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Abstract 
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Context-Aware Indoor Navigation 

 
Pedram Gharani 

 
University of Pittsburgh, 2019 

 
 
 
 

Abstract 

Positioning in navigation systems is predominantly performed by Global Navigation 

Satellite Systems (GNSSs). However, while GNSS-enabled devices have become commonplace 

for outdoor navigation, their use for indoor navigation is hindered due to GNSS signal degradation 

or blockage. For this, development of alternative positioning approaches and techniques for 

navigation systems is an ongoing research topic. In this dissertation, I present a new approach and 

address three major navigational problems: indoor positioning, obstacle detection, and keyframe 

detection. The proposed approach utilizes inertial and visual sensors available on smartphones and 

are focused on developing: a framework for monocular visual internal odometry (VIO) to position 

human/object using sensor fusion and deep learning in tandem; an unsupervised algorithm to detect 

obstacles using sequence of visual data; and a supervised context-aware keyframe detection. 

The underlying technique for monocular VIO is a recurrent convolutional neural network 

for computing six-degree-of-freedom (6DoF) in an end-to-end fashion and an extended Kalman 

filter module for fine-tuning the scale parameter based on inertial observations and managing 

errors. I compare the results of my featureless technique with the results of conventional feature-

based VIO techniques and manually-scaled results. The comparison results show that while the 

framework is more effective compared to featureless method and that the accuracy is improved, 

the accuracy of feature-based method still outperforms the proposed approach.  
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The approach for obstacle detection is based on processing two consecutive images to 

detect obstacles. Conducting experiments and comparing the results of my approach with the 

results of two other widely used algorithms show that my algorithm performs better; 82% precision 

compared with 69%. In order to determine the decent frame-rate extraction from video stream, I 

analyzed movement patterns of camera and inferred the context of the user to generate a model 

associating movement anomaly with proper frames-rate extraction. The output of this model was 

utilized for determining the rate of keyframe extraction in visual odometry (VO). I defined and 

computed the effective frames for VO and experimented with and used this approach for context-

aware keyframe detection. The results show that the number of frames, using inertial data to infer 

the decent frames, is decreased. 
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1.0 Introduction 

While data from various sources is omnipresent in most scientific and commercial 

domains, it is necessary to integrate diverse data sources to obtain useful, reliable, and consistent 

outcomes. Navigation systems, as real-time information systems, can perform navigational tasks 

by combining various types of data, specifically positioning which is predominately dependent on 

Global Navigation Satellite Systems (GNSSs), such as GPS. While GNSS-enabled devices are 

ubiquitous and widely used, GNSS is not a reliable and robust option for positioning inside 

buildings where the signal is either degraded or blocked. In the presence of poor or blocked GNSS 

signal in indoor environments, other types of sensors for indoor positioning are considered. 

Of possible sensors for indoor positioning, inertial sensors and cameras are widely used on 

mobile platforms. Inertial data from accelerometers and gyroscopes and images from visual 

sensors can be used for computing relative displacement and rotation. Inertial data can also reveal 

the high-level context of the platform, such as activity or gait change, and can enhance other related 

tasks, such as keyframe detection. Hence, fusing data from inertial and visual sensors can be used 

not only as a replacement for GNSS, but also for improving the quality of solutions for navigational 

tasks. It is worth mentioning that this fusion can even be used for improving positioning by GNSS 

in outdoor environments in places where GNSS signal is either degraded or blocked. 

Dealing with the challenges related to navigation has become increasingly important in 

recent years and they have received considerable attention in the research community, such as in 

the areas of robotics, human navigation, and location-based services (LBSs). Improving the 

accuracy and reliability of solutions to such problems as simultaneous localization and mapping 

(SLAM), odometry, collision avoidance, tracking, autonomous navigation, positioning, 
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wayfinding, and movement pattern analysis in different contexts is still a critical research topic. 

To meet the objectives of navigation systems, several challenging navigational tasks must be 

developed. These tasks include positioning and localization, path planning, representation, 

interaction, wayfinding, SLAM, tracking, collision avoidance, and movement pattern analysis, 

among others. The navigation environment within which a moving platform moves through plays 

a vital role in determining how to tackle these challenges.  

In the absence of GNSSs, e.g., GPS, commonly used technologies for indoor positioning 

can be categorized into two main groups: radio-frequency (RF)-based and non-radio frequency 

(RF)-based positioning methods (Yassin & Rachid, 2015). RF-based positioning methods include 

Wi-Fi-based positioning, cellular-based positioning, and Bluetooth-based positioning, among 

others. Non-RF-based positioning methods include signage and maps positioning, inertial 

navigation, visual-inertial odometry, and acoustic positioning (Karimi, 2015). Currently, 

microelectromechanical systems (MEMS) sensors are widely available on various devices and 

navigation systems, where they can be directly used for inertial positioning. However, due to the 

data integration process in these systems, the errors of the positions derived from MEMS grow 

quickly as time passes. To overcome this problem, other sensors like visual sensors are considered, 

resulting in accurate positioning solutions for indoor navigation. Fusing data from visual and 

inertial sensors is potential for producing enhanced positioning and localization solutions due to 

the availability and use of contexts. This thesis is focused on a non-RF-based method for 

positioning indoors by using a visual-inertial odometry. Odometry is a method for estimating 

change in position over time using data from motion sensors. Motion sensor data for odometry 

usually provides translation and rotation, and if the values of translation and rotation come from 

captured visual data, it is called visual odometry. 
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Visual odometry is a positioning and localization technique that has been used in 

navigation systems. Its application varies depending on the type of moving objects, including 

human mobility, movement aid for visually impaired people, self-driving cars, unmanned aerial 

vehicles (UAVs), automated underwater vehicles (AUVs), and tracking instruments in surgical 

operations, among others. As one of the positioning techniques, visual odometry’s objective is to 

estimate six degrees of freedom (6DoF) as camera poses from captured frames of a trajectory while 

traveling through an unknown environment. Moving within an unknown environment implies that 

a feature map is not available in advance, as in map-based localization methods (Trawny & 

Roumeliotis, 2005; Wu, Johnson, & Proctor, 2005). With regard to such maps, it is important to 

mention that the goal of this research is not to build such a map, rather the goal is to reconstruct 

the trajectory. 

In monocular visual odometry, where a single camera is used, computing displacement is 

more challenging compared to using stereo cameras. Stereo cameras have a known baseline and 

scale is a known parameter, while in monocular imaging, scale remains an ambiguous parameter. 

Accordingly, in monocular odometry, it is hard to obtain the absolute scale of the trajectory, based 

only on visual data and using a sequence of frames. One approach to solve the scale problem is to 

use other available sources, such as MEMS sensors in an inertial measurement unit (IMU), as input 

data to the process. Fusing inertial data with visual data to solve the scale ambiguity problem in 

an efficient way is expected to lead to an accurate trajectory. 

Obstacle detection is another challenging navigational task, which is critical for any 

moving entity such as robots or visually impaired people to avoid collisions with obstacles on their 

way. There are many approaches and techniques for obstacle detection, such as using ranging 

sensors. However, in this research widely available non-RF sensors on mobile devices for 
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positioning and localization are used for object detection as well. For this, the captured visual data 

of the scene, while moving through an unfamiliar indoor environment, is processed to detect 

obstacles. In other words, obstacles are recognized and detected as areas on the visually captured 

scene that potentially hinder safe movement. The data processing consists of extracting a subset 

of all the frames from the video stream, selecting a few significant points on the frames, labeling 

the selected points as foreground or background, and clustering the foreground points that belong 

to either close or moving objects. 

The last part of this research is focused on context awareness to improve the quality of 

positioning and obstacle detection solutions. Context generally indicates a set of environmental 

settings and user’s states that determines the behavior of a moving object, and which can be 

categorized into computing context, user context, physical context, and time context. This research 

focuses on user context, which considers the impact of user activity as a more efficient solution 

and presents related knowledge to the user while moving. User context is sensed through inertial 

data and is used for keyframe detection. Analyzing movement pattern provides contextual data for 

frame detection and gathers other knowledge about user behavior that can be useful for further 

processing. 

Keyframe detection is an essential part of the visual odometry and obstacle detection 

approach where context can be used as a mean to determine an efficient rate for extracting frames. 

In other words, as the standard frame rate of the video stream provides redundant data when 

detecting obstacles, we need to efficiently set the frame rate to avoid extra computation. One 

straightforward method is to use a constant rate, but it comes at the cost of computational overhead. 

A more sophisticated and efficient method is to determine varying rates based on a user’s activities. 

Data from inertial sensors such as accelerometers, gyroscopes, and magnetometers has been used 
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in other work ( Ren & Karimi, 2013; Saeedi, Moussa, & El-Sheimy, 2014) to detect the state of a 

user’s activities. Also, inertial data can be used to detect the states of moving platforms, which can 

be interpreted based on the association of inertial data with measured target behavior, such as blood 

alcohol level (Gharani, Suffoletto, Chung, & Karimi, 2017; Suffoletto, Gharani, Chung, & Karimi, 

2018), where data fusion techniques are used for the analysis. 

1.1 Problem statement 

The proposed research tackles three challenging navigational tasks and proposes a new 

framework and a few algorithms for solving them. The main focus is on visual-inertial odometry, 

obstacle detection, and context-aware keyframe detection. In particular, this research addresses the 

following research questions: 

1- How can the problem of odometry be modeled in a featureless and end-to-end learnable 

approach that uses both visual and inertial data? 

2- What would be a suitable technique to detect obstacles in visual data without taking 

common supervised learning approaches? 

3- What is the efficient rate for context-aware keyframe detection in visual-inertial odometry? 

4- How should inertial sensor data-stream be analyzed for detecting a specific context data to 

help with navigation? 

1.2 Contributions 

This thesis has three major contributions: 

1- A novel framework for visual inertial odometry that uses a deep recurrent convolutional 

neural network (RCNN) and an extended Kalman filter to solve the tracking problem in a 

more efficient way. 

2- A new algorithm for detecting obstacles in unfamiliar environments. 

3- A context-aware methodology for frame detection in video streams for navigational tasks. 
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1.3 Organization 

This dissertation is organized into six chapters. Chapter 1 states the motivation of this 

research, gives an overview of the challenges in this study, and states its goal, objectives and 

contributions. Chapter 2 reviews background information and related work. Chapter 3 presents the 

proposed novel framework for visual inertial odometry using deep learning and sensor fusion. 

Chapter 4 presents the obstacle detection algorithm for moving through unfamiliar environments. 

Chapter 5 describes the solution for problem of keyframe detection regarding context awareness. 

Finally, chapter 6 summarizes the research and its contributions, discusses conclusions, and 

provides recommendations for future research. 
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2.0 Background and related work 

In this chapter the background of positioning, obstacle detection, and enhancing context-

awareness for navigation along with related work are discussed. In the following sections, first, it 

is explained how to utilize a camera as a visual pose estimator for odometry in order to render the 

camera into a real-time six degrees of freedom (6DoF). Then, it is presented how the estimated 

pose can be scaled using inertial data from MEMS. These concepts establish the necessary 

foundation for the proposed framework for visual inertial odometry in this thesis. Second, the 

required background of obstacle detection for my proposed algorithm is presented and related work 

for enhancing context-awareness is discussed. Finally, possible contexts for navigation are 

explained and their foundations for my work are presented. 

 Non-RF-based indoor positioning and localization 

Most mobility assisting devices and navigation systems are mainly dependent on GNSS, 

especially the GPS receivers. However, using GPS for indoor positioning and tracking is not 

reliable due to signal loss and impossibility to work in GPS-denied environments (Moreno, 

Shahrabadi, José, du Buf, & Rodrigues, 2012). Although Radio Frequency (RF)-based techniques 

such as assisted or augmented GPS (A-GPS), Wi-Fi-based positioning, cellular-based positioning, 

or Bluetooth-based positioning can be utilized for dealing with signal loss issue, for the sake of 

generality, the focus of this thesis is on non-RF techniques using the available sensors on a mobile 

device. 
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Techniques for solving the problem of positioning and localization within indoor 

environments can be grouped into four general categories: (a) “Dead-reckoning”, a solution to 

estimate users’ location based on aggregating displacement with the last known location. 

Odometry as a relative positioning technique implements this approach for finding location where 

the required data can be obtained through different sensors (Bonarini, Matteucci, & Restelli, 2004); 

(b) “Direct sensing”, a technique for positioning which determines the location by reading and 

sensing identifiers or tags which either contain or retrieve, from a database, location information 

(Ganz, Schafer, Tao, Wilson, & Robertson, 2014). RFID tags and Bluetooth beacon are examples 

of this technique for absolute indoor positioning; (c) “Triangulation”, where the location of at least 

three known points are used to determine users’ locations (Tekdas & Isler, 2010). Wireless local 

area networks (WLANs) positioning triangulates the location of wireless base stations using the 

provided signal strength of each station; and (d) “pattern recognition-based positioning”, such as 

computer vision techniques, where a camera captures images or video streams of the environment 

and by using matching algorithms, the system tries to find known locations from available 

databases (Fallah, Apostolopoulos, Bekris, & Folmer, 2013). Recently, the last category has 

become efficient and reasonable for localization as deep learning algorithms and rich image 

datasets are available on the Internet (Weyand, Kostrikov, & Philbin, 2016). 

In this thesis, the focus is on solving the positioning problem by using a dead-reckoning 

technique and a single camera as the most common visual sensor in integrated moving platforms 

such as robots and smartphones. Hence, this research addresses indoor positioning by visual-

inertial odometry as an incremental approach for relative positioning technique using “monocular 

camera” for collecting visual data besides inertial data. 
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Visual Odometry (VO) is used for the estimation of 6DoF for capturing the trajectory of a 

moving object. In monocular VO approach, obtaining the absolute value of scale of the trajectory 

just based on visual data is a challenging task. To tackle this scale challenge, I need data from 

other available sources such as Inertial Measurement Unit (IMU), to address some of the scale 

ambiguity shortcomings of visual odometry. In the rest of this chapter the background for the 

discussed tasks in the Introduction chapter are explained and related work is presented. 

2.1.1  Localization as recursive state estimation 

The main idea of localization is estimating the state of a moving object which is the position 

in a coordinate system using sensor data. Position is not directly measurable and needs to be 

estimated via sensed data. In this research state is considered as the collection of all aspects related 

to position, velocity, scale, and some errors of the moving object that can impact the future. For 

estimating the state, I consider two fundamental types of interactions: environment sensor 

measurements and control actions. Environmental measurement is a process by which we can 

obtain information about the state of the environment and environmental measurement data 

provides information about a momentary state of the environment such as taking image of 

surrounding or measuring range using laser scanner which is called measurement. The 

measurement data at time t is denoted 𝒛𝒛𝒕𝒕. The other type of interaction, control action, is able to 

change the state of the world by forcing the moving object to displace. Therefore, control data 

includes information about the change of state in the environment. For example, acceleration to 

the moving object is a control action. In localization, although odometry uses sensor data for 

estimating the state, it is considered as control data for the moving platform, since it measures a 
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control action. This control data, like accelerometer measurement, is denoted 𝒖𝒖𝒕𝒕 which is usually 

a sequence of measurements. 

2.1.2  Visual odometry 

Visual odometry models the procedure of computing the coordinate and orientation of a 

moving object who carries a camera in a continuous fashion (Scaramuzza & Fraundorfer, 2011). 

Image acquisition provides a stream of frames from the visual sensor. These frames should be 

processed (extracting features, finding corresponding features, etc.) and camera pose should be 

computed. In order to retrieve displacement and motion of moving camera between two moments, 

we need the corresponding frames where the center of projection of each frame indicates the 

location at that moment (Figure 2.1). The problem of visual odometry mainly has been tackled by 

two approaches: feature-based and appearance-based. While in the feature-based approach a sparse 

set of image features is detected and tracked, the appearance-based approach relies on the pixel 

intensity values to extract 6DoF.  

