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Reformulation Techniques and Solution Approaches for Fractional 0-1

Programs and Applications

Erfan Mehmanchi, PhD

University of Pittsburgh, 2019

Fractional binary programs (FPs) form a broad class of nonlinear integer optimization

problems, where the objective is to optimize the sum of ratios of (linear) binary functions.

FPs arise naturally in a number of important real-life applications such as scheduling, retail

assortment, facility location, stochastic service systems, and machine learning, among others.

This dissertation studies methods that improve the performance of solution approaches

for fractional binary programs in their general structure. In particular, we first explore the

links between equivalent mixed-integer linear programming (MILP) and conic quadratic

programming reformulations of FPs. Thereby, we show that integrating the ideas behind

these two types of reformulations of FPs allows us to push further the limits of the current

state-of-the-art results and tackle larger-size problems.

In practice, the parameters of an optimization problem are often subject to uncertainty.

To deal with uncertainties in FPs, we extend the robust methodology to fractional binary

programming. In particular, we study robust fractional binary programs (RFPs) under a

wide-range of disjoint and joint uncertainty sets, where the former implies separate uncer-

tainty sets for each numerator and denominator, and the latter accounts for different forms of

inter-relatedness between them. We demonstrate that, unlike the deterministic case, single-

ratio RFP is NP -hard under general polyhedral uncertainty sets. However, if the uncertainty

sets are imbued with a certain structure - variants of the well-known budgeted uncertainty -

the disjoint and joint single-ratio RFPs are polynomially-solvable when the deterministic

counterpart is. We also propose MILP formulations for multiple-ratio RFPs and evaluate

their performances by using real and synthetic data sets.

One interesting application of FPs arises in feature selection which is an essential pre-

processing step for many machine learning and pattern recognition systems and involves

identification of the most characterizing features from the data. Notably, correlation-based
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and mutual-information-based feature selection problems can be reformulated as single-ratio

FPs. We study approaches that ensure globally optimal solutions for medium- and reason-

ably large-sized instances of the aforementioned problems, where the existing MILPs in the

literature fail. We perform computational experiments with diverse classes of real data sets

and report encouraging results.
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1.0 Introduction

Fractional 0-1 programs (FPs), also referred to as hyperbolic 0-1 programs [16, 43, 92],

form a broad class of nonlinear integer optimization problems and involve minimization

(maximization) of the sum of ratios of (linear) binary functions. Formally, FP is defined as

min
x∈X
∑
i∈I

ai0 + ∑
j∈J
aijxj

bi0 + ∑
j∈J
bijxj

,(FP)

where I = {1, ...,m}, J = {1, ..., n} and X ⊆ Bn for B ∶= {0,1}. If m = 1, then the problem is

referred to as single-ratio, else it is multiple-ratio.

FPs have been the subject of many studies since they arise naturally in many practical

contexts that involve optimization of efficiency measures (e.g., maximizing the ratio of re-

turn/investment or profit/time, see [17, 75, 84, 88]), probabilities, averages, and percentages,

among others. Hence, fractional optimization models can be found in diverse application

areas including but not limited to problems in data mining and machine learning (such as

feature selection [37, 67, 68, 69] and biclustering [22, 93]), scheduling [83], retail assort-

ment [28, 63, 89], set covering [3, 4], facility location [92], stochastic service systems [33, 42],

finding diverse solutions to binary-linear programs [94], medical science [10], and so on. We

refer the reader to a recent survey in [17] and the references therein for an overview of

applications and solution methods for FPs.

1.1 Literature review

Constrained versions of either single or multiple-ratio FPs are NP -hard since linear bi-

nary programming that is known to be NP -hard [66] can be viewed as a special case of FP.

The constrained (over feasible set X) single-ratio FP with a strictly positive denominator

can be solved to optimality by repeatedly solving a sequence of optimization problems with

a linear objective function over X via parametric algorithms, such as Newton’s method [31]
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and binary-search [2, 53, 79]. Moreover, if solving such a linear optimization problem over

X can be done in polynomial time, then single-ratio FP can be solved in polynomial time.

Furthermore, Megiddo [60] shows that if a binary-linear problem admits a polynomial-time

algorithm, then so does single-ratio FP. Nevertheless, the unconstrained multiple-ratio FP

is NP -hard even for two ratios (or a ratio and a linear function) and strictly positive de-

nominators, see, e.g., [44, 76, 77].

With respect to solution methodologies, typical approaches for solving single-ratio FP

are centered around the parametric algorithms. A detailed discussion on these methods is

provided in [79]. Additionally, specialized techniques have been proposed for special cases

of single-ratio FP, including the minimum fractional spanning tree problem [95], the mini-

mum cost-to-time cycle problem [27], the maximum mean-cut problem [59], the minimum

fractional assignment problem [87], and the maximum clique ratio problem [65, 86].

These approaches do not naturally extend for multiple-ratio cases. Typical solution

methods in the literature for solving multiple-ratio FPs are based on their reformulations as

equivalent mixed-integer linear programs (MILPs). An early MILP formulation was given

by [99] and later generalized by [92]. A different formulation was suggested by [54], and

further discussed by [100] and [92]. Additionally, the work by [92] presents six other formu-

lations. These MILPs mainly rely on the linearization of bilinear (product of a binary and a

continuous variables) terms by introducing additional O(nm) continuous variables and big-

M constraints. Although the MILP formulations are commonly used, they do not handle

well large-scale multiple-ratio FPs, see, e.g., [19, 35, 63], due in part to the weak relaxations

caused by the big-M constraints, and also due to the large number of newly added variables

and constraints.

Borrero et al. [16] recently proposed an alternative MILP reformulation based on per-

forming binary expansions of certain integer-valued expressions. The formulation can sub-

stantially reduce the number of bilinear terms that require linearization, thus requiring much

fewer variables and constraints than the original MILP formulations. As a consequence, the

binarized formulation scales better to large instances; however, binary expansion also leads

to weaker continuous relaxations, which in turn can hurt performance in branch-and-bound.
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To deal with the weaknesses of MILPs, recently Şen et al. [85] proposed a mixed-integer

conic quadratic programming (MICQP) reformulation for assortment optimization. Addi-

tionally, Atamtürk and Gómez [6] proposed another MICQP reformulation for FPs by ex-

plicitly involving submodular functions, and used extended polymatroid cuts [7, 57] to exploit

the submodular structure and strengthen the formulations. Both the aforementioned MIC-

QPs result in stronger convex relaxations than the standard MILP counterparts, as the latter

require linearization of bilinear terms with big-M constraints.

Additionally, thanks to recent advances in commercial MICQP optimization softwares

such as CPLEX [47] and Gurobi [39], conic based reformulations of FPs for small- and

medium-sized problems can be solved with a better running time performance in compar-

ison to standard MILP reformulations. However, the solvers still struggle with large-scale

mixed-integer nonlinear optimization problems, and hence the performance of the MICQP

reformulations degrades considerably in larger instances. Therefore, the researchers and

practitioners are often forced to use either heuristic methods or resort to various modeling

simplifications that substantially limit the quality of the obtained solutions as the resulting

models do not adequately reflect the underlying fractional measures.

Furthermore, in many of the applications listed above, the parameters of optimization

problems are often subject to uncertainty. The robust optimization paradigm is a natural

approach for addressing such issues [9, 14]. Continuous robust fractional convex optimization

is reasonably well studied in the literature, see, e.g., [38, 48, 49]. However, the literature

on robust fractional 0-1 programs, in their general form, is rather sparse and it has been

studied only for some classes of problems. For example, the work of [81] studies a single-

ratio assortment optimization problem under the multinomial logit choice model, where only

customer preferences are uncertain. Nevertheless, their results cannot be directly extended

for more general classes of fractional problems including the cases when the revenues are

subject to uncertainty or the choice model is mixed-multinomial logit.

3



1.2 Contributions and the structure of the dissertation

The main goal of this dissertation is to address the aforementioned shortcomings in the

relevant literature. Our contribution is threefold. First, we improve solution methods for

solving generally structured FPs with special focus on reasonably large-sized problems. Sec-

ond, we propose solution approaches for solving FPs subject to uncertainty. Third, we study

FPs in the application setting of feature selection problem.

To this end, Chapter 2 focuses on methods that potentially can improve the efficiency of

solution approaches to solve multiple-ratio FPs. Our solution approaches do not completely

rely on either mixed-integer linear or conic quadratic programming techniques, but a com-

bination of both. In particular, we first explore the links between MILP- and MICQP-based

equivalent reformulations of FPs. Then we enhance the best well-known MILP reformu-

lations, see [54, 99], by exploiting the conic programming techniques. Alternatively, two

MICQP reformulations of FP, see [6, 85], are further strengthened and improved via employ-

ing mixed-integer programming techniques. We show that combining the ideas behind these

reformulations allows us to push further the limits of the current state-of-the-art results in

the area and solve problems of larger sizes to optimality.

Chapter 3 is concerned with FPs under uncertainty. The aim is to extend the robust

optimization methodology to fractional 0-1 programming in its general structure and to de-

velop a modeling framework for solving robust fractional binary programs (RFPs) under

various uncertainty sets. To this end, by understanding the theoretical properties of the

models, and combining the ideas from deterministic FP and linear robust optimization new

algorithms and reformulations are developed to solve RFPs exactly. Specifically, we con-

sider both single- and multiple-ratio RFPs under various disjoint and joint uncertainty sets,

where the former implies separate uncertainty sets for each numerator and denominator,

and the latter accounts for different forms of inter-relatedness between them. Then it is

demonstrated that single-ratio RFP, contrary to its deterministic counterpart, is NP -hard

for a general polyhedral uncertainty set. However, if the uncertainty sets are modeled as

a variant of the well-known budgeted uncertainty, then the disjoint and joint single-ratio
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RFPs are polynomially-solvable when the deterministic counterpart is. Additionally, MILP

reformulations are proposed for solving multiple-ratio RFPs.

Finally, Chapter 4 examines FPs in the context of feature selection, a fundamental prob-

lem in data mining and machine learning tasks, which is defined as the problem of selecting

a small subset of relevant features to include in a statistical model. Feature selection is also

critical for minimizing the classification errors [73] and forms an important class of data

mining problems [56]. In particular, some feature selection optimization problems such as

correlation feature-selection and minimal-redundancy-maximal-relevance can be modeled in

the form of single-ratio (polynomial) fractional 0-1 programs, see [67, 68]. However, solving

these problems is challenging for high-dimensional data sets. Thus, non-exact solution meth-

ods are usually applied [56, 64, 73]. The goal of Chapter 4 is to exploit the FPs’ solution

methods for the aforementioned classes of the feature selection problems in order to find

more efficient solution approaches that can handle medium- and large-sized data sets.
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2.0 Fractional 0-1 Programs: Links between Mixed-integer Linear and Conic

Quadratic Formulations

2.1 Introduction

Recall the generally structured fractional binary programs (FPs) introduced in Chapter 1.

In addition to the assumption that FP is in minimization form, we also assume that all data

are non-negative integers, i.e., ai0, aij, bi0, bij ∈ Z+ for all i ∈ I, j ∈ J . Both assumptions

are without loss of generality provided that the weaker (and commonly used) assumption

bi0 +∑j∈J bijxj > 0 for all i ∈ I and x ∈ Bn holds, see Appendix A.1 for a discussion.

Contributions and the structure of the chapter. The main goal in this chapter is to de-

velop formulations for generally structured fractional 0-1 programs that perform well for all

instance sizes, with special focus on large instances where current methods fail. Specifically,

our contribution is threefold:

(i) We perform a comprehensive review of MILP and MICQP formulations of FPs given

in the literature and explore the relationships between them.

(ii) We show how to integrate MICQP and MILP formulations to obtain novel formula-

tions that simultaneously have strong convex relaxations, and a limited number of

variables and constraints.

(iii) By means of computational experiments, we demonstrate that the proposed formula-

tions outperform existing alternatives formulations.

In order to achieve (i), in Section 2.2 we study the links between the classical MILP

formulations LF and LEF, originally proposed in [99] and [54, 100], respectively; the binary-

expansion MILP formulation LFlog developed in [16]; the MICQP formulations CF and CEF

given in [6] and [85], respectively, as well as the MICQP formulation strengthened using

polymatroids CFP, also given in [6].

In order to attain (ii), in Section 2.3 we show how to use binary expansions (emanated

from MILPs) in MICQP formulations; and how to use conic strengthening (originally pro-
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posed in the context of CEF) and polymatroid cuts (originated from CFP) to strengthen

the formulations. More importantly, we show how to incorporate binary expansions and

polymatroid strengthening in a single (either MILP or MICQP) formulation. Figure 1 shows

the schematic representation of these ideas.

To achieve (iii), in Section 2.4, we conduct extensive computational results by using

benchmark test instances and observe that the incorporation of improvements leads to for-

mulations that perform better than the existing formulations in the literature.

Figure 1: Schematic representation of the ideas in Chapter 2. We exploit binary-expansion

technique (from MILP) and conic and polymatroid strengthening (from MICQP) to develop

enhanced formulations for FPs.

In addition to the aforementioned formulations for FPs, several new formulations are

developed in this chapter. We use the following naming conventions: names starting with

“L” correspond to linear formulations, while names starting with “C” correspond to conic

quadratic formulations; the letter “F” following the first letter indicates a compact formu-

lation while the letters “EF” following the first letter indicate an extended formulation, i.e.,

a (usually stronger) formulation with additional variables and/or constraints; the subscript

“log” indicates a formulation using binary expansions; finally, the superscript “P” indicates

a strengthened formulation using polymatroid cuts. Table 1 provides a short summary of all

formulations discussed in this chapter, and Figure 2 depicts the relationships between the

convex relaxations of the formulations.
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Table 1: Formulations studied in this chapter. No citation is given for new formulations.

The symbols “+” and “⋆” denote that the corresponding formulation has a superior

performance in medium- and large-size instances of our computations, respectively.

Formulation Version
Linear-based Conic

Without cut With cut Without cut With cut

Compact
Basic LF [99] LFP CF [6] CFP (+) [6]

Binary expansion LFlog [16] LFP
log(⋆) - -

Extended
Basic LEF [54] LEFP (+) CEF (+) [85] CEFP

Binary expansion LEFlog [16] LEFP
log CEFlog CEFP

log (⋆)

Figure 2: Relationships between the strengths of the convex relaxations of the formulations

studied in Chapter 2. Single rectangular frames and single lines indicate existing formu-

lations and shown relations in the literature, respectively. Double circle frames indicate

new formulations, and double lines indicate relations shown in this chapter. The symbol

S1 ⇒ S2 (or S1 → S2) indicates that formulation S2 has a stronger convex relaxation that

formulation S1; this type of relations are demonstrated analytically in Section 2.2 and

Section 2.3. Additionally, the symbol S1 Ô⇒ S2 (or S1 ⇢ S2) indicates that S2 resulted

in smaller root gaps than S1 in most of our computations; this type of relations are shown

experimentally by performing computational results in Section 2.4.
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2.2 Problem formulations

Herein, we review the MICQP and the (best-known) MILP reformulations of FPs existing

in the literature, and describe their interrelatedness. Toward this goal, following our naming

convention, in Section 2.2.1 we consider the compact formulations LF, CF and the strength-

ened version of CF with polymatroid cuts, i.e., CFP. Then in Section 2.2.2 we discuss the

extended formulations LEF and CEF involving more variables and/or constraints than LF

and CF, respectively. Finally, in Section 2.2.3 we study the binary-expansion reformulations

of MILPs.

2.2.1 Compact formulations

For i ∈ I let

ti ∶=
ai0 +∑j∈J aijxj
bi0 +∑j∈J bijxj

. (2.1)

Then the substitution of variable ti for all i ∈ I in FP yields

min
x∈X,t⩾0

∑
i∈I
ti (2.2a)

s.t. bi0ti +∑
j∈J
bijxjti ⩾ ai0 +∑

j∈J
aijxj ∀i ∈ I. (2.2b)

in which (2.2b) holds at equality at any optimal solution. Observe that constraint (2.2b) is

nonlinear and non-convex (for x ∈ [0,1]n) due to the presence of bilinear terms xjti. In the

following, we take two convexification procedures. The first uses a concave over-estimator of

the left-hand side of inequality (2.2b), resulting in a MILP; see Section 2.2.1.1. The second

uses a convex underestimator of the right-hand side of inequality (2.2b) chosen to ensure

convexity of the ensuing constraint, resulting in a MICQP; see Section 2.2.1.2.

2.2.1.1 Compact MILP formulation (LF) The first approach is based on the lin-

earization of xjti, which can be accomplished by including additional variables and linear

constraints [1, 92, 100]. Specifically, the concave envelope of xjti, where xj ∈ B and ti is

bounded, can be described with the bound constraints and the linear constraints zij ⩽ tUi xj
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and zij ⩽ ti + tLi (xj − 1), where zij is a variable representing the hypograph of the bilinear

term, and tUi and tLi are an upper bound and a lower bound on ti, respectively. Note that

under the data non-negativity assumption (see Appendix A.1) the presence of the concave

envelope of xjti is sufficient for this linearization. Thus, problem FP can be formulated as

the MILP [92, 99]:

(LF) min ∑
i∈I
ti (2.3a)

s.t. bi0ti +∑
j∈J
bijzij = ai0 +∑

j∈J
aijxj ∀i ∈ I (2.3b)

zij ⩽ tUi xj, zij ⩽ ti + tLi (xj − 1) ∀i ∈ I, j ∈ J (2.3c)

x ∈X, t, z ⩾ 0. (2.3d)

Formulation LF exploits the integrality restriction on x (x ∈ Bn) to construct the con-

cave overestimator of the left-hand side of (2.2b), but may be weak due to the used big-

M constraints (2.3c). Classical big-M values used are tUi = (ai0 + ∑j∈J aij)/bi0 and tLi =

ai0/ (bi0 +∑j∈J bij). Thus, LF is especially weak if either the entries aij and bij or the number

of variables (n) are large.

2.2.1.2 Compact MICQP formulations (CF and CFP) An alternative approach to

resolve the non-convexity of (2.2b) is using conic quadratic programming. For each i ∈ I, we

define

ri = bi0 +∑
j∈J
bijxj, (2.4)

and Ri = {x ∈ {0,1}n, (ri, ti) ∈ R2
+ ∣ tiri ⩾ ai0 +∑j∈J aijxj}. Thus, problem (2.2) is equivalent

to minx∈X,t,r⩾0 {∑i∈I ti ∣ (2.4) and (x, ri, ti) ∈ Ri, ∀i ∈ I}, that is still non-convex due to Ri.

A simple convex relaxation of Ri can be obtained by squaring the binary variables (and

relaxing the integrality constraints), i.e., constraint (2.2b) can be written as tiri ⩾ ai0 +

∑j∈J aijxj = ai0 +∑j∈J aijx2
j , where the equality holds for xj ∈ B. Thus, problem (2.2) can be

posed as the MICQP [6]:
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(CF) min
x∈X,
t,r⩾0

∑
i∈I
ti (2.5a)

s.t. tiri ⩾ ai0 +∑
j∈J
aijx

2
j ∀i ∈ I (2.5b)

ri = bi0 +∑
j∈J
bijxj ∀i ∈ I. (2.5c)

The nonlinear constraint (2.5b) is a rotated cone constraint, which can be directly used

with off-the-shelf solvers for MICQP. Observe that, unlike LF, formulation CF does not in-

volve big-M constraints. On the other hand, since x2
j ⩽ xj for xj ∈ [0,1], we see that squaring

the variables may also lead to a weak relaxation. In fact, formulation CF only uses the upper

bounds on x to construct the relaxation, but does not exploit the integrality constraints to

derive stronger formulations.

A better convex relaxation of Ri can be obtained by using the strongest convex relaxation

of Ri, i.e., conv(Ri), see [6]:

(CFP) min
x∈X,
t,r⩾0

∑
i∈I
ti

s.t. (x, ri, ti) ∈ conv(Ri) ∀i ∈ I

ri = bi0 +∑
j∈J
bijxj ∀i ∈ I.

Obviously, CFP has a tighter convex relaxation than CF. However, formulation CFP is

much larger than CF, as it requires a factorial number of constraints to construct conv(Ri).

Specifically, let Σ denote the set of all permutations for set {1, . . . , n}. For a given permu-

tation σ ∶= (σ(1), . . . , σ(n)) ∈ Σ, i ∈ I and j ∈ J , define

πi,σ(j) =

¿
ÁÁÀ j

∑
k=0

ai,σ(k) −

¿
ÁÁÀj−1

∑
k=0

ai,σ(k),

where ai,σ(0) = ai0, and consider the nonlinear extended polymatroid inequalities

tiri ⩾ (
√
ai0 +

n

∑
j=1

πi,σ(j)xσ(j))
2

∀σ ∈ Σ, i ∈ I. (2.6)
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Proposition 1 ([6]). The extended polymatroid inequalities and bound constraints describe

conv(Ri), i.e., conv(Ri) = {x ∈ [0,1]n, (ri, ti) ∈ R2
+ ∣ (2.6)}.

Remark 1. In order to avoid adding all m ⋅ (n!) constraints of the form (2.6), Atamtürk

and Gómez [6] add constraint (2.5b) – which is redundant for CFP– to the formulation,

and add a small number of constraints (2.6) in a cutting surface fashion. The separation of

such constraints can be done in O(n logn) using the greedy algorithm for optimization over

polymatroids [32]. ◻

Remark 2. Inequalities (2.6) can be implemented in a lifted formulation using a single

three-dimensional rotated cone inequality and n! linear inequalities – which can be added as

cutting planes. Specifically, (x, ri, ti) ∈ conv(Ri) if and only if there exists si ∈ R+ such that

tiri ⩾ s2
i , and

√
ai0 +

n

∑
j=1

πi,σ(j)xσ(j) ⩽ si, ∀σ ∈ Σ.

Such a representation is preferable when using current off-the-shelf MICQP solvers, see [6]

for further discussions. ◻

2.2.2 Extended formulations

Unlike compact formulations, which are based on convexifications of either the right-hand

side or the left-hand side of (2.2b), extended formulations simultaneously consider both sides

of (2.2b). Let

yi ∶=
1

bi0 +∑j∈J bijxj
= 1

ri
∀i ∈ I,

where ri is given by (2.4). Then the substitution of variable yi for all i ∈ I in FP yields

min
x∈X,t,y⩾0

∑
i∈I
ti (2.7a)

s.t. ti ⩾ ai0yi +∑
j∈J
aijxjyi ∀i ∈ I (2.7b)

bi0yi +∑
j∈J
bijxjyi ⩾ 1 ∀i ∈ I, (2.7c)

where ti is given by (2.1). Both constraints (2.7b) and (2.7c) hold at equality at any optimal

solution.
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Observe that (2.7b) and (2.7c) use non-convex bilinear terms xjyi. In order to resolve

the non-convexity, we first review LEF, a classical MILP formulation based on formula-

tion (2.7), see Section 2.2.2.1. Then we review the conic quadratic formulation CEF, which

is a strengthening of the LEF. Moreover, we demonstrate that CEF is also a strengthening

of CF, see Section 2.2.2.2 – in contrast, although LEF has been observed to be stronger than

LF in practice, it does not theoretically dominate LF.

2.2.2.1 Extended MILP formulation (LEF) The first approach is based on the lin-

earization of xjyi. Unlike the approach discussed in Section 2.2.1.1, both the concave and

convex envelopes of the bilinear terms need to be constructed, requiring four linear inequal-

ities per term. Letting yUi and yLi be upper and lower bounds on variable yi, and letting

z̄ij ∶= xjyi, we find the MILP formulation [54]:

(LEF) min ∑
i∈I
ti (2.8a)

s.t. ti = ai0yi +∑
j∈J
aij z̄ij ∀i ∈ I (2.8b)

bi0yi +∑
j∈J
bij z̄ij = 1 ∀i ∈ I (2.8c)

yLi xj ⩽ z̄ij ⩽ yUi xj ∀i ∈ I, j ∈ J (2.8d)

yi + yUi (xj − 1) ⩽ z̄ij ⩽ yi + yLi (xj − 1), ∀i ∈ I, j ∈ J (2.8e)

x ∈X, t, y, z̄ ⩾ 0. (2.8f)

Classical big-M values used are yUi = 1/bi0 and yLi = 1/(bi0 + ∑j∈J bij). Thus, LEF is

especially weak if either the entries bij or the number of variables (n) are large (but is not

sensitive to the values aij).

2.2.2.2 Extended MICQP formulation (CEF) Şen et al. [85] recently proposed a

conic strengthening of LEF in the context of the assortment problem under multinomial

logit choice model, but we show that the strengthening can be used for generally structured

fractional binary programs. In particular, since z̄ij = xjyi for xj ∈ B and ri = 1/yi, it follows

that the constraint z̄ijri ⩾ xj is valid for LEF; squaring the binary variables, one obtains a
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convex (rotated cone) constraint that can be used to strengthen the formulations. Moreover,

constraint (2.7c) is in fact conic quadratic representable (yiri ⩾ 1). Thus, we obtain the

formulation:

(CEF) min ∑
i∈I
ti (2.9a)

s.t. ti = ai0yi +∑
j∈J
aij z̄ij ∀i ∈ I (2.9b)

bi0yi +∑
j∈J
bij z̄ij = 1 ∀i ∈ I (2.9c)

yLi xj ⩽ z̄ij ⩽ yUi xj ∀i ∈ I, j ∈ J (2.9d)

yi + yUi (xj − 1) ⩽ z̄ij ⩽ yi + yLi (xj − 1), ∀i ∈ I, j ∈ J (2.9e)

ri = bi0 +∑
j∈J
bijxj ∀i ∈ I (2.9f)

z̄ijri ⩾ x2
j ∀i ∈ I, j ∈ J (2.9g)

yiri ⩾ 1 ∀i ∈ I (2.9h)

x ∈X, t, y, r, z̄ ⩾ 0. (2.9i)

Formulation CEF generalizes the conic quadratic formulation of [85] - developed for the

assortment problem under multinomial logit choice model - for the general fractional binary

program FP. Formulation CEF is stronger than LEF as it includes additional constraints.

As we now show, formulation CEF is also stronger than CF.

Proposition 2. The natural convex relaxation of CEF is stronger than the relaxation of CF.

Proof. We start from formulation CF. For each i ∈ I divide both sides of (2.5b) by ri > 0,

leading to the equivalent representation

ti ⩾
ai0
ri

+∑
j∈J
aij
x2
j

ri
.

Using the substitutions yi ⩾ 1
ri

and z̄ij ⩾
x2j
ri

for all i ∈ I, j ∈ J we can write CF as

min
xj∈X,

ti,ri,yi,z̄ij⩾0

∑
i∈I
ti (2.10a)

s.t. ti ⩾ ai0yi +∑
j∈J
aij z̄ij ∀i ∈ I (2.10b)
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yiri ⩾ 1 ∀i ∈ I (2.10c)

z̄ijri ⩾ x2
j ∀i ∈ I, j ∈ J (2.10d)

ri = b0 + bijxj ∀i ∈ I. (2.10e)

Observe that none of the transformations discussed exploit the integrality constraints, thus

formulation (2.10) above has the same continuous relaxation as CF. If formulation (2.10)

is strengthened using constraints (2.9c), (2.9d), and (2.9e), then one obtains precisely CEF,

thus proving the proposition. ◻

Remark 3 (Extended formulation of CF). Formulations CF and (2.10) are equivalent, in

the sense that their natural convex relaxations (by relaxing integrality constraints in x) co-

incide. However, formulation (2.10) requires m + nm additional variables. Moreover, (2.10)

has m+nm three-dimensional rotated cone constraints, while formulation CF has m (n+2)-

dimensional rotated cone constraints. The extended formulation (2.10) is preferable in the

context of branch-and-bound, as the corresponding linear outer approximations are stronger,

see [97]. In fact, modern conic quadratic branch-and-bound solvers will automatically refor-

mulate CF into a form similar to (2.10) in the presolve process. ◻

2.2.3 MILP binary-expansion formulation (LFlog)

Under the data integrality assumption, the binary-expansion technique attempts to re-

duce the number of bilinear terms (xjti or xjyi) that need to be linearized in LF or LEF.

Specifically, for the binary-expansion reformulation of LF, let θbi ∶= ⌊log2 (∑j∈J bij)⌋+ 1, then

by using the substitution ∑j∈J bijxj = ∑
θbi
k=1 2k−1wbik in problem (2.2) we get

min ∑
i∈I
ti (2.11a)

s.t. bi0ti +
θbi

∑
k=1

2k−1wbikti = ai0 +∑
j∈J
aijxj ∀i ∈ I (2.11b)

∑
j∈J
bijxj =

θbi

∑
k=1

2k−1wbik ∀i ∈ I (2.11c)

x ∈X,wbik ∈ B, ti ⩾ 0 ∀i ∈ I, k ∈ {1, . . . , θbi}. (2.11d)
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Observe that, since xj ∈ B, the left-hand side of constraint (2.11c) is integer for any

feasible solution of (2.11), and thus constraint (2.11c) can always be satisfied at equality.

Using a similar linearization as the one described in Section 2.2.1.1 to linearize the product

terms wbijti, we obtain the MILP formulation [16]:

(LFlog) min ∑
i∈I
ti (2.12a)

s.t. bi0ti +
θbi

∑
k=1

2k−1zbik = ai0 +∑
j∈J
aijxj, ∀i ∈ I (2.12b)

∑
j∈J
bijxj =

θbi

∑
k=1

2k−1wbik, ∀i ∈ I (2.12c)

zbik ⩽ tUi wbik, zbik ⩽ ti + tLi (zbij − 1) ∀i ∈ I, k ∈ {1, . . . , θbi} (2.12d)

x ∈X,wbik ∈ B, zbik ⩾ 0, ti ⩾ 0 ∀i ∈ I, k ∈ {1, . . . , θbi}. (2.12e)

When θbi << n, which is the case when n is large and the coefficients bij are small, formula-

tion LFlog requires substantially less (continuous) variables and big-M constraints than LF,

but the strength of the continuous relaxation of LFlog is weaker. Nonetheless, by performing

computation results, see Section 2.4, we observe that for large instances formulation LFlog

results in much more branch-and-bound nodes explored and better performance overall.

Remark 4. It is also possible to develop a binary-expansion reformulation for LEF. How-

ever, based on the results in [16, 61] such a formulation performs poorly. Thus, we omit

LEFlog from Figure 2 and the discussion in this chapter for the sake of brevity. ◻

In Example 1 below, we evaluate the formulations discussed in Section 2.2 for a spe-

cific instance.

Example 1. Consider unconstrained (X = Bn) two-ratio (m = 2) five-variate (n = 5) frac-

tional 0-1 program

min
x∈B5

{1 + x1 + x2 + 2x3 + 2x4 + x5

2 + x1 + x2 + x3 + x4 + x5

+ 2 + 2x1 + 3x2 + x3 + x4

1 + 2x1 + 2x2 + 3x3

}, (2.13)

which has the optimal objective function value 1.75.

16



(i) The objective function values of convex relaxations, computed by CPLEX 12.7.1 [47],

for the basic reformulations of (2.13), i.e., LF, CF, LEF, and CEF are: 0.482, 1.236, 1.484,

and 1.639, respectively.

(ii) For permutation σ = (1,2,3,4,5), polymatroid inequalities (2.6) for the first and

second ratios are, respectively,

t1r1 ⩾ (1 + (
√

2 − 1)x1 + (
√

3 −
√

2)x2 + (
√

5 −
√

3)x3 + (
√

7 −
√

5)x4 + (
√

8 −
√

7)x5)
2

, and

(2.14a)

t2r2 ⩾ (2 + (
√

4 −
√

2)x1 + (
√

7 −
√

4)x2 + (
√

8 −
√

7)x3 + (
√

9 −
√

8)x4 + 0x5)
2

. (2.14b)

If we add (2.14a) and (2.14b) to CF (without (2.5b)), then the objective function value

of the convex relaxation of the resulting formulation is improved to 1.349. Additionally, if

inequalities (2.6) for all 5! and 4! permutations of the first and second ratios’ numerators

indices (in total 144 rotated cone constraints) are added to CF (without (2.5b)), then the

resulting formulation is CFP with an improved relaxation objective function value equal to

1.697. Thus, CFP results in the best convex relaxation among the formulations of Section 2.2

in this particular instance.

(iii) By using the binary-expansion technique, constraint (2.2b) in model (2.2) for the

first and second ratios, i.e.,

2t1 + (x1 + x2 + x3 + x4 + x5)t1 ⩾ 1 + x1 + x2 + 2x3 + 2x4 + x5, and (2.15a)

t2 + (2x1 + 2x2 + 3x3)t2 ⩾ 2 + 2x1 + 3x2 + x3 + x4, (2.15b)

can be replaced, respectively, by

2t1 + (20wb11 + 21wb12 + 22wb13)t1 ⩾ 1 + x1 + x2 + 2x3 + 2x4 + x5, and (2.16a)

t2 + (20wb21 + 21wb22 + 22wb23)t2 ⩾ 2 + 2x1 + 3x2 + x3 + x4. (2.16b)

Note that instead of linearizing 8 bilinear terms (xjti) in the left-hand sides of (2.15a)

and (2.15b), which results in LF, only 6 bilinear terms (wbikti) are required to be linearized in

the left-hand sides of (2.16a) and (2.16b), which lead to formulation LFlog. Recall that fewer

linearizations implies fewer number of additional continuous variables and big-M constraints.
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However, LFlog has a weaker convex relaxation objective value than LF (0.405 vs. 0.482).

Thus, LFlog results in the worst convex relaxation in this particular instance, but also in the

smallest and easiest to solve convex relaxation. ◻

2.3 Enhancements

None of the formulations presented in Section 2.2 consistently outperforms the others.

MICQP formulations are in general stronger and perform best in small- and medium-size

problems; however, due to the difficulties of optimization solvers to handle the nonlinear

convex relaxations, they may fail to adequately process the root node in larger instances.

In contrast, the binarized MILPs tend to perform better than MICQPs in larger instances

thanks to the reduced formulation size and linear convex relaxations; however, they do not

perform as well in small instances. Finally, MILP formulations perform somewhat in between

the MICQPs and binarized MILPs.

In this section, we aim to further improve the performance of the existing formulations

for FPs. First, from the analysis in Section 2.2, it becomes apparent how to “mix” the

ideas behind these formulations to improve their performance, see Section 2.3.1. Then, in

Section 2.3.2, we develop binary-expansion techniques for conic quadratic formulations. By

using the proposed improvements, we obtain strong formulations of moderate sizes, which

perform well across all problem sizes and are particularly effective in larger instances.

2.3.1 “Mixing” formulations (CEFP,LFP,LEFP, and LFP
log)

Herein, we employ polymatroid cuts in CEF. Then, more interestingly, we make MILP

formulations LF, LEF, and LFlog able to benefit from polymatroid strengthening, as well.

First, note that neither CEF nor CFP theoretically dominates the other in terms of

strength of the continuous relaxations. Moreover, in our computations (see Section 2.4),

neither consistently dominates the other. Nonetheless, we can obtain a stronger new formu-
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lation simply by adding the nonlinear extended polymatroid inequalities to CEF, i.e.,

(CEFP) ∶ min
x,y,z̄,t,r

{∑
i∈I
ti ∣ (2.9b) − (2.9i), (x, ri, ti) ∈ conv(Ri) ∀i ∈ I}.

Clearly, CEFP is stronger than CEF and based on Proposition 2, it is also stronger

than CFP. Indeed, formulation CEFP results in the best convex relaxations among the

formulations presented in this chapter. However, due to its size, it is impractical in larger

instances. We address this issue by using the binary-expansion idea in Section 2.3.2. We also

point out that several approaches to strengthen the MILP formulations have been proposed

in the literature, see, e.g., [63, 92]. Clearly, such approaches can naturally be used with any

of the formulations present in Section 2.2, or the new formulations introduced in this section.

Second, as pointed out in Remark 1, previous implementations of CFP also added con-

straints (2.5b), large-dimensional conic quadratic constraints which substantially increases

the computational burden of solving the convex relaxations, despite the recent advances in

off-the-shelf optimization solvers. An alternative is to use the nonlinear extended polyma-

troid constraints with formulation LF, i.e.,

(LFP) ∶ min
x,y,z,t,r

{∑
i∈I
ti ∣ (2.3b) − (2.3d), ri = bi0 +∑

j∈J
bijxj, (x, ri, ti) ∈ conv(Ri) ∀i ∈ I}.

Clearly, LFP dominates both LF and CFP in terms of the strength of the convex re-

laxation (the second domination statement holds only if all inequalities (2.6) are added.

Nonetheless, LFP is able to achieve excellent convex relaxations with a modest number of

cuts.) More importantly, using the extended formulation described in Remark 2, LFP re-

quires only m three-dimensional rotated cone constraints, which are much easier to handle

than m (n + 2)-dimensional conic constraints of CFP. Alternatively, efficient polyhedral

outer-approximations of the rotated cone constraint can be easily constructed [8, 96], and

LFP can be implemented in a pure MILP framework.

Similarly, one can use the nonlinear extended polymatroid constraints with formulations

LEF and LFlog, yielding

(LEFP) ∶ min
x,z̄,t,y,r

{∑
i∈I
ti ∣ (2.8b) − (2.8f), ri = bi0 +∑

j∈J
bijxj, (x, ri, ti) ∈ conv(Ri) ∀i ∈ I}, and
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(LFP
log) ∶ min

x,wb,zb,t,r
{∑
i∈I
ti ∣ (2.12b) − (2.12e), ri = bi0 +∑

j∈J
bijxj, (x, ri, ti) ∈ conv(Ri) ∀i ∈ I}.

Formulation LEFP has (in our computations) a stronger convex relaxation than LFP while

maintaining easy-to-solve convex relaxations in small and medium instances. Formulation

LFP
log has a small size, but has weaker convex relaxations than LFP and LEFP.

By comparing LFP and LEFP with CFP we can conclude that the former both are stronger

than CFP as depicted in Figure 2. Based on the discussion given in Section 2.2.2.2, we also

conclude that CEFP is stronger than LEFP.

Standout formulation. Formulation LFP
log is one of the best formulations in our com-

putations. It was observed in [16] (and corroborated in our experiments) that while the

continuous relaxation of LFlog is weaker than LF, which in turn is much weaker than LEF, it

may result in better performance due to the faster exploration of the branch-and-bound tree.

With the inclusion of the nonlinear polymatroid inequalities, formulation LFP
log has a convex

relaxation strength similar to CFP, which is substantially stronger than LF and was also

observed to be stronger than LEF [6]. Moreover, using LFP
log results in small formulations

with a few nonlinearities, thus allowing for a much faster exploration of the branch-and-

bound tree than CFP, and performing well across all instance sizes. Intuitively, formulation

LFP
log benefits both from the advantages of the conic formulations (strength) and binarization

ideas (speed).

Remark 5. We need to point out that conv(Ri) is implemented in this chapter using rotated

cone constraints instead of explicit polyhedral outer approximations. Hence, LFP, LEFP and

LFP
log are in fact MICQPs, see also Remarks 1 and 2; however, in contrast to other MIC-

QPs in this chapter, they involve only a small number of “easy” 3-dimensional rotated cone

constraints. ◻

2.3.2 Enhancements on CEF

Next, we develop a binary-expansion reformulation for the conic quadratic program CEF,

which we call CEFlog, see Section 2.3.2.1. Then we extend the notion of polymatroid cuts

to the binary-expansion space in order to further strengthen CEFlog, see Section 2.3.2.2.
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2.3.2.1 MICQP binary-expansion formulation (CEFlog) As pointed out earlier,

the MICQP reformulations of FPs do not require the linearization of bilinear terms. Never-

theless, we demonstrate that binarization technique – developed in Section 2.2.3 for MILPs –

still can be employed to reduce the number of variables and rotated quadratic cone con-

straints in CEF as shown below. Let θai ∶= ⌊log2(∑j∈J aij)⌋+ 1 and, by using the substitution

∑j∈J aijxj = ∑
θai
k=1 2k−1waik, we can rewrite (2.7) as

min ∑
i∈I
ti (2.17a)

s.t. ti ⩾ ai0yi +
θai

∑
k=1

2k−1waikyi ∀i ∈ I (2.17b)

∑
j∈J
aijxj =

θai

∑
k=1

2k−1waik ∀i ∈ I (2.17c)

riyi ⩾ 1 ∀i ∈ I (2.17d)

ri = bi0 +∑
j∈J
bijxj ∀i ∈ I (2.17e)

x ∈X,yi ⩾ 0,waik ∈ B ∀i ∈ I, k ∈ {1, . . . , θai }. (2.17f)

Then introducing variables zaik ∶= waikyi = waik/ri and exploiting the fact that (waik)
2 = waik

for waik ∈ B, problem (2.17) can be convexified as

min ∑
i∈I
ti (2.18a)

s.t. ti ⩾ ai0yi +
θai

∑
k=1

2k−1zaik ∀i ∈ I (2.18b)

zaikri ⩾ (waik)
2 ∀i ∈ I, k ∈ {1, . . . , θai } (2.18c)

∑
j∈J
aijxj =

θai

∑
k=1

2k−1waik ∀i ∈ I (2.18d)

riyi ⩾ 1 ∀i ∈ I (2.18e)

ri = bi0 +∑
j∈J
bijxj ∀i ∈ I (2.18f)

x ∈X,yi ⩾ 0,waik ∈ B, zaik ⩾ 0 ∀i ∈ I, k ∈ {1, . . . , θai }. (2.18g)
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Formulation (2.18) can be further strengthened by adding the linearization constraints

zaij ⩾ yLi w
a
ik, and zaij ⩾ yi + yUi (waik − 1). The resulting conic quadratic binary-expansion

reformulation is

(CEFlog) min ∑
i∈I
ti (2.19a)

s.t. ti ⩾ ai0yi +
θai

∑
k=1

2k−1zaik ∀i ∈ I (2.19b)

ri = bi0 +∑
j∈J
bijxj ∀i ∈ I (2.19c)

zaikri ⩾ (waik)2 ∀i ∈ I, k ∈ {1, . . . , θai } (2.19d)

yiri ⩾ 1 ∀i ∈ I (2.19e)

∑
j∈J
aijxj =

θai

∑
k=1

2k−1waik ∀i ∈ I (2.19f)

zaik ⩾ yLi waik, zaik ⩾ yi + yUi (waik − 1) ∀i ∈ I, k ∈ {1, . . . , θai } (2.19g)

waik ∈ B, zaik ⩾ 0 ∀i ∈ I, k ∈ {1, . . . , θai } (2.19h)

x ∈X, t, y, r ⩾ 0. (2.19i)

Formulation CEFlog requires m+∑i∈I θai rotated cone constraints, which can be significantly

less than the m +mn rotated cone constraints required by CEF.

Remark 6. It is also possible to develop binary-expansion reformulations for CF and CFP.

However, since these formulations do not include any product term of a binary and a con-

tinuous variables, the binary expansion does not allow us to reduce neither the number of

their variables nor constraints. Therefore, we have excluded CFlog and CFP
log from Table 1,

Figure 2 and the discussion in this chapter. ◻

2.3.2.2 Polymatroid cuts in the binary-expansion space (CEFP
log) Formulation

CEFlog can be further strengthened by using submodularity. Specifically, observe that by

multiplying constraint (2.17b) by ri and exploiting that yiri = 1 in optimal solutions of (2.17),

we find that the constraints (wai , ri, ti) ∈ R
log
i can be added, where

Rlog
i = {wai ∈ Bθ

a
i , (ri, ti) ∈ R2

+ ∣ tiri ⩾ ai0 +
θai

∑
k=1

2k−1(waik)2}.
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An ideal formulation of Rlog
i can be found using polymatroids, similarly to the approach in

Section 2.2.1.2, i.e.,

conv(Rlog
i ) = {(wai , ri, ti) ∈ [0,1]θai ×R2

+ ∣ tiri ⩾ (
√
ai0 + λ′iwai )2, ∀λi ∈ Λi}, (2.20)

where

Λi = {λi ∈ R
θai
+ ∣ λi,σ(k) =

√
γi,σ(k) −

√
γi,σ(k−1), where γi,σ(k) = 2σ(k)−1 + γi,σ(k−1)

and γi,σ(0) = ai0, for all permutations σ ∈ [θai ], k ∈ {1, . . . , θai }}.

Observe that θai ≪ n (for all i ∈ I) for large size problems with sufficiently small values for

aij. Consequently, we have (θai )! ≪ n!, for each i ∈ I, and thus, conv(Rlog
i ) can be constructed

using significantly fewer polymatroid cuts than conv(Ri). Adding (wai , ri, ti) ∈ conv(Rlog
i ) to

CEFlog allows this binarized formulation to benefit from polymatroid cuts, that is given by

(CEFP
log) ∶ min

x,y,z,t,r,wa
{∑
i∈I
ti ∣ (2.19b) − (2.19i), (wai , ri, ti) ∈ conv(Rlog

i ), ∀i ∈ I}.

Standout formulation. Formulation CEFP
log is another of the best formulations in our

computations. Similarly to LFP
log, formulation CEFP

log is able to strike a good balance be-

tween the size and the strength of the convex relaxation by incorporating binary-expansion

and polymatroid cuts, resulting in a similar performance as CEF in small instances, but

scales much better to larger problems.

Example 1 (continued). Next, we evaluate the reformulations of (2.13) for the models

proposed in Section 2.3.

(iv) In order to take the advantage of polymatroid strengthening, we add to LF, LFlog,

LEF constraints of the form (2.4), i.e., r1 = 2+x1+x2+x3+x4+x5 and r2 = 1+2x1+2x2+3x3.

Additionally, we add 144 rotated cone constraints of the form (2.6) to the aforementioned

formulations and CEF. Then we obtain LFP, LFP
log, LEFP, and CEFP, that have improved

relaxation objective function values of 1.697 (vs. 0.482 of LF), 1.697 (vs. 0.405 of LFlog),

1.702 (vs. 1.484 of LEF), and 1.702 (vs. 1.639 of CEF), respectively, and close most of the

gap to the optimal objective function value 1.75.
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(v) By using the binary-expansion technique, constraint (2.7b) in model (2.7) for the

first and second ratios, i.e.,

t1 ⩾ y1 + (x1 + x2 + 2x3 + 2x4 + x5)y1, and (2.21a)

t2 ⩾ 2y2 + (2x1 + 3x2 + x3 + x4)y2, (2.21b)

can be replaced, respectively, by

t1 ⩾ y1 + (20wa11 + 21wa12 + 22wa13)y1, and (2.22a)

t2 ⩾ 2y2 + (20wa21 + 21wa22 + 22wa23)y2. (2.22b)

In order to obtain CEF we need to convexify 9 bilinear terms xjyi in the right-hand sides

of (2.21a) and (2.21b) as rotated cone constraints z̄ijri ⩾ x2
j . In comparison, in order to

achieve CEFlog only 6 bilinear terms waikyi in the right-hand sides of (2.22a) and (2.22b)

are required to be convexified as zaikri ⩾ (waik)2. Although CEFlog has 3 fewer rotated cone

constraints than CEF, it has a worse relaxation objective function value (1.244 vs. 1.639).

