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Abstract 

Two major obstacles to effective transesterification of triglycerides to form biodiesel are 

the initial immiscibility of the reactants and the depletion of the short chain alcohol used 

throughout the reaction progress due to formation of the glycerol phase. Traditionally, to deal with 

such problems, high temperatures and pressures are employed to enhance the kinetics of the 

reaction. Co-solvents can also be introduced as means to promote mixing and lower the energetic 

requirements of the process. Amongst the multiple proposed co-solvents in the literature carbon 

dioxide is the one with the highest vapor pressure of all, which provides multiple benefits in the 

downstream separation process of the biodiesel products and excess reactants. Biodiesel yield’s 

dependence on pressure, temperature (P-T) and methanol to oil molar ratio has been extensively 

explored but these variables do not only influence the process kinetics but also greatly affect the 

phase equilibria.  

Modelling results achieved accurate phase behavior representations for pure components, 

plus binary and ternary mixtures that include carbon dioxide by using a polar version of PC-SAFT. 

Group contribution methods were employed to predict pure component parameters for a range of 

fatty acid methyl- and ethyl-esters, simplifying the modelling while minimizing the number of 

parameters. Small errors were obtained using very low values of binary interaction coefficients 

(below 0.12) for the binary mixtures. In this work the presence of an optimal content of CO2 for 

each set of PT conditions is demonstrated for a system containing CO2, methanol and triglycerides 
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(transesterification reactants) and a full map depicting optimal conditions for every set of pressure 

and temperature conditions is provided. That approach has also been extended looking into the 

quaternary system of CO2, methanol, glycerol and biodiesel. Optimal values of carbon dioxide 

content in terms of enhancing the solubility of the phases are hereby investigated. Variation of the 

phase separation in a range of pressures (10-40 MPa) temperatures (40-200 °C) and different 

methanol to glycerol ratios (2-30:1) and the influence on the optimal conditions are reported using 

a polar version of PC-SAFT that can easily be extended to multiple substances and process 

conditions. 
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1.0 Introduction 

Depletion of natural oil, coal and natural gas reserves and the search for fuels with reduced 

environmental impact has driven interest in biodiesel production. Biofuels and the process 

involved in their production have proven to lower greenhouse gas emissions up to 41% when 

compared to standard fossil fuels [1], and to use up to 76% less fossil energy than traditional diesel 

fuel [2]. Biodiesel is a renewable fuel, is biodegradable, performs similarly in engines as compared 

to traditional fuel, and improves air quality by reducing emissions of carbon monoxide and sulfur 

oxides (SOx) [3]–[6].  

The production of biodiesel uses up to 76% less fossil energy than traditional diesel fuel.[2] 

Biodiesel production and consumption in the US has risen steadily over the last 20 years, and since 

2006 the market has experienced a ten-fold increase in consumption.[7] Life cycle assessments 

show that the energy required to grow the triglyceride feedstock is the most significant portion of 

the energy input for biodiesel. However, the processing stage (extraction and conversion), does 

consume approximately one fourth of the total required energy, opening a window for 

improvement of the energy demand of the process [1]. Over several years, both industry and 

academia have produced improvements to the biodiesel process that seek to lower the cost of 

feedstock growth or that try to identify optimal reaction conditions that would reduce such energy 

requirements [8], [9] 

The preferred method for biodiesel production is transesterification of triglycerides with 

methanol or ethanol. The reaction proceeds with two intermediaries: diglycerides and 

monoglycerides, and usually involves high temperature, pressure, and alcohol-to-oil ratio to 

promote the miscibility of the reactants, as well as high-intensity mixing to enhance transport 
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between the immiscible phases [10]–[12]. Figure 1 shows the reaction scheme for 

transesterification of trilaurin with methanol.[13]–[19]  

 

Figure 1 Reaction diagram for biodiesel production through triglycerides transesterification. 

  This reaction can be performed with or without a catalyst. The catalyzed 

transesterification process includes both acidic and basic homogeneous catalysts and is currently 

the preferred commercial route to biodiesel [3]. However, the presence of water and free fatty acid 

impurities contained in the feedstock used in commercial processes, and extra cost associated with 

the separation of the biodiesel from the byproduct glycerol detract from the overall efficiency [3], 

[20]. The transesterification process has also been performed uncatalyzed at supercritical 

conditions, namely temperatures of 250 - 400 C, pressures of 19- 24 MPa, and with 

methanol/ethanol to oil molar ratios of 40:1 -- these conditions are employed to guarantee the 

O

O

O

O

O

O

4/18/2018

6

CH3-OH+

+

+

+⇌

⇌

⇌

CH3-OH

CH3-OH

+

+



 3 

formation of a single phase in the reactor at the onset of the reaction. This process presents 

challenges due to high energy requirements and downstream separation of products from excess 

reactants and byproducts [13]–[17], [21]. Heterogeneous catalysts have also been investigated; the 

viable reaction rates and ease of separation of catalyst from product promote favorable economics 

[22]. The catalysts employed vary in nature from alkaline earth, titanium silicates, anion exchange 

resins to polymers [18], [23]–[26]. 

1.1 Phase Equilibria in Biodiesel Production 

Csernica et al. showed that the phase behavior plays a critical role in the rate of production 

of biodiesel. Not surprisingly, they noted that the reaction proceeds slowly when the concentration 

of triglycerides (TG) in the reactive phase is low and increases dramatically when this 

concentration increases [27].  Other authors have reported measurements that suggest that 

observed slow reaction rates are due to the poor mutual miscibility of the reactants and 

consequently focused on exploring the importance of agitation (and naturally its impact on mass 

transport between phases) in biodiesel production processes. These researchers proposed different 

numerical models to predict reaction outcomes, such as correlation of kinetic constants to the 

Reynolds number of the system [28], correlating total conversion of fatty-acid alkyl esters to 

droplet size during agitation [29],  incorporating an interfacial mass transfer term in the kinetic 

model [30], [31], relating conversion to impeller speeds[32], or by considering the influence of the 

area of the interfacial boundary to account for mass transfer limitations [33]. 

Other research teams created improvements to the traditional biodiesel process by 

attempting to improve the poor mutual miscibility of the alcohols and triglycerides in the initial 
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mixture. For example, one can choose the initial reactants to be more mutually miscible using 

either longer chain alcohols such as butanol[34], [35] or shorter chain triglycerides[36] that are 

entropically favored to blend more easily with methanol or ethanol.  Transesterification performed 

at high pressures (19 - 45 MPa) and temperatures (250 - 400 C) allows biodiesel production 

without the need of a catalyst and in shorter times than any other method; not surprisingly, this 

process starts with a homogeneous mixture of the reactants [13]–[16], [19], [21], [37].  

A common way to reduce the energy input in the processing of triglycerides is by the use 

of co-solvents during the reaction[19] to promote mixing of the reactants. Co-solvents enhance the 

miscibility of the heavy oils with the alcohol-rich phase and hence mitigate the severity of the 

thermodynamic conditions necessary to drive the reaction to completion.[38]  A wide variety of 

co-solvents have been explored, including tetrahydrofuran, hexane, propane, dimethyl-ether, 

diethyl-ether, chlorobenzene, acetone, and carbon dioxide [12], [19], [35], [38]–[40]. Kuramochi 

et al. [41], for example, have achieved high yield of fatty acid methyl ester (FAME, the major 

component of biodiesel) at short reaction times using dimethyl-ether as a co-solvent to promote 

the mixing of methanol and triolein. Patil et al. [38]compared supercritical biodiesel production 

from camelina sativa oil with hexane to form a single phase versus a subcritical process using 

KOH and showed similar results in terms of yield in comparable times. This suggests that the 

improvement obtained through use of supercritical conditions is strongly connected to a 

thermodynamic effect (enhancing miscibility) rather than through enhancing the reaction kinetics 

alone. The influence of the concentration of different co-solvents was explored by Alhassan and 

colleagues; they obtained optimal conversions at particular co-solvent concentrations suggesting 

that there are thermodynamically optimal conditions when using co-solvents [40]. 
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Carbon dioxide has been suggested as a potentially useful co-solvent for biodiesel 

transesterification at supercritical conditions because CO2 is naturally abundant, it has been widely 

used in vegetable oil extraction, it has rather mild critical parameters (31.1 C and 7.39 MPa), and 

it enhances the miscibility between alcohols and triglycerides significantly [42], [43]. Using 

carbon dioxide as a co-solvent, Soh et al. [44] showed that triglyceride transesterification does not 

need to be conducted at supercritical conditions to achieve high rate of reaction, and can be coupled 

with heterogeneous catalysis. The addition of CO2 increased the concentration of triglycerides in 

the alcohol-rich phase, which consequently enhanced the rate of the transesterification reaction. 

Essentially complete conversion was obtained in moderate reaction times (< 2 hr.). Comparatively 

mild temperatures and pressures (95 C, 9.5 MPa) were sufficient to achieve 98% methyl oleate 

yield in a tri-phasic catalyzed process. Given the apparent advantage to using CO2 as a cosolvent 

during biodiesel generation, it would be useful to understand the phase behavior of the system 

throughout the reaction, in order to identify those conditions that provide the best reaction 

outcomes. 

Phase equilibria also influences the later stages of the transesterification reaction when 

most of the triglycerides have been consumed due to the formation of two distinct phases: the 

biodiesel-rich phase, and the glycerol-rich phase. Freedman et al. [45] proposed that the reaction 

rates have three distinct stages starting with a comparatively slow regime, then an acceleration, 

and finally another slow phase at higher conversions -- however they attributed these effects to the 

reverse reactions of the transesterification’s chemical equilibria. Boocock et al.[34] investigated 

the positive effect of THF on increasing the miscibility of the initial reactants and noted as an 

unexpected effect that separation of the glycerol byproduct occurred faster than in the THF-free 

system. Maeda et al. [46] later explained these two effects by verifying that the reverse reactions 
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of the biodiesel  transesterification could not be playing a relevant role in the process since the 

formation of products from transesterification reactants is negligible, even when using a catalyst 

at different temperatures and for an extended time period, and concluded the delay had to be 

attributed to the depletion of the methanol reactant by its migration into the newly formed glycerol 

phase. They also investigated the use of acetone as a co-solvent for the initial reactants but a poor 

solvent for glycerol and obtained comparatively faster FAME production than with other solvents. 

Glisic and Skala. [47] were able to observe and quantify the effect that a multiphase reactor has 

over the concentration of reactants and products and particularly the influence a glycerol-rich 

phase has over the methanol concentration in the triglyceride-rich phase. Research such as that 

performed by Yin et al. [48] suggests that addition of carbon dioxide results in beneficial reduction 

on necessary reaction conditions and increases on overall biodiesel yield similar to the effects 

observed by Boocok et al. but the effect of CO2 in the transesterification process has not been fully 

explained. Thus, a better understanding of CO2 influence on the phase separation is required as a 

potential explanation for such improvements. 

1.2 Literature Experimental Data on Phase Behavior of Biodiesel-relevant mixtures 

The phase behavior of mixtures of CO2 with biodiesel esters and triglycerides has been 

explored experimentally, confirming limited miscibility at supercritical conditions [49]–[53]. 

Binary vapor- liquid equilibria data of  CO2 + alkyl ester mixtures [54]–[58], CO2 + alcohol 

mixtures [59], and for both CO2 and alcohol + glycerol [60], [61] are available in the literature, 

providing a solid basis from which to develop a predictive model. So far, the focus of most of the 

literature has been high pressure and temperature conditions aiming to characterize the behavior 
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of the supercritical regime and consequently does not focus on moderate to low pressures and 

temperatures where ethanol or methanol are below their critical temperatures. The sources of 

relevant data for mixtures of FAMES with CO2 are shown in Table 1. 

Table 1 FAMES and FAEES with CO2 binary Vapor-Liquid Equilibria literature. 

Methyl esters-CO2 Reference Ethyl Ester/CO2 Reference Chain 

length: 

Unsat. 

Methyl-Caproate [-] Ethyl-Caproate Hwu et al. [58] C6:0 

Methyl-Caprylate [-] Ethyl-Caprylate Hwu et al. [58] C8:0 

Methyl-Caprate [-] Ethyl-Caprate Hwu et al. [58] C10:0 

Methyl-myristate Inomata et al. [54] 

Lockeman [62] 

Ethyl-myristate [-] C14:0 

Methyl-palmitate Inomata et al. [54] 

Lockeman [62] 

Ethyl-palmitate [-] C16:0 

Methyl-stearate Inomata et al. [54] Ethyl-stearate Bharath et al. [57] C18:0 

Methyl-oleate Inomata et al. [54] 

Chang et al. [56] 

Zou et al. [55] 

Ethyl-oleate Bharath et al. [57] C18:1 

Methyl-linoleate Chang et al. [56] 

Zou et al. [55] 

Ethyl-linoleate Bharath et al. [57] C18:2 

Measurements of the phase equilibrium of triglycerides (TG) in mixtures that contain 

alcohols and/or alkyl esters are also needed to describe biodiesel production systems such as the 

one we evaluated in this work. Binary and ternary data are more abundant than pure component 

TG measurements for such systems. Various authors have explored the phase behavior of TG’s 

with methanol [11], [27], [63], [64], alkanes [10], supercritical carbon dioxide [51]–[53], [65], [66] 

and sub-critical CO2 [67]–[70]. Ternary systems comprising TG- CO2-FAME [71], and TG - CO2   

- Alcohol [72] have also been explored experimentally. Experimental work showing interaction 

with carbon dioxide is particularly relevant for this work and highlighted in Table 2. 
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Table 2 Triglycerides with CO2 binary Vapor-Liquid Equilibria literature. 

Triglyceride-CO2 Avail lit. Chain length:  

insaturations 

Triolein Bharath et al. [68] 

Fernandez-Ronco et al. [73] 

Weber et al. [74] 

Chen et al. [70] 

C18:1 

Tristearin Weber et al. [74] C18:0 

Trilaurin 

 

Bahrath et al. [68] C12:0 

Tripalmitin 

 

Bahrath et al. [68] 

Weber et al. [74] 

Chrastill et al. [65] 

Munuklu et al. [75] 

C16:0 

tricaproin Florusse et al. [67] C6:0 

tricaprilyn Florusse et al. [67] C8:0 

Diglycerides (DG) and monoglycerides (MG) are intermediates of the conversion of TG’s 

to the fatty acid esters that comprise biodiesel.  These compounds are somewhat more hydrophilic 

than the original triglycerides given their hydroxyl groups, and hence may help to increase 

triglyceride content in the polar reactive phase. Thermophysical data for these compounds are 

scarce and are generally associated with results for multi-component systems that contain some 

mono- or di-glycerides [76]–[78], or measurements performed in supercritical carbon dioxide [51], 

[52]. 



 9 

1.3 Previous modelling efforts 

Despite the system's apparent simplicity, the species present during transesterification of 

triglycerides with alcohols using CO2 as co-solvent exhibit multiple types of molecular 

interactions, including hydrogen bonding and relevant polar forces, which complicate modeling 

efforts. Triglycerides have the potential to form weak hydrogen bonds through their carbonyl 

oxygens, and also exhibit dispersion forces. Carbon dioxide presents a strong quadrupolar moment 

and the possibility of forming weak hydrogen-bond cross-associations by acting as an electron 

donor with active hydrogen compounds.[79] Given this, plus the large number of components 

present during the creation of biodiesel from triglycerides and methanol in the presence of CO2 

(CO2, methanol, triglycerides, fatty acid methyl esters, glycerol, di- and mono-glycerides), 

modeling of the phase behavior of this system is far from straightforward. 

1.3.1  Modelling of alcohol, glycerol and FAAEs mixtures 

Phase equilibria predictions of the behavior of ternary CO2 + alcohol + glycerol mixtures, 

or quaternary mixtures of these + biodiesel esters have not been extensively explored. Initial 

attempts have been made with cubic equations of state, obtaining overall good results with respect 

to errors in phase behavior representation, but with very limited predictability, and little ability to 

be expanded to mixtures with similar components outside the ones that are used in each particular 

case [59], [61], [64], [80]. Ferreira et al. and Andreatta et al. have modelled alcohol-ester and 

alcohol-glycerol-ester systems using the Group Contribution Equation of State (GC-EoS) 

successfully, however due to the nature of this equation a wide range of binary interaction 

parameters are required each time a new component is added, since correlation is calculated group 
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by group [81], [82]. Cubic Plus Association (CPA) has been used by Oliveira et al. to model 

glycerol containing systems with excellent results. [83] Alcohols-esters and ternary systems 

including glycerol were modelled by this same group using two binary interaction coefficients that 

could be generalized to multiple components depending solely on the carbon chain length.[84]   

Perturbed Chain Statistical Association Fluid Theory (PC-SAFT) [85], [86] has become a 

widely used engineering resource for modeling complex mixtures due to its ability to describe 

chain-like molecules, highly compressible mixtures, strong molecular associations, and more 

recently polar compounds [87]–[91]. Corazza et al. [92], and NguyenHuynh et al. [93], [94], used 

PC-SAFT to model biodiesel related phase equilibria, parametrizing pure methyl- and ethyl-esters 

at different conditions and obtaining promising results for methanol, ethanol, glycerol, and 

biodiesel binary and ternary systems – these researchers, however, did not examine the impact of 

a CO2 co-solvent on the phase behavior of these biodiesel-related systems. PC-SAFT has been 

used previously to understand carbon dioxide interactions with short alcohols but never 

specifically employed to predict CO2-methanol/ethanol-biodiesel ternary systems [95]–[97]. 