 

Figure 2.1: Consecutive frames (Ming Ren, 2012) 
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There are different algorithms for the feature-based approach to detect salient feature points 

such as FAST (Features from Accelerated Segment Test) (Rosten & Drummond, 2006), SURF 

(Speeded Up Robust Features) (Bay, Tuytelaars, & Van Gool, 2006), BRIEF (Binary Robust 

Independent Elementary Features) (Calonder, Lepetit, Strecha, & Fua, 2010), ORB (Oriented 

FAST and Rotated BRIEF) (Rublee, Rabaud, Konolige, & Bradski, 2011) and Harris (Harris & 

Stephens, 1988a) corner detectors. In order to track these feature points in the next sequential 

frame, a feature point tracker such as the Kanade–Lucas–Tomasi (KLT) (Shi & others, 1994; 

Tomasi & Kanade, 1991) tracker must be used. The result thus obtained is the optical flow, 

following which ego-motion can then be estimated using the camera parameters as proposed by 

Nister (Nistér, 2004) which is a general approach for detecting feature points and tracking them in 

both monocular vision and stereo vision-based approaches (Matthies, 1989) and (Johnson, 

Goldberg, Cheng, & Matthies, 2008). Parallel tracking and mapping (PTAM) was proposed by 

(Klein & Murray, 2007) which is a keyframe based approach with two parallel processing threads 

for the task of robustly tracking a lot of features and producing a 3D point map by Bundle 

Adjustment technique. In other words, PTAM is a robust feature tracking-based SLAM algorithm 

in real-time by parallelizing the motion estimation and mapping tasks (Kneip, Chli, & Siegwart, 

2011; Mur-Artal, Montiel, & Tardos, 2015; Weiss, 2012; Weiss et al., 2013).  

In the feature-based approach by extracting a set of corresponding points in the frames, 

geometric relations such as rotation matrix R and translation vector t can be retrieved to explain 

the motion (Figure 2.2). Equation 2.1 shows the relationship between the camera and the world 

coordinates (Szeliski, 2010). Accordingly, we need the intrinsic parameters of camera which are 

denoted by matrix K. 

 𝒙𝒙�𝑠𝑠 = 𝑲𝑲[𝑹𝑹|𝒕𝒕]𝒑𝒑𝑤𝑤 = 𝑷𝑷𝒑𝒑𝑤𝑤 2.1 
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where 𝒑𝒑𝑤𝑤  is 3D world coordinates, 𝑷𝑷 is camera matrix. 𝑲𝑲 is indicating intrinsic parameters of 

camera which are known by camera calibration process. For recovery of camera pose, matrix K is 

needed, which needs to perform camera calibration for obtaining the intrinsic matrix 𝑲𝑲 (Ming Ren, 

2012). 

 

Figure 2.2: Estimation of camera displacement by visual odometry (Ming Ren, 2012)  

 

Matrix K is needed before the camera pose recovery process. In order to obtain the intrinsic 

matrix 𝑲𝑲, camera calibration must be performed. In this research, we estimate K by using offline 

camera calibration, due to accuracy and perfomance. 𝑲𝑲 is a 3 × 3 calibration matrix which 

describes the camera intrinsic parameters. In the camera calibration process, we try to find the 

intrinsic parameters of 𝑲𝑲, including calibrating the position of image center, estimating the focal 

length, using different scaling factors for row pixels and column pixels, and accounting for any 

skew factor and lens distortion. In order to perform camera calibration, I took pictures of a known 

object, chessboard, and by knowing the coordinates of given object points in the real world, I 

obtain internal camera parameters through an optimization algorithm. Equation 2.2 indicates how 

calibration matrix relates the camera coordinates with the projection center coordinates ( Ren, 

2012; Szeliski, 2010). 
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For the purpose of finding the geometric relationship between two frames we need a 

different set of image features corresponding to 3D objects. Thus, the initial processing of the 

frames is to extract a set of salient features that are present in each frame. I used SURF to extract 

local features and build descriptors as feature vectors. SURF was utilized since it is faster than 

other algorithms (Xu & Namit, 2008). By using the aforementioned technique for detecting 

features, the RANSAC (RANdom SAmple Consensus) algorithm (Derpanis, 2010; Fischler & 

Bolles, 1981) and normalized 8-point algorithm (Hartley & Zisserman, 2003) are used to find the 

corresponding pairs of detected features on two frames and compute fundamental matrix F. 

Essential matrix E can be obtained by 𝑬𝑬 = 𝑲𝑲𝑻𝑻𝑭𝑭𝑲𝑲  

Once the essential matrix E is obtained, we need to extract rotation and translation from it. 

Basically, I want to decompose it into E=TR where T is a skew symmetric matrix and R is a 

rotation. I will use the two matrices: 

 𝐸𝐸 = ⌊𝑡𝑡×⌋𝑅𝑅 2.3 

where R is the rotation matrix and ⌊𝑡𝑡×⌋ is skew symmetric of translation vector t. Taking 

the singular-value decomposition (SVD) of the essential matrix, and then exploiting the constraints 

on the rotation matrix yields R and t. 

While the feature-based approach of visual odometry is widely used for solving the 

problem of relative positioning, direct or appearance-based visual odometry become more popular 

(Davison, Reid, Molton, & Stasse, 2007; Engel, Koltun, & Cremers, 2016; Jin, Favaro, & Soatto, 

2003; Newcombe, Lovegrove, & Davison, 2011; Pretto, Menegatti, & Pagello, 2011; Silveira, 

Malis, & Rives, 2008) which relies on processing pixel density data using Convolutional Neural 

Networks (CNNs) (LeCun & Bengio, 1995). CNN provide the advantage of solving numerous 
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computer vision tasks in more efficiently ways and with higher accuracy compared to traditional 

geometry-based approaches. Although using CNN, problems like classification, visual 

recognition, depth regression (Eigen, Puhrsch, & Fergus, 2014), object detection (S. Ren, He, 

Girshick, & Sun, 2015) and segmentation problems (Long, Shelhamer, & Darrell, 2015) have been 

efficiently solved, it has not been implemented in the domains of Structure from Motion, SLAM 

and Visual Odometry using advances in deep learning. Recently, optical flow between images has 

been computed by deep networks such as FlowNet (Dosovitskiy et al., 2015) and EpicFlow 

(Revaud, Weinzaepfel, Harchaoui, & Schmid, 2015). Also, homography between two images has 

been obtained by deep networks (DeTone, Malisiewicz, & Rabinovich, 2016).  

Deep learning for odometry was applied by Nicolai, Skeele et al., however, they used laser 

data from a LIDAR (Nicolai, Skeele, Eriksen, & Hollinger, 2016) in which the point cloud is 

projected on the 2D image plane and pass it to a neural network for estimating position and 

orientation. The deep learning approach has also been used for visual odometry for stereo images 

in work of Konda and Memisevic (Konda & Memisevic, 2015) where a classification approach 

was adopted to the problem. The classifier is a convolutional neural network a with a softmax layer 

to determine the relative displacement and change in orientation between two consecutive 

keyframes using a prior set of discretized velocities and directions. Moreover, Agrawal et al. 

(Agrawal, Carreira, & Malik, 2015) proposed using vector of egomotion for feature learning where 

a classification task was used for inferring egomotion. In this research, I treat the visual odometry 

estimation as a regression problem. 

DeepVO was proposed by Mohanty et al. (V. Mohanty et al., 2016b) which is a Siamese 

AlexNet-based architecture (Du & Shen, 2016). In this technique, the translational and 

rotational elements are computed using regression through an L2-loss function with equal 
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weight values. Furthermore, Melekhov et al. (Melekhov, Ylioinas, Kannala, & Rahtu, 2017) use 

a weight factor for balancing both translation and rotation variables of the loss. Moreover, a 

spatial pyramid pooling layer was added to the architecture of the network which is helpful 

for making it more robust to varying input image resolutions.  

 Obstacle detection 

It is a basic and challenging task to avoid obstacles while moving and traveling in 

unfamiliar environments for moving platforms like robots, self-driving cars, and visually impaired 

people. Micro-navigation, or obstacle detection, systems are developed to address this challenge 

(Katz et al., 2012). Micro-navigation systems enable the moving platform to safely navigate 

through the environment. There are various approaches and techniques to avoid obstacles such as 

optical triangulation (Benjamin, Ali, & Schepis, 1973), an acoustic-triangulation method 

(Borenstein, 2001). In this research, I focus on addressing the problem of obstacle detection in 

indoor environments using computer vision techniques for processing the frames and sensors 

(accelerometers, gyroscope, magnetometer) on smartphones for activity recognition and 

contextual-aware frame extraction. However, using these sensors and a single camera, we are not 

able to directly measure or estimate depth.  

In the area of robotics, depth estimation and geometric modeling of the ambient 

environment are possible by using stereo camera (imagery) (Cheng, Li, & Chen, 2010; Lee, Doh, 

Chung, You, & Youm, 2004; Murray & Little, 2000; Nakju et al., 2004), and some other sensors 

such as radar, LiDAR, and RFID. However, in this research I do not use stereo imagery or LiDAR 

sensors, as they would make detection of obstacles a more challenging task. In spite of these 
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limitations, a moving camera can provide a video stream that consists of time-indexed frames. 

With two consecutive images (frames), we can track certain points, measure their velocity, and 

evaluate them to determine whether they are part of an obstacle or not. Embedded cameras 

typically take videos at 30 fps (frames per second). Obviously, when the scene changes even 

slightly, processing all those frames is computationally expensive and is not needed. 

In this research, the fundamental idea for detecting obstacles is processing the captured 

visual data of the scene while moving through indoor environments. Obstacles are defined and 

detected as areas on the visually captured scene which potentially hinder safe movement. The data 

processing consists of four steps. The first step involves extracting a subset of all the frames from 

the video stream to reduce data redundancy. The frame extraction is based on a context-aware 

process which considers user activity. The second step involves selecting a few significant points 

on the frames to evaluate their motion and displacement pattern. The third step involves labeling 

the selected points to see whether they are part of foreground or background. Finally, the fourth 

step involves clustering the foreground points which belong to either close or moving objects. For 

clustering I take advantage of motion pattern and consider a new parameter as time-to-contact. The 

clustered points yield areas that are more likely part of an obstacle. 

There are numerous studies that have focused on obstacle detection (Boroujeni, 2012; 

Bousbia-Salah, Bettayeb, & Larbi, 2011; Costa, Fernandes, Martins, Barroso, & Hadjileontiadis, 

2012; Rodríguez et al., 2012; Tapu, Mocanu, Bursuc, & Zaharia, 2013). My focus is on optical-

flow-based obstacle detection, which is a vision-based technique. Vision-based navigation systems 

are mostly based on stereo images. A stereo vision system introduced by Martinez and Ruiz (Costa 

et al., 2012) computes and builds a 3D map of adjacent areas through a six degree of freedom 

egomotion algorithm. With the resulting map, it is possible to detect head-level obstacles. Stereo-
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vision techniques are used in head mounted devices as well. A 3D map was made by integrating 

visual- and feature-based metric-topological simultaneous localization and mapping (SLAM) 

(Pradeep, Medioni, & Weiland, 2010). Therefore, by using the 3D map, obstacles could be 

detected. In addition, since the details of the environment were captured, a safe walking path could 

also be created for the user. 

In this research, obstacle detection was accomplished by using optical flow and point 

tracking algorithms. Detecting obstacles based on optical flow is common in both vehicle 

navigation (Batavia, Pomerleau, & Thorpe, 1999; Stark, 1991) and robotics (Low & Wyeth, 1998; 

Ohya, Kosaka, & Kak, 1998; Song & Huang, 2001; Souhila & Karim, 2007; Zingg, Scaramuzza, 

Weiss, & Siegwart, 2010). Qian et al. used a moving camera for detecting obstacles during 

navigation. They mounted the camera on a vehicle and proposed a method to detect obstacles on 

a road, regardless of whether the camera was stationary or moving (Qian, Tan, Kim, Ishikawa, & 

Morie, 2013). El-Gaaly et al. designed a system using a smartphone for detecting obstacles through 

optical flow for navigating a watercraft in which optical flow and tracking process just computed 

for a sparse set of points (El-Gaaly, Tomaszewski, & Valada, 2013). Optical flow-based obstacle 

avoidance is also used for micro-aerial vehicles (MAVs). Zingg et al. proposed an approach for 

wall collision avoidance for MAVs in indoor environments based on optical flow (Zingg et al., 

2010). 

Our proposed approach is to use a moving monocular camera that provides a video stream 

as part of the input data to the solution, plus other smartphone sensors. A monocular moving-

camera approach was developed by Peng et al.(2010) which uses a camera on a smartphone for 

obstacle detection (Peng, Peursum, Li, & Venkatesh, 2010). Their system can detect obstacles on 

the floor and interact with users through vibration and vocal feedback. Region of interest (ROI) 
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was also introduced in this system, which was a trapezoid that was computed based on known tilt 

angle and focal length of the camera. Moreover, José and Rodrigues (José, Buf, & Rodrigues, 

2012) proposed path window as ROI which was triangular similar to my ROI. The upper vertex of 

their triangle is the vanishing point of the scene. Using a vanishing point is not useful for my 

research, since the vanishing point is independent of the heading of the user. 

Tapu et al. (2013) proposed a system for micro-navigation using a smartphone. Their 

system has two distinct modules for obstacle detection and object recognition. Object recognition 

is a function to recognize the detected obstacles. The system detects obstacles based on computing 

optical flow on a point dataset and evaluates them to see if they belong to an obstacle or not. 

Basically, the point dataset is a predefined grid of points. The points that should be processed and 

analyzed in these techniques are either predefined or irregular detected by image descriptor, 

however, in this research, I use the extracted points by an algorithm which considers both 

predefined and irregular points in an efficient way.  

 Enhancing context-awareness  

For the purpose of improving efficiency and effectiveness of my proposed methodology 

and algorithm, I propose to make them context-aware according to activity recognition. There are 

two different paradigms that use sensor data for activity recognition: data-driven and knowledge-

driven (Sara Saeedi et al., 2014). My focus for the first part of this research is on the data-driven 

paradigm, in which a feature vector is comprised by selecting more efficient features. I classify the 

feature vector using a supervised classification algorithm to recognize a user’s activity. Bao and 

Intille (2004) developed an algorithm to detect 20 different physical activities from data acquired 
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using five small biaxial accelerometers (Bao & Intille, 2004). They used accelerometers worn 

simultaneously on different parts of the body of the user and evaluated their performance and 

accuracy. Ravi et al. (2005) also developed an activity recognition technique that used 

accelerometers and tried to recognize some common activities, such as standing, walking, running, 

climbing upstairs, climbing downstairs, sitting, vacuuming, and brushing teeth. They used decision 

tables, decision trees (C4.5), K-nearest neighbors, Naive Bayes, and SVM algorithms for 

interpreting the data (Ravi, Dandekar, Mysore, & Littman, 2005). 

A user’s activity is not the only contextual condition that can influence the process of frame 

extraction. Device status or orientation is a second contextual factor that can affect the recognition 

process. Figure 2.3 shows six different possible device orientations. According to these 

orientations, when the Z-axis is pointing up or down (the device is face up/face down), the initial 

condition is not appropriate for taking any frame, and thus works as an initial constraint. The 

gyroscope and accelerometer can be used to detect each of these six orientations (S Saeedi, 2013).  

 

Figure 2.3: Six different orientations of the cellphone (Sara Saeedi et al., 2014) 

 

Extracting frames based on mode of activity was proposed by Ren and Karimi (Ming Ren 

& Karimi, 2012). They used a 3D accelerometer to comprise the feature vector and a decision tree 

for classification of activities. They used extracted frames for localization and odometry in map 

matching. However, their approach does not consider all the available motion sensors. Also, the 
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feature selection procedure is based on evaluating features and reasoning about how impactful the 

extracted features could be for activity recognition. Hence, those that are considered less 

informative are ignored. In this research, I have improved upon that research by considering more 

sensors beside accelerometers, such as magnetometers and gyroscopes. Also, I have improved the 

feature selection process by selecting features based on their both Information Gain and ReliefF 

results and have evaluated many different classifiers to find the best one for this particular purpose. 

Context of the moving platform can be inferred by analyzing its gait and associate it with 

other indices. One of the critical indices that can be understood using gait analysis and considered 

as a user context for navigation is estimation of how sober a pedestrian is. The ability to accurately 

measure Blood Alcohol Content (BAC) in the real world is vital for understanding the relationship 

between alcohol consumption patterns and the impairments of normal functioning that occur (such 

as those related to gait). Smartphone-based alcohol consumption detection that evaluates a gait 

pattern captured by inertial sensors was proposed by (Kao, Ho, Lin, & Chu, 2012), which labeled 

each gait signal with a Yes or a No in relation to alcohol intoxication. The study by Kao and 

colleagues did not examine the quantity of drinks consumed but focused its analyses solely on 

classifying a subject as intoxicated or not, thus limiting applicability across different ranges of 

BAC. Park et al. (2017) used a machine learning classifier to distinguish sober walking and 

alcohol-impaired walking by measuring gait features from a shoe-mounted accelerometer, which 

is impractical to use in the real world (Park et al., 2016). Arnold et al. (2015) also used smartphone 

inertial sensors to determine the number of drinks (not BAC), an approach which could be prone 

to errors given that the association between number of drinks and BACs varies by sex and weight 

(Arnold, Larose, & Agu, 2015). 
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Kao et al. (2012) conducted a gait anomaly detection analysis by processing acceleration 

signals. Arnold et al. (2015) utilized naive Bayes, decision trees, SVMs, and random forest 

methods, where random forest turned out to be the best classifier for their task. Also, in Virtual 

Breathalyzer (2016) AdaBoost, gradient boosting, and decision trees were used for classifying 

whether the subject was intoxicated (yes or no). Furthermore, they implemented AdaBoost 

regression and regression trees (RT), as well as Lasso for estimation of BrAC (Nassi, Rokach, & 

Elovici, 2016). 

