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Abstract  

A Distributed Energy Management Strategy for Renewable Powered Communication 
Microgrid using Game Theory and Reinforcement Learning 

 
Rui Hu, Ph.D. 

 
University of Pittsburgh, 2019 

 
 
 
 

This dissertation explores the use of energy management strategies for base stations in a 

communication microgrid, which is intended to be operating in island mode powered exclusively 

by renewable power sources. The energy management strategy aims at searching for an optimal 

energy management plan considering both communication quality and energy availability. In this 

dissertation, the objective is to accomplish such energy management using distributed control 

architecture. Three approaches have been made: multi-player energy management game, multi-

agent reinforcement learning, and a hierarchical load-ratio learning game algorithm.  The 

modeling, performance, and applicable conditions of the proposed algorithms are discussed and 

compared. Numerical simulation of communication microgrids in multiple cases implemented 

with the three algorithms was conducted. As the results show, the hierarchical load-ratio learning 

game algorithm has a better performance compared to the multi-player game approach with less 

computation complexity and a faster-converging speed compared to that of the reinforcement 

learning approach. 

 

  



 v 

Table of Contents 

Preface ......................................................................................................................................... xiii 

1.0 Introduction and Literature Review ..................................................................................... 1 

2.0 Communication Microgrid Structure and its Energy Management .................................. 7 

2.1 Communication Microgrid Architecture ..................................................................... 7 

2.1.1 Microgrid Components ....................................................................................... 7 

2.1.2 Communication Base Station Load ................................................................... 8 

2.1.3 Communication Traffic Shaping and Quality of Service ................................ 8 

2.1.4 Power Electronics Interface ............................................................................. 10 

2.1.5 Solar Cell Generator ......................................................................................... 12 

2.1.6 Battery SoC Discretization ............................................................................... 12 

2.2 Microgrid Energy Management in Island Mode ....................................................... 13 

2.2.1 Objective Function ............................................................................................ 13 

2.2.2 Computing Battery SoC Distribution ............................................................. 14 

2.2.3 Objective Function Analysis ............................................................................ 17 

2.2.4 Energy Management Strategy Obtained by Exhaustive Search................... 25 

2.2.5 Energy Management Obtained using Multi-agent System ........................... 26 

3.0 Multi-player Game................................................................................................................ 28 

3.1 Definition, Notations, and Assumptions ..................................................................... 29 

3.2 Breaking Down of the Objective Function ................................................................. 31 

3.3 Two-player Zero-sum Game ....................................................................................... 32 

3.3.1 The Pure Strategy of a Two-player Zero-sum Game .................................... 32 



 vi 

3.3.2 Mixed Strategy Solution of a Two-player Zero-sum Game .......................... 33 

3.3.2.1 Direct Approach ..................................................................................... 35 

3.3.2.2 Indifference Principle ............................................................................ 37 

3.3.2.3 Linear Programming ............................................................................. 42 

3.4 Two-player Common-interest Game .......................................................................... 47 

3.5 Discussion on the Game Types .................................................................................... 50 

3.6 Games with Arbitrary Number of Players ................................................................. 51 

3.7 Virtual Two-player Game ............................................................................................ 55 

3.8 Communication Base Station Load Identifier ........................................................... 60 

4.0 Reinforcement Learning ...................................................................................................... 65 

4.1 Markov Decision Process ............................................................................................. 65 

4.2 Q-learning Algorithm ................................................................................................... 67 

4.3 Linear Reward-Inaction Algorithm ............................................................................ 71 

5.0 Load-ratio Learning Game .................................................................................................. 76 

5.1 Inspiration from Virtual Two-Player Game .............................................................. 76 

5.2 Load-Ratio Updating Process ...................................................................................... 77 

6.0 Numerical Results ................................................................................................................. 81 

6.1 Multi-Player Game ....................................................................................................... 84 

6.1.1 Two-Player Zero-Sum Game. .......................................................................... 84 

6.1.2 Two-player Common-Interest Game .............................................................. 88 

6.1.3 Communication Base Station Load Identifier ................................................ 90 

6.1.4 Virtual Two-Player Game ................................................................................ 93 

6.2 Q-learning Algorithm ................................................................................................... 96 



 vii 

6.2.1 Single-Agent Q-Learning.................................................................................. 96 

6.2.2 Multi-Agent Q-Learning .................................................................................. 98 

6.3 Linear Reward-Inaction ............................................................................................ 102 

6.3.1 Normal Operation ........................................................................................... 102 

6.3.2 Partial Loss of Power Source ......................................................................... 106 

6.3.3 Loss of Communication .................................................................................. 109 

6.4 Load-Ratio Learning Game ....................................................................................... 112 

6.4.1 Normal Operation ........................................................................................... 112 

6.4.2 Partial Loss of Power Source ......................................................................... 115 

6.5 Discussion .................................................................................................................... 117 

7.0 Conclusions .......................................................................................................................... 119 

Appendix A Simulation code.................................................................................................... 121 

Bibliography .............................................................................................................................. 141 



 viii 

List of Tables 

Table 1 : Evaluation parameter values ..................................................................................... 22 

Table 2 : Payoff table of a two-player game ............................................................................. 31 

Table 3 : Strategy table of a game with pure strategy solution .............................................. 32 

Table 4 : Strategy table of a game with pure strategy solution after elimination ................. 33 

Table 5 : Strategy table of a game with no pure strategy solution ......................................... 34 

Table 6 : Strategy table of a game where players have three pure strategies ....................... 38 

Table 7: Example of  a three-player non-zero-sum game ....................................................... 52 

Table 8 : Computation time in second required to solve for equilibrium with global Newton 

algorithm .................................................................................................................................. 54 

Table 9 : Simulated BS parameters ........................................................................................... 83 

 



 ix 

List of Figures 

Figure 1: Communication microgrid scheme ............................................................................. 7 

Figure 2: Buck-and-boost converter scheme. ........................................................................... 11 

Figure 3: Soar cell generator with converter model ................................................................ 11 

Figure 4: Solar panel output power curve ................................................................................ 12 

Figure 5: Objective function vs. CTSF case 1, t=5 ................................................................... 20 

Figure 6: Objective function vs. CTSF case 2 .......................................................................... 20 

Figure 7: Objective function vs. CTSF with different conditions .......................................... 23 

Figure 8: Objective function vs. CTSF case 3 (SoC(t)=0.49, t=16 Hr) ................................... 24 

Figure 9: Objective function vs. CTSF case 4 (SoC(t)=0.49, t=16 Hr, w_SoC=0.7) ............. 24 

Figure 10: Modified objective function (SoC(t)=0.49, t=15) ................................................... 24 

Figure 11: BS communication network status in different scenarios .................................... 26 

Figure 12: The payoff function of Player I and the lower envelope ....................................... 36 

Figure 13: The payoff function of Player II and the higher envelope .................................... 36 

Figure 14: Zero-sum two-player game solving flowchart ....................................................... 46 

Figure 15: Performance of virtual two-player zero-sum game with more players, w_soc=0.2

................................................................................................................................................... 59 

Figure 16: Solar cell output power in a day ............................................................................. 60 

Figure 17: Adaptive controller scheme ..................................................................................... 61 

Figure 18: Learning space of a Linea reward-inaction agent ................................................. 73 

Figure 19: Learning-gaming algorithm scheme ....................................................................... 78 

Figure 20: Load-ratio learning game algorithm flowchart ..................................................... 80 



 x 

Figure 21: PV power curve ........................................................................................................ 82 

Figure 22: BS load curve ............................................................................................................ 82 

Figure 23: CTSF and SoC of the simulated microgrid applying exhaustive search, sum(obj)= 

17.2512...................................................................................................................................... 84 

Figure 24: PSNR and SoC of the simulated microgrid, two-player zero-sum game, sum(obj)= 

16.5616...................................................................................................................................... 85 

Figure 25: Distribution of Sum(U) obtained by two-player zero-sum game ......................... 85 

Figure 26: Distribution of Sum(U) obtained by exhaustive search ........................................ 86 

Figure 27: Sum(obj) of two-player zero-sum game with different initial SoC and weighting 

factor ........................................................................................................................................ 87 

Figure 28: Difference between exhaustive search and zero-sum game solutions in percentage

................................................................................................................................................... 87 

Figure 29: SoC and CTSF of simulated microgrid, two-player common-interest game, 

sum(obj)= 17.0807 ................................................................................................................... 88 

Figure 30: Sum(obj) of two-player common-interest game with different initial SoC and 

weighting factor ....................................................................................................................... 89 

Figure 31: Difference between exhaustive search and common-interest game solutions in 

percentage ................................................................................................................................ 89 

Figure 32: Simulated microgrid with the load identier. Sum(U)= 8.1629. ............................ 91 

Figure 33: Simulated microgrid without load identifier. Sum(U)= 5.9233 ............................ 91 

Figure 34: Power consumption estimation of a BS without load identifier ........................... 92 

Figure 35: Power consumption estimation of a BS with load identifier ................................ 92 

Figure 36: System performance with different w_soc, zero-sum game ................................. 93 



 xi 

Figure 37: System performance with different w_soc, common-interest game .................... 94 

Figure 38: System SoC and PSNR implemented zero-sum game, 20 BSs ............................. 95 

Figure 39: System SoC and PSNR implemented common-interest game, 20 BSs ................ 95 

Figure 40: CTSF and SoC obtained by single agent Q-learning ............................................ 96 

Figure 41:Q-value chart after 100 days after training ............................................................ 97 

Figure 42: Learning curve of the agent..................................................................................... 97 

Figure 43: Objective function of the system during the learning process ............................. 98 

Figure 44: SoC and CTSF obtained by multi-agent Q-learning case 1 ................................. 99 

Figure 45: Learning curve of one agent, case 1 ........................................................................ 99 

Figure 46: System SoC during the learning process, case 2 .................................................. 100 

Figure 47: Learning curve of an agent case 2......................................................................... 100 

Figure 48: Learning curve of an agent, case 3........................................................................ 101 

Figure 49: System SoC during the learning process, case 3 .................................................. 101 

Figure 50: System SoC and CTSF obtained by Linear-reward inaction ............................. 102 

Figure 51: System performance with learning rate b=0.1 .................................................... 103 

Figure 52: Obtained CTSF strategy space.............................................................................. 104 

Figure 53: System performance with learning rate b=0.2 .................................................... 104 

Figure 54: System SoC with learning rate b=1.0 ................................................................... 105 

Figure 55: System performance with learning rate b=1.0 .................................................... 105 

Figure 56: System performance with power lost from day 50 to day 100 ........................... 106 

Figure 57: System SoC with power lost from day 50 to day 100 .......................................... 107 

Figure 58: System SoC with power lost with low-SoC barrier ............................................. 107 

Figure 59: System performance with power lost from with low-SoC barrier ..................... 108 



 xii 

Figure 60: CTSF strategy chart obtained with low-SoC barrier ......................................... 108 

Figure 61: System performance applying local objective function (b=0.1) ......................... 109 

Figure 62: System performance applying local objective function (b=0.05) ....................... 110 

Figure 63: Performance of system applying RL with local objective function (b=0.05) and 

different number of BSs ....................................................................................................... 111 

Figure 64: Performance of system applying RL with local objective function (b=0.01) and 

different number of BSs ....................................................................................................... 111 

Figure 65: Learning curve of system applying RL with local objective function (b=0.01) 112 

Figure 66: PSNR and SoC of BS microgrid applying load-ratio learning game algorithm, 

normal condition ................................................................................................................... 113 

Figure 67: Comparison of learning curves of RL and learning-game algorithm ............... 114 

Figure 68: Comparison of algorithms with different number of BSs .................................. 114 

Figure 69: Average system SoC and PSNR with power loss ................................................. 116 

Figure 70: System performance index with power loss ......................................................... 116 

Figure 71: Obtained load-ratio strategy with power loss ...................................................... 117 



 xiii 

Preface 

The motivation of this dissertation origins from my passion for realizing distributed control in 

the power system. As we know it, the power system has been operated for more than a century 

with a centralized control architecture. It mimics well the conventional social structure in industry 

era: obedient and hardworking low-level parts pave the foundations, upon which lies the layer of 

farsighted decision-makers with the power of deciding the marching direction of the whole system. 

But it may not have to be like this. As distributed power resources and energy storage integrated 

into our society further, the power system may become a public infrastructure both operated and 

maintained by everyone who uses it. Most importantly, people are free to join or detach from any 

energy group, which might be the microgrids we are talking about today.  

I would like to thank my supervisor and committees, who have been continuously providing 

suggestions and insights along my research path. Your sharp thoughts and observations always 

remind me of my ignorance in front of the knowledge mansion. 

I would also like to give a special thanks to my wife, Li Li, and my parents. It would be 

impossible for me to fight against all the haunted ghosts of self-doubts without you along my way 

climbing towards an unknown summit. Your words always calm me down and remind me of my 

coordination in this vast, everlasting-seemed world.  

 

Rui Hu 

10/13/19 night 



 1 

1.0 Introduction and Literature Review 

Communication networks, especially emergency communication systems, are required to 

maintain operational under all circumstances [1]. However, the effect of recent natural disasters 

was a demonstration of the urgency to improve the resilience of communication sites [2, 3]. During 

these disasters, wireless base stations (BS), the fundamental components in the communication 

network, were found especially vulnerable to electric grid power outages [1, 4]. Because although 

a vast majority of the BSs survived the direct impact of the disaster without any physical damages, 

they were unable to maintain functioning because of interrupted power supplies [2]. Most of the 

BSs are equipped with back-up battery units, but these batteries are usually designed to feed the BS 

load for no more than several hours, which is significantly shorter than the outage duration of the 

electric grid caused by a natural disaster. The conventional solution to extend the power backup 

time is to use standby diesel generators. However, equipping all BS with onsite diesel gensets is a 

practice observed in few areas around the world [2, 5]. Moreover, roads and transportation 

systems—the lifelines used to refuel these generators—have to be operational after the disaster to 

ensure the fuel supply. Even if every BS is equipped with a permanent diesel generator or another 

type of backup power source, the use of them still presents some issues under extreme disruptive 

conditions, such as failures due to that these generators are not designed for long-time operation 

[6].  

As illustrated in [7-10], renewable energy sources and microgrids may be alternative options 

with respect to separate generator units. Renewable energy sources such as solar panels and wind 

turbines do not require any lifeline or additional energy source to keep its operation. Moreover, the 

microgrid architecture enables the BSs to share load and energy storage such that the overall system 
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availability is improved. Nonetheless, other challenges appear when harvesting renewable energy 

sources in an isolated microgrid. One of the most critical issues is that renewable energy sources, 

like photovoltaic (PV) cells, have a variable output characteristic, which not only makes energy 

storage devices indispensable but also requires the BS controllers to plan the energy usage in real-

time to avoid energy deficiency or interrupted operation.  

Much research effort has been done on energy management in the communication 

community. One of the solutions is by switching off base stations to the total load demand, as 

discussed in [11] (SWES), [12] and [13]. These algorithms are realized by coordination between 

BSs with a sequential broadcast system advertising operating status, communication traffic amount, 

and requests for switching on/off. The objective of SWES is to determine the minimal number of 

BSs required to serve the area with acceptable communication quality. This number is obtained by 

a greedy search computed by a master-planner. Another approach called Intelligent Cell brEathing 

(ICE) is introduced in [14] aims at maximizing the utilization of renewable energy. ICE achieves 

its goal by rearranging users to BSs with larger renewable generation capacities hence more 

renewable power is utilized. Aside from the previous two, methodologies considering green energy 

availability and delay performance include GALA [15], IDEA [16] and TEA [17]. IDEA and TEA. 

The objectives of them are to minimize a weighted function of the energy consumption from the 

main-grid and the traffic delivery latency by manipulating the BS coverage area and user 

connections. The user association and coverage area are controlled in a distributed way with full 

communication, where users and BSs receive broadcasted information from each other and run an 

exhaustive search by turn. However, the communication links between BSs are not always 

available in a natural disaster. For example, when a communication microgrid is hit by a hurricane, 

the relay stations and BSs themselves might be damaged, resulting in possible disconnections 
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between the other BSs. In such a scenario, the BSs in the microgrid need to plan their operation 

independently and adapt their operation mode. Thus, in this project, we aim to design an 

autonomous energy management algorithm for each BS in this microgrid without need of 

designated communication link.  

First, the BSs need ways to control their energy consumption. In this dissertation,  the BSs 

are equipped with communication traffic shaping technology to accomplish the energy consumption 

control [9, 18, 19]. Applied with this algorithm, a communication traffic shaping factor (CTSF) σ 

is applied in a BS to limit the volume of cellular traffic. Usually, a setting of 𝜎𝜎<1 indicates that the 

traffic through the BS, as well as the correspongding power consumption, is reduced. Such an 

arrangement may have an effect on the quality of service (QoS) of the call or video stream, which 

may influence the experience of users in an active call [9]. So the BS needs to decide what CTSF 

is optimal considering the present load demand and stored energy condition. Then, an objective 

function measuring a weighted sum of communication quality and the battery SoC distribution is 

implemented in the BSs as an optimum metric. The objective function will be shown in section 3.2. 

The last part is to equip BSs with the ability to adapt to a changing environment. Different solutions 

are provided to explore the unknown environment, including load identifiers and machine learning 

algorithms. 

Two major approaches were proposed to solve for the optimal energy management plan: 

multi-player game and reinforcement learning. The first approach model the energy management 

decision-making process as a multi-player game, where BS controllers occupy the role of the 

‘players.’  In the power system industry, game theory has been applied in system operation 

optimization and load scheduling [20-24]. Most of the studies were discussing power system 

marketing, price bidding, demand response, and load planning optimization. The application of 
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game theory in our project could be classified as a form of load response. In this energy management 

game, each player’s payoff is not only decided by his own but all other players’ moves. The payoff 

function for players in this game is the aforementioned objective function and its modified version 

with limited information. This game could be modeled in two ways: zero-sum game or common-

interest game. In the zero-sum game, the BS treats other BSs as competitors. While in the second 

approach, players share the same payoff and cooperate for a solution that’s optimal for the whole 

system. The two different approaches both lead to solutions of Nash Equilibrium, but their 

applicable conditions, computation costs, and resulting strategies could be different. Simulations of 

BS microgrids applying these methods were conducted, and their performance was compared to a 

centralized controller using exhaustive searching. A load identifier is designed so that the BS can 

update their power consumption model during the game. One disadvantage of the multi-player 

game approach is its computation complexity. As will be shown in section 3.6, the computation 

cost of a game increases exponentially as the number of BSs, and their actions increase. Therefore, 

a virtual two-player game approach was made to solve the original n-player game with reduced 

computational complexity. The optimality of such an approach is limited to be minimum-

maximized if such game is modeled in a zero-sum form. The performance of the virtual two-player 

game is also validated using Monte Carlo tests.  

The second approach made in this dissertation is to equip the BSs with machine learning 

algorithms so that the BSs could update their energy management strategies according to the actual 

feedback from the environment/microgrid. The learning algorithm makes the BSs explore the 

available load response actions and update their load response strategies based on their 

corresponding outcomes. The fundamental idea behind machine learning is empiricism, which 

claims a pre-defined model is capable of capturing critical features of the actual world or a physical 
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process in it explicitly from experience. Despite their specific form, most of the machine learning 

algorithms try to achieve a similar goal: predict the outcome of a complex system using a well-

tuned/trained, sometimes even more complex model. Intriguing as it is, this procedure is similar to 

what we engineers are seeking to achieve some times, which ought to be a branchy trail—there is 

great freedom in the choices of models, parameters, and how should they be organized. In this sense, 

engineers are some times similar to computer scientists. The type of machine learning algorithm 

implemented in this project is reinforcement learning, which utilizes interaction between BS (which 

is also called an agent in an RL process) and their environment to comes up with a strategy that 

maximizes the agent’s overall payoff [25]. Two different RL methods were applied: Q-learning and 

Linear Reward-Inaction algorithm. Both of the learning algorithms model the energy management 

as a Markov decision process. However, the main difference is that the Q-learning only maximizes 

one single agent’s long-term payoff while the Linear Reward-Inaction targets the equilibrium of 

multiple agents. The reinforcement learning algorithm requires no prior knowledge of the 

microgrid. Nevertheless, the RL process requires a notably long time to train the agents depending 

on the scale of the searching space, which is related to the numbers of BSs, actions, and the system’s 

possible states. 

The latest algorithm was proposed to address the performance drop issue of the virtual two-

player game applied to a large scale microgrid. It is an algorithm combining the multi-player game 

and reinforcement learning. How these two algorithms are integrated is enlighted by observation in 

virtual player game. In the virtual two-player game, a player evaluates the other player’s possible 

moves knowing the other player’s load demand. In an actual two-player game, such knowledge is 

accurate, thus the actual equilibriums are reachable to players. However, as the number of players 

increases, the estimated behavior of the virtual player with a high load demand is different from the 
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actual joint action of multiple players with lower load needs. So, this ‘misunderstanding’ is 

potentially one of the causes that drive the players away from reaching equilibrium. Implemented 

with the load-ratio learning algorithm, the BSs adjust their load demand models using machine 

learning algorithms. And the immediate load response decision is solved in the virtual two-player 

game way. As the simulation results show, this combined algorithm overcomes the two-player game 

performance drop in a large scale system with low computation cost and less training time.  

 



 7 

2.0 Communication Microgrid Structure and its Energy Management 

2.1 Communication Microgrid Architecture 

2.1.1  Microgrid Components 

An example of a communication dc microgrid equipped with renewable resources is shown 

in Figure 1.  In order to provide some context for the discussion and without loss of generality, it is 

assumed that one battery unit and renewable power sources are placed at the central station, another 

BS is only equipped with battery unit while the third site has no energy source or storage device. 

The connections of batteries to the dc bus could be direct in consideration of reliability. However, 

in some cases where batteries have a significant difference in sizes and energy levels, it may be 

required to have power electronic interfaces such as dc converters to stabilize the bus voltage and 

share energy in batteries properly, just as shown in the scheme [26-28]. Therefore, points of load 

converters in BS power supplies are represented by buck-and-boost converters, regulated via PI 

controllers to maintain a rated load voltage.  

 

Figure 1: Communication microgrid scheme 
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2.1.2  Communication Base Station Load  

In the base station, the nominal load consists of two parts: base load and communication traffic 

dependent load 

 𝑃𝑃 = 𝑃𝑃𝐵𝐵 + 𝑣𝑣𝑃𝑃𝑇𝑇 (2-1) 

where 𝑃𝑃𝐵𝐵 is the constant base load, 𝑃𝑃𝑇𝑇 is the base traffic dependent load, and 𝑣𝑣 is the BS utilization 

factor that represents the communication traffic intensity. The utilization factor is a random variable 

that depends on the number of users and the volume of communication traffic data. In the 

simulations, the BS loads are modeled as controllable resistors with resistance equal to  

 R =
𝑉𝑉2

𝑃𝑃𝐵𝐵 + 𝑣𝑣𝑃𝑃𝑇𝑇
 (2-2) 

where V is the rated load voltage.  

2.1.3  Communication Traffic Shaping and Quality of Service 

In the base station, the transmitted communication traffic is regulated using the 

communication traffic shaping technology [9, 29]. This technology allows BS controllers to 

control their processed traffic by reducing the real-time signal transmission rate and data traffic 

throughput. When communication traffic shaping is applied to the BS, a traffic shaper controls 

(“shapes”) the actual throughput (equivalent to the total volume of traffic) at the output of a BS. 

Such a setting reduces the BS’s energy consumption as shown in eqn. (2-3) 
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 𝑃𝑃 = 𝑃𝑃𝐵𝐵 + σ𝑣𝑣𝑃𝑃𝑇𝑇 (2-3) 

where 𝜎𝜎 is called the communication traffic shaping factor (CTSF). Since the action of shaping 

traffic entails a reduction of bit rate from the one required by different network traffic, it will lead 

to an increased delay or higher compression ratio for interactive video or speech traffic. In an LTE 

base station, a radio frame is divided into minimum units of transmit resources called “Resource 

block” (RB). Without traffic shaping, all ongoing calls will require 𝑅𝑅𝐵𝐵𝑇𝑇 resource blocks. However, 

when applying traffic shaping, the actual number of active resource blocks becomes  

 𝑅𝑅𝐵𝐵(𝑡𝑡) ≤ 𝜎𝜎 ∙ 𝑅𝑅𝐵𝐵𝑇𝑇 (2-4) 

Correspondingly, the maximum transmitted bit in this BS is limited. The impact of QoS caused by 

CTSF is measured for video traffic through the objective quality metric of peak signal-to-noise ratio 

(PSNR). The relation between PSNR and QoS is demonstrated in [13]. Also, as discussed in [30], 

the relation between PSNR and CTSF can be approximated by a function 

 𝑞𝑞𝑣𝑣 = 𝑎𝑎 ∙ log(𝜎𝜎 ∙ 𝑟𝑟) + 𝑏𝑏 (2-5) 

where 𝑞𝑞𝑣𝑣 is the video quality measured in PSNR, 𝑟𝑟 is the nominal bit rate, and a and b are constants 

based on the choice of source codecs. Details on how parameters in eqn. (2-5) are obtained could 

also be found in [13].  
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2.1.4  Power Electronics Interface 

In the communication microgrid, the dc converters are responsible to interface the BSs with 

the microgrid, as shown in Figure 1. The converters can be realized using conventional single-

input-single-output topologies such as a buck-and-boost converter, as long as the bi-directional 

power flow between BS and the microgrid is allowed. In this project, the converters are ideal buck-

and-boost converters. The scheme of a buck-and-boost converter connecting BS load and the dc 

bus is shown in Figure 2. The converter’s dynamic equations are shown in eqn. (2-6) and eqn. 