Similarly, methanol/ethanol-glycerol-biodiesel ternary system predictions can be found in the 

literature where polar and non-polar versions of PC-SAFT have been used, but descriptions of 

such systems where carbon dioxide is also present remain unexplored [92], [98]. 

1.3.2  Modelling the Behavior of Acylglycerols 

Accurate modelling of the thermodynamic behavior of triglycerides depends upon 

parametrization via fits to experimental data; these are unfortunately relatively scarce due to 

extremely low triglyceride vapor pressures and experimentally unattainable critical properties. In 

particular, vapor pressure measurements for triglycerides are present in only a few papers [74], 
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[99], and models designed to predict thermophysical properties reduce to a small set of group 

contribution approaches as proposed by Ceriani and Meirelles [100], or a segmental approach as 

proposed by Zong et al. [101]. 

Modelling of binary mixtures that include triglycerides has also been explored previously. 

Bamberger et al. used a lattice equation of state to obtain good results and reasonable binary 

interaction coefficients (less than 13%) that correlate the solubility of different TG’s in 

supercritical carbon dioxide [53]. Well known cubic equations of state show high accuracy 

predicting the behavior of some binary mixtures of triglycerides and CO2 [11], [72], [74], [75], 

[102] although most require temperature dependent binary interaction coefficients. Similarly, the 

triglyceride-methanol system has been analyzed with cubic equations of state and non-idealities 

have been considered using UNIFAC and UNIQUAC activity coefficient models; these also 

require temperature dependent binary coefficients to produce accurate descriptions of the phase 

behavior [63], [103]. 

A number of researchers have employed the Group Contribution Equation of State (GC 

EoS) to model the phase behavior of mixtures that include TG’s. Bottini et al. modelled triglyceride 

+ alkane binary mixtures [104], Fornari et al. analyzed the solubility of tri-, di- and monoglycerides 

in supercritical carbon dioxide [105], Fernandez-Ronco et al. described CO2-triglycerides vapor-

liquid equilibria behavior [73], and Espinosa et al. modelled the mixture data of fatty oils with 

various near-critical and supercritical solvents [106]. Temperature dependent binary interaction 

coefficients were required in these systems in order to obtain a reasonable representation of the 

phase behavior.  

Modelling of the behavior of DG’s and MG’s has previously been performed using 

traditional cubic equations of state [52], [107], however challenges arise for these EoS’s when 
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considering multicomponent systems where both multiple associations and polar forces are 

present. Other  thermodynamic models, such  as UNIFAC, UNIQUAC and NRTL excess Gibb’s 

models, as well as the GC EoS have been tested [105], [107]. These systems require fitting a large 

number of binary parameters, and little to no binary data was considered on isolated MG or DG 

systems during parameter optimization.  

The Perturbed Chain Statistical Association Fluid Theory Equation of State (PC-SAFT 

EoS) [85] has been used successfully to model biodiesel related systems, mostly those containing 

mixtures of FAMES and/or FAEES with lower molecular weight components such as alcohols and 

carbon dioxide. PC-SAFT EoS has yet to be used to model triglyceride mixture behavior (with 

reactants and products of the biodiesel reaction), possibly because triglycerides do not entirely fit 

the description of a chain of Lennard-Jones spheres employed during the initial derivation of PC-

SAFT. However, the model has been applied to systems such as highly branched alkanes, 

crosslinked compounds and aromatics with considerable success  [108]–[111]. 
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2.0 Objectives 

Phase equilibria plays a significant role governing the transesterification outcomes in the 

biodiesel manufacturing process. Carbon dioxide appears to be a promising co-solvent to improve 

the overall energy demand and yield of the reaction process, but its effect in the phase separation 

of biodiesel reactants and products is still widely unexplored. Thermodynamic modelling of the 

phase separation can resolve important issues regarding component-phase-distribution and the 

effect of the cosolvents. Modelling the phase equilibria of this complex systems using a robust 

EoS that accounts for all the intra- and intermolecular forces like PC-SAFT has not been done 

before. Therefore, the following aims are proposed to deepen the comprehension of carbon dioxide 

potential benefits on the biodiesel transesterification process:  

1. Fully characterize the phase behavior of biodiesel-related compounds (methanol/ethanol, 

glycerol and FAMES/FAEES) with carbon dioxide as a co-solvent using the PC-SAFT EoS, 

subsequently predicting supercritical and sub-critical phase behavior, ultimately generating 

binary and ternary diagrams that are relevant to the biodiesel formation process.  

a. Understand the multiple association configuration glycerol can assume and obtain the best 

pure component parameters using the PC-SAFT EoS. 

b. Derive binary interaction coefficients from extant binary data. 

2. Collect experimental data regarding the phase behavior of monoglycerides in CO2 to 

supplement the current relatively scant literature data set on these compounds. 

a.  Obtain experimental validation of multiphasic systems with liquid phases expanded by 

carbon dioxide. 
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b. Collect valuable binary data of carbon dioxide with monoglycerides in vapor liquid 

equilibria. 

c. Collect ternary data of carbon dioxide with methanol and monoglycerides in vapor liquid 

equilibria. 

3. Provide a method to systematically model tri-, di- and monoglycerides in mixtures with other 

common biodiesel components where carbon dioxide is employed as a co-solvent.  

a. Obtaining reusable parameters for the intermediaries of the biodiesel reaction for pure and 

mixed phase behavior prediction, that will enlarge a basis of existing parameters for the 

PC-SAFT equation of state. 

b. Provide trends and correlations amongst the parameters of triglycerides and their 

corresponding diglycerides and monoglycerides to favor a predictable approach that can 

be used in more complex blends of triglycerides as raw material for biodiesel production. 

4. Employ the PPC-SAFT model, with the derived binary parameters to predict the phase 

behavior of the biodiesel initial reactants represented by methanol and triolein using CO2 as a 

co-solvent.  

a. Understand the influence that carbon dioxide to triglyceride ratios as well as methanol to 

triglyceride ratios in presence of CO2 have in the reaction. 

b. Propose pressure and temperature (P-T) conditions that promote higher ratios of methanol 

to triglycerides in the oil-rich phase of the system, which would likely represent useful 

conditions to conduct the transesterification reaction. 

5. Employ the PPC-SAFT EoS, to predict the phase behavior of the biodiesel products 

(represented by methanol, methyl oleate, and glycerol) using CO2 as a co-solvent.  
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a. Understand the influence that carbon dioxide to FMA/FAEE ratios as have in the phase 

equilibria of biodiesel transesterification. 

b.  Explain the partition of methanol in a multiphasic biodiesel transesterification reactor 

using CO2 as a co-solvent, as compared to a reactor without carbon dioxide.  

c. Identify favorable thermodynamic (P-T conditions, CO2 content, etc.) by minimizing the 

glycerol content and increasing methanol content in the reactive phase in order to obtain 

optimal reaction outcomes of biodiesel transesterification, based solely on the phase 

separation of the reactants and products.  
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3.0 Methods 

3.1 Theory: The equation of State 

Statistical Association Fluid Theory (SAFT) as proposed by Chapman et al.[112] has been 

designed to capture non-idealities and molecular interaction at different levels. Based on 

Wertheim’s first-order perturbation theory [113]–[116], the Helmholtz free energy of a fluid is an 

expansion dependent on the Helmholtz free energy of a reference system perturbed by the residual 

free energy due to association. Each term is expressed as a nonlinear expansion dependent on the 

packing fraction and its derivatives as well as the reduced temperature, calculated using the 

Lennard-Jones Parameters for a mixture of LJ chains with spherical segments. Unlike the cubic 

equations of state, the phase behavior is not based on critical properties but rather on statistical 

mechanical quantities fitted to pure component behavior. As such: 

𝐴 = 𝐴ℎ𝑐 + 𝐴𝑑𝑖𝑠𝑝 + 𝐴𝐴𝑠𝑠𝑜𝑐 + 𝐴𝑀𝑢𝑙𝑡𝑖𝑝𝑜𝑙𝑎𝑟 3-1 

Where A refers to the Helmholtz free energy of the fluid and the superscripts make 

reference to Helmholtz free energy due to:  

1) Ahc: hard chain reference fluid  

2) Adisp: dispersion forces,  

3) AAssoc: association due to hydrogen bonding, and  

4) AMultipolar: polar and induced polar interactions  

Gross and Sadowski [85] modified the original reference fluid to become hard-sphere chain 

molecules in the development of  PC-SAFT: 
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Ahc = RT (mAhs + ∑ xi(1 − mi) ∙

i

ln(gii(dii)
hs)) 3-2 

Where xi is the molar composition, m = ∑ ximii  the average segment size, g is the radial 

distribution function, itself a function of “d” which is the soft diameter of the spherical segment 

described by equation 3-3:  

di = σi (1 − 0.12e−
3εi
kT ) 3-3 

Where: 𝜎𝑖 and 𝜀𝑖 are the Lennar-Jones segment size and potential energy of the spheres.  

The dispersion forces are based on the second order perturbation theory of Barker and 

Henderson [117].  

Adisp = A1(I1) + A2(I2) 3-4  

Where I1 and I2 are the overlap integrals approximated by Gross and Sadowski by fitting 

coefficients to long-chain alkane experimental data, and written as:  

I1(η, m̅) = ∑ aiη
i

6

i=0

 3-5  

I2(η, m̅) = ∑ biη
i

6

i=0

 3-6  

Where 𝜂 is the packing fraction and ai and bi are the fitted coefficients dependent on the 

average segment number m.  For a detailed review of the perturbation expansion and fitted 

polynomials please refer to Appendix 1. At this point, 3 parameters entirely describe the model's 

description of thermodynamic behavior of a molecule (segment number m, diameter σi and 

potential εi). 

PC-SAFT’s perturbation terms included Chapmans original SAFT association term based 

on a square well potential approximation to calculate the association strength [112]:  
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Aassoc = RT (∑ xi [
mi

2
+ ∑ ln (XAi) −

Ai

XAi

2
]

i

) 3-7 

 

Where XAi is the fraction of the of molecules not bonded to a given site A in one segment 

of the chain molecule, as shown in equation 3-8: 

XAi = (1 + ∑ ∑ ρj ∙ XBj ∙

B

ΔAiBj

j

)

−1

 3-8 

 

Where ρj is the density of the fluid and 𝛥𝐴𝑖𝐵𝑗 is the association strength given by: 

ΔAiBj = dij
3gij(dij)

seg
κAiBj (e

ε
AiBj

kT − 1) 3-9 

Two more pure components parameters are hereby introduced: κAB represents a volumetric 

overlap characterization of site “AB” and a given unique value of energy potential for bonding 

occurrence εAB.  

Polar forces and induced dipole interactions can be approximated for localized polar forces 

in certain segments of the chainlike molecule. The inclusion of the polar term contemplates long 

range interaction of molecules with multiple dipolar or quadrupolar groups versus the short 

bonding effects that the association term is designed for following the square well potential 

approximation. 

A multipolar term prevents overly increased values for the association energy parameter 

during pure component parametrization and provides smaller values for binary interaction 

coefficients [118]. Gross and Vrabec also suggested a polar term contribution using a broader set 

of data for fitting the values of the overlap integrals [90], [119], [120]. 

Twu et al. suggested a segment localized polar contribution term based on a Padé 

approximation of third order perturbation theory expressed as [87]–[89]: 
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𝐴𝑝𝑜𝑙 = 𝐴2 [
1

1 −
𝐴3

𝐴2

] 3-10 

Where A2 and A3 are sums of binary and ternary polar interaction contributions to the free 

energy respectively, with multiple terms accounting for actual and induced dipole and quadrupole 

moments. The full expansion equations for each contribution have been designed to deal with 

chain molecules instead of segments by incorporating a polar fraction of the chain xpi
μ

 and xpi
Q

 for 

molecules with dipolar and quadrupolar moment respectively, as used by Nguyen et al. [121] and 

are fully shown in Appendix A. 

Therefore, up to seven parameters fully describe each substance: segment number (m), 

segment diameter (σi) , and molecule dispersive potential (εi) are required for all molecules. If 

the molecule is associative:  volumetric overlap of molecules association sites (κAB) and energy 

potential for bonding sites (εAB)  are also needed. If the molecule is polar or quadrupolar: the 

fraction of the molecule considered polar/quadrupolar (xp) and the dipole or quadrupole moment 

(μ/Q) are included. 

3.1.1  Group contribution  

The central idea of the use for group contribution theory is to be able to estimate component 

parameters (described in the previous section) using fixed values for molecular sub-groups. For 

example, long chain alkane parameters can be estimated by combining parameters for (CH3), 

(CH2), (CH), etc. The equations for a homonuclear approach are given by Tamouza et al. [122] 

and Nguyen et al. [93] and shown below: 
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𝜎 = ∑
𝑛𝑘𝜎𝑘

𝑛𝑔

𝑛𝑔𝑟𝑜𝑢𝑝𝑠

𝑘=1

 3-11 

𝜀 = √ ∏ 𝜀𝑘
𝑛𝑘

𝑛𝑔𝑟𝑜𝑢𝑝𝑠

𝑘=1

𝑛𝐺

 3-12 

𝑚 = ∑ 𝑛𝑘𝑅𝑘

𝑛𝑔𝑟𝑜𝑢𝑝𝑠

𝑘=1

 3-13 

𝑛𝐺 = ∑ 𝑛𝑘

𝑛𝑔𝑟𝑜𝑢𝑝𝑠

𝑘=1

 3-14 

Where 𝑛𝑘 is the number of groups of type k in the molecule, 𝑅𝑘 is group contribution to 

the number of segments, 𝜎𝑘 is the group contribution to the segment diameter, and 𝜀𝑘 is the group 

contribution to the dispersive energy. Polar moments for methyl and ethyl-esters have been 

calculated by NguyenHuynh et al. [96]: 

𝜇 =  𝜇0 −  𝜇1 (1 −
1

𝑛
) −  𝜇1 (1 −

1

𝑛′
) 3-15 

Where 𝜇 is the dipolar moment, 𝜇0, 𝜇1, 𝜇2 are fitted constants in Debyes [D] derived 

through examination of 35 esters, and n and n’ are the number of carbons adjacent to the carbonyl 

carbon and the ester oxygen. The molecules considered here always contain one unique type of 

associating group (alcohols, esters or oxygen groups) thus, no extra equations are needed to find 

association parameters in this group contribution version of PC-SAFT, as each association site is 

inherently a segmental attribute rather than a value averaged from all “groups” of the molecule. 

Moreover, as stated above, group contribution is only applied to long chain alkyl esters since this 

approach does not correctly predict the behavior of small molecules like methanol or carbon 

dioxide [97]. 
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3.2 Phase equilibria modelling 

Traditional phase equilibria algorithms for the isothermal isobaric flash procedure as, 

proposed by Henley [123]  to predict VLE and VLLE, have been successfully tested for similar 

systems using the PC-SAFT equation of state.  This procedure provides robust convergence for 

multicomponent systems with simple liquid-vapor equilibria, however it is known to be a slowly 

convergent flash algorithm that can encounter problems near critical regions of an isotherm.[124] 

Alternatively, different authors have used Gibbs energy minimization methods in conjunction with 

PC-SAFT with excellent results in terms of convergence.[109], [125] The algorithm as described 

by Michelsen [124], [126], [127] is suitable for the system under consideration here. The algorithm 

is based on regular descent methods and accounts for the possibility of multiple unknown phases 

with more than two components and verifies the stability of the present phases.  

3.3 Fitting methods 

3.3.1  Parameter Fitting 

The best value for each unknown pure component parameter is identified using 

experimental data available in the literature or data collected from physicochemical databases, and 

then minimizing the error in vapor pressure and saturated liquid density at different temperatures 

using equation 3-16: 

%𝐴𝐴𝐷 =  
1

𝑁𝑝𝑜𝑖𝑛𝑡𝑠
∑

‖𝑃𝑖
𝑒𝑥𝑝 − 𝑃𝑖

𝑐𝑎𝑙𝑐‖

𝑃𝑖
𝑒𝑥𝑝

𝑖

+ ∑
‖𝜌𝑗

𝑒𝑥𝑝 − 𝜌𝑗
𝑐𝑎𝑙𝑐‖

𝜌𝑗
𝑒𝑥𝑝

𝑗

 3-16 
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Here 𝑃𝑖
𝑒𝑥𝑝

 and 𝜌𝑗
𝑒𝑥𝑝

are experimental data points of saturated pressure and density 

respectively and 𝑃𝑖
𝑐𝑎𝑙𝑐 and 𝜌𝑗

𝑐𝑎𝑙𝑐 are the predicted properties from the model. 

