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Abstract 

How Do We Learn New Meanings for Words Already Known? Evidence from EEG and 

MEG Studies 

 

Xiaoping Fang, PhD 

 

University of Pittsburgh, 2019 

 

 

 

 

In addition to learning new words, people often learn new meanings for words they already 

know. For example, one might learn that the word ‘skate’ refers to a type of fish long after knowing 

its more common roller- or ice-skating meaning. Different from learning a new word, this type of 

learning requires updating the lexical knowledge by associating new information with an existing 

word and involves the co-activation of new and prior word knowledge. This dissertation 

investigates the mechanisms underlying the learning of new meanings for known words. In 

particular, it focuses on the influence of overnight consolidation on the learning of new meanings 

for known words and the role of the left posterior middle temporal gyrus (pMTG) in binding new 

meanings to known words. Study 1 showed that the processing of both new and original meanings 

became faster after overnight sleep. This indicated reduced interference between new and original 

meanings over time, especially after overnight consolidation occurred. However, the event-related 

potential (ERP) data showed that accessing the new meanings was still mainly supported by 

episodic retrieval even 24 hours after learning. To investigate how new meanings are associated 

with known words, Study 2a first demonstrated that presenting word meanings as verbal 

definitions were sufficient to drive a semantic category effect. Based on this result, Study 2b 

further showed that the left pMTG, in addition to sensorimotor cortices relevant to the 

representation of new meanings, was involved in binding new meanings to known words. 

Combined with the previous findings on learning novel words, the results suggest that the co-
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activation of new and prior knowledge is essential to the integration of new word knowledge into 

the mental lexicon. The left pMTG not only supports the formation of novel form-meaning 

associations, but also the associations between new meanings and previously known words. 
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1.0 Introduction 

1.1 The complementary learning systems model of word learning 

Even native adult speakers continuously update their vocabulary knowledge by learning 

new words through reading and communication (Brysbaert, Stevens, Mandera, & Keuleers, 2016). 

Although new words can be successfully recognized shortly after minimal exposure, they are not 

necessarily represented in the mental lexicon in the same way as existing words. For example, 

existing words with similar pronunciations compete with each other during word recognition 

(Marslen-Wilson, 1987). Behavioral studies have shown that new words (e.g., “cathedruke”) do 

not usually compete with existing words with similar pronunciations (e.g., “cathedral”) until the 

occurrence of offline consolidation, which typically involves overnight sleep (e.g., Bakker, 

Takashima, van Hell, Janzen, & McQueen, 2014; e.g., Dumay & Gaskell, 2007; Gaskell & Dumay, 

2003). 

To account for the time-dependent change in the processing of new words and existing 

words, Davis and Gaskell (2009) applied the complementary learning systems model (CLS; 

Frankland & Bontempi, 2005; Mcclelland, Mcnaughton, & Oreilly, 1995) to the field of word 

learning. According to the CLS model, the hippocampal learning system quickly encodes episodic 

memories of learning events. These memories are gradually transformed to neocortex-based 

semantic memory through repeated memory “replay”, especially during overnight consolidation. 

Within this framework, Davis and Gaskell (2009) proposed that episodic memories of a new word 

are quickly formed with the support of the hippocampal learning system. With these initial 

memories, learners are able to recognize or recall the new word by activating relevant episodic 
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memories. After memory transformation through offline consolidation, a new word is gradually 

integrated into the mental lexicon. Only after becoming part of the mental lexicon is a novel word 

represented and processed like an existing word. 

Based on the CLS model, the processing of new words becomes less hippocampus-

dependent and relies more on the neocortex as they are integrated over time. Recent learning 

studies have shown that the left posterior middle temporal gyrus (pMTG) is associated with the 

formation of new lexical representations for newly learned words (Landi et al., 2018; Takashima, 

Bakker, van Hell, Janzen, & McQueen, 2014, 2017). The activation in the left pMTG during the 

processing of novel words becomes stronger after offline sleep occurred, especially when novel 

words have been paired with meanings or when word meanings contain richer semantic features 

(Ferreira, Gobel, Hymers, & Ellis, 2015; Takashima et al., 2014, 2017). One proposal is that this 

region simultaneously activates the neocortical areas associated with representations of different 

lexical constitutes and binds the activated information together through theta oscillations (Bakker-

Marshall et al., 2018).  

The importance of the left pMTG in word processing has been widely acknowledged. In 

the dual-stream model, the left pMTG is the lexical interface – mapping word forms onto their 

meanings (Gow, 2012; Hickok & Poeppel, 2004, 2007). In the Memory, Unification, and Control 

(MUC) model, this region is relevant to the storage and retrieval of lexical knowledge including 

lexical-semantics (Hagoort, 2005). A related argument is that the left pMTG is associated with the 

representations of underspecified but core semantic features and activates more specific 

representation in relevant neocortical areas (Papeo et al., 2015).  

Overall, the left pMTG plays a crucial role in the storage and processing of word 

knowledge. It is possible that the left pMTG slowly takes over the binding role of the hippocampus 
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over time. Before the shift is completed, both the left pMTG and the hippocampus support word 

processing (Takashima et al., 2014, 2017). 

1.2 Learning new meanings for known words 

In addition to learning novel words, people often add new meanings to words they already 

know, thus resulting in the update of word knowledge. For example, one may learn that the word 

skate can refer to a type of fish after knowing its roller (or ice)-skating meaning. Different from 

learning novel words, learning new meanings for known words requires meaning learning only, 

without creating new lexical representations. In addition, this type of learning involves an intensive 

interaction between new and prior knowledge, because prior word knowledge is automatically 

activated upon word presentation (Humphreys, Evett, & Taylor, 1982; Lesch & Pollatsek, 1993; 

Perfetti, Bell, & Delaney, 1988). The reactivation of prior word knowledge can affect the encoding 

and integration of new information (Schlichting & Frankland, 2017). In particular, neurons that 

are relevant to the representation of prior word knowledge, including word forms and original 

meanings, are likely to be reactivated and become part of the representation of new meanings 

during the initial encoding. During offline replay of the newly encoded memory, these neurons are 

likely to be reactivated, further enhancing the co-activation of new and prior knowledge. The 

boosted co-activation may facilitate the integration of new meanings into the mental lexicon and 

make learning less reliant on overnight consolidation.  

However, when new and original meanings are semantically unrelated, the co-activation 

of new and prior knowledge is likely to involve interference among meanings, possibly slowing 

down integration during some stages of learning. Previous studies on the learning of new meanings 



4 

for known words have shown that interference from original meanings can hinder the initial 

acquisition of new meanings, especially when new meanings are semantically unrelated to the 

original one (Fang & Perfetti, 2019; Rodd et al., 2012). However, over time, the interference 

seemed reduced and did not necessarily pose a disadvantage one day or one week following 

learning (Fang & Perfetti, 2019). It is possible that more distinctive or less overlapped 

representations for different meanings are created over time. However, given the characteristic 

differences relative to the learning of novel words, it remains unclear whether learning new 

meanings for known words involves the shift from episodic- to semantic-based processing over 

time and whether the left pMTG is the functional area for the binding of new meanings to known 

words.  

1.3 Aims and studies 

This dissertation examines the mechanisms underlying the learning of new meanings for 

known words. In particular, I focused on: (1) the role of overnight consolidation in learning new 

meanings for known words (Chapter 2); (2) the role of left pMTG in binding new meanings to 

known words (Chapter 3). 

Chapter 2 (Study 1) investigates how overnight consolidation affected the learning of new 

meanings for known words using event-related potentials (ERPs). Participants studied new 

meanings for two sets of words on two consecutive days – one set before overnight sleep occurred 

and the other after. Behavioral and ERP responses to the words were compared. The findings 

showed faster semantic judgments on the new meanings after overnight consolidation, suggesting 

faster meaning access over time. While learning new meanings did slow access to original 
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meanings on the day of learning, such effect was absent 24 hours later. The ERP data showed that 

overnight consolidation did not affect lexical-semantic processing significantly. Instead, episodic 

retrieval seems to play an equally important role in meaning access within the 24 hours. Overall, 

overnight sleep does play a beneficial role in the learning of new meanings for known words, even 

though new meanings are not fully integrated within the 24 hours. 

Chapter 3 reports two studies and investigates the role of left pMTG in the learning of new 

meanings for known words. Study 2a first demonstrated that presenting word meanings as verbal 

definitions is sufficient to drive the activation of relevant sensorimotor features associated. In 

particular, after multiple-session training, ERPs evoked by novel spoken words paired with 

definitions describing action and non-action features started showing a difference (i.e., semantic 

category effect) around 100 ms when a novel word can be uniquely identified. This suggests rapid 

and (arguably) automatic activation of semantic features during word recognition, possibly 

involving relevant sensorimotor cortices. 

With these findings, Study 2b further used Magnetoencephalography (MEG) to examine 

the role of the left pMTG and that of the sensorimotor cortices in learning new action meanings 

for known words and for novel words. The MEG data showed different parts of the sensorimotor 

circuits are involved in accessing the new action meanings for novel words and for known words. 

Enhanced involvement of the left MT+, the human homologue of the monkey motion complex, 

was observed in the processing of new action meanings of novel words. In contrast, enhanced 

involvement of the left frontal motor regions (BA44 and lateral precentral gyrus) that are relevant 

to the representation of abstract action meanings, was found for known words. In addition, 

enhanced source activation in the left pMTG was observed when participants were accessing the 

new meanings of known words, while there was only a trend of enhanced source activation for 



6 

meaning access in novel words. Overall, the findings suggest new meanings of known words are 

more integrated into the mental lexicon than those of novel words and that the left pMTG may 

play an important role in binding the new meanings to known words. 

In Chapter 4, based on the reported studies and previous work, I proposed how the co-

activation of new and prior word knowledge is involved in the learning new meanings for known 

words within the standard model of system consolidation (Frankland & Bontempi, 2005). 

Furthermore, the findings from the learning of new meanings provide implications for the 

mechanisms underlying word learning in general. 
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2.0 Study 1: The Role of Overnight Consolidation in Learning New meanings for Known 

Words 

2.1 Introduction 

Based on a large-scale study, native speakers of American English aged 20 to 60 learn, on 

average, a new word every other day (Brysbaert et al., 2016). While a new word may be recognized 

shortly after minimal exposure, learning is not completed when the initial learning event ends. 

Instead, to integrate a new word into the mental lexicon, offline memory consolidation during 

overnight sleep is usually needed (Davis & Gaskell, 2009; Dumay & Gaskell, 2007; Gaskell & 

Dumay, 2003). However, most of the evidence for the importance of overnight consolidation 

comes from the learning of novel spoken or written words, when new lexical representation is 

established. Another type of word learning that occurs very often, however, is less studied – the 

learning of new meanings for previously known words (Fang, Perfetti, & Stafura, 2017; Fang & 

Perfetti, 2017, 2019; Maciejewski, Rodd, Mon-Williams, & Klepousniotou, 2019; Rodd et al., 

2012). For example, one might learn that the word ‘skate’ refers to a type of fish long after knowing 

its more common roller- or ice-skating meaning. Different from learning a novel word, this type 

of learning requires updating the lexical knowledge by associating new information with an 

existing word. The current study examined the role overnight consolidation may play in the 

learning of new meanings for known words. 

Within the framework of complementary learning systems (Kumaran, Hassabis, & 

McClelland, 2016; Mcclelland et al., 1995), Davis and Gaskell (2009) proposed that learning a 

novel word involves two learning and memory systems. The initial memories about a novel word 
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are encoded as episodic memories of specific learning events. Over time, those memories are 

transformed to semantic memories, especially during overnight sleep. The core mechanism for 

memory transformation is memory replay or reactivation (Diekelmann & Born, 2010; Dudai, 

Karni, & Born, 2015). In particular, the hippocampus and surrounding areas replay the encoded 

episodic memories repeatedly, leading to re-activation of neocortical areas relevant to new 

memories and also those relevant to older and similar memories. Such repeated co-activation 

gradually establishes direct connections among neocortical areas, eventually leading to the 

formation of hippocampus-independent semantic memories and integration of new information 

(Frankland & Bontempi, 2005). In the case of word learning, the formation of a semantic memory 

indicates the integration of a novel word into the mental lexicon and allows it to be represented 

and processed like a previously acquired word. 

To investigate the role of overnight consolidation in word learning, a study examined 

behavioral and ERP responses to novel words that were studied either before or after overnight 

sleep (Bakker, Takashima, van Hell, Janzen, & McQueen, 2015). After learning both sets of words, 

participants made semantic judgments on the studied words while EEG was recorded. Behavioral 

data showed that participants were faster in responding to the words studied prior to overnight 

sleep than those after. Furthermore, neural responses to novel words were also influenced by 

overnight sleep, as indicated by the difference in the N400 component. The N400 component, a 

negative going component peaking around 400 ms after word onset at the central midline site of 

scalp, is a classical indicator of semantic processing (Kutas & Federmeier, 2011). A more negative 

N400 usually means more effortful meaning access or more extensive search of semantic memory. 

Bakker et al. (2015) found a reduced N400 within 300-500 ms for words that were studied before 

overnight sleep than those after. Furthermore, the N400 became comparable with that for existing 
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words after overnight sleep. A series of behavioral studies also argues for the importance of 

overnight consolidation in integrating new words into the mental lexicon (e.g., Bakker et al., 2014; 

Dumay & Gaskell, 2007; Gaskell & Dumay, 2003; Wang et al., 2016). 

Different from learning novel words, learning new meanings for known words involves an 

intensive interaction between new and prior knowledge during the encoding of new meanings, 

because prior word knowledge is automatically activated upon word presentation (Humphreys et 

al., 1982; Lesch & Pollatsek, 1993; Perfetti et al., 1988). This provides opportunity for the co-

activation of neocortical areas that are relevant to the representation of new meanings and those 

relevant to the representation of prior word knowledge, even before overnight consolidation occurs. 

As a result, integration of new meanings may occur faster and rely less on overnight consolidation. 

However, because of the interference between new and original meanings, integration may need 

more overnight consolidation so that the learning of new meanings does not affect the previously 

acquired word-meaning mappings. 

A recent behavioral study examined the time-dependent changes in the processing of both 

new and original meanings (Fang & Perfetti, 2019). In the study, participants learned new 

meanings for high and low frequency words, and the processing of both new and original meanings 

were tested at three time points: immediately following learning, one day later, and one week later. 

The results showed that participants remembered new meanings of high frequency words better 

one week following the initial learning, even though immediate retention of new meanings 

suffered more from the interference from the original meanings. In addition, participants became 

slower in making semantic relatedness judgments based on original meanings on the day of 

learning, but not one day or one week later. The time-dependent changes suggest that, as in the 
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learning of novel words, offline consolidation may also be essential to the long-term retention and 

integration of new meanings. 

The current study examined the role of overnight consolidation in the learning of new 

meanings for known words by comparing words that were studied on two different days, as in 

Bakker et al. (2015). New meanings for one set of words were studied prior to overnight sleep 

while the other set was studied after. Additionally, the same number of words was presented 

without new meanings on each day, serving as exposure controls. Behavioral and ERP 

measurements for the processing of new meanings were taken. In addition, the processing of 

original meanings was tested with a semantic category judgment task, aiming to replicate and 

extend the previous findings by Fang and Perfetti (2019) by using a task that required participants 

to make judgments only on the original meanings and including only one test point. 

If overnight consolidation benefited the integration of new meanings, we would expect 

more automatic and faster processing of new meanings following overnight consolidation, as 

found in the learning of novel words (Bakker et al., 2015). If more automatic processing was a 

result of enhanced involvement of semantic memory and reduced episodic memory, we expected 

this would be reflected by the ERP components relevant to the processing of episodic and semantic 

memory. If new meanings are integrated over time and more semantic processing is involved in 

the processing of new meanings, a difference in N400 amplitude between words studied before 

and after overnight sleep occurred was expected. Previous studies have shown that semantically 

ambiguous words evoke a more negative N400 than unambiguous words, reflecting that more 

information is accessed from the semantic memory and possibly also competition among meanings 

(Lee & Federmeier, 2006). In the current study, if new meanings were integrated into the mental 
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lexicon following overnight consolidation and were accessed from the lexico-semantic memory, a 

more negative N400 was expected. 

In terms of episodic memory processing, the left parietal positivity, typically observed after 

500 ms, is an ERP indicator of memory recollection (Maratos, Allan, & Rugg, 2000; Rugg & 

Curran, 2007; Tsivilis et al., 2015). If the involvement of episodic memory reduced over time, we 

would expect to see a reduced left parietal positivity. Another ERP component that is often related 

to episodic memory processing is the mid-frontal negativity. This component is often associated 

with memory recognition based on subjective familiarity rather than memory recollection (Rugg 

& Curran, 2007; Tsivilis et al., 2015). Previous studies suggest that stimuli presented within the 

preceding 40 minutes and those presented one day or four weeks ago did not differ in the mid-

frontal negativity (Curran & Friedman, 2004; Tsivilis et al., 2015). Therefore, we did not expect 

any differences between words that were studied 24 hours apart in this component. Furthermore, 

if any of the above effects truly reflected the changes in meaning processing over time, we would 

see that overnight sleep affected words with new meanings and exposure controls differently. 

2.2 Methods 

2.2.1  Participants 

Thirty right-handed native English speakers (15 females, 18.33 ± 0.61 years old) 

participated in the study. They had normal or corrected-to-normal vision and none reported any 

learning or language disabilities. Based on self-reports, the participants had 7.29 ± 1.25 hours of 

sleep (range: 4.5-11 hours) the night after studying Day 1 words and most of them reported that 
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the sleep quality was the same as the past month (4.00 ± 1.02 in a 7-point scale, ranged from 2 to 

6; 1 = worse, 7 = better). Participants provided written informed consent before the experiment 

and received course credits for their participation. The procedure of the study was approved by the 

institutional review board at the University of Pittsburgh. 

