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Modelling of flow and transport of non-Newtonian fluids interacting with

poroelastic media

Truong Quang Nguyen, PhD

University of Pittsburgh, 2019

We propose and analyze a model for solving the coupled problem arising in the interaction

of a free fluid with a poroelastic structure. The flow in the fluid region is described by

Stokes equations and in the poroelastic medium by the quasi-static Biot model. The focus

of the model is on the quasi- Newtonian fluids that exhibit a shear-thinning property. We

establish existence and uniqueness of the solution for two alternative formulations of the

proposed model. Then we establish and show the existence and uniqueness of the solution

of semidiscrete continuous-in-time formulation. We present complete stability and error

analysis, as well as results of numerical simulations showing optimal rates of convergence for

all variables. After that, the modeling of a transport equation in a non-linear Biot-Stokes

flow will be analyzed. We use discontinuous Galerkin method to solve the transport equation.

Several numerical tests are presented illustrating theoretical results and the capabilities of

the method.
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Preface

The interaction of a free fluid with a deformable porous medium is a challenging mul-

tiphysics problem that has a wide range of applications, including processes arising in gas and 

oil extraction from naturally or hydraulically fractured reservoirs, designing industrial filters, 

and blood-vessel interactions. The free fluid region can be modeled by the Stokes or the 

Navier-Stokes equations, while the flow through the deformable porous medium is mod-eled 

by the quasi-static Biot system of poroelasticity [12]. The two regions are coupled via dynamic 

and kinematic interface conditions, including balance of forces, continuity of normal velocity, 

and a no slip or slip with friction tangential velocity condition. These multiphysics models 

exhibit features of coupled Stokes-Darcy flows and fluid-structure interaction (FSI). There is 

extensive literature on modeling these separate couplings, see e.g. [35, 55, 70] for Stokes-Darcy 

flows and [41, 40, 45] for FSI. More recently there has been growing interest in modeling 

Stokes-Biot couplings, which can be referred to as fluid-poroelastic structure interaction 

(FPSI). The well-posedness of the mathematical model is studied in [77]. A variational 

multiscale stabilized finite element method for the Navier-Stokes-Biot problem is developed in 

[7]. In [19] a non-iterative operator-splitting method is developed for the Navier-Stokes-Biot 

model with pressure Darcy formulation. The well posedness of a related model is studied in 

[24]. The Stokes-Biot problem with a mixed Darcy formulation is studied in [18] and [5] using 

Nitsche’s method and a Lagrange multiplier, respectively, to impose the continuity of normal 

velocity on the interface. An optimization-based iterative algorithm with Neumann control is 

proposed in [25]. A reduced-dimension fracture model coupling Biot and an averaged 

Brinkman equation is developed in [21]. Alternative fracture models using the Reynolds 

lubrication equation coupled with Biot have also been studied, see e.g.[51].

All of the above mentioned works are based on Newtonian fluids. In this work, we develop 

FPSI with non-Newtonian fluids, which, to the best of our knowledge, has not been studied in 

the literature. In many applications the fluid exhibits properties that cannot be captured by a 

Newtonian fluid assumption. For instance, during water flooding in oil extraction,
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polymeric solutions are often added to the aqueous phase to increase its viscosity, resulting in 

a more stable displacement of oil by the injected water [59]. In hydraulic fracturing, proppant 

particles are mixed with polymers to maintain high permeability of the fractured media [57]. 

In blood flow simulations of small vessels or for patients with a cardiovascular disease, where 

the arterial geometry has been altered to include regions of re-circulation, one needs to 

consider models that can capture the sheer-thinning property of the blood [54].

In this work we use nonlinear Stokes equations to model the free fluid in the flow region 

and a nonlinear Biot model for the fluid in the poroelastic region. Our model is built on the 

nonlinear Stokes-Darcy model presented in [39] and the linear Stokes-Biot model considered 

in [5]. Our Biot model is based on a linear stress-strain constitutive relationship and a 

nonlinear Darcy flow. We neglect the inertia terms in both the fluid and solid regions. Such 

assumption is justified in many applications with low flow and displacement rates, including, 

for example, subsurface modeling, due to the low permeability and high stiffness of the 

media. The coupling conditions between the two subdomains include mass conservation, 

conservation of momentum and the Beavers-Joseph-Saffman slip with friction condition. 

We focus on fluids that possess the sheer thinning property, i.e., the viscosity decreases 

under shear strain, which is typical for polymer solutions and blood. Viscosity models for 

such non-Newtonian fluids include the Power law, the Cross model and the Carreau model 

[13, 26, 66, 59, 67]. The Power law model is popular because it only contains two parameters, 

and it is possible to derive analytical solutions in various flow conditions [13]. On the other 

hand, it implies that in the flow region the viscosity goes to infinity if the deformation goes 

to zero, which may not be representative in certain applications. The Cross and Carreau 

models have been deduced empirically as alternatives of the Power law model. They have 

three parameters, and in some parameter regimes, the viscosity is strictly greater than zero 

and bounded. We assume that the viscosity in each subdomain satisfies one such model, 

with dependence on the magnitude of the deformation tensor and the magnitude of Darcy 

velocity in the fluid and poroelastic regions, respectively. We further assume that along the 

interface the fluid viscosity is a function of the fluid and structure interface velocities. We 

consider both unbounded and bounded parameter regimes. In the former case, the analysis is 

done in an appropriate Sobolev space setting, using spaces such as W 1,r, where 1 < r < 2 is
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the viscosity shear thinning parameter. In the latter case, the analysis reduces to the Hilbert

space setting. Nonlinear Stokes-Darcy models with bounded viscosity have been studied in

[38, 36, 23], while the unbounded case is considered in [39].

Following the approach in [5], we enforce the continuity of normal velocity on the interface

through the use of a Lagrange multiplier. The resulting weak formulation is a nonlinear

time-dependent system, which is difficult to analyze, due to to the presence of the time

derivative of the displacement in some non-coercive terms. We consider an alternative mixed

elasticity formulation with the structure velocity and elastic stress as primary variables, see

also [77]. In this case we obtain a system with a degenerate evolution in time operator

and a nonlinear saddle-point type spatial operator. The structure of the problem is similar

to the one analyzed in [78], see also [16] in the linear case. However, the analysis in [78]

is restricted to the Hilbert space setting and needs to be extended to the Sobolev space

setting. Furthermore, the analysis in [78] is for monotone operators, see [76], and as a result

requires certain right hand side terms to be zero, while in typical applications these terms

may not be zero. Here we explore the coercivity of the operators to reformulate the problem

as a parabolic-type system for the pressure and stress in the poroelastic region. We show

well posedness for this system for general source terms and that the solution satisfies the

original formulation. We also prove that the solution to the original formulation is unique and

provide a stability bound. We then consider a semidiscrete finite element approximation of

the system and carry out stability and error analysis. For this purpose we establish a discrete

inf-sup condition, which involves a non-conforming Lagrange multiplier discretization that

allows for non-matching grids across the Stokes-Biot interface.

In the second chapter, we study the a transport equation with flow from the Biot-Stokes

system in chapter 1. Adopting idea from [79], we will use discontinuous Galerkin method

to handle our trans- port problem. However we made some improvements from the scheme

set up in [79]. We noticed that the dispersion tensor in transport equation is a nonlinear

function of velocity. And they used cut-off operator to handle this difficulty. We avoid

using the cut-off operator to do analysis by showing that ‖∇ · uh‖L∞(Ω) is bounded. Hence,

the computed velocity do not have to be modified when used for the transport equation.

The key idea for such improvement is that we arrange terms in error equation differently

xii



from [79], and use property of interpolation to bound the term [Πc − c] in (2.77) by O(h).

Several numerical tests are presented illustrating theoretical results and the capabilities of

the method.
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1.0 A nonlinear Biot-Stokes model for the interaction of a non-Newtonian

fluid with poroelastic media

1.1 Introduction and model problem

This chapter is devoted to investigate the Biot-Stokes flow system. In the following, we

introduce the governing equations in both regions, as well as the coupling conditions along

the interface. Section 1.2 is devoted to the weak formulation of interest, upon which we base

the numerical method, and an alternative formulation, which is needed for the purpose of the

analysis. In Section 1.3 we begin by proving the well-posedness of the alternative formulation

and then show how this translates to the well-posedness of the other formulation.

Our model is built upon those presented in [39] and [5]. In [39] the authors focused on

coupling generalized nonlinear Stokes and Darcy equations, and [5] deals with the effects of

the deformation of the poroelastic region. As a result, we obtain a nonlinear time-dependent

system, where the operator corresponding to evolution in time is degenerate and the one

corresponding to dynamics in space is of saddle-point type. In the general Sobolev space

setting of the weak formulation we establish existence and uniqueness of the solution of the

modeling equations. We consider a coupled problem for the interaction of flow and porous

and deformable media. Let Ω ⊂ Rd, d = 2, 3 be a Lipschitz domain with boundary Γ = ∂Ω,

which is subdivided into a union of non-overlapping and possibly non-connected regions Ωf

and Ωp. Here Ωf stands for a fluid region with flow and Ωp is a poroelasticity region. We

further assume that Ωf ∪ Ωp = Ω and ∂Ωf ∩ ∂Ωp = Γfp denotes the (nonempty) interface

between these regions. We denote by nf the unit normal vector which points outward from

∂Ωf , and by np the outward unit normal vector to ∂Ωp. Note that in this case nf = −np on

Γfp.

Let (u?, p?) be the velocity-pressure pairs in Ω?, ? = f , p, and let ηp be the displacement

in Ωp. We assume that the flow in Ωf is governed by the nonlinear generalized Stokes

equations with homogeneous boundary conditions on ∂Ωf \ Γfp:

−∇ · σf (uf , pf ) = ff , ∇ · uf = qf in Ωf , uf = 0 on ∂Ωf \ Γfp, (1.1)

1



where D(uf ) and σf (uf , pf ) denote the deformation and the stress tensors, respectively:

D(uf ) =
1

2
(∇uf +∇uTf ), σf (uf , pf ) = −pfI + 2νD(uf ),

where I stands for the identity operator.

Our model problem assumes a generalized Newtonian fluids, that have a non-constant

viscosity ν. Instead, ν is a function of the magnitude of the deformation tensor. While

different generalized models correspond to different specifications of the viscosity function,

we will focus on the power law fluids, i.e. the fluids that possess a shear-thinning property.

More precisely, we assume that as the magnitude of D(uf ) increases, the viscosity decreases.

Models for such viscosity functions include the following [26, 66],

Carreau model.

ν(D(uf )) = ν∞ + (ν0 − ν∞)/(1 +Kf |D(uf )|2)(2−r)/2, (1.2)

where r > 1, ν0, ν∞, and Kf > 0 are constants.

Cross model.

ν(D(uf )) = ν∞ + (ν0 − ν∞)/(1 +Kf |D(uf )|2−r), (1.3)

where r > 1, ν0, ν∞, and Kf > 0 are constants.

Power law model.

ν(D(uf )) = Kf |D(uf )|r−2, (1.4)

where r > 1 and Kf > 0 are constants.

In turn, in Ωp we consider the quasi-static Biot system [12]

−∇ · σp(ηp, pp) = fp in Ωp, (1.5)

νeffK
−1up +∇pp = 0,

∂

∂t
(s0pp + αp∇ · ηp) +∇ · up = qp in Ωp, (1.6)

up · np = 0 on ΓNp × (0, T ], pp = 0 on ΓDp × (0, T ], ηp = 0 on ∂Ωp \ Γfp × (0, T ],(1.7)
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where Γp = ΓDp ∪ ΓNp , and we assume that |ΓDp | > 0, dist(ΓDp ,Γfp) > 0. We define the

terms σe(η) and σp(η, p) to be the elasticity and poroelasticity stress tensors, respectively

as below:

σe(η) = λp(∇ · η)I + 2µpD(η), σp(η, pp) = σe(η)− αpppI, (1.8)

and αp is the Biot-Willis constant, λp, µp are Lamè coefficients, s0 is a storage coefficient and

K is the symmetric and uniformly positive definite permeability tensor. The above system

of equations is complemented by a set of initial conditions:

pp(0, x) = pp,0(x), ηb(0, x) = ηp,0(x) in Ωp.

The initial data pp,0 and ηp,0 need to satisfy a compatibility condition. In particular, given

initial pressure pp,0, the initial displacement ηp,0 is determined from (1.5) and the boundary

and interface conditions. The details are discussed in Section (1.3).

In a porous medium, two models for the effective viscosity νeff are as follow, [59, 67],

Cross model.

νeff (up) = ν∞ + (ν0 − ν∞)/(1 +Kp|up|2−r), (1.9)

where r > 1, ν0, ν∞, and Kp > 0 are constants.

Power law model.

νeff (up) = Kp(|up|/(
√
κmc))

r−2, (1.10)

where r > 1 and Kp > 0 are constants, and mc is a constant that depends on the internal

structure of the porous media.

For the rest of the paper we restrict r ∈ (1, 2], where for r ∈ (1, 2) the fluids possesses

a shear thinning property, and r = 2 corresponds to the special case of a Newtonian fluid.

We will also write ν or νeff keeping in mind that ν, νeff are functions of D(uf ) or up.

The interface conditions on the fluid-poroelasticity interface Γfp, are mass conservation,

balance of normal stress, and the Beavers-Joseph-Saffman (BJS) law [11, 73] modeling slip

with friction [77, 7]:

uf · nf +

(
∂ηp
∂t

+ up

)
· np = 0, (1.11)

3



−(σfnf ) · nf = pp, (1.12)

−(σfnf ) · tf,j = νI αBJS

√
K−1
j

(
uf −

∂ηp
∂t

)
· tf,j on Γfp, (1.13)

as well as conservation of momentum:

σfnf = −σpnp on Γfp, (1.14)

where tf,j, 1 ≤ j ≤ d − 1, is an orthogonal system of unit tangent vectors on Γfp, Kj =

tf,j ·K · tf,j and αBJS > 0 is an experimentally determined friction coefficient. We note that

the continuity of flux takes into account the normal velocity of the solid skeleton, while the

BJS condition accounts for its tangential velocity. We assume that along the interface the

fluid viscosity νI is a nonlinear function of |
∑d−1

j=1((uf−∂tηp) ·tf,j)tf,j| given by Cross model

(1.9) or Power law model (1.10). Due to technical analysis, we simplified the problem to the

case ff = fp = 0 and qf = 0, we allow only qp can be nonzero.

We then establish and show the existence and uniqueness of the solution of semidiscrete

continuous in time formulation. We present complete stability and error analysis, as well as

results of numerical simulations showing optimal rates of convergence for all variables. After

that, we give some results from experiments of actual numerical method, based on one of

these formulations.

In the second chapter, the solution of the flow equations is used to set up our transport

equation, as in (2.17). Let u(t) be a velocity field over Ω = Ωf ∪ Ωp, such that u(t)|Ωf
=

uf (t),u(t)|Ωp = up(t). Where (uf , pf ,up, pp,ηp) is the solution to the Biot-Stokes systems

consisting of (1.1), (1.5), (1.6) and interface condition. Let T be a terminal time, and

J = (0, T ]. Then the Biot-Stokes flow with transport has equation on Ω = Ωf ∪ Ωp:

φct +∇ · (cu(t)−D(u)∇c) = qc∗, ∀(x, t) ∈ Ω× J (1.15)

where c(x, t) is the concentration of some chemical component, q is the imposed external

total flow rate, the sum of sources and sinks, c∗ is the injected concentration cw if q > 0 and

is the resident concentration c if q < 0. 0 < φ∗ ≤ φ(x) ≤ φ∗ is the porosity of the medium

in Ωp (it is set to 1 in Ωf ), D(u) is the diffusion dispersion tensor.

D(u) = dI + |u|(αlE(u) + αt(I− E(u))) (1.16)

4



where (E(u))ij =
uiuj
|u|2 , d = φτDm, φ is the porosity presenting the fraction of the volume

of the medium occupied by pores. τ is the tortuosity coefficient. Dm is the molecular

diffussivity. αl, αt are the longitudinal and transverse dispersivities, respectively, and s(x, t)

is a source term. The initial condition for the concentration is

c(x, 0) = c0(x), ∀x ∈ Ω (1.17)

and the boundary conditions

(cu−D∇c) · n = (cinu) · n on Γin, (1.18)

(D∇c) · n = 0 on Γout. (1.19)

Where, Γin := {x ∈ ∂Ω : u · n < 0}, Γout := {x ∈ ∂Ω : u · n ≥ 0}, and n is the unit outward

normal vector to ∂Ω.

Before doing analysis of the problem, we make some assumption regarding viscosity

functions. Adopting the approach from [39, 38], we assume that the viscosity functions satisfy

one of the two sets of assumptions (A1)–(A2) or (B1)–(B2) below. Let g(x) : Rd → R+∪{0}

and let G(x) : Rd → Rd be given by G(x) = g(x)x. For x,h ∈ Rd, let G(x) satisfy, for

constants C1, . . . , C4 > 0 and c ≥ 0,

(G(x + h)−G(x)) · h ≥ C1|h|2, (A1)

|G(x + h)−G(x)| ≤ C2|h|, (A2)

or

(G(x + h)−G(x)) · h ≥ C3
|h|2

c+ |x|2−r + |x + h|2−r
, (B1)

|G(x + h)−G(x)| ≤ C4
|h|

c+ |x|2−r + |x + h|2−r
, (B2)

with the convention that G(x) = 0 if x = 0, and |h|/(c + |x| + |h|) = 0 if c = 0 and

x = h = 0. From (B1)–(B2) it follows that there exist constants C5, C6 > 0 such that for

s, t,w ∈ (Lr(G))d [74]

(G(s)−G(t), s− t)G ≥ C5

‖s− t‖2
Lr(G)

c+ ‖s‖2−r
Lr(G) + ‖t‖2−r

Lr(G)

, (1.20)

(G(s)−G(t),w)G ≤ C6

∥∥∥∥ |s− t|
c+ |s|+ |t|

∥∥∥∥ 2−r
r

L∞(G)

(|G(s)−G(t)|, |s− t|)1/r′

G ‖w‖Lr(G). (1.21)
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Remark 1.1.1. It is shown in [36] that conditions (A1)–(A2) are satisfied for g(D(uf )) =

ν(D(uf )) given in the Carreau model (1.2) with ν∞ > 0, in which case ν∞ ≤ g(x) ≤ ν0.

A similar argument can be applied to show that (A1)–(A2) hold for the Cross model, with

g(D(uf )) = ν(D(uf )) given in (1.3) for Stokes and g(up) = νeff (up) given in (1.9) for

Darcy, in the case of ν∞ > 0. Furthermore, it is shown in [74] that conditions (B1)–(B2)

with c > 0 hold in the case of the Carreau model (1.2) with ν∞ = 0, and that conditions

(B1)–(B2) with c = 0 hold for the Power law model (1.4) and (1.10).

1.2 Variational formulation

We complement the Biot Stokes flow system given in (1.1), (1.5), (1.6) and (1.7) with

the following set of initial conditions:

pp(0,x) = pp,0(x), ηp(0,x) = ηp,0(x) in Ωp.

For a given r > 1 its conjugate is r′, satisfying r−1 + (r′)−1 = 1. Let

Vf = {vf ∈ W 1,r(Ωf )
d : vf = 0 on ∂Ωf \ Γfp}, Wf = Lr

′
(Ωf ), (1.22)

with the corresponding norms

‖vf‖Vf
:= ‖vf‖(W 1,r(Ωf ))d , ‖wf‖Wf

:= ‖wf‖Lr′ (Ωf ), ∀vf ∈ Vf , wf ∈ Wf .

Next, let

Lr(div ; Ωp) := {vp ∈ (Lr(Ωp))
d : ∇ · vp ∈ Lr(Ωp)}.

Additionally, define:

Vp = {vp ∈ Lr(div ; Ωp) : vp · np = 0 on ∂Ωp \ Γfp}, Wp = Lr
′
(Ωp),

Xp = {ξp ∈ H1(Ωp)
d : ξp = 0 on ∂Ωp \ Γfp}.
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with the norms

‖vp‖2
Vp

:= ‖vp‖2
(Lr(Ωp))d + ‖∇ · vp‖2

(Lr(Ωp)), ‖wp‖Wp := ‖wp‖Lr′ (Ωp), ∀vp ∈ Vp, wp ∈ Wp,

‖ηp‖Vp := ‖ηp‖(W 1,r(Ωp))d , ∀ηp ∈ Xp.

In the case of (A1)–(A2), we consider Hilbert spaces, with the above definitions replaced

by

Vf = {vf ∈ H1(Ωf )
d : vf = 0 on Γf}, Wf = L2(Ωf ), (1.23)

Vp = {vp ∈ H(div; Ωp) : vp · np = 0 on ΓNp }, Wp = L2(Ωp). (1.24)

The global spaces are products of the subdomain spaces. For simplicity we assume that each

region consists of a single subdomain.

Remark 1.2.1. For simplicity of the presentation, for the rest of the paper we focus on the

case (B1)–(B2), which is the technically more challenging case. The arguments apply directly

to the case (A1)–(A2).

1.2.1 Lagrange multiplier formulation

To derive the weak formulation we multiply (1.1)-(1.6) by the appropriate test functions

and integrate each over the corresponding region, utilizing boundary and interface conditions

(2.7)-(1.14). Note that the integration by parts of the first equation in (1.1), (1.5) and the

first equation in (1.6) leads to the interface term

IΓfp
= −〈σfnf ,vf〉Γfp

− 〈σpnp, ξp〉Γfp
+ 〈pp,vp · np〉Γfp

.

As in [5], this term will be incorporated into the weak formulation by introducing a Lagrange

multiplier which has a meaning of Darcy pressure on the interface:

λ = −(σfnf ) · nf = pp, on Γfp.

With λ introduced, we have using (2.8), (2.9) and (1.14),

IΓfp
= aBJS(uf , ∂tηp; vf , ξp) + bΓ(vf ,vp, ξp;λ),
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where

aBJS(uf ,ηp; vf , ξp) =
d−1∑
j=1

〈
νI αBJS

√
K−1
j (uf − ηp) · tf,j, (vf − ξp) · tf,j

〉
Γfp
,

bΓ(vf ,vp, ξp;µ) = 〈vf · nf + (ξp + vp) · np, µ〉Γfp
.

and ∂tφ := ∂φ/∂t. For the term bΓ(vf ,vp, ξp;λ) to be well-defined, we need to choose the

Lagrange multiplier space as Λ = W 1/r,r′(Γfp) [39].

Finally we introduce the functionals related to Stokes, Darcy and the elasticity operators,

respectively, as follows:

af (·, ·) : Vf ×Vf −→ R, af (uf ,vf ) := (2νD(uf ),D(vf ))Ωf
,

adp(·, ·) : Vp ×Vp −→ R, adp(up,vp) := (νeffK
−1up,vp)Ωp ,

aep(·, ·) : Xp ×Xp −→ R, aep(ηp, ξp) := (2µpD(ηp),D(ξp))Ωp + (λp∇ · ηp,∇ · ξp)Ωp

and also

b?(·, ·) : V? ×W? −→ R, b?(v, w) := −(∇ · v, w)Ω? .

Then the Lagrange multiplier variational formulation reads: Given pp(0) = pp,0 ∈ Wp,

ηp(0) = ηp,0 ∈ Xp, for t ∈ (0, T ], find (uf (t), pf (t),up(t), pp(t),ηp(t), λ(t)) ∈ L∞(0, T ; Vf )×

L∞(0, T ;Wf )×L∞(0, T ; Vp)×W 1,∞(0, T ;Wp)×W 1,∞(0, T ; Xp) ×L∞(0, T ; Λ), such that for

all vf ∈ Vf , wf ∈ Wf , vp ∈ Vp, wp ∈ Wp, ξp ∈ Xp, and µ ∈ Λ,

af (uf ,vf ) + adp(up,vp) + aep(ηp, ξp) + aBJS(uf , ∂tηp; vf , ξp) + bf (vf , pf ) + bp(vp, pp)

+ αpbp(ξp, pp) + bΓ(vf ,vp, ξp;λ) = 0, (1.25)

(s0∂tpp, wp)Ωp
− αpbp

(
∂tηp, wp

)
− bp(up, wp)− bf (uf , wf )

= (qp, wp)Ωp , (1.26)

bΓ

(
uf ,up, ∂tηp;µ

)
= 0. (1.27)

As it was shown in [39], for a given vf ∈ W 1,r(Ωf ), vp ∈ Lr(div ,Ωp), λ ∈ W 1/r,r′(Γfp) and

ξp ∈ H1(Ωp) ⊂ W 1,r(Ωp) the integrals corresponding to the interface:∫
Γfp

vf · nfλ ds,
∫

Γfp

vp · npλ ds and

∫
Γfp

ξp · np λ ds

8



have a well-defined interpretation. Due to assumption r > 1, we have that r′ > 2 and

Lr
′
(Ωp) ⊂ L2(Ωp), thus the term (s0∂tpp, wp)Ωp is well-defined. Finally, since for given

vf ∈ W 1,r(Ωf ) we have vf
∣∣
∂Ωf
∈ W 1/r′,r(∂Ωf ) and for given ξp ∈ H1(Ωp) we have ξp

∣∣
∂Ωp
∈

H1/2(∂Ωp), so that the term arising from the BJS coupling conditions:

n−1∑
j=1

∫
Γfp

(νI αBJS

√
K−1
j (uf − ∂tηp) · tf,j)(vf − ξp) · tf,j) ds

is also well-defined.

Although many models for the fluid-structure interaction problem have been analyzed

previously, e.g. the well-posedness of non-Newtonian Stokes-Darcy model was investigated in

[39] and solvability of Newtonian dynamic Stokes-Biot model was shown in [77], the question

of existence and uniqueness of solution for (1.25)-(1.27) should still be addressed. However,

the presence of the time derivative of displacement, ∂tηp in non-coercive terms significantly

complicates the analysis. Therefore, we will introduce an alternative formulation, show that

it is well-posed and then prove that two formulations are equivalent.

1.2.2 Alternative formulation

Our goal is to obtain a system of evolutionary saddle point type, which fits the general

framework studied in [78]. Following the approach from [77], we do this by considering a

mixed elasticity formulation with the structure velocity and elastic stress as primary vari-

ables.

Recall that the elasticity stress tensor σe is connected to the structure displacement ηp

through the relation [17]:

Aσe = D(ηp). (1.28)

Here A is a bounded, symmetric and positive definite compliance tensor, which in the

isotropic case has the form:

Aσe :=
1

2µp

(
σe −

λp
2µp + dλp

tr(σe)I

)
, with A−1σe = 2µp σe + λptr(σe)I. (1.29)
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To derive a new variational formulation, we start by multiplying the first equation in (1.1)

and the first equation in (1.6) by test functions vf ∈ Vf and vp ∈ Vp, respectively, and

integrating by parts to obtain:∫
Ωf

(2νD(uf ) : D(vf )− pf∇ · vf ) dA+

∫
Ωp

(
νeffK

−1up · vp − pp∇ · vp
)
dA

+

∫
Γfp

(−σfnf · vf + ppvp · np) ds =

∫
Ωf

ff · vf dA. (1.30)

Decomposing the stress term into its normal and tangential components, and using the

balance of normal stress condition (2.8), we obtain:

∫
Γfp

−σfnf · vf ds =

∫
Γfp

−(σfnf ) · nfvf · nf ds−
n−1∑
j=1

∫
Γfp

((σf · nf ) · tf,j)(vf · tf,j) ds

=

∫
Γfp

ppvf · nf ds+
n−1∑
j=1

∫
Γfp

(νIαBJS

√
K−1
j (uf − ∂tηp) · tf,j)(vf · tf,j) ds.

(1.31)

We multiply (1.5) by vs ∈ Xp and integrate by parts, using the fact that σe = σp + αpppI:∫
Ωp

((σe − αpppI) : D(vs)) dA+

∫
Γfp

(αpppvs · np − σenp · vs) ds = 0. (1.32)

For the elastic stress, conservation of momentum (1.14) reads:

(σfnf ) · nf = (σenp) · np − αppp, (σfnf ) · tf,j = −(σenp) · tf,j on Γfp.

We use this modified condition to rewrite the interface terms in (1.32), similarly to how it

was done for the fluid stress in (1.31)∫
Γfp

−(σenp) · vs ds

=

∫
Γfp

(−(σfnf ) · nfvs · np − αpppvs · np) ds−
n−1∑
j=1

∫
Γfp

((σe · np) · tf,j)(vs · tf,j) ds

=

∫
Γfp

(1− αp)ppvs · np ds+
n−1∑
j=1

∫
Γfp

(−νI αBJS
√
K−1
j (uf − ∂tηp) · tf,j)(vs · tf,j) ds.

(1.33)
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Therefore, (1.30)-(1.33) can be combined as follows:∫
Ωf

(2νD(uf ) : D(vf )− pf∇ · vf ) dA (1.34)

+

∫
Ωp

(
νeffK

−1up · vp − pp∇ · vp + (σe − αppp) : D(vs)
)
dA

+
n−1∑
j=1

∫
Γfp

(νIαBJS

√
K−1
j (uf − ∂tηp) · tf,j)((vf − vs) · tf,j) ds

+

∫
Γfp

((vf · nf + vs · np + vp · np) pp) ds = 0. (1.35)

We note that we can eliminate the displacement, ηp, from the system by differentiating

(1.28) and introducing a new variable us := ∂tηp ∈ Xp , which has a meaning of structure

velocity. Now, multiplying second equation in (1.1), (1.28) and second equation in (1.6) by

corresponding test functions and adding the result, we obtain:∫
Ωp

(A∂tσe : τ e −D(us) : τ e + s0∂tppwp + αp∇ · uswp +∇ · upwp) dA+

∫
Ωf

(∇ · ufwf ) dA

=

∫
Ωp

qpwp dA.

