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Abstract 

Illusory Correlation and Valenced Outcomes 

 

Cory Derringer, PhD 

 

University of Pittsburgh, 2019 

 

 

 

 

Accurately detecting relationships between variables in the environment is an integral part 

of our cognition. The tendency for people to infer these relationships where there are none has 

been documented in several different fields of research, including social psychology, fear learning, 

and placebo effects. A consistent finding in these areas is that people infer these illusory 

correlations more readily when they involve negative (aversive) outcomes; however, previous 

research has not tested this idea directly. Four experiments yielded several empirical findings: 

Valence effects were reliable and robust in a causal learning task with and without monetary 

outcomes, they were driven by relative rather than absolute gains and losses, and they were not 

moderated by the magnitude of monetary gains/losses. Several models of contingency learning are 

discussed and modified in an attempt to explain the findings, although none of the modifications 

could reasonably explain valence effects. 
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1.0 Introduction 

Distinguishing genuine relationships between two events from statistical noise is 

something people do every day, and is an important part of how we make many of our decisions. 

At a small scale, one might believe that the line at a coffee shop is longer on rainy days. In this 

example, the stakes are relatively low. If the two are correlated, one could plan around this 

inconvenience. If they are not, no one is really harmed outside of the time lost to unnecessary 

planning. However, people do not only form contingency beliefs about benign relationships such 

as this one. Sometimes we fail to form contingency beliefs at our peril (e.g., if a patient stops taking 

their medication because they fail to notice the effect, or because it has a delayed effect).  

The present work focuses on the opposite situation; the formation of a belief that two events 

or variables are related even when they are not related. These illusory correlations can also 

manifest on a small scale (e.g., if a sports fan believes in their lucky jersey) or on a large scale with 

more nefarious outcomes (e.g., the false belief that immigrants commit crimes at a higher rate than 

native born citizens).  

The tendency to infer illusory correlations has been documented in various forms across a 

variety of fields such as causal learning (see Matute et al., 2015 for a review), placebo effects (e.g., 

Au Yeung, Colagiuiri, Lovibond, & Colloca, 2014; Colagiuiri, Quinn, & Colloca, 2015), fear 

learning (Pauli, Montoya, & Martz, 1996; 2001), and stereotype formation in social psychology 

(e.g., Acorn, Hamilton, & Sherman, 1988; Hamilton & Gifford, 1976; Mullen & Johnson, 1990).  

Some of the earliest and most widely replicated effects in illusory correlations come from 

the domain of social stereotyping research (e.g., Acorn et al., 1988; Hamilton, Dugan, & Trolier, 

1985; Hamilton & Gifford, 1976; Schaller & Maass, 1989). In a typical design, participants are 
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shown trial-by-trial data regarding the states of two variables that are in fact uncorrelated (e.g., 

Table 1). For example, Hamilton and Gifford showed participants a number of statements in which 

a fictional person was a member of a social group, and exhibited a prosocial or antisocial behavior 

(e.g., “John, a member of Group A, visited a sick friend in the hospital.”). They then asked 

participants at the end of the dataset to judge the relationship between group membership and 

behavior. 

 

Table 1. Frequencies of each combination of cause (Group A/B) and effect (Prosocial/Antisocial Behavior) 

variables in typical Negative-Distinctive and Positive-Distinctive illusory correlation datasets. 

 

 Negative-Distinctive   Positive-Distinctive 

 Prosocial 
(common) 

Antisocial 
(rare) 

Total   
Antisocial 
(common) 

Prosocial 
(rare) 

Total 

Group A 
(common) 

24 12 36  
Group A 
(common) 

24 12 36 

Group B 

(rare) 
8 4 12  

Group B 

(rare) 
8 4 12 

Total 32 16 48  Total 32 16  

  

 

Using the data in Table 1 as an example, subjects typically infer an illusory correlation 

between group membership and attribute such that the common group is associated with the 

common attribute and the rare group with the rare attribute. Furthermore, and critical for the 

current work, these illusory correlations are usually stronger if the rare attribute is has negative 

valence (Negative-Distinctive; ND) than if it has positive valence (Positive-Distinctive; PD). 

Throughout the rest of the present work, this pattern of stronger illusory correlations for negative 

than positive outcomes will be called a valence effect. The overall goal of this work was to 
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systematically test valence effects in a more precise and detailed way than has been done 

previously. 

The next sections contain a brief review of evidence from multiple research domains 

suggesting the existence of a valence effect in illusory correlations. This is followed by the goals 

of the current research, and the specific research questions it is intended to answer. Four 

experiments will be discussed, along with several theories of contingency learning. The relevant 

models from these theories will be modified to see if they can account for valence effects. 
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2.0 Background on Valence Effects 

2.1 Valence Effects across Sub-Fields of Psychology 

Previous work in several domains has either directly or indirectly examined the role of 

valence in illusory inferences. In the social psychology literature, several empirical studies have 

elicited illusory correlation inferences with both positive and negative outcomes (e.g., Hamilton 

& Gifford, 1976; Schaller & Maass, 1989). Mullen and Johnson (1990) conducted a meta-analysis 

and found that illusory correlation effects were larger when the rare outcome had a negative 

valence (e.g., John, a member of Group A, visited a friend in the hospital) than when it had positive 

valence (e.g., Tim, a member of Group B, is rarely late to work). The pattern whereby illusory 

correlations effects are larger when the rare outcome is negative is the valence effect of interest in 

the current work. However, none of the studies in Mullen and Johnson’s review directly compared 

positive and negative outcomes to test for valence effects. Further, I am unaware of any illusory 

correlation study since their review that has directly examined valence effects. 

Researchers in the fear learning literature have also examined patterns similar to valence 

effects in illusory correlation. For example, there is evidence that people infer stronger illusory 

correlations between a neutral stimulus and an aversive outcome when the outcome is more 

strongly aversive (e.g., Wiemer, Mühlberger, & Pauli, 2014). However, this finding with small vs. 

moderate negative outcomes is different than the ones above that compared positive vs. negative 

outcomes, and how this finding would map onto positive vs. negative outcomes is unclear. It is 

possible that for outcomes with a physiological component, more extreme positive (appetitive) or 

negative (aversive) outcomes trigger stronger illusory correlations symmetrically. Another piece 
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of evidence relevant to valence comes from studies of fear learning that compare illusory 

correlations among people with high vs. low fear (e.g., spider phobia). These studies have found 

that high fear individuals form stronger illusory correlations between fear-relevant stimuli (e.g., 

pictures of spiders) vs. non-fear-relevant pictures and aversive outcomes (e.g., a shock vs. no 

shock) (e.g., De Jong, Merckelbach, & Arntz, 1995; Tomarken, Mineka, & Cook, 1989; Tomarken, 

Sutton, & Minenka, 1995; Wiemer & Pauli, 2016). This is further indirect evidence of valence 

effects; presumably fear-relevant stimuli are more aversive for phobic individuals, which could 

explain why those individuals form stronger illusory correlations. 

A third domain in which valence effects are relevant is the literature on placebo and nocebo 

effects. Whereas a placebo effect involves a belief that a benign stimulus is beneficial, a nocebo 

effect involves a belief that it is harmful. In a new paradigm for studying placebo/nocebo effects 

using a trial-by-trial learning format similar to the paradigms in social psychology and fear 

learning, participants first learn a real contingency between the cue and the outcome, and later the 

contingency turns to zero. For example, Au Yeung et al. (2014) induced a placebo effect using a 

sham device put on a patient’s arm that is said to be able to moderate the intensity of pain resulting 

from an electric shock. Participants completed an acquisition phase during which the activation of 

the sham device was paired with weaker shocks, teaching them that the device reduced their pain. 

After a number of learning trials, the experiment transitioned into a test phase in which this 

contingency was secretly eliminated; the shock was always strong, regardless of whether or not 

the device was active. The placebo effect in studies such as this is measured in time to extinction: 

how long does it take participants to realize that the device no longer reduces the strength of the 

shock?  
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Colagiuiri et al. (2015) conducted a similar study regarding nocebo effects. The procedure 

was very similar, with the key difference being a reversed contingency between the device and the 

shock; in the acquisition phase the device activation was accompanied by more intense shocks. 

Colagiuiri et al. found that participants’ nocebo beliefs did not extinguish by the end of the test 

phase of the study. Though these two effects have not been directly compared statistically, they 

provide indirect evidence that nocebo effects are more difficult to extinguish than placebo effects, 

which could be viewed as a type of valence effect. Furthermore, although placebo and nocebo 

effect sizes are typically similar in magnitude (Petersen et al., 2014), there is some tentative 

evidence that nocebo effects are easier to induce. Whereas placebo effects typically require an 

acquisition phase in which the placebo is initially correlated with reduced pain, simply telling 

participants that a cue amplifies pain is enough to instill a nocebo effect (e.g., Colloca et al., 2008). 

This pattern is similar to the valence effects found in the social psychology literature, as well as 

the findings in the fear learning literature; people form stronger illusory correlation inferences 

related to negative outcomes (nocebo) compared to positive outcomes (placebo). 

Illusory correlations have also been studied in the causal learning domain (e.g., Matute et 

al., 2015). As in the other domains, valence effects have not been directly manipulated. In the field 

of causal learning, there are studies of relationships between variables that use positive outcomes 

(e.g., plants blooming or not; Spellman, Price, & Logan, 2001), negative outcomes (e.g., headache 

vs. no headache; Cheng 1997; Matute & Blanco, 2014), or neutral outcomes (e.g., levels of 

neurotransmitters in the brain; Rottman & Hastie, 2016), but there has been no investigation of the 

valence effect – whether illusory causal inferences are stronger when the rare outcome is negative. 

Another piece of indirect evidence comes from an ‘illusory control’ paradigm, which is 

closely related to illusions of causality except in an illusion of control the subject believes that 



7 

their actions make a difference to an outcome. Aeschleman, Rosen, and Williams (2003) asked 

participants to press keys on a computer keyboard to change words on a computer screen. 

Participants in the positive condition were tasked with making the word “GOOD” appear on the 

screen and keeping it there for as long as possible. Participants in the negative condition were 

tasked with preventing the word “BAD” from appearing on the screen, and making it go away if 

it did appear. In reality the appearance of the words were not related to the buttons the participants 

pressed. Participants in one of the negative conditions gave higher ratings of control. This provides 

more indirect evidence of a valence effect; although Aeschleman et al.’s effect is very clear, 

valence was technically confounded with another aspect of the design; participants were asked to 

prevent the negative word but to produce the positive word. 

2.2 Explanations for Valence Effects 

2.2.1 Negativity bias – salience 

It has been argued that people exhibit an overall negativity bias in which they attend to 

negative outcomes more than positive ones (e.g., Baumeister, Bratslavsky, Finkenauer, & Vohs, 

2001; Rozin & Royzman, 2001; Vaish, Grossman, & Woodward, 2008). Baumeister et al. argued 

that this negativity bias could stem from an evolutionary advantage for giving preferential attention 

to negative events in relation to positive ones. After all, the limitations of positive and negative 

events in the world are asymmetrical; no positive event can eliminate the possibility of all future 

negative events, but a sufficiently extreme negative event (i.e., death) can eliminate future positive 

events. Previous research in behavioral economics, specifically the loss aversion effect (Kahneman 
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& Tversky, 1979, 1984) also provides evidence for this kind of negativity bias. Specifically, people 

feel monetary losses more acutely than gains; imagine the joy of finding a $20 bill while walking 

down the street vs. the pain of realizing that you accidentally lost $20. In sum, if people attend 

more to negative outcomes, perhaps this attention exacerbates the illusory correlation effect. 

2.2.2 Salience might not explain the valence effect 

Though the increased salience of negative events feels like an intuitive explanation for the 

valence effect in illusory correlation, there are a number of reasons to be skeptical of this 

hypothesis. First, when learning about the relation between a cue and outcome and there actually 

is a genuine contingency, people learn the contingency faster when the outcome is negative 

compared to when it is positive (e.g., Fazio, Eiser, & Shook, 2004). According to associative 

learning theories, this finding could be explained by increased salience – a higher learning rate 

parameter (e.g., Rescorla & Wagner, 1972). The problem for the salience account of valence 

effects is that many models of associative learning predict that increased salience would produce 

less illusory correlation due to faster learning that there is not a relation. In Section 8 I attempt to 

explain the valence effect with computational models, especially exploring the role of salience. 

