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Abstract 

Defining the Properties and Toxicity Mechanisms of Non-Canonical Translation 
Products Associated with ALS and Huntington’s Disease Using C. elegans 

 
Paige Davison Rudich, Ph.D. 

 
University of Pittsburgh, 2019 

 
 

 
Expanded guanine/cytosine (G/C)-rich nucleotide repeats are the underlying 

genetic cause of many age-dependent neurodegenerative diseases.  An emerging 

mechanism underlying disease pathology is an unusual type of protein translation called 

Repeat-Associated non-AUG (RAN) translation.  RAN translation requires extended G/C-

rich repeats and occurs independently of a canonical start codon, allowing translation in 

all three reading frames.  Antisense RNA from G/C-rich repeats also gives rise to RAN 

products, causing up to six distinct protein products from one repeat expansion.  The 

toxicity of RAN products in vivo is beginning to be explored.  We created codon-varied 

RAN product models for two different repeats: an intronic GGGGCC repeat expansion 

that is the most common genetic cause of Amyotrophic Lateral Sclerosis (ALS), and the 

CAG repeat expansion that causes Huntington’s disease (HD).   

In our C. elegans ALS model, we discovered that the arginine-containing 

dipeptides, proline-arginine (PR) and glycine-arginine (GR), were the most toxic 

dipeptides.  PR and GR exhibited age-dependent toxicity when expressed in multiple cell 

types, including motor neurons.  Both PR and GR exhibited nuclear localization that was 

necessary for toxicity.  An unbiased whole-genome RNAi screen for suppressors of PR 

toxicity identified twelve genes.  Four of the genes were previously identified in PR 

modifier screens performed in other systems, suggesting mechanisms of PR toxicity are 

conserved.   

My studies are the first to model codon-varied CAG RAN polypeptides in a 

multicellular animal.  Every polypeptide, except for polyLeucine (polyLeu), formed 

immobile protein aggregates at ~38 repeats.  Surprisingly, polyLeu was the most toxic 

HD RAN polypeptide in every tissue studied.  A forward mutagenesis screen combined 

with a candidate RNAi screen identified three genes that suppressed polyLeu toxicity.  

Two of the genes encoded transmembrane proteins, and the third gene encoded a 
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deubiquitinase enzyme, suggesting that polyLeu toxicity occurs via disrupted folding of 

transmembrane proteins.  Understanding how different RAN products contribute to HD 

and ALS is vital for developing appropriate treatments for these diseases. 
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1.0 Introduction 

Neurodegenerative diseases (NDDs) are affecting an expanding percentage of the 

world population [1]. This is due to an increase in the percentage of the population who 

is most at risk for NDDs, the aging population.  There are twice as many people over the 

age of 60 alive today compared to 1980 [2], and that population is predicted to double 

again by 2050 [2].  This is a growing health crisis as there are no curative treatments for 

any NDD, and the majority of NDDs are fatal.  Despite intensive research, the initiating 

cellular causes of most NDDs are unknown.  To identify druggable targets, the known 

genetic causes of NDDs have been modeled and studied.  However, the mechanism(s) 

by which these genetic mutations lead to disease is poorly understood.   

One type of genetic mutation, nucleotide repeat expansions, is specifically 

associated with NDDs.  Repetitive DNA or DNA derived from repeats [3] comprises up to 

60% of the human genome.  However, DNA repeats can expand to pathogenic lengths, 

which predominantly cause NDDs.  The link between repeat expansions and NDDs is 

unclear, but a recent discovery may be the key.  The Ranum lab discovered that 

guanine/cytosine (G/C)-rich nucleotide repeat expansions can undergo a unique type of 

translation, Repeat-Associated non-AUG (RAN) translation [4].  RAN translation occurs 

independently of a start codon and can consequently occur in any of the three possible 

reading frames [4].  Antisense RNA is commonly transcribed from nucleotide repeat 

expansions [5-7] and can also undergo RAN translation.  Thus, six possible RAN products 

are produced from one repeat expansion [4].  RAN translation has been predominantly 

observed in neuronal tissue, and it is unclear if it occurs at similar levels in other tissues.  
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Either RAN translation itself or the RAN products may be why repeat expansions 

predominantly cause neurodegeneration.   

To better define how RAN products cause toxicity, I focused my thesis research 

on RAN products from two prominent repeat expansions that cause NDDs.  The first 

mutation, a GGGGCC (G4C2) repeat expansion in chromosome 9 open reading frame 72 

(C9orf72), is the most common genetic cause of Amyotrophic Lateral Sclerosis (ALS), as 

well as Frontotemporal Dementia (FTD) [8, 9].  G4C2 RAN products can be highly toxic 

and are associated with neurodegeneration [10].  The second genetic mutation I focused 

on is a CAG repeat expansion, which causes thirteen different NDDs depending on the 

genetic location of the repeat expansion [11].  RAN products have been identified in three 

of these diseases, including the most commonly studied CAG repeat expansion disease, 

Huntington’s disease (HD) [12].  My work creating and characterizing C. elegans models 

of RAN products from these two mutations will aid in identifying molecular pathways that 

may be relevant to patients.  

1.1 Common Features of Repeat Expansions 

Over 30 nucleotide repeat expansions cause age-dependent neurodegenerative 

or neuromuscular diseases (Appendix B-Table 4.1).  Interestingly, repeat expansions are 

commonly the only mutation of the relevant gene that causes a neurodegenerative or 

neuromuscular disease.  For example, the most common genetic cause of ALS, a G4C2 

repeat expansion in C9orf72, is the only mutation in C9orf72 that has been proven to 

cause ALS.  In contrast, the second most common genetic cause of ALS is mutations in 
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superoxide dismutase 1 (sod1), with over 150 identified point mutations, insertions, 

deletions and truncations in sod1 that cause ALS [13].  Therefore, nucleotide repeat 

expansions having toxic properties beyond disrupting their respective gene and 

nucleotide repeat expansions are innately toxic.  To determine how the repeat expansions 

are toxic, it is first important to understand the common features of disease-causing 

repeat expansions.  

1.1.1  High G/C Content Causes Repeat Instability 

The most noticeable feature of toxic repeat expansions is that most have a high 

G/C content (Appendix B-Table 4.1).  This attribute drives the instability of the repeats.  

Guanines and cytosines form strong bonds that can cause improper interactions between 

DNA and RNA during transcription [14] or mismatching between the sense and antisense 

strand of DNA (slipped-strand DNA) during DNA synthesis [15].  To resolve these 

improper interactions, DNA repair pathways are activated, such as the double-strand 

break repair pathway [16].  However, the repetitive nature of the DNA can cause defects 

in DNA repair and give rise to shrinkage or expansion of the DNA repeats.  For example, 

G/C-rich DNA and its transcribed G/C-rich RNA can form hybrid structures called R loops 

[14].  While R loops are normally removed by RNA helicases, remaining R loops activate 

DNA repair mechanisms, which cause expansion or shrinkage of the repeat [14].  Further 

evidence of the interrelationship between DNA repair pathways and repeat expansions is 

that a mismatch repair factor, MSH3, is required for CAG repeat expansions within the 

pathological and pre-pathological range of repeats [17].  Genes in the double-strand 

break repair pathway have also been identified as modifiers of HD [18].  These repair 
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pathways can be activated and cause repeat expansions during mitosis, meiosis, or 

transcription [14, 19].  Interestingly, G/C-rich repeats are only unstable after the repeat 

passes a certain length.  In the HD-associated CAG repeat, CAG repeats up to a length 

of 35 repeats exhibit high intergenerational stability.  However, CAG repeats in the 

potentially pathogenic range of 36-39 CAG repeats exhibit low intergenerational stability 

and thus expand [20].  Although the precise mechanism(s) underlying pathogenic repeat 

expansion is not definitively established, the change in stability is likely due to expanded 

repeats being more likely to activate DNA repair pathways.  Thus, expanded CAG repeats 

are susceptible to further repeat expansions during meiosis [21]. 

Most disease-causing repeat expansions are hereditary mutations [22, 23] or occur 

during germline replication [24].  Therefore, every cell contains the repeat expansion.  The 

effects of germline expansion were documented in HD before the genetic cause of HD 

was known.  Successive generations of HD patients had earlier onsets of the disease, 

known as genetic anticipation [25].  Genetic anticipation is now understood to be caused 

by repeat instability and intergenerational expansion of the CAG repeats, as described 

above.  In some, but not all, repeat expansion diseases, repeat length is directly 

associated with disease onset and/or severity.  For example, repeat length is inversely 

associated with the age of onset in HD [25].  However, repeat length is not a clearly 

established predictor of age-of-onset or disease severity in another repeat expansion 

disease, C9orf72-associated ALS/FTD [26-29].  

Somatic repeat expansions can modify the severity or age of onset in diseases 

with repeat length associated toxicity, such as HD [30, 31].  A postmortem study of 48 HD 

patients found that every patient had somatic instability of the CAG repeat within the 
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mutant huntingtin (mHTT) in neurons [30].  The somatic repeat expansions ranged from 

1 additional repeat to >55 additional repeats, but the majority of somatic repeat 

expansions were <10 repeats [30].  Larger somatic repeat expansions were correlated 

with an earlier age of onset.  Somatic repeat instability and an earlier age of onset are 

both associated with mutations in double-strand break repair machinery [17, 18].  

Unstable G/C-rich repeats can expand at any stage of development and those 

expansions can not only cause neurodegeneration but also modify the age of onset of 

NDD symptoms.   

1.1.2  Repeat Expansions Can Occur in Any Genetic Context 

Nucleotide repeat expansions happen in every genetic context and can be toxic 

even when located in introns or untranslated regions (UTRs).  The first identified disease-

associated repeat expansions were a CGG repeat expansion in a 5’UTR (fragile X 

syndrome (FXS) [32]) and a CAG repeat expansion in an exon (spinal-bulbar muscular 

atrophy (SBMA) [33]).  Since then, 18 exonic repeat expansions and 16 intronic/UTR 

localized repeat expansions have been identified (Appendix B-Table 4.1).  Exonic repeat 

expansions are either polyglutamine-encoding CAG repeat expansions (‘polyQ’ diseases) 

or polyalanine-encoding GCC repeat expansions.  Unlike exonic CAG repeat expansions 

and most intronic/UTR repeat expansions, polyalanine (GCC) repeat expansions cause 

developmental defects and do not cause neurodegeneration.  For these reasons, 

polyalanine diseases are likely toxic through distinct mechanisms compared to exonic 

CAG repeat expansions and untranslated repeat expansions.   
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In contrast, exonic CAG repeat expansions and untranslated repeat expansions 

share many features, which will be discussed in-depth in the following sections.  They 

exhibit age-dependent toxicity of the associated NDDs, even though the repeat 

expansions are present embryonically.  The length of the repeat expansions can also 

modify the age of onset for many of these diseases.  Antisense RNA transcription (see 

below) occurs in both exonic repeat expansions and untranslated repeat expansions.  

Due to these shared features, it is likely that exonic CAG repeat expansions and 

untranslated repeat expansions have some shared pathological mechanisms 

1.1.3  Bidirectional Transcription of Repeat Expansions 

Bidirectional transcription of nucleotide repeat expansions, producing both sense 

and antisense RNA, was first noted in 2005 with the 5’ CTG repeat expansion that causes 

myotonic dystrophy type 1 (DM1) [7].  Interestingly, the bidirectional transcription was not 

dependent on the length of the repeat expansion, as similar levels of antisense RNA were 

transcribed in wild-type cells.  Antisense RNA has since been identified in most nucleotide 

repeat expansions, including HD [5] and C9orf72 [6].  In some repeat expansion diseases, 

such as HD, the repeat expansion causes a decrease in antisense RNA [5], while in other 

diseases, such as C9orf72-ALS, the repeat expansion causes an increase in antisense 

RNA [34].  Therefore, repeat expansions can be modifiers of bidirectional transcription, 

but the mechanism of modification is not consistent between diseases or well understood. 

Bidirectional transcription occurs in 10-40% of protein-coding genes in the human 

genome [35, 36] and is not unique to pathogenic repeat expansions [35, 36].  Bidirectional 

transcription is a general feature observed in most, if not all, cells.  However, the genes 
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undergoing bidirectional transcription differ depending on cell type [36].  As native 

antisense RNA production is widespread, the antisense RNA is likely to serve a biological 

function.  The role of native antisense RNA is varied and can either inhibit or stimulate 

transcription of the corresponding sense RNA [5, 37] or RNA with high homology to the 

sense RNA [38].  Antisense RNA is well known to suppress the expression of the sense 

RNA through RNAi, but the other regulatory methods of antisense RNA are not as well 

understood.  Antisense RNA can stabilize the sense RNA or spliced versions of the sense 

RNA, leading to increased expression of spliced versions of the gene.  Antisense RNA 

does this through binding to and ‘masking’ the sense RNA to prevent binding of splicing 

elements or other regulatory elements [39, 40].  Most commonly, antisense RNA causes 

silencing of the sense gene through epigenetic changes, such as methylation of 

promoters or heterochromatin modifications [7, 41, 42].  Depending on the disease, 

repeat expansions can either increase or decrease the levels of native antisense RNA, 

causing the epigenetic effects of the antisense RNA to cause a corresponding increase 

in sense RNA production (HD [5]) or decrease in sense RNA production (FXS [42]).  The 

biological role of native antisense RNA is just beginning to be understood, and the 

ramifications of alterations to the endogenous level of antisense RNA need to be 

individually studied with each NDD-associated repeat expansion.  

1.2 Shared Disease Characteristics of Repeat-Expansion-Associated NDDs 

Like the disease-causing repeat expansions, the diseases caused by repeat 

expansions also have shared characteristics.  Repeat expansion associated NDDs 
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typically occur during advanced age, even though the causative mutation is present since 

birth.  The length of the repeat expansion can also modify the age when the NDD occurs.  

Finally, the repeat expansion, which is present in every cell, only causes toxicity in a 

subset of neurons.  Many mechanisms have been identified that may lead to the temporal 

and tissue specificity of these NDDs.  However, it is still unclear which feature or 

combination of features is the causative mechanism. 

1.2.1  Age-Associated Toxicity of Repeat Expansions 

While repeat expansions are present from before birth, they do not typically cause 

neurodegeneration until middle to late age (Appendix B-Table 4.1).  The delayed 

manifestation of the diseases with age could be due to many features of aging neurons.  

Two possible factors are that aging neurons accumulate somatic mutations [43] and that 

aging neurons have increased damage from reactive oxygen species (ROS) [44].  Both 

issues can increase levels of misfolded proteins by altering the protein structure directly 

(somatic mutations) or by altering the protein folding environment (oxidative stress 

induced global protein damage due to ROS).  These and possibly other factors may 

contribute to why aging causes an increase in misfolded proteins and protein aggregates 

[45].  Other effects of aging likely contribute to neurodegeneration beyond inhibiting 

protein folding.  However, the relationship between aging, neurodegeneration, and 

misfolded proteins is a well-established feature of most NDDs.  

 Misfolded proteins and protein aggregates are pathological characteristics of 

many neurodegenerative diseases.  For example, polyQ aggregates form in 

HD [21], TDP-43 aggregates form in ALS [46], and amyloid plaques form in Alzheimer’s 



 9 

Disease [25].  Manipulations that inhibit misfolded protein clearance mechanisms, such 

as defects in the autophagy pathway [47, 48] or the proteasome pathway [49], cause 

neurodegeneration in mice.  Mutations in protein degradation pathways can also directly 

cause neurodegenerative diseases (e.g., mutations in genes associated with mitophagy 

in Parkinson’s disease [50] and mutations in genes associated with autophagy in ALS 

[51]). Conversely, increased proteasome activity [52, 53] or chaperones [54] can 

suppress age-induced protein aggregation.  While it is not clear what the initiating factor 

is that causes age-induced toxicity of repeat expansions, defects in the degradation of 

misfolded proteins and protein aggregates are likely a contributing factor.  

1.2.2  Length-Dependent Toxicity of Repeat Expansions 

Another modifier of the toxicity of repeat expansion mutations is the length of the 

repeat.  Many repeat expansion diseases, such as the CAG/CTG repeat expansion 

diseases, have a clear inverse correlation between the length of the repeat and the age 

of onset of the disease [55, 56].  This relationship was first discovered with the CAG 

repeat expansion in HD, where CAG repeat length explains 50-70% of the variation in 

disease onset [57].  For example, the average HD patient has 42 CAG repeats and an 

age onset of ~40 years old, but the youngest documented HD patient had 210-250 CAG 

repeats and an age onset of 18 months [58].  On the other hand, some repeat expansion 

diseases, such as the C9orf72 G4C2 repeat expansion, do not have clear length-

dependent toxicity.  For example, G4C2 repeat lengths do not consistently correlate with 

the age-of-onset of neurodegeneration or predict which regions of the brain will be 

affected [26, 29].  The lack of length-dependent toxicity from the G4C2 repeat expansion 
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is not due to the untranslated nature of the repeat, as length-dependent toxicity is 

observed in the 3’UTR localized CTG repeat expansion that causes DM1 [59].  While 

most repeat expansions have an inverse correlation between repeat length and age of 

disease onset, G4C2 diseases are unique in having an unclear interaction between repeat 

length and disease characteristics. 

1.2.3  Tissue Specificity of Repeat Expansion Diseases 

Disease-causing repeat expansions affect a subset of neurons, even though the 

mutation is normally present in every cell of the body.  The likely causes for this selective 

vulnerability vary based upon the disease and are still not clearly understood.  For 

example, in HD, the huntingtin protein (HTT) is expressed ubiquitously, yet γ-aminobutyric 

acid (GABA) producing medium spiny neurons in the striatum are the most severely 

affected cells [60].  This is not due to higher expression of HTT in the striatum, as HTT is 

expressed at higher levels in other brain regions [61].  Instead, the susceptibility of 

medium spiny GABAergic neurons may be due to an increased sensitivity to toxicity from 

overactivation of glutamate receptors (excitotoxic stress).  Consistent with this 

hypothesis, HD neurodegeneration can be mimicked in mice through neural injections of 

glutamate or glutamate analogs [62, 63].  Additional factors may enhance the vulnerability 

of these neuronal populations or be the main cause of vulnerability.   

In contrast to HD, the vulnerability of specific neurons in C9orf72-associated 

ALS/FTD patients does appear to be affected by expression patterns of the gene 

containing the repeat expansion.  The most sensitive neuronal population also has the 

highest expression of C9orf72 [64].  However, expression level alone does not explain 
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C9orf72-associated neurodegeneration, as different neuronal populations are susceptible 

in patients who display ALS, FTD, or ALS/FTD [65].  The C9orf72 repeat expansion may 

also cause neurodegeneration in other brain regions, as it has been linked with 

Alzheimer’s Disease [66] and Huntington-like diseases [67].  The additional 

environmental or genetic factors that determine the vulnerable neuronal populations are 

not known.   

In addition to gene expression and vulnerability to excitotoxic stress, there are 

several other factors that may impact the selective vulnerability of neurons.  In contrast 

to stress from overactivation of excitatory receptors, stress may also be caused by 

inhibitory receptors.  For instance, neuronal expression of inhibitory GABA receptors 

strongly correlates with neuronal susceptibility to degeneration in ALS patients [68].  

Another factor that may contribute to differential vulnerability is that neurons have different 

rates of misfolded protein clearance, which could affect the susceptibility of neurons.  For 

example, striatal neurons clear polyglutamine more slowly than cortical neurons [69]. This 

may be one explanation as to why HD and several other polyQ diseases cause striatal 

degeneration.  Differences in the ability of neuronal populations to neutralize oxidative 

stress are also likely to affect the susceptibility of neurons.  Increased oxidative stress is 

seen in many neurodegenerative diseases [70-72], and differences in susceptibility to 

oxidative stress are seen in neuronal tissues [73].  Overall, a single overarching cause of 

selective neuron vulnerability does not appear to exist.  Instead, multiple weaknesses 

likely synergize to sensitize specific neuronal populations to repeat expansion toxicity. 
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1.3 Repeat Expansions: Mechanisms of Toxicity 

Neurodegenerative repeat expansions cause a gain-of-function (GOF) toxicity, as 

both intronic and exonic repeat expansion mutations are toxic when present in only one 

allele of a gene.  Initially, the cause of gain-of-function toxicity was thought to differ based 

on the genetic context of the repeat expansions.  Untranslated repeats were thought to 

be primarily toxic through RNA-based GOF toxicity, while exonic repeats were thought to 

be primarily toxic through protein-based GOF toxicity.  RNA toxicity was due to the G/C-

rich nature of the RNA.  RNA toxicity was first described in DM1, where a CTG repeat 

expansion occurs in the 3’UTR of DM1 protein kinase (DMPK) [59].  The CTG repeat 

expansion was toxic independent of its genetic context, as the CTG repeat was toxic 

when cloned into the UTR of an unrelated gene [74].  The repetitive RNA also formed 

RNA foci in patient tissue and sequestered RNA splicing regulators [59].  RNA foci are a 

common feature of repeat expansions and are associated with RNA toxicity.   

While RNA foci also occur with exonic repeat expansions, the repetitive amino acid 

sequence produced from exonic repeat expansions are also innately toxic and were thus 

thought to be the driving cause of protein GOF toxicity.  A classic example of these protein 

GOF diseases is HD.  The expanded CAG repeat in the first exon of mHTT encodes a 

polyglutamine repeat that causes aggregation of the mutant huntingtin protein (mHTT).  

The aggregated mHTT sequesters chaperone resources, leading to a global disruption of 

protein folding [75-77].  The aggregation of mHTT depends on the age of the animals as 

well as the length of the CAG repeat, mimicking HD age-dependent toxicity and repeat 

length dependency [55, 75].  Exonic CAG repeat expansions in other diseases are also 

thought to be toxic due to the glutamine repeats produced from the repeat. 
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Until recently, these two modes of toxicity were accepted as the predominant 

drivers of repeat expansions toxicity.  However, in 2011, an unusual type of protein 

translation called RAN translation was discovered to occur in repetitive G/C-rich RNA [4]. 

RAN translation produces six peptides from six distinct sense and antisense reading 

frames and can occur in RNA from either exons or untranslated RNA, making it a unifying 

feature of repeat expansion diseases.  My studies focus on this recently discovered class 

of proteins produced through RAN translation, many of which are now known to be highly 

toxic.   

1.4 RAN Translation 

RAN translation does not require a start codon [4]. Therefore, RAN translation can 

occur in the 0, +1, and +2 reading frame leading to three potential protein products from 

one strand of RNA.  As mentioned above, repeat expansions are commonly transcribed 

in the antisense direction as well [5, 7, 78-80].  As the antisense RNA of a G/C-rich repeat 

is also G/C-rich and repetitive, it also undergoes RAN translation in all three reading 

frames.  Consequently, six genetically distinct protein products are produced from one 

nucleotide repeat expansion (Figure 1.1).  RAN translation has so far been detected in 

seven repeat expansion diseases: C9orf72-ALS/FTD [81, 82], DM1 [4], myotonic 

dystrophy type 2 (DM2) [83], fragile x-associated tremor/ataxia syndrome (FXTAS) [84] 

Fuchs Endothelial Corneal Dystrophy (FECD) [85], HD [12], and spinocerebellar ataxia 

type 8 (SCA8) [4]. 
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Figure 1.1 Example Diagram of RAN Translation Products 

The six possible RAN products of a CAG repeat expansion.  From the sense RNA strand, 

polyGlutamine is translated in the 0 reading frame, polySerine is translated in the +1 

reading frame, and polyAlanine is translated in the +2 reading frame.  From the antisense 

RNA strand, polyLeucine is translated in the 0 reading frame, polyCys is translated in the 

+1 reading frame, and polyAlanine is translated in the +2 reading frame. 
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 The molecular biological and biochemical requirements for RAN translation are 

beginning to be elucidated.  Cellular models of RAN translation suggest that RAN 

translation initiates from alternate start codons upstream of the repetitive sequence [86, 

87], and the initiating codon varies between reading frames [87].  As a result, the 

efficiency of RAN translation between reading frames is highly variable, resulting in 

dramatic differences in RAN peptide accumulation [86, 87].  The site of termination of 

RAN products is unknown, as translation could end due to either a stop codon or stalling 

of translation machinery because of tertiary structures formed by the repetitive RNA, such 

as G-quadruplexes [88].  In cellular models, RAN translation increases with activation of 

the integrated stress response system [86, 89, 90].  Therefore, the level of expression of 

RAN products is not static throughout the progression of a disease and likely increases 

as cells undergo escalating levels of stress. 

To better understand RAN translation, it has been studied in several cellular and 

animal models expressing repeat expansion sequences [12, 86, 87, 89, 91, 92].  While 

most of these models were generated after the discovery of RAN translation, some were 

generated prior to this discovery [12].  In these models, toxicity was previously only 

considered to be due to repeat bearing RNA or protein.  However, RAN translation has 

now been shown to occur in yeast [91], C. elegans [91], Drosophila [93], and mice [12].  

Therefore, earlier repeat models need to be reexamined in order to determine whether or 

not they produce RAN peptides from these repeat sequences.  For example, a recent 

reexamination of a CAG repeat mouse model (N171-82Q) revealed that the CAG repeat 

construct undergoes RAN translation and produced multiple RAN peptides beyond just 

polyGln, as was previously assumed [12].  Further studies are needed to determine if 



 16 

other existing cell and animal models expressing repeat expansions are purely RNA 

toxicity models, purely protein toxicity models, or are RAN models as well.   

1.4.1  Modeling RAN Products 

To understand the specific toxic properties of RAN products, they need to be 

modeled independently of RNA toxicity.  Creating RAN-only models is challenging as 

RAN translation depends on the G/C-rich repetitive nature of the RNA [4], which also 

causes RNA toxicity.  Therefore, the RAN peptide amino acid sequence needs to be 

preserved, but the repetitive and G/C rich nature of the DNA and RNA needs to be 

eliminated.  To accomplish this, the degenerative nature of the genetic code is commonly 

utilized [12, 94-97], as up to 6 different codons can encode the same amino acid.  By 

varying the underlying genetic code while preserving the overlying encoded amino acid, 

RAN peptides can be individually expressed in the absence of any repetitive, G/C rich 

RNA repeats.  While powerful, this approach has several caveats.  First, codon-varied 

RAN products are usually overexpressed at non-physiological levels, which may drive 

aspects of toxicity that are not normally present in patients.  Second, RAN products are 

often, but not always, co-expressed in patient tissue [34].  Individual RAN peptide 

expression is not sufficient to mimic any possible functional interactions between the RAN 

peptides that might synergistically enhance or suppress toxicity in patients [96], so, 

studying each RAN product individually does not precisely model the condition in patients.  

Finally, most codon-varied RAN peptide models lack upstream and downstream genetic 

context, which is unique to each peptide.  Such sequences might dramatically alter the 
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toxicity of the peptide.  Despite these caveats, characterizing each RAN product 

individually is an important first step in understanding the toxicity of the RAN products. 

While methods of modeling individual RAN products have limitations, they are 

crucial tools for developing a general understanding of the toxicity of individual RAN 

products.  Findings from these simplistic models will aid in identifying the cellular 

pathways disrupted by RAN products in each disease.  The first question to address with 

RAN products is if and how they are toxic.  As our understanding of RAN translation and 

RAN products grows, genetic models used to study RAN products will need to be adjusted 

to better model disease relevant length, genetic context, and peptide-peptide interactions.  

To address these questions, several cellular or animal models expressing codon-varied 

RAN products from different repeats have been developed, including in yeast, worms, 

fruit flies, zebrafish, rodents and human-induced pluripotent stem cells (iPSCs) [10, 95, 

98-100].  

 In my research, I focus on RAN products from two different repeat expansions, 

the ALS-associated G4C2 repeat expansion and the HD-associated CAG repeat 

expansion.  There are twelve other CAG/CTG repeat expansions diseases (Appendix B-

Table 4.1), two of which are also confirmed to undergo RAN translation [4].  Multiple 

CAG/CTG diseases can phenocopy HD (e.g., Huntington disease-like 2 (HDL2), SCA17, 

DM1, and dentatorubral-pallidoluysian atrophy (DRPLA)), suggesting CAG/CTG 

diseases may have similar disease mechanisms independent of genetic context [101].  

One such common mechanism may be the production of RAN peptides.  Despite both 

CAG and G4C2 repeats undergoing repeat expansion and RAN translation, the respective 

NDDs, repeats, and RAN products are distinct.  To understand the cellular characteristics 
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of the RAN products from each of these diseases and to study their toxicity in a 

multicellular system, we modeled RAN products from each repeat expansion in C. 

elegans. 

1.5 Using C. elegans to Model NDDs 

C. elegans have been used to model a wide variety of NDDs, as they have unique 

features that make them advantageous for studying aging-associated diseases with 

neurodegeneration [102].  C. elegans are small (1 mm long), transparent nematodes that 

have been studied as a genetic model system for over 40 years [103].  Worms offer 

several advantages not present in other model systems for the study of RAN products 

and repeat-associated genetic disorders.  First, transgenic methods in C. elegans are 

highly efficient.  Following the creation of a suitable DNA expression construct, transgenic 

worms expressing a repeat sequence of interest are obtained in ∼1 week [104].  Second, 

C. elegans are optically transparent across their entire lifespan, facilitating observation of 

neuron and tissue morphology in living animals, as well as the subcellular localization of 

GFP fusion proteins.  Third, C. elegans have a highly conserved genome with humans, 

with 60–80% of the ∼20,000 worm genes having a human homologue [105].  Fourth, the 

function of these genes can be rapidly inhibited, either using chemically or CRISPR 

induced mutations or RNA interference (RNAi) [106, 107].  Finally, aging, which is a major 

risk factor for all repeat expansion diseases, has been extensively studied in C. elegans 

as worms have a short lifespan of ~3 weeks [108].   
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In addition to their short lifespan, several signaling pathways are known to regulate 

the aging process in worms, as well in other species.  One of these pathways, the insulin 

pathway, was first discovered in nematodes [109, 110].  The insulin signaling pathway is 

now the most well-characterized pathway that regulates lifespan and youthfulness from 

worms to humans [111].  Mutations in this pathway are thought to extend lifespan by 

promoting a youthful cellular physiological state and can be used to separate 

chronological and physiological states of aging.  In C. elegans, the daf-2 gene encodes 

the homolog of the insulin/IGF receptor.  Loss of function mutations in daf-2 exert their 

effects via signaling-dependent activation of the FOXO transcription factor daf-16, as well 

as the heat shock transcription factor hsf-1 [112].  Mutations in daf-16 and hsf-1 suppress 

phenotypes associated with daf-2 mutations and accelerate the rate of aging [111].  Thus, 

the role of aging in a neurodegenerative pathway can be studied in C. elegans by using 

daf-2 mutants to delay cellular aging or daf-16 or hsf-1 to accelerate cellular aging.   