2.2.2  Stimuli 

Words 

Word stimuli included 64 concrete nouns selected from a database by Medler, 

Arnoldussen, Binder, and Seidenberg (2005). On a scale of 1-6, all of the words had low ratings 

for the attributes of motion (0.64 ± 0.44), manipulation (2.13 ± 0.68), sound (0.78 ± 0.56), and 

emotion (0.64 ± 0.94). The words had 4.42 ± 0.97 letters (range: 3-6) and were rated as highly 

concrete nouns (4.83 ± 0.17, from Brysbaert, Warriner, & Kuperman, 2013). Each word had only 

one meaning but may have had multiple senses according to the Wordsmyth English Dictionary 

(Parks, Ray, & Bland, 1998). The words were separated into four groups, one group for each of 

the four conditions (Remote/Recent * Meaning/Control; see Table 1 for examples and Appendix 

B.1 for full list), with the assignment of words to the conditions counterbalanced across 

participants. Within each group, half of the words refer to man-made objects and the other half 

referred to natural objects. Additionally, 64 filler words, half referring to man-made objects and 

the other half referring to natural objects, were selected and used in the semantic category judgment 

task. Filler words and trained words were matched in word frequency and number of letters (both 

ps > .26).  
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Meanings  

Thirty-two new meanings were created and separated into two groups (see Appendix B.2 

for full list). Within each group, half of the meanings described specific actions involving hand, 

arm, or finger movement, while the other half described actions involving foot, leg, or toe 

movement. One group was used for each day, with the assignment of meanings to Remote and 

Recent conditions counterbalanced across participants. For exposure controls, they were paired 

with a string of asterisks. 

 

Table 1. Stimulus examples (trained words) 

Condition Word Meaning 

Remote (Day 1) 
  

Meaning cloud lifting with one hand 

Control stone ****************** 

Recent (Day 2) 
  

Meaning grass walking backwards 

Control lamp ****************** 

Notes: Sixteen items for each condition. The assignment of words and meanings to conditions was counterbalanced 

across participants. 

 

2.2.3  Procedure 

The overview of experimental procedure is presented in Figure 1. Participants learned new 

meanings for one group of words and were exposed to the same number of exposure controls on 
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Day 1 (i..e, remote words). On the second day, they learned a second set of words with the same 

procedure (i.e., recent words). Then participants were tested on both recent and remote words 

before they performed a semantic relatedness judgment task tapping the processing of new 

meanings while EEG was recorded. Following that, they performed a semantic category judgment 

task on original meanings of both sets of words, and finally completed a vocabulary test and some 

questionnaires (results of vocabulary test and questionnaires are not reported here). The procedure 

of each task is described below. 

 

 

Figure 1. Tasks participants performed on each day. 

The procedure of learning of recent words (Day 2 words) is the same as that of learning remote words (Day 1 

words). Number in parentheses indicates the number of exposures to the trained words in different stages of the 

learning phase. 
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Learning 

Participants first encoded words with new meanings and the exposure controls. They were 

presented with a word for a second, and then either a definition or a row of asterisks was presented 

for four seconds below the word and. Each word was presented once in the encoding stage. To 

facilitate their learning following the initial encoding, participants studied the words eight more 

times and performed a cued-recall test after every two times of studying. In the study trials, 

participants were presented with a word and were instructed to recall what had been paired with it 

before pressing the space bar to see the answer and restudy the meaning. After that, they pressed 

the space bar to continue to the next word. In the first, third and the fourth tests, participants typed 

out the new meanings for each word, and typed “n” if a word did not have a new meaning. 

Following each response, the correct answer was presented for them to study. In the second test, 

participants were provided with a sheet of paper listing all the words and wrote the new meanings 

for each word. Again, they wrote “n” for exposure controls. Participants were then given a sheet 

with the correct answers and instructed to score their answers and reported their accuracy to the 

experimenter. Following the last cued-recall test, participants performed a matching test, in which 

words and meanings were presented in two separate columns. The meanings were numbered from 

1 to 16. Participants wrote the number of the meaning behind the corresponding words and wrote 

“n” for exposure controls. They then scored and reported their performance to the experimenter. 

As the last task of Day 1, participants reviewed all the words and their new meanings before they 

left and the procedure was the same as in the study trials. On Day 2, participants learned another 

set of words (i.e., recent words) with the same procedure.  
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Final tests on recent and remote words 

On Day 2, following learning the second set of words, participants were tested on both sets 

of words with a cued-recall (typing) test and a recognition (multiple-choice) test. The procedure 

of the typing test was the same as described above except both recent and remote words were 

presented and no feedback was provided. In the multiple-choice test, one word and four options 

were presented on each page, and participants were instructed to select what has been paired with 

each word. Among the four options, the fourth option was always a string of asterisks. The overall 

accuracy and correct answers for all the words were provided upon completion of the task. 

ERP task (new meanings) 

Participants read the meaning-taught words and the exposure controls, which were 

presented at the center of the screen one by one (see Figure 2). They were instructed to read each 

word carefully. Following 18.75% of the words, they saw an underlined phrase (e.g., “hand 

movement”) and needed to judge whether the new meaning of the preceding word was 

semantically related to the phrase. Sometimes the phrase “has a new meaning” or “without a new 

meaning” was presented and participants needed to judge whether a word had been paired with a 

new meaning. Participants were not aware of when a phrase would be presented and what the 

content would be so that expectation and motor preparation was minimized. Each trial began with 

a fixation (600-700 ms), followed by a blank screen (200 ms). Then a word was presented for 1 

000 ms and followed by 1 500 ms of either a blank screen or a phrase. If a phrase was presented, 

it stayed on the screen until participants responded and the next trial began after 1 500 ms of blank 

screen. Participants were instructed to stay still during the task and to blink only after a word 

disappeared but before the next fixation was presented. There were four blocks, and each of the 

trained words were presented once in each block. Therefore, there were 64 trials per condition. 
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Participants took a break of at least 20 seconds between blocks and each block lasted around four 

minutes. A short practice session with 12 additional words was administered twice at the beginning 

of the task to familiarize participants with the task procedure. 

 

Figure 2. Procedure for ERP task. 

Fixations and inter-trial intervals are omitted in the upper panel but shown in the lower panel. 

 

Semantic category judgment task (original meanings) 

Participants made semantic category judgments on the 64 trained words and 64 filler 

words. The trial procedure was largely the same as in previous studies using the same task (Bowers, 

Davis, & Hanley, 2005; Coutanche & Koch, 2017; Coutanche & Thompson-Schill, 2014; Wang 

et al., 2016). Each trial began with a central fixation (800 ms), followed by a blank screen (350 

ms) and a word (500 ms). Participants were asked to judge whether the original meaning of a 

presented word referred to a man-made object or a natural object as quickly and as accurately as 

possible. They indicated their judgments by pressing one button for man-made objects and another 

button for natural objects. Following each response or 1500 ms after the onset of a word, feedback 

(i.e., correct, incorrect, or no response detected) was presented for 1000 ms before the next trial 

cloud	
hand	

movement	

	
gate	
 

stone grass 
has	a	new	
meaning	photo	 lamp ……	desk 

desk	 + cloud 
hand	

movement	 + ……	+ 

600-700	ms	 200	ms	 1	000	ms	 1	500	ms	
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began. The task lasted around seven minutes and participants took a break in the middle of the 

task. Participants received practice trials with 12 additional words before they performed the task. 

2.2.4  EEG data acquisition and preprocessing 

Participants were fitted with a Geodesic Sensor Net with a 128 Ag/AgCl electrode array 

and data were recorded using the associated NetStation acquisition software (Electrical Geodesics, 

Inc., Eugene, OR) with a sampling rate of 1 kHz and a hardware bandpass filter of 0.01–200 Hz. 

Data were preprocessed with NetStation Tool software. A bandpass filter of 0.1–30 Hz was applied, 

and then data were segmented into 900-ms epochs, starting 100 ms before the onset of word stimuli. 

Epochs with artifacts were rejected for further analysis, including eye blink (exceeding±140 μV), 

eye-movement (exceeding 55 μV), and extreme variance (larger than 100 μV). Channels with 

artifacts on more than 20% of epochs were marked as bad channels, and data from surrounding 

channels were used for interpolation. After artifact rejection, on average, there were 59.09 ± 4.78 

out of 64 valid epochs per condition (ranged from 42 to 64). For each trial, data were referenced 

to the average of whole scalp and then baseline correction was performed (-100-0 ms). 

2.2.5  Data analysis 

Missing data statement 

Data from three participants were not complete. For two participants, data from the final 

cued-recall tests on both recently and remotely learned words in Session 2 were missing. We did 

include both participants in the analysis of all the other tasks where their data were available. The 

third participant completed all the tasks except the EEG task, because of the malfunction of the 
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EEG equipment. We excluded the participant from the analysis of the semantic judgment task that 

was administered right after the EEG task for all the other participants. Not performing the EEG 

task that required the retrieval of new meanings four times may influence the access to the original 

meanings. 

Behavioral data 

Behavioral data were analyzed using linear mixed effects modeling with the lme4 package 

in R (Baayen, Davidson, & Bates, 2008). Participants’ responses in the cued-recall tests were 

scored from 0 to 5 independently by two trained research assistants who were blind to conditions, 

based on how close their responses were to the studied meanings (see Appendix B.3 for rubric). 

Responses with differences between the two scores larger than 1 were discussed before a final 

score was assigned. For other responses, the average scores were the final scores. In the recognition 

tests, participants reached an accuracy of 100% in the one of the conditions; therefore empirical 

logit was calculated and by-subject and by-item analyses were performed separately (Donnelly & 

Verkuilen, 2017). Mixed effects logistic regression was conducted to analyze the accuracy data 

from the ERP and semantic category judgment tasks. For response time data, incorrect trials and 

trials with response times 2.5 SD beyond the mean were excluded and then inverse transformation 

was performed before they entered linear mixed effects modeling. 

For all of the tasks, fixed effects included Day (Remote vs. Recent) and Type (Meaning 

vs. Control). However, the fixed factors were coded differently to better capture the effects of most 

interest in different tasks. In the tasks on the new meanings (cued recall, recognition, and ERP 

task), Day was effect-coded and Type was treatment-coded to detect the effect of Day in the 

meaning conditions and to learn whether the effect of Day is different there from that in the control 

conditions. In the semantic category judgment task, which was designed to examine the effect of 
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meaning learning compared to mere exposure, Type was effect-coded and Day was treatment-

coded, to show the effect of Type on the day of learning and how it changed over time, as in our 

previous study (Fang & Perfetti, 2019). Random effect terms included intercepts of subject and 

item, except that only intercept of subject or intercept of item was included in the by subject- and 

by item analysis of empirical logits in the recognition test. A by-subject or by-item slope was added 

if model comparisons showed a significant contribution and models converged. 

EEG data 

The electrodes were grouped into 11 clusters (See Figure 3). Two time-windows were of 

most interest: 300-500 ms and 500-800 ms. Three clusters were of most interest: the central midline 

cluster (Cz), the middle frontal cluster (Fz), and the left parietal cluster (P3). For each cluster 

within each time window, a linear mixed effects modeling on mean amplitude within the time 

window and across channels for single trials was conducted. As in other tasks tapping new 

meanings, Day was effect-coded while Type was treatment-coded. Therefore, three effects are 

examined; simple effect of Day in the two Meaning conditions, main effect of Type, and the 

interaction between Day and Type. To avoid missing results that were not anticipated, for each of 

the three effects, the spatio-temporal data were searched for any significant clusters and multiple-

comparison was corrected with cluster-based permutation tests (Maris & Oostenveld, 2007) using 

MNE-Python (Gramfort et al., 2013; Gramfort et al., 2014). For the sake of computational 

efficiency, the analysis was performed on ERP data that were generated by averaging valid trials 

under the same conditions for each participant rather than on single trial data. 
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Figure 3. The definition of clusters. 

Orange: F3, Fz, and F4; Green: C3, Cz, and C4. Purple: P3, Pz, and P4. Blue: O1 and O2. 

2.3 Results 

2.3.1  New meanings: Cued-recall and recognition tests 

As shown in Table 2 and Figure 4, participants recalled more information about the new 

meanings of recently presented (Day 2) words than those of remotely presented words (Day 1; t = 

-5.875, p < .001), suggesting memory decay over 24 hours. This difference was larger than in the 

control words, as indicated by a significant interaction between Day and Type (t = -6.755, p < 

.001). The same pattern was found in the recognition or multiple-choice tests, as revealed by both 

by-subject and by-item analyses (ps < .01).  Additionally, in both tests, participants performed 

better in the control conditions than in the meaning conditions (ps < .001). 

 



22 

 

Figure 4. Participants’ performance in the cued-recall (left) and recognition (right) tests. 

Error bar represents 1 SEM with between-participant variance removed (Franz & Loftus, 2012; same for other 

figures). ***: p < .001; **: p < .01. 

 

Table 2. Fixed effect estimates for mixed effects models of behavioral tests on new meanings 

Fixed effect beta SE t p  

Cued-recall (typing)      

Intercept 4.555 0.077 58.884 < .001 *** 

Day -0.590 0.101 -5.875 < .001 *** 

Type -0.434 0.082 -5.305 < .001 *** 

Day:Type -0.568 0.084 -6.755 < .001 *** 

Recognition (multiple-choice)     

by-subject      

Intercept 3.177 0.058 54.632 < .001 *** 

Day -0.367 0.106 -3.451 0.001 ** 

Type -0.280 0.075 -3.724 < .001 *** 

Day:Type -0.445 0.151 -2.954 0.003 ** 

by-item      

Intercept 2.601 0.030 87.082 < .001 *** 

Day -0.186 0.060 -3.106 0.002 ** 

Type -0.150 0.042 -3.548 < .001 *** 

Day:Type -0.224 0.084 -2.656 0.008 ** 
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Control Meaning
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Remote
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Notes: The intercept represents averaged performance in meaning conditions across recent and remote words; Day 

represents difference between recent and remote words in the meaning conditions (i.e., simple main effect); Type 

represents overall difference between control and meaning conditions. Model in the cued-recall tests: lmer (Score ~ 

1 + Day*Type + (1+Day+Type|Subject) + (1|Item)); models in the recognition test: lmer (EmpLogit ~ Day * Type + 

(1 | Subject)) for by-subject analysis and EmpLogit ~ Day * Type + (1 | Item) for by-item analysis. EmpLogit = 

empirical logit of accuracy. ***: p < .001; **: p < .01; *: p < .05. 

2.3.2  New meanings: ERP task 

Behavioral performance 

As shown in Figure 5 and Table 3, participants performed the ERP task after learning the 

recent words on Day 2. They overall were more accurate and faster at making judgments on control 

words than on words with new meanings (both ps < .001). For the words with new meanings, 

remote words were responded to more accurately (z = 2.154, p = .012) and faster (t = 3.082, p = 

.002). In contrast, for the control words, accuracy was marginally higher for recent condition (z = 

-1.912, p = .056), and the difference in response times was not significant (t = -0.106, p = .916). 

 

Figure 5. Accuracy (left) and response times (right) of semantic judgments in the ERP task. 
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Table 3. Fixed effect estimates for mixed effects models of behavioral performance in the ERP task 

Fixed effect beta SE t or z p  

Accuracy 
     

Intercept 
2.091 0.228 9.187 < .001 

*** 

Day 
0.595 0.237 2.514 0.012 

* 

Type 
1.233 0.330 3.738 < .001 

*** 

Day:Type 
-1.231 0.409 -3.013 0.003 

** 

Response times 
    

Intercept 
0.578 0.045 12.764 < .001 

*** 

Day 
0.058 0.019 3.082 0.002 

** 

Type 
0.159 0.029 5.060 < .001 

*** 

Day:Type 
-0.060 0.026 -2.297 0.022 

* 

Notes: The intercept is averaged performance in meaning conditions across recent and remote words; Day is 

difference between recent and remote words in the meaning conditions (i.e., simple main effect); Type represents 

overall difference between control and meaning conditions. Model in the accuracy: glmer (Accuracy ~ Day * Type 

+ (1 + Type | Subject) + (1 | Item)); models in the response times: lmer (Inversed response times in seconds ~ Day * 

Type + (1 + Type | Subject) + (1 | Item)). ***: p < .001; **: p < .01; *: p < .05. 

 

ERP results 

Figure 6 shows the ERPs evoked by the four types of words in the 11 predefined clusters 

when participants were making semantic judgments based on the new meanings. Findings from 

the clusters and time windows of interest are reported first, followed by the whole scalp analysis. 
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Figure 6. ERP waveforms evoked by the four different types of words. 

Clusters of interest (Fz, Cz, and P3) are highlighted with green outline and time windows of interest (300-500 ms 

and 500-800 ms) are highlighted with blue boxes at the Cz cluster. 

 

At the Cz cluster, among the words with new meanings, amplitudes in response to remote 

words were comparable to those of recent words within 300-500 ms (p = .742; see Table 4 for 

details). Within 500-800 ms, remote words yielded a marginally larger negativity than recent 

words (p = .086). In addition, combining words with new meanings and exposure controls together, 

remote words overall evoked a marginally larger negativity than recent words within 500-800 ms 

(p = .071) but not within 300-500 ms (p = .871). However, there was no interaction between Day 

and Type in either time window (both ps > .30). 
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At the Fz and P3 clusters, we did not observe a significant difference between recent and 

remote words that had been paired with new meanings in either time window (all ps > .48). 

Furthermore, there was no interaction between Day and Type (all ps > .32). Instead, we observed 

a robust main effect of Type. Compared to exposure controls, words with new meanings evoked a 

larger negativity in both time windows at the frontal site (500-700 ms: p = .036; 500-800 ms: p 

< .001), and a larger positivity in the left parietal site especially in the later time window (500-700 

ms: p = .105; 500-800 ms: p < .001). 

