

Title Page

A Distributed Energy Management Strategy for Renewable Powered Communication
Microgrid using Game Theory and Reinforcement Learning

by

Rui Hu

Bachelor of Engineer, Sichuan University, 2012

Master of Science, Michigan Technological University, 2015

Submitted to the Graduate Faculty of the

Swanson School of Engineering

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2019

 ii

COMMITTEE PAGE
UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Rui Hu

It was defended on

November 8, 2019

and approved by

Gregory Reed, Ph.D., Professor, Department of Electrical and Computer Engineering

Zhi-Hong Mao, Ph.D., Professor, Department of Electrical and Computer Engineering

Brandon Grainger, Ph.D., Assistant Professor, Department of Electrical and Computer
Engineering

Nitin Sharma, Ph.D., Associate Professor, Department of Mechanical Engineering and Materials

Science

Dissertation Director: Dr. Alexis Kwasinski, Associate Professor, Department of Electrical and
Computer Engineering

 iii

Copyright © by Rui Hu

2019

 iv

Abstract

A Distributed Energy Management Strategy for Renewable Powered Communication
Microgrid using Game Theory and Reinforcement Learning

Rui Hu, Ph.D.

University of Pittsburgh, 2019

This dissertation explores the use of energy management strategies for base stations in a

communication microgrid, which is intended to be operating in island mode powered exclusively

by renewable power sources. The energy management strategy aims at searching for an optimal

energy management plan considering both communication quality and energy availability. In this

dissertation, the objective is to accomplish such energy management using distributed control

architecture. Three approaches have been made: multi-player energy management game, multi-

agent reinforcement learning, and a hierarchical load-ratio learning game algorithm. The

modeling, performance, and applicable conditions of the proposed algorithms are discussed and

compared. Numerical simulation of communication microgrids in multiple cases implemented

with the three algorithms was conducted. As the results show, the hierarchical load-ratio learning

game algorithm has a better performance compared to the multi-player game approach with less

computation complexity and a faster-converging speed compared to that of the reinforcement

learning approach.

 v

Table of Contents

Preface ... xiii

1.0 Introduction and Literature Review ... 1

2.0 Communication Microgrid Structure and its Energy Management 7

2.1 Communication Microgrid Architecture ... 7

2.1.1 Microgrid Components ... 7

2.1.2 Communication Base Station Load ... 8

2.1.3 Communication Traffic Shaping and Quality of Service 8

2.1.4 Power Electronics Interface ... 10

2.1.5 Solar Cell Generator ... 12

2.1.6 Battery SoC Discretization ... 12

2.2 Microgrid Energy Management in Island Mode ... 13

2.2.1 Objective Function .. 13

2.2.2 Computing Battery SoC Distribution ... 14

2.2.3 Objective Function Analysis .. 17

2.2.4 Energy Management Strategy Obtained by Exhaustive Search................... 25

2.2.5 Energy Management Obtained using Multi-agent System 26

3.0 Multi-player Game.. 28

3.1 Definition, Notations, and Assumptions ... 29

3.2 Breaking Down of the Objective Function ... 31

3.3 Two-player Zero-sum Game ... 32

3.3.1 The Pure Strategy of a Two-player Zero-sum Game 32

 vi

3.3.2 Mixed Strategy Solution of a Two-player Zero-sum Game 33

3.3.2.1 Direct Approach ... 35

3.3.2.2 Indifference Principle .. 37

3.3.2.3 Linear Programming ... 42

3.4 Two-player Common-interest Game .. 47

3.5 Discussion on the Game Types .. 50

3.6 Games with Arbitrary Number of Players ... 51

3.7 Virtual Two-player Game .. 55

3.8 Communication Base Station Load Identifier ... 60

4.0 Reinforcement Learning .. 65

4.1 Markov Decision Process ... 65

4.2 Q-learning Algorithm ... 67

4.3 Linear Reward-Inaction Algorithm .. 71

5.0 Load-ratio Learning Game .. 76

5.1 Inspiration from Virtual Two-Player Game .. 76

5.2 Load-Ratio Updating Process .. 77

6.0 Numerical Results ... 81

6.1 Multi-Player Game ... 84

6.1.1 Two-Player Zero-Sum Game. .. 84

6.1.2 Two-player Common-Interest Game .. 88

6.1.3 Communication Base Station Load Identifier .. 90

6.1.4 Virtual Two-Player Game .. 93

6.2 Q-learning Algorithm ... 96

 vii

6.2.1 Single-Agent Q-Learning.. 96

6.2.2 Multi-Agent Q-Learning .. 98

6.3 Linear Reward-Inaction .. 102

6.3.1 Normal Operation ... 102

6.3.2 Partial Loss of Power Source ... 106

6.3.3 Loss of Communication .. 109

6.4 Load-Ratio Learning Game ... 112

6.4.1 Normal Operation ... 112

6.4.2 Partial Loss of Power Source ... 115

6.5 Discussion .. 117

7.0 Conclusions .. 119

Appendix A Simulation code.. 121

Bibliography .. 141

 viii

List of Tables

Table 1 : Evaluation parameter values ... 22

Table 2 : Payoff table of a two-player game ... 31

Table 3 : Strategy table of a game with pure strategy solution .. 32

Table 4 : Strategy table of a game with pure strategy solution after elimination 33

Table 5 : Strategy table of a game with no pure strategy solution ... 34

Table 6 : Strategy table of a game where players have three pure strategies 38

Table 7: Example of a three-player non-zero-sum game ... 52

Table 8 : Computation time in second required to solve for equilibrium with global Newton

algorithm .. 54

Table 9 : Simulated BS parameters ... 83

 ix

List of Figures

Figure 1: Communication microgrid scheme ... 7

Figure 2: Buck-and-boost converter scheme. ... 11

Figure 3: Soar cell generator with converter model .. 11

Figure 4: Solar panel output power curve .. 12

Figure 5: Objective function vs. CTSF case 1, t=5 ... 20

Figure 6: Objective function vs. CTSF case 2 .. 20

Figure 7: Objective function vs. CTSF with different conditions .. 23

Figure 8: Objective function vs. CTSF case 3 (SoC(t)=0.49, t=16 Hr) 24

Figure 9: Objective function vs. CTSF case 4 (SoC(t)=0.49, t=16 Hr, w_SoC=0.7) 24

Figure 10: Modified objective function (SoC(t)=0.49, t=15) ... 24

Figure 11: BS communication network status in different scenarios 26

Figure 12: The payoff function of Player I and the lower envelope 36

Figure 13: The payoff function of Player II and the higher envelope 36

Figure 14: Zero-sum two-player game solving flowchart ... 46

Figure 15: Performance of virtual two-player zero-sum game with more players, w_soc=0.2

... 59

Figure 16: Solar cell output power in a day ... 60

Figure 17: Adaptive controller scheme ... 61

Figure 18: Learning space of a Linea reward-inaction agent ... 73

Figure 19: Learning-gaming algorithm scheme ... 78

Figure 20: Load-ratio learning game algorithm flowchart ... 80

 x

Figure 21: PV power curve .. 82

Figure 22: BS load curve .. 82

Figure 23: CTSF and SoC of the simulated microgrid applying exhaustive search, sum(obj)=

17.2512.. 84

Figure 24: PSNR and SoC of the simulated microgrid, two-player zero-sum game, sum(obj)=

16.5616.. 85

Figure 25: Distribution of Sum(U) obtained by two-player zero-sum game 85

Figure 26: Distribution of Sum(U) obtained by exhaustive search .. 86

Figure 27: Sum(obj) of two-player zero-sum game with different initial SoC and weighting

factor .. 87

Figure 28: Difference between exhaustive search and zero-sum game solutions in percentage

... 87

Figure 29: SoC and CTSF of simulated microgrid, two-player common-interest game,

sum(obj)= 17.0807 ... 88

Figure 30: Sum(obj) of two-player common-interest game with different initial SoC and

weighting factor ... 89

Figure 31: Difference between exhaustive search and common-interest game solutions in

percentage .. 89

Figure 32: Simulated microgrid with the load identier. Sum(U)= 8.1629. 91

Figure 33: Simulated microgrid without load identifier. Sum(U)= 5.9233 91

Figure 34: Power consumption estimation of a BS without load identifier 92

Figure 35: Power consumption estimation of a BS with load identifier 92

Figure 36: System performance with different w_soc, zero-sum game 93

 xi

Figure 37: System performance with different w_soc, common-interest game 94

Figure 38: System SoC and PSNR implemented zero-sum game, 20 BSs 95

Figure 39: System SoC and PSNR implemented common-interest game, 20 BSs 95

Figure 40: CTSF and SoC obtained by single agent Q-learning .. 96

Figure 41:Q-value chart after 100 days after training .. 97

Figure 42: Learning curve of the agent... 97

Figure 43: Objective function of the system during the learning process 98

Figure 44: SoC and CTSF obtained by multi-agent Q-learning case 1 99

Figure 45: Learning curve of one agent, case 1 .. 99

Figure 46: System SoC during the learning process, case 2 .. 100

Figure 47: Learning curve of an agent case 2... 100

Figure 48: Learning curve of an agent, case 3.. 101

Figure 49: System SoC during the learning process, case 3 .. 101

Figure 50: System SoC and CTSF obtained by Linear-reward inaction 102

Figure 51: System performance with learning rate b=0.1 .. 103

Figure 52: Obtained CTSF strategy space.. 104

Figure 53: System performance with learning rate b=0.2 .. 104

Figure 54: System SoC with learning rate b=1.0 ... 105

Figure 55: System performance with learning rate b=1.0 .. 105

Figure 56: System performance with power lost from day 50 to day 100 106

Figure 57: System SoC with power lost from day 50 to day 100 .. 107

Figure 58: System SoC with power lost with low-SoC barrier ... 107

Figure 59: System performance with power lost from with low-SoC barrier 108

 xii

Figure 60: CTSF strategy chart obtained with low-SoC barrier ... 108

Figure 61: System performance applying local objective function (b=0.1) 109

Figure 62: System performance applying local objective function (b=0.05) 110

Figure 63: Performance of system applying RL with local objective function (b=0.05) and

different number of BSs ... 111

Figure 64: Performance of system applying RL with local objective function (b=0.01) and

different number of BSs ... 111

Figure 65: Learning curve of system applying RL with local objective function (b=0.01) 112

Figure 66: PSNR and SoC of BS microgrid applying load-ratio learning game algorithm,

normal condition ... 113

Figure 67: Comparison of learning curves of RL and learning-game algorithm 114

Figure 68: Comparison of algorithms with different number of BSs 114

Figure 69: Average system SoC and PSNR with power loss ... 116

Figure 70: System performance index with power loss ... 116

Figure 71: Obtained load-ratio strategy with power loss .. 117

 xiii

Preface

The motivation of this dissertation origins from my passion for realizing distributed control in

the power system. As we know it, the power system has been operated for more than a century

with a centralized control architecture. It mimics well the conventional social structure in industry

era: obedient and hardworking low-level parts pave the foundations, upon which lies the layer of

farsighted decision-makers with the power of deciding the marching direction of the whole system.

But it may not have to be like this. As distributed power resources and energy storage integrated

into our society further, the power system may become a public infrastructure both operated and

maintained by everyone who uses it. Most importantly, people are free to join or detach from any

energy group, which might be the microgrids we are talking about today.

I would like to thank my supervisor and committees, who have been continuously providing

suggestions and insights along my research path. Your sharp thoughts and observations always

remind me of my ignorance in front of the knowledge mansion.

I would also like to give a special thanks to my wife, Li Li, and my parents. It would be

impossible for me to fight against all the haunted ghosts of self-doubts without you along my way

climbing towards an unknown summit. Your words always calm me down and remind me of my

coordination in this vast, everlasting-seemed world.

Rui Hu

10/13/19 night

 1

1.0 Introduction and Literature Review

Communication networks, especially emergency communication systems, are required to

maintain operational under all circumstances [1]. However, the effect of recent natural disasters

was a demonstration of the urgency to improve the resilience of communication sites [2, 3]. During

these disasters, wireless base stations (BS), the fundamental components in the communication

network, were found especially vulnerable to electric grid power outages [1, 4]. Because although

a vast majority of the BSs survived the direct impact of the disaster without any physical damages,

they were unable to maintain functioning because of interrupted power supplies [2]. Most of the

BSs are equipped with back-up battery units, but these batteries are usually designed to feed the BS

load for no more than several hours, which is significantly shorter than the outage duration of the

electric grid caused by a natural disaster. The conventional solution to extend the power backup

time is to use standby diesel generators. However, equipping all BS with onsite diesel gensets is a

practice observed in few areas around the world [2, 5]. Moreover, roads and transportation

systems—the lifelines used to refuel these generators—have to be operational after the disaster to

ensure the fuel supply. Even if every BS is equipped with a permanent diesel generator or another

type of backup power source, the use of them still presents some issues under extreme disruptive

conditions, such as failures due to that these generators are not designed for long-time operation

[6].

As illustrated in [7-10], renewable energy sources and microgrids may be alternative options

with respect to separate generator units. Renewable energy sources such as solar panels and wind

turbines do not require any lifeline or additional energy source to keep its operation. Moreover, the

microgrid architecture enables the BSs to share load and energy storage such that the overall system

 2

availability is improved. Nonetheless, other challenges appear when harvesting renewable energy

sources in an isolated microgrid. One of the most critical issues is that renewable energy sources,

like photovoltaic (PV) cells, have a variable output characteristic, which not only makes energy

storage devices indispensable but also requires the BS controllers to plan the energy usage in real-

time to avoid energy deficiency or interrupted operation.

Much research effort has been done on energy management in the communication

community. One of the solutions is by switching off base stations to the total load demand, as

discussed in [11] (SWES), [12] and [13]. These algorithms are realized by coordination between

BSs with a sequential broadcast system advertising operating status, communication traffic amount,

and requests for switching on/off. The objective of SWES is to determine the minimal number of

BSs required to serve the area with acceptable communication quality. This number is obtained by

a greedy search computed by a master-planner. Another approach called Intelligent Cell brEathing

(ICE) is introduced in [14] aims at maximizing the utilization of renewable energy. ICE achieves

its goal by rearranging users to BSs with larger renewable generation capacities hence more

renewable power is utilized. Aside from the previous two, methodologies considering green energy

availability and delay performance include GALA [15], IDEA [16] and TEA [17]. IDEA and TEA.

The objectives of them are to minimize a weighted function of the energy consumption from the

main-grid and the traffic delivery latency by manipulating the BS coverage area and user

connections. The user association and coverage area are controlled in a distributed way with full

communication, where users and BSs receive broadcasted information from each other and run an

exhaustive search by turn. However, the communication links between BSs are not always

available in a natural disaster. For example, when a communication microgrid is hit by a hurricane,

the relay stations and BSs themselves might be damaged, resulting in possible disconnections

 3

between the other BSs. In such a scenario, the BSs in the microgrid need to plan their operation

independently and adapt their operation mode. Thus, in this project, we aim to design an

autonomous energy management algorithm for each BS in this microgrid without need of

designated communication link.

First, the BSs need ways to control their energy consumption. In this dissertation, the BSs

are equipped with communication traffic shaping technology to accomplish the energy consumption

control [9, 18, 19]. Applied with this algorithm, a communication traffic shaping factor (CTSF) σ

is applied in a BS to limit the volume of cellular traffic. Usually, a setting of 𝜎𝜎<1 indicates that the

traffic through the BS, as well as the correspongding power consumption, is reduced. Such an

arrangement may have an effect on the quality of service (QoS) of the call or video stream, which

may influence the experience of users in an active call [9]. So the BS needs to decide what CTSF

is optimal considering the present load demand and stored energy condition. Then, an objective

function measuring a weighted sum of communication quality and the battery SoC distribution is

implemented in the BSs as an optimum metric. The objective function will be shown in section 3.2.

The last part is to equip BSs with the ability to adapt to a changing environment. Different solutions

are provided to explore the unknown environment, including load identifiers and machine learning

algorithms.

Two major approaches were proposed to solve for the optimal energy management plan:

multi-player game and reinforcement learning. The first approach model the energy management

decision-making process as a multi-player game, where BS controllers occupy the role of the

‘players.’ In the power system industry, game theory has been applied in system operation

optimization and load scheduling [20-24]. Most of the studies were discussing power system

marketing, price bidding, demand response, and load planning optimization. The application of

 4

game theory in our project could be classified as a form of load response. In this energy management

game, each player’s payoff is not only decided by his own but all other players’ moves. The payoff

function for players in this game is the aforementioned objective function and its modified version

with limited information. This game could be modeled in two ways: zero-sum game or common-

interest game. In the zero-sum game, the BS treats other BSs as competitors. While in the second

approach, players share the same payoff and cooperate for a solution that’s optimal for the whole

system. The two different approaches both lead to solutions of Nash Equilibrium, but their

applicable conditions, computation costs, and resulting strategies could be different. Simulations of

BS microgrids applying these methods were conducted, and their performance was compared to a

centralized controller using exhaustive searching. A load identifier is designed so that the BS can

update their power consumption model during the game. One disadvantage of the multi-player

game approach is its computation complexity. As will be shown in section 3.6, the computation

cost of a game increases exponentially as the number of BSs, and their actions increase. Therefore,

a virtual two-player game approach was made to solve the original n-player game with reduced

computational complexity. The optimality of such an approach is limited to be minimum-

maximized if such game is modeled in a zero-sum form. The performance of the virtual two-player

game is also validated using Monte Carlo tests.

The second approach made in this dissertation is to equip the BSs with machine learning

algorithms so that the BSs could update their energy management strategies according to the actual

feedback from the environment/microgrid. The learning algorithm makes the BSs explore the

available load response actions and update their load response strategies based on their

corresponding outcomes. The fundamental idea behind machine learning is empiricism, which

claims a pre-defined model is capable of capturing critical features of the actual world or a physical

 5

process in it explicitly from experience. Despite their specific form, most of the machine learning

algorithms try to achieve a similar goal: predict the outcome of a complex system using a well-

tuned/trained, sometimes even more complex model. Intriguing as it is, this procedure is similar to

what we engineers are seeking to achieve some times, which ought to be a branchy trail—there is

great freedom in the choices of models, parameters, and how should they be organized. In this sense,

engineers are some times similar to computer scientists. The type of machine learning algorithm

implemented in this project is reinforcement learning, which utilizes interaction between BS (which

is also called an agent in an RL process) and their environment to comes up with a strategy that

maximizes the agent’s overall payoff [25]. Two different RL methods were applied: Q-learning and

Linear Reward-Inaction algorithm. Both of the learning algorithms model the energy management

as a Markov decision process. However, the main difference is that the Q-learning only maximizes

one single agent’s long-term payoff while the Linear Reward-Inaction targets the equilibrium of

multiple agents. The reinforcement learning algorithm requires no prior knowledge of the

microgrid. Nevertheless, the RL process requires a notably long time to train the agents depending

on the scale of the searching space, which is related to the numbers of BSs, actions, and the system’s

possible states.

The latest algorithm was proposed to address the performance drop issue of the virtual two-

player game applied to a large scale microgrid. It is an algorithm combining the multi-player game

and reinforcement learning. How these two algorithms are integrated is enlighted by observation in

virtual player game. In the virtual two-player game, a player evaluates the other player’s possible

moves knowing the other player’s load demand. In an actual two-player game, such knowledge is

accurate, thus the actual equilibriums are reachable to players. However, as the number of players

increases, the estimated behavior of the virtual player with a high load demand is different from the

 6

actual joint action of multiple players with lower load needs. So, this ‘misunderstanding’ is

potentially one of the causes that drive the players away from reaching equilibrium. Implemented

with the load-ratio learning algorithm, the BSs adjust their load demand models using machine

learning algorithms. And the immediate load response decision is solved in the virtual two-player

game way. As the simulation results show, this combined algorithm overcomes the two-player game

performance drop in a large scale system with low computation cost and less training time.

 7

2.0 Communication Microgrid Structure and its Energy Management

2.1 Communication Microgrid Architecture

2.1.1 Microgrid Components

An example of a communication dc microgrid equipped with renewable resources is shown

in Figure 1. In order to provide some context for the discussion and without loss of generality, it is

assumed that one battery unit and renewable power sources are placed at the central station, another

BS is only equipped with battery unit while the third site has no energy source or storage device.

The connections of batteries to the dc bus could be direct in consideration of reliability. However,

in some cases where batteries have a significant difference in sizes and energy levels, it may be

required to have power electronic interfaces such as dc converters to stabilize the bus voltage and

share energy in batteries properly, just as shown in the scheme [26-28]. Therefore, points of load

converters in BS power supplies are represented by buck-and-boost converters, regulated via PI

controllers to maintain a rated load voltage.

Figure 1: Communication microgrid scheme

 8

2.1.2 Communication Base Station Load

In the base station, the nominal load consists of two parts: base load and communication traffic

dependent load

 𝑃𝑃 = 𝑃𝑃𝐵𝐵 + 𝑣𝑣𝑃𝑃𝑇𝑇 (2-1)

where 𝑃𝑃𝐵𝐵 is the constant base load, 𝑃𝑃𝑇𝑇 is the base traffic dependent load, and 𝑣𝑣 is the BS utilization

factor that represents the communication traffic intensity. The utilization factor is a random variable

that depends on the number of users and the volume of communication traffic data. In the

simulations, the BS loads are modeled as controllable resistors with resistance equal to

 R =
𝑉𝑉2

𝑃𝑃𝐵𝐵 + 𝑣𝑣𝑃𝑃𝑇𝑇
 (2-2)

where V is the rated load voltage.

2.1.3 Communication Traffic Shaping and Quality of Service

In the base station, the transmitted communication traffic is regulated using the

communication traffic shaping technology [9, 29]. This technology allows BS controllers to

control their processed traffic by reducing the real-time signal transmission rate and data traffic

throughput. When communication traffic shaping is applied to the BS, a traffic shaper controls

(“shapes”) the actual throughput (equivalent to the total volume of traffic) at the output of a BS.

Such a setting reduces the BS’s energy consumption as shown in eqn. (2-3)

 9

 𝑃𝑃 = 𝑃𝑃𝐵𝐵 + σ𝑣𝑣𝑃𝑃𝑇𝑇 (2-3)

where 𝜎𝜎 is called the communication traffic shaping factor (CTSF). Since the action of shaping

traffic entails a reduction of bit rate from the one required by different network traffic, it will lead

to an increased delay or higher compression ratio for interactive video or speech traffic. In an LTE

base station, a radio frame is divided into minimum units of transmit resources called “Resource

block” (RB). Without traffic shaping, all ongoing calls will require 𝑅𝑅𝐵𝐵𝑇𝑇 resource blocks. However,

when applying traffic shaping, the actual number of active resource blocks becomes

 𝑅𝑅𝐵𝐵(𝑡𝑡) ≤ 𝜎𝜎 ∙ 𝑅𝑅𝐵𝐵𝑇𝑇 (2-4)

Correspondingly, the maximum transmitted bit in this BS is limited. The impact of QoS caused by

CTSF is measured for video traffic through the objective quality metric of peak signal-to-noise ratio

(PSNR). The relation between PSNR and QoS is demonstrated in [13]. Also, as discussed in [30],

the relation between PSNR and CTSF can be approximated by a function

 𝑞𝑞𝑣𝑣 = 𝑎𝑎 ∙ log(𝜎𝜎 ∙ 𝑟𝑟) + 𝑏𝑏 (2-5)

where 𝑞𝑞𝑣𝑣 is the video quality measured in PSNR, 𝑟𝑟 is the nominal bit rate, and a and b are constants

based on the choice of source codecs. Details on how parameters in eqn. (2-5) are obtained could

also be found in [13].

 10

2.1.4 Power Electronics Interface

In the communication microgrid, the dc converters are responsible to interface the BSs with

the microgrid, as shown in Figure 1. The converters can be realized using conventional single-

input-single-output topologies such as a buck-and-boost converter, as long as the bi-directional

power flow between BS and the microgrid is allowed. In this project, the converters are ideal buck-

and-boost converters. The scheme of a buck-and-boost converter connecting BS load and the dc

bus is shown in Figure 2. The converter’s dynamic equations are shown in eqn. (2-6) and eqn.

(2-7).

 𝐿𝐿
𝑑𝑑𝐼𝐼𝐿𝐿
𝑑𝑑𝑑𝑑

= 𝑉𝑉𝑖𝑖 − 𝑔𝑔 ∙ 𝑉𝑉𝑜𝑜1 (2-6)

 𝐶𝐶
𝑑𝑑𝑉𝑉𝑜𝑜1
𝑑𝑑𝑑𝑑

=
𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑉𝑉𝑜𝑜1

𝑅𝑅𝑜𝑜
+ 𝑔𝑔 ∙ 𝐼𝐼𝐿𝐿 (2-7)

where 𝑔𝑔 is the switch control signal. Assuming the converter works in steady-state, and the duty

cycle is D, the two dynamic equations can be replaced by eqn. (2-8) and eqn. (2-9) [31].

 𝑉𝑉𝑖𝑖 = 𝐷𝐷 ∙ 𝑉𝑉𝑜𝑜1 (2-8)

𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑉𝑉𝑜𝑜1

𝑅𝑅𝑜𝑜
= −𝐷𝐷 ∙ 𝐼𝐼𝐿𝐿 (2-9)

In this system, the load voltage is controlled by the dc converter with a PI controller. Assuming

the sensor and controller have sufficient measurement accuracy and response speed, the load

 11

voltage 𝑉𝑉𝑖𝑖 could be regulated tight and treated as a constant. Therefore, the load current 𝐼𝐼𝐿𝐿 only

depends on the load resistant Rload, as shown in eqn. (2-10).

 𝐼𝐼𝐿𝐿 = −
𝑉𝑉𝑖𝑖

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
 (2-10)

Figure 2: Buck-and-boost converter scheme.

Figure 3: Soar cell generator with converter model

 12

2.1.5 Solar Cell Generator

The solar cell power generator in this system is modeled as a controlled current source. It

is assumed that maximum power point tracking (MPPT) is implemented in the PV dc converter

during the whole operation to get the most power out from the solar cell. The model of the solar

cell and its converter are shown in Figure 3. The solar cell power output curve is obtained from

Cambridge Solar Panels, which is a typical 1kW solar panel, as shown in Figure 4 [32].

Figure 4: Solar panel output power curve

2.1.6 Battery SoC Discretization

The batteries simulated in the system are assumed to be ideal energy storage devices and

have no loss during the charge and discharge process. Also, nor battery lifetime impact or

switching effect of charging/discharging is considered. The battery’s SoC level is divided into

 13

multiple discrete stages. For any given stored energy, the battery energy level 𝑖𝑖 could be calculated

by eqn. (2-11):

 𝑖𝑖 =
𝐸𝐸𝑛𝑛𝑖𝑖
𝐸𝐸𝑓𝑓

𝑚𝑚 (2-11)

where 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑥𝑥) is a function that obtains the largest integer smaller than x, m is the total number

of energy stages, 𝐸𝐸𝑓𝑓 is the fully charged battery energy and 𝐸𝐸𝑛𝑛𝑖𝑖 is the current stored energy. In this

study, it is assumed that each BS has the capability of measuring its battery SoC, such as the SoC-

V detection method [33].

