated that the low-affinity αE-catenin-actin interaction is strengthened under the 

application of force, describing this binding event as a catch bond (21). The catch bond 

properties of αE-catenin make it an ideal mechanotransduction candidate, where 

increased force strengthens its interaction with the cytoskeleton and can prime it for 

signaling transduction, such as vinculin recruitment (46). 

The AJ interacts with the cell cortex, a network of actin-myosin underlying the cell 

surface that provides rigidity to cells (113). Ligation of cadherin molecules triggers time 
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and/or force-dependent junctional strengthening (114, 115). This takes the form of 

increased actin polymerization through the branched actin network nucleator Arp2/3 

(116). These branched networks then transition into linear F-actin bundles through the 

recruitment of the nucleating formin mDia1 and the branched actin destabilizer Coronin 

1B (117, 118). Tension continues to increase with the recruitment of nonmuscle myosin 

II (119). Vinculin is recruited in a nonmuscle myosin dependent manner, and this in turn 

recruits Ena/VASP proteins to vinculin (120, 121). Ena/VASP proteins promote actin 

assembly at the junctions (122). Recent biophysical data also showed that the vinculin-

actin linkage has asymmetric binding properties; vinculin binds stronger to actin under 

force directed towards the plus-end (i.e. force against the AJ, (123)). This would result in 

a self-amplifying loop where increased AJ stabilization through force increases the 

recruitment of stabilizing factors and actin polymerization machinery.  

Using cadherin/catenin fusion constructs has been a popular method to elucidate 

roles of αE-catenin-actin linkages and larger, morphological roles of the AJ with a static 

system (124–128). The majority of fusion constructs were modeled from a structure 

developed in 1994 and included a truncated cadherin lacking the cytoplasmic domain 

fused to full-length α-catenin. However, nearly two decades worth of research was thrown 

into question when it was demonstrated that these constructs were able to homodimerize 

intracellularly through the α-catenin full length N-terminal domains (20). Earlier that year, 

work was published using an alternative fusion construct structure, this one lacking the 

N-terminal domain of αE-catenin. With these fusion and αE-catenin mutation constructs, 

they showed that ablating vinculin recruitment resulted in short-lived, dynamic junctions. 

A construct that removed the αE-catenin actin binding domain (ABD) but constitutively 
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recruited vinculin resulted in highly stabilized constructs. Additionally, constitutive vinculin 

recruitment in the absence of the αE-catenin ABD dictated the kind of actin structures 

these adhesions were localized to; vinculin-null adhesions were associating with the 

cortical cytoskeleton, vinculin rich adhesions were localizing to stress-fiber actin 

structures (129).  However, this work failed to address the role of force in altering the 

types of actin structures with which these αE-catenin constructs could interact. Also, this 

work did not investigate any additional ligands mediating this interaction.  

1.3.3  Force and Signaling 

An integral signaling platform in organisms is the Hippo pathway. This kinase 

cascade regulates the transcriptional activity of Yorkie (in Drosophila) or YAP/TAZ in 

mammals. Translocation to the nucleus of YAP/TAZ causes proliferation and organ 

growth, and tight control of this pathway regulates organ size (130). A loss of YAP results 

in severe undergrowth of the heart and is embryonically lethal, while constitutively active 

YAP or loss of its regulatory kinases results in cardiac overgrowth (131, 132). The AJ has 

been identified as playing a key role in regulating Hippo signaling, either through the 

canonical kinase cascade or by non-canonical pathways (133). 

The first indication that the AJ was involved in Hippo signaling was a study noting 

that YAP was excluded from the nucleus in confluent, non-proliferative monolayers of 

cells (134). Known as contact inhibition, this phenomenon describes the cell’s ability to 

cease proliferation once confluency is reached and is regulated by E-cadherin in epithelia 

cells (133, 135). Since then, two major methods of YAP/TAZ localization have been 

attributed to αE-catenin in both epithelial cells and the heart. The first method describes 
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αE-catenin negatively regulating YAP localization, working in concert with the canonical 

Hippo kinase cascade (136, 137). These studies describe a mechanism whereby 

phosphorylation of YAP by a canonical kinase creates a binding site for the scaffolding 

molecule, 14-3-3. This interaction promotes the junctional localization of YAP mediated 

by 14-3-3 binding αE-catenin (136). This localization could be altered by either 1) low-cell 

density, or 2) calcium chelation and disruption of the AJ (136, 137).  

However, recent studies have demonstrated a mechanical regulation of YAP/TAZ 

signaling, where increased cellular tension, through actin/myosin or ECM perturbations, 

caused an upregulation in YAP translocation and cellular proliferation. The main effectors 

of tension mediated YAP activation appear to be YAP itself and the Ajuba LIM proteins. 

Ajuba, and its two additional mammalian homologs, can bind and sequester LATS/Warts, 

kinases that are required to prohibit YAP/TAZ from entering the nucleus (138). In 

mammalian cells, the Ajuba homologue, LIMD-1, is recruited to the AJ in a tension-

dependent manner, and this localization sequesters LATS, preventing it from 

phosphorylating YAP (139). In flies, it was determined that Ajuba localization is mediated 

through the tension-dependent conformational change of αE-catenin, where the Ajuba 

binding site becomes accessible when αE-catenin is under tension, similar to αE-

catenin:vinculin binding (109, 140, 141). Additionally, the Drosophila YAP homologue, 

Yorkie, was shown to activate myosin contractility at contacts outside of its well-known 

transcriptional activity. This result suggests that Yorkie/YAP/TAZ could create a self-

amplifying loop where Yorkie-initiated myosin contractility increases cellular tension, 

thereby promoting Yorkie nuclear translocation (142). In line with tension-dependent 

activation, changes in ECM substrate stiffness also play a role in YAP activation where 
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more nuclear localization and proliferation is seen on stiffer ECM surfaces, which are 

known to increase intracellular tension (143, 144). 

How do these two signaling pathways, mediated through αE-catenin, and resulting 

in juxtaposed outputs, play a role in cardiomyocytes? While the YAP/TAZ pathway is 

critical in cardiac development, it plays little to no role in normal heart function postnatally, 

as cardiomyocytes exit the cell cycle and retain extremely limited regenerative capabilities 

(145). However, several studies have looked at methods to reintroduce the YAP/TAZ 

pathway in adult rodent hearts following myocardial infarction (MI) to attempt to restart 

the proliferative pathway. Mice expressing a constitutively active YAP driven in the heart 

in the latter stages of embryonic development showed an increased proliferative capacity 

post-MI, as well as rescued cardiac output up to three weeks post-MI (146). Additionally, 

adeno-associated virus delivery of YAP to adult mice post-MI also improved survival, 

cardiac function and proliferation. Cardiomyocytes that had re-entered the cell-cycle 

through YAP signaling activated fetal cardiomyocyte genes, indicating that forced 

regeneration undergoes fetal reprogramming (147). Lastly, loss of αE and αT-catenin in 

rodent hearts leads to upregulation of YAP/TAZ signaling and increased proliferative 

capacity, indicating that α-catenin functions as a negative regulator of YAP/TAZ in 

cardiomyocytes (148). These changes in α-catenin expression resulted in increased 

intracellular tension and an increased translocation of YAP to the nucleus, consistent with 

previous epithelial reports (143, 149). While the mechanism appears unclear, it is likely 

that increased proliferation and YAP nuclear localization could be explained by a loss of 

contact-inhibition control. With regards to the Ajuba/αE-catenin/tension pathway, this has 

yet to be investigated in cardiomyocytes. There is very little data on the existence of the 
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Ajuba LIM proteins in the heart, and what is known is restricted to early cardiac 

development and the retinoic acid signaling pathway (150). In a recent proteomics screen 

of AJ interactome in cardiomyocytes, Ajuba LIM proteins were not identified as AJ 

interactors (151). These limited data suggest that Ajuba LIM signaling is not present in 

cardiomyocytes, but this should be an area of future investigation as increased ECM 

stiffening and increased cardiomyocyte tension are a direct result of MI (152–154). 

1.3.4  Force and Polarity 

Cardiomyocytes lack the apical-basal polarity of epithelial cells; however, they do 

possess strong bipolar morphology. Myofibrils run from end to end along the length of a 

rod-shaped cardiomyocyte (12). The ICD is concentrated at the short end of 

cardiomyocytes where myofibrils terminate between cells (11), whereas the lateral 

membrane is the site of cell-ECM integration through costameres (155). During 

development, cardiomyocytes are more rounded and AJs, desmosomes, and gap 

junctions are found along all points of cell-cell contact (lateral membranes). In both 

rodents and humans, the AJ complex is the first to migrate to the bipolar ends, 

establishing the sites of the ICDs. AJs are quickly followed by desmosomes, and finally 

gap junctions, which take the longest time to localize. This process extends beyond fetal 

heart development and into postnatal cardiac remodeling (12, 156, 157).  

At the same time that junctions are remodeling and migrating to the polar ends, 

the cardiomyocytes are also beating and actively maturing their myofibril network (158). 

The primitive heart tube begins beating in the first month of human embryonic 

development and the first ten days of mouse embryonic development. The rate of 
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contraction increases throughout development, pointing to the increased electrical 

signaling, as well as myofibril maturation (159). Contraction is thought to self-correct 

poorly aligned myofibrils and drive either their reorganization or disassembly (158). Loss 

of contraction in developing cells results in poorly formed myofibrils (160). Indeed, during 

development, the myofibrils lack their linear organization in early stages and increase in 

their polarity throughout development (157). Similar observations were made in 

cardiomyocytes derived from stem cells. Cardiomyocyte-driven human pluripotent stem 

cells have a fetal cardiomyocyte phenotype, which can be matured by promoting 

contraction (161, 162). Myofibril development is postulated to begin at cell-ECM contacts 

and arise near the cell edges (13). At some undetermined time, it is hypothesized that 

myofibrils are then “handed off” to the AJ within the ICD, linking the myofibril networks of 

neighboring cells (3). Whether this occurs after a myofibril is fully formed, or occurs as 

new sarcomeres are added to the ends of a developing myofibril has yet to be determined. 

Additionally, it is uncertain if contraction-driven myofibril development and organization 

drives AJ – and subsequent desmosome and gap junction – relocalization or if ICD 

maturation drives myofibril alignment and integration. Regardless of the order, it is clear 

that contraction, myofibril alignment, and ICD localization are intimately linked to 

contractile force in pre- and post-natal heart development.  

Interestingly, planar cell polarity complex proteins are expressed in 

cardiomyocytes. Key members of that complex have important roles during embryonic 

heart development. Disruption of basal markers Scrib or Vangl2 result in disruption of N-

cadherin localization and ventricular wall development (163). Downstream planar cell 

polarity signaling through Rac1, a small GTPase responsible for actin polymerization and 
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cell migration, is important for heart development (164). Loss of Rac1 in a heart progenitor 

cell population results in a decreased right ventricle (165). Importantly, ventricular wall 

development requires apical-basal polarity of rounded cardiomyocytes that are regulated 

through the receptor CRUMBS and Neuregulin signaling in zebrafish (166, 167). 

However, there has been little investigation into the reorientation of typical planar cell 

polarity proteins during ICD rearrangement, or what their roles are – if any – in adult 

myocardium.  

1.3.5  Force, Extracellular Matrix, and Focal Adhesion Crosstalk 

Just as it is necessary for individual cells to establish and maintain adhesion, cells 

must also make stable connections with the surrounding extracellular matrix (ECM). This 

is accomplished through another complex adhesive structure known as focal adhesions 

(FAs). FAs are heterodimeric integrin-mediated adhesions that bind specific ECM 

proteins (168). To date, there are over 150 known associated FA proteins, and these 

members are spatially separated into different modules within the FA, whose role is a 

function of location within the three-dimensional structure (168, 169). Although the 

number of associated FA proteins is extensive, FAs and AJs share very few common 

proteins. However, a major component of both AJs and FAs, vinculin, plays integral roles 

at both complexes (as stated above for AJs). 

FAs are the direct cellular sensors and translators to changes in ECM stiffness. 

This is initiated by the transmembrane integrins, where stiff substrates result in increased 

integrin expression and high-affinity conformational changes in their extracellular 

domains (170). To counterbalance an increase in ECM stiffness, cells will contract their 
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actin-myosin cytoskeletons, and this converts the integrin-ECM bond into stable, long-

lived states (171, 172). During this process of sensing and responding, increased stiffness 

will recruit vinculin for force-induced FA stabilization (173, 174). Vinculin is responsible 

for force-based assembly and disassembly of FAs in epithelial cells (168, 169). As force 

increases, FAs increase in size and number in fibroblasts and cardiomyocytes (175, 176). 

Unlike FAs, the effects of ECM stiffness on AJs is poorly understood and not well studied. 

Two groups measured the output of FA signaling as a function of substrate stiffness and 

cell-cell adhesion in either epithelial or vascular smooth muscle cells and found that the 

increased cell-cell adhesions dampened the signaling response from FAs (114, 177). 

Another study found increased N-cadherin expression as a part of a stiffness-activated 

FA pathway in MEFs and vascular smooth muscle cells (178); however, neither of these 

directly translate to cardiomyocytes (discussed below). Lastly, AJs and FAs appear to 

work together in cell migration: AJs do not impede the speed or force of FA-mediated 

migration, but AJs provide the directionality in the movement of a multicellular sheet (179). 

As stated, vinculin is an integral mechanosensing ligand at FAs and AJs, where it 

strengthens both adhesions as a response to intracellular or extracellular tension. Recent 

work in epithelial cells has demonstrated critical phosphorylation sites on vinculin that 

regulate its localization as a function of tension. At AJs, vinculin is specifically 

phosphorylated at Y822; this phosphorylation was not detected at vinculin localized to 

FAs in either quiescent or increased-stiffness states. They determined that force applied 

to E-cadherin activated Abelson tyrosine kinase to phosphorylate vinculin, and this post-

translational modification was required to recruit vinculin to AJs (115). At FAs, Src-

mediated phosphorylation of vinculin at Y100 and Y1065 is necessary to mediate FA 
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stiffness-dependent strengthening (180). However, it is unclear if either of these pathways 

are present in cardiomyocytes.  

The importance of understanding cell-cell, cell-ECM crosstalk is crucial when 

considering heart function and heart health. While many of these studies have provided 

great insight into AJ and FA biology, little work has addressed the role of differential 

vinculin recruitment and how that effects healthy and diseased heart. The stiffness of the 

ECM in the heart is fine-tuned to match the contractile properties of cardiomyocytes (3, 

181, 182). Increased ECM stiffness results in decreased contraction force in 

cardiomyocytes (182). Importantly, increased ECM stiffness alters force transmission 

between neighboring cardiomyocytes. On mimics of healthy ECM, cardiomyocytes will 

transmit force across cells to their neighbors. However, with increased stiffness, there is 

increased FA size, number, and a reorientation of force vectors into the ECM rather than 

across the tissue (3). It remains to be investigated if these changes in stiffness result in 

differential recruitment of vinculin to FAs at the expense of AJs, leaving cell-cell adhesions 

weakened and vulnerable, incapable of withstanding the amount of force coupled 

myofibrils create at the ICD. 

1.4 Addressing Cardiomyocyte Adhesion 

The work undertaken in the course of this study can be seen as a two-pronged 

approach to address the same problem: how do cardiomyocytes specialize their AJs to 

manage the increased stress of their natural environment? The first method of approach 

is a large-scale proximity proteomics screen to identify unique components of the 
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cardiomyocyte AJ compared to the epithelial AJ and how these differences confer 

adhesion. The second approach is a dive into the properties of the well-characterized αE-

catenin-vinculin interaction and how this interaction holds up in the cardiomyocyte. The 

specialization of junctions in the heart continues to be the driving question in our lab, with 

the hopes of providing deep insight into normal and diseased cardiac tissue, and 

promoting better targeted cellular and molecular approaches to treatment of damaged 

tissue.  

1.5 Proximity Proteomics and Adherens Junction Components 

Investigating protein-protein interactions in a native state has been a decades-long 

challenge. In vitro biochemical assays are helpful but may not represent physiological 

interactions. Co-immunoprecipitation provides in vivo interactions, but can only represent 

strong interactions, where weak, transient interactions are lost in cell lysis and blotting. 

Additionally, it is becoming increasingly evident that protein-protein interactions are 

mediated by complexes providing additional limitations to traditional protein-protein 

interaction techniques. Commonly used methods, such as yeast two-hybrid or 

crosslinking and pulldowns fail to capture larger complexes or introduce errors of false 

identification with promiscuous crosslinking. Biochemical approaches and reconstitution 

assays run into problems with protein solubility and a loss of the native cellular 

environment. A new methodology of labeling proteins in their native cellular environment 

has been defining complex interaction networks, including at the adherens junction. 

Proximity labeling proteomics utilizes a promiscuous biotin ligase fused to a protein of 
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interest (bait) to label neighboring proteins when a bolus of biotin is added to the system 

(183–185). Biotinylated proteins can be released from lysed eukaryotic cells and isolated 

with streptavidin-conjugated beads. Lastly, the biotinylated proteins can be identified by 

mass spectrometry.  

This methodology has been used to identify the adherens junction interactome 

(adhesome) with E-cadherin as the bait in two different epithelial cells lines (186, 187). 

Additionally, it has been used to analyze differential ligand recruitment to αE-catenin in a 

stretch-dependent manner (188). A hand-curated list of the adhesome identified 175 

published interacting partners (189). Proximity proteomics techniques have identified 303 

and 561 unique proteins in and around E-cadherin in two cell types (186, 187). These 

studies resulted in 114 common proteins and identified a rich pool of adapter proteins 

associated with the membrane, actin cytoskeleton, or microtubules (187). This technique 

exposes new interacting partners and signaling pathways associated with the AJ that 

have previously remained unknown to the field and opened up new areas of investigation. 

We chose to use this methodology to determine cell-type specific differences in the AJ 

adhesome within cultured cardiomyocytes (151).   

1.6 αE-catenin Ligands 

From the proximity proteomics study, we localized two previously identified αE-

catenin ligands at the cardiomyocyte ICD, vinculin and afadin. In fact, both of these 

ligands were highly ranked in protein abundance, indicating their enrichment at the ICD. 

Vinculin has been previously studied in the heart, primarily in the context of 
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myofibrillogenesis and cardiac development. The role of afadin at the ICD is even less 

understood with minimal research conducted thus far. I chose to characterize the roles of 

these two established ligands at the cardiomyocyte ICD to provide a deeper 

understanding of the AJ-actin interfaces and requirements.  

1.6.1  Vinculin 

Vinculin is an intensely studied protein with functionality at cell-cell and cell-ECM 

adhesions (stated 1.3.5). Vinculin was first identified 40 years ago in chicken and 

localized strongly with actin stress fibers and cell-ECM adhesions (190). Since then, 

vinculin has been at the center of studies on migration (191), cell-ECM adhesions (169), 

cell-cell adhesions (120), signaling (115), and development (192). Structurally, vinculin 

and αE-catenin share similarities in their domains and overall structures (46, 108). 