Table 4. Fixed effect estimates for mixed effects models of amplitudes in the ERP task 

Fixed effect beta SE t p 

Cz: 300-500 ms 

Intercept -1.304 0.267 -4.882 < .001 *** 

Day -0.056 0.171 -0.329 0.742 

Type -0.024 0.146 -0.162 0.871 

Day: Type 0.249 0.243 1.025 0.305 

Cz: 500-800 ms 

Intercept -0.929 0.259 -3.585 < .001 *** 

Day -0.311 0.181 -1.716 0.086 ~ 

Type 0.298 0.165 1.804 0.071 ~ 

Day: Type 0.197 0.257 0.767 0.443 

Fz: 300-500 ms 

Intercept -1.059 0.313 -3.386 < .001 *** 

Day 0.027 0.192 0.144 0.886 

Type 0.293 0.140 2.091 0.036 * 

Day: Type 0.267 0.271 0.984 0.325 

Fz: 500-800 ms 

Intercept -0.209 0.331 -0.632 0.527 

Day 0.145 0.209 0.692 0.489 

Type 0.756 0.150 5.045 < .001 *** 

Day: Type 0.216 0.296 0.729 0.466 

P3: 300-500 ms 

Intercept 0.801 0.250 3.203 0.001 ** 

Day 0.067 0.157 0.424 0.672 
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Type -0.215 0.132 -1.622 0.105  

Day: Type 0.016 0.222 0.070 0.944  

P3: 500-800 ms      

Intercept 0.046 0.236 0.196 0.844  
Day 0.000 0.170 -0.002 0.999  

Type -0.567 0.139 -4.086 < .001 *** 

Day: Type 0.026 0.241 0.110 0.913  
Notes: The intercept is averaged amplitude in meaning conditions across recent and remote words; Day represents 

difference between recent and remote words in the meaning conditions (i.e., simple main effect); Type represents 

overall difference between control and meaning conditions. Final model: lmer (Amplitude ~ Day * Type + (1 + 

Type | Subject) + (1 | Item)). ***: p < .001; **: p < .01; *: p < .05. 

 

The whole scalp analysis yielded two spatio-temporal clusters for the main effects of Type: 

A frontal negativity (cluster p = .003) and a left lateralized parietal positivity (cluster p = .006) for 

words with new meanings than exposure controls (see Figure 7). None of the other effects were 

significant after multiple-comparison correction (ps > .06 for the main effect of Day in the 

Meaning conditions and ps > .30 for interaction). 

 

Figure 7. Two spatio-temporal clusters (F maps) for the main effect of Type (Meaning vs. Control). 
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Left: frontal negativity; right: left lateralized parietal positivity. White circles in topography indicate the channels in 

each cluster and the time windows are noted at the bottom of each map. Statistical significance at cluster level was 

determined through spatio-temporal cluster permutation test (1 000 permutations and initial threshold of p < .005). 

 

2.3.3  Original meanings: Semantic category judgment 

In this task, participants made semantic category judgments (i.e., man-made or natural) 

based on the original meanings. The contrast between meaning and control conditions and the 

change over time were of most interest. As shown in Figure 8 and Table 5, for recent words, 

participants were slower making judgments on the original meanings when words had been paired 

with new meanings than when they had merely been exposed (t = -2.147, p = .032). However, the 

difference was reduced over time as indicated by the significant interaction between Type and Day 

(t = 2.056, p = .040). An additional analysis on the remote conditions further showed the difference 

between meaning and control conditions was absent (t = 0.769, p = .442). In contrast, neither 

meaning learning nor time affected the accuracy in making judgment on original meanings (ps > 

.12). 

 

Figure 8. Accuracy (left) and response times (right) in the semantic category judgment task. 
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Table 5. Fixed effect estimates for mixed effects models of semantic category judgments 

Fixed effect beta SE t or z p  

Accuracy      
Intercept 2.441 0.181 13.473 < .001 *** 

Type -0.111 0.152 -0.732 0.464 
 

Day -0.386 0.254 -1.522 0.128 
 

Type: Day 0.000 0.305 0.001 0.999 
 

Response times      
Intercept 1.777 0.053 33.629 < .001 *** 

Type -0.048 0.022 -2.147 0.032 * 

Day -0.009 0.016 -0.590 0.55 
 

Type: Day 0.066 0.032 2.056 0.040 * 

Notes: The intercept is averaged performance in recent words across meaning and control conditions; Type is 

difference between recent control and meaning conditions (i.e., simple main effect); Day represents overall 

difference between recent and remote conditions. Model in the accuracy: glmer (Accuracy ~ Type*Day + (1 | 

Subject) + (1 +Day | Item)); models in the response times: lmer (Inversed response times in seconds ~ Type*Day + 

(1 | Subject) + (1 | Item)). ***: p < .001; **: p < .01; *: p < .05. 

2.4 Discussion 

The current study examined the role of overnight consolidation in the learning of new 

meanings for known words, by comparing words that were studied on two consecutive days. 

Behavioral data revealed that access to both new and original meanings was influenced by 

overnight consolidation. In particular, while explicit memory of new meanings decayed over time, 

semantic judgments of new meanings became faster. Meanwhile, meaning learning slowed down 

the processing of original meanings on the day of learning but not 24 hours later. The ERP data 

showed a larger frontal negativity and a larger left lateralized parietal positivity for words with 
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new meanings than their exposure controls, regardless of when they were tested. This suggests that 

episodic retrieval continues playing an important role in accessing the new meanings even after 

overnight sleep occurred. In contrast, the evidence for increased involvement of semantic memory 

over time was minimal. A larger negativity of borderline significance was found at the central 

midline site within 500-800 ms when new meanings were accessed 24 hours later than on the day 

of learning. However, the time-dependent change was not significantly different from that 

observed on exposure controls. 

2.4.1  Beneficial role of overnight consolidation 

Following overnight consolidation, semantic judgments of new meanings became more 

accurate and faster. This is consistent with previous findings on the learning of novel words. For 

example, participants were faster making semantic judgments on words studied prior to overnight 

sleep than those studied after (Bakker et al., 2015). It has also been reported that free recall of 

studied words was better after overnight sleep had occurred (Dumay & Gaskell, 2007). The 

facilitative effect could reflect strengthening of connections between word forms and the new 

meanings, possibly resulted from repeated memory replay or reactivation during overnight sleep. 

The processing of original meanings is also affected by overnight consolidation. While 

meaning learning slowed down the access to the original meaning when words were tested on the 

day of learning, the effect was absent on words studied one day earlier. The finding is consistent 

with one of our previous studies (Fang & Perfetti, 2019). The slower access to original meanings 

on the day of learning could be a result of repeated suppression of original meaning during the 

encoding of new meanings (Fang & Perfetti, 2017, 2019). However, in Fang and Perfetti (2019), 

the same set of words was tested three times with the same task over a week, making it difficult to 
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conclude whether the absence of slow-down effect one day or one week later was a result of faster 

meaning selection when the task was repeated. The current study was able to exclude this 

possibility by having two sets of studied words and only one test point. Furthermore, the previous 

study used a semantic relatedness judgment task, a task requiring not only accessing the original 

meanings but also evaluating the semantic relationship between words. In contrast, the semantic 

category judgment task used in the current study required participants to make judgments only on 

the original meanings, providing a more direct evidence for how original meanings are accessed. 

Taking the time-dependent changes in the processing of both new and original meanings 

into consideration, it is possible that the function of overnight consolidation is to provide the 

opportunity to reduce the interference between new and original meanings. In learning new 

meanings for known words, resolution of such interference is essential, as typically only one of 

the meanings is appropriate in a language context. Being able to select the wanted meaning and 

suppress the unwanted meaning efficiently is essential to reading and communication. During 

overnight consolidation, the replay of both new and original meanings may lead to the formation 

of even more distinctive representations for different meanings, even though they share the same 

word form. One possible solution is to create different context nodes for different meanings of the 

same word (Armstrong & Plaut, 2008). The context nodes may not be established until learners 

have sufficient opportunities to encounter each meaning in variant contexts. However, once the 

connections between context nodes and meanings are created, these context nodes would allow for 

the efficient selection of meanings based on the matching with language input. 

As in many previous studies (e.g., Bakker et al., 2015; Gaskell & Dumay, 2003), the current 

design does not allow us to confidentially disentangle the effect of overnight sleep from that of the 

time passing or any other activities that occurred within the 24 hours. However, studies that 
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controlled the length of interval time between study and test and manipulated whether overnight 

sleep was involved can be informative (Dumay & Gaskell, 2007; Wang et al., 2016). For example, 

in Dumay and Gaskell (2007), novel words were studied at 8pm and tested at 8am on the next day 

(overnight sleep involved), in contrast to that words were studied at 8am and tested at 8pm on the 

same day (without overnight sleep). They were able to show that it was overnight sleep rather than 

just the time that led to the change in the processing of novel words1. Although the effect of time 

passing by has not yet been directly addressed in the learning of new meanings for known words, 

it is likely that overnight consolidation at least contributes to the observed time-dependent changes 

in the processing of new and original meanings. 

2.4.2  Sustained involvement of episodic retrieval 

While behavioral data suggest that new meanings are integrated over time, the ERP data 

do not seem to speak for that conclusion. To be specific, the left lateralized parietal positivity 

evoked by words with new meanings was not modulated by overnight consolidation, indicating 

recollection of relevant learning episodes still supports meaning access even one day after learning. 

In addition, the larger positivity for words with new meanings than for their exposure controls 

could reflect the difference in the amount of information associated with learning episodes 

(Vilberg, Moosavi, & Rugg, 2006). If new meanings are integrated after overnight sleep occurs so 

that richer semantic information is accessed from the mental lexicon, then we would see an 

increased N400 over time, as observed in the contrast between ambiguous words and unambiguous 

 

1 However, such design also confounds the effect of time-of-day.  
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words (Lee & Federmeier, 2006). Different from our expectation, the typical N400 was not 

modulated by meaning learning or overnight sleep. We did observe a marginally larger negativity 

at the central midline cluster, but in a later time window (500-800 ms) when new meanings were 

accessed 24 hours later than on the day of learning. This suggests that original meanings are 

processed primarily within the typical N400 time window. New meanings are accessed faster after 

24 hours, but still slower than original meanings. It is possible that the integration of new meanings 

has started but is not completed within 24 hours. 

In addition to a larger left lateralized parietal positivity, words with new meanings also 

evoked a larger mid-frontal negativity than their exposure controls, regardless of whether 

overnight sleep had occurred when tested. The frontal negativity has been commonly associated 

with familiarity-based recognition (Rugg & Curran, 2007). Previous studies typically report a 

larger frontal negativity for new stimuli than recently exposed stimuli when participants are 

making “old/new” judgments (Maratos et al., 2000; Tsivilis et al., 2015). However, it is unlikely 

that the subjective familiarity with the words in the current study was different, given that the 

relatively short interval time between study and test, and all the words were presented in the final 

cued-recall and recognition tests right before the ERP task. Furthermore, one would expect words 

with new meanings were more familiar to participants because they were likely to be more attended 

to during learning, rather than the other way around. Given the very similar patterns in the frontal 

negativity and in the left parietal positivity, the mid-frontal negativity may be relevant to memory 

recollection. It is possible that when a task that requires the retrieval of specific content of episodic 

memory, familiarity-based recognition and recollection are more tightly coupled than when 

participants only need to be able to recognize a stimulus to make old/new judgments. 



34 

In Bakker et al. (2015), novel words evoked a word-like N400 and meaning access became 

faster after overnight sleep. Although the access of new meanings of known words became faster 

24 hours later, we did not find evidence for reduced involvement of episodic memory or enhanced 

involvement of semantic memory. The slower integration and more sustained involvement of 

episodic memory may be essential to the learning of new meanings for known words when new 

meanings are unrelated to original meanings. According to recent updates of the complementary 

learning systems model, when new information is congruent with prior knowledge, integration can 

occur faster or even immediately (Kumaran et al., 2016; van Kesteren, Ruiter, Fernandez, & 

Henson, 2012). If new meanings are semantically related to the original meanings, new meanings 

may be integrated into the mental lexicon faster and the modulation of overnight sleep on the N400 

and left parietal positivity may be observed. 

Another explanation for the null effect of overnight sleep on the N400 is that the relative 

involvement of different memory systems is influenced by the specific task participants are 

performing. A previous study found a larger negativity for words with new meanings than their 

exposure controls at the central midline site within 300-700 ms, even on the day of learning when 

participants were performing a one-back task (Fang & Perfetti, 2017). While a one-back task does 

not require meaning access, the current study asked participants to be always prepared for semantic 

judgment on the new meanings. According to the complementary learning systems model (Davis 

& Gaskell, 2009), episodic memory is involved to support efficient lexical access when a lexical 

representation is not established yet. Participants may have to take advantage of the still-fresh 

episodic memory when the lexical representation of new meanings is not well established, so that 

they can access the new meaning as quickly as possible. Future research is needed to address the 
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trade-off of the two learning and memory systems for the efficiency of task completion and how 

the trade-off changes over time. 

2.5 Conclusion 

Following overnight consolidation, new meanings of known words were accessed faster. 

The access to original meanings was slow down by meaning learning right after learning but not 

24 hours later. The ERP data further showed that accessing new meanings was associated with a 

larger mid-frontal negativity and a larger left lateralized parietal positivity regardless of whether 

the words were tested on the day of learning or 24 hours later, suggesting continued involvement 

of episodic retrieval. In contrast, the N400, a component relevant to lexical semantic processing, 

was not modulated by meaning learning or overnight consolidation. 

Overall, the findings indicate that the processing of both new and original meanings 

benefits from a study-test interval involving overnight sleep, even though new meanings are not 

fully integrated within that period. Episodic memory seems to play an important role in accessing 

the new meanings even 24 hours later, at least in a task requiring efficient meaning access.  
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3.0 Studies 2a and 2b: Neural Mechanisms underlying the Binding of New Meanings to 

Known Words 

Recent learning studies suggest that the left pMTG suppoprts the formation of new lexical 

representations for newly learned words by mapping word forms and meanings (Bakker-Marshall 

et al., 2018; Ferreira et al., 2015; Landi et al., 2018; Takashima et al., 2014, 2017). It is possible 

that the left pMTG slowly takes over the binding role of the hippocampus over time. If the left 

pMTG also serves a binding role in the learning of new meanings for known words, we expected 

that the processing of new meanings would be associated with the activation in the left pMTG, in 

addition to the neocortical areas relevant to the representations of more specific semantic features. 

According to the embodied account of language comprehension, word meanings, 

especially those referring to perception and actions, are partially represented in sensorimotor 

cortex as a result of perceptual experience (Barsalou, 2008; Binder & Desai, 2011; Pulvermüller, 

2001; Pulvermuller & Fadiga, 2010). For example, the contrast between action and non-action 

words often reveals stronger brain activation for action words in the left ventral premotor cortex 

and the pars opercularis of the left inferior frontal gyrus (IFG) that extends into the premotor cortex 

(Moseley & Pulvermuller, 2014; Raposo, Moss, Stamatakis, & Tyler, 2009). It has been found that 

these regions are involved in the processing of action meanings regardless of the involved body 

part or effector (MacGregor, Pulvermuller, van Casteren, & Shtyrov, 2012; Moseley, Pulvermuller, 

& Shtyrov, 2013; Tettamanti et al., 2005). Based on this, the regions have been proposed to be 

associated with the abstract representation of actions. 

In addition to the frontal areas, the human homologue of the monkey motion complex, or 

the human middle temporal plus near adjacent motion sensitive areas (i.e., the MT+), has also been 
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found relevant to the representation of action meanings. Functional magnetic resonance imaging 

(fMRI) studies often reported stronger activation in the bilateral MT+ in the processing of visual 

motion, as revealed by contrasting moving and stationary stimuli (James & Gauthier, 2003; Tootell 

et al., 1995; Watson et al., 1993). In language comprehension, the left MT+ has been found to 

show stronger activation for sentences describing actions than describing non-action content 

(Saygin, McCullough, Alac, & Emmorey, 2010).  

Recent word learning studies using fMRI and transcranial magnetic stimulation (TMS) 

have shown the involvement of the left motor cortex and the MT+ in the learning and processing 

of novel action words compared to those with non-action meanings (Liuzzi et al., 2010; Revill, 

Aslin, Tanenhaus, & Bavelier, 2008). However, because of the low temporal resolution of fMRI 

and TMS, it is unclear whether the involvement of the sensorimotor circuits in the processing of 

new action meanings results from post-activation processes (e.g. imagery) or from automatic 

activation of relevant semantic features as would be the case of existing words. If the involvement 

of sensorimotor circuits is part of word meaning comprehension, then the regions would be 

activated within the time window when lexical-semantic processing typically occurs. 

In an ERP study particularly relevant for this time course question, Fargier et al. (2014) 

associated novel spoken words with videos of hand movement or animated artificial images and 

tested the processing of novel words multiple times over two days. They found that ERPs within 

100-400 ms of auditory onset were able to distinguish novel words paired with different types of 

meanings immediately after training and on the next day before further training. However, such 

differences seemed to diminish with further training. While this study suggested a relatively early 

difference between words associated with different types of videos, it remains unclear whether the 

differences reflect stable associations between novel spoken word forms and the meanings. It is 
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possible that one- or two-day learning may not be sufficient to form stable connections between 

words and their referents. In addition, because direct sensorimotor input was provided during 

learning by presenting word meanings through videos or pictures, the question of whether such 

differences emerge when meanings are presented verbally remains unclear. Much word learning 

occurs through verbal contexts that may or may not associate with established word meanings that 

are partially grounded in sensorimotor connections. These verbally mediated connections were 

described as “secondary grounding” in Pulvermuller (2013). 