(1.36)

As in the first formulation we use a Lagrange multiplier to impose the mass conservation in-

terface condition (2.7). Finally, we introduce the space for the elastic stress Σe = L2
sym(Ωp)

d×d

with the norm

‖σe‖2
Σe

:=
d∑

i,j=1

‖(σe)i,j‖2
L2(Ωp).

Then, the weak formulation reads: given pp(0) = pp,0 ∈ Wp, σe(0) = A−1D(ηp,0) ∈ Σe, for

t ∈ (0, T ], find (uf (t), pf (t),up(t), pp(t),us(t),σe(t), λ(t)) ∈ L∞ (0, T ; Vf ) × L∞ (0, T ;Wf )

× L∞ (0, T ; Vp) × W 1,∞ (0, T ;Wp) ×L∞ (0, T ; Xp)×W 1,∞(0, T ; Σe) × L∞ (0, T ; Λ), such

that for all vf ∈ Vf , wf ∈ Wf , vp ∈ Vp, wp ∈ Wp, vs ∈ Xp, τ e ∈ Σe, and µ ∈ Λ,∫
Ωp

(
σe : D(vs)− αppp∇ · vs + νeffK

−1up · vp − pp∇ · vp + A∂tσe : τ e −D(us) : τ e
)
dA

+

∫
Ωp

(s0∂tppwp + αp∇ · uswp +∇ · upwp) dA
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+

∫
Ωf

(2νD(uf ) : D(vf )− pf∇ · vf +∇ · ufwf ) dA

+
n−1∑
j=1

∫
Γfp

(νI αBJS

√
K−1
j (uf − us) · tf,j)((vf − vs) · tf,j) ds

+

∫
Γfp

((vf · nf + vs · np + vp · np)λ) ds−
∫

Γfp

((uf · nf + us · np + up · np)µ) ds

=

∫
Ωp

(qpwp) dA.. (1.37)

We introduce the bilinear forms bs(·, ·) : Xp×Σe −→ R and asp(·, ·) : Σe×Σe −→ R defined

by

bs(vs, τ e) := (D(vs), τ e)Ωp , asp(σe, τ e) := (Aσe, τ e)Ωp .

Hence, we can rewrite (1.37) in a more compact form:

af (uf ,vf ) + adp(up,vp) + aBJS(uf ,us; vf ,vs) + bf (vf , pf ) + bp(vp, pp)

+ αpbp(vs, pp) + bs(vs,σe) + bΓ(vf ,vp,vs;λ) = 0, (1.38)

(s0∂tpp, wp)Ωp
+ asp(∂tσe, τ e)− αpbp (us, wp)− bp(up, wp)− bs(us, τ e)− bf (uf , wf )

= (qp, wp)Ωp , (1.39)

bΓ (uf ,up,us;µ) = 0. (1.40)

On the other hand, we can write (1.37) in a more general, operator notation:

∂

∂t
E1q(t) +Aq(t) + B′s(t) = 0 in Q′, (1.41)

∂

∂t
E2s(t)− Bq(t) + Cs(t) = g(t) in S ′. (1.42)

where we define Q, the space of generalized displacement variables, as follows

Q =
{

q = (vp,vs,vf ) ∈ Vp ×Xp ×Vf such that

vp · np = 0 on ∂Ωp \ Γfp, vs = 0 on ∂Ωp \ Γfp, vf = 0 on ∂Ωf \ Γfp

}
and, similarly, the space S, consisting of generalized stress variables:

S = {s = (wp, τ e, wf , µ) ∈ Wp × Σp ×Wf × Λ} .
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and g = (qp,0, 0, 0). The spaces Q and S are equipped with norms:

‖q‖Q = ‖vp‖Vp + ‖vs‖Xp + ‖vf‖Vf
,

‖s‖S = ‖wp‖Wp + ‖τ e‖Σe + ‖wf‖Wf
+ ‖µ‖Λ.

We define the operators A : Q→ Q′, B : Q→ S ′, C : S → S ′ as follows:

A =


νeffK

−1 0 0

0 αBJSγ
′
TνI
√
K−1γT −αBJSγ′TνI

√
K−1γT

0 −αBJSγ′TνI
√
K−1γT 2νD : D + αBJSγ

′
TνI
√
K−1γT

 ,

B =


∇· αp∇· 0

0 −D 0

0 0 ∇·

γn γn γn

 , C =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 ,

where γT and γn denote the tangential and normal trace operators, respectively, and γ′T the

adjoint operator of γT .

And the operators E1 : Q→ Q′, E2 : S → S ′ are given by:

E1 =


0 0 0

0 0 0

0 0 0

 , E2 =


s0 0 0 0

0 A 0 0

0 0 0 0

0 0 0 0

 .

1.3 Well-posedness of the model

As both methods have been introduced, we are ready to derive the conditions on the

viscosity models, as well as the given data and initial conditions, that will be sufficient for

solvability of (1.25)-(1.27). We start with the analysis of the alternative formulation, (1.37).
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1.3.1 Existence and uniqueness of solution of the alternative formulation

First we explore important properties of the operators introduced at the end of Section

3.

Lemma 1.3.1. The operator B and its adjoint B′ are bounded and continuous. Moreover,

there exist constants β1, β2 > 0 such that

inf
0 6=(0,vs,0)∈Q

sup
(0,τ e,0,0)∈S

bs(vs, τ e)

‖(0,vs,0)‖Q‖(0, τ e, 0, 0)‖S
≥ β1, (1.43)

inf
06=(wp,0,wf ,µ)∈S

sup
(vp,0,vf )∈Q

bf (vf , wf ) + bp(vp, wp) + bΓ(vf ,vp,0;λ)

‖(vp,0,vf )‖Q‖(wp, 0, wf , µ)‖S
≥ β2. (1.44)

Proof. We recall that operator B is linear and satisfies for all q = (vp,vs,vf ) ∈ Q and

s = (wp, τ e, wf , µ) ∈ S

B(q)(s) = bf (vf , wf ) + bp(vp, wp) + αpbp(vs, wp)− bs(vs, τ e) + bΓ(vf ,vp,vs;µ)

≤ ‖∇ · vf‖Lr(Ωf )‖wf‖Lr′ (Ωf ) + ‖∇ · vp‖Lr(Ωp)‖wp‖Lr′ (Ωp) + ‖D(vs)‖L2(Ωp)‖τ e‖L2(Ωp)

+ αp‖∇ · vs‖Lr(Ωp)‖wp‖Lr′ (Ωp) + ‖vf · nf + (vp + vs) · np‖W−1/r,r(Γfp)‖µ‖W 1/r,r′ (Γfp)

≤ C
(
‖vf‖W 1,r(Ωf )‖wf‖Lr′ (Ωf ) + ‖vp‖r(div;Ωp)

‖wp‖Lr′ (Ωp) + ‖vs‖H1(Ωp)‖τ e‖L2(Ωp)

+ ‖vs‖H1(Ωp)‖wp‖Lr′ (Ωp) + ‖vf‖W 1,r(Ωf )‖µ‖W 1/r,r′ (Γfp) + ‖vp‖r(div;Ωp)
‖µ‖W 1/r,r′ (Γfp)

+ ‖vs‖H1(Ωp)‖µ‖W 1/r,r′ (Γfp)

)
≤ C‖q‖Q‖s‖S,

which implies that B and B′ are bounded and continuous.

Next, let 0 6= (0,vs,0) ∈ Q be given. We choose τ e = D(vs) and, using Korn’s

inequality, we obtain

bs(vs, τ e)

‖τ e‖L2(Ωp)

=
‖D(vs)‖2

L2(Ωp)

‖D(vs)‖L2(Ωp)

= ‖D(vs)‖L2(Ωp) ≥ C2‖vs‖H1(Ωp).

Therefore, (1.43) holds.

Finally, we note that (1.44) was proven in [39] in case of velocity boundary conditions

with restricted mean value of Wf ×Wp and presence of an inflow and outflow boundaries,

Γin and Γout. However, it can be shown that the result holds if |Γin| = |Γout| = 0 and, since

|ΓD| > 0, no restriction on Wf ×Wp is required.
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Lemma 1.3.2. The operators A and E2 are bounded, continuous, and monotone. In addi-

tion, the following continuity and coercivity estimates hold with constants cf , c̄f , Cf , cp, c̄p,

Cp, cI , c̄I , CI > 0 for all uf ,vf ∈ Vf , up,vp ∈ Vp and us,vs ∈ Xp,

cf‖vf‖rW 1,r(Ωf ) − c ∗ c̄f ≤ af (vf ,vf ), af (uf ,vf ) ≤ Cf‖uf‖r/r
′

W 1,r(Ωf )‖vf‖W 1,r(Ωf ), (1.45)

cp‖vp‖rLr(Ωp) − c ∗ c̄p ≤ adp(vp,vp), adp(up,vp) ≤ Cp‖up‖r/r
′

Lr(Ωf )‖vp‖Lr(Ωf ), (1.46)

cI |vf − vs|rBJS − c ∗ c̄I ≤ aBJS(vf ,vs; vf ,vs), (1.47)

aBJS(uf ,us; vf ,vs) ≤ CI |uf − us|r/r
′

BJS‖vf − vs‖Lr(Γfp), (1.48)

where c is the constant from (B1)–(B2).

Proof. The operator E2 is linear and, using (1.29), it satisfies

E2(s)(t) = (s0pp, wp)Ωp + (Aσe, τ e)Ωp ≤ C
(
‖pp‖L2(Ωp)‖wp‖L2(Ωp) + ‖σe‖L2(Ωp)‖τ e‖L2(Ωp)

)
,

E2(s)(s) = (s0pp, pp)Ωp + (Aσe,σe)Ωp ≥ C
(
‖pp‖2

L2(Ωp) + ‖σe‖2
L2(Ωp)

)
, ∀s, t ∈ S,

which imply that E2 is bounded, continuous and monotone. The continuity and monotonicity

of the operator A follow from (B1)–(B2), see [39] and [76, Example 5.a, p.59].

For the continuity of af (·, ·), we apply (1.21) with G(x) = ν(x)x, s = D(uf ), t = 0 and

w = D(vf ):

af (uf ,vf ) ≤ 2C6

∥∥∥∥ |D(uf )|
c+ |D(uf )|

∥∥∥∥ 2−r
r

L∞(Ωf )

(|ν(D(uf ))D(uf )|, |D(uf )|)1/r′

Ωf
‖D(vf )‖Lr(Ωf ).

Using (B2) with x = 0, h = D(uf ), we also have

|ν(D(uf ))D(uf )| ≤ C4
|D(uf )|

c+ |D(uf )|2−r
≤ C4

|D(uf )|r−1

c|D(uf )|r−2 + 1
≤ C4|D(uf )|r−1.

Combining the above two estimates, we obtain

af (uf ,vf ) ≤ C‖D(uf )‖r/r
′

Lr(Ωf )‖D(vf )‖Lr(Ωf ) ≤ Cf‖uf‖r/r
′

W 1,r(Ωf )‖vf‖W 1,r(Ωf ).

To establish the coercivity bound for af (·, ·) given in (1.45) we consider three cases.

(i) c = 0. From (1.20) we have

af (vf ,vf ) ≥ 2C5

‖D(vf )‖2
Lr(Ωf )

‖D(vf )‖2−r
Lr(Ωf )

= 2C5‖D(vf )‖rLr(Ωf ) ≥ 2C5C
r
K,f ‖vf‖rW 1,r(Ωf ), (1.49)
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where CK,f is the constant arising in Korn’s inequality, ‖D(w)‖Lr(Ωf ) ≥ CK,f‖w‖W 1,r(Ωf ),

for w ∈ Vf .

(ii) c 6= 0 and vf ∈ Vf with ‖D(vf )‖2−r
Lr(Ωf ) ≥ c. Then from (1.20) we have

af (vf ,vf ) ≥ 2C5

‖D(vf )‖2
Lr(Ωf )

c+ ‖D(vf )‖2−r
Lr(Ωf )

≥ C5‖D(vf )‖rLr(Ωf ) ≥ C5C
r
K ‖vf‖rW 1,r(Ωf ). (1.50)

(iii) c 6= 0 and vf ∈ Vf with ‖D(vf )‖2−r
Lr(Ωf ) < c. Then Cr

K‖vf‖rW 1,r(Ωf ) ≤ ‖D(vf )‖rLr(Ωf )

≤ cr/(2−r). Denote the coercivity constant from (1.50) as cf = C5C
r
K and let

c̄f = C5c
(2r−2)/(2−r). Now,

cf‖vf‖rW 1,r(Ωf ) ≤ C5‖D(vf )‖rLr(Ωf ) ≤ C5c
r/(2−r) = cc̄f ,

hence

cf‖vf‖rW 1,r(Ωf ) − cc̄f ≤ 0 ≤ af (vf ,vf ). (1.51)

Combining (1.49)-(1.51) yields the coercivity estimate given in (1.45). The reader is also

referred to [64], where a similar result is proven under slightly different assumptions, which

are satisfied by the Carreau model with ν∞ = 0.

The continuity and coercivity bounds (1.46) and (1.48) follow in the same way.

We introduce the following operators and prove some of their properties. Let Rs :

Xp −→ X ′p, Rp : Vp −→ V ′p , Lf : Wf −→ W ′
f , Lp : Wp −→ W ′

p be defined by

Rs(us)(vs) := rs(us,vs) = (D(us),D(vs))Ωp , (1.52)

Rp(up)(vp) := rp(up,vp) = (|∇ · up|r−2∇ · up,∇ · vp)Ωp , (1.53)

Lf (pf )(wf ) := lf (pf , wf ) = (|pf |r
′−2pf , wf )Ωf

, (1.54)

Lp(pp)(wp) := lp(pp, wp) = (|pp|r
′−2pp, wp)Ωp . (1.55)

Lemma 1.3.3. The operators Rs, Rp, Lf , and Lp are bounded, continuous, coercive, and

monotone.
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Proof. The operators satisfy the following continuity and coercivity bounds:

Rs(us)(vs) ≤ ‖us‖H1(Ωp)‖vs‖H1(Ωp), Rs(us)(us) ≥ CK,p‖us‖2
H1(Ωp), ∀us,vs ∈ Xp,

Rp(up)(vp) ≤ ‖∇ · up‖r/r
′

Lr(Ωp)‖∇ · vp‖Lr(Ωp), Rp(up)(up) ≥ ‖∇ · up‖rLr(Ωp), ∀up,vp ∈ Vp,

Lf (pf )(wf ) ≤ ‖pf‖r
′/r

Lr′ (Ωf )
‖wf‖Lr′ (Ωf ), Lf (pf )(pf ) ≥ ‖pf‖r

′

Lr′ (Ωf )
, ∀pf , wf ∈ Wf ,

Lp(pp)(wp) ≤ ‖pp‖r
′/r

Lr′ (Ωp)
‖wp‖Lr′ (Ωp), Lp(pp)(pp) ≥ ‖pp‖r

′

Lr′ (Ωp)
, ∀pp, wp ∈ Wp.

The coercivity bounds follow directly from the definitions, using Korn’s inequality for Rs.

The continuity bounds follow from the Cauchy-Schwarz or Hölder’s inequalities. The above

bounds imply that the operators are bounded, continuous, and coercive. Monotonicity fol-

lows from bounds similar to (1.20), which can be established in a way similar to the Power

law model [74].

It was shown in [39] that there exists a bounded extension of λ from W 1/r,r′(Γfp) to

W 1/r,r′(∂Ωp), defined as EΓλ = γφ(λ), where γ is the trace operator from W 1,r(Ωp) to

W 1/r,r′(∂Ωp) and φ(λ) ∈ W 1,r′(Ωp) is the weak solution of

−∇ · |∇φ(λ)|r′−2∇φ(λ) = 0, in Ωp, (1.56)

φ(λ) = λ, on Γfp, (1.57)

|∇φ(λ)|r′−2∇φ(λ) · n = 0, on ∂Ωp \ Γfp . (1.58)

We prove the following equivalent of norms.

Lemma 1.3.4. For λ ∈ W 1/r,r′(Γfp) and φ(λ) defined by (1.136)–(1.58), there exists c1,

c2 > 0 such that

c1‖φ(λ)‖W 1,r′ (Ωp) ≤ ‖λ‖W 1/r,r′ (Γfp) ≤ c2‖φ(λ)‖W 1,r′ (Ωp). (1.59)
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Proof. For φ ∈ W 1,r′(Ω), |∇φ(λ)|r′−2∇φ(λ) ∈ Lr
′
(div; Ω) and, therefore, from (1.136)–

(1.58), we have

(|∇φ(λ)|r′−2∇φ(λ),∇φ(λ))Ωp = 〈|∇φ(λ)|r′−2∇φ(λ) · n, EΓλ〉∂Ωp

≤ ‖|∇φ(λ)|r′−2∇φ(λ) · n‖W−1/r,r(∂Ωp)‖EΓλ‖W 1/r,r′ (∂Ωp)

≤ C ‖|∇φ(λ)|r′−2∇φ(λ) · n‖W−1/r,r(∂Ωp)‖λ‖W 1/r,r′ (Γfp). (1.60)

Now, for ψ ∈ W 1,r′(Ωp),∫
∂Ωp

|∇φ(λ)|r′−2∇φ(λ) · nψ ds =

∫
Ωp

∇ · |∇φ(λ)|r′−2∇φ(λ)ψ dx

+

∫
Ωp

|∇φ(λ)|r′−2∇φ(λ) · ∇ψ dx

≤ ‖|∇φ(λ)|r′−2∇φ(λ)‖Lr(Ωp) ‖ψ‖W 1,r′ (Ωp) (using (1.136))

= ‖∇φ‖r
′/r

Lr′ (Ωp)
‖ψ‖W 1,r′ (Ωp) . (1.61)

Using the fact the trace operator, γ(·), is a bounded, linear, bijective operator for the quotient

space W 1,q(Ωp)/W
1,q
0 (Ωp) onto W 1− 1

q
, q(∂Ωp) [46], we have

‖|∇φ(λ)|r′−2∇φ(λ) · n‖W−1/r,r(∂Ωp) (1.62)

= sup
ξ∈W 1/r,r′ (∂Ωp)

〈|∇φ(λ)|r′−2∇φ(λ) · n , ξ〉W−1/r,r(∂Ωp) ,W 1/r,r′ (∂Ωp)

‖ξ‖W 1/r,r′ (∂Ωp)

≤ C sup
ψ∈W 1,r′ (Ωp)

∫
∂Ωp
|∇φ(λ)|r′−2∇φ(λ) · n γ(ψ) ds

‖ψ‖W 1,r′ (Ωp)

≤ C ‖∇φ‖r
′/r

Lr′ (Ωp)
, (using (1.61)). (1.63)

Combining (1.60) and (1.63) with the Poincare inequality implies that

‖φ(λ)‖W 1,r′ (Ω) ≤ C‖λ‖W 1/r,r′ (Γfp). (1.64)

On the other hand, due to (1.138) and the trace inequality, we have

‖λ‖W 1/r,r′ (Γfp) ≤ C‖φ(λ)‖W 1,r′ (Ω). (1.65)

Combining (1.64) and (1.65), we obtain (1.59).
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Introduce LΓ : Λ −→ Λ′ defined by

LΓ(λ)(µ) := lΓ(λ, µ) =
(
|∇φ(λ)|r−2∇φ(λ),∇φ(µ)

)
Ωp
. (1.66)

Lemma 1.3.5. The operator LΓ is bounded, continuous, coercive, and monotone.

Proof. The result can be obtained in a similar manner to the proof of lemma 1.3.3, using

the equivalence of norms proved in lemma 1.3.4.

Denote by Wp,2 and Σe,2 the closure of the spaces Wp and Σe with respect to the norms

‖wp‖2
Wp,2

:= (s0wp, wp)L2(Ωp), ‖τ e‖2

Σe,2
:= (Aτ e, τ e)L2(Ωp) .

Note that Wp,2 = L2(Ωp), and Σe,2 = Σe.

Lemma 1.3.6. For every ḡp ∈ W ′
p,2, ḡe ∈ Σ′e,2, let g = (s0ḡp, Aḡe, 0, 0) there exists a solution

of

q ∈ Q, s ∈ S :

Aq + B′s = 0, in Q′ (1.67)

−Bq + E2s = g, in S ′. (1.68)

Proof. Consider the following functionals:

rs(us,vs) = (D(us),D(vs))Ωs , rp(up,vp) = (|∇ · up|r−2∇ · up,∇ · vp)Ωp ,

∀us,vs ∈ Xp,up,vp ∈ Vp,

lf (pf , wf ) = (|pf |r
′−2pf , wf )Ωf

, lp(pp, wp) = (|pp|r
′−2pp, wp)Ωf

,∀pf , wf ∈ Wf , pp, wp ∈ Wp.

Clearly, rs, lf and lp are bounded, monotone and coercive over Xp, Wf and Wp, respectively.

Next let λ ∈ Λ be given. Define the operator T : W 1,r′(Ωp) →
(
W 1,r′(Ωp)

)′
as

(Tφ, ψ) :=

∫
Ω

(
|∇φ|r′−2∇φ · ∇ψ

)
dA.

We define the corresponding functional as follows:

lλ(λ, µ) = (Tφ(λ), φ(µ))Ω, ∀λ, µ ∈ Λ.
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Then

lλ(λ, λ) = (Tφ(λ), φ(λ))Ω = ‖φ(λ)‖r′
W 1,r′ (Ω)

≥ C‖λ‖r′
W 1/r,r′ (Γfp)

,

lλ(λ, µ) = (Tφ(λ), φ(µ))Ω ≤ ‖φ(λ)‖r′−1

W 1,r′ (Ω)
‖φ(µ)‖W 1,r′ (Ω)

= ‖φ(λ)‖r
′/r

W 1,r′ (Ω)
‖φ(µ)‖W 1,r′ (Ω) ≤ C‖λ‖r

′/r

W 1/r,r′ (Γfp)
‖µ‖W 1/r,r′ (Γfp),

which implies that rλ is bounded, coercive and continuous over W 1/r,r′(Γfp).

We define the corresponding operators R : Q→ Q′ and L : S → S ′ via:

Rq1(q2) = rs(vs,1,vs,2) + rp(vp,1,vp,2),

Ls1(s2) = lf (wf,1, wf,2) + lp(wp,1, wp,2) + lΓ(µ1, µ2).

For ε > 0, consider a regularized problem:

qε ∈ Q, sε ∈ S :

εRqε +Aqε + B′sε = 0, (1.69)

(E2 + εL)sε − Bqε = g. (1.70)

Denote the resulting operator by O : Q× S → (Q× S)′:

O

 q

s

 =

εR+A B′

−B εL+ E2

 q

s

 .

Let q(1),q(2) ∈ Q and s(1), s(2) ∈ S be given, thenO
q(1)

s(1)

−O
q(2)

s(2)

q(1)

s(1)

−
q(2)

s(2)


= ((εR+A)q(1) − (εR+A)q(2))(q(1) − q(2)) + ((E2 + εL)s(1) − (E2 + εL)s(2))(s(1) − s(2)).

From Lemmas 1.3.1, 1.3.2, 1.3.3, and 1.3.5 we have that O is a bounded, continuous, and

monotone operator. Moreover, using the coercivity bounds from (1.45)–(1.48), we also have

O

q

s

q

s

 = (εR+A)q(q) + (E2 + εL)s(s)

= εrs(vs,vs) + εrp(vp,vp) + af (vf ,vf ) + adp(vp,vp) + aBJS(vf ,vs; vf ,vs)
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+ (s0wp, wp)Ωp + aep(τ e, τ e) + εlf (wf , wf ) + εlp(wp, wp) + εlλ(µ, µ)

≥ C
(
ε‖D(vs)‖2

L2(Ωp) + ε‖∇ · vp‖rLr(Ωp) + ‖D(vf )‖rLr(Ωf ) + ‖vp‖rLr(Ωp) + ‖vf − vs‖rLr(Γfp)

)
+ C

(
s0‖wp‖2

L2(Ωp) + ‖τ e‖2
L2(Ωp) + ε‖wf‖r

′

Lr′ (Ωf )
+ ε‖wp‖r

′

Lr′ (Ωp)
+ ε‖µ‖r′

W 1/r,r′ (Γfp)

)
. (1.71)

In the case of (B1)–(B2) with c > 0, we have an extra term −c(c̄f + c̄p+ c̄I) on the right-hand

side of (1.71) due to the coercivity estimates from (1.45)–(1.48). The argument in this case

doesn’t change and we omit this term for simplicity. It follows from (1.71) that O is coercive.

Thus, an application of the Browder-Minty theorem [68] establishes the existence of a solution

(qε, sε) ∈ Q× S of (1.69)–(1.70), where qε = (up,ε,us,ε,uf,ε) and sε = (pp,ε,σe,ε, pf,ε, λε).

From (1.71) and (1.69) - (1.70), we have

ε‖us,ε‖2
H1(Ωp) + ε‖∇ · up,ε‖rLr(Ωp) + ‖uf,ε‖rW 1,r(Ωf ) + ‖up,ε‖rLr(Ωp) + ‖uf,ε − us,ε‖rLr(Γfp)

+s0‖pp,ε‖2
L2(Ωp) + ‖σe,ε‖2

L2(Ωp) + ε‖pf,ε‖r
′

Lr′ (Ωf )
+ ε‖pp,ε‖r

′

Lr′ (Ωp)
+ ε‖λε‖r

′

W 1/r,r′ (Γfp)

≤ C
(
‖q̄p‖Lr(Ωp)‖pp,ε‖Lr′ (Ωp) + ‖ḡe‖L2(Ωp)‖σe,ε‖L2(Ωp)

)
. (1.72)

From (1.70), σe,ε and us,ε satisfy

asp(σe,ε, τ e)− bs(us,ε, τ e) = (Aḡe, τ e)Ωp , ∀τ e ∈ Σe.

Therefore, applying the inf-sup condition (1.43), we obtain:

‖us,ε‖H1(Ωp) ≤ C sup
06=(0,τ e,0,0)∈S

bs(us,ε, τ e)

‖(0, τ e, 0, 0)‖S
= sup

06=(0,τ e,0,0)∈S

asp(σe,ε, τ e) + (Aḡe, τ e)Ωp

‖(0, τ e, 0, 0)‖S

≤ C
(
‖σe,ε‖L2(Ωp) + ‖ḡe‖L2(Ωp)

)
. (1.73)

Combining (1.73) and (1.72), and using Young’s inequality, for a, b ≥ 0, 1
p

+ 1
q

= 1, and

δ > 0,

ab ≤ δpap

p
+

bq

δqq
, (1.74)

we obtain

‖us,ε‖2H1(Ωp) + ε‖∇ · up,ε‖rLr(Ωp) + ‖uf,ε‖rW 1,r(Ωf ) + ‖up,ε‖rLr(Ωp) + |uf,ε − us,ε|rBJS + ε‖us,ε‖2H1(Ωp)

+ s0‖pp,ε‖2L2(Ωp) + ‖σe,ε‖2L2(Ωp) + ε‖pf,ε‖r
′

Lr′ (Ωf )
+ ε‖pp,ε‖r

′

Lr′ (Ωp)
+ ε‖λε‖r

′

W 1/r,r′ (Γfp)

≤ C
(
‖ḡp‖Lr(Ωp)‖pp,ε‖Lr′ (Ωp) + ‖ḡe‖2L2(Ωp)

)
+

1

2

(
‖σe,ε‖2L2(Ωp)

)
, (1.75)
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from which it follows that

‖us,ε‖2
H1(Ωp) + ε‖∇ · up,ε‖rLr(Ωp) + ‖uf,ε‖rW 1,r(Ωf ) + ‖up,ε‖rLr(Ωp)

+‖σe,ε‖2
L2(Ωp) + |uf,ε − us,ε|rBJS

≤ C
(
‖ḡe‖2

L2(Ωp) + ‖ḡp‖Lr(Ωp)‖pp,ε‖Lr′ (Ωp)

)
. (1.76)

To obtain bounds for pp,ε, pf,ε, and λε we use (1.44). With s = (pp,ε,0, pf,ε, λε) ∈ S, we have

‖pf,ε‖Lr′ (Ωf ) + ‖pp,ε‖Lr′ (Ωp) + ‖λε‖W 1/r,r′ (Γfp)

≤ C sup
(vp,0,vf )∈Q

bf (vf , pf,ε) + bp(vp, pp,ε) + bΓ(vf ,vp,0;λε)

‖(vp,0,vf )‖Q

≤ C sup
q∈Q

−ε rp(up,ε,vp)− af (uf,ε,vf )− adp(up,ε,vp)− aBJS(uf,ε,us,ε; vf ,0)

‖(vp,0,vf )‖Q

≤ C
(
ε‖∇ · up,ε‖r/r

′

Lr(Ωp) + ‖uf,ε‖r/r
′

W 1,r(Ωf ) + ‖up,ε‖r/r
′

Lr(Ωp) + |uf,ε − us,ε|r/r
′

BJS

)
. (1.77)

Using Young’s inequality, (1.76) and (1.77), we obtain

‖us,ε‖2
H1(Ωp) + ε‖∇ · up,ε‖rLr(Ωp) + ‖uf,ε‖rW 1,r(Ωf ) + ‖up,ε‖rLr(Ωp) + ‖σe,ε‖2

L2(Ωp)

+ |uf,ε − us,ε|rBJS + ‖pf,ε‖r
′

Lr′ (Ωf )
+ ‖pp,ε‖r

′

Lr′ (Ωp)
+ ‖λε‖r

′

W 1/r,r′ (Γfp)

≤ C
(
‖ḡp‖rLr(Ωp) + ‖ḡe‖2

L2(Ωp)

)
, (1.78)

hence ‖us,ε‖H1(Ωp), ‖uf,ε‖W 1,r(Ωf ), ‖σe,ε‖L2(Ωp), ‖pf,ε‖Lr′ (Ωf ), ‖pp,ε‖Lr′ (Ωp) and ‖λε‖W 1/r,r′ (Γfp)

are bounded independently of ε.