Similarly, each binary interaction coefficient has been fitted by minimizing error using 

equation 3-17 

%𝐴𝐴𝐷 =  
1

𝑁𝑝𝑜𝑖𝑛𝑡𝑠
∑

‖𝛺𝑖
𝑒𝑥𝑝 − 𝛺𝑖

𝑐𝑎𝑙𝑐‖

𝛺𝑖
𝑒𝑥𝑝

𝑖

 3-17 

Where: Ω𝑖
𝑒𝑥𝑝

 are the experimental data points of the thermodynamic property of interest 

and Ω𝑖
𝑐𝑎𝑙𝑐 are the predicted properties from the model. 

3.3.2  Optimal conditions search with a P-T flash algorithm 

Optimization of the methanol to oil ratio in the triglyceride-rich phase (chapters 6.0 and 

7.0)  was performed through brute force substitution methods by incrementing the carbon dioxide 

mole fraction by a small amount (1%) and then observing the consequential increase or decrease 

of the value of the ratio. The most significant challenge here derives from the stability of the 

multiphasic regime in the region being explored. At certain a priori unknown values of pressure, 

temperature and total molar fraction, the situation changes from liquid-liquid-vapor equilibrium 

(LLVE) to liquid-liquid equilibrium (LLE). Thus, for each tested set of conditions, phase equilibria 

modelling was performed sequentially, assuming the presence of three phases at first. If the third 

phase was proven unstable, the algorithm then performs calculations using a simpler 2-phase flash 

algorithm which in turn alternated between regular direct substitution and Gibbs minimization 

methods depending on whether the objective function convergence values were below the assigned 

tolerance. 
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When approaching the critical region of instability of the third phase, the probability of the 

algorithm yielding a false negative for the tri-phase regime (LLVE) increases. In this region several 

iterations are needed to achieve the assigned tolerance. The possibility of a false positive LLVE 

equilibrium can also occur by assigning convergence values that are too large. To overcome these 

challenges, when the critical region was detected step increases of P-T conditions were chosen 

such that the system will be on either side of the transition to avoid stalling and excessive iteration. 

3.4 Experimental Section 

3.4.1  Materials  

CO2 was obtained from Matheson (99.9 % bone dry), and methanol (HPLC grade 99.9%) 

purchased from Sigma Aldrich; each was used without further purification. Food grade 

monoglycerides with >95% purity as reported by TheScienceKit Store for monostearate and New 

Directions Australia for monocaprylate were also used as received.  

3.4.2  Phase Behavior Measurements 

Phase behavior data for mixtures were acquired using a high-pressure variable volume 

view cell (VVVC) manufactured by D.B. Robinson and Associates. The apparatus consists of a 

steel casing with aligned front and back sapphire windows that allows for visual inspection of the 

selected sample. The volume of the sample can be varied using a movable piston which is displaced 

using silicone oil as the overburden fluid. The internal pressure is monitored and controlled with 
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the use of two syringe pumps that are operated with a closed loop electronic controller system. 

One pump corresponds to the silicone oil fluid and a second one controls the CO2 displaced into 

the cell. The system is encased in a constant temperature housing [128]. A schematic of the 

experimental setup is shown in Figure 2. 

 

Figure 2. Variable volume view cell (VVVC) experimental setup schematic. 

Liquid-vapor and liquid-liquid data were acquired by introducing known amounts of 

material into the sample cell. The desired temperature was set, and the pressure was increased until 

a single phase was formed. After allowing for mechanical equilibrium to be reached, the pressure 

was lowered by expanding the liquid at very slow volumetric rates varying from 20 to 50 cc/hr. 

When the incipient formation of either a vapor or a second liquid phase was noticed, the pumping 
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system was stopped, and the system was allowed once more to reach mechanical and chemical 

equilibrium between the phases. Similar procedures have previously been used and verified [129]–

[131]; each data point was performed in duplicate. Errors for pressure measurements were 

calculated as standard deviation from the two-fold measurements and composition uncertainties 

were calculated through dispersion error formulas of instruments measuring uncertainty and 

measurements fluctuation following guidelines from Khu [132]. 
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4.0 Results Part I: Modelling the phase behavior of biodiesel related systems with CO2 

using a polar version of PC-SAFT (published in Fluid Phase Equilibria (2019), 485, 

32-43) 

4.1 CO2 – Methanol/Ethanol – FAAES pure component modelling 

Carbon dioxide, methanol and ethanol pure component parameters were taken from 

NguyenHuynh et al. [97] and are shown in Table 3. CO2 and methanol parameters were not 

constructed from segmental group contributions but were rather treated as unique molecules 

insofar as their parameters were concerned. As shown by Mourah et al. [133] a 2B scheme (one 

electron donor and one acceptor site) can be used to describe methanol self-association. Carbon 

dioxide is considered to have two donor sites but does not self-associate. Ethanol is represented 

with a 3B association scheme (two electron donor and one acceptor site) to accurately reproduce 

pure and binary data [97].  

The apparent contradiction in the association schemes of methanol and ethanol is part of  

an ongoing literature discussion about lower alcohol parametrization with SAFT-like equations. 

The 3B model is known to be the most rigorous approach for the association scheme, as established 

by the work of Huang and Radosz [134], and corresponds to two donor sites present in the oxygen 

atom due to two lone pairs of electrons and one proton on the OH- group. At the same time, it 

could be argued that not many molecules will in practice associate with three other molecules. 

Different authors have concluded that both the 2B and 3B schemes are in fact suitable to correctly 

model alkanol pure and mixture phase behavior. Wolbach and Sandler suggested using quantum 

chemistry modelling to determine the association scheme of methanol and obtained inconclusive 
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results in terms of errors in pure component property prediction [135]. Yarrison and Chapman, as 

well as Tybjerg et al showed that the optimal association scheme for methanol depends on the 

range of thermodynamic properties used or the mixture that is being modeled [136], [137]. For 

PPC-SAFT specifically, Mourah et al. [133] explored all multiple-site association possibilities, 

and were not able to conclude which methanol association scheme is correct. Finally Nguyen et 

al. using GC-PPC-SAFT, developed a systematic procedure for alkanols in presence of carbon 

dioxide using a 3B model but accepted that the rules were not applicable to the first molecule of 

each series (i.e. in this case methanol) [97]. In this work we have chosen to follow this latter 

reference in the spirit of been able to assess carbon dioxide interaction with a wide range of 

biodiesel related systems. 

Fatty acid methyl-ester and ethyl-ester pure component parameters were obtained using the 

values shown in Table 3 and equations 3-11 to 3-15. Polar moments were calculated using group 

contribution values and the esters were considered to have 1 cross-association site with short chain 

alcohols as developed by NguyenHuynh et al. [97] . Biodiesel parameters were calculated based 

on the composition of alkyl-esters in the system. Instead of adding multiple components to the 

mixture, biodiesel was treated as a unique pseudo-component. Parameters for the biodiesel 

component were calculated using group contribution equations 3-11 to 3-15 using the average 

number of carbons in the ester chain and the average number of methyl, methylene and methine 

groups in the chain.   
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Table 3 Parameters used for GC-PPCSAFT taken from Mourah et al.[133], Hemptinne et al. [138] and 

NguyenHuynh et al [96], [97]. 

Component Assoc. m σ (Å) ε/k (K) κAB εAB/k(K) xp
μm xp

Qm μ (D) Q (B)e 

CO2
a 2 Sites 1.8465 2.9839 139.997 0.0947 449.71  0.5268  4.3 

Methanol 2B 2.8271 2.6321 166.875 0.2373 2069.08 0.35  1.7  

Ethanol 3B 2.0050 3.4106 247.992 0.0088 2143.29 0.50  1.83  

-CH3  0.7866 3.4872 189.962       

-CH2-  0.3821 3.9307 261.087       

-CH=  0.1953 3.8614 287.400       

-CH<  0.200 4.9350 402.000       

-OH (1)b 3B 0.8318 2.8138 307.5094 0.0088 2143.29     

-OH (2)b 3B 0.3573 2.8138 307.5094 0.0044 2143.29     

COO (1) a, b, c 

1 Site 

0.8274 

3.3448 362.820 0.0088 2143.29 
1.15 

   

COO (2) a, b, c 0.8116    

COO (4) a, b, d 0.728     
a Compounds listed with a number of sites are not self-associating. Association parameters are for 

cross association only. 
b Numbers in parenthesis indicate the position in the carbon chain 
b Parameters change based on ester's group position in the carbon chain. 

c μ0=2.0177, μ1=0.2216, μ2=0.3425 to be used with equation 3-15. 
d Ester group was taken in the 4th position for triglycerides. The position is the most embedded in 

the carbon chain available and polar moment was assigned. 

e Buckingham 1 B=10-10 D. 
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4.2 Glycerol Parameters 

Glycerol presents a challenge to modelling efforts as it exhibits a molecular weight of only 

92 g/mol, yet also exhibits vapor pressures that are extremely low owing to the strong self-

associations resulting from its three hydroxyl groups. Glycerol pure component parameters were 

calculated in this work considering two different association schemes: (1) two donor and two 

acceptor sites (denoted as the 4C association scheme) and (2) three donor and three acceptor sites 

(3x2B). Barreau et al. [139] have proposed two different sets of glycerol parameters, employing 

the two association schemes mentioned above, but also using the polar fraction of the molecule 

(𝑥𝑝 ∙ 𝑚) as a free fitting parameter.  They obtained accurate fits of the model to the experimental 

data, but with a value for the polar fraction that appears unrealistically small (< 0.05). Instead, we 

considered two values for the polar fraction of the molecule; 0.35 and 0.5 (similar to values used 

for other polyols [62]); following NguyenHuynh et al.’s development for short chain alcohols, [97] 

the dipolar moment was set to the experimental value of 2.68 D. A non-polar version has also been 

fitted to compare these results with those found using the traditional version of PC-SAFT. Results 

of fitting the various scenarios to glycerol data are shown in Table 4 – while comparably good 

results for pure vapor pressure and saturated density are obtained using all set of parameters, 

significant differences between the performance of the different parameter sets arose during 

modeling of the binary mixtures. Experimental data for vapor pressure were obtained from the 

DIPPR 2015 version [140] and saturation density was obtained from McDuffie et al. [141] using 

temperatures from 298.75 to 535 K  
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Table 4 Glycerol Pure component parameters and saturation prediction error (in %). 

 Av. Errors 

Set Scheme m σ (Å) ε/k (K) κAB εAB/k (K) xp⸱m μ (D) Psat ρsat 

Ia 4Cc 4.597 2.891 294.380 0.1485 1481.38 0.0049 2.68 7.36 2.57 

IIa 3x2Bd 6.203 2.577 261.340 0.6020 501.87 0.0430 2.68 3.98 1.09 

IIIb 4Cc 1.457 4.400 313.845 0.0121 2411.31 0.5000 2.68 4.36 1.04 

IVb 3x2Bd 2.829 3.405 265.278 0.0484 2672.05 0.5000 2.68 4.17 0.08 

Vb 4Cc 2.833 3.405 291.885 0.0419 2587.89 0.3500 2.68 4.24 0.16 

VIb 4Cc 5.156 2.738 247.651 0.3018 1765.47 0 0 3.83 0.89 

aGlycerol pure component parameters from Barreau et al. [139]. 
bGlycerol pure component parameters from present study. 
c2 electron donor and 2 electron acceptor sites. 
d2 electron donor and 2 electron acceptor sites. 

 

 

 

4.3 Binary Systems 

4.3.1  Methanol/Ethanol-Glycerol 

Binary mixture data, including both high pressure data [142] and lower pressure data from 

[83], [143], of methanol and ethanol with glycerol were fit using the different glycerol parameter 

sets. All sets of parameters provided comparatively good results, as depicted in Figure 3. 

Increasing the polar fraction parameter (𝑥𝑝 ∙ 𝑚) from 0.35 to 0.5 shifts the value of the binary 

interaction coefficient from negative to positive for the methanol case – positive kij’s would be 

traditionally expected when using polar versions of PC-SAFT, as negative values would suggest a 

higher degree of association than would be predicted from the averages [93]. Similarly, for PC-
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SAFT with no polar association negative binary interaction coefficients are needed for good data 

representation; this could be due to an overly increased dispersion interaction owing to lack of 

polar contribution. The parameters from Barreau et al. [139] generate the lowest errors for the 

ethanol-glycerol phase behavior, but comparable results can also be obtained using the more 

realistic  higher polar molar fractions, as shown in Table 5. 

Table 5 Binary interaction parameters and prediction errors (in %) for VLE of Methanol/Ethanol with 

glycerol binary system. 

Binary system Parameters Errora NPts 
 Glycerol SET kij P T  

Methanol-

Glycerol 

I -0.0324 7.0 0.8 

30 

II -0.0372 9.8 0.9 

III 0.0462 6.1 0.7 

IV 0.0807 8.5 0.9 

V 0.0439 4.6 0.8 

VIb -0.0406 8.9 0.9 

Ethanol- 

Glycerol 

I 0.0003 16.2 1.4 

36 

II 0.0137 11.0 1.8 

III 0.0289 17.5 1.3 

IV 0.0572 36.8 1.1 

V 0.0274 18.4 1.4 

VIb -0.0142 20.8 1.5 
aError prediction has been done with two distinct set of data: Pressure prediction at 

high temperatures from Shimoyama et al.[142] and temperature prediction at lower 

pressures from Oliveira et al.[83] and Veneral et al.[143] 
bParameters for Methanol and ethanol for the non-polar version of PC-SAFT are from 

Corazza et al. [144] 
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Figure 3 LVE of methanol-glycerol (kij=0.0439) left, and ethanol-glycerol (kij=0.0274) right, using glycerol 

set V of parameters. Experimental data is from Oliveira et al.[83] and Veneral et al.[143] 

4.3.2  CO2 and Glycerol 

Not surprisingly, supercritical carbon dioxide is poorly soluble in glycerol over a wide 

range of temperatures and pressures. Experimental data for this system have been collected by 

Medina-Gonzalez et al. [61] and show a maximum solubility of 13% (molar) CO2 in glycerol. 

Solubility is only weakly affected by pressure and decays rapidly with increasing temperature. The 

low values of the CO2 mole fractions coupled with the very steep slope of the P-x diagrams poses 

a challenge to any thermodynamic model because small changes in calculated parameter values 

can lead to large errors. For the non-polar version of PC-SAFT CO2 parameters were obtained 

from Zubeir et al.[145] 
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Figure 4 Comparison of Liquid solubility of CO2 on glycerol with different polar and associative 

contributions. Set III and V with dij=1. Experimental data is from Nunes et al. [60]. 

The inclusion of the polar term allows us to account for quadrupolar-dipolar interactions 

between CO2 and glycerol. Parameters obtained by Barreau et al. [139] consistently show lower 

solubility of CO2 in glycerol than the experimental values while the parameters obtained in this 

work predict solubility for supercritical CO2 in glycerol that is generally higher than the 

experimental data. Prediction using the non-polar version of PC-SAFT (Set VI in Table 4) has 

small deviations at low temperatures but at higher temperatures larger errors accrue than for any 

other polar version. This could be because polar effects have been merged into dispersive and 

associative forces that do not respond to the effect of temperature in the same way. As expected, 

all sets of parameters predict correctly the composition of the CO2 rich phase which is almost pure 

(> 99.9 %) carbon dioxide. The best results for liquid-liquid equilibria (LLE) prediction were 

obtained using set V (see Table 3) of the glycerol parameters, with a polar fraction of 0.35, and by 
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setting the binary interaction coefficient dij in eq 5 to 1.0 for CO2 and glycerol (see Figure 4). The 

overall average error is 47% in composition; this is primarily due large errors accrued at 

temperatures above 100 °C. Below this temperature, errors are in the neighborhood of 12% in 

composition, as shown in Figure 5.  

 

Figure 5 Liquid-Liquid Phase Behavior of CO2 with Glycerol modelled with PC-SAFT kij=0 and dij=1. 

Experimental data is from Nunes et al. [60]. 