2.2 Microgrid Energy Management in Island Mode

2.2.1 Objective Function

An islanded microgrid needs to maintain its power-load balance and keep sufficient stored

energy to deal with possible deficient-power situations. In this study, the energy objective set for

the controller in the microgrid is to maintain 80% of the total battery SoC at the end of one day’s

operation. As mentioned in section 2.1.3 , a lower CTSF reduces the BS energy consumption and

stores more energy in the battery but also results in worse QoS. Therefore, the BS needs to evaluate

the outcomes of different CTSF strategies and choose the one that has an optimal result considering

both QoS and battery SoC distribution in the future. A metric measuring the optimality of a CTSF

strategy is defined in (2-12). The metric has the form of a weighted objective function:

 14

 𝑜𝑜𝑜𝑜𝑜𝑜(𝜎𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑡𝑡) = 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐(𝜎𝜎, 𝑡𝑡) + 𝑤𝑤𝑆𝑆𝑆𝑆𝑆𝑆 ∙ 𝑓𝑓𝑎𝑎𝑎𝑎(𝜎𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑡𝑡) (2-12)

where 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑤𝑤𝑆𝑆𝑆𝑆𝑆𝑆 are weighting factors for communication quality and SoC distribution

/energy availability, 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐 is the normalized SINR, and 𝑓𝑓𝑎𝑎𝑎𝑎 is the energy availability function. In

this study, the energy availability function is defined as the probability of the battery SoC reaching

a certain level. Therefore, the goal of the microgrid is to search for a CTSF strategy σ(t) that

maximizes the objective function eqn. (2-12)

 max
σ(t)

 obj(t, σ(t),𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡)), σ(t) ∈ [𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚,𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚] (2-13)

In the following section, the energy availability function 𝑓𝑓𝑎𝑎𝑎𝑎(𝜎𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑡𝑡) will be discussed in detail.

2.2.2 Computing Battery SoC Distribution

The availability function 𝑓𝑓𝑎𝑎𝑎𝑎(𝜎𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑡𝑡) is the battery SoC distribution at time t. In this

study, both renewable power generation and load consumption are modeled as random variables

as a function of time t. Two assumptions are made to compute this function:

 BS load and solar cell generation curves information are shared among all controllers. The

data is extracted from the actual load and weather records. In this project, the load and solar

cell data are obtained from [32, 34] and abstracted using a curve fit tool in MATLAB. The

fitted power/load curves will be shown in the simulation chapter.

 15

 The BS load follows a Poisson distribution, and the PV power follows an exponential

distribution. Both of them are time-independent variables. This assumption is made based

on [35] and the empirical results from [36].

At time t, the probability density function (PDF), the mean value, and variance of the PV power

generation are listed in eqn. (2-14)-(2-16) [36]:

 f(𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = λ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(t) 𝑒𝑒−𝜆𝜆(𝑡𝑡)𝑃𝑃𝑝𝑝𝑝𝑝 (2-14)

 𝐸𝐸(𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = λ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(t)−1 (2-15)

 𝑉𝑉(𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = λ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)−2 (2-16)

where λ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the rate parameter of the PV power distribution. The probability mass function

(PMF), mean value and variance of the BS load are listed in eqn. (2-17)-(2-19) [35].

 f(𝑃𝑃𝑇𝑇) =
λ𝑐𝑐𝑐𝑐𝑐𝑐(t)𝑘𝑘𝑒𝑒−𝑘𝑘

𝑘𝑘!
 (2-17)

 𝐸𝐸(𝑃𝑃𝑇𝑇) = λ𝑐𝑐𝑐𝑐𝑐𝑐(t) (2-18)

 𝑉𝑉(𝑃𝑃𝑇𝑇) = λ𝑐𝑐𝑐𝑐𝑐𝑐(t) (2-19)

where λ𝑐𝑐𝑐𝑐𝑐𝑐(t) is the mean communication traffic data arrival rate. Then, the power provided by the

batteries units are

 16

 ∆P = 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − (𝑃𝑃𝐵𝐵 + 𝜎𝜎𝑃𝑃𝑇𝑇) (2-20)

which forms a new random variable with mean and variance equal to:

 𝐸𝐸(∆𝑃𝑃) = 𝐸𝐸𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − (𝐸𝐸𝑃𝑃𝐵𝐵 + 𝜎𝜎𝜎𝜎𝑃𝑃𝑇𝑇) (2-21)

 𝑉𝑉(∆𝑃𝑃) = �𝑉𝑉𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2 + (𝜎𝜎𝑉𝑉𝑃𝑃𝑇𝑇)2 (2-22)

where E stands for expectation, and V stands for standard variation. The time interval T was chosen

to be one hour and was divided into n sub-intervals. During each sub-interval, the change of

power/load is negligible so that its value during the small period is constant. Then, the overall

energy change 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 during t hour is computed as the sum of 𝑛𝑛 ∙ 𝑡𝑡 independent random variables

as shown in eqn. (2-23).

𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �

𝑇𝑇
𝑛𝑛
∆𝑃𝑃(𝑘𝑘)

𝑛𝑛∙𝑡𝑡

𝑘𝑘=1

 (2-23)

According to the central limit theory, the distribution of a sum of independent variables converges

to that of normal distribution [37]. If n is chosen to be large enough (typically larger than 17), the

distribution of the sum could be replaced by

 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 → 𝑁𝑁(𝜇𝜇, 𝛿𝛿2) (2-24)

 17

where 𝜇𝜇 = ∑ 𝑇𝑇
𝑛𝑛
𝐸𝐸(∆𝑃𝑃𝑘𝑘)𝑛𝑛𝑛𝑛

𝑘𝑘=1 , 𝛿𝛿2 = ∑ (𝑇𝑇
𝑛𝑛
𝑉𝑉)2(∆𝑃𝑃)𝑛𝑛𝑛𝑛

𝑘𝑘=1 . Then, the probability of the overall battery SoC

transferring from level i to level j in time t (Hr) is

 𝑝𝑝(𝑖𝑖, 𝑗𝑗) = 𝐹𝐹𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�𝐸𝐸𝑛𝑛𝑖𝑖� − 𝐹𝐹𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�𝐸𝐸𝑛𝑛𝑖𝑖� (2-25)

where F is the cumulative distribution function of 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, and 𝐸𝐸𝑛𝑛𝑖𝑖 and 𝐸𝐸𝑛𝑛𝑗𝑗 are energy stages. Then,

the probability of battery SoC reaching the desired level is

𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆 > 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜) = � 𝑝𝑝(𝑖𝑖, 𝑙𝑙)

𝑙𝑙=𝑡𝑡𝑡𝑡𝑡𝑡_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑙𝑙=𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜

 (2-26)

2.2.3 Objective Function Analysis

In this section, the optimum of the objective function will be discussed. The objective

function is

 𝑜𝑜𝑜𝑜𝑜𝑜(𝜎𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑡𝑡) = 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐(𝜎𝜎, 𝑡𝑡) + 𝑤𝑤𝑆𝑆𝑆𝑆𝑆𝑆 ∙ 𝑓𝑓𝑎𝑎𝑎𝑎(𝜎𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑡𝑡) (2-27)

where

 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐(𝜎𝜎, 𝑡𝑡) = 𝑐𝑐 ∙ log(𝜎𝜎(𝑡𝑡) ∙ 𝑟̅𝑟(𝑡𝑡)) (2-28)

 18

𝑓𝑓𝑎𝑎𝑎𝑎(𝜎𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑡𝑡) = 𝑃𝑃�𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) ≥ 𝑆𝑆𝑆𝑆𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔�

= � 𝑝𝑝𝑝𝑝𝑝𝑝(𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)𝑑𝑑(𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)
+∞

(𝑆𝑆𝑆𝑆𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛)𝐸𝐸𝑓𝑓

(2-29)

where c is the PSNR normalization factor, 𝜎𝜎(𝑡𝑡) is the CTSF, 𝑟̅𝑟(𝑡𝑡) is the average nominal bit rate,

and eqn. (2-29) is a continuous expression of eqn. (2-25) using probability density function

𝑝𝑝𝑝𝑝𝑝𝑝(𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡). To make the formula clearer, expectation and variation of battery power consumption

are rewritten in the following forms:

 𝐸𝐸(𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) = (24 − 𝑡𝑡) ∙ 3600 ∙ (𝐸𝐸𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�������� − �𝐸𝐸𝑃𝑃𝐵𝐵����� + 𝜎𝜎 𝐸𝐸𝑃𝑃𝑇𝑇������) (2-30)

𝑉𝑉(𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)2 = �[(

𝑇𝑇
𝑛𝑛
𝑉𝑉𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘))2 + (𝜎𝜎 ∙

𝑇𝑇
𝑛𝑛
𝑉𝑉𝑃𝑃𝑇𝑇(𝑘𝑘))2]

24𝑛𝑛

𝑘𝑘=𝑡𝑡

 (2-31)

where

𝐸𝐸𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�������� =

∑ 𝐸𝐸𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘)24𝑛𝑛
𝑘𝑘=𝑡𝑡

𝑛𝑛(24 − 𝑡𝑡)
 (2-32)

is the algebraic mean of all solar cell power expectations in the remaining operating periods 24 −

𝑡𝑡. The same rule applies to 𝐸𝐸𝑃𝑃𝐵𝐵 and 𝐸𝐸𝑃𝑃𝑇𝑇. Thus, the energy availability function eqn. (2-29) could

be expressed as

 19

 𝑓𝑓𝑎𝑎𝑎𝑎(𝜎𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑡𝑡) = �
1

�2𝜋𝜋 𝑉𝑉(∆𝑃𝑃)22 𝑒𝑒
−(𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝐸𝐸(𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡))2

2 𝑉𝑉(∆𝑃𝑃)2
+∞

(𝑆𝑆𝑆𝑆𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛)𝐸𝐸𝑓𝑓
𝑑𝑑(𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) (2-33)

Substituting eqn. (2-33) to the objective function eqn. (2-27) and the objective function becomes

𝑜𝑜𝑜𝑜𝑜𝑜(𝜎𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑡𝑡)= wcom ∙ (c ∙ log(σ ∙ r̅)) + wSoC

∙ �
1

�2π V(∆P)22 e
−
�Stotal−E(Stotal)�

2

2 V(∆P)2
+∞

(SoCgoal−SoCnow)Ef
d(Stotal)

(2-34)

After solving the integration, eqn. (2-34) could be expressed as

𝑜𝑜𝑜𝑜𝑜𝑜(𝜎𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑡𝑡) = 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐 ∙ (𝑐𝑐 ∙ log(𝜎𝜎 ∙ 𝑟̅𝑟)) +⋯

… +𝑤𝑤𝑆𝑆𝑆𝑆𝑆𝑆

⎝

⎜
⎜
⎜
⎛

1
2
−

(t − 24)(𝑉𝑉𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠��������2 + 𝑉𝑉𝑃𝑃𝑇𝑇����2𝜎𝜎2)Erf[
Ebattery(−𝑆𝑆𝑆𝑆𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛) + (24− t) ∙ �𝐸𝐸𝑃𝑃𝐵𝐵����� − 𝐸𝐸𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�������� + 𝐸𝐸𝑃𝑃𝑇𝑇�����𝜎𝜎�

√2(𝑡𝑡 − 24) ∙ �𝑉𝑉𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠��������2 + 𝑉𝑉𝑃𝑃𝑇𝑇����2𝜎𝜎2

2�(𝑉𝑉𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠��������2 + 𝑉𝑉𝑃𝑃𝑇𝑇����2𝜎𝜎2)2(𝑡𝑡 − 24)2

⎠

⎟
⎟
⎟
⎞

(2-35)

where 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 is the stored energy of the battery when fully charged. The analytical maximum

of this function is difficult to compute due to the error function, but its shape could be seen from

a case portrait, as shown in Figure 5.

 20

Figure 5: Objective function vs. CTSF case 1, t=5

Figure 6: Objective function vs. CTSF case 2

The substituted data are listed in Table I. As can be observed from Figure 5, the objective function

has a single maximum in the range of 𝜎𝜎 ∈ [0,1] in this scenario. Generally, higher load demand

and larger battery capacity would result in a maximum point closer to 𝜎𝜎 = 0. The slope of the

function’s decreasing region is influenced by the renewable power and load demand variations

𝑉𝑉𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�������� 𝑎𝑎𝑎𝑎𝑎𝑎 𝑉𝑉𝑃𝑃𝑇𝑇����. For instance, if these variations are larger, the obj-𝜎𝜎 curve becomes smother as

shown in Figure 6 where 𝑉𝑉𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠��������=1000. In most scenarios, the objective function has one single

maximum in the range of 𝜎𝜎 ∈ [0,1] as shown in Figure 7. But if the SoC level or power generation

is too low, it is possible the objective function has a higher value with large CTSF. The shape of

the objective function vs. CTSF in this situation is shown in Figure 8. From the controller

0.2 0.4 0.6 0.8 1.0
0.4

0.5

0.6

0.7

0.8

0.9

1.0
obj

0.2 0.4 0.6 0.8 1.0
0.3

0.4

0.5

0.6

0.7

0.8
obj

 21

perspective, it means the benefit of a large CTSF overwhelms the increase in energy availability.

Therefore, the BS controller yields the conclusion that a large CTSF is preferred with a critically

low energy level. To prevent this unreasonable decision-making from happening, a large energy

availability weighting factor 𝑤𝑤𝑆𝑆𝑆𝑆𝑆𝑆 could be set so that the increasing in QoS does not dominating

the obj function as shown in Figure 9 where the 𝑤𝑤𝑆𝑆𝑆𝑆𝑆𝑆 = 0.7. Alternatively, a probability threshold

could be set, and the objective function is modified to a piecewise function:

𝑜𝑜𝑜𝑜𝑜𝑜∗ = � 𝑆𝑆𝑆𝑆𝑆𝑆

(𝑜𝑜𝑜𝑜𝑜𝑜), 𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆 > 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜) > 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
(1 − 𝜎𝜎)/10, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (2-36)

which turns the objective into a negatively related function to the CTSF when the probability of

reaching the desired SoC goal is lower than a threshold (𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚). With this modification, the

objective function vs. communication shaping factor would be like the one shown in Figure 10.

So the optimal CTSF is either the peak of the error function or the CTSF that guarantees at least a

probability of 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 reaching the desired SoC goal.

 22

Table 1: Evaluation parameter values

Sym
bol PARAMETER Value

𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐 Communication
quality weight 0.5

𝑤𝑤𝑆𝑆𝑆𝑆𝑆𝑆 Energy availability
weight 0.5

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 Battery fully charged
energy 24 kWh

𝐸𝐸𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�������� Solar power
generation expectation 1 kW

𝐸𝐸𝑃𝑃𝐵𝐵����� BS base load
expectation 200 W

 𝐸𝐸𝑃𝑃𝑇𝑇����� BS traffic depended
load expectation 800 W

𝑉𝑉𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�������� Solar power
generation variance 4000

𝑉𝑉𝑃𝑃𝑇𝑇����� BS traffic depended
load variance 4000

𝑆𝑆𝑆𝑆𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔 Desired battery SoC
level 0.8

𝑆𝑆𝑆𝑆𝑆𝑆0 Initial Battery SoC
level

0.7

BW BS total bandwidth 10MHz

a PSNR-rate bit curve
parameter 10.4

𝑏𝑏 PSNR-rate bit curve
parameter -23.8

r Nominal transmit rate
bit 2 Mbps

 23

 𝐸𝐸𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠��������=800W 𝐸𝐸𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠��������=1200W

 t=8Hr t=12Hr

 Ebattery = 12kWh Ebattery = 24kWh

Figure 7: Objective function vs. CTSF with different conditions

0.2 0.4 0.6 0.8 1.0
0.4

0.5

0.6

0.7

0.8

0.9

obj

0.2 0.4 0.6 0.8 1.0

0.5

0.6

0.7

0.8

0.9

1.0

obj

0.2 0.4 0.6 0.8 1.0
0.4

0.5

0.6

0.7

0.8

0.9

obj

0.2 0.4 0.6 0.8 1.0

0.45

0.50

0.55

obj

0.2 0.4 0.6 0.8 1.0
0.4

0.5

0.6

0.7

0.8

0.9

1.0
obj

0.2 0.4 0.6 0.8 1.0
0.4

0.5

0.6

0.7

0.8

0.9

obj

 24

Figure 8: Objective function vs. CTSF case 3 (SoC(t)=0.49, t=16 Hr)

Figure 9: Objective function vs. CTSF case 4 (SoC(t)=0.49, t=16 Hr, w_SoC=0.7)

Figure 10: Modified objective function (SoC(t)=0.49, t=15)

0.2 0.4 0.6 0.8 1.0

0.40

0.42

0.44

0.46

0.48

0.50

0.52

obj

0.2 0.4 0.6 0.8 1.00.24

0.26

0.28

0.30

0.32

0.34

0.36

obj

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

obj

 25

2.2.4 Energy Management Strategy Obtained by Exhaustive Search

If a central controller coordinates the overall communication network microgrid, the

optimal load planning could be obtained using an exhaustive search. In this setting, the central

controller monitors ever BSs’ power generation, load demands, and battery SoC levels. Then, the

CTSF that maximize the objective function could be found by exhaustive examining the possible

CTSFs

𝜎𝜎0 = argmax

𝜎𝜎
𝑜𝑜𝑜𝑜𝑜𝑜∗(𝜎𝜎) (2-37)

This method, however, requires accurate knowledge of the microgrid and reliable communication

links between BSs. Additionally, the monitoring of all BS required a reasonable amount of

communication bandwidth, which increases the load burden for all BSs. The system performance

relies mostly on the proper operation of the central control center, wireless communication linkage

quality, and fidelity. Failures or disturbances in these elements could cause a sub-optimal operation

or failure of the whole system. For example, if one of the communication links between the central

controller and one BS is cut off (see Figure 11), the controller could not decide what the optimal

CTSF is because it has no information on whether and how the disconnected BS is operating. Such

circumstances might be avoided by presetting a set of protocols such as setting load consumptions

to the minimum or shutting down the BS when no control signal is received. However, such

solutions do not make the most use of the available resources for a disaster-affected area. As we

shall see in the distributed control approaches, instead of receiving orders from other controllers

 26

passively, a base station could operate by estimating the other BS’s actions or develop a load plan

based on its past experience.

Figure 11: BS communication network status in different scenarios

2.2.5 Energy Management Obtained using Multi-agent System

In this project, we aim at solving the energy management in a multi-agent system (MAS)

setting. The definition of an agent is a computational mechanism that operates highly autonomous

and takes actions based on information obtained from the environment [38]. A multi-agent system

is one in which there is more than one agent, where they interact with each other, and where there

are constraints on that environment such that agents may not at any given time know everything

about the environment that other agents know (including the internal states of the other agents

themselves). These constraints are crucial elements that distinguish MAS from a centralized

system. Because if all agents could synchronize with each other and know exactly the situations

of the other agents and what choices they will make, they would act just as if a single master

controller manipulates them. In our case, to eliminate the need for a communication link, the

information of CTSF, load demand, and renewable power are not guaranteed to be shared among

 27

BSs. The need for solving for an optimal strategy for the agents in MAS has led to two major

branches: game theory and multi-agent learning.

Game theory studies the strategy in activities where multiple decision-makers are involved.

In a multi-player game, all ‘players’ are rational and treat every other player as rational too. The

players evaluate their rewards/payoffs considering the joint-action made by all players and search

for a strategy that maximizes their payoffs, which are also called equilibriums. The equilibriums

are sets of strategies where no player could gain a higher payoff by deviating from the equilibrium

if other players follow the strategies in equilibrium. The payoff at equilibrium is not necessary the

maximized payoff at all circumstances such as the one found in cases like prisoner dilemma, but

as long as the other players are playing rationally, it is the best result a player can expect [39]. In

Chapter 4, we will discuss details on how microgrid energy management could be modeled as a

multi-player game. This game could either be cooperative or competitive, and both have their

advantages and disadvantages.

Multi-agent learning has emerged from a separate realm—machine learning, dynamic

programming, robotics, evolutionary computation, and complex system [40]. Two key features

differ multi-agent learning from conventional machine learning: large searching space due to the

multiple agents and complex behavior due to the interaction between agents and their learning

process. In this project, the motivation of applying reinforcement learning to BSs is to exempt

them from the requirement of historical data (which is necessary for the game approach) and enable

them to adapt to changes in the environment. Two reinforcement learning algorithms were applied

to the microgrid: Q-learning and linear-reward inaction.

 28

3.0 Multi-player Game

In this section, we will discuss how to model and solve the microgrid energy management

as a multi-player game. In this approach, the CTSF decisions are made by BS controllers

autonomously. Depending on the operation condition and setting of the game model, the BSs could

be either cooperative or competitive. The energy management games under the two conditions are

called common-interest or zero-sum games. In this chapter, the multi-player game approach will

be introduced in the following steps. First, concepts and notations of the multi-player game are

denoted. Then, a microgrid with two BSs or two groups of BSs is discussed. After that, the general

game approach with more players scenario is discussed and showed why it might be impractical

to be implemented in a BS. Then, a virtual two-player game approach that transfers the general n-

player game to a two-player game is proposed and discussed. In the end, a load identifier is

designed to adjust the energy consumption model of BS controllers.

 29

3.1 Definition, Notations, and Assumptions

A game in strategy form is an ordered triple

 𝐺𝐺 = (𝑁𝑁, (𝑆𝑆𝑖𝑖)𝑖𝑖∈𝑁𝑁 , (𝑢𝑢𝑖𝑖)𝑖𝑖∈𝑁𝑁) (3-1)

where 𝑁𝑁 = {1,2, … ,𝑛𝑛} is a finite set of players, 𝑆𝑆𝑖𝑖 is the set of the strategy of player 𝑖𝑖, for every

player 𝑖𝑖 ∈ 𝑁𝑁. The set of all vectors of strategies is noted by 𝑆𝑆 = 𝑆𝑆1 × 𝑆𝑆2 × ⋯× 𝑆𝑆𝑛𝑛. 𝑢𝑢𝑖𝑖 is the payoff

(utility) function to player i related to each vector of strategy S.

A game is a zero-sum game if for each pair of strategies (𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑛𝑛) one has

�𝑢𝑢𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 0 (3-2)

Also, a game is called a non-zero-sum game if (3-2) does not hold. Let 𝑁𝑁 = {1,2, … ,𝑛𝑛} be a finite

set, and for each 𝑖𝑖 ∈ 𝑁𝑁 let 𝑋𝑋𝑖𝑖 be any set. Denote 𝑋𝑋 ≔×𝑖𝑖∈𝑁𝑁 𝑋𝑋𝑖𝑖, and for each 𝑖𝑖 ∈ 𝑁𝑁 denote 𝑋𝑋−𝑖𝑖 ≔

×𝑗𝑗≠𝑖𝑖 𝑋𝑋𝑗𝑗. For each 𝑖𝑖 ∈ 𝑁𝑁 we will denote 𝑋𝑋−𝑖𝑖 by the Cartesian product of all the set 𝑋𝑋𝑗𝑗 except for the

set 𝑋𝑋𝑖𝑖. In another word,

 𝑋𝑋−𝑖𝑖 = [(𝑥𝑥1, … , 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖+1, … , 𝑥𝑥𝑛𝑛): 𝑥𝑥𝑗𝑗 ∈ 𝑋𝑋𝑗𝑗,∀𝑗𝑗 ≠ 𝑖𝑖] (3-3)

 30

A strategy 𝑆𝑆𝑖𝑖 of player i is strictly dominated if there exists another strategy 𝑡𝑡𝑖𝑖 of player i such that

for each strategy vector 𝑠𝑠−𝑖𝑖 ∈ 𝑆𝑆−𝑖𝑖 of the other players,

 𝑢𝑢𝑖𝑖(𝑆𝑆𝑖𝑖, 𝑆𝑆−𝑖𝑖) < 𝑢𝑢𝑖𝑖(𝑡𝑡𝑖𝑖, 𝑆𝑆−𝑖𝑖) (3-4)

Also, a strategy is called weakly dominated if there exists another strategy 𝑡𝑡𝑖𝑖 satisfying the

following two conditions:

 𝑢𝑢𝑖𝑖(𝑆𝑆𝑖𝑖,𝑆𝑆−𝑖𝑖) ≤ 𝑢𝑢𝑖𝑖(𝑡𝑡𝑖𝑖, 𝑆𝑆−𝑖𝑖),∀𝑠𝑠−𝑖𝑖 ∈ 𝑆𝑆−𝑖𝑖 (3-5)

 𝑢𝑢𝑖𝑖(𝑆𝑆𝑖𝑖,𝑆𝑆−𝑖𝑖) < 𝑢𝑢𝑖𝑖(𝑡𝑡𝑖𝑖, 𝑆𝑆−𝑖𝑖),∃𝑠𝑠−𝑖𝑖 ∈ 𝑆𝑆−𝑖𝑖 (3-6)

In a game, all players are assumed to be rational, which indicating

1. A rational player does not use a dominated strategy.

2. The fact that all players are rational is common knowledge among the players.

A strategy vector 𝑠𝑠∗ = (𝑠𝑠1∗, … , 𝑠𝑠𝑛𝑛∗) is an equilibrium if for each player 𝑖𝑖 ∈ 𝑁𝑁 and each strategy 𝑠𝑠𝑖𝑖

∈ 𝑆𝑆𝑖𝑖 the following is satisfied:

 𝑢𝑢𝑖𝑖(𝑠𝑠∗) ≥ 𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖∗) (3-7)

meaning that when all other players follow the strategy 𝑠𝑠−𝑖𝑖∗ , there exists no other strategy than 𝑠𝑠𝑖𝑖∗

that could give player i a higher payoff.

 31

3.2 Breaking Down of the Objective Function

Assuming the BS controller only has access to the CTSF choice made by itself, the total

system load could be represented by two parts

 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖 = (𝑃𝑃𝐵𝐵𝑖𝑖 + 𝜎𝜎𝑖𝑖𝑣𝑣𝑖𝑖𝑃𝑃𝑇𝑇𝑖𝑖)
�����������

𝐵𝐵𝐵𝐵 𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

+ (𝑃𝑃𝐵𝐵𝑜𝑜 + 𝜎𝜎𝑜𝑜𝑣𝑣𝑜𝑜𝑃𝑃𝑇𝑇𝑜𝑜)�����������
𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝐵𝐵𝐵𝐵𝐵𝐵′ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

 (3-8)

where the superscript i indicates the ith BS load and o collectively demonstrates all the other BSs’

load. In this study, it is assumed that the information of the base load 𝑃𝑃𝐵𝐵𝑜𝑜 and traffic dependent load

𝑣𝑣𝑜𝑜𝑃𝑃𝑇𝑇𝑜𝑜 are shared among BS controllers, leaving 𝜎𝜎𝑜𝑜 as the only unknown variable.