 Keyframe detection 

In order to detect the appropriate frames for processing to calculate their pose and add to 

the topological diagram of environment model three main approaches are generally used; cluster 

based, energy based, and the sequential techniques (Chatzigiorgaki & Skodras, 2009; Panagiotakis, 

Doulamis, & Tziritas, 2009). Since cluster and energy based can be applied on the whole video 

sequence for retrieving the frames, they are called global methods. The global techniques are not 

proper approaches for vSLAM and VO algorithms, because the keyframe must be detected while 

the rover is moving.   

There are some common methods for keyframe detection in tracking algorithms  including 

uniform sampling in space which means keyframes should be extracted for every traversed 

distance unit, either linear or angular, (Callmer, Granström, Nieto, & Ramos, 2008; Cummins & 

Newman, 2008), uniform sampling in time, where frames are captured in a constant time interval 

(Ho & Newman, 2006; Newman & Ho, 2005), and uniform sampling in appearance (Angeli, 

Doncieux, Meyer, & Filliat, 2008), which is based on the measuring the amount of change in 
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appearance in consecutive frames. In other words, the amount of change in a frame compared to 

the last keyframe should exceed a predefined threshold to be introduced as new keyframe. This 

measurement can be done by some image similarity algorithms or entropy-based sampling.  

The main goal of all these techniques is to establish a correlation between appearance 

change and another factor such as change in time or distance. (Callmer et al., 2008; Cummins & 

Newman, 2008) used distance-based sampling which assumes a strong correlation between 

appearance change and the amount of displacement. However, this assumption is dependent on the 

ambient environment and unknown geometry of the surroundings can cause some unstable results 

for the detected frames. Likewise, uniform time-based sampling assumes a correlation between 

the time interval of consecutive captured frames and appearance change. (Ho & Newman, 2006; 

Newman & Ho, 2005) utilized this approach for frame detection. This assumption can perform 

well when the mobile agent is moving with a constant velocity within an environment without 

dramatic changes, however it would not work well when the mobile agent has sudden movements 

like accelerates, decelerates or stops.  

The main idea in appearance-based sampling is straightforward, as it tries to measure the 

change in appearance in a direct way. In theory, measuring the visual changes seems to be the most 

reasonable way for managing the frames, however the problem of computational cost is a real 

barrier. Some of well-known similarity measurements algorithms for the problem of detecting 

keyframe in vSLAM and VO are pixel-wise, global-histogram, local-histogram, feature matching, 

Bag-of-Words, and entropy measurement (Mentzelopoulos & Psarrou, 2004; H. Zhang, Li, & 

Yang, 2010). Although, the best performance is for feature matching technique, it has high 

computational cost. Dong et al. (2009) proposed a framework for selecting keyframes in order to 

reduce redundancy which is a proper framework for selecting effective keyframes in offline mode. 
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Two entropy-based approaches were designed by Das and Waslander (2015) which extract 

keyframes based on cumulative point entropy reduction and the point pixel flow discrepancy 

(PPFD). 

 Summary 

In this chapter I presented the background and related work on the approaches and 

techniques along with the challenges in this dissertation. In the first part, I overviewed non-RF-

based techniques and visual odometry for indoor positioning and localization. I also discussed the 

background and related work on obstacle detection and tried to depict a comprehensive scope of 

an unsupervised obstacle detection technique. In the rest of the chapter I focused on understanding 

and enhancing the solution of navigational tasks. Finally, in the last section I discussed the problem 

of keyframe detection challenge. 
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3.0 A framework for visual inertial odometry 

Positioning is a core function of location-based services (LBS) and is often implemented 

by integrating different sensors. The most widely used sensor for positioning is GPS since it is 

available everywhere and anytime. However, in some places, such as indoor environments, GNSS 

signals are not accessible where positioning is achieved by utilizing other sensors. In this chapter, 

a framework for positioning in indoor environments, without GNSS and RF-based systems, is 

designed and tested. 

 Pose estimation and tracking 

Design and implementation of a real-time and reliable indoor positioning system is a vital 

component in most of location-based services (LBSs). There are various applications of LBSs that 

are dependent on indoor positioning system (IPS). IPSs are designed and implemented using 

different technologies that compute the position of an object at a wide range of accuracies 

(Konstantinidis et al., 2015). However, these types of IPS need infrastructures such as beacons, 

wi-fi, cellular networks, and sensors pre-installed in the environment, which limits their 

applicability. 

One of the most prevalent techniques for non-RF indoor positioning is dead reckoning 

integrated with visual data from a camera as visual sensor with inertial data. This approach is 

widely used for relative positioning using “monocular camera” for collecting visual data besides 

inertial data (Hesch, Kottas, Bowman, & Roumeliotis, 2013; Kasyanov, Engelmann, Stückler, & 
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Leibe, 2017; Kitt, Chambers, Lategahn, Singh, & Systems, 2011; Leutenegger, Lynen, Bosse, 

Siegwart, & Furgale, 2015). The conventional featured-based technique for visual odometry when 

integrated with inertial data is computationally expensive. One proper approach for computing the 

six-degree-of-freedom for each pair of consecutive images is possible by taking advantage of a 

learning-based approach. Since I use monocular camera as the visual sensor, I utilize inertial data 

to solve the problem of scale ambiguity. In this chapter I propose a framework for a learning-based 

approach for the problem of monocular visual inertial odometry. 

To tackle the problem of pose estimation and tracking without necessity of presence of any 

infrastructure, I propose a framework to acquire visual and inertial data and integrate them with 

one another to produce reliable results. To achieve this goal, I modularize the solution into three 

major modules. First, an image acquisition module detects minimum and efficient frames from an 

incoming video stream; it involves determining the frame rate and provides the next module with 

the frame sequence. Second, a monocular visual odometry module determines the relative 

displacement and rotation of the camera, with respect to the immediate last known position. The 

visual odometry module yields unscaled coordinates of camera (agent) pose by processing 

consecutive frames. I call this unscaled, because in monocular visual odometry, the scale of the 

baseline is unknown. I use inertial data for estimating the scale, but I still need to fine-tune the 

results of this module. The third module is for fine-tuning the coordinates from visual odometry 

by fusing them with inertial sensor data from IMU using and an extended Kalman filter (EKF). 

Furthermore, the state vector has updated the scale and bias of the inertial sensors, which are used 

as feedback to the monocular visual odometry module. The user trajectory could be retrieved by 

the fine-tuned coordinates. In Figure 3.1, I show a schematic block diagram of the procedure. 
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Figure 3.1: Block diagram of data processing 

 Visual odometry with deep recurrent convolutional neural networks 

This section presents the proposed framework for visual inertial odometry, which is 

composed of two major modules. The first one is a monocular visual odometry module, which is 

a deep RCNN for computing 6DoF in a full and end-to-end approach. Indeed, the visual odometry 

module is mainly composed two parts: a feature extraction part using a CNN and a sequential 

modelling part using RNN. The second module is an extended Kalman filter module for fine-

tuning the scale parameter. 

3.2.1  Architecture of the proposed RCNN 

In this section, I discuss the integration of a deep learning monocular visual odometry 

algorithm using a deep RCNN (Donahue et al., 2015) inspired by (Wang, Clark, Wen, & Trigoni, 

2017) with an EKF module for fusing inertial data from IMU with coordinates from visual 

odometry. Computer vision tasks are usually able to take advantage of some well-known deep 
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neural network architectures, such as VGGNet (Sattler, Leibe, & Kobbelt, 2017) and GoogLeNet 

(Shotton et al., 2013), which yield remarkable performance. Most architectures concentrate on 

solving the problems of recognition, classification, and detection (Wang et al., 2017). Computing 

6DoF for two images is fundamentally different from the aforementioned computer vision tasks, 

because visual odometry is a geometrical problem that cannot be coupled with appearance. 

Therefore, using current deep neural network architectures to solve the problem of visual odometry 

is not practical. 

Since I try to address visual odometry as a geometric problem, I need a framework that can 

learn geometric feature representations. Also, there are two critical requirements for modeling the 

problem of visual odometry: first, it is necessary to find connections among consecutive 

keyframes, such as models of motion, second, since the visual odometry systems work on 

keyframe sequences which are acquired while moving, it is needed proposed system be able to 

model that sequential behavior. RCNN can considers these two requirements. Figure 3.1 presents 

the architecture of the visual odometry system. This network takes a sequence of monocular 

keyframes as input. A tensor is formed by stacking two consecutive keyframes and passed to the 

RCNN for extracting motion information and estimating poses. The tensor from input data is fed 

into the CNN to generate features for the monocular visual odometry. The output features of the 

CNN are passed through the LSTM RNN in order to learn the sequential information. At each time 

step and for each pair of frames the network estimates a pose.  

3.2.2  RNN-based sequential modeling 

For finding the relationships among a sequence of extracted features by CNN and modeling 

the dynamics, a deep RNN is implemented to perform sequential learning. Modeling by RNN helps 
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detecting proper sequential information; hence, it can provide more information than other 

techniques we usually use to explain geometry and movement (V. Mohanty et al., 2016a). Visual 

odometry should be able to model temporality which is due to the motion and sequential dynamics 

which is because of image sequence; thus, the RNN is a decent approach for modelling 

dependencies in a sequence. In other words, estimating the pose of the current keyframe can use 

the information within the previous keyframes(Hartley & Zisserman, 2003). However, it is not a 

decent way to feed an RNN with high dimensional raw data such as image for learning the 

sequential model in a direct form. Hence, in this framework instead of passing raw images into the 

recurrent network, the extracted features by CNN is passed to it. RNN is able to maintain the 

memory of its hidden states and has feedback loops enabling its current hidden state to be a 

function of the previous ones (Figure 3.1) (Wang et al., 2017). Hence, the relationship between the 

incoming keyframe and the former one in the same sequence can be detected by the RNN. It can 

be shown in Equations 3.1 and 3.2 having a feature 𝑥𝑥𝑘𝑘 from CNN at time k, an RNN updates at 

time step k by 

 𝒉𝒉𝑘𝑘 = ℋ(𝑾𝑾𝑥𝑥ℎ𝑥𝑥𝑘𝑘 + 𝑾𝑾ℎℎ𝑥𝑥𝑘𝑘−1 + 𝒃𝒃ℎ) 3.3 

 

 
𝒚𝒚𝑘𝑘 = 𝑾𝑾ℎ𝑦𝑦𝒉𝒉𝑘𝑘 + 𝒃𝒃𝑦𝑦 3.4 

where 𝒉𝒉𝑘𝑘 is the hidden state and 𝒚𝒚𝑘𝑘 represents the output at time 𝑘𝑘. Moreover, 𝑾𝑾’s denote 

weight matrices, 𝒃𝒃’s show bias vectors, and ℋ is an activation function (Wang, Clark, Wen, & 

Trigoni, 2018). In order to determine the correlations between keyframes in longer trajectories, the 

proposed RNN uses long short-term memory (LSTM), which can learn long-term dependencies 

by using memory gates and units (Zaremba & Sutskever, 2014). The following equations from 

(Wang et al., 2018) shows that given the input feature 𝒙𝒙𝑘𝑘 and the hidden state 𝒉𝒉𝑘𝑘−1 and the memory 

cell 𝒄𝒄𝑘𝑘−1 of the previous LSTM unit.  LSTM updates at time step k, according to 
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 𝒊𝒊𝑘𝑘 = 𝜎𝜎(𝑾𝑾𝑥𝑥𝑥𝑥𝒙𝒙𝑘𝑘 + 𝑾𝑾ℎ𝑥𝑥𝒉𝒉𝑘𝑘−1 + 𝒃𝒃𝑥𝑥) 3.5 

 

 𝒇𝒇𝑘𝑘 = 𝜎𝜎�𝑾𝑾𝑥𝑥𝑥𝑥𝒙𝒙𝑘𝑘 + 𝑾𝑾ℎ𝑥𝑥𝒉𝒉𝑘𝑘−1 + 𝒃𝒃𝑥𝑥� 3.6 

 

 𝒈𝒈𝑘𝑘 = tanh�𝑾𝑾𝑥𝑥𝑥𝑥𝒙𝒙𝑘𝑘 + 𝑾𝑾ℎ𝑥𝑥𝒉𝒉𝑘𝑘−1 + 𝒃𝒃𝑥𝑥� 3.7 

 

 𝒄𝒄𝑘𝑘 = 𝒇𝒇𝑘𝑘 ∘ 𝒄𝒄𝑘𝑘−1 + 𝒊𝒊𝑘𝑘 ∘ 𝒈𝒈𝑘𝑘 3.8 

 

 𝒐𝒐𝑘𝑘 = 𝜎𝜎(𝑾𝑾𝑥𝑥𝑥𝑥𝒙𝒙𝑘𝑘 + 𝑾𝑾ℎ𝑥𝑥𝒉𝒉𝑘𝑘−1 + 𝒃𝒃𝑥𝑥) 3.9 

 

 𝒉𝒉𝑘𝑘 = 𝒐𝒐𝑘𝑘 ∘ tanh(𝒄𝒄𝑘𝑘) 3.10 

 

where ∘ is the element-wise product of vectors, 𝒊𝒊𝑘𝑘 is input gate, 𝒇𝒇𝑘𝑘 is forget gate, 𝒈𝒈𝑘𝑘 is 

input modulation gate, 𝒄𝒄𝑘𝑘 is memory cell, and 𝒐𝒐𝑘𝑘 is output gate at time k. In this case, two LSTM 

layers are stacked for forming the deep RNN illustrated in Figure 3.1. The outputs of RNN is an 

estimation of pose vector at each time step using the visual features generated from the CNN as 

input.  

3.2.3  CNN-based feature extraction 

Feature extraction is conducted by a CNN to determine the features that are more effective 

for solving the visual odometry problem. This CNN was developed for feature extraction on the 

stacked model of two consecutive frames from monocular visual sensor. Ideally, the feature 

representation is geometric instead of being associated with either appearance or visual context as 

visual odometry systems need to be generalized and are often used in unknown settings (Wang et 
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al., 2017). The structure of the CNN is inspired by the network for computing optical flow in 

(Dosovitskiy et al., 2015). The convolutional layers, except for the last one, are followed by a 

rectified linear unit (ReLU) activation. In order to capture the interesting features, the sizes of the 

fields in the network are from 7 × 7 to 5 × 5 and then 3 × 3. This learned feature from CNN reduces 

the dimensionality of RGB frame which too high for RNN and represent it in a compact form. 

Moreover, it enhances the sequential training procedure. As a result, the final convolutional feature 

is fed to the RNN for sequential modelling. 

 

Figure 3.2: Architecture of RCNN for monocular visual odometry 

3.2.4  Cost function and optimization 

The proposed Recurrent CNN for visual odometry system computes the conditional 

probability of the poses 𝑷𝑷𝑡𝑡 = (𝑝𝑝1, … ,𝑝𝑝𝑡𝑡) at time t, given a sequence of frames 𝑭𝑭𝑡𝑡 = (𝑓𝑓1, … , 𝑓𝑓𝑡𝑡) up 

to time t (Wang et al., 2018):  

 𝑝𝑝(𝑷𝑷𝑡𝑡|𝐹𝐹𝑡𝑡) = 𝑝𝑝(𝑝𝑝1, … ,𝑝𝑝𝑡𝑡|𝑓𝑓1, … , 𝑓𝑓𝑡𝑡) 3.11 

 

The recurrent convolutional neural network can handle the modeling and probabilistic 

inference to find the optimal parameters 𝝂𝝂∗ for the VO by maximizing as in (3.12): 
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 𝝂𝝂∗ = argmax
𝜈𝜈

𝑝𝑝(𝑃𝑃𝑡𝑡|𝑭𝑭𝑡𝑡;𝝂𝝂) 3.12 

 

The hyperparameters 𝝂𝝂 is learned by minimizing the Euclidean norm between pose 

including coordinate and orientation in ground truth (𝒑𝒑𝑘𝑘,𝜽𝜽𝑘𝑘) and the estimated one as output of 

the network �𝒑𝒑�𝑘𝑘,𝜽𝜽�𝑘𝑘� at time 𝑘𝑘. Also, the loss function is the mean square error (MSE) of all 

positions 𝒑𝒑 and orientations 𝜽𝜽 using the L2-norm: 

 𝝂𝝂∗ = argmin
𝜈𝜈

1
𝑁𝑁
�‖𝒑𝒑�𝑘𝑘 − 𝒑𝒑𝑘𝑘‖22
𝑡𝑡

𝑘𝑘=1

+ 𝜅𝜅�𝜽𝜽�𝑘𝑘 − 𝜽𝜽𝑘𝑘�2
2
 3.13 

In order to balance the values of weight for position and orientation a scale factor 𝜅𝜅 is 

introduced. Also, N is the number of samples.  