By setting dij to one, the association contribution for CO2-glycerol to the Helmholtz free 

energy effectively becomes zero. Different authors have treated CO2 solvation using different 

approaches and different configurations. Zubeir et al. have employed a varying value of potential 

association (εAB/k ) depending on the solvent used [145]. Perakis et al. used a simplified version of 

SAFT and CPA and concluded that in specific cases the association with carbon dioxide might 

effectively be negligible, for some similar systems like CO2/water, once accounting for other 

interactions [146]. For the particular case glycerol-CO2 with PPC-SAFT, the interaction can be 

most closely modelled taking into account dipolar-quadrupolar interactions without a need of 
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fitting associating parameters. However as previously established, modelling at high temperatures 

cannot be fully reconciled even when applying a temperature dependence to the binary interaction 

coefficient (see Appendix B). 

4.3.3  CO2 with Fatty acid alkyl esters 

High pressure phase behavior data (liquid-vapor equilibria) for mixtures of carbon dioxide 

plus eleven alkyl-esters of interest were modelled using GC-PPC-SAFT where results are shown 

in Table 6. At first, the data was fit allowing the binary interaction parameter, kij, to vary with each 

individual methyl ester: CO2 combination and excellent predictions were obtained. In order to 

simplify the system, the data were refit using a single binary interaction coefficient for all of the 

alkyl ester L-V data. A value of kij = 0.0114 was found to be optimal for CO2 alkyl ester phase 

behavior modelling, as shown in Figure 6. Pressure prediction error is 7.5% while the error in 

composition prediction is on average 3.9% through the different alkyl-esters. Employing a single 

kij to cover all of the alkyl esters increases the average error a small amount (1.7%) but greatly 

simplifies the modeling of the system.  

 

 

 

 

 



 36 

Table 6 Individual and generalized binary interaction coefficients and prediction error (in %) in for LVE of 

CO2 with alkyl esters binary systems.  

Binary 

System 
kij 

Average errors 
kij 

Average errors Data 

pts. 
Ref 

Error P Error XCO2 Error P Error XCO2 

CO2-Methyl 

Stearate 
0.0184 9.7 3.9 

0.0114 

10.9 4.5 27 [54] 

CO2-Methyl 

Oleate 
0.0146 6.6 3.3 8.9 3.3 38 [54] 

CO2-Methyl 

Linoleate 
0.0085 8.4 3.3 9.0 3.8 26 

[55], 

[56] 

CO2-Methyl 

Myristate 
0.0145 3.7 2.4 4.9 2.7 24 [54] 

CO2-Methyl 

Palmitate 
0.0154 8.3 4.2 10 4.5 38 [54] 

CO2-Ethyl 

Stearate 
0.0158 9.7 4.7 12.4 5.4 27 [57] 

CO2-Ethyl 

Oleate 
0.0137 6.5 3.4 11.3 3.7 38 [57] 

CO2-Ethyl 

Linoleate 
0.0109 6.4 3.4 8.3 3.5 33 [57] 

CO2-Ethyl 

Caprate 
0.0116 1.2 0.9 1.2 0.9 30 [58] 

CO2-Ethyl 

Caproate 
0.0022 1.8 1.5 3.6 6.9 30 [58] 

CO2-Ethyl 

Caprylate 
0.0022 1.4 1.2 2.3 4.5 31 [58] 

     Total [-] 5.8 2.9 7.5 3.9 342 [-] 
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Figure 6 LVE of CO2 with A) methyl oleate B) methyl palmitate C) ethyl oleate D) ethyl stearate using a 

generalized binary interaction coefficient kij=0.0114. 

Carbon dioxide + biodiesel binary LV vapor behavior has been predicted without needing 

any extra parameters by using the approach explained in section 3.2 and using the same binary 

interaction parameter calculated for all alkyl-esters presented in Table 6. Excellent agreement has 

been found between experimental data measured by Araujo [147] and Pinto et al. [130] on ethyl 

and methyl esters derived from soybean oil and depicted in Figure 7 As expected LLV equilibria 

appears at 303.15 K near to carbon dioxide critical conditions, data and predictions are also shown 

in Figure 7. 
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Figure 7 Liquid-Vapor equilibria of CO2-FAME derived from Soybean Oil experimental data is from Pinto et 

al. [130] and CO2-FAEE derived from Soybean Oil experimental data is from Araujo [147]. 

4.3.4  Methanol/ethanol and Fatty acids alkyl esters 

Given the results obtained with the fitting of the carbon dioxide + methyl ester data, a 

generalized binary interaction parameter for alkyl-esters plus either methanol or ethanol were 

determined using LVE data of four different methyl esters with methanol and four ethyl esters with 

ethanol at a range of pressures and temperatures as shown in Table 7. Methanol does not follow 

the group contribution trends developed for alcohols, as it is the first compound of the series the 

interactions of the carbon chain cannot be really separated from the alcohol group. The association 

scheme, association strength and polar fraction all differ from the expected values obtained by 

group contribution [97]. 
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Table 7 Binary interaction coefficients and modelling errors (in %) for LVE of short alcohols and alkyl esters 

binaries. 

Binary System 

Parameter Average errors 

Data pts. Ref 
kij 

Prediction 

Error 

Error 

in XCO2 

Methanol-Methyl laureate 0.0667 3.2 6.7 35 [84], [148] 

Methanol-Methyl myristate 0.0667 2.3 7.4 31 [84], [148] 

Methanol-Methyl oleate 0.0667 3.6 13.3 10 [84] 

Ethanol-Ethyl laureate 0 5.7 4.0 22 [149] 

Ethanol-Ethyl myristate 0 3.6 3.6 19 [149] 

Ethanol-Ethyl palmitate 0 1.2 21.6 28 [150] 

Ethanol-Ethyl stearate 0 1.8 20.2 22 [150] 

Methanol requires a binary interaction coefficient of 0.0667 to represent the L-V phase 

behavior; similar but slightly lower values were obtained by Barreau et al. [139] in the modelling 

of methyl oleate with methanol. The relatively higher values of the binary interaction coefficient 

as opposed to other alcohol containing binaries (i.e. methanol-glycerol, ethanol-glycerol) ensure 

liquid-liquid phase separation near room temperature between methanol and FAME, as expected 

experimentally [64]. By contrast, the optimal binary coefficient for ethanol + FAEE mixtures is 

effectively zero, since the parameters for all of the involved compounds are consistent with the 

group contribution parameters developed by NguyenHuynh et al. [97] (see Figure 8). 
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Figure 8 LVE of A) methanol methyl laureate B) methanol methyl myristate with kij=0.0667 C) ethanol ethyl 

palmitate D) ethanol ethyl stearate with kij=0. 

4.3.5   Fatty acids alkyl esters and glycerol 

Use of any of the parameter sets for glycerol (as shown in Table 4) reproduce the expected 

liquid-liquid phase behavior with alkyl-esters when binary interaction coefficients are calculated 

for the specific binary data. Using set V for glycerol allows the best phase behavior representation 

in a fully predictive approach with a binary interaction coefficient of kij=0 (see Figure 9). The 

balance of the modelling, the prediction of ternary system phase behavior, was therefore done 

using set V of the glycerol parameters. Finally, an overall optimization was done using set V of 

glycerol with all available methyl esters LLE data and an optimal value of kij = 0.022 was obtained. 
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Figure 9 LLE of glycerol and methyl esters with kij=0. Experimental data are from Garrido et al. [151], 

Barreau et al. [139], and Silva et al. [64]. 
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4.4 Ternary Systems 

4.4.1  CO2-methanol-glycerol. 

Ternary systems were modelled to test the predictability of the PC-SAFT using set V of 

the glycerol parameters (see Table 2) and the ternary mixture CO2 + glycerol + methanol. The 

available experimental data shows pressure-CO2 concentration data with fixed molar ratios of 

methanol to glycerol, as measured by Pinto et al. [129]; three ratios of interest in biodiesel 

processing are shown, namely 1:12, 1:20 and 1:30 in Figure 10.  

  

Figure 10 Ternary System CO2-methanol-glycerol, with methanol to glycerol fixed ratios 1:30, 1:20 and 1:12 

for temperatures 323.15K (left) and 343.15K (right). Experimental data is from Pinto et al. [129]. 

At lower concentrations the phase diagram looks remarkably similar to the binary 

methanol-carbon dioxide LVE, however at higher concentrations glycerol immiscibility with 

supercritical carbon dioxide (as shown above) dramatically increases the bubble point pressure of 

the mixture. Modelling with PPC-SAFT was done using binary interaction coefficients calculated 

from the binary systems; results show excellent accuracy in the low CO2 concentration region, 
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while at higher CO2 concentrations the experimental behavior is only qualitatively represented. 

The steepness of the P-x curve at high CO2 concentrations presents a challenge from a modelling 

perspective and is systematically underestimated when using PPC-SAFT, by 15% on average. 

Similar errors can be observed with the modelling of CO2 + polyol phase equilibria by 

NguyenHuynh et al. [97] and could be due to an oversimplification of the association schemes 

with multiple association sites as well as unaccounted ternary interaction effects. 

4.4.2  CO2-Ethanol-Glycerol  

A better representation of the ternary behavior is obtained for the ethanol + CO2 + glycerol 

system, as shown in Figure 11. The locus of the P-x diagram at high CO2 concentrations is 

predicted with less error.  

 

Figure 11 Ternary System CO2-ethanol-glycerol, with ethanol to glycerol fixed ratios 1:30, 1:20 and 1:12 for 

temperatures 323.15K and 343.15K. Experimental data is from Araujo et al. [131]. 
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4.4.3  CO2-Alcohol-Biodiesel. 

Ternary systems involving soybean oil derived FAME and FAEE plus ethanol or methanol 

in the presence of carbon dioxide were also modelled; results are shown in Figure 12 using 

parameters from Table 8. As above, experimental P-x data at constant alcohol to FAMES ratios 

were predicted by the model and compared to the data by Pinto and Araujo [62, 61]. Small errors 

were observed which could be due to approximations made in the biodiesel parameter estimations. 

  

  

Figure 12 Ternary Systems: CO2-methanol-FAME derived from soybean oil, with methanol to FAME fixed 

ratios 1:3 (A) and 1:8 (B). Experimental data is from Pinto et al.[130] CO2-ethanol-FAEE derived from 

soybean oil, with ethanol to FAEE fixed ratios 1:3 (C) and 1:8 (D). Experimental data is from Araujo [147]. 
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Table 8 Binary systems with non-zero binary interaction coefficients. 

Binary System kij dij 

CO2-Methanol* 0.0043 0.22979 

CO2-Ethanol* 0.00248 0 

CO2-Glycerol 0 1 

CO2-Ester 0.0114 0 

Methanol-Glycerol 0.0439 0 

Ethanol-Glycerol 0.0274 0 

Methanol-Methyl ester 0.0667 0 

Glycerol-Alkylester 0.022 0 

* numbers from NguyenHuynh et al.[97] 

 

4.4.4  Alcohol-Glycerol-Biodiesel. 

Ternary systems of methanol or ethanol with glycerol and alkyl esters were calculated to 

test the predictability of the model. In general, good results are achieved for both the binodal curve 

and the tie lines at high concentrations of alkyl-esters and glycerol. The model does predict an 

unrealistic LL phase separation at very low concentrations of glycerol due to the profoundly 

unfavorable interactions between glycerol and the alkyl esters. Also, higher errors are observed 

for the case with ethanol, probably due to higher errors accrued from the ethanol-glycerol binary 

system, as can be observed in Figure 13. 
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Figure 13 Ternary Systems: methanol-glycerol-methyl oleate at 333.15 K and ethanol-glycerol-ethyl stearate 

at 323.15 K and atm. pressure. The solid lines are the model predicted tie lines and binodal curve (PPC-

SAFT) using parameters from Tables 1,2 and 6. Dotted lines and circles are the experimental measurements. 

Data is from Andreatta et al. [82] and from Andrade et al. [152]. 
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5.0 Modelling the phase behavior of triglycerides, diglycerides and monoglycerides related 

to biodiesel transesterification in mixtures of alcohols and CO2 using a polar 

version of PC-SAFT [submitted to Fluid Phase Equilibria, May 2019; revised and 

resubmitted, August 2019] 

5.1 Pure Component glycerides parameters 

The pure component parameters for long chain tri-, di-,  and monoglycerides were 

calculated using a group contribution approach (GC-PPCSAFT) as proposed by Tamouza et al. 

[122], Hemptinne et al. [138] and NguyenHuynh et al. [96], [97]. The pure component parameters 

of each chain-like substance were calculated using equations 3-11 to 3-14 and the information in 

Table 3 corresponding to basic molecular subgroups present in the molecules of interest. The tri-

ester group present in triglycerides could be regarded as a unique molecular subgroup; however, 

for simplicity the PPC-SAFT parameters of the tri-ester core were calculated as an assembly of 3 

ester groups, 2 methylene bridges and 1 methine group for the purposes of this study. Fitting unique 

parameters for the tri-ester core was explored (see in Appendix C), but significant improvement 

was not observed for any of the binary or ternary systems explored in this work. 

The experimental value of the dipole moment (μ) of the molecule is usually inserted 

directly into the model and then the polar fraction of the molecule (𝑥𝑝 ∙ 𝑚) found through fitting 

to pure component phase behavior. The 𝑥𝑝 ∙ 𝑚  value accounts for the fraction of the molecule that 

contributes to the dipolar moment, which theoretically is the entirety of the molecular structure. 

However, for practical reasons it has been treated as adjustable parameter ever since PC-SAFT 

was extended using this polar term [121] . Due to the paucity of existing vapor pressure data from 
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which to fit the polar parameters, the 𝑥𝑝 ∙ 𝑚 value was fixed to the theoretical value of 1, and the 

dipole moment was fixed to the value of 2.7 D for saturated glycerides and 3.12 D for any 

unsaturated glycerides based on data available for triolein, trilaurin and glycerol as well as property 

estimation databases for other triglycerides [153]–[157]. During this work it was found that 

inclusion of the polar term is unnecessary to accurately model the behavior of the triglycerides 

(although very important for small molecules such as methanol and glycerol). Throughout this 

work, stochastic changes were made to polar parameters in order to measure the impact that the 

above-mentioned assumptions have over phase behavior predictions and were found to have little 

to no effect. Nevertheless, the polar term was retained in the description of the glycerides to 

preserve all model features, particularly because other components of the biodiesel 

transesterification (methanol, glycerol, etc.) require the inclusion of this term in the EoS for 

accuracy [158].  

5.2 Binary Systems 

5.2.1  Triglycerides-CO2 

Binary mixtures of triglycerides and carbon dioxide have been evaluated using the pure 

component parameters from Table 3 while fitting binary interaction coefficients to available 

mixture data. Most of the collected data is LVE or LLE where temperatures are above carbon 

dioxide’s critical value. In the case of triglycerides most data shows that the extent of swelling of 

the TG’s by CO2 is weakly dependent on both temperature and pressure. Consequentially the 

modelled phase equilibria of the binary systems exhibit steep slopes in P-T space (see Figure 13). 
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This represents a source for significant prediction error given the form of the objective function 

(equation 3-17) and the influence that small changes in the binary parameters have over the 

composition values. As mentioned earlier, triglycerides are not strictly chain molecules within the 

context of PC-SAFT (given the "star-like" nature of the TG's), and therefore the use of the model 

introduces a fundamental problem that translates into higher errors when predicting pressure or 

temperature of a phase transition. Another relevant source of error relates to the purity of 

components used to acquire the experimental data since variations in lipid content as well as 

impurities can shift the phase behavior significantly;  high purity glycerides are not always easy to 

obtain, as noted by a number of experimentalists [57], [69], [70], [74]. 

Eight binary pairs of CO2-triglycerides have been considered to generate an overall binary 

interaction coefficient for TG-CO2 mixtures. As can be seen in Figure 14, shorter chain 

triglycerides such as tributyrin and tricaproin require negative binary interaction coefficients to 

produce a reasonable fit -- this is an indication that the group contribution parameters do not fully 

describe the tri-ester core of these molecules. However, the absolute values of the binary 

interaction coefficients are small (less than 3% generally), and good descriptions of the binary 

phase behavior are supported. Naturally, the impact of the triglyceride ester core on the overall fit 

is somewhat mitigated as the length of the carbon chain increases. A higher number of methylene 

groups increases the influence that such groups have on dispersive forces as is well captured by 

the averaging expressions in equations 3-11 to 3-14.  
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Figure 14 Experimental data and modelling with GC-PPCSAFT for: A) tributyrin, B) tricaproin, C) 

tricaprylin, D) tripalmitin, E) tristearin, F) triolein. Experimental data specified in Table 9. 
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The location of the phase boundary of the triglyceride-CO2 binary where carbon dioxide 

content is low also presents larger errors, possibly due to the error prediction of pure triglyceride 

vapor pressure. Overall prediction errors for composition on the liquid phase ranged from 1.2 - 

7.3% with an average of 2.5%, as shown below.  

Table 9 Binary interaction coefficients and prediction error in % of molar CO2. 