In this chapter, both of the reported studies spanned learning over four days to provide 

more opportunity for memory consolidation and knowledge integration to occur. Study 2a first 

demonstrated that presenting word meanings as verbal definitions was sufficient to drive the 

semantic category effect that has been observed in the processing of existing words (action vs. 

non-action words). Based on the findings of Study 2a, Study 2b further examined the role of the 

left pMTG and that of the brain regions relevant to the representation of action meanings (left 

frontal motor areas and MT+) in the learning of new action meanings for known words and for 

novel words using MEG.   
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3.1 Study 2a: Learning action meanings presented as verbal definitions 

3.1.1  Research design and expectations 

Study 2a aimed to examine whether word meanings presented as verbal definitions were 

sufficient to drive the semantic category effect and how early the semantic category effect would 

emerge relative to the point when words can be uniquely identified (i.e., recognition point). To do 

this, we took advantage of coarse-grain semantic distinctions. Participants learned novel words 

that were associated with either action or non-action (i.e., static visual) definitions and were 

instructed to visualize the meanings. Spoken words were used in this study, so that recognition 

point can be identified. Learning spanned over three consecutive days to provide sufficient 

opportunity for the integration of novel word meanings into semantic memory. On the fourth day, 

participants performed semantic judgments on novel words and also previously known words 

while EEGs was recorded.  

High behavioral performance in the tests on novel words after the multiple-session training 

paradigm was expected. Of most interest is evidence for early discrimination of semantic 

categories: whether novel words associated with action meanings described by definitions would 

become distinguishable from those associated with non-action meanings in early processing stage, 

as examined with ERP that has high temporal resolution. If presenting meanings as verbal 

definitions was sufficient to drive difference in meaning representation, then divergence between 

novel action and non-action words would be predicted. If this divergence is driven by automatic 

meaning access to novel words after three nights following the initial learning, we expected it to 

emerge in an early time window close to recognition point of the spoken words. If meaning access 



40 

required a slower episodic retrieval of the learning event, then a later separation beyond the 

recognition point would be expected. 

Central electrode clusters were the focus of interest, because they have been the locus of 

differences between action words and non-action words in previous ERP studies (Fargier et al., 

2014; Pulvermuller, Lutzenberger, & Preissl, 1999; Vanhoutte et al., 2015). However, if meaning 

access results from episodic retrieval, then the difference may emerge much later, 500 ms 

following word onset, when the recollection of episodic memory is typically observed (Rugg & 

Curran, 2007). Bakker, Takashima, van Hell, Janzen, & McQueen (2015) found a larger frontal 

and central negativity within 500 -700 ms for novel words than for existing words one day 

following learning, suggesting that meaning access to novel words relies partially on episodic 

retrieval. It is possible that such a difference may not be observed when more a longer learning 

phase occurs, as it does in the present study, to support integration of novel words into semantic 

memory. 

3.1.2  Methods 

3.1.2.1 Participants 

Twenty-seven right-handed native English speakers participated in the study (10 females, 

19.07 ±1.14 years old). Data from four additional participants were excluded from analysis 

because of not completing all the sessions (N = 3) or, in one case, due to an error in the assignment 

of experimental materials across sessions (N = 1).  Participants provided written informed consent 

prior to the experiment and received course credits for their participation as an option to fulfill part 

of a course requirement. The study was approved by the University of Pittsburgh Institutional 

Review Board. 
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3.1.2.2 Materials 

Novel words included forty English pseudowords (See Table 6 for examples and Appendix 

B.4 for the full set of stimuli). The novel words have 4.4 ± 0.71 phonemes (ranged from 3 to 6). 

The novel words were separated into two sets (20 in each set), matched in the number of phonemes 

and the number of letters. Forty existing words were selected and used in the ERP task: half refer 

to action meanings (typically used as verbs) and the other half refer to color, shape or pattern 

(typically used as nouns and/or adjectives). None of the existing words had a homophone. It is 

difficult to match grammatical category between the two sets of existing words; however, semantic 

information plays the dominant role when words are presented in isolation according to a meta-

analysis study (Vigliocco, Vinson, Druks, Barber, & Cappa, 2011). While the two sets of existing 

words differ in terms of word category and semantic features, they were carefully matched on 

word frequency, number of phonemes, orthographic and phonological neighbor sizes, valence and 

arousal (See Table S1-1 for descriptive statistics and Appendix B.4 for the full set of stimuli). To 

match existing words with action and non-action meanings, we selected existing words with a 

small number of phonemes. However, because novel words with the same small number of 

phonemes tended to remind native speakers of one or more than one similar sounding real words, 

the final set of novel words was longer than existing words by 0.65 phonemes on average.  
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Table 6. Stimulus examples 

Condition Word Meaning Task 

Novel/Action bloosh lifting with one hand Learning/Test/ERP 

Novel/Non-action bropt with a dark blue surface Learning/Test/ERP 

Existing/Action kick 
 

ERP 

Existing/Non-action green 
 

ERP 

Notes: Sixteen items in each condition; the assignment of novel words to action and non-action conditions was 

counterbalanced across participants. 

 

All the word stimuli were spoken by a female native English speaker with a neutral tone 

and recorded at the sampling rate of 44.1 kHz. The acoustic intensity of each word was normalized 

to 70dB using Pratt. Because acoustic information unfolds over time during spoken word 

recognition, we further marked the recognition points for each word. For novel words, the 

recognition point was defined as the onset of the phoneme starting at which the phonemes of a 

novel word diverged from those of all the other novel words. For existing words, it was the onset 

of the phoneme starting which a word diverged from all other words according to the Carnegie 

Mellon University (CMU) pronunciation dictionary (http://www.speech.cs.cmu.edu/cgi-

bin/cmudict/)2. On average, a novel word can be distinguished from the other novel words after 

1.12 phonemes (103.07 ms), and an existing word can be identified after 3.78 phonemes (408.00 

ms). However, if the novel words are integrated into the real word lexicon, then both novel and 

existing words need to be considered when recognition point is decided. In the selected novel 

 

2 Based the SUBTLEX (US) corpus developed by Brysbaert and New (2009) and words with word frequency lower 

than 1 per million are not considered in the CMU pronunciation dictionary.  
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words, the recognition point was 2.56 phonemes (328.42 ms) when all the words in the CMU 

pronunciation dictionary were considered; the recognition point of the 40 selected existing words 

was not affected by the including of the 40 novel words. For most of the novel words, the last 

phoneme is the divergence point. 

Forty descriptive definitions were created for the study (see Appendix B.5 for the full list). 

Twenty of them described specific actions typically involving movement of finger/hand/arm, 

toe/foot/leg, or whole body. The other twenty described visual features including color, shape, 

pattern, or a combination of them. The pairing between definitions and novel words was 

counterbalanced across participants, such that a novel word was paired with an action meaning for 

half of the participants and with a non-action meaning for the other half of participants. The 

meanings of the words were spoken by the same speaker who recorded the words. 

3.1.2.3 Procedure 

The study had four sessions occurring on four consecutive days. The tasks participants 

performed on each day are shown in Figure 9A. On Day 1, they first learned the novel words by 

listening to and saying the novel words out loud and then seeing the written word forms to confirm 

which word they heard (i.e., form encoding). In this part, each word was encountered twice and 

participants were allowed to listen to and see the novel words once more if they wanted to. Then 

they started encoding the meanings for the novel words (i.e., meaning encoding). In each trial, 

participants heard a novel word and then its meaning. They were instructed to visualize the 

meanings for as long as they needed. When they were ready, they need to evaluate how hard it was 

to visualize the word meaning on a scale of 1 (easy) to 6 (hard). The evaluation was to make sure 

participants followed the instruction to visualize the word meanings. Following participants’ rating, 

written forms of both word and their meaning were presented on the screen until they were ready 
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to learn the next word. Following the initial encoding of word meanings, they experienced multiple 

study and test cycles to improve their learning. During the study trials, participants were presented 

with novel spoken words and instructed to recall the meanings in their head. The written meaning 

was presented at the center of the screen following participants’ attempt to recall. After 

encountering each word twice, participants performed a test where they typed the meanings out 

for each novel word. The study and test cycle was repeated three times and participants were 

allowed to have one more study cycle if they wanted to. After that, participants performed a 

multiple-choice test where they chose the correct meaning from four options for each word they 

heard. After participants completed the task, they were presented with the overall accuracy and the 

correct responses for each word. Learning on Day 1 ended with a refresh of all the novel words 

and their meanings. On Days 2 and 3, participants repeated some of the tasks from Day 1 to further 

improve their learning or maintain their performance. 

On Day 4, following the final tests on the novel words, participants performed a semantic 

judgment task while EEG was recorded. In the task, participants heard novel words and existing 

words in two separate blocks, with the order counterbalanced across participants. Each word was 

presented twice to increase the number of trials per condition, and participants had a break in the 

middle of a block and between blocks. They were told what type of words (i.e., novel words or 

previously known words) they would hear at the beginning of each block. During the task, 

participants were instructed to look directly at at the center of the screen and listen to the words 

carefully. Following about 20%3 of the words, they saw a phrase (e.g., leg movement, dark color) 

 

3 The actual percentage was reduced 19.375% because the question for the last novel word was not presented due to 

an error in the experiment run script. 
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on the screen and judged whether it was related to the word that immediately preceded the phase 

(see Figure 9B). In each trial, a fixation cross was presented on the screen for 500-700 ms before 

word onset, during word presentation, and 800-1500 ms following word presentation. If a phrase 

was presented, participants had up to 5000 ms to respond. The next trial began following 1500 ms 

of blank screen. The jittering of duration of fixation before and after word presentation was to 

minimize participants’ expectations about stimulus presentation (both spoken words and phrases). 

Participants were instructed not to blink when a fixation across was on the screen. A practice 

session with another 10 words was administered to familiarize participants with the task procedure. 

Following the ERP task, measurements of individual differences in vocabulary size and learning 

strategies were taken but results are not reported here. Participants’ vocabulary was assessed with 

the Nelson-Denny Vocabulary Test (Brown, 1960), and learning strategies were surveyed through 

the Verbalizer-Visualizer Questionnaire (Kirby, Moore, & Schofield, 1988). They were asked 

questions about their strategies about the learning and retention of the novel words and then 

provided with debriefing. 
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Figure 9. Task procedure. 

A. Tasks participants performed on each day. B. The procedure of the ERP task (inter-trial intervals with blank 

screen are not presented for the sake of space). VVQ = verbalizer-visualizer questionnaire. 

 

3.1.2.4 EEG data recording and preprocessing 

The procedure for EEG data recording and preprocessing is the same as in Study 1. 

Participants were fitted with a Geodesic Sensor Net with a 128 Ag/AgCl electrode array and data 

were recorded using the associated NetStation acquisition software (Electrical Geodesics, Inc., 

Eugene, OR) with a sampling rate of 1,000 HZ and a hardware bandpass filter of 0.01–200 Hz. 

Data were preprocessed with NetStation Tool software. A bandpass filter of 0.1–30HZ was applied, 

and then data were segmented into 900-ms epochs, starting 100 ms before the onset of spoken 

words. Epochs with artifacts were excluded from further analysis, including eye blink 

(exceeding±140 μV), eye-movement (exceeding 55 μV), and extreme variance (larger than 100 
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μV). As a result, data from one participant with fewer than 20 (out of 40) valid epochs in one of 

the conditions were excluded. For participants whose data entered statistical analysis, on average 

there were 36.02 ± 3.77 out of 40 epochs per condition. Channels with artifacts on more than 20% 

of epochs were marked as bad channels, and data from surrounding channels within the cluster 

were used for interpolation. For each participant, ERPs for each type of words were acquired 

through averaging epochs under the same condition. The averaged waveforms were referenced to 

the average of the whole scalp before baseline correction (100 ms before onset of spoken words). 

3.1.2.5 Data analysis 

Behavioral data 

Data were analyzed with mixed effects modeling (Baayen et al., 2008). Participants’ typed 

responses in the cued-recall tests were scored from 0 (no response or unrelated response) to 5 (the 

exact meaning) by two trained research assistants independently. Responses with inconsistent 

ratings larger than 1 were discussed before a final score was assigned. The scores were analyzed 

with Meaning Type (Action/Non-action) and Day (1/2/3/4) as the fixed factors. The Meaning Type 

factor was effect-coded (Action vs. Non-action) and the Day factor was coded with backward 

difference to reflect changes between consecutive days to capture the change of performance over 

time (i.e., Day 2 vs. Day 1, Day 3 vs. Day 2, and Day 4 vs. Day 3). The accuracy data from the 

multiple-choice tests were analyzed with logistic mixed effects modeling, using the same fixed 

factors. For behavioral data from the ERP task, we analyzed the response times and accuracy with 

similar methods and included Meaning Type and Lexicality (Novel words vs. Existing words) as 

fixed factors. In all the models, the intercepts of subjects, word form, and definitions were included. 

Random slopes were included if a random effect significantly contributed to the model according 



48 

to model comparison and did not cause perfect correlation among random effects or failure of 

model convergence. The final models are reported in the table notes in Results section. 

ERP data  

Repeated-measures ANOVAs (by-subject analysis) were conducted in the analysis of the 

preprocessed ERP data. ERPs at the central clusters (C3, Cz, and C4, see Figure 10) are of most 

interest. We focus on ERP components that are typically observed in sequence following word 

presentation – N1, P2, N400 and late positive complex (LPC). The divergence between words with 

different semantic features has been observed when N1 and P2 are typically observed (Kiefer, Sim, 

Herrnberger, Grothe, & Hoenig, 2008; Vanhoutte et al., 2015). The specific time windows for N1 

and P2 were determined based on the peaks of the averaged waveforms of all the four conditions 

at the central clusters (102 ms for N1 and 186 ms for P2). The final time windows are 82-122 ms 

for N1 and 136-236 ms for P2. Because all the non-action words described visual features and 

difference between existing action words and non-action words have been found in the occipital 

clusters (Pulvermuller et al., 1999), we also included occipital clusters (O1 and O2) as another site 

of interest. However, it is important to note that action meanings also contain visual information, 

which could make the difference in the occipital clusters subtle or even absent. There are three 

contrasts of interest: novel action words vs. novel non-action words; existing action words vs. 

existing non-action words; and novel words vs. existing words. We first reported the effects of 

interest in the central and occipital clusters, and then the effects in the lateral clusters and midline 

clusters. For lateral clusters (F3, F4, C3, C4, P3, P4, O1, and O2), Anteriority (frontal, central, 

parietal, and occipital) and Hemisphere (left and right) were included as the additional variables; 

for midline clusters (Fz, Cz, and Pz), Anteriority (frontal, central, and parietal) was the additional 

fixed factor. 



49 

In addition to the predefined time windows, we also examined the time course of semantic 

category effect in the central and occipital clusters in novel words and in existing words by running 

permutation test over time. To reduce the number of tests, we average data from every 10 

consecutive time points without overlap, and then run a permutation test (1000 iterations) at each 

time step. Only differences larger than 97.5% or smaller than 2.5% of the permutation results in 

the same time point were considered as significant (e.g., two-sided test). The distribution of 

maximal clusters size was generated from the same 1000 permutations and for positive (more 

positive for Action condition) and negative (more negative for Action condition) clusters 

separately. Here the cluster size is defined as the sum of the absolute values of the differences over 

time points that significant differences were found. Clusters were only considered significant when 

a cluster was larger than 95% within the distribution. The results are presented in Figure S1-1. 

 

 

Figure 10. Layout of electrodes and clusters. 

Orange: F3, Fz, and F4; green: C3, Cz, and C4; purple: P3, Pz, and P4; blue: O1 and O2. (same as in Study 1) 
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3.1.3  Results 

3.1.3.1 Tests on novel words 

Participants’ performance in both the cued-recall (i.e., typed responses) and recognition 

(i.e., multiple-choice) tests improved across four days, as indicated by significant improvement 

between consecutive days (ps < .001, see Figure 11 and Table 7). However, the improvement on 

the last two days, especially in the multiple-choice tests (increase of less than 0.4%), was very 

small. The significant effects seemed driven by the very small variance when the participants’ 

performances reached ceiling. The main effect of Meaning Type was not significant in either task 

(ps > .58). Additionally, in the cued-recall tests, the improvement of performance for non-action 

words was larger than that for action words from Day 1 to Day 2 (p = .015) and marginally larger 

from Day 2 to Day 3 (p = .085). However, the performance for the two types of novel words was 

comparable on each of the days (Day 1: β = -0.182, SE = 0.126, t = -1.443, p = .149; ps > .42 for 

Days 2, 3, and 4), suggesting again the significant interaction is driven by small variance of the 

data. In the multiple-choice tests, the improvement of performance over days was comparable 

between action and non-action words (all ps > .31 for all the interaction terms).  
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Figure 11. Participants’ performance in the cued-recall and recognition tests. 