(2-7).  

 𝐿𝐿
𝑑𝑑𝐼𝐼𝐿𝐿
𝑑𝑑𝑡𝑡

= 𝑉𝑉𝑖𝑖 − 𝑔𝑔 ∙ 𝑉𝑉𝑜𝑜1 (2-6) 

 𝐶𝐶
𝑑𝑑𝑉𝑉𝑜𝑜1
𝑑𝑑𝑡𝑡

=
𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑉𝑉𝑜𝑜1

𝑅𝑅𝑜𝑜
+ 𝑔𝑔 ∙ 𝐼𝐼𝐿𝐿 (2-7) 

where 𝑔𝑔 is the switch control signal. Assuming the converter works in steady-state, and the duty 

cycle is D, the two dynamic equations can be replaced by eqn. (2-8) and eqn. (2-9) [31]. 

 𝑉𝑉𝑖𝑖 = 𝐷𝐷 ∙ 𝑉𝑉𝑜𝑜1 (2-8) 

 
𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑉𝑉𝑜𝑜1

𝑅𝑅𝑜𝑜
= −𝐷𝐷 ∙ 𝐼𝐼𝐿𝐿 (2-9) 

In this system, the load voltage is controlled by the dc converter with a PI controller. Assuming 

the sensor and controller have sufficient measurement accuracy and response speed, the load 
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voltage 𝑉𝑉𝑖𝑖 could be regulated tight and treated as a constant. Therefore, the load current 𝐼𝐼𝐿𝐿 only 

depends on the load resistant Rload, as shown in eqn. (2-10).  

 𝐼𝐼𝐿𝐿 = −
𝑉𝑉𝑖𝑖

𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎𝑑𝑑
 (2-10) 

 

Figure 2: Buck-and-boost converter scheme. 

 

Figure 3: Soar cell generator with converter model 

 



 12 

2.1.5  Solar Cell Generator 

The solar cell power generator in this system is modeled as a controlled current source. It 

is assumed that maximum power point tracking (MPPT) is implemented in the PV dc converter 

during the whole operation to get the most power out from the solar cell. The model of the solar 

cell and its converter are shown in Figure 3. The solar cell power output curve is obtained from 

Cambridge Solar Panels, which is a typical 1kW solar panel, as shown in Figure 4 [32].  

 

Figure 4: Solar panel output power curve 

2.1.6  Battery SoC Discretization 

The batteries simulated in the system are assumed to be ideal energy storage devices and 

have no loss during the charge and discharge process. Also, nor battery lifetime impact or 

switching effect of charging/discharging is considered. The battery’s SoC level is divided into 
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multiple discrete stages. For any given stored energy, the battery energy level 𝑖𝑖 could be calculated 

by eqn. (2-11):  

 𝑖𝑖 =
𝐸𝐸𝑛𝑛𝑖𝑖
𝐸𝐸𝑓𝑓

𝑚𝑚 (2-11) 

where 𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟(𝑥𝑥) is a function that obtains the largest integer smaller than x, m is the total number 

of energy stages, 𝐸𝐸𝑓𝑓 is the fully charged battery energy and 𝐸𝐸𝑛𝑛𝑖𝑖 is the current stored energy. In this 

study, it is assumed that each BS has the capability of measuring its battery SoC, such as the SoC-

V detection method [33]. 

2.2 Microgrid Energy Management in Island Mode 

2.2.1  Objective Function 

An islanded microgrid needs to maintain its power-load balance and keep sufficient stored 

energy to deal with possible deficient-power situations. In this study, the energy objective set for 

the controller in the microgrid is to maintain 80% of the total battery SoC at the end of one day’s 

operation. As mentioned in section 2.1.3 , a lower CTSF reduces the BS energy consumption and 

stores more energy in the battery but also results in worse QoS. Therefore, the BS needs to evaluate 

the outcomes of different CTSF strategies and choose the one that has an optimal result considering 

both QoS and battery SoC distribution in the future. A metric measuring the optimality of a CTSF 

strategy is defined in (2-12). The metric has the form of a weighted objective function: 
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 𝑅𝑅𝑏𝑏𝑜𝑜(𝜎𝜎, 𝑆𝑆𝑅𝑅𝐶𝐶, 𝑡𝑡) = 𝑤𝑤𝑐𝑐𝑜𝑜𝑐𝑐 ∙ 𝑓𝑓𝑐𝑐𝑜𝑜𝑐𝑐(𝜎𝜎, 𝑡𝑡) + 𝑤𝑤𝑆𝑆𝑜𝑜𝑆𝑆 ∙ 𝑓𝑓𝑎𝑎𝑣𝑣(𝜎𝜎, 𝑆𝑆𝑅𝑅𝐶𝐶, 𝑡𝑡) (2-12) 

where 𝑤𝑤𝑐𝑐𝑜𝑜𝑐𝑐  and 𝑤𝑤𝑆𝑆𝑜𝑜𝑆𝑆  are weighting factors for communication quality and SoC distribution 

/energy availability, 𝑓𝑓𝑐𝑐𝑜𝑜𝑐𝑐 is the normalized SINR, and 𝑓𝑓𝑎𝑎𝑣𝑣 is the energy availability function. In 

this study, the energy availability function is defined as the probability of the battery SoC reaching 

a certain level. Therefore, the goal of the microgrid is to search for a CTSF strategy σ(t) that 

maximizes the objective function eqn. (2-12) 

  max
σ(t)

 obj(t, σ(t),𝑆𝑆𝑅𝑅𝐶𝐶(𝑡𝑡)), σ(t) ∈ [𝜎𝜎𝑐𝑐𝑖𝑖𝑛𝑛,𝜎𝜎𝑐𝑐𝑎𝑎𝑚𝑚] (2-13) 

In the following section, the energy availability function 𝑓𝑓𝑎𝑎𝑣𝑣(𝜎𝜎, 𝑆𝑆𝑅𝑅𝐶𝐶, 𝑡𝑡) will be discussed in detail.  

2.2.2  Computing Battery SoC Distribution 

The availability function 𝑓𝑓𝑎𝑎𝑣𝑣(𝜎𝜎, 𝑆𝑆𝑅𝑅𝐶𝐶, 𝑡𝑡) is the battery SoC distribution at time t. In this 

study, both renewable power generation and load consumption are modeled as random variables 

as a function of time t. Two assumptions are made to compute this function: 

 BS load and solar cell generation curves information are shared among all controllers. The 

data is extracted from the actual load and weather records. In this project, the load and solar 

cell data are obtained from [32, 34] and abstracted using a curve fit tool in MATLAB. The 

fitted power/load curves will be shown in the simulation chapter.  
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 The BS load follows a Poisson distribution, and the PV power follows an exponential 

distribution. Both of them are time-independent variables. This assumption is made based 

on [35] and the empirical results from [36]. 

At time t, the probability density function (PDF), the mean value, and variance of the PV power 

generation are listed in eqn. (2-14)-(2-16) [36]:  

 f(𝑃𝑃𝑏𝑏𝑜𝑜𝑠𝑠𝑎𝑎𝑠𝑠) = λ𝑏𝑏𝑜𝑜𝑠𝑠𝑎𝑎𝑠𝑠(t) 𝑒𝑒−𝜆𝜆(𝑡𝑡)𝑃𝑃𝑝𝑝𝑝𝑝  (2-14) 

 𝐸𝐸(𝑃𝑃𝑏𝑏𝑜𝑜𝑠𝑠𝑎𝑎𝑠𝑠) = λ𝑏𝑏𝑜𝑜𝑠𝑠𝑎𝑎𝑠𝑠(t)−1 (2-15) 

 𝑉𝑉(𝑃𝑃𝑏𝑏𝑜𝑜𝑠𝑠𝑎𝑎𝑠𝑠) = λ𝑏𝑏𝑜𝑜𝑠𝑠𝑎𝑎𝑠𝑠(𝑡𝑡)−2 (2-16) 

where λ𝑠𝑠𝑅𝑅𝑅𝑅𝑎𝑎𝑟𝑟  is the rate parameter of the PV power distribution. The probability mass function 

(PMF), mean value and variance of the BS load are listed in eqn. (2-17)-(2-19) [35].  

 f(𝑃𝑃𝑇𝑇) =
λ𝑐𝑐𝑜𝑜𝑐𝑐(t)𝑘𝑘𝑒𝑒−𝑘𝑘

𝑘𝑘!
 (2-17) 

 𝐸𝐸(𝑃𝑃𝑇𝑇) = λ𝑐𝑐𝑜𝑜𝑐𝑐(t) (2-18) 

 𝑉𝑉(𝑃𝑃𝑇𝑇) = λ𝑐𝑐𝑜𝑜𝑐𝑐(t) (2-19) 

where λ𝑐𝑐𝑜𝑜𝑐𝑐(t) is the mean communication traffic data arrival rate. Then, the power provided by the 

batteries units are  
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 ∆P = 𝑃𝑃𝑏𝑏𝑜𝑜𝑠𝑠𝑎𝑎𝑠𝑠 − 𝑃𝑃𝑠𝑠𝑜𝑜𝑎𝑎𝑙𝑙 = 𝑃𝑃𝑏𝑏𝑜𝑜𝑠𝑠𝑎𝑎𝑠𝑠 − (𝑃𝑃𝐵𝐵 + 𝜎𝜎𝑃𝑃𝑇𝑇) (2-20) 

which forms a new random variable with mean and variance equal to:  

 𝐸𝐸(∆𝑃𝑃) = 𝐸𝐸𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − (𝐸𝐸𝑃𝑃𝐵𝐵 + 𝜎𝜎𝐸𝐸𝑃𝑃𝑇𝑇) (2-21) 

 𝑉𝑉(∆𝑃𝑃) = �𝑉𝑉𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2 + (𝜎𝜎𝑉𝑉𝑃𝑃𝑇𝑇)2 (2-22) 

where E stands for expectation, and V stands for standard variation. The time interval T was chosen 

to be one hour and was divided into n sub-intervals. During each sub-interval, the change of 

power/load is negligible so that its value during the small period is constant. Then, the overall 

energy change 𝑆𝑆𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑠𝑠 during t hour is computed as the sum of 𝑛𝑛 ∙ 𝑡𝑡 independent random variables 

as shown in eqn. (2-23). 

 
𝑆𝑆𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑠𝑠 = �

𝑇𝑇
𝑛𝑛
∆𝑃𝑃(𝑘𝑘)

𝑛𝑛∙𝑡𝑡

𝑘𝑘=1

 (2-23) 

According to the central limit theory, the distribution of a sum of independent variables converges 

to that of normal distribution [37]. If n is chosen to be large enough (typically larger than 17), the 

distribution of the sum could be replaced by  

 𝑆𝑆𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑠𝑠 → 𝑁𝑁(𝜇𝜇, 𝛿𝛿2)           (2-24) 
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where 𝜇𝜇 = ∑ 𝑇𝑇
𝑛𝑛
𝐸𝐸(∆𝑃𝑃𝑘𝑘)𝑛𝑛𝑡𝑡

𝑘𝑘=1 , 𝛿𝛿2 = ∑ (𝑇𝑇
𝑛𝑛
𝑉𝑉)2(∆𝑃𝑃)𝑛𝑛𝑡𝑡

𝑘𝑘=1 . Then, the probability of the overall battery SoC 

transferring from level i to level j in time t (Hr) is 

 𝑝𝑝(𝑖𝑖, 𝑜𝑜) = 𝐹𝐹𝑆𝑆𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠�𝐸𝐸𝑛𝑛𝑖𝑖� − 𝐹𝐹𝑆𝑆𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠�𝐸𝐸𝑛𝑛𝑖𝑖�   (2-25) 

where F is the cumulative distribution function of 𝑆𝑆𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑠𝑠, and 𝐸𝐸𝑛𝑛𝑖𝑖 and 𝐸𝐸𝑛𝑛𝑗𝑗  are energy stages. Then, 

the probability of battery SoC reaching the desired level is 

 
𝑃𝑃(𝑆𝑆𝑅𝑅𝐶𝐶 > 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑠𝑠𝑅𝑅ℎ𝑅𝑅𝑅𝑅𝑑𝑑) = � 𝑝𝑝(𝑖𝑖, 𝑅𝑅)

𝑠𝑠=𝑡𝑡𝑜𝑜𝑡𝑡_𝑠𝑠𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡

𝑠𝑠=𝑡𝑡ℎ𝑠𝑠𝑟𝑟𝑏𝑏𝑜𝑜ℎ𝑜𝑜𝑠𝑠𝑙𝑙

 (2-26) 

2.2.3  Objective Function Analysis 

In this section, the optimum of the objective function will be discussed. The objective 

function is 

 𝑅𝑅𝑏𝑏𝑜𝑜(𝜎𝜎, 𝑆𝑆𝑅𝑅𝐶𝐶, 𝑡𝑡) = 𝑤𝑤𝑐𝑐𝑜𝑜𝑐𝑐 ∙ 𝑓𝑓𝑐𝑐𝑜𝑜𝑐𝑐(𝜎𝜎, 𝑡𝑡) + 𝑤𝑤𝑆𝑆𝑜𝑜𝑆𝑆 ∙ 𝑓𝑓𝑎𝑎𝑣𝑣(𝜎𝜎, 𝑆𝑆𝑅𝑅𝐶𝐶, 𝑡𝑡) (2-27) 

where 

 𝑓𝑓𝑐𝑐𝑜𝑜𝑐𝑐(𝜎𝜎, 𝑡𝑡) = 𝑐𝑐 ∙ log(𝜎𝜎(𝑡𝑡) ∙ �̅�𝑟(𝑡𝑡)) (2-28) 
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𝑓𝑓𝑎𝑎𝑣𝑣(𝜎𝜎, 𝑆𝑆𝑅𝑅𝐶𝐶, 𝑡𝑡) = 𝑃𝑃�𝑆𝑆𝑅𝑅𝐶𝐶(𝑡𝑡) ≥ 𝑆𝑆𝑅𝑅𝐶𝐶𝑔𝑔𝑜𝑜𝑎𝑎𝑠𝑠�

= � 𝑝𝑝𝑑𝑑𝑓𝑓(𝑆𝑆𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑠𝑠)𝑑𝑑(𝑆𝑆𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑠𝑠)
+∞

(𝑆𝑆𝑜𝑜𝑆𝑆𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠−𝑆𝑆𝑜𝑜𝑆𝑆𝑛𝑛𝑠𝑠𝑛𝑛)𝐸𝐸𝑓𝑓
 

(2-29) 

where c is the PSNR normalization factor, 𝜎𝜎(𝑡𝑡) is the CTSF, �̅�𝑟(𝑡𝑡) is the average nominal bit rate, 

and eqn. (2-29) is a continuous expression of eqn. (2-25) using probability density function 

𝑝𝑝𝑑𝑑𝑓𝑓(𝑆𝑆𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑠𝑠). To make the formula clearer, expectation and variation of battery power consumption 

are rewritten in the following forms: 

 𝐸𝐸(𝑆𝑆𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑠𝑠) = (24 − 𝑡𝑡) ∙ 3600 ∙ (𝐸𝐸𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�������� − �𝐸𝐸𝑃𝑃𝐵𝐵����� + 𝜎𝜎 𝐸𝐸𝑃𝑃𝑇𝑇������) (2-30) 

 
𝑉𝑉(𝑆𝑆𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑠𝑠)2 = �[(

𝑇𝑇
𝑛𝑛
𝑉𝑉𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘))2 + (𝜎𝜎 ∙

𝑇𝑇
𝑛𝑛
𝑉𝑉𝑃𝑃𝑇𝑇(𝑘𝑘))2]

24𝑛𝑛

𝑘𝑘=𝑡𝑡

 (2-31) 

where 

 
𝐸𝐸𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�������� =

∑ 𝐸𝐸𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘)24𝑛𝑛
𝑘𝑘=𝑡𝑡

𝑛𝑛(24 − 𝑡𝑡)
 (2-32) 

is the algebraic mean of all solar cell power expectations in the remaining operating periods 24 −

𝑡𝑡. The same rule applies to 𝐸𝐸𝑃𝑃𝐵𝐵 and  𝐸𝐸𝑃𝑃𝑇𝑇. Thus, the energy availability function eqn. (2-29) could 

be expressed as 
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 𝑓𝑓𝑎𝑎𝑣𝑣(𝜎𝜎, 𝑆𝑆𝑅𝑅𝐶𝐶, 𝑡𝑡) = �
1

�2𝜋𝜋 𝑉𝑉(∆𝑃𝑃)22 𝑒𝑒
−(𝑆𝑆𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠−𝐸𝐸(𝑆𝑆𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠))2

2 𝑉𝑉(∆𝑃𝑃)2
+∞

(𝑆𝑆𝑜𝑜𝑆𝑆𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠−𝑆𝑆𝑜𝑜𝑆𝑆𝑛𝑛𝑠𝑠𝑛𝑛)𝐸𝐸𝑓𝑓
𝑑𝑑(𝑆𝑆𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑠𝑠) (2-33) 

Substituting eqn. (2-33) to the objective function eqn. (2-27) and the objective function becomes 

 

𝑅𝑅𝑏𝑏𝑜𝑜(𝜎𝜎, 𝑆𝑆𝑅𝑅𝐶𝐶, 𝑡𝑡)= wcom ∙ (c ∙ log(σ ∙ r̅)) + wSoC

∙ �
1

�2π V(∆P)22 e
−
�Stotal−E(Stotal)�

2

2 V(∆P)2
+∞

(SoCgoal−SoCnow)Ef
d(Stotal) 

(2-34) 

After solving the integration, eqn. (2-34) could be expressed as 

 

𝑅𝑅𝑏𝑏𝑜𝑜(𝜎𝜎, 𝑆𝑆𝑅𝑅𝐶𝐶, 𝑡𝑡) = 𝑤𝑤𝑐𝑐𝑜𝑜𝑐𝑐 ∙ (𝑐𝑐 ∙ log(𝜎𝜎 ∙ �̅�𝑟)) +⋯ 

… +𝑤𝑤𝑆𝑆𝑜𝑜𝑆𝑆

⎝

⎜
⎜
⎜
⎛

1
2
−

(t − 24)(𝑉𝑉𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠��������2 + 𝑉𝑉𝑃𝑃𝑇𝑇����2𝜎𝜎2)Erf[
Ebattery(−𝑆𝑆𝑅𝑅𝐶𝐶𝑔𝑔𝑜𝑜𝑎𝑎𝑠𝑠 + 𝑆𝑆𝑅𝑅𝐶𝐶𝑛𝑛𝑜𝑜𝑛𝑛) + (24− t) ∙ �𝐸𝐸𝑃𝑃𝐵𝐵����� − 𝐸𝐸𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�������� +  𝐸𝐸𝑃𝑃𝑇𝑇�����𝜎𝜎�

√2(𝑡𝑡 − 24) ∙ �𝑉𝑉𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠��������2 + 𝑉𝑉𝑃𝑃𝑇𝑇����2𝜎𝜎2

2�(𝑉𝑉𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠��������2 + 𝑉𝑉𝑃𝑃𝑇𝑇����2𝜎𝜎2)2(𝑡𝑡 − 24)2

⎠

⎟
⎟
⎟
⎞
 

(2-35) 

where 𝐸𝐸𝑏𝑏𝑎𝑎𝑡𝑡𝑡𝑡𝑒𝑒𝑟𝑟𝐸𝐸 is the stored energy of the battery when fully charged. The analytical maximum 

of this function is difficult to compute due to the error function, but its shape could be seen from 

a case portrait, as shown in Figure 5.  
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Figure 5: Objective function vs. CTSF case 1, t=5 

 

Figure 6: Objective function vs. CTSF case 2 

The substituted data are listed in Table I. As can be observed from Figure 5, the objective function 

has a single maximum in the range of 𝜎𝜎 ∈ [0,1] in this scenario. Generally, higher load demand 

and larger battery capacity would result in a maximum point closer to 𝜎𝜎 = 0. The slope of the 

function’s decreasing region is influenced by the renewable power and load demand variations 

𝑉𝑉𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�������� 𝑎𝑎𝑛𝑛𝑑𝑑 𝑉𝑉𝑃𝑃𝑇𝑇����. For instance, if these variations are larger, the obj-𝜎𝜎 curve becomes smother as 

shown in Figure 6 where 𝑉𝑉𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠��������=1000. In most scenarios, the objective function has one single 

maximum in the range of 𝜎𝜎 ∈ [0,1] as shown in Figure 7. But if the SoC level or power generation 

is too low, it is possible the objective function has a higher value with large CTSF. The shape of 

the objective function vs. CTSF in this situation is shown in Figure 8. From the controller 
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perspective, it means the benefit of a large CTSF overwhelms the increase in energy availability. 

Therefore, the BS controller yields the conclusion that a large CTSF is preferred with a  critically 

low energy level. To prevent this unreasonable decision-making from happening, a large energy 

availability weighting factor 𝑤𝑤𝑆𝑆𝑜𝑜𝑆𝑆 could be set so that the increasing in QoS does not dominating 

the obj function as shown in Figure 9 where the 𝑤𝑤𝑆𝑆𝑜𝑜𝑆𝑆 = 0.7. Alternatively, a probability threshold 

could be set, and the objective function is modified to a piecewise function: 

 
𝑅𝑅𝑏𝑏𝑜𝑜∗ = � 𝑆𝑆𝑆𝑆𝑚𝑚

(𝑅𝑅𝑏𝑏𝑜𝑜),   𝑃𝑃(𝑆𝑆𝑅𝑅𝐶𝐶 > 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑠𝑠𝑅𝑅ℎ𝑅𝑅𝑅𝑅𝑑𝑑) > 𝑃𝑃𝑐𝑐𝑖𝑖𝑛𝑛
(1 − 𝜎𝜎)/10,  𝑅𝑅𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒  (2-36) 

which turns the objective into a negatively related function to the CTSF when the probability of 

reaching the desired SoC goal is lower than a threshold (𝑃𝑃𝑐𝑐𝑖𝑖𝑛𝑛 ). With this modification, the 

objective function vs. communication shaping factor would be like the one shown in Figure 10. 

So the optimal CTSF is either the peak of the error function or the CTSF that guarantees at least a 

probability of 𝑃𝑃𝑐𝑐𝑖𝑖𝑛𝑛 reaching the desired SoC goal.  
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Table 1: Evaluation parameter values 

Sym
bol PARAMETER Value 

𝑤𝑤𝑐𝑐𝑜𝑜𝑐𝑐 Communication 
quality weight 0.5 

𝑤𝑤𝑆𝑆𝑜𝑜𝑆𝑆 Energy availability 
weight 0.5 

𝐸𝐸𝑏𝑏𝑎𝑎𝑡𝑡𝑡𝑡𝑒𝑒  Battery fully charged 
energy 24 kWh 

𝐸𝐸𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�������� Solar power 
generation expectation 1 kW 

𝐸𝐸𝑃𝑃𝐵𝐵����� BS base load 
expectation 200 W 

 𝐸𝐸𝑃𝑃𝑇𝑇����� BS traffic depended 
load expectation 800 W 

𝑉𝑉𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�������� Solar power 
generation variance 4000 

𝑉𝑉𝑃𝑃𝑇𝑇����� BS traffic depended 
load variance 4000 

𝑆𝑆𝑅𝑅𝐶𝐶𝑔𝑔𝑜𝑜𝑎𝑎  Desired battery SoC 
level 0.8 

𝑆𝑆𝑅𝑅𝐶𝐶0 Initial Battery SoC 
level 

0.7 
 

BW BS total bandwidth 10MHz 

a PSNR-rate bit curve 
parameter 10.4 

𝑏𝑏 PSNR-rate bit curve 
parameter -23.8 

r Nominal transmit rate 
bit 2 Mbps 
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 𝐸𝐸𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠��������=800W  𝐸𝐸𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠��������=1200W 

  

 t=8Hr  t=12Hr 

  

 Ebattery = 12kWh  Ebattery = 24kWh 

Figure 7: Objective function vs. CTSF with different conditions 
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Figure 8: Objective function vs. CTSF case 3 (SoC(t)=0.49, t=16 Hr) 

 

Figure 9: Objective function vs. CTSF case 4 (SoC(t)=0.49, t=16 Hr, w_SoC=0.7) 

 

Figure 10: Modified objective function (SoC(t)=0.49, t=15) 
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2.2.4  Energy Management Strategy Obtained by Exhaustive Search 

If a central controller coordinates the overall communication network microgrid, the 

optimal load planning could be obtained using an exhaustive search. In this setting, the central 

controller monitors ever BSs’ power generation, load demands, and battery SoC levels. Then, the 

CTSF that maximize the objective function could be found by exhaustive examining the possible 

CTSFs 

 
𝜎𝜎0 = argmax

𝜎𝜎
𝑅𝑅𝑏𝑏𝑜𝑜∗(𝜎𝜎) (2-37) 

This method, however, requires accurate knowledge of the microgrid and reliable communication 

links between BSs. Additionally, the monitoring of all BS required a reasonable amount of 

communication bandwidth, which increases the load burden for all BSs. The system performance 

relies mostly on the proper operation of the central control center, wireless communication linkage 

quality, and fidelity. Failures or disturbances in these elements could cause a sub-optimal operation 

or failure of the whole system. For example, if one of the communication links between the central 

controller and one BS is cut off (see Figure 11), the controller could not decide what the optimal 

CTSF is because it has no information on whether and how the disconnected BS is operating. Such 

circumstances might be avoided by presetting a set of protocols such as setting load consumptions 

to the minimum or shutting down the BS when no control signal is received. However, such 

solutions do not make the most use of the available resources for a disaster-affected area. As we 

shall see in the distributed control approaches, instead of receiving orders from other controllers 
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passively, a base station could operate by estimating the other BS’s actions or develop a load plan 

based on its past experience. 