Binary System kij 
Error 

XCO2 
kij Error XCO2 Data pts. Ref 

CO2-Tributirin -0.023 1.7 

eq (11) 

2.0 15 [67] 

CO2-Tricaproin -0.012 1.9 6.0 24 [67] 

CO2-Tricaprylin -0.003 1.2 1.3 20 [69] 

CO2-Trilaurin 0.0148 2.1 2.4 5 [68] 

CO2-Tripalmitin 0.0186 2.9 5.8 20 [74], [75] 

CO2-Tristearin 0.0346 7.3 7.4 8 [74] 

CO2-Triolein 0.0098 0.6 2.8 12 [70] 

CO2-Rapeseed 

oil 
0.0054 1.9 1.9 12 [72] 

Average  2.5  3.7   

In a fully predictive model kij should approach zero. However, due to the approximation 

introduced by the equation of state (mainly geometric and arithmetic averages of the square well 

and Lennard-Jones spherical segments parameters) the use of a binary interaction coefficient is 

required (to compensate for these approximation errors). Figure 15 compares the effect of kij = 0, 

with the optimized value from the location of the phase boundary of the triglyceride-CO2 binary 

where carbon dioxide content is low also presents larger errors, possibly due to the error prediction 

of pure triglyceride vapor pressure. The non-polar version of the EoS (PC-SAFT) has also been 

included for comparison purposes, showing that higher values of kij are required if this version is 

used, but a good description of the phase behavior can still be achieved. 
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Figure 15 CO2 – triolein experimental data and modelling with PC-SAFT and GC-PPCSAFT 

To strengthen the predictability of the model, the effect of a unique formula to calculate 

the binary interaction parameter was investigated, so that the model can be easily extended to 

different types of triglycerides beyond the ones studied in this work. The binary interaction 

parameters were found to closely correlate with the carbon chain length and the degree of 

unsaturation of the triglycerides as shown in Figure 16.  As such, a general binary interaction 

coefficient was established via fitting against chain length, and, with information from tristearin, 

triolein and the rapeseed oil, against the number of double bonds in the triglyceride chain. The 

result is shown in equation 5-1. 

𝑘𝑖𝑗 =  (0.00372 ∗ 𝑥 − 0.03457) ∗ 𝑒−0.698∗𝑦 5-1 

Where x is the average number of carbons in the fatty chains and y the average number of 

double bonded carbons in the fatty chains. The penalty in prediction error for using equation 5-1 

can be compared to the substance-particular 𝑘𝑖𝑗 fitting shown in Table 9. The location of the phase 

boundary of the triglyceride-CO2 where carbon dioxide content is low also presents larger errors, 

possibly due to the error prediction of pure triglyceride vapor pressure. Overall prediction errors 
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for composition on the liquid phase ranged from 1.2 - 7.3% with an average of 2.5%, as shown in 

Table 9. Oils containing multiple types of triglycerides, as is the case for rapeseed oil, have been 

treated as a single pseudo-component as suggested by different authors [29], [72], [159] and 

performed in chapter 4.0 for FAMES and FAEES derived from soybean oil, by averaging all of 

the group contribution parameters of all present groups in the oil. 

 

Figure 16 Dependence of binary interaction coefficient on average carbon chain length (A) and average 

double bonded carbons (B) for GC-PPCSAFT. 

5.2.2  Monoglycerides-CO2 

The group contribution approach described above was also used to model mixtures of 

monoglycerides with carbon dioxide. For the hydroxyl groups in the first and second positions on 

the carbon chain, a 3B association scheme (two electron donor sites and 1 electron acceptor) was 

employed, with an additional cross association site due to the ester group. The volumetric overlap 

of the association term (𝜅𝐴𝐵) is in general taken as a unique value for the homonuclear approach, 

thus it was calculated as a geometric mean of the volumetric overlap for each of the hydroxyls and 

ester groups considered in the group contribution scheme shown in Table 10. 
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Few experimental phase behavior data are available for CO2 + monoglyceride mixtures. 

Data from the literature plus experimental data collected in this work were used to estimate binary 

interaction coefficients. As mentioned before, a weak dependence of CO2 solubility (in the heavy 

MG-rich phase) on temperature and pressure is the main source of error.  This can be appreciated 

by noting the marginal difference in CO2 solubility between two different temperatures as shown 

in the experimental data collected in Table 10 and depicted in Figure 17 for monostearin and 

monocaprylin. All collected and modelled data shown in Table 10 correspond to a saturated liquid 

(the heavy phase) which can be in equilibrium with either a vapor phase (LVE transition) or a 

second liquid phase (LLE transition), where the second phase is composed mainly of carbon 

dioxide. Relatively low values (approximately 3%) of binary interaction coefficients were 

obtained. A generalized parameter using the CO2-monostearin and CO2-monocaprylin 

systems was calculated, although it was difficult to establish the optimal solution because the 

minimization curve was very flat. Biasing the solution towards the monocaprylin (kij = 0.0091) or 

towards the monostearin (kij = 0.0361) altered the objective function by only 0.3%. Therefore, the 

midpoint was selected so to have a binary interaction coefficient that is not strongly substance 

biased. Nonetheless, higher errors relative to those obtained with triglycerides were found for 

monoglycerides, due to the small number of candidate MG’s, the assumptions made during fitting, 

and the relatively low purity of the monoglyceride samples. It is important to highlight the negative 

effects of this last-mentioned source of error, since the phase equilibria measurements can be 

affected by the presence of impurities on the original sample. Some of the potential compounds 

present have strong associative and dispersive forces (i.e. glycerine and water) that play a role in 

modifying specially the loci of the CO2 saturated liquid loci on a liquid-liquid equilibrium. 
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Table 10 Phase equilibria data for CO2 – Monoglycerides. 

XCO2 P (Mpa) 
σ 

(Mpa) 
σX 

Transition 

Type 
XCO2Predicted 

Error 

XCO2 

CO2-Monostearin 

T = 358.1 ± 0.2 

0.30 6.41 0.08 0.08 LVE 0.43 45 

0.40 8.34 0.08 0.11 LVE 0.51 28 

0.50 12.34 0.01 0.11 LVE 0.62 25 

0.60 15.43 0.01 0.10 LLE 0.68 13 

0.70 27.29 0.06 0.07 LLE 0.78 11 

0.80 53.72 0.07 0.04 LLE 0.87 9 

 Average 0.05 0.08   22 

T = 373.1 ± 0.2 

0.30 6.97 0.04 0.08 LVE 0.43 44 

0.40 10.24 0.04 0.11 LVE 0.54 36 

0.50 15.01 0.03 0.11 LVE 0.65 29 

0.60 21.74 0.03 0.10 LLE 0.73 22 

0.70 37.39 0.81 0.07 LLE 0.83 18 

0.75 48.35 0.06 0.06 LLE 0.87 16 

  Average 0.17 0.09     27 

CO2-Monocaprylin 

T = 358.1 ± 0.2 

0.30 5.74 0.07 0.07 LVE 0.26 12 

0.40 8.29 0.22 0.10 LVE 0.35 12 

0.50 12.51 0.01 0.10 LVE 0.45 9 

0.60 18.25 0.04 0.09 LLE 0.53 11 

0.70 28.27 0.09 0.06 LLE 0.60 14 

0.80 45.41 0.38 0.04 LLE 0.67 16 

 Average 0.13 0.08   12 

T = 373.1 ± 0.2 

0.30 5.75 0.04 0.07 LVE 0.25 18 

0.40 8.90 0.07 0.10 LVE 0.34 14 

0.50 12.67 0.06 0.10 LVE 0.43 14 

0.60 19.37 0.05 0.09 LLE 0.53 12 

0.70 29.11 0.08 0.06 LLE 0.61 13 

0.80 45.07 0.61 0.04 LLE 0.69 14 

  Average 0.15 0.08     14 
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Figure 17 Phase equilibria modelling of CO2 - monoglycerides using group contribution. A) Monocaprylin. B) 

Monostearin. 

5.2.3  Diglycerides-CO2 

Mixture data for diglycerides and CO2 are scarce, possibly due to difficulties associated 

with the separation techniques required to obtain relatively pure DG samples for testing. Two 

references [51], [52] on supercritical extraction contain information for diglycerides and CO2 but 

only the compositions in the light supercritical phase are available (shown in Figure 18). All 

predicted data points using GC-PPC-SAFT correctly show a dew point composition that closely 

matches the expected experimental values. However, because the compositions of this “light” end 

of the phase envelope are always above 99% CO2, the binary interaction parameters obtained using 

this data (Table 11) are not expected to fully match the ones obtained from the glyceride-rich 

branch of the diagram.  Pure component parameters for diglycerides have been calculated using 

the group contribution technique with one hydroxyl group and two ester groups while maintaining 

the association schemes shown in Table 3. 
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Figure 18 Phase equilibria modelling of supercritical extraction of glycerides with CO2 Using parameters 

from Table 11. 

Values of the binary interaction coefficients can be adjusted in order to capture the 

progressive solubility of mono-, di-, and triglycerides extracted with supercritical carbon dioxide, 

as done previously by other authors [107]. However, parameters obtained in this way are less 

reliable than desired since they represent the steepest side of the phase envelope, whose locus is 

more sensitive to small changes. Therefore, only diglyceride-specific information has been 

incorporated into a generalized parameter for CO2-diglycerides, obtaining 𝑘𝑖𝑗  = 0.0144 for both 

diolein and dilaurin -- no other experimental data are available. 
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Table 11 Binary interaction parameters fitted to vapor supercritical phase. 

Binary System kij Data pts.  Ref 

CO2-Monoolein 0.02356 11 

[51] CO2-Diolein 0.01703 11 

CO2-Triolein 0.01294 11 

CO2-Monolaurin 0.04684 5 

[52] CO2-Dilaurin -0.00816 9 

CO2-Trilaurin 0.0079 16 

 

 

 

5.2.4  Triglycerides-methanol 

Despite the importance of this binary system to the overall performance of the 

transesterification process for biodiesel, there are surprisingly few data available on the phase 

equilibria of triglycerides and short chain alcohols. These mixtures exhibit large differences in 

polarity and in carbon chain length, prompting large changes in equilibrium composition upon 

small changes in temperature or pressure (as bubble and cloud points measured by Tang et al.[11] 

and the corresponding cloud and bubble points predicted and shown in Figure 19). Upon fitting 

of the available data, these binaries exhibited the largest errors between actual and predicted curves 

and required one of the higher values for the binary interaction coefficient that we encountered. 

The lower the values for kij the more accurate the basic model is, since the averaging 

approximations used by the combining rules for chains of unlike segments are closer to 

experimental data. The triolein methanol system has the highest values of binary interaction 

coefficients amongst all the studied systems, which suggests lower reliability of subsequent 

predictions as compared to the previous results in this work. However, kij values below 12% are 
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sufficient to obtain the best possible phase equilibria representation. Predictions of phase behavior 

when methanol composition is high are correctly captured by the model in terms of the nominal 

value of equilibrium composition and a low dependence on pressure and temperature. However, 

large deviations can be observed at lower methanol mole fractions associated with inaccuracies in 

predicted pure component properties for triglycerides. 

 

Figure 19 Phase equilibria modelling of methanol – triolein. 

5.2.5  Triglycerides-glycerol 

Due to the obvious immiscibility of the components involved in this binary system the only 

data available are liquid-liquid equilibria at low pressure and temperatures collected by Silva et al. 

[64] that show an average solubility of 0.7%  of the triglyceride in the glycerol-rich phase, and 1% 

glycerol in the non-polar glyceride-rich phase. A binary interaction coefficient has been fitted to 

the available information, obtaining 𝑘𝑖𝑗 = 0.0569. The model representation is only accurate on 

the oleic-rich branch of the phase envelope (average error is 0.3%). By contrast, the model is 
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unable to capture the trace amounts of triglycerides in the glycerol-rich phase, rather predicting a 

practically pure phase for all conditions. 

5.3 Ternary systems 

5.3.1  CO2-Methanol-Monoglyceride 

Literature data for mixtures of methanol with di- and monoglycerides could not be 

located. Instead, experimental ternary phase diagrams containing methanol and monoglycerides 

with CO2 were plotted, in Figure 20 and shown in Table 12, following the procedure described in 

section 3.4.2  (calibration experiments can be found in Appendix D). As explained in section 7.2 

the experimental data available correspond to the monoglyceride-rich liquid phase in equilibrium 

with a CO2-rich phase. These data were then used to fit the missing binary interaction coefficients 

for the methanol-glyceride pairs. An overall optimization was performed, obtaining 𝑘𝑖𝑗 = 0.12 for 

the methanol-monoglyceride pair, which is consistent with values obtained for the methanol-

triglyceride system.  

As shown in Figure 20 the model correctly predicts general trends showing higher vapor 

pressures for higher methanol contents but lower cloud point pressures when supercritical 

conditions for CO2 are reached. However, the model shows a large departure from experimental 

behavior in the steepest region of the phase diagram (LLE) at high CO2 composition. This behavior 

has been observed previously in mixtures containing glycerol in section 4.4.1 and 4.4.2 , where 

the predicted solubility in the LLE regime does not increase with pressure in the same way as the 

data do. 
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Figure 20 Phase equilibria modelling of: A) CO2 - methanol - monostearin. B) CO2 - methanol – 

monocaprylin. 
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Table 12 Phase equilibria data for CO2 (1) - Methanol (2) - Monoglycerides (3) at different methanol to 

monoglycerides ratios at 358.15 K. 

X1 X2 P (Mpa) 
σ 

(Mpa) 
σX 

Transition 

Type 

Ppredicted  

(Mpa) 
Error P 

CO2 (1) - Methanol (2) - Monostearin (3) 

X2/X3 = 9 

0.20 0.60 5.47 0.01 0.04 LVE 3.81 30 

0.30 0.53 8.35 0.19 0.07 LVE 5.97 29 

0.40 0.45 11.05 0.02 0.08 LVE 8.46 23 

0.50 0.38 15.79 0.03 0.07 LVE 11.53 27 

0.60 0.30 21.21 0.10 0.06 LLE 16.25 23 

0.70 0.23 29.37 0.03 0.04 LLE 25.90 12 

0.80 0.15 39.14 0.10 0.02 LLE 40.74 4 

0.90 0.08 51.28 0.04 0.01 LLE 49.59 3 

  Average 0.07 0.05   19 

X2/X3 = 3 

0.20 0.72 6.91 0.01 0.02 LVE 4.47 35 

0.30 0.63 9.51 0.03 0.04 LVE 6.83 28 

0.40 0.54 12.36 0.01 0.04 LVE 9.37 24 

0.50 0.45 15.71 0.04 0.04 LVE 12.21 22 

0.60 0.36 19.49 0.02 0.03 LLE 15.98 18 

0.70 0.27 22.71 0.01 0.02 LLE 22.72 0 

0.80 0.18 26.86 0.03 0.01 LLE 31.15 16 

0.90 0.09 35.07 0.01 0.00 LLE 28.95 17 

  Average 0.02 0.03   20 

CO2 (1) - Methanol (2) - Monocaprylin (3) 

X2/X3 = 9 

0.20 0.60 6.15 0.13 0.06 LVE 4.95 19 

0.30 0.53 9.43 0.06 0.09 LVE 7.71 18 

0.40 0.45 12.96 0.03 0.10 LVE 10.94 16 

0.50 0.38 17.64 0.02 0.09 LVE 15.49 12 

0.60 0.30 22.99 0.01 0.07 LLE 24.25 5 

0.70 0.23 25.82 0.03 0.05 LLE 37.81 46 

0.80 0.15 29.04 0.03 0.03 LLE 51.65 78 

0.90 0.08 33.02 0.08 0.01 LLE 42.26 28 

    Average 0.05 0.06     28 
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5.3.2  Monoglycerides-Glycerol-Fatty Acid Methyl Esters (FAME) 

Negi et al. [76] performed measurements of the ternary system containing glycerol, methyl 

oleate and monoolein that provides valuable information about how the phase behavior of the 

biodiesel reaction system evolves as intermediates and products are formed. Since long chain 

molecules closely follow the group contribution approach, the FAME-monoglycerides binary 

interaction coefficient has been set to 0.0225 for methyloleate, consistent with findings of section 

4.3.5 All compositions where the experimental value was below 2% molar were excluded from 

the minimization function to prevent the optimization from being strongly biased towards these 

points.  It was found that a binary interaction parameter of 𝑘𝑖𝑗  = 0.0145 for the glycerol-monoolein 

pair was sufficient to correctly capture the liquid-liquid equilibria at 135 °C (see  

Figure 21).  