Vinculin contains a head, neck, and tail domain held in an autoinhibited conformation 

(193). To date, no one ligand has been demonstrated to be sufficient in releasing the 

autoinhibited state; instead vinculin requires activation from the binding of two or more 

ligands (173, 194). 

As stated, vinculin plays integral roles at focal adhesions and supporting roles at 

the AJ. However, vinculin also plays integral roles in heart development and cardiac 

biology. Mice null for vinculin are embryonically lethal, due to a failure in cardiac function 

and severely reduced cardiomyocyte number (192). A loss of a single allele of vinculin 

gave rise to disorganized ICDs and a predisposition to cardiomyopathy (195). Tissue-

specific loss of vinculin in the heart also demonstrated disrupted ICDs and sudden cardiac 

death (196). Additionally, vinculin is required for proper myofibrillogenesis; isolated 
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cardiomyocytes treated with antisense oligodeoxynucleotides had poorly organized 

myofibrils and undivided Z-disks (197). Human patients carrying a missense mutation in 

vinculin are more susceptible to hypertrophic cardiomyopathy where patients have 

increased interstitial fibrosis and a loss of vinculin from the ICD (198). Patient samples 

taken from dilated cardiomyopathy-induced end-stage heart failure showed a modest 

increase in vinculin expression and poor localization to the ICD and costameres (199). 

However, recent work has shown that increased vinculin expression appears to be a 

byproduct of age. Older monkeys increased expression of vinculin, among other 

cytoskeletal proteins that are associated with cardiac disease. However, when vinculin is 

overexpressed at a young age in flies, it results in increased cardiac output and a marked 

increase in lifespan (200). Vinculin function in the heart is complicated as it localizes to 

two major structural adhesive elements, yet there is little understanding of how this 

localization is regulated or balanced in the heart. 

1.6.2  Afadin 

Afadin is a loosely studied junctional ligand with ties to both the AJ and nectin 

junctions. It was first identified over twenty years ago in rat brains and found to be 

localized to cadherin-based cell-cell contacts (201). Since then, it has been found to play 

a role with various different junctional components and in different tissue types. In 

neurons, afadin is involved in synaptic junctional formation and assists in forming and 

remodeling synapses in the hippocampus (202). In development, loss of afadin results in 

a loss of cellular integrity and polarization in the neuroepithelium (203). Additional studies 

in epithelial cells demonstrate that afadin is involved in directed cell migration (204), 
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barrier function in intestinal epithelia (205), and breast cancer cell migration (206). The 

actual role of afadin in any of these scenarios is multifaceted and complicated. Afadin 

contains an actin binding domain that binds the side of actin and a PDZ-domain that 

interacts with nectins. Nectins are transmembrane adhesion molecules that associate 

with the AJ; afadin binds the intracellular tail of nectins and is thought to stabilize their 

localization by linking them to the actin cytoskeleton (207). While there are additional 

signaling events facilitated by afadin (204, 206), its interaction with the AJ is of great 

interest to us. αE-catenin contains an afadin binding site (47) and afadin was recently 

demonstrated to be a tension-dependent scaffolding molecule found at epithelial 

tricellular junctions, localized with AJs (208). 

Previous afadin studies have focused on epithelia and neurons, and a loss of 

afadin is embryonically lethal shortly after the development of the three germ layers (203). 

However, its initial discovery also marked a robust localization to the ICD in heart sections 

(201). This observation was not pursued for twenty years. With the increased knowledge 

of ICD proteins and their role in cardiac disease (7, 55) Zankov, et al, investigated the 

role of afadin at the ICD. They found that afadin exhibits cardio-protective effects against 

cardiac remodeling due to chronic pressure overload. Hearts null for afadin showed 

increased fibrosis and apoptosis of cardiomyocytes, and they postulate that afadin, at the 

ICD, regulates TGF-β signaling (209). This cardiac study indicates that localization of 

afadin to the milieu found at the ICD could result in functions otherwise unknown for AJ 

ligands. 
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2.0 The N-cadherin interactome in primary cardiomyocytes as defined by 

quantitative proximity proteomics. 

 

This text was published in Journal of Cell Science. doi: 10.1242/jcs.221606  

 

2.1 Overview 

The junctional complexes that couple cardiomyocytes must transmit the mechanical 

forces of contraction while maintaining adhesive homeostasis. The adherens junction (AJ) 

connects the actomyosin networks of neighboring cardiomyocytes and is required for 

proper heart function. Yet little is known about the molecular composition of the 

cardiomyocyte AJ or how it is organized to function under mechanical load. Here we 

define the architecture, dynamics and proteome of the cardiomyocyte AJ. Mouse neonatal 

cardiomyocytes assemble stable AJs along intercellular contacts with organizational and 

structural hallmarks similar to mature contacts. We combine quantitative mass 

spectrometry with proximity labeling to identify the N-cadherin (CDH2) interactome. We 

define over 350 proteins in this interactome, nearly 200 of which are unique to CDH2 and 

not part of the E-cadherin (CDH1) interactome. CDH2-specific interactors are comprised 

primarily of adaptor and adhesion proteins that promote junction specialization. Our 
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results provide novel insight into the cardiomyocyte AJ and provide a proteomic atlas for 

defining the molecular complexes that regulate cardiomyocyte intercellular adhesion. 

2.2 Introduction 

Heart function requires mechanical coupling and chemical communication 

between cardiomyocytes through a specialized adhesive structure called the intercalated 

disc (ICD). The ICD is formed from three junctional complexes: adherens junctions (AJs) 

and desmosomes that physically link opposing cardiomyocytes, and gap junctions that 

electrically couple cardiomyocytes (7, 8, 210). AJs and desmosomes link the actin and 

intermediate filament (IF) cytoskeletons, respectively, to the ICD and provide structural 

integrity and mechanical strength to the cell-cell contact. ICD formation requires multiple 

adhesion, cytoskeletal and signaling proteins, and mutations in these proteins can cause 

cardiomyopathies (211). However, the molecular composition of ICD junctional 

complexes remains poorly defined. 

The core of the AJ is the cadherin-catenin complex (15, 212). Classical cadherins 

are single-pass transmembrane proteins with an extracellular domain that mediates 

calcium-dependent homotypic interactions. The adhesive properties of classical 

cadherins are driven by the recruitment of cytosolic catenin proteins to the cadherin tail: 

p120-catenin (CTNND1) binds to the juxta-membrane domain and β-catenin (CTNNB1) 

binds to the distal part of the tail. β-Catenin, in turn recruits αE-catenin (CTNNA1) to the 

cadherin-catenin complex. α-Catenin is an actin-binding protein and the primary link 
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between the AJ and the actin cytoskeleton (41–44). In mice, loss of AJ proteins in the 

heart – N-cadherin (CDH2), β-catenin, αE-catenin or αT(Testes)-catenin (CTNNA3) – 

causes dilated cardiomyopathy (17, 53, 96, 213). Mutations in αT-catenin, an α-catenin 

homolog expressed predominantly in the heart and testes, and the β-catenin homolog 

plakoglobin (JUP) have been linked to arrhythmogenic right ventricular cardiomyopathy 

(57, 214), as have disruptions in β-catenin signaling (215).  

The AJ is best understood in the context of epithelia, where it regulates intercellular 

adhesion, cell motility and polarity (216, 217). The AJ can both sense and respond to 

mechanical force (50, 218), though the molecular mechanism remains largely undefined. 

In epithelia, the AJ associates with a panoply of proteins that regulate adhesion, signaling 

and protein turnover. Recent proteomic studies have begun to define the cadherin 

interactome and have offered new insight into the molecular complexes that regulate AJ 

biology in epithelia (186, 187). Yet it is unclear if these complexes are shared between 

cell types or whether specific proteins are recruited to AJs to meet specific physiological 

needs. For example, in cardiomyocytes the AJ is thought to anchor myofibrils to the ICD 

to transmit force between cells. If and how the cardiomyocyte AJ proteome is tuned to 

meet the mechanical demands of myocyte contraction is not known. 

Here we describe efforts to define the molecular complexes associated with N-

cadherin at cardiomyocyte cell-cell contacts. We use a combination of light and electron 

microscopy to reveal that primary neonatal cardiomyocytes assemble junctional 

complexes along developing intercellular contacts with structural hallmarks reminiscent 

of the ICD in adult heart tissue. We show that cardiomyocyte AJ proteins are stable with 

dynamics similar to epithelia. We use proximity proteomics to identify N-cadherin-
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associated proteins along cardiomyocyte cell-cell contacts. We define a robust repertoire 

of interactors, comprised primarily of adaptor and adhesion proteins unique to 

cardiomyocytes. Our results offer novel insight into the critical adhesion complexes that 

connect cardiomyocytes and provide a proteomic platform for deciphering how molecular 

complexes are organized to regulate cardiomyocyte adhesion and cellular organization. 

2.3 Results 

2.3.1  Organization of primary cardiomyocyte intercellular contacts 

Primary cardiomyocytes isolated from rodent neonates retain the ability to 

establish cell-cell contacts in culture (55, 219). Neonatal cardiomyocytes from mice are 

also amenable to transient transfection and adenoviral infection (220). To begin to define 

the junctional complexes at newly formed contacts in neonatal cardiomyocytes, we first 

examined the recruitment of endogenous CDH2, the core of the AJ. Mouse neonatal 

cardiomyocytes were isolated from P0-P2 pups and plated on isotropic Collagen I 

substrates at high density to promote intercellular interactions. After 2-3 days in culture, 

neonatal cardiomyocytes had established CDH2-positive contacts around much of their 

perimeter (Fig. 2-1A, B). Myofibril formation is evidenced by the periodic, sarcomeric 

organization of the Z-line marker α-actinin (ACTN2) (Fig. 2-1C). Notably, CDH2 

localization is not uniform along contacts; instead, it is discontinuous (Fig. 2-1B, white 

arrows) and often concentrated at sites of myofibril coupling between cells (Fig.2-1B, 

inset). 



 34 

We then examined the localization of other primary components of the ICD 

junctional complexes: AJ, desmosomes and gap junctions. As expected, the AJ proteins 

CTNNA1 (Fig. 2-1D) and CTNNB1 (Fig. 2-1E) showed patterns of localization identical 

to CDH2. Two desmosome proteins, JUP and plakophilin 2 (PKP2), also showed patterns 

of localization nearly identical to the AJ (Fig. 2-1E, G). JUP can bind directly to classical 

cadherins (221) and PKP2 can bind to CTNNA3 where it is thought to link the AJ to 

intermediate filaments at hybrid junctions, where AJ and desmosome proteins are mixed 

in mammalian hearts (54, 222). The desmosomal cadherin desmoglein 2 (DSG2) also 

concentrated at cell-cell contacts, but its localization was more restricted than the AJ with 

some contacts lacking DSG2 (Fig. 2-1D, white arrows mark CTNNA1 positive, DSG2 

negative contacts). Finally, the gap junction protein Connexin 43 (GJA1) showed a 

punctate pattern of localization along contacts (Fig. 2-1F). Thus, the primary ICD 

junctional complexes are recruited to neonatal cardiomyocyte cell-cell contacts. 

We then sought to define the actin architecture at contacts. We used platinum 

replica electron microscopy (PREM) to examine actin organization with single filament 

resolution (223). Cardiomyocytes are enshrouded by a dense cortical cytoskeleton that 

masks the underlying myofibril network and its association with junctional complexes (Fig. 

2-1H, junctions highlighted in purple). We then used thin section transmission electron 

microscopy (TEM) to examine junction architecture. Thin section TEM revealed myofibrils 

coupled along electron-dense contacts (Fig. 2-1I, J; junction highlighted in purple). The 

contacts are highly convoluted, and many nascent junctions adopt a chevron-like 

appearance (Fig. 2-1J). In addition to adherens junctions, desmosomes and gap 

junctions are also observed (Fig. 2-1J), consistent with the immunostaining. Importantly, 
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the junctional topology of cultured cardiomyocytes is similar to that observed in adult 

hearts, where the angled junctions may help to balance shear versus tensile stresses 

during contraction (224). Taken together, we conclude that neonatal cardiomyocytes build 

junctional complexes with many of the organizational and structural hallmarks of adult 

heart tissue. 
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Figure 2-1 Cardiomyocyte cell-cell contact organization and architecture. 
 
A-G. Mouse neonatal cardiomyocytes plated to confluency, fixed 48-72 hrs post-plating and stained 

for: F-actin and CDH2 (A & B), F-actin and ACTN2 (C), CTNNA1 and DSG2 (D), CTNNB1 and JUP 

(E), CDH2 and GJA1 (F), and JUP and PKP2 (G). Individual channels and merge shown. All images 
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are maximum projections of deconvolved Z-stacks. In (B), the white arrows mark gaps in CDH2 

staining along contacts and the inset is a magnification of the boxed contact that highlights myofibril 

integration at contacts. In (D), white arrows mark CTNNA1 positive, DSG2 negative contacts. H. 

Platinum replica electron microscopy image of two connected cardiomyocytes. Cell-cell contact is 

highlighted in purple. I-J. Thin section electron microscopy images of cardiomyocyte cell-cell junctions. 

In (I), the cell-cell contact is highlighted in purple, white arrows point to Z-discs and the white bar 

defines a membrane-proximal sarcomere. In (J), desmosome (D), gap junction (GJ) and adherens 

junction (AJ) are labeled. Scale bar is 20 µm in A; 10 µm in B-G; 500 nm in H; 1 µm in I; 500 nm in J. 

2.3.2  Adherens junction proteins dynamics 

We next examined the dynamics of CDH2 and associated catenin proteins in 

cardiomyocytes. GFP-tagged CDH2, CTNNB1, JUP, CTNNA1 and CTNNA3 were 

individually transfected into cardiomyocytes. All fusion constructs localized to cell-cell 

contacts, as expected (Fig. 2-2A). Protein dynamics were measured by fluorescent 

recovery after photobleaching (FRAP) in dense cells that had been plated for 48-72 hours 

(Fig. 2-2A). Fluorescence recovery over ten minutes was quantified, plotted and fit to 

double exponential curve (Fig. 2-2B). The mobile fractions of junctional CDH2 (34.4%), 

CTNNB1 (32.3%), JUP (26.5%), CTNNA1 (36.4%) and CTNNA3 (36.1%) were all similar 

to each other (Fig. 2-2C). Notably, these fractions were nearly identical to those observed 

in epithelial cells (43) indicating that the majority (~2/3) of cadherin/catenin complexes 

are immobile components of the AJ plaque. 

We then assessed the recovery rates of the mobile fractions for both the fast and 

slow pools (Fig. 2-2C). For the cytoplasmic catenins, the fast pool recovery halftimes 
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(6.6–13.4 sec) could reflect an unbound, cytosolic population of protein near cell contacts. 

Alternatively, the pool could be caused by photoswitching (225). The fast pool recovery 

of the transmembrane CDH2 (24.9 sec) likely represents photoswitching because we do 

not expect diffusion of new CDH2 during this initial time frame. Importantly, the fast pool 

for all components is relatively small (16–27%) and the slow pool represents the dynamics 

of the majority of the junction population. Here, the half-times of fluorescence recovery 

were also similar: CDH2 (315.2 sec), CTNNB1 (255.2 sec), JUP (237.6 sec), CTNNA1 

(360.0 sec) and CTNNA3 (221.5 sec). This reflects the tight associations between core 

components of the cadherin-catenin complex (44)  and suggest that the multiprotein 

complex is exchanged as a unit along contacts. While E-cadherin (CDH1), CTNNB1 and 

CTNNA1 were found to have similar rates of recovery at epithelial cell-cell contacts, the 

rates were approximately an order of magnitude faster, in the realm of 26–40 sec (43). It 

is unclear what underlies this difference, but it could reflect differences in CDH2-mediated 

trans interactions (104, 226) or stronger association with the actin cytoskeleton. Together, 

our results suggest that cardiomyocytes form stable AJs with properties similar to 

epithelia. 
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Figure 2-2 Adherens junction protein dynamics at cardiomyocyte cell-cell contacts. 
 
A. Representative prebleach, postbleach and recovery images from FRAP studies of cells expressing 

GFP-tagged CDH2, CTNNB1, JUP, CTNNA1 or CTNNA3. Yellow arrows mark the FRAP region along 

a cell-cell contact. B. Plot of FRAP recovery fraction over time. At each time point, the mean recovery 

fraction is shown as a black circle and the standard deviation is represented by black lines. The data 

were fit to a double exponential curve (orange line). The number of experiments and number of FRAP 

contacts quantified for each protein is shown in grey (# experiments/# FRAP contacts) C. Summary 

of the mobile fraction (as percentage) and recovery halftimes (fast and slow pools). The percentage 

of the fast pool also listed. Scale bar is 50 µm in A. 
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2.3.3  Cdh2-BioID2 biotinylates proteins at cardiomyocyte cell-cell contacts 

Given the unique structural and mechanical qualities of cardiomyocyte cell-cell 

contacts, we next sought to define the molecular complexes along the junctional 

membrane. We used proximity proteomics to identify proteins near CDH2 by fusing the 

biotin ligase BioID2 (184) to the C-terminal tail of Cdh2 (Fig. 2-3A). This technique has 

been used with success to define the CDH1 interactome in epithelia (186, 187) and define 

CTNNA1 force-dependent molecular interactions (188). We cloned the Cdh2-BioID2 

fusion into an adenoviral expression system and made Cdh2-BioID2 adenovirus that 

would allow us to infect primary cardiomyocytes and express low levels of Cdh2-BioID2 

for imaging and protein analysis (Fig. 2-3B). We were able to reproducibly infect >90% 

of cardiomyocytes at a low multiplicity of infection (MOI). The Cdh2-BioID2 fusion 

localized to cell-cell contacts (HA stain, Fig. 2-3C), similar to endogenous CDH2 (Fig. 2-

1A, B). Importantly, when biotin (50 µM) was added to the culture, Cdh2-BioID2 labeled 

proteins along cell-cell contacts (SA stain in Fig. 2-3E; compare to uninfected control in 

Fig. 2-3D). Biotin addition and concomitant labeling did not disrupt cell-cell contacts (Fig. 