Next, we improve its relaxation by using polymatroid cuts in the binary-expansion space.

(vi) For permutation σ = (1,2,3) inequalities tiri ⩾ (√ai0 + λ′iwai )2 in (2.20) for the first

and second ratios are, respectively,

t1r1 ⩾ (1 + (
√

2 − 1)wa11 + (
√

4 −
√

2)wa12 + (
√

8 −
√

4)wa13)
2

, and (2.23a)

t2r2 ⩾ (2 + (
√

3 −
√

2)wa12 + (
√

5 −
√

3)wa22 + (
√

9 −
√

5)wa32)
2

. (2.23b)

If we add (2.23a) and (2.23b) to CEFlog, then its relaxation objective function value from

1.244 is improved to 1.311. If we add all 2 ⋅ 3! = 12 polymatroid inequalities to CEFlog,

then the resulting formulation is CEFP
log with a better relaxation objective function value of

1.446. Note that the number of cuts added to obtain CEFP
log is significantly fewer than the

number of cuts added in order to obtain any of the other formulations strengthened with

polymatroid cuts (12 vs. 144 cuts).

Therefore, from this example, we observe that there is a trade-off between using polyma-

troid cuts and binarization. The former improves the relaxation objective function value at

the expense of a larger problem, and the latter reduces the number of (continuous) variables
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and (either linear or rotated cone) constraints at the cost of a weaker relaxation. However,

the incorporation of these ideas leads to moderate size formulations, i.e., CEFP
log and LFP

log,

that benefit from strong convex relaxations. ◻

2.3.3 Problems sizes

Table 2 shows the number of continuous and binary variables as well as the number of lin-

ear and rotated cone constraints for MILP and MICQP formulations discussed in Sections 2.2

and 2.3. By comparing each binarized formulation with the corresponding basic formula-

tion, it is seen that the binary-expansion technique can potentially decrease the number of

continuous variables and also the number of linear/rotated cone constraints – especially for

large values of n – with a moderate increase in the number of binary variables. We also

observe that adjusting the formulations to enable them to use polymatroid cuts only slightly

increases the number of variables or constraints.

2.4 Computational results

We perform extensive computational experiments to evaluate the performances of the

currently existing formulations in the literature presented in Section 2.2 and to compare

them versus the enhancements developed in Section 2.3. We outline the structure and pa-

rameters of the computational experiments in Section 2.4.1. We discuss the obtained results

in Sections 2.4.2 and 2.4.3 and Appendix A.2.

2.4.1 Computational environment and test instances

All of the computational instances are solved using CPLEX 12.7.1 [47] on a 32-core

CPU (2.90GHz) with 160 GB of RAM; we allocate a single thread and 8 GB of RAM for

each individual experiment, and use a time limit of one hour (3600 seconds). To avoid

running-out-of-memory difficulties we use the “node-file storage-feature” of CPLEX to store

some parts of the branch-and-cut tree on disk when the size of the tree exceeds the allo-

cated memory. The polymatroid inequalities are added at the root node by using callback

functions of CPLEX as described in Remarks 1 and 2.
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Table 2: The reformulation sizes (number of variables and constraints), where n and m

are defined as in FP, q is the number of constraints defining X, θai = ⌊log2(∑j∈J aij)⌋ + 1

and θbi = ⌊log2(∑j∈J bij)⌋ + 1. Subscript “log” and superscript “P” are reserved for

binary-expansion and polymatroid cuts, respectively.

Variables Constraints

Formulation Continuous Binary Linear Rotated cone

MILP-based reformulations

LF m(n + 1) n m(2n + 1) + q -

LFP m(n + 2) n m(2n + 2) + q + cuts* m

LFlog m +∑i∈I θbi n +∑i∈I θbi 2m + 2∑i∈I θbi + q -

LFP
log 2m +∑i∈I θbi n +∑i∈I θbi 3m + 2∑i∈I θbi + q + cuts m

LEF m(n + 2) n m(4n + 2) + q -

LEFP m(n + 3) n m(4n + 3) + q + cuts m

MICQP reformulations

CF m(n + 3) n 2m + q m(n + 1)**

CFP m(n + 3) n 2m + q + cuts m(n + 2)

CEF m(n + 3) n m(4n + 3) + q m(n + 1)

CEFP m(n + 3) n m(4n + 3) + q + cuts m(n + 2)

CEFlog 3m +∑i∈I θai n +∑i∈I θai 3m + 2∑i∈I θai + q m +∑i∈I θai
CEFP

log 3m +∑i∈I θai n +∑i∈I θai 3m + 2∑i∈I θai + q + cuts 2m +∑i∈I θai
*Polymatroid cuts are added on the fly, implemented as discussed in Remark 2.

**Formulations CF and CFP are based on extended formulation (2.10).
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Test instances. We consider three classes of instances: “small” (n ∈ {25,50,100})

and “medium” (n ∈ {200,500,1000}) size instances with m = ⌊10% ⋅ n⌋, and “large” size

instances (n ∈ {2000,5000, 10000}) with m = 100. For each choice of n and each of the

following data generation settings five instances are sampled and the results are averaged.

● Assortment data set. For the first setting, we consider the assortment optimization

problems that naturally arise in many applications such as online advertising, retailing, and

revenue management [80]. Under the mixed multinomial logit model (see, e.g., [63, 85, 89]) we

are given I = {1,2, . . . ,m} classes of customers and J = {1,2, . . . , n} available products. Then

the assortment optimization problem is defined as the problem of deciding which assortment

of products S ⊆ J must be offered to customers in order to maximize the expected revenue.

In particular, let rij and µij denote the revenue and customer preference weight associated

with selling product j to customer class i, respectively, and µi0 is the no-purchase preference

in class i. Then, for a given assortment S, the probability that customer class i chooses

product j ∈ S is µij/(µi0 +∑j∈S µij). Thus, the problem of maximizing the expected revenue

for all classes of customers under the mixed multinomial logit model can be formulated as

the multiple-ratio fractional binary program of the form

max
x∈X
∑
i∈I

∑j∈J rijµijxj
µi0 +∑j∈J µijxj

. (2.24)

In (2.24) variable xj is 1 if and only if the decision maker offers product j. Note that (2.24)

is a special case of the generally structured FPs, since in each ratio i ∈ I the coefficient of

xj, for all j ∈ J in the numerator, i.e., aij = rijµij, is proportional to its coefficient in the

denominator, bij = µij; moreover, ai0 = 0 and bi0 = µi0.

Problem (2.24) can be transformed into an equivalent minimization problem. Specifically,

based on the related discussion in Appendix A.1, for each customer class i ∈ I we have

∑j∈J rijµijxj
µi0 +∑j∈J µijxj

=
kiµi0 +∑j∈J(rijµij + kiµij)xj

µi0 +∑j∈J µijxj
− ki,

for any ki ∈ R. Let ki = −ri = −maxj∈J rij, then

max
x∈X
∑
i∈I

−riµi0 +∑j∈J(rijµij − riµij)xj
µi0 +∑j∈J µijxj

+ ri = −min
x∈X
∑
i∈I

riµi0 +∑j∈J µij(ri − rij)xj
µi0 +∑j∈J µijxj

+ ri. (2.25)

27



Transformation (2.25) is precisely the transformation used in [85] and satisfies the data non-

negativity assumption. To satisfy the data integrality assumption, we multiply by 10 each

of the terms µi0ri, µij(ri − rij), µi0, and µij, for all i ∈ I and j ∈ J , and round them down to

the nearest integer values.

For our test instances, we generate the data as in the assortment optimization problem

considered in [85]. Specifically, the product prices are the same across the customer classes,

i.e., rij = rj for all i ∈ I and drawn from a U[1,3] distribution. Moreover, the preferences µij

are drawn from a U[0,1] distribution, and µi0 = 5 for all i ∈ I.

Moreover, Şen et al. [85] consider X = {x ∈ Bn ∣ ∑nj=1 xj ⩽ κ}. We let κ ∈ {10% ⋅ n, 20% ⋅

n, n}. The cardinality constraints: κ = 10% ⋅ n and κ = 20% ⋅ n correspond to a “small” and

“large” retailer, respectively, where there is a physical limitation on the number of products

that can be offered to customers. Additionally, κ = n indicates the unconstrained case, i.e.,

X = Bn, and it corresponds to an online retailer with the ability to sell many products [61].

Şen et al. [85] consider only the combinations n = 200, m = 20 and n = 500, m = 50.

For these combinations we use the the same data (now part of the conic benchmark library,

CBLIB) available at http://cblib.zib.de. For the other combinations of n and m tested

in the paper we generate the data randomly in the aforementioned fashion.

● Uniformly generated data set. For the second setting, we use data generated similarly

to [16, 61]. Specifically, the coefficients aij and bij are each sampled from a (discrete) U[0,20]

distribution, except for bi0 which is sampled from a U[1,20]. The feasible region is given by

X = {x ∈ Bn ∣ ∑nj=1 xj = κ} with κ ∈ {10% ⋅ n, 20% ⋅ n}; we also consider the unconstrained

case (X = Bn).

For constrained instances, since in both settings X contains a single cardinality con-

straint, the number of variables added in the binary-expansion formulations can be reduced

by setting θai ∶= ⌊log2 (∑κj=1 ai[j])⌋ + 1 and θbi ∶= ⌊log2 (∑κj=1 bi[j])⌋ + 1, for all i ∈ I, where ai[j]

and bi[j] denote the j-th largest element of ai and bi, respectively. For all the formulations –

except LF, LFlog, and LFP
log – we use yLi = 1/(bi0 +∑κj=1 bi[j]) and yUi = 1/bi0 as valid lower

and upper bounds for linearization, respectively. For LF, LFlog, and LFP
log we use tLi = 0 and

tUi = (ai0 +∑κj=1 ai[j])/bi0 as valid bounds.
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Metrics. For each of the formulations we define, z⋆: the objective function value of

an optimal integer solution (or the best-found integer solution if an optimal solution could

not be found by the formulation within the time limit), zRlx: the optimal objective function

value of the continuous relaxation, zRon: the objective function value obtained after process-

ing the root node (i.e., after adding polymatroid cuts and considering other strengthening

techniques used by CPLEX), and zBbn: the best lower-bound at the termination of the solver.

Moreover, we define Z⋆ as the objective function value of the best-known integer solution

over all solution methods. Note that for MILP formulations, zRlx ⩽ zRon as additional con-

straints are added at the root node. For MICQP formulations, this is not necessarily the

case: zRlx is found via interior point methods, while zRon is obtained after solving a linear

outer approximation which may have a weaker continuous relaxation.

Then, in our experiments, we report the following metrics of interest: the continuous

relaxation gap, Rlx-gap = ∣Z⋆−zRlx∣
Z⋆ × 100%; the root node gap, Ron-gap = ∣Z⋆−zRon∣

Z⋆ × 100%; the

end gap, End-gap = ∣z⋆−zBbn∣
z⋆ × 100%; the best bound gap, Bbn-gap= ∣Z⋆−zBbn∣

Z⋆ × 100%; and the

optimality gap, Opt-gap= ∣Z⋆−z⋆∣
Z⋆ ×100%. In addition, we report the Time in seconds required

to solve the problems, and the number of branch-and-bound Nodes explored. In all cases we

report the averages over five instances generated with the same parameters (n,m,κ).

2.4.2 Preliminary analysis

Here, we briefly analyze the results for the MILP and MICQP formulations outlined in

Section 2.2. More detailed results are omitted from the current discussion for the sake of

brevity and are reported in Appendix A.2.

In particular, the extended formulations LEF and CEF are stronger (they have better

Rlx-gap) than the corresponding compact formulations LF and CF, respectively. The ex-

tended formulations also have better time and End-gap than the corresponding compact

formulations; see Tables 19 and 20 for the results and Appendix A.2.1 for an additional

discussion.

Although LF has a poor performance even for small instances, its “binarization”, i.e.,

LFlog, leads to significant improvements in the running time due to the reduction in the size
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of the formulation, see Tables 21 and 22 and the discussion in Appendix A.2.2. These results

are consistent with the previous results in the literature (see, e.g., [16, 61]) that LFlog has a

superior performance over LF and LEFlog.

Additionally, recall that among the existing formulations in the literature the polyma-

troid cuts have been employed only for the strengthening of CF and the resulting formu-

lation, i.e., CFP significantly outperforms CF with respect to the metrics time, End-gap,

and Ron-gap. See [6] and our results presented in Tables 25 and 26; we also refer to Ap-

pendix A.2.3 for an additional discussion.

2.4.3 Standout vs. the state-of-the-art formulations

In this section, we further compare the performance of the state-of-the-art formulations

available in the literature identified in Section 2.4.2, i.e., the extended MILP formulation

LEF and the compact binary-expansion formulation LFlog as well as the extended MICQP

formulation CEF and the compact MICQP formulation with polymatroid cuts CFP. In ad-

dition, we report the results of the two standout formulations derived in Section 2.3: the

binary-expansion MILP and MICQP formulations strengthened with polymatroid cuts, i.e.,

LFP
log and CEFP

log, respectively. In Appendix A.2, we present additional computational re-

sults and discuss in detail our extensive experiments to evaluate the individual and combined

effects of the enhancements developed in this chapter.

Tables 3 and 4 show the results for the assortment and the uniformly generated instances,

respectively, and for different values of n, m and κ with respect to the running time and

the end gap. A detailed comparison of the standout and the state-of-the-art formulations

with respect to all the metrics defined in Section 2.4.1 is provided in Tables 17 and 18 of

Appendix A.2. In the tables, we use the “†” symbol to denote that CPLEX was unable to

fully process the root node of the branch-and-bound tree within the time limit of one hour

for a given formulation.

Observe that, overall, the uniformly generated instances used in [16], see Table 4, are

much more difficult to solve than the assortment instances used in [85], see Table 3. In

particular, only uniformly generated instances with n ⩽ 50 can be solved to optimality (by
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any formulation), while assortment instances with n ⩽ 500 can in general be handled well by

MICQP formulations.

Figure 3 shows the number of continuous and binary variables as well as the number

of linear and rotated cone constraints of the formulations as a function of dimension (n).

Figure 4 depicts the performance profile of solution methods and can be used to evaluate the

effectiveness of each formulation in easy instances (the instances that are solved to optimal-

ity by at least one solution method). Figure 5 portrays the end gaps across all instances as a

function of the dimension and can be utilized to explore the effectiveness of each formulation

in hard, larger, instances (the instances that are not solved to optimality by any solution

method in the time limit). Figures 6 and 7 show the relaxation gaps and the root node gaps,

respectively, across all instances as a function of the dimension and can be used to evaluate

the strengths of the convex relaxations.

In the easy instances, we see from Figure 4 that CEF performs best. Formulation CEF

also has the best relaxation strength among the formulations presented (Figures 6 and 7). In

fact, in most of the instances that CEF solves, Ron-gap is nearly 0 and optimality is proven

with a few branch-and-bound nodes (see Table 3 with n ⩽ 500).

However, when hard instances are also taken into account, then CEF is not necessar-

ily the best formulation, mainly due to the fact that its large size (Figure 3) hampers its

performance, and other formulations match or improve upon the end gaps of CEF even for

100 ⩽ n ⩽ 500, see Figure 5. Indeed, in the uniformly generated instances (Table 4), CEF is

not able to fully close the root node gap, and the performance in branch-and-bound is sub-

stantially impaired due to the difficulty of solving the large, nonlinear convex subproblems.

Additionally, existing conic formulations CFP and CEF scale the worst among the formu-

lations presented, and CPLEX is unable to process the root node for those formulations in

large settings with n ⩾ 1000.

On the other hand, LFlog has the best scaling properties among the previously proposed

formulations in the literature. Notably, unlike LEF, CEF and CFP, it is able to fully process

the root node in all instances with n ⩾ 1000 and explore thousands of branch-and-bound

nodes or more. Moreover, it is competitive with the other formulations in terms of end gaps

for n ⩽ 100 and outperforms other existing formulations at n = 100, see Figure 5. However,
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it has substantially weaker convex relaxations than all the other formulations (see Figures 6

and 7), and as a consequence it struggles on the easy instances (Figure 4) and has worse end

gaps for 200 ⩽ n ⩽ 500 than the other previously proposed formulations.

The new formulations LFP
log and CEFP

log, which combine the binary-expansion tech-

nique, conic strengthening and polymatroid strengthening, perform well across all dimen-

sions. Binarization leads to a significant size reduction especially in larger instances, e.g., for

n = 10,000 the number of rotated cone constraints from 1,000,100 (corresponding to CEF)

reduces to 1,750 (corresponding to CEFP
log), see Figure 3. On the other hand, polymatroid

cuts improve the convex relaxation quality of the formulations. In particular, from Figure 7

we observe that LFP
log and CEFP

log are able to achieve a substantial root node strengthening

over the simple binary-expansion formulation LFlog, and approximately match the strength

of LEF. As a consequence, in the easy instances (Figure 4), they also match the perfor-

mance of LEF and consistently outperform LFlog, but still lag behind the stronger conic

formulations CEF and CFP.

However, once hard instances are also taken into account, we see from Figure 5 that

they achieve the best performance overall. Notably, they match the performance of the best

formulations for n ⩽ 500, but they scale to instances with n in the thousands and consistently

outclass LFlog (the only other formulation that scales to those instances).

2.5 Concluding remarks

Fractional 0-1 programming problems have traditionally been tackled by reformulating

the problems as MILPs with a large number of variables and constraints. However, new

techniques have recently been proposed to improve upon the classical MILP formulations.

This chapter focuses on two such recent enhancements: a binary-expansion technique that

decreases the number of variables and constraints at the expense of weak convex relaxations;

and conic and submodular strengthenings, which improve the convex relaxations at the

expense of even larger and harder to solve convex relaxations. Naturally, these two ideas
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are at odds with each other, and which enhancement is preferable largely depends on each

particular instance.

In this chapter, we develop formulations that combine both enhancement ideas. The

new formulations are compact and require a modest number of variables and constraints,

yet retain the relaxation strength of formulations of much larger sizes. As a consequence,

the new formulations are able to perform well across all instance classes. Specifically, in our

computations using benchmark instances, we observe that the new formulations perform as

well as the best existing methods in small and easy problems, and vastly outperform existing

methods in larger and harder instances.
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Figure 3: The average sizes (numbers of continuous and binary variables as well as numbers

of linear and rotated cone constraints) of formulations as a function of dimension (n). The

averages are over five test instances of both the assortment [85] and the uniformly gener-

ated [16] data sets and capacity sizes κ ∈ {10% ⋅n, 20% ⋅n} as well as the unconstrained case.
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Figure 4: Performance profile for easy instances, that are the instances solved to optimality

by at least one formulation. They include 80 instances of the assortment data (all instances

with n ⩽ 500 and five instances with n = 1000), and 30 instances of the uniformly generated

data (all instances with n ⩽ 50). We depict the percentage of such instances that could be

solved as a function of the time (in log scale) for each formulation.

Figure 5: Average end gap (End-gap) for all instances as a function of dimension. No gap is

reported when a given formulation is unable to solve the root node within the time limit.
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Figure 6: Average relaxation gap (Rlx-gap) for all instances as a function of dimension.

Observe that Rlx-gap does not account for the effect of polymatroid cuts. No gap is reported

when a given formulation is unable to solve the root node within the time limit.

Figure 7: Average root node gap (Ron-gap) for all instances as a function of dimension.

Observe that Ron-gap accounts for the strengthening from polymatroid cuts, but it is also

impacted unfavorably by the use of (possibly weak) linear outer approximations. No gap is

reported when a given formulation is unable to solve the root node within the time limit.
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Table 3: Computational results to evaluate

the best existing methods in the literature

against the standout formulations for the

assortment data set [85]. For each choice of

n, m, and κ the best average time and the

best average End-gap (if Time⩾ 3600 sec.)

are in bold.

κ 10% ⋅ n 20% ⋅ n Unconstrained

n,m Ref. Time End-gap Time End-gap Time End-gap

25,2∗

LFlog 0 0.0% 0 0.0% 1 0.0%
LEF 0 0.0% 0 0.0% 0 0.0%

CFP 0 0.0% 0 0.0% 1 0.0%
CEF 0 0.0% 0 0.0% 0 0.0%

LFP
log 0 0.0% 0 0.0% 0 0.0%

CEFP
log 1 0.0% 0 0.0% 2 0.0%

50,5∗

LFlog 1 0.0% 2 0.0% 18 0.0%
LEF 0 0.0% 1 0.0% 0 0.0%

CFP 1 0.0% 2 0.0% 4 0.0%
CEF 1 0.0% 1 0.0% 1 0.0%

LFP
log 0 0.0% 1 0.0% 6 0.0%

CEFP
log 0 0.0% 2 0.0% 21 0.0%

100,10∗

LFlog 979 0.0% 3155 0.4% 3600 1.6%
LEF 3357 1.6% 2190 0.2% 1 0.0%

CFP 10 0.0% 20 0.0% 25 0.0%
CEF 6 0.0% 4 0.0% 6 0.0%

LFP
log 1 0.0% 6 0.0% 3600 0.8%

CEFP
log 2 0.0% 22 0.0% 3600 0.3%

200,20∗

LFlog 3600 6.7% 3600 8.7% 3600 24.1%
LEF 3600 8.6% 3600 1.1% 29 0.0%

CFP 27 0.0% 64 0.0% 1562 0.2%
CEF 73 0.0% 40 0.0% 59 0.0%

LFP
log 710 0.0% 3400 0.3% 3600 6.3%

CEFP
log 2353 0.5% 3600 2.2% 3600 6.4%

500,50∗

LFlog 3600 39.8% 3600 54.0% 3600 55.7%
LEF 3600 8.3% 2520 0.2% 3501 0.4%

CFP 1194 0.0% 3452 0.3% 3600 7.7%
CEF 3611 0.2% 2620 0.0% 3604 0.5%

LFP
log 3600 0.8% 3600 3.3% 3600 15.2%

CEFP
log 3600 4.7% 3600 12.2% 3601 26.1%

1000,100∗∗

LFlog 3600 55.9% 3600 62.7% 3600 76.5%
LEF 3600 13.9% 3722 0.9% 3600 1.7%

CFP 3600 † 3600 † 3600 †
CEF 3605 † 3600 † 3600 †
LFP

log 3601 † 3601 20.9% 3601 26.1%

CEFP
log 3601 10.0% 3600 22.6% 3600 33.8%

2000,100∗∗

LFlog 3600 57.8% 3600 70.5% 3600 78.3%
LEF 3601 † 3600 † 3601 †
CFP 3600 † 3600 † 3600 †
CEF 3600 † 3600 † 3600 †
LFP

log 3601 † 3600 41.4% 3601 33.1%

CEFP
log 3600 16.1% 3600 30.7% 3600 53.4%

5000,100∗∗

LFlog 3600 78.1% 3600 80.6% 3601 83.5%
LEF 7807 † 8155 † 7241 †
CFP 3600 † 3600 † 3600 †
CEF 3600 † 3600 † 3600 †
LFP

log 3601 29.2% 3601 49.0% 3601 50.7%

CEFP
log 3600 39.3% 3600 40.6% 3600 58.4%

10000,100∗∗

LFlog 3600 88.4% 3600 83.1% 3602 93.0%
LEF 4225 † 4026 † 3603 †
CFP 3600 † 3600 † 3600 †
CEF 3600 † 3600 † 3600 †
LFP

log 3601 55.4% 3601 53.2% 3601 54.7%

CEFP
log 3600 33.4% 3601 45.4% 3601 †

*easy instances

**hard instances

Table 4: Computational results to evaluate

the best existing methods in the literature

against the standout formulations for the

uniformly generated data set [16]. For each

choice of n, m, and κ, the best average

time and the best average End-gap (if

Time⩾ 3600 sec.) are in bold.

κ 10% ⋅ n 20% ⋅ n Unconstrained

n,m Ref. Time End-gap Time End-gap Time End-gap

25,2∗

LFlog 0 0.0% 1 0.0% 1 0.0%
LEF 0 0.0% 0 0.0% 0 0.0%

CFP 3 0.0% 4 0.0% 4 0.0%
CEF 0 0.0% 0 0.0% 1 0.0%

LFP
log 0 0.0% 1 0.0% 1 0.0%

CEFP
log 1 0.0% 1 0.0% 6 0.0%

50,5∗

LFlog 3 0.0% 20 0.0% 52 0.0%
LEF 2 0.0% 13 0.0% 43 0.0%

CFP 78 0.0% 3601 6.5% 2903 3.0%
CEF 3 0.0% 18 0.0% 100 0.0%

LFP
log 9 0.0% 27 0.0% 85 0.0%

CEFP
log 6 0.0% 26 0.0% 86 0.0%

100,10∗∗

LFlog 3600 5.0% 3600 5.0% 3600 11.2%
LEF 3600 12.3% 3600 17.1% 3600 38.5%

CFP 3600 43.5% 3600 44.3% 3600 42.0%
CEF 3600 10.7% 3600 15.5% 3600 40.1%

LFP
log 3600 7.5% 3600 6.1% 3600 17.2%

CEFP
log 3600 7.2% 3603 5.2% 3600 10.9%

200,20∗∗

LFlog 3600 41.7% 3600 37.7% 3600 58.2%
LEF 3600 30.0% 3600 31.1% 3600 70.6%

CFP 3600 65.8% 3600 61.6% 3600 70.9%
CEF 3600 30.9% 3600 30.0% 3600 76.4%

LFP
log 3600 41.6% 3600 35.6% 3600 58.0%

CEFP
log 3600 35.5% 3600 34.3% 3600 54.4%

500,50∗∗

LFlog 3600 48.7% 3600 48.7% 3600 87.0%
LEF 3600 42.8% 3600 41.1% 3600 90.3%

CFP 3600 † 3600 † 3600 84.9%
CEF 3603 42.8% 3604 41.8% 3603 93.4%

LFP
log 3600 48.4% 3600 48.1% 3600 82.9%

CEFP
log 3600 46.3% 3600 43.1% 3600 86.7%

1000,100∗∗

LFlog 3600 50.3% 3600 50.1% 3600 96.6%
LEF 3601 † 3601 † 3601 †
CFP 3600 † 3600 † 3600 95.6%
CEF 3600 † 3600 † 3600 †
LFP

log 3600 50.2% 3600 50.2% 3600 91.9%

CEFP
log 3600 48.0% 3600 44.5% 3600 92.2%

2000,100∗∗

LFlog 3600 50.7% 3600 50.6% 3600 97.8%
LEF 3601 † 3602 † 3601 †
CFP 3600 † 3600 † 3600 †
CEF 3600 † 3600 † 3600 †
LFP

log 3600 50.8% 3600 50.7% 3600 94.8%

CEFP
log 3600 47.8% 3600 44.6% 3600 96.6%

5000,100∗∗

LFlog 3600 67.9% 3600 65.0% 3601 98.8%
LEF 4755 † 3938 † 3603 †
CFP 3600 † 3600 † 3600 †
CEF 3600 † 3600 † 3600 †
LFP

log 3600 68.8% 3600 67.9% 3601 96.9%

CEFP
log 3600 46.7% 3601 45.2% 3601 98.3%

10000,100∗∗

LFlog 3600 68.6% 3600 68.2% 3601 99.4%
LEF 9500 † 6022 † 5619 †
CFP 3600 † 3600 † 3600 †
CEF 3600 † 3600 † 3600 †
LFP

log 3601 68.5% 3601 68.4% 3601 97.8%

CEFP
log 3601 47.5% 3600 44.8% 3600 †

*easy instances

**hard instances
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3.0 Robust Fractional 0-1 Programming

3.1 Introduction

In practice, the parameters of an optimization problem are often subject to uncertainty,

and existing solution methods for deterministic FPs, including the methods discussed in

Chapters 1 and 2, may not be adequate for problems with unknown parameters. Our ap-

proach to uncertain fractional 0-1 programming falls within the framework of robust opti-

mization.

Specifically, in this chapter we consider the generally structured fractional 0-1 programs

in maximization form given by

max
x∈X
∑
i∈I

ai0 + ∑
j∈J
aijxj

bi0 + ∑
j∈J
bijxj

,(FP)

where I = {1, ...,m}, J = {1, ..., n} and X ⊆ Bn for B ∶= {0,1}. Then we assume that some

or all of the coefficients aij and bij may not be known exactly, but are modeled as bounded

random variables ãij and b̃ij, respectively. These coefficients are presumed to lie in some

uncertainty set U ; that is, (ã, b̃) ∈ U . Then the robust counterpart of FP with respect to the

uncertainty set U optimizes against the worst-case scenario:

Z⋆
U = max

x∈X
min

(ã,̃b)∈U
∑
i∈I

ai0 + ∑
j∈J
ãijxj

bi0 + ∑
j∈J
b̃ijxj

.(RFP[U ])

Throughout the chapter, we assume that the data satisfy the following assumption:

Assumption 1. For all x ∈X, (ã, b̃) ∈ U and i ∈ I, ai0+∑j∈J ãijxj ⩾ 0 and bi0+∑j∈J b̃ijxj > 0.

Most fractional programming problems typically have non-negative data, since such data

represent probabilities, prices, weights, utilities, etc. - see, e.g., [17] and the applications de-

scribed therein. The portion of Assumption 1 related to a strictly positive denominator is

a commonly made assumption for the deterministic version, see, e.g., [15, 43]. Moreover,

the non-negative numerator assumption is not restrictive, since by adding a sufficiently large
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constant value to each ratio we can transform its numerator into the one which takes only

non-negative values for any (ã, b̃) ∈ U and x ∈X. In the following, we define (t)+ = max{0, t}

for any t ∈ R, and let A ×B denote the Cartesian product of sets A and B.

Contributions and the structure of the chapter. To the best of our knowledge, this study

is the first work that addresses the robust fractional 0-1 programming in its general structure.

We perform a comprehensive study of RFP[U ] that includes several types of the budgeted

uncertainty sets, and also encompasses single- and multiple-ratio cases. We also briefly

explore the complexity of RFP[U] for general polyhedral U . The structure of the chapter

can be summarized as follows.

- In Section 3.2, we introduce the (disjoint and joint) generalizations of the budgeted un-

certainty set for fractional 0–1 programs and discuss computational complexity of RFP.

- In Section 3.3, we propose an approach to find an optimal solution of single-ratio RFP

by solving a polynomial number of linear optimization problems over X; in particular, if

linear optimization over X is polynomial-time solvable, then so is RFP[U ].

- In Section 3.4, we extend classical MILP formulations for FP to tackle multiple-ratio

RFP[U ], and also exploit the binary-expansion technique to improve the efficacy of the

MILPs. We also provide some insights on the selection of the appropriate level of uncer-

tainty.

- In Section 3.5, we present computations with real and synthetic data. Additionally, we

examine the price of robustness and evaluate the performance of the proposed MILPs via

extensive computational experiments.

3.2 Model of data uncertainty

The selection of an appropriate uncertainty set can affect the tractability of a robust

optimization problem. In this section, we describe the budgeted uncertainty set, and several

variations thereof, for fractional 0-1 programming as considered in this chapter, which lead

to tractable (polynomial-time) methods for single-ratio RFP[U] in Section 3.3. On the

other hand, we also demonstrate that the robust counterpart of a polynomially-solvable
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unconstrained single-ratio FP (with strictly positive denominator) is NP -hard for a general

polyhedral uncertainty set U .

In particular, following the convention introduced by Bertsimas and Sim [12, 13], each

unknown coefficient ãij and b̃ij lies in a symmetric interval centered on the nominal value, i.e.,

ãij ∈ [aij−daij, aij+daij] and b̃ij ∈ [bij−dbij, bij+dbij] with daij, d
b
ij ⩾ 0. The coefficients daij and dbij de-

note the potential deviation from nominal values aij and bij, respectively, for each i ∈ I, j ∈ J .

Additionally, it is unlikely for all of the coefficients to simultaneously change to their

worst-case values. Hence, only a predetermined number of the unknown coefficients take

values different from their nominal value. Given a ratio i ∈ I and vectors ãi, b̃i ∈ Rn, let

Si(ãi) = {j ∈ J ∣ ãij ≠ aij} and Si(̃bi) = {j ∈ J ∣ b̃ij ≠ bij} be the set of indices of the un-

certain parameters whose values are different from the nominal in the numerator and the

denominator, respectively.

Uncertainty pertaining to linear 0-1 constraints is covered in literature [12], thus we

assume that the constraint coefficients are fixed. Furthermore, we assume without loss of

generality that the data is integral (otherwise, the rational coefficients can be scaled to satisfy

this assumption). Hence:

Assumption 2. All data is integer, i.e., ai0, bi0, aij, bij ∈ Z, and daij, d
b
ij ∈ Z+ for all i ∈ I, j ∈ J .

Disjoint uncertainty set. Given Γai ,Γ
b
i ∈ {0,1, . . . , n} as the budget of uncertainty or

the level of conservatism, for each i ∈ I we define

Uai = {ãi ∈ Rn ∣ ãij ∈ [aij − daij, aij + daij] for j ∈ J, ∣Si(ãi)∣ ⩽ Γai }, and (3.1)

U bi = {̃bi ∈ Rn ∣ b̃ij ∈ [bij − dbij, bij + dbij] for j ∈ J, ∣Si(̃bi)∣ ⩽ Γbi}. (3.2)

Note that Uai and U bi correspond to the budgeted uncertainty sets studied in [12, 13], and

Γai and Γbi are the number of coefficients allowed to vary from their nominal value in the

numerator and the denominator of the i-th ratio, respectively. Then the disjoint uncertainty

set for fractional programming is

Uab = {(ã, b̃) ∈ Rm×n ×Rm×n ∣ (ãi, b̃i) ∈ Uai × U bi , for all i ∈ I}.
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We refer to Uab as disjoint since uncertainty of the coefficients of each numerator and

denominator is independent from the rest of the data. Also, observe that in the i-th ratio

by setting Γai = 0 (Γbi = 0) we can restrict the uncertainty only to the denominator (numer-

ator) of the ratio. Therefore, set Uab includes sub-cases in which some ratios are subject to

uncertainty either only in their denominators or numerators.

Joint uncertainty sets. We now describe four joint uncertainty sets. In contrast

with the disjoint uncertainty set above, there is some dependence between the uncertainties

related to different numerators and denominators.

● Shared ratio budget - Given Γi ∈ {0,1, . . . ,2n}, for each i ∈ I let

Ui = {(ãi, b̃i) ∈ Rn ×Rn ∣ ãij ∈ [aij − daij, aij + daij], b̃ij ∈ [bij − dbij, bij + dbij],

∣Si(ãi)∣ + ∣Si(̃bi)∣ ⩽ Γi}.

The shared ratio budget uncertainty set is

Uab = {(ã, b̃) ∈ Rm×n ×Rm×n ∣ (ãi, b̃i) ∈ Ui, for all i ∈ I}.

Under the shared ratio budget uncertainty set, uncertainty for the i-th ratio is independent

of other ratios, but the uncertainties of its numerator and denominator are connected by

a common budget, Γi. Specifically, at most Γi of coefficients in the i-th ratio’s numerator

and denominator can change.

The uncertainty sets Uab and Uab above arise naturally when there is uncertainty concern-

ing individual coefficients of FP. In some applications, however, the uncertainty of the

original problem may have a specific structure which requires a specialized uncertainty

set. We now describe three such sets.

● Matched sets - Consider the problem of maximizing return on investment or productivity,

where “a” corresponds to the return of executing a given project (e.g., dollar amount),

and “b” corresponds to the investment costs for the project (e.g., time). Additionally,

suppose that undesirable events may occur (e.g., strikes, natural disasters), resulting in

a simultaneous decrease in the returns and increase in the costs of a given project. Such

uncertainty is modeled by the matched sets uncertainty set

Uab= = {(ã, b̃) ∈ Uab ∣ Si(ãi) = Si(̃bi), for all i ∈ I}.
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● Matched effects - Consider the assortment optimization problem under the mixed multi-

nomial logit model (see, e.g., [18, 63]),

max
x∈X
∑
i∈I

∑j∈J rijρijxj
1 +∑j∈J ρijxj

, (3.3)

where rij and ρij are the revenues and customer preferences associated with selling prod-

uct j to customer class i, respectively. Note that if the revenues are known, but the

preferences are uncertain, then changes with respect to the nominal values of numera-

tor/denominator coefficients that correspond to the same variable are proportional and

of the same sign. The matched effects uncertainty set

Uab∝ = {(ã, b̃) ∈ Uab= ∣
aij − ãij
daij

=
bij − b̃ij
dbij

, for all i ∈ I, j ∈ J}

captures this effect.

● Single budget - In all of the uncertainty sets defined above, we assume each ratio has its

own budget(s) of uncertainty. On the other hand, one may consider an uncertainty set in

which a single budget controls the degree of conservatism over all ratios. Specifically, the

single budget uncertainty set for numerators also arises in the assortment problem (3.3)

when the preferences are known, but the revenues are unknown, and is given by

Ua = {ã ∈ Rm×n ∣ ãij ∈ [aij − daij, aij + daij] for all i ∈ I, j ∈ J, ∑
i∈I

∣Si(ãi)∣ ⩽ Γ},

where the budget Γ ∈ {0,1, . . . ,m ⋅ n} is shared by all ratios. In words, only numerators

are subject to uncertainty and at most Γ of the numerators coefficients are different from

their nominal values.

The five uncertainty sets defined above, i.e., Uab, Uab, Uab= , Uab∝ , and Ua, aim at mod-

eling a broad-range of situations arising in practice; moreover, none is a special case of

another. Furthermore, it can be verified that RFP[U ], in general, is neither quasi-convex nor

quasi-concave.

We show in Section 3.3 that for a polynomial-time solvable FP the considered uncertainty

sets lead to polynomial-time solvable robust counterparts RFP[U ]. In contrast, note that

the robust counterparts corresponding to general polyhedral uncertainty are NP -hard.
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RFP[U ] for general polyhedral uncertainty is NP -hard. Consider an uncon-

strained (X = Bn) single-ratio problem with uncertainty limited to the numerator

max
x∈Bn

a0 + aTx −max
γ∈U

{(Aγ)Tx}

b0 + bTx
, (3.4)

where U = {γ ∶ Dγ ⩽ d, γ ⩾ 0} is a general polyhedral uncertainty set and Assumption 1

holds. Note that, without uncertainty, the deterministic unconstrained single-ratio problem

can be solved in polynomial time via a linear-time median-finding algorithm [43]. However,

this property does not follow through to the robust counterpart.

Proposition 3. Problem (3.4) is NP -hard.

Proof. Let b0 = 1 and bj = 0 for j ∈ J , then we have a linear objective with a polyhedral

uncertainty set. By Theorem 4 of [20], the resulting problem is NP -hard. ◻

Similarly, consider the problem with uncertainty restricted to the denominator

max
x∈Bn

a0 + aTx
b0 + bTx +max

γ∈U
{(Aγ)Tx}

. (3.5)

Proposition 4. Problem (3.5) is NP -hard.

Proof. Follows directly from noting that (3.5) is equivalent to

min
x∈Bn

b0 + bTx +max
γ∈U

{(Aγ)Tx}

a0 + aTx
,

and using an argument similar to the one in Proposition 3. ◻

In light of these results, in the remainder of this chapter we restrict U to any disjoint or

joint uncertainty sets defined in this section, i.e., U ∈ {Uab,Uab,Uab= ,Uab∝ ,Ua}, and RFP[U ] as

the corresponding representation of the robust problem.
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3.3 Single-ratio RFP[U ]

When the uncertain coefficients of the objective function are in the form of a budgeted

uncertainty set, Bertsimas and Sim [12] prove that the solution of the robust counterpart of

the nominal binary-linear problem

min
x∈X

c0 +∑
j∈J
cjxj, (3.6)

can be found by solving n instances of (3.6). Therefore, if (3.6) is polynomially-solvable,

so is its robust counterpart. Similarly, parametric algorithms such as Newton’s method [31]

and binary-search algorithm [2, 53, 79] can find an optimal solution for the constrained

single-ratio FPs by solving a sequence of problems in the form of (3.6).

In this section, we combine and extend the ideas from robust linear programming and

deterministic fractional optimization, to propose a solution method for single-ratio RFP[U ].

In particular, we show that if there exists a polynomial-time algorithm for linear optimiza-

tion over X, then RFP[U ] is polynomial-time solvable when U is one of the uncertainty sets

described in Section 3.2. We first consider the disjoint uncertainty set Uab in Section 3.3.1,

and then we tackle the joint uncertainty sets in Section 3.3.2.

3.3.1 Disjoint uncertainty set

Herein, we demonstrate how to solve single-ratio RFP[Uab] by solving at most (n + 1)2

nominal FPs.

Proposition 5. Problem RFP[Uab] is equivalent to

Z⋆
Uab = max

x∈X,
α∈{0,da1 ,d

a
2 ,...,d

a
n},

β∈{0,db1,d
b
2,...,d

b
n}

a0 − Γaα + ∑
j∈J

(aj − (daj − α)+)xj

b0 + Γbβ + ∑
j∈J

(bj + (dbj − β)+)xj
. (3.7)

Proof. Observe that single-ratio RFP[Uab] is equivalent to max
x∈X

a0+minã∈Ua ãT x

b0+max
b̃∈Ub b̃T x

, where Ua

and U b are the sets given in (3.1)–(3.2). Letting u and v be the indicator vectors of sets S(ã)

and S(̃b) respectively, we reformulate RFP[Uab] as
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max
x∈X

a0 + ∑
j∈J
ajxj −max

u
{∑
j∈J
dajxjuj}

b0 + ∑
j∈J
bjxj +max

v
{∑
j∈J
dbjxjvj}

(3.8)

s.t. ∑
j∈J
uj ⩽ Γa, ∑

j∈J
vj ⩽ Γb (α,β)

0 ⩽ uj ⩽ 1, 0 ⩽ vj ⩽ 1 ∀j ∈ J. (pj, qj)

Note that there exist integral optimal solutions u∗ and v∗ to the inner optimization prob-

lems in (3.8), since the polytope defined by cardinality and bounding constraints is integral

– thus, the formulation above is indeed correct. By taking the dual of (independent) inner

optimization problems in the numerator and the denominator of (3.8) with respect to dual

variables α,β and p, q, we obtain

max
x∈X,

α,β,p,q⩾0

a0 + ∑
j∈J
ajxj − (Γaα +∑j∈J pj)

b0 + ∑
j∈J
bjxj + (Γbβ +∑j∈J qj)

(3.9)

s.t. pj + α ⩾ dajxj, qj + β ⩾ dbjxj ∀j ∈ J.

Clearly, in an optimal solution of (3.9) we have p∗j = (dajx∗j − α∗)
+
= (daj − α∗)

+
x∗j and

qj = (dbjx∗j − β∗)
+
= (daj − α∗)

+
x∗j . Otherwise, we can decrease pj or qj and find a solution

with a better objective function value.

Additionally, let E = {j ∈ J ∣ (daj − α∗)
+
x∗j > 0} and observe that if α∗ > 0 and α∗ ≠ daj

for all j ∈ J then

Γa(α∗ ± ε) +∑
j∈J

(daj − (α∗ ± ε))+ x∗j = Γa(α∗) +∑
j∈J

(daj − α∗)
+
x∗j ± ε(Γa − ∣E∣)

for sufficiently small ε > 0. In particular, depending on the sign of Γa − ∣E∣, we can increase

or decrease α∗ and find solutions with greater or equal objective function values. Thus,

we conclude that there exists an optimal solution where α∗ ∈ {0, da1, . . . , d
a
n} and, similarly,

we can conclude that there exists an optimal solution where β∗ ∈ {0, db1, . . . , d
b
n}. Replacing

α,β, p, q in (3.9) by their corresponding optimal values, we find formulation (3.7). ◻

Hence, RFP[Uab] can be tackled by solving problem (3.7) for each candidate pair (α,β) ∈

{0, da1, d
a
2, . . . , d

a
n} × {0, db1, d

b
2, . . . , d

b
n} independently.
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Theorem 1. Single-ratio RFP[Uab] can be solved with (ka + 1)(kb + 1) calls to an oracle for

FP, where ka and kb are the numbers of distinct values of daj and dbj, j ∈ J , respectively.

Theorem 1 implies that if single-ratio FP over X is solvable in strongly polynomial time,

then so is its robust counterpart RFP[Uab]. Note that in the worst case (ka + 1)(kb + 1) =

(n+1)2, and FP is polynomial-time solvable when linear optimization over X is polynomial-

time solvable.

3.3.2 Joint uncertainty sets

It can be observed that the method of Proposition 5 cannot handle single-ratio RFP

under joint uncertainty sets, due to interaction between uncertainties in the numerator and

the denominator of each ratio. To solve single-ratio RFP under joint uncertainty sets we first

show that RFP[Uab], RFP[Uab= ], and RFP[Uab∝ ] can be formulated as mixed-integer nonlinear

programs (MINLPs) with a similar structure (Propositions 6, 7 and 8). Then by explor-

ing some properties of the resulting reformulations (Propositions 9 and 10) we propose a

specialized algorithm for solving them (Proposition 11).

Proposition 6. Problem RFP[Uab] is equivalent to

Z⋆
Uab

= max
x∈X,

µ,α,β,γ⩾0

µ (3.10)

s.t. (b0 +∑
j∈J
bjxj)µ + Γα +∑

j∈J
βj +∑

j∈J
γj ⩽ a0 +∑

j∈J
ajxj

α + βj ⩾ dajxj, α + γj ⩾ dbjxjµ ∀j ∈ J.

Proof. Let u and v be the indicator variables of the sets S(ã) and S(̃b), respectively.

Note that RFP[Uab] can be written as

Z⋆
Uab

= max
x∈X

min
u,v∈Rn

a0 + ∑
j∈J
ajxj −∑

j∈J
dajxjuj

b0 + ∑
j∈J
bjxj +∑

j∈J
dbjxjvj

(3.11a)

s.t. ∑
j∈J
uj +∑

j∈J
vj ⩽ Γ (3.11b)

0 ⩽ uj ⩽ 1, 0 ⩽ vj ⩽ 1, ∀j ∈ J. (3.11c)
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Observe that we relaxed the binary constraints uj ∈ B and vj ∈ B to convex bound con-

straints. Since the inner minimization problem is quasi-concave for any x ∈ X [31], the

nonlinear problem has an optimal solution that is an extreme point of the polytope induced

by (3.11b)–(3.11c); in particular, there exists an optimal binary solution.