There is some evidence that anxiety plays an important role in how we process negative 

events. Several studies the in the placebo/nocebo domain have found that high state anxiety is 

related to larger nocebo effects (e.g., Colloca, Petrovic, Wager, Ingvar, & Benedetti, 2010) and 

smaller placebo effects (e.g., Morton, Watson, El-Deredy, & Jones, 2009). Further, Benedetti and 

colleagues have found evidence that the link between expectations of pain and hyperalgesia is 

mediated by cholecystokinin (CCK), and that CCK antagonists can reduce or even eliminate 

nocebo effects (e.g., Benedetti, Amanzio, Casadio, Oliaro, & Maggi, 1997; Benedetti, Amanzio, 
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Vighetti, & Asteggiano, 2006; Colloca & Benedetti, 2007). Similarly, Johnston, Atlas, and Wager 

(2012) found that expectancy for pain (i.e., anxiety) enhanced the nocebo hyperalgesia effect. 

While anxiety is helpful in explaining some positive/negative asymmetries in placebo/nocebo 

studies, this is probably related to the relatively extreme nature of the stimuli used in these studies. 

Previous research suggests that people become anxious when contemplating imminent pain (e.g., 

Quartana, Campbell, & Edwards, 2009). However this level of negative valence is not present in 

the illusory correlation literature, nor in the experiments in the present work. It is difficult to 

imagine that participants are experiencing increased state anxiety in anticipation of reading 

sentences with negative information. While anxiety may play a role in how people reason about 

positive and negative events generally, it is probably not related to valence effects within the scope 

of the current work. 

2.2.3 The importance of controlling outcome magnitude 

One methodological difficulty when measuring and explaining the valence effect for 

illusory correlation is equalizing the objective magnitude of the positive vs. negative outcome. 

Kahneman and Tversky’s loss aversion (1979) was demonstrated with gains and losses of 

monetary prospects, which made it easy to have the same monetary gain vs. loss. However, studies 

that have tested illusory correlation have used outcomes without such objective magnitudes and 

therefore make them more difficult to compare. In the case of social stereotyping studies, it is 

difficult to isolate the salience that comes from the valence of attributes and behaviors from the 

salience that comes from their extremity. There is no precise way to say that describing a person 

as “rarely late for work” (positive attribute) is more or less extreme compared to “always talks 

about himself and his problems” (negative attribute) (Hamilton & Gifford, 1976, p. 394). The same 
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problem applies in a different way to Andreatta and Pauli’s (2015) comparison of conditioning 

with positive and negative outcomes. One of their findings was that participants’ learned 

associations between a neutral cue and an outcome took longer to extinguish if the outcome was 

negative (a shock) than positive (a food reward); it is unclear whether a shock and a food reward 

can be compared on equal footing.  

The present studies disentangle valence from magnitude using monetary gains and losses 

as well as other comparisons. By using monetary outcomes, the objective positive/negative 

magnitude can be held constant while the valence (positive or negative) varies with money being 

given/taken. 
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3.0 Open Questions 

The current research addresses several empirical questions. First, do people infer a stronger 

illusory correlation for negative outcomes when the negative and positive outcomes are equal in 

magnitude? This question is addressed in Experiments 1 and 3. 

Second, do illusory correlations broadly, and valence effects particularly, stem from 

overestimations of the rarest combination (distinctiveness) or the most common combination? If 

participants’ illusory correlation inferences come from overweighting the rarest combination, and 

if this tendency is stronger in the ND condition than the PD condition, that would provide evidence 

that people differentially process rare events depending on valence. This pattern would have 

implications for the role of salience in valence effects, which will be discussed in Section 8. This 

question is addressed in Experiments 1-3. 

Third, what counts as sufficiently negative or positive to produce a valence effect? Will 

valence effects be induced through stories about hypothetical negative vs. positive outcomes as 

well as through gains and losses of small amounts of money, and does combining the two produce 

larger valence effects? Although monetary gains and losses have been used in other fields such as 

behavioral economics, they are not typically employed in illusory correlation studies. This 

question is addressed in Experiment 1. 

Fourth, are valence effects driven by absolute or relative gains vs. losses? In Table 1, the 

negative (antisocial) outcome is negative on an absolute scale relative to neutral whereas the 

positive (prosocial) outcome is positive on an absolute scale. However, in Table 1, the negative 

outcome is also more negative than the positive outcome in a relative comparison. For this reason, 
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when comparing negative vs. positive outcomes, it is unclear if the valence effect is driven merely 

by a relative comparison of better vs. worse or by an absolute comparison of good vs. bad.  

Though valence effects have previously been discussed as due to the rare outcome being 

absolutely good vs. bad, the literature on reference dependence suggests that a relative comparison 

might actually drive valence effects. Reference dependence is one of the fundamental ideas in 

Kahneman and Tversky’s Prospect Theory (1979). For example, if an individual receives some 

amount of money, their interpretation of whether that windfall is a gain or a loss depends on their 

expectations. If the money was a surprise (i.e., the person was not expecting to receive any money), 

or if the amount was higher than expected, the person interprets this as a gain. However, if the 

amount was lower than expected, even a positive gain can be interpreted as a loss. The combination 

of reference dependence and loss aversion predicts several now-famous psychological phenomena 

such as endowment effects by which people overvalue their own possessions in relation to others 

(e.g., Kahneman et al., 1990) and framing effects by which people respond differently to prospects 

framed as gains or losses (Tversky & Kahneman, 1981). For this reason, Experiment 2 will assess 

whether the valence effect is due to absolute or relative gains vs. losses. 

Fifth, do stronger positive and negative outcomes lead to larger valence effects compared 

to weaker positive and negative outcomes? If salience is the source of valence effects (i.e., if 

anything that makes the rare outcome more salient will increase illusory correlations), then larger, 

more salient gains/losses would yield larger valence effects. This question will be studied in 

Experiment 3. 

Sixth, are there also valence-related differences in the extinction of learned contingencies? 

Specifically, if participants learn a real contingency between a stimulus and an outcome, and the 

contingency then changes to zero, will it take longer for participants to learn the new contingency 
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if the outcome is negative than if it is positive? This question approaches the phenomenon of 

valence effects from the paradigm of placebo vs. nocebo effects; there is indirect evidence that it 

takes longer to extinguish nocebo effects than placebo effects (e.g., Au Yeung et al., 2014; 

Colagiuiri et al., 2015). This question is studied in Experiment 4. 

The last goal of the current work is to examine the extent to which current theories can 

explain—or can be modified to explain—valence effects. After the four experiments, I describe 

several theories of causal learning that have been used to explain illusory correlation effects. None 

of the theories can account for valence effects in their original form. However, it is possible that 

some of them can be adapted to explain valence effects. 
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4.0 Experiment 1: Story Valence vs Monetary Valence 

In Experiment 1, the comparative impacts of monetary and non-monetary outcomes in 

valence effects were examined. This was accomplished by manipulating the modality of valence 

presentation to form three groups: a Combined Valence group, a Story group, and a Monetary 

group. In previous illusory correlation experiments, researchers have often used cover story 

valence. This experiment may be the first illusory correlation study to examine this phenomenon 

using purely monetary outcomes. 

4.1 Method 

4.1.1 Participants 

Participants (n = 234, 98 female) were recruited through MTurk, and their average age was 

36.25 years (SD = 11.25). Participants were paid a base rate of $3.50 for their participation. In 

addition, they were paid bonuses for accuracy (M = $2.18, SD = $0.21). 

4.1.2 Design and cover stories 

The design was a mixed factorial, with valence (PD vs ND) manipulated within subjects 

and valence modality manipulated between subjects. Participants in the Combined group 

experienced both story and monetary outcomes. On each trial, they received positive/negative 

cover story information (e.g., they were told that their patient had a good outcome, and saw a 
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picture of a smiling face) and their bonus amount was adjusted upward or downward by six cents. 

Participants in the Story group viewed the same visual stimuli for positive/negative outcomes as 

participants in the Combined group, but these were not accompanied by monetary rewards or 

punishments. Finally, participants in the Monetary group gained and lost six cents for good and 

bad outcomes, respectively; however, they did not receive the cover story relating to patients in a 

hospital setting. They were told that the task was to find out if there were relations between shapes 

(instead of faces) and colors (instead of medications). Each shape was indicative of either a good 

or a bad outcome. For example, for one participant a square might always be accompanied by a 

six-cent increase in their bonus. In this condition, participants learned whether colors were 

associated with the “good” or “bad” shapes. (See Table 2.) 

Table 2. Datasets from each condition in Experiment 1. Monetary payouts indicated by +/-. 

Negative-Distinctive Positive-Distinctive 

Combined 
Valence 

Good (+6¢) Bad (-6¢) Bad (-6¢) Good (+6¢) 

Drug 1 24 12 Drug 3 24 12 

Drug 2 8 4 Drug 4 8 4 

Story 

Good (0¢) Bad (0¢) Bad (0¢) Good (0¢) 

Drug 1 24 12 Drug 3 24 12 

Drug 2 8 4 Drug 4 8 4 

Monetary 

Star (+6¢) Triangle (-6¢) Oval (-6¢) Square (+6¢) 

Red 24 12 Purple 24 12 

Blue 8 4 Green 8 4 
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4.1.3 Procedure 

Participants were given different instructions depending on their valence modality. 

Participants in the Combined and Story conditions were told that the study was about how people 

learn about medications. 

For this task, imagine that you work in a hospital, and your job is to make sure that the patients 

have GOOD outcomes after treatment. You will see two scenarios, each containing information about 

patients who were treated for a fictional disease. You are responsible for finding out if the different 

medications are effective or not. Keep in mind that different diseases have different success rates for 

treatment. Before seeing data about each disease, you will be told which treatment is the most common, 

and whether the outcomes for the disease are typically GOOD or BAD. 

Participants in the Monetary condition were told that the study was about learning the 

relationships between shapes and colors: 

For this task, you will learn about the relationships between shapes and colors. You will see two 

scenarios, each containing information about two shapes and two colors. You are responsible for finding 

out if there are relationships between the shapes and colors. (For example, when the shape is RECTANGLE, 

is the color more likely to be ORANGE or YELLOW?) Keep in mind that some shapes are more common 

than others, and some colors are more common than others. Before seeing the shape/color combinations, 

you will be told which shapes and colors are the most common. 

Participants then completed a brief training session for the task. In the Combined and 

Monetary conditions, they were shown that good/bad outcomes were accompanied by monetary 

rewards/punishments. In the Story condition, the instructions were the same as the Combined 

condition, but the good/bad patient outcomes were not accompanied by monetary 

rewards/punishments.  

Before each of the two scenarios, participants were shown a briefing screen which showed 

which value of each variable was more common. To reinforce this, participants were shown the 
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possible values of each variable (e.g., good and bad treatment outcomes) and had to click on the 

more common value of each variable before beginning the experiment.  

Participants then completed a trial-by-trial learning phase and a test phase in the first 

scenario, followed by learning and test phases in the second scenario. On each trial in the learning 

phase, participants were given the value of the outcome variable (treatment outcome/shape), and 

then guessed about the value of the cue (drug/color) (Figure 1). To support accurate learning, 

participants could only advance after each trial by clicking on the correct value of the second 

variable.  

Figure 1. Feedback in trial-by-trial learning phase of Experiment 1, Combined (A) and Monetary (B) 

conditions. The Story condition was identical to the Combined condition, except for the monetary outcomes on 

each trial (e.g., “-6 cents"). 

The bonusing scheme was as follows. Participants began the first scenario with a $0.30 

bonus. In the Monetary and Combined conditions, money was added to/taken from participants’ 

bonuses on each trial, in accordance with the trial’s outcome. Additionally, participants could earn 
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accuracy bonuses for correctly guessing the cue. If participants correctly guessed the cue, they 

were given an additional 3-cent accuracy bonus in the feedback phase of the trial. The bonus 

carried over between scenarios.  

