A BENCHMARKING FRAMEWORK FOR SENSITIVITY AND COMPARATIVE ANALYSIS OF ENERGY HARVESTING STRATEGIES VIA RETRACTABLE WIND ENERGY CONVERSION SYSTEMS

by

Guy Gadola

B.S. in Electrical Engineering, University of Pittsburgh, 1991M.S. in Mathematics (with the Computer Science Option),Youngstown State University, 2006

Submitted to the Graduate Faculty of
the Kenneth P. Dietrich School of Arts and Sciences in partial
fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2019

UNIVERSITY OF PITTSBURGH DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Guy Gadola

It was defended on

July 30, 2019

and approved by

Daniel Mossé, Professor, Computer Science, University of Pittsburgh

Alex K. Jones, Professor, Electrical and Computer Engineering, University of Pittsburgh

Rami Melhem, Professor, Computer Science, University of Pittsburgh

Greg Reed, Professor, Electrical and Computer Engineering, University of Pittsburgh

Taieb Znati, Professor, Computer Science, University of Pittsburgh

Dissertation Director: Daniel Mossé, Professor, Computer Science, University of Pittsburgh

A BENCHMARKING FRAMEWORK FOR SENSITIVITY AND COMPARATIVE ANALYSIS OF ENERGY HARVESTING STRATEGIES VIA RETRACTABLE WIND ENERGY CONVERSION SYSTEMS

Guy Gadola, PhD

University of Pittsburgh, 2019

Wind power is well known for being variable. Our main insight is that one can take advantage of variability by appropriately building wind-energy harvesters that may be stowed/retracted when winds are calm. We refer to harvesters that can be deployed and retracted on command as retractable wind-energy harvesters (RWEHs). Among other advantages, stowed harvesters do not block views, do not constrain avian life, and do not make noise, and thus can increase the neighborliness of harvesting wind near or within a residential community.

RWEH control algorithms help owners to achieve the neighborliness that might be required by an RWEH hosting community while helping RWEHs' efficiency. The stowing requirements, or operation limitation agreements (OLAs), specify conditions when the retractable harvesters should be stowed (e.g., when it is not windy).

In this work, we contribute a suite of benchmarks to compare RWEH control algorithms, three families of control algorithms, and a simulator with which to run the algorithms. The benchmark suite provides workloads formed from the following workload components: 1. specifications of a harvester to be controlled, 2. a set of historical windspeeds from 30 weather stations, and 3. a variety of stowing requirements.

We derived OLAs from a survey of 304 respondents in which survey-takers were asked whether they would support RWEHs viewable from where they live and when the RWEHs should be hidden or stowed.

TABLE OF CONTENTS

PRE	EFACI	Ξ	
1.0	THE	SIS A	ND INTRODUCTION
	1.1	Object	tives/goals, and challenges
		1.1.1	Overarching goals and approach
		1.1.2	Specific goals
		1.1.3	Challenges
			1.1.3.1 Anticipating actual agreements
			1.1.3.2 Anticipating actual wind conditions
			1.1.3.3 Anticipating actual electricity-price profiles
	1.2	Why re	etractable-energy harvesters
		1.2.1	Self-sufficient microgrids
		1.2.2	Wind energy harvesters that are retractable
			1.2.2.1 Reducing the visual impact of wind harvesters 5
			1.2.2.2 Controlling the retractable harvesters
			1.2.2.3 Time-of-day electricity pricing
		1.2.3	Benchmarks
		1.2.4	Why these benchmarks and metrics
2.0	STA	TE OF	THE ART AND ITS SHORTCOMINGS 8
	2.1	Survey	rs about wind energy projects
	2.2	Benchi	marks involving wind turbines
		2.2.1	Benchmarking the control of rotor speed
		2.2.2	Benchmarking stochastic control of energy storage devices 11

	2.3	Stocha	stic control algorithms	12
	2.4	Sub-ho	ourly wind data	13
		2.4.1	Automated Surface Observing System (ASOS) data set DSI 6405 .	13
		2.4.2	Minute-by-minute windspeed data from NREL's M2 tower	13
		2.4.3	Fifteen-minute windspeed data from MADIS	14
	2.5	Wind t	curbine simulators	14
		2.5.1	WISDEM	14
		2.5.2	HOMER	15
3.0	MOI	DES O	F OPERATION DEFINED BY OPERATIONAL LIMITA-	
	TIO	N AGF	REEMENTS (OLA'S)	16
	3.1	Derivir	ng potential operation limitation agreements	16
		3.1.1	Survey results	16
		3.1.2	Using a threshold to derive OLA conditions	21
			3.1.2.1 Requirement 1 of 2: "When it's not windy" (138/245 or	
			56%)	21
			3.1.2.2 Requirement 2 of 2: "During every night" (29/245 or 12%).	22
			3.1.2.3 Out-of-scope requirement: "When birds are migrating"	
			(100/245 or 41%)	24
		3.1.3	Sets of operational limitations	24
	3.2	Variou	s energy harvesting strategies; Introducing the algorithms	27
		3.2.1	The simulator: configuring and running the control algorithms	28
		3.2.2	Goal and overview of the control algorithms	32
	3.3	Varian	ts in each category of algorithms	33
	3.4	Algorit	hm categories	34
		3.4.1	Static (with and without weather prediction)	34
		3.4.2	Aging (with and without weather prediction)	34
		3.4.3	Fuzzy-Crisp Hybrid (with and without weather prediction)	35
			3.4.3.1 Fuzzy-Crisp variant $0x0$	36
			3.4.3.2 Fuzzy-Crisp variant $0x1$	36
			3.4.3.3 Fuzzy-Crisp variant 0x2	36

			3.4.3.4	Fuzzy-Crisp variant 0x3	36
			3.4.3.5	Membership functions	37
			3.4.3.6	Combined degree of membership	37
	3.5	Pseudo	o-code		38
	3.6	A look	into selec	cted code of the algorithms	39
		3.6.1	Code for	r the Aging algorithms $(Dynamic_1 \text{ and } Dynamic_{1P})$	39
			3.6.1.1	For OLAs allowing unlimited state transitions	39
			3.6.1.2	For OLAs limiting state transitions to two per month	42
		3.6.2	How the	e algorithms use weather prediction	43
			3.6.2.1	Static and Aging variant using weather prediction and is	
				not transition-limited (i.e., variant 0x2)	43
			3.6.2.2	Static and Aging variant using weather prediction and is	
				transition-limited (i.e., variant 0x3)	44
			3.6.2.3	Fuzzy variant using weather prediction and is not	
				transition-limited (i.e., variant $0x2$)	45
			3.6.2.4	Fuzzy variant using weather prediction and is transition-	
				limited (i.e., variant 0x3)	46
	3.7	Trainir	ng method	d: Exploring a two-dimensional design space	47
		3.7.1	Context	of $y_{intercept}$ for the Static and Aging category of algorithms	48
		3.7.2	Context	of $y_{intercept}$ for the Fuzzy category of algorithms	48
4.0	PEF	RFORM	IANCE	ANALYSIS	50
	4.1	Metric	s		50
		4.1.1	Criteria		50
		4.1.2	Applyin	g the criteria to a specific metric, SCNetNorm	51
		4.1.3	The Net	Norm metric	52
		4.1.4	Measuri	ng OLA compliance	53
			4.1.4.1	OLA-compliance function	53
			4.1.4.2	OLA-compliance-measuring metrics	53
			4.1.4.3	Orderings of OLA-compliance-measuring metrics	54
		4.1.5	Cost-de	pendent complementary metrics	55

		4.1.5.1 Market Quadrants Scores (MQS)	56
		4.1.5.2 Market Quadrants Matching Percentage (MQMP)	57
		4.1.5.3 MQNetNorm	58
	4.1.6	Analysis of SCNetNorm	60
		4.1.6.1 Proofs	60
		4.1.6.2 Future work: Market Quadrants Matching Percentage of	
		Energy (MQMPEnergy)	61
		4.1.6.3 Future work: Providing current energy-price profiles	62
4.2	Bench	marks	63
		4.2.0.1 A function defining rewards/penalties (or incentives)	68
		4.2.0.2 The training and testing partitions of the benchmarks	70
		4.2.0.3 Simulated windspeed forecasts	76
4.3	Findin	g "ideal" deployment (wake) and retraction (sleep) schedule for	
	OLA5	, which is transition limited	77
	4.3.1	Finding the best path through the best monthly instances of de-	
		ployment patterns	77
	4.3.2	Finding the best instance of each deployment pattern	79
4.4	List of	files provided by this benchmark suite	81
4.5	Recap	of the Benchmarks	82
4.6	Compa	arative and sensitivity analysis	83
	4.6.1	Comprehensive results: Comparing performance of each pertinent	
		strategy (i.e., algorithm variant) per each OLA per station	83
		4.6.1.1 Weather prediction	86
		4.6.1.2 Running average window size	88
	4.6.2	Exploring why Fuzzy-Crisp variant 0x2 (weather-prediction using,	
		non-transition limited) (Rev. 1.4) usually outperformed variant $0x0$	
		(non-prediction-using, non-transition limited) (Rev. 1.4) for OLA 3	90
	4.6.3	Examining the relationship between mean windspeed, energy avail-	
		able during quiet hours, and NetNorm	92

		4.6.4	A sensitivity analysis of the Retraction-Threshold-Difference setting	
			for Aging (variant $0x0$) (Rev. 1.1) for OLAs 3 and 4	93
		4.6.5	Sensitivity analyses on λ	93
			4.6.5.1 Aging	93
			4.6.5.2 Fuzzy-Crisp, OLA 3, transitions unlimited	94
			4.6.5.3 Fuzzy-Crisp, OLA 5, transitions limited	95
		4.6.6	A sensitivity analysis on the forecasting time horizon	96
		4.6.7	Summary of sensitivity analyses and explorations of larger and/or	
			denser design spaces	105
		4.6.8	A preliminary comparison of alternative OLA's	107
5.0	CON	NCLUS	SIONS	109
6.0	\mathbf{FUT}	URE	WORK	110
7.0	BIB	LIOGF	RAPHY	114
API	PEND	ICES .		125
	A.1	Pseudo	o-code for the algorithms	125
		A.1.1	Most recent revision of each variant of each category	125
		A.1.2	Previous revision of each variant of each category	137
	A.2	Creati	ng and using fuzzy-set membership functions	149
		A.2.1	Example of how to make a membership function for the fuzzy set	
			NOT WINDY AT KBOS	149
			A.2.1.1 Files describing fuzzy-set membership in the set NOT	
			WINDY AT <station></station>	151
		A.2.2	Example of how to make fuzzy-set membership function for set	
			DAILY VISIBILITY BAN [IN EFFECT]	153
		A.2.3	Translating membership values to a retraction speed	155
		A.2.4	Windspeeds deemed "windy" for crisp applications	156
	A.3	Model	of harvester that is towered	160
		A.3.1	Power curve	161
		A.3.2	Too windy	163
		A.3.3	Deployment energy	164

	A.3.4	Retraction energy	166
	A.3.5	Deployment time	166
A.4	Windsp	peed and hourly electricity price data sources	168
	A.4.1	Windspeed data from qualifying weather stations in text	168
	A.4.2	Hourly electricity price data	172
A.5	Comm	unity-specified operating boundaries	173
	A.5.1	Community-specified noise and view policies	173
	A.5.2	Community-specified maximum time visible	173
	A.5.3	Community-specified maximum deployment speed	174
A.6	Retract	tion-suitable wind energy harvesting technologies	175
	A.6.1	Retractable land/sea-supported wind energy systems	175
		A.6.1.1 Wind-power-harvesting fabric (envisioned)	175
		A.6.1.2 Harvesters having telescopic supports	177
		A.6.1.3 Oscillating-wing windmill (concept published, embodi-	
		ment envisioned)	177
	A.6.2	Airborne wind energy systems (actual)	179
A.7	Prepar	ing the windspeed data	180
	A.7.1	Filtering	180
	A.7.2	Shifting fields	181
	A.7.3	Removing anachronistic records	181
	A.7.4	Handling identically timestamped records	183
	A.7.5	Processed outliers	188
	A.7.6	Interpolating	195
A.8	Averag	e windspeeds for each station	196
A.9	Survey	data	198
A.10	Derive	d quiet hours for each municipality	214
A.11	Results	s of the Algorithms Static	222
	A.11.1	Using current weather only	222
		A.11.1.1 OLAs 1 & 2	222
		A 11 1 2 OLAs 3 & 4	224

	A.11.1.3 OLAs 5 & 6	226
	A.11.2 Using weather prediction	227
	A.11.2.1 OLAs 1 & 2	227
	A.11.2.2 OLAs 3 & 4	229
	A.11.2.3 OLAs 5 & 6	230
A.12	Results of the Algorithms Aging	231
	A.12.1 Using current weather only	231
	A.12.1.1 OLAs 1 & 2	231
	A.12.1.2 OLAs 3 & 4	234
	A.12.1.3 OLAs 5 & 6	236
	A.12.2 Using weather prediction	239
	A.12.2.1 OLAs 1 & 2	239
	A.12.2.2 OLAs 3 & 4	242
	A.12.2.3 OLAs 5 & 6	244
A.13	Results of the Algorithms Fuzzy-Crisp Hybrid	246
	A.13.1 Using current weather only	246
	A.13.1.1 OLAs 1 & 2	246
	A.13.1.2 OLAs 3 & 4	249
	A.13.1.3 OLAs 5 & 6	251
	A.13.2 Using weather prediction	253
	A.13.2.1 OLAs 1 & 2	253
	A.13.2.2 OLAs 3 & 4	256
	A.13.2.3 OLAs 5 & 6	258
A.14	Probability for false prediction at KBOS	260
A.15	Population of MSA corresponding to each of the 30 weather stations \dots	264
A.16	Energy captured at each weather station during training and testing by a	
	permanently deployed harvester	265
A.17	Estimated shape and scale parameters of Weibull distribution for each station	<u>1</u> 267
A.18	Looking for trends in windspeed data	271
A.19	Looking for trends in hourly electricity price data	282

A.20	Algorithm performance per station per OLA	285
A.21	Analysis of Algorithm to Find Optimum for OLA 3	292
A.22	An in-depth look at the Fuzzy-Crisp algorithms	294
	A.22.1 Fuzzy v1.2's implementation of the retraction threshold has a	
	greater margin than necessary	294
	A.22.2 How does Fuzzy-Crisp v1.2 perform on OLAs 3 and 4 using only its	
	crisp code to retract?	302
	A.22.3 How Fuzzy-Crisp combines fuzzy sets to determine a resulting mem-	
	bership value	303
	A.22.4 Effect the effect of Fuzzy-Crisp's "plenty-of-allocated-visibility-	
	minutes-are-remaining" condition	304
	A.22.5 Data of exploration the effect of RETRACTION THRESHOLD	
	DIFFERENCE in Fuzzy	306
	A.22.5.1 OLA 1	307
	A.22.5.2 OLA 2	308
	A.22.5.3 OLA 3	310
	A.22.5.4 OLA 4	312
	A.22.5.5 Comparison of two values for RETRACTION THRESH-	
	OLD DIFFERENCE for OLAs 3 through 4 for all stations 3	315
	A.22.5.6 OLAs 3 and 4: Fuzzy-Crisp (variant 0x0, i.e., current	
	weather only, transitions unlimited) 1.2 using only crisp	
	code to retract	323
	A.22.5.7 OLAs 3 and 4: Fuzzy-Crisp (variant 0x0, i.e., current	
	weather only, transitions unlimited) Rev. 1.3 3	325
A.23	Sensitivity Analysis of the Retraction Threshold Difference on Aging (vari-	
	ant 0x0) for OLAs 3 & 4	326
	A.23.1 RTD is 0	326
	A.23.2 RTD is 1	328
	A.23.3 RTD is 2	328
	A.23.4 RTD is 3	330

A.24	Exploration 2 full results
A.25	Explorations 5 and 6
	A.25.1 Exploration 5: KATL
	A.25.2 Exploration 6: KBOS
A.26	Full results for Exploration 8

LIST OF TABLES

1	The standard OLAs	25
2	Example itemized results of an algorithm a 's processing of a workload wrk .	59
3	Compilation of algorithms' performances of processing KPIT's testing data for	
	OLA 3	69
4	Explorations 1 & 11: Comparisons of average (μ) performance of all applicable	
	variants for all stations for each OLA of 1 through 6	84
5	Comparing sparse and dense design-space searches by Static 0x0's processing	
	workloads OLA 3 and 4 for four stations	91
6	A comparison of performance of Fuzzy-Crisp variants 0x0 and 0x2 for OLA 3	
	for station KATL	98
7	Fraction of total energy available during quiet hours per station	99
8	Effect of changing the retraction threshold difference on Aging (variant 0x0)	
	for OLAs 3 and 4	101
9	Explorations 2 through 8: Sensitivity analyses and explorations of larger and	
	denser design spaces	105
10	Beaufort Wind Scale	158
11	Lowest windspeed deemed to be "windy" for each station for six values of the	
	parameter λ .	159
12	Power output of the V90-3.0 MW vs. windspeed [88]	162
13	Comparing energy harvested when fully deployed to portion of lifting energy	
	required from grid	167

14	Data for this work (wind data) and for future work (energy usage and solar	
	data)	169
15	Ranges of timestamps where fields are in certain columns in original ASOS data	a 182
16	Percentage of lines in ASOS data that the filters listed in Section A.7.1 dis-	
	carded) ordered descendingly	183
17	Statistics on anachronistic records	183
18	Statistics about windspeeds between uniquely timestamped records and be-	
	tween uniquely timestamped records and the first records of each run of iden-	
	tically timestamped records	184
19	Descriptive statistics of δ for each station	190
20	For each weather station ws , the frequency distributions of $(\delta \geq 0)(\sigma_{\delta,ws})$	191
21	Frequency distribution table summarizing the 30 stations' frequency distribu-	
	tions of $\sigma_{\delta,ws}$ for all $\delta \geq 0$	197
22	For each station, the average windspeed in knots over the 11 years of the	
	benchmark's minute-by-minute windspeeds (after cleaning and interpolating	
	ASOS data)	198
23	Interview and respondent information	199
24	Key of abbreviations used in header of Table 25	205
25	Interview responses	206
26	Derived Quiet Hours	215
27	Results of the processing of OLAs 1 and 2 by Static (variant 0x0, i.e., current	
	weather only, transitions unlimited) Rev. 1.1	222
28	Average performance of the processing of OLAs 1 and 2 over all 30 weather	
	stations by Static (variant 0x0, i.e., current weather only, transitions unlimited)	
	Rev. 1.1	223
29	Results of the processing of OLAs 3 and 4 by Static (variant 0x0, i.e., current	
	weather only, transitions unlimited) Rev. 1.1	224
30	Average performance of the processing of OLAs 3 and 4 over all 30 weather	
	stations by Static (variant 0x0, i.e., current weather only, transitions unlimited)	
	Rev. 1.1	225

31	Results of the processing of OLAs 5 and 6 by Static (variant 0x1, i.e., current	
	weather only, transitions limited) Rev. 1.1	226
32	Average performance of the processing of OLAs 5 and 6 over all 30 weather	
	stations by Static (variant 0x1, i.e., current weather only, transitions limited)	
	Rev. 1.1	226
33	Results of the processing of OLAs 1 and 2 by Static (variant 0x2, i.e., weather	
	prediction, transitions unlimited) Rev. 1.1	227
34	Average performance of the processing of OLAs 1 and 2 over all 30 weather	
	stations by Static (variant 0x2, i.e., weather prediction, transitions unlimited)	
	Rev. 1.1	228
35	Results of the processing of OLAs 3 and 4 by Static (variant 0x2, i.e., weather	
	prediction, transitions unlimited) Rev. 1.1	229
36	Average performance of the processing of OLAs 3 and 4 over all 30 weather	
	stations by Static (variant 0x2, i.e., weather prediction, transitions unlimited)	
	Rev. 1.1	229
37	Results of the processing of OLAs 5 and 6 by Static (variant 0x3, i.e., weather	
	prediction, transitions limited) Rev. 1.1	230
38	Average performance of the processing of OLAs 5 and 6 over all 30 weather	
	stations by Static (variant 0x3, i.e., weather prediction, transitions limited)	
	Rev. 1.1	230
39	Results of the processing of OLAs 1 and 2 by Aging (variant 0x0, i.e., current	
	weather only, transitions unlimited) Rev. 1.1	231
40	Average performance of the processing of OLAs 1 and 2 over all 30 weather	
	stations by Aging (variant 0x0, i.e., current weather only, transitions unlimited)	
	Rev. 1.1	233
41	Results of the processing of OLAs 3 and 4 by Aging (variant 0x0, i.e., current	
	weather only, transitions unlimited) Rev. 1.2	234
42	Average performance of the processing of OLAs 3 and 4 over all 30 weather	
	stations by Aging (variant 0x0, i.e., current weather only, transitions unlimited)	
	Rev. 1.1	235

43	Results of the processing of OLAs 5 and 6 by Aging (variant 0x1, i.e., current	
	weather only, transitions limited) Rev. 1.1	236
44	Average performance of the processing of OLAs 5 and 6 over all 30 weather	
	stations by Aging (variant 0x1, i.e., current weather only, transitions limited)	
	Rev. 1.1	238
45	Results of the processing of OLAs 1 and 2 by Aging (variant 0x2, i.e., weather	
	prediction, transitions unlimited) Rev. 1.1	239
46	Average performance of the processing of OLAs 1 and 2 over all 30 weather	
	stations by Aging (variant 0x2, i.e., weather prediction, transitions unlimited)	
	Rev. 1.1	241
47	Results of the processing of OLAs 3 and 4 by Aging (variant 0x2, i.e., weather	
	prediction, transitions unlimited) Rev. 1.1	242
48	Average performance of the processing of OLAs 3 and 4 over all 30 weather	
	stations by Aging (variant 0x2, i.e., weather prediction, transitions unlimited)	
	Rev. 1.1	243
49	Results of the processing of OLAs 5 and 6 by Aging (variant 0x3, i.e., weather	
	prediction, transitions limited) Rev. 1.1	244
50	Average performance of the processing of OLAs 5 and 6 over all 30 weather	
	stations by Aging (variant 0x3, i.e., weather prediction, transitions limited)	
	Rev. 1.1	245
51	Results of the processing of OLAs 1 and 2 by Fuzzy-Crisp Hybrid (variant 0x0,	
	i.e., current weather only, transitions unlimited) Rev. 1.4	246
52	Average performance of the processing of OLAs 1 and 2 over all 30 weather sta-	
	tions by Fuzzy-Crisp Hybrid (variant 0x0, i.e., current weather only, transitions	
	unlimited) Rev. 1.4	248
53	Results of the processing of OLAs 3 and 4 by Fuzzy-Crisp (variant 0x0, i.e.,	
	current weather only, transitions unlimited) Rev. 1.4	249
54	Average performance of the processing of OLAs 3 and 4 over all 30 weather	
	stations by Fuzzy-Crisp (variant 0x0, i.e., current weather only, transitions	
	unlimited) Rev. 1.4	250

55	Results of the processing of OLAs 5 and 6 by Fuzzy-Crisp Hybrid (variant 0x1,	
	i.e., current weather only, transitions limited) Rev. 1.4	251
56	Average performance of the processing of OLAs 5 and 6 over all 30 weather sta-	
	tions by Fuzzy-Crisp Hybrid (variant 0x1, i.e., current weather only, transitions	
	limited) Rev. 1.4	252
57	Results of the processing of OLAs 1 and 2 by Fuzzy-Crisp Hybrid (variant	
	0x02, i.e., weather prediction, transitions unlimited) Rev. 1.4	253
58	Average performance of the processing of OLAs 1 and 2 over all 30 weather sta-	
	tions by Fuzzy-Crisp Hybrid (variant 0x2, i.e., weather prediction, transitions	
	unlimited) Rev. 1.4	255
59	Results of the processing of OLAs 3 and 4 by Fuzzy-Crisp Hybrid (variant	
	0x02, i.e., weather prediction, transitions unlimited) Rev. 1.4	256
60	Average performance of the processing of OLAs 3 and 4 over all 30 weather sta-	
	tions by Fuzzy-Crisp Hybrid (variant 0x2, i.e., weather prediction, transitions	
	unlimited) Rev. 1.4	257
61	Results of the processing of OLAs 5 and 6 by Fuzzy-Crisp Hybrid (variant	
	0x03, i.e., weather prediction, transitions limited) Rev. 1.4	258
62	Average performance of the processing of OLAs 5 and 6 over all 30 weather sta-	
	tions by Fuzzy-Crisp Hybrid (variant 0x3, i.e., weather prediction, transitions	
	limited) Rev. 1.4	259
63	Probabilities at station KBOS for predicting tomorrow's windy day as not	
	windy	263
64	Population of MSA corresponding to each of the 30 weather stations	264
65	Energy captured at each weather station ws during training and testing by	
	permanently deployed harvester hm defined in Appendix A.3	265
66	Estimated shape and scale parameters of Weibull distribution for each station	
	where the location parameter (ν) is -1	269
67	Weibull shape estimates and Sen's Slopes	272
68	Original and modified Mann-Kendall statistics for shape estimates	272
69	Weibull scale estimates and Sen's Slopes	273

70	Original and modified Mann-Kendall statistics for scales estimates	274
71	Highest scoring algorithms for each station for OLAs 1 and 2	286
72	Highest scoring algorithms for each station for OLAs 3 and 4	288
73	Highest scoring algorithms for each station for OLAs 5 and 6	290
74	Summary of comparison of two values for RETRACTION THRESHOLD DIF-	
	FERENCE for OLAs 3 and 4 for all stations	299
75	Results of the processing of OLA 1 by Fuzzy-Crsip (variant 0x0, i.e., current	
	weather only, transitions unlimited) Rev. 1.2 when the subtraction Deployment	
	Threshold less Retraction Threshold equals 0 and when it equals 1	307
76	Results of the processing of OLA 2 by Fuzzy-Crisp (variant 0x0, i.e., current	
	weather only, transitions unlimited) Rev. 1.2 when the subtraction Deployment	
	Threshold less Retraction Threshold equals 0 and when it equals 1	309
77	Results of the processing of OLA 3 by Fuzzy-Crisp (variant 0x0, i.e., current	
	weather only, transitions unlimited) Rev. 1.2 when the subtraction Deployment	
	Threshold less Retraction Threshold equals 0 and when it equals $1 \ldots \ldots$	311
78	Results of the processing of OLA 4 by Fuzzy-Crisp (variant 0x0, i.e., current	
	weather only, transitions unlimited) Rev. 1.2 when the subtraction Deployment	
	Threshold less Retraction Threshold equals 0 and when it equals $1 \ldots \ldots$	313
7 9	Comparison of two values for RETRACTION THRESHOLD DIFFERENCE	
	for OLAs 3 through 4 for all stations	315
80	Results of the processing of OLA 3 by Fuzzy-Crisp (variant 0x0, i.e., current	
	weather only, transitions unlimited) Rev. 1.2 when the subtraction Deployment	
	Threshold less Retraction Threshold equals 0 and when it equals $1 \ldots \ldots$	323
81	Results of the processing of OLA 3 by Fuzzy-Crisp (variant 0x0, i.e., current	
	weather only, transitions unlimited) Rev. 1.3 when the subtraction Deployment	
	Threshold less Retraction Threshold equals 0 and when it equals $1 \ldots \ldots$	325
82	Results of the processing of OLAs 3 and 4 by Aging (variant 0x0) Rev. 1.1	
	when the RTD is 0	327
83	Results of the processing of OLAs 3 and 4 by Aging (variant 0x0) Rev. 1.1	
	when the RTD is 2	329

84	Results of the processing of OLAs 3 and 4 by Aging (variant 0x0) Rev. 1.1	
	when the RTD is 3	330
85	Results of the processing of OLAs 3 and 4 by Static (variant 0x0, i.e., current	
	weather only, transitions unlimited) Future revision	333
86	For KATL, results of the λ sensitivity analysis and extended dense design space	
	search for processing of OLAs 3 and 4 by Fuzzy-Crisp (variant 0x0, i.e., current	
	weather only, transitions unlimited) Future version	335
87	For KBOS, results of the λ sensitivity analysis and extended dense design space	
	search for processing of OLAs 3 and 4 by Fuzzy-Crisp (variant 0x0, i.e., current	
	weather only, transitions unlimited) Future version	336
88	Effect of time horizon on Static (variant 0x3) processing KATL's data within	
	OLA 5	338
89	Effect of time horizon on Static (variant 0x3) processing KATL's data within	
	OLA 6	338

LIST OF FIGURES

1	Electricity from power plant to home [99]	7
2	Overlapping groups of survey respondents	16
3	Preferences of those who support retractable harvesters	20
4	An envisioned harvester stowing before sunset at St. Louis at 16:51 regardless	0.6
	of windspeed	23
5	Environment in which to train and to test the control algorithms	31
6	Categories of algorithms we wrote and tested and their variants ("Var.") $\ \ . \ \ .$	32
7	Iterations of deployment-threshold function $d()$ explored during training phase of Aging algorithms (Rev. 1.1) (drawing not to scale)	35
8	Iterations of deployment-threshold function $d()$ explored during training phase of Aging algorithms (Rev. 1.2) (drawing not to scale)	49
9	Quadrants indicating whether harvester is helping directly to match energy supply with demand or is directly hurting the matching effort	56
10	Average electricity price at hour of day for individual years 2004-2017	64
11	Hour when average electricity price peaks at midday and evening per year	65
12	Fraction of evening peak average price (\$E) over midday peak average price	
	(\$M) per year	66
13	Workload components	67
14	Surface plot of number of hours when electricity prices are negative per hour	
	of day per year	75

15	Acyclic directed graph of possible choices for two months. Each node has a	
	weight value (not shown) derived from how much energy the instance that the	
	node represents nets.	78
16	A three-minute example of an acyclic directed graph where each node repre-	
	sents a harvester's state at a certain timestep	80
17	Surface plot showing how running-average-window size and deployment thresh-	
	old affect Static variant 0x0's running of KATL-training to meet OLA3 (upper	
	plot) and slice when running-average-window size is 40 minutes (lower plot) .	97
18	Processing of KATL's data by variants $0x0$ and $0x2$ of Fuzzy-Crisp Hybrid	98
19	Mean windspeed vs. NetNorm for Static 0x0 v1.1 OLA 1	99
20	Mean windspeed vs. fraction of total energy available during quiet hours	100
21	Fraction of total energy available during quiet hours vs. NetNorm earned by	
	Static 0x0 v1.1 for OLA 1	100
22	Effect of changing the retraction threshold difference on Aging (variant 0x0)	
	for OLAs 3 and 4	101
23	Sensitivity analysis on λ for Aging variant 0x0's processing of KPIT's data for	
	OLA 3	102
24	Effect of changing λ on Fuzzy-Crisp (variant 0x0) for OLAs 3 and 4 for KATL	103
25	Effect of changing λ on Fuzzy (variant 0x0) for OLAs 3 for KATL's training	
	data where settings are constant during entire run	103
26	Effect of changing time horizon on Static (variant 0x3) for OLAs 5 and 6 for	
	KATL	104
27	Effect of increasing allowed "visibility events" on Static (variant VE) for OLA	
	3 for KPIT	108
28	Membership function for fuzzy set 'Not Windy at KBOS' where KBOS refers	
	to weather station KBOS	151
29	Example membership functions for the fuzzy sets representing morning,	
	evening, and nightly visibility bans	153
30	Power curve of harvester model	163

31	Comparing energy harvested when fully deployed to portion of lifting energy required from grid	166
32	Rolled fabric stowed in a vertical pole (image is not drawn to scale)	176
33	Fabric deployed between supporting wires (image is not drawn to scale)	176
34	Top view of fabric planes perpendicularly arranged to each other ensuring that	110
94	wind direction is not parallel to at least one fabric plane (image is not drawn	
		176
อะ	to scale)	176
35	Folding-fan-style wind harvester using fabric shown in deployed and stowed	1 17 1
0.0	states	177
36	Deployed and stowed turbine having a telescopic tower and inflatable blades	178
37	Patent drawing showing blades folded [74]	178
38	Stowed turbine; folded blades pointing upward	179
39	Oscillating-wing windmill shown in four states	180
40	Histogram of Table 21 sans frequencies of 0: Frequency distribution table	
	summarizing the 30 stations' frequency distributions of $\sigma_{\delta,ws}$ for all $\delta>0$	196
41	Example membership functions for the fuzzy set "Not Windy" and the set "Not	
	Very Windy"	261
42	Example membership function for the fuzzy set "Plenty of Allocated Visibility	
	Minutes Remaining" (See also Equation 15)	261
43	Membership function for the fuzzy set "Approaching Near the Start of Quiet	
	Hours"	262
44	Example membership function for the fuzzy set "Approaching the Use Visibility	
	Allocation or Lose It Point"	262
45	Histogram of densities of windspeeds in KATL's training file:	
	trainingKTPA2004-2012in.csv	267
46	Shape estimates of Weibull distributions for each year of windspeeds for station	
	KATL with 9-year and 11-year trend lines	278
47	Scale estimates of Weibull distributions for each year of windspeeds for station	
	KATL with 9-year and 11-year trend lines	279
48	Weighted, directed graph through which to find shortest path within time budge	

LIST OF ALGORITHMS

1	The Static algorithm (variant 0x0, i.e., current-weather only, transitions open)	
	Revision 1.2	125
2	The Static algorithm (variant 0x1, i.e., current-weather only, transitions lim-	
	ited) Revision 1.2	126
3	The Static algorithm (variant 0x2, i.e., weather prediction, transitions open)	
	Revision 1.2	127
4	The Static algorithm (variant 0x3, i.e., weather prediction, transitions limited)	
	Revision 1.2	128
5	The Aging algorithm (variant 0x0, i.e., current-weather only, transitions open)	
	Revision 1.2	129
6	The Aging algorithm (variant 0x1, i.e., current-weather only, transitions lim-	
	ited) Revision 1.2	130
7	The Aging algorithm (variant 0x2, i.e., weather prediction, transitions open)	
	Revision 1.2	131
8	The Aging algorithm (variant 0x3, i.e., weather prediction, transitions limited)	
	Revision 1.2	132
9	The Fuzzy-Crisp algorithm (variant 0x0, i.e., current-weather only, transitions	
	open) Revision 1.5	133
10	The Fuzzy-Crisp algorithm (variant 0x1, i.e., current-weather only, transitions	
	limited) (Transition-Limited) Revision 1.5	134
11	The Fuzzy-Crisp algorithm (variant 0x2, i.e., weather prediction, transitions	
	open) (Weather-prediction-using) Revision 1.5	135

1:	2	The Fuzzy-Crisp algorithm (variant 0x3, i.e., weather prediction, transitions	
		limited) (Transition-limited, Weather-prediction-using) Revision 1.5	136
13	3	The Static algorithm (variant 0x0) Revision 1.1	137
14	4	The Static algorithm (variant $0x1$) (Transition-limited) Revision $1.1 \dots$	138
1	5	The Static algorithm (variant $0x2$) (Weather-prediction-using) Revision 1.1 .	139
16	6	The Static algorithm (variant 0x3) (Transition-limited, Weather-prediction-	
		using) Revision 1.1	140
1'	7	The Aging algorithm (variant 0x0) Revision 1.1	141
18	8	The Aging algorithm (variant $0x1$) (Transition-limited) Revision $1.1 \dots$	142
19	9	The Aging algorithm (variant $0x2$) (Weather-prediction-using) Revision 1.1 .	143
20	0	The Aging algorithm (variant 0x3) (Transition-limited, Weather-prediction-	
		using) Revision 1.1	144
2	1	The Fuzzy-Crisp algorithm (variant 0x0) Revision 1.4	145
2	2	The Fuzzy-Crisp algorithm (variant $0x1$) (Transition-Limited) Revision 1.4 .	146
23	3	The Fuzzy-Crisp algorithm (variant 0x2) (Weather-prediction-using) Revision	
		1.4	147
2^{2}	4	The Fuzzy-Crisp algorithm (variant 0x3) (Transition-limited, Weather-	
		prediction-using) Revision 1.4	148

PREFACE

There are many to thank for their help, patience, and encouragement. I especially would like to thank my parents. Their patient support has been and is tremendous, as I pursued the goals of working in higher education and advancing renewable energy.

Thanks go to the Computer Science Department staff. A special thanks go to Keena Walker, the Computer Science Department and Graduate Support Administrator, for helping me to register and to complete the proper paperwork.

I would also like to express my appreciation for the late Dr. Levitan's encouragement. He agreed to be a reference for me when I was an undergraduate. Years later, he and Dr. Chiarulli accepted me into the Computer Engineering graduate program. Thanks also go to Dr. Chiarulli for guiding me as I became a real graduate student, which included becoming a teaching assistant. In that capacity, I appreciated being part of the teaching teams; thank you to all the team members, which included my fellow TA's and the following CS 447 lecturers: Dr. Childers, Dr. Misurda, and Dr. Zhang.

Thanks go to Dr. Chrysanthis for co-authoring a paper with me about transporting renewable energy, which was presented with the help of the Mascaro Center for Sustainable Innovation (MCSI), which provided a travel grant. Thank you.

I also thank all the members of my research committee. I greatly appreciate the committee's patient consideration of the proposed work and their guidance in the focusing of it. Of special note is Dr. Znati who helped me to develop some of the metrics presented herein and for providing a textbook to me on discrete-event system simulation.

With great appreciation, I would like to thank the director this dissertation, Dr. Daniel Mossé, for graciously guiding, for considering of my ideas, for providing great honest feedback, for answering questions, for reading the rough drafts, for asking very insightful questions, and for improving the iterations of this and other work, which included a business competition and co-authorship of papers on retractable wind-energy harvesters. Thank you again.

1.0 THESIS AND INTRODUCTION

The thesis of this work, A Benchmarking Framework for Sensitivity and Comparative Analysis of Energy Harvesting Strategies via Retractable Wind Energy Conversion Systems, is that it is possible to create such a framework that meets the objectives/goals, and that rises to the challenges addressed in the following section.

1.1 OBJECTIVES/GOALS, AND CHALLENGES

1.1.1 Overarching goals and approach

The overarching goals and wishes of this research are to lower the cost of renewable energy, to protect customers from grid disturbances, and to improve stability and resiliency of the grid (defined in Section 1.2.1). (Some of those overarching outcomes, which are above the scope of this research, could be measured by counting the number of disturbances, percentage of customers affected by grid disturbances, and time-to-recovery from disturbances.)

Toward those ends, this dissertation seeks to help developers of retractable-harvester control algorithms to meet or exceed the terms of operation limitation agreements (OLAs) between harvester-hosting communities and harvester operator(s). For example, such an OLA could specify the type of harvester a community hosts and the limits in which the harvester(s) must operate.

The approach is to discuss what solutions retractable harvesters provide (reducing visual and noise pollution as well as reducing the need for long-distance transmission lines) and to contribute the following aids for developers of retractable-harvester control algorithms:

- 1. Metrics to gauge the performance of retractable-harvester control algorithms
- 2. A set of preliminary retractable-harvester control algorithms
- 3. Benchmarks or workloads to provide common bases on which to compare algorithm performance
- 4. A simulation environment in which to run the algorithms.

1.1.2 Specific goals

The specific goals of this work are to answer the following questions:

Question 1: What operation limitation agreements (OLAs) and weather conditions approximate actual field conditions of retractable-harvester control algorithms?

Question 2: Does the metric SCNetNorm (Equation 4.5) sufficiently measure how well a retractable-harvester control algorithm controls a harvester, within a operation limitation agreement (OLA) between the harvester operator and the harvester-hosting community?

Question 3: Which energy harvesting strategies (implemented by the preliminary control algorithms and simulator contributed by this work) performed best in the approximate actual field conditions found in Question 1 as measured by the metric examined in Question 2 (and another metric based on time-of-day electricity prices)?

1.1.3 Challenges

1.1.3.1 Anticipating actual agreements Challenges included the gathering of expressed preferences from residents across the U.S.A. that might reasonably be embodied into actual OLA's between harvester operators and harvester-hosting communities. Such actual OLA's would likely be derived through coalitions of stakeholders, discussions with legal teams, and harvester-operation vendors. Since, to our knowledge, since RWEHs seem to still be at the developmental and envisioned stages, actual OLA's do not yet exist. Thus, a challenge is to anticipate actual terms of such agreements.

We seek to approximate potentially actual agreements via survey results and the Pareto principle (which is demonstrated by our earlier work).

1.1.3.2 Anticipating actual wind conditions Are there trends in windspeeds? Can past wind conditions predict future ones? What is a good way to analyze a variety of wind conditions covering at least approximately 40% of the U.S. population?

We examine those questions herein.

1.1.3.3 Anticipating actual electricity-price profiles Are there trends in hourly electricity prices provided by an independent system operator (ISO)? Is the ratio between the morning peak and afternoon peak prices changing? We search for some trends those electricity prices herein.

1.2 WHY RETRACTABLE-ENERGY HARVESTERS

1.2.1 Self-sufficient microgrids

The U.S. Energy Information Administration (EIA) defined the electrical power grid as "[a] system of synchronized power providers and consumers connected by transmission and distribution lines and operated by one or more control centers" [22]. The U.S. electrical grid has a total length of high-voltage transmission lines over 150,000 miles [9, Table 2]. Transmission lines are shown in Figure 1 on page 7 in the context of the traditional grid.

It has been suggested that the electric grid is especially vulnerable to cascading failures because its organization is geographic [92], "[g]iven its age, some existing lines have to be replaced or upgraded and new lines will need to be constructed to maintain the electrical system's overall reliability," and that a challenge to improving the grid includes "[e]nsuring that the network of long-distance transmission lines reaches renewable energy generation sites where high-quality wind and solar resources are located, which are often far from areas where demand for electricity is concentrated" [100].

One way to protect customers from extended grid failures is to arrange customers (and electricity generation systems) into a small subset of the power grid which can operate independently from the grid at times. That grid subset is called a *microgrid*. "Microgrids

are localized grids that can disconnect from the traditional grid to operate autonomously and help mitigate grid disturbances to strengthen grid resilience" [69].

Long-distance transmission lines have some drawbacks. New long-distance transmission lines require approval and rights-of-way, complicate construction cost recovery (a line in one state benefits another) [100]. "[T]ransmission lines needed to carry renewable energy hundreds of miles, from remote areas where it's captured to cities where it can be used, are expensive to build and sometimes opposed by people living in their path" [96]. Existing lines are easy targets for a physical attack, but "can also be repaired quickly unless there is a coordinated widespread attack. Even then, the transmission lines can be repaired almost as soon as replacement towers can be delivered" [14, Chapter 5]. "Since the last occurrence of a major geomagnetic storm in 1921, the [United States'] high voltage (HV) and extra high voltage (EHV) systems have increased in size over tenfold. Longer transmission lines that span greater surface potentials act as conductors for the geomagnetically induced current (GIC) that can devastate the electrical grid. GIC poses the risk of catastrophic damage to EHV transformers and can lead to long-term outages of large portions of the grid" [24].

One way to reduce the need for long-distance transmission lines is to harness renewable energy by wind-energy-conversion devices (e.g., wind turbines) **locally**. Harnessing local wind energy has at least one advantage over harnessing remote wind energy: it does not use long-distance transmission lines. We assume that a microgrid may also harness solar energy locally and also assume that locally harnessed solar energy might not meet all the energy needs of some microgrids.

1.2.2 Wind energy harvesters that are retractable

Since we are assuming that solar energy might not meet all the energy needs of some microgrids, we are assuming that a microgrid seeking to be self-sufficient will look also to another local, renewable energy source, wind.

However, some wind harvesting projects have been rejected because, in least in part, there were concerns that wind turbines ruin landscapes. Three examples follow:

1. A county council in Ireland rejected a wind turbine for a business park; "In considering

the scale of the turbine relative to the houses, the decision said it 'would result in a visually overscaled, unbalanced overdominant, confusing and incongruous development' within the area" [87].

- 2. A hillside wind farm proposal in Northern Ireland, which drew concerns from the Northern Ireland Tourist Board, was rejected partly because of its predicted noise and negative visual effects; there was also a concern about its possible electro-magnetic impact on a communications network [49].
- 3. "In her proposed ruling, [a Maryland public utility law judge] found that a wind farm's adverse impacts the effect noise and shadow flickers would have 'on the esthetic of local communities on and around Dan's Mountain' would outweigh any benefits" [1].

Opponents of those three proposed projects might have agreed to the projects if the project proposals would have offered operation limitation agreements (OLAs) that limit the visual impact of the proposed wind harvesters. Reducing the visual impact of wind harvesters is discussed in the next section.

- 1.2.2.1 Reducing the visual impact of wind harvesters. One way to reduce the visual impact of wind harvesters is to strategically stow and deploy them. For example, at the start of a several-hour strong breeze, the harvester would be deployed and then after the strong breeze subsides into a light breeze, the harvester would be retracted. Examples of retraction-suitable wind harvesting technologies are given in Appendix A.6, and include an energy kite [48], a towered turbine [75], a buoyant turbine [4], and other devices.
- 1.2.2.2 Controlling the retractable harvesters In this work, we are not concerned with algorithms that control internal aspects of the harvesters, such as blade-pitch angles, but are concerned with algorithms that stow and deploy the harvesters. Such "stowing-and-retracting" control algorithms include crisp algorithms (e.g., when the windspeed is greater than 10 knots deploy and when the windspeed is less than 8 knots retract) and fuzzy algorithms [80, p. 410] (e.g., when it is "windy," deploy; when "calm," retract). Restricting deployment to windy weather is part of four standard operation limitation agreements which

we introduce in Section 4.1. The algorithms can be configured via machine learning (e.g., neuro-fuzzy modeling¹).

1.2.2.3 Time-of-day electricity pricing The U.S. Energy Information Administration (EIA) notes, "Electricity demand is usually highest in the afternoon and early evening (peak hours), and costs to provide electricity are usually higher at these times" [21]. How well can a harvester supply energy when demand is high? To help answer that question, we define a metric in Section 4.1.5 that takes into account time-of-day electricity pricing. The EIA defines time-of-day pricing as "[a] special electric rate feature under which the price per kilowatthour depends on the time of day" [22].

1.2.3 Benchmarks

This benchmark suite we are building provides various data for the control algorithms, similar to benchmarks in computer architecture (e.g., PARSEC [7]) which rely on simulations to determine whether a technique is efficient. So that control algorithms can train themselves to process testing data for each weather station ws, training data is provided by this work for each weather station ws of a set of 30 weather stations from across the U.S. (Appendix A.15). Some algorithms might use weather forecasts. Thus, the benchmarks include simulated forecasted windspeeds. Because some algorithms might use electricity pricing, the benchmarks include time-of-day electricity price data.

1.2.4 Why these benchmarks and metrics

No other retractable-harvester benchmark suite exists, to our knowledge, that uses OLAs that limit when and/or how much time retractable harvesters may be visible. (Please see Section 2 for related work and a literature search.) To help future retractable-harvester operators meet or exceed the terms of such OLAs, this work contributes benchmarks (Section 4.2)

¹"[T]he term *neuro-fuzzy modeling* refers to the way of applying various learning techniques developed in the neural network literature to [learning fuzzy if-then rules for] fuzzy inference systems" [39]. "[A]n integration of neural networks and fuzzy systems can yield systems, which are capable of learning [fuzzy if-then rules] and decision making" [11].

and metrics (Section 4.1) to measure how well those algorithms perform. The contributed benchmarks and metrics can be used by designers of future retractable-harvester control algorithms to advance the state of the art of time-restricted retractable-harvester control. The metrics can also be used by harvester-hosting communities to define incentives (Section 4.2.0.1) for retractable harvester operators.

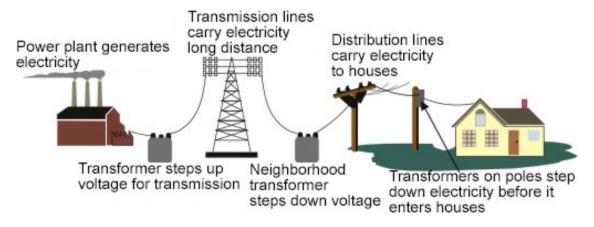


Figure 1: Electricity from power plant to home [99].

2.0 STATE OF THE ART AND ITS SHORTCOMINGS

Related to this dissertation work, which involves feeding minute-by-minute windspeeds into a retractable wind turbine simulator, are the sub-hourly wind-data sets described in Section 2.4 and the wind turbine simulators described in Section 2.5. We discuss a benchmark related to this work in Section 2.2.2. Because this dissertation work involves surveys of persons about wind energy projects, we discuss related surveys in the following section.

2.1 SURVEYS ABOUT WIND ENERGY PROJECTS

"[A] sizable literature has developed on the public perception of wind energy" [90], which includes, for example, the National Survey of Attitudes of Wind Power Project Neighbors [33] which "[collected] data from a broad-based and representative sample of individuals living near U.S. wind power projects. The aim was to widen the understanding of how U.S. communities are reacting to the deployment of wind turbines, and to provide insights to those communities considering wind projects" [33]. The National Survey of Attitudes of Wind Power Project Neighbors includes a project where "[in] 2015 and 2016, [data was collected] from 1,705 randomly drawn individuals living within 5 miles of all U.S. wind projects, with oversampling being done within 1 mile. The findings indicate an overall positive attitude toward the nearby turbines, including for those living even as close as $\frac{1}{2}$ mile. Roughly 8% of the population had negative attitudes within 5 miles. In an examination of a broad set of possible correlates to attitudes, it was found that neither demographic nor local wind project characteristics were significantly related. Attitudes were significantly correlated with compensation, sensory perceptions of the nearby turbines, planning process

perceptions, and attitudes toward wind turbines in general" [33]. A peer-reviewed version of the survey findings [27] state "jurisdictions should consider developing procedures that ensure citizens are consulted and heard and establish benchmarks or best practices for developer interaction with communities and citizens" and "[o]ur findings might be best summed up as: '[Attitudes of wind power project neighbors correlate to] the public process, the developer, aesthetics and general wind power attitude/clean energy values' [27].

The National Survey of Attitudes of Wind Power Project Neighbors is different from our work in that The National Survey of Attitudes of Wind Power Project Neighbors did not inquire about retractable wind turbines. We are aware of no other national survey besides our own that gathered data about attitudes toward retractable-harvesters. (Note that the The National Survey of Attitudes of Wind Power Project Neighbors found that attitudes of permanently-deployed wind turbines correlate to aesthetics, which retractable-wind turbines address by stowing.)

Another example from the body of literature on the public's attitudes toward wind energy is a **regional survey** which "was developed to explore perceptions of wind energy in the [Texas] region as well as general attitudes about energy and the environment.... Findings support the view that the use of [Not-In-My-Backyard (Nimby) phenomenon] does not adequately explain the attitudes of local wind farm opposition" [90]. The regional survey found that "slightly less than the majority of respondents (47.2%) indicat[ed] that wind turbines are unattractive and a notable amount of respondents (26.7%) indicat[ed] that wind turbines are an attractive feature of the landscape" [90] and found "nearly half of all respondents (46.6%) willing to support wind farms on their property and a very small portion (13.8%) that do not support wind farms at all" [90]. The two authors of the regional study, Swofford and Slattery, ask, "So what factors are individuals basing their attitudes on? Krohn and Damborg (1999) argue that the positive acceptance of wind power is largely based on public attitudes regarding the benefits of wind energy, while the negative opposition of wind power is largely based on public attitudes regarding the negative aspects of wind turbines" [90]. Swofford and Slattery note that their findings seem to agree with Krohn and Damborg, but temper that agreement by pointing out that "there will always be additional factors influencing attitudes that are unique to locale" (e.g., earning income from turbines on private land) [90]. Swofford and Slattery suggest that the region's communities be taught about benefits of wind energy and, citing another work, state, "Communities that are in close proximity to wind farms are typically inadequately informed about wind energy projects and are often excluded from decision making and the planning process" [90].

Our standard OLAs presented in this work can help educate communities because a standard OLA can provide a solid frame of reference to which to compare a proposed project. For example, if community A is considering implementing an OLA that community B has already adopted, then community A can learn lessons about the exact OLA they are considering by learning from community B's specific experience with that same OLA. If community A is considering to enter into an OLA that is not standard, then it seems less likely that community A would find another community that has entered into that non-standard OLA.

Another advantage of communities considering standard OLAs over non-standard is that when communities ask for bids from various vendors on standard OLAs, then the vendors will develop bids that can potentially be re-used, and possibly develop price lists posted to websites that communities can compare without asking for bids. (That comparison shopping might result in lower renewable energy prices.)

2.2 BENCHMARKS INVOLVING WIND TURBINES

2.2.1 Benchmarking the control of rotor speed

Of the thirteen benchmark problems for "non-linear system identification and control" that Kroll and Schulte offer [45], one benchmark problem is for a wind turbine [45, Section 3.12], which involves keeping a modeled turbine's rotor speed and generator torque within limits. "The control performance is assessed for two operating ranges: The partial and the full load range. In the partial load range the rotor speed is regulated to obtain optimum energy efficiency.... In the full load range the requirement change to a set-point controller to limit the energy production even with increasing wind speed and keep also the mechanical loads and pitch activity to a minimum" [45]. Kroll and Schulte refer to using a "step-

gust simulation" and a "stochastic wind field with given mean wind speeds and turbulence intensities" to assess "extreme loads" and "reduction of fatigue loads," respectively [45]. Their benchmark problem is concerned with controlling a turbine's internals that are modeled by a reference 5 GW offshore turbine model provided by the National Renewable Energy Laboratory (NREL).

Such internal modeling is beyond the scope of our benchmark suite. As we explain in Section A.3, we model an envisioned retractable harvester model via a power curve (Section A.3.1) and functions that calculate how much energy the retractable harvester uses to deploy and retract and a function that models the harvester's deployment speed and degree.

2.2.2 Benchmarking stochastic control of energy storage devices

An algorithm and benchmark by Salas and Powell was published in 2017 [81]. Salas and Powell "present and benchmark an approximate dynamic programming algorithm that is capable of designing near-optimal control policies for a portfolio of heterogenous storage devices in a time-dependent environment, where wind supply, demand, and electricity prices may evolve stochastically."

"[Salas and Powell's] model works on a time scale of five minutes, which means 288 time periods over a daily cycle. The time scale is fixed by the grid operator, PJM, which updates electricity prices every five minutes" [81]. "[They] benchmark against optimal policies for the full problem" [81]. Salas and Powell "benchmark against optimal policies... on deterministic and stochastic time-dependent problems for a one-device system, which include the presence of exogenous information such as wind, prices, and demand" and "set forth this set of problems as a library that may be easily used to test the performance of other algorithms" [81]. Salas and Powell's "test problems each consist of 2,000 periods" (spanning approximately one week). "For the deterministic benchmarks, [Salas and Powell] designed... test problems... where the electricity prices, renewable energy and energy demand evolve deterministically over time. [Salas and Powell] consider four different dynamics: sinusoidal, constant, step, or fluctuating with no particular pattern" [81].

Instead of a five-minute time scale/step, the work presented herein uses a finer one-minute

time step. Our windspeed data is minute-by-minute. Where Salas and Powell's model uses a finer resolution than we do is electricity prices. Salas and Powell model five-minute electricity prices. We provide 1-hour electricity prices and 1-minute wind data for 11 years. Salas and Powell's test problems each span approximately one week. Salas and Powell's deterministic benchmarks are determined by functions ("sinusoidal, constant, step, or fluctuating"). Conversely, our benchmarks are derived from actual minute-by-minute weather data and from actual hour-by-hour electricity prices over 11 years. (An advantage of using actual historical conditions instead of simplified functions is that the simplifications might not contain information that is important during actual field operation. That information is more likely to be in our benchmarks because our benchmarks are closer to actual field conditions. The actual conditions would probably include a real-time data feed from wind speed sensors.)

In a related paper [40], Salas and Powell along with Jiang¹ et al. mention that energy storage and inventory management are closely related [40]. For example, Harsha and Dahleh's work on energy storage [32] refers to Federgruen and Yang's paper on inventory control [25]. We note that inventory management is related to meeting delivery deadlines, which is related to task scheduling in computer science. Hence, we direct the reader who is interested in energy storage to also consult inventory management and computer-task scheduling research. (We indirectly address energy storage via a metric (Equation 4.7 on page 58) that measures how often a retractable-harvester control algorithm harnesses energy when energy is and is not needed.)

2.3 STOCHASTIC CONTROL ALGORITHMS

Powell, in an invited review [76], "provide[s] a modeling framework [for stochastic optimization] with which we can create a single canonical model that describes all of the [following] problems" [76]: "Decision trees... Stochastic search... Optimal stopping... Optimal control... Markov decision processes... Approximate/adaptive/neuro-dynamic programming...

¹An interesting fact is that Dr. Jiang is an assistant professor in the Department of Industrial Engineering here at the University of Pittsburgh [89].

Reinforcement learning...Online algorithms...Model predictive control...Stochastic programming...Robust optimization...Ranking and selection...Simulation optimization...

Multiarmed bandit problems...[and] Partially observable Markov decision processes" [76].

The problems involve various fields including "business, science, engineering, economics and finance, health and transportation" [76].

Our benchmarks differ from stochastic problems in that our benchmarks provide deterministic problems. In addition to deterministic problems, we provide a Weibull windspeed distribution for each of 30 weather stations that can be used to develop stochastic solutions within Powell's canonical model.

2.4 SUB-HOURLY WIND DATA

2.4.1 Automated Surface Observing System (ASOS) data set DSI 6405

The Automated Surface Observing System (ASOS) data set DSI 6405 provides an average of windspeeds of the previous two minutes [58, p. 3] nearly every minute. An advantage of using DSI 6405 is that it is freely available. However, it has some quality issues such as missing minutes and repeated timestamps. We describe how we derived the training and test data from the minute-by-minute ASOS data set DSI 6405 in Appendix A.4.1 and Appendix A.7.1.

2.4.2 Minute-by-minute windspeed data from NREL's M2 tower

The National Renewable Energy Laboratory (NREL) provides minute-by-minute windspeed and direction data from its M2 tower in Colorado measured at six heights ranging from 2 to 80 meters [38].

A drawback of using data only from Colorado is that Colorado weather does not necessarily represent weather experienced by major population centers in coastal states (e.g., hurricanes). We solve that drawback by using, as noted later in this document, data from 30 weather stations from across the U.S. (Appendix A.15) instead of just one location.

2.4.3 Fifteen-minute windspeed data from MADIS

The Meteorological Assimilation Data Ingest System (MADIS) [61] quality-checks wind-speed data. However, according to MADIS Support, MADIS-checked one-minute data is not available and MADIS runs every five minutes and preserves 15-minute values.

An advantage of using 1-minute windspeeds instead of 15-minute values is that 1-minute windspeeds better simulate a real-time data feed that a control algorithm might use to control a retractable harvester. As mentioned above, the data feed would probably include real-time anemometer data. Each anemometer would most likely be sending data at one-minute intervals or less.

2.5 WIND TURBINE SIMULATORS

2.5.1 **WISDEM**

"The Wind-Plant Integrated System Design and Engineering Model (WISDEM) is a set of models for assessing overall wind plant cost of energy (COE)" [67]. Documentation for WISDEM implies that WISDEM uses a Weibull distribution to model windspeeds instead of historical minute-by-minute windspeeds as evidenced by the following documented WISDEM input parameters [68], where each parameter is set to an example annotated value having a description field:

```
1 wind_speed_50m = Float(8.35, units = 'm/s', iotype='in', desc='mean
          annual wind speed at 50 m height', group='Plant_AEP')
2 weibull_k= Float(2.1, iotype='in', desc = 'weibull shape factor for
          annual wind speed distribution', group='Plant_AEP')
```

Wiebull distributions may not fit actual distributions of windspeeds exactly. Instead of simulating windspeeds, we use actual historical minute-by-minute windspeed data (and interpolate gaps) as noted later in this work (Section 4.2).

2.5.2 **HOMER**

HOMER is an acronym for Hybrid Optimization of Multiple Energy Resources [34]. HOMER software products are used to "[e] valuate design options for both off-grid and grid-connected power systems for remote, stand-alone, and distributed generation applications" [64].

HOMER allows the inputting of wind data in a time series, but only one year's worth. "HOMER [Pro] can accept one year of data at timesteps down to a minute" [36].

A disadvantage of using one year of wind data instead of multiple years is that it takes more than one year of wind data to detect seasonal trends. The current version of our simulator (Section 3.2.1) can handle 11 years (and with relatively slight modification can handle many more). We describe the 11 years of data we provide in Section 4.2.

3.0 MODES OF OPERATION DEFINED BY OPERATIONAL LIMITATION AGREEMENTS (OLA'S)

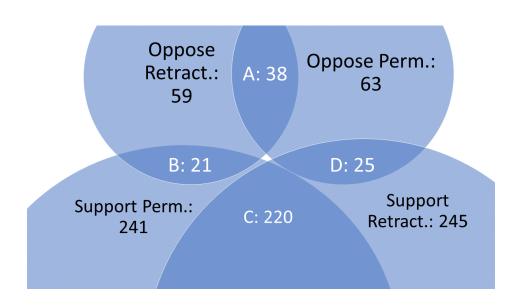


Figure 2: Overlapping groups of survey respondents

3.1 DERIVING POTENTIAL OPERATION LIMITATION AGREEMENTS

3.1.1 Survey results

To derive operation limitation agreements (OLAs) between harvesting-hosting communities and harvester operators, we obtained 304 interview results from persons across the USA via a survey company¹. The full results of our five question survey are given in Appendix A.9.

¹Survata, Inc. (www.survata.com)

(Because none of the questions mention the financial benefits a harvester-hosting community might receive, we are assuming that those anticipated benefits did not obfuscate the preferences of the interviewees.) Results are listed here in parentheses following each question and are represented in Figure 2 on the preceding page, where each of the four major groups below is represented by a circle (The figure is cropped intentionally). Each circle's diameter is determined by the size of the group, which is given in Figure 2 in black font. Intersections of the circles, which are labeled in white font, represent the four intersections, A, B, C, and D, described here:

- 1. Would you support or oppose a wind turbine project if you could always see the installed turbines from where you live?
 - (a) Support (241/304 or 79%) (Of the 241 that support permanently visible harvesters, 220 also support retractable turbines under certain conditions: We label the "support-both" intersection/group as "C" in Figure 2.)
 - (b) Oppose (63/304 or 21%) (Of the 63 that oppose permanently visible harvesters, 38 also oppose retractable turbines: We label the "oppose-both" intersection/group as "A" in Figure 2. Of the 38 persons in Group A, five persons explicitly commented negatively about the appearance or visual impact of wind turbines. It is possible that those five persons might compromise by accepting retractable wind turbines that are highly limited in visibility if those persons received financial benefits. Four members of Group A made comments indicating a lack of knowledge about retractable wind turbines (e.g., "i just don't understand their purpose." Those four members might assent if they were to learn more about turbines that are retractable. At least three members of Group A indicated that they oppose both types of turbines because better options exist (e.g., "Solar is better" and "Better options.")).
- 2. Would you support or oppose a wind turbine project viewable from where you live that uses only retractable wind turbines? Retractable wind turbines are able to be deployed and retracted when specified. E.g., deploy when "windy" and retract when "calm."
 - (a) Support retractable wind turbines under certain conditions (245/304 or 81%) (Of

- the 245 that support retractable turbines under certain conditions, 25 oppose permanent deployment. We label the "oppose-permanent-and-support-retractable" group as "D" in Figure 2.)
- (b) Oppose retractable wind turbines (59/304 or 19%) (Of the 59 who oppose retractable wind turbines, 21 support permanent deployment. We label the "support-permanent-and-oppose-retractable" group as "B" in 2. One of the members of Group B seems to actually make a case for retractable turbines by commenting, "If they are retractable, they will kill fewer birds....")
- 3. When should the retractable wind turbines be retracted and hidden? Check all that apply. (Please note that 220 of the 245 persons responding to this question also support turbines that are permanently deployed. Statistics for the remaining 25 person are enclosed below in curly braces. The statistics for both groups shown graphically in Figure 3.)
 - (a) When it's not windy $(138/245 \text{ or } 56\%)\{9/25 \text{ or } 36\%\}$
 - (b) When the month is not March $(8/245 \text{ or } 3\%) \{4/25 \text{ or } 4\%\}$
 - (c) During every morning $(13/245 \text{ or } 5\%) \{3/25 \text{ or } 12\%\}$
 - (d) During every afternoon (13/245 or 5%) $\{4/25 \text{ or } 16\%\}$
 - (e) During every night (29/245 or 12%) $\{7/25 \text{ or } 28\%\}$
 - (f) When birds are migrating $(100/245 \text{ or } 41\%) \{6/25 \text{ or } 24\%\}$
 - (g) During every weekend (12/245 or 5%) $\{4/25 \text{ or } 16\%\}$
 - (h) After it has been visible a certain proportion the month (14/25 or 6%) $\{2/25 \text{ or } 8\%\}$
 - (i) Other (15/245 or 6%) {0/25 or 0% }(Three of the answers were related to high winds.²) The fifteen respondents left these short-answers (and these comments in response to Question 5 below):
 - 1. "Windy days storms" (comment: "No comments")

²Because some interviewees do not want to see turbines during high winds, we included the restriction "Windspeed is TOO HIGH" in OLAs 1-4, which are all windspeeds above the harvester's cut-out threshold as defined by the harvester's power curve (a power curve is shown in Figure 30)

- 2. "Never" (comment: "None")
- 3. "Doesn't matter" (comment: "None at this time")
- 4. "Doing [sic] a hurricane" (comment: "Only during a hurricane, it would be scary seeing them move fast because of the strong winds.")
- 5. "During a storm" (comment: "no comment")
- 6. "No need to retract them, we need wind turbines 24/7" (comment: "I have no opposition against any sort of wind turbines. We should use them en masse every day.")
- 7. "No idea" (comment: "Don't know much about turbines")
- 8. "never" (comment: "we should always use the turbines, they should never be hidden")
- 9. "not sure" (comment: "no comment")
- 10. "whenever the turbine doesn't need to be in use" (comment: "Don't feel one way or the other. If turbines create energy at a low cost, wouldn't matter if I could see it or not.")
- 11. "weather" (comment: "do not have one")
- 12. "who cares, turbines are good" (comment: "nope")
- 13. "don't know" (comment: "none")
- 14. "it doesn't bother me either way" (comment: "clean energy is the future....it has to be")
- 15. "doesn't matter" (comment: "I don't oppose any forms of turbines")
- 4. After what percentage of the month that the wind turbine has been visible should the turbine be hidden? (Of the 14 interviewees that indicated "After it has been visible a certain proportion the month" excluding the person that answered 0% of the month, the average is 49% of the month. In the next section, we derive OLAs from

³We excluded that 0%-of-the-month response because 0%-of-the-month could indicate that the respondent did not understand the question. To Question 1 of the survey, which is "Would you support or oppose a wind turbine project if you could always see the installed turbines from where you live?" (Table 24), the respondent indicated support. Thus, the respondent supports permanently deployed harvesters, which are

the survey results presented above. Since the 14 interviewees are only 6% of the 245 interviewees who support retractable wind turbines, we, in the next section, do not restrict deployment on the basis of how long the harvester has been visible in the two OLAs that we named "basic," but the basic OLAs still restrict deployment on the basis of windspeed and quiet hours.) { The two "oppose-permanent-support-retractable', Group-D, persons that indicated "After it has been visible a certain proportion the month" answered 40% and 10%, which average 25%.}

5. If you have any comments, please share them here. (Especially, if you oppose all types of wind turbines including retractable wind turbines, why?)

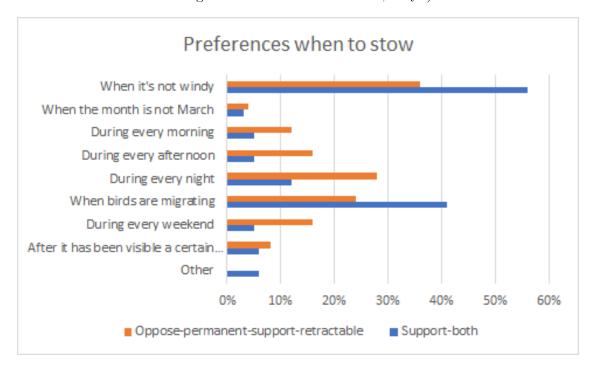


Figure 3: Preferences of those who support retractable harvesters.

deployed 100% of the month. But, 0% of the month was the respondent's answer.

3.1.2 Using a threshold to derive OLA conditions

The survey results can lead to the following OLA portion where 10% or more⁴ of survey interviewees in each category (if that group of interviewees has a plurality) chose the following conditions to retract or keep the harvester hidden:

3.1.2.1 Requirement 1 of 2: "When it's not windy" (138/245 or 56%). Fifty-six percent of respondents chose to retract the harvester when the weather is not windy. To define when the weather is not windy, we first find a windspeed threshold for each station. After we find the windspeed threshold, we allow each algorithm to choose the size of the window of the running windspeed average for each month. Prior to each month, the harvester operator should give the hosting community the monthly running-windspeed-average-window size (defined in Section 3.2.1) so that the hosting community can measure compliance with the when-it's-not-windy requirement. When the running windspeed average is one (1) knot below the windspeed threshold defined in the first step, we consider the weather to be not windy. (Conversely, when the running windspeed average is at or above the windspeed threshold defined in the first step, we deem the weather to be windy.)

Note: The "When it's not windy" requirement prevents algorithms from deploying until the running average windspeed reaches the lowest windspeed deemed to be windy k_{ws} at the pertinent weather station ws and prevents algorithms from remaining deployed when the running average windspeed drops below the lowest windspeed deemed to be windy less 1 knot: $k_{ws} - 1$. (We explore offsets greater than the 1-knot offset in Section 4.6.4 for the Aging algorithms for OLAs 3 and 4.)

Finding the windspeed threshold for each station We use the method detailed in Appendix A.2.1. There, a method is described to create a membership function that assigns a membership value (inclusively ranging from 0 to 1) in the fuzzy set NOT WINDY AT KBOS to each windspeed in a universe of discourse. (KBOS refers to a specific weather station at Boston's Logan International Airport.) For each weather station ws, we use the

⁴A community might choose x to be 10% because it might be useful to build a coalition and/or to be neighborly. A threshold x% that is not greater than 50% can make sense where no other equally-or-larger percentage of the community opposes the x%. For example, we are assuming that the group wanting to stow harvesters during every night is larger than a group wanting to deploy harvesters every night.

training data in our benchmark specific to that weather station to create its fuzzy set NOT WINDY AT ws. (Thus, in the benchmark suite, we provide 30 membership functions, one for each weather station.)

Then, from that fuzzy set, we create a lambda-cut set. (A general definition of a lambda-cut set can be found in Ross [80].) In this case, the lambda-cut set is the set of all windspeeds in the fuzzy set NOT WINDY having membership values of λ or higher. We chose λ to be 0.9 because lower values did not perform well in initial testing (during relatively early development). In Appendix A.2.4, we describe how to create a lambda-cut set and list the "Lowest Windspeed Deemed to Be Windy" for each station when λ is 0.9. By choosing $\lambda = 0.9$, each "Lowest Windspeed Deemed to Be Windy" happens to be either a Gentle Breeze or Moderate Breeze on the Beaufort Scale, as shown Table 11 in Appendix A.2.4. In Appendix A.2.4, five other values for lambdas are briefly explored. In other words, we determine how lambda affects the range of the "Lowest Windspeed Deemed to Be Windy" in a brief sensitivity analysis on lambda.

There are other ways to define the NOT_WINDY fuzzy set for each station besides relativizing each set to historical windspeeds at each station. For example, another approach is to derive one NOT_WINDY fuzzy set to be shared by all stations from an absolute scale such as the Beaufort Scale [60]. An advantage of using an absolute scale that is that only one membership function is required for all stations. A disadvantage of a one-threshold-fits-all approach is that the universal membership function is not embedded with historical windspeed information that is specifically local. Thus, if the local historical information is useful, the algorithm would need to extract that local historical information itself during training. We adopt the individualized membership functions, one for each station, because it is embedded with historical windspeed information.

3.1.2.2 Requirement 2 of 2: "During every night" (29/245 or 12%). Twelve percent of survey respondents chose to stow the harvester during every night⁵. Because noise

⁵We are interpreting "During every night" to be noise-restricted hours as defined by some municipalities (Appendix A.10). Survey results might have been different if instead of the option "During every night," we had used "During quiet hours" since Schwarz notes that "[s]elf-reports of... attitudes are strongly influenced by features of the research instrument, including question wording, format, and context" [83]. Although such an investigation is outside the scope of this present work, we are assuming that possible future revisions

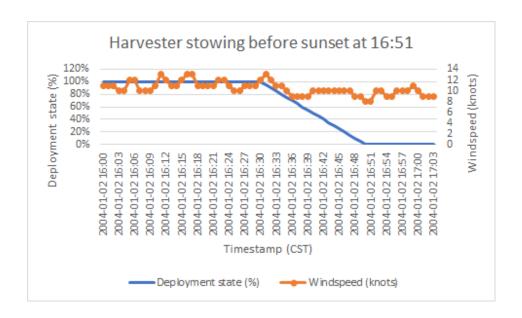


Figure 4: An envisioned harvester stowing before sunset at St. Louis at 16:51 regardless of windspeed

was a factor in some opposition to proposed wind-power projects [49] [1], we are assuming that at least some of the respondents who chose to keep harvesters hidden every night did so because they were concerned about noise. Thus, for each station, we derived definitions of every night or quiet hours from each station's corresponding city's noise ordinance's definition of nighttime. The derived quiet hours are in Appendix A.10. For example, quiet hours derived from Boston's and Minneapolis's municipal codes begin at 6 p.m. and end at 7 a.m. each weekday and quiet hours include the entire weekend. Pittsburgh's quiet hours start at 10 p.m. and end at 7 a.m. everyday. St. Louis's quiet hours begin at sunset and end at 6 a.m. and include the entire day of Sunday. Thus, a harvester in St. Louis must be stowed before sunset regardless of the windspeed-deployment are retraction thresholds (which, in this case, are 7 knots and 6 knots, respectively) if the harvester is observing the "During every night" restriction, as illustrated in Figure 4.

of the benchmarks presented herein will incorporate new survey data gathered in the context of specific actual or proposed retractable-harvester installations. Thus, we are proposing that future surveys ask some questions repeatedly using various "wording[s], format[s], and context[s]."

3.1.2.3 Out-of-scope requirement: "When birds are migrating" (100/245 or 41%). Forty-one percent of respondents chose to retract the harvester when birds are migrating. Although bird migration is outside the scope of this present work, our finding the relatively strong concern for birds among interviewees provides a motivation to consider adding bird migration indicators or data to a future version of this benchmark suite.

Bird migration indicators or data could be based on weather radar. Weather radar can detect birds [29]. A 2017 report states, "Recent changes in the data delivery and processing timescale for [NEXRAD weather surveillance network] Level II information via Amazon Web Services (https://aws.amazon.com/noaa-big-data/nexrad/) has greatly increased the potential of using the level II product for responsive, near real-time analyses" [85]. We envision that real-time bird migration data feeds will someday be provided by organizations specializing in bird migration forecasting (e.g., the BirdCast project⁶, which is associated with the Cornell [University] Lab of Ornithology).

3.1.3 Sets of operational limitations

From survey results, previous work, and the Pareto principle, we derive the following three sets of operational limitations:

Set Alpha A Basic allows a harvester to remain deployed 100% of month as long as the following conditions are met:

- when windy (but not during extremely windy conditions (Appendix A.3.2)) and
- during daytime.

Set Beta B Operational-constraint set B is the same as set A except that set B has the additional requirement that the harvester must not be visible more than 8760 minutes of each month, approximately 20%. A reason that we chose 20% is that it is lower percentage of the total time and that we found in an earlier work that "80% of the wind available over our two-month sample period can be extracted by wind harvesters deployed merely 20% of that time" [51] and is an example of the Pareto principle.

⁶http://birdcast.info

Set Gamma Γ Transition-limited OLAs 5 and 6 are the same as OLAs 3 and 4, respectively, except that OLAs 5 and 6 limit the number of state-transitions to two per month. The two states are the deployed state and the stowed state. Thus, the two possible state-transitions are stowed-to-deployed state-transition and the deployed-to-stowed state-transition. A reason to choose two state-transitions per month instead of unlimited state-transitions is that it greatly simplifies the determination of the "optimum" deployment and retraction timestamps. Also, two state-transitions describe a single wind-harvesting event: A harvester deploys, harvests energy (ideally), and then retracts. A single duration-limited (e.g., limited to approximately 20% of the month) wind-harvesting event per month is a relatively straightforward allowance to convey to potential harvesting-hosting communities: the harvester will deploy once per month and/or retract once per month.

Set Gamma Γ Set Γ has the following operational constraints:

- not during extremely windy conditions (Appendix A.3.2)),
- not visible more than more than 8760 minutes (20%) of each month, and
- not more than two (or three in case harvester needs to lower during extremely windy conditions) state changes (i.e., raises/lowers) each month

Table 1 shows the attributes of each of the six standard OLAs, where the dashed-line between the odd-numbered and even-numbered OLAs is meant to emphasize that the only difference between the odd-numbered and even-numbered OLAs is the reward/penalty function. Odd-numbered and even-numbered OLAs pass SCNetNorm() and SCMQNetNorm(), respectively, to I().