We now reformulate the inner minimization problem using the transformation proposed

in [25]: letting y = 1/(b0 +∑j∈J bjxj +∑j∈J dbjxjvj), zuj = ujy, and zvj = vjy for all j ∈ J , we can

write (3.11a)–(3.11c) as

Z⋆
Uab

= max
x∈X

min
zu,zv ,y

(a0 +∑
j∈J
ajxj)y −∑

j∈J
dajxjz

u
j (3.12a)

s.t. (b0 +∑
j∈J
bjxj)y +∑

j∈J
dbjxjz

v
j = 1 (µ) (3.12b)

∑
j∈J
zuj +∑

j∈J
zvj ⩽ Γy (α) (3.12c)

0 ⩽ zuj ⩽ y ∀j ∈ J (βj) (3.12d)

0 ⩽ zvj ⩽ y ∀j ∈ J. (γj) (3.12e)

It is seen that for any fixed x ∈X, the inner minimization problem is an LP. Thus, using

standard LP duality, we obtain formulation (3.10) where µ,α, βj, and γj are corresponding

dual variables to constraints (3.12b) to (3.12e). ◻

Proposition 7. Problem RFP[Uab= ] is equivalent to

Z⋆
Uab
=
= max

x∈X,
µ,α,β⩾0

µ (3.13)

s.t. (b0 +∑
j∈J
bjxj)µ + Γα +∑

j∈J
βj ⩽ a0 +∑

j∈J
ajxj

α + βj ⩾ dajxj + dbjxjµ ∀j ∈ J.

Proof. Let u be the indicator variables of the sets S(ã) = S(̃b). Note that RFP[Uab= ] can

be written as

Z⋆
Uab
=
= max

x∈X
min
u∈Rn

a0 + ∑
j∈J
ajxj −∑

j∈J
dajxjuj

b0 + ∑
j∈J
bjxj +∑

j∈J
dbjxjuj

s.t.∑
j∈J
uj ⩽ Γ, 0 ⩽ uj ⩽ 1 ∀j ∈ J.
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Using the Charnes and Cooper [25] transformation as in the proof of Proposition 6, we

find the equivalent formulation

Z⋆
Uab
=
= max

x∈X
min
z,y

(a0 +∑
j∈J
ajxj)y −∑

j∈J
dajxjzj

s.t.(b0 +∑
j∈J
bjxj)y +∑

j∈J
dbjxjzj = 1 (µ)

∑
j∈J
zj ⩽ Γy (α)

0 ⩽ zj ⩽ y ∀j ∈ J. (βj)

Using the standard LP duality for the inner minimization problem, we obtain formulation

(3.13). ◻

Proposition 8. Problem RFP[Uab∝ ] is equivalent to

Z⋆
Uab
∝
= max

x∈X,
µ,α,β,γ⩾0

µ (3.14)

s.t. (b0 +∑
j∈J
bjxj)µ + Γα +∑

j∈J
βj +∑

j∈J
γj ⩽ a0 +∑

j∈J
ajxj

α + βj ⩾ −dajxj + dbjxjµ, α + γj ⩾ dajxj − dbjxjµ ∀j ∈ J.

Proof. Let w be the indicator variables of the sets S(ã) = S(̃b). To model the proportion-

ality conditions, i.e.,
aj−ãj
daj

= bj −̃bj
dbj

∈ [−1,1] for all j ∈ J , we introduce additional continuous

variables η ∈ [−1,1]n, and write RFP[Uab∝ ] as

Z⋆
Uab
∝
= max

x∈X
min
w,η

a0 + ∑
j∈J
ajxj +∑

j∈J
dajxjηj

b0 + ∑
j∈J
bjxj +∑

j∈J
dbjxjηj

s.t. ∑
j∈J
wj ⩽ Γ

−wj ⩽ ηj ⩽ wj, wj ∈ {0,1} ∀j ∈ J.

Since the inner minimization problem is quasi-concave, it follows that ηj ∈ {−wj,wj} in

an optimal solution. Letting uj = 1 if ηj = wj > 0 and 0 otherwise, vj = 1 if ηj = wj < 0 and 0

otherwise, we can rewrite RFP[Uab∝ ] as
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Z⋆
Uab
∝
= max

x∈X
min

u,v∈[0,1]n

a0 +∑j∈J ajxj +∑j∈J dajxjuj −∑j∈J dajxjvj
b0 +∑j∈J bjxj +∑j∈J dbjxjuj −∑j∈J dbjxjvj

s.t. ∑
j∈J
uj +∑

j∈J
vj ⩽ Γ.

Then using the Charnes and Cooper [25] transformation and linear programming duality as

in the proofs of Propositions 6 and 7, we obtain formulation (3.14). ◻

Example 2. Consider a trivariate (n = 3) single-ratio RFP[Uab∝ ]: Z⋆
Uab
∝

= a0+ã1x1+ã2x2+ã3x3
b0+̃b1x1+̃b2x2+̃b3x3

,

wherein a0 = 6, ã1 ∈ [−3,13], ã2 ∈ [1,31], ã3 ∈ [1,5], and b0 = 3, b̃1 ∈ [0,4], b̃2 ∈ [0,16],

b̃3 ∈ [1,3] for Γ = 2. Thus, the nominal values are: a1 = 5, a2 = 16, a3 = 3, b1 = 2, b2 = 8, b3 = 2,

and the deviation values are: da1 = 8, da2 = 15, da3 = 2, db1 = 2, db2 = 8, db3 = 1.

Then by Proposition 8, the equivalent reformulation of this RFP[Uab∝ ] is given by

Z⋆
Uab
∝
= max

x∈X,
µ,α,β,γ⩾0

µ

s.t. (3 + 2x1 + 8x2 + 2x3)µ + 2α + ∑
j∈{1,2,3}

βj + ∑
j∈{1,2,3}

γj ⩽ 6 + 5x1 + 16x2 + 3x3

α + β1 ⩾ −8x1 + 2x1µ, α + γ1 ⩾ 8x1 − 2x1µ

α + β2 ⩾ −15x2 + 8x2µ, α + γ2 ⩾ 15x2 − 8x2µ

α + β3 ⩾ −2x3 + x3µ, α + γ3 ⩾ 2x3 − x3µ. ◻

Based on Propositions 6, 7, and 8 we see that, in all cases, single-ratio RFP under the

joint uncertainty sets Uab, Uab= , and Uab∝ can be formulated as

max
x∈X,

µ,α,β,γ⩾0

µ (3.15a)

s.t. (b0 +∑
j∈J
bjxj)µ + Γα +∑

j∈J
βj +∑

j∈J
γj ⩽ a0 +∑

j∈J
ajxj (3.15b)

α + βj ⩾ (d1
j + d2

jµ)xj, α + γj ⩾ (d3
j + d4

jµ)xj ∀j ∈ J, (3.15c)

for some d1, d2, d3, d4 ∈ Zn, where d1
j ⋅ d3

j and d2
j ⋅ d4

j ⩽ 0 for all j ∈ J . In particular, if

d1
j = daj , d

2
j = d3

j = 0, and d4
j = dbj for all j ∈ J , then problem (3.15) is equivalent to the

reformulation of RFP[Uab] given by (3.10). Similarly, letting d1
j = daj , d2

j = dbj, d3
j = d4

j = 0
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and d1
j = −d3

j = −daj , d2
j = −d4

j = dbj for all j ∈ J in (3.15), lead to equivalent reformulation of

RFP[Uab= ] and RFP[Uab∝ ], respectively, provided in (3.13) and (3.14).

Problem (3.15) is a mixed-integer nonlinear program. Note that for a fixed value of µ,

problem (3.15) reduces to an MILP feasibility problem or equivalently checking whether the

following MILP

ψ(µ) = min
x∈X,α,β,γ

{(b0 +∑
j∈J
bjxj)µ + Γα +∑

j∈J
βj +∑

j∈J
γj − (a0 +∑

j∈J
ajxj) ∣ (3.15c)} (3.16)

has a non-positive optimal objective function value (i.e., ψ(µ) ⩽ 0). Proposition 9 below

shows that ψ(µ) is a monotone function of µ. Thus, we can solve (3.15) by applying the

binary-search algorithm on µ, where at each iteration of the algorithm we solve (3.16) for a

fixed value of µ. That is if ψ(µ) > 0 we must decrease µ, otherwise, we can increase µ.

Proposition 9. For given vectors d1, d2, d3, and d4 such that d2
j ⋅ d4

j ⩽ 0 and ∣d2
j ∣, ∣d4

j ∣ ⩽ dbj for

all j ∈ J , if ψ(µ) ⩽ 0 for a fixed µ ⩾ 0, then ψ(µ′) ⩽ 0 for any 0 ⩽ µ′ < µ.

Proof. For fixed µ ⩾ 0, let (α,β, γ, x) denote a feasible solution of (3.16) for which the

objective function value of (3.16) is non-positive. Then we show that for µ′ = µ−ε, ε > 0, there

exist β′, γ′ ⩾ 0 such that (α,β′, γ′, x) is a feasible solution of (3.16) with non-positive objective

function value. Toward this goal, define J2 = {j ∈ J ∣ d2
j < 0} and J4 = {j ∈ J ∣ d4

j < 0}; note

that J2∩J4 = ∅ since d2
j ⋅d4

j ⩽ 0 for all j ∈ J . Then let β′j = βj for j ∈ J∖J2 and β′j = βj−εd2
jxj ⩾ 0

for j ∈ J2. Similarly, let γ′j = γj for j ∈ J ∖ J4 and γ′j = γj − εd4
jxj ⩾ 0 for j ∈ J4. Hence,

(µ′, α, β′, γ′, x) satisfies the constraints of (3.15c).

Next, we show that for (µ′, α, β′, γ′, x) the objective function value of (3.16) is non-

positive.

(b0 +∑
j∈J
bjxj)µ′ + Γα +∑

j∈J
β′j +∑

j∈J
γ′j − (a0 +∑

j∈J
ajxj)

= (b0 +∑
j∈J
bjxj)(µ − ε) + Γα + ∑

j∈J∖J2

βj + ∑
j∈J2

(βj − εd2
jxj)

+ ∑
j∈J∖J4

γj + ∑
j∈J4

(γj − εd4
jxj) − (a0 +∑

j∈J
ajxj)

= (b0 +∑
j∈J
bjxj)µ + Γα +∑

j∈J
βj +∑

j∈J
γj − (a0 +∑

j∈J
ajxj)

− ε(b0 +∑
j∈J
bjxj + ∑

j∈J2

d2
jxj + ∑

j∈J4

d4
jxj) ⩽ 0.
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The last inequality holds because the objective function value of (3.16) is non-positive for

(µ,α, β, γ, x); moreover, since J2 ∩J4 = ∅ and ∣d2
j ∣, ∣d4

j ∣ ⩽ dbj, for all j ∈ J , by Assumption 1 we

have (b0 +∑j∈J bjxj +∑j∈J2 d2
jxj +∑j∈J4 d4

jxj) > 0. ◻

In order to solve (3.16) efficiently at each iteration of the binary-search algorithm, we

further simplify it by using an argument similar to the one used for proving Proposition 5.

Proposition 10. Problem (3.16) can be reformulated as

ψ(µ) = min
x∈X,α∈F

{(b0 +∑
j∈J
bjxj)µ + Γα +∑

j∈J
(d1

j + d2
jµ − α)

+
xj (3.17)

+∑
j∈J

(d3
j + d4

jµ − α)
+
xj − (a0 +∑

j∈J
ajxj)},

where

F = {0, (d1
1 + d2

1µ)+, (d1
2 + d2

2µ)+, . . . , (d1
n + d2

nµ)+, (d3
1 + d4

1µ)+, (d3
2 + d4

2µ)+, . . . , (d3
n + d4

nµ)+}.

Proof. In an optimal solution of (3.16), we have that, for all j ∈ J , β⋆j = ((d1
j + d2

jµ)x⋆j −

α⋆)+ = (d1
j + d2

jµ − α⋆)+x⋆j and γ⋆j = ((d3
j + d4

jµ)x⋆j − α⋆)
+ = (d3

j + d4
jµ − α⋆)

+
x⋆j . Thus, (3.16)

reduces to

ψ(µ) = min
x∈X,
α⩾0

(b0 +∑
j∈J
bjxj)µ + Γα +∑

j∈J
(d1

j + d2
jµ − α)+xj +∑

j∈J
(d3

j + d4
jµ − α)+xj − (a0 +∑

j∈J
ajxj).

Additionally, similar to the proof of Proposition 5 observe that if α⋆ > 0, α⋆ ≠ d1
j + d2

jµ

and α⋆ ≠ d3
j + d4

jµ for all j ∈ J , then it can be verified that either α⋆ + ε or α⋆ − ε is also

feasible for sufficiently small ε > 0. Thus, we may assume without loss of generality that

α⋆ ∈ {0} ∪ {(d1
j + d2

jµ)+}j∈J ∪ {(d3
j + d4

jµ)+}j∈J , which completes the proof. ◻

Example 3. According to Proposition 10, the corresponding formulation (3.17) for RFP[Uab∝ ]

in Example 2 is

ψ(µ) =

min
x∈X,α∈F

{(3 + 2x1 + 8x2 + 2x3)µ + 2α

+ (−8 + 2µ − α)+x1 + (−15 + 8µ − α)+x2 + (−2 + µ − α)+x3

+ (8 − 2µ − α)+x1 + (15 − 8µ − α)+x2 + (2 − µ − α)+x3 − (6 + 5x1 + 16x2 + 3x3)},

where F = {0, (−8 + 2µ)+, (−15 + 8µ)+, (−2 + µ)+, (8 − 2µ)+, (15 − 8µ)+, (2 − µ)+}. ◻
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In the following, we focus our efforts on obtaining the optimal objective function value

of (3.17). To this end, define T = {1,2, . . . , ∣F ∣}, ∣T ∣ ⩽ 2n + 1, and for each t ∈ T define

binary-linear problem

ψt(µ) = min
x∈X

gt(x,µ) (3.18)

where

gt(x,µ) = (b0 +∑
j∈J
bjxj)µ + Γ (c̄t + d̄tµ)

+ +∑
j∈J

(d1
j + d2

jµ − (c̄t + d̄tµ)
+)

+
xj

+∑
j∈J

(d3
j + d4

jµ − (c̄t + d̄tµ)
+)

+
xj − a0 −∑

j∈J
ajxj,

and (c̄t, d̄t) ∈ {(0,0)} ∪ {(d1
j , d

2
j)}j∈J ∪ {(d3

j , d
4
j)}j∈J .

Evidently, ψ(µ) = mint∈T ψt(µ). Thus, for µ fixed, checking whether ψ(µ) ⩽ 0 can be done

by verifying whether there exists t ∈ T such that ψt(µ) ⩽ 0. Thereby, in the following result

we conclude that problem (3.15) can be solved efficiently using the binary-search method.

Proposition 11. Problem (3.15) can be solved with O(n log(U/ε)) calls to an oracle for

(3.18), where U = ∣a0∣ +∑j∈J ∣aj ∣ and ε > 0 is a precision parameter.

Proof. The binary search requires O( log(Uε )) iterations and each iteration requires solv-

ing at most ∣F ∣ = ∣T ∣ = 2n + 1 problems of the form (3.18). Moreover, let τ(n) denote the

complexity of solving binary-linear problem (3.18). Then the binary-search algorithm to

solve problem (3.15) has the worst-case complexity O(n log(U/ε)τ(n)). ◻

As a direct consequence of Propositions 9 to 11, we get the main result of this subsec-

tion, i.e.,

Theorem 2. Single-ratio case of RFP[Uab], RFP[Uab= ] and RFP[Uab∝ ] can be solved in

O(n log(U/ε)τ(n)), where τ(n) is the complexity of solving problem (3.18). In particular,

if linear optimization over X is polynomial-time solvable, then so is single-ratio RFP under

the joint uncertainty sets.

Notably, when X = Bn the complexity of solving problem (3.18) is O(n), i.e., τ(n) = n, re-

sulting in the overall complexity O(n2 log(U/ε)) to solve RFP[Uab], RFP[Uab= ] and RFP[Uab∝ ].

Additionally, if X = {x ∈ Bn ∣ ∑j∈J xj ⩽ k} or X = {x ∈ Bn ∣ ∑j∈J xj = k} we have

τ(n) = n log(n), resulting in the overall complexity O(n2 log(n) log(U/ε)). Therefore,
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Corollary 1. The unconstrained and cardinality constrained single-ratio RFP[U ] under joint

uncertainty sets Uab, Uab= and Uab∝ can be solved in polynomial time.

It is worth mentioning that the cardinality-constrained (X = {x ∈ Bn ∣ ∑j∈J xj ⩽ k})

single-ratio assortment problem (3.3) when customer preferences (ρj) are subject to rectan-

gular uncertainty U =∏n
j=0[lj, uj] ⊂ Rn+1

++ , where `j and uj are lower and upper bounds on ρj,

can be solved in O(n2), see [81]. This problem is a special case of RFP[Uab∝ ] when Γ = n, and

ãj, b̃j > 0. However, the aforementioned result cannot be extended, e.g., when revenues (rj)

are uncertain or, more importantly, for generally structured single-ratio RFP[U ] (such as

other choice models) under other types of the budgeted uncertainty sets or (weaker) As-

sumption 1. We conclude the discussion on single-ratio RFP[U ] with the following remarks.

Remark 7. The solutions methods outlined in this section are particularly efficient for un-

constrained problems. Additionally, they are useful when there exist specialized algorithms

to solve the corresponding constrained linear binary problem, e.g., those that exploit the con-

straint structure of the underlying combinatorial optimization problem. If these algorithms

are polynomial time (for example, such as those for the linear assignment, the shortest path

and the minimum spanning tree problems, see [2]), then the single-ratio RFP[U ] is also

polynomial-time solvable. ◻

Remark 8. In the case of single-ratio RFPs under the disjoint uncertainty set, the approach

of Theorem 1 is superior to the binary search approach developed in Section 3.3.2 since the

former is strongly polynomial, O(n2), while the latter involves the binary search algorithm

with the number of iterations O( log(Uε )). ◻

3.4 Multiple-ratio RFP[U ]

In this section, we present MILP formulations for multiple-ratio RFP[U ]. First, for the

disjoint uncertainty set, we reformulate RFP[U ] as robust linear problems. Then with these

reformulations in hand, we adapt the methods of [13] to transform them into MILPs, see Sec-

tion 3.4.1. For the joint uncertainty sets (except Ua) we use the results from Section 3.3.2, see
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Section 3.4.2.1; for Ua we use a same approach provided in Section 3.4.1, see Section 3.4.2.2.

Then, in Section 3.4.3 we discuss the sizes (numbers of variables and constraints) of the ob-

tained MILP reformulations. Finally, in Section 3.4.4 we show that the optimal value of the

robust formulations provided in this chapter with high probability are not overestimator of

the true value of the fractional problems with symmetrical and bounded random coefficients.

3.4.1 Disjoint uncertainty set

For the present discussion, we consider the uncertainty set Uab, and present three MILP

reformulations of RFP[Uab]. For the first two formulations presented in Section 3.4.1.1 and

Section 3.4.1.2 we exploit the ideas from fractional programming literature, see [54, 99]. The

third formulation, presented in Section 3.4.1.3 corresponds to a binary expansion reformu-

lation proposed by [16].

3.4.1.1 Reformulation 1 (MILP1[Uab]). Note that RFP[Uab] can be written as

max
x∈X

min
(ã,̃b)∈Uab

∑
i∈I

⎛
⎝
ai0 +∑

j∈J
ãijxj

⎞
⎠
⎛
⎝

1

bi0 +∑j∈J b̃ijxj

⎞
⎠
.

Using the substitutions ωi ⩽ 1
bi0+∑j∈J b̃ijxj

, for all b̃i ∈ U bi and i ∈ I, and exploiting the fact that

Uab is disjoint, we find the equivalent formulation

max
x∈X,
ω⩾0

min
ã∈Ua

∑
i∈I

(ai0 +∑
j∈J
ãijxj)ωi

s.t. (bi0 +∑
j∈J
b̃ijxj)ωi ⩽ 1 ∀b̃i ∈ U bi , ∀i ∈ I,

where Ua ∶= {ã ∈ Rm×n ∣ ãi ∈ Uai for all i ∈ I}. Similarly, defining new variables µi such that

µi ⩽ (ai0 +∑j∈J ãijxj)ωi for all ãi ∈ Uai and i ∈ I yields the robust optimization problem

max
x∈X,
µ,ω⩾0

∑
i∈I
µi(RFP1[Uab])

s.t. µi ⩽ (ai0 +∑
j∈J
ãijxj)ωi ∀ãi ∈ Uai , ∀i ∈ I

(bi0 +∑
j∈J
b̃ijxj)ωi ⩽ 1 ∀b̃i ∈ U bi , ∀i ∈ I.
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Note that the directions of the inequalities (⩽) rely on the sense of the objective function

and Assumption 1. Since x ∈ X ⊆ Bn, we linearize the bilinear terms xjωi using standard

techniques (e.g., [1, 100]) as follows

∆ij ∶= {(xj, ωi, zij) ∈ B ×R2
+ ∣ ωLi xj ⩽ zij ⩽ ωUi xj, ωi + ωUi (xj − 1) ⩽ zij ⩽ ωi + ωLi (xj − 1)},

where ωUi and ωLi are an upper bound and a lower bound on ωi, respectively, and note that

(xj,wi, zij) ∈ ∆ij ⇔ zij = wixj. Hence, RFP1[Uab] is equivalent to the robust linear problem

max
x∈X

ω,µ,z⩾0

∑
i∈I
µi (3.19)

s.t. µi ⩽ ai0ωi +∑
j∈J
ãijzij ∀ãi ∈ Uai , ∀i ∈ I

bi0ωi +∑
j∈J
b̃ijzij ⩽ 1 ∀b̃i ∈ U bi , ∀i ∈ I

(xj, ωi, zij) ∈ ∆ij ∀i ∈ I, j ∈ J.

Following the approach of [13], the robust linear problem (3.19) can be transformed into

an MILP reformulation of RFP[Uab] as follows.

max ∑
i∈I
µi(MILP1[Uab])

s.t. µi −∑
j∈J
aijzij +∑

j∈J
βij + Γaiαi ⩽ ai0ωi ∀i ∈ I

bi0ωi +∑
j∈J
bijzij +∑

j∈J
γij + Γbiλi ⩽ 1 ∀i ∈ I

αi + βij ⩾ daijzij ∀i ∈ I,∀j ∈ J

λi + γij ⩾ dbijzij ∀i ∈ I,∀j ∈ J

x ∈X, (xj, ωi, zij) ∈ ∆ij, βij, γij, αi, λi, µi ⩾ 0 ∀i ∈ I,∀j ∈ J.
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3.4.1.2 Reformulation 2 (MILP2[Uab]). As an alternative to the approach of Sec-

tion 3.4.1.1, one could instead replace each ratio with an auxiliary variable. Let µi ⩽
ai0+∑j∈J ãijxj

bi0+∑j∈J b̃ijxj
for all i ∈ I, (ãi, b̃i) ∈ Uai × U bi . Then we can write RFP[Uab] as

max
x∈X,
µ⩾0

∑
i∈I
µi(RFP2[Uab])

s.t. (bi0 +∑
j∈J
b̃ijxj)µi ⩽ ai0 +∑

j∈J
ãijxj ∀ãi ∈ Uai , ∀b̃i ∈ U bi ,∀i ∈ I.

Finally, after linearization of xjµi using a variant of the set ∆ij and applying the trans-

formation of a robust linear problem to an MILP similar to the one used in Section 3.4.1.1,

we find the MILP reformulation of RFP2[Uab].

max ∑
i∈I

µi(MILP2[Uab])

s.t. bi0µi −∑
j∈J
aijxj +∑

j∈J
bijzij+

Γaiαi + Γbiλi +∑
j∈J
βij +∑

j∈J
γij ⩽ ai0 ∀i ∈ I

αi + βij ⩾ daijxj ∀i ∈ I,∀j ∈ J

λi + γij ⩾ dbijzij ∀i ∈ I,∀j ∈ J

x ∈X, (xj, µi, zij) ∈ ∆ij, βij, γij, αi, λi, µi ⩾ 0 ∀i ∈ I,∀j ∈ J.

3.4.1.3 Binary-expansion reformulation (MILPlog
2 [Uab]). The third considered for-

mulation uses a base-2 expansion [16] to reduce the number of bilinear terms that require

linearization. In the context of RFP, we employ this idea to reformulate RFP2[Uab].

Observe that for any x ∈ X and worst-case realization b̃i ∈ U bi , the term ∑j∈J b̃ijxj is

integer since the data are integral (Assumption 2). To ascertain the (logarithmic) number

of additional variables needed, let maxr(Hi) return the r-th largest element in the set Hi =

{dbij ∣ j ∈ J}. Then for all i ∈ I, we define πi as follows

πi ∶= ⌊ log2 (∑
j∈J

∣bij ∣ + ∑
r⩽Γb

i

maxr(Hi))⌋ + 1. (3.20)
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We then define the binarization variables wik ∈ B for all k ∈Ki ∶= {1,2, . . . , πi}, i ∈ I. We

also define B̄i ∶= ∑j∈J,bij<0 ∣bij ∣. Observe that ∑j∈J b̃ijxj + B̄i ⩾ 0 for any x ∈ X and b̃i ∈ U bi .

Replacing the terms ∑j∈J b̃ijxj with −B̄i +∑πik=1 2k−1wik for all i ∈ I in RFP2[Uab], yields

max ∑
i∈I
µi(RFPlog

2 [Uab])

s.t. (bi0 − B̄i + ∑
k∈Ki

2k−1wik)µi ⩽ ai0 +∑
j∈J
ãijxj ∀ãi ∈ Uai , ∀i ∈ I

∑
j∈J
b̃ijxj + B̄i ⩽ ∑

k∈Ki

2k−1wik ∀b̃i ∈ U bi , ∀i ∈ I

x ∈X,wik ∈ B, µi ⩾ 0 ∀k ∈Ki,∀i ∈ I.

Let zik = wikµi. By using a variant of the set ∆ij in model RFPlog
2 [Uab] and apply-

ing the transformation of a robust linear problem to an MILP similar to the one used in

Section 3.4.1.1, RFPlog
2 [Uab] can be reformulated as the following MILP.

max ∑
i∈I
µi(MILPlog

2 [Uab])

s.t. (bi0 − B̄i)µi + ∑
k∈Ki

2k−1zik −∑
j∈J
aijxj +∑

j∈J
βij + Γaiαi ⩽ ai0 ∀i ∈ I

− ∑
k∈Ki

2k−1wik +∑
j∈J
bijxj + B̄i +∑

j∈J
γij + Γbiλi ⩽ 0 ∀i ∈ I

αi + βij ⩾ daijxj ∀i ∈ I,∀j ∈ J

λi + γij ⩾ dijxj ∀i ∈ I,∀j ∈ J

x ∈X, βij, γij, αi, λi, µi ⩾ 0 ∀i ∈ I,∀j ∈ J

wik ∈ B, (wik, µi, zik) ∈ ∆ij ∀i ∈ I,∀k ∈Ki.

Remark 9. It is also possible to develop a binary-expansion reformulation of RFP1[Uab].

However, based on our experiments such a formulation performs poorly in computations;

also, refer to [16] for an analogous comparison regarding deterministic FP. Hence, we omit

this formulation for brevity. ◻
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3.4.2 Joint uncertainty sets

We now present MILP formulations of RFP[U ] under the joint uncertainty sets U ∈

{Uab,Uab= ,Uab∝ ,Ua}. Toward this goal, we use the results of Section 3.3.2 to develop MILPs

for multiple-ratio RFP[Uab], RFP[Uab= ], and RFP[Uab∝ ]; see Section 3.4.2.1. For RFP[Ua] we

use a similar approach to the one used in Section 3.4.1.1, see Section 3.4.2.2. Note that, for

the joint uncertainty sets we cannot take the advantage of the binary-expansion technique,

either due to dependencies in the uncertainty sets, or because it does not reduce the number

of bilinear terms for the joint cases.

3.4.2.1 Reformulation for RFP[U ] when U ∈ {Uab,Uab= ,Uab∝ }. By Propositions 6, 7,

and 8 it is verified that multiple-ratio RFP[U ] under joint uncertainties Uab,Uab= , and Uab∝ can

be represented as the following problem.

max
x∈X,

µ,α,β,γ⩾0

∑
i∈I
µi (3.21)

s.t. (bi0 +∑
j∈J
bijxj)µi + Γiαi +∑

j∈J
βij +∑

j∈J
γij ⩽ ai0 +∑

j∈J
aijxj ∀i ∈ I

αi + βij ⩾ (d1
ij + d2

ijµi)xj, αi + γij ⩾ (d3
ij + d4

ijµi)xj ∀i ∈ I,∀j ∈ J,

for some d1, d2, d3, d4 ∈ Zm×n. By linearizing the bilinear terms xjµi, problem (3.21) can be

reformulated as an equivalent MILP.

max
x∈X,

µ,α,β,γ⩾0

∑
i∈I
µi (3.22)

s.t. bi0µi −∑
j∈J
aijxj +∑

j∈J
bijzij + Γiαi +∑

j∈J
βij +∑

j∈J
γij ⩽ ai0 ∀i ∈ I

αi + βij ⩾ d1
ijxj + d2

ijzij, αi + γij ⩾ d3
ijxj + d4

ijzij ∀i ∈ I,∀j ∈ J

x ∈X, (xj, µi, zij) ∈ ∆ij, βij, γij, αi, µi ⩾ 0 ∀i ∈ I,∀j ∈ J.

Specifically, if we let d1
j = daj , d2

j = d3
j = 0, and d4

j = dbj for all j ∈ J , then problem (3.22)

is an equivalent MILP reformulation of RFP[Uab] denoted by MILP[Uab]. Similarly, letting

d1
j = daj , d2

j = dbj, d3
j = d4

j = 0 and d1
j = −d3

j = −daj , d2
j = −d4

j = dbj for all j ∈ J in (3.22), lead

to equivalent MILP reformulations of RFP[Uab= ] and RFP[Uab∝ ] indicated by MILP[Uab= ] and
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MILP[Uab∝ ], respectively. Finally, note that in MILP[Uab= ] since d3
j = d4

j = 0 variable γij and

constraint αi + γij ⩾ d3
ijxj + d4

ijzij can be removed for all i ∈ I, j ∈ J ; see Table 5 for the size

of formulations.

3.4.2.2 Reformulation for RFP[Ua]. Let ω as in Section 3.4.1.1, define a new variable

µ ⩽ ∑i∈I(ai0 +∑j∈J ãijxj)ωi for all ã ∈ Ua, and write RFP[Ua] as

max
x∈X,ω,µ⩾0

µ

s.t. µ ⩽∑
i∈I
ai0ωi +∑

i∈I
∑
j∈J
ãijxjωi ∀ã ∈ Ua

bi0ωi +∑
j∈J
bijxjωi ⩽ 1 ∀i ∈ I.

Letting zij = xjωi and u be the indicator variables of set Si(ã), we obtain

max
x∈X,
µ,ω⩾0

µ

s.t. µ −∑
i∈I
ai0ωi −∑

i∈I
∑
j∈J
aijzij +max

u∈V

⎧⎪⎪⎨⎪⎪⎩
∑
j∈J
daijzijuij

⎫⎪⎪⎬⎪⎪⎭
⩽ 0 ∀i ∈ I

bi0ωi +∑
j∈J
bijzij ⩽ 1 ∀i ∈ I

(xj, ωi, zij) ∈ ∆ij ∀i ∈ I, j ∈ J,

where V is the polytope defined by the constraints

∑
i∈I
∑
j∈J
uij ⩽ Γ (α)

0 ⩽ uij ⩽ 1 ∀i ∈ I, j ∈ J. (βij)

Using LP-duality for the inner maximization problem, we obtain the MILP formulation:

max µ(MILP[Ua])

s.t. µ −∑
i∈I
ai0ωi −∑

i∈I
∑
j∈J
aijzij + Γα +∑

i∈I
∑
j∈J
βij ⩽ 0

bi0ωi +∑
j∈J
bijzij ⩽ 1 ∀i ∈ I

α + βij ⩾ daijzij ∀i ∈ I,∀j ∈ J

x ∈X, (xj, ωi, zij) ∈ ∆ij, βij, α, µ,ωi ⩾ 0 ∀i ∈ I,∀j ∈ J.
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3.4.3 Problems sizes and MILP enhancement (MILPlog
2′ [Uab])

Table 5 shows the number of variables and constraints for all MILP reformulations pro-

vided in Section 3.4.1 and Section 3.4.2. This table also includes data for the well-known

MILPs for FP, denoted by FP1 [54, 92, 100] and FP2 [92], as well as their respective binary-

expansion versions [16], denoted by FP3 and FP4.

Later in Section 3.5.2.3 we observe that, among the MILPs developed for the disjoint

uncertainty, MILP1[Uab] typically has the best LP relaxation and MILPlog
2 [Uab] often has the

best performance due to a reduced number of variables and constraints - see Table 5. Hence,

we enhance MILPlog
2 [Uab] by adding the valid inequality ∑i∈I µi ⩽ z

MILP1[Uab]
LP to MILPlog

2 [Uab]

where z
MILP1[Uab]
LP is the objective function value of the LP relaxation of MILP1[Uab], and

we call the new formulation MILPlog
2′ [Uab]. In the deterministic fractional programming, a

similar observation is made regarding FP1 and FP4 [16]. The new formulation is called FP4′

and we compare its performance versus the performances of the developed MILPs for the

disjoint uncertainty in the next section.

3.4.4 Insights on the price of robustness

In robust linear optimization when uncertain coefficients are symmetric, bounded and

independent random variables, Bertsimas and Sim [13] provide a probabilistic guarantee for

each constraint violation. Next, we exploit their approach to establish somewhat similar

results for RFPs under dis/joint uncertainty sets.

Let x⋆ and µ⋆i denote a robust optimal solution and the robust value of the i-th ratio in

RFP[U ], respectively. By using the binomial distribution

B(r,P ) = 1

2r
{(1 − ν + ⌊ν⌋)( r

⌊ν⌋
) +

r

∑
j=⌊ν⌋+1

(r
j
)},

for ν = (P +r)/2, and r,P ∈ Z+, we show the probability that µ⋆i overestimates the true value

of the i-th ratio for random variables ã and b̃ is bounded above.
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Table 5: Sizes of the MILPs for nominal problems FP1 to FP4, and the robust problems,

where n and m are defined as in FP, c is the number of constraints defining X, and πi is

defined as in (3.20). Moreover, θai ∶= ⌊ log2(∑j∈J ∣aij ∣)⌋ + 1 and θbi ∶= ⌊ log2(∑j∈J ∣bij ∣)⌋ + 1.

MILP reformulation No. of continuous variables No. of binary variables No. of linear constraints

Nominal reformulations

FP1 m(n + 1) n m(4n + 1) + c

FP2 m(n + 1) n m(4n + 1) + c

FP3 m +∑i∈I(θai + θbi ) n +∑i∈I(θai + θbi ) 3m + 4∑i∈I(θai + θbi ) + c

FP4 m +∑i∈I θbi n +∑i∈I θbi 2m + 4∑i∈I θbi + c

Robust reformulations (Disjoint)

MILP1[Uab] m(3n + 4) n m(6n + 2) + c

MILP2[Uab] m(3n + 3) n m(6n + 1) + c

MILPlog
2 [Uab] m(2n + 3) +∑i∈I πi n +∑i∈I πi m(2n + 2) + 4∑i∈I πi + c

Robust reformulations (Joint)

MILP2[Uab] & MILP2[Uab∝ ] m(3n + 2) n m(6n + 1) + c

MILP2[Uab= ] m(2n + 2) n m(5n + 1) + c

MILP[Ua] m(2n + 1) + 2 n m(5n + 1) + c + 1

Proposition 12. Let ã and b̃ be symmetric, bounded, and independent random variables,

i.e., ãij = aij + ηijdaij and b̃ij = bij + ηi,j+ndbij, where ηij, ηi,j+n ∈ [−1,1], for all i ∈ I, j ∈ J , are

independently distributed random variables. For each i ∈ I, in RFP[U ]

(i) if U = Uab, then Pr
⎛
⎜
⎝
µ⋆i >

ai0 + ∑
j∈J
ãijx⋆j

bi0 + ∑
j∈J
b̃ijx⋆j

⎞
⎟
⎠
⩽ B(2n,Γai + Γbi), Γai ,Γ

b
i ∈ {0, . . . , n};

(ii) if U = Uab, then Pr
⎛
⎜
⎝
µ⋆i >

ai0 + ∑
j∈J
ãijx⋆j

bi0 + ∑
j∈J
b̃ijx⋆j

⎞
⎟
⎠
⩽ B(2n,Γi), Γi ∈ {0, . . . ,2n};

additionally,

(iii) if U = Ua, then Pr
⎛
⎜
⎝
∑
i∈I
µ⋆i >∑

i∈I

ai0 + ∑
j∈J
ãijx⋆j

bi0 + ∑
j∈J
bijx⋆j

⎞
⎟
⎠
⩽ B(m ⋅ n,Γ), Γ ∈ {0, . . . ,m ⋅ n}.
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Proof. We prove part (i); parts (ii) and (iii) can be proved in a similar manner. Note

that the fractional binary problems subject to uncertain coefficients can be represented as

max
x∈X,
µ⩾0

∑
i∈I
µi (3.23a)

s.t. ∑
j∈J
b̃ijxjµi −∑

j∈J
ãijxj ⩽ ai0 − bi0µi ∀i ∈ I, (3.23b)

when bi0 +∑j∈J b̃ijx⋆j > 0. For given (x⋆, µ⋆), random variables ã and b̃, and for each i ∈ I,

we aim to compute an upper-bound for the probability that i-th constraint in (3.23b) is

violated, i.e.,

Pr(∑
j∈J
b̃ijµ

⋆
i x

⋆
j −∑

j∈J
ãijx

⋆
j > ai0 − µ⋆i bi0) = Pr

⎛
⎜
⎝
µ⋆i >

ai0 + ∑
j∈J
ãijx⋆j

bi0 + ∑
j∈J
b̃ijx⋆j

⎞
⎟
⎠
.

Then, for each i ∈ I,

Pr(∑
j∈J
b̃ijµ

⋆
i x

⋆
j −∑

j∈J
ãijx

⋆
j > ai0 − µ⋆i bi0)

= Pr(∑
j∈J
bijµ

⋆
i x

⋆
j +∑

j∈J
ηijd

b
ijµ

⋆
i x

⋆
j −∑

j∈J
aijx

⋆
j −∑

j∈J
ηi,j+nd

a
ijx

⋆
j > ai0 − µ⋆i bi0) (3.24)

= Pr(∑
j∈J
ηijd

b
ijµ

⋆
i x

⋆
j +∑

j∈J
ηi,j+nd

a
ijx

⋆
j > ai0 − µ⋆i bi0 −∑

j∈J
bijµ

⋆
i x

⋆
j +∑

j∈J
aijx

⋆
j) (3.25)

⩽ Pr(∑
j∈J
ηijd

b
ijµ

⋆
i x

⋆
j +∑

j∈J
ηi,j+nd

a
ijx

⋆
j > ∑

j∈S⋆
i,b

dbijµ
⋆
i x

⋆
j + ∑

j∈S⋆i,a

daijx
⋆
j) (3.26)

= Pr( ∑
j∈J/S⋆

i,b

ηijd
b
ijµ

⋆
i x

⋆
j + ∑

j∈J/S⋆i,a

ηi,j+nd
a
ijx

⋆
j >

∑
j∈S⋆

i,b

dbijµ
⋆
i x

⋆
j (1 − ηij) + ∑

j∈S⋆i,a

daijx
⋆
j (1 − ηi,j+n))

⩽ Pr( ∑
j∈J/S⋆

i,b

ηijd
b
ijµ

⋆
i x

⋆
j + ∑

j∈J/S⋆i,a

ηi,j+nd
a
ijx

⋆
j > ci ∑

j∈S⋆
i,b

(1 − ηij) + ci ∑
j∈S⋆i,a

(1 − ηi,j+n)) (3.27)

= Pr( ∑
j∈S⋆

i,b

ηij + ∑
j∈S⋆i,a

ηi,j+n + ∑
j∈J/S⋆

i,b

ηij
dbijµ

⋆
i x

⋆
j

ci
+ ∑
j∈J/S⋆i,a

ηi,j+n
daijx

⋆
j

ci
> Γai + Γbi) (3.28)

Probability (3.24) is correct for independently and symmetrically distributed random vari-

ables ηij ∈ [−1,1] for all j ∈ {1, . . . ,2n}. Probability (3.25) is correct since ηi,j+n ∈ [−1,1]. Let

S⋆i,a and S⋆i,b be the sets of indices of parameters that take the robust value in the numerator
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and the denominator of the i-th ratio, respectively, in a robust optimal solution. Then note

that

∑
j∈J
bijµ

⋆
i x

⋆
j + ∑

j∈S⋆
i,b

dbijµ
⋆
i x

⋆
j −∑

j∈J
aijx

⋆
j + ∑

j∈S⋆i,a

daijx
⋆
j ⩽ ai0 − µ⋆i bi0

is a valid inequality for problem (3.23) under uncertainty set Uab. Thus, probability (3.26) is

correct. Additionally, probability (3.27) is correct for ci = min{{dbijµ⋆i x⋆j }j∈S⋆i,b ,{d
a
ijx

⋆
j }j∈S⋆i,a}.

Next, for j ∈ {1,2, . . . ,2n} define

γij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if j ∈ S⋆i,b or j − n ∈ S⋆i,a
dbijµ

⋆
i x
⋆
j

ci
, if j ∈ J/S⋆i,b

daijx
⋆
j

ci
, if j − n ∈ J/S⋆i,a,

(note that γij ⩽ 1 for all j ∈ {1, . . . ,2n}, otherwise S⋆i,a or S⋆i,b are not the robust optimal set

of indices). Hence, probability (3.28) is equivalent to

Pr( ∑
j∈{1,...,2n}

γijηij > Γai + Γbi) ⩽ Pr( ∑
j∈{1,...,2n}

γijηij ⩾ Γai + Γbi) ⩽ B(2n,Γai + Γbi).

The last inequality follows from Theorem 3 part (a) in [13] for independent and symmetrically

distributed random variables ηj ∈ [−1,1] and γij ⩽ 1, for j ∈ J . ◻

Proposition 13. Let ã and b̃ be symmetric and bounded random variables, i.e., ãij = aij +

ηijdaij and b̃ij = bij + ηijdbij, where ηij, for all i ∈ I, j ∈ J , are independently distributed random

variables. For each i ∈ I, in RFP[U ]

if U = Uab∝ , then Pr
⎛
⎜
⎝
µ⋆i >

ai0 + ∑
j∈J
ãijx⋆j

bi0 + ∑
j∈J
b̃ijx⋆j

⎞
⎟
⎠
⩽ B(n,Γi), Γi ∈ {0, . . . , n}.

Proof. Following the proof of Proposition 12, for each i ∈ I,

Pr
⎛
⎜
⎝
µ⋆i >

ai0 + ∑
j∈J
ãijx⋆j

bi0 + ∑
j∈J
b̃ijx⋆j

⎞
⎟
⎠

= Pr(∑
j∈J
b̃ijµ

⋆
i x

⋆
j −∑

j∈J
ãijx

⋆
j > ai0 − µ⋆i bi0)

= Pr(∑
j∈J
bijµ

⋆
i x

⋆
j +∑

j∈J
ηijd

b
ijµ

⋆
i x

⋆
j −∑

j∈J
aijx

⋆
j −∑

j∈J
ηijd

a
ijx

⋆
j > ai0 − µ⋆i bi0)

63



= Pr(∑
j∈J
ηij(dbijµ⋆i x⋆j − daijx⋆j ) > ai0 − µ⋆i bi0 −∑

j∈J
bijµ

⋆
i x

⋆
j +∑

j∈J
aijx

⋆
j)

= Pr(∑
j∈J
ηij ∣dbijµ⋆i x⋆j − daijx⋆j ∣ > ai0 − µ⋆i bi0 −∑

j∈J
bijµ

⋆
i x

⋆
j +∑

j∈J
aijx

⋆
j) (3.29)

⩽ Pr(∑
j∈J
ηij ∣dbijµ⋆i x⋆j − daijx⋆j ∣ > ∑

j∈S⋆i

∣dbijµ⋆i x⋆j − daijx⋆j ∣) (3.30)

= Pr( ∑
j∈J/S⋆i

ηij ∣dbijµ⋆i x⋆j − daijx⋆j ∣ > ∑
j∈S⋆i

∣dbijµ⋆i x⋆j − daijx⋆j ∣(1 − ηij))

⩽ Pr( ∑
j∈J/S⋆i

ηij ∣dbijµ⋆i x⋆j − daijx⋆j ∣ > ∑
j∈S⋆i

ci(1 − ηij)) (3.31)

= Pr( ∑
j∈S⋆i

ηij + ∑
j∈J/S⋆i

ηij
∣dbijµ⋆i x⋆j − daijx⋆j ∣

ci
> Γi) (3.32)

Probability (3.29) is correct for ηij ∈ [−1,1]. Let S⋆i be the set of indices of parameters that

take the robust value in a robust optimal solution of the i-th ratio. Then note that

∑
j∈J
bijµ

⋆
i x

⋆
j −∑

j∈J
aijx

⋆
j + ∑

j∈S⋆i

∣dbijµ⋆i x⋆j − daijx⋆j ∣ ⩽ ai0 − µ⋆i bi0

is a valid inequality for for problem (3.23) under uncertainty set Uab∝ . Thus, probability (3.30)

is correct. Additionally, probability (3.31) is correct for ci = min{∣dbijµ⋆i x⋆j −daijx⋆j ∣}
j∈S⋆i

. Next,

for j ∈ {1,2, . . . , n} define

γij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if j ∈ S⋆i
∣dbijµ⋆i x⋆j−daijx⋆j ∣

ci
, if j ∈ J/S⋆i ,

(note that γij ⩽ 1 for all j ∈ J , otherwise S⋆i is not the robust optimal set of indices). Hence,

probability (3.32) is equivalent to

Pr(∑
j∈J
γijηij > Γi) ⩽ Pr(∑

j∈J
γijηij ⩾ Γi) ⩽ B(n,Γi).

The last inequality follows from Theorem 3 part (a) in [13] for independent and symmetrically

distributed random variables ηj ∈ [−1,1] and γij ⩽ 1, for j ∈ J . ◻

Evidently, as the decision-maker is more conservative and selects larger level of uncer-

tainty (Γ), the probability that µ⋆i is larger than the value of the i-th ratio for x⋆ and random

variables ã and b̃ is smaller. Note that we do not derive a similar upper-bound when U = Uab=
since we cannot satisfy the key assumption that random variables η are independently dis-

tributed.
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3.5 Computational results

The computational experiments in this section encompass a case study of a particular

assortment problem (see Section 3.5.1), as well as experiments on instances with synthetic

data to evaluate the performance of our MILP reformulations (see Section 3.5.2). In both

of the following subsections, we describe the relevant test instances, compare the robust

and nominal solutions, and discuss relevant aspects of the solutions. Our experiments were

performed using CPLEX 12.7.1 [47] on an 8-core CPU (3.7 GHz) with 32 GB of RAM.

3.5.1 Case study: assortment optimization for frozen pizza

Assortment optimization problems arise in many applications such as retailing, revenue

management problems, and online advertising. Assortment optimization with uncertainty

considerations is a growing area of research; in addition to [81], discussed in Sections 1.1

and 3.3.2, the studies in [11] and [29] have proposed robust optimization approaches for

different classes of assortment optimization problems.