Despite these experimental advantages, worm models have several caveats for 

modeling NDDs.  C. elegans motor neurons lack astrocytes and glia, which play a 

significant functional role in several NDDs [113].  While worms possess a conserved 

primitive innate immune system [114], they lack adaptive immunity, which contributes to 

many pathological aspects of repeat expansion disorders [115].  Similar limitations impact 

other model systems that are used to investigate repeat-associated NDDs [91, 98, 99, 

116-118].  Despite these limitations, C. elegans is a uniquely valuable model system 

whose experimental advantages complement many of the limitations present in other 

systems for the study of repeat expansion disorders.   
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1.5.1  Previous Models of mHTT in C. elegans  

Several models of HD and other CAG repeat expansion disorders have been 

developed in C. elegans.  Most of the models have the CAG repeat within the surrounding 

HTT sequence, as genetic context can either enhance and suppress the toxicity of 

repeats [119].  In one model, 150 pure CAG repeats were set in the genetic context of 

the sequence encoding the first 171 amino acids of HTT [120].  The mHTT was expressed 

in amphid neurons with single ciliated endings (ASH neurons).  Cellular dysfunction could 

be detected by impaired dye filling of the ASH neurons.  This model facilitated both biased 

and unbiased genetic screens, as well as small molecule drug screens, for suppressors 

of CAG repeat expansion toxicity.  For example, Bates et al. discovered that histone 

deacetylases (HDACs) can modify mHTT toxicity [121].  HDACs are now known to play 

significant roles in the pathogenesis of polyQ toxicity across a wide range of cellular and 

animal model systems [122, 123].   

Another model for HD in C. elegans modeled ‘early-onset’ aspects of CAG/polyQ 

pathology.  128 pure CAG repeats were placed within the coding sequence of the first 57 

amino acids of HTT [124].  In contrast to the previous model expressed in ASH sensory 

neurons, this model was expressed in a different class of sensory neurons called touch 

neurons.  Inhibition of touch neuron function rendered animals unable to respond to light 

touch by altering their direction of movement [125].  Lejeune et al. utilized RNAi screening 

and sensitized genetic backgrounds in this system to identify suppressors and enhancers 

of expanded CAG toxicity [126].  Many of the 662 genes identified in this screen were 

previously known to be involved in HD or other NDDs, including 49 that are dysregulated 

in the striatum of HD mouse models [126].  This demonstrates that for CAG repeat 
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expansion toxicity, RNAi screens performed in C. elegans lead to the identification of 

conserved pathological mechanisms that play similar biological roles in higher organisms, 

including mammals.   

1.5.2  Modeling Repeat Expansions Independent of Genetic Context  

The models just described examined CAG repeats in the presence of the HTT 

sequence.  However, there are nine other age-dependent NDDs caused by CAG repeat 

expansions, suggesting the CAG repeat itself, in multiple genetic contexts, is sufficient to 

cause age-dependent toxicity.  To explore CAG toxicity independent from these different 

contexts, a pure C. elegans CAG model was generated [127].  In this model, CAG repeats 

are fused with YFP in the polyQ reading frame and expressed in muscle tissue [75].  

Although HD is thought of as a purely neurodegenerative disease, patients also have 

muscle wasting and cardiac defects, making muscle expression of CAG repeats relevant 

to patients [128, 129].  Expression of CAG in the muscle tissue of C. elegans also provides 

several experimental advantages (large cell size, sensitivity to feeding-based RNAi gene 

knockdown, sensitive age-dependent phenotypic outputs, etc.) that are not available 

when CAG is expressed in neurons.  The degeneration of muscle cells leads to easily 

observable movement disruptions and paralysis that can be monitored across the lifespan 

of the animals.  In this model, aggregation of polyQ is repeat-length dependent, with Q82 

causing complete polyQ aggregation in young animals, and Q33 being diffuse in young 

animals.  Q40 is initially localized in a diffuse manner in young animals, but the protein 

transitions from a soluble to an aggregated state as animals age [75].  PolyQ aggregate 

formation coincides with the onset of motility defects, suggesting a link between polyQ 
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aggregation and toxicity.  However, recent work implies that polyQ aggregation and 

toxicity are genetically separable events [130].  Therefore, mechanisms other than polyQ 

aggregation may contribute to toxicity in this model [131].  The toxicity and aggregation 

of these pure polyQ proteins are strongly influenced by the aging process, as mutants 

that modify aging (i.e., in insulin/IGF signaling pathway) also modify polyQ aggregation 

and CAG toxicity [112, 132-134].  More than any other repeat expansion model, the 

context-independent pure CAG repeat model has played a profound role in advancing 

our understanding of the roles of aging, protein aggregation, and repeat expansion 

associated toxicity.  For example, expression of expanded CAG repeats in neurons, the 

major cell type affected in HD and other CAG repeat expansion disorders, shows 

heterogeneous aggregation and toxicity depending on the neuron type [135].  While 

demonstrating that the behavior of CAG repeat expansion proteins depends on cellular 

context, these observations significantly complicate efforts to identify genes that might 

modify the aggregation and/or toxicity of polyQ proteins (or other CAG-derived translation 

products) in neurons. 

1.5.3  Screening Strategy 

Because of the heterogeneous toxicity of CAG in various neuronal subtypes, C. 

elegans muscle cells have provided a more amenable and homogenous cellular context 

for in vivo genetic screens that have ultimately informed our understanding of CAG toxicity 

in neurons.  For example, in one of the first examples of genome-wide RNAi screening in 

C. elegans, Nollen et al. screened ∼17,000 gene knockdowns for enhancers of muscle 

polyQ aggregation, identifying proteins whose normal function is to oppose polyQ 
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aggregation [136].  These findings revealed that the breadth of the machinery regulating 

protein misfolding extends far beyond chaperones and the protein degradation machinery 

and involves a wide variety of biological processes, including RNA synthesis and 

processing, protein biosynthesis, and protein trafficking [136] (Figure 1.2).  Subsequently, 

many of the proteins identified in this screen have been shown to play roles in mediating 

polyQ aggregation and/or toxicity in mammalian cells, thus validating that screens utilizing 

C. elegans muscle models of repeat expansion diseases have high translational 

relevance [136-138]. 
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Figure 1.2 Possible Mechanisms of Toxicity of PolyQ and RAN HD PolyPeptides 

Defects in protein quality control, autophagy, and mitochondria dynamics have been 

observed in multiple HD models.  It is unclear if one pathway is the driving cause of 

neurodegeneration, or if their synergistic interactions are required for toxicity.  The HD 

RAN peptides may act through similar pathways as polyQ or through polyQ-independent 

pathways.  
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 Although the identification of genes that modify muscle-based phenotypes of toxic 

proteins is a powerful screening tool, it is also important to determine if the modifier is 

muscle specific or if it also modifies the toxic phenotype in neuronal cells.  The neuronal 

system of C. elegans is well defined, and there is a complete connectome map of all 302 

neurons in the adult hermaphrodite [139-141].  The position of neurons is conserved 

between different animals, thus making measurements of neurodegeneration possible at 

the single neuron level.  C. elegans neurons also utilize the same neurotransmitters used 

by human neurons; GABA, acetylcholine, 5-HT, glutamate, and catecholamines [142].  

This allows modeling of NDDs in disease-relevant neurons, such as modeling HD in 

GABAergic neurons or modeling ALS in motor neurons.   

C. elegans GABAergic neurons have been used to  model multiple types of NDDs 

as they exhibit robust cellular and phenotypic defects upon degeneration [143, 144].  

GABA is an inhibitory neurotransmitter in the human central nervous system [145].  In C. 

elegans, GABA is most often at neuromuscular junctions and can be used as either an 

inhibitory or an excitatory neurotransmitter [146].  At a C. elegans neuromuscular junction, 

GABA acts as an inhibitor of muscle contraction and counteracts acetylcholine, which 

causes muscle contractions [146].  Therefore, degeneration of GABAergic neurons has 

a strong observable phenotype due to disruption in the balance of excitatory acetylcholine 

and inhibitory GABA signaling at the neuromuscular junction [147].  Defects in GABA 

signaling lead to overactive acetylcholine signaling and muscle hypercontraction, causing 

worms to paralyze and appear shrunken from excessive contraction [147].  Loss of 

GABAergic motor neurons most severely affects directional reversal, since the 
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coordination between dorsal and ventral muscle activity required for directional changes 

is lost [148].  Neurodegeneration is easily detectable at the cellular level as well.  Motor 

neurons run along the ventral nerve cord (VNC), a longitudinal nerve tract that extends 

along the ventral side from the pharynx to the tail of the C. elegans.  However, the motor 

neurons need to synapse onto the muscle cells, which are on both the dorsal and ventral 

sides of the worm.  Consequently, motor neurons extend single axons, known as 

commissures, which synapse onto the muscle cells on the dorsal side of the C. elegans 

(Figure 1.3).  These axons are easily observed in live animals by expressing GABAergic-

neuron specific GFP reporters and imaging optically transparent animals under 

fluorescence microscopy [146].  There are 16 discrete GABAergic commissures along 

the length of a worm that can be observed for neurodegenerative phenotypes such as 

blebbing or breakage at the level of single axons [146].  Thus, degeneration of GABAergic 

neurons is easily observable at both the phenotypic and cellular level, making these cells 

good models for NDDs that affect GABAergic neurons, such as HD, or motor neurons, 

such as ALS. 
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Figure 1.3 Fluorescent Commissure Within a Whole, Living C. elegans 

Fluorescent image of C. elegans with motor neurons in green (unc-47p::GFP) and muscle 

in red (myo-3p::RFP).  Arrows mark commissures.  Asterisks mark cell soma.  Ventral 

nerve cord is along the lower edge of the worm.  Scale bar=10 μm. 

1.6  ALS/FTD 

ALS is an extremely rapidly progressing neurodegenerative disease, with 50% of 

patients succumbing to the disease within three years of diagnosis [149].  Roughly 95% 

of ALS cases are sporadic with no family history of ALS [150].  The largest risk factor for 

ALS is aging [151], with ALS symptoms commonly appearing between ages 40 to 70 

[152].  In familial ALS cases, single gene genetic mutations are known for almost 50% of 

the cases [153].  Depending on the population studied, 40-60% of familial ALS cases are 

caused by the C9orf72 G4C2 repeat expansion, making it the most common inherited 

cause of ALS/FTD [8, 9].  The environmental causes of sporadic ALS are poorly 
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understood.  Cigarette smoking is a confirmed environmental risk factor for ALS [154], 

while lead exposure [155] and pesticide exposure [156] are possible environmental risk 

factors.  In addition, there are recent data linking traumatic brain injury and ALS pathology 

[157].  Because ALS environmental factors exhibit highly variable penetrance, genetic 

models of ALS have been predominantly used to study this disease.   

1.6.1  ALS Physiology 

The first symptom of ALS is typically weakness in a limb or the jaw and rapidly 

progresses to paralysis and complete loss of voluntary motor control [158].  The paralysis 

is caused by the degeneration of the upper and lower motor neurons typical of ALS.  The 

upper motor neurons are located in the motor region of the cerebral cortex and innervate 

the lower motor neurons in the ventral horns of the spinal cord and within brainstem motor 

nuclei.  The upper motor neurons modulate the response of the lower motor neurons, and 

ALS patients who predominantly have degeneration of the upper motor neurons exhibit 

muscle stiffness as the muscles are overactivated [159].  The lower motor neurons 

innervate the muscles, and degradation of lower motor neurons causes loss of reflexes 

and muscle tone, eventually leading to muscle atrophy.   

While ALS is thought of as a pure motility disease, 15% of ALS patients also 

develop FTD [160].  FTD is a common type of early-onset dementia where the frontal and 

temporal lobes of the cerebral cortex undergo degeneration.  Patients display social 

dysfunction, such as loss of empathy and decreased social interaction, and they also 

often have repetitive behaviors and a lack of inhibition [161].  Ten to fifteen percent of 

FTD patients have a family history of FTD or ALS [160].  In both ALS and FTD, TDP-43 
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aggregates occur in degenerating neurons, suggesting a shared disease pathway [162].  

In addition, some mutations can cause either ALS or FTD, suggesting ALS and FTD are 

represent phenotypic bookends of a disease spectrum.  The most prominent shared 

mutation, the C9orf72 repeat expansion, is the most common genetic cause of each 

disease, and 80% of ALS/FTD patients carry the C9orf72 repeat expansion [162].   

1.6.2  The C9orf72 G4C2 Repeat Expansion 

The G4C2 repeat expansion in C9orf72 was associated with ALS in 2011 [8, 9], five 

years after the linkage of chromosome 9p21 was first identified in a Dutch ALS and FTD 

kindred [163].  The G4C2 repeat expansion is in the first intron of C9orf72 and is 10–20 

repeats in unaffected individuals, but expands to 30-1000s of repeats in ALS patients [8, 

9].  The C9orf72 repeat expansion causes up to 45% of all inherited cases of ALS and 

25% of FTD cases [9, 164].  The C9orf72 repeat expansion is also found in ~6% of 

sporadic ALS cases [164].  The high frequency of C9orf72 repeat expansions in ALS/FTD, 

as well as its association with several other less common neurodegenerative conditions 

[165], makes the C9orf72 repeat expansion one of the most common known NDD 

mutations. 

One proposed mechanism for C9orf72-G4C2 repeat expansion toxicity was loss of 

function.  The G4C2 repeat expansion causes a decrease in C9orf72 RNA expression [8] 

and C9ORF72 protein levels [166] in patients.  C9ORF72 appears to be involved in 

autophagy initiation [167-170].  However, loss-of-function of C9ORF72 does not appear 

to be the driving cause of ALS/FTD as C9orf72-null murine models develop autoimmune 

defects, but not ALS/FTD-like symptoms [171-173].  In addition, a patient homozygous 
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for the C9orf72-G4C2 repeat expansion did not have a severe form of ALS/FTD [174], as 

would be expected if the repeat expansion was toxic due to inhibiting C9orf72 expression.  

More importantly, loss-of-function point mutations have not been identified in any 

ALS/FTD patients.  Therefore, the C9orf72-G4C2 repeat expansion is likely toxic through 

gain-of-function mechanisms. 

Indeed, the clinical presentation of C9orf72 repeat expansion carriers is consistent 

with an autosomal dominant genetic pattern that could manifest pathologically through at 

least two nonexclusive molecular mechanisms [162].  First, given that the repeat 

expansion is within an intron, one hypothesis is that toxicity is mediated through a repeat-

containing RNA.  In patients, pathologically expanded RNAs form nuclear foci, while non-

expanded RNAs do not form nuclear foci [6, 175].  Although the significance of these RNA 

foci remains unknown, G4C2 RNA binds several RNA-binding proteins, including some 

that regulate the nuclear import/export cycle and nuclear pore complex function [6, 175].  

G4C2 RNA induced disruption of neuronal nuclear transport may play a pathological role 

in disease onset and/or severity.  A second potential mechanism involves RAN translation 

in all three reading frames of both the sense and antisense transcript [6], leading to six 

distinct dipeptide repeat proteins (DPRs) [176].  RAN DPRs appear to be translated from 

the spliced out G4C2-containing intron [89, 177].  However, factors that promote the 

cytoplasmic localization of the repeat-bearing RNA appear to facilitate RAN translation.  

Therefore, the observed nuclear RNA foci may serve a protective role and the RAN 

translation products are toxic [177, 178].  Taken together, significant evidence suggests 

that specific C9orf72-derived RAN DPRs are toxic and may play a pathological role in the 

development of ALS/FTD. 
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While RAN DPRs are thought to play a significant role in the toxicity of the C9orf72 

repeat expansion, there is evidence against DPRs having a causal role in disease.  For 

example, in postmortem brain samples from C9orf72 patients, anti-DPR antibody staining 

patterns are not well correlated with tissue neurodegeneration [179-181].  One possible 

explanation for this discrepancy is that cells exhibiting robust RAN translation undergo 

cell death throughout the progression of ALS, which results in low levels of observable 

DPRs in postmortem tissue.  Supporting this, a murine model has detectable DPRs in 

brain regions that will degenerate early in the disease course, but the DPRs cannot be 

detected in those same brain regions late in the disease [10].  A G4C2 Drosophila model 

of RNA only toxicity versus RNA+DPR found that RNA alone caused no toxicity, while 

RNA+DPRs caused strong toxicity [93].  Every model system tested has found the same 

two DPRs, proline-arginine (PR) and glycine-arginine (GR), to be toxic [10, 95, 98, 182, 

183].   

1.6.3  C9orf72 RAN Dipeptide Repeats 

Unlike the other DPRs, both sense-derived GR and antisense-derived PR can 

phase separate, as they are charged due to the arginine amino acids [184].  The 

separation of oil and water when mixed is a simple type of phase separation.  Protein 

phase separation is more complex as ionic strength, protein concentration, temperature, 

and post-translational modifications all regulate the phase separation of proteins [185, 

186].  There are two types of proteins that phase separate.  One type of phase-separating 

proteins is multi-domain proteins that undergo regulated phase separation depending on 

the number of bound ligands.  The second type is intrinsically disordered proteins with a 
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low sequence complexity that phase separates independently of ligands [186].  The 

biological role of phase separation is to concentrate proteins performing a specific task, 

such as splicing factors in nuclear speckles [187], while still allowing rapid interchange 

between the structure and the surrounding environment.  Other phase-separating cellular 

structures are stress granules, nuclear pores, and the nucleolus [188-190].  Disrupted 

phase separation can cause cellular dysfunction.  This occurs in multiple NDD models 

where phase-separated structures lose their fluid characteristics and shift to having a 

hydrogel nature and eventually form aggregates, trapping the bound proteins [191-194].  

Interestingly, C9orf72-associated arginine-rich dipeptides localize to multiple phase-

separated structures, including the nucleolus, stress granules, and the nuclear pore [195].  

PR/GR disrupts the function of these structures [195].  Consistent with these interactions, 

disruption of nucleocytoplasmic transport genes have been identified in PR/GR 

suppressor screens performed in both yeast and Drosophila [98, 118].  PR/GR also 

disrupt nucleolar function and prevent stress granule disassembly [195, 196].  It is 

unknown whether PR/GR interactions with phase-separated domains in general cause 

neurodegeneration or if PR/GR interactions with a specific phase-separated domain is 

the main cause.  Further screens will help identify the sequence of events that leads to 

neurotoxicity.  C. elegans models have previously helped to identify disease pathways 

and could serve the same role here. 
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1.7 HD 

I also created a C. elegans model for CAG RAN products, as CAG/CTG repeat 

expansions in different genes cause 13 repeat expansion diseases: FECD, HD, HDL2, 

DM1, SBMA, and SCA Types 1, 2, 3, 6, 7, 8, 12, and 17 [11].  RAN translation has thus 

far been confirmed in four of these diseases: FECD, HD, DM1, and SCA8 [4, 12, 85].  The 

CAG repeats encode polyglutamine, which facilitates protein-protein interactions [197].  

Polyglutamine is ‘sticky’ and interacts with other polyglutamine repeats, stabilizing protein 

binding [197].  However, in repeat expansion diseases the CAG repeat is expanded to 

≥40 repeats depending on the disease, and the ‘sticky’ nature of the polyglutamine 

becomes toxic, as it forms oligomers (low molecular weight homopolymers) and 

aggregates [198, 199].  It is currently thought that polyglutamine is the driving cause of 

toxicity in these diseases [200, 201], even though neurodegeneration is not always linked 

to polyglutamine aggregation [12].  In HD, degenerating brain regions that lack 

polyglutamine have significant expression of other CAG/CTG-derived RAN products, 

strongly suggesting that the RAN products could be contributing to the disease [12].  Most 

of the CAG/CTG diseases lack treatments, making it imperative to understand the 

molecular pathways required for CAG RAN toxicity in these diseases. 

HD is a monogenic disease caused by a CAG repeat expansion in the first exon 

of the HTT gene [202]. HD is a progressive and incurable neurodegenerative condition 

that typically occurs in middle to late age [203].  However, up to 10% of patients develop 

a more aggressive form of the disease called Juvenile Huntington’s disease (JHD) [204].  

Unaffected individuals have 10-25 CAG repeats in HTT, while people with 35-39 CAG 

repeats in HTT are at risk of developing HD in adulthood [205, 206].  Patients with ≥40 
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repeats will develop HD and typically exhibit symptoms between 30-50 years of age, 

depending on repeat length and other factors [55].  JHD patients usually have >60 repeats 

and develop symptoms before the age of 20.  In all cases, the disease follows an 

autosomal dominant inheritance pattern, suggesting that a gain-of-function mechanism 

underlies both HD and JHD.   

1.7.1  HD Physiology 

HD causes a wide range of symptoms, including cognitive and motility defects, 

which vary based on the type of HD.  Adult HD patients are diagnosed with HD once they 

develop motility defects, such as chorea.  The motility impairments change to immobility 

by the end of the disease [202].  HD patients also develop personality changes and 

undergo cognitive declines up to ten years before they are officially diagnosed with HD 

[207, 208].  In adult HD, neurodegeneration begins in the striatum and spreads in a 

predictable pattern to other regions in the basal ganglia, and distally to brain regions such 

as the frontal cortex [209-211].  The neurodegeneration ultimately leads to death ~20 

years after the appearance of motor symptoms [203].  JHD patients have a shorter 

disease duration of ~15 years after diagnosis [212].  This decrease may be due to delayed 

diagnosis of JHD, as it is extremely rare [212].  Interestingly, JHD patients do not exhibit 

chorea or have a spreading pattern of degeneration.  Instead of developing chorea, JHD 

patients present with rigidity, seizures, and severe psychiatric defects [212].  Patients with 

JHD also have smaller brain sizes with relatively enlarged cerebellum [213] and have 

degeneration in both the striatum and the cerebellum [214].  The reason for the 

differences in symptoms and degeneration patterns between HD and JHD is unknown.  
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Taken together, the clinical data suggest that the increased number of CAG repeats drive 

a distinct spectrum of symptoms in JHD even though both HD and JHD are caused by 

similar CAG repeat expansion mutations in the HTT gene.  

1.7.2  HTT 

The HTT gene encodes a large, 348 kilodalton protein that is conserved in 

metazoans [215].  However, the disease-causing polyQ stretch in the first exon of HTT 

does not appear in all HTT orthologs [216].  The polyQ repeats are predominantly found 

in mammals, and the length of the repeat increases with higher species [217].  This may 

be due to the role of HTT in neurodevelopment, as HTT appears to have key roles in 

neurodevelopment and heterozygous HTT null mice have neuronal defects [218, 219].  

Homozygous HTT null mice are embryonic lethal, which may be due to other roles of the 

ubiquitously expressed HTT [219].  In addition to the polyQ domain, HTT has multiple 

HEAT repeats that act as flexible scaffolding allowing HTT to interact with over 200 

proteins [220, 221].  Through these interactions, HTT traffics vesicles and organelles 

along axons [222].  The polyQ repeat expansion can cause defects in many of HTTs 

normal roles and interactions [223, 224], which may contribute to HD even if it is not the 

driving mechanism. 

1.7.3  PolyQ 

Oligomerizing/aggregating polyQ proteins cause toxicity through many pathways.  

PolyQ models exhibit disruption of protein folding and degradation [225, 226], inhibition 
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of autophagy [227], and abnormal mitochondrial dynamics and quality control [228].  

PolyQ proteins are thought to be toxic due to low molecular weight homopolymers of 

polyQ, known as oligomers, while large aggregates exhibit less toxicity and possibly have 

a protective role [229-231].   

The expanded polyQ protein is the focus of most HD research.  This is primarily 

because it exhibits length-dependent toxicity and aggregation that closely matches the 

course of the disease in HD patients [232].  However, in JHD, the cerebellum and frontal 

cortex lack detectable polyQ, but still undergo significant neurodegeneration [233].  Some 

affected brain regions in adult HD, such as the white matter regions of the caudate and 

putamen of the striatum, also express little to no polyQ protein [233-237].  This suggests 

that mechanisms other than polyQ toxicity drive toxicity in JHD and contribute to toxicity 

in adult HD.   

1.7.4  CAG RAN Peptides 

Recently, Bañez-Coronel and colleagues discovered that expanded CAG repeats 

in the mHTT mRNA, as well as the antisense CUG repetitive mRNA, can undergo RAN 

translation [233].  RAN translation of the sense CAG repeats, as well as the antisense 

CUG repeats, produces five polypeptides: polyGlutamine, polyAlanine, polySerine, 

polyLeucine, and polyCysteine (Figure 1.1).  Analysis of postmortem tissue samples 

shows that RAN polypeptides are abundantly expressed throughout the striatum, frontal 

cortex, and cerebellum and are qualitatively present at elevated levels in JHD patients 

(age range 8-23) [12].  RAN polypeptides were also present in similar tissues in adult HD 

patients, although their levels were lower, and their occurrence was less common 
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compared to JHD patients [12].  RAN polypeptides were not detected in control patients 

[233].  Since polyQ levels and aggregation are not major features of JHD, these 

observations suggest that CAG-derived RAN polypeptides could play a significant but 

previously unappreciated role in JHD and may be a contributing feature to adult HD.  

Although RAN polypeptides exhibit a striking correlation with neurotoxicity in JHD and 

HD, it was not known if these polypeptides confer toxicity in an in vivo setting. 

1.8 Conclusions 

The exact mechanism of toxicity of repeat expansion NDDs is unknown.  Initial 

studies focused on testing mechanisms related to protein gain-of-function toxicity or RNA 

gain-of-function toxicity.  Recently, the discovery of RAN translation has offered another 

potential cause of toxicity.  Determining if and how RAN products cause toxicity in their 

respective NDD is important to find treatments for these currently untreatable diseases.  

To aid in determining how the RAN products are toxic, we created RAN models for two 

different types of repeat expansions, the ALS-associated C9orf72 G4C2 repeat expansion, 

and the widespread CAG repeat expansion, seen in HD and 12 other CAG/CTG repeat 

expansion diseases.  In both cases, we studied the toxicities of the different RAN products 

and proceeded to perform a suppressor screen to identify proteins required for the toxicity 

of the RAN product.  Using this approach, we discovered both unique and common 

cellular pathways that contribute to RAN peptide toxicity.   
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2.0 Arginine-Rich ALS RAN Dipeptides Exhibit Age-Dependent Toxicity 

2.1  Introduction 

Amyotrophic lateral sclerosis (ALS) is a rapid, devastating neurodegenerative 

disease that lacks effective treatments.  Within three years of presenting with a slight 

weakness in a limb, patients typically develop complete loss of voluntary motor control 

and succumb to this disease [149].  The pathogenic mechanisms that drive ALS 

progression are unknown.  However, cellular dysfunction associated with ALS is 

commonly studied through investigations of genetic mutations that cause ALS.  Most 

recently, these studies are focused on the most common genetic cause of ALS, a G4C2 

repeat expansion in the C9orf72 gene [8, 9].  The C9orf72 G4C2 repeat expansion occurs 

in the first intron of the C9orf72 gene.  Affected patients carry one normal allele with less 

than 30 G4C2 repeats and one expanded allele with 30-1000s of repeats [8, 9].  The 

precise number of repeats required to cause disease is difficult to determine due to 

somatic and germline mosaicism of the repeat.  However, repeat lengths of up to 27 do 

not appear to show somatic instability [238, 239].  These data have led the field to 

conclude that at least 30 G4C2 repeats are required to cause ALS. 

The mechanism(s) by which 30 G4C2 repeats cause disease is not well understood.  

One emerging mechanism is the unusual translation of the intronic repeat expansion by 

a novel type of translation called Repeat-Associated non-AUG (RAN) translation [81, 82].  

RAN translation occurs in long, G/C-rich repeats and does not require a start codon [4].  

Due to the lack of a start codon, the reading frame of RAN translation is not defined, and 
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translation can be initiated in any of the three reading frames.  Initiation most likely occurs 

within or very close to the 5’ end of the repeat [86], although the precise site of initiation 

has not been defined in patients.  Therefore, RAN translation of the single G4C2 RNA 

repeat gives rise to three distinct dipeptide repeat proteins (DPRs): glycine-arginine (GR), 

glycine-proline (GP) and glycine-alanine (GA) [81, 82].  The expanded G4C2 repeat is also 

transcribed in the antisense direction [34].  The corresponding antisense RNA is a G2C4 

repeat and is thus also G/C-rich.  Therefore, the antisense RNA also undergoes RAN 

translation, creating three more DPRs: proline-arginine (PR), proline-alanine (PA) and 

glycine-proline (GP) [82] (Figure 2.1 A).  All six RAN DPRs contain distinct protein 

sequences downstream of the repeat since they are each in a different reading frame.  

The most common genetic cause of ALS, a single repeat expansion, thus gives rise to six 

potentially pathogenic DPRs. 

The arginine-rich DPRs, PR and GR, have been identified as the most toxic 

C9orf72 DPRs through work in yeast, zebrafish, Drosophila, and cells [94, 98, 182, 184, 

240].  Because these DPRs are toxic at 50 repeats in a wide range of organisms [94, 98, 

195], the DPRs are typically modeled at 50 repeats.  The arginine-rich DPRs exhibit 

several properties that may explain their toxicity.  For example, PR/GR can phase 

separate [195, 241], similar to other neurodegenerative proteins such as TDP-43, FUS, 

and tau [184, 191].  GR/PR localize to phase-separated structures such as the nucleolus 

[184], the nuclear pore [242], and stress granules [195].  PR/GR localization disrupts the 

function of each of these phase-separated structures [98-100, 195, 243].  It is currently 

unclear if DPR-induced defects in one or more of these structures are the driving cause 

of the pathogenesis of the arginine-rich dipeptides. 
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An unbiased genetic screen performed in a multicellular organism could provide 

unique insights into the primary causes of toxicity due to the arginine-rich DPRs.  A screen 

could determine if specific cellular structures or structural components are required for 

PR/GR toxicity or if a previously unidentified pathway(s) is more integral to PR/GR 

toxicity.  To date, unbiased screens of PR toxicity have only been performed in single-cell 

systems, such as yeast [98] and mammalian cells [100].  To determine the genetic 

requirements for arginine-rich DPRs in a multicellular organism, we created C. elegans 

models of each RAN DPR and characterized the cellular requirements for toxicity.  In 

addition, we studied whether PR/GR toxicity is impacted by aging since the strongest risk 

factor for ALS is aging, and the role of aging and aging pathways in DPR toxicity was not 

known.  After establishing the cellular requirements for arginine-rich DPR toxicity, we 

performed a whole-genome RNAi screen to identify the genetic requirements for arginine-

rich DPR toxicity.  Our screen identified highly conserved genes required for PR toxicity, 

including known DPR modifiers, such as nuclear transport and RNA binding proteins, and 

novel genetic pathways, including a nuclear ubiquitination pathway. 