 In a two-player game, the objective functions of the players become 𝑜𝑜𝑜𝑜𝑜𝑜1(𝜎𝜎1,𝜎𝜎2) and

𝑜𝑜𝑜𝑜𝑜𝑜2(𝜎𝜎1,𝜎𝜎2). Based on the available CTSF range, the objective function values of a BS could be

expressed in a tablet form, as shown in Table 2. This table is called the payoff table of the game,

and the BS controllers (marked ‘Player I’ and ‘Player II’) could find its payoff given both BS

controllers’ CTSF choices [39]. For instance, if the player I choose communications CTSF σ21

and player II choose 𝜎𝜎22, the payoff for player I is 𝑜𝑜𝑜𝑜𝑜𝑜1(𝜎𝜎21,𝜎𝜎22).

Table 2 : Payoff table of a two-player game

 Player II

 P21 P22

 σ21 σ22

Player

I

P11 σ11 (𝑜𝑜𝑜𝑜𝑜𝑜1(𝜎𝜎11,𝜎𝜎21) , 𝑜𝑜𝑜𝑜𝑜𝑜2(𝜎𝜎11,𝜎𝜎21)) (𝑜𝑜𝑜𝑜𝑜𝑜1(𝜎𝜎11,𝜎𝜎22) , 𝑜𝑜𝑜𝑜𝑜𝑜2(𝜎𝜎11,𝜎𝜎22))

P12 σ12 (𝑜𝑜𝑜𝑜𝑜𝑜1(𝜎𝜎21,𝜎𝜎21) ,𝑜𝑜𝑜𝑜𝑜𝑜2(𝜎𝜎21,𝜎𝜎21)) (𝑜𝑜𝑜𝑜𝑜𝑜1(𝜎𝜎21,𝜎𝜎22) ,𝑜𝑜𝑜𝑜𝑜𝑜2(𝜎𝜎21,𝜎𝜎22))

 32

3.3 Two-player Zero-sum Game

First, assuming there are only two BSs in the system, or that there are two groups of

coordinated BSs that lost communication links to the other group. Then the CTSF decision-making

process could be modeled as a two-player game. In this section, we will discuss modeling the

CTSF decision-making process as a zero-sum game.

In a zero-sum game, the BS controllers assume they are in a hostile environment. In this

environment, the BS controllers assume the worst case where the other BS is minimizing its payoff.

This game has two possible solution forms: pure solution or a mixed solution.

3.3.1 The Pure Strategy of a Two-player Zero-sum Game

A pure strategy could be obtained if there exists a single dominating strategy. For example,

in a game as shown in Table 3, the payoff of Player I choosing strategy T is always higher than

the one choosing strategy B. Therefore, the strategy B is called ‘dominated’ by strategy T. Thus,

the player I would never choose B assuming he is rational.

Table 3 : Strategy table of a game with pure strategy solution

 Player II

 L R

Player I
T (3, -3) (2, -2)

B (1, -1) (0, 0)

 33

Table 4 : Strategy table of a game with pure strategy solution after elimination

 Player II

 L M R

Player I
T (3, -3) (2, -2) (2, -2)
D (1, -1) (0, 0) (3, -3)

However, for players with more strategies, such as the microgrid in our study, the

dominating strategy might not be solved by simple comparison. For example, in a game shown in

Table 4, the original dominating strategy T could lead to a loss—a negative payoff. In this game,

the player I needs to consider the other player’s motivation: if player II knows the payoff table as

the player I does, since player I’s payoff is his cost, he will try to avoid the high payment (Choosing

R results in a minimum cost of 2). Therefore, knowing player II would not choose strategy R, the

player I could eliminate column R and transfer the game into the same one shown in Table 3. Then,

T is still the dominating strategy.

3.3.2 Mixed Strategy Solution of a Two-player Zero-sum Game

In some games, there may not always be pure solutions. For example, in a game shown in Table

5, both players have no dominating strategies since any strategy has a chance of getting a negative

payoff. Based on the nature of the game (zero-sum), the player might be unwilling to broadcast its

choice of strategy to other players in this game. Once player II knows what player I would choose,

the optimal response is clear: R if the player I plays T and L if the player I plays D. Therefore, in

this game, the reasonable strategy for each player is not playing one move but a series of

probabilities choosing each one. Because now the players need to consider expected rather than

 34

definite payoff. For example, in the game shown in Table 5, if player I claims to choose the strategy

T at a probability of 3
8
 and D at a probability of 5

8
 , the expected payoff to player II playing L and

M are then

 𝑢𝑢𝐿𝐿 =
3
8

× 3 +
5
8

× (−1) =
1
2

 (3-9)

 𝑢𝑢𝑀𝑀 =
3
8

× (−2) +
5
8

× 2 =
1
2

 (3-10)

Thus, the expected payoff for player II is the same no matter what strategy it applies. This condition

is also denoted as ‘indifference principle’ and will be discussed in section 3.3.2.2. Generally, let

𝐺𝐺 = (𝑁𝑁, (𝑆𝑆𝑖𝑖)𝑖𝑖∈𝑁𝑁 , (𝑢𝑢𝑖𝑖)𝑖𝑖∈𝑁𝑁) be a strategic-form game in which the number of players and strategies

are finite, there always exists an equilibrium in mixed strategy for each player [41], denoted by

Σ𝑖𝑖 ≔ �𝑝𝑝𝑖𝑖: 𝑆𝑆𝑖𝑖 → [0,1]: � (𝑝𝑝𝑖𝑖) = 1
𝑠𝑠𝑖𝑖∈𝑆𝑆𝑖𝑖

� (3-11)

Table 5 : Strategy table of a game with no pure strategy solution

 Player II
 L R

Player I
T (3, -3) (-2, 2)
D (-1, 1) (2, -2)

 35

3.3.2.1 Direct Approach

The direct approach to finding equilibria in mixed strategy is to write down the mixed extension

of the strategic-form game and compute the equilibria in the mixed extension. In the case of a two-

player game where each player has two pure strategies, the mixed extension is a game over the

unit square with bilinear payoff functions.

Consider the game in Table 5, If Player I plays the mixed strategy [x(T), (1 − x)(D)] where x

is the probability choosing T, his payoff, as a function of x, depends on the strategy of Player II:

 If player II plays L: u(x,L)=3x-(1-x)=4x-1

 If player II plays R: u(x,R)=-2x+2(1-x)=-4x+2

Figure 12 shows these two functions. The thick red line plots the function representing the

minimum payoff that Player I can receive if he plays x. This minimum is called the lower envelope

of the payoffs of Player I. And player I want to maximize its minimal expected payoff indicated

by the lower envelope, which is attained at the intersection point of the two corresponding lines

appearing in Figure 12, i.e., at the point at which

 4x − 1 = −4x + 2 (3-12)

whose solution is 𝑥𝑥 = 3
8
. And the expected payoff u= 1

2
 is called the value of the game [39].

 36

Figure 12: The payoff function of Player I and the lower envelope

A similar calculation for finding Player II’s optimal strategy could be done aimed at finding the

strategy 𝜎𝜎𝐼𝐼𝐼𝐼 at which the minmax of 𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝐼𝐼𝐼𝐼∈𝑆𝑆𝐼𝐼𝐼𝐼𝑢𝑢(𝑠𝑠𝐼𝐼 ,𝜎𝜎𝐼𝐼𝐼𝐼) is attained. For each one of the pure

strategies T and D of Player I, we compute the payoff as a function of the mixed strategy y of

Player II and look at the upper envelope of these two lines (see Figure 13). The minimum of the

upper envelope is attained at the point of intersection of these two lines. It is the solution of the

equation 5y - 2 = 2 − 3y, which is y = 0.5.

Figure 13: The payoff function of Player II and the higher envelope

Ux,L

Ux,R

0.2 0.4 0.6 0.8 1.0

2

1

1

2

3

Uy,T

Uy,D

0.2 0.4 0.6 0.8 1.0

2

1

1

2

3

 37

The graphical procedure can be extended to games in which one of the players has two pure

strategies, and the other player has any finite number of strategies. Thus, it is possible to design

the microgrid communication CTSF decision as a two-player game where one of the players has

two options. The values of the shaping factors are common knowledge to both controllers. Then,

using the direct approach, the controllers would be able to compute their maximized minimum

expectation of the payoff, which according to the deduction in this section, being optimal.

However, this setting limits the number of CTSF a BS can have. To expand this solution to a game

with more variables, the indifference principle is introduced.

3.3.2.2 Indifference Principle

The indifference principle claims that if a mixed equilibrium calls for a player to use two or

more distinct pure strategies with positive probability, then the expected payoff to that player for

using one of those pure strategies equals the expected payoff to him for using any other pure

strategy, assuming that the other players are playing according to the equilibrium [39, 42]. Suppose

the equilibrium of a mixed game is 𝜎𝜎∗ , and 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝚤𝚤� are two strategies of player i. Then, if

𝜎𝜎𝑖𝑖∗(𝑠𝑠𝑖𝑖) > 0 and 𝜎𝜎𝑖𝑖∗(𝑠𝑠𝚤𝚤�) > 0, then

 u(𝑠𝑠𝑖𝑖,𝜎𝜎−𝑖𝑖∗) = u(𝑠𝑠𝚤𝚤� ,𝜎𝜎−𝑖𝑖∗) (3-13)

Therefore, we could use this property to solve for each player’s strategy using his opponent’s

utility values. For example, in a game shown in Table 6, the strategy at the equilibrium point for

player I could be obtained by solving:

 38

𝑝𝑝𝑇𝑇 + 𝑝𝑝𝐵𝐵 + 𝑝𝑝𝐷𝐷 = 1

𝑢𝑢𝐼𝐼𝐼𝐼(𝐿𝐿) = 𝑢𝑢𝐼𝐼𝐼𝐼(𝑀𝑀)

𝑢𝑢𝐼𝐼𝐼𝐼(𝑀𝑀) = 𝑢𝑢𝐼𝐼𝐼𝐼(𝑅𝑅)

(3-14)

Table 6 : Strategy table of a game where players have three pure strategies

 Player II

 L M R

Player I
T (3, -3) (2, -2) (-2, 2)
B (1, -1) (0, 0) (2, -2)

 D (-2, 2) (1, -1) (5, -5)

where

 𝑢𝑢𝐼𝐼𝐼𝐼(𝐿𝐿) = 𝑝𝑝𝑇𝑇 × (−3) + 𝑝𝑝𝐵𝐵 × (−1) + 𝑝𝑝𝐷𝐷 × 2𝑢𝑢𝐼𝐼𝐼𝐼(𝐿𝐿) = 𝑢𝑢𝐼𝐼𝐼𝐼(𝑀𝑀) (3-15)

 𝑢𝑢𝐼𝐼𝐼𝐼(𝑀𝑀) = 𝑝𝑝𝑇𝑇 × (−2) + 𝑝𝑝𝐵𝐵 × 0 + 𝑝𝑝𝐷𝐷 × (−1) (3-16)

 𝑢𝑢𝐼𝐼(𝐷𝐷) = 𝑝𝑝𝑇𝑇 × (2) + 𝑝𝑝𝐵𝐵 × (−2) + 𝑝𝑝𝐷𝐷 × (−5) (3-17)

And the solution is

 𝑝𝑝𝑇𝑇 =
5

12
,𝑝𝑝𝐵𝐵 =

1
3

, 𝑝𝑝𝐷𝐷 =
1
4

 (3-18)

 39

which makes the player II ‘indifferent’ with his choices. The general equations for solving player

I’s equilibrium solution are listed:

�𝑝𝑝𝑖𝑖 = 1
𝑁𝑁

𝑖𝑖=1

, 0 ≤ 𝑝𝑝𝑖𝑖 (3-19)

 � (𝑝𝑝𝑖𝑖
𝑁𝑁

𝑖𝑖=1
𝑢𝑢𝐼𝐼𝐼𝐼�𝜎𝜎𝐼𝐼𝑖𝑖 ,𝜎𝜎𝐼𝐼𝐼𝐼𝑘𝑘�) = � (𝑝𝑝𝑖𝑖

𝑁𝑁

𝑖𝑖=1
𝑢𝑢𝐼𝐼𝐼𝐼�𝜎𝜎𝐼𝐼𝑖𝑖 ,𝜎𝜎𝐼𝐼𝐼𝐼𝑘𝑘

� �),∀𝑘𝑘,𝑘𝑘� ∈ 𝑁𝑁[1,𝑀𝑀] (3-20)

where 𝑀𝑀 and N is the number of available strategies for player II and player I. The solution of eqn.

(3-19) and (3-20) could be expressed in a matrix form. After eliminating the dominated strategies,

the payoff table is denoted as

𝐴𝐴 = �
𝑈𝑈11 ⋯ 𝑈𝑈1𝑛𝑛
⋮ ⋱ ⋮

𝑈𝑈𝑚𝑚1 ⋯ 𝑈𝑈𝑚𝑚𝑚𝑚
�
𝑚𝑚×𝑛𝑛

 (3-21)

where m and n are the numbers of strategies of players. The probability of player I playing each

strategy is written as a vector 𝑃𝑃𝑃𝑃1

𝑃𝑃𝑃𝑃1 = (𝑃𝑃𝑃𝑃1 ⋯ 𝑃𝑃𝑃𝑃𝑚𝑚)1×𝑚𝑚 (3-22)

 40

So the expected payoff of player II is the dot product of 𝑃𝑃𝑃𝑃 and A as shown in

𝑃𝑃𝑃𝑃1 ∙ 𝐴𝐴 = ��𝑃𝑃𝑃𝑃𝑖𝑖𝑈𝑈𝑖𝑖1

𝑛𝑛

𝑖𝑖=1

… �𝑃𝑃𝑃𝑃𝑖𝑖𝑈𝑈𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�
1×𝑛𝑛

 (3-23)

Based on eqn. (3-20), each entry in eqn. (3-23) is identical as shown in eqn. (3-24)

𝑃𝑃𝑃𝑃1 ∙ 𝐴𝐴 = 𝛼𝛼 ∙ (1 1 ⋯ 1)1×𝑛𝑛 (3-24)

where 𝛼𝛼 is an unknown scalar. Multiplying both sides of eqn. (3-23) by 𝐴𝐴𝑇𝑇 and assuming 𝐴𝐴𝐴𝐴𝑇𝑇 is

invertible, 𝑃𝑃𝑃𝑃1 could be expressed as

𝑃𝑃𝑃𝑃1 = 𝛼𝛼 ∙ (1 1 ⋯ 1)1×𝑛𝑛𝐴𝐴𝑇𝑇 ∙ (𝐴𝐴𝐴𝐴𝑇𝑇)−1 (3-25)

Also, eqn. (3-19) could be rewritten as

𝑃𝑃𝑃𝑃1 ∙ �
1
⋮
1
�
𝑚𝑚×1

= 1 (3-26)

Then, 𝛼𝛼 could be solved by substituting eqn. (3-25) into (3-26):

𝛼𝛼 =
1

(1 1 ⋯ 1)1×𝑛𝑛 ∙ 𝐴𝐴𝑇𝑇 ∙ (𝐴𝐴𝐴𝐴𝑇𝑇)−1 ∙ �
1
⋮
1
�
𝑚𝑚×1

(3-27)

 41

Substitute eqn. (3-27) to (3-25) and the probability vector 𝑃𝑃𝑃𝑃 is

𝑃𝑃𝑃𝑃1 =
R ∙ 𝐴𝐴𝑇𝑇 ∙ (𝐴𝐴𝐴𝐴𝑇𝑇)−1

𝑅𝑅 ∙ 𝐴𝐴𝑇𝑇 ∙ (𝐴𝐴𝐴𝐴𝑇𝑇)−1 ∙ C
 (3-28)

where R=(1 1 ⋯ 1)1×𝑛𝑛 and C=�
1
⋮
1
�
𝑚𝑚×1

.

After solving 𝑃𝑃𝑃𝑃 for both players, the expected utility could be calculated as

𝐸𝐸(𝑢𝑢𝐼𝐼) = 𝑃𝑃𝑃𝑃1 ∙ 𝐴𝐴 ∙ 𝑃𝑃𝑃𝑃2𝑇𝑇 (3-29)

Practically, it is computationally inefficient to solve eqn. (3-28) because it requires the calculating

of matrix inverse and eliminating of dominated strategies, whose complexities are at least O(𝑛𝑛2.3)

and NP-hard [3, 10]. Even before that, the payoff matrix may not be invertible. Therefore, eqn.

(3-28) is only calculated at a single time step during the simulation to validate the performance of

the two-player game approach. In the rest of the simulation, instead of computing eqn. (3-28), the

mixed strategies of a BS are computed using a numerical algorithm by transferring the two-player

zero-sum game to a linear programming problem.

 42

3.3.2.3 Linear Programming

Because player II’s goal is to minimize layer I’s payoff, the expected payoff of player I becomes

 𝐸𝐸(𝑢𝑢𝐼𝐼) = min
1≤𝑘𝑘≤𝑀𝑀

� (𝑝𝑝𝑖𝑖
𝑁𝑁

𝑖𝑖=1
𝑢𝑢𝐼𝐼�𝜎𝜎𝐼𝐼𝑖𝑖 ,𝜎𝜎𝐼𝐼𝐼𝐼𝑘𝑘�) (3-30)

Thus, from player I’s point of view, he wants to choose 𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑁𝑁 such that his payoff is

maximized:

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 min
1≤𝑘𝑘≤𝑀𝑀

� (𝑝𝑝𝑖𝑖
𝑁𝑁

𝑖𝑖=1
𝑢𝑢𝐼𝐼�𝜎𝜎𝐼𝐼𝑖𝑖 ,𝜎𝜎𝐼𝐼𝐼𝐼𝑘𝑘�) (3-31)

 st. ∑ 𝑝𝑝𝑖𝑖 = 1𝑁𝑁
𝑖𝑖=1 , 0 ≤ 𝑝𝑝𝑖𝑖 ≤ 1 (3-32)

Eqn. (3-31) is not a linear programming problem because the min function is not linear. Then, by

introducing a new variable z and restrict it to be less than the objective function 𝑣𝑣 ≤

min
1≤𝑘𝑘≤𝑀𝑀

∑ (𝑝𝑝𝑖𝑖𝑁𝑁
𝑖𝑖=1 𝑢𝑢𝐼𝐼�𝜎𝜎𝐼𝐼𝑖𝑖 ,𝜎𝜎𝐼𝐼𝐼𝐼𝑘𝑘�), the problem becomes

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑧𝑧 (3-33)

st. 𝑧𝑧 ≤� (𝑝𝑝𝑖𝑖
𝑁𝑁

𝑖𝑖=1
𝑢𝑢𝐼𝐼�𝜎𝜎𝐼𝐼𝑖𝑖 ,𝜎𝜎𝐼𝐼𝐼𝐼1�)

𝑧𝑧 ≤� (𝑝𝑝𝑖𝑖
𝑁𝑁

𝑖𝑖=1
𝑢𝑢𝐼𝐼�𝜎𝜎𝐼𝐼𝑖𝑖 ,𝜎𝜎𝐼𝐼𝐼𝐼2�)

⋮

𝑧𝑧 ≤� (𝑝𝑝𝑖𝑖
𝑁𝑁

𝑖𝑖=1
𝑢𝑢𝐼𝐼�𝜎𝜎𝐼𝐼𝑖𝑖 ,𝜎𝜎𝐼𝐼𝐼𝐼𝑀𝑀�)

�𝑝𝑝𝑖𝑖 = 1
𝑁𝑁

𝑖𝑖=1

, 0 ≤ 𝑝𝑝𝑖𝑖

(3-34)

 43

So this problem is a linear programming problem that is identical to eqn. (3-31). For a two-player

zero-sum game, computing the equilibrium, where each player has a finite number of strategies,

can always be presented as a linear programming problem [43]. The fact that the value of a game

in mixed strategies can be found using linear programming is based on the connection between the

Minmax Theorem and the Duality Theorem. These two theorems are equivalent to each other in a

zero-sum setting [43-45].

To solve the linear programming problem, it needs to be converted to standard form. The

standard form of linear programming is

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝒄𝒄𝑇𝑇𝒙𝒙

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 𝑨𝑨𝑨𝑨 = 𝒃𝒃 𝑎𝑎𝑎𝑎𝑎𝑎 𝒙𝒙 ≥ 𝟎𝟎
(3-35)

where 𝑥𝑥 is an n-dimension column vector, 𝒄𝒄𝑇𝑇is an n-dimension row vector, A is a 𝑚𝑚 × 𝑛𝑛 matrix,

and b is an m-dimension column vector. All linear programming problems could be converted into

this standard form. However, in the MATLAB linear programming solver, the equalities are

replaced to inequalities:

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝒄𝒄𝑇𝑇𝒙𝒙

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 𝑨𝑨𝑨𝑨 ≤ 𝒃𝒃 𝑎𝑎𝑎𝑎𝑎𝑎 𝒙𝒙 ≥ 𝟎𝟎
(3-36)

Numerical algorithms for solving Linear programming problems have been heavily studied and

well understood. Still, there are several features of this problem worth mentioning. Firstly, a

general linear programming problem has no analytical solution. Secondly, in principle, the time

required to solve for a linear programming problem might be an exponential function of the

number of variables, which could happen in some contrived cases. However, in practice, either

 44

using the simplex method or interior-point methods (the two most popular solving algorithms), the

computation is highly efficient, usually a small multiple of the number of the variables [44]. As a

comparison, the quadric programming problem applied in the common-interest-sum game next

section usually requires an exponential computation time. In the simulation, the zero-sum game

solution is obtained by solving eqn. (3-36) using the lingprog function in MATLAB, and the solver

applied is the interior-point algorithm. The form of LP that the solver needs is

min
𝑥𝑥
𝒇𝒇𝑇𝑇𝒙𝒙 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 �

𝑨𝑨 ∙ 𝒙𝒙 ≤ 𝒃𝒃
𝑨𝑨𝑨𝑨𝑨𝑨 ∙ 𝒙𝒙 ≤ 𝒃𝒃𝒃𝒃𝒃𝒃
𝒍𝒍𝒍𝒍 ≤ 𝒙𝒙 ≤ 𝒖𝒖𝒖𝒖

 (3-37)

where 𝒇𝒇,𝒙𝒙,𝒃𝒃,𝒃𝒃𝒃𝒃𝒃𝒃, 𝒍𝒍𝒍𝒍 and 𝒖𝒖𝒖𝒖 𝑎𝑎re vectors, and 𝑨𝑨 and 𝑨𝑨𝑨𝑨𝑨𝑨 are matrices. And the original LP

problem eqn. (3-33)-(3-34) need to be converted into the form of eqn. (3-37). First, the variable

vector is the same:

 𝒙𝒙 = [𝑥𝑥(𝑠𝑠1),𝑥𝑥(𝑠𝑠2), … , 𝑥𝑥(𝑠𝑠𝑁𝑁), 𝑧𝑧] (3-38)

Then the inequality constraints could be expressed as

�
𝑢𝑢(𝑠𝑠𝐼𝐼1, 𝑠𝑠𝐼𝐼𝐼𝐼1) ⋯ 𝑢𝑢(𝑠𝑠𝐼𝐼𝑁𝑁, 𝑠𝑠𝐼𝐼𝐼𝐼1)

⋮ ⋱ ⋮
𝑢𝑢(𝑠𝑠𝑁𝑁1, 𝑠𝑠𝐼𝐼𝐼𝐼𝑁𝑁) ⋯ 𝑢𝑢(𝑠𝑠𝐼𝐼𝑁𝑁 , 𝑠𝑠𝐼𝐼𝐼𝐼𝑁𝑁)

� �
𝑥𝑥(𝑠𝑠1)
⋮

𝑥𝑥(𝑠𝑠𝑁𝑁)
� ≥ �

𝑧𝑧
⋮
𝑧𝑧
� (3-39)

which could be converted to

�−𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇

1
⋮
1
� �
𝑥𝑥(𝑠𝑠1)
⋮

𝑥𝑥(𝑠𝑠𝑁𝑁)
𝑧𝑧

� ≤ �
0
⋮
0
� (3-40)

 45

where 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝 is the payoff matrix/strategy form table. Therefore,

𝑨𝑨 = �−𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇

1
⋮
1
� ,𝒃𝒃 = �

0
⋮
0
� (3-41)

And the equality constraint is expressed as

[1 … 1 0] �

𝑥𝑥(𝑠𝑠1)
⋮

𝑥𝑥(𝑠𝑠𝑁𝑁)
𝑧𝑧

� = 1 (3-42)

Thus,

 𝑨𝑨𝑨𝑨𝑨𝑨 = [1 … 1 0],𝒃𝒃𝒃𝒃𝒃𝒃 = 1 (3-43)

Then, the CTSF probability, which is the first N variables in vector x, could be solved using linprog

function in MATLAB. The overall flowchart of the zero-sum game solving process is shown in

Figure 14.