Our case study, outlined next, optimizes an assortment problem for a real retailer of

frozen pizza studied in [51]; the data is available at http://cblib.zib.de. The objective

of the assortment problem is to maximize revenue for a company, given a large number

of potential product offerings, associated revenues for those offerings, and estimations of

customer preferences between those offerings. Additionally, the customers are divided into

several different classes, thus the mixed-multinomial logit choice model is a natural fit for

the problem.

3.5.1.1 Test instances The test instances comprise customer preference data on frozen

pizzas from [51]. In particular, there are 130 potential product offerings divided into 5 tiers

of revenue ($1.49, $1.75, $1.79, $1.89, and $2.75), and there are 3 classes of customers. Thus,

the problem is an instance of (3.3) with m = 3 ratios and n = 130 variables. The same data

was used for each test, with variations in the type of uncertainty set, as well as the level of

uncertainty Γ. We fixed daij = 0.5aij, and dbij = 0.5bij (where relevant) for all uncertainty sets.
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For the case study we consider four robust problems; specifically, we consider uncon-

strained (X = Bn) and cardinality-constrained (X = {x ∈ Bn ∣ ∑j∈J xj ⩽ k}) versions of

RFP[Uab∝ ] and RFP[Ua] which are a natural fit for this application. Uncertainty in customer

preferences (ρij) and revenues (rij) can be captured by the matched effects, Uab∝ , and the

single budget, Ua, uncertainty sets respectively; see Section 3.2. With respect to the feasible

region, we test both the unconstrained case - for an online retailer with the ability to market

many options - as well as two sizes of cardinality constraint: k = 13 and k = 39, corresponding

to 10% and 30% of the 130 variables, respectively. The latter problem classes correspond to

a small and large retailer, respectively, where there is a physical limitation on the number

of products which can be offered to customers.

3.5.1.2 The price of robustness The value in the robust approach is demonstrated by

checking the performance of the nominal (optimal) solution in the uncertain environment,

and vice versa. These results are shown in Figures 8 and 9. Figure 8 shows the relative

decrease in the robust objective function value when the optimal nominal solution is used in

the uncertain setting instead of the optimal robust solution (at the given uncertainty level)

as “% loss”. Figure 9 depicts the opposite case - the loss of using the robust optimal solution

when the unknown coefficient take their nominal values. Thus, higher “% loss” in these two

figures implies worse results.

The results for the unconstrained case show that the nominal optimal solution performs

worse in the robust setting than the robust solution does in the deterministic environment.

Additionally, we observe that, as the level of uncertainty increases for both uncertainty sets,

the percentage loss (“% loss”) of using both nominal and robust solutions in the opposite

setting increases.

The cardinality results exhibit a somewhat different pattern of behavior, although we

continue to see that the robust solution performs better in the nominal setting than vice

versa. For the cardinality feasible regions, in both uncertainty sets, the nominal and robust

solutions are different for small to moderate values of Γi, but for the larger values of Γi the

nominal and robust solutions become similar again. The reason for this behavior is that,

as Γi grows, all (or almost all) of the variable coefficients in the optimal robust solution are
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reduced by uncertainty; that is, Γi is close to or larger than the size of the cardinality k.

Since each uncertain coefficient is reduced by 50% (see above), the most favorable products

without uncertainty reduction remain the most favorable products when everything (within

the limited cardinality size k) is reduced 50% by uncertainty.

Figure 8: Decrease in the robust optimal ob-

jective function value by plugging a nominal

optimal solution into the robust problem for

frozen pizza. Specifically, let Z⋆
U denote the

optimal objective function value of RFP[U ].

Additionally, let ẐU = min
(ã,̃b)∈U

∑
i∈I

ai0+ãTi x⋆

bi0+̃bTi x⋆
where

x⋆ is a nominal optimal solution. Then % loss

for each Γ is
Z⋆U−ẐU
Z⋆U

× 100%.

Figure 9: Decrease in the nominal optimal

objective function value by plugging a robust

optimal solution into the nominal problem

for frozen pizza. Specifically, let Z⋆ denote

the optimal objective function value of FP.

Additionally, let Ẑ = ∑
i∈I

ai0+aTi x⋆U
bi0+bTi x⋆U

where x⋆U is

an optimal solution of RFP[U ]. Then % loss

for each Γ is Z⋆−Ẑ
Z⋆ × 100%.

3.5.1.3 Solution Analysis A salient feature of the unconstrained robust solutions in

our case study is that, under both uncertainty sets Ua and Uab∝ , the robust optimal solution

contains more variables with xj = 1 as Γi increases, see Figure 10. For example, under Ua,

each increase in Γi results in roughly 10 more variables included in the optimal solution.

With Γi = 0, the optimal solution contains more variables from the highest 2 revenue classes,

and as uncertainty increases, more choices from lower revenue classes become part of the

solution. This can be explained by observing that, with increasing uncertainty, the Γi most

favorable products are the ones with their coefficients changed by uncertainty. Hence, the

reduction in preference and/or revenue brings these products more in line with the lesser

revenue products, which then become part of the optimal solution.
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However, somewhat counter-intuitively, given a cardinality size of 13, the optimal solu-

tions (both nominal and robust) consist of variables mostly from the second-highest revenue

tier, $1.89. When the cardinality size is expanded to 39, more variables from both the first

and second highest revenue tiers become part of the optimal solutions. An examination of

the data shows that the highest revenue tier items are generally (significantly) less-preferred

(they have smaller values of preference ρ) than the more reasonably priced second tier items,

hence the second tier items show themselves to be superior generators of revenue.

Figure 10: Size of the unconstrained robust optimal assortment versus the the level of

uncertainty (Γ).

The outlined observations for (either constrained or unconstrained) multi-class determin-

istic and robust assortment optimizations can be compared to the previous results in the

literature for unconstrained single-class deterministic and robust assortment optimizations.

For example, assuming (without loss of generality) that the revenues are ordered such that

r1 ⩾ r2 ⩾ . . . rn, Talluri and Van Ryzin [90] show that the unconstrained single-class nominal

assortment optimization problems under multi-nominal logit choice model are “revenue-

ordered assortments”, i.e., there exists a set of optimal solutions of the form {1,2, . . . , j}, for

some index j. Rusmevichientong and Topaloglu [81] derive a similar result for the robust

case, where uncertainty is limited to customer preferences.
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3.5.2 Synthetic instances

We now conduct extensive computational experiments on randomly generated instances

to gain insights into the performance of the disjoint and joint MILP reformulations pro-

vided in Section 3.4. Additionally, we evaluate the nominal solution in a robust setting,

and vice versa, to determine the “price of robustness.” In Section 3.5.2.1, we outline the

structure and parameters of the computational experiments. The price of robustness is stud-

ied in Section 3.5.2.2. We describe the results for the disjoint and joint uncertainty sets in

Section 3.5.2.3 and Section 3.5.2.4, respectively.

3.5.2.1 Test instances We chose combinations of m ∈ {1,3,5} and n ∈ {50,100,150}.

The uncertainty parameters Γai ,Γ
b
i were chosen based on m,n, and the relevant uncertainty

set U , and these choices are given in the appropriate section below. For each choice of m,

n, Γ and a particular constraint type (detailed below), five instances were sampled and the

results averaged. The instances were each given a time limit of 1 hour (3600 seconds).

The LP relaxation quality, denoted by R in the following tables, is computed by
Z∗LP

Z∗ ,

where Z∗
LP is the optimal solution of the LP continuous relaxation, and Z∗ is the optimal

integer solution (if Z∗ cannot be found within the time limit by any solution approach,

then the best-known integer solution is used in place of Z∗). Moreover, the optimality gap

is denoted by G and is computed by UB−LB
LB , where UB and LB are the upper- and the

lower-bound on the optimal objective function value, respectively.

Coefficients sampling. The coefficients aij and bij were each sampled from a (discrete)

U[0,20] distribution, except for bi0 which was sampled from a U[1,20]. Subsequently, each

daij and dbij were sampled from U[0, ⌊1
2aij⌋] or U[0, ⌊1

2bij⌋], respectively. Note that these

parameter choices satisfy Assumptions 1 and 2.

Constraints. Three different constraint types were used: unconstrained (denoted by

U in the following tables), cardinality-constrained (C), and knapsack-constrained (K). The

cardinality constraint is of the equality type so that ∑j∈J xj = k, where k = 2
5n. The knapsack

constraint was of the inequality type, structured so that ∑j∈J kjxj ⩽ k, where kj was sampled

from a U[1,10] distribution, and k = 2n.
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Linearization Bounds. For MILP1[Uab], note that ωLi = 0 and ωUi = 1 are valid bounds.

Similar (not necessarily tight) lower and upper bound computations were performed for the

other linearization procedures.

3.5.2.2 The price of robustness Herein, we demonstrate the value of the robust ap-

proach; that is, we show that ignoring the possibility of uncertain data can be more costly

than being conservative. In Figures 11 and 12, the “small” daij and dbij were sampled using

the procedure described in Section 3.5.2.1. The “large” daij and dbij in these two figures were

sampled by instead letting daij and dbij be distributed as U[⌊1
2aij⌋, aij] and U[⌊1

2bij⌋, bij], re-

spectively (that is, a higher level of uncertainty). Each sub-figure is comparable to the one

directly above/below it.

Figure 11 exhibits the benefit from applying the robust approach. It shows that under

the worst-case scenario in the robust setting the objective function value attained by an op-

timal nominal solution can be rather poor and thus, illustrates how much the decision-maker

can gain by taking into account the data uncertainty. More precisely, Figure 11 depicts the

average decrease in the robust objective function value for m ∈ {1,3,5}, by inserting optimal

x from the associated nominal problem into the robust problem. We observe that in case

of large d, especially for the unconstrained and knapsack-constrained cases, inserting the

nominal solution into the robust problem can cause a loss of up to 80%. This observation

holds, albeit with scaled-down percentages, for the smaller d values as well.

Therefore, we conclude that the decision-maker has more to lose by failing to account for

uncertainty than she does by being over-conservative. Simply speaking, if the decision-maker

is overly conservative (chooses the Γi, for all i ∈ I, too large), then the loss on the objective

function is outweighed by the amount she would lose by incorrectly ignoring the uncertainty

(i.e., assuming Γi=0 for all i ∈ I). These results are similar to those of robust linear problems

- see, e.g., [12].

Figure 12 illustrates the opposite situation. That is, it shows how much the decision-

maker can gain by having precise information about the problem data parameters. Specif-

ically, Figure 12 depicts the average decrease in the nominal objective function value for

m ∈ {1,3,5}, by inserting robust optimal solution x into the nominal problem. This inser-
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tion causes a loss of up to 50% in the objective function value of the nominal problem for

large d in case of unconstrained and knapsack-constrained problems.

Figure 11: Average decrease in the robust optimal objective function value by plugging a

nominal optimal solution into the robust problem for synthetic data and n = 150. Specif-

ically, let Z⋆
U denote the optimal objective function value of RFP[U ]. Additionally, let

ẐU = min
(ã,̃b)∈U

∑
i∈I

ai0+ãTi x⋆

bi0+̃bTi x⋆
where x⋆ is a nominal optimal solution. Then % loss for each Γ

is the average of
Z⋆U−ẐU
Z⋆U

⋅ 100 over five test instances and three ratio sizes m ∈ {1,3,5}.

Figure 12: Average decrease in the nominal optimal objective function value by plugging

a robust optimal solution into the nominal problem for for synthetic data and n = 150.

Specifically, let Z⋆ denote the optimal objective function value of FP. Additionally, let Ẑ =

∑
i∈I

ai0+aTi x⋆U
bi0+bTi x⋆U

where x⋆U is an optimal solution of RFP[U ]. Then % loss for each Γ is the average

of Z⋆−Ẑ
Z⋆ ⋅ 100 over five test instances and three ratio sizes m ∈ {1,3,5}.
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3.5.2.3 Disjoint reformulations The results for the disjoint uncertainty set Uab and

n ∈ {50,100,150} are presented in Tables 6-8, for single-ratio (m = 1) and multiple-ratio

(m ∈ {3,5}) problems. The uncertainty parameters were chosen so that Γai = Γbi for all i ∈ I,

as stated in the tables. Observe that, in general, single-ratio problem is easy to solve for

any of the constraint types. In particular, the binary reformulation MILPlog
2′ [Uab] (recall

Section 3.4.3) can handle the single-ratio setting, in that its average solution times for m = 1

in Tables 6-8 are the same as those for the nominal problem FP4′ .

As one would expect, increasing either m or n increases the difficulty of the fractional

problem under disjoint uncertainty. In the nominal case (see, e.g., [92]), FP1 generally

outperforms the FP2 across all constraint types for the multiple-ratio problem, and we find

that this result carries over into the robust case. Specifically, for m = 3 and m = 5 in

Tables 7 and 8, MILP1[Uab] solves more than half of unconstrained and knapsack instances

to optimality, while MILP2[Uab] solves almost none.

However, the binarized MILPlog
2 [Uab] outperforms both MILP1[Uab] and MILP2[Uab]. In

Table 8, note that when m = 5, MILPlog
2′ [Uab] solves all except one of the unconstrained and

knapsack instances to optimality, while MILPlog
2 [Uab] all solves the cardinality-constrained

instances to optimality.

For the multiple-ratio problem, the cardinality-constrained problems seem to be the most

computationally difficult (when the best solution approach is chosen for each constraint type),

although this observation holds for the nominal case as well - see, for example the m = 5 case

under constraint C in Table 8. On the other hand, the unconstrained problem is sometimes

more difficult than the knapsack-constrained problem (as when Γi = 1,m = 5 in Table 6),

though not universally so (e.g., Γi = 2,m = 5 in Table 6). Finally, we note that there appears

to be no particular pattern or relationship between the level of uncertainty Γai ,Γ
b
i and the

computational difficulty for any of the parameter settings.

To summarize these results, we observe that MILP1[Uab] tends to have the best contin-

uous relaxation bound. This observation is consistent with the earlier observations in the

literature that the corresponding nominal reformulation FP1 typically has the best relax-

ation quality; see, [16, 62]. Nonetheless, this does not always (or even often) lead to superior

solution times mainly due to the large size of the reformulation. In particular, for a small
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number of variables (Table 6), it appears that MILPlog
2 [Uab] is the best choice for disjoint

cardinality-constrained problems, while MILP1[Uab] is usually better for unconstrained or

knapsack-constrained models. However, as the number of variables increases (Table 8), the

logarithmic reformulation MILPlog
2′ [Uab] is a better choice for unconstrained and knapsack-

constrained problems, although it appears that the binarized reformulations have weaker

relaxation qualities than the corresponding original MILPs.

3.5.2.4 Joint reformulations Results for joint uncertainty sets Uab, Uab= and Uab∝ are

given in Tables 9-11 for n ∈ {50,100,150}. These tables also include the respective results

of the most efficient reformulation for the disjoint uncertainty, i.e., MILPlog
2′ [Uab] provided

in Tables 6-8, to compare the difficulty of solving RFP[U] under disjoint versus joint uncer-

tainty sets.

The uncertainty parameters were chosen based upon those chosen for the disjoint case.

With Γai ,Γ
b
i as the relevant disjoint uncertainty parameters, we have: for Uab that Γi = 2 Γai ,

for Uab= and Uab∝ that Γi = Γai , and for Ua that Γ =m Γai for problems with similar m,n.

Observe that MILP2[U] performs similarly (with respect to solution times/optimality

gap) on both the disjoint and joint uncertainty sets, by comparing the MILP2[Uab] of Table

6 with the relevant columns of Table 9, and conducting similar comparisons for columns of

the 100 and 150 variable tables. However, for the disjoint uncertainty case we were able to

use a binary reformulation (MILPlog
2′ [Uab]) to obtain superior solution times. Thus, the joint

problems are generally more computationally difficult than the disjoint due to the absence

of such a binary reformulation for them, which can be seen by comparing the first column

of Tables 9-11 with the other columns.

Though the multiple-ratio problem utilized the entire hour of solution time allowed

for most joint uncertainty sets, the single-ratio problem was solved quickly in most cases.

Additionally, for the multiple-ratio problem, Ua remains tractable for unconstrained and

knapsack-constrained problems. In these two special cases, MILP[Ua] typically solved the

joint problem to optimality in a similar time as MILPlog
2 [Uab] solved the disjoint instance.

Finally, we observe that the cardinality constraint is universally difficult (as in the disjoint

case) for all multiple-ratio instances with the joint uncertainty sets.
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3.6 Concluding remarks

This chapter addresses single- and multiple-ratio RFPs defined as the robust counterparts

of the fractional 0-1 programming problems (FPs) under various disjoint and joint uncer-

tainty sets. We demonstrate that single-ratio RFP, contrary to its deterministic counterpart,

is NP -hard for a general polyhedral uncertainty set. However, if the uncertainties are in the

form of the budgeted uncertainty sets, then we develop polynomial-time solution methods

for single-ratio RFP provided that the nominal problem is polynomial-time solvable.

In particular, for the disjoint uncertainty set we propose an approach to solve single-ratio

RFP by calling at most (n+1)2 instances of FP. Moreover, in the case of joint uncertainty sets

we show that single-ratio RFP can be solved by solving a polynomial number of instances

of a linear binary problem. Therefore, if the latter admits a specialized polynomial-time so-

lution algorithm, then single-ratio RFP under dis/joint uncertainty sets is polynomial-time

solvable, as well.

In case of multiple-ratio RFPs, we exploit the structure of the budgeted dis/joint uncer-

tainty sets in order to propose various MILPs to solve them. Particularly, based on our exten-

sive computational experiments it is noted that RFPs are more challenging to solve under the

joint sets than the disjoint one, as the former cannot take advantage of the binary-expansion

technique. Indeed, it appears that as the size of the problem increases, the binarized formu-

lations are often a better choice for the robust problem under the disjoint uncertainty set.

We also explore the value of the robust optimal solution for instances with both the real

and synthetic data and find that ignoring the data uncertainty can lead to poor decisions.

These results coupled with the insights on the selection of budget(s) of uncertainties can

provide guidance to consider the suitable solution method and level of uncertainty in practice.

74



Table 6: Results for disjoint reformulations. Average time (T) in seconds with the number

(#) of instances solved within default optimality gap 0.01, and the average remaining opti-

mality gap (G) along with the average relaxation quality (R) across instances for n = 50. In

each row, among the solution methods that solve the most number of instances to optimality,

the best average time and the best average gap (if #< 5) are in bold.

n = 50 Cons. FP4′ MILP1[Uab] MILP2[Uab] MILPlog
2 [Uab] MILPlog

2′ [Uab]
m = 1 type T # G R T # G R T # G R T # G R T # G R

U 0.1 5 0.00 1.0 0.0 5 0.00 1.0 0.3 5 0.00 10.8 0.1 5 0.00 12.0 0.1 5 0.00 1.0

Γai = Γbi = 0 C 0.2 5 0.00 1.0 1.6 5 0.00 1.9 0.3 5 0.00 16.8 0.1 5 0.00 17.1 0.1 5 0.00 1.9

K 0.1 5 0.00 1.0 0.0 5 0.00 1.0 0.3 5 0.00 9.3 0.1 5 0.00 9.9 0.0 5 0.00 1.0

U 0.2 5 0.00 1.2 0.1 5 0.00 1.0 0.9 5 0.00 16.0 0.2 5 0.00 17.2 0.2 5 0.00 1.0

Γai = Γbi = 1 C 0.2 5 0.00 1.2 5.1 5 0.00 1.7 0.7 5 0.00 26.0 0.2 5 0.00 27.6 0.1 5 0.00 1.7

K 0.0 5 0.00 1.4 0.1 5 0.00 1.0 0.4 5 0.00 23.0 0.1 5 0.00 27.2 0.1 5 0.00 1.0

U 0.1 5 0.00 1.5 0.1 5 0.00 1.0 0.8 5 0.00 19.4 0.2 5 0.00 21.7 0.1 5 0.00 1.0

Γai = Γbi = 2 C 0.2 5 0.00 1.2 0.8 5 0.00 1.4 0.7 5 0.00 16.4 0.2 5 0.00 16.8 0.1 5 0.00 1.4

K 0.1 5 0.00 1.4 0.1 5 0.00 1.0 0.4 5 0.00 13.8 0.2 5 0.00 14.8 0.1 5 0.00 1.0

U 0.1 5 0.00 1.6 0.1 5 0.00 1.0 0.7 5 0.00 21.2 0.2 5 0.00 24.7 0.1 5 0.00 1.0

Γai = Γbi = 5 C 0.2 5 0.00 1.5 2.1 5 0.00 1.4 0.6 5 0.00 19.6 0.2 5 0.00 20.0 0.1 5 0.00 1.4

K 0.1 5 0.00 1.9 0.1 5 0.00 1.0 0.4 5 0.00 14.8 0.1 5 0.00 15.5 0.1 5 0.00 1.0

U 0.1 5 0.00 1.6 0.1 5 0.00 1.0 0.5 5 0.00 23.3 0.2 5 0.00 28.0 0.1 5 0.00 1.0

Γai = Γbi = 10 C 0.2 5 0.00 1.7 4.9 5 0.00 2.2 0.7 5 0.00 32.6 0.2 5 0.00 34.6 0.1 5 0.00 2.2

K 0.0 5 0.00 1.5 0.0 5 0.00 1.0 0.5 5 0.00 10.4 0.2 5 0.00 10.6 0.0 5 0.00 1.0

Average 0.1 5.0 0.00 1.4 1.0 5.0 0.00 1.3 0.5 5.0 0.00 18.2 0.2 5.0 0.00 19.8 0.1 5.0 0.00 1.3

m = 3 T # G R T # G R T # G R T # G R T # G R

U 0.6 5 0.00 1.5 0.3 5 0.00 1.5 2,223.4 3 0.23 18.7 0.5 5 0.00 23.4 0.4 5 0.00 1.5

Γai = Γbi = 0 C 1.0 5 0.00 1.2 1,798.0 4 0.02 3.1 3,600.0 0 1.07 26.4 1.0 5 0.00 27.8 0.9 5 0.00 3.1

K 0.4 5 0.00 1.5 0.2 5 0.00 1.5 1,324.4 4 0.07 16.6 0.2 5 0.00 19.9 0.3 5 0.00 1.5

U 0.4 5 0.00 2.2 1.1 5 0.00 1.8 3,600.0 0 0.52 28.5 2.0 5 0.00 34.4 1.2 5 0.00 1.8

Γai = Γbi = 1 C 0.4 5 0.00 1.2 143.6 5 0.00 2.6 3,600.0 0 0.77 41.4 0.7 5 0.00 48.7 0.9 5 0.00 2.6

K 0.4 5 0.00 1.9 2.0 5 0.00 1.6 2,171.2 2 0.41 19.6 2.0 5 0.00 22.7 1.3 5 0.00 1.6

U 0.3 5 0.00 2.3 0.6 5 0.00 1.6 2,972.0 1 0.56 34.7 2.4 5 0.00 44.5 1.4 5 0.00 1.6

Γai = Γbi = 2 C 0.8 5 0.00 1.3 529.6 5 0.00 2.2 3,600.0 0 0.84 19.4 1.8 5 0.00 19.6 2.0 5 0.00 2.2

K 0.3 5 0.00 2.1 2.7 5 0.00 1.5 1,170.7 4 0.15 19.6 2.9 5 0.00 21.2 2.3 5 0.00 1.5

U 0.4 5 0.00 2.2 7.7 5 0.00 1.5 2,218.2 2 0.43 27.3 2.2 5 0.00 33.5 1.1 5 0.00 1.5

Γai = Γbi = 5 C 0.7 5 0.00 1.6 848.0 4 0.01 2.6 3,600.0 0 0.91 44.1 3.1 5 0.00 48.3 12.6 5 0.00 2.6

K 0.6 5 0.00 2.6 13.7 5 0.00 1.6 2,980.0 2 0.24 26.7 3.9 5 0.00 31.4 2.3 5 0.00 1.6

U 0.4 5 0.00 2.7 0.5 5 0.00 1.7 2,920.0 1 0.47 32.8 2.8 5 0.00 40.8 1.3 5 0.00 1.7

Γai = Γbi = 10 C 0.8 5 0.00 1.8 632.0 5 0.00 2.4 3,600.0 0 1.00 28.2 6.7 5 0.00 28.7 29.6 5 0.00 2.4

K 0.6 5 0.00 2.3 0.7 5 0.00 1.5 2,340.3 3 0.18 16.0 2.2 5 0.00 17.2 0.8 5 0.00 1.5

Average 0.5 5.0 0.00 1.9 265.4 4.9 0.00 1.9 2,794.7 1.5 0.52 26.7 2.3 5.0 0.00 30.8 3.9 5.0 0.00 1.9

m = 5 T # G R T # G R T # G R T # G R T # G R

U 3.3 5 0.00 1.9 1.0 5 0.00 1.9 2,883.6 1 0.67 24.0 7.7 5 0.00 30.5 8.0 5 0.00 1.9

Γai = Γbi = 0 C 57.8 5 0.00 1.2 3,600.0 0 0.16 3.9 3,600.0 0 1.56 46.5 12.5 5 0.00 51.8 20.5 5 0.00 3.9

K 4.8 5 0.00 1.8 1.2 5 0.00 1.8 2,884.2 1 0.55 18.7 10.7 5 0.00 20.9 10.9 5 0.00 1.8

U 8.4 5 0.00 2.4 76.3 5 0.00 1.9 2,360.0 2 0.77 34.7 816.3 4 0.00 47.2 307.0 5 0.00 1.9

Γai = Γbi = 1 C 26.1 5 0.00 1.4 3,080.0 1 0.09 2.6 3,600.0 0 1.11 26.5 14.4 5 0.00 27.2 24.0 5 0.00 2.6

K 9.2 5 0.00 2.5 342.2 5 0.00 1.9 2,948.0 1 0.55 22.3 216.8 5 0.00 25.4 132.2 5 0.00 1.9

U 7.8 5 0.00 2.4 74.4 5 0.00 1.8 2,922.0 1 0.86 29.2 645.0 5 0.00 37.6 111.6 5 0.00 1.8

Γai = Γbi = 2 C 18.7 5 0.00 1.4 3,600.0 0 0.08 3.1 3,600.0 0 1.20 33.6 22.4 5 0.00 36.8 67.3 5 0.00 3.1

K 16.7 5 0.00 2.7 906.8 4 0.01 1.9 3,600.0 0 0.98 26.0 1,629.0 3 0.01 27.9 297.0 5 0.00 1.9

U 4.7 5 0.00 2.9 9.3 5 0.00 1.8 3,600.0 0 0.91 30.4 273.6 5 0.00 37.8 52.2 5 0.00 1.8

Γai = Γbi = 5 C 25.5 5 0.00 1.6 3,600.0 0 0.08 2.6 3,600.0 0 1.22 34.3 74.8 5 0.00 37.3 513.0 5 0.00 2.6

K 2.9 5 0.00 2.1 0.7 5 0.00 1.5 1,521.6 3 0.21 23.6 42.9 5 0.00 28.0 25.4 5 0.00 1.5

U 4.2 5 0.00 2.6 22.4 5 0.00 1.7 2,244.0 2 0.46 28.5 264.6 5 0.00 36.6 59.6 5 0.00 1.7

Γai = Γbi = 10 C 17.7 5 0.00 1.8 3,600.0 0 0.11 3.5 3,600.0 0 1.36 40.3 94.4 5 0.00 43.5 751.6 5 0.00 3.5

K 3.3 5 0.00 2.8 0.6 5 0.00 1.8 3,000.0 2 0.30 22.6 176.2 5 0.00 24.1 51.0 5 0.00 1.8

Average 14.1 5.0 0.00 2.1 1,261.0 3.3 0.03 2.2 3,064.2 0.9 0.85 29.4 286.8 4.8 0.00 34.2 162.1 5.0 0.00 2.2
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Table 7: Results for disjoint reformulations. Average time (T) in seconds with the number

(#) of instances solved within default optimality gap 0.01, and the average remaining opti-

mality gap (G) along with the average relaxation quality (R) across instances for n = 100. In

each row, among the solution methods that solve the most number of instances to optimality,

the best average time and the best average gap (if #< 5) are in bold.

n = 100 Cons. FP4′ MILP1[Uab] MILP2[Uab] MILP
log
2 [Uab] MILP

log
2′ [Uab]

m = 1 type T # G R T # G R T # G R T # G R T # G R
U 0.3 5 0.00 1.0 0.1 5 0.00 1.0 0.5 5 0.00 20.9 0.2 5 0.00 24.0 0.1 5 0.00 1.0

Γai = Γbi = 0 C 0.2 5 0.00 1.0 3,048.0 1 0.08 2.8 1.0 5 0.00 64.9 0.2 5 0.00 74.4 0.1 5 0.00 2.8
K 0.0 5 0.00 1.0 0.0 5 0.00 1.0 0.6 5 0.00 14.4 0.2 5 0.00 15.0 0.0 5 0.00 1.0
U 0.1 5 0.00 1.2 0.1 5 0.00 1.0 1.4 5 0.00 25.4 0.3 5 0.00 31.8 0.2 5 0.00 1.0

Γai = Γbi = 2 C 0.2 5 0.00 1.1 2,942.0 1 0.18 2.7 13.1 5 0.00 64.8 0.3 5 0.00 69.5 0.2 5 0.00 2.7
K 0.1 5 0.00 1.2 0.1 5 0.00 1.0 1.2 5 0.00 16.1 0.1 5 0.00 16.6 0.1 5 0.00 1.0
U 0.1 5 0.00 1.5 0.1 5 0.00 1.0 1.2 5 0.00 34.0 0.3 5 0.00 42.5 0.1 5 0.00 1.0

Γai = Γbi = 4 C 0.2 5 0.00 1.2 2,891.2 1 0.13 2.3 70.9 5 0.00 80.1 0.4 5 0.00 87.5 0.1 5 0.00 2.3
K 0.1 5 0.00 1.5 0.1 5 0.00 1.1 1.2 5 0.00 23.5 0.2 5 0.00 25.3 0.2 5 0.00 1.1
U 0.1 5 0.00 1.6 0.1 5 0.00 1.0 1.0 5 0.00 39.8 0.3 5 0.00 46.4 0.2 5 0.00 1.0

Γai = Γbi = 10 C 0.2 5 0.00 1.3 3,600.0 0 0.14 2.4 125.6 5 0.00 96.5 0.3 5 0.00 111.1 0.3 5 0.00 2.4
K 0.0 5 0.00 1.4 0.1 5 0.00 1.0 1.2 5 0.00 19.2 0.2 5 0.00 19.9 0.1 5 0.00 1.0
U 0.1 5 0.00 1.4 0.1 5 0.00 1.0 1.2 5 0.00 31.3 0.3 5 0.00 40.4 0.1 5 0.00 1.0

Γai = Γbi = 20 C 0.2 5 0.00 1.5 3,600.0 0 0.13 2.9 14.4 5 0.00 74.8 0.4 5 0.00 80.8 0.3 5 0.00 2.9
K 0.1 5 0.00 1.6 0.0 5 0.00 1.0 1.1 5 0.00 35.2 0.2 5 0.00 39.0 0.1 5 0.00 1.0

Average 0.1 5.0 0.00 1.3 1,072.1 3.5 0.04 1.5 15.7 5.0 0.00 42.7 0.3 5.0 0.00 48.3 0.1 5.0 0.00 1.5
m = 3 T # G R T # G R T # G R T # G R T # G R

U 1.0 5 0.00 1.9 6.4 5 0.00 1.9 3,600.0 0 2.48 31.5 1.5 5 0.00 35.9 0.9 5 0.00 1.9

Γai = Γbi = 0 C 2.2 5 0.00 1.2 3,600.0 0 0.49 3.3 3,600.0 0 4.22 35.0 1.8 5 0.00 35.7 1.5 5 0.00 3.3
K 0.4 5 0.00 1.7 2.0 5 0.00 1.7 3,160.0 1 1.30 31.5 1.0 5 0.00 38.4 0.6 5 0.00 1.7
U 0.4 5 0.00 2.1 4.6 5 0.00 1.7 3,600.0 0 2.28 47.1 4.1 5 0.00 65.4 1.3 5 0.00 1.7

Γai = Γbi = 2 C 3.4 5 0.00 1.2 3,600.0 0 0.46 3.5 3,600.0 0 4.84 66.3 4.2 5 0.00 69.4 5.0 5 0.00 3.5
K 0.4 5 0.00 2.0 17.5 5 0.00 1.6 3,600.0 0 1.99 32.6 3.3 5 0.00 39.2 2.3 5 0.00 1.6
U 0.7 5 0.00 2.5 981.4 5 0.00 1.8 3,600.0 0 3.62 48.5 9.0 5 0.00 61.3 4.8 5 0.00 1.8

Γai = Γbi = 4 C 1.9 5 0.00 1.3 3,600.0 0 0.36 2.7 3,600.0 0 4.40 60.1 5.3 5 0.00 67.1 5.1 5 0.00 2.7
K 1.0 5 0.00 2.7 1,656.0 5 0.00 2.0 3,600.0 0 3.46 31.6 17.3 5 0.00 32.8 7.8 5 0.00 2.0
U 0.5 5 0.00 2.4 47.4 5 0.00 1.6 3,600.0 0 3.35 54.2 6.7 5 0.00 73.9 2.4 5 0.00 1.6

Γai = Γbi = 10 C 5.2 5 0.00 1.4 3,600.0 0 0.33 2.9 3,600.0 0 4.92 86.6 11.6 5 0.00 100.2 407.9 5 0.00 2.9
K 0.3 5 0.00 2.1 0.5 5 0.00 1.4 3,600.0 0 1.42 41.1 2.4 5 0.00 50.4 0.8 5 0.00 1.4
U 0.9 5 0.00 2.8 11.2 5 0.00 1.7 3,600.0 0 4.42 55.7 7.3 5 0.00 68.3 3.3 5 0.00 1.7

Γai = Γbi = 20 C 1.4 5 0.00 1.6 3,600.0 0 0.32 2.8 3,600.0 0 5.44 63.6 30.4 5 0.00 65.8 1,273.2 5 0.00 2.8
K 0.5 5 0.00 2.3 724.9 4 0.00 1.8 3,600.0 0 2.84 28.9 5.9 5 0.00 31.0 2.2 5 0.00 1.8

Average 1.4 5.0 0.00 1.9 1,430.1 3.3 0.13 2.2 3,570.7 0.1 3.40 47.6 7.4 5.0 0.00 55.7 114.6 5.0 0.00 2.2
m = 5 T # G R T # G R T # G R T # G R T # G R

U 10.4 5 0.00 2.1 282.6 5 0.00 2.1 3,600.0 0 2.98 41.5 58.4 5 0.00 56.4 24.0 5 0.00 2.1

Γai = Γbi = 0 C 1,676.0 5 0.00 1.3 3,600.0 0 0.67 4.3 3,600.0 0 5.92 70.5 93.4 5 0.00 79.9 393.8 5 0.00 4.3
K 8.3 5 0.00 2.0 169.6 5 0.00 2.0 3,600.0 0 1.21 23.7 21.6 5 0.00 26.8 21.8 5 0.00 2.0
U 7.1 5 0.00 2.6 1,567.5 3 0.07 2.1 3,600.0 0 4.84 50.5 1,312.4 4 0.01 64.8 206.4 5 0.00 2.1

Γai = Γbi = 2 C 1,560.6 5 0.00 1.4 3,600.0 0 0.62 3.4 3,600.0 0 5.94 53.7 313.6 5 0.00 55.6 1,299.6 5 0.00 3.4
K 9.7 5 0.00 2.7 2,198.4 2 0.07 2.2 3,600.0 0 2.28 25.0 400.0 5 0.00 26.3 167.2 5 0.00 2.2
U 4.8 5 0.00 3.3 1,692.8 3 0.07 2.2 3,600.0 0 5.40 66.9 1,139.8 5 0.00 89.8 480.0 5 0.00 2.2

Γai = Γbi = 4 C 1,146.2 5 0.00 1.4 3,600.0 0 0.57 3.3 3,600.0 0 6.16 79.1 98.0 5 0.00 86.0 431.4 5 0.00 3.3
K 5.9 5 0.00 3.1 2,161.2 2 0.12 2.1 3,600.0 0 1.98 33.7 1,023.8 4 0.03 37.2 378.2 5 0.00 2.1
U 13.4 5 0.00 3.1 2,166.1 2 0.20 2.1 3,600.0 0 5.78 70.3 1,870.0 3 0.06 99.3 1,524.8 3 0.02 2.1

Γai = Γbi = 10 C 1,764.0 4 0.00 1.5 3,600.0 0 0.50 3.1 3,600.0 0 6.86 70.5 804.0 5 0.00 77.1 3,600.0 4 0.01 3.1
K 11.3 5 0.00 2.7 725.6 4 0.07 1.7 3,600.0 0 1.61 30.3 897.4 4 0.01 32.6 964.0 4 0.01 1.7
U 14.3 5 0.00 3.2 904.0 4 0.01 1.9 3,600.0 0 5.12 56.2 1,304.0 4 0.02 66.6 182.0 5 0.00 1.9

Γai = Γbi = 20 C 839.0 5 0.00 1.7 3,600.0 0 0.50 3.5 3,600.0 0 7.44 64.7 1,614.0 5 0.00 66.2 3,600.0 1 0.01 3.5
K 16.2 5 0.00 3.3 751.6 4 0.04 2.0 3,600.0 0 2.06 25.1 762.0 5 0.00 25.8 238.2 5 0.00 2.0

Average 472.5 4.9 0.00 2.4 2,041.3 2.3 0.23 2.5 3,600.0 0.0 4.37 50.8 780.8 4.6 0.01 59.4 900.8 4.5 0.00 2.5
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Table 8: Results for disjoint reformulations. Average time (T) in seconds with the number

(#) of instances solved within default optimality gap 0.01, and the average remaining opti-

mality gap (G) along with the average relaxation quality (R) across instances for n = 150. In

each row, among the solution methods that solve the most number of instances to optimality,

the best average time and the best average gap (if #< 5) are in bold.

n = 150 Cons. FP4′ MILP1[Uab] MILP2[Uab] MILPlog
2 [Uab] MILPlog

2′ [Uab]
m = 1 type T # G R T # G R T # G R T # G R T # G R

U 0.1 5 0.00 1.0 0.1 5 0.00 1.0 0.7 5 0.00 29.6 0.2 5 0.00 37.5 0.1 5 0.00 1.0

Γai = Γbi = 0 C 0.2 5 0.00 1.0 3,600.0 0 0.31 2.4 32.5 5 0.00 45.6 0.3 5 0.00 46.7 0.1 5 0.00 2.4

K 0.1 5 0.00 1.0 0.1 5 0.00 1.0 1.0 5 0.00 20.7 0.2 5 0.00 22.5 0.1 5 0.00 1.0

U 0.1 5 0.00 1.3 0.2 5 0.00 1.0 2.3 5 0.00 34.7 0.2 5 0.00 42.3 0.2 5 0.00 1.0

Γai = Γbi = 3 C 0.2 5 0.00 1.1 3,600.0 0 0.30 2.0 80.0 5 0.00 31.3 0.3 5 0.00 31.8 0.2 5 0.00 2.0

K 0.1 5 0.00 1.3 0.1 5 0.00 1.0 1.3 5 0.00 26.0 0.3 5 0.00 27.4 0.1 5 0.00 1.0

U 0.2 5 0.00 1.4 0.1 5 0.00 1.1 6.0 5 0.00 38.8 0.3 5 0.00 47.2 0.2 5 0.00 1.1

Γai = Γbi = 6 C 0.2 5 0.00 1.1 3,600.0 0 0.31 2.4 1,112.9 4 0.48 88.8 0.3 5 0.00 109.5 0.2 5 0.00 2.4

K 0.1 5 0.00 1.4 0.2 5 0.00 1.1 1.5 5 0.00 18.6 0.3 5 0.00 18.9 0.2 5 0.00 1.1

U 0.2 5 0.00 1.6 0.2 5 0.00 1.0 2.5 5 0.00 47.3 0.3 5 0.00 57.3 0.2 5 0.00 1.0

Γai = Γbi = 15 C 0.2 5 0.00 1.2 3,600.0 0 0.25 1.8 473.3 5 0.00 46.6 0.3 5 0.00 47.3 0.3 5 0.00 1.8

K 0.1 5 0.00 1.9 0.1 5 0.00 1.0 1.9 5 0.00 43.8 0.4 5 0.00 46.9 0.2 5 0.00 1.0

U 0.2 5 0.00 1.9 0.1 5 0.00 1.0 1.9 5 0.00 39.8 0.5 5 0.00 43.0 0.2 5 0.00 1.0

Γai = Γbi = 30 C 0.2 5 0.00 1.4 3,600.0 0 0.28 2.1 931.9 4 0.12 72.2 0.4 5 0.00 74.5 0.4 5 0.00 2.1

K 0.1 5 0.00 1.6 0.1 5 0.00 1.0 1.6 5 0.00 26.3 0.3 5 0.00 27.4 0.2 5 0.00 1.0

Average 0.2 5.0 0.00 1.4 1,200.1 3.3 0.10 1.4 176.7 4.9 0.04 40.7 0.3 5.0 0.00 45.3 0.2 5.0 0.00 1.4

m = 3 T # G R T # G R T # G R T # G R T # G R

U 0.7 5 0.00 1.8 721.0 4 0.01 1.8 3,600.0 0 3.62 46.0 0.8 5 0.00 62.3 0.7 5 0.00 1.8

Γai = Γbi = 0 C 4.9 5 0.00 1.2 3,600.0 0 0.99 5.1 3,600.0 0 9.66 118.6 4.2 5 0.00 141.2 3.2 5 0.00 5.1

K 0.5 5 0.00 1.7 3.1 5 0.00 1.7 3,600.0 0 2.86 38.9 0.9 5 0.00 46.4 0.8 5 0.00 1.7

U 0.5 5 0.00 2.3 450.2 5 0.00 1.8 3,600.0 0 5.54 69.9 7.0 5 0.00 92.7 4.1 5 0.00 1.8

Γai = Γbi = 3 C 3.1 5 0.00 1.2 3,600.0 0 0.81 3.9 3,600.0 0 9.36 109.8 7.4 5 0.00 122.7 30.8 5 0.00 3.9

K 0.5 5 0.00 2.4 929.3 4 0.02 1.9 3,600.0 0 4.94 48.0 7.4 5 0.00 52.2 5.2 5 0.00 1.9

U 0.7 5 0.00 2.8 1,660.5 3 0.04 2.0 3,600.0 0 6.62 70.6 11.5 5 0.00 89.2 5.4 5 0.00 2.0

Γai = Γbi = 6 C 8.8 5 0.00 1.3 3,600.0 0 0.68 3.1 3,600.0 0 8.40 56.2 6.1 5 0.00 57.4 29.6 5 0.00 3.1

K 0.9 5 0.00 2.4 1,472.3 3 0.04 1.8 3,600.0 0 4.28 38.5 12.5 5 0.00 43.0 6.9 5 0.00 1.8

U 0.5 5 0.00 2.9 2,164.4 2 0.04 1.8 3,600.0 0 7.84 91.2 20.0 5 0.00 122.4 13.7 5 0.00 1.8

Γai = Γbi = 15 C 6.3 5 0.00 1.4 3,600.0 0 0.59 2.9 3,600.0 0 9.58 62.3 13.0 5 0.00 64.0 49.9 5 0.00 2.9

K 0.8 5 0.00 2.8 2,160.5 2 0.10 1.9 3,600.0 0 5.98 45.1 30.0 5 0.00 47.7 16.5 5 0.00 1.9

U 0.9 5 0.00 2.7 721.5 4 0.05 1.7 3,600.0 0 6.72 58.7 119.8 5 0.00 69.0 30.0 5 0.00 1.7

Γai = Γbi = 30 C 3.7 5 0.00 1.5 3,600.0 0 0.58 3.1 3,600.0 0 11.48 65.1 22.8 5 0.00 66.2 1,448.6 5 0.00 3.1

K 0.8 5 0.00 2.7 730.0 4 0.06 1.6 3,600.0 0 4.68 47.2 55.4 5 0.00 53.8 204.1 5 0.00 1.6

Average 2.2 5.0 0.00 2.1 1,934.2 2.4 0.27 2.4 3,600.0 0.0 6.77 64.4 21.3 5.0 0.00 75.3 123.3 5.0 0.00 2.4

m = 5 T # G R T # G R T # G R T # G R T # G R

U 16.9 5 0.00 2.4 2,004.4 3 0.06 2.4 3,600.0 0 7.18 57.3 46.0 5 0.00 73.3 32.6 5 0.00 2.4

Γai = Γbi = 0 C 2,210.0 4 0.00 1.3 3,600.0 0 1.18 4.5 3,600.0 0 11.58 63.6 234.0 5 0.00 65.5 666.6 5 0.00 4.5

K 20.2 5 0.00 2.3 2,164.8 2 0.09 2.3 3,600.0 0 5.06 40.6 39.1 5 0.00 46.3 34.7 5 0.00 2.3

U 30.6 5 0.00 3.2 2,888.8 1 0.23 2.5 3,600.0 0 10.22 91.4 3,012.0 1 0.11 113.7 960.0 5 0.00 2.5

Γai = Γbi = 3 C 2,250.0 5 0.00 1.3 3,600.0 0 1.03 4.0 3,600.0 0 12.40 105.5 370.0 5 0.00 114.4 2,302.0 5 0.00 4.0

K 15.3 5 0.00 3.0 2,884.2 1 0.25 2.4 3,600.0 0 7.28 58.2 1,726.0 4 0.02 67.5 734.0 5 0.00 2.4

U 24.2 5 0.00 3.0 2,160.7 2 0.25 2.2 3,600.0 0 8.84 84.6 1,574.6 3 0.05 110.6 1,578.6 4 0.00 2.2

Γai = Γbi = 6 C 1,067.8 5 0.00 1.4 3,600.0 0 1.04 4.3 3,600.0 0 13.80 159.8 1,047.2 5 0.00 185.9 1,608.8 5 0.00 4.3

K 7.8 5 0.00 2.6 1,442.0 3 0.16 2.0 3,600.0 0 5.48 55.5 1,505.0 3 0.03 64.1 417.0 5 0.00 2.0

U 17.9 5 0.00 3.0 2,161.8 2 0.16 1.9 3,600.0 0 9.22 82.3 1,478.0 4 0.03 105.7 1,018.0 4 0.02 1.9

Γai = Γbi = 15 C 1,356.6 5 0.00 1.5 3,600.0 0 0.81 3.5 3,600.0 0 13.80 102.7 1,568.0 5 0.00 111.1 3,600.0 4 0.01 3.5

K 55.0 5 0.00 3.4 2,166.2 2 0.31 2.0 3,600.0 0 9.84 76.5 2,278.0 2 0.14 85.9 1,806.0 3 0.03 2.0

U 9.8 5 0.00 3.1 741.4 4 0.05 1.9 3,600.0 0 8.46 81.9 1,790.0 3 0.26 100.9 306.0 5 0.00 1.9

Γai = Γbi = 30 C 3,160.0 5 0.00 1.6 3,600.0 0 0.71 3.5 3,600.0 0 14.60 107.0 3,440.0 5 0.00 111.5 3,600.0 1 0.01 3.5