2-3E) and optimal biotinylation was achieved after 24 hours (Fig. S2-1). In addition to the 

prominent junction labeling, a smaller population of biotinylated proteins was observed at 

Z-discs (Fig. 2-3F, G). Finally, we were able to precipitate biotinylated proteins from 

lysates of infected cells cultured with biotin (Fig. 2-3H). Thus, Cdh2-BioID2 localizes to 

cardiomyocyte cell-cell contacts and labels proximal proteins that can be isolated for 

proteomic analysis. 
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Figure 2-3 CDH2-BioID2 localizes to cell contacts and labels junctional proteins 
 
A. Cartoon schematic of CDH2-BioID2 fusion. B. Experimental workflow for infecting primary 

cardiomyocytes, labeling with biotin and protein fixation/isolation. All images are maximum projections 

of deconvolved Z-stacks. C-G. Staining of Cdh2-BioID2 infected cardiomyocytes. C. Cdh2-BioID2 

infected cardiomyocytes were stained for F-actin (magenta in merge) and HA (green in merge) to 

identify the HA-tagged fusion construct. D, E. Uninfected (D) and Cdh2-BioID2 infected (E) 

cardiomyocytes were stained for CTNNA1 and labeled with a streptavidin (SA) conjugated to CY3 to 

identify biotinylated proteins. F, G. Cdh2-BioID2 infected cardiomyocytes stained for ACTN2 and biotin 

(SA). (G) is a high mag image of the boxed region in (F) highlighting biotinylated proteins along Z-

lines. H. Streptavidin western blot of pulldowns from control and Cdh2-BioID2 infected 
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cardiomyocytes. Initial material (I), flow through (F) and precipitated material (P) marked. Scale bar is 

10 µm C-F; 5 µm in G. 

2.3.4  Quantitative proximity proteomics reveals the cardiomyocyte CHD2 

interactome 

We used quantitative mass spectrometry (MS) to define the CDH2 interactome. 

For each replicate, 4 million cells were infected with Cdh2-BioID2 adenovirus, biotin was 

added to the media and the cells were harvested following the workflow in Fig. 2-3B. 

Uninfected control samples were treated identically to Cdh2-BioID samples (i.e., 50 µM 

biotin added 48 hrs post-plating and cells harvested 24 hrs after biotin addition). Six Cdh2-

BioID2 replicates and six control replicates were collected and analyzed. 

MS sample analysis revealed a total of 5117 peptides from 917 proteins (Fig. 2-

4A, B). The mean coefficient of variance for the Cdh2-BioID2 replicates was ~30% (Fig. 

S2-2). When single unique peptides were excluded, the list was reduced to 4687 peptides 

from 487 proteins (Fig. 2-4B). To define Cdh2-BioiD2 enriched proteins, we established 

thresholds of fold change ≥ 10 and p < 0.001 (Fig. 2-4A, dashed grey lines). These 

thresholds culled the list to a final 365 proteins from 354 genes (Fig. 2-4B). 

The relative abundance of these 365 proteins is plotted in Fig. 2-4C and the 35 

most abundant proteins are listed in Table 2-1. Among the most abundant proteins were 

core components of the AJ, including CTNNB1, JUP, CTNND1 and CTNNA1. These 

same proteins were also abundant in the CDH1 interactome (186, 187). The desmosome 

components DSG2 and PKP2 were also abundant hits, as were CTNNA3 and the α-
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catenin ligands vinculin (VCL) and afadin (AFDN) (47, 227–229). The abundance of 

desmosomal proteins DSG2 and PKP2 could reflect the proximity of AJs and 

desmosomes along developing cardiomyocyte junctions and/or the proposed 

intermingling of junctional components in hybrid junctions (55). The enrichment of VCL 

and AFDN, two actin-binding proteins that help anchor the AJ to actin (230, 231), likely 

reflects the importance of these proteins in connecting the AJ to the myofibril network. 
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Figure 2-4 Quantitative mass spectrometry identifies CDH2 interactome 

A. Plot of p value (-Log10) versus fold change (Log2) of identified proteins. Dashed grey lines mark p 

= 0.001 (y axis) and fold change = 10 (x axis). B. Summary of identified peptides and proteins. C. Rank 

plot of abundance (iBAQ mass, Log2). Proteins of interest are marked as red circles and labeled. D. 

Protein distribution by assigned category based on number (top pie chart) or abundance (iBAQ) 

(bottom pie chart). E. Venn diagram of CDH2 interactome in cardiomyocytes (green) versus CDH1 

interactome from epithelial cells (red). 169 proteins are shared (orange). Distribution of the CDH2 only 

pool (minus CDH2, 184 proteins) based on number (left) or abundance (right). F, G. IPA enrichment 

analysis of CDH2 only (green), CDH2/CDH1 shared (orange) and CDH1 only (red) groups in canonical 

signaling pathways (F) or disease and function (G). Abbreviations: AJ, Adherens Junction; CM, 

Cardiomyopathy; GC, Germ Cell; GI, Gastrointestinal; LI, Large Intestine; NH; Nonhematologic; SC, 

Sertoli Cell. 

2.3.5  The cardiomyocyte CDH2 interactome is distinct from epithelial CDH1 

interactome 

We assigned each of the 354 genes in the Cdh2-BioID2 interactome into one of 

20 functional categories according to information from Uniprot, GeneCards and Entrez 

(Fig. 2-4D), similar to (187). By number, the categories with the most hits were 

Trafficking/Golgi/ER (17%), Adaptor (15%) and Actin Binding Adaptor (12%). However, 

when considering protein abundance (iBAQ), the top categories were Adhesion Receptor 

(36%), Adaptor (24%), Protein Degradation (14%) and Actin Binding Adaptor (8%) (Fig. 

2-4D). Given the substantial, electron-dense structures built along cardiomyocyte AJs 

(Fig. 2-1I, J), the abundance of adaptor proteins and adhesion receptors could function 

to help couple myofibrils between cardiomyocytes. 
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Table 2-1 35 most abundant proteins in the CDH2 interactome 

 

CDH2 specific hits are in bold. 

We then compared the Cdh2-BioID2 hits with CDH1 interactome from epithelia 

(186, 187). There are 169 proteins shared between the two interactomes (Fig. 2-4E) and 
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185 proteins unique to CDH2 in cardiomyocytes. The distribution of the CDH2-only hits 

was similar to the entire population (Fig. 2-4D), with adaptor proteins forming the largest 

class in number and abundance (Fig. 2-4E). Actin-binding adaptors, adhesion receptors 

and cytoskeletal motor proteins were also enriched in the CDH2-only pool (Fig. 2-4E). By 

abundance, adaptor proteins (Adaptor, Actin Binding Adaptor and Membrane Binding 

Adaptor classes) account for 65% of the CDH2-only pool, highlighting the specialized 

molecular machinery required for intercellular adhesion in cardiomyocytes. 

To gain further insight into the potential similarities and differences between CDH2 

and CDH1 interactomes, we performed enrichment analysis using Ingenuity Pathway 

Analysis (IPA). We examined the CDH2, CDH1 and CDH2/CDH1 protein sets in 

canonical signaling and disease & function pathways. The CDH1 and CDH2/CDH1 sets 

were both enriched for AJ, cell-cell and endocytosis signaling (Fig. 2-4F). In contrast, the 

CDH2-specific pool showed less enrichment overall, though the emergence of cardiac β-

adrenergic and calcium signaling pathways could reflect how the CDH2 interactome is 

tuned to cardiac function (Fig. 2-4F). The top enriched disease & function pathways for 

the CDH1 and CDH2/CDH1 protein sets were cellular organization and cancer-related 

categories (Fig. 2-4G). In contrast, the CDH2-specific pool was enriched for a variety of 

cardiomyopathies (Fig. 2-4G). These results suggest that, in cardiomyocytes, CDH2 

recruits and organizes unique molecular complexes to regulate cell-cell adhesion and 

signaling. 
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2.3.6  Differential gene expression contributes to the specialized adhesion 

complexes in cardiomyocytes 

During development, differential gene expression plays an essential role in 

establishing cell identity and function. Underlying their specialized role in cardiac 

contraction, cardiomyocytes express a unique set of genes. To determine if differential 

gene expression contributes to the CDH2 interactome, we identified cardiomyocyte or 

heart enriched genes in gene expression profiling data and compared these enriched 

genes to the CDH2, CDH1 and shared protein sets. We identified 1319 cardiomyocyte-

enriched genes (CEGs) from RNA sequencing (RNA-seq) data collected at 11 points 

during the differentiation of human induced pluripotent stem cells (hiPSCs) to 

cardiomyocytes (232). CEGs comprised 22% (78/354) of the CDH2 interactome. 

Comparative analysis revealed that 52 CEGs were unique to CDH2 (Fig. 2-5A), 

representing 28.1% (52/185) of the CDH2 hits (Fig. 2-5C). In contrast, the number of 

CEGs present in the CDH1 or CDH2/CDH1 sets was lower, representing just 4.6% and 

15.3%, respectively, of the hits for each class (Fig. 2-5C). We also calculated the 

percentage of CDH2, CDH1 and CDH2/CDH1 CEGS in the total CEG pool (1319 CEGs). 

Fisher’s exact test indicated that CEGs were highly enriched in the CDH2 and 

CDH2/CDH1 sets, but not the CDH1 set (Fig. 2-5C). 
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Figure 2-5 Differential gene expression contributes to the cardiomyocyte CDH2 
proteome 

 
A. Heat map of CDH2 or CDH2/CDH1 expression profiles during iPSC differentiation into 

cardiomyocytes (CM), day 0 (D0) to day 15 (D15). B. Heat map of CDH2 or CDH2/CDH1 expression 

profiles in mouse tissues. Ag (adrenal gland), Br (brain), Fs (fore stomach), He (heart), Ki (kidney), Li 
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(liver), Lin (large intestine), Lu (lung), Mu (muscle), Ov (ovary), Sin (small intestine), Sp (spleen), Te 

(testis), Th (thymus), Ut (uterus) and Vg (vesicular gland). C, D. Top, % BioID Class as CEGS/HEGs: 

percentage of each BioID class as cardiomyocyte enriched genes (CEGs) or heart enriched genes 

(HEGs). Bottom, % CEG Total: fraction of those BioID CEGs/HEGs in the total CEG/HEG population. 

P value of Fisher’s exact test shown. Significant values are in bold. 

 

We also analyzed tissue-enriched genes from adult mice. Using RNA-seq data 

from mouse tissues (233), we identified 504 heart-enriched genes (HEGs). HEGs 

comprised 10.7% (38/354) of CDH2 interactome. Of those, 30 HEGs were present in the 

CDH2 unique set, representing 16.1% of the CDH2 hits and 6.0% of total HEGs (Fig. 2-

5B, D). HEGs were highly enriched in the CDH2 and CDH2/CDH1 sets, but not the CDH1 

set (Fig. 2-5D). Similar results were observed in gene expression data from human 

tissues (Fig. S2-3). Together, these results suggest that cardiomyocyte and heart 

signature gene expression contribute significantly to the CDH2 interactome. Nonetheless, 

these enriched genes contribute to approximately 10-20% of the CDH2 interactome. The 

remaining 80-90% of the CDH2 interactome reflects distinct recruitment and organization 

at the protein level. Thus, while differential gene expression is a significant contributor to 

interactome identity, the primary driver of AJ specialization in cardiomyocytes is the 

recruitment of universal adaptor proteins to build specific, multiplex protein complexes. 

2.3.7  CDH2 interactome protein network 

To better understand how molecular complexes could be assembled at 

cardiomyocyte AJs, and how these complexes might differ from epithelia AJs, we 
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connected and organized the CDH2 interactome (Fig. 2-6A). We defined a new 

interactome group – ICD proteins (curated from the human protein atlas (234)) – and 

compared it to the CDH2 and CDH1 interactomes. The three-way comparison (Fig. 2-6B) 

defined four groups of proteins: CDH2, CDH2/CDH1, CDH2/ICD and CDH2/CDH1/ICD 

(Fig. 2-6A). All proteins were color-coded to match their assigned group. We then 

constructed a hierarchical classification with CDH2 at the top (see Methods for details). 

All protein-protein interactions were based on published, experimental data. The 

classification produced four tiers of interactors: 11 primary, 62 secondary, 177 tertiary and 

48 quaternary (Fig. 2-6A). 52 of the Cdh2-BioID hits could not be connected to any other 

protein in the network. The hierarchal organization reveals that the percentage of Cdh2-

BioID unique hits (green) increases from 0 to 70% as the distance from CDH2 increases, 

whereas the percentage of CDH2/CDH1 (orange) and CDH2/CDH1/ICD (pink) groups 

decreases from >90% to 25% (Fig. 2-6C, D). This suggests that the primary complex (1° 

and 2° tiers) is largely shared between CDH2 and CDH1, but that specific, specialized 

interactors are recruited outside (3° and 4° tiers) the primary complex to regulate junction 

assembly and function in cardiomyocytes. Also noteworthy is the abundance of CDH2 

(green) hits versus CDH2/ICD (purple) or CDH2/CDH1/ICD (pink) hits. These green-

labeled proteins reflect potentially new, previously unassigned ICD components with 

potential roles in cadherin and cardiomyocyte adhesion biology. 
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Figure 2-6 Cardiomycoyte CDH2 interactome 
 
A. Interaction network of CDH2 interactome organized into four tiers based using Ingenuity Pathway 

Analysis. All protein-protein interactions supported by published, experimental data. Hierarchical 

classification was done manually around CDH2. Primary interactors bind CDH2 directly. Secondary 

interactors bind primary interactors but not CDH2. Tertiary interactors bind secondary interactors. 

Quaternary interactors bind tertiary interactors or to outermost tier proteins. Bottom left legend defines 

group classification. B. Venn diagram between CDH2 interactome, CDH1 interactome and ICD 
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curated proteins. C. Distribution of groups within each interactome tier. D. Distribution of tier and 

unconnected proteins within each group and the total collection. 

2.3.8  Identified adapter proteins localize to cell-cell contacts 

Cardiomyocyte AJs must connect contractile myofibrils, placing unique demands 

on the proteins that physically connect actin to the cadherin complex. We identified over 

100 adaptor proteins in the CDH2 interactome (Fig 2-4D, adaptor, actin binding adaptor 

and membrane binding adaptor) and nearly half of these adaptor proteins bind actin or 

regulate actin dynamics (Fig. 2-6A, actin-associated proteins highlighted with yellow), 

including the actin-binding proteins VCL and AFDN, both top-ranked hits (Fig. 2-4C and 

Table 2-1). We examined the localization of 27 adaptor and actin-associated proteins by 

transiently expressing fluorescently-tagged proteins in cardiomyocytes (Fig. 2-7, Fig. S2-

4). Seventeen of the tested proteins localized to cell-cell contacts (Fig. 2-7A-F, Fig. S2-

4A; summarized in Fig. 2-7G). FRMD4A, VCL, AFDN and FBLIM1 localized primarily to 

cell-cell contacts (Fig. 2-7A-D). As expected, VCL also localized to cell-substrate contacts 

(Fig. 2-7B). AFDN and FBLIM were also present at Z-discs (Fig. 2-7C, D). Supervillin 

(SVIL) and Synaptopodin 2 (SYNPO2) localized primarily to Z-discs but were also 

observed colocalizing with CDH2 at contacts (Fig. 2-7E, F; Fig. S2-4B). Representative 

images for showing the localization of PLEKHA6, TJP1 (paralog of TJP2), CTTN, EMD, 

DAAM1, LDB3, FERMT2, TMOD1, BCAR1, NEXN and FILIP1 are shown in Fig. S4A. 

DBN1 formed filamentous structures along the actin cytoskeleton with limited localization 

to cell-cell contacts and LNPK localized to the endoplasmic reticulum (Fig. S2-4A). The 

remaining eight proteins were primarily cytoplasmic or formed aggregates when 
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overexpressed (Fig. S2-4A). These could represent false positives, though three of the 

hits – PARVA, COBLL1 and TLN1 – have been reported to associate with CDH1 (Guo, 

2014). Notably, 9 of the 17 proteins recruited to cell-cell contacts are unique to the CDH2 

interactome (Fig. 2-7H, highlighted in green) and represent proteins that could promote 

AJ specialization in cardiomyocytes. 

2.3.9  Dynamic shuttling between AJs and Z-discs 

The ICD can be thought of as the terminal Z-disc because, for a membrane-

tethered myofibril, the ICD functions as the terminal end of the sarcomere (Fig. 2-1I). Our 

localization analysis identified 4 proteins with strong localization to Z-discs and cell-cell 

contacts: SYNPO2, SVIL, EMD and LDB3 (Fig. 2-7E, F; Fig. S2-4A). In Cdh2-BioID2 

expressing cardiomyocytes, biotinylated proteins were detected at cell-cell contacts as 

well as at Z-discs (Fig. 2-1 3G, H). We questioned if proteins could shuttle between the 

AJ and Z-discs. We first analyzed the dynamics of GFP-tagged SYNPO2 and SVIL by 

FRAP (Fig. 2-7I, J). Both proteins were dynamic, with large mobile fractions (~75%) and 

fast recovery halftimes (97 for SYNPO2 and 73 seconds for SVIL). We then tracked the 

movement of SYNPO2 further using the photoconvertible protein mEos3.2. 

Photoconverted SYNPO2-mEos3.2 shuttled from Z-discs or cell-cell to distal Z-discs 

within minutes (Fig. 2-7K, L). We speculate that Z-disc proteins are recruited dynamically 

to the AJ to promote myofibril assembly and integration along cell-cell contacts. Thus, the 

ICD AJ plays an important role in guiding both cardiomyocyte adhesion and cytoskeleton 

organization. 
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Figure 2-7 CDH2 interactome proteins localize to cell-cell contacts and z-discs 

A-F. Cardiomyocytes transfected with GFP-tagged Cdh2-BioID hits. Cells were fixed 24 hours post-

transfection and stained for Cdh2 and F-actin. All images are maximum projections of deconvolved Z-

stacks. Individual and merged GFP (green) and CDH2 (magenta) channels shown. Far right column 

is a magnification of boxed contact in Merge image. G. Summary of GFP-Cdh2-BioID interactome 

localization to cell-cell contacts, Z-discs, cytosol or other. Full circle indicates robust localization; half 

circle indicates modest localization. Proteins highlighted in green are unique to the CDH2 interactome. 