Also, as ∇ · Vp = (Wp)
′, we have from (1.70) and the continuity of Lp stated in

Lemma 1.3.3:

‖∇ · up,ε‖Lr(Ωp) ≤ ‖ḡp‖Lr(Ωp) + s0‖pp,ε‖Lr(Ωp) + αp‖∇ · us,ε‖Lr(Ωp) + ε‖pp,ε‖Lr′ (Ωp)

≤ ‖ḡp‖Lr(Ωp) + s0‖pp,ε‖Lr′ (Ωp) + αp‖us,ε‖H1(Ωp) + ε‖pp,ε‖Lr′ (Ωp).

Therefore ‖up,ε‖Lr(div;Ωp) is also bounded independently of ε.

Since Q and S are reflexive Banach spaces, as ε → 0 we can extract weakly convergent

subsequences {qε,n}∞n=1, {sε,n}∞n=1, and {Aqε,n}∞n=1, such that qε,n ⇀ q in Q, sε,n ⇀ s in S,

Aqε,n ⇀ ζ in Q′, and
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qε
w−→ q in Q, sε

w−→ s in S,Aqε
w−→ ζ in Q′

as ε→ 0, which satisfies

ζ + B′s = f in Q′,

E2s− Bq = g in S ′.

Moreover, from (1.69) and (1.70), we have

lim sup
ε→0
Aqε(qε) = lim sup

ε→0
(−εRqε(qε)− (E2 + εL)sε(sε) + f(qε) + g(sε))

≤ −E2s(s) + f(q) + g(s) = ζ(q)

Since A is monotone and continuous, it follows, see [76] p.38, Aq = ζ. Hence, q and s solve

(1.67)-(1.68).

We will use theorem (6.1) part b in [76] to conclude that the alternative formulation has

a solution. The result in [76] can be restated as follow.

Theorem 1.3.7. Let the linear, symmetric and monotone operator N be given for the real

vector space E to its algebraic dual E∗, and let E ′b be the Hilbert space which is the dual of

E with the seminorm

|x|b = Nx (x)1/2 , x ∈ E .

Let M ⊂ E × E ′b be a relation with domain D = {x ∈ E : M(x) 6= ∅}.

Assume M is monotone and Rg(N +M) = E ′b. Then, for each u0 ∈ D and for each

f ∈ W 1,1(0, T ;E ′b), there is a solution u of

d

dt
(Nu(t)) + M (u(t)) 3 f(t) , 0 < t < T ,

with

Nu ∈ W 1,∞(0, T ;E ′b) , u(t) ∈ D , for all 0 ≤ t ≤ T , and Nu(0) = Nu0 .
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To use the above theorem, first we need to prove the lemma 1.3.8 below.

Let pp,0 ∈ W 1,r′(Ωp) be given, from (1.46), we have adp is coercive. Hence, by Browder-

Minty theorem, there exists a solution up,0 ∈ Lr(Ωp) to

adp(up,0,vp) = −(∇pp,0,vp), ∀vp ∈ Lr(Ωp). (1.79)

Lemma 1.3.8. Assume pp,0 ∈ W 1,r′ and that the solution to (1.79) satisfies up,0 ∈ Vp.

There exists (up,0, us,0, uf,0) ∈ Q, and (pf,0, λ0,σe,0) ∈ Wf × Λ×Σp such that A B′

−B 0

q0

s0

 ∈
Q′E1

S ′E2

 (1.80)

where q0 = (up,0,us,0,uf,0) and s0 = (pp,0,σe,0, pf,0, λ0).

Proof. First, we will show that there exists (up,0,us,0,uf,0) ∈ Q and (pf,0, λ0,σe,0) ∈ Wf ×

Λ×Σp such that

af (uf,0,vf ) + adp(up,0,vp) + aBJS(uf,0,us,0; vf ,vs) + bf (vf , pf,0) (1.81)

+bΓ(vf ,vp,vs;λ0) + bs(vs,σe,0) = −bp(vp, pp,0)− αpbp(vs, pp,0)

bf (uf,0, wf ) + bΓ (uf,0,up,0,us,0;µ) = 0. (1.82)

Define λ0 = pp,0|Γfp
∈ Λ. Taking vp ∈ Vp in (1.79) and integrating by parts, we implies

(1.81) with test function vp.

Define (uf,0, pf,0) from (1.81) with vf , and (1.82) with wf , and taking us,0 · tf,j = 0 in

aBJS. This is a well defined problem, since it corresponds to the weak solution of the Stokes

system with the given boundary on Γf and the boundary conditions

−(σf,0nf ) · nf = λ0, −(σf,0nf ) · tf,j = νIαBJS

√
κ−1
j uf,0tf,j on Γfp.

Note that λ0 is datum for this problem.

If we couple the equation (1.81) with test function vs, with the equation

asp(σe,0, τ e)− bs(ηp,0, τ e) = 0, ∀τ e ∈ Σe,
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we will have a well posed problem, since it correspond to solving a mixed elasticity problem

with the given boundary conditions on Γp and the boundary conditions

−(σp,0np) · np = λ0, −(σp,0np) · tp,j = νIαBJS
√
κ−1uf,0 · tf,j on Γfp.

Let us,0 ∈ Xp satisfies (1.82) with test function µ and us,0 · tp,j = 0 on Γfp. Note that

up,0 and uf,0 are data for this problem.

From the above construction, and with the assumption up,0 ∈ Vp, we conclude that the

system (1.81), (1.82) have a solution. Now, by doing algebra, we have A B′

−B 0

q0

s0

 =

 0

g∗s

 (1.83)

where g∗s
(
(wp, τ e, wf , µ)

)
= −bp(up,0, wp) − αpbp(us,0, wp) − bs(us,0, τ e), hence g∗s ∈ S ′2. So

we get the desired result.

Let Q1, S2 be the closer of Q, S with respect to the scalar products E1, E2. One can

see that
(

Q′1
S′2

)
= {(q, s) : q = 0, s = (qp,σe, 0, 0), qp ∈ W ′

p,2,σe ∈ Σ′e,2}. From the lemma

1.3.6 we have
(

Q′1
S′2

)
⊂ Rg

[( E1
E2

)
+
(
A B′
−B 0

)]
, and this is usually a proper inclusion, in other

words,
(

Q′1
S′2

)
6= Rg

[( E1
E2

)
+
(
A B′
−B 0

)]
. Hence, to use the theorem 1.3.7, we need to restrict

the domain of operator
(
A B′
−B 0

)
in order to have the desired equality in the assumption of

theorem 1.3.7. In order to do this, let O1 :=
(
A B′
−B 0

)
, we define

D := {(q, s) ∈ (Q, S) : O1( q
s ) ∈

(
Q′1
S′2

)
}.

Now, we restrict the domain of O1 to be D, from now without saying anything, we mean

that operators is restricted to D. Then we have Rg(O1) ⊂
(

Q′1
S′2

)
, so we have Rg

[( E1
E2

)
+(

A B′
−B 0

)]
⊂
(

Q′1
S′2

)
. In addition, by lemma 1.3.6, for every ḡp ∈ W ′

p,2, ḡe ∈ Σ′e,2, let

g = (s0ḡp, Aḡe, 0, 0) there exists a solution of (1.67), (1.68): q∗ = (up,0,us,0,uq,0), s∗ =

(pp,0,σe,0, pf,0, λ0). Looking at the equations (1.67), (1.68) and the form of elements in(
Q′1
S′2

)
, we see that

(
q∗

s∗

)
∈ D, so

(
Q′1
S′2

)
⊂ Rg

((
A B′
−B E2

))
, thus Rg

((
A B′
−B E2

))
=
(

Q′1
S′2

)
.

Remark 1.3.9. In the lemma 1.3.8, we need assumption about pp,0. The data (pp,0,ηp,0) also

need to satisfies (1.5), and notice that we have σe,0 = A−1D(ηp,0). Thus, in the following by

saying the data is compatible, we mean these conditions.
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By combining lemma 1.3.8 with theorem 1.3.7 we get the following result.

Theorem 1.3.10. For each pp(0) ∈ L2(Ωp), σe(0) ∈ Σp and qp ∈ W 1,1(0, T ;Lr(Ωp)), where

(pp,0,σe,0) are compatible data, there exists a solution of (1.38)-(1.40) with initial condi-

tions: s0pp(0) = s0pp,0, Aσe(0) = Aσe,0, and satisfy (uf (t), pf (t), up(t), pp(t), us(t), σe(t),

λ(t)) ∈ L∞(0, T ; Vf ) ×L∞(0, T ;Wf )× L∞(0, T ; Vp)× W 1,∞(0, T ;Wp)× L∞ (0, T ; Xp) ×

W 1,∞(0, T ; Σe)× L∞(0, T ; Λ).

Proof. From lemma 1.3.8, there exists (up,0,us,0,uf,0) ∈ Q and (pf,0, λ0) ∈ Wf × Λ such

that (
A B′
−B 0

)
( q0
s0 ) ∈

(
Q′1
S′2

)
where q0 = (up,0,us,0,uf,0) and s0 = (pp,0,σe,0, pf,0, λ0).

We have ( q0
s0 ) ∈ D, where D is the domain of operator

(
A B′
−B 0

)
as above. It is obvious

that
( E1
E2

)
is monotone. We now prove that

(
A B′
−B 0

)
is monotone. We have

((
A B′
−B 0

)
( q1
s1 )−

(
A B′
−B 0

)
( q2
s2 )
)(

q1−q2
s1−s2

)
= (A(q1)−A(q2))(q1 − q2) ≥ 0.

Hence,
(
A B′
−B 0

)
is monotone. We already established the range condition, thus by theorem

1.3.7 we have the desired result.

1.3.2 Existence and uniqueness of solution of the Lagrange multiplier formula-

tion

Recall, that the variable us has the meaning of structure velocity and, therefore, the

displacement solution can be recovered using the relation:

ηp(t) = ηp,0 +

∫ t

0

us(s) ds, ∀t ∈ (0, T ]. (1.84)

Since us(t) ∈ L∞(0, T ; Xp), ηp(t) ∈ W 1,∞(0, T ; Xp) for any ηp,0 ∈ W 1,∞(0, T ; Xp).

Unfortunately, the numerical method based on formulation (1.38) -(1.40) is rather dif-

ficult to implement and expensive to use, since the stress space is required to consist of

symmetric matrices [17]. In this section we discuss how the well-posedness of the Lagrange

multiplier formulation follows from the existence of solution of (1.38)-(1.40).
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Theorem 1.3.11. For each pp,0 ∈ W 1,∞(0, T ;Wp) and ηp,0 ∈ W 1,∞(0, T ; Xp), where (pp,0,

ηp,0) are compatible data, there exists a unique solution (uf (t), pf (t),up(t), pp(t),ηp(t), λ(t) ∈

L∞(0, T ; Vf )×L∞(0, T ;Wf )×L∞(0, T ; Vp)×W 1,∞(0, T ;Wp)×W 1,∞(0, T ; Xp)×L∞(0, T ; Λ)

of (1.25)-(1.27).

Proof. We begin by using the existence of solution of the alternative formulation (1.38)

-(1.40) to help establish solvability of the Lagrange multiplier formulation (1.25)-(1.27). We

note that the solution of (1.38) -(1.40) satisfies:

af (uf ,vf ) + bf (vf , pf ) + aBJS(uf , ∂tηp; vf , 0) + 〈vf · nf , λ〉Γfp
= 0, (1.85)

adp(up,vp) + bp(vp, pp) + 〈vp · np, λ〉Γfp
= 0, (1.86)

(σe,D(vs))Ωp + αpbp(vs, pp)− aBJS(uf , ∂tηp; 0,vs) + 〈vs · np, λ〉Γfp
= 0, (1.87)

(A∂tσe, τ e)Ωp − (∂tD(ηp), τ e)Ωp = 0, (1.88)

(s0 ∂tpp, wp)Ωp − αpbp(∂tηp, wp)− bp(up, wp) = (qp, wp)Ωp , (1.89)

−bf (uf , wf ) = 0, (1.90)

bΓ(uf ,up, ∂tηp;µ) = 0. (1.91)

where ηp is given as in (1.84) (in particular, ∂tηp = us). We integrate equation (1.88) in

time from s = 0 to an arbitrary s = t ∈ (0, T ]:

0 =

∫ t

0

(
∂t(Aσe −D(ηp), τ e)

)
= (Aσe(t)−D(ηp(t)), τ e)− (Aσe(0)−D(ηp(0)), τ e).

Since σe(0) = A−1D(ηp(0)), we have for any t ∈ (0, T ]

(Aσe(t)−D(ηp(t)), τ e) = 0. (1.92)

Since (1.92) holds for any τ e ∈ Σe and D(Xp) ⊂ Σe, we can choose τ e = Aσe(t)−D(ηp(t))

to conclude that σe(t) = A−1D(ηp(t)). Therefore, with (1.29),

(σe,D(vs)) = (A−1D(ηp),D(vs)) = aep(ηp,vs). (1.93)

Combining (1.85)-(1.91) and (1.92)-(1.93), we conclude that if (uf , pf ,up, pp,us,σe, λ)

∈ L∞(0, T ; Vf ) × L∞(0, T ;Wf )× L∞(0, T ; Vp)×W 1,∞(0, T ;Wp)× L∞ (0, T ; Xp) × W 1,∞

(0, T ; Σe)× L∞(0, T ; Λ) solves (1.37), then (uf , pf ,up, pp,ηp,0 +
∫ t

0
us(s) ds, λ) ∈ L∞(0, T ;
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Vf ) × L∞(0, T ;Wf )× L∞(0, T ; Vp) × W 1,∞(0, T ;Wp)×W 1,∞(0, T ; Xp)× L∞(0, T ; Λ) is a

solution of the Lagrange multiplier formulation (1.25)-(1.27).

Now, assume that the solution of (1.25)-(1.27) is not unique. Indeed, let (u1
f , p

1
f ,u

1
p, p

1
p,

η1
p, λ

1) and (u2
f , p

2
f ,u

2
p, p

2
p,η

2
p, λ

2) be two solutions corresponding to the same data.

We use the monotonicity property (1.20) with G(u) = ν(u)u, s = D(u1
f ) and t = D(u2

f ):

C
( ‖D(u1

f )−D(u2
f )‖2

L2(Ωf )

c+ ‖D(u1
f )‖

2−r
Lr(Ωf ) + ‖D(u2

f )‖
2−r
Lr(Ωf )

+

∫
Ωf

|ν(D(u1
f ))D(u1

f )− ν(D(u2
f )D(u2

f ))||D(u1
f )−D(u2

f )|dA
)

≤
∫

Ωf

(
ν(D(u1

f ))D(u1
f )− ν(D(u2

f ))D(u2
f )
)

:
(
D(u1

f )−D(u2
f )
)
dA

=
1

2

(
af (u

1
f , u1

f − u2
f ) − af (u

2
f , u1

f − u2
f )
)

=:
1

2
I1. (1.94)

Similarly, we use (1.20) with G(u) = K−1νeff (u)u, s = u1
p and t = u2

p:

C

(
‖u1

p − u2
p‖2
Lr(Ωp)

c+ ‖u1
p‖2−r
Lr(Ωp) + ‖u2

p‖2−r
Lr(Ωp)

+

∫
Ωp

1

kM
|νeff (u1

p)up − νeff (u2
p)u

2
p||u1

p − u2
p|dA

)
≤
∫

Ωp

K−1 (νeff (u
1
p)u

1
p − νeff (u2

p)u
2
p) : (u1

p − u2
p)dA

= adp(u
1
f , u1

f − u2
f ) − adp(u

2
f , u1

f − u2
f ) =: I2, (1.95)

where kM is the largest eigenvalue of K.

We apply (1.20) one more time to bound the terms coming from Beavers-Joseph-Saffman

condition. Set G(u) = Kνeff (u)u, s = u1
f − ∂tη1

p and t = u2
f − ∂tη2

p, then

C
‖u1

f − ∂tη1
p − (u2

f − ∂tη2
p)‖2

Lr(Γfp)

c+ ‖u1
f − ∂tη1

p‖2−r
Lr(Γfp) + ‖u2

f − ∂tη2
p‖2−r

Γfp

+C

∫
Γfp

1

kM
|νI(u1

f−∂tη1
p)(u

1
f−∂tη1

p)−νI(u2
f−∂tη2

p)(u
2
f−∂tη2

p)| · |u1
f−∂tη1

p−(u2
f−∂tη2

p)|ds

≤ aBJS(u1
f , ∂tη

1
p; u

1
f − u2

f , ∂tη
1
p − ∂tη2

p)− aBJS(u2
f , ∂tη

2
p; u

1
f − u2

f , ∂tη
1
p − ∂tη2

p) =: I3.

(1.96)

Then from (1.25) we have

I1 + I2 + I3 + aep(η
1
p − η2

p, ∂tη
1
p − ∂tη2

p) = −bf (u1
f − u2

f , p
1
f − p2

f )− bp(u1
p − u2

p, p
1
p − p2

p)
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−αpbp(∂tη1
p − ∂tη2

p, p
1
p − p2

p)− bΓ(u1
f − u2

f ,u
1
p − u2

p, ∂tη
1
p − ∂tη2

p;λ
1 − λ2).

(1.97)

On the other hand, it follows from (1.26) and (1.27), with wf = p1
f − p2

f , wp = p1
p − p2

p, µ =

λ1 − λ2, that

(s0 ∂t
(
p1
p − p2

p

)
, p1

p − p2
p)− αbp(∂t

(
η1
p − η2 − p

)
, p1

p − p2
p)− bp(u1

p − u2
p, p

1
p − p2

p)

−bf (u1
f − u2

f , p
1
f − p2

f )− bΓ(u1
f − u2

f ,u
1
p − u2

p, ∂t
(
η1
p − η2

p

)
;λ1 − λ2) = 0 . (1.98)

Combining (1.97) and (1.98), we obtain

I1 + I2 + I3 + aep(η
1
p − η2

p, ∂tη
1
p − ∂tη2

p) = −(s0 ∂t
(
p1
p − p2

p

)
, p1

p − p2
p)

= −1

2

d

dt
‖p1

p − p2
p‖L2(Ωp)

i.e.,
1

2
∂t

(
aep(η

1
p − η2

p,η
1
p − η2

p) + s0‖p1
p − p2

p‖2
L2(Ωp)

)
+ I1 + I2 + I3 = 0.

Integrating in time from 0 to t ∈ (0, T ], and using p1
p(0) = p2

p(0), η1
p(0) = η2

p(0), we obtain

1

2

(
aep(η

1
p(t)− η2

p(t),η
1
p(t)− η2

p(t)) + s0‖p1
p(t)− p2

p(t)‖2
L2(Ωp)

)
+

∫ t

0

(I1 + I2 + I3) ds = 0.

Hence, using (1.94)-(1.95), we have

1

2

(
aep(η

1
p(t)− η2

p(t),η
1
p(t)− η2

p(t)) + s0‖p1
p(t)− p2

p(t)‖2
L2(Ωp)

)
+

∫ t

0

C

(
‖D(u1

f )−D(u2
f )‖2

L2(Ωf )

c+ ‖D(u1
f )‖

2−r
Lr(Ωf ) + ‖D(u2

f )‖
2−r
Lr(Ωf )

+
‖u1

p − u2
p‖2
Lr(Ωp)

c+ ‖u1
p‖2−r
Lr(Ωp) + ‖u2

p‖2−r
Lr(Ωp)

)
ds ≤ 0.

(1.99)

As aep(ξp, ξp) > 0 for any ξp 6= 0, it follow from (1.99) that u1
f (t) = u2

f (t),u
1
p(t) = u2

p,η
1(t) =

η2
p, ∀t ∈ (0, T ].

Finally, we use the inf-sup condition (1.44) for p1
f − p2

f , p
1
p − p2

p, λ
1 − λ2 together with

(1.25):

‖(p1
f − p2

f , p
1
p − p2

p, λ
1 − λ2)‖Wf×Wp×Λ

≤ C sup
(vf ,vp)∈Vf×Vp

bf (vf , p
1
f − p2

f ) + bp(vp, p
1
p − p2) + bΓ(vf ,vp, 0;λ1 − λ2)

‖(vf ,vp)‖Vf×Vp
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= C sup
(vf ,vp)∈Vf×Vp

(af (u2
f ,vf )− af (u1

f ,vf ) + adp(u
2
p,vp)− adp(u1

p,vp)

‖(vf ,vp)‖Vf×Vp

+
aBJS(u2

f , ∂tη
2
p; vf , 0)− aBJS(u1

f , ∂tη
1
p; vf , 0)

‖(vf ,vp)‖Vf×Vp

)
= 0.

Therefore, for all t ∈ (0, T ], p1
f = p2

f , p
1
p = p2

p, λ
1 = λ2, and we can conclude that (1.25)-

(1.27) has a unique solution.

1.3.3 Stability analysis

We will prove the following stability bound for the solution of (1.25)–(1.27).

Theorem 1.3.12. For the solution of (1.25)–(1.27), assuming sufficient regularity of the

data, there exists C > 0 such that

‖uf‖rLr(0,T ;W 1,r(Ωf )) + ‖up‖rLr(0,T ;Lr(Ωp)) + |uf − ∂tηp|rLr(0,T ;BJS) + ‖pf‖r
′

Lr′ (0,T ;Lr′ (Ωf ))

+ ‖pp‖r
′

Lr′ (0,T ;Lr′ (Ωp))
+ ‖λ‖r′

Lr′ (0,T ;W 1/r,r′ (Γfp))
+ ‖ηp‖2

L∞(0,T ;H1(Ωp)) + s0‖pp‖2
L∞(0,T ;L2(Ωp))

≤ C exp(T )
(
‖ηp(0)‖2

H1(Ωp) + s0‖pp(0)‖2
L2(Ωp) + ‖qp‖rLr(0,T ;Lr(Ωf )) + c(c̄f + c̄p + c̄I)

)
.

Proof. We first note that the term c(c̄f + c̄p + c̄I) appears due to the use of the coercivity

bounds in (1.45)–(1.48) in the general case c > 0. For simplicity, we present the proof for

c = 0, noting that the extra term appears in (1.101) and the last inequality in the proof. We

choose (vf , wf ,vp, wp, ξp, µ) = (uf , pf ,up, pp, ∂tηp, λ) in (1.25)–(1.27) to get

1

2
∂t
[
(s0pp, pp)Ωp + aep(ηp,ηp)

]
+ af (uf ,uf ) + adp(up,up) + aBJS(uf , ∂tηp; uf , ∂tηp)

= (qp, pp)Ωp . (1.100)

Next, we integrate (1.100) from 0 to t ∈ (0, T ] and use the coercivity bounds in (1.45)–(1.48)

and note that aep(·, ·) satisfies the bound

ce‖ξp‖2
H1(Ωp) ≤ aep(ξp, ξp), a

e
p(ηp, ξp) ≤ Ce‖ηp‖H1(Ωp)‖ξp‖H1(Ωp).

We have

s0‖pp(t)‖2
L2(Ωp) + ‖ηp(t)‖2

H1(Ωp) +

∫ t

0

(
‖uf‖rW 1,r(Ωf ) + ‖up‖rLr(Ωp) + |uf − ∂tηp|rBJS

)
ds
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≤ C
(∫ t

0

(
(qp, pp)Ωp

)
ds+ s0‖pp(0)‖2

L2(Ωp) + ‖ηp(0)‖2
H1(Ωp)

)
≤ C

(
‖ηp(0)‖2

H1(Ωp) + s0‖pp(0)‖2
L2(Ωp) +

∫ t

0

‖qp‖rLr(Ωp)ds

)
+ ε1

∫ t

0

(
‖pf‖r

′

Lr′ (Ωf )
+ ‖pp‖r

′

Lr′ (Ωp)

)
ds, (1.101)

using Young’s inequality (1.74) for the last inequality. We next apply the inf-sup condition

(1.44) for (pf , pp, λ) to obtain

‖(pf , pp, λ)‖Wf×Wp×Λ ≤ C sup
(vf ,vp)∈Vf×Vp

bf (vf , pf ) + bp(vp, pp) + bΓ(vf ,vp,0;λ)

‖(vf ,vp)‖Vf×Vp

= C sup
(vf ,vp)∈Vf×Vp

−af (uf ,vf )− adp(up,vp)− aBJS(uf , ∂tηp; vf , 0)

‖(vf ,vp)‖Vf×Vp

. (1.102)

Using the continuity bounds in (1.45)–(1.48), we have from (1.102),

‖(pf , pp, λ)‖Wf×Wp×Λ ≤ C
(
‖uf‖r/r

′

W 1,r(Ωf ) + ‖up‖r/r
′

Lr(Ωp) + |uf − ∂tηp|
r/r′

BJS

)
,

implying

ε2

∫ t

0

(
‖pf‖r

′

Lr′ (Ωf )
+ ‖pp‖r

′

Lr′ (Ωp)
+ ‖λ‖r′

W 1/r,r′ (Γfp)

)
ds

≤ Cε2

∫ t

0

(
‖uf‖rW 1,r(Ωf ) + ‖up‖rLr(Ωp) + |uf − ∂tηp|rBJS

)
ds. (1.103)

Adding (1.101) and (1.103) and choosing ε2 small enough, and then ε1 small enough, implies

s0‖pp(t)‖2
L2(Ωp) + ‖ηp(t)‖2

H1(Ωp) +

∫ t

0

(
‖uf‖rW 1,r(Ωf ) + ‖up‖rLr(Ωp) + |uf − ∂tηp|rBJS

)
ds

+

∫ t

0

(
‖pf‖r

′

Lr′ (Ωf )
+ ‖pp‖r

′

Lr′ (Ωp)
+ ‖λ‖r′

W 1/r,r′ (Γfp)

)
ds

≤ C
(
‖ηp(0)‖2

H1(Ωp) + s0‖pp(0)‖2
L2(Ωp) +

∫ t

0

(
‖qp‖rLr(Ωp)

)
ds
)
.

The assertion of the theorem now follows from applying Gronwall’s inequality.
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1.4 Well-posedness of the semidiscrete problem

We consider a shape-regular and quasi-uniform simplicial partitions T fh and T ph of Ωf

and Ωp, respectively, not necessarily matching along the interface Γfp. We define the finite

element spaces Vf,h ⊂ Vf , Wf,h ⊂ Wf , Vp,h ⊂ Vp, Wp,h ⊂ Wp and Xp,h ⊂ Xp. We assume

that Vf,h, Wf,h is any inf-sup stable pair (e.g., Taylor-Hood, MINI elements). We choose

Vp,h, Wp,h to be any of well-known inf-sup stable mixed finite element spaces (e.g., Raviart-

Thomas or the Brezzi-Douglas-Marini spaces). The global spaces are

Vh = {vh = (vf,h,vp,h) ∈ Vf,h ×Vp,h}, Wh = {wh = (wf,h, wp,h) ∈ Wf,h ×Wp,h}.

We employ a conforming Lagrangian finite element spaces Xp,h ⊂ Xp to approximate the

structure displacement. Note that the finite element spaces Vf,h, Vp,h, and Xp,h satisfy the

prescribed homogeneous boundary conditions on the external boundaries Γf and Γp. Finally,

following [5], we choose a nonconforming approximation for the Lagrange multiplier:

Λh = Vp,h · np|Γfp
.

We equip Λh with a discrete version of the W 1/r,r′(Γfp)-norm:

‖µh‖Λh
= ‖µh‖Lr′ (Γfp).

The semi-discrete continuous-in-time problem reads: for t ∈ (0, T ], find (uf,h(t), pf,h(t),

up,h(t), pp,h(t), ηp,h(t), λh(t)) ∈ L∞(0, T ; Vf,h)×L∞(0, T ;Wf,h)×L∞(0, T ; Vp,h)×W 1,∞(0, T ;

Wp,h)×W 1,∞(0, T ; Xp,h)×L∞(0, T ; Λh), such that for all vf,h ∈ Vf,h, wf,h ∈ Wf,h, vp,h ∈ Vp,h,

wp,h ∈ Wp,h, ξp,h ∈ Xp, and µh ∈ Λh,

af (uf,h,vf,h) + adp(up,h,vp,h) + aBJS(uf,h, ∂tηp,h; vf,h, ξp,h) + aep(ηp,h, ξp,h) + bf (vf,h, pf,h)

+bp(vp,h, pp,h) + αbp(ξp,h, pp,h) + bΓ(vf,h,vp,h, ξp,h;λh) = 0, (1.104)

(s0∂tpp,h, wp,h)Ωp − αbp(∂tηp,h, wp,h)− bp(up,h, wp,h)

−bf (uf,h, wf,h) = (qp,h, wp,h)Ωp , (1.105)

bΓ(uf,h,up,h, ∂tηp,h;µh) = 0. (1.106)
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We assume that the initial conditions for the semi-discrete problem (2.22)-(2.24) are chosen

as suitable approximations of pp,0 and ηp,0.