 46

Figure 14: Zero-sum two-player game solving flowchart

 47

3.4 Two-player Common-interest Game

If the original objective function is applied as the same utility function for all BSs, meaning

 𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖(𝜎𝜎1,𝜎𝜎2,⋯ ,𝜎𝜎𝑁𝑁) = obj(𝜎𝜎1,𝜎𝜎2,⋯ ,𝜎𝜎𝑁𝑁),∀𝑖𝑖, 𝑗𝑗 ∈ [1,𝑁𝑁] (3-44)

then this game becomes a common-interest game, in which all players share the same objective:

to maximize obj(𝜎𝜎1,𝜎𝜎2,⋯ ,𝜎𝜎𝑁𝑁) . However, because no communication is guaranteed between

players, they still need to estimate their payoff assuming the other player’s moves. The common-

interest game could also be solved using the indifference principle. But considering the

computation cost again, it is solved numerically as a quadratic programming problem. Suppose

the payoff matrix of a BS is A, then the objective of a BS is

 Maximize 𝑥𝑥′𝐴𝐴𝐴𝐴

Subject to 𝑒𝑒′𝑥𝑥 − 1 = 0

 x≥0

(3-45)

where 𝑥𝑥 and y are the strategy vectors of player I and player II, e is a vector of ones with the same

dimension of x, and the primes denote transpose. For player II, its objective is

 Maximize 𝑥𝑥′𝐵𝐵𝐵𝐵

Subject to 𝑙𝑙′𝑦𝑦 − 1 = 0

 y≥0

(3-46)

 48

where B is the player’s payoff table, l is a vector of ones with the same dimension of y. A Nash

equilibrium point (𝑥𝑥0, 𝑦𝑦0) is defined as a pair of strategies 𝑥𝑥0 and 𝑦𝑦0 where (3-47) and (3-48) are

simultaneously fulfilled. In a more precise way,

 𝑥𝑥0′𝐴𝐴𝑦𝑦0 = max
𝑥𝑥

{𝑥𝑥′𝐴𝐴𝑦𝑦0|𝑒𝑒′𝑥𝑥 − 1 = 0, 𝑥𝑥 ≥ 0} (3-47)

 𝑥𝑥0′𝐵𝐵𝑦𝑦0 = max
𝑥𝑥

{𝑥𝑥0′𝐵𝐵𝐵𝐵|𝑙𝑙′𝑦𝑦 − 1 = 0, 𝑦𝑦 ≥ 0} (3-48)

According to Karush–Kuhn–Tucker (KKT) conditions, the necessary and sufficient conditions for

(𝑥𝑥0, 𝑦𝑦0) to be the optimal solution are

𝑥𝑥0′𝐴𝐴𝑦𝑦0 − 𝜆𝜆𝐴𝐴 = 0

𝑥𝑥0′𝐵𝐵𝑦𝑦0 − 𝜆𝜆𝐵𝐵 = 0

𝐴𝐴𝑦𝑦0 − 𝜆𝜆𝐴𝐴𝑒𝑒 = 0

𝐵𝐵′𝑥𝑥0 − 𝜆𝜆𝐵𝐵𝑙𝑙 = 0

𝑒𝑒′𝑥𝑥 − 1 = 0

𝑙𝑙′𝑦𝑦 − 1 = 0

𝑥𝑥0 ≥ 0

𝑦𝑦0 ≥ 0

(3-49)

 49

where 𝜆𝜆𝐴𝐴 and 𝜆𝜆𝐵𝐵 are the expected payoff to player I and II respectively at equilibrium (𝑥𝑥0,𝑦𝑦0).

According to the equivalence theorem in [46], the necessary and sufficient condition that (𝑥𝑥0, 𝑦𝑦0)

is an equilibrium is that it is a solution of the following programing problem

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑥𝑥′(𝐴𝐴 + 𝐵𝐵)𝑦𝑦 − 𝜆𝜆𝐴𝐴 − 𝜆𝜆𝐵𝐵

Subject to 𝐴𝐴𝐴𝐴 − 𝜆𝜆𝐴𝐴𝑒𝑒 = 0

𝐵𝐵′𝑥𝑥 − 𝜆𝜆𝐵𝐵𝑙𝑙 = 0

𝑒𝑒′𝑥𝑥 − 1 = 0

𝑙𝑙′𝑦𝑦 − 1 = 0

𝑥𝑥0 ≥ 0

𝑦𝑦0 ≥ 0

(3-50)

The values of 𝜆𝜆𝐴𝐴 and 𝜆𝜆𝐵𝐵 at the equilibrium, 𝜆𝜆𝐴𝐴
0 and 𝜆𝜆𝐵𝐵

0, equal the expected payoff to player I and

the player II respectively. Also,

 𝑥𝑥0′(𝐴𝐴 + 𝐵𝐵)𝑦𝑦0 − 𝜆𝜆𝐴𝐴
0 − 𝜆𝜆𝐵𝐵

0 = 0 (3-51)

Since the payoff matrix is identical to all players, A=B, the problem becomes a special scenario of

the general quadratic problem:

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑥𝑥′(2𝐴𝐴)𝑦𝑦 − 𝜆𝜆𝐴𝐴 − 𝜆𝜆𝐵𝐵

Subject to 𝐴𝐴𝐴𝐴 − 𝜆𝜆𝐴𝐴𝑒𝑒 = 0

𝐴𝐴′𝑥𝑥 − 𝜆𝜆𝐵𝐵𝑙𝑙 = 0

(3-52)

 50

𝑒𝑒′𝑥𝑥 − 1 = 0

𝑙𝑙′𝑦𝑦 − 1 = 0

𝑥𝑥0 ≥ 0

𝑦𝑦0 ≥ 0

Therefore, if the common-interest game setting is applied, the BSs compute (3-52) and apply the

CTSF strategy obtained by solving this quadratic programming problem. The solver applied in the

simulation is fmincon in MATLAB with the interior-point algorithm.

3.5 Discussion on the Game Types

As illustrated in the above sections, the microgrid energy management could either modeled as

a zero-sum game or a common-interest game. Both setting have their advantages and drawbacks.

So they may be applied under different circumstances.

By modeling the CTSF decision-making process as a zero-sum game, the BSs are operating in

a ‘safe mode.’ Since there is a significant penalty when the CTSF is large, the BS will likely keep

low CTSF most of the time, except when the probability of reaching the desired SoC level is

sufficiently high. In this mode, the system is expected to have a conservative energy plan, which

could be desired during a natural disaster. Another benefit is that the computation cost is almost

linear to the number of variables in the problem so that the BS controllers could handle a relatively

large number of CTSF choices [44].

 51

On the other hand, by modeling the energy management as a common-interest game, the BSs

obtain higher payoffs. As will be shown in the numerical results, the common-interest game setting

encourages the BSs to choose higher CTSF without missing the energy availability target.

However, the computation cost of a non-zero-sum game could be high. Also, the common-interest

game has a large performance drop when applied in a virtual two-player game as will be discussed

in section 3.7.

Generally, if the BS controllers have sufficient computing power and the communication QoS

is not negotiable, a common-interest game would be an optimal arrangement. Otherwise, modeling

energy management as a zero-sum game could be a more cost-efficient solution.

3.6 Games with Arbitrary Number of Players

So far, we have been working on a two-player game, which means the microgrid has only two

BSs, or only two groups of BSs loss the connection between them. More often, there may be more

than dozens of BSs in a communication network, and the disconnected BSs could be of any

number. Therefore, a solver for a game with an arbitrary number of BSs is needed. However, there

might not always be an effective method to solve them. Unlike the two-player game, a game with

more players cannot be converted to a linear programming or quadratic programming problem.

For a general n-player game, utilizing the indifference principle, the KKT condition yields a set of

n-1 order equations. This phenomenon could be seen from the following example. Suppose a three-

player game has a payoff table shown in Table 7, where each player has two available actions L

and R. Denote the probabilities of players’ strategies as

 52

Table 7: Example of a three-player non-zero-sum game

Player Z Player Z
L (P3) R (1-P3)

 Player Y Player Y
 P2 1-p2 P2 1-P2
 L R L R

Player X P1 L 3, -6 ,4 3,3, 2 Player X P1 L 3, -2, 0 2, 2, 2
1-P1 R 5, 1, 1 2, 3, 2 1-p1 R 2, 2, 2 3, 1, -2

 (𝑠𝑠𝑋𝑋 = 𝐿𝐿) = 𝑝𝑝1,𝑃𝑃(𝑠𝑠𝑋𝑋 = 𝑅𝑅) = 1 − 𝑝𝑝1 (3-53)

 𝑃𝑃(𝑠𝑠𝑌𝑌 = 𝐿𝐿) = 𝑝𝑝2,𝑃𝑃(𝑠𝑠𝑌𝑌 = 𝑅𝑅) = 1 − 𝑝𝑝2 (3-54)

 𝑃𝑃(𝑠𝑠𝑍𝑍 = 𝐿𝐿) = 𝑝𝑝3,𝑃𝑃(𝑠𝑠𝑍𝑍 = 𝑅𝑅) = 1 − 𝑝𝑝3 (3-55)

And the expected payoff of their choice of actions are

 𝐸𝐸(𝑠𝑠𝑋𝑋 = 𝐿𝐿) = p3(3p2 + 3(1 − p2)) + (1 − p3)(3p2 + 2(1 − p2)) (3-56)

 𝐸𝐸(𝑠𝑠𝑋𝑋 = 𝑅𝑅) = p3(5(p2) + (1 − p2)2) + (1 − p3)(2p2 + 3(1 − p2)) (3-57)

 𝐸𝐸(𝑠𝑠𝑌𝑌 = 𝐿𝐿) = p3(−6p1 + 3(1 − p1)) + (1 − p3)(−2p1 + 2(1 − p1)) (3-58)

 𝐸𝐸(𝑠𝑠𝑌𝑌 = 𝑅𝑅) = p3(1(p1) + 3(1 − p1)) + (1 − p3)(2p1 + 2(1 − p1)) (3-59)

 𝐸𝐸(𝑠𝑠𝑧𝑧 = 𝐿𝐿) = p1(4p2 + 2(1 − p2)) + (1 − p1)2p2 (3-60)

 𝐸𝐸(𝑠𝑠𝑧𝑧 = 𝑅𝑅) = p1(1p2 + (1 − p2)2) + (1 − p1)(2p2 − 2(1 − p2)) (3-61)

 53

According to the indifference principle, at the equilibrium, the expected payoffs of each player’s

different actions should be equal:

 𝐸𝐸(𝑠𝑠𝑋𝑋 = 𝐿𝐿) = 𝐸𝐸(𝑠𝑠𝑋𝑋 = 𝑅𝑅) (3-62)

 𝐸𝐸(𝑠𝑠𝑌𝑌 = 𝐿𝐿) = 𝐸𝐸(𝑠𝑠𝑌𝑌 = 𝑅𝑅) (3-63)

 𝐸𝐸(𝑠𝑠𝑧𝑧 = 𝐿𝐿) = 𝐸𝐸(𝑠𝑠𝑧𝑧 = 𝑅𝑅) (3-64)

which is a ternary quadratic equation set, whose solution is

𝑝𝑝1 = −10,𝑝𝑝2 =
11
26

,𝑝𝑝3 = −
4
3

 (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)

or 𝑝𝑝1 = 0, 𝑝𝑝2 = 1, 𝑝𝑝3 = 1
3

So, an equilibrium of the three-player game is obtained. As the reader could image, the order of

the equation set (3-53)-(3-55) increases linearly as the number of players increases. Since there is

no algebraic solution to the general polynomial equations of degree five or higher according to the

Abel-Ruffini theorem, it is only possible to approach the equilibrium through numerical algorithms

such as Newton’s method [33, 35]. However, the computation cost of such an algorithm could be

high. The computation time of a game with multiple players using global Newton algorithm is

shown in Table 8, as the results suggest, the computation time of a game with more than three

players could go beyond hours [47].

 54

Table 8 : Computation time in second required to solve for equilibrium with global Newton algorithm

Generally, computing the NE in a game with more than three players has yet to be proved that

it could be solved effectively [48]. The computation time and complexity of communication

increase exponentially as the number of players and actions increases even for solving an

approximate equilibrium [21, 49]. Therefore, in this project, instead of developing an exact solver

for a multi-player game with more players, we made a simplification transition and modified the

original multiplayer energy management game into a virtual two-player game.

 55

3.7 Virtual Two-player Game

In a system with more than two BSs, the power consumption is

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = �(𝑃𝑃𝐵𝐵𝑖𝑖 + 𝜎𝜎𝑖𝑖𝑣𝑣𝑖𝑖𝑃𝑃𝑇𝑇𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

 (3-65)

Recall that in a two-player game, the load estimation of BS i is:

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖 = (𝑃𝑃𝐵𝐵𝑖𝑖 + 𝜎𝜎𝑖𝑖𝑣𝑣𝑖𝑖𝑃𝑃𝑇𝑇𝑖𝑖)
�����������

𝐵𝐵𝐵𝐵 𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

+ (𝑃𝑃𝐵𝐵𝑜𝑜 + 𝜎𝜎𝑜𝑜𝑣𝑣𝑜𝑜𝑃𝑃𝑇𝑇𝑜𝑜)�����������
𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝐵𝐵𝐵𝐵𝐵𝐵′ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

 (3-66)

In the view of BS i, the power consumption of all the other BSs could be represented by one BS

and its CTSF 𝜎𝜎𝑜𝑜

𝑃𝑃𝐵𝐵𝑜𝑜 + 𝜎𝜎𝑜𝑜𝑣𝑣𝑜𝑜𝑃𝑃𝑇𝑇𝑜𝑜 = �(𝑃𝑃𝐵𝐵𝑗𝑗 + 𝜎𝜎𝑗𝑗𝑣𝑣𝑗𝑗𝑃𝑃𝑇𝑇𝑗𝑗)
𝑁𝑁

𝑗𝑗≠𝑖𝑖

 (3-67)

Suppose the BS base load information is known to all BSs, the actual transition is

𝜎𝜎𝑜𝑜𝑣𝑣𝑜𝑜𝑃𝑃𝑇𝑇𝑜𝑜 = �(𝜎𝜎𝑗𝑗𝑣𝑣𝑗𝑗𝑃𝑃𝑇𝑇𝑗𝑗)
𝑁𝑁

𝑗𝑗≠𝑖𝑖

 (3-68)

where 𝑣𝑣𝑜𝑜𝑃𝑃𝑇𝑇𝑜𝑜 = ∑ (𝑣𝑣𝑗𝑗𝑃𝑃𝑇𝑇𝑗𝑗)𝑁𝑁
𝑗𝑗≠𝑖𝑖 is the imagined load consumption of all the other BSs. Then the

controller could use the two-player game solving algorithms to solve for the equilibrium. The

 56

performance of a small microgrid implemented with this approach has a performance that is close

to an exhaustive searching, as will be shown in the numerical results section. Theoretically, the

CTSF strategy obtained by this virtual two-player game with zero-sum setting guarantees a

maximized worst-case payoff of the BS. However, because the other BSs are not practically

minimizing each other’s payoffs, the actual payoff is always higher than the worst-case expectation.

However, as the number of BSs (players) increases, from the view of a BS controller, the

response of the microgrid becomes more unpredictable. Because the virtual player can not fully

represent the joint-actions of multiple players. As a consequence, as the number of BSs increases,

the strategy obtained using this virtual two-player game becomes less optimal. This phenomenon

could be observed in an extreme case where the load ratio of one BS is approaching 0, meaning

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ≈ (𝑃𝑃𝐵𝐵𝑜𝑜 + 𝜎𝜎𝑜𝑜𝑣𝑣𝑜𝑜𝑃𝑃𝑇𝑇𝑜𝑜)�����������
𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝐵𝐵𝐵𝐵𝐵𝐵′ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

 (3-69)

Here, the choice of CTSF of player i does not affect the total power consumption hence the energy

availability function 𝑓𝑓𝑎𝑎𝑎𝑎(𝜎𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑡𝑡). And the objective function of player i becomes

𝑜𝑜𝑜𝑜𝑜𝑜(𝜎𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑡𝑡) = 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐(𝜎𝜎, 𝑡𝑡) + 𝑐𝑐 (3-70)

where the constant c is

𝑐𝑐 = 𝑤𝑤𝑆𝑆𝑆𝑆𝑆𝑆 ∙ 𝑓𝑓𝑎𝑎𝑎𝑎(𝜎𝜎𝑜𝑜 , 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑡𝑡) (3-71)

 57

Because the communication quality function is a positive-related function of CTSF 𝜎𝜎 , the

objective function of player i then becomes a monotonic function. Because the final objective

function is piece-wised, as shown in eqn. (3-72)

𝑜𝑜𝑜𝑜𝑜𝑜∗ =

� 𝑆𝑆𝑆𝑆𝑆𝑆
(𝑜𝑜𝑜𝑜𝑜𝑜), 𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆 > 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜) = 𝑓𝑓𝑎𝑎𝑎𝑎(𝜎𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑡𝑡) > 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚

(1 − 𝜎𝜎)/10, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ,
(3-72)

So the optimal solutions for the player could are:

𝜎𝜎𝑖𝑖∗ = �𝜎𝜎
𝑜𝑜
𝑚𝑚𝑚𝑚𝑚𝑚, 𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆 > 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜) > 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚

𝜎𝜎𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (3-73)

where

𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆 > 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜) = 𝑓𝑓𝑎𝑎𝑎𝑎(𝜎𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑡𝑡) = 𝑓𝑓𝑎𝑎𝑎𝑎(𝜎𝜎𝑜𝑜 , 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑡𝑡) (3-74)

which is only decided by the CTSF choice of the other player 𝜎𝜎𝑜𝑜. Then, depending on whether the

energy management is modeled as a zero-sum or common-interest game, the optimal CTSF varies:

• Zero-sum game:

o If there exists 𝜎𝜎𝑜𝑜 such that 𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆 > 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜) < 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚, the player assumes the

other player would choose the maximal CTSF so that the objective function (1 −

𝜎𝜎)/10 is minimized. In this condition, its optimal strategy is 𝜎𝜎𝑖𝑖∗ = 𝜎𝜎𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚.

 58

o If there is no 𝜎𝜎𝑜𝑜 such that 𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆 > 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜) < 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚, the player assumes the

other player would choose the minimal CTSF so that the objective function

𝑜𝑜𝑜𝑜𝑜𝑜(𝜎𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑡𝑡) = 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐(𝜎𝜎, 𝑡𝑡) + 𝑤𝑤𝑆𝑆𝑆𝑆𝑆𝑆 ∙ 𝑓𝑓𝑎𝑎𝑎𝑎(𝜎𝜎𝑜𝑜 , 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑡𝑡) is minimized. In this

condition, its optimal strategy is 𝜎𝜎𝑖𝑖∗ = 𝜎𝜎𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚.

• Common-interest game:

o If there exists 𝜎𝜎𝑜𝑜 such that 𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆 > 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜) > 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚, the player assumes the

other player would choose the proper CTSF so that the objective function form is

still 𝑜𝑜𝑜𝑜𝑜𝑜(𝜎𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑡𝑡) = 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐(𝜎𝜎, 𝑡𝑡) + 𝑤𝑤𝑆𝑆𝑆𝑆𝑆𝑆 ∙ 𝑓𝑓𝑎𝑎𝑎𝑎(𝜎𝜎𝑜𝑜 , 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑡𝑡). In this condition,

its optimal strategy is 𝜎𝜎𝑖𝑖∗ = 𝜎𝜎𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚.

o If there is no 𝜎𝜎𝑜𝑜 such that 𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆 > 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜) > 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚, the objective function

has the form, (1 − 𝜎𝜎)/10. Then the player assumes the other player would choose

the minimal CTSF. In this condition, the optimal strategy is 𝜎𝜎𝑖𝑖∗ = 𝜎𝜎𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚.

As these conditions show, the BS controllers with small load-ratios would only choose either

the maximal or the minimal CTSF under all circumstances. Moreover, this behavior applies to all

the BSs in such a system. So, the overall behavior of this system will be like an over-fitted

controller with a huge gain: the system CTSF switches from maximum to minimum based on the

condition whether ‘there exists 𝜎𝜎𝑜𝑜 such that 𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆 > 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜) > 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚’, and resulting in the

same switching in PSNR. As a result, the system might not always reach the desired SoC level,

which causes a performance drop measured in the objective function. A portrait showing the

performance descending of the virtual two-player zero-sum game as the number of player increases

 59

is shown in Figure 15. As this figure suggests, the virtual two-player game experiences a 40%

performance loss as the number of players reaches 20. This performance drop is also related to the

system configuration, mostly on weighting factors, which will be shown in the simulation section.

Figure 15: Performance of virtual two-player zero-sum game with more players, w_soc=0.2

Nonetheless, the virtual-two player approach leaves a clue-- the players’ ‘misunderstanding’ of

the game is one of the reasons causing this performance drop. Therefore, in the learning-game

section, we will discuss how to adjust the BS controller’s ‘understanding’ of its load model with

the help of reinforcement learning.

0 5 10 15 20

Number of Players

11

12

13

14

15

16

17

18

Su
m

(o
bj

)

 60

Figure 16: Solar cell output power in a day

3.8 Communication Base Station Load Identifier

In the previous design, there is an assumption that the historical data of BS load and PV power

generation are accurate and known to all BSs in the system. However, in reality, these values might

be deviant from their expected ones. For example, the output of a solar cell generator could be

affected by a lot of conditions: sun irradiation, temperature, and cloud movement to a large extent.

The solar cell output power could have significant variance in a daily power output curve as shown

in Figure 16 [50]. If the real load and power generation experience large deviations compared to

the historical data, the BS could have a wrong estimation on its energy condition. Suppose the real

load consumption is higher than the preset data, the BS controller might not tune down its CTSF

until the battery SoC is too low when the probability of SoC reaching the desired level is too small.

Therefore, a system identifier is introduced to update the power consumption model for BS

 61

controllers such that they can adjust their CTSF strategy faster. The adaptive control scheme is

shown in Figure 17.

Figure 17: Adaptive controller scheme

From the perspective of the BS controller, changes either in renewable power generation or

load consumption both result in changes in the battery power storage:

 𝑃𝑃𝑅𝑅 = 𝑃𝑃𝑆𝑆∗ − (𝑃𝑃𝐵𝐵∗ + 𝛼𝛼∗𝑃𝑃𝐿𝐿∗) (3-75)

where 𝑃𝑃𝑆𝑆∗ and 𝑃𝑃𝐵𝐵∗ , 𝑃𝑃𝐿𝐿∗ are the real value of renewable power and load consumption. And a

reference model is given to BS controller

 𝑃𝑃𝑀𝑀 = 𝑃𝑃𝑆𝑆𝑀𝑀 − (𝑃𝑃𝐵𝐵𝑀𝑀 + 𝜎𝜎𝑃𝑃𝐿𝐿𝑀𝑀) + ∆𝑃𝑃𝐷𝐷 (3-76)

where 𝑃𝑃𝑆𝑆𝑀𝑀 and 𝑃𝑃𝐿𝐿𝑀𝑀 are the initial estimations of the PV power output and BS loads; 𝜎𝜎 is the CTSF

and ∆𝑃𝑃𝐷𝐷 is a tuning variable called virtual load

 62

 ∆𝑃𝑃𝐷𝐷 = 𝜃𝜃𝑃𝑃0 (𝑃𝑃0 > 0) (3-77)

where 𝑃𝑃0 is a base power consumption chosen by the system designer and 𝜃𝜃 is the adjusting factor.

Then, the error signal is

𝑒𝑒0 = 𝑃𝑃𝑅𝑅 − 𝑃𝑃𝑀𝑀 = (𝑃𝑃𝑆𝑆
∗ − (𝑃𝑃𝐵𝐵∗ + 𝛼𝛼∗𝑃𝑃𝑇𝑇∗)) − (𝑃𝑃𝑆𝑆

𝑀𝑀 − 𝛼𝛼𝑃𝑃𝐿𝐿𝑀𝑀 − 𝑃𝑃𝐵𝐵𝑀𝑀

+ 𝜃𝜃𝑃𝑃0)
(3-78)

Also, we define the difference between the desired adjusting factor and current factor to be the

parameter error ∅:

 ∅ = 𝜃𝜃∗ − 𝜃𝜃 (3-79)

whereas the desired adjusting factor is

𝜃𝜃∗ =

(𝑃𝑃𝑆𝑆∗ − 𝛼𝛼𝑃𝑃𝐿𝐿∗) − (𝑃𝑃𝑆𝑆
𝑀𝑀 − 𝛼𝛼𝑃𝑃𝐿𝐿𝑀𝑀 − 𝑃𝑃𝐵𝐵𝑀𝑀)

𝑃𝑃0
 (3-80)

Assume now that the updating rate is much higher than the changing rates of PV power and BS

load, then a Lyapunov energy function in which c is an arbitrary constant is defined as

 𝑉𝑉 =
1
2
𝑒𝑒02 +

1
2
𝑐𝑐∅2 ≥ 0 (3-81)

 63

Its partial derivative with respect to time becomes

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑒𝑒0𝑒𝑒0̇ + 𝑐𝑐∅∅̇ = −𝑒𝑒0𝑃𝑃0𝜃̇𝜃 + 𝑐𝑐∅∅̇ = (𝑒𝑒0𝑃𝑃0 + 𝑐𝑐∅)∅̇ = (−𝑒𝑒0𝑃𝑃0 + 𝑐𝑐∅)𝜃̇𝜃 (3-82)

From (3-82), the parameter updating rule is proposed

 ∅̇ = 𝜃̇𝜃 = −(−𝑒𝑒0𝑃𝑃0 + 𝑐𝑐∅) ≈ 𝑒𝑒0𝑃𝑃0 (3-83)

where c is chosen to be relatively small so that 𝑐𝑐∅ is negligible and does not need to be measured.

Substituting (3-83) into (3-82) and the partial derivative of Lyapunov energy function with respect

to time becomes

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −(−𝑒𝑒0𝑃𝑃0 + 𝑐𝑐∅)2 (3-84)

which is non-positive for all t. Therefore, according to the Lyapunov stability theory [51], the

adaptation laws (3-83) guarantees error signal 𝑒𝑒0 to be bounded [52]. Hence, the system identifier

can track the changes caused both by BS loads and the renewable power. Additionally, the

quadratic error equation is defined by

 𝑓𝑓𝑒𝑒 =
1
2
𝑒𝑒02 ≥ 0 (3-85)

 64

and its derivative with respect to 𝑒𝑒0 is

 fė = e0e0̇ = −e0θ̇P0 (3-86)

Substituting (3-83) into (3-86)

 fė = −(e0P0)2 ≤ 0 (3-87)

So that 𝑓𝑓𝑒𝑒 (𝑒𝑒0)>0 for all 𝑒𝑒0 ≠ 0 and 𝑓𝑓𝑒̇𝑒(𝑒𝑒0) ≤ 0 for all 𝑒𝑒0, 𝑓𝑓𝑒̇𝑒(𝑒𝑒0) = 0 if and on if 𝑒𝑒0 = 0. By La

Salle’s invariance principle, the original point 𝑒𝑒0 = 0 of 𝑓𝑓𝑒𝑒 is asymptotically stable with any

initial condition [53]. Thus, the adaptation law eqn. (3-83) guarantees finding the deviation

between real and estimated load consumption. However, this updating law requires the information

of error signal 𝑒𝑒0, which is obtained by measuring the battery SoC as shown in (3-88).

 𝑒𝑒0 = 𝑃𝑃𝑅𝑅 − 𝑃𝑃𝑀𝑀 =
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

∙ 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑃𝑃𝑀𝑀 (3-88)

Therefore, the controllers in the system must keep monitoring the entire battery SoC to get the

error signal. Without communication, this monitoring could be done by measuring the dc bus

voltage using the battery SoC balancing control algorithms [49, 54]. In the simulation, the SoC

information is given to BSs directly.

 65

4.0 Reinforcement Learning

In this approach, the BS controllers are modeled as ‘agents’ utilizing reinforcement

learning algorithms to obtain a set of energy management strategies. Reinforcement learning (RL)

is a general class of algorithms in the field of machine learning that aims at training an agent to

learn how to behave in an environment where the only feedback consists of a scalar reward signal

[25, 55]. RL suits well in solving long-term decision-making problems such as Markov Decision

Process (MDP), which coincidence with the energy management solving process [56, 57]. The

essential part of RL implementation is to design the instantaneous reward function properly such

that the agents are attracted to the desired behavior pattern. In this section, we will discuss two

different kinds of RL algorithms: Q-learning and Linear Reward Inaction. In the end, a combined

algorithm using Linear Reward Inaction and the two-player game is proposed which aims at

reducing the training time.