Table 1: The standard OLAs

OLA Numbers	1. & 2. Basic	3. & 4. In-	5. & 6.
Attribute	OLAs	termediate	Transition-
Attilbute		OLAs	limited OLAs

Table 1: (continued)

Number of times harvester may change states each month	Unlimited	Unlimited	2
The weather is not windy	Yes	Yes	No
Nightly visibility ban is in effect	Yes	Yes	No
Windspeed is too high (i.e., windspeed is above cut-out threshold)	Yes	Yes	No
Harvester has exhausted its visibility			
allocation, which is x minutes of each	x = 100%	$x = 8760 \mathrm{min}$	$x = 8760 \mathrm{min}$
month			
month(s) of year	all	all	all
Version of OLA that uses $I(SCNetNorm(a, wrk), b)$ (Defined in Section 4.2.0.1) as reward/penalty function where $b \in [1, 100]$ is chosen by each harvester-hosting community	OLA 1	OLA 3	OLA 5
Version of OLA that uses $I(SCMQNetNorm(a, wrk), c))$ (Defined in Section 4.2.0.1) as reward/penalty function where $c \in [1,100]$ is chosen by each harvester-hosting community	OLA 2*	OLA 4*	OLA 6*

^{*}OLAs 2, 4, and 6 use a different reward/penalty function than OLAs 1, 3, and 5.

3.2 VARIOUS ENERGY HARVESTING STRATEGIES; INTRODUCING THE ALGORITHMS

In this section, we develop energy harvesting strategies:

- Static: These algorithms do not change settings (e.g., deployment and retraction thresholds) while running.
- Dynamic: The algorithms may change settings during the simulation:
 - Aging (with and without weather prediction), which may lower the windspeed retraction threshold as the month progresses,
 - Fuzzy-Crisp Hybrid (with and without weather prediction), which uses crisp logic to determine when to retract to ensure that the algorithm complies with its controlling set of operational limitations (e.g., stow during quiet hours $\in A$) and which uses fuzzy logic to determine when to deploy,

where each of the dynamic algorithms have two operating modes:

- Non-predictive mode: At each time-step of the simulation, the simulator provides to
 the algorithm current, but not predicted, wind data from the sequence of windspeeds
 in the benchmark that the simulator is using.
- Predictive mode: At each time-step t of the simulation, the simulator provides to the algorithm current and simulated predicted day-ahead windspeeds from a sequence, hereafter called S, of windspeeds in the benchmark. Specifically, for each minute-by-minute time-step t of the simulator, the simulator will pass to the algorithm the windspeed $s[t] \in S$ and the distorted windspeed d(x, s[t+x]) where
 - $s[t+x] \in S$ and
 - x = 1440 minutes is the time-horizon of the prediction (i.e., x = 1440 minutes or one day beyond time-step t) and where
 - function d() distorts each future windspeed to simulate a windspeed-prediction accuracy⁷.

⁷In Section 4.2.0.3, we describe how we simulate the prediction of windspeeds.

3.2.1 The simulator: configuring and running the control algorithms

We are providing an environment in which to train and to test the control algorithms. The environment consists of input data and a Java program. In Figure 5, the Java program is represented by the rectangle labeled "Simulator" and the input data are represented by the horizontal arrows pointing to the rectangle. The arrow having no fill and labeled "Algorithm-configuration Arguments \rightarrow " represents settings or values which can affect the algorithm's performance (e.g., window size of windspeed running average, windspeed deployment threshold). (We discuss a way to find those values in the next paragraph.) The output of the simulator is labeled " \rightarrow Metrics...."

In this section, we describe parameters and values with which we experiment. The purpose of the settings are to tune the performance of the algorithm that the simulator is running. To that end, we explore sets of parameter values. The values are described and exploration results are referenced via Table 4 on page 84 and Table 9 on page 105 in the context of different explorations. The tables also include a purpose for each exploration.

Window size of windspeed running average: Recall that the benchmark suite provides windspeed data that is minute-by-minute (which is labeled "Multi-year Minute-by-Minute Windspeeds" in Figure 5) and that we interpolated any gaps so that no minutes are missing. At every minute, the file contains a windspeed that we call a *sample*. The window size m of the windspeed running average is the number of samples (which is identical to the number of minutes because we interpolated any gaps) that the algorithm sums to calculate a running average of windspeed samples at each timestep of the simulation.

Averaging the sequence of windspeeds mitigates momentary winspeed changes (e.g., spikes). If a control algorithm does not filter out spikes, the algorithm could momentarily unstow a fully retracted harvester, wasting visibility time. Likewise, if a control algorithm does not filter out transient dips in windspeeds, the control algorithm could momentarily retract partially a fully deployed harvester, wasting opportunities to harvest.

The following is how the simulator uses the running average size m, where m is the size of the moving window measured in minutes. The simulator reads samples one at a time each minute. Let t_{now} and t_{prev} be the minute timestamps of the samples that the simulator would

read most recently and next-to-most recently, respectively. The simulator inserts the most recently read samples into a set of samples having timestamps in the range $(t_{now} - m, t_{now}]$.

Mathematically, the running average having window size m minutes can be defined as follows: Let t_i be the minute timestamp of each windspeed w_i for i = 0, 1, 2, ..., n where n tends toward infinity. Let $t_{now} = \max(t_i)$. Define the set

$$M = \{w_i \mid i = 0, 1, 2, \dots, (m-1) \text{ and } (t_i > (t_{now} - m))\}.$$

Hence, our running average having window size m is defined as

$$\frac{\sum_{j=1}^{|M|} w_j \in M}{|M|}.$$

Values: Tables 4 and 9 show the various sequences of window sizes of the running windspeed average as part of various explorations, including the following examples:

- Exploration 1: We tested values in the sequence [1 (step 30) 121], which causes 5 iterations, for all 30 stations, for all algorithms, for all OLAs. The window size sequence starts at 1 minute, ends at 2 hours, with half-hour increments. The relatively large step size was conducive to completing a level of testing that is spread across all 30 stations, all algorithms, and all OLAs within a previous schedule.
- Exploration 2: For all 30 stations, one algorithm, and one OLA (OLA 3), we extended and tightened the sequence: [1 (step 1) 361]. We extended the sequence to 361 to determine if the upper limit of Exploration 1, i.e., 121 minutes, was reasonable. If the training routine were to often find that values greater than 121 result in the Aging algorithm's best NetNorm or MQNetNorm scores, then we would suggest that the training routine should extend its search space beyond Exploration 1's upper limit of 121. (Recall that OLA 3 limits a harvester's visibility to approximately 20% of each month. Thus, unfiltered spikes might have a more detrimental effect on OLA 3 than OLA 1, which allows the harvester to be visible 100% of non-quiet hours if windspeeds are within a specified range.)

Windspeed deployment threshold or y-intercept: The windspeed deployment threshold argument, which has a unit of knots, is passed to the algorithm Static. Static does not change the argument's value during the entire simulation. The windspeed deployment threshold tells Static when to deploy if other conditions are being satisfied (e.g., the harvester has time remaining in its monthly visibility allotment.) The y-intercept argument is used by the algorithm Aging as part of a linear equation dependent upon how much time remains in the month. The training routine may find a different y-intercept for each month of the year.

Values: We explored different window sizes of windspeed deployment thresholds and y-intercepts in multiple explorations, as shown in Table 4 and Table 9.

Fuzzy-Crisp Hybrid's deployment membership value in fuzzy set: As stated elsewhere, the Fuzzy-Crisp Hybrid algorithm uses crisp code to retract and fuzzy code to deploy. When the fuzzy-code-produced membership value in a combined fuzzy set reaches the value specified by this parameter, the fuzzy code directs the harvest to deploy (but the fuzzy code is overridden by the crisp code if the harvester must remain retracted.)

Values: Please see Tables 4 and 9.

Lambda (λ): As stated in Section 3.1.2.1, the lambda-cut set of the fuzzy set NOT WINDY is the set of all windspeeds having membership values of λ or higher in the fuzzy set NOT WINDY. The membership function that we are using assigns to low windspeeds high membership values in NOT WINDY and assigns to high windspeeds low membership values. As windspeed increases, the membership value in NOT WINDY decreases. (An example of a mapping of windspeeds to membership values is plotted in Appendix A.2.1.) The lambda cut partitions all windspeeds into two crisp subsets: CRISP NOT WINDY and CRISP WINDY. The x-axis location of the boundary between the set CRISP NOT WINDY and the set CRISP WINDY decreases as λ increases. Thus, as λ increases, the lowest windspeed deemed to be windy decreases.

Values: Please see Tables 4 and 9.

Retraction Threshold Difference: Section 4.6.4 describes a sensitivity analysis we did on the retractable threshold difference.

Values: Please see Tables 4 and 9.

Information about the other algorithms can be found in Appendix 3.4. Some algorithms have arguments (e.g., window size of windspeed running average, y-intercept of linear function that maps time remaining in month to windspeed deployment threshold) that are arrays containing settings for each month of the year.

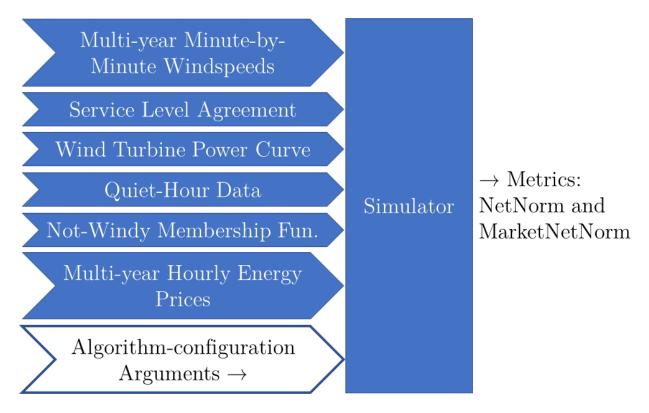


Figure 5: Environment in which to train and to test the control algorithms.

A way to find algorithm-configuration arguments or values is to search a configuration space. In other words, a way to train is to search. The process of searching a configuration space is represented on the left-hand side of Figure ??. Searching might involve using nested loops to find sets of configuration values that maximize the output metrics during training. Thus, searching the configuration space might involve running the simulator hundreds of iterations.

The center of Figure ?? represents that training (which we implemented by searching) found two sets of configuration values: one set maximized the MQNetNorm metric; the other set maximized NetNorm. (Both sets might happen to be identical.)

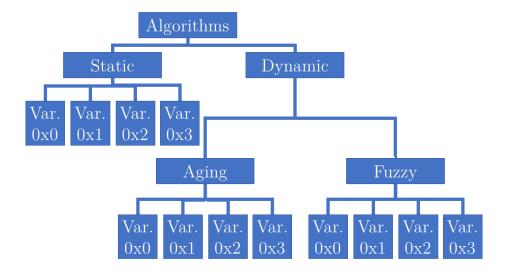


Figure 6: Categories of algorithms we wrote and tested and their variants ("Var.")

The right-hand side of Figure ?? represents the test phase, in which the simulator is run only twice. One run uses the configuration values that maximized the MQNetNorm metric during training. The second run uses the configuration values that maximized NetNorm.

We have described the environment in which to run the algorithms. We discussed training (via searching). Let us now turn to the goal of the algorithms and give an overview of the three algorithm categories that we are examining below.

3.2.2 Goal and overview of the control algorithms

The control algorithms for retractable harvesters fall into the following categories as shown in Figure 6:

- Static: These algorithms do not change deployment and retraction thresholds while running.
- Dynamic: The algorithms may change deployment and retraction thresholds during the simulation:
 - Aging (with and without weather prediction), which may lower the windspeed re-

traction threshold as the month progresses,

 Fuzzy-Crisp Hybrid (with and without weather prediction), which uses crisp logic to determine when to retract to ensure that the algorithm complies with its controlling OLA and which uses fuzzy logic to determine when to deploy,

where each of the dynamic algorithms have two operating modes:

- Non-predictive mode: At each time-step of the simulation, the simulator provides to
 the algorithm current, but not predicted, wind data from the sequence of windspeeds
 in the benchmark that the simulator is using.
- Predictive mode: At each time-step t of the simulation, the simulator provides to the algorithm current and simulated predicted day-ahead windspeeds from a sequence, hereafter called S, of windspeeds in the benchmark. Specifically, for each minute-by-minute time-step t of the simulator, the simulator will pass to the algorithm the windspeed $s[t] \in S$ and the distorted windspeed d(x, s[t+x]) where
 - $s[t+x] \in S$ and
 - x = 1440 minutes is the time-horizon of the prediction (i.e., x = 1440 minutes or one day beyond time-step t) and where
 - function d() distorts each future windspeed to simulate a windspeed-prediction accuracy⁸.

3.3 VARIANTS IN EACH CATEGORY OF ALGORITHMS

Each algorithm category (Static, Aging, Fuzzy-Crisp Hybrid) has the following variants:

Variant	Use Weather Prediction	Transitions Limited
0x0	0	0
0x1	0	1
0x2	1	0
0x3	1	1

where the

⁸In Section 4.2.0.3, we describe how we simulate the prediction of windspeeds.

- "Use Weather Prediction" column describes whether (1) or not (0) the variant uses weather prediction, and the
- "Transitions Limited" column describes whether (1) or not (0) the variant must limit the number of state transitions that the harvester it is controlling may make per month, which it must do to comply with OLAs 5 and 6 (Section 3.1.3).

3.4 ALGORITHM CATEGORIES

3.4.1 Static (with and without weather prediction)

The Static algorithm category is comprised of the simplest of the algorithms we wrote and benchmarked. We refer to each member of this category as "Static." Static keeps the same deployment and retraction thresholds as well as the same window size used to calculate the running windspeed average (described in Section 3.2.1) throughout the testing phase.

To train Static (i.e., to find the algorithm-configuration values that Static will use to process a specific workload, we explored the two-dimensional design space described in Section 3.7. Once trained, Static will not change its deployment and retraction windspeed thresholds and windows size of the running average windspeed.

3.4.2 Aging (with and without weather prediction)

The Aging algorithms may change the deployment and retraction thresholds of windspeeds as the month ages. To change the deployment and retraction thresholds, we pass the total number of minutes remaining in the month to a linear function d() that returns the deployment-windspeed threshold. The linear function d() has a slope and y-intercept which are determined during the training phase (Section 3.7) for each month of the year. Examples of d() explored during the training phase are plotted in Figure 7 for Revision 1.1 and Figure 8 for Revision 1.2. (We chose the retraction-windspeed threshold to be d() – 1 knots.) The points on the x-axis are the minutes until the month ends (Revision 1.1) or minutes having expired during the month (Revision 1.2). The y-axis indicates the windspeed at which the

algorithm deploys (if no other restrictions are in effect, such as quiet hours. The minimum value for each d() is the lowest windspeed deemed to be windy at the pertinent weather station (Appendix A.2.4) in order to ensure that Aging complies with OLAs 1 - 4, which restrict deployment to windy weather. (OLAs 5 and 6 do not restrict deployment to windy conditions.)

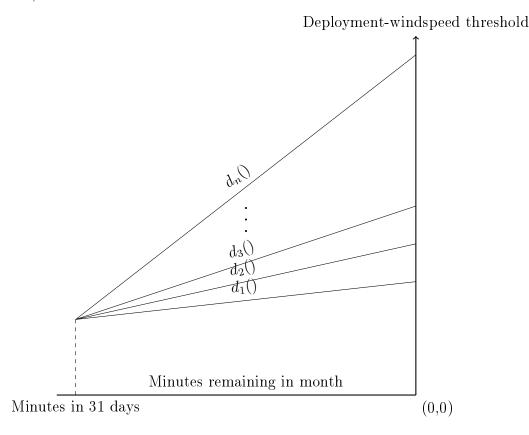


Figure 7: Iterations of deployment-threshold function d() explored during training phase of Aging algorithms (Rev. 1.1) (drawing not to scale)

3.4.3 Fuzzy-Crisp Hybrid (with and without weather prediction)

The Fuzzy-Crisp Hybrid algorithms have crisp code and fuzzy code [80]. The fuzzy code combines membership values in fuzzy sets. The combination depends on the variant (Section 3.3) of the Fuzzy-Crisp Hybrid algorithm we are testing. In the following sections, we explain the combination we use for each variant.

To comply with each OLA, we have a crisp component of the algorithm that retracts the harvester before it can violate the time-visible limit of the OLA. (Crisp part: If the time that harvester has been visible plus the time it takes the harvester to retract is greater than a certain amount, or if the minutes until the month ends equals or is less than than the time it takes for the harvester to retract, then retract.) Outside of those OLA-violating conditions, we use the fuzzy logic described in the following sections, in which the fuzzy sets are delineated by quotation marks. (Thus, we named these algorithms Fuzzy-Crisp Hybrid, but because these algorithms do have a fuzzy part, we sometimes refer to these algorithms as simply Fuzzy.)

- 3.4.3.1 Fuzzy-Crisp variant 0x0 If the weather is "Windy" now and (if the time of day is "Not Approaching Quiet Hours" or if there are "Plenty of Allocated Visibility Minutes Remaining"), then deploy. (That is, even if it is approaching quiet hours but there is plenty of visibility time left and the weather is windy, go ahead and deploy.) Otherwise retract. Or retract if the crisp conditions of the OLA will be violated if the algorithm does not retract.
- 3.4.3.2 Fuzzy-Crisp variant 0x1 If the weather is "Windy" now or if the time of the month is "Approaching the Use-Visibility-Allocation-or-Lose-It Point" (i.e., if the weather is fuzzily approaching the crisp point where the visibility allocation (e.g., x minutes) equals the amount of month remaining), then deploy. Retract if the crisp visibility-time condition of the state-transition-limited OLAs (OLAs 5 and 6) will be violated if the algorithm does not retract.
- **3.4.3.3 Fuzzy-Crisp variant 0x2** If the weather will be "Very Windy" tomorrow and there are "Not Plenty of Allocated Visibility Minutes Remaining," then retract.

Otherwise, use the same rules used by variant 0x0.

3.4.3.4 Fuzzy-Crisp variant 0x3 If the weather is "Windy" now and the weather will be "Windy" tomorrow or if the time of the month is "Approaching the Use-Visibility-Allocation-or-Lose-It Point" then deploy.

Otherwise, use the same rules used by variant 0x1.

3.4.3.5 Membership functions In the Appendix are descriptions or examples of the membership functions for the following fuzzy sets:

Fuzzy set	Figure	
Not Windy	Figure 41 on page 261	
Not Very Windy	Figure 41	
Plenty of Allocated Visibility Minutes Remaining	Figure 42 on page 261	
Approaching Near the Start of Quiet Hours	Figure 43 on page 262	
Approaching the Use Visibility Allocation or Lose It Point	Figure 44 on page 262	

3.4.3.6 Combined degree of membership We combine the fuzzy sets as described above linguistically in the sections on variants of the fuzzy algorithms (Sections 3.4.3.1 to 3.4.3.4). We mapped the linguistic words or and and to the mathematical functions max and min, respectively [39, Equations 5 and 6]. For example, the conditional clause in the conditional sentence,

If the weather will be "Very Windy" tomorrow and there are "Not Plenty of Allocated Visibility Minutes Remaining," then retract,

maps to the mathematical expression

$$\min(\mu_{vw}(p), 1 - \mu_{pvr}(c))$$
 (3.1)

where

- $\mu_{vw}(p)$ is the degree of membership of p in the fuzzy set "Very Windy,"
- p is the predicted day-ahead windspeed,
- $\mu_{pvr}(c)$ is the degree of membership of c in the fuzzy set "Plenty of Allocated Visibility Minutes Remaining," and
- c is how many minutes of visibility allocation that the harvester has already consumed.

We call the result of that mathematical operation (Equation 3.1) a combined degree of membership.

Let us translate a more complex linquistic expression to a mathematical one. The condition for deploying in the following paragraph

If the weather is "Windy" now and (if the time of day is "Not Approaching Quiet Hours" or if there are "Plenty of Allocated Visibility Minutes Remaining"), then deploy. Otherwise retract. Or retract if the crisp conditions of the OLA will be violated if the algorithm does not retract.

maps to the mathematical expression

$$\min(\mu_{vw}(n), \max(1 - \mu_{agr}(t), \mu_{pvr}(c)))$$
 (3.2)

where

- $\mu_w(n)$ is the degree of membership of n in the fuzzy set "Windy,"
- \bullet *n* is windspeed now,
- \bullet $\mu_{aqr}(t)$ is the degree of membership of t in the fuzzy set "Approaching Quiet Hours,"
- \bullet t is current time,
- $\mu_{pvr}(c)$ is the degree of membership of c in the fuzzy set "Plenty of Allocated Visibility Minutes Remaining," and
- c is how many minutes of visibility allocation that the harvester has already consumed.

3.5 PSEUDO-CODE

Pseudo-code of the most recent and penultimate revisions of each of the variants of each category described above are given in Appendix A.1. In the following section, we examine selection portions of actual Java code.

3.6 A LOOK INTO SELECTED CODE OF THE ALGORITHMS

3.6.1 Code for the Aging algorithms ($Dynamic_1$ and $Dynamic_{1P}$)

In this section, we describe the code in the Aging category or family of algorithms. The Aging family has variants that allow the harvester to deploy and retract an unlimited number of times each month. The variants that allow "unlimited state transitions" are 0x0, which does not use weather prediction, and 0x2, which does use weather prediction. Variants 0x0 and 0x2, which may be used to comply with OLAs 1 through 4, use the code we describe directly below.

3.6.1.1 For OLAs allowing unlimited state transitions OLAs 1 through 4 require the harvester to be stowed when the weather is not windy. Line 17 in Listing 3.1 on the next page is where the code tests whether or not the windspeed average is below the retraction threshold, which is calculated in Line 9, and is one knot less than the deployment threshold retrieved from a date-dependent, linear function at Line 8. That date-dependent function is what makes the Aging family sensitive to the day of month. As the month wears on, the deployment threshold may increase linearly (Rev. 1.1), as shown in Figure 7 on page 35, or may decrease linearly (Rev. 1.2), as shown in Figure 8 on page 49, or remain constant. In Rev. 1.2, as explained in Section 3.4.2, the deployment threshold on the last day of the month is the lowest windspeed deemed to be windy at the pertinent weather station. The y-intercept is determined during training.

For example, suppose that the training determines that the y-intercept for January at station KATL is 17 knots, as training did when it trained Aging variant 0x0 to process OLA 3 at KATL (Table 41). The deployment threshold starts at 17 knots on January 1 and decreases linearly reaching 7 knots on January 31 because the lowest windspeed deemed to be windy at KATL is 7 knots (Appendix A.2.4 on page 156).

Because OLAs 3 and 4 limit the amount of time a harvester may be visible each month, Line 28 tests whether the sum of the harvester's time visible this month and the time it takes the harvester to retract is above a threshold. The sum is normalized by the number of minutes in the month. Hence, the variable holding the sum is named with the prefix fraction. If fractionVisbilePlusTimeToRetractMonthly is greater than 0.99 (which is specified on Line 24), the code directs the harvester to retract (Line 30), via the method of the harvester object named .resetMode(). The algorithm knows the number of minutes that the harvester is permitted to be visible each month by reading a .properties file.

OLAs 1 through 4 mandate that the harvester be stowed during quiet hours. Stowing during quiet hours is implemented via the if statement starting on Line 58. The boolean variable bDuringNightlyVisibilityBan is set by a variable in the properties file and, if set, instructs the algorithm to check quiet hours if transitions are unlimited. Because the harvester takes some time to retract (explained in Appendix A.3.5), which is called TIME_TO_RETRACT_MINUTES in the code, the algorithm looks ahead that number of minutes to determine whether quiet hours will be starting then (Line 60) or whether quiet hours have begun (Line 62). If either is the case, the algorithm directs the harvester to retract/remain retracted (Line 67).

Listing 3.1: Code of Aging that processes one windspeed sample for OLAs *not* limiting state transitions

```
private void processOneSampleTransitionsUnlimited(Workload.
                         WindspeedSample sample, boolean bUseWeatherPrediction) {
   2
   3
                 final int RETRACTION THRESHOLD DIFFERENCE = 1;
    4
   5
                 // Determine what control signal to output.
   6
                 // Use visibility-time-remaining to control deployment threshold
   7
   8
                 int deployment Threshold Knots = get Deployment Threshold Knots (sample.)
                              date);
                 {\tt int} \ \ {\tt retractionThresholdKnots} \ = \ {\tt deploymentThresholdKnots} \ - \ {\tt
  9
                            RETRACTION THRESHOLD DIFFERENCE;
10
                 double windspeed knots average = ra.updateRunningAverage(sample.
11
                              windspeed knots, running average window size);
12
                  if (windspeed knots average > deploymentThresholdKnots) {
13
14
15
                     harvester.setMode();
16
17
                 } else if (windspeed knots average < retractionThresholdKnots) {
```

```
18
19
     harvester.resetMode();
20
21
22
23
    // check amount of time used per month
24
    final float FRACTION VISIBLE TIME THRESHOLD = (float) 0.99;
25
    double fractionVisbilePlusTimeToRetractMonthly =
26
     harvester. getFractionVisbilePlusTimeToRetractMonthly(ws.
        iUsedAllItsAllocatedVisibilityMinutesPerMonth);
27
28
    if (fractionVisbilePlusTimeToRetractMonthly >
       FRACTION VISIBLE TIME THRESHOLD) {
29
30
     harvester.resetMode();
31
32
    }
33
34
    // If harvester has somewhat nearly exhausted is allocated
       visibility time for the month and
    // tomorrow will be much windier than today,
35
    // then retract to save visibility time
36
37
    if (bUseWeatherPrediction) {
38
39
     final double MUCH WINDIER = 1.25;
     final double FRACTION VISIBLE TIME THRESHOLD SOMEWHAT EXHAUSTED =
40
        0.64:
41
     double windspeed knots average future =
      ra.updateRunningAverage(sample.windspeed knots predicted one day,
42
           running average window size);
43
44
     if (
45
      (fraction VisbilePlusTimeToRetractMonthly >
       FRACTION VISIBLE TIME THRESHOLD SOMEWHAT EXHAUSTED) &&
46
47
      (windspeed knots average future > (windspeed knots average*
         MUCH WINDIER))
48
      ) {
       //System.out.println("Retracting because future windspeeds are
49
          much windier ... ");
       harvester.resetMode();
50
51
      }
52
     }
53
54
    // if within retraction time of quiet hours or during quiet hours,
       then retract or remain retracted
    if (ws.bDuringNightlyVisibilityBan &
55
56
```

```
57
        ! noise A llowed F uture R etraction T ime . b Is N o is e A llowed (sample . date .
            plusMinutes (harvester.TIME TO RETRACT MINUTES))
        // do not short circuit
58
        ! (noiseAllowed.blsNoiseAllowed(sample.date))
59
60
        )
61
       ) {
62
        harvester.resetMode();
63
64
65
      harvester.processMode(sample, ep, true);
66 }
```

3.6.1.2 For OLAs limiting state transitions to two per month Because OLAs 5 and 6 limit the harvester to only two state transitions per month yet allow the harvester to remain deployed even when the weather is not windy, the Aging algorithm uses the code shown in Listing 3.2 instead of Listing 3.1 for OLAs 5 and 6.

Listing 3.2: Code of Aging that processes one windspeed sample for OLAs limiting state transitions

```
1
   private void processOneSampleTransitionsLimited(Workload.
      WindspeedSample
                        sample,
    boolean bUseWeatherPrediction) {
3
4
5
    final int RETRACTION THRESHOLD DIFFERENCE = 1;
6
7
    // Determine what control signal to output.
8
    // Use visibility-time-remaining to control deployment threshold
9
    int deployment Threshold Knots = get Deployment Threshold Knots (sample.)
10
       date);
11
12
    double windspeed knots average = ra.updateRunningAverage(sample.
       windspeed knots, running average window size);
13
    final double MUCH WINDIER = 1.25;
14
    double windspeed knots average future =
15
      ra.updateRunningAverage(sample.windspeed knots predicted one day,
16
           running_average_window_size);
17
18
    if (
19
     (harvester.getMinutesVisibleMonthly() < 1) &&
```

```
20
21
       (DateStatistics.getMinutesInMonthRemaining(sample.date) < ws.
           iUsedAllItsAllocatedVisibilityMinutesPerMonth)
22
23
          harvester has not yet been visible this month
24
        (windspeed knots average > deploymentThresholdKnots) &&
25
26
          (!(bUseWeatherPrediction &&
            (windspeed knots average future > (windspeed knots average*
27
              MUCH WINDIER)) // much windier tomorrow
28
29
30
31
32
33
34
     harvester.setMode();
35
36
37
    // check amount of time used per month
38
    final float FRACTION VISIBLE TIME THRESHOLD = (float) 0.99;
    if (harvester. getFractionVisbilePlusTimeToRetractMonthly(ws.
39
       iUsedAllItsAllocatedVisibilityMinutesPerMonth) >
     FRACTION VISIBLE TIME THRESHOLD) {
40
41
42
      harvester.resetMode();
43
44
    // if within retraction time of end of month, then retract
45
    if (DateStatistics.getMinutesInMonthRemaining(sample.date) <=
46
47
            harvester.TIME TO RETRACT MINUTES
48
     ) {
49
      harvester.resetMode();
50
     harvester.processMode(sample, ep, false);
51
52 }
```

3.6.2 How the algorithms use weather prediction

3.6.2.1 Static and Aging variant using weather prediction and is not transition-limited (i.e., variant 0x2) As shown in the code above starting at Line 14 and repeated in the snippet below (which is shared by both Static and Aging), Static and Aging variant 0x2 uses weather prediction in an effort to save visibility time. To save visibility time, when

the harvester has somewhat nearly exhausted its allocated visibility time for the month and tomorrow will be much windier than today, the harvester will retract. Thus, if a day is particularly windy, the harvester will still retract, using 20 minutes of visibility time without harvesting. Tomorrow, the harvester uses another 20 minutes without harvesting to deploy.

```
1
2
    // If harvester has somewhat nearly exhausted is allocated
        visibility time for the month and
    // tomorrow will be much windier than today,
3
    // then retract to save visibility time
    if (bUseWeatherPrediction) {
6
7
     final double MUCH WINDIER = 1.25;
     final double FRACTION VISIBLE TIME THRESHOLD SOMEWHAT EXHAUSTED =
8
9
     double windspeed knots average future =
       ra.updateRunningAverage(sample.windspeed knots predicted one day
10
           , running average window size);
11
12
     if (
13
       (fractionVisbilePlusTimeToRetractMonthly >
      FRACTION VISIBLE TIME THRESHOLD SOMEWHAT EXHAUSTED) &&
14
     (windspeed_knots_average_future > (windspeed_knots_average*
15
        MUCH WINDIER))
16
     ) {
17
      //System.out.println("Retracting because future windspeeds are
18
         much windier ... ");
19
      harvester.resetMode();
20
21
     }
22
23
    }
```

3.6.2.2 Static and Aging variant using weather prediction and is transition-limited (i.e., variant 0x3) As shown in the code snippet directly below (which is shared by both Static and Aging), Static and Aging variant 0x3 uses weather prediction when the harvester has not been visible yet during the month. Then, even when the rolling average windspeed surpasses the windspeed-deployment threshold, the harvester will not deploy if tomorrow is predicted to be much windier (defined as 1.25 times windier) than today.

1

```
2
    final double MUCH WINDIER = 1.25;
3
    double windspeed knots average future =
4
     ra.updateRunningAverage(sample.windspeed knots predicted one day,
        running average window size);
5
6
    if (
 7
      (harvester.getMinutesVisibleMonthly() < 1) &&
8
9
       (DateStatistics.getMinutesInMonthRemaining(sample.date) < ws.
           iUsedAllItsAllocatedVisibilityMinutesPerMonth)
10
         harvester has not yet been visible this month
11
12
13
        (windspeed_knots_average > deploymentThresholdKnots) &&
14
          (!(bUseWeatherPrediction &&
            (windspeed_knots_average_future > (windspeed_knots_average*
15
              MUCH WINDIER)) // much windier tomorrow
16
17
18
19
20
21
22
      harvester.setMode(); //deploy
23
```

3.6.2.3 Fuzzy variant using weather prediction and is not transition-limited

(i.e., variant 0x2) As shown in the code snippet below, Fuzzy variant 0x2 uses weather prediction in an effort to save visibility time. To save visibility time, if the harvester is running out of allocated visibility time for the month and tomorrow will be much windier than today, then allow an intermediate membership value to be less than 1. That intermediate membership value becomes the maximum value of the resulting membership value. That resulting membership value must be above a certain threshold in order for the harvester to deploy. Thus, weather prediction might cause a harvester not to deploy even when a day is particularly windy, but tomorrow will be very windy and the harvester is running out of visibility time.

```
private double getResultingMembershipValueTransitionUnlimited(double windspeed_knots_average,
   Workload.WindspeedSample sample, boolean bUseWeatherPrediction, double windspeed_knots_average_future) {
   double membershipValueConditional;
   if (bUseWeatherPrediction) {
```

```
// If very windy tomorrow and running out of time, retract
   // Allow deployment if not very windy tomorrow
                  - or-
          if not running out of time
   membership Value Conditional = Math.max(
         not (windy.getMembership ValueForVeryWindy((int) windspeed knots average future)),
         harvester.getMembershipValueForPlentyOfAllocatedVisibilityMinutesRemaining(
              ws.iUsed AllIts Allocated Visibility Minutes Per Month
         );
} else {
   membership Value Conditional = 1;
final int MINUTES BEFORE QUIET HOURS X INTERCEPT = 120; // upgrade: set during training
// If windy and (if not approaching quiet hours or if fraction of time spent
// stowed is low)
double resulting Membership Value = Math.min (membership Value Conditional,
     Math.min(windy.getMembershipValueForWindy((int) windspeed knots average),
                  {\tt MINUTES\_BEFORE\_QUIET\_HOURS\_X\_INTERCEPT)}\ )
                 harvester. \\ get Membership Value For Plenty Of Allocated Visibility \\ Minutes Remaining (Manutes Remainin
                       ws.iUsedAllItsAllocatedVisibilityMinutesPerMonth)))\\
);
return (resulting Membership Value);
```

3.6.2.4 Fuzzy variant using weather prediction and is transition-limited (i.e., variant 0x3) As shown in the code snippet below, Fuzzy variant 0x3 uses weather prediction to only deploy (i.e., consume a transition from being stowed to being deployed) only when both today and tomorrow are windy. Thus, if a windy day is followed by a calm day, the harvester will not deploy, missing the windy day.

```
1 private double getResultingMembershipValueTransitionLimited(double
      windspeed knots average,
2
     Workload. WindspeedSample sample, boolean bUseWeatherPrediction,
        double windspeed knots average future) {
3
4
    double windspeed knots average to use;
5
6
    if (bUseWeatherPrediction) {
7
8
9
     // must be windy today and windy to-morrow
10
     windspeed_knots_average_to_use = Math.min(windspeed_knots_average,
         windspeed knots average future);
```

```
11
12
    else
13
14
     windspeed knots average to use = windspeed knots average;
15
16
    }
17
18
    double resulting Membership Value = Math.max(
19
       windy.getMembershipValueForWindy((int)
          windspeed knots average to use),
20
       Date Statistics. get Membership Value For Approaching Use It Or Lose It Point
          (sample.date, harvester, ws));
21
22
    return (resulting Membership Value);
23
24
   }
```

3.7 TRAINING METHOD: EXPLORING A TWO-DIMENSIONAL DESIGN SPACE

To train algorithm a to process a specific workload wrk, we run a multiple times over the training partition of wrk. The number of times that we run a is governed by nested loops where we iterate an inner-loop variable $y_{intercept}$ (defined in the sections immediately below) and an outer-loop variable r where r is the size of the windspeed-running-average window.

We explore the following windspeed-running-average window sizes: $r \in \{1, 31, 61, 91, 121\}$, which we express in shorthand as $r \in [1 \text{ (step 30) } 121]$ for all the algorithms. The units are minutes (or, equivalently, samples of windspeeds since we provide a windspeed each minute).

With respect to the metric that we shall use in the testing phase (i.e., NetNorm(a, wrk) 4.1.3 or MQNetNorm(a, wrk) 4.1.5.3), we record the best $y_{intercept}$ and windspeed-running-average size r for each month of the year (for the cases of training the Aging and Fuzzy algorithms) or for the entire training period (for the case of training the Static algorithms).

⁹In this release of the control algorithms, we use a relatively simple training or parameter-tuning method in that each iteration uses a constant step size. More sophisticated parameter-tuning methods exist that use local search [2]. We did not use local search in this release.

3.7.1 Context of $y_{intercept}$ for the Static and Aging category of algorithms

The variable $y_{intercept}$ is part of a linear equation that returns a deployment-windspeed threshold when given the number of minutes remaining in the month. For the Aging algorithm, the linear equation's slope m is less than or equal to 1. When m < 1, the deployment threshold decreases as the month wears on. However, for the Static algorithm, the slope of the linear equation is zero; The deployment threshold remains constant throughout the testing phase.

For the Static and Aging algorithms, the values we explore for the inner-loop variable $y_{intercept}$ are $\{w, w + 10, w + 20, w + 30\}$, which we express in shorthand as $y_{intercept} \in [w \text{ (step 10) } w + 30]$, where $w \in \mathbb{N}$ is the least windspeed deemed to be windy (defined in A.2.4) at weather station ws and where the units of w are knots.

3.7.2 Context of $y_{intercept}$ for the Fuzzy category of algorithms

The variable $y_{intercept}$ is part of a linear equation that returns a deployment threshold of the combined degree of membership (Section 3.4.3.6). The slope of the equation is zero. That is, the deployment-degree-of-membership threshold remains constant throughout each month.

For the Fuzzy algorithms, the value we use for the variable $y_{intercept}$ (i.e., the deployment-degree-of-membership threshold in the fuzzy set NOT WINDY) is 0.5 which maps to the lowest windspeed we deem to be windy (Appendix A.2.4).

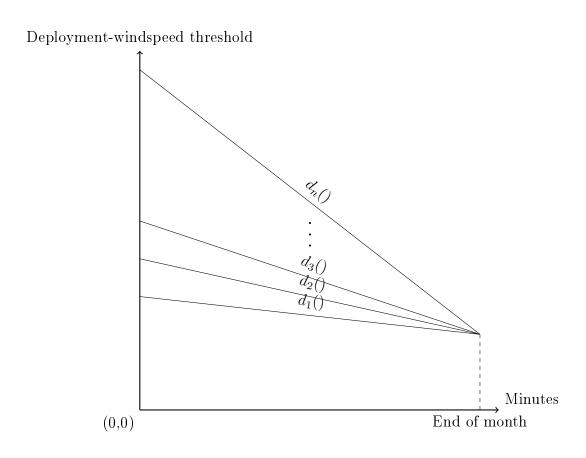


Figure 8: Iterations of deployment-threshold function d() explored during training phase of Aging algorithms (Rev. 1.2) (drawing not to scale)

4.0 PERFORMANCE ANALYSIS

In this chapter, we present metrics by which to measure the performance of retractable-windharvester control algorithms and a set of various benchmarks or workloads. The metrics and benchmarks together form a suite to cover a variety of operating scenarios.

4.1 METRICS

When should an operationally-limited (e.g., limited-by-operation-limitation-set-A) control algorithm deploy and retract? That answer depends on what metric that algorithm is trying to optimize. How do we know whether a given metric M measures how well a retractable-harvester control algorithm controls a harvester? We address that question by listing criteria in the next section:

4.1.1 Criteria

Let the union of an operation limitation set with a metric M form an operational limitation agreement (OLA) between an RWEH-hosting community and an RWEH vendor. Suppose that an algorithm a is operating that OLA while processing a workload wrk.

- 1. If an abstract metric M(a, wrk) satisfies the following sufficient (and not necessarily necessary) criteria, then M(a, wrk) measures how well a retractable-harvester control algorithm $a \in A$ controls a harvester:
 - a. The metric M(a, wrk) reflects the fact of whether or not algorithm a violates the OLA when processing workload wrk.

- b. If a complies with the OLA, then the value of M(a, wrk) depends on how much energy that the harvester controlled by algorithm a nets.
- c. M(a, wrk) > M(b, wrk) if and only if, without loss of generality, algorithm a processes workload wrk better than algorithm b processes the same workload where better is defined as
 - a netting more energy than b in the case where both a and b both comply with the OLA or
 - a complying with the OLA over the entire workload wrk and b violating the OLA during some point during b's processing of wrk.

4.1.2 Applying the criteria to a specific metric, SCNetNorm

Now that we have listed the criteria, let us ask the following question: Question 2: Does the metric SCNetNorm (Equation 4.5) sufficiently measure how well a retractable-harvester control algorithm controls a harvester, within a operation limitation agreement (OLA) between the harvester operator and the harvester-hosting community?

Example OLA: A community will host a retractable harvester if the harvester will comply with the following three conditions:

- be visible (i.e., not fully stowed) less than t_{viz} minutes each month,
- be hidden at night between $T_{NightStart}$ and $T_{DayStart}$ (e.g., between 10 P.M. and 7 A.M. to facilitate amateur astronomy and to reduce noise), and
- be a retractable version of a typical towered wind turbine¹ (e.g., a Vestas V90 turbine) without any other restrictions (e.g., day of month, month of year). Let the requirements listed directly above along with a function defining incentives and penalties form an example OLA between the harvester operator and the hosting community.

¹A community might choose a towered retractable harvester over an airborne wind energy system (Appendix A.6.2) because a towered harvester's potential space in which it might operate is smaller than that of an airborne system. For example, one specific airborne system "flies autonomously in loops averaging 250 meters in diameter" [48]. Thus, it might be easier to obtain the necessary permissions to operate a (more familiar) towered harvester versus an airborne one.

Conversely, a community might choose a flying harvester over a towered harvester because windspeeds typically increase with altitude [17, p. 668] (and a flying harvester might provide entertainment value).

4.1.3 The NetNorm metric

To determine how well a control algorithm a controls the harvester, we compare a to an algorithm that keeps harvester hm permanently deployed called Permanent. Let us normalize the net energy harvested by a to the net energy harvested by Permanent and call the following normalized-to-permanent metric "Net Energy Normalized" or "NetNorm", which is the featured metric:

$$NetNorm(a, wrk) = \frac{NetEnergy(a, wrk)}{E_{\text{Harvested}}^{\text{(Permanent}, wrk)}}$$
(4.1)

where the NetNorm metric's numerator is the following simpler metric:

$$NetEnergy(a, wrk) = E_{\text{Harvested}}^{(a, wrk)} - E_{\text{DeployandRetract}}^{(a, wrk)}$$
(4.2)

where, in the ordered pair (a, wrk), $wrk = \{OLA, ws, hm\}$ where, in turn,

- OLA indicates the operation limitation agreement constraining control algorithm a,
- ws is the weather station code,
- hm is the model of the harvester that the algorithm a is controlling,

and where

- $E_{\text{DeployandRetract}}^{(a,wrk)}$ is the total energy that the wind harvester being controlled by control algorithm a used to deploy and retract when processing workload wrk. (Some harvesters consume energy to deploy. For example, the Makani energy kite has propellers that consume energy to lift the wing to a particular energy-harvesting height [48]. Conversely, it is conceivable that $E_{\text{DeployandRetract}}^{(a,wrk)} = 0$ if a harvester were to use airfoils to deploy and gravity to retract. Also, $E_{\text{DeployandRetract}}^{(a,wrk)} = 0$ when algorithm a =Permanent.), and
- $E_{\text{Harvested}}^{(a,wrk)}$ is the energy harvested by the wind harvester being controlled by control algorithm a processing workload wrk. Note that a can be set to the Permanent deployment denoting the energy harvested by the wind harvester processing workload wrk if it were permanently deployed. (To assist the users of this benchmark suite, $E_{\text{Harvested}}^{\text{(Permanent},wrk)}$ for each station's training and testing data is provided in Table 65 on page 265 for the envisioned towered harvester controlled by the algorithms described herein.)

4.1.4 Measuring OLA compliance

4.1.4.1 OLA-compliance function We are assuming that an actual OLA would specify penalties and rewards for violating the agreement and for surpassing the agreement, respectively. Although outside the scope of this work, an example of a penalty metric could translate each minute that the harvester is out of compliance (i.e., the harvester is visible beyond its limits) into points. Each point would equate to a fine that the harvester-operator must pay to the harvesting community.

For the purposes of this work, we define an OLA Compliance Corrector function SCC(a, wrk) that simply returns 1 (which indicates a boolean value of true) if control algorithm a meets all the requirements of an OLA and otherwise returns 0 (which indicates a value of false). That is, we define

$$SCC(a, wrk) = \begin{cases} 1, & \text{if } a \text{ controlling } hm \text{ satisfies } OLA \text{ over the entire} \\ & \text{windspeed testing file of station } ws \\ 0, & \text{otherwise,} \end{cases}$$

$$(4.3)$$

where wrk contains the specification of the harvester model hm, the weather station ws, and the operation limitation agreement OLA (i.e., $wrk = \{OLA, ws, hm\}$).

4.1.4.2 OLA-compliance-measuring metrics We define OLA-compliance-measuring versions of NetEnergy (Equation 4.2), NetNorm (Equation 4.1), and MQNetNorm (defined below in Equation 4.8 on page 58), which return the ordered pairs:

$$SCNetEnergy(a, wrk) = (SCC(a, wrk), NetEnergy(a, wrk)),$$
 (4.4)

$$SCNetNorm(a, wrk) = (SCC(a, wrk), NetNorm(a, wrk)),$$
 (4.5)

and

$$SCMQNetNorm(a, wrk) = (SCC(a, wrk), MQNetNorm(a, wrk)),$$
 (4.6)

respectively.

Note that a very simple mapping of the ordered pair (x,y) where $x \in \{0,1\}$ and $y \in \mathbb{R}$ to the real number system \mathbb{R} where (0,y) is mapped to $0 \in \mathbb{R}$ and where (1,y) is mapped to $y \in \mathbb{R}$ results in (0,y) being mapped to a higher number in \mathbb{R} (namely, $0 \in \mathbb{R}$) than the number to which (1,y) is mapped (i.e., the number $y \in \mathbb{R}$) if y < 0. In other words, such a simple mapping would interpret an OLA-violating performance as higher than an OLA-complying performance. To avoid that problem, we define orderings of the ordered pairs themselves in the next section.

4.1.4.3 Orderings of OLA-compliance-measuring metrics We need to define orderings of the OLA-compliance-measuring metrics in order to know how to compare the values of those metrics. In Section 4.1.6, we use order $R_{X_{wrk}}$, defined immediately below. Let A be the set of all retractable-harvester control algorithms.

Let X_{wrk} be the set of all ordered pairs generated by SCNetEnergy(a, wrk) for every $a \in A$. That is, let $X_{wrk} = \{SCNetEnergy(a, wrk) | \forall a \in A\}$.

Also, let $Y_{wrk} = \{SCNetNorm(a, wrk) | \forall a \in A\}.$

We define the following order $R_{X_{wrk}}$ on set X_{wrk} of ordered pairs where the ordered pair

$$x_a = (SCC(a, wrk), SCNetEnergy(a, wrk)) \in X_{wrk}$$
 and $a \in A$

and the relation of $x_a \in X_{wrk}$ to $x_b \in X_{wrk}$ is given by the following cases where algorithm $b \in A$:

- If SCC(a, wrk) = 1 and SCC(b, wrk) = 0, then $x_a > x_b$. That is, any compliant algorithm always scores higher than a non-compliant algorithm.
- If SCC(a, wrk) = 0 and SCC(b, wrk) = 1, then $x_a < x_b$ (which is abstractly identical to the first bullet, but included here for clarity).
- If SCC(a, wrk) = 0 and SCC(b, wrk) = 0, then $x_a = x_b$. That is, the score of all non-compliant algorithms is the same.
- If SCC(a, wrk) = 1 and SCC(b, wrk) = 1, then x_a relates to x_b indentically to how SCNetEnergy(a, wrk) and SCNetEnergy(b, wrk) relate. That is, $x_a < x_b$ if and only if SCNetEnergy(a, wrk) < SCNetEnergy(b, wrk), and $x_a = x_b$ if and only if SCNetEnergy(a, wrk) = SCNetEnergy(b, wrk).

The order $R_{Y_{wrk}}$ on set Y_{wrk} is identical to the order $R_{X_{wrk}}$ except where $R_{X_{wrk}}$ refers to the NetEnergy metric the order $R_{Y_{wrk}}$ refers to the NetNorm metric.

Because in this dissertation, we are assuming that our example algorithms fully comply with the pertinent OLAs, the SCNetNorm() metric reduces to the NetNorm() metric, the ordering $R_{Y_{wrk}}$ reduces to the typical ordering of the real number system \mathbb{R} when we evaluate our example algorithms herein using the NetNorm() metric.

4.1.5 Cost-dependent complementary metrics

On a grid itself, the amount of energy being injected into the grid must always match the amount of energy leaving it [63]. Matching involves adjusting inputs into the grid (generation) and/or outputs (loads). In the category of outputs or loads, we include dump (or diversion) loads, which can receive excess energy when, for example, normal loads become unavailable or when normal loads cannot absorb available energy [82, p.181]. "Wholesale electricity markets sometimes result in prices below zero. That is, sellers pay buyers to take the power. This situation arises because certain types of generators, such as nuclear, hydroelectric, and wind, cannot or prefer not to reduce output for short periods of time when demand is insufficient to absorb their output. Sometimes buyers can be induced to take the power when they are paid to do so" [23].

The following algorithm-performance-measuring metrics, which are complementary to the NetNorm metric from Section 4.1.3, seek to quantify the degree to which an algorithm a processes a workload wrk to cause a retractable energy harvester to help or hurt the effort to balance electricity demands with supplies in the immediate energy market: Market Quadrants Scores, Market Quadrants Matching Percentage, and MQNetNorm (all defined below). To define those metrics, we first define the following two states:

- *helping* as generating electricity when electricity prices are positive and using energy when electricity prices are negative, and
- hurting as using electricity when electricity prices are positive and generating energy when electricity prices are negative.

4.1.5.1 Market Quadrants Scores (MQS) The metric "Market Quadrants Scores" or "MQS" uses the variable price of energy over time t. MQS is a two-dimensional matrix describing the frequency distribution of the number of minutes that the combination of an electricity market and harvester is in the following four cases, which are shown in Figure 9 as four quadrants of a co-ordinate system where $E_{Price}(t)$ and NetEnergy(a, wrk, t) are on the horizontal and vertical axes, respectively:

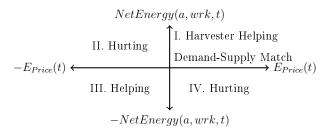


Figure 9: Quadrants indicating whether harvester is helping directly to match energy supply with demand or is directly hurting the matching effort

- I. Harvester **Helping** Demand-Supply Match: The market is demanding energy and harvester is generating energy; $(E_{Price}(t) > 0)$ and (NetEnergy(a, wrk, t) > 0).
- II. Harvester **Hurting** Demand-Supply Match: The market has excess energy and the harvester is generating energy; $(E_{Price}(t) < 0)$ and (NetEnergy(a, wrk, t) > 0).
- III. Harvester **Helping** Demand-Supply Match: The market has excess energy and the harvester is consuming energy; $(E_{Price}(t) < 0)$ and (NetEnergy(a, wrk, t) < 0).
- IV. Harvester **Hurting** Demand-Supply Match; The market is demanding energy and the harvester is consuming energy: $(E_{Price}(t) > 0)$ and (NetEnergy(a, wrk, t) < 0).

where

- t is the minute-by-minute time-step of the windspeed datafile where t ranges from 0 to n-1 where n is the number of minute-by-minute time-steps in the windspeed datafile that algorithm a is processing (e.g., testingKPIT2009-2014in.csv has 3,154,946 lines)
- $E_{Price}(t)$ is the price per kWh of energy at time-step t in Canadian dollars², and

²The price is in Canadian dollars because we derived $E_{Price}(t)$ from data available from Ontario's Inde-

• NetEnergy(a, wrk, t) is NetEnergy(a, wrk) (defined by Equation 4.2 on page 52.) earned or expended during time-step t

4.1.5.2 Market Quadrants Matching Percentage (MQMP) In the co-ordinate system shown in Figure 9, when algorithm a processes workload wrk in a simulation, each simulated minute can be plotted as a point. Each point not on an axis is either in a "helping" quadrant or a "hurting" quadrant. To calculate a percentage we call the Market Quadrants Matching Percentage (MQMP), we count the number of points in the "helping" quadrants and then divide by the sum of points in the "helping" and "hurting" quadrants (Equation 4.7). (Points on the axes are not counted when we total the number of points in each quadrant type, as shown in the following example.)

For example, suppose algorithm a (which is a very early version of an algorithm that we present herein) processes workload wrk which has exactly 2,630,774 minutes (which is approximately 5 years worth) and each minute falls in the seven categories listed in Table 2 on page 59, which are also listed here:

- I. Harvester Generating Energy When Grid Needs Energy
- II. Harvester Generating Energy When Grid Has Excess Energy
- III. Harvester Using Energy When Grid Has Excess Energy
- IV. Harvester Using Energy When Grid Needs Energy
- -Horiz. Axis. Harvester Idle When Grid Has Excess Energy
- +Horiz. Axis. Harvester Idle When Grid Needs Energy Minutes
 - Vert. Axis. Energy Price Is Zero.

We sum the minutes in the "helping" quadrants (I and III); the sum is 244,047. The sum of the minutes in the "hurting" quadrants (II and IV) is 42,898. The harvester is idle for 2,343,829 minutes because algorithm a is complying with an OLA. (For example, the OLA limits a harvester's operation to 8760 minutes of each month, which is approximately 20% of each month, and mandates that the harvester must be stowed when windspeeds are below a

pendent Electricity System Operator [37]. The prices have not been corrected for inflation; Inflation does not affect the MQMP metric (next section) and the MQNetNorm metric (Section 4.1.5.3) because the only characteristic of $E_{Price}(t)$ that those two metrics use is its sign.

certain threshold.) We divide the "helping sum" by the aggregate of the helping and hurting sums to calculate the following Market Quadrants Matching Percentage:

$$MQMP(a, wrk) = \frac{\text{Minutes Harvester Is Helping the Matching}}{\text{Minutes Harv. Is Helping + Minutes Harv. Is Hurting}}$$

$$= \frac{244,047}{244,047 + 42,898}$$

$$= 0.85$$

$$= 85\%.$$
(4.7)

The MQMP metric indicates how well the harvester is using its active time to help a grid operator to match electricity loads with supply directly. An MQMP(a, wrk) score of 85% indicates that algorithm a makes the harvester help 85% of the time that the harvester was active (active means sending energy to or consuming energy from the grid) and electricity prices were not zero. Note that Table 2 indicates that the harvester was idle 89.1% of the time which not only includes the time that the harvester was stowed, but also the time that the harvester is visible yet neither sending energy to nor consuming energy from the grid.

4.1.5.3 MQNetNorm We multiply the Market Quadrants Matching Percentage (MQMP) (Equation 4.7) by NetNorm(a, wrk) (Equation 4.1) to create a version of NetNorm(a, wrk) that reflects how well an algorithm a helps to balance energy supplies with demand.

For example, suppose that NetNorm(a, wrk) = 0.24 and that the MQMP(a, wrk) for algorithm a processing workload wrk is 0.85. Then the product of those two metrics is

$$MQNetNorm(a, wrk) = MQMP(a, wrk) \times NetNorm(a, wrk)$$

= 0.85×0.24 (4.8)
= 0.2 ,

which is 15% lower than the NetNorm score because the harvester was helping to match energy supplies with demand only 85% of the time the harvester was active.

The MQMP and MQNetNorm scores might be used by a harvester-hosting community that altruistically wants to help match supplies with demand. Also, since hurting the effort

Table 2: Example itemized results of an algorithm a's processing of a workload wrk

Quad-	Description	Minutes	Helping	Hurting	Idle
rant					
Ι	Harvester Generating Energy When	244,028	244,028		
	Grid Needs Energy				
II	Harvester Generating Energy When	433		433	
	Grid Has Excess Energy				
III	Harvester Using Energy When Grid	19	19		
	Has Excess Energy				
IV	Harvester Using Energy When Grid	42,465		42,465	
	Needs Energy				
-Horiz.	Harvester Idle When Grid Has Excess	2128			2128
Axis	Energy				
+Horiz.	Harvester Idle When Grid Needs En-	2,341,701			2,341,701
Axis	ergy Minutes				
Vert.	Energy Price Is Zero	0			0
Axis					
	Total	2,630,774	244,047	42,898	2,343,829
	Percentage of All Minutes	100%	9.3%	1.6%	89.1%

to match supply with demand is defined as producing electricity when electricity prices are negative, a harvester-hosting community might use the MQMP and MQNetNorm scores as part of a larger effort to provide ancillary services³ to electric utilities.

4.1.6 Analysis of SCNetNorm

Question 1 (Section 4.1.2) is, Does the metric SCNetNorm (Equation 4.5) sufficiently measure how well a retractable-harvester control algorithm controls a harvester, within a operation limitation agreement (OLA) between the harvester operator and the harvester-hosting community? To answer Question 1, we follow these two steps: 1.) prove that SCNetEnergy (Equation 4.4) meets the criteria we listed in Section 4.1.1 on page 50, and then 2.) apply the results of that proof to show that those criteria are met by SCNetNorm (Equation 4.5).

4.1.6.1 Proofs

- 1. SCNetEnergy(a, wrk) (Equation 4.4) is dependent on whether or not a violates the OLA. SCNetEnergy(a, wrk) returns (1, x) if control algorithm a meets all the requirements of the OLA and otherwise returns (0, x) where $x \in \mathbb{R}$.
- 2. Thus, the metric SCNetEnergy(a, wrk) is dependent on whether or not a violates the OLA. That is, the metric SCNetEnergy(a, wrk) satisfies criterion a.
- 3. If a satisfies the OLA, then SCNetEnergy(a, wrk) = (1, NetEnergy(a, wrk)), whose value essentially is NetEnergy(a, wrk) in the context of order R_x in Section 4.1.4.3. Thus, we see that SCNetEnergy(a, wrk) is determined by NetEnergy(a, wrk) thereby satisfying criterion b. (For example, if both a and b satisfy the OLA and if a nets more energy than b, then SCNetEnergy(a, wrk) > SCNetEnergy(b, wrk) since

$$(1, NetEnergy(a, wrk)) > (1, NetEnergy(b, wrk))$$

as defined by order R_x in Section 4.1.4.3.)

³"Services that ensure reliability and support the transmission of electricity from generation sites to customer loads. Such services may include load regulation..." [22]. For example, when electricity prices are negative the community may want to be increasing their power consumption instead of harnessing wind energy.

- 4. If a satisfies the OLA during its processing of the workload wrk and b violates the workload during some point, then SCNetEnergy(a, wrk) > SCNetEnergy(b, wrk) as defined by order R_x .
- 5. Thus, the two items directly above (Items 3 and 4) imply that SCNetEnergy(a, wrk) satisfies criterion c.
- 6. Because SCNetEnergy(a, wrk) satisfies criteria a, b, and c, then by premise 1 above, SCNetEnergy(a, wrk) measures how well a control algorithm a controls a retractable-harvester.

Now, let us prove that SCNetNorm(a, wrk) (Equation 4.5) measures how well a control algorithm a controls a retractable-harvester. Directly above, we have proven that SCNetEnergy(a, wrk) does. By Equations 4.5 and 4.1, we can express SCNetEnergy(a, wrk) as

$$SCNetEnergy(a, wrk) =$$

$$(SCC(a, wrk), (NetNorm(a, wrk)) \times (E_{\text{Harvested}}^{(\text{Permanent}, wrk)}))$$
 (4.9)

because NetNorm(a, wrk) is merely NetEnergy(a, wrk) divided by the positive constant $E_{\text{Harvested}}^{(\text{Permanent}, wrk)}$. Thus, in the seven-point line of reasoning given directly above, we can replace NetEnergy(a, wrk) with the product $(NetNorm(a, wrk)) \times (E_{\text{Harvested}}^{(\text{Permanent}, wrk)})$. Without loss of generality, we can assume that $E_{\text{Harvested}}^{(\text{Permanent}, wrk)} = 1$, therefore causing the the seven-point line of reasoning to apply directly to NetNorm(a, wrk), hence, proving that SCNetNorm(a, wrk) measures how well a control algorithm a controls a retractable-harvester.

4.1.6.2 Future work: Market Quadrants Matching Percentage of Energy (MQMPEnergy) The MQMP metric (Section 4.1.5.2) counts minutes. The MQMPEnergy metric counts energy, as shown in the following equation:

$$MQMPEnergy(a, wrk) = \frac{\text{Helping kWh}}{\text{Helping kWh} + \text{Hurting kWh}}.$$
 (4.10)

where

- "Helping kWh" are the kilowatt-hours that the harvester is providing to the grid when the grid needs energy or that the harvester is consuming from the grid when the grid has excess energy and
- "Hurting kWh" are the kilowatt-hours that the harvester is providing to the grid when the grid has excess energy or that the harvester is consuming from the grid when the gird needs energy. For future work, we recommend that MQMPEnergy (Section 4.1.6.2) be considered for addition to future versions of the benchmark suite.

4.1.6.3 Future work: Providing current energy-price profiles We provide hourly prices for each hour in 2004 to 2014, inclusive, in this version of the benchmark suite to be used with the MQMP metric (Section 4.1.5.2), which is concerned only with the sign of the electricity price. Because, as we illustrate in Section 4.2.0.2, that the number of hours that electricity prices are negative have been tending to increase (Figure 14 on page 75), we suggest that future versions of this benchmark suite include current energy-price profiles in order to verify and detect trends in hourly electricity prices. Also, because future metrics might take into account not only the price's sign, but also the price's "amplitude" each hour and price profiles seem to be changing (We explore changes in price profiles immediately below), it seems important to include price data for years contemporary to future releases of this benchmark suite.

Electricity-price profiles show changes per year. We averaged and plotted hourly Ontario electricity prices [37] per hour-of-day per year between the years 2003 and 2017, inclusive, to produce Figure 10 on page 64, which illustrates that prices tend to be decreasing and the shapes of the profiles are possibly changing. Note that the prices tend to have two daily peaks. We plot the hours of the first and second peaks in Figure 11 on page 65. Note that the first peak was at or after the 11:00 hour until 2015, when the first peak was at the 9:00 or 10:00 hour. Note in Figure 12 on page 66 that a trend could be developing where the second peak's dominance of the first peak is growing (but 2015 does not fit that trend).

We explore the proportions plotted in Figure 12 to determine whether or the modified Mann-Kendall test detects a trend. Let the null hypothesis H_0 be that the proportions do not exhibit yearly monotonic trend. Let the alternative hypothesis H_A be that the proportions

do. We found that if we set the significance level A to 0.05, then we behave in a manner consistent with our conclusion that no monotonic trend is present in year-to-year proportion of the second daily peak price or the first daily peak price even though there is a 0.05 possibility that our conclusion is wrong. The significance level of 0.05 is the probability that we commit a Type I error, i.e., that we falsely reject the null hypothesis H_0 : No monotonic trend exists. For details, please see Appendix A.19. (Thus, taken with Figure 10, hypothesis H_0 implies that the amplitudes of the first and second daily peaks tend to move upwards or downwards together.)

4.2 BENCHMARKS

Question 1: What operation limitation agreements (OLAs) and weather conditions approximate actual field conditions of retractable-harvester control algorithms?

We describe herein a benchmark suite we created for evaluating retractable-harvester-control algorithms. That is, in this section, we describe a suite of workloads. As shown in Figure 13, each workload has data derived from a weather station (e.g., a set of windspeeds), a harvester model, and a operation limitation agreement or OLA (i.e., a set of deployment restrictions and a reward/penalty function).

Because we are assuming that actual sets of operational limitations will be influenced by the preferences of persons living in potential harvesting-hosting communities, we used a marketing survey company to gather responses from over 300 U.S. survey takers (Section 3.1). Each workload is comprised of the following combination of choices:

- An OLA from the set of OLAs derived by the process described in Section 3.1 (OLAs 1-4) and partially derived via the fact that persons tend to ignore non-novel stimuli [28], e.g., persons living next to busy train tracks tend to ignore the sounds of trains on those tracks (OLAs 5 and 6).
- A weather station ws from the set of 30 weather stations from which we have formatted eleven years of minute-by-minute windspeed data: The first nine of the eleven years of windspeeds are training data; the balance are test data. (Reasoning for dividing the data

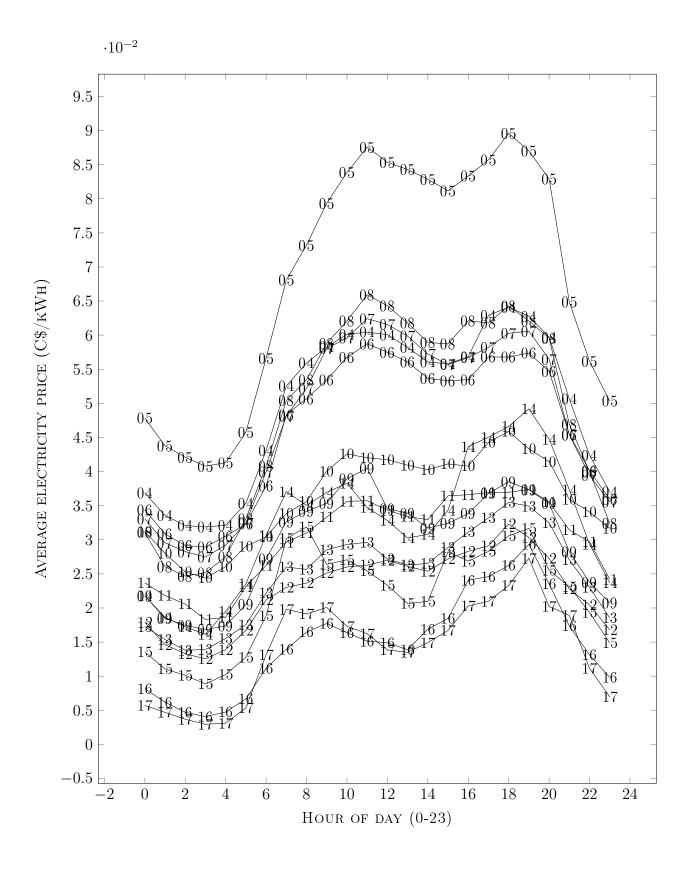


Figure 10: Average electricity price at hour of day for individual years 2004-2017

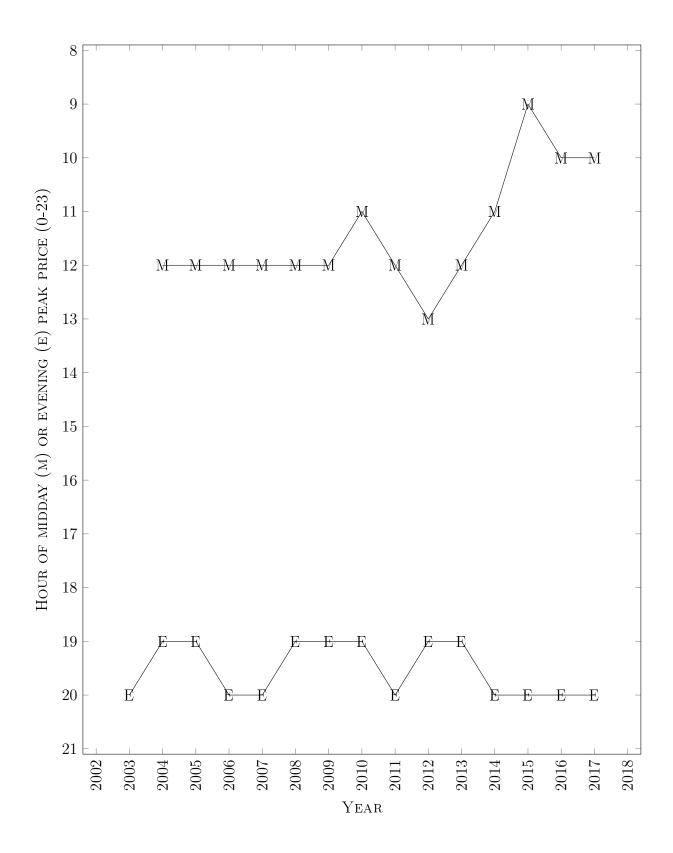


Figure 11: Hour when average electricity price peaks at midday and evening per year

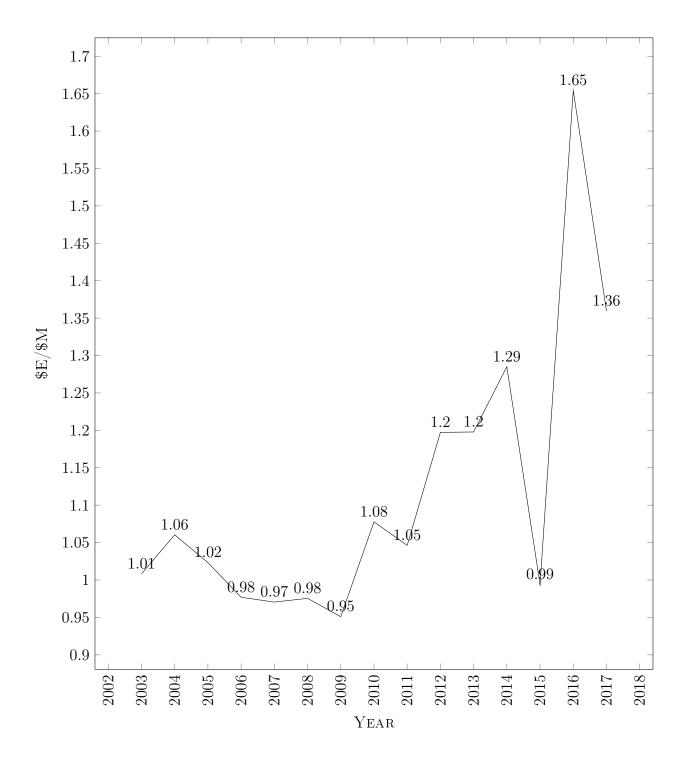


Figure 12: Fraction of evening peak average price (\$E) over midday peak average price (\$M) per year

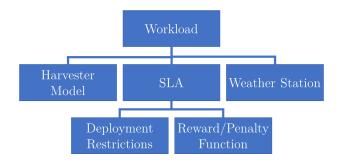


Figure 13: Workload components

into nine years of training data and two years of testing data is given in Section 4.2.0.2.) In Appendix A.4.1 and Appendix A.7.1, we describe how we derived the training and test data from the minute-by-minute Automated Surface Observing System (ASOS) data set DSI 6405 [58]. The sources of the ASOS data are ASOS weather stations, which usually have anemometer heights of approximately 10 or 8 meters; "Typical ASOS wind sensor heights are 33 feet or 27 feet, depending on local site-specific restrictions or requirements" [59]. (Please note that because windspeeds typically increase with altitude[17, p. 668] and wind turbines may be much higher than 10 meters, be careful to not underestimate wind resources at the site of a particular ASOS weather station. For information on assessing wind resources, please visit the National Renewable Energy Laboratory's web page entitled "Wind Resource Assessment" [65].) Where gaps existed, we interpolated the intervening minutes.

- A harvester model (e.g., see Appendix A.3), which defines the harvester's power curve (Section A.3.1), how much energy it takes to deploy, how much energy it takes to retract the harvester, and defines cut-in, cut-out, and re-cut-in windspeeds.
- An electricity-price-vs-time table for use with electricity-cost-dependent complementary metrics (Section 4.1.5). Because negative electricity prices can be counter-intuitive and because we use the sign of electricity prices in the calculation of the MQMP metric, we remind the reader that wholesale electricity prices may become negative. Negative prices do occur at some timestamps in the electricity-price-vs-time table we provide.

- **4.2.0.1** A function defining rewards/penalties (or incentives) Suppose that an algorithm a has just completed processing workload wrk. The I(f(a, wrk), z) function maps (f(a, wrk), z) to an incentive number I() where f(a, wrk) and z are defined here:
 - The function f(a, wrk) scores how well algorithm a processed workload wrk. The range of the function f(a, wrk) is the ordered pair $(x \in \{0, 1\}, y \in \mathbb{R})$ where x indicates whether or not algorithm a violated the OLA and y indicates a score that algorithm a earned.
 - The variable $z \in [1, 100]$ represents the value chosen by the community hosting a specific harvester to address the following situations. If algorithm a violated the OLA, then the variable z is the penalty. Otherwise, z specifies the percentage threshold that y must surpass to cause I() to become positive. For example, if the argument passed to the function I() is (SCNetNorm(a, wrk), z), a way for a community near the KPIT weather station (Pittsburgh International Airport) to choose z is to use our test results for KPIT (which are based on KPIT's historical windspeeds) to determine a reasonable goal for SCNetNorm(a, wrk) where OLA 3 is the OLA of workload wrk. Such a reasonable goal is the average of our algorithms' performances listed in Table 3 on the following page where $wrk = \{OLA3, ws = \text{KPIT}, hm = (Towered(Appendix A.3))\}$; the average is 0.32 or 32%. We set z to 32 in Equation 4.15 as part of an illustration.

Given the definitions of f(a, wrk) and z immediately above, we define I(f(a, wrk), z) to be

$$I((x,y),z) = \begin{cases} -z, & \text{for } x = 0 \text{ i.e., the OLA was violated} \\ J(y,z) & \text{for } x = 1 \end{cases}$$
 (4.11)

where

$$J(y,z) = \frac{100}{z}y - 1. (4.12)$$

The variables x, y, z have the following meanings, respectively:

- x is a binary variable indicating whether or not an algorithm a has violated the OLA while processing workload wrk.
- y is the value returned by function f(a, wrk)
- z is the threshold that y must surpass in order for I() to be positive

Table 3: Compilation of algorithms' performances of processing KPIT's testing data for OLA 3

Algorithm	Variant*	NetNorm	Source Table
Static	0x0	0.39	29 on page 224
Static	0x2	0.37	35 on page 229
Aging	0x0	0.44	41 on page 234
Aging	0x2	0.30	47 on page 242
Fuzzy	0x0	0.21	53 on page 249
Fuzzy	0x2	0.21	59 on page 256
	Average:	0.320	

^{*}variant 0x0 uses current weather only.

variant 0x2 uses weather prediction.

For example, for the case when the function f(a, wrk) is the OLA-compliance version of the NetNorm metric, i.e., SCNetNorm(a, wrk), then I() maps that metric to a reward/penalty number where z defines the threshold NetNorm must surpass in order for a to earn a reward. That is,

$$I(SCNetNorm(a, wrk), z) =$$

$$\begin{cases}
-z, & \text{for } SCNetNorm(a, wrk) = (0, NetNorm(a, wrk)) \\
J(NetNorm(a, wrk), z) & \text{for } (1, NetNorm(a, wrk))
\end{cases}$$
(4.13)

where $z \in [1, 100]$ and SCNetNorm(a, wrk) is defined by Equation 4.5 and J(NetNorm(a, wrk), z) is defined as

$$J(NetNorm(a, wrk), z) = \frac{100}{z}(NetNorm(a, wrk)) - 1$$
(4.14)

where $z \in [1, 100]$ and NetNorm(a, wrk) is defined by Equation 4.1.

We illustrate I() with an example. When z=32, if algorithm a's NetNorm(a,wrk) score is better than 32%, then algorithm a earns a reward. If algorithm a scores less than 32%, then it receives a penalty. For example, suppose algorithm a's NetNorm(a,wrk) score is 44% or 0.44. Then, the

$$J(NetNorm(a, wrk), z) = \frac{100}{z}(NetNorm(a, wrk)) - 1, \Longrightarrow$$
$$J(NetNorm(a, wrk), 32) = \frac{100}{32}(0.44) - 1 = 3.125(0.44) - 1 = 1.375 - 1 = 0.375, \quad (4.15)$$

which is a reward in this case where the NetNorm(a, wrk) score is 44% since 0.375 > 0.0. Note that J(NetNorm(a, wrk), 32) is 0 if NetNorm(a, wrk) is 32% or 0.32:

$$J(NetNorm(a, wrk), z) = \frac{100}{z}(NetNorm(a, wrk)) - 1, \implies J(NetNorm(a, wrk), 32) = \frac{100}{32}(0.32) - 1 = 1 - 1 = 0.$$

4.2.0.2 The training and testing partitions of the benchmarks Context: Suppose that a certain community is considering whether or not to install a retractable-wind-energy harvester at a specific site within a decade. Also suppose that if the community decides to contract a renewable-energy-systems integrator to install and to configure the retractable-harvester energy harvester, the community estimates that the system integrator will commission the completed system up to one year after the community signs the contract with the systems integrator. Thus, if the community were to have a retractable harvester system working before their deadline (i.e., before the decade ends), the community would need to sign the contract within nine years. To prepare to decide whether or not to install a retractable-wind-energy harvester at the specific site, the community places an anemometer. How many years of those nine should the community collect windspeed data to do the following:

- to model the site and,
- to provide retractable-harvester-control-algorithm training data to a renewable-energy-systems integrator (if the community decides to contract the renewable-energy-systems integrator to install and to configure the retractable-harvester energy harvester)?

Local data informed by a consultancy: One answer to how many years of data the community should collect depends on how many years a financial investor requires. In the following example, the answer is one year: "Following the completion of the 12-month measurement campaign..., [an international renewable energy consultancy] will provide a full, bank-grade site suitability report and energy yield analysis which will let [a specific energy developer] obtain the necessary lender's funding approval to progress [a 400 MW permanently deployed wind farm] project into construction [in Ethiopia]" [43]. "[The renewable energy consultancy] has developed in-house tools that produce probability of exceedance energy yield values (such as P75 and P90) typically used in project finance" [41].

The consultancy is able to generate a bank-grade report from one year of data about the suitability of a proposed wind farm that is permanently deployed, but is one year of data enough for a consultancy to generate a report about the suitability of a proposed farm that is retractable? The answer seems to be yes: Assuming that the one year of data is stored as a time sequence, then it seems that the consultancy would be able to feed that data into a simulator similar to the one that we are making open source (or into HOMER [34] if HOMER were able to model retractable harvesters). Because at this point the consultancy would have access to only one year of testing data and have no training data yet, the simulator would run a control algorithm using default settings, which might not be ideal, but would provide the consultancy with a baseline energy yield analysis. If the baseline yield surpasses a threshold set by a bank, then the proposed retractable wind farm project can move forward.