 Sensor fusion for visual inertial odometry 

Monocular visual odometry uses a single camera; consequently, the baseline between two 

consecutive frames is unknown, and we have a defect for finding the absolute distance of the 

baseline. In other words, the scale factor of reconstruction is ambiguous, and the metric scale 

cannot be recovered by monocular camera. Furthermore, scale drift causes an instability of the 

navigation system. To find the geometric scale and resolve this ambiguity issue, it is important to 

compute the geometric scale using another source. I use an accelerometer and gyroscope for 

estimating the scale factor. The schema of motion estimation for consecutive keyframes is 

illustrated in Figure 2.1. 

The generally travelled distance for an agent that moves with a variable acceleration is 

computed by the double integral of acceleration over time from ti to ti+1. From a computational 
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perspective, I assume that the acceleration in each time interval is constant, where having inertial 

data at 30 Hz is a reasonable assumption, and I can compute the distance for each time interval 

using Equations 3.14 and 3.15. However, achieving this goal requires more than simply using 

accelerometer observations. The first challenge is with the noisy data from IMU, which creates a 

large error over the double integral. Hence, it should be refined, and noise and bias must be 

removed. Moreover, the observations of inertial sensors are in the inertial frame {i}; thus, the 

attitude of IMU should be considered to transform the acceleration vector to the world frame {w}. 

Finally, I need to consider the gravity component as well, since my observations also contain this 

element. To solve these challenges and obtain an accurate scale, I use an EKF for dealing with 

noisy data and solving the scale ambiguity problem, and I call this process coordinate and scale 

fine-tuning. 

 ∆𝑑𝑑 = � 𝑎𝑎𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
∆𝑡𝑡

 3.14 

where: 

 𝛿𝛿𝑑𝑑 = 𝑣𝑣0𝛿𝛿𝑡𝑡 +
1
2
𝑎𝑎𝛿𝛿𝑡𝑡2 3.15 

3.3.1  Coordinate and scale fine-tuning 

I use an EKF to fuse visual data with inertial data and manage errors to obtain more 

accurate results. Figure 3.3 shows a schematic and general flow chart of the EKF algorithm. There 

are two major parts in the Kalman filter: a prediction process and an estimation process. The 

second box in the block diagram is for the prediction process, and three other boxes are associated 

with the estimation process. Besides, the filter receives the zk observation vector and returns an 

updated state vector, which contains the coordinates of the camera pose and visual scale. The visual 
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scale should be used for the next frame, as well as for scaling the estimated pose by the visual 

odometry module. 

For purposes of modeling the system, I should account for inertial sensors, where 

accelerometers and gyroscopes yield observations over three axes. These measurements have a 

bias of b and white Gaussian noise of n, where bias is a non-static as a random variable. As 

previously mentioned, this system is also provided by visual sensor observations, which are 

unscaled 3D positions and attitude estimation with respect to the visual coordinate frame {v}. 

Acceleration and rotational velocity could be modeled as follows (Trawny & Roumeliotis, 2005): 

 𝑎𝑎𝑚𝑚 = 𝑎𝑎 + 𝑏𝑏𝑎𝑎 + 𝑛𝑛𝑎𝑎 3.16 

 𝜔𝜔𝑚𝑚 = 𝜔𝜔 + 𝑏𝑏𝜔𝜔 + 𝑛𝑛𝜔𝜔 
3.17 

 

 

Figure 3.3: Extended Kalman filter block diagram 

The filter state vector contains the position of the inertial unit in the world frame, denoted 

as 𝑝𝑝𝑤𝑤𝑥𝑥 , which would be the reported location of the agent. I also have the velocity of IMU in the 

world frame as 𝑣𝑣𝑤𝑤𝑥𝑥  and the IMU attitude quaternion as 𝑞𝑞�𝑤𝑤𝑥𝑥 . Although these parameters show the 
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state of IMU in the world frame, the camera frame and inertial frame are aligned and are 

equivalent, and as a result, they explain the data from both cameras and smartphones. Additionally 

I have to consider visual scale as another parameter in the state vector. An updated visual scale 

will be used in scaling visual odometry result in each iteration, and it would be refined as the model 

is updated more and more frequently. Furthermore, acceleration bias and gyro bias, which were 

considered as random variables, are considered in the state vector (Weiss & Siegwart, 2013). This 

state vector contains 17 elements. 

 𝑥𝑥 = �𝑝𝑝𝑤𝑤𝑥𝑥
𝑇𝑇

𝑣𝑣𝑤𝑤𝑥𝑥
𝑇𝑇

𝑞𝑞�𝑤𝑤𝑥𝑥
𝑇𝑇

𝑏𝑏𝑤𝑤
𝑇𝑇 𝑏𝑏𝑎𝑎

𝑇𝑇 𝜆𝜆𝑇𝑇�
𝑇𝑇
 3.18 

Differential equations are as follows, where an intuitive.𝐶𝐶𝑞𝑞�𝑤𝑤𝑖𝑖  denotes the rotational matrix 

associated with quaternion 𝑞𝑞�𝑤𝑤𝑥𝑥 . Ω(.), and is also used for multiplication of a vector by a quaternion 

(Trawny & Roumeliotis, 2005). 

 �̇�𝑝𝑤𝑤𝑥𝑥 = 𝑣𝑣𝑤𝑤𝑥𝑥  3.19 

 �̇�𝑣𝑤𝑤𝑑𝑑 = 𝐶𝐶�𝑞𝑞𝑤𝑤𝑑𝑑 �
𝑇𝑇 (𝑎𝑎𝑚𝑚 − 𝑏𝑏𝑎𝑎 − 𝑛𝑛𝑎𝑎) − 𝑔𝑔 3.20 

 �̇�𝑞𝑤𝑤𝑑𝑑 = 1
2Ω

(𝜔𝜔𝑚𝑚−𝑏𝑏𝜔𝜔−𝑛𝑛𝜔𝜔)𝑞𝑞𝑤𝑤𝑑𝑑  3.21 

 �̇�𝑏𝜔𝜔 = 𝑛𝑛𝑏𝑏𝜔𝜔 3.22 

 �̇�𝑏𝑎𝑎 = 𝑛𝑛𝑏𝑏𝑎𝑎 3.23 

 �̇�𝜆 = 0 3.24 

 

The error state vector is defined as 𝑥𝑥� = 𝑥𝑥 − 𝑥𝑥�, where the difference of the state vector with 

its estimation is the error state vector. This vector has 16 elements: 

 �̂̇�𝑝𝑤𝑤𝑑𝑑 = 𝑣𝑣�𝑤𝑤𝑑𝑑 3.25 

 �̇�𝑣�𝑤𝑤𝑑𝑑 = 𝐶𝐶�𝑞𝑞��𝑤𝑤𝑑𝑑 �
𝑇𝑇 �𝑎𝑎𝑚𝑚 − 𝑏𝑏�𝑎𝑎� − 𝑔𝑔 3.26 

 𝑞𝑞�̇�𝑤𝑤𝑑𝑑 = 1
2Ω

�𝜔𝜔𝑚𝑚−𝑏𝑏�𝜔𝜔�𝑞𝑞𝑤𝑤𝑑𝑑  3.27 

 �̇�𝑏�𝜔𝜔 = 0 3.28 
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 �̇�𝑏�𝑎𝑎 = 0 3.29 

 �̂̇�𝜆 = 0 3.30 

 

where 𝜔𝜔� = 𝜔𝜔𝑚𝑚 − 𝑏𝑏�𝜔𝜔  and 𝑎𝑎� = 𝑎𝑎𝑚𝑚 − 𝑏𝑏�𝑎𝑎. I use these equations for linearization of the error 

state vector, and show this as Equation 3.31. 

 𝑥𝑥�̇ = 𝐹𝐹𝑐𝑐𝑥𝑥� + 𝐺𝐺𝑐𝑐𝑛𝑛 3.31 

 

where the noise vector is 𝑛𝑛 = �𝑛𝑛𝑎𝑎𝑇𝑇 𝑛𝑛𝑏𝑏𝑎𝑎
𝑇𝑇 𝑛𝑛𝑤𝑤𝑇𝑇 𝑛𝑛𝑏𝑏𝑤𝑤

𝑇𝑇 �
𝑇𝑇
. The following discretiz ation is used 

for propagation: 

 𝐹𝐹𝑑𝑑 = 𝑒𝑒𝑥𝑥𝑝𝑝(𝐹𝐹𝑐𝑐Δ𝑡𝑡) = 𝐼𝐼 + 𝐹𝐹𝑐𝑐Δ𝑡𝑡 +
1
2!
𝐹𝐹𝑐𝑐2Δ𝑡𝑡2 + ⋯ 3.32 

 

 

 

3.33 

 

 𝐴𝐴 = −𝐶𝐶𝑞𝑞��𝑤𝑤𝑖𝑖
𝑇𝑇 ⌊𝑎𝑎�×⌋ �

∆𝑡𝑡2

2
−
∆𝑡𝑡3

3!
⌊𝜔𝜔×⌋+

∆𝑡𝑡4

4!
⌊𝜔𝜔×⌋2� 3.34 

 𝐵𝐵 = −𝐶𝐶𝑞𝑞��𝑤𝑤𝑖𝑖
𝑇𝑇 ⌊𝑎𝑎�×⌋ �−

∆𝑡𝑡3

3!
+
∆𝑡𝑡4

4!
⌊𝜔𝜔×⌋ −

∆𝑡𝑡5

5!
⌊𝜔𝜔×⌋2� 3.35 

 𝐶𝐶 = −𝐶𝐶𝑞𝑞��𝑤𝑤𝑖𝑖
𝑇𝑇 ⌊𝑎𝑎�×⌋ �Δ𝑡𝑡 −

∆𝑡𝑡2

2!
⌊𝜔𝜔×⌋ +

∆𝑡𝑡3

3!
⌊𝜔𝜔×⌋2� 3.36 

 𝐷𝐷 = −𝐴𝐴 3.37 

 𝐸𝐸 = 𝐼𝐼 − Δ𝑡𝑡⌊𝜔𝜔×⌋+
∆𝑡𝑡2

2!
⌊𝜔𝜔×⌋2 3.38 

 𝐹𝐹 = −Δ𝑡𝑡 +
∆𝑡𝑡2

2!
⌊𝜔𝜔×⌋ −

∆𝑡𝑡3

3!
⌊𝜔𝜔×⌋2 3.39 
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 𝑄𝑄𝑑𝑑 = � 𝐹𝐹𝑑𝑑(𝑑𝑑)𝐺𝐺𝑐𝑐𝑄𝑄𝑐𝑐𝑇𝑇𝐹𝐹𝑑𝑑(𝑑𝑑)𝑇𝑇𝑑𝑑𝑑𝑑
Δ𝑡𝑡

 3.40 

 

where 𝑄𝑄𝑐𝑐 = 𝑑𝑑𝑑𝑑𝑎𝑎𝑔𝑔 �𝜎𝜎𝑛𝑛𝑎𝑎
2 ,𝜎𝜎𝑏𝑏𝑎𝑎

2 ,𝜎𝜎𝑛𝑛𝜔𝜔
2 ,𝜎𝜎𝑛𝑛𝑏𝑏𝜔𝜔

2 � is the noise covariance matrix. Now, it is possible 

to compute the propagated state covariance matrix, which could be gained by following the 

presented equations, and by calculating Fd and Qd. Using these matrices, I can obtain the 

propagated state covariance matrix as 𝑃𝑃𝑘𝑘− = 𝐹𝐹𝑑𝑑𝑃𝑃𝑘𝑘−1− 𝐹𝐹𝑑𝑑𝑇𝑇 + 𝑄𝑄𝑑𝑑. According to the EKF diagram, now 

the prediction process results are ready to be used by the estimation process, which compensates 

the difference between measurement and prediction and yields a new estimation of state vector x 

and covariance matric P. 

The visual odometry module yields the unscaled position and attitude of the camera. These 

values, both position and quaternion, are observations of the system, and I denote them as zp and 

zq, respectively. Moreover, these values are in the vision frame {v}, and I need a geometric 

relationship between the world frame {w} and the vision frame {v} as well. Equation 3.41 models 

the position observation by the visual odometry module. 𝐶𝐶𝑞𝑞�𝑣𝑣𝑤𝑤
𝑇𝑇  maps vision and world coordinate 

frames. According to this formulation, I can demonstrate the position error as Equation 3.42, which 

should be linearized for the filter; hence I need to compute Hp in �̃�𝑧𝑝𝑝𝑝𝑝 = 𝐻𝐻𝑝𝑝𝑥𝑥� (Weiss & Siegwart, 

2013): 

 𝑧𝑧𝑝𝑝 = 𝑝𝑝𝑣𝑣𝑐𝑐 = 𝜆𝜆𝐶𝐶𝑞𝑞�𝑣𝑣𝑤𝑤
𝑇𝑇 𝑝𝑝𝑤𝑤𝑥𝑥 + 𝑛𝑛𝑝𝑝 3.41 

 �̃�𝑧𝑝𝑝 = 𝑧𝑧𝑝𝑝 − �̂�𝑧𝑝𝑝 = 𝜆𝜆𝐶𝐶𝑞𝑞�𝑣𝑣𝑤𝑤
𝑇𝑇 𝑝𝑝𝑤𝑤𝑥𝑥 + 𝑛𝑛𝑝𝑝 − �̂�𝜆𝐶𝐶𝑞𝑞��𝑣𝑣𝑤𝑤

𝑇𝑇 �̂�𝑝𝑤𝑤𝑥𝑥  3.42 

 𝐻𝐻𝑝𝑝 = ��̂�𝜆𝐶𝐶𝑞𝑞�𝑣𝑣𝑤𝑤
𝑇𝑇 03×3 03×3 03×3 𝐶𝐶𝑞𝑞�𝑣𝑣𝑤𝑤

𝑇𝑇 �̂�𝑝𝑤𝑤𝑥𝑥 � 3.43 

 

For the other observation in the system (rotation measurement), the notion of quaternion 

and error quaternion is used again. Although the visual odometry module yields the rotation from 
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the vision frame {v}, the assumption of equvalency of vision frame and inertial frame leads us to 

model zq and its error, as follows: 

 𝑧𝑧𝑞𝑞 = 𝑞𝑞�𝑣𝑣𝑐𝑐 = 𝑞𝑞�𝑤𝑤𝑐𝑐 ⨂𝑞𝑞��𝑣𝑣𝑤𝑤 ≡ 𝑞𝑞�𝑤𝑤𝑥𝑥 ⨂𝑞𝑞��𝑣𝑣𝑤𝑤 3.44 

 𝑧𝑧�̅�𝑞 = 𝑧𝑧𝑞𝑞 − �̂�𝑧𝑞𝑞 = 𝐻𝐻𝑞𝑞𝑤𝑤𝑥𝑥𝛿𝛿𝑞𝑞𝑤𝑤𝑥𝑥  3.45 

 

Ultimately, the measurement can be presented as Equation 3.46, where 

 𝐻𝐻𝑞𝑞
𝑥𝑥𝑦𝑦 = �

1 01×3

03×1 𝐻𝐻�𝑞𝑞
𝑥𝑥𝑦𝑦 � 3.46 

 

 �
�̃�𝑧𝑝𝑝
�̃�𝑧𝑞𝑞
� = �

𝐻𝐻𝑝𝑝
03×6 𝐻𝐻�𝑞𝑞𝑤𝑤𝑥𝑥 03×7

� 𝑥𝑥� 3.47 

Now, I have all the needed matrices and parameters for the update process, which are the 

three last boxes in Figure 3.3, as a routine procedure in the Kalman filter. Therefore, I compute 

the residual as �̃�𝑧 = 𝑧𝑧 − �̂�𝑧  and obtain the Kalman gain as 𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘−𝐻𝐻𝑇𝑇(𝐻𝐻𝑃𝑃𝑘𝑘−𝐻𝐻𝑇𝑇 + 𝑅𝑅)−1. Finally, I 

can compute the correction of the state vector, which is 𝑥𝑥��, and by using this result, and update the 

state vector. The following is the updated error state covariance  

𝑃𝑃𝑘𝑘 = (𝐼𝐼 − 𝐾𝐾𝐻𝐻)𝑃𝑃𝑘𝑘−(𝐼𝐼 − 𝐾𝐾𝐻𝐻)𝑇𝑇 + 𝐾𝐾𝑅𝑅𝐾𝐾𝑇𝑇 (Trawny & Roumeliotis, 2005). 