Participants were told that it was possible for their bonus amounts to be negative, but that 

most people finish the study with a positive bonus amount. They were also told that if they finished 

with a negative amount it would be rounded up to zero. In reality, it was not possible to finish the 

experiment with a negative bonus, because the PD and ND conditions were perfectly symmetrical; 

participants began the study with $0.30, and ended with $0.30 plus their combined accuracy 

bonuses. 

After completing the learning phase, participants advanced to the test phase. The test phase 

contained three tasks for participants. Two of the tasks were memory-related, and one was a 

modified causal judgment. In previous studies (e.g., Eder et al., 2011) participants have been given 

the marginal distribution of the groups, and asked to fill in the distribution of outcomes within 

each group. Participants answered a similar question in the test phase of Experiment 1: “Of the 

patients you just saw, 12 received PR2. How many of them had BAD/GOOD outcomes?” (See 

Figure 2A.) Participants then entered their best estimate of BAD/GOOD outcomes for PR2, and 

did the same for the other drug (e.g., “Of the patients you just saw, 12 received PR2. How many 

of them had BAD/GOOD outcomes?”). The left/right locations of bad and good outcomes and 

medications were randomized at the participant level. This kind of memory judgment will 

subsequently be called an Outcome|Cue (or O|C) estimate, because participants are reasoning 

about the outcome (bad or good) with information about the cue (i.e., that the patient received 

PR2).  
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One potential problem with these O|C judgments is that in the learning phase participants 

were given the outcome and made predictions about the cue (Figure 1). If participants have 

difficulty with the mental switch in the direction of reasoning, that could presumably cause illusory 

correlations. For this reason, Cue|Outcome (C|O) memory estimates were also included, such as, 

“Of the patients you just saw, 16 had BAD outcomes. How many of them received PR2/BT3?” 

(Figure 2B). Whether participants were first asked O|C or C|O memory items was randomized at 

the subject level. The order within each question (e.g., whether they were asked about PR2 or BT3 

first in the O|C judgment) was randomized at the scenario level. 
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Figure 2. Outcome|Cue (A) and Cue|Outcome (B) memory judgments in the test phase of Experiment 1. 

Consistent with previous studies, these C|O and O|C judgments were converted to phi 

correlations prior to analysis (Equation 1). 

𝜙 =  
𝐴𝐷−𝐵𝐶

√(𝐴+𝐵)(𝐶+𝐷)(𝐴+𝐶)(𝐵+𝐷)

Equation 1 



21 

Phi correlations are equivalent to Pearson’s r for binary variables (Davenport & El-

Sanhurry, 1991). Table 3 shows the a set of trials equivalent to half of a dataset in Experiment 1, 

with a phi coefficient of zero. Table 4 shows the same data in long form; Pearson’s r for the data 

in Table 4 is zero. 

Table 3. Example dataset in which phi = 0. 

Good Bad 

PR2 12 (A) 6 (B) 
GS5 4 (C) 2 (D) 

Table 4. Data from Table 3 in long format; r = 0. Shading corresponds to cells A-D. 

A B C D 

Patient Number: 1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Drug (1 = PR2): 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 

Outcome (1 = Good): 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 

Illusory correlation studies typically rely on phi coefficients from these remembered cell 

frequencies (i.e., O|C estimates) rather than asking participants about their causal beliefs. This 

approach makes sense in the context of judging groups of people (e.g., Hamilton & Gifford, 1976), 

because a social desirability bias might make participants reluctant to endorse explicit judgments 

about groups. However, in the context of medications and patient outcomes there is no reason to 

avoid a more direct measure of illusory correlation than remembered O|C or C|O frequencies.  

After completing O|C and C|O estimates, subjects indicated their beliefs about which drug 

was better for patient outcomes (Figure 3). Participants were given a forced choice task regarding 

which medication to prescribe to a new patient, and their bonus was adjusted depending on that 
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patient’s outcome. This methodology was chosen because it incentivized learning and accurate 

judgments. The judgment was presented as a gambling task: participants would gain $1.00 if the 

patient had a good outcome and lose $1.00 if the patient had a bad outcome. Participants could 

then click to choose which drug to prescribe. After clicking a drug, they were given confirmation 

that they had chosen that drug, and asked to adjust a slider indicating their confidence about their 

choice. The anchors on each end were “I am very confident about [Drug],” and the text in the 

middle of the slider said “I am not sure at all.” Participants were not given the option to select a 

slider value incompatible with their selection in the forced choice. A back button was available if 

they wanted to select the other drug before finalizing their slider judgment. After finalizing the 

sliding scale judgment, participants were given feedback about their patient’s outcome. Despite 

what was implied in the instructions, the outcomes were deterministic in accordance with the 

outcome base rates. In the PD condition the outcome was always negative; in the ND condition it 

was always positive. Because valence was manipulated within subjects, these “gambles” cancelled 

out for every participant. Because the causal judgment task was essentially an additional learning 

trial, it was always presented after the memory judgments. Before analysis the causal strength 

judgments were recoded such that more positive numbers indicate a causal strength judgment in 

the predicted direction (i.e., that the rare cue causes the rare outcome or that the common cue 

causes the common outcome). 
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Figure 3. Causal judgment task in the Combined/Story (A) and Monetary (B) conditions. Sliding scale below 

replaced choice when participants chose a drug/color. 

After two scenarios, participants completed a brief demographics questionnaire and were 

directed to a debriefing page. The entire procedure took approximately 25 minutes to complete. 

4.2 Results 

There were several predicted patterns. First, it was predicted that participants’ illusory 

correlations in the ND condition would be significantly positive for all three outcomes. Second, it 

was predicted that these illusory correlations would be stronger in the ND condition than the PD 

condition (valence effects). Third, if participants form stronger illusory correlations in the ND 

condition, this should also be reflected in their trial-by-trial predictions. Finally, if illusory 
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correlations are driven by distinctiveness, and valence effects are the result of increased 

distinctiveness when the rarest combination involves a negative outcome, participants should tend 

to overweight the occurrence of the rarest outcome relative to the most common outcome in their 

O|C and C|O memory estimates. 

4.2.1 Illusory correlations in memory and causal judgments 

The expected pattern held very clearly; participants’ illusory correlation inferences were 

all significantly above zero in the ND conditions (Figure 4). Single sample t-tests showed that 

participants’ O|C estimates were significantly positive in the Combined (t(78) = 6.54, p < .001, d 

= 0.74), Monetary (t(78) = 7.04, p < .001, d = 0.79), and Story groups (t(75) = 8.13, p < .001, d = 

0.93). Similarly, participants’ C|O judgments were significantly positive in the Combined (t(78) = 

5.29, p < .001, d = 0.60), Monetary (t(79) = 3.56, p < .001, d = 0.40), and Story groups (t(75) = 

6.94, p < .001, d = 0.80). Finally, participants’ causal strength judgments in the ND condition were 

significantly above zero in the Combined (t(79) = 10.53, p < .001, d = 1.18), Monetary (t(80) = 

8.48, p < .001, d = 0.94), and Story groups (t(78) = 10.25, p < .001, d = 1.15). 

4.2.2 Valence effects in memory and causal judgments 

To test for a main effect of valence and examine whether valence effects interact with 

valence modality, a mixed ANOVA with Type III sums of squares was conducted for each 

outcome with valence as a within-subjects factor and valence modality as a between-subjects 

factor.  
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For the O|C memory judgments1, there was a significant main effect of valence, F(1, 231) 

= 52.57, p < .001, 2
G = .09. This valence effect was not modulated by a valence modality 

interaction, F(2, 231) = 2.20, p = .11, 2
G = .001. Similar results were found in participants’ C|O 

judgments. The main effect of valence was significant (F(1, 232) = 21.32, p < .001, 2
G  = .04), 

but the interaction was not, F(2, 232) = 2.16, p = .12, 2
G = .01. The largest valence effects were 

found in participants’ causal judgments, F(1, 233) = 249.98, p < .001, 2
G = .40. The interaction 

was again nonsignificant, F(1, 233) = 2.17, p = .11, 2
G = .01.    

Figure 4. Illusory correlations for each condition and group, for each DV in Experiment 1. Error bars indicate 

standard error of the mean. Note that the y axes differ and are truncated in panels A and B to more clearly 

illustrate the effect. 

1 For both O|C and C|O memory judgments, there was an order effect corresponding to which memory 

question participants answered first. However, because the pattern of results collapsing across order the same as when 

only the first memory item was analyzed, I report the inferential tests collapsing across order. 
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4.2.3 Valence effects in predictions 

Another way to measure illusory correlation is in participants’ predictions during each trial. 

If participants believe that either drug is equally likely to cause a good/bad outcome, then they 

should choose the rare drug at roughly equivalent rates regardless of whether the patient had the 

common/rare outcome.  

For each participant, the probability of choosing the rare drug was calculated for trials in 

which the patient had good and bad outcomes2 (Figure 5). In this case, an illusory correlation 

would manifest as a difference between the probability of choosing the rare drug when the patient’s 

outcome was common vs rare (i.e., the difference between the light and dark bars in Figure 5). A 

valence effect would be a larger difference in the ND condition than the PD condition. The 

differences were again compared using a mixed ANOVA with Type III sums of squares. The effect 

of valence was significant, F(1, 234) = 21.19, p < .001, 2
G = .06, and the interaction with valence 

modality was again nonsignificant, F(2, 234) = 1.77, p = .17, 2
G = .01.    

2 In Experiments 1-3, some of the trial-by-trial predictions were lost in the data collection process (approx. 

0.2%). For participants missing two or fewer predictions (out of 96 total), the choice probability was simply calculated 

for the incomplete data, rather than discarding the data from these participants. Participants missing more than two 

predictions were excluded. For all three experiments, the results of the ANOVAs for trial-by-trial predictions were 

not changed by reporting this way rather than only including participants with complete data. 
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Figure 5. Probability of guessing rare drug when the patient experienced the common and rare outcomes in 

Experiment 1. Error bars indicate standard error of the mean. 

4.2.4 Cell weighting 

Finally, participants’ reported frequencies for each combination were compared. The 

memory estimates above suggest that participants either over-estimate instances of the most 

common combination, the rarest combination, or both. If the distinctiveness of the rarest 

combination drives illusory correlations (and valence effects specifically), there should be a 

consistent pattern whereby participants overweight the occurrence of the rarest combination. This 

section first reports whether the rarest combination was overestimated generally, then examines 

the differences between ND and PD conditions. Then the same questions are examined for the 

most common combination. 

First participants’ overall C|O and O|C frequencies for the rarest combination were 

compared to the actual values using single sample t-tests. Participants significantly overestimated 
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the occurrence of the rarest combination in both their O|C (t(467) = 15.75, p < .001, d = 0.73) and 

C|O estimates (t(469) = 18.15, p < .001, d = 0.84).  

Valence effects and interactions with modality were tested, again using a 2(Valence: ND 

vs PD, within subjects) x 3 (Modality: Combined vs Monetary vs Story) mixed factorial ANOVA 

with Type III sums of squares. For O|C judgments, there was a main effect of valence such that 

estimates of the rare combination (Figure 6C) were significantly higher in the ND condition than 

the PD condition (F(1, 231) = 15.49, p < .001, 2
G = .03). The interaction was nonsignificant (F(2, 

231) = 1.23, p = .29, 2
G = .01). For C|O judgments, there was also a main effect of valence such

that estimates of the rare combination (Figure 6D) were higher in the ND condition than the PD 

condition (F(1, 232) = 24.13, p < .001, 2
G = .04). Here the interaction was significant (F(2, 231) 

= 1.23, p = .29, 2
G = .01), although it is probably an anomaly given the nonsignificant interactions 

in the other analyses. 
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Figure 6. Average estimated frequencies of the most common (A,B) and rarest (C,D) cue/outcome combination, 

for O|C (A,C) and C|O (B,D) memory estimates in Experiment 1. Error bars indicate standard error of the 

mean. Horizontal lines indicate correct frequency. 