After the retractable wind farm project is approved by the bank, the consultancy could give the one year of data to the contracted renewable-energy-systems integrator⁴. The systems integrator would use the year's data from the measurement campaign training data in an effort to improve upon the default settings of the control algorithm (which has already surpassed the bank's threshold). After the retractable-harvester system has been installed, the control algorithm can continue to refine its settings while it is controlling a harvester that is producing energy. That is, the control algorithm can continue to improve while it is "on-the-job."

Local trends in windspeeds? Some studies suggest windspeed trends: "Least-squares

⁴The consultancy itself might provide systems integration services.

regression lines fit to the 30 yr time series [1961-1990] show that, on balance, mean monthly maximum winds are increasing within the United States and mean monthly minima are decreasing" [44]. "The two observational data sets both exhibit an overwhelming dominance of trends toward declining values of the 50th and 90th percentile and annual mean wind speeds, which is also the case for simulations conducted using MM5 [the Fifth-Generation National Center for Atmospheric Research / Penn State Mesoscale Model [54]] with (NCEP-2) [National Centers for Environmental Prediction Reanalysis 2 [19] [56]] boundary conditions. However, converse trends are seen in output from the North American Regional Reanalysis, other global reanalyses (NCEP-1 and ERA-40 [a reanalysis of over 40 years of data by the produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) et al. [55] [97]]), and the Regional Spectral Model" [77]. Reanalysis of weather observations involves combining data from various weather-observation instruments to "[help] ensure a level playing field for all instruments throughout the historical record" [57].

How many years⁵ of data are required to detect a trend, if any, in our ASOS-derived data, for each station?

About how many samples are required to detect a local trend, the Pacific Northwest National Laboratory offers direction via documentation of the Visual Sample Plan (VSP) software tool⁶ entitled "Mann-Kendall Test For Monotonic Trend" [72]. ("The main objective of the Mann-Kendall test is to test the null hypothesis H_0 that there is no trend, against the alternative hypothesis H_1 that there is an upward or downward trend" [94].) However, the Mann-Kendall test assumes that the time-series data being tested is not autocorrelated. But, autocorrelated is often what sequential windspeeds are 7 . Fortunately, a modified Mann-Kendall test for autocorrelated sequences has been developed: "The accuracy of the modified test in terms of its empirical significance level was found to be superior to that of the original Mann-Kendall trend test without any loss of power⁸" [31]. Because of that

 $^{^{5}\}mathrm{A}$ year makes sense to choose as a distance between samples because winds are affected by seasons of the year.

⁶"Visual Sample Plan (VSP) is a software tool for selecting the right number and location of environmental samples so that the results of statistical tests performed on the data collected via the sampling plan have the required confidence for decision making" [73].

⁷"Wind speed time-series data typically exhibit autocorrelation, which can be defined as the degree of dependence on preceding values"[35].

^{8&}quot;[T]he power of the test [is] defined as the probability of rejecting [the null hypothesis] when the alter-

superiority, we assume that if the VSP tool were to use the modified Mann-Kendall test, the tool would calculate the same number of samples or less than what the actual VSP tool calculates.

The VSP tool presents parameters on which the number of samples depends. Those parameters are listed directly below; each parameter is followed by a choice enclosed in parentheses. (All numeric choices are the defaults of the VSP tool except for the choice of x = 2 units in item 3 below, which is less than the VSP tool's default choice: x = 10 units.)

- 1. What type of trend to detect: upward, downward, or either. (Suppose that the community chooses to detect "either an upward or downward trend".)
- 2. Whether the expected trend is linear or exponential. (We assume that if a windspeed trend is found, the trend will be linear since Torralba estimated a linear trend involving windspeeds[93].)
- 3. What the desired confidence level is that a change in x units per year will be detected. (Suppose that the community desires a 90% confidence percentage that a change in 2 units per year will be detected instead of the default 10 units per year because TODO)
- 4. The desired percentage chance that, if there is no trend, that a trend will be falsely detected. (Suppose that the the community desires that there is no more than a 5% probability that a trend will be falsely detected.)
- 5. What the estimated standard deviation of the residuals A residual is the observed value less the predicted value, i.e., residual = observedValue predictedValue from the regression line is? (Suppose that the community estimates that the standard deviation from the residuals is 3 units.)

If the choices specified in the parenthetical statements directly above are made, then the Visual Sample Plan tool calculates that 9 sampling periods (i.e., 9 samples spaced one year apart) are needed. "[The Visual Simple Plan software tool] uses a Monte-Carlo simulation to determine the required number of points in time, n, to take a measurement in order to detect a linear trend for specified small probabilities that the [Mann-Kendall] test will make decision errors" [73]. Thus, let us choose 9 years of data to be training data: the first year

native hypothesis is true" [31].

is provided by the consultancy and the remaining 8 are years that the algorithm trains itself on-the job. After that 9 years of training are over, let us benchmark the algorithm.

If we follow a rule of thumb in machine learning that 80% of data be training and 20% be testing, our choosing 9 years to be training data means we should have approximately 2 years of testing data. (For each station, the algorithm using the 9 years of training data can find the Weibull scale and shape parameters of the data to create a validation time-series via a time-series model [26, Section 4] because Weibull distributions are commonly used to describe windspeeds [26] [84]. Our estimates for the Weibull scale and shape parameters for each station's training data is given in Appendix A.17.)

Analyzing station KATL's training data for trends: We summarize here the results of an example in Appendix A.18 where we look for trends in station KATL's training data. Specifically, we looked for trends in yearly estimates of the shape (B) and scale (A) parameters of a Weibull distribution: "[I]ts [probability density function] has the form

$$f(x) = \begin{cases} \frac{B}{A} \left(\frac{x-y}{A}\right)^{B-1} \exp\left[-\frac{(x-\nu)^{B}}{A}\right], & x \ge \nu\\ 0, & \text{otherwise"} [6, \text{ Equation } 5.45, \text{ p.185}] \end{cases}$$
(4.16)

where ν is the location parameter.

We found that if we set the significance level A to 0.05, then we behave in a manner consistent with our conclusion that no monotonic trend is present in either KATL's scale or shape parameters even though there is a 0.05 possibility that our conclusion is wrong. The significance level of 0.05 is the probability that we commit a Type I error, i.e., that we falsely reject the null hypothesis H_0 : No monotonic trend exists. For details, please see Appendix A.18.

Trends in electricity-price profiles: As described in Section 4.1.5.2, the MQMP metric depends on the sign of the hourly Ontario electricity price (HOEP) in an hour-by-hour file that we provide. Is the number of hours that the HOEP is negative trending upwards? Yes, according to the surface plot shown in Figure 14.

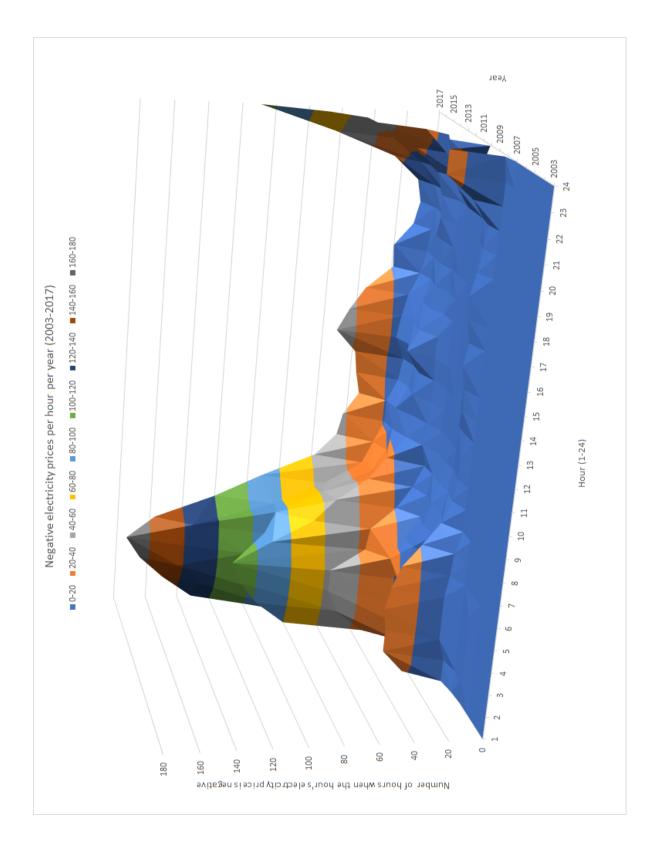


Figure 14: Surface plot of number of hours when electricity prices are negative per hour of day per year

4.2.0.3 Simulated windspeed forecasts Because we do not have the actual weather forecasts associated with our training and testing data, we simulate predicted day-ahead windspeeds. (We supply in the benchmarks simulated predicted day-ahead windspeeds for control algorithms that use predicted windspeeds.) Because predicted day-ahead windspeeds are 24 hours or 1440 minutes into the future, the simulated predicted day-ahead windspeeds are in the column labeled "f1440" in each training and each testing benchmark file (e.g., trainingKPIT2004-2012in.csv and testingKPIT2013-20014in.csv, respectively). In each training and testing benchmark file, for rows having timesteps that are less than one-day away from the end of the file, to indicate that weather prediction is not available, we placed a "-1" in each of those specific rows. (The name "f1440" also suggests that other columns such as "f60" may be added to future versions of this benchmark suite.)

We simulated the predicted day-ahead windspeeds by basing simulated prediction errors on a study of six onshore, windfarms where windspeed prediction errors were found to be Gaussian [47] and that the relative standard deviation (we are assuming that the standard deviation is relative to the mean windspeed) of day-ahead windspeed prediction errors for a certain site was approximately 0.3 [47, Figure 3].

For example, in Appendix A.8, we give the mean windspeed for each station as measured by our benchmark files. The station having the lowest average windspeed is KSAN (San Diego) at 5.13 knots. Thus, using our assumption that the standard deviation of day-ahead windspeed prediction errors for a site is approximately 0.3 times that site's average windspeed, the standard deviation for the day-ahead prediction error for KSAN is 0.3×5.13 knots = 1.54 knots.

Let us compare the standard deviation of KSAN's day-ahead prediction error of 1.54 knots to the standard deviation of the prediction error given by Kavasseri [42, Table 1], who studied four sites. Kavasseri reports the following day-prediction variance for one site because the variance is comparable to the variances of the other three sites: a variance of 0.156 mph, which is a standard deviation of 0.39 mph or 0.34 knots. Thus, it seems reasonable to assume that the standard deviation of KSAN's day-ahead prediction error of 1.54 knots (which is 4.5 times Kavasseri's standard deviation) is not overly optimistic. Although, there is a danger is being overly pessimistic, it seems better to underestimate prediction accuracy than to

overestimate it for this initial release of the benchmark suite so that algorithm designers do not overly depend on weather prediction data, but assess its accuracy in the field. For example, an algorithm designer can track prediction accuracy in the field and design the algorithm to increase its use of weather predictions if the actual predictions achieve a certain accuracy consistently.

4.3 FINDING "IDEAL" DEPLOYMENT (WAKE) AND RETRACTION (SLEEP) SCHEDULE FOR OLA5, WHICH IS TRANSITION LIMITED

To find the "ideal" deployment (analogous to waking) and retraction (analogous to going to sleep) timestamps (i.e., times at which an algorithm should direct a harvester to deploy or retract) to use to train an algorithm to process a workload (Section 4.1.3) having OLA5, which is limited to two state transitions per month, as its OLA and ws as its weather station, we created an acyclic, weighted, directed graph and then applied Dijkstra's Shortest Path Algorithm. (Recall that *state transition* refers to the harvester's going from being fully deployed to being fully stowed or vice-a-versa.)

4.3.1 Finding the best path through the best monthly instances of deployment patterns

The acyclic directed graph has five nodes for each month (e.g., Figure 15) of the station ws's training data. The five nodes represent five possible deployment patterns that comply with the two-state-transition-per-month maximum limit and represent the best instance of that deployment pattern—How we found each best instance is explained in Section 4.3.2—within the month where best is defined as netting the most energy (we inverted the energy value to use the shortest-path algorithm):

1. ONE_RISE_ONE_FALL: The harvester starts the month retracted, deploys and then retracts using exactly its monthly allocation minutes that it may be visible (x minutes where OLA5 defines x as 8760 minutes). The harvester finishes the month retracted.

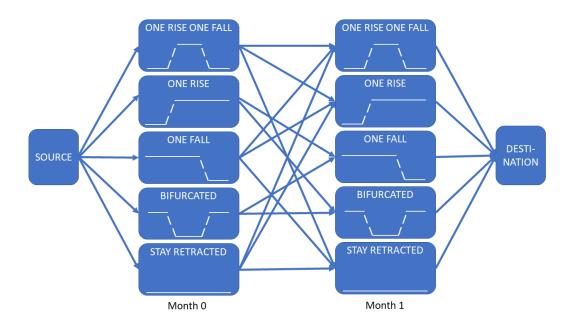


Figure 15: Acyclic directed graph of possible choices for two months. Each node has a weight value (not shown) derived from how much energy the instance that the node represents nets.

- 2. ONE_RISE: The harvester starts the month retracted, waits until there are x minutes remaining in the month, deploys, and then finishes the month deployed.
- 3. ONE_FALL: The harvester starts the month deployed. It then waits until it has been visible for x minutes less the time it takes to retract. It then retracts to finish the month retracted.
- 4. BIFURCATED: The harvester starts and ends the month deployed. Between those two visible periods, the harvester remains stowed.
- 5. STAY_RETRACTED: The harvester remains stowed for the entire month.

We connected directed edges from each node v of the five nodes of each month to v's compatible nodes of the next month. A node v of a particular month is compatible to each node w_i of the next month if v ends the month in the same state in which w_i begins (where $i \in 1, 2, ..., 5$). For example, if v was ONE_RISE_ONE_FALL, then we connected v to w_1 , w_2 , and w_5 , which are ONE_RISE_ONE_FALL, ONE_RISE, and STAY_RETRACTED, respectively.

Our acyclic graph has one start node and one destination node. We found the shortest path from the start node to the destination node through one node of each month to find the "ideal" deployment and retractions timestamps using Dijkstra's shortest path algorithm. The resulting lowest-cost path for each weather station has 9×12 monthly vertices (since the training data is 9 years worth) plus the source and destination vertices. We then traversed the shortest path to create the column labeled "OLA5" in each station's training data file.

We repeated the process described above for each station of the thirty weather stations.

4.3.2 Finding the best instance of each deployment pattern

Above, we described five deployment patterns. Here, we explain how we found the best instance of each deployment pattern. For each month, we created an acyclic graph where each edge has weights reflecting visibility-time used and energy netted. A three-minute example is shown in Figure 16 where

- the deployment time and retraction time (Appendix A.3.5) are one minute each,
- every node labeled 'Rn' and 'Dn' represents the harvester in a fully retracted state or fully deployed state, respectively, at minute n,
- each edge has three weights:
 - energy netted (measured in kilowatt-hours),
 - visibility-time used (measured in minutes), and
 - a cost, which is an inverse of the energy netted.

For each deployment pattern for each month (except the ONE_FALL and BIFIRCATED patterns for the first month of each station's training data because we are assuming that the harvester starts the simulation fully stowed and except the STAY_RETRACTED pattern because we assumed that the harvester consumes no energy when it is stowed), we traversed the monthly acyclic graph to find best instance, i.e., the deployment-pattern instance that nets the most energy within the monthly visibility-time budget.

Traversing each month's acyclic graph (a subset is shown in Figure 16) for each deployment pattern involves examining every possible choice consistent with that pattern and that uses OLA 5's visibility limit of 8760 minutes of each month. For example, examining the

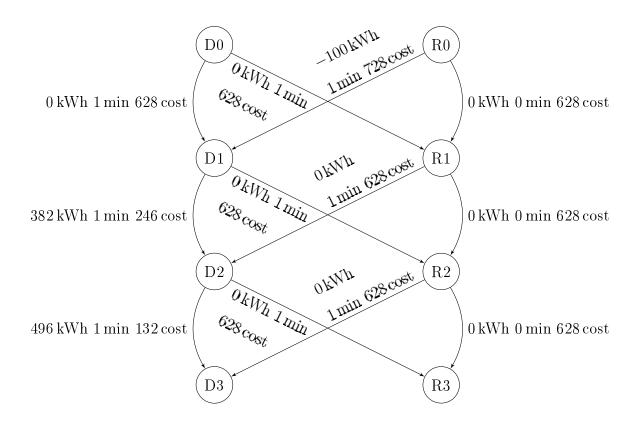


Figure 16: A three-minute example of an acyclic directed graph where each node represents a harvester's state at a certain timestep.

ONE_RISE_ONE_FALL pattern involves calculating the cost when the harvester begins deploying at the first minute of the month $(t_d = 0)$ and completes retracting so that it is fully stowed 8760 minutes later $(t_s = t_d + 8760)$ and then repeating the calculation of the cost when the harvester begins deploying at the second, third, forth, and so-on minutes of the month until the minute that the harvester completes retracting is the last minute of the month $(t_d = 1, 2, 3, ..., x - 8760)$ where x is the index of the last minute of the month). We store the deploying timestamp t_d that achieves the lowest cost, the retraction timestamp (t_d) less the time the harvester takes to retract), and the cost itself for use the process described in Section 4.3.1. Thus, finding the best instance of ONE_RISE_ONE_FALL for a month takes y iterations where y is 8760 minutes subtracted from the number of minutes in the month (e.g., a 31-day month has 31 times 1440 minutes or 44640 minutes). For a much simpler example, examining the ONE_RISE case each month involves calculating only one instance, where the harvester deploys 8760 minutes before the end of the month.

4.4 LIST OF FILES PROVIDED BY THIS BENCHMARK SUITE

The benchmark suite provides the following files:

- 1. Thirty training files, each with approximately nine years of minute-by-minute windspeeds and simulated predicted day-ahead windspeeds (Appendix A.4.1 describes the files' fields and naming convention.)
- Thirty testing files, each with approximately two years of minute-by-minute windspeeds and simulated predicted day-ahead windspeeds (Appendix A.4.1 describes the files' fields and naming convention.)
- 3. An hourly electricity price file (Appendix A.4.2 provides the file's name and information about its contents.), which as noted in the related work section (Section 2), has eleven years of hour-by-hour electricity prices which may become negative at times.
- 4. A fuzzy-set-membership-function file describing membership in the set NOT WINDY AT <STATION> for each of the 30 weather stations (The file's naming convention and example content are in Appendix A.2.1.1.)

- 5. A file containing sunset⁹ for the city of St. Louis, Missouri, for all days in the years 2004-2014, inclusive, which are used in the definition of *quiet hours* for St. Louis, the only municipality of the 30 that bases its quiet hours on sunsets (e.g., Pittsburgh's quiet hours run from 10 p.m. to 7 a.m.; Tampa's quiet hours end at 7 a.m. on Monday Friday., 8 a.m. on Saturday, and 10 a.m. on Sunday, and begin at 6 p.m. everyday. (Appendix A.10).
- 6. A file delineating when noise is allowed for municipalities corresponding to the 30 weather stations (Noise_Allowed_Time_Definitions_All_Stations.csv)

4.5 RECAP OF THE BENCHMARKS

This work provides standard workloads (each of which is comprised of a standard operation limitation agreement (OLA), a weather station, and a harvester model) and metrics to advance the development of retractable-harvester control algorithms including algorithms that use weather prediction, fuzzy logic, and machine learning. The operation limitation agreements were derived largely from a survey of over 300 respondents from across the United States. The windspeed data is minute-by-minute windspeed data that covers approximately all minutes over eleven years for 30 weather stations. (That is, we provide approximately 330 years of minute-by-minute windspeed data.) Also provided is a file of hourly electricity prices for those eleven years.

The minute-by-minute data includes simulated weather forecasts because we assume that algorithms that use forecasts will perform better than those that do not. To facilitate machine learning, we provide "ideal" minute-by-minute deployment and retraction signals in the minute-by-minute training data for all 30 weather stations to comply with a sample operation limitation agreement. For each of the 30 weather stations, we provide a fuzzy-set-membership function to assign degrees of memberships to windspeeds.

⁹Only sunset (and not sunrise times) are provided because St. Louis's quiet hours start at sunset and end at 6 a.m. (and span each Sunday).

4.6 COMPARATIVE AND SENSITIVITY ANALYSIS

4.6.1 Comprehensive results: Comparing performance of each pertinent strategy (i.e., algorithm variant) per each OLA per station

We present the full results of running the algorithms for each OLA for each of 30 weather stations in the appendix. In this section, we present a summary of the results and analyses.

The scores typeset in bold in Table 4 show the highest average scores for each OLA. For OLAs 1 and 2, Revision 1.2 of Aging variants 0x0 and 0x2 outscored the Static and Fuzzy-Crisp categories, earning average NetNorm and MQNetNorm scores of 0.6218 and 0.5722, respectively. For OLAs 3 and 4, Revision 1.2 of Static variant 0x0 scored the highest average NetNorm and MQNetNorm scores: 0.4633 and 0.4224, respectively. For OLAs 5 and 6, Revision 1.1 of Static variants 0x1 and 0x3 were the top scorers, with average NetNorm and MQNetNorm scores of 0.2633 and 0.2477, beating the newer revisions.

Table 4: Explorations 1 & 11: Comparisons of average (μ) performance of all applicable variants for all stations for each OLA of 1 through 6

OLA(s) Algorithm Variant Rev. Sta. A R.T.D. deployment threshold of running 1 k2 Static	•	4							Ranges Training Explored	lored		NetNorm			MQNetNorm	
1. E. 2 Static 0.c0 1.1 all 0.0 1 [ket_{va, AA}), (step 10), ket_{va, AA} + 30 1, (step 30), 121 0.0007 0.1317 2.2% 1. E. 2 1. E. 2 0.000 1.1 all 0.0 1 [ket_{va, AA}), (step 10), ket_{va, AA} + 30 1, (step 30), 121 0.0005 0.1311 2.2% 1. E. 2 0.000 0.1311 0.2% 0.1311	Exp.	OLA(s)	Algorithm Family	Variant	Rev.	Sta- tion(s)		R.T.D. (knots)	deployment threshold of running average windspeed (knots)	window size of moving average windspeed (samples or minutes)	Ţ	Ь	d/ρ	ī	Ь	σ/μ
K 2 Static Ord 1.1 all 0.9 1 Ket Ket Ket Ket Ket Ket Ket Static Cord	-		Static	0x0	1.1	all	6.0	Т	$[k_{S(w_S,\lambda)}, (\text{step } 10), k_{S(w_S,\lambda)} + 30]$		0.6097	0.1307	21%	0.5543	0.1208	22%
\$ 2 Static 0.60 1.1 al 0.9 1 \$ (Reve. N.) (Step D), \$ (Step D) 1. (Step 30), 12] 0.6005 0.1311 22% \$ 2 Aging 0.60 1.1 al 0.9 1 \$ (Reve. N.) (Step D), \$ (Ste	-			0x2	1.1	all	6.0		$[ks_{(w_s,\lambda)}, (\text{step } 10), ks_{(w_s,\lambda)} + 30]$	[1, (step 30), 121]	0.6090	0.1311	22%	0.5343	0.1200	22%
1 k 2 Aging 0x2 1.2 all 0.9 1 [ke/m.s.h.); (step 10), ke/m.s.h.] = 0 1 (step 30), 121 0.6003 0.1301 2.2% 1.8	11	\$	Static	0x0	1.2	all	6.0	1	$[k_{S(w_S,\lambda)}, (\text{step } 10), k_{S(w_S,\lambda)} + 30]$	[1, (step 30), 121]	0.6095	0.1311	22%	0.5545	0.1204	22%
1 k 2 Aging 020 1.1 all 0.9 1 [k ² (u _{si,s,s}), (step 10), k ² (u _{si,s,s,s})+30 1, (step 30), 121 0.5550 0.1207 25% 1.8 1.8 0.9 1 [k ² (u _{si,s,s,s}), (step 10), k ² (u _{si,s,s,s})+30 1, (step 30), 121 0.65218 0.1300 21% 1.8 0.2 1.2 all 0.9 1 [k ² (u _{si,s,s,s}), (step 10), k ² (u _{si,s,s,s,s})+30 1, (step 30), 121 0.65218 0.1300 21% 0.2 1.8 0.3 1 [k ² (u _{si,s,s,s,s,s,s,s,s,s,s,s,s,s,s,s,s,s,s,}	11	23		0x2	1.2	all	6.0		$[ks_{(ws,\lambda)}, (\text{step } 10), ks_{(ws,\lambda)} + 30]$	[1, (step 30), 121]	0.6095	0.1311	22%	0.5545	0.1204	22%
1 & 2 Aging 0.02 1.1 all 0.9 1	П		Aging	0x0	1.1	all	6.0	-	$[ks_{(, 1)}, (step 10), ks_{(, 1)} + 30]$	[1, (step 30), 121]	0.6063	0.1291	21%	0.5553	0.1198	22%
1 k 2 Aging 0x0 1.2 all 0.9 1	Т)	0x2	1.1	all	6.0	-	$[k_{S,}]$ (step 10), $k_{S,}$ ($+30$)	[1, (step 30), 121]	0.5950	0.1507	25%	0.5323	0.1183	22%
1 & 2 Phuzy- Dec 1.2 all 0.9 1	11	1	Aging	0x0	1.2	all	6.0		[ks(, N), (step 10), ks(, N+30]	[1, (step 30), 121]	0.6218	0.1310	21%	0.5722	0.1211	21%
1 k 2 Chiray- 0x0 1.4 all 0.9 1 0.05 1 0.05 1 (step 30), 121] 0.5597 0.1204 22% 1.4 2 0.2 1.4 all 0.9 1 0.5 1 0.55 1 (step 30), 121] 0.5599 0.1203 21% 21% 2 Chiray- 0x0 1.5 all 0.9 1 0.5 1 0.5 1 0.5 1 0.5599 0.1203 21% 21% 2 Chiray- 0x0 1.5 all 0.9 1 0.5 1 0.5 1 0.5599 0.1203 21% 2 Chiray- 0x2 1.5 all 0.9 1 0.5 0.1 0.5 1 0.5 1 0.5 0.1 0.5 1 0.5 0.1 0.5 1 0.5 0.5 0.1 0.5	11	23	0	0x2	1.2	all	6.0	П	$[ks_{(us, \lambda)}) < (step 10), ks_{(us, \lambda)} + 30]$ $[aployment threshold of membership value in resulting fuzzy set.$	[1, (step 30), 121]	0.6218	0.1310	21%	0.5722	0.1211	21%
1 & 2 Fluzzy- 0x2 1.4 all 0.9 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5	-	23	Fuzzy- Crisp	0x0	1.4	all	6.0	-	0.5	[1, (step 30), 121]	0.5597	0.1204	22%	0.5050	0.1166	23%
1 & 2 Fluzzy- 0x0 1.5 all 0.9 1 0.5 0.5 1.5 all 0.9 1 0.5 0.5 0.5 average windspeed (knots) moving average	_	\$	•	0x2	1.4	all	6.0	1	0.5	[1, (step 30), 121]	0.5337	0.1129	21%	0.4827	0.1074	22%
1 k 2 Crisp Cri	11	3	Fuzzy-	0x0	1.5	all	6.0		0.5	[1, (step 30), 121]	0.5599	0.1203	21%	0.5042	0.1106	22%
Second	Ξ	ď	Crisp	650	. ц	10	0	-	ur C	[1 (c+cn 30) 191]	0.5338	0.1196	910%	0.4890	0.1070	2066
Second	-	8		7 0	7.7	u di	6.0	4	5	[1, (step 50), 121]	0.000	0.1120	0/17	0.4029	0.101.0	0/470
OLA (s) Algorithm Variant Rev. Sta- λ R.T.D. deployment threshold of running window size of μ o σ σ/μ Family from (s) (knots) average windspeed (knots) moving average windspeed (knots) moving average windspeed (knots) windspeed (samples or minutes) 1, (step 30), 121 0.3723 0.0633 17% 1. (step 30), 121 0.4088 0.0719 18% 1. (step 30), 121 0.4088 0.0719 18% 1. (step 30), 121 0.4088 0.0719 1. (step 30), 121 0.4088 0.0719 1. (step 30), 121 0.3822 0.0679 1. (step 30), 121 0.3822 0.0679 1. (step 30), 121 0.3822 0.0706 1. (step 30), 121 0.3852 0.0706 1. (step 30), 121 0.3960 0.0849 0.108 0.0849	Purp	se of Expl	or'ns 1 & 11 ((Parts 3	& 4): C	ompare 1	erform		l applicable variants for all stations f Ranges Training Expl	or OLAs 3 and 4 ored		NetNorm	Res	ults	MQNetNorm	
3 & 4 Static 0x0 1.1 all 0.9 1 $[ks(w_{S},\lambda), (\text{step }10), ks(w_{S},\lambda) + 30]$ $[1, (\text{step }30), 121]$ 0.3723 0.0633 17% 3 & 4 Static 0x0 1.2 all 0.9 1 $[ks(w_{S},\lambda), (\text{step }10), ks(w_{S},\lambda) + 30]$ $[1, (\text{step }30), 121]$ 0.4639 0.0639 17% 3 & 4 Static 0x0 1.2 all 0.9 1 $[ks(w_{S},\lambda), (\text{step }10), ks(w_{S},\lambda) + 30]$ $[1, (\text{step }30), 121]$ 0.4088 0.0719 18% 3 & 4 Aging 0x0 1.1 all 0.9 1 $[ks(w_{S},\lambda), (\text{step }10), ks(w_{S},\lambda) + 30]$ $[1, (\text{step }30), 121]$ 0.4020 0.0679 17% 3 & 4 Aging 0x0 1.1 all 0.9 1 $[ks(w_{S},\lambda), (\text{step }10), ks(w_{S},\lambda) + 30]$ $[1, (\text{step }30), 121]$ 0.4020 0.0679 19% 3 & 4 Aging 0x0 1.2 all 0.9 1 $[ks(w_{S},\lambda), (\text{step }10), ks(w_{S},\lambda) + 30]$ $[1, (\text{step }30), 121]$ 0.3852 0.0706 18% 4 Aging 0x0 1.2 all 0.9 1 $[ks(w_{S},\lambda), (\text{step }10), ks(w_{S},\lambda) + 30]$ $[1, (\text{step }30), 121]$ 0.3852 0.0706 18% 4 Aging 0x0 1.4 all 0.9 1 $[ks(w_{S},\lambda), (\text{step }10), ks(w_{S},\lambda) + 30]$ $[1, (\text{step }30), 121]$ 0.3850 0.0849 21% Crisp	Exp.	OLA(s)	Algorithm Family	Variant	Rev.	Sta- tion(s)		R.T.D. (knots)	deployment threshold of running average windspeed (knots)	window size of moving average windspeed (samples or minutes)	ı	Ь	η/σ	ı,	ь	σ/μ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	Š	Static	0x0	1.1	all	6.0	-	$[k_{8/}]$ (step 10), $k_{8/}$ ($+30$]		0.3723	0.0633	17%	0.3343	0.0637	19%
3 & 4 Static 0x0 1.2 all 0.9 1 $[ks(w_{s},\lambda), (\text{step }10), ks(w_{s},\lambda) + 30]$ [1, (step 30), 121] 0.4633 0.0819 18% 18% 3 & 4 0x2 1.2 all 0.9 1 $[ks(w_{s},\lambda), (\text{step }10), ks(w_{s},\lambda) + 30]$ [1, (step 30), 121] 0.4088 0.0719 18% 3 & 4 Aging 0x0 1.1 all 0.9 1 $[ks(w_{s},\lambda), (\text{step }10), ks(w_{s},\lambda) + 30]$ [1, (step 30), 121] 0.4020 0.0679 17% 3 & 4 Aging 0x0 1.2 all 0.9 1 $[ks(w_{s},\lambda), (\text{step }10), ks(w_{s},\lambda) + 30]$ [1, (step 30), 121] 0.3622 0.0692 19% 3 & 4 Aging 0x0 1.2 all 0.9 1 $[ks(w_{s},\lambda), (\text{step }10), ks(w_{s},\lambda) + 30]$ [1, (step 30), 121] 0.3852 0.0706 18% 4 Aging 0x0 1.4 all 0.9 1 $[ks(w_{s},\lambda), (\text{step }10), ks(w_{s},\lambda) + 30]$ [1, (step 30), 121] 0.3852 0.0706 18% 4 Aging 0x0 1.4 all 0.9 1 $[ks(w_{s},\lambda), (\text{step }10), ks(w_{s},\lambda) + 30]$ [1, (step 30), 121] 0.3852 0.0706 18% 4 Aging 0x0 1.4 all 0.9 1 0.9 1 0.5	_	3	! !	0x2	1.1	all	6.0	П	$[k_{S(m_s)}), (\text{step } 10), k_{S(m_s)} + 30]$	[1, (step 30), 121]	0.3723	0.0633	17%	0.3343	0.0637	19%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ξ	Z	Static	0x0	1.2	all	6.0	1	$[ks_{(w_s,\lambda)}, (\text{step } 10), ks_{(w_s,\lambda)} + 30]$	[1, (step 30), 121]	0.4633	0.0819	18%	0.4224	0.0735	17%
$3 \& 4$ Aging $0x0 & 1.1$ all $0.9 & 1$ $[ks(w_{8},\lambda), (\text{step }10), ks(w_{8},\lambda) + 30]$ $[1, (\text{step }30), 121]$ $0.4020 & 0.0679 & 17\%$ $1.0 \times 4.0 \times$	11	23		0x2	1.2	all	6.0	-	$[ks_{(ws,\lambda)}, (\text{step 10}), ks_{(ws,\lambda)} + 30]$ y-intercept (knots)	[1, (step 30), 121]	0.4088	0.0719	18%	0.3751	0.0660	18%
3 & 4	_	\$	Aging	0x0	1.1	all	6.0	1	$[k_{S(w_S,\lambda)}, (\text{step } 10), k_{S(w_S,\lambda)} + 30]$	[1, (step 30), 121]	0.4020	0.0679	17%	0.3710	0.0617	17%
$3 \& 4$ Aging 0×0 1.2 all 0.9 1 $[ks(w_{8}, \lambda), (\text{step }10), ks(w_{8}, \lambda) + 30]$ [1, $(\text{step }30), 121$] 0.3622 0.0692 19% 1.0692 1	-	Z		0x2	1:1	all	6.0	-	$[ks_{(ws,\lambda)}, (\text{step } 10), ks_{(ws,\lambda)} + 30]$	[1, (step 30), 121]	0.3430	0.0748	22%	0.3100	0.0648	21%
$3 \& 4$ 0x2 1.2 all 0.9 1 $[ks(w_{s,\lambda}), (\text{step }10), ks(w_{s,\lambda}), 3]$ [1, (step 30), 121] 0.3852 0.0706 18% deployment threshold of membership value in resulting fuzzy set $6 \times 10^{-2} \times 10^{-2$	11	8	Aging	0x0	1.2	all	6.0	1	$[ks_{(ws,\lambda)}, (\text{step } 10), ks_{(ws,\lambda)} + 30]$	[1, (step 30), 121]	0.3622	0.0692	19%	0.3387	0.0641	19%
membership value in resulting fuzzy set $0.5 \times 4 \times 1.4 \times 10^{-1}$ all 0.9 1 0.9 1 0.5 [1, (step 30), 121] 0.3960 0.0849 21%	11	23		0x2	1.2	all	6.0	-	$[ks_{(ws,\lambda)}, (\text{step } 10), ks_{(ws,\lambda)}+30]$ deployment threshold of	[1, (step 30), 121]	0.3852	90.00	18%	0.3569	0.0652	18%
3 & 4 Fuzzy- 0x0 1.4 all 0.9 1 0.5 [1, (step 30), 121] 0.3960 0.0849 21% Crisio									membership value in resulting fuzzy set							
	1	23	Fuzzy- Crisp	0x0	1.4	all	6.0		0.5	[1, (step 30), 121]	0.3960	0.0849	21%	0.3610	0.0710	20%

Table 4: (continued)

18%	18%	21%			θ/ρ				12%	12%	11%	11%		11%	11%	10%	10%			15%	16%	14%		14%
0.0732	0.0718	0.0769		MQNetNorm	ο				0.0297	0.0297	0.0267	0.0265		0.0210	0.0212	0.0215	0.0210			0.0314	0.0349	0.0281		0.0316
0.4073	0.4031	0.3724	Results		η				0.2477	0.2477	0.2344	0.2345		0.1867	0.1860	0.2122	0.2115			0.2133	0.2170	0.1979		0.2336
17%	18%	21%	Res		σ/μ				11%	11%	10%	10%		11%	11%	%6	10%			14%	15%	13%		13%
0.0771	0.0774	0.0844		NetNorm	ь				0.0302	0.0302	0.0256	0.0254		0.0215	0.0217	0.0211	0.0225			0.0321	0.0353	0.0277		0.0314
0.4520	0.4333	0.4106			π				0.2663	0.2663	0.2479	0.2481		0.2010	0.2010	0.2255	0.2261			0.2287	0.2323	0.2135		0.2510
[1, (step 30), 121]	[1, (step 30), 121]	[1, (step 30), 121]	or OLAs 5 and 6	ored	window size of	windspeed	(samples or	minutes)	[1, (step 30), 121]	[1, (step 30), 121]	[1, (step 30), 121]	[1, (step 30), 121]		[1, (step 30), 121]	[1, (step 30), 121]	[1, (step 30), 121]	[1, (step 30), 121]			[1, (step 30), 121]	[1, (step 30), 121]	[1, (step 30), 121]		[1, (step 30), 121]
0.5	0.5	0.5	all applicable variants for all stations for OLAs 5 and 6	Ranges Training Explored	deployment threshold of running	average windspeed (winds)			$[k_{S(w_s,\lambda)}, (\text{step } 10), k_{S(w_s,\lambda)} + 30]$	$[k_{S(w_s,\lambda)}, (\text{step } 10), k_{S(w_s,\lambda)} + 30]$	$[k_{S(w_s,\lambda)}, (\text{step } 10), k_{S(w_s,\lambda)} + 30]$	$[ks_{(ws,\lambda)}, (\text{step } 10), ks_{(ws,\lambda)} + 30]$	y-intercept (knots)	$[ks_{(ws,\lambda)}, (\text{step } 10), ks_{(ws,\lambda)} + 30]$	$[k_{S(w_s,\lambda)}, (\text{step } 10), k_{S(w_s,\lambda)} + 30]$	$[k_{S(w_s,\lambda)}, (\text{step } 10), k_{S(w_s,\lambda)} + 30]$	$[ks_{(ws,\lambda)}, (\text{step } 10), ks_{(ws,\lambda)} + 30]$	deployment threshold of	fuzzy set	0.5	0.5	0.5		0.5
1	-	-	ance of a		R.T.D.	(enough			T	_	_	1		-	T	T	П			П	1	Т		1
6.0	6.0	6.0	perform		~				6.0	6.0	6.0	6.0		6.0	6.0	6.0	6.0			6.0	6.0	6.0		6.0
all	all	all	Jompare		Sta-	(e) 11011			all	all	all	all		all	all	all	all			all	all	all		all
1.4	1.5	1.5) :(9 % !		Variant Rev.				1.1	1.1	1.2	1.2		1.1	1.1	1.2	1.2			1.4	1.4	1.5		1.5
0x2	0x0	0x2	(Parts 5						0x1	0x3	0x1	0x3		0x1	0x3	0x1	0x3			0x1	0x3	0x1		0x3
	Fuzzy- Crisp		Purpose of Explor'ns 1 & 11 (Parts 5 & 6): Compare performance of		Algorithm	realiny			Static		Static			Aging		Aging				Fuzzy- Crisp	ı	Fuzzy-	Crisp	
	3 & 4	3 & 4	e of Explo	•	OLA(s)				5 & 6	5 & 6		5 & 6		5 & 6		5 & 6	5 & 6			5 & 6	5 & 6	5 & 6		5 & 6
1	11	11	Purpos	•	Exp.				1	1	11	11		П	1	11	11			П	1	11		11

4.6.1.1 Weather prediction A collection of the averages of all the test results are shown in Table 4. A surprising result for these initial revisions of the control algorithms is that their weather-prediction-using variants did not always score higher than then the variants not using weather prediction. For not surpassing the current-weather-only variants, there are at least four possible reasons: 1. The predicted weather was not accurate enough to help, 2. The predicted weather had an unhelpful time horizon (of one day), 3. The algorithms did not use the day-ahead weather predictions effectively, and/or 4. One or more variants had a bug (or unintended feature in some cases).

Let us address reason 4 first. A bug (or unintended feature) was found in the following variants, which have corrected in later revisions. Some "current-weather-only" variants actually used weather prediction. Those variants updated their moving average windspeed twice per timestep. Those variants first updated their moving averages with current weather and then with future weather. The affected "current-weather-only" variants are Static0x1 (Rev. 1.1), Aging0x1 (Rev. 1.1), and Fuzzy-Crisp0x1 (Rev. 1.4). Those variants should not be called "current-weather-only" because they interlace simulated predicted windspeeds in their moving window of windspeeds.

However, that method of interlacing current and future windspeeds is acceptable to be used in the "weather-prediction-using" variants. And that interlacing method, in fact, is used by Static0x3 (Rev. 1.1), Aging0x3 (Rev. 1.1), and Fuzzy-Crisp0x3 (Rev. 1.4).

Note that Revision 1.2 of Static0x3, which does *not* use interlacing, performed worse than Revision 1.1 of Static 0x3, which does use interlacing. Thus, in that case, interlacing can be considered to be an unintended feature. Static0x3 (Rev. 1.1) tied Static0x1 (Rev. 1.1) in the OLA-5-and-6 comparison and are the highest scoring variants for OLAs 5 and 6 (Table 4).

Static0x3 (Rev. 1.1) and Static0x1 (Rev. 1.1) scored exactly the same as each other because the interlacing causes the future-checking conditional in Static0x3 to always be false. Likewise, Aging0x3 (Rev. 1.1) and Aging0x1 (Rev. 1.1) scored exactly the same for the same reason. The weather-prediction-using conditional evaluates to true only when the day-ahead weather is much windier than today. Interlacing causes the algorithm to deem the day-ahead windspeed average as the same as the current one.

Static0x0 (Rev. 1.1), Aging0x0 (Rev. 1.1), and Fuzzy-Crisp0x0 (Rev. 1.4) are unaffected by the unintended interlacing.

Static0x2 (Rev. 1.1) and Aging0x2 (Rev. 1.1) are. Their weather-prediction-using conditionals always evaluate to false.

Because revision 1.2 of Static and Aging do not use interlacing, let us examine possible reason 3 for those revisions. The transition-limited variants (i.e., variant 0x3 of Static, Aging, and Fuzzy-Crisp) require the weather to be windy today and tomorrow before deploying or require the weather to be much windier tomorrow than today before deploying. Thus, if the weather is windy today and calm tomorrow, the harvester will forfeit today's wind. However, in the Static and Agings algorithms, Table 73 on page 290 seems to imply that those conditions are never met because the non-weather-prediction-using and weather-prediction-using variants of the transition-limited Static and Aging algorithms score identically. (Verifying that the conditions are never met by adding detection code to Static and Aging and then re-running the tests for OLAs 5 and 6 are left for future work.) Thus, reason 3 seems to apply to the transition-limited, weather-prediction-using Static and Aging variants.

In the case of Fuzzy-Crisp (Revision 1.4), Table 73 on page 290 shows that, for OLA 5, the weather-prediction-using variant outperformed the non-weather-prediction-using variant by an average NetNorm score of 0.02 points for 12 stations, tied for 11 stations, underperformed by an average NetNorm score of -0.01 points for 7 stations, and for OLA 6, the weather-prediction-using variant outperformed the non-weather-prediction-using variant by an average MQNetNorm score of -0.02 for 13 stations, tied for 11 stations, under-performed by an average MQNetNorm score of -0.01 points for 6 stations. (We leave for future work a similar examination of Revision 1.5.)

The transition-unlimited variants (i.e., variant 0x2) consider tomorrow's weather when the harvester has nearly exhausted its monthly allocated visibility time. In an effort to save visibility time, the harvester will stow if tomorrow is predicted to be much windier than today. Thus, the harvester will consume 20 minutes of allocated visibility time stowing, without harvesting, and then consume 20 minutes to deploy tomorrow, before harvesting. It would seem that the algorithms would use weather prediction more effectively if the algorithms were to consider how much energy is forfeited during those 40 minutes.

A fuller description of how the algorithms use weather prediction is in Appendix 3.6.2.

Possible reason 2 is that the predicted weather had an unhelpful time horizon (of one day). Suppose that the algorithms were using a 20-minute time horizon. When the algorithm saw that the weather would likely be windy in 20 minutes, the algorithm could begin to deploy the harvester. However, OLAs 1-4 require that the harvester be stowed when the weather is not windy. Would it be a violation of OLAs 1-4 if the harvester were to be deploying when the weather seems to be calm? Technically, we defined the weather to be windy when the current rolling average is above a certain threshold, not when the future rolling average is. Thus, we recommend that a future revision of this benchmark suite modify OLAs 1-4 to allow the harvester to be visible during the x-minutes it takes the harvester to deploy if the x-minute-ahead future rolling average is above the windiness threshold.

Possible reason 1 is that the predicted weather was not accurate enough to help. Because predicted weather is being used in the field to predict wind farm power output, we know that technology exists to produce useful weather predictions for the wind power industry¹⁰ However, we analyze in Appendix A.14 how much help, in the worst case (KBOS since it has the highest mean windspeed thereby having the highest standard deviation of simulated windspeed prediction errors), our simulated weather predictor provides. The predictor, of course, carries a probability of causing an algorithm to make a wrong prediction about tomorrow's windiness (e.g., 36% if the actual windspeed is 1 knot away from the mean windspeed at KBOS). Thus, let us revisit possible reason 3: The algorithms did not use the day-ahead weather predictions effectively. Future revisions of the algorithms can use weather predictions effectively if the algorithms take into account the error distribution of the weather predictor.

4.6.1.2 Running average window size The results for each station, each OLA, each algorithm, and each variant are given in Appendices A.11 to A.13. The results indicate that the training routine tends to choose a running-average-window size that is higher for the even OLAs than for the odd OLAs. The odd OLAs use NetNorm; the even OLAs use

 $^{^{10}}$ For example, "[A] system, which came online in September 2009, has already reduced wind energy prediction error by 40% and, in 2010 alone, saved Xcel Energy's ratepayers over \$6 million" [79].

MQNetNorm. Higher running-average-window sizes lessen the possibility that the control algorithms start to deploy and then retract without harvesting any energy. Deploying uses energy. The MQNetNorm metric measures how often a harvester uses energy while the grid needs energy. The grid needs energy, as defined by a positive price in the hourly electricity price file we provide in this benchmark suite, 98% of the eleven years of hourly prices that we provide. Thus, if an algorithm starts to deploy and then retracts without harvesting any energy, the algorithm is highly likely to use energy while the grid needs energy. Using energy while the grid needs energy is penalized by the MQNetNorm metric. Therefore, the training algorithm tends to choose running-average-window sizes that are higher for OLAs that use the MQNetNorm metric than for OLAs that use NetNorm.

The tables in Appendix A.11 also show that the running average window size chosen by the trainer to maximize MQNetNorm was sometimes at the upper extreme of our design space (i.e., 121 samples). Thus, we investigated whether future revisions of the algorithms should explore beyond that design space. For example, because the training algorithm had chosen 121 samples to be the window size for KDEN for OLA 2 for Static variant 0x0 (Table 27), we, in a set of side tests, increased the upper limit of our design space to 241 samples and found that training chooses 177 samples. (The side tests involved exploring the following sequences: [1 (step 30) 241], [121 (step 15) 241], [155 (step 5) 211], and [176] (step 1) 196].) However, increasing the upper limit of the design space to an even higher number, 361, did not happen to cause the training algorithm to chose a number higher than 121 minutes for Static variant 0x0's processing the data for all 30 stations in the context of OLAs 3 and 4 (Table 85 on page 333). We compare in Table 5 on page 91 relatively sparse and dense searches for the alphabetically first four stations: KATL, KBOS, KBWI. and KCLE. Note that for each the four stations the densely searching training routine chose a running average window size less than 121 minutes and improved NetNorm scores by 13%, 3%, 10%, and 18% in the context of OLA 3 and improved MQNetNorm scores by 14%, 0%, 11%, and 16%. The average improvements for NetNorm and MQNetNorm scores for all 30 stations are 17% and 15%, respectively (compare Table 85 to Table 29 on page 224). Thus, increasing the granularity of the search of the running average window size and the search of the windspeed deployment threshold might be more effective than only increasing the upper limit of the window size's design space for Static. However, for Fuzzy-Crisp, it make sense to increase the upper limit of the design space beyond 121 minutes since, as noted below in Section 4.6.5.3, training often chose window sizes above 121 minutes during explorations of an extended design space.

A surface plot is shown in Figure 17 on page 97 where Static variant 0x0 densely explored the design space (i.e., the size of the windspeed running (or moving) average window size and the windspeed deployment threshold) to try to find the best settings to use to process station KATL's data within the constraints of OLA 3. That dense exploration found 9 knots and 40 minutes as the deployment threshold and the running average window size, respectively (Table 5). Thus, we show a surface-plot slice where the running average wind size is held at 40 minutes.

The slice bows upward, which is expected since too low deployment thresholds cause the harvester to use visibility time during lower-power wind conditions and too high deployment thresholds cause the harvester to tend to under use visibility time.

For Static and Aging variants (Revision 1.1) and Fuzzy-Crisp variants (Revision 1.4), itemized results per algorithm per station per OLA are given in Appendix A.20. We predict that future revisions of Fuzzy will score higher than these early attempts to write Fuzzy control algorithms in this context. We analyze a design decision we used for this early version of Fuzzy in Section A.22.1. For Static and Aging variants (Revision 1.2) and Fuzzy-Crisp variants (Revision 1.5), itemized results per algorithms per station per OLA are given in the Data Supplement (to be available where the benchmark suite shall be archived).

4.6.2 Exploring why Fuzzy-Crisp variant 0x2 (weather-prediction using, non-transition limited) (Rev. 1.4) usually outperformed variant 0x0 (non-prediction-using, non-transition limited) (Rev. 1.4) for OLA 3

For OLA 3, which does not limit state transitions, we explore why the applicable weather-prediction variant of the Fuzzy-Crisp Hybrid algorithm (variant 0x2) typically outperformed the applicable variant of Fuzzy-Crisp that does not use weather prediction (variant 0x0). We start our analysis by using station KATL's data, where variant 0x2 scored 0.07 points

Table 5: Comparing sparse and dense design-space searches by Static 0x0's processing work-loads OLA 3 and 4 for four stations

Static 0x0 Training	OLA	station	deployment threshold	running average	NetNorm	MQBP	MQNetNorm
Revision			(knots)	size			
100 VISIOII			(KHO65)	(minutes)			
1.1	3	KATL	7	121	0.39	0.93	0.36
Future	3	KATL	9	40	0.44	0.90	0.40
1.1	4	KATL	7	121	0.39	0.93	0.36
Future	4	KATL	9	101	0.44	0.93	0.41
1.1	3	KBOS	9	91	0.34	0.94	0.32
Future	3	KBOS	10	30	0.35	0.92	0.32
1.1	4	KBOS	9	91	0.34	0.94	0.32
Future	4	KBOS	9	113	0.34	0.94	0.32
1.1	3	KBWI	7	91	0.50	0.92	0.45
Future	3	KBWI	9	32	0.55	0.89	0.49
1.1	4	KBWI	7	61	0.49	0.91	0.45
Future	4	KBWI	9	81	0.54	0.92	0.50
1.1	3	KCLE	8	121	0.34	0.92	0.32
Future	3	KCLE	10	43	0.40	0.90	0.37
1.1	4	KCLE	8	121	0.34	0.92	0.32
Future	4	KCLE	10	71	0.40	0.91	0.37

higher than variant 0x0 (Table 72 on page 288). Let us determine whether or not the training routine for variant 0x2 happened to choose better settings than it chose for variant 0x0. That is, does variant 0x0's score improve 0.07 points if we simply apply to variant 0x0 the settings that training chose for variant 0x2. The running-average window sizes for each month are shown in the Table 6 on page 98 for variants 0x0 and 0x2. (The deployment membership value is 0.5 for both variants for all months.) The bottom row of the table shows the result of applying to variant 0x0 the running-average-window sizes that training chose for variant 0x2.

When we use the variant 0x2 settings for variant 0x0, then variant 0x0 improves from 0.37 to 0.42 for NetNorm, which is only 0.02 points less than what variant 0x2 scored. Thus, we see that, for at least station KATL, a large part of the reason why variant 0x2 scored higher than variant 0x0 is because of the settings that the training procedure chose.

Now let us search for the reason for the 0.02 point difference. We compared variant 0x0's and 0x2's minute-by-minute logs. The logs are identical until 1/2/2013 10:22AM, where variant 0x0 reversed stowing while variant 0x2 continued to stow (Figure 18). (Variant 0x2's action is consistent with its intended design, which is to conserve visibility time.)

Let us now explore how many reversals each variant makes. A reversal is defined as a change in direction while in mid-deployment or mid-retraction. Variants 0x0 and 0x2 made 707 and 536 reversals, respectively. which implies variant 0x2 used its time moving more efficiently than variant 0x0.

4.6.3 Examining the relationship between mean windspeed, energy available during quiet hours, and NetNorm

Figure 19 shows that as mean windspeeds increase, NetNorm scores earned by Static variant 0x0 version 1.1 for OLA 1 decrease, roughly. The reason seems to be that the fraction of energy available during quiet hours over the total energy available increases, in general, as mean windspeeds increase (Figure 20).

Notice the almost perfectly linear inverse relationship between the fraction of total energy available during quiet hours vs. the NetNorm scores earned by Static 0x0 v1.1 for OLA 1

shown in Figure 21. As the fraction of total energy available during quiet hours increases, the NetNorm scores decrease. That relationship suggests that a useful metric could be one where NetEnergy is normalized to the energy available when noise is permitted. A name for that new metric could be "NetNorm when Noise Allowed" (NetNormNA). When we divide NetNorm earned by Static 0x0 v1.1 for OLA 1 by the fraction of total energy available during non-quiet hours per station (which is 1 minus the energy available during quiet hours (Table 7)), then the result indicates that Static 0x0 v1.1 harvests an average of 92% of the energy available during non-quiet hours for OLA 1. Static 0x0 v1.1 harvests an average of 62% of the energy available during non-quiet hours for OLA 3. Also for OLA 3, an average of 70% of the energy available during non-quiet hours is harvested by Fuzzy 0x2 v1.4.

4.6.4 A sensitivity analysis of the Retraction-Threshold-Difference setting for Aging (variant 0x0) (Rev. 1.1) for OLAs 3 and 4

For OLAs 3 and 4, Aging (variant 0x0) performed best on average (Table 4), where Aging used the OLA-allowed retraction-threshold-difference (RTD) of 1 knot. Let us examine how Aging (variant 0x0) performs when the RTD is 0, 2, and 3 knots: Aging's average NetNorm and MQNetNorm scores are shown in Table 8 and Figure 22. The results indicate that NetNorm decreases as we increase the RTD, but the MQNetNorm fluctuates. (Table 8 also shows the sizes of the running average window sizes, which tend to increase as expected, except for when RTD = 3. When RTD = 3, the sizes decrease unexpectedly.)

4.6.5 Sensitivity analyses on λ

4.6.5.1 Aging As said in Section 3.1.2.1, we chose λ to be 0.9 because lower values did not perform well in initial tests (during relatively early development). Let us test λ using version 1.1 of Aging variant 0x0 on KPIT's data for OLA 3. Recall that version 1.1 is the version of Aging we compare to Static and Fuzzy-Crisp in Tables 4. And let us test λ using a branch of version 1.1 that uses a denser search space during training than what version 1.1 uses. Recall that Version 1.1's training routine steps through the search space for a y-intercept (where y-intercept is introduced in Section 3.4.2 in the context of the Aging

algorithms) using a step size of 30 knots (Section 3.7). The branch uses a step size of 1 knot because the 30-knot step size trained relatively poorly when λ equals 0.7 and 0.8, as shown in the results of the two tests (Figure 23). Since the branch produces in unexpected dip at 0.5, let us create yet another branch, where we increase the density and the size of the training routine's search space of the window size of the running average windspeed from the sequence [1, (step 5), 121] to the sequence [1, (step 1), 361].

As expected, very low values for λ result in lower NetNorm scores than the higher values of λ . As λ increases, the lowest windspeed deemed to be windy decreases (Appendix A.2.4). Thus, higher values of λ result in lower windspeeds that are deemed to be windy. Because lower windspeeds deemed to be windy can cause Aging to exhaust its visibility time while capturing low-power winds and because higher windspeeds deemed to be windy can cause Aging to forgo harnessing relatively high-power winds, it makes sense that the NetNorm() score rises and then falls as λ increases.

4.6.5.2 Fuzzy-Crisp, OLA 3, transitions unlimited Exploration 4 examines the effect of lambda on Fuzzy-Crisp (variant 0x0) (Rev. 1.4) running KATL's data in the context of OLA 3. Figure 24 shows that as lambda increases, KATL's NetNorm score tends to increase until it peaks when lambda equals 0.7. The curve shows an unexpected dip when lambda equals 0.5 and an unexpected slight rise when lambda equals 0.9. Figure 24 also shows Fuzzy-Crisp's MQNetNorm performance curve, which has the expected shape except at 0.3 where the curve unexpectedly dips. Those unexpected movements could be the result of the training data being different from the testing data. In other words, if we were to plot Fuzzy-Crisp's NetNorm and MQNetNorm performances on the training data, we would probably see smoother curves than we see in Figure 24. A look at how Fuzzy-Crisp performs on the training data when Fuzzy-Crisp's settings are kept constant during each iteration of lambda does in fact reveal a smoother curve (Figure 25), where NetNorm scores increase somewhat logarithmically as lambda increases, relatively leveling off for lambdas equaling 0.8 and 0.9.

Why does the curve have the shape that it does, being relatively level at 0.8 and above? Recall that Fuzzy-Crisp uses Crisp code to retract to ensure that the algorithm meets the OLA's requirements, which are crisp. Fuzzy-Crisp uses fuzzy code to deploy. That deployment code, which is fuzzy, is not dependent on lambda because lambda is used to create a crisp partition, a lambda-cut. Thus, changing lambda effects only the crisp code. Increasing lambda does not change when Fuzzy-Crisp deploys the harvester, but only when Fuzzy-Crisp retracts it. As lambda increases, the lowest windspeed deemed to be windy decreases. Since OLA 3 requires the harvester to be stowed during calm weather, and increasing lambda decreases the highest windspeed deemed to be calm, increasing lambda allows Fuzzy-Crisp to stay deployed during relatively lighter winds. That is, increasing lambda, lowers the "must-stow" windspeed. We surmise that although Fuzzy-Crisp is consuming valuable visibility time during relatively light winds, Fuzzy-Crisp's keeping the harvester deployed allows the harvester to be ready to capture higher energy winds, which mitigates the relatively invaluable visibility time. We further surmise that the relatively level portion of the curve can is the result of the values of the following two variables probably approaching each other while "must-stow" windspeed thresholds are low:

- the increase of energy gained by decreasing already low "must-stow" windspeed thresholds, and
- the increase of energy forfeited to comply with the visibility time limit.

4.6.5.3 Fuzzy-Crisp, OLA 5, transitions limited For Explorations 5 and 6, we examined how changing lambda affected the scores of Fuzzy-Crisp (variant 0x3) (Rev. 1.4) running KATL's and KBOS's data in the context of OLA 5. Changing lambda had no effect because state-transition-limited variant 0x3 of Fuzzy-Crisp does not use the lowest windspeed deemed to be windy since OLAs 5 and 6 allow the harvester to be visible when the windspeed is 0 knots. Lambda defines the lowest windspeed deemed to be windy. That windspeed threshold does not affect when the harvester must be stowed in the contexts of OLAs 5 and 6. Recall that OLAs 5 and 6 limit the harvester to two state-transitions per month and limit the harvester's visibility time to approximately 20% of the month. OLAs 5 and 6 are concerned with windspeed only when windspeeds approach the mechanical limits of the harvester.

In addition to exploring the effect of lambda on Fuzzy-Crisp, Explorations 5 and 6 examined whether the training routine would chose a running average window size greater than 121 minutes. Results indicate that the training routine often chose values above 121 minutes for OLAs 5 and 6. Thus, for those OLAs, we recommend that values above 121 minutes be explored for the other 28 stations in the contexts of OLAs 5 and 6.

Full results for Explorations 5 and 6, which are for KATL and KBOS, are in Table 86 on page 335 and Table 87 on page 336, respectively.

4.6.6 A sensitivity analysis on the forecasting time horizon

We used the scaled function y() divided by 13.8 (y()/13.8) to generate simulated windspeed predictions for KATL's training and testing data in columns entitled "f30", "f60", "f120", "f240", "f480", and "f720", where each number after the 'f' prefix indicates the time horizon in minutes. To do a sensitivity analysis on the time horizon, we created a version of Static variant 0x3 (Rev. 1.1) to use the desired 'f' column to process KATL's augmented data in the context of OLAs 5 and 6.

Static variant 0x3 decides to deploy if the weather is windy now and the weather is very windy at the time horizon. Recall that minute-by-minute windspeed samples are averaged via a moving window, the size of which is determined by the training routine.

Figure 26 shows that NetNorm scores are no further than 0.02 points from each other, as are the MQNetNorm scores. The highest and second highest scoring NetNorm scores are at a 60-minute time horizon and a one-day time horizon, respectively. Similarly, the highest and second highest scoring MQNetNorm scores are at a 120-minute time horizon and a one-day time horizon, respectively.

Full results for Exploration 8 are in Appendix A.26.

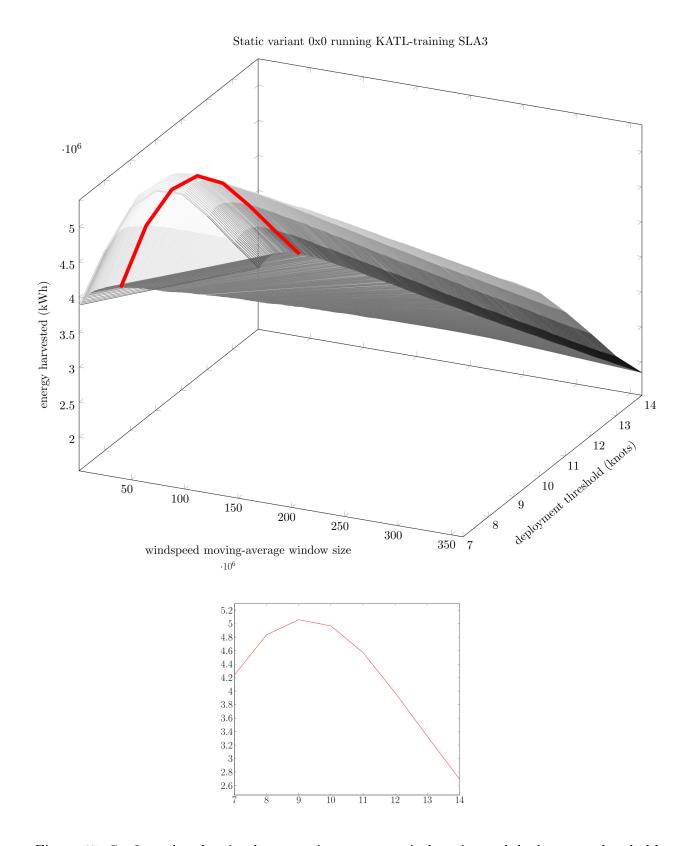


Figure 17: Surface plot showing how running-average-window size and deployment threshold affect Static variant 0x0's running of KATL-training to meet OLA3 (upper plot) and slice when running-average-window size is 40 minutes (lower plot)

Table 6: A comparison of performance of Fuzzy-Crisp variants 0x0 and 0x2 for OLA 3 for station KATL

	Fuzzy-		R	unn	ing-	avera	ıge-	winc	low	size p	er m	onth		Net-	Source
	Crisp Var.	1	2	3	4	5	6	7	8	9	10	11	12	Norm	Table
İ	0x0	1	1	1	1	31	1	1	1	121	1	91	91	0.37	53 on page 249
	0x2	1	1	1	1	1	1	1	1	1	1	1	1	0.44	59 on page 256
	0x0	1	1	1	1	1	1	1	1	1	1	1	1	0.42	Not. Applic.

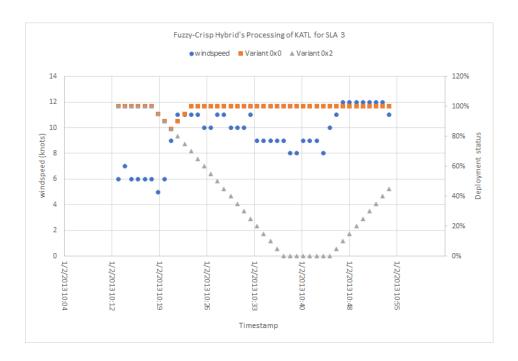


Figure 18: Processing of KATL's data by variants 0x0 and 0x2 of Fuzzy-Crisp Hybrid

Table 7: Fraction of total energy available during quiet hours per station

Station	fEnergyQuiet*	Station	fEnergyQuiet*
KLAX	0.09	KSEA	0.31
KSMX	0.14	KDTW	0.35
KSAC	0.18	KORD	0.36
KPIT	0.21	KCLE	0.36
KIAH	0.23	KATL	0.38
KEUG	0.23	KDEN	0.40
KBWI	0.24	KSAT	0.43
KSFO	0.26	KSTL	0.44
KSAN	0.26	KDCA	0.46
KCLT	0.27	KDFW	0.49
KMCO	0.28	KLAS	0.50
KTPA	0.28	KLGA	0.52
KMCI	0.29	KPHX	0.58
KCVG	0.29	KBOS	0.58
KPHL	0.30	KMSP	0.59
continu	ies above right		
de a	0		

^{*}fraction of total energy available during quiet hours

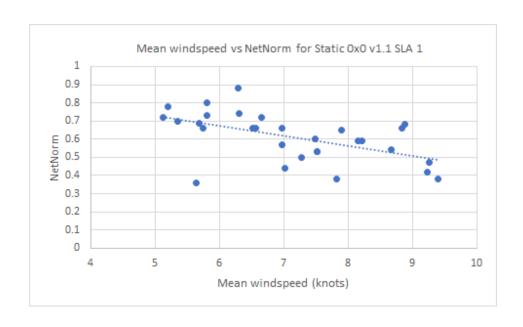


Figure 19: Mean windspeed vs. NetNorm for Static 0x0 v1.1 OLA 1

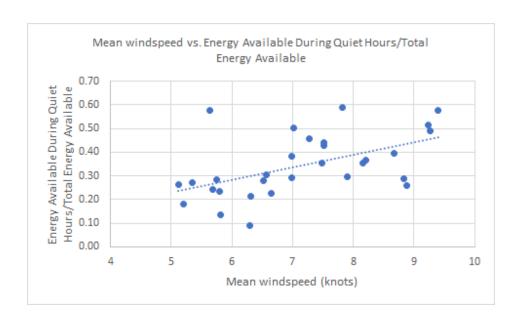


Figure 20: Mean windspeed vs. fraction of total energy available during quiet hours



Figure 21: Fraction of total energy available during quiet hours vs. NetNorm earned by Static 0x0 v1.1 for OLA 1

Table 8: Effect of changing the retraction threshold difference on Aging (variant 0x0) for OLAs 3 and 4

RTD	Net-	MQNet-	Running Avg.	Window Size	
(knots)	Norm	Norm	OLA 3	OLA 4	Full Results
0	0.409	0.373	56.00	70.33	Table 82 on page 327
1	0.402	0.371	62.33	82.25	Table 41 on page 234
2	0.398	0.375	69.08	92.83	Table 83 on page 329
3	0.394	0.374	51.00	65.25	Table 84 on page 330

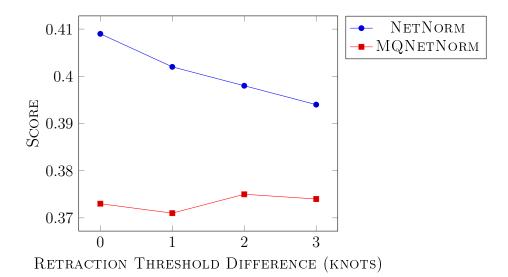


Figure 22: Effect of changing the retraction threshold difference on Aging (variant 0x0) for OLAs 3 and 4

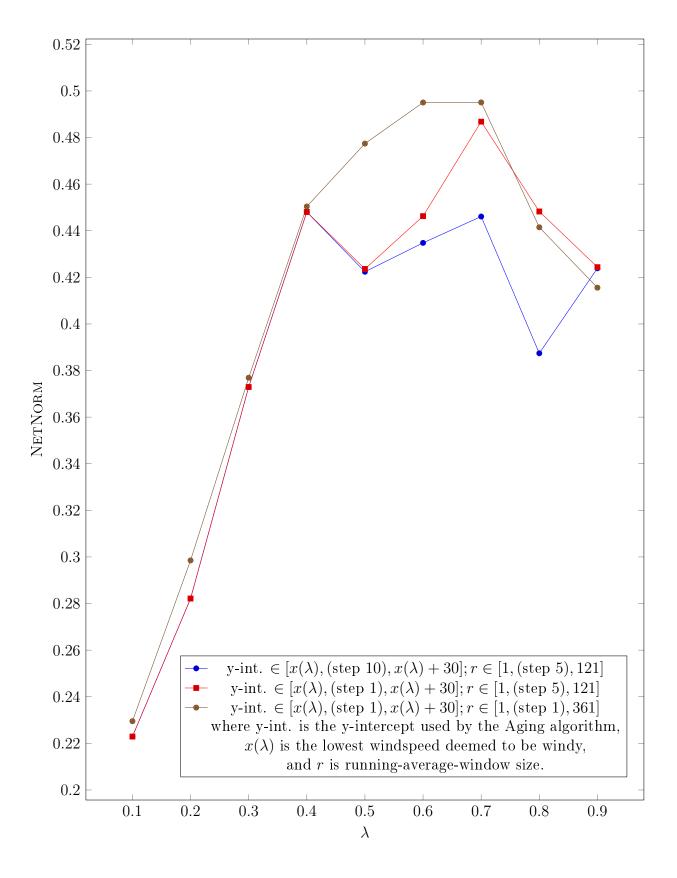


Figure 23: Sensitivity analysis on λ for Aging variant 0x0's processing of KPIT's data for OLA 3

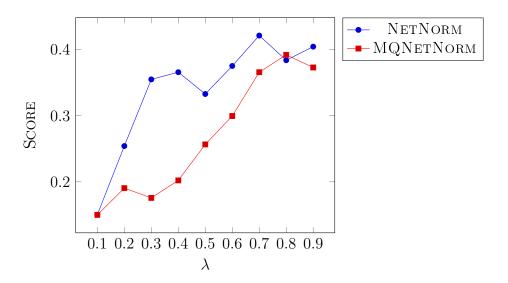


Figure 24: Effect of changing λ on Fuzzy-Crisp (variant 0x0) for OLAs 3 and 4 for KATL

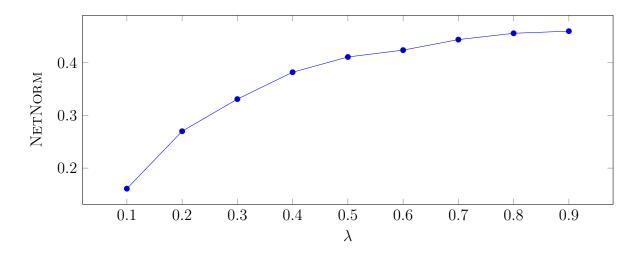


Figure 25: Effect of changing λ on Fuzzy (variant 0x0) for OLAs 3 for KATL's training data where settings are constant during entire run

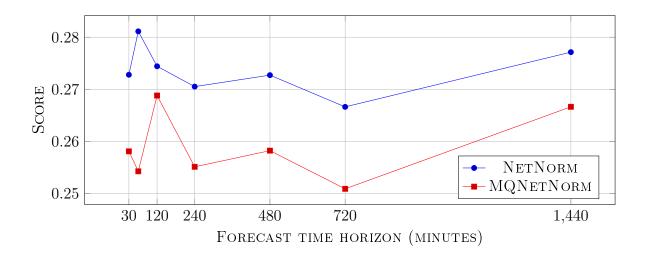


Figure 26: Effect of changing time horizon on Static (variant 0x3) for OLAs 5 and 6 for KATL

Summary of sensitivity analyses and explorations of larger and/or denser design spaces 4.6.7

Table 9 summarizes various sensitivity analyses and explorations of larger and/or denser design spaces.

Table 9: Explorations 2 through 8: Sensitivity analyses and explorations of larger and denser design spaces

								Ranges Training Explored	ored	
Exp.	OLA(s)	Algorithm Vari- Rev. Family ant	n Vari- ant	Rev.	Sta- tion(s)	~	R.T.D. (knots)	deployment threshold of running average windspeed (knots)	window size of moving average windspeed (samples or minutes)	
2	65	Static	0×0	1.1	all	6.0	1	$[ks_{(ws,\lambda)}, (\text{step } 1), ks_{(ws,\lambda)} + 7]$	[1, (step 1), 361]	No window size above 121 minutes was chosen by the training routine
Purpc	ose of Ex	plor'n 3:	Sensitiv	rity an	Purpose of Explor'n 3: Sensitivity analysis on λ for Aging		0x0 (Rev. 1.1) for OLA 3	A 3 Banges Training Explored	Ored	Results
0	OI A(s)	OI A(s) Alzonithm Voni Bon	. Voni	- 1	C+o	_	T T d	intonom (Juneta)	to orio more aim	1 As training aton circo domonos the NotNorm
· d×	OLA(s)	Argorrum Family	n vari- ant		Sta- tion(s)	<	K.1.D. (knots)	у-шчегсерт (клотs)	window size or moving average windspeed (samples or minutes)	 As training step sizes decreases, the Networm vs. landa curve becomes smoother. 2. NetNorm vs. lambda curve rapidly increases, plateaus when λ is 0.6 & 0.7, then decreases as λ increases past 0.7
3a	က	Aging	0x0	1.1		[0.1, (st. 0.1), 0.9]	1	$[k_{S(w_s,\lambda)}, (\text{step } 10), k_{S(w_s,\lambda)} + 30]$	[1, (step 5), 121]	
3b 3c	ကက	Aging Aging	0x0 0x0	11 11	KPIT [0 KPIT [0	[0.1, (st. 0.1), 0.9] [0.1, (st. 0.1), 0.9]		$[ks_{(ws,\lambda)}, \text{ (step 1)}, ks_{(ws,\lambda)} + 30]$ $[ks_{(ws,\lambda)}, \text{ (step 10)}, ks_{(ws,\lambda)} + 30]$	[1, (step 5), 121] [1, (step 1), 121]	
Purpo	se of Ext	plor'n 4:	Sensitiv	ity an	alvsis on λ	Purpose of Explor'n 4: Sensitivity analysis on λ for Fuzzy-Crisp 0x0 (Rev. 1.4) for OLA 3	0 (Rev. 1.4)	or OLA 3		Results
•		•		,	•	•	,	Ranges Training Explored	ored	
Exp.	OLA(s)	Algorithm Vari- Rev.	n Vari-	Rev.	Sta-	X	R.T.D.	deployment threshold of	window size of	1. NetNorm vs. lambda curve increases jaggedly
		Family	ant		tion(s)		(knots)	membership value in resulting	moving average	when tested with testing data. 2. The curve
								luzzy set	windspeed (samples or	increases smootnly when tested with TKAINING data.
									minutes)	
4	3,4	Fuzzy	0x0	1.4	KATL [0	KATL [0.1, (st. 0.1), 0.9]	1	0.5	[1, (step 1), 361]	
Purpc	ose of Ex	plor'n 5:	Sens. a	nalysis	on A whil	Purpose of Explor'n 5: Sens. analysis on λ while exploring larger d	esign space fo	larger design space for Fuzzy-Crisp 0x3 (Rev. 1.4) for OLAs 5 & 6 Ranger Training Explored	s 5 & 6 ored	Results
Exp.	OLA(s)	Algorithm Vari- Rev.	n Vari-	Rev.	Sta-	~	R.T.D.	deployment threshold of	window size of	1. lambda has no effect. 2. The training routine
		Family	ant		tion(s)		(knots)	membership value in resulting fuzzy set	moving average windspeed	chose a deployment membership value threshold other than 0.5 a number of 22 of 24 times & a
									(samples or minutes)	window size above 121 a number of 12 out of 24 times.
2	5,6	Fuzzy	0x3	1.4	KATL [0	KATL [0.1, (st. 0.1), 0.9]	1	[0.1, (st. 0.1), 0.9]	[1, (step 1), 361]	
Purpo	se of Exp	plor'n 6: \$	Same a	3 Expl	or'n 5, but	Purpose of Explor'n 6: Same as Explor'n 5, but for different station	1			Results
								Ranges Training Explored	ored	
Exp.	OLA(s)	OLA(s) Algorithm Vari- Rev.	n Vari-			~	R.T.D.	deployment threshold of	window size of	1. lambda has no effect. 2. The training routine
		Family	ant		tion(s)		(knots)	membership value in resulting fuzzy set	moving average windspeed	chose a deployment membership value threshold other than 0.5 a number of 21 of 24 times & a
									(samples or	window size above 121 a number of 16 out of 24
									minutes)	times.