2.2  Results 

To understand the cellular, temporal, and genetic requirements for toxicity of the 

arginine-rich dipeptides, we created a C. elegans model expressing individual RAN 

translation products in the absence of repeat-containing RNA [95].  In this model, the 

nucleotide repeat was eliminated, but the amino acid repeat was maintained by varying 

the codon usage for the amino acids.  The disruption of the G4C2 sequence removes 
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potential RNA secondary structures and possible RNA-based toxicity.  The reading frame 

was defined using a canonical start codon and Kozak sequence.  Four C9orf72-derived 

dipeptide sequences (GA, GR, PA, PR; all 50 repeats and lacking additional C9orf72 

context) were tagged with GFP at the C-terminus and FLAG at the N-terminus and 

expressed individually either in muscle cells or in motor neurons (Figure 2.1 A).  We 

generated transgenic animals expressing each individual DPR. 

2.2.1   Toxicity of C9orf72 Dipeptides in Motor Neurons 

Consistent with previous studies [94, 98, 182, 184], we found that expression of 

the arginine-rich DPRs in motor neurons under the unc-47 promoter was highly toxic in 

C. elegans.  Animals expressing arginine-rich DPRs in the motor neurons were viable, 

consistent with previous studies showing that unc-47 motor neurons are not required for 

viability in C. elegans [244].  However, motor neuron expression of either (PR)50 or (GR)50 

led to significant reductions in motility, which was measured in thrashing assays (Figure 

2.1 B).  Motor neurons expressing (PR)50 and (GR)50 exhibited morphological signs of 

degeneration commonly observed in other C. elegans models of neurodegenerative 

diseases [245-247], including commissure degeneration and membrane blebbing that 

were not observed in control animals or in animals expressing either (PA)50 or (GA)50 

(Figure 2.1 C, D).  These data show that arginine-rich DPRs cause motility defects and 

neurodegenerative morphological changes when expressed in C. elegans motor neurons.  
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Figure 2.1 Arginine-Containing DPRs Are Toxic in Motor Neurons 

(A) Molecular strategy for expression of codon-varied DPRs in C. elegans.  (B) Liquid 

thrashing quantification of transgenic animals expressing the indicated DPR under the 

motor neuron-specific unc-47 promoter.  N=20 animals per genotype.  Each symbol 

represents quantification for one animal; the horizontal line indicates the population 

median.  ***P<0.001 versus GFP control (one-way non-parametric ANOVA with Dunn’s 

post hoc test).  (C) Representative images of unc-47+ motor neurons in animals 

expressing the indicated DPR and unc-47p::GFP to mark the commissures.  Arrow points 

to an example of membrane blebbing.  Arrowhead points to examples of commissure 

breaks.  Scale bar=10 μm.  (D) Quantification of commissure breaks and (E) membrane 

blebbing in each of the indicated strains.  For each animal, we counted the total number 

of commissures with blebbing or breaks and divided by the total number of detectable 

commissures.  Unc-47p::GFP was used to mark the commissures.  N=20 animals per 

genotype.  Each symbol represents quantification for one animal expressed as a 

percentage.  The horizontal line indicates the population median with the interquartile 

range.  ****P<0.0001 versus GFP control (one-way non-parametric ANOVA with a post 

hoc Dunn’s multiple comparison test).  N=20 animals per genotype.  
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2.2.2   Toxicity of C9orf72 Dipeptides in Muscle Cells 

C. elegans motor neurons are extremely small (2–3 μm in diameter), making cell 

biological analysis of DPR localization in these cells difficult.  Additionally, C. elegans 

neurons are highly resistant to RNA-interference-mediated gene knockdown, which is 

commonly used to explore mechanisms of protein toxicity in C. elegans disease models 

[136, 248].  To overcome these limitations, we expressed the DPRs in the larger muscle 

cells under the myo-3 promoter.  Muscle cells regulate motility and are a common site of 

expression for other C. elegans disease models [127, 249, 250].  As we observed in motor 

neurons, muscle expression of arginine-rich DPRs was highly toxic.  Expression of either 

(PR)50 or (GR)50 in muscle led to completely penetrant embryonic and larval lethality that 

could be suppressed by feeding animals gfp(RNAi)-expressing bacteria (Figure 2.2 A).  

gfp(RNAi)-sensitive embryonic or larval lethality was not observed in animals expressing 

either (PA)50 or (GA)50.  (PR)50 or (GR)50 animals that were removed from gfp(RNAi) after 

embryonic development survived and went on to develop into adults. 

However, these DPR-expressing adults exhibited age-dependent paralysis (Figure 

2.2 B).  (PR)50 animals also showed a significantly reduced lifespan that was not observed 

in (GR)50 expressing animals (Figure 2.2 C).  The enhanced paralysis observed in (PR)50 

and (GR)50 animals was not due to higher protein levels since in vivo imaging and flow 

cytometry quantification showed that (PR)50-GFP and (GR)50-GFP fluorescence levels 

were significantly below those of all other DPRs (Figure 2.3 A, B).  It was also not due to 

higher mRNA expression, since qPCR showed that all DPRs were expressed at similar 

levels (Figure 2.3 C).  The toxicity phenotype required protein production and was not 

due to any potential RNA effects, since (PR)50 transgenic animals lacking a start ATG 
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exhibited no detectable toxicity (Figure 2.3 D).  (PR)50 toxicity was dependent on the 

number of repeats, as animals expressing 5, 15 or 25 repeats did not exhibit embryonic 

lethality [number of viable transgenic progeny (>L4)/total transgenic progeny after 72h—

(PR)5-GFP—139/145; (PR)15-GFP—68/75; (PR)25-GFP—114/117; P>0.1, Fisher’s exact 

test].  Adults expressing (PR)5-GFP exhibited robust expression that appeared 

concentrated within almost all nuclei (Figure 2.4 A).  Adults expressing both (PR)15-GFP 

and (PR)25-GFP expressed much lower levels of GFP when compared with (PR)5-GFP, 

although the protein that was present also appeared to be concentrated within the nucleus 

and nucleolus (Figure 2.4 A, B).  Adults expressing (PR)25 and (PR)50, but not those 

expressing (PR)5 or (PR)15, exhibited accelerated age-dependent paralysis (Figure 2.4 

C), even though (PR)25 was present at dramatically lower levels than (PR)5 (Figure 2.4 

B).  Together, these studies show that arginine-containing dipeptides exhibit 

developmental and post-developmental age-dependent toxicity in C. elegans, and in the 

case of the PR dipeptide, this toxicity is repeat-length-dependent.  
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Figure 2.2 Muscle-Expressed Arginine-Rich Dipeptides Are Toxic in C. elegans 

(A) Brood size for worms expressing each integrated dipeptide protein in the absence or 

presence of gfp(RNAi) at 25°C.  Data for each strain are normalized to the mean brood 

size of animals grown on gfp(RNAi).  ***P<0.001 (one-way ANOVA with post hoc Tukey’s 

test).  (B) Paralysis assay for adult animals raised in the absence of gfp(RNAi).  N=43–

49 animals per genotype.  ***P<0.001 (Log-rank test with Bonferroni adjusted P-value).  

(C) Lifespan for worms expressing each integrated dipeptide protein in the absence of 

gfp(RNAi) at 25°C, N=50 animals per genotype.  ***P<0.001 (Log Rank Test with -

Bonferroni adjusted P-value) 
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Figure 2.3 Toxicity of PR Was Not Due to Increased Levels of PR or RNA Toxicity 

(A) Expression-matched representative images of transgenic animals expressing each 

dipeptide under the myo-3 promoter.  (B) Average fluorescence of GFP in a worm, as 

measured by the COPAS Biosorter through measuring the total fluorescence of the worm 

and dividing it by the time of flight of the worm.  (C) Relative mRNA expression of the 

different dipeptides divided by the control, myo-3p::GFP.  Actin was used as a control.  

(D) Paralysis assay for adult animals raised in the absence of gfp(RNAi).  

(N=50/genotype) ***P<0.001 (Log-rank test with Bonferroni adjusted P-value).  
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Figure 2.4 The Toxicity of PR is Length Dependent 

(A) Fluorescent microscopy of Day 1 adult hermaphrodites expressing (PR)5-GFP, (PR)15-

GFP, (PR)25-GFP or (PR)50-GFP (green) in the muscle.  Muscle DNA (marked by a myo-

3p::his-58-mCherry reporter) is in red.  Arrows point to sites of nuclear GFP puncta.  Scale 

bar=10 μm.  All images were acquired using identical exposure settings.  The row labeled 

‘myo-3p::(PR)50 (enhanced)’ was adjusted for brightness and contrast in the GFP channel 

differently from the other images so that the (PR)50-GFP signal is observable.  (B) 

Quantification of the GFP levels from the indicated PR repeat animals.  Each point shows 

the measured value for a single nucleus; the horizontal line indicates the population 

median with the interquartile range.  **P<0.01, ****P<0.0001 versus GFP control (one-

way non-parametric ANOVA with a post hoc Dunn’s multiple comparison test).  (C) 

Paralysis assay of animals expressing the indicated number of (PR) repeats under the 
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control of the myo-3 promoter.  ‘Day 0’ animals were isolated as L4 stage animals.  N=48–

50 animals per genotype.  ***P<0.001 versus GFP control (Log-rank test with Bonferroni 

adjusted P-value). 

 

2.2.3   Toxic PR and GR Are Enriched in the Nucleolus 

To gain insight into the cell biological properties of (PR)50 and (GR)50 proteins, we 

examined their subcellular localization patterns in live animals expressing each DPR in 

the muscle.  Animals expressing both GFP and non-toxic (PA)50-GFP exhibited diffuse 

nuclear and non-nuclear GFP expression that was always excluded from the histone-free 

nucleolar region (Figure 2.5 A, B).  Muscle expressed (GA)50-GFP formed intense non-

nuclear puncta.  In some cases, we noted (GA)50-GFP signal in the nucleus, but this 

nuclear localization was always diffuse and never in puncta (Figure 2.5 A, B).  Muscle 

expressed (GR)50-GFP and (PR)50-GFP both exhibited substantially lower GFP levels 

than either of the other DPRs, despite their similar mRNA expression levels (Figure 2.3 

C), and appeared to be predominantly localized to the histone-free nucleolar region of the 

nucleus (Figure 2.5 A, B).  Non-nuclear localization was always observed in (GR)50 

animals but was never observed in (PR)50 animals (Figure 2.5 A, B). 

The motility of the DPRs that form puncta (GA50, PR50, and GR50) was unclear.  

Immobile puncta (aggregates) are a common feature of neurodegenerative diseases [46, 

199, 251].  To determine whether C9orf72 DPRs also form protein aggregates, we 

performed fluorescence recovery after photobleaching (FRAP) to assay their respective 

motility.  Non-nuclear (GA)50-GFP exhibited little recovery after FRAP (Figure 2.6 A, B), 
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suggesting these puncta are highly immobile protein aggregates.  In contrast, the 

nucleolar accumulations of (GR)50 and (PR)50 exhibited substantial fluorescence recovery 

(Figure 2.6), which is inconsistent with the known biophysical properties of bona fide 

aggregates [252].  Since both (PR)50 and (GR)50 appeared to be localized to the 

nucleolus, we compared their FRAP dynamics with those of FIB-1, which is homologous 

to the mammalian nucleolar protein fibrillarin [253].  FIB-1 exhibited recovery kinetics 

similar to those of (GR)50 and (PR)50, suggesting that the dynamics of these two DPRs 

behave similarly to a bona fide nucleolar protein (Figure 2.6 C).  
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Figure 2.5 (PR)50/(GR)50 Are Localized to the Nucleolus in C. elegans Muscle Cells 

(A) Imaging of live, anesthetized Day 1 adult C. elegans hermaphrodites expressing the 

indicated dipeptide.  Green shows dipeptide-GFP localization expressed in muscle, red 

shows histone-tagRFP within the muscle nucleus.  Arrowhead points to the histone-free 

nucleolar region.  Scale bar=10 μm.  (B) Quantification of DPR–GFP signal that is 

observed in the nucleoplasm, nucleolus, and non-nuclear cellular compartments.  N=55–

78 nuclei from five to six animals.  Data shown are means ± S.D. 
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Figure 2.6 Arginine-Rich DPRs Are Not Aggregates 

(A) Representative images from FRAP analysis of subcellular localized DPR proteins 

expressed in muscle.  The dashed outline indicates the site of photobleaching and post-

bleaching quantification.  Recovery images are 150 seconds post-bleach.  Scale bar=2 

μm.  (B) Quantification of FRAP imaging.  Data shown are mean ± S.E.M.  from 9 to 10 

datasets per genotype.  (C) Average equilibrium fluorescence recovery after 60 seconds.  

Data shown are mean ± S.D.  from 9 to 10 datasets per genotype.  ‘n.s.’ - versus FIB-1-

GFP (one-way ANOVA with a post hoc Dunn’s multiple comparison test).  
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2.2.4   Nuclear Localization is Required for PR and GR Toxicity 

Given that the toxic dipeptides, (PR)50 and (GR)50, were primarily localized to the 

nucleus in muscle, we asked if nuclear localization was necessary for their toxicity.  To 

test this, we tethered each of the arginine-rich DPRs to a signal sequence-

transmembrane domain (SS-TM) tag that restricts the DPR to cellular membranes with 

the DPR oriented on the cytosolic side of the membrane.  In this context, the membrane-

localized (PR)50 and (GR)50 were excluded from the nucleus (Figure 2.7 A).  In contrast 

to soluble (PR)50 and (GR)50, membrane-localized (PR)50 and (GR)50 were viable in the 

absence of gfp(RNAi) and showed no age-dependent paralysis (Figure 2.7 B).  We further 

tested whether nuclear localization was sufficient for toxicity by fusing the (PR)50 DPR to 

the coding sequence for the his-58 gene, which encodes a DNA-binding histone only 

found in the nucleus.  GFP-HIS-58 expressing animals were viable and motile and 

exhibited strong nuclear GFP expression (Figure 2.7 C, D).  However, GFP-HIS-58-(PR)50 

expressing animals were not viable unless they were cultured under gfp(RNAi) conditions 

[number of viable transgenic progeny (>L4)/total progeny in the absence of GFP after 

72h—GFP-HIS-58–348/406; GFP-HIS-58-(PR)50–9/56; P<0.0001, Fisher’s exact test].  

Upon removal from gfp(RNAi), HIS-58-(PR)50 animals exhibited age-dependent paralysis 

(Figure 2.7 D), and this paralysis occurred with more rapid onset than in (PR)50 animals 

(Figure 2.7 E).  Thus, nuclear localization further enhances (PR)50 toxicity.  GFP 

fluorescence levels of HIS-58-(PR)50 were not higher than GFP fluorescence levels of  

(PR)50 (Figure 2.7 F).  Thus, the enhanced HIS-58-(PR)50 toxicity was not due to higher 

expression levels of the transgene.  Overall, these data show that nuclear localization is 

necessary and sufficient for (PR)50 toxicity in C. elegans.  
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Figure 2.7 Nuclear Localization of PR/GR is Necessary and Sufficent for Toxicity 

(A) Representative images of the indicated soluble or membrane-anchored DPR (green), 

the HIS-58-mCherry nuclear marker (red), and a merged image.  Arrows point to nuclear 

regions defined by the HIS-58 mCherry signal.  Coincident green and red signals in the 

TM-(PR)50 image is intestinal autofluorescence.  Scale bar=10 μm.  (B) Paralysis assay 

comparing animals expressing soluble or transmembrane localized (GR)50 (top) or (PR)50 

(bottom).  N=48–50 animals per genotype, ***P<0.001, **P<0.01, *P<0.05 (Log-rank test 

with Bonferroni adjusted P-value).  (C) Representative images of HIS-58 anchored (PR)50 

(green; top) or unanchored (PR)50 (green; bottom), HIS-58-mCherry nuclear marker (red) 

and a merged image.  Scale bar=5 μm.  (D) Paralysis assay comparing animals 

expressing nuclear-localized GFP or (PR)50.  N=30 animals per genotype, **P<0.01 (Log-

rank test with Bonferroni adjusted P-value).  (E) Paralysis assay comparing soluble (PR)50 

with HIS-58-(PR)50.  N=50 animals [(PR)50] or 80 animals [HIS-58-(PR)50], ***P<0.001 

(Log-rank test with Bonferroni adjusted P-value).  (F) Quantification of the GFP levels 

from the indicated genotype animals.  Each point shows the measured value for a single 

nucleus, horizontal line indicates population median with interquartile range.  

****P<0.0001 versus (PR)50-GFP (student’s t-test with non-parametric Mann-Whitney U 

test). 
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2.2.5   Age-Associated Toxicity of PR and GR Are Due to Different Mechanisms 

The toxicity of (PR)50 in an aged cellular environment could be due to the stochastic 

accumulation of toxic protein levels or toxic protein conformations over long periods of 

time.  Alternatively, the physiological process of aging could lead to a decline in cellular 

processes that oppose (PR)50 toxicity.  To differentiate between these two hypotheses, 

we tested the role of the aging process in the toxicity of (PR)50.  If (PR)50 toxicity is due to 

the accumulation of toxic protein levels/conformation over time, lifespan-extending 

conditions should have no effect on the rate of toxicity.  However, if the aging process 

actively regulates (PR)50 toxicity, alterations in the rate of aging should enhance (if 

lifespan shortening) or delay (if lifespan extending) the toxicity of (PR)50.  The insulin 

signaling pathway is the most well-characterized pathway that regulates lifespan and 

youthfulness from worms to humans [111].  Mutations in this pathway are thought to 

extend lifespan by promoting a youthful cellular physiological state.  Therefore, mutations 

in the insulin signaling pathway can be used to separate chronological and physiological 

states of aging.  In C. elegans, the daf-2 gene encodes the homolog of the insulin/IGF 

receptor.  Loss-of-function mutations in daf-2 exert their effects via signaling-dependent 

activation of the FOXO transcription factor DAF-16, as well as the heat shock transcription 

factor HSF-1 [112].  Mutations in daf-16 and hsf-1 suppress phenotypes associated with 

daf-2 mutations and accelerate the rate of aging [111]. 

To determine whether the toxicity of (PR)50 is dependent on the chronological age 

of the cell or the physiological age of the cell, we crossed the (PR)50 transgene into the 

daf-2(e1370); daf-16(mu86) double mutant and segregated all possible (PR)50 genotypes.  

If (PR)50 toxicity is due to the stochastic accumulation of toxic (PR)50 molecules or 
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conformations over time, then reduced insulin signaling should not alter the age-related 

phenotypes.  However, if (PR)50 toxicity is due to aging-induced changes in cellular 

physiology, then alterations in the rate of aging should slow the initiation and progression 

of toxicity.  We found that in the daf-2 mutant background, age-dependent declines in 

(PR)50 motility were significantly reduced (Figure 2.8 A).  These daf-2-dependent 

phenotypes were suppressed in a daf-2; daf-16 double mutant and were accelerated in 

the daf-16 mutant (Figure 2.8 B).  Likewise, a mutation in the heat shock transcription 

factor hsf-1, which accelerates the rate of aging [254], enhanced the toxicity of (PR)50 

(Figure 2.8 C).  Interestingly, the protective effects of the daf-2 mutant were not observed 

in (GR)50 expressing animals (Figure 2.8 A).  The protective effects of insulin signaling 

appear to act downstream from DPR accumulation and nuclear localization, as DPR 

abundance and subcellular distribution did not appear to be altered in any of these genetic 

backgrounds (Figure 2.8 D-F).  We also found that in motor neurons expressing (PR)50, 

daf-2 reduced the levels of neurodegeneration-associated membrane blebbing (Figure 

2.8 G).  These data demonstrate that alterations in the rate of aging impact (PR)50 toxicity 

in both C. elegans muscle cells and motor neurons.  It also suggests that (PR)50 toxicity 

is dependent on the cellular aging process and is not due to the buildup of toxic protein 

levels/conformations over time.  Additionally, these data imply that (PR)50 and (GR)50 are 

toxic through partially distinct mechanisms as enhanced DAF-16/FOXO activation 

protects (PR)50 animals but has no protective effects on (GR)50 animals.  
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Figure 2.8 Altering the Biological Rate of Aging Affects (PR)50 Toxicity 

(A) Paralysis assay of animals expressing GFP, (GR)50 or (PR)50 under the control of the 

myo-3 promoter in the wild-type or daf-2(e1370) background.  ‘Day 0’ animals were 

isolated as L4 stage animals.  N=48–50 animals per genotype.  n.s., ‘not significant’; 

**P<0.01 versus GFP control (Log-rank test with Bonferroni adjusted P-value).  (B) 

Paralysis assay of animals expressing (PR)50 under the control of the myo-3 promoter in 

the wild-type, daf-16(mu86), or daf-2(e1370); daf-16(mu86) background.  N=48–50 

animals per genotype.  n.s., ‘not significant’; ***P<0.001 versus (PR)50 (Log-rank test with 

Bonferroni adjusted P-value).  (C) Paralysis assay of animals expressing (PR)50 under 

the control of the myo-3 promoter in the wild-type or hsf-1(sy441) mutant background.  

N=48–50 animals per genotype.  ***P<0.001 versus wild-type (Log-rank test with 

Bonferroni adjusted P-value).  (D) Fluorescent microscopy images of day 1 adult worms 

expressing either (GR)50 or (PR)50 (green) and soluble muscle mCherry (red) in the wild-

type or daf-2(e1370) mutant background.  Arrow points to sites of nuclear DPR 

accumulation.  Scale bar=10 μm.  (E) Fluorescent microscopy images of Day 1 adult 

worms expressing (PR)50 (green) and soluble muscle mCherry (red) in the daf-16(mu86) 

or daf-2(e1370); daf-16(mu86) mutant background.  Arrow points to sites of nuclear DPR 

accumulation.  Scale bar=10 μm.  (F) Fluorescent microscopy images of day 1 adult 

worms expressing (PR)50 (green) and soluble muscle mCherry (red) in the wild-type or 

hsf-1(sy441) mutant background.  Arrow points to sites of nuclear DPR accumulation.  

Scale bar=10 μm.  (G) Quantification of membrane blebbing in each of the indicated 

strains.  For each animal, we counted the total number of commissures with blebbing and 

divided by the total number of detectable commissures.  N=20 animals per genotype.  
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Each symbol represents quantification for one animal expressed as a percentage.  The 

horizontal line indicates population median with interquartile range.  **P<0.01; 

****P<0.0001 versus GFP control (one-way non-parametric ANOVA with a post hoc 

Dunn’s multiple comparison test).  N=20 animals per genotype. 

2.2.6   Conserved Genes Suppress (PR)50 Toxicity  

To identify genes required for (PR)50 toxicity, we performed two unbiased screens 

using muscle-expressed PR.  In both screens, we initially selected animals that exhibited 

enhanced growth, since muscle expression of (PR)50 causes larval arrest (Figure 2.9 A).  

In the first screen, we used an unbiased chemical mutagenesis approach to identify gene 

mutations that allowed (PR)50 growth over a two-week period.  While this approach may 

identify mutations that subtly enhance growth, one major caveat is that we are unable to 

recover mutations in essential genes that may be required for wild-type growth or 

reproduction.  To address this limitation, we also performed an unbiased whole-genome 

RNAi screen for suppressors of (PR)50 growth arrest over a shorter one-week period.  

RNAi screens have several advantages over chemical mutagenesis screens.  First, the 

RNAi approach knocks down mRNA levels, versus complete knockout or gain-of-function 

alleles that can be produced by ENU mutagenesis.  Second, RNAi knockdown can be 

initiated post-developmentally, while gene knockout from an ENU-induced mutation 

causes alterations in gene function throughout the entirety of life.  Finally, the gene 

knockdown effect from RNAi is enhanced over time, in contrast to animals carrying ENU 

induced mutations that exhibit the same alterations of gene function between animals.  

This variable knockdown effect from RNAi is particularly useful when screening 
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populations of animals since it leads to the generation of animals expressing a range of 

loss-of-function phenotypes (from partial loss-of-function to complete null).  Because of 

these differences, RNAi screens allow for the identification of genes whose null 

phenotypes may be lethal or sterile.  

 The forward mutagenesis screen was performed by treating young animals with 

N-ethyl-N-nitrosourea (ENU), a DNA mutagen that primarily introduces point mutations 

[255].  Animals were allowed to self-fertilize for three generations on gfp(RNAi) bacteria 

and were then moved onto E. coli OP50 bacteria, a common food source for lab-grown 

C. elegans, which does not repress expression of (PR)50.  Animals that grew while 

expressing (PR)50 were identified as suppressors.  Fifteen suppressors were individually 

isolated in this manner.  However, all fifteen suppressors exhibited strongly reduced 

transgene expression, based on the expression a myo-3::RFP reporter located on the 

same transgene as the myo-3p::(PR)50-GFP reporter.  Transgene suppression is a 

commonly observed phenotype in C. elegans [256].  To ensure that these mutants caused 

transgene suppression, we measured the RFP signal using a COPAS BIOSORT, as well 

as the (PR)50-GFP mRNA levels using qPCR.  The suppressors had a five-fold reduction 

in RFP fluorescent signal (Figure 2.9 B).  The level of (PR)50 mRNA was further reduced, 

with five of the six tested suppressors having no detectable (PR)50 mRNA and one 

suppressor having a five-fold reduction in levels of (PR)50 mRNA (Figure 2.9 C).  These 

data show that all the suppressors identified in our ENU mutagenesis screen were likely 

transgene suppressors.  Therefore, the mechanism of suppression of ENU-isolated 

suppressors is indirect and not likely to inform us as to specific and conserved 

mechanisms of toxicity of (PR)50. 
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As an alternative to the ENU suppressor screen, we also performed a genome-

wide RNAi screen to identify suppressors of muscle expressed (PR)50 toxicity.  We 

employed a commercially available RNAi library to screen 15,865 genes.  Eggs were 

placed on plates seeded with bacteria expressing double-stranded RNA (dsRNA) against 

the gene of interest.  After one week of growth, RNAi suppressors were identified by 

whether their respective plates contained mobile animals in multiple stages of 

development.  While this screen did identify some transgene suppressors, it also 

identified several suppressors that did not appear to affect transgene expression levels.  

We identified 391 initial ‘hits’ that allowed some growth of (PR)50 expressing animals.  

After six independent rescreens, we identified 12 genes that caused suppression of 

(PR)50 toxicity in at least 4/6 rescreens but did not have strong effects on transgene 

expression levels (Table 2.1).  Seven of the twelve (PR)50 suppressors have been 

previously reported to have loss-of-function phenotypes of ‘lethal’ or ‘sterile’, suggesting 

they would not be isolated in a chemical mutagenesis screen.  Remarkably, all of the PR 

suppressors have strong sequence homology to human genes, and four of the twelve 

genes were previously identified in PR or GR modifier screens performed in yeast, 

Drosophila, or mammalian cells [98-100], suggesting that mechanisms of (PR)50 are 

evolutionarily conserved.  Based on sequence homology, our PR suppressors fell into 

three distinct functional categories: nuclear transport/RNA binding, ubiquitin-mediated 

protein degradation, and chromatin regulation.  While the lab has pursued these genes 

further, including demonstrating that the human homologs of these genes also protect 

against PR toxicity in mammalian cells, I have not been involved in that phase of the 

project and will not discuss it further.  However, this screen illustrates the power of C. 
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elegans genetic approaches for the discovery of new and conserved mechanisms of RAN 

protein toxicity. 
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Figure 2.9 Transgene Suppressors Identified in Forward Mutagenesis Screen 

(A) Example images of myo-3p::(PR)50-GFP being expressed and on GFP RNAi to mimic 

suppression of PR toxicity.  (B) Average fluorescence of RFP and (C) GFP in a worm, as 

measured by the COPAS Biosorter through measuring the total fluorescence of the worm 

and dividing it by the time of flight of the worm.  N=500 animals. 
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Table 2.1 RNAi Gene Knockdowns that Suppress myo-3p::(PR)50-GFP Toxicity  

 

 

NLS=Nuclear Localization Signal 

1 – Interacts with both PR and GR in human cells; [195] 

2 – Enhanced the toxicity of GR50 in Drosophila model; [195] 

3 – Enhanced the toxicity of PR25 in Drosophila model; [99] 

4 – Suppresses the toxicity of PR50 when overexpressed in yeast; [98] 

2.3  Discussion 

The study of RAN peptides is still in its infancy, with the discovery of RAN 

translation less than a decade old [4].  Intensive study of the C9orf72 dipeptides has 

established that the arginine-rich dipeptides, GR and PR, are consistently toxic in a 

Table 1.1.  RNAi gene knockdowns that suppress myo-3p::(PR)50-GFP toxicity 

C. elegans Yeast Fly Human Description Predicted 
NLS 

Nuclear transport / RNA binding 

Rsp-6/C33H5.12 MRD1 X162 SRSF31 RNA binding protein; nuclear localized; homologous to 
yeast NSR1 No 

Ztf-4/T10B11.3 NGR1 CG424582 NCOA5/hnRNPC1 contains RRM domain Yes 

C18H9.3 SYH1 Gigyf GIGYF1 yeast homolog SYH1 binds proline-rich sequences and 
influences nuclear pore distribution Yes 

ima-3/F32E10.4 KAP1224 Kap-α32,3 KPNA31 1 of 3 nuclear importin alpha subunits No 

Ergo-1 None AGO1T1 AGO3 Production of endo-siRNAs Yes 

Ubiquitin-mediated protein degradation 
Bath-43/T16H12.5 None roadkill SPOP Speckle-type POZ protein; may interact with histones Yes 

Ufd-2/T05H10.5 Ufd2 UBE4B/ 
CG9934 UBE4a E3 and/or E4 ubiquitin ligase  No 

Rpn-12/ZK20.5 RPN12 RPN12 PSMD8 nonATPase regulatory subunit of the 26S proteasome No 

Rpn-9/T06D8.8 RPN9 RPN9 PSMD13 nonATPase regulatory subunit of the 26S proteasome No 

Chromatin regulation 
Met-2 /R05D3.11 MET2 eggless SETDB1 Histone methyltransferase Yes 

Utx-1/D2021.1 CYC8 Utx UTX/UTY Histone demethylase Yes 

Pis-1/T13F2.3 None PTIP PAXIP1 Pax transcription factor interacting protein Yes 
1 – Interacts with both PR and GR in human cells; Lee et al 2016 

2 – Enhanced the toxicity of GR50 in Drosophila model in Lee et al 2016 

3 – Enhanced the toxicity of PR25 in Drosophila model in Boeynaems et al 2016 

4 – Suppresses the toxicity of PR50 when overexpressed in yeast in Jovicic et al 2015 
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variety of systems [98, 99, 183], a finding replicated in our C. elegans model.  Previously 

studied systems lack the genetic tools available in C. elegans to separate chronological 

aging from biological aging.  We discovered modifying rates of aging had differential 

effects on (PR)50 compared to (GR)50.  Unbiased screens for genetic suppressors of PR 

toxicity have been performed in yeast [98] and mammalian cells [100], but these unbiased 

screens lacked the context of a multicellular organism and may have missed relevant 

pathways essential for cellular viability or growth.  Using our new C. elegans model, we 

bypassed this requirement using a post-developmental RNAi-based approach to screen 

for suppressors of (PR)50 toxicity in a multicellular organism and identified several 

essential genes involved in previously identified PR toxicity pathways, as well as a novel 

nuclear ubiquitination pathway that regulates PR toxicity [98-100].  