Analyses of participants’ estimates of the rare combination showed that participants 

consistently overestimated the rarest combination in their memory judgments, and that this 

tendency was stronger in the ND condition when that rare combination involved a negative 

outcome. 

By contrast, participants did not overweight the most common combination in their O|C 

judgments (t(467) = -1.12, p = .26, d = 0.05), and actually underweighted the most common 

combination in their C|O judgments (t(469) = -5.62, p < .001, d = 0.26). Examining the ND/PD 

differences, with the same mixed ANOVA from above, participants had significantly higher O|C 

estimates of the most common combination (Figure 6A) in the ND condition than the PD condition 

(F(1, 231) = 39.41, p < .001, 2
G = .07), and again the interaction was nonsignificant (F(2, 231) = 



30 

0.95, p = .39, 2
G < .01). However, this pattern did not extend to participants’ C|O judgments 

(Figure 6B), which did not differ between the ND and PD conditions (F(1, 232) = 1.90, p = .17, 

2
G < .01). The interaction with valence modality was nonsignificant (F(2, 232) = 0.87, p = .42, 

2
G < .01). 

4.3 Discussion 

In Experiment 1, I replicated the basic illusory correlation effect in nearly all conditions, 

and found evidence that this effect is driven by participants overestimating the occurrence of the 

rare cue/outcome combination. Additionally, I found a consistent valence effect whereby 

participants made stronger illusory correlation inferences when the rare outcome was negative than 

when it was positive.  

Several findings from Experiment 1 were particularly notable. First, to my knowledge 

Experiment 1 is the first study to induce illusory correlations using purely monetary cue/outcome 

combinations. One might think that using real monetary outcomes that subjects receive as bonuses, 

rather than good or bad outcomes within a cover story, would lead to greater attention and better 

accuracy, and therefore an attenuated IC effect; however, the effect sizes for ICs in the monetary 

group were comparable to the other groups.  

Second, participants’ memory judgments suggest that their illusory correlation inferences 

were driven by an overestimation of the frequency of the rarest combination (Figure 6). The clear 

pattern is that participants tend to overestimate this rare combination, consistent with Hamilton 

and Gifford’s (1976) original distinctiveness perspective. The general overestimation of rare 

outcomes is consistent with previous work (e.g., Arkes & Harkness, 1983; Kahneman & Tversky, 
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1979). However, the fact that participants’ overestimation of the rare combination was stronger it 

the ND condition is not predicted by existing theories. This pattern is consistent with 

distinctiveness as a driver of illusory correlation, and valence as a marker of 

distinctiveness/salience. Implications of attention, distinctiveness, and negativity are explored 

further in Section 8. 

Third, Experiment 1 yielded strong evidence for valence effects across all three valence 

modalities (Story, Monetary, and Combined groups), and with two different dependent measures 

(remembered frequencies and causal judgments). In some previous experiments it was possible to 

attribute valence effects to the wording of the memory question, because it drew attention to the 

negative outcomes explicitly. For example, Eder et al. (2011) told participants the total number of 

people in Group A and Group B, and asked how many statements from each group involved 

negative behaviors. Because participants in Experiment 1 did not answer these kinds of memory 

questions, but instead filled in contingency table information for positive and negative outcomes, 

it is clear that valence effects obtained in Experiment 1 cannot be an artifact of the test phase 

procedure; they must arise due to differences in learning or memory. 

Finally, the patterns of valence effects in participants’ memory and causal judgments were 

different. Participants gave IC judgments in the predicted direction for ND datasets. However, 

their judgments in PD datasets were actually in the opposite direction from what was predicted, 

which is why the valence effects for the causal strength judgments were so much larger than the 

valence effects in the frequency estimates. This pattern was found in Experiments 2-4 as well, and 

will be discussed in more detail in the General Discussion. 
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5.0 Experiment 2: Valence Effects and Loss Aversion 

Hamilton and Gifford (1976) proposed the idea of distinctiveness in terms of frequencies. 

Rare events are said to be distinctive, and the co-occurrence of such rare events is even more 

distinctive. However, as previously discussed, a myriad of factors could conceivably contribute to 

how distinctive an experience is in memory. One such factor is whether an experienced outcome 

is positive or negative objectively; another conceivable factor is whether subjects encode the 

outcome as a gain or a loss.  

The idea of reference dependence in behavioral economics can be traced at least as far back 

as Kahneman and Tversky’s (1979) Prospect Theory. Kahneman and Tversky demonstrated not 

only that subjects switch from risk averse to risk seeking when facing the prospect of losses, they 

also showed that participants can become risk seeking in absolute gain scenarios that are framed 

as relative losses. The reverse has also been demonstrated; subjects can encode absolute monetary 

losses as relative gains, as when a purchase is less expensive than anticipated (e.g., Tereyağoğlu, 

Fader, & Veeraraghavan, 2017). Researchers have found that loss aversion is reference dependent 

in a wide variety of areas such as brand comparisons in a grocery store setting (e.g., Hardie, 

Johnson, & Fader, 1993), real estate prices (e.g., Genesove & Mayer, 2001), and professional 

sports (e.g., Pope & Schweitzer, 2011). If loss aversion broadly is reference dependent, is the same 

true for valence effects?  

In the Combined condition of Experiment 1, absolute gain/loss and gain/loss framing were 

confounded; a positive outcome yielded a gain of 6 cents, and a negative outcome yielded a loss 

of 6 cents. The primary goal of Experiment 2 was to explore the relationship between absolute and 

relative gains and losses in the valence effects discussed thus far. Absolute gain/loss was 
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manipulated between subjects, and the relative gain/loss (PD vs ND distribution) was manipulated 

within subjects, as in Experiment 1. In the absolute Gain condition, participants were rewarded for 

good outcomes, but were not penalized for bad ones; in the Loss condition they were penalized for 

bad outcomes, but were not rewarded for good ones. 

There is reason to think that valence effects would be particularly strong in the Loss 

condition. Experiment 1 provided evidence that people interpret negative outcomes as particularly 

salient, and it is not a stretch to imagine that trials in which a monetary reward/penalty occurs are 

more salient than trials in which no monetary change occurs. In other words, subjects may 

disproportionately attend to trials in which things happen, rather than those in which nothing 

changes (e.g., Kao & Wasserman, 1993). If this is the case, the rare-negative outcome in the ND 

condition would be much more salient in the Loss condition than in the Gain condition, resulting 

in an interaction. By contrast, if valence effects are driven by the experience of relative gains and 

losses, valence effects will be equivalent between the absolute Gain and Loss conditions. 

5.1 Method 

5.1.1 Participants 

Participants (n = 157, 65 female, 91 male, 1 unreported) were recruited through MTurk. 

The average age was 35.46 years (SD = 9.69). Participants were paid a base rate of $3.50 for their 

participation, in addition to patient outcome bonuses ($2.88) and accuracy bonuses (M = $1.89, 

SD = $0.19). 
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5.1.2 Design 

In order to test whether absolute or relative experience of gains/losses is the driving factor 

in valence effects, absolute Gain/Loss was manipulated between subjects (Table 5). Participants 

in the Gain condition received a bonus of 6 cents each time the patient outcome was good, and 

their bonus was not altered when the patient outcome was bad. By contrast, participants in the Loss 

condition lost 6 cents each time the patient outcome was bad, and their bonus was not altered when 

the outcome was good. As in Experiment 1, the base rates of good/bad outcomes was manipulated 

within subjects (Positive-Distinctive vs Negative-Distinctive). Thus Experiment 2 features a 2 

(Absolute Bonus: Gain vs Loss, between subjects) x 2 (Valence: PD vs ND, within subjects) mixed 

factorial design. To make the total payout (minus accuracy bonuses) equal between the framing 

groups, participants in the Gain and Loss groups began the study with different patient outcome 

bonuses. Participants in the Gain group began with no money, whereas participants in the Loss 

group began with $5.76. Both ended the study with $2.88 in bonuses, in addition to trial-by-trial 

accuracy bonuses (same as Experiment 1). 

Table 5. Datasets for Experiment 2. 

Negative-Distinctive Positive-Distinctive 

Absolute Gain 

(Start with $0.00, end 

with $2.88.) 

+6¢ 0¢ 0¢ +6¢

Drug1 24 12 Drug3 24 12 

Drug2 8 4 Drug4 8 4 

Absolute Loss 

(Start with $5.76, end 

with $2.88) 

0¢ -6¢ -6¢ 0¢ 

Drug1 24 12 Drug3 24 12 

Drug2 8 4 Drug4 8 4 
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5.1.3 Procedure 

Aside from the differences discussed above, the procedure was identical to the “Combined” 

cover story in Experiment 1. The entire procedure took approximately 25 minutes to complete. 

5.2 Results 

5.2.1 Valence effects in memory and causal judgments 

Valence effects in memory and causal judgments were evaluated with a mixed factorial 

ANOVA with Type III sums of squares (Figure 7). For causal judgments, there was a significant 

valence effect (F(1, 155) = 98.15, p < .001, 2
G = .29), but the main effect of absolute bonus (F(1, 

155) = 1.68, p = .20, 2
G < .01) and the interaction (F(1, 155) = 0.34, p = .56, 2

G < 01) were both

nonsignificant. Participants’ O|C judgments yielded a similar result; the valence effect was 

significant (F(1, 153) = 7.37, p < .01, 2
G = .02), but the main effect of absolute bonus (F(1, 153) 

= 0.40, p = .53, 2
G < .01) and the interaction (F(1, 153) = 2.62, p = .11, 2

G < .01) were not. 

Participants’ C|O memory estimates3 yielded no significant main effects for valence (F(1, 69) = 

3 There was a sizable order effect in participants’ C|O memory estimates, in which the valence effect was 

present for participants who had already completed the O|C judgments, but not for those who completed the C|O 

judgments first. To eliminate the possibility of contamination from the O|C measurement, all relevant analyses exclude 

participants who completed the O|C judgments first. 
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0.01, p = .93, 2
G < .01) or absolute bonus (F(1, 69) = 0.26, p = .61, 2

G < .01), and no significant 

interaction (F(1, 69) = 0.02, p = .89, 2
G < .01). 

Figure 7. Illusory correlations for each level of Framing and Valence, for each DV. Note that the y axes differ 

and are truncated in panels A and B to more clearly illustrate the effect. Error bars indicate standard error of 

the mean. 

5.2.2 Valence effects in predictions 

As in Experiment 1, participants’ trial-by-trial predictions of the drugs each patient 

received were used as another way to measure valence effects (Figure 8). The trial-by-trial illusory 

correlations were calculated in the same way as in Experiment 1, and were analyzed using the 

same 2x2 mixed ANOVA discussed above, with the trial-by-trial illusory correlations as the 

dependent variable. There was a significant valence effect (F(1, 141) = 5.34, p = .02, 2
G = .02), 

but the main effect of absolute bonus (F(1,141) = 1.20, p = .29, 2
G < .01) and the interaction 

(F(1,141) = 0.18, p = .67, 2
G < .01) were both nonsignificant. 
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Figure 8. Probability of guessing rare drug when the patient experienced the common and rare outcomes in 

Experiment 2. Error bars indicate standard error of the mean. 

5.2.3 Cell weighting 

As in Experiment 1, participants’ reported frequencies for the combination of the most 

common and rarest cue/outcome combinations were analyzed to determine whether valence effects 

were driven by participants overestimating the frequency of the rarest combination (i.e., 

distinctiveness). 

Participant’s estimates of the rarest combination were compared to the actual values using 

single-sample t-tests. Participants significantly overestimated the rarest combination in their O|C 

judgments (t(309) = 14.83, p < .001, d = 0.84) as well as their C|O judgments, t(141) = 11.88, p < 

.001, d = 1.00 (Figure 9). 
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Figure 9. Average estimated frequencies of the most common (A,B) and rarest (C,D) cue/outcome combination, 

for O|C (A,C) and C|O (B,D) memory estimates in Experiment 2. Error bars indicate standard error of the 

mean. Horizontal lines indicate correct frequency. 