 Experiment 

In this section the proposed method is evaluated by comparing its results with the results 

of another state-of-the-art algorithm and ground truth in different scenarios within different 

environment settings. I use VISO2, an open-source library (Geiger, Ziegler, & Stiller, 2011) which 

is one of the most popular visual odometry algorithms for comparison and evaluation. VISO2 uses 
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feature-based matching to realize efficient monocular VO. Since monocular VO does not have an 

absolute scale, I manually set a scale to recover absolute positions. It is worth noting that the scale 

could have been recovered by using a fixed baseline of stereo vision if I had access to stereo 

images, but this was not within the scope of this dissertation.  

3.4.1  Dataset 

There are various datasets for visual inertial odometry for outdoor and mostly for car 

navigation. Since, this research concentrated on indoor environment, I either must generate my 

own dataset or use publicly available datasets for indoor navigation which are very limited. 

Accurate estimation of trajectory and compare it with the trajectory should be considered for 

evaluation of the positioning algorithms in indoor environments. This type of evaluation makes 

generation of a suitable dataset too complicated. To avoid unforeseen errors related to data 

preparation and be able to compare the results with other algorithms, I decided to use ADVIO 

dataset, which is for indoor environment and collected by smartphone (Cortés, Solin, Rahtu, & 

Kannala, 2018). Figure 3.4 shows the devices for collecting the dataset. The dataset was collected 

by handheld devices and published in 2108. It contains both indoor and outdoor data and I used 

only indoor data.  
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Figure 3.4: Custom-built capture rig with a Google Pixel smartphone on the left, a Google Tango device in the 

middle, and an Apple iPhone 6s on the right (Cortés et al., 2018) 

In Figure 3.5: (a) – (s), all sequences are shown in 3D and in XY, XZ, and YZ planes. 

 

 

(a) Sequence 01 
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(b) Sequence 02 

 

(c) Sequence 03 
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(d) Sequence 04 

 

(e) Sequence 05 
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(f) Sequence 06 

 

(g) Sequence 07 
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(h) Sequence 08 

 

(i) Sequence 09 
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(j): Sequence 10 

 

(k) Sequence 11 
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(l) Sequence 12 

 

(m) Sequence 13 
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(n) Sequence 14 

 

(o) Sequence 15 
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(p) Sequence 16 

 

(q) Sequence 17 
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(r) Sequence 18 

 

(s) Sequence 19 

Figure 3.5: The visualization of pose tracks in different planes 
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3.4.1.1 Dataset issue 

As data is collected separately for each sensor, two synchronizations are needed before 

their use. The first one involves bringing all timestamps into the same time frame. Although the 

ADVIO dataset seems to be synchronized, there is an error in the data where the timestamps of 

frames.csv and arkit.csv are not in the same time frame. This issue causes an offset between the 

IMU and video data. To fix this issue, the first timestamp from the whole-time vector in those files 

is subtracted. Moreover, the timestamps for gyroscope, accelerometer, and images are not the 

same. In other words, for a certain timestamp I do not have all IMU sensor and visual data. I fixed 

these issues before using condensing the experiments, otherwise there are huge drifts in the data.  

Since the accelerometer and gyroscope data are in the same time frame, I used linear interpolation 

to align the inertial data with the frames. 

3.4.2  Training and testing 

The dataset has 19 sequences of frames for indoor from malls, metros, and offices which 

are used for training and testing the model. I divided the sequences into two separate groups for 

training phase and testing phase where experiments are performed to evaluate the framework. The 

first group is based on the 14 sequences including sequences from all classes of locations (mall, 

office, and metro) to train the model (five of them) and used the rest for testing the model. Since 

the ability to generalize well to real data is critical, the next experiment aims to analyze how the 

framework and the trained models works in an unknown environment. Thus, the five remained 

sequences which never used for training the model were used for cross validation and avoiding 

overfitting. 
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One main issue with training this type of network compared to the conventional 

convolutional neural networks is that the input is a sequence of images instead of a single image. 

Moreover, while the number of available images for training CNN-based models is enough for 

training (millions of images for ImageNet database), such a rich dataset with flexible number of 

sequences does not, at least currently, exist for this type of RNNs. One approach for training this 

type of network is proposed by (Wang et al., 2018) where segments of the training sequences are 

randomly picked. These randomly selected sub-segments have arbitrary lengths with flexible start 

and end points. This approach is able to generate enough sequences for training the model. I trained 

the network for up to 300 epochs with learning rate 0.001. In order to avoid overfitting, I used 

dropout and early stopping techniques. In the next section, I discuss the effect of overfitting and 

how it impacts the model. Moreover, as the number of available sequences is limited, I use transfer 

learning for reducing the training time and the required data to converge the training. For this, I 

used the CNN-based FlowNet model  (Dosovitskiy et al., 2015) for CNN which is a pre-trained 

model. 

3.4.2.1 Overfitting effects 

With limited data, it is very likely to have overfitting during the training procedure. 

Overfitting can have various impacts on the results and here I show how it can influence the 

outcomes. During the training, I had two cases of overfitting and good fitted models. In Figure 3.6 

it can be seen that the gap between training and validation indicates overfitting. Using one of the 

sequences, which was not used in training as test data shows the overfitted model and how it is 

useless for generalization. In order to avoid overfitting, I used dropout which is a widely used 

technique. Figure 3.7 shows the appropriate loss which is a model with good fitting. Although the 

output of training data for the overfitted model is more accurate, Figure 3.7 shows the results.  
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(a) Loss function indicating overfitting 

 
(b) The result of VO for training dataset using overfitted model 

 
 (c) The result of VO for testing dataset using overfitted model 

Figure 3.6: Impact of overfitting 
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(a) Loss function indicating well-fitted model 

 
(b) The result of VO for training dataset using well-fitted model 

 
 (c) The result of VO for testing dataset using well-fitted model 

Figure 3.7: A propoer loss function and the impact on training and test data 
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 Results 

In this section I present the results of comparing positioning and tracking using the 

proposed framework, the visual odometry with manual scale computation, and a feature-based 

solution. For the feature-based solution, I used LIBVISO2 (Library for Visual Odometry 2) 

(Geiger et al., 2011) for monocular odometry. LIBVISO2 uses the 8-point algorithm for estimating 

fundamental matrix. It assumes that the camera is moving at a known and fixed height over ground 

for estimating the scale. However, I used an EKF algorithm with inertial data to fine tune the scale 

factor. For solving the scale of the visual odometry, I considered a set of points and computed an 

average of scales for manually selected points which are discernible. Figure 3.8 (a) – (e) p show 

trajectories of the testing sequences (five sequences: 6, 10, 11, 12, and 13) of the ADVIO 

benchmark with the ground truth. There are four trajectories in each diagram which show the 

ground truth, LIBVISO2, manually scaled visual odometry, and my framework. 
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(a) Sequence 06 

 

(b) Sequence 10 
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(c) Sequence 11 

 

(d) Sequence 12 
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(c) Sequence 13 

Figure 3.8: Trajectories of testing data for Sequences 06, 10, 11, 12, and 13. Scale in VISO2 model is recovered 

using inertial sensor data. The red line shows the proposed framework. Manually scaled visual odometry is the 

result of a monocular learning based model where the scale is manually recovered using one known baseline 

3.5.1  Translation and rotation error 

In order to compare the methods, I computed the average error of translation and rotation 

against path lengths measured by RMSE at each time step. Figure 3.9 shows the results of 

translation and rotation error for sequence 10 which is a test sequence.  
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(a) 

 

 
 (b) 

Figure 3.9: Translation and rotation error for sequence 10 

 Summary 

This chapter presented a framework for fusing the data from learning-based monocular 

visual odometry and inertial sensor for managing the problem of indoor positioning in a new 

approach. In order to find the visual odometry response an RNN was utilized in which CNN is 

used. In fact, the RCNN is trained to learn estimating 6DoF of each two consecutive frames based 
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on learning not only from two frames, also using the sequence in memory. The results show that 

the framework is able to solve the problem of positioning and using data-fusion improves the 

quality of scale estimation and the overall accuracy. However, the quality of the geometry-based 

method is still better, in fact, these two approaches should not be considered as competitive; they 

can be seen as complement. For instance, in some scenarios when there are not enough common 

features to use the 8-points algorithm this technique can be helpful. There are some potentials to 

take advantage of both of them to make it more accurate and responsive. 

There are some challenges in this problem that to the best of my knowledge are still 

unsolved. The first challenge is integrating learning approach and geometry-based approach where 

can increase the level of freedom in solving the problem. Moreover, there can be many new 

approaches to detect loops for managing drift which is a classic problem in SLAM. One major 

challenge in this approach is dataset. While this data-driven approach needs more sequences, there 

are just few datasets for this purpose. One decent solution can be utilizing unsupervised and 

geometry-based approach to solve it. 
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4.0 Obstacle detection for navigation 

One of the main tasks in most navigation systems, particularly the autonomous ones, is to 

avoid obstacles. In order to steer away from any obstacles, it is necessary that they are detected in 

time before reaching them. Most obstacle detector approaches are based on supervised training to 

learn different objects for detecting them and taking appropriate actions once detected. Although 

these approaches are effective, they are not responsive and reliable enough for indoor 

environments due to the existence of many different objects, making training almost impossible. 

Also, the problem becomes more complicated as new objects appear. To address these issues, in 

this chapter I propose an unsupervised algorithm to detect the regions of the image plane with most 

likely presence of obstacles. 

 Introduction 

There are various approaches to tackle the challenge of obstacle detection. Supervised 

leaning, such as deep learning, is one of the most well-known approaches to effectively detect and 

recognize obstacles. However, the problem of obstacle detection is more challenging for 

pedestrians and robots moving in indoor and outdoor environments compared with vehicles 

driving on roadways. This is because pedestrians and robots face many different types of potential 

obstacles. This means that utilizing a supervised approach requires the availability of a rich dataset 

for training a model. In this chapter I concentrate on optical-flow-based obstacle detection which 

relies on visual data.  While most vision-based navigation systems are based on stereo images 
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(Costa et al., 2012), my proposed approach is based on single image (monocular) for finding the 

regions on an image plane which are more likely obstacles. 

To address the obstacle detection problem, I propose an approach to recognize the user’s 

context, generate a point dataset, and detect obstacles. Figure 4.1 shows the proposed approach for 

detecting obstacles in a block diagram. The first part of the approach involves determining the 

frame rate. Frame rate is basically dependent on the mode of activity; therefore, the time interval 

should correspond to its mode. The second part of the work involves processing consecutive 

frames. On the image plane, I check a set of sample points to see if they belong to any obstacle. 

Therefore, the first step in processing the frames is designing a point dataset, which can be based 

on two different perspectives. The first perspective considers the image texture and decent points 

to track, which means that the configuration of the points is solely dependent on the properties of 

the image (El-Gaaly et al., 2013). The other perspective ignores image texture and extracts the 

points based on a predefined set of points, such as a grid (Tapu et al., 2013). 

 

Figure 4.1: Schematic diagram of data processing for obstacle detection 
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In this chapter, I propose a hybrid method that uses both texture and a regular point set 

considering the user’s movement. This will provide two sets of points. One set is irregularly 

distributed, based on image texture, and I use an image descriptor for finding the points. The other 

set of points is regularly distributed, based on the heading and movement of the user. I compute a 

local displacement or motion for those two sets of points by using the Kanade-Lucas-Tomasi 

(KLT) feature track algorithm and optical flow technique. The points also have a global 

displacement, which can be determined by computing a homography matrix. I classify the 

generated points into background and foreground points by comparing the difference of the motion 

of the points and their global displacement with a threshold. Finally, I cluster the foreground points, 

based on time-to-contact (TTC) and motion angle parameters. 

In Figure 4.1, I schematically present my proposed procedure that is followed in this 

research. The figure shows the relationships among the different parts of the procedure in a block 

diagram. Inertial data stream is processed to extract the most relevant and least redundant features. 

I use these features to determine the mode of movement using a classifier. Since, frame rate 

extraction is dependent on the mode of movement, I can obtain the frame rate value as well. Video 

stream, another data stream source, is also processed based on the determined frame rate to extract 

consecutive frames which are then used to detect obstacles. In the next steps the extracted 

consecutive frames are processed. These steps are explained in detail in the following sections. 

 Methodology for optical flow-based analysis for potential obstacle detection 

With a single moving camera, we need to detect the displacement of the points, due to 

relative movement between the camera and objects. Optical flow contains information about the 



 62 

velocity of the points, which can be used to detect obstacles (Beauchemin & Barron, 1995). It can 

be estimated in three different types of analyses: correlation-based, differential-based, and block-

based (Beauchemin & Barron, 1995). While dealing with textured backgrounds, utilizing a 

differential-based type analysis provides more reliable results (Boroujeni, 2012) and it is 

straightforward to implement. There are two well-known differential-based methods: Lucas-

Kanade (Lucas & Kanade, 1981) and Horn-Schunck (Horn & Schunck, 1981). Although Lukas-

Kanade does not guarantee either spatial or brightness consistency, it is more effective than other 

techniques and has the advantage of a substantially lower computational cost (Tapu et al., 2013). 

Since optical flow tracks pixels or point features over frames of video, the visual processing of the 

frames initially involves selecting some points and tracking them. There are two main approaches 

for selecting and tracking those points: dense optical flow (Haiying Liu, Chellappa, & Rosenfeld, 

2003) and sparse optical flow (El-Gaaly et al., 2013). By dense, I mean pixel-level features or 

regular grids of points over the video frames. Since dense optical flow is computationally 

expensive, it is not considered in this research. In contrast, the sparse technique tracks a number 

of sparse strongly detected features over multiple frames (such as SURF (Xu & Namit, 2008), 

SIFT (Lowe, 1999), PCA-SIFT (Ke & Sukthankar, 2004), ORB (Rublee et al., 2011), or Harris 

Corner detection (Harris & Stephens, 1988b)). However, the sparse technique usually generates 

just a few points—especially in my case, as the reduced image/frame size influences the number 

of points. Also, for less textured regions or low-resolution videos, the sparse techniques usually 

extract few or even no interest points (Tapu et al., 2013). Hence, in order to generate a dataset with 

sufficient points, I devised an algorithm to extract points, which is discussed in the next section.  
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4.2.1  Point dataset architecture 

I propose an algorithm that uses a hybrid method to extract enough points to process. For this, I 

define two classes of interest points: irregular point dataset (IPD) and regular point dataset (RPD). 

IPD consists of the points that are detected by the image descriptor, using the SURF feature 

detector algorithm, as it is faster than other algorithms (Xu & Namit, 2008). In order to generate 

RPD, the initial task is to define some areas on the frames where navigation tasks are likely to 

occur and regions where obstacles are more likely to be found. I call these areas regions of interest 

(ROI). For the purposes of pedestrian users navigating indoors, the ROI is the area that the user is 

more likely to pass through next; therefore, it is critical and should be analyzed, regardless of the 

texture of the image. For the purpose of finding these ROIs, I define a corridor that the user is 

moving through (Figure 4.2a). Objects in this corridor are more likely to be obstacles that would 

block the passage of users. Figure 4.2 (b) and (c) show such a corridor, as well as its corresponding 

ROI on the image. As Figure 4.2(c) highlights, the ROI is a projection of a corridor on the image. 

As Figure 4.2(c) highlights, the ROI is a projection of a corridor on the frame plane. For delineating 

this triangular polygon, since the lower vertices are fixed, the unknown vertex is the upper one, 

which depends on the user’s movement. The user's heading is the upper point of the ROI. Detecting 

the heading makes it possible to define the ROI, and using optical flow enables the computation 

of the heading for two consecutive frames (Camus, 1994; O’Donovan, 2005). 
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Figure 4.2: (a) Corridor (b) a hallway (c) schematic region of interest. 

4.2.1.1 Heading estimation  

Heading is defined as the direction of the user traveling through the environment. 