 

Figure 11: BS communication network status in different scenarios 

2.2.5  Energy Management Obtained using Multi-agent System 

In this project, we aim at solving the energy management in a multi-agent system (MAS) 

setting. The definition of an agent is a computational mechanism that operates highly autonomous 

and takes actions based on information obtained from the environment [38]. A multi-agent system 

is one in which there is more than one agent, where they interact with each other, and where there 

are constraints on that environment such that agents may not at any given time know everything 

about the environment that other agents know (including the internal states of the other agents 

themselves). These constraints are crucial elements that distinguish MAS from a centralized 

system. Because if all agents could synchronize with each other and know exactly the situations 

of the other agents and what choices they will make, they would act just as if a single master 

controller manipulates them. In our case, to eliminate the need for a communication link, the 

information of CTSF, load demand, and renewable power are not guaranteed to be shared among 
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BSs. The need for solving for an optimal strategy for the agents in MAS has led to two major 

branches: game theory and multi-agent learning.  

Game theory studies the strategy in activities where multiple decision-makers are involved.  

In a multi-player game, all ‘players’ are rational and treat every other player as rational too. The 

players evaluate their rewards/payoffs considering the joint-action made by all players and search 

for a strategy that maximizes their payoffs, which are also called equilibriums. The equilibriums 

are sets of strategies where no player could gain a higher payoff by deviating from the equilibrium 

if other players follow the strategies in equilibrium. The payoff at equilibrium is not necessary the 

maximized payoff at all circumstances such as the one found in cases like prisoner dilemma, but 

as long as the other players are playing rationally, it is the best result a player can expect [39]. In 

Chapter 4, we will discuss details on how microgrid energy management could be modeled as a 

multi-player game. This game could either be cooperative or competitive, and both have their 

advantages and disadvantages. 

Multi-agent learning has emerged from a separate realm—machine learning, dynamic 

programming, robotics, evolutionary computation, and complex system [40]. Two key features 

differ multi-agent learning from conventional machine learning: large searching space due to the 

multiple agents and complex behavior due to the interaction between agents and their learning 

process. In this project, the motivation of applying reinforcement learning to BSs is to exempt 

them from the requirement of historical data (which is necessary for the game approach) and enable 

them to adapt to changes in the environment. Two reinforcement learning algorithms were applied 

to the microgrid: Q-learning and linear-reward inaction.  
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3.0 Multi-player Game 

In this section, we will discuss how to model and solve the microgrid energy management 

as a multi-player game. In this approach, the CTSF decisions are made by BS controllers 

autonomously. Depending on the operation condition and setting of the game model, the BSs could 

be either cooperative or competitive. The energy management games under the two conditions are 

called common-interest or zero-sum games. In this chapter, the multi-player game approach will 

be introduced in the following steps. First, concepts and notations of the multi-player game are 

denoted. Then, a microgrid with two BSs or two groups of BSs is discussed. After that, the general 

game approach with more players scenario is discussed and showed why it might be impractical 

to be implemented in a BS. Then, a virtual two-player game approach that transfers the general n-

player game to a two-player game is proposed and discussed. In the end, a load identifier is 

designed to adjust the energy consumption model of BS controllers. 
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3.1 Definition, Notations, and Assumptions 

A game in strategy form is an ordered triple  

 𝐺𝐺 = (𝑁𝑁, (𝑆𝑆𝑖𝑖)𝑖𝑖∈𝑁𝑁 , (𝑆𝑆𝑖𝑖)𝑖𝑖∈𝑁𝑁)  (3-1) 

where 𝑁𝑁 = {1,2, … ,𝑛𝑛} is a finite set of players, 𝑆𝑆𝑖𝑖 is the set of the strategy of player 𝑖𝑖, for every 

player 𝑖𝑖 ∈ 𝑁𝑁. The set of all vectors of strategies is noted by 𝑆𝑆 = 𝑆𝑆1 × 𝑆𝑆2 × ⋯× 𝑆𝑆𝑛𝑛. 𝑆𝑆𝑖𝑖 is the payoff 

(utility) function to player i related to each vector of strategy S.  

A game is a zero-sum game if for each pair of strategies (𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑛𝑛) one has 

 
�𝑆𝑆𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 0 (3-2) 

Also, a game is called a non-zero-sum game if (3-2) does not hold. Let 𝑁𝑁 = {1,2, … ,𝑛𝑛} be a finite 

set, and for each 𝑖𝑖 ∈ 𝑁𝑁 let 𝑋𝑋𝑖𝑖 be any set. Denote 𝑋𝑋 ≔×𝑖𝑖∈𝑁𝑁 𝑋𝑋𝑖𝑖, and for each 𝑖𝑖 ∈ 𝑁𝑁 denote 𝑋𝑋−𝑖𝑖 ≔

×𝑗𝑗≠𝑖𝑖 𝑋𝑋𝑗𝑗. For each 𝑖𝑖 ∈ 𝑁𝑁 we will denote 𝑋𝑋−𝑖𝑖 by the Cartesian product of all the set 𝑋𝑋𝑗𝑗 except for the 

set 𝑋𝑋𝑖𝑖. In another word, 

 𝑋𝑋−𝑖𝑖 = [(𝑥𝑥1, … , 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖+1, … , 𝑥𝑥𝑛𝑛): 𝑥𝑥𝑗𝑗 ∈ 𝑋𝑋𝑗𝑗,∀𝑜𝑜 ≠ 𝑖𝑖] (3-3) 
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A strategy 𝑆𝑆𝑖𝑖 of player i is strictly dominated if there exists another strategy 𝑡𝑡𝑖𝑖 of player i such that 

for each strategy vector 𝑠𝑠−𝑖𝑖 ∈ 𝑆𝑆−𝑖𝑖 of the other players, 

 𝑆𝑆𝑖𝑖(𝑆𝑆𝑖𝑖, 𝑆𝑆−𝑖𝑖) < 𝑆𝑆𝑖𝑖(𝑡𝑡𝑖𝑖, 𝑆𝑆−𝑖𝑖) (3-4) 

Also, a strategy is called weakly dominated if there exists another strategy 𝑡𝑡𝑖𝑖  satisfying the 

following two conditions: 

 𝑆𝑆𝑖𝑖(𝑆𝑆𝑖𝑖,𝑆𝑆−𝑖𝑖) ≤ 𝑆𝑆𝑖𝑖(𝑡𝑡𝑖𝑖, 𝑆𝑆−𝑖𝑖),∀𝑠𝑠−𝑖𝑖 ∈ 𝑆𝑆−𝑖𝑖 (3-5) 

 𝑆𝑆𝑖𝑖(𝑆𝑆𝑖𝑖,𝑆𝑆−𝑖𝑖) < 𝑆𝑆𝑖𝑖(𝑡𝑡𝑖𝑖, 𝑆𝑆−𝑖𝑖),∃𝑠𝑠−𝑖𝑖 ∈ 𝑆𝑆−𝑖𝑖 (3-6) 

In a game, all players are assumed to be rational, which indicating 

1. A rational player does not use a dominated strategy. 

2. The fact that all players are rational is common knowledge among the players. 

A strategy vector 𝑠𝑠∗ = (𝑠𝑠1∗, … , 𝑠𝑠𝑛𝑛∗) is an equilibrium if for each player 𝑖𝑖 ∈ 𝑁𝑁 and each strategy 𝑠𝑠𝑖𝑖 

∈ 𝑆𝑆𝑖𝑖 the following is satisfied: 

 𝑆𝑆𝑖𝑖(𝑠𝑠∗) ≥ 𝑆𝑆𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖∗ ) (3-7) 

meaning that when all other players follow the strategy 𝑠𝑠−𝑖𝑖∗ , there exists no other strategy than 𝑠𝑠𝑖𝑖∗ 

that could give player i a higher payoff. 
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3.2 Breaking Down of the Objective Function 

Assuming the BS controller only has access to the CTSF choice made by itself, the total 

system load could be represented by two parts 

 𝑃𝑃𝑠𝑠𝑜𝑜𝑎𝑎𝑙𝑙𝑖𝑖 = (𝑃𝑃𝐵𝐵𝑖𝑖 + 𝜎𝜎𝑖𝑖𝑣𝑣𝑖𝑖𝑃𝑃𝑇𝑇𝑖𝑖)
�����������

𝐵𝐵𝑆𝑆 𝑖𝑖 𝑠𝑠𝑜𝑜𝑎𝑎𝑙𝑙

+ (𝑃𝑃𝐵𝐵𝑜𝑜 + 𝜎𝜎𝑜𝑜𝑣𝑣𝑜𝑜𝑃𝑃𝑇𝑇𝑜𝑜)�����������
𝑜𝑜𝑡𝑡ℎ𝑟𝑟𝑠𝑠 𝐵𝐵𝑆𝑆𝑏𝑏′ 𝑠𝑠𝑜𝑜𝑎𝑎𝑙𝑙

 (3-8) 

where the superscript i indicates the ith BS load and o collectively demonstrates all the other BSs’ 

load. In this study, it is assumed that the information of the base load 𝑃𝑃𝐵𝐵𝑜𝑜 and traffic dependent load 

𝑣𝑣𝑜𝑜𝑃𝑃𝑇𝑇𝑜𝑜 are shared among BS controllers, leaving 𝜎𝜎𝑜𝑜 as the only unknown variable.  

 In a two-player game, the objective functions of the players become 𝑅𝑅𝑏𝑏𝑜𝑜1(𝜎𝜎1,𝜎𝜎2) and 

𝑅𝑅𝑏𝑏𝑜𝑜2(𝜎𝜎1,𝜎𝜎2). Based on the available CTSF range, the objective function values of a BS could be 

expressed in a tablet form, as shown in Table 2. This table is called the payoff table of the game, 

and the BS controllers (marked ‘Player I’ and ‘Player II’) could find its payoff given both BS 

controllers’ CTSF choices [39]. For instance, if the player I choose communications CTSF σ21 

and player II choose 𝜎𝜎22, the payoff for player I is 𝑅𝑅𝑏𝑏𝑜𝑜1(𝜎𝜎21,𝜎𝜎22).  

Table 2 : Payoff table of a two-player game 

   Player II 

   P21 P22 

    σ21 σ22 

Player 

I 

P11 σ11 (𝑅𝑅𝑏𝑏𝑜𝑜1(𝜎𝜎11,𝜎𝜎21) , 𝑅𝑅𝑏𝑏𝑜𝑜2(𝜎𝜎11,𝜎𝜎21)) (𝑅𝑅𝑏𝑏𝑜𝑜1(𝜎𝜎11,𝜎𝜎22) , 𝑅𝑅𝑏𝑏𝑜𝑜2(𝜎𝜎11,𝜎𝜎22)) 

P12 σ12 (𝑅𝑅𝑏𝑏𝑜𝑜1(𝜎𝜎21,𝜎𝜎21) ,𝑅𝑅𝑏𝑏𝑜𝑜2(𝜎𝜎21,𝜎𝜎21)) (𝑅𝑅𝑏𝑏𝑜𝑜1(𝜎𝜎21,𝜎𝜎22) ,𝑅𝑅𝑏𝑏𝑜𝑜2(𝜎𝜎21,𝜎𝜎22)) 
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3.3 Two-player Zero-sum Game 

First, assuming there are only two BSs in the system, or that there are two groups of 

coordinated BSs that lost communication links to the other group. Then the CTSF decision-making 

process could be modeled as a two-player game. In this section, we will discuss modeling the 

CTSF decision-making process as a zero-sum game. 

In a zero-sum game, the BS controllers assume they are in a hostile environment. In this 

environment, the BS controllers assume the worst case where the other BS is minimizing its payoff. 

This game has two possible solution forms: pure solution or a mixed solution. 

3.3.1  The Pure Strategy of a Two-player Zero-sum Game 

A pure strategy could be obtained if there exists a single dominating strategy. For example, 

in a game as shown in Table 3, the payoff of Player I choosing strategy T is always higher than 

the one choosing strategy B. Therefore, the strategy B is called ‘dominated’ by strategy T. Thus, 

the player I would never choose B assuming he is rational.  

Table 3 : Strategy table of a game with pure strategy solution 

  Player II 

  L R 

Player I 
T (3, -3) (2, -2) 

B (1, -1) (0, 0) 
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Table 4 : Strategy table of a game with pure strategy solution after elimination 

  Player II 

  L M R 

Player I 
T (3, -3) (2, -2) (2, -2) 
D (1, -1) (0, 0) (3, -3) 

 

However, for players with more strategies, such as the microgrid in our study, the 

dominating strategy might not be solved by simple comparison. For example, in a game shown in 

Table 4, the original dominating strategy T could lead to a loss—a negative payoff. In this game, 

the player I needs to consider the other player’s motivation: if player II knows the payoff table as 

the player I does, since player I’s payoff is his cost, he will try to avoid the high payment (Choosing 

R results in a minimum cost of 2). Therefore, knowing player II would not choose strategy R, the 

player I could eliminate column R and transfer the game into the same one shown in Table 3. Then, 

T is still the dominating strategy.  

3.3.2  Mixed Strategy Solution of a Two-player Zero-sum Game 

In some games, there may not always be pure solutions. For example, in a game shown in Table 

5, both players have no dominating strategies since any strategy has a chance of getting a negative 

payoff. Based on the nature of the game (zero-sum), the player might be unwilling to broadcast its 

choice of strategy to other players in this game. Once player II knows what player I would choose, 

the optimal response is clear: R if the player I plays T and L if the player I plays D. Therefore, in 

this game, the reasonable strategy for each player is not playing one move but a series of 

probabilities choosing each one. Because now the players need to consider expected rather than 
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definite payoff. For example, in the game shown in Table 5, if player I claims to choose the strategy 

T at a probability of  3
8
  and D at a probability of  5

8
 , the expected payoff to player II playing L and 

M are then 

 𝑆𝑆𝐿𝐿 =
3
8

× 3 +
5
8

× (−1) =
1
2

 (3-9) 

 𝑆𝑆𝑀𝑀 =
3
8

× (−2) +
5
8

× 2 =
1
2

 (3-10) 

 

Thus, the expected payoff for player II is the same no matter what strategy it applies. This condition 

is also denoted as ‘indifference principle’ and will be discussed in section 3.3.2.2. Generally, let 

𝐺𝐺 = (𝑁𝑁, (𝑆𝑆𝑖𝑖)𝑖𝑖∈𝑁𝑁 , (𝑆𝑆𝑖𝑖)𝑖𝑖∈𝑁𝑁) be a strategic-form game in which the number of players and strategies 

are finite, there always exists an equilibrium in mixed strategy for each player [41], denoted by 

 

Σ𝑖𝑖 ≔ �𝑝𝑝𝑖𝑖: 𝑆𝑆𝑖𝑖 → [0,1]: � (𝑝𝑝𝑖𝑖) = 1
𝑏𝑏𝑖𝑖∈𝑆𝑆𝑖𝑖

� (3-11) 

Table 5 : Strategy table of a game with no pure strategy solution 

  Player II 
  L R 

Player I 
T (3, -3) (-2, 2) 
D (-1, 1) (2, -2) 
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3.3.2.1 Direct Approach 

The direct approach to finding equilibria in mixed strategy is to write down the mixed extension 

of the strategic-form game and compute the equilibria in the mixed extension. In the case of a two-

player game where each player has two pure strategies, the mixed extension is a game over the 

unit square with bilinear payoff functions.  

Consider the game in Table 5, If Player I plays the mixed strategy [x(T ), (1 − x)(D)] where x 

is the probability choosing T, his payoff, as a function of x, depends on the strategy of Player II: 

 If player II plays L: u(x,L)=3x-(1-x)=4x-1 

 If player II plays R: u(x,R)=-2x+2(1-x)=-4x+2 

Figure 12 shows these two functions. The thick red line plots the function representing the 

minimum payoff that Player I can receive if he plays x. This minimum is called the lower envelope 

of the payoffs of Player I. And player I want to maximize its minimal expected payoff indicated 

by the lower envelope, which is attained at the intersection point of the two corresponding lines 

appearing in Figure 12, i.e., at the point at which 

 4x − 1 = −4x + 2 (3-12) 

whose solution is 𝑥𝑥 = 3
8
. And the expected payoff u= 1

2
 is called the value of the game [39].  
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Figure 12: The payoff function of Player I and the lower envelope 

A similar calculation for finding Player II’s optimal strategy could be done aimed at finding the 

strategy 𝜎𝜎𝐼𝐼𝐼𝐼  at which the minmax of 𝑚𝑚𝑖𝑖𝑛𝑛𝑏𝑏𝐼𝐼𝐼𝐼∈𝑆𝑆𝐼𝐼𝐼𝐼𝑆𝑆(𝑠𝑠𝐼𝐼 ,𝜎𝜎𝐼𝐼𝐼𝐼) is attained. For each one of the pure 

strategies T and D of Player I, we compute the payoff as a function of the mixed strategy y of 

Player II and look at the upper envelope of these two lines (see Figure 13). The minimum of the 

upper envelope is attained at the point of intersection of these two lines. It is the solution of the 

equation 5y - 2 = 2 − 3y, which is y = 0.5.  

 

Figure 13: The payoff function of Player II and the higher envelope  
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The graphical procedure can be extended to games in which one of the players has two pure 

strategies, and the other player has any finite number of strategies. Thus, it is possible to design 

the microgrid communication CTSF decision as a two-player game where one of the players has 

two options. The values of the shaping factors are common knowledge to both controllers. Then, 

using the direct approach, the controllers would be able to compute their maximized minimum 

expectation of the payoff, which according to the deduction in this section, being optimal. 

However, this setting limits the number of CTSF a BS can have. To expand this solution to a game 

with more variables, the indifference principle is introduced. 

3.3.2.2 Indifference Principle 

The indifference principle claims that if a mixed equilibrium calls for a player to use two or 

more distinct pure strategies with positive probability, then the expected payoff to that player for 

using one of those pure strategies equals the expected payoff to him for using any other pure 

strategy, assuming that the other players are playing according to the equilibrium [39, 42]. Suppose 

the equilibrium of a mixed game is 𝜎𝜎∗ , and 𝑠𝑠𝑖𝑖  and 𝑠𝑠𝚤𝚤�  are two strategies of player i. Then, if 

𝜎𝜎𝑖𝑖∗(𝑠𝑠𝑖𝑖) > 0 and 𝜎𝜎𝑖𝑖∗(𝑠𝑠𝚤𝚤�) > 0, then 

 u(𝑠𝑠𝑖𝑖,𝜎𝜎−𝑖𝑖∗ ) = u(𝑠𝑠𝚤𝚤� ,𝜎𝜎−𝑖𝑖∗ ) (3-13) 

Therefore, we could use this property to solve for each player’s strategy using his opponent’s 

utility values. For example, in a game shown in Table 6, the strategy at the equilibrium point for 

player I could be obtained by solving: 
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𝑝𝑝𝑇𝑇 + 𝑝𝑝𝐵𝐵 + 𝑝𝑝𝐷𝐷 = 1 

𝑆𝑆𝐼𝐼𝐼𝐼(𝐿𝐿) = 𝑆𝑆𝐼𝐼𝐼𝐼(𝑀𝑀) 

𝑆𝑆𝐼𝐼𝐼𝐼(𝑀𝑀) = 𝑆𝑆𝐼𝐼𝐼𝐼(𝑅𝑅) 

(3-14) 

Table 6 : Strategy table of a game where players have three pure strategies 

  Player II 

  L M R 

Player I 
T (3, -3) (2, -2) (-2, 2) 
B (1, -1) (0, 0) (2, -2) 

 D (-2, 2) (1, -1) (5, -5) 

where 

 𝑆𝑆𝐼𝐼𝐼𝐼(𝐿𝐿) = 𝑝𝑝𝑇𝑇 × (−3) + 𝑝𝑝𝐵𝐵 × (−1) + 𝑝𝑝𝐷𝐷 × 2𝑆𝑆𝐼𝐼𝐼𝐼(𝐿𝐿) = 𝑆𝑆𝐼𝐼𝐼𝐼(𝑀𝑀) (3-15) 

 𝑆𝑆𝐼𝐼𝐼𝐼(𝑀𝑀) = 𝑝𝑝𝑇𝑇 × (−2) + 𝑝𝑝𝐵𝐵 × 0 + 𝑝𝑝𝐷𝐷 × (−1) (3-16) 

 𝑆𝑆𝐼𝐼(𝐷𝐷) = 𝑝𝑝𝑇𝑇 × (2) + 𝑝𝑝𝐵𝐵 × (−2) + 𝑝𝑝𝐷𝐷 × (−5) (3-17) 

And the solution is  

 𝑝𝑝𝑇𝑇 =
5

12
,𝑝𝑝𝐵𝐵 =

1
3

, 𝑝𝑝𝐷𝐷 =
1
4

  (3-18) 
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which makes the player II ‘indifferent’ with his choices. The general equations for solving player 

I’s equilibrium solution are listed: 

 
�𝑝𝑝𝑖𝑖 = 1
𝑁𝑁

𝑖𝑖=1

, 0 ≤ 𝑝𝑝𝑖𝑖  (3-19) 

 � (𝑝𝑝𝑖𝑖
𝑁𝑁

𝑖𝑖=1
𝑆𝑆𝐼𝐼𝐼𝐼�𝜎𝜎𝐼𝐼𝑖𝑖 ,𝜎𝜎𝐼𝐼𝐼𝐼𝑘𝑘�) = � (𝑝𝑝𝑖𝑖

𝑁𝑁

𝑖𝑖=1
𝑆𝑆𝐼𝐼𝐼𝐼�𝜎𝜎𝐼𝐼𝑖𝑖 ,𝜎𝜎𝐼𝐼𝐼𝐼𝑘𝑘

� �),∀𝑘𝑘,𝑘𝑘� ∈ 𝑁𝑁[1,𝑀𝑀]  (3-20) 

where 𝑀𝑀 and N is the number of available strategies for player II and player I. The solution of eqn. 

(3-19) and (3-20) could be expressed in a matrix form. After eliminating the dominated strategies, 

the payoff table is denoted as 

𝐴𝐴 = �
𝑈𝑈11 ⋯ 𝑈𝑈1𝑛𝑛
⋮ ⋱ ⋮

𝑈𝑈𝑐𝑐1 ⋯ 𝑈𝑈𝑐𝑐𝑛𝑛
�
𝑐𝑐×𝑛𝑛

 (3-21) 

where m and n are the numbers of strategies of players. The probability of player I playing each 

strategy is written as a vector 𝑃𝑃𝑟𝑟1 

𝑃𝑃𝑟𝑟1 = (𝑃𝑃𝑟𝑟1 ⋯ 𝑃𝑃𝑟𝑟𝑐𝑐)1×𝑐𝑐 (3-22) 
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So the expected payoff of player II is the dot product of 𝑃𝑃𝑟𝑟 and A as shown in 

𝑃𝑃𝑟𝑟1 ∙ 𝐴𝐴 = ��𝑃𝑃𝑟𝑟𝑖𝑖𝑈𝑈𝑖𝑖1

𝑛𝑛

𝑖𝑖=1

… �𝑃𝑃𝑟𝑟𝑖𝑖𝑈𝑈𝑖𝑖𝑛𝑛

𝑛𝑛

𝑖𝑖=1

�
1×𝑛𝑛

 (3-23) 

Based on eqn. (3-20), each entry in eqn. (3-23) is identical as shown in eqn. (3-24)  

𝑃𝑃𝑟𝑟1 ∙ 𝐴𝐴 = 𝛼𝛼 ∙ (1 1 ⋯ 1)1×𝑛𝑛 (3-24) 

where 𝛼𝛼 is an unknown scalar. Multiplying both sides of eqn. (3-23) by 𝐴𝐴𝑇𝑇  and assuming 𝐴𝐴𝐴𝐴𝑇𝑇 is 

invertible, 𝑃𝑃𝑟𝑟1 could be expressed as 

𝑃𝑃𝑟𝑟1 = 𝛼𝛼 ∙ (1 1 ⋯ 1)1×𝑛𝑛𝐴𝐴𝑇𝑇 ∙ (𝐴𝐴𝐴𝐴𝑇𝑇)−1 (3-25) 

Also, eqn. (3-19) could be rewritten as  

𝑃𝑃𝑟𝑟1 ∙ �
1
⋮
1
�
𝑐𝑐×1

= 1 (3-26) 

Then, 𝛼𝛼 could be solved by substituting eqn. (3-25) into (3-26): 

𝛼𝛼 =
1

(1 1 ⋯ 1)1×𝑛𝑛 ∙ 𝐴𝐴𝑇𝑇 ∙ (𝐴𝐴𝐴𝐴𝑇𝑇)−1 ∙ �
1
⋮
1
�
𝑐𝑐×1

 
(3-27) 
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Substitute eqn. (3-27) to (3-25) and the probability vector 𝑃𝑃𝑟𝑟 is 

𝑃𝑃𝑟𝑟1 =
R ∙ 𝐴𝐴𝑇𝑇 ∙ (𝐴𝐴𝐴𝐴𝑇𝑇)−1

𝑅𝑅 ∙ 𝐴𝐴𝑇𝑇 ∙ (𝐴𝐴𝐴𝐴𝑇𝑇)−1 ∙ C
 (3-28) 

where R=(1 1 ⋯ 1)1×𝑛𝑛 and C=�
1
⋮
1
�
𝑐𝑐×1

. 