As noted by Negi et al., different variations of the UNIFAC equations of state exhibit large 

errors predicting the composition of the co-existing phases when significant amounts of 

monoglyceride are present [76]. Monoolein exhibits somewhat of a cosolvent effect, as can be 

appreciated by the larger glycerol contents in the oleic phase – this is probably due to the hydrogen 

bonding potential of the monoolein, and can only be captured correctly with an EoS such as the 

GC-PPCSAFT, that explicitly accounts for these forces as shown Figure 21.  
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Figure 21 Liquid-liquid equilibrium of monoolein - glycerol – methyl oleate at 135 °C and 1 atm in molar 

fraction as measured by Negi et al [76]. 
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5.3.3  Carbon Dioxide - Ethanol – Triglyceride 

A ternary mixture of carbon dioxide, ethanol and rapeseed oil was modelled using parameters 

from Table 3 and the procedure described in section 5.2.1 for rapeseed oil. The binary interaction 

parameter between the triglyceride and ethanol was set to zero, making these diagrams effectively 

a pure prediction based on previous calculations of systems containing carbon dioxide as 

calculated in section 5.2.1 and the binary interaction coefficient calculated by NguyenHuynh et al. 

[97] for CO2 and alcohols. As can be seen in Figure 22, there is good agreement between the 

model and experimental data, with an increased error towards the higher isobars. Comparable 

results were obtained by Geana and Steiner [72] by fitting multiple parameters directly to this 

ternary system using a cubic EoS. The prediction error in the current work was estimated to be 

10% in mole fraction. 
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Figure 22 Phase equilibria modelling of CO2 - ethanol – rapeseed oil at A) 353.15 K and B) 333.15 K in mass 

fraction as measured by Geana and Steiner [72]. 
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6.0 Predicting the optimal conditions for CO2-enhanced transesterification of triglycerides 

with methanol to form biodiesel using a polar version of PC-SAFT [invited paper 

submitted to I&EC Research as part of the special issue honoring Charles Eckert, 

June, 2019] 

6.1 Phase equilibria of CO2 - Methanol -Triolein (TO) 

Phase separation in the triolein + methanol + carbon dioxide ternary occurs in one of two 

ways depending upon the pressure.  “Low-pressure” phase separation exhibits a ternary LLVE at 

high CO2 and methanol concentrations which produces (1) a CO2 -rich vapor phase (a “dense” 

vapor phase when CO2 is above its critical temperature), (2) a liquid-CO2-expanded methanol-rich 

phase, and (3) a triolein-rich phase swollen by both CO2 and methanol (see Figure 23). At low 

CO2 concentrations and high methanol concentrations, a liquid-liquid split exists instead, 

consistent with previous experimental findings registering a phase split amongst the reactants in 

traditional biodiesel transesterification [27], [34], [35]. In the ternary mixture, the initial 

immiscibility of the short-chain alcohol with the triolein is mitigated by progressively adding 

carbon dioxide while keeping pressure and temperature constant. At lower concentrations of 

methanol and high concentrations of carbon dioxide a liquid-vapor phase split can be observed, 

corresponding with the maximum CO2 uptake to the liquid phase and consequently triglyceride 

concentration in this phase as well; this behavior has been reported by many experimentalists [67], 

[70], [74], [75]. High-pressure phase diagrams exhibit only the previously mentioned liquid-liquid 

phase split, which is itself governed by the generally unfavorable alcohol-triglyceride interactions 

and the liquid-(SC)vapor phase separation related to the CO2 + Triglyceride binary system. The 



 68 

change in the sign of the slope of tie-lines in the triangular diagram signals a transition from one 

regime to the other (see tie line in Figure 23.B near 80% CO2). The closer the phase boundary is 

to the lower right vertex of the triangular diagram, the higher content of methanol in the 

triglyceride-rich phase, favoring a higher ratio of methanol to triolein in this phase.  

    

Figure 23 Phase envelopes of CO2-methanol-triolein mixtures at 10 MPa and (A) 393.15 K and (B) 313.15 K. 

The presence or absence of the LLVE phase split is controlled by CO2-methanol binary 

interactions (the content of triglyceride in the light phase is always negligible). Thus a triphasic 

equilibrium will exist at the same P-T conditions where a CO2-methanol phase split occurs, as can 

be seen in the measurements collected by different experimentalists.[160]–[162] In general, higher 

prediction errors are predicted to happen near the lower left vertex of the triangular diagrams 

(100% triolein) as explained previously, owing to errors in prediction of the triglyceride vapor 

pressure. Prediction error is expected to be smaller towards the center of the diagrams, due to the 

good correlation obtained by the model in the CO2-methanol binary system, and should be 
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progressively diminished by increasing pressure values as verified during the fitting procedures of 

binary interaction coefficients [163].  

The effect of pressure and temperature on phase behavior can be seen in Figure 24. Not 

surprisingly, increasing pressure favors miscibility of all components present in the mixture and 

progressively narrows the triphasic area of the diagram until it vanishes completely;  

  

Figure 24 Oleic phase composition of the CO2-methnaol-triolein systems at 353.15 K and different pressure 

values (A), and at 10 MPa and different temperature values (B). 

Figure 24.A shows the transition from a LLVE at 313.15 K and 10 MPa (only the left side 

composition is depicted) to LLE at higher pressures. On the other hand, increasing the temperature 

enlarges the area of LLVE coexistence, rendering the liquid-liquid regime unstable at lower 

concentrations of carbon dioxide, it also lowers the CO2 concentration transition from LLVE to 

LVE. Figure 24.B shows this transition from LLE at 313.15 K and 10 MPa to a LLVE at higher 

temperatures. Another expected effect that can be observed with increasing temperature is an 
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increase in the initial miscibility of methanol and triolein and therefore a shift of the concentration 

of the oleic-rich phase towards the lower right vertex of the triangular diagram. 

6.2 Optimal composition for miscibility enhancement 

One of the main obstacles to efficient biodiesel synthesis is the initial phase separation of 

the reactants (methanol and most commonly used triglycerides are not miscible). Given that CO2 

behaves as a co-solvent for the triglyceride-methanol mixture, we investigated the variation of 

molar ratio of methanol to triolein in the oleic-rich phase (defined for this work as Φ, shown in 

equation 6-1) as a function of CO2 total mole fraction – this should provide a measure of the 

enhancement that carbon dioxide can provide to mitigate the above-mentioned difficulties. Ideally, 

we are seeking the greatest improvement in methanol-to-oil ratio through addition of CO2. 

𝛷 =
𝑥𝑀𝑒𝑡ℎ𝑎𝑛𝑜𝑙

𝑥𝑇𝑟𝑖𝑜𝑙𝑒𝑖𝑛
|

𝑜𝑖𝑙−𝑟𝑖𝑐ℎ 𝑝ℎ𝑎𝑠𝑒

 6-1 

Every pressure-temperature pair supports generation of a particular ternary phase diagram, 

similar to the ones noted in the previous section. The upper left-hand side of each of the depicted 

triangular diagrams is an undesirable operational space, since in this region there are large amounts 

of triolein in the oleic phase but almost no methanol despite there being a large amount of CO2 in 

the system. Increasing the CO2 concentration in this region lowers the value of Φ since the carbon 

dioxide in the vapor phase effectively “extracts” the methanol from the lower phase owing to 

entropic considerations. By contrast, if the system remains two-phase (LLE), adding carbon 

dioxide enhances the ratio of methanol-to-oil in the heaviest liquid phase. The contrasting effects 

that the overall concentration of CO2 has over the mixture leads to the presence of a 
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mathematical maximum in the methanol to oil ratio in the oleic-rich phase (Φ) as a function of 

CO2 molar content, as depicted in Figure 3 for two different P-T conditions. This remains viable 

so long as the trial composition lies far from the single-phase region (near the lower right vertex 

of the triangular diagrams).  

To predict the behavior of the ratio (Φ) as T-P-x conditions change, a search was conducted 

along a constant methanol to oil total molar fraction (dashed line in Figure 25.A and Figure 25.C 

where the total ratio is 5:1) from 0% to 100 % CO2 total mole fraction. At each CO2 increment, at 

least two stable phases are found, whose concentrations are then described with tie-lines. The ratio 

Φ is then obtained using equation 6-1 for the phase that contains the majority of the triolein. In the 

first case, (Figure 25.A and Figure 25.B) the ratio continues to increase with increasing CO2 

content until the tri-phase equilibrium occurs. At this point, the equilibrium composition remains 

unchanged for all trials that lie inside the LLVE area, thus Φ remains unchanged as well inside 

that region. CO2 total mole fractions that lie towards the top vertex (100% CO2) yield equilibriums 

that have lower values of Φ since the oil phase composition shifts away from the methanol vertex. 

Therefore, the optimal CO2 content is given by all the composition trials included between the 

highlighted gray dots and, in this case, all solutions inside the LLVE area. Similarly, for the second 

case the same constant methanol oil total fraction is used (dashed line value 5:1), and tie lines that 

cross the dashed line are the equilibrium solutions for that given CO2 total fraction. For systems 

like the ones in Figure 25.C and Figure 25.D the ratio Φ continues to increase with increasing 

values of CO2 total molar fraction until a sudden drop that occurs due to the transition from LLE 

to LVE behavior (highlighted point). 
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Figure 25 Phase separation for systems at 393.15 K and 10 MPa exhibiting LLVE (A), and for systems and 

313.15 and 10 MPa always in biphasic regime (C). Methanol to triolein in the oil rich phase value search 

along a total methanol to oil fraction 5:1 (B and D).  
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Pressure and temperature conditions that exhibit LLVE always exhibit their maximum 

methanol to oil ratios within the triphasic region, and as expected, there are several CO2 fractions 

(all the ones contained inside the LLVE area) that will yield the optimal Φ values. Also, P-T 

conditions where the phase split of the mixture shifts from LLE to LVE without a tri-phase area 

being observed have a unique optimal value for CO2 concentration defined by the equilibrium tie-

line where there is an imminent transition to LV regime. Beyond this point addition of carbon 

dioxide results effectively in extraction of methanol from the oleic-rich phase and therefore, is 

counter-productive. At the optimal condition the molar CO2 concentration is nearly equal in both 

liquid phases and any ratio of methanol to oil total fraction will result in the same phase split as 

long as there is enough methanol to be in a biphasic regime. 

6.3 Pressure and temperature effect on optimal loci 

Higher pressure shrinks the 3-phase region to a point where it ultimately vanishes 

completely, and hence such conditions consistently show higher values for Φ than P-T conditions 

that induce 3-phase LLVE behavior. This result is expected since the vapor phase is mainly 

composed of CO2 and methanol, thus reducing the amount of the latter in all other phases present. 

At any given temperature the pressure increase has a stronger effect on Φ than when LLVE is 

present. Further increasing the pressure above the minimum required to suppress the formation of 

the 3-phase split has a linearly positive effect on the desired ratio. The dependence of Φ on pressure 

is more pronounced at higher temperatures; for example, at temperatures below 353 K increases 

to pressure show only modest increases to the methanol-to-oil ratio (a doubling of pressure leads 

to only an 18% increase in Φ).  
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Figure 25 can be constructed for any combination of temperature and pressure, and hence 

the maximum value of Φ can be determined as a function of temperature and pressure; this leads 

to the curves shown in Figure 26.A.  Here, every point on each of the curves is a maximum value 

of Φ, found using the search procedure outline for Figure 25.B and Figure 25.D. The gray-shaded 

region shown in Figure 26.A is the approximate boundary between 3-phase (LLV) and 2-phase 

(LL) equilibria; the 2-phase region occurs to the right of the shaded region in Figure 26.A.  The 

pressure that transforms a 3-phase mixture to a 2-phase split was calculated with a ±0.2 MPa 

value. As explained in section 6.1, the transition pressure matches the trend of the CO2 - Methanol 

binary system’s critical values. 

As depicted in Figure 26.A, the maximum value of Φ increases significantly as the 

temperature is increased.  The modeling shows that one can surpass the minimum required 

stoichiometric ratio of methanol to triglyceride (3:1) in the oil-rich phase at temperatures of 358 

K and above, and pressures of 20 MPa and higher. This is desirable for different reasons, including 

further shifting the equilibrium towards the products, and supplying enough methanol in the 

reactive phase to account for the loss of methanol into a glycerol-rich phase ultimately formed as 

a result of the transesterification.  These findings are consistent with experiments from Soh et al. 

[44] who obtained high conversions at short times operating at temperatures near 80 °C in a 

multiphase reactor. 

 



 75 

 

  

Figure 26 Optimization results for: Methanol to triolein ratio in the oil-rich phase (A), CO2 molar fraction in 

the liquid oil-rich phase (B) liquid methanol-rich phase (C) and vapor phase (D) (lines are polynomial 

interpolations to guide the eye). 
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The results in Figure 26.A show that the transition from a three-phase to a two-phase 

system exhibits a maximum in the neighborhood of 413K, which can be attributed to predictions 

of critical point loci for the carbon dioxide + methanol system, this temperature is close to midway 

between the pure components critical conditions when plotted in P-T space, thus when the gray-

shaded area in Figure 26 shows a maximal value of temperature as a function of pressure is also 

a maximum value of the critical temperature for the CO2-methanol binary system [164]. In regards 

of the pressure values obtained they are effectively around 25% higher than the experimental 

values of critical pressure the CO2- methanol pressure envelope probably due both the presence of 

triolein of the system, and a systematic overestimation of the critical conditions observed for this 

version of PC-SAFT for such binary systems as shown in NguyenHuynh et al [97]. 

At temperatures below 353.15 K, there is only a weak dependence of Φ on temperature; in 

this regime the increase of methanol to oil ratio is mainly a pressure effect. The two phases in 

equilibrium at the optimal conditions have similar values of the CO2 mole fraction, this is expected 

since the transition to LV happens when the tie lines in the triangular diagrams are very flat, and 

the optimal value is achieved near this transition.  

At each point in Figure 26.A (maximum values of Φ at given temperature and pressure) 

one can employ the individual ternary phase diagram for each P-T pair to derive the mole fraction 

CO2 in the triolein-rich, the methanol-rich, and, if present (3-phase splits), the CO2-rich phases. 

These results are shown in Figure 26.B through Figure 26.D. Typically, the mole fraction of 

triolein is negligible in the methanol-rich and CO2-rich phases, and hence in the first approximation 

the methanol mole fraction in these two phases is 1.0 minus the CO2 concentration shown in 

Figure 26.C and Figure 26.D. Again, the gray-shaded area in Figure 26.B through Figure 2624.D 

shows the pressure at which the system transitions from LLV (left of the shaded area) to LL 



 77 

equilibrium (right of the shaded area). Needless to say, this is why there are no points to the right 

of the gray-shaded area in Figure 26.D, as this represents the CO2 mole fraction in the CO2-rich 

“vapor-like’ phase, which vanishes at pressures to the right of the shaded area. 

Figure 26 contains all of the required information to estimate the CO2 total concentration 

necessary for a given biodiesel system to run at optimal initial miscibility (Φ) provided that the P-

T conditions and a total methanol to oil ratio (defined here as R) have been chosen. Pressure and 

temperature selection allow one to derive the CO2 mole fraction in each of the potential phases 

from Figure 26.B to Figure 26.D, plus the value of the optimal ratio Φ from Figure 26.A. We 

construct a material balance for the system as shown in equations 6-2 to 6-5:  

𝑧𝐶𝑂2
=  𝛽1 ∙  𝑥𝐶𝑂2

𝑝1 +  𝛽2 ∙  𝑥𝐶𝑂2

𝑝2 + (1 − 𝛽1 − 𝛽2) ∙  𝑥𝐶𝑂2

𝑝3  6-2 

𝑧𝑀𝑒𝑡ℎ𝑎𝑛𝑜𝑙 =  
𝛽1 ∙  𝛷

(1 + 𝛷)
∙ (1 − 𝑥𝐶𝑂2

𝑝1 ) + 𝛽2 ∙  (1 − 𝑥𝐶𝑂2

𝑝2 ) + (1 − 𝛽1 − 𝛽2) ∙  (1 − 𝑥𝐶𝑂2

𝑝3 ) 6-3 

𝑧𝑇𝑂 =  
𝛽1 

(1 + 𝛷)
∙ (1 − 𝑥𝐶𝑂2

𝑝1 )  6-4 

𝑧𝑀𝑒𝑡ℎ𝑎𝑛𝑜𝑙
𝑧𝑇𝑂

⁄ =  𝑅 6-5 

Here 𝑧𝑖 refers to the total system mole fraction of the ith component, 𝑥𝑤
𝑝𝑖

 stands for the 

composition of component “w” in phase “i”, and 𝛽𝑖 is the total mole fraction of phase “i”. All 𝑥𝐶𝑂2
 

and Φ are known variables from the plots (Figure 26) at selected pressures and temperatures. 