4.1 Markov Decision Process

A (finite) Markov decision process is a tuple 〈𝑋𝑋,𝑈𝑈,𝑓𝑓,𝜌𝜌〉 where X is the finite set of

environment states, U is the set of agent actions, 𝑓𝑓:𝑋𝑋 × 𝑈𝑈 × 𝑋𝑋 → ℝ is the reward function. A state

𝑥𝑥𝑘𝑘 ∈ 𝑋𝑋 denotes the environment at each time step k. The agent observes the state and takes an

action 𝑢𝑢𝑘𝑘 ∈ 𝑈𝑈. As a result, the environment changes its state to another state 𝑥𝑥𝑘𝑘+1 ∈ 𝑋𝑋 according

to the transition function f, which tells the probability of reaching different states after 𝑢𝑢𝑘𝑘. Then,

the agent receives a scalar reward 𝑟𝑟𝑘𝑘+1 ∈ ℝ according to the reward function 𝑟𝑟𝑘𝑘+1 =

 66

𝜌𝜌(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘, 𝑥𝑥𝑘𝑘+1), which is an immediate effect of the action just taken. However, this reward does

not contain any long-term effect of this action. For some MDP, there is a terminal state, which

ends the process and the agent cannot leave this state. In our case, the MDP does not have such a

state, so the decision-making process is conducted forever.

The behavior of the agent is described by its policy, which depicts how the agent chooses

its actions given a state. The policy could either be stochastic or deterministic. A policy is said to

be stationary if it does change over time. Denoting the policy by l, the agent’s goal is to find a

policy that maximizes its expected discounted return from every state x:

max
𝑙𝑙:𝑋𝑋→𝑈𝑈

𝑅𝑅𝑙𝑙(𝑥𝑥) = max
𝑙𝑙:𝑋𝑋→𝑈𝑈

𝐸𝐸 ��𝛾𝛾𝑘𝑘𝑟𝑟𝑘𝑘+1|𝑥𝑥0 = 𝑥𝑥, 𝑙𝑙
∞

𝑘𝑘=0

� (4-1)

where 𝛾𝛾 ∈ [0,1) is a discount factor for the future reward, the return R represents the reward

accumulated by the agent in the long term. There are multiple ways of defining the long-term

return [25]. The discount factor 𝛾𝛾 could be seen as a way to represent an increasing uncertainty

about the reward that will be received in the future. The task of the agent then is to find the optimal

policy by only receiving feedback about its immediate performance. One way it can achieve this

is by computing the optimal state-action value function (Q-function) as discussed in the next

section.

 67

4.2 Q-learning Algorithm

Dr. Watkins first developed Q-learning in 1989, which assigns each pair of state-action a

reward and builds a decision strategy based on the state-action value table [58, 59]. There is a

broad variety of single-agent RL algorithms based on Q-learning developed ever since, e.g.,

model-free methods based on online value function estimation [60-62], model-based method

(usually called dynamic programming) [63, 64], and model-learning methods [65]. In this project,

the battery SoC level is utilized as the state, and the choice of CTSF 𝜎𝜎 is modeled as actions at

each state in this MDP. Every action in every state comes with an instantaneous reward r, and a

bonus reward is given at the end of the operation once the SoC goal is reached. For every state-

action pair (s,a), there is a Q* value that indicates its optimization level, which not only includes

the instantaneous reward but partially contains the delayed reward after taking action a. The Q*

value is the expected reward for each state-action pair. It acts as an operation instruction under the

circumstance. The optimal Q-function is defined as

 Q∗(x, u) = max
l

Ql(x, u) (4-2)

which is unknown initially to the agent. The optimal Q-function satisfies the Bell-man optimality

equation:

Q∗(x, u) = � f(x, u, x′) �rk+1 + γmax

l
Q∗(x′, u′)� ∀x ∈ X, u ∈ U

x′∈X

 (4-3)

 68

This equation states that the optimal value of taking u in x is the expected immediate reward plus

the expected discounted optimal Q value from the next state. There are different strategies in

choosing action given the Q value table, such as greedy strategy, 𝜀𝜀 −greedy policy, and Boltzmann

strategy [25]. The greedy strategy 𝑙𝑙∗̅ is to choose an action with the largest optimal Q-value at

every state

 𝑙𝑙∗̅(𝑥𝑥) = arg max
𝑢𝑢

𝑄𝑄∗(𝑥𝑥,𝑢𝑢) (4-4)

In the most extreme case, the agents are not given any information about the world or environment.

The agents use temporal differences to estimate the true Q* value of each state-action pair based

on their experience. The updating equation is shown in (4-5) [58].

𝑄𝑄𝑘𝑘+1(x𝑘𝑘,𝑢𝑢𝑘𝑘) = 𝑄𝑄𝑘𝑘(x𝑘𝑘,𝑢𝑢𝑘𝑘) + 𝛼𝛼(𝑟𝑟𝑘𝑘+1 + 𝛾𝛾max
𝑢𝑢′

𝑄𝑄𝑘𝑘(x𝑘𝑘+1,𝑢𝑢′)

− 𝑄𝑄𝑘𝑘(x𝑘𝑘,𝑢𝑢𝑘𝑘))
(4-5)

where 𝛼𝛼 is an updating step size factor, 𝛾𝛾 is the horizon factor, x𝑘𝑘+1 is the possible future state that

is reachable from state 𝑠𝑠. The term 𝑟𝑟𝑘𝑘+1 + 𝛾𝛾max
𝑢𝑢′

𝑄𝑄𝑘𝑘(x𝑘𝑘+1,𝑢𝑢′) − 𝑄𝑄𝑘𝑘(x𝑘𝑘,𝑢𝑢𝑘𝑘) is called the temporal

difference, indicating the difference between the current estimation 𝑄𝑄𝑘𝑘(x𝑘𝑘,𝑢𝑢𝑘𝑘) of optimal Q-value

of (x𝑘𝑘,𝑢𝑢𝑘𝑘) and the updated estimate 𝑟𝑟𝑘𝑘+1 + 𝛾𝛾max
𝑢𝑢′

𝑄𝑄𝑘𝑘(x𝑘𝑘+1,𝑢𝑢′). This new update is a sample of

the right-hand side of the Bellman equation (4-3). The sequence 𝑄𝑄𝑘𝑘 converges to 𝑄𝑄∗ under the

following conditions [66-68]:

 69

• The value of the Q-function is stored and updated for all state-action pairs.

• All the state-action pairs are visited infinitely often.

• The following requirements (4-6)-(4-7) of learning rate is satisfied:

0 < 𝛼𝛼𝑡𝑡 < 1,�𝛼𝛼𝑡𝑡

∞

𝑡𝑡=1

= ∞ (4-6)

�𝛼𝛼𝑡𝑡2
∞

𝑡𝑡=1

< ∞ (4-7)

A conventional choice is to pick the step size factor as

 𝛼𝛼𝑡𝑡 =
1
𝑡𝑡
 (4-8)

since

�

1
𝑡𝑡

∞

𝑡𝑡

=
1
1

+
1
2

+
1
3

+ ⋯ = ∞ (4-9)

�

1
𝑡𝑡2

=
𝜋𝜋2

6

∞

𝑡𝑡=1

 (4-10)

The second requirement could be fulfilled if we set nonzero probabilities for the agent to try all

available actions in all states. The exploration process is achieved by choosing at each time step a

random action with probability 𝜀𝜀, and the present optimal action with probability 1 − 𝜀𝜀 (such is

 70

referred to as 𝜀𝜀 −greedy exploration). Another common option is to use the Boltzmann exploration

procedure, which selects action u in a state x with probability:

𝑝𝑝(𝑥𝑥,𝑢𝑢) =

𝑒𝑒𝑄𝑄(𝑥𝑥,𝑢𝑢)/𝜏𝜏

∑ 𝑒𝑒𝑄𝑄(𝑥𝑥,𝑢𝑢�)/𝜏𝜏
𝑢𝑢�

 (4-11)

where 𝜏𝜏 > 0 , denoted as the temperature, controls the randomness of the exploration. The

remaining part is to design the reward function r(s,a). The value of reward function has a

significant impact on the final strategy found by Q-learning. In the project, the designed reward

functions in the single-agent and multi-agent simulations are different. For the single-agent

scenario, the reward function is the same as the objective function:

𝑟𝑟(𝑆𝑆𝑆𝑆𝑆𝑆,𝜎𝜎) = 𝑜𝑜𝑜𝑜𝑜𝑜(𝜎𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑡𝑡) = 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐(𝜎𝜎, 𝑡𝑡) + 𝑤𝑤𝑆𝑆𝑆𝑆𝑆𝑆 ∙ 𝑓𝑓𝑎𝑎𝑎𝑎(𝜎𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑡𝑡) (4-12)

because the agent has all the information needed to compute the communication quality and

energy availability. However, for a system with more learners without communication links, the

actual CTSF choice is unknown to each agent. Thus, a simple reward function only considering

the current SoC and CTSF is designed

𝑟𝑟(𝑠𝑠(𝑡𝑡),𝜎𝜎(𝑡𝑡), 𝑡𝑡) = 𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) ∙ +𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝜎𝜎(𝑡𝑡) (4-13)

where 𝜎𝜎(𝑡𝑡) is the action just taken by the BS and 𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐 are the weighting factors. Giving

this reward function, each controller could update its Q* values. Also, an extra reward is given to

the agent at 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒

 71

𝑟𝑟(𝑠𝑠,𝑎𝑎, 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒) = �

10 𝑖𝑖𝑖𝑖 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒) ≥ 𝑆𝑆𝑆𝑆𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
0 𝑖𝑖𝑖𝑖 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒) < 𝑆𝑆𝑆𝑆𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

 (4-14)

which gives a bonus to the actions that enable the system reaching the desired SoC goal.

In the original design, there is only one agent in this MDP, and the environment is assumed

to be static; thus the optimal Q values are fixed. These assumptions are not always valid in the

microgrid discussed in this dissertation. In the simulation, two types of learning mechanisms were

tested: centralized BS controller equipped with Q-learning and multiple BSs implemented single-

agent Q-learning. The stability and convergence of multi-agent Q-learning without communication

have not yet been proven [25]. There have been modified versions of multi-agent Q-learning such

as Nash-Q, Team-Q, Minimax-Q, and distributed-Q [38, 69]. However, most of them require

designated communication between agents to observe the reward or actions of the other agents,

which is not guaranteed in the microgrid discussed.

4.3 Linear Reward-Inaction Algorithm

Linear reward-inaction is a learning algorithm designed for the multi-agent system by P.S.

Sastry in 1994 [67]. This method is built upon the model of learning automata, which aims at

reaching equilibriums of Markov games. The Markov games are an extension of game theory to

MDP-like environment. In these games, the designer not only considers any single agent’s reward

but all the agents’ learning process. Then, algorithms were proposed aiming at attracting agents to

equilibriums in the Markov game. The definition of equilibrium in the Markov game is the same

 72

with a classical multi-player game, which claims no player can obtain a better payoff by deviating

from the equilibrium. These algorithms could be seen as a policy updating methods since the agents

update the probabilities of choosing available actions directly. The updating sequence of an agent

implementing Linear reward inaction is listed below:

1. At time t, the player (automaton) choose an action according to its action probability vector
𝒒𝒒𝑖𝑖. Suppose the action taken is 𝛿𝛿𝑖𝑖.

2. Each player obtains a payoff based on the set of all players’ actions. The reward of player i is
𝑟𝑟𝑖𝑖(𝑡𝑡).

3. Each player updates his action probability according to the rule

𝒑𝒑𝑖𝑖(𝑡𝑡 + 1) = 𝒑𝒑𝑖𝑖(𝑡𝑡) + 𝑏𝑏 ∙ 𝑟𝑟𝑖𝑖(𝑡𝑡) �𝒆𝒆𝛿𝛿𝑖𝑖 − 𝒑𝒑𝑖𝑖(𝑡𝑡)� , 𝑖𝑖 = 1, … ,𝑁𝑁 (4-15)

where 0<b<1 is a learning rate parameter and 𝒆𝒆𝛿𝛿𝑖𝑖 is a unit vector with its 𝛿𝛿𝑖𝑖th component unity.

This updating law can be represented as

𝑃𝑃(𝑘𝑘 + 1) = 𝑃𝑃(𝑘𝑘) + 𝑏𝑏𝑏𝑏(𝑃𝑃(𝑘𝑘),𝑎𝑎(𝑘𝑘), 𝑟𝑟(𝑘𝑘)] (4-16)

where 𝑎𝑎(𝑘𝑘) denotes the action chosen by the agent at step/time k and 𝑟𝑟(𝑘𝑘) are the resulting

rewards, and G(.) represents the updating law specified by eqn. (4-15). P(k) converges weakly to

a solution of an ordinary differential equation

𝑑𝑑𝑃𝑃
𝑑𝑑𝑑𝑑

= 𝐸𝐸[𝐺𝐺(𝑃𝑃(𝑘𝑘),𝑎𝑎(𝑘𝑘), 𝑟𝑟(𝑘𝑘)|𝑃𝑃(𝑘𝑘) = 𝑘𝑘] (4-17)

whose solutions are the pure Nash equilibriums in the original Markov game. The detailed proof

could be found in [67] Theorem 3.4. So, this learning algorithm convergences to a pure Nash

Equilibrium of the multi-agent Markov decision process (a.k.a Markov game). Other than that,

whether an equilibrium of a mixed strategy could be obtained or if the learning process is trapped

in a limit cycle is not guaranteed.

 73

SoC/CTSF CTSF_1 CTSF_2 … CTSF_n

SoC_1 p11 P12 … P1n

SoC_2 p21 P22 … P2n

… … … … …

SoC_m pm1 pm2 … pmn

Figure 18: Learning space of a Linea reward-inaction agent

When applied to the microgrid energy management, the BS controller update a list of CTSF

probability vectors given the system SoC level. The battery SoC is divided into multiple levels,

and the agent follows different CTSF strategies at each level as shown in Figure 18. The

summation of elements in every row in this table is one. The reward function could be the objective

function eqn. (2-12) if the communication network in the microgrid is functioning. Otherwise, if

the BS is not capable of sharing CTSF and SoC status with the others, a local-information-based

reward function is available for the agent to use, as shown in eqn (4-18).

𝑟𝑟𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧

1 𝑡𝑡 > 𝑡𝑡𝑑𝑑,𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖(𝑡𝑡) > 𝑆𝑆𝑆𝑆𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑
1

1 + e−𝛼𝛼𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖(t)
+ 𝑤𝑤𝑆𝑆𝑆𝑆𝑆𝑆

1

1 + e−
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖(t)

𝛼𝛼𝑖𝑖

𝑡𝑡 < 𝑡𝑡𝑑𝑑 ,𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖(t) ≥ 𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚

(1 − 𝛼𝛼𝑖𝑖)/10 𝑡𝑡 < 𝑡𝑡𝑑𝑑 ,𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖(𝑡𝑡) ≤ 𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚
0 (𝑡𝑡 < 𝑡𝑡𝑑𝑑,𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖(𝑡𝑡) < 𝑆𝑆𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑙𝑙) 𝑜𝑜𝑜𝑜 �𝑡𝑡 > 𝑡𝑡𝑑𝑑 ,𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖(𝑡𝑡) < 𝑆𝑆𝑆𝑆𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔�

 (4-18)

where 𝜎𝜎𝑖𝑖(𝑡𝑡) is the CTSF chosen by the ith agent, the two Logistic functions ensure the reward

stays in the range of [0,1], 𝛼𝛼𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖(t) is the local load satisfaction rate weighted by the battery SoC

level, and 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖(t)
𝛼𝛼𝑖𝑖

 approximates the remaining operating time assuming no power supply is

provided. The factor k accounts for the battery energy/load energy ratio, which could be different

in each microgrid. As will be shown in the simulation section, the approximated reward function

makes the training process longer (mostly due to its requirement of lower training rate) but

guarantees that the system achieves the same performance as the actual objective function does.

 74

Two modifications were made considering the specific application. First, the probabilities

of actions are limited to

𝒑𝒑𝑖𝑖(𝑡𝑡)𝜖𝜖[

1 − 𝑡𝑡𝑡𝑡𝑡𝑡
𝑛𝑛 − 1

, 𝑡𝑡𝑡𝑡𝑡𝑡] (4-19)

where top is a value close to 1 (e.g., 0.8), n is the number of available actions. This limit on the

probability of action was made to prevent the agents from actually reaching the pure NE. Because

at the pure NE, one of the actions is dominating the other actions

𝒑𝒑𝑑𝑑𝑑𝑑𝑑𝑑∗(𝑡𝑡) = 1,𝒑𝒑𝑖𝑖∗(𝑡𝑡) = 0 ∀𝑖𝑖 ≠ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (4-20)

meaning the exploration of the agent is finished, and the agent will never choose other CTSF

actions in the future. This feature might leads the agent to local optimums and leaves no room for

updating when environmental changes. By applying probability limiting (4-19), the agent has a

chance to escape from the local optimums.

Another modification is made a low-SoC barrier. This rule is set for each agent as follows:

Low-SoC-check (p(𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖, CTSF))

1: Scan the whole learning table

2: if p(𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙, CTSF_min)>=𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

3: p(𝑆𝑆𝑆𝑆𝑆𝑆𝑘𝑘, CTSF_min)= p(𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙, CTSF_min) ∀𝑘𝑘 ≤ 𝑙𝑙

4: repeat

where 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is a probability threshold close to one, and p(SoC, CTSF)) represents the

probability of choosing CTSF at 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖. The principle behind this setting is simple: if the optimal

action at 𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙 is to maintain at the minimum CTSF, then 𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙 could be classified as ‘critically

low’ from the agent’s experience. Thus, the agent needs not to explore any SoC states lower than

this value to decide what the optimal strategies are because those states could only mean worse

 75

energy conditions. Therefore, the optimal action at any lower SoC levels could only be maintaining

the lowest load consumption as well. The agents applying this modification have responses better

when encountering a power loss situation where the original learning setting requires the agents

to explore the lower SoC region. The other benefit of this mechanism is that it prevents the agent

from converging to a possible equilibrium leading to critical low system SoCs.

 76

5.0 Load-ratio Learning Game

5.1 Inspiration from Virtual Two-Player Game

This approach is enlightened by the virtual-two player game. A microgrid implemented

with the virtual two-player game has a performance as the number of players increases. This is

because of the BS controller’s biased understanding of its and the virtual BS’s loads. Therefore, a

new parameter load ratio 𝑟𝑟𝑡𝑡 is introduced:

𝑟𝑟𝑡𝑡𝑖𝑖 = 𝑃𝑃𝐵𝐵𝑖𝑖+𝑃𝑃𝑇𝑇𝑖𝑖

∑ (𝑃𝑃𝐵𝐵𝑖𝑖+𝑃𝑃𝑇𝑇𝑖𝑖)𝑁𝑁
𝑖𝑖=1

 (5-1)

which represents how much a BS’s load demand takes in the total load demand of the microgrid.

This value was assumed to be known to the BS controllers in the previous two-player game and

exhaustive search approaches. In the virtual two-player game, however, as mentioned before,

knowing the real value of this load ratio does not guarantee a strategy that maximizes the BS’s

payoff. Because in the two-player virtual game, a BS controller estimates the virtual player’s

moves assuming its load ratio is 1-𝑟𝑟𝑡𝑡𝑖𝑖. However, the actual join-action of the other BS controllers

can only be obtained if an actual n-player game is solved. But this joint-action action could be the

solution of another two-player game with different load-ratios. Moreover, it is possible for the BS

controller to locate that load-ratio through a learning process.

 77

5.2 Load-Ratio Updating Process

Therefore, instead of precise knowledge of the load ratio, a vector of possible load ratios

and probability list of the load ratio are given to the BSs:

𝑙𝑙 = �𝑟𝑟𝑡𝑡𝑖𝑖
1, 𝑟𝑟𝑡𝑡𝑖𝑖

2, … , 𝑟𝑟𝑡𝑡𝑖𝑖
𝑀𝑀� (5-2)

𝑙𝑙𝑟𝑟 = [𝒑𝒑1,𝒑𝒑2, … ,𝒑𝒑𝑀𝑀],�𝒑𝒑𝒊𝒊 = 1 (5-3)

where 𝑟𝑟𝑡𝑡𝑖𝑖
𝑘𝑘 are the ith BS’s possible load ratios, M is the number of possible load ratios, and 𝒑𝒑𝒌𝒌

indicates the confidence of the BS controller that 𝑟𝑟𝑡𝑡𝑖𝑖 is equal to 𝑟𝑟𝑡𝑡𝑖𝑖
𝑘𝑘 . 𝑙𝑙𝑟𝑟 is called the load-ratio

policy of the BS controller. When choosing the CTSF, the agent picks its load ratio based on the

load-ratio policy

𝑟𝑟𝑡𝑡𝑖𝑖 = 𝑟𝑟𝑡𝑡𝑖𝑖
𝑘𝑘 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝒑𝒑𝒊𝒊 (5-4)

Then, the player conducts a regular virtual two-player game and obtain a mixed strategy as

described in section 3.7. Whether the CTSF is obtained through a common-interest game or zero-

sum game depends on the players’ available information and the integrity of the microgrid. When

the microgrid is operating normal, the BSs in the system share the same objective, thus, the

immediate CTSF could be solved using the common-interest setting. However, when the microgrid

is affected by a natural disaster, its components could be damaged or malfunctioning. In this

condition, the behavior modes of BSs could be different. Some BSs might experience a surge in

load demand, which is not desired to be shed, but other BSs may reduce their load consumption in

 78

order to conserve more stored energy. In this case, the BSs in this microgrid do not necessarily

share a common goal. If the communication links between BSs are functioning, BSs can broadcast

their load conditions so that the other BSs can adjust accordingly. Otherwise, BSs can only

estimate the objective function assuming the worst scenario, in which the virtual BS in the two-

player game. With this assumption, the objective of the BSs becomes a zero-sum game. Thus, it

should be solved, as indicated in section 3.3. Depending on the available information, the agent

computes a reward function based on the objective function eqn. (2-12) (normal condition) or the

local reward function eqn (4-18). Then, the load-ratio policy is updated using the Linear reward-

inaction algorithm. The architecture of this learning-gaming algorithm is shown in Figure 19, and

the overall flow chart is shown in Figure 20.

Figure 19: Learning-gaming algorithm scheme

This approach divides the original load planning process into two parts: load-ratio Markov

game and CTSF two-player game. In the Markov game, using the RL algorithm, the agents explore

the load-ratio space and search for equilibriums that give them the maximal reward in the two-

player game. The lower level is a two-player game acting as an actuator. Compare to the original

 79

game approach, this algorithm could be easily extended to an arbitrary number of players without

any burden on the computation cost and is highly flexible to the environment changes.

Additionally, because the search space for load-ratio learning is smaller than the SoC-CTSF space,

the converging speed of the load-ratio learning process is higher. All these features will be shown

in the simulation section.

 80

Figure 20: Load-ratio learning game algorithm flowchart

 81

6.0 Numerical Results

In this section, the numerical results of simulated communication microgrid implemented

with the two-player game, reinforcement learning, and load-ratio learning game are demonstrated

and compared. The primary BS parameters are shown in TABLE II. The BS load and renewable

power functions are

The PV power and BS load curves vs. time are shown in Figure 21 and Figure 22. We choose the

sum of objective function over 24 hours, as shown in equation (6-3), as a metric of overall system

performance, because it directly relates to the average performance over 24 hours if such sum is

divided by 24.

Sum(𝑜𝑜𝑜𝑜𝑜𝑜)=�𝑜𝑜𝑜𝑜𝑜𝑜�t, σ(t)�

24

t=1

(6-3)

𝑃𝑃𝐵𝐵𝐵𝐵=max(500
0.000839𝑡𝑡3 + 1.205𝑡𝑡2 − 12.02𝑡𝑡 + 34.29

𝑡𝑡2 − 6.495𝑡𝑡 + 43.45
+500,0) (6-1)

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠=max(
−8185𝑡𝑡2 + 1108750𝑡𝑡 − 707800

25𝑡𝑡2 − 3590𝑡𝑡 + 5928
+ 80,0)

(6-2)

 82

Figure 21: PV power curve

Figure 22: BS load curve

0 5 10 15 20

Time (Hr)

0

100

200

300

400

500

600

Po
w

er
 P

V
(W

)

0 5 10 15 20

Time (Hr)

50

100

150

200

250

300

350

400

450

500

BS
 lo

ad
 (W

)

 83

Table 9 : Simulated BS parameters

Sym
bol PARAMETER Value

𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐 Communication
quality weight 0.5

𝑤𝑤𝑆𝑆𝑆𝑆𝑆𝑆 Energy availability
weight 0.5

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 Battery fully charged
energy 24 kWh

𝐸𝐸𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠��������
Solar power
generation
expectation

1 kW

𝐸𝐸𝑃𝑃𝐵𝐵����� BS base load
expectation 200 W

 𝐸𝐸𝑃𝑃𝑇𝑇����� BS traffic depended
load expectation 800 W

𝑉𝑉𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�������� Solar power
generation variance 4000

𝑉𝑉𝑃𝑃𝑇𝑇���� BS traffic depended
load variance 4000

𝑆𝑆𝑆𝑆𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔 Desired battery SoC
level 0.8

𝑆𝑆𝑆𝑆𝑆𝑆0 Initial Battery SoC
level

0.7

BW BS total bandwidth 10MHz

a PSNR-rate bit curve
parameter 10.4

𝑏𝑏 PSNR-rate bit curve
parameter -23.8

r Nominal transmit
rate bit 2 Mbps

 84

6.1 Multi-Player Game

The operation of microgrid consists of identical BSs with the same load curves is simulated

with no communication link between the BSs. The performance of this microgrid implemented

with two-player games and its comparisons with the exhaustive search are demonstrated.