After solving 𝑃𝑃𝑟𝑟 for both players, the expected utility could be calculated as 

𝐸𝐸(𝑆𝑆𝐼𝐼) = 𝑃𝑃𝑟𝑟1 ∙ 𝐴𝐴 ∙ 𝑃𝑃𝑟𝑟2𝑇𝑇 (3-29) 

Practically, it is computationally inefficient to solve eqn. (3-28) because it requires the calculating 

of matrix inverse and eliminating of dominated strategies, whose complexities are at least O(𝑛𝑛2.3) 

and NP-hard [3, 10]. Even before that, the payoff matrix may not be invertible. Therefore, eqn. 

(3-28) is only calculated at a single time step during the simulation to validate the performance of 

the two-player game approach. In the rest of the simulation, instead of computing eqn. (3-28), the 

mixed strategies of a BS are computed using a numerical algorithm by transferring the two-player 

zero-sum game to a linear programming problem. 
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3.3.2.3 Linear Programming 

Because player II’s goal is to minimize layer I’s payoff, the expected payoff of player I becomes 

 𝐸𝐸(𝑆𝑆𝐼𝐼) = min
1≤𝑘𝑘≤𝑀𝑀

� (𝑝𝑝𝑖𝑖
𝑁𝑁

𝑖𝑖=1
𝑆𝑆𝐼𝐼�𝜎𝜎𝐼𝐼𝑖𝑖 ,𝜎𝜎𝐼𝐼𝐼𝐼𝑘𝑘�) (3-30) 

Thus, from player I’s point of view, he wants to choose 𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑁𝑁  such that his payoff is 

maximized: 

 𝑚𝑚𝑎𝑎𝑥𝑥𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑒𝑒 min
1≤𝑘𝑘≤𝑀𝑀

� (𝑝𝑝𝑖𝑖
𝑁𝑁

𝑖𝑖=1
𝑆𝑆𝐼𝐼�𝜎𝜎𝐼𝐼𝑖𝑖 ,𝜎𝜎𝐼𝐼𝐼𝐼𝑘𝑘�) (3-31) 

 st. ∑ 𝑝𝑝𝑖𝑖 = 1𝑁𝑁
𝑖𝑖=1 , 0 ≤ 𝑝𝑝𝑖𝑖 ≤ 1 (3-32) 

Eqn. (3-31) is not a linear programming problem because the min function is not linear. Then, by 

introducing a new variable z and restrict it to be less than the objective function 𝑣𝑣 ≤

min
1≤𝑘𝑘≤𝑀𝑀

∑ (𝑝𝑝𝑖𝑖𝑁𝑁
𝑖𝑖=1 𝑆𝑆𝐼𝐼�𝜎𝜎𝐼𝐼𝑖𝑖 ,𝜎𝜎𝐼𝐼𝐼𝐼𝑘𝑘�), the problem becomes 

 𝑚𝑚𝑎𝑎𝑥𝑥𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑒𝑒 𝑚𝑚 (3-33) 

 

st. 𝑚𝑚 ≤� (𝑝𝑝𝑖𝑖
𝑁𝑁

𝑖𝑖=1
𝑆𝑆𝐼𝐼�𝜎𝜎𝐼𝐼𝑖𝑖 ,𝜎𝜎𝐼𝐼𝐼𝐼1�) 

𝑚𝑚 ≤� (𝑝𝑝𝑖𝑖
𝑁𝑁

𝑖𝑖=1
𝑆𝑆𝐼𝐼�𝜎𝜎𝐼𝐼𝑖𝑖 ,𝜎𝜎𝐼𝐼𝐼𝐼2�) 

⋮ 

𝑚𝑚 ≤� (𝑝𝑝𝑖𝑖
𝑁𝑁

𝑖𝑖=1
𝑆𝑆𝐼𝐼�𝜎𝜎𝐼𝐼𝑖𝑖 ,𝜎𝜎𝐼𝐼𝐼𝐼𝑀𝑀�) 

�𝑝𝑝𝑖𝑖 = 1
𝑁𝑁

𝑖𝑖=1

, 0 ≤ 𝑝𝑝𝑖𝑖 

(3-34) 
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So this problem is a linear programming problem that is identical to eqn. (3-31). For a two-player 

zero-sum game, computing the equilibrium, where each player has a finite number of strategies, 

can always be presented as a linear programming problem [43]. The fact that the value of a game 

in mixed strategies can be found using linear programming is based on the connection between the 

Minmax Theorem and the Duality Theorem. These two theorems are equivalent to each other in a 

zero-sum setting [43-45].  

To solve the linear programming problem, it needs to be converted to standard form. The 

standard form of linear programming is 

 

𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑒𝑒 𝒄𝒄𝑇𝑇𝒙𝒙 

𝑠𝑠𝑏𝑏𝑜𝑜𝑒𝑒𝑐𝑐𝑡𝑡 𝑡𝑡𝑅𝑅 𝑨𝑨𝒙𝒙 = 𝒃𝒃 𝑎𝑎𝑛𝑛𝑑𝑑 𝒙𝒙 ≥ 𝟎𝟎  
(3-35) 

where 𝑥𝑥 is an n-dimension column vector, 𝒄𝒄𝑇𝑇is an n-dimension row vector, A is a 𝑚𝑚 × 𝑛𝑛 matrix, 

and b is an m-dimension column vector. All linear programming problems could be converted into 

this standard form. However, in the MATLAB linear programming solver, the equalities are 

replaced to inequalities: 

 

𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑒𝑒 𝒄𝒄𝑇𝑇𝒙𝒙 

𝑠𝑠𝑏𝑏𝑜𝑜𝑒𝑒𝑐𝑐𝑡𝑡 𝑡𝑡𝑅𝑅 𝑨𝑨𝒙𝒙 ≤ 𝒃𝒃 𝑎𝑎𝑛𝑛𝑑𝑑 𝒙𝒙 ≥ 𝟎𝟎 
(3-36) 

Numerical algorithms for solving Linear programming problems have been heavily studied and 

well understood. Still, there are several features of this problem worth mentioning. Firstly, a 

general linear programming problem has no analytical solution. Secondly, in principle, the time 

required to solve for a linear programming problem might be an exponential function of the 

number of variables, which could happen in some contrived cases. However, in practice, either 
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using the simplex method or interior-point methods (the two most popular solving algorithms), the 

computation is highly efficient, usually a small multiple of the number of the variables [44]. As a 

comparison, the quadric programming problem applied in the common-interest-sum game next 

section usually requires an exponential computation time. In the simulation, the zero-sum game 

solution is obtained by solving eqn. (3-36) using the lingprog function in MATLAB, and the solver 

applied is the interior-point algorithm. The form of LP that the solver needs is 

 
min
𝑚𝑚
𝒇𝒇𝑇𝑇𝒙𝒙  𝑠𝑠𝑆𝑆𝑐𝑐ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 �

𝑨𝑨 ∙ 𝒙𝒙 ≤ 𝒃𝒃 
𝑨𝑨𝑨𝑨𝑨𝑨 ∙ 𝒙𝒙 ≤ 𝒃𝒃𝑨𝑨𝑨𝑨
𝒍𝒍𝒃𝒃 ≤ 𝒙𝒙 ≤ 𝒖𝒖𝒃𝒃

  (3-37) 

where 𝒇𝒇,𝒙𝒙,𝒃𝒃,𝒃𝒃𝑨𝑨𝑨𝑨, 𝒍𝒍𝒃𝒃 and 𝒖𝒖𝒃𝒃 𝑎𝑎re vectors, and 𝑨𝑨 and 𝑨𝑨𝑨𝑨𝑨𝑨 are matrices.  And the original LP 

problem eqn. (3-33)-(3-34) need to be converted into the form of eqn. (3-37). First, the variable 

vector is the same: 

 𝒙𝒙 = [𝑥𝑥(𝑠𝑠1),𝑥𝑥(𝑠𝑠2), … , 𝑥𝑥(𝑠𝑠𝑁𝑁), 𝑚𝑚] (3-38) 

Then the inequality constraints could be expressed as 

 
�
𝑆𝑆(𝑠𝑠𝐼𝐼1, 𝑠𝑠𝐼𝐼𝐼𝐼1) ⋯ 𝑆𝑆(𝑠𝑠𝐼𝐼𝑁𝑁, 𝑠𝑠𝐼𝐼𝐼𝐼1)

⋮ ⋱ ⋮
𝑆𝑆(𝑠𝑠𝑁𝑁1, 𝑠𝑠𝐼𝐼𝐼𝐼𝑁𝑁) ⋯ 𝑆𝑆(𝑠𝑠𝐼𝐼𝑁𝑁 , 𝑠𝑠𝐼𝐼𝐼𝐼𝑁𝑁)

� �
𝑥𝑥(𝑠𝑠1)
⋮

𝑥𝑥(𝑠𝑠𝑁𝑁)
� ≥ �

𝑚𝑚
⋮
𝑚𝑚
�  (3-39) 

 

which could be converted to 

 
�−𝐴𝐴𝑡𝑡𝑎𝑎𝑝𝑝𝑇𝑇 

1
⋮
1
� �
𝑥𝑥(𝑠𝑠1)
⋮

𝑥𝑥(𝑠𝑠𝑁𝑁)
𝑚𝑚

� ≤ �
0
⋮
0
�  (3-40) 
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where 𝐴𝐴𝑡𝑡𝑎𝑎𝑝𝑝 is the payoff matrix/strategy form table. Therefore,  

 
𝑨𝑨 = �−𝐴𝐴𝑡𝑡𝑎𝑎𝑝𝑝𝑇𝑇 

1
⋮
1
� ,𝒃𝒃 = �

0
⋮
0
�  (3-41) 

 

And the equality constraint is expressed as 

 
[1 … 1 0] �

𝑥𝑥(𝑠𝑠1)
⋮

𝑥𝑥(𝑠𝑠𝑁𝑁)
𝑚𝑚

� = 1 (3-42) 

Thus, 

 𝑨𝑨𝑨𝑨𝑨𝑨 = [1 … 1 0],𝒃𝒃𝑨𝑨𝑨𝑨 = 1 (3-43) 

Then, the CTSF probability, which is the first N variables in vector x, could be solved using linprog 

function in MATLAB. The overall flowchart of the zero-sum game solving process is shown in 

Figure 14.  
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Figure 14: Zero-sum two-player game solving flowchart 
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3.4 Two-player Common-interest Game 

If the original objective function is applied as the same utility function for all BSs, meaning 

 𝑅𝑅𝑏𝑏𝑜𝑜𝑖𝑖(𝜎𝜎1,𝜎𝜎2,⋯ ,𝜎𝜎𝑁𝑁) = obj(𝜎𝜎1,𝜎𝜎2,⋯ ,𝜎𝜎𝑁𝑁),∀𝑖𝑖, 𝑜𝑜 ∈ [1,𝑁𝑁] (3-44) 

then this game becomes a common-interest game, in which all players share the same objective: 

to maximize obj(𝜎𝜎1,𝜎𝜎2,⋯ ,𝜎𝜎𝑁𝑁) . However, because no communication is guaranteed between 

players, they still need to estimate their payoff assuming the other player’s moves. The common-

interest game could also be solved using the indifference principle. But considering the 

computation cost again, it is solved numerically as a quadratic programming problem. Suppose 

the payoff matrix of a BS is A, then the objective of a BS is  

 

 Maximize                 𝑥𝑥′𝐴𝐴𝐸𝐸 

Subject to  𝑒𝑒′𝑥𝑥 − 1 = 0  

 x≥0 

(3-45) 

where 𝑥𝑥 and y are the strategy vectors of player I and player II, e is a vector of ones with the same 

dimension of x, and the primes denote transpose. For player II, its objective is  

 

 Maximize                 𝑥𝑥′𝐵𝐵𝐸𝐸 

Subject to  𝑅𝑅′𝐸𝐸 − 1 = 0  

 y≥0 

(3-46) 
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where B is the player’s payoff table, l is a vector of ones with the same dimension of y. A Nash 

equilibrium point (𝑥𝑥0, 𝐸𝐸0) is defined as a pair of strategies 𝑥𝑥0 and 𝐸𝐸0 where (3-47) and (3-48) are 

simultaneously fulfilled. In a more precise way, 

 𝑥𝑥0′𝐴𝐴𝐸𝐸0 = max
𝑚𝑚

{𝑥𝑥′𝐴𝐴𝐸𝐸0|𝑒𝑒′𝑥𝑥 − 1 = 0, 𝑥𝑥 ≥ 0} (3-47) 

 𝑥𝑥0′𝐵𝐵𝐸𝐸0 = max
𝑚𝑚

{𝑥𝑥0′𝐵𝐵𝐸𝐸|𝑅𝑅′𝐸𝐸 − 1 = 0, 𝐸𝐸 ≥ 0} (3-48) 

According to Karush–Kuhn–Tucker (KKT) conditions, the necessary and sufficient conditions for 

(𝑥𝑥0, 𝐸𝐸0) to be the optimal solution are   

 

𝑥𝑥0′𝐴𝐴𝐸𝐸0 − 𝜆𝜆𝐴𝐴 = 0 

𝑥𝑥0′𝐵𝐵𝐸𝐸0 − 𝜆𝜆𝐵𝐵 = 0 

𝐴𝐴𝐸𝐸0 − 𝜆𝜆𝐴𝐴𝑒𝑒 = 0 

𝐵𝐵′𝑥𝑥0 − 𝜆𝜆𝐵𝐵𝑅𝑅 = 0 

𝑒𝑒′𝑥𝑥 − 1 = 0 

𝑅𝑅′𝐸𝐸 − 1 = 0 

𝑥𝑥0 ≥ 0 

𝐸𝐸0 ≥ 0 

(3-49) 
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where 𝜆𝜆𝐴𝐴 and 𝜆𝜆𝐵𝐵 are the expected payoff to player I and II respectively at equilibrium (𝑥𝑥0,𝐸𝐸0). 

According to the equivalence theorem in [46], the necessary and sufficient condition that (𝑥𝑥0, 𝐸𝐸0) 

is an equilibrium is that it is a solution of the following programing problem 

 

𝑚𝑚𝑎𝑎𝑥𝑥𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑒𝑒  𝑥𝑥′(𝐴𝐴 + 𝐵𝐵)𝐸𝐸 − 𝜆𝜆𝐴𝐴 − 𝜆𝜆𝐵𝐵  

Subject to 𝐴𝐴𝐸𝐸 − 𝜆𝜆𝐴𝐴𝑒𝑒 = 0 

𝐵𝐵′𝑥𝑥 − 𝜆𝜆𝐵𝐵𝑅𝑅 = 0 

𝑒𝑒′𝑥𝑥 − 1 = 0 

𝑅𝑅′𝐸𝐸 − 1 = 0 

𝑥𝑥0 ≥ 0 

𝐸𝐸0 ≥ 0 

(3-50) 

The values of 𝜆𝜆𝐴𝐴 and 𝜆𝜆𝐵𝐵 at the equilibrium, 𝜆𝜆𝐴𝐴
0 and 𝜆𝜆𝐵𝐵

0, equal the expected payoff to player I and 

the player II respectively. Also, 

 𝑥𝑥0′(𝐴𝐴 + 𝐵𝐵)𝐸𝐸0 −  𝜆𝜆𝐴𝐴
0 − 𝜆𝜆𝐵𝐵

0 = 0 (3-51) 

Since the payoff matrix is identical to all players, A=B, the problem becomes a special scenario of 

the general quadratic problem: 

 

𝑚𝑚𝑎𝑎𝑥𝑥𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑒𝑒                 𝑥𝑥′(2𝐴𝐴)𝐸𝐸 − 𝜆𝜆𝐴𝐴 − 𝜆𝜆𝐵𝐵 

Subject to 𝐴𝐴𝐸𝐸 − 𝜆𝜆𝐴𝐴𝑒𝑒 = 0 

𝐴𝐴′𝑥𝑥 − 𝜆𝜆𝐵𝐵𝑅𝑅 = 0 

(3-52) 
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𝑒𝑒′𝑥𝑥 − 1 = 0 

𝑅𝑅′𝐸𝐸 − 1 = 0 

𝑥𝑥0 ≥ 0 

𝐸𝐸0 ≥ 0 

Therefore, if the common-interest game setting is applied, the BSs compute (3-52) and apply the 

CTSF strategy obtained by solving this quadratic programming problem. The solver applied in the 

simulation is fmincon in MATLAB with the interior-point algorithm.  

3.5 Discussion on the Game Types 

As illustrated in the above sections, the microgrid energy management could either modeled as 

a zero-sum game or a common-interest game. Both setting have their advantages and drawbacks. 

So they may be applied under different circumstances. 

By modeling the CTSF decision-making process as a zero-sum game, the BSs are operating in 

a ‘safe mode.’ Since there is a significant penalty when the CTSF is large, the BS will likely keep 

low CTSF most of the time, except when the probability of reaching the desired SoC level is 

sufficiently high. In this mode, the system is expected to have a conservative energy plan, which 

could be desired during a natural disaster. Another benefit is that the computation cost is almost 

linear to the number of variables in the problem so that the BS controllers could handle a relatively 

large number of CTSF choices [44].  
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On the other hand, by modeling the energy management as a common-interest game, the BSs 

obtain higher payoffs. As will be shown in the numerical results, the common-interest game setting 

encourages the BSs to choose higher CTSF without missing the energy availability target. 

However, the computation cost of a non-zero-sum game could be high. Also, the common-interest 

game has a large performance drop when applied in a virtual two-player game as will be discussed 

in section 3.7.  

Generally, if the BS controllers have sufficient computing power and the communication QoS 

is not negotiable, a common-interest game would be an optimal arrangement. Otherwise, modeling 

energy management as a zero-sum game could be a more cost-efficient solution.  

3.6 Games with Arbitrary Number of Players 

So far, we have been working on a two-player game, which means the microgrid has only two 

BSs, or only two groups of BSs loss the connection between them. More often, there may be more 

than dozens of BSs in a communication network, and the disconnected BSs could be of any 

number. Therefore, a solver for a game with an arbitrary number of BSs is needed. However, there 

might not always be an effective method to solve them. Unlike the two-player game, a game with 

more players cannot be converted to a linear programming or quadratic programming problem. 

For a general n-player game, utilizing the indifference principle, the KKT condition yields a set of 

n-1 order equations. This phenomenon could be seen from the following example. Suppose a three-

player game has a payoff table shown in Table 7, where each player has two available actions L 

and R. Denote the probabilities of players’ strategies as  
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Table 7: Example of  a three-player non-zero-sum game 

Player Z Player Z 
L (P3) R (1-P3) 

      Player Y       Player Y 
     P2 1-p2      P2 1-P2 
     L R      L R 

Player X P1 L 3, -6 ,4 3,3, 2 Player X P1 L 3, -2, 0 2, 2, 2 
1-P1 R 5, 1, 1 2, 3, 2 1-p1 R 2, 2, 2 3, 1, -2 

 

 (𝑠𝑠𝑋𝑋 = 𝐿𝐿) = 𝑝𝑝1,𝑃𝑃(𝑠𝑠𝑋𝑋 = 𝑅𝑅) = 1 − 𝑝𝑝1 (3-53) 

 𝑃𝑃(𝑠𝑠𝑌𝑌 = 𝐿𝐿) = 𝑝𝑝2,𝑃𝑃(𝑠𝑠𝑌𝑌 = 𝑅𝑅) = 1 − 𝑝𝑝2 (3-54) 

 𝑃𝑃(𝑠𝑠𝑍𝑍 = 𝐿𝐿) = 𝑝𝑝3,𝑃𝑃(𝑠𝑠𝑍𝑍 = 𝑅𝑅) = 1 − 𝑝𝑝3 (3-55) 

And the expected payoff of their choice of actions are 

 𝐸𝐸(𝑠𝑠𝑋𝑋 = 𝐿𝐿) = p3(3p2 + 3(1 − p2)) + (1 − p3)(3p2 + 2(1 − p2)) (3-56) 

 𝐸𝐸(𝑠𝑠𝑋𝑋 = 𝑅𝑅) = p3(5(p2) + (1 − p2)2) + (1 − p3)(2p2 + 3(1 − p2)) (3-57) 

 𝐸𝐸(𝑠𝑠𝑌𝑌 = 𝐿𝐿) = p3(−6p1 + 3(1 − p1)) + (1 − p3)(−2p1 + 2(1 − p1)) (3-58) 

 𝐸𝐸(𝑠𝑠𝑌𝑌 = 𝑅𝑅) = p3(1(p1) + 3(1 − p1)) + (1 − p3)(2p1 + 2(1 − p1)) (3-59) 

 𝐸𝐸(𝑠𝑠𝑧𝑧 = 𝐿𝐿) = p1(4p2 + 2(1 − p2)) + (1 − p1)2p2 (3-60) 

 𝐸𝐸(𝑠𝑠𝑧𝑧 = 𝑅𝑅) = p1(1p2 + (1 − p2)2) + (1 − p1)(2p2 − 2(1 − p2)) (3-61) 
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According to the indifference principle, at the equilibrium, the expected payoffs of each player’s 

different actions should be equal: 

 𝐸𝐸(𝑠𝑠𝑋𝑋 = 𝐿𝐿) = 𝐸𝐸(𝑠𝑠𝑋𝑋 = 𝑅𝑅) (3-62) 

 𝐸𝐸(𝑠𝑠𝑌𝑌 = 𝐿𝐿) = 𝐸𝐸(𝑠𝑠𝑌𝑌 = 𝑅𝑅) (3-63) 

 𝐸𝐸(𝑠𝑠𝑧𝑧 = 𝐿𝐿) = 𝐸𝐸(𝑠𝑠𝑧𝑧 = 𝑅𝑅) (3-64) 

which is a ternary quadratic equation set, whose solution is  

𝑝𝑝1 = −10,𝑝𝑝2 =
11
26

,𝑝𝑝3 = −
4
3

 (𝑖𝑖𝑛𝑛𝑓𝑓𝑒𝑒𝑎𝑎𝑠𝑠𝑖𝑖𝑏𝑏𝑅𝑅𝑒𝑒) 

or     𝑝𝑝1 = 0, 𝑝𝑝2 = 1, 𝑝𝑝3 = 1
3
 

So, an equilibrium of the three-player game is obtained. As the reader could image, the order of 

the equation set (3-53)-(3-55) increases linearly as the number of players increases. Since there is 

no algebraic solution to the general polynomial equations of degree five or higher according to the 

Abel-Ruffini theorem, it is only possible to approach the equilibrium through numerical algorithms 

such as Newton’s method [33, 35]. However, the computation cost of such an algorithm could be 

high. The computation time of a game with multiple players using global Newton algorithm is 

shown in Table 8, as the results suggest, the computation time of a game with more than three 

players could go beyond hours [47].  
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Table 8 : Computation time in second required to solve for equilibrium with global Newton algorithm 

 

Generally, computing the NE in a game with more than three players has yet to be proved that 

it could be solved effectively [48]. The computation time and complexity of communication 

increase exponentially as the number of players and actions increases even for solving an 

approximate equilibrium [21, 49]. Therefore, in this project, instead of developing an exact solver 

for a multi-player game with more players, we made a simplification transition and modified the 

original multiplayer energy management game into a virtual two-player game. 
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3.7 Virtual Two-player Game 

In a system with more than two BSs, the power consumption is  

𝑃𝑃𝑠𝑠𝑜𝑜𝑎𝑎𝑙𝑙 = �(𝑃𝑃𝐵𝐵𝑖𝑖 + 𝜎𝜎𝑖𝑖𝑣𝑣𝑖𝑖𝑃𝑃𝑇𝑇𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

 (3-65) 

Recall that in a two-player game, the load estimation of BS i is:   

𝑃𝑃𝑠𝑠𝑜𝑜𝑎𝑎𝑙𝑙𝑖𝑖 = (𝑃𝑃𝐵𝐵𝑖𝑖 + 𝜎𝜎𝑖𝑖𝑣𝑣𝑖𝑖𝑃𝑃𝑇𝑇𝑖𝑖)
�����������

𝐵𝐵𝑆𝑆 𝑖𝑖 𝑠𝑠𝑜𝑜𝑎𝑎𝑙𝑙

+ (𝑃𝑃𝐵𝐵𝑜𝑜 + 𝜎𝜎𝑜𝑜𝑣𝑣𝑜𝑜𝑃𝑃𝑇𝑇𝑜𝑜)�����������
𝑜𝑜𝑡𝑡ℎ𝑟𝑟𝑠𝑠 𝐵𝐵𝑆𝑆𝑏𝑏′ 𝑠𝑠𝑜𝑜𝑎𝑎𝑙𝑙

 (3-66) 

In the view of BS i, the power consumption of all the other BSs could be represented by one BS 

and its CTSF 𝜎𝜎𝑜𝑜  

𝑃𝑃𝐵𝐵𝑜𝑜 + 𝜎𝜎𝑜𝑜𝑣𝑣𝑜𝑜𝑃𝑃𝑇𝑇𝑜𝑜 = �(𝑃𝑃𝐵𝐵𝑗𝑗 + 𝜎𝜎𝑗𝑗𝑣𝑣𝑗𝑗𝑃𝑃𝑇𝑇𝑗𝑗)
𝑁𝑁

𝑗𝑗≠𝑖𝑖

 (3-67) 

Suppose the BS base load information is known to all BSs, the actual transition is 

𝜎𝜎𝑜𝑜𝑣𝑣𝑜𝑜𝑃𝑃𝑇𝑇𝑜𝑜 = �(𝜎𝜎𝑗𝑗𝑣𝑣𝑗𝑗𝑃𝑃𝑇𝑇𝑗𝑗)
𝑁𝑁

𝑗𝑗≠𝑖𝑖

 (3-68) 

where 𝑣𝑣𝑜𝑜𝑃𝑃𝑇𝑇𝑜𝑜 = ∑ (𝑣𝑣𝑗𝑗𝑃𝑃𝑇𝑇𝑗𝑗)𝑁𝑁
𝑗𝑗≠𝑖𝑖  is the imagined load consumption of all the other BSs. Then the 

controller could use the two-player game solving algorithms to solve for the equilibrium. The 
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performance of a small microgrid implemented with this approach has a performance that is close 

to an exhaustive searching, as will be shown in the numerical results section.  Theoretically, the 

CTSF strategy obtained by this virtual two-player game with zero-sum setting guarantees a 

maximized worst-case payoff of the BS. However, because the other BSs are not practically 

minimizing each other’s payoffs, the actual payoff is always higher than the worst-case expectation. 