Representative images for PLEKHA6, TJP1 (paralog of TJP2), CTTN, EMD, DAAM1, LDB3, FERMT2, 

TMOD1, BCAR1, NEXN and FILIP1 are shown in Fig S4. H, I. Plot of FRAP recovery fraction over 

time for SYNPO2 (30 FRAP regions from 2 experiments) and SVIL (18 FRAP regions from 2 

experiments) at Z-discs. At each time point, the mean recovery fraction is shown as a black circle and 

the standard deviation is represented by black lines. The data were fit to a single exponential curve 

(orange line). Mobile fraction percentage (MF) and recovery halftimes (t1/2) listed. SYNPO2 data is 

from 30 FRAP regions from 2 independent experiments; SVIL data is from 18 FRAP regions from 2 

independent experiments. J. Dynamics of photoconverted SYNPO2-mEos3.2 in transfected 

cardiomyocytes. Green channel shows total SYNPO2-mEos3.2 protein. Red channel shows 

photoconverted protein before activation (-20 sec (seconds)), immediately after photoconversion (0 

sec (PC)) and after 320 sec. Bottom montage shows a magnified view of photoconverted protein 

(boxed region in top right 320 sec panel) over time. K. Quantification of photoconverted SYNPO2-

mEos3.2. Mean percentage of photoconverted protein (red signal) for the photoconverted area (PC 

region, red line), Z-disc 2-3 microns outside the photoconverted region (Proximal Z-disc, orange line) 

and cytoplasm 2-3 microns outside the photoconverted region (Cytoplasm, purple line) plotted over 

time. Dashed lines and grey region around mean define the standard error of the mean. Time of 

photoconversion marked with a blue arrow. Data is from 12 photoconverted cells from 2 independent 

experiments. Scale bar is 10 µm in A-F, J. 
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2.4 Discussion 

Our results provide new details into the architecture of the developing ICD and 

define the proteins that organize the AJ in cardiomyocytes. This work builds off past 

studies of the cadherin-catenin interactome in epithelia (186–188) to expand the AJ 

protein atlas to include the cardiomyocyte, a unique contractile system. Our molecular 

and proteomics data reveal how the cardiomyocyte AJ recruits a unique set of 

cytoskeletal, scaffold and signaling proteins to build this critical mechanical junction and 

guide cardiomyocyte organization and adhesion. 

2.4.1  Core adhesion complexes are conserved 

The cadherin-catenin complex is recruited to developing contacts and, not 

surprisingly, the catenins (CTNNB1, JUP, CTNND1, CTNNA1, CTNNA3) are among the 

most robust hits in the CDH2 proteomic screen (Table 2-1). FRAP studies revealed that 

the complex is largely immobile (~1/3 is mobile) and that the entire complex is exchanged 

along contacts similar to epithelia (43), though the recovery rate is markedly slower 

(discussed below). These properties are not unexpected given current AJ dogma. 

Biochemical studies have demonstrated that β-catenin binds with high affinity to αE-

catenin and that the β-catenin/αE-catenin complex binds strongly to the cadherin tail to 

create a stable complex (44). The molecular interactions that underlie the core cadherin-

catenin complex are likely conserved between epithelia and cardiomyocytes. Consistent 

with this, Cdh1 expression can restore intercellular adhesion and myofibril coupling in 

cultured Cdh2-null cardiomyocytes (14) and ectopic, cardiac-specific expression of Cdh1 
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in Cdh2-null embryos can rescue early heart development (27). The ability of Cdh1 to 

rescue basic cadherin functions in Cdh2-deficient cardiomyocytes underscores how the 

core cadherin-catenin complex, and its basic properties, are conserved between epithelia 

and cardiomyocytes. 

The desmosome components DSG2, JUP and PKP2 were also among the more 

abundant proteins isolated in the proteomic screen (Table 2-1). DSG2 localization was 

more restricted than the AJ and appeared to be preferentially localized near sites of 

myofibril integration (Fig. 2-1D; Merkel and Kwiatkowski, unpublished observations). 

DSG2 (and desmosome development) may be favored at more stable or mature AJs, 

consistent with EM analysis (Fig. 2-1J). Interestingly, recent evidence suggests that 

CDH1 can recruit DSG2 through direct extracellular cis interactions to promote 

desmosome assembly at nascent contacts in epithelial cells (73). A similar interaction 

between CDH2 and DSG2 could promote desmosome assembly along cardiomyocyte 

junctions. In contrast to DSG2, JUP and PKP2 showed near identical localization patterns 

to the AJ (Fig. 2-1E, G). JUP can bind directly to classical cadherins (221) and was a 

robust hit in CDH1 proteomic screens (186, 187). PKP2, an armadillo protein related to 

CTNND1, is a multifunctional protein that binds desmosomal cadherins, JUP and 

desmoplakin (DSP) (235). We speculate that both JUP and PKP2 may be recruited to 

AJs during the initial stages of contact formation to promote desmosome assembly, 

similar to their proposed role in epithelia (59). Note that PKP2 can also bind directly to 

CTNNA3 and has been proposed to link the AJ to intermediate filaments at hybrid 

junctions, where AJ and desmosome proteins are mixed in mammalian hearts (54, 222).  
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2.4.2  AJ specialization is driven by ancillary adapter proteins 

We identified 365 proteins from 354 genes in the CDH2 interactome. Of these, 169 

hits were shared with the CDH1 interactome while 185 hits were unique to CDH2. By 

abundance, 65% of the CDH2 pool was composed of adaptor proteins (Fig. 2-4E). 

Analysis of the protein-protein interactions revealed that shared components occupied 

the inner tiers of the network whereas CDH2-specific adaptors occupied the outer tiers 

(Fig. 2-6A) The assembled interaction network reflects the hierarchy of protein binding 

required to form the molecular complexes along cardiomyocyte contacts. Critical to these 

assemblages are the catenin proteins, CTNND1, CTNNB1, JUP, CTNNA1 and CTNNA3. 

All catenin proteins are known to bind directly to a number of other proteins. For example, 

in addition to binding CTNNB1/JUP and actin, CTNNA1/CTNNA3 can interact with VCL, 

AFDN, PKP2 and ZO1/2 (6). These proteins, in turn, can associate with a wide-range of 

cytoskeletal and signaling proteins. We speculate that the catenins coordinate the 

organization of molecular complexes at the cardiomyocyte AJ to regulate adhesion and 

signaling. 

Collectively, the primary function of these adaptor proteins is likely to strengthen 

the mechanical connection between the AJ and the actin cytoskeleton along the ICD 

membrane. Myofibrils are coupled to AJs at substantial, electron dense structures (Fig. 

2-1I, J), consistent with a large assemblage of proteins organizing into an adhesive 

plaque to anchor the contractile filaments. Likewise, the recovery halftime of the cadherin-

catenin complex at cardiomyocyte cell-cell contacts is an order of magnitude slower than 

at epithelial junctions (Fig. 2-3C; (43)), possibly due to stronger connections to the actin 
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cytoskeleton mediated through actin binding proteins. While adaptor proteins could 

function to strengthen the physical connection between the cadherin-catenin complex and 

actin, they might also promote actin and membrane architectures that function to mitigate 

the forces of contraction. For example, coupling to myofibrils at an angle along the ICD 

membrane (Fig. 2-1I, J) may help AJs withstand mechanical force during contraction. 

Membrane and actin-associated adaptor proteins could regulate the formation and 

maintenance of these unique ICD junctional topologies. 

Roughly 140 curated ICD proteins were not detected in the CDH2 interactome 

(Fig. 2-7B), including established CDH2-associated proteins like the gap junction protein 

Connexin 43 (GJA1). While we observed GJA1 along contacts in our cultured 

cardiomyocytes, the localization was punctate and differed from CDH2. The absence of 

GJA1 and other curated ICD proteins from our screen could be due to the physical 

limitations of BioID2-labeling (the range of biotinylation is limited to ~10 nm, (184)), the 

absence of surface lysines on a target protein for labeling and/or the maturity of the cell-

cell contacts in our system. Alternatively, it could reflect the segregation of molecular 

complexes along these contacts and highlight the specificity of AJ interactions. 

Conversely, only 13 of the 185 CDH2-specific hits are curated ICD proteins. The 

remaining 172 hits have not been associated with the ICD, thus expanding the atlas of 

proteins associated with cell adhesion in cardiomyocytes. Note, however, that biotin 

labeling can occur during many stages of a protein life cycle, thus some hits may not be 

ICD proteins and instead regulate CDH2 trafficking or degradation. In fact, 

Trafficking/Golgi/ER proteins were a significant fraction (12%, Fig. 2-4E) of the CDH2-

specific hits. Likewise, some hits could be false positives: of the 27 adaptor and actin-



 61 

associated proteins expressed as GFP-tagged fusions in cardiomyocytes, 8 were 

cytoplasmic or formed aggregates. However, the GFP tag or expression level could have 

interfered with the localization of many of these proteins, particularly since some (TLN1, 

PARVA and COBLL1) are shared with the CDH1 interactome and likely represent 

conserved interactors (187). Also, since proximity labeling occurs in intact, living cells, 

false interactions that may arise during cell lysis or precipitation are limited (236). 

Nonetheless, it is essential that any hit be verified by a secondary method (e.g., cell 

staining or coprecipitation), and we expect that future work will further define and refine 

the CDH2 interactome. 

2.4.3  The AJ and the Z-disc, linked through the myofibril sarcomere 

Cardiomyocytes must be coupled to create a functional syncytium and the AJ 

serves as the mechanical link between myofibrils and the ICD membrane. The contractile 

unit of the myofibril is the sarcomere whose lateral boundaries are defined by Z-discs 

where the barbed ends of actin filaments are interdigitated and crosslinked. Z-discs are 

connected to the lateral membrane (sarcolemma) and the surrounding extracellular matrix 

by specialized adhesive complexes called costameres. In cardiomyocytes, the AJ 

functions as the terminal Z-disc for the membrane proximal sarcomere (Fig. 2-1I). While 

cardiomyocyte organization almost certainly requires coordination between the AJ and Z-

disc/costamere (224), the molecular details remain largely unexplored and undefined. We 

identified a number Z-disc proteins in our proteomic screen (Table S2-1), including SVIL 

(237), SYNPO2 (238), EMD (239, 240), BAG3 (241), LDB3 (242), NEBL (243), PDLIM3 

& PDLIM5 (244), FHL1 (245), TTN (246) and ZYX (247). We observed that at least 4 – 
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SVIL, SYNPO2, EMD and LDB3 – localize to both Z-discs and cell-cell contacts (Fig. 2-

7E, F; Fig. S2-4A). We showed that SYNPO2 and SVIL are dynamic proteins and that 

SYNPO2 can shuttle between junctions and Z-discs. We speculate that the AJ recruits Z-

disc proteins to coordinate myofibril assembly and integration at contacts. Additional 

studies are expected to reveal how such coordination is regulated at the molecular level. 

2.4.4  The developing ICD in neonatal cardiomyocytes  

We took advantage of the innate ability of primary neonatal cardiomyocytes to 

reestablish cell-cell contacts in situ to express tagged AJ proteins and explore their 

dynamics and label CDH2-associated proteins. Primary neonatal cardiomyocytes plated 

on isotropic substrates form cell-cell contacts around their entire perimeter (Fig. 2-1), 

similar to cardiomyocytes in the developing and perinatal heart (157). The stereotypical, 

elongated cardiomyocyte morphology with aligned myofibrils and ICDs restricted to the 

bipolar ends develops postnatally (74, 157, 248), though the mechanisms of this 

polarization remain unclear. Thus, while our proteomic results offer a snapshot of the 

CDH2 interactome at developing cell-cell contacts rather than at mature ICDs, this 

transitional stage has in vivo relevance and these results provide a significant advance in 

defining the cadherin interactome in cardiomyocytes. In addition, we were able to 

generate quantitative MS data from a relatively small sample of cultured primary 

cardiomyocytes. A similar experimental protocol could be used to examine changes in 

the CDH2 interactome from mutant cardiomyocytes or from cardiomyocytes cultured 

under varying conditions (e.g., soft versus stiff substrates). Alternatively, it could be used 

to define the CDH2 proteome in differentiated iPSCs or modified to express in an AAV 
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system to examine the CDH2 proteome in vivo during heart development or disease. 

Future work is expected to build on this newly defined AJ network to provide important 

insight into how the molecular complexes that regulate AJ function change in response 

to injury or disease. 

2.5 Materials and Methods 

2.5.1  Plasmids 

Murine Cdh2 in pEGFP-N1 (CDH2-EGFP) was a gift from James Nelson. 

CTNNA3-EGFP was described previously (58). Plasmid pEGFP-C1-rat-l-afadin (AFDN) 

was gift from Yoshimi Takai (249). Plasmids mEmerald-JUP-N-14 (Addgene 54133), 

mEmerald-beta-catenin-20 (CTNNB1, Addgene 54017), mEmerald-alpha1-catenin-C-18 

(CTNNA1, Addgene 53982), mEmerald-ZO1-C-14 (TJP1, Addgene 54316), mEmerald-

Vinculin-23 (VCL, Addgene 54302), mEmerald-Talin-C-18 (TLN1, Addgene 62763), 

mEmerald-Parvin-N-16 (PARVA, Addgene 54215) and mEmerald-Migfilin-C-14 (FBLIM1, 

Addgene 54181) were gifts from Michael Davidson. Emerin pEGFP-C1 (EMD, Addgene 

61993) was a gift from Eric Schirmer (250). GFP-cortactin (CTNN1, Addgene 26722) was 

a gift from Anna Huttenlocher (251). EGFP-supervillin (SVIL, Addgene 13040) was gift 

from Elizabeth Luna (252). Drebin-YFP (DBN1, Addgene 40359) was a gift from Philip 

Gordon-Weeks (253). pEGFP Kindlin2 (FERMT2, Addgene 105305) was gift from 

Kenneth Yamada. pHAGE2 Lnp-mCherry (LNPK, Addgene 86687) was a gift from Tom 

Rapoport (254). HA-p62 (SQSTM1, Addgene 28027) was a gift from Qing Zhong (255). 
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pDONR223_TRIM55_WT (Addgene 81829) was a gift from Jesse Boehm, William Hahn 

and David Root (256). MCS-BioID2-HA (Addgene 74224) was a gift from Kyle Roux (184). 

pAdTrack-CMV (Addgene 16405) was a gift from Bert Vogelstein (257). Sqstm1 and 

Trim55 were subcloned into pEGFP-N1. 

To create the Plekha6, Frmd4a, Daam, Synpo2, Ldb3, Tmod1, Nexn, Filip1, Csrp1, 

Dpysl3, Cobll1 and Phldb1 constructs, RNA was first isolated and purified from adult 

mouse heart using an RNeasy Fibrous Tissue Mini kit (Qiagen) and reverse transcribed 

to create cDNA using Transcriptor High Fidelity cDNA Synthesis Kit (Roche). Gene 

specific primers were designed against the 5’ and 3’ ends of each gene to generate full-

length clones by PCR. PCR products were cloned directly into pEGFP-N1 (Plekha6, 

Synpo2, Ldb3, Nexn, Csrp1, Dpysl3, Cobll1 and Phldb1) or pEGFP-C1 (Frmd4a, Daam1, 

Tmod1 and Filip1) to create EGFP fusions. Synpo2 was also cloned into mEos3.2-N1 

(Addgene 54525), a gift from Michael Davidson and Tao Xu (258). Assembled clones 

were verified by sequencing. 

2.5.2  Antibodies 

Primary antibodies used for immunostaining were: anti-N-cadherin (1:250, Thermo 

Fisher Scientific 33-3900), anti-α-Actinin (1:250, Sigma A7811), anti-Desmoglein 2 

(1:250, Abcam ab150372), anti-αE-catenin (1:100, Enzo Life Science ALX-804-101-

C100), anti-β-Catenin (1:100, BD Transduction Laboratories 610154), anti-γ-Catenin 

(1:100; Cell Signaling 2309), anti-Connexin-43 (1:100, Proteintech 15386-1-AP), anti-

Plakophilin 2 (1:10, Progen 651101) and anti-HA (1:100, Sigma 11867423001). 
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Streptavidin-Cy3 (1:300, Jackson Immunoresearch 016-160-084) was used to label 

biotinylated proteins. Secondary antibodies used were goat anti-mouse or anti-rabbit IgG 

labeled with Alexa Fluor 488, 568 or 647 dyes (1:250, Thermo Fisher Scientific). F-actin 

was visualized using Alexa Fluor dye conjugated phalloidin (1:100-1:250, Thermo Fisher 

Scientific). 

2.5.3  Cardiomyocyte isolation and culture 

All animal work was approved by the University of Pittsburgh Division of Laboratory 

Animal Resources. Primary cardiomyocytes were isolated from Swiss Webster or Black 

6 mouse neonates (P1-P3) as described (58, 220). For protein isolation, Swiss Webster-

derived cardiomyocytes were plated onto 35 mm dishes (1 x 10^6 cells/dish) coated with 

Collagen Type I (Millipore). For immunostaining, cardiomyocytes were plated onto 35 mm 

MatTek dishes with 10 mm insets coated with Collage Type I. Cardiomyocytes were 

plated in plating media: 65% high glucose DMEM (Thermo Fisher Scientific), 19% M-199 

(Thermo Fisher Scientific), 10% horse serum (Thermo Fisher Scientific), 5% FBS (Atlanta 

Biologicals) and 1% penicillin-streptomycin (Thermo Fisher Scientific). Media was 

replaced 16 hours after plating with maintenance media: 78% high glucose DMEM, 17% 

M-199, 4% horse serum, 1% penicillin-streptomyocin, 1 µM AraC (Sigma) and 1 µM 

Isoproternol (Sigma). Cells were cultured in maintenance media for 2-4 days until lysis or 

fixation. 
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2.5.4  Immunostaining and confocal microscopy 

Cells were fixed in 4% EM grade paraformaldehyde in PHEM buffer (60 mM PIPES 

pH 7.0, 25 mM HEPES pH 7.0, 10 mM EGTA, pH 8.0, 2 mM MgCl2 and 0.12 M Sucrose) 

or PHM (no EGTA) buffer for 10 minutes, washed twice with PBS and then stored at 4°C 

until staining. Cells were permeabilized with 0.2% Triton X-100 in PBS for 4 minutes and 

washed twice with PBS. Cells were then blocked for 1 hour at room temperature in PBS 

+ 10% BSA (Sigma), washed 2X in PBS, incubated with primary antibodies in PBS + 1% 

BSA for 1 hour at room temperature, washed 2X in PBS, incubated with secondary 

antibodies in PBS + 1% for 1 hour at room temperature, washed 2X in PBS and then 

mounted in Prolong Diamond (Thermo Fisher Scientific). All samples were cured at least 

24 hours before imaging. 

Cells were imaged on a Nikon Eclipse Ti inverted microscope outfitted with a 

Prairie swept field confocal scanner, Agilent monolithic laser launch and Andor iXon3 

camera using NIS-Elements (Nikon) imaging software. Maximum projections of 3-5 µm 

image stacks were created and deconvolved (3D Deconvolution) in NIS-Elements (Nikon) 

for presentation. 

2.5.5  FRAP experiments 

FRAP experiments were conducted on a Nikon swept field confocal microscope 

(describe above) outfitted with a Tokai Hit cell incubator and Bruker miniscanner. Actively 

contracting cells were maintained at 37°C in a humidified, 5% CO2 environment. User-
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defined regions along cell-cell contacts (CDH2, CTNNB1, JUP, CTNNA1 and CTNNA3; 

Fig 2) or Z-discs (SYNPO2 and SVIL; Fig 7) were bleached with a 488 laser and recovery 

images collected every 5 or 10 seconds for 10 minutes. FRAP data was quantified in 

ImageJ (NIH) and average recovery plots were measured in Excel (Microsoft). For Fig 2, 

FRAP recovery plots represent data from >50 contacts from at least three separate 

transfections of unique cell preps. For Fig 7, FRAP recovery plots represent data from 30 

(SYNPO2) or 18 (SVIL) Z-discs from two independent transfections of unique cell preps. 