The influence of valence and absolute bonus on these overestimations was then tested using 

the same mixed ANOVA from the previous Experiment 2 analyses, with rare combination O|C 

and C|O estimates as dependent variables. For the O|C judgments, there was a significant main 

effect of valence (F(1, 153) = 4.62, p = .03, 2
G = .02), but the main effect of absolute bonus was 

nonsignificant (F(1,153) = 0.76, p = .38, 2
G < .01), as was the interaction (F(1, 153) = 2.62, p = 

.11, 2
G = .01). The analysis of C|O judgments yielded no significant main effect of valence (F(1, 

69) = 0.24, p = .88, 2
G < .01) or absolute bonus (F(1, 69) = 0.79, p = .38, 2

G = .01), and the

interaction was also nonsignificant (F(1, 69) = 0.85, p = .36, 2
G = .01). 



39 

Next participants’ estimates of the most common combination were analyzed in the same 

way. Participants’ O|C estimates of the most common combination were not significantly different 

from the actual frequency (t(309) = -0.15, p = .88, d = 0.01), and their C|O estimates were 

significantly below the actual frequency (t(141) = -3.05, p < .01, d = 0.26). 

Unlike participants’ estimates of the rarest combination, participants’ O|C estimates of the 

most common combination yielded no significant main effects of valence (F(1, 153) = 2.11, p = 

.15, 2
G < .01) or absolute bonus (F(1,153) = 0.01, p = .92, 2

G < .01), and no significant interaction 

(F(1, 153) = 0.41, p = .52, 2
G < .01). Similarly, participants’ C|O estimates yielded no significant 

main effects of valence (F(1, 69) = 0.05, p = .82, 2
G < .01) or absolute bonus (F(1,69) = 0.17, p 

= .68, 2
G < .01). The interaction was nonsignificant here as well (F(1, 69) = 0.37, p = .54, 2

G < 

.01). 

5.3 Discussion 

Experiment 2 tested whether valence effects were sensitive to absolute or relative 

outcomes. Although the results from Experiment 1 were replicated, and they were once again fairly 

robust across all three dependent measures, there was no interaction between absolute Gain/Loss 

outcomes and Valence. 

This pattern of results indicates that participants were more sensitive to the relative gains 

and losses than to the absolute amounts associated with those gains and losses; for participants in 

the Gain condition, failing to gain 6 cents was as distinctive as a loss. This is further evidence that 

some of the strongest illusory correlations occur when the common outcome is better and the rare 

outcome is worse. Unfortunately, the corollary is that most of us live in precisely the kind of world 
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in which people are most likely to exhibit illusory correlations (generally, good outcomes 

outnumber bad outcomes). Further, Experiment 2 shows that the valence effect appears to be 

pervasive; it can happen both for good and bad outcomes so long as the better outcomes are more 

common than the worse outcomes. 

In Experiment 2 the congruency between absolute and relative gains/losses was 

manipulated, but the monetary difference between good and bad outcomes was constant (i.e., a 

good outcome was always six cents better than a bad outcome). In Experiment 3 the magnitude of 

this difference is manipulated in pursuit of a related question: are valence effects larger when bad 

outcomes are (more) bad and good outcomes are (more) good? 



41 

6.0 Experiment 3: Examining the Magnitude of the Outcomes in the Valence Effect 

Previous research suggests that negative experiences can lead to illusory correlations, and 

that more intense negative stimuli generate stronger illusory correlations. For example, Wiemer et 

al. (2014) induced illusory correlations between neutral stimuli and startle sounds in a fear learning 

study. Their participants inferred stronger illusory correlations when the startle sounds were 

louder. Shook, Fazio, and Eiser (2006) found similar results in a category learning task in which 

participants classified fictional beneficial/harmful beans. Participants more readily generalized the 

features of harmful beans than beneficial ones, and this tendency was exaggerated for more 

extreme negative outcomes.  

The primary research question in Experiment 3 was whether valence effects could be 

moderated by stronger positive/negative outcomes. This question has interesting implications for 

distinctiveness and salience perspectives. From a distinctiveness perspective, one might expect the 

trials with stronger outcomes to be misremembered as more frequent than they were (e.g., Jacoby 

& Craik, 1979). This would manifest as a main effect of outcome magnitude, and may (Figure 

10A) or may not (Figure 10B) include an interaction with valence. By contrast, a gradual error-

reduction theory (e.g., Rescorla & Wagner, 1972) might predict better learning for more salient 

outcomes, producing smaller illusory correlations, and perhaps even attenuating valence effects 

(Figure 10C). 
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Figure 10. Possible patterns of results if higher stakes lead to larger valence effects (A), larger illusory 

correlations (B), or smaller illusory correlations (C). 

6.1 Method 

6.1.1 Participants 

Participants (n = 159; 71 females, 88 males) were recruited through MTurk, with an 

average age of 36.89 years (SD = 11.10). Participants were paid a base rate of $3.50 for their 

participation, as well as accuracy bonuses (M = $2.15, SD = $0.20). As in Experiment 1, 

participants were given bonuses according to patient outcomes, but because ND vs PD valence 

was manipulated within subjects, these balanced out at 0 (Table 6). 
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Table 6. Datasets for Experiment 3. 

Negative-Distinctive Positive-Distinctive 

Higher Stakes 

+18¢ -18¢ -18¢ +18¢

Drug 1 24 12 Drug 3 24 12 

Drug 2 8 4 Drug 4 8 4 

Lower Stakes 

+6¢ -6¢ -6¢ +6¢

Drug 1 24 12 Drug 3 24 12 

Drug 2 8 4 Drug 4 8 4 

6.1.2 Design and procedure 

The design of Experiment 3 is very similar to Experiment 2: a 2x2 mixed factorial, with 

ND/PD Valence manipulated within subjects (Table 6). The between subjects factor was the 

magnitude of the outcome. Participants in the Higher Stakes condition were awarded 18 cents for 

good patient outcomes and penalized 18 cents for bad patient outcomes. Participants’ bonus 

amounts were initialized at 30 cents, as in Experiment 1. Aside from these design differences, the 

procedure was identical to Experiment 2. The entire procedure took approximately 25 minutes to 

complete. 

6.2 Results 

6.2.1 Valence effects in memory and causal judgments 

As in Experiments 1 and 2, illusory correlations for all three dependent measures were 

evaluated with a mixed factorial ANOVA. Results from Experiment 3 were analyzed with a 
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2(Valence: ND vs PD, within-subjects) x 2(Magnitude: Higher Stakes vs Lower Stakes) mixed 

ANOVA with Type III sums of squares. As in Experiments 1 and 2 there was a main effect of 

valence for the causal judgments, F(1, 155) = 171.89, p < .001, 2
G = .39. However, there was not 

a significant main effect of magnitude (F(1, 155) = 1.08, p = .30, 2
G < .01), nor was there an 

interaction, F(1, 155) = 3.15, p = .08, 2
G = .01 (Figure 11). The same was true of participants’ 

O|C judgments; the valence effect was significant (F(1, 151) = 28.46, p < .001, 2
G = .09), but the 

main effect of magnitude (F(1, 151) = 0.13, p = .72, 2
G < .01) and the interaction (F(1, 151) = 

1.60, p = .21, 2
G = .01) were both nonsignificant. Finally, there was also a significant valence 

effect in participants’ C|O judgments4 (F(1, 151) = 22.23, p < .001, 2
G = .08). There was a 

marginal main effect of magnitude (F(1, 151) = 2.90, p = .06, 2
G < .01), and the interaction was 

nonsignificant (F(1, 155) = 0.13, p = .71, 2
G < .01). 

4 There was an order effect in the O|C judgments, as in Experiments 1 and 2. However, the results of the 

ANOVA were the same regardless of the order in which participants answered O|C and C|O judgments. Therefore, 

the tests reported here are collapsed across order. 
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Figure 11. Illusory correlation judgments by valence and outcome magnitude (Higher Stakes; HS vs Lower 

Stakes; LS). Note that the y axes differ and are truncated in panels A and B to more clearly illustrate the effect. 

Error bars indicate standard error of the me 

6.2.2 Valence effects in predictions 

As in Experiments 1 and 2, valence effect were also calculated using participants’ trial-by-

trial predictions of the drugs each patients received (Figure 12). This was also analyzed using a 

2(Valence: ND vs PD, within-subjects) x 2(Magnitude: Higher Stakes vs Lower Stakes) mixed 

ANOVA with Type III sums of squares. Again there was a main effect of valence (F(1, 156) = 

40.99, p < .001, 2
G = .14), but not magnitude (F(1, 156) = 0.41, p = .52, 2

G < .01). There was no 

significant interaction (F(1, 156) = 0.30, p = .59, 2
G < .01). 
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Figure 12. Probability of guessing rare drug when the patient experienced the common and rare outcomes in 

the Higher Stakes (A) and Lower Stakes (B) conditions. Error bars indicate standard error of the mean. 

6.2.3 Cell weighting 

As in Experiments 1 and 2, participants’ estimates of the rarest and most common 

cue/outcome combinations were compared to confirm that illusory correlations in their memory 

estimates were driven by overweighting of rarest cue/outcome combination rather than the most 

common (Figure 13). Single sample t-tests showed that Participants’ estimates of the rarest 

combination were significantly higher than the actual value in both their O|C (t(305) = 12.31, p < 

.001, d = 0.70) and C|O estimates (t(305) = 15.34, p < .001, d = 0.88). 
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Figure 13. Average estimated frequencies of the most common (A,B) and rarest (C,D) cue/outcome 

combination, for O|C (A,C) and C|O (B,D) memory estimates in Experiment 3. Error bars indicate standard 

error of the mean. Horizontal lines indicate correct frequency. 

Mixed ANOVAs with Type III sums of squares were conducted to examine valence effects 

in cell weighting. For O|C judgments, there was a significant main effect of valence (F(1, 151) = 

14.09, p < .001, 2
G = .05), but neither the effect of magnitude (F(1, 151) = 0.78, p = .38, 2

G < 

.01) nor the interaction was significant (F(1, 151) = 0.77, p = .38, 2
G < .01). There was also a 

significant main effect of valence in participants’ C|O judgments (F(1, 151) = 25.82, p < .001, 2
G 

= .07), as well as a main effect of magnitude (F(1, 151) = 4.58, p = .03, 2
G = .02). The interaction 

was nonsignificant, F(1, 151) = 0.85, p = .36, 2
G < .01.Thus, consistent with the idea that 

negative valence increases distinctiveness processing for rare events, participants consistently 
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overestimated the occurrence of the rare outcome, and this tendency was stronger in the ND 

condition. 

Turning to participants’ estimates of the common combination, single sample t-tests 

revealed that participants’ O|C estimates were not significantly different from the actual value 

(t(305) = 0.22, p = .83, d = 0.01), and their C|O estimates significantly underestimated the 

frequency of the common combination (t(305) = -3.53, p < .001, d = 0.20). A mixed ANOVA with 

Type III sums of squares revealed a main effect of valence in the O|C judgments (F(1, 151) = 

14.37, p < .001, 2
G = .05). The main effect of magnitude (F(1, 151) = 0.10, p = .75, 2

G < .01) 

and the interaction were nonsignificant (F(1, 151) = 0.84, p = .36, 2
G < .01). A similar pattern 

emerged in the C|O judgments, which yielded a significant valence effect (F(1, 151) = 4.63, p = 

.03, 2
G = .01), but not a significant main effect of magnitude (F(1, 151) = 2.93, p = .09, 2

G = 

.01) or a significant interaction (F(1, 151) = 0.02, p = .89, 2
G < .01). 

Overall this suggests that people tend to overweight the frequency of the rare outcome (in 

line with the distinctiveness hypothesis), and that this tendency is stronger when the rare outcome 

is negative. Additionally, participants did not consistently overweight the occurrence of the 

common combination, which is consistent with the idea that the distinctiveness of the (negative) 

rare combination drives increased frequency estimates. 