Table 9: (continued)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Results		1. NetNorm vs R.T.D. curve decreases as R.T.D. increases. 2. MQNetNorm vs R.T.D. curve is approximately flat		Results		 NetNorm vs R.T.D. curve decreases as R.T.D. increases. 2. MQNetNorm vs R.T.D. curve is approximately flat 	
3.9] Static 0	[1, (step 1), 361]		lored	window size of moving average windspeed (samples or minutes)	[1, (step 30), 121]		lored	window size of moving average windspeed (samples or minutes)	[1, (step 1), 121]
3.9] Static 0	[0.1, (st. 0.1), 0.9]) on Aging 0x0 (Rev. 1.1)	Ranges Training Exp.	y-intercept (knots)	$[ks_{(ws,\lambda)}, (\text{step } 10), ks_{(ws,\lambda)} + 30]$		Ranges Training Exp	y-intercept (knots)	$[ks_{(ws,\lambda)},$ (step 1), $ks_{(ws,\lambda)}+7]$
5,6 Fuzzy 0x3 1.4 KBOS [0.1, (st. 0.1), 0.9] Prose of Explor'n 7: Sens. analysis on Retraction Threshold Diffe p. OLA(s) Algorithm Vari- Rev. Sta- tion(s) A S4 Aging 0x3 1.1 All 0.9 rpose of Explor'n 8: Effect of forecast's time horizon t* on Static p. OLA(s) Algorithm Vari- Rev. Sta- A A Aging 0x3 1.1 KATL 0.9 5,6 Aging 0x3 1.1 KATL 0.9 0.9 430, 60, 120, 240, 480, 720, 1440 minutes} 0.9 0.9 0.9 0.9	1	rence (R.T.D.		R.T.D. (knots)	[1, (st. 1), 4]	0x3 (Rev. 1.1		R.T.D. (knots)	1
5,6 Fuzzy 0x3 1.4 KBOS	0.1, (st. 0.1), 0.9]	ction Threshold Diffe		~	6.0			×	6.0
5,6 Fuzzy 0x3 1.4 rpose of Explor'n 7: Sens. analysis p. OLA(s) Algorithm Vari- Rev. Family ant 3,4 Aging 0x3 1.1 rpose of Explor'n 8: Effect of forect p. OLA(s) Algorithm Vari- Rev. Family ant 5,6 Aging 0x3 1.1 80,60,120,240,480,720,1440 min 1.1 1.1	KBOS [on Retra		Sta- tion(s)	All	st's time		Sta- tion(s)	KATL nutes}
5,6 Fuzzy 0x3 rpose of Explor'n 7: Sens. Pamily ant p. OLA(s) Algorithm Vari Aging 0x3 rpose of Explor'n 8: Effect Family ant p. OLA(s) Algorithm Vari Family ant 5,6 Aging 0x3 30, 60, 120, 240, 480, 720, 30, 60, 120, 240, 480, 720,	1.4	analysis		- Rev.	1.1	of foreca		- Rev.	1.1 1440 min
5.6 Fuzzy rpose of Explor'n 7 p. OLA(s) Algorit 3.4 Aging rpose of Explor'n 8 p. OLA(s) Algorit p. OLA(s) Algorit 7.6 Aging 5.6 Aging 80,60,120,240,4	0x3	: Sens.		hm Vari ant	0x3	: Effect		hm Vari ant	0x3 80,720,
5,6 rpose of E p. OLA(s) 3,4 rpose of E p. OLA(s) 6,0,0,0,0,12	Fuzzy	kplor'n 7		Algorit Family	Aging	xplor'n 8		Algorit Family	Aging 20, 240, 4
j	5,6	ose of E		OLA(s)	3,4	ose of E		OLA(s)	5,6 30, 60, 12
6 Pum 7	9	Purp		Ехр.	7	Purp		Exp.	$\begin{array}{c} 8 \\ t \in \{: \\ \end{array}$

4.6.8 A preliminary comparison of alternative OLA's

Let us define a "visibility event" as the continuous block of time a harvester is visible. Suppose that a community limits both visibility time and "visibility events" to 20% per month and e events per month. How does e affect NetNorm? Preliminary results are shown in Figure 27.

We ran a special variant of Static called "VE" which accepts the maximum number of visibility events as a parameter. Variant VE retracts the harvester when the average windspeed drops below $0.5k_{ws,\lambda}$ where $k_{ws,\lambda}$ is the lowest windspeed deemed to be windy for ws = KPIT and $\lambda = 0.7$.

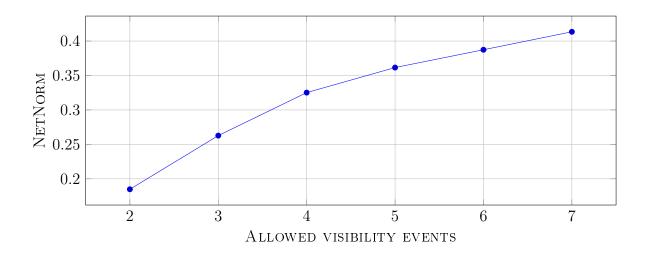


Figure 27: Effect of increasing allowed "visibility events" on Static (variant VE) for OLA 3 for KPIT

5.0 CONCLUSIONS

OLA 1 which does not limit total visibility time, but restricts operation and visibility to "windy" periods outside of quiet hours, saw algorithms harvesting 62% of the available energy. For OLA 3, where the visibility time of the harvester is limited to approximately 20% of the month, Static 0x0 (Rev. 1.2) achieved 46%. For OLA 5, where the visibility time of the harvester is limited to approximately 20% of the month and 2 state-transitions per month (or 3 to stow during high winds), the highest scoring variant netted 27% of the available energy. For each even-numbered OLA, the best MQNetNorm() scores are not more than 8 percentage points less than the best NetNorm() scores for each corresponding odd-numbered OLA (Table 4 on page 84).

A very interesting conclusion relates to the fraction of energy available outside of quiet hours. We noted in Section 4.6.3 that Fuzzy-Crisp netted an average of 70% of the energy available outside of quiet hours for OLA 3. Because OLAs 1-4 limit operation and visibility to non-quiet hours, we suggest that another metric "NetNorm when Noise Allowed" (Net-NormNA) would give a truer picture of how well an algorithm uses its allowable time than NetNorm does. However, NetNorm is useful in that it can motivate quiet wind-harnessing technologies that would be permitted to operate during a percentage of quiet hours.

Our final conclusion is that improving the training of the algorithms seems to be a promising way to increase the algorithms' performance. For example, Table 5 on page 91 shows an average NetNorm improvement of 0.04 points (or 11%) by decreasing the step size in the search space for running average window size from 30 minutes to 1 minute.

6.0 FUTURE WORK

The results of running the workloads in this benchmark suite, measuring results using the benchmark's metrics, and analyzing the results led to some of these recommendations for future versions of this benchmark suite:

- Revise OLAs 1-4 to allow the algorithms to begin to deploy before windy periods officially begin. It seems reasonable that retractable-harvester hosting communities would agree to allow harvesters to be visible x minutes before a windy period officially begins where x is the minimum time required for the harvester to deploy. Recall that the definition of "When it's not windy" given in Section 3.1.2.1 implies a windy period begins when the running average windspeed reaches the lowest windspeed deemed to be windy at the pertinent weather station. The running average windspeed depends on window size in effect during the then-current month. If a community were to allow harvesters to begin deploying x minutes before a windy period begins, then that community would need to wait x minutes to determine whether the harvester has complied with the OLA's visibility allowance.
- Thus, because knowing the windspeed x minutes into the future would help a harvester to be fully deployed when a windy period officially begins, it would make sense for future versions of this benchmark suite to provide x-minute-ahead weather prediction. If x equals 20 minutes, which is the deployment time (Section A.3.5) of the harvester hm we used to test our algorithms herein, then we surmise that the 20-minute-ahead weather predictions that would be provided in a future benchmark are more accurate than the 1440-minute-ahead predictions that we currently simulate.
- Require algorithms to log their deployment-and-retraction commands to a standard log-

ging format so that the algorithms' actions can be verified by a "watchdog" program

- Add bird migration data (Section 3.1.2.3).
- For OLAs 5 and 6, explore values for the window size of the windspeed running average above 121 minutes for the remaining 28 stations for Fuzzy-Crisp (Results for two stations are given in Section A.25) and all 30 stations for Static and Aging.

We recommend that MQMPEnergy (Section 4.1.6.2) be considered for addition to future versions of the benchmark suite. We surmise that such a metric would motivate the creation of retractable wind-harnessing technologies tailored for peak-electricity-usage periods.

For future versions of the algorithms, we recommend the following:

- Use the error distribution of weather prediction to better gauge the probability of making a wrong conclusion. If the probability is less than a certain level, then the algorithm would act upon that conclusion. For example, let H₀ be the null hypothesis that tomorrow's running average windspeed will be below the lowest-windspeed-deemed-to-bewindy (Section A.2.4) threshold τ knots at a weather station ws. And let H₁ be the alternative hypothesis that it will be at or above threshold τ. Given the standard deviation for the day-ahead prediction error for ws (Section 4.2.0.3), what is the probability of falsely accepting the null hypothesis (i.e., making a Type I or alpha error) or what is the probability of falsely rejecting the null hypothesis (i.e., making a Type II error, i.e., concluding that tomorrow will not be windy when in actuality tomorrow will be windy, for station KBOS when the day-ahead-predicted windspeed is τ + 1 knots in Appendix A.14.
- Take into account the overhead of deploying and retracting when using weather prediction. The example immediately above does not take into account the length of the windy period, but could be extended to determine the probability of a potential harvesting event to net a positive amount of energy.

We posit areas for exploration:

Our researching 30 municipalities' noise regulations revealed variations in the start and stop times of quiet hours. For example, one municipality (St. Louis) starts quiet hours at sunset. Another municipality (Pittsburgh) starts quiet hours at 10:00 pm every day. It might

be worthwhile to find a simple definition of quiet hours that satisfies all 30 municipality's quiet hours to simplify the programming of the algorithms. Currently each algorithm looks up the quiet hours with which it must comply. If the algorithm were to observe universal quiet hours, then algorithm programming could be simplified in that the algorithm would not access a look-up table keyed by weather station and when the weather station is St. Louis's KSTL, the algorithm would not need consult another table for sunset times. Instead, the algorithm would simply start quiet hours before the earliest sunset time of the year, would end quiet hours at the latest hour of all the ending hours of each municipality, and would include weekends and federal holidays. (However, if the algorithm were to observe simple universal quiet hours, then the algorithm would forfeit much allowable harvesting time in some municipalities.)

Another area of possible simplification is to use the same windspeed threshold for all stations to define windy weather instead of basing the definition on the local historical windspeeds. For example, we could define 7 knots, which is the lowest speed of the Beaufort Scale's Gentle Breeze (7 - 10 knots), as the lowest "windy" windspeed for all municipalities. Using 7 knots as the lowest windspeed deemed to be windy for all stations would simplify the benchmark suite because the benchmark suite would supply only one membership function for the fuzzy set "not windy" instead of thirty. It would also simplify the creation of a new metric that measures how much wind energy is available when windspeeds are 7 knots or greater. On the other hand, because 7 knots might seem low to some municipalities, those municipalities might not agree that 7 knots is windy. Thus, exploring each municipality's perception of windiness is an area of future work.

Using its own windspeed sensor, each algorithm can use numerical methods on series of windspeeds to predict weather in addition to accessing external weather forecasts. For example, Kulkarni et al. claim, "It has been found that wind speed can be predicted with a reasonable degree of accuracy using two methods, viz., extrapolation using periodic curve fitting and [Artificial Neural Networks]" [46]. Adding internal weather-forecasting to each algorithm might give each algorithm useful flexibility to choose its own forecasting time horizon if statistically significant.

Others have researched how to tune algorithms; It might be worthwhile to use advanced

techniques (e.g., a procedure called CALIBRA [2]) to tune them.

Data mining the 30 sets of historical data could provide insight into how to group the sets (e.g., grouped by Weibull shape parameters) to recommend an OLA for a particular group.

Because some survey respondents did not seem to understand wind power (e.g., "they all still run on oil so what is the point") or retractable harvesters ("i [sic] just don't understand their purpose") and some survey companies allow a video to be shown or accessible as part of the survey, the inclusion of instructional videos in future surveys might help to solve the problem of some respondents' lack of retractable-wind-harvester knowledge.

Consider adding an OLA or revising one or more of the existing standard OLAs to address "shadow flicker," which are "shadows on the ground and surrounding structures that may emanate from the rotating blades of a wind turbine" [71].

7.0 BIBLIOGRAPHY

- [1] A win for us: Judge says 'No' to Dan's Mountain wind farm. Editorial. timesnews.com. January 27, 2017. URL: http://www.times-news.com/opinion/editorials/a-win-for-us/article_127f1189-ccf3-5953-ba74-4024ee1e1428.html.
- [2] Belarmino Adenso-Diaz and Manuel Laguna. "Fine-tuning of algorithms using fractional experimental designs and local search". In: *Operations research* 54.1 (2006), pp. 99–114.
- [3] C.C. Aggarwal. *Outlier Analysis*. Springer International Publishing, 2016. ISBN: 9783319475783. URL: https://books.google.com/books?id=KyG1DQAAQBAJ.
- [4] Altaeros Energies. Technology. URL: www.altaerosenergies.com/technology.html.
- [5] Astronomical Applications Department. Sun or Moon Rise/Set Table for One Year.

 U.S. Naval Observatory. 1June 2016. URL: http://aa.usno.navy.mil/data/docs/

 RS_OneYear.php.
- [6] J. Banks. Discrete-event System Simulation. Discrete-event System Simulation. Prentice Hall, 2001. ISBN: 9780130887023. URL: https://books.google.com/books?id= NV1RAAAAMAAJ.
- [7] Christian Bienia et al. "The PARSEC benchmark suite: Characterization and architectural implications". In: Proceedings of the 17th international conference on Parallel architectures and compilation techniques. ACM. 2008, pp. 72–81.
- [8] Glen Brown, Roy Haggard, and Brook Norton. "Inflatable structures for deployable wings". In: 16th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, p. 2068.

- [9] M.H. Brown et al. *Electricity Transmission: A Primer*. National Council on Electric[ity] Policy, 2004. ISBN: 9781580243520. URL: https://books.google.com/books?id=yQwKAQAAMAAJ.
- [10] Central Plains Cranes. Self-erecting Tower Cranes. URL: http://www.centralplainscranes.com/Self-erecting_Cranes.html.
- [11] Debrup Chakraborty and Nikhil R Pal. "A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification". In: *IEEE Transactions on Neural Networks* 15.1 (2004), pp. 110–123.
- [12] Antonello Cherubini et al. "Airborne Wind Energy Systems: A review of the technologies". In: Renewable and Sustainable Energy Reviews 51 (2015), pp. 1461–1476.
- [13] Commercial and Residential Reference Building Models. Commercial and Residential Hourly Load Profiles for all TMY3 Locations in the United States. Maintainer: nathan.clark@nrel.gov. OpenEI. URL: http://en.openei.org/datasets/files/961/pub/RESIDENTIAL_LOAD_DATA_E_PLUS_OUTPUT/.
- [14] National Research Council et al. Terrorism and the electric power delivery system.

 National Academies Press, 2012. URL: https://www.nap.edu/catalog/12050/terrorism-and-the-electric-power-delivery-system.
- [15] Department of Statistics. Si Hypothesis Testing. The Pennsylvania State University. URL: https://onlinecourses.science.psu.edu/statprogram/reviews/statistical-concepts/hypothesis-testing.
- [16] M. Diehl. "Airborne Wind Energy: Basic Concepts and Physical Foundations". In: Airborne Wind Energy. Ed. by U. Ahrens, M. Diehl, and R. Schmehl. Green Energy and Technology. Springer Berlin Heidelberg, 2013. Chap. 1. ISBN: 9783642399657. URL: https://books.google.com/books?id=807ABAAAQBAJ.
- [17] I. Dincer. Comprehensive Energy Systems. Elsevier Science, 2018. ISBN: 9780128149256. URL: https://books.google.com/books?id=fox0DwAAQBAJ.
- [18] Paul Dvorak. Tiny turbines are looking for work. 2014. URL: http://www.windpowerengineering.com/featured/business-news-projects/tiny-turbines-looking-work.

- [19] Earth System Research Laboratory. NCEP-DOE Reanalysis 2: Summary. National Oceanic and Atmospheric Administration. URL: https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html.
- [20] Office of Energy Efficiency & Renewable Energy. EnergyPlus Energy Simulation Software. URL: http://apps1.eere.energy.gov/buildings/energyplus/.
- [21] Energy Information Administration. *Electricity Explained, Factors Affecting Electricity Prices*. May 2018. URL: https://www.eia.gov/energyexplained/index.php?page=electricity_factors_affecting_prices.
- [22] Energy Information Administration. Glossary. URL: https://www.eia.gov/tools/glossary/.
- [23] Energy Information Administration. Negative prices in wholesale electricity markets indicate supply inflexibilities. February 23, 2012. URL: https://www.eia.gov/todayinenergy/detail.php?id=5110.
- [24] Federal Energy Regulatory Commission. Electromagnetic Pulse: Effects on the U.S. Power Grid, Executive Summary. URL: https://www.ferc.gov/industries/electric/indus-act/reliability/cybersecurity/ferc_executive_summary.pdf.
- [25] Awi Federgruen and Nan Yang. "Infinite horizon strategies for replenishment systems with a general pool of suppliers". In: *Operations research* 62.1 (2014), pp. 141–159.
- [26] Andrés Feijóo and Daniel Villanueva. "Assessing wind speed simulation methods". In: Renewable and Sustainable Energy Reviews 56 (2016), pp. 473–483.
- [27] Jeremy Firestone et al. "Reconsidering barriers to wind power projects: community engagement, developer transparency and place". In: Journal of environmental policy & planning 20.3 (2018), pp. 370–386.
- [28] David Friedman, Yael M Cycowicz, and Helen Gaeta. "The novelty P3: an event-related brain potential (ERP) sign of the brain's evaluation of novelty". In: Neuro-science & Biobehavioral Reviews 25.4 (2001), pp. 355–373.
- [29] Sidney A Gauthreaux, Carroll G Belser, and Donald Van Blaricom. "Using a network of WSR-88D weather surveillance radars to define patterns of bird migration at large spatial scales". In: *Avian migration*. Springer, 2003, pp. 335–346.

- [30] P. Gipe. Wind Power: Renewable Energy for Home, Farm, and Business. Chelsea Green Publishing Company, 2004. ISBN: 9781931498142. URL: https://books.google.com/books?id=RNvHAgAAQBAJ.
- [31] Khaled Hamed and A Ramachandra Rao. "A Modified Mann-Kendall Trend Test for Autocorrelated Data". In: *Journal of Hydrology* 204 (Jan. 1998), pp. 182–196. DOI: 10.1016/S0022-1694(97)00125-X.
- [32] Pavithra Harsha and Munther Dahleh. "Optimal management and sizing of energy storage under dynamic pricing for the efficient integration of renewable energy". In: *IEEE Transactions on Power Systems* 30.3 (2014), pp. 1164–1181.
- [33] Ben Hoen et al. "Do Wind Turbines Make Good Neighbors? Results from a Nationwide Survey of Residents Living Near U.S. Wind Power Projects". In: (2018). A link to the webinar recorded on January 30, 2018, can be found at https://emp.lbl.gov/webinar/overall-analysis-attitudes-across-1700. This project is part of a broader set of projects under the National Survey of Attitudes of Wind Power Project Neighbors which are summarized at https://emp.lbl.gov/projects/wind-neighbor-survey.
- [34] HOMER Energy. About HOMER Energy LLC. HOMER Energy. URL: https://www.homerenergy.com/company/index.html.
- [35] HOMER Energy LLC. Autocorrelation. URL: https://www.homerenergy.com/products/pro/docs/3.11/autocorrelation.html.
- [36] HOMER Energy Support. Getting Wind data from Other Sources into HOMER Pro.

 HOMER Energy. URL: http://usersupport.homerenergy.com/customer/en/
 portal/articles/2187118-getting-wind-data-from-other-sources-into-homer-pro.
- [37] Independent Electricity System Operator. HOEP [Hourly Ontario Energy Price], 2002-2017. URL: http://ieso.ca/-/media/files/ieso/power-data/data-directory/hoep_2002-2017.csv?la=enviahttp://ieso.ca/en/power-data/data-directory/.

- [38] D. Jager and A. Andreas. NREL Report No. DA-5500-56489. NREL National Wind Technology Center (NWTC): M2 Tower; Boulder, Colorado (Data). URL: http://dx.doi.org/10.5439/1052222.
- [39] J-SR Jang and Chuen-Tsai Sun. "Neuro-fuzzy modeling and control". In: *Proceedings* of the IEEE 83.3 (1995), pp. 378–406.
- [40] Daniel R Jiang et al. "A comparison of approximate dynamic programming techniques on benchmark energy storage problems: Does anything work?" In: 2014 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL). IEEE. 2014, pp. 1–8.
- [41] John Wood Group PLC. Energy yield prediction. URL: https://www.woodgroup.com/what-we-do/view-by-products-and-services/clean-energy/services/analysis/energy-yield-prediction.
- [42] Rajesh G Kavasseri and Krithika Seetharaman. "Day-ahead wind speed forecasting using f-ARIMA models". In: *Renewable Energy* 34.5 (2009), pp. 1388–1393.
- [43] Rajesh G Kavasseri and Krithika Seetharaman. "SgurrEnergy provides wind analysis for phase 1 of 400MW Ethiopian wind project". In: Windpower Engineering & Development (August 1, 2013). URL: https://www.windpowerengineering.com/projects/test-measurement/sgurrenergy-provides-wind-analysis-for-phase-1-of-400mw-ethiopian-wind-project.
- [44] Katherine Klink. "Trends in mean monthly maximum and minimum surface wind speeds in the coterminous United States, 1961 to 1990". In: Climate Research 13.3 (1999), pp. 193–205.
- [45] Andreas Kroll and Horst Schulte. "Benchmark problems for nonlinear system identification and control using soft computing methods: Need and overview". In: *Applied Soft Computing* 25 (2014), pp. 496–513.
- [46] Makarand A Kulkarni et al. "Wind speed prediction using statistical regression and neural network". In: *Journal of Earth System Science* 117.4 (2008), pp. 457–463.
- [47] Matthias Lange. "On the uncertainty of wind power predictions—Analysis of the forecast accuracy and statistical distribution of errors". In: Journal of Solar Energy Engineering 127.2 (2005), pp. 177–184.

- [48] Makani. Energy Kites. URL: http://www.google.com/makani/.
- [49] Ryan McAleer. Application for Dooish wind farm rejected by planners. The Ulster Herald. January 30, 2016. URL: http://ulsterherald.com/2016/01/30/applicationfor-dooish-wind-farm-rejected-by-planners.
- [50] William McKinney and James DeLaurier. "Wingmill: an oscillating-wing windmill". In: Journal of energy 5.2 (1981), pp. 109–115.
- [51] Daniel Mossé and Guy Gadola. "Controlling wind harvesting with wireless sensor networks". In: Green Computing Conference (IGCC), 2012 International. IEEE. 2012, pp. 1–6.
- [52] Eduard Muljadi and Charles P Butterfield. "Pitch-controlled variable-speed wind turbine generation". In: *IEEE transactions on Industry Applications* 37.1 (2001), pp. 240–246.
- [53] K.R. Murphy, B. Myors, and A. Wolach. Statistical Power Analysis: A Simple and General Model for Traditional and Modern Hypothesis Tests, Fourth Edition. Routledge, 2014. ISBN: 9781317680574. URL: https://ebookcentral.proquest.com/lib/pitt-ebooks/detail.action?docID=1754641.
- [54] National Center for Atmospheric Research. MM5 Modeling System Overview. University Center for Atmospheric Research. URL: http://www2.mmm.ucar.edu/mm5/overview.html.
- [55] National Center for Atmospheric Research Staff (Eds). The Climate Data Guide: ERA40. University Center for Atmospheric Research. URL: https://climatedataguide.ucar.edu/climate-data/era40.
- [56] National Center for Atmospheric Research Staff (Eds). The Climate Data Guide: NCEP Reanalysis (R2). University Center for Atmospheric Research. URL: https://climatedataguide.ucar.edu/climate-data/ncep-reanalysis-r2.
- [57] National Centers for Environmental Information. Reanalysis. NOAA. URL: https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/reanalysis.
- [58] National Climatic Data Center. DATA DOCUMENTATION FOR DATA SET 6405 (DSI-6405), ASOS SURFACE 1-MINUTE, PAGE 1 DATA. Tech. rep. National Cli-

- matic Data Center, 151 Patton Ave., Asheville, NC 28801-5001 USA, July 2006. URL: http://www1.ncdc.noaa.gov/pub/data/documentlibrary/tddoc/td6405.pdf.
- [59] National Oceanic and Atmospheric Administration et al. Automated Surface Observing System (ASOS) User's Guide. Tech. rep. Mar. 1998. URL: https://www.weather.gov/media/asos/aum-toc.pdf.
- [60] National Weather Service. National Weather Service Glossary. URL: https://w1.weather.gov/glossary/.
- [61] NCEP Central Operations. Meteorological Assimilation Data Ingest System. National Oceanic and Atmospheric Administration. URL: https://madis.ncep.noaa.gov/.
- [62] NOAA. Beaufort Wind Scale. URL: https://www.spc.noaa.gov/faq/tornado/beaufort.html.
- [63] North American Reliability Corporation. *Understanding the Grid.* Aug. 2013. URL: https://www.nerc.com/AboutNERC/Documents/Understanding%20the%20Grid%20AUG13.pdf.
- [64] NREL. Energy Systems Analysis Tools. National Renewable Energy Laboratory (NREL). URL: https://www.nrel.gov/analysis/energy-systems-tools.html.
- [65] NREL. Wind Resource Assessment. National Renewable Energy Laboratory (NREL).

 URL: https://www.nrel.gov/wind/resource-assessment.html.
- [66] National Renewable Energy Laboratory (NREL). National Solar Radiation Data Base, 1991-2010 Update. URL: http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2010.
- [67] NREL WISDEM Team. WISDEM®. National Renewable Energy Laboratory (NREL). URL: https://nwtc.nrel.gov/WISDEM.
- [68] NREL WISDEM Team: K. Dykes, S. A. Ning, P. Graf, G. Scott, Y. Guo, R. King, T. Parsons, R. Damiani, P. Fleming. *Documentation for WISDEM*. National Renewable Energy Laboratory (NREL). URL: http://wisdem.github.io/WISDEM/documentation.html.

- [69] Office of Electricity Delivery and Energy Reliability. The role of microgrids in helping to advance the nation's energy system. URL: http://energy.gov/oe/services/technology-development/smart-grid/role-microgrids-helping-advance-nation-s-energy-system.
- [70] Office of Energy Efficiency & Renewable Energy. How Do Wind Turbines Survive Severe Storms? U.S. Department of Energy. URL: https://www.energy.gov/eere/articles/how-do-wind-turbines-survive-severe-storms.
- [71] F Oteri. Overview of Existing Wind Energy Ordinances. Tech. rep. National Renewable Energy Lab.(NREL), Golden, CO (United States), 2008.
- [72] Pacific Northwest National Laboratory. Mann-Kendall Test For Monotonic Trend.

 URL: https://vsp.pnnl.gov/help/vsample/design_trend_mann_kendall.htm.
- [73] Pacific Northwest National Laboratory. What is VSP. URL: https://vsp.pnnl.gov/help/Vsample/What_is_VSP.htm.
- [74] John Pitre. Folding blade turbine. US Patent App. 12/461,716. Aug. 2009.
- [75] James A Potter. Retractable wind machine. US Patent 4,342,539. Aug. 1982.
- [76] Warren B Powell. "A unified framework for stochastic optimization". In: European Journal of Operational Research (2018).
- [77] SC Pryor et al. "Wind speed trends over the contiguous United States". In: *Journal of Geophysical Research: Atmospheres* 114.D14 (2009).
- [78] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. URL: https://www.R-project.org/.
- [79] Research Applications Laboratory. Bringing the wind to the grid. National Center for Atmospheric Research. URL: https://ral.ucar.edu/solutions/bringing-the-wind-to-the-grid.
- [80] T.J. Ross. Fuzzy Logic with Engineering Applications. Wiley, 2016. ISBN: 9781119235842. URL: https://books.google.com/books?id=ZFAeDQAAQBAJ.
- [81] Daniel F Salas and Warren B Powell. "Benchmarking a Scalable Approximate Dynamic Programming Algorithm for Stochastic Control of Grid-Level Energy Storage".
 In: INFORMS Journal on Computing 30.1 (2017), pp. 106–123.

- [82] P. Scheckel. The Homeowner's Energy Handbook: Your Guide to Getting Off the Grid. Storey Publishing, LLC, 2013. ISBN: 9781603428477. URL: https://books.google.com/books?id=owPp4RMxw8IC.
- [83] Norbert Schwarz. "Self-reports: how the questions shape the answers." In: American psychologist 54.2 (1999), p. 93.
- [84] JV Seguro and TW Lambert. "Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis". In: Journal of wind engineering and industrial aerodynamics 85.1 (2000), pp. 75–84.
- [85] Jeremy Ryan Shipley, Jeffrey F Kelly, and Winifred F Frick. "Toward integrating citizen science and radar data for migrant bird conservation". In: Remote Sensing in Ecology and Conservation (2017).
- [86] Olivia J Smith, Natashia Boland, and Hamish Waterer. "Solving shortest path problems with a weight constraint and replenishment arcs". In: Computers & Operations Research 39.5 (2012), pp. 964–984.
- [87] Staff Reporter. Planners say no to wind turbine at Donegal business park. Donegal Democrat. January 14, 2017. URL: http://www.donegaldemocrat.ie/news/news/230908/planners-say-no-to-wind-turbine-at-business-park.html.
- [88] Iain Staffell. "Wind turbine power curves". In: Imperial College London (2012), p. 2.

 URL: http://www.academia.edu/1489838/Wind_Turbine_Power_Curves.
- [89] Swanson School of Engineering. Daniel Jiang, Daniel Jiang. University of Pittsburgh.

 URL: https://www.engineering.pitt.edu/People/Faculty/Profiles/Daniel-Jiang/.
- [90] Jeffrey Swofford and Michael Slattery. "Public attitudes of wind energy in Texas: Local communities in close proximity to wind farms and their effect on decision-making". In: Energy policy 38.5 (2010), pp. 2508–2519.
- [91] Time and Date AS. Past Weather in Orlando, Florida, USA October 2010. URL: https://www.timeanddate.com/weather/usa/orlando/historic?month=10&year=2010.

- [92] Jeff Tollefson. US electrical grid on the edge of failure, Network analysis suggests geography makes grid inherently unstable. URL: http://www.nature.com/news/us-electrical-grid-on-the-edge-of-failure-1.13598.
- [93] Verónica Torralba, Francisco J Doblas-Reyes, and Nube Gonzalez-Reviriego. "Uncertainty in recent near-surface wind speed trends: a global reanalysis intercomparison". In: *Environmental Research Letters* 12.11 (2017), p. 114019.
- [94] Kishor Shridharbhai Trivedi and ProQuest (Firm). *Probability and Statistics* with Reliability, Queuing, and Computer Science Applications. Wiley, 2016. ISBN: 9781119314202. URL: https://books.google.com/books?id=_yOXDAAAQBAJ.
- [95] Tom Tschida. Inflatable Wing Deployment Sequence. Dryden Flight Research Center. 2001. URL: https://www.dfrc.nasa.gov/Gallery/Photo/InflatableWing/HTML/ED01-0273-1.html.
- [96] Tux Turkel. Why Maine's renewable power remains a pipe dream. Portland Press Herald. December 19, 2016. URL: http://www.pressherald.com/2016/12/19/why-maines-renewable-power-remains-a-pipe-dream/.
- [97] Sakari M Uppala et al. "The ERA-40 re-analysis". In: Quarterly Journal of the royal meteorological society 131.612 (2005), pp. 2961–3012.
- [98] U.S. Census Bureau. 2010 Census, 2010 Census Summary File 1, Selected Age Groups: 2010 United States Metropolitan Statistical Area; and for Puerto Rico, Table PCT12. generated by Guy Gadola; using American FactFinder; (4 April 2018). URL: http://factfinder.census.gov.
- [99] U.S. Energy Information Administration. *Electricity Explained, How Electricity Is Delivered To Consumers.* URL: http://www.eia.gov/energyexplained/index.cfm?page=electricity_delivery.
- [100] U.S. Energy Information Administration. What is the electric power grid and what are some challenges it faces? Sept. 2014. URL: https://web.archive.org/web/20150224173513/http://www.eia.gov/energy_in_brief/article/power_grid.cfm.

- [101] Vestas Wind Systems A/S. General Specification for V90 3.0 MW. Mar. 2004. URL: https://web.archive.org/web/20180403132610/http://www.gov.pe.ca/photos/sites/envengfor/file/950010R1_V90-GeneralSpecification.pdf.
- [102] Weather Underground. About Our Data. URL: https://www.wunderground.com/about/data.
- [103] S. Wilcox and W. Marion. *Users Manual for TMY3 Data Sets.* Tech. rep. NREL/TP-581-43156. National Renewable Energy Laboratory (NREL), Revised May 2008. URL: http://www.nrel.gov/docs/fy08osti/43156.pdf.
- [104] Wind Energy The Facts (WindFacts). Wake Effect. A Consortium led by the European Wind Energy Association. URL: https://www.wind-energy-the-facts.org/wake-effect.html.

A.1 PSEUDO-CODE FOR THE ALGORITHMS

A.1.1 Most recent revision of each variant of each category

Algorithm 1 The Static algorithm (variant 0x0, i.e., current-weather only, transitions open)

```
1: procedure STATIC0x0(out, S, m, d, Q, hm, c)
              ▷ Output: out has either the value deploy which means "deploy or remain deployed"
    or retract which means "retract or remain retracted" (out is a static; Its value at its first call
    is retract)
 3:
                                            \triangleright Input: S = \text{set of minute-by-minute windspeed samples}
                               \triangleright Input: m = window size (in samples) of moving average windspeed
 4:
                                                         \triangleright Input: d = deployment threshold (in knots)
 5:
                                                        \triangleright Input: Q = \text{set of timestamps in quiet hours}
 6:
 7:
                                                                        \triangleright Input: hm = harvester model
 8:
                                                   \triangleright Input: c = allocated visibility minutes per month
 9:
10:
       r \leftarrow d - 1
                                                                 ▷ Calc. retraction threshold (in knots)
11:
12:
       FRACTION_VISIBLE_TIME_THRESHOLD \leftarrow 0.99
       for all s \in S do
13:
                                                                       ▶ For each raw windspeed sample
           w.avg \leftarrow \text{updateMovingAverage}(s.raw, m)
14:
15:
                                                      \triangleright m-sized window includes latest raw windspeed
16:
17:
           if (w.avg < r) or
                                                    ▷ Avg. windspeed is less than retraction threshold
    (s.timestamp \in Q) or
                                                                                          ▶ In quiet hours
19: ((s.timestamp + hm.retraction\_time) \in Q) or
                                                                                    ▶ Allow time to stow
20: ((hm.bInCutOutState(s.raw) \in Q) or
                                                                        ▶ Boolean: Harvester in cut-out
21: (hm.getFractionVisbilePlusTimeToRetractMonthly(c) > 
22: FRACTION VISIBLE TIME THRESHOLD) then
23:
               out \leftarrow \mathbf{retract}
24:
           else if w.avg \geq d then
               out \leftarrow \mathbf{deploy}
25:
26:
           end if
27:
       end for
28: end procedure
```

Algorithm 2 The Static algorithm (variant 0x1, i.e., current-weather only, transitions limited) Revision 1.2

```
1: procedure Static0x1(out, S, m, d, Q, hm, c)
              ▷ Output: out has either the value deploy which means "deploy or remain deployed"
    or retract which means "retract or remain retracted" (out is a static; Its value at its first call
    is retract)
 3:
                                                      \triangleright S = \text{set of minute-by-minute windspeed samples}
                                         \triangleright m = \text{window size (in samples) of moving average windspeed}
 4:
                                                                   \triangleright d = \text{deployment threshold (in knots)}
 5:
 6:
                                                                  \triangleright Q = \text{set of timestamps in quiet hours}
 7:
                                                                                   \triangleright hm = \text{harvester model}
 8:
                                                            \triangleright c = \text{allocated visibility minutes per month}
                                                                   ▷ Calc. retraction threshold (in knots)
 9:
       r \leftarrow d - 1
10:
11:
        FRACTION VISIBLE TIME THRESHOLD \leftarrow 0.99
        for all s \in S do
12:
                                                                        ▶ For each raw windspeed sample
13:
           w.avg \leftarrow \text{updateMovingAverage}(s.raw, m)
14:
                                                        \triangleright m-sized window includes latest raw windspeed
15:
           if (hm.bInCutOutState(s.raw)) or
                                                                          ▷ Boolean: Harvester in cut-out
16:
    ((hm.getFractionVisbilePlusTimeToRetractMonthly(c) > 
    FRACTION VISIBLE TIME THRESHOLD)
19:
     then
20:
               out \leftarrow \mathbf{retract}
            else if (hm.getFractionVisbilePlusTimeToRetractMonthly(c) < 1) and
21:
    (getMinutesInMonthRemaining(s.date) < c) or
                                                         ▶ harvester has not yet been visible this month
23:
24: ((w.avg > d)
                                                                                    \triangleright Note: \ge is permitted
25: ) then
26:
               out \leftarrow \mathbf{deploy}
27:
28:
            end if
29:
        end for
30: end procedure
```

Algorithm 3 The Static algorithm (variant 0x2, i.e., weather prediction, transitions open)

```
1: procedure STATIC0X2(out, S, m, d, Q, hm, c)
             Dutput: out has either the value deploy which means "deploy or remain deployed"
    or retract which means "retract or remain retracted" (out is a static; Its value at its first call
    is retract)
                                                  \triangleright S = \text{set of minute-by-minute windspeed samples}
 3:
                                      \triangleright m = \text{window size (in samples) of moving average windspeed}
 4:
                                                               \triangleright d = \text{deployment threshold (in knots)}
 5:
 6:
                                                              \triangleright Q = \text{set of timestamps in quiet hours}
 7:
                                                                             \triangleright hm = \text{harvester model}
 8:
                                                         \triangleright c = \text{allocated visibility minutes per month}
       r \leftarrow d-1
9:
                                                               ▷ Calc. retraction threshold (in knots)
10:
11:
       FRACTION VISIBLE TIME THRESHOLD \leftarrow 0.99
       MUCH WINDIER \leftarrow 1.25
12:
13:
       FRACTION VISIBLE TIME THRESHOLD SOMEWHAT EXHAUSTED = 0.64;
       for all s \in S do
                                                                    ▶ For each raw windspeed sample
14:
           w.avg \leftarrow updateMovingAverage(s.raw, m)
15:
16:
                                                    \triangleright m-sized window includes latest raw windspeed
17:
18:
           f.avg \leftarrow updateMovingAverageFuture(s.f1440, m)
19:
                                   \triangleright m-sized window includes latest simulated predicted windspeed
20:
21:
           if (w.avg < r) or
                                                  ▶ Avg. windspeed is less than retraction threshold
22: (s.timestamp \in Q) or
                                                                                      ▶ In quiet hours
23: ((s.timestamp + hm.retraction\_time) \in Q) or
                                                                                 ▶ Allow time to stow
24: (hm.bInCutOutState(s.raw)) or
                                                                      ▷ Boolean: Harvester in cut-out
25: \ ((hm.getFractionVisbilePlusTimeToRetractMonthly(c) > \\
26: FRACTION VISIBLE TIME THRESHOLD) or
27: (hm.getFractionVisbilePlusTimeToRetractMonthly(c) > 
28: FRACTION VISIBLE TIME THRESHOLD SOMEWHAT EXHAUSTED) and
29: (f.avg > (w.avg*MUCH WINDIER)))
         then
30:
              out \leftarrow \mathbf{retract}
31:
           else if w.avg \geq d then
32:
              out \leftarrow \mathbf{deploy}
33:
           end if
       end for
34:
35: end procedure
```

Algorithm 4 The Static algorithm (variant 0x3, i.e., weather prediction, transitions limited)

```
1: procedure STATICOX3(out, S, m, d, Q, hm, c)
              Dutput: out has either the value deploy which means "deploy or remain deployed"
    or retract which means "retract or remain retracted" (out is a static; Its value at its first call
    is retract)
                                                    \triangleright S = \text{set of minute-by-minute windspeed samples}
 3:
 4:
                                        \triangleright m = \text{window size (in samples) of moving average windspeed}
 5:
                                                                 \triangleright d = \text{deployment threshold (in knots)}
                                                                \triangleright Q = \text{set of timestamps in quiet hours}
 6:
 7:
                                                                                 \triangleright hm = \text{harvester model}
                                                           \triangleright c = \text{allocated visibility minutes per month}
 8:
       r \leftarrow d-1
                                                                 ▷ Calc. retraction threshold (in knots)
 9:
10:
       FRACTION VISIBLE TIME THRESHOLD \leftarrow 0.99
11:
12:
       for all s \in S do
                                                                       ▶ For each raw windspeed sample
           w.avg \leftarrow updateMovingAverage(s.raw, m)
13:
                                                      \triangleright m-sized window includes latest raw windspeed
14:
15:
           f.avg \leftarrow updateMovingAverageFuture(s.f1440, m)
16:
17:
                                     ▷ m-sized window includes latest simulated predicted windspeed
18:
19:
           if (hm.bInCutOutState(s.raw)) or
                                                                         ▶ Boolean: Harvester in cut-out
    ((hm.getFractionVisbilePlusTimeToRetractMonthly(c) > 
21: FRACTION_VISIBLE_TIME_THRESHOLD)
     then
22:
23:
               out \leftarrow \mathbf{retract}
24:
           else if (hm.getFractionVisbilePlusTimeToRetractMonthly(c) < 1) and
25: (getMinutesInMonthRemaining(s.date) < c) or
                                                        ⊳ harvester has not yet been visible this month
26:
27: ((w.avg > d)) and
                                                                                  \triangleright Note: \ge is permitted
29: (!((f.avg > (w.avg*MUCH WINDIER)))
                                                                  ▷ much windier tomorrow ) ) ) then
30:
               out \leftarrow \mathbf{deploy}
31:
32:
           end if
33:
       end for
34: end procedure
```

Algorithm 5 The Aging algorithm (variant 0x0, i.e., current-weather only, transitions open)

```
1: procedure AGING0x0(out, S, m, d, Q, hm, c)
              Dutput: out has either the value deploy which means "deploy or remain deployed"
    or retract which means "retract or remain retracted" (out is a static; Its value at its first call
    is retract)
 3:
                                                      \triangleright S = \text{set of minute-by-minute windspeed samples}
            \triangleright m[1:12] = \text{array of monthly window sizes (in samples) of moving average windspeed}
 4:
                                                   \triangleright b[1:12] = \text{array of monthly } y\text{-intercepts (in knots)}
 5:
                                                                  \triangleright Q = \text{set of timestamps in quiet hours}
 6:
 7:
                                                                                   \triangleright hm = \text{harvester model}
                                                            \triangleright l = \text{lowest windspeed deemed to be windy}
 8:
 9:
                                                            \triangleright c = allocated visibility minutes per month
10:
        FRACTION_VISIBLE_TIME_THRESHOLD \leftarrow 0.99
11:
12:
        for all s \in S do
                                                                         ▶ For each raw windspeed sample
            d \leftarrow \text{getDeploymentThreshold}(s.timestamp, b[s.month], l)
13:
     \triangleright d = -mx + b where m = (l - b[s.month])/(minutes in 31 days) and x is number of minutes
    remaining in month
15:
                                                     \triangleright Slope is negated since x decreases as month ages
           r \leftarrow d - 1
                                                                   ▷ Calc. retraction threshold (in knots)
16:
17:
           w.avq \leftarrow updateMovingAverage(s.raw, m)
18:
19:
                                                        \triangleright m-sized window includes latest raw windspeed
20:
21:
           if (w.avq < r) or
                                                      ▶ Avg. windspeed is less than retraction threshold
    (s.timestamp \in Q) or
                                                                                            ▶ In quiet hours
23: ((s.timestamp + hm.retraction time) \in Q) or
                                                                                       ▶ Allow time to stow
24: (hm.bInCutOutState(s.raw)) or
                                                                           ▶ Boolean: Harvester in cut-out
25: ((hm.getFractionVisbilePlusTimeToRetractMonthly(c) > 
26: FRACTION VISIBLE TIME THRESHOLD)
27:
     then
28:
               out \leftarrow \mathbf{retract}
29:
            else if w.avg \geq d then
               out \leftarrow \mathbf{deploy}
30:
           end if
31:
32:
        end for
33: end procedure
```

Algorithm 6 The Aging algorithm (variant 0x1, i.e., current-weather only, transitions limited) Revision 1.2

```
1: procedure AGINGOX1(out, S, m, d, Q, hm, c)
              Dutput: out has either the value deploy which means "deploy or remain deployed"
    or retract which means "retract or remain retracted" (out is a static; Its value at its first call
    is retract)
                                                     \triangleright S = \text{set of minute-by-minute windspeed samples}
 3:
 4:
            \triangleright m[1:12] = \text{array of monthly window sizes (in samples) of moving average windspeed}
 5:
                                                  \triangleright b[1:12] = \text{array of monthly } y\text{-intercepts (in knots)}
                                                                 \triangleright Q = \text{set of timestamps in quiet hours}
 6:
 7:
                                                                                  \triangleright hm = \text{harvester model}
 8:
                                                            \triangleright l = \text{lowest windspeed deemed to be windy}
 9:
                                                            \triangleright c = \text{allocated visibility minutes per month}
10:
        FRACTION VISIBLE TIME THRESHOLD \leftarrow 0.99
11:
        for all s \in S do
12:
                                                                        ▶ For each raw windspeed sample
           d \leftarrow \text{getDeploymentThreshold}(s.timestamp, b[s.month], l)
13:
     \Rightarrow d = -mx + b where m = (l - b[s.month])/(minutes in 31 days) and x is number of minutes
    remaining in month
15:
                                                    \triangleright Slope is negated since x decreases as month ages
           r \leftarrow d - 1
16:
                                                                  ▷ Calc. retraction threshold (in knots)
17:
           w.avg \leftarrow updateMovingAverage(s.raw, m)
18:
19:
                                                       ▷ m-sized window includes latest raw windspeed
20:
21:
           if (hm.bInCutOutState(s.raw)) or
                                                                          ▶ Boolean: Harvester in cut-out
    ((hm.getFractionVisbilePlusTimeToRetractMonthly(c) > 
23: FRACTION VISIBLE TIME THRESHOLD)
24:
     then
25:
               out \leftarrow \mathbf{retract}
26:
           else if (hm.getFractionVisbilePlusTimeToRetractMonthly(c) < 1) and
    (getMinutesInMonthRemaining(s.date) < c) or
28:
                                                        ⊳ harvester has not yet been visible this month
                                                                                   ⊳ Note: ≥ is permitted
29: ((w.avg > d)
30: ) then
31:
               out \leftarrow \mathbf{deploy}
32:
           end if
33:
        end for
35: end procedure
```

Algorithm 7 The Aging algorithm (variant 0x2, i.e., weather prediction, transitions open)

```
1: procedure AGING0x2(out, S, m, d, Q, hm, c)
              ▷ Output: out has either the value deploy which means "deploy or remain deployed"
    or retract which means "retract or remain retracted" (out is a static; Its value at its first call
    is retract)
                                                   \triangleright S = \text{set of minute-by-minute windspeed samples}
 3:
 4:
           \triangleright m[1:12] = \text{array of monthly window sizes (in samples) of moving average windspeed}
                                                \triangleright b[1:12] = \text{array of monthly } y\text{-intercepts (in knots)}
 5:
                                                               \triangleright Q = \text{set of timestamps in quiet hours}
 6:
 7:
                                                                              \triangleright hm = \text{harvester model}
 8:
                                                         \triangleright l = \text{lowest windspeed deemed to be windy}
 9:
                                                         \triangleright c = allocated visibility minutes per month
10:
11:
       for all s \in S do
                                                                     ▶ For each raw windspeed sample
12:
           d \leftarrow \text{getDeploymentThreshold}(s.timestamp, b[s.month], l)
13:
       \triangleright d = mx + b where m = (l - b[s.month])/(minutes in 31 days) and x is number of minutes
    remaining in month
14:
                                                             \triangleright Bug in Revision 1.2: m's sign is wrong
           r \leftarrow d-1
15:
                                                                ▷ Calc. retraction threshold (in knots)
16:
           w.avg \leftarrow \text{updateMovingAverage}(s.raw, m)
17:
18:
                                                     \triangleright m-sized window includes latest raw windspeed
19:
20:
           f.avg \leftarrow updateMovingAverageFuture(s.f1440, m)
                                    ▷ m-sized window includes latest simulated predicted windspeed
21:
22:
23:
           MUCH WINDIER = 1.25;
           FRACTION VISIBLE TIME THRESHOLD SOMEWHAT EXHAUSTED = 0.64;
24:
           if (w.avg < r) or
                                                   ▷ Avg. windspeed is less than retraction threshold
25:
26: (s.timestamp \in Q) or
                                                                                        ▶ In quiet hours
27: ((s.timestamp + hm.retraction time) \in Q) or
                                                                                  ▶ Allow time to stow
28: (hm.bInCutOutState(s.raw)) or
                                                                       ▶ Boolean: Harvester in cut-out
29: ((hm.getFractionVisbilePlusTimeToRetractMonthly(c) > 
30: FRACTION VISIBLE TIME THRESHOLD) or
31: (hm.getFractionVisbilePlusTimeToRetractMonthly(c) > 
32: FRACTION VISIBLE TIME THRESHOLD SOMEWHAT EXHAUSTED) and
33: (f.avg > (w.avg*MUCH WINDIER)))
         then
34:
               out \leftarrow \mathbf{retract}
           else if w.avg \ge d then
35:
36:
               out \leftarrow \mathbf{deploy}
37:
           end if
       end for
38:
39: end procedure
```

Algorithm 8 The Aging algorithm (variant 0x3, i.e., weather prediction, transitions limited)

```
1: procedure AGINGOX3(out, S, m, d, Q, hm, c)
              ▷ Output: out has either the value deploy which means "deploy or remain deployed"
    or retract which means "retract or remain retracted" (out is a static; Its value at its first call
    is retract)
                                                     \triangleright S = \text{set of minute-by-minute windspeed samples}
 3:
 4:
            \triangleright m[1:12] = \text{array of monthly window sizes (in samples) of moving average windspeed}
                                                  \triangleright b[1:12] = \text{array of monthly } y\text{-intercepts (in knots)}
 5:
                                                                 \triangleright Q = \text{set of timestamps in quiet hours}
 6:
 7:
                                                                                 \triangleright hm = \text{harvester model}
 8:
                                                           \triangleright l = \text{lowest windspeed deemed to be windy}
 9:
                                                           \triangleright c = allocated visibility minutes per month
10:
        FRACTION VISIBLE TIME THRESHOLD \leftarrow 0.99
11:
12:
        MUCH WINDIER \leftarrow 1.25
13:
        for all s \in S do
                                                                       ▶ For each raw windspeed sample
           d \leftarrow \text{getDeploymentThreshold}(s.timestamp, b[s.month], l)
14:
     \triangleright d = -mx + b where m = (l - b[s.month])/(minutes in 31 days) and x is number of minutes
    remaining in month
16:
                                                    \triangleright Slope is negated since x decreases as month ages
17:
           r \leftarrow d-1
                                                                  ▷ Calc. retraction threshold (in knots)
18:
19:
           w.avg \leftarrow updateMovingAverage(s.raw, m)
20:
                                                       \triangleright m-sized window includes latest raw windspeed
21:
22:
           f.avg \leftarrow updateMovingAverageFuture(s.f1440, m)
23:
                                     ▷ m-sized window includes latest simulated predicted windspeed
24:
25:
           if (hm.bInCutOutState(s.raw)) or
                                                                         ▷ Boolean: Harvester in cut-out
26: ((hm.getFractionVisbilePlusTimeToRetractMonthly(c) > 
27: FRACTION VISIBLE TIME THRESHOLD)
    then
28:
29:
               out \leftarrow \mathbf{retract}
30:
           else if (hm.getFractionVisbilePlusTimeToRetractMonthly(c) < 1) and
31: (\text{getMinutesInMonthRemaining}(s.date) < c) or
32:
                                                        ⊳ harvester has not yet been visible this month
33: ((w.avg > d)) and
                                                                                   ⊳ Note: ≥ is permitted
34:
35: (!((f.avg > (w.avg*MUCH WINDIER)))
                                                                   ⊳ much windier tomorrow ) ) ) then
36:
37:
               out \leftarrow \mathbf{deploy}
38:
           end if
        end for
39:
40: end procedure
```

Algorithm 9 The Fuzzy-Crisp algorithm (variant 0x0, i.e., current-weather only, transitions open) Revision 1.5

```
1: procedure FuzzyCrisp0x0(out, S, m, d, Q, hm, c)
               ▷ Output: out has either the value deploy which means "deploy or remain deployed"
    or retract which means "retract or remain retracted" (out is a static; Its value at its first call
    is retract)
                                                      \triangleright S = \text{set of minute-by-minute windspeed samples}
 3:
            \triangleright m[1:12] = \text{array of monthly window sizes (in samples) of moving average windspeed}
 4:
                              \triangleright v[1:12] = \text{array of monthly membership values in combined fuzzy set}
 5:
                                                                  \triangleright Q = \text{set of timestamps in quiet hours}
 6:
 7:
                                                                                   \triangleright hm = \text{harvester model}
 8:
                                                             \triangleright l = \text{lowest windspeed deemed to be windy}
 9:
10:
        r \leftarrow l-1
                                                                   ▷ Calc. retraction threshold (in knots)
11:
        for all s \in S do
12:
                                                                         ▶ For each raw windspeed sample
13:
            w.avg \leftarrow updateMovingAverage(s.raw, m)
14:
                                                        \triangleright m-sized window includes latest raw windspeed
15:
            if (w.avq < r) or
                                                      ▶ Avg. windspeed is less than retraction threshold
16:
    (s.timestamp \in Q) or
                                                                                             ▶ In quiet hours
    ((s.timestamp + hm.retraction time) \in Q) or
                                                                                       ▶ Allow time to stow
19: hm.bInCutOutState(s.raw)
                                                                           ▷ Boolean: Harvester in cut-out
     then
20:
21:
                out \leftarrow \mathbf{retract}
22:
                                               ▶ Ensure that algorithm meets agreement, which is crisp
23:
            else
                                                                                ▶ Use fuzzy-code to deploy
24:
25:
                if (windy and
    (if not approaching quiet hours or
    if fraction of time spent stowed is low))
    \geq v[s.month] then
29:
                    out \leftarrow \mathbf{deploy}
30:
                end if
31:
            end if
32:
        end for
33: end procedure
```

Algorithm 10 The Fuzzy-Crisp algorithm (variant 0x1, i.e., current-weather only, transitions limited) (Transition-Limited) Revision 1.5

```
1: procedure FuzzyCrisp0x1(out, S, m, d, Q, hm, c)
              ▷ Output: out has either the value deploy which means "deploy or remain deployed"
    or retract which means "retract or remain retracted" (out is a static; Its value at its first call
    is retract)
 3:
                                                   \triangleright S = \text{set of minute-by-minute windspeed samples}
            \triangleright m[1:12] = \text{array of monthly window sizes (in samples) of moving average windspeed}
 4:
                            \triangleright v[1:12] = \text{array of monthly membership values in combined fuzzy set}
 5:
 6:
                                                               \triangleright Q = \text{set of timestamps in quiet hours}
 7:
                                                                               \triangleright hm = \text{harvester model}
 8:
                                                          \triangleright l = \text{lowest windspeed deemed to be windy}
 9:
                                                          \triangleright c = allocated visibility minutes per month
       r \leftarrow l-1
10:
                                                                ▷ Calc. retraction threshold (in knots)
11:
       for all s \in S do
12:
                                                                     ▶ For each raw windspeed sample
13:
           w.avg \leftarrow \text{updateMovingAverage}(s.raw, m)
14:
                                                     \triangleright m-sized window includes latest raw windspeed
15:
           FRACTION VISIBLE TIME THRESHOLD \leftarrow 0.99
16:
17:
           if (hm.bInCutOutState(s.raw)) or
                                                                       ▷ Boolean: Harvester in cut-out
18:
    (hm.getFractionVisbilePlusTimeToRetractMonthly(c) > 
20: FRACTION VISIBLE TIME THRESHOLD) or
    (getMinutesInMonthRemaining(s.date) \le hm.TIME TO RETRACT MINUTES)
                                                            ▶ End the month retracted (not required)
22:
23:
    then
24:
               out \leftarrow \mathbf{retract}
25:
26:
           else if (hm.getFractionVisbilePlusTimeToRetractMonthly(c) < 1) then
27:
                                                                            28:
               if (windy or
   ApproachingUseItOrLoseItTimePoint) then
29:
                  out \leftarrow \mathbf{deploy}
30:
31:
               end if
32:
           end if
       end for
33:
34: end procedure
```

Algorithm 11 The Fuzzy-Crisp algorithm (variant 0x2, i.e., weather prediction, transitions open) (Weather-prediction-using) Revision 1.5

```
1: procedure FuzzyCrisp0x2(out, S, m, d, Q, hm, c)
2: > Output: out has either the value deploy which
1: procedure FuzzyCrisfox2(out, S, m, d, Q, hm, c)

2: ▷ Output: out has either the value deploy which (out is a static; Its value at its first call is retract)

3: 4: 5: 6: 7: 8: 9: 10: r ← l − 1

11: 12: for all s ∈ S do
13: w.avg ← updateMovingAverage(s.raw, m)
14: 15: 16: f.avg ← updateMovingAverageFuture(s.fl. state)
17: 18: 19: bFutureWindspeedUnavailable = (s.fl. state)
19: bFutureWindspeedUnavailable = (s.fl. state)
20: if (w.avg < r) or
21: (s.timestamp ∈ Q) or
22: ((s.timestamp + hm.retraction_time) ∈ Q) or
23: hm.bInCutOutState(s.raw)
24: then
25: out ← retract
26: 27: 28: else
29: if bFutureWindspeedUnavailable then if (windy and 31: (if not approaching quiet hours or 32: if fraction of time spent stowed is low))
33: then
34: out ← deploy
35: else
36: if ((very windy tomorrow and running out of time) or 38: not very windy tomorrow or 39: not running out of time) and
40: (windy and 41: (if not approaching quiet hours or 39: not running quiet hours or 39: not running quiet hours or 39: not running out of time) and
41: (if not approaching quiet hours or 42: if fraction of time spent stowed is low)) then
             Dutput: out has either the value deploy which means "deploy or remain deployed" or retract which means "retract or remain retracted"
         (out is a static; Its value at its first call is retract)
                                                                                                                                                                                             \triangleright S = \text{set of minute-by-minute windspeed samples}

ho \ m[1:12] = {
m array \ of \ monthly \ window \ sizes} (in samples) of moving average windspeed
                                                                                                                                                   \triangleright v[1:12] = 	ext{array of monthly membership values in combined fuzzy set}
                                                                                                                                                                                                                  \triangleright Q = \text{set of timestamps in quiet hours}
                                                                                                                                                                                                                                               ▷ hm = harvester model
                                                                                                                                                                                                          \triangleright l = lowest windspeed deemed to be windy
                                                                                                                                                                                                                    Do Calc. retraction threshold (in knots)
                                                                                                                                                                                                                              > For each raw windspeed sample
                                                                                                                                                                                                 ▷ m-sized window includes latest raw windspeed
                         f.avg \leftarrow \texttt{updateMovingAverageFuture}(s.f1440\,,m)
                                                                                                                                                                \triangleright m-sized window includes latest day-ahead predicted windspeed
                         bFutureWindspeedUnavailable = (s.f1440 < 0)
                                                                                                                                                                                             \triangleright Avg. windspeed is less than retraction threshold
                                                                                                                                                                                                                                                                ▷ In quiet hours
                                                                                                                                                                                                                                                       ▶ Allow time to stow
                                                                                                                                                                                                                                  ▷ Boolean: Harvester in cut-out
                                                                                                                                                                                 Densure that algorithm meets agreement, which is crisp
                                                                                                                                                                                                                                            41: (if not approaching quiet hours or 42: if fraction of time spent stowed is
           if fraction of time spent stowed is low)) {\bf then}
                                                   out \leftarrow \mathbf{deploy}
                                             end if
                                       end if
                                end if
                         end if
                  end for
  49: end procedure
```

Algorithm 12 The Fuzzy-Crisp algorithm (variant 0x3, i.e., weather prediction, transitions limited) (Transition-limited, Weather-prediction-using) Revision 1.5

```
1: procedure FUZZYCRISP0X3(out, S, m, d, Q, hm, c)
 2:
              ▷ Output: out has either the value deploy which means "deploy or remain deployed"
    or retract which means "retract or remain retracted" (out is a static; Its value at its first call
    is retract)
 3:
                                                   \triangleright S = \text{set of minute-by-minute windspeed samples}
 4:
           \triangleright m[1:12] = \text{array of monthly window sizes (in samples) of moving average windspeed}
                            \triangleright v[1:12] = \text{array of monthly membership values in combined fuzzy set}
 5:
 6:
                                                               \triangleright Q = \text{set of timestamps in quiet hours}
 7:
                                                                              \triangleright hm = \text{harvester model}
 8:
                                                         \triangleright l = \text{lowest windspeed deemed to be windy}
                                                         \triangleright c = allocated visibility minutes per month
 9:
       r \leftarrow l - 1
                                                                ▷ Calc. retraction threshold (in knots)
10:
11:
12:
       for all s \in S do
                                                                     ▶ For each raw windspeed sample
           w.avq \leftarrow updateMovingAverage(s.raw, m)
13:
14:
                                                     \triangleright m-sized window includes latest raw windspeed
15:
           f.avg \leftarrow updateMovingAverageFuture(s.f1440, m)
16:
                                    \triangleright m-sized window includes latest simulated predicted windspeed
17:
18:
19:
           bFutureWindspeedUnavailable = (s.f1440 < 0)
                                                                                              ⊳ Boolean
20:
           FRACTION VISIBLE TIME THRESHOLD \leftarrow 0.99
           if (hm.bInCutOutState(s.raw)) or
21:
                                                                       ▶ Boolean: Harvester in cut-out
    (hm.getFractionVisbilePlusTimeToRetractMonthly(c) > 
23: FRACTION VISIBLE TIME THRESHOLD) or
    (getMinutesInMonthRemaining(s.date) \le hm.TIME TO RETRACT MINUTES)
25:
                                                            ▶ End the month retracted (not required)
26:
    then
               out \leftarrow \mathbf{retract}
27:
28:
           else if (hm.qetFractionVisbilePlusTimeToRetractMonthly(c) < 1) then
29:
30:
                                                                            31:
              if bFutureWindspeedUnavailable then
32:
                  if (windy or
33:
   ApproachingUseItOrLoseItTimePoint) then
34:
                      out \leftarrow \mathbf{deploy}
35:
                  end if
36:
               else
37:
                  if ((windy today and tomorrow) or
38: ApproachingUseItOrLoseItTimePoint) then
                      out \leftarrow \mathbf{deploy}
39:
                  end if
40:
               end if
41:
           end if
42:
43:
       end for
44: end procedure
```

A.1.2 Previous revision of each variant of each category

Algorithm 13 The Static algorithm (variant 0x0) Revision 1.1

```
1: procedure STATIC0X0(S, m, d, Q, hm, c)
                                                    \triangleright S = \text{set of minute-by-minute windspeed samples}
 3:
                                        \triangleright m = \text{window size (in samples) of moving average windspeed}
 4:
                                                                 \triangleright d = \text{deployment threshold (in knots)}
                                                                \triangleright Q = \text{set of timestamps in quiet hours}
 5:
 6:
                                                                                 \triangleright hm = \text{harvester model}
 7:
                                                           \triangleright c = \text{allocated visibility minutes per month}
 8:
       r \leftarrow d-1
                                                                  ▷ Calc. retraction threshold (in knots)
 9:
       FRACTION_VISIBLE_TIME_THRESHOLD \leftarrow 0.99
10:
11:
       for all s \in S do
                                                                       ▶ For each raw windspeed sample
12:
           w.avg \leftarrow \text{updateMovingAverage}(s.raw, m)
13:
                                                      \triangleright m-sized window includes latest raw windspeed
14:
15:
           if (w.avg < r) or
                                                    ▷ Avg. windspeed is less than retraction threshold
16: (s.timestamp \in Q) or
                                                                                          ▶ In quiet hours
17: ((s.timestamp + hm.retraction\_time) \in Q) or
                                                                                     ▶ Allow time to stow
18: ((hm.bInCutOutState(s.raw) \in Q) or
                                                                         ⊳ Boolean: Harvester in cut-out
19: (hm.getFractionVisbilePlusTimeToRetractMonthly(c) > 
20: FRACTION VISIBLE TIME THRESHOLD) then
21:
               RetractOrRemainRetracted
22:
           else if w.avg \ge d then
23:
               DeployOrRemainDeployed
           end if
24:
       end for
25:
26: end procedure
```

Algorithm 14 The Static algorithm (variant 0x1) (Transition-limited) Revision 1.1

```
1: procedure STATIC0x1(S, m, d, Q, hm, c)
                                                    \triangleright S = \text{set of minute-by-minute windspeed samples}
 3:
                                       \triangleright m = \text{window size (in samples) of moving average windspeed}
 4:
                                                                \triangleright d = \text{deployment threshold (in knots)}
                                                               \triangleright Q = \text{set of timestamps in quiet hours}
 5:
 6:
                                                                                \triangleright hm = \text{harvester model}
 7:
                                                          \triangleright c = allocated visibility minutes per month
       r \leftarrow d - 1
 8:
                                                                 ▷ Calc. retraction threshold (in knots)
 9:
10:
       FRACTION VISIBLE TIME THRESHOLD \leftarrow 0.99
       for all s \in S do
11:
                                                                      ▶ For each raw windspeed sample
12:
           w.avq \leftarrow \text{updateMovingAverage}(s.raw, m)
13:
                                                      \triangleright m-sized window includes latest raw windspeed
14:
15:
           updateMovingAverage(s.f1440, m)
16: ▷ Bug in Revision 1.1: MovingAverage instead of MovingAverageFuture is being updated with
    weather prediction
17:
18:
           if (hm.bInCutOutState(s.raw)) or
                                                                        ▷ Boolean: Harvester in cut-out
19: ((hm.getFractionVisbilePlusTimeToRetractMonthly(c) > 
20: FRACTION VISIBLE TIME THRESHOLD)
21:
    _{
m then}
22:
               RetractOrRemainRetracted
           else if (hm.getFractionVisbilePlusTimeToRetractMonthly(c) < 1) and
23:
24: (getMinutesInMonthRemaining(s.date) < c) or
                                                       ⊳ harvester has not yet been visible this month
25:
26: ((w.avg > d)
                                                                                 \triangleright Note: \ge is permitted
27: ) then
28:
29:
               DeployOrRemainDeployed
           end if
30:
31:
       end for
32: end procedure
```

Algorithm 15 The Static algorithm (variant 0x2) (Weather-prediction-using) Revision 1.1

```
1: procedure STATIC0X2(S, m, d, Q, hm, c)
 2:
                                                 \triangleright S = \text{set of minute-by-minute windspeed samples}
 3:
                                     \triangleright m = \text{window size (in samples) of moving average windspeed}
                                                             \triangleright d = \text{deployment threshold (in knots)}
 4:
 5:
                                                            \triangleright Q = \text{set of timestamps in quiet hours}
 6:
                                                                           \triangleright hm = \text{harvester model}
 7:
                                                       \triangleright c = \text{allocated visibility minutes per month}
 8:
       r \leftarrow d-1
                                                             ▷ Calc. retraction threshold (in knots)
9:
10:
       FRACTION_VISIBLE_TIME_THRESHOLD \leftarrow 0.99
       MUCH WINDIER \leftarrow 1.25
11:
       FRACTION_VISIBLE_TIME_THRESHOLD_SOMEWHAT_EXHAUSTED = 0.64;
12:
13:
       for all s \in S do
                                                                  ▶ For each raw windspeed sample
          w.avq \leftarrow updateMovingAverage(s.raw, m)
14:
15:
                                                   \triangleright m-sized window includes latest raw windspeed
16:
17:
          f.avg \leftarrow updateMovingAverage(s.f1440, m)
                         ▶ Bug (or unintended feature) in Revision 1.1: MovingAverage instead of
18:
    MovingAverageFuture is being updated with weather prediction
19:
          if (w.avq < r) or
                                                ▶ Avg. windspeed is less than retraction threshold
20: (s.timestamp \in Q) or
                                                                                    ▶ In quiet hours
21: ((s.timestamp + hm.retraction time) \in Q) or
                                                                               ▶ Allow time to stow
22: (hm.bInCutOutState(s.raw)) or
                                                                   ▷ Boolean: Harvester in cut-out
23: ((hm.getFractionVisbilePlusTimeToRetractMonthly(c) > 
24: FRACTION VISIBLE TIME THRESHOLD) or
25: (hm.getFractionVisbilePlusTimeToRetractMonthly(c) > 
26: FRACTION VISIBLE TIME THRESHOLD SOMEWHAT EXHAUSTED) and
27: (f.avg > (w.avg*MUCH WINDIER)))
         then
28:
              RetractOrRemainRetracted
29:
          else if w.avq > d then
              DeployOrRemainDeployed
30:
31:
          end if
32:
       end for
33: end procedure
```

Algorithm 16 The Static algorithm (variant 0x3) (Transition-limited, Weather-prediction-using) Revision 1.1

```
1: procedure STATICOX3(S, m, d, Q, hm, c)
                                                   \triangleright S = \text{set of minute-by-minute windspeed samples}
 3:
                                      \triangleright m = \text{window size (in samples) of moving average windspeed}
 4:
                                                               \triangleright d = \text{deployment threshold (in knots)}
                                                               \triangleright Q = \text{set of timestamps in quiet hours}
 5:
 6:
                                                                               \triangleright hm = \text{harvester model}
                                                         \triangleright c = allocated visibility minutes per month
 7:
       r \leftarrow d - 1
 8:
                                                                ▷ Calc. retraction threshold (in knots)
 9:
       FRACTION VISIBLE TIME THRESHOLD \leftarrow 0.99
10:
       for all s \in S do
11:
                                                                     ▶ For each raw windspeed sample
           w.avg \leftarrow updateMovingAverage(s.raw, m)
12:
                                                     \triangleright m-sized window includes latest raw windspeed
13:
14:
           f.avg \leftarrow updateMovingAverage(s.f1440, m)
15:
                           ▷ Bug (or unintended feature) in Revision 1.1: MovingAverage instead of
16:
    MovingAverageFuture is being updated with weather prediction
17:
           if (hm.bInCutOutState(s.raw)) or
                                                                       ▷ Boolean: Harvester in cut-out
18:
    ((hm.getFractionVisbilePlusTimeToRetractMonthly(c) > 
20: FRACTION VISIBLE TIME THRESHOLD)
21:
    then
22:
               RetractOrRemainRetracted
           else if (hm.getFractionVisbilePlusTimeToRetractMonthly(c) < 1) and
23:
    (getMinutesInMonthRemaining(s.date) < c) or
                                                      ⊳ harvester has not yet been visible this month
25:
26: ((w.avg > d)) and
27:
                                                                                \triangleright Note: \ge is permitted
28: (!(f.avg > (w.avg*MUCH WINDIER)))
                                                                 ⊳ much windier tomorrow ) ) ) then
29:
30:
               DeployOrRemainDeployed
31:
           end if
       end for
32:
33: end procedure
```

Algorithm 17 The Aging algorithm (variant 0x0) Revision 1.1

```
1: procedure Aging 0 \times 0(S, m[1:12], b[1:12], Q, hm, l, c)
                                                      \triangleright S = \text{set of minute-by-minute windspeed samples}
            \triangleright m[1:12] = \text{array of monthly window sizes (in samples) of moving average windspeed}
 3:
 4:
                                                   \triangleright b[1:12] = \text{array of monthly } y\text{-intercepts (in knots)}
                                                                  \triangleright Q = \text{set of timestamps in quiet hours}
 5:
 6:
                                                                                  \triangleright hm = \text{harvester model}
 7:
                                                            \triangleright l = \text{lowest windspeed deemed to be windy}
 8:
                                                            \triangleright c = \text{allocated visibility minutes per month}
 9:
10:
        FRACTION VISIBLE TIME THRESHOLD \leftarrow 0.99
        for all s \in S do
11:
                                                                        ▶ For each raw windspeed sample
12:
           d \leftarrow \text{getDeploymentThreshold}(s.timestamp, b[s.month], l)
       \triangleright d = mx + b where m = (l - b[s.month])/(minutes in 31 days) and x is number of minutes
13:
    remaining in month
14:
                                                                \triangleright Bug in Revision 1.1: m's sign is wrong
           r \leftarrow d - 1
                                                                   ▷ Calc. retraction threshold (in knots)
15:
16:
           w.avg \leftarrow updateMovingAverage(s.raw, m)
17:
18:
                                                        \triangleright m-sized window includes latest raw windspeed
19:
20:
           if (w.avq < r) or
                                                      ▷ Avg. windspeed is less than retraction threshold
21: (s.timestamp \in Q) or
                                                                                            ▶ In quiet hours
22: ((s.timestamp + hm.retraction time) \in Q) or
                                                                                      ▶ Allow time to stow
23: (hm.bInCutOutState(s.raw)) or
                                                                          ▶ Boolean: Harvester in cut-out
24: ((hm.getFractionVisbilePlusTimeToRetractMonthly(c) > 
25: FRACTION VISIBLE TIME THRESHOLD)
26:
    then
27:
               RetractOrRemainRetracted
            else if w.avg \ge d then
28:
               DeployOrRemainDeployed
29:
            end if
30:
31:
        end for
32: end procedure
```

Algorithm 18 The Aging algorithm (variant 0x1) (Transition-limited) Revision 1.1

```
1: procedure Aging 0x1(S, m[1:12], b[1:12], Q, hm, l, c)
                                                    \triangleright S = \text{set of minute-by-minute windspeed samples}
 2:
 3:
            \triangleright m[1:12] = \text{array of monthly window sizes (in samples) of moving average windspeed}
 4:
                                                  \triangleright b[1:12] = \text{array of monthly } y\text{-intercepts (in knots)}
 5:
                                                                \triangleright Q = \text{set of timestamps in quiet hours}
 6:
                                                                                \triangleright hm = \text{harvester model}
 7:
                                                           \triangleright l = \text{lowest windspeed deemed to be windy}
 8:
                                                           \triangleright c = allocated visibility minutes per month
 9:
10:
       FRACTION VISIBLE TIME THRESHOLD \leftarrow 0.99
       for all s \in S do
11:
                                                                       ▶ For each raw windspeed sample
12:
           d \leftarrow \text{getDeploymentThreshold}(s.timestamp, b[s.month], l)
13:
       \triangleright d = mx + b where m = (l - b[s.month])/(minutes in 31 days) and x is number of minutes
    remaining in month
14:
                                                               \triangleright Bug in Revision 1.1: m's sign is wrong
           r \leftarrow d - 1
15:
                                                                 ▷ Calc. retraction threshold (in knots)
16:
           w.avq \leftarrow \text{updateMovingAverage}(s.raw, m)
17:
                                                       ▷ m-sized window includes latest raw windspeed
18:
19:
20:
           updateMovingAverage(s.f1440, m)
21: ▷ Bug in Revision 1.1: MovingAverage instead of MovingAverageFuture is being updated with
    weather prediction
22:
23:
           if (hm.bInCutOutState(s.raw)) or
                                                                         ▷ Boolean: Harvester in cut-out
    ((hm.getFractionVisbilePlusTimeToRetractMonthly(c) > 
25: FRACTION VISIBLE TIME THRESHOLD)
26:
    then
27:
               RetractOrRemainRetracted
28:
           else if (hm.getFractionVisbilePlusTimeToRetractMonthly(c) < 1) and
29: (getMinutesInMonthRemaining(s.date) < c) or
                                                        ⊳ harvester has not yet been visible this month
30:
                                                                                  \triangleright Note: \ge is permitted
31: ((w.avg > d)
32: ) then
33:
34:
               DeployOrRemainDeployed
           end if
35:
36:
        end for
37: end procedure
```

```
Algorithm 19 The Aging algorithm (variant 0x2) (Weather-prediction-using) Revision 1.1
 1: procedure Aging 0 \times 2(S, m[1:12], b[1:12], Q, hm, l, c)
                                                  \triangleright S = \text{set of minute-by-minute windspeed samples}
 2:
 3:
           \triangleright m[1:12] = \text{array of monthly window sizes (in samples) of moving average windspeed}
                                               \triangleright b[1:12] = \text{array of monthly } y\text{-intercepts (in knots)}
 4:
 5:
                                                             \triangleright Q = \text{set of timestamps in quiet hours}
 6:
                                                                             \triangleright hm = \text{harvester model}
                                                        \triangleright l = \text{lowest windspeed deemed to be windy}
 7:
 8:
                                                        \triangleright c = allocated visibility minutes per month
9:
10:
       for all s \in S do
                                                                   ▶ For each raw windspeed sample
11:
           d \leftarrow \text{getDeploymentThreshold}(s.timestamp, b[s.month], l)
       \triangleright d = mx + b where m = (l - b[s.month])/(minutes in 31 days) and x is number of minutes
12:
    remaining in month
13:
                                                            \triangleright Bug in Revision 1.1: m's sign is wrong
           r \leftarrow d-1
14:
                                                              ▷ Calc. retraction threshold (in knots)
15:
16:
           w.avq \leftarrow \text{updateMovingAverage}(s.raw, m)
17:
                                                    \triangleright m-sized window includes latest raw windspeed
18:
           f.avg \leftarrow updateMovingAverage(s.f1440, m)
19:
                          ▶ Bug (or unintended feature) in Revision 1.1: MovingAverage instead of
20:
    MovingAverageFuture is being updated with weather prediction
21:
22:
           MUCH WINDIER = 1.25;
23:
           FRACTION VISIBLE TIME THRESHOLD SOMEWHAT EXHAUSTED = 0.64;
24:
           if (w.avg < r) or
                                                  ▶ Avg. windspeed is less than retraction threshold
25: (s.timestamp \in Q) or
                                                                                      ▶ In quiet hours
26: ((s.timestamp + hm.retraction time) \in Q) or
                                                                                 ▶ Allow time to stow
                                                                     ⊳ Boolean: Harvester in cut-out
27: (hm.bInCutOutState(s.raw)) or
28: ((hm.getFractionVisbilePlusTimeToRetractMonthly(c) > 
29: FRACTION VISIBLE TIME THRESHOLD) or
30: (hm.getFractionVisbilePlusTimeToRetractMonthly(c) > 
31: FRACTION VISIBLE TIME THRESHOLD SOMEWHAT EXHAUSTED) and
32: (f.avg > (w.avg*MUCH WINDIER)))
         then
33:
              RetractOrRemainRetracted
34:
           else if w.avg \ge d then
              DeployOrRemainDeployed
35:
36:
           end if
       end for
37:
38: end procedure
```