However, as the number of BSs (players) increases, from the view of a BS controller, the 

response of the microgrid becomes more unpredictable. Because the virtual player can not fully 

represent the joint-actions of multiple players. As a consequence, as the number of BSs increases, 

the strategy obtained using this virtual two-player game becomes less optimal. This phenomenon 

could be observed in an extreme case where the load ratio of one BS is approaching 0, meaning 

𝑃𝑃𝑠𝑠𝑜𝑜𝑎𝑎𝑙𝑙 ≈ (𝑃𝑃𝐵𝐵𝑜𝑜 + 𝜎𝜎𝑜𝑜𝑣𝑣𝑜𝑜𝑃𝑃𝑇𝑇𝑜𝑜)�����������
𝑜𝑜𝑡𝑡ℎ𝑟𝑟𝑠𝑠 𝐵𝐵𝑆𝑆𝑏𝑏′ 𝑠𝑠𝑜𝑜𝑎𝑎𝑙𝑙

 (3-69) 

Here, the choice of CTSF of player i does not affect the total power consumption hence the energy 

availability function 𝑓𝑓𝑎𝑎𝑣𝑣(𝜎𝜎, 𝑆𝑆𝑅𝑅𝐶𝐶, 𝑡𝑡). And the objective function of player i becomes 

𝑅𝑅𝑏𝑏𝑜𝑜(𝜎𝜎, 𝑆𝑆𝑅𝑅𝐶𝐶, 𝑡𝑡) = 𝑤𝑤𝑐𝑐𝑜𝑜𝑐𝑐 ∙ 𝑓𝑓𝑐𝑐𝑜𝑜𝑐𝑐(𝜎𝜎, 𝑡𝑡) + 𝑐𝑐 (3-70) 

where the constant c is 

𝑐𝑐 = 𝑤𝑤𝑆𝑆𝑜𝑜𝑆𝑆 ∙ 𝑓𝑓𝑎𝑎𝑣𝑣(𝜎𝜎𝑜𝑜 , 𝑆𝑆𝑅𝑅𝐶𝐶, 𝑡𝑡) (3-71) 
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Because the communication quality function is a positive-related function of CTSF 𝜎𝜎 , the 

objective function of player i then becomes a monotonic function. Because the final objective 

function is piece-wised, as shown in eqn. (3-72) 

𝑅𝑅𝑏𝑏𝑜𝑜∗ =

� 𝑆𝑆𝑆𝑆𝑚𝑚
(𝑅𝑅𝑏𝑏𝑜𝑜),   𝑃𝑃(𝑆𝑆𝑅𝑅𝐶𝐶 > 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑠𝑠𝑅𝑅ℎ𝑅𝑅𝑅𝑅𝑑𝑑) = 𝑓𝑓𝑎𝑎𝑣𝑣(𝜎𝜎, 𝑆𝑆𝑅𝑅𝐶𝐶, 𝑡𝑡) > 𝑃𝑃𝑐𝑐𝑖𝑖𝑛𝑛

(1 − 𝜎𝜎)/10,  𝑅𝑅𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒 , 
(3-72) 

So the optimal solutions for the player could are: 

𝜎𝜎𝑖𝑖∗ = �𝜎𝜎
𝑜𝑜
𝑐𝑐𝑎𝑎𝑚𝑚,   𝑃𝑃(𝑆𝑆𝑅𝑅𝐶𝐶 > 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑠𝑠𝑅𝑅ℎ𝑅𝑅𝑅𝑅𝑑𝑑) > 𝑃𝑃𝑐𝑐𝑖𝑖𝑛𝑛

𝜎𝜎𝑜𝑜𝑐𝑐𝑖𝑖𝑛𝑛,  𝑅𝑅𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒  (3-73) 

where  

𝑃𝑃(𝑆𝑆𝑅𝑅𝐶𝐶 > 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑠𝑠𝑅𝑅ℎ𝑅𝑅𝑅𝑅𝑑𝑑) = 𝑓𝑓𝑎𝑎𝑣𝑣(𝜎𝜎, 𝑆𝑆𝑅𝑅𝐶𝐶, 𝑡𝑡) = 𝑓𝑓𝑎𝑎𝑣𝑣(𝜎𝜎𝑜𝑜 , 𝑆𝑆𝑅𝑅𝐶𝐶, 𝑡𝑡) (3-74) 

which is only decided by the CTSF choice of the other player 𝜎𝜎𝑜𝑜. Then, depending on whether the 

energy management is modeled as a zero-sum or common-interest game, the optimal CTSF varies:  

• Zero-sum game: 

o If there exists 𝜎𝜎𝑜𝑜 such that 𝑃𝑃(𝑆𝑆𝑅𝑅𝐶𝐶 > 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑠𝑠𝑅𝑅ℎ𝑅𝑅𝑅𝑅𝑑𝑑) < 𝑃𝑃𝑐𝑐𝑖𝑖𝑛𝑛, the player assumes the 

other player would choose the maximal CTSF so that the objective function (1 −

𝜎𝜎)/10 is minimized. In this condition, its optimal strategy is 𝜎𝜎𝑖𝑖∗ = 𝜎𝜎𝑖𝑖𝑐𝑐𝑖𝑖𝑛𝑛. 



 58 

o If there is no 𝜎𝜎𝑜𝑜 such that 𝑃𝑃(𝑆𝑆𝑅𝑅𝐶𝐶 > 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑠𝑠𝑅𝑅ℎ𝑅𝑅𝑅𝑅𝑑𝑑) < 𝑃𝑃𝑐𝑐𝑖𝑖𝑛𝑛, the player assumes the 

other player would choose the minimal CTSF so that the objective function  

𝑅𝑅𝑏𝑏𝑜𝑜(𝜎𝜎, 𝑆𝑆𝑅𝑅𝐶𝐶, 𝑡𝑡) = 𝑤𝑤𝑐𝑐𝑜𝑜𝑐𝑐 ∙ 𝑓𝑓𝑐𝑐𝑜𝑜𝑐𝑐(𝜎𝜎, 𝑡𝑡) + 𝑤𝑤𝑆𝑆𝑜𝑜𝑆𝑆 ∙ 𝑓𝑓𝑎𝑎𝑣𝑣(𝜎𝜎𝑜𝑜 , 𝑆𝑆𝑅𝑅𝐶𝐶, 𝑡𝑡) is minimized. In this 

condition, its optimal strategy is 𝜎𝜎𝑖𝑖∗ = 𝜎𝜎𝑖𝑖𝑐𝑐𝑎𝑎𝑚𝑚. 

• Common-interest game: 

o If there exists 𝜎𝜎𝑜𝑜 such that 𝑃𝑃(𝑆𝑆𝑅𝑅𝐶𝐶 > 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑠𝑠𝑅𝑅ℎ𝑅𝑅𝑅𝑅𝑑𝑑) > 𝑃𝑃𝑐𝑐𝑖𝑖𝑛𝑛, the player assumes the 

other player would choose the proper CTSF so that the objective function form is 

still 𝑅𝑅𝑏𝑏𝑜𝑜(𝜎𝜎, 𝑆𝑆𝑅𝑅𝐶𝐶, 𝑡𝑡) = 𝑤𝑤𝑐𝑐𝑜𝑜𝑐𝑐 ∙ 𝑓𝑓𝑐𝑐𝑜𝑜𝑐𝑐(𝜎𝜎, 𝑡𝑡) + 𝑤𝑤𝑆𝑆𝑜𝑜𝑆𝑆 ∙ 𝑓𝑓𝑎𝑎𝑣𝑣(𝜎𝜎𝑜𝑜 , 𝑆𝑆𝑅𝑅𝐶𝐶, 𝑡𝑡). In this condition, 

its optimal strategy is 𝜎𝜎𝑖𝑖∗ = 𝜎𝜎𝑖𝑖𝑐𝑐𝑎𝑎𝑚𝑚. 

o If there is no 𝜎𝜎𝑜𝑜 such that 𝑃𝑃(𝑆𝑆𝑅𝑅𝐶𝐶 > 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑠𝑠𝑅𝑅ℎ𝑅𝑅𝑅𝑅𝑑𝑑) > 𝑃𝑃𝑐𝑐𝑖𝑖𝑛𝑛, the objective function 

has the form, (1 − 𝜎𝜎)/10. Then the player assumes the other player would choose 

the minimal CTSF. In this condition, the optimal strategy is 𝜎𝜎𝑖𝑖∗ = 𝜎𝜎𝑖𝑖𝑐𝑐𝑖𝑖𝑛𝑛. 

As these conditions show, the BS controllers with small load-ratios would only choose either 

the maximal or the minimal CTSF under all circumstances. Moreover, this behavior applies to all 

the BSs in such a system. So, the overall behavior of this system will be like an over-fitted 

controller with a huge gain: the system CTSF switches from maximum to minimum based on the 

condition whether ‘there exists 𝜎𝜎𝑜𝑜 such that 𝑃𝑃(𝑆𝑆𝑅𝑅𝐶𝐶 > 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑠𝑠𝑅𝑅ℎ𝑅𝑅𝑅𝑅𝑑𝑑) > 𝑃𝑃𝑐𝑐𝑖𝑖𝑛𝑛’, and resulting in the 

same switching in PSNR. As a result, the system might not always reach the desired SoC level, 

which causes a performance drop measured in the objective function. A portrait showing the 

performance descending of the virtual two-player zero-sum game as the number of player increases 
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is shown in Figure 15. As this figure suggests, the virtual two-player game experiences a 40% 

performance loss as the number of players reaches 20. This performance drop is also related to the 

system configuration, mostly on weighting factors, which will be shown in the simulation section. 

 

Figure 15: Performance of virtual two-player zero-sum game with more players, w_soc=0.2 

Nonetheless, the virtual-two player approach leaves a clue-- the players’ ‘misunderstanding’ of 

the game is one of the reasons causing this performance drop. Therefore, in the learning-game 

section, we will discuss how to adjust the BS controller’s ‘understanding’ of its load model with 

the help of reinforcement learning.  
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Figure 16: Solar cell output power in a day 

3.8  Communication Base Station Load Identifier 

In the previous design, there is an assumption that the historical data of BS load and PV power 

generation are accurate and known to all BSs in the system. However, in reality, these values might 

be deviant from their expected ones. For example, the output of a solar cell generator could be 

affected by a lot of conditions: sun irradiation, temperature, and cloud movement to a large extent. 

The solar cell output power could have significant variance in a daily power output curve as shown 

in Figure 16 [50]. If the real load and power generation experience large deviations compared to 

the historical data, the BS could have a wrong estimation on its energy condition. Suppose the real 

load consumption is higher than the preset data, the BS controller might not tune down its CTSF 

until the battery SoC is too low when the probability of SoC reaching the desired level is too small. 

Therefore,  a system identifier is introduced to update the power consumption model for BS 
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controllers such that they can adjust their CTSF strategy faster. The adaptive control scheme is 

shown in Figure 17.  

 

Figure 17: Adaptive controller scheme 

From the perspective of the BS controller, changes either in renewable power generation or 

load consumption both result in changes in the battery power storage: 

 𝑃𝑃𝑅𝑅 = 𝑃𝑃𝑆𝑆∗ − (𝑃𝑃𝐵𝐵∗ + 𝛼𝛼∗𝑃𝑃𝐿𝐿∗)  (3-75) 

where 𝑃𝑃𝑆𝑆∗  and 𝑃𝑃𝐵𝐵∗ , 𝑃𝑃𝐿𝐿∗  are the real value of renewable power and load consumption. And a 

reference model is given to BS controller  

 𝑃𝑃𝑀𝑀 = 𝑃𝑃𝑆𝑆𝑀𝑀 − (𝑃𝑃𝐵𝐵𝑀𝑀 + 𝜎𝜎𝑃𝑃𝐿𝐿𝑀𝑀) + ∆𝑃𝑃𝐷𝐷  (3-76) 

where 𝑃𝑃𝑆𝑆𝑀𝑀 and 𝑃𝑃𝐿𝐿𝑀𝑀 are the initial estimations of the PV power output and BS loads; 𝜎𝜎 is the CTSF 

and ∆𝑃𝑃𝐷𝐷 is a tuning variable called virtual load 
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 ∆𝑃𝑃𝐷𝐷 = 𝜃𝜃𝑃𝑃0  (𝑃𝑃0 > 0) (3-77) 

where 𝑃𝑃0 is a base power consumption chosen by the system designer and 𝜃𝜃 is the adjusting factor. 

Then, the error signal is 

 

𝑒𝑒0 = 𝑃𝑃𝑅𝑅 − 𝑃𝑃𝑀𝑀 = (𝑃𝑃𝑆𝑆
∗ − (𝑃𝑃𝐵𝐵∗ + 𝛼𝛼∗𝑃𝑃𝑇𝑇∗)) − (𝑃𝑃𝑆𝑆

𝑀𝑀 − 𝛼𝛼𝑃𝑃𝐿𝐿𝑀𝑀 − 𝑃𝑃𝐵𝐵𝑀𝑀

+ 𝜃𝜃𝑃𝑃0) 
(3-78) 

Also, we define the difference between the desired adjusting factor and current factor to be the 

parameter error ∅: 

 ∅ = 𝜃𝜃∗ − 𝜃𝜃 (3-79) 

whereas the desired adjusting factor is 

 
𝜃𝜃∗ =

(𝑃𝑃𝑆𝑆∗ − 𝛼𝛼𝑃𝑃𝐿𝐿∗) − (𝑃𝑃𝑆𝑆
𝑀𝑀 − 𝛼𝛼𝑃𝑃𝐿𝐿𝑀𝑀 − 𝑃𝑃𝐵𝐵𝑀𝑀)

𝑃𝑃0
 (3-80) 

Assume now that the updating rate is much higher than the changing rates of PV power and BS 

load, then a Lyapunov energy function in which c is an arbitrary constant is defined as 

 𝑉𝑉 =
1
2
𝑒𝑒02 +

1
2
𝑐𝑐∅2 ≥ 0 (3-81) 
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Its partial derivative with respect to time becomes 

 
𝜕𝜕𝑉𝑉
𝜕𝜕𝑡𝑡

= 𝑒𝑒0𝑒𝑒0̇ + 𝑐𝑐∅∅̇ = −𝑒𝑒0𝑃𝑃0�̇�𝜃 + 𝑐𝑐∅∅̇ = (𝑒𝑒0𝑃𝑃0 + 𝑐𝑐∅)∅̇ = (−𝑒𝑒0𝑃𝑃0 + 𝑐𝑐∅)�̇�𝜃 (3-82) 

From (3-82), the parameter updating rule is proposed  

 ∅̇ = �̇�𝜃 = −(−𝑒𝑒0𝑃𝑃0 + 𝑐𝑐∅) ≈ 𝑒𝑒0𝑃𝑃0 (3-83) 

where c is chosen to be relatively small so that 𝑐𝑐∅ is negligible and does not need to be measured. 

Substituting (3-83) into (3-82) and the partial derivative of Lyapunov energy function with respect 

to time becomes 

 
𝜕𝜕𝑉𝑉
𝜕𝜕𝑡𝑡

= −(−𝑒𝑒0𝑃𝑃0 + 𝑐𝑐∅)2 (3-84) 

which is non-positive for all t. Therefore, according to the Lyapunov stability theory [51], the 

adaptation laws (3-83) guarantees error signal 𝑒𝑒0 to be bounded [52]. Hence, the system identifier 

can track the changes caused both by BS loads and the renewable power. Additionally, the 

quadratic error equation is defined by 

 𝑓𝑓𝑟𝑟 =
1
2
𝑒𝑒02 ≥ 0  (3-85) 
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and its derivative with respect to 𝑒𝑒0  is 

 fė = e0e0̇ = −e0θ̇P0 (3-86) 

Substituting (3-83) into (3-86)  

 fė = −(e0P0)2 ≤ 0 (3-87) 

So that 𝑓𝑓𝑟𝑟 (𝑒𝑒0)>0 for all 𝑒𝑒0 ≠ 0 and 𝑓𝑓�̇�𝑟(𝑒𝑒0) ≤ 0 for all 𝑒𝑒0, 𝑓𝑓�̇�𝑟(𝑒𝑒0) = 0 if and on if 𝑒𝑒0 = 0. By La 

Salle’s invariance principle,  the original point 𝑒𝑒0 = 0  of 𝑓𝑓𝑟𝑟  is asymptotically stable with any 

initial condition [53]. Thus, the adaptation law eqn. (3-83) guarantees finding the deviation 

between real and estimated load consumption. However, this updating law requires the information 

of error signal 𝑒𝑒0, which is obtained by measuring the battery SoC as shown in (3-88). 

 𝑒𝑒0 = 𝑃𝑃𝑅𝑅 − 𝑃𝑃𝑀𝑀 =
𝑑𝑑𝑆𝑆𝑅𝑅𝐶𝐶
𝑑𝑑𝑡𝑡

∙ 𝐸𝐸𝑏𝑏𝑎𝑎𝑡𝑡𝑡𝑡𝑟𝑟𝑠𝑠𝑝𝑝 − 𝑃𝑃𝑀𝑀 (3-88) 

Therefore, the controllers in the system must keep monitoring the entire battery SoC to get the 

error signal. Without communication, this monitoring could be done by measuring the dc bus 

voltage using the battery SoC balancing control algorithms [49, 54]. In the simulation, the SoC 

information is given to BSs directly. 
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4.0 Reinforcement Learning 

In this approach, the BS controllers are modeled as ‘agents’ utilizing reinforcement 

learning algorithms to obtain a set of energy management strategies. Reinforcement learning (RL) 

is a general class of algorithms in the field of machine learning that aims at training an agent to 

learn how to behave in an environment where the only feedback consists of a scalar reward signal 

[25, 55]. RL suits well in solving long-term decision-making problems such as Markov Decision 

Process (MDP), which coincidence with the energy management solving process [56, 57]. The 

essential part of RL implementation is to design the instantaneous reward function properly such 

that the agents are attracted to the desired behavior pattern. In this section, we will discuss two 

different kinds of RL algorithms: Q-learning and Linear Reward Inaction. In the end, a combined 

algorithm using Linear Reward Inaction and the two-player game is proposed which aims at 

reducing the training time.  

4.1 Markov Decision Process 

A (finite) Markov decision process is a tuple 〈𝑋𝑋,𝑈𝑈,𝑓𝑓,𝜌𝜌〉  where X is the finite set of 

environment states, U is the set of agent actions, 𝑓𝑓:𝑋𝑋 × 𝑈𝑈 × 𝑋𝑋 → ℝ is the reward function. A state 

𝑥𝑥𝑘𝑘 ∈ 𝑋𝑋 denotes the environment at each time step k. The agent observes the state and takes an 

action 𝑆𝑆𝑘𝑘 ∈ 𝑈𝑈. As a result, the environment changes its state to another state 𝑥𝑥𝑘𝑘+1 ∈ 𝑋𝑋 according 

to the transition function f, which tells the probability of reaching different states after 𝑆𝑆𝑘𝑘. Then, 

the agent receives a scalar reward 𝑟𝑟𝑘𝑘+1 ∈ ℝ  according to the reward function 𝑟𝑟𝑘𝑘+1 =
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𝜌𝜌(𝑥𝑥𝑘𝑘,𝑆𝑆𝑘𝑘, 𝑥𝑥𝑘𝑘+1), which is an immediate effect of the action just taken. However, this reward does 

not contain any long-term effect of this action. For some MDP, there is a terminal state, which 

ends the process and the agent cannot leave this state. In our case, the MDP does not have such a 

state, so the decision-making process is conducted forever.  

The behavior of the agent is described by its policy, which depicts how the agent chooses 

its actions given a state. The policy could either be stochastic or deterministic. A policy is said to 

be stationary if it does change over time. Denoting the policy by l, the agent’s goal is to find a 

policy that maximizes its expected discounted return from every state x: 

 
max
𝑠𝑠:𝑋𝑋→𝑈𝑈

𝑅𝑅𝑠𝑠(𝑥𝑥) = max
𝑠𝑠:𝑋𝑋→𝑈𝑈

𝐸𝐸 ��𝛾𝛾𝑘𝑘𝑟𝑟𝑘𝑘+1|𝑥𝑥0 = 𝑥𝑥, 𝑅𝑅
∞

𝑘𝑘=0

� (4-1) 

where  𝛾𝛾 ∈ [0,1) is a discount factor for the future reward, the return R represents the reward 

accumulated by the agent in the long term. There are multiple ways of defining the long-term 

return [25]. The discount factor 𝛾𝛾 could be seen as a way to represent an increasing uncertainty 

about the reward that will be received in the future. The task of the agent then is to find the optimal 

policy by only receiving feedback about its immediate performance. One way it can achieve this 

is by computing the optimal state-action value function (Q-function) as discussed in the next 

section. 
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4.2 Q-learning Algorithm 

Dr. Watkins first developed Q-learning in 1989, which assigns each pair of state-action a 

reward and builds a decision strategy based on the state-action value table [58, 59]. There is a 

broad variety of single-agent RL algorithms based on Q-learning developed ever since, e.g., 

model-free methods based on online value function estimation [60-62], model-based method 

(usually called dynamic programming) [63, 64], and model-learning methods [65]. In this project, 

the battery SoC level is utilized as the state, and the choice of CTSF 𝜎𝜎 is modeled as actions at 

each state in this MDP. Every action in every state comes with an instantaneous reward r, and a 

bonus reward is given at the end of the operation once the SoC goal is reached. For every state-

action pair (s,a), there is a Q* value that indicates its optimization level, which not only includes 

the instantaneous reward but partially contains the delayed reward after taking action a. The Q* 

value is the expected reward for each state-action pair. It acts as an operation instruction under the 

circumstance. The optimal Q-function is defined as 

 Q∗(x, u) = max
l

Ql(x, u) (4-2) 

which is unknown initially to the agent. The optimal Q-function satisfies the Bell-man optimality 

equation: 

 
Q∗(x, u) = � f(x, u, x′) �rk+1 + γmax

l
Q∗(x′, u′)�  ∀x ∈ X, u ∈ U

x′∈X

 (4-3) 
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This equation states that the optimal value of taking u in x is the expected immediate reward plus 

the expected discounted optimal Q value from the next state. There are different strategies in 

choosing action given the Q value table, such as greedy strategy, 𝜀𝜀 −greedy policy, and Boltzmann 

strategy [25]. The greedy strategy 𝑅𝑅∗̅  is to choose an action with the largest optimal Q-value at 

every state  

 𝑅𝑅∗̅(𝑥𝑥) = arg max
𝑏𝑏

𝑄𝑄∗(𝑥𝑥,𝑆𝑆) (4-4) 

In the most extreme case, the agents are not given any information about the world or environment. 

The agents use temporal differences to estimate the true Q* value of each state-action pair based 

on their experience. The updating equation is shown in (4-5) [58]. 

 

𝑄𝑄𝑘𝑘+1(x𝑘𝑘,𝑆𝑆𝑘𝑘) = 𝑄𝑄𝑘𝑘(x𝑘𝑘,𝑆𝑆𝑘𝑘) + 𝛼𝛼(𝑟𝑟𝑘𝑘+1 + 𝛾𝛾max
𝑏𝑏′

𝑄𝑄𝑘𝑘(x𝑘𝑘+1,𝑆𝑆′)

− 𝑄𝑄𝑘𝑘(x𝑘𝑘,𝑆𝑆𝑘𝑘)) 
(4-5) 

where 𝛼𝛼 is an updating step size factor, 𝛾𝛾 is the horizon factor, x𝑘𝑘+1 is the possible future state that 

is reachable from state 𝑠𝑠. The term 𝑟𝑟𝑘𝑘+1 + 𝛾𝛾max
𝑏𝑏′

𝑄𝑄𝑘𝑘(x𝑘𝑘+1,𝑆𝑆′) − 𝑄𝑄𝑘𝑘(x𝑘𝑘,𝑆𝑆𝑘𝑘) is called the temporal 

difference, indicating the difference between the current estimation 𝑄𝑄𝑘𝑘(x𝑘𝑘,𝑆𝑆𝑘𝑘) of optimal Q-value 

of (x𝑘𝑘,𝑆𝑆𝑘𝑘) and the updated estimate 𝑟𝑟𝑘𝑘+1 + 𝛾𝛾max
𝑏𝑏′

𝑄𝑄𝑘𝑘(x𝑘𝑘+1,𝑆𝑆′). This new update is a sample of 

the right-hand side of the Bellman equation (4-3). The sequence 𝑄𝑄𝑘𝑘 converges to 𝑄𝑄∗ under the 

following conditions  [66-68]: 
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• The value of the Q-function is stored and updated for all state-action pairs. 