Curves were either fit to a double exponential formula (Fig 2) or a single exponential 

formula (Fig 7), whichever fit the recovery data the best, to determine the mobile fraction 

and half time of recovery in Prism (Graphpad). 

2.5.6  Photoconversion experiments 

Transfected cardiomyocytes were cultured and imaged similar to FRAP 

experiments. User-defined regions at contacts and Z-discs were photoconverted by 300 

millisecond exposure to a 405 laser and the dynamics of the photoconverted protein 

tracked every 10 seconds over 5 minutes. Photoconversion data was quantified in ImageJ 

(NIH) and changes in signal intensity measured over time in Excel (Microsoft) and plotted 

in Prism (Graphpad). To establish the photoconverted signal range for each event, the 

signal intensity of the red photoconverted protein in the region of interest was measured 

just before and immediately after exposure to the 405 laser. Photoconverted signal was 

also measured at a Z-disc and similar sized cytoplasmic region 2-3 microns from the 

photoconverted region over the course of the experiment. Changes in signal intensity of 

these proximal regions relative to the photoconverted region were plotted over time. 
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2.5.7  Electron Microscopy 

Cardiomyocytes were cultured on collagen-coated MatTek dishes and fixed as 

described above. After fixation and washing, cells were incubated with 1% OsO4 for one 

hour. After several PBS washes, dishes were dehydrated through a graded series of 30% 

to 100% ethanol, and then infiltrated for 1 hour in Polybed 812 epoxy resin (Polysciences). 

After several changes of 100% resin over 24 hours, cells were embedded in inverted 

Beem capsules, cured at 37°C overnight and then hardened for 2 days at 65°C. Blocks 

were removed from the glass dish via a freeze/thaw method by alternating liquid Nitrogen 

and 100°C water. Ultrathin (60nm) sections were collected on to 200-mesh copper grids, 

stained with 2% uranyl acetate in 50% methanol for 10 minutes and 1% lead citrate for 7 

minutes. Samples were photographed with a JEOL JEM 1400 PLUS transmission 

electron microscope at 80kV with a Hamamatsu ORCA-HR side mount camera. 

For platinum replica electron microscopy (PREM), cardiomyocytes were first 

washed with PBS and then extracted for 3 minutes in PHEM buffer (without fixative) plus 

1% TritonX-100 and 10 µM phalloidin (unlabeled). Following extraction, cells were 

washed 3x in PHEM buffer (without fixative) plus 5 µM phalloidin and fixed for 20 minutes 

in PHEM buffer plus 2% glutaraldehyde. Cells were washed and stored in PBS at 4°C 

until processing. Fixed samples were processed for PREM as described (259). Replicas 

were imaged in grids on the JEOL JEM 1400 PLUS transmission electron microscope 

described above. 
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2.5.8  Adenovirus production 

Mouse Cdh2 ORF was first amplified from CDH2-EGFP by PCR and cloned into 

MCS-BioID2-HA to fuse BioID2 to the C-terminal tail of N-cadherin. The Cdh2-BioID2 

fusion was then subcloned into pAdTrack-CMV plasmid. Recombinant adenovirus was 

produced by transforming the pAdTrack-CMV-Cdh2-BioID2 plasmid into pAdEasier-1 

E.coli cells (a gift from Bert Vogelstein, Addgene 16399) (257). Virus packaging and 

amplification were performed according to the protocol described by Luo and colleagues 

(260). Virus particles were purified using Vivapure AdenoPACK 20 Adenovirus (Ad5) 

purification & concentration kit (Sartorius). Adeno-X qPCR Titration Kit (Clontech) was 

used to calculate virus titer by quantitative PCR on an Applied Biosystems 7900HT. 

2.5.9  Adenovirus infection and biotin labeling 

Each experimental replicate included four 35 mm dishes with 1 x 10^6 cells each 

(4 x 10^6 total). Cardiomyocytes were infected one day after plating with Cdh2-BioID2 

adenovirus at an MOI of 2. 24 hours later (48 hours post-plating), the media was replaced 

with fresh maintenance media plus 50 µM biotin in both Cdh2-BioID2 infected and control 

uninfected samples. The next day (72 hours post-plating), cells were harvested for protein 

isolation and mass spec. Cell lysate preparation and affinity purification were performed 

according to published protocols (184, 185). 
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2.5.10  Western blotting 

Protein samples were separated on an 8% SDS-PAGE gel and transferred onto a 

PVDF membrane (Bio-Rad). The membrane was blocked in TBST + 5% BSA, washed in 

TBST, incubated with IRDye 680RD Streptavidin (1:1000, LI-COR) in TBST, washed 

twice in TBST and washed once in PBS. The membrane was scanned using a LI-COR 

Odyssey Infrared Imager. 

2.5.11  Mass spectrometry and statistical analysis 

All protein samples were run on precast Mini-PROTEAN TGX 10% SDS-PAGE 

gels (Bio-Rad) at 120 volts for 5 min so that the proteins migrated into the gel about 1 

cm2. Gels were stained in Coomassie blue and a single, ~1 cm gel slice was excised for 

each sample and submitted for processing. Excised bands were digested with trypsin as 

previously described (261). Briefly, the excised gel bands were destained with 25mM 

ammonium bicarbonate in 50% acetonitrile (ACN) until no visual stain remained and the 

gel pieces were dehydrated with 100% ACN. Disulfide bonds were reduced in 10mM 

dithiothreitol (DTT, Sigma-Aldrich Corporation) at 56°C for 1 hour and alkylated with 

55mM iodoacetamide (IAA, Sigma-Aldrich Corporation) for 45 minutes at room 

temperature in the dark. Excess DTT and IAA were removed by dehydration in 100% 

ACN before rehydration in 20 ng/µL trypsin (Sequencing Grade Modified, Promega 

Corporation) in 25 mM ammonium bicarbonate and digested overnight at 37°C. The 

peptides were extracted from gel pieces in a solution containing 70% ACN/5% formic and 

desalted with Pierce C18 Spin Columns (Thermo Fisher Scientific) according to 
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manufacturer’s protocol, dried in a vacuum centrifuge and resuspended in 18 µL of 0.1% 

formic acid. A pooled instrument control (PIC) sample was prepared by combining 4 µL 

from each of the 12 samples and used to monitor instrument reproducibility. 

Tryptic peptides were analyzed by nLC-MS/MS using a nanoACQUITY (Waters 

Corporation) online coupled with an Orbitrap Velos Pro hybrid ion trap mass spectrometer 

(Thermo Fisher Scientific). For each nLC-MS/MS analysis, 1 µL of peptides was injected 

onto a C18 column PicoChip 25 cm column packed with Reprosil C18 3 µm 120 Å 

chromatography with a 75 µm ID and 15 µm tip (New Objective). Peptides were eluted 

off to the mass spectrometer with a 66 minute linear gradient of 2-35% ACN/0.1% formic 

acid at a flow rate of 300 nL/min. The full scan MS spectra were collected over mass 

range m/z 375-1800 in positive ion mode with an FTMS resolution setting of 60,000 at 

m/z 400 and AGC target 1,000,000 ms. The top 13 most intense ions were sequentially 

isolated for collision-induced dissociation (CID) tandem mass spectrometry (MS/MS) in 

the ion trap with ITMS AGC target 5,000 ms. Dynamic exclusion (90s) was enabled to 

minimize the redundant selection of peptides previously selected for MS/MS 

fragmentation. 

The nLC-MS/MS data were analyzed with MaxQuant software (262, 263), version 

1.6.0.1. Briefly, the proteomic features were quantified by high resolution full MS 

intensities after retention alignment and the corresponding MS/MS spectra were searched 

with Andromeda search engine against the Uniprot mouse database (release November 

2017, 82,555 entries) (264). The mass tolerance was set at 20 ppm for the precursor ions 

and 0.8 Da for the ITMS fragment ions. Andromeda search included specific trypsin 

enzyme with maximum two missed cleavages, minimum of seven amino acids in length. 



 72 

Fixed modification carbamidomethyl (C), and variable modifications of oxidation (M), 

acetyl (Protein N-term), and deamidation (NQ) were considered. Protein identification 

threshold was set to 1% false discovery rate (FDR) as described previously (262). 

Proteins that exhibit statistically significant abundance between CDH2-BioID2 to 

control were selected as follows. Proteins with a single peptide identification were 

excluded from the data analysis and Student’s t-test on log2 transformed protein intensity 

was used for the statistical inference to select CDH2-BioID2 interacting proteins. A protein 

was considered a significant candidate if the t-test p-value was <0.001 and the fold 

change >10 when compared to the control. 

As a surrogate for protein abundance, MaxQuant iBAQ values were used for label-

free absolute quantification of identified proteins (265). The average iBAQ value for each 

protein was determined from the six replicates in the both CDH2 and control samples. 

The final iBAQ value was determined by subtracting the control average from the CDH2 

average. 

2.5.12  Bioinformatics analysis 

CDH1 BioID proximity proteomics results were from two previous studies (186, 

187). The ICD protein list was from a previous curation (234). Venn diagrams comparing 

the protein lists were generated using BioVenn (266). Pathway and disease & function 

enrichment analysis was performed using Ingenuity Pathway Analysis (IPA) tools 

(Qiagen). Gene expression data for the identification of HEGs (Heart Enriched Genes) or 

CEGs (Cardiomyocyte Enriched Genes) were from previous studies (232, 233, 267). The 
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heart or cardiomyocyte enriched genes were identified by the Gene Expression Pattern 

Analyzer (GEPA) algorithm at the threshold of fold change ≥2 (≥2.5 for cardiovascular 

differentiation from human embryonic cell data set) (268). Three types of expression 

patterns were selected: 1) exclusive high expression in cardiomyocytes or heart; 2) 

multiple high expression tissues/cells including heart/cardiomyocytes in which the sum of 

fragment per kilobase of exon per million reads (FPKM) was greater than the total sample 

number and the number of pattern samples was no greater than 4; and 3) “gradient” 

pattern with the highest expression in heart/cardiomyocytes and fold change of the 

highest and lowest expression is no less than 4. Fisher’s exact tests for 

overrepresentation analysis of HEGs or CEGs were performed using R (https://www.r-

project.org/). 

2.5.13  Protein network analysis 

The protein interaction map was generated using Ingenuity Pathway Analysis (IPA, 

Qiagen). Only protein-protein interactions supported by published, experimental data in 

the manually curated Ingenuity Knowledge Base were considered to build the network. 

Hierarchical classification was done by grouping the proteins manually using CDH2 at the 

core. Proteins that bind CDH2 directly were designated as primary interactors. Proteins 

that bind to primary interactors but not CDH2 were classified as secondary interactors. 

Proteins that bind secondary interactors were designated as tertiary interactors. Finally, 

proteins that bind tertiary interactors or to outermost tier proteins were defined as 

quaternary interactors. 52 proteins could not be linked to the protein network. 
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3.0 Vinculin anchors contractile actin to the cardiomyocyte adherens junction 

 

This chapter, at the time of this dissertation submission, is presently undergoing revisions 

at Molecular Biology of the Cell. 

 

3.1 Overview 

The adherens junction (AJ) couples the actin cytoskeletons of neighboring cells to 

allow mechanical integration and tissue organization. The physiological demands of 

intercellular adhesion require that the AJ be responsive to dynamic changes in force while 

maintaining mechanical load. These demands are tested in the heart, where 

cardiomyocyte AJs must withstand repeated cycles of actomyosin-mediated contractile 

force. Here we show that force-responsive cardiomyocyte AJs recruit actin-binding 

ligands to selectively couple actin networks and promote contact maturation. We 

employed a panel of N-cadherin-αE-catenin fusion proteins to rebuild AJs with specific 

actin linkages in N-cadherin-null cardiomyocytes. In this system, vinculin recruitment was 

required to rescue myofibril integration and desmosome assembly at nascent contacts. 

In contrast, loss of vinculin disrupted junction morphology and blocked myofibril 

integration. Our results identify vinculin as a critical link to contractile actomyosin and offer 
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insight to how actin integration at the AJ is regulated to provide mechanical stability and 

cellular organization. 

3.2 Introduction 

Adherens junctions link the actin cytoskeletons of adjacent cells to provide the 

foundation for multicellular tissue organization. The dynamic demands of cell-cell 

adhesion require that the AJ be both responsive and resilient to mechanical force. This is 

especially true in the heart, where the AJ must transmit the mechanical forces of 

actomyosin contraction while maintaining adhesive homeostasis. How the AJ balances 

mechanical integration with contractile force to maintain tissue integrity is not clear. 

Cardiomyocytes are linked through a specialized cell-cell contact called the 

intercalated disc (ICD). The ICD is the site of mechanical and electrical continuity between 

individual cardiomyocytes that allow the heart to function as a syncytium (7, 8, 210). Three 

junctional complexes form the ICD: the adherens junction (AJ), desmosome and gap 

junction. The AJ and desmosome are responsible for mechanical integration by coupling 

the actin and intermediate filament cytoskeletons, respectively, of neighboring cells. Gap 

junctions permit electrical continuity through the free flow of ions. Importantly, the ICD AJ 

is the site of myofibril integration between cardiomyocytes and allows contractile force to 

be transduced across heart tissue (14). 

The core of the AJ is the cadherin-catenin complex (15, 16). N-cadherin, the sole 

classical cadherin expressed in cardiomyocytes (17), is a single-pass transmembrane 
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protein with an extracellular domain that mediates homotypic, calcium-dependent 

interactions (23, 24). The adhesive properties of classical cadherins are driven by the 

recruitment of cytosolic catenin proteins to the cadherin tail: p120-catenin binds to the 

juxtamembrane domain and β-catenin binds to the distal part of the tail. β-Catenin, in turn, 

recruits α-catenin to the cadherin-catenin complex. α-Catenin is an actin-binding protein 

and the primary link between the AJ and the actin cytoskeleton (21, 41, 42, 45). 

AJ binding capabilities are modified by the forces of actomyosin contraction, 

largely through changes in α-catenin conformation (50, 218). Force induces a 

conformational change in the central M-domain of αE-catenin to reveal binding sites for 

ligands, many of which bind F-actin (46, 109, 110, 120, 231, 269). The force required to 

unfurl αE-catenin (5pN) is well within the range of a myosin motor, demonstrating the 

physiological relevance for this model of regulation (50, 111). The recruitment of actin-

binding proteins in response to force is thought to help anchor actin to the AJ (270). 

Cardiomyocytes have at least two distinct actin networks at cell-cell contacts – 

myofibrils and the cortical cytoskeleton (151) – that must be integrated at AJs. Many actin-

binding ligands interact with αE-catenin, including vinculin, afadin, ZO-1 and Eplin (271). 

In epithelia, vinculin is recruited to αE-catenin in a force-dependent manner and this 

interaction is thought to be important for reinforcing the αE-catenin:actin interaction (120, 

231, 272). Likewise, epithelial afadin can also bind αE-catenin in a force-dependent 

manner (269), where it functions to strengthen the AJ under tension (208). Both vinculin 

and afadin localize to the ICD (222, 273) and are recruited to cardiomyocyte AJs (151). 

Vinculin is required for proper heart development and functions in cardiomyocyte 
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adhesion and contraction (192, 197). Afadin was recently identified as having a 

cardioprotective role at the ICD, as mice lacking afadin were shown to be more 

susceptible to stress-induced injury and myopathy (209). How vinculin and afadin function 

in mechanical coupling at cardiomyocyte AJs is not well understood. 

Here we sought to define the individual functions of αE-catenin, vinculin and afadin 

in coupling actin to cardiomyocyte AJs. We demonstrate that cultured neonatal 

cardiomyocytes recruit vinculin and afadin to AJs in a force-dependent manner, similar to 

epithelia. We show that loss of N-cadherin in cardiomyocytes disrupts cell-cell adhesion 

and dissolves junctional complexes. These phenotypes defined in our in situ loss-of-N-

cadherin system are strikingly similar to those shown for in vivo models (17). We 

developed a series of N-cadherin:αE-catenin fusions to test how AJ ligand recruitment 

and actin-binding influences junctional complex assembly, cell contact architecture and 

myofibril coupling. We show for the first time that vinculin recruitment to the AJ is 

necessary to couple myofibrils to the developing cell-cell contacts in cardiomyocytes. Our 

results offer new insight into actin linkage to the AJ and identify vinculin as the key link 

between contractile actin networks and the cardiomyocyte AJ. 
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3.3 Results 

3.3.1  Force regulates α-catenin ligand recruitment to cardiomyocyte AJs 

Vinculin and afadin are recruited to epithelial AJs in a force-dependent manner 

(120, 231, 269, 272). Vinculin and afadin localize to the ICD in adult heart and proximity 

proteomics revealed that both are enriched at the AJ in cultured neonatal cardiomyocytes 

(151). We sought to determine if vinculin and afadin recruitment to cardiomyocyte AJs is 

tension-dependent. Cultured cardiomyocytes were treated with 100 µM blebbistatin to 

suppress myosin activity for up to one hour and stained for vinculin or afadin (Figure 3-

1A-D). Cardiomyocytes ceased contraction within 30 seconds of blebbistatin addition 

whereas DMSO did not affect contraction (unpublished observation). In blebbistatin-

treated cells, both vinculin and afadin were significantly reduced at cell-cell contacts after 

one hour, with significant loss of vinculin seen after 30 minutes (Figure 3-1E and F). This 

is consistent with a requirement for tension at the AJ to recruit vinculin or afadin and 

indicates that nascent cardiomyocyte AJs retain the ability to respond to changes in 

mechanical force. 



 79 

 

Figure 3-1 Vinculin and afadin recruitment to cardiomyocyte AJs is force 
dependent 
 
A-D. Mouse neonatal cardiomyocytes were treated for 1 hr with DMSO (A or C) or 100 µM blebbistatin 

(B and D) before fixation. Cells were stained for F-actin (A-D), vinculin and plakoglobin (A and B), or 

afadin and αE-catenin (C and D). Images are max projections of 2-3 µm deconvolved stacks. Individual 

and merged vinculin (green) and plakoglobin (magenta) channels shown in A and B. Individual merged 

afadin (green) and αE-catenin (magenta) channels shown in C and D. Far right column is a 

magnification of the boxed contact in merge. E-F. Quantification of vinculin (E) or afadin (F) intensity 

at cell-cell contacts. Vinculin or afadin signal intensity was measured in cells treated with DMSO or 

blebbistatin for 10, 30 and 60 minutes before fixation. All data points are plotted. Middle horizontal bar 

is the median and error bars represent the quartile range. One-way ANOVA, n ≥ 60 images from at 

least 3 independent experiments. Scale bar is 10 µm in full images, 5 µm in zoomed images. 
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3.3.2  Loss of N-cadherin disrupts cardiomyocyte cell-cell contacts 

The force-responsive nature of cardiomyocyte AJs led us to question the roles of 

αE-catenin, vinculin and afadin in linking the AJ to actin. In order to individually test these 

roles, we developed a system to selectively recruit actin-binding ligands and thus control 

the actin-binding interfaces at the cardiomyocyte AJ. We first needed to establish a 

cadherin-null system in which to rebuild AJs. In intact mouse heart tissue, conditional 

ablation of N-cadherin causes dissolution of all AJ components as well as loss of all 

desmosomal and gap junction proteins at the ICD (17). We questioned if loss of N-

cadherin would disrupt ligand recruitment and junction organization in cultured neonatal 

cardiomyocytes. Cardiomyocytes from N-cadherin conditional knockout mice (Ncadfx/fx; 

(17)) were isolated and infected with adenovirus expressing Cre-recombinase (hereby 

referred to as Cre).  