Algorithm 20 The Aging algorithm (variant 0x3) (Transition-limited, Weather-prediction-using) Revision 1.1

```
1: procedure AGING0x3(S, m[1:12], b[1:12], Q, hm, l, c)
                                                    \triangleright S = \text{set of minute-by-minute windspeed samples}
            \triangleright m[1:12] = \text{array of monthly window sizes (in samples) of moving average windspeed}
 3:
                                                 \triangleright b[1:12] = \text{array of monthly } y\text{-intercepts (in knots)}
 4:
                                                                \triangleright Q = \text{set of timestamps in quiet hours}
 5:
 6:
                                                                                \triangleright hm = \text{harvester model}
 7:
                                                           \triangleright l = \text{lowest windspeed deemed to be windy}
 8:
                                                           \triangleright c = allocated visibility minutes per month
 9:
10:
       FRACTION VISIBLE TIME THRESHOLD \leftarrow 0.99
       MUCH_WINDIER \leftarrow 1.25
11:
                                                                      ▶ For each raw windspeed sample
12:
       for all s \in S do
13:
           d \leftarrow \text{getDeploymentThreshold}(s.timestamp, b[s.month], l)
       \Rightarrow d = mx + b where m = (l - b[s.month])/(minutes in 31 days) and x is number of minutes
14:
    remaining in month
15:
                                                              \triangleright Bug in Revision 1.1: m's sign is wrong
           r \leftarrow d - 1
                                                                 ▷ Calc. retraction threshold (in knots)
16:
17:
           w.avg \leftarrow updateMovingAverage(s.raw, m)
18:
19:
                                                      \triangleright m-sized window includes latest raw windspeed
20:
           f.avg \leftarrow updateMovingAverage(s.f1440, m)
21:
22:
                           ▶ Bug (or unintended feature) in Revision 1.1: MovingAverage instead of
    MovingAverageFuture is being updated with weather prediction
23:
24:
           if (hm.bInCutOutState(s.raw)) or
                                                                        ▶ Boolean: Harvester in cut-out
25: ((hm.getFractionVisbilePlusTimeToRetractMonthly(c) > 
26: FRACTION_VISIBLE_TIME_THRESHOLD)
27:
    then
28:
               RetractOrRemainRetracted
           else if (hm.getFractionVisbilePlusTimeToRetractMonthly(c) < 1) and
29:
30: (getMinutesInMonthRemaining(s.date) < c) or
                                                        ⊳ harvester has not yet been visible this month
31:
32: ((w.avg > d)) and
                                                                                  \triangleright Note: \ge is permitted
34: (!((f.avg > (w.avg*MUCH WINDIER)))
                                                                  ⊳ much windier tomorrow ) ) ) then
35:
               DeployOrRemainDeployed
36:
37:
           end if
       end for
38:
39: end procedure
```

Algorithm 21 The Fuzzy-Crisp algorithm (variant 0x0) Revision 1.4

```
1: procedure FuzzyCrisp0x0(S, m[1:12], v[1:12], Q, hm, l)
                                                     \triangleright S = \text{set of minute-by-minute windspeed samples}
2:
 3:
            \triangleright m[1:12] = \text{array of monthly window sizes (in samples) of moving average windspeed}
                             \triangleright v[1:12] = \text{array of monthly membership values in combined fuzzy set}
 4:
                                                                  \triangleright Q = \text{set of timestamps in quiet hours}
 5:
 6:
                                                                                  \triangleright hm = \text{harvester model}
                                                            \triangleright l = \text{lowest windspeed deemed to be windy}
 7:
 8:
9:
       r \leftarrow l - 1
                                                                   ▷ Calc. retraction threshold (in knots)
10:
11:
        for all s \in S do
                                                                        ▶ For each raw windspeed sample
12:
           w.avq \leftarrow \text{updateMovingAverage}(s.raw, m)
13:
                                                       \triangleright m-sized window includes latest raw windspeed
14:
           if (w.avg < r) or
15:
                                                     ▷ Avg. windspeed is less than retraction threshold
16: (s.timestamp \in Q) or
                                                                                            ▶ In quiet hours
17: ((s.timestamp + hm.retraction\_time) \in Q) or
                                                                                      ▶ Allow time to stow
18:\ hm.bInCutOutState(s.raw)
                                                                          ▷ Boolean: Harvester in cut-out
19:
     then
               RetractOrRemainRetracted
20:
                                              ▶ Ensure that algorithm meets agreement, which is crisp
21:
22:
           else
                                                                               ▶ Use fuzzy-code to deploy
23:
               if (windy and
24:
    (if not approaching quiet hours or
    if fraction of time spent stowed is low))
    \geq v[s.month] then
28:
                   DeployOrRemainDeployed
29:
               end if
           end if
30:
        end for
31:
32: end procedure
```

Algorithm 22 The Fuzzy-Crisp algorithm (variant 0x1) (Transition-Limited) Revision 1.4 1: **procedure** FuzzyCrisp0x1(S, m[1:12], v[1:12], Q, hm, l, c) $\triangleright S = \text{set of minute-by-minute windspeed samples}$ 2: $\triangleright m[1:12] = \text{array of monthly window sizes (in samples) of moving average windspeed}$ 3: $\triangleright v[1:12] = \text{array of monthly membership values in combined fuzzy set}$ 4: 5: $\triangleright Q = \text{set of timestamps in quiet hours}$ $\triangleright hm = \text{harvester model}$ 6: 7: $\triangleright l = \text{lowest windspeed deemed to be windy}$ 8: $\triangleright c =$ allocated visibility minutes per month $r \leftarrow l - 1$ 9: ▷ Calc. retraction threshold (in knots) 10: 11: for all $s \in S$ do ▶ For each raw windspeed sample $w.avg \leftarrow updateMovingAverage(s.raw, m)$ 12: 13: ▷ m-sized window includes latest raw windspeed 14: 15: updateMovingAverage(s.f1440, m) ▶ Bug in Revision 1.4: MovingAverage instead of MovingAverageFuture is being updated with weather prediction FRACTION_VISIBLE_TIME_THRESHOLD $\leftarrow 0.99$ 16: 17: if (hm.bInCutOutState(s.raw)) or ▷ Boolean: Harvester in cut-out 18: (hm.getFractionVisbilePlusTimeToRetractMonthly(c) >20: FRACTION VISIBLE TIME THRESHOLD) or $(getMinutesInMonthRemaining(s.date) \le hm.TIME TO RETRACT MINUTES)$ 22: ▶ End the month retracted (not required) 23: then RetractOrRemainRetracted 24: 25: else if (hm.qetFractionVisbilePlusTimeToRetractMonthly(c) < 1) then 26: 27: 28: if (windy or ApproachingUseItOrLoseItTimePoint) then 29: 30: Deploy end if 31: 32: end if end for 33:

34: end procedure

Algorithm 23 The Fuzzy-Crisp algorithm (variant 0x2) (Weather-prediction-using) Revi-

sion 1.4

```
      sion 1.4

      1: procedure FuzzyCrisp0x2(S, m[1:12], v[1:12], Q, hm, l)

      2:
      \Rightarrow m[1:4:5.

      4:
      \Rightarrow m[1:4:5.

      6:
      \Rightarrow m[1:4:6:7:4.

      9: r \leftarrow l - 1
      \Rightarrow m[1:4:7:4.

      10: y = y = y = y = y
      y = y = y = y = y

      11: y = y = y = y = y
      y = y = y = y = y

      13: y = y = y = y = y
      y = y = y = y = y

      14: y = y = y = y = y
      y = y = y = y = y

      15: y = y = y = y = y
      y = y = y = y = y

      16: y = y = y = y = y
      y = y = y = y = y

      16: y = y = y = y = y
      y = y = y = y = y

      18: y = y = y = y = y
      y = y = y = y = y

      18: y = y = y = y = y
      y = y = y = y = y

      19: y = y = y = y = y
      y = y = y = y = y

      20: y = y = y = y = y = y
      y = y = y = y = y

      21: y = y = y = y = y
      y = y = y = y = y

      22: y = y = y = y = y
      y = y = y = y = y

      23: y = y = y = y = y
      y = y = y = y

      24: y = y = y = y = y
      y = y = y = y

      25: y = y = y = y
      y = y = y = y

      26: y = y = y = y
      y = y = y = y

      27: y = y = y

                                                                                                                                                                                                                                                 \triangleright S = 	ext{set of minute-by-minute windspeed samples}

ho m[1:12] = 	ext{array of monthly window sizes (in samples) of moving average windspeed}
                                                                                                                                                                                           \triangleright v[1:12] = 	ext{array of monthly membership values in combined fuzzy set}
                                                                                                                                                                                                                                                                            \triangleright Q = \mathrm{set} \ \mathrm{of} \ \mathrm{timestamps} \ \mathrm{in} \ \mathrm{quiet} \ \mathrm{hours}
                                                                                                                                                                                                                                                                                                                 \triangleright hm = \text{harvester model}
                                                                                                                                                                                                                                                                 \triangleright l = 	ext{lowest windspeed deemed to be windy}
                                                                                                                                                                                                                                                                               ▷ Calc. retraction threshold (in knots)
                                                                                                                                                                                                                                                                                            ⊳ For each raw windspeed sample
                                                                                                                                                                                                                                                      \triangleright m-sized window includes latest raw windspeed
                                                                                                                                                                                                            \triangleright m-sized window includes latest day-ahead predicted windspeed
                                                                                                                                                                                                                                                 Deliver Avg. windspeed is less than retraction threshold
                                                                                                                                                                                                                                                                                                                                       ▷ In quiet hours
                                                                                                                                                                                                                                                                                                                           ▶ Allow time to stow
 21: ((s.timestamp + hm.retracti
22: hm.bInCutOutState(s.raw)
23: then
24: RetractOrRemainRe
25:
26:
27: else
28: if bFutureWindspec
                                                                                                                                                                                                                                                                                                \triangleright Boolean: Harvester in cut-out
                                        RetractOrRemainRetracted
                                                                                                                                                                                                                                  \triangleright Ensure that algorithm meets agreement, which is crisp
                                                                                                                                                                                                                                                                                                            if bFutureWindspeedUnavailable then
 28: if bFutureWindspeedUn
29: if (windy and
30: (if not approaching quiet hours or
31: if fraction of time spent stowed is
32: then
33: DeployOrRemain
34: else
35: if ((very windy to
              if fraction of time spent stowed is low))
                                                          {\tt DeployOrRemainDeployed}
                                                         if ((very windy tomorrow and
  37: not very windy tomorrow or 38: not running out of time) and 39: (windy and 40: (if not approaching quiet hours or
  41: if fraction of time spent stowed is low)) then 42: DeployOrRemainDeployed 43: end if
                                                                  DeployOrRemainDeployed
                                                 end if
                                        end if
                               end if
                      end for
  48: end procedure
```

Algorithm 24 The Fuzzy-Crisp algorithm (variant 0x3) (Transition-limited, Weather-prediction-using) Revision 1.4

```
1: procedure FuzzyCrisp0x3(S, m[1:12], v[1:12], Q, hm, l, c)
                                                   \triangleright S = \text{set of minute-by-minute windspeed samples}
 2:
 3:
            \triangleright m[1:12] = \text{array of monthly window sizes (in samples) of moving average windspeed}
 4:
                            \triangleright v[1:12] = \text{array of monthly membership values in combined fuzzy set}
 5:
                                                               \triangleright Q = \text{set of timestamps in quiet hours}
 6:
                                                                               \triangleright hm = \text{harvester model}
 7:
                                                          \triangleright l = \text{lowest windspeed deemed to be windy}
 8:
                                                          \triangleright c = \text{allocated visibility minutes per month}
       r \leftarrow l - 1
                                                                ▷ Calc. retraction threshold (in knots)
 9:
10:
       for all s \in S do
11:
                                                                     ▶ For each raw windspeed sample
12:
           w.avg \leftarrow updateMovingAverage(s.raw, m)
13:
                                                     \triangleright m-sized window includes latest raw windspeed
14:
           f.avg \leftarrow \text{updateMovingAverage}(s.f1440, m) \triangleright \text{Bug} \text{ (or unintended feature) in Revision}
15:
    1.4: Moving Average instead of Moving Average Future is being updated with weather prediction
16:
           bFutureWindspeedUnavailable = (s.f1440 < 0)
                                                                                              ▶ Boolean
17:
           FRACTION VISIBLE TIME THRESHOLD \leftarrow 0.99
                                                                       ▷ Boolean: Harvester in cut-out
18:
           if (hm.bInCutOutState(s.raw)) or
19:
   (hm.getFractionVisbilePlusTimeToRetractMonthly(c) > 
20: FRACTION VISIBLE TIME THRESHOLD) or
    (getMinutesInMonthRemaining(s.date) \le hm.TIME TO RETRACT MINUTES)
22:
                                                            ▶ End the month retracted (not required)
23:
    then
24:
               RetractOrRemainRetracted
25:
           else if (hm.getFractionVisbilePlusTimeToRetractMonthly(c) < 1) then
26:
                                                                            ▶ Use fuzzy-code to deploy
27:
28:
               if bFutureWindspeedUnavailable then
29:
                  if (windy or
30: ApproachingUseItOrLoseItTimePoint) then
31:
                      Deploy
32:
                  end if
33:
               else
                  if ((windy today and tomorrow) or
34:
35: ApproachingUseItOrLoseItTimePoint) then
                      Deploy
36:
                  end if
37:
38:
               end if
39:
           end if
       end for
40:
41: end procedure
```

A.2 CREATING AND USING FUZZY-SET MEMBERSHIP FUNCTIONS

A.2.1 Example of how to make a membership function for the fuzzy set NOT WINDY AT KBOS

We define the fuzzy term not windy enough or not windy to mean not powerful enough or not powerful, which is another fuzzy term, but nonetheless our equating not windy with not powerful is the reason why we used a power calculation in the following procedure:

1. Load the training data for the KBOS family of benchmarks into R. "R is a free software environment for statistical computing and graphics" [78].

The following R command creates the data frame df:

The data frame df has five columns as shown here. As stated in Section 4.2.0.3, the column name "f1440" indicates that the column's values are simulated predicted windspeeds 1440 minutes in advance of the current time. The name suggests that additional columns with predicted windspeeds at different time horizons may be added in future benchmarks suite revisions.

```
1 > names(df)
2 [1] "timestamp"
3 [2] "wind_knots"
4 [3] "actual.vs..interpolated"
5 [4] "f1440"
6 [5] "OLA5"
```

- 2. From data frame df, extract the wind speed data, which is the wind knots column:
- 3. Create a frequency distribution of all the windspeeds in the KBOS training data (which includes interpolated windspeeds for the missing minutes, as mentioned in Section 4.2).

```
7 > wind_knots.freq = table(wind_knots.cut)
```

4. For each "bucket" of windspeeds, we calculate the power that that bucket generated via the following the formula [30]:

$$P = nw^3$$

where w is the label, i.e., a windspeed, on the bucket and n is the number of instances of that windspeed in that bucket.

5. Because we are defining *not windy* to mean not powerful, we convert the windspeed to a wind power. Per the power equation above, as windspeed increases, wind power increases cubically. Thus, we cube wind_knots:

```
1 > # Combine sequence 0,1,...,124 into vector
2 > bucket_label_wind_knots = c(0:124)
3 > # Multiply each cell by cube of its windspeed
4 > wind_power = wind_knots.freq * (bucket_label_wind_knots ^ 3)
5 > # Cumulatively sum the vector wind_power
6 > wind_power.cumsum = cumsum(wind_power)
7 > # Divide by 125th cumulative sum
8 > wind_power.relativecumsum = wind_power.cumsum / wind_power.
cumsum[125]
```

6. Now that we have created

```
1 > x <- cbind (wind power relative cumsum / .8)
```

7. Because dividing numbers greater than .8 results in quotients greater than 1, we cap the quotients at 1 (and invert by subtracting from 1 because we want a membership function for the set NOT WINDY):

8. To create the plot of the membership function (Figure 28), use the following commands, where xlab and ylab define the x-axis and y-axis titles, respectively:

```
1 > for_plot = cbind(seq(0,124), membership_function_windy_not)
2 > png()
3 > plot(for_plot[,1], for_plot[,2], xlim=c(0,20), ylab=
4 + "Degree of Membership in 'Not Windy at KBOS'", xlab='Windspeed (knots)',
5 + main="Membership Function for Fuzzy Set 'Not Windy at KBOS'")
```


Membership Function for Fuzzy Set 'Not Windy at KBOS'

Figure 28: Membership function for fuzzy set 'Not Windy at KBOS' where KBOS refers to weather station KBOS

10

Windspeed (knots)

15

20

5

$$6 > \text{dev.off}()$$

0.0

The plot of the membership function (Figure 28) shows how the function maps each windspeed (measured in knots) in its domain to degrees of membership in the set NOT WINDY AT KBOS. The membership function can be used by fuzzy algorithms to determine how windy the weather measured by a windspeed is.

A.2.1.1 Files describing fuzzy-set membership in the set NOT WINDY AT <STATION> We integrated the R code essentially the same as that directly above into an R script to create a NOT WINDY membership function for each training set (i.e., we created a membership function for each of the 30 weather stations). We are including each NOT WINDY membership function in the benchmark suite. Each NOT WINDY membership function is in its own file named "training<Station>2004-

2012imembershipFunctionNotWindy.out" where <Station> is the weather station's four-character ICAO code (e.g., KPIT). An example of a version of "trainingKPIT2004-2012imembershipFunctionNotWindy.out" is shown in Listing 1. The left-hand column is a set of ranges of windspeeds (measured in knots). Each element of that set is mapped to a membership value. For example, the range [0,1) knots is mapped to the membership value of 1.000. Thus, the range [0,1) is fully a member of the set NOT WINDY AT KPIT. For another example, the range [15,16) knots is mapped to the membership value of 0.167; That range's degree of membership in NOT WINDY AT KPIT is 0.167. Because the degree of membership in the set NOT WINDY AT KPIT is 0.00 for all windspeeds 18 knots and greater, rows in the range [23,123] knots have been omitted from Listing 1:

Listing 1: trainingKPIT2004-2012imembershipFunctionNotWindy.out

1		membership_function_windy_not
2	[0,1)	1.000
3	[1,2)	1.000
4	[2,3)	0.999
5	[3,4)	0.995
6	[4,5)	0.982
7	[5,6)	0.959
8	[6,7)	0.921
9	[7,8)	0.866
10	[8,9)	0.796
11	[9, 10)	0.712
12	[10, 11)	0.619
13	[11,12)	0.523
14	[12, 13)	0.427
15	[13,14)	0.334
16	[14,15)	0.247
17	[15,16)	0.167
18	[16, 17)	0.095
19	[17, 18)	0.032
20	[18, 19)	0.000
21	$[19\;,20)$	0.000
22	[20, 21)	0.000
23	[21,22)	0.000
24		
25	[124, 125)	0.000

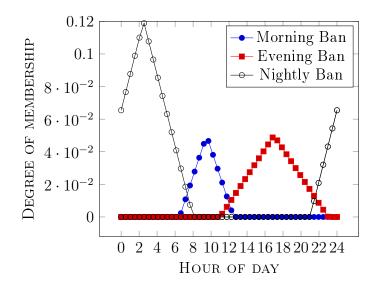


Figure 29: Example membership functions for the fuzzy sets representing morning, evening, and nightly visibility bans

A.2.2 Example of how to make fuzzy-set membership function for set DAILY VISIBILITY BAN [IN EFFECT]

Let T be the set of all minutes in a day. Thus, the elements 0:00 and 23:59 are in set T. Let T have the following fuzzy subsets:

- MORNING BAN
- AFTERNOON BAN
- NIGHTLY BAN

Let us make the membership functions from a daily repeating triangular function where the height of the triangle is dependent on the survey results. An example of such a daily repeating triangular function is shown here:

```
daily Triangle(hour, scale, halfbase, midpoint) =
scale \times \max(0, (normalizer(halfbase)) \times (2 \times \min(dailyPattern(hour, midpoint),
2 - dailyPattern(hour, midpoint - voffset(halfbase))); (1)
```

where

$$dailyPattern(hour, midpoint) = \mod(hour - (midpoint - 12), 24)/12;$$
 (2)

$$interimHeight(halfbase) = halfbase/6;$$
 (3)

$$normalizer(halfbase) = 1/(interimHeight(halfbase));$$
 (4)

$$voffset(halfbase) = 2 - interimHeight(halfbase);$$
 (5)

Let us continue this example by deriving membership functions from our actual survey data. The survey results indicate that 245 respondents "[s]upport retractable wind turbines under certain conditions." The following numbers of those 245 respondents chose to ban harvester visibility in the morning, afternoon, and night: 13, 13, and 29 or 5%, 5%, and 12%, respectively. Let the morning, afternoon, and night hours be 07:00-12:00, 12:00-22:00, and 22:00-07:00, respectively. Because the survey did not explicitly define the intervals, we are using the common understanding that noon divides morning and afternoon, and for night hours we are using the quiet hours in Pittsburgh (Table A.10 on page 214). The midpoints and durations of each range (e.g. the midpoint and duration of 22:00-07:00 are 02:30 and 9 hours, respectively) used to derive the midpoint and width of each triangle, where the width is one hour greater than the duration to allow the following membership functions to overlap slightly (Figure 29) for this example:

$$mf_{MORNING_BAN} = dailyTriangle(hour, scale = 0.05, halfbase = 3, midpoint = 9.5);$$
 (6)
 $mf_{AFTERNOON_BAN} = dailyTriangle(hour, scale = 0.05, halfbase = 6, midpoint = 17);$ (7)
 $mf_{NIGHTLY_BAN} = dailyTriangle(hour, scale = 0.12, halfbase = 5.5, midpoint = 2.5);$ (8)

For example, suppose that the time of day is 19:00 (i.e., 7 p.m.). The degree of membership of 19:00 in the fuzzy set DAILY BAN is

$$mf_{DAILY_BAN}(x) = mf_{MORNING_BAN}(x) \lor mf_{AFTERNOON_BAN}(x) \lor$$
 $mf_{NIGHTLY_BAN}(x)$

$$= mf_{MORNING_BAN}(19:00) \lor mf_{AFTERNOON_BAN}(19:00) \lor$$
 $mf_{NIGHTLY_BAN}(19:00)$

$$= \max(mf_{MORNING_BAN}(19:00), mf_{AFTERNOON_BAN}(19:00),$$
 $mf_{NIGHTLY_BAN}(19:00))$

$$= \max(0, 0.03, 0)$$

$$= 0.03$$

Let us continue this example in the following section by using $mf_{DAILY_VISIBILITY_BAN}$ as part of a larger expression.

A.2.3 Translating membership values to a retraction speed

Suppose that a harvester has a maximum retraction speed M. We are assuming that the maximum retraction speed is the same as the deployment speed for the following example. (Deployment speed is the inverse of deployment time, which is defined in Appendix A.3.5.) And suppose that the harvester is able to be deployed at any speed in the range [M/2, M]. Then, we can create a function that maps membership values to a retraction speed in the range [M/2, M]:

$$y = 0.5M((mf_{DAILY_VISIBILITY_BAN}(t) \lor mf_{NOT_WINDY}(x) \lor mf_{TOO_WINDY}(x) \lor mf_{USED_ALL_ITS_ALLOCATED_VISIBILITY}(h)) + 1)$$
(9)

where x is the windspeed, t is the time of day, h is how much time the harvester has been visible, the symbol \vee is the maximum operator, and y is the resulting deployment speed.

Let us continue the example from the previous section where $mf_{DAILY_VISIBILITY_BAN}$ equals 0.03. Suppose that a wind speed x_0 has a degree of membership of 0.25 in the set

NOT_WINDY, a degree of membership of 0 in the set TOO_WINDY, and 0.75 in the fuzzy set USED_ALL_ITS_ALLOCATED_VISIBILITY. Then Equation 9 becomes

$$y = 0.5M((0.03 \lor 0.25 \lor 0 \lor 0.75) + 1) \tag{10}$$

$$= 0.5M(\max(0.03, 0.25, 0, 0.75) + 1) \tag{11}$$

$$= 0.5M(0.75+1) \tag{12}$$

$$= 0.5M(1.75) \tag{13}$$

$$=0.875M.$$
 (14)

which translates the membership values to 87.5% of the maximum retraction speed.

For Equation 9, as the highest membership value increases, the retraction speed increases, which is by design, because each fuzzy set in Equation 9 is a reason to retract the harvester.

A problem with using fuzzy logic to retract the harvester is that the controlling authority would need to agree that the harvester is complying with operational restrictions if the algorithm is using an agreed-upon fuzzy equation, which might be more difficult to understand than a crisp operational restriction. We avoided that problem by using crisp code to retract in the Fuzzy-Crisp hybrid algorithm (Section 3.4.3 on page 35).

A.2.4 Windspeeds deemed "windy" for crisp applications

Let us describe how to create a lambda-cut set from the NOT_WINDY membership function (Appendix A.2.1) of each weather station ws. (Recall that a general definition of a lambda-cut set can be found in Ross [80] and in this case, the lambda-cut set is the set of all windspeeds in the fuzzy set NOT WINDY having membership values of λ or higher.) Each station's NOT_WINDY membership function $\mu_{(NOT_WINDY,ws)}()$ maps a windspeed s to a membership value $\mu_{(NOT_WINDY,ws)}(s) \in M = \{x \in \mathbb{R} | x \in [0,1] \}$. Choose a $\lambda \in M$. The lambda-cut set of the fuzzy set NOT_WINDY is made up of all windspeeds that have membership values equal to or greater than λ . That is, $(NOT_WINDY,ws)_{\lambda} = \{y | \mu_{(NOT_WINDY,ws)}(y) \geq \lambda\}$.

For each station ws, we deem windspeeds (that are in the domain of $\mu_{(NOT_WINDY,ws)}()$) to be "windy" if those windspeeds are not in $(NOT_WINDY,ws)_{\lambda}$, where $\lambda = 0.9$. For each

station ws, the least windspeed that we deem to be "windy" in the set of natural numbers is given in Table 11. Each "Lowest Windspeed Deemed to Be Windy" happens either be a Light Breeze (4-6 knots) or a Gentle Breeze (7-10 knots) as defined by the Beaufort Wind Scale (Table 10 on the next page [62]) when $\lambda = 0.9$.

Table 10: Beaufort Wind Scale

Wind (knots)	WMO Classification		
Less than 1	Calm		
1-3	Light Air		
4-6	Light Breeze		
7-10	Gentle Breeze		
11-16	Moderate Breeze		
17-21	Fresh Breeze		
22-27	Strong Breeze		
28-33	Near Gale		
34-40	Gale		
41-47	Strong Gale		
48-55	Storm		
56-63	Violent Storm		
64+	Hurricane		

Before choosing 0.9, we also explored other values for λ , which did not perform well in our initial testing of an Aging algorithm.

Table 11: Lowest wind speed deemed to be "windy" for each station for six values of the parameter $\lambda.$

λ	0.4	0.5	0.6	0.7	0.8	0.9		
	Lo	ned						
station	to Be Windy (knots)							
KATL	12	11	10	9	8	7		
KBOS	15	14	13	12	10	9		
KBWI	13	12	10	9	8	7		
KCLE	14	13	12	11	10	8		
KCLT	10	9	8	8	7	5		
KCVG	14	13	12	10	9	7		
KDCA	13	12	11	10	9	7		
KDEN	18	15	14	12	10	9		
KDFW	16	14	13	12	11	9		
KDTW	14	13	12	10	9	8		
KEUG	11	10	10	9	8	6		
KIAH	13	12	11	10	9	7		
KLAS	14	14 13		11	9	7		
KLAX	12	11	10	9	8	7		
KLGA	15	14	13	12	10	9		
KMCI	14	13	12	11	10	8		
KMCO	13	12	11	10	9	7		
KMSP	13	12	11	10	9	8		
KORD	13	12	11	10	9	8		
KPHL	14	13	12	11	9	8		

Table 11: (continued)

KPHX	12	11	10	9	7	6
KPIT	13	12	11	10	8	7
KSAC	12	11	10	9	7	6
KSAN	10	9	8	8	7	6
KSAT	12	11	11	10	9	7
KSEA	11	11	10	9	8	6
KSFO	17	16	15	14	12	10
KSMX	15	13	12	11	10	8
KSTL	13	12	11	10	9	7
KTPA	10	9	8	8	7	6
Max.	18	16	15	14	12	10
Min.	10	9	8	8	7	5

A.3 MODEL OF HARVESTER THAT IS TOWERED

This version of the benchmark suite has one (for simplicity) wind harvester model: a towered harvester. We chose to derive the model of the towered retracted harvester from the Vestas V90-3.0 MW.¹

The wind harvester model comprises the following items, each explained in a subsection below:

- a power curve (A.3.1), i.e., a power output function, which maps windspeed to power output,
- a deployment energy (A.3.3) function, which maps windspeed to the energy required to deploy the harvester,

¹The Vestas V90-3.0 MW has the median rotor diameter, 90 m, of the five diameters of the five Vestas turbines (V34, V80, V90, V112, and V164) listed in Staffell [88].

- a retraction energy (A.3.4) function, which maps windspeed to the energy required to retract the harvester, and
- deployment speed (A.3.5) and retraction speed parameters.

A.3.1 Power curve

The power outputs of the V90-3.0 MW are given in Table 12 [88] for a range of windspeeds. The power output function uses the data shown in Table 12 to find the power that the V90 outputs given a windspeed. We assume that the turbine is available 100% of the time. A plot of Table 12 is shown in Figure 30 on page 163. That is, we assume that scheduled or unscheduled events (e.g., maintenance) will not interfere with the harvester's energy harvesting. Note that Table 12 indicates that the cut-out speed is 49 knots, at and above which the turbine outputs 0 kW. Cutting-out power output to 0 is an effort to protect certain components. However, that effort might not be sufficient if the windspeeds become extremely high. The actual V90's design parameter is 82.6 knots or 42.5 m s⁻¹ for maximum average wind defined as "10 min., 50 years' mean wind speed" [101, Section 4.2] if winds are within other limits such as turbulence [101, Section 4.2]. (We assume that the envisioned retractable version of the V90 turbine can survive winds up to at least 80 knots.)

Table 12: Power output of the V90-3.0 MW vs. windspeed [88]

Windspeed (knots)	Power (kW)	Windspeed (knots)	Power (kW)
0	0	30	3000
1	0	31	3000
2	0	32	3000
3	0	33	3000
4	0	34	3000
5	0	35	3000
6	0	36	3000
7	38	37	3000
8	87	38	3000
9	141	39	3000
10	207	40	3000
11	286	41	3000
12	382	42	3000
13	496	43	3000
14	628	44	3000
15	781	45	3000
16	957	46	3000
17	1153	47	3000
18	1366	48	3000
19	1589	49	0
20	1814	50	0
21	2035	51	0
22	2250	52	0
23	2452	53	0
24	2634	54	0
25	2784	55	0
26	2888	56	0
27	2949	57	0
28	2980	58	0
29	2993	59	0
continues above	ve right	60 [and more]	0

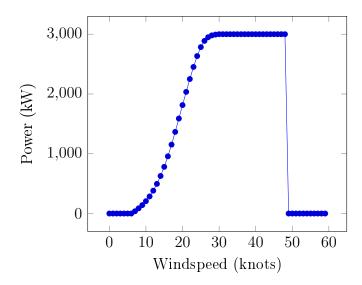


Figure 30: Power curve of harvester model

A.3.2 Too windy

We are interpreting too windy to mean too windy to harvest. Being too windy to harvest is defined by the following constants in a V90-3MW specification [101, p. 22], where cut-out speed is the speed at which and above the harvester outputs no power (because turbines are designed to try to avoid damage from high winds by feathering the blades, i.e., increasing the pitch angle of each blade to reduce the blade surface area facing the wind [70] [52, Page 5]) and recut-in speed is the speed to which the wind must decrease before the harvester resumes outputting power after a cut-out:

- \bullet CUT_OUT_SPEED_KNOTS = 49 (25 m/s) and
- RECUT_IN_SPEED_KNOTS = $39 (20 \,\mathrm{m/s})$.

The V90's cut-out speed of 49 knots can be clearly seen in Table 12. Note that Table 12 does not show the recut-in speed; Table 12 does not apply to situations where the harvester is in cut-out mode and windspeeds are between 39 and 49, exclusive.²

The highest windspeed is the benchmark suite is 67 knots, which in the file

²Those "pre-recut-in" situations were ignored when we found the "ideal" deployment and retraction times for OLA5, as noted in a footnote referenced from Appendix 4.3.

trainingKMCO2004-2012in.csv and less than the 80-knot survivability windspeed of the modeled harvester, as stated in Appendix A.3.1. Recall that cutting the power output is an effort to survive high winds, but extremely high winds could damage a wind turbine. The cut-out speed of the V90 (49 knots) [88] is much less than the V90's designed survivability windspeed (82.6 knots) [101, Section 4.2].

A.3.3 Deployment energy

It takes a certain amount of energy to deploy a retractable harvester. Harvesters can conceivably be helped to be lifted by airfoils. Thus, our model calculates deployment energy as inversely proportional to windspeed. That is, as windspeeds increase, deployment energy decreases.

Our envisioned retractable-harvester relies solely on airfoils to deploy when the windspeed is 20 knots or higher. That is, when the windspeed is 20 knots or higher, all energy to lift the harvester is provided by airfoils' lifting force. We represent the 20-knot energy in Listing 2 on the next page by cubing the value 20 since wind power is cubically proportional to windspeed [30]. If the windspeed is less than 20 knots, then the harvester in our model consumes energy from the grid. In the code listing below, we refer to that required grid energy as energy_required_to_lift_kwh_per_event where each event is a deployment. The required grid energy is the maximum of 0 kWh and the product of a scaling factor (explained in the next paragraph) times the difference of 20 cubed less the current windspeed cubed. We normalize the event's required grid energy by dividing it by the number of minutes the harvester takes to go from being fully stowed to being fully deployed (i.e., the deployment time (Section A.3.5)), which is assumed to be 20 minutes.

The scaling factor ensures that the required grid energy is equal to the energy that the harvester captures per minute at a windspeed slightly above the harvester's cut-in windspeed. The cut-in windspeed of the V90 is 7 knots (Section A.3.1). At which, the V90 harnesses 38 kilowatts of power. If the 7-knot windspeed persists for an hour, the V90 harvests 38 kilowatthours of energy (Section A.3.1). Thus, each minute at 7 knots the harvester captures 38 kilowatthours/60 minutes = 0.63 kilowatthours/minute. At 8 knots, the harvester captures

1.45 kilowatt-hours/minute.

If the harvester is not fully deployed at 8 knots, then it is not converting wind en-The required grid energy to lift the harvester at 8 knots is 1.50 ergy to electricity. kilowatt-hours/minute, at 9 knots is 1.45 kilowatt-hours/minute, at 10 knots is 1.40 kilowatthours/minute for 20 minutes, and continues to decrease (Table 13). The required energy is decreasing as windspeeds are increasing because the envisioned retractable harvester is using airfoils to help lift itself. Thus, although the harvester is not transforming wind power into electrical power as the harvester is deploying, the harvester may be directly transforming wind power into mechanical lifting power. If the aerodynamic lift provided by the airfoils is not sufficient, the harvester obtains the balance of lifting energy from the grid. The balance of lifting energy is coming from the grid, instead of from another source, in order to be consistent with the context of the MQMP metric (Section 4.1.5.2). The required grid energy of 1.5 kilowatt-hours/minute to lift the harvester is approximately equal to the 1.45 kilowatthours/minute that the harvester would have captured if it were fully deployed at 8 knots, which is approximately where the per-minute power curve crosses the plot of required lifting energy from the grid in Figure 31. Energy harvested if the harvester were fully deployed and the required lifting energy from the grid if the harvester is being deployed is listed in Table 13.

Listing 2: Code calculating how much energy is required to lift harvester

```
public int getDeploymentEnergyUsedPerMinuteKwh(int
      time to deploy minutes, int windspeed knots) {
2
3
    // Assuming all energy to lift harvester can be provided by
       airfoils
4
    // when wind speed is 20 knots or higher
    final int DEPLOYMENT ENERGY CONSUMPTION THRESHOLD KWH = (int) Math.
5
       pow(20, 3);
6
    final double DEPLOYMENT ENERGY SCALING FACTOR = .004;
7
8
    double energy required to lift kwh per event = (
       DEPLOYMENT ENERGY CONSUMPTION THRESHOLD KWH
      - Math.pow(windspeed_knots, 3)) *
9
         DEPLOYMENT ENERGY SCALING FACTOR;
10
11
    if (energy required to lift kwh per event < 0)
```

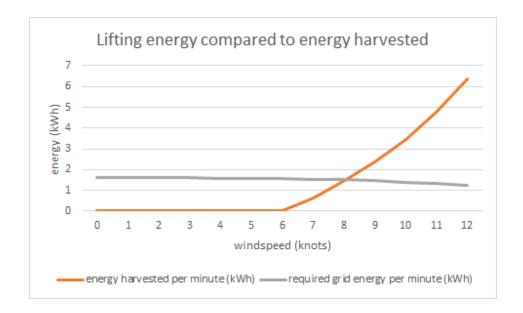


Figure 31: Comparing energy harvested when fully deployed to portion of lifting energy required from grid

A.3.4 Retraction energy

Retracting a retractable harvester could consume energy in some cases. However, our model assumes that gravity will retract the harvester without using any energy.

A.3.5 Deployment time

The deployment time is the inverse of deployment speed. A retractable harvester moves from its stowed state to its fully deployed state at a certain speed. That speed can be specified in terms of deployment time. For example, a deployment time of 20 minutes means that the speed at which the harvester moves from being fully stowed to being fully deployed is such

Table 13: Comparing energy harvested when fully deployed to portion of lifting energy required from grid

windspeed (knots)	power harvested (kW)	energy harvested per minute (kWh)	required grid energy per minute (kWh)
0	0	0.00	1.60
1	0	0.00	1.60
2	0	0.00	1.60
3	0	0.00	1.59
4	0	0.00	1.59
5	0	0.00	1.58
6	0	0.00	1.56
7	38	0.63	1.53
8	87	1.45	1.50
9	141	2.35	1.45
10	207	3.45	1.40
11	286	4.77	1.33
12	382	6.37	1.25
13	496	8.27	1.16
14	628	10.47	1.05
15	781	13.02	0.93
16	957	15.95	0.78
17	1153	19.22	0.62
18	1366	22.77	0.43
19	1589	26.48	0.23
20	1814	30.23	0.00
21	2035	33.92	0.00
22	2250	37.50	0.00
23	2452	40.87	0.00
24	2634	43.90	0.00
25	2784	46.40	0.00
26	2888	48.13	0.00
27	2949	49.15	0.00
28	2980	49.67	0.00
29	2993	49.88	0.00
30	3000	50.00	0.00
31	3000	50.00	0.00

that it takes 20 minutes for the harvester to make that rising transition. (A rising transition is defined as going from being fully stowed to being fully deployed.) Thus, the harvester's deployment speed in that case is 1 rising transition per 20 minutes.

For the harvester model specified by the OLAs of this revision of the benchmarks, we are assuming that the deployment speed is equal to the retraction speed. Such an assumption simplifies the modeling.

For this revision of the model, we chose the deployment and retraction time to each be 20 minutes, which falls into the 15-to-30-minute range of how much time it typically takes to erect a self-erecting crane [10]. "'Self-erectors' approximate working ranges include jib radii (which defines 'reach') from 80 to 160 feet [24 to 49 meters], hook heights from 55 to 120 feet [17 to 37 meters]" [10]. Adding the approximate reach and hook height of 49 and 37 meters, respectively, results in 86 meters, which is more than the 80-meter tower of the V90-3MW wind turbine, the harvester on which our model is based; The V90-3MW has tower heights of 65 and 80 meters [101, Section 7.17].

A.4 WINDSPEED AND HOURLY ELECTRICITY PRICE DATA SOURCES

A.4.1 Windspeed data from qualifying weather stations in text

The benchmarks were partly derived from the Automated Surface Observing System (ASOS) data set DSI 6405 windspeed data³ for the years 2004-2014 for 30 weather stations meeting the following criteria to facilitate future work involving energy usage and solar energy harvesting, each station has the following:

• A low energy usage file x and a high energy usage file y, where the files x and y are each a dataset file of hourly energy usage data⁴ apparently (since the data is in a directory

³ASOS data set DSI 6405 does not include energy usage data.

⁴Outdoor weather affects how much energy many buildings use. The hourly energy usage data the cited directory [13] were derived from typical meteorological year version 3 (TMY3) data sets. "A typical meteorological year (TMY) data set… holds hourly meteorological values that typify conditions at a specific location over a longer period of time, such as 30 years. TMY data sets are widely used… for modeling

Table 14: Data for this work (wind data) and for future work (energy usage and solar data)

icao	maslib	Energy-usage profile filename root	Wind data filename e.g.	Solar data filename e.g.
KPHX	722780	USA_AZ_Phoenix-Sky.Harbor.Intl.AP.722780_TMY3	64050KPHX201401.dat	722780_1991_solar.csv
KLAX	722950	USA_CA_Los.Angeles.Intl.AP.722950_TMY3	64050KLAX201401.dat	722950_1991_solar.csv
KSAC	724830	USA_CA_Sacramento.Exec.AP.724830_TMY3	64050KSAC201401.dat	724830_1991_solar.csv
KSAN	722900	USA_CA_San.Diego-Lindbergh.Field.722900_TMY3	64050KSAN201401.dat	722900_1991_solar.csv
KSFO	724940	USA_CA_San.Francisco.Intl.AP.724940_TMY3	64050KSF0201401.dat	724940_1991_solar.csv
KSMX	723940	USA_CA_Santa.Maria.Public.AP.723940_TMY3	64050KSMX201401.dat	723940_1991_solar.csv
KDEN	725650	USA_CO_Denver.Intl.AP.725650_TMY3	64050KDEN201401.dat	725650_1991_solar.csv
KMCO	722050	USA_FL_Orlando.Intl.AP.722050_TMY3	64050KMCD201401.dat	722050_1991_solar.csv
KTPA	722110	USA_FL_Tampa.Intl.AP.722110_TMY3	64050KTPA201401.dat	722110_1991_solar.csv
KATL	722190	USA_GA_Atlanta-Hartsfield-Jackson.Intl.AP.722190_	64050KATL201401.dat	722190_1991_solar.csv
		TMY3		
KORD	725300	USA_IL_Chicago-OHare.Intl.AP.725300_TMY3	64050KORD201401.dat	725300_1991_solar.csv
KCVG	724210	USA_KY_Cincinnati-Northern.Kentucky.AP.724210_TMY3	64050KCVG201401.dat	724210_1991_solar.csv
KBOS	725090	USA_MA_Boston-Logan.Intl.AP.725090_TMY3	64050KBOS201401.dat	725090_1991_solar.csv
KBWI	724060	USA_MD_Baltimore-Washington.Intl.AP.724060_TMY3	64050KBWI201401.dat	724060_1991_solar.csv
KDTW	725370	USA_MI_Detroit.Metro.AP.725370_TMY3	64050KDTW201401.dat	725370_1991_solar.csv
KMSP	726580	USA_MN_Minneapolis-St.Paul.Intl.AP.726580_TMY3	64050KMSP201401.dat	726580_1991_solar.csv
KMCI	724460	USA_MO_Kansas.City.Intl.AP.724460_TMY3	64050KMCI201401.dat	724460_1991_solar.csv
KSTL	724340	USA_MO_St.Louis-Lambert.Intl.AP.724340_TMY3	64050KSTL201401.dat	724340_1991_solar.csv
KCLT	723140	USA_NC_Charlotte-Douglas.Intl.AP.723140_TMY3	64050KCLT201401.dat	723140_1991_solar.csv
KLAS	723860	USA_NV_Las.Vegas-McCarran.Intl.AP.723860_TMY3	64050KLAS201401.dat	723860_1991_solar.csv
KLGA	725030	USA_NY_New.York-LaGuardia.AP.725030_TMY3	64050KLGA201401.dat	725030_1991_solar.csv
KCLE	725240	USA_OH_Cleveland-Hopkins.Intl.AP.725240_TMY3	64050KCLE201401.dat	725240_1991_solar.csv
KEUG	726930	USA_OR_Eugene-Mahlon.Sweet.AP.726930_TMY3	64050KEUG201401.dat	726930_1991_solar.csv
KPHL	724080	USA_PA_Philadelphia.Intl.AP.724080_TMY3	64050KPHL201401.dat	724080_1991_solar.csv
KPIT	725200	USA_PA_Pittsburgh.Intl.AP.725200_TMY3	64050KPIT201401.dat	725200_1991_solar.csv
KDFW	722590	USA_TX_Dallas-Fort.Worth.Intl.AP.722590_TMY3	64050KDFW201401.dat	722590_1991_solar.csv
KIAH	722430	USA_TX_Houston-Bush.Intercontinental.AP.722430_TMY3	64050KIAH201401.dat	722430_1991_solar.csv
$ ext{KSAT}$	722530	USA_TX_San.Antonio.Intl.AP.722530_TMY3	64050KSAT201401.dat	722530_1991_solar.csv
KDCA	724050	USA_VA_Arlington-Ronald.Reagan.Washington.Natl.AP. 724050_TWY3	64050KDCA201401.dat	724050_1991_solar.csv
KSEA	727930	USA_WA_Seattle-Tacoma.Intl.AP.727930_TWY3	64050KSEA201401.dat	727930_1991_solar.csv

named "RESIDENTIAL_LOAD_DATA_E_PLUS_OUTPUT" [13]) generated by the EnergyPlus building energy-consumption simulator [20] over one year in the cited Open Energy Information directory [13] and

• Solar energy data z from the years 1991-2010 where the solar data z is the station's hourly solar data from the updated 1991-2010 National Solar Radiation Database (NSRDB) [66].

Filename information of source data-files for this work (using wind data) and for future work (using energy usage and solar data) is shown in Table 14.

Nearly every minute, the ASOS data set DSI 6405 provides an average of windspeeds of the previous two minutes [58, p. 3]. We call each provided two-minute average a *sample* to help differentiate the two-minute average from the running average we calculate.

Because some records are missing or mis-formatted in the original ASOS data, we first filtered the original data to produce consistently formatted datasets. Details of that filtering are described in Appendix A.7.1.

The consistently formatted datasets have some missing minutes. Minutes are missing either because we filtered-out mis-formatted records or because some samples were not in the original data. From those formatted datasets with missing minutes, we produced a set of datasets having no missing minutes by interpolating windspeeds.

Each training record has five fields, which are comma delimited:

- 1. timestamp (e.g., 2009010100000600) The timestamp field has the following subdivisions:
 - The first twelve characters are the local standard time in the format YYYYMMD-DHHMM. The local standard time does not adjust for daylight saving time.
 - The next four characters are the Universal Coordinated Time (UTC) in the the format HHMM. The UTC time can be used to verify that the local timestamp is standard time and not daylight saving time.
- 2. wind_knots (e.g., 7) is the average windspeed over the previous two minutes measured in knots.

renewable energy conversion systems. Although not designed to provide meteorological extremes, TMY data have natural diurnal and seasonal variations and represent a year of typical climatic conditions for a location. The TMY should not be used to predict weather for a particular period of time, nor is it an appropriate basis for evaluating real-time energy production or efficiencies for building design applications or solar conversion systems" [103, emphasis in original].

- 3. actual vs. interpolated (e.g., a) is always a single letter: an 'a' indicates actual and an 'i' indicates interpolated windspeed, where the actual windspeed is the actual value found in the corresponding ASOS record.
- 4. f1440 is a column of simulated forecasted⁵ day-ahead (which is 1440-minutes-ahead) windspeeds in knots. A negative one (−1) in this field of a specific row means that the forecast is not available for that row. We are not able to forecast beyond the final day of the windspeed data because we simulate day-ahead forecasts by looking at tomorrow's windspeeds and adjusting them using a Gaussian probability distribution, as described in Section 4.2.0.3. Thus, each record in the final day of each station's testing data has a −1 in it's f1440 column.
- 5. OLA5 is the column of "ideal" algorithm outputs to meet or exceed the requirements of OLA5 and OLA6. A 'd' and an 'r' indicate the harvester should deploy (or remain deployed) and should retract (or remain retracted), respectively. Column OLA5 serves as approximate "ground truth." The data in OLA5 is not necessarily optimal when the harvester experiences a cut-out because column OLA5 was generated via a weighted directed graph that does not model recut-in speeds that are less than the cut-out speed. Note: The OLA5 column is provided only in the training files because the OLA5 column is for algorithm training only and not for algorithm testing.

Example records of a training file are shown here:

```
1 timestamp, wind_knots, actual vs. interpolated, f1440, OLA5
2 2004010122110311, 3, a, 7, r
3 2004010122120312, 4, a, 7, r
4 2004010122130313, 4, a, 5, r
5 2004010122140314, 4, a, 6, r
6 2004010122150315, 4, a, 6, r
7 2004010122160316, 3, a, 6, r
8 2004010122170317, 3, a, 5, r
9 2004010122180318, 3, a, 8, r
10 2004010122190319, 3, a, 3, r
11 2004010122200320, 3, a, 4, r
```

Example records of a testing file follow:

```
1 timestamp, wind knots, actual vs. interpolated, f1440
```

⁵We explain how we simulated the forecasts in Sec 4.2.0.3 on page 76.

Each final windspeed file has the following naming convention. The prefix indicates whether the file is testing or training data via the full word testing or training. The next four characters indicate the weather station that measured the original data (e.g. KATL). The next nine characters indicate the date range of the file's contents (e.g., 2009-2014). (The benchmark suite might not have windspeed data for January 1, 2004, 00:00 and immediately subsequent minutes for some stations or for December 31, 2014, 23:59 and immediately preceding minutes because that data was not in the original ASOS data.) All local timestamps are not in daylight saving time, but standard time. The extension .csv identifies that the each record is comma separated. Two example filenames are given here:

```
trainingKCLE2004-2012in.csv
testingKATL2013-2014in.csv
```

A.4.2 Hourly electricity price data

We supply an electricity price for each hour in the years 2004 to 2014, inclusive. The prices are in the file named "HOEP(Hourly Ontario Energy Price)_2004-2014(CADperKWH).csv". The price of electricity (in kWh) is in Canadian dollars because we derived the file from data available from Ontario's Independent Electricity System Operator (IESO) [37]. The IESO website making the data available via http://www.ieso.ca/en/Power-Data/Data-Directory has terms of use requiring that the following notice be included with any information we use or reproduce from the IESO site: "Copyright ©2017 Independent Electricity System Operator, all rights reserved. This information is subject to the general terms of use set out in the IESO's website (www.ieso.ca)." Thus, the hourly electricity price data file that we derived from the IESO data has a two-line header followed by the data, for

example:

The price data can be used by algorithms that measure their performance using the electricity-price dependent metrics, e.g., MQNetNorm (Equation 4.8) and SCMQNetNorm (Equation 4.6).

A.5 COMMUNITY-SPECIFIED OPERATING BOUNDARIES

Specific values for the operating limits described in this section are in some of the OLAs (Section 3.1.3). For example, OLA 1 has noise and view policies, but does not restrict the maximum time visible; OLA 5 does not have noise and view policies, but does specify a maximum time visible.

A.5.1 Community-specified noise and view policies

Some communities might specify that harvesters be stowed during certain times (e.g., tourist seasons, sunrises, sunsets, sleeping hours). We call those specifications noise and view policies.

A.5.2 Community-specified maximum time visible

Similar to noise and view polices, some communities might specify that harvesters be stowed after the harvesters are visible a certain percentage of a period of time. For example, if a community specifies that a harvester must be stowed at least 40% of each month, then

the community is permitting the harvester to be visible up to 60% of the month. In other words, the community is specifying that the harvester's maximum time visible is 60% of each month.

A.5.3 Community-specified maximum deployment speed

A community-specified maximum deployment speed is a speed limit on the rate at which a harvester can move from being fully stowed to being fully deployed. For example, a community might specify that a harvester move from being fully stowed to being fully deployed in no less than 20 minutes, which is the minimum deployment time. Deployment speed is the inverse of deployment time (defined in Section A.3.5).

Communities might specify a speed limit to do the following:

- Share space and reduce risk
 - Pilots of aircraft might appreciate the extra time to vacate the airspace near a retractable harvester
 - A retractable harvester might have pinch points where a maintenance worker might become pinched if a harvester moves too quickly. For example, if a maintenance worker is near a large open hinge and the hinge begins to close quickly, the rapidly closing hinge might clamp the worker.
- Maintain tranquility of a landscape: Quickly deploying retractable harvesters might disturb the visual serenity of a view. They might also make more noise than slowly moving retractable harvesters. (We assume that noise would be governed by each hosting community's noise regulations.)

We are assuming that a community would not specify the opposite (a minimum deployment speed or maximum deployment time) because faster deployment speeds reduce unproductive visibility time.

A.6 RETRACTION-SUITABLE WIND ENERGY HARVESTING TECHNOLOGIES

Although development of retractable harvesters is outside the scope of this work, we include examples of envisioned and actual harvesters in this section.

A.6.1 Retractable land/sea-supported wind energy systems

Retractable land/sea-supported wind energy systems include wind energy systems that are mechanically supported by the land or sea.

A.6.1.1 Wind-power-harvesting fabric (envisioned) A micro-wind turbine has been developed that has a 1.8 mm rotor diameter [18]. It is conceivable that thousands of the micro turbines could be embedded into a fabric. The resulting wind-power-harvesting fabric could be supported by two parallel wires suspended between two vertical poles as shown in Figure 32. Also shown in that figure is a wire that a motor reels onto a spool to pull the fabric from the fabric's storage location. When the algorithm determines it is time to deploy the wind harvesting fabric, the motor pulls the fabric so that the fabric fills the rectangular plane formed by the two parallel supporting wires and the two vertical poles (Figure 33 (not drawn to scale)). Two separate perpendicular planes can be used to help ensure that the wind is not parallel to at least one plane (Figure 34) since wind parallel to a plane causes all the plane's micro-turbines except those at the windward edge of the fabric to be in the wakes⁶ of the other turbines.

Fabric configured as a folding fan: Instead of using a pair of vertical poles and wires, the fabric could be formed into a folding fan. The folded/closed fan could be stored in a single vertical pole. An envisioned wind harvester having a folding fan is shown in the deployed and stowed states in Figure 35. The fan is kept facing the wind by a tail fin, which is not shown in the figure. Moveable ribs supporting the folding fan are supported by a retractable tower, which is retracted as needed.

⁶"Wind turbines extract energy from the wind and downstream there is a wake from the wind turbine, where wind speed is reduced" [104].

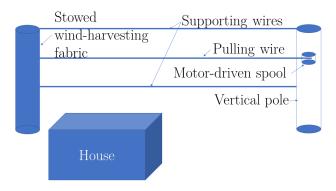


Figure 32: Rolled fabric stowed in a vertical pole (image is not drawn to scale)

Figure 33: Fabric deployed between supporting wires (image is not drawn to scale)

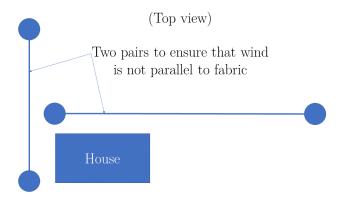


Figure 34: Top view of fabric planes perpendicularly arranged to each other ensuring that wind direction is not parallel to at least one fabric plane (image is not drawn to scale)

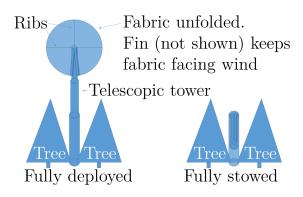


Figure 35: Folding-fan-style wind harvester using fabric shown in deployed and stowed states

A.6.1.2 Harvesters having telescopic supports Two categories follow:

Non-expandable blades (patent granted, expired): For example, a granted patent claims a wind machine having a "telescopic means adapted to permit said airfoil support means to be lowered into a storage mode in which at least some of the airfoils are stored in a zone protected from some of the effects of a windstorm" [75].

Expandable blades (envisioned): Figure 36 shows an envisioned wind turbine having a telescopic tower and inflatable blades. The envisioned inflatable blades are modeled after the inflatable wings with which NASA and others have experimented [95] [8].

Instead of inflatable wind turbine blades, foldable wind turbine blades [74] (Figure 37) could potentially be used to stow and deploy wind turbines. The design shown in Figure 37 could be potentially be modified such that when the blades are folded, the nacelle could be rotated toward the sky such that the folded blades point vertically to avoid interference with trees and to better blend into the scenery or then retract with a telescopic tower (Figure 38).

A.6.1.3 Oscillating-wing windmill (concept published, embodiment envisioned)

An oscillating-wing windmill to which Mckinney and DeLaurier [50] refer has only one wing. The wing is arranged horizontally. It flutters (e.g., pitches and plunges as shown in states "c" and "d" of Figure 39 on page 180) to harvest wind energy. The wing seems to have the

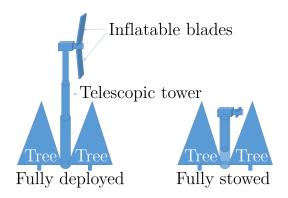


Figure 36: Deployed and stowed turbine having a telescopic tower and inflatable blades

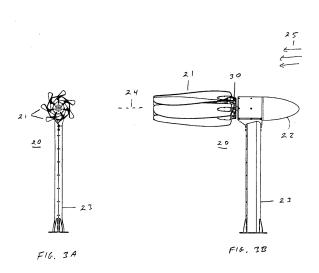


Figure 37: Patent drawing showing blades folded [74]

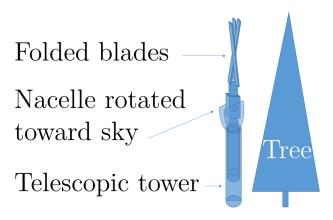


Figure 38: Stowed turbine; folded blades pointing upward

potential to be relatively easily blended into the surrounding architecture, e.g., a roof as shown in state "a" of Figure 39, when not in use.

A.6.2 Airborne wind energy systems (actual)

Airborne wind energy systems use airborne harvesters to convert wind to usable energy and comprises both lighter-than-air and heavier-than-air systems [16] [12].

The category of airborne, lighter-than-air wind energy systems includes harvesters integrated with tethered aerostats (e.g., Altaeros Energies' "autonomous tethered airborne platforms" [4]).

Heavier-than-air wind energy systems include kite systems such as the Makani energy kite [48]. The Makani system uses on-board propellers to lift the kite into the wind and to keep it flying when windspeeds dip.

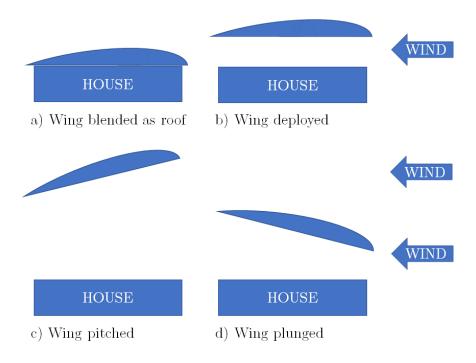


Figure 39: Oscillating-wing windmill shown in four states

A.7 PREPARING THE WINDSPEED DATA

A.7.1 Filtering

We are using files in the Automated Surface Observing System (ASOS) data set DSI 6405 [59]. Some lines in those files contain non-windspeed-data where we expect windspeeds. To ignore those lines, we filtered out each line that

- 1. Does not have a number in its windspeed field,
- 2. Has a number or other character that is not a space in the column that immediately follows its windspeed field,
- 3. Has an identical local timestamp to its previous line,
- 4. Does not have a number in the least significant place of its wind heading field, or
- 5. Does not have a space that precedes its windspeed field.

The results of our filtering are shown in Table 16. The table shows that in all cases less than 3% of lines were removed by our filters.

A.7.2 Shifting fields

We found that the windspeed and wind heading fields changed locations between years 2004 and 2014 for most weather stations. These are the field locations we encountered for windspeed and for wind heading respectively:

Speed1: Windspeed in columns 74, 75, and 76.

Speed2: Windspeed in columns 76, 77, and 78.

Heading1: Wind heading in columns 68, 69, and 70.

Heading2: Wind heading in columns 71, 72, and 73.

Heading3: Wind heading in columns 67, 68, and 69.

We extracted the windspeeds from the shifting field locations in ASOS data to create comma separated files that would eventually become this benchmark's wind-data .csv files. The shifting field locations in the ASOS data are shown in Table 15 as a function of timestamp ranges. For example, station KPHX's data has windspeed values in the location we call "Speed2" above for all records having timestamps in the range [PHX2013053007231423, end], which is from 2013-05-30 07:23, 14:23 UTC, to the end of KPHX's 2014 data, inclusive. All of KPHX's records outside that range (i.e., the balance of the records) have windspeed values in the location we call "Speed1" above.

A.7.3 Removing anachronistic records

We omitted anachronistic records (i.e., in the sequence of the ASOS data, records having timestamps earlier than the timestamps of records occurring earlier in the sequence). Anachronistic records were found in only six of the thirty weather stations, KBWI, KEUG, KIAH, KLGA, KORD, and KPIT, and comprised a minuscule percentage (approximately 0.0007%, which equals the approximately 1000 anachronistic records shown in Table 17 divided by the approximately 150,000,000 samples, which comprise the eleven years of minute-

Table 15: Ranges of timestamps where fields are in certain columns in original ASOS data

icao	Spd.1	Speed2	Hdg.1	Heading2	Heading 3^a
KPHX	$bal.^{b}$	$[PHX2013053007231423, end^c]$	bal.	[PHX2013053007231423, end]	m N/A
KLAX	all	none	bal.	none	[LAX2004010117230123, LAX2006013007391539]
KSAC	all	none	bal.	none	[SAC2004010118370237, SAC2004050500070807)
KSAN	all	none	bal.	none	[SAN2004010118060206, SAN2004031809381738)
KSFO	all	none	all	none	none
KSMX	bal.	[SMX2014082706071407, end]	bal.	[SMX2014082706071407, end]	[SMX2004010100000800, SMX2004030905111311)
KDEN	bal.	[DEN2013121113272027, end]	bal.	[DEN2013121113272027, end]	[DEN2004010100000700, DEN2004082506391339)
KMCO	bal.	[MCO2014022410051505, end]	bal.	[MCO2014022410051505, end]	[MCO2004010100000500, MCO2006092000330533)
KATL	all	none	bal.	none	[ATL2004010122110311, ATL2004021802330733)
KORD	bal.	[ORD2013121213101910, end]	bal.	$[{ m ORD}2013121213101910, { m end}]$	[ORD2004010100350635, ORD2004060706491249]
KCVG	all	none	bal.	none	[CVG2004010119390039, CVG2004010709381438]
KBOS	all	none	all	none	none
KBWI	all	none	bal.	none	[BWI2004010120190119, BWI2004010601170617]
KDTW	all	none	bal.	none	[DTW2004010119490049, DTW2004071405401040)
KMSP	all	none	all	none	none
KMCI	bal.	[MCI2013121208581458, end]	bal.	[MCI2013121208581458, end]	[MCI2004010100000600, MCI20040707581358)
KSTL	all	none	bal.	none	[STL2004010100000600, STL2005042502190819)
KCLT	all	none	bal.	none	[CLT2004010119360036, CLT2004012201480648)
KLAS	bal.	[LAS2014040909481748, end]	bal.	[LAS2014040909481748, end]	[LAS2004010117140114, LAS2004031002341034)
KLGA	all	none	bal.	none	[LGA2004010100200520, LGA2004030113571857]
KCLE	bal.	[CLE2013011510351535, end]	bal.	[CLE2013011510351535, end]	none
KENG	bal.	[EUG2013121910281828, end]	bal.	[EUG2013121910281828, end]	[EUG2004010100000800, EUG2004030904571257]
KPHL	bal.	[PHL2014022011001600, end]	bal.	[PHL2014022011001600, end]	[PHL2004010123030403, PHL2004020204580958]
KPIT	bal.	[PIT2014030710371537, end]	bal.	[PIT2014030710371537, end]	[PIT2004010100000500, PIT2005012809041404)
KDFW	bal.	[DFW2013012411311731, end]	bal.	[DFW2013012411311731, end]	none
KIAH	all	none	bal.	none	[IAH2004010100000600, IAH2004031823150515]
KSAT	bal.	[SAT2014022709261526, end]	bal.	[SAT2014022709261526, end]	[SAT2004010120240224, SAT2005082308021402)
KDCA	all	none	all	none	none
KSEA	all	none	bal.	none	[SEA2004010100000800, SEA2006031402341034)

^aThe range could include the last line in each Heading3 range (e.g., LAX2006013007391539), but our filter does not include the last line in each range. We seem to have enough data that the last line in each Heading3 range is not needed for most simulations. Thus, we did not re-filter the data to include the last line in each Heading3 range.

^bbalance of records (i.e., all records having timestamps outside the range(s) given in this row for this field

 c i.e., end of 2014 data

by-minute data for 30 stations) of the ASOS data after we had filtered it according to the method described immediately above. As shown in Table 17, of six stations having anachronistic records, KIAH had the highest percentage of anachronistic records, which was 0.006%.

A.7.4 Handling identically timestamped records

We discarded all records where timestamps were repeated in the ASOS data. The percentage of runs of identically timestamped samples compared to the number of uniquely timestamped

Table 16: Percentage of lines in ASOS data that the filters listed in Section A.7.1 discarded) ordered descendingly

icao	lines discarded (%)	icao	lines discarded (%)	icao	lines discarded (%)
KORD	2.45%	KIAH	0.37%	KMCI	0.23%
KTPA	1.17%	KMCO	0.36%	KSEA	0.22%
KSMX	0.93%	KLAX	0.33%	KSFO	0.2%
KDEN	0.69%	KPHL	0.33%	KBWI	0.17%
KPIT	0.58%	KSAC	0.31%	KCLT	0.14%
KDCA	0.52%	KPHX	0.3%	KCVG	0.13%
KEUG	0.48%	KSAT	0.28%	KBOS	0.11%
KCLE	0.43%	KATL	0.26%	KSAN	0.11%
KSTL	0.41%	KDFW	0.26%	KLAS	0.08%
KLGA	0.4%	KDTW	0.23%	KMSP	0.07%
cont	inues above right	conti	inues above right		

Table 17: Statistics on anachronistic records

				Anachronistic
	No. of ana-	Max.	No. of	records as percentage
station	chronistic records	run size	$_{ m samples}$	of no. of samples
KBWI	190	190	5419390	0.004%
KEUG	199	110	5205945	0.004%
KIAH	337	337	5198385	0.006%
KLGA	21	21	5185102	0.000%
KORD	246	218	5147727	0.005%
KPIT	23	23	5306440	0.000%

samples is less than one tenth of a percent (i.e., 0.09%) and, on a station-by-station basis, a maximum of less than three tenths of a percent (0.29% for KORD).

Table 18: Statistics about windspeeds between uniquely timestamped records and between uniquely timestamped records and the first records of each run of identically timestamped records

	see		std.	kur-	skew-		$\mathrm{mean}(\mathrm{B})/$
station	legend*	mean	dev.	tosis	ness	n	$\operatorname{mean}(A)$

^{*}Legend:

A = statistics about normalized difference of windspeeds** in samples having unique timestamps.

B= statistics about normalized difference of windspeeds** between first sample of run of samples sharing timestamps and the most recent sample having a unique timestamp B/A= quotient of group B's mean divided group's A mean

**The normalized difference of windspeeds $\delta_{\text{knotsPerMinute}}$ equals the difference of windspeeds δ_{knots} over the difference between timestamps δ_{minute} (to account for timestamps that differ by more than one minute); i.e., $\delta_{\text{knotsPerMinute}} = \delta_{\text{knots}}/\delta_{\text{minute}}$.

KATL	A	1.37E-04	0.87	3.95	0.17	5436757	
	В	7.27E-01	3.66	1.45	-0.39	11	
	$\mathrm{B/A}$	$5.29\mathrm{E}{+03}$					$5.29\mathrm{E}\!+\!03$
KBOS	A	2.92E-05	0.90	2.45	0.09	$5.46\mathrm{E}\!+\!06$	
	В	5.00E-01	3.87	4.57	1.62	10	
	$\mathrm{B/A}$	1.71E + 04					$1.71\mathrm{E}\!+\!04$
KBWI	A	-2.55E-05	0.86	4.57	0.17	5394105	
	В	2.89E-01	3.49	9.10	2.40	38	
	$\mathrm{B/A}$	-1.14E+04					$-1.14\mathrm{E}{+04}$
KCLE	A	-1.16E-05	0.88	3.62	0.15	5393670	
	В	3.04E-01	1.58	8.56	1.94	121	

Table 18: (continued)

	$\mathrm{B/A}$	-2.62E+04					-2.62E + 04
KCLT	A	-4.16E-06	0.79	2.64	0.14	5487847	
	В	-8.33E-02	1.38	-1.00	0.18	12	
	$\mathrm{B/A}$	$2.00\mathrm{E}{+04}$					$2.00{\rm E}\!+\!04$
KCVG	A	4.06E-06	0.84	14.43	0.13	5347487	
	В	2.50E-01	1.99	18.96	3.50	43	
	$\mathrm{B/A}$	6.16E + 04					$6.16\mathrm{E}\!+\!04$
KDCA	A	3.87E-05	0.87	9.86	0.15	4736355	
	В	1.18E-01	4.38	267.99	14.65	397	
	$\mathrm{B/A}$	$3.06\mathrm{E}{+03}$					$3.06\mathrm{E}\!+\!03$
KDEN	A	-2.12E-04	0.88	10.86	0.24	5338217	
	В	-2.25E-02	1.75	16.98	-2.74	89	
	$\mathrm{B/A}$	$1.06\mathrm{E}{+02}$					$1.06\mathrm{E}\!+\!02$
KDFW	A	-3.74E-04	0.90	2.28	0.17	5300401	
	В	-1.52E-01	2.71	17.76	-2.98	79	
	$\mathrm{B/A}$	$4.06 E{+02}$					$4.06{\rm E}\!+\!02$
KDTW	A	9.32E-05	0.85	2.90	0.15	5424015	
	В	1.54E+00	3.13	4.01	1.92	13	
	$\mathrm{B/A}$	1.65E + 04					$1.65\mathrm{E}\!+\!04$
KEUG	A	-4.56E-05	0.70	12.06	0.19	5195953	
	В	-5.00E-02	1.39	8.43	-2.36	20	
	$\mathrm{B/A}$	1.10E+03					$1.10 {\rm E}\!+\!03$
KIAH	A	-1.06E-05	0.83	2.49	0.20	5193286	
	В	6.09E-02	1.10	9.69	-0.56	115	
	$\mathrm{B/A}$	-5.76E+03					$-5.76\mathrm{E}{+03}$
KLAS	A	-2.33E-04	0.90	2.88	0.16	5433173	
	В	-2.50E-01	0.71	-0.23	0.40	8	

Table 18: (continued)

	$\mathrm{B/A}$	1.07E+03					$1.07 \mathrm{E}\!+\!03$
KLAX	A	4.89E-05	0.71	6.46	0.08	5332533	
	В	-3.41E-01	3.08	35.96	-5.82	41	
	$\mathrm{B/A}$	-6.99E+03					-6.99E + 03
KLGA	A	1.28E-04	0.95	1.91	0.11	5174896	
	В	-5.56E-02	0.86	0.21	0.13	30	
	$\mathrm{B/A}$	-4.33E+02					$-4.33 \mathrm{E}{+02}$
KMCI	A	-2.92E-05	0.85	3.15	0.15	5494553	
	В	-4.73E-01	1.85	12.01	-2.97	55	
	$\mathrm{B/A}$	1.62E+04					$1.62 \mathrm{E}\!+\!04$
KMCO	A	-1.11E-04	0.80	216.34	1.62	5383438	
	В	1.39E-01	1.55	11.66	1.99	36	
	$\mathrm{B/A}$	-1.25E+03					$-1.25 \mathrm{E}{+03}$
KMSP	A	-8.57E-05	0.88	3.84	0.11	5497700	
	В	-1.80E+00	4.29	1.21	-1.33	10	
	$\mathrm{B/A}$	2.10E + 04					$2.10 {\rm E}\!+\!04$
KORD	A	1.99E-05	0.91	2.16	0.13	5117591	
	В	7.93E-02	1.47	12.35	-2.16	74	
	$\mathrm{B/A}$	3.98E+03					$3.98\mathrm{E}\!+\!03$
KPHL	A	7.14E-05	0.86	2.48	0.16	5223332	
	В	-5.56E-01	1.81	5.46	-2.16	9	
	$\mathrm{B/A}$	-7.78E+03					-7.78E + 03
KPHX	A	-9.70E-04	0.84	4.68	0.22	5275447	
	В	2.73E-01	1.79	2.93	-1.13	11	
	$\mathrm{B/A}$	-2.81E+02					-2.81E + 02
KPIT	A	-1.50E-04	0.84	3.22	0.19	5298517	
	В	-1.79E-01	1.95	3.16	-0.65	13	

Table 18: (continued)

	$\mathrm{B/A}$	1.19E+03					$1.19\mathrm{E}\!+\!03$
KSAC	A	1.63E-04	0.81	40.27	0.07	5402902	
	В	-1.10E+00	2.85	3.93	-2.05	371	
	$\mathrm{B/A}$	-6.72E+03					$-6.72 \mathrm{E}{+03}$
KSAN	A	-4.12E-05	0.69	10.00	-0.04	5389450	
	В	-8.16E-02	0.81	0.30	-0.09	98	
	$\mathrm{B/A}$	1.98E+03					$1.98\mathrm{E}\!+\!03$
KSAT	A	-2.34E-04	0.93	3.13	0.20	5444969	
	В	1.61E-02	0.91	1.12	0.05	620	
	$\mathrm{B/A}$	-6.90E+01					$-6.90\mathrm{E}{+01}$
KSEA	A	9.68E-05	0.75	9.46	0.18	5375319	
	В	4.88E-01	3.47	16.76	3.36	41	
	$\mathrm{B/A}$	$5.04E{+03}$					$5.04\mathrm{E}\!+\!03$
KSFO	A	4.77E-05	0.79	2.40	0.09	5344491	
	В	2.52E-02	1.25	12.16	0.51	278	
	$\mathrm{B/A}$	5.28E+02					$5.28\mathrm{E}\!+\!02$
KSMX	A	5.15E-04	0.75	26.05	0.09	5371896	
	В	1.51E-01	2.13	33.83	4.56	93	
	$\mathrm{B/A}$	2.92E + 02					$2.92 {\rm E}\!+\!02$
KSTL	A	1.96E-05	0.87	2.54	0.16	5524684	
	В	1.17E-01	1.54	27.07	3.45	94	
	$\mathrm{B/A}$	5.96E+03					$5.96\mathrm{E}\!+\!03$
KTPA	A	2.76E-05	0.79	7.61	0.14	5148249	
	В	$0.00\mathrm{E}{+00}$	0.80	0.30	-0.22	57	
	$\mathrm{B/A}$	$0.00\mathrm{E}{+00}$					$0.00 \mathrm{E}\!+\!00$
						Average:	$3.85 \mathrm{E}\!+\!03$

A.7.5 Processed outliers

After the data cleaning described above, we identified outliers using two methods. The first method is to use the *adjacent windspeed difference per minute* defined as the quotient of the difference in windspeeds of two consecutive records divided by the number of minutes separating those two windspeeds:

$$\delta_{tb,ta} = \frac{s_{tb}^{speed} - s_{ta}^{speed}}{tb - ta}$$

where

- ta and tb are the timestamps of two consecutive samples,
- s_{ta}^{speed} is the windspeed in knots of sample s having timestamp ta,
- tb ta is the difference of timestamps tb and ta in minutes, and
- tb > ta (i.e., timestamp tb is later than ta) so that $\delta_{tb,ta} < 0$ only when $s_{tb}^{speed} < s_{ta}^{speed}$.

For each weather station ws in our list of 30 stations, we examined the distribution of non-zero $\delta_{tb,ta}$'s by first finding the standard deviation of $\delta_{tb,ta}$ (to which we refer as $\sigma_{\delta,ws}$) listed in Table 19. Second, we created a frequency distribution table of the product $(\delta)(\sigma_{\delta,ws})$ for each weather station ws, as listed in Table 20. For each range of the 30 frequency distributions in Table 20, we summed the count to produce the combined frequency distribution table shown as Table 21, which is plotted as a histogram in Figure 40 on page 196.