Naturally, the case where the system contains only two phases is a subset of the above system 

where  𝛽1 + 𝛽2 = 1 – this effectively renders the third term of equation 6-3 zero, yielding a unique 

mathematical solution for the optimal CO2 concentration. The ratio R (total moles of methanol to 

those of triglyceride in the system) is usually greater than 3.0 (the minimum amount for complete 

conversion to biodiesel), and often much greater than 3 (9 to 40) to try to account for losses of 

methanol to one or more of the phases that form initially and during reaction. If operation occurs 
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at conditions where 3 phases are present, the systems of equations represented by equations 6-2 to 

6-5 is under-specified; this corresponds to the multiple possible solutions obtained for triphasic 

systems inside the LLVE area, as explained in section 6.2 and shown in Figure 25.A and Figure 

25.B. Hence, in summary, one would choose a value of R, the temperature and pressure – and then 

calculate all 𝑧𝑖 and  𝛽𝑖 from the equations above to find the "correct" amount of CO2 to add to the 

system to optimize the phase behavior for the reaction. 
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7.0 Predicting the optimal phase equilibria conditions for CO2-enhanced biodiesel 

transesterification with polar PC-SAFT. [to be submitted to FUEL] 

In section 6.0 it was shown that the concentration of carbon dioxide can be critical to 

enhance the miscibility of the initial biodiesel reactants. A second important issue regarding the 

phase equilibria for triglycerides transesterification rises when significant amounts of glycerol are 

present on the reactor. The strong association between glycerol and methanol effectively deprives 

the reaction of the necessary methanol reactant thus potentially lowering yields and increasing 

reaction times. Modelling phase equilibria with GC-PPCSAFT can be used to quantify the 

methanol distribution amongst each phase, which is key to the reaction process, and analyze 

potential improvements when carbon dioxide is used as a co-solvent in the reaction. 

Glisic and Skala measured the behavior of a 3-phase multicomponent system containing 

methanol, glycerol, FAMEs, mono-, di- and triglycerides [47], they ran a transesterification 

reaction for ten thousand minutes without any catalyst to show the evolution of the phase equilibria 

as the reaction progresses. GC-PPC-SAFT, as described in chapter 6.0 was used for the pure 

component parameters of the glycerides and FAMES and the binary interaction parameters of the 

various pairs in this system. This data represents a challenging task from the modelling perspective 

because the experiments were conducted at high methanol contents, where small changes in molar 

concentration can generate large shifts in the overall phase behavior. Figure 27 compares the 

obtained modelled molar fraction in each phase (Figure 27.A and Figure 27.B) with the 

experimental data (Figure 27.C and Figure 27.D). Good results in terms of the overall character 

of each phase were obtained, where the greatest error lies in a larger amount of methanol in the 

liquid phases, and consequentially a slightly higher solubility of glycerol in the oleic phase.  
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Figure 27 Three phase systems for multicomponent system modelled using PPC-SAFT (A and B) compared 

to experimental measurements from Glisic and Skala. at 2000 min and 10000 min of experiment (C and D) 

[47]. 
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7.1 Phase equilibria of the CO2 + methanol + glycerol + methyl oleate system. 

Using the parameters derived from chapter 4.0 and 5.0, predictions of the phase equilibria 

of the CO2 + methanol + glycerol + methyl oleate (MO) quaternary system have been performed 

to resolve how the methanol partition behaves with changing thermodynamic conditions. At 

sufficiently low values of pressure and temperature the phase equilibria transitions from LLE to a 

LLVE or to a single-phase system depending on increasing amounts of CO2 or methanol 

respectively. The structural differences between FAMEs and glycerol generate two very distinct 

immiscible phases amongst which methanol distributes, likely favoring the glycerol phase due to 

strong hydrogen bonding and polar forces. Loss of methanol to a glycerol-rich phase effectively 

robs the glycerides of the key reactant needed to create biodiesel (FAME's). This trend can be 

mitigated by adding carbon dioxide, as shown in Figure 28. Due to stoichiometry of triglycerides 

(versus FAME's and glycerol) during transesterification, only 3:1 ratios of FAME to glycerol (and 

above) are worth studying unless reaction products are artificially added to reaction beforehand, 

such ratio is depicted in the straight line in Figure 28. 

The CO2 co-solvent effect can be observed in the reduction of the slope of the tie-lines in 

Figure 28, when plotted in a carbon free basis to make the molar fraction of the other three 

compounds comparable. The flattening of the tie-lines indicates that the molar ratio of methanol 

to methyl oleate has increased in the oil-rich phase (defined as Φ for this work and shown in eq 

6-1 and the molar ratio of methanol to glycerol in the glycerol-rich phase has decreased (defined 

as Ψ for this work and shown in eq 7-1).  

𝛹 =
𝑥𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙

𝑥𝑔𝑙𝑦𝑐𝑒𝑟𝑜𝑙
|
𝑔𝑙𝑦𝑐𝑒𝑟𝑜𝑙−𝑟𝑖𝑐ℎ 𝑝ℎ𝑎𝑠𝑒

 7-1 
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Figure 28 LLE of the methanol – glycerol – MO system with and without carbon dioxide at 353.15 K, 10 MPa 

and 3:1 MO to glycerol ratio. 
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7.2 Optimal CO2 content for the CO2 + methanol + glycerol + MO system. 

The CO2 + methanol + glycerol + MO quaternary can be fully represented in a three-

dimensional space once pressure and temperature conditions are set. Figure 28 represents a chosen 

slice or planar projection of the tetrahedron shown in Figure 29. Four projections of the quaternary 

system mole fraction surfaces are shown to further expand on the variation of the phase equilibria 

due to varying amounts of methanol and carbon dioxide. The addition of methanol only affects the 

immiscibility of glycerol and FAME at very high concentrations, as has been reported by various 

authors operating the transesterification in a single-phase reactor [16], [66]. Carbon dioxide has 

only a marginal effect on the immiscibility of the glycerol-FAME system, but does enhance the 

methanol-alkyl ester miscibility, therefore increasing Φ. Such effects can be better observed in the 

drop of methanol content in the glycerol phase, as seen on the projection of Figure 29.A and in 

the variation of the slope of the tie-lines in Figure 29.B. This effect is reversed when a third dense-

vapor-phase becomes thermodynamically stable (since studied P-T conditions make CO2 a 

supercritical fluid even though the rest of the mixture still lies below the critical value). Once the 

LLVE is established, the carbon dioxide phase solubilizes methanol, effectively depriving the rest 

of the phases of methanol -- this can be better appreciated by the drop of methanol content depicted 

in the tetrahedron projection on Figure 29.C for the data points connected with solid lines 

(triphasic equilibria). Figure 29.D is a planar projection showing the triple phase equilibrium 

formation at high carbon dioxide content. 
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Figure 29 Multiple angles of the phase equilibria of CO2 – methanol – glycerol – MO quaternary system 

showing the tie-lines for different CO2 contents at 353.15 K, 10 MPa, 3:1 MO to glycerol ratio and two 

different methanol to glycerol ratios. 

Similar results were established in a previous work for the CO2 + Methanol + Trioleate 

systems, where increasing amount of carbon dioxide led to enhancement of the biodiesel reactants 

mutual solubility until the formation of a third stable vapor phase appears as shown section 6.2.  

The opposing effects of adding carbon dioxide on enhancing methanol-FAME solubility while 

also reducing methanol content in both liquid phases when LLVE is established, leads to the 

presence of a mathematical optimum in terms of methanol content in the oil rich phase. The 

optimal value is shown in Figure 30.A for the above defined molar ratios Φ, Ψ, and a diagram of 

the phase behavior is depicted on Figure 30.B highlighting the migration of methanol between the 

liquid phases in the presence of carbon dioxide and the depletion of methanol from all liquid phases 

when the vapor phase is formed. 
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Figure 30 Presence of an optimal value of Φ at varying CO2 content for the studied system at 353.15 K, 10 

MPa, 2:1 methanol to glycerol ratio and 3:1 MO to glycerol ratio (A). Picture of the multiple phases present 

before and after the optimal value is reached (B). 
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7.3 P, T and total methanol to glycerol molar ratio effect on optimal loci. 

The same procedure mentioned above can be applied to a range of pressure and temperature 

conditions to explore how the optimal CO2 loci varies. Increasing values of both P and/or T has 

proven beneficial to increment Φ as shown in Figure 31. Since the addition of CO2 is beneficial, 

as long as carbon dioxide remains in the liquid phases, the thermodynamic effect for each case can 

be explained in terms of the formation of LLE or LLVE for each set of P-T conditions. Holding 

the temperature constant and increasing the value of pressure allows for higher solubility of carbon 

dioxide in both glycerol and methyl oleate phases, therefore favoring a higher ratio of methanol 

on methyl oleate as explained in the previous section (see Figure 31.A). Increasing the temperature 

of the mixture while holding the pressure constant renders all components less soluble in terms of 

a lighter vapor phase formation, consequentially the optimal value of Φ occurs at lower values of 

carbon dioxide total molar content since less CO2 can be dissolved in each phase at higher T. 

However, there are two effects present: a temperature deactivation of the dispersive forces and 

hydrogen bonding that affects primarily the glycerol-methanol miscibility, thus increasing Φ (as 

well captured by PC-SAFT’s association strength term dependence on temperature); and at the 

same time increasing temperatures can render the CO2 – methanol mixture to fall in the sub-

subcritical region making the vapor phase lighter and driving more methanol out of the liquid 

phase, therefore decreasing Φ (See CO2 + methanol phase behavior in the critical region [67], [70], 

[74], [75]). The combination of these effect generates a reduction of the value of Φ, as long as the 

P-T conditions are supercritical for CO2 – methanol and then a sequential increase of Φ as shown 

in Figure 31.B. 
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Figure 31 Effect of pressure on optimal Φ loci at 353.15 K, 2:1 methanol to glycerol and 3:1 MO to glycerol 

(A). Effect of temperature on optimal Φ loci at 10 MPa, 2:1 methanol to glycerol and 3:1 MO to glycerol (B). 

The above-mentioned effects can be also appreciated in Figure 30 showing the value of 

optimal Φ and optimal CO2 content at different pressures and temperatures in a 3D surface for a 

specific methanol content (2:1 methanol to glycerol ratio). Figure 32.A shows the value of Φ can 

be generally improved by increasing P and T; however, Figure 32.B shows that the required 

amounts of CO2 to reach the optimal values might be unrealistic for a biodiesel reactor 

(occasionally even 99% CO2 is required at certain conditions). Therefore, a full investigation of 

the phase behavior can provide relevant information in terms of process conditions using carbon 

dioxide for biodiesel production. 
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Figure 32 Effect of P – T conditions on optimal Φ (A) and optimal CO2 content (B) at 2:1 methanol to glycerol 

and 3:1 MO to glycerol (B). 

Variations of the methanol to oil ratio are frequently evaluated in experimental reactors to 

understand the impact of such ratios on the kinetics of the transesterification. However, as shown 

in section 7.1 this ratio also affects the phase behavior favoring a higher content of methanol in 

the oil rich phase. As shown in Figure 33.A there is significant spacing between the Φ value for 

each methanol to glycerol total molar ratio considered. This effect is expected since the methanol 

fraction is effectively increasing in all phases because the methanol total molar fraction is higher. 

Finally, CO2 lowers the methanol to oil ratio required to generate a single-phase system -- in such 

cases a dramatic increase of Φ is expected and well reported in the literature for transesterifications 

operating in single phase systems at very high methanol to oil ratios. Figure 33.B shows the 

transition from a LLE system to a single phase system for 30:1 methanol to MO ratio and a range 

of CO2 molar content that varies from 20 – 40%. After these conditions increasing amounts of 

carbon dioxide will generate a third phase that progressively subtracts methanol from the liquid 

phase thus lowering the Φ ratio. 
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Figure 33 Effect of methanol to glycerol ratio on optimal Φ loci at 353.15 K, 10 MPa and 3:1 MO to glycerol 

(A). Φ value at varying CO2 content at 353.15 K, 10 MPa, 30:1 methanol to glycerol ratio and 3:1 MO to 

glycerol ratio (B). 
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8.0 Conclusions 

A systematic basis to model multicomponent biodiesel related mixtures that include CO2 

was evaluated using PPC-SAFT and GC-PPC-SAFT. Similar errors were obtained for phase 

behavior prediction in relation to those found in literature using both PC-SAFT and other EoS 

regarding isolated binaries or ternary biodiesel related systems. The polar term inclusion lowers 

the error in phase behavior prediction involving highly polar components, particularly glycerol 

containing systems. Low temperature independent binary interaction coefficients that can be easily 

extended to different types of FAME and FAEE were obtained suggesting good predictability of 

the model and providing a basis to estimate relevant conditions for biodiesel production with 

carbon dioxide as a co-solvent.  

The PC-SAFT model modified with a polar term was also employed to evaluate the phase 

behavior of various tri-, di- and monoglycerides mixed with those small molecules relevant to 

biodiesel reactions where CO2 is used as a cosolvent. As expected, the model handles well the 

binary interaction of the glycerides with other components but is not nearly as accurate when 

predicting the pure component properties of the triglycerides themselves, which leads to larger 

errors in binary systems at very high molar concentration of glycerides. Because little data 

regarding binary mixtures of monoglycerides with small molecules are available, experimental 

results on the MG-methanol-CO2 ternary were acquired and used to extract the binary interaction 

coefficient between MG’s and methanol. In general, errors in predicted phase envelope loci for 

these glyceride systems were higher than for analogous binary and ternary mixtures containing the 

fatty acid methyl esters (FAMES), likely owing to higher errors in predicting pure component 

glyceride properties than for the FAMES. However, the model was able to provide good 
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descriptions of ternary systems that incorporate the key components of a biodiesel-oriented 

esterification reaction where CO2 is employed as a cosolvent.   

The derived model using PPC-SAFT, GC-PPC-SAFT and binary interaction coefficients fitted 

to experimental data was used as a tool for prediction of the optimal conditions under which to 

operate a transesterification reaction of a triglyceride with methanol to form biodiesel (fatty acid 

methyl esters of the triglyceride). CO2 is typically added to a biodiesel system (methanol + 

triglyceride) to enhance the mutual miscibility of the two reactants, which is otherwise poor. As 

such, the methanol to triolein ratio in the oil-rich phase (Φ) has been investigated as an indicator 

of the degree to which added CO2 (as a function of temperature and pressure) improves the 

situation, as higher methanol-to-oil ratio initially should lead to faster rates. Using the model, it 

was found the phase behavior of the CO2 + methanol + triolein system exhibits, for all pressure 

and temperature conditions, an optimal value of composition (added CO2) at which the methanol 

to oil ratio is maximized. It was found that this optimal value was effectively at the point where 

the system transitions from 3 phases to 2. A full map depicting the influence of P-T conditions at 

optimal composition was provided using PPC-SAFT.  

PPC-SAFT and GC-PPC-SAFT, along with binary calculations performed with available data, 

were used to predict the phase separation of the quaternary system CO2 -methanol- glycerol- 

FAME. The phase equilibria calculations reveal that carbon dioxide addition to the biodiesel 

transesterification process could provide tangible benefits regarding the miscibility of methanol in 

the oleic phase by reducing methanol depletion due to the formation of the glycerol byproduct. 

Pressure, temperature and the methanol to oil ratio have a relevant influence in the phase separation 

and can be tuned based on theoretical calculations to modify the phase equilibria of a 

transesterification process running at sub-critical conditions. Also, it was confirmed that the 
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presence of CO2 can reduce the required pressure and temperature to generate a single-phase 

system, proving beneficial even if used for supercritical transesterification. Carbon dioxide optimal 

composition were consistently found at the point where the formation of a third (LLVE) or second 

phase (LVE) is imminent, thus providing a path for designing transesterification processes using 

CO2 as a co-solvent and experimentally searching for optimal conditions.  
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9.0 Future work 

The parameters calculated in chapters 4.0 and 5.0 complete the necessary basis to perform 

phase behavior predictions of methanolysis and ethanolysis of triglyceride reactive systems. Also, 

they provide a valuable virtual source to calculate optimal thermodynamic conditions to increase 

the solubility of the transesterification reactants when carbon dioxide is employed as a co-solvent 

in the reaction. Moreover, they allow one to investigate the behavior of all reactants, products and 

intermediaries of the biodiesel reaction throughout the reaction process and can be used to show 

how CO2 can modify phase behavior when operating at sub-critical mixture conditions. In order 

to expand the model, other substances commonly present in the feed during biodiesel 

transesterification can be incorporated (i.e. water, free fatty acids). Such substances can alter the 

phase equilibria significantly provided they are present in high enough concentrations, but their 

inclusion requires analyzing pure component, binary and ternary data to obtain PPC-SAFT 

parameters and binary interaction coefficients to make the phase equilibria as “realistic” as 

possible. 

Optimal values for maximum solubility of biodiesel reactants were consistently found in 

the transition of a LLE or a LLVE to a simpler LVE when using carbon dioxide in chapter 6.0, this 

method can be extended to investigate the dependence of optimal conditions on the FAME’s 

molecular weight and number of unsaturations. Similarly, when the transesterification reaction has 

progressed carbon dioxide showed a positive effect in avoiding methanol depletion into the 

glycerol phase, but the composition of the present FAME, carbon chain length and number of 

unsaturation can alter this effect since there is a strong influence of this parameters with the 

FAMES vapor pressure. Therefore, using the method developed in chapter 7.0 by searching for 
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the formation of the LVE equilibria can be used to build a dependence of the optimal loci with 

these parameters. 