2.3.1   Cellular Localization of Dipeptides Is Linked with Toxicity 

The C9orf72 DPRs exhibit similar toxic and cellular characteristics in C. elegans 

to those observed in other models [98, 195].  In C. elegans, (PR)50 and (GR)50 are toxic 

in multiple tissues, while (PA)50 and (GA)50 are not toxic in any tissues.  Both PA and GA 

localize in the cytoplasm, while PR and GR localize in the nucleus.  PA is diffuse while 

GA forms aggregates.  Neurodegenerative proteins typically aggregate [251, 257, 258].  

Therefore, it was surprising that GA formed aggregates but did not cause toxicity.  In other 

systems, GA dipeptides exhibit mild toxicity at repeat lengths ≥100 [96, 182, 183], and 

exhibit length-dependent toxicity in human cells [183]. Because we only examined GA at 

50 repeats, our studies do not preclude the possibility that GA may also be toxic in C. 

elegans at higher repeat lengths.   
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We observed that both PR and GR are toxic in multiple tissues and localize to the 

nucleolus.  Nuclear localization appears to be necessary and sufficient for toxicity.  PR 

and GR are not toxic when sequestered from the nucleus and driving PR localization to 

the nucleus significantly increases PR toxicity.  We were unable to generate nuclear 

enriched GR expressing animals, possible because animals are unable to grow under 

such toxic conditions.  Arginine-rich DPRs are known to localize to the nucleolus [94, 184, 

195, 196] and cause nucleolar stress [195, 196].  However, we are the first to establish 

that PR toxicity requires its localization to the nucleus.  The arginine repeats seen in PR 

and GR mimic the serine-arginine (SR) repeats present in the SR domains of many RNA 

binding proteins involved in pre-mRNA splicing.  One common property of these RNA 

binding proteins is that the SR domain is highly disordered and promotes de-mixing from 

the surrounding solution.  This process is called phase separation and is a biophysical 

property of many membraneless organelles, such as the nuclear pore, nucleolus, and 

nuclear speckles.  One of the first discovered characteristics of PR/GR was their ability 

to phase separate with RNA regulatory proteins in the nucleus [175].  While our studies 

suggest that such nuclear interactions are critical for PR toxicity, a caveat of these studies 

is the membrane anchors used to restrain DPRs from the nucleus could disrupt other 

important properties of PR and GR, such as phase separation or other ordered 

interactions that require a 3-dimensional space.  Previous research found that the toxicity 

of the arginine-rich dipeptides is correlated with their ability to phase separate [184].  

Therefore, in restricting PR and GR to a 2-D membrane, we may have also inhibited the 

ability of PR and GR to phase separate.  To complement this membrane anchoring 

approach, we attempted to sequester PR and GR away from the nucleus using an nuclear 
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export signal (NES).  However, PR-NES and GR-NES still localized to the nucleus (data 

not shown).   

In mammalian cells, PR and GR also localize to other phase-separated 

compartments such as nuclear pores, spliceosomes, and stress granules [195, 242].  We 

did not observe PR and GR localization to any other phase-separated component besides 

the nucleolus.  This could be due to signal intensity, as the GFP signal of (PR)50 and 

(GR)50 in worms is extremely low.  Another possibility is that high expression of PR and 

GR in other systems may drive DPR localization to additional phase-separated 

compartments.  However, the extremely low levels of (PR)50 and (GR)50 expression in our 

C. elegans model may not be sufficient to drive DPR localization to these other 

membraneless compartments.  Localization to phase-separated compartments, such as 

the nuclear pore, are sometimes inferred from a DPR-induced impairment in 

nucleocytoplasmic transport or stress granule formation/disaggregation [195, 196].  We 

did not directly test either of these cellular processes.  However, multiple genes involved 

in nucleocytoplasmic transport are suppressors of PR toxicity in our C. elegans model.  

Therefore, it is likely that PR disrupts nuclear pore function in our model as has been 

observed in other systems.   

Toxic GR and PR DPRs are unique among proteins associated with ALS and other 

neurodegenerative diseases in that GR/PR do not primarily form protein aggregates.  

However, they do concentrate within phase separated cellular compartments.  Other 

aggregating mutant proteins associated with different neurodegenerative diseases also 

impair phase separation, such as tau in Alzheimer’s [193], mHTT in HD [194], and FUS 

[192] and TDP-43 [259] in ALS and FTD.  These proteins were initially thought to be toxic 
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due to the pathological aggregates they formed in their respective neurodegenerative 

disease.  However, aggregation of misfolded proteins can be separated from toxicity of 

the proteins, suggesting protein aggregates may not be the main cause of toxicity [131].  

Instead, low molecular weight homopolymers, known as oligomers [231], are now thought 

to be a driving cause of toxicity [260].  One way oligomers may be toxic is by disrupting 

normal phase separation properties [188, 259].  Such a mechanism could link C9orf72-

associated ALS/FTD to other neurodegenerative conditions typically categorized as 

protein aggregation diseases. 

2.3.2   Repeat-Associated Toxicity of PR 

 Repeat length is strongly correlated with toxicity in several repeat expansion 

diseases, such as the polyQ diseases [11].  There have been conflicting reports as to 

whether the length of the G4C2 repeat in C9orf72 affects the age of onset of the disease 

[26, 29, 261, 262].  Patients with a family history of ALS or FTD have been identified with 

a C9orf72 repeat expansion of only 30 G4C2 repeats [9].  However, the diseases may not 

be solely caused by the C9orf72 repeat expansion.  Other ALS-associated mutations 

sometimes occur with shorter repeat lengths of G4C2 and may act synergistically with the 

G4C2 repeats to enhance their toxicity, thus, masking decreases in toxicity due to a lower 

repeat length [28].  Another confounding variable is that blood samples are used to 

determine the number of G4C2 repeats in patients.  However, the number of G4C2 repeats 

in a blood sample may not match the number of G4C2 repeats in the neurons of patients.  

This is because the repeats can undergo dramatic somatic expansion in the brain [30].  

However, some studies suggest this not likely to be common [263].  Somatic expansions 
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of repeats are common in other diseases [30].  However, the frequency and extent of both 

somatic and germline expansions appears to be more drastic and variable in C9orf72 

[264, 265].   

As our C. elegans models contain the dipeptide repeat but not the nucleotide 

repeat, we solely studied toxicity of repeat length due to the dipeptides.  In patients, the 

length of dipeptides may not be reflective of the length of the G4C2 repeat expansion.  

Since RAN translation does not use a canonical start codon, it is unclear where RAN 

translation initiates in patient neurons.  It is also unknown where RAN translation 

terminates, as repetitive RNA can cause stalling of translation machinery [266].  

Therefore, the entire G4C2 repeat may not be translated.  Understanding whether 

dipeptides cause length-dependent toxicity aids in interpreting various disease models as 

well as determining the pathogenic mechanisms of the dipeptides.  The arginine-rich 

dipeptides exhibit increased toxicity with increased repeat length [94, 183].  A minimum 

repeat length for GR has been observed in multiple systems [94, 183, 240], but a repeat 

length where PR is nontoxic had not been identified before our work.   

We found that PR is toxic at 25 repeats and 50 repeats, but PR was not toxic at 5 

repeats and 15 repeats.  At all repeat lengths, the PR protein localized to the nucleolus.  

The decrease in toxicity was not due to an increase in the amount of PR dipeptide, as the 

GFP signal was significantly brighter in animals with PR5 than animals with PR50, 

suggesting more PR5-GFP dipeptides were present in the nucleus.  While there are more 

dipeptides, it would take five times more PR5 dipeptides to have the same molar amount 

of PR repeats in the nucleus as PR25, so the total molar concentration of PR repeats in 

the nucleus could determine toxicity.  In addition to concentration, the repeat length may 
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also directly contribute to toxicity.  For example, a minimum length of PR repeats might 

be required for PR to bind to a protein and disrupt its function.  Determining if there are 

structural or organizational differences between nucleoli with PR5 and nucleoli with PR50 

could give clues as to how PR50 is causing cellular toxicity.  In other systems, PR impairs 

nucleolar structure and overall translation [195, 196, 267].  It would be informative to 

determine if the minimum PR repeat length required for nucleolar structural impairment 

and translational inhibition is similar to the minimum PR repeat length required for toxicity.   

2.3.3  Age-Associated Toxicity of PR and GR 

  Another common theme in neurodegenerative diseases is age-associated toxicity.  

Disease-associated repeat expansions are present from birth; but patients do not develop 

neurodegeneration until middle to late age.  This delay could be due to pathogenesis 

associated with biological aging.  For example, the repeat-derived DPRs may only be 

toxic when cells are senescent and protein homeostasis pathways are functioning at 

reduced levels.  Another possibility is that the age-dependent toxicity is due to 

chronological aging, and repeat products slowly accumulate over time until they reach a 

toxic threshold.  Yet another possibility is that RAN translation and subsequent DPR 

production does not occur until late age.  RAN translation is increased by activation of the 

integrated stress response [86, 89, 90], which is upregulated with age [268].  However, 

the age requirements for RAN translation have not been studied and will require the 

production of new tools and reagents that are beyond the scope of my research.  

Therefore, I focused on determining if DPR toxicity was due to biological or chronological 

aging.   
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C. elegans are uniquely situated for studying age-dependent DPR toxicity, as 

aging has been extensively studied in C. elegans.  Mutations in the C. elegans daf-

2/insulin pathway double the lifespan and extend the healthspan of the worms [110, 112].  

One of the major effects of activating the daf-2/insulin signaling pathway is to delay the 

proteotoxic consequences of aging, thus making mutants in the daf-2/insulin pathway 

ideal for separating physiological aging from chronological aging [112, 269].  The daf-

2/insulin pathway has been used to distinguish between toxicity due to chronological 

aging and toxicity due to biological aging in other worm models of genetic forms of ALS, 

such as those associated with mutant forms of proteins such as SOD1 [130, 245, 257, 

270-272], TDP-43 [143, 273], and FUS [143].  In each of these cases, the worm models 

express a mutant protein that forms protein aggregates.  The toxicity associated with the 

SOD1 and TDP-43 models is suppressed by delaying biological aging through activation 

of the daf-2/insulin signaling pathway [273, 274].  One way the daf-2/insulin signaling 

pathway is thought to oppose the toxicity of these disease models is via the upregulation 

of genes that maintain protein folding (i.e. chaperones) or enhance the clearance of 

misfolded/aggregated proteins (i.e. proteases) [248].   

Like SOD1 and TDP-43, we found that (PR)50 toxicity can also be suppressed by 

activating insulin signaling.  However, unlike SOD1 and TDP-43, (PR)50 did not form 

detectable protein aggregates.  Given that mutations in genes comprising the daf-2/insulin 

signaling pathway can modify all three disease models, this suggests that (PR)50 may 

share common toxic mechanisms with SOD1 and TDP-43, for example, via disruptions in 

protein homeostasis.  Interestingly, insulin signaling did not appear to alter PR abundance 
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or subcellular localization in our model, suggesting that this pathway may act downstream 

from PR nuclear functions to provide toxicity protection.   

In contrast to (PR)50, we found that activation of the daf-2/insulin signaling pathway 

did not delay the toxicity of (GR)50.  While GR and PR toxicity are usually thought to occur 

through the same mechanisms, our results are among the first to suggest that there may 

be some important differences.  Such differences could be due to daf-2 induced changes 

in DPR expression levels, such as a reduction in (PR)50 levels but not (GR)50 levels.  

However, in vivo imaging suggests that DPR levels were not significantly altered in the 

daf-2 background.  Therefore, the precise nature of such differences remains unknown.  

To date, with the exception of daf-2, all of the genes we have identified whose knockdown 

suppresses (PR)50 toxicity also suppress (GR)50 toxicity.  In the future, genetic screens 

utilizing animals expressing (GR)50 may allow us to identify GR suppressors and define 

DPR-specific toxicity mechanisms. 

2.3.4  Suppressors of PR Toxicity 

Through a genome-wide RNAi screen, we identified several pathways required for 

PR toxicity.  These pathways included nucleocytoplasmic transport, mRNA processing, 

chromatin regulation, and proteasomal protein degradation (Table 2.1).  Some of these 

pathways have been previously linked to PR and GR toxicity by screens in other systems 

[93, 98-100, 243].  Components of nucleocytoplasmic transport have been identified as 

modifiers of PR and GR toxicity in yeast, flies, human cells, and now C. elegans.  Notably, 

hnRNPC/ztf-4, mGIGYF2/C18H8.3, KPNA3/ima-3, and SRSF3/rsp-6 were identified as 

modifiers of PR toxicity in our screen as well as in other systems [98, 99, 195, 243].  The 
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fact that in our blinded genome-wide screen, we discovered modifiers of PR toxicity also 

identified in other screens reflects both the conserved nature of PR toxicity and the power 

of the C. elegans system to identify conserved modifiers.   

We identified the nucleocytoplasmic trafficking pathway as being important for PR 

toxicity.  GR and PR induced nucleocytoplasmic trafficking defects have been reported in 

multiple systems [99, 242].  Given that the phase-separation properties of nuclear pores 

allows them selective permeability [189], it is logical dipeptides that localize to phase-

separated structures may change the chemical properties of these structures and disrupt 

nuclear transport [195].  Defects in nucleocytoplasmic transport also occur in other 

neurodegenerative diseases caused by phase-separating proteins, such as Alzheimer’s 

Disease [275] and HD [214]. Therefore, disrupted nucleocytoplasmic transport could be 

a general trait of neurodegenerative diseases.  However, disrupted nucleocytoplasmic 

traffic is unlikely to be the only way that PR and GR cause toxicity, as proteins not involved 

in nucleocytoplasmic transport have also been identified as involved in PR and GR 

toxicity.   

Other cellular pathways required for PR toxicity in our screen and several other 

screens are chromatin regulation and mRNA processing [98-100, 195, 243].  mRNA 

processing has been previously implicated in ALS as mutations in the mRNA transport 

proteins TDP-43 and FUS can cause ALS [276-278].  Aggregates of TDP-43 and FUS 

are also prominent pathological features of ALS [162, 279].  In general, RNA binding 

proteins (RBPs) have a higher likelihood of containing disordered regions, which are 

required for phase separating into stress granules or nuclear speckles [280, 281].  It is 

currently unclear if either disruption of RBP phase separation or disruption of the role of 
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RBPs in mRNA processing is a stronger contributor to ALS [282].  Epigenetic 

modifications such as altered chromatin methylations also occurs in types of ALS not 

caused by the C9orf72 repeat expansion [283, 284].  Overall, the effect of chromatin 

regulation in ALS has received limited attention.  However, our identification of chromatin 

regulators as being critical components of PR toxicity suggests that future studies in this 

area are warranted. 

 The fourth pathway that suppressed PR toxicity in our screen was the proteasomal 

degradation pathway.  Accumulation of misfolded proteins is a common theme associated 

with several neurodegenerative diseases [46, 285].  Previous screens in yeast and human 

cells have also identified the proteasomal degradation pathway as a suppressor of PR 

toxicity [98, 100] .  Of note, genes that code for two regulatory non-ATPase subunits of 

the 26S proteasome [100]  were identified in our screen, PSMD8/rpn-12 and 

PSMD13/rpn-9.  While there are 11 additional proteasome regulatory genes and 14 

additional core proteasome catalytic subunit genes in C. elegans, our screen did not 

identify any others as being required for PR toxicity.  Deletion of PSMD8 also suppressed 

PR toxicity in an unbiased CRISPR screen performed in human cells [100].  PR can bind 

to the proteasome and inhibit proteasomal degradation [286].  Therefore, PR may interact 

with the proteasome via interaction with RPN9 and/or RPN12.  Loss of these proteins 

may eliminate the ability of PR to interact with the proteasome, likely in the nucleus.  Along 

these lines, we also identified a nuclear E3 ligase adaptor (SPOP/BATH-43), which had 

not been previously found in a suppressor screen of PR.  Interestingly, an interactor of 

SPOP, RBX1, is a modifier of PR toxicity [100].  SPOP is a substrate adaptor for the 

CUL3-RING ubiquitin ligase and undergoes phase separation when it interacts with its 
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substrates [287], which may facilitate SPOP and PR interactions.  The fourth gene we 

found that is involved in proteasomal degradation is ufd-2/UBE4B, an E3/E4 ubiquitin 

ligase [288].  ufd-2/UBE4B was one of the strongest suppressors identified in the screen 

and, like bath-43/SPOP, localizes to the nucleus, suggesting that the E3 ligase adaptor 

SPOP and the E3 ligase UBE4B may interact physically and/or functionally.  Interestingly, 

SPOP is a well-established genetic cause for many prostate, endometrial, and renal 

cancers [289-291].  Recently, a small molecule inhibitor of SPOP was reported that 

effectively blocks the growth of SPOP mutant renal cancer cells [292].  In the future, it 

may be interesting to determine if this drug can also be utilized to inhibit SPOP in a 

neuronal context and protect against PR toxicity. 

2.3.5   Study Limitations 

 Our model had three main limitations.  First, like most other DPR models, our C. 

elegans model utilizes ectopic expression of DPR at levels that are unlikely to mimic 

physiological DPR levels.  However, DPR expression levels in patients have only been 

determined in postmortem samples, where they are rarely observed in motor neurons and 

when they are observed, they are present at extremely low levels [179, 180].  However, 

the rare nature of PR/GR positive motor neurons in postmortem tissue could be due to 

the death of cells containing the arginine-rich dipeptides.  This theory was supported by 

a recent rodent model where a high concentration of cells contained PR at the onset of 

disease, but very few cells contained PR near the end of the disease progression and 

many of the cells in the previously PR-rich region had died [10].  Overcoming this limitation 

is challenging since low level PR expression does not produce detectable phenotypes in 
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C. elegans (data not shown).  Even in patients, physiological expression levels of DPRs 

take 30-40 years to cause toxicity.  Therefore, overexpression may be a necessary 

compromise in model systems, including mammalian cell lines, in order to facilitate 

phenotypes required for discovery of disease mechanisms. 

A second limitation of our model is that each dipeptide was expressed individually, 

whereas dipeptides can be co-expressed in patient cells [34].  A study that co-expressed 

different dipeptides with GA found that GR or PR could sequester GA into the nucleus 

[96]. Therefore, co-expressed dipeptides are likely to have reciprocal effects on 

localization and toxicity.  The effects of the G4C2 RNA and reduction of the C9ORF72 

protein, both of which occur in C9orf72 repeat expansion patients [8], were also not 

addressed in our model, both of which could strongly affect the cellular environment and 

the toxicity of the different dipeptides.  C9ORF72 is involved in the autophagosome-

lysosome pathway and decreased levels of C9ORF72 cause impaired proteostasis and 

increase the toxicity of the RAN dipeptides [293].  In the future, examining the toxicity of 

DPRs in animals carrying a loss-of-function mutation in the C. elegans C9orf72 homolog 

alfa-1 [294] or in the presence of a G4C2 transgene [91, 295] may help to address these 

limitations. 

2.3.6   Future Directions 

 The limitations of our model, in combination with our findings so far, provide a 

roadmap for future research.  There are three future projects that would add to our 

understanding of C9orf72 DPR toxicity.  The first project is to co-express the dipeptides, 

most importantly PR and GR, to determine if the dipeptides act synergistically.  The only 
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previous co-expression model co-expressed GA with the other dipeptides [96]. As GA is 

not toxic in most models, we would instead focus on the commonly toxic dipeptides, PR 

and GR.  We could examine how co-expression of different dipeptides affects cellular 

localization and the relative toxicity of the dipeptides.  Such studies may reveal synergistic 

interactions between DPRs, which may engage completely distinct toxicity pathways than 

those identified with our individual PR toxicity model. 

The second project would be creating a more accurate C. elegans model of 

C9orf72 toxicity that incorporates DPR toxicity, RNA toxicity and loss of C9orf72 function.  

Such a model may allow us to determine the significance of DPR toxicity in the presence 

of these additional factors.  To create such a model, we could insert a G4C2 repeat 

expansion in the first intron of the C. elegans C9orf72 homolog alfa-1 to mimic the G4C2 

repeat expansion in patients.  In patients, the G4C2 repeat expansion causes a reduction 

of C9ORF72 protein levels because the repeat reduces C9orf72 mRNA levels.  Thus, a 

G4C2 repeat expansion in the intron of alfa-1 may cause a reduction of ALFA-1 protein 

levels, making it a model for loss of C9ORF72 as well as a model for RNA toxicity.  Our 

lab has previously generated a C. elegans (G4C2)120 overexpression model, which 

undergoes RAN translation (data not shown).  However, the repeat is not in the context 

of either C9orf72 or alfa-1.  Placing this repeat within alfa-1 could create a more holistic 

perspective to understand the complicated relationship between loss of C9ORF72 

function, accumulation of repetitive RNA, and DPRs.  

 The third possible project is determining how PR impacts proteasome toxicity, 

which is currently being pursued by other members of the lab.  The ubiquitin-proteasome 

degradation pathway was previously implicated in ALS as knockdown of proteasomes in 
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murine motor neurons causes symptoms and pathology similar to ALS [49].  Several ALS-

causative mutations cause defects in the ubiquitin-proteasome pathway [296, 297].  In 

our model, RNAi knockdown of either bath-43/SPOP or ufd-2/UBE4B suppressed PR 

toxicity in C. elegans.  Whether knockdown of bath-43/SPOP or ufd-2/UBE4B also 

suppresses PR toxicity in human neurons needs to be determined.  Given that SPOP is 

an E3 ligase adaptor and UBE4B is an E3 ligase, on hypothesis is that SPOP and UBE4B 

interact to mediate PR toxicity.  Consistent with this hypothesis, both SPOP and UBE4B 

are localized to the nucleus [298, 299].  However, SPOP typically acts as an adaptor for 

cullin-type E3 ligases, and UBE4B is not a cullin-type E3 ligase.  This suggests either that 

SPOP and UBE4B exhibit a novel functional interaction or that other E3 ligases may 

mediate the role of SPOP in mediating PR toxicity.  Whatever the case, the observation 

that loss of ubiquitin proteasome components prevents PR toxicity is unusual and 

suggests that the stabilization of one or more pro-survival substrate may mediate 

protection against PR toxicity.  Interestingly, several known SPOP substrates are 

chromatin regulators, which were also identified in our genetic screen.  Testing whether 

chromatin regulators or other proteins are relevant targets of SPOP and/or UBE4B will be 

a major goal for future work. 

2.3.7   Summary 

Our C. elegans model of C9orf72-derived RAN dipeptides replicated previous 

findings in other systems and identified novel requirements for PR and GR toxicity.  We 

established that while PR and GR localize to the nucleus, PR and GR do not entirely 

share their mechanisms of toxicity.  PR toxicity requires an aging cellular environment, 
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while GR toxicity depends on the chronological age of the cell.  An RNAi suppressor 

screen found twelve conserved suppressors of PR toxicity.  Four of the twelve genes had 

been previously identified as interactors or modifiers of PR and GR toxicity in other 

systems.  All twelve of the PR suppressor genes have human homologues, suggesting 

that PR toxicity engages highly conserved pathways.  Therefore, our C9orf72 RAN C. 

elegans model established that RAN products can be characterized in C. elegans and 

that C. elegans models of RAN products can be used to screen for conserved 

suppressors of RAN product toxicity.   

2.4 Methods  

Caenorhabditis elegans strains and culture 

Strains were cultured on standard NGM media with E. coli OP50 bacteria.  Strains 

expressing (PR)50 and (GR)50 DPRs were cultured on gfp(RNAi) bacteria at 20°C until the 

experiment, when they were shifted to E. coli OP50.  The following strains were used; 

daf-2(e1370), daf-16(mu86), hsf-1(sy441).  Standard genetic approaches were utilized to 

cross mutants into the DPR backgrounds.  The homozygous genotype of every strain was 

confirmed by DNA sequencing of the mutant lesion.  Wild-type animals were reisolated in 

every cross and utilized as the DPR only control in resulting experiments.  DPR toxicity 

studies were carried out using animals grown at 25°C, unless otherwise noted. 
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Molecular Biology and Transgenics 

Codon-varied dipeptide sequences were isolated from previously described 

plasmids [94] (nucleotide sequences can be found in the Appendix D-Table 4.2).  (PR)5, 

(PR)15 and (PR)25 codon-varied plasmids were synthesized (GeneArt, ThermoFisher 

Scientific, Waltham, MA, USA).  Dipeptide sequences were isolated as a HindIII/BamHI 

fragment and subcloned into the C. elegans expression vector pPD95.79 to generate 

dipeptide with a C-terminal GFP tag.  Promoters were PCR amplified, incorporating both 

a 3XFLAG epitope immediately downstream from the start ATG and HindIII sites flanking 

the fragment.  Promoters were subcloned into the DPR-pPD95.79 vectors as HindIII 

fragments.  To make N-terminal GFP–(PR)50 and GFP–(GR)50 fusions, GFP was PCR 

amplified and cloned in frame with the start codon of the myo-3 promoter.  The dipeptide 

sequences were subcloned as a HindIII/BamHI fragment into the pPD49.26 expression 

vector.  The myo-3-GFP fragment was then subcloned into the DPR-pPD49.26 as a 

HindIII fragment.   

The membrane-bound DPRs were generated by a PCR fusion method.  We first 

amplified the signal sequence and transmembrane domain from the pat-3 gene as 

supplied in vector pPD122.39.  The membrane domain was then fused to the myo-3 

promoter in-frame with the start ATG and then subcloned as a HindIII fragment into the 

DPR-pPD95.79 vectors.  The resulting clones produce a membrane-localized DPR with 

the DPR facing the cytoplasm.   

To make the his-58–DPR fusions, the his-58 genomic sequence was PCR 

amplified and Gibson cloned (New England Biolabs, Ipswich, MA, USA) into the myo-

3p::GFP sequence downstream of and in-frame with the GFP sequence.  The resulting 
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myo-3p::GFP-his-58 fragment was subcloned as a HindIII fragment into the DPR-

pPD49.26 vectors.  A list of nucleotide sequences for promoters used can be found in 

Appendix D-Table 4.4. 

Transgenic worms were generated by injecting the DPR construct (20ng/ml) and 

the myo-3p::mCherry pCFJ104 or myo-3p::dsRed2 marker plasmid (100ng/ml) into the 

gonad of wild-type animals.  Transgenes were integrated using a standard gamma ray 

(Cs137) mutagenesis, followed by selection of animals exhibiting 100% transmission of 

the mCherry marker.  Integrated strains were outcrossed six times to wild-type animals.  

In the case of (PR)50 and (GR)50, injected animals were maintained on gfp(RNAi) plates 

until the experimental assay was performed.  All procedures involving recombinant or 

synthetic nucleic acid molecules and materials were approved by the University of 

Pittsburgh Institutional Biosafety Committee. 

 

Thrashing Assay 

To measure thrashing, animals were maintained at 25°C on E. coli OP50, and 

transgenic animals for each strain were picked as L4s the day before the experiment.  

The following day, worms were placed on clean NGM plates and allowed to move freely 

for 10 min so that most of the bacteria came off the animal before the experiment.  Worms 

were then placed individually into 3 cm-petri dishes containing M9 buffer and allowed to 

adjust to the new environment for 5 min.  The worms were then observed for 30 s and the 

number of thrashes (reversal of body bend that crosses the midline) was counted.  We 

were unable to score thrashing in daf-2(e1370) animals as daf-2 animals have severely 

impaired thrashing. 
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Microscopy 

Worms were anesthetized (10mM levamisole) and mounted on agar pads for 

fluorescence microscopy.  Images were collected on either a Leica MZ16FA stereo 

dissecting scope or a Leica DMI4000 inverted microscope and a Leica DFC 340Fx digital 

camera (Leica Microsystems, Wetzlar, Germany).  Z-stack images were deconvolved 

using Leica AF6000 software.  Unless noted, images within an experiment were collected 

using the same exposure settings and processed with identical deconvolution 

parameters. 

 
Commissure Assay 

L4 animals of the indicated genotype were isolated at 25°C and imaged 24 hours 

later as ‘Day 1 adults’.  All of the strains contained an unc-47p::GFP marker to reveal 

GABA motor neuron morphology.  Animals were anesthetized in 10 mM levamisole and 

Z-series images of GABAergic commissures were collected.  Commissure breaks were 

identified as interruptions in the GFP signal surrounded by dorsal and ventral GFP in the 

commissures.  Blebbing was scored only in the commissures and was identified by the 

presence of one or more GFP varicosities.  For assays involving daf-2, we were unable 

to score either membrane blebbing or commissure breakage in (GR)50 expressing 

animals because the neuronal GFP marker used to score such events was undetectable, 

likely due to significant neurodegeneration that continued to occur in (GR)50; daf-2 

animals.  



 84 

Brood Size Assay 

For brood size assays, at least 10 L4 stage animals were individually picked to E. 

coli OP50-containing NGM plates at 25°C and transferred to a new plate every 24 hour 

until cessation of egg laying.  Each plate was allowed to age for 48–72 hour and the 

number of animals ≥L4 stage of development was counted.  Brood sizes were normalized 

within each strain to the mean brood size of animals grown on gfp(RNAi) bacteria. 

 

Paralysis Assay 

For all assays except for that shown in Figure 2.7, gravid DPR expressing 

transgenic animals were moved from gfp(RNAi) to E. coli OP50 and allowed to lay eggs 

for 24 hours.  The resulting progeny were allowed to grow up on E. coli OP50, permitting 

DPR accumulation.  Ten L4 animals were placed on each of three to five plates (N=30–

50 per assay).  Each day, animals that failed to move at least half a body length in 

response to manual stimulation with a platinum wire but were still alive (pharyngeal 

pumping, movement of less than half a body length) were scored as paralyzed.  Animals 

that died, desiccated, or exhibited internal hatching of progeny were censored from the 

assay.  Each day, mobile animals were transferred to a new plate and paralyzed, dead, 

and censored animals were removed from the assay.   