Figure 40 shows that an extreme-value test [3] may be appropriately applied to find outlying windspeeds. The figure shows that approximately 99% of the non-negative δ 's are less than 3 standard deviations from 0. However, we deemed extreme-values of δ to be those values that are greater than 20 times $\sigma_{\delta,ws}$. Thus, let's refer to 20 times $\sigma_{\delta,ws}$. as thresh, hereafter.

When a $\delta_{tb,ta}$ exceeded thresh, we discarded the sample s_{tb} , which is the sample having timestamp tb, and all samples s_t following s_{tb} until $delta_{t,ta} \leq thresh$. All samples that passed that filter were subject to another outlier filter: the strong-gale filter.

The strong-gale filter uses the fact that winds faster than strong-gales (i.e., winds above 47 knots) rarely occur on land [62]. We compared any winds faster than strong gales to Weather Underground's archive, which includes ASOS data in addition to over 250,000

personal weather stations and over 26,000 Meteorological-Assimilation-Data-Ingest-System stations [102]. If our above-strong-gale windspeed for a certain day d exceeded the maximum windspeed for day d archived at Weather Underground, we discarded our windspeed; otherwise, we kept the windspeed in all cases except for one case. Weather Underground mistakenly records 1,000 mph as the maximum windspeed for 2010-10-19 at station KMCO. Since 1,000 mph is obviously false, we turned to another another source [91], which showed less than 5 mph for that date.

Table 19: Descriptive statistics of δ for each station

		standard		
station	mean	deviation	kurtosis	skewness
KATL	0.00	0.87	3.95	0.17
KBOS	0.00	0.90	2.45	0.09
KBWI	0.00	0.86	4.57	0.17
KCLE	0.00	0.88	3.62	0.15
KCLT	0.00	0.79	2.64	0.14
KCVG	0.00	0.84	14.43	0.13
KDCA	0.00	0.87	9.86	0.15
KDEN	0.00	0.88	10.86	0.24
KDFW	0.00	0.90	2.28	0.17
KDTW	0.00	0.85	2.90	0.15
KEUG	0.00	0.70	12.06	0.19
KIAH	0.00	0.83	2.49	0.20
KLAS	0.00	0.90	2.88	0.16
KLAX	0.00	0.71	6.46	0.08
KLGA	0.00	0.95	1.91	0.11
KMCI	0.00	0.85	3.15	0.15
KMCO	0.00	0.80	216.34	1.62
KMSP	0.00	0.88	3.84	0.11
KORD	0.00	0.91	2.16	0.13
KPHL	0.00	0.86	2.48	0.16
KPHX	0.00	0.84	4.68	0.22
KPIT	0.00	0.84	3.22	0.19
KSAC	0.00	0.81	40.27	0.07
KSAN	0.00	0.69	10.06	-0.04
KSAT	0.00	0.93	3.13	0.20
KSEA	0.00	0.75	9.46	0.18
KSFO	0.00	0.79	2.40	0.09
KSMX	0.00	0.75	26.06	0.09
KSTL	0.00	0.87	2.54	0.16
KTPA	0.00	0.79	7.61	0.14

Table 20: For each weather station ws, the frequency distributions of $(\delta \ge 0)(\sigma_{\delta, ws})$

(19,20)	0		0	2		0	0	1			0			_	1	0	0	0					1		0	0		0		1	[39,40)					-	-									
(18,19)	2		0	0		0	0	1			0			0	0	0	0	0					8	1	0	0		5		0	[38,39)					-										
[17,18]	1		0	0		0	1	0			0			0	0	-	0	0					5	0	0	0		2		1	[37,38)															
[16,17]	0		0	2		0	0	3			-			0	0	0	0	0					2	0	0	0		3		2	[36,37)					-		-								
[15,16]	2		0	2		0	2	0		-	0			0		0	0	0			1		3	1	0	0		14		33	[35,36]					0		С								
[14,15)	0		0	1		0	0	4	-	0	0			0	0	0	4	-			1		4	0	0	0		1		2	[34,35)							o								
[13,14)	3	1	0	1		0	0	4	-	0	-			-	2	2	_	0	2		0		4	2	0	0		33	2	2	[33,34)					-										
[12,13)	4	0	3	1		1	4	4	2	1	1	1		1	1	1		2	1	4	0	2	15	0	2	0		12	1	2	[32,33)					0	-	- O								
[11,12)	1	0	0	ъ		2	4	9	0	9	0	0		0	2	2	9	_	-	-	2	2	9	1	3	0		10	3	11	[31,32]					-		0			1					
[10,11]	4	1	2	က		6	9	4	4	œ	2	က	-	0	4	10	20	4	3	2	22	4	6	0	6	1		18	7	11	[30,31)					0	-	- -			0					
(9,10)	10	5	2	4	1	9	7	13	14	14	-	4	22	0	9	13	9	4	17	6	10	4	20	1	13	2	2	61	15	21	[29,30)						-	- -			0					
(6,8]	80	11	9	19	3	16	16	30	56	56	2	6	22	0	13	12	9	œ	13	က	6	13	59	5	22	3	3	50	21	38	(28,29)					0		0			0					
(8,7]	32	11	9	22	7	25	29	157	33	23	8	21	20	0	24	21	33	37	38	18	20	36	19	1	32	8	16	47	27	99	[27,28)					0	0	0			0					
(2,9]	148	12	118	114	21	22	156	222	98	49	9	38	81	2	22	28	45	63	81	26	40	49	28	0	84	31	18	212	161	37	[26,27]					0		0			0					
(5,6)	277	245	351	356	31	368	404	889	231	334	œ	247	380	2	307	302	102	191	245	272	438	451	38	2	263	27	38	203	241	47	[25,26)			1		c	-	- C			1					
(4,5)	1079	1166	1495	1217	06	1102	1582	2315	1105	953	66	260	1851	44	1327	1012	244	962	1113	1050	1620	1231	527	23	1398	112	137	310	1008	139	[24,25)	1				c		2 2			0					
(3,4)	2926	6558	6602	6105	3947	5448	6721	8972	6833	5052	315	4548	9271	157	7598	5445	4564	5818	6043	5480	7720	0609	2784	2.2	7844	2265	3288	2810	5542	2349	[23,24)	0		0		c					0					
[2,3)	33031	34554	34700	32377	22047	29400	29315	36839	38617	29205	15575	27766	41368	7055	40568	31459	23207	33295	34176	28853	33588	30269	21219	6127	42621	13541	18026	13901	31860	14283	[22,23)	0		0	-	c	۰	۰ ا			0					
(1,2)	169853	180312	164549	172187	137101	153373	134720	154902	193430	162864	88396	153100	175039	78622	208577	167817	134191	181355	185014	_	_	151656	144062	76449	210265	105754	126901	102326	\rightarrow	116711	[21,22)	0			0	c		-			0			1		-
[0,1)	3997537	3937380	4024500	3947912	4196470	4009064	3525021	3952564	3817708	4004092	4169716	3870370	3981235	4171954	3579399	4102080	4136849	3985184	3652652	3836098	3977796	3979226	4098961	4273561	3842823	4165960	4080242	4226634	4036294	3889128	[20,21)	0			٥	c	٥	٥			0			0		0
station	KATL	KBOS	KBWI	KCLE	KCLT	KCVG	KDCA	KDEN	KDFW	KDTW	KEUG	KIAH	KLAS	KLAX	KLGA	KMCI	KMCO	KMSP	KORD	KPHL	KPHX	KPIT	KSAC	KSAN	KSAT	KSEA	KSFO	KSMX	KSTL	KTPA	station	KATL	KBOS	KBWI	KCLE	KCLI	KDOV	KDEN	KDFW	KDTW	KEUG	KIAH	KLAS	KLAX	KLGA	KMCI

Table 20: (continued)

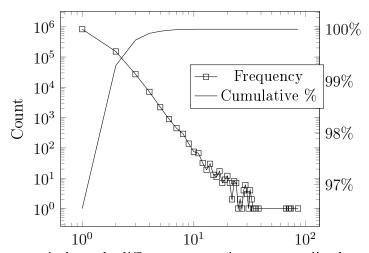
0														(29,60)																	0														(08,67]
0														(58,59)																	0														(58,79)
0						1								[57,58)																	0														[77,78)
0						0								[56,57)																	0														[76,77)
0						0			1					[55,56)																	0														[75,76)
0						2			0					[54,55)																	0														[74,75)
0						2			0				1	[53,54)																	0														[73,74)
0						0			0				0	[52,53)																	0														[72,73)
0						1			1				0	[51,52)																	0														[71,72)
0						3			1				0	(50,51)																	0														[70,71)
0						1			0				0	[49,50)																	0														[69,70)
0						1			0				0	(48,49)																	0														(69,89)
1						0		1	0				0	[47,48)																	0														[67,68)
-						0		0	0				0	[46,47)																	0														[66,67)
1						3		0	0				0	[45,46)																	0														(65,66)
0						2		1	0		-		0	[44,45)																	0														[64,65)
0						0		1	0		1		0	(43,44)																	0														[63,64)
0						0		0	0		2		0	[42,43)																	0														[62,63)
-						8		1	0		2		1	(41,42)												_					0														[61,62)
-	П					2		0	0		2		0	[40,41)																	0														[60,61)
KMCO	KMSP	KORD	KPHL	KPHX	KPIT	KSAC	KSAN	KSAT	KSEA	KSFO	KSMX	KSTL	KTPA	station	KATL	KBOS	KBWI	KCLE	KCLT	KCVG	KDCA	KDEN	KDFW	KDTW	KEUG	KIAH	KLAS	KLAX	KLGA	KMCI	KMCO	KMSP	KORD	KPHL	KPHX	KPIT	KSAC	KSAN	KSAT	KSEA	KSFO	KSMX	KSTL	KTPA	station KATL

Table 20: (continued)

															0																															
															0																															
															0																															
															0																															
															1																															
															0																															
															1																															
															1																															
															0																															
															0																															
															0																															
															1																															
															0																															
															0														(86,87)																1	
															0														(85,86)																0	
															0														[84,85]																0	
															0														[83,84)																0	
															0														[81,82) [82,83) [83,84)																0	
															0																														0	
															0														[80,81)																0	
KBOS	KBWI	KCLE	KCLT	KCVG	KDCA	KDEN	KDFW	KDTW	KEUG	KIAH	KLAS	KLAX	KLGA	KMCI	KMCO	KMSP	KORD	KPHL	KPHX	KPIT	KSAC	KSAN	KSAT	KSEA	KSFO	KSMX	KSTL	KTPA	station	KBOS	KBWI	KCLE	KCLT	KCVG	KDCA	KDEN	KDFW	KDTW	KEUG	KIAH	KLAS	KLAX	KLGA	KMCI	KMCO	KMSP

Table 20: (continued)

KORD	KPHL	KPHX	KPIT	KSAC	KSAN	KSAT	KSEA	KSFO	KSMX	KSTL	KTPA
		_	_		_	_	<u> </u>				_


A.7.6 Interpolating

Gaps in the training and testing files were linearly interpolated. A gap is one or more missing minute-by-minute records. For example, the following sequence of windspeed records (where each record has a windspeed field preceded by a timestamp field having the format YYYYMMDDHHmmhhmm where YYYY is the year, MM is the month, DD is the day, HH is the local standard-time hour, mm is the minute, and hh is the UTC hour) has two gaps (a one-record or two-minute gap between UTC 05:02 and UTC 05:04 and a three-record or four-minute gap between UTC 05:05 and UTC 05:09):

After interpolation, the sequence is

The interpolation routine (a portion of which is shown immediately below in Java code) truncates fractional values instead of rounding to the nearest integer:

```
double dWindSpeedKnotsInterval = (iWindSpeedKnotsNext -
1
       iWindSpeedKnots)/ (double) diffInMinutes;
2
    double dWindSpeedInterpolated = (double) iWindSpeedKnots;
3
    for (int j=1; j<diffInMinutes; j++) {
4
      calLocal.add(Calendar.MINUTE, 1);
5
      calUtc.add(Calendar.MINUTE, 1);
6
7
      dWindSpeedInterpolated += dWindSpeedKnotsInterval;
8
      // build field
9
      String formattedLocalTimestamp = sdf.format(calLocal.getTime());
10
```


Non-negative adjacent windspeeds difference per minute normalized to standard deviations

Figure 40: Histogram of Table 21 sans frequencies of 0: Frequency distribution table summarizing the 30 stations' frequency distributions of $\sigma_{\delta,ws}$ for all $\delta > 0$

```
String formattedUtcHourAndMinutes = sdfUtc.format(calUtc.getTime ());

String interpolatedLine = formattedLocalTimestamp +

formattedUtcHourAndMinutes +

"," + (int) dWindSpeedInterpolated;

writeLine(interpolatedLine + ",i\n", writer);

}
```

A.8 AVERAGE WINDSPEEDS FOR EACH STATION

The average windspeed in knots is given in ascending order in Table 22 for each station's 11 years of minute-by-minute windspeed data in the wind_knots fields of the station's training and testing benchmark files. As stated elsewhere, to derive that windspeed data, we cleaned and interpolated ASOS data.

Table 21: Frequency distribution table summarizing the 30 stations' frequency distributions of $\sigma_{\delta,ws}$ for all $\delta \geq 0$

$\sigma_{\delta,ws} \forall \delta \ge 0$	Frequency	$\sigma_{\delta,ws} \forall \delta \ge 0$	Frequency	$\sigma_{\delta,ws} \forall \delta \geq 0$	Frequency
[0,1)	4503491	[29,30)	6	[58,59)	0
[1,2)	828842	[30,31)	3	[59,60)	0
[2,3)	152669	[31,32)	1	[60,61)	0
[3,4)	27134	[32,33)	4	[61,62)	0
[4,5)	7092	[33,34)	2	[62,63)	0
[5,6)	2209	[34,35)	1	[63,64)	0
[6,7)	892	[35,36)	1	[64,65)	0
[7,8)	447	[36,37)	1	[65,66)	0
[8,9)	293	[37,38)	0	[66, 67)	0
[9,10)	139	[38,39)	1	[67,68)	1
[10,11)	75	[39,40)	0	[68,69)	0
[11,12)	67	[40,41)	0	[69,70)	0
[12,13)	32	[41,42)	0	[70,71)	0
[13,14)	19	[42,43)	0	[71,72)	1
[14,15)	30	[43,44)	0	[72,73)	1
[15,16)	13	[44,45)	0	[73,74)	0
[16,17)	11	[45,46)	0	[74,75)	1
[17,18)	17	[46,47)	0	[75,76)	0
[18,19)	7	[47,48)	0	[76,77)	0
[19,20)	9	[48,49)	0	[77,78)	0
[20,21)	12	[49,50)	0	[78,79)	0
[21,22)	7	[50,51)	0	[79,80)	0
[22,23)	2	[51,52)	0	[80,81)	0
[23,24)	8	[52,53)	0	[81,82)	0
[24,25)	7	[53,54)	0	[82,83)	0
[25,26)	1	[54,55)	0	[83,84)	0
[26,27)	2	[55,56)	0	[84,85)	0
[27,28)	1	[56,57)	0	[85,86)	0
[28,29)	4	[57,58)	0	[86,87)	1
cont. abo	ove right	cont. abo	ve right	$[87,\infty]$	0

A.9 SURVEY DATA

Please see Tables 23 on the next page, 24 on page 205, and 25 on page 206.

Table 22: For each station, the average windspeed in knots over the 11 years of the benchmark's minute-by-minute windspeeds (after cleaning and interpolating ASOS data)

station	knots	station	knots
KSAN	5.12	KLAS	7.02
KSAC	5.20	KDCA	7.27
KCLT	5.35	KDTW	7.49
KPHX	5.64	KSTL	7.52
KBWI	5.68	KSAT	7.52
KTPA	5.75	KMSP	7.82
KEUG	5.80	KPHL	7.90
KSMX	5.81	KORD	8.15
KLAX	6.29	KCLE	8.21
KPIT	6.31	KDEN	8.67
KMCO	6.52	KMCI	8.83
KSEA	6.56	KSFO	8.88
KIAH	6.65	KLGA	9.23
KCVG	6.98	KDFW	9.26
KATL	6.98	KBOS	9.40

Table 23: Interview and respondent information

No.	Survata Interview ID	Date (UTC)	Ctry.	St.	Metro Area	Gender	Age	o. s.	Browser
П	b5746a41-4017-4ef4-9ddc-ffebb7ba78dd	2017-11-15 20:08:52.0	SN	НО	CINCINNATI	J	35 to 44	windows	ie
2	b7e45552-335c-48fe-96b6-88d7edb8201b	2017-11-15 20:10:26.0	Ω S	PA		ш	55 to 64	windows	ie
ಣ	9d353b4b-6c9e-47ad-88f9-6b54e6f36631	2017-11-15 20:10:07.0	Ω S	NY	NEW YORK	П	25 to 34	windows	chrome
4	cd1d142e-950a-49e7-baa1-6f208997328b	2017-11-15 20:11:24.0	Ω S	NV	SALT LAKE CITY	Ţ	18 to 24	windows	chrome
70	de6f0fc9-2bfe-48a1-ba69-c88df30d93fd	2017-11-15 20:11:57.0	Ω S	FL	ORLANDO-DAYTONA BCH-MELBRN	П	18 to 24	android	none
9	8802fa41-00e9-45e8-96c9-ffcc6e29c508	2017-11-15 20:11:40.0	Ω S	OR	PORTLAND, OR	ш	25 to 34	windows	chrome
_	f8974fbc-a2c7-427b-bc0d-8625e662e698	2017-11-15 20:12:50.0	Ω S	MD	BALTIMORE	4	25 to 34	windows	chrome
∞	fdba5fa8-d07b-442b-8fe7-84e65ea7be6c	2017-11-15 20:13:29.0	Ω S	PA	HARRISBURG-LNCSTR-LEB-YORK	Е	35 to 44	windows	ie
6	d7c26bb8-3244-4e99-9bf6-594f548c9d90	2017-11-15 20:14:07.0	Ω S	N	LAS VEGAS	4	55 to 64	windows	other
10	1609a0be-ca14-4e4e-945a-98627f333602	2017-11-15 20:14:42.0	Ω S	MO	KANSAS CITY	Ţ	25 to 34	android	none
11	082f8fd6-c0d8-467a-b0be-909afdba9a8c	2017-11-15 20:16:33.0	Ω S	НО	CINCINNATI	Ţ	45 to 54	windows	chrome
12	a857d98f-6a00-4286-a358-aa8e208c1ba7	2017-11-15 20:19:50.0	Ω S	VA	ROANOKE-LYNCHBURG	Ŧ	45 to 54	windows	chrome
13	a554cfcb-6d0f-4d63-a9aa-fcd453fc64ee	2017-11-15 20:19:18.0	Ω S	ΑZ	PHOENIX (PRESCOTT)	Ш	25 to 34	macos	chrome
14	dca7b497-4a47-4a02-9de6-72013f3d2702	2017-11-15 20:17:48.0	Ω S	CA	SANTABARBRA-SANMAR-SANLUOB	Ŧ	18 to 24	other	chrome
15	4270177a-49ac-47b8-8cd3-3251c7948a07	2017-11-15 20:18:25.0	ns	MO	ST. LOUIS	Ŧ	55 to 64	other	chrome
16	fddb292d-4a35-458a-80f1-2b7ca6e6d8ff	2017-11-15 20:19:15.0	ns	CI	HARTFORD & NEW HAVEN	ш	18 to 24	android	chrome
17	7c77fe7a-4fd6-473e-8h59-0090d6d4005e	2017-11-15 20:20:41.0	Sn	NY	UTICA	4	65 and over	windows	chrome
<u>∝</u>	a.3304740-918d-4ch7-a45h-372hce1hhf42	2017-11-15 20:20:41 0	SII	Z	INDIANAPOLIS	4	18 to 24	windows	chrome
19	h37c7a75-f507-4966-h958-18ha896830e5	2017-11-15 20:21:05.0	Sn	ΤΛ	BURLINGTON-PLATTSBURGH	Ħ	18 to 24	windows	chrome
50	3c24fda4-757a-423b-ae72-4e1b700463df	2017-11-15 20:21:22.0	SD	UT	SALT LAKE CITY	Ŧ	45 to 54	windows	firefox
21	a2076bc5-87b9-4c5f-85af-bbfa3ef338b0	2017-11-15 20:20:46.0	Sn	N	LAS VEGAS	В	18 to 24	macos	chrome
22	fe88f393-f992-4chc-h081-4fh8f1aa63f2	2017-11-15 20:23:21.0	Sn	OM	ST. TOUIS	В	25 to 34	windows	chrome
23	h6954466-784a-4859-9939-7679470a9f0h	9017-11-15 90:99:38 0	i i	' Z	LAFAVETTE IN	÷	45 to 54	windows	other
200	a7a59944.4b19.486f-a059.3060930066ef	9017-11-15 90:93:19 0	S I	ΔM	SEATTLE-TACOMA	٠ ٤	25 to 34	android	chrome
	264hafe7 3878 Aabe a67f 334047486188	9017 11 15 90:99:94 0	ם מ	: >N	NEW VORK	1 8	25 to 34	mindoms	chrome
3 6	50UDate1-2818-45De-a011-22U0U1480188	2017-11-19 20:22:24:0	0 C		DAMON POLICE	II -	20 00 04 4 7 7	ewoDiiiw	ciii Oiiie
97	89d44838-06ff-4b9c-9b2c-d602f8104488	2017-11-15 20:24:44.0	s :	ΓA	BALON ROUGE		45 to 54	swopuiw	other .
22	601a12d5-0b2e-48b4-844e-0eadca5071f4	2017-11-15 20:23:26.0	Sn	λŇ	ROCHESTER, NY	44	25 to 34	other	chrome
28	0836c184-82fa-4913-b3ef-d8dacacf2dc8	2017-11-15 20:26:26.0	SN	FL	ORLANDO-DAYTONA BCH-MELBRN	4	65 and over	windows	chrome
58	34631f62-5f2e-45e7-ac12-425bbfffb5aa	2017-11-15 20:25:27.0	Ω S	NY	NEW YORK	Ţ	25 to 34	windows	firefox
30	7ea67efe-39eb-440b-b40f-55fd1124711e	2017-11-15 20:25:44.0	$_{ m CO}$	SC	GREENVLL-SPART-ASHEVLL-AND	Ŧ	55 to 64	windows	other
31	07176b31-40a0-4419-863b-b43056786648	2017-11-15 20:25:35.0	Ω S	PA		п	25 to 34	windows	chrome
32	b33d414e-7758-4258-bb4b-0c188af8e150	2017-11-15 20:25:54.0	Ω S	CA	CHICO-REDDING	п	25 to 34	windows	chrome
33	d56766cc-15dc-4b08-8fcd-50ea3d47f5ef	2017-11-15 20:28:13.0	Ω S	ΤX	WACO-TEMPLE-BRYAN	Ш	18 to 24	macos	chrome
34	b43265d1-3e08-49d4-9f14-2f1ba7e22424	2017-11-15 20:27:15.0	$_{ m CO}$	FL	ORLANDO-DAYTONA BCH-MELBRN	Ŧ	25 to 34	android	chrome
35	60092ef6-af86-4743-b92c-5f6968f8cf81	2017-11-15 20:28:45.0	$_{ m CO}$	ΛM	CHARLESTON-HUNTINGTON	Ŧ	55 to 64	windows	chrome
36	c437c1e6-433d-4fa4-87eb-542b01eab6b8	2017-11-15 20:29:25.0	$_{ m CO}$	FL	ORLANDO-DAYTONA BCH-MELBRN	ш	25 to 34	windows	chrome
37	6cd62600-47c2-4639-a036-c0ba1e1449fa	2017-11-15 20:30:00.0	$_{ m CO}$	NY	BINGHAMTON	Ŧ	2	windows	chrome
38	3482ea61-0c30-493d-9046-833d0d937658	2017-11-15 20:29:22.0	Ω S	MN	MINNEAPOLIS-ST. PAUL	Ш	25 to 34	android	none
39	4b44b3ee-ba21-47c7-9c4e-a1aff217f934	2017-11-15 20:30:15.0	Ω S	НО	CLEVELAND-AKRON (CANTON)	Ŧ	25 to 34	windows	chrome
40	10e8a8a4-e59e-477e-add2-2020118b6852	2017-11-15 20:29:52.0	Ω S	MI	DETROIT	Ţ	25 to 34	android	chrome
41	7c9ea4cd-d8cd-4f69-a36e-ebdd9cc121a0	2017-11-15 20:31:32.0	Ω S	ΥL		Ŧ	18 to 24	android	none
42	d53b40ac-ae10-4100-8e45-b5486b1f3146	2017-11-15 20:33:39.0	Ω S	FL	TAMPA-ST. PETE (SARASOTA)	Ţ	55 to 64	windows	chrome
43	bbf0c0f0-0464-4c1c-8971-c5c7e92ada32	2017-11-15 20:33:32.0	Ω S	PA	PHILADELPHIA	Ш	25 to 34	macos	chrome
44	decec206-744b-4323-ace0-3c4b1a6f00ea	2017-11-15 20:36:44.0	Ω S	MI	TRAVERSE CITY-CADILLAC	ш	35 to 44	windows	firefox
45	1c22b08d-93fe-4b67-a3c3-abce20e8f7e7	2017-11-15 20:33:57.0	$_{ m CO}$	Z	SOUTH BEND-ELKHART	ш	18 to 24	macos	chrome
46	cce91ce2-3708-4a24-bc3f-64ffa82da968	2017-11-15 20:33:41.0	Ω S	НО	TOLEDO	Ш	18 to 24	windows	chrome
47	d029393a-5a4f-434c-9e4a-2c3612da1bea	2017-11-15 20:34:26.0	Ω S	НО	CINCINNATI	П	35 to 44	windows	chrome
48	580b3ee3-cd74-4cb5-911f-e5bf7c4a3706	2017-11-15 20:35:20.0	SO	NC.	CHARLOTTE	m,	요.	macos	safari
49	419282e5-8192-43b6-8a54-704228b5f88a	2017-11-15 20:35:51.0		- VA	HARRISONBURG	.	18 to 24	windows	chrome
							5	Continued on next page	next $page$

199

Table 23: (continued)

Table 23: (continued)

										_	_																																				-	
firefox	9000	211211	$_{ m chrome}$	$_{ m chrome}$	$_{ m chrome}$	other	$_{ m chrome}$	ie	$_{ m chrome}$	safari	safari	chrome	safari	$_{ m chrome}$	chrome	chrome	chrome	none	other	ie	other	other	$_{ m chrome}$	$_{ m chrome}$	none	other	$_{ m other}$	$_{ m chrome}$	$_{ m chrome}$	other	$_{\rm chrome}$	chrome	chrome	safari	firefox	chrome	$_{ m chrome}$	safari	$_{ m other}$	$_{ m chrome}$	other	$_{ m chrome}$	safari	$_{ m chrome}$	chrome	sararı	next nage	The base
windows	produce	מיותדחות	windows	macos	ios	windows	ios	windows	windows	android	windows	android	windows	windows	windows	windows	windows	windows	android	windows	windows	macos	windows	windows	windows	windows	windows	ios	windows	windows	windows	ios	windows	windows	windows	windows	macos	windows	windows	10S windows	Continued on next nage	The same and the s						
45 to 54 25 to 34	25 to 34		55 to 64	55 to 64	65 and over	18 to 24	65 and over	45 to 54	18 to 24	55 to 64	55 to 64	55 to 64	35 to 44	35 to 44	25 to 34	18 to 24	65 and over	25 to 34	65 and over	45 to 54	25 to 34	45 to 54	35 to 44	65 and over	35 to 44	55 to 64	55 to 64	65 and over	55 to 64	55 to 64	25 to 34	25 to 34	55 to 64	25 to 34	55 to 64	45 to 54	65 and over	45 to 54	55 to 64	65 and over	65 and over	35 to 44	65 and over	55 to 64	55 to 64	25 to 34 35 to 44		5
88	Ш	!	£	Ţ	¥	Ħ	¥	£	ш	Ш	Ţ	Ţ	E	Ш	Ţ	Ţ	Ţ	Ŧ	Ţ	Ţ	£	£	ш	Ħ	Ш	£	щ.	Ţ	Ш	ш	н,	4 4 4	- E	1 8	4	Ţ	Ŧ	Ŧ	Ţ	ч.	Ţ	Ţ	Ţ	Ш	ч	E E	=	
MINNEAPOLIS-ST. PAUL BOISE	BOISE		DETROIT	SEATTLE-TACOMA	BUFFALO	HONOLULU	ATLANTA	CINCINNATI	RENO	SEATTLE-TACOMA	BOSTON (MANCHESTER)	ST. LOUIS	NASHVILLE	GREENVLL-SPART-ASHEVLL-AND	DETROIT	DENVER	PHILADELPHIA	CHICO-REDDING	HELENA		KNOXVILLE	MADISON	MINOT-BSMRCK-DCKNSN (WLSTN)	WILKES BARRE-SCRANTON-HZTN	SALT LAKE CITY	KANSAS CITY	CORPUS CHRISTI	CHATTANOOGA	NEW YORK	TULSA	LOS ANGELES	CHARLOTTE CIEVEL AND AKBON (CANTON)	NASHVILLE	MIAMI-FT, LAUDERDALE	ROCKFORD	PHILADELPHIA	WASHINGTON, DC (HAGRSTWN)	SEATTLE-TACOMA	COLUMBUS, OH	NEW YORK	TAMPA-ST. PETE (SARASOTA)	BEAUMONT-PORT ARTHUR	ST. LOUIS	ST. LOUIS	WASHINGTON, DC (HAGRSTWN)	DALLAS-FT. WOKTH TOLEDO		
NN V		OR	MI	WA	NY	HI	ВA	НО	NΛ	WA	MA	MO	NL	SC	MI	CO	PA	CA	$_{ m ML}$	GA	NL	WI	ND	PA	ΜĀ	MO	ΤX	NL	NY	OK	CA	NC	E N	FI	l I	NJ	ΛM	WA	НО	NY	FL	ΤX	MO	MO	ΛM	Y.I.	5	
US	SI	כ	Ω S	SO	Ω S	SO	Ω S	Ω S	ns	ns	ns	Ω	Ω S	Ω S	$_{ m CO}$	Ω S	Ω S	Ω S	SO	US N	a SI	SI	Sn	Ω S	SO	Ω S	Ω S	Ω S	$_{ m CO}$	Ω S	Ω S	Ω S	Sn	S I	ב ס													
2017-11-15 21:02:49.0	0017-11-15 01 01 14 0	0.1.1.0.1.2.01.1.1.01	2017-11-15 21:02:19.0	2017-11-15 21:03:09.0	2017-11-15 21:03:04.0	2017-11-15 21:03:44.0	2017-11-15 21:03:15.0	2017-11-15 21:02:19.0	2017-11-15 21:03:08.0	2017-11-15 21:03:36.0	2017-11-15 21:03:11.0	2017-11-15 21:03:38.0	2017-11-15 21:02:38.0	2017-11-15 21:03:51.0	2017-11-15 21:03:28.0	2017-11-15 21:13:09.0	2017-11-15 21:05:14.0	2017-11-15 21:05:18.0	2017-11-15 21:10:03.0	2017-11-15 21:07:17.0	2017-11-15 21:04:59.0	2017-11-15 21:07:00.0	2017-11-15 21:07:06.0	2017-11-15 21:07:53.0	2017-11-15 21:07:16.0	2017-11-15 21:07:33.0	2017-11-15 21:07:29.0	2017-11-15 21:07:12.0	2017-11-15 21:07:22.0	2017-11-15 21:08:38.0	2017-11-15 21:08:34.0	2017-11-15 21:08:41.0	2017-11-15 21:03:00	2017-11-15 21:09:42.0	2017-11-15 21:10:47.0	2017-11-15 21:10:03.0	2017-11-15 21:12:40.0	2017-11-15 21:11:44.0	2017-11-15 21:09:57.0	2017-11-15 21:09:28.0	2017-11-15 21:11:37.0	2017-11-15 21:10:37.0	2017-11-15 21:11:12.0	2017-11-15 21:11:38.0	2017-11-15 21:11:14.0	2017-11-15 21:10:44.0	0.00.11.12.01.11.10.00	
04b47051-a14e-478b-bb11-d7bd5eadb881	. of. 1l.f7 fcss /110K sKRO 80sK7ss710Ks	dola4D1/-10ac-4120-a000-02a010011200	cade6994-a478-4d15-8950-716d3d8d7a0d	27e97099-0d86-48cc-aeb5-0c06e1460dc6	1ae4e168-ddd5-4f5c-ba4f-ef35d489992d	91ee71ac-bb24-4e6e-9762-199a2935859a	3545d20c-d6fa-4bc6-a731-3293910eef7a	fcd3646b-10e9-4c4e-bf4c-4c65161ff47d	93b7025c-d036-43f8-ab05-354338c79178	4653d275-d630-43e3-9e28-ede5f8642c5c	2476eb71-85e8-40f0-a7c8-f463e67bcf00	03dfd799-04f7-48ed-ad87-381eae736502	9ca8a410-a938-4cc6-8348-0adbee0a32f5	40d44f99-dd07-4c20-a4f5-83b227f78fa1	95eabfa5-b0ed-4068-90a4-d86d0869c7e8	bb2702f4-770e-4667-9615-a04010fe4414	df9a5da4-4830-42e7-a570-fcab6dc6c4c6	aa4f7bdb-07c5-4ec8-880e-e44441251b0a	509b690e-1b7c-494e-8412-79ca61253c03	3719f6c9-13e8-4d0e-a9f7-2a7cc8d3c9a9	2127bea3-5f08-48a3-8895-90569c374896	fb8c1247-0cdd-495b-9293-2ec4d069ec9c	679eb30a-2dcb-494a-b48e-aba7287e84e2	e8737392-f19f-42ca-9662-f114eb21e0e9	802fc9f1-cdbc-4a79-8b33-62cd6c2866e3	5375edbe-4c10-44e2-8736-50f7732052f7	153577a8-e163-438f-9b99-87fcbefef183	8eb15225-f670-437b-a52c-57b375d93e68	806ffb20-108a-4d91-af44-a1248669a42b	b54f66af-1168-4130-8233-5f0212d5ab50	938af9d1-6695-4aec-bce8-331a4f32055d	aabf855d-0208-4df8-a31b-933e5a8f95e0 10870bbf 7b2c 43a3 8e67 44c4743a0a51	2.301.0001-1.026-3362-3301-44631 43635001-	4f87edaa-ec99-485e-bh3d-d2fc8ab6bed8	31022702-0814-4b6b-b3d2-62cbad174728	a2566c97-f10f-4a57-9c2c-f69c13796ae9	d49b15fb-295e-473a-b59e-d46c892b12d5	82aa3005-ef1a-4f66-bc9a-bb96c553e70b	c53adb09-5e8c-494e-825c-65c37d395cb1	8245a8b8-320e-46b6-ae88-a771c2a0ee47	47545c45-052f-4a5a-9e19-c1e1363509f1	c1df249e-c466-4f48-8b8a-504a6855a934	9b382fea-d574-4121-b9a7-92160cdfd67d	6ef40f78-c84e-449e-b0f0-f0bd1ec31ce2	89599c53-e490-416f-9c78-cc1b34c75094	717bebee-3001-409e-8472-5e1b3173185b a2c79658_4e26-4964-928-959300b54ba4		
102		103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	135	136	137	138	139	140	141	142	143	144	145	146	147	148	- CF-	

Table 23: (continued)

		_																																														_	
	ohnono	chrome	ciii oiiie	chrome	chrome	chrome	u	other	$_{ m chrome}$	chrome	safari	other	chrome	chrome	other	chrome	other	chrome	chrome	chrome	other	ie	chrome	$_{ m chrome}$	$_{ m chrome}$	other	$\frac{\text{firefox}}{1}$	chrome	chrome	other	попе	chrome	chrome	chrome	other	$_{ m chrome}$	$_{ m other}$	safari	$_{ m chrome}$	$_{ m chrome}$	firefox	next page	7						
	min done	windows	swoDIIIw	windows	macos	ios	windows	windows	ios	android	windows	windows	windows	macos	windows	android	windows	other	SWODIIW.	swopuiw	windows	android	windows	windows	windows	windows	macos	windows	macos	windows	android	windows	Continued on next page																
11 00 00	, a d	18 +0 34	10 07 4	35 to 44	45 to 54	45 to 54	45 to 54	25 to 34	65 and over	25 to 34	65 and over	18 to 24	45 to 54	18 to 24	65 and over	18 to 24	25 to 34	35 to 44	45 to 54	18 to 24	35 to 44	55 to 64	55 to 64	55 to 64	65 and over	65 and over	55 to 64	25 to 34	45 to 54	35 to 44	55 to 64	65 and over	65 and over	35 TO 44	ob and over	25 to 34	55 to 64	65 and over	65 and over	55 to 64	65 and over	18 to 24	65 and over	35 to 44	45 to 54	55 to 64	45 to 54	- 5	
1111	J	- 4	-	H,	'	4	J	Ŧ	Ŧ	Н	Ŧ	Н	4	Ε	Ш	Ε	I	Ε	Ш	Ш	J	Н	J	Ħ	Ŧ	. 4	Ŧ	f	J	Ŧ	ш	Ţ	٠, ٠	ц	·	- E	I	Н	Ш	f	Ш	Ш	Ŧ	ш	Ŧ	ш	4 4 4	•	
COncinition, SO	V COON VEELVEC	MADISON	MADISON	COLUMBUS, OH	RALEIGH-DURHAM (FAYETVLLE)	PITTSBURGH	LITTLE ROCK-PINE BLUFF	WILKES BARRE-SCRANTON-HZTN	GRAND RAPIDS-KALMZOO-B.CRK	PHILADELPHIA	PHILADELPHIA	HARTFORD & NEW HAVEN	ATLANTA	CLEVELAND-AKBON (CANTON)	ORLANDO-DAYTONA BCH-MELBRN		CINCINNATI	GRAND RAPIDS-KALMZOO-B.CBK	OKLAHOMA CITY	CHAMPAIGN&SPRNGFLD-DECATUR	NEW YORK	NEW YORK	LOS ANGELES	ANCHORAGE	GREENSBORO-H.POINT-W.SALEM	BOSTON (MANCHESTER)	NOUSTON	TULSA	HOUSTON	COLUMBUS, OH	TAMPA-ST. PETE (SARASOTA)	MANKATO	TUCSON (SIERRA VISTA)	ANOAVILLE	INDIANAPOLIS	ROCHESTER NV	CEDAR RAPIDS-WTRLO-IWC&DUB	PHILADELPHIA	GREEN BAY-APPLETON	PHOENIX (PRESCOTT)	WILKES BARRE-SCRANTON-HZTN	NEW ORLEANS	SEATTLE-TACOMA	BOISE	HARTFORD & NEW HAVEN	TAMPA-ST. PETE (SARASOTA)	CLEVELAND-AKRON (CANTON) CORPIIS CHRISTI		
) E	N T	1 N	HO:	S .	PA	AR	PA	MI	Ŋ	PA	$_{\rm CI}$	GA	ЭHO	FL	NN	HO	M	OK	IL	NY	NY	CA	ĀK	NC	HN	ΤX	OK	ΤX	НО	FL	MN	AZ		NI E	ī Ņ	ΥI	PA	WI	AZ	PA	LA	WA	Π	$_{ m CI}$	FL	HO	- ; -	
2	i DI	0 D	2 5	2	S	SD	ns	Ω S	Ω S	Ω	Ω S	ns	Sn	SII	Sn	SI	SD	SII	SD	Ω S	ns	ns	ns	Sn	Sn	SD	Sn	Ω S	SD	200	s c	3 E	SD	ns	Ω S	Ω	Ω S	US IIS)										
0.01.11.12.01.11.102	0 60.61.16 31.17.06	2017-11-19 21:13:05:0	201/-11-10 21:11:44:0	2017-11-15 21:12:02:0	2017-11-15 21:12:40.0	2017-11-15 21:12:51.0	2017-11-15 21:13:46.0	2017-11-15 21:13:27.0	2017-11-15 21:15:02.0	2017-11-15 21:14:00.0	2017-11-15 21:13:49.0	2017-11-15 21:14:07.0	2017-11-15 21:14:33.0	2017-11-15 21:14:31.0	2017-11-15 21:14:24.0	2017-11-15 21-15-51 0	2017-11-15 21:15:32.0	2017-11-15 21:16:37.0	2017-11-15 21:17:21.0	2017-11-15 21:16:06.0	2017-11-15 21:17:37.0	2017-11-15 21:17:04.0	2017-11-15 21:17:36.0	2017-11-15 21:17:53.0	2017-11-15 21:19:28.0	2017-11-15 21:19:07.0	2017-11-15 21:19:10.0	2017-11-15 21:18:24.0	2017-11-15 21:20:42.0	2017-11-15 21:18:45.0	2017-11-15 21:21:43.0	2017-11-15 21:20:29.0	2017-11-15 21:20:18.0	2017-11-15 21:19:44:0	2017-11-15 21:21:37.0	2017-11-15 21:21:24:0	2017-11-15 21:23:45.0	2017-11-15 21:20:12.0	2017-11-15 21:21:12.0	2017-11-15 21:21:40.0	2017-11-15 21:22:54.0	2017-11-15 21:21:53.0	2017-11-15 21:23:02.0	2017-11-15 21:22:56.0	2017-11-15 21:23:14.0	2017-11-15 21:23:58.0	2017-11-15 21:29:48.0		
0000 100000000000000000000000000000000	67464500 000 000 1 0227 6765 6000 000 000 000 000 000 000 000 000	0/494008-0243-4998-BCZ8-0000/001Z049	. 1000000 00	bd9f9063-Z0ee-4a9f-ab13-Z0cc9ab0bd07	ec61t018-t19a-4t12-89t7-aa2d2dtaece7	f0e9e248-e85e-4b6d-b8c0-855fedde455c	73fd9187-4f3b-4e47-8c98-8e58e2fa67ba	1b592da4-be10-42dc-aa08-621a8b1306ed	ab20b704-1056-4fba-a7d9-52e227ae045c	ee62d076-abe5-4f05-8925-afcf2950bcaf	a528f7ad-677f-4e1e-b7a7-1751ea753bb3	9f2a0a89-442c-408c-855b-a08961b2e13d	269af535-a403-4a3e-9ff3-464e362e7hfc	235c7h32-f79f-4456-a1c6-hhaeh6c5f015	c401589a-132c-4563-91f0-55dd8503b901	ce787hff-805h-4d29-h767-fcfa94d6a3hd	ac51hf69-f6ff-4c69-h0h3-393dhh005a81	a64ef346-55e9-49h1-931c-1f2h9eh7833f	ace2391c-11eb-43af-87d2-a3bea5c52d99	4efc00e1-794b-480e-a24d-2de00a89a61e	948c619f-a74b-41dd-ac1f-322ebfb14fde	ee698965-a7a4-4cce-90cc-21e88f2eed4f	f44e8cb1-e431-4eeb-8020-ff04d568b99e	ee81fd6a-3e56-46cf-8627-60c7db936516	70a8a0d6-65d8-4e14-80e9-caa075077f57	433b8bf3-578b-48b4-a746-deac2b8f2f22	36da39ee-d118-4b67-966a-ac6a3ba292db	46c9c3db-c3e9-494b-97e8-b295167533bf	7ef0f0f1-55d3-43cf-af0a-6e259a49e297	e113b635-44e0-4af9-8cf8-7e3aedeea753	ea8fdd76-3a10-4f22-9b7a-50fa69507ad3	d57e5b83-c510-426b-8b5e-481caac64991	727243f1-2f5d-4584-9cda-a15a7e4e6d05	DI995CGZ-DaSD-4Z89-9Z4a-Da9/5Z51Z29D	Zededd37-09a8-4457-a149-t3cc09a5bb8Z	2000fc40-64fc-4U0D-64/a-124ff302cubb 43a9694e-4553-41f1-h5h5-47957594ca64	6c0a9811-ad12-4e8f-8807-8hcdhh62ec30	7e910679-a794-4d8c-814e-1d62e50aa266	669132d2-99ad-4183-b067-5354fc736060	17eb9728-7a3f-4865-a404-8a75d492e21d	5432438d-2fa5-461f-829e-cbf229440c03	6343ebe1-191f-4c31-83c3-30cabbd7ccae	0009218e-e03a-40b2-a7f0-4f503e1cb564	ddd3deda-f944-4d9f-8bd4-280aedb1b7ad	71860a7d-4e34-43c3-898a-47c079e9dfbf	ab47e859-26a9-43b5-86bb-90b1dd183f93	ace42aa5-d910-45fe-9c68-5c0ac84b9ffa 64491b34-a7bb-4940-8b8a-40f50f1700a1		
-	, S	152	3 1	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	0 0 0 0	180	187	188	189	190	191	192	193	194	195	196	197	198	-	

Table 23: (continued)

																																																_	
	chrome	none	$_{ m other}$	$\frac{\text{firefox}}{\text{firefox}}$	$\frac{\text{firefox}}{\text{firefox}}$	$_{ m other}$	$_{ m chrome}$	other	other	none	chrome	chrome	chrome	firefox	none	other	safari	chrome	chrome	other	chrome	safari	chrome	other	chrome	chrome	other	other	safari	$_{ m other}$	$_{ m chrome}$	$_{ m chrome}$	chrome	chrome	nrerox	chrome	none	other	safari	other	$_{ m other}$	other	$_{ m frefox}$	safari	other	none	chrome	next page	,
Windows	android	android	windows	macos	windows	windows	windows	windows	windows	android	windows	windows	windows	windows	android	windows	macos	windows	windows	windows	windows	ios	windows	windows	windows	windows	windows	windows	ios	windows	windows	windows	windows	android	windows	windows	android	windows	ios	windows	windows	windows	windows	ios	windows	android	other	Continued on next page	
55 to 64	35 to 44	25 to 34	55 to 64	25 to 34	55 to 64	65 and over	65 and over	55 to 64	55 to 64	45 to 54	45 to 54	55 to 64	55 to 64	45 to 54	18 to 24	55 to 64	25 to 34	35 to 44	25 to 34	55 to 64	45 to 54	25 to 34	45 to 54	45 to 54	65 and over	18 to 24	55 to 64	55 to 64	65 and over	65 and over	25 to 34	25 to 34	65 and over	25 10 54	65 and over	45 to 54	55 to 64	45 to 54	35 to 44	55 to 64	65 and over	65 and over	55 to 64	65 and over	55 to 64	25 to 34	25 to 34	- 5	
+-	E	4	ш	J	J	4	4	J	J	E	E	Ŧ	Ţ	E	E	J	Ŧ	Е	Ŧ	E	Ħ	Ħ	Ш	Ŧ	Ŧ	Ħ	Ħ	E	J	Ŧ	ш	Ŧ	4	Ξ,	⊢ {	∄ 8	ļ ¥	Ш	E	Ŧ	Ŧ	J	ш	ш	ш	E '	₩ £	ŧ	
LOS ANGELES			KANSAS CITY	SEATTLE-TACOMA	PHOENIX (PRESCOTT)	PORTLAND, OR	DETROIT	WILKES BARRE-SCRANTON-HZTN	FLINT-SAGINAW-BAY CITY	ST. LOUIS	WAUSAU-RHINELANDER	PITTSBURGH	PROVIDENCE-NEW BEDFORD	CHICAGO	WAUSAU-RHINELANDER	TRI-CITIES, TN-VA	WILKES BARRE-SCRANTON-HZTN	CHICAGO	DAVENPORT-R.IOLAND-MOLINE	PITTSBURGH	CINCINNATI	PHILADELPHIA	CINCINNATI	DAYTON	WEST PALM BEACH-FT. PIERCE	HARRISONBURG	ERIE	TAMPA-ST. PETE (SARASOTA)	PHILADELPHIA	MINOT-BSMRCK-DCKNSN(WLSTN)	PHILADELPHIA	LA CROSSE-EAU CLAIRE	BOWLING GREEN	DOSLON (MANCHESLER)	OKLANDO-DAI I ONA BCH-MELBKIN NOPTH BI ATTE	CINCINNATI	DALLAS-FT. WORTH	ORLANDO-DAYTONA BCH-MELBRN	PHILADELPHIA	DETROIT	CHARLESTON, SC	HOUSTON	WATERTOWN	NEW YORK	CORPUS CHRISTI	DETROIT	DENVER PHII ADEI PHIA		
CA	ΥL	OK	MO	WA	AZ	WA	MI	PA	MI	MO	WI	PA	RI	IL	WI	VA	PA	IL	IA	PA	НО	PA	НО	НО	FL	VA	PA	FL	PA	ND	PA	WI	KY	MA	J P	HO	ΥL	FL	PA	IM	SC	ΤX	NY	NY	ΤX	MI	CO	-	
ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	Sn	ns	Sn	ns	SO	SO	2 2	2 L	3 E	Sn	ns	ns	Sn	SO	ns	ns	ns	ns	SO	SO SI	2												
2017-11-15 21:26:14.0	2017-11-15 21:25:02.0	2017-11-15 21:24:35.0	2017-11-15 21:24:32.0	2017-11-15 21:24:35.0	2017-11-15 21:26:06.0	2017-11-15 21:25:31.0	2017-11-15 21:26:01.0	2017-11-15 21:25:10.0	2017-11-15 21:26:55.0	2017-11-15 21:26:53.0	2017-11-15 21:26:53.0	2017-11-15 21:27:58.0	2017-11-15 21:28:36.0	2017-11-15 21:28:55.0	2017-11-15 21:28:38.0	2017-11-15 21:29:41.0	2017-11-15 21:31:05.0	2017-11-15 21:29:55.0	2017-11-15 21:28:53.0	2017-11-15 21:28:52.0	2017-11-15 21:28:57.0	2017-11-15 21:28:56.0	2017-11-15 21:29:26.0	2017-11-15 21:29:54.0	2017-11-15 21:30:05.0	2017-11-15 21:28:54.0	2017-11-15 21:30:15.0	2017-11-15 21:30:24.0	2017-11-15 21:30:34.0	2017-11-15 21:33:57.0	2017-11-15 21:30:59.0	2017-11-15 21:32:27.0	2017-11-15 21:31:35.0	2017-11-15 21:31:10:0	2017-11-15 21:52:47.0	2017-11-15 21:33:05:0	2017-11-15 21:33:21.0	2017-11-15 21:32:16.0	2017-11-15 21:32:47.0	2017-11-15 21:34:27.0	2017-11-15 21:33:58.0	2017-11-15 21:35:44.0	2017-11-15 21:33:28.0	2017-11-15 21:34:00.0	2017-11-15 21:34:27.0	2017-11-15 21:34:19.0	2017-11-15 21:34:56.0	0.10.00.17.01.11.11.07	
3a85b7d2-b90f-4286-bbb0-9302b6d86863	18cd00c0-9c38-42cd-974b-fb6217fa78c4	31689ca7-d33f-460e-8312-75e84ad09854	44f37260-9da9-494e-af94-ae095e3ea3d9	5a0816c8-7fce-41f4-a440-1e9a32ac9a30	77798684-ceee-4811-8db6-2f9ec9296f30	a620e823-be61-4c11-968d-6dc4aa2fd53c	7c89c5ac-b96a-4026-b6fe-b05155950394	139d1fb6-32f1-45e2-a825-d61046e85d2c	cf155ec0-9d6a-47a4-b3e8-752d82bb4bae	8dd6ede2-eddd-486b-9879-4248e57c5edd	8c3f3ade-b4c3-46bf-9930-75974e9d5cad	8b1771db-ce01-41f9-9ac4-b41bdec9575a	4f1c887c-3941-425f-8aa4-ca6d8eedb414	4e835bd1-72a9-4866-abf2-211e03b4a576	63396bd9-3672-4493-8eef-235c6dcf9d99	00370c04-9675-45e2-96d7-b203bb71acfe	fd7e8902-3add-457d-b2e3-f23a89c2caf9	4ffafb2b-3e65-4eee-9f28-263622a322fa	861c8de3-338b-4c28-a8f6-061f43617934	d1989baa-ec06-4514-88c2-2768840b64c4	9143ff4a-1e2a-44ad-a322-30f0a15e2557	52e4b3b6-4371-4011-ba06-7fa3ba031542	dd27d4c8-b2c6-478a-8e17-46285391db5a	cc1bf1c6-782f-4c01-97cb-5e296ec0b50e	b39d02af-399e-4b7b-a5cc-0b35efa2b581	0c5576f9-1ebe-4550-9068-c846d0fb6b64	15c67607-176b-4881-abf4-0afa59797905	d245e3dd-5f4b-4642-ae09-dd09b8317861	9af14e2e-3082-4127-a61b-4455f01bb3d5	03f3a0ed-2e20-4975-ac8c-583b5175cfc9	6a3f7653-5004-41a7-bca3-af0c758b577e	7922e36c-df47-48da-bd9a-763b71c00e5d	497b4b1c-f79f-4144-9dd9-b9c66ce6ec63	ZDZUCZ9Z-615I-451Z-6dz0-05ezu95Izcu0	COSTQUE LOGO-460G-DOCO-29Q//DBAQ9Be	3074b367-800d-4129-a91a-fb#76815623	ef743387-7ec3-4dd8-ad45-f46671632d4e	29c1bccc-5f1b-4575-b231-e69e39e291ea	23169c9e-1d27-46d3-bb28-f88a42184a3e	3fd2c8f7-d076-411b-a021-b38164802405	dfdf976c-8814-493e-aed0-0e3a04611b41	983f81d9-c1a8-4ce4-a55c-575c6bd3ef37	e5e2fa86-2777-4062-a5f2-a2e540817de6	3328b95a-51bc-4c16-9572-4b6076af8746	eb0ca344-bf0a-43e1-a463-9ea1f3408730	0f367444-81f5-42da-ae36-b636f3e13231	7dad9754-aa87-492d-8ebd-5dce62ca9t0t		
200	201	202	203	204	202	206	207	208	500	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	400	255	237	238	239	240	241	242	243	244	245	246	247	248	-	

Table 23: (continued)

age	n next p	Continued on next page								
me	chrome	android	to 24	J	ODESSA-MIDLAND	TX	ns	2017-11-15 21:44:08.0	3c5296f4-04cb-4d3f-bd84-dfd42429693b	299
me rri	chrome	android	45 to 54 25 to 34	₩ [TAMPA-ST. PETE (SARASOTA) MOBILE-PENSAGOLA (FT WALT)	FL AL	s s	2017-11-15 21:43:07.0	8a3dd9de-d361-46f6-9d27-840c60aad9f5 hd2298e6-5cae-490a-h8fe-6ea2ec1ah563	297
ari —	safari	ios .	25 to 34	ч , с	KNOXVILLE	KY	Sn	2017-11-15 21:42:52.0	99526bd4-9b29-4f8d-947a-b798d0ebff39	296
me	chrome	windows	25 to 34	4	CINCINNATI	НО	Sn	2017-11-15 21:42:18.0	6c756144-5fd7-454b-bd88-2ff400c63ef1	295
me	chrome	windows	25 to 34	Ш	HARRISBURG-LNCSTR-LEB-YORK	PA	Sn	2017-11-15 21:41:55.0	b5cb80bc-9b1c-42c3-b6a2-7e4d9e832252	294
me _	chrome	android	18 to 24	· E	TULSA	OK	Sn	2017-11-15 21:42:31.0	47414a7f-c367-4635-8034-37b028014edc	293
er	other	ios	25 to 34	, 4,	BUFFALO	NY	an	2017-11-15 21:41:58.0	41febb94-28c9-468d-808f-2dcd40e36fa8	292
me m	chrome	windows	45 to 54 18 to 24	+ ·	LANSING ALBIOHEBOHE-SANTA FE	I Z	SD SI	2017-11-15 21:44:47.0	36b1dddb-a69b-41d8-9ae0-ac3e8e957a93 fb7ac5e5-3d9c-405a-a2bc-d0ba872bb6bf	290
me	chrome	windows	25 to 34	·+- ·	RALEIGH-DURHAM (FAYETVLLE)	NC		2017-11-15 21:42:32.0	bf60171d-ca9f-4d33-a84e-a05d4f6f39a2	289
me	chrome	other	18 to 24	4	YUMA-EL CENTRO	CA		2017-11-15 21:41:27.0	1bfdca17-8d1d-4df7-8004-69ecf6ae29d7	288
	ie.	windows	25 to 34	П		CA		2017-11-15 21:41:30.0	7e982155-70d5-4a77-8ad4-5d30a25122b6	287
me	chrome	android	18 to 24	н	HUNTSVILLE-DECATUR (FLOR)	AL		2017-11-15 21:42:07.0	6c8111b6-8149-4df9-8aaf-97bcf828e3f1	286
er	other	windows	65 and over	Ŧ	KANSAS CITY	KS		2017-11-15 21:42:35.0	b2cd958e-2214-4103-912f-3791564b21c9	285
me	chrome	windows	25 to 34	Ш	PHILADELPHIA	N	Ω S	2017-11-15 21:41:35.0	b04fd7a9-92d1-4a3f-8ca5-1f8b399e78d4	284
er	other	windows	35 to 44	. 4	BOSTON (MANCHESTER)	HN	Sn	2017-11-15 21:41:46.0	hf65f93c-570b-4d17-851e-1dd39dhe80fe	283
LI TO	satarı	10S	25 to 34	4	BOSTON (MANCHESTER)	HZ C	S E	2017-11-15 21:41:29.0	cc675t3d-t48b-4e98-8d95-a7870009712t	281
me	chrome	windows	65 and over	Π,	LINCOLN & HASTINGS-KRNY	NE	Sn	2017-11-15 21:42:30.0	25f45ed9-1fcb-471c-9ffb-eeab3001a540	280
1e	none	android	55 to 64	н	NEW YORK	Ν	ns	2017-11-15 21:42:26.0	dc09cd64-9239-46a7-b1bb-8f8879b33c12	279
	ie	windows	25 to 34	Ŧ	COLUMBIA-JEFFERSON CITY	MO	ns	2017-11-15 21:40:19.0	9c53530e-ed19-48a6-9beb-78531610a1cb	278
me	chrome	windows	55 to 64	ш	NEW YORK	CI	Sn	2017-11-15 21:40:32.0	1f8d5e8b-5687-42dd-be02-7b4f5540b7b4	277
m e	chrome	windows	55 to 64	₩ +	WEST PALM BEACH-FT. PIERCE	F.L.	S E	2017-11-15 21:41:26.0	/ / / / / / / / / / / / / / / / / / /	376
me	chrome	windows	25 to 34	ш	TAMPA-ST. PETE (SARASOTA)	FL	ns	2017-11-15 21:45:44.0	95163040-d77e-444f-95a1-2b3e7ee80349	274
me	chrome	windows	55 to 64	J	BANGOR	ME	ns	2017-11-15 21:40:27.0	0448df71-83f3-425b-87da-15e442de058c	273
me	chrome	windows	25 to 34	ш	WASHINGTON, DC (HAGRSTWN)	DC		2017-11-15 21:38:55.0	63592ffe-1456-49c1-b5d9-ccd0c5334246	272
III e	chrome	windows	15 to 64	1 8	KANSAS CITY	S M	S E	2017-11-15 21:38:19.0	13058db8-d5e5-410c-99dt4-10599/45990a	271
ле -	none	android	25 to 34	+-	PHOENIX (PRESCOIT)	AZ	S	2017-11-15 21:38:27.0	67.19b18U-1748-4b83-8c83-cbabtea6e863	526
me	chrome	windows	55 to 64	ч. ч	GREEN BAY-APPLETON	IM	Sn	2017-11-15 21:39:09.0	69390f6e-7b31-459c-9f44-4e8b7eb47ffe	268
me	chrome	other	25 to 34	П	CHICAGO	IL	Sn	2017-11-15 21:38:04.0	6714a573-a86d-4fab-8596-64ecb7aa0607	267
m e	chrome	windows	18 to 24	٠ ٤	GREENVILLE-N.BERN-WASHNGTN	Ü	SI	2017-11-15 21:38:21.0	34f0dde1-5d44-4b34-833a-716da57bdce2	266
le er	none	android	25 to 34	. 4	MILWAUKEE RALEIGH-DIIRHAM (FAVETVILE)	Z Z	s i	2017-11-15 21:40:33.0	dusayee-rc58-4c7d-8bfb-b9z658591c41 hb1a18e9-c6bf-4231-9600-bfb92c948888	265
me	chrome	windows	65 and over	EI.	INDIANAPOLIS	Z	SO	2017-11-15 21:38:00.0	8bbdd380-9989-4fba-85d4-b73fa462a214	263
me	chrome	windows	25 to 34	J	SPRINGFIELD, MO	AR	ns	2017-11-15 21:38:14.0	e301e6ac-3816-45b0-84ba-465f2a2020b3	262
me	chrome	windows	65 and over	4	FLINT-SAGINAW-BAY CITY	MI		2017-11-15 21:37:58.0	d172c513-64c0-4710-a96f-ebf4c6f96871	261
	ie	windows	35 to 44	В	PHILADELPHIA	PA		2017-11-15 21:36:34.0	5a99af06-4d85-4017-b025-8bce3ff1e09a	260
me	chrome	windows	65 and over	4	EVANSVILLE	Z		2017-11-15 21:39:07.0	dfc749d1-6287-4b0f-8809-18532f5473c3	259
me	chrome	windows	25 to 34	ш	SACRAMNTO-STKTON-MODESTO	CA		2017-11-15 21:35:56.0	ba3faf88-8dd7-4fd1-b6f8-327f9e68f488	258
me	chrome	windows	45 to 54	,	COLUMBUS, OH	НО		2017-11-15 21:35:10.0	a83d16cd-21e5-45ce-8b76-2e43e5a779ae	257
1e	none	android	18 to 24	1 8	PORTLAND, OR	OR		2017-11-15 21:35:24.0	e24a885e-6c60-4920-b715-bdd1889465ad	256
me	chrome	windows	25 to 34	1 8	PHILADELPHIA	PA	Sn	2017-11-15 21:35:29.0	d90cb592-75cc-4890-b0a4-1dffcc002355	255
er	other	windows	45 to 54	1 8	GINGINNATI	HO	Sn	2017-11-15 21:36:04.0	d225d8e5-a87f-454d-b8dc-f3f0a7echad8	254
me	chrome	windows	65 and over	1 8	ST. LOUIS	Π	Sn	2017-11-15 21:34:37.0	f92e54f0-628a-4c7b-8831-3f42a4f3d03c	253
×o	firefox	windows	25 to 34	. 8	PHILADELPHIA	PA	Sn	2017-11-15 21:35:32.0	1f211d9d-5b95-47da-9da0-e332ba1b4fe6	252
me me	chrome	windows	55 to 64	J	SAN DIEGO	Y O	Sn	2017-11-15 21:35:33.0	9eafh719-b73a-4h70-8efh-3f8805h55hbc	251
me	chrome	windows	35 to 44	Ħ	TULSA	OK	Sn	2017-11-15 21:34:39.0	3e7df673-0595-4303-ad4h-7975e804f859	250

Table 23: (continued)

chrome	other	chrome	chrome	chrome
windows	windows	android	android	windows
35 to 44	65 and over	18 to 24	18 to 24	35 to 44
ш	J	J	J	J
KNOXVILLE	FT. MYERS-NAPLES	LIMA	GREENVLL-SPART-ASHEVLL-AND	CINCINNATI
NL	FL	НО	NC	НО
Ω	Ω	Ω	Ω S	Ω
2017-11-15 21:44:59.0	2017-11-15 21:45:17.0	2017-11-15 21:45:03.0	2017-11-15 21:46:09.0	2017-11-15 21:45:54.0
ff538b55-a043-465f-b933-655c7a69c887	afb2d653-4d81-4337-92f3-8082c2a30e4f	86758ee0-fa73-4d15-ac28-8a85ebeb6a4f	0883daf-8511-46ad-8d0d-f08dfcfb1e31	8f4fddf-b004-43cb-bf5f-e55b07115828
ff538b58	afb2	867	308	48f

Table 24: Key of abbreviations used in header of Table 25

Abbrev.	Abbrev. Question
Q1	Q1 Would you support or oppose a wind turbine project if you could always see the installed turbines from where you live?
Q2	Would you support or oppose a wind turbine project viewable from where you live that uses only retractable wind turbines? Retractable wind turbines are
	able to be deployed and retracted when specified. E.g., deploy when windy and retract when calm.
S (Q2.Choice1)	Support retractable wind turbines under certain conditions
O (Q2.Choice2)	Oppose retractable wind turbines
Ć3	When should the retractable wind turbines be retracted and hidden? Check all that apply.
3C1 (Q3.Choice1)	When it's not windy
3C2 (Q3.Choice2)	When the month is not March
3C3 (Q3.Choice3)	During every morning
3C4 (Q3.Choice4)	During every afternoon
3C5 (Q3.Choice5)	During every night
3C6 (Q3.Choice6)	When birds are migrating
3C7 (Q3.Choice7)	During every weekend
3C8 (Q3.Choice8)	After it has been visible a certain proportion the month
C9 (Q3.Choice9)	Other
Q3.Choice9 [value]	Other [value]
Q4	After what percentage of the month that the wind turbine has been visible should the turbine be hidden?
Q 5	Q5 If you have any comments, please share them here. (Especially, if you oppose all types of wind turbines including retractable wind turbines, why?)

Table 25: Interview responses

Q5	no comments	none	i dont	No comment	If they are retractable, they will kill fewer birds. We need to kill all the birds.	No		do not oppose at all	No comments	no comment	no comments	no	No	none	none	I just don't like them being a part of our beautiful landscape.	nope	ON	no	no comment	I support the use of wind turbines.	I dont	I do not oppose	I don't have any comments	no comment	no comments	no comment	pro wind energy	I think they are a great idea	None	none i can think of	Alternative energy sources in-	cluding wind turbines are an	important advancement in our	and coal usage for energy.	I don't oppose	Great idea	because of cost to have them	None at this time	They good plan
45	10	50	82	60		20	20	10	20	10	80	0	0		5		20	1	7		10	5	100	06	5	90	0	90	90	0	11	66				25	5	40	80	10
Q3.Choice9 [value]									Windy days storms																					Never									Doesn't mat- ter	
62									1																					1									1	
83	0	-	1	0		0	0	0	0	0	0		0		0		0	0	0		0	0	0	0	0	0	0	0	0	0	0	0				0		0	0	0
C7	0	0	1	0		0	0	0	0	0	0	0	0		0		0	0	0		0	0	0	0	0	0		0	0	0	0	0				0	0	0	0	0
Ce	1	1	0	1		1	1	0	П	0	0	0	1		0		0	1	0			1	1	1	0	1	1	1	0	0	1	0				0	0	0	0	0
C2	0	0	1	0		0	0	0	0	0	0	0	0		1		0	0	0		0	0	0	0	1	0	0	0	0	0	0	0				0	0	0	0	0
C4	0	0	0	0		0	0	0	0	0	0	0	0		0		0	0	0		0	0	0	0	0	0	0	0	0	0	0	0				0	0	0	0	0
C3	0	1	0	0		0	0	0	0	0	0	0	0		1		0	0	0		0	0	0	0	0	0	0	0	0	0	0	0				0	0	1	0	0
CZ	0	0	1	0		0	0	0	0	0	0	0	0		1		0	0	0		0	0	0	0	0	0	0	0	0	0	0	0				0	0	0	0	0
C	0	1	1	0		0	-		0	1	-	0	0		1		-	1	1			0	0	0	0	1	0	0	1	0	1	-				-	0	0	0	1
Q2	S	w	ß	S	0	S	so l	w	w	S	S	ß	ß	0	S	0	S	S	S	0	w	S	w	S	s	S	ß	S	S	ß	ß	w				w	S	S	w	S
Q1	Support	Support	Support	Support	Support	Support	Support	Support	Support	Support	Support	Support	Support	Oppose	Support	Oppose	Support	Support	Support	Support	Support	Support	Support	Support	Support	Support	Oppose	Support	Support	Support	Support	Support				Support	Support	Support	Support	Support
No.	2	ಣ	4	22	9	2	∞	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	56	27	28	59	30	31	32	33				34	35	36	37	38

Table 25: (continued)

Q5		None	None	none	go turbines	I think wind turbines should mainly be used away from res-	idential areas: offshore, moun-	none	no	No opposition.		no			no comment	I dont		+			Support	None	Cold weather and wind	i would not mind viewing a turbine during any part of the day	I love them	Only during a hurricane, it	would be scary seeing them	move fast because of the strong winds.	we should be using then	I worry about birds being killed from the turbines	I really have no opposition. I	think it's a great reusable en-	ergy source.			they all still run on oil so what	-	+	+	+	+	Nope Continued on next page	
Q 4		20	20	20	10	20		0		10	2	20	100	10	1			40	40	22	27	20	41	100	25	20			0	20	75			40	100		4	-	- E	2 5	OI G	0.0	
Q3.Choice9 [value]																										Doing a hur-	ricane																
62																										1																	
80		0	0	0	0	0		0		0	0	1	0	0	0			0	0	0	0	0	0	0	0	0			0	0	0			0	0		-			0	0		
C7		0	0	0	0	0		0		0	0	0	0	0	0			0	0	0	0	0	0		0	0			0	0	0			1	0		0	,		0			
90		0	0	0	1			0		0	1	0	0	0	0			-	0	0	0	0	1	0	0	0			0		-			0	1		c	-	- C	0	0 -	7	
CS		0	1	0	0	0		0		-	0	0	1	0	0			0	0	0	0	0	1		-	0			0	0	0			0	0		c	,	- c	-	0		
C4		0	0	0	0	0		0		0	0	0	0		0			0	0	_		0	0		0	0			0	0	0			0	0		c	,					
C3		0	0	0	0	0		0		0	0	0	1	0	0			0	0	0	0	0	0		0	0			0	0	0			0	0		-			0 -	1 0		
C2		0	0	0	0	0		0		0	0	0	0	0	0			0	0	0	0	0	0	0	0	0			0	0	0			0	0		-						
CI		1	0	1	1	0		-		0		0	0	0	1			-	-	0	0	1	0	0	0	0			1		-			0	0		0	, -	4 0	0	0	7	
Q 2	0	S	S	S	S	w		w	0	w	w	S	S	w	w	0	0	w	w	ß	w	w	S	w	w	S			w	w	w			S	S	0	υ	ט מ	0 C	ν	ν	v	
Q1	Oppose	Support	Oppose	Support	Support	Oppose		Support	Support	Support	Support	Support	Support	Support	Support	Support	Support	Support	Support	Oppose	Support	Support	Support	Support	Support	Support			Support	Support	Support	•		Support	Support	Oppose	980000	Support	Juppor t	Oppose	Support	rioddns	
ON	39	40	41	42	43	44		45	46	47	48	49	50	51	52	53	54	55	56	22	28	59	09	61	62	63			64	65	99			29	89	69	20	2 - 2	1.0	7.7	7.2	1.4	

Table 25: (continued)

Q5	go you	None	I have none.	none	I don't know	no comment	guess I don't	none	i love them good		facts on wind turbines, but if it	brings about a safer, more effi-	cient/environmentally friendly	energy process, I'm all for it.	no	I opose because I am in	aware of what it is and I	don't agree to nothing without	proper knowledge	попе	None	why have them up spend the	time money & effort if re-		power we can get.	no	n, I t	attractive and environment	friendly.	If they would save on electric bills I'm for it.	no comment	I worked in the environmental	field and i have cleaned uo oil	that have leaked from them.	no comments	no	no comment	I support renewable energy	sources wind, solar, tidal,	+	\dashv	\dashv	Support	Nope	Continued on next page
Q	20	2	20			8		20	0	82				7	OI				-	-	20			100			rΰ			3	0				0	T	09	66			15	8	0		
Q3.Choice9 [value]																															During a storm														
62																																													
83 3	0	0	0			-		0	0					(0				0		0			0			0			0	0				0	0	0	0			0	0	0		
C7	0	0	0			0		0	0	0				(0				0		0			0			0			0	0				0	0	0	0			0	0	0		
90	0	0	0			-		0	0					(o				c		1			-			-			0					0	0	0				_	-	0		
C2	0	0	0			0		0	0	0					-				c		0			0			0			0	0				0	0	1	0			0	0	0		
C4	0	0	0			0		1	0	0				(n				c		0			0			0			0	0				0	0	0	0			0	0	0		
ည	0	0	0			0		0	0	0				(0				c		0			0			0			0	0				0	0	0	0			0	0	0		
C2	0	0	0			П		0	1	0				c	n				c		0			0			0			0	0				0	1	0	0			0	0	0		
CI	1	1	1			0		0	0	-				(n				-	7	1			1			-			1	-				1	0	0	1			1	1	1		
Q 2	S	ß	w	0	0	w	0	w	w	w				C	ω.	0			Ţ	Ω	w	0		S		0	w			S	w	0			S	ß	ß	w			ß	w	ß	0	
Q1	Support	Support	Support	Support	Oppose	Support	Support	Support	Support	Support					Oppose	Oppose				Support	Support	Support		Support		Oppose	Support			Support	Support	Oppose			Support	Support	Support	Support			Support	Support	Support	Support	
ON	22	92	77	28	79	80	81	82	83	84				ì	85	98			1	jo	88	68		06		91	92			66	94	92			96	26	86	66			100	101	102	103	

Table 25: (continued)

										_				_			_	_	_		_			_		_							_					
Q5	none at this time thank you	I do not oppose.	I do not oppose	I have no opposition against	any sort of wind turbines. We	should use them en masse every day.	no comment	nothing to share	I do not oppose wind turbines	None	Don't know much about tur- bines	we should always use the tur-	bines, they should never be hidden	Wind sucks	I'm for reusable energy	I live in an urban area so this isn't really nossible for me	No comment	I support wind turbines	Sounds great!	no comment	Don't feel one way or the other.	If turbines create energy at a	low cost, wouldn't matter if I could see it or not.	ou	I don't oppose them	I don't support one industry	destroying another. I do think	we always need a backup to any	power source. If we put all	our eggs in one basket, we are	setting ourselves up to be de-	no comment.	I love turbines	none	no comments	Solar is better	no	no comment
Q 4	1	0	1	100					50	20	10	0			10	15	20	30	20	15	20				20							10	15	0	0		0	1
Q3.Choice9 [value]				No need to	retract them,	we need wind turbines 24/7					No idea	never								not sure	whenever	the turbine	doesn't need to be in use															
60																																						
	0	0	0	0					0	0	0	0			0	0	0	0	0	0	0				0							0	0	0	0		0	0
C7	0	0	0	0					0	0	0	0			0	0	0	0	0	0	0				0							0	0	0	0		0	0
90	0	0	1	0					1	0	0	0			0	-	0	0	0	0	0				0							-	0		-		1	0
Ç	0	0	0	0					0	0	0	0			0	0	-	0	0	0	0				0							0	0	0	0		0	0
C4	0	0	0	0					0	0	0	0			0	0	0	0	0	0	0				0							0	0	0	0		0	0
ပိ	0	0	0	0					0	0	0	0			0	0	0	0	0	0	0				0							0	0	0	0		0	0
C2	0	0	1	0		_			0	0	0	0			0	0	0	0	0	0	0				0							0	0	0	0		0	0
C1	1	1	0	0					1	1	0	0			1	-	0		-	0	0				1								1	0	1		0	-
Q 2	S	S	S	w			0	0	S	S	w	w		0	ß	w	U.	o o	ß	S	S			0	S	0						S	S	ß	S	0	S	ß
Q1	Support	Support	Support	Support			Oppose	Oppose	Support	Support	Support	Support		Oppose	Support	Support	Oppose	Support	Support	Support	Support			Support	Support	Oppose						Support	Support	Support	Support	Oppose	Support	Support
Š.	104	105	106	107			108	109	110	111	112	113		114	115	116	117	118	119	120	121			122	123	124						125	126	127	128	129	130	131

Table 25: (continued)

Q4 Q5	60 I don't really have a problem with visible turbines since I'm	a proponent of renewable en-	+	100 I feel they should be every	where because they are beneficial.	50 No comment	50 No	1 do not have one	50 no comments		50 None	no myy concern	30 no comments	20 No Comments		+		7 No	0 no comment	50 I don't know	83 nah		100 nope	100 all renewable is great	10 none	None.	60 none			75 none	\dashv			10 None	No	80 No	no comment		+	10 NO
Q3.Choice9 [value]								weather															who cares, turbines are good																	
62								1															1																	
82	0		0	0		0	0	0	0	0	-		0			0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	0		0		0	0	0
C7	0		0	0		0	0	0	0	0	0		c	0		0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	0				0	0	0
92	1		1	0		1	1	0	1	1	0		-	۰	-	-	-	0	0	1	0	0	0	0	0		-	-	П			1	0	0		0		0	-	_
Cž	0		0	0		0	0	0	1	0	0		0	0	0	0	0	0	0	0	1	1	0	0	0		1	0	0	0		0	0	0		0		0	0	0
C4	0		0	0		0	0	0	0	0	0		c	0		0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	0		0		0	0	0
C3	0		0	0		0	1	0	0	0	0		c			0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	0		0		0	0	0
C2	0		0	0		0	0	0	0	0	0		0		0	0	0	1	0	0	0	0	0	0	0		0	0	0	0		0	0	0		0		0	0	0
CI	1			-		1	0	0	0	1	0		c	-	, 0	0	0	0	1	0	0	1	0	-	1			0				1	1	1		0		1	0	0
Q 2	ß		w	w		S	S	S	S	S	ω,	0	ט כ	2 V	0.00	ı v	w	S	S	S	S	S	S	S	S	0	w	ß	w	w	0	S	S	S	0	w	0	S	ß	w
Q1	Support		Support	Support		Support	Support	Support	Support	Support	Support	Oppose	Support	Support	Support	Support	Support	Oppose	Support	Support	Support	Support	Support	Support	Support	Support	Support	Oppose	Support	Support	Oppose	Support	Oppose	Support	Support	Support	Support	Support	Support	Support
o N	132		133	134		135	136	137	138	139	140	141	142	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170

Table 25: (continued)

. 05	no	no		eyesore	NONE	no comment	No comment.	nope	none		It does not matter to me		I DO NOT oppose	no	im not for or against anythig	as long as the electric company	dont charge an arm and a leg	+	just think that they are a eye sore	Because they impact wildlife	severely (in my area)	not really	none	Unsightly	thy make the area look bad	none	none	no commentent	No comment	none	None		None	none		Dont oppose. We need to move forward with other types of en-	ergy.	no	I'm all for green energy	no comments			None	no comments
Q.	20	06	50		5	75	0	23	20	100	75	88		12	0				ଳ 			85				50	95	35	75	5	0	0	25	10	100	15		6	20	2	0	50	\Box	_
Q3.Choice9 [value]																																												
62																																												
ပီ	0	0	0		0	0	0	0	0	0	0	0		0	0				0			0				0	1	0	0	0	0	0	0	0	0	0		0	0	0	0	0		0
C7	0	0	0		0	0	0	0	0	0	0	0		0	0				0			0				0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0		0
92	0	0	1		1	0	0	1	0	0	1	1		0	0				0			1				1	0	0	1	0	0	0	1	1	0	1		0	1	0	0	1		0
C2	0	0	0		0	0	0	0	0	0	0	0		0	0				0			0				0	0	0	0	0	0	0	0	0	0	0		0	1	0	0	0		0
C4	0	0	0		0	0	0	0	0	0	0	0		0	0				0			0				0	0	1	0	0	0	0	0	0	0	0		0	0	0	0	0		0
ဌ	0	0	0		0	0	0	0	0	0	0	0		0	0				0			0				0	0	1	0	0	0	0	0	0	0	0		0	0	0	0	0		0
CZ	0	0	0		0	0	0	0	0	0	0	0		0	0				0			0				0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0		0
CI	1	1	0		0	1	1	0	1	1	1	0		1	T							0				П	0	П	1	1	1	-	1	1	П	1		1	1	1	1	1		
Q 2	S	ß	S	0	ß	S	S	ß	ß	S	S	S	0	S	ß				w	0		S	0	0	0	S	ß	w	S	ß	S	w	S	S	S	S		ß	ß	ß	S	S	0	w
Q1	Support	Support	Support	Oppose	Support	Support	Support	Support	Support	Support	Support	Support	Support	Support	Support				Support	Oppose		Support	Support	- obbose	Oppose	Oppose	Support	Oppose	Support	Support	Support	Support	Support	Support	Support	Support		Support	Support	- Obbose	Support	oso ddO	Oppose	Support
No.	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185				186	187		188	189	190	191	192	193	194	195	196	197	198	199	200	201	202		203	204	202	506	202	208	209

Table 25: (continued)

	Т		Г			Г	$\overline{}$	Т	г									г	П													\neg									\neg	\neg	\neg	
Q5	More turbines!	none	по	none	They're okay, but not the answer to energy needs	Wind turbines are not as affective as they should be.	nq comment	i have no opposition	none	no comment	none	none	Go Birds	none	help farmers	nope	по	none	no0	No	по	по	none	none	No	I have no opposition to wind turbines.	dont know	Better options	I think they look awsome	no comment	I don't care	I like the look of windmills.	none	none	noo comment	No	We need wind turbines.	I don't mind turbines they	remind me of renewable energy	i don't know much about this	but coooool	none	none	Continued on next page
Q4	66	75	50	1	25		10	0	25	2	50	1	1	21	75	50	34	40	9		55	09	0			5	10		0		75	1		10		40	100	80		75		00,	100	
Q3.Choice9 [value]		don't know																																										
သေ		1																																										
8၁	0	0	1	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0		1	0	0			0	0		0		0	0		1		0	0	0		0			0	
C7	0	0	0	0	0		0	0	0	0	0	0	0	0	0	1	0	0	0		1	0	0			0	0		0		0	0		0		0	0	0		0			0	
92	1	0	0	-	-		-	0	0	0	0	0	0	0	0	1	1	0	0		1	1	0			1	0		0		0	0		0		-	1	0		-		1	1	
C2	0	0	0	0	0		0	0	1	1	1	0	0	0	0	0	0	1	0		0	0	0			0	0		0		0	0		0		0	0	0		0			0	
C4	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0			0	1		0		0	0		0		0	0	0		0			0	
င္ပ	0	0	0	0	0		0	0	0	0	0	0	1	0	1	0	0	0	0		0	0	0			0	0		0		1	0		0		0	0	0		0			0	
CZ	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	-		0	0	0			0	0		0		0	0		0		0	0	0		0			0	
CI	-	0	0	0	1		0	-	0	0	0	1	0	1	0	0	0	0	0		0	0	-			1	0				0	-		0		0	1	1		0			0	
Q 2	ß	ß	w	w	w	0	S	S	ß	S	S	S	S	S	S	ß	ß	ß	ß	0	w	S	ß	0	0	S	S	0	w	0	w	S	0	S	0	w	S	S		w		0	S	
Q1	Support	Support	Support	Support	Support	Oppose	Support	Support	Support	Support	Support	Support	Support	Support	Support	Support	Support	Support	Support	Support	Support	Support	Support	Oppose	Oppose	Support	Support	Oppose	Support	Oppose	Oppose	Support	Oppose	Oppose	Oppose	Support	Support	Support		Support		Oppose	Support	
o	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247		248	0,0	249	250	

Table 25: (continued)

Q4 Q5	15 I feel they are a good way to get energy	5 save the environment you pricks	NONE				2 domt knoe	7 no comment	i just don't understand their purpose.		23 none.	4 no	100 none	To close to home	10 No comment	100 None	I have no comment.	3 similar to windmills could be a	good ming	On I do not be some training	+	+	+	+	100 clean energy is the futureit has to be	0 I Love Wind Turbines		50 I have worked OEM wind	projects	25 no	0 No coments) none	5 I do not oppose wind turbines		10 Don't have any	0 If it saves money, then I have	1 none	t	+	none	because money	Continued on next page
Q3.Choice9 C [value]	1				10	2				2	2	2	10)(1				7		1		+	n't ne	either way		H.	,	2	u)	10							,,,			
62																																										
83	0	0			0	0	0	1		0	0	0	0		0	0		0	c			c		0	0	c		0		0	0	0	0	0	0	0	c					
C7	0	0			0	0	-	0		0	0	0	0		0	0		0	c			c	,	-	0	c		0		0	-	0	0	0	0	0	c	,				
92	0	-			-	0	0	0		0	0	-	0		0	0		1		+ -	-	c	,	-	0	c		0		1	0	0	0	0	1	1	c	, .				
CS	0				0	0	0	0		1	-	0	-		0	0		0	c					0	0	c		0	,	0	0	0	0	0	0	0	c	, -				
C4	0	0			0	0	0	0		0	0	0	0		0	0		0	c			-	٠,	4	0	c		0		0	0	0	0	0	0	0	c					
C3	0	0			0	0	0	0		0	0	0	0		0	0		0	-					0	0	c		0	>	0	0	0	0	0	0	0	c					
C2	0	0			0	0	0	0		0	0	0	0		0	0		0	c		1	c		0	0	_		0		0	0	0	0	0	0	0	c	,				
C1	1	0			_	1	0	0		0	-	0	0		_	1		-		4 0		c	0	0	0	-		-	,	1		1	1	1	0	1	-	-	7			
Q 2	ß	w	0	0	ß	w	ß	S	0	w	ß	ß	w	0	w	w	0	ß	ŭ	2 C	Λ	0 0	Ω	ω.	w	v.	c) V.	נ	S	ß	S	S	w	S	ß	ď	ט מ	0			
Q1	Support	Oppose	Support	Oppose	Support	Oppose	Oppose	Support	Oppose	Support	Support	Support	Support	Support	Support	Support	Oppose	Support		Support	Support) indding	Support	Support	Support	Support	Onnose	Oppose	Oppose	Support	Support	Support	Support	Support	Support	Support	Support	Support	Jaddne	Oppose	Oppose	
o	251	252	253	254	255	256	257	258	259	260	261	262	263	264	265	566	267	268	960	202	27.0	27.1	717	273	274	275	276	277	-	278	279	280	281	282	283	284	285	986	007	107	288	

Table 25: (continued)

ට ර්	They produce low-frequency	wave sound that makes people	depressed if they are exposed	over a longer period.	I don't oppose any forms of tur-	bines	No	Do it	оп	none	no comment	I think it would be a good use	of power, even though we don't	have much wind here	No comment	по	None	ngle	no comment	The turbines are a good idea.	I don't know why people would	oppose such a wonderful tool	for resources.	no
Q4					100		15		20	80	20	09					25		10	75	75			1
Q3.Choice9 [value]					doesn't mat-	ter																		
6D					_																			
C8					0		0		0	0	0	0					0		0	0	0			0
C7					0		-		_	0	0	0					0		0	0	0			0
C6					0		0		0	0	0	1					0		0	1	-			0
CS					0		0		1	-	0	0					-		0	0	0			0
C4					0		0		1	1	0	1					-		0	0	0			0
c3					0		0		0	1	0	0					1		0	0	0			0
CZ					0		0		0	0	0	0					0		0	0	0			0
C1					0		1		0	0	-	0					-		1	1	-			1
Q2	0				w		S	0	S	S	S	S			0	0	S	0	S	S	S			S
Q1	Oppose				Support		Oppose	Support	Oppose	Oppose	Support	Support			Oppose	Oppose	Support	Oppose	Support	Support	Support			Oppose
No.	589				290		291	292	293	294	295	596			297	298	599	300	301	302	303			304

A.10 DERIVED QUIET HOURS FOR EACH MUNICIPALITY

certain noise-making activities during certain hours. From those prohibitions, we derived quiet hours for each municipality to be With each of the thirty weather stations, we associated a municipality. Each of those municipalities have legal codes that prohibit used by control algorithms satisfying the standard OLAs derived herein that prohibit wind-energy harvesting at night. Those

derived quiet hours are shown in Table 26.