K 20.3 5 0.00 3.3 782.4 4 0.13 1.9 3,600.0 0 7.74 75.8 1,308.0 4 0.05 94.9 1,056.0 4 0.02 1.9

Average 684.1 4.9 0.00 2.4 2,493.1 1.6 0.43 2.8 3,600.0 0.0 9.70 82.8 1,427.7 3.9 0.05 96.8 1,314.7 4.3 0.01 2.8
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Table 9: Comparison of results for the best disjoint reformulation MILPlog
2′ [Uab] versus joint

reformulations (MILP2[Uab], MILP2[Uab= ], MILP2[Uab∝ ] and MILP[Ua]). Average time (T) in

seconds with the number (#) of instances solved within default optimality gap 0.01, and the

average remaining optimality gap (G) along with the average relaxation quality (R) across

instances for n = 50. We have: for Uab that Γi = 2 Γai , for Uab= and Uab∝ that Γi = Γai , and for

Ua that Γ =m Γai .

n = 50 Cons. MILPlog
2′ [Uab] MILP2[Uab] MILP2[Uab= ] MILP2[Uab∝ ] MILP[Ua]

m = 1 type T # G R T # G R T # G R T # G R T # G R

U 0.1 5 0.00 1.0 0.2 5 0.00 10.8 0.1 5 0.00 10.8 0.1 5 0.00 10.8 0.0 5 0.00 1.0
Γai = 0 C 0.1 5 0.00 1.9 0.3 5 0.00 16.8 0.3 5 0.00 16.8 0.3 5 0.00 16.8 1.6 5 0.00 1.9

K 0.0 5 0.00 1.0 0.3 5 0.00 9.3 0.2 5 0.00 9.3 0.3 5 0.00 9.3 0.0 5 0.00 1.0

U 0.2 5 0.00 1.0 0.7 5 0.00 16.2 0.6 5 0.00 15.7 0.7 5 0.00 14.9 0.1 5 0.00 1.0
Γai = 1 C 0.1 5 0.00 1.7 0.6 5 0.00 25.9 0.7 5 0.00 25.7 0.8 5 0.00 24.8 2.3 5 0.00 2.0

K 0.1 5 0.00 1.0 0.3 5 0.00 22.9 0.4 5 0.00 22.3 0.3 5 0.00 21.1 0.1 5 0.00 1.0

U 0.1 5 0.00 1.0 0.7 5 0.00 19.2 0.6 5 0.00 19.0 0.7 5 0.00 16.2 0.1 5 0.00 1.0
Γai = 2 C 0.1 5 0.00 1.4 0.7 5 0.00 16.2 0.6 5 0.00 15.7 0.7 5 0.00 15.1 0.5 5 0.00 1.6

K 0.1 5 0.00 1.0 0.4 5 0.00 13.7 0.4 5 0.00 13.6 0.4 5 0.00 12.6 0.0 5 0.00 1.0

U 0.1 5 0.00 1.0 0.7 5 0.00 20.4 0.7 5 0.00 21.2 0.7 5 0.00 18.5 0.1 5 0.00 1.0
Γai = 5 C 0.1 5 0.00 1.4 0.8 5 0.00 19.0 0.7 5 0.00 18.6 0.5 5 0.00 16.7 1.7 5 0.00 1.5

K 0.1 5 0.00 1.0 0.3 5 0.00 14.2 0.4 5 0.00 14.6 0.4 5 0.00 11.7 0.1 5 0.00 1.0

U 0.1 5 0.00 1.0 0.5 5 0.00 22.0 0.5 5 0.00 23.3 0.6 5 0.00 20.8 0.1 5 0.00 1.0
Γai = 10 C 0.1 5 0.00 2.2 0.7 5 0.00 31.6 0.7 5 0.00 30.3 0.9 5 0.00 26.8 2.3 5 0.00 2.2

K 0.0 5 0.00 1.0 0.4 5 0.00 10.0 0.4 5 0.00 10.4 0.4 5 0.00 8.7 0.0 5 0.00 1.0

Average 0.1 5.0 0.00 1.3 0.5 5.0 0.00 17.9 0.5 5.0 0.00 17.8 0.5 5.0 0.00 16.3 0.6 5.0 0.00 1.3

m = 3 T # G R T # G R T # G R T # G R T # G R

U 0.4 5 0.00 1.5 2,229.4 3 0.23 18.7 2,249.4 3 0.23 18.7 2,225.4 3 0.23 18.7 0.4 5 0.00 1.5
Γai = 0 C 0.9 5 0.00 3.1 3,600.0 0 1.07 26.4 3,600.0 0 1.07 26.4 3,600.0 0 1.07 26.4 1,898.0 4 0.02 3.1

K 0.3 5 0.00 1.5 1,324.4 4 0.07 16.6 1,324.4 4 0.07 16.6 1,324.3 4 0.07 16.6 0.3 5 0.00 1.5

U 1.2 5 0.00 1.8 3,600.0 0 0.53 28.6 3,600.0 0 0.77 27.7 3,600.0 0 0.43 26.0 0.4 5 0.00 1.7
Γai = 1 C 0.9 5 0.00 2.6 3,600.0 0 0.77 41.8 3,600.0 0 0.88 41.1 3,600.0 0 0.78 40.1 833.2 4 0.01 2.8

K 1.3 5 0.00 1.6 2,170.8 2 0.38 19.7 2,198.6 2 0.39 19.3 2,169.6 2 0.34 17.8 0.9 5 0.00 1.6

U 1.4 5 0.00 1.6 2,982.0 1 0.56 34.4 3,600.0 0 0.62 34.4 3,064.0 1 0.47 31.5 0.3 5 0.00 1.6
Γai = 2 C 2.0 5 0.00 2.2 3,600.0 0 0.85 18.9 3,600.0 0 0.97 18.8 3,600.0 0 0.85 18.1 1,420.0 5 0.00 2.4

K 2.3 5 0.00 1.5 1,202.7 4 0.14 19.4 2,194.6 3 0.24 18.9 1,204.8 4 0.11 17.5 0.4 5 0.00 1.4

U 1.1 5 0.00 1.5 2,214.3 2 0.40 26.1 2,420.3 2 0.52 27.3 2,340.3 2 0.40 24.7 0.7 5 0.00 1.6
Γai = 5 C 12.6 5 0.00 2.6 3,600.0 0 0.89 42.3 3,600.0 0 0.86 41.8 3,600.0 0 0.85 38.3 2,190.4 2 0.03 3.0

K 2.3 5 0.00 1.6 2,800.0 2 0.21 25.5 3,580.0 1 0.48 26.7 2,960.0 1 0.23 21.7 5.9 5 0.00 1.6

U 1.3 5 0.00 1.7 2,900.0 1 0.41 30.6 3,260.0 1 0.56 32.8 2,948.0 1 0.42 28.4 0.4 5 0.00 1.7
Γai = 10 C 29.6 5 0.00 2.4 3,600.0 0 0.97 26.9 3,600.0 0 1.17 27.1 3,600.0 0 0.81 22.7 1,242.0 5 0.00 2.6

K 0.8 5 0.00 1.5 2,040.2 3 0.16 15.2 2,880.3 1 0.37 16.0 2,360.2 3 0.16 14.3 0.5 5 0.00 1.6

Average 3.9 5.0 0.00 1.9 2,764.3 1.5 0.51 26.1 3,020.5 1.1 0.61 26.2 2,813.1 1.4 0.48 24.2 506.2 4.7 0.00 2.0

m = 5 T # G R T # G R T # G R T # G R T # G R

U 8.0 5 0.00 1.9 2,883.6 1 0.67 24.0 2,883.6 1 0.67 24.0 2,883.6 1 0.67 24.0 1.0 5 0.00 1.9
Γai = 0 C 20.5 5 0.00 3.9 3,600.0 0 1.56 46.7 3,600.0 0 1.56 46.7 3,600.0 0 1.56 46.7 3,600.0 0 0.16 3.9

K 10.9 5 0.00 1.8 2,884.2 1 0.55 18.7 2,884.2 1 0.55 18.7 2,884.2 1 0.55 18.7 1.2 5 0.00 1.8

U 307.0 5 0.00 1.9 2,390.0 2 0.75 34.7 2,374.0 2 0.74 34.4 2,390.0 2 0.69 32.2 10.6 5 0.00 2.0
Γai = 1 C 24.0 5 0.00 2.6 3,600.0 0 1.07 26.3 3,600.0 0 1.10 26.1 3,600.0 0 1.12 25.5 3,180.0 1 0.09 2.9

K 132.2 5 0.00 1.9 2,916.0 1 0.51 22.1 2,926.0 1 0.56 22.0 2,968.0 1 0.54 21.7 78.6 5 0.00 1.9

U 111.6 5 0.00 1.8 2,892.4 1 0.85 28.8 2,894.0 1 0.88 29.0 2,902.0 1 0.81 27.5 8.4 5 0.00 1.8
Γai = 2 C 67.3 5 0.00 3.1 3,600.0 0 1.18 32.9 3,600.0 0 1.14 32.7 3,600.0 0 1.18 31.0 3,600.0 0 0.10 3.4

K 297.0 5 0.00 1.9 3,600.0 0 0.97 25.3 3,600.0 0 0.94 25.4 3,600.0 0 0.96 24.1 114.2 5 0.00 2.0

U 52.2 5 0.00 1.8 3,600.0 0 0.89 29.1 3,600.0 0 0.98 30.4 3,600.0 0 0.82 26.4 2.5 5 0.00 2.0
Γai = 5 C 513.0 5 0.00 2.6 3,600.0 0 1.20 33.0 3,600.0 0 1.16 32.7 3,600.0 0 1.15 29.7 3,600.0 0 0.07 2.9

K 25.4 5 0.00 1.5 1,503.8 3 0.20 22.4 1,559.6 3 0.24 23.6 1,770.8 3 0.27 23.2 1.1 5 0.00 1.8

U 59.6 5 0.00 1.7 2,207.2 2 0.38 26.7 2,244.0 2 0.48 28.5 2,394.0 2 0.40 25.8 20.4 5 0.00 1.8
Γai = 10 C 751.6 5 0.00 3.5 3,600.0 0 1.28 38.6 3,600.0 0 1.22 38.4 3,600.0 0 1.14 32.8 3,600.0 0 0.10 3.5

K 51.0 5 0.00 1.8 2,880.0 2 0.27 21.1 3,020.0 2 0.31 22.6 3,600.0 0 0.36 20.3 0.8 5 0.00 1.9

Average 162.1 5.0 0.00 2.2 3,050.5 0.9 0.82 28.7 3,065.7 0.9 0.84 29.0 3,132.8 0.7 0.81 27.3 1,187.9 3.4 0.03 2.4
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Table 10: Comparison of results for the best disjoint reformulation MILPlog
2′ [Uab] versus joint

reformulations (MILP2[Uab], MILP2[Uab= ], MILP2[Uab∝ ] and MILP[Ua]). Average time (T) in

seconds with the number (#) of instances solved within default optimality gap 0.01, and the

average remaining optimality gap (G) along with the average relaxation quality (R) across

instances for n = 100. We have: for Uab that Γi = 2 Γai , for Uab= and Uab∝ that Γi = Γai , and for

Ua that Γ =m Γai .

n = 100 Cons. MILPlog
2′ [Uab] MILP2[Uab] MILP2[Uab= ] MILP2[Uab∝ ] MILP[Ua]

m = 1 type T # G R T # G R T # G R T # G R T # G R

U 0.1 5 0.00 1.0 0.4 5 0.00 20.9 0.5 5 0.00 20.9 0.4 5 0.00 20.9 0.1 5 0.00 1.0

Γai = 0 C 0.1 5 0.00 2.8 1.0 5 0.00 64.9 1.1 5 0.00 64.9 1.1 5 0.00 64.9 3,046.0 1 0.10 2.8

K 0.0 5 0.00 1.0 0.5 5 0.00 14.4 0.6 5 0.00 14.4 0.6 5 0.00 14.4 0.0 5 0.00 1.0

U 0.2 5 0.00 1.0 1.3 5 0.00 25.7 1.0 5 0.00 25.3 1.1 5 0.00 24.0 0.1 5 0.00 1.0

Γai = 2 C 0.2 5 0.00 2.7 27.8 5 0.00 65.0 8.3 5 0.00 63.8 21.7 5 0.00 63.4 3,600.0 1 0.16 3.0

K 0.1 5 0.00 1.0 1.1 5 0.00 16.9 1.0 5 0.00 15.9 1.0 5 0.00 15.1 0.1 5 0.00 1.0

U 0.1 5 0.00 1.0 1.1 5 0.00 34.3 1.3 5 0.00 33.6 1.1 4 0.28 30.9 0.1 5 0.00 1.0

Γai = 4 C 0.1 5 0.00 2.3 247.1 5 0.00 80.5 108.3 5 0.00 79.0 56.0 5 0.00 76.8 2,340.0 2 0.14 2.8

K 0.2 5 0.00 1.1 1.2 5 0.00 23.4 1.0 5 0.00 23.2 1.0 5 0.00 21.8 0.1 5 0.00 1.0

U 0.2 5 0.00 1.0 1.0 5 0.00 38.9 1.0 5 0.00 39.6 0.9 5 0.00 34.3 0.1 5 0.00 1.0

Γai = 10 C 0.3 5 0.00 2.4 128.3 5 0.00 95.7 42.2 5 0.00 93.1 81.9 5 0.00 86.7 3,600.0 0 0.21 3.1

K 0.1 5 0.00 1.0 1.2 5 0.00 18.6 1.1 5 0.00 18.9 1.1 5 0.00 17.2 0.0 5 0.00 1.0

U 0.1 5 0.00 1.0 1.3 5 0.00 30.1 1.3 5 0.00 31.3 1.2 5 0.00 29.6 0.1 5 0.00 1.0

Γai = 20 C 0.3 5 0.00 2.9 11.8 5 0.00 73.2 12.3 5 0.00 69.4 74.0 5 0.00 64.4 3,440.0 1 0.14 3.0

K 0.1 5 0.00 1.0 1.0 5 0.00 33.5 0.9 5 0.00 35.2 1.1 5 0.00 30.6 0.0 5 0.00 1.0

Average 0.1 5.0 0.00 1.5 28.4 5.0 0.00 42.4 12.1 5.0 0.00 41.9 16.3 4.9 0.02 39.7 1,068.5 3.7 0.05 1.6

m = 3 T # G R T # G R T # G R T # G R T # G R

U 0.9 5 0.00 1.9 3,600.0 0 2.48 31.5 3,600.0 0 2.50 31.5 3,600.0 0 2.48 31.5 6.4 5 0.00 1.9

Γai = 0 C 1.5 5 0.00 3.3 3,600.0 0 4.22 35.4 3,600.0 0 4.22 35.4 3,600.0 0 4.22 35.4 3,600.0 0 0.49 3.3

K 0.6 5 0.00 1.7 3,160.0 1 1.30 31.5 3,160.0 1 1.30 31.5 3,160.0 1 1.30 31.5 1.7 5 0.00 1.7

U 1.3 5 0.00 1.7 3,600.0 0 2.27 47.6 3,600.0 0 2.24 46.8 3,600.0 0 2.22 44.4 1.1 5 0.00 1.7

Γai = 2 C 5.0 5 0.00 3.5 3,600.0 0 4.76 66.2 3,600.0 0 4.84 65.8 3,600.0 0 4.94 64.9 3,600.0 0 0.54 4.1

K 2.3 5 0.00 1.6 3,600.0 0 1.96 33.0 3,600.0 0 1.90 32.1 3,600.0 0 1.89 31.8 1.8 5 0.00 1.6

U 4.8 5 0.00 1.8 3,600.0 0 3.54 48.3 3,600.0 0 3.60 48.0 3,600.0 0 3.14 44.5 8.9 5 0.00 1.9

Γai = 4 C 5.1 5 0.00 2.7 3,600.0 0 4.62 60.3 3,600.0 0 4.40 59.2 3,600.0 0 4.40 57.9 3,600.0 0 0.46 3.5

K 7.8 5 0.00 2.0 3,600.0 0 3.68 32.2 3,600.0 0 3.44 30.6 3,600.0 0 3.24 28.9 26.3 5 0.00 1.9

U 2.4 5 0.00 1.6 3,600.0 0 3.38 52.9 3,600.0 0 3.18 54.0 3,600.0 0 2.90 49.9 2.1 5 0.00 1.8

Γai = 10 C 407.9 5 0.00 2.9 3,600.0 0 5.02 85.1 3,600.0 0 4.80 83.0 3,600.0 0 4.84 79.7 3,600.0 0 0.46 3.4

K 0.8 5 0.00 1.4 3,600.0 0 1.43 39.8 3,600.0 0 1.48 41.1 3,600.0 0 1.56 40.3 0.6 5 0.00 1.6

U 3.3 5 0.00 1.7 3,600.0 0 4.26 53.1 3,600.0 0 4.40 55.7 3,600.0 0 4.00 50.5 3.3 5 0.00 1.9

Γai = 20 C 1,273.2 5 0.00 2.8 3,600.0 0 5.10 61.3 3,600.0 0 5.10 60.4 3,600.0 0 4.86 54.4 3,600.0 0 0.47 3.5

K 2.2 5 0.00 1.8 3,600.0 0 2.90 28.0 3,600.0 0 2.94 28.9 3,600.0 0 2.62 26.5 20.0 5 0.00 1.8

Average 114.6 5.0 0.00 2.2 3,570.7 0.1 3.39 47.1 3,570.7 0.1 3.36 46.9 3,570.7 0.1 3.24 44.8 1,204.8 3.3 0.16 2.4

m = 5 T # G R T # G R T # G R T # G R T # G R

U 24.0 5 0.00 2.1 3,600.0 0 2.98 41.5 3,600.0 0 2.98 41.6 3,600.0 0 2.98 41.6 262.8 5 0.00 2.1

Γai = 0 C 393.8 5 0.00 4.3 3,600.0 0 5.92 70.6 3,600.0 0 5.94 70.6 3,600.0 0 5.92 70.7 3,600.0 0 0.67 4.3

K 21.8 5 0.00 2.0 3,600.0 0 1.21 23.7 3,600.0 0 1.21 23.7 3,600.0 0 1.21 23.7 197.8 5 0.00 2.0

U 206.4 5 0.00 2.1 3,600.0 0 4.96 52.8 3,600.0 0 4.62 49.9 3,600.0 0 4.38 47.6 159.3 5 0.00 2.1

Γai = 2 C 1,299.6 5 0.00 3.4 3,600.0 0 5.64 53.3 3,600.0 0 5.80 53.3 3,600.0 0 5.66 52.6 3,600.0 0 0.68 3.9

K 167.2 5 0.00 2.2 3,600.0 0 2.12 25.1 3,600.0 0 2.14 24.5 3,600.0 0 2.04 23.5 773.6 4 0.01 2.2

U 480.0 5 0.00 2.2 3,600.0 0 5.40 67.2 3,600.0 0 5.66 67.7 3,600.0 0 4.84 58.4 10.3 5 0.00 2.1

Γai = 4 C 431.4 5 0.00 3.3 3,600.0 0 6.66 78.6 3,600.0 0 5.90 77.8 3,600.0 0 6.60 76.0 3,600.0 0 0.68 4.1

K 378.2 5 0.00 2.1 3,600.0 0 1.98 33.3 3,600.0 0 2.06 33.4 3,600.0 0 1.94 31.8 786.6 4 0.01 2.2

U 1,524.8 3 0.02 2.1 3,600.0 0 5.72 67.4 3,600.0 0 5.52 69.3 3,600.0 0 5.16 62.0 779.0 4 0.03 2.3

Γai = 10 C 3,600.0 4 0.01 3.1 3,600.0 0 6.16 68.4 3,600.0 0 6.14 68.0 3,600.0 0 6.66 64.6 3,600.0 0 0.65 4.0

K 964.0 4 0.01 1.7 3,600.0 0 1.56 27.5 3,600.0 0 1.66 28.8 3,600.0 0 1.58 26.7 723.7 4 0.01 1.9

U 182.0 5 0.00 1.9 3,600.0 0 4.70 53.4 3,600.0 0 4.86 56.2 3,600.0 0 4.36 50.5 180.9 5 0.00 2.2

Γai = 20 C 3,600.0 1 0.01 3.5 3,600.0 0 6.88 61.7 3,600.0 0 6.36 61.3 3,600.0 0 6.38 55.6 3,600.0 0 0.67 4.0

K 238.2 5 0.00 2.0 3,600.0 0 2.20 23.3 3,600.0 0 2.24 25.1 3,600.0 0 1.86 21.3 969.5 5 0.00 2.2

Average 900.8 4.5 0.00 2.5 3,600.0 0.0 4.27 49.9 3,600.0 0.0 4.21 50.1 3,600.0 0.0 4.10 47.1 1,522.9 3.1 0.23 2.8
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Table 11: Comparison of results for the best disjoint reformulation MILPlog
2′ [Uab] versus joint

reformulations (MILP2[Uab], MILP2[Uab= ], MILP2[Uab∝ ] and MILP[Ua]). Average time (T) in

seconds with the number (#) of instances solved within default optimality gap 0.01, and the

average remaining optimality gap (G) along with the average relaxation quality (R) across

instances for n = 150. We have: for Uab that Γi = 2 Γai , for Uab= and Uab∝ that Γi = Γai , and for

Ua that Γ =m Γai .

n = 150 Cons. MILPlog
2′ [Uab] MILP2[Uab] MILP2[Uab= ] MILP2[Uab∝ ] MILP[Ua]

m = 1 type T # G R T # G R T # G R T # G R T # G R

U 0.1 5 0.00 1.0 0.4 5 0.00 29.6 0.4 5 0.00 29.6 0.4 5 0.00 29.6 0.1 5 0.00 1.0

Γai = 0 C 0.1 5 0.00 2.4 30.5 5 0.00 45.6 170.6 5 0.00 45.6 30.5 5 0.00 45.6 3,600.0 0 0.32 2.4

K 0.1 5 0.00 1.0 1.0 5 0.00 20.7 0.9 5 0.00 20.7 0.9 5 0.00 20.7 0.1 5 0.00 1.0

U 0.2 5 0.00 1.0 2.8 5 0.00 35.4 3.7 5 0.00 33.5 3.1 5 0.00 32.7 0.2 5 0.00 1.0

Γai = 3 C 0.2 5 0.00 2.0 41.4 5 0.00 31.6 68.0 5 0.00 31.1 740.6 4 0.01 30.9 3,600.0 0 0.34 2.3

K 0.1 5 0.00 1.0 1.3 5 0.00 27.9 2.9 5 0.00 25.5 1.1 5 0.00 24.2 0.1 5 0.00 1.0

U 0.2 5 0.00 1.1 2.5 5 0.00 39.6 3.7 5 0.00 37.8 2.7 5 0.00 36.6 0.1 5 0.00 1.0

Γai = 6 C 0.2 5 0.00 2.4 790.4 4 0.70 90.2 1,451.6 3 0.07 87.7 751.8 4 0.30 86.1 3,600.0 0 0.34 3.1

K 0.2 5 0.00 1.1 1.7 5 0.00 19.4 2.3 5 0.00 18.1 1.3 5 0.00 16.9 0.1 5 0.00 1.0

U 0.2 5 0.00 1.0 2.1 5 0.00 46.6 3.0 5 0.00 46.8 1.7 5 0.00 42.0 0.1 5 0.00 1.0

Γai = 15 C 0.3 5 0.00 1.8 1,451.7 5 0.00 46.8 24.4 5 0.00 45.5 1,843.6 4 0.00 43.7 3,600.0 0 0.33 2.3

K 0.2 5 0.00 1.0 2.0 5 0.00 42.7 3.1 5 0.00 43.0 1.9 5 0.00 35.7 0.1 5 0.00 1.0

U 0.2 5 0.00 1.0 2.4 5 0.00 38.3 3.5 5 0.00 39.3 2.3 5 0.00 31.2 0.1 5 0.00 1.0

Γai = 30 C 0.4 5 0.00 2.1 690.5 5 0.00 71.2 823.7 4 0.46 68.7 1,539.2 3 0.70 63.9 3,600.0 0 0.40 2.4

K 0.2 5 0.00 1.0 2.1 5 0.00 25.3 3.4 5 0.00 26.2 1.5 5 0.00 23.7 0.1 5 0.00 1.0

Average 0.2 5.0 0.00 1.4 201.5 4.9 0.05 40.7 171.0 4.8 0.04 39.9 328.2 4.7 0.07 37.6 1,200.1 3.3 0.12 1.5

m = 3 T # G R T # G R T # G R T # G R T # G R

U 0.7 5 0.00 1.8 3,600.0 0 3.64 46.0 3,600.0 0 3.64 46.0 3,600.0 0 3.64 46.0 721.0 4 0.01 1.8

Γai = 0 C 3.2 5 0.00 5.1 3,600.0 0 9.66 118.7 3,600.0 0 9.74 118.7 3,600.0 0 9.66 118.7 3,600.0 0 1.00 5.1

K 0.8 5 0.00 1.7 3,600.0 0 2.86 38.9 3,600.0 0 2.86 38.9 3,600.0 0 2.86 38.9 2.9 5 0.00 1.7

U 4.1 5 0.00 1.8 3,600.0 0 5.26 71.9 3,600.0 0 5.18 67.4 3,600.0 0 4.94 64.8 46.5 5 0.00 1.8

Γai = 3 C 30.8 5 0.00 3.9 3,600.0 0 9.42 109.8 3,600.0 0 9.40 109.3 3,600.0 0 10.04 108.1 3,600.0 0 0.91 4.5

K 5.2 5 0.00 1.9 3,600.0 0 4.88 48.9 3,600.0 0 4.98 48.2 3,600.0 0 4.58 45.2 57.2 5 0.00 1.9

U 5.4 5 0.00 2.0 3,600.0 0 7.04 71.5 3,600.0 0 6.48 70.5 3,600.0 0 6.18 65.8 322.0 5 0.00 1.9

Γai = 6 C 29.6 5 0.00 3.1 3,600.0 0 8.92 56.1 3,600.0 0 8.04 55.5 3,600.0 0 8.44 55.3 3,600.0 0 0.83 3.6

K 6.9 5 0.00 1.8 3,600.0 0 4.67 38.8 3,600.0 0 4.26 37.7 3,600.0 0 3.90 35.0 375.8 5 0.00 1.8

U 13.7 5 0.00 1.8 3,600.0 0 7.52 89.6 3,600.0 0 7.40 91.2 3,600.0 0 6.28 73.3 10.9 5 0.00 1.8

Γai = 15 C 49.9 5 0.00 2.9 3,600.0 0 9.04 61.4 3,600.0 0 8.56 60.6 3,600.0 0 8.72 58.5 3,600.0 0 0.83 3.7

K 16.5 5 0.00 1.9 3,600.0 0 5.94 44.0 3,600.0 0 5.72 44.4 3,600.0 0 5.20 40.8 830.6 4 0.01 1.9

U 30.0 5 0.00 1.7 3,600.0 0 6.54 56.7 3,600.0 0 6.58 59.6 3,600.0 0 6.04 53.2 722.6 4 0.01 1.8

Γai = 30 C 1,448.6 5 0.00 3.1 3,600.0 0 9.40 62.6 3,600.0 0 9.50 62.0 3,600.0 0 9.48 58.2 3,600.0 0 0.80 3.8

K 204.1 5 0.00 1.6 3,600.0 0 5.32 45.3 3,600.0 0 5.02 47.2 3,600.0 0 4.52 41.7 761.3 4 0.00 1.8

Average 123.3 5.0 0.00 2.4 3,600.0 0.0 6.67 64.0 3,600.0 0.0 6.49 63.8 3,600.0 0.0 6.30 60.2 1,456.7 3.1 0.29 2.6

m = 5 T # G R T # G R T # G R T # G R T # G R

U 32.6 5 0.00 2.4 3,600.0 0 7.18 58.0 3,600.0 0 7.20 58.0 3,600.0 0 7.18 58.0 1,983.8 3 0.06 2.4

Γai = 0 C 666.6 5 0.00 4.5 3,600.0 0 11.58 63.6 3,600.0 0 11.58 63.6 3,600.0 0 11.58 63.7 3,600.0 0 1.18 4.5

K 34.7 5 0.00 2.3 3,600.0 0 5.08 40.6 3,600.0 0 5.32 40.6 3,600.0 0 5.08 40.6 2,164.6 2 0.09 2.3

U 960.0 5 0.00 2.5 3,600.0 0 10.08 95.2 3,600.0 0 9.84 91.5 3,600.0 0 9.24 83.4 2,172.4 2 0.14 2.5

Γai = 3 C 2,302.0 5 0.00 4.0 3,600.0 0 12.00 105.3 3,600.0 0 12.20 105.1 3,600.0 0 11.80 104.1 3,600.0 0 1.10 4.7

K 734.0 5 0.00 2.4 3,600.0 0 7.70 61.1 3,600.0 0 6.94 57.5 3,600.0 0 7.06 55.3 2,882.6 1 0.12 2.5

U 1,578.6 4 0.00 2.2 3,600.0 0 8.94 81.3 3,600.0 0 9.12 79.5 3,600.0 0 7.90 73.4 1,447.0 3 0.13 2.3

Γai = 6 C 1,608.8 5 0.00 4.3 3,600.0 0 13.40 159.5 3,600.0 0 12.40 159.0 3,600.0 0 13.60 156.1 3,600.0 0 1.22 5.3

K 417.0 5 0.00 2.0 3,600.0 0 6.10 55.7 3,600.0 0 5.44 54.8 3,600.0 0 5.16 53.3 943.3 4 0.06 2.1

U 1,018.0 4 0.02 1.9 3,600.0 0 8.44 77.1 3,600.0 0 8.76 77.6 3,600.0 0 8.44 70.9 809.2 4 0.09 2.1

Γai = 15 C 3,600.0 4 0.01 3.5 3,600.0 0 13.80 100.5 3,600.0 0 13.40 100.0 3,600.0 0 13.20 96.1 3,600.0 0 1.08 4.4

K 1,806.0 3 0.03 2.0 3,600.0 0 9.60 71.1 3,600.0 0 9.84 73.1 3,600.0 0 8.24 62.9 2,129.0 3 0.19 2.6

U 306.0 5 0.00 1.9 3,600.0 0 8.00 79.1 3,600.0 0 8.74 81.9 3,600.0 0 7.54 74.8 291.4 5 0.00 2.2

Γai = 30 C 3,600.0 1 0.01 3.5 3,600.0 0 13.20 102.9 3,600.0 0 13.40 102.8 3,600.0 0 13.00 95.5 3,600.0 0 1.03 4.5

K 1,056.0 4 0.02 1.9 3,600.0 0 7.36 68.0 3,600.0 0 7.44 70.3 3,600.0 0 7.30 64.1 752.3 4 0.08 2.1

Average 1,314.7 4.3 0.01 2.8 3,600.0 0.0 9.50 81.3 3,600.0 0.0 9.44 81.0 3,600.0 0.0 9.09 76.8 2,238.4 2.1 0.44 3.1

80



4.0 Solving a Class of Feature Selection Problems via Fractional 0-1

Programming

4.1 Introduction

An essential preprocessing step for many data mining and machine learning tasks is the

data set dimensionality reduction that can be performed either by sample or feature set

reductions. In this chapter, we focus on the latter procedure as a high number of features

may cause model overfitting, which results in poor validation results [23, 50].

Formally, a feature is a single measurable property of a process being observed. Feature

selection is the process of identifying a subset of the most informative data features from

the original feature set to include in a statistical model.

Feature selection is often used in many machine learning and pattern recognition settings

that deal with large data sets including classification, clustering, and regression tasks. The

corresponding applications arise in diverse areas such as e-commerce [102], medical diag-

nosis [34], bioinformatics [82] and biomedicine [21, 22, 52], among others. Moreover, apart

from data dimensionality reduction, feature selection has many other potential side benefits

including facilitating data visualization, decreasing training and utilization (computational)

times, reducing the measurement and storage requirements, and improving noise to achieve

a better prediction performance. We refer to [23, 40, 50, 91] and the references therein for

an overview of applications and methods for feature selection.

In general, feature selection procedures are classified into three major categories, namely,

filter, wrapper, and hybrid (embedded) methods [23, 50]. Wrapper and hybrid methods in-

volve learning algorithms and the selection process is tailored based on the chosen algo-

rithm [98]. In contrast, filter methods are not linked with any learning algorithm and are

often a more appropriate choice for large-sized data sets [50, 69].

The main focus of this chapter is on the filter methods. These methods select a subset of

features by evaluating them according to some predefined measures. The measures typically

applied in the literature can be categorized into information, distance, similarity, consistency,
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and statistical-based ones [50]. In this chapter, we consider measures for the classification

task in supervised learning wherein we are given a training data set. In this set, the classifi-

cation of each sample is known. Then the aim is to predict unknown classes of new samples

employing the information provided by the training data set. To this end, it is important to

distinguish relevant features from redundant ones, and thus a desired measure (for feature

selection) needs to differentiate the former from the latter. Relevant features are those that

provide useful information for predicting the class of each given sample. Redundant features

are either weakly informative for this predication or can be replaced with a set of some other

relevant features.

The relevancy and redundancy are often characterized in terms of correlation and mu-

tual information, which are widely used statistical tools to define the dependency of random

variables [73]. The studies in [30, 73] and [41] propose a mutual-information-based and

a correlation-based feature selection measures, called minimal redundancy maximal rele-

vance (mRMR) and correlation feature selection (CFS), respectively. A key advantage of

these two approaches is that they take into account the features’ relevancy and redundancy

simultaneously.

Once a measure is selected, a procedure must be developed to select a subset of features

from the full feature set. Finding an optimal subset, i.e., a subset which has the best value

for the considered measure (among exponentially many feature subsets) is often an NP -

hard problem [23]. Hence, in order to find a high quality (but not necessarily an optimal)

subset, various heuristic methods have been proposed in the literature based on the mRMR

and CFS measures, see, e.g., [26, 30, 45, 56, 73, 101]. These heuristics are typically based

on a (greedy) ranking of individual features with respect to the selected measure and then

choosing a subset of the highest-ranking ones [23].

Nguyen et al. [67, 69] show that the mRMR and CFS feature selection problems can be

posed as single-ratio polynomial fractional 0-1 programs (PFPs), where the objective function

is a ratio of quadratic binary functions. The existing exact solution approaches for the

mRMR and CFS problems are centered around their transformations into equivalent mixed-

integer linear programs (MILPs). Notably, the PFPs of mRMR and CFS can be reformulated

as MILPs either by exploiting the method of [24] or [67]; the latter method is also studied

82



in [68, 69, 70]. These reformulations are based on the substitution of the denominator of

the ratio with a continuous variable and then linearizing the resulting quadratic and cubic

terms involving products of binary and at most one continuous variables.

Nevertheless, the single-ratio structure of the PFPs of the mRMR and CFS may allow

us to use specialized approaches than the generic MILP reformulations. In particular, an

alternative approach can be based on parametric algorithms; see [17, 46] for reviews of such

algorithms. Applying parametric algorithms to solve mRMR and CFS involves solving a se-

quence of unconstrained binary quadratic problems (BQPs), which are also, in general, NP -

hard [71]. However, due to recent advances in binary quadratic optimization softwares such as

CPLEX [47] and Gurobi [39], reasonably sized BQPs can be solved efficiently [62]. Addition-

ally, in the parametric algorithms solving BQPs to optimality may not be required and each

iteration of the algorithms can be stopped when a feasible solution satisfying some conditions

is found. This approach can lead to an improvement on the performance of the algorithms.

Contributions and the structure of the chapter. The aim of this chapter is to study ex-

act approaches for the mRMR and CFS feature selection problems. Our main focus is on

solution methods that can handle reasonably high-dimensional data sets, where the existing

MILPs in the literature fail. To this end,

- In Section 4.2, we formally define mRMR and CFS measures and the corresponding

fractional 0-1 optimization problems.

- In Section 4.3, first, we perform a comprehensive review of the existing MILP reformula-

tions of the mRMR and CFS problems in the literature. Then by exploiting the structure

of the fractional model of mRMR we propose a new MILP reformulation approach that

outperforms the previous MILPs in the literature.

- In Section 4.4, we describe parametric methods such as binary-search [2, 53, 79] and

Newton’s method [31] algorithms for solving the mRMR and CFS problems.

- In Section 4.5, we conduct computational experiments with a collection of real data sets.

From our results we observe that the performance of the existing MILPs in the literature

is rather poor even for small- and medium-size problems. This observation is consistent

with the earlier results in the literature [67, 69]. On the other hand, the parametric meth-
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ods perform well across all considered problem sizes. We also provide some insights on

the selection of an appropriate measure and solution method.

4.2 Problem formulations

In the supervised learning for the purpose of classification the input data is given as an

m × (n + 1) observation matrix, where m is the number of samples (observations). Each

sample is a (n + 1)-dimensional vector of n features, fj, j ∈ J = {1,2, . . . , n}, and the label

of the class that the sample belongs to.

The aim of classification is to predict the label of the target class variable, denoted by C,

for a given sample that indicates the classification of the sample. Then the feature selection

problem is to find a subset S ⊆ {f1, f2, . . . , fn} such that the reduced m×(∣S∣+1) observation

matrix provides sufficient information for a classification procedure to predict C. Through-

out the chapter we let C denote the set of all possible labels for C, i.e., C ∈ C. Next, we

describe the mRMR and CFS feature selection measures and the corresponding optimization

problems in Sections 4.2.1 and 4.2.2, respectively.

4.2.1 mRMR optimization problem

In the information theory, the mutual information (MI) quantifies the amount of informa-

tion that a random variable provides about another one and it can be used as a measure of the

mutual dependency between two random variables [73]. The notion of mutual information

is related to the concept of entropy as the latter represents the uncertainty in the random

variable. We refer to [58] for an additional discussion on the entropy and mutual information.

Formally, let X and Y be two discrete random variables. Then the entropy of variable

X is defined as

H(X) = −∑
x

P(x) logP(x),

where P(x) is the probability that X = x. Moreover, the conditional entropy of X is given by

H(X ∣Y ) = −∑
x
∑
y

P(x, y) logP(x∣y),
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which indicates the uncertainty that remains about X when we know the value of Y . Then

the mutual information between X and Y , denoted by I(X,Y ), is computed by

I(X,Y ) = H(X) −H(X ∣Y ) = H(Y ) −H(Y ∣X) =∑
x
∑
y

P(x, y) log [ P(x, y)
P(x)P(y)

]. (4.1)

Note that I(X,Y ) has a non-negative value; if X and Y are independent then I(X,Y ) is

zero and a larger value of I(X,Y ) indicates larger dependency between X and Y . Addition-

ally, note that I(X,X) = H(X). If X and Y are continuous variables, then similar definitions

can be provided for H(X) and I(X,Y ) by replacing the summations with integrations.

The task of feature selection using mRMR, proposed in [73], is to find the subset S ⊆

{1, . . . , n}, which has the maximum value for

1

∣S∣ ∑fj∈S
I(fj,C) − 1

∣S∣2 ∑
fj ,fk∈S

I(fj, fk), (4.2)

over all 2n possible feature subsets. The first term in (4.2) denotes the average MI between

the features in set S and target class C, and thus, indicates the average relevancy of features

in S. The second term denotes the average MI between features in S that also reflects the

average redundancy of features in S.

In light of the above discussion, the maximization problem of (4.2) can be formulated as

the fractional 0-1 program of the form [67]:

(mRMR) max
x∈Bn

⎧⎪⎪⎨⎪⎪⎩

∑j∈J ∑k∈J (I(fj,C) − I(fj, fk))xkxj
∑j∈J ∑k∈J xkxj

⎫⎪⎪⎬⎪⎪⎭
, (4.3)

where B ∶= {0,1}. Note that, xj = 1 (xj = 0) indicates the presence (absence) of feature fj in

set S.

4.2.2 CFS optimization problem

The mutual information is biased in favor of features that can take more number of val-

ues [101]. Moreover, for the purpose of comparing the degree of relevancy and redundancy

of features normalized values (i.e., adjusted values to have the same scale) are preferred.

An alternative measure that can be used as an indicator of the relevancy and redundancy is

correlation. In fact, a feature is said to be relevant if it is highly correlated with the target
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class, and it is redundant if it is highly correlated with some other features. These inter-

pretations lead to the hypothesis that “good feature sets contain features that are highly

correlated with the class, yet uncorrelated with each other” [41].

The correlation – that is also referred to as symmetrical uncertainty [101] – between two

random variables X and Y can be obtained by their scaled MI [74]:

ρ(X,Y ) = 2I(X,Y )
H(X) +H(Y )

,

where ρ(X,Y ) compensates the bias in MI. Additionally, ρ(X,Y ) ∈ [0,1], where 0 denotes

the independency of X and Y and a larger value implies some degree of dependency between

these variables.

Then feature selection by means of CFS, proposed in [41], is to find subset S which has

the maximum value for:
∑fj∈S ρ(fj,C)

¿
ÁÁÀ∣S∣ + 2 ∑

fj ,fk∈S,
j≠k

ρ(fj, fk)
. (4.4)

Relation (4.4) provides the correlation of subset S and the target class. The numerator

of (4.4) is an indication of the relevancy (correlation) of features in S to the target class;

its denominator encompasses both the size of ∣S∣ and the redundancy (inter-correlation) of

features in S.

In view of the above discussion, the maximization problem of (4.4) over all 2n possible

feature subsets can be posed as the fractional binary program of the form [68]:

(CFS) max
x∈Bn

⎧⎪⎪⎨⎪⎪⎩

∑j∈J ∑k∈J (ρ(fj,C) ⋅ ρ(fk,C))xkxj
∑j∈J xj +∑j≠k 2 ⋅ ρ(fj, fk)xkxj

⎫⎪⎪⎬⎪⎪⎭
, (4.5)

where xj = 1 (xj = 0) indicates the presence (absence) of feature fj in set S.
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4.3 Mixed-integer linear programming approaches

Both the mRMR and CFS feature selection problems given in (4.3) and (4.5), respectively,

can be represented in the form of a single-ratio polynomial fractional 0-1 problem given by

λ⋆ = max
x∈Bn

f(x)
g(x)

∶= max
x∈Bn

⎧⎪⎪⎨⎪⎪⎩

∑j∈J ajxj +∑j∈J ∑k∈J bjkxjxk
∑j∈J cjxj +∑j∈J ∑k∈J djkxjxk

⎫⎪⎪⎬⎪⎪⎭
, (4.6)

where aj, bjk, cj, djk ∈ R, for all j, k ∈ J ∶= {1,2, . . . , n}. Moreover, if ∣S∣ ⩾ 1, then the denomi-

nators of (4.3) and (4.5) are strictly positive; thus, throughout this chapter we assume that

g(x) > 0.

Herein, we first review the existing MILP solution methods in the literature to solve (4.6).

In particular, first, we apply the method proposed by Chang [24] to transform PFPs into

MILPs, in order to reformulate (4.6) as an MILP, that is denoted by MILP1 throughout

this chapter; see Section 4.3.1. Second, we describe the approach of Nguyen et al. [67],

denoted by MILP2 throughout this chapter; see Section 4.3.2. Next, we propose two new

MILP reformulations for (4.3), denoted by MILP3 and MILP4; see Section 4.3.3. Finally,

in Section 4.3.4 we compare the sizes of the above MILPs.

4.3.1 Reformulation 1 (MILP1)

We follow the approach of Chang [24] in transforming PFPs into MILPs. To this end,

define

y ∶= 1

∑j∈J cjxj +∑j∈J ∑k∈J djkxjxk
. (4.7)

Then the substitution with variable y in (4.6) yields

max
x∈Bn,y

∑
j∈J
ajxjy +∑

j∈J
∑
k∈J

bjkxjxky (4.8a)

s.t. ∑
j∈J
cjxjy +∑

j∈J
∑
k∈J

djkxjxky = 1. (4.8b)

Since xj, xk ∈ B, cubic terms xjxky, for all j, k ∈ J , can be linearized as follows.

Ωjk ∶= {(xj, xk, y, zjk) ∈ B2 ×R2 ∣ y`xj ⩽ zjk ⩽ yuxj, y`xk ⩽ zjk ⩽ yuxk,

yu(xj + xk − 2) + y ⩽ zjk ⩽ y`(2 − xj − xk) + y},
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where y` and yu are a lower bound and an upper bound on y, respectively, and note that

(xj, xk, y, zjk) ∈ Ωjk ⇔ zjk = xjxky. Similarity, we use Ωj as a variant of Ωjk to linearize

bilinear (quadratic) terms xjy, for all j ∈ J ; specifically,

Ωj ∶= {(xj, y, z̄j) ∈ B ×R2 ∣ y`xj ⩽ z̄j ⩽ yuxj, yu(xj − 1) + y ⩽ z̄j ⩽ y`(1 − xj) + y},

and (xj, y, z̄j) ∈ Ωj ⇔ z̄j = xjy.

Hence, non-linear (due to the presence of terms xjxky and xjy) and non-convex (for

x ∈ [0,1]n) problem (4.8) is equivalent to MILP

(MILP1) max ∑
j∈J
aj z̄j +∑

j∈J
∑
k∈J

bjkzjk

s.t. ∑
j∈J
cj z̄j +∑

j∈J
∑
k∈J

djkzjk = 1

(xj, xk, y, zjk) ∈ Ωjk ∀j ⩽ k ∈ J

(xj, y, z̄j) ∈ Ωj ∀j ∈ J.

Let aj = cj = 0, bjk = I(fj,C) − I(fj, fk), and djk = 1, for all j, k ∈ J , in MILP1. Then

we obtain an equivalent MILP of the mRMR feature selection problem (4.3). Similarly,

in MILP1, let aj = 0, bjk = ρ(fj,C) ⋅ ρ(fk,C), and cj = 1, for all j, k ∈ J ; additionally set

djk = 2ρ(fj, fk), for j ≠ k ∈ J and djk = 0, for j = k ∈ J . Then we obtain an equivalent MILP

of the CFS feature selection problem (4.5).

4.3.2 Reformulation 2 (MILP2)

Nguyen et al. [67] propose an alternative approach to transform (4.6) into an MILP

described as follows. Note that problem (4.8) can be rewritten as

max
x∈Bn,y

∑
j∈J
ajxjy +∑

j∈J
[(∑
k∈J

bjkxk)y]xj (4.9a)

s.t. ∑
j∈J
cjxjy +∑

j∈J
[(∑
k∈J

djkxk)y]xj = 1, (4.9b)

where y is given in (4.7).