Translating this concept to an environment results in a radial motion pattern with all motion vectors 

directed away from a single point (Figure 4.3 and Figure 4.4). That point is the focus of expansion 

(FOE) which can be obtained by using optical flow. Consequently, in translational movement, 

FOE can estimate the heading of movement (Browning, Grossberg, & Mingolla, 2009). In other 

words, the FOE of a motion pattern is situated on the point in the image towards which the observer 

is moving. To detect the FOE and estimate the heading of the user, I use IPD and calculate the 

coordinates of the FOE. Tistarelli and Sandini (Tistarelli & Sandini, 1993) used the least squares 

solution of all flow vectors and used it to find the FOE as follows: 

 𝐹𝐹𝐹𝐹𝐸𝐸 = (𝐴𝐴𝑇𝑇𝐴𝐴)−1𝐴𝐴𝑇𝑇𝒃𝒃 = −
1

∑𝑎𝑎𝑗𝑗02 𝑎𝑎𝑗𝑗12 − (∑𝑎𝑎𝑥𝑥0𝑎𝑎𝑥𝑥1)2 �
�𝑎𝑎𝑥𝑥0𝑏𝑏𝑥𝑥�𝑎𝑎𝑗𝑗12 −�𝑎𝑎𝑥𝑥1𝑏𝑏𝑥𝑥�𝑎𝑎𝑗𝑗0𝑎𝑎𝑗𝑗1

−�𝑎𝑎𝑥𝑥0𝑏𝑏𝑥𝑥�𝑎𝑎𝑗𝑗0𝑎𝑎𝑗𝑗1 + �𝑎𝑎𝑥𝑥1𝑏𝑏𝑥𝑥�𝑎𝑎𝑗𝑗02
� 4.1 

 

where, for each point 𝑝𝑝𝑥𝑥 = (𝑥𝑥,𝑦𝑦), the associated flow vector 𝒗𝒗 = (𝑢𝑢, 𝑣𝑣) gives 𝑎𝑎𝑥𝑥0 = 𝑣𝑣, 𝑎𝑎𝑥𝑥1 = 𝑢𝑢, 

𝑏𝑏𝑥𝑥 = 𝑥𝑥𝑣𝑣 − 𝑦𝑦𝑢𝑢 
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Figure 4.3: Focus of Expansion (FOE) 

 

 

Figure 4.4: Computed FOE 

 

4.2.1.2 Regular point dataset (RPD) 

Since FOE estimates the heading, it enables the determination of the ROI on the image 

plane. For the purpose of enriching the point dataset (including IPD), which was generated by the 

SURF algorithm, I define a grid over the ROI. The input of the algorithm for extracting the RPD 

is the number of points for the grid. The algorithm organizes the points in the ROI and returns their 

coordinates. Thus, the algorithm determines the distance between the points and checks if they are 

inside the ROI. The grid step is defined as Γ = � 𝐷𝐷𝐷𝐷
√2𝑁𝑁

+ 1�, where D is the width of the corridor on 

the frame and Y is the y coordinate of the FOE, which is the height of the triangle, as computed in 

the previous step. N is the maximum number of points and the input to the algorithm. To limit the 

computational cost and obtain a high degree of precision, I set N to 400.  
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4.2.1.3 Time-to-contact 

Using a single image makes it difficult to obtain information about the depth and distance 

from different points on the image plane. However, due to having a moving monocular camera, 

we can get information about time to contact (or collision), which is called the time-to-contact 

(TTC) parameter. The TTC can be computed from the optical flow (Camus, 1994). This invaluable 

information plays an important role because it provides data about the third dimension. To compute 

the TTC, we need to know the FOE, whose calculation was discussed in the previous section using 

IPD. Figure 4.5 illustrates the geometry of both the FOE and two image planes. Point 𝑝𝑝 = (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) 

on image plane at time T is the projected image of point 𝑃𝑃 = (𝑋𝑋,𝑌𝑌,𝑍𝑍). The distance of the image 

plane from the origin is f and the movement of the camera is alongside the Z-axis. At time T+1, 

point p will be projected onto a new point on the image plane 𝑝𝑝′ = (𝑥𝑥′,𝑦𝑦′, 𝑧𝑧′). The following 

equations, based on simple geometry, show how to obtain  𝑑𝑑 = 𝑦𝑦
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

  , which represents TTC. 
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Therefore, for calculating TTC, we only need the optical values of quantities y and 𝜕𝜕𝑦𝑦
𝜕𝜕𝑡𝑡

 . In other 

words, the optical flow provides 𝜕𝜕𝑦𝑦
𝜕𝜕𝑡𝑡

 , and the distance from the FOE is y. 

 

Figure 4.5: Projection of  point P onto the image plane of a moving camera (Camus, 1994) 

  

 𝑦𝑦
𝑓𝑓
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𝑌𝑌
𝑍𝑍
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 4.2 

 

As we assume translational movement, 𝜕𝜕𝐷𝐷
𝜕𝜕𝑡𝑡

= 0 , 𝑌𝑌 = 𝑦𝑦𝑦𝑦
𝑥𝑥

 . Assuming 
𝑦𝑦
𝑡𝑡

= 𝑉𝑉 we have 

 
𝑦𝑦
𝑡𝑡

= −𝑦𝑦
𝑉𝑉
𝑍𝑍
⇒

𝑦𝑦
𝜕𝜕𝑦𝑦
𝜕𝜕𝑡𝑡

= −
𝑍𝑍
𝑉𝑉

= 𝑑𝑑 4.3 

4.2.2  Tracking point dataset and displacement computation 

One essential feature in detecting obstacles is determining the displacement of the point 

dataset by tracking the points in consecutive frames; in this research, these are called motion 

vectors. For the purpose of computing the motion vector, I use KLT feature tracker. Moreover, I 

calculate the global geometric transformation between two frames to compute the displacement 

due to frame transformation. To detect homography transformation, I use two corresponding point 
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datasets on framet and framet+1. The homography transformation, shown by matrix H in Equation 

4.4, models the transformation, and could be calculated using a least-square adjustment if 

corresponding pairs of points in two point datasets are detected (Figure 4.6). I use the RANSAC 

(RANdom SAmple Consensus) algorithm (Fischler & Bolles, 1981) to find corresponding pairs of 

IPDs on two frames (Figure 4.9). In other words, given matrix H, I can map the points in each IPD 

at which each point on framet+1 is the result of transformation of the same point on framet using 

matrix H. In the following equation, 𝑝𝑝′𝑥𝑥 is an estimation of position 𝑝𝑝𝑥𝑥 in the second frame. 

 𝑝𝑝𝑥𝑥′ = 𝑯𝑯.𝑝𝑝𝑥𝑥 4.4 

 

 �
𝑥𝑥2𝑥𝑥′

𝑦𝑦2𝑥𝑥′
𝑤𝑤
� = �
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ℎ31 ℎ32 ℎ33

� �
𝑥𝑥1𝑥𝑥
𝑦𝑦1𝑥𝑥
1
� 4.5 

 

where 𝑤𝑤 = 1
�ℎ31.𝑥𝑥2𝑖𝑖

′ +ℎ32.𝑦𝑦2𝑖𝑖
′ +ℎ33�

 

 

Figure 4.6: Schematic diagram of homography transformation 

 

Next, I discuss vector and geometric displacement computation. For each point in the 

second frame, I have two pairs of coordinates. The first one is the motion vector and the other pair 

is the projected vector. Ideally, these two points should be as close to one another as possible. The 

distance between these two pairs is used as a criterion for defining an error. All moving objects 



 69 

and the stationary object close to the camera are part of the foreground for moving camera, and 

their movement in the second frame is more than other objects. Therefore, if the error does not 

exceed the threshold, it is considered to be part of the background. I concentrate on the points that 

do not belong to the background. In other words, those outliers whose error exceeds the threshold 

belong to foreground objects and are potentially part of an obstacles. The following equation by 

Tapu et al. (2013) shows the error value: 

 𝐸𝐸(𝑝𝑝𝑥𝑥𝑡𝑡1) = �𝑝𝑝𝑥𝑥𝑡𝑡2 − 𝑯𝑯.𝑝𝑝𝑥𝑥𝑡𝑡1� 4.6 

 

where 𝑝𝑝𝑥𝑥𝑡𝑡2 shows the coordinates of point i in the frame at time t2 and 𝑯𝑯.𝑝𝑝𝑥𝑥𝑡𝑡1 is the projected 

coordinates of 𝑝𝑝𝑥𝑥𝑡𝑡1 which is point i at time t1. 

4.2.3  Clustering 

I divide the points into those in the foreground, which are potentially part of an obstacle, 

and those in the background, which are not. I cluster the foreground points and ignore those in the 

background. The clustering of the foreground points has two steps. In the first step I compute the 

related parameters for the purpose of clustering, such as angle of motion, which was proposed by 

Tapu et al. (Tapu et al., 2013), and use the TTC as my proposed parameter. As I do not know the 

number of obstacles, I use an agglomerative clustering technique (Cimiano, Hotho, & Staab, 

2004), considering the maximum cluster of five possible obstacles.  

In the second step, I refine the clustering results. Some of these points might be incorrectly 

clustered; therefore, I have to reconsider the result of clustering to avoid any unintentional 

erroneous clustering. For the purpose of refinement, a k-nearest neighbors (kNN) algorithm (M.-

L. Zhang & Zhou, 2005) is used for each point, and if half of the points for each k neighbors are 
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in the same cluster, that point would be accepted, otherwise it would be ignored. I use Euclidean 

distance to define neighbor points 

 Results 

In this chapter, I show the results of the obstacle detection approach using my proposed 

algorithm for designing the point dataset. I validated my algorithm through experiments in 

different buildings where metrics of precision, recall, f-measure, and accuracy are all used to 

compare my algorithm to sparse points and predefined grid point datasets. I also evaluated and 

compared the outcomes of considering 

In this section the results of some data processing and analyses are shown. Figure 4.7 is a 

schematic diagram showing how regular points are set in ROI. Figure 4.8 shows the IPD and RPD 

over an image using Algorithm 1 demonstrating the point extraction process. I also demonstrate 

the results of my algorithm in three different spaces. Figure 4.10 shows the design of point dataset 

which is generated based on my algorithm (IPD and RPD). The blue points represent RPD and 

IPD is shown in yellow. Due to different headings in the three scenarios, RPDs are in different 

configurations. 
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Figure 4.7: Schema of Region of Interest computed 

by FOE coordinates 

 

Figure 4.8: IPD and RPD points extracted using 

Algorithm1 

 

Figure 4.9: Finding corresponding points on the images using RANSAC algorithm 

 

 As IPD is based on properties of image, some low textured areas like walls have no or just 

few points. In Figure 4.10b, the second column shows the result of clustering without refinement. 

I perform agglomerative clustering detecting clusters and Figure 4.10 shows the refined clusters. I 

demonstrate the results of my algorithm in three different spaces. Figure 4.10a shows the design 

of point dataset which is generated based on my algorithm (IPD and RPD). The blue points 

represent RPD and IPD is shown in yellow. Due to different headings in the three scenarios, RPDs 
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are in different configurations. As IPD is based on properties of image, some low textured areas 

like walls have no or just few points. In Figure 4.10b, the second column shows the result of 

clustering without refinement. I perform agglomerative clustering detecting clusters and Figure 

4.10c shows the refined clusters. 
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Figure 4.10: Three different scenes for detecting obstacles 
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In this section, I discuss an experiment to evaluate the precision, recall, f-measure, and 

accuracy of my algorithm in comparison to two other algorithms: one that used a sparse point 

dataset and another that used a predefined grid. I do not test the dense point dataset at the pixel 

level, due to a large number of points (around 330,000 in my experiment) that need to be analyzed; 

my algorithm needs around 200 regular points and around 400 irregular points, which is less than 

2% of the dense-point dataset. The number of points in the predefined grid is the same as the 

number of points that I use for my algorithm. Although the predefined grid does not use IPD for 

tracking points, it still needs to extract features to compute homography transformation; hence, 

there is no advantage to using the predefined grid, as compared with the other two algorithms. 

In order to experimentally evaluate the results of my algorithm, its performance is 

compared with the other two algorithms. In the experiment, I took video at a certain frame rate and 

analyzed some consequent frames. In the frames, I have many different objects, some of which are 

obstacles. Intuitively, a higher density of clustered points over these obstacles is preferable, thus, 

I define polygons around each obstacle in a scene and create them manually. In essence, each 

clustered point on an obstacle indicates a correct result. Accordingly, if all contributing points are 

clustered inside any of those polygons, I consider them to be true positive (TP). The points on 

other objects outside the polygons indicate objects that are not obstacles, therefore, they are 

classified as false positive (FP). The omitted points are either in the background where they are 

ignored before clustering, or they are not in the background but are ignored during the refinement 

procedure. I consider dropping these points as negative. Omitted points outside the polygons are 

true negative (TN). Consequently, a value of false negative (FN) indicates the ignored points inside 

the polygons. The precision, recall, accuracy, and f-measure are calculated as follows: 

 𝑝𝑝𝑝𝑝𝑒𝑒𝑐𝑐𝑑𝑑𝑠𝑠𝑑𝑑𝑝𝑝𝑛𝑛 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
 4.7 
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 𝑎𝑎𝑐𝑐𝑐𝑐𝑢𝑢𝑝𝑝𝑎𝑎𝑐𝑐𝑦𝑦 =
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑁𝑁

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁 + 𝐹𝐹𝑃𝑃 + 𝑇𝑇𝑁𝑁
 4.8 

 

 𝑝𝑝𝑒𝑒𝑐𝑐𝑎𝑎𝑟𝑟𝑟𝑟 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁
 4.9 

 

 𝑓𝑓 − 𝑚𝑚𝑒𝑒𝑎𝑎𝑠𝑠𝑢𝑢𝑝𝑝𝑒𝑒 =
2𝑇𝑇𝑃𝑃

2𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝑁𝑁
 4.10 

 

I tested the designed experiment for 70 videos in 15 different indoor environments. For 

each video, I tested many different consequent frames. The experiments were conducted in 

different locations, including the Geoinformatics Laboratory, School of Computing and 

Information, and the Cathedral of Learning at the University of Pittsburgh; inside a residential 

building; and in a Giant Eagle Market District grocery store (Figure 4.11). I selected these indoor 

spaces according to various criteria, such as illumination, image texture, and being busy or not. 

For example, the study area and the hallways of Cathedral of Learning were dim where lack of 

illumination dramatically reduces the number of IPD. Using RPD in such locations is more useful. 

In contrast, the grocery store was too bright and there were some reflections on the floor, as well 

as other surfaces such as walls, which are incorrectly detected as objects by the algorithm. 

Moreover, the hallway of the residential building was less textured than other places such as the 

grocery store which significantly influenced the number of IPD. 

My algorithm used 400 regular points and the number of IPD was dependent on the scene, 

which was considerably high in grocery stores, with highly textured frames (around 750), and in 

the residential hallway, with slightly textured frames (around 150). I computed precision, recall, 

and accuracy for all the scenarios, and the means are shown in Table 4.1. I also considered the 
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harmonic mean of precision, recall, and f-measure. All these measures (precision, recall, accuracy, 

and f-measure) indicate that although the sparse method is more precise than the predefined grid, 

the predefined grid is more accurate and returns better recall and f-measure values. The sparse 

method could be even less precise in the case of decreasing the image size, or when I use the 

technique in a less textured area. My algorithm shows better value for precision, recall, accuracy, 

and f-measure than the two other algorithms; in particular, the precision of my algorithm is 

significantly higher than that of the other two algorithms.  

For evaluating the role of the TTC parameter and to see if it improved my clustering, I 

repeated the same experiment two times, using my algorithm to detect obstacles, one time with 

TTC and one time without TTC. For each case, I conducted the experiment considering TTC and 

the repeated the experiment without it Table 4.2 shows these results, which indicate that TTC 

slightly improved the clustering. It is worth mentioning that the time-to-contact (TTC) parameter 

is computed using equation 𝑑𝑑 = 𝑦𝑦
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 . The absolute value of TTC for each point indicates the needed 

time to contact the corresponding object point assuming that the user continues to move at the 

computed velocity �𝜕𝜕𝑦𝑦
𝜕𝜕𝑡𝑡
�. In other words, the velocity of movement between consecutive frames 

remains constant while approaching the object. Since in practice user's velocity for each pair of 

frames is different, I take advantage of relative values of TTC where the TTC values for points on 

distant objects are larger than the TTC values for points on close objects.  
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Figure 4.11: Fifteen different indoor settings used to validate the proposed algorithm 

Table 4.1: Performance of different algorithms 

 Precision Recall F-Measure Accuracy 

Sparse points Dataset 69% 43% 53% 65% 

Predefined Grid 43% 61% 55% 72% 

Our Algorithm 82% 69% 72% 79% 
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Table 4.2: Performance of clustering considering time-to-contact 

 Precision Recall F-
Measure Accuracy 

Clustering with TTC 84% 69% 73% 84% 

Clustering without TTC 82% 69% 72% 79% 

 

According to these results, my point extraction and tracking algorithms improve the 

detection of obstacles using optical flow to avoid obstacles. This approach was able to detect 

moving objects and stationary obstacles close to the camera. my algorithm for extracting the points 

was based on the image's texture and on the movement of the user. I conducted an experiment to 

show that this kind of point extraction can improve both the efficiency and precision of the results. 