In order to determine the time required for N-cadherin depletion post Cre-mediated 

recombination, we fixed Cre-infected cells at four different time points: 24, 48, 72 and 96 

hours post-infection and stained for N-cadherin (Figure 3-2A-E). At 24 hours post-

infection, N-cadherin levels appeared similar to uninfected cells (Figure 3-2A and B). At 

48 hours post-infection, N-cadherin levels remained high; however, cell-cell contacts 

began to appear jagged with N-cadherin clustering along more linear contacts (Figure 3-

2C). We speculate that declining N-cadherin levels are promoting AJ consolidation and 

altering junction morphology. Notably, at 72 and 96 hours post-infection, we observed a 

near complete loss of N-cadherin at cell-cell contacts (Figure 3-2D and E; Supplemental 

Figure S3-1A and B). 
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We next assessed cell contact formation and protein recruitment at 96 hours post 

Cre infection. In uninfected control cardiomyocytes, AJ markers N-cadherin, β-catenin 

and αE-catenin were recruited to cell-cell contacts (Figure 3-2F and G, left column). 

Likewise, αE-catenin ligands vinculin and afadin; the gap junction protein connexin 43 

(Cx43); and desmosomal markers desmoglein 2 (Dsg2, Figure 3-2H-K, left column), 

plakoglobin, and plakophilin 2 (Supplemental Figure S3-1C and D, left column) all 

localized to cell-cell contacts. In contrast, Cre expression dissolved cell-cell contacts and 

resulted in a loss of all AJ proteins, αE-catenin ligands, gap junctions and desmosomes 

(Figure 3-2H-K; Supplemental Figure S3-1C and D, right column). As expected, N-

cadherin is required for cell-cell adhesion in cultured cardiomyocytes and AJ formation is 

critical for the recruitment and organization of other junctional components. 

We sought to determine if cardiomyocyte cell-cell contacts can be restored with 

exogenous N-cadherin-GFP. Cardiomyocytes were sequentially infected with Cre and 

then N-cadherin-GFP adenovirus. Expression of N-cadherin-GFP restored cell-cell 

contacts and the localization of AJ, gap junction and desmosome proteins (Figure 3-3A-

F; Supplemental Figure S3-1E and F). The ability of N-cadherin-GFP to restore cell-cell 

contacts in an N-cadherin null background demonstrated the dynamic nature of this 

adhesion system and its tractability for probing cadherin and catenin function further. 
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Figure 3-2 Loss of N-cadherin disrupts adhesion protein localization 

A-E. Neonatal cardiomyocytes from Ncadfx/fx mice were uninfected (A) or  infected with adenovirus 

expressing Cre recombinase (B-E) and fixed over 4 days to assess N-cadherin expression. Cells were 

stained for F-actin (left panel) and N-cadherin (right panel). F-K. Control and Cre-infected neonatal 

cardiomyocytes from Ncadfx/fx mice were fixed 96 hours post-infection and stained for AJ components 

(F, G), AJ adapter proteins (H, I), gap junctions (J), and desmosomes (K). Images are max projections 

of 2-3 µm deconvolved stacks. Scale bar is 10µm. 
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Figure 3-3 N-cadherin-GFP rescues cardiomyocyte junctional complexes 

A-F. Neonatal Ncadfx/fx cardiomyocytes infected sequentially with adenoviruses expressing Cre and 

N-cadherin-GFP, fixed and stained for AJ-associated proteins (A-D), gap junctions (E) and 

desmosomes (F). Individual and merged N-cadherin-GFP (green) and ICD components (magenta) 

channels are shown. Far right column is a magnification of the boxed contact in the merge. Images 

are max projections of 2-3 µm deconvolved stacks. Scale bar is 10µm in full images, 5 µm in zoomed 

images. 
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3.3.3  N-cadherin-αE-catenin fusions selectively recruit αE-catenin ligands 

We designed a series of N-cadherin-αE-catenin fusion constructs to systematically 

delineate the individual and combined functions of αE-catenin, vinculin and afadin in AJ-

mediated cell-cell adhesion. Fusion constructs were created by taking the extracellular, 

transmembrane and p-120 binding domains of N-cadherin and fusing them to EGFP 

followed by the middle (M)-region and actin binding domain (ABD) of αE-catenin (Figure 

3-4A). The M-region of αE-catenin contains three separate domains: M1, M2 and M3. 

The vinculin binding site is found in M1 (46) and the afadin binding site spans M2-M3 (47) 

(Figure 1-2). The C-terminal tail of N-cadherin and the N-terminus of αE-catenin were 

removed to eliminate endogenous β-catenin and αE-catenin recruitment while allowing 

for proper N-cadherin trafficking (18–20). Within the N-cadherin-GFP-αE-catenin (Ncad-

GFP-αEcat) fusion, we introduced various mutations or domain deletions to restrict ligand 

recruitment and actin-binding interfaces. Ncad-GFP-M1-ABD mimics the core cadherin-

catenin complex as it possesses the αE-catenin ABD and contains both vinculin and 

afadin binding sites. Ncad-GFP-M1-M3 possesses the full M-region of αE-catenin but 

lacks the ABD and the ability to respond to tension. Ncad-GFP-M1-M2 has an open M-

domain that can bind vinculin constitutively but lacks the αE-catenin ABD and afadin 

binding domain (46). Two constructs were designed to selectively block vinculin 

recruitment while retaining afadin binding and actin binding through the αE-catenin ABD: 

Ncad-GFP-M1mutV-ABD, which contains 5 point mutations in M1 that ablate vinculin 

binding (129), and Ncad-GFP-M2-ABD, which lacks the entire M1 domain. Note that 

additional ligands may bind αE-catenin M2-M3: we focus on afadin recruitment and use 
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it as proxy for ligand binding to M2-M3. Lastly, Ncad-GFP-ABD lacks M1-M3, but retains 

the αE-catenin ABD. 

To validate fusion construct localization and ligand recruitment, we first transfected 

Ncad-GFP-αE-catenin fusion plasmids in to cadherin-deficient epithelial A431D cells 

(Supplemental Figure S3-2). A431D cells do not express classical cadherins but do 

express other components of the AJ as well as the AJ ligands vinculin and afadin. Thus, 

we could test the ability of the fusion constructs to restore cell-cell adhesion and 

selectively recruit ligands. All fusion constructs localized to cell-cell contacts and recruited 

the predicted ligands (Supplemental Figure S3-2A-G).  

We then tested the ability of Ncad-GFP-αEcat fusions to restore cell-cell contacts 

and selectively recruit vinculin or afadin in N-cadherin-null cells. Ncadfx/fx cardiomyocytes 

were sequentially infected with Cre plus individual adenoviral Ncad-GFP-αEcat fusions. 

We observed expression and proper localization of the fusion constructs by 24 hours 

post-infection, which continued through 72 hours post-infection, corresponding with the 

maximum loss of N-cadherin (Supplemental Figure S3-1G-M). All Ncad-GFP-αEcat 

fusions localized to the membrane and reestablished cell-cell contacts, though the gross 

morphology of these junctions differed markedly between constructs (Figure 3-4B-E). 

Ncad-GFP-M1-ABD recruited both vinculin and afadin (Figure 3-4G and K). This 

construct also allowed for formation of cell-cell contacts similar to Ncad-GFP (Figure 3-

4B, C, F and G), indicating that the static Ncad-GFP-αEcat fusion can substitute for the 

cadherin-catenin-complex. In contrast, Ncad-GFP-M1-M3, which lacked the ABD and the 

ability to bind actin or respond to tension, failed to recruit vinculin or afadin and formed 
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poorly organized contacts as expected (Supplemental Figure S3-2H). However, the 

constitutively active Ncad-GFP-M1-M2 enriched vinculin, but not afadin, and restored 

robust cell-cell contacts (Figure 3-4H and L). Ncad-GFP-M1mutV-ABD and Ncad-GFP-

M2-ABD both recruited afadin, but not vinculin, and generated long, linear contacts that 

lacked the jagged contact morphology found in controls (Figure 3-4E, I and M; 

Supplemental Figure S3-2 I). Lastly, Ncad-GFP-ABD formed poor contacts that failed 

to recruit vinculin but did display limited afadin recruitment (Supplemental Figure S3-2 

J). We speculate that this weak afadin recruitment to cardiomyocyte cell-cell contacts 

may be mediated by nectins (151, 274). Thus, we were able to specifically recruit αE-

catenin ligands to nascent cardiomyocyte contacts and observed morphological changes 

as a function of the selective association of AJ components. Notably, Ncad-GFP-M1-M2, 

which only recruits vinculin, formed cell-cell contacts similar to controls whereas Ncad-

GFP-M1mutV-ABD and Ncad-GFP-M2-ABD, which do not recruit vinculin, organized 

linear contacts (Figure 3-4B and D; Supplemental Figure S3-2 I). 
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Figure 3-4 N-cadherin-GFP-αE-catenin fusions selectively recruit ligands to 
cardiomyocyte cell-cell contacts 

 
A. Table of N-cadherin-GFP-αE-catenin fusion constructs used in this study. Nomenclature, domain 

schematic, and actin linkage cartoon shown. B-E. Lower magnification images (40X) of Ncadfx/fx 

cardiomyocytes infected with Cre and N-cadherin-GFP (B) or N-cadherin-GFP-αE-catenin fusion 

adenoviruses (C-E). Individual and merged EGFP (green) and actin (red) channels are shown. Images 

max projections of 5 µm stacks. F-I. Cardiomyocytes infected with Cre and N-cadherin-GFP (F) or 

fusion adenoviruses (G-I), fixed and stained for vinculin and afadin. Individual and merged EGFP 

(green), vinculin (red) and afadin (blue) channels shown. Images are a max projection of 2-3 µm 

deconvolved stacks. Bottom image is a magnification of boxed contact. J-M. Quantification of vinculin 

and afadin intensities at cell-cell contacts. Signal intensity at contacts was divided by the average 

cytoplasmic intensity and a scatter plot of all data points is shown. The black horizontal line is the 

median and the error bars define the interquartile range. The shaded gray region in each plot defines 

the median (thick gray line) and interquartile range (thin gray lines) of vinculin or afadin recruitment 

observed with full-length N-cadherin-GFP (J) for comparison. One-way ANOVA, significance 

compared to recruitment with N-cadherin-GFP. n ≥ 50 images from at least 2 independent 

experiments. Scale bar is 20 µM in B-E, 10 µm in F-I and 5 µm in zoomed images in F-I. 

 

To assess the effects of ligand recruitment on fusion stability along cell-cell 

contacts, we performed FRAP (fluorescence recovery after photobleaching) analysis of 

Ncad-GFP and three key Ncad-GFP-αEcat fusion constructs (Figure 3-5). Fluorescence 

recovery over 15 minutes was quantified, plotted and fit to a double exponential curve. 

The Ncad-GFP recovery prolife was similar to previously published data from our group 

(Figure 3-5A and E; (151)), consistent with the ability of Ncad-GFP to restore AJs in an 

N-cadherin-null background. The mobile fraction of Ncad-GFP and all fusion constructs 
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was ~30%, similar to those observed for AJ components in cardiomyocytes and epithelial 

cells (Figure 3-5 I; (43, 151)). While F-actin binding is critical for AJ formation and 

extracellular and intracellular cadherin interactions cooperate to regulate AJ assembly 

(275), our results suggest that AJ plaque (immobile fraction) stability is regulated by 

cadherin extracellular interactions. 
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Figure 3-5 N-cadherin-GFP-αE-catenin fusion dynamics at cardiomycoyte cell-cell 
contacts 
 
A-D. Representative prebleach, postbleach and recovery images from FRAP studies of Ncadfx/fx 

cardiomyocytes infected with Cre and N-cadherin-GFP or N-cadherin-GFP-αE-catenin fusion 

adenoviruses. Orange arrowhead marks the FRAP region at a cell-cell contact. E-H. Plot of mean ± 

s.d. FRAP recovery fraction over 15 minutes. The mean is represented by a black circle and the 

standard deviation is shown as a black line. The data was fit to a double-exponential curve (orange 

line). The number of FRAP regions measured for each fusion construct is listed in grey. FRAP data 

was collected from at least 2 independent infections for each fusion. I. Summary of the mobile fraction 

(percentage) and recovery halftime (seconds). Scale bar is 5 µm in  A-D. 

 
We then analyzed the recovery rates of the mobile fraction slow pools. Ncad-GFP and 

Ncad-GFP-M1-ABD had similar recovery rates (Figure 3-5A-B, E-F and I), consistent 

with the ability of Ncad-GFP-M1-ABD to reconstitute the AJ. Notably, Ncad-GFP-

M1mutV-ABD had a recovery rate faster than Ncad-GFP, suggesting that vinculin 

regulates the dynamics of the AJ mobile pool (Figure 3-5D H, and I). Consistent with this, 

Ncad-GFP-M1-M2, which binds vinculin constitutively, had a recovery rate that was nearly 

3x slower than Ncad-GFP or Ncad-M1-ABD (Figure 3-5C, G, and I). We speculate that 

vinculin anchors the cadherin-catenin complex to actin to limit turnover of the mobile pool 

without affecting the immobile/mobile pool balance. 

3.3.4  Vinculin links the AJ to contractile myofibrils 

We then questioned if the differences in cell-cell contact morphology and dynamics 

observed in cardiomyocytes expressing the Ncad-GFP-αEcat fusions could reflect 

fundamental changes in actin organization and/or linkage to the AJ. We used thin-section 
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transmission electron microscopy to assess the ultrastructural organization of the AJ-actin 

interface. In adult mouse cardiac tissue, the ICD is a contorted, electron-dense structure 

where myofibrils are coupled between adjacent cells at AJs (151, 224). In wild-type 

cultured cardiomyocytes, we observed a similar junctional morphology with electron-

dense AJs joining myofibrils across cells (Figure 3-6A and B, contact highlighted in 

purple). As expected, loss of N-cadherin dissolved cell junctions and prevented myofibril 

integration between neighboring cells (Figure 3-6C and D). Importantly, AJ structure and 

myofibril pairing were rescued with N-cad-GFP expression in N-cadherin-null cells 

(Figure 3-6E and F).   

Next, we compared the ability of the Ncad-GFP-αE-cat fusions to organize actin 

along cardiomyocyte cell-cell contacts. Importantly, Ncad-GFP-M1-ABD restored 

myofibril coupling along thick, electron-dense junctions that were morphologically similar 

to controls (Figure 3-6G and H; compare to Figure 3-6A and B, E and F). As expected, 

lack of actin binding in Ncad-M1-M3 prevented cytoskeletal integration at cell-cell 

contacts (Supplemental Figure S3-3A and B). Strikingly, Ncad-GFP-M1-M2, which 

connects N-cadherin to actin solely through vinculin, restored myofibril coupling and 

generated electron-dense junctions morphologically similar to Ncad-GFP-M1-ABD and 

controls (Figure 3-6I and J). In marked contrast, constructs that could bind actin but were 

incapable of recruiting vinculin failed to restore normal contact morphology or myofibril 

coupling (Figure 3-6, K and L; Supplemental Figure S3-3, C-F). Ncad-GFP-M1mutV-

ABD and Ncad-GFP-M2-ABD formed thin electron densities along elongated cell-cell 

contacts, but with little to no myofibril engagement. These results indicate that vinculin 

recruitment is required to link contractile actin to the cardiomyocyte AJ, as has been 
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suggested in epithelia (129). Neither the αE-catenin ABD nor afadin recruitment was 

sufficient to restore myofibril coupling. The increase in electron density along contacts 

with afadin recruitment suggests it may play a role in actin integration along contacts, but 

it is not sufficient to couple contractile actin in the absence of vinculin. Together, these 

results underscore the importance of vinculin in linking the AJ to contractile actin and 

highlight how αE-catenin coordinates cytoskeletal integration to provide mechanical 

connections between cells. 
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Figure 3-6 Vinculin recruitment is required to couple myofibrils to the AJ 
 
Ncadfx/fx cardiomyocytes uninfected (A, B), infected with Cre adenovirus (C, D), or infected with Cre 

and N-cadherin-GFP-αE-catenin fusion adenoviruses (E-L) were fixed and processed for staining (A, 

C, E, G, I, K) or thin section TEM (B, D, F, H, J, L). IF images are 2-3 µm deconvolved stacks of N-

cadherin staining (A, C) or GFP signal from of N-cadherin-GFP-αE-catenin fusions (E, G, I, K) pseudo-

colored blue and stained for F-actin (red). Representative TEM image shown from >60 images from 

at least three independent experiments. Cell-cell contacts are pseudo-colored purple. Scale bar is 5 

µm in A-K; 1 µm in B, D, H, J, L; and 500 nm in F. 

3.3.5  Vinculin-binding ligands are not crucial to integration 

Myofibrils are a highly specialized, contractile actin network, distinct from actin 

cables or stress fibers found in epithelial cells. However, the importance of vinculin in 

linking this unique network to the cardiomyocyte AJ is reminiscent of contractile actin 

linkages in epithelial cells. Vinculin anchors F-actin to the AJ (120, 231, 272) and can also 

recruit Ena/VASP proteins to promote actin assembly at junctions under tension (121).To 

determine if cardiomyocytes use a similar linkage mechanism to epithelial cells, we 

probed for the Ena/VASP protein Mena (122). Mena is recruited to epithelial contacts 

under tension (121), is localized to the ICD in heart tissue (276) and was identified in a 

proximity proteomics screen for N-cadherin-associated protein in cardiomyocytes (151). 

Immunostaining revealed limited recruitment of Mena to cell-cell contacts in cultured 

cardiomyocytes (Supplemental Figure S3-4A) that was lost after depletion of N-cadherin 

(Supplemental Figure S3-4B). Mena localization was only restored in fusion constructs 

that recruited vinculin (Supplemental Figure S3-4D and E vs. S3-4F). However, we 
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observed no difference in Mena recruitment between Ncad-M1-M2 and Ncad-M1-ABD 

despite Ncad-M1-M2 enriching vinculin at cell-cell contacts (Figure 4-4L). Thus, while 

Mena may function in linking contractile F-actin to cardiomyocyte AJs, its recruitment is 

limited and not correlated with vinculin levels, suggesting a more peripheral role in 

regulating cardiomyocyte junctional actin. 