6.3 Discussion 

In Experiment 3 the relationship between valence effects and outcome magnitude was 

examined. Valence effects from the previous experiments, were replicated but there was no main 
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effect of outcome magnitude. Finally, the interaction between valence and outcome magnitude 

was only significant in one of the three outcome variables, and the effect was very weak.  

The absence of an interaction is difficult to interpret. It is possible that participants simply 

did not differentially encode gains/losses between the Higher and Lower Stakes conditions. 

Because outcome magnitude was manipulated between subjects, participants in the Higher Stakes 

condition were unaware that there was a Lower Stakes condition; perhaps 18 cents would only be 

encoded as “Higher Stakes” if participants knew that others were gaining/losing less money for 

the outcomes. Further, there is evidence from previous work that participants tend to discretize 

continuous variables (e.g., Marsh & Ahn, 2009). For example, if some continuous variable such 

as dosage of a drug were to increase by 18 mg from one trial to the next, participants may simply 

view that as “an increase” rather than encoding a representation of the magnitude. Similarly, it is 

possible that participants simply categorize losses of 6 cents and 18 cents as “losses,” which are 

equally salient in memory. 

It is also possible that the difference between 6-cent outcomes and 18-cent outcomes was 

simply too small to register as a meaningful difference for subjects; however, there are several 

reasons to be skeptical of this perspective. First, the difference between losing 6 cents and losing 

18 cents is 12 cents. Valence effects were obtained in the previous experiments with a 12-cent 

difference between gain and loss (Experiment 1), and even with a 6-cent difference (Experiment 

2). Additionally, the value weighting function in prospect theory is steepest for small gains and 

losses (Kahneman & Tversky, 1979). A difference of 12 cents will be felt the most when the 

prospects are close to zero (e.g., the difference between 6 cents and 18 cents should be viewed as 

much bigger than the difference between $1.06 and $1.18). 
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Experiments 1-3 extended the distinctiveness-based illusory correlation effect (e.g., 

Hamilton & Gifford, 1976) to causal scenarios and established a strong and reliable trend whereby 

negative-distinctive (ND) scenarios yield stronger illusory correlation inferences than positive-

distinctive (PD) scenarios. Experiment 4 will examine a different question regarding valence: 

whether contingencies involving negative outcomes are more resistant to extinction. 
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7.0 Experiment 4: Valence Effects and Extinction 

Experiment 4 investigates a different type of valence effect. Rather than examine the 

differential strength of illusory correlations according to valence, as in Experiments 1-3, 

Experiment 4, was related to differential extinction; are contingencies involving negative 

outcomes more difficult to extinguish compared to contingencies involving positive outcomes? 

The approach in Experiment 4 was modeled after placebo/nocebo experiments (e.g., Au 

Yeung et al., 2014; Colagiuiri et al., 2015). While placebo/nocebo studies and studies of 

conditioning (e.g., Andreatta & Pauli, 2015) hint at a pattern of valence effects in extinction, I have 

not found an example in which positive (placebo) and negative outcomes (nocebo) are compared 

in the same study.  

Experiment 4 was designed make a direct comparison between the rate of extinction with 

a positive vs. a negative outcome. Participants underwent a learning phase with 48 trials in which 

they learned a generative relationship; a medicine was either correlated with a good or a bad patient 

outcome. In in the next 48 trials there was zero correlation between the cue an outcome (an 

extinction phase). After the extinction phase, participants indicated their beliefs about the 

contingency. If contingencies involving negative outcomes are more difficult to extinguish, then 

participants in the Negative valence condition would have stronger causal strength beliefs than 

those in the Positive valence condition. 

This approach could prove useful for two reasons. First, while it is important to understand 

how people acquire causal illusions, from a practical perspective it also important to understand 

how they are extinguished, and whether negative valence interferes with this process. There is 

some evidence from the fear learning literature that covariation biases (i.e., illusory correlations) 
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are stronger and more resistant to extinction when they involve aversive, fear-relevant stimuli (e.g., 

de Jong & Merckelbach, 2000; Pauli, Diedrich, & Müller, 2002). Additionally, people are 

sometimes required to detect changing contingencies over time in their everyday lives due to 

interactions with unobserved variables (e.g., Rottman & Ahn, 2011). Further, contingencies 

sometimes attenuate over time naturally. For example, the relationship between coffee intake and 

alertness diminishes as one habituates to caffeine (e.g., Rottman & Ahn, 2009).  

Second, if correlations involving negative outcomes are more difficult to extinguish, it 

raises the possibility that the same underlying phenomenon could explain placebo/nocebo effects 

and the illusory correlations in the current work (i.e., a negativity bias). 

7.1 Method 

7.1.1 Participants 

Participants (n = 160, 84 female, 75 male, 1 unreported) were recruited through MTurk. 

The average age was 34.84 (SD = 10.11). Participants were paid $3.50 plus accuracy bonuses (M 

= $1.53, SD = $0.13) to complete the task. 

7.1.2 Design 

Experiment 4 involved a simple between subjects manipulation. Subjects in the Positive 

condition learned about the relationship between a drug (vs. no drug) and a good (vs. neutral) 

outcome. Those in the Negative condition learned about the relationship between a drug (vs. no 
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drug) and a bad (vs. neutral) outcome (Table 7). Participants first learned an actual contingency 

between a the drug and the outcome in an acquisition phase. After 48 trials in the acquisition phase, 

participants transitioned to an extinction phase. The extinction phase consisted of the same kinds 

of trials, but with no contingency between the drug and the outcome, so subjects’ prior beliefs 

about the contingency between the drug and the outcome should extinguish to some degree. 

Similarly to Colagiuiri et al.’s (2015) design, the base rate of the drug in the extinction phase was 

50%. 

Table 7. Acquisition and extinction data in Experiment 4. 

Negative Valence Positive Valence 

Bad 

Outcome 

Normal 

Outcome 

Good 

Outcome 

Normal 

Outcome 

Acquisition Drug 16 8 Drug 16 8 

Phase No Drug 8 16 No Drug 8 16 

Extinction Drug 12 12 Drug 12 12 

Phase No Drug 12 12 No Drug 12 12 

In Experiment 4, subjects were presented with only cover story valence in the outcomes; a 

positive/negative outcome did not involve monetary reward/punishment. Participants were still 

given bonuses when they accurately guessed whether or not each patient received the drug in the 

learning and extinction phases. 

7.1.3 Procedure 

Participants were told that they would be learning about the relationship between a 

medication and a patient outcome, and that their task was to determine whether the medication 
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caused the positive/negative outcome. After the initial training, participants completed an 

acquisition phase which they learned a generative contingency between a drug and the outcome 

(Table 7). After completing the acquisition trials, the procedure transitioned seamlessly to the 

extinction phase, in which the contingency between the drug and the outcome was zero. Finally, 

participants completed a test phase. In this final phase they filled in drug/outcome combinations 

from memory, just like in Experiments 1-3, and completed a causal strength slider5 on a 21 point 

scale (participants could not see the numerical values). For example, if participants had learned 

about the drug XF7 in the Negative[Positive] condition, they were asked “How does XF7 affect 

patient outcomes?” The slider had text anchors on the ends; the left anchor would say, “XF7 

strongly causes bad[good] outcomes,” and the right anchor would say “XF7 strongly prevents 

bad[good] outcomes.” The entire procedure took approximately 25 minutes to complete. 

7.2 Results 

If contingencies involving negative outcomes are more difficult to extinguish, then 

participants in the Negative valence condition would have stronger causal strength beliefs after the 

5 The causal strength judgment in Experiment 4 was different from the causal strength judgment in 

Experiments 1-3, for several reasons. If participants were given a forced choice about whether or not to prescribe the 

drug, they may have a bias toward prescribing in the positive condition and against prescribing in the negative 

condition, even if they believe the drug no longer has an effect. Participants in the Positive condition have never 

known the drug to harm a patient, and those in the Negative condition have never known it to benefit a patient. 
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extinction phase. This question was addressed using independent samples t-tests for each of the 

three outcomes. 

Participants’ causal judgments were significantly above zero in both the Negative (t(78) = 

6.95, p < .001, d = 0.78) and Positive conditions (t(80) = 3.75, p < .001, d = 0.41) (Figure 14). 

Note however, that unlike in prior studies, this does not represent an illusory correlation because 

in the learning data there was a positive correlation in the first half. Participants in the Negative 

condition gave significantly stronger causal judgments compared to those in the Positive condition, 

t(158) = 2.00, p = .047, d = 0.32, which represents the valence effect. Though this effect was 

technically significant, it is very close to the threshold and the effect size is in the small range. 

Figure 14. Illusory correlations from memory estimates and causal judgments. Note that the y axes differ and 

are truncated to more clearly illustrate the effect. Error bars indicate standard error of the mean. *p < .05 

Participants’ O|C judgments were also significantly above zero in both the Negative (t(77) 

= 8.91, p < .001, d = 1.01) and Positive conditions (t(80) = 6.48, p < .001, d = 0.72). However, the 

difference between them was nonsignificant, t(157) = 1.45, p = .15, d = 0.23. 
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The same pattern was present in the C|O judgments, which were significantly above zero 

in both Negative (t(77) = 8.33, p < .001, d = 0.94) and Positive conditions (t(79) = 9.40, p < .001, 

d = 1.05), but were not significantly different from each other, t(156) = 0.39, p = .69, d = 0.06. 

7.3 Discussion 

Experiment 4 provided some support for the idea that contingencies involving negative 

stimuli are more difficult to extinguish than those involving positive stimuli. Although the O|C 

and C|O memory estimates were nonsignificant, participants’ causal judgments after the extinction 

phase were slightly stronger when the outcome was negative than when it was positive.  

The current experiments have demonstrated that valence effects are robust across multiple 

valence modalities (Experiment 1), are driven by relative rather than absolute gains/losses 

(Experiment 2), and are insensitive to the magnitude of the gains/losses (Experiment 3). Further, 

correlations about negative outcomes are somewhat more resistant to extinction (Experiment 4). 

The remainder of the manuscript will focus on the implications of these findings, as well as 

whether the models introduced above can be modified to explain them. 
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8.0 Theoretical Accounts of Valence Effects 

Current theories6 that apply to causal learning and illusory correlation do not explicitly 

account for positive and negative valence, but it is possible that they could be modified to account 

for valence effects, whether through parameters relating to the salience of the outcome (e.g., 

Rescorla & Wagner, 1972) or the differential importance subjects place on different kinds of event 

combinations (e.g., Hamilton & Gifford, 1976; Kao & Wasserman, 1993). In this section I will 

review three theories and discuss whether they can be modified to explain valence effects. 

8.1 Rescorla-Wagner 

The Rescorla-Wagner model is a trial-by-trial error-correction algorithm for learning about 

the relations between cues and an outcome. On each trial the model uses its current weights of 

each cue to make a prediction about the state of an outcome. It then uses the difference between 

the prediction and the observed outcome to modify the weights in the correct direction. Equation 

2 presents the form of the model when there is only one cue. 

∆𝑉 =  𝛽( − V)C Equation 2 

6 Another model was attempted. However, there were ambiguities in the explanations of multiple aspects of 

how the model works that made it impossible for me to reproduce the model (Kruschke, 1996). 
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On a given trial, the model makes a prediction by subtracting the cue’s current strength (V, 

initialized at 0) from the observed outcome (, typically 1 or 0 to reflect the state of the effect) to 

form an error term. The error term is multiplied by two parameters ( and β, both bound at 0 and 

1) which determine the model’s rate of learning. The  term is the learning rate associated with

the cue, whereas  indicates the learning rate for the outcome. Finally, C indicates the presence (C 

= 1) or absence (C = 0) of the cue; the model only learns about an individual cue when it is present. 

The model makes one prediction that is particularly relevant to the current work. Even 

when a cue and outcome are uncorrelated, RW initially infers that they are correlated, and only 

after time learns that they are unrelated. This implies that, in the process of learning that two 

variables are independent, there will always be a temporary illusory contingency in the beginning, 

which will be extinguished given enough trials. 

RW does not encode differences in valence explicitly; however, it is possible that the 

illusory correlations in RW could be altered by more or less salient outcomes (i.e., by changing 

the value of . Generally, larger  values create a higher weight initially, with a faster asymptote 

to the correct weight7.  