I also demonstrated ways in which TTC can improve the overall clustering. Although this is a 

slight improvement, TTC could be used for some further analyses, such as prioritizing the detected 

obstacles. Moreover, I used multiple frame rates, according to the user's activity.  

 Summary  

This chapter presents a context-aware smartphone-based visual obstacle detection 

approach to aid visually impaired people in navigating indoor environments. The approach is based 

on processing two consecutive frames (images), computing optical flow, and tracking certain 

points to detect obstacles. The frame rate of the video stream is determined by using a context-

aware data fusion technique for the sensors on smartphones. Through an efficient and novel 

algorithm, a point dataset on each consecutive frame is designed and evaluated to check whether 

the points belong to an obstacle. In addition to determining the points based on the texture in each 
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frame, my algorithm also considers the heading of user movement to find critical areas on the 

image plane. I validated my algorithm through experiments by comparing it against two 

comparable algorithms. The experiments were conducted in different indoor settings and the 

results based on precision, recall, accuracy, and f-measure were compared and analyzed. The 

results show that, in comparison to the other two widely used algorithms for this process, my 

algorithm is more precise. I also considered time-to-contact parameter for clustering the points and 

presented the improvement of the performance of clustering by using this parameter.  



 80 

5.0 Sensor fusion and mobile sensing for context-aware keyframe detection 

In this chapter movement analysis is introduced not only as a tool to more effectively solve 

indoor navigation challenges, also for detecting gait changes to understand movement of users. 

Mobile sensing and computing can be used for detecting the context of user and state of the moving 

platform. The sensor output is time-series which should be processed to infer the state. In this study 

I process the signals as the features of signals must be computed and the effective and influencing 

features must be selected for comprising the input vector to the model. I used this approach for 

frame detection, and it is explained in detail in the rest of this chapter.  

 Introduction 

As the standard frame rate of the video stream provides redundant data when processing 

frames for positioning or detecting obstacles, we need to set the frame rate efficiently to avoid 

extra computations, especially if it is supposed to be deployed on limited computational resources 

of mobile devices. As it is discussed in Chapter 2, a straightforward method uses a constant rate; 

However, at the cost of computational overheads it is inefficient. A more efficient method is 

determining various rates based on a user's activities. Retrieved data from smartphone sensors such 

as accelerometers, gyroscopes, and magnetometers has been used in previous work (Bao & Intille, 

2004; Gharani & Karimi, 2017; Ming Ren & Karimi, 2012; Sara Saeedi et al., 2014) to detect the 

state of a user’s activity. In these cases, data fusion techniques are used for the recognition analysis. 
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Our focus in this chapter is on preparing the visual data for the problem of positioning and 

localization in an effective way by reducing computational cost. Positioning and localization are 

essential functions for any navigation system on moving platforms such as robots, vehicles, and 

even pedestrians who uses a smartphone as a navigator. To tackle the problem of pose estimation 

and tracking, simultaneous localization and mapping (SLAM) (Dissanayake, Newman, Clark, 

Durrant-Whyte, & Csorba, 2001) and odometry (Nistér, Naroditsky, & Bergen, 2006) are two 

common approaches which are widely utilized in robotics. SLAM is a technique to build a map of 

its surrounding while localizing itself with respect to the prepared map. Odometry is also a solution 

to estimate just the moving platform’ position based on aggregating displacement with the last 

known location. These techniques used to be heavily relied on range-bearing sensors (laser range 

finder, radar, etc.), however, in recent years with the advent of cameras and becoming ubiquitous, 

several visual odometry (VO) and visual SLAM (vSLAM) framework have been launched by 

researches. In the next section the role of keyframes in VO and vSLAM is discussed. 

 Keyframes in visual odometry and SLAM 

In VO and vSLAM, the trajectory is topologically modeled by a graph where each node 

shows a significant location that has been visited by the moving object. Moreover, in vSLAM 

landmarks in environment is modeled as arcs where represents the connectivity between physical 

locations which can be spatial or visual. In VO and vSLAM determining when and where those 

nodes should be introduced into the topological graph is a challenge which is keyframe detection. 

In other words, keyframe detection is an essential module to guarantee visual coverage and avoid 

disruption while having a simple representation and efficient computation. 
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As it is discussed in Chapter 2, keyframe detection for vSLAM and VO can be managed 

based on fixed or adaptive time interval, constant distance sampling, image similarity, or entropy 

measurement. It is important to notice that in all these approaches researchers consider a 

correlation between appearance change and the considered parameter. For instance, assuming 

moving within a static environment, for an interval ∆𝑡𝑡 we can expect to have enough appearance 

change. This means the change is big enough to have a long distance between two consecutive 

frames while they have decent amount of overlap and common features enabling us to 

mathematically model the transformation. This is the same for distance change. Therefore, it can 

be said that change of appearance is assumed to be proportional to change of time and 

displacement.  

 𝛿𝛿𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎 ∝ ∆𝑡𝑡 5.1 

 𝛿𝛿𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑐𝑐𝑎𝑎 ∝ ∆𝑑𝑑 5.2 

 

This assumption cannot be consistent for all cases, because change of appearance in same 

time interval can be very different in environments with different complexities. This is also true 

for displacement. Hence, measuring similarity seems to be the most significant approach for 

keyframe detection. The major problem with the appearance-based approach is the cost of 

computation. In appearance-based approaches and entropy measurement, we must process all 

frames to see if it exceeds the threshold or not for deciding if it is a keyframe. Since keyframes, as 

visual data, should be extracted from video frames, which are usually captured from 30-120 fps 

videos, processing all of them would be computationally too expensive for real-time positioning 

solutions. 
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5.2.1  Appearance change detection with inertial data  

As it is assumed that the environment is predominantly static, it is a reasonable conclusion 

that the change of appearance in consecutive frames is majorly due to camera translation and 

rotation. Therefore, if we can measure relative translation and rotation of two consecutive frames, 

we should be able to estimate the amount of similarity change. Accelerometer and gyroscope are 

two common sensors that are used in inertial navigation for positioning and using their data enables 

us to compute changes in translation and rotation. We do not need necessarily compute translation 

and rotation and even find the correlation between image similarity change and inertial data as a 

function is sufficient for solving this problem. This hypothetical unknown function 𝑓𝑓 or 𝑔𝑔 which 

leads to estimating the amount of appearance change would be like this: 

 

 𝛿𝛿𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎𝑛𝑛𝑎𝑎 = 𝑓𝑓(𝛿𝛿𝜔𝜔, 𝛿𝛿𝛿𝛿, 𝛿𝛿𝜅𝜅, 𝛿𝛿𝑥𝑥, 𝛿𝛿𝑦𝑦, 𝛿𝛿𝑧𝑧) = 𝑔𝑔(𝑆𝑆) 5.3 

 

Where 𝛿𝛿𝜔𝜔, 𝛿𝛿𝛿𝛿, 𝛿𝛿𝜅𝜅, 𝛿𝛿𝑥𝑥, 𝛿𝛿𝑦𝑦, 𝛿𝛿𝑧𝑧 are the rotation and translation with respect to projection 

coordinate system (Figure 5.1) and 𝑆𝑆 = {𝑆𝑆𝑘𝑘},𝑘𝑘 ∈ {1,⋯ ,𝐾𝐾} for 𝐾𝐾 different types of input sensors. 

For instance, 𝑎𝑎𝑥𝑥,𝑎𝑎𝑦𝑦,𝑎𝑎𝑧𝑧 , 𝜐𝜐𝑥𝑥, 𝜐𝜐𝑦𝑦, 𝜐𝜐𝑧𝑧 represent components of two sensors (𝐾𝐾 = 2), accelerometer and 

gyroscope which measure acceleration and rotational velocity. These are the most common sensors 

in navigation. 
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Figure 5.1: Projection coordinate frame and all possible displacement 

 

Although it would be very useful if we can define a function which maps the inertial data 

into image similarity change due to camera motion, defining such a function is too difficult, or 

even impossible, because the amount of visual change is not only because of translation and 

rotation. In fact, despite the assumption of a static environment, the level of visual complexity of 

surroundings has a significant impact on the amount of change in similarity. For instance, visual 

change of consecutive frames while walking in a prairie is very different compared to the visual 

change when walking in a grocery store with exact same amount of movement. 

In this section, I introduce a learning-based approach with inertial sensor input for detecting 

keyframes for visual odometry or visual SLAM. The proposed approach to solve this issue is using 

a supervised learning classification algorithm for training a model based on “effective” keyframes, 

which are the most appropriate frames for the mentioned purpose, in sequences within various 

environments. This model gets inertial data as input and the output is the class of frame-rate 

extraction. In other words, for each trajectory we have a sequence of frames 

 ℱ𝑥𝑥 = �𝑓𝑓1𝑥𝑥, 𝑓𝑓2𝑥𝑥, … ,𝑓𝑓𝑛𝑛𝑥𝑥� which has a subset of effective keyframes 𝜘𝜘𝑥𝑥 = �𝜅𝜅1𝑥𝑥 , 𝜅𝜅2𝑥𝑥 , … , 𝜅𝜅𝑚𝑚𝑥𝑥 � where 𝜘𝜘𝑥𝑥 ⊆

ℱ𝑥𝑥 and m ≤ 𝑛𝑛. Having 𝜘𝜘𝑥𝑥with their timestamps enables us to determine the rate of extraction for 
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each two consecutive frames which is a correlated to motion and ambient environment. This 

extraction rate vector forms the output of the machine learning method. In this approach, defining 

the target vector or frame rate extraction depends on the set of keyframe which is explained in the 

next section.  

 Effective keyframes and framerate extraction 

Having a full sequence of frames for a trajectory enables us to process all of them for 

finding those consecutive ones with least similarity while computing the essential/fundamental 

matrix for vSLAM and VO. For finding these frames, the first frame is considered as the first 

keyframe and I examine the next frames one by one until either I cannot solve 

essential/fundamental matrix or there is no more frame. As I find a frame where 

essential/fundamental matrix cannot be solved, I consider the previous one as a keyframe and add 

it to 𝜘𝜘. 

For processing each frame, first the features must be extracted using algorithms such as 

SURF or SIFT. Then, using RANSAC algorithm, common features are found and selected to be 

introduced to the Eight-point algorithm for calculating essential matrix. If Eight-point algorithm 

could yield any result, then I move on to the next frame until there is no result. This process will 

be iterated through all frames to find a keyframe set. Figure 5.2 shows the steps for finding the 

effective set of keyframes. Figure 5.3 schematically shows the output of effective keyframes. 
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Figure 5.2: Flowchart of finding effective keyframes 

 
Figure 5.3: Schematic result of effective keyframes  
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 A supervised learning approach for keyframe detection 

Finding the effective keyframes provides us with not only a set of frames and a set of labels 

indicating if a frame is keyframe or not, it also provides the effective frame rate extraction, shown 

by different colors in Figure 5.4. Moreover, while capturing frames from video, the inertial data, 

usually at a higher frequency, including acceleration and rotational velocity are collected by 

smartphone. Hence, beside the visual data and labels, I also have a set of inertial data. Therefore, 

for each time interval, I can see a correlation between the camera movement and the rate of 

keyframes. For instance, in Figure 5.4 the movement of camera in each time window between 

keyframes can be justified as a mode of change of similarity. This inertial data between each two 

consecutive frames and the corresponding frames can be evaluated to establish an association 

which can label frame as a keyframe.  

 
Figure 5.4: Keyframe rate extraction for keyframes 



 88 

5.4.1  Framerate extraction class 

As it was mentioned in the last section, the effective keyframe dataset can define what the 

ideal frame rate would be for frame extraction to detect keyframes. In order to train a model that 

can behave in a similar way where for each input feature vector of inertial data, a corresponding 

framerate must be assigned. There are two possibilities for the framerate: estimating an exact value 

or selecting a class from a predefine class set. I define a set of classes by ordering all frame rates 

for effective keyframes and clustering the rates. Each cluster can be labeled with a value for frame 

rate where I use the minimum value in that cluster. Therefore, for each time window (in a sliding 

window technique), the class label is assigned to the feature vector. This process is shown in Figure 

5.5. It shows that if all the frequencies (or 𝛿𝛿𝑡𝑡’s) are mapped to a one-dimensional diagram, they 

can be clustered, and each cluster is labeled with the minimum time or maximum frequency to 

guarantee that all frames will have enough common features. 

 
Figure 5.5: Classes of frame extraction 

5.4.2  Data preprocessing and feature extraction for input data preparation 

The change of consecutive images is due to a wide variety of movements during the 

mobility. In this research, I consider seven different classes of frame-rate extraction. To detect 

these classes, I preprocess raw sensor data to select the effective set of features that have the highest 
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gain of information, use a classifier to fuse feature vector data, and map each feature vector to one 

of these classes. The output of the classification would be one of the seven classes that correspond 

to the movement modes. Figure 5.6 shows the process of classification using a supervised 

classification technique. A set of classifiers were examined and are discussed later in this section. 

 

Figure 5.6: Overview of movement recognition 

Features are extracted from raw sensor data by using a window size of 128, with 64 samples 

overlapping between consecutive windows. The efficiency of feature extraction on windows with 

50% overlap has been previously discussed (Bao & Intille, 2004). At a sampling frequency of 30 

Hz, each window represents data for 4.026 s. This means that each window contains data from 

several seconds and can sufficiently capture enough data for the process of activity recognition. 

Mean, standard deviation, energy, and correlation are the features (Bao & Intille, 2004; Ravi et al., 

2005; Ming Ren & Karimi, 2012) extracted from the sliding window signals. Moreover, the 

sensors (accelerometer, gyroscope, and magnetometer) receive data in three dimensions; thus, each 

observation includes three components, and combining the three sensors results in nine 

components per observation. These observations are used for feature computations; with four 

observations, there is a total of 36 possible attributes. Figure 5.7 and Figure 5.8show linear 

acceleration and linear attitude signals. The extracted mean and standard deviation feature using 

sliding window are shown in Figure 5.9, and Figure 5.10.  



 90 

 

Figure 5.7: Linear acceleration signal 

 

 

Figure 5.8: Linear attitude signal 
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Figure 5.9: Mean of linear acceleration, using a sliding window 

 

Figure 5.10: Standard deviation of the attitude signal, computed using a sliding window 
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The usefulness of these features has been previously discussed (Bao & Intille, 2004). The 

standard deviation is used for capturing the range of possible values, which differs for each 

activity. Fast Fourier Transform (FFT) converts the signal to frequency, which is used for 

computing energy parameters. Using the window size of 128 samples enables us to quickly 

calculate these parameters. In fact, energy feature is the sum of the squared discrete FFT coefficient 

magnitudes of the signal. The sum is divided by the window length of the window for 

normalization (Bao & Intille, 2004; Ravi et al., 2005). 

If  𝑥𝑥1, 𝑥𝑥2,⋯ are the FFT components of the window, then 𝐸𝐸𝑛𝑛𝑒𝑒𝑝𝑝𝑔𝑔𝑦𝑦 =
∑ |𝑥𝑥𝑖𝑖|2

|𝑤𝑤|
𝑖𝑖=1

|𝑤𝑤|  . Energy and 

mean values differ for each activity; therefore, they can determine specific activities. In addition, 

translation in one dimension is clearly recognizable using correlation (Ravi et al., 2005). 

5.4.3  Feature selection 

After generating feature vector, to reduce over-fitting, improve accuracy, and reduce 

training time, I perform feature selection. As high dimensionality of the feature vector could mean 

some of the features might not be relevant to the activity classes, I extract a subset of the computed 

features to decrease redundancy and increase relevance to the class labels in classification. Since 

my training dataset is labeled, I use a filter model utilizing a supervised technique where feature 

selection is separated from classifier learning (Tang, Alelyani, & Liu, 2014). Consequently, the 

bias of a learning algorithm cannot influence the bias of a feature selection algorithm and the 

interactions between them are avoided. Generally, feature selection algorithms may use 

measurement of the various characteristics of the training data such as distance, consistency, 
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dependency, information, and correlation (Kira & Rendell, 1992; Robnik-Siknja & Kononeko, 

2003; Tang et al., 2014). 

I implemented two feature selection techniques and selected the top-ranked features 

produced by both techniques. In these techniques, I used feature set ℱ = {𝑓𝑓1,𝑓𝑓1, … ,𝑓𝑓𝑚𝑚}, class label 

set 𝒞𝒞 = {𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝐾𝐾}, where m is the number of features and K denotes the number of classes, 

and dataset 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} ∈ ℛ𝑚𝑚×𝑛𝑛, where the label information of the i-th instance xi is 

denoted by 𝑦𝑦𝑥𝑥 (Tang et al., 2014). 