Table 26: Derived Quiet Hours

URL	https://library.municode.com/ga/atlanta/codes/code_of_ordinances	http://library.amlegal.com/nxt/gateway.dll/Massachusetts/boston/chapterxviprobibitionspenaltiesandpermit?f=templates\$fn=default.htm\$3.0\$vid=amlegal:boston_ma\$anc=JD_16-26	http://ca.baltimorecity.gov/codes/Art%2000%20-%20Health.pdf	http://library.amlegal.com/nxt/gateway.dll/Ohio/cleveland_oh/ partsixoffensesandbusinessactivitiescode/titleigeneraloffenses/ chapter605-disorderlyconductandactivity?f=templates\$ffn=default. htm\$3.0\$vid=amlegal:cleveland_oh\$anc=JD_605.10
Reference	Atlanta, GA, Municipal Code §74-134	Boston, MA, Municipal Code §16-26.4	Baltimore (MD) City Revised Code §9-208	Cleveland, OH, Mu- nicipal Code §605.10
Derived Quiet Hours	7 p.m. and 7 a.m. the following day on a weekday or between 7 p.m. and 9 a.m. on a weekend day or federal holiday ⁷	6 p.m. to 7 a.m. and Saturday and Sunday	Nighttime starts: 9 p.m. weekdays and 10 p.m. on weekends and federal holidays. 7 Nighttime ends: 7 a.m. weekdays and 10 a.m. weekends and federal holidays. 7	7 p.m. to 7 a.m.
Municipal Code Text	"Section 74-134 Construction noise. "Construction noise that does not otherwise qualify under any of the exclusions listed in 74-132 shall comply with the following: between the hours of 7:00 p.m. and 7:00 a.m. the following day on a weekday or between 7:00 p.m. and 9:00 a.m. on a weekend day or legal holiday, construction noise of any type including but not limited to, noise caused by the erection (including excavation), demolition, alteration, or repair of any building, as well as the operation of any earth-moving equipment, carne, saw, drill, pile driver, steam shovel, pneumatic hammer, hoist, automatic nailer or stapler, or any similar equipment, shall not be plainly audible within any residential zoning district more than 100 feet beyond the property boundary of the property from which the noise emanates; provided that between the hours of 7:00 a.m. (or 9:00 a.m. on a weekend day or legal holiday) and 7:00 p.m., the prohibitions of this article shall not apply to construction noise."	"No erection, demolition, alteration, or repair of any building and excavation in regard thereto, except between the hours of 7:00 a.m. and 6:00 p.m., on weekdays or except in the interest of public safety or welfare, upon the issuance of and pursuant to an Off Hours Permit from the Commissioner, Inspectional Services Department, which may be renewed for one or more periods of not exceeding one week each. Any person violating this section hereof shall be punished by a fine of Three Hundred Dollars (\$300.00) for each offense. All fines issued under this section may be recovered by the noncriminal disposition procedures promulgated in G.L. c. 40, s. 21D. Each day shall constitute a new offense."	"(b) Home activities —vehicle repairs; power tools. "Noncommercial vehicular repairs and the use of home workshops, power tools, and power garden equipment are allowed: "(1) between the hours of 7 a.m. and 9 p.m. on weekdays; and "(2) between the hours of 10 a.m. and 10 p.m. on weekends and legal holidays."	"The making of any unnecessary noise by a person or by his or her operation of any instrument, device, agency or vehicle, and/or the performance of any construction or demolition activity or the operation of any mechanical, electrical, pneumatically, hydraulically powered or battery operated apparatus used in connection with any construction or denolition activity between the hours of 7:00 p.m. and 7:00 a.m."
Station	KATL	KBOS	KBWI	KCLE

Table 26: (continued)

charlottenc.gov/CMPD/Documents/Ordinances/Noise_Ordinance.pdf	https://library.municode.com/oh/cincinnati/codes/code_of_ordinances? nodeId=TITIXMI_CH909CDNO_S909-3LDNO	https://dcregs.dc.gov	https://www.denvergov.org/content/dam/denvergov/Portels/771/documents/PHI/HPHH/Chapter-36-Noise-Control.pdf	http://dallas-tx.elaws.us/code/coor_appsid836964_ch30_sec30-2	https://library.municode.com/mi/detroit/codes/code_of_ordinances? nodeId=PTIIIGICO_CH36NO_S36-1-4REHOTRDRSC
Charlotte, NC, Municipal Code §15-63	Cincinatii, OH, Municipal Code §909-7	Washington, DC, Municipal Code §2803.2	Denver, CO, Municipal Code §36-7	Dallas, TX, Municipal Code §30-2	Detroit, MI, Municipal Code §36-1-4
9 p.m. to 7 a.m.	9 p.m. to 7 a.m.	All day Sunday or federal holiday. ⁷ Other days: 7 p.m. to 7 a.m.	Nighttime starts week-days: 9 p.m. Night-time starts weekends: 5 p.m. Nightime ends weekdays: 7 a.m. Nighttime ends week-ends: 8 a.m.	Nighttime starts 7 p.m. Nighttime ends 8 a.m. on Saturdays and federal holidays 7 and ends 7 a.m. on other days.	All day Sunday. 9 p.m. to 7 a.m. other days.
"(a) It shall be unlawful to carry on the following activities in any residentially zoned area of the city or within 300 feet of any residentially occupied structure in any zone of the city: "" "(2) The operation of construction machinery between the hours of 9:00 p.m. and 7:00 a.m."	"No person other than in the event of emergency, shall, between the hours from 9:00 p.m. to 7:00 a.m. the following day, engage in or undertake any construction or demolition activity or the operation of any mechanical, electrical or battery-operated apparatus which produces loud sound which disturbs the peace and quiet of the neighborhood within 500 feet of places of residence, hospitals or other residential institutions, without first obtaining a special permit from the director of buildings and inspections or the city engineer for such nighttime construction. For purposes of this section, construction shall include every operation regulated by the Cincinnati- Ohio Basic Building Code."	"2803.2 No noise from construction, excluding minor home repairs, shall be permitted within a residential, special purpose, or water-front zone on any Sunday or legal holiday, or after 7:00 p.m. and before 7:00 a.m. on any weekday."	"(5) Construction equipment and activities. "a. No person shall operate, or cause to be operated, any construction equipment nor conduct any construction activities, including, without limitation, preparation activities, job site deliveries, and job site pick-ups, on weekdays between the hours of 9:00 p.m. and 7:00 a.m. in a manner that exceeds the sound pressure limits of Table A. "b. No person shall operate, or cause to be operated, any construction equipment nor conduct any construction activities, including, without limitation, preparation activity, job-site deliveries, and jobsite pick-ups, on weekends between the hours of 5:00 p.m. and 8:00 a.m. in a manner that exceeds the sound pressure limits of Table A."	"(8) Any construction activity related to the erection, excavation, demolition, alteration, or repair of any building on or adjacent to a residential use, as defined in the Dallas Development Code, other than between the hours of 7:00 a.m. and 7:00 p.m., Monday through Friday, and between the hours of 8:00 a.m. and 7:00 p.m. on Saturdays and legal holidays, except that the director of public works may issue a written permit to exceed these hours in the case of urgent necessity in the interest of public vactes to for other reasons determined by the director of public vorks to be necessary for the public health, safety, or welfare. For purposes of this paragraph, 'logal holidays' include New Year's Day (January 1), Memorial Day (observed date), Fourth of July (July 4), Labor Day (observed date), Thanksgiving Day (observed date), and Christmas Day (December 25)."	"Truck driving schools shall not be open or operated on Sunday, or between the hours of 9:00 p.m. and 7:00 a.m. on any other day"
KCLT	KCVG	KDCA	KDEN	KDFW	KDTW

Table 26: (continued)

https://www.eugene-or.gov/DocumentCenter/View/2697/ Chapter-6-Environment-and-Health	https://library.municode.com/tx/houston/codes/code_of_ordinances? nodeId=COOR_CH30NOSOLERE	https://library.mumicode.com/nv/las_vegas/codes/code_of_ordinances? nodeId=TIT9HESA_CH9.16NO_9.16.030ENPRNO	http://library.amlegal.com/nxt/gateway.dll/California/lamc/ municipalcode?f=templates\$fn=default.htm\$3.0\$vid=amlegal: losangeles_ca_nc	http://library.mlegel.com/nxt/gatevay.dll/Nev%20York/admin/ newyork.ityadministrativecode?f=templates\$fn=default.htm\$3.0\$vid= amlegel:newyork_ny
Eugene, OR, Municipal Code §6.750-d	Houston, TX, Municipal Code §Section 30-16-5	Las Vegas, Nevada, Municipal Code §9.16.030-H	Los Angeles, CA, Municipal Code, Section 41.40-(a)	New York City Admin- istrative Code §24-222
7 p.m. to 7 a.m.	8 p.m. to 7 a.m.	6 p.m. to 7 a.m.	9 p.m. to 7 a.m.	Weekdays: Nighttime starts at 6 p.m and nighttime ends at 7 p.m. Weekends: Nighttime ends 10 a.m. and starts 4 p.m.
"d. Construction or repair of buildings, streets, etc. Constructing (including excavating), demolishing, altering, or repairing any building, street, sidewalk, driveway, sewer or utility line between the hours of 7 p.m. and 7 a.m. the following day."	"(5) "The sound was produced by the erection, excavation, construction, or denolition of any building or structure, including the use of any necessary tools or equipment, conducted between the hours of 7 a.m. and 8 p.m., which activity did not produce a sound exceeding 85 dB(A) when measured from the property line of the residential property where the sound is being received."	"(H) The erection, including the excavation, demolition, alteration or repair of any building in any new or existing residential district, or the excavation, construction or repair of any right-of-way improvements in any new or existing residential district other than between the hours of seven a.m. and six p.m., except in the case of urgent necessity in the interest of public health and safety and then only with a permit from the designated official."	"(a) No person shall, between the hours of 9:00 P.M. and 7:00 A.M. of the following day, perform any construction or repair work of any kind upon, or any excavating for, any building or structure, where any of the foregoing entails the use of any power driven drill, riveting machine excavator or any other machine, tool, device or equipment which makes loud noises to the disturbance of persons occupying sleeping quarters in any dwelling hotel or apartment or other place of residence."	"Except as otherwise provided in this subchapter, it shall be unlawful to engage in or to cause or permit any person to engage in construction work other than on weekdays between the hours of 7 a.m. and 6 p.m. A person may however perform construction work in connection with the alteration or repair of an existing one or two family owner-occupied dwelling classified in occupancy group J-3 or a convent or rectory on Saturdays and Sundays between the hours of 10 a.m. and 4 p.m. provided that such dwelling is located more than 300 feet from a house of worship."
KEUG	КІАН	KLAS	KLAX	KLGA

Table 26: (continued)

https://library.municode.com/mo/kansas_city/codes/code_of_ordinances?nodeId=CODRKANIVOIL_CH46NOCO_ARTIINGE_S46-3DE				https://library.municode.com/fl/orlando/codes/code_of_ordinances? nodeId=TITIIGICO_CH42ND	https://library.municode.com/mn/minneapolis/codes/code_of_ ordinances?node.Id=COOR_TIT3A.PPOENPR_CH59COAC_59.30AFHOMDPERE	<pre>library.amlogal.com/nxt/gatevay.dll/Illinois/chicago_il/ municipalcodeofchicagoff=templates\$fn=default.htm\$3.0\$vid=amlegal: chicago_il</pre>	http://library.amlegal.com/nxt/gateway.dll/Pennsylvania/ philadelphia_pa/thephiladelphiacode?f=templates\$fn=default.htm\$3. 0\$vid=amlegal:philadelphia_pa
Kansas City, MO, Municipal Code §46-5				Orlando, FL, Municipal Code, §42.06	Minneapolis, MN, Mu- nicipal Code §59.30	Chicago, IL, Municipal Code §8-32-140	Philadelphia, Pennsylvania, The Philadelphia Code §10-402
10 p.m. to 7 a.m.				9 p.m. to 7 a.m. and Sundays and federal holidays.	6 p.m. to 7 a.m. and Saturdays and Sundays and federal holidays ⁷	8 p.m. to 8 a.m.	Weekdays: Nighttime starts at 8 p.m. Night- time ends at 7 a.m. Weekends and federal holidays ⁷ : Nighttime ends 8 a.m. Nighttime starts 8 p.m.
"Section 46-5 Specific prohibitions.	"Domestic power tools. No person shall operate or permit the operation of any mechanically or electrically-powered saw, drill, sander, grinder, lawn or garden tool, or similar device used in a residential district between the hours of 10:00 p.m. and 7:00 a.m. on a residential property or within 250 feet of a residential real property boundary (when operated on commercial or light-industrial property), unless such activities do not exceed the limits set forth in Table I."	"Section 46-26 Exceptions to the noise code.	"The provisions of the noise code shall not apply to: "(1) The emission of sound for the purpose of alerting persons to the existence of an emergency; "(2) The emission of sound in the performance of emergency work; "(3) Construction work, as defined in 46-3;"	"The following types of noise are hereby made exempt from the provisions of this Chapter: "(1) Noises from temporary construction and maintenance activities between 7 AM and 9 PM except Sundays and federal holidays."	"(a) Operation of construction equipment without a permit is allowed only on Monday through Friday from 7:00 a.m., to 6:00 p.m., not including federal holidays. Operation of construction equipment outside of these hours and days without a permit from the Minneapolis Health Department and/or their designee is prohibited."	"(a) No person shall use or cause the use of any mechanical equipment or tool operated by fuel or electric power in building, construction, repair or demolition operations between the hours of 8:00 P.M. and 8:00 A.M. within 600 feet of any residential building or hospital."	"(11) Regular Construction. Construction between the hours of 7 a.m. and 8 p.m., Monday through Friday, or between the hours of 8 a.m. and 8 p.m. on weekends and legal, national or state holidays."
KMCI				KMCO	KMSP	KORD	KPHL

⁷For the purposes of this benchmark suite, we are defining *federal holidays* as "New Year's Day (January 1), [Martin Luther King Jr. Day (observed date)], Memorial Day (observed date), Fourth of July (July 4), Labor Day (observed date), Thanksgiving Day (observed date), and Christmas Day (December 25)" [Dallas, TX, Municipal Code, §30-2-8].

Table 26: (continued)

https://www.codepublishing.com/AZ/Phoenix/	https://library.mumicode.com/pe/pittsburgh/codes/code_of_ordinances? nodeId=COOR_TITSIXCO_ARTIRERIAC_CH601PUDR_S601.04MCO	http://www.gcode.us/codes/sacremento/	http://docs.sandiego.gov/municode/MuniCodeChapterO5/ChO5Art9. 5DivisionO4.pdf
Phoenix, Arizona, Municipal Code §23-14	Pittsburgh, Pennsylvania, Municipal Code §601.04	Sacramento, California, Muncipal Code §8.68.200	San Diego, CA, Municipal Code §59.5.0404
7 p.m. to 7 a.m. and weekends and federal holidays 7	10 p.m. to 7 a.m.	10 p.m. to 7 a.m.	7 p.m. to 7 a.m. and Sundays and federal holidays ⁷
"(h) Building construction. Construction including erection, excavation, demolition, alteration or repair of any building within 500 feet of any inhabited structure, other than between the hours of 6:00 a.m. and 7:00 p.m. from May 1 to and including September 30 and between the hours of 7:00 a.m. and 7:00 p.m. beginning October 1 to and including April 30 on non-holiday weekdays. Except that the Planning and Development Director may grant a permit to conduct such operations outside listed hours, on weekends, or on holidays:"	"(f) Exemptions. A person shall be exempt from this section provided that:" " "(4) The noise emanates from lawn care and other household maintenance equipment and tools used between 7:00 a.m. and 10:00 p.m.; or "(5) The noise is being generated by construction activities properly permitted in the City of Pittsburgh; or"	"Notwithstanding any other provision of the chapter to the contrary, the following acts, among others, are declared to be loud, disturbing, and unnecessary noises in violation of this chapter, but such enumeration shall not be deemed to be exclusive, namely: "E. Tools. The use or operation between the hours of ten p.m. and seven a.m. of any power saw, power planer, or other powered tool or appliance or saw or hammer, or other tool, so as to disturb the quiet, comfort, or repose of persons in any dwelling, hotel, motel, apartment, or other type of residence, or of any person in the vicinity."	"(a) It shall be unlawful for any person, between the hours of 7:00 p.m. of any day and 7:00 a.m. of the following day, or on legal holdays as specified in Section 21.04 of the San Diego Municipal Code, with exception of Columbus Day and Washington's Birthday, or on Sundays, to erect, construct, demolish, excavate for, alter or repair any building or structure in such a manner as to create disturbing, excessive or offensive noise unless a permit has been applied for and granted beforehand by the Noise Abatement and Control Administrator"
КРНХ	KPIT	KSAC	KSAN

Table 26: (continued)

https://library.municode.com/tx/san_antonio/codes/code_of_ordinances	https://library.municode.com/wa/seattle/codes/municipal_code?nodeld= IIITSERIPRHIPR_CH25.08NDCD_SUBCHAPTER_IIDE_25.08.280PUNUNO	library, amlegal.com/nxt/gatevay.dll?f=templates&fn=default.htm&vid=amlegal:sanfrancisco_ca
San Antonio, Texas, Municipal Code, Arti- cle III (\$21-51 and \$21-52)	Seattle, WA, Municipal Code §25.08.425	San Francisco, CA, Police Code, §2908
10 p.m to 6 a.m. on Monday to Thursday and to 11 p.m. on Fri- day. Quiet hours in- clude all-day Saturday and Sunday	Nighttime starts: 10 pm. Nighttime begins: 7 am. on week-days and 9 am. on weekends and federal holidays.7	8 p.m. to 7 a.m.
"Section 21-51 Definitions and standards. "Daytime / evening shall mean the hours between six o'clock a.m. and ten o'clock p.m., Sunday through Thursday and six o'clock a.m. and eleven o'clock p.m. Friday and Saturday. "Section 21-52 Noise nuisance enumeration. "(a) The following acts, among others not hereinafter enumerated, are declared to be 'noise nuisances,' and are unlawful and in violation of the provisions of this division when such acts are done or accomplished or carried on in such a manner, or with such volume, intensity, or with continued duration, so as to amoy, to distress, or to disturb the quiet, confront, or repose of a person of reasonable nervous sensibilities, within the vicinity or hearing thereof, or so as to endanger or injure the safety or health of humans or animals, or so as to endanger or injure personal or real property: "(f) The erection, including construction, excavation, demolition, alteration, or repair work, or the permitting or causing thee operation of any tools or equipment used in construction, excavation, drilling, demolition, alteration or repair work: "a. Other than during the davitme on week davs."	"A. The exterior sound level limits established by Sections 25.08.410 and 25.08.420, as measured from the property line of the real property of another person or at a distance of 50 feet from the construction or maintenance equipment making the sound, whichever is greater, may be exceeded during the following times by the sound levels specified in subsection 25.08.425.B for the types of equipment listed in that subsection 25.05.425.B. "I. Within Lowrise, Midrise, Highrise, Residential-Commercial, and Neighborhood Commercial zones, between 7 a.m. and 7 p.m. on weekdays and between 9 a.m. and 7 p.m. on weekends and legal holidays, except that for parking lot maintenance or if the equipment is being used for a public project, then between 7 a.m. and 10 p.m. on weekends and legal holidays. "2. Within all other zones, between 7 a.m. and 10 p.m. on weekends and legal holidays.	"It shall be unlawful for any person, between the hours of 8:00 p.m. of any day and 7:00 a.m. of the following day to erect, construct, demolish, excavate for, alter or repair any building or structure if the noise level created thereby is in excess of the ambient noise level by 5 dBA at the nearest property plane, unless a special permit therefor has been applied for and granted by the Director of Public Works or the Director of Building Inspection."
KSAT	KSEA	KSFO

Table 26: (continued)

http://www.qcode.us/codes/santamaria/	https://library.municode.com/mo/stlouis/codes/code_of_ordinances? nodeId=TIT15PUPEMUNE_DIVIVUFAGFUPE_CH15.50NO	https://www.tampagov.net/sites/default/files/construction-services/ files/Forms/1026ConstructionNoise.pdf
Santa Maria, CA, Municipal Code, §5-5.06	St. Louis, MO, Municipal Code §15.50.081	Tampa, FL, Municipal Code §5-301.2.1
Nighttime begins: 6 p.m. Monday through Friday and 5 p.m. on Saturday and Sunday. Nighttime ends: 7 a.m. Monday through Friday and 8 a.m. on Saturday and Sunday.	sunset ⁸ (which is before dusk) to 6 a.m. and Sunday	Nighttime Ends: 7 a.m. Monday - Friday. 8 a.m. Saturday. 10 a.m. Sunday. Night- time Begins: 6 p.m. everyday.
"(e) Noise of construction caused by hand tools, power tools or equipment, when the noise occurs at a time other than: "(1) between the hours of 7:00 a.m. and 6:00 p.m., Monday through Friday; or "(2) between the hours of 8:00 a.m. and 5:00 p.m., Saturday through Sunday; or" "(3) allowed by permit issued by the Noise Control Officer"	"Construction, demolition and excavation within one thousand (1,000) feet of a residential property, including excavation, demolition, alteration or repair of any building, land clearing, land grading or road and utility construction within one thousand (1,000) feet of a residential property is prohibited before 6:00 a.m. and after disk, Monday through Saturday, except in case of an urgent necessity in the interest of public safety for a period of three (3) days. After three (3) days the urgent necessity will be deemed to have elapsed unless as a permit has been obtained from the Building Commissioner which allows specific action during any of the hours between 6:00 a.m. and dusk, Monday through Saturday."	"5-301.2.1 The generation of any avoidable or unreasonably loud, disturbing or unnecessary noise by construction activity on private property, other than between the hours of: (1) 7:00 a.m. and 6:00 p.m. on Saturday; or (3) 10:00 a.m. and 6:00 p.m. on Sunday; or (3) 10:00 a.m. and 6:00 p.m. on Sunday is prohibited if such construction activity is within one thousand five hundred (1,500) feet of any building or portion thereof which is actually occupied and used either a single family or multi-family residence."
KSMX	KSTL	KTPA

⁸With the benchmark suite described herein, we are supplying a .csv file having sunset times [5] for St. Louis from 2004 to 2014: STL_Sunset_Times.csv. All times in STL_Sunset_Times.csv are Central Standard Time.

A.11 RESULTS OF THE ALGORITHMS STATIC

A.11.1 Using current weather only

A.11.1.1 OLAs 1 & 2 Please see Tables 27 below and 28 on the next page.

Table 27: Results of the processing of OLAs 1 and 2 by Static (variant 0x0, i.e., current weather only, transitions unlimited) Rev. 1.1

OLA	station	deployment threshold (knots)	running average size (minutes)	NetNorm	MQMP	MQNetNorm	station	deployment threshold (knots)	running average size (minutes)	NetNorm	MQMP	MQNetNorm
1	KATL	7	31	0.57	0.91	0.51	KMCI	8	1	0.66	0.89	0.59
2	KATL	7	61	0.56	0.92	0.52	KMCI	8	31	0.66	0.93	0.62
1	KBOS	9	31	0.38	0.92	0.35	KMCO	7	1	0.66	0.82	0.55
2	KBOS	9	61	0.38	0.93	0.35	KMCO	7	61	0.65	0.92	0.60
1	KBWI	7	31	0.69	0.89	0.62	KMSP	8	31	0.38	0.92	0.35
2	KBWI	7	61	0.69	0.91	0.63	KMSP	8	91	0.37	0.93	0.35
1 1	KCLE KCLE	8	31	0.59	0.92 0.93	0.54	KORD	8	31	0.59	0.92	0.54
2		8 5	61	0.59		0.54	KORD	8	91 31	0.58	0.94	0.55
$\begin{array}{ c c c }\hline 1\\ 2\\ \end{array}$	KCLT KCLT	5	1 91	0.70 0.69	$0.76 \\ 0.91$	0.53 0.63	KPHL KPHL	8 8	61	0.65 0.65	0.92	0.60 0.60
1	KCVG	7	31	0.66	0.91	0.60	KPHX	6	31	0.36	0.93	0.00
$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	KCVG	7	61	0.66	0.91	0.60	KPHX	6	121	0.35	0.87	0.29
1	KDCA	7	1	0.50	0.86	0.43	KPIT	7	1	0.74	0.81	0.60
2	KDCA	7	61	0.50	0.93	0.46	KPIT	7	61	0.74	0.92	0.67
1	KDEN	8	1	0.54	0.78	0.42	KSAC	6	1	0.78	0.78	0.61
2	KDEN	8	121	0.51	0.92	0.47	KSAC	6	91	0.77	0.93	0.72
1	KDFW	9	31	0.47	0.93	0.43	KSAN	5	1	0.72	0.87	0.63
2	KDFW	9	31	0.47	0.93	0.43	KSAN	5	61	0.71	0.92	0.66
1	KDTW	8	31	0.60	0.92	0.55	KSAT	7	1	0.53	0.83	0.44
2	KDTW	8	91	0.59	0.94	0.55	KSAT	7	121	0.52	0.94	0.49
1	KEUG	6	1	0.73	0.83	0.61	KSEA	6	1	0.66	0.81	0.53
2	KEUG	6	91	0.71	0.92	0.66	KSEA	6	121	0.65	0.93	0.60
1	KIAH	7	1	0.72	0.83	0.60	KSFO	10	1	0.68	0.90	0.61
2	KIAH	7	61	0.71	0.93	0.66	KSFO	10	61	0.66	0.94	0.63
1	KLAS	8	1	0.44	0.77	0.34	KSMX	8	1	0.80	0.86	0.69
2	KLAS	8	31	0.44	0.89	0.39	KSMX	8	61	0.78	0.92	0.71
1	KLAX	7	1	0.88	0.90	0.79	KSTL	7	1	0.53	0.84	0.44
2	KLAX	7	61	0.85	0.94	0.80	KSTL	7	91	0.52	0.93	0.48
1	KLGA	9	31	0.42	0.90	0.38	KTPA	6	1	0.66	0.77	0.51
2	KLGA	9	61	0.42	0.92	0.38	KTPA	6	91	0.64	0.91	0.58

Table 28: Average performance of the processing of OLAs 1 and 2 over all 30 weather stations by Static (variant 0x0, i.e., current weather only, transitions unlimited) Rev. 1.1

OLA	Average	Metric				
OLA 1	0.610	NetNorm				
OLA 2	0.555	MQNetNorm				

A.11.1.2 OLAs 3 & 4 Please see Table 29 below and Table 30 on the next page.

Table 29: Results of the processing of OLAs 3 and 4 by Static (variant 0x0, i.e., current weather only, transitions unlimited) Rev. 1.1

OLA	station	deployment threshold (knots)	running average size	NetNorm	MQMP	MQNetNorm	station	deployment threshold (knots)	running average size (minutes)	NetNorm	MQMP	MQNetNorm
3	KATL	7	121	0.39	0.93	0.36	KMCI	8	61	0.32	0.94	0.30
4	KATL	7	121	0.39	0.93	0.36	KMCI	8	61	0.32	0.94	0.30
3 4	KBOS KBOS	9	91 91	0.34 0.34	0.94 0.94	0.32 0.32	KMCO KMCO	7 7	91 91	0.45 0.45	0.92 0.92	0.42 0.42
3	KBWI	7	91	0.50	0.94	0.32	KMSP	8	61	0.45	0.92	0.42
4	KBWI	7	61	0.49	0.91	0.45	KMSP	8	91	0.35	0.93	0.33
3	KCLE	8	121	0.34	0.92	0.32	KORD	8	121	0.32	0.93	0.30
4	KCLE	8	121	0.34	0.92	0.32	KORD	8	121	0.32	0.93	0.30
3	KCLT	5	121	0.38	0.91	0.35	KPHL	8	121	0.40	0.93	0.37
4	KCLT	5	121	0.38	0.91	0.35	KPHL	8	121	0.40	0.93	0.37
3	KCVG	7	121	0.34	0.92	0.31	KPHX	6	31	0.34	0.80	0.27
4	KCVG	7	121	0.34	0.92	0.31	KPHX	6	121	0.33	0.87	0.29
3	KDCA	7	121	0.37	0.94	0.35	KPIT	7	91	0.39	0.91	0.36
4	KDCA	7	121	0.37	0.94	0.35	KPIT	7	91	0.39	0.91	0.36
3	KDEN	8	61	0.34	0.90	0.31	KSAC	6	121	0.51	0.93	0.48
4	KDEN	8	121	0.34	0.91	0.31	KSAC	6	121	0.51	0.93	0.48
3	KDFW	9	61	0.32	0.93	0.30	KSAN	5	121	0.43	0.92	0.40
4	KDFW	9	91	0.32	0.93	0.30	KSAN	5	91	0.43	0.92	0.40
3	KDTW	8	91	0.41	0.93	0.38	KSAT	7	121	0.32	0.94	0.30
4	KDTW	8	91	0.41	0.93	0.38	KSAT	7	121	0.32	0.94	0.30
3	KEUG	6	121	0.49	0.92	0.45	KSEA	6	121	0.38	0.93	0.35
4	KEUG	6	121	0.49	0.92	0.45	KSEA	6	121	0.38	0.93	0.35
3	KIAH	7	121	0.41	0.93	0.38	KSFO	10	121	0.40	0.94	0.38
4	KIAH	7	121	0.41	0.93	0.38	KSFO	10	121	0.40	0.94	0.38
3 4	KLAS KLAS	8	31 91	0.40 0.40	0.89 0.92	0.35 0.37	KSM X KSM X	8	61 121	0.62 0.64	0.91 0.92	0.57 0.59
3	KLAS	7	121	0.40	0.92	0.37	KSMA	7	121	0.84	0.92	0.33
4	KLAX	7	121	0.45	0.93	0.42	KSTL	7	121	0.36	0.92	0.33
3	KLGA	9	91	0.45	0.93	0.42	KTPA	6	121	0.30	0.92	0.33
4	KLGA	9	121	0.36	0.92	0.33	KTPA	6	121	0.47	0.90	0.42

Table 30: Average performance of the processing of OLAs 3 and 4 over all 30 weather stations by Static (variant 0x0, i.e., current weather only, transitions unlimited) Rev. 1.1

OLA	Average	Metric
OLA 3	0.397	NetNorm
OLA 4	0.367	MQNetNorm

A.11.1.3 OLAs 5 & 6 Please see Table 31 below and Table 32 below.

Table 31: Results of the processing of OLAs 5 and 6 by Static (variant 0x1, i.e., current weather only, transitions limited) Rev. 1.1

OLA	station	deployment threshold (knots)	running average size (minutes)	m Net Norm	MQMP	MQNetNorm	station	deployment threshold (knots)	running average size (minutes)	m NetNorm	MQMP	MQNetNorm
5	KATL	17	31	0.27	0.95	0.25	KMCI	18	61	0.24	0.93	0.22
6	KATL	17	31	0.27	0.95	0.25	KMCI	18	61	0.24	0.93	0.22
5 6	KBOS KBOS	19 19	$121 \\ 121$	0.28 0.28	0.95 0.95	0.27 0.27	KMCO KMCO	17 17	31 31	0.26 0.26	0.98 0.98	0.26 0.26
5	KBWI	17	31	0.23	0.93	0.27	KMSP	18	31	0.25	0.90	0.23
6	KBWI	17	31	0.23	0.98	0.23	KMSP	18	31	0.25	0.90	0.23
5	KCLE	18	31	0.26	0.86	0.22	KORD	18	31	0.29	0.90	0.26
6	KCLE	18	31	0.26	0.86	0.22	KORD	18	31	0.27	0.90	0.24
5	KCLT	15	31	0.20	0.97	0.20	KPHL	18	31	0.28	0.95	0.27
6	KCLT	15	31	0.20	0.97	0.20	KPHL	18	31	0.28	0.95	0.27
5	KCVG	17	31	0.24	0.93	0.22	KPHX	16	31	0.27	0.96	0.26
6	KCVG	17	31	0.24	0.93	0.22	KPHX	16	31	0.27	0.96	0.26
5	KDCA	17	31	0.28	0.95	0.27	KPIT	17	31	0.22	0.95	0.21
6	KDCA	17	31	0.28	0.95	0.27	KPIT	17	31	0.20	0.96	0.19
5	KDEN	18	61	0.24	0.94	0.23	KSAC	16	31	0.30	0.96	0.29
6	KDEN	18	61	0.24	0.94	0.23	KSAC	16	31	0.30	0.96	0.28
5	KDFW	19	61	0.27	0.93	0.25	KSAN	15	1	0.27	0.97	0.26
6	KDFW	19	61	0.27	0.93	0.25	KSAN	15	1	0.27	0.97	0.26
5	KDTW	18	31	0.30	0.89	0.27	KSAT	17	91	0.26	0.95	0.24
6	KDTW	18	31	0.28	0.89	0.25	KSAT	17	91	0.26	0.95	0.24
5	KEUG	16	31	0.26	0.95	0.25	KSEA	16	31	0.36	0.95	0.34
6	KEUG	16	31	0.26	0.95	0.25	KSEA	16	31	0.36	0.95	0.34
5	KIAH	17	31	0.26	0.98	0.25	KSFO	20	91	0.24	0.93	0.22
6	KIAH	17	31	0.25	0.98	0.24	KSFO	20	91	0.23	0.93	0.21
5	KLAS	18	31	0.31	0.92	0.28	KSMX	18	61	0.30	0.98	0.30
6	KLAS	18	31	0.31	0.92	0.28	KSMX	18	61	0.30	0.98	0.29
5	KLAX	17	61	0.26	0.97	0.25	KSTL	17	31	0.27	0.93	0.25
6	KLAX	17	61	0.24	0.97	0.24	KSTL	17	31	0.27	0.93	0.25
5 6	KLGA KLGA	19 19	61 61	0.28 0.28	0.95 0.95	0.27 0.27	KTPA KTPA	16 16	31 31	0.24 0.24	0.98 0.98	0.24 0.24
0	KLGA	19	0.1	0.20	0.90	0.21	KIFA	10	31	0.24	0.90	0.24

Table 32: Average performance of the processing of OLAs 5 and 6 over all 30 weather stations by Static (variant 0x1, i.e., current weather only, transitions limited) Rev. 1.1

OLA	Average	Metric
OLA 5	0.267	NetNorm
OLA 6	0.247	MQNetNorm

A.11.2 Using weather prediction

A.11.2.1 OLAs 1 & 2 Please see Table 33 below and Table 34 on the next page.

Table 33: Results of the processing of OLAs 1 and 2 by Static (variant 0x2, i.e., weather prediction, transitions unlimited) Rev. 1.1

OLA	station	deployment threshold (knots)	running average size (minutes)	${ m NetNorm}$	MQMP	MQNetNorm	station	deployment threshold (knots)	running average size (minutes)	${ m NetNorm}$	MQMP	MQNetNorm
1	KATL	7	1	0.57	0.80	0.45	KMCI	8	1	0.66	0.89	0.59
2	KATL	7	121	0.54	0.92	0.50	KMCI	8	1	0.66	0.89	0.59
1 1	KBOS	9	1	0.38	0.86	0.32	KMCO	7	1	0.66	0.82	0.55
2	KBOS	9	91	0.36	0.93	0.34	KMCO	7	61	0.63	0.91	0.57
1 2	KBWI KBWI	7	$1 \\ 121$	0.69 0.64	0.74	0.52 0.59	KMSP KMSP	8 8	$\begin{array}{ c c c } & 1 & \\ & 121 & \end{array}$	0.38 0.35	0.84 0.93	0.32 0.33
1	KCLE	8	1 2 1	0.59	0.92	0.59	KORD	8	1 2 1	0.59	0.95	0.50
2	KCLE	8	121	0.59	0.93	0.51	KORD	8	121	0.59	0.93	0.54
1	KCLT	5	1	0.70	0.76	0.53	KPHL	8	1	0.65	0.85	0.55
2	KCLT	5	121	0.68	0.91	0.62	KPHL	8	121	0.62	0.93	0.57
1	KCVG	7	1	0.66	0.81	0.54	KPHX	6	1	0.36	0.54	0.20
2	KCVG	7	121	0.63	0.92	0.58	KPHX	6	121	0.34	0.86	0.29
1	KDCA	7	1	0.50	0.86	0.43	KPIT	7	1	0.74	0.81	0.60
2	KDCA	7	121	0.48	0.93	0.45	KPIT	7	121	0.69	0.92	0.64
1	KDEN	8	1	0.54	0.78	0.42	KSAC	6	1	0.78	0.78	0.61
2	KDEN	8	91	0.51	0.89	0.45	KSAC	6	121	0.74	0.93	0.69
1	KDFW	9	1	0.46	0.86	0.40	KSAN	5	1	0.72	0.87	0.63
2	KDFW	9	1	0.46	0.86	0.40	KSAN	5	121	0.70	0.93	0.65
1	KDTW	8	1	0.59	0.83	0.50	KSAT	7	1	0.53	0.83	0.44
2	KDTW	8	121	0.57	0.94	0.53	KSAT	7	121	0.51	0.94	0.48
1 1	KEUG	6	1	0.73	0.83	0.61	KSEA	6	1	0.66	0.81	0.53
2	KEUG	6	121	0.70	0.92	0.64	KSEA	6	121	0.63	0.92	0.58
1	KIAH	7	1	0.72	0.83	0.60	KSFO	10	1	0.68	0.90	0.61
2	KIAH	7	121	0.68	0.93	0.63	KSFO	10	91	0.63	0.95	0.60
1	KLAS	8	1	0.44	0.77	0.34	KSMX	8	1	0.80	0.86	0.69
2	KLAS	8	1	0.44	0.77	0.34	KSMX	8	91	0.76	0.92	0.70
1	KLAX	7	1	0.88	0.90	0.79	KSTL	7	1	0.53	0.84	0.44
2	KLAX	7	61	0.85	0.93	0.79	KSTL KTPA	7	61	0.51	0.91	0.47
$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	KLGA KLGA	9	$\frac{1}{121}$	0.42 0.40	0.80 0.92	0.34 0.37	KTPA	6 6	1 121	0.66 0.63	0.77 0.90	0.51 0.57
	KLGA	9	121	0.40	0.92	0.57	KIFA	Ü	121	0.03	0.90	0.57

Table 34: Average performance of the processing of OLAs 1 and 2 over all 30 weather stations by Static (variant 0x2, i.e., weather prediction, transitions unlimited) Rev. 1.1

OLA	Average	Metric
OLA 1	0.609	NetNorm
OLA 2	0.534	MQNetNorm

A.11.2.2 OLAs 3 & 4 Please see Table 35 below and Table 36 below.

Table 35: Results of the processing of OLAs 3 and 4 by Static (variant 0x2, i.e., weather prediction, transitions unlimited) Rev. 1.1

OLA	station	deployment threshold (knots)	running average size (minutes)	m Net Norm	MQMP	MQNetNorm	station	deployment threshold (knots)	running average size (minutes)	m NetNorm	MQMP	MQNetNorm
3	KATL	7	121	0.35	0.91	0.32	KMCI	8	1	0.30	0.83	0.25
4	KATL	7	121	0.35	0.91	0.32	KMCI	8	121	0.27	0.93	0.25
3	KBOS	9	1	0.33	0.83	0.27	KMCO	7	121	0.43	0.92	0.39
4	KBOS	9	121	0.31	0.93	0.29	KMCO	7	121	0.43	0.92	0.39
3	KBWI	7	1	0.45	0.69	0.31	KMSP	8	1	0.33	0.80	0.27
4	KBWI	7	121	0.45	0.91	0.41	KMSP	8	121	0.31	0.93	0.29
3 4	KCLE KCLE	8 8	$\begin{array}{c} 1 \\ 121 \end{array}$	$0.32 \\ 0.30$	$0.80 \\ 0.92$	$0.25 \\ 0.28$	KORD KORD	8 8	1 121	0.30 0.29	0.80 0.92	0.24 0.26
3	KCLE	5	121	0.36	0.69	0.28	KPHL	8	121	0.29	0.92	0.26
4	KCLT	5	121	0.35	0.09	0.25	KPHL	8	$\begin{vmatrix} 1 \\ 121 \end{vmatrix}$	0.37	0.80	0.31
3	KCVG	7	1 2 1	0.33	0.90	0.31	KPHX	6	91	0.37	0.92	0.34
4	KCVG	7	121	0.32	0.75	0.24	KPHX	6	121	0.32	0.85	0.20
3	KDCA	7	1	0.35	0.81	0.29	KPIT	7	1	0.37	0.76	0.28
4	KDCA	7	121	0.34	0.93	0.23	KPIT	7	121	0.35	0.91	0.32
3	KDEN	8	1	0.32	0.74	0.24	KSAC	6	1	0.49	0.75	0.36
4	KDEN	8	121	0.31	0.90	0.27	KSAC	6	121	0.47	0.92	0.44
3	KDFW	9	1	0.29	0.82	0.24	KSAN	5	121	0.43	0.92	0.40
4	KDFW	9	121	0.29	0.93	0.27	KSAN	5	121	0.43	0.92	0.40
3	KDTW	8	1	0.38	0.77	0.29	KSAT	7	121	0.32	0.93	0.30
4	KDTW	8	121	0.38	0.93	0.35	KSAT	7	121	0.32	0.93	0.30
3	KEUG	6	1	0.45	0.79	0.36	KSEA	6	1	0.36	0.77	0.28
4	KEUG	6	121	0.44	0.91	0.40	KSEA	6	121	0.35	0.91	0.32
3	KIAH	7	121	0.38	0.91	0.35	KSFO	10	1	0.38	0.86	0.32
4	KIAH	7	121	0.38	0.91	0.35	KSFO	10	121	0.38	0.94	0.35
3	KLAS	8	1	0.37	0.75	0.28	KSMX	8	1	0.57	0.82	0.47
4	KLAS	8	121	0.35	0.91	0.32	KSMX	8	121	0.59	0.91	0.54
3	KLAX	7	91	0.44	0.92	0.41	KSTL	7	1	0.33	0.79	0.26
4	KLAX	7	91	0.44	0.92	0.41	KSTL	7	121	0.33	0.91	0.30
3	KLGA	9	1	0.32	0.76	0.24	KTPA	6	121	0.43	0.89	0.39
4	KLGA	9	121	0.32	0.92	0.30	KTPA	6	121	0.43	0.89	0.39

Table 36: Average performance of the processing of OLAs 3 and 4 over all 30 weather stations by Static (variant 0x2, i.e., weather prediction, transitions unlimited) Rev. 1.1

OLA	Average	Metric
OLA 3	0.373	NetNorm
OLA 4	0.334	MQNetNorm

A.11.2.3 OLAs 5 & 6 Please see Table 37 below and Table 38 below.

Table 37: Results of the processing of OLAs 5 and 6 by Static (variant 0x3, i.e., weather prediction, transitions limited) Rev. 1.1

OLA	station	deployment threshold (knots)	running average size (minutes)	${\tt NetNorm}$	MQMP	MQNetNorm	station	deployment threshold (knots)	running average size (minutes)	m NetNorm	MQMP	MQNetNorm
5	KATL	17	31	0.27	0.95	0.25	KMCI	18	61	0.24	0.93	0.22
6	KATL	17	31	0.27	0.95	0.25	KMCI	18	61	0.24	0.93	0.22
5	KBOS	19	121	0.28	0.95	0.27	KMCO	17	31	0.26	0.98	0.26
6	KBOS	19	121	0.28	0.95	0.27	KMCO	17	31	0.26	0.98	0.26
5	KB WI KB WI	17 17	31 31	$0.23 \\ 0.22$	0.97 0.98	0.23 0.21	KMSP	18 18	31 31	0.25 0.25	0.90	0.23 0.23
6 5	KCLE	18	31	0.22	0.98	0.21	KMSP KORD	18	31	0.25	0.90	0.23
6	KCLE	18	31	0.26	0.86	0.22	KORD	18	31	0.29	0.90	0.24
5	KCLT	15	31	0.20	0.97	0.22	KPHL	18	31	0.21	0.95	0.24
6	KCLT	15	31	0.20	0.97	0.20	KPHL	18	31	0.28	0.95	0.27
5	KCVG	17	31	0.24	0.93	0.22	KPHX	16	31	0.27	0.96	0.26
6	KCVG	17	31	0.24	0.93	0.22	KPHX	16	31	0.27	0.96	0.26
5	KDCA	17	31	0.28	0.95	0.27	KPIT	17	31	0.22	0.95	0.21
6	KDCA	17	31	0.28	0.95	0.27	KPIT	17	31	0.20	0.96	0.19
5	KDEN	18	61	0.24	0.94	0.23	KSAC	16	31	0.30	0.96	0.29
6	KDEN	18	61	0.24	0.94	0.23	KSAC	16	31	0.30	0.96	0.28
5	KDFW	19	61	0.27	0.93	0.25	KSAN	15	1	0.27	0.97	0.26
6	KDFW	19	61	0.27	0.93	0.25	KSAN	15	1	0.27	0.97	0.26
5	KDTW	18	31	0.30	0.89	0.27	KSAT	17	91	0.26	0.95	0.24
6	KDTW	18	31	0.28	0.89	0.25	KSAT	17	91	0.26	0.95	0.24
5	KEUG	16	31	0.26	0.95	0.25	KSEA	16	31	0.36	0.95	0.34
6	KEUG	16	31	0.26	0.95	0.25	KSEA	16	31	0.36	0.95	0.34
5	KIAH	17	31	0.26	0.98	0.25	KSFO	20	91	0.24	0.93	0.22
6	KIAH	17	31	0.25	0.98	0.24	KSFO	20	91	0.23	0.93	0.21
5	KLAS	18	31	0.31	0.92	0.28	KSMX	18	61	0.30	0.98	0.30
6	KLAS	18	31	0.31	0.92	0.28	KSMX	18	61	0.30	0.98	0.29
5	KLAX	17	61	0.26	0.97	0.25	KSTL	17	31	0.27	0.93	0.25
6	KLAX	17	61	0.24	0.97	0.24	KSTL	17	31	0.27	0.93	0.25
5	KLGA	19	61	0.28	0.95	0.27	KTPA	16	31	0.24	0.98	0.24
6	KLGA	19	61	0.28	0.95	0.27	KTPA	16	31	0.24	0.98	0.24

Table 38: Average performance of the processing of OLAs 5 and 6 over all 30 weather stations by Static (variant 0x3, i.e., weather prediction, transitions limited) Rev. 1.1

OLA	Average	Metric
OLA 5	0.267	${ m NetNorm}$
OLA 6	0.247	MQNetNorm

A.12 RESULTS OF THE ALGORITHMS AGING

A.12.1 Using current weather only

Please see Table 39 below and Table 40 on page 233. A.12.1.1 OLAS 1 & 2

Table 39: Results of the processing of OLAs 1 and 2 by Aging (variant 0x0, i.e., current weather only, transitions unlimited) Rev. 1.1

MQNet Norm	0.51	0.52	0.35	0.35	0.55	0.63	0.52	0.54	0.59	0.63	0.55	09.0	0.44	0.46	0.46	0.47	0.41	0.44	0.50	0.55	0.61	99.0	09.0	99.0	0.35	0.39	0.79	0.80
МФМР	06.0	0.93	0.92	0.93	0.82	0.91	68.0	0.93	0.84	0.91	0.85	0.93	88.0	0.93	0.83	06.0	68.0	0.94	68.0	0.93	0.83	0.92	98.0	0.93	92.0	0.91	06.0	0.93
Met N or m	0.57	0.56	0.38	0.38	29.0	0.68	0.59	0.58	0.70	69.0	0.65		0.50	0.50	99.0	0.52	0.47	0.46	0.57	0.59	0.74	0.72	0.70	0.71	0.45	0.43	88.0	0.86
r(12)		121	31	121		61	31	61	-	121	1	91	1	61	1	91	31	61	1	61	1	91	-	121	1	61	1	31
y(12)	2	2	6	6	2	7	œ	œ	20	ю	2	7	2	7	8	∞	6	6	8	80	9	9	2	2	œ	8	2	7
	1	121	31	31	-	61	1	61	-	121	1	121	1	31	1	61	31	91	1	61	1	121	31	31	-	61	1	61
y(11) $r(11)$		7	6	6	7	7	∞	∞	20	ro	7	7		7	8	∞	6	6	8	8	9	9	2	7	œ	8		_
r(10)	31	91	31	31	31	91	1	91	31	91	31	121	ī	61	1	91	1	61	31	31	1	121	_	61	31	61	1	-31
$\begin{vmatrix} y(10) \end{vmatrix} r$		7	6	6	7	7	∞	∞ ∞	ro.	ro	2	7	2	7	∞	∞	6	6	8	8	9	9	2	7	∞	8		_
r(9)	91	91	31	61	-	91	31	61	31	121	1	91	61	61	1	61	31	31	31	61	1	31	31	31	1	31	1	3.1
y(9)	7	7	6	6	7	7	∞		ы		7	7	2	7	8	×	6	6	∞	8	9	9	2	2	∞	8		-
	31	91	61	61	31	91	1	61	31	91	1	61	1	61	1	61	1	61	1	61	1	61	-	61	1	61	1	3.1
$y(8) \mid r(8)$		2	6	6	7	7	∞	∞	22	ro	7	7	2	7	8	∞	6	6	8	8	9	9	7	2	∞	8	7	-1
r(7) the n	31	61	-	31	-	31	1	61	1	121	1	91	1	91	1	91	31	91	31	61	1	31	1	31	31	61	1	31
$\begin{vmatrix} y(7) & y(7) \\ y(7) & y(7) \end{vmatrix}$ for month	7	7	6	6	2	7	œ	œ	22	ъ	2	7	2	7	8	œ	6	6	8	80	9	9	2	2	œ	8	2	7
	31	61	61	61	31	31	31	61	1	91	31	91	31	121	31	61	1	31	61	61	1	31	-	31	1	31	1	3.
$\begin{vmatrix} y(6) & r(6) \\ ze minutes \end{vmatrix}$	2	7	6	6	2	7	œ	œ	20	rO	2	7	2	7	8	œ	6	6	8	×	9	9	7	7	∞	8	2	1
r(5) erage s	31	121	-	121	31	91	1	61	1	91	1	61	1	91	31	61	1	91	31	121	1	31		121	1	121	1	23
5) av	2	7	6	6	2	7	∞	œ	20	rO	2	7	2	2	8	œ	6	6	8	œ	9	9	2	2	œ	8	2	7
$ \begin{vmatrix} & & \\ & & \\ & & \\ & &$	31	61	31	61	31	91	1	121	31	61	1	121	31	61	31	91	1	31	31	91	1	91	-	61	1	91	1	31
y(4) is	2	7	6	6	2	7	œ	œ	20	ro	2	7	2	7	œ	œ	6	6	8	œ	9	9	2	2	œ	8	2	7
r(3)	31	121	31	31	31	61	1	61	31	91	1	91	31	61	1	31	1	91	1	61	1	61	31	31	1	61	1	3.1
$\begin{vmatrix} y(3) \\ y(3) \end{vmatrix}$	2	7	6	6	2	7	œ	œ	20	ю	2	7	2	7	8	œ	6	6	8	00	9	9	2	2	œ	8	7	7
r(2)	1	61	31	31	-	121	1	121	1	61	1	61	T	121	1	91	61	61	I	121	31	121	П	61	1	61	T	3.1
y(2)	2	7	6	6	2	7	œ	œ	ъ	ю	2	7	2	7	8	œ	6	6	8	œ	9	9	2	2	œ	8	2	7
r(1) r(1) $r(y) r(y) $	31	121	31	61		31	31	91	1	121	31	121	1	61	1	31	1	61	31	61	1	91	_	31	1	61	ī	01
y(1) where	7	7	6	6	2	7	œ	∞	20	ro	2	7	2	7	∞	œ	6	6	8	∞	9	9	2	7	œ	8	- 2	7
noitsta	KATL	KATL	KBOS	KBOS	KBWI	KBWI	KCLE	KCLE	KCLT	KCLT	KCVG	KCVG	KDCA	KDCA	KDEN	KDEN	KDFW	KDFW	KDTW	KDTW	KEUG	KEUG	KIAH	KIAH	KLAS	KLAS	KLAX	KI.AX

OLA

Table 39: (continued)

_				_		_														_											_
0.38	0.38	0.60	0.62	0.55	0.60	0.32	0.35	0.54	0.55	0.58	0.60	0.27	0.31	0.63	0.67	0.64	0.71	0.63	0.66	0.45	0.49	0.53	0.60	0.61	0.63	0.69	0.72	0.47	0.48	0.54	0.59
06.0	0.91	0.91	0.94	0.83	0.92	68.0	0.93	0.91	0.93	06.0	0.93	0.74	98.0	78.0	0.92	0.83	0.93	78.0	0.92	78.0	0.93	0.81	0.93	06.0	0.94	98.0	0.91	68.0	0.93	0.81	06.0
0.42	0.42	99.0	99.0	99.0	0.65	98.0	0.37	0.59		0.64	0.65	0.37	0.36	0.72		0.77	0.77	0.72	0.71	0.52	0.53	99.0	0.65	89.0	29.0	08.0	0.79		0.52	99.0	_
F	_															Н	_						_				_		_		
31	121	31	6	_	61	31	31		61	31	- 6	_	121		61	1	121	1	91	-	61	1	121	1	91	1	121	1	121	31	3
6	6	œ	œ	7	7	œ	00	œ	œ	œ	00	9	9	2	7	9	9	25	rO	2	7	9	9	10	10	œ	00	2	7	9	9
61	61	31	61	П	61	-	91	П	61	_	61	-	61	-	61	1	121		31	-	31		121		91	-	31	1	61	31	91
6	6	8	œ	7	7	∞	œ	œ	œ	8	œ	9	9	7	2	9	9	2	ю	7	7	9	9	10	10	œ	œ	2	7	9	6
-	91	1	61	31	31	31	91	121	121	31	31	-	61	31	121	1	61	1	61	-	61	1	121	1	31	-	31	1	91	61	61
6	6	∞	∞	2	7	∞	œ	∞	∞	∞	∞	9	9	2	7	9	9	2	ю	2	7	9	9	10	10	00	∞		7	9	9
31	31	1	91	1	61	_	91	31	61	31	31	31	61	31	61	1	91	1	61	_	61	1	121	1	31	-	31	31	31	1	61
6	6	∞	∞	7	2	∞	∞	∞	∞	∞	∞	9	9	2	2	9	9	22	ю	7	2	9	9	10	10	∞	∞		7	9	9
-	31	1	61	1	61	31	121	31	31	31	61	31	91	31	61	_	31	1	61	31	91	-	91	1	31	-	31	1	91	1	61
6	6	8	∞	2	2	∞	œ	8	∞	8	∞	9	9	2	2	9	9	2	20	2	2	9	9	10	10	œ	∞	2	2	9	9
31	61	31	61	1	31	31	31	31	61	31	61	31	61	31	31	31	31	1	31	31	31	-	61	1	31	-	31	1	31	1	61
6	6	8	œ	7	7	œ	œ	8	œ	8	œ	9	9	2	7	9	9	5	23	7	7	9	9	10	10	8	œ	2	7	9	6
31	31	31	121	1	61		91	31	61	31	31	31	61	31	61	31	61	1	31	31	61	1	121	1	31	1	31	1	61	1	61
6	6	×	∞	2	7	∞	œ	œ	∞	∞	œ	9	9	2	2	9	9	20	rů	2	7	9	9	10	10	œ	œ	2	7	9	9
31	61	31	31	-	31	31	91	-	91	31	61	31	61	31	61	31	61	-	31	31	121	-	121	-	31	-	31	31	31	31	31
6	6	∞	œ	7	2	œ	œ	œ	œ	∞	œ	9	9	2	2	9	9	τĊ	rů	2	2	9	9	10	10	œ	œ	2	7	9	9
31	61	1	61	-	61	31	61	1	61	31	31	31	91	31	91	1	91	1	61		31	1	121	1	31	1	31	121	121	1	61
6	6	8	œ	2	7	œ	œ	œ	œ	œ	œ	9	9	2	2	9	9	2	ъ	2	7	9	9	10	10	œ	œ	2	7	9	9
31	61	31	61	1	61	-	61	31	91	1	61	31	91	1	121	1	61	1	61	-	91	1	91	1	31	1	31	1	61	1	31
6	6	∞	œ	7	2	∞	œ	∞	œ	œ	∞	9	9	2	7	9	9	ಬ	ю	2	2	9	9	10	10	œ	∞	2	7	9	9
91	91	31	121	-	31	31	61	31	31	31	91	-	91	31	91	1	91	-	61	-	121	-	61	-	61	-	31	1	61	1	91
6	6	∞	œ	2	7	∞	œ	œ	œ	œ	œ	9	9	2	2	9	9	20	ъ	2	7	9	9	10	10	œ	œ	2	7	9	9
91	91	1	91	1	61	-	91	31	61	1	61	-	61	1	61	1	121	1	61	-	121	1	121	1	61	-	31	1	61	1	61
6	6	∞	∞	7	7	∞	œ	œ	∞	œ	œ	9	9	2	7	9	9	2	20	7	7	9	9	10	10	œ	œ	2	7	9	9
KLGA	KLGA	KMCI	KMCI	KMCO	KMCO	KMSP	KMSP	KORD	KORD	KPHL	KPHL	KPHX	KPHX	KPIT	KPIT	KSAC	KSAC	KSAN	KSAN	KSAT	KSAT	KSEA	KSEA	KSFO	KSFO	KSMX	KSMX	KSTL	KSTL	KTPA	KTPA
⊢	2	1		1	2 4	-	2	1		-	2	1	2			1		_	2	-	2	-	2	1	2	1	2		2	_	2

Table 40: Average performance of the processing of OLAs 1 and 2 over all 30 weather stations by Aging (variant 0x0, i.e., current weather only, transitions unlimited) Rev. 1.1

OLA	Average	Metric
OLA 1	0.606	NetNorm
OLA 2	0.555	MQNetNorm

Please see Table 41 below and Table 42 on the next page. OLAs 3 & 4 A.12.1.2

Table 41: Results of the processing of OLAs 3 and 4 by Aging (variant 0x0, i.e., current weather only, transitions unlimited) Rev. 1.2

m10N39NQM	0.33	0.33	0.30	0.30	0.41	0.41	0.35	0.35	0.38	0.39	0.36	0.34	0.34	0.34	0.30	0.35	0.31	0.32	0.39	0.39	0.41	0.43	0.40	0.41	0.31	0.34	0.45	0.46	0.30	0.30	0.34	0.34	0.36	0.37	0.32	0.55	0.34
МФМР	0.91	0.93	0.93	0.93	06.0	0.91	0.91	0.92	88.0	06.0	06.0	06.0	0.93	0.93	68.0	0.92	0.92	0.94	0.92	0.93	06.0	0.91	0.92	0.93	0.83	0.92	06.0	0.92	0.91	0.91	0.93	0.94	68.0	0.91	0.92	0.93	0.92
Met Norm	0.36	0.35	0.32	0.32	0.45	0.45	0.38	0.38	0.43	0.43	0.40	0.38	0.37	0.36	0.34	0.38	0.34	0.34	0.43	0.42	0.46	0.47	0.43	0.44	0.37	0.38	0.50	0.50	0.33	0.33	0.36	0.36	0.40	0.40	0.34	0.35	0.37
r(12)	91	91	91	91	121	121	121	121	31	31	31	61	121	91	1	91	61	61	91	91	91	91	91	91	-	61	91	91	121	121	91	121	31	31	1	10	91
y(12)	17	17	19	19	17	17	18	18	15	15	17	17	17	17	18	18	19	19	18	18	9	9	17	17	œ	8	2	7	19	19	18	18	17	17	ж о	0 9	- 20 1
$\left\ \begin{array}{c c} y(11) & r(11) & y(12) & r(12) \end{array}\right\ $	121	121	121	121	91	91	61	61	1	91	121	121	31	121	-	31	31	31	61	91	61	61	61	91		61	61	61	31	31	121	121	31	31	1 5	16	91
y(11)	7		6	6	7	7	18	18	15	15	17	17	17	17	18	18	19	19	18	18	16	16	17	17	∞	8	7	7	19	19	18	18	17	17	ος ο	0 9	_ %
r(10)	31	31	91	91	61	61	61	91	31	61	31	61	121	121	31	61	121	121	31	61	31	31	61	121	91	121	1	31	121	121	31	31	31	61	61	31	61
$\begin{vmatrix} & & & & & & & & & & & & \\ & & & & & & $	17	17	6	6	17	17	18	18	15	15	17	17	7	7	∞	∞	6	6	18	18	16	16	2	7	∞	8	17	17	6	6	18	18	17	17	oc o	o 9	 8
r(9)	121	121	121	121	31	91	61	61	91	91	121	121	91	121	-	31	31	121	61	121	1	31	121	121		31	-	31	121	121	61	61	121	121	91	91	31
y(9)	17	17	6	6	7	7	18	18	15	15	17	17	2	7	18	18	6	6	18	18	16	16		7	∞	8	17	17	6	6	18	18	17	17	oo o	0	∞
r(8)	91	91	121	121	121	121	91	91	31	61	121	121	31	61	91	91	1	61	121	121	31	31	61	91	31	31	121	121	31	61	91	91	1	91	61	171	121
y(8)	17	17	6	6	17	17	∞	8	15	15		7	17	17	∞	œ	6	6	∞	8	16	16		7	18	18	17	17	6	6	∞	8	17	17	oc o	0	-
r(7) th n	31	91	91	91	91	121	61	91	61	61	121	121	121	121	-	121	121	121	61	91	61	61	121	121	121	121	61	61	121	121	61	61	31	31	61	10	121
$\begin{vmatrix} & & & & & & & & & & & \\ & & & & & & & $	7	7	6	6	7	7	∞	8	2	2	2	7	2	7	18	œ	6	6	∞	8	16	16	7	7	œ	8	17	17	6	6	18	18	7	7	oc o	0	x 0
	121	121	91	91	121	121	31	61	31	61	31	31	121	121	121	121	31	31	61	61	121	121	61	121	61	61	31	31	61	61	31	121	61	61	31	121	31
$\begin{vmatrix} y(6) & r(6) \\ y(8) & r(6) \end{vmatrix}$ size minutes	7	7	6	6	7	7	18	18	15	5	17	17	2	7	∞	œ	19	19	∞	8	9	9	17	7	18	18	17	17	6	6	∞	8	7	7	oc o	0	oo
r(5)	31	61	121	121	31	61	31	31	91	91	31	61	31	121	91	91	121	121	31	91	31	31	31	91	31	31	121	121	121	121	121	121	91	91	31	10	91
$r(4) \begin{vmatrix} y(5) \\ y(5) \end{vmatrix}$	17	17	6	6	2	7	18	18	91	15	2.1	17	17	2	18	18	19	19	18	18	16	16	21	17	18	18	17	17	6	6	18	18	17	17	8 0	o ;	 81
r(4)	31	121	31	61	31	61	121	121	121	121	121	61	31	61	121	121	61	61	61	61	31	121	91	121	91	121	121	121	121	121	121	121	31	31	121	121	61
y(4) is the	17	7	19	19	17	17	18	18	15	15	21	27	17	17	18	18	19	19	18	18	91	9	21	17	œ	8	17	17	6	6	18	18	17	17	8 0	0	18
$\begin{vmatrix} r(3) \\ nd \ r(n) \end{vmatrix}$	31	61	121	121	31	31	121	121	31	31	31	31	31	61	31	31	121	121	91	91	31	61	91	91	31	91	31	31	61	121	31	31	121	121	121	121	21
$\begin{vmatrix} y(3) \\ y(3) \end{vmatrix}$	17	17	6	6	2	7	18	18	15	15	17	17	17	17	18	18	19	19	18	18	16	16	17	17	18	18	17	17	6	6	28	28	2	7	ж о	0 9	100
r(2)	31	61	31	31	31	91	91	91	31	61	31	91	31	31	-	31	31	61	31	31	61	61	61	91		61	31	31	31	31	121	121	121	121	61	10	31
$y(1) \mid r(1) \mid y(2) \mid r(2) \mid y(3) \mid r(3) \mid$ where $y(n)$ is the y-intercept and $r(n)$	17	17	6	6	17	17	18	18	15	15	17	17	17	17	18	18	19	19	18	18	16	16	17	17	∞	8	17	17	19	19	18	18	2	7	oc o	0	- 2 -
r(1)	61	61	61	61	31	61	31	31	31	61	61	61	61	61	-	31	61	61	31	31	31	61	121	121	-	61	-	121	61	61	31	61	91	91	31	171	91
y(1) where	17	17	19	19	17	17	18	18	15	15	17	17	17	17	18	18	19	19	18	18	16	16	17	17	∞	8	7	17	19	19	18	18	7	7	oc o	o ;	18
noitsts	KATL	KATL	KBOS	KBOS	KBWI	KBWI	KCLE	KCLE	KCLT	KCLT	KCVG	KCVG	KDCA	KDCA	KDEN	KDEN	KDFW	KDFW	KDTW	KDTW	KEUG	KEUG	KIAH	KIAH	KLAS	KLAS	KLAX	KLAX	KLGA	KLGA	KMCI	KMCI	KMCO	KMCO	KMSP	Y.W.S.F.	KORD
OFV	╄	4	3		3		_	4		4	3 1	4		4 I	_	4	3 F		3 Y			4	· · · · · ·	_		4	3		3			4	_	4 F			3

Table 41: (continued)

4	6	6	~	6	6	0	∞	0	6	_	0	0	9	7	7	7	∞	00	-	2	м	9
0.34	0.39	0.39	0.27	0.29	0.39	0.40	0.48	0.20	0.39	0.41	0.30	0:30	0.36	0.37	0.37	0.37	0.58	0.58	0.3	0.32	0.35	0.36
0.92	0.92	0.93	0.77	0.85	0.89	0.91	0.89	0.93	0.88	0.91	0.92	0.93	0.89	0.92	0.94	0.95	0.91	0.91	0.91	0.92	0.87	0.89
0.37	0.42	0.42	0.34	0.34	0.44	0.44	0.53	0.54	0.45	0.45	0.33	0.33	0.40	0.40	0.39	0.39	0.64	0.64	0.34	0.35	0.40	0.41
16	31	91		121	61	61	91	91	31	61	31	31	61	61	-	91	-	121	31	91	31	91
18	28	28	9	9	17	17	9	9	2	20	17	17	16	16	10	10	8	œ	17	17	16	16
91	31	61	1	61	31	91	1	121	_	61	61	61	121	121	31	91	31	31	31	31	31	31
18	18	18	9	9	17	17	9	9	r0	rů.	17	17	16	16	10	10	∞	œ	17	17	16	16
91	61	61	31	61	61	61	91	91	121	121	121	121	1	31	1	31	31	31	31	31	31	91
18	18	18	9	9	17	17	9	9	2	ъ	2	7	16	16	20	50	∞	∞	17	17	16	16
61	91	91	31	31	91	91	31	31	61	61	61	61	31	121	121	121	121	121	61	61	1	121
<u>~</u>	∞	∞	9	9	7	7	16	16	r0	ю	7	7	9	9	50	50	∞	∞	7	2	16	16
121	61	61	91	121	31	91	31	91	31	91	121	121	-	91	121	121	31	31	121	121	121	121
<u>~</u>	18	18	9	9	2	7	16	16	15	15	7	7	16	9	20	50	œ	∞	7	2	9	9
121	121	121	91	121	31	31	31	61	121	121	31	31	61	61	121	121	61	61	121	121	1	91
- o	œ	œ	9	9	2	7	16	16	22	ю	17	17	9	9	20	50	œ	œ	2	7	9	9
61	61	61	31	61	61	61	31	121	31	31	121	121	91	121	91	91	121	121	31	61	31	31
×	œ	œ	9	9	2	7	16	9	15	15	17	17	9	9	30	30	œ	œ	17	17	16	16
91	121	121	121	121	31	61	31	91	31	31	91	91	1	121	91	91	91	91	31	91	121	121
18	œ	œ	9	9	17	17	16	16	15	15	17	17	16	16	30	30	18	18	17	17	9	9
61	61	121	31	61	61	61	31	61	31	61	121	121	31	61	121	121	61	61	121	121	31	31
18	18	18	9	9	27	27	16	16	15	15	17	17	16	16	20	20	18	18	17	17	9	9
16	31	91	31	91	31	91	61	121	31	31	31	61	31	61	91	121	61	61	-	61	31	31
= 18	18	18	9	9	17	17	9	9	15	15	17	17	16	16	20	20	18	18	17	17	16	16
31	121	121	-	91	31	61	1	61		31	31	121	91	91	61	61	91	121	31	61	121	121
18	18	18	9	9	17	17	9	9	15	15	2	7	9	9	10	10	œ	œ	17	17	9	9
91	91	121	1	61	121	121	121	121	-	121	121	121	91	91	61	61	121	121	121	121	121	31
= 18	18	18	9	9	17	17	9	9	ro	rů	2	2	16	16	10	10	œ	œ	2	2	9	9
4 KORD	KPHL	KPHL	KPHX	KPHX	KPIT	KPIT	KSAC	KSAC	KSAN	KSAN	KSAT	KSAT	KSEA	KSEA	KSFO	KSFO	KSMX	KSMX	KSTL	KSTL	KTPA	KTPA
4	က	4	က	4	က	4	က	4	က	4	က	4	က	4	က	4	က	4	က	4	က	4

Table 42: Average performance of the processing of OLAs 3 and 4 over all 30 weather stations by Aging (variant 0x0, i.e., current weather only, transitions unlimited) Rev. $1.1\,$

Metric	${ m NetNorm}$	${\rm MQNetNorm}$
Average	0.402	0.371
OLA	OLA 3	OLA 4

Please see Table 43 below and Table 44 on page 238. OLAs 5 & 6 A.12.1.3

Table 43: Results of the processing of OLAs 5 and 6 by Aging (variant 0x1, i.e., current weather only, transitions limited) Rev.