α-Actinin binds vinculin (277) and αE-catenin (35, 48). α-Actinin crosslinks actin 

filaments at myofibril Z-discs and is critical for cardiomyocyte organization (247). We did 

not observe any changes in α-actinin localization with a loss of N-cadherin 

(Supplemental Figure S3-5A-B). However, in Ncad-M1-M2, we observed a modest 

recruitment of α-actinin to contacts (Supplemental Figure S3-5D). We were not able to 

determine if α-actinin was recruited through vinculin and/or αE-catenin M1-M2. While 

increased α-actinin recruitment could impact Ncad-M1-M2 dynamics (Figure 3-5C, F), 

enrichment is not required for AJ coupling to F-actin. 

3.3.6  Ligand requirements differ for junctional complex assembly 

We then wanted to determine if the Ncad-GFP-αEcat fusions could restore the two 

other major junctional complexes at the ICD: gap junctions and desmosomes. Gap 

junctions electrically couple cardiomyocytes and their formation is predicated on cadherin 

localization to cell-cell contacts (11). N-cadherin depletion causes loss of Cx43, the pore-

forming protein of gap junctions (Figure 3-2K), and Cx43 localization to cell-cell junctions 

can be restored by expressing Ncad-GFP (Figure 3-7A). Importantly, Cx43 contact 

localization was restored with all Ncad-GFP-αEcat fusions (Figure 3-7B-D; 
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Supplemental Figure S3-6A-C) independent of ligand recruitment or actin engagement. 

This indicates that N-cadherin delivery to the plasma membrane is sufficient to localize 

Cx43 to nascent contacts, though gap junction stabilization may require ligand 

recruitment (195).  

Desmosomes also require AJ establishment for assembling along cell-cell 

contacts (59). Recent works suggests that E-cadherin recruits desmoglein 2 (Dsg2) 

through direct extracellular cis interactions to promote desmosome assembly at nascent 

contacts in epithelial cells (73). We assessed the ability of the fusion constructs to restore 

desmosome recruitment after loss of N-cadherin. Interestingly, Dsg2 recruitment was only 

observed in fusions that could recruit vinculin (Figure 3-7E-G vs. H; Supplemental 

Figure S3-6D-F). These data imply that vinculin recruitment could provide a needed 

mechanical linkage to drive desmosome assembly at nascent cardiomyocyte contacts. 
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Figure 3-7 N-cadherin-GFP-αE-catenin fusions restore junction complexes 

N-cadherin-null cardiomyocytes infected with N-cadherin-GFP (A, E) or N-cadherin-GFP-αE-catenin 

fusion adenoviruses (B-D, F-H). A-D. Cells were fixed and stained for connexin 43 and F-actin. 

Individual and merged GFP (green), connexin 43 (Cx43, red) and F-actin (blue) channels shown. E-

H. Cells were stained for desmoglein 2 and F-actin. Individual and merged GFP (green), desmoglein 

2 (Dgs2, red) and F-actin (blue) channels shown. Images are a max projection of 2-3 µm deconvolved 

stacks. Bottom image is a magnification of boxed contact. Scale bar is 10 µm. I. Schematic of AJ 

integration with cardiomyocyte actin networks and contact maturation. 

3.4 Discussion 

Together, our results provide novel insights into the AJ-myofibril linkage in 

cardiomyocytes. We show that vinculin recruitment through α-catenin is required to 

couple the cardiomyocyte AJ to contractile actin and promote AJ stability and contact 

maturation. The mechanical properties of α-catenin thus function to integrate cytoskeletal 

networks at cardiomyocyte cell-cell contacts to build force-resilient junctions. 

Vinculin is recruited to epithelial AJs in a tension-dependent manner where it is 

thought to help anchor the AJ to actin (120, 231). In addition to creating a new linkage 

between F-actin and the AJ, vinculin can also recruit ligands such as Mena to promote 

actin assembly at junctions under tension (121). While Mena localizes to cardiomyocyte 

cell-cell contacts, we did not observe a concomitant enrichment of Mena with constitutive 

vinculin recruitment to cardiomyocyte AJs (Supplemental Figure S3-5). We did not 

detect VASP at cardiomyocyte AJs (data not shown). Thus, our results suggest that 
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vinculin-mediated ligand recruitment may not be the primary driver of increased stability 

and myofibril integration at the AJ. Instead, the actin binding domain of vinculin may play 

a critical role in coupling the AJ to contractile actin. 

Myofibrils arrange their actin filaments so that the myosin motors exert force as 

they move toward the barbed end. Recent biophysical data has shown that the vinculin-

actin interaction is asymmetrical, where the bond is strengthened when an actin filament 

is under pointed (-) end-directed load (123). Additional work has demonstrated that 

differential recruitment of vinculin to sites of high tension in epithelial cells is used to 

balance tensile and shear forces across cell contacts (272). We propose a model in which 

tension activates αE-catenin at nascent cardiomyocyte contacts to promote ligand 

binding (Figure 3-7I ). Vinculin recruitment, in turn, promotes myofibril binding to 

strengthen the AJ and orchestrate junctional maturation and mechanical integration. We 

speculate that vinculin recruitment creates a self-amplifying tension feedback loop to 

promote junctional planar organization necessary for heart muscle function. Thus, vinculin 

functions as both a mechanical linchpin and critical organizer of actomyosin and AJ 

architecture to regulate cardiomyocyte adhesion. We suggest that this is a general 

mechanism cells use to organize contractile actin networks across various cells types. 

For example, vinculin is enriched at tricellular junctions in epithelial sheets where 

contractile actin terminates perpendicularly to AJs (278), similar to cardiomyocytes. 

Linking to specific actin networks through selective ligand recruitment would allow the AJ 

to control mechanical load and respond to changes in cellular tension. 

Vinculin is a mechano-responsive protein found at both cell-cell and cell-ECM 

contacts (279). Failing human cardiac tissue shows an increased expression of vinculin 
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though with a less organized localization pattern (199). Aging non-human primate and 

mouse models show increased vinculin expression compared to younger animals, with 

increased localization at both the ICD and cell-ECM adhesions (200). Aging, and 

ultimately failing, cardiac tissue shows signs of fibrosis resulting in an increased ECM 

stiffness (280). Increased ECM stiffness has been linked to molecular remodeling of 

myofibril integration at cell-cell versus cell-ECM adhesions, causing a decrease of force 

propagation across adhered cardiomyocytes (3). Interestingly, we found that M1-M2 

expression caused a loss of vinculin at cell-ECM contacts (data not shown). Consistent 

with this, vinculin can be selectively enriched at cell-cell contacts or cell-ECM contacts 

when external tension is applied to either of these areas individually (120, 176). Our 

results highlight the critical role of vinculin at cardiomyocyte AJs and provide a possible 

explanation for how changes in ECM stiffness and concomitant cell-ECM adhesion 

expansion would disrupt the balance of vinculin to impair myofibril integration and 

decrease cardiac function. 

 

3.5 Materials and Methods 

3.5.1  Plasmids 

To build the N-cadherin-GFP-αE-catenin fusions, αE-catenin fragments encoding 

aa273-510, aa273-651, and aa273-906 were cloned into pEGFP-C1 by PCR. Next, 

Gibson Assembly (NEBuilder HiFi DNA Assembly Kit, New England Biolabs) was used 
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to clone the N-cadherin fragment aa1-839 into pcDNA3.1 (Thermofisher). Gibson 

assembly was then used to insert the EGFP-αE-catenin fragments into the pcDNA3.1 N-

cadherin aa1-839 backbone, downstream and in-frame with N-cadherin. During 

construction, a 12 aa glycine and alanine linker was inserted between N-cadherin and 

αE-catenin to increase flexibility. 

The point mutations R329A, R330A, L347A, L348A and Y351A were introduced 

by site directed mutagenesis (Agilent) in the αE-catenin M-region to inhibit vinculin 

binding (129). 

3.5.2  Cardiomyocyte isolation and culture 

All animal work was approved by the University of Pittsburgh Division of Laboratory 

Animal Resources. Outbred Swiss Webster mice were used to generate wild-type 

cardiomyocytes for blebbistatin experiments. N-cadfx’fx conditional knockout mice 

(Jackson Labs, stock #007611, (17)) were used to generate N-cadherin null 

cardiomyocytes. 

Tissue culture dishes or MatTek dishes (35 mm dish with 10 mm microwell) were 

coated with rat tail Type I collagen (Millipore) diluted to 0.5 µg/µl in PBS for 30 minutes at 

room temperature. Dishes were dried and treated with UV radiation for 1 hour, after which 

they were washed with PBS, dried and stored at room temperature in the dark. 

Neonatal mouse cardiomyocytes were isolated as described (220). Briefly, mouse 

pups were sacrificed at P1-P3, the hearts were removed, cleaned, minced, and digested 
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overnight at 4°C in 20 mM BDM (2,3-Butanedione monoxime) and 0.0125% trypsin in 

HBSS. The following day, heart tissue was digested further in15 mg/mL 

Collagenase/Dispase (Roche) in Leibovitz media with 20 mM BDM to create a single cell 

suspension. Cells were pre-plated for 1.5-2 hours in plating media (65% high glucose 

DMEM, 19% M-199, 10% horse serum, 5% FBS and 1% penicillin-streptomycin) to 

remove fibroblasts and endothelial cells Cardiomyocytes were plated on MatTek dishes 

(1.5x105) or 12-well dishes (4.5x105) in plating media. 16 hours post-plating, the plating 

media was exchanged for maintenance media (78% high glucose DMEM, 17% M-199, 

4% horse serum, 1% penicillin-streptomyocin, 1 µM AraC, and 1 µM Isoproternol).  

3.5.3  Adenovirus production and infection 

N-cadherin-GFP-αE-catenin fusions were expressed as adenoviruses using the 

AdEasy System as described (151, 260). Briefly, N-cadherin-EGFP-αE-catenin fusions 

were moved in to pShuttle-CMV using NEBBuilder HiFi DNA Assembly Master Mix (New 

England Biolabs). Positive clones were transformed into AdEasier E. coli cells to generate 

recombinant adenovirus DNA. Adenoviral plasmids were then transfected into HEK293 

cells for virus production. Virus was amplified and purified using AdenoPACK 20 

Adenovirus (Ad5) purification & concentration kit (Sartorius). Virus titer was determined 

by quantitative Polymerase Chain Reaction (qPCR) using Adeno-X qPCR Titration Kit 

(Clontech) on an Applied Biosystems 7900HT. 

Adenovirus expressing Cre (Ad(RGD)-CMV-iCre) was purchased from Vector 

Biolabs. 
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Cdh2fx/fx cardiomyocytes were infected with adenovirus Cre at MOI (multiplicity of 

infection) 75 on the day of plating to achieve 100% infection. 16 hours after virus addition, 

the media was replaced with maintenance media. 6-8 hours later (22-24 hours after Cre 

infection) cardiomyocytes were infected with the N-cadherin-GFP-αE-catenin fusion 

adenovirus at MOI 10-15 to achieve >50% infection rate. Cardiomyocytes were fixed 96 

hours after Cre infection for analysis. 

3.5.4  Immunofluorescence 

Cells were processed for immunofluorescence as follows: cells were fixed in 

warmed (37°C) 4% EM grade paraformaldehyde in PHM buffer (60 mM PIPES pH 7.0, 

25 mM HEPES pH 7.0, 2 mM MgCl2 and 0.12 M Sucrose) for 10 minutes and washed 

twice with PBS. Cells were permeabilized with 0.2% Triton X-100 in PBS for 4 minutes 

and washed twice with PBS. Cells were blocked in 10% BSA (Sigma) in PBS for 1 hour 

at room temperature. Samples were incubated with primary antibodies in PBS + 1% BSA 

for 1 hour at room temperature, washed 2X in PBS, incubated with secondary antibodies 

in PBS + 1% for 1 hour at room temperature, washed 2X in PBS and then mounted in 

Prolong Diamond (Thermo Fisher Scientific). All samples were cured at least 24 hours 

before imaging. 

For blebbistatin experiments, cardiomyocytes (96 hours post-plating) were treated 

with 100 µM blebbistatin in DMSO or DMSO control or 10 minutes to 1 hour. Cells were 

incubated at 37°C during treatment. After incubation, cells were first pre-permeabilized in 

0.2% Triton X-100 in PBS for 2 minutes, then fixed and labeled as described. 
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3.5.5  Antibodies 

Primary antibodies used for immunostaining were: anti-αE-catenin (1:100; Enzo 

Life Sciences ALX-804-101-C100), anti-β-Catenin (1:250; BD Transduction Laboratories 

610154), anti-Plakoglobin (1:100; Cell Signaling 2309), anti-Vinculin (1:800; Sigma 

Aldrich V9131), anti-N-cadherin (1:250; Invitrogen 99-3900), anti-l-Afadin (1:500; Sigma 

Aldrich A0349), anti-Connexin-43 (1:100; ProteinTech 15386-1-AP), anti-Plakophilin 2 

(1:10; Progen 651101), anti-Desmoglein 2 (1:250, Abcam EPR6768), anti-α-Actinin 

(1:250, Sigma A7811), anti-Mena (1:300, mouse monoclonal, a kind gift from Frank 

Gertler) and anti-Cre Recombinase (1:300, Cell Signaling 12830). Secondary antibodies 

used were goat anti-mouse or anti-rabbit IgG conjugated to Alexa Fluor-488, 568, or 647 

(1:250; Invitrogen). F-actin was visualized using an Alexa Fluor dye conjugated to 

phalloidin (1:100, ThermoFisher Scientific). 

3.5.6  Whole cell lysis and immunoblotting 

Cardiomyocytes were cultured on collagen-coated 12-well dishes (see above). 96 

hours after plating, cardiomyocytes were lysed with RIPA buffer supplemented with 1X 

protease inhibitors (Millipore). Lysate protein concentration was determined by BCA 

Assay (BioRad). 15 µg of lysate was loaded per well and resolved on a 10% SDS PAGE 

and then transferred to a PVDF membrane. The membrane was blocked in 5% BSA in 

1X TBST with 0.02% NaN3 for 1 hour at room temperature. Primary antibodies (N-

cadherin 1:2500, GAPDH 1:750 (Abcam ab9485)) were diluted in 5% BSA in 1X TBST 

with 0.02% NaN3 overnight at 4°C, followed by three 15 minute TBST washes. LI-COR 
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secondary antibodies (Goat anti-mouse 680; goat anti-rabbit 800, 1:15,000) were diluted 

in 1X TBST with 0.02% NaN3 and incubated for 1 hour at room temperature. The 

membrane was washed three times in 1X TBST and once in PBS. The membrane was 

imaged on a LI-COR Odyssey imaging system. Band intensities were quantified in 

ImageJ and plotted in Prism (GraphPad). 

3.5.7  Confocal microscopy 

Cells were imaged with a 100X 1.49 NA objective or a 40X 1.30 objective on a 

Nikon Eclipse Ti inverted microscope outfitted with a Prairie swept field confocal system, 

Agilent monolithic laser launch and Andor iXon3 camera using NIS-Elements (Nikon) 

imaging software. Maximum projections of 2-3 um image stacks were created and 

deconvolved (3D Deconvolution) in NIS-Elements (Nikon) for presentation. Expression 

and staining levels were adjusted for presentation purposes in Photoshop (Adobe). All 

levels were corrected the same across each figure except Figure 6 where the phalloidin 

labeling of F-actin was modified individually to account for differences in staining and in 

Figure 5 to account for changes in focal plane/expression for live cell imaging. Note that 

Ncad-GFP-ABD levels were adjusted individually in Supplemental Figures S2, S3, and 

S6 as this construct localized to cell-cell contacts less efficiently than the other fusions. 

3.5.8  FRAP experiments 

FRAP experiments were conducted on a Nikon swept field confocal microscope 

(describe above) outfitted with a Tokai Hit cell incubator and Bruker miniscanner. Actively 
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contracting cells were maintained at 37°C in a humidified, 5% CO2 environment. User-

defined regions along cell-cell contacts were bleached with a 488 laser and recovery 

images collected every 10 seconds for 15 minutes. FRAP data was quantified in ImageJ 

(NIH) and average recovery plots were measured in Excel (Microsoft). All recovery plots 

represent data from two independent transfections of unique cell preps. The data were fit 

to a double-exponential curve to determine the mobile fraction and half time of recovery 

in Prism (Graphpad). Only recovery rates of the slow pool are reported as this was the 

dominant mobile pool (87-91%) for all constructs. 

3.5.9  Electron Microscopy 

Cardiomyocytes were grown on collagen-coated MatTek dishes and fixed as 

described above. After fixation and washing, cells were incubated with 1% OsO4 for one 

hour. After several PBS washes, dishes were dehydrated through a graded series of 30% 

to 100% ethanol, and then infiltrated for 1 hour in Polybed 812 epoxy resin (Polysciences, 

Warrington, PA). After several changes of 100% resin over 24 hours, cells were 

embedded in inverted Beem capsules, cured at 37°C overnight and then hardened for 2 

days at 65°C. Blocks were removed from the glass dish via freeze/thaw method by 

alternating liquid Nitrogen and 100°C water. Ultrathin (60nm) sections were collected on 

to 200-mesh copper grids, stained with 2% uranyl acetate in 50% methanol for 10 minutes 

and 1% lead citrate for 7 minutes. Samples were photographed with a JEOL JEM 1400 

PLUS transmission electron microscope (Peabody, MA) at 80kV with a Hamamatsu 

ORCA-HR bottom mount camera. 
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3.5.10  Image analysis 

Vinculin and afadin recruitment to the N-cadherin-EGFP-αE-catenin fusion 

constructs was analyzed in ImageJ. A single plane was selected from the z-stack where 

the contact was most in focus and IsoJ Dark thresholding was used to create a mask of 

the EGFP channel to define the region of analysis (cell-cell contacts). The vinculin or 

afadin signal intensity was then measured within the masked region. Next, three random 

intensity measurements of vinculin or afadin were taken in the cell cytoplasm and these 

values were averaged. Finally, the ratio of vinculin or afadin intensity within the mask was 

divided by the cytoplasmic signal to calculate the contact/cytoplasmic ratio. Colocalization 

data were plotted with Prism software (GraphPad). A One-way ANOVA with multiple 

comparisons was performed; p<0.05. 