In order to prove that the semi-discrete formulation (2.22) -(2.24) is well-posed, we will

follow the same strategy as in the fully continuous case. For the analysis purposes only, we

consider a conforming discretization of the weak formulation (1.38)-(1.40). Let the spaces

Vh, Wh, Xp,h and Λh be as described above. Let Xp,h consist of polynomials of degree at most

ks, then we introduce the stress space Σe,h ⊂ Σe as discontinuous symmetric polynomials of

degree at most ks − 1:

Σe,h = {σe ∈ Σe

∣∣ σe|T∈T p
h
∈ Psym

ks−1(T )}

Then the corresponding semi-discrete formulation reads: for t ∈ (0, T ], find (uf,h(t),

pf,h(t), up,h(t), pp,h(t), us,h(t),σe,h(t), λh(t)) ∈ L∞(0, T ; Vf,h) × L∞(0, T ;Wf,h) × L∞(0, T ;

Vp,h) ×W 1,∞(0, T ; Wp,h)× L∞(0, T ; Xp,h) ×W 1,∞(0, T ; Σe,h) × L∞(0, T ; Λh), such that for

all vf,h ∈ Vf,h, wf,h ∈ Wf,h, vp,h ∈ Vp,h, wp,h ∈ Wp,h, vs,h ∈ Xp,h, τ e,h ∈ Σe,h, and µh ∈ Λh,

af (uf,h,vf,h) + adp(up,h,vp,h) + aBJS(uf,h,us,h; vf,h,vs,h) + bf (vf,h, pf,h) + bp(vp,h, pp,h)

+αpbp(vs,h, pp,h) + bs(vs,h,σe,h) + bΓ(vf,h,vp,h,vs,h;λh) = 0, (1.107)

(s0∂tpp,h, wp,h)Ωp
+ asp(∂tσe,h, τ e,h)− αpbp (us,h, wp,h)− bp(up,h, wp,h)− bs(us,h, τ e,h)

−bf (uf,h, wf,h) = (qp, wp,h)Ωp , (1.108)

bΓ (uf,h,up,h,us,h;µh) = 0. (1.109)

The initial conditions pp,h(0) and σe,h(0) are suitable approximations of pp,0 and σe,0 =

A−1D(ηp,0). We define the spaces of generalized velocities and pressures, Qh = Vp,h ×

Xp,h×Vf,h and Sh = Wp,h×Σe,h×Wf,h×Λh, respectively, equipped with the corresponding

norms:

‖qh‖Qh
= ‖vp,h‖Vp + ‖vs,h‖Xp,h

+ ‖vf,h‖Vf
, ‖sh‖Sh

= ‖wp,h‖Wp + ‖τ e,h‖Σe + ‖wf,h‖Wf
+ ‖µh‖Λh

.
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1.4.1 The inf-sup condition

We first recall the inf-sup conditions for the individual Stokes and Darcy problems [39].

Since |ΓDp | > 0, it is sufficient to consider vp,h ∈ V0
p,h,Γfp

= {vp,h ∈ Vp,h : vp,h · np
∣∣
Γfp

= 0}.

There exist constant Cp,1 > 0 and Cf,1 > 0 independent of h such that

inf
wp,h∈Wp,h

sup
vp,h∈V0

p,h,Γfp

bp(vp,h, wp,h)

‖vp,h‖Vp‖wp,h‖Wp

≥ Cp,1, inf
wf,h∈Wf,h

sup
vf,h∈Vf,h

bf (vf,h, wf,h)

‖vf,h‖Vf
‖wf,h‖Wf

≥ Cf,1.

(1.110)

We next prove inf-sup condition for bΓ(·; ·). We recall the mixed finite element interpolant

Πp,h onto Vp,h [14], which satisfies for all vp ∈ Vp ∩ (W s,r(Ωp))
d, s > 0,

(∇ · Πp,hvp, wp,h)Ωp = (∇ · vp, wp,h)Ωp , ∀wp,h ∈ Wp,h, (1.111)

〈Πp,hvp · np,vp,h · np〉Γfp
= 〈vp · np,vp,h · np〉Γfp

, ∀vp,h ∈ Vp,h, (1.112)

as well as the continuity bound [1, 37]

‖Πp,hvp‖Lr(Ωp) ≤ C
(
‖vp‖W s,r(Ωp) + ‖∇ · vp‖Lr(Ωp)

)
. (1.113)

Let V0
p,h = {vp,h ∈ Vp,h : ∇ · vp,h = 0}.

Lemma 1.4.1. There exists a constant C2 > 0 independent of h such that

inf
µh∈Λh

sup
vp,h∈V0

p,h

bΓ(vp,h,0,0;µh)

‖vp,h‖Vp‖µh‖Λh

≥ C2. (1.114)

Proof. Let µh ∈ Λh be given. Consider the auxiliary problem

∇ · ∇φ = 0, in Ωp, (1.115)

φ = 0 on ΓDp , (1.116)

∇φ · np = µr
′−1
h , on Γfp, (1.117)

∇φ · np = 0, on ΓNp . (1.118)

Let v = ∇φ. Elliptic regularity for (1.115)–(1.118) [31], [52] implies that

‖v‖W 1/r,r(Ωp) ≤ C‖µr′−1
h ‖Lr(Γfp). (1.119)
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Let vp,h = Πp,hv. Note that, due to (1.111), vp,h ∈ V0
p,h. We have

bΓ(vp,h, 0, 0;µh)

‖vp,h‖Vp

=
〈Πp,hv · np, µh〉Γfp

‖Πp,hv‖Vp

=
〈v · np, µh〉Γfp

‖Πp,hv‖Vp

=
‖µh‖r

′

Lr′ (Γfp)

‖Πp,hv‖Lr(Ωp)

,

and, using (1.113) with s = 1/r and (1.119),

‖Πp,hv‖Lr(Ωp) ≤ C‖v‖W 1/r,r(Ωp) ≤ C‖µr′−1
h ‖Lr(Γfp) = C‖µh‖r

′−1

Lr′ (Γfp)
.

The proof is completed by combining the above two inequalities.

We next prove the inf-sup conditions for the formulation (1.107)–(1.109).

Theorem 1.4.2. There exist constants β1, β2 > 0 independent of h such that

inf
(wp,h,0,wf,h,µh)∈Sh

sup
(vp,h,0,vf,h)∈Qh

b(qh; sh) + bΓ(qh; sh)

‖(vp,h,0,vf,h)‖Qh
‖(wp,h, 0, wf,h, µh)‖Sh

≥ β1, (1.120)

inf
(0,vs,h,0)∈Qh

sup
(0,τ e,h,0,0)∈Sh

bs(vs,h, τ e,h)

‖(0,vs,h,0)‖Q‖(0, τ e,h, 0, 0)‖Sh

≥ β2, (1.121)

where

b(qh; sh) = bf (vf,h, wf,h) + bp(vp,h, wp,h), bΓ(qh; sh) = bΓ(vp,h,0,vf,h;µh).

Proof. Let sh = (wp,h,0, wf,h, µh) ∈ Sh be given. It follows from (1.110) and (1.114),

respectively, that there exist q1
h = (v1

p,h,0,v
1
f,h) ∈ Qh with ‖v1

p,h‖Vp = 1, ‖v1
f,h‖Vf

= 1, as

well as q2
h = (v2

p,h,0,0) ∈ Qh with ‖v2
p,h‖Vp = 1 such that

bp(v
1
p,h, wp,h) ≥

Cp,1
2
‖wp,h‖Wp , bf (v

1
f,h, wf,h) ≥

Cf,1
2
‖wf,h‖Wf

, bΓ(v2
p,h,0,0;µh) ≥

C2

2
‖µh‖Λh

.

Since v1
p,h · np

∣∣
Γfp

= 0, we have

bΓ(q1
h; sh) = 〈v1

f,h · nf + v1
p,h · np, µh〉Γfp

= 〈v1
f,h · nf , µh〉Γfp

≤ C‖v1
f,h‖Lr(Γfp)‖µh‖Lr′ (Γfp)

≤ C‖v1
f,h‖W 1−1/r,r(∂Ωf )‖µh‖Lr′ (Γfp)

≤ CΓ‖v1
f,h‖W 1,r(Ωf )‖µh‖Lr′ (Γfp) = CΓ‖v1

f,h‖Vf
‖µh‖Λh

,
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where we used the trace inequality. Let rh = q1
h + (1 + 2CΓC

−1
2 )q2

h. Since ∇ · v2
p,h = 0, we

obtain

b(rh; sh) = bf (v
1
f,h, wf,h) + bp(v

1
p,h, wp,h) +

(
1 + 2CΓC

−1
2

)
bp(v

2
p,h, wp,h)

= bf (v
1
f,h, wf,h) + bp(v

1
p,h, wp,h) ≥

min(Cf,1, Cp,1)

2
(‖(wp,h‖Wp + ‖wf,h‖Wf

),

bΓ(rh; sh) = bΓ(q1
h; sh) +

(
1 + 2CΓC

−1
2

)
bΓ(q2

h; sh)

≥ −CΓ‖µh‖Λh
+
C2

2

(
1 + 2CΓC

−1
2

)
‖µh‖Λh

=
C2

2
‖µh‖Λh

.

Hence, using that ‖rh‖Qh
≤ 3 + 2CΓC

−1
2 , we obtain

b(rh; sh) + bΓ(rh; sh) ≥
min(Cf,1, Cp,1, C2)

2
‖sh‖Sh

≥ min(Cf,1, Cp,1, C2)

6 + 4CΓC
−1
2

‖rh‖Qh
‖sh‖Sh

,

which completes the proof of (1.120). To show (1.121), let (0,vs,h,0) ∈ Qh be given. We

choose τ e,h = D(vs,h) ∈ Σe,h and, using Korn’s inequality, we obtain

bs(vs,h, τ e,h)

‖τ e,h‖L2(Ωp)

=
‖D(vs,h)‖2

L2(Ωp)

‖D(vs,h)‖L2(Ωp)

= ‖D(vs,h)‖L2(Ωp) ≥ β2‖vs,h‖H1(Ωp).

1.4.2 Existence and uniqueness of the solution

To prove that the semidiscrete problem (2.22) - (2.24) has a solution, we proceed in

a similar way as in the continuous case. One thing we need to have is that the initial

approximation data (pp,h(0),ηp,h(0)), (pp,h(0),σe,h(0)) compatible. In the following, we will

discuss about how to achieve the approximation data (pp,h(0),ηp,h(0)), (pp,h(0),σe,h(0)) that

is compatible.

We define

Ah : Q→ Q′h, Bh : Q→ S ′h

to be the discrete counterparts of the operators in the continuous case. Where Qh = Vp,h×

Vs,h,×Vf,h, and Sh = Wp,h ×Σe,h ×Wf,h × Λh.
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From the lemma 1.3.8, with suitable data pp,0, there exists us,0,uf,0, pp,0, pf,0, λ0, σe,0

such that  A B′

−B 0

q0

s0

 ∈
Q′E1

S ′E2

 (1.122)

where q0 = (up,0,us,0,uf,0), and s0 = (pp,0,σe,0, pf,0, λ0). We define (q0,h, s0,h) to be the

elliptic projection of (q0, s0), Ah B′h
−Bh 0

q0,h

s0,h

 =

 Ah B′h
−Bh 0

q0

s0

 .

From there, we will have  Ah B′h
−Bh 0

q0,h

s0,h

 ∈
Q′h,E1

S ′h,E2

 .

Similar to the continuous case, we define the domain Dh as follow, Dh := {(qh, sh) ∈ Qh×Sh :(
Ah B′h
−Bh 0

)
( qh
sh ) ∈

(
Q′h,E1
S′h,E2

)
}. Then we have

( q0,h
s0,h

)
∈ Dh. By doing the same argument as the

continuous case, we will have Rg
((

Ah B′h
−Bh Eh,2

))
=
(

Q′h,E1
S′h,E2

)
and establish the compatibility of

(pp,h(0),σe,h(0)), or (pp,h(0),ηp,h(0)). Hence, the theorems about the existence of solutions

can be done similarly to the continuous case. We state the theorems as follow.

Theorem 1.4.3. For each qf ∈ W 1,1(0, T ;W ′f), qp ∈ W 1,1(0, T ;W ′
p), σe,0 = A−1D(ηp,0) ∈

Σe, pp,0 ∈ Wp, with compatible data (pp,h(0),σp,h(0)), there exists a solution of the alternative

problem (1.107) - (1.109), with (uf,h, pf,h, up,h, pp,h, us,h, σe,h, λh) ∈ L∞(0, T ; Vf,h) ×

L∞(0, T ;Wf,h) × L∞(0, T ; Vp,h) × W 1,∞(0, T ;Wp,h) × L∞(0, T ; Xp,h) × W 1,∞(0, T ; Σe,h) ×

L∞(0, T ; Λh).

We already established the inf-sup conditions (1.120), (1.121) for finite element spaces,

therefore the above theorem can be proved similarly as in the continuous setting. Similar to

the continuous case, as a corollary of theorem 1.4.3, we have the following result.

Theorem 1.4.4. For each qf ∈ W 1,1(0, T ;W ′
f ), qp ∈ W 1,1(0, T ;W ′

p) and pp,0 ∈ Wp,h, ηp,0 ∈

Xp,h, with compatible data (pp,h(0),σp,h(0)), there exists a unique solution (uf,h(t), pf,h(t),

up,h(t), pp,h(t),ηp,h(t), λh(t)) ∈ L∞(0, T ; Vf,h)×L∞(0, T ;Wf,h)×L∞(0, T ; Vp,h)×W 1,∞(0, T ;

Wp,h) × W 1,∞(0, T ; Xp,h)× L∞(0, T ; Λh) of (2.22)–(2.24).
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The following result about stability estimate is also can be proved similar to the theorem

1.3.12.

Theorem 1.4.5. There exists 0 < C such that the solutions of (2.22), (2.23) and (2.24)

satisfy the following bound

‖uf,h‖rLr(0,T ;W 1,r(Ωf )) + ‖up,h‖rLr(0,T ;Lr(Ωp)) + |uf,h − ∂tηp,h|rLr(0,T ;BJS) + ‖pf,h‖r
′

Lr′ (0,T ;Lr′ (Ωf ))

+ ‖pp,h‖r
′

Lr′ (0,T ;Lr′ (Ωp))
+ ‖λh‖r

′

Lr′ (0,T ;Λh)
+ ‖ηp,h‖2

L∞(0,T ;H1(Ωp)) + s0‖pp,h‖2
L∞(0,T ;L2(Ωp))

≤ C exp(T )
(
‖ηp,h(0)‖2

H1(Ωp) + s0‖pp,h(0)‖2
L2(Ωp) + ‖qp‖rLr(0,T ;Lr(Ωf )) + c(c̄f + c̄p + c̄I)

)
.

1.5 Error analysis

1.5.1 Preliminaries

We introduce Qf,h Qp,h Qλ,h as the L2 projection operators onto Wf,h, Wp,h and Λh,

respectively, satisfying:

(pf −Qf,hpf , ψh)Ωf
= 0, ∀ψh ∈ Wf,h, (1.123)

(pp −Qp,hpp, φh)Ωp = 0, ∀φh ∈ Wp,h, (1.124)

〈λ−Qλ,hλ, νh〉Γfp
= 0, ∀νh ∈ Λh. (1.125)

Our finite element spaces satisfy the approximation properties reported below [34].

Lemma 1.5.1. Let Qf,h, Qp,h, Qλ,h be projectors, defined above. Then

‖pf −Qf,hpf‖Lr′ (Ωf ) ≤ Chsf+1‖pf‖W sf+1,r′
(Ωf )

, (1.126)

‖pp −Qp,hpp‖Lr′ (Ωp) ≤ Chsp+1‖pp‖W sp+1,r′ (Ωp), (1.127)

‖λ−Qλ,hλ‖Lr′ (Γfp) ≤ Chkp+1‖λ‖Wkp+1,r′ (Γfp). (1.128)
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In order to deal with nonconformity of Lagrange multiplier approximation, we would like

to use an operator Ih = (If,h, Ip,h, Is,h) : U→ Uh, where

U =
{

(vf ,vp, ξp) ∈ Vf ×Vp ×Xp : bΓ

(
vf ,vp, ξp;µ

)
= 0,∀µ ∈ Λ

}
and Uh is its discrete analogue.

We recall that the MFE interpolant Πp,h satisfies for all vp ∈ Vp ∩ (W 1,r(Ωp))
d

(∇ · Πp,hvp, ψh)Ωp = (∇ · vp, ψh)Ωp , ∀ψh ∈ Wp,h, (1.129)

〈Πp,hv · np, ψh〉Γfp
= 〈vp · np, ψh〉Γfp

, ∀ψh ∈ Wp,h. (1.130)

We will make use of the following bounds on Πp,h [1, 37]:

‖vp − Πp,hvp‖Lr(Ωp) ≤ Chkp+1‖vp‖Wkp+1,r(Ωp), (1.131)

‖Πp,hvp‖Lr(Ωp) ≤ C
(
‖vp‖Lr(Ωp) + h‖∇vp‖Lr(Ωp)

)
. (1.132)

We also consider Sf,h, Ss,h to be the Scott-Zhang interpolation operators onto Vf,h and Xp,h,

respectively, satisfying [75]

‖vf − Sf,hvp‖Lr(Ωf ) + h‖∇(ξp − Ss,hξp)‖Lr(Ωf ) ≤ Chkf+1‖ξp‖Wkf+1,r
(Ωf )

, (1.133)

‖ξp − Ss,hξp‖L2(Ωp) + h‖∇(ξp − Ss,hξp)‖L2(Ωp) ≤ Chks+1‖ξp‖Hks+1(Ωp). (1.134)

Using the construction from [50], we set If,h = Sf,h + δf,h and Is,h = Ss,h + δs,h, where the

corrections δf,h, δs,h are such that∫
Γfp

(If,hvf − vf ) · nf =

∫
Γfp

(
Is,hξp − ξp

)
· np = 0. (1.135)

To construct Ip,h, we first consider an axillary problem:

∇ · ∇φ = 0, in Ωp, (1.136)

φ = 0 on ΓDp , (1.137)

∇φ · np = (vf − If,hvf ) · nf + ∂t(ξp − Is,hξp) · np, on Γfp, (1.138)

∇φ · np = 0, on ΓNp . (1.139)
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Let z = ∇φ and define w = z + vp for any test function vp ∈ Vp. Since ∇ · z = 0, we notice

that w ∈ Vp too. Then, thanks to our construction,

∇ ·w = ∇ · z +∇ · vp = ∇ · vp, in Ωp (1.140)

w · np = z · np + vp · np

= vp · np + vf · nf − If,hvf · nf + ∂tξp · np − ∂tIs,hξp · np, on Γfp. (1.141)

Finally, we define Ip,hvp as the MFE interpolant of w:

Ip,hvp = Πp,hw = Πp,hvp + Πp,hz. (1.142)

Since Πp,h satisfies (1.129), we have

(∇ · Ip,hvp, wp,h)Ωp = (∇ · Πp,hw, wp,h)Ωp = (∇ ·w, wp,h)Ωp = (∇ · vp, wp,h)Ωp , ∀wp,h ∈ Wp,h.

(1.143)

Moreover, using (1.141) and (1.130), we also have for all µh ∈ Λh

〈Ip,hvp · np, µh〉Γfp
= 〈Πp,hw · np, µh〉Γfp

=
〈
vp · np + vf · nf − If,hvf · nf + ∂tξp · np − ∂tIs,hξp · np, µh

〉
Γfp

.

Rearranging the terms, we obtain

〈
Ip,hvp · np + ∂tIs,hξp · np + If,hvf · nf , µh

〉
Γfp

=
〈
vp · np + ∂tξp · np + vf · nf , µh

〉
Γfp

.

Therefore, Ih : U 7→ Uh satisfies

〈
Ip,hvp · np + ∂tIs,hξp · np + If,hvf · nf , µh

〉
Γfp

= 0, ∀µh ∈ Λh. (1.144)

As our construction is complete, we summarize the properties of all components of Ih in

the following lemma.
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Lemma 1.5.2. For all (vf ,vp, ξp) ∈ U, the interpolation operator Ih : U→ Uh satisfies

‖vf − If,hvf‖Lr(Ωf ) + h‖∇(vf − If,hvf )‖Lr(Ωf ) ≤ Chkf+1‖vf‖Wkf+1,r
(Ωf )

, (1.145)

‖ξp − Is,hξp‖L2(Ωp) + h‖∇(ξp − Is,hξp)‖L2(Ωp) ≤ Chks+1‖ξp‖Hks+1(Ωp), (1.146)

‖vp − Ip,hvp‖Lr(Ωp) ≤ C
(
hkp+1‖vp‖Wkp+1,r(Ωp) + hkf‖vf‖Wkf+1,r

(Ωf )
+ hks‖∂tξp‖Hks+1(Ωp)

)
.

(1.147)

Proof. The first two estimates (2.37)-(1.146) follow immediately from (1.133)-(1.134) and

the fact that the corrections δf,h, δs,h are of optimal order [50].

Next, by (1.142),

‖vp − Ip,hvp‖Lr(Ωp) = ‖vp − Πp,hvp − Πp,hz‖Lr(Ωp) ≤ ‖vp − Πp,hvp‖Lr(Ωp) + ‖Πp,hz‖Lr(Ωp).

Recall that z = ∇φ, where φ is the solution of (1.139). Therefore, by the elliptic regularity

[52] and (1.132)

‖Πp,hz‖Lr(Ωp) ≤ C‖z‖W 1,r(Ωp) ≤ C‖(vf − If,hvf ) · nf + ∂t
(
ξp − Is,hξp

)
· np‖W 1−1/r,r(Γfp)

≤ C
(
‖(vf − If,hvf ) · nf‖W 1−1/r,r(Γfp) + ‖∂t

(
ξp − Is,hξp

)
· np‖W 1−1/r,r(Γfp)

)
≤ C

(
‖vf − If,hvf‖W 1,r(Ωf ) + ‖∂t

(
ξp − Is,hξp

)
‖H1(Ωp)

)
≤ C

(
hkf‖vf‖Wkf+1,r

(Ωf )
+ hks‖∂tξp‖Hks+1(Ωp)

)
.

Finally, by (1.131)

‖vp − Ip,hvp‖Lr(Ωp) ≤ ‖vp − Πp,hvp‖Lr(Ωp) + ‖Πp,hz‖Lr(Ωp)

≤ Chkp+1‖vp‖Wkp+1,r(Ωp) + C
(
hkf‖vf‖Wkf+1,r

(Ωf )
+ hks‖∂tξp‖Hks+1(Ωp)

)
.
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1.5.2 Error estimates

For u = (uf ,up,ηp) and uh = (uf,h,up,h,ηp,h), let’s define

E(u,uh) =

∥∥∥∥ |D(uf )−D(uf,h)|
c+ |D(uf )|+ |D(uf,h)|

∥∥∥∥ 2−r
r

L∞(Ωf )

+

∥∥∥∥ |up − up,h|
c+ |up|+ |up,h|

∥∥∥∥ 2−r
r

L∞(Ωp)

+

∥∥∥∥ |(uf − ∂tηp) · tf,j − (uf,h − ∂tηp,h) · tf,j|
c+ |(uf − ∂tηp) · tf,j|+ |(uf,h − ∂tηp,h) · tf,j|

∥∥∥∥
2−r
r

L∞(Γfp)

and

G(u,uh) =

∫
Ωf

|ν(D(uf ))D(uf )− ν(D(uf,h))D(uf,h)||D(uf )−D(uf,h)|dA

+

∫
Ωp

(1/kM)|νeff (up)up − νeff (up,h)up,h||up − up,h|dA

+

∫
Γfp

aBJS

k
1/2
M

|νI(((uf − ∂tηp) · tf,j)tf,j((uf − ∂tηp) · tf,j)tf,j

− νI(((uf,h − ∂tηp,h) · tf,j)tf,j)((uf,h − ∂tηp,h) · tf,j)tf,j|

· |((uf − ∂tηp) · tf,j)tf,j − ((uf,h − ∂tηp,h) · tf,j)tf,j|ds (1.148)

Theorem 1.5.3. Let (uf ,up,ηp, pf , pp, λ) be the solution of (1.25)-(1.27) and (uf,h,up,h,

ηp,h, pf,h, pp,h, λh) be the solution of (2.22)-(2.24). There exists a constant C > 0 such that

‖uf−uf,h‖2
L2(0,T ;W 1,r(Ωf ))+‖up−up,h‖2

L2(0,T ;Lr(Ωp))+
d−1∑
j=1

|uf−∂tηp−(uf,h−∂tηp,h)|2L2(0,T ;BJS,j)

+ ‖pf − pf,h‖r
′

Lr′ (0,T ;Lr′ (Ωf ))
+ ‖pp − pp,h‖r

′

Lr′ (0,T ;Lr′ (Ωp))
+ ‖Qλ,hλ− λh‖r

′

Lr′ (0,T ;Lr′ (Γfp))

+ ‖ηp − ηp,h‖2
L∞(0,T ;H1(Ωp)) + s0‖pp − pp,h‖2

L∞(0,T ;L2(Ωp)) + ‖G(u,uh)‖L1(0,T )

≤ C exp(T )
[
h2kf‖uf‖2

L2(0,T ;W
kf+1,r

(Ωf ))
+ hrkf‖uf‖rLr(0,T ;W

kf+1,r
(Ωf ))

+ h2(sf+1)‖pf‖2

L2(0,T ;W
sf+1,r′

(Ωf ))
+ hr

′(sf+1)‖pf‖r
′

Lr′ (0,T ;W
sf+1,r′

(Ωf ))

+ hr(kp+1)‖up‖rLr(0,T ;Wkp+1,r(Ωp))
+ hr

′(sp+1)‖pp‖r
′

Lr′ (0,T ;W sp+1,r′ (Ωp))

+ h2(sp+1)
(
‖∂tpp‖2

L2(0,T ;W sp+1,r′ (Ωp))
+ ‖pp‖2

L∞(0,T ;W sp+1,r′ (Ωp))

)
+ h2ks

(
‖ηp‖2

L2(0,T ;Hks+1(Ωp)) + ‖∂tηp‖2
L2(0,T ;Hks+1(Ωp)) + ‖ηp‖2

L∞(0,T ;Hks+1(Ωp))

)
+ hrks‖∂tηp‖rLr(0,T ;Hks+1(Ωp)) + hr

′(kp+1)‖λ‖r′
Lr′ (0,T ;Wkp+1,r′ (Γfp))

+ h2(kp+1)
(
‖λ‖2

L2(0,T ;Wkp+1,r′ (Γfp))
+ ‖∂tλ‖2

L2(0,T ;Wkp+1,r′ (Γfp))
+ ‖λ‖2

L∞(0,T ;Wkp+1,r′ (Γfp))

)
+ ‖ηp(0)− ηp,h(0)‖2

H1(Ωp) + ‖pp(0)− pp,h(0)‖2
Lr′ (Ωp)

]
. (1.149)

42



Proof. At first, we will achieve a bound for for ‖uf − uf,h‖W 1,r(Ωf ) and ‖up − up,h‖Lr(Ωp)

using the the monotonicity (1.20) and continuity (1.21) assumptions.

Using (1.20) with G(x) = ν(x)x, s = D(uf ) and t = D(uf,h):

C
( ‖D(uf )−D(uf,h)‖2

Lr(Ωf )

c+ ‖D(uf )‖2−r
Lr(Ωf ) + ‖D(uf,h)‖2−r

Lr(Ωf )

+ (|ν(D(uf ))D(uf )− ν(D(uf,h))D(uf,h)|, |D(uf )−D(uf,h)|Ωf

)
≤ (2ν(D(uf ))D(uf )− 2ν(D(uf,h))D(uf,h),D(uf )−D(uf,h))Ωf

(1.150)

= (2ν(D(uf ))D(uf )− 2ν(D(uf,h))D(uf,h),D(uf )−D(vf,h))Ωf

+ (2ν(D(uf ))D(uf )− 2ν(D(uf,h))D(uf,h),D(vf,h)−D(uf,h))Ωf

=: J1 + J2, ∀vf,h ∈ Vf,h, (1.151)

where we used the factor 2ν in (1.150) in order that the term J2 may be expressed in terms

of af (·, ·). The term J1 can be bounded using (1.21) with s = D(uf ), t = D(uf,h) and

w = D(uf )−D(vf,h):

J1 ≤ C (|ν(D(uf ))D(uf )− ν(D(uf,h))D(uf,h)|, |D(uf )−D(uf,h)|)1/r′

Ωf

×
∥∥∥∥ |D(uf )−D(uf,h)|
c+ |D(uf )|+ |D(uf,h)|

∥∥∥∥ 2−r
r

L∞(Ωf )

‖D(uf )−D(vf,h)‖Lr(Ωf )

≤ ε(|ν(D(uf ))D(uf )− ν(D(uf,h))D(uf,h)| , |D(uf )−D(uf,h)|)Ωf

+ C

∥∥∥∥ |D(uf )−D(uf,h)|
c+ |D(uf )|+ |D(uf,h)|

∥∥∥∥2−r

L∞(Ωf )

‖D(uf )−D(vf,h)‖rLr(Ωf ), (1.152)

where we used Young’s inequality (1.74). We choose ε small enough and combine (1.151)–

(1.152) to obtain

‖D(uf )−D(uf,h)‖2
Lr(Ωf )

c+ ‖D(uf )‖2−r
Lr(Ωf ) + ‖D(uf,h)‖2−r

Lr(Ωf )

+ (|ν(D(uf ))D(uf )− ν(D(uf,h))D(uf,h)|, |D(uf )−D(uf,h)|)Ωf

≤ C

(∥∥∥∥ |D(uf )−D(uf,h)|
c+ |D(uf )|+ |D(uf,h)|

∥∥∥∥2−r

L∞(Ωf )

‖D(uf )−D(vf,h)‖rLr(Ωf ) + J2

)
. (1.153)
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Similarly, to bound the error in the Darcy velocity we use (1.20) and (1.21) with G(x) =

νeff (x)x, s = up, t = up,h, and w = up − vp,h, vp,h ∈ Vp,h, to obtain

‖up − up,h‖2
Lr(Ωp)

c+ ‖up‖2−r
Lr(Ωp) + ‖up,h‖2−r

Lr(Ωp)

+ (|νeff (up)up − νeff (up,h)up,h|, |up − up,h|)Ωp

≤ C

(∥∥∥∥ |up − up,h|
c+ |up|+ |up,h|

∥∥∥∥2−r

L∞(Ωp)

‖up − vp,h‖rLr(Ωp) + J4

)
, (1.154)

where

J4 := (νeff (up)κ
−1up − νeff (up,h)κ−1up,h,vp,h − up,h)Ωp .