Section 7.3 showed very briefly that at very high contents of methanol and CO2 a single 

phase can be formed, dramatically increasing the value of Φ. Even though such conditions are in 

reality closely related to supercritical transesterification, since the two most abundant components 

(methanol and CO2) are close or above critical conditions, however the thermodynamic model is 

able to provide with trends for the dependence of optimal Φ with pressure, temperature and 

methanol to oil ratio in order to achieve a single phase system. 

Optimal values of miscibility are dependent on all present substances in a 

transesterification reaction: the influence that commonly present “impurities” of the biodiesel 

reaction (i.e. free fatty acids, water, etc.) have on the phase equilibria of the system and the 

sensitivity of the optimal values on the content of these substances has yet to be explored. 

Ultimately the goal of biodiesel research focuses on attaining high purity FAMES or 

FAEES that can be used in diesel engines by lowering the cost of production. The modification of 

the phase behavior of the reactive system based on thermodynamic predictions is a promising mean 

to obtain improvements in this process. However, once the phase equilibria has been optimized to 

warrant maximum solubility of reactants or the desired products, the improvement over 

transesterification reaction times and yield can only be investigated by coupling the 

thermodynamic predictions with a kinetic model or by experimentally observing the improvement 

obtained with the thermodynamic predictions.  
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 Polar PC-SAFT and Group Contribution PC-SAFT 

Chapman et al. expressed the chosen reference fluid to be monomeric clusters of chainlike 

molecules and Every thermodynamic potential and derived property can be calculated based on 

three segment parameters: the number of segments m, and the Lennard Jones parameters for the 

segment: diameter 𝜎 (Å) and potential depth 𝜀 (K).  The reference fluid was later modified by 

Gross and Sadowski in the development of  PC-SAFT  to be hard chain molecules, and expressed 

the Helmholtz free energy of the reference fluid as follows [85]: 

𝐴ℎ𝑐 = 𝑅𝑇 (𝑚𝐴ℎ𝑠 + ∑ 𝑥𝑖(1 − 𝑚𝑖) ∙

𝑖

𝑙𝑛(𝑔𝑖𝑖(𝑑𝑖𝑖)
ℎ𝑠)) A-1 

𝑚 = ∑ 𝑥𝑖𝑚𝑖

𝑖

 A-2 

Where m is the number of segments in the chain and (𝑔𝑖𝑖(𝑑𝑖𝑖)
ℎ𝑠) is the radial distribution  

function of a mixture of hard sphere derived by Reed and Gubbins [165]: 

𝑔𝑖𝑗(𝑑𝑖𝑗)
𝑠𝑒𝑔

=
1

1 −  𝜁3
+ 3 [

𝑑𝑖𝑖𝑑𝑗𝑗

𝑑𝑖𝑖 +  𝑑𝑗𝑗
]

𝜁2

(1 −  𝜁3)2
+ 2 [

𝑑𝑖𝑖𝑑𝑗𝑗

𝑑𝑖𝑖 +  𝑑𝑗𝑗
]

2
𝜁2

2

(1 −  𝜁3)3
 A-3 

Where 𝜁𝑘 is given by: 

𝜁𝑘 =
𝜋𝑁𝑎𝑣

6
 ∙ 𝜌 ∙ ∑ 𝑥𝑖𝑚𝑖𝑑𝑖𝑖

𝑘

𝑖

 A-4 

And d is an effective temperature diameter linearly dependent of the Lennard-Jones hard 

sphere diameter and a function of the reduced temperature and the number of segments present in 

the chain that accounts for soft repulsion:  

𝑑𝑖 = 𝜎 (1 − 0.12𝑒−
3𝜀𝑖
𝑘𝑇 ) A-5 
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The Association forces contribution to Helmholtz free energy was re-used from Chapman 

et al. [112]  since bonding association was approximated with a square well potential  happening 

amongst specific sites in monomers present in a mixture of polymer chains. 

𝐴𝑎𝑠𝑠𝑜𝑐 = 𝑅𝑇 (∑ 𝑥𝑖 [
𝑚𝑖

2
+ ∑ 𝑙𝑛 (𝑋𝐴𝑖) −

𝐴𝑖

𝑋𝐴𝑖

2
]

𝑖

) A-6 

Where 𝑋𝐴𝑖 is the fraction of the of molecules not bonded to a given site A in one segment 

of the chain molecule and is given by: 

𝑋𝐴𝑖 = (1 + ∑ ∑ 𝜌𝑗 ∙ 𝑋𝐵𝑗 ∙

𝐵

𝛥𝐴𝑖𝐵𝑗

𝑗

)

−1

 A-7 

Where 𝜌𝑗 is the density of the fluid and 𝛥𝐴𝑖𝐵𝑗 is the association strength given by: 

𝛥𝐴𝑖𝐵𝑗 = 𝑑𝑖𝑗
3 𝑔𝑖𝑗(𝑑𝑖𝑗)

𝑠𝑒𝑔
𝜅𝐴𝑖𝐵𝑗 (𝑒

𝜀
𝐴𝑖𝐵𝑗

𝑘𝑇 − 1) A-8 

Two more pure components parameters are hereby introduced: 𝜅𝐴𝐵 represents a volumetric 

overlap characterization of site AB and a given unique value of energy potential for bonding 

occurrence 𝜀𝐴𝐵. [Sub-indexes i and j refer to bonding sites in segments of different chains]  

The final Perturbation term is a chain to chain interaction to account for dispersion forces 

of Lennard-Jones spheres in mixtures of spheres expressed as a second order perturbation as 

proposed by Barker and Henderson [117] and extended for chains with Gross and Sadowski’s 

approximation. 

𝐴𝑑𝑖𝑠𝑝 = 𝐴1 + 𝐴2 A-9 

𝐴1 = −𝑅𝑇2𝜋𝜌𝐼1(𝜂, �̅�) ∑ ∑ 𝑥𝑖𝑥𝑗𝑚𝑖𝑚𝑗 (
𝜀𝑖𝑗

𝑘𝑇
) 𝜎𝑖𝑗

3

𝑗𝑖

 A-10 
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𝐴2 = −(𝑅𝑇𝜌)2𝜋�̅� (𝑅𝑇𝜌 +
𝜕𝐴ℎ𝑐

𝜕𝜌

+ 𝜌
𝜕2𝐴ℎ𝑐

𝜕𝜌2
)

−1

𝐼2(𝜂, �̅�) ∑ ∑ 𝑥𝑖𝑥𝑗𝑚𝑖𝑚𝑗 (
𝜀𝑖𝑗

𝑘𝑇
)

2

𝜎𝑖𝑗
3

𝑗𝑖

 

A-11 

Where the interaction integrals are polynomials of the packing fraction:  

𝐼1(𝜁4, �̅�) = ∑ 𝑎𝑖𝜁4
𝑖

6

𝑖=0

 A-12 

𝐼2(𝜁4, �̅�) = ∑ 𝑏𝑖𝜁4
𝑖

6

𝑖=0

 A-13 

And the constants are dependent on average segment number and fitted constants that have 

been generalized using alkanes phase equilibria data following the nearest neighbor approximation 

suggested by Stell and Cummings [166], [167]: 

𝑎𝑖(𝑚) = 𝑎0𝑖 +
�̅� − 1

�̅�
𝑎1𝑖 +

�̅� − 1

�̅�

�̅� − 2

�̅�
𝑎2𝑖 A-14 

𝑏𝑖(𝑚) = 𝑏0𝑖 +
�̅� − 1

�̅�
𝑏1𝑖 +

�̅� − 1

�̅�

�̅� − 2

�̅�
𝑏2𝑖 A-15 

Substance parameters involving a pair of unlike parameters are estimated using combining 

rules as shown below: 

𝜎𝑖𝑗 =
𝜎𝑖𝑖 + 𝜎𝑗𝑗

2
 A-16 

𝜀𝑖𝑗 = √𝜀𝑖𝑖𝜀𝑗𝑗 ∙ (1 − 𝑘𝑖𝑗) A-17 

𝜀𝐴𝑖𝐵𝑗 =  𝜀𝐴𝑗𝐵𝑖 =
𝜀𝐴𝑖𝐵𝑖 + 𝜀𝐴𝑗𝐵𝑗

2
 A-18 

𝜅𝐴𝑖𝐵𝑗 = √𝜅𝐴𝑖𝐵𝑖 ∙ 𝜅𝐴𝑗𝐵𝑗 A-19 
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Where 𝑘𝑖𝑗 is the binary interaction coefficient required to adjust for oversimplifications 

done throughout the development of the equation of state.  

Twu et al. suggested a segment localized polar contribution term based on a padé 

approximation of a third order perturbation theory expressed as [87]–[89]: 

𝐴𝑝𝑜𝑙 = 𝐴2 [
1

1 −
𝐴3

𝐴2

] A-20 

Where A2 and A3are a sums of binary and ternary polar interaction contribution to the free 

energy respectively: 

𝐴2 =  𝐴2
𝑚𝑢𝑙𝑡(112) + 2𝐴2

𝑚𝑢𝑙𝑡(123) + 𝐴2
𝑚𝑢𝑙𝑡(224) A-21 

𝐴3 =  𝐴3𝐴 + 𝐴3𝐵 A-22 

Each term is the contribution of a binary or ternary interaction of polar segments imbedded 

in the chains: 

𝐴3𝐴 =  3𝐴3𝐴
𝑚𝑢𝑙𝑡(112,112,224) + 6𝐴3𝐴

𝑚𝑢𝑙𝑡(112,123,213) + 6𝐴3𝐴
𝑚𝑢𝑙𝑡(123,123,224)

+ 𝐴3𝐴
𝑚𝑢𝑙𝑡(224,224,224) 

A-23 

  

𝐴3𝐵 =  3𝐴3𝐵
𝑚𝑢𝑙𝑡(112,112,112) + 6𝐴3𝐵

𝑚𝑢𝑙𝑡(112,123,123) + 6𝐴3𝐵
𝑚𝑢𝑙𝑡(123,123,224)

+ 𝐴3𝐵
𝑚𝑢𝑙𝑡(224,224,224) 

A-24 

As used by Nguyen et al. [111] The equations for each contribution have been adjusted to 

deal with chain molecules instead of segments by incorporating a polar fraction of the chain xpi
μ

 

for molecules with dipole moment or xpi
Q

 for molecules with quadrupolar moment and the 

equations are given by: 
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𝐴2(112) = −
2

3

𝜋𝑁𝑎𝑣𝜌

𝑘𝑇
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𝐴2(123) = −
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 A-26 

𝐴2(224) = −
14

5

𝜋𝑁𝑎𝑣𝜌
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 A-27 

As proposed by Nguyen et al. [121] the only relevant term for a Ternary polar interaction 

when three polar segments are localized in two molecules is the A3A(224,224,224) term. Since 

for this approximation all molecules have only one dipolar or a quadrupolar moment, 

consequentially the term 3A3A
mult(112,112,224) + 6A3A

mult(112,123,213) +

6A3A
mult(123,123,224) will always drop to zero. 

𝐴3𝐴(224,224,224) = −
144

245
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 A-28 

𝐴3𝑏(112,112,112)
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𝐴3𝑏(123,123,224)

= −
32𝜋3

45
(

22𝜋

63
)

0.5 𝑁𝑎𝑣𝜌2

(𝑘𝑇)2
∑ ∑ ∑ 𝑥𝑖𝑥𝑗𝑥𝑘𝑥𝑝𝑖

𝜇
𝑥𝑝𝑗

𝑄 𝑥𝑝𝑘
𝑄 𝑚𝑖𝑚𝑗𝑚𝑘

𝜇𝑖
2𝑄𝑗

2𝑄𝑘
2

𝑑𝑖𝑗
2 𝑑𝑖𝑘

2 𝑑𝑗𝑘
2

𝑘𝑗

𝐾𝑖𝑗𝑘
(334,445)

𝑖

 
A-31 
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𝐴3𝑏(224,224,224)

= −
32𝜋3

2025
(2002𝜋)0.5

𝑁𝑎𝑣𝜌2

(𝑘𝑇)2
∑ ∑ ∑ 𝑥𝑖𝑥𝑗𝑥𝑘𝑥𝑝𝑖

𝜇
𝑥𝑝𝑗

𝑄 𝑥𝑝𝑘
𝑄 𝑚𝑖𝑚𝑗𝑚𝑘

𝑄𝑖
2𝑄𝑗

2𝑄𝑘
2

𝑑𝑖𝑗
3 𝑑𝑖𝑘

3 𝑑𝑗𝑘
3

𝑘𝑗

𝐾𝑖𝑗𝑘
(444,555)

𝑖

 

 

A-32 

 

This approach assumes well localized dipolar and quadrupolar moments and it neglects 

induction forces. Each molecule polar contribution is characterized by a dipolar or Quadrupolar 

moment (D or Q respectively) and a number of segments of the chain (xpm) where the polar forces 

are localized. The  

Dipolar and quadrupolar experimental values can be used directly however the fraction of 

polar  segments in the chain is generally considered a fitting parameter.[111] Even if the number 

of polar segments in a chain is well known the dipolar forces are not entirely localized. Therefore, 

some degree of flexibility is allowed for the xpm parameter. 

The J and K integrals are correlation functions for a pure Lennard-Jones reference fluid. 

And are an expansion dependent on reduced density and Temperature given by 

𝑙𝑜𝑔|𝐽(𝑛)| =  𝐴𝑛𝜌∗2𝑙𝑛 (𝑇∗) +  𝐵𝑛𝜌∗2 + 𝐶𝑛𝜌∗𝑙𝑛 (𝑇∗) +  𝐷𝑛𝜌∗ +  𝐸𝑛𝑙𝑛 (𝑇∗) +  𝐹𝑛 A-33 

And the constants 𝐴𝑛, 𝐵𝑛, 𝐶𝑛, 𝐷𝑛, 𝐸𝑛 and  𝐹𝑛 are fitted constants given In Twu and Gubbins 

[88]. 
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 Temperature dependent binary coefficient for the CO2 glycerol system 

Binary interaction for the CO2 – glycerol  parameters will be calculated using available L-

V equilibrium data [61]. A temperature dependent binary coefficient as proposed by Chen et al. 

[168] was herby tested as shown equation B-1, as opposed as the simple constant value for the 

binary coefficient (k1ij ≠ 0 and k2ij = 0)  used throughout the rest of this work. 

𝑘𝑖𝑗 = 𝑘1𝑖𝑗 + 
𝑘2𝑖𝑗

𝑇[𝐾]
 B-1 

Obtained results were still not significantly better than the ones obtained with the simpler 

approach. Results are shown in Table 13. 

Table 13 Binary interaction coefficients for best set of glycerol with CO2 modelling 

 Npts 
Parameters Average errors 

SET V / SET IV SET I*/ SET II* SET V / SET IV SET I*/ SET II* 

Assoc 

Sites 
 K1ij K2ij K1ij K2ij P X P X 

4 sites 
12 

0.3877 -94.558 0.198 -79.336 22.5% 18.1% 19.3% 20.4% 

6 sites 0.329 -66.248 0.1606 -73.377 20.2% 15.9% 22.7% 20.9% 

*Data sets from Barreau et al. [98] 
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 Optimized parameters for triglycerides subgroup to use with the GC-

PPCSAFT 

Eight triglycerides were considered for the parametrization of an optimized trimester core 

for triglycerides. However, no substantial improvements were found in any of the binary or ternary 

systems considered in chapter 5.0. Parameters results and graphical representation are shown in 

Table 14 and Figure 34 below. 

Table 14 Sub group parameter calculated for triglycerides 

Subgroup Assoc. m σ (Å) ε/k (K) 

-CH2- (TG)  0.39898  3.851987  282.5454  

-C3H5O3< 3Sites 2.151871  3.277518  374.3759  

 

The Parameters on Table 14 were calculated while reusing the same parameters for the 

CH3- group described in section 4.1 and the same criteria for polar parameters described in 

section 5.1. 
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Figure 34 Experimental data from Perry et al. [99] and and pure component parametrization of vapor 

pressure for eight triglycerides using GC-PPCSAFT 
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 Calibration experiments for phase equilibria measurements 

Curves for CO2 with methanol were measured at different temperatures and compared with 

available literature data shown in Figure 35 Methanol Phase equilibria measurements and 

literature data [162], [169]–[171].. Good agreement with data measured in literature was obtained, 

thus showing correct experimental setup for the rest of the required phase-equilibria measurements 

from section 5.2.2 . 

 

 

Figure 35 Methanol Phase equilibria measurements and literature data [162], [169]–[171]. 
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