• All the state-action pairs are visited infinitely often. 

• The following requirements (4-6)-(4-7) of learning rate is satisfied: 

 
0 < 𝛼𝛼𝑡𝑡 < 1,�𝛼𝛼𝑡𝑡

∞

𝑡𝑡=1

= ∞ (4-6) 

 
�𝛼𝛼𝑡𝑡2
∞

𝑡𝑡=1

< ∞ (4-7) 

A conventional choice is to pick the step size factor as 

 𝛼𝛼𝑡𝑡 =
1
𝑡𝑡
 (4-8) 

since 

 
�

1
𝑡𝑡

∞

𝑡𝑡

=
1
1

+
1
2

+
1
3

+ ⋯ = ∞ (4-9) 

 
�

1
𝑡𝑡2

=
𝜋𝜋2

6

∞

𝑡𝑡=1

 (4-10) 

The second requirement could be fulfilled if we set nonzero probabilities for the agent to try all 

available actions in all states. The exploration process is achieved by choosing at each time step a 

random action with probability 𝜀𝜀, and the present optimal action with probability 1 − 𝜀𝜀 (such is 
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referred to as 𝜀𝜀 −greedy exploration). Another common option is to use the Boltzmann exploration 

procedure, which selects action u in a state x with probability: 

 
𝑝𝑝(𝑥𝑥,𝑆𝑆) =

𝑒𝑒𝑄𝑄(𝑚𝑚,𝑏𝑏)/𝜏𝜏

∑ 𝑒𝑒𝑄𝑄(𝑚𝑚,𝑏𝑏�)/𝜏𝜏
𝑏𝑏�

 (4-11) 

where 𝜏𝜏 > 0 , denoted as the temperature, controls the randomness of the exploration. The 

remaining part is to design the reward function r(s,a). The value of reward function has a 

significant impact on the final strategy found by Q-learning. In the project, the designed reward 

functions in the single-agent and multi-agent simulations are different. For the single-agent 

scenario, the reward function is the same as the objective function: 

𝑟𝑟(𝑆𝑆𝑅𝑅𝐶𝐶,𝜎𝜎) = 𝑅𝑅𝑏𝑏𝑜𝑜(𝜎𝜎, 𝑆𝑆𝑅𝑅𝐶𝐶, 𝑡𝑡) = 𝑤𝑤𝑐𝑐𝑜𝑜𝑐𝑐 ∙ 𝑓𝑓𝑐𝑐𝑜𝑜𝑐𝑐(𝜎𝜎, 𝑡𝑡) + 𝑤𝑤𝑆𝑆𝑜𝑜𝑆𝑆 ∙ 𝑓𝑓𝑎𝑎𝑣𝑣(𝜎𝜎, 𝑆𝑆𝑅𝑅𝐶𝐶, 𝑡𝑡) (4-12) 

because the agent has all the information needed to compute the communication quality and 

energy availability. However, for a system with more learners without communication links, the 

actual CTSF choice is unknown to each agent. Thus, a simple reward function only considering 

the current SoC and CTSF is designed  

𝑟𝑟(𝑠𝑠(𝑡𝑡),𝜎𝜎(𝑡𝑡), 𝑡𝑡) = 𝑤𝑤𝑏𝑏𝑜𝑜𝑐𝑐 ∙ 𝑆𝑆𝑅𝑅𝐶𝐶(𝑡𝑡) ∙ +𝑤𝑤𝑐𝑐𝑜𝑜𝑐𝑐 ∙ 𝜎𝜎(𝑡𝑡) (4-13) 

where 𝜎𝜎(𝑡𝑡) is the action just taken by the BS and 𝑤𝑤𝑏𝑏𝑜𝑜𝑐𝑐 and 𝑤𝑤𝑐𝑐𝑜𝑜𝑐𝑐 are the weighting factors. Giving 

this reward function, each controller could update its Q* values. Also, an extra reward is given to 

the agent at 𝑡𝑡𝑟𝑟𝑛𝑛𝑙𝑙 
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𝑟𝑟(𝑠𝑠,𝑎𝑎, 𝑡𝑡𝑟𝑟𝑛𝑛𝑙𝑙) = �

10  𝑖𝑖𝑓𝑓  𝑆𝑆𝑅𝑅𝐶𝐶(𝑡𝑡𝑟𝑟𝑛𝑛𝑙𝑙) ≥ 𝑆𝑆𝑅𝑅𝐶𝐶𝑔𝑔𝑜𝑜𝑎𝑎𝑠𝑠
0  𝑖𝑖𝑓𝑓  𝑆𝑆𝑅𝑅𝐶𝐶(𝑡𝑡𝑟𝑟𝑛𝑛𝑙𝑙) < 𝑆𝑆𝑅𝑅𝐶𝐶𝑔𝑔𝑜𝑜𝑎𝑎𝑠𝑠

 (4-14) 

which gives a bonus to the actions that enable the system reaching the desired SoC goal.  

In the original design, there is only one agent in this MDP, and the environment is assumed 

to be static; thus the optimal Q values are fixed. These assumptions are not always valid in the 

microgrid discussed in this dissertation. In the simulation, two types of learning mechanisms were 

tested: centralized BS controller equipped with Q-learning and multiple BSs implemented single-

agent Q-learning. The stability and convergence of multi-agent Q-learning without communication 

have not yet been proven [25]. There have been modified versions of multi-agent Q-learning such 

as Nash-Q, Team-Q, Minimax-Q, and distributed-Q [38, 69]. However, most of them require 

designated communication between agents to observe the reward or actions of the other agents, 

which is not guaranteed in the microgrid discussed.  

4.3 Linear Reward-Inaction Algorithm 

Linear reward-inaction is a learning algorithm designed for the multi-agent system by P.S. 

Sastry in 1994 [67]. This method is built upon the model of learning automata, which aims at 

reaching equilibriums of Markov games. The Markov games are an extension of game theory to 

MDP-like environment. In these games, the designer not only considers any single agent’s reward 

but all the agents’ learning process. Then, algorithms were proposed aiming at attracting agents to 

equilibriums in the Markov game. The definition of equilibrium in the Markov game is the same 
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with a classical multi-player game, which claims no player can obtain a better payoff by deviating 

from the equilibrium. These algorithms could be seen as a policy updating methods since the agents 

update the probabilities of choosing available actions directly. The updating sequence of an agent 

implementing Linear reward inaction is listed below: 

1. At time t, the player (automaton) choose an action according to its action probability vector 
𝑨𝑨𝑖𝑖. Suppose the action taken is 𝛿𝛿𝑖𝑖. 

2. Each player obtains a payoff based on the set of all players’ actions. The reward of player i is 
𝑟𝑟𝑖𝑖(𝑡𝑡). 

3. Each player updates his action probability according to the rule  

 
𝒑𝒑𝑖𝑖(𝑡𝑡 + 1) = 𝒑𝒑𝑖𝑖(𝑡𝑡) + 𝑏𝑏 ∙ 𝑟𝑟𝑖𝑖(𝑡𝑡) �𝑨𝑨𝛿𝛿𝑖𝑖 − 𝒑𝒑𝑖𝑖(𝑡𝑡)� , 𝑖𝑖 = 1, … ,𝑁𝑁  (4-15) 

where 0<b<1 is a learning rate parameter and 𝑨𝑨𝛿𝛿𝑖𝑖 is a unit vector with its 𝛿𝛿𝑖𝑖th component unity. 

This updating law can be represented as 

𝑃𝑃(𝑘𝑘 + 1) = 𝑃𝑃(𝑘𝑘) + 𝑏𝑏𝐺𝐺(𝑃𝑃(𝑘𝑘),𝑎𝑎(𝑘𝑘), 𝑟𝑟(𝑘𝑘)]  (4-16) 

where 𝑎𝑎(𝑘𝑘) denotes the action chosen by the agent at step/time k and 𝑟𝑟(𝑘𝑘) are the resulting 

rewards, and G(.) represents the updating law specified by eqn. (4-15). P(k) converges weakly to 

a solution of an ordinary differential equation  

𝑙𝑙𝑃𝑃
𝑙𝑙𝑡𝑡

= 𝐸𝐸[𝐺𝐺(𝑃𝑃(𝑘𝑘),𝑎𝑎(𝑘𝑘), 𝑟𝑟(𝑘𝑘)|𝑃𝑃(𝑘𝑘) = 𝑘𝑘]  (4-17) 

whose solutions are the pure Nash equilibriums in the original Markov game. The detailed proof 

could be found in [67] Theorem 3.4. So, this learning algorithm convergences to a pure Nash 

Equilibrium of the multi-agent Markov decision process (a.k.a Markov game). Other than that, 

whether an equilibrium of a mixed strategy could be obtained or if the learning process is trapped 

in a limit cycle is not guaranteed.  
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SoC/CTSF CTSF_1 CTSF_2 … CTSF_n 

SoC_1 p11 P12 … P1n 

SoC_2 p21 P22 … P2n 

… … … … … 

SoC_m pm1 pm2 … pmn 

 

Figure 18: Learning space of a Linea reward-inaction agent 

When applied to the microgrid energy management, the BS controller update a list of CTSF 

probability vectors given the system SoC level. The battery SoC is divided into multiple levels, 

and the agent follows different CTSF strategies at each level as shown in Figure 18. The 

summation of elements in every row in this table is one. The reward function could be the objective 

function eqn. (2-12) if the communication network in the microgrid is functioning. Otherwise, if 

the BS is not capable of sharing CTSF and SoC status with the others, a local-information-based 

reward function is available for the agent to use, as shown in eqn (4-18).  

𝑟𝑟𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧

1 𝑡𝑡 > 𝑡𝑡𝑙𝑙,𝑆𝑆𝑅𝑅𝐶𝐶𝑖𝑖(𝑡𝑡) > 𝑆𝑆𝑅𝑅𝐶𝐶𝑔𝑔𝑜𝑜𝑎𝑎𝑠𝑠

𝑤𝑤𝑠𝑠𝑜𝑜𝑎𝑎𝑙𝑙
1

1 + e−𝛼𝛼𝑖𝑖𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖(t)
+ 𝑤𝑤𝑆𝑆𝑜𝑜𝑆𝑆

1

1 + e−
𝑘𝑘𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖(t)

𝛼𝛼𝑖𝑖

𝑡𝑡 < 𝑡𝑡𝑙𝑙 ,𝑆𝑆𝑅𝑅𝐶𝐶𝑖𝑖(t) ≥  𝑆𝑆𝑅𝑅𝐶𝐶𝑐𝑐𝑖𝑖𝑛𝑛

(1 − 𝛼𝛼𝑖𝑖)/10 𝑡𝑡 < 𝑡𝑡𝑙𝑙 ,𝑆𝑆𝑅𝑅𝐶𝐶𝑖𝑖(𝑡𝑡) ≤  𝑆𝑆𝑅𝑅𝐶𝐶𝑐𝑐𝑖𝑖𝑛𝑛
0 (𝑡𝑡 < 𝑡𝑡𝑙𝑙,𝑆𝑆𝑅𝑅𝐶𝐶𝑖𝑖(𝑡𝑡) < 𝑆𝑆𝑅𝑅𝐶𝐶𝑠𝑠𝑜𝑜𝑛𝑛) 𝑅𝑅𝑟𝑟 �𝑡𝑡 > 𝑡𝑡𝑙𝑙 ,𝑆𝑆𝑅𝑅𝐶𝐶𝑖𝑖(𝑡𝑡) < 𝑆𝑆𝑅𝑅𝐶𝐶𝑔𝑔𝑜𝑜𝑎𝑎𝑠𝑠�

 (4-18) 

where 𝜎𝜎𝑖𝑖(𝑡𝑡) is the CTSF chosen by the ith agent, the two Logistic functions ensure the reward 

stays in the range of [0,1], 𝛼𝛼𝑖𝑖𝑆𝑆𝑅𝑅𝐶𝐶𝑖𝑖(t) is the local load satisfaction rate weighted by the battery SoC 

level, and 𝑘𝑘𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖(t)
𝛼𝛼𝑖𝑖

  approximates the remaining operating time assuming no power supply is 

provided. The factor k accounts for the battery energy/load energy ratio, which could be different 

in each microgrid. As will be shown in the simulation section, the approximated reward function 

makes the training process longer (mostly due to its requirement of lower training rate) but 

guarantees that the system achieves the same performance as the actual objective function does. 
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Two modifications were made considering the specific application. First, the probabilities 

of actions are limited to 

 
𝒑𝒑𝑖𝑖(𝑡𝑡)𝜖𝜖[

1 − 𝑡𝑡𝑅𝑅𝑝𝑝
𝑛𝑛 − 1

, 𝑡𝑡𝑅𝑅𝑝𝑝] (4-19) 

where top is a value close to 1 (e.g., 0.8), n is the number of available actions. This limit on the 

probability of action was made to prevent the agents from actually reaching the pure NE. Because 

at the pure NE, one of the actions is dominating the other actions 

𝒑𝒑𝑙𝑙𝑜𝑜𝑐𝑐∗(𝑡𝑡) = 1,𝒑𝒑𝑖𝑖∗(𝑡𝑡) = 0 ∀𝑖𝑖 ≠ 𝑑𝑑𝑅𝑅𝑚𝑚𝑖𝑖𝑛𝑛𝑎𝑎𝑡𝑡𝑅𝑅𝑟𝑟 (4-20) 

meaning the exploration of the agent is finished, and the agent will never choose other CTSF 

actions in the future. This feature might leads the agent to local optimums and leaves no room for 

updating when environmental changes. By applying probability limiting (4-19), the agent has a 

chance to escape from the local optimums.  

Another modification is made a low-SoC barrier. This rule is set for each agent as follows: 

Low-SoC-check (p(𝑆𝑆𝑅𝑅𝐶𝐶𝑖𝑖, CTSF)) 

1: Scan the whole learning table 

2:           if  p(𝑆𝑆𝑅𝑅𝐶𝐶𝑠𝑠, CTSF_min)>=𝑃𝑃𝑏𝑏𝑎𝑎𝑠𝑠𝑠𝑠𝑖𝑖𝑟𝑟𝑠𝑠 

3:           p(𝑆𝑆𝑅𝑅𝐶𝐶𝑘𝑘, CTSF_min)= p(𝑆𝑆𝑅𝑅𝐶𝐶𝑠𝑠, CTSF_min) ∀𝑘𝑘 ≤ 𝑅𝑅  

4:          repeat 

where 𝑃𝑃𝑏𝑏𝑎𝑎𝑠𝑠𝑠𝑠𝑖𝑖𝑟𝑟𝑠𝑠  is a probability threshold close to one, and p(SoC, CTSF)) represents the 

probability of choosing CTSF at 𝑆𝑆𝑅𝑅𝐶𝐶𝑖𝑖. The principle behind this setting is simple: if the optimal 

action at 𝑆𝑆𝑅𝑅𝐶𝐶𝑠𝑠 is to maintain at the minimum CTSF, then 𝑆𝑆𝑅𝑅𝐶𝐶𝑠𝑠 could be classified as ‘critically 

low’ from the agent’s experience. Thus, the agent needs not to explore any SoC states lower than 

this value to decide what the optimal strategies are because those states could only mean worse 
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energy conditions. Therefore, the optimal action at any lower SoC levels could only be maintaining 

the lowest load consumption as well. The agents applying this modification have responses better 

when encountering a power loss situation where the original learning setting requires the agents 

to explore the lower SoC region. The other benefit of this mechanism is that it prevents the agent 

from converging to a possible equilibrium leading to critical low system SoCs. 
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5.0 Load-ratio Learning Game 

5.1 Inspiration from Virtual Two-Player Game 

This approach is enlightened by the virtual-two player game. A microgrid implemented 

with the virtual two-player game has a performance as the number of players increases. This is 

because of the BS controller’s biased understanding of its and the virtual BS’s loads. Therefore, a 

new parameter load ratio 𝑟𝑟𝑡𝑡 is introduced: 

𝑟𝑟𝑡𝑡𝑖𝑖 = 𝑃𝑃𝐵𝐵𝑖𝑖+𝑃𝑃𝑇𝑇𝑖𝑖

∑ (𝑃𝑃𝐵𝐵𝑖𝑖+𝑃𝑃𝑇𝑇𝑖𝑖)𝑁𝑁
𝑖𝑖=1

  (5-1) 

which represents how much a BS’s load demand takes in the total load demand of the microgrid. 

This value was assumed to be known to the BS controllers in the previous two-player game and 

exhaustive search approaches. In the virtual two-player game, however, as mentioned before, 

knowing the real value of this load ratio does not guarantee a strategy that maximizes the BS’s 

payoff. Because in the two-player virtual game, a BS controller estimates the virtual player’s 

moves assuming its load ratio is 1-𝑟𝑟𝑡𝑡𝑖𝑖. However, the actual join-action of the other BS controllers 

can only be obtained if an actual n-player game is solved. But this joint-action action could be the 

solution of another two-player game with different load-ratios. Moreover, it is possible for the BS 

controller to locate that load-ratio through a learning process.  
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5.2 Load-Ratio Updating Process 

Therefore, instead of precise knowledge of the load ratio, a vector of possible load ratios 

and probability list of the load ratio are given to the BSs: 

𝑅𝑅 = �𝑟𝑟𝑡𝑡𝑖𝑖
1, 𝑟𝑟𝑡𝑡𝑖𝑖

2, … , 𝑟𝑟𝑡𝑡𝑖𝑖
𝑀𝑀� (5-2) 

𝑅𝑅𝑠𝑠 = [𝒑𝒑1,𝒑𝒑2, … ,𝒑𝒑𝑀𝑀],�𝒑𝒑𝒊𝒊 = 1 (5-3) 

where 𝑟𝑟𝑡𝑡𝑖𝑖
𝑘𝑘 are the ith BS’s possible load ratios, M is the number of possible load ratios, and 𝒑𝒑𝒌𝒌 

indicates the confidence of the BS controller that 𝑟𝑟𝑡𝑡𝑖𝑖  is equal to 𝑟𝑟𝑡𝑡𝑖𝑖
𝑘𝑘 . 𝑅𝑅𝑠𝑠 is called the load-ratio 

policy of the BS controller. When choosing the CTSF, the agent picks its load ratio based on the 

load-ratio policy 

𝑟𝑟𝑡𝑡𝑖𝑖 = 𝑟𝑟𝑡𝑡𝑖𝑖
𝑘𝑘 𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝑝𝑝𝑟𝑟𝑅𝑅𝑏𝑏𝑎𝑎𝑏𝑏𝑖𝑖𝑅𝑅𝑖𝑖𝑡𝑡𝐸𝐸 𝒑𝒑𝒊𝒊 (5-4) 

Then, the player conducts a regular virtual two-player game and obtain a mixed strategy as 

described in section 3.7. Whether the CTSF is obtained through a common-interest game or zero-

sum game depends on the players’ available information and the integrity of the microgrid. When 

the microgrid is operating normal, the BSs in the system share the same objective, thus, the 

immediate CTSF could be solved using the common-interest setting. However, when the microgrid 

is affected by a natural disaster, its components could be damaged or malfunctioning. In this 

condition, the behavior modes of BSs could be different. Some BSs might experience a surge in 

load demand, which is not desired to be shed, but other BSs may reduce their load consumption in 
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order to conserve more stored energy. In this case, the BSs in this microgrid do not necessarily 

share a common goal. If the communication links between BSs are functioning, BSs can broadcast 

their load conditions so that the other BSs can adjust accordingly. Otherwise, BSs can only 

estimate the objective function assuming the worst scenario, in which the virtual BS in the two-

player game. With this assumption, the objective of the BSs becomes a zero-sum game. Thus, it 

should be solved, as indicated in section 3.3. Depending on the available information, the agent 

computes a reward function based on the objective function eqn. (2-12) (normal condition) or the 

local reward function eqn (4-18). Then, the load-ratio policy is updated using the Linear reward-

inaction algorithm. The architecture of this learning-gaming algorithm is shown in Figure 19, and 

the overall flow chart is shown in Figure 20.  

 

Figure 19: Learning-gaming algorithm scheme 

This approach divides the original load planning process into two parts: load-ratio Markov 

game and CTSF two-player game. In the Markov game, using the RL algorithm, the agents explore 

the load-ratio space and search for equilibriums that give them the maximal reward in the two-

player game. The lower level is a two-player game acting as an actuator. Compare to the original 
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game approach, this algorithm could be easily extended to an arbitrary number of players without 

any burden on the computation cost and is highly flexible to the environment changes. 

Additionally, because the search space for load-ratio learning is smaller than the SoC-CTSF space, 

the converging speed of the load-ratio learning process is higher. All these features will be shown 

in the simulation section. 
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Figure 20: Load-ratio learning game algorithm flowchart  
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6.0 Numerical Results 

In this section, the numerical results of simulated communication microgrid implemented 

with the two-player game, reinforcement learning, and load-ratio learning game are demonstrated 

and compared. The primary BS parameters are shown in TABLE II. The BS load and renewable 

power functions are 

The PV power and BS load curves vs. time are shown in Figure 21 and Figure 22. We choose the 

sum of objective function over 24 hours, as shown in equation (6-3), as a metric of overall system 

performance, because it directly relates to the average performance over 24 hours if such sum is 

divided by 24. 

 
Sum(𝑅𝑅𝑏𝑏𝑜𝑜)=�𝑅𝑅𝑏𝑏𝑜𝑜�t, σ(t)�

24

t=1

 
(6-3) 

𝑃𝑃𝐵𝐵𝑆𝑆=max(500
0.000839𝑡𝑡3 + 1.205𝑡𝑡2 − 12.02𝑡𝑡 + 34.29

𝑡𝑡2 − 6.495𝑡𝑡 + 43.45
+500,0) (6-1) 

𝑃𝑃𝑏𝑏𝑜𝑜𝑠𝑠𝑎𝑎𝑠𝑠=max(
−8185𝑡𝑡2 + 1108750𝑡𝑡 − 707800

25𝑡𝑡2 − 3590𝑡𝑡 + 5928
+ 80,0) 

(6-2) 
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Figure 21: PV power curve 

 

Figure 22: BS load curve 
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Table 9 : Simulated BS parameters 

Sym
bol PARAMETER Value 

𝑤𝑤𝑐𝑐𝑜𝑜𝑐𝑐 Communication 
quality weight 0.5 

𝑤𝑤𝑆𝑆𝑜𝑜𝑆𝑆 Energy availability 
weight 0.5 

𝐸𝐸𝑏𝑏𝑎𝑎𝑡𝑡𝑡𝑡𝑒𝑒  Battery fully charged 
energy 24 kWh 

𝐸𝐸𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�������� 
Solar power 
generation 
expectation 

1 kW 

𝐸𝐸𝑃𝑃𝐵𝐵����� BS base load 
expectation 200 W 

 𝐸𝐸𝑃𝑃𝑇𝑇����� BS traffic depended 
load expectation 800 W 

𝑉𝑉𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�������� Solar power 
generation variance 4000 

𝑉𝑉𝑃𝑃𝑇𝑇���� BS traffic depended 
load variance 4000 

𝑆𝑆𝑅𝑅𝐶𝐶𝑔𝑔𝑜𝑜𝑎𝑎  Desired battery SoC 
level 0.8 

𝑆𝑆𝑅𝑅𝐶𝐶0 Initial Battery SoC 
level 

0.7 
 

BW BS total bandwidth 10MHz 

a PSNR-rate bit curve 
parameter 10.4 

𝑏𝑏 PSNR-rate bit curve 
parameter -23.8 

r Nominal transmit 
rate bit 2 Mbps 
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6.1 Multi-Player Game  

The operation of microgrid consists of identical BSs with the same load curves is simulated 

with no communication link between the BSs. The performance of this microgrid implemented 

with two-player games and its comparisons with the exhaustive search are demonstrated. 

6.1.1  Two-Player Zero-Sum Game. 

First, the microgrid implemented with the two-player zero-sum game is simulated. The 

PSNR and battery SoCs of the system applying exhaustive search and zero-sum game are shown 

in Figure 23 and Figure 24. As the results show, the system applied with a two-player game method 

has a performance that is close to that of the globally exhaustive search.  Both the system battery 

SoCs reach the desired goal (80%), and similar trends are seen in both PSNR curves. According 

to [30], a moderately good target for the quality of the video stream is 37 dB PSNR, whereas a 32  

 

Figure 23: CTSF and SoC of the simulated microgrid applying exhaustive search, sum(obj)= 17.2512 
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Figure 24: PSNR and SoC of the simulated microgrid, two-player zero-sum game, sum(obj)= 16.5616 

dB PSNR is considered as acceptable. In term of the objective function, the sum(obj) of the mixed 

two-player game method is 16.5616 compared to 17.2512 that of the exhaustive search. In order 

to ensure that this is a consistent result, a Monte Carlo test comparing the performance of the mixed  

 

Figure 25: Distribution of Sum(U) obtained by two-player zero-sum game 
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Figure 26: Distribution of Sum(U) obtained by exhaustive search 

game method and the exhaustive search was conducted. In this test, 48 hours operation of the 

microgrid with two BSs was simulated 500 times implemented with the two algorithms 

considering the same initial battery SoCs and power/load distribution functions. The resulting 
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a performance that is close to the globally exhaustive search. A figure demonstrating the difference 

between the two methods under different system settings is shown in Figure 28.  As shown in this 

result, in scenarios with low initial SoCs and small SoC weighting factors, the differences between 

the two-player game and globally exhaustive search are within 20% of the global optimum, and 

that gap is close to 0 as the initial SoC goes higher.  