The factor κ−1 is introduced in the definition of J4 in order that it may be expressed in

terms of adp(·, ·). Similarly, to bound the terms coming from the BJS condition, we set in

(1.20) and (1.21), G(x) = νI(x)x, s = ((uf − ∂tηp) · tf,j)tf,j, t = ((uf,h − ∂tηp,h) · tf,j)tf,j
and w = ((uf − ∂tηp) · tf,j)tf,j − ((vf,h − ξp,h) · tf,j)tf,j, vf,h ∈ Vf,h, ξp,h ∈ Xp,h, to obtain

C
d−1∑
j=1

‖(uf − ∂tηp) · tf,j − (uf,h − ∂tηp,h) · tf,j‖2
Lr(Γfp)

c+ ‖(uf − ∂tηp) · tf,j‖2−r
Lr(Γfp)

+ ‖(uf,h − ∂tηp,h) · tf,j‖2−r
Lr(Γfp)

+ C
d−1∑
j=1

αBJS〈|νI(((uf − ∂tηp) · tf,j)tf,j)((uf − ∂tηp) · tf,j)tf,j

− νI(((uf,h − ∂tηp,h) · tf,j)tf,j)((uf,h − ∂tηp,h) · tf,j)tf,j|,

|((uf − ∂tηp) · tf,j)tf,j − ((uf,h − ∂tηp,h) · tf,j)tf,j|〉Γfp

≤
d−1∑
j=1

∥∥∥∥ |(uf − ∂tηp) · tf,j − (uf,h − ∂tηp,h) · tf,j|
c+ |(uf − ∂tηp) · tf,j|+ |(uf,h − ∂tηp,h) · tf,j|

∥∥∥∥2−r

L∞(Γfp)

× ‖(uf − ∂tηp) · tf,j − (vf,h − ξp,h) · tf,j‖rLr(Γfp) + J6, (1.155)

where

J6 :=
d−1∑
j=1

αBJS〈
√
κ−1(νI(((uf − ∂tηp) · tf,j)tf,j)(uf − ∂tηp) · tf,j

− νI(((uf,h − ∂tηp,h) · tf,j)tf,j)(uf,h − ∂tηp,h) · tf,j), (vf,h − ξp,h) · tf,j

− (uf,h − ∂tηp,h) · tf,j〉Γfp
.
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Combining (1.153)–(1.155) together with the regularity of the solution from Theorems

1.3.11 and 1.4.4, we obtain

‖uf − uf,h‖2
W 1,r(Ωf ) + ‖up − up,h‖2

Lr(Ωp) + |(uf − ∂tηp)− (uf,h − ∂tηp,h)|2BJS + G(u,uh)

≤ C[E(u,uh)
r(‖uf − vf,h‖rW 1,r(Ωf ) + ‖up − vp,h‖rLr(Ωp) + ‖∂tηp − ξp,h‖rH1(Ωp))

+ J2 + J4 + J6], (1.156)

where we used the trace inequality. To bound the last three terms above, note that

J2 = af (uf ,vf,h − uf,h)− af (uf,h,vf,h − uf,h),

J4 = adp(up,vp,h − up,h)− adp(up,h,vp,h − up,h),

J6 = aBJS(uf , ∂tηp; vf,h − uf,h, ξp,h − ∂tηp,h)− aBJS(uf,h, ∂tηp,h; vf,h − uf,h, ξp,h − ∂tηp,h).

Second, we will get a bound of ‖ηp(t)− ηp,h(t)‖H1(Ωp) and ‖pp(t)− pp,h(t)‖L2(Ωp).

We subtract (2.22) from (1.25) and test with (vf,h − uf,h,vp,h − up,h, ξp,h − ∂tηp,h), to

obtain

J2 + J4 + J6 = aep(ηp,h − ηp, ξp,h − ∂tηp,h)

+ bf (vf,h − uf,h, pf,h − pf ) + αbp(ξp,h − ∂tηp,h, pp,h − pp)

+ bp(vp,h − up,h, pp,h − pp) + bΓ(vf,h − uf,h,vp,h − up,h, ξp,h − ∂tηp,h;λh − λ)

= aep(ηp,h − ηp, ξp,h − ∂tηp) + aep(ηp,h − ηp, ∂tηp − ∂tηp,h) + bf (vf,h − uf,h, pf,h −Qf,hpf )

+ bf (vf,h − uf,h, Qf,hpf − pf ) + αbp(ξp,h − ∂tηp,h, pp,h −Qp,hpp)

+ αbp(ξp,h − ∂tηp,h, Qp,hpp − pp)

+ bp(vp,h − up,h, pp,h −Qp,hpp) + bp(vp,h − up,h, Qp,hpp − pp)

+ bΓ(vf,h − uf,h,vp,h − up,h, ξp,h − ∂tηp,h;λh −Qλ,hλ)

+ bΓ(vf,h − uf,h,vp,h − up,h, ξp,h − ∂tηp,h;Qλ,hλ− λ). (1.157)

Since ∇ ·Vp,h = Wp,h and Vp,h · np|Γfp
= Λh, (2.32) and (2.33) imply that

bp(vp,h − up,h, Qp,hpp − pp) = 0, bΓ(0,vp,h − up,h, 0;Qλ,hλ− λ) = 0.
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Now we take (vf,h,vp,h, ξp,h) = (If,huf , Ip,hup, Is,h∂tηp). Then (1.157) can be written as

follows:

J2 + J4 + J6 + aep(ηp − ηp,h, ∂tηp − ∂tηp,h) = aep(ηp,h − ηp, Is,h∂tηp − ∂tηp)

+ bf (If,huf − uf,h, pf,h −Qf,hpf ) + bf (If,huf − uf,h, Qf,hpf − pf )

+ αbp(Is,h∂tηp − ∂tηp,h, pp,h −Qp,hpp) + αbp(Is,h∂tηp − ∂tηp,h, Qp,hpp − pp)

+ bΓ(If,huf −uf,h, Ip,hup−up,h, Is,h∂tηp−∂tηp,h;λh−Qλ,hλ) + bp(Ip,hup−up,h, pp,h−Qp,hpp)

+ bΓ(If,huf − uf,h, 0, Is,h∂tηp − ∂tηp,h;Qλ,hλ− λ). (1.158)

Note that due to (2.24) and (1.144), we have

bΓ(If,huf − uf,h, Ip,hup − up,h, Is,h∂tηp − ∂tηp,h;λh −Qλ,hλ) = 0. (1.159)

We next subtract (2.23) from (1.26) with the choice (wf,h, wp,h) = (Qf,hpf−pf,h, Qp,hpp−pp,h):

s0(∂tpp −Qp,h∂tpp, Qp,hpp − pp,h)Ωp + s0(Qp,h∂tpp − ∂tpp,h, Qp,hpp − pp,h)Ωp

− αbp(∂tηp − Is,h∂tηp, Qp,hpp − pp,h)− αbp(Is,h∂tηp − ∂tηp,h, Qp,hpp − pp,h)

− bp(up − Ip,hup, Qp,hpp − pp,h)− bp(Ip,hup − up,h, Qp,hpp − pp,h)

− bf (uf − If,huf , Qf,hpf − pf,h)− bf (If,huf − uf,h, Qf,hpf − pf,h) = 0. (1.160)

By (2.32) and (2.30), we have

s0(∂tpp −Qp,h∂tpp, Qp,hpp − pp,h)Ωp = 0, bp(up − Ip,hup, Qp,hpp − pp,h) = 0.

Then (1.160) becomes

s0(Qp,h∂tpp − ∂tpp,h, Qp,hpp − pp,h)Ωp = αbp(∂tηp − Is,h∂tηp, Qp,hpp − pp,h)

+ αbp(Is,h∂tηp − ∂tηp,h, Qp,hpp − pp,h) + bp(Ip,hup − up,h, Qp,hpp − pp,h)

+ bf (uf − If,huf , Qf,hpf − pf,h) + bf (If,huf − uf,h, Qf,hpf − pf,h). (1.161)

We now combine (1.158), (1.159), and (1.161), to obtain

J2 + J4 + J6 + aep(ηp,h − ηp, ∂tηp,h − ∂tηp) + s0(Qp,h∂tpp − ∂tpp,h, Qp,hpp − pp,h)Ωp

= aep(ηp,h − ηp, Is,h∂tηp − ∂tηp) + bf (uf − If,huf , Qf,hpf − pf,h)
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+ bf (If,huf − uf,h, Qf,hpf − pf )

+ αbp(Is,h∂tηp − ∂tηp, Qp,hpp − pp,h) + αbp(Is,h∂tηp − ∂tηp,h, Qp,hpp − pp)

+ 〈(If,huf − uf,h) · nf , Qλ,hλ− λ〉Γfp
+ 〈(Is,h∂tηp − ∂tηp,h) · np, Qλ,hλ− λ〉Γfp

.

(1.162)

We next bound the first four and the sixth terms of the right using Young’s inequality (1.74).

We note that the velocity and displacement errors are controlled in L2(0, T ), so the terms

involving such errors are bounded using (1.74) with p = q = 2. The pressure and Lagrange

multiplier errors are controlled in Lr
′
(0, T ), so for such terms we use (1.74) with p = r′ and

q = r. We have

aep(ηp,h − ηp, Is,h∂tηp − ∂tηp) ≤ C(‖ηp,h − ηp‖2
H1(Ωp) + ‖Is,h∂tηp − ∂tηp‖2

H1(Ωp)),

bf (uf − If,huf , Qf,hpf − pf,h) ≤ ε1‖pf,h −Qf,hpf‖r
′

Lr′ (Ωf )
+ C‖If,huf − uf‖rW 1,r(Ωf ),

bf (If,huf − uf,h, Qf,hpf − pf ) ≤ ε2‖uf − uf,h‖2
W 1,r(Ωf )

+ C(‖If,huf − uf‖2
W 1,r(Ωf ) + ‖Qf,hpf − pf‖2

Lr′ (Ωf )
),

αbp(Is,h∂tηp − ∂tηp, Qp,hpp − pp,h) ≤ ε1‖pp,h −Qp,hpp‖r
′

Lr′ (Ωp)
+ C‖Is,h∂tηp − ∂tηp‖rH1(Ωp),

〈(If,huf − uf,h) · nf , Qλ,hλ− λ〉Γfp
≤ ε2‖uf − uf,h‖2

W 1,r(Ωf )

+ C(‖If,huf − uf‖2
W 1,r(Ωf ) + ‖Qλ,hλ− λ‖2

Lr′ (Γfp)
).

(1.163)

We combine (1.162) and (1.163) and integrate in time from 0 to t ∈ (0, T ]:

1

2
(aep(ηp(t)− ηp,h(t),ηp(t)− ηp,h(t)) (1.164)

+ s0‖Qp,hpp(t)− pp,h(t)‖2
L2(Ωp)) +

∫ t

0

(J2 + J4 + J6) ds

≤
∫ t

0

(
ε1‖pf,h −Qf,hpf‖r

′

Lr′ (Ωf )
+ ε1‖pp,h −Qp,hpp‖r

′

Lr′ (Ωp)
+ ε2‖uf − uf,h‖2

W 1,r(Ωf )

)
ds

+
1

2

(
aep(ηp(0)− ηp,h(0),ηp(0)− ηp,h(0)) + s0‖Qp,hpp(0)− pp,h(0)‖2

L2(Ωp)

)
+ C

∫ t

0

(
‖ηp,h − ηp‖2

H1(Ωp) + ‖Is,h∂tηp − ∂tηp‖2
H1(Ωp) + ‖Is,h∂tηp − ∂tηp‖rH1(Ωp)

+ ‖Qf,hpf − pf‖2
Lr′ (Ωf )

+ ‖Qλ,hλ− λ‖2
Lr′ (Γfp)

+ ‖If,huf − uf‖2
W 1,r(Ωf ) + ‖If,huf − uf‖rW 1,r(Ωf )

)
ds
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+

∫ t

0

(
αbp(Is,h∂tηp − ∂tηp,h, Qp,hpp − pp) + 〈(Is,h∂tηp − ∂tηp,h) · np, Qλ,hλ− λ〉Γfp

)
ds.

(1.165)

For the last two terms on the right hand side we use integration by parts:∫ t

0

(
αbp(Is,h∂tηp − ∂tηp,h, Qp,hpp − pp) + 〈(Is,h∂tηp − ∂tηp,h) · np, Qλ,hλ− λ〉Γfp

)
ds

= αbp(Is,hηp − ηp,h, Qp,hpp − pp)
∣∣∣t
0

+ 〈(Is,hηp − ηp,h) · np, Qλ,hλ− λ〉Γfp

∣∣∣t
0

−
∫ t

0

(
αbp(Is,hηp − ηp,h, Qp,h∂tpp − ∂tpp) + 〈(Is,hηp − ηp,h) · np, Qλ,h∂tλ− ∂tλ〉Γfp

)
ds

(1.166)

and bound the terms on the right hand side above as follows:

αbp(Is,hηp − ηp,h, Qp,hpp − pp)
∣∣∣t
0

+ 〈(Is,hηp − ηp,h) · np, Qλ,hλ− λ〉Γfp

∣∣∣t
0

≤ ε2‖ηp(t)− ηp,h(t)‖2
H1(Ωp)

+ C
(
‖Is,hηp(t)− ηp(t)‖2

H1(Ωp) + ‖Qp,hpp(t)− pp(t)‖2
Lr′ (Ωp)

+ ‖Qλ,hλ(t)− λ(t)‖2
Lr′ (Γfp)

+ ‖Is,hηp(0)− ηp,h(0)‖2
H1(Ωp) + ‖Qp,hpp(0)− pp(0)‖2

Lr′ (Ωp)
+ ‖Qλ,hλ(0)− λ(0)‖2

Lr′ (Γfp)

)
,

(1.167)

∫ t

0

(
αbp(Is,hηp − ηp,h, Qp,h∂tpp − ∂tpp) + 〈(Is,hηp − ηp,h) · np, Qλ,h∂tλ− ∂tλ〉Γfp

)
ds

≤ C

∫ t

0

(
‖ηp − ηp,h‖2

H1(Ωp) + ‖Is,hηp − ηp‖2
H1(Ωp)

+‖Qp,h∂tpp − ∂tpp‖2
Lr′ (Ωp)

+ ‖Qλ,h∂tλ− ∂tλ‖2
Lr′ (Γfp)

)
ds. (1.168)

Combining (1.165)–(1.168), we obtain

‖ηp(t)− ηp,h(t)‖2
H1(Ωp) + s0‖Qp,hpp(t)− pp,h(t)‖2

L2(Ωp) +

∫ t

0

(J2 + J4 + J6) ds

≤ ε2

(
‖ηp(t)− ηp,h(t)‖2

H1(Ωp) +

∫ t

0

‖uf − uf,h‖2
W 1,r(Ωf )

)
+ C

∫ t

0

‖ηp − ηp,h‖2
H1(Ωp)ds

+ ε1

∫ t

0

(
‖pf,h −Qf,hpf‖r

′

Lr′ (Ωf )
+ ‖pp,h −Qp,hpp‖r

′

Lr′ (Ωp)

)
ds

+ C

∫ t

0

(
‖Is,hηp − ηp‖2

H1(Ωp) + ‖Is,h∂tηp − ∂tηp‖2
H1(Ωp) + ‖Is,h∂tηp − ∂tηp‖rH1(Ωp)
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+ ‖Qλ,hλ− λ‖2
Lr′ (Γfp)

+ ‖Qp,h∂tpp − ∂tpp‖2
Lr′ (Ωp)

+ ‖Qλ,h∂tλ− ∂tλ‖2
Lr′ (Γfp)

+ ‖Qf,hpf − pf‖2
Lr′ (Ωf )

+ ‖If,huf − uf‖2
W 1,r(Ωf ) + ‖If,huf − uf‖rW 1,r(Ωf )

)
ds

+ C
(
‖Is,hηp(t)− ηp(t)‖2

H1(Ωp) + ‖Qp,hpp(t)− pp(t)‖2
Lr′ (Ωp)

+ ‖Qλ,hλ(t)− λ(t)‖2
Lr′ (Γfp)

+ ‖Is,hηp(0)− ηp(0)‖2
H1(Ωp) + ‖Qp,hpp(0)− pp(0)‖2

Lr′ (Ωp)
+ ‖Qλ,hλ(0)− λ(0)‖2

Lr′ (Γfp)

+ ‖ηp(0)− ηp,h(0)‖2
H1(Ωp) + ‖pp(0)− pp,h(0)‖2

Lr′ (Ωp)

)
. (1.169)

Next, bounds for ‖pf − pf,h‖Lr′ (Ωf ) in the following argument. ‖pp − pp,h‖Lr′ (Ωp) and

‖λ− λh‖Lr′ (Γfp).

Using the inf-sup condition (1.120), we obtain

‖(pf,h −Qf,hpf , pp,h −Qp,hpp, λh −Qλ,hλ)‖Wf×Wp×Λh

≤ C sup
(vf,h,vp,h)∈Vf,h×Vp,h

[bf (vf,h, pf,h −Qf,hpf )

‖(vf,h,vp,h)‖Vf×Vp

+
bp(vp,h, pp,h −Qp,hpp) + bΓ(vf,h,vp,h,0;λh −Qλ,hλ)

‖(vf,h,vp,h)‖Vf×Vp

]
= C sup

(vf,h,vp,h)∈Vf,h×Vp,h

−
[af (uf,h,vf,h)− af (uf ,vf,h)

‖(vf,h,vp,h)‖Vf×Vp

+
adp(up,h,vp,h)− adp(up,vp,h)
‖(vf,h,vp,h)‖Vf×Vp

+
aBJS(uf,h, ∂tηp,h; vf,h,0)− aBJS(uf , ∂tηp; vf,h,0)

‖(vf,h,vp,h)‖Vf×Vp

+
bf (vf,h, Qf,hpf − pf ) + bp(vp,h, Qp,hpp − pp) + bΓ(vf,h,vp,h,0;Qλ,hλ− λ)

‖(vf,h,vp,h)‖Vf×Vp

]
≤ C

[
E(u,uh)G(u,uh)

1/r′ + ‖Qf,hpf − pf‖Lr′ (Ωf )

+ ‖Qp,hpp − pp‖Lr′ (Ωp) + ‖Qλ,hλ− λ‖Lr′ (Γfp)

]
,

we have used (1.21) for the last inequality. Hence, as E(u,uh) ≤ (d+ 1),

ε1

∫ t

0

(
‖pf,h −Qf,hpf‖r

′

Lr′ (Ωf )
+ ‖pp,h −Qp,hpp‖r

′

Lr′ (Ωp)
+ ‖λh −Qλ,hλ‖r

′

Lr′ (Γfp)

)
≤ ε1C

∫ t

0

(
G(u,uh) + ‖Qf,hpf − pf‖r

′

Lr′ (Ωf )
+ ‖Qp,hpp − pp‖r

′

Lr′ (Ωp)
+ ‖Qλ,hλ− λ‖r

′

Lr′ (Γfp)

)
ds.

(1.170)
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Finally, we can combine all the above bounds to get the result. We now integrate (1.156) in

time, combine it with (1.169) and (1.170), take ε1 small enough, then ε2 small enough, and

apply Gronwall’s inequality, to obtain

‖uf − uf,h‖2
L2(0,T ;W 1,r(Ωf )) + ‖up − up,h‖2

L2(0,T ;Lr(Ωp))

+ |(uf − ∂tηp)− (uf,h − ∂tηp,h)|2L2(0,T ;BJS) + ‖Qf,hpf − pf,h‖r
′

Lr′ (0,T ;Lr′ (Ωf ))

+ ‖Qp,hpp − pp,h‖r
′

Lr′ (0,T ;Lr′ (Ωp))
+ ‖Qλ,hλ− λh‖r

′

Lr′ (0,T ;Lr′ (Γfp))

+ ‖ηp − ηp,h‖2
L∞(0,T ;H1(Ωp)) + s0‖Qp,hpp − pp,h‖2

L∞(0,T ;L2(Ωp)) + ‖G(u,uh)‖L1(0,T )

≤ C exp(T )
(
‖uf − If,huf‖2

L2(0,T ;W 1,r(Ωf )) + ‖uf − If,huf‖rLr(0,T ;W 1,r(Ωf ))

+ ‖ηp − Is,hηp‖2
L2(0,T ;H1(Ωp)) + ‖up − Ip,hup‖rLr(0,T ;Lr(Ωp))

+ ‖∂tηp − Is,h∂tηp‖rLr(0,T ;H1(Ωp)) + ‖∂tηp − Is,h∂tηp‖2
L2(0,T ;H1(Ωp))

+ ‖Qf,hpf − pf‖2
L2(0,T ;Lr′ (Ωf ))

+ ‖Qλ,hλ− λ‖2
L2(0,T ;Lr′ (Γfp))

+ ‖Qp,h∂tpp − ∂tpp‖2
L2(0,T ;Lr′ (Ωp))

+ ‖Qλ,h∂tλ− ∂tλ‖2
L2(0,T ;Lr′ (Γfp))

+ ‖ηp − Is,hηp‖2
L∞(0,T ;H1(Ωp)) + ‖Qp,hpp − pp‖2

L∞(0,T ;Lr′ (Ωp))
+ ‖Qλ,hλ− λ‖2

L∞(0,T ;Lr′ (Γfp))

+ ‖Qf,hpf − pf‖r
′

Lr′ (0,T ;Lr′ (Ωf ))
+ ‖Qp,hpp − pp‖r

′

Lr′ (0,T ;Lr′ (Ωp))
+ ‖Qλ,hλ− λ‖r

′

Lr′ (0,T ;Lr′ (Γfp))

+ ‖ηp(0)− ηp,h(0)‖2
H1(Ωp) + ‖pp(0)− pp,h(0)‖2

Lr′ (Ωp)

)
.

The assertion of the theorem follows from the approximation bounds (2.34)–(2.36) and

(2.37)–(1.147) and the use of the triangle inequality for the pressure error terms.

1.6 Numerical results

1.6.1 Convergence test

In this section we discuss numerical results that verify the theoretical bound (1.149).

The numerical experiments in this section are from [3] and were performed by Ilona Am-

bartsumyan as part of our collaboration.
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We discretize the problem (2.22)-(2.24) in time using Backward Euler scheme. Let T

denote the final time and τ the length of time step, then for each n = 1, . . . , N the n-th time

step is tn = nτ . To approximate the time derivatives we use:

dτφ =
φn − φn−1

τ
, n = 1, . . . , N.

For the spacial discretization in fluid domain we will use P1b−P1b MINI elements, we will also

useRT 0−P0 for Vp,h×Wp,h, continuous piecewise linears P1 for Xp,h and piecewise constants

P0 for Λh. We handle nonlinearity in Stokes and Darcy terms using Picard iterations and

we assume that the constant in the Beavers-Joseph-Saffman condition (2.9) does not depend

on fluid viscosity.

We consider a computational domain Ω = [0, 2]×[0, 1], where Ωf = [0, 1]×[0, 1] represents

the fluid region and Ωp = [1, 2] × [0, 1] the solid region. The flow is driven by the pressure

drop: on the left boundary of Ωf we set pin = 1 kPa and on the right boundary of Ωp

pout = 0 kPa, which is also chosen as initial condition for Darcy pressure. Along the top

and bottom boundaries, we impose a no-slip boundary condition for the Stokes flow and

a no-flow boundary condition for the Darcy flow. We also set zero displacement boundary

condition on top, bottom and right parts of boundary of structure subdomain, as well as

zero initial condition for the displacement. We set λp = µp = s0 = α = αBJS = 1.0 and

K = I.

We assume that the fluid viscosity in Stokes region satisfies the Cross model:

νf (|D(uf )|) = νf,∞ +
νf,0 − νf,∞

1 +Kf |D(uf )|2−rf
.

And the effective viscosity in Darcy region also satisfies the Cross model:

νp(|up|) = νp,∞ +
νp,0 − νp,∞

1 +Kp|up|2−rp
,

where the parameters are chosen as follows: Kf = Kp = 1, νf,∞ = νp,∞ = 1, νf,0 = νp,0 = 10,

rf = rp = 1.35. The simulation time is T = 1.0 s and the time step τ = 0.01 s. To verify the

convergence estimate (1.149), we compute a reference solution, obtained on the mesh with

characteristic size h = 1/320. Table 1 shows the relative errors and rates of convergence for

the solutions computed with discretization steps h = 1/20, 1/40, 1/80 and 1/160 for the case
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of lowest order elements. Since we use bounded functions to model viscosity in both regions,

we compute the norms of the errors using r = r′ = 2. As we can see, the results agree with

theory, i.e. we observe at least first convergence rate for all variables.

‖uref
f,h−uf,h‖l2(0,T ;H1(Ωf ))

‖uref
f,h ‖l2(0,T ;H1(Ωf ))

‖uref
p,h−up,h‖l2(0,T ;L2(Ωp))

‖uref
p,h ‖l2(0,T ;L2(Ωp))

‖preff,h−pf,h‖l2(0,T ;L2(Ωf ))

|preff,h ‖l2(0,T ;L2(Ωf ))

h error order error order error order

1/20 4.83E-03 − 1.55E-01 − 2.75E-02 −

1/40 2.31E-03 1.06 8.63E-02 0.85 1.03E-02 1.41

1/80 1.04E-03 1.16 4.08E-02 1.08 4.62E-03 1.16

1/160 3.94E-04 1.40 2.07E-02 0.98 2.14E-04 1.11
‖prefp,h−pp,h‖l2(0,T ;L2(Ωp))

‖prefp,h ‖l2(0,T ;L2(Ωp))

‖prefp,h−pp,h‖l∞(0,T ;L2(Ωp))

‖prefp,h ‖l∞(0,T ;L2(Ωp))

‖
ηref

p,h−ηp,h‖l∞(0,T ;H1(Ωp))

ηref
p,h ‖l∞(0,T ;H1(Ωp))

h error order error order error order

1/20 4.10E-02 − 1.15E-01 − 4.98E-02 −

1/40 1.92E-02 1.10 5.28E-02 1.12 2.88E-02 0.79

1/80 8.24E-03 1.22 2.25E-02 1.23 1.61E-02 0.84

1/160 2.75E-03 1.58 7.48E-03 1.59 6.59E-03 1.29

Table 1: Convergence for P1b× P1b×RT 0 × P0 × P1 × P0 elements

(a) pressure
(b) velocity vector (arrows) and magni-
tude (color)

Figure 1: Nonlinear pressure and velocity solutions at time t = 1
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(a) at t = 0.01 (b) at t = 1

Figure 2: Nonlinear viscosity

(a) pressure (b) velocity

Figure 3: Difference between non-Newtonian and Newtonian solutions at time t = 1

(a) nonlinear solution (b) difference

Figure 4: Non-Newtonian displacement solution and difference at time t = 1
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We also investigate the behavior of solution visually and compare it to the solution of

linear analogue of the method (2.22)-(2.24). For visualization we use the solutions corre-

sponding to the mesh size h = 1/40. All plots are presented at the first and final time

steps. For a fair comparison between models, we calculate the viscosity in linear case as

νlinf = νf
∣∣
rf=2

= 5.5 and νlinp = νp
∣∣
rp=2

= 5.5. Figures with difference between velocity and

displacement solutions are obtained by plotting unonlinf,h −ulinf,h, unonlinp,h −ulinp,h and ηnonlinp,h −ηlinp,h,

where colors represent the magnitude of the corresponding difference and arrows represent

the direction.

As we can see, in nonlinear case the viscosity is high in the middle of the fluid domain

and it decreases towards the boundary, which is due to the fact that the strain rate increases

towards the boundary. On the other hand, the viscosity does not vary as much in the solid

domain due to almost uniform velocity profile (see Figure 2). We note that these observations

agree with conclusions in [38]. Moreover, use of non-Newtomian model results in lower Stokes

velocity, as shown on Figure 3(b), which in turn entails lower displacement, Figure 4(b).

1.6.2 Example 2: application to hydraulic fracturing

We next present an example motivated by hydraulic fracturing. We study the interaction

between a stationary fracture filled with fluid and the surrounding reservoir. The units in

this example are meters for length, seconds for time, and kPa for pressure. We consider

a reference domain Ω̂ = [0, 1] × [−1, 1] and a fracture domain Ω̂f , which is located in the

middle with a boundary

x̂2 = 200(0.05− ŷ)(0.05 + ŷ), ŷ ∈ [−0.05, 0.05].

The reference poroelastic domain is Ω̂p = Ω̂ \ Ω̂f . The computational domain, shown in

Figure 5 (left), is obtained from the reference domain via the mappingx
y

 (x̂, ŷ) =

 x

(5 cos( x̂+ŷ
100

) cos(πx̂+ŷ
100

)2 + ŷ/2− x̂/10)

 .
We enforce an inflow rate uf · nf = 10 m/s, uf · τ f = 0 m/s on the left part of ∂Ωf and

no flow up · np = 0 m/s and no stress σpnp = 0 kPa on the left part of ∂Ωp. On the top,
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bottom, and right boundaries we set pp = 1000 kPa, ηp · np = 0 m/s, and σpnp · τ p = 0

kPa. The initial conditions are pp = 1000 kPa and η = 0 m/s. The poroelastic parameters,

which are typical for hydraulic fracturing and are similar to the ones used in [51], are given

in Figure 5 (right). The nonlinear viscosity model in Stokes and Darcy is from [59] for a

polymer used in hydraulic fracturing, see Figure 6 (left) for the viscosity dependence on the

shear rate. We match the curve using the Cross model with parameters Kf = Kp = 7,

νf,∞ = νp,∞ = 3.0× 10−6 kPa s, νf,0 = νp,0 = 1.0× 10−2 kPa s, and rf = rp = 1.35.