Error bars represent ±1 SEM.  
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Table 7. Fixed effect estimates for mixed effects of tests on novel words 

Fixed effect β SE t or z p 

 

Cued-recall (Typing test) 

     
Intercept 4.221 0.127 33.14 < .001 *** 

MeaningType 0.003 0.102 0.03 .976 

 
Day2 (vs. Day1) 2.004 0.074 27.25 < .001 *** 

Day3 (vs. Day2) 1.974 0.085 23.25 < .001 *** 

Day4 (vs. Day3) 1.091 0.074 14.83 < .001 *** 

MeaningType:Day2(vs. Day1) -0.357 0.147 -2.43 .015 * 

MeaningType:Day3(vs. Day2) -0.293 0.170 -1.72 .085 ~ 

MeaningType:Day4(vs. Day3) -0.209 0.147 -1.42 .156 

 
Recognition (Multiple-choice test) 

Intercept 5.538 0.496 11.169 < .001 *** 

MeaningType 0.212 0.384 0.553 .580 

 
Day2 (vs. Day1) 3.350 0.412 8.140 < .001 *** 

Day3 (vs. Day2) 4.211 0.734 5.736 < .001 *** 

Day4 (vs. Day3) 2.922 0.898 3.252 .001 ** 

MeaningType:Day2(vs. Day1) 0.344 0.818 0.421 .674 

 
MeaningType:Day3(vs. Day2) 0.369 1.466 0.252 .801 

 
MeaningType:Day4(vs. Day3) 1.817 1.796 1.012 .312 

 
Notes: Intercept represents mean performance across two types of novel words over four days; Meaning Type 

represents the overall difference between action words and non-action words; interaction terms represent the change 

of the effect of Meaning Type on consecutive days. Final model for typing test: Score ~ 1 + MeaningType * Day + 

(1 + MeaningType | Subject) + (1 | Word) + (1 | Meaning); final model for multiple-choice test: log(ACC) ~ 1 + 

MeaningType * Day + (1 | Subject) + (1 | Meaning).  ***: p < .001, **: p < .01, *: p < .05, ~: p < .10. 
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3.1.3.2 ERP semantic judgment task 

Accuracy and response times 

As shown in Figure 12 and Table 8, participants made semantic judgments about novel 

words as accurately as existing words (p = .137). However, the overall response times were faster 

for existing words than for novel words (p = .007). In addition, the accuracy and response times 

for words with different meaning types were comparable and there was no interaction between 

MeaningType and Lexicality (both ps > .36). 

 

Figure 12. Participants’ accuracy and response times in the ERP task. 

Error bars represent ±1 SEM. 

 

Table 8. Fixed effect estimates for mixed effects of performance in the ERP task 

Fixed effect β SE t or z p 

 
Accuracy 

     
Intercept 4.068 0.559 7.274 < .001 *** 

Meaning Type -0.398 0.5 0.885 .376 

 
Lexicality -1.453 0.978 -1.487 .137 

 
Meaning Type * Lexicality 0.431 0.901 0.478 .633 
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Response times 

    
Intercept 1534.3371 81.6197 18.799 < .001 *** 

Meaning Type -0.7346 75.5265 -0.01 .992 

 
Lexicality 244.6536 91.0319 2.688 .007 ** 

Meaning Type * Lexicality -124.4564 137.0526 -0.908 .364 

 
Notes: Intercept represents mean performance across all four conditions; Meaning Type represents the overall 

difference between action and non-action words; Lexicality represents the overall difference between novel and 

existing words. Final model for the accuracy data: log(ACC) ~ Meaning Type * Lexicality + (1 + Lexicality | 

Subject) + (1 | Word); Final model for the response times: RT ~ Meaning Type * Lexicality + (1 + Meaning Type * 

Lexicality | Subject) + (1 | Word). 

 

ERPs data 

Waveforms for each type of words are presented in Figure 13 and the topography of the 

semantic category effect within the time windows of interest is shown in Figure 14. For each of 

the contrasts of interest, results at the central and occipital clusters are reported first, followed by 

analyses of lateral and midline clusters to reveal the scalp distribution of difference. 
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Figure 13. ERP waveforms for the four types of words.  

 

 

Figure 14. The topography of the Meaning Type effect (action vs. non-action) in novel words and 

existing words within the time windows of interest. 
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Novel action words vs. novel non-action words 

At the central clusters, a larger negativity for novel action words than for non-action words 

was observed within the N1 and P2 time windows, whereas the difference was not statistically 

significant in the N400 or LPC time window (N1: F(1,25) = 5.475, p = .028, ηp
2= .074; P2: F(1,25) 

= 11.990, p = .002, ηp
2= .080; N400: F(1,25) = 2.771, p = .108, ηp

2= .039; LPC: F(1,25) = 2.765, 

p = .109, ηp
2= .026). At the occipital clusters, there was no difference between the two types of 

words in any of the time windows (all ps > .30). 

In the lateral clusters, the main effect of Meaning Type was marginally significant within 

the P2 time window (F(1,25) = 3.289, p = .082, ηp
2= .138), reflecting a larger negativity for novel 

action words. However, the effect was not significant in any other time windows or in the midline 

clusters, and none of the interactions involving Meaning Type within any time window in the 

lateral or midline clusters was significant (all ps > .13). 

Existing action words vs. existing non-action words 

At the central clusters, a larger negativity for action words than for non-action words was 

found in the N400 (marginally significant) and LPC time windows, but not in N1 and P2 time 

windows (N1: F(1,25) = 0.136, p = .716, ηp
2= .001; P2: F(1,25) = 0.835, p = .370, ηp

2= .003; N400: 

F(1,25) = 3.287, p = .082, ηp
2= .014; LPC: F(1,25) = 6.161, p = .020, ηp

2= .026). At the occipital 

clusters, there was no difference between the two types of words in any of the time windows (all 

ps > .18). 

In the distribution analysis, neither the effect of Meaning Type nor any interaction 

involving Meaning Type was significant within the N1 and P2 time windows (all ps > .20). The 

effect of Meaning Type in the lateral clusters was significant in the N400 time window (F(1,25) = 

5.893, p = .023, ηp
2= .003) and marginally significant in the LPC time window (F(1,25) = 4.136, 



57 

p = .053, ηp
2= .003). In addition, in the midline clusters the effect of Meaning Type and its 

interaction with Anteriority within the N400 time window was marginally significant (Meaning 

Type: F(1,25) = 2.949, p = .098, ηp
2= .003; interaction: : F(2,50) = 1.891, p = .058, ηp

2= .006). The 

interaction was driven by larger negativity for action words than for non-action words in Pz than 

in Cz and Fz clusters. None of the other effects involving Meaning Type was significant (all ps > 

10). 

Novel words vs. existing words 

At the central clusters, there was no significant difference between novel and existing 

words in any of the four time-windows (all ps > .20). In the occipital clusters, there was larger 

positivity for novel words than for existing words within 500-700 ms, but not in the other time 

windows (LPC: F(1,25) = 24.540, p < .001, ηp
2= .288; other ps > .13). 

The overall difference between novel words and existing words was significant in both 

lateral and midline clusters within the N400 time window (lateral: F(1,25) = 4.935, p = .040, ηp
2= 

.017; midline: F(1,25) = 5.992, p = .022, ηp
2= .042), with larger negativity for existing words. In 

the later LPC time window, the larger negativity was significant in the lateral clusters but not in 

the midline clusters (lateral: F(1,25) = 20.160, p < .001, ηp
2= .039; midline: F(1,25) = 1.928, p = 

.177, ηp
2= .019). Within 500-700 ms, there was also a significant interaction between Lexicality 

with anteriority in both lateral and midline clusters, driven by a larger frontal negativity and a 

larger parietal/occipital positivity for novel words than for existing words (lateral: F(3,75) = 

15.210, p < .001, ηp
2= .258; midline: F(2,50) = 18.110, p < .001, ηp

2= .292). None of the other 

effects involving Meaning Type was significant within the N1 or P2 time window (all ps > .10). 
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3.1.4  Discussion 

Following multiple-day training, participants learned both types of novel words very well. 

The effect of Meaning Type observed in the ERPs evoked by novel words indicated that word 

meanings presented as verbal definitions are sufficient to drive a semantic category effect. 

Furthermore, the very early effect of Meaning Type (within N1 and P2 time windows) suggests 

that the meanings of novel words can be accessed very fast and (arguably) automatically following 

intensive training spanning over days. However, a clear difference between novel words and 

existing words in ERP after 500 ms suggests that novel words are not fully integrated yet even 

days after learning. Episodic retrieval seems to continue playing an important role in recollecting 

relevant information in support of semantic judgments on the newly learned words. 

Especially interesting is that the semantic effect emerged approximately when one novel 

word could be distinguished from another or around the point of recognition relative to only the 

novel words (~103 ms). This recognition point is early compared to the recognition point that 

would be defined for the entire vocabulary of English spoken words (~328 ms). This suggests that 

novel words are tagged separately from existing words, and represented in functionally separable 

memories. It seems the presentation of a word cues the relevant memory set: An existing word 

cues the relevant memory set of all existing words, whereas a novel word cues the relevant memory 

set of the novel words or a mini-lexicon consisting of the 40 newly learned words. A likely 

explanation for this result is in the procedure of testing novel words and existing words in separate 
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blocks. This allows the novel word “lexicon” to be activated throughout the presentation of novel 

words, functioning as the vocabulary within which the novel word point of recognition functions4. 

To summarize, Study 2a demonstrated that presenting word meanings as verbal definitions 

without providing direct sensorimotor input is sufficient to drive a semantic category effect on 

novel words. The very early semantic effect indicated rapid and (arguably) automatic meaning 

access and the integration of novel words. Although the ERP findings do not directly argue for the 

involvement of the sensorimotor cortices, they do suggest the rapid activation of semantic features 

following multiple-session training. With these findings, Study 2b examined the role of left pMTG 

and neocortical areas relevant to the representation of action meanings in the binding of new action 

meanings to known words and to novel words using MEG that has better spatial resolution. 

  

 

4 The argument is supported by a follow-up study where novel words and existing words were presented in the same 

blocks. The effect of Meaning Type was absent in both novel words and existing words, while the difference between 

novel words and existing words was again observed.  
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3.2 Study 2b: The role of pMTG in learning new meanings for known words 

3.2.1  Research design and expectations 

In Study 2b, we examined the role of the left pMTG in the learning of new meanings for 

known words. The new meanings described actions for words whose original meanings have 

minimal motor or action component. We compared the learning of new meanings for known words 

with that for novel words. To account for the effect of mere exposure, we again included exposure 

controls. As in Study 2a, learning spanned four days and the MEG session occurred after 

participants had learned all the words very well and had more opportunity to integrate the new 

information compared to Study 1. Participants performed one meaning judgment and one meaning-

unrelated (i.e., letter judgment) task on the studied words. In addition, a functional localizer task 

was included to localize specific regions relevant to the processing of action meanings using 

familiar words that either had action or non-action meanings. 

We expected that words with new meanings would yield stronger source activation than 

exposure controls (i.e., the meaning learning effect) in the left pMTG for both novel words and 

known words, if the region is associated with the binding of lexical constitutes in general. Because 

the new meanings are all relevant to actions, stronger activation for words with new meanings than 

exposure controls was predicted in the left frontal areas involved in the representation of action 

meanings and the left MT+, which is sensitive to visual motion perception. 

The learning of new meanings for known words involves co-activation of new and prior 

word knowledge from the very beginning of learning. With more time for offline consolidation, 

the new meanings may be integrated better than those of novel words. If this is the case, we 

expected the effect of meaning learning to be stronger in known words than in novel words. If 
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meanings were automatically activated following multiple-session learning, we expected the 

meaning learning effects to be observed when lexical-semantic processing typically occurs in both 

meaning and letter judgment tasks (i.e., 300-500 ms). However, the effects may be more robust in 

the meaning judgment when meaning information is relevant to task completion.  

3.2.2  Methods 

3.2.2.1 Participants 

Seventeen native English speakers participated in the study (six females, 23.12 ± 4.95 years 

old). They were all right-handed and had normal or corrected-to-normal vision and none reported 

any learning or language disabilities. Two of the participants (one female) did not complete the 

MRI session and were excluded from the MEG data analysis. The procedure of the study was 

approved by the institutional review board at the University of Pittsburgh and that at the Carnegie 

Mellon University. Participants provided written informed consent prior to the experiment and 

received course credits and/or monetary compensation for their participation. 

3.2.2.2 Stimuli 

Trained words  

Thirty-two familiar words were selected from Wisconsin Perceptual Attribute Rating 

Database (Medler et al., 2005) and they were also part of stimuli in Study 1. The words had low 

ratings in the attribute of motion and low-to-medium ratings in the attributes of manipulate, 

emotion, and sound in the database (see Table 9 for examples and Appendix B.6 for full list). The 

words were separated into two groups, and within each group half of the words referred to man-

made objects while the other half referred to natural objects. In addition, thirty-two novel words 
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that were partially overlapped with those in Study 2a were separated into two groups. Novel words 

and known words were not statistically different in word length (p = .255) or bigram frequency (p 

= .172). One group of known words and one group of novel words were paired with new action 

meanings (i.e., meaning condition), and the other group served as exposure controls (i.e., control 

condition), with the assignment of words to the conditions counterbalanced across participants. 

The descriptive statistics of lexical and sub-lexical characteristics of word stimuli are presented in 

Table S2-1. 

Untrained words  

Sixteen action words and sixteen non-action words were presented in a localizer task. 

Action words described actions involving movement of upper or lower part of body. Non-action 

words described color or shape. The two types of words were matched for word frequency, word 

length, orthographic neighborhood size, ratings of valence and arousal, number of senses (see 

Table 9 for examples, Table S2-1 for lexical characteristics, and Appendix B.6 for full list). 

 

Table 9. Stimulus examples 

Condition Word Meaning Task 

Trained words 

Known/Meaning cloud typing rapidly Learning/Test/MEG 

Known/Control stone **************** Learning/Test/MEG 

Novel/Meaning trebe lifting with one hand Learning/Test/MEG 

Novel/Control bape **************** Learning/Test/MEG 

Untrained words 

Action pull  MEG 
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Non-action green  MEG 

Notes: Sixteen items per condition. The assignment of trained words to the Meaning and Control conditions was 

counterbalanced across participants. The untrained words were used in the localizer task in the MEG session. 

 

Meanings 

The same 32 definitions from Study 1 were used (see Appendix B.2 for full list). The 

meanings were separated into two groups. Within each group, half of the meanings described 

actions typically involving finger, hand, or arm movement, while the other half described actions 

involving toe, foot, or leg movement. One group of meanings was paired with known words, while 

the other group was paired with novel words, with the assignment counterbalanced across 

participants. 

3.2.2.3 Procedure 

Over three days, as shown in Figure 15, participants learned new meanings for known 

words and novel words, which were presented along with exposure controls. On Day 4, they 

performed the final tests on the studied words and then the MEG tasks. Following that, they 

completed some questionnaires. Participants’ T1-weighted anatomical images were acquired in a 

separate session 1-3 weeks following the MEG session. 
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Figure 15. Overview of tasks on each day. 

Numbers in parentheses indicate the number of exposures to the trained words in each task. 

 

On Day 1, participants’ English vocabulary was assessed with the Nelson-Denny 

vocabulary test (Brown, 1960). Following that, they started studying the word forms (i.e., form 

learning). In this part, no meanings were presented and participants saw each word twice. In each 

trial, a word was presented on the screen for five seconds and then the next word was presented 

automatically. Participants were instructed to pay attention to the spelling of the words. This was 

designed to reduce the difference between known words and novel words in familiarity, although 

it is unlikely the difference diminished after two exposures (Fang et al., 2017; Fang & Perfetti, 

2017). Following learning the word forms, participants studied the meanings. In each trial, 

participants were presented with a word for one second, and then its meaning or a string of asterisks 

below the word for eight seconds. Participants were instructed to visualize the meanings. The next 

word was presented automatically and each word was presented once. Following meaning 

encoding, participants experienced three cycles of study and cued-recall test. In each study block, 

Day1 Day2 Day3 Day4

1. Vocabulary Test
2. Form Learning 

(x2)
3. Meaning Learning

encoding (x1)
study (x2)
typing (x1)
study (2)
typing (x1)
study (x2/3)
writing (x1)
Matching (x1)
refresh (x1)

1. Study (x2/3)
2. Writing test (x1)
3. Matching
4. Refresh (x1)

1. Stud (x2/3)
2. Writing test (x1)
3. Matching
4. Refresh (x1)

1. Writing
2. Matching
3. MEG tasks
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each word was presented twice in a self-paced manner. Participants were presented with a word, 

and then instructed to recall what had been paired with it. Following the attempt to recall, the 

correct answer was presented on the screen for them to study.  In the cued-recall test, participants 

typed out what had been paired with each word and the correct answer was provided as feedback 

following each response. Each word was presented once within each test. For exposure controls, 

participants typed “n” for none (no meaning associated with the word). After each test, participants 

estimated how many words they got correct and reported their estimation to experimenter. 

Following the three study-and-test cycles, participants performed a multiple-choice test to 

assess the recognition of the associations between the words and meanings. In each trial, one word 

and four response options were presented on the screen. The first three options were studied 

meanings, including one correct answer and two foils – one had been paired with a known word 

and the other had been paired with a novel word. The fourth option was always a string of asterisks. 

Participants selected what had been paired with each word. Following that, participants reviewed 

the words once before they left. On both Day 2 and Day 3, participants experienced one study-test 

cycle, followed by a recognition or multiple-choice test. They reviewed all the words once at the 

end of each session. 

On Day 4, participants first performed a cued-recall and a recognition test. The procedure 

for each test was the same as described above. Following that, participants performed the MEG 

tasks, including one meaning judgment task and one letter judgment task on trained words, and 

then a localizer task on untrained words (see Figure 16 for diagram). The order of the meaning and 

letter judgment tasks was counterbalanced across participants. The localizer task was always the 

last task. In each of the first two tasks, participants were presented with each studied word four 

times, once in each of the four blocks. Following 18.75% of the words, a phrase or a letter was 
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presented. In the meaning judgment task, participants judged whether the phrase was semantically 

related to the studied meaning of the preceding word. On some trials, the phrase presented was 

“has a new meaning” or “without a new meaning” and participants made decisions based on 

whether or not a word had been paired with a new meaning. In the letter judgment task, participants 

judged whether the presented letter occurred in the preceding word or not. Participants’ responses 

were recorded. Participants could not predict when a phrase or a letter would be presented or what 

the content would be, thus motor preparation was minimized. 