For the assay in Figure 2.7 D and E, HIS-58-(PR)50 progeny from animals moved 

from gfp(RNAi) to E. coli OP50 were not viable, presumably owing to the enhanced 

toxicity of the nuclear localized (PR)50 protein.  Therefore, for these assays, animals were 

removed from gfp(RNAi) as L4 stage animals, placed on E. coli OP50 at 25°C, and motility 

in the animals moved from gfp(RNA) was monitored as described above.  Since animals 



 85 

are removed from the assay once they are scored as paralyzed, it is not appropriate to 

utilize statistical approaches that compare means and errors between time points (i.e. T-

tests, ANOVA tests).  Instead, we utilized the Log-rank statistical method, a cumulative 

statistical approach that compares changes in population sizes over time for a specified 

endpoint (53).  Because this end-point assay is cumulative and not replicative, data points 

do not contain error bars.  For each assay, 2–3 independent trials with 45–50 animals per 

assay were performed and the results from one representative trial are shown. 

 

Lifespan Assays  

For lifespan assays, worms grow at 20°C were picked as L4 and allowed to grow 

at 20°C until the next day, when 10 young adults were placed on five 3 cm plates.  

Lifespan assays were performed with E. coli OP50 spotted on NGM plates at 25°C.  

Worms were classified as alive, dead (no movement in response to touch with a wire), or 

censored (lost or bagged worms) once a day for lifespan assays.   

 

COPAS Fluorescence Quantification 

Day 1 adult animals expressing each DPR-GFP transgene under the control of the 

myo-3 promoter were washed off plates and analyzed using a COPAS Biosorter.  

Fluorescent detection settings were identical for all samples.  Only animals with time-of-

flight measurements from 400-600 (young adults) were used for the analysis of 

fluorescence. 
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Quantitative PCR  

L1 animals from each of the indicated genotypes were synchronized using the 

hypochlorite method.  Animals were plated on E. coli OP50 and allowed to grow at 20°C 

for ~48 hours.  500 young adult animals were sorted into 1.5 ml tubes using a COPAS 

BIOSORT.  3 biological replicates were performed for each genotype.  Purified total RNA 

was converted to cDNA and quantitative PCR against GFP was carried out on an ABI7500 

qPCR system (Applied Biosystems, Fisher Scientific, Foster City, CA) using the SYBR 

green method.  Samples were normalized against expression for the actin gene act-2.  

Each sample was then normalized against the expression of the GFP only control. 

 

FRAP 

FRAP studies were carried out on levamisole anesthetized day 1 adult 

hermaphrodites using a Leica DMI8 confocal microscope at the University of Pittsburgh 

Center for Biologic Imaging.  Images were captured at 20–30 Hz.  Following imaging of 

baseline fluorescence, a region of interest corresponding to a portion of the nuclear or 

cytoplasmic foci was photobleached and fluorescence recovery within the photobleached 

area was monitored over at least 60 seconds.  Data were normalized so that the image 

preceding the photobleach was set to 100% and the first image following the photobleach 

was set to zero percent. 

 

ENU Forward Mutagenesis Screen 

C. elegans L4s were placed in 2.4mM ENU and then gently shaken for 4 hours at 

room temperature.  The worms are then washed 5x with M9 and allowed to recover for 
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24 hours on NGM plates.  After 24 hours, gravid P0s were picked and allowed to lay 

progeny on (gfp)RNAi plates for 6 hours.  The P0s were then removed and the plates with 

the eggs were placed at 20°C.  After a week, the starved progeny were washed onto E. 

coli OP50 and placed at 25°C.  After a week, the worms still growing at 25°C were picked 

as possible candidates.  To ensure the independence of alleles, only one candidate was 

picked per plate. 

 

COPAS Sorting of Suppressors 

Bleach synchronized adult day 1 adult animals were sorted through the COPAS 

Biosorter (Union Biometrica, Holliston, MA, USA).  The overall RFP signal of the worm 

and the worm time of flight of were measured.  Relative RFP signal was measured as 

(Overall RFP signal / Time of flight) and used to test for transgene suppression. 

 

RNAi Screen 

Genome-wide RNAi screening was performed using a commercially available 

RNAi feeding library (MRC Geneservice, Cambridge, U.K.).  Single colonies were 

inoculated into 1 ml of LB media containing 25μg/ml carbenicillin and grown overnight 

with shaking at 37°C.  10 microliters of each culture were spotted on each well of a 24-

well plate containing NGM with 20mM NaCl, 1mM IPTG, and 25μg/ml carbenicillin.  15-

20 eggs were seeded in each well and the plates were incubated for a week at 20°C.  

They were then scored on their ability to move and have progeny.  The clones were 

rescreened 2 times and those that are picked up 4/6 times were counted as suppressors 

of (PR)50 toxicity. 
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Statistical Analysis 

Paralysis assays were analyzed using the Kaplan–Meier log-rank function 

(OASIS) [300, 301].  Comparisons of means were analyzed with either a two-tailed 

Student’s t-test (two groups) or ANOVA (three or more groups) using the Tukey’s or 

Dunn’s post-test analysis as indicated in GraphPad Prism7 (GraphPad Software, Inc., La 

Jolla, CA, USA).  P-values of<0.05 were considered significant. 
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3.0  HD RAN Polypeptides Exhibit PolyQ-Independent Toxicity 

3.1  Introduction 

Repeat-Associated non-AUG (RAN) translation occurs in four different disease 

caused by a CAG/CTG repeat expansion: Huntington’s disease (HD) [12], spinocerebellar 

ataxia type 8 (SCA8) [4], Huntington disease-like 2 (HDL2) [4], and Fuchs endothelial 

corneal dystrophy (FECD) [85].  All four CAG repeat expansions encode identical 

homopolymeric RAN peptides, although the flanking sequences differ between genes.  

There are 10 other neurodegenerative diseases caused by a CAG or CTG repeat 

expansions that are likely to undergo RAN translation, although experimental evidence is 

currently lacking.  Altogether, fourteen distinct diseases could produce RAN translation 

products from a CAG/CTG repeat.  Determining which of the CAG/CTG RAN 

polypeptides are pathogenic and defining their mechanism(s) of toxicity could expand our 

understanding of CAG/CTG repeat expansion diseases.  

HD is the most common CAG/CTG repeat expansion disease [302, 303].  Patients 

suffer from this incurable neurodegenerative disease for decades before passing due to 

secondary complications.  HD patients commonly exhibit psychological, cognitive, and 

motor problems such as depression, rigid thinking, and chorea, respectively [202].  The 

CAG repeat expansion in the Huntingtin gene, HTT, causes all cases of HD [205].  

Patients with a CAG repeat expansion ≥40 repeats in HTT (also referred to as mutant 

HTT (mHTT) in HD patients) begin to exhibit HD-associated motor defects at ~40 years 

of age [55, 203].  However, the age of onset of HD is inversely correlated with the length 
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of the CAG repeat [205].  In other words, patients with long CAG repeats develop the 

disease earlier in life than patients with shorter CAG repeats.  Large increases in the 

length of the CAG repeat arise through impaired replication of the G/C-rich repeats during 

germline division [304].  Impaired repeat replication leads to intergenerational increases 

in CAG repeat lengths, or genetic anticipation, which causes an earlier age-of-onset of 

HD in the offspring relative to the parent [304].  Despite the clear genetic basis for HD, 

the molecular mechanisms that drive disease severity and outcomes are still poorly 

understood.  Currently, HD and other CAG repeat expansion disease are incurable.   

HD is an autosomal dominant monogenic disease.  Therefore, most patients have 

a family history of HD [305] and are aware at an early age that they are at risk of 

developing HD [306].  These patients can undergo pre-symptomatic genetic testing for 

HD, but they are not diagnosed as having HD until they develop motor defects [307].  The 

average post-diagnosis lifespan for HD patients is ~20 years [203].  Prior to diagnosis, 

HD patients have an increased risk of psychological problems up to ~15 years before 

motor symptoms appear [207, 208].  Patients typically discover their risk for HD as 

juveniles, when their parents develop HD.  The patients can confirm their HD status at 

age 18, when they can undergo genetic testing.  Patients can display cognitive [208] and 

psychiatric [207] defects due to HD up to 15 years before diagnosis (~30 years of age). 

Motility defects normally begin ~40 years of age [203], with patients living 10-20 years 

after motor problems arise.  Since there are no corrective treatments for HD, this disease 

has a lifelong impact on patients.   

Therapeutic strategies for treating HD have focused on the polyglutamine (polyQ) 

tract within the first exon of the HTT gene, which is encoded by the CAG repeat 
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expansion.  The ability of polyQ to aggregate correlates with the length of the polyQ 

polypeptide.  Levels of polyQ aggregation also increase with age [75].  Because of these 

characteristics, the polyQ aggregates were initially thought to be the cause of toxicity.  

However, the ability of polyQ to aggregate can be separated from polyQ toxicity [131].  

Current studies suggest that polyQ oligomers (low abundance, low molecular weight 

homopolymers [231]) are stronger contributors to HD then polyQ aggregates (abundant 

high molecular weight polymers [231]) [308].  However, brain regions such as the caudate 

white matter lack detectable polyQ aggregates but still undergo apoptosis in HD [12].  In 

addition, juvenile HD patients have ≥60 CAG repeats and minimal detectable polyQ 

aggregates in their brains, even though there is widespread loss of neurons [12].  These 

data clearly suggest that polyQ-independent disease mechanisms also contribute to HD 

pathology. 

 One potential polyQ-independent disease mechanism is the production of 

homopolymeric RAN peptides, which was discovered to occur in HD in a landmark 2015 

study [12].  In both adult and juvenile patients, HD RAN products are present in brain 

regions lacking polyQ that are still undergoing apoptosis.  Interestingly, some of these 

polyQ deficient brain regions have high levels of other RAN peptides [12].  Thus, RAN 

products appear to contribute to HD in both adults and juvenile patients.  HD CAG repeat 

expansions produce four RAN products: polySerine (polySer), polyLeucine (polyLeu), 

polyAlanine (polyAla), and polyCysteine (polyCys).  Canonical translation produces 

polyQ.  All four RAN peptides and polyQ are weakly toxic at 90 repeats when 

overexpressed in neuronal cells [12]. Whether or not these peptides are also toxic at more 

disease-relevant lengths found in the majority of HD patients is not known.  Both polySer 
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and polyGln form protein aggregates in cell culture [12]. Protein aggregates sequester 

cellular protein folding and degradation resources [310]. Therefore, aggregation of RAN 

peptides other than polyQ could disrupt protein folding molecular pathways required for 

HD models.  Whether protein folding pathways or other molecular pathways influence the 

toxicity of RAN peptides is not known.   

To address these questions, I created codon-varied GFP-tagged HD RAN 

homopolymers at both disease-relevant lengths (38 repeats) and highly expanded lengths 

(90 repeats).  I expressed these peptides in multiple cellular settings in C. elegans.  I 

found that all RAN peptides, except for polyLeu, formed highly compact aggregates.  The 

only RAN peptide that was toxic in all cellular settings was polyLeu.  I found that polyLeu 

displayed length-associated toxicity and caused significant neurodegeneration in vivo.  

Notably, neurodegeneration was not observed with codon-varied polyGln, suggesting that 

these two polypeptides cause toxicity through distinct pathways.  To better understand 

the pathways of polyLeu toxicity, I performed an unbiased forward genetic ENU 

mutagenesis and identified suppressors that ameliorate the toxicity of polyLeu.  Whole-

genome resequencing and RNAi phenocopy identified several candidate genes required 

for polyLeu toxicity.  The molecular nature of these genes suggests that polyLeu causes 

toxicity through mechanisms involving the secretory pathway.  Identifying the cellular 

processes involved in polyLeu toxicity gives direction to future research for treatments for 

HD patients, as well as patients suffering from other diseases caused by CAG repeat 

expansions. 
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3.2  Results 

3.2.1  HD RAN Model 

The CAG repeat expansion in HD could be toxic through the G/C-rich RNA, the 

polyGln peptide produced through canonical translation, or through one or more of the 

homopolymeric peptides produced through RAN translation.  To focus on the individual 

toxicity of the RAN peptides, I created C. elegans models for each of the five possible 

CAG RAN products.  To individually model the RAN peptides, a previously described 

codon-variation strategy [95] was employed for each homopolymeric peptide to maintain 

the amino acid repeats but remove the nucleotide repeats.  The codon-varied constructs 

were also designed to minimize computationally predicted RNA hairpin structures in the 

resulting RNA, as hairpin structures are thought to be required for RAN translation and 

could lead to the production of non-relevant RAN products [311].  The individual RAN 

peptides were instead expressed through canonical AUG-initiated translation and studied 

at either 38 repeats or 90 repeats (Figure 3.1 A).  The 38 repeat peptides are similar to 

the minimum length of 40 CAG repeats that ensures a patient will develop HD.  The 90 

repeat peptides mimic the length investigated in a previous paper [12].  The 

homopolymeric peptides were also tagged at the C-terminus with GFP for in vivo 

visualization of the RAN peptides (Figure 3.1 A).  The modeled RAN peptides lacked 

genetic context (i.e. no flanking human HTT sequence) as each RAN peptide is in a 

different reading frame leading to a unique genetic context for each RAN peptide.  

Including the genetic contexts of the RAN peptides would limit our ability to assign 

phenotypes to specific homopolymeric peptides rather than flanking sequences.  To 
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compare the characteristics of the individual RAN peptides to the characteristics of the 

mHTT CAG repeat expansion, I created an expanded CAG repeat with polyGlutamine in-

frame with the start codon.  Throughout my thesis, I will refer to the CAG-encoded 

polyGlutamine as “polyQ” and the codon-varied polyGlutamine as “polyGln”.  Unlike the 

codon-varied polyGln, the CAG-encoded polyQ may exhibit either RNA toxicity, toxicity 

from RAN products besides polyglutamine, or both.  To study the functional 

consequences, I expressed each codon-varied construct in both GABAergic neurons and 

muscle cells using cell type specific promoters.  

3.2.2  GABAergic Neuron Model of HD RAN Polypeptides 

 Neurodegeneration due to HD starts in the striatum and most strongly degrades 

the GABAergic neuronal population in the striatum [312].  HD RAN polypeptides are found 

in degenerating regions of the striatum that lack polyQ, suggesting they contribute to 

neurodegeneration [12].  We expressed RAN polypeptides specifically in the GABAergic 

neurons of C. elegans using the unc-47 promoter, which controls the expression of the 

vesicular GABA transporter.  There are 26 GABAergic neurons in C. elegans and 19 of 

the 26 GABAergic neurons are motor neurons [146].  GABAergic neuron somas are 

located along the ventral nerve cord and extend single axons, known as commissures, 

across the dorsal-ventral midline to the dorsal muscle cells.  Commissures are commonly 

used to measure neurodegeneration since they provide single axon resolution [247, 313].  

The function of GABAergic neurons can also be assessed using a reversal assay, since 

loss of GABAergic neurons causes a significant deficit in the ability of C. elegans to 

reverse direction [146].  Quantifying the number, morphology, and function of GABAergic 
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neuron commissures is a useful measure of the neurotoxic potential of proteins expressed 

in C. elegans [95, 143, 144, 247].   

We characterized the effect of the CAG-derived RAN polypeptides on these 

GABAergic neuron parameters.  (Q)38-GFP worms, which expressed CAG-encoded 

polyglutamine (and possibly other RAN peptides), strongly inhibited the ability of the 

worms to reverse when expressed in GABAergic neurons.  Surprisingly, (Gln)38-GFP 

worms expressing polyglutamine encoded by a codon-varied sequence were comparable 

to control animals expressing GFP alone.  In contrast, (Leu)38-GFP worms exhibited 

highly significant movement defects.  (Ala)38-GFP and (Ser)38-GFP also caused reversal 

defects (Figure 3.1 B).  No defects were observed for (Cys)37-GFP. 

To test if the functional defects were caused by cellular damage, the neuronal 

commissure structures were examined.  Neurodegeneration of commissures causes 

blebbing (swelling of the cellular membrane), breaks in the commissures, or branching of 

the commissures [95, 247, 314, 315].  The formation of the commissures was assessed 

by co-expressing unc-47p::RFP, which fills the GABAergic neurons.  Commissure 

morphology was assessed by measuring the percentage of total detectable commissures 

in the animal that were blebbing, broken, or failed to reach the dorsal side.  Consistent 

with our functional data, animals expressing (Gln)38-GFP exhibited no defects in 

commissure structure (Figure 3.1 C, D).  Animals expressing (Leu)38-GFP exhibited highly 

penetrant commissure defects, although the neuron somas were intact.  The GABAergic 

neurons in (Leu)38-GFP worms traversed the length of the animals instead of the width, 

suggesting defects in neuron stability and/or axon guidance (Figure 3.1 C, D).  (Q)38-GFP 

worms also had abnormal commissures, with roughly half of the commissures in each 
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worm being abnormal or incomplete.  (Cys)37-GFP did not cause a significant functional 

defect.  However, 19% of the commissures in (Cys)37-GFP worms were abnormal.  

(Ser)38-GFP caused a slight functional defect but did not cause a significant defect in the 

form of the commissures (Figure 3.1 C).  These data show that the expression of (Leu)38-

GFP, but not other RAN peptides, is sufficient to cause both structural and functional 

defects in GABAergic neurons.  They also suggest that factors other than polyglutamine 

contribute to the toxicity of (Q)38-GFP, as a codon-varied (Gln)38-GFP did not exhibit 

toxicity. 
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Figure 3.1 PolyLeucine Is the Most Toxic HD RAN Peptide in Neurons 

(A) Molecular strategy for expression of codon-varied polypeptide repeats in C. elegans.  

(B) Quantification of the reversal ability of transgenic animals expressing the indicated 

polypeptide under the GABAergic neuron specific unc-47 promoter.  N=15 

animals/genotype.  Each symbol represents one animal, the horizontal line is the mean 

and the bars define the standard deviation.  *P<0.05, **P<0.01, ***P<0.001 versus GFP 

control (one-way non-parametric ANOVA with a post hoc Dunn’s multiple comparison 

test).  (C) Quantification of incomplete or abnormal commissures.  For each animal we 

counted the number of commissures with blebbing, breakage, or that failed to reach the 

dorsal side, and divided that number by the total number of commissures.  N=11-20 

animals/genotype.  The data is expressed in a box and whisker plot where the whiskers 

go from min to max.  Statistics done by one-way non-parametric ANOVA with a post hoc 

Dunn’s multiple comparison test against the GFP control.  (D) Representative images of 

unc-47+ motor neurons in animals expressing the described polypeptide.  V points to 

blebs, arrowhead points to branching, and the asterisk is at commissures that fail to reach 

the dorsal side.  Scale bar=10 μm.   
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3.2.3  Muscle Model of HD RAN Polypeptides 

 C. elegans GABAergic neurons are anatomically small (cell bodies 1-2 micron) and 

inaccessible to some genetic approaches, such as RNAi-mediated gene knockdown 

[316].  To gain more insights into RAN peptide cell biology, as well as to generate a 

platform for RNAi and forward-mutagenesis based genetic suppressor screening, we 

expressed the HD RAN polypeptides in muscle cells using the myo-3 promoter, which 

encodes a muscle-specific myosin heavy chain A.  Toxicity in muscle cells can cause 

larval arrest and/or motility defects [75, 95].  We found that muscle expression of (Leu)38-

GFP caused highly penetrant larval arrest phenotype (Figure 3.2 A).  Muscle expression 

of (Ala)38-GFP, (Gln)38-GFP, (Cys)37-GFP, and (Q)38-GFP caused a weakly penetrant 

larval arrest phenotype.  However, (Ser)38-GFP did not induce larval arrest.  To facilitate 

post-developmental expression of each peptide, we initially grew animals on gfp(RNAi) 

and then switched them to empty vector(RNAi) to prevent peptide expression during 

development and permit expression during adulthood [95].  (Q)38-GFP caused a 

significant increase in paralysis of animals as they aged.  However, (Ala)38-GFP, (Gln)38-

GFP, and (Leu)38-GFP caused no significant enhancement in paralysis (Figure 3.2 B).   

Paralysis assays measure strong defects in muscle function.  However, the binary 

nature of this assay is not a sensitive measure of motility.  To more quantitatively measure 

changes in motility, we performed thrashing assays.  While only (Q)38-GFP caused age-

dependent paralysis, (Q)38-GFP, (Cys)37-GFP, (Leu)38-GFP, and (Ala)38-GFP all caused 

a decrease in thrashing rates.  (Ala)38-GFP motility defects were highly penetrant, 

whereas (Q)38-GFP, (Cys)37-GFP, and (Leu)38-GFP defects were more variable.  Similar 

to motor neuron expression, muscle expression of (Q)38-GFP caused a strong motility 
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defect, but (Gln)38-GFP did not cause a motility defect (Figure 3.2 C).  As in GABAergic 

neurons, this suggests that factors other than polyGln contribute to the toxicity of polyQ.   

To test if increased repeat length would cause an increase in toxicity, we 

expressed 90 repeats of codon-varied polyGln, polySer, polyCys, and polyLeu.  We were 

unable to synthesize 90 repeats of polyQ or codon-varied polyAla for unknown technical 

reasons.  Only (Gln)90-GFP and (Leu)90-GFP caused significant thrashing defects (Figure 

3.2 D).  Only polyGln had a strong increase in toxicity with increased repeat length, which 

had been previously observed in C. elegans polyQ models [75].  None of the HD 

polypeptides caused a shortening of lifespan when expressed at 38 repeats (Figure 3.2 

E).  
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Figure 3.2 The Majority of HD RAN Polypeptides Are Toxic in Muscle 
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(A) Larval arrest measured by sorting a synchronized population 48 hours after eggs were 

laid on a plate.  The worms were sorted through the COPAS Biosorter and animals with 

a time of flight ≥ 300 were categorized as adults, animals with a time of flight <300 were 

categorized as larvae.  (N=188-269 worms), *P<0.05, ****P<0.0001, (Kruskal Wallis test 

of multiple comparisons with a post hoc Dunn’s multiple comparison test).  (B) Paralysis 

assay for adult animals raised in the absence of gfp(RNAi).  **P<0.01, (Log Rank Test 

with Bonferroni-adjusted p-value).  (C) Liquid thrashing quantification of transgenic 

animals raised in the absence of gfp(RNAi), expressing the indicating polypeptides under 

the muscle-specific myo-3 promoter.  N=20 animals/genotype.  Each symbol represents 

one animal, the horizontal line is the mean and the bars represent the standard deviation.  

*P<0.05, ***P<0.001, ****P<0.0001 versus GFP control (one-way non-parametric ANOVA 

with a post hoc Dunn’s multiple comparison test).  (D) Liquid thrashing quantification of 

transgenic animals expressing the indicated polypeptides under the muscle-specific myo-

3 promoter (one-way non-parametric ANOVA with a post hoc Dunn’s multiple comparison 

test).  (E) Lifespan measured in transgenic animals raised in the absence of gfp(RNAi), 

expressing the indicating polypeptides under the muscle-specific myo-3 promoter.  N=50 

(Log Rank Test with Bonferroni-adjusted P-value). 
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3.2.4  Localization Patterns of HD RAN Polypeptides 

 To gain insights into the cell biological properties of the GFP-tagged HD RAN 

polypeptides, we took advantage of the transparent nature of C. elegans and performed 

live animal fluorescent imaging.  Previous studies found that polyQ and polySer form 

puncta at disease-relevant repeat lengths [12, 75].  However, there is nothing known with 

regards to the localization properties of the other codon-varied RAN peptides.  Both (Q)38-

GFP and (Gln)38-GFP had both diffuse signal and puncta, consistent with previous polyQ 

models (Figure 3.3 A).  (Ser)38-GFP formed puncta but did not have diffuse signal (Figure 

3.3 A), consistent with other polySer models [12].  (Ala)38-GFP and (Cys)37-GFP also 

formed puncta.  PolyCys and polySer localization patterns appeared similar.  (Cys)90-RFP 

and (Ser)90-GFP exhibited strong colocalization, suggesting they are forming on similar 

structures (Appendix C- Figure 4.1).  Unlike the other RAN peptides, the GFP signal for 

(Leu)38-GFP was extremely low and only detectable in a subset of adult muscle cells 

(vulval muscle cells) (Figure 3.3 A).  The low polyLeu signal could be due to localization 

within a cellular compartment that impairs GFP fluorescence.  GFP has impaired folding 

in oxidizing environments such as the lumen of the endoplasmic reticulum (ER) [317]. 

Additionally, leucine repeats commonly insert into membranes [318, 319].  Therefore, one 

possibility is that (Leu)38-GFP is in a membrane and the GFP tag is oriented within an 

oxidizing environment.  To test this possibility, I replaced GFP with a more stable version 

of GFP called superfolded GFP (sfGFP).  sfGFP has several point mutations that enhance 

folding and fluorescence in non-optimal environments, such as the ER [320, 321].  Unlike 

(Leu)38-GFP, (Leu)38-sfGFP was observed in adult muscle cell, in addition to the vulval 

cells, and localized to the periphery of large spherical bodies of unknown origin (Figure 
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3.3 B).  This suggests (Leu)38 is membrane-bound and localized to an environment that 

impairs folding of GFP.    
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Figure 3.3 Every HD Polypeptide Forms Puncta at 38 Repeats 

(A) Representative images of the indicated polypeptide in muscle expressed under myo-

3 promoter.  Asterisks mark intestinal autofluorescence.  Scale Bar=10 μm.

(B) Representative image of myo-3p::(Leu)38-sfGFP.  Scale Bar=10 μm.
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3.2.5  All HD RAN Peptides Form Aggregates 

All HD RAN products form puncta in vivo, which may be aggregates.  PolyGln and 

polySer are known to form aggregates [12, 127].  However, the structure of the puncta 

containing the other HD RAN products is unknown.  The pathogenicity of the HD RAN 

peptides may be related to type of structures they form in cells.  PolyQ aggregates are a 

common feature of HD patient tissue, and certain modifiers of polyQ aggregation also 

modify the toxicity of polyQ [310]. To better understand the cellular properties and 

potential toxic mechanisms of the HD RAN polypeptides, we tested if the HD RAN puncta 

exhibited restricted diffusion properties, a characteristic of protein aggregates [252].  The 

standard in vivo test for aggregation is Fluorescence Recovery After Photobleaching 

(FRAP), which measures the rate of diffusion of GFP-labeled molecules within a structure 

[252].  Soluble GFP molecules rapidly recover most of their fluorescence following FRAP, 

whereas protein aggregates exhibit slow and limited fluorescent recovery.  Previous 

polyQ models have established that polyQ forms aggregates, so polyQ was used as a 

positive control for aggregation.  We found that polyGln, polySer, polyCys, and polyAla 

exhibited limited FRAP recovery similar to aggregated polyQ (Figure 3.4).  However, 

polyLeu FRAP recovery was more rapid and extensive, suggesting that polyLeu 

structures have more freely diffusible molecules within the aggregate and/or more 

exchange of molecules with the surrounding cytosol.  The total recovery of (Leu)38 was 

only 20%, so the majority of polyLeu peptides are immobile in the aggregate (Figure 3.4 

C).  Every HD polypeptide except for polyLeu formed aggregates with a fluorescent 

recovery comparable to a polyGln aggregate, including the nontoxic polySer, 
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emphasizing that polyLeu may be toxic by affecting different cellular pathways then 

polyglutamine. 
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Figure 3.4 PolyLeu Forms Protein Aggregates With Limited Mobility 

(A) Representative images from FRAP analysis of subcellular localized polypeptide

proteins expressed in muscle.  Dashed outline indicates the site of photobleaching and 

post-bleaching quantification.  Recovery images are 60 seconds post-bleach.  Scale 

bar=1 μm.  (B) Quantification of FRAP imaging.  Data shown are mean ± standard error 

of the mean (SEM), N=5-17 datasets/genotype).  (C) Average equilibrium fluorescence 

recovery after 60 seconds.  Data shown are mean ± SEM for 5-17 datasets.  **P<0.01, 

(one-way ANOVA with a post hoc Dunn’s multiple comparison test). 
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3.2.6  PolyLeu Toxicity is Length Dependent  

Like aggregation, length-dependent toxicity is a classic characteristic of CAG 

repeats.  PolyGln is well established to exhibit length-dependent toxicity, which we 

confirmed using our codon-varied constructs (Figure 3.2 C, D).  To determine if polyLeu 

also exhibits length-dependent toxicity, I expressed polyLeu at 11 repeats, 20 repeats, 29 

repeats, and 38 repeats in GABAergic neurons and muscle cells.  (Leu)11-GFP, (Leu)20-

GFP and (Leu)29-GFP caused no functional defects in GABAergic neurons (Figure 3.5 A). 

Only (Leu)38-GFP caused functional defects (Figure 3.5 A).  Therefore, polyLeu exhibits 

length-dependent toxicity in GABAergic neurons and requires more than 29 repeats to 

cause toxicity.  The change in toxicity could be due to altered localization patterns of 

polyLeu depending on the length of leucine repeats.  We consequently expressed the 

various lengths of polyLeu in muscle cells to determine whether the different lengths of 

polyLeu had similar localization patterns.  (Leu)11-GFP and (Leu)20-GFP had distinct 

localization patterns that appeared localized to membranes, since they outlined but did 

not fill structures within the cell.  However, (Leu)11-GFP localizes to a reticular structure 

that fills the muscle cell and small spherical structures ~1 µm in diameter, while (Leu)20-

GFP localizes to the periphery of the muscle cell, potentially the plasma membrane, as 

well as various structures inside the cell that exhibit no consistent shape (Figure 3.5 C). 