6.1.1 Two-Player Zero-Sum Game.

First, the microgrid implemented with the two-player zero-sum game is simulated. The

PSNR and battery SoCs of the system applying exhaustive search and zero-sum game are shown

in Figure 23 and Figure 24. As the results show, the system applied with a two-player game method

has a performance that is close to that of the globally exhaustive search. Both the system battery

SoCs reach the desired goal (80%), and similar trends are seen in both PSNR curves. According

to [30], a moderately good target for the quality of the video stream is 37 dB PSNR, whereas a 32

Figure 23: CTSF and SoC of the simulated microgrid applying exhaustive search, sum(obj)= 17.2512

0 10 20 30 40 50

Time (Hr)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

So
C

35

36

37

38

39

40

41

PS
N

R
 (d

B)

SoC
PSNR

 85

Figure 24: PSNR and SoC of the simulated microgrid, two-player zero-sum game, sum(obj)= 16.5616

dB PSNR is considered as acceptable. In term of the objective function, the sum(obj) of the mixed

two-player game method is 16.5616 compared to 17.2512 that of the exhaustive search. In order

to ensure that this is a consistent result, a Monte Carlo test comparing the performance of the mixed

Figure 25: Distribution of Sum(U) obtained by two-player zero-sum game

0 10 20 30 40 50

Time (Hr)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

So
C

34

35

36

37

38

39

40

41

42

PS
N

R
 (d

B)

SoC
PSNR

15.5 16 16.5 17

Sum(obj)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

R
el

at
iv

e
fre

qu
en

cy

 86

Figure 26: Distribution of Sum(U) obtained by exhaustive search

game method and the exhaustive search was conducted. In this test, 48 hours operation of the

microgrid with two BSs was simulated 500 times implemented with the two algorithms

considering the same initial battery SoCs and power/load distribution functions. The resulting

system performance Sum(U) has an average value of 17.2666 for exhaustive search and 16.1591

for the two-player mixed game algorithm. As the results show, in terms of Sum(U), the optimality

of the solution obtained by the mixed game algorithm is sufficiently close to that obtained by

exhaustive search but with a much less implementation complexity, as needed in practical

applications. The distributions of Sum(U) obtained by the two algorithms could be seen in Figure

26 and Figure 25. To further investigate the performance of the game approach, we performed a

series of simulations with different settings of initial battery SoCs and weighting factors in the

objective function. The Sum(U) function with different pairs of settings is plotted in one figure.

By doing so, an overall performance trend could be observed. The simulation result is shown in

Figure 27. As the result shows, under most conditions, the zero-sum two-player game method has

16.5 17 17.5 18 18.5

Sum(obj)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

R
el

at
iv

e
fre

qu
en

cy

 87

a performance that is close to the globally exhaustive search. A figure demonstrating the difference

between the two methods under different system settings is shown in Figure 28. As shown in this

result, in scenarios with low initial SoCs and small SoC weighting factors, the differences between

the two-player game and globally exhaustive search are within 20% of the global optimum, and

that gap is close to 0 as the initial SoC goes higher.

Figure 27: Sum(obj) of two-player zero-sum game with different initial SoC and weighting factor

Figure 28: Difference between exhaustive search and zero-sum game solutions in percentage

10

1

15

10.8

Sc
or

e
in

 te
rm

 o
f o

bj
et

iv
e

fu
nc

tio
n 20

0.8
0.6

SoC weighting

0.6

25

Initial SoC

0.4 0.4
0.2 0.2

0 0

game

constant

opt

0%
1

20%

0

40%

(o
bj

o
p

t-o
bj

g
a

m
e

)/o
bj

o
p

t

Initial SoC

0.5

0%

SoC weighting

0.5

20%

0 1

 88

6.1.2 Two-player Common-Interest Game

In this simulation, a microgrid operation with two identical BSs implemented with a common-

interest game setting is simulated. The only difference is now the solver applied is quadratic

programming solver. The SoC and PSNR results of the microgrid applying this method are shown

and compared to the zero-sum result in Figure 29. As the result shows, the PSNRs chosen by the

BS controller are higher than the ones obtained using zero-sum setting most of the time. The SoC

still achieved the desired goal in the end. In terms of the objective function, the common-interest

game has a score of 17.0653, which is higher than the 16.5616 obtained with the zero-sum setting.

An overall comparison of the common-interest game with the exhaustive search was also made

with varied initial SoC and its weighting, whose result is shown in Figure 30 and the difference

percentage is shown in Figure 31. It could be seen from these results that the common-interest

setting has a better performance than the zero-sum setting in most scenarios.

Figure 29: SoC and CTSF of simulated microgrid, two-player common-interest game, sum(obj)= 17.0807

0 10 20 30 40 50

Time (Hr)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

So
C

34

35

36

37

38

39

40

41

42

PS
N

R
 (d

B)

 89

Figure 30: Sum(obj) of two-player common-interest game with different initial SoC and weighting factor

Figure 31: Difference between exhaustive search and common-interest game solutions in percentage

0
1 1

5

10

0.8 0.8

Sc
or

e
in

 te
rm

 o
f o

bj
et

iv
e

fu
nc

tio
n

15

20

0.6 0.6

SoC weighting

25

Initial SoC

0.4 0.4
0.2 0.2

0 0

game

constant

opt

-0.05

1

0

0.8

0.05

0.6 1

SoC weighting

0.8

0.1

0.4
0.6

Initial SoC

0.15

0.40.2
0.2

0 0

 90

6.1.3 Communication Base Station Load Identifier

A simulation with estimation deviation in PV power generation is performed to test the BS load

controller. The microgrid is the same with two identical BSs and load curves. But in this

simulation, the PV panel is set to lose half of its power generation from t=5 to t=15 hr. The BSs

controllers in the system apply the two-player zero-sum game to solve for their CTSF strategies.

The resulting PSNR and SoC of the microgrid with and without a load identifier are shown in

Figure 32 and Figure 33. As the figures show, the microgrid equipped with a load identifier has a

performance (Sum(U)=8.1629) better than the one without a load identifier (Sum(U)=5.9233). The

battery SoC level with load identifier is also higher because the BS controllers choose lower CTSFs

with a more accurate power consumption model. The power consumption model of a BS with and

without the load identifier is shown in Figure 34 and Figure 35, showing that the BS controller

with a load identifier is capable of tracking the actual power consumption. Therefore, with a more

accurate load model, the controller could detect the insufficient power generation and turn down

its communication CTSF earlier.

Because of the effects of deviations between estimation and actual renewable sources generated

power and communications traffic load can be considered as an additional load (when 𝜃𝜃 > 0) or a

power source (when 𝜃𝜃 < 0), the proposed reference model can represent system structure changes

and offers a better estimation to improve BS controller performance. Accordingly, the virtual load

can also represent newly connected or disconnected devices (i.e., other base stations within the

same dc microgrid or power sources), which makes the system more flexible.

 91

Figure 32: Simulated microgrid with the load identier. Sum(U)= 8.1629.

Figure 33: Simulated microgrid without load identifier. Sum(U)= 5.9233

0 5 10 15 20 25

Time (Hr)

0.7

0.75

0.8

0.85

0.9

So
C

0

0.2

0.4

0.6

0.8

Tr
af

fic
 S

ha
pi

ng
 fa

ct
or

SoC

0 5 10 15 20 25

Time (Hr)

0.7

0.75

0.8

0.85

0.9

So
C

0

0.2

0.4

0.6

0.8

1

Tr
af

fic
 S

ha
pi

ng
 fa

ct
or

SoC

 92

Figure 34: Power consumption estimation of a BS without load identifier

Figure 35: Power consumption estimation of a BS with load identifier

0 5 10 15 20 25

Time (Hour)

-1000

-500

0

500

1000

Po
w

er
 d

em
an

d
(W

)

estimated power consumption

real power consumption

0 5 10 15 20 25

Time (Hour)

-1000

-500

0

500

1000

Po
w

er
 d

em
an

d
(W

)

estimated power consumption

real power consumption

 93

6.1.4 Virtual Two-Player Game

In this section, the virtual two-player game performance drop along with the increase of players

is demonstrated with different choices of system configuration. The configurations parameters

manipulated in this simulation are the energy availability weighting factor and the game modeling

form (zero-sum or common-interest).

In the first case, a microgrid applied with a two-player game is tested with different w_soc and

the number of players. The system performance with the zero-sum setting is shown in Figure 36.

As this result suggests, the performance drop has a limit, which is positively related to the energy

availability weighting factor. The drop limit is caused by the maximin feature of the zero-sum

setting. Also, if the energy availability weighting is larger, the system performance has a more

significant decreasing as the number of BSs increases.

Figure 36: System performance with different w_soc, zero-sum game

0 10 20 30 40

Number of players

9

10

11

12

13

14

15

16

Su
m

(o
bj

)

1.0

0.8

0.6

0.4

0.2

 94

In the second case, the microgrid energy management is solved using the common-interest

game setting, and the system performance with the different number of players is shown inFigure

37. In this case, the performance drop of the system does not have any minimum level. This

performance drop is because the system could not guarantee the minimal probability 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 of

reaching the SoC goal. Generally, the smaller the energy availability weighting is, the larger the

performance drop is.

The system SoC and PSNR with twenty BSs in the microgrid implemented with the zero-sum

and common-interest two-player game are shown in Figure 38 and Figure 39. As the simulation

results show, the zero-sum game sill ensures the system reaching the SoC goal, but the common-

interest game suggests to have a high PSNR strategy and fails to reach the SoC goal. The overfitted

behavior discussed before the behavior of PSNR is also observed. Both of the system PSNRs are

either at their maximum or minimum most of the time.

Figure 37: System performance with different w_soc, common-interest game

0 5 10 15 20

Number of players

0

5

10

15

20

25

Su
m

(o
bj

)

w
S o C

=0.8

w
S o C

=0.6

w
S o C

=0.4

w
S o C

=0.2

 95

Figure 38: System SoC and PSNR implemented zero-sum game, 20 BSs

Figure 39: System SoC and PSNR implemented common-interest game, 20 BSs

0 10 20 30 40 50

Time (Hr)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

So
C

34

36

38

40

42

PS
N

R
 (d

B)

SoC
PSNR

0 10 20 30 40 50

Time (Hr)

0.6

0.65

0.7

0.75

0.8

So
C

34

35

36

37

38

39

40

41

PS
N

R
 (d

B)

SoC
PSNR

 96

6.2 Q-learning Algorithm

6.2.1 Single-Agent Q-Learning

In this simulation, the microgrid is controlled by a single agent applying Q-learning. The

initial Q value for all state and actions are set to be 0.05, updating step is 𝛼𝛼𝑡𝑡 = 1
𝑡𝑡
 and the horizon

factor is 𝛾𝛾 = 0.7. The SoC weighting factor is 0.6. Remark here the time t is counted independently

for each SoC level. The available communication TSFs for the controller are [0.05, 0.10, … 0.95,

1]. The final CTSF strategy obtained by the agent and battery SoC after 100 days of training are

shown inFigure 40. It can be seen that the agent’s load planning strategy is highly dependent on

the battery SoC. The Q-value table and the learning curve showing the cumulated reward function

could be seen in Figure 41and Figure 42, which show that the main learning was happening during

the first five days. Also, the system performance measured in the objective function is shown in

Figure 43, indicating that the trend of objective function fits that of the reward function.

Figure 40: CTSF and SoC obtained by single agent Q-learning

2375 2380 2385 2390 2395 2400

Time (Hr)

0.85

0.9

0.95

1

So
C

0.3

0.4

0.5

0.6

Tr
af

fic
 S

ha
pi

ng
 fa

ct
or

SoC

 97

Figure 41:Q-value chart after 100 days after training

Figure 42: Learning curve of the agent

0

0.5

11

1

Q
-v

al
ue

1.5

0.75

2

0.75

SoC CTSF

0.50.25
0.250

0

0 20 40 60 80 100

Time (day)

25.5

26

26.5

27

27.5

28

28.5

Su
m

(r)

 98

Figure 43: Objective function of the system during the learning process

6.2.2 Multi-Agent Q-Learning

In this scenario, five BSs are equipped with the Q-learning algorithms with the same setting

applied in the single-agent scenario. The loads in each BS are equal, and the variances of power

generation and loads are set to zeros. The multi-agent Q-learning algorithm worked fine in some

cases as shown in Figure 44 and Figure 45, where the system SoC is stabilized around 90% while

the CTSF is around 0.5. In another simulation, the agents in the system obtained a different strategy

and the system SoC is kept around 85% as shown in Figure 46. Also, the final reward of the agent

is lower as shown in Figure 47. However, in some cases, the agents fail to maintain the battery

SoC above the desired level as shown in Figure 48 and Figure 49. As the results revealed, the

behavior of the system obtained by the multiagent Q learning is not always consistent or stable

hence needs further improvement.

0 20 40 60 80 100

Time (day)

11

12

13

14

15

16

17

18

su
m

(o
bj

)

 99

Figure 44: SoC and CTSF obtained by multi-agent Q-learning case 1

Figure 45: Learning curve of one agent, case 1

2375 2380 2385 2390 2395 2400

Time (Hr)

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

So
C

0.4

0.5

0.6

0.7

0.8

0.9

1

C
TS

F

SoC

CTSF

0 20 40 60 80 100

Time (day)

24.5

25

25.5

26

26.5

27

27.5

28

28.5

29

Su
m

(r)

 100

Figure 46: System SoC during the learning process, case 2

Figure 47: Learning curve of an agent case 2

0 500 1000 1500 2000 2500

Time (Hr)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

So
C

0 20 40 60 80 100

Time (day)

14

16

18

20

22

24

26

28

30

Su
m

(r)

 101

Figure 48: Learning curve of an agent, case 3

Figure 49: System SoC during the learning process, case 3

0 20 40 60 80 100

Time (day)

10

12

14

16

18

20

22

24

26

28

Su
m

(r)

0 500 1000 1500 2000 2500

Time (Hr)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

So
C

 102

6.3 Linear Reward-Inaction

6.3.1 Normal Operation

In this simulation, the performance of the system applying Linear-reward inaction is conducted

in a normal environment where BSs controllers have full access to power/load information, and

there are no unexpected changes in the PV power generation or load curves. There are 20 BSs in

the simulated microgrid, and the parameters are the same as the one shown in Table I. The battery

SoC is divided into 20 levels with the step of 0.05, while each BS has an available CTSF range of

0.2-1.0 with the step of 0.05 thus the search space for each BS is a 20×16 matrix. The resulting

battery SoC, system CTSF and system performance are shown in Figure 50 and Figure 51. Also,

the trained strategy space is shown in Figure 52. In this simulation, the learning rate is 0.1, and the

agent spent around ten days before the system performance is stabilized. As Figure 51 shows, the

performance of this system was improved during the trial-and-error process and reached a steady

level in the end.

Figure 50: System SoC and CTSF obtained by Linear-reward inaction

0 5 10 15 20 25

Time (Hr)

0.88

0.9

0.92

0.94

0.96

0.98

1

So
C

38

38.5

39

39.5

40

PS
N

R
 (d

B)

SoC
PSNR

 103

Figure 51: System performance with learning rate b=0.1

One way to increase the converging speed is to have a larger learning rate. For example, if the

learning rate is set to 0.2, the learning only takes five days, as shown in Figure 53. However, this

modification has two potential drawbacks: firstly, the converging of the Linear-reward inaction

requires a sufficient small learning step, so a larger learning rate might cause instability of the

learning process; secondly, when the environment is changing, large learning rate might cause the

agents to be overfitted and trapped in sub-optimal solutions. The last phenomenon could be seen

from a simulation with a large learning rate as shown in Figure 54 and Figure 55. As seen from

these results, the BSs/agents converged to an equilibrium where reward is too low. Also, the BS

controllers failed to maintain the system energy level. In fact, the batteries in this system are fully

discharged. Therefore, the choice of learning rate for the RL algorithm plays an essential rule in

the learning process and needs to be chosen carefully.

0 10 20 30 40 50 60

Time(Day)

0

5

10

15

20

25

Su
m

(o
bj

)

 104

Figure 52: Obtained CTSF strategy space

Figure 53: System performance with learning rate b=0.2

0

0.2

1

0.4

2

0.6

Pr
ob

ab
ilit

ie
s

3

0.8

4

1

105

SoC

96 87 7

CTSF

8 6
59 410 3

11 2
1

0 5 10 15 20

Time(day)

0

5

10

15

20

25

S
um

(o
bj

)

 105

Figure 54: System SoC with learning rate b=1.0

Figure 55: System performance with learning rate b=1.0

0 25 50 75 100

Time (day)

0

0.2

0.4

0.6

0.8

1

Sy
st

em
 S

oC

0 10 20 30 40 50 60

Time(day)

0

5

10

15

Su
m

(o
bj

)

 106

6.3.2 Partial Loss of Power Source

In this simulation, the Linear-reward inaction is tested in an environment where a sudden loss

of the PV power occurs. During the operation, the PV power was cut to 80% of its estimated value,

starting from day 50 to day 100. The system SoC and performance without a low-SoC barrier are

shown in Figure 56 and Figure 57. As the results show, the learning algorithm failed to maintain

the system SoC and did not recover from the power lost even when the power is back. In another

simulation, the low-SoC barrier is applied to the agents as top=0.3 (from section 5.3). The system

SoC and performance with this setting are shown in Figure 58 and Figure 59. These results show

that the system survived the power loss event with some loss of battery energy. After the power

loss event, the battery SoC level was recovered to the desired level. Also, as could be seen from

the obtained CTSF strategy chart shown in Figure 60, the low-SoC parts are well guarded by the

high-probability low-CTSF ‘walls’.

Figure 56: System performance with power lost from day 50 to day 100

0 50 100 150

Time(day)

0

5

10

15

20

Su
m

(o
bj

)

 107

Figure 57: System SoC with power lost from day 50 to day 100

Figure 58: System SoC with power lost with low-SoC barrier

0 42 83 125 167

Time (day)

0

0.2

0.4

0.6

0.8

1

Sy
st

em
 S

oC

0 42 83 125 167

Time(day)

0.6

0.7

0.8

0.9

1

Sy
st

em
 S

oC

 108

Figure 59: System performance with power lost from with low-SoC barrier

Figure 60: CTSF strategy chart obtained with low-SoC barrier

0 50 100 150

Time(day)

0

5

10

15

20

25

Su
m

(o
bj

)

0

0.2

1 2

0.4

Pr
ob

ab
ilit

ie
s

3

0.6

4 105

SoC

96 877

CTSF

68 59 4310 211 1

 109

6.3.3 Loss of Communication

In this section, the behavior of the microgrid without communication is demonstrated. It is

assumed in this scenario that the communication link in this microgrid is cut off, and the BSs in

this system could only utilize their local information and the approximated reward function (4-18)

to conduct the learning process. If the other parameters remain the same, the agents can not find a

steady strategy that satisfies the original goal as shown in Figure 61. The result shows that the

learning rate is too large for the agents to converge with the local data. The performance of the

system is better when the learning rate b is replaced by a smaller number. As shown in another

simulation, the learning rate is set to b=0.05, and the resulting system performance is shown in

Figure 62. These results show that compared to the normal operation, the agents implementing

Linear-reward inaction without communication are less stable, and the training period is longer

(around 20 days).

Figure 61: System performance applying local objective function (b=0.1)

0 20 40 60 80 100

Time (Day)

0

5

10

15

20

25

Su
m

(o
bj

)

 110

However, if the number of BSs is larger, the performance of the RL using local objective

function becomes unstable again, as can be seen from the simulation result in Figure 63. One

attempt that has been done to overcome this is to have an even smaller learning rate. With a

learning rate of b=0.01 the performance is stabilized as shown in Figure 64. But this smaller

learning rate results in a longer training period as shown in Figure 65, which is approaching 100

days.

Figure 62: System performance applying local objective function (b=0.05)

0 50 100 150

Time(day)

0

5

10

15

20

25

Su
m

(o
bj

)

 111

Figure 63: Performance of system applying RL with local objective function (b=0.05) and different number of

BSs

Figure 64: Performance of system applying RL with local objective function (b=0.01) and different number of

BSs

0 5 10 15 20

Number of BSs

0

5

10

15

20

Su
m

(o
bj

)

0 5 10 15 20

Number of BSs

14

16

18

20

22

Su
m

(o
bj

)

 112

Figure 65: Learning curve of system applying RL with local objective function (b=0.01)

6.4 Load-Ratio Learning Game

6.4.1 Normal Operation

In this simulation, the load ratio learning game algorithm was applied to the communication

microgrid in normal conditions. The number of BSs in this microgrid is three, and the total power

generation and load consumption are the same as the Linear-reward inaction simulation. There are

five available load ratio stages for the BSs: [0.2, 0.4, 0.6,0.8,1.0]. The initial load-ratio policy of

the load ratios of each BS is

𝑙𝑙𝑟𝑟 = [0.1,0.6,0.1,0.1,0.1] (6-4)

At each CTSF choosing time, each BS controller picks a load ratio according to the probabilities

in the load-ratio policy. Once the load ratio 𝑟𝑟𝑡𝑡𝑖𝑖 is chosen, the system load is computed as

0 50 100 150 200

Time(day)

0

5

10

15

20

25

Su
m

(o
bj

)

 113

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖 = 𝑃𝑃𝐵𝐵 + 𝑟𝑟𝑡𝑡𝑖𝑖𝜎𝜎𝑖𝑖𝑣𝑣𝑃𝑃𝑇𝑇 + (1 − 𝑟𝑟𝑡𝑡𝑖𝑖)𝜎𝜎𝑜𝑜𝑣𝑣𝑃𝑃𝑇𝑇 (6-5)

Then the objective function is calculated and the two-player game with choices of 𝜎𝜎𝑖𝑖 and 𝜎𝜎𝑜𝑜 could

be formed and solved either in zero-sum or non-zero-sum settings. After the CTSF decision, the

system battery SoC is measured and fed into the reward function along with the CTSF chosen by

BS controllers and the load-ratio list is updated. The learning rate is set to be 0.1, and the SoC

weighting factor is 0.5 in this simulation.

Figure 66: PSNR and SoC of BS microgrid applying load-ratio learning game algorithm, normal condition

The PSNR and system SoC of the simulated microgrid implemented with te load-ratio learning

game algorithm are shown in Figure 66. As the result shows, the desired SoC goal is reached and

the PSNR is above 35 dB most of the time. The complete learning curve of this algorithm is shown

compared to the direct Linear-reward approach in Figure 67. As the learning curve shows, the

algorithm has a higher initial performance and requires almost no learning time. Other than this, a

performance comparison of the learning-gaming algorithm with different number of BSs in the

0 10 20 30 40 50

Time (Hr)

0.75

0.8

0.85

0.9

0.95

1

So
C

34

35

36

37

38

39

40

41

42

PS
N

R
 (d

B)

SoC
PSNR

 114

microgrid is conducted as well. The system performance applied with the two-player zero-sum

game, direct RL (Linear-reward inaction), and the load-ratio learning game algorithms are plotted

in the same figure as shown in Figure 68. The training times for both learning algorithms are ten

days. This result reveals that the learning-gaming algorithm has a better performance compared to

solely applying RL and the virtual two-player game approach.

Figure 67: Comparison of learning curves of RL and learning-game algorithm

Figure 68: Comparison of algorithms with different number of BSs

0 5 10 15 20

Time(day)

0

5

10

15

20

25

Su
m

(o
bj

)

Direct RL

Learning game

0 5 10 15 20

Number of BS

5

10

15

20

Su
m

(o
bj

)

Load-ratio learning game

virtual two player game

Direct RL

 115

6.4.2 Partial Loss of Power Source

In this scenario, the adaptation feature of the load-ratio learning game algorithm is tested when

the system is affected by a natural disaster. In this simulation, it is assumed a hurricane hits the

microgrid at day 20. The power lines are intact, however, due to the physical damage taken by the

solar panels and BSs, the communication links between BSs are cut off, and the output of all power

generator is limited to 60% of its original rating. In this condition, the BS controllers utilize local

information to calculate their rewards. The resulting average system PSNR and SoC are shown in

Figure 69. The system experienced an SoC decreasing when the power is lost but managed to

restore the energy level in several days. The system performance, as shown in Figure 70, also

demonstrated a descending after the power loss and is recovered after days of adaption. The final

load-ratio strategy obtained by the learning algorithm is shown in Figure 71, where one of the BSs

adjusted its confident load-ratio to 0.6 instead of the original 0.4. In this scenario, the higher load-

ratios make the BS ‘think’ it needs to feed more load, thus resulting in a lower CTSF strategy.

 116

Figure 69: Average system SoC and PSNR with power loss

Figure 70: System performance index with power loss

0 10 20 30 40 50

Time (Day)

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

So
C

34.5

35

35.5

36

36.5

37

37.5

PS
N

R

avg SoC
avg PSNR

0 10 20 30 40 50

Time (day)

0

5

10

15

20

O
bj

ec
tiv

e
fu

nc
tio

n

 117

Figure 71: Obtained load-ratio strategy with power loss

6.5 Discussion

The simulation results have demonstrated the features and applicable conditions of the proposed

algorithms. First, the two-player game approach works well for a small scale microgrid. The

microgrid performance applying the two-player game measured in the objective function is

comparable to that of an exhaustive search under most configurations. However, as the number of

BSs increases, the virtual two-players game experiences a performance drop. Compared to the

zero-sum game, the performance drop of a microgrid implemented with the common-interest game

is more substantial. The simulation results of a microgrid implemented with the reinforcement

learning algorithm also leave us some unanswered questions. The single-agent Q-learning has the

highest performance score, but the multiple agent Q-learning failed the system objective in some

cases. The mechanism and stability conditions of multi-agent Q-learning are yet to be discovered.

The Linear Reward-Inaction algorithm guarantees a converging strategy with a sufficiently small

0

0.5

1

Po
rb

ab
ilit

ie
s

1

1

0.8

User Load-ratio levels

2 0.6
3 0.4

0.2

 118

learning rate. However, whether the algorithm converges to the desired equilibrium is not always

guaranteed, which might also be related to the design of the objective and reward functions.

Another constraint that shakes the Linear Reward-Inaction algorithm’s dominating role is the long

training time due to its learning rate limit. Lastly, the load-ratio learning game approach seems to

be the ideal solution for now: it has a better performance compared to both the RL and game

approach, yet its training time is much shorter. Also, it could be easily extended to a microgrid

with an arbitrary number of BSs. However, this algorithm is only tested in a limited number of

cases. So its full behavior under different circumstances is yet to be discovered.

 119

7.0 Conclusions

This dissertation studied energy management in a microgrid consists of communication base

stations with the help of distributed control algorithms. The goal was to develop an autonomous

control system for communication base stations so that they could perform load response and

realize energy management considering communication quality and energy availability without

the need for a designated communication network. This feature decreases the dependency of

elements in such microgrid thus could increase the system’s overall resilience against natural

disasters or other accidents.

Three attempts: multi-player game, reinforcement learning, and load-ratio learning game were

made to accomplish the goal. In the game approach, the original load response decision-making

process is modeled as a multi-player game and solved by BS controllers independent. Depending

on the setting of the game, the solution of such a game could be the form of a pure or mixed

strategy. Also, the obtained energy management strategy is comparable to that of an exhaustive

search. However, for a general game with an arbitrary number of players, the solving process is

intractable thus is not practical to be implemented in the microgrid system. This constraint of game

theory has limited its application since a communication network often consists of many BSs. To

overcome this shortcoming, we have expanded the two-player game solving process to any number

of players with the virtual player setting. However, such a setting experiences a performance

descending as the number of players increases.