The procedure of the localizer task was the same as the meaning judgment task, except that 

it has only two blocks. In the localizer task, untrained but familiar action and non-action words 

were presented, and each word was presented twice within each block (i.e., four repetitions for 

each word). Following the MEG tasks, they completed the Pittsburgh Sleep Index questionnaire 

(Buysse, Reynolds, Monk, Berman, & Kupfer, 1989), and the Epworth Sleepiness Scale (Johns, 

1991). 

 

 

Figure 16. MEG tasks and trial procedure. 

Upper panel: MEG tasks that participants performed. Middle panel: task procedure for with fixation and inter-trial-

interval not shown. Bottom panel: Task procedure with full details. Notes: The order of meaning judgment and letter 

judgment tasks on trained words was counterbalanced across participants; the procedure of the three tasks are the 

same except letters are presented as questions in the letter judgment task and phrase are presented in the meaning 

judgment task and the localizer task. 
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3.2.2.4 MEG and MRI data acquisition 

The MEG data were recorded with the 306-channel scanner (Elekta Neuromag, Helsinki, 

Finland) located at the Brain Mapping Center, University of Pittsburgh Medical Center (UPMC). 

The sampling rate is 1 kHz, with a band pass filter at 0.1-330 Hz. Participants’ head position was 

tracked with four Head Position Indicator (HPI) coils that were attached to participants’ head. 

Additionally, participants’ vertical and horizontal eye movement (EOG), and heartbeat (ECG) 

were recorded using additional electrodes. Prior to MEG scan, at least 100 points on participants’ 

heads were digitized in addition to the three fiducial points and four HPI coils. An empty room 

measurement was taken within the same session. 

Participants’ high-resolution anatomical images were acquired using a T1-weighted 

MPRAGE sequence (1 mm × 1 mm × 1 mm, 176 sagittal slices, TR = 2 300 ms, TI = 900 ms, Flip 

angle = 9°) with a Siemens Verio 3T Scanner located at the Scientific Imaging and Brain Research 

Center at the Carnegie Mellon University. 

3.2.2.5 Data analysis 

Behavioral data 

For the cued-recall tests, two trained research assistants independently scored participants’ 

responses from 0 (i.e., no response or unrelated meaning) to 5 (i.e., exact meaning, see Appendix 

B.3 for rubric). Inconsistency in rating larger than 1 was resolved through discussion and a final 

score was assigned. For the recognition test, participants’ responses were scored either as correct 

or incorrect. Behavioral data in the tests on the studied words and those from the MEG tasks were 

analyzed with linear mixed effects modeling using the lme4 package in R (Baayen et al., 2008). In 

both the cued-recall and recognition tests, the fixed factors included Lexicality (known words vs. 

novel words), Type (control vs. meaning), and Session (Session 1/2/3/4). For accuracy and 
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response times in the letter and meaning judgment tasks, the fixed factors included Lexicality, 

Type, and Task. For localizer task, MeaningType (Action vs. Visual) was the only fixed factor. 

For accuracy data, logistic regression was used. However, because participants reached 100% 

accuracy in at least one of the conditions in the recognition tests, empirical logits were calculated 

for by-subject and by-item analyses separately before linear mixed modeling was performed 

(Donnelly & Verkuilen, 2017). Effect coding was used for Type and Lexicality in all the behavioral 

tasks. For cued-recall and recognition tests, Session was coded to capture the changes between 

consecutive days (i.e., Session 2 vs. Session 1, Session 3 vs. Session 2, and Session 4 vs. Session 

3).  

MEG data preprocessing 

The preprocessing and analysis of MEG data were performed primarily using MNE-Python 

and followed the typical workflow (Gramfort et al., 2013; Gramfort et al., 2014). Using empty-

room measurement, five projectors for gradiometer sensors and five for magnetometer sensors 

were generated to capture external noise and then applied to the raw MEG data. The raw data were 

then low-pass filtered at 40 HZ, and bad sensors were detected and removed. Stereotypical artifacts 

related to blink and heartbeat were removed using independent component analysis (ICA; 25 

components). The bad sensors were then interpolated using data from surrounding sensors. The 

artifact-compensated data were then segmented into epochs, including 200 ms before word 

presentation and 800 ms after. An epoch was excluded from further analysis if at least one MEG 

channel had extreme values (gradiometers: 4000e-13 T/m, magnetometers: 4e-12 T). On average, 

there were 63.40 ± 1.71 out of 64 valid trials per condition per task. 

To facilitate source localization analysis, the MEG data and the structural MRI data were 

co-registered based on the three fiducial points and the additional digitized points using mne 
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analyze. Brain surfaces were created by segmenting individual anatomical images using Freesurfer 

(http://surfer.nmr.mgh.harvard.edu/). A source space with spacing of approximately 4.9 mm 

between vertices (i.e., 4096 sources per hemisphere) was created. An elementary boundary model 

(BEM) was generated based on a single layer model (inner skull, conductivity = 0.3 S/m). Noise 

covariance matrices were created with the baseline data (200 ms before word onset) from all the 

valid epochs from the same blocks and were then used to make inverse operators for individual 

blocks. Source activation was estimated by applying inverse operators to the single trial data, using 

dynamic statistical parametric mapping (dSPM; Dale et al., 2000) and therefore the unit for source 

activation is z score. The source estimation was then averaged over trials from the same condition 

across all four blocks within each task. Prior to group analysis, source activation in individual 

surfaces were transformed to the common surface. For the sake of computational efficiency, data 

were down-sampled to 250 HZ and analysis were limited to time points after word onset. 

MEG data analysis 

Functional localizer. The localizer task was designed to localize brain regions involved in 

the processing of action meaning. However, the contrast between action and non-action words did 

not yield any significant difference between the two types of words across participants. Therefore, 

the main part of the analysis was based on the anatomically defined regions of interest. 

Regions of interest (ROIs) analysis. Source activities in the left pMTG, left pre-motor 

cortex and the left IFG (frontal motor ROI), and left MT+/V5 were most relevant to the research 

hypotheses. As in previous MEG studies (MacGregor et al., 2012; Moseley et al., 2013), the frontal 

motor ROI included the left BA44 and the ventral part of precentral gyrus based on the “Desikan-

Killiany” cortical atlas (Desikan et al., 2006). The MT+ was based on the atlas by Fischl et al. 

(2008). The left pMTG cortex was defined as the posterior part of the left MTG (Desikan et al., 

http://surfer.nmr.mgh.harvard.edu/
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2006). Similar to Bakker-Marshall et al. (2018), a vertical line was drawn in the middle of the left 

MTG on the inflated surface along the anterior-posterior axis. As in Study 1, for each ROI, we 

focused on two time-windows: 300-500 ms and 500-800 ms. For each ROI, within each time 

window, we first examined the effect of meaning learning (Meaning vs. Control) in known words 

and novel words separately, and then compared the effect of meaning learning on known words 

and that on novel words. For the effect of task, we compared the meaning learning effect in the 

meaning judgment and that in the letter judgment task, for known words and novel words 

separately. One-tail paired t tests were used to test the differences in the ROI analysis, because we 

have strong research hypotheses about the direction of the differences. 

 

 

Figure 17.  Regions of interest. 

The MNI coordinates for the center of mass are: left frontal motor ROI (-46.54, 2.89, 17.32); left MT+ (-39.82, -

74.46, 1.31); left pMTG (-58.81, -51.66, 1.98). 

 

Whole-brain analysis. To avoid missing any meaningful effects outside of the ROIs, 

differences between conditions were searched in both spatial (vertices) and temporal (time points) 

dimensions and a cluster-based permutation test was applied to correct for multiple comparisons 

Frontal	
motor	ROI	

pMTG	 MT+	
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(Maris & Oostenveld, 2007). Specifically, the significance of each cluster was tested against the 

distribution of 1024 permutations with an original threshold of p < .055. 

3.2.3  Results 

3.2.3.1 Performance in cued-recall and recognition tests on trained words 

Overall, participants performed well in both cued-recall and recognition tests: For all types 

of words across the four sessions, the mean score of the cued-recall tests is 4.955 out of 5, and the 

mean accuracy in the recognition tests is 99.8% (see Table 10 for means). This very good 

performance was not surprising, as participants had the opportunity to study the words before the 

tests, except in the final session. Statistical analysis showed that participants overall recall of 

information about the studied words increased steadily over sessions (ps < .01); however, the 

improvement between consecutive sessions was small (0.018-0.023 out of 5). In addition, the 

change of performance across sessions was different among words under different conditions. For 

example, the increase of performance from Session 1 to Session 2 was larger for novel words than 

 

5 Because no clusters yielded a significant effect when all the vertices were included, we ran additional analyses on 

the vertices falling within a language mask to reduce the number of vertices. The mask was defined as a combination 

of brain regions that are typically involved in language processing and were based on the “Desikan-Killiany” cortical 

atlas (Desikan et al., 2006). As in Kocagoncu, Clarke, Devereux, and Tyler (2017), the language mask included 

bilateral IFG, MTG, superior temporal gyrus (STG), inferior temporal gyrus (ITG), supramarginal gyrus (SMG), and 

angular gyrus (AG). We additionally included precentral gyrus as the regions have been reported relevant to the 

processing of action words (MacGregor et al., 2012; Moseley et al., 2013). However, we did not find any significant 

difference within the mask.  
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for known words (interaction of Lexicality and Session2vs1: β = 0.118, SE = 0.045, z = 2.615, p 

= .009).  

Table 10. Performance in cued-recall and recognition tests 

Test Type Lexicality Session 1 Session 2 Session 3 Session 4 

Cued-recall 

(score) 

Control 
Known words 5.000 4.945 4.982 4.982 

Novel words 4.982 5.000 4.982 5.000 

Meaning 
Known words 4.912 4.938 4.945 4.963 

Novel words 4.800 4.903 4.956 4.993 

Recognition 

(accuracy) 

Control 
Known words 1.000 1.000 1.000 1.000 

Novel words 0.996 0.996 1.000 1.000 

Meaning 
Known words 1.000 0.996 1.000 1.000 

Novel words 0.985 1.000 1.000 0.996 
Notes: Mean scores (out of 5) in the cued-recall tests and mean accuracy in the recognition tests are reported. 

In the recognition tests, again participants reached performance ceiling even though 

statistically some differences among conditions emerged because of the small variance in 

participants’ performance. In the final tests in Session 4, participants reached performance ceiling 

in both tests, indicating that they had a good knowledge of the studied words before they performed 

the MEG tasks. The complete statistical results were presented in Table S2-2. 

3.2.3.2 Performance in the MEG tasks 

As shown in Figure 18 and Table 11, participants had a high accuracy in both letter and 

meaning judgment tasks (above 95% in all of the conditions). Across the two tasks, they responded 

more accurately to known words with new meanings than novel words with meanings, while no 

difference between exposure controls of novel words and those of known words was found 
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(interaction of Type and Lexicality: z = 2.929, p = .022; see Table 11). Response time data showed 

that participants were overall faster in making letter judgments than meaning judgments (main 

effect of Task: t = -8.327, p < .001). None of the other effects in the accuracy or response time 

data was significant (all ps > .19). In the localizer task, the accuracy and response times were 

comparable across action and visual words (both ps > .53). 

 

Figure 18. Accuracy (panel A) and response times (Panel B) in the MEG tasks. 

Error bars represent 1 SEM with between-participant variance removed (Franz & Loftus, 2012).  
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Table 11. Fixed effect estimates for mixed effects models of performance in the MEG tasks 

beta SE t or z p 

Letter and meaning judgment: Accuracy 

Intercept 3.613 0.165 21.913 < .001 *** 

Task (Meaning vs. Letter) -0.417 0.330 -1.263 0.207 

Type (Meaning vs. Control) 0.224 0.330 0.679 0.497 

Lexicality (Novel vs. Known) -0.080 0.330 -0.243 0.808 

Task:Type -0.863 0.660 -1.309 0.191 

Task:Lexicality -0.255 0.660 -0.387 0.699 

Type:Lexicality 1.512 0.660 2.292 0.022 * 

Task:Type:Lexicality -0.511 1.320 -0.387 0.699 

Letter and meaning judgment: Response times 

Intercept 0.844 0.040 21.175 < .001 *** 

Task -0.189 0.023 -8.327 < .001 *** 

Type 0.042 0.021 1.997 0.046 * 

Lexicality -0.015 0.024 -0.634 0.526 

Task:Type -0.033 0.031 -1.060 0.289 

Task:Lexicality 0.014 0.032 0.447 0.655 

Type:Lexicality 0.000 0.030 -0.004 0.997 

Task:Type:Lexicality 0.006 0.045 0.143 0.886 

Localizer: Accuracy 

Intercept 5.446 1.493 3.647 < .001 *** 

MeaningType (Action vs. Visual) 0.304 1.489 0.204 0.838 

Localizer: Response times 

Intercept 0.875 0.049 17.972 < .001 *** 

MeaningType -0.035 0.056 -0.618 0.537 
Notes: Intercept is the mean performance across all the conditions in each task. Final model for accuracy data in 

letter and meaning judgment tasks: log(ACC) ~ Task * Type * Lexicality + (1| Subject); final model for response 

times in letter and meaning judgment: Inverted response times in seconds  ~ Task * Type * Lexicality + (1|Subject) 

+ (1|Word); final model of accuracy data in localizer task:  log(ACC) ~ Condition + (1|Subject) + (1|Word); final

model for response times: inverted response times in seconds ~ Condition + (1|Subject) + (1|Word). ***: p < .001, 

**: p < .01, *: p < .05. 

3.2.3.3 Source activation in the localizer task 

Different from our expectation, no statistically significant difference between action and 

non-action words was observed in the localizer task. In the ROI analysis, no difference between 

the two types of words was observed in any of the ROIs in either time window (all ps > .25, see 
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Figure 19A). In the whole-brain analysis, we did see stronger source activation in the left superior 

temporal sulcus (STS) and STG including the auditory cortex within 300-500 ms, although the 

differences did not survive multiple-comparison correction (cluster ps > .38, see Figure 19B). We 

return to discussion the null findings later. 

 

Figure 19. Source activation in the localizer task. 

A. Time course of source activation within the ROIs. B. Activation map for the difference between action and non-

action words within 300-500 ms and within 500-800 ms. 
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with new meanings in both time windows (t(14) = 1.937, p = .037 within 300-500 ms; t(14) = 

2.724, p = .008 within 500-800 ms). 

For novel words, words with new meanings evoked stronger source activation in the left 

MT+ within 300-500ms (t(14) = 1.801, p = .047) and marginally stronger within 500-800 ms (t(14) 

= 1.468, p = .082). For novel words, although not statistically significant (all ps > .11), stronger 

source activation for words with new meanings was observed in the left frontal motor ROI and the 

left pMTG, especially within 300-500 ms. 

We also directly compared the meaning learning effect (Meaning – Control) in known 

words and that in novel words. A marginally larger effect of meaning learning on known words 

was found in the left frontal motor ROI within 500-800 ms (t(14) = 1.681, p = .057), while a 

marginally larger effect for novel words was observed in the left MT+ within 300-500 ms (t(14) = 

1.568, p = .070). The difference in the meaning learning effect between novel words and known 

words was not statistically significant in the left pMTG (ps > .13 for both time windows), or in the 

other time window in the left frontal motor ROI or in the left MT+ (ps > .47). 

The whole-brain analysis did not show any significant cluster (cluster ps > .18). This could 

be a result of a large number of comparisons when the number of vertices and the number of time 

points are both considered. However, we sill presented the activation map for the meaning learning 

effect in known words and novel words within the time windows of interest (Figure 20B). Overall, 

in the meaning judgment task, stronger activation for the meaning condition than the control 

condition was observed in known words in the left posterior STG/STS, IFG, and central sulcus. 

For novel words, the difference was mainly observed in the left MT+, ITG, and IFG, and precentral 

gyrus within 300-500 ms, and in the left STG and MT+ within 500-800 ms. 
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Figure 20. Source action in the meaning judgment task.  

A. Source estimates in the regions of interest. B. Activation maps for the meaning learning effect within 300-500 ms 

and within 500-800 ms (B) in the meaning judgment task. **: p < .01, *: p < .05, ~: p < .10. 

 

3.2.3.5 Source activation in the letter judgment 

For known words, meaning learning yielded a reserved meaning learning effect in the left 

pMTG or left MT+, with reduced activation for words with new meanings, although the difference 

was not significant (all ps > .10, see Figure 21A). In the frontal motor ROI, we observed stronger 

activation for exposure controls within 500-800 ms (t(14) = -1.982, p = .040), again a pattern 

opposite to what we expected. For novel words, source activation was stronger for words with new 

meanings than exposure controls in the left MT+ within 300-500 ms (t(14) = 2.112, p = .027) but 

not within 500-800 ms (t(14) = 0.403, p = .346). As in the meaning judgment task, there was no 

frontal	motor	ROI	 pMTG	

*	 **	~	 *	

MT+	

Known	words	

Novel	words	

*	 ~	

Known	words	

300-500	ms	 500-800	ms	

Novel	words	

300-500	ms	 500-800	ms	

A	

B	



78 

significant effect of meaning learning in the frontal motor ROI or pMTG in either time window 

(all ps > .24). 

Direct comparison of meaning learning effects between known words and novel words did 

not yield significant difference (all ps > .10), except for a larger meaning learning effect in novel 

words than in known words in the left MT+ within 300-500 ms (t(14) = 2.539, p = .012). As in the 

meaning judgment task, the whole-brain analysis did not show any significant cluster for the 

meaning learning effect in known words or novel words (cluster ps > .87). As shown in Figure 

21B, we mainly observed reduced source activation for the meaning condition in the left ITG and 

insular within both time windows. Reduced source activation in the left STS and MT+ was 

additionally found within 500-800 ms. For novel words, we observed stronger activation for the 

meaning condition in the left MT+ and post-central gyrus.  
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Figure 21. Source action in the letter judgment task. 