Cellular localization of (Leu)29-GFP and (Leu)38-GFP was challenging to determine since 

both lengths of polyLeu appeared to inhibit the fluorescence of the GFP attached to the 

repeats (Figure 3.5 B).  The length-dependent decrease in fluorescence was specific to 

the polyLeu-bound GFP, as free RFP expressed in the same tissues did not have a 

length-dependent decrease in fluorescence (Figure 3.5 C).  A version of GFP with 
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enhanced folding (sfGFP) allowed the detection of (Leu)38 localization.  (Leu)38-sfGFP 

formed hollow spherical bodies that were ~1 µm in diameter, similar in size to the bodies 

seen with (Leu)11-GFP.  (Leu)38-sfGFP also had a weak signal in the body of the muscle 

cell, the structure of which was not determined.  Therefore, (Leu)11-GFP and (Leu)38-

sfGFP localized to similar hollow, spherical bodies ~1 µm in diameter.  (Leu)20-GFP had 

a distinct localization pattern outlining multiple structures in the cell.  (Leu)11-GFP, (Leu)20-

GFP, and (Leu)29-GFP did not exhibit the larval arrest observed in both (Leu)38-GFP and 

(Leu)38-sfGFP.  Together, these data suggest that the strong toxicity of (Leu)38-GFP is 

length-dependent, with more than 29 leucine repeats required to cause larval arrest when 

expressed in muscle, or reversal defects when expressed in motor neurons.  The increase 

in toxicity does not appear to be due to a change in the localization pattern of polyLeu, 

since non-toxic (Leu)11-GFP and (Leu)29-GFP exhibited many of the same localization 

properties as toxic (Leu)38-GFP.  The length-dependent toxicity of polyLeu, in addition to 

polyLeu being toxic in multiple tissues, suggests that polyLeu could be a strong 

contributor to CAG repeat toxicity. 
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Figure 3.5 Toxicity of PolyLeu Is Length Dependent 

(A) Quantification of the reversal ability of transgenic animals expressing the indicated 

length of polyLeu under the GABAergic neuron specific unc-47 promoter.  N=15 

animals/genotype.  Each symbol represents one animal, the horizontal line is the medan 

and the bars represent the standard deviation.  *P<0.05 versus GFP control (one-way 

non-parametric ANOVA with a post hoc Dunn’s multiple comparison test) (B) Average 

fluorescence of GFP and (C) RFP in single animals, as measured by the COPAS 

Biosorter through measuring the total fluorescence of the worm and dividing it by the time 

of flight of the worm.  N=149-611.  **P<0.01, ***P<0.001, ****P< 0.0001 versus myo-

3p::(Leu)11-GFP control (one-way non-parametric ANOVA with a post hoc Dunn’s multiple 

comparison test) (D) Representative images of the indicated length of polyLeu in muscle 

expressed under the myo-3 promoter.  The animals are day 1 adults.  Scale Bars=20 μm.    
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3.2.7  Forward Mutagenesis Screen to Identify Suppressors of PolyLeu Toxicity 

 To identify the molecular pathways required for polyLeu toxicity, we performed a 

forward mutagenesis screen for suppressors of polyLeu-induced larval arrest.  Animals 

were treated with N-Ethyl-N-Nitrosourea (ENU), which is widely used to induce mutations 

in forward mutagenesis screens [322-324].  ENU causes alkylation of nucleic acids 

leading to missense mutations and, unlike other mutagens like ethyl methanesulfonate 

(EMS), produces a broad spectrum of nucleotide changes [325].  After ENU treatment, 

animals self-fertilized while growing on (gfp)RNAi, which suppressed (Leu)38-GFP 

expression and toxicity.  Second generation animals were examined to determine if they 

carried homozygous recessive mutations that suppressed the toxicity of polyLeu.  The 

animals were removed from (gfp)RNAi and placed on E. coli OP50, a commonly used 

laboratory food source for C. elegans that allows expression of (Leu)38-GFP.  Any animals 

that grew and reproduced over multiple generations carried a genetic suppressor of 

(Leu)38-GFP toxicity (Figure 3.6 A).  To identify any suppressors that caused a general 

decrease in transgene expression, the expression level of another component of the 

same transgene, myo-3p::RFP, was quantified based on RFP fluorescence (Figure 3.6 

C).  myo-3p::RFP is located in the same transgene that expresses (Leu)38-GFP, as the 

two plasmids were co-injected and then integrated into the genome [326].  After selecting 

for suppressors that did not decrease transgene expression, 25 independent suppressors 

were isolated (Figure 3.6 B).  To determine if similar pathways were likely affected in the 

different suppressors, the localization of (Leu)38-GFP was examined in ten of the identified 

suppressors.  Three distinct localization patterns for (Leu)38-GFP were observed in the 

suppressors (Figure 3.6 D).  Two of the suppressors had wild-type expression patterns 
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of (Leu)38-GFP.  Six suppressors had increased diffuse signal in the muscle and two 

suppressors had diffuse signal in the gonads.  The variety of localization patterns 

suggests the screen identified several genes and/or pathways mediating (Leu)38-GFP 

toxicity. 

To identify the phenotype causing mutations, we used whole-genome sequencing 

(WGS) and subsequent RNAi phenocopying.  WGS was used to identify nonsynonymous 

single nucleotide polymorphisms (SNPs) and insertions/deletions (indels) in exons of the 

suppressors.  Several assumptions were made to simplify identification of the relevant 

mutations: the suppression is due to a single gene, the mutation causes loss of function, 

and the mutation is homozygous.  Homozygous mutations not found in the starting 

(Leu)38-GFP strain were identified in 914 genes (Figure 3.7).  Each suppressor had an 

average of 45.3 ± 12.6 genes containing polymorphisms.  While several genes were 

overrepresented in the screen (alh-2 (polymorphisms present in 10/25 suppressors), 

H03A11.2 (13/25 suppressors), tag-80 (23/25 suppressors), ttn-1 (25/25 suppressors), 

ZC247.1 (19/25 suppressors)), the same genes were also identified as containing 

polymorphisms in an unrelated forward mutagenesis screen performed in our lab and 

appear to be mutated frequently due to their large size.  Therefore, we chose to exclude 

these genes from further analysis.  For the remaining genes, we used the Enrichment 

Analysis Tool on WormBase (www.wormbase.org) to identify protein families 

overrepresented in our screen.  Overrepresented protein families included proteins with 

ATPase activity, active transmembrane transport, or ATP or GTP binding ability.  To test 

if any of these genes were necessary for larval arrest, I performed a candidate-gene RNAi 

screen (Figure 3.7).  I screened genes from the suppressor screen that were: mutated in 
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multiple suppressors, had a stop-codon-inducing mutation, or were part of an over-

represented protein family.  Of the 165 genes that fit these requirements, 108 genes had 

available RNAi clones for the gene knockdown.  These 108 genes were screened by 

RNAi in two separate screens using three replicates per screen.  Five gene knockdowns 

consistently suppressed (Leu)38-GFP induced larval arrest in at least 3 of 5 plates during 

the two screens (Table 3.1).  Many of the candidate genes caused larval arrest when 

knocked down with RNAi, which is likely why only 5 gene knockdowns phenocopied the 

suppression of larval arrest.  One of the candidates, F35A5.1, has the same SNP mutation 

in 17 suppressors, with no other mutations in F35A5.1 present in suppressors.  The 17 

suppressors have different localization patterns of (Leu)38-GFP and different levels of 

suppression of larval arrest, making it unlikely that the mutation in F35A5.1 is the 

causative mutation.  Another gene, T28A11.17, is part of a gene family in C. elegans with 

at least eight other genes, some of which contain an L-domain, a protein domain also 

found in cell-surface receptors such as the insulin receptor (IR) or the epidermal growth 

factor receptor (EGFR).  T28A11.17 is predicted to have two transmembrane domains, 

suggesting this protein is found in the secretory pathway.  However, T28A11.17 does not 

have a human homologue and its function is unknown, making its disease relevance 

unclear.  Therefore, we focused on the three remaining genes, each of which were part 

of a common protein family.  SRI-62 is a G-protein coupled receptor (GPCR), PMP-2 is 

an ATP-binding cassette transporter (ABC transporter), and UBH-4 is a deubiquitinating 

enzyme (Table 3.2).  To determine if loss of these genes caused similar effects, I studied 

the suppressors thought to have causative mutations in one of the genes. 
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I characterized the mutations in the identified polyLeu suppressors to determine 

how the mutations in sri-62, pmp-2, and ubh-4 could suppress toxicity.  The four 

suppressors all strongly suppress larval arrest (Figure 3.6 B and Table 3.2).  sri-62 (dr57) 

affects a G-protein-coupled receptor (GPCR) of the serpentine chemoreceptor class.  

dr57 converts a glutamine to an early stop-codon mutation (Q85*), which causes sri-62 

truncation or mRNA degradation through nonsense-mediated mRNA decay.  The sri-62 

mutant had diffuse (Leu)38-GFP in the gonad of animals, which is never observed in wild-

type animals.  pmp-2(dr59) affects a predicted ortholog of the human ABC transporter 

ABCD3, which is involved in peroxisomal import of fatty acids and is associated with some 

forms of a peroxisome assembly disorder called Zellweger syndrome.  dr59 generates a 

missense mutation (L457F) within the P-loop domain of pmp-2 that hydrolyzes ATP.  The 

mutated leucine is also conserved between C. elegans and humans, suggesting that loss 

of PMP-2 ATP hydrolysis and substrate transport may form the basis for (Leu)38-GFP 

suppression.  The pmp-2 mutant altered the (Leu)38-GFP expression by causing strong 

diffuse localization of (Leu)38-GFP within muscle.  ubh-4 (dr58) and ubh-4 (dr60) both 

contain the same molecular missense mutation (S6R), although both suppressors were 

isolated independently (Table 3.1).  The mutated serine is not conserved between C. 

elegans and humans and is not within a known catalytic domain, so it is unclear how the 

mutation impacts UBH-4 function.  Both ubh-4 alleles exhibit a wild-type pattern of (Leu)38-

GFP localization.  Taken together, these data suggest that loss of multiple genes 

suppress (Leu)38-GFP toxicity and the mechanisms of suppression are likely to differ due 

to the diverse effects of each mutant on (Leu)38-GFP localization.   
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To determine whether sri-62, pmp-2 and ubh-4 were general or cell-type specific 

suppressors of polyLeu toxicity, I tested whether these mutants also suppressed (Leu)38-

GFP toxicity in GABAergic neurons.  (Leu)90-GFP and GFP were co-expressed in the 

GABAergic neurons of each suppressor, which causes the loss of normal commissures 

in wild-type animals (Figure 3.8).  We asked whether or not commissure morphology was 

restored in each of the suppressor mutants.  In ubh-4 (dr60), animals had wild-type 

commissures, suggesting suppression of (Leu)90-GFP toxicity in GABAergic neurons 

(Figure 3.8).  Both pmp-2 (dr59) and sri-62 (dr57) had commissure defects similar or 

worse to the wild-type control, suggesting they were unable to suppress commissure 

defects (Figure 3.8).  These data suggest that sri-62 and pmp-2 are only required for 

polyLeu toxicity in muscle, while ubh-4 is required for polyLeu toxicity in multiple tissues.  
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Figure 3.6 Multiple Types of PolyLeu Suppressors Identified in Mutagenesis 

Screen 
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(A) Diagram of ENU mutagenesis screen for suppressors of larval arrest caused by myo-

3p::(Leu)38-GFP toxicity.  myo-3p::(Leu)38-GFP animals were treated with ENU 

mutagenesis  and the F2 generation was raised on gfp(RNAi) at 20°C to suppress 

polyLeu toxicity.  Plates with the F2 population were allowed to starve and a subset of the 

starved larvae (F2-F4) were washed onto a new OP50 plate and placed at 25°C.  Animals 

that were able to propagate for several generations had suppressed polyLeu toxicity and 

one suppressor was isolated from each plate.  (B) The worms were sorted through the 

COPAS Biosorter and animals with a time of flight ≥ 300 were categorized as adults, 

animals with a time of flight <300 were categorized as larvae.  (C) The average RFP 

levels of the worm were measured by dividing the total RFP signal of a worm by its time 

of flight (N=211-523).  (D) Representative images of the different localization patterns 

observed in suppressors.  V points to vulval muscles.  Scale Bar=10 μm. 
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Figure 3.7 Diagram of Workflow to Identify Genes Required for PolyLeu Toxicity 

Twenty-five suppressors were isolated from a forward mutagenesis screen.  Whole-

genome sequencing of suppressors identified 914 genes containing a nonsynonymous 

substitution or insertion/deletion in at least one isolated suppressor.  A subset of genes 

were identified that: were mutated in multiple suppressors, had at least one nonsense 

mutation, or were part of an overrepresented protein family.  The Ahringer RNAi library 

or the ORFeome RNAi library were then checked to determine if they contained RNAi 

clones for the subset of genes.  Genes with RNAi clones in the Ahringer/Orfeome 

libraries were used in a candidate RNAi screen.  Growth was the selection criteria.  

Starvation-synchronized L1’s were seeded onto RNAi plates (2 plates/RNAi strain) and 

grown at 25°C.  After 1 week, the plates were scored blindly for growing and moving 

larvae.  The hits from the first RNAi screen were tested again in a second RNAi screen 

(3 plates/RNAi strain).  RNAi targets that suppressed polyLeu toxicity in 3/5 plates were 

counted as suppressors.  The ENU-induced mutations in the RNAi-confirmed candidate 

genes were reexamined to determine if duplicated mutations caused similar 

characteristics (strength of polyLeu suppression and localization of polyLeu-GFP).  

Genes were considered strong candidates if the ENU mutants had similar phenotypes 

and RNAi against the gene suppressed polyLeu toxicity.   
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Table 3.1 RNAi Phenocopied Genes Identified from the Candidate RNAi Screen 

Gene Human 
Homologue Group Suppressors with Mutations Mutation 

F35A5.1 NEFH Neurofilament 
dr57, dr60, dr61, dr62, dr59, dr63, 
dr64, dr65, dr67, dr68, dr69, dr71, 
dr73, dr74, dr75 

E1257K 

T28A11.17 None Unknown dr59, dr61, dr64  V87M 

sri-62 None Receptor dr57 Q85* 

ubh-4 UCHL5 Ubiquitin dr58, dr60 S6R 

pmp-2 ABCD3 ABC 
transporter dr59 L457F 

 

 

 

Table 3.2 (Leu)38-GFP Suppressors with Mutations in RNAi Phenocopied Genes 

Suppressor Suppression  Potential Gene             
(Allele Effect) Gene Family myo-3p::(Leu)38-GFP Localization 

dr57 Strong  sri-62 (Q85*) Receptor Whole Animal 

dr59 Strong pmp-2 (L457F) ABC Transporter Strong Diffuse Signal in Muscle 

dr60 Strong ubh-4 (S6R) Ubiquitin Ligase Unchanged 

dr58 Strong ubh-4 (S6R) Ubiquitin Ligase Unchanged 
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Figure 3.8 dr60 Suppresses PolyLeu Toxicity in GABAergic Neurons 

Representative images of the indicated suppressors with the starting line as a control.  V 

points to the commissures in the image.  The green punctate signal in control/dr55/dr53 

is autofluorescence.  Animals had extrachromosomal expression of unc-47p::(Leu)90-

GFP and unc-47p::(GFP) and had myo-3p::(Leu)38-GFP and myo-3p::RFP integrated.  

The animals are day 1 adults maintained on (gfp)RNAi.  Scale Bars=20 μm. 
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3.3 Discussion 

In this study, I investigated the cell biological and pathophysiological properties of 

the newly discovered HD RAN polypeptides.  I found that all of the HD RAN peptides 

formed biophysically defined protein aggregates.  However, only a single HD RAN 

peptide, polyLeu, caused both neuropathological changes and functional defects in the 

tissues that I studied.  Since polyLeu has never before been associated with a disease, 

polyLeu effector mechanisms are unknown.  To identify these mechanisms, I performed 

an unbiased forward genetic screen for suppressors of polyLeu phenotypes.  I identified 

three candidate genes whose inhibition blocks polyLeu toxicity in muscle.  The molecular 

identity of these genes may provide insight into how polyLeu contributes to CAG diseases 

like HD.  Given that my studies represent the first in vivo dissection of CAG-associated 

RAN peptide properties, I will discuss my findings for each RAN peptide individually, with 

a particular focus on how my findings integrate with previous reports of the structure and 

function of each homopolymeric peptide.  

3.3.1  PolyCys and PolySer: Weakly Toxic RAN Products 

 Both polyCys and polySer exhibited similar cell biological and phenotypic effects 

when expressed in C. elegans.  PolyCys and polySer formed aggregates at 38 and 90 

repeats.  They also colocalized when expressed together.  The colocalization of polySer 

and polyCys is not solely due to their polar charge.  Glutamine is also a polar amino acid, 

but polyQ does not colocalize with either polySer or polyCys (Appendix C-Figure 4.2).  A 

possible explanation of the distinct aggregation patterns of polyQ, polySer, and polyCys 
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could be that polySer and polyCys may localize to a different subcellular environment 

than polyQ.  For example, both Cys and Ser [327], but not Gln, are known targets for 

post-translational protein palmitoylation, which anchors proteins to cellular membranes 

[328].  The palmitoylation of Cys residues in another protein, cysteine string protein α, is 

essential for protein aggregation and is associated with the neurodegenerative disease 

adult-onset neuronal ceroid lipofuscinosis [329].  Therefore, post-translational 

modification of polySer and polyCys, but not polyGln, may lead to protein interactions that 

drive protein aggregation in ways that are distinct from polyGln.  Future studies examining 

the post-translational modification state of the polySer and polyCys protein could provide 

insights into these and other potential aggregation mechanisms. 

Another common property of polyCys and polySer is that expression of either 

polypeptide caused weak and inconsistently toxic effects.  GABAergic expression of 

(Cys)37 caused minor structural but not functional defects, whereas GABAergic 

expression of (Ser)38 caused functional defects, but not structural defects.  Muscle 

expression of (Cys)37 caused weak motility defects and larval arrest.  However, muscle 

expression of polySer never caused motility defects or larval arrest.  When expressed on 

their own, polyCys and polySer exhibit little to no phenotypic consequences in C. elegans.  

This was surprising considering a recent study that suggested polySer has significant 

toxicity in a SCA8 murine model, another CAG repeat expansion disease [330].  However, 

this model did not express a pure polySer protein.  Rather, it expressed the CAG 

expanded ATXN8 gene, which is the genetic cause of SCA8.  polySer is one of several 

RAN products translated from the SCA8 CAG repeat.  However, the other possible RAN 

products were not studied.  In the murine model of SCA8, polySer was thought to be toxic 
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because RAN translated polySer colocalized with degenerating brain regions that lacked 

the ATXN8 protein.  However, RAN translation products from different reading frames 

typically occur in the same tissue [12] and can occur in the same cells [6]. Therefore, 

polySer may be acting as a biomarker for RAN translation, and one or more of the other 

CAG RAN products are toxic in neurons.  My studies strongly suggest that polySer alone 

does not cause neurodegeneration in the SCA8 murine model.  However, polySer may 

have synergistic interactions with other RAN peptides that enhance toxicity.  In the future, 

it will be important to test this possibility by co-expressing polySer with each of the other 

RAN products and determining if there is any change in toxicity. 

3.3.2  PolyQ and PolyGln: PolyQ Has Polyglutamine-Independent Toxicity 

The CAG-encoded polyglutamine (polyQ) model and the CAG/CAA-encoded 

polyglutamine (polyGln) models exhibit radically different levels of toxicity.  GABAergic 

expression of (Q)38 caused substantial structural and functional neuronal defects, but 

GABAergic expression of (Gln)38 caused no detectable changes.  Similarly, muscle 

expression of (Q)38 caused extensive motility defects, while muscle expression of (Gln)38 

caused no motility defects.  PolyGln did display length-dependent toxicity, as muscle 

expression of (Gln)90 produced motility defects.  However, disease-relevant lengths of 

polyGln did not cause toxicity, while disease-relevant lengths of polyQ did cause toxicity. 

The disparity between the toxicity of these two models of polyglutamine is 

antithetical to the widely-held belief that polyglutamine is the driving cause of the toxicity 

in HD.  If polyglutamine is the main toxic effect of the CAG repeat, the observed 

differences between the polyQ model and the polyGln model must be due to 



 127 

dissimilarities in the biological properties of the polyglutamine expressed in each model.  

However, the amino acid sequence produced from both models is identical, although both 

lack surrounding genetic context that could significantly enhance or suppress toxicity 

levels.  In addition, the polyglutamine expressed by both polyQ-GFP and polyGln-GFP 

formed aggregates.  Therefore, the difference in toxicity between polyQ and polyGln is 

likely due to the different nucleotide sequences encoding the homopolymer.  The CAG 

repeat in the polyQ model could be toxic through its RNA repeats [331] or possible RAN 

products [12].  Conversely, the mixed CAG/CAA repeat is not toxic through either its RNA 

repeats or possible RAN products.  The CAG/CAA sequence was designed to minimize 

the formation of RNA secondary structures, which are required for RNA toxicity [332] and 

may be required for RAN translation [4].  Therefore, differences in toxicity between polyQ 

and polyGln animals are likely due to the glutamine-independent causes of toxicity in 

polyQ, such as the repetitive CAG RNA or RAN products.  To determine if RAN products 

may be contributing to the toxicity of polyQ, RAN translation could be measured by placing 

GFP in the +1 reading frame or the +2 reading frame of the CAG repeat to detect RAN 

expression of polySer or polyAla, respectively.  In the future, it will be important to re-

examine whether or not existing C. elegans CAG models are producing RAN peptides in 

addition to polyGln.  The presence of such peptides may dramatically alter the use and 

interpretation of studies based on these models. 

Previous studies have found the nucleotide sequence encoding polyglutamine 

affects the toxicity of a ‘polyQ’ model.  In both Drosophila [333] and cell culture [334], a 

CAG-encoded polyglutamine was significantly more toxicity than a CAA-encoded 

polyglutamine.  The difference in toxicity between the CAG repeats and CAA repeats was 
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ascribed to CAG RNA being toxic, as CAG repeats in untranslated regions also cause 

toxicity [331, 333].  CAA repeats do not undergo RAN translation [4] or cause RNA toxicity 

[333], so, the CAA-encoded polyglutamine is comparable to the CAG/CAA-encoded 

polyglutamine used in this study.  However, none of the “untranslated” CAG models have 

been tested for RAN translation.  RAN products may be produced in the RNA toxicity 

models and contribute to their observed phenotypes.   

Widely-used models of ‘polyQ’ diseases, such as the murine R6/2 strain and the 

C. elegans AM141 strain, could also be undergoing RAN translation.  Therefore, these 

‘polyQ’ models may express both polySer and polyAla from the CAG sense RNA strand.  

If the antisense CUG RNA is also transcribed in these models, RAN translation would 

additionally produce polyLeu and polyCys, as well as polyAla in a different genetic 

context.  The possibility of glutamine-independent toxicity occurring in common HD 

models is made clear by the drastic differences in toxicity between my polyQ model and 

polyGln model.  Given the widespread and experimentally proven prevalence of RAN 

translation in several CAG repeat expansion disorders, referring to these diseases as 

‘PolyQ diseases’ may no longer be accurate and our descriptions of these diseases 

should be modified to include our evolving understanding of the role of the RAN peptides 

besides PolyQ.   

3.3.3  PolyAla: A Possible Contributor to CAG Toxicity 

PolyAla may be a strong contributor to CAG repeat toxicity.  In C. elegans, polyAla 

was toxic in both muscle and GABAergic neurons.  Muscle expression of polyAla caused 

strong motility defects, and GABAergic expression of polyAla caused functional, but not 
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structural, defects.  (Ala)38-GFP also formed aggregates when expressed in muscle cells 

of C. elegans.  In humans, expanded polyAla repeats cause aggregation in multiple 

diseases [335].  The aggregation of the polyAla repeats caused the mislocalization of the 

polyAla containing proteins and a concordant loss-of-function phenotype [335].  Since 

polyAla toxicity is mediated by the loss of protein function containing the expanded Ala 

tract, polyAla toxicity has mainly been studied within its native genetic context.  The 

toxicity of a polyAla peptide without genetic context, as was modeled in our study, has 

not been thoroughly studied.  In addition, because the expanded alanine repeats in the 

polyAla diseases are on average shorter than 30 repeats, a pure polyAla peptide had not 

been modeled at an HD relevant length until our work. 

A homopolymeric alanine peptide may be toxic through similar mechanisms as the 

alanine repeat-expansion diseases.  A yeast-two hybrid model found that homopolymeric 

disease-relevant lengths of polyAla self-interact ((Ala)29 and (Ala)28) [336].  It is unknown 

if alanine repeat lengths that normally appear in proteins (5-21 repeats) [337] also interact 

with disease-relevant lengths of alanine repeats.  This could be tested by co-expressing 

(Ala)11 and (Ala)38.  Based on previous research, (Ala)11 should be diffuse in our model, 

while (Ala)38 is known to aggregate in our model.  If the (Ala)11 only aggregates when co-

expressed with (Ala)38, then (Ala)38 may be binding proteins containing similar lengths of 

polyAla repeats.  PolyAla repeats are enriched in transcription factors [337, 338], which 

need to be localized to the nucleus to perform their function.  Therefore, the interaction of 

the transcription factors containing polyAla repeats with the polyAla aggregates could 

deplete the cell of available transcription factors.  PolyAla aggregates sequestering 

transcription factors could also explain the difference in toxicity observed between muscle 
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cells and GABAergic neurons, as the depleted transcription factors may be less important 

in GABAergic neurons.   

3.3.4  PolyLeu Is the Most Toxic HD RAN Product 

 The most toxic HD RAN product across tissues was polyLeu.  Like polyAla, 

polySer, and polyCys, polyLeu caused functional defects when expressed in GABAergic 

neurons and motility defects when expressed in muscle.  However, polyLeu expression 

caused highly penetrant phenotypes in both muscle and neurons, which were only weakly 

observed in the other RAN models.  GABAergic expression of polyLeu induced significant 

morphological defects where every commissure had some sort of structural impairment.  

Muscle expression of (Leu)38-GFP caused larval arrest of ~90% of the population.   

The strong toxicity of polyLeu was unexpected, as polyLeu repeat expansions 

have not been previously linked to a genetic disease.  This is in spite of polyLeu repeats 

being one of the most common single amino acid repeats in the human proteome, with 

~1,500 proteins containing polyLeu repeats longer than four leucines [337]. However, all 

the naturally occurring polyLeu repeats are 11 leucines or shorter, suggesting there is an 

evolutionary selection against longer polyLeu repeats.  The lack of polyLeu repeat 

expansion diseases could be due to polyLeu repeat expansions disrupting development 

in humans as it does in C. elegans.  In mammalian cells, RAN translation, which produce 

polyLeu, increases activity with activation of the integrated stress response pathway [86, 

89, 90], and the integrated stress response pathway is activated with age [268], so RAN 

translation rates could increase with age.  Another possible reason why polyLeu repeat 

expansions do not typically occur is because polyLeu repeats are not encoded by a 
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nucleotide repeat.  Unlike glutamine, which is encoded by only two codons, leucine is 

encoded by six codons.  However, single amino acid repeats of leucine have an average 

codon homogeneity of 55%, which is more homogenous than the single amino acid 

repeats of alanine (37%) [339]. As polyAlanine can undergo pathogenic repeat 

expansions, it seems likely polyLeu can as well.  Previous work has found that polyLeu 

repeats longer than 30 repeats cause toxicity in cells [340, 341] and in Drosophila [342], 

but all models were created with a CTG repeat that could be undergoing RAN translation. 

My work is the first evidence that a codon-varied pure polyLeu peptide causes significant 

cellular toxicity. 

The toxicity of polyLeu could be due to the apparent membrane-localization of 

polyLeu.  While the expression pattern of polyLeu changes based on the length of the 

leucine repeat, every length of polyLeu appears to be membrane-localized.  This is 

consistent with previous findings that polyLeu peptides as short as nine repeats can 

spontaneously incorporate into lipid membranes [318, 343, 344].  Single amino acid 

repeats of polyLeu occur in many signal peptides or transmembrane proteins [338]. For 

this reason, leucine is the most common amino acid in proteins that localize to the 

Endoplasmic Reticulum (ER), Golgi Apparatus, or vacuoles [345].  Consistent with this, 

(Leu)11-GFP localizes to a tubular network in C. elegans, which resembles previous 

reports of ER [346], and spherical bodies that are ~1.2 µm in diameter, which cluster at 

the distal regions of the muscle cells.  Eleven leucine repeats can act as an anchor signal 

sequence to target proteins to a membrane [344], so the spherical structures may be part 

of the endocytic pathway.  (Leu)20-GFP appears to localize to the plasma membrane and 

smaller membrane-bound compartments, as (Leu)20-GFP marks various structures, some 
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structures similar to the peripheral shape of a C. elegans muscle cell, and other spherical 

and non-spherical structures.  To confirm whether (Leu)20-GFP marks the plasma 

membrane, (Leu)20-GFP should be co-localized with a plasma membrane marker, such 

as glycosylphosphatidylinositol (GPI) [346].  The disease-relevant length of polyLeu, 

(Leu)38-sfGFP, localizes to the boundaries of unidentified spherical structures that are 

distributed throughout the length of the muscle cell and are similar in size to those seen 

with (Leu)11.  The spherical structures containing (Leu)38-sfGFP may also be part of the 

endocytic pathway.  (Leu)38-sfGFP has a diffuse background signal that may be the ER, 

based on the localization pattern of (Leu)11 and the fact that this signal is only detected 

with sfGFP-tagged (Leu)38, as opposed to GFP-tagged (Leu)38.  The oxidizing 

environment of the ER inhibits the folding of GFP, but not the folding of sfGFP, which 

could explain why (Leu)38-GFP had impaired fluorescence.  If the spheres are derived 

directly from the ER, the (Leu)38-sfGFP marked spheres should contain ER-resident 

proteins such as the phosphatidylinositol synthase PISY-1 [347].  

 Longer repeat lengths of polyLeu disrupt the ability of GFP to fold properly.  

(Leu)29-GFP and (Leu)38-GFP have impaired fluorescence due to misfolding of GFP, as 

a variant of GFP with a higher rate of folding [320], sfGFP, did not have impaired 

fluorescence when attached to (Leu)29/38.  There are three possible hypotheses for why 

longer repeat lengths of polyLeu have impaired fluorescence (Figure 3.9), which make 

easily testable predictions.  The first hypothesis for the impaired folding of (Leu)29/38-GFP 

is that longer leucine repeats such as (Leu)29/38 cause a switch in the orientation of 

polyLeu-GFP compared to shorter leucine repeats such as (Leu)11/20.  This orientation 

change causes the C-terminal GFP of (Leu)29/38-GFP to be inside the lumen of the 
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membrane-bound structure, which could be an unfavorable environment for GFP folding.  

Varying the length of a polyLeu repeat in the signal-anchor sequence of a transmembrane 

protein can affect the orientation of the protein in the membrane [348].  In addition, 

membrane-bound organelles such as the ER [321] can suppress GFP fluorescence.  The 

orientation of transmembrane proteins can be studied using glycosylation, which occurs 

in the ER lumen.  Glycosylatable GFP (gGFP) has an N-linked glycosylation site and can 

be used to determine if the GFP is localized in the ER lumen or the cytoplasm [349, 350].  

Cytosol-oriented gGFP will be not be glycosylated and will fluoresce strongly.  However, 

lumen-oriented gGFP will be glycosylated and, thus, will fluoresce weakly [349].  This 

experiment could identify the orientation of (Leu)38-GFP in the membrane. 