Then define vbj ∶= [∑k∈J ajkxky]xj and vdj ∶= [∑k∈J bjkxky]xj, for all j ∈ J . Observe that vbj

and vdj are products of continuous terms, i.e., ∑k∈J bjkxky and ∑k∈J djkxky, respectively, and
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binary variable xj. Hence, in contrast to the approach of Section 4.3.1 that directly linearizes

cubic terms xkxjy using Ωij, by employing the technique used in Ωj we first replace cubic

terms with a set of constraints involving linear and bilinear terms.

max
x∈Bn,y,v,v̄

∑
j∈J
ajxjy +∑

j∈J
vbj (4.10a)

s.t. ∑
j∈J
cjxjy +∑

j∈J
vdj = 1 (4.10b)

−Mb
jxj ⩽ vbj ⩽Mb

jxj ∀j ∈ J (4.10c)

Mb
j(xj − 1) +∑

k∈J
bjkxky ⩽ vbj ⩽Mb

j(1 − xj) +∑
k∈J

bjkxky ∀j ∈ J (4.10d)

−Md
jxj ⩽ vdj ⩽Md

jx ∀j ∈ J (4.10e)

Md
j(xj − 1) +∑

k∈J
dijxky ⩽ vdj ⩽Md

j(1 − xj) +∑
k∈J

dijxky ∀j ∈ J, (4.10f)

where Mb
j and Md

j are sufficiently large values for all j ∈ J . Then to transform (4.10) to an

MILP we can linearize bilinear terms xky, for all k ∈ J by using Ωj. Thus, we get

(MILP2) max ∑
j∈J
aj z̄j +∑

j∈J
vbj

s.t. ∑
j∈J
cj z̄j +∑

j∈J
vdj = 1

Mb
j(xj − 1) +∑

k∈J
bjkz̄k ⩽ vbj ⩽Mb

j(1 − xj) +∑
k∈J

bjkz̄k ∀j ∈ J

−Mb
jxj ⩽ vbj ⩽Mb

jx ∀j ∈ J

Md
j(xj − 1) +∑

k∈J
djkz̄k ⩽ vdj ⩽Md

j(1 − xj) +∑
k∈J

djkz̄k ∀j ∈ J

−Mdxj ⩽ vdj ⩽Md
jxj ∀j ∈ J

(xj, y, z̄j) ∈ Ωj ∀j ∈ J.

Let aj = cj = 0, bjk = I(fj,C) − I(fj, fk), and djk = 1, for all j, k ∈ J , in MILP2. Then

we obtain an equivalent MILP of the mRMR feature selection problem (4.3). Similarly,

in MILP2, let aj = 0, bjk = ρ(fj,C) ⋅ ρ(fk,C), and cj = 1, for all j, k ∈ J ; additionally set

djk = 2ρ(fj, fk), for j ≠ k ∈ J and djk = 0, for j = k ∈ J . Then we obtain an equivalent MILP

of the CFS feature selection problem (4.5).
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4.3.3 New reformulations for mRMR (MILP3 & MILP4)

Here, we propose two new MILP reformulations for the mRMR problem given in (4.3)

based on its special structure. Notably, the denominator of the objective function ratio in

problem (4.3), i.e., ∑j∈J ∑k∈J xjxk, takes values in the set {12,22,32 . . . , n2}. Thus, using the

standard value-disjunction approach we have

1

∑j∑k xkxj
=∑
`∈J

1

`2
w`,

where w` ∈ B with ∑`∈J w` = 1 and ∑j∈J xj = ∑` `w`. Therefore, problem (4.3) can be refor-

mulated as

max
x,w∈Bn

∑
`∈J
∑
j∈J
∑
k∈J

I(fj,C) − I(fj, fk)
`2

xkxjw` (4.11a)

s.t. ∑
j∈J
xj =∑

`∈J
`w` (4.11b)

∑
`∈J
w` = 1. (4.11c)

In order to transform (4.11) into an MILP, we define u`jk = xkxjw` and use the technique

of [36] to linearize cubic binary term xkxjw`. The resulting MILP is

(MILP3) max
x,w∈Bn,u⩾0

∑
`∈J
∑
j∈J
∑
k∈J

I(fj,C) − I(fj, fk)
`2

u`jk

s.t. ∑
j∈J
xj =∑

`∈J
`w`

∑
`∈J
w` = 1

u`jk ⩽ w`, u`jk ⩽ xj, u`jk ⩽ xk ∀` ∈ J,∀j ⩽ k ∈ J

u`jk ⩾ w` + xj + xk − 2 ∀` ∈ J,∀j ⩽ k ∈ J.

An alternative approach to represent (4.11) as an MILP encompasses, first, the trans-

formation of cubic expressions into bilinear terms, and then linearizing the latter. This

approach is described as follows. Define r ∶= ∑j∈J ∑k∈J (I(fj,C)−I(fj, fk))xkxj, then (4.11)

can be written as
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max
x,w∈Bn,r

∑
`∈J

1

`2
rw` (4.13a)

s.t. r =∑
j∈J
∑
k∈J

(I(fj,C) − I(fj, fk))xkxj (4.13b)

∑
j∈J
xj =∑

`∈J
`w` (4.13c)

∑
`∈J
w` = 1. (4.13d)

Next, we introduce continuous variable tjk ∶= xkxj and use the technique of [36] to

linearize binary quadratic term xkxj. Additionally, we define continuous variable s` ∶= rw`
and use a variant of Ωj to linearize rw`. As a consequence, we get

(MILP4) max
x,w∈Bn,t⩾0,s,r

∑
`∈J

1

`2
s`

s.t. r =∑
j∈J
∑
k∈J

(I(fj,C) − I(fj, fk))tjk

∑
j∈J
xj =∑

`∈J
`w`

∑
`∈J
w` = 1

tjk ⩽ xj, tjk ⩽ xk, tjk ⩾ xj + xk − 1 ∀j ⩽ k ∈ J

s` ⩽Mw`, s` ⩽ r +M(1 −w`) ∀` ∈ J,

where M is a sufficiently large value. Note that since the MILP is in maximization form,

upper-bounds on s` are sufficient.

4.3.4 Reformulations sizes

Table 12 shows the sizes (number of variables and constraints) of MILP reformulations

presented in Sections 4.3.1, 4.3.2, and 4.3.3 for the feature selection problems (4.3) and (4.5).

The sizes of MILP1 and MILP2 are O(n2) and O(n), respectively. Thus, MILP2 is signifi-

cantly smaller than MILP1, particularly in large instances. MILP3 has the largest size among

the MILPs provided for mRMR, both variables and constraints sizes are O(n3); the size of

MILP4 is of the same order of magnitude as MILP1.
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Table 12: Sizes (number of variables and constraints) of MILP1 to MILP4 for the mRMR

and CFS fractional 0-1 programs (4.3) and (4.5), respectively, where n is the total number

of features.

Reformulation Measure
Variables

Constraints
Continous Binary

MILP1 [24] mRMR & CFS O(n2) n O(n2)

MILP2 [67] mRMR & CFS O(n) n O(n)

MILP3 mRMR O(n3) 2n O(n3)

MILP4 mRMR O(n2) 2n O(n2)

4.4 Parametric approaches

Parametric algorithms are typical solution methods to solve single-ratio fractional (either

binary or continuous) programs; we refer to [17, 46] for a review of such algorithms. Simply

speaking, parametric algorithms find an optimal solution of a single-ratio fractional prob-

lem by solving a sequence of non-fractional problems. In this section, we apply parametric

approaches to solve problem (4.6).

Specifically, let t ∈ R be a parameter and consider the following parametric optimization

problem.

v(t) = max
x∈Bn

{f(x) − t ⋅ g(x)}, (4.15)

where f(x) and g(x) are defined as in (4.6). Observe that, under the positive denominator

assumption, i.e., g(x) > 0, function v(t) is monotone and if v(t) = 0, then t is the optimal

objective function value of (4.6), i.e., t = λ⋆. Otherwise, we have either v(t) > 0 or v(t) < 0,

which indicates, respectively, that t < λ⋆ and t > λ⋆. Thus, problem (4.6) reduces to the

problem of finding a root of function v(t).

In particular, we use the well-known root-finding methods in order to find the optimal

solution of (4.6) by solving a sequence of unconstrained quadratic 0-1 programs. We first
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discuss the binary-search method [53, 79] in Section 4.4.1, then we explain the Newton-like

method [17, 31, 60] in Section 4.4.2.

4.4.1 Binary-search algorithm

Suppose that for the optimal objective function value λ⋆ at the beginning of iteration

i of the algorithm an upper-bound, λ
i
, and a lower-bound, λi, are given, i.e., it is known

that λ⋆ ∈ [λi, λi]. Then the binary-search algorithm [53, 79] evaluates v(λiM), where λiM is

the midpoint of the given interval, i.e., λiM = (λi + λi)/2. If v(λiM) > 0, then we update the

lower-bound, λi+1 = λiM ; if v(λiM) < 0, then we update upper-bound, λ
i+1 = λiM ; else, we

have v(λiM) = 0 and the midpoint λiM is the optimal objective function value. The formal

pseudo-code is given in Algorithm 1.

Algorithm 1 Binary-search algorithm

1: Input: εrel, relative gap parameter; εabs, absolute gap parameter;

2: Output: x; if xj = 1, then feature j is selected

3: i← 0

4: Compute λ
0

and λ0

5: while time limit not exceeded & ∣(λi − λi)/λi∣ > εrel & ∣λi − λi∣ > εabs do

6: λiM ← (λi + λi)/2
7: Solve problem (4.15) for t = λiM and obtain v(λiM) and its optimal solution xi

8: if v(λiM) > 0 then

9: λi+1 ← λiM , λ
i+1 ← λ

i

10: else if v(λiM) < 0 then

11: λi+1 ← λi, λ
i+1 ← λiM

12: else

13: return xi ▷ Optimal solution found

14: end if

15: i← i + 1

16: end while

17: return xi ▷ Best solution found within the time limit

Note that at each iteration of Algorithm 1 we can stop the optimization of problem (4.15)

in line 7 whenever a feasible solution with a positive objective function value is found, which
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can potentially result in a better performance for the binary-search algorithm. In fact, mixed

integer optimization algorithms find feasible and even optimal solutions in a portion of the

time required to prove the optimality. Thus, if problem (4.15) is solved until the first feasible

solution with positive objective function value is found, then in practice most of iterations ex-

cept a few last ones are solved with a few branch-and-bound nodes. Although this approach

may require more iterations, the total solution times are often improved significantly.

We define h(x) ∶= f(x)
g(x) . Thus,

λ⋆ = max
x∈Bn

h(x) = max
x∈Bn

f(x)
g(x)

. (4.16)

Next, let x⋆ denote an optimal of (4.16), i.e., x⋆ ∈ argmax
x∈Bn

h(x). Then for any feasible

solution x̄ we define the relative and absolute optimality gaps as follows.

Relative gap: gaprel ∶= ∣h(x
⋆) − h(x̄)
h(x̄)

∣, Absolute gap: gapabs ∶= ∣h(x⋆) − h(x̄)∣.

(4.17)

If Algorithm 1 terminates before reaching the time limit, then it yields a feasible solution

with either gaprel ⩽ εrel or gapabs ⩽ εabs. If the time limit is reached after processing the i-th

iteration of the algorithm, then

gaprel ⩽ ∣(λi − λi)/λi∣, and gapabs ⩽ ∣λi − λi∣. (4.18)

4.4.2 Newton-like method algorithm

The second approach that we employ to find the root of problem (4.15) is based on

Newton-like method [17, 31, 60] described as follows. Suppose that at the beginning of

iteration i a lower-bound ti on λ⋆ is known, which can be obtained, e.g., by computing the

fractional objective function at any feasible solution. If v(ti) = 0, then ti = λ⋆; otherwise, the

algorithm updates ti+1 = h(xi), where xi is an optimal solution of v(ti), and proceeds to the

next iteration. The formal pseudo-code is given in Algorithm 2.

Note that at each iteration of Algorithm 2 we can stop the optimization of problem (4.15)

in line 6 whenever a feasible solution with an objective function value greater than εrel ⋅ ∣ti∣
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and εabs is found, which, based on the discussion in Section 4.4.1, can result in more iterations

but a better performance for the algorithm.

Algorithm 2 Newton-like method algorithm

1: Input: εrel, relative gap parameter; εabs, absolute gap parameter;

2: Output: x; if xj = 1, then feature j is selected

3: i← 0

4: Compute ti ▷ e.g., ti = h(1′)
5: while time limit not exceeded do

6: Solve problem (4.15) for ti and obtain v(ti) and its optimal solution xi

7: if v(ti) > εrel ⋅ ∣ti∣ and v(ti) > εabs then

8: ti+1 ← h(xi)
9: else

10: return xi ▷ Solution found within either relative or optimality gaps

11: end if

12: i← i + 1

13: end while

14: return xi ▷ Best solution found within the time limit

Recall the relative and optimality gaps defined in (4.17). Following the proofs of similar

results in [79] and [37, Proposition 4], if the time limit is not reached, then Algorithm 2

terminates with a feasible solution with either gaprel ⩽ εrel or gapabs ⩽ εabs. If the time

limit is reached after the operation of the i-th iteration of Algorithm 2, then we compute

approximations of relative and absolute gaps by

gaprel ≃
v(ti)

∣ti∣ ⋅ g(xi)
, and gapabs ≃

v(ti)
g(xi)

. (4.19)

4.5 Computational results

The aim of our computational study is to evaluate the performances of the MILP refor-

mulations provided in Section 4.3 versus the parametric approaches of Section 4.4. In Sec-

tion 4.5.1, we outline the real-life test instances and settings used for computational experi-

ments. Then we present our results in Section 4.5.2.
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4.5.1 Computational environment and test instances

In all of the computational test instances, we solve MILPs and BQPs (in each iteration

of the parametric Algorithms 1 and 2) using CPLEX 12.7.1 [47]. We run experiments

on a computer, where we allocate 4 threads (CPU 2.90GHz) and 16 GB of RAM for each

individual experiment. We use a time limit of one hour (3600 seconds). To avoid running-out-

of-memory difficulties we use the “node-file storage-feature” of CPLEX to store some parts

of the branch-and-cut tree on a disk when the size of the tree exceeds the allocated memory.

Furthermore, for computing the mutual information and correlation between a feature

and the target class or between two features, as well as computing the classification accuracy

score we use scikit-learn package [72] and Python 3.7.3 [78].

Test instances. We consider various real-world instances obtained from UCI ma-

chine learning repository [5] and ASU feature selection repository [55] available at https:

//archive.ics.uci.edu and http://featureselection.asu.edu, respectively. Table 13 pro-

vides the list of instances as well as their sizes and their key characteristics.

Linearization bounds. In both MILP1 and MILP2, we let y` = 0 and yu = 1. More-

over, for MILP2 reformulation of mRMR we letMb
j = ∑k∈J ∣I(fj,C)−I(fj, fk)∣ andMd

j = n,

for all j ∈ J . For MILP2 reformulation of CFS we set Mb
j = ∑k∈J ρ(fj,C) ⋅ ρ(fk,C) and

Md
j = ∑k∈J,k≠j 2ρ(fj, fk), for all j ∈ J . Finally, we considerM = ∑j∈J ∑k∈J ∣I(fj,C)−I(fj, fk)∣

in MILP4.

Gaps. We consider εrel = 0.01 and εabs = 0.001 in both Algorithms 1 and 2. If the

time limit is reached, then gaprel and gaprel are computed by using formulas given in (4.18)

and (4.19) for Algorithms 1 and 2, respectively. Similarly, in solving of the MILPs we set

0.01 and 0.001 for the relative and absolute optimality gaps in the solver which are computed

by gaprel = ∣UB−LBLB ∣ and gapabs = ∣UB−LB∣, where UB and LB are the upper- and the lower-

bound on the optimal objective function value at the termination of the solver, respectively.
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Table 13: The sizes of the considered instances including the number of features, n, and the

number of samples, m. Additionally, we provide some characteristics of the data instances

such as the type of features values and the type of target class variable; if ∣C ∣ = 2, then the

target class is binary, otherwise it is multi-class.

Instance n m Data type Class type

banknote authentication1 4 1,372 continuous binary

Breast cancer1 9 286 discrete binary

Letter Recognition1 16 20,000 discrete multi

Zoo1 17 101 discrete multi

Breast Cancer Wisconsin (Diagnostic)1 31 569 continuous binary

SPECTF Heart Data1 44 267 continuous binary

Lung Cancer1 56 32 discrete binary

Sports articles for objectivity analysis1 59 1,000 discrete binary

Connectionist1 60 208 continuous binary

Optical Recognition1 62 3,823 discrete multi

Hill-Valley1 100 606 continuous binary

Urban Land Cover1 147 168 continuous multi

Epileptic Seizure Recognition1 178 11,500 discrete multi

SCADI1 205 70 discrete multi

Semeion Handwritten Digit1 256 1,593 discrete multi

USPS2 256 9,298 continuous multi

lung discrete2 325 73 discrete multi

Madelon1,2 500 2,000 continuous binary

ISOLET1,2 617 7,797 continuous multi

Parkinson’s Disease1 754 756 continuous binary

CNAE-91 856 1,080 discrete multi

Yale 32x322 1,024 165 continuous multi

ORL 32x322 1,024 400 continuous multi

colon2 2000 62 discrete binary

PCMAC2 3289 1943 discrete binary
1UCI machine learning repository [5]. 2ASU feature selection repository [55].
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Classification accuracy score. Given a sample, the accuracy of a subset of features in

predicting the true class of the sample can be evaluated by the classification accuracy. We use

the well-known Naive Bayes classifier method (commonly used in the related literature, see,

e.g., [67, 68, 73]), described below with the 5-fold cross validation to evaluate the accuracy

of a subset of features.

Recall that set C denotes the set of possible values for the target class variable, i.e.,

C ∈ C. Let S be a subset of features and A be a vector of size ∣S∣, where Aj is the value

of feature fj ∈ S in the sample. Then in order to evaluate the classification accuracy of S

in classifying sample A, under the assumption that features are independent, Naive Bayes

classifier uses the following equation to find the class of sample CA.

CA = argmax
ck∈C

P(ck) ∏
Aj∈A

P(Aj ∣ck), (4.20)

where probabilities P(ck) and P(aj ∣ck) are computed based on the training data set. Equa-

tion (4.20) implies that the most probable class is assigned as the class of sample A.

4.5.2 Results and analysis

In this section, we evaluate the performances of the MILPs of Section 4.3 versus Al-

gorithms 1 and 2 of Section 4.4. First, we discuss the results for the MILPs in solv-

ing the mRMR feature selection problem, see Table 14. We observe that for “small” in-

stances (n ⩽ 60), MILP4 has, in general, the best performance among the MILPs. In partic-

ular, for 44 ⩽ n ⩽ 60, MILP1, MILP2, and MILP3 do not find an optimal solution within the

time limit, while MILP4 solves the same instances to optimality in only a few seconds.

For larger instances (n > 60), all MILPs reach the time limit. In these larger instances, if

MILP1 finds a feasible solution, then it typically has better (absolute and relative) gaps than

the other MILPs. Nevertheless, for n ⩾ 500, MILP1 and MILP3 are not able to find even a

feasible solution, while MILP2 and MILP4 report rather poor results (gaps larger than 100);

see Table 14.

Next, we compare the results for the best two MILPs (i.e., MILP1 and MILP4 based on

the above discussion) against Algorithms 1 and 2 in solving mRMR; see Table 15. The most
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important observation is that the parametric algorithms perform better than the MILPs for

n > 60. These algorithms either find solutions within the optimality gaps or report much

better gaps than MILPs if the time limit is reached. Additionally, their performances are

competitive with those of MILPs for n ⩽ 60.

In Table 16, we report the results for the CFS feature selection problem. Similar to

the aforementioned results for mRMR, we observe that for CFS the parametric algorithms

outperform both MILP1 and MILP2. Additionally, we note that solving CFS is easier than

solving mRMR with respect to the running time and gaps. For example, Algorithm 1 can

find an optimal solution of CFS for the largest considered instance, i.e., “PCMAC”, within

the optimality absolute gap in 955 seconds; see Table 16. On the other hand, none of the

solution methods are able to find an optimal solution of mRMR for this instance in the time

limit; see Tables 14 and 15.

By comparing the performances of the parametric algorithms (Tables 15 and 16), we

note that Algorithms 1 and 2 have similar running times for the instances that they solve

to optimality. For the instances where an optimal solution is not found within the time

limit, Algorithm 1 can be a better choice as for these instances gaprel and gapabs reported

by Algorithm 2 are approximations of the relative and absolute gaps, respectively; thus, the

reported gaps by Algorithm 2 are not properly comparable to the corresponding gaps’ values

for the other solution methods.

Additionally, recall that for the binary-search algorithm the objective function value of

the full feature set is considered as an initial lower-bound on the optimal objective function

value. Hence, for some instances such as “ORL 32x32” in Tables 15 and 16, Algorithm 1

takes most of the time to improve the upper bound. Therefore, the best reported solution

at the termination of the algorithm is the full feature set. In case of the Newton method,

the full feature set is considered as the initial solution. Observe that Algorithm 2 cannot

process more than one iteration either in Table 15 or Table 16 within the time limit for some

instances such as “ORL 32x32”. Therefore, for these instances the best reported solution

at the termination is the full set. However, note that both algorithms report significantly

better gaps than the best MILPs, which are promising for finding optimal or near optimal

solutions in a larger time limit.
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It is worth mentioning that the choice of an appropriate feature selection measure may

depend on the instance data set and its application setting (see, e.g., [23, 50] for rather com-

prehensive discussions). In particular, due to the different structures and also coefficients

values of the problems, the sizes of the selected subsets of features by CFS are typically

smaller than those selected by mRMR. For example, compare the columns of ∣S∣ in Table 16

versus those of Table 15 for “small” instances (n ⩽ 60).

Finally, the classification accuracy score of the (optimal) output result of each feature

selection measure depends on the test instance. For example, the optimal subset of features

selected by mRMR for test instance “Zoo” has a better score than the optimal subset selected

by CFS (0.84 vs. 0.41 based on the results for Algorithm 1); see also test instance “Letter-

Recognition” for the opposite case.

4.6 Concluding remarks

Feature selection is an essential preprocessing step in many data mining and machine

learning tasks and involves finding a small subset of the most characterizing features from

the data set. In this chapter, we focus on feature selection problems based on mRMR and

CFS measures that are typically tackled either by heuristic methods or their reformulations

as MILPs. However, heuristics do not guarantee the optimality of the output subset and

MILPs given in the literature have rather poor performances even for small- and medium-

sized instances.

To address the aforementioned shortcomings, we consider approaches that ensure glob-

ally optimal solutions. To this end, we propose an MILP reformulation approach for the

mRMR feature selection problem which outperforms existing MILPs in the literature. Addi-

tionally, we apply parametric approaches to solve both the mRMR and CFS feature selection

problems. Our computational experiments with real-world data sets show that the proposed

approaches lead to encouraging improvements on the performance of solution methods for

the mRMR and CFS problems.

100



Table 14: Comparison of results for MILP1 to MILP4 in solving the mRMR feature selection

problem (4.3). For each test instance, the size of the full set of features (n) and its accuracy

score (score) is reported, where the latter is computed as discussed in Section 4.5.1.

Moreover, for each test instance and solution method we present absolute (gapabs) and

relative (gaprel) gaps and score, as well as time (time, in seconds), the number of selected

features (∣S∣, for the best found integer solution) at the termination of solver (for MILPs)

and the algorithms.

Instance
Full set MILP1 [24] MILP2 [67] MILP3 MILP4

nscoregapabsgaprel time ∣S∣score gapabsgaprel time ∣S∣score gapabsgaprel time ∣S∣scoregapabsgapreltime ∣S∣score

banknote authentication 4 0.84 0.000 0.00 0.5 4 0.84 0.000 0.00 0.4 4 0.84 0.000 0.00 0.4 4 0.84 0.000 0.00 0.5 4 0.84

Breast cancer 9 0.75 0.000 0.00 0.5 7 0.74 0.000 0.00 0.4 7 0.76 0.000 0.00 0.8 7 0.74 0.000 0.00 0.5 7 0.76

Letter Recognition 16 0.34 0.002 0.01 3.5 14 0.37 0.002 0.01 1.2 14 0.37 0.002 0.01 15.5 14 0.37 0.002 0.01 0.7 14 0.37

Zoo 17 0.79 0.003 0.01 1.2 8 0.81 0.003 0.01 3.0 8 0.81 0.003 0.01 105.2 8 0.85 0.003 0.01 1.1 8 0.80

Breast Cancer Wisconsin (Diagnostic) 31 0.62 0.001 0.03 61.3 22 0.93 0.001 0.03 30.1 22 0.93 0.001 0.031447.6 22 0.93 0.001 0.03 3.7 22 0.94

SPECTF Heart Data 44 0.72 0.063 0.90 T 5 0.72 1.202 17.09 T 5 0.70 4.994 73.33 T 5 0.74 0.001 0.01 50.9 5 0.72

Lung Cancer 56 0.79 0.028 2.90 T 9 0.72 1.413 + T 9 0.72 1.809 + T 14 0.88 0.001 0.10 9.7 9 0.71

Sports articles for objectivity analysis 59 0.82 0.004 + T 1 0.64 5.559 + T 2 0.64 1.347 + T 1 0.64 0.000 0.00 4.1 1 0.64

Connectionist 60 0.68 0.001 0.55153.3 39 0.66 0.001 0.551649.0 39 0.66 0.434 + T 39 0.68 0.001 0.54 21.8 39 0.65

Optical Recognition 62 0.92 0.077 0.41 T 32 0.90 5.071 26.93 T 32 0.9085.229 + T 57 0.91 0.295 1.56 T 32 0.90

Hill-Valley 100 0.52 0.037 0.06 T 10 0.52 0.602 0.96 T 9 0.52 0.645 1.00 T 4 0.52 0.632 1.00 T 7 0.52

Urban Land Cover 147 0.77 0.275 1.11 T 53 0.7928.586 + T 47 0.84 + + T147 0.76 8.516 33.75 T 45 0.82

Epileptic Seizure Recognition 178 0.44 0.022 0.42 T115 0.4359.495 + T 90 0.44 + + T178 0.44 2.636 48.96 T 152 0.44

SCADI 205 0.81 0.104 0.42 T 15 0.8446.687 + T 15 0.84 + + T190 0.80 5.321 23.30 T 10 0.76

Semeion Handwritten Digit 256 0.84 0.143 1.37 T 29 0.7193.234 + T 26 0.64 + + T 1 0.07 + + T 113 0.84

USPS 256 0.78 0.148 0.76 T 27 0.4847.627 + T 33 0.49 + + T 1 0.16 + + T 50 0.60

lung discrete 325 0.78 0.191 0.79 T 22 0.5995.927 + T 33 0.72 + + T 1 0.22 + + T 292 0.82

Madelon 500 0.58 - - T - - 0.064 + T 429 0.55 - - T - - 1.115 57.48 T 495 0.58

ISOLET 617 0.84 - - T - - + + T 43 0.65 - - T - - + + T 617 0.84

Parkinson’s Disease 754 0.74 - - T - - + + T 166 0.78 - - T - - + + T 754 0.73

CNAE-9 856 1.00 - - T - -31.078 + T 655 1.00 - - T - - 0.122 + T 856 1.00

Yale 32x32 1024 0.55 - - T - - + + T 94 0.57 - - T - - + + T1024 0.55

ORL 32x32 1024 0.83 - - T - - + + T 884 0.83 - - T - - + + T1024 0.84

colon 2000 0.67 - - T - - + + T 260 0.76 - - T - - + + T2000 0.69

PCMAC 3289 0.92 - - T - - + + T3289 0.92 - - T - - + + T3289 0.92

“-”: No feasible solution is found within the time limit. “+”: gap is larger than 100. “T”: Time limit (3600 sec.) is reached.
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Table 15: Comparison of results for the best MILPs (MILP1 and MILP4) versus Algo-

rithms 1 and 2 in solving the mRMR feature selection problem (4.3). For each test instance,

the size of the full set of features (n) and its accuracy score (score) is reported, where

the latter is computed as discussed in Section 4.5.1. Moreover, for each test instance and

solution method we present absolute (gapabs) and relative (gaprel) gaps and score, as well

as time (time, in seconds), the number of selected features (∣S∣, for the best found integer

solution) at the termination of solver (for MILPs) and the algorithms, and the number of

iterations of the algorithms (#).

Instance
Full set MILP1 [24] MILP4 Algorithm 1 (Binary search) Algorithm 2 (Newton method)

nscoregapabsgaprel time ∣S∣scoregapabsgaprel time ∣S∣scoregapabsgaprel time ∣S∣score #gapabsgaprel time ∣S∣score #

banknote authentication 4 0.84 0.000 0.00 0.5 4 0.84 0.000 0.00 0.5 4 0.84 0.004 0.01 1.6 4 0.84 10 0.001 0.01 0.3 4 0.84 1

Breast cancer 9 0.75 0.000 0.00 0.5 7 0.74 0.000 0.00 0.5 7 0.76 0.001 0.01 1.4 7 0.75 12 0.001 0.01 0.9 7 0.75 2

Letter Recognition 16 0.34 0.002 0.01 3.5 14 0.37 0.002 0.01 0.7 14 0.37 0.002 0.01 2.4 14 0.37 11 0.001 0.01 1.9 14 0.37 2

Zoo 17 0.79 0.003 0.01 1.2 8 0.81 0.003 0.01 1.1 8 0.80 0.003 0.01 2.7 8 0.84 10 0.001 0.01 2.1 8 0.82 4

Breast Cancer Wisconsin (Diagnostic) 31 0.62 0.001 0.03 61.3 22 0.93 0.001 0.03 3.7 22 0.94 0.001 0.02 23.2 25 0.93 12 0.001 0.01 9.6 22 0.93 4

SPECTF Heart Data 44 0.72 0.063 0.90 T 5 0.72 0.001 0.01 50.9 5 0.72 0.001 0.01 2.5 5 0.72 12 0.001 0.01 4.2 5 0.72 5

Lung Cancer 56 0.79 0.028 2.90 T 9 0.72 0.001 0.10 9.7 9 0.71 0.001 0.08 3.4 9 0.71 12 0.001 0.01 6.1 9 0.71 7

Sports articles for objectivity analysis 59 0.82 0.004 + T 1 0.64 0.000 0.00 4.1 1 0.64 0.001 3.13 0.8 2 0.64 12 0.001 0.01 2.5 2 0.64 10

Connectionist 60 0.68 0.001 0.55 153.3 39 0.66 0.001 0.54 21.8 39 0.65 0.001 0.47 16.0 45 0.67 12 0.001 0.01 24.7 38 0.66 3

Optical Recognition 62 0.92 0.077 0.41 T 32 0.90 0.295 1.56 T 32 0.90 0.001 0.01 9.3 32 0.90 11 0.001 0.01 7.0 32 0.90 3

Hill-Valley 100 0.52 0.037 0.06 T 10 0.52 0.632 1.00 T 7 0.52 0.004 0.01 7.8 10 0.52 10 0.001 0.01 17.4 10 0.52 7

Urban Land Cover 147 0.77 0.275 1.11 T 53 0.79 8.516 33.75 T 45 0.82 0.087 0.42 T 147 0.77 5 0.027 0.11 T 90 0.80 5

Epileptic Seizure Recognition 178 0.44 0.022 0.42 T 115 0.43 2.636 48.96 T 152 0.44 0.003 0.05 T 78 0.43 10 0.003 0.06 T 87 0.44 17

SCADI 205 0.81 0.104 0.42 T 15 0.84 5.321 23.30 T 10 0.76 0.001 0.011128.9 15 0.83 11 0.035 0.15 T 15 0.84 13

Semeion Handwritten Digit 256 0.84 0.143 1.37 T 29 0.71 + + T 113 0.84 0.001 0.01 162.0 27 0.63 11 0.001 0.01 511.5 26 0.63 17

USPS 256 0.78 0.148 0.76 T 27 0.48 + + T 50 0.60 0.023 0.12 T 36 0.48 7 0.019 0.11 T 55 0.55 8

lung discrete 325 0.78 0.191 0.79 T 22 0.59 + + T 292 0.82 0.003 0.01 T 29 0.70 10 0.000 0.00 T 33 0.78 14

Madelon 500 0.58 - - T - - 1.115 57.48 T 495 0.58 0.001 0.041993.4 500 0.58 12 0.000 0.01 T 500 0.59 1

ISOLET 617 0.84 - - T - - + + T 617 0.84 0.047 5.18 T 617 0.84 6 0.009 0.49 T 617 0.84 1

Parkinson’s Disease 754 0.74 - - T - - + + T 754 0.73 0.024 1.30 T 754 0.75 7 0.001 0.78 T 656 0.75 2

CNAE-9 856 1.00 - - T - - 0.122 + T 856 1.00 0.012 1.17 T 856 1.00 8 0.000 2.13 T 856 1.00 1

Yale 32x32 1024 0.55 - - T - - + + T 1024 0.55 0.091 1.17 T 1024 0.55 5 0.034 0.39 T 1024 0.55 1

ORL 32x32 1024 0.83 - - T - - + + T 1024 0.84 0.092 1.28 T 1024 0.83 5 0.032 0.39 T 1024 0.83 1

colon 2000 0.67 - - T - - + + T 2000 0.67 0.097 0.86 T 2000 0.67 5 0.037 0.36 T 2000 0.67 1

PCMAC 3289 0.92 - - T - - + + T 3289 0.92 0.047 5.44 T 3289 0.92 6 0.001 0.54 T 3289 0.92 1

Average 475.6 0.7 0.065 0.612746.524.2 0.69 1.165 11.127430.2434.76 0.73 0.022 0.832174.5422.3 0.729.3 0.007 0.227470.1422.2 0.723.1

“-”: No feasible solution is found within the time limit. “+”: gap is larger than 100. “T”: Time limit (3600 sec.) is reached.
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Table 16: Comparison of results for MILP1 and MILP2 versus Algorithms 1 and 2 in solving

the CFS feature selection problem (4.5). For each test instance, the size of the full set of

features (n) and its accuracy score (score) is reported, where the latter is computed as

discussed in Section 4.5.1. Moreover, for each test instance and solution method we present

absolute (gapabs) and relative (gaprel) gaps and score, as well as time (time, in seconds),

the number of selected features (∣S∣, for the best found integer solution) at the termination

of solver (for MILPs) and the algorithms, and the number of iterations of the algorithms (#).

Instance
Full set MILP1 [24] MILP2 [67] Algorithm 1 (Binary search) Algorithm 2 (Newton method)

nscore gapabsgaprel time ∣S∣score gapabsgaprel time ∣S∣scoregapabsgaprel time ∣S∣score #gapabsgapreltime ∣S∣score #

banknote authentication 4 0.84 0.000 0.00 0.3 1 0.84 0.000 0.00 0.3 1 0.84 0.001 0.01 1.1 1 0.8412 0.001 0.01 0.4 1 0.84 3

Breast cancer 9 0.75 0.001 0.11 0.3 1 0.76 0.000 0.00 0.3 1 0.76 0.001 0.08 0.8 1 0.7612 0.001 0.01 0.4 2 0.76 3

Letter Recognition 16 0.34 0.000 0.00 0.4 1 0.40 0.001 0.01 0.4 1 0.40 0.001 0.01 0.9 1 0.4012 0.001 0.01 1.5 1 0.40 5

Zoo 17 0.79 0.025 0.01 0.4 1 0.41 0.000 0.00 0.4 1 0.41 0.018 0.01 0.4 1 0.41 7 0.001 0.01 0.9 1 0.40 3

Breast Cancer Wisconsin (Diagnostic) 31 0.62 0.000 0.00 0.6 1 0.92 0.000 0.00 0.3 1 0.92 0.001 0.01 0.9 1 0.9211 0.001 0.01 1.1 1 0.92 4

SPECTF Heart Data 44 0.72 0.042 0.06 T 1 0.73 0.007 0.01 25.1 1 0.72 0.005 0.01 0.9 1 0.72 9 0.001 0.01 2.8 1 0.72 7

Lung Cancer 56 0.79 0.001 0.01 36.0 1 0.72 0.001 0.011634.8 1 0.73 0.001 0.01 0.7 1 0.7212 0.001 0.01 1.6 1 0.71 7

Sports articles for objectivity analysis 59 0.82 0.002 0.01 67.7 1 0.64 0.003 0.01 1.6 1 0.64 0.003 0.01 0.7 1 0.6410 0.001 0.01 1.9 1 0.64 6

Connectionist 60 0.68 0.001 0.26 3.2 1 0.57 0.001 0.26 0.9 1 0.57 0.001 0.20 0.8 1 0.5812 0.001 0.01 0.5 4 0.68 3

Optical Recognition 62 0.92 0.321 0.50 T 13 0.86 1.170 1.81 T 8 0.80 0.005 0.01 7.4 13 0.86 9 0.001 0.01 14.2 13 0.86 9

Hill-Valley 100 0.52 0.001 2.16701.1 1 0.51 0.001 3.15 T 1 0.49 0.001 1.98 0.9 1 0.4812 0.001 0.01 1.6 5 0.52 7

Urban Land Cover 147 0.77 2.327 2.21 T 1 0.44 5.749 5.45 T 1 0.45 0.010 0.01 3.9 1 0.42 8 0.001 0.01 36.9 1 0.40 8

Epileptic Seizure Recognition 178 0.44 1.104 9.97 T109 0.44 1.911 16.24 T 69 0.44 0.003 0.02 T 64 0.4310 0.004 0.03 T 73 0.44 19

SCADI 205 0.8111.271 18.41 T 7 0.77 2.614 4.25 T 6 0.71 0.020 0.03 T 12 0.83 7 0.179 0.30 T 19 0.84 9

Semeion Handwritten Digit 256 0.8458.200 + T256 0.84 3.778 7.06 T106 0.84 0.323 0.77 T 256 0.84 3 0.112 0.22 T 154 0.85 7

USPS 256 0.7821.983 60.55 T256 0.79 5.706 13.24 T 36 0.55 0.165 0.47 T 256 0.78 4 0.204 0.49 T 39 0.52 10

lung discrete 325 0.7832.728 54.96 T325 0.7829.708 30.35 T 29 0.72 0.604 1.03 T 325 0.81 2 4.236 5.03 T 25 0.61 10

Madelon 500 0.58 0.006 4.11 T 2 0.59 0.015 9.83 T 2 0.59 0.001 0.60 15.7 3 0.6112 0.001 0.01 17.1 3 0.61 7

ISOLET 617 0.84 + + T617 0.84 1.166 11.12 T 73 0.77 0.046 0.82 T 617 0.83 6 0.129 1.42 T 77 0.76 9

Parkinson’s Disease 754 0.74 0.284 85.52 T754 0.74 0.336 25.27 T 12 0.82 0.003 0.27 T 15 0.8010 0.032 2.43 T 12 0.83 13

CNAE-9 856 1.00 0.004 52.33 T 3 1.00 0.001 4.77 7.6 13 1.00 0.001 2.45 13.6 22 1.0012 0.001 0.01 4.0 23 1.00 4

Yale 32x32 1024 0.55 - - T - - + + T 2 0.32 0.005 0.01506.9 3 0.39 9 0.033 0.12 T1024 0.53 1

ORL 32x32 1024 0.83 - - T - - + + T 7 0.68 0.176 0.93 T1024 0.84 4 0.032 0.16 T1024 0.83 1

colon 2000 0.67 - - T - - + + T 1 0.64 0.023 0.27 T 9 0.79 7 0.009 0.45 T 571 0.76 3

PCMAC 3289 0.92 - - T - -20.059 + T 3 0.79 0.001 0.03955.0 3 0.6712 0.003 0.57 T1997 0.93 2

“-”: No feasible solution is found within the time limit. “+”: gap is larger than 100. “T”: Time limit (3600 sec.) is reached.
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5.0 Conclusions

This dissertation considers generally structured single- and multiple-ratio fractional bi-

nary programs, FPs, which have traditionally been tackled by reformulating the problems

as MILPs with a large number of variables and constraints. However, new techniques have

recently been proposed to improve upon the classical MILP formulations. Chapter 2 focuses

on two such recent enhancements including binary-expansion technique as well as conic and

submodular strengthenings. Naturally, there is a trade-off between using these two tech-

niques. The former reduces the size of a problem at the cost of a weaker relaxation, and

the latter improves the relaxation quality at the expense of a larger problem. However, the

synthesis of these ideas leads to new moderately sized formulations which yet retain the

relaxation strength of formulations of much larger sizes. As a consequence, in our compu-

tations using benchmark instances, we observe that the new formulations perform typically

as well as the best existing methods for small problems, and often significantly outperform

existing methods for larger instances.

Chapter 3 addresses RFPs, defined as the robust counterparts of the fractional binary

programs, under various disjoint and joint uncertainty sets. We demonstrate that single-

ratio RFP, contrary to its deterministic counterpart, is NP -hard for a general polyhedral

uncertainty set. However, if the uncertainties are in the form of the dis/joint budgeted

uncertainty sets, then we develop polynomial-time solution methods for single-ratio RFP

provided that the nominal problem is polynomial-time solvable.

In case of multiple-ratio RFPs, we exploit the structure of the budgeted dis/joint un-

certainty sets in order to propose various MILPs to solve them. Particularly, based on our

extensive computational experiments we observe that RFPs are more challenging to solve

under the joint uncertainty sets than under the disjoint one, as the former cannot take

advantage of the binary-expansion technique.

We also explore the value of the robust optimal solution for instances with both the real

and synthetic data and find that ignoring the data uncertainty can lead to poor decisions.

These results coupled with the insights on the selection of budget(s) of uncertainties can
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provide guidance to identify suitable solution methods and level of uncertainty in practice.

It is worth mentioning that conic quadratic programming approaches that lead to strong

convex relaxations for the deterministic case can be pursued as a promising future research

direction to improve the performance of solution approaches for RFPs.

Chapter 4 studies fractional 0-1 programs in the application setting of correlation-based

and mutual-information-based feature selection optimization problems. We propose a new

MILP reformulation approach for the latter problem. Moreover, we apply parametric ap-

proaches to tackle fractional models of these problems and report encouraging results. Fi-

nally, for the future research it is of interest to model other suitable feature selection mea-

sures as fractional 0-1 programs and extend the advanced approaches of Chapters 2 and 3

in these contexts.
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Appendix

Supplement for Chapter 2

A.1 Assumption justifications

We make the following assumptions in Chapter 2.

Assumption 3. All data are integers, i.e., aij, bij ∈ Z for all i ∈ I, j ∈ J ∪ {0}.

Assumption 4. All data are non-negative, i.e., aij, bij ⩾ 0 for all i ∈ I and j ∈ J ∪ {0}.

Assumption 3 is without loss of generality, as otherwise rational coefficients can be scaled.

Assumption 4 is naturally satisfied in most application settings, as the data typically repre-

sents probabilities, prices, weights, utilities etc. – see, e.g., [17] and the applications described

therein.

Nonetheless, Assumption 4 is without loss of generality provided that (the weaker and

commonly made assumption in the FP literature, see, e.g., [15, 16, 43]) bi0 +∑j∈J bijxj > 0

for all x ∈ Bn holds. In each ratio i ∈ I, for every j ∈ J such that bij < 0 and every j such that

bij = 0 and aij < 0, replace xj with x̄j = 1−xj, resulting in a problem satisfying bij ⩾ 0 (possibly

with at most n additional variables and constraints). Then observe that for any ki ∈ R

ai0 +∑j∈J aijxj
bi0 +∑j∈J bijxj

=
(ai0 + kibi0) +∑j∈J(aij + kibij)xj

bi0 +∑j∈J bijxj
− ki. (.1)

Thus, by letting ki sufficiently large for each i ∈ I, we find a problem where all coefficients

are non-negative.

Finally, note that if a fractional program is in maximization form and satisfies bi0 +

∑j∈J bijxj > 0 for all x ∈ Bn, then it can be transformed into an equivalent problem in

minimization form (by negating all coefficients ai0 and aij), and then applying the process

above to obtain a problem satisfying Assumption 4.
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A.2 Additional computational results

In this appendix, we compare the performance of the formulations presented in Chap-

ter 2 (not restricted to those discussed in Section 2.4.3 and presented in Tables 3 and 4

as well as their extended versions, i.e., Tables 17 and 18) to evaluate the individual and

combined effects of the enhancements. In order to have a better comparison of the results,

we repeat the results for some of the formulations in different subsections.

In particular, first, in Section A.2.1, we compare the basic MILP and basic MICQP

formulations without using additional enhancements. Then in Section A.2.2, we focus on

the effect of the binary-expansion technique on the basic formulations. Next, in Section A.2.3,

we focus on the impact of polymatroid cuts. In Section A.2.4, we test the formulations that

benefit from the integration of the binary-expansion technique with the polymatroid cuts.

Recall that, in the following tables, the “†” symbol is used if CPLEX is unable to fully process

the root node of the branch-and-bound tree within the time limit for a given formulation.

A.2.1 Linear vs. conic formulations

Here, we evaluate the basic MILP (LF, LEF) and the basic MICQP (CF, CEF) reformu-

lations, see Tables 19 and 20. Observe that, in most cases, LEF, CF, and CEF are stronger

than LF, i.e., they have better Rlx-gap. Additionally, as expected, the extended formula-

tions LEF and CEF are stronger than compact formulations, i.e., LF and CF, respectively.

The extended formulations also shows better running time and End-gap than the correspond-

ing compact formulations. In general, CEF performs better than LEF for low values of the

parameter κ, while LEF is comparatively better for high values of κ. Moreover, none of the

formulations except CF (with a very poor performance) are able to scale to n = 1000 for all

instances. These results justify the development of enhanced formulations for the medium

and large size instances.
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A.2.2 Binary-expansion

Here, we explore the individual impact of binary-expansion technique on the perfor-

mance and size of the basic formulations. Specifically, we compare LF and CEF versus their

binarized versions, i.e., LFlog and CEFlog, respectively.

In Tables 21 and 22, we observe that LF has a poor performance even for n = 100. In

contrast, its binarization leads to significant improvements in the results due to the reduction

in the size of the formulation. These results are consistent with the previous results in the

literature that LFlog has a superior performance over LF, LEF, and LEFlog – see [16, 61] and

also the results for LEF in Tables 19 and 20.

On the other hand, for n ⩽ 500 formulation CEF outperforms CEFlog with respect to

either time or the considered gaps; e.g., for n = 500 and κ = 10% ⋅n in Table 21, CEF reports

the 0.2% average End-gap, compared to 5.1% for CEFlog. Nonetheless, CEFlog is able to scale

to problems with n ⩾ 1000 while formulation CEF is not. Additionally, for the instances with

n ⩾ 2000 we observe that in most cases CEFlog outperforms (the superior MILP formulation)

LFlog, as well.

Tables 23 and 24 show the impact of binarization in the reduction of the number of

continuous variables and linear as well as rotated cone constraints for the assortment and

the uniformly generated data sets, respectively. It can be seen that the binary-expansion

technique substantially reduces the number of (continuous) variables and constraints with a

slight increase in the number of binary variables; the percent of these reductions gets larger

as n grows. For example, in Table 23 for n = 1000, LFlog and CEFlog have at least 97,900 and

391,500 fewer continuous variables and linear constraints, respectively, than LF and CEF

with the cost of at most 2,100 more binary variables. The binary-expansion technique also

leads to a reduction of 97,900 rotated cone constraints for CEF.