We run the simulation for 300s with time step τ = 1 s and compare the results of the

linear and nonlinear models. For the linear model we use the viscosity for water, νlinf =

νlinp = 1.0 × 10−6 kPa s, which is slightly lower than the minimum value of the nonlinear

viscosity. We present the simulation results at the final time for both models in Figures 6–

8. We note that the scales in the plots are different for the two models, due to significant

differences in the solution values. The computed Stokes and Darcy velocities are shown in

Figure 7. We observe channel-like flow in the fracture with both models. However, the

higher nonlinear viscosity results in smaller velocity, especially near the fracture tip. The

nonlinear viscosity in the fracture is shown in Figure 6 (middle). We note the significant

shear-thinning effect, especially along the wall of the fracture, where the viscosity is reduced

to values in the order of νf,∞. Comparing the Darcy velocity fields in Figure 7, we observe

that the combination of very small permeability and high fluid viscosity in the nonlinear

case results in very little fluid penetration into the reservoir. This is an expected behavior

in hydraulic fracturing. Correspondingly, the nonlinear viscosity in the poroelastic region,

as shown in Figure 6 (right), is significantly reduced in a close vicinity of the fracture, but

is equal to the maximum value νp,0 away from the fracture. In the linear case, the Darcy

velocity is larger and the fluid penetrates further into the reservoir. The behavior for both

models is consistent with the computed pressure fields shown in Figure 8. For both models

we observe increase in pressure near the fracture. In the linear case the pressure gradient

extends away from the fracture. In the nonlinear case, since the fluid cannot penetrate

further into the reservoir, we observe a significant pressure buildup along the fracture, about

100 times larger than in the linear case. This in turn results in about 100 times larger

displacement in the nonlinear case. This includes larger opening of the fracture, all the way
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Parameter Units Values

Young’s modulus E (kPa) 107

Poisson’s ratio σ 0.2

Lame coefficient µp (kPa) 5/12× 107

Lame coefficient λp (kPa) 5/18× 107

Permeability K (m2) (200, 50)× 10−12

Mass storativity s0 (kPa−1) 6.89× 10−2

Biot-Willis const. α 1.0

BJS coeff. αBJS 1.0

Total time T (s) 300

Figure 5: Computational domain (left) and parameters (right) for Example 2

to the tip. We note that our models are for stationary fractures, but the large displacement

and corresponding stress near the fracture tip in the nonlinear case may result in practice

in fracture propagation, as would be expected in hydraulic fracturing. To summarize, this

is a numerically very challenging test case, due to the large stiffness and small permeability

of the rock. The numerical difficulty for the non-Newtonian fluid is further increased due

to the model nonlinearity and the larger viscosity. We observe that the model is capable

of handling parameters in this challenging range and produce results that are qualitatively

similar to practical hydraulic fracturing applications.
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(a) Viscosity model
(b) Stokes viscosity

(c) Darcy viscosity

Figure 6: Nonlinear viscosity model and computed Stokes and Darcy viscosity at t = 300s

(a) Stokes, linear (b) Stokes, nonlinear

(c) Darcy, linear (d) Darcy, nonlinear

Figure 7: Stokes and Darcy velocity at time t = 300s
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(a) pressure, linear (b) pressure, nonlinear (c) displacement, linear
(d) displacement, non-
linear

Figure 8: Poroelastic pressure and displacement at time t = 300s
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2.0 Coupling Biot-Stokes flow with transport

2.1 Introduction and model problem

In this chapter, we will investigate the transport equation with the flows that are solutions

of the Biot-Stokes system in chapter 1. At first, we use the Stokes equations to model

the free fluid in the fractures and the Biot poroelasticity model [12] for the fluid in the

poroelastic region. The latter is based on a linear stress-strain constitutive relationship for

the porous solid, and Darcy’s law, which describes the average velocity of the fluid in the

pores. The interaction across the fracture-matrix interfaces exhibits features of both Stokes-

Darcy coupling [35, 49, 55, 70, 82] and fluid-structure interaction (FSI) [45, 9, 22, 40, 8, 69].

We refer to the Stokes-Biot coupling considered in this chapter as fluid-poroelastic structure

interaction (FPSI). There has been growing interest in such models in the literature. The

well-posedness of the mathematical model was studied in [77]. Numerical studies include

variational multiscale methods for the monolithic system and iterative partitioned scheme

[7], a non-iterative operator-splitting method [19], a partitioned method based on Nitsche’s

coupling [18], and a Lagrange multiplier formulation for the continuity of flux [5].

In this chapter we employ a monolithic scheme for the full-dimensional Stokes-Biot prob-

lem to model flow in fractured poroelastic media. We note that an alternative approach is

based on a reduced-dimension fracture model, including the Reynolds lubrication equation

[48, 51, 56, 61] and an averaged Brinkman equation [20]. Works that do not account for

elastic deformation of the media include averaged Darcy models [60, 42, 62, 30, 44], Forch-

heimer models [43], Brinkman models [58], and an averaged Stokes model that results in a

Brinkman model for the fracture flow [63].

For the discretization of the full-dimensional Stokes-Biot problem we consider the mixed

formulation for Darcy flow in the Biot system, which provides a locally mass conservative flow

approximation and an accurate Darcy velocity. This formulation results in the continuity

of normal velocity condition being of essential type, which is enforced through a Lagrange

multiplier [5]. The discretization allows for the use of any stable Stokes spaces in the fracture
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region and any stable mixed Darcy spaces [15]. For the elasticity equation we employ a

displacement formulation with continuous Lagrange elements.

The Stokes-Biot system is coupled with an advection diffusion equation for modeling

transport of chemical species within the fluid. The transport equation is discretized by a

discontinuous Galerkin (DG) method. DG methods [65, 71, 6, 29, 81] exhibit local mass

conservation, reduced numerical diffusion, variable degrees of approximation, and accurate

approximations for problems with discontinuous coefficients. Due to their low numerical

diffusion, DG methods are especially suited for advection-diffusion problems [29, 28, 81,

33, 84, 2]. Coupled Darcy flow and transport problems utilizing DG for transport have

been studied in [80, 79, 32, 84]. Coupling of Stokes-Darcy flow with transport using a local

discontinuous Galerkin scheme was developed in [83]. A coupled phase field-transport model

for proppant-filled fractures is studied in [57]. To the best of our knowledge, the coupled

Stokes-Biot-transport problem has not been studied in the literature. Here we follow the

approach from [79] for miscible displacement in porous media and employ the non-symmetric

interior penalty Galerkin (NIPG) method for the transport problem. We note that the

dispersion tensor in the transport equation is a nonlinear function of the velocity. The work

in [79] handles this difficulty by utilizing a cut-off operator. However, adopting idea from

[79], we will use discontinuous Galerkin method to handle our transport problem. We avoid

using the ”cut-off” function to do analysis. Hence, the computed velocity do not have to be

modified when used for the transport equation. The chapter is organized as follow, in section

2.1 we set up the transport equation. Due to the estimation of error of transport equation

related to error of flow in Hilbert spaces, in section 2.2, we give some results of the error

of flow in the simplified case. In section 2.3, we give the discrete scheme for the transport

problem. Then we give a stability estimate in section 2.4 and error estimate in section 2.5.

The last section is devoted to give numerical results.

Because the error analysis of transport equation is related to the error of Biot-Stokes

flow in the Hilbert norm only, so within this section, for simplicity, we consider the case

where the spaces of Biot-Stokes flows are Hilbert spaces. We assume the the viscosities are

constants in this section. We restate the problem as follow.

We consider a simulation domain Ω ∈ Rd, d = 2, 3, where Ω = Ωf ∪ Ωp. The interface
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between Ωf ,Ωp is Γfp = ∂Ωf ∩ ∂Ωp.

The flow in the fracture region Ωf is governed by the Stokes equations:

−∇ · σf (uf , pf ) = ff in Ωf × (0, T ], (2.1)

∇ · uf = qf in Ωf × (0, T ], (2.2)

where ε(u),σf are defined as follow

ε(u) =
1

2
(∇uf +∇uTf ), σf (uf , pf ) = −pfI + 2νε(uf ). (2.3)

Let η be the displacement in Ωp, σe(η) and σp(η, p) are the elasticity and poroelasticity

stress tensors, respectively:

σe(η) = λp(∇ · η)I + 2µpD(η), σp(η, pp) = σe(η)− αpppI. (2.4)

The poroelasticity region Ωp is governed by the quasi-static Biot system:

−∇ · σp(ηp, pp) = fp in Ωp × (0, T ], (2.5)

νeffK
−1up +∇pp = 0,

∂

∂t
(s0pp + αp∇ · ηp) +∇ · up = qp in Ωp × (0, T ], (2.6)

where s0 is a storage coefficient and K is a symmetric and uniformly positive definite per-

meability tensor. Following [5, 7, 77], on the fluid-poroelasticity interface Γfp we prescribe

the following interface conditions: mass conservation, balance of normal stress, conservation

of momentum, and the Beavers-Joseph-Saffman (BJS) condition modeling slip with friction

[10, 72]:

uf · nf +

(
∂ηp
∂t

+ up

)
· np = 0 on Γfp × (0, T ], (2.7)

− (σfnf ) · nf = pp, σfnf + σpnp = 0 on Γfp × (0, T ], (2.8)

− (σfnf ) · τ f,j = ναBJS

√
K−1
j

(
uf −

∂ηp
∂t

)
· τ f,j on Γfp × (0, T ], (2.9)

where nf and np are the outward unit normal vectors to ∂Ωf and ∂Ωp, respectively, τ f,j,

1 ≤ j ≤ d − 1, is an orthogonal system of unit tangent vectors on Γfp, Kj = (Kτ f,j) · τ f,j
and αBJS > 0 is an experimentally determined friction coefficient.
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The above system of equations is complemented by a set of boundary and initial condi-

tions. Let Γf = ∂Ωf \Γfp, Γp = ∂Ωp\Γfp = ΓNp ∪ΓDp . For simplicity we assume homogeneous

boundary conditions

uf = 0 on Γf × (0, T ], up · np = 0 on ΓNp × (0, T ],

pp = 0 on ΓDp × (0, T ], ηp = 0 on Γp × (0, T ].

We further set the initial conditions

pp(x, 0) = pp,0(x), ηp(x, 0) = ηp,0(x) in Ωp.

We define the following vector spaces.

Vf := {vf ∈ H1(Ωf )
d : vf = 0 on ∂Ωf \ Γfp}, Wf := L2(Ωf ). (2.10)

Next, let

H(div; Ωp) := {vp ∈ (L2(Ωp))
d : ∇ · vp ∈ L2(Ωp)} (2.11)

and we define

Vp := {vp ∈ H(div,Ωp) : vp · np = 0 on ΓNp × (0, T ]}, Wp := L2(Ωp), (2.12)

Xp := {ξ ∈ H1(Ωp)
d : ξp = 0 on ∂Ωp \ Γfp}. (2.13)

And also, Λ := H1/2(Γfp).

The weak formulation is obtained by multiplying the equations in each region by the

corresponding test functions, integrating by parts the second order terms in space, and

utilizing the interface and boundary conditions. The integration by parts in (2.1) and (2.5)

leads to the bilinear forms, corresponding to the Stokes, Darcy and the elasticity operators:

af (·, ·) : Vf ×Vf −→ R, af (uf ,vf ) := (2νε(uf ), ε(vf ))Ωf
,

adp(·, ·) : Vp ×Vp −→ R, adp(up,vp) := (νK−1up,vp)Ωp ,

aep(·, ·) : Xp ×Xp −→ R, aep(ηp, ξp) := (2µpε(ηp), ε(ξp))Ωp + (λp∇ · ηp,∇ · ξp)Ωp ,
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the bilinear forms

b?(·, ·) : V? ×W? −→ R, b?(v, w) := −(∇ · v, w)Ω? , ? = f, p,

and the interface term

IΓfp
= −〈σfnf ,vf〉Γfp

− 〈σpnp, ξp〉Γfp
+ 〈pp,vp · np〉Γfp

.

To handle the interface term, we introduce a Lagrange multiplier λ with a meaning of Darcy

pressure on the interface [5]

λ = −(σfnf ) · nf = pp on Γfp.

Using (2.8)–(2.9), we obtain

IΓfp
= aBJS(uf , ∂tηp; vf , ξp) + bΓ(vf ,vp, ξp;λ),

where

aBJS(uf ,ηp; vf , ξp) =
d−1∑
j=1

〈
νI αBJS

√
K−1(uf − ηp) · τ f,j, (vf − ξp) · τ f,j

〉
Γfp
,

bΓ(vf ,vp, ξp;µ) = 〈vf · nf + (ξp + vp) · np, µ〉Γfp
.

We get the weak formulation for the problem: given pp(0) = pp,0 ∈ Wp, ηp(0) = ηp,0 ∈ Xp,

find, for t ∈ (0, T ], uf (t) ∈ Vf , pf (t) ∈ Wf , up(t) ∈ Vp, pp(t) ∈ Wp, ηp(t) ∈ Xp, and

λ(t) ∈ Λ such that for all vf ∈ Vf , wf ∈ Wf , vp ∈ Vp, wp ∈ Wp, ξp ∈ Xp, and µ ∈ Λ,

af (uf ,vf ) + adp(up,vp) + aep(ηp, ξp) + aBJS(uf , ∂tηp; vf , ξp) + bf (vf , pf ) + bp(vp, pp)

+ αpbp(ξp, pp) + bΓ(vf ,vp, ξp;λ) = (ff ,vf )Ωf
+ (fp, ξp)Ωp , (2.14)

(s0∂tpp, wp)Ωp
− αpbp

(
∂tηp, wp

)
− bp(up, wp)− bf (uf , wf ) = (qf , wf )Ωf

+ (qp, wp)Ωp , (2.15)

bΓ

(
uf ,up, ∂tηp;µ

)
= 0. (2.16)

The Stokes-Biot problem is coupled with the transport equation in Ω:

φct +∇ · (cu−D∇c) = qc̃, in Ω× (0, T ], (2.17)
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where c(x, t) is the concentration of some chemical component, 0 < φ∗ ≤ φ(x) ≤ φ∗ is the

porosity of the medium in Ωp (it is set to 1 in Ωf ), u is the velocity field over Ω = Ωf ∪ Ωp,

defined as u|Ωf
= uf ,u|Ωp = up, q is the source term given by q

∣∣
Ωf

= qf and q
∣∣
Ωp

= qp, and

c̃ =

 injected concentration cw, q > 0,

resident concentration c, q < 0.

The diffusion/dispersion tensor D, which combines the effects of molecular diffusion and

mechanical dispersion, is a nonlinear function of the velocity, given by

D(u) = dmI + |u|{αlE(u) + αt(I− E(u))}, (2.18)

where dm = φτDm, τ is the tortuosity coefficient, Dm is the molecular diffusivity, E(u) is the

tensor that projects onto the u direction with (E(u))ij =
uiuj
|u|2 , and αl, αt are the longitudinal

and transverse dispersion, respectively. The model is complemented by the initial condition

c(x, 0) = c0(x) in Ω, (2.19)

and the boundary conditions

(cu−D∇c) · n = (cinu) · n on Γin × (0, T ], (2.20)

(D∇c) · n = 0 on Γout × (0, T ], (2.21)

where Γin := {x ∈ ∂Ω : u · n < 0}, Γout := {x ∈ ∂Ω : u · n ≥ 0} and n is the unit outward

normal vector to ∂Ω.

Remark 2.1.1. We note that the coupling between the flow and transport problems is one

way. In particular, the transport equation uses the Stokes-Biot velocity, but the flow problem

does not depend on the concentration.
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2.2 Some numerical estimations for velocity

The stability estimate and error estimate for transport problems in the next sections

depend on the error of the flow problem. Hence, within this section, we will present some

necessary results about error estimation of velocity.

First, we set up the finite element problem for the velocity. Let T fh and T ph be shape-

regular and quasi-uniform partitions of Ωf and Ωp, respectively, both consisting of affine

elements with maximal element diameter h. The two partitions may be non-matching at the

interface Γfp. For the discretization of the fluid velocity and pressure we choose finite element

spaces Vf,h ⊂ Vf and Wf,h ⊂ Wf , which are assumed to be inf-sup stable. Examples of such

spaces include the MINI elements, the Taylor-Hood elements and the conforming Crouzeix-

Raviart elements. For the discretization of the porous medium problem we choose Vp,h ⊂ Vp

and Wp,h ⊂ Wp to be any of well-known inf-sup stable mixed finite element spaces, such as

the Raviart-Thomas or the Brezzi-Douglas-Marini spaces. The global spaces are

Vh = {vh = (vf,h,vp,h) ∈ Vf,h ×Vp,h}, Wh = {wh = (wf,h, wp,h) ∈ Wf,h ×Wp,h}.

We employ a conforming Lagrangian finite element spaces Xp,h ⊂ Xp and Λh ⊂ Λ to ap-

proximate the structure displacement and Lagrange multiplier. Note that the finite element

spaces Vf,h, Vp,h, and Xp,h satisfy the prescribed homogeneous boundary conditions on the

external boundaries ∂Ωf and ∂Ωp.

Semi-discrete Stokes-Biot problem: given pp,h(0) and ηp,h(0), for t ∈ (0, T ], find

uf,h(t) ∈ Vf,h, pf,h(t) ∈ Wf,h, up,h(t) ∈ Vp,h, pp,h(t) ∈ Wp,h, ηp,h(t) ∈ Xp,h, and λh(t) ∈ Λh

such that for all vf,h ∈ Vf,h, wf,h ∈ Wf,h, vp,h ∈ Vp,h, wp,h ∈ Wp,h, ξp,h ∈ Xp,h, and µh ∈ Λh,

af (uf,h,vf,h) + adp(up,h,vp,h) + aep(ηp,h, ξp,h) + aBJS(uf,h, ∂tηp,h; vf,h, ξp,h) + bf (vf,h, pf,h)

+ bp(vp,h, pp,h) + αbp(ξp,h, pp,h) + bΓ(vf,h,vp,h, ξp,h;λh) = (ff ,vf,h)Ωf
+ (fp, ξp,h)Ωp ,

(2.22)

(s0∂tpp,h, wp,h)Ωp − αbp(∂tηp,h, wp,h)− bp(up,h, wp,h)− bf (uf,h, wf,h)

= (qf , wf,h)Ωf
+ (qp, wp,h)Ωp , (2.23)
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bΓ(uf,h,up,h, ∂tηp,h;µh) = 0. (2.24)

We take pp,h(0) = Qp,hpp,0 and ηp,h(0) = Is,hηp,0, where the operators Qp,h and Is,h are

defined in the following section.

We denote by kf ≥ 1 and sf ≥ 1 the degrees of polynomials in the spaces Vf,h and Wf,h

respectively. Let kp ≥ 0 and sp ≥ 0 be the degrees of polynomials in the spaces Vp,h and

Wp,h respectively. Finally, let ks ≥ 1 be the polynomial degree in Xp,h.

It was shown in [5] that the above problem has a unique solution satisfying

‖ηp − ηp,h‖L∞(0,T ;H1(Ωp)) +
√
s0‖pp − pp,h‖L∞(0,T ;L2(Ωp)) + ‖uf − uf,h‖L2(0,T ;H1(Ωf ))

+ ‖up − up,h‖L2(0,T ;L2(Ωp)) +
∣∣(uf − ∂tηp)− (uf,h − ∂tηp,h)

∣∣
L2(0,T ;aBJS)

+ ‖pf − pf,h‖L2(0,T ;L2(Ωf )) + ‖pp − pp,h‖L2(0,T ;L2(Ωp)) + ‖λ− λh‖L2(0,T ;Λh)

≤ C

(
hrkf ‖uf‖

L2(0,T ;H
rkf

+1
(Ωf ))

+ hrsf ‖pf‖L2(0,T ;H
rsf (Ωf )) + hrkp‖up‖L2(0,T ;H

rkp (Ωp))

+ hr̃kp
(
‖λ‖

L2(0,T ;H
r̃kp (Γfp))

+ ‖λ‖
L∞(0,T ;H

r̃kp (Γfp))
+ ‖∂tλ‖L2(0,T ;H

r̃kp (Γfp))

)
+ hrsp

(
‖pp‖L∞(0,T ;H

rsp (Ωp)) + ‖pp‖L2(0,T ;H
rsp (Ωp)) + ‖∂tpp‖L2(0,T ;H

rsp (Ωp))

)
+ hrks

(
‖ηp‖L∞(0,T ;Hrks

+1(Ωp)) +
∥∥ηp∥∥L2(0,T ;Hrks

+1(Ωp))
+
∥∥∂tηp∥∥L2(0,T ;Hrks

+1(Ωp))

))
,

(2.25)

0 ≤ rkf ≤ kf , 0 ≤ rsf ≤ sf + 1, 1 ≤ {rkp , r̃kp} ≤ kp + 1,

0 ≤ rsp ≤ sp + 1, 0 ≤ rks ≤ ks,

where, for vf ∈ Vf , ξp ∈ Xp,

|vf − ξp|2aBJS
= aBJS(vf , ξp; vf , ξp) =

d−1∑
j=1

µαBJS‖K−1/4
j (vf − ξp) · τ f,j‖2

L2(Γfp).

The following result gives an error estimate for the fluid velocity in L∞(0, T ), it is given in

[4]. The result requires control of uf,h(0) and up,h(0). To simplify the analysis, we assume

that the initial pressure pp,0 and displacement ηp,0 are constants.
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Lemma 2.2.1. Assume that pp,0 and ηp,0 are constants. If the solution of (2.14)–(2.16) is

sufficiently regular, there exists a positive constant C independent of h such that

‖uf − uf,h‖L∞(0,T ;H1(Ωf )) + ‖up − up,h‖L∞(0,T ;L2(Ωp)) + ‖∂t(ηp − ηp,h)‖L2(0,T ;H1(Ωp))

+ ‖∂t(pp − pp,h)‖L2(0,T ;L2(Ωp))

≤ C

[
hrkf

(
‖uf‖

L2(0,T ;H
rkf

+1
(Ωf ))

+ ‖uf‖
L∞(0,T ;H

rkf
+1

(Ωf ))
+ ‖∂tuf‖

L2(0,T ;H
rkf

+1
(Ωf ))

)
+ hrsf

(
‖pf‖L2(0,T ;H

rsf (Ωf )) + ‖pf‖L∞(0,T ;H
rsf (Ωf )) + ‖∂tpf‖L2(0,T ;H

rsf (Ωf ))

)
+ hrkp

(
‖up‖L2(0,T ;H

rkp (Ωp)) + ‖up‖L∞(0,T ;H
rkp (Ωp)) + ‖∂tup‖L2(0,T ;H

rkp (Ωp))

)
+ hr̃kp

(
‖λ‖

L2(0,T ;H
r̃kp (Γfp))

+ ‖λ‖
L∞(0,T ;H

r̃kp (Γfp))
+ ‖∂tλ‖L2(0,T ;H

r̃kp (Γfp))

)
+ hrsp

(
‖pp‖L∞(0,T ;H

rsp (Ωp)) + ‖pp‖L2(0,T ;H
rsp (Ωp)) + ‖∂tpp‖L2(0,T ;H

rsp (Ωp))

)
+ hrks

(∥∥ηp∥∥L∞(0,T ;Hrks
+1(Ωp))

+ ‖ηp‖L2(0,T ;Hrks
+1(Ωp)) + ‖∂tηp‖L2(0,T ;Hrks

+1(Ωp))

+‖∂tηp‖L∞(0,T ;Hrks
+1(Ωp)) + ‖∂ttηp‖L2(0,T ;Hrks

+1(Ωp))

)]
. (2.26)

0 ≤ rkf ≤ kf , 0 ≤ rsf ≤ sf + 1, 1 ≤ {rkp , r̃kp} ≤ kp + 1,

0 ≤ rsp ≤ sp + 1, 0 ≤ rks ≤ ks.

Proof. We introduce the errors for all variables and split them into approximation and

discretization errors:

ef := uf − uf,h = (uf − If,huf ) + (If,huf − uf,h) := χf + φf,h,

ep := up − up,h = (up − Ip,hup) + (Ip,hup − up,h) := χp + φp,h,

es := ηp − ηp,h = (ηp − Is,hηp) + (Is,hηp − ηp,h) := χs + φs,h,

efp := pf − pf,h = (pf −Qf,hpf ) + (Qf,hpf − pf,h) := χfp + φfp,h,

epp := pp − pp,h = (pp −Qp,hpp) + (Qp,hpp − pp,h) := χpp + φpp,h,

eλ := λ− λh = (λ−Qλ,hλ) + (Qλ,hλ− λh) := χλ + φλ,h, (2.27)

where the operator I = (If,h, Ip,h, Is,h) satisfies, see [5] for details,

bΓ

(
If,hvf , Ip,hvp, Is,hξp;µh

)
= 0, ∀µh ∈ Λh, (2.28)

bf (If,hvf − vf , wf,h) = 0, ∀wf,h ∈ Wf,h, (2.29)
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bp(Ip,hvp − vp, wp,h) = 0, ∀wp,h ∈ Wp,h, (2.30)

and Qf,h, Qp,h and Qλ,h are the L2–projection operators such that

(pf −Qf,hpf , wf,h)Ωf
= 0, ∀wf,h ∈ Wf,h, (2.31)

(pp −Qp,hpp, wp,h)Ωp = 0, ∀wp,h ∈ Wp,h, (2.32)

〈λ−Qλ,hλ, µh〉Γfp
= 0, ∀µh ∈ Λh. (2.33)

The operators have the following approximation properties:

‖pf −Qf,hpf‖L2(Ωf ) ≤ Chrsf ‖pf‖Hrsf (Ωf ), 0 ≤ rsf ≤ sf + 1, (2.34)

‖pp −Qp,hpp‖L2(Ωp) ≤ Chrsp‖pp‖Hrsp (Ωp), 0 ≤ rsp ≤ sp + 1, (2.35)

‖λ−Qλ,hλ‖L2(Γfp) ≤ Chrkp‖λ‖Hrkp (Γfp), 0 ≤ r̃kp ≤ kp + 1, (2.36)

‖vf − If,hvf‖H1(Ωf ) ≤ Chrkf ‖vf‖
H

rkf
+1

(Ωf )
, 0 ≤ rkf ≤ kf , (2.37)

‖ξp − Ishξp‖Hm(Ωp) ≤ Chrks−m‖ξp‖Hrks (Ωp), m = 0, 1, 1 ≤ rks ≤ ks + 1, (2.38)

‖vp − Ip,hvp‖L2(Ωp) ≤ C
(
hrkp‖vp‖Hrkp (Ωp) + hrkf ‖vf‖

H
rkf

+1
(Ωf )

+ hrks‖ξp‖Hrks
+1(Ωp)

)
,

1 ≤ rkp ≤ kp + 1, 0 ≤ rkf ≤ kf , 0 ≤ rks ≤ ks. (2.39)

To obtain a velocity bound in L∞(0, T ), we differentiate (2.14) and (2.22) in time, and then

subtract (2.22)–(2.23) from (2.14)–(2.15) to form the error equation

af (∂tef ,vf,h) + adp(∂tep,vp,h) + aep(∂tes, ξp,h) + aBJS(∂tef , ∂ttes; vf,h, ξp,h) + bf (vf,h, ∂tefp)

+ bp(vp,h, ∂tepp) + αbp(ξp,h, ∂tepp) + bΓ(vf,h,vp,h, ξp,h; ∂teλ) + (s0 ∂tepp, wp,h)

− αbp(∂tes, wp,h)− bp(ep, wp,h)− bf (ef , wf,h) = 0.

Setting vf,h = φf,h,vp,h = φp,h, ξp,h = ∂tφs,h, wf,h = ∂tφfp,h, and wp,h = ∂tφpp,h, we have

af (∂tχf ,φf,h) + af (∂tφf,h,φf,h) + adp(∂tχp,φp,h) + adp(∂tφp,h,φp,h) + aep
(
∂tχs, ∂tφs,h

)
+ aep

(
∂tφs,h, ∂tφs,h

)
+ aBJS

(
∂tχf , ∂ttχs;φf,h, ∂tφs,h

)
+ aBJS

(
∂tφf,h, ∂ttφs,h;φf,h, ∂tφs,h

)
+ bf (φf,h, ∂tχfp) + bf (φf,h, ∂tφfp,h)

+ bp(φp,h, ∂tχpp) + bp(φp,h, ∂tφpp,h) + αbp
(
∂tφs,h, ∂tχpp

)
+ αbp

(
∂tφs,h, ∂tφpp,h

)
+ bΓ

(
φf,h,φp,h, ∂tφs,h; ∂tχλ

)
+ bΓ

(
φf,h,φp,h, ∂tφs,h; ∂tφλ,h

)
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+ (s0 ∂tχpp, ∂tφpp,h) + (s0 ∂tφpp,h, ∂tφpp,h)− αbp (∂tχs, ∂tφpp,h)− αbp
(
∂tφs,h, ∂tφpp,h

)
− bp(χp, ∂tφpp,h)− bp(φp,h, ∂tφpp,h)− bf (χf , ∂tφfp,h)− bf (φf,h, ∂tφfp,h) = 0. (2.40)

The following terms simplify, due to the projection operators properties (2.32),(2.33),
(2.29), and (2.30):

bf (χf , ∂tφfp,h) = bp(χp, ∂tφpp,h) = bp(φp,h, ∂tχpp) = 0, (2.41)

(s0 ∂tχpp, ∂tφpp,h) = 〈φp,h · np, ∂tχλ〉Γfp
= 0.

Where we have also used that Λh = Vp,h · np|Γfp
for the last equality. We also have

bΓ

(
φf,h,φp,h, ∂tφs,h; ∂tφλ,h

)
= 0,

bΓ

(
φf,h,φp,h, ∂tφs,h; ∂tχλ

)
=
〈
φf,h · nf + ∂tφs,h · np, ∂tχλ

〉
Γfp

.