The second hypothesis for why (Leu)29/38-GFP displays impaired folding is that 

longer repeats of polyLeu, (Leu)29/38, localize to structures that disrupt GFP folding, while 

shorter repeats of polyLeu, (Leu)11/20, localize to structures that do not disrupt GFP 

folding.  The localization of a protein can be affected by the length of the transmembrane 

domain, as seen with the yeast protein UBC6 localizes to the ER, Golgi, or plasma 

membrane depending on the length of its transmembrane domain [351].  PolyLeu 

exhibited length-dependent localization patterns with (Leu)11 and (Leu)20, so (Leu)29/38 

could also be localized to different cellular regions.  If (Leu)38 does colocalize with the 

shorter lengths of polyLeu, (Leu)38 is most likely to colocalize with (Leu)11 as both (Leu)38-

sfGFP and (Leu)11-GFP localize to spherical cellular structures.  The two lengths of 

polyLeu can be expressed together with different fluorescent tags to determine if they 

colocalize.  Any structures that have (Leu)38 but lack (Leu)11 can be identified using 

fluorescent markers for the different endosomal compartments in C. elegans [346, 347].  
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There are established markers for the ER (KDEL [352]), the Golgi (AMAN-2 [353]), the 

peroxisome (DAF-22 [347]), and other compartments. The identified organelle can be 

studied to determine if its lumen impairs GFP folding. 

The third hypothesis for impaired folding of (Leu)29/38-GFP is that higher repeat 

lengths of polyLeu disrupt the folding environment of the cell, causing a decrease in 

overall protein folding rates including the folding of GFP.  Impaired protein folding occurs 

in other neurodegenerative models, such as a C. elegans (CAG)40-YFP model [130] 

where the (CAG)40-YFP sensitizes the worms to other misfolding mutations.  Like the 

(CAG)40-YFP model, (Leu)38 polypeptides may sequester molecular chaperones away 

from their normal client proteins.  This would deplete the available chaperone levels in 

either the ER or the cytoplasm, depending on the localization of the misfolded proteins, 

and increase the misfolding rate of other proteins in that compartment, such as GFP.  

Impaired folding in the ER causes activation of binding immunoglobin protein (BiP)/hsp-

4 [354, 355].  Therefore, one test of this hypothesis would be to determine if hsp-4 levels 

are increased in cells expressing (Leu)38-GFP.  Similar tests could be used to measure 

impaired protein folding in other compartments, such as the cytoplasm (hsp-16) and the 

mitochondria (hsp-6).  
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Figure 3.9 Possible Models of PolyLeu Length-Dependent Variation in GFP 

Folding 

Model 1: The shorter polyLeu repeats, such (Leu)11, cause the GFP to be oriented in the 

cytosol where it folds properly and fluoresces, while the longer polyLeu repeats, such as 

(Leu)38, cause the GFP to be oriented in the ER lumen where it is unable to fold properly.  

Model 2: The length of the polyLeu repeats varies where polyLeu is targeted.  (Leu)11 is 

targeted to membrane-bound structures where GFP can fold properly and fluoresce, while 

(Leu)38 is localized in different membrane-bound structures that disrupt the folding and 

fluorescence of GFP.  Model 3: both (Leu)11 and (Leu)38 have GFP oriented inside the 

lumen, but GFP folding is impaired in (Leu)38 due to an increase in misfolded proteins 

with (Leu)38.  
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3.3.5  PolyLeu Screen Hits 

A forward mutagenesis screen and subsequent RNAi screen for genes required 

for (Leu)38-GFP-induced larval arrest identified three candidates: sri-62, pmp-2, and ubh-

4.  sri-62 encodes a serpentine seven-transmembrane GPCR, pmp-2 encodes an ABC 

(ATP-binding cassette) transporter, and ubh-4 encodes a deubiquitinating enzyme.   

sri-62 is a nematode-specific gene and is poorly studied.  It encodes a 334 amino 

acid long protein with seven transmembrane domains.  As a serpentine receptor, SRI-62 

is likely a chemoreceptor and is localized to the plasma membrane.  However, both its 

specific function and its cellular localization is unknown.  A study of the expression pattern 

of C. elegans chemoreceptors found sri-62 expression in the PVT interneuron [356].  The 

PVT interneuron is important for the spatial arrangement of neurons and secretes netrin 

to aide neurons in pathfinding [357].  While SRI-62 was not observed in the muscle [356], 

part of the sri-62 promoter may have been excluded in the construct used to study sri-62.  

To develop a more accurate understanding of the expression pattern of sri-62, it will be 

important to determine the native expression pattern using methods such as 

CRISPR/Cas9 tagging of the endogenous sri-62 gene.  SRI-62 is also not likely to be a 

broad suppressor of neurodegenerative proteins, as reduction in levels of sri-62 was 

identified in a previous RNAi screen as an enhancer of tau-induced toxicity in C. elegans 

[358]. In contrast, we identified sri-62(RNAi) as a suppressor of polyLeu toxicity.  

Therefore, how sri-62 is required for toxicity is likely specific to polyLeu. 

Another identified suppressor of polyLeu toxicity, pmp-2, also encodes a 

transmembrane protein.  Also, like sri-62, pmp-2 is not well characterized in C. elegans.  

However, it has a strong human homologue, ABCD3, that has been extensively studied.  
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Both C. elegans PMP-2 and ABCD3 have four transmembrane domains.  PMP-2 likely 

localizes to the peroxisome [359], as ABCD3 is a peroxisomal protein that imports long 

fatty acids and branched acyl-CoA into peroxisomes [360].  It is unclear if ABCD3 is 

primarily translated on cytoplasmic ribosomes or inserted into the ER as ABCD3 has been 

observed in the ER [361], but ABCD3 can also escape targeting to the ER and instead 

be translated by free ribosomes [362]. Mutations in ABCD3 are associated with a 

heterogenous group of peroxisome assembly disorders called Zellweger syndrome [363].  

Peroxisome dysfunction has not been previously linked to HD, so it is unclear how the 

function of PMP-2 is required for polyLeu toxicity.  

Other than the fact that they both encode multi-pass transmembrane proteins and 

are required for polyLeu toxicity, sri-62 and pmp-2 have little in common.  However, 

previous studies on polyLeu provides some suggestions as to how these seemingly 

unrelated proteins may be required for (Leu)38 toxicity.  For example, a (Leu)24 polypeptide 

capped by two lysines on either end is sufficient to inhibit the function of the sarcoplasmic 

reticulum calcium pump (SERCA).  This peptide was based on the SERCA inhibitor, 

phospholambin, which contains a leucine-rich transmembrane domain.  A similarly 

constructed polypeptide with only 18 leucines failed to inhibit SERCA [364].  Other 

research on phospholambin found that the leucine-rich transmembrane domain of 

phospholambin inhibits SERCA by locking SERCA in an unbound confirmation [365].  

Therefore, polyLeu may be toxic in a similar manner as phospholambin by interacting with 

the hydrophobic transmembrane domains of SRI-62 and PMP-2 and disrupting their 

ability to function (Figure 3.8).  Another possibility is that polyLeu is disrupting the folding 

of SRI-62 and PMP-2 in the ER, thereby activating the ER unfolded protein response 
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(UPRER) and potentially driving ER-associated protein degradation (ERAD) of these and 

other substrates (Figure 3.10).  PolyLeu is more likely to be toxic by disrupting protein 

folding than to be toxic by disrupting protein function.  This is because polyLeu would 

need to have precise interactions with proteins to disrupt their function, but not their 

folding.  If polyLeu is toxic through disrupting folding of proteins in the ER, (Leu)38 

expression should cause an increase in misfolded proteins in the ER leading to activation 

of the UPRER.  UPRER activation would upregulate the reporter hsp-4p::GFP [366], as 

hsp-4 is the C. elegans homologue of BiP and is activated by the UPRER [367].   

The final gene identified in the screen, ubh-4, encodes a deubiquitinating enzyme 

that has a human homologue, uchl5.  Reducing protein levels of UBH-4 increases the 

rate of proteasomal degradation [368].  The ubh-4 homologue in humans, uchl5, has been 

previously linked to CAG repeat expansion diseases.  Reducing protein levels of UCHL5 

suppresses the aggregation of an ataxin3-polyQ (CAG) model in mammalian cells, which 

likely also produced polyLeu via RAN translation [368]. Therefore, ubh-4/uchl5 may have 

conserved effects on polyLeu toxicity.  Decreased levels of UBH-4 may suppress polyLeu 

toxicity through enhanced proteasomal degradation of the misfolded transmembrane 

proteins, if polyLeu causes toxicity by increasing misfolding of transmembrane proteins 

(Figure 3.10).  Additional studies will be needed to test this model.   
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Figure 3.10 Model of PolyLeu Toxicity Through Causing Misfolding in ER 

PolyLeu may be toxic by disrupting the folding of transmembrane-domain containing 

proteins such as PMP-2 and SRI-62.  This increase in misfolded proteins would deplete 

the ER of chaperones and make GFP more likely to misfold, as the ER is already an 

unfavorable folding environment for GFP.  The deletion mutant of sri-62 would decrease 

the amount of misfolded proteins in the ER, as SRI-62 no longer needs to fold correctly.  

The pmp-2 mutation may stabilize PMP-2 folding or cause degradation of PMP-2, either 

way causing a decrease in the total amount of misfolded proteins in the ER.  Knockdown 

of ubh-4 causes activation of the proteasome, so mutations in ubh-4 may disrupt UBH-4 
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activity so that the activity of the proteasome is increased.  This would increase the 

degradation of proteins and prevent UPR activation. 

3.3.6  Limitations of Model  

 Our C. elegans HD RAN model offers a simplified view of the various HD RAN 

products, which is advantageous for developing a basic understanding of how each HD 

RAN product may contribute to HD.  However, our model lacks several key pieces of 

information required for a more nuanced understanding of HD RAN toxicity.  In our 

system, each of the HD RAN products are modeled individually without genetic context.  

Therefore, we cannot comment on how the HD RAN products interact with each other.  It 

is likely that RAN products are co-expressed in HD since RAN translation occurs in 

multiple reading frames in the same cell in other RAN diseases [96].  The RAN products 

may act synergistically when co-expressed.  Given that polyAla, polySer, polyCys, and 

polyGln all formed aggregates, it is reasonable to predict that co-expression of two or 

more polypeptides may overwhelm the chaperone capacity of the cell and activate 

relevant unfolded protein response pathways in the cytoplasm and/or the ER.  Since 

polyLeu may cause activation of UPRER, it is easy to see how the HD RAN polypeptides 

could act synergistically.  To test these models, the individual HD RAN polypeptides need 

to be co-expressed to determine how the RAN polypeptides are toxic together, not just 

on their own.   

 Another limitation of our model is that the HD RAN peptides lack the surrounding 

genetic context that is present in the HTT gene.  Previous work modeling CAG repeats in 

various forms of HTT found that certain genetic contexts could greatly increase the CAG 
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repeat toxicity in mice [369].  With regards to HD RAN translation, the precise translation 

initiation and termination sites for the various peptides have not yet been described.  Work 

modeling RAN translation of the Fragile X CGG repeat expansion suggests that RAN 

translation can initiate using near-cognate start codons, which only have one nucleotide 

different from a start codon [87].  Therefore, new HD RAN models initiating from near-

cognate start codons in-frame with the repeat expansions and extending to stop codons 

downstream of the repeat could prove informative.  This would be particularly interesting 

for polyLeu, as the amino acids on either side of a polyLeu repeat affect the orientation 

of the polyLeu within a plasma membrane.  

 The main limitation of our model is also the main advantage; C. elegans are not 

mammals.  C. elegans allow for rapid discovery of genetic pathways required for toxicity.  

However, the evolutionary conservation of these pathways needs to be confirmed in 

either mammalian cells or mice.  Therefore, a key experiment that needs to be performed 

is confirming that the HD polypeptides exhibit similar toxicity in both C. elegans and 

mammalian cells.  Previous work by our lab has shown that pathways regulating the 

toxicity of C9orf72 RAN peptides are highly conserved from C. elegans to mammals.  

Therefore, it seems likely that the pathways regulating the toxicity of HD RAN peptides 

will also be conserved.  Experimental testing of this prediction should be a high future 

priority. 

3.3.7  Conclusion 

 RAN translation has been confirmed to occur in four different CAG/CTG repeat 

expansion neurodegenerative diseases, but this is the first work to examine the individual 



 142 

RAN polypeptides at a disease-relevant length.  It has been 26 years since the discovery 

of the genetic cause of HD in 1993, and soon people with an HD CAG repeat expansion 

born in the same year of the discovery of the HTT CAG repeat expansion could be 

exhibiting HD symptoms.  Treatments need to be found for these patients.  Developing a 

more complete picture of the mechanisms underlying mHTT CAG toxicity is a vital part of 

that goal.  Current treatment methods are focusing on knocking down levels of the sense 

strand of HTT RNA.  However, polyLeu is produced from the antisense strand of mHTT.  

Therefore, suppression of only the sense strand and sense strand RAN peptides, 

including polyQ, may not be sufficient to protect these patients from developing HD. 

 Every HD RAN polypeptide, except for polyGln, exhibited toxicity in the C. elegans 

RAN model when expressed at a disease-relevant repeat length.  PolySer, polyCys, 

polyAla, and polyGln all formed aggregates.  PolyLeu caused strong toxicity in both motor 

neurons and in muscle cells where it caused larval arrest.  A forward mutagenesis screen 

and RNAi screen, along with impaired GFP fluorescence data, suggest that polyLeu may 

be toxic through disrupting folding of transmembrane proteins in the ER and activating 

ERAD and the UPRER.  This is consistent with previous “polyQ” models where activation 

of ERAD was the first stress response detected [370-372].  It was proposed that the 

activation of ERAD was due to ERAD proteins which were detected in polyQ aggregates.  

As HTT is produced in the cytoplasm, it has puzzled researchers why it would cause a 

strong activation of ERAD.  One possible explanation is that another RAN peptide, 

polyLeu, leads to ERAD activation.  Additional studies will help to unravel the potential 

significance of polyLeu and other previously unknown HD RAN peptides. 
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3.4 Methods 

Caenorhabditis elegans strains and culture 

Strains were grown on standard NGM media with gfp(RNAi) bacteria at 20°C until 

the generation before the experiment.  Animals were picked at the L4 staged and shifted 

to E.  coli OP50 and allowed to have progeny at 20°C.  The progeny were picked as L4s, 

kept on E.  coli OP50 and grown at 25°C.  All experiments were performed at 25°C.   

 

Molecular Biology and Transgenics 

Codon-varied sequences were synthesized for the 90 repeat polypeptides 

(Integrated DNA Technologies, Coralville, Iowa, USA).  38 repeat polypeptides were 

made using “building blocks” which were nucleotide codon-varied sequences for 11 

repeats that were synthesized (GeneWiz, South Plainfield, NJ, USA).  The “building 

blocks” could be added to each other by digesting the vector containing a building block 

with BsmbI and an insert containing a building block with BsaI as previously described 

[373].  The nucleotide sequences used for the HD polypeptides are listed in Appendix D 

(Table 4.3) Promoters were produced and cloned in as previously described [95].   

Transgenic worms were generated by injecting the DPR construct (20 ng/µl) and 

the myo-3p::mCherry pCFJ104 marker plasmid (100 ng/µl) into the gonad of wild-type 

animals.  Transgenes were integrated using a standard gamma ray (Cs137) mutagenesis, 

followed by selection of animals exhibiting 100% transmission of the mCherry marker.  

Integrated strains were outcrossed six times to wild-type animals.  Injected animals were 

maintained on gfp(RNAi) plates until the experimental assay was performed.  All 
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procedures involving recombinant or synthetic nucleic acid molecules and materials were 

approved by the University of Pittsburgh Institutional Biosafety Committee.   

 

Reversal Assays 

Animals were maintained on gfp(RNAi) at 20°C, until the generation before the 

experiment.  Animals were selected as L4s and placed on E. coli OP50 at 20°C to have 

progeny.  30-40 progeny were picked as L4 animals and moved to 25°C on E. coli OP50 

bacteria.  24 hours later, the progeny were tested for their ability to reverse (N=20 

worms/assay).  All assays were done blinded.  Animals were lightly tapped on the head 

with a platinum pick.  They were scored from 1-4 on their ability to reverse as previously 

described [374].  Each worm was scored 5 consecutive times, as wild-type worms began 

to acclimate to the head tapping at 7 consecutive times.   

 

Commissure Assays 

L4 animals of the indicated genotype were isolated at 25°C and imaged 24 hours 

later as ‘Day 1 adults’.  All of the strains contained an unc-47p::RFP marker to reveal 

GABAergic motor neuron morphology.  Animals were anesthetized in 10 mM levamisole 

and Z-series images of GABAergic commissures were collected.  Commissure breaks 

were identified as interruptions in the RFP signal surrounded by dorsal and ventral RFP 

in the commissures.  Blebbing was scored only in the commissures and was identified by 

the presence of one or more RFP varicosities.  Abnormal commissures were identified as 

those exhibiting branching and/or failing to reach the dorsal side of the animal. 
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Microscopy 

C. elegans were anesthetized in 10 mM levamisole for 10 minutes.  The animals 

were then picked onto 3% agarose pads for fluorescence microscopy.  Widefield images 

were collected on a Leica DMi4000 inverted microscope and a Leica DFC 340x digital 

camera (Leica Microsystems, Wetzlar, Germany).  Z-stack images were deconvolved 

using Leica AF6000 software. 

 

COPAS Experiments 

Animals grown at 20°C on (gfp)RNAi were placed on E. coli OP50 for 6 hours to 

collect a synchronized brood.  The adults were then removed and the plates were placed 

at 25°C.  48 hours later, the progeny were sorted through a COPAS Biosorter (Union 

Biometrica, Holliston, MA, USA).  Worm time of flight (TOF) was measured.  Animals with 

a TOF≥300 were counted as adults, based on previous experiments.  Animals with a TOF 

below 300 were counted as larvae.  For fluorescent measurements (GFP or RFP) 

fluorescent detection settings were identical for all samples.  Average fluorescence was 

measured as total fluorescence divided by the time of flight.  

 

Paralysis Assays  

Gravid animals were moved from gfp(RNAi) to E. coli OP50 and allowed to lay 

eggs for 24 hours at 20°C.  The resulting progeny were allowed to grow up on E. coli 

OP50, permitting RAN peptide accumulation.  Animals were picked as L4s and ten 

animals were placed on each of five plates (N=50 worms per assay).  Each day, animals 

that failed to move at least half a body length in response to manual stimulation with a 
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platinum wire but were still alive (pharyngeal pumping, movement of less than half a body 

length) were scored as paralyzed.  Animals that died, desiccated on the plate edges, or 

exhibited internal hatching of progeny were censored from the assay.  Each day, mobile 

animals were transferred to a new plate and paralyzed, dead, and censored animals were 

removed from the assay.   

 

Thrashing Assays 

Gravid animals were moved from gfp(RNAi) to E. coli OP50 and allowed to lay 

eggs for 24 hours at 20°C.  The resulting progeny were allowed to grow up on E. coli 

OP50, permitting polypeptide accumulation.  40 transgenic animals for each strain were 

picked as L4s and moved to an E. coli OP50 plate and placed at 25°C.  The following 

day, worms were placed on clean NGM plates and allowed to move freely for 10 minutes 

so that most of the bacteria came off the animal before the experiment.  Worms were 

placed individually into 3 cm petri dishes containing M9 buffer and allowed to adjust to 

the new environment for 5 minutes.  The worms were observed for 30 seconds and the 

number of thrashes (reversal of body bend that crosses the midline) was counted. 

 

Lifespan Assays  

Worms grown at 20°C were picked as L4 and allowed to grow at 20°C until the 

next day, when 10 young adults were placed on five 3 cm plates.  Lifespan assays were 

performed with E. coli OP50 spotted on NGM plates at 25°C.  Worms were classified as 

alive, dead (no movement in response to touch with a wire), or censored (lost or bagged 

worms) once per day for lifespan assays.   
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FRAP Microscopy 

Confocal fluorescence images were captured on a Nikon A1plus confocal 

microscope through an Apo 60x/ 1.4NA Oil objective lens.  The microscope was operated 

on the NIS-Elements AR version 5.02 software platform.  GFP or RFP were excited at 

488 or 561, respectively.  Images were captured every 11 seconds to avoid bleaching 

over the course of imaging.  Following imaging of baseline fluorescence, a region of 

interest corresponding to a portion of the puncta was photobleached and fluorescence 

recovery within the photobleached area was monitored over at least 60 seconds.  Data 

were normalized so that the image preceding the photobleach was set to 100% and the 

first image following the photobleach was set to zero percent.  Imaging conditions over 

the time course of the experiment caused minimal loss of signal, suggesting an absence 

of photobleaching during the monitoring period.  FRAP analysis was performed using Fiji 

software [375].  X-y drift was corrected using the “Correct 3d Drift” plugin [376]. 

 

ENU Suppressor Screen 

myo-3p::(Leu)38-GFP L4s were placed in 2.4mM ENU and then gently shaken for 

4 hours at room temperature.  The worms are then washed 5x with M9 and allowed to 

recover for 24 hours on NGM plates.  After 24 hours, gravid P0s were picked and allowed 

to lay progeny on (gfp)RNAi plates for 6 hours.  The P0s were then removed and the 

plates with the eggs were placed at 20°C.  After a week, the starved progeny were washed 

onto E. coli OP50 and placed at 25°C.  After a week, the worms still growing at 25°C were 

picked as possible candidates.  To ensure independence of alleles, only one candidate 
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was selected per plate.  The picked worms were allowed to propagate at 25°C.  Worms 

that continued to propagate and had detectable RFP under the microscope were picked 

as suppressors. 

 

Whole-Genome Sequencing 

Genomic DNA was isolated from each of the suppressor lines using the PureGene 

Core Kit A according to the manufacturer’s instructions.  Genomic DNA libraries were 

prepared by BGI Genomics (Cambridge, MA USA) using Next-Generation Sequencing 

(HiSeq Xten).  Deep sequencing reads were analyzed using Galaxy (usegalaxy.org).  

Both snps and indels were isolated as described in Appendix E.  Only homozygous 

snps/indel which did not occur in the starting strain and were within genes were 

considered as possible causative mutations.   

 

RNAi Screen 

Bacteria were grown from the Ahringer or Orfeome library for the screen.  Bacteria 

were seeded on (RNAi) NGM in 10cm petri dishes and allowed to grow for 3 days at room 

temperature.  myo-3p::(Leu)38-GFP animals were bleached as previously described [377], 

onto a clean NGM plate and left for 18 hours at 20°C so the progeny would synchronize 

by arresting as L1s.  The progeny were washed off the plate with M9 media, and rinsed 

2-3 times with M9 media to remove dauer pheromones.  ~30 L1 animals were seeded 

onto each plate.  The plates were placed at 25°C and left for 1 week and then blindly 

scored based on the presence or absence of moving larvae. 
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Statistical Analysis 

Comparison of means were analyzed with ANOVA using Dunn’s post-test analysis 

in GraphPadPrism 7 (Graphpad Software, Inc., LaJolla, CA, USA).  The plateau was 

measured using one phase association in GraphPadPrism 7. 
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4.0 HD/ALS RAN Models Summary 

We have created and characterized two different RAN peptide models, one for 

ALS-associated GGGGCC repeat expansion, and one for HD-associated CAG repeat 

expansions.  The most toxic ALS associated dipeptides are PR and GR which localize to 

phase-separated compartments such as the nucleolus.  The most toxic HD polypeptide 

is polyLeu, which interacts with membranes.  While initially the mechanism of toxicity for 

these two different RAN products appears distinct, there may be similarities.  An RNAi 

screen for genetic suppressors of PR toxicity identified multiple genes whose products 

likely phase separate, based on the prevalence of low complexity domains.  However, 

proteins in the ubiquitin-proteasome pathway were also identified.  PR appears to be toxic 

through its localization to phase-separated compartments and its interactions with the 

proteins localized there.  Similarly, polyLeu may be toxic by localizing to lipid membranes 

and either inhibiting folding of proteins with transmembrane domains, or inhibiting the 

function of the transmembrane domains.  An unbiased screen in polyLeu identified a 

regulator of ubiquitin-mediated protein degradation (ubh-4) as required for polyLeu 

toxicity.  ubh-4 expression can modify proteasome activity, suggesting that the 

proteasome may be important for suppressing polyLeu toxicity.  Therefore, the cellular 

dysfunction caused by PR/GR and polyLeu may be due to their disruption of cellular 

compartments.  The unbiased screens performed in the C. elegans ALS RAN model and 

the C. elegans HD RAN model have yielded molecular regulations of toxicity in both 

diseases. 
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Appendix A - Abbreviations Table 

ABC transporter ATP-binding cassette transporter 

ALS Amyotrophic Lateral Sclerosis 

C cytosine 

C9 Chromosome 9 open reading frame 72 

C9orf72 Chromosome 9 open reading frame 72 

C. elegans Caenorhabditis elegans 

CCD Cleidocranial dysplasia 

CCHS Congenital central hypoventilation 

Cftr cystic fibrosis transmembrane conductance regulator 

DM1 myotonic dystrophy type 1 

DM myotonic dystrophy type 2 

DMPK DM1 protein kinase 

DRPLA dentatorubral-pallidoluysian atrophy 

DPR dipeptide repeat 

E. coli Escherichia coli 

EGFR epidermal growth-factor receptor 

EMS ethyl methanesulfonate 

ENU N-ethyl-N-nitrosourea 

EPM1 Myoclonus progressive epilepsy of Unverricht and Lundborg 

ER endoplasmic reticulum 

FECD Fuchs endothelial corneal dystrophy 

FMR1 fragile X mental retardation 1 

FMR2 Fragile XE syndrome mental retardation 

FRAP  fluorescent recovery after photobleaching 

FTDA Friedreich ataxia 

FTD  frontotemporal dementia 
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FXS  fragile X syndrome 

FXTAS  fragile X-associated tremor/ataxia syndrome 

G guanine 

G4C2 GGGGCC 

GABA γ-aminobutryic acid 

gGFP glycosylatable GFP 

GP glycine-proline 

GPCR G-protein-coupled receptor 

GPI glycosylphosphatidylinositol 

GR glycine-arginine 

HD Huntington’s disease 

HDAC  histone deacetylase 

HDL2 Huntington disease-like 2 

HFG Hand-foot-genital syndrome 

HPE5 Holoprosencephaly 5 

HTT huntingtin 

IR Insulin receptor 

JHD Juvenile Huntington’s disease 

mHTT mutant huntingtin 

MRGH mental retardation, growth hormone deficiency 

N.S. not significant 

NES nuclear exit signal 

NLS nuclear localizaiton signal 

NDD neurodegenerative disease 

OPMD oculopharyngeal muscular dystrophy 

PA proline-alanine 

polyQ  polyGlutamine (encoded by CAG repeats) 

polyAla polyAlanine 

polyCys polyCysteine 
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polyGln polyGlutamine (encoded by codon-varied repeats) 

polyLeu polyLeucine 

polySer polySerine 

PR proline-arginine 

pre-mRNA precursor messenger RNA 

RAN  Repeat-Associated non-AUG Translation 

ROS reactive oxygen species 

SBMA spinal-bulbar muscular atrophy 

SCA8 spinocerebellar ataxia type 8 

SCA17 spinocerebellar ataxia type 17 

sfGFP superfolded GFP 

SOD1 superoxide dismutase 1 

SPD syndactyly 

UTR untranslated region 

VNC ventral nerve cord 

WGS Whole-Genome Sequencing 

XLMR X-linked mental retardation 
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Appendix B – Repeat Expansion Diseases   

Table 4.1 List of All Known Repeat Expansion Diseases  

Disease Repeat Repeat 
Location Encode 

Suspected 
Mechanism of 

Toxicity 
RAN 

Translation 
Age 

Onset NDD? 

ALS/FTD GGGGCC Intron -- RAN/RNA GOF Yes Yes Yes 

SBMA CAG Exon PolyQ Protein GOF ? Yes Yes 

SCA1 CAG Exon PolyQ Protein GOF ? Yes Yes 

SCA2 CAG Exon PolyQ Protein GOF ? Yes Yes 

SCA3 CAG Exon PolyQ Protein GOF ? Yes Yes 

SCA6 CAG Exon PolyQ Protein GOF ? Yes Yes 

SCA7 CAG Exon PolyQ Protein GOF ? Yes Yes 

SCA8 CTG/CAG UTR/Exon PolyQ 
RNA 

GOF/Protein 
GOF 

Yes Yes Yes 

HD CAG Exon PolyQ Protein GOF Yes Yes Yes 

HDL2 CTG UTR -- RNA GOF ? Yes Yes 

SCA12 CAG UTR -- Unk. ? Yes Yes 

SCA17 CAG Exon PolyQ Protein GOF ? Yes Yes 

DRPLA CAG Exon PolyQ Protein GOF ? Yes Yes 

DM1 CTG UTR -- RNA GOF Yes Yes Yes 

DM2 CTG/CCTG Intron -- RNA GOF Yes Yes Yes 

FXTAS CGG UTR -- RAN GOF Yes Yes Yes 

SCA31 TGGAA Intron -- RAN GOF/RNA 
GOF Yes Yes Yes 

FRDA GAA Intron -- LOF ? Yes Yes 

SCA10 ATTCT Intron -- RNA GOF ? Yes Yes 

EPM1 CCCCGCCCCGCG Promoter -- LOF ? Yes Yes 

OPMD GCG Exon polyAla Protein GOF* ? Yes No 
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Table 4.1 (continued) 

FECD CTG Intron -- RNA GOF Yes Yes No 

FMR1 CGG UTR -- LOF ? No No 

FMR1 CGG UTR -- LOF ? No No 

XLMR GCG Exon polyAla LOF* ? No No 

SPD GCG Exon polyAla protein GOF* ? No No 

CCD GCG Exon polyAla LOF* ? No No 

HPE5 GCG Exon polyAla LOF* ? No No 

HFG GCG Exon polyAla LOF* ? No No 

FOXL2 
(BPES) GCG Exon polyAla LOF* ? No No 

Multiple 
Skeletal 

Dysplasia 
GAC Exon polyAla LOF ? No No 

FRAXA CGG UTR -- LOF ? No No 

FRAXE CCG UTR  LOF ? No No 

FRA11b 
Jacobsen 
syndrome 

CCG UTR -- DNA GOF ? No No 

CCHS GCN Exon polyAla Unk.* ? No No 

MRGH GCN Exon polyAla LOF, polyAla ? No No 
 

*=Other mutations in the same gene cause the same disease. 

-- = Does not undergo canonical translation.   

GOF=gain of function.  LOF=loss of function.  NDD=Neurodegenerative Disease 

Unk.= Unknown 

ALS=amyotrophic lateral sclerosis.  CCD=Cleidocranial dysplasia.  CCHS=Congenital 

Central Hypoventilation.  FTD=frontotemporal dementia.  HD=Huntington’s disease.  