The second attempt proposed was applying a reinforcement learning algorithm to BS

controllers. This approach makes the BS controllers update their load response strategies based on

 120

their experienced interactions with the microgrid. Two different learning algorithms were applied:

Q-learning and Linear Reward-Inaction. The Q-learning algorithm showed the highest

performance score in the single-agent scenario, but its convergence in a multi-agent environment

is not guaranteed. Linear Reward-Inaction ensures the converging of the agent’s strategies, but the

algorithm requires a long training time before the optimal strategy is obtained. The tuning of the

learning rates is the keys to both of the learning algorithms.

In the end, a load-ratio learning game algorithm was developed and tested. This algorithm was

meant to solve the virtual two-player game performance deterioration. However, it turned out that

the virtual two-player game with updated load-ratio has a better performance compared to direct

RL and virtual two-player games regardless of the number of players. Additionally, benefit from

its smaller size of search space, the load-ratio learning converges much faster than the conventional

RL algorithm with the same learning rate. Therefore, based on the results done in this project, the

load-ratio learning game algorithm showed the greatest potential in satisfying the communication

microgrid energy management requirement.

 121

Appendix A Simulation code

Two-player game simulation main code:

function bytest_game
tic
data=zeros(1,sample_size);
day=2;
n=24*day;
SoC=zeros(1,n);
SoC(1)=0.7;
v=zeros(1,n);
alpha=zeros(1,n);
v(1)=(SoC(1)-0.5)/0.05+56;
Energy=1*25*1000;
soc_weight=0.5;
wa=1-soc_weight;
batterystage=40;
cost=zeros(1,n);
top=2;
amin=1;
daygoal=0.8;
phi=ones(1,top);
phireal=1;
rate_o=ones(1,top);
sitenumber=2;
realrate=rate_o(1:sitenumber)/sum(rate_o(1:sitenumber));
add=0;

for t0=1:n

t=rem(t0,24);
if t==0
 t=1;
end

[alpha0,~,self]=gamesolver(v(t0),t,wa,soc_weight,batterystage,Energy,amin,day
goal,phi,sitenumber,realrate(1:sitenumber));

alpha(t0)=alpha0;

SoC(t0+1)=(SoC(t0)*Energy-
integral(@(x)load2(x),t,t+1)*alpha(t0)+integral(@(y)solar(y),t,t+1))/Energy*(
1+0.0*(rand-rand));

[~,cost(t0)]=evaluation(alpha(t0),t,batterystage,Energy,SoC(t0),soc_weight,da
ygoal,phireal,add,0,0);

if SoC(t0+1)>=1
 SoC(t0+1)=1;

 122

end
if SoC(t0+1)<=0
 SoC(t0+1)=0;
end

v(t0+1)=(SoC(t0+1)-0.5)/0.05+56;
end

cg=sum(cost)/day;

end

Two-player game Sub-functions:

Solar power function:

function Psolar=solar(ti)
t=ti*5;
p1 = -327.4 ;
p2 = 4.435e+04;
p3 = -7.078e+05;
q1 = -143.6 ;
q2 = 5928 ;
Psolar =(1*(p1*t.^2 + p2*t + p3) ./ (t.^2 + q1*t + q2)+80)*(1+(0.2*rand-
0.2*rand)*1);
end

BS load function:

function Pload=load2(t)
pl1 = 0.000839 ;
pl2 = 1.205 ;
pl3 = -12.02 ;
pl4 = 34.29 ;
ql1 = -6.495 ;
ql2 = 43.45 ;
Pload =max(1*(500* (pl1*(t).^3 + pl2*(t).^2 + pl3*(t) + pl4) ./((t).^2 +
ql1*(t) + ql2)+500)*(1+(0.2*rand-0.2*rand)*1),0);
end

Two-player game solver:

function [ko,alphao, kself] =
gamesolver(v,t,~,b0,batterystage,Energy,amin,daygoal,phi,sitenumber,rate)
alphao=zeros(1,sitenumber);
kself=zeros(1,sitenumber);
SoC=(v-56)*0.05+0.5;
daygoal2=daygoal*batterystage;
T=1;

 123

n=20;
dT=T/n;
realp=zeros(1,9);
coder.extrinsic('linearprograming')
coder.varsize('cost1','cost2','realrow','realcolumn')
decide=zeros(1,sitenumber);

for ppt=1:sitenumber
 opteva=zeros(9);
 cost1=zeros(9);
 loadrate=rate(ppt);
for k0=amin:1:9
 for sigmaother0=amin:1:9
 k=k0*0.1;
 sigmaother=sigmaother0*0.1;
 [~,Sn]=pdf2(t,dT,loadrate,k,sigmaother,n*(24-t),phi(ppt));
 En=-integral(@(x)load2(x),t,24)*(k*loadrate+(sigmaother*(1-
loadrate)))+1*integral(@(y)solar(y),t,24)*(1);
 if t~=24
 pr = normcdf(((Energy*daygoal-SoC*Energy)*1-En)/sqrt(Sn));
 if 1-pr>0.5 %if there is possibility reaching 0.8 SoC?
 opteva(k0,sigmaother0)=b0*(1-pr);
 D=latency_indicator(t,k*loadrate+(sigmaother*(1-loadrate)),1);
 cost1(k0,sigmaother0)=(D)*(1-b0)+opteva(k0,sigmaother0);
 else %if not stay at minimum alpha
 cost1(k0,sigmaother0)=(1-(k*loadrate+sigmaother*(1-
loadrate)))/10;
 end
 else
 cost1(k0,sigmaother0)=(k*loadrate+sigmaother*(1-loadrate))*(1-
b0)+b0*SoC;
 end
 end
end
 [m,~]=size(cost1);
 realrow=1:m;
 p=zeros(1,9);

%nonlinear splver
p(1:amin-1)=0;
p10=non_linear_solver(cost1(amin:9,amin:9),cost1(amin:9,amin:9)');
p(amin:9)=p10(1:10-amin);

%linear solver
% p(1:amin-1)=0;
% p10=linearprograming_real(cost1(amin:9,amin:9));
% if size(p10)==0
% p10=ones(1:9)/9;
% end
% p(amin:9)=p10(1:(10-amin));

realn=size(realrow,2);
for i=1:realn

 124

 realp(realrow(i))=p(i);
end
% for z=1:sitenumber
r=rand;
l=0;
 for i=1:9
 l=l+realp(i);
 if l>r
 break
 end
 end
decide(ppt)=i*0.1;

end
kself=decide;
ko=decide*rate(1:sitenumber)'/sum(rate(1:sitenumber));
end

Objective function:

function
[D,cost]=evaluation(k,t,~,Energy,SoC,w_soc,daygoal,phireal,add,deadload,guess
)
T=1;
n=20;
dT=T/n;
[En,Sn]=pdf2_add(t,dT,1,k,0,n*(24-t),phireal,add,deadload,guess);
 En=-integral(@(x)load2(x),t,24)*(k)+1*integral(@(y)solar(y),t,24)*(phireal);
if t~=24
 p = normcdf(((Energy*daygoal-SoC*Energy)-En)/sqrt(Sn));
 if 1-p > 0.5 %if there is possibility reaching 0.8 SoC?
 D=latency_indicator(t,k,1);
% D=k;
 opteva=w_soc*(1-p);
 cost=(D)*(1-w_soc)+opteva;
 else %if not stay at minimum alpha
 cost=(1-k)/10;
% D=k;
 D=latency_indicator(t,k,1);
 end

else
 D=latency_indicator(t,k,1);
 cost=D*(1-w_soc)+w_soc*SoC;

% D=k;
end
end

 125

Q-learning single-agent code:

function bytest_Q_learning
day=90;
n=24;
record=zeros(1,day*24);
SoC_record=zeros(1,day*24);
SoC=zeros(1,n);
soc1=0.7;
SoC(1)=soc1;
v=zeros(1,n);
alpha=zeros(1,n);
v(1)=(SoC(1)-0.5)/0.05+56;
vpre=v(1);
Energy=1*25*1000;
b0=0.2;
batterystage=20;
cost=zeros(1,n);
dump1=50;
dump2=100;
daygoal=0.8;
phireal=0.5;
%battreryin time
batteryin=inf;
%new load time
timecheckin=inf;
timecheckout=90;
%rule breaker:added load
dump11=90;
dump22=10;
deadload=-500;
limitt=3;
phi=[1 1 1 1 1];
operation=zeros(1,limitt);
operation(1:3)=ones(1,3);
sitenumber=limitt;
checkflag=0;
nstrategy=5;
batterysnumber=5;
Qvalue=load('Q_table');
Qvalue=Qvalue.Q_table;
alphaset=zeros(1,nstrategy);
for i=1:nstrategy
 alphaset(i)=1/nstrategy*i;
end
show=zeros(1,24);
cost_record=zeros(1,n*day);
kpp=1;
kt=1;
for t0=1:n*day
 daymark=floor(t0/24)+1;
 if t0>batteryin&&checkflag==0
 checkflag=1;
 SoC(t0)=SoC(t0)+0.5;
 end
 t=mod(t0,24)+(mod(t0,24)==0)*24;

 126

 if t~=24
 tz=floor(t/8)+1;
 else
 tz=1;
 end

 if t>dump1&&t<dump2&&cheat==1
 phi=[0.5 0.5 0.5 0.5];
 end
 if t0>timecheckin
 operation(4)=1;
 end
 if t0>timecheckout
 operation(3:4)=[0 0];
 end
%state verifying
 v(t)=vpre;
 if t0<=30 && t==1
 SoC(t)=rand()*0.5+0.2;
 else
 SoC(t)=(v(t)-56)*0.05+0.5;
 end
state=floor(SoC(t)/(1/batterysnumber))+1;

%%%Q-learning process%%%
 sumQall=0;
 Qvalue_t=zeros(1,nstrategy);
 for inner=1:nstrategy
 if mod(t0,24)~=0
 Qvalue_t(inner)=(Qvalue(tz,state,inner));
 sumQall= sumQall+Qvalue_t(inner);
 else
 Qvalue_t(inner)=(Qvalue(tz,state,inner));
 sumQall= sumQall+Qvalue_t(inner);
 end
 end
%%%end learning%%%

 for inner=1:nstrategy
 chance(inner)=Qvalue_t(inner)/sumQall;
 end

 if mod(t0,24)~=0
 [~, idx]=max(chance);
 show(t)=alphaset(idx);
 else
 [~, idx]=max(chance);
 show(24)=alphaset(idx);
 end

 r=rand;
 l=0;
 for i=1:nstrategy
 l=l+chance(i);
 if l>r

 127

 break
 end
 end
 alphareal=alphaset(idx);
 record(t0)=alphareal;

alpha(t)=alphareal;
cost(t)=evaluation(alphareal,t,batterystage,Energy,SoC(t),b0,daygoal,1-
phireal*(t0>=dump1&&t0<=dump2),phi(sitenumber)*(t>timecheckin),deadload*(t0>d
ump11&&t0<dump22),0);
SoC(t+1)=(SoC(t)*Energy-deadload*(t0>dump11&&t0<dump22)-
integral(@(x)load2(x),t,t+1)*alphareal+integral(@(y)solar(y),t,t+1)*(1-
phireal*(t0>dump1&&t0<dump2)))/Energy;
if SoC(t+1)>=1
 SoC(t+1)=1;
elseif SoC(t+1)<=0
 SoC(t+1)=0;
end

 SoC_record(kt)=SoC(t);
 kt=kt+1;
 if mod(t0,24)==0
 % record cost sum of one day
 cost_record(kpp)=sum(cost);
 kpp=kpp+1;
 end
 v(t+1)=(SoC(t+1)-0.5)/0.05+56;
 vpre=v(t+1);

end

end

Q-learning multi-agent code:

function RL_no_time_main()
tic
global random_switch
random_switch=0;
day=50;
n=24;
SoC=zeros(1,n);
soc1=0.8;
SoC(1)=soc1;

SoC_record=zeros(1,24*day);

v=zeros(1,n);
alpha=zeros(1,n);
v(1)=(SoC(1)-0.5)/0.05+56;
vpre=v(1);
Energy=1*25*1000;
cost=zeros(1,n);
dump1=500*24;

 128

dump2=150*24;
daygoal=0.8;
phireal=0.2;
cost_record=zeros(1,day);
kpp=1;
agent_1_r=zeros(1,day);

%battreryin time
batteryin=inf;

%new load time
timecheckin=inf;
timecheckout=90;

%rule breaker:dead load
dump11=500;
dump22=10;
deadload=-500;

%number of BS controllers
limitt=10;

%BS load rate
load_rate=ones(1,limitt)/limitt;

%new connected device index
phi=[1 1 1 1 1];

%operation status index
operation=zeros(1,limitt);
operation(1:3)=ones(1,3);

%new battery plug in flag
checkflag=0;

% Q learning step size
aupdate=0.1;

% Horizon factor
gamma=0.9;

%available strategy number
nstrategy=20;

%battery level
batterysnumber=20;

%ndividualcounter for SoC levels
soc_count_t=zeros(limitt,batterysnumber+1);

 129

%initialize Q value table
Qvalue=ones(limitt,batterysnumber+1,nstrategy)/10;

% for i=1:batterysnumber
% for j=1:nstrategy
% Qvalue(:,i,j)=normrnd(1,1);
% end
% end

%initilize strategy index
alphaset=zeros(1,nstrategy);
for i=1:nstrategy
 alphaset(i)=1/nstrategy*i;
end
learning_count=0;
ini=0;

alpha_all=0;

for t0=1:n*day
 daymark=floor(t0/24)+1;

% if t0>batteryin&&checkflag==0
% checkflag=1;
% SoC(t0)=SoC(t0)+0.5;
% end

 %get time of one day
 t=mod(t0,24)+(mod(t0,24)==0)*24;

 %power outage flag
% if t>dump1&&t<dump2&&cheat==1
% phi=[0.5 0.5 0.5 0.5];
% end

 % new load kick in
 if t0>timecheckin
 operation(4)=1;
 end
 % load 3 and 4 disconnected
 if t0>timecheckout
 operation(3:4)=[0 0];
 end

%SoC state verifying
% if daymark<60&&t==1
% SoC(t)=rand*0.8+0.2;
% else
 v(t)=vpre;
 SoC(t)=(v(t)-56)*0.05+0.5;
% end

SoC_record(t0)=SoC(t);
 state=floor(SoC(t)/(1/batterysnumber))+1;
%%% making decisions %%%

 130

% for each BS controller
 alphareal=zeros(1,limitt);
 idx=zeros(1,limitt);
 for agent=1:limitt
 sumQall=0;
 sumQvalue=zeros(1,nstrategy);

 % calculate sum of Q value rows
 for inner=1:nstrategy
 sumQvalue(inner)=(Qvalue(agent,state,inner));
 sumQall= sumQall+sumQvalue(inner);
 end

% for inner=1:nstrategy
% chance(inner)=sumQvalue(inner)/sumQall;
% end
 tt=0.5;
 sumQvalue=exp(Qvalue(agent,state,:)/tt);
 % softmax function
 chance=zeros(1,nstrategy);
 for inner=1:nstrategy
 chance(inner)=exp(Qvalue(agent,state,inner)/tt)/sum(sumQvalue);
 end

 % choose the action with maximum Q value
 [~, idx(agent)]=max(chance);

 if daymark<inf
 rr=rand;
 l=0;
 for i=1:nstrategy
 l=l+chance(i);
 if l>rr
 break
 end
 end

 idx(agent)=i;
 end

 alphareal(agent)=alphaset(idx(agent));

% record(daymark,t)=idx;
%%%end trying%%%
 end

% cost(t)=evaluation(alphareal,t,batterystage,Energy,SoC(t),b0,daygoal,1-
phireal*(t0>=dump1&&t0<=dump2),phi(sitenumber)*(t>timecheckin),deadload*(t0>d
ump11&&t0<dump22),0);
 alphareal_total=alphareal*load_rate(1:limitt)';
 alpha(t)=alphareal_total;
 alpha_all=alpha_all+alpha(t);
 SoC(t+1)=(SoC(t)*Energy-deadload*(t0>dump11&&t0<dump22)-
integral(@(x)load2(x),t,t+1)*alphareal_total+integral(@(y)solar(y),t,t+1)*(1-
phireal*(t0>dump1&&t0<dump2)))/Energy;

 131

 if SoC(t+1)>=1
 SoC(t+1)=1;
 elseif SoC(t+1)<=0
 SoC(t+1)=0;
 end

% if mod(t0,24)==0
% SoC(t+1)=soc1;
% end
 v(t+1)=(SoC(t+1)-0.5)/0.05+56;
 vpre=v(t+1);
%%%Reinforcement learning updating%%%
%new state
 newstate=floor(SoC(t+1)/0.1)+1;
 %difference between previous two days' rewards
 r_diff=0;
 if kpp~=1
 r_diff=agent_1_r(kpp)-agent_1_r(kpp-1);
 end

 if abs(r_diff)>=5&&ini==1
 learning_count=10*24;
 ini=1;
 end
 if learning_count>0
 learning_count=learning_count-1;
 time_gap=t0-24-learning_count;
 t0_in=t0-time_gap;
 else
 t0_in=t0;
 end
 for agent=1:limitt
 soc_count_t(agent,state)=soc_count_t(agent,state)+1;

[r_inst,Qvalue(agent,state,idx(agent))]=RL_notime_max_com_soc_double(newstate
,SoC(t),SoC(1),alphareal(agent),alpha_all,Qvalue(agent,state,idx(agent)),Qval
ue(agent,:,:),batterysnumber,nstrategy,t,t0_in,gamma,aupdate,soc_count_t(agen
t,state));
 end
% agent_1_r(kpp)=agent_1_r(kpp)+r;
 agent_1_r(kpp)=agent_1_r(kpp)+r_inst;
 if t==24
 kpp=kpp+1;
 ini=0;
 alpha_all=0;
 vpre;
 end

end

 figure('Name','Game solution')

 z=plotyy(1:n,SoC(1:n),1:n,alpha);
 tail1=sum(SoC)/n;
 tail2=sum(alpha)/n;

 132

% stem(1:n,cost)
 legend('SoC','\sigma')
 xlabel('Time (Hr)')
 ylabel(z(1),'SoC') % left y-axis
 ylabel(z(2),'Traffic Shaping factor \sigma','Fontsize',20)
% % i=1:24;
% % figure
% % sum(cost)
% % plot(i,show(i))
 i=1:day;
 figure
 plot(i,agent_1_r(i))
 assignin('base', 'Q_table', Qvalue)

% % figure
% % [d,y]=meshgrid(1:1:24,1:1:day+1);
% % surf(d,y,record)
% assignin('base', 'Q_table', Qvalue)
figure
plot(SoC_record);
figure
bar3(squeeze(Qvalue(1,:,:)))
toc
end

Linear-reward inaction code:

function bytest_RL_more_player_compare
tic
day=50;
batterysnumber=20;
n=24*day;
SoC=zeros(1,n);
SoC(1)=0.7;
v=zeros(1,n);
alpha=zeros(1,n);
v(1)=(SoC(1)-0.5)/0.05+56;
Energy=3*25*1000;
w_soc=0.5;
wsoc_uni=0.5;
cost=zeros(1,24);
D=zeros(1,n);
sitenumber=3;

amin=2;
dump1=24*500;
dump2=24*200;
daygoal=0.8;
phireal=1;
r0=zeros(1,day+1);
agent_1_r=zeros(1,day);
cg=zeros(1,sitenumber);
load_rate=ones(1,sitenumber)/sitenumber;
SoC_record=zeros(1,24*day);

 133

alpha_record=zeros(1,24*day);
%rule breaker:dead load
dump11=90;
dump22=10;
deadload=-500;

%available strategy number
nstrategy=20;
alpha_all=0;
cost_record=zeros(1,day);
alphaset=zeros(1,nstrategy);
for i=1:nstrategy
 alphaset(i)=1/nstrategy*i;
end

for site_index=3:sitenumber
 limitt=site_index;
 kpp=1;
 % rate=ones(1,site_index);
 p_option=1/nstrategy*ones(limitt,batterysnumber+1,nstrategy);

 for t0=1:n
 daymark=floor(t0/24)+1;

% if t0>batteryin&&checkflag==0
% checkflag=1;
% SoC(t0)=SoC(t0)+0.5;
% end

 %get time of one day
 t=mod(t0,24)+(mod(t0,24)==0)*24;

%SoC state verifying
% if daymark<60&&t0==1
% SoC(t0)=rand*0.8+0.2;
% else

 if SoC(t0)>1
 SoC(t0)=1;
 end
% end

 SoC_record(t0)=SoC(t0);
 state=floor(SoC(t0)/(1/batterysnumber))+1;
%%% making decisions %%%
 idx=zeros(1,limitt);
 alphareal=zeros(1,limitt);
 for agent=1:limitt

 % softmax function
 chance=zeros(1,nstrategy);

 134

 for inner=1:nstrategy
 chance(inner)=p_option(agent,state,inner);
 end

 if daymark<inf
 rr=rand;
 l=0;
 for i=1:nstrategy
 l=l+chance(i);
 if l>rr
 break
 end
 end

 idx(agent)=i;
 end

 alphareal(agent)=alphaset(idx(agent));

% record(daymark,t0)=idx;
%%%end trying%%%
 end
%
cost(t0)=evaluation(alphareal,t0,batterystage,Energy,SoC(t0),b0,daygoal,1-
phireal*(t0>=dump1&&t0<=dump2),phi(sitenumber)*(t0>timecheckin),deadload*(t0>
dump11&&t0<dump22),0);
 alphareal_total=alphareal*load_rate(1:limitt)'/sum(load_rate(1:limitt));
% alpha(t0)=alphareal_total;
 alpha(t0)=alphareal(1);
 alpha_record(t0)=alphareal_total;
 alpha_all=alpha_all+alpha(t0);
% if t0>=2500
% k=1;
% end
 SoC(t0+1)=(SoC(t0)*Energy-deadload*(t0>dump11&&t0<dump22)-
integral(@(x)load2(x),t,t+1)*alphareal_total+integral(@(y)solar(y),t,t+1)*(1-
phireal*(t0>dump1&&t0<dump2)))/Energy;

[D_record_day(t0),cost(t)]=evaluation(alphareal_total,t,batterysnumber,Energy
,SoC(t0),wsoc_uni,daygoal,phireal,0,0,0);
 if SoC(t0+1)>=1
 SoC(t0+1)=1;
 elseif SoC(t0+1)<=0
 SoC(t0+1)=0;
 end

% if mod(t0,24)==0
% SoC(t0+1)=soc1;
% end
% v(t0+1)=(SoC(t0+1)-0.5)/0.05+56;
% vpre=v(t0+1);
% SoCpre = SoC (t0+1);

 %%%Reinforcement learning updating%%%
%new state
 newstate=floor(SoC(t0+1)/(1/batterysnumber))+1;

 135

 %difference between previous two days' rewards

 for agent=1:limitt

[r1,p_option(agent,state,:)]=RL_reard_inauction_common(newstate,SoC(t0+1),alp
hareal(agent),p_option(agent,state,:),idx(agent),nstrategy,t,limitt,w_soc,cos
t(t));
 End
% Low-soc barrier
% for i=1:limitt
% for j=1:nstrategy
% if p_option(i,state,j)>=0.8
% p_option(i,state,j)=0.8;
% end
% if p_option(i,state,j)<=0.2/(nstrategy-1)
% p_option(i,state,j)=0.2/(nstrategy-1);
% end
% end
% end
% for i=1:limitt
% for j=1:3
% % if p_option(i,state,j)>=0.3
% for k=1:15
% p_option(i,k,j)=0.3;
% end
% % end
% end
% end

 for i=1:limitt
 for j=1:nstrategy
 p_option(i,state,j)=p_option(i,state,j)/sum(p_option(i,state,:));
 end
 end
 r0(daymark)=r0(daymark)+r1;
% agent_1_r(kpp)=agent_1_r(kpp)+r;
 agent_1_r(kpp)=agent_1_r(kpp)+r1;
 if t==24
 SoC(t0+1)=SoC(t0);
 cost_record(daymark)=sum(cost);
% D_record_day=zeros(1,24);
 agent_1_r(kpp)=agent_1_r(kpp)+(SoC(t0))*10;
 kpp=kpp+1;
 ini=0;
 alpha_all=0;
 end

 end
% plot(day_cost)
cg(site_index)=sum(cost_record(day-9:day))/10;
% eva_record(site_index)=sum()
end

figure('Name','RL solution')

 136

 yyaxis left
 plot(1:25,SoC_record(24*(day-1):end),'-','LineWidth',1)
 ylabel('SoC','FontSize',20) % left y-axis
 xlabel('Time (Hr)','FontSize',20)
 yyaxis right
 stairs(1:24,alpha(end-23:end),'LineWidth',5)
 set(gca,'fontsize',20)
 legend({'SoC','\sigma'},'FontSize',20)
 grid on
 ylabel('Traffic Shaping factor \sigma','FontSize',20)
% figure
% plot(day_cost)
% cg=sum(cost((day-1)*24:end));
% cg=w_alpha*sum(D)/n+w_soc*sum(SoC(t0))/t0;

% figure
% plot(SoC_record)
% figure
% stairs(alpha_record)
% figure
% plot(r0)
figure
bar3(squeeze(p_option(1,:,:)))
figure('Name','eva')
plot(cost_record)
figure('Name','eva_number')
plot(cg(2:end))
toc
end

Linear reward inaction policy updating function:

function
[r,p_option_out]=RL_reard_inauction_common(newstate,SoC_now,alpha,p_option,id
x,nstrategy,t,n,w_soc,r_cheat)

hold=0.8;
% if t~=23
 if SoC_now>hold && t>=20
 r=1;
 elseif SoC_now>0.3
 r=w_soc*(1/(1+exp(-(SoC_now)/(alpha))))+(1-w_soc)*(1/(1+exp(-
alpha*(SoC_now))));
 else
 r=(1-alpha)/10;
 end

%cost function known
% r=r_cheat;

%updating law
 a=0.05;
 p_option_out=zeros(1,nstrategy);

 137

 for i=1:nstrategy
 if i==idx
% squeeze(p_option(i));
 p_option_out(i)=p_option(i)+a*r*(1-p_option(i));
% squeeze(p_option(i));
 elseif p_option(i)>0
 p_option_out(i)=p_option(i)-a*r*(p_option(i));
 else
 p_option_out(i)=0;
 end
 end
end