A.2.3 Polymatroid cuts

Next, we explore the individual impact of polymatroid cuts on the basic formulations,

namely, LF, LEF, CF, and CEF. Notably, for n ⩽ 500 in Tables 25 and 26, we observe that

polymatroid cuts have a significant improvement effect on the performance (running time and
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End-gap) of compact formulations LF and CF. However, the cuts are not that effective for

LEF and CEF, as these extended formulations are much stronger and the cuts provide only a

marginal improvement in the relaxation quality while increasing the sizes of the formulations.

Additionally, for n ⩾ 1000 polymatroid cuts are not beneficial and employing them makes

the results worse, see, e.g., in Table 25 and n = 1000 that End-gap of LEF from 13.9%

increases to 81% after employing the cuts. The reason is that CPLEX consumes the allocated

time only to manage the cuts and process the root node.

A.2.4 Integration of binary-expansion and polymatroid cuts

Here, we explore the effect of simultaneous usage of both techniques, i.e., the impact of

the incorporation of polymatroid cuts with binary expansion on LF and CEF. Tables 27

and 28 present the results and we make the following observations. Formulation LFP
log either

outperforms LF, LFP, and LFlog or (in a few cases) has a competitive performance with

LFP. On the other hand, for the small- and medium- size instances CEF and CEFP are

competitive and they have better performances than CEFlog and CEFP
log. However, for large

instances CEFP
log outperforms CEF, CEFlog and CEFP. These observations imply that -

specially in large instances - the integration of binarization and polymatroid cuts in both

MILPs and MICQPs leads to superior formulations. Specifically, LFP
log and CEFP

log perform

better than the corresponding basic formulations and the enhanced ones that only use one

of the improving techniques.

Additionally, it appears that for instances up to 500 variables, in general, CEF and CEFP

are the most efficient formulations. For instances with n ⩾ 1000, CEFP
log and LFP

log outper-

form the others. Finally, we observe that, in general, CEFP
log has a better performance in

the constrained instances, while LFP
log is superior in the unconstrained instances.
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Table 17: Computational results to evaluate the best existing methods in the literature

against the standout formulations for the assortment data set [85]. For each combination

of n,m,κ and each formulation, we present averages over five instances for: time (Time)

in seconds, number of nodes (Nodes) processed, end gap (End-gap), continuous relaxation

gap (Rlx-gap), root node gap (Ron-gap), best-bound gap (Bbn-gap), and optimality

gap (Opt-gap). For each choice of n, m, and κ, among the solution methods, the best

average time and the best average End-gap (if Time⩾ 3600 sec.) are in bold.

κ 10% ⋅ n 20% ⋅ n Unconstrained

n,m Ref. Time Nodes End-gap Rlx-gap Ron-gap Bbn-gap Opt-gap Time Nodes End-gap Rlx-gap Ron-gap Bbn-gap Opt-gap Time Nodes End-gap Rlx-gap Ron-gap Bbn-gap Opt-gap

25,2∗

LFlog 0 5 0.0% 15.3% 1.1% 0.0% 0.0% 0 27 0.0% 28.1% 4.3% 0.0% 0.0% 1 386 0.0% 56.1% 18.1% 0.0% 0.0%

LEF 0 2 0.0% 0.7% 0.7% 0.0% 0.0% 0 9 0.0% 0.9% 0.8% 0.0% 0.0% 0 0 0.0% 0.0% 0.0% 0.0% 0.0%

CFP 0 0 0.0% 1.5% 0.8% 0.0% 0.0% 0 0 0.0% 2.8% 1.9% 0.0% 0.0% 1 0 0.0% 8.2% 1.2% 0.0% 0.0%

CEF 0 0 0.0% 0.0% 0.0% 0.0% 0.0% 0 1 0.0% 0.1% 0.1% 0.0% 0.0% 0 0 0.0% 0.0% 0.0% 0.0% 0.0%

LFP
log 0 0 0.0% 0.5% 0.3% 0.0% 0.0% 0 1 0.0% 0.9% 0.7% 0.0% 0.0% 0 20 0.0% 1.8% 0.1% 0.0% 0.0%

CEFP
log 1 1 0.0% 0.1% 0.1% 0.0% 0.0% 0 0 0.0% 0.6% 0.1% 0.0% 0.0% 2 379 0.0% 1.8% 1.5% 0.0% 0.0%

50,5∗

LFlog 1 233 0.0% 30.0% 5.7% 0.0% 0.0% 2 2,109 0.0% 44.4% 14.5% 0.0% 0.0% 18 35,496 0.0% 65.6% 28.2% 0.0% 0.0%

LEF 0 123 0.0% 3.0% 3.0% 0.0% 0.0% 1 1,111 0.0% 3.2% 3.2% 0.0% 0.0% 0 2 0.0% 0.0% 0.0% 0.0% 0.0%

CFP 1 0 0.0% 2.3% 0.1% 0.0% 0.0% 2 0 0.0% 5.5% 0.0% 0.0% 0.0% 4 4 0.0% 13.4% 0.9% 0.0% 0.0%

CEF 1 1 0.0% 0.0% 0.0% 0.0% 0.0% 1 7 0.0% 0.2% 0.2% 0.0% 0.0% 1 2 0.0% 0.0% 0.0% 0.0% 0.0%

LFP
log 0 0 0.0% 0.9% 0.3% 0.0% 0.0% 1 19 0.0% 2.4% 0.1% 0.0% 0.0% 6 6,721 0.0% 5.9% 0.3% 0.0% 0.0%

CEFP
log 0 4 0.0% 0.5% 0.3% 0.0% 0.0% 2 250 0.0% 1.9% 0.9% 0.0% 0.0% 21 11,132 0.0% 5.9% 5.2% 0.0% 0.0%

100,10∗

LFlog 979 364,141 0.0% 42.7% 14.5% 0.0% 0.0% 3155 1,732,777 0.4% 55.3% 23.7% 0.4% 0.0% 3600 1,543,428 1.6% 75.9% 38.5% 1.4% 0.1%

LEF 3357 345,641 1.6% 8.3% 8.3% 1.6% 0.0% 2190 361,599 0.2% 5.0% 5.0% 0.2% 0.0% 1 35 0.0% 0.1% 0.0% 0.1% 0.1%

CFP 10 0 0.0% 3.8% 0.0% 0.0% 0.0% 20 0 0.0% 7.8% 0.0% 0.0% 0.0% 25 370 0.0% 17.8% 0.1% 0.1% 0.1%

CEF 6 14 0.0% 0.7% 0.2% 0.0% 0.0% 4 23 0.0% 0.6% 0.2% 0.0% 0.0% 6 17 0.0% 0.3% 0.0% 0.1% 0.1%

LFP
log 1 86 0.0% 1.9% 0.1% 0.0% 0.0% 6 2,434 0.0% 4.4% 0.1% 0.0% 0.0% 3600 1,535,465 0.8% 12.1% 1.5% 0.7% 0.1%

CEFP
log 2 215 0.0% 1.2% 0.3% 0.0% 0.0% 22 3,199 0.0% 3.7% 2.1% 0.0% 0.0% 3600 411,139 0.3% 12.1% 8.4% 0.2% 0.1%

200,20∗

LFlog 3600 549,079 6.7% 52.9% 24.7% 6.1% 0.6% 3600 383,827 8.7% 64.7% 31.9% 7.7% 1.1% 3600 300,111 24.1% 82.7% 49.9% 21.9% 2.9%

LEF 3600 42,413 8.6% 10.6% 10.6% 8.6% 0.0% 3600 129,049 1.1% 3.0% 3.0% 1.0% 0.1% 29 1,327 0.0% 0.3% 0.3% 0.1% 0.1%

CFP 27 5 0.0% 5.6% 0.0% 0.0% 0.0% 64 131 0.0% 13.1% 0.0% 0.0% 0.1% 1562 26,768 0.2% 23.6% 0.5% 0.1% 0.1%

CEF 73 190 0.0% 1.5% 0.4% 0.0% 0.0% 40 31 0.0% 1.5% 0.1% 0.1% 0.1% 59 332 0.0% 1.1% 0.1% 0.1% 0.1%

LFP
log 710 158,569 0.0% 4.1% 0.2% 0.0% 0.0% 3400 715,941 0.3% 10.9% 0.4% 0.2% 0.1% 3600 374,382 6.3% 22.3% 6.0% 5.6% 0.7%

CEFP
log 2353 74,047 0.5% 2.6% 2.2% 0.4% 0.1% 3600 112,151 2.2% 8.2% 6.8% 1.8% 0.4% 3600 144,453 6.4% 22.2% 13.8% 4.8% 1.7%

500,50∗

LFlog 3600 102,004 39.8% 53.0% 35.4% 31.8% 16.0% 3600 84,392 54.0% 68.6% 35.0% 31.4% 137.4% 3600 92,414 55.7% 91.8% 74.7% 53.1% 5.9%

LEF 3600 2,548 8.3% 8.7% 8.7% 8.2% 0.1% 2520 8,118 0.2% 0.8% 0.2% 0.6% 0.8% 3501 12,727 0.4% 1.8% 0.4% 0.9% 1.3%

CFP 1194 311 0.0% 8.9% 0.1% 0.1% 0.1% 3452 707 0.3% 22.2% 0.7% 0.7% 1.0% 3600 440 7.7% 26.7% 0.5% 0.4% 10.0%

CEF 3611 779 0.2% 32.6% 0.3% 0.1% 0.1% 2620 842 0.0% 38.4% 0.5% 0.7% 0.8% 3604 272 0.5% 23.9% 0.7% 0.8% 1.3%

LFP
log 3600 110,452 0.8% 8.8% 0.3% 0.3% 0.5% 3600 57,797 3.3% 24.8% 1.3% 1.3% 2.1% 3600 65,850 15.2% 33.6% 13.4% 13.0% 2.6%

CEFP
log 3600 55,687 4.7% 5.4% 5.0% 4.3% 0.4% 3600 63,450 12.2% 15.8% 14.0% 11.5% 0.8% 3601 129,520 26.1% 33.5% 20.6% 16.2% 13.5%

1000,100∗∗

LFlog 3600 55,776 55.9% 60.6% 51.0% 46.3% 25.3% 3600 58,847 62.7% 77.4% 61.2% 59.1% 9.5% 3600 55,641 76.5% 94.3% 79.1% 73.8% 11.5%

LEF 3600 215 13.9% 4.4% 4.4% 4.3% 16.8% 3722 488 0.9% 1.2% 0.0% 0.1% 1.0% 3600 351 1.7% 1.7% 1.1% 1.0% 0.7%

CFP 3600 † † † † † † 3600 † † † † † † 3600 † † † † † †
CEF 3605 † † † † † † 3600 † † † † † † 3600 † † † † † †
LFP

log 3601 † † † † † † 3601 6,378 20.9% 39.4% 15.8% 15.6% 6.7% 3601 30,129 26.1% 43.6% 23.9% 23.4% 3.6%

CEFP
log 3601 32,326 10.0% 9.9% 9.5% 9.1% 1.0% 3600 26,843 22.6% 23.9% 22.5% 21.8% 1.1% 3600 4,283 33.8% 42.9% 25.0% 24.6% 14.0%

2000,100∗∗

LFlog 3600 58,217 57.8% 68.0% 62.7% 55.1% 6.3% 3600 56,546 70.5% 84.0% 79.1% 67.9% 9.7% 3600 39,585 78.3% 96.0% 81.6% 77.7% 2.7%

LEF 3601 † † † † † † 3600 † † † † † † 3601 † † † † † †
CFP 3600 † † † † † † 3600 † † † † † † 3600 † † † † † †
CEF 3600 † † † † † † 3600 † † † † † † 3600 † † † † † †
LFP

log 3601 † † † † † † 3600 32,898 41.4% 48.9% 41.2% 39.5% 3.2% 3601 8,660 33.1% 52.2% 31.2% 31.1% 3.0%

CEFP
log 3600 38,716 16.1% 15.8% 15.4% 14.7% 1.6% 3600 28,575 30.7% 32.5% 31.9% 30.6% 0.1% 3600 931 53.4% 48.2% 33.0% 33.0% 268.5%

5000,100∗∗

LFlog 3600 23,558 78.1% 86.8% 84.7% 77.3% 3.9% 3600 37,298 80.6% 93.4% 93.4% 80.2% 1.9% 3601 12,870 83.5% 96.8% 96.8% 83.0% 3.6%

LEF 7807 † † † † † † 8155 † † † † † † 7241 † † † † † †
CFP 3600 † † † † † † 3600 † † † † † † 3600 † † † † † †
CEF 3600 † † † † † † 3600 † † † † † † 3600 † † † † † †
LFP

log 3601 7,220 29.2% 50.1% 25.1% 25.0% 5.9% 3601 15,186 49.0% 59.9% 47.6% 45.8% 6.3% 3601 6,818 50.7% 61.1% 49.3% 49.2% 3.1%

CEFP
log 3600 13,966 39.3% 27.5% 30.7% 28.7% 402.8% 3600 13,736 40.6% 33.9% 40.1% 39.1% 2.6% 3600 3,257 58.4% 50.8% 47.5% 47.5% 26.4%

10000,100∗∗

LFlog 3600 13,230 88.4% 90.0% 90.0% 82.0% 224.1% 3600 8,857 83.1% 94.7% 94.7% 80.6% 39.2% 3602 5,082 93.0% 97.6% 97.6% 91.6% 22.0%

LEF 4225 † † † † † † 4026 † † † † † † 3603 † † † † † †
CFP 3600 † † † † † † 3600 † † † † † † 3600 † † † † † †
CEF 3600 † † † † † † 3600 † † † † † † 3600 † † † † † †
LFP

log 3601 5,481 55.4% 58.6% 54.7% 53.2% 5.4% 3601 9,440 53.2% 61.4% 49.2% 48.2% 10.5% 3601 5,482 54.7% 65.0% 54.3% 54.3% 1.0%

CEFP
log 3600 9,979 33.4% 5.0% 34.9% 31.0% 3.7% 3601 7,247 45.4% 22.0% 37.6% 35.6% 17.9% 3601 † † † † † †

*easy instances

**hard instances
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Table 18: Computational results to evaluate the best existing methods in the literature

against the standout formulations for the uniformly generated data set [16]. For each

combination of n,m,κ and each formulation, we present averages over five instances for:

time (Time) in seconds, number of nodes (Nodes) processed, end gap (End-gap), continuous

relaxation gap (Rlx-gap), root node gap (Ron-gap), best-bound gap (Bbn-gap), and

optimality gap (Opt-gap). For each choice of n, m, and κ, among the solution methods,

the best average time and the best average End-gap (if Time⩾ 3600 sec.) are in bold.

κ 10% ⋅ n 20% ⋅ n Unconstrained

n,m Ref. Time Nodes End-gap Rlx-gap Ron-gap Bbn-gap Opt-gap Time Nodes End-gap Rlx-gap Ron-gap Bbn-gap Opt-gap Time Nodes End-gap Rlx-gap Ron-gap Bbn-gap Opt-gap

25,2∗

LFlog 0 23 0.0% 49.8% 28.0% 0.0% 0.0% 1 95 0.0% 50.1% 32.3% 0.0% 0.0% 1 199 0.0% 93.0% 59.8% 0.0% 0.0%

LEF 0 1 0.0% 6.8% 5.4% 0.0% 0.0% 0 24 0.0% 10.8% 9.2% 0.0% 0.0% 0 21 0.0% 28.1% 22.7% 0.0% 0.0%

CFP 3 2 0.0% 31.4% 4.6% 0.0% 0.0% 4 179 0.0% 40.5% 6.3% 0.0% 0.0% 4 24 0.0% 37.1% 3.4% 0.0% 0.0%

CEF 0 2 0.0% 4.0% 3.8% 0.0% 0.0% 0 14 0.0% 7.9% 7.0% 0.0% 0.0% 1 16 0.0% 18.6% 13.2% 0.0% 0.0%

LFP
log 0 13 0.0% 29.5% 11.5% 0.0% 0.0% 1 222 0.0% 42.3% 12.0% 0.0% 0.0% 1 142 0.0% 45.5% 14.6% 0.0% 0.0%

CEFP
log 1 4 0.0% 10.3% 6.9% 0.0% 0.0% 1 106 0.0% 19.9% 18.7% 0.0% 0.0% 6 133 0.0% 42.8% 27.1% 0.0% 0.0%

50,5∗

LFlog 3 3,364 0.0% 50.7% 43.7% 0.0% 0.0% 20 21,061 0.0% 54.2% 45.0% 0.0% 0.0% 52 55,437 0.0% 96.9% 77.1% 0.0% 0.0%

LEF 2 381 0.0% 18.5% 16.4% 0.0% 0.0% 13 9,831 0.0% 20.9% 19.9% 0.0% 0.0% 43 35,334 0.0% 56.3% 49.6% 0.0% 0.0%

CFP 78 22,068 0.0% 56.2% 23.9% 0.0% 0.0% 3601 1,058,360 6.5% 56.3% 25.4% 6.4% 0.1% 2903 1,043,778 3.0% 56.6% 23.9% 3.0% 0.0%

CEF 3 172 0.0% 14.6% 13.7% 0.0% 0.0% 18 6,093 0.0% 15.6% 15.3% 0.0% 0.0% 100 35,410 0.0% 43.6% 40.9% 0.0% 0.0%

LFP
log 9 5,014 0.0% 45.9% 21.3% 0.0% 0.0% 27 29,157 0.0% 51.4% 30.0% 0.0% 0.0% 85 81,310 0.0% 60.3% 25.0% 0.0% 0.0%

CEFP
log 6 2,477 0.0% 24.4% 22.6% 0.0% 0.0% 26 8,630 0.0% 29.9% 29.1% 0.0% 0.0% 86 25,435 0.0% 59.4% 46.4% 0.0% 0.0%

100,10∗∗

LFlog 3600 2,079,337 5.0% 54.5% 48.7% 4.8% 0.2% 3600 2,153,102 5.0% 56.4% 49.8% 4.8% 0.3% 3600 2,487,103 11.2% 98.6% 84.6% 10.7% 0.6%

LEF 3600 480,988 12.3% 29.4% 27.5% 12.3% 0.0% 3600 616,551 17.1% 30.4% 29.7% 17.1% 0.0% 3600 654,126 38.5% 72.5% 66.6% 38.5% 0.0%

CFP 3600 462,737 43.5% 72.8% 50.8% 41.0% 4.3% 3600 166,635 44.3% 66.9% 47.3% 42.1% 4.1% 3600 330,256 42.0% 71.5% 50.4% 40.4% 2.9%

CEF 3600 221,990 10.7% 25.6% 24.8% 10.3% 0.4% 3600 275,594 15.5% 25.0% 25.7% 14.9% 0.8% 3600 130,787 40.1% 63.7% 61.1% 39.3% 1.5%

LFP
log 3600 2,588,756 7.5% 54.1% 45.5% 6.8% 0.8% 3600 2,821,692 6.1% 56.3% 48.3% 5.3% 0.9% 3600 1,928,384 17.2% 74.5% 48.6% 16.1% 1.4%

CEFP
log 3600 482,188 7.2% 34.8% 34.5% 6.3% 0.9% 3603 463,914 5.2% 36.6% 36.6% 3.6% 1.7% 3600 417,221 10.9% 73.6% 61.2% 10.9% 0.0%

200,20∗∗

LFlog 3600 612,063 41.7% 56.8% 54.5% 37.5% 7.3% 3600 490,278 37.7% 58.0% 54.7% 33.9% 6.0% 3600 519,981 58.2% 99.3% 89.9% 54.9% 7.9%

LEF 3600 47,486 30.0% 36.2% 35.4% 30.0% 0.0% 3600 58,945 31.1% 36.0% 35.6% 31.0% 0.1% 3600 63,610 70.6% 83.0% 78.8% 70.5% 0.3%

CFP 3600 25,375 65.8% 80.4% 66.0% 63.7% 6.0% 3600 1,113 61.6% 72.0% 58.9% 58.8% 7.1% 3600 7,872 70.9% 81.0% 66.3% 64.8% 21.0%

CEF 3600 20,677 30.9% 30.9% 33.3% 28.9% 2.9% 3600 22,387 30.0% 23.0% 32.7% 28.9% 1.5% 3600 4,559 76.4% 76.0% 75.8% 71.3% 21.6%

LFP
log 3600 1,104,491 41.6% 56.7% 53.5% 36.5% 8.7% 3600 938,882 35.6% 57.9% 54.5% 31.5% 6.3% 3600 434,136 58.0% 82.1% 65.9% 52.7% 13.0%

CEFP
log 3600 174,404 35.5% 40.1% 39.9% 31.2% 6.6% 3600 113,509 34.3% 40.0% 39.9% 30.8% 5.4% 3600 279,263 54.4% 81.4% 73.4% 50.1% 9.4%

500,50∗∗

LFlog 3600 81,055 48.7% 49.0% 48.9% 47.0% 3.2% 3600 60,815 48.7% 47.2% 47.1% 45.0% 7.2% 3600 139,697 87.0% 99.9% 96.1% 86.1% 7.1%

LEF 3600 636 42.8% 43.0% 42.7% 42.4% 0.7% 3600 1,324 41.1% 38.6% 38.5% 38.0% 5.2% 3600 113 90.3% 91.4% 89.3% 89.2% 11.5%

CFP 3600 † † † † † † 3600 † † † † † † 3600 1,208 84.9% 89.8% 83.1% 82.5% 15.9%

CEF 3603 17 42.8% 20.4% 41.3% 41.2% 2.8% 3604 26 41.8% 5.7% 37.3% 37.2% 7.8% 3603 1 93.4% 80.5% 90.9% 90.9% 51.3%

LFP
log 3600 108,291 48.4% 49.0% 49.0% 46.8% 3.1% 3600 70,193 48.1% 47.2% 47.1% 44.6% 6.7% 3600 181,247 82.9% 90.5% 85.9% 81.3% 9.9%

CEFP
log 3600 29,818 46.3% 45.2% 44.9% 42.7% 7.1% 3600 24,696 43.1% 40.7% 40.7% 39.1% 7.0% 3600 23,870 86.7% 89.7% 86.6% 84.6% 20.1%

1000,100∗∗

LFlog 3600 52,994 50.3% 48.7% 48.7% 48.0% 4.7% 3600 41,825 50.1% 50.9% 50.8% 50.0% 0.0% 3600 48,644 96.6% 99.9% 97.3% 96.3% 8.5%

LEF 3601 † † † † † † 3601 † † † † † † 3601 † † † † † †
CFP 3600 † † † † † † 3600 † † † † † † 3600 406 95.6% 83.4% 95.5% 95.1% 27.6%

CEF 3600 † † † † † † 3600 † † † † † † 3600 † † † † † †
LFP

log 3600 48,719 50.2% 48.7% 48.7% 48.0% 4.4% 3600 24,225 50.2% 50.7% 50.8% 50.2% 0.0% 3600 108,734 91.9% 93.1% 92.0% 91.2% 8.4%

CEFP
log 3600 10,436 48.0% 45.3% 45.3% 44.5% 6.9% 3600 9,445 44.5% 44.7% 45.0% 44.5% 0.1% 3600 476 92.2% 92.5% 90.2% 90.2% 35.7%

2000,100∗∗

LFlog 3600 41,092 50.7% 51.2% 51.2% 50.6% 0.1% 3600 30,062 50.6% 50.8% 50.7% 50.2% 0.8% 3600 35,408 97.8% 100.0% 98.2% 97.7% 3.4%

LEF 3601 † † † † † † 3602 † † † † † † 3601 † † † † † †
CFP 3600 † † † † † † 3600 † † † † † † 3600 † † † † † †
CEF 3600 † † † † † † 3600 † † † † † † 3600 † † † † † †
LFP

log 3600 15,925 50.8% 51.1% 51.2% 50.8% 0.0% 3600 14,228 50.7% 50.8% 50.8% 50.3% 0.8% 3600 69,565 94.8% 95.5% 95.1% 94.7% 2.6%

CEFP
log 3600 9,576 47.8% 48.3% 48.2% 47.7% 0.1% 3600 7,815 44.6% 45.1% 45.0% 44.6% 0.1% 3600 339 96.6% 95.1% 93.7% 93.7% 101.2%

5000,100∗∗

LFlog 3600 18,499 67.9% 68.6% 68.6% 67.1% 2.8% 3600 34,661 65.0% 69.5% 69.5% 65.0% 0.0% 3601 13,907 98.8% 100.0% 98.8% 98.6% 22.2%

LEF 4755 † † † † † † 3938 † † † † † † 3603 † † † † † †
CFP 3600 † † † † † † 3600 † † † † † † 3600 † † † † † †
CEF 3600 † † † † † † 3600 † † † † † † 3600 † † † † † †
LFP

log 3600 9,434 68.8% 68.6% 68.6% 68.0% 2.7% 3600 12,867 67.9% 69.5% 69.2% 67.9% 0.1% 3601 16,900 96.9% 96.7% 96.5% 96.4% 14.4%

CEFP
log 3600 4,295 46.7% 47.2% 47.0% 46.7% 0.0% 3601 3,406 45.2% 45.7% 45.5% 45.1% 0.0% 3601 34 98.3% 96.4% 96.0% 96.0% 132.1%

10000,100∗∗

LFlog 3600 15,052 68.6% 69.0% 69.0% 68.1% 1.6% 3600 11,855 68.2% 69.2% 69.2% 67.9% 1.0% 3601 2,471 99.4% 100.0% 99.3% 99.3% 25.6%

LEF 9500 † † † † † † 6022 † † † † † † 5619 † † † † † †
CFP 3600 † † † † † † 3600 † † † † † † 3600 † † † † † †
CEF 3600 † † † † † † 3600 † † † † † † 3600 † † † † † †
LFP

log 3601 5,732 68.5% 69.0% 69.0% 68.0% 1.6% 3601 6,058 68.4% 69.2% 68.8% 68.0% 1.2% 3601 6,595 97.8% 98.0% 97.9% 97.8% 0.0%

CEFP
log 3601 896 47.5% 47.9% 47.7% 47.5% 0.0% 3600 1,165 44.8% 45.1% 45.0% 44.8% 0.0% 3600 † † † † † †

*easy instances

**hard instances
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Table 19: Computational results to compare basic MILP and MICQP formulations for the

assortment data set [85]. For each combination of n,m,κ and each formulation, we present

averages over five instances for: time (Time) in seconds, number (#) of instances solved to

optimality, number of nodes (Nodes) processed, end gap (End-gap), continuous relaxation

gap (Rlx-gap), root-node gap (Ron-gap), best bound gap (Bbn-gap) the optimality

gap (Opt-gap). For each choice of n, m, and κ, among the solution methods, the best

average time and the best average End-gap (if Time⩾ 3600 sec.) are in bold.

κ 10% ⋅ n 20% ⋅ n Unconstrained

n,m Ref. Time # Nodes End-gap Rlx-gap Ron-gap Time # Nodes End-gap Rlx-gap Ron-gap Time # Nodes End-gap Rlx-gap Ron-gap

25,2

LF 0 5 30 0.0% 14.1% 4.7% 2 5 1,395 0.0% 42.6% 24.5% 2 5 1,538 0.0% 35.0% 12.1%

LEF 0 5 2 0.0% 0.7% 0.7% 0 5 9 0.0% 0.9% 0.8% 0 5 0 0.0% 0.0% 0.0%

CF 1 5 13 0.0% 1.5% 1.5% 1 5 70 0.0% 2.8% 2.8% 2 5 1,278 0.0% 8.2% 8.2%

CEF 0 5 0 0.0% 0.0% 0.0% 0 5 1 0.0% 0.1% 0.1% 0 5 0 0.0% 0.0% 0.0%

50,5

LF 55 5 40,100 0.0% 51.7% 41.3% 3600 0 935,667 29.4% 60.1% 49.8% 3600 0 1,495,669 19.3% 52.9% 41.4%

LEF 0 5 123 0.0% 3.0% 3.0% 1 5 1,111 0.0% 3.2% 3.2% 0 5 2 0.0% 0.0% 0.0%

CF 2 5 157 0.0% 2.3% 2.2% 7 5 3,016 0.0% 5.5% 5.5% 2916 2 802,844 1.0% 13.4% 13.4%

CEF 1 5 1 0.0% 0.0% 0.0% 1 5 7 0.0% 0.2% 0.2% 1 5 2 0.0% 0.0% 0.0%

100,10

LF 3600 0 170,481 70.1% 78.3% 77.7% 3600 0 473,158 61.7% 72.1% 70.2% 3600 0 730,892 51.5% 67.5% 64.2%

LEF 3357 1 345,641 1.6% 8.3% 8.3% 2190 3 361,599 0.2% 5.0% 5.0% 1 5 35 0.0% 0.1% 0.0%

CF 67 5 7,786 0.0% 3.8% 3.6% 3371 1 231,729 3.5% 7.8% 8.6% 3600 0 94,567 11.9% 17.8% 17.9%

CEF 6 5 14 0.0% 0.7% 0.2% 4 5 23 0.0% 0.6% 0.2% 6 5 17 0.0% 0.3% 0.0%

200,20

LF 3600 0 28,528 82.3% 84.4% 84.4% 3600 0 47,569 77.0% 79.4% 79.3% 3600 0 49,188 73.4% 78.3% 77.9%

LEF 3600 0 42,413 8.6% 10.6% 10.6% 3600 1 129,049 1.1% 3.0% 3.0% 29 5 1,327 0.0% 0.3% 0.3%

CF 3600 0 55,709 32.9% 5.6% 36.0% 3600 0 29,821 62.3% 13.1% 63.7% 3600 0 14,939 65.2% 23.6% 73.1%

CEF 73 5 190 0.0% 1.5% 0.4% 40 5 31 0.0% 1.5% 0.1% 59 5 332 0.0% 1.1% 0.1%

500,50

LF 3600 0 1,620 90.3% 89.0% 89.0% 3600 0 2,097 86.7% 86.2% 86.2% 3601 0 5,755 86.2% 86.4% 86.4%

LEF 3600 0 2,548 8.3% 8.7% 8.7% 2520 2 8,118 0.2% 0.8% 0.2% 3501 1 12,727 0.4% 1.8% 0.4%

CF 3600 0 11,986 96.4% 8.9% 100.0% 3600 0 11,367 100.0% 22.2% 100.0% 3600 0 4,110 96.1% 26.7% 100.0%

CEF 3611 0 779 0.2% 32.6% 0.3% 2620 5 842 0.0% 38.4% 0.5% 3604 0 272 0.5% 23.9% 0.7%

1000,100

LF 3601 0 3 99.2% 93.1% 93.1% 3600 0 10 99.0% 90.4% 90.4% 3601 0 33 99.0% 90.5% 90.5%

LEF 3600 0 215 13.9% 4.4% 4.4% 3722 0 488 0.9% 1.2% 0.0% 3600 0 351 1.7% 1.7% 1.1%

CF 3600 0 4,962 100.0% 15.7% 100.0% 3605 0 4,612 100.0% 29.7% 100.0% 3600 0 1,882 100.0% 30.2% 100.0%

CEF 3605 0 † † † † 3600 0 † † † † 3600 0 † † † †
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Table 20: Computational results to compare basic MILP and MICQP formulations for the

uniformly generated data set [16]. For each combination of n,m,κ and each formulation,

we present averages over five instances for: time (Time) in seconds, number (#) of instances

solved to optimality, number of nodes (Nodes) processed, end gap (End-gap), continuous

relaxation gap (Rlx-gap), root-node gap (Ron-gap), best bound gap (Bbn-gap) and

optimality gap (Opt-gap). For each choice of n, m, and κ, among the solution methods,

the best average time and the best average End-gap (if Time⩾ 3600 sec.) are in bold.

κ 10% ⋅ n 20% ⋅ n Unconstrained

n,m Ref. Time # Nodes End-gap Rlx-gap Ron-gap Time # Nodes End-gap Rlx-gap Ron-gap Time # Nodes End-gap Rlx-gap Ron-gap

25,2

LF 0 5 38 0.0% 81.5% 48.1% 1 5 433 0.0% 70.4% 41.5% 1 5 497 0.0% 89.7% 46.9%

LEF 0 5 1 0.0% 6.8% 5.4% 0 5 24 0.0% 10.8% 9.2% 0 5 21 0.0% 28.1% 22.7%

CF 1 5 114 0.0% 31.4% 24.8% 1 5 1,198 0.0% 40.5% 40.5% 1 5 1,657 0.0% 37.1% 37.1%

CEF 0 5 2 0.0% 4.0% 3.8% 0 5 14 0.0% 7.9% 7.0% 1 5 16 0.0% 18.6% 13.2%

50,5

LF 1554 5 589,909 0.0% 85.7% 82.8% 3600 0 2,006,223 46.9% 75.2% 69.9% 3600 0 2,791,336 44.9% 96.0% 91.5%

LEF 2 5 381 0.0% 18.5% 16.4% 13 5 9,831 0.0% 20.9% 19.9% 43 5 35,334 0.0% 56.3% 49.6%

CF 75 5 31,692 0.0% 56.2% 56.2% 3606 0 1,112,962 6.0% 56.3% 56.3% 2594 2 677,850 7.3% 56.6% 56.6%

CEF 3 5 172 0.0% 14.6% 13.7% 18 5 6,093 0.0% 15.6% 15.3% 100 5 35,410 0.0% 43.6% 40.9%

100,10

LF 3600 0 1,100,713 82.1% 87.5% 87.1% 3600 0 1,252,405 71.1% 77.1% 76.0% 3600 0 1,308,606 90.2% 98.3% 96.7%

LEF 3600 0 480,988 12.3% 29.4% 27.5% 3600 0 616,551 17.1% 30.4% 29.7% 3600 0 654,126 38.5% 72.5% 66.6%

CF 3600 0 223,083 52.3% 72.8% 72.8% 3600 0 154,439 54.9% 66.9% 66.9% 3600 0 220,110 53.2% 71.5% 71.4%

CEF 3600 0 221,990 10.7% 25.6% 24.8% 3600 0 275,594 15.5% 25.0% 25.7% 3600 0 130,787 40.1% 63.7% 61.1%

200,20

LF 3600 0 118,471 87.8% 88.6% 88.6% 3600 0 107,640 77.4% 78.1% 77.9% 3600 0 184,061 97.5% 99.2% 98.5%

LEF 3600 0 47,486 30.0% 36.2% 35.4% 3600 0 58,945 31.1% 36.0% 35.6% 3600 0 63,610 70.6% 83.0% 78.8%

CF 3600 0 27,323 99.5% 80.4% 99.5% 3600 0 17,547 89.6% 72.0% 88.7% 3600 0 24,168 99.7% 81.0% 100.0%

CEF 3600 0 20,677 30.9% 30.9% 33.3% 3600 0 22,387 30.0% 23.0% 32.7% 3600 0 4,559 76.4% 76.0% 75.8%

500,50

LF 3600 0 1,232 90.2% 89.4% 89.4% 3600 0 369 82.3% 78.3% 78.3% 3600 0 6,619 99.5% 99.8% 99.5%

LEF 3600 0 636 42.8% 43.0% 42.7% 3600 0 1,324 41.1% 38.6% 38.5% 3600 0 113 90.3% 91.4% 89.3%

CF 3600 0 9,997 100.0% 86.1% 100.0% 3602 0 3,292 100.0% 75.0% 100.0% 3600 0 13,213 100.0% 89.8% 100.0%

CEF 3603 0 17 42.8% 20.4% 41.3% 3604 0 26 41.8% 5.7% 37.3% 3603 0 1 93.4% 80.5% 90.9%

1000,100

LF 3601 0 † † † † 3600 0 21 81.6% 79.9% 79.9% 3601 0 4 99.9% 99.9% 99.8%

LEF 3601 0 † † † † 3601 0 † † † † 3601 0 † † † †
CF 3600 0 911 100.0% 87.3% 100.0% 3600 0 1,210 100.0% 77.8% 100.0% 3600 0 663 100.0% 92.8% 100.0%

CEF 3600 0 † † † † 3600 0 † † † † 3600 0 † † † †
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Table 21: Computational results to compare binary-expansion formulations with their basic

counterparts for the assortment data set [16]. For each combination of n,m,κ and each

formulation, we present averages over five instances for: time (Time) in seconds, number

of nodes (Nodes) processed, end gap (End-gap), continuous relaxation gap (Rlx-gap), and

root-node gap (Ron-gap). For each choice of n, m, and κ, among the solution methods, the

best average time and the best average End-gap (if Time⩾ 3600 sec.) are in bold.

κ 10% ⋅ n 20% ⋅ n Unconstrained

n,m Ref. Time Nodes End-gap Rlx-gap Ron-gap Time Nodes End-gap Rlx-gap Ron-gap Time Nodes End-gap Rlx-gap Ron-gap

25,2

LF 0 30 0.0% 14.1% 4.7% 2 1,395 0.0% 42.6% 24.5% 2 1,538 0.0% 35.0% 12.1%

LFlog 0 5 0.0% 15.3% 1.1% 0 27 0.0% 28.1% 4.3% 1 386 0.0% 56.1% 18.1%

CEF 0 0 0.0% 0.0% 0.0% 0 1 0.0% 0.1% 0.1% 0 0 0.0% 0.0% 0.0%

CEFlog 1 1 0.0% 0.1% 0.1% 1 3 0.0% 0.7% 0.3% 1 316 0.0% 5.8% 5.8%

50,5

LF 55 40,100 0.0% 51.7% 41.3% 3600 935,667 29.4% 60.1% 49.8% 3600 1,495,669 19.3% 52.9% 41.4%

LFlog 1 233 0.0% 30.0% 5.7% 2 2,109 0.0% 44.4% 14.5% 18 35,496 0.0% 65.6% 28.2%

CEF 1 1 0.0% 0.0% 0.0% 1 7 0.0% 0.2% 0.2% 1 2 0.0% 0.0% 0.0%

CEFlog 1 6 0.0% 0.6% 0.3% 2 371 0.0% 2.1% 2.0% 18 13,917 0.0% 12.4% 12.3%

100,10

LF 3600 170,481 70.1% 78.3% 77.7% 3600 473,158 61.7% 72.1% 70.2% 3600 730,892 51.5% 67.5% 64.2%

LFlog 979 364,141 0.0% 42.7% 14.5% 3155 1,732,777 0.4% 55.3% 23.7% 3600 1,543,428 1.6% 75.9% 38.5%

CEF 6 14 0.0% 0.7% 0.2% 4 23 0.0% 0.6% 0.2% 6 17 0.0% 0.3% 0.0%

CEFlog 10 1,457 0.0% 1.3% 1.2% 212 27,571 0.0% 4.0% 3.9% 3465 292,906 1.0% 20.2% 20.2%

200,20

LF 3600 28,528 82.3% 84.4% 84.4% 3600 47,569 77.0% 79.4% 79.3% 3600 49,188 73.4% 78.3% 77.9%

LFlog 3600 549,079 6.7% 52.9% 24.7% 3600 383,827 8.7% 64.7% 31.9% 3600 300,111 24.1% 82.7% 49.9%

CEF 73 190 0.0% 1.5% 0.4% 40 31 0.0% 1.5% 0.1% 59 332 0.0% 1.1% 0.1%

CEFlog 3600 137,672 0.9% 2.6% 2.6% 3600 121,652 3.8% 8.2% 8.2% 3600 96,988 22.0% 28.9% 29.0%

500,50

LF 3600 1,620 90.3% 89.0% 89.0% 3600 2,097 86.7% 86.2% 86.2% 3601 5,755 86.2% 86.4% 86.4%

LFlog 3600 102,004 39.8% 53.0% 35.4% 3600 84,392 54.0% 68.6% 35.0% 3600 92,414 55.7% 91.8% 74.7%

CEF 3611 779 0.2% 32.6% 0.3% 2620 842 0.0% 38.4% 0.5% 3604 272 0.5% 23.9% 0.7%

CEFlog 3600 49,090 5.1% 5.4% 5.4% 3600 55,757 13.3% 15.8% 15.7% 3600 53,280 36.9% 37.3% 38.5%

1000,100

LF 3601 3 99.2% 93.1% 93.1% 3600 10 99.0% 90.4% 90.4% 3601 33 99.0% 90.5% 90.5%

LFlog 3600 55,776 55.9% 60.6% 51.0% 3600 58,847 62.7% 77.4% 61.2% 3600 55,641 76.5% 94.3% 79.1%

CEF 3605 † † † † 3600 † † † † 3600 † † † †
CEFlog 3600 36,151 25.3% 9.8% 9.9% 3600 36,647 23.7% 23.6% 23.9% 3600 35,213 48.7% 44.6% 45.7%

2000,100
LFlog 3600 58,217 57.8% 68.0% 62.7% 3600 56,546 70.5% 84.0% 79.1% 3600 39,585 78.3% 96.0% 81.6%

CEFlog 3600 26,386 30.3% 15.5% 16.1% 3600 22,548 60.0% 31.9% 38.2% 3600 26,785 71.0% 50.7% 52.7%

5000,100
LFlog 3600 23,558 78.1% 86.8% 84.7% 3600 37,298 80.6% 93.4% 93.4% 3601 12,870 83.5% 96.8% 96.8%

CEFlog 3600 15,535 48.0% 26.7% 57.7% 3600 10,662 77.7% 39.3% 60.0% 3600 11,067 86.5% 57.2% 86.5%

10000,100
LFlog 3600 13,230 88.4% 90.0% 90.0% 3600 8,857 83.1% 94.7% 94.7% 3602 5,082 93.0% 97.6% 97.6%

CEFlog 3600 7,551 53.8% 29.5% 52.2% 3600 3,781 84.6% 45.0% 85.1% 3600 2,786 95.4% 70.3% 95.0%
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Table 22: Computational results to compare binary-expansion formulations with their basic

counterparts for the uniformly generated data set [16]. For each combination of n,m,κ and

each formulation, we present averages over five instances for: time (Time) in seconds, number

of nodes (Nodes) processed, end gap (End-gap), continuous relaxation gap (Rlx-gap), the

root-node gap (Ron-gap). For each choice of n, m, and κ, among the solution methods, the

best average time and the best average End-gap (if Time⩾ 3600 sec.) are in bold.

κ 10% ⋅ n 20% ⋅ n Unconstrained

n,m Ref. Time Nodes End-gap Rlx-gap Ron-gap Time Nodes End-gap Rlx-gap Ron-gap Time Nodes End-gap Rlx-gap Ron-gap

25,2

LF 0 38 0.0% 81.5% 48.1% 1 433 0.0% 70.4% 41.5% 1 497 0.0% 89.7% 46.9%

LFlog 0 23 0.0% 49.8% 28.0% 1 95 0.0% 50.1% 32.3% 1 199 0.0% 93.0% 59.8%

CEF 0 2 0.0% 4.0% 3.8% 0 14 0.0% 7.9% 7.0% 1 16 0.0% 18.6% 13.2%

CEFlog 0 6 0.0% 10.3% 7.9% 1 89 0.0% 19.9% 19.3% 3 353 0.0% 45.7% 44.2%

50,5

LF 1554 589,909 0.0% 85.7% 82.8% 3600 2,006,223 46.9% 75.2% 69.9% 3600 2,791,336 44.9% 96.0% 91.5%

LFlog 3 3,364 0.0% 50.7% 43.7% 20 21,061 0.0% 54.2% 45.0% 52 55,437 0.0% 96.9% 77.1%

CEF 3 172 0.0% 14.6% 13.7% 18 6,093 0.0% 15.6% 15.3% 100 35,410 0.0% 43.6% 40.9%

CEFlog 11 4,746 0.0% 24.4% 24.0% 22 8,046 0.0% 30.0% 29.6% 521 78,437 0.0% 64.4% 62.1%

100,10

LF 3600 1,100,713 82.1% 87.5% 87.1% 3600 1,252,405 71.1% 77.1% 76.0% 3600 1,308,606 90.2% 98.3% 96.7%

LFlog 3600 2,079,337 5.0% 54.5% 48.7% 3600 2,153,102 5.0% 56.4% 49.8% 3600 2,487,103 11.2% 98.6% 84.6%

CEF 3600 221,990 10.7% 25.6% 24.8% 3600 275,594 15.5% 25.0% 25.7% 3600 130,787 40.1% 63.7% 61.1%

CEFlog 3601 433,421 8.1% 34.8% 34.7% 3600 394,433 7.9% 36.6% 36.5% 3600 368,512 20.1% 76.0% 74.6%

200,20

LF 3600 118,471 87.8% 88.6% 88.6% 3600 107,640 77.4% 78.1% 77.9% 3600 184,061 97.5% 99.2% 98.5%

LFlog 3600 612,063 41.7% 56.8% 54.5% 3600 490,278 37.7% 58.0% 54.7% 3600 519,981 58.2% 99.3% 89.9%

CEF 3600 20,677 30.9% 30.9% 33.3% 3600 22,387 30.0% 23.0% 32.7% 3600 4,559 76.4% 76.0% 75.8%

CEFlog 3600 131,182 39.6% 40.1% 40.1% 3600 88,037 36.6% 40.0% 40.0% 3600 285,525 64.6% 83.6% 83.3%

500,50

LF 3600 1,232 90.2% 89.4% 89.4% 3600 369 82.3% 78.3% 78.3% 3600 6,619 99.5% 99.8% 99.5%

LFlog 3600 81,055 48.7% 49.0% 48.9% 3600 60,815 48.7% 47.2% 47.1% 3600 139,697 87.0% 99.9% 96.1%

CEF 3603 17 42.8% 20.4% 41.3% 3604 26 41.8% 5.7% 37.3% 3603 1 93.4% 80.5% 90.9%

CEFlog 3600 34,703 53.2% 45.2% 45.1% 3600 26,390 42.8% 40.7% 40.7% 3600 82,878 91.0% 90.8% 90.8%

1000,100

LF 3601 † 91.0% 89.5% 89.5% 3600 21 81.6% 79.9% 79.9% 3601 4 99.9% 99.9% 99.8%

LFlog 3600 52,994 50.3% 48.7% 48.7% 3600 41,825 50.1% 50.9% 50.8% 3600 48,644 96.6% 99.9% 97.3%

CEF 3600 † † † † 3600 † † † † 3600 † † † †
CEFlog 3600 12,062 46.0% 45.3% 45.3% 3601 8,843 47.9% 44.7% 45.3% 3600 37,767 93.7% 93.3% 93.3%

2000,100
LFlog 3600 41,092 50.7% 51.2% 51.2% 3600 30,062 50.6% 50.8% 50.7% 3600 35,408 97.8% 100.0% 98.2%

CEFlog 3601 5,139 48.8% 47.9% 48.4% 3600 4,909 48.5% 44.4% 45.2% 3600 25,840 97.0% 95.5% 95.6%

5000,100
LFlog 3600 18,499 67.9% 68.6% 68.6% 3600 34,661 65.0% 69.5% 69.5% 3601 13,907 98.8% 100.0% 98.8%

CEFlog 3600 5,092 51.4% 46.4% 47.1% 3600 3,305 48.0% 44.6% 45.6% 3600 11,678 97.0% 96.7% 96.7%

10000,100
LFlog 3600 15,052 68.6% 69.0% 69.0% 3600 11,855 68.2% 69.2% 69.2% 3601 2,471 99.4% 100.0% 99.3%

CEFlog 3600 1,873 50.5% 47.2% 47.7% 3600 1,010 48.2% 44.3% 45.1% 3601 475 99.4% 98.0% 99.0%
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Table 23: The size of selected formulations versus their binary-expansion versions for the

assortment data set [85]. In each row, the average number of continuous (C-var) and

binary (B-var) variables as well as the average number of linear (L-const) and rotated

conic quadratic (C-const) constraints are presented.