Where we have used (2.28) and (2.24), and (2.41). Now, the error equation (2.40) becomes

1

2
∂t

(
af (φf,h,φf,h) + adp(φp,h,φp,h) +

∣∣φf,h − ∂tφs,h

∣∣2
aBJS

)
+ aep(∂tφs,h, ∂tφs,h) + s0‖∂tφpp,h‖2

L2(Ωp)

= af (∂tχf ,φf,h) + adp(∂tχp,φp,h) + aep
(
∂tχs, ∂tφs,h

)
+

d−1∑
j=1

〈
ναBJS

√
K−1
j ∂t(χf − ∂tχs) · τ f,j, (φf,h − ∂tφs,h) · τ f,j

〉
Γfp

− bf (φf,h, ∂tχfp)

− αbp(∂tφs,h, ∂tχpp) + αbp(∂tχs, ∂tφpp,h)− 〈φf,h · nf + ∂tφs,h · np, ∂tχλ〉Γfp

≤ C
(
‖φf,h‖2

H1(Ωf ) + ‖φp,h‖2
L2(Ωp) +

∣∣φf,h − ∂tφs,h

∣∣2
aBJS

)
+ ε‖∂tφs,h‖2

H1(Ωp)

+ C
(
‖∂tχf‖2

H1(Ωf ) + ‖∂tχp‖2
L2(Ωp) + ‖∂tχs‖2

H1(Ωp) + ‖∂ttχs‖2
H1(Ωp)

+αbp(∂tχs, ∂tφpp,h) + ‖∂tχfp‖2
L2(Ωf ) + ‖∂tχpp‖2

L2(Ωp) + ‖∂tχλ‖2
L2(Γfp)

)
. (2.42)

Where we have used the Cauchy-Schwartz, Young’s and trace inequalities. Using the coerciv-

ity of the bilinear forms af (·, ·), adp(·, ·), and aep(·, ·), choosing ε small enough, and integrating

(2.42) in time from 0 to an arbitrary t ∈ (0, T ] gives

‖φf,h(t)‖2
H1(Ωf ) + ‖φp,h(t)‖2

L2(Ωp) +
∣∣φf,h(t)− ∂tφs,h(t)

∣∣2
aBJS

+

∫ t

0

(
‖∂tφs,h‖2

H1(Ωp) + s0‖∂tφpp,h‖2
L2(Ωp)

)
ds

≤ ‖φf,h(0)‖2
H1(Ωf ) + ‖φp,h(0)‖2

L2(Ωp) +
∣∣φf,h(0)− ∂tφs,h(0)

∣∣2
aBJS
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+ C

∫ t

0

(
‖φf,h‖2

H1(Ωf ) + ‖φp,h‖2
L2(Ωp) +

∣∣φf,h − ∂tφs,h

∣∣2
aBJS

+ ‖∂tχf‖2
H1(Ωf ) + ‖∂tχp‖2

L2(Ωp) + ‖∂tχs‖2
H1(Ωp) + ‖∂ttχs‖2

H1(Ωp)

+‖∂tχfp‖2
L2(Ωf ) + ‖∂tχpp‖2

L2(Ωp) + ‖∂tχλ‖2
L2(Γfp) + αbp(∂tχs, ∂tφpp,h)

)
ds.

(2.43)

Using integration by parts for the last term, we get∫ t

0

αbp(∂tχs, ∂tφpp,h) ds = αbp(∂tχs(t), φpp,h(t))− αbp(∂tχs(0), φpp,h(0)) (2.44)

−
∫ t

0

αbp(∂ttχs,h, φpp,h) ds ≤ ε

(
‖φpp,h(t)‖2

L2(Ωp) +

∫ t

0

‖φpp,h‖2
L2(Ωp)

)
+ C

(
‖∂tχs(t)‖2

H1(Ωp) + ‖φpp,h(0)‖2
L2(Ωp) + ‖∂tχs(0)‖2

H1(Ωp) +

∫ t

0

‖∂ttχs‖2
H1(Ωp) ds

)
.

Next, using an inf-sup condition for the Stokes-Darcy problem [47, 5] and the error equation

obtained by subtracting (2.22) from (2.14) and taking ξp,h = 0, we obtain

‖(φfp,h, φpp,h, φλ,h)‖Wf×Wp×Λh

≤ C sup
06=vh∈Vh

bf (vf,h, φfp,h) + bp(vp,h, φpp,h) + bΓ(vf,h,vp,h, 0;φλ,h)

‖vh‖V

= C sup
0 6=vh∈Vh

(−af (ef ,vf,h)− adp(ep,vp,h)− aBJS(ef , ∂tes; vf,h, 0)

‖vh‖V

+
−bf (vf,h, χfp)− bp(vp,h, χpp)− bΓ(vf,h,vp,h, 0;χλ)

‖vh‖V

)
.

We have bp(vp,h, χpp) = 0 and 〈vp,h ·np, χλ〉Γfp
= 0. Then, using the continuity of the bilinear

forms and the trace inequality, we get

ε(‖φfp,h‖2
L2(Ωf ) + ‖φpp,h‖2

L2(Ωp) + ‖φλ,h‖2
L2(Γfp))

≤ Cε
(
‖φf,h‖2

H1(Ωf ) + ‖φp,h‖2
L2(Ωp) + ‖φs,h‖2

H1(Ωp) +
∣∣φf,h − ∂tφs,h

∣∣2
aBJS

+ ‖χf‖2
H1(Ωf ) + ‖χp‖2

L2(Ωp) + ‖χs‖
2
H1(Ωp) + ‖∂tχs‖

2
H1(Ωp)

+‖χfp‖2
L2(Ωf ) + ‖χpp‖2

L2(Ωp) + ‖χλ‖L2(Γfp)

)
. (2.45)

Finally, to control the error at t = 0, we note that the assumed solution regularity on

the right hand side of (2.26) implies that (2.14)–(2.16) and (2.22)–(2.24) hold at t = 0.
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We subtract (2.22)–(2.23) from (2.14)–(2.15) at t = 0, sum the two equations, and take

vf,h = φf,h,vp,h = φp,h, ξp,h = ∂tφs,h, wf,h = φfp,h, and wp,h = φpp,h, to obtain

af (φf,h(0),φf,h(0)) + adp(φp,h(0),φp,h(0)) +
∣∣φf,h(0)− ∂tφs,h(0)

∣∣2
aBJS

= −aep(φs,h(0), ∂tφs,h(0))− s0(∂tφpp,h(0), φpp,h(0))Ωp

+ af (χf (0),φf,h(0)) + adp(χp(0),φp,h(0)) + aep
(
χs(0), ∂tφs,h(0)

)
+

d−1∑
j=1

〈
µαBJS

√
K−1
j (χf (0)− ∂tχs(0)) · τ f,j, (φf,h(0)− ∂tφs,h(0)) · τ f,j

〉
Γfp

− bf (φf,h(0), χfp(0))

+ αbp(∂tφs,h(0), χpp(0)) + αbp(∂tχs(0), φpp,h(0)) + 〈φf,h(0) · nf + ∂tφs,h(0) · np, χλ(0)〉Γfp
.

Since pp,h(0) = Qp,hpp,0 and ηp,h(0) = Is,hηp,0, we have that φpp,h(0) = 0 and φs,h(0) = 0.

Since pp,0 and ηp,0 are constants, we also have that χs = 0, χpp = 0, and χλ = 0. It is then

easy to see that

‖φf,h(0)‖2
H1(Ωf ) + ‖φp,h(0)‖2

L2(Ωp) +
∣∣φf,h(0)− ∂tφs,h(0)

∣∣2
aBJS

≤ C(‖χf‖2
H1(Ωf ) + ‖χp‖2

L2(Ωp) + ‖χfp‖2
L2(Ωf )). (2.46)

The assertion of the lemma follows from combining (2.43)–(2.46) and using Gronwall’s

inequality, the triangle inequality, and the approximation properties (2.34)–(2.39).

Now, we will prove the following lemma.

Lemma 2.2.2. With the assumption similar to the lemma 2.2.1, we have the following

estimation,

‖∇ · (up − up,h)‖L2(0,T ;L2(Ωp)) ≤ Chmin{kf ,ks,sf+1,sp+1,kp+1}.

Proof. From (2.15), we have

(s0∂tpp, wp)Ωp − αpbp(∂tηp, wp)− bp(up, wp) = (qp, wp)Ωp .

We subtract this equation with the corresponding finite element equation we get,

(s0∂tepp, wp,h)Ωp − αpbp(∂tes, wp,h)− bp(ep, wp,h) = 0. (2.47)
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Where epp = pp−pp,h, es = ηp−ηp,h and ep = up−up,h. Let Πp,h be the mixed finite element

interpolation, we write

ep = up − up,h = (up − Πp,hup) + (Πp,h − up,h) := χp + Φp,h.

Now we chose wp,h = ∇ · Φp,h in the equation (2.47), we get

‖∇ · Φp,h‖2
Ωp

= −bp(Φp,h,∇ · Φp,h) =− (s0∂tepp,∇ · Φp,h)Ωp + αpbp(∂tes,∇ · Φp,h)Ωp (2.48)

+ bp(χp,∇ · Φp,h).

By Cauchy-Schwarz inequality, we have −(s0∂tepp,∇ ·Φp,h)Ωp ≤ C‖∂tepp‖2
Ωp

+ ε‖∇ ·Φp,h‖2
Ωp

,

and similarly for the two other terms in (2.48), we deduce that

‖∇ · Φp,h‖2
Ωp
≤ C(‖∂tepp‖2

Ωp
+ ‖∂tes‖2

Ωp
+ ‖∇ · χp‖2

Ωp
) (2.49)

Or we can have ‖∇ ·Φp,h‖Ωp ≤ C(‖∂tepp‖Ωp + ‖∂tes‖Ωp + ‖∇ ·χp‖Ωp). We have ‖∇ · ep‖Ωp ≤

‖∇ · χp‖Ωp + ‖∇ · Φp,h‖Ωp , therefore

‖∇ · ep‖Ωp ≤ C(‖∂tepp‖Ωp + ‖∂tes‖Ωp + ‖∇ · χp‖Ωp).

By the property of the MFE interpolation, we have ‖∇ · χp‖Ωp ≤ Chkp+1, together with

lemma (2.2.1), we get the desired result.

Lemma 2.2.3. Under assumption of lemma (2.2.1), for any choice of stable spaces when d

= 2, and for ff ≥ 2, kp ≥ 1, sp ≥ 1, and ks ≥ 2 when d = 3, there exists a positive constant

M = M(uf , pf ,up, pp,ηp, λ), such that for t ∈ (0, T ] we have the estimate

‖∇ · up,h‖L2(0,T ;L∞(Ωp)) ≤M.
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Proof. We do the following estimations

‖∇ · up,h‖L∞(Ωp) ≤ ‖∇ · (up,h − Πp,hup)‖L∞(Ωp) + ‖∇ · Πp,hup‖L∞(Ωp).

With Piola’s transformation, we have ∇ · v = 1
JE
∇̂·v̂, where JE is the Jacobian of the map

from reference triangle to FE triangle. So for any finite element vector vp,h we have the

estimation:

‖∇ · vp,h‖∞,E ≤
1

hd
‖∇̂·v̂p,h‖∞,Ê ≤

C

hd
‖∇̂·v̂p,h‖Ê ≤ C

hd/2

hd
‖∇ · vp,h‖E = Ch−d/2‖∇ · vp,h‖E.

Therefore,

‖∇ · up,h‖L∞(Ωp) (2.50)

≤ h−d/2‖∇ · (up,h − Πp,hup)‖L2(Ωp) + ‖∇ · Πp,hup‖L∞(Ωp)

≤ h−d/2(‖∇ · (up,h − up)‖L2(Ωp) + ‖∇ · (up − Πp,hup)‖L2(Ωp)) + ‖∇ · Πp,hup‖L∞(Ωp)

The MFE interpolation Πp,h from Vp to Vp,h satisfies [1]

‖∇ · (up − Πp,hup)‖L2(Ωp) ≤ Chrkp‖∇ · up‖rkp , 1 ≤ rkp ≤ kp + 1.

Because ∇ · Πp,hup is the L2-projection of ∇ · up, we have the estimation

‖∇ · Πp,hup‖L∞(Ωp) ≤ C‖∇ · up‖L∞(Ωp) <∞. (2.51)

Hence, from (2.50), by taking integral over t, we get the desired result.

In the next section, we need the fact that ‖∇·uf,h‖L∞(Ωf ), and ‖∇·up,h‖L∞(Ωp) is bounded

to do analysis. From the lemma 2.2.1, we get the bound for ‖∇·uf,h‖L∞(Ωf ), and from lemma

2.2.3, we at least get the bound of ‖∇ · up,h‖L2(0,T ;L∞(Ωp)).
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2.3 Weak formulation for transport

Let Th be a quasi-uniform family of triangle partition of Ω, where h is the maximal

element diameter. We denote by Eh all interior edges, and Eh,out, Eh,in to be the set of edges

on Γout,Γin respectively. On each edges, a unit normal vector ne is arbitrarily fixed. On the

boudary, ne coindides with the outward unit normal vector. Following [79], we adopt the

DG scheme known as the non-symmetric interior penalty Galerkin (NIPG) [71].

For s ≥ 0, define

Hs(Th) = {φ ∈ L2(Ω) : φ ∈ Hs(E), E ∈ Th}.

Now we define the jump and average for φ ∈ Hs(Th), s > 1/2. Let Ei, Ej ∈ Hs(Th) and

e = ∂Ei ∩ ∂Ej ∈ Eh, with ne exterior to Ei. Denote the jump to be

[φ] = (φ|Ei
)|e − (φ|Ej

)|e,

and the average

{φ} =
1

2
((φ|Ei

)|e + (φ|Ej
)|e).

The usual Sobolev norm on each element is denoted by ‖ · ‖m,E, we equip the the space

Hs(Th) with the norm

|||φ|||m,Ω = (
∑
E∈Th

‖φ‖2
m,E)1/2.

The finite element space is taken to be

Dr(Th) = {φ ∈ L2(Ω : φ|E ∈ Pr(E)), E ∈ Th},

where Pr(E) denotes the space of polynomials of degree less than or equal to r on E.

Now, we are ready to set up the DG scheme adopting the idea in [79]. First, let us define

the bilinear form Buh
(c, ψ) and the linear functional Lh(ψ) as follow.

Buh
(c, ψ) =

∑
E∈Th

∫
E

(D(uh)∇c− cuh) · ∇ψ −
∑
e∈Eh

∫
e

{D(uh)∇c · ne}[ψ] (2.52)

+
∑
e∈Eh

∫
e

{D(uh)∇ψ · ne}[c] +
∑
e∈Eh

∫
e

c∗uh · ne[ψ] +
∑

e∈Eh,out

∫
e

cuh · neψ (2.53)
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−
∫

Ω

cq−ψ + Jσ,β0 (c, ψ) (2.54)

where, c∗|e is the upwind value of concentration

c∗|e =

c|E1 if uh · ne > 0

c|E2 if uh · ne < 0.

for ne is the outward unit normal vector to E1, and

q+ = max(q, 0)

q− = min(q, 0).

Jσ,β0 (c, ψ) is the interior penalty term, defined as follow

Jσ,β0 (c, ψ) :=
∑
e∈Eh

σe

hβe

∫
e

[c][ψ]

where, σ is a discrete positive function that takes constant value σe on the edge, and bounded

below by σ∗ > 0 and above σ∗, he is the side of e and β ≥ 0 is a real number. The linear

functional Lh(ψ) is defined as

Lh(ψ) =

∫
Ω

cwq
+ψ −

∑
e∈Eh,in

∫
e

cinuh · neψ. (2.55)

The the DG method for the transport problem is stated as follow: find ch ∈ L∞(J,Dr(Th))

such that

(φ
∂ch
∂t

, ψ) +Buh
(ch, ψ) = Lh(ψ),∀ψ ∈ Dr(Th),∀t ∈ J, (2.56)

(ch, ψ) = (c0, ψ),∀ψ ∈ Dr(Th), t = 0. (2.57)

Let P̂h denote the L2 projection of Hs(Th) onto Dr(Th), and define the interpolation error,

finite element error as:

EI
c = P̂hc− c, Ec = c− ch.

In this section we discuss the stability and error estimates for the transport problem (2.56).

We note that a similar scheme has been used and analyzed in details in [79]. The main

difference and improvement in this work is the fact that the numerically computed velocity

field uh is directly incorporated into the scheme for transport (2.56), while in [79] the authors

used a special ”cut-off” operator in order to ensure optimal properties of the method.
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2.4 Stability analysis

First, we introduce some notation for norms as follow

‖u‖(L2(Ω))d = ‖(|u|2)‖L2(Ω), (2.58)

‖u‖(L∞(Ω))d = ‖(|u|2)‖L∞(Ω). (2.59)

Where | · |2 is the usual Euclidean norm for vectors. In [79], there given the following

properties of dispenser matrix D.

Lemma 2.4.1. Let D(u) defined as in equation (2.18), where, dm(x) ≥ 0, αl(x) ≥ 0 and

αt(x) ≥ 0 are nonnegative functions of x ∈ Ω. Then

D(u)∇c · ∇c ≥ (dm + min(αl, αt)|u|)|∇c|22. (2.60)

In particular, if dm(x) ≥ dm,∗ > 0 uniformly in the domain Ω, then D(u) is uniformly

positive definite and for all x ∈ Ω, we have,

D(u)∇c · ∇c ≥ dm,∗|∇c|22. (2.61)

Lemma 2.4.2. Let D(u) defined as in equation (2.18), where, dm(x) ≥ 0, αl(x) ≥ 0 and

αt(x) ≥ 0 are nonnegative function of x ∈ Ω, and the dispersivity αl and αt are uniformly

bounded, i.e. αl(x) ≤ α∗l and αt(x) ≤ α∗t .

Then

‖D(u)−D(v)‖(L2(Ω))d×d ≤ kD‖u− v‖(L2(Ω))d (2.62)

where, kD = (4α∗t + 3α∗l )d
3/2 is a fixed number (d = 2 or 3 is the dimension of domain Ω.)

In addition, let |D(u)|2 be the matrix norm of D(u) induced by the usual Euclidean

norm, one can show that |D(u)−D(v)|2 ≤ C|u− v|2.

In the lemmas about stability estimate and also error estimate below, we need an assump-

tion that ‖∇ · uh‖L∞(Ω) is bounded. From lemma (2.2.1), we have ‖up,f‖L∞(Ωf ) is bounded,

and by lemma (2.2.3) we have ‖∇ ·up,h‖L2(0,T ;L∞(Ωp)) is bounded, which is weaker than what

we need. Another approach to the problem is to prove that uh is bounded, it is accomplished

in [4].
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Lemma 2.4.3. Assume that ‖∇ · uh‖L∞(Ω) is bounded, and let ch be a solution of (2.56).

Then for all t ∈ [0, T ], we have

|||ch(T )|||20,Ω +

∫ T

0

|||∇ch|||20,Ωds (2.63)

≤ CeT
(
|||ch(0)|||20,Ω +

∫ T

0

[ ∫
Ω

c2
w(q+)2 +

∑
Eh,in

∫
e

|uh · ne|c2
in

])
Proof. At each time t, we take ψ = ch(t) in the equation (2.56), then we get

(φ
∂ch
∂t

, ch) +
∑
E∈Th

∫
E

(D(uh)∇ch − chuh) · ∇ch −
∑
e∈Eh

∫
e

{D(uh)∇ch · ne}[ch]

+
∑
e∈Eh

∫
e

{D(uh)∇ch · ne}[ch] +
∑
e∈Eh

∫
e

c∗huh · ne[ch] +
∑

e∈Eu,out

∫
e

uh · nec2
h (2.64)

−
∫

Ω

q−c2
h + Jσ,β0 (ch, ch)

=

∫
Ω

cwq
+ch −

∑
e∈Eh,in

∫
e

cinuh · nech.

We have

−
∑
E∈Th

∫
E

(chuh) · ∇ch =
1

2

∑
E∈Th

∫
E

(∇ · uh)c2
h −

1

2

∑
E∈Th

∫
∂E

(uh · nE)c2
h

=
1

2

∑
E∈Th

∫
E

(∇ · uh)c2
h −

1

2

∑
e∈Eh

∫
e

(uh · ne)[c2
h]−

1

2

∑
e∈Eh,in,out

(uh · ne)c2
h

Now, we make the following abbreviation

J1 := (φ
∂ch
∂t

, ch)Ω +
∑
E∈Th

∫
E

D(Uh)∇ch · ∇ch (2.65)

J2 :=
1

2

∑
E∈Th

∫
E

(∇ · uh)c2
h −

1

2

∑
e∈Eh

∫
e

(uh · ne)[c2
h] +

∑
e∈Eh

∫
e

c∗huh · ne[ch] (2.66)

J3 :=
1

2

∑
e∈Eh,out

〈chuh · ne, ch〉e −
1

2

∑
e∈Eh,in

〈chuh · ne, ch〉e (2.67)

=
1

2

∑
e∈Eh,out

〈chu · ne, ch〉e −
1

2

∑
e∈Eh,in

〈chu · ne, ch〉e

J4 := −
∫

Ω

q−c2
h + Jσ,β0 (ch, ch). (2.68)
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We have the last equality for J3 because on Γf ,Γp, the velocity uh and the normal

component uh · n are the L2 -projection of the true velocity. The equation (2.64) become

J1 + J2 + J3 + J4 = Lh(ch).

With each term, we do the following estimate.

(φ
∂ch
∂t

, ch)Ω =
φ

2

∂

∂t
|||ch|||20,Ω,

using lemma (2.4.1), we have

∑
E∈Th

∫
E

D(uh)∇ch · ∇ch ≥ dm,∗|||∇ch|||20,Ω

Therefore, J1 ≥ C( ∂
∂t
|||ch|||20,Ω + |||∇ch|||20,Ω) for some constant C. With the second term,

J2 =
1

2

∑
E∈Th

∫
E

(∇ · uh)c2
h +

∑
e∈Eh

∫
e

(c∗h − {ch})(uh · ne)[ch]

=
1

2

∑
E∈Th

∫
E

(∇ · uh)c2
h +

1

2

∑
e∈Eh

∫
e

|uh · ne|[ch]2.

We have the estimate 1
2

∑
E∈Th

∫
E

(∇·uh)c2
h ≤ C|||ch|||20,Ω, where C = 1

2
‖∇·uh‖L∞(Ω). The

second term in J2 is positive.

Clearly, we have the two terms J3, J4 are also positive. From the above arguments, one

can deduce that

(φ
∂ch
∂t

, ch) +Buh
(ch, ch) ≥ φ∗

∂

∂t
|||ch|||20,Ω + dm,∗|||∇ch|||20,Ω (2.69)

+
1

2

∑
E∈Th

∫
E

(∇ · uh)c2
h +

1

2

∑
e∈Eh

∫
e

|uh · ne|[ch]2

+
1

2

∑
e∈Eh,out

〈chuh · ne, ch〉e −
1

2

∑
e∈Eh,in

〈chuh · ne, ch〉e −
∫

Ω

q−c2
h + Jσ,β0 (ch, ch).

Notice that, except for the term 1
2

∑
E∈Th

∫
E

(∇ · uh)c2
h, all other terms of the right hand

side are positive. We have, ∫
Ω

cwq
+ch ≤

∫
Ω

c2
w(q+)2 +

∫
Ω

c2
h.
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and,

−
∑

e∈Eh,in

∫
e

cinuh · nech ≤
∑

e∈Eh,in

|uh · ne|(εc2
h +

1

4ε
c2
in)

The term
∑

e∈Eh,in
|uh · ne|εc2

h can be hiddden by the term J3. Combining all the above

estimates, and from the equation (2.64), we get to the inequality,

∂

∂t
|||ch|||20,Ω + |||∇ch|||20,Ω ≤ C

(
|||ch|||20,Ω +

∫
Ω

c2
w(q+)2 +

∑
Eh,in

∫
e

|uh · ne|c2
in

)

for some constant C. Integrating the above equation from 0 to t ∈ [0, T ], we have

|||ch(t)|||20,Ω +

∫ t

0

|||∇ch|||20,Ω

≤ |||ch(0)|||20,Ω + C

∫ t

0

[
|||ch|||20,Ω +

∫
Ω

c2
w(q+)2 +

∑
Eh,in

∫
e

|uh · ne|c2
in

]
.

Thus, by Gronwall’s lemma, for all t ∈ [0, T ], we have

|||ch(T )|||20,Ω +

∫ T

0

|||∇ch|||20,Ω

≤ CeT
(
|||ch(0)|||20,Ω +

∫ T

0

[ ∫
Ω

c2
w(q+)2 +

∑
Eh,in

∫
e

|uh · ne|c2
in

])
.

We just completed the lemma of stability estimate.
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2.5 Error estimate

Now, we will do analysis about error estimate. Let Π̄u ∈ Vh denote the L2 projection

of u, that is

(u− Π̄u,vh)Ω = 0,∀vh ∈ Vh.

The L2 projection has the approximation property [27],

‖u− Π̄u‖m,Ω ≤ Khl−m‖u‖l,Ω, 0 ≤ m ≤ l ≤ min {kf , kp, ks}+ 1

From the above approximation property and the trace inequality:

∀e ∈ ∂E, ‖u‖L2(e) ≤ K(h−1/2‖u‖L2(E) + h1/2|u|1,E), ∀u ∈ (H1(E))d (2.70)

by summing all over elements, we can deduce that

∑
E∈Th

∑
e∈∂E

‖u− Π̄u‖L2(e) ≤ Khl−1/2‖u‖l,Ω, 1 ≤ l ≤ min {kf , kp, ks}+ 1. (2.71)

Let Πc be the Scott Zhang interpolation of c. First, we prove the following lemma.

Lemma 2.5.1. Assume Πc ∈ Dr(Th). For any point p on any edge, we have |Πc(p)−c(p)| <

Chr+1. Where C depends only on c and independent of h.

Proof. If r = 0, assume E is the element that contains e. Let g be the centroid of E, then

Πc(g) = c(g). For any p ∈ e, we have Πc(p) = Πc(g) = c(g).

Consider the function f(t) := c((1− t)g+ tp), we have c(p)− c(g) = f(1)− f(0) = f ′(ξ), ξ ∈

(0, 1). We have f ′(ξ) = cx(xp − xg) + cy(yp − yg), where xp, yp are the x, y coordinates of

p respectively. Notice that |xp − xg| ≤ h, |yp − yg| ≤ h, hence |c(p) − Πc(p)| ≤ Ch, where

C = 2‖c‖W∞1 (Ω).

If 0 < r, then by restricting on each edge, Πc become one dimension Lagrange interpo-

lation of c on such edge. Thus, by interpolation theory we have |Πc(p)− c(p)| < Chr+1.
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We define θc := c − Πc, and δc := ch − Πc. By the approximation property in [27], we

have

|||θc|||Ω ≤ Chr+1, and |||∇θc|||Ω ≤ Chr. (2.72)

We also define a bi-linear form,

Bu(c, ψ) :=
∑
E∈Th

∫
E

(D(u)∇c− cu) · ∇ψ −
∑
e∈Eh

∫
e

{D(u)∇c · ne}[ψ] (2.73)

+
∑
e∈Eh

∫
e

{D(u)∇ψ · ne}[c] +
∑
e∈Eh

∫
e

c∗u · ne[ψ] +
∑

e∈Eh,out

∫
e

cu · neψ

−
∫

Ω

cq−ψ + Jσ,β0 (c, ψ)

Also, the linear form

L(ψ) :=

∫
Ω

cwq
+ψ −

∑
e∈Eh,in

∫
e

cinu · neψ.

Becasue c is the true solution, c satisfies the equation

(φ∂tc, ψ) +Bu(c, ψ) = L(ψ),∀ψ ∈ Dr(Th). (2.74)

We take (2.56) subtract (2.74), we get

(φ∂t(ch − Πc), ψ)Ω +Buh
(ch − Πc, ψ)

= (φ∂t(c− Πc), ψ)Ω +Bu(c− Πc, ψ) +Bu(Πc, ψ)−Buh
(Πc, ψ) + Lh(ψ)− L(ψ),

∀ψ ∈ Dr(Th).

If we chose ψ = δc in the above equation, then it becomes

(φ∂tδc, δc)Ω +Buh
(δc, δc)

= (φ∂tθc, δc)Ω +Bu(θc, δc) +Bu(Πc, δc)−Buh
(Πc, δc) + Lh(δc)− L(δc). (2.75)

Similar to previous section, we denote θc := c− Πc, and δc := ch − Πc. By replacing ch

by δc in (2.69), then from there we can deduce that

(φ∂tδc, δc)Ω +Buh
(δc, δc) ≥ φ∗

∂

∂t
|||δc|||20,Ω + dm,∗|||∇δc|||20,Ω +

1

2

∫
Ω

(∇ · uh)δ2
c
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+
1

2

∑
e∈Eh

∫
e

|uh · ne|[δc]2 +
1

2

∑
e∈Eh,out

〈δcuh · ne, δc〉e −
1

2

∑
e∈Eh,in

〈δcuh · ne, δc〉e

−
∫

Ω

q−δ2
c + Jσ,β0 (δc, δc)

Hence,

(φ∂tδc, δc)Ω +Buh
(δc, δc) +M

∫
Ω

δ2
c ≥ φ∗

∂

∂t
|||δc|||20,Ω + dm,∗|||∇δc|||20,Ω

+
1

2

∑
e∈Eh

∫
e

|uh · ne|[δc]2 +
1

2

∑
e∈Eh,out

〈δcuh · ne, δc〉e −
1

2

∑
e∈Eh,in

〈δcuh · ne, δc〉e

−
∫

Ω

q−δ2
c + Jσ,β0 (δc, δc)

where M = 1
2
‖∇ · uh‖∞. Now, we are going to do analysis for the right hand side of (2.75).