Information Gain (Robnik-Siknja & Kononeko, 2003; Tang et al., 2014) is a 

computationally efficient technique for feature selection. Since it is simple to interpret the results 

of Information Gain, it is a well-known and popular feature selection method. This technique 

measures the dependency between features and class labels. Equation 5.4 shows how to calculate 

the Information Gain between the i-th feature 𝑓𝑓𝑥𝑥 and the class labels 𝒞𝒞 where 𝐻𝐻(𝑓𝑓𝑥𝑥) is the entropy 

of 𝑓𝑓𝑥𝑥 and 𝐻𝐻(𝑓𝑓𝑥𝑥|𝒞𝒞) is the entropy of 𝑓𝑓𝑥𝑥 after observing 𝒞𝒞. A higher Information Gain indicates a 

higher relevancy of a feature  

 𝐼𝐼𝐺𝐺(𝑓𝑓𝑥𝑥 ,𝒞𝒞) = 𝐻𝐻(𝑓𝑓𝑥𝑥) −𝐻𝐻(𝑓𝑓𝑥𝑥|𝒞𝒞) 5.4 

 

 𝐻𝐻(𝑓𝑓𝑥𝑥) = −�𝑝𝑝�𝑥𝑥𝑗𝑗�𝑟𝑟𝑝𝑝𝑔𝑔2 �𝑝𝑝�𝑥𝑥𝑗𝑗��
𝑗𝑗

 5.5 

 

 𝐻𝐻(𝑓𝑓𝑥𝑥|𝒞𝒞) = −�𝑝𝑝(𝐶𝐶𝑘𝑘)�𝑝𝑝�𝑥𝑥𝑗𝑗�𝐶𝐶𝑘𝑘�
𝑗𝑗

𝑟𝑟𝑝𝑝𝑔𝑔2 �𝑝𝑝�𝑥𝑥𝑗𝑗�𝐶𝐶𝑘𝑘��
𝑘𝑘

 5.6 

 

ReliefF (Robnik-Siknja & Kononeko, 2003; Tang et al., 2014) is a multi-class extension 

of Relief that selects features to separate an instance from different classes. If I have l random 

instances sampled from the dataset, the score of the i-th feature, 𝑆𝑆𝑥𝑥, can be calculated by Equation 
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5.7, where 𝑑𝑑(∙) is the distance function, 𝑀𝑀𝑘𝑘 is a set of nearest point to 𝑥𝑥𝑘𝑘 with the same class label, 

𝐻𝐻𝑘𝑘 is a set of nearest points to 𝑥𝑥𝑘𝑘 with class y which is different from class label of 𝑥𝑥𝑘𝑘, and, 𝑝𝑝(𝑦𝑦) 

denotes the probability of an instance from class y. 
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 5.7 

In this research, representative feature selection techniques include Information Gain and 

ReliefF.  

5.4.4  Classification and best classifier 

In order to create a model which, consider both motion and environment, a supervised 

learning-based approach is proposed for keyframe detection. In this approach the learner is 

provided with a set of input (feature vector of inertial data)/output (frequency rate of frame 

extraction class) pairs as follows: 

 (𝑥𝑥𝑥𝑥,𝑦𝑦𝑥𝑥) ∈ 𝒳𝒳 × 𝒴𝒴 5.8 

The learned model 𝑓𝑓:𝒳𝒳 → 𝒴𝒴 should map input examples into their outputs (inertial vector 

into the frequency rate).  

I considered the performance of the following classifiers for the problem of classification, 

as they have already been used for similar purpose in other research (Bao & Intille, 2004; Ravi et 

al., 2005; Ming Ren & Karimi, 2012; Sara Saeedi et al., 2014): decision table, decision tree (C4.5), 

support vector machines (SVM), Naive Bayes, multi-layer perceptron (MLP), RBFNetwork, and 

Bayes network classifiers, using the selected features for various and different datasets as inputs 

to the classifiers. I used an indoor dataset which was collected in some different indoor 

environments, and the locations of data collection are discussed in the results section. I calculated 
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precision, recall, and f-measure of these classifiers to determine the most accurate one. I evaluated 

Decision Tables, Decision Trees (C4.5), SVM, Naïve Bayes, MLP, RBF Network, and Bayes 

Network classifiers using the selected features for various and different datasets as inputs to the 

classifiers. I calculated precision, recall, and f-measure of these classifiers.  

5.4.5  Neural network for keyframe detection, architecture and training 

Neural networks can model the relationship between an input vector x and an output y. The 

learning process involves adjusting the parameters in a way that enables the network to predict the 

output value for new input vectors. I applied a neural network model to find the class of frame rate 

extraction for keyframe. In order to efficiently design and train a neural network, I must find an 

appropriate network architecture, determine a suitable training set, and compute the corresponding 

parameters of the network (such as weights and learning rate) by using an efficient and effective 

algorithm. In the rest of this section, I explain the overall system architecture and the training 

process of the parameter 

In this work, I used multilayer perceptron (MLP) to model the nonlinear relationships 

between input vectors, the extracted features, and the output (class value), with nonlinear transfer 

functions. The basic MLP network is designed by arranging units in a layered structure, where 

each neuron in a layer takes its input from the output of the previous layer or from an external 

input. Figure 5.11 shows a schematic diagram of the MLP structure. The transfer functions of the 

hidden layer in the feedforward network is a sigmoid function. Since I use MLP as a classifier for 

multiple classes, I should produce reasonable output values using sofrmax function.  
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Figure 5.11: The architecture of the feedforward neural network 

 Results and comparison 

In this section, first I show the results of training and evaluation of the proposed model. 

Then I compare the uniform keyframe detection, another context-aware keyframe detection, which 

proposed, and an effective keyframes. Before comparing the models, the context-aware model is 

briefly discussed. 

5.5.1  Training and validation 

Numerous training algorithms and learning rules have been proposed for setting the 

weights and parameters in neural networks; however, it is not possible to determine a global 

minimum solution. Therefore, training a network is one of the most crucial steps for neural network 

design. Backpropagation, which is basically a gradient descent optimization technique, is a 

standard and basic technique for training feedforward neural networks; however, it has some 

limitations, such as slow convergence, local search nature, overfitting data, and being over-trained, 

which can cause a loss of the network’s ability to correctly estimate the output (Burden & Winkler, 

2008). As a result, the validation of the models can be problematic. Moreover, optimization of the 
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network architecture is sometimes time-consuming. There are some modifications to the 

backpropagation, such as conjugate-gradient and Levenberg-Marquardt algorithms, that are faster 

than any variant of the backpropagation algorithm (Masters, 1995; S. Mohanty, Jha, Kumar, & 

Sudheer, 2010). The Levenberg-Marquardt algorithm is for minimizing a sum of squared error 

(Gavin, 2013; Roweis, 1996) and to overcome some of the limitations in the standard 

backpropagation algorithm, such as an overfitting problem.  

Avoiding the overfitting problem in network architectures can be a serious challenge, 

because I try to achieve an accurate estimation of the modeled function by a neural network with 

a minimum number of input variables and parameters. Having too many neurons in the hidden 

layer can cause overfitting, since the noise of the data is modeled along with the trends. 

Furthermore, an insufficient number of neurons in the hidden layer can cause problems with the 

learning data. For the purpose of finding the optimum number of neurons in the hidden layer, I 

conducted a model selection experiment with different number of neurons ranging from 5 to 50 

and the cross-validation error for each setting was calculated. As a result, a hidden layer with 45 

neurons is a good fit for the dataset to overcome some of the limitations in the standard 

backpropagation algorithm, such as an overfitting problem. As neural networks can model the 

relationship between an input vector x and an output y, the learning process involves adjusting the 

parameters in a way that enables the network to predict the output value for new input vectors. The 

trained model is validated by six sequences that has never been used. 

5.5.2  Comparison of different detecting approaches 

In this section, three approaches to detect the keyframes are compared. In the first approach 

I extract the effective set of keyframes. The sequences are evaluated in a brute force fashion to 
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determine all frames that belong to this subset. The second approach is the uniform keyframe 

detection which is straightforwardly prunes the redundant frames. The third approach is the 

proposed model which is based on the movement change of the user and its impact on the visual 

data. As shown in Figure 5.13, I tested the models for six different sequences not incorporated in 

the training process.  

 

Figure 5.12: Validation of the model for six sequences that are not included in the training procedure, with 

total number of frames 

 

Figure 5.13: Validation of the model for six sequences that are not included in the training procedure 
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Figure 5.12 and Figure 5.13 show how keyframe detection reduces the number of frames 

for visual odometry. In fact, about 90% of frames are pruned even in uniform keyframe detection. 

Moreover, Figure 5.13 shows the effectiveness of the proposed model as the outcome is close to 

the effective set compared to the uniform keyframe detection. 

 Summary 

Keyframe detection is an essential step in deciding the poses of the moving object to be 

included in the map for an appropriate coverage of the environment. In this chapter I introduced 

the effective set of keyframes where in an ideal scenario they should be selected for pose 

computation. While it is desirable to detect keyframes, it is computationally expensive to process 

the visual data to obtain them. Hence, since the change in appearance is correlated with the change 

of inertial data, I defined a machine learning approach for determining whether a frame is a 

keyframe or not. In this approach, the achieved result is closer to the effective set and more 

efficient than other approaches such as uniform sampling in time or space. Although the proposed 

method needs inertial data to perceive the context and infer the class of framerate extraction, unlike 

other methods, it does not need any threshold. 
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6.0 Conclusions and future research  

 Summary 

This dissertation proposes a framework for visual-inertial odometry which fuses the data 

from a visual coordinate estimator with inertial data utilizes using Extended Kalman Filter (EKF). 

This was done by integrating a deep learning monocular visual odometry algorithm using a deep 

RCNN with a Gaussian filter module for fusing inertial data from IMU with coordinates from 

visual odometry. Moreover, I designed, developed, and implemented an algorithm for obstacle 

avoidance. Finally, I proposed a context-aware keyframe detection that tries to extract semi-

effective keyframes without any visual processing. A summary of the framework and algorithms 

developed in this dissertation is as follows.  

In the first part of the dissertation, to address the problem of scale in deep monocular visual 

odometry, a framework was proposed which uses deep learning in tandem with Extended Kalman 

Filter for positioning and localization in GNSS-denied environments. The underlying technique is 

a deep recurrent convolutional neural network (RCNN) for computing six-degree-of-freedom in 

an end-to-end fashion and an extended Kalman filter for fine-tuning the scale parameter based on 

inertial observations. I compared the results of the featureless technique with the results of 

conventional feature-based VIO techniques 

In the second part a context-aware smartphone-based visual obstacle detection approach to 

aid visually impaired people in navigating indoor environments was proposed. The approach is 

based on processing two consecutive frames (images), computing optical flow, and tracking 

certain points to detect obstacles. The frame rate of the video stream is determined using a context-
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aware data fusion technique for the sensors on smartphones. Through an efficient and novel 

algorithm, a point dataset on each consecutive frame is designed and evaluated to check whether 

the points belong to an obstacle. In addition to determining the points based on the texture in each 

frame, my algorithm also considers the heading of user movement to find critical areas on the 

image plane. I validated the algorithm through experiments by comparing it against two 

comparable algorithms. The experiments were conducted in different indoor settings and the 

results based on precision, recall, accuracy, and f-measure were compared and analyzed. The 

results show that, in comparison to the other two widely used algorithms for this process, my 

algorithm is more precise. I also considered time-to-contact parameter for clustering the points and 

presented the performance improvement by using this parameter. 

In the last part I proposed a new algorithm to detect keyframes without processing the 

frames and just by using inertial data and machine learning. The proposed approach to solve this 

issue is by using a supervised learning classification algorithm for training a model based on 

“effective” keyframes, which are the most appropriate frames for the purpose, in sequences within 

various environments. This model gets inertial data as input and the output is the class of frame-

rate extraction. 

In this dissertation, experiments were conducted to evaluate the developed algorithms by 

navigating in different indoor locations of the main campus of the University of Pittsburgh, a 

resident building, and a grocery store for obstacle detection and using standard publicly available 

datasets for collecting visual and inertial data while moving through various indoor environments. 
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 Contributions 

Positioning and localization are essential components of any navigation system and play a 

major role in location-based services. The research conducted considered three main navigational 

tasks with concentration on indoor navigation. I summarize the novelty of this thesis by examining 

its three main contributions: (a) a novel framework for visual inertial odometry that uses a deep 

recurrent convolutional neural network and an extended Kalman filter to solve the tracking 

problem in a more efficient way; (b) a  new algorithm for obstacle detection in unfamiliar 

environments; and (c) a context-aware methodology for frame detection for navigational tasks and 

an approach for inferring behavioral context and associating it with moving platforms for indoor 

movement. 

 Limitations 

This research provided new frameworks, methods, and algorithms for addressing some of 

the important challenges in indoor navigation as well as for other types of navigation and location-

based services. However, there are some limitations to the research which are discussed below. 

In this dissertation I tackled the problem of indoor positioning by integrating learning-

based visual odometry with a filtering technique. While there are many datasets available for 

outdoor navigation, one main limitation is the very limited number of datasets for indoor 

navigation which makes it difficult to train the model. Although I used transfer learning and trained 

the model using different subsets of the sequences as a solution to this limitation, having more data 
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can improve the results. Another issue with the current dataset is synchronization. I tried to fix the 

issue with a linear interpolation, however, it has some negative impacts on the quality of the results.  

In this dissertation, I introduced an algorithm to design and extract points to improve the 

detection of obstacles using optical flow and point track algorithms. This approach was able to 

detect stationary and moving obstacles close to the camera. My algorithm for extracting the points 

was based on the image's texture and on the movement of the user. I conducted an experiment to 

show that this kind of point extraction can improve both the efficiency and precision of the results. 

I also demonstrated ways in which TTC can improve the overall clustering. Although this is a 

slight improvement, TTC could be used for some further analyses, such as prioritizing the detected 

obstacles. Moreover, I used multiple frame rates, according to the user's activity. 

Despite these improvements, there are some limitations which future work should consider. 

The point detection algorithm extracts points on lamps and reflective floors and surfaces, some are 

likely to be detected as objects. I found some of such points in the output as obstacles, which 

influenced the precision and accuracy of the results. Removing these types of features could 

substantially improve the algorithm. Additionally, finding a method to remove the floors and 

carpets, to avoid errors in obstacle detection, is another future work. Eliminating these errors can 

help produce less noisy results.  

 Future research 

The proposed framework for visual-inertial odometry integrates convolutional and 

recurrent neural networks with Extended Kalman Filter to enhance indoor navigation. While the 

main goal is for a GNSS-denied environment, it is still important to expand this framework to fuse 
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GPS data with other sensory data for obtaining more reliable and accurate coordinates. Moreover, 

incorporating Radio Frequency (RF)-based techniques such as Wi-Fi-based positioning, cellular-

based positioning, or Bluetooth-based positioning can expand the applicability of the framework. 

In the second part, I introduced an algorithm to design and extract points to improve the detection 

of obstacles using optical flow and point track algorithms. This approach was able to detect moving 

objects and stationary obstacles close to the camera. My algorithm for extracting the points was 

based on the image texture and the movement of the user. I conducted an experiment to show that 

this kind of point extraction can improve both the efficiency and precision of the results. I also 

demonstrated ways in which TTC can improve the overall clustering. Although this is a slight 

improvement, TTC could be used for some further analyses, such as prioritizing the detected 

obstacles. Moreover, I used multiple frame rates, according to the user's activity. 

Despite these improvements, there are some limitations which future work should consider. 

The point detection algorithm extracts points on lamps and reflective floors and surfaces, some are 

likely to be detected as objects. I found some of such points in the output as obstacles, which 

influenced the precision and accuracy of the results. Removing these types of features could 

substantially improve the algorithm. Additionally, finding a method to remove the floors and 

carpets, to avoid errors in obstacle detection, is another option for future work. Eliminating these 

areas can help produce less noisy results. In addition, with data on the floor, topologic relationships 

and affordance theory to include information on the floor and related objects can be explored. 

In the third part, I used a feature-based approach to analyze the inertial signals and classify 

it for keyframe detection. There are two major challenges with these introduced techniques for 

analyzing sensor data. First, sensor measurements on devices like smartphones are too noisy which 

makes it difficult to model it. Second, although manually feature selection is effective, it is 
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challenging to find the most informative features to use for various sensor noise patterns and 

heterogeneous user behaviors. Another approach can be an end-to-end learning-based framework 

that directly addresses the challenges of selecting features and managing the introduced noises by 

sensors which can form a unified learning-based framework for keyframe detection. 
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