 

Figure 27: Sum(obj) of two-player zero-sum game with different initial SoC and weighting factor 

 

Figure 28: Difference between exhaustive search and zero-sum game solutions in percentage 
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6.1.2  Two-player Common-Interest Game 

In this simulation, a microgrid operation with two identical BSs implemented with a common-

interest game setting is simulated. The only difference is now the solver applied is quadratic 

programming solver. The SoC and PSNR results of the microgrid applying this method are shown 

and compared to the zero-sum result in Figure 29. As the result shows, the PSNRs chosen by the 

BS controller are higher than the ones obtained using zero-sum setting most of the time. The SoC 

still achieved the desired goal in the end. In terms of the objective function, the common-interest 

game has a score of 17.0653, which is higher than the 16.5616 obtained with the zero-sum setting. 

An overall comparison of the common-interest game with the exhaustive search was also made 

with varied initial SoC and its weighting, whose result is shown in Figure 30 and the difference 

percentage is shown in Figure 31. It could be seen from these results that the common-interest 

setting has a better performance than the zero-sum setting in most scenarios.  

 

Figure 29: SoC and CTSF of simulated microgrid, two-player common-interest game, sum(obj)= 17.0807 
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Figure 30: Sum(obj) of two-player common-interest game with different initial SoC and weighting factor 

 

 

Figure 31: Difference between exhaustive search and common-interest game solutions in percentage 
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6.1.3  Communication Base Station Load Identifier 

A simulation with estimation deviation in PV power generation is performed to test the BS load 

controller. The microgrid is the same with two identical BSs and load curves. But in this 

simulation, the PV panel is set to lose half of its power generation from t=5 to t=15 hr. The BSs 

controllers in the system apply the two-player zero-sum game to solve for their CTSF strategies. 

The resulting PSNR and SoC of the microgrid with and without a load identifier are shown in 

Figure 32 and Figure 33. As the figures show, the microgrid equipped with a load identifier has a 

performance (Sum(U)=8.1629) better than the one without a load identifier (Sum(U)=5.9233). The 

battery SoC level with load identifier is also higher because the BS controllers choose lower CTSFs 

with a more accurate power consumption model.  The power consumption model of a BS with and 

without the load identifier is shown in Figure 34 and Figure 35, showing that the BS controller 

with a load identifier is capable of tracking the actual power consumption. Therefore, with a more 

accurate load model, the controller could detect the insufficient power generation and turn down 

its communication CTSF earlier.  

Because of the effects of deviations between estimation and actual renewable sources generated 

power and communications traffic load can be considered as an additional load (when 𝜃𝜃 > 0) or a 

power source (when 𝜃𝜃 < 0), the proposed reference model can represent system structure changes 

and offers a better estimation to improve BS controller performance. Accordingly, the virtual load 

can also represent newly connected or disconnected devices (i.e., other base stations within the 

same dc microgrid or power sources), which makes the system more flexible.  
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Figure 32: Simulated microgrid with the load identier. Sum(U)= 8.1629. 

 

Figure 33: Simulated microgrid without load identifier. Sum(U)= 5.9233 
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Figure 34: Power consumption estimation of a BS without load identifier 

 

 

Figure 35: Power consumption estimation of a BS with load identifier 

  

0 5 10 15 20 25

Time (Hour)

-1000

-500

0

500

1000

Po
w

er
 d

em
an

d 
(W

)

estimated power consumption

real power consumption

0 5 10 15 20 25

Time (Hour)

-1000

-500

0

500

1000

Po
w

er
 d

em
an

d 
(W

)

estimated power consumption

real power consumption



 93 

6.1.4  Virtual Two-Player Game  

In this section, the virtual two-player game performance drop along with the increase of players 

is demonstrated with different choices of system configuration. The configurations parameters 

manipulated in this simulation are the energy availability weighting factor and the game modeling 

form (zero-sum or common-interest).  

In the first case, a microgrid applied with a two-player game is tested with different w_soc and 

the number of players. The system performance with the zero-sum setting is shown in Figure 36. 

As this result suggests, the performance drop has a limit, which is positively related to the energy 

availability weighting factor. The drop limit is caused by the maximin feature of the zero-sum 

setting. Also, if the energy availability weighting is larger, the system performance has a more 

significant decreasing as the number of BSs increases.  

 

Figure 36: System performance with different w_soc, zero-sum game 
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In the second case, the microgrid energy management is solved using the common-interest 

game setting, and the system performance with the different number of players is shown inFigure 

37. In this case, the performance drop of the system does not have any minimum level. This 

performance drop is because the system could not guarantee the minimal probability 𝑃𝑃𝑐𝑐𝑖𝑖𝑛𝑛  of 

reaching the SoC goal. Generally, the smaller the energy availability weighting is, the larger the 

performance drop is.  

The system SoC and PSNR with twenty BSs in the microgrid implemented with the zero-sum 

and common-interest two-player game are shown in Figure 38 and Figure 39. As the simulation 

results show, the zero-sum game sill ensures the system reaching the SoC goal, but the common-

interest game suggests to have a high PSNR strategy and fails to reach the SoC goal. The overfitted 

behavior discussed before the behavior of PSNR is also observed.  Both of the system PSNRs are 

either at their maximum or minimum most of the time. 

 

Figure 37: System performance with different w_soc, common-interest game 
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Figure 38: System SoC and PSNR implemented zero-sum game, 20 BSs 

 

Figure 39: System SoC and PSNR implemented common-interest game, 20 BSs 
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6.2 Q-learning Algorithm 

6.2.1  Single-Agent Q-Learning  

In this simulation, the microgrid is controlled by a single agent applying Q-learning.  The 

initial Q value for all state and actions are set to be 0.05, updating step is 𝛼𝛼𝑡𝑡 = 1
𝑡𝑡
 and the horizon 

factor is 𝛾𝛾 = 0.7. The SoC weighting factor is 0.6. Remark here the time t is counted independently 

for each SoC level. The available communication TSFs for the controller are [0.05, 0.10, … 0.95, 

1]. The final CTSF strategy obtained by the agent and battery SoC after 100 days of training are 

shown inFigure 40.  It can be seen that the agent’s load planning strategy is highly dependent on 

the battery SoC. The Q-value table and the learning curve showing the cumulated reward function 

could be seen in Figure 41and Figure 42, which show that the main learning was happening during 

the first five days. Also, the system performance measured in the objective function is shown in 

Figure 43, indicating that the trend of objective function fits that of the reward function.  

 

Figure 40: CTSF and SoC obtained by single agent Q-learning 
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Figure 41:Q-value chart after 100 days after training 

 

Figure 42: Learning curve of the agent 
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Figure 43: Objective function of the system during the learning process 
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Figure 44: SoC and CTSF obtained by multi-agent Q-learning case 1 

 

 

Figure 45: Learning curve of one agent, case 1 
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Figure 46: System SoC during the learning process, case 2 

 

 

Figure 47: Learning curve of an agent case 2 
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Figure 48: Learning curve of an agent, case 3 

 

Figure 49: System SoC during the learning process, case 3 
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6.3 Linear Reward-Inaction 

6.3.1  Normal Operation 

In this simulation, the performance of the system applying Linear-reward inaction is conducted 

in a normal environment where BSs controllers have full access to power/load information, and 

there are no unexpected changes in the PV power generation or load curves. There are 20 BSs in 

the simulated microgrid, and the parameters are the same as the one shown in Table I. The battery 

SoC is divided into 20 levels with the step of 0.05, while each BS has an available CTSF range of 

0.2-1.0 with the step of 0.05 thus the search space for each BS is a 20×16 matrix. The resulting 

battery SoC, system CTSF and system performance are shown in Figure 50 and Figure 51. Also, 

the trained strategy space is shown in Figure 52. In this simulation, the learning rate is 0.1, and the 

agent spent around ten days before the system performance is stabilized. As Figure 51 shows, the 

performance of this system was improved during the trial-and-error process and reached a steady 

level in the end.  

 

Figure 50: System SoC and CTSF obtained by Linear-reward inaction 
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Figure 51: System performance with learning rate b=0.1 
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Figure 52: Obtained CTSF strategy space 

 

Figure 53: System performance with learning rate b=0.2  
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Figure 54: System SoC with learning rate b=1.0 

 

Figure 55: System performance with learning rate b=1.0 
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6.3.2  Partial Loss of Power Source 

In this simulation, the Linear-reward inaction is tested in an environment where a sudden loss 

of the PV power occurs. During the operation, the PV power was cut to 80% of its estimated value, 

starting from day 50 to day 100. The system SoC and performance without a low-SoC barrier are 

shown in Figure 56 and Figure 57. As the results show, the learning algorithm failed to maintain 

the system SoC and did not recover from the power lost even when the power is back. In another 

simulation, the low-SoC barrier is applied to the agents as top=0.3 (from section 5.3). The system 

SoC and performance with this setting are shown in Figure 58 and Figure 59. These results show 

that the system survived the power loss event with some loss of battery energy. After the power 

loss event, the battery SoC level was recovered to the desired level. Also, as could be seen from 

the obtained CTSF strategy chart shown in Figure 60, the low-SoC parts are well guarded by the 

high-probability low-CTSF ‘walls’.  

 

 

Figure 56: System performance with power lost from day 50 to day 100 
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Figure 57: System SoC with power lost from day 50 to day 100 

 

Figure 58: System SoC with power lost with low-SoC barrier 
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Figure 59: System performance with power lost from with low-SoC barrier 

 

Figure 60: CTSF strategy chart obtained with low-SoC barrier 
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6.3.3  Loss of Communication 

In this section, the behavior of the microgrid without communication is demonstrated. It is 

assumed in this scenario that the communication link in this microgrid is cut off, and the BSs in 

this system could only utilize their local information and the approximated reward function  (4-18) 

to conduct the learning process. If the other parameters remain the same, the agents can not find a 

steady strategy that satisfies the original goal as shown in Figure 61. The result shows that the 

learning rate is too large for the agents to converge with the local data. The performance of the 

system is better when the learning rate b is replaced by a smaller number. As shown in another 

simulation, the learning rate is set to b=0.05, and the resulting system performance is shown in 

Figure 62. These results show that compared to the normal operation, the agents implementing 

Linear-reward inaction without communication are less stable, and the training period is longer 

(around 20 days). 

 

Figure 61: System performance applying local objective function (b=0.1) 
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However, if the number of BSs is larger, the performance of the RL using local objective 

function becomes unstable again, as can be seen from the simulation result in Figure 63. One 

attempt that has been done to overcome this is to have an even smaller learning rate. With a 

learning rate of b=0.01 the performance is stabilized as shown in Figure 64. But this smaller 

learning rate results in a longer training period as shown in Figure 65, which is approaching 100 

days. 

 

Figure 62: System performance applying local objective function (b=0.05) 
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Figure 63: Performance of system applying RL with local objective function (b=0.05) and different number of 

BSs 

 

Figure 64: Performance of system applying RL with local objective function (b=0.01) and different number of 

BSs 
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Figure 65: Learning curve of system applying RL with local objective function (b=0.01)   
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𝑃𝑃𝑠𝑠𝑜𝑜𝑎𝑎𝑙𝑙𝑖𝑖 = 𝑃𝑃𝐵𝐵 + 𝑟𝑟𝑡𝑡𝑖𝑖𝜎𝜎𝑖𝑖𝑣𝑣𝑃𝑃𝑇𝑇 + (1 − 𝑟𝑟𝑡𝑡𝑖𝑖)𝜎𝜎𝑜𝑜𝑣𝑣𝑃𝑃𝑇𝑇 (6-5) 

Then the objective function is calculated and the two-player game with choices of 𝜎𝜎𝑖𝑖 and 𝜎𝜎𝑜𝑜 could 

be formed and solved either in zero-sum or non-zero-sum settings. After the CTSF decision, the 

system battery SoC is measured and fed into the reward function along with the CTSF chosen by 

BS controllers and the load-ratio list is updated. The learning rate is set to be 0.1, and the SoC 

weighting factor is 0.5 in this simulation.  

 

Figure 66: PSNR and SoC of BS microgrid applying load-ratio learning game algorithm, normal condition 
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microgrid is conducted as well. The system performance applied with the two-player zero-sum 

game, direct RL (Linear-reward inaction), and the load-ratio learning game algorithms are plotted 

in the same figure as shown in  Figure 68. The training times for both learning algorithms are ten 

days. This result reveals that the learning-gaming algorithm has a better performance compared to 

solely applying RL and the virtual two-player game approach.  

 

Figure 67: Comparison of learning curves of RL and learning-game algorithm 

 

Figure 68: Comparison of algorithms with different number of BSs 
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6.4.2  Partial Loss of Power Source 

In this scenario, the adaptation feature of the load-ratio learning game algorithm is tested when 

the system is affected by a natural disaster. In this simulation, it is assumed a hurricane hits the 

microgrid at day 20. The power lines are intact, however, due to the physical damage taken by the 

solar panels and BSs, the communication links between BSs are cut off, and the output of all power 

generator is limited to 60% of its original rating. In this condition, the BS controllers utilize local 

information to calculate their rewards. The resulting average system PSNR and SoC are shown in 

Figure 69. The system experienced an SoC decreasing when the power is lost but managed to 

restore the energy level in several days. The system performance, as shown in Figure 70, also 

demonstrated a descending after the power loss and is recovered after days of adaption. The final 

load-ratio strategy obtained by the learning algorithm is shown in Figure 71, where one of the BSs 

adjusted its confident load-ratio to 0.6 instead of the original 0.4. In this scenario, the higher load-

ratios make the BS ‘think’ it needs to feed more load, thus resulting in a lower CTSF strategy. 
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Figure 69: Average system SoC and PSNR with power loss 

 

Figure 70: System performance index with power loss 
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Figure 71: Obtained load-ratio strategy with power loss 
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learning rate. However, whether the algorithm converges to the desired equilibrium is not always 

guaranteed, which might also be related to the design of the objective and reward functions. 

Another constraint that shakes the Linear Reward-Inaction algorithm’s dominating role is the long 

training time due to its learning rate limit. Lastly, the load-ratio learning game approach seems to 

be the ideal solution for now: it has a better performance compared to both the RL and game 

approach, yet its training time is much shorter. Also, it could be easily extended to a microgrid 

with an arbitrary number of BSs. However, this algorithm is only tested in a limited number of 

cases. So its full behavior under different circumstances is yet to be discovered. 
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7.0 Conclusions 

This dissertation studied energy management in a microgrid consists of communication base 

stations with the help of distributed control algorithms. The goal was to develop an autonomous 

control system for communication base stations so that they could perform load response and 

realize energy management considering communication quality and energy availability without 

the need for a designated communication network. This feature decreases the dependency of 

elements in such microgrid thus could increase the system’s overall resilience against natural 

disasters or other accidents.  

Three attempts: multi-player game, reinforcement learning, and load-ratio learning game were 

made to accomplish the goal. In the game approach, the original load response decision-making 

process is modeled as a multi-player game and solved by BS controllers independent. Depending 

on the setting of the game, the solution of such a game could be the form of a pure or mixed 

strategy. Also, the obtained energy management strategy is comparable to that of an exhaustive 

search. However, for a general game with an arbitrary number of players, the solving process is 

intractable thus is not practical to be implemented in the microgrid system. This constraint of game 

theory has limited its application since a communication network often consists of many BSs. To 

overcome this shortcoming, we have expanded the two-player game solving process to any number 

of players with the virtual player setting. However, such a setting experiences a performance 

descending as the number of players increases.  

The second attempt proposed was applying a reinforcement learning algorithm to BS 

controllers. This approach makes the BS controllers update their load response strategies based on 
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their experienced interactions with the microgrid. Two different learning algorithms were applied: 

Q-learning and Linear Reward-Inaction. The Q-learning algorithm showed the highest 

performance score in the single-agent scenario, but its convergence in a multi-agent environment 

is not guaranteed. Linear Reward-Inaction ensures the converging of the agent’s strategies, but the 

algorithm requires a long training time before the optimal strategy is obtained. The tuning of the 

learning rates is the keys to both of the learning algorithms.  

In the end, a load-ratio learning game algorithm was developed and tested. This algorithm was 

meant to solve the virtual two-player game performance deterioration. However, it turned out that 

the virtual two-player game with updated load-ratio has a better performance compared to direct 

RL and virtual two-player games regardless of the number of players. Additionally, benefit from 

its smaller size of search space, the load-ratio learning converges much faster than the conventional 

RL algorithm with the same learning rate. Therefore, based on the results done in this project, the 

load-ratio learning game algorithm showed the greatest potential in satisfying the communication 

microgrid energy management requirement. 
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Appendix A Simulation code 

Two-player game simulation main code: 

function bytest_game 
tic 
data=zeros(1,sample_size); 
day=2; 
n=24*day; 
SoC=zeros(1,n); 
SoC(1)=0.7; 
v=zeros(1,n); 
alpha=zeros(1,n); 
v(1)=(SoC(1)-0.5)/0.05+56; 
Energy=1*25*1000; 
soc_weight=0.5; 
wa=1-soc_weight; 
batterystage=40; 
cost=zeros(1,n); 
top=2; 
amin=1; 
daygoal=0.8; 
phi=ones(1,top); 
phireal=1; 
rate_o=ones(1,top); 
sitenumber=2; 
realrate=rate_o(1:sitenumber)/sum(rate_o(1:sitenumber)); 
add=0; 
 
for t0=1:n 
 
t=rem(t0,24); 
if t==0 
   t=1; 
end 
         
        
[alpha0,~,self]=gamesolver(v(t0),t,wa,soc_weight,batterystage,Energy,amin,day
goal,phi,sitenumber,realrate(1:sitenumber)); 
 
alpha(t0)=alpha0; 
         
SoC(t0+1)=(SoC(t0)*Energy-
integral(@(x)load2(x),t,t+1)*alpha(t0)+integral(@(y)solar(y),t,t+1))/Energy*(
1+0.0*(rand-rand)); 
        
[~,cost(t0)]=evaluation(alpha(t0),t,batterystage,Energy,SoC(t0),soc_weight,da
ygoal,phireal,add,0,0); 
 
if SoC(t0+1)>=1 
   SoC(t0+1)=1; 
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end 
if SoC(t0+1)<=0 
   SoC(t0+1)=0; 
end 
 
v(t0+1)=(SoC(t0+1)-0.5)/0.05+56; 
end 
 
cg=sum(cost)/day; 
 
end 
 

Two-player game Sub-functions: 

Solar power function: 

function Psolar=solar(ti) 
t=ti*5; 
p1 =      -327.4 ; 
p2 =   4.435e+04; 
p3 =  -7.078e+05; 
q1 =      -143.6 ; 
q2 =        5928 ; 
Psolar =(1*(p1*t.^2 + p2*t + p3) ./ (t.^2 + q1*t + q2)+80)*(1+(0.2*rand-
0.2*rand)*1); 
end 
 

BS load function: 

function Pload=load2(t) 
pl1 =    0.000839 ; 
pl2 =       1.205  ; 
pl3 =      -12.02 ; 
pl4 =       34.29  ; 
ql1 =      -6.495  ; 
ql2 =       43.45  ; 
Pload =max(1*(500* (pl1*(t).^3 + pl2*(t).^2 + pl3*(t) + pl4) ./((t).^2 + 
ql1*(t) + ql2)+500)*(1+(0.2*rand-0.2*rand)*1),0); 
end 
 

Two-player game solver: 

function [ko,alphao, kself] = 
gamesolver(v,t,~,b0,batterystage,Energy,amin,daygoal,phi,sitenumber,rate) 
alphao=zeros(1,sitenumber); 
kself=zeros(1,sitenumber); 
SoC=(v-56)*0.05+0.5; 
daygoal2=daygoal*batterystage; 
T=1; 
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n=20; 
dT=T/n; 
realp=zeros(1,9); 
coder.extrinsic('linearprograming') 
coder.varsize('cost1','cost2','realrow','realcolumn') 
decide=zeros(1,sitenumber); 
  
  
  
for ppt=1:sitenumber 
    opteva=zeros(9); 
    cost1=zeros(9);   
    loadrate=rate(ppt); 
for k0=amin:1:9 
 for sigmaother0=amin:1:9 
        k=k0*0.1; 
        sigmaother=sigmaother0*0.1;        
        [~,Sn]=pdf2(t,dT,loadrate,k,sigmaother,n*(24-t),phi(ppt)); 
         En=-integral(@(x)load2(x),t,24)*(k*loadrate+(sigmaother*(1-
loadrate)))+1*integral(@(y)solar(y),t,24)*(1); 
        if t~=24 
        pr = normcdf(((Energy*daygoal-SoC*Energy)*1-En)/sqrt(Sn)); 
        if 1-pr>0.5 %if there is  possibility reaching 0.8 SoC? 
            opteva(k0,sigmaother0)=b0*(1-pr); 
            D=latency_indicator(t,k*loadrate+(sigmaother*(1-loadrate)),1); 
            cost1(k0,sigmaother0)=(D)*(1-b0)+opteva(k0,sigmaother0); 
        else  %if not stay at minimum alpha 
            cost1(k0,sigmaother0)=(1-(k*loadrate+sigmaother*(1-
loadrate)))/10; 
        end 
        else 
            cost1(k0,sigmaother0)=(k*loadrate+sigmaother*(1-loadrate))*(1-
b0)+b0*SoC; 
        end 
 end 
end 
 [m,~]=size(cost1); 
  realrow=1:m; 
  p=zeros(1,9); 
 
%nonlinear splver 
p(1:amin-1)=0; 
p10=non_linear_solver(cost1(amin:9,amin:9),cost1(amin:9,amin:9)'); 
p(amin:9)=p10(1:10-amin); 
 
%linear solver 
% p(1:amin-1)=0; 
% p10=linearprograming_real(cost1(amin:9,amin:9)); 
% if size(p10)==0 
%     p10=ones(1:9)/9; 
% end 
% p(amin:9)=p10(1:(10-amin)); 
  
 
realn=size(realrow,2); 
for i=1:realn     
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    realp(realrow(i))=p(i); 
end 
% for z=1:sitenumber 
r=rand; 
l=0; 
    for i=1:9         
        l=l+realp(i); 
        if l>r 
            break 
        end 
    end 
decide(ppt)=i*0.1;  
  
end 
kself=decide; 
ko=decide*rate(1:sitenumber)'/sum(rate(1:sitenumber)); 
end 
 

Objective function: 

function 
[D,cost]=evaluation(k,t,~,Energy,SoC,w_soc,daygoal,phireal,add,deadload,guess
) 
T=1; 
n=20; 
dT=T/n; 
[En,Sn]=pdf2_add(t,dT,1,k,0,n*(24-t),phireal,add,deadload,guess); 
 En=-integral(@(x)load2(x),t,24)*(k)+1*integral(@(y)solar(y),t,24)*(phireal); 
if t~=24 
        p = normcdf(((Energy*daygoal-SoC*Energy)-En)/sqrt(Sn)); 
        if 1-p > 0.5  %if there is  possibility reaching 0.8 SoC? 
          D=latency_indicator(t,k,1); 
%           D=k; 
          opteva=w_soc*(1-p); 
          cost=(D)*(1-w_soc)+opteva; 
        else  %if not stay at minimum alpha 
           cost=(1-k)/10; 
%            D=k; 
           D=latency_indicator(t,k,1); 
        end 
  
else 
     D=latency_indicator(t,k,1); 
     cost=D*(1-w_soc)+w_soc*SoC; 
      
%     D=k; 
end 
end 
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Q-learning single-agent code: 

function bytest_Q_learning 
day=90; 
n=24; 
record=zeros(1,day*24); 
SoC_record=zeros(1,day*24); 
SoC=zeros(1,n); 
soc1=0.7; 
SoC(1)=soc1; 
v=zeros(1,n); 
alpha=zeros(1,n); 
v(1)=(SoC(1)-0.5)/0.05+56; 
vpre=v(1); 
Energy=1*25*1000; 
b0=0.2; 
batterystage=20; 
cost=zeros(1,n); 
dump1=50; 
dump2=100; 
daygoal=0.8; 
phireal=0.5; 
%battreryin time 
batteryin=inf; 
%new load time 
timecheckin=inf; 
timecheckout=90; 
%rule breaker:added load  
dump11=90; 
dump22=10; 
deadload=-500; 
limitt=3; 
phi=[1 1 1 1 1];  
operation=zeros(1,limitt); 
operation(1:3)=ones(1,3); 
sitenumber=limitt; 
checkflag=0;     
nstrategy=5; 
batterysnumber=5; 
Qvalue=load('Q_table'); 
Qvalue=Qvalue.Q_table; 
alphaset=zeros(1,nstrategy); 
for i=1:nstrategy 
    alphaset(i)=1/nstrategy*i; 
end 
show=zeros(1,24); 
cost_record=zeros(1,n*day); 
kpp=1; 
kt=1; 
for t0=1:n*day 
    daymark=floor(t0/24)+1; 
    if t0>batteryin&&checkflag==0 
        checkflag=1; 
        SoC(t0)=SoC(t0)+0.5; 
    end 
    t=mod(t0,24)+(mod(t0,24)==0)*24; 
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    if t~=24 
        tz=floor(t/8)+1; 
    else 
        tz=1; 
    end 
     
    if t>dump1&&t<dump2&&cheat==1 
        phi=[0.5 0.5 0.5 0.5]; 
    end 
    if t0>timecheckin 
       operation(4)=1; 
    end 
    if t0>timecheckout 
        operation(3:4)=[0 0]; 
    end 
%state verifying 
    v(t)=vpre; 
    if t0<=30 && t==1 
       SoC(t)=rand()*0.5+0.2;  
    else  
       SoC(t)=(v(t)-56)*0.05+0.5; 
    end 
state=floor(SoC(t)/(1/batterysnumber))+1; 
  