We have

(φ∂tθc, δc)Ω ≤
(φ∗)2

4
|||∂tθc|||2Ω + |||δc|||2Ω. (2.76)

And,

Bu(Πc, δc)−Buh
(Πc, δc) =

∑
E∈Th

∫
E

((D(u)−D(uh))∇Πc) · ∇δc

−
∑
E∈Th

∫
E

Πc(u− uh) · ∇δc −
∑
e∈Eh

∫
e

{(D(u)−D(uh))∇Πc · ne}[δc]

+
∑
e∈Eh

∫
e

{(D(u)−D(uh))∇δc · ne}[Πc] +
∑
e∈Eh

∫
e

(Πc)∗(u− uh) · ne[δc]

+
∑

e∈Eh,out

∫
e

Πc(u− uh) · neδc =: T1 + T2 + ...+ T6.

and,

Bu(θc, δc) =
∑
E∈Th

(D(u)∇θc,∇δc)Ω −
∑
E∈Th

θcu · ∇δc −
∑
e∈Eh

∫
e

{D(u)∇θc · ne}[δc]

+
∑
e∈Eh

∫
e

{D(u)∇δc · ne}[θc] +
∑
e∈Eh

∫
e

(θc)
∗u · ne[δc] +

∑
e∈Eh,out

∫
e

θcu · neδc

−
∫

Ω

q−θcδc + Jσ,β0 (θc, δc) =: H1 +H2 + ...+H8.
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Now, we will give estimate for each term Ti above. Using ∇c is bounded and ‖∇Πc‖∞ ≤

C‖∇c‖∞, together with ‖D(u)−D(uh)‖2 ≤M‖u− uh‖2, we have

T1 ≤ C
∑
E∈Th

‖u− uh‖L2(E)‖∇δc‖L2(E) ≤ C(
1

4ε
|||u− uh|||20,Ω + ε|||∇δc|||20,Ω).

By using Πc is bounded, we also have similar estimate for the second term

T2 ≤ C(
1

4ε
‖u− uh‖2

L2(Ω) + ε|||∇δc|||20,Ω).

We will use the penalty term to handle the third term as follow,

T3 = −
∑
e∈Eh

∫
e

{(D(u)−D(uh))∇Πc · ne}[δc]

≤
∑
e∈Eh

∫
e

h

4ε
{(D(u)−D(uh))∇Πc · ne}2 +

ε

h
[δc]

2

≤
∑
e∈Eh

∫
e

h

4ε
|D(u)−D(uh)|22(|(∇Πc)+|22 + |(∇Πc)−|22) +

ε

h
[δc]

2

≤
∑
e∈Eh

Ch

4ε
‖u− uh‖2

L2(e) +
∑
e∈Eh

∫
e

ε

h
[δc]

2

Where, in the third step, we have used the fact that ∇Πc is bounded. Now, we use [c] = 0

in interior edges, and lemma (2.5.1) for the following estimate.

T4 =
∑
e∈Eh

∫
e

{(D(u)−D(uh))∇δc · ne}[Πc− c] (2.77)

≤ C
∑
e∈Eh

h

∫
e

|D(u)−D(uh)|2(|(∇δc)+|2 + |(∇δc)−|2)

≤ C
∑
e∈Eh

h

∫
e

|u− uh|2(|(∇δc)+|2 + |(∇δc)−|2)

≤ C
∑
e∈Eh

∫
e

h

4ε
|u− uh|22 + hε|(∇δc)+|22 + hε|(∇δc)−|22

≤ C
∑
e∈Eh

h

4ε
‖u− uh‖2

L2(e) + Cε
∑
E∈Th

‖∇δc‖2
L2(E)

Where in the last step, we have used the trace and inverse inequality. We can also use

penalty term to handle the next term.

T5 =
∑
e∈Eh

∫
e

(Πc)∗(u− uh) · ne[δc] ≤
∑
e∈Eh

∫
e

h

4ε

(
(Πc)∗(u− uh) · ne

)2
+
ε

h
[δc]

2 (2.78)
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≤
∑
e∈Eh

C

4ε
h‖u− uh‖2

L2(e) +
∑
e∈Eh

∫
e

ε

h
[δc]

2

The term T6 can be done as follow.

T6 =
1

2

∑
Eh,out

∫
e

Πc(u− uh) · neδc ≤
1

2

∫
Γ

1

4hε
|Πc(u− uh) · ne|22 + hεδ2

c (2.79)

≤ C

∫
Γ

1

hε
|(u− uh) · ne|22 + ε

∫
Ω

δ2
c .

Similarly,

Lh(δc)− L(δc) =
∑

e∈Eh,in

∫
e

cin(u− uh) · neδc ≤ C

∫
Γ

1

hε
|(u− uh) · ne|22 + ε

∫
Ω

δ2
c . (2.80)

Now, we will give estimate for Hi terms,

H1 =
∑
E∈Th

(D(u)∇θc,∇δc)E ≤
∑
E∈Th

∫
E

1

4ε
|D(u)∇θc|2 + ε

∫
E

|∇δc|2 (2.81)

≤ C

4ε
|||∇θc|||0,Ω + ε|||∇δc|||0,Ω

H2 = −
∑
E∈Th

∫
E

θcu · ∇δc ≤
∑
E∈Th

∫
E

1

4ε
|θcu|2 + ε|∇δc|2 ≤

C

4ε
|||θc|||0,Ω + ε|||∇δc|||0,Ω (2.82)

H3 = −
∑
e∈Eh

∫
e

{D(u)∇θc · ne}[δc] ≤
∑
e∈Eh

∫
e

h

4ε
{D(u)∇θc · ne}2 +

ε

h
[δc]

2 (2.83)

≤ C

4ε

∑
e∈Eh

∫
e

h|∇θc|2 +
∑
e∈Eh

∫
e

ε

h
[δc]

2

H4 =
∑
e∈Eh

∫
e

{D(u)∇δc · ne}[θc] ≤ C
∑
e∈Eh

∫
e

εh|∇δc|2 +
h−1

ε
[θc]

2 (2.84)

≤ C(
∑
E∈Th

∫
E

ε(∇δc)2 +
∑
e∈Eh

h−1

ε
[θc]

2)

Where we have used the trace and inverse inequality for the second estimate.

H5 =
∑
e∈Eh

∫
e

(θc)
∗u · ne[δc] ≤

∑
e∈Eh

C

∫
e

h((θc)
∗)2 +

ε

h
[δc]

2 (2.85)
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≤
∑
E∈Th

C

∫
E

θ2
c + h2|∇θc|2 +

∑
e∈Eh

ε

h
[δc]

2

H6 =
∑

e∈Eh,out

∫
e

θcu · neδc ≤
∑

e∈Eh,out

∫
e

Ch−1θ2
c + hδ2

c (2.86)

≤
∑

e∈Eh,out

∫
e

Ch−1θ2
c +

∑
E∈Th

∫
E

δ2
c

H7 =

∫
Ω

(−q−)θcδc ≤
∫

Ω

(−q−)
1

4ε
θ2
c +

∫
Ω

(−q−)εδ2
c ≤

∫
Ω

Cθ2
c +

∫
Ω

(−q−)εδ2
c (2.87)

Notice that −q− is positive, and the second term in H7 can be hidden in the left hand side.

The term H8 can be handled similarly. We take β = 1 in the penalty term.

H8 = Jσ,β0 (θc, δc) =
∑
e∈Eh

σ

h

∫
e

[θc][δc] ≤
∑
e∈Eh

σ

h

∫
e

1

4ε
[θc]

2 +
∑
e∈Eh

σ

h

∫
e

ε[δc]
2 (2.88)

≤
∑
E∈Th

Cσ

h2

∫
E

θ2
c + h2|∇θc|2 +

∑
e∈Eh

σ

h

∫
e

ε[δc]
2.

Integrating (2.75) over [0, τ ] with τ ∈ (0, T ], and by combining all the above estimate, we

deduce the following estimate using Gronwall’s lemma.

|||δc(τ)|||20,Ω +

∫ τ

0

|||∇δc|||20,Ω +
∑
e∈Eh

∫
e

[δc]
2/h

≤ Ceτ
∫ τ

0

(
‖u− uh‖2

L2(Ω) + h‖u− uh‖2
Eh

+ h−1‖(u− uh) · ne‖2
Γ

+|||∂tθc|||20,Ω + |||∇θc|||20,Ω + h−2|||θc|||20,Ω + h−1‖θc‖2
Γout

)
ds

Where ‖u‖Eh
:= (

∑
e∈Eh

∫
e
u2)1/2, ‖u‖Γ := (

∫
Γ

u2)1/2, and ‖u‖Γout := (
∫

Γout
u2)1/2. We have

the following estimation

h1/2‖u− uh‖Eh
≤ h1/2(‖u− Π̄u‖Eh

+ ‖Π̄u− uh‖Eh
)

≤ h1/2‖u− Π̄u‖Eh
+ C‖Π̄u− uh‖Ω

≤ h1/2‖u− Π̄u‖Eh
+ C‖Π̄u− u‖Ω + C‖u− uh‖Ω

85



One can deduce that,

|||δc|||L∞(0,T,L2(Ω)) + |||∇δc|||L2(0,T,L2(Ω)) ≤ CeT
(
‖u− uh‖L2(0,T,L2(Ω))

+h1/2‖u− Π̄u‖L2(0,T,L2(Eh)) + ‖u− Π̄u‖L2(0,T,L2(Ω)) + h−1/2‖(u− uh) · ne‖L2(0,T,L2(Γ))

+|||∂tθc|||L2(0,T,L2(Ω)) + |||∇θc|||L2(0,T,L2(Ω)) + h−1|||θc|||L2(0,T,L2(Ω)) + h−1/2‖θc‖L2(0,T,L2(Γout))

)
.

Where, with any normed space X, ‖x(t)‖L∞(0,T,X) := supt∈[0,T ] ‖x(t)‖X and ‖x(t)‖L2(0,T,X) :=

(
∫ T

0
‖x(t)‖2

Xds)
1/2. Notice that we have (u−uh) ·ne|Γ = 0, so from (2.25), (2.71) and (2.72),

by using triangle inequality we get the following result.

Lemma 2.5.2. Assume ‖∇ · uh‖L∞(Ω) is bounded, and let Ec = c − ch be the error of the

concentration and its finite element approximation. Then

|||Ec|||L∞(0,T,L2(Ω)) + |||∇Ec|||L2(0,T,L2(Ω)) ≤ CeT
(
hmin{kf ,ks,kp+1,sf+1,sp+1,r}

)
.

2.6 Numerical result

In this section, we present results from several computational experiments in two dimen-

sions. The method is implemented using the finite element package FreeFem++ [53].

2.6.1 Convergent test

In this test we study the convergence of the spatial discretization using analytical so-

lution. We take the region for fluid is Ωf = [0, 1] × [0, 1], and region for the porous is

Ωp = [1, 2]× [0, 1]. We will use the Backward Euler scheme to approximate the time deriva-

tive, specifically, we will approximate ∂c
dt

by

∂c(tn)

∂t
≈ cn − cn−1

δt
, n = 1, ..., N.

Where N is the final time step. If we set αp = 2, then the following set of functions become

a true solution for the Biot-Stokes system.

uf (t) = cos(t)

1 + 2x

0

 ,
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up(t) = cos(t)

1 + x

0

 ,

η(t) = sin(t)

x
0

 ,

pp(t) = (λp + 2µp)sin(t) + 2µfcos(t),

pf (t) = (λp + 2µp)sin(t) + 6µfcos(t).

We can see that they satisfy the boundary conditions. The right hand sides of the Biot-

parameter φ q c0(x, y) dm αl αt cin σe β

value 1.0 1.0 0.0 1.0 0.0 0.0 0.0 50 1.0

Table 2: Table of parameters

Stokes system are computed correspondingly. To avoid the effect of time discretization error,

we chose small δt, T : T = 0.00001, and δt = 0.1 ∗ T . We take the true concentration as

follow,

c(t) =
t

T
y2(y − 1)2x2(x− 2)2. (2.89)

We take the diffusion tensor D = I, porosity φ = 1, and information about finite element

spaces is in table 3. By chosing the above functions, we always have D∇c · n = 0, on the

whole boundary. Hence from the boundary condition

(cu−D∇c) · n = (cinu) · n on Γin, (2.90)

(D∇c) · n = 0 on Γout. (2.91)

We deduce that cin = 0.0. The values of constants are taken as in table 2. The right

hand side is to be made to equal the left hand side, we take q = 1, and the function cw

is computed accordingly. We get the below error table with convergence rate. We have

intensionally chose dt to be small in order to avoid error contributed by approximation of

time derivative ∂c
∂t

. With the above chosen finite element spaces, from the lemma (2.5.2),

we expect a convergence of order 1 for the concentration, and from the lemma (2.2.1), we

expect a convergence of order 1 for velocity. The numerical results are in tables 4 and 5.

87



paprameter value

Vf,h [P1b, P1b]

Wp,h P1

Vp,h RT0

Wp,h P0

Xh [P1, P1]

Λh P0

Ch P1dc

Table 3: Table of finite element spaces

2.6.2     Experiments with filter

Again, we consider a computational domain Ω = [0, 2] × [0, 1], where Ωf = [0, 1] × [0, 1] 

represents the fluid region and Ωp = [1, 2] × [0, 1] the porous region. The flow is driven by the 

pressure drop: on the left boundary of Ωf we set pin = 10kP a and on the right boundary of Ωp, 

pout = 0kP a, which is also chosen as initial condition for Darcy pressure. Along the top and 

bottom boundaries, we impose a no-slip boundary condition for the Stokes

h ‖uf − uf,h‖L∞(0,T ;H1(Ωf )) ‖up − up,h‖L∞(0,T ;L2(Ωp))

error rate error rate

1/16 1.24E-1 —- 1.56E-2 —-

1/32 7.28E-2 0.77 7.75E-3 1.00

1/64 3.62E-2 1.00 3.84E-3 1.01

Table 4: Table of error for velocity
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h ‖c− ch‖L∞(0,T ;L2(Ω)) + |||∇(c− ch)|||L2(0,T ;L2(Ω))

error rate

1/16 1.46E-4 —-

1/32 5.30E-5 1.40

1/64 2.50E-5 1.08

Table 5: Table of error for concentration

flow and a no-flow boundary condition for the Darcy flow. We also set zero displacement

boundary condition on top, bottom and right parts of boundary of structure subdomain, as

well as zero initial condition for the displacement. We set λp = µp = s0 = α = αBJS = 1.0

and K = I. We assume that the fluid viscosity in Stokes region satisfies the Cross model:

νf (|D(uf )|) = νf,∞+
νf,0−νf,∞

1+Kf |D(u)f )|2−rf
. And the effective viscosity in Darcy region also satisfies

the Cross model: νp(up) = νp,∞ + νp,0−νp,∞
1+Kp|up|2−rp . Where we chose Kf = Kp = 1, νf,∞ = νp,∞ =

1, νf,0 = νp,0 = 10, rf = rp = 1.35. We do the experiments for both velocity fields from

linear case and non-linear case. In the case of linear problem, we chose rf = rp = 2. Taking

T = 10, δt = 0.1, the velocity fields are as below. In this case, tangential velocity is not

allow. We see that the velocity field of the linear case is a little bit higher than the case of

non-linear, it is because the non-linear case has higher viscosity.

(a) Linear velocity field (b) Nonlinear velocity field

Figure 9: Velocity fields at t = 0.1
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(a) Linear velocity field (b) Nonlinear velocity field

Figure 10: Velocity fields at t = 0.3

For the following experiments, first we keep injecting concentration from the left and in

the second test, we take a plume of concentration to see how it moves over time. We run the

case that the horizontal velocity is caused by pressure drop with Pin, Pout are the pressure of

the left and right boundary respectively. The parameters of the Biot-Stokes system are the

same in the experiment that we did in chapter 1, and the parameters of transport equation

are taken as the table below. We see that the concentration is moving from the left to

the right corresponding to the velocity. In the later time, we see that the concentration

accumulates along the top and the bottom boundary. It is due to the fact that the velocity

is very small near the top and bottom boundary. It appears to be an appropriate behavior.

Below are images of concentration with the case D = 0.01, and with injecting concentra-

tion.

(a) Linear concentration (b) Nonlinear concentration

Figure 11: Concentration at t = 0.1
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paprameter value

fespace of C P1dc

φ

0.5 on Ωp, i.e x ≥ 1

1 on Ωf , i.e x < 1.

qc∗ 0

c0(x, y) either

1, if (x− 0.5)2 + (y − 0.5)2 ≤ 0.12

0, otherwise

or 0

ρf , ρp 1

cin 0.0

T 10

dt 0.1

Table 6: Table of parameters
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(a) Linear concentration (b) Nonlinear concentration

Figure 12: Concentration at t = 0.2

(a) Linear concentration (b) Nonlinear concentration

Figure 13: Concentration at t = 0.3

(a) Linear concentration (b) Nonlinear concentration

Figure 14: Concentration at t = 0.4

92



(a) Linear concentration (b) Nonlinear concentration

Figure 15: Concentration at t = 0.5

(a) Linear concentration (b) Nonlinear concentration

Figure 16: Concentration at t = 0.6

(a) Linear concentration (b) Nonlinear concentration

Figure 17: Concentration at t = 0.7
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(a) Linear concentration (b) Nonlinear concentration

Figure 18: Concentration at t = 0.8

In the following, we will do some experiments to see some behavior of the concentration

moving under the effect of velocity. For these experiments, we will take into account the effect

of gravity, hence equation (1.1) and (1.6) now become −∇·σf (uf , pf ) = ρfg∇Z, in Ωf , and

νeffK
−1up + ∇pp + ρpg∇Z = 0, in Ωp. Where ρf , ρp is the density, g = 9.8 is the gravity

constant, Z is the depth, hence ∇Z = (0,−1)T . We set ρ = 0.5 and pin = 1, pout = 0 in this

experiment.

Before showing the concentration, we will show the velocity fields. We witness that with

the effect of gravity, we have a velocity field moving to the right and down. Also, we see

that there exists an inflow velocity in the top right of the filter. It is also due to the effect

of gravity. The concentration, moving toward the bottom boundary and then it cumulates

there.

(a) Linear velocity field (b) Nonlinear velocity field

Figure 19: Velocity field at t = 0.1
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(a) Linear velocity field (b) Nonlinear velocity field

Figure 20: Velocity field at t = 0.2

(a) Linear velocity field (b) Nonlinear velocity field

Figure 21: Velocity field at t = 0.3

(a) Linear velocity field (b) Nonlinear velocity field

Figure 22: Velocity field at t = 0.7

Below are the images from running the case with the effect of gravity.
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(a) Linear concentration (b) Nonlinear concentration

Figure 23: Concentration at t = 0.1

(a) Linear concentration (b) Nonlinear concentration

Figure 24: Concentration at t = 0.2

(a) Linear concentration (b) Nonlinear concentration

Figure 25: Concentration at t = 0.3
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(a) Linear concentration (b) Nonlinear concentration

Figure 26: Concentration at t = 0.4

(a) Linear concentration (b) Nonlinear concentration

Figure 27: Concentration at t = 0.5

(a) Linear concentration (b) Nonlinear concentration

Figure 28: Concentration at t = 0.6

97



(a) Linear concentration (b) Nonlinear concentration

Figure 29: Concentration at t = 0.7

2.6.3 Flow and transport through a fractured reservoir

In this example, we use the domain and the velocity field from section (1.6.2). The

porosity function φ is 1 in the fluid region, and 0.4 in the porous region. The initial value of

the concentration is 0 over all the region. We inject the concentration on the left boundary

of the fluid region. We take dm = 5 ∗ 10−2, αl = αt = 10−4. The whole time length will be

T = 20. The velocity field is shown in figures 30 and 31. In the images, we can see that

tracer come from the left boundary of the fluid and propagates along the fracture following

the Stokes velocity. The tracer also diffuses into the poroelastic region, however the form of

the concentration still resembles the fluid domain. In both cases, the concentration has the

highest value at the tip of the fracture. However, in the case of linear velocity, we witness

the velocity go toward the surrounding along the border of fracture. Hence, we see the

concentration diffuse to the surrounding. While, in the nonlinear case, the velocity, flow

along the fracture, hence the concentration is transmitted to the tip of the fracture and

accumulates there.
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(a) Linear velocity (b) Nonlinear velocity

Figure 30: Velocity field at time t = 2

(a) Linear velocity (b) Nonlinear velocity

Figure 31: Velocity field of the fluid region at time t = 2
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(a) Linear velocity (b) Nonlinear velocity

Figure 32: Concentration at time t = 2

(a) Linear velocity (b) Nonlinear velocity

Figure 33: Concentration at time t = 4

(a) Linear velocity (b) Nonlinear velocity

Figure 34: Concentration at time t = 20
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2.7 Conclusion

In the first chapter, we study the coupling of Biot-Stokes equations that is given by

(1.1), (1.5), (1.6) and (1.7), with viscosity models given by Carreau model, Cross model and

Power law model. We formulate the problem two way: Lagrange multiplier formulation and

alternative formulation. The reason we need to have the alternative formulation is because

the term ∂tηp in the Lagrange formulation that make it difficult to prove the existence of the

solution in this formulation. By setting us = ∂tηp, and using the operator A: Aσe = D(ηp),

we can set up the alternative formulation. Then we can use the theorem 1.3.7 to show that

there exists solution for the alternative formulation. Then we can come back to prove that

the Lagrange multiplier formulation has solution. However, the alternative formulation is

difficult and expensive to implement because of the term σe belongs to a vector space of

matrix. Thus, we use the Lagrange formulation to implement. We do two experiments for

the problem. The first one is about convergent test and the second one is an application to

hydraulic fracturing. Due to technical problem when using theorem 1.3.7, in this work we

have to assume that ff = fp = 0, and qf = 0. In the work of the paper [3], with different

approach, we can prove the existence of the solution without assuming that ff = fp = 0, and

qf = 0. It may possible to extend this work to Navier-Stokes - Biot models, models with

mixed elasticity formulations, multiphase flow in porous media, and multirate time-stepping

schemes.

In the second chapter, we investigate the transport equation (2.17) with the velocity field

from the Stokes-Biot problem. Following [79], we set up the DG scheme (2.73). We note

that the dispersion tensor in the transport equation is a nonlinear function of the velocity.

The work in [79] handles this difficulty by utilizing a cut-off operator. Here we can avoid the

need of using cut-off operator after showing that ∇ · uh is bounded. We then do numerical

experiments about convergent test and experiment with filter.
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[22] Hans-Joachim Bungartz and Michael Schäfer. Fluid-structure interaction: modelling,
simulation, optimisation, volume 53. Springer Science & Business Media, 2006.

[23] Sergio Caucao, Gabriel N. Gatica, Ricardo Oyarzúa, and Ivana Sebestová. A fully-
mixed finite element method for the Navier-Stokes/Darcy coupled problem with non-
linear viscosity. J. Numer. Math., 25(2):55–88, 2017.

[24] Aycil Cesmelioglu. Analysis of the coupled Navier-Stokes/Biot problem. J. Math.
Anal. Appl., 456(2):970–991, 2017.

[25] Aycil Cesmelioglu, Hyesuk Lee, Annalisa Quaini, Kening Wang, and Son-Young Yi.
Optimization-based decoupling algorithms for a fluid-poroelastic system. In Topics in
numerical partial differential equations and scientific computing, volume 160 of IMA
Vol. Math. Appl., pages 79–98. Springer, New York, 2016.

[26] S-S Chow and GF Carey. Numerical approximation of generalized Newtonian fluids
using Powell–Sabin–Heindl elements: I. theoretical estimates. International journal
for numerical methods in fluids, 41(10):1085–1118, 2003.

[27] Ph G Ciarlet. The finite element method for elliptic problems. North Holland-Elsevier
Science Publishers, Amsterdam, New York, Oxford, 19(7):8, 1978.

[28] Bernardo Cockburn and Clint Dawson. Approximation of the velocity by coupling
discontinuous Galerkin and mixed finite element methods for flow problems. Comput.
Geosci., 6(3-4):505–522, 2002. Locally conservative numerical methods for flow in
porous media.

[29] Bernardo Cockburn and Chi-Wang Shu. The local discontinuous Galerkin method
for time-dependent convection-diffusion systems. SIAM J. Numer. Anal., 35(6):2440–
2463, 1998.

[30] C. D’Angelo and A. Scotti. A mixed finite element method for Darcy flow in frac-
tured porous media with non-matching grids. ESAIM: Math. Model. Numer. Anal.,
46(2):465–489, 2012.

104



[31] Monique Dauge. Elliptic boundary value problems on corner domains, volume 1341
of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1988. Smoothness and
asymptotics of solutions.

[32] Clint Dawson. Conservative, shock-capturing transport methods with nonconservative
velocity approximations. Comput. Geosci., 3(3-4):205–227 (2000), 1999.

[33] Clint Dawson, Shuyu Sun, and Mary F. Wheeler. Compatible algorithms for coupled
flow and transport. Comput. Methods Appl. Mech. Engrg., 193(23-26):2565–2580,
2004.

[34] D. Di Pietro and J. Droniou. A hybrid high-order method for Leray–Lions elliptic
equations on general meshes. Mathematics of Computation, 86(307):2159–2191, 2017.

[35] M. Discacciati, E. Miglio, and A. Quarteroni. Mathematical and numerical models for
coupling surface and groundwater flows. Appl. Numer. Math., 43(1-2):57–74, 2002.

[36] Sebastián Domı́nguez, Gabriel N. Gatica, Antonio Márquez, and Salim Meddahi.
A primal-mixed formulation for the strong coupling of quasi-Newtonian fluids with
porous media. Adv. Comput. Math., 42(3):675–720, 2016.

[37] R. Durán. Error analysis in Lp, 1 ≤ p ≤ ∞, for mixed finite element methods for linear
and quasi-linear elliptic problems. ESAIM: Mathematical Modelling and Numerical
Analysis, 22(3):371–387, 1988.

[38] V. J. Ervin, E. W. Jenkins, and S. Sun. Coupling nonlinear Stokes and Darcy flow us-
ing mortar finite elements. Applied Numerical Mathematics, 61(11):1198–1222, 2011.

[39] VJ Ervin, EW Jenkins, and S. Sun. Coupled generalized nonlinear Stokes flow with
flow through a porous medium. SIAM Journal on Numerical Analysis, 47(2):929–952,
2009.

[40] Luca Formaggia, Alfio Quarteroni, and Allesandro Veneziani. Cardiovascular Mathe-
matics: Modeling and simulation of the circulatory system, volume 1. Springer Science
& Business Media, 2010.

[41] Stefan Frei, Barbel Holm, Thomas Richter, Thomas Wick, and Huidong Yang, ed-
itors. Fluid-Structure Interaction: Modeling, Adaptive Discretisations and Solvers,
volume 20 of Radon Series on Computational and Applied Mathematics. De Gruyter,
2017.

105



[42] N. Frih, V. Martin, J. E. Roberts, and A. Saada. Modeling fractures as interfaces
with nonmatching grids. Comput. Geosci., 16(4):1043–1060, 2012.

[43] N. Frih, J. E. Roberts, and A. Saada. Modeling fractures as interfaces: a model for
Forchheimer fractures. Comput. Geosci., 12(1):91–104, 2008.

[44] A. Fumagalli and A. Scotti. Numerical modelling of multiphase subsurface flow in the
presence of fractures. Commun. Appl. Ind. Math., 3(1):e–380, 23, 2012.

[45] Giovanni P. Galdi and Rolf Rannacher, editors. Fundamental trends in fluid-structure
interaction, volume 1 of Contemporary Challenges in Mathematical Fluid Dynamics
and Its Applications. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2010.

[46] G.P. Galdi. An introduction to the mathematical theory of the Navier-Stokes equations:
Steady-state problems. Springer Science & Business Media, 2011.

[47] J. Galvis and M. Sarkis. Non–matching mortar discretization analysis for the coupling
Stokes–Darcy equations. Electron. Trans. Numer. Anal, 26(20):07, 2007.

[48] B. Ganis, M. E. Mear, A. Sakhaee-Pour, M. F. Wheeler, and T. Wick. Modeling
fluid injection in fractures with a reservoir simulator coupled to a boundary element
method. Comput. Geosci., 18(5):613–624, 2014.

[49] V. Girault and B. Rivière. DG approximation of coupled Navier-Stokes and Darcy
equations by Beaver-Joseph-Saffman interface condition. SIAM J. Numer. Anal.,
47(3):2052–2089, 2009.

[50] V. Girault, D. Vassilev, and I. Yotov. Mortar multiscale finite element methods for
Stokes–Darcy flows. Numerische Mathematik, 127(1):93–165, 2014.

[51] V. Girault, M. F. Wheeler, B. Ganis, and M. E. Mear. A lubrication fracture model
in a poro-elastic medium. Math. Models Methods Appl. Sci., 25(4):587–645, 2015.

[52] P. Grisvard. Elliptic problems in nonsmooth domains. SIAM, 2011.

[53] F. Hecht. New development in FreeFem++. J. Numer. Math., 20(3-4):251–265, 2012.

[54] J. Janela, A. Moura, and A. Sequeira. A 3D non-Newtonian fluid–structure interaction
model for blood flow in arteries. J. Comput. Appl. Math., 234(9):2783–2791, 2010.

106



[55] W. J. Layton, F. Schieweck, and I. Yotov. Coupling fluid flow with porous media
flow. SIAM J. Numer. Anal., 40(6):2195–2218, 2003.

[56] S. Lee, M. F. Wheeler, and T. Wick. Pressure and fluid-driven fracture propagation
in porous media using an adaptive finite element phase field model. Comput. Methods
Appl. Mech. Engrg., 305:111–132, 2016.
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