κ 10% ⋅ n 20% ⋅ n Unconstrained

n,m Ref. C-var B-var L-const C-const C-var B-var L-const C-const C-var B-var L-const C-const

25,2

LF 52 25 203 - 52 25 203 - 52 25 202 -

LFlog 12 35 35 - 14 37 41 - 17 40 50 -

CEF 56 25 207 52 56 25 207 52 56 25 206 52

CEFlog 16 45 49 12 18 49 57 14 21 55 65 17

50,5

LF 255 50 1,006 - 255 50 1,006 - 255 50 1,005 -

LFlog 35 80 101 - 40 85 116 - 47 92 135 -

CEF 265 50 1,016 255 265 50 1,016 255 265 50 1,015 255

CEFlog 49 114 152 39 53 123 168 43 57 133 183 47

100,10

LF 1,010 100 4,011 - 1,010 100 4,011 - 1,010 100 4,010 -

LFlog 80 170 231 - 90 180 261 - 104 194 302 -

CEF 1,030 100 4,031 1,010 1,030 100 4,031 1,010 1,030 100 4,030 1,010

CEFlog 110 250 351 90 114 264 367 94 124 286 406 104

200,20

LF 4,020 200 16,021 - 4,020 200 16,021 - 4,020 200 16,020 -

LFlog 180 360 521 - 200 380 581 - 226 406 657 -

CEF 4,060 200 16,061 4,020 4,060 200 16,061 4,020 4,060 200 16,060 4,020

CEFlog 240 540 781 200 244 564 797 204 264 608 876 224

500,50

LF 25,050 500 100,051 - 25,050 500 100,051 - 25,050 500 100,050 -

LFlog 500 950 1,451 - 550 1,000 1,601 - 650 1,100 1,900 -

CEF 25,150 500 100,151 25,050 25,150 500 100,151 25,050 25,150 500 100,150 25,050

CEFlog 650 1,450 2,151 550 700 1,550 2,351 600 750 1,700 2,550 650

1000,100

LF 100,100 1,000 400,101 - 100,100 1,000 400,101 - 100,100 1,000 400,100 -

LFlog 1,100 2,000 3,201 - 1,200 2,100 3,501 - 1,400 2,300 4,100 -

CEF 100,300 1,000 400,301 100,100 100,300 1,000 400,301 100,100 100,300 1,000 400,300 100,100

CEFlog 1,400 3,100 4,701 1,200 1,500 3,300 5,101 1,300 1,600 3,600 5,500 1,400

2000,100
LFlog 1,200 3,100 3,501 - 1,300 3,200 3,801 - 1,500 3,400 4,400 -

CEFlog 1,500 4,300 5,101 1,300 1,600 4,500 5,501 1,400 1,700 4,800 5,900 1,500

5000,100
LFlog 1,400 6,300 4,101 - 1,500 6,400 4,401 - 1,600 6,500 4,700 -

CEFlog 1,600 7,600 5,501 1,400 1,700 7,800 5,901 1,500 1,800 8,000 6,300 1,600

10000,100
LFlog 1,500 11,400 4,401 - 1,600 11,500 4,701 - 1,700 11,600 5,000 -

CEFlog 1,700 12,800 5,901 1,500 1,800 13,000 6,301 1,600 1,900 13,200 6,700 1,700
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Table 24: The size of selected formulations versus their binary-expansion versions for the

uniformly generated data set [16]. In each row, the average number of continuous (C-var)

and binary (B-var) variables as well as the average number of linear (L-const) and rotated

conic quadratic (C-const) constraints are presented.

κ 10% ⋅ n 20% ⋅ n Unconstrained

n,m Ref. C-var B-var L-const C-const C-var B-var L-const C-const C-var B-var L-const C-const

25,2

LF 52 25 203 - 52 25 203 - 52 25 202 -

LFlog 14 37 41 - 16 39 47 - 19 42 54 -

CEF 56 25 207 52 56 25 207 52 56 25 206 52

CEFlog 18 49 55 14 20 53 63 16 23 59 73 19

50,5

LF 255 50 1,006 - 255 50 1,006 - 255 50 1,005 -

LFlog 40 85 116 - 45 90 131 - 51 96 149 -

CEF 265 50 1,016 255 265 50 1,016 255 265 50 1,015 255

CEFlog 50 120 156 40 55 130 176 45 63 144 207 53

100,10

LF 1,010 100 4,011 - 1,010 100 4,011 - 1,010 100 4,010 -

LFlog 90 180 261 - 100 190 291 - 113 203 329 -

CEF 1,030 100 4,031 1,010 1,030 100 4,031 1,010 1,030 100 4,030 1,010

CEFlog 110 260 351 90 120 280 391 100 132 306 438 112

200,20

LF 4,020 200 16,021 - 4,020 200 16,021 - 4,020 200 16,020 -

LFlog 200 380 581 - 220 400 641 - 244 424 713 -

CEF 4,060 200 16,061 4,020 4,060 200 16,061 4,020 4,060 200 16,060 4,020

CEFlog 240 560 781 200 260 600 861 220 288 656 972 248

500,50

LF 25,050 500 100,051 - 25,050 500 100,051 - 25,050 500 100,050 -

LFlog 550 1,000 1,601 - 600 1,050 1,751 - 700 1,150 2,050 -

CEF 25,150 500 100,151 25,050 25,150 500 100,151 25,050 25,150 500 100,150 25,050

CEFlog 650 1,500 2,151 550 700 1,600 2,351 600 800 1,800 2,750 700

1000,100

LF 100,100 1,000 400,101 - 100,100 1,000 400,101 - 100,100 1,000 400,100 -

LFlog 1,200 2,100 3,501 - 1,300 2,200 3,801 - 1,500 2,400 4,400 -

CEF 100,300 1,000 400,301 100,100 100,300 1,000 400,301 100,100 100,300 1,000 400,300 100,100

CEFlog 1,400 3,200 4,701 1,200 1,500 3,400 5,101 1,300 1,700 3,800 5,900 1,500

2000,100
LFlog 1,300 3,200 3,801 - 1,400 3,300 4,101 - 1,600 3,500 4,700 -

CEFlog 1,500 4,400 5,101 1,300 1,600 4,600 5,501 1,400 1,800 5,000 6,300 1,600

5000,100
LFlog 1,500 6,400 4,401 - 1,600 6,500 4,701 - 1,700 6,600 5,000 -

CEFlog 1,700 7,800 5,901 1,500 1,800 8,000 6,301 1,600 1,900 8,200 6,700 1,700

10000,100
LFlog 1,600 11,500 4,701 - 1,700 11,600 5,001 - 1,800 11,700 5,300 -

CEFlog 1,800 13,000 6,301 1,600 1,900 13,200 6,701 1,700 2,000 13,400 7,100 1,800

117



Table 25: Computational results to evaluate the impact of the polymatroid cuts on the basic

formulations for the assortment data set [85]. For each combination of n,m,κ and each

formulation, we present averages over five instances for: time (Time) in seconds, number

of nodes (Nodes) processed, end gap (End-gap), continuous relaxation gap (Rlx-gap), and

root-node gap (Ron-gap). For each choice of n, m, and κ, among the solution methods, the

best average time and the best average End-gap (if Time⩾ 3600 sec.) are in bold.

κ 10% ⋅ n 20% ⋅ n Unconstrained

n,m Ref. Time Nodes End-gap Rlx-gap Ron-gap Time Nodes End-gap Rlx-gap Ron-gap Time Nodes End-gap Rlx-gap Ron-gap

25,2

LF 0 30 0.0% 14.1% 4.7% 2 1,395 0.0% 42.6% 24.5% 2 1,538 0.0% 35.0% 12.1%

LFP 0 0 0.0% 0.4% 0.3% 0 1 0.0% 0.9% 0.7% 0 4 0.0% 1.8% 0.0%

LEF 0 2 0.0% 0.7% 0.7% 0 9 0.0% 0.9% 0.8% 0 0 0.0% 0.0% 0.0%

LEFP 0 0 0.0% 0.2% 0.1% 0 1 0.0% 0.4% 0.2% 0 0 0.0% 0.0% 0.0%

CF 1 13 0.0% 1.5% 1.5% 1 70 0.0% 2.8% 2.8% 2 1,278 0.0% 8.2% 8.2%

CFP 0 0 0.0% 1.5% 0.8% 0 0 0.0% 2.8% 1.9% 1 0 0.0% 8.2% 1.2%

CEF 0 0 0.0% 0.0% 0.0% 0 1 0.0% 0.1% 0.1% 0 0 0.0% 0.0% 0.0%

CEFP 0 0 0.0% 0.0% 0.0% 0 1 0.0% 0.1% 0.1% 0 0 0.0% 0.0% 0.0%

50,5

LF 55 40,100 0.0% 51.7% 41.3% 3600 935,667 29.4% 60.1% 49.8% 3600 1,495,669 19.3% 52.9% 41.4%

LFP 0 1 0.0% 0.9% 0.1% 0 17 0.0% 2.3% 0.1% 4 3,492 0.0% 5.9% 0.1%

LEF 0 123 0.0% 3.0% 3.0% 1 1,111 0.0% 3.2% 3.2% 0 2 0.0% 0.0% 0.0%

LEFP 0 1 0.0% 0.7% 0.0% 0 10 0.0% 1.8% 0.2% 0 2 0.0% 0.0% 0.0%

CF 2 157 0.0% 2.3% 2.2% 7 3,016 0.0% 5.5% 5.5% 2916 802,844 1.0% 13.4% 13.4%

CFP 1 0 0.0% 2.3% 0.1% 2 0 0.0% 5.5% 0.0% 4 4 0.0% 13.4% 0.9%

CEF 1 1 0.0% 0.0% 0.0% 1 7 0.0% 0.2% 0.2% 1 2 0.0% 0.0% 0.0%

CEFP 1 0 0.0% 0.0% 0.0% 1 8 0.0% 0.2% 0.2% 0 2 0.0% 0.0% 0.0%

100,10

LF 3600 170,481 70.1% 78.3% 77.7% 3600 473,158 61.7% 72.1% 70.2% 3600 730,892 51.5% 67.5% 64.2%

LFP 4 152 0.0% 1.9% 0.1% 10 1,761 0.0% 4.4% 0.1% 2884 410,429 1.1% 12.0% 1.2%

LEF 3357 345,641 1.6% 8.3% 8.3% 2190 361,599 0.2% 5.0% 5.0% 1 35 0.0% 0.1% 0.0%

LEFP 2 55 0.0% 1.8% 0.1% 6 792 0.0% 3.5% 1.9% 1 28 0.0% 0.1% 0.0%

CF 67 7,786 0.0% 3.8% 3.6% 3371 231,729 3.5% 7.8% 8.6% 3600 94,567 11.9% 17.8% 17.9%

CFP 10 0 0.0% 3.8% 0.0% 20 0 0.0% 7.8% 0.0% 25 370 0.0% 17.8% 0.1%

CEF 6 14 0.0% 0.7% 0.2% 4 23 0.0% 0.6% 0.2% 6 17 0.0% 0.3% 0.0%

CEFP 6 14 0.0% 1.6% 0.2% 4 25 0.0% 0.4% 0.2% 5 16 0.0% 0.3% 0.0%

200,20

LF 3600 28,528 82.3% 84.4% 84.4% 3600 47,569 77.0% 79.4% 79.3% 3600 49,188 73.4% 78.3% 77.9%

LFP 1755 27,150 0.0% 4.1% 0.2% 3600 87,785 0.3% 10.9% 0.4% 3600 37,866 4.5% 22.1% 4.4%

LEF 3600 42,413 8.6% 10.6% 10.6% 3600 129,049 1.1% 3.0% 3.0% 29 1,327 0.0% 0.3% 0.3%

LEFP 1236 22,636 0.2% 3.8% 1.1% 3524 152,434 1.0% 3.0% 2.9% 31 1,309 0.0% 0.3% 0.3%

CF 3600 55,709 32.9% 5.6% 36.0% 3600 29,821 62.3% 13.1% 63.7% 3600 14,939 65.2% 23.6% 73.1%

CFP 27 5 0.0% 5.6% 0.0% 64 131 0.0% 13.1% 0.0% 1562 26,768 0.2% 23.6% 0.5%

CEF 73 190 0.0% 1.5% 0.4% 40 31 0.0% 1.5% 0.1% 59 332 0.0% 1.1% 0.1%

CEFP 61 230 0.0% 1.6% 0.4% 38 37 0.0% 1.3% 0.1% 69 407 0.0% 2.7% 0.1%

500,50

LF 3600 1,620 90.3% 89.0% 89.0% 3600 2,097 86.7% 86.2% 86.2% 3601 5,755 86.2% 86.4% 86.4%

LFP 3600 † † † † 3600 † 13.1% 24.8% 12.0% 3600 † 100.0% 33.4% 100.0%

LEF 3600 2,548 8.3% 8.7% 8.7% 2520 8,118 0.2% 0.8% 0.2% 3501 12,727 0.4% 1.8% 0.4%

LEFP 3600 884 6.9% 7.2% 7.2% 2554 9,193 0.2% 0.8% 0.2% 3552 13,582 0.4% 1.8% 0.4%

CF 3600 11,986 96.4% 8.9% 100.0% 3600 11,367 100.0% 22.2% 100.0% 3600 4,110 96.1% 26.7% 100.0%

CFP 1194 311 0.0% 8.9% 0.1% 3452 707 0.3% 22.2% 0.7% 3600 440 7.7% 26.7% 0.5%

CEF 3611 779 0.2% 32.6% 0.3% 2620 842 0.0% 38.4% 0.5% 3604 272 0.5% 23.9% 0.7%

CEFP 3609 534 0.2% 29.0% 0.3% 2778 648 0.0% 42.9% 0.5% 3613 160 0.6% 30.9% 0.7%

1000,100

LF 3601 3 99.2% 93.1% 93.1% 3600 10 99.0% 90.4% 90.4% 3601 33 99.0% 90.5% 90.5%

LFP 3600 † † † † 3600 † † † † 3600 † † † †
LEF 3600 215 13.9% 4.4% 4.4% 3722 488 0.9% 1.2% 0.0% 3600 351 1.7% 1.7% 1.1%

LEFP 3600 40 81.0% 4.4% 4.4% 3600 1 0.9% 1.2% 0.0% 3600 3 1.8% 1.7% 1.1%

CF 3600 4,962 100.0% 15.7% 100.0% 3605 4,612 100.0% 29.7% 100.0% 3600 1,882 100.0% 30.2% 100.0%

CFP 3600 † † † † 3600 † † † † 3600 † † † †
CEF 3605 † † † † 3600 † † † † 3600 † † † †
CEFP 3600 † † † † 3600 † † † † 3600 † † † †

2000,100
LEF 3601 † † † † 3600 † † † † 3601 † † † †
LEFP 3600 † † † † 3600 † † † † 3600 † † † †

5000,100
LEF 7807 † † † † 8155 † † † † 7241 † † † †
LEFP 3600 † † † † 3600 † † † † 3600 † † † †

10000,100
LEF 4225 † † † † 4026 † † † † 3603 † † † †
LEFP 3600 † † † † 3600 † † † † 3600 † † † †
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Table 26: Computational results to evaluate the impact of the polymatroid cuts in the basic

formulations for the uniformly generated data set [16]. For each combination of n,m,κ and

each formulation, we present averages over five instances for: time (Time) in seconds, number

of nodes (Nodes) processed, end gap (End-gap), continuous relaxation gap (Rlx-gap), and

root-node gap (Ron-gap). For each choice of n, m, and κ, among the solution methods, the

best average time and the best average End-gap (if Time⩾ 3600 sec.) are in bold.

= κ 10% ⋅ n 20% ⋅ n Unconstrained

n,m Ref. Time Nodes End-gap Rlx-gap Ron-gap Time Nodes End-gap Rlx-gap Ron-gap Time Nodes End-gap Rlx-gap Ron-gap

25,2

LF 0 38 0.0% 81.5% 48.1% 1 433 0.0% 70.4% 41.5% 1 497 0.0% 89.7% 46.9%

LFP 1 22 0.0% 33.6% 10.2% 2 340 0.0% 46.9% 12.6% 1 275 0.0% 44.7% 12.0%

LEF 0 1 0.0% 6.8% 5.4% 0 24 0.0% 10.8% 9.2% 0 21 0.0% 28.1% 22.7%

LEFP 0 2 0.0% 6.7% 4.7% 0 20 0.0% 10.8% 9.0% 1 17 0.0% 26.6% 15.5%

CF 1 114 0.0% 31.4% 24.8% 1 1,198 0.0% 40.5% 40.5% 1 1,657 0.0% 37.1% 37.1%

CFP 3 2 0.0% 31.4% 4.6% 4 179 0.0% 40.5% 6.3% 4 24 0.0% 37.1% 3.4%

CEF 0 2 0.0% 4.0% 3.8% 0 14 0.0% 7.9% 7.0% 1 16 0.0% 18.6% 13.2%

CEFP 0 2 0.0% 4.0% 2.8% 0 14 0.0% 7.9% 7.0% 2 16 0.0% 18.6% 5.9%

50,5

LF 1554 589,909 0.0% 85.7% 82.8% 3600 2,006,223 46.9% 75.2% 69.9% 3600 2,791,336 44.9% 96.0% 91.5%

LFP 437 126,715 0.0% 55.9% 27.2% 3600 1,542,663 20.2% 61.2% 35.5% 2530 826,742 4.2% 59.6% 26.5%

LEF 2 381 0.0% 18.5% 16.4% 13 9,831 0.0% 20.9% 19.9% 43 35,334 0.0% 56.3% 49.6%

LEFP 1 327 0.0% 18.5% 16.2% 10 10,679 0.0% 20.9% 19.9% 65 34,778 0.0% 50.1% 28.3%

CF 75 31,692 0.0% 56.2% 56.2% 3606 1,112,962 6.0% 56.3% 56.3% 2594 677,850 7.3% 56.6% 56.6%

CFP 78 22,068 0.0% 56.2% 23.9% 3601 1,058,360 6.5% 56.3% 25.4% 2903 1,043,778 3.0% 56.6% 23.9%

CEF 3 172 0.0% 14.6% 13.7% 18 6,093 0.0% 15.6% 15.3% 100 35,410 0.0% 43.6% 40.9%

CEFP 2 162 0.0% 14.6% 13.7% 17 6,266 0.0% 15.6% 15.3% 311 32,574 0.0% 40.6% 24.1%

100,10

LF 3600 1,100,713 82.1% 87.5% 87.1% 3600 1,252,405 71.1% 77.1% 76.0% 3600 1,308,606 90.2% 98.3% 96.7%

LFP 3600 303,009 51.7% 74.3% 56.5% 3600 337,167 51.4% 73.5% 54.7% 3600 153,764 42.5% 73.9% 49.7%

LEF 3600 480,988 12.3% 29.4% 27.5% 3600 616,551 17.1% 30.4% 29.7% 3600 654,126 38.5% 72.5% 66.6%

LEFP 3600 526,364 12.3% 29.4% 27.4% 3600 687,839 17.0% 30.4% 29.7% 3600 438,734 37.2% 66.9% 51.5%

CF 3600 223,083 52.3% 72.8% 72.8% 3600 154,439 54.9% 66.9% 66.9% 3600 220,110 53.2% 71.5% 71.4%

CFP 3600 462,737 43.5% 72.8% 50.8% 3600 166,635 44.3% 66.9% 47.3% 3600 330,256 42.0% 71.5% 50.4%

CEF 3600 221,990 10.7% 25.6% 24.8% 3600 275,594 15.5% 25.0% 25.7% 3600 130,787 40.1% 63.7% 61.1%

CEFP 3601 204,084 10.7% 25.7% 24.8% 3600 260,464 15.4% 25.2% 25.7% 3600 132,248 40.3% 60.5% 50.8%

200,20

LF 3600 118,471 87.8% 88.6% 88.6% 3600 107,640 77.4% 78.1% 77.9% 3600 184,061 97.5% 99.2% 98.5%

LFP 3600 17,965 72.1% 82.0% 71.2% 3600 18,122 65.5% 77.0% 65.0% 3600 9,401 73.1% 81.8% 70.4%

LEF 3600 47,486 30.0% 36.2% 35.4% 3600 58,945 31.1% 36.0% 35.6% 3600 63,610 70.6% 83.0% 78.8%

LEFP 3600 74,821 29.3% 36.2% 35.3% 3600 100,973 30.6% 36.0% 35.6% 3600 37,575 65.4% 77.8% 67.3%

CF 3600 27,323 99.5% 80.4% 99.5% 3600 17,547 89.6% 72.0% 88.7% 3600 24,168 99.7% 81.0% 100.0%

CFP 3600 25,375 65.8% 80.4% 66.0% 3600 1,113 61.6% 72.0% 58.9% 3600 7,872 70.9% 81.0% 66.3%

CEF 3600 20,677 30.9% 30.9% 33.3% 3600 22,387 30.0% 23.0% 32.7% 3600 4,559 76.4% 76.0% 75.8%

CEFP 3600 17,843 30.8% 32.3% 33.3% 3600 19,082 30.1% 25.5% 32.7% 3601 5,142 71.5% 72.7% 67.8%

500,50

LF 3600 1,232 90.2% 89.4% 89.4% 3600 369 82.3% 78.3% 78.3% 3600 6,619 99.5% 99.8% 99.5%

LFP 3600 606 88.4% 87.1% 87.1% 3600 395 81.5% 78.0% 77.4% 3600 † † † †
LEF 3600 636 42.8% 43.0% 42.7% 3600 1,324 41.1% 38.6% 38.5% 3600 113 90.3% 91.4% 89.3%

LEFP 3600 850 42.5% 43.0% 42.7% 3600 1,616 41.0% 38.6% 38.5% 3600 39 83.1% 88.0% 82.8%

CF 3600 9,997 100.0% 86.1% 100.0% 3602 3,292 100.0% 75.0% 100.0% 3600 13,213 100.0% 89.8% 100.0%

CFP 3600 † † † † 3600 † † † † 3600 1,208 84.9% 89.8% 83.1%

CEF 3603 17 42.8% 20.4% 41.3% 3604 26 41.8% 5.7% 37.3% 3603 1 93.4% 80.5% 90.9%

CEFP 3603 7 42.9% 23.3% 41.3% 3604 11 53.6% 7.2% 37.3% 3600 † † † †

1000,100

LF 3601 † † † † 3600 21 81.6% 79.9% 79.9% 3601 4 99.9% 99.9% 99.8%

LFP 3600 † † † † 3600 † † † † 3600 † † † †
LEF 3601 † † † † 3601 † † † † 3601 † † † †
LEFP 3600 † † † † 3600 † † † † 3600 † † † †
CF 3600 911 100.0% 87.3% 100.0% 3600 1,210 100.0% 77.8% 100.0% 3600 663 100.0% 92.8% 100.0%

CFP 3600 † † † † 3600 † † † † 3600 406 95.6% 83.4% 95.5%

CEF 3600 † † † † 3600 † † † † 3600 † † † †
CEFP 3600 † † † † 3600 † † † † 3600 † † † †

2000,100
LEF 3601 † † † † 3602 † † † † 3601 † † † †
LEFP 3600 † † † † 3600 † † † † 3600 † † † †

5000,100
LEF 4755 † † † † 3938 † † † † 3603 † † † †
LEFP 3600 † † † † 3600 † † † † 3600 † † † †

10000,100
LEF 9500 † † † † 6022 † † † † 5619 † † † †
LEFP 3600 † † † † 3600 † † † † 3600 † † † †
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Table 27: Computational results to evaluate the combined effect of binarization and

polymatroid cuts on the performance of selected basic MILP and MICQP for the assortment

data set [85]. For each combination of n,m,κ and each formulation, we present averages

over five instances for: time (Time) in seconds, number of nodes (Nodes) processed, end

gap (End-gap), continuous relaxation gap (Rlx-gap), and root-node gap (Ron-gap). For

each choice of n, m, and κ, among the solution methods, the best average time and the

best average End-gap (if Time⩾ 3600 sec.) are in bold.

κ 10% ⋅ n 20% ⋅ n Unconstrained

n,m Ref. Time Nodes End-gap Rlx-gap Ron-gap Time Nodes End-gap Rlx-gap Ron-gap Time Nodes End-gap Rlx-gap Ron-gap

25,2

LF 0 30 0.0% 14.1% 4.7% 2 1,395 0.0% 42.6% 24.5% 2 1,538 0.0% 35.0% 12.1%

LFP 0 0 0.0% 0.4% 0.3% 0 1 0.0% 0.9% 0.7% 0 4 0.0% 1.8% 0.0%

LFlog 0 5 0.0% 15.3% 1.1% 0 27 0.0% 28.1% 4.3% 1 386 0.0% 56.1% 18.1%

LFP
log 0 0 0.0% 0.5% 0.3% 0 1 0.0% 0.9% 0.7% 0 20 0.0% 1.8% 0.1%

CEF 0 0 0.0% 0.0% 0.0% 0 1 0.0% 0.1% 0.1% 0 0 0.0% 0.0% 0.0%

CEFP 0 0 0.0% 0.0% 0.0% 0 1 0.0% 0.1% 0.1% 0 0 0.0% 0.0% 0.0%

CEFlog 1 1 0.0% 0.1% 0.1% 1 3 0.0% 0.7% 0.3% 1 316 0.0% 5.8% 5.8%

CEFP
log 1 1 0.0% 0.1% 0.1% 0 0 0.0% 0.6% 0.1% 2 379 0.0% 1.8% 1.5%

50,5

LF 55 40,100 0.0% 51.7% 41.3% 3600 935,667 29.4% 60.1% 49.8% 3600 1,495,669 19.3% 52.9% 41.4%

LFP 0 1 0.0% 0.9% 0.1% 0 17 0.0% 2.3% 0.1% 4 3,492 0.0% 5.9% 0.1%

LFlog 1 233 0.0% 30.0% 5.7% 2 2,109 0.0% 44.4% 14.5% 18 35,496 0.0% 65.6% 28.2%

LFP
log 0 0 0.0% 0.9% 0.3% 1 19 0.0% 2.4% 0.1% 6 6,721 0.0% 5.9% 0.3%

CEF 1 1 0.0% 0.0% 0.0% 1 7 0.0% 0.2% 0.2% 1 2 0.0% 0.0% 0.0%

CEFP 1 0 0.0% 0.0% 0.0% 1 8 0.0% 0.2% 0.2% 0 2 0.0% 0.0% 0.0%

CEFlog 1 6 0.0% 0.6% 0.3% 2 371 0.0% 2.1% 2.0% 18 13,917 0.0% 12.4% 12.3%

CEFP
log 0 4 0.0% 0.5% 0.3% 2 250 0.0% 1.9% 0.9% 21 11,132 0.0% 5.9% 5.2%

100,10

LF 3600 170,481 70.1% 78.3% 77.7% 3600 473,158 61.7% 72.1% 70.2% 3600 730,892 51.5% 67.5% 64.2%

LFP 4 152 0.0% 1.9% 0.1% 10 1,761 0.0% 4.4% 0.1% 2884 410,429 1.1% 12.0% 1.2%

LFlog 979 364,141 0.0% 42.7% 14.5% 3155 1,732,777 0.4% 55.3% 23.7% 3600 1,543,428 1.6% 75.9% 38.5%

LFP
log 1 86 0.0% 1.9% 0.1% 6 2,434 0.0% 4.4% 0.1% 3600 1,535,465 0.8% 12.1% 1.5%

CEF 6 14 0.0% 0.7% 0.2% 4 23 0.0% 0.6% 0.2% 6 17 0.0% 0.3% 0.0%

CEFP 6 14 0.0% 1.6% 0.2% 4 25 0.0% 0.4% 0.2% 5 16 0.0% 0.3% 0.0%

CEFlog 10 1,457 0.0% 1.3% 1.2% 212 27,571 0.0% 4.0% 3.9% 3465 292,906 1.0% 20.2% 20.2%

CEFP
log 2 215 0.0% 1.2% 0.3% 22 3,199 0.0% 3.7% 2.1% 3600 411,139 0.3% 12.1% 8.4%

200,20

LF 3600 28,528 82.3% 84.4% 84.4% 3600 47,569 77.0% 79.4% 79.3% 3600 49,188 73.4% 78.3% 77.9%

LFP 1755 27,150 0.0% 4.1% 0.2% 3600 87,785 0.3% 10.9% 0.4% 3600 37,866 4.5% 22.1% 4.4%

LFlog 3600 549,079 6.7% 52.9% 24.7% 3600 383,827 8.7% 64.7% 31.9% 3600 300,111 24.1% 82.7% 49.9%

LFP
log 710 158,569 0.0% 4.1% 0.2% 3400 715,941 0.3% 10.9% 0.4% 3600 374,382 6.3% 22.3% 6.0%

CEF 73 190 0.0% 1.5% 0.4% 40 31 0.0% 1.5% 0.1% 59 332 0.0% 1.1% 0.1%

CEFP 61 230 0.0% 1.6% 0.4% 38 37 0.0% 1.3% 0.1% 69 407 0.0% 2.7% 0.1%

CEFlog 3600 137,672 0.9% 2.6% 2.6% 3600 121,652 3.8% 8.2% 8.2% 3600 96,988 22.0% 28.9% 29.0%

CEFP
log 2353 74,047 0.5% 2.6% 2.2% 3600 112,151 2.2% 8.2% 6.8% 3600 144,453 6.4% 22.2% 13.8%

500,50

LF 3600 1,620 90.3% 89.0% 89.0% 3600 2,097 86.7% 86.2% 86.2% 3601 5,755 86.2% 86.4% 86.4%

LFP 3600 † † † † 3600 † † † † 3600 † † † †
LFlog 3600 102,004 39.8% 53.0% 35.4% 3600 84,392 54.0% 68.6% 35.0% 3600 92,414 55.7% 91.8% 74.7%

LFP
log 3600 110,452 0.8% 8.8% 0.3% 3600 57,797 3.3% 24.8% 1.3% 3600 65,850 15.2% 33.6% 13.4%

CEF 3611 779 0.2% 32.6% 0.3% 2620 842 0.0% 38.4% 0.5% 3604 272 0.5% 23.9% 0.7%

CEFP 3609 534 0.2% 29.0% 0.3% 2778 648 0.0% 42.9% 0.5% 3613 160 0.6% 30.9% 0.7%

CEFlog 3600 49,090 5.1% 5.4% 5.4% 3600 55,757 13.3% 15.8% 15.7% 3600 53,280 36.9% 37.3% 38.5%

CEFP
log 3600 55,687 4.7% 5.4% 5.0% 3600 63,450 12.2% 15.8% 14.0% 3601 129,520 26.1% 33.5% 20.6%

1000,100

LF 3601 3 99.2% 93.1% 93.1% 3600 10 99.0% 90.4% 90.4% 3601 33 99.0% 90.5% 90.5%

LFP 3600 † † † † 3600 † † † † 3600 † † † †
LFlog 3600 55,776 55.9% 60.6% 51.0% 3600 58,847 62.7% 77.4% 61.2% 3600 55,641 76.5% 94.3% 79.1%

LFP
log 3601 † † † † 3601 6,378 20.9% 39.4% 15.8% 3601 30,129 26.1% 43.6% 23.9%

CEF 3605 † † † † 3600 † † † † 3600 † † † †
CEFP 3600 † † † † 3600 † † † † 3600 † † † †
CEFlog 3600 36,151 25.3% 9.8% 9.9% 3600 36,647 23.7% 23.6% 23.9% 3600 35,213 48.7% 44.6% 45.7%

CEFP
log 3601 32,326 10.0% 9.9% 9.5% 3600 26,843 22.6% 23.9% 22.5% 3600 4,283 33.8% 42.9% 25.0%

2000,100

LFlog 3600 58,217 57.8% 68.0% 62.7% 3600 56,546 70.5% 84.0% 79.1% 3600 39,585 78.3% 96.0% 81.6%

LFP
log 3601 † † † † 3600 32,898 41.4% 48.9% 41.2% 3601 8,660 33.1% 52.2% 31.2%

CEFlog 3600 26,386 30.3% 15.5% 16.1% 3600 22,548 60.0% 31.9% 38.2% 3600 26,785 71.0% 50.7% 52.7%

CEFP
log 3600 38,716 16.1% 15.8% 15.4% 3600 28,575 30.7% 32.5% 31.9% 3600 931 53.4% 48.2% 33.0%

5000,100

LFlog 3600 23,558 78.1% 86.8% 84.7% 3600 37,298 80.6% 93.4% 93.4% 3601 12,870 83.5% 96.8% 96.8%

LFP
log 3601 7,220 29.2% 50.1% 25.1% 3601 15,186 49.0% 59.9% 47.6% 3601 6,818 50.7% 61.1% 49.3%

CEFlog 3600 15,535 48.0% 26.7% 57.7% 3600 10,662 77.7% 39.3% 60.0% 3600 11,067 86.5% 57.2% 86.5%

CEFP
log 3600 13,966 39.3% 27.5% 30.7% 3600 13,736 40.6% 33.9% 40.1% 3600 3,257 58.4% 50.8% 47.5%

10000,100

LFlog 3600 13,230 88.4% 90.0% 90.0% 3600 8,857 83.1% 94.7% 94.7% 3602 5,082 93.0% 97.6% 97.6%

LFP
log 3601 5,481 55.4% 58.6% 54.7% 3601 9,440 53.2% 61.4% 49.2% 3601 5,482 54.7% 65.0% 54.3%

CEFlog 3600 7,551 53.8% 29.5% 52.2% 3600 3,781 84.6% 45.0% 85.1% 3600 2,786 95.4% 70.3% 95.0%

CEFP
log 3600 9,979 33.4% 5.0% 34.9% 3601 7,247 45.4% 22.0% 37.6% 3601 † † † †
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Table 28: Computational results to evaluate the combined effect of binarization and

polymatroid cuts on the performance of selected basic MILP and MICQP formulations

for the uniformly generated data set [16]. For each combination of n,m,κ and each

formulation, we present averages over five instances for: time (Time) in seconds, number

of nodes (Nodes) processed, end gap (End-gap), continuous relaxation gap (Rlx-gap), and

root-node gap (Ron-gap). For each choice of n, m, and κ, among the solution methods, the

best average time and the best average End-gap (if Time⩾ 3600 sec.) are in bold.

κ 10% ⋅ n 20% ⋅ n Unconstrained

n,m Ref. Time Nodes End-gap Rlx-gap Ron-gap Time Nodes End-gap Rlx-gap Ron-gap Time Nodes End-gap Rlx-gap Ron-gap

25,2

LF 0 38 0.0% 81.5% 48.1% 1 433 0.0% 70.4% 41.5% 1 497 0.0% 89.7% 46.9%

LFP 1 22 0.0% 33.6% 10.2% 2 340 0.0% 46.9% 12.6% 1 275 0.0% 44.7% 12.0%

LFlog 0 23 0.0% 49.8% 28.0% 1 95 0.0% 50.1% 32.3% 1 199 0.0% 93.0% 59.8%

LFP
log 0 13 0.0% 29.5% 11.5% 1 222 0.0% 42.3% 12.0% 1 142 0.0% 45.5% 14.6%

CEF 0 2 0.0% 4.0% 3.8% 0 14 0.0% 7.9% 7.0% 1 16 0.0% 18.6% 13.2%

CEFP 0 2 0.0% 4.0% 2.8% 0 14 0.0% 7.9% 7.0% 2 16 0.0% 18.6% 5.9%

CEFlog 0 6 0.0% 10.3% 7.9% 1 89 0.0% 19.9% 19.3% 3 353 0.0% 45.7% 44.2%

CEFP
log 1 4 0.0% 10.3% 6.9% 1 106 0.0% 19.9% 18.7% 6 133 0.0% 42.8% 27.1%

50,5

LF 1554 589,909 0.0% 85.7% 82.8% 3600 2,006,223 46.9% 75.2% 69.9% 3600 2,791,336 44.9% 96.0% 91.5%

LFP 437 126,715 0.0% 55.9% 27.2% 3600 1,542,663 20.2% 61.2% 35.5% 2530 826,742 4.2% 59.6% 26.5%

LFlog 3 3,364 0.0% 50.7% 43.7% 20 21,061 0.0% 54.2% 45.0% 52 55,437 0.0% 96.9% 77.1%

LFP
log 9 5,014 0.0% 45.9% 21.3% 27 29,157 0.0% 51.4% 30.0% 85 81,310 0.0% 60.3% 25.0%

CEF 3 172 0.0% 14.6% 13.7% 18 6,093 0.0% 15.6% 15.3% 100 35,410 0.0% 43.6% 40.9%

CEFP 2 162 0.0% 14.6% 13.7% 17 6,266 0.0% 15.6% 15.3% 311 32,574 0.0% 40.6% 24.1%

CEFlog 11 4,746 0.0% 24.4% 24.0% 22 8,046 0.0% 30.0% 29.6% 521 78,437 0.0% 64.4% 62.1%

CEFP
log 6 2,477 0.0% 24.4% 22.6% 26 8,630 0.0% 29.9% 29.1% 86 25,435 0.0% 59.4% 46.4%

100,10

LF 3600 1,100,713 82.1% 87.5% 87.1% 3600 1,252,405 71.1% 77.1% 76.0% 3600 1,308,606 90.2% 98.3% 96.7%

LFP 3600 303,009 51.7% 74.3% 56.5% 3600 337,167 51.4% 73.5% 54.7% 3600 153,764 42.5% 73.9% 49.7%

LFlog 3600 2,079,337 5.0% 54.5% 48.7% 3600 2,153,102 5.0% 56.4% 49.8% 3600 2,487,103 11.2% 98.6% 84.6%

LFP
log 3600 2,588,756 7.5% 54.1% 45.5% 3600 2,821,692 6.1% 56.3% 48.3% 3600 1,928,384 17.2% 74.5% 48.6%

CEF 3600 221,990 10.7% 25.6% 24.8% 3600 275,594 15.5% 25.0% 25.7% 3600 130,787 40.1% 63.7% 61.1%

CEFP 3601 204,084 10.7% 25.7% 24.8% 3600 260,464 15.4% 25.2% 25.7% 3600 132,248 40.3% 60.5% 50.8%

CEFlog 3601 433,421 8.1% 34.8% 34.7% 3600 394,433 7.9% 36.6% 36.5% 3600 368,512 20.1% 76.0% 74.6%

CEFP
log 3600 482,188 7.2% 34.8% 34.5% 3603 463,914 5.2% 36.6% 36.6% 3600 417,221 10.9% 73.6% 61.2%

200,20

LF 3600 118,471 87.8% 88.6% 88.6% 3600 107,640 77.4% 78.1% 77.9% 3600 184,061 97.5% 99.2% 98.5%

LFP 3600 17,965 72.1% 82.0% 71.2% 3600 18,122 65.5% 77.0% 65.0% 3600 9,401 73.1% 81.8% 70.4%

LFlog 3600 612,063 41.7% 56.8% 54.5% 3600 490,278 37.7% 58.0% 54.7% 3600 519,981 58.2% 99.3% 89.9%

LFP
log 3600 1,104,491 41.6% 56.7% 53.5% 3600 938,882 35.6% 57.9% 54.5% 3600 434,136 58.0% 82.1% 65.9%

CEF 3600 20,677 30.9% 30.9% 33.3% 3600 22,387 30.0% 23.0% 32.7% 3600 4,559 76.4% 76.0% 75.8%

CEFP 3600 17,843 30.8% 32.3% 33.3% 3600 19,082 30.1% 25.5% 32.7% 3601 5,142 71.5% 72.7% 67.8%

CEFlog 3600 131,182 39.6% 40.1% 40.1% 3600 88,037 36.6% 40.0% 40.0% 3600 285,525 64.6% 83.6% 83.3%

CEFP
log 3600 174,404 35.5% 40.1% 39.9% 3600 113,509 34.3% 40.0% 39.9% 3600 279,263 54.4% 81.4% 73.4%

500,50

LF 3600 1,232 90.2% 89.4% 89.4% 3600 369 82.3% 78.3% 78.3% 3600 6,619 99.5% 99.8% 99.5%

LFP 3600 606 88.4% 87.1% 87.1% 3600 395 81.5% 78.0% 77.4% 3600 † † † †
LFlog 3600 81,055 48.7% 49.0% 48.9% 3600 60,815 48.7% 47.2% 47.1% 3600 139,697 87.0% 99.9% 96.1%

LFP
log 3600 108,291 48.4% 49.0% 49.0% 3600 70,193 48.1% 47.2% 47.1% 3600 181,247 82.9% 90.5% 85.9%

CEF 3603 17 42.8% 20.4% 41.3% 3604 26 41.8% 5.7% 37.3% 3603 1 93.4% 80.5% 90.9%

CEFP 3603 7 42.9% 23.3% 41.3% 3604 11 53.6% 7.2% 37.3% 3600 † † † †
CEFlog 3600 34,703 53.2% 45.2% 45.1% 3600 26,390 42.8% 40.7% 40.7% 3600 82,878 91.0% 90.8% 90.8%

CEFP
log 3600 29,818 46.3% 45.2% 44.9% 3600 24,696 43.1% 40.7% 40.7% 3600 23,870 86.7% 89.7% 86.6%

1000,100

LF 3601 † † † † 3600 21 81.6% 79.9% 79.9% 3601 4 99.9% 99.9% 99.8%

LFP 3600 † † † † 3600 † † † † 3600 † † † †
LFlog 3600 52,994 50.3% 48.7% 48.7% 3600 41,825 50.1% 50.9% 50.8% 3600 48,644 96.6% 99.9% 97.3%

LFP
log 3600 48,719 50.2% 48.7% 48.7% 3600 24,225 50.2% 50.7% 50.8% 3600 108,734 91.9% 93.1% 92.0%

CEF 3600 † † † † 3600 † † † † 3600 † † † †
CEFP 3600 † † † † 3600 † † † † 3600 † † † †
CEFlog 3600 12,062 46.0% 45.3% 45.3% 3601 8,843 47.9% 44.7% 45.3% 3600 37,767 93.7% 93.3% 93.3%

CEFP
log 3600 10,436 48.0% 45.3% 45.3% 3600 9,445 44.5% 44.7% 45.0% 3600 476 92.2% 92.5% 90.2%

2000,100

LFlog 3600 41,092 50.7% 51.2% 51.2% 3600 30,062 50.6% 50.8% 50.7% 3600 35,408 97.8% 100.0% 98.2%

LFP
log 3600 15,925 50.8% 51.1% 51.2% 3600 14,228 50.7% 50.8% 50.8% 3600 69,565 94.8% 95.5% 95.1%

CEFlog 3601 5,139 48.8% 47.9% 48.4% 3600 4,909 48.5% 44.4% 45.2% 3600 25,840 97.0% 95.5% 95.6%

CEFP
log 3600 9,576 47.8% 48.3% 48.2% 3600 7,815 44.6% 45.1% 45.0% 3600 339 96.6% 95.1% 93.7%

5000,100

LFlog 3600 18,499 67.9% 68.6% 68.6% 3600 34,661 65.0% 69.5% 69.5% 3601 13,907 98.8% 100.0% 98.8%

LFP
log 3600 9,434 68.8% 68.6% 68.6% 3600 12,867 67.9% 69.5% 69.2% 3601 16,900 96.9% 96.7% 96.5%

CEFlog 3600 5,092 51.4% 46.4% 47.1% 3600 3,305 48.0% 44.6% 45.6% 3600 11,678 97.0% 96.7% 96.7%

CEFP
log 3600 4,295 46.7% 47.2% 47.0% 3601 3,406 45.2% 45.7% 45.5% 3601 34 98.3% 96.4% 96.0%

10000,100

LFlog 3600 15,052 68.6% 69.0% 69.0% 3600 11,855 68.2% 69.2% 69.2% 3601 2,471 99.4% 100.0% 99.3%

LFP
log 3601 5,732 68.5% 69.0% 69.0% 3601 6,058 68.4% 69.2% 68.8% 3601 6,595 97.8% 98.0% 97.9%

CEFlog 3600 1,873 50.5% 47.2% 47.7% 3600 1,010 48.2% 44.3% 45.1% 3601 475 99.4% 98.0% 99.0%

CEFP
log 3601 896 47.5% 47.9% 47.7% 3600 1,165 44.8% 45.1% 45.0% 3600 † † † †
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[61] Mehmanchi, E., Gillen, C. P., Gómez, A., and Prokopyev, O. A. (2019a). On robust
fractional 0-1 programming. INFORMS Journal on Optimization. http://doi.org/10.
1287/ijoo.2019.0025.

[62] Mehmanchi, E., Gómez, A., and Prokopyev, O. A. (2019b). Fractional 0–1 programs:
Links between mixed-integer linear and conic quadratic formulations. Journal of Global
Optimization, 75(2):273–339. https://doi.org/10.1007/s10898-019-00817-7.

[63] Méndez-Dı́az, I., Miranda-Bront, J. J., Vulcano, G., and Zabala, P. (2014). A branch-
and-cut algorithm for the latent-class logit assortment problem. Discrete Applied Math-
ematics, 164:246–263.

[64] Miller, A. (2002). Subset selection in regression. Chapman and Hall/CRC.

[65] Moeini, M. (2015). The maximum ratio clique problem: a continuous optimization
approach and some new results. In Modelling, Computation and Optimization in Infor-
mation Systems and Management Sciences, pages 215–227. Springer.

[66] Nemhauser, G. L. and Wolsey, L. A. (1988). Integer programming and combinato-
rial optimization. Wiley, Chichester. GL Nemhauser, MWP Savelsbergh, GS Sigismondi
(1992). Constraint Classification for Mixed Integer Programming Formulations. COAL
Bulletin, 20:8–12.

[67] Nguyen, H., Franke, K., and Petrovic, S. (2009). Optimizing a class of feature selec-
tion measures. In NIPS 2009 Workshop on Discrete Optimization in Machine Learning:
Submodularity, Sparsity & Polyhedra (DISCML), Vancouver, Canada.

[68] Nguyen, H., Franke, K., and Petrovic, S. (2010a). Improving effectiveness of intrusion
detection by correlation feature selection. In Availability, Reliability, and Security, 2010.
ARES’10 International Conference on, pages 17–24. IEEE.

126

http://doi.org/10.1287/ijoo.2019.0025
http://doi.org/10.1287/ijoo.2019.0025
https://doi.org/10.1007/s10898-019-00817-7


[69] Nguyen, H. T., Franke, K., and Petrovic, S. (2010b). Towards a generic feature-selection
measure for intrusion detection. In Pattern Recognition (ICPR), 2010 20th International
Conference on, pages 1529–1532. IEEE.
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