Load-ratio learning game code:

function bytest_game_ratio_adapting_2_1_fore_knowedge_smaller_samples
tic
day=5;
n=24*day;
SoC=zeros(1,n);
SoC(1)=0.8;
v=zeros(1,n);
alpha=zeros(1,n);
v(1)=(SoC(1)-0.5)/0.05+56;
Energy=3*25*1000;
w_soc=0.5;
w_alpha=1-w_soc;
batterystage=40;
cost=zeros(1,n);
D=zeros(1,n);
day_cost=zeros(1,day);
top_p=0.9;
amin=1;
zoom=1;
dump1=24*50;
dump2=24*15;
daygoal=0.8;
tcheckin=30;
phireal=1;
sitenumber=3;
cg=zeros(1,sitenumber);
alpha_self_record=zeros(1,sitenumber);
alphao_record=zeros(1,sitenumber);
% rate=ones(1,sitenumber)/sitenumber;
ratio_stage=5;
reward_record=zeros(1,day+1);

% rate=[0.4 0.6 0.5];
for site_index=3:sitenumber
 real_rate=ones(1,site_index)/site_index;
 count=1;
 initial_believe=0.5;
 rate=ones(1,site_index)/site_index;
% rate=ones(1,site_index);
p_ratio=(1-initial_believe)*ones(site_index,ratio_stage)/(ratio_stage-1);

 138

ratio_picked=zeros(1,sitenumber);
for i=1:site_index
 done=0;
 for j=1:ratio_stage
 if 1/ratio_stage*j>=rate(i)&&done==0
 p_ratio(i,j)=initial_believe;
 done=1;
 end
 end
end

 for t0=1:n
 daymark=floor(t0/24)+1;
 t=mod(t0,24)+(mod(t0,24)==0)*24;
 add=0;
 for i=1:site_index
 pick=rand;
 p_roll=0;
 flag=0;
 for j=1:ratio_stage
 p_roll=p_roll+p_ratio(i,j);
 if p_roll>pick&&flag==0
 rate(i)=j/ratio_stage;
 ratio_picked(i)=j;
 flag=1;
 end
 end
% [~,ratio_picked(i)]=max(p_ratio(i,:));
 end
% end
% if t==1||t==9||t==17
% load_shedding action numbers
action_n=4;

[alpha(t0),alphao,alpha_self]=gamesolver_ratio_adapt_2_1(v(t0),t,t0,w_alpha,w
_soc,batterystage,Energy,amin,daygoal,phireal,site_index,rate,real_rate,ratio
_stage);

 for i=1:site_index
 alpha_self_record(i)=alpha_self_record(i)+alpha_self(i)/24;
% alphao_record(i)=alphao_record(i)+alphao(i)/24;
 end
 if t0>=dump1&&t0<=dump2
 phireal=0.5;
 end

[D(t0),cost(t0)]=evaluation(alpha(t0),t,batterystage,Energy,SoC(t0),w_soc,day
goal,phireal,add,0,0);
 SoC(t0+1)=(SoC(t0)*Energy-
integral(@(x)load2(x),t,t+1)*alpha(t0)+phireal*integral(@(y)solar(y),t,t+1))/
Energy;

if SoC(t0+1)>=1
 SoC(t0+1)=1;
end

 139

if SoC(t0+1)<=0
 SoC(t0+1)=0;
end
v(t0+1)=(SoC(t0+1)-0.5)/0.05+56;

%load ratio adjusting process

reward_record(daymark)=reward_record(daymark)+self_reward_1_day(SoC(t0+1),t,w
_soc,daygoal,rate(1),alpha_self(1),alphao(1));
% if t==8||t==16||t==24
 for i=1:site_index
 a=0.05;
 r=cost(t0);
 %% reward function using local information
r=self_reward_1_day(SoC(t0+1),t,w_soc,daygoal,rate(i),alpha_self(i),alphao(i)
);
 for j=1:ratio_stage
 if j==ratio_picked(i)
 p_ratio(i,j)=p_ratio(i,j)+a*r*(1-p_ratio(i,j));
 elseif p_ratio(i,j)>(1-top_p)/(ratio_stage-1)
 p_ratio(i,j)=p_ratio(i,j)-a*r*(p_ratio(i,j));
 else
 p_ratio(i,j)=(1-top_p)/(ratio_stage-1);
 end
 if p_ratio(i,j)>=top_p
 p_ratio(i,j)=top_p;
 end
 if p_ratio(i,j)<=(1-top_p)/(ratio_stage-1)
 p_ratio(i,j)=(1-top_p)/(ratio_stage-1);
 end
 end
 end
% end

 if t==24
% SoC(1)=SoC(t);
 if count<=zoom||count>=day-zoom
 day_cost(count)=sum(cost(t0-23:t0));
 else
 day_cost(count)=sum(cost(t0-23*zoom:t0))/zoom;
 end
 count=count+1;
 alpha_self_record=zeros(1,sitenumber);
 alphao_record=zeros(1,sitenumber);
 end
 end
% plot(day_cost)
cg(site_index)=sum(cost)/day;
end
figure
plot(cg(2:end))
cg(sitenumber)
figure('Name','eva')
plot(day_cost)
figure('Name','RL+game solution')
 yyaxis left

 140

 plot(n-23:n,SoC(n-23:n),'--','LineWidth',5)
 ylabel('SoC','FontSize',20) % left y-axis
 xlabel('Time (Hr)','FontSize',20)
 yyaxis right
% plot(1:n,alpha,'LineWidth',5)
 plot(n-23:n,D(n-23:n)*10+31,'LineWidth',5)
 set(gca,'fontsize',20)
 legend({'SoC','PSNR'},'FontSize',20)
 grid on
 ylabel('PSNR','FontSize',20)

% figure
% plot(cost)
figure
bar3(squeeze(p_ratio))
toc
end

 141

Bibliography

[1] A. Kwasinski, W. W. Weaver, P. L. Chapman, and P. T. Krein, "Telecommunications

Power Plant Damage Assessment Caused by Hurricane Katrina - Site Survey and Follow-

Up Results," in INTELEC 06 - Twenty-Eighth International Telecommunications Energy

Conference, 2006, pp. 1-8.

[2] A. Kwasinski, "Effects of notable natural disasters from 2005 to 2011 on

telecommunications infrastructure: Lessons from on-site damage assessments," in 2011

IEEE 33rd International Telecommunications Energy Conference (INTELEC), 2011, pp.

1-9.

[3] J. Blanchard, "Site reliability: Fuel cells add reliability to telecom sites," in INTELEC 07 -

29th International Telecommunications Energy Conference, 2007, pp. 563-567.

[4] A. Kwasinski and P. T. Krein, "Telecom power planning for natural and man-made

disasters," in INTELEC 07 - 29th International Telecommunications Energy Conference,

2007, pp. 216-222.

[5] A. Kwasinski and A. Kwasinski, "Increasing sustainability and resiliency of cellular

network infrastructure by harvesting renewable energy," IEEE Communications Magazine,

vol. 53, pp. 110-116, 2015.

[6] A. Kwasinski, "Telecom power planning for natural disasters: Technology implications

and alternatives to U.S. Federal Communications Commission's "Katrina Order"; in view

of the effects of 2008 Atlantic Hurricane Season," in INTELEC 2009 - 31st International

Telecommunications Energy Conference, 2009, pp. 1-6.

 142

[7] A. Kwasinski and A. Kwasinski, "Role of energy storage in a microgrid for increased use

of photovoltaic systems in wireless communication networks," in 2014 IEEE 36th

International Telecommunications Energy Conference (INTELEC), 2014, pp. 1-8.

[8] W. Allen, D. W. Fletcher, and K. J. Fellhoelter, "Securing critical information and

communication infrastructures through electric power grid independence," in

Telecommunications Energy Conference, 2003. INTELEC '03. The 25th International,

2003, pp. 170-177.

[9] A. Kwasinski and A. Kwasinski, "Operational aspects and power architecture design for a

microgrid to increase the use of renewable energy in wireless communication networks,"

in 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE

ASIA), 2014, pp. 2649-2655.

[10] A. Kwasinski, "Telecommunications outside plant power infrastructure: Past performance

and technological alternatives for improved resilience to hurricanes," in INTELEC 2009 -

31st International Telecommunications Energy Conference, 2009, pp. 1-6.

[11] R. Hu, A. Kwasinski, and A. Kwasinski, "Mixed strategy load management strategy for

wireless communication network microgrid," pp. 1-8.

[12] R. Hu and A. Kwasinski, "Energy management for microgrids using a reinforcement

learning algorithm " in 2018 IEEE Green Energy and Smart Systems Conference

(IGESSC), 2018.

[13] A. Kwasinski and A. Kwasinski, "Integrating cross-layer LTE resources and energy

management for increased powering of base stations from renewable energy," pp. 498-505.

 143

[14] L. Maharjan, S. Inoue, H. Akagi, and J. Asakura, "State-of-Charge (SOC)-Balancing

Control of a Battery Energy Storage System Based on a Cascade PWM Converter," IEEE

Transactions on Power Electronics, vol. 24, pp. 1628-1636, 2009.

[15] Z. Chmiel and S. C. Bhattacharyya, "Analysis of off-grid electricity system at Isle of Eigg

(Scotland): Lessons for developing countries," Renewable Energy, vol. 81, pp. 578-588,

2015.

[16] C. N. Resources, "The First Canadian Smart Remote Microgrid: Hartley Bay, BC."

[17] N. Hatziargyriou, Microgrids: Architectures and Control. New York, UNITED

KINGDOM: John Wiley & Sons, Incorporated, 2013.

[18] C. F. Chiasserini and R. R. Rao, "Improving battery performance by using traffic shaping

techniques," IEEE Journal on Selected Areas in Communications, vol. 19, pp. 1385-1394,

2001.

[19] N. Mitrou, "Shaping of traffic streams through data spacing," IEEE Communications

Letters, vol. 3, pp. 300-302, 1999.

[20] A. Andreoiu, K. Bhattacharya, and C. Canizares, "Pricing power system stabilisers using

game theory," IEE Proceedings - Generation, Transmission and Distribution, vol. 152, pp.

780-786, 2005.

[21] F. Lian, A. Duel-Hallen, and A. Chakrabortty, "Ensuring economic fairness in wide-area

control for power systems via game theory," in 2016 American Control Conference (ACC),

2016, pp. 3231-3236.

[22] G. C. Stamtsis and I. Erlich, "Use of cooperative game theory in power system fixed-cost

allocation," IEE Proceedings - Generation, Transmission and Distribution, vol. 151, pp.

401-406, 2004.

 144

[23] A. Mondal, S. Misra, and M. S. Obaidat, "Distributed Home Energy Management System

With Storage in Smart Grid Using Game Theory," IEEE Systems Journal, pp. 1-10, 2015.

[24] S. Sofana Reka and V. Ramesh, "A demand response modeling for residential consumers

in smart grid environment using game theory based energy scheduling algorithm," Ain

Shams Engineering Journal, vol. 7, pp. 835-845, 2016.

[25] Citrix, "Citrix Mobile Analytics Report," 2015.

[26] X. Lu, K. Sun, J. M. Guerrero, J. C. Vasquez, and L. Huang, "State-of-Charge Balance

Using Adaptive Droop Control for Distributed Energy Storage Systems in DC Microgrid

Applications," IEEE Transactions on Industrial Electronics, vol. 61, pp. 2804-2815, 2014.

[27] "Converters allow for battery operation," Electronics Times, p. 37, 2001.

[28] T.-H. Wu, C.-S. Moo, Y.-C. Hsieh, and C.-Y. Juan, "Operation of battery power modules

with bidirectional DC/DC converters," pp. 443-448.

[29] M. Chenine, I. A. Khatib, J. Ivanovski, V. Maden, and L. Nordström, "PMU traffic shaping

in IP-based Wide Area communication," in 2010 5th International Conference on Critical

Infrastructure (CRIS), 2010, pp. 1-6.

[30] V. M. M. Reddy P P, "Strategy learning for autonomous agents in smart grid markets," in

Twenty-second international joint conference on artificial intelligence, 2005.

[31] R. W. Erickson and D. Maksimović, Fundamentals of power electronics, 2nd ed. Norwell,

Mass: Kluwer Academic Publishers, 2001.

[32] C. Solar. (2012). Solar PV in Cambridge.

[33] X. Lin, A. G. Stefanopoulou, Y. Li, and R. D. Anderson, "State of charge estimation of

cells in series connection by using only the total voltage measurement," in 2013 American

Control Conference, 2013, pp. 704-709.

 145

[34] T. G. Josip Lorincz , Goran Petrovic, "Measurements and Modelling of Base Station Power

Consumption under Real Traffic Loads," Sensors, vol. 12, pp. 4281-4310, 2012.

[35] Q. Zhang, Y.-b. Zhang, and S. Ma, "Effective global searching method based on radial

basis function," in Electric Information and Control Engineering (ICEICE), 2011

International Conference on, 2011, pp. 350-353.

[36] J. Song, V. Krishnamurthy, A. Kwasinski, and R. Sharma, "Development of a Markov-

Chain-Based Energy Storage Model for Power Supply Availability Assessment of

Photovoltaic Generation Plants," IEEE Transactions on Sustainable Energy, vol. 4, pp.

491-500, 2013.

[37] A. Leon-Garcia, Probability, statistics, and random processes for electrical engineering,

3rd ed. Upper Saddle River, NJ: Pearson/Prentice Hall, 2008.

[38] F. Mohamed and H. Koivo, System modeling and online optimal management of microgrid

with battery storage vol. 1, 2007.

[39] M. Maschler, E. Solan, and S. Zamir, Game Theory. Cambridge: Cambridge University

Press, 2013.

[40] S. Jørgensen, M. Quincampoix, and T. L. Vincent. (2007). Advances in dynamic game

theory numerical methods, algorithms, and applications to ecology and economics.

Available:

http://pitt.idm.oclc.org/login?url=http://link.springer.com/openurl?genre=book&isbn=978

-0-8176-4399-7

[41] J. F. Nash, "Equilibrium points in n-person games," Proceedings of the National Academy

of Sciences, vol. 36, pp. 48-49, January 1, 1950.

http://pitt.idm.oclc.org/login?url=http://link.springer.com/openurl?genre=book&isbn=978-0-8176-4399-7
http://pitt.idm.oclc.org/login?url=http://link.springer.com/openurl?genre=book&isbn=978-0-8176-4399-7

 146

[42] A. Piegat, "Bayes’ Rule, Principle of Indifference, and Safe Distribution." vol. 5097, ed

Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 661-670.

[43] R. D. Luce and H. Raiffa, Games and Decisions: Introduction and Critical Survey: Dover

Publications, 1957.

[44] H. Karloff, Linear programming. Boston: Birkhäuser, 1991.

[45] M. Willem, Minimax Theorems: Birkhäuser Boston, 1997.

[46] H. ND, "Microgrid and energy management," European transactions on electrical power,

pp. 1139-141, 2010.

[47] S. Govindan and R. Wilson, "A global Newton method to compute Nash equilibria,"

Journal of Economic Theory, vol. 110, pp. 65-86, 2003.

[48] R. Leo, R. S. Milton, and A. Kaviya, "Multi agent reinforcement learning based distributed

optimization of solar microgrid," in 2014 IEEE International Conference on

Computational Intelligence and Computing Research, 2014, pp. 1-7.

[49] H. Rui and W. W. Weaver, "Dc microgrid droop control based on battery state of charge

balancing," in 2016 IEEE Power and Energy Conference at Illinois (PECI), 2016, pp. 1-8.

[50] R. G. Born. (2011). The Effect of Sky Conditions on Solar Panel Power Output. Available:

https://www.vernier.com/innovate/the-effect-of-sky-conditions-on-solar-panel-power-

output/

[51] S. Sastry and M. Bodson, Adaptive control: stability, convergence, and robustness:

Prentice-Hall, Inc., 1989.

[52] S. Sastry, M. Bodson, and J. F. Bartram, "Adaptive Control: Stability, Convergence, and

Robustness," The Journal of the Acoustical Society of America, vol. 88, pp. 588-589, 1990.

[53] J. J. E. Slotine and W. Li, Applied Nonlinear Control: Prentice Hall, 1991.

http://www.vernier.com/innovate/the-effect-of-sky-conditions-on-solar-panel-power-output/
http://www.vernier.com/innovate/the-effect-of-sky-conditions-on-solar-panel-power-output/

 147

[54] C. Böhringer, M. Finus, and C. Vogt, Controlling global warming : perspectives from

economics, game theory, and public choice. Cheltenham, UK ; Northampton, MA: E.

Elgar, 2002.

[55] F. S. Keller, Learning: reinforcement theory vol. PP13. New York U6 - ctx_ver=Z39.88-

2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-

8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ff

mt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Learning&rft.au=Keller%2C+F

red+S&rft.series=Studies+in+psychology&rft.date=1954&rft.pub=Random+House&rft.v

olume=PP13&rft.externalDocID=670125¶mdict=en-US U7 - Book: Random House,

1954.

[56] R. S. Sutton, A. G. Barto, and I. netLibrary, Reinforcement learning: an introduction.

Cambridge, Mass: MIT Press, 1998.

[57] Y. Xi, L. Chang, M. Mao, P. Jin, N. Hatziargyriou, and H. Xu, "Q-learning algorithm based

multi-agent coordinated control method for microgrids," pp. 1497-1504.

[58] H. Gintis, The bounds of reason : game theory and the unification of the behavioral

sciences. Princeton: Princeton University Press, 2009.

[59] C. Stevanoni, F. Vallee, Z. D. Greve, and O. Deblecker, "On the use of game theory to

study the planning and profitability of industrial microgrids connected to the distribution

network," CIRED - Open Access Proceedings Journal, vol. 2017, pp. 2444-2448, 2017.

[60] C. D. a. C. H. Papadimitriou, Three-player games are hard, 2005.

[61] A. Pauly, "The Computational Complexity of Iterated Elimination of Dominated

Strategies," Theory of Computing Systems, vol. 59, pp. 52-75, 2016.

 148

[62] S. Homer and A. L. Selman, Computability and complexity theory, 2nd;2; ed. London;New

York;: Springer, 2011.

[63] P. J. Smith, A. Sathyendran, and A. R. Murch, "Analysis of traffic distribution in cellular

networks," pp. 2075-2079.

[64] P. P. Vergara, R. Torquato, and L. C. P. d. Silva, "Towards a real-time Energy Management

System for a Microgrid using a multi-objective genetic algorithm," in 2015 IEEE Power &

Energy Society General Meeting, 2015, pp. 1-5.

[65] K. S. Narendra and M. A. L. Thathachar, Learning automata: an introduction: Prentice-

Hall, Inc., 1989.

[66] T. Jaakkola, M. I. Jordan, and S. P. Singh, "On the Convergence of Stochastic Iterative

Dynamic Programming Algorithms," Neural Computation, vol. 6, pp. 1185-1201, 1994.

[67] L. G. Telser, Competition, collusion, and game theory. Chicago,: Aldine·Atherton, 1972.

[68] V. Chamola, B. Krishnamachari, and B. Sikdar, "Green Energy and Delay Aware

Downlink Power Control and User Association for Off-Grid Solar-Powered Base

Stations," IEEE Systems Journal, vol. 12, pp. 2622-2633, 2018.

[69] M. Gardner, The colossal book of mathematics : classic puzzles, paradoxes, and problems

: number theory, algebra, geometry, probability, topology, game theory, infinity, and other

topics of recreational mathematics, 1st ed. New York: Norton, 2001.

	Title Page
	Committee Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Preface
	1.0 Introduction and Literature Review
	2.0 Communication Microgrid Structure and its Energy Management
	2.1 Communication Microgrid Architecture
	2.1.1 Microgrid Components
	Figure 1: Communication microgrid scheme

	2.1.2 Communication Base Station Load
	2.1.3 Communication Traffic Shaping and Quality of Service
	2.1.4 Power Electronics Interface
	Figure 2: Buck-and-boost converter scheme.
	Figure 3: Soar cell generator with converter model

	2.1.5 Solar Cell Generator
	Figure 4: Solar panel output power curve

	2.1.6 Battery SoC Discretization

	2.2 Microgrid Energy Management in Island Mode
	2.2.1 Objective Function
	2.2.2 Computing Battery SoC Distribution
	2.2.3 Objective Function Analysis
	Figure 5: Objective function vs. CTSF case 1, t=5
	Figure 6: Objective function vs. CTSF case 2
	Table 1: Evaluation parameter values
	Figure 7: Objective function vs. CTSF with different conditions
	Figure 8: Objective function vs. CTSF case 3 (SoC(t)=0.49, t=16 Hr)
	Figure 9: Objective function vs. CTSF case 4 (SoC(t)=0.49, t=16 Hr, w_SoC=0.7)
	Figure 10: Modified objective function (SoC(t)=0.49, t=15)

	2.2.4 Energy Management Strategy Obtained by Exhaustive Search
	Figure 11: BS communication network status in different scenarios

	2.2.5 Energy Management Obtained using Multi-agent System

	3.0 Multi-player Game
	3.1 Definition, Notations, and Assumptions
	3.2 Breaking Down of the Objective Function
	Table 2 : Payoff table of a two-player game

	3.3 Two-player Zero-sum Game
	3.3.1 The Pure Strategy of a Two-player Zero-sum Game
	Table 3 : Strategy table of a game with pure strategy solution
	Table 4 : Strategy table of a game with pure strategy solution after elimination

	3.3.2 Mixed Strategy Solution of a Two-player Zero-sum Game
	Table 5 : Strategy table of a game with no pure strategy solution
	3.3.2.1 Direct Approach
	Figure 12: The payoff function of Player I and the lower envelope
	Figure 13: The payoff function of Player II and the higher envelope

	3.3.2.2 Indifference Principle
	Table 6 : Strategy table of a game where players have three pure strategies

	3.3.2.3 Linear Programming
	Figure 14: Zero-sum two-player game solving flowchart

	3.4 Two-player Common-interest Game
	3.5 Discussion on the Game Types
	3.6 Games with Arbitrary Number of Players
	Table 7: Example of a three-player non-zero-sum game
	Table 8 : Computation time in second required to solve for equilibrium with global Newton algorithm

	3.7 Virtual Two-player Game
	Figure 15: Performance of virtual two-player zero-sum game with more players, w_soc=0.2
	Figure 16: Solar cell output power in a day

	3.8 Communication Base Station Load Identifier
	Figure 17: Adaptive controller scheme

	4.0 Reinforcement Learning
	4.1 Markov Decision Process
	4.2 Q-learning Algorithm
	4.3 Linear Reward-Inaction Algorithm
	Figure 18: Learning space of a Linea reward-inaction agent

	5.0 Load-ratio Learning Game
	5.1 Inspiration from Virtual Two-Player Game
	5.2 Load-Ratio Updating Process
	Figure 19: Learning-gaming algorithm scheme

	Figure 20: Load-ratio learning game algorithm flowchart
	6.0 Numerical Results
	Figure 21: PV power curve
	Figure 22: BS load curve
	Table 9 : Simulated BS parameters
	6.1 Multi-Player Game
	6.1.1 Two-Player Zero-Sum Game.
	Figure 23: CTSF and SoC of the simulated microgrid applying exhaustive search, sum(obj)= 17.2512
	Figure 24: PSNR and SoC of the simulated microgrid, two-player zero-sum game, sum(obj)= 16.5616
	Figure 25: Distribution of Sum(U) obtained by two-player zero-sum game
	Figure 26: Distribution of Sum(U) obtained by exhaustive search
	Figure 27: Sum(obj) of two-player zero-sum game with different initial SoC and weighting factor
	Figure 28: Difference between exhaustive search and zero-sum game solutions in percentage

	6.1.2 Two-player Common-Interest Game
	Figure 29: SoC and CTSF of simulated microgrid, two-player common-interest game, sum(obj)= 17.0807
	Figure 30: Sum(obj) of two-player common-interest game with different initial SoC and weighting factor
	Figure 31: Difference between exhaustive search and common-interest game solutions in percentage

	6.1.3 Communication Base Station Load Identifier
	Figure 32: Simulated microgrid with the load identier. Sum(U)= 8.1629.
	Figure 33: Simulated microgrid without load identifier. Sum(U)= 5.9233
	Figure 34: Power consumption estimation of a BS without load identifier
	Figure 35: Power consumption estimation of a BS with load identifier

	6.1.4 Virtual Two-Player Game
	Figure 36: System performance with different w_soc, zero-sum game
	Figure 37: System performance with different w_soc, common-interest game
	Figure 38: System SoC and PSNR implemented zero-sum game, 20 BSs
	Figure 39: System SoC and PSNR implemented common-interest game, 20 BSs

	6.2 Q-learning Algorithm
	6.2.1 Single-Agent Q-Learning
	Figure 40: CTSF and SoC obtained by single agent Q-learning
	Figure 41:Q-value chart after 100 days after training
	Figure 42: Learning curve of the agent
	Figure 43: Objective function of the system during the learning process

	6.2.2 Multi-Agent Q-Learning
	Figure 44: SoC and CTSF obtained by multi-agent Q-learning case 1
	Figure 45: Learning curve of one agent, case 1
	Figure 46: System SoC during the learning process, case 2
	Figure 47: Learning curve of an agent case 2
	Figure 48: Learning curve of an agent, case 3
	Figure 49: System SoC during the learning process, case 3

	6.3 Linear Reward-Inaction
	6.3.1 Normal Operation
	Figure 50: System SoC and CTSF obtained by Linear-reward inaction
	Figure 51: System performance with learning rate b=0.1
	Figure 52: Obtained CTSF strategy space
	Figure 53: System performance with learning rate b=0.2
	Figure 54: System SoC with learning rate b=1.0
	Figure 55: System performance with learning rate b=1.0

	6.3.2 Partial Loss of Power Source
	Figure 56: System performance with power lost from day 50 to day 100
	Figure 57: System SoC with power lost from day 50 to day 100
	Figure 58: System SoC with power lost with low-SoC barrier
	Figure 59: System performance with power lost from with low-SoC barrier
	Figure 60: CTSF strategy chart obtained with low-SoC barrier

	6.3.3 Loss of Communication
	Figure 61: System performance applying local objective function (b=0.1)
	Figure 62: System performance applying local objective function (b=0.05)
	Figure 63: Performance of system applying RL with local objective function (b=0.05) and different number of BSs
	Figure 64: Performance of system applying RL with local objective function (b=0.01) and different number of BSs
	Figure 65: Learning curve of system applying RL with local objective function (b=0.01)

	6.4 Load-Ratio Learning Game
	6.4.1 Normal Operation
	Figure 66: PSNR and SoC of BS microgrid applying load-ratio learning game algorithm, normal condition
	Figure 67: Comparison of learning curves of RL and learning-game algorithm
	Figure 68: Comparison of algorithms with different number of BSs

	6.4.2 Partial Loss of Power Source
	Figure 69: Average system SoC and PSNR with power loss
	Figure 70: System performance index with power loss
	Figure 71: Obtained load-ratio strategy with power loss

	6.5 Discussion

	7.0 Conclusions
	Appendix A Simulation code
	Bibliography