Valence effects are simulated by assuming a higher learning rate for the rare than the 

common outcome. To model this, RW was calculated separately for the common and rare outcome, 

with different  values for the two. This generates four association weights between the 

common/rare cues and the common/rare outcomes. First the cues are subtracted within each 

7 All of the simulations reported in the current work use  = 1. The main theoretical interest of the current 

work is the 𝛽 parameter. 
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outcome to find the difference in the cue weights for each outcome. These two difference curves 

are themselves compared, and the difference of difference scores is analogous to an illusory 

correlation. To model the valence effect itself, this procedure is completed with  values that are 

higher for the rare outcome than the positive outcome (i.e., ND condition) and with  values that 

are lower for the rare outcome than the positive outcome (i.e., PD condition). 

Simulations were conducted over varying levels of  for the Common and Rare outcome. 

The higher value of  was associated with the rare outcome (i.e., ND condition) and the common 

outcome (i.e., PD) in separate simulations. Two sets of  values were chosen, representing very 

small (e.g., .01 vs .05) or somewhat larger values (e.g., .1, vs .2). For the purposes of the present 

work, whether a simulated “valence effect” is robust to different scales of  is relevant; RW’s 

ability to simulate a valence effect is less convincing to the extent that it depends on a very specific 

range of  values. The current simulations involved 1000 randomly ordered instances of the data 

in Table 1 with each  combination. Table 8 shows the final illusory correlation differences after 

48 trials for both sets of  values. 

Table 8. Simulated illusory correlations with higher  parameters for either the common or the rare outcome. 

Analogous 

Condition 
Common Outcome b Rare Outcome b Simulated IC Difference 

Negative-Distinctive .1 .2 .08 
.05 

Positive-Distinctive .2 .1 .03 

Negative-Distinctive .01 .05 .02 
-.02 

Positive-Distinctive .05 .01 .04 

Overall the simulation presents mixed evidence; although there is a small difference in the 

expected direction when the learning rates are larger, the difference goes away or even reverses 

when the learning rates are smaller. In short, RW can explain the valence effects found in 
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Experiments 1-3 under specific conditions, namely if negative outcomes are much more salient 

than positive ones, and the learning rates for both outcomes are not very low. 

8.2 Rule-Based Models with Differential Cell Weighting (A-Cell Bias) 

Another theoretical perspective that could explain valence effects is a modification of the 

∆p rule (e.g., Allan, 1980). The ∆p rule was developed as a normative measure of causal strength 

for present/absent causes and effects. According to ∆p, the normative contingency between two 

binary variables can be calculated from the frequencies in cells A-D of a contingency table (Figure 

15). The ∆p measure is calculated by subtracting the probability of the effect occurring when a 

cause is present from the probability of the effect occurring if the cause is absent (Equation 3). In 

the case of the data in Table 1, there is no contingency; ∆p = 0. 

Figure 15. A contingency table between a binary cue and outcome. 

∆𝑝 =
𝐴

𝐴 + 𝐵
−

𝐶

𝐶 + 𝐷

Equation 3 

Human contingency judgments often deviate from this normative standard. One such 

consistent deviation is in the weights participants typically assign to the cells in the contingency 

tables. Wasserman, Dorner, and Kao (1990) found that participants’ judgments were consistent 
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with higher weights for A Cell trials, then B, C, and D Cell trials respectively. Further, Wasserman 

et al. found that participants explicitly endorsed the view that A > B > C > D (see also Kao & 

Wasserman, 1993; Schustack & Sternberg, 1981). Kao and Wasserman proposed a version of the 

∆p rule that accounts for these differing weights (Equation 4). 

𝐾𝑊 =
𝐴(𝑊𝐴)

𝐴(𝑊𝐴) + 𝐵(𝑊𝐵)
−

𝐶(𝑊𝐶)

𝐶(𝑊𝐶)  +  𝐷(𝑊𝐷)

Equation 4 

Kao and Wasserman’s (1993) formulation (hereafter KW) preserves the structure of the ∆p 

rule while incorporating the weights (W terms in Equation 3) that subjects place on each of the 

four outcomes in the contingency table. Because KW places the greatest weight on the A Cell, in 

which both variables are present, it predicts that participants will infer illusory correlations. 

Although the formula was developed for present/absent variables, it can still be used to model the 

data in the current studies; it seems intuitive that varying the weights attributed to the cells could 

potentially explain valence effects if participants weight the negative outcomes more strongly. A 

modified version of KW with the frequencies from Table 1 is presented in Equation 5, where WC

is the weight attached to the common outcome and WR is the weight attached to the rare outcome. 

𝐾𝑊𝑀 =
24(𝑊𝐶 )

24(𝑊𝐶) + 12(𝑊𝑅)
−

8(𝑊𝐶)

8(𝑊𝐶)  +  4(𝑊𝑅)

Equation 5 
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The problem with only manipulating the weights of the outcome is that for noncontingent 

data, KWM will never yield a nonzero estimate. This can be seen more easily when the term on the 

right is multiplied by 3/3 (Eq. 6). 

𝐾𝑊𝑀 =
24(𝑊𝐶 )

24(𝑊𝐶) + 12(𝑊𝑅)
−

24(𝑊𝐶)

24(𝑊𝐶) +  12(𝑊𝑅)
= 0 

Equation 6 

By multiplying the value on the right by 3/3, we can see that no matter what values are 

assigned to wC and wR, both terms on the right side of the equation will always be equal (i.e., the 

model will always return 0 for the data in Experiments 1-3). Weighting for outcome valence alone 

is not enough to recreate valence effects in a version of ∆p. Of course, the model could be further 

modified to produce valence effects if the cell frequencies are also weighted by the probability of 

the outcome. 

8.3 Pseudocontingencies 

According to the Pseudocontingencies view, subjects use information other than joint 

observations of two variables to form contingency judgments. Specifically, subjects use base rate 

information either in addition to or in place of relevant state combinations when inferring the 

contingency between two variables (e.g., Fiedler, Freytag, & Meiser, 2009). Fiedler, Kutzner, and 

Vogel (2013) described illusory correlations as the result of this PC heuristic that people use in 

addition to contingency information, or when contingency information is unavailable. The 

principle prediction of the PC perspective is that subjects will infer correlations between variables 
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with base rates skewed in the same direction. For example, if two variables both have a very 

common state and a very rare state, subjects will infer that the common states are positively 

correlated. This maps directly onto the traditional illusory correlation paradigm: most people are 

in Group A, and most of the behaviors are good, so the two must be correlated. In terms of the 

current work, subjects might reason that because most patients receive Drug 1 and most patients 

have good outcomes, Drug 1 must be the better treatment.  

Although the PC literature contains many descriptions of this phenomenon, recent papers 

do not offer a formal mathematical model8. For the purposes of the current work, I developed a 

simple model to explain how subjects infer correlation from base rates of the cue and the outcome. 

The model in Equation 7 approximates the qualitative PC predictions regarding basic illusory 

correlations without valence effects. The model makes the following prediction, in line with 

Fiedler and colleagues (e.g., Fiedler & Freytag, 2004; Fiedler et al., 2013; Kutzner & Fiedler, 

2017). When the variables are more skewed the model outputs a stronger judgment. 

𝑃𝐶 =
𝑃(𝐶𝑜𝑚𝑚𝑜𝑛 𝐶𝑢𝑒) −  .5

. 5
 ×  

𝑃(𝐶𝑜𝑚𝑚𝑜𝑛 𝑂𝑢𝑡𝑐𝑜𝑚𝑒) − .5

. 5

Equation 7 

The model’s only inputs are the base rates of each variable. It generates estimates by 

specifying the skew for each variable (subtracting .5 from the base rate P), and dividing that 

difference by .5. Because both the left and right sides are bounded at 0 and 1, the resulting estimates 

8 An information loss model of illusory correlation was presented by Fiedler (1996). However, PC theorists 

in recent years do not typically discuss pseudocontingencies in terms of information loss. 
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are also bounded at 0 and 1. For example, the model predicts a positive estimate (.17) for the data 

in Experiments 1-3, in which P(Common Cue) = .75 and P(Common Outcome) = .67.  

While the PC model can explain a standard illusory correlation as in Table 1, the PC theory 

does not predict the valence effect. One possibility for modifying the PC theory so that it could 

explain valence effects is to assume that people interpret valence of the outcome as more skewed 

than it really is when the outcome is negative (i.e., that people under-estimate the probability that 

negative outcomes will occur in the ND condition and overestimate the probability that they will 

occur in the PD condition), which could yield a more skewed impression of the base rate in the 

ND condition. For example, a positive outcome with a base rate of .8 might seem to have a base 

rate of .95. Equation 8 represents one possible model, 

𝑃𝐶𝑀 =
𝑃(𝐶𝑜𝑚𝑚𝑜𝑛 𝐶𝑢𝑒) − .5

. 5
 ×  𝑆𝑓𝑢𝑛( 

𝑃(𝐶𝑜𝑚𝑚𝑜𝑛 𝑂𝑢𝑡𝑐𝑜𝑚𝑒) −  .5

. 5
, 𝑆) 

Equation 8 

in which S is a salience parameter bounded at 0 and 1, and Sfun is defined in Equation 9. 

𝑆𝑓𝑢𝑛(𝑥, 𝑆) =  {
𝑥 + (1 − 𝑥)𝑆  if x > 0

𝑥 + (−1 − 𝑥)𝑆  if x < 0
Equation 9 

This modified PC model (PCM) yields stronger illusory correlation estimates when the S 

parameter is larger, so a larger vs. smaller S could be used to model ND and PD conditions 

respectively.  When S=0, PCM estimates the correlation between the variables in Experiments 1-

3 as .17, same as in the original PC model. When S = .5, the modified PC model produces an 
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estimate of .33, and when S = 1, it is .5. This model would therefore predict that more salient rare 

outcomes lead to stronger illusory correlations. 

Although this modification may produce valence effects, there is some reason to doubt its 

psychological plausibility. The mechanism by which the model produces valence effects is 

essentially by underweighting the frequency of the rare outcome in the ND condition. In 

Experiments 1-3 in the current work, participants overestimated the occurrence of the rare 

combination. (This pattern does not directly contradict the idea that participants underestimate the 

base rates of negative outcomes, because in Experiments 1-3 participants were explicitly told the 

overall base rates before making their judgments.) Additionally, underestimating the occurrence 

of rare negative outcomes would be a peculiar departure from a well-known phenomenon by which 

subjects tend to overweight the probability of rare events and underweight the probability of 

common events (e.g., Kahneman & Tversky, 1979). 

8.4 Summary of Models 

So far, straightforward adaptations of several models revealed the following. First, 

increasing the learning rate parameter  for negative outcomes for RW may explain the valence 

effect, but only in some ranges of . Second, a weighted version of ∆p with higher weights for 

negative outcomes has no impact on the predicted strength of illusory correlation, and therefore 

cannot explain valence effects. Third, there is a fairly straightforward way to modify the 

pseudocontingencies model such that more salient (negative) outcomes produce larger illusory 

correlations. However, this modification requires some unlikely assumptions about the way 
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participants reason about the base rates of positive and negative outcomes. In short, none of these 

modifications can robustly account for valence effects. 
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9.0 General Discussion 

The present work yielded several empirical findings which together suggest that people 

process negative outcomes as particularly distinctive events, leading to valence effects in illusory 

correlation. First and most importantly, all of the experiments in the current work found reliable 

valence effects. In Experiments 1-3, which were modeled after the original illusory correlation 

paradigm (e.g., Hamilton & Gifford, 1976; Mullen & Johnson, 1990), participants showed an 

overall illusory correlation between the rare cue and the rare outcome. Further, the current work 

has demonstrated for the first time that illusory correlations are larger when the rare combination 

involves a negative outcome (negative-distinctive; ND) compared to when it involves a positive 

outcome (positive-distinctive; PD).  