A. Source estimates in the regions of interest. B. Activation maps for the meaning learning effect within 300-500 ms 

and within 500-800 ms (B) in the meaning judgment task. *: p < .05. 
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0.579, p = .286 within 300-500 ms). The observed differences were driven by opposite patterns in 

the letter and meaning judgment tasks: source activation in the left pMTG, left frontal motor ROI, 

and the left MT+ for words with new meanings was stronger than for exposure controls in the 

meaning judgment task; a reversed pattern was found in the letter judgment task. In contrast, source 

activation for novel words in the ROIs was not affected by task (all ps > .26). 

3.2.4  Discussion 

The current study examined the role of the left pMTG in learning new meanings for known 

words. We compared the learning of new meanings for known words with that for novel words. 

Through a four-session training paradigm, participants reached performance ceiling in both cued-

recall and recognition tests on the studied words. Behavioral data from the MEG task showed that 

after four-day training, participants were not slower in accessing the new meanings of known 

words than those of novel words. Instead, they were slightly more accurate in making judgments 

on known words in both letter and meaning judgment tasks. The result suggests reduced 

interference between new and original meanings over time, a finding consistent with Study 1 and 

one of our previous studies (Fang & Perfetti, 2019). 

In the MEG data, we focused on source activation in the left pMTG and brain areas relevant 

to the processing of action meaning presented as verbal definitions (e.g., “lifting with one hand”). 

Although not statistically significant, we did see a trend of stronger activation for novel words 

with meanings than exposure controls in the left pMTG. In addition, regardless of task requirement, 

stronger source activation for novel words with action meanings than exposure controls was 

observed in the left MT+, a brain region sensitive to visual motion. For known words, the IFG 

(BA44) and lateral precentral gyrus and the left pMTG but not the left MT+ were more involved 



81 

in the meaning judgment task for known words with new action meanings than exposure controls. 

However, when participants were performing a meaning-unrelated letter detection task, the 

activation was reduced when words had been paired with new meanings. 

Overall, the MEG findings suggest that the new meanings of novel and known words are 

processed through the involvement of different parts of the sensorimotor circuits. The left pMTG 

was more reliably involved in the learning of new meanings for known words than for novel words. 

Furthermore, while source activation for novel words seems unaffected by task, the processing of 

new meanings of known words is modulated by whether new meanings are needed for a task. 

3.2.4.1 The role of sensorimotor circuits in learning new action meanings 

We focused on two ROIs that are relevant to the processing of action meanings. Previous 

studies comparing action and non-action words found stronger activation for action words in the 

left lateral precentral gyrus including ventral premotor cortex and the pars opercularis of the left 

IFG that extends into the premotor cortex (i.e., the frontal motor ROI here). The regions have been 

proposed to be associated with the abstract representation of actions as they are involved in the 

processing of action words regardless of involved body part (MacGregor et al., 2012; Moseley et 

al., 2013; Tettamanti et al., 2005). In addition to the frontal areas, the MT+ has also been found 

associated with the processing of action meanings. In particular, the region is sensitive to visual 

motion features of actions even when actions are verbally described (Saygin et al., 2010). 

In our study, we presented action meanings in the format of verbal definitions and 

participants were instructed to visualize the meanings during the initial encoding. We observed 

enhanced activation of the left MT+ within 300-500 ms for novel words with action meanings than 

their exposure controls, suggesting fast reactivation of mental image of actions that were generated 

previously. Given the relatively early effect, it is unlikely that the visual motion features resulted 
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from on-site motor imaginary during the MEG tasks. The retrieval of mental images suggests that 

the encoded episodic memory may still be important in accessing the meanings of novel words, 

even though meaning access has become faster over time. This is also consistent with Study 2a 

that found continuing involvement of episodic memory in the meaning access of novel words three 

days after initial learning. 

Interestingly, accessing the new action meanings of known words seems less reliant on the 

left MT+. Instead, the left frontal motor ROI was more involved when participants were making 

judgments on the new meanings. Given that the frontal motor ROI is relevant to the processing of 

abstract action meaning while the left MT+ is sensitive to visual motion, it is possible that the new 

action meanings of known words have been more integrated or semanticized. This would be 

consistent with our argument that the integration of new meanings of known words benefits from 

the co-activation of new and prior word knowledge in the long run, even though interference from 

the original meanings may hinder the learning or access of new meanings before overnight sleep 

occurs (Fang et al., 2017; Fang & Perfetti, 2019). Alternatively, the reduced reliance on the left 

MT+ could reflect a lingering effect of original meanings. Maintaining the visual motion features 

of action meanings could potentially lead to the interference between new and original meanings, 

as the objects that the selected words originally refer to have dominant visual features such as color 

or shape (e.g., “bench”, “snow”). In contrast, this is not an issue for novel words as the action 

meanings are the only meanings. 

3.2.4.2 The role of the left pMTG in meaning learning 

One of the hypotheses about the function of the left pMTG in word processing is that the 

region serves as the lexical hub and maps lexical forms and word meanings (Hickok & Poeppel, 

2004, 2007). Recent word learning studies suggest that this region binds new lexical constituents, 
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replacing the role of the hippocampus when a new word is integrated into the mental lexicon 

(Bakker-Marshall et al., 2018; Ferreira et al., 2015; Landi et al., 2018; Takashima et al., 2014, 

2017). In our study, we aimed to examine whether the left pMTG is also involved in binding new 

meanings to previously known words. 

Our results showed when participants were making meaning judgments, source activation 

in the left pMTG was nonsignificantly stronger for novel words with new meanings than exposure 

controls, while the meaning learning effect in known words was significant within 300-800ms. 

This suggests that left pMTG was more reliably involved in accessing the new meanings of known 

words than those of novel words. For known words, the left pMTG is likely to be activated when 

a word is presented (Hagoort, 2005; Hickok & Poeppel, 2004, 2007), making it easier to create 

new connections with the rest of the brain (Schlichting & Frankland, 2017). Meanwhile, the left 

pMTG may interact with the hippocampal learning system, facilitating the takeover of its binding 

role. In contrast, novel words are assumed to be first represented in the hippocampal learning 

system and the involvement of the left pMTG is minimal during the initial learning. The 

hippocampus serves the main role of form-to-meaning mapping until lexical representation for 

novel words are established. Although the current analysis approach does not allow for the 

estimation of source activation in the hippocampus in a reliable way, it is possible that the 

hippocampus still supports the form-meaning mapping in the meaning access of novel words, as 

found in Study 2a. 

Overall, the left pMTG seems to support the binding of lexical constitutes in general, a role 

the hippocampus plays when words are initially represented in the format of episodic memory. A 

connectivity analysis would be able to provide more direct evidence for this. 
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3.2.4.3 The modulation effect of task in processing new meanings 

Another interesting finding in our study is that tasks modulate the meaning learning effects 

in novel words and known words differently. Regardless of task, a significant meaning learning 

effect in novel words was observed in the left MT+ within 300-500 ms, suggesting the mental 

imaginary of the action meanings were rapidly activated within the time window when lexico-

semantic processing typically occurs. Such fast activation indicates that meaning access has 

become automatic four days following learning, even though those meanings may not be fully 

integrated yet, as discussed above. 

In the processing of known words, we observed reserved patterns in both the left pMTG 

and left frontal motor ROI for the meaning learning effect in the meaning and letter judgment tasks. 

Specifically, source activation was stronger for words with new meanings in the meaning judgment 

task, while the activation was stronger for exposure controls in the letter judgment task. Although 

we expected a smaller meaning learning effect when meaning access is not needed for task 

completion, the reserved patterns were not anticipated. 

In the letter judgment task, participants need to maintain information about word forms for 

later letter detection, which is likely to involve phonological processing. The frontal motor ROI 

including the pars opercularis of the left IFG and the precentral gyrus is associated with 

phonological processing (Hickok & Poeppel, 2004, 2007; Poldrack et al., 1999; Roskies, Fiez, 

Balota, Raichle, & Petersen, 2001). The suppression of action meanings may serve letter detection 

by making the regions available for phonological processing. It is unlikely that meaning 

suppression is always needed in a meaning-irrelevant task, Instead, suppression is needed here 

because all the tasks that participants had been performing right before the letter judgment task 

required them to access the new meanings, making the new actions meanings very accessible or 
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even more dominant (Rodd, Lopez Cutrin, Kirsch, Millar, & Davis, 2013). The reduced source 

activation in the left frontal motor ROI may be associated with reduced source activation in the 

left pMTG. However, again, connectivity analysis is needed to test this hypothesis. The absence 

of meaning suppression for novel words in the letter judgment task could be because the processing 

of new action meanings is mainly supported by the left MT+, rather than the frontal areas. 

Therefore, meaning activation caused little interference with the letter judgment. 

3.2.4.4 Null findings in the localizer task 

The null finding from the localizer task is unexpected. The words presented in the localizer 

task were selected to maximize the difference in the motor involvement. Furthermore, Study 2a, 

using basically the same stimuli, showed a clear difference in ERPs between action and non-action 

words. One concern is that the localizer task was the final MEG task and most participants 

performed the task 2-2.5 hours after the beginning of the session. As a result, alpha activities were 

more dominant towards the end of the session when participants were experiencing more fatigue, 

leading to the relative low signal-noise ratio of the data overall. One additional concern was that, 

the anatomically defined ROIs are likely to include vertices that are not necessarily involved in 

the cognitive processes of interest. Therefore, future analysis using functionally constrained and 

individually defined ROIs may increase the power of detecting the difference between conditions. 

In addition, the relatively small sample size (N=15) could lead to less robust effects overall 

including the effect in the localizer task. 
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3.2.5  Conclusion 

The learning of new action meanings presented as verbal definitions is supported by 

sensorimotor cortices relevant to the representation of actions. While the left MT+ is associated 

with the processing of new action meanings of novel words, the left inferior frontal gyrus (BA44) 

and precentral gyrus are associated with the processing of new actions meanings of known words. 

Such difference suggests new meanings of known words are more semanticized than those of novel 

words. Meanwhile, the left posterior middle temporal gyrus (pMTG) seems more reliably involved 

in the learning of new meanings for known words than for novel words. Overall, the findings 

suggest that the left pMTG is involved in binding new meanings to previously known words, 

possibly by interacting with neocortical areas relevant to more specific representation of new 

meanings.   
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4.0 General Discussion 

The presented studies are part of a larger research program that aims to uncover the 

mechanisms underlying the learning of new meanings for known words. Study 1 showed that 

learning new meanings benefits from the study-test interval involving overnight sleep. However, 

within the first 24 hours, new meanings seem not yet fully integrated and episodic retrieval still 

plays a crucial role in accessing the new meanings. When learning spanned over days as in Study 

2b, new meanings are more integrated through neocortical learning. In particular, following four-

day learning, the left pMTG and the left frontal areas were involved in accessing the new action 

meanings of known words, supporting the important role of the left pMTG in binding new 

meanings to known words. For novel words, accessing the new action meanings is associated with 

the left MT+, a region sensitive to visual motion. While the integration of new meanings is slower 

than that of novel words within the first 24 hours possibly because of interference, it seems to 

catch up later when more time and more learning opportunities are given. In this chapter, I explain 

different stages of learning based on the studies reported in the dissertation and our previous work 

and then provide implications for word learning in general. 

4.1  The co-activation model for the learning of new meanings for known words 

One unique feature of learning new meanings for known words is that strong co-activation 

of new and prior word knowledge is involved from the very beginning of learning. Here I 

emphasize the role of such knowledge co-activation in different stages of learning, based on the 



88 

standard model of system consolidation (Frankland & Bontempi, 2005). When a word is presented, 

the knowledge about the word form, meaning, and mapping between them is automatically 

activated (Humphreys et al., 1982; Lesch & Pollatsek, 1993; Perfetti et al., 1988). As shown in 

Figure 22, during the initial encoding, the hippocampus receives input from neocortical areas 

representing prior knowledge and also those relevant to the representation of new meanings. The 

initial connections between new and prior knowledge are created and represented in the 

hippocampus, and the connections among neocortical areas are very weak during the encoding 

phase. At this point, these hippocampus-dependent connections are sufficient to support the 

recognition and recall of new meanings. During memory consolidation, the hippocampus replays 

the memories to the neocortex. It is likely that new and original meanings are both reactivated 

during overnight consolidation. This again provides opportunity for the interaction between 

hippocampal learning and neocortical learning to occur. In addition to the interaction among 

neocortical areas relevant to the representation of word forms and original meanings and that of 

new meanings, the left pMTG and the neocortical areas relevant to the new meanings are also co-

activated. Over time, these neocortical connections are stronger and stronger while the 

hippocampus-dependent connections become weaker and weaker. Eventually the mapping 

between new meanings and words is represented in the left pMTG. 

 



89 

Figure 22. Model for time-dependent changes in the learning of new meanings for known words. 

Memory replay mainly occurs during overnight consolidation. The left pMTG represents existing form-meaning 

mappings and supports the formation and updating of lexical representations. When new and original meanings are 

semantically unrelated, there are inhibitory connections between them. Solid lines represent connections among 

neocortical areas; dash lines represent connections between the hippocampus and neocortical areas; darkness of lines 

represents strength of connections. 

While knowledge co-activation facilitates the integration of new meanings in the long run, 

it can sometimes be a disadvantage. The reactivation of original meanings can interfere with the 

initial learning of new meanings, especially when new and original meanings are semantically 

unrelated (Rodd et al., 2012) or when participants know the original meanings very well (Fang et 

al., 2017; Fang & Perfetti, 2019). Meanwhile, such interference slows down the access of original 

meanings on the day of learning, as found in Study 1 and previous studies (Fang & Perfetti, 2019). 

It is likely that inhibitory connections between new and original meanings are formed during the 
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of the meanings.  
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The most interesting finding is that the disadvantage of knowledge co-activation wanes 

over time, especially after overnight consolidation occurs. New meanings of known words are 

more accessible after overnight consolidation occurs (Study 1). What’s more, although strong 

interference between new and original meanings hinders the initial learning, it benefits long-term 

retention of new meanings (Fang & Perfetti, 2019). Meanwhile, the access of original meanings 

also benefits from overnight sleep so that the speed of meaning access recovers after 24 hours 

(Study 1; Fang & Perfetti, 2019). Therefore, both new and original meanings benefit from 

overnight consolidation. 

The faster access to both new and original meanings over time suggests that more 

distinctive representations for different meanings of a word are formed. In the encoding of similar 

events, the dentate gyrus, a subfield of the hippocampus, is associated with forming more 

distinctive hippocampal representations (Duncan & Schlichting, 2018; Favila, Chanales, & Kuhl, 

2016). Establishing distinctive representations for new and original meanings may rely on a 

different mechanism, because prior word knowledge is represented in the neocortex rather than in 

the hippocampus. As mentioned in the discussion of Study 1, one possible solution to differentiate 

meanings is to include certain contextual information or context nodes for different meanings 

(Armstrong & Plaut, 2008). For example, the context nodes for new meanings may be about 

experimental sessions and are initially represented in the format of episodic memory. When new 

meanings are encountered in different language contexts, the context nodes become more 

meaning-relevant. Such information may also need repeated exposure and overnight consolidation 

to become part of the meaning representations. Once the context nodes are established, meaning 

selection can be achieved by matching language input with context nodes. 
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Another scenario is that new meanings are semantically related to original meanings. In 

this case, the interference among meanings is much weaker, if there is any. In the absence of strong 

inhibitory connections between them, new meanings may become integrated much faster and rely 

less on overnight consolidation. These hypotheses are consistent with recent updates of the 

complementary learning system models where the influence of prior knowledge on the speed of 

integration is acknowledged (Kumaran et al., 2016; McClelland, 2013). 

Overall, the co-activation of new and prior word knowledge benefits the long-term 

retention and integration of new meanings, even though it may hinder initial learning. Similar to 

the learning of novel words, overnight sleep plays an important role in the learning of new 

meanings for known words. The role of overnight consolidation may involve reducing the 

interference between new and original meanings and facilitating selective meaning access, 

possibly by establishing context nodes for different meanings. 

4.2 Implications for word learning in general 

Establishing the associations between word forms and word meanings is an essential part 

of building vocabulary knowledge. With well-established form-meaning connections, one can 

efficiently retrieve the most appropriate words to express ideas (i.e., meaning-to-form) or 

comprehend what is heard or seen (i.e., form-to-meaning). While learning new meanings for 

known words is a special case of word learning, the relevant findings can inform the research on 

word learning in general. In particular, the knowledge co-activation can be applied to the learning 

of novel words. Previous studies have shown that under certain learning conditions when 

knowledge co-activation is enhanced by making the link between new and prior knowledge more 
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available, integration of novel words can occur faster. For example, when novel words and existing 

words that have similar pronunciations are presented in an interleaved way, novel words can be 

integrated right away (Lindsay & Gaskell, 2013). In a fast-mapping paradigm where the picture 

referents of novel words are presented along with familiar and relevant pictures, immediate 

integration has also been reported (Coutanche & Thompson-Schill, 2014). Enhancing knowledge 

co-activation is essentially engaging the neocortical learning system and also facilitating the 

interaction between hippocampal and neocortical learning systems during initial learning. The 

connections formed during the encoding of new information can further facilitate knowledge co-

activation during post-learning memory replay and benefits integration of new word knowledge in 

the long run. 

In terms of neural mechanisms for word learning, the left pMTG supports the establishment 

of form-meaning mappings for novel words (Bakker-Marshall et al., 2018; Landi et al., 2018; 

Takashima et al., 2014, 2017). The same region seems to function in the binding of new meanings 

to known words, suggesting that the left pMTG is involved in the establishment of new form-

meaning mappings in general. This is consistent with the argument that the left pMTG is the lexical 

hub (Hagoort, 2005; Hickok & Poeppel, 2004, 2007). Anatomically, the left pMTG is connected 

with other brain regions relevant to the language processing through fiber tracks (Friederici, 2011). 