%%%Q-learning process%%% 
    sumQall=0; 
    Qvalue_t=zeros(1,nstrategy); 
    for inner=1:nstrategy 
        if mod(t0,24)~=0 
        Qvalue_t(inner)=(Qvalue(tz,state,inner)); 
        sumQall= sumQall+Qvalue_t(inner); 
        else 
        Qvalue_t(inner)=(Qvalue(tz,state,inner)); 
        sumQall= sumQall+Qvalue_t(inner); 
        end 
    end 
%%%end learning%%% 
 
    for inner=1:nstrategy 
        chance(inner)=Qvalue_t(inner)/sumQall; 
    end 
        
        if mod(t0,24)~=0 
        [~, idx]=max(chance); 
        show(t)=alphaset(idx); 
        else 
        [~, idx]=max(chance); 
        show(24)=alphaset(idx); 
        end 
 
    r=rand; 
    l=0; 
    for i=1:nstrategy        
      l=l+chance(i); 
      if l>r 
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            break 
      end 
    end 
    alphareal=alphaset(idx); 
    record(t0)=alphareal; 
 
alpha(t)=alphareal; 
cost(t)=evaluation(alphareal,t,batterystage,Energy,SoC(t),b0,daygoal,1-
phireal*(t0>=dump1&&t0<=dump2),phi(sitenumber)*(t>timecheckin),deadload*(t0>d
ump11&&t0<dump22),0); 
SoC(t+1)=(SoC(t)*Energy-deadload*(t0>dump11&&t0<dump22)-
integral(@(x)load2(x),t,t+1)*alphareal+integral(@(y)solar(y),t,t+1)*(1-
phireal*(t0>dump1&&t0<dump2)))/Energy; 
if SoC(t+1)>=1 
   SoC(t+1)=1; 
elseif SoC(t+1)<=0 
   SoC(t+1)=0; 
end 
     
    SoC_record(kt)=SoC(t); 
    kt=kt+1; 
    if mod(t0,24)==0 
        % record cost sum of one day 
        cost_record(kpp)=sum(cost); 
        kpp=kpp+1; 
    end 
    v(t+1)=(SoC(t+1)-0.5)/0.05+56; 
    vpre=v(t+1); 
  
end 
  
end 
 

Q-learning multi-agent code: 

function RL_no_time_main() 
tic 
global random_switch 
random_switch=0; 
day=50; 
n=24; 
SoC=zeros(1,n); 
soc1=0.8; 
SoC(1)=soc1; 
  
SoC_record=zeros(1,24*day); 
  
v=zeros(1,n); 
alpha=zeros(1,n); 
v(1)=(SoC(1)-0.5)/0.05+56; 
vpre=v(1); 
Energy=1*25*1000; 
cost=zeros(1,n); 
dump1=500*24; 
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dump2=150*24; 
daygoal=0.8; 
phireal=0.2; 
cost_record=zeros(1,day); 
kpp=1; 
agent_1_r=zeros(1,day); 
  
%battreryin time 
batteryin=inf; 
  
%new load time 
timecheckin=inf; 
timecheckout=90; 
  
%rule breaker:dead load  
dump11=500; 
dump22=10; 
deadload=-500; 
  
%number of BS controllers 
limitt=10; 
  
%BS load rate 
load_rate=ones(1,limitt)/limitt; 
  
%new connected device index 
phi=[1 1 1 1 1];  
  
%operation status index 
operation=zeros(1,limitt); 
operation(1:3)=ones(1,3); 
  
  
%new battery plug in flag 
checkflag=0; 
     
% Q learning step size 
aupdate=0.1; 
  
  
  
% Horizon factor 
gamma=0.9; 
  
%available strategy number 
nstrategy=20; 
  
%battery level 
batterysnumber=20; 
  
%ndividualcounter for SoC levels 
soc_count_t=zeros(limitt,batterysnumber+1); 
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%initialize Q value table 
Qvalue=ones(limitt,batterysnumber+1,nstrategy)/10; 
  
% for i=1:batterysnumber 
%     for j=1:nstrategy 
%         Qvalue(:,i,j)=normrnd(1,1); 
%     end 
% end 
  
%initilize strategy index 
alphaset=zeros(1,nstrategy); 
for i=1:nstrategy 
    alphaset(i)=1/nstrategy*i; 
end 
learning_count=0; 
ini=0; 
  
alpha_all=0; 
  
for t0=1:n*day 
    daymark=floor(t0/24)+1; 
     
%     if t0>batteryin&&checkflag==0 
%         checkflag=1; 
%         SoC(t0)=SoC(t0)+0.5; 
%     end 
  
    %get time of one day 
    t=mod(t0,24)+(mod(t0,24)==0)*24; 
     
    %power outage flag 
%     if t>dump1&&t<dump2&&cheat==1 
%         phi=[0.5 0.5 0.5 0.5]; 
%     end 
     
    % new load kick in 
    if t0>timecheckin 
       operation(4)=1; 
    end 
    % load 3 and 4 disconnected 
    if t0>timecheckout 
        operation(3:4)=[0 0]; 
    end 
     
%SoC state verifying 
% if daymark<60&&t==1 
%     SoC(t)=rand*0.8+0.2;        
% else 
    v(t)=vpre; 
    SoC(t)=(v(t)-56)*0.05+0.5; 
% end 
  
SoC_record(t0)=SoC(t); 
    state=floor(SoC(t)/(1/batterysnumber))+1;   
%%% making decisions %%% 
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% for each BS controller 
     alphareal=zeros(1,limitt); 
     idx=zeros(1,limitt); 
    for agent=1:limitt 
        sumQall=0; 
        sumQvalue=zeros(1,nstrategy); 
         
    % calculate sum of Q value rows 
        for inner=1:nstrategy 
            sumQvalue(inner)=(Qvalue(agent,state,inner)); 
            sumQall= sumQall+sumQvalue(inner); 
        end 
     
%     for inner=1:nstrategy 
%         chance(inner)=sumQvalue(inner)/sumQall; 
%     end 
    tt=0.5; 
    sumQvalue=exp(Qvalue(agent,state,:)/tt); 
    % softmax function 
    chance=zeros(1,nstrategy); 
    for inner=1:nstrategy 
        chance(inner)=exp(Qvalue(agent,state,inner)/tt)/sum(sumQvalue); 
    end 
     
    % choose the action with maximum Q value 
    [~, idx(agent)]=max(chance); 
      
    if daymark<inf 
    rr=rand; 
    l=0; 
    for i=1:nstrategy        
      l=l+chance(i); 
      if l>rr 
            break 
      end 
    end 
     
    idx(agent)=i; 
    end 
     
    alphareal(agent)=alphaset(idx(agent)); 
     
%     record(daymark,t)=idx; 
%%%end trying%%% 
    end 
  
%     cost(t)=evaluation(alphareal,t,batterystage,Energy,SoC(t),b0,daygoal,1-
phireal*(t0>=dump1&&t0<=dump2),phi(sitenumber)*(t>timecheckin),deadload*(t0>d
ump11&&t0<dump22),0); 
    alphareal_total=alphareal*load_rate(1:limitt)'; 
    alpha(t)=alphareal_total; 
    alpha_all=alpha_all+alpha(t); 
    SoC(t+1)=(SoC(t)*Energy-deadload*(t0>dump11&&t0<dump22)-
integral(@(x)load2(x),t,t+1)*alphareal_total+integral(@(y)solar(y),t,t+1)*(1-
phireal*(t0>dump1&&t0<dump2)))/Energy; 
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    if SoC(t+1)>=1 
        SoC(t+1)=1; 
    elseif SoC(t+1)<=0 
        SoC(t+1)=0; 
    end 
     
%     if mod(t0,24)==0 
%         SoC(t+1)=soc1; 
%     end 
    v(t+1)=(SoC(t+1)-0.5)/0.05+56; 
    vpre=v(t+1); 
%%%Reinforcement learning updating%%% 
%new state 
    newstate=floor(SoC(t+1)/0.1)+1; 
    %difference between previous two days' rewards 
    r_diff=0; 
    if kpp~=1 
        r_diff=agent_1_r(kpp)-agent_1_r(kpp-1); 
    end 
     
    if abs(r_diff)>=5&&ini==1 
        learning_count=10*24; 
        ini=1; 
    end 
    if learning_count>0 
        learning_count=learning_count-1; 
        time_gap=t0-24-learning_count; 
        t0_in=t0-time_gap; 
    else 
        t0_in=t0; 
    end 
    for agent=1:limitt 
        soc_count_t(agent,state)=soc_count_t(agent,state)+1; 
        
[r_inst,Qvalue(agent,state,idx(agent))]=RL_notime_max_com_soc_double(newstate
,SoC(t),SoC(1),alphareal(agent),alpha_all,Qvalue(agent,state,idx(agent)),Qval
ue(agent,:,:),batterysnumber,nstrategy,t,t0_in,gamma,aupdate,soc_count_t(agen
t,state)); 
    end 
%         agent_1_r(kpp)=agent_1_r(kpp)+r; 
        agent_1_r(kpp)=agent_1_r(kpp)+r_inst; 
        if t==24   
            kpp=kpp+1; 
            ini=0; 
            alpha_all=0; 
            vpre; 
        end 
  
end 
  
  
     figure('Name','Game solution') 
      
     z=plotyy(1:n,SoC(1:n),1:n,alpha); 
     tail1=sum(SoC)/n; 
     tail2=sum(alpha)/n; 
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%       stem(1:n,cost) 
     legend('SoC','\sigma') 
     xlabel('Time (Hr)') 
     ylabel(z(1),'SoC') % left y-axis 
     ylabel(z(2),'Traffic Shaping factor \sigma','Fontsize',20)    
% %     i=1:24; 
% %     figure 
% %     sum(cost) 
% %     plot(i,show(i)) 
     i=1:day; 
     figure 
     plot(i,agent_1_r(i)) 
    assignin('base', 'Q_table', Qvalue) 
  
% % figure 
% % [d,y]=meshgrid(1:1:24,1:1:day+1); 
% % surf(d,y,record) 
% assignin('base', 'Q_table', Qvalue) 
figure 
plot(SoC_record); 
figure 
bar3(squeeze(Qvalue(1,:,:))) 
toc 
end 
 

Linear-reward inaction code: 

function bytest_RL_more_player_compare 
tic 
day=50; 
batterysnumber=20; 
n=24*day; 
SoC=zeros(1,n); 
SoC(1)=0.7; 
v=zeros(1,n); 
alpha=zeros(1,n); 
v(1)=(SoC(1)-0.5)/0.05+56; 
Energy=3*25*1000; 
w_soc=0.5; 
wsoc_uni=0.5; 
cost=zeros(1,24); 
D=zeros(1,n); 
sitenumber=3; 
  
amin=2; 
dump1=24*500; 
dump2=24*200; 
daygoal=0.8; 
phireal=1; 
r0=zeros(1,day+1); 
agent_1_r=zeros(1,day); 
cg=zeros(1,sitenumber); 
load_rate=ones(1,sitenumber)/sitenumber; 
SoC_record=zeros(1,24*day); 
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alpha_record=zeros(1,24*day); 
%rule breaker:dead load  
dump11=90; 
dump22=10; 
deadload=-500; 
  
  
  
%available strategy number 
nstrategy=20; 
alpha_all=0; 
cost_record=zeros(1,day); 
alphaset=zeros(1,nstrategy); 
for i=1:nstrategy 
    alphaset(i)=1/nstrategy*i; 
end 
  
for site_index=3:sitenumber 
    limitt=site_index; 
    kpp=1; 
    % rate=ones(1,site_index); 
    p_option=1/nstrategy*ones(limitt,batterysnumber+1,nstrategy); 
  
 for t0=1:n 
    daymark=floor(t0/24)+1; 
     
%     if t0>batteryin&&checkflag==0 
%         checkflag=1; 
%         SoC(t0)=SoC(t0)+0.5; 
%     end 
  
    %get time of one day 
     t=mod(t0,24)+(mod(t0,24)==0)*24; 
     
%SoC state verifying 
% if daymark<60&&t0==1 
%     SoC(t0)=rand*0.8+0.2;        
% else 
     
  
    if SoC(t0)>1 
        SoC(t0)=1; 
    end 
% end 
  
    SoC_record(t0)=SoC(t0); 
    state=floor(SoC(t0)/(1/batterysnumber))+1;   
%%% making decisions %%% 
    idx=zeros(1,limitt); 
    alphareal=zeros(1,limitt); 
    for agent=1:limitt 
  
    % softmax function 
    chance=zeros(1,nstrategy); 
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    for inner=1:nstrategy 
        chance(inner)=p_option(agent,state,inner); 
    end 
  
    if daymark<inf 
    rr=rand; 
    l=0; 
    for i=1:nstrategy        
      l=l+chance(i); 
      if l>rr 
            break 
      end 
    end 
     
    idx(agent)=i; 
    end 
     
    alphareal(agent)=alphaset(idx(agent)); 
     
%     record(daymark,t0)=idx; 
%%%end trying%%% 
    end 
%     
cost(t0)=evaluation(alphareal,t0,batterystage,Energy,SoC(t0),b0,daygoal,1-
phireal*(t0>=dump1&&t0<=dump2),phi(sitenumber)*(t0>timecheckin),deadload*(t0>
dump11&&t0<dump22),0); 
    alphareal_total=alphareal*load_rate(1:limitt)'/sum(load_rate(1:limitt)); 
%     alpha(t0)=alphareal_total; 
    alpha(t0)=alphareal(1); 
    alpha_record(t0)=alphareal_total; 
    alpha_all=alpha_all+alpha(t0); 
%     if t0>=2500 
%         k=1; 
%     end 
    SoC(t0+1)=(SoC(t0)*Energy-deadload*(t0>dump11&&t0<dump22)-
integral(@(x)load2(x),t,t+1)*alphareal_total+integral(@(y)solar(y),t,t+1)*(1-
phireal*(t0>dump1&&t0<dump2)))/Energy; 
    
[D_record_day(t0),cost(t)]=evaluation(alphareal_total,t,batterysnumber,Energy
,SoC(t0),wsoc_uni,daygoal,phireal,0,0,0); 
    if SoC(t0+1)>=1 
        SoC(t0+1)=1; 
    elseif SoC(t0+1)<=0 
        SoC(t0+1)=0; 
    end 
     
%     if mod(t0,24)==0 
%         SoC(t0+1)=soc1; 
%     end 
%     v(t0+1)=(SoC(t0+1)-0.5)/0.05+56; 
%     vpre=v(t0+1); 
%     SoCpre = SoC (t0+1); 
     
    %%%Reinforcement learning updating%%% 
%new state 
    newstate=floor(SoC(t0+1)/(1/batterysnumber))+1; 
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    %difference between previous two days' rewards 
  
     
    for agent=1:limitt 
        
[r1,p_option(agent,state,:)]=RL_reard_inauction_common(newstate,SoC(t0+1),alp
hareal(agent),p_option(agent,state,:),idx(agent),nstrategy,t,limitt,w_soc,cos
t(t)); 
    End 
% Low-soc barrier 
%     for i=1:limitt 
%             for j=1:nstrategy 
%                 if p_option(i,state,j)>=0.8 
%                     p_option(i,state,j)=0.8; 
%                 end 
%                 if p_option(i,state,j)<=0.2/(nstrategy-1) 
%                    p_option(i,state,j)=0.2/(nstrategy-1); 
%                 end 
%             end 
%     end 
%         for i=1:limitt 
%             for j=1:3 
% %                 if p_option(i,state,j)>=0.3 
%                     for k=1:15 
%                         p_option(i,k,j)=0.3; 
%                     end 
% %                 end 
%             end 
%         end 
 
    for i=1:limitt 
            for j=1:nstrategy 
            p_option(i,state,j)=p_option(i,state,j)/sum(p_option(i,state,:)); 
            end 
    end 
    r0(daymark)=r0(daymark)+r1; 
%         agent_1_r(kpp)=agent_1_r(kpp)+r; 
        agent_1_r(kpp)=agent_1_r(kpp)+r1; 
        if t==24   
            SoC(t0+1)=SoC(t0); 
            cost_record(daymark)=sum(cost); 
%             D_record_day=zeros(1,24); 
            agent_1_r(kpp)=agent_1_r(kpp)+(SoC(t0))*10; 
            kpp=kpp+1; 
            ini=0; 
            alpha_all=0; 
        end 
  
  
 end 
%  plot(day_cost) 
cg(site_index)=sum(cost_record(day-9:day))/10; 
% eva_record(site_index)=sum() 
end 
  
figure('Name','RL solution') 
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     yyaxis left 
     plot(1:25,SoC_record(24*(day-1):end),'-','LineWidth',1) 
     ylabel('SoC','FontSize',20) % left y-axis 
     xlabel('Time (Hr)','FontSize',20) 
     yyaxis right 
     stairs(1:24,alpha(end-23:end),'LineWidth',5) 
     set(gca,'fontsize',20)      
     legend({'SoC','\sigma'},'FontSize',20) 
     grid on 
     ylabel('Traffic Shaping factor \sigma','FontSize',20)  
%      figure 
%      plot(day_cost) 
% cg=sum(cost((day-1)*24:end)); 
% cg=w_alpha*sum(D)/n+w_soc*sum(SoC(t0))/t0; 
  
% figure 
% plot(SoC_record) 
% figure 
% stairs(alpha_record) 
% figure 
% plot(r0) 
figure 
bar3(squeeze(p_option(1,:,:))) 
figure('Name','eva') 
plot(cost_record) 
figure('Name','eva_number') 
plot(cg(2:end)) 
toc 
end 
 

Linear reward inaction policy updating function: 

function 
[r,p_option_out]=RL_reard_inauction_common(newstate,SoC_now,alpha,p_option,id
x,nstrategy,t,n,w_soc,r_cheat) 
  
hold=0.8; 
% if t~=23  
    if SoC_now>hold && t>=20 
        r=1; 
    elseif SoC_now>0.3 
        r=w_soc*(1/(1+exp(-(SoC_now)/(alpha))))+(1-w_soc)*(1/(1+exp(-
alpha*(SoC_now)))); 
    else 
        r=(1-alpha)/10; 
    end 
  
%cost function known 
% r=r_cheat; 
  
  
%updating law 
    a=0.05; 
    p_option_out=zeros(1,nstrategy); 
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    for i=1:nstrategy 
        if i==idx 
%             squeeze(p_option(i)); 
            p_option_out(i)=p_option(i)+a*r*(1-p_option(i)); 
%             squeeze(p_option(i)); 
        elseif p_option(i)>0 
            p_option_out(i)=p_option(i)-a*r*(p_option(i)); 
        else 
            p_option_out(i)=0; 
        end 
    end 
end 
 

Load-ratio learning game code: 

function bytest_game_ratio_adapting_2_1_fore_knowedge_smaller_samples 
tic 
day=5; 
n=24*day; 
SoC=zeros(1,n); 
SoC(1)=0.8; 
v=zeros(1,n); 
alpha=zeros(1,n); 
v(1)=(SoC(1)-0.5)/0.05+56; 
Energy=3*25*1000; 
w_soc=0.5; 
w_alpha=1-w_soc; 
batterystage=40; 
cost=zeros(1,n); 
D=zeros(1,n); 
day_cost=zeros(1,day); 
top_p=0.9; 
amin=1; 
zoom=1; 
dump1=24*50; 
dump2=24*15; 
daygoal=0.8; 
tcheckin=30; 
phireal=1; 
sitenumber=3; 
cg=zeros(1,sitenumber); 
alpha_self_record=zeros(1,sitenumber); 
alphao_record=zeros(1,sitenumber); 
% rate=ones(1,sitenumber)/sitenumber; 
ratio_stage=5; 
reward_record=zeros(1,day+1); 
  
% rate=[0.4 0.6 0.5]; 
for site_index=3:sitenumber 
    real_rate=ones(1,site_index)/site_index; 
    count=1; 
    initial_believe=0.5; 
    rate=ones(1,site_index)/site_index; 
% rate=ones(1,site_index); 
p_ratio=(1-initial_believe)*ones(site_index,ratio_stage)/(ratio_stage-1); 
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ratio_picked=zeros(1,sitenumber); 
for i=1:site_index 
    done=0; 
    for j=1:ratio_stage 
        if 1/ratio_stage*j>=rate(i)&&done==0 
            p_ratio(i,j)=initial_believe; 
            done=1; 
        end 
    end 
end 
  
 for t0=1:n 
    daymark=floor(t0/24)+1; 
    t=mod(t0,24)+(mod(t0,24)==0)*24; 
    add=0; 
   for i=1:site_index 
        pick=rand; 
        p_roll=0; 
        flag=0; 
        for j=1:ratio_stage 
            p_roll=p_roll+p_ratio(i,j); 
            if p_roll>pick&&flag==0 
                rate(i)=j/ratio_stage; 
                ratio_picked(i)=j; 
                flag=1; 
            end 
        end 
%         [~,ratio_picked(i)]=max(p_ratio(i,:)); 
   end 
%     end 
%    if  t==1||t==9||t==17 
%       load_shedding action numbers 
action_n=4; 
       
[alpha(t0),alphao,alpha_self]=gamesolver_ratio_adapt_2_1(v(t0),t,t0,w_alpha,w
_soc,batterystage,Energy,amin,daygoal,phireal,site_index,rate,real_rate,ratio
_stage); 
  
  
   for i=1:site_index 
   alpha_self_record(i)=alpha_self_record(i)+alpha_self(i)/24; 
%    alphao_record(i)=alphao_record(i)+alphao(i)/24; 
   end 
    if t0>=dump1&&t0<=dump2 
        phireal=0.5; 
    end 
    
[D(t0),cost(t0)]=evaluation(alpha(t0),t,batterystage,Energy,SoC(t0),w_soc,day
goal,phireal,add,0,0); 
    SoC(t0+1)=(SoC(t0)*Energy-
integral(@(x)load2(x),t,t+1)*alpha(t0)+phireal*integral(@(y)solar(y),t,t+1))/
Energy; 
 
if SoC(t0+1)>=1 
   SoC(t0+1)=1; 
end 
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if SoC(t0+1)<=0 
   SoC(t0+1)=0; 
end 
v(t0+1)=(SoC(t0+1)-0.5)/0.05+56; 
 
%load ratio adjusting process 
        
reward_record(daymark)=reward_record(daymark)+self_reward_1_day(SoC(t0+1),t,w
_soc,daygoal,rate(1),alpha_self(1),alphao(1)); 
%         if  t==8||t==16||t==24       
            for i=1:site_index 
                    a=0.05; 
                    r=cost(t0); 
          %% reward function using local information                       
r=self_reward_1_day(SoC(t0+1),t,w_soc,daygoal,rate(i),alpha_self(i),alphao(i)
); 
                    for j=1:ratio_stage 
                        if j==ratio_picked(i) 
                            p_ratio(i,j)=p_ratio(i,j)+a*r*(1-p_ratio(i,j)); 
                        elseif p_ratio(i,j)>(1-top_p)/(ratio_stage-1) 
                            p_ratio(i,j)=p_ratio(i,j)-a*r*(p_ratio(i,j)); 
                        else 
                            p_ratio(i,j)=(1-top_p)/(ratio_stage-1); 
                        end 
                        if p_ratio(i,j)>=top_p 
                            p_ratio(i,j)=top_p; 
                        end 
                        if p_ratio(i,j)<=(1-top_p)/(ratio_stage-1) 
                            p_ratio(i,j)=(1-top_p)/(ratio_stage-1); 
                        end                 
                    end 
            end  
%         end 
  
        if t==24 
%             SoC(1)=SoC(t); 
            if count<=zoom||count>=day-zoom 
                day_cost(count)=sum(cost(t0-23:t0)); 
            else 
                day_cost(count)=sum(cost(t0-23*zoom:t0))/zoom; 
            end 
            count=count+1; 
            alpha_self_record=zeros(1,sitenumber); 
            alphao_record=zeros(1,sitenumber); 
        end 
 end 
%  plot(day_cost) 
cg(site_index)=sum(cost)/day; 
end 
figure 
plot(cg(2:end)) 
cg(sitenumber) 
figure('Name','eva') 
plot(day_cost) 
figure('Name','RL+game solution') 
     yyaxis left 
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     plot(n-23:n,SoC(n-23:n),'--','LineWidth',5) 
     ylabel('SoC','FontSize',20) % left y-axis 
     xlabel('Time (Hr)','FontSize',20) 
     yyaxis right 
%      plot(1:n,alpha,'LineWidth',5) 
     plot(n-23:n,D(n-23:n)*10+31,'LineWidth',5) 
     set(gca,'fontsize',20)      
     legend({'SoC','PSNR'},'FontSize',20) 
     grid on 
     ylabel('PSNR','FontSize',20)  
      
% figure 
% plot(cost) 
figure 
bar3(squeeze(p_ratio)) 
toc 
end 
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