Blebbistatin experiments were analyzed in a similar method. A single plane was 

selected from the z-stack where the contact was most in focus. IsoJ Dark thresholding 

was used to create a mask of the tension-insensitive marker, and this mask was applied 

to either the vinculin or afadin channels to determine their intensity at the contact. Intensity 

values of treated (blebbistatin) and control (DMSO) samples were plotted in Prism 

software (GraphPad). 
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4.0 Discussion and Perspectives 

4.1 Study Synopses 

Proximity proteomics studies have identified and validated previously unknown 

components of E-cadherin based epithelial AJs (186, 187). We sought to understand both 

the similarities and differences between E-cadherin based epithelial AJs and N-cadherin 

based cardiomyocyte AJs. In brief, we found that the core cadherin-catenin complex is 

conserved between the two proteomics data sets. However, identified proteins located in 

the tertiary and quaternary interactor field are more unique between the two data sets 

(Figure 2-6). Our results indicate that AJs in different tissue types, or centered around 

different classical cadherins, will show differential adapter proteins which will specialize 

signaling and adhesion based on the needs of the tissue. Therefore, if this study was 

repeated with N-cadherin in neurons, we would expect to identify unique tertiary and 

quaternary interactors compared to both E-cadherin and the N-cadherin cardiomyocyte 

data sets.  

Our proximity data set also revealed several αE-catenin ligands, including ZO-1, 

vinculin, and afadin, enriched at the ICD (Figure 2-4). Briefly, ZO-1 is a key component 

of tight junctions and a known interactor with Cx43 involved in its trafficking (93, 281). 

However, there are no tight junctions in cardiomyocytes and our data set did not identify 

Cx43. The function of the αE-catenin:ZO-1 interaction has not been explored, but our 

data suggests that ZO-1 is in close proximity to the AJ where its function is not 

understood. The function of vinculin and afadin was of greater interest to us as there is 



 111 

more literature describing their roles in AJ biology, but little understanding of its role at 

the ICD (109, 112, 208, 269). In our investigations, we demonstrated that vinculin plays 

a critical role in coupling the myofibril network between neighboring cells. Vinculin itself 

was able to maintain mechanical continuity between cells, independent of the αE-catenin-

actin linkage (Figure 3-6). 

Largely, our work can be viewed as combining holistic and nuanced approaches 

to defining mechanisms of cardiomyocyte adhesion. Our work identified 172 proteins that 

previously had no known localization to the ICD, leaving a vast area of research open to 

investigators and their favorite protein of interest. From here, we honed in on two αE-

catenin ligands to define molecular mechanisms of force-required adhesion. Future work 

in our lab will be to expand our holistic approach to the desmosome interactome with 

goals to further define the area composita and desmosome-specific signaling pathways. 

Additionally, we will take the nuanced approach to understand the consequences of 

differential vinculin recruitment between AJs and FAs in an ECM stiffness-dependent 

manner. This work will better characterize the molecular outcomes of cardiac remodeling 

post-myocardial infarction and inform the observation of decreased cardiac output and 

cellular exhaustion. 
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4.2 Perspectives 

4.2.1  Junctional Crosstalk 

Our proximity proteomics studies revealed a close spatial relationship between AJs 

and desmosomes (Figure 2-4). This was unique when compared to the E-cadherin 

interactome which did not include desmosomal proteins in their top 35 hits (Table 2-1) 

(187). This further solidifies the observation that junctional complexes are highly 

intermingled in cardiomyocytes (11). Additionally, recent biophysical work showed a 

physical interaction between E-cadherin and Desmoglein 2 in nascent contact formation 

in epithelial cells (73). Given the temporal frame for our BioID studies, it could be that N-

cadherin and Desmoglein 2 interact to initiate desmosome formation. Biophysical and 

biochemical data investigating this interaction should be pursued to determine the role of 

other classical cadherins in their ability to  promote desmosome formation.  

Our data also showed a close interaction between AJ and Z-disc proteins (Figure 

2-7). Previous work demonstrated a “transitional zone” adjacent to the ICD where the last 

Z-disc would be found. This zone contained several Z-disc associated proteins which 

were thought to provide an anchoring point for titin before handing off the myofibril to the 

AJ (224). In our work, we demonstrated that traditional Z-disc proteins are highly dynamic 

and can be seen moving – shuttling – between Z-discs and between the ICD and Z-discs. 

While we have furthered the understanding of the crosstalk between AJs and Z-discs, the 

consequences of this shuttling are vastly unknown. It would be of great interest to 

investigate the localization of these various shuttling proteins during cardiac development 

and disease. Importantly, there is no evidence detailing the consequences of blocking 
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protein shuttling or localization imbalances. As cardiomyocytes, and myofibrils in 

particular, undergo substantial remodeling after a myocardial infarction, or in the 

progression of cardiomyopathies, it would be of interest to understand and investigate the 

roles these shuttling proteins have in altering the structure of myofibrils (3, 175). 

Developmental studies have shown that the ICD is the result of junctional 

coalescing over a long period of time, where AJs are first concentrated at myofibril ends, 

followed quickly by desmosomes, and lastly by GJs, which take the longest to properly 

localize (12, 156). However, the data does not address how much of this coalescing is 

due to lateral movement of junctions versus insertion of new junctions at the proper 

location. It is likely that it is a combinatorial effect, where increased polarity of myofibrils, 

interacting with AJs, will first drive bipolar morphology. It is unknown if desmosomes or 

GJs can relocalize without the AJ. Loss of the AJ results in a loss of all other junctions, 

therefore this question is difficult to assess (17). However, it does appear desmosomes 

are more dispensable than AJs given that patients can live with desmosomal defects but 

cannot survive development with core AJ protein defects. It is not known how 

desmosomal ARVC defects play a role in the area composita and whether they create an 

overall weakness in the myocardium. ARVC patients do not show AJ defects but do show 

GJ localization defects (11). How the AJ and desmosome cooperate to promote GJ 

stability and localization is unknown and it would be of interest if ARVC mutations in GJ 

localization can be overridden through changes in AJ expression or stabilizing the portion 

of the desmosome that is able to assemble. 
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4.2.2  Vinculin Functions Under Stress 

Several crucial pieces of information are missing from the cardiomyocyte and AJ 

literature: the number of cadherin molecules expressed in cardiomyocytes, the number 

of formed AJs, and the number of myofibril bound AJs. Various studies in epithelia have 

attempted to determine a range of forces that an AJ can handle, and all of those fall short 

of what an ICD is predicted to experience – even though those values are also rough 

estimates (3, 50). While cardiomyocytes generate more force on average than epithelial 

cells, it is not known if individual cadherin-catenin complexes experience more force in a 

cardiomyocyte compared to an epithelial cell. Cardiomyocytes could handle this problem 

in one of two ways: increase the number of AJs per actin filament so that force is 

dispersed across more molecules or specialize the AJ so that it can handle more load. 

The heart’s inherent mechanism of handling this problem would also be seen during 

cardiac remodeling post-infarction. 

Our data demonstrate that vinculin plays a critical role in linking the myofibril 

network to the cardiomyocyte ICD. This supports the long line of investigation into the 

role of vinculin in the heart (192, 195, 196, 200). Yet, what makes vinculin so special 

among actin-binding proteins remains to be understood. We were not able to determine 

what, if any, additional ligands vinculin localization promoted to the ICD to account for 

myofibril integration or the longevity of the contacts. Future work should investigate the 

biochemical and thermodynamic differences in the actin binding domain of various actin 

binding proteins to elucidate kinetic differences in their bond strength and biophysical 

differences in their load capacity.  
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Past work has suggested that vinculin localization and over expression (in flies) is 

cardioprotective, resulting in better cardiac performance for a longer period of time. Both 

an increase in expression and enrichment of vinculin to costameres and the ICD was 

seen (200). However, in tissue samples from failing patients, an increase in expression 

and localization of vinculin was also noted (199). Therefore, is an increase in vinculin truly 

cardioprotective, or is it a result of increased load and an indicator for poor performance? 

Also, there is little speculation for the role of increased vinculin; the presumption is that 

increased vinculin results in increased linkage at the ICD and better mechanical 

integration. This hypothesis could tie in to the understanding of how the heart manages 

force across the AJ. Many unknowns about abnormal, aged, or diseased cardiomyocyte 

form and function exist, with little understanding on the potential outcome for mechanical 

integration. However, continued investigation in this area would result in therapeutic 

implications for investigators and patients. 

4.2.3  The Future of Heart Failure Treatment 

Cardiovascular disease is the leading cause of death in the United States, and 

ischemic heart disease is the leading cause of death worldwide (79, 282). The population 

of the United States is projected to shift where the over 65 demographic contains more 

individuals than children under the age of 18 (U.S. Census Bureau). As cardiovascular 

disease is primarily an age-dependent phenomenon, the number of events and 

hospitalizations is expected to increase (79). In this time frame of an increased aged 

population, the American Heart Association estimates that nearly half (45.1%) of the US 

population will have a form of cardiovascular disease, resulting in a cost burden of $1.1 
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trillion by 2035 (79). Treatments post-MI revolve around management and never succeed 

in restoring heart function to its previous level. There has been plenty of work in 

preventative care to promote heart health and hopefully, avoid a cardiac event. However, 

there has been little advancement in post-cardiac event care and treatment. 

Because cardiomyocytes are post-mitotic, they have minimal regenerative 

capabilities. There has been years’ worth of research investigating the possibility of 

cardiac regeneration or promoting cardiomyocytes to divide (283). A second avenue of 

research has been differentiating and engrafting pluripotent stem cells (iPSCs), 

embryonic stem cells (ESC), or allogenic iPSCs into the scarred, infarcted area in large 

and small mammals (284–286). There are several mechanisms by which these cells can 

be differentiated into cardiomyocytes, but the ultimate end goal is a multicellular tissue 

both mechanically and electrically coupled with developed myofibrils (287). The tissue is 

then grafted into the infarcted area and hearts are monitored for improved cardiac function 

and decreased scar size. The advancement in this area has been substantial, but is still 

far from the clinic (282). While the graft can adhere to the neighboring cells, the 

demonstration of mechanical continuity between host and graft remains poor. 

Unsurprisingly, the level of GJs is low between the two tissues and the test animals 

frequently experience arrhythmias that have evaded treatment (285, 286, 288).   

A driving area of research should be to investigate methods to promote adhesion 

between derived cells in the graft as well as increase adhesion among host and graft 

tissue. Recent data demonstrated an increase in N-cadherin localization between host 

and graft tissue at the border, but minimal N-cadherin expression between 

cardiomyocytes in the graft (285). Adult mouse myocardium does not form nascent 
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contacts in cell culture, and graft studies have not followed animals for the long term to 

analyze full integration of the graft or full maturation of the grafted tissue (151). The 

molecular, chemical, and physical cues that drive the initiation of cardiomyocyte adhesion 

are poorly understood, and this is exemplified in the attempt to treat infarcts with 

iPCS/ESCs. Future work will focus on promoting intercellular adhesion within the graft as 

well as encouraging nascent adhesions between host and graft tissue.  
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Appendix A Supplemental Material for Chapter 2 

 

Figure S2-1 (accompanies Figure 3) 

Time course of biotin labeling. Cardiomyocytes infected with Cdh2-BioID2 adenovirus were fixed 6, 

24 and 48 hours after biotin addition. Cells were stained for F-actin, CTNNA1 and biotin 

(streptavidin, SA). CTNNA1 (magenta) and SA (green) channels are shown in merge. Scale bar is 

10 μm.  
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Figure S2- 2 (accompanies Figure 4) 

Coefficient of variance (CV) for mass spec analysis of instrument replicates, control samples and 

experimental (Cdh2-BioID2) samples.  
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Figure S2- 3 (accompanies Figure 5) 

A. Heat map of CDH2 or CDH2/CDH1 expression profiles in human tissues. B. Left, percentage of 

each BioID class as HEGs. Right, fraction of those BioID HEGs in the total HEG population. P 

value of Fisher’s exact test shown.  
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Figure S2- 4 (accompanies Figure 7) 

A. CDH2 interactome protein localization. Cardiomyocytes transfected with GFP-tagged Cdh2-BioID 

hits and stained for Cdh2 and F-actin. Individual and merged GFP (green) and CDH2 (magenta) 

channels shown. Note that LNPK was tagged with mCherry and DBN1 (paralog of DBNL) was 

tagged with YFP. Both fusion protein channels were pseudo-colored green for consistent 

comparison. Tested but not shown are PHLDB1, SQSTM1, TLN1, PARVA, TRIM55, CSRP1, 

DPYSL3 and COBLL1. All formed aggregates or were cytoplasmic when expressed in 

cardiomyocytes. B. SVIL and SYNPO2 localize to Z-discs. Cardiomyocytes transfected with EGFP-
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tagged SVIL and SYNPO2. Cells were fixed 24 hours post-transfection and stained for ACTN2 and 

F-actin. Scale bar is 10 μm for A and B.  
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Appendix B Supplemental Material for Chapter 3 

 

 
Figure S3-1 Cre-mediated loss of N-cadherin in Ncadfx/fx cardiomyocytes 
(accompanies Figure 2-2) 
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A. Representative western blot of cell lysates from Ncadfx/fx cardiomyocytes that were uninfected (WT), 

infected with Cre recombinase-expressing adenovirus (Cre) or GFP-expressing adenovirus (GFP). 

Lysates were separated by SDS-PAGE and blotted for N-cadherin (top) and GAPDH (bottom). B. N-

cadherin band intensities in A were measured, normalized to WT and plotted. Error bars represent 

standard deviation from at least three independent experiments. One-way ANOVA, p<0.01. C-D. 

Neonatal cardiomyocytes from Ncadfx/fx mice were either uninfected (left panel) or infected with 

adenovirus expressing Cre recombinase, fixed and stained for desmosome components plakoglobin 

(C) and plakophilin (D). E-F. Expression of N-cadherin-GFP in N-cadherin-null cardiomyocytes 

restored plakoglobin (E) and plakophilin (F) recruitment. Individual N-cadherin-GFP (green) and 

desmosome components (magenta) channels are shown along with the merge. Far right column is a 

magnification of boxed contact in the merge. G-M. αE-catenin expression in control (G-J) and 

Cre/Ncad-GFP-M1-ABD infected Cdh2fx/fx (K-M) cardiomyocytes. G-J. Cdh2fx/fx cardiomyocytes were 

fixed at four different time points and stained for αE-catenin and F-actin. K-M. Cdh2fx/fx cardiomyocytes 

were infected with Cre recombinase and Ncad-GFP-M1-ABD adenoviruses, fixed at three separate 

time points and stained for αE-catenin and F-actin. αE-catenin expression was lost over 96 hours as 

Ncad-GFP-M1-ABD expression increased. Images are max projections of 2-3 µm deconvolved stacks. 

Scale bar is 10 µm. 
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Figure S3- 2 N-cadherin-GFP-αE-catenin fusion ligand recruitment in cadherin-
null cells (accompanies Figure 2-4)  
 
Cadherin-null A431D epithelial cells were transfected with N-cadherin-GFP-αE-catenin fusion 

constructs to test vinculin and afadin recruitment (A-G). Cells were fixed 48 hours post-transfection 

and stained for vinculin and afadin. Individual fusion constructs (green), vinculin (red), afadin (blue) 

and merged channels are shown. Images are max projections of 3 µm stacks. Scale bars are 10 µm. 

Quantification of vinculin and afadin intensities at cell-cell contacts is shown on the right. Signal 

intensity at contacts was divided by the average cytoplasmic intensity and a scatter plot of all data 
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points is shown. The black horizontal line is the median and the error bars define the interquartile 

range. The shaded gray region in each plot defines the median (thick gray line) and interquartile 

range (thin gray lines) of vinculin or afadin recruitment observed with full-length N-cadherin-GFP (A) 

for comparison. One-way ANOVA, significance compared to recruitment with N-cadherin-GFP. n ≥ 

60 images from at least 3 independent experiments. H-J. Neonatal cardiomyocytes isolated from 

Ncadfx/fx mice were infected with Cre and N-cadherin-GFP-αE-catenin fusion adenoviruses. Cells 

were fixed and stained for vinculin and afadin. Individual and merged GFP (green), vinculin (red) and 

afadin (blue) channels shown. Images are max projections of 2-3 µm deconvolved stacks. Scale bar 

is 10 µm. 
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Figure S3- 3 . Immunostaining and TEM of N-cadherin-GFP-αE-catenin fusion 
constructs (accompanies Figure 2-4) 
 
Ncadfx/fx cardiomyocytes infected with Cre and N-cadherin-GFP-αE-catenin fusion adenoviruses (A-

F) were fixed and processed for staining (A, C, E) or thin section EM (B, D, F). IF images are 2-3 µm 

deconvolved stacks showing GFP signal from of N-cadherin-GFP-αE-catenin fusions pseudo-colored 

blue and stained for F-actin (red). Scale bar is 5 µm for IF images. Thin section TEM images are 

representative of >60 images from at least three independent experiments. Cell-cell contacts are 

pseudo-colored purple. Scale bar is 1 µm for TEM images. 

  



 128 

 

Figure S3- 4 Mena localization with N-cadherin fusion constructs 

Ncadfx/fx cardiomyocytes were either uninfected (A), infected with Cre recombinase (B), or infected 

with both Cre and N-cadherin fusion constructs (C-F). Cells were fixed and stained for Mena and F-

actin. Individual and merged GFP (green), Mena (red) and F- actin (blue) channels are shown. 
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Images are a max projection of 2-3 µm deconvolved stacks. Bottom row in each panel set is a 

magnification of boxed contact. Scale bar is 10 µm. 
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Figure S3- 5 α-Actinin localization with N-cadherin fusion constructs 

Ncadfx/fx cardiomyocytes were uninfected (A), infected with Cre recombinase alone (B), or infected 

with Cre and fusion constructs (C-E). Cells were fixed and stained for α-actinin and F-actin. Individual  

and merged N-cadherin fusion (green), α-actinin (red) and F-actin (blue) channels are shown. Images 
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are a maximum projection of 2-3 µm deconvolved stacks. Bottom row in each panel set is a 

magnification of boxed contact. Scale bar is 10 µm. 
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Figure S3- 6 Connexin 43 and Desmoglein 2 localization (accompanies Figure 7) 

Neonatal cardiomyocytes isolated from Ncadfx/fx mice were infected with Cre and N-cadherin-GFP-αE-

catenin fusion adenoviruses. A-C. Cells were fixed and stained for connexin 43 and F-actin. Individual 

and merged GFP (green, connexin 43 (Cx43, red) and F-actin (blue) channels shown. Cx43 

localization occurs independent of actin binding or ligand recruitment to the fusion constructs. D-F. 

Cells were fixed and stained for Dsg2 and F-actin. Individual and merged GFP (green), desmoglein 2 

(Dsg2, red) and F-actin (blue) channels shown. Dsg2 localization is not seen with rescue of Ncad-M1-

M3 (D), Ncad-M2-ABD (E), or Ncad-ABD (F) as none of these constructs can successfully recruit 

vinculin. Images are a maximum projection of 2-3 µm deconvolved stacks. Bottom images are a 

magnification of boxed contacts. Scale bar is 10 µm. 
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