In addition, this region has also been proposed to represent modality-independent or under-specific 

semantic information (Binder & Desai, 2011; Papeo et al., 2015). While the specific role of the 

left pMTG remains controversial, the region is an ideal replacement for the hippocampus in the 

long run given its functional and anatomical properties. Overall, the left pMTG may connect the 

regions relevant to the specific representation of word meanings and those relevant to word form 
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representation (e.g., visual word form area or VWFA in Dehaene and Cohen (2011)), although 

more direct evidence is needed.  

4.3 Summary and conclusions 

The thesis examined how overnight consolidation affected the learning new meanings for 

known words and the role of the left pMTG in binding new meanings to known words. Study 1 

showed that the processing of both new and original meanings became faster after overnight sleep. 

This indicates reduced interference between new and original meanings over time, especially after 

overnight consolidation occurs. However, the ERP data showed that accessing the new meanings 

was still mainly supported by episodic retrieval even 24 hours after learning. To investigate how 

new meanings are associated with known words, Study 2a first demonstrated that presenting word 

meanings as verbal definitions is sufficient to drive semantic category effect. Based on this, Study 

2b further showed that the left pMTG, in addition to other neocortical areas relevant to the specific 

representation of new meanings, is involved in binding new meanings to known words. 

Combined with the previous findings on learning novel words, the dissertation results 

suggest that the co-activation of new and prior knowledge is essential to the integration of new 

word knowledge into the mental lexicon. The interactions between the hippocampal and 

neocortical learning systems are likely to be part of the mechanisms. The left pMTG not only 

supports the formation of novel form-meaning associations, but also the associations between new 

meanings and previously known words.  
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Appendix A Supplementary Tables and Figures 

A.1 Study 2a 

Table S1-1. Descriptive statistics of lexical and sub-lexical characteristics of existing and novel words (Study 2a) 

 Condition Phoneme Letter NB(O) NB(P) Frequency Valence Arousal 

Existing words Action 3.7 (0.66) 4.7 (0.86) 5.95 (3.94) 12.05 (7.49) 38.86 (52.83) 5.59 (0.79) 4.10 (0.68) 

 Non-action 3.8 (0.62) 7.8 (1.00) 5.95 (5.81) 10.25 (8.16) 44.39 (56.22) 5.74 (0.69) 3.83 (0.64) 

Novel words  4.35 (0.75) 5.45 (0.69)      
Notes: Number of phonemes, letters and orthographic neighbor size are reported for both novel words and existing words. Phonological neighbor size, word 

frequency (based on the SUBTLEX(US) corpus, Brysbaert & New, 2009), ratings for valence and arousal (Warriner, Kuperman, & Brysbaert, 2013) are reported 

for existing words additionally. Except ratings for valence and arousal, all the other data were extracted from the English Lexicon Project (Balota et al., 2007). 
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Figure S1-1. Permutation test results on central and occipital clusters for novel words and existing words (Study 2a). 

Left: Novel words; Right: Existing words; Upper: Central clusters; Lower: Occipital clusters. Black lines represent time points showing significant difference 

between action and non-action conditions, based on 10,000 permutations. Vertical line represents recognition points. 

325	ms103	ms 408	ms
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A.2 Study 2b 

Table S2-1. Lexical and sublexical characteristics of word stimuli (Study 2b) 

Conditio

n Number of 

Letters 

Mean Bigram 

Frequency (log) 

Word 

Frequency 

(SUBTL) 

Number of 

Senses Valence Arousal 

Concret

eness 

Orthographic 

Neighborhood Size 

Phonologic 

Neighborhood Size 

Known 

words 
5.13  0.71 3.24  0.19 

12.77  

12.31 
4.63  2.32 

5.94  

0.61 

3.40  

0.57 

4.84  

0.19 
4.35  4.22 10.16  7.37 

Novel 

words 

5.31  

0.59 3.18  0.17        

Localizer words         

Action 

4.69  

0.95 3.14  0.21 

36.87  

53.96 

11.31  

5.19 

5.54  

0.79 

4.15  

0.71 

4.06  

0.26 6.38  4.26 12.13  8.29 

Non-

action 

4.88  

1.02 3.26  0.20 

51.79  

60.57 

8.88  

5.21 

5.85  

0.58 

3.90  

0.64 

4.33  

0.33 5.25  6.01 10.81  8.89 
Notes: Word frequency is based on the SUBTL (US) corpus (Brysbaert & New, 2009); ratings for valence and arousal are from the database by Warriner et al. 

(2013);  Concreteness is based on the database by Brysbaert et al. (2013); number of senses is from the Wordsmith English Dictionary (Parks et al., 1998). Word 

frequency, orthographic and phonological neighborhood size are retrieved from the English Lexicon Project (Balota et al., 2007). 
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Table S2- 2. Fixed effect estimates for models of performance in cued-recall and recognition tests 

(Study 2b) 

beta SE t or z p 
Cued-recall (score) 

Intercept 4.955 0.020 245.293 < .001 *** 
Type (Meaning vs. Control) -0.058 0.013 -4.478 < .001 *** 
Lexicality (Novel vs. Known) -0.006 0.014 -0.468 0.640 
Session2vs1 0.063 0.022 2.819 0.005 ** 
Session3vs2 -0.081 0.026 -3.114 0.002 ** 
Session4vs3 0.059 0.022 2.615 0.009 ** 
Type: Lexicality -0.041 0.026 -1.562 0.118 
Type:Session2vs1 0.154 0.045 3.432 < .001 *** 
Type:Session3vs2 -0.143 0.052 -2.760 0.006 ** 
Type:Session4vs3 0.090 0.045 2.002 0.045 * 
Lexicality:Session2vs1 0.118 0.045 2.615 0.009 *** 
Lexicality:Session3vs2 -0.085 0.052 -1.628 0.104 
Lexicality:Session4vs3 0.061 0.045 1.348 0.178 
Type:Lexicality:Session2vs1 0.107 0.090 1.185 0.236 
Type:Lexicality:Session3vs2 -0.206 0.104 -1.981 0.048 * 
Type:Lexicality:Session4vs3 0.103 0.090 1.144 0.253 

Recognition (accuracy, by-subject) 

Intercept 3.462 0.020 177.553 < .001 *** 
Type -0.034 0.021 -1.642 0.101 
Lexicality -0.051 0.030 -1.730 0.084 ~ 
Session2vs1 0.103 0.036 2.844 0.004 ** 
Session3vs2 0.103 0.042 2.463 0.014 * 
Session4vs3 0.034 0.036 0.948 0.343 
Type: Lexicality -0.034 0.042 -0.821 0.412 
Type:Session2vs1 0.137 0.072 1.896 0.058 ~ 
Type:Session3vs2 0.068 0.083 0.821 0.412 
Type:Session4vs3 0.000 0.072 0.000 1.000 
Lexicality:Session2vs1 0.239 0.072 3.318 < .001 *** 
Lexicality:Session3vs2 0.137 0.083 1.642 0.101 
Lexicality:Session4vs3 0.034 0.072 0.474 0.636 
Type:Lexicality:Session2vs1 0.342 0.144 2.370 0.018 * 
Type:Lexicality:Session3vs2 0.000 0.166 0.000 1.000 
Type:Lexicality:Session4vs3 -0.068 0.144 -0.474 0.636 

Recognition (accuracy, by-item) 

Intercept 2.841 0.015 191.381 < .001 *** 
Type -0.057 0.029 -1.971 0.049 * 
Lexicality -0.096 0.030 -3.220 < .001 *** 
Session2vs1 0.029 0.021 1.394 0.163 
Session3vs2 0.048 0.021 2.323 0.020 * 
Session4vs3 0.038 0.021 1.858 0.063 ~ 
Type: Lexicality -0.115 0.058 -1.971 0.049 * 
Type:Session2vs1 0.057 0.041 1.394 0.163 
Type:Session3vs2 0.057 0.041 1.394 0.163 
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Type:Session4vs3 0.038 0.041 0.929 0.353  
Lexicality:Session2vs1 0.096 0.041 2.323 0.020 * 
Lexicality:Session3vs2 0.096 0.041 2.323 0.020 * 
Lexicality:Session4vs3 0.076 0.041 1.858 0.063 ~ 
Type:Lexicality:Session2vs1 0.191 0.082 2.323 0.020 * 
Type:Lexicality:Session3vs2 0.115 0.082 1.394 0.163  
Type:Lexicality:Session4vs3 0.076 0.082 0.929 0.353  

Notes: Intercept represents mean performance across all the conditions. Final model for cued-recall test: Score ~ 

Type * Lexicality * Session + (1 | Subject) + (1 | Word); final model for by-subject analysis of recognition test: 

EmpLogit(ACC) ~ Type *Lexicality * Session + (1 + Lexicality | Subject); final model for by-item analysis of 

recognition test: EmpLogit (ACC) ~  Type *Lexicality * Session + (1 | Word). ***: p < .001, **: p < .01, *: p < .05, 

~: p < .10. 
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Appendix B Experimental Stimuli and Rubric 

Table S3- 1. Word stimuli (Study 1) 

Category Word Category Word Category Word Category Word 

man-made bench man-made bread man-made boot man-made brick 

man-made bucket man-made desk man-made cereal man-made dime 

man-made fence man-made hat man-made glass man-made hut 

man-made ink man-made linen man-made lamp man-made map 

man-made maze man-made pole man-made mirror man-made porch 

man-made roof man-made seat man-made rug man-made sleeve 

man-made soup man-made tape man-made stair man-made tent 

man-made tray man-made vase man-made tube man-made vest 

natural banana natural carrot natural birch natural moss 

natural dew natural grape natural garlic natural snow 

natural ice natural leaf natural ivy natural cloud 

natural moon natural mud natural onion natural grass 

natural oak natural pea natural pearl natural nest 

natural pear natural pepper natural wheat natural peach 

natural shell natural stone natural lemon natural tomato 

natural walnut natural wood natural plum atural yam 
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Table S3- 2. Definitions (Study 1 and Study 2b) 

Group Type Verb Definition 

1 hand reach reaching upward 

1 hand kneed kneading forcefully 

1 hand wave waving side to side 

1 hand type typing rapidly 

1 leg tip-toe tip-toeing stealthily 

1 leg hike hiking up an incline 

1 leg kneel kneeling slowly 

1 leg run running quickly 

1 hand smash smashing instantly 

1 hand write writing from right to left 

1 hand slide sliding fingers to the right 

1 hand push pushing towards the left 

1 leg skate skating smoothly 

1 leg jump jumping high 

1 leg skip skipping very fast 

1 leg walk walking backwards 

2 hand pat patting sporadically 

2 hand tug tugging back and forth 

2 hand grasp grasping firmly 

2 hand rub rubbing in circles 

2 leg dig digging with toes 

2 leg stomp stomping intensely 

2 leg kick kicking with force 

2 leg pedal pedaling with effort 

2 hand lift lifting with one hand 

2 hand squeeze squeezing repeatedly 

2 hand poke poking with both hands 

2 hand throw throwing underhand 

2 leg march marching in place 

2 leg hop hopping on one leg 

2 leg limp limping stiffly 

2 leg tap tapping one foot constantly 
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Table S3- 3. Rubric for the scoring of responses in the cued-recall tests (Study 1 and Study 2b) 

Score Response 

0 No response or unknown indicated 

1 Relevant modifier + irrelevant/missing verb 

2 Correct modifier + irrelevant/missing verb 

3 Correct verb + irrelevant/missing modifier 

4 Correct verb + relevant modifier 

5 Correct verb + correct modifier 
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Table S3- 4. Novel words (Study 2a) 

 

Set 
Written 

form 
Pronunciation Set 

Written 

form 
Pronunciation 

1 adaint ədeint 2 attave əɾev 

1 blauge blaʊʤ 2 bloosh bluʃ 

1 bropt bɹɒpt 2 chalph ʧælf 

1 crulge kɹɔlʤ 2 drault drɑlt 

1 dwock dwak 2 flerp flɚp 

1 fralt fɹælt 2 fruch fɹuʧ 

1 gaiph gef 2 gelb gɛlb 

1 glerg glɚg 2 grelve grɛlv 

1 knisp nɪsp 2 knurt nɝːɹt 

1 larsk laɹsk 2 lootch luʧ 

1 maldge malʤ 2 moip mɔɪp 

1 plauve plaʊv 2 plisk plɪsk 

1 praff pɹæf 2 relsh rɛlʃ 

1 rhonge rɔnʤ 2 smange smænʤ 

1 snalve snalv 2 spronk spɹɑːnk 

1 strimph stɹɪmf 2 swulch swɑlʧ 

1 thalp θælp 2 thralk θɹalk 

1 trithy tɹɪθi 2 tweche twɛtʃ 

1 twoom twum 2 twult twɔːlt 

1 vanty vænti 2 vorsh vɔɹʃ 
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Table S3- 5. Existing words (Study 2a) 

 

Condition Word Condition Word 

Action swim Visual tan 

Action crawl Visual purple 

Action spin Visual red 

Action slide Visual green 

Action dance Visual brown 

Action dive Visual yellow 

Action throw Visual pink 

Action scratch Visual white 

Action scoop Visual black 

Action pull Visual stripe 

Action carve Visual circle 

Action dip Visual curve 

Action draw Visual cube 

Action bend Visual square 

Action nudge Visual cone 

Action catch Visual flat 

Action swing Visual sphere 

Action tread Visual star 

Action leap Visual arrow 

Action stride Visual oval 
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Table S3- 6. Definitions (Study 2a) 

 

Condition Definition Condition Definition 

action twisting one's body around visual with a dark blue surface 

action bouncing from side to side visual with golden flowers 

action trembling without stopping visual with silver hair 

action rotating to the right visual with a maroon outline 

action lifting with one hand visual with  a bright teal color 

action pushing toward the left visual with rust-colored spots 

action reaching upward visual resembling an orange ellipse 

action grasping firmly visual covered in beige dots 

action tugging back and forth visual appearing like a rainbow 

action typing rapidly visual with a wood grain pattern 

action squeezing repeatedly visual covered in crossing lines 

action smashing instantly visual with many thin cracks 

action shoving in a different direction visual speckled with turquoise 

action hitting with force visual covered in gray zig-zags 

action stomping intensely visual with a triangle head 

action kicking mightily visual with a long tail 

action walking backward visual with a wide cylindrical body 

action running quickly visual in a heart shape 

action hopping up and down visual in the shape of an octagon 

action digging with one's toes visual with tiny ears 
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Table S3- 7. Known words (Study 2b) 

Group Word Sound Color Manipulation Motion Emotion 

1 bench 0.67 1.45 1.83 0.15 -0.15 

1 brick 1.23 3.82 1.38 0 -0.55 

1 cereal 1.67 3.7 2.58 0.42 1.69 

1 glass 2.92 1.67 2.86 0.36 0.91 

1 linen 0.77 3.73 1.91 0.45 0.55 

1 porch 1.27 1.33 1.54 0.64 1.67 

1 soup 1.4 3 2.92 0.82 1.83 

1 vase 0.31 1.73 2.67 0.08 1.08 

1 banana 0.2 5.26 2.89 0.26 1.9 

1 carrot 1.07 5.27 2.07 0.16 0.84 

1 garlic 0.46 2 2 0.25 -0.46 

1 moss 0.46 5.1 0.69 0.33 0.75 

1 pearl 0.54 3.9 2.62 0.09 2.85 

1 shell 1.75 2.54 1.46 0.23 1.75 

1 tomato 0.21 5.54 2 0.18 0.63 

1 grape 0.42 4.73 2.64 0 1.92 

2 bread 0.42 2.33 3.17 0 1.36 

2 bucket 1 1 2.17 0.45 -0.82 

2 fence 0.3 2 2.21 0 -0.54 

2 lamp 1.33 2.77 2.69 0.1 0.62 

2 mirror 0.64 1.5 2.82 0.31 0.08 

2 sleeve 0.3 0.45 2.69 0.38 0 

2 tent 1.27 2.27 2.69 0.55 1.58 

2 vest 0.08 2 2.64 0.1 0 

2 grass 0.64 4.85 2.25 0.67 1 

2 birch 1.11 2.38 1 0.22 1 

2 cloud 0.5 3.45 0.42 2 1.82 

2 lemon 0.58 4.91 2.67 0.08 0.58 

2 onion 0.58 2.91 2.85 0.31 -0.91 

2 pepper 0.45 3.98 1.98 0.53 -0.17 

2 stone 1.23 2.36 2.67 0.27 -0.58 

2 walnut 0.64 3.31 2 0.29 0.25 

Notes: Ratings of five attributes from the Wisconsin perceptual attribute ratings database (Medler et al., 2005) are 

presented.  
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Table S3- 8. Novel words (Study 2b) 

Group Word 

1 adaint 

1 bloosh 

1 chalph 

1 drault 

1 flerp 

1 frert 

1 gelb 

1 knisp 

1 larsk 

1 maldge 

1 plisk 

1 praff 

1 slere 

1 spronk 

1 trithy 

1 vanty 

2 attave 

2 bropt 

2 criph 

2 dakle 

2 fraine 

2 garck 

2 glerg 

2 knart 

2 loatch 

2 moip 

2 plauve 

2 relsh 

2 snalve 

2 thalp 

2 twalt 

2 vorsh 
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Table S3- 9. Untrained words (Study 2b) 

Condition Word 

Action swim 

Action crawl 

Action dance 

Action dive 

Action scratch 

Action scoop 

Action pull 

Action carve 

Action dip 

Action draw 

Action bend 

Action nudge 

Action catch 

Action tread 

Action leap 

Action stride 

Visual tan 

Visual purple 

Visual red 

Visual green 

Visual brown 

Visual yellow 

Visual white 

Visual black 

Visual circle 

Visual curve 

Visual square 

Visual cone 

Visual sphere 

Visual star 

Visual arrow 

Visual oval 
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