HDL2=Huntington disease-like 2.  DM1=Myotonic Dystrophy Type 1.  DM2=Myotonic 
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Dystrophy Type 2.  DRPLA=Dentatorubral-Pallidoluysian Atrophy.  EPM1=Myoclonus 

Progressive Epilepsy of Unverricht and Lundborg.  FECD=Fuchs endothelial corneal 

dystrophy.  FMR1=Fragile X Syndrome of mental retardation.  FMR2=Fragile XE 

syndrome Mental retardation.  FRDA=Friedreich Ataxia.  FXTAS=Fragile X-Associated 

Tremor/Ataxia Syndrome.  HFG=Hand-foot-genital syndrome.  

HPE5=Holoprosencephaly 5.  MRGH=Mental retardation, growth hormone deficiency.  

OPMD=Oculopharyngeal Muscular Dystrophy.  SBMA=spinal-bulbar muscular atrophy.  

SCA=spinocerebellar ataxia.  SPD=Syndactyly.  XLMR=X-linked mental retardation. 
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Appendix C – Colocalization Data 

 

 

Figure 4.1 PolySer and PolyCys Colocalize 

Day 1 adult animals grown at 20°C.  Animals express myo-3p::(Ser)90-RFP and myo-

3p::(Cys)90-GFP.  PolySer and PolyCys exhibited strong colocalization.  Immobilized in 

levamisole and imaged using a Leica DMI8 confocal microscope at the University of 

Pittsburgh Center for Biologic Imaging.  Size bar is 20 µm. 
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Figure 4.2 PolySer and PolyCys Do Not Colocalize with PolyQ 

Day 1 adult animals grown at 20°C.  AM141 animals (integrated with unc-54p::(Q)40-YFP) 

express extrachromosomal myo-3p::(Ser)90-RFP, myo-3p::(Cys)90-RFP, or myo-

3p::(Gln)90-RFP.  Codon-varied (Gln)90 colocalizes with the CAG-repeat derived (Q)40.  

Both (Ser)90 and (Cys)90 fail to colocalize with (Q)40.  The animals were immobilized in 

levamisole and imaged using a Leica DMI4000 inverted microscope and a Leica DFC 

340Fx digital camera (Leica Microsystems, Wetzlar, Germany).  The arrow points to 

colocalized signal.  Size bar is 30 µm. 
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Appendix D - Plasmid Sequences 

Table 4.2. Nucleotide Sequences of Codon-Varied DPRs 

 

Red-HindIII and BamHI cloning sites 
  

 Table S3. Nucleotide sequences of codon-varied dipeptide sequences used in this study 

(PA)50 
aagcttgggccggccccggctccggcacctgcgcccgctccagcaccggcgcctgctcccgcaccagctcctgcacccgcgcca 
gcacccgctccagcgcctgctcctgcaccggctcccgcgccagcacctgctccggcgcccgcaccagctcctgccccggccccg
gctccggcacctgcgcccgctccagcaccggcgcctgctcccgcaccagctcctgcacccgcgccagcacccgctccagcgcct
gctcctgcaccggctcccgcgccagcacctgctccggcgcccgcaccagctcctgccccgggttggtaccgagctcggatcc 
(GA)50 

aagcttcccggggccggtgccggagcaggcgctggtgcgggcgccggagctggtgcaggcgcgggagccggtgctggcgcag
gagcgggtgcaggcgcgggtgccggagctggcgcaggagcgggtgctggcgccggagcaggtgcgggcgctggggccgggg
ccggtgccggagcaggcgctggtgcgggcgccggagctggtgcaggcgcgggagccggtgctggcgcaggagcgggtgcag
gcgcgggtgccggagctggcgcaggagcgggtgctggcgccggagcaggtgcgggcgctggggccggctggtaccgagctcg
gatcc 
(PR)50 

aagcttggccggccccggccgcgtcctcgcccacgaccgagacctcgtccacgcccgcgacctagaccacggccgcgccctcg
accaagacctcgcccgagaccacgacctcgtccgcgcccaagacctcgaccgcgtccacgccctagaccgcgaccccggccc
cggccgcgtcctcgcccacgaccgagacctcgtccacgcccgcgacctagaccacggccgcgccctcgaccaagacctcgccc
gagaccacgacctcgtccgcgcccaagacctcgaccgcgtccacgccctagaccgcgaccccgggggtaccgagctcggatc
c 
(PR)25 
aagcttccccggccgcgtcctcgcccacgaccgagacctcgtccacgcccgcgacctagaccacggccgcgccctcgaccaag
acctcgcccgagaccacgacctcgtccgcgcccaagacctcgaccgcgtccacgccctagaccgcgaccccgggggtaccgag
ctcggatcc 
(PR)15 
aagcttccgcgccctcgaccaagacctcgcccgagaccacgacctcgtccgcgcccaagacctcgaccgcgtccacgccctag
accgcgaccccgggggtaccgagctcggatcc 
(PR)5 
aagcttccgcgtccacgccctagaccgcgaccccgggggtaccgagctcggatcc 
(GR)50 

aagcttgcccggggccggggccgtggtcgcggacgaggcagaggtcgtggacgcggccgaggtagaggacgtggccgcggt
cgaggaagaggtcgcggcagaggacgaggtcgtggccgcggaagaggtcgaggccgtggacgcggtagaggccgaggccg
gggccggggccgtggtcgcggacgaggcagaggtcgtggacgcggccgaggtagaggacgtggccgcggtcgaggaagag
gtcgcggcagaggacgaggtcgtggccgcggaagaggtcgaggccgtggacgcggtagaggccgaggccggcggtaccgag
ctcggatcc 

 

Red – HindIII and BamHI cloning sites 
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Table 4.3 Nucleotide Sequences of Codon-Varied HD RAN Polypeptides 

(Ala)38 
aagcttcgggtctcagcagccgcagcggccgcagcagccgcggcagccgcagcggccgcagcagccgcggca
gccgcagcggccgcagcagccgcggcagccgcagcggccgcagcagccgcggcagcgagacggatcc 
(Cys)37 
aagcttcgggtctcatgttgctgttgctgctgttgctgttgttgttgctgttgctgctgttgctgttgttgttgctgttgctgctgttgct
gttgttgttgctgttgctgctgttgctgttgttgtttgagacggatcc 
(Ser)38 
aagcttcgggtctcatcttcctcatcgtcctcatcgtcttcctcttcctcatcgtcctcatcgtcttcctcttcctcatcgtcctcat
cgtcttcctcttcctcatcgtcctcatcgtcttcctctttgagacggatcc 
(Leu)38 
aagcttcgggtctcattattgcttctcctgttacttctcctattattgcttctcctgttacttctcctattattgcttctcctgttacttctc
ctattattgcttctcctgttacttctcctattattgagacggatc 
(Gln)38 
aagcttcgggtctcacagcaacaacagcagcaacagcagcaacagcaacaacagcagcaacagcagcaacag
caacaacagcagcaacagcagcaacagcaacaacagcagcaacagcagcaacagcagagacggatc 
(Q)38 
aagcttcgggtctcacagcagcagcagcagcagcagcagcagcagcagcagcagcagcagcagcagcagcag
cagcagcagcagcagcagcagcagcagcagcagcagcagcagcagcagcagcagcagagacggatc 
(Leu)11 
aagcttcgggtctcattattgcttctcctgttacttctcctattattgagacggatc 
(Leu)20 
aagcttcgggtctcattattgcttctcctgttacttctcctattattgcttctcctgttacttctcctattattgagacggatc 
(Leu)29 
aagcttcgggtctcattattgcttctcctgttacttctcctattattgcttctcctgttacttctcctattattgcttctcctgttacttctc
ctattattgagacggatc 
(Leu)90 
aagcttttattgcttctcctactgttattgcttctcctactgttattgcttctcctactgttattgcttctcctactgttattgcttctccta
ctgttattgcttctcctactgttattgcttctcctactgttattgcttctcctactgttattgcttctcctactgttattgcttctcctactgtt
attgcttctcctactgttattgcttctcctactgttattgcttctcctactgttattgcttctcctactgttattgcttctcctactgcgga
tc 
(Cys)90 
aagctttgttgctgttgctgctgttgttgctgttgctgttgctgttgctgctgttgttgctgttgctgttgctgttgctgctgttgttgctg
ttgctgttgctgttgctgctgttgttgctgttgctgttgctgttgctgctgttgttgctgttgctgttgctgttgctgctgttgttgctgttg
ctgttgctgttgctgctgttgttgctgttgctgttgctgttgctgctgttgttgctgttgctgttgctgttgctgctgttgttgctgttgcc
ggatc 
(Ser)90 
aagctttcttcctcatcgtcttcctcatcgtcttcctcatcgtcttcctcatcgtcttcctcatcgtcttcctcatcgtcttcctcatcg
tcttcctcatcgtcttcctcatcgtcttcctcatcgtcttcctcatcgtcttcctcatcgtcttcctcatcgtcttcctcatcgtcttcct
catcgtcttcctcatcgtcttcctcatcgtcttcctcatcgtcttcctcatcgtcttcctcatcgtcttcctcatcgtcttcctcatcgt
cttcccggatc 
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Table 4.3 (continued) 

(Gln)90 
aagcttcaacagcagcaacaacagcaacagcagcaacagcaacaacagcaacagcagcaacagcaacaaca
gcagcaacaacagcaacagcagcaacagcaacaacagcaacagcagcaacagcaacaacagcagcaacaa
cagcaacagcagcaacagcaacaacagcaacagcagcaacagcaacaacagcagcaacaacagcaacagc
agcaacagcaacaacagcaacagcagcaacagcaacagcaacaacagcaacagcagcaacagcaacggat
c 

 

Red-HindIII and BamHI cloning sites 
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Table 4.4 Promoter Sequences and Targeting Sequences  

Myo-3p - FLAG 
aagcttgtttgatgaaaaccaatgaaacaagtgattatagtctctgttttcgttaattttgaattttgcttgataaggctgcaac
aaagatcaggttgacatatattttcagtaatttattttaacctgtactctatcactgccggctataataagttcttgaataaaat
aattttcccgacaaaacatgagtatttctttcgaaaataaaagtgcaggctaattagagattattctgtaattaactgcataa
tttgtcacgtgccatagttttacattccactacgtcatagttcttaaaatactaatctcctgaaaatagaagtaggtgaagaa
agtttaattatcagttctaaaatgacaattgatctttggaatatgttctgaaactaccgatcattgaacagatgctatttgaatg
atatagaattgtatatttgcaatttctgaaacgcgttcttaaaggcacacagattaattcaaaagggtctggccgcaaaaa
ggtttatggtggccgattttgagttttgtgtgtgattgctttttcacaatcagtgttttcaggattatgtgatgaactagatcttcaa
gtttcgttacatttcatatgttttcggaactcacgaagtacatattgggtattgtgctcaaaaaattcagcaatcagcttcgctc
cgctgactttagaacccaaaaaaatagtatggccaaactgactgtgttacgatcatttcaatttttcaatacatatttaagat
ttctaagagtaagaaggtcaaaaactgttctggaatacatatatatttttcaggttacaattagtcaaaaagtgcactgaa
atatacgttttaatttcacgaataacccaattagttcaatgtatttttggtcaaccaacgttaaagtttggcttccaaccaattat
catttctgatcaaccacaatgttttttctttatctgcaagttaattttttatttttatccagatgtttggcatatttttcaattcttcactag
cgcccacttcttgcacttccggcgccctgaatctaatgcatctgttgcaagaattgaaagaccaatcaacacattgttttctt
cacgagatactgaagaaaatgaataaaaacagagaaaaagagccatgtgattagtgacaactgttgctaacagata
ccatagcttggacttggtacgtgatggcaacgtatgggtcaacaaaaatgattgcagagggggtgcaaaacagtcaa
gtcgagaaaatatgaaaaacagaaaacaaagaacagaaaaatgggtttgagagtcagtataatttataaaagaaa
aattgtacatagaaattaaccatttttgtagaagaagttatttttcaagcatcgttaaaaattattcaaagcaccttatttcatat
ttaattttaaacatggttaaatgaacaacacggtgcgcaatcaggaaaacttgaaatctgaaactgttgttgtgatcttcttc
gcaactgttcagatagcactagtgtaatgttaagagtgcgcgaatataatggaatataatggatcacacctcctgccatc
aggtaaacgtctctgttatcacatatttccaactattaaatttttaccttttacagttttacatttttttgaaaaaagtaactttttgtc
ttcaaaatccctgacgaaaatatcaaatattttaatcgagactgcagaggaaccgattgatgatttggaaaatccagcttt
acctgtgtaagaactgaaaagtttcataaccctagggtattcccagttacattccccactggctaacaatagcacccagtt
tttcatcacctttcttcaaatttctcggcgatttgttaaaaacaaaatttgtgtcccttctctgatatctctatgtctctaaacacaa
gttcatcggaaaacgaaggagggtaggtgttggttgggctcccgaagtgaaaatagaagagcaagaatagaatatta
gagagagagtgcagagagggcgggatagctcccgggattccgttttcttcttctttatcttcaacgatgatgtgtgtgcgtg
ttgtatagattctgttgctcccccacaactcgctccgaaggctcaatacaattcaattgatattggaggagagcctaccgg
agtgggaggataagaagaaacataagaagaagaagaagaagaagcatgcttctggtttttgatgctatgaaaacgg
cacaaaaagatgattgaggtcccttttcaataccttctctcatctttcaaatcccattgaaacctaaaacttctcaccacgct
ttaccattgttctccaaaaacttatagcaatgtctataacttttttatctctgaaaagcagtgttccatttttctttttcctattttatttc
aattgtttctcacatttcgtttggattctttgcttgtcaaccagcttcttcttccacttttaccgtctaattttcagggcagggagcc
atcaaacccacgaccactagatccatctagaaATGgattacaaggatgacgacgataagaagctt 
Myo-3p-signal sequence-transmembrane-FLAG 
aagcttgtttgatgaaaaccaatgaaacaagtgattatagtctctgttttcgttaattttgaattttgcttgataaggctgcaac
aaagatcaggttgacatatattttcagtaatttattttaacctgtactctatcactgccggctataataagttcttgaataaaat
aattttcccgacaaaacatgagtatttctttcgaaaataaaagtgcaggctaattagagattattctgtaattaactgcataa
tttgtcacgtgccatagttttacattccactacgtcatagttcttaaaatactaatctcctgaaaatagaagtaggtgaagaa
agtttaattatcagttctaaaatgacaattgatctttggaatatgttctgaaactaccgatcattgaacagatgctatttgaatg
atatagaattgtatatttgcaatttctgaaacgcgttcttaaaggcacacagattaattcaaaagggtctggccgcaaaaa
ggtttatggtggccgattttgagttttgtgtgtgattgctttttcacaatcagtgttttcaggattatgtgatgaactagatcttcaa
gtttcgttacatttcatatgttttcggaactcacgaagtacatattgggtattgtgctcaaaaaattcagcaatcagcttcgctc 
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Table 4.4 (continued)  

cgctgactttagaacccaaaaaaatagtatggccaaactgactgtgttacgatcatttcaatttttcaatacatatttaagat
ttctaagagtaagaaggtcaaaaactgttctggaatacatatatatttttcaggttacaattagtcaaaaagtgcactgaa
atatacgttttaatttcacgaataacccaattagttcaatgtatttttggtcaaccaacgttaaagtttggcttccaaccaattat
catttctgatcaaccacaatgttttttctttatctgcaagttaattttttatttttatccagatgtttggcatatttttcaattcttcactag
cgcccacttcttgcacttccggcgccctgaatctaatgcatctgttgcaagaattgaaagaccaatcaacacattgttttctt
cacgagatactgaagaaaatgaataaaaacagagaaaaagagccatgtgattagtgacaactgttgctaacagata
ccatagcttggacttggtacgtgatggcaacgtatgggtcaacaaaaatgattgcagagggggtgcaaaacagtcaa
gtcgagaaaatatgaaaaacagaaaacaaagaacagaaaaatgggtttgagagtcagtataatttataaaagaaa
aattgtacatagaaattaaccatttttgtagaagaagttatttttcaagcatcgttaaaaattattcaaagcaccttatttcatat
ttaattttaaacatggttaaatgaacaacacggtgcgcaatcaggaaaacttgaaatctgaaactgttgttgtgatcttcttc
gcaactgttcagatagcactagtgtaatgttaagagtgcgcgaatataatggaatataatggatcacacctcctgccatc
aggtaaacgtctctgttatcacatatttccaactattaaatttttaccttttacagttttacatttttttgaaaaaagtaactttttgtc
ttcaaaatccctgacgaaaatatcaaatattttaatcgagactgcagaggaaccgattgatgatttggaaaatccagcttt
acctgtgtaagaactgaaaagtttcataaccctagggtattcccagttacattccccactggctaacaatagcacccagtt
tttcatcacctttcttcaaatttctcggcgatttgttaaaaacaaaatttgtgtcccttctctgatatctctatgtctctaaacacaa
gttcatcggaaaacgaaggagggtaggtgttggttgggctcccgaagtgaaaatagaagagcaagaatagaatatta
gagagagagtgcagagagggcgggatagctcccgggattccgttttcttcttctttatcttcaacgatgatgtgtgtgcgtg
ttgtatagattctgttgctcccccacaactcgctccgaaggctcaatacaattcaattgatattggaggagagcctaccgg
agtgggaggataagaagaaacataagaagaagaagaagaagaagcatgcttctggtttttgatgctatgaaaacgg
cacaaaaagatgattgaggtcccttttcaataccttctctcatctttcaaatcccattgaaacctaaaacttctcaccacgct
ttaccattgttctccaaaaacttatagcaatgtctataacttttttatctctgaaaagcagtgttccatttttctttttcctattttatttc
aattgtttctcacatttcgtttggattctttgcttgtcaaccagcttcttcttccacttttaccgtctaattttcagggcagggagcc
atcaaacccacgaccactagatccatctagaaATGccaccttcaacatcattgctgctcctcgcagcacttcttc
cattcgctttaccagcaagcgattggaagactggagaagtcactccggataatgcaacagtctgggtcagaa
aacataaagattgtcctccacctgtccctgtgctcgcaattgtgctcggagtcattgcgggtatcgtaatcctcg
gaattcttctcttgttgctctggaaattgctcacagtacttcatgatagatccgaggtaccggtagaaaaagatta
caaggatgacgacgataagaagctt 
Myo-3p-GFP-FLAG-his-58 
aagcttgtttgatgaaaaccaatgaaacaagtgattatagtctctgttttcgttaattttgaattttgcttgataaggctgcaac
aaagatcaggttgacatatattttcagtaatttattttaacctgtactctatcactgccggctataataagttcttgaataaaat
aattttcccgacaaaacatgagtatttctttcgaaaataaaagtgcaggctaattagagattattctgtaattaactgcataa
tttgtcacgtgccatagttttacattccactacgtcatagttcttaaaatactaatctcctgaaaatagaagtaggtgaagaa
agtttaattatcagttctaaaatgacaattgatctttggaatatgttctgaaactaccgatcattgaacagatgctatttgaatg
atatagaattgtatatttgcaatttctgaaacgcgttcttaaaggcacacagattaattcaaaagggtctggccgcaaaaa
ggtttatggtggccgattttgagttttgtgtgtgattgctttttcacaatcagtgttttcaggattatgtgatgaactagatcttcaa
gtttcgttacatttcatatgttttcggaactcacgaagtacatattgggtattgtgctcaaaaaattcagcaatcagcttcgctc
cgctgactttagaacccaaaaaaatagtatggccaaactgactgtgttacgatcatttcaatttttcaatacatatttaagat
ttctaagagtaagaaggtcaaaaactgttctggaatacatatatatttttcaggttacaattagtcaaaaagtgcactgaa
atatacgttttaatttcacgaataacccaattagttcaatgtatttttggtcaaccaacgttaaagtttggcttccaaccaattat
catttctgatcaaccacaatgttttttctttatctgcaagttaattttttatttttatccagatgtttggcatatttttcaattcttcactag
cgcccacttcttgcacttccggcgccctgaatctaatgcatctgttgcaagaattgaaagaccaatcaacacattgttttctt
cacgagatactgaagaaaatgaataaaaacagagaaaaagagccatgtgattagtgacaactgttgctaacagata
ccatagcttggacttggtacgtgatggcaacgtatgggtcaacaaaaatgattgcagagggggtgcaaaacagtcaa 
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Table 4.4 (continued) 

gtcgagaaaatatgaaaaacagaaaacaaagaacagaaaaatgggtttgagagtcagtataatttataaaagaaa
aattgtacatagaaattaaccatttttgtagaagaagttatttttcaagcatcgttaaaaattattcaaagcaccttatttcatat
ttaattttaaacatggttaaatgaacaacacggtgcgcaatcaggaaaacttgaaatctgaaactgttgttgtgatcttcttc
gcaactgttcagatagcactagtgtaatgttaagagtgcgcgaatataatggaatataatggatcacacctcctgccatc
aggtaaacgtctctgttatcacatatttccaactattaaatttttaccttttacagttttacatttttttgaaaaaagtaactttttgtc
ttcaaaatccctgacgaaaatatcaaatattttaatcgagactgcagaggaaccgattgatgatttggaaaatccagcttt
acctgtgtaagaactgaaaagtttcataaccctagggtattcccagttacattccccactggctaacaatagcacccagtt
tttcatcacctttcttcaaatttctcggcgatttgttaaaaacaaaatttgtgtcccttctctgatatctctatgtctctaaacacaa
gttcatcggaaaacgaaggagggtaggtgttggttgggctcccgaagtgaaaatagaagagcaagaatagaatatta
gagagagagtgcagagagggcgggatagctcccgggattccgttttcttcttctttatcttcaacgatgatgtgtgtgcgtg
ttgtatagattctgttgctcccccacaactcgctccgaaggctcaatacaattcaattgatattggaggagagcctaccgg
agtgggaggataagaagaaacataagaagaagaagaagaagaagcatgcttctggtttttgatgctatgaaaacgg
cacaaaaagatgattgaggtcccttttcaataccttctctcatctttcaaatcccattgaaacctaaaacttctcaccacgct
ttaccattgttctccaaaaacttatagcaatgtctataacttttttatctctgaaaagcagtgttccatttttctttttcctattttatttc
aattgtttctcacatttcgtttggattctttgcttgtcaaccagcttcttcttccacttttaccgtctaattttcagggcagggagcc
atcaaacccacgaccactagatccatctagaaATGagtaaaggagaagaacttttcactggagttgtcccaattcttgt
tgaattagatggtgatgttaatgggcacaaattttctgtcagtggagagggtgaaggtgatgcaacatacggaaaactta
cccttaaatttatttgcactactggaaaactacctgttccatgggtaagtttaaacatatatatactaactaaccctgattattt
aaattttcagccaacacttgtcactactttctgttatggtgttcaatgcttctcgagatacccagatcatatgaaacggcatg
actttttcaagagtgccatgcccgaaggttatgtacaggaaagaactatatttttcaaagatgacgggaactacaagac
acgtaagtttaaacagttcggtactaactaaccatacatatttaaattttcaggtgctgaagtcaagtttgaaggtgatacc
cttgttaatagaatcgagttaaaaggtattgattttaaagaagatggaaacattcttggacacaaattggaatacaactat
aactcacacaatgtatacatcatggcagacaaacaaaagaatggaatcaaagttgtaagtttaaacatgattttactaa
ctaactaatctgatttaaattttcagaacttcaaaattagacacaacattgaagatggaagcgttcaactagcagaccatt
atcaacaaaatactccaattggcgatggccctgtccttttaccagacaaccattacctgtccacacaatctgccctttcga
aagatcccaacgaaaagagagaccacatggtccttcttgagtttgtaacagctgctgggattacacatggcatggatga
actatacaaagattacaaggatgacgacgataagatgccaccaaagccatctgccaagggagccaagaaggc
cgccaagaccgtcgttgccaagccaaaggacggaaagaagagacgtcatgcccgcaaggaatcgtactc
cgtctacatctaccgtgttctcaagcaagttcacccagacaccggagtctcctccaaggccatgtctatcatga
actccttcgtcaacgatgtattcgaacgcatcgcttcggaagcttcccgtcttgctcattacaacaaacgctcaa
cgatctcatcccgcgaaattcaaaccgctgtccgtttgattctcccaggagaacttgccaagcacgccgtgtct
gagggaaccaaggccgtcaccaagtacacttccagcaagaagctt 
Unc-47p-FLAG 
aagcttcgtgcatcttcaaagatttggtataattatgtagagtgaaaaaatagtggaaaatagataaattttttgaaaatatt
tgggctccatccagagtccatttttccggagtccactcaaatagttttcagaaaaattggacttgaaagatgtagagctttgt
tgcatacagaattagaataattaaaaattgggtagaacattttcttcgtaaattttcagagttaatattggcaaagactgtttg
atttgcacttttgactggaaaaaaaggctatagtccacagaaaactattttccagaaagtttattttttccaaatttttaattgta
caataaagaattaacatgaagatggaaaatgctcaattttcagtaaaaaattacaaaaatatctataaacaagtaaact
actacaactaccaaaaagaatgaaaacaaacaaattggaagtaatgcgaaacaaaaaatgaatgagcgatctgct
gagctctctctctctctctctttccatctttctctctatatcttcatcttttgctagcagccacttttggtgtgaagggtgtagaaga
aagagaaagagagaccgaaacataaagacatagacaacacggtcttcctccacttctatacacactcttctgcttcttct
tctcctgctggctttcaagcaacggacacggccgaaagcagaagccgtgcagaaaaaaagaagaagaagaaaaa 
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Table 4.4 (continued) 

agaaaagagctgtggccacacaaacaaatggatgttgtctctgtagcaatggcggttggctccgcgagagcgccgga
ggggaaattgggagacaaaaagttaatgcacttgacaatacagcgatataattcagatttactgtgacgggaagattgt
tgacatggggaataggaagaatgaagatctcaacgttttcggaacagttgtacgatatgattttccagggtactaaaaca
ttaaaactgtcaaaggggtacagcatgttgtcatcacttcaaacttttcaatgcataaatttcttgtcagatctgatcctctata
cttgaagtttataccgataaaggttttcaacagattttgaagcatttgaatcaggggtgcctgggtaaacctatcatacgaa
actgccaatttgtcctgtgaatcgtatctattaaaacaagactgaaaataactaaacttctacgtcaaaaagttgacaaa
acaactttcttggaaaaaaagctgttgggatcccggaacagtcgaaagtcggtggcaagcgccgaactgctgacggt
ctaaccggggcacaaatcaggggtgagcggcaaacgatttttccggcaaatcggcaaatcggcaaattgccaatatt
gaaatacccggcaaatcggtaaatagccggaattgaaaatttccggcaaactggtaaaccgcaaattgctgatttgcc
gaatttgccgggaagacggcaattgccaaacatattcggcaaattgtggttttgcactttttggaaatttcagaatttcaatc
ggcaaattgtgcacatcctatgaattttcctacatctattttgaaaagtaagcaaattctatgaaaatatctaaagaaaaat
ggaaaaaattttcaaaaaggcacagttttaagtgtttccgtctaataaaaaaatccccctaaacacttccggcaaattgat
gttcggcaaatggcaaatcggaaacttgccgaaaattacagtttccggtaaatcggcaaaccggcaaactgcctgaat
tgaaaagttccgtcaaatcggcaaaccgacaacacccctggcacaaatgatggacatactgaggcaatttgccggttt
tccaattgcaggaaattttcaattccggcagtgtgccgatttgccggaaattttaattcaggcaaattgccgatttcccgattt
cccgatttgccggaaaaaatcgtttgccgcccacccctgggtctgaaccttgattgttacaaaacatttttagctctttggag
aaataaaatgaatctcgtaaaatttaattgacgaggacgatattagctgtctctttagaccaaattcagaaaaaaagaa
agaatacttcccaaatttccggtccctctctcgttttttttgccaataaactcactatagtcgctggttcccccctattcacattta
ttctaccaatccatcagtggaaccagaaaaaagaagagcctttcggtttggagagtagggtctaataatcccccgtgct
cttcaaatcattgtgccaacacacagacacactttatgtgtgctcacacacacacgctatttgaagagcgaagacgacg
acgacgcattcagagctcttttccacgaaatttgctccatctttccacaatctgtctttcctgtgagacgacagcgtcacattt
atttcattacagATGgattacaaggatgacgacgataagaagctt 

 
 
Red – HindIII cloning sites 
Underline – FLAG sequence 
ATG – start codon 
Green – GFP sequence 
Bold italics – Signal sequence-transmembrane domain 
Bold – his-58 sequence 
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Appendix E – Galaxy Workflow 

Workflow and restraints used to extract novel snps and indels from sequencing 
information on Galaxy (https://usegalaxy.org) 
  

1. Input datasets 
a. C. elegans FASTA reference genome 
b. FASTQ forward reads 
c. FASTQ reverse reads 
d. SnpEff database 

 

2. Map with BWA for Illumina 
a. Library is paired-end 
b. Maximum edit distance (aln -n)=0 
c. Fraction of missing alignments given 2% uniform base error rate (aln -

n)=0.04 
d. Maximum number of gap opens (aln -o)=0 
e. Maximum number of gap extensions (aln -e)=-1 
f. Disallow long deletion within 16 bp towards the 3’ end (aln -d) 
g. Disallow insertion/deletion within 5 bp towards the end (aln -i) 
h. Number of first subsequences to take as seed (aln -l)=-1  
i. Maximum edit distance in the seed (aln -k)= 2 
j. Mismatch penalty (aln -M)=3 
k. Gap open penalty (aln -O)=11 
l. Gap extension penalty (aln -E)=4 
m. Disable iterative search (aln -N)=False  
n. Maximum number of alignments to output in the XA tag for reads paired 

properly (samse/sampe-n)=3 
o. Maximum number of alignments to output in the XA tag for disconcordant 

read pairs (excluding singletons (sampe -N))=10 
p. Maximum insert size for a read pair to be considered as being properly 

(sampe-a)=500 
q. Maximum occurrences of a read for pairing (sampe -o)=100000 

 

3. Filter Sequence Alignment/Map (SAM) 
a. The read is unmapped  
b. Do not set the states for this flag 

 

4. SAM to Binary Alignment/MAP (BAM) 
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5. Add or Replace Read Groups 
 

6. Unified Genotyper 
a. Binding for reference-ordered datas 

i. Identify SNPs 
ii. Minimum phred-scaled confidence threshold at which variants not 

at ‘trigger’ track sites should be called=30.0 
iii. Minimum phred-scaled confidence threshold at which variants not 

at ‘trigger’ track sites should be emitted=30.0 
iv. Basic GATK options and basic analysis options 

7. Identify Snps 
a. Input/output format=VCF 
b. Genetic code for sequence= standard 
c. No upstream/downstream intervals (0 bases) 
d. Do not show downstream/intergenic/intron/upstream/5’UTR/3’UTR 

changes 
e. Filter out specific effects 
f. Filter out and do not report 

i. Synonymous coding 
ii. Synonymous start 
iii. Synonymous stop 
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