Second, valence effects are present with and without monetary outcomes. Experiment 1 

involved three valence presentation modalities: a Story condition in which the good/bad outcomes 

did not affect participants’ bonuses, a Monetary condition in which the good/bad outcomes were 

not reflected in the cover stories, and a Combined condition in which both cover story and 

monetary valence were present. Valence effects were present across all three conditions.  

Third, valence effects are driven by relative rather that absolute gains and losses. 

Participants in Experiment 2 were randomized to either an absolute gain condition (better 

outcomes involved 6-cent gains, and worse outcomes involved no gain) or absolute loss condition 

(better outcomes involved no loss, and worse outcomes involved 6-cent losses). Valence effects 

were significant in both conditions, not just the loss condition, implying that they are driven by 

relative better vs. worse outcomes rather than absolute loss. 
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Fourth, in Experiment 3, participants in both a lower stakes (good and bad outcomes of +/- 

6 cents) and higher stakes condition (good and bad outcomes of +/- 18 cents) formed stronger 

illusory correlations in the ND condition, and there was no difference between conditions. This 

raises the possibility that, at least within the range tested, valence effects are driven by relative 

losses but are not obviously influenced by the magnitude of the loss. Experiments 1-3 showed that 

valence effects are robust to a variety of manipulations.  

Finally, valence effects also manifest in an extinction paradigm similar to previous research 

on placebo/nocebo effects (e.g., Au Yeung et al., 2014; Colagiuiri et al., 2015). In Experiment 4, 

participants experienced 48 trials with a generative contingency between a drug and a 

positive/negative outcome, followed by 48 noncontingent trials. Participants had stronger causal 

beliefs after the extinction phase if the initial contingency they learned involved a negative 

outcome. Although this finding is interesting because of the parallels to the placebo/nocebo 

domain of research, it was the weakest effect of the four experiments, and was only present for 

some of the dependent variables, unlike the very robust valence effects in Experiments 1-3. 

Simulations showed that none of the models discussed in the current work (KW, RW, PCs) 

could reasonably account for the valence effect. KW would require extensive modification to 

account for valence effects, and the PC modification proposed in the current work relies on 

assumptions that are contradicted by the data in Experiments 1-3. However, a simple modification 

to RW could recreate the effect under some specific learning rate parameters. The modification is 

meant to augment the salience of trials in which the outcome is negative, reflecting a negativity 

bias by which people disproportionately attend to negative stimuli (e.g., Baumeister, Bratslavsky, 

Finkenauer, & Vohs, 2001; Rozin & Royzman, 2001; Vaish, Grossman, & Woodward, 2008). 
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9.1 Valence Effects, Distinctiveness, and Negativity Bias 

The current research also provides some new evidence about the reason for illusory 

correlation, specifically, that the illusory correlation effect itself (regardless of valence) is driven 

by distinctiveness (e.g., Hamilton & Gifford, 1976; Hamilton, Dugan, & Trolier, 1985) rather than 

purely by information loss (e.g., Fiedler, 1996; 2000) or the more recent pseudocontingencies 

perspective (e.g., Fiedler et al., 2009; Fiedler et al., 2013). In Experiments 1-3, participants were 

prompted to estimate the frequency of each combination of the cue and outcome. While the 

pseudocontingencies model discussed previously depends on participants underestimating the 

rare-negative outcome, the distinctiveness perspective predicts overestimation for the rare 

combination. In all three of these experiments, participants disproportionately overestimated the 

rare cue/outcome combination, consistent with distinctiveness-based illusory correlation.  

At first glance the distinctiveness pattern obtained in the current work may appear to 

contradict a well-known finding in causal learning, namely that people differentially weight cells 

in a contingency table in the form of A-Cell bias: A > B > C > D (Figure 15) (e.g., Kao & 

Wasserman, 1993). However, the A/B/C/D cell labeling in causal learning studies is not to be 

interpreted in the same way as the labeling in Experiments 1-3 of the present work. Causal learning 

studies often use present/absent cues and outcomes rather than cues and outcomes with multiple 

levels (e.g., Kao & Wasserman, 1993; Schustack & Sternberg, 1981; Spellman et al., 1996; 

Wasserman et al., 1990). Disproportionate cell weighting in studies with these kinds of stimuli 

comes from participants giving disproportionate weight to trials in which cues are present. The 

presence of a cue is more salient than its absence, so much so that some learning models only 

update on trials in which the cue is present (e.g., Rescorla & Wagner, 1972).  
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Rather than contradicting the distinctiveness account, it is possible that the distinctiveness 

of A-Cells is what makes them stand out in memory. Generally it is easier to remember examples 

of things happening than examples of nothing happening (e.g., Hearst, 1991), and models such as 

RW take this assumption into account. However, there are some situations in which the absence 

of a cue is distinctive (e.g., Van Hamme & Wasserman, 1994; Wasserman and Castro, 2005). For 

example, if the base rate of the cue occurring is very high, one might expect reduced or eliminated 

A-Cell bias.  

In all three of the relevant experiments, participants’ tendency to overweight the rare 

cue/outcome combination was stronger when the rare combination involved a negative outcome 

than when it involved a positive outcome. Thus, participants seem to process negative outcomes 

as distinctive events, increasing their estimate of the rare cue/outcome frequency. 

The pattern of results in the present work is consistent with the idea of an overall negativity 

bias by which people attend to negative events more closely than positive events (e.g., Baumeister 

et al., 2001; Vaish et al., 2003). It is possible that negativity bias is an evolutionary adaptation for 

minimizing the potential harm that comes from experiencing negative events. Rozin and Royzman 

(2001) found that not only do people disproportionately attend to negative information, but they 

interpret outcomes that involve a mixture of positive and negative components in overly negative 

ways. Rozin and Royzman explained this phenomenon through the metaphor of contagion. A drop 

of poison in a gallon of water renders the whole gallon poisonous. At a less extreme level, the 

sighting of a single cockroach is often enough to ruin a delicious meal. Yet, as Rozin and Royzman 

point out, there is no “anti-cockroach.” In other words, no food is so delicious that a small amount 

of it can overwhelm the presence of a large number of cockroaches. The point may seem obvious, 
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but in some ways the obviousness is the point. Cockroaches carry diseases, and so we should have 

a healthy fear of contamination if they are near our food.  

There is also evidence that negativity bias informs the explanations we create in our daily 

lives. Hindsight bias is a tendency to apply post-hoc explanations as if they were predictive (i.e., 

“I knew it all along”) (e.g., Hoffrage & Pohl, 2003). Previous work suggests that hindsight bias is 

stronger when explaining negative outcomes (e.g., Pezzo, 2003; Schkade & Kilbourne, 1991). In 

other words, participants are more likely to form post-hoc explanations to explain negative events 

than positive ones, as if the need to explain negative events is greater than the need to explain 

positive events. Participants may import this desire to explain negative outcomes into the current 

experiments, particularly because they involve a causal strength judgment at the end. A causal 

strength judgment represents an invitation to explain the distribution of outcomes in terms of the 

common or rare drug, not merely describe the frequencies of the four combinations. Thus the link 

between hindsight bias and valence effects may be particularly strong for the experiments in the 

current work. 

9.2 Pattern of Illusory Correlations in the PD Condition 

In Experiments 1-3, participants’ causal judgments in the PD condition were usually in the 

unexpected direction. While the predicted pattern included stronger illusory correlations in the ND 

condition than the PD condition, previous research suggests that participants would still form 

illusory correlations between the rare cue and outcome in the PD condition. However, participants 

in the PD condition gave “negative” answers on the causal scale (indicating an IC between the rare 

outcome and the common cue). More puzzling, this pattern did not appear in participants’ memory 
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estimates in the PD condition, raising the question of how participants were interpreting the causal 

strength question. This section will review the causal task and explain why this pattern of results, 

while surprising, does not detract from the overall pattern of valence effects. 

Participants completed a causal strength task at the end of each scenario, after the 48 

learning trials and the two memory estimates. The task was framed as a gamble, with the bolded 

heading “Which drug will YOU prescribe…” Participants were told that they would now choose 

a drug to prescribe to a new patient, and their bonus would be adjusted based on the patient’s 

outcome (Figure 3). 

One concern regarding the pattern of participants’ judgments is that they were simply 

selecting the most common drug without consideration. Because the question was always framed 

around predicting a good outcome, in the ND condition (in which the good outcome was common) 

selecting the most common drug would amplify the illusory correlation in the expected direction. 

In the PD condition (in which the good outcome was rare), selecting the most common drug would 

push the illusory correlation away from the expected direction. It is possible that the causal strength 

measure is, to some extent, tainted by participants’ preference for the common drug over the rare 

drug. However, it is clear from the task instructions and the screenshots (Figure 3) that participants 

must have given some level of consideration to choosing the most common outcome. They stood 

to lose most (in some cases all) of their bonus if they were incorrect, they were given the option to 

change their choice if they desired, and there was no time limit on the task itself.  

If they were purposefully choosing the most common drug, this might reflect a preference 

beyond participants’ pure causal strength beliefs. For instance, they may be more comfortable 

betting on the option that they know more about (i.e., a kind of “Devil you know” preference). 

Alternatively, they may be importing their beliefs about the real world into the task; in real life it 
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is reasonable to assume that the most commonly prescribed drug for a given disease is effective 

(although cover story explanations are less persuasive given that the effect was also found in the 

Monetary condition of Experiment 1, in which participants were not given information about 

medications). In any case, the reversals in the PD condition are to some extent concerning. 

However, there are still several strong indicators of valence effects in the present work. 

First, analyses of participants’ trial-by-trial predictions in Experiments 1-3 showed the same 

pattern; when given the rare outcome, participants were more likely to choose the rare outcome 

than the common one (an illusory correlation). This difference was consistently larger in the ND 

condition than the PD condition. Second, participants also exhibited valence effects in their 

memory estimates. Third, Experiment 4 used a more traditional causal strength measure, as well 

as cues and outcomes with 50% base rates (meaning that participants could not default to choosing 

the most common value of the cue). Even here there was a small but significant valence effect. 

Additionally, a pilot study was conducted that used a different wording for the causal strength 

question. Participants were asked which drug leads to worse patient outcomes. With the question 

framed this way, it would no longer make sense for participants to select the common drug because 

it is better, since the task was to select the drug that was worse. Participants exhibited valence 

effects in this study as well, and the average illusory correlation in the PD condition in the pilot 

study was slightly negative (but not significantly different from zero). 

9.3 Conclusions 

Our ability to detect related variables is more useful if we also possess the ability to detect 

when such relationships do not exist. The current work presented evidence from four experiments 
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suggesting that negative valence interferes with our ability to detect such non-contingent 

relationships.  

Future empirical work could focus on several open questions raised by the current work. 

One of the current experiments manipulated the magnitude of the monetary gains and losses, but 

participants in each condition did not have a context in which to place the magnitude of their 

outcomes. Perhaps using larger outcomes such as 50 cents, manipulating the absolute gains and 

losses within subjects instead of between, or adding a condition in which the gains and losses are 

asymmetrical (e.g., gain 6 cents, lose 36) would moderate the valence effect. This would allow for 

a related question to be addressed: at what point are gains large/salient enough to cancel out or 

even reverse valence effects? 

The present work has also put forth several possibilities for how existing models may be 

adjusted to account for increased salience that comes from negative valence. Although these 

possibilities are far from exhaustive, they represent a possible jumping-off point for future 

modeling work on the valence effect, and on illusory correlation more generally.  

Regardless of the specific directions of future research in illusory correlation and illusory 

causal inference, one hopes that it will account for the most consistent finding from the present 

work; negative valence augments illusory correlations. 

Illusory correlations are an important and widely studied paradigm in cognitive 

psychology; however, the role of valence in how people form illusory correlations has not 

previously been explored. The current work demonstrates that valence is an important factor in 

how people think about non-contingent variables, including how they might form conclusions in 

their everyday lives. If we live in a world in which people are generally good, and in which we 

encounter some kinds of people more frequently than others, even the most fair-minded person is 
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already set up to form unfair stereotypes about already-marginalized groups. Further study of 

valence effects in illusory correlation may help us overcome these structures that tilt our 

perceptions toward negative bias. 
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