MQNetNorm	0.22	0.22	0.18	0.18	0.20	0.20	0.18	0.18	0.24	0.24	0.17	0.17	0.20	0.20	0.15	0.15	0.20	0.20	0.17	0.17	0.20	0.20	0.20	0.20	0.10	0.00	0.20	0.18	0.18	0.17	0.17	0.21	0.21	0.15	0.15	0.17
МОМР	0.92	0.92	0.91	0.91	0.94	0.94	06.0	0.00	0.93	0.93	06.0	06.0	0.92	0.92	0.91	0.91	0.91	0.91	0.91	0.91	0.95	0.95	96.0	0.90	0.30	20.0	0.97	0.92	0.92	0.92	0.92	0.94	0.94	0.92	0.92	0.92
ттоИзэИ	0.24	0.24	0.20	0.20	0.21	0.21	0.20	0.20	0.26	0.26	0.19	0.19	0.22	0.22	0.16	0.16	0.22		0.18	0.18	0.21	_	0.21	\rightarrow	0.20	06.0	0.20	0.20	0.20	0.19	0.19	0.22	0.22	0.17	0.17	0.19
r(12)	-	1	-1	-	61	61	1	1	-	Ţ	1		-	_	-	_	1	-	31	31	31	31	1	- T	31	; -		-	1	-	-		1]	_
y(12)	2	7	6	6	2	7	∞	8	rů	ъ	7	7	2	7	∞	œ	6	6	8	œ	9	9	2	- 8	0 00 0 00	4 8		6	6	_∞	∞	7	7	00	×	∞
r(11)	-	-	-	-	-	-	121	121	_	_	121	121	-	-	-	-	91	91	1	-	121	121	121	121	- To	31	61	91	91	-	-	1	1	1	1	_
$\left\ \begin{array}{c c} y(10) & r(10) & y(11) & r(11) & y(12) & r(12) \end{array}\right\ $	7	7	6	6	7	7	38	38	35	35	37	37	7	7	∞	∞	39	39	∞	∞	56	56	37	37	0 0	37	37	39	39	38	38	7	7	00	×	
.(10)	1	1	1	-	91	91	1	1	121	121	1	-	121	121	1	-	121	121	121	121	1	1	121	121		191	121	-	1	121	121		1		_	31
y(10)	2	7	6	6	2	7	∞	8	35	35	7	7	7	7	∞	∞	6	6	8	œ	9	9	2		o 0	1 0	- 1	6	6	38	38	2	7	∞	x	 ∞
	-	1	31	61	-	-	91	91	31	91	121	121	-	-	61	61	91	91	1	_	121	121	1	→ 2	31	- -		91	91	1	-	1	1	61	61	61
$y(9) \mid r(9)$	37	37	6	6			Н		ю	_		_	_	7	38	38	39	39	88	38	56	56	37	37	0 00 0 00	3 2	- 2	39	39	∞	œ	37	37	38	38	38
r(8)	91	91	31	31	-	-	121	121	-	1	31	31	-	-	-	-	-	-	61	61	-	-	31	31	121	191	121	П	-	31	31	61	61	1	-	31
$y(8) \left \begin{array}{c} r(8) \end{array} \right $	22	27	6	6	7	7	38	38	ъ	ъ	7	7	7	7	œ	œ	6	6	00	œ	9	9	2	- 0	o 0	2	- 2	6	6	38	38	2	7	∞	×	∞ ∞
r(7) tth n	61	61	121	121	31	31	31	31	61	61	31	31	-	-	-	-	Т	-	31	31	121	121	1	٦,		31	31	61	61	1	-	91	91		1	_
$\left\ y(7) \right\ _{r(7)}$	7	7	39	39	27	22	œ	8	ю	ъ	7	7	2	7	∞	œ	6	6	×	œ	9	9	2		ю о	1		39	39	∞	œ	22	27	∞	x	00
	1	П	121	121	1	1	1	1	-	1	121	121	1	-	31	31	1	1	31	31	91	91	121	121		3.1	31	31	31	-	1	121	121	121	121	121
$\begin{vmatrix} y(6) & r(6) \\ y(6) & r(6) \end{vmatrix}$ size minutes	2	2	6	6	2	7	38	38	ъ	ъ	2	2	37	37	œ	œ	6	6	8	œ	9	9	37	57	ю ох	2	- 2	6	6	38	38	2	7	38	38	38
	121	121	1	-	121	121	121	121	-	1	1	П	1	П	61	61	1	1	1	1	121	121	31	31		191	121	31	31	121	121	1	1	1	-	_
$y(4) \mid r(4) \mid y(5) \mid r(5)$ is the running average	2	2	6	6	37	37	8	8	ъ	ις.	2	7	2	7	œ	œ	6	6	8	∞	9	9	2	,	ю ox	4 0		6	6	28	28	2	7	o o 1	×	œ
 r(4) e runn	1	1	1	П	121	121	31	31	1	1	121	1	1	1	1	1	1	1	1	1	1	1	31	31		-	1	1	1	1	1	1	1	1	1	_
	2	2	6	6	37	37	×	8	35	32	2	2	2	7	œ	œ	6	6	8	œ	36	36	2	,	o o	4 0		6	6	∞	œ	37	37	∞	×	œ
r(3)	61	61		-	61	61	1	1	31	31	Τ	-	-	-	-	-	Т	-	1	-	-	-	Ţ	٠,	-	191	121	-	-	П	-	121	121	Τ.	_	121
$r(2) \left \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \right (3)$	2	2	6	6	37	37	18	18	ю	ю	2	2	37	37	œ	œ	6	6	18	18	9	9	2	- 0	o o	4 0	۷.	6	6	∞	œ	2	2	∞	x	58
$\begin{pmatrix} r(2) \\ y - ext{in ter} \end{pmatrix}$	-	-	121	121	91	91	1	1	-	П	121	121	31	31	31	31	П	-	1	-	31	31	Ţ	- T	21	61	61	121	121	121	121	Т	1	31	31	-
$\begin{vmatrix} y(2) \\ y(4) \end{vmatrix}$	7	7	39	39	37	37	38	38	22	22	37	37	37	37	38	38	39	6	8	œ	56	26	2	- 8	0 °	37	37	39	39	38	38	37	37	38	338	œ
y(1) $r(1)$ $y(2)$ $r(2)$ $y(3)$ $r(3)$ where $y(n)$ is the y-intercept and $r(n)$	31	31	-	-	-	-	П	1	-	_	1	-	31	31	91	91	91	91	T		121	121	121	121		191	121		-	П	-	31	31		_	-
y(1) where	2	7	6	6	7	7	×	8	ъ	ro	2	7	2	7	∞	œ	6	6	8	œ	36	36	2	- 0	o o	4 0	- 2	6	6	∞	∞	7	7	∞ ·	x	œ
noitsts	KATL	KATL	KBOS	KBOS	KBWI	KBWI	KCLE	KCLE	KCLT	KCLT	KCVG	KCVG	KDCA	KDCA	KDEN	KDEN	KDFW	KDFW	KDTW	KDTW	KEUG	KEUG	KIAH	KIAH	KLAS	KI.AX	KLAX	KLGA	KLGA	KMCI	KMCI	KMCO	KMCO	KMSP	KMSP	KORD

OLA

1.1

Table 43: (continued)

0.17	0.19	0.19	0.17	0.17	0.19	0.19	0.19	0.19	0.22	0.22	0.18	0.18	0.21	0.21	0.16	0.16	0.16	0.16	0.17	0.17	0.19	0.19
0.92	0.92	0.92	0.92	0.92	0.91	0.91	0.95	0.95	26.0	0.97	0.92	0.92	96.0	96.0	0.94	0.94	26.0	26.0	0.91	0.91	0.94	0.94
0.19	0.21	0.21	0.18	0.18	0.21	0.21	0.20	0.20	0.23	0.23	0.19	0.19	0.21	0.21	0.17	0.17	0.17	0.17	0.18	0.18		0.21
_	_	_	61	61	_	_	Ī	_	61	61	61	61	-	_	121	121	121	121	31	31	_	_
_									9	_	e	_						-	60	01)		
∞	œ	00	36	36	7	7	9	9	70	70	7	7	9	9	10	10	œ	00	2	7	9	9
-	121	121	121	121	_	-	31	31	-	-	61	61	-	-	91	91	-		121	121	31	31
œ	38	38	56	56	7	7	36	36	2	r,	27	27	9	9	30	30	œ	œ	37	37	9	9
31	31	31	121	121	121	121	-	-	91	91	61	61	1	-	-	-	1	-	1	-	1	-
 	38	38	36	36	27	27	9	9	20	ಬ	27	27	9	9	10	10	∞	oc		7	9	9
61	61	61	31	31	61	121	-	-	121	121	1		31	31	91	91	121	121	1		1	-
38	28	28	9	9	17	17	9	9	35	35	2	7	36	36	30	30	38	38		7	36	36
31	-	-	1		31	121	-	-	-	-	1	-	61	61	-	-	121	121	1	-	31	31
<u>∞</u>	œ	∞	9	9	2	7	9	9	22	ъ	2	7	56	56	10	10	œ	∞	2	7	9	9
_	-	П	121	121	31	31	1	-	121	91	31	31	121	121	31	31	91	91	121	121	1	1
∞	œ	œ	9	9	2	2	9	9	20	ro	2	7	36	36	10	10	œ	œ	2	7	9	9
121	1	П	1		31	31	31	31	121	121	1	П	1	П	1	П	121	121	121	121	1	П
38	œ	œ	9	9	2	7	9	9	35	35	2	7	9	9	10	10	38	38	22	27	9	9
_	121	121	1		-	П	-			-	1	-	1	П		-	121	121	1	-	1	П
×	∞	œ	9	9	2	2	9	9	rů	rO	2	2	9	9	10	10	38	38	2	2	9	9
_	121	121	1	П	121	121	31	31	31	31	1	П	1	П	1	П	1	П	31	61	121	121
∞	38	38	9	9	37	37	9	9	35	35	2	7	9	9	10	10	œ	œ	37	37	36	36
121	-		31	31	-	-	-	-	-	-	-			-	-		121	121	1		91	91
58	38	38	56	56	37	37	9	9	25	25	2	7	9	9	10	10	œ	œ	17	17	9	9
_	61	61	31	-	121	121	31	31	31	31	1	1	1	1	31	31	31	31	121	121	1	1
- - -	38	38	9	9	37	37	9	9	35	35	2	7	9	9	40	40	38	38	28	37	36	36
	-	-	1	-	_	-	-	-		-	1	-	121	121	-	-	31	31	1	-	31	31
∞ =	∞	œ	9	9	2	7	9	9	35	35	2	7	9	9	10	10	∞	œ	2	7	9	9
KORD	KPHL	KPHL	KPHX	KPHX	KPIT	KPIT	KSAC	KSAC	KSAN	KSAN	KSAT	KSAT	KSEA	KSEA	KSFO	KSFO	KSMX	KSMX	KSTL	KSTL	KTPA	KTPA
X	\mathbf{X}	X	X	X	124	121	17	124	12	X	124	121	174	174	X	X	12	124	_	-	12	×

Table 44: Average performance of the processing of OLAs 5 and 6 over all 30 weather stations by Aging (variant 0x1, i.e., current weather only, transitions limited) Rev. $1.1\,$

OLA	${\bf Average}$	Metric
OLA 5	0.201	NetNorm
OLA 6	0.187	MQNetNorm

A.12.2 Using weather prediction

Please see Table 45 below and Table 46 on page 241. A.12.2.1 OLAS 1 & 2

Table 45: Results of the processing of OLAs 1 and 2 by Aging (variant 0x2, i.e., weather prediction, transitions unlimited) Rev. 1:1

	1.	_			6.	~	ъ.	~~	۵.	<u>~</u>		~			۵.	.~	_	~	_	~~			_	~~	<u>~</u>		-	~	۵.		ъ.	_	
М Q Иећ Иогт	0.41	0.49	0.25	0.34	0.52	0.58	0.57	0.53	0.62	0.62	0.54	0.58	0.43	0.45	0.42	0.45	0.39	0.42	0.50	0.53	0.61	0.64	0.59	0.63	0.32	0.37	0.79	0.78	0.22	0.36	0.57	09.0	0.55
МФМР	0.77	0.92	78.0	0.93	0.74	0.89	0.94	0.93	0.89	0.91	0.81	0.92	0.89	0.93	0.78	06.0	0.87	0.94	0.83	0.93	68.0	0.91	0.84	0.92	0.73	0.88	06.0	0.91	0.81	0.91	0.89	0.93	0.82
m to N to N	0.53	0.54	0.29	0.37	0.69	0.65	0.61	0.57	0.70	0.68	99.0	0.63	0.48	0.48	0.54	0.51	0.45	0.45	0.59	0.57	0.73	0.71	0.71	0.69	0.45	0.42	0.88	0.86	0.27	0.39	0.64	0.64	0.66
r(12)	1	121	121	121	1	121	1	91	1	121	П	121	1	91	-	121	1	91	1	121	1	1		91	1		1	1	1	_	1	121	_
y(12)	2	7	6	6	2	7	œ	œ	5	rO	2	7	2	7	œ	œ	6	6	8	œ	9	9	2	7	8	œ	2	2	6	6	œ	8	
$y(10) \mid r(10) \mid y(11) \mid r(11) \mid y(12) \mid r(12)$	1	121	-	1	-	91	-	61	1	121	-	91	1	121		121	1	121	1	121	1	91		91	1	121	-	П	1	121	-	91	1
y(11)	7	7	6	6	7	7	∞	∞	2	ю	7	7	2	7	∞	œ	6	6	×	œ	9	9	7	7	8	œ	7	7	6	6	∞	8	
r(10)	1	121	1	61	1	61	1	121	1	121	1	91	1	121	1	91	61	91	1	61	1	121	-	91	1	1	1	31	1	121	1	121	_
y(10)	7	7	6	6	7	7	œ	∞	2	ю	7	7	2	7	∞	œ	6	6	∞	∞	9	9	7	7	8	œ	7	7	6	6	œ	8	7
	61	61	31	91	Т	121	-	61	1	121	1	121	1	91	-	61	1	121	1	121	1	61		61	31	61	П	31	1	121	-	61	_
y(9) r(9)	7	7	6	6	7	7	∞	œ	5	ю	2	7	7	7	∞	œ	6	6	œ	œ	9	9	7	7	8	œ	7	7	6	6	∞	8	_
r(8)	1	121	1	61	1	121	1	61	1	121	-	91	1	91	-	91	-	121	T	91	1	61	-	61	1	91	-	31	ī	61	1	121	_
y(8)	2	7	6	6	7	7	œ	œ	22	ю	2	7	2	7	∞	œ	6	6	∞	∞	9	9	~	7	8	∞	2	7	6	6	œ	8	-
r(7) [th n	1	61	1	61	-	-	1	121	1	91	-	121	1	121	-	61	1	61	1	121	1	61		61	1	121	-	31	1	61	1	91	_
$\begin{vmatrix} y(7) & y(7) \\ y(7) & y(7) \end{vmatrix}$ for month n	7	7	6	6	7	7	œ	œ	т	rO	2	7	7	7	œ	œ	6	6	œ	œ	9	9	7	7	œ	œ	7	7	6	6	œ	8	7
	1	91	1	91	П	121	-	121	31	91	-	121	31	91	_	121	1	121	1	121	1	61	-	61	1	121	П	-	1	61	61	91	_
$\begin{array}{c c} & & \\ & y(6) & r(6) \\ \text{size minutes} \end{array}$	7	7	6	6	7	7	œ	œ	2	ю	7	7	2	7	∞	∞	6	6	∞	∞	9	9	7	7	×	∞	7	7	6	6	œ	8	~
$\begin{array}{c c} & & \\ \hline & \\ \hline \\$	-	121	1	121	1	121	1	121	61	91	-	121	1	121		91	1	121	1	121	1	61	31	61	1	121	-	31	1	121	1	61	
y(5) ing av	2	7	6	6	2	7	œ	œ	2	ю	2	7	2	7	∞	œ	6	6	8	œ	9	9	7	7	8	œ	7	2	6	6	œ	8	-
$\begin{array}{c c} & & & \\ \hline & & \\ \hline \\ \hline$	-	91	1	121	1	121	1	121	31	121	-	91	1	91	-	91	1	121	1	121	1	91	П	91	1	91	1	61	1	91	1	121	_
y(,	1	7	6	6	2	7	œ	œ	2	ъ	2	2	2	2	∞	œ	6	6	8	œ	9	9	7	7	8	œ	2	2	6	6	œ	8	~
r(3)	1	121	1	91	1	91	-	121	31	121	-	121	91	91	-	121	61	91	1	121	1	121	-	61	1	121	1	91	1	61	1	121	_
y(3) $r(3)$	7	2	6	6	7	2	œ	œ	22	ъ	7	7	2	7	∞	œ	6	6	œ	œ	9	9	7	7	8	œ	7	7	6	6	œ	8	-
r(2)	1	121	1	1	1	121	1	121	1	121	1	121	1	91	-	121	1	121	1	91	1	121	-	121	1	91	1	1	1	61	1	121	_
y(2) $r(2)$ is the y-inter	7	7	6	6	7	7	œ	œ	22	ю	2	7	2	7	∞	œ	6	6	œ	∞	9	9	7	7	×	œ	7	7	6	6	œ	8	7
$y(1) \mid r(1) \mid y(2) \mid r(2) \mid y(3) \mid r(3) \mid$ where $y(n)$ is the y-intercept and $r(n)$	1	91	1	91	1	121	61	61	1	91	-	121	1	121	-	121	1	91	1	91	1	121	-	1	1	-	1	121	91	121	1	1	
y(1)	7	7	6	6	7	7	œ	œ	т	rO	7	7	7	7	∞	œ	6	6	œ	oc	9	9	7	7	8	œ	7	7	6	6	œ	80	_
noitata	KATL	KATL	KBOS	KBOS	KBWI	KBWI	KCLE	KCLE	KCLT	KCLT	KCVG	KCVG	KDCA	KDCA	KDEN	KDEN	KDFW	KDFW	KDTW	KDTW	KEUG	KEUG	KIAH	KIAH	KLAS	KLAS	KLAX	KLAX	KLGA	KLGA	KMCI	KMCI	KMCO
<u> </u>	+		\vdash		+		\vdash		\vdash		-		\vdash		\vdash		-		\vdash		-				\vdash		\vdash		-		\vdash		_

OLA

Table 45: (continued)

0.56	0.32	0.32	0.54	0.54	0.55	0.57	0.28	0.29	09.0	0.64	0.61	69.0	0.64	0.65	0.34	0.48	0.53	0.58	0.61	0.54	69.0	0.71	0.46	0.46	0.56	0.57
0.91	0.84 (0.92	06.0	0.93	0.85	0.93	0.77	0.85	0.81	0.92	0.78	0.92	0.89	0.92	0.84	0.93	0.81	0.92	06.0	0.92	98.0	0.89	98'0	0.92	0.84	0.89
0.62	0.38	0.34 (09.0	0.57	0.65	0.62	0.36	0.34 (0.74 (0.69 (0.78	0.74 (0.72	0.71	0.40	0.51	0.66	0.63	0.68 (0.59	08.0	0.80	0.53 (0.50	0.67	0.64 (
121 (1 (0 0	1 (121 (91 (1 (121	1	91 (1		1 (121	1 (91 (1	121	1 (121		1	1	91 (1 (1 (
_	8		_						_				_						C		_		_		_	_
	00	00	00	œ	00	00	9	9	2	7	9	9	rů.	r0	7		9	9	10	10	00	00	2	7	9	9
61	1	121	П	121	-	121	-	121	I	121		121	Π	91		91	-	121	1	П	-	П	91	91	-	91
7	8	œ	∞	œ	∞	œ	9	9	2	7	9	9	70	ъ	2	2	9	9	10	10	œ	œ	2	7	9	9
91	1	121	91	121	1	121	1	121	1	121	1	91	1	61	1	91	1	121	1	П	1	31	1	91	1	61
	8	œ	œ	œ	∞	∞	9	9		7	9	9	20	тО	2	7	9	9	10	10	∞	∞		7	9	9
91	1	91	1	91	-	121	61	61	1	61	1	121	1	61	-	61	1	91	1	-	1	31	1	1	1	61
_	8	∞	œ	∞	∞	∞	9	9	2	2	9	9	70	ю	2	2	9	9	10	10	∞	∞	2	7	9	9
121	1	91	1	91	-	121	1	121	1	91	1	121	ī	31	61	61	1	121	1		1	31	1	91	-	91
7	8	œ	œ	œ	œ	œ	9	9	2	7	9	9	22	ъ	7	7	9	9	10	10	œ	œ	2	7	9	9
121	1	91	1	121	1	91	61	91	1	121	1	61	1	61	1	121	1	91	1	1	1	31	1	121	1	91
7	8	œ	œ	œ	œ	œ	9	9	2	7	9	9	5	rů	7	7	9	9	10	10	œ	œ	2	7	9	9
91	1		1	91	-	91	61	121	1	91	1	61	1	31	-	121	1	121	1	121	1	61	1	121	1	61
	8	œ	œ	œ	œ	œ	9	9	2	7	9	9	2	ъ	2	7	9	9	10	10	œ	œ	2	7	9	9
121	1	91	1	91	-	121	-	91	T	121	-	91		91	-	91	-	121	1	31	-	31	T	91	61	91
_	8	œ	œ	œ	œ	œ	9	9	2	7	9	9	5	ъ	7	7	9	9	10	10	œ	œ	2	7	9	9
121	1	121	1	121	1	121	61	121	1	121	1	91	1	31	31	61	1	121	1	П	1	61	1	121	1	31
7	8	œ	8	∞	œ	œ	9	9	2	7	9	9	2	20	2	2	9	9	01	10	œ	œ	2	7	9	9
91	1	-	1	91	-	61	1	121	1	121	1	121	1	31	-	91	1	91	1	-	1	-	1	91	1	61
7	8	œ	8	œ	œ	œ	9	9	2	7	9	9	5	5	7	7	9	9	10	10	œ	œ	2	7	9	9
121	1	121	1	121	1	91	1	121	I	121	1	61	31	121	1	91	1	121	1	1	1	1	I	121	1	61
7	8	œ	œ	œ	œ	œ	9	9	2	7	9	9	ю	ю	2	2	9	9	10	10	œ	œ	2	7	9	9
_	1	61	1	121	-	91	1	121	1	91	1	121	1	91	-	121	1	121	1	31	1	П	1	121	1	91
	8	œ	8	œ	œ	∞	9	9	2	7	9	9	2	ъ	2	2	9	9	10	10	∞	∞	2	7	9	9
KMCO	KMSP	KMSP	KORD	KORD	KPHL	KPHL	KPHX	KPHX	KPIT	KPIT	KSAC	KSAC	KSAN	KSAN	KSAT	KSAT	KSEA	KSEA	KSFO	KSFO	KSMX	KSMX	KSTL	KSTL	KTPA	KTPA
2	1	2	1	2	-	2	1	2	1	2	-	2	1	2	-	2	1	23	-	23	1	2	1	2	-	2

Table 46: Average performance of the processing of OLAs 1 and 2 over all 30 weather stations by Aging (variant 0x2, i.e., weather prediction, transitions unlimited) Rev. 1.1

OLA	Average	Metric	
OLA 1	0.595	NetNorm	
OLA 2	0.533	MQNetNorm	

Please see Table 47 below and Table 48 on the next page. OLAs 3 & 4 A.12.2.2

Table 47: Results of the processing of OLAs 3 and 4 by Aging (variant 0x2, i.e., weather prediction, transitions unlimited) Rev. 1.1

m 20 N et N or m	0.27	0.30	0.26	0.28	0.32	0.34	0.24	0.26	0.26	0.28	0.22	0.26	0.24	0.26	0.25	0.26	0.28	0.28	0.26	0.33	0.37	0.37	0.32	0.34	0.29	0.28	0.42	0.45	0.26	0.25	0.19	0.24	0.28	0.32	0.24	0.27	0.25
МФМР	0.82	88.0	88.0	0.91	08.0	0.85	0.85	88.0	0.74	0.84	0.82	78.0	0.84	06.0	0.81	98.0	88.0	0.91	0.84	0.87	0.83	88.0	98.0	68.0	0.85	0.85	88.0	0.91	0.85	88.0	98.0	68.0	62.0	06.0	98.0	0.92	0.85
ттоИзэИ	0.33	0.34	0.30	0.31	0.40	0.40	0.28	0.30	0.36	0.34	0.27	0.30	0.28	0.29	0:30	0.30	0.32	0.31	0.32	0.38	0.44	0.42	0.37	0.38	0.34	0.33	0.47	0.49	0:30	0.29	0.22	0.27	0.36	0.36	0.28	0.30	0.29
r(12)	-	_	_	-	121	121	1	1		1	1	91	31	61	П	-	1	-		121	1	-		1	I	1	61	121	П	-	-	П	1	1	1	1	
	17	17	19	19	17	17	18	18	15	15	2.1	17	21	17	18	18	19	19	18	18	91	16	17	17	8	8	2	2	19	19	18	œ	17	17	8	8	18
$y(10) \mid r(10) \mid y(11) \mid r(11) \mid y(12)$	121	121	_	91	121	121	1	-	-	91	1	121	1	-	-	-	-	-	1	-	1	-	1	61	1	121	91	91	-	-	-	-	1	61	91	121	1
y(11)	7	7	6	6	7	7	18	18	15	22	17	17	17	17	18	18	19	19	18	18	16	16	17	7	œ	8	2	7	19	19	18	18	17	7	×	8	18
r(10)	1	121	61	91	-	П	1	-	1	61	1	П	1	-	-	-	-	121	1		1	-	61	61	1	91	1	61	121	121	91	91	1	61	-	121	1
y(10)	17	7	6	6	17	17	18	18	15	2	17	17	2	7	∞	18	6	6	18	18	16	16	7	7	00	8	17	7	6	6	18	18	17	17	8	8	18
r(9)	121	121	-	91	121	121	1	91	91	121	1	91	121	121	1	121	1	121	1		1	-	61	61	91	91	31	31	121	121	-	91	91	121	1	121	=
y(9)	17	17	6	6	2	2	18	œ	15	15	2	2	2	7	18	œ	6	6	18	18	16	16	2	7	8	8	11	17	6	6	18	18	17	17	8	8	8
r(8)	121	121	91	91	121	121	121	121	1	91	121	121	1	121	1	91	91	121	1	121	1	61	61	91	121	121	121	121	61	61	1	91	31	121	91	121	61
y(8)	2	2	6	6	7	2	8	œ	15	2	2	2	17	17	18	œ	6	6	∞	œ	16	9	2	7	œ	8	17	17	6	6	œ	œ	17	17	8	8	8
r(7)	1	91	121	121	121	121	1	121	-	91	61	121	121	121	121	121	121	121	61	121	61	61	121	121	121	121	16	91	91	91	-	121	31	121	1	121	61
$\begin{vmatrix} y(7) & r(1) \\ y(2) & r(2) \end{vmatrix}$ or month	2	2	6	6	2	2	18	∞	ಬ	5	2	2	2	7	∞	œ	6	6	œ	∞	9	9	2	7	00	8	17	17	6	6	18	∞	2	7	×	8	8
y(6) $r(6)$ ize minutes	121	121	-	121	91	91	1	1	121	121	1	1	1	91	-	121	31	61	91	91	1	121	61	61	1	1	1	31	91	91	-	1	1	121	61	121	1
$\begin{vmatrix} y(6) \\ y(z) \end{vmatrix}$	2	2	6	6	7	2	18	18	ಬ	70	17	17	2	17	18	œ	6	6	∞	∞	9	9	17	17	18	18	2	2	6	6	18	18	2	2	∞	8	8
r(5)	_	91	121	121	-	91	1	121		91	T	121	1	91	-	91	91	121	1	61	1	61	121	121	1	1	91	121	-	121	121	121	31	61	1	91	1
$\begin{vmatrix} y(5) \\ y(6) \end{vmatrix}$	17	17	6	6	2	2	18	œ	15	15	17	17	17	7	18	18	19	19	18	œ	16	16	17	17	18	18	17	17	6	6	18	18	17	17	∞	8	18
y(4) $r(4)$ is the runni	121	121	121	121	-	-	121	121		1	121	121	1	121	-	-	31	91	1	-	61	91	91	121	1	1	31	121	-	-	-	-	-	61	121	121	16
$\begin{vmatrix} y(4) \\ y(3) \end{vmatrix}$	2	7	6	6	17	17	18	18	15	15	17	17	17	2	18	18	19	19	18	18	9	9	17	17	18	18	17	17	6	6	18	28	17	17	∞	8	18
$r(2) \mid y(3) \mid r(3) \mid r(n)$ r -intercept and $r(n)$	-	121	-	61	П	-	1		-	121	Т	-	1	-	-	-	П	91	-	-	Π	121	121	121	Т	1	31	31	-	-	-	91	-	121	31	91	1
$\begin{vmatrix} & & & & & & & & & & & & & & & & & & &$	17	17	6	6	7	7	18	18	15	15	17	17	2	7	18	18	19	19	18	18	16	16	17	17	18	18	17	17	6	6	28	18	17	7	∞	8	18
	_	121	-	-	-	-	1	121		91	T	121	1	-	-	91	-	-	1	-	1	-	-	121	31	91	1	121	-	91	-	-	-	121	1	121	
$\begin{vmatrix} y(2) \\ y(3) \end{vmatrix}$ is the	17	2	6	6	17	17	18	18	15	15	17	17	17	17	18	18	19	19	18	18	16	16	17	7	œ	8	17	2	19	19	18	18	2	7	∞	8	18
$y(1) \begin{vmatrix} r(1) \\ r(1) \end{vmatrix}$ where $y(n)$	_	-	-	-	-	121	1	-		121	T	121	1	-	-	-	-	-	1	-	1	-	1	61	1	1	1	121	-	-	121	121	-	61	1	61	1
$\left. egin{array}{c} y(1) \\ \mathrm{where} \end{array} ight.$	17	17	19	19	17	2	18	18	15	15	17	17	17	17	18	18	19	19	18	18	16	16	17	17	œ	8	2	2	19	19	18	18	2	7	∞	8	18
noitete	KATL	KATL	KBOS	KBOS	KBWI	KBWI	KCLE	KCLE	KCLT	KCLT	KCVG	KCVG	KDCA	KDCA	KDEN	KDEN	KDFW	KDFW	KDTW	KDTW	KEUG	KEUG	KIAH	KIAH	KLAS	KLAS	KLAX	KLAX	KLGA	KLGA	KMCI	KMCI	KMCO	$_{\rm KMCO}$	KMSP	$_{\rm KMSP}$	KORD
OFA	က	4	က	4	က	4	က	4	က	4	3	4	3	4	က	4	က	4	က	4	က	4	က	4	က	4	3	4	က	4	က	4	က	4	က		3

Table 47: (continued)

0.26	0.31	0.34	0.25	0.26	0.24	0.27	98.0	0.44	0.35	0.35	0.25	0.27	0.22	0.30	0.33	0.34	0.52	0.52	0.24	0.25	0.32	0.33
0.90 0	0.84 0	0.89 0	0.77 0.	0.84 0.	0.81 0	0.86 0	0.81 0.	0.91 0.	0.83 0	0.89 0.	0.85 0	0.90	0.80	0.91 0.	0.91 0.	0.93 0	0.87 0	0.90	0.86	0.87 0	0.82 0	88
0.29 0	0.37 0	38	0.32 0	0.31 0	0.30	0.31 0	0.45 0	0.48 0	0.42 0	0.39 0	0.30 0	0.29 0	0.28 0	0.33 0	0.37 0	36	59	58 0	0.27 0	59	0.39 0	37 0
	. 0	0	0.	0	0	0	0.	0	0.	0	0.	0	0.	0	0.	0	0.	0	0	0	0.	0
121	121	121	1	121	-	91	1	91	-	61	1	91	-	-	-	121	1	91	-	91	1	61
18	18	18	9	9	17	17	9	9	20	ю	17	7	16	16	10	10	œ	œ	17	17	16	16
1	1	1	1	121	-	1	31	121	31	91	1	П	-	П	1	1	1	П	-	1	91	121
18	18	18	9	9	17	17	9	9	20	ю	17	17	16	16	10	10	œ	œ	17	17	9	9
1	91	121	61	121	61	121	1	121	31	31	91	91	_	_	-	1	121	121	-		1	121
18	18	81	9	9	2	7	16	9	rc L	r0	2	7	16	16	20	20	∞	∞	17	17	16	16
1		_		_	1		1	_	21	91	61	121		91	91	121	91	_	121	21	61	61
_		91	_		. 61	91		91	121			-	91			_		91		_		_
8	8	00	9	9	7	7	16	9	20	TÜ.	2	7	9	9	20	20	œ	00	2	7	16	16
121	1	121	61	121	31	121	-	121	91	91	121	121	-	121	91	91	-	61	121	91	121	121
8	18	œ	9	9	7	7	16	9	15	15	7	7	16	9	20	20	œ	œ	7	7	9	9
121	121	121	121	121	1	121	121	61	121	121	1	91	31	91	121	121	31	31	61	61	31	121
8	œ	œ	9	9	2	7	9	9	ro	ъ	17	17	9	9	20	20	∞	œ	2	7	9	9
61	1	121	31	121	91	91	121	121	-	-	121	121	-	121	31	31	31	61	91	121	1	ī
8	8	œ	9	9	7	7	9	9	15	15	17	17	9	9	30	30	œ	œ	7	7	16	16
91	1	121	91	121	-		91	91	-	-	121	121	-	121	91	91	121	121	-		91	91
18	8	œ	9	9	17	7	16	16	2	ъ	17	17	16	9	30	30	18	18	17	7	9	9
91	1	61	61	91	-	61	1	61	31	121	1	121	-	121	121	121	61	61	121	121	31	121
18	18	18	9	9	27	27	16	16	15	ю	17	17	16	9	20	20	18	18	17	17	9	9
121	1	1	121	121	31	31	1	61	-	31	1	61	_	121	91	91	1	61	-	91	1	1
18	18	18	9	9	7	7	16	9	15	15	17	17	16	16	20	50	18	18	17	17	16	16
1	1	-	121	121		П	1	121		91	61	121		91	_	91	1	121			31	61
18	18	18	9	9	17	17	9	9	15	ю	2	7	16	9	10	10	œ	œ	17	17	9	9
91	1	1	1	121	121	121	1	121	-	121	1	1	-	1	91	121	1	121	1	1	1	91
	18	18	9	9	17	17	9	9	т	тО	17	17	16	16	10	10	∞	œ	2	7	9	9
4 KORD 18	KPHL	KPHL	KPHX	KPHX	KPIT	KPIT	KSAC	KSAC	KSAN	KSAN	KSAT	KSAT	KSEA	KSEA	KSFO	KSFO	KSMX	KSMX	KSTL	KSTL	KTPA	KTPA
1 F	3 F	4	8 74	4	3	4	3	4	3	4	3 F	4	3	4	3	4	8 7	4	3	4	3 F	4

Table 48: Average performance of the processing of OLAs 3 and 4 over all 30 weather stations by Aging (variant 0x2, i.e., we ather prediction, transitions unlimited) Rev. $1.1\,$

Metric	$\operatorname{NetNorm}$	MQNetNorm
Average	0.342	0.310
OLA	OLA 3	OLA 4

Please see Table 49 below and Table 50 on the next page. OLAs 5 & 6 A.12.2.3

Table 49: Results of the processing of OLAs 5 and 6 by Aging (variant 0x3, i.e., weather prediction, transitions limited) Rev.

m10Nt5NQM	0.22	0.22	0.19	0.19	0.20	0.20	0.17	0.17	0.24	0.24	0.17	0.17	0.20	0.20	0.15	0.15	0.20	0.20	0.17	0.17	0.20	0.20	0.20	0.20	0.18	0.18	0.20	0.20	0.18	0.18	0.17	0.17	0.21	0.21	0.15	0.15	0.17
МФМР	0.92	0.92	0.91	0.91	0.93	0.93	06.0	0.90	0.93	0.95	06.0	06.0	0.91	0.91	06.0	06.0	0.91	0.91	0.91	0.91	0.95	0.95	96.0	96.0	06.0	06.0	0.97	26.0	0.92	0.92	0.92	0.92	0.94	0.94	0.92	0.92	0.92
mro V 39 N	0.24	0.24	0.21	0.21	0.21	0.21	0.19	0.19	0.26	07.0	0.19	0.19	0.22	0.22	0.16	0.16	0.22	0.22	0.18	0.18	0.21	0.21	0.21	0.21	0.20	0.20	0.20	0.20	0.20	0.20	0.19	0.19	0.22	0.22	0.17	0.17	0.19
r(12)	-	-	31	31	61	61	1	1		7	—	-	1	-	1	-	1	-	31	31	31	31	1	-	31	31		1	1	П	-	-	1	1	1	_	=
y(12)	7	7	6	6	7	7	×	8	ro r	0	7	7	2	2	∞	œ	6	6	∞	∞	9	9	2	7	88	38	2	7	6	6	∞	œ	2	7	∞ .	x	∞ ∞
$y(8) \mid r(8) \mid y(9) \mid r(9) \mid y(10) \mid r(10) \mid y(11) \mid r(11) \mid y(12) \mid r(12)$	-	1	1	1	1	1	121	121		7	121	121	-	-	-	-	91	91	1	1	121	121	121	121	91	91	31	61	91	91	-	-	1	1	1	-	=
y(11)	2	2	6	6	2	7	38	38	ro r	c	37	37	7	2	00	∞	39	39	∞	∞	56	26	37	37	28	28	37	37	39	39	38	38	2	7	∞ .	20	∞ ∞
(10)	1	-	-	-	91	91	_	1	121	171	_		121	121	1	-	121	121	121	121	_	1	121	121	_	1	121	121	1	-	121	121	_	1	1	_	31
(10)		2	6	6	2	7	∞	8	35.	cc		7	7	7				6	∞				2	+				_		6	38	38	2	7	∞	20	∞
(9).	-		31	61	31	1	91	91	31	9.1	121	121	-	_	61	61	91	91		_	121	121	1	_	31	31	_	1	91	91	_	_	-	1	61	61	61
y(9)	37	37	6	6	7	7	×	_	יט ז	+	_	_	_		H		H			\dashv	_			+		\dashv		\dashv	\vdash		∞	∞	7	_	38	\dashv	
r(8)	91	91	31	31	1	1	121	121		7	31	31	-	_	-	_	1	Т	61	61	_	1	31	31	121	121	121	121	1		31	31	61	61	1	_	31
y(8)	27	27	6	6	2	7	38	38	ro r	0	<u></u>	7	2	2	∞	∞	6	6	∞	∞	9	9	2	2	∞	∞	2	7	6	6	38	38	7	7	∞ .	20	oc
	61	61	121	121	31	31	31	31	61	10	31	31	-	-	-	-	-1	-	31	31	121	121	1	-	-		31	31	61	19	-	-	91	91	1	_	=
$\begin{vmatrix} & & & & & & \\ & & & & & & \\ & & & & & $	2	7	39	39	22	27	œ	8	ו טו	c	7	7	7	7	œ	œ	6	6	œ	œ	9	9	2	7	oo	∞	7	7	39	39	œ	œ	27	27	oo i	20	∞
r(6) utes fo	_	-	121	121	T	1	-	1		7	121	121	-		31	31	П	-	31	31	91	91	121	121	31	31	31	31	31	31	-	-	121	121	121	121	121
$\begin{vmatrix} y(6) & r(6) \\ size minutes & 1 \end{vmatrix}$	7	7	6	6	2	7	∞	8	ro r	c	7	7	37	37	∞	œ	6	6	×	∞	9	9	37	37	00	∞	2	7	6	6	38	38	7	7	38	2000	38
r(5)	121	121	ī	-	121	121	121	121		7	_	_	31	31	61	61	П	-		_	121	121	31	31	-		121	121	31	31	121	121		1		_	=
$r(4) \left \begin{array}{c c} y(5) \\ y(5) \end{array} \right r(5)$	2	7	6	6	37	37	×	8	rO r	c		7	7	7	∞	∞	6	6	∞	∞	9	9	2	7	00	∞	7	7	6	6	28	28	2	7	∞	20	 ∞
r(4)	-	1	1	1	121	121	31	31		-	121	121	-	-	1	-	1			1	-	1	31	31	-	-	-	1	1	П	-	-		1	Ι.	-	_
$y(4)$ $rac{y(4)}{r}$ is the	7	7	6	6	37	37	oc	8	33.5	cç.	7	7	7	7	œ	œ	6	6	38	38	9	36	2	7	∞	∞	7	7	6	6	œ	œ	37	37	80	×	00
r(3)	61	61	1	1	61	61	1	1	31	10	_	-	1	-	31	31	1	-	1	1	-	1	1	_	_	1	121	121	1	-	1	-	121	121	1	1	121
$\left \begin{array}{c} y(3) \\ y(2) \end{array} \right $	7	7	6	6	37	37	18	18	ro r	c	7	7	37	37	œ	œ	6	6	18	18	9	9	2	7	œ	∞	7	7	6	6	œ	œ	7	7	ος ·	x	28
r(2)	_	-	121	121	91	91	-	1		7	121	121	31	31	31	31	П	-	-	_	31	31	1	_	31	31	61	61	121	121	121	121	-	1	31	31	31
y(2)	7	7	39	39	37	37	38	38	25	C.7	37	37	37	37	38	38	39	6	œ	∞	56	26	2	7	28	28	37	37	39	39	38	38	37	37	38	200	œ
$y(1) \mid r(1) \mid y(2) \mid r(2) \mid y(3) \mid r(3) \mid y(4)$ where $y(n)$ is the y-intercept and $r(n)$ is t	31	31	1	1	1	1	31	31		-	31	31	31	31	91	91	91	91	1	1	121	121	121	121	-	ī	121	121	1	T	-	-	31	31		-	_
y(1) where	7	7	6	6	7	7	×	8	ו טו	0		7	7	7	∞	œ	6	6	×	∞	36	36	2	7	∞	∞		2	6	6	∞	œ	7	7	∞	x	 ∞
noitsts	KATL	KATL	KBOS	KBOS	KBWI	KBWI	KCLE	KCLE	KCLT	NCL1	KCVG	KCVG	KDCA	(DCA	KDEN	(DEN	KDFW	CDFW	KDTW	KDTW	KEUG	KEUG	KIAH	KIAH	KLAS	KLAS	KLAX	KLAX	KLGA	KLGA	KMCI	KMCI	KMCO	KMCO	KMSP	KMSF	KORD
	Г	_	F	_	Ë	I		j		4	_		Н	124	Ë	1-4	Ľ	ᅶ	×	ıχı		1		7			_	_	Ë		Ē	_	1	124		_	_

OLA

1.1

Table 49: (continued)

0.17	0.19	0.19	0.17	0.17	0.19	0.19	0.19	0.19	0.22	0.22	0.18	0.18	0.20	0.20	0.16	0.16	0.16	0.16	0.16	0.17	0.19	0.19
0.92	0.92	0.92	0.92	0.92	0.91	0.91	0.95	0.95	0.97	0.97	0.92	0.92	96.0	96.0	0.94	0.94	0.97	0.97	0.91	0.91	0.94	0.94
0.19	0.21	0.21	0.18	0.18	0.21	0.21	0.20	0.20	0.23	0.23	0.19	0.19	0.21	0.21	0.17	0.17	0.17	0.17	0.18	0.18	0.21	0.21
-	1	П	61	61	1	-	1	-	61	61	61	61		-	121	121	121	121	31	31	1	-
∞	œ	œ	36	36	7	7	9	9	22	ю	2	7	9	9	10	10	∞	œ	7	7	9	9
	121	121	121	121	1	-	31	31	-	-	61	61	31	31	91	91	-	-	121	121	31	31
<u>~</u>	38	38	56	56	2	7	36	36	2	ю	27	27	9	9	30	30	∞	∞	37	37	9	9
31	31	31	121	121	121	121	-		91	91	61	61	_	-	1		-		-		-	_
	38	38	36	36	27	27	9	9	2	20	27	27	9	9	10	10	∞	∞	2		9	9
61	61	61	31	31	61	121	1	_	121	121	1	_	31	31	91	91	1	_	31	31	1	_
38 (28 (28	9	9	17 (17 1	9	9	35 1	35 1	2	_	36	36	30 6	30 6	· 00	∞	2		36	36
=	2	2		_	_	_		_	es.	ന	_	_			60	673		_		_	60	
31	-		_		31	121	_		_	1	1		61	61	-		121	121	-		31	31
× =	œ	œ	9	9	7	7	9	9	rΟ	ъ	7	7	56	26	10	10	œ	∞	7	7	9	9
-	-	П	121	121	31	31	П	-	121	91	31	31	121	121	31	31	91	91	121	121	П	-
œ	œ	œ	9	9	2	7	9	9	v	ю	2	7	36	36	10	10	œ	œ	2	7	9	9
121	61	61	-	-	31	31	31	31	121	121	1	-	_	-	1	П	121	121	121	121	31	31
38	œ	œ	9	9	7	7	9	9	35	35	7	7	9	9	10	10	38	38	27	27	9	9
	121	121	1	-	-	-	1	-	-	-	1	-	-	-	31	31	121	121	-	П	1	-
œ	œ	œ	9	9	2	7	9	9	22	ъ	7	7	9	9	10	10	38	38	2	7	9	9
-	121	121	1	-	121	121	31	31	31	31	1	-	1	-	1	1	1	-	31	61	121	121
∞	38	38	9	9	37	37	9	9	35	35	2	7	9	9	10	10	œ	œ	37	37	36	36
121	-		31	31	-	1	1	1	-	П	1	1	-	П	-		121	121	-		91	91
- 28	38	38	56	56	37	37	9	9	25	25	7	7	9	9	10	10	∞	œ	7	2	9	9
31	61	61	31	31	121	121	31	31	31	31	1	-	_	-	31	31	31	31	121	121	_	-
∞	38	38	9	9	37	37	9	9	35	35	7	2	9	9	40	40	38	38	37	37	36	36
_	1	1	-	-	_	-	1	-	_	_	1	-	121	121	1	T	31	31	31	31	31	31
∞	œ	œ	9	9	7	7	9	9	35	35	7	7	9	9	10	10	œ	œ	7	7	9	9
KORD	KPHL	KPHL	КРНХ	KPHX	KPIT	KPIT	KSAC	KSAC	KSAN	KSAN	KSAT	KSAT	KSEA	KSEA	KSFO	KSFO	KSMX	KSMX	KSTL	KSTL	KTPA	KTPA
$\frac{6}{X}$	υ X		7. 7.	9 X	5 F	9	7. 7.		υ X	9 F	7. Y	9	7. Y	9 F	7. Y	9	7. 7.		5 F	9		9 X
_	_		_		_		-										_		_		-	_

Table 50: Average performance of the processing of OLAs 5 and 6 over all 30 weather stations by Aging (variant 0x3, i.e., weather prediction, transitions limited) $\operatorname{Rev.}\ 1.1$

OLA	Average	Metric
$ OLA _{5}$	0.201	NetNorm
OLA 6	0.186	MQNetNorm

RESULTS OF THE ALGORITHMS FUZZY-CRISP HYBRID A.13

The retraction-threshold difference is 1 for the following results:

A.13.1 Using current weather only

A.13.1.1 OLAs 1 & 2 Please see Table 51 below and Table 52 on page 248.

Table 51: Results of the processing of OLAs 1 and 2 by Fuzzy-Crisp Hybrid (variant 0x0, i.e., current weather only, transitions unlimited) Rev. 1.4

M QN et Norm	0.46	0.46	0.31	0.31	0.55	0.55	0.50	0.50	0.58	0.58	0.53	0.53	0.41	0.41	0.43	0.43	0.40	0.40	0.50	0.50	0.62	0.62
МОМР	0.87	0.87	0.92	0.92	0.88	0.88	0.92	0.92	0.87	0.87	06.0	06.0	0.91	0.91	0.91	0.91	0.93	0.93	0.91	0.91	0.91	0.91
Met Norm	0.53	0.53	0.34	0.34	0.62	0.62	0.54	0.54	29.0	0.67	0.59	0.59	0.45	0.45	0.47	0.47	0.43	0.43	0.55	0.55	99.0	0.68
r(12)	1	1	-	1	-	-	-	П	1	-	-	-	1	-	-	-	-	1	1	-	-	1
d(12) r(12)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	1	-	-	-	-	-	-		-	-	-	-	1	-	-	-	-	-	1	-	-	-
$\begin{vmatrix} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & $	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
<u> </u>	1	-	-	-	1	-	-		-				1				1	-	1		-	-
d(8) $r(8)$ $d(9)$ $r(9)$ $d(10)$ $r(10)$ is the running average size minutes for	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(9) (9)	1		-	-	-	-	-		-		-		1		-		-	-	-		-	_
$d(9)$ η	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(8)		-	_	-	-	-	-	-	1	_	-	_	1	_	-	_	_	-	1	_	-	=
d(8)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	.=	-	-	-	-		-		-1	-	-	-	-	-	-	-	-	-	1	-	-	1
d(6) r(6) d(7) r(7) of members in and $r(n)$	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(6)	1	1	-	1	-	-	-	П	1	-	-	-	1	-	-	-	-	1	1	-	-	
	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(5)			-	1	-	П	1	1	-	1	-	1	1	1		1	-	1	1	1	1	П
$\begin{vmatrix} & & & & & & & \\ & & & & & & \\ & & & & $	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
d(4) r(4) d(5) do of the combined	-	П	-	1	-	-	-	-	-	-	-	-	1	-	-	-	-	1	1	-	-	
		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(3)	-		-	-	-	-	-	-		-	-	-		-	-	-		-		-	-	-
	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
d(2) r(2) d(3) r(3) is the denlowment threshol	1	,	1		-			1	1	1	-		1		-		1		1			_
		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
d(1) $r(1)$ where $d(n)$	5 1	5 1	5 1	1	5	1	1	1	5 1	1	1	1	5 1	1	1	5	5 1	1	5 1	1	1	5
d(1	t	0.5	3 0.5	0.5	I 0.5	I 0.5	0.5	0.5	0.5	0.5	3.0	0.5	1 0.5	A 0.5	N 0.5	0	V 0.5	V 0.5	V 0.5	V 0.5	5.0	3 0.5
noitsta	KATL	KATL	KBOS	KBOS	KBWI	KBWI	KCLE	KCLE	KCLT	KCLT	KCVG	KCVG	KDCA	KDCA	KDEN	KDEN	KDFW	KDFW	KDTW	KDTW	KEUG	KEUG
OFA		2	-	2	Η	2	-	2		2	-	2	-	2		2	-	2		2	-	2

Table 51: (continued)

09.0	09.0	0.38	0.38	92.0	92.0	0.34	0.34	0.58	0.58	0.53	0.53	0.32	0.32	0.49	0.49	0.54	0.54	0.24	0.23	09.0	09.0	99.0	99.0	0.62	0.62	0.44	0.44	0.55	0.55	0.59	0.59	0.65	0.65	0.44	0.44	0.54	0.54
0.91	0.91	0.91	0.91	0.93	0.93	68.0	0.89	0.94	0.94	-	06.0	06.0	06.0	0.91	0.91	0.91	0.91	0.71	0.79	06.0	06.0	68.0	0.89	0.91	0.91	06.0	06.0	0.92	0.92	26.0	0.97	0.92	0.92	0.91	0.91	0.84	-
99.0	99.0	0.42	0.42	0.81	0.81	0.38	0.38	0.62	0.62	0.58	0.58	-	0.36	0.54	0.54	0.59	0.59	0.34	0.29	29.0	0.67	0.74	0.74	89.0	89.0	0.49	0.49	09.0	09.0	0.61	0.61	0.70	0.70	0.49	0.49	0.64	_
-	-	1	-	1	-	_	_	-	-	1	-	1	-	1	-	_	-	1	-	ī	-	1	-	ī	-	-	1	1	-	1	1	1	-	1	1	1	1
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
-		1		1		_	_	1		1		1		1		-		1		1	-	1		1	_	-	1	1		1	1	1		1	1	1	-
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
1		1	1	1		_	-	1	1	1	1	1		1	1	_	1		31	1	1	1		1	_		1	1		1	1	1		1	1	1	_ _
0.5	πċ	0.5	70	0.5	πċ	0.5	0.5	0.5	70	0.5	70	0.5	πċ	0.5	70	0.5	70	0.5		0.5	ro.	0.5	πċ	0.5	rů.	0.5	.5	0.5	πċ	0.5	75.	0.5	πċ	0.5	.5	0.5	ъ.
		0	0	0		0		0		0		0		0		0		0		0					0		0			0	0.	0	· ·	0	0 0	0	=
0.5	70.	0.5	تن 	0.5	70.	0.5	0.5	0.5	تن 	0.5	0.5	0.5	70.	0.5	تن 	0.5	تن 	0.5	0.5	0.5	0.5	0.5	75.	0.5 1	0.5	0.5	.5	0.5 1	70.	0.5	.5	0.5	0.5	0.5	0.5	0.5	5.
0	0	0 1	0.	0	0	0	0	0	0	0	0	0 1	0	0	0	0	0	0	0	0	0	0 1	0	0	0	0	0 1	0 1	0	0 1	0 1	0 1	0	0 1	0 1	0 1	0
75	ان -	5	ان ا	5	ان -	5.	70	.5	ان ا	0.5	ان ا	0.5	ان -	5.	ان ا	5.	ان ا	5.		5	70	.5	ان -	0.5	70	0.5	.5	0.5	ان -	5	5.	.5	ان -	5		.5	
0	0	0	0	0.	· ·	0.	<u> </u>	0.	0	0	0	0	0	0.	0	o.	0	·0	0	0	0	0.	<u> </u>	0	0		0		<u> </u>	0	0.	0	0	0	0.	0	0
0.5	5.	0.5	5.	.5	5.	.5	0.5	0.5	5.	0.5	5.	0.5	5.	0.5	5.	.5	0.5	0.5	5.	0.5	5.	0.5 1	5.	0.5	5.	0.5	.5 1	0.5 1	5.	0.5 1	.5	.5	0.5	0.5	.5 1	0.5 1	.5
Ē		0		0	0	0		0		0		0 -		0		0		0	_	0		0 -		0	_	0	0	0 -		0	0	0 -		0		0	=
0.5	0.5	0.5	0.5	0.5	.5.	.5.	0.5	0.5	.5	0.5	.5	0.5	.5.	0.5	.5	0.5	.5	0.5	.5 31	0.5	1.5	0.5	.5.	0.5	2.0	0.5	1.5	0.5	.5.	0.5	1.5	0.5	0.5	1.5	0.5	0.5	0.5
		1		1				1		1		1 (1	1	1		1		1	1	1 (1		1	1 0	1 0		1	1	1 0		1	1 0	1 (1
0.5		0.5	0.5	0.5	5.5	0.5	0.5	0.5	5.5	0.5	5.5	0.5	5.5	0.5		5.5	0.5	5.5	0.5	0.5	5.5	0.5	5.5	0.5	5.5	0.5	5.5	0.5	5.5	0.5	5.5	5.5	0.5	0.5	0.5	0.5	0.5
-	-	1	-	1		-	_	1	-	1	-	1		1	-	1	-		31	1	-	1	-	1		-	1	1	-	1	1	1		1	1	1	1
0.5	0.5		0.5	0.5			0.5	0.5	0.5		0.5	0.5		0.5			0.5	τċ	0.5		0.5	0.5			0.5	0.5	0.5	0.5		0.5			0.5	0.5	0.5	0.5	
-	-	1	-	1	-	_	-	-	-	1	-	1	-	1	-	-	-	-	-	1	-	1	-	1	-	-	1	1	-	1	1	1	-	1	1	1	=
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	П	1	1	1	П	_	_	1	1	1	1	1	П	1	1	-	1	П	1	1	1	1	П	1	-	-	1	1	П	1	1	1	П	1	1	1	1
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
-	1	1	1	1	1	-	П	1	1	1	1	1	1	1	1	-	1	1	1	1	1	1	1	1	П	1	1	1	1	1	1	1	1	1	1	1	1
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
KIAH	KIAH	KLAS	KLAS	KLAX	KLAX	KLGA	KLGA	KMCI	KMCI	KMCO	KMCO	KMSP	KMSP	KORD	KORD	KPHL	KPHL	KPHX	KPHX	KPIT	KPIT	KSAC	KSAC	KSAN	KSAN	KSAT	KSAT	KSEA	KSEA	KSFO	KSFO	KSMX	KSMX	KSTL	KSTL	KTPA	CTPA
 	2	1 K	2 X		2 X	1 X	2 X	 		⊢	2 X	_	2 X	1 X		 	2 X	1 X	2 X	1 1	2 F		ان تح	1 X	2 X		2 K	1 K		1 X	2 X	1 K	2 X	1 K	2 K	1 K	-

Table 52: Average performance of the processing of OLAs 1 and 2 over all 30 weather stations by Fuzzy-Crisp Hybrid (variant $0\mathrm{x}0,\,\mathrm{i.e.},\,\mathrm{current}$ weather only, transitions unlimited) Rev. 1.4

	OLA	Average	Metric
0	OLA 1	0.560	$\operatorname{NetNorm}$
0	OLA 2	0.505	MQNetNorm

OLAS 3 & 4 Please see Table 53 below and Table 54 on the next page. A.13.1.2

Table 53: Results of the processing of OLAs 3 and 4 by Fuzzy-Crisp (variant 0x0, i.e., current weather only, transitions unlimited) Rev. 1.4

МQИећИогт	0.33	0.33	0.30	0.30	0.40	0.42	0.30	0.30	0.38	0.38	0.35	0.33	0.35	0.30	0.34	0.34	0.26	0.27	0.34	0.35	0.42	0.44	0.39	0.38	0.37	0.37	0.44	0.44	0.28	0.28	0.30	0.31	0.43	0.43	0.31	0.31	0.28
МФМР	06.0	0.93	0.92	0.92	78.0	0.89	0.94	0.94	0.91	0.91	0.91	0.91	0.91	0.93	0.91	0.91	0.95	0.95	0.93	0.94	06.0	0.90	0.91	0.92	0.91	0.91	0.92	0.92	06.0	0.90	96.0	96.0	0.91	0.91	06.0	06.0	0.93
m10N t9N	0.37	0.35	0.33	0.33	0.46	0.48	0.32	0.32	0.41	0.41	0.38	0.37	0.38	0.32	0.38	0.38	0.28	0.28	0.36	0.37	0.47	0.49	0.43	0.42	0.41	0.41	0.48	0.48	0.31	0.31	0.32	0.32	0.48	0.48	0.35	0.35	0.30
r(12)	91	91		1	1	91	1	1	121	121	-	-	31	31	1	-	1	31	1	П	1	1	31	31	-			1	61	61	1	П	1	1	1	1	1
d(12) $r(12)$	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	6.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	9.0	0.5	9.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	9.0	0.5	0.5	0.5	0.5	0.5	0.5
r(11)	91	91	-	-	-	-	121	121	31	31	121	121	1	-	1	-	П	-	1	31	121	121	1	_	_			1	1	-	121	121	1	1	ī	-	31
$\left\ \frac{d}{d(11)} \right\ $ month n	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	1	31	-	-	1	-	31	31	1	31	31	31	1	-	1	-	1	-	31	31	1	1	1		_	_	-	1	1		121	121	1	1	ī	1	=
d(s) $r(8)$ $d(9)$ $r(9)$ $d(10)$ $r(10)$ is the running average size minutes for	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(9) age size	121	121	-	-	-	-	ī	-	121	121		-	1	-	-	-	-	-	-		ī	-	1	_	_	_	61	61	1		31	31	91	91	ī	-	
d(9)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(8) runnir	П	-	-	-		П	П	П	31	31	-	-	1	-	-	-		-	1	П	П	П	T		_	_	91	91	1	П	1	П	1	1	П	-	_
	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(7)	L	П	-	-	-	-	1	-		-	-	-	1	-	-	-	-	-	1	-	-	-	1	-	-	_	-	1	1	-	1	-	1	1	1	1	_
d(6) $r(6)$ $d(7)$ soft membership and	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.2	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.0 70	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(6)	-	-	-	-	-	-	П		31	31	-	-	1	-	-	-	-	-	-		П		1	31	-	_	-	1	1		31	31	-	1	П	П	_
$\begin{pmatrix} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & $	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(5)			-			Т	1	1		1	-	-	1	-	121		121		1				121	\dashv		4	61			Т		31	121				121
$r(4) \begin{vmatrix} a(5) \\ a(6) \end{vmatrix}$	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.2	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(4)		91	L	-			121		121	_	31			31		91			61				91	-	_	-	-	-	1	_	91		31				61
$\begin{vmatrix} & & & & & & & & & & & & & & & & & & &$	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(3)	-	-	-		-	-	_	-		61	-	-	1	-	61	61	31	31		31		31		121	_	-	-	-	П	-		121	-	1			91
$\begin{vmatrix} d(3) \\ d(3) \end{vmatrix}$	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(2)		31	_			91	31			121		61	31		L	-	\vdash	121	31			-	61	\dashv		\dashv	31	_	61		1	-	1	1	1	1	_
$\begin{vmatrix} d(2) \\ d(3) \end{vmatrix}$ is the	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.2	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
d(1) r(1) d(2) r(2) d(3) r(3) d(3) where $d(n)$ is the deployment threshold	L	91	⊢	61		1	91			-	91	_		-	-	-	⊢	31	121			31	61	\dashv	_	-	-	1	_	61	_	121	1		1	1	
$\begin{vmatrix} d(1) \\ d \end{vmatrix}$	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.2	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
noitsts	KATL	KATL	KBOS	KBOS	KBWI	KBWI	KCLE	KCLE	KCLT	KCLT	KCVG	KCVG	KDCA	KDCA	KDEN	KDEN	KDFW	KDFW	KDTW	KDTW	KEUG	KEUG	KIAH	KIAH	KLAS	KLAS	KLAX	KLAX	KLGA	KLGA	KMCI	$_{ m KMCI}$	KMCO	$_{\rm KMCO}$	KMSP	$_{\rm KMSP}$	KORD
OFA	က	4	က	4	က	4	က	4	က	4	က	4	3	4	က	4	က	4	က	4	က	4	3	4	n	4	ന	4	က	4	3	4	က	4	က	4	က

Table 53: (continued)

_					_				_				_						_			
0.29	0.36	0.37	0.20	0.22	0.40	0.40	0.53	0.47	0.40	0.40	0.35	0.35	0.42	0.42	0.35	0.35	0.57	0.57	0.26	0.29	0.42	0.42
0.95	0.94	0.93	0.86	0.78	0.91	0.91	0.89	0.92	0.91	0.91	0.92	0.92	0.92	0.92	0.95	0.95	0.93	0.93	0.91	0.92	0.89	0.90
0.31	0.38	0.39	0.23	0.28	0.44	0.44	0.59	0.51	0.45	0.44	0.38	0.38	0.46	0.46	0.37	0.37	0.61	0.61	0.28	0.32	0.47	0.47
	61	61	_	-	61	61	_	-	-	_		-	121	121	-	П	_	-	_	П	31	31
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
31	31	31	1	-	31	31	1	-	-		1	-	121	121	1	1	1	-	1	1	31	31
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	61	61	1	31	31	31	1	31		_	1	_		_	1		1	_	1	31	31	31
π 0	0.5	тó	0.5	тÚ	0.5	0.5	0.5	тÚ	0.5	τύ.	0.5	ro.	0.5	0.5	0.5	0.5	0.5	ro.	0.5	rŮ.	0.5	.5
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	-	_	1	-	-	_	1	-	61	61	1	-		-	-	_	1	-	-	_	31	31
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	-	-	П	-	-	-	-	31	61	91	-	-	-	-	31	31	П	-	-	-	-	31
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
-	1	-	1	1	1	-	1	1	61	61	31	31	-	1	91	91	1	1	1	-	1	1
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
-	-	-	-	31	-	-	-	31	121	121	31	31	-	-	-	-	-	-	-	-	31	31
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
121	-	31	1	-	-	1	91	91	-	-	91	91	-	-	121	121	61	61	31	31	61	31
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
61	31	31	31	31	Т	1	91	91	-	-	31	31	-	-	121	121	31	31	61	61	1	31
0.5	0.5	0.5		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5			0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5
91	-	-	1	-	-	-	-	-	121	121	31	31	-	-	31	31	31	31	-	-	31	31
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	91	91	1	-	31	31	1	-	31	31	1	-	l-	-	1	-	1	-	-	-	61	31
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
-	-	-	1	-	91	91	1	-	_	-	1	-	-	-	-	-	1	-	-	-	61	61
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
4 KORD 0.5 1 0.5 1 0.5	KPHL	KPHL	KPHX	KPHX	KPIT	KPIT	KSAC	KSAC	KSAN	KSAN	KSAT	KSAT	KSEA	KSEA	KSFO	KSFO	KSMX	KSMX	KSTL	KSTL	KTPA	KTPA
4 X	3 K	4 X	3 K	4 X	3 X	4 X	3 K	4 K	3 K	4 K	3 K	4 X	3 X	4 X	3 K	4 X	\vdash	4 K	3 K	4 X	3 K	4 K
							_								_				_			

Table 54: Average performance of the processing of OLAs 3 and 4 over all 30 weather stations by Fuzzy-Crisp (variant 0x0, i.e., current weather only, transitions unlimited) Rev. 1.4

Metric	$\operatorname{NetNorm}$	MQNetNorm
Average	0.396	0.362
OLA	OLA 3	OLA 4

Please see Table 55 below and Table 56 on the next page. OLAs 5 & 6 A.13.1.3

Table 55: Results of the processing of OLAs 5 and 6 by Fuzzy-Crisp Hybrid (variant 0x1, i.e., current weather only, transitions limited) Rev. 1.4

	_	_				_	_	_				_			_	_	_	_		_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
МQИећИогт	0.24	10.0	0.21	0.22	0.22	0.18	0.18	0.27	0.27	0.19	0.19	0.24	0.24	0.15	0.15	0.21	0.21	0.21	0.21	0.23	0.23	0.24	0.24	0.18	0.18	0.21	0.21	0.22	0.22	0.19	0.19	0.25	0.26	0.16	0.16	0.19
МФМР	0.92	20.0	0.92	0.94	0.94	0.89	0.89	0.93	0.93	0.91	0.91	0.91	0.91	0.89	0.89	0.91	0.91	0.92	0.92	0.95	0.95	96.0	0.96	06.0	0.90	0.97	0.97	0.93	0.93	0.91	0.91	96.0	96.0	0.91	0.91	0.91
m10 N t9 N	0.26	0.20	0.23	0.23	0.23	0.20	0.20	0.30	0.30	0.21	0.21	0.26	0.26	0.17	0.17	0.23	0.23	0.22	0.22	0.24	0.24	0.25	0.25	0.20	0.20	0.22	0.22	0.24	0.24	0.21	0.21	0.26	0.27	0.17	0.17	0.21
r(12)	1 -	1 0	91 121	1	1	1	1	1	П	121	121	1	1	31	31	1	1	31	31	121	121	61	61	31	31	61	61	1		121	121	1	1	31	31	121
$d(12) \mid r(12)$	0.5	о И	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(11)	61	21	31	31	31	31	31	31	31	121	121	31	31	91	91	31	31	31	31	31	31	121	121	1	1	61	61	1		121	121	121	121	31	31	31
$\left\ \frac{d}{d(11)} \right\ $ month n	O.55	о И	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(10)		-		31	31	61	61	31	31	91	91	1	1	31	31	1	1	121	121	31	31	31	31	1	1	1	1	121	121	31	31	31	31	121	121	121
$\begin{pmatrix} & & & & & & \\ & & & & & & \\ & & & & & $	D.57	о с и	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(9) age size	31	191	121	-	-	121	121	121	121	31	31	1	-	121	121	31	31	121	121	31	31	1	1	31	31	1	1	31	31	121	121	121	121	61	61	31
d(8) $r(8)$ $d(9)$ $r(9)$ is the running average	O.57	о о и	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(8) runnin	121	121		31	31	91	91	1	-	61	61	121	121	1	1	31	31	1	П	1	1	1	1	91	91	31	31	1	121	91	91	121	121	61	61	91
$\begin{vmatrix} d(8) \\ d \end{aligned}$ is the	0.5	о Э	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(7)	121	121	91	1	-	1	П	1	-	61	61	1	-	1	1	16	91	121	121	121	121	121	121	1	1	1	1	61	61	61	61	31	31	91	91	31
d(e) $r(e)$ $d(7)$ $r(7)$ of membership and $r(n)$	0.5	о И	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(6)		T 8	61	-	-	121	121	31	31	1	-	1	-	121	121	121	121	31	31	121	121	31	31	-	1	1	1	121	121	-	1	31	31	121	121	61
	0.5 7	o c	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(5)	31	21	31	121	121		П		-	1		1	-	31	31	1		-		121				-		121	121	121	121	31	31	91	91	-	П	31
	0.5	о О	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
$d(4) \begin{vmatrix} r(4) \\ r(4) \end{vmatrix} d(5)$ d of the combined	31	\perp		-	121	31			-					121				1		61				П		121				-		121				91
	0.5	о О	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(3)	121	121		-	-	31	31	31	31	-	-	121	121	31	31	121	121	121	121	1	П	1	1	T	1	1	1	31	31	121	121	121	121	61	61	121
$\left \begin{array}{c} d(3) \\ d(3) \end{array} \right $	0.5	о Э Б	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
$\begin{vmatrix} a(2) & r(2) \\ a(3) & r(3) \end{vmatrix}$ is the deployment threshol		1 5	91	91	91	П	-	-	-	121	121	121	121	-	1	121	121	-	-	91	91	31	31	121	121	1	1	121	121	61	91	31	31	-	-	31
$\begin{vmatrix} & & & & & & & & & & & & & & & & & & &$	0.5	о Э М	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
$d(1) \left r(1) \right $ where $d(n)$	31	+		121	121	H	31	-	121		31		31	91			31		61	1			31		1	_	31		\dashv		61	_	121		_	31
d(1)	0.5	о Э	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
noitsta	KATL	NALE SOGN	KBOS	KBWI	KBWI	KCLE	KCLE	KCLT	KCLT	KCVG	KCVG	KDCA	KDCA	KDEN	KDEN	KDFW	KDFW	KDTW	KDTW	KEUG	KEUG	KIAH	KIAH	KLAS	KLAS	KLAX	KLAX	KLGA	KLGA	KMCI	KMCI	KMCO	$_{\rm KMCO}$	KMSP	KMSP	KORD
OFA	ro a	э и	9	70	9	rC	9	ъ	9	ъ	9	20	9	n	9	20	9	ro	9	vo	9	20	9	ъ	9	20	9	rO	9	ro	9	20	9	n	9	n

Table 55: (continued)

_	_		_		_		_		_		_		_		_		_		_		_	_
0.19	0.25	0.24	0.20	0.20	0.20	0.19	0.25	0.25	0.24	0.24	0.19	0.18	0.28	0.28	0.18	0.18	0.20	0.20	0.18	0.19	0.24	0.24
0.91	0.92	0.92	0.93	0.93	0.91	0.91	96.0	0.96	0.97	0.97	0.91	0.91	0.95	0.95	0.94	0.94	96.0	0.96	0.92	0.92	0.95	0.95
0.21	0.27	0.26	0.22	0.22	0.21	0.21	0.26	0.26	0.24	0.24	0.21	0.20	0.30	0.30	0.19	0.20	0.21	0.21	0.19	0.20	0.25	0.25
121	61	61	31	31	_	П	_	-	121	121	91	91	61	61	61	61	31	31	_	П	91	91
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
31	91	91	121	121	121	121	1	-	61	61	61	61	91	91	121	121	91	91	31	31	121	121
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
121	121	121	61	61	31	31	31	31	_		31	31	_		-		121	121	121	121	121	121
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
31 (1	1	31 (31 (1	1	1		91 (91 (.21	.21	91 (91 (121 (.21	31 (31	1	1	91 (91 (
ان	ro.	ro.	20	ro.	70.	ro.	0.5	πċ	0.5	ro.	0.5	70	20	rU.	0.5	70	20	ıΟ.	ro.	ro.	ಬ	τċ
	0 1	0	0 1	0	1 0.	1 0	-	0 1		1 0	0	0	1 0.	1 0.		0	0 1	0	0 1	0	0.	0
5 91	5 31	5.	5 91	5 91	5 12:	5 12	5 61	5 61	5 12	5 121	5 1	5	5 12	5 12	5	5	5 31	5 31	5 61	5 61	5 1	5
= 0	0.5	- -	0.1	0	0.5	- -	0.1	- -	0.5	0	0.5	0	0.5	0	0.5	··	0.5	- -	0.1	- -	0.1	0.
31	91	91	121	121	-		91	91	-	_	-	_	61	61	-	Т	121	121	-		121	121
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
61	121	121	1	П	61	61	1		91	91	1	П		П		1	91	91	121	121	1	
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
31	61	61	1	П	121	121	31	31	-	П	1	П	121	121	121	121	61	61	31	31	1	1
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
91	121	61	П	-	121	121	31	31	-	-	1	-	121	121	121	61	1	-	-	31	121	121
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5		0.5	0.5	0.5	0.5		0.5
121	-	П	1	Н	-	П	1	-	121	121	1	Н		Н	31	31	31	31	121	121	31	31
31 0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	121	31	61	31	61	91		-	31	31	31	-	-	-	121	121	П	-	31	31	121	121
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
31	1	1	91	91	_	1	121	121	61	61	1	-	121	121	1	П	31	31	1	1	1	П
	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
KORD 0.5	KPHL	KPHL	KPHX	KPHX	KPIT	KPIT	KSAC	KSAC	KSAN	KSAN	KSAT	KSAT	KSEA	KSEA	KSFO	KSFO	KSMX	KSMX	KSTL	KSTL	KTPA	KTPA
6 X	7. Y	9	7 X	9 X	5 F	9	7. X		νυ Υ	9	π π	9	ت ب	9	77 74	9 F	5 X		5 7		π x	9

Table 56: Average performance of the processing of OLAs 5 and 6 over all 30 weather stations by Fuzzy-Crisp Hybrid (variant 0x1, i.e., current weather only, transitions limited) Rev. 1.4

Metric	$\operatorname{NetNorm}$	MQNetNorm
Average	0.230	0.213
OLA	OLA 5	OLA 6

A.13.2 Using weather prediction

Please see Table 57 below and Table 58 on page 255. A.13.2.1 OLAS 1 & 2

Table 57: Results of the processing of OLAs 1 and 2 by Fuzzy-Crisp Hybrid (variant 0x02, i.e., weather prediction, transitions unlimited) Rev. 1.4

M Q Net Norm	0.45	0.45	0.29	0.29	0.53	0.53	0.48	0.48	0.56	0.56	0.51	0.51	0.40	0.40	0.40	0.40	0.39	0.39	0.48	0.48	0.58	0.58	0.57	0.57	0.37	0.37	0.71	0.71	0.33	0.33	0.56	0.56	0.51
МОМР	0.88	0.88	0.92	0.92	68.0	68.0	0.92	0.92	0.87	0.87	-	0.90	0.91	0.91	0.92	0.92	0.93	0.93	0.92	0.92	_	0.91		-	0.91	0.91	0.93	0.93	06.0	0.90	_	-	0.91
m 10 M to M	0.51	0.51	0.32	0.32	09.0	09.0	_	0.52	0.64	0.64	-	0.57	0.44	0.44	_	0.44	_	0.41	0.52	0.52	_	0.64		0.63		0.40	_	0.77	0.37	0.37	_	_	0.56
r(12)	1	-	1	Т		П	1	1	1	П	1	1	1	-	1	-	1	П	1	П	1	1	П	1	1	П	1	1	1	1	1	1	-
d(12) n	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(11) month	-	-	-	-	-	-	1	1	1	П	1	1	1	-	-	-	-		1	-	1	1	-	1	-		1	1	1	1	1	1	-
d(11)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(10)	I	-	1	1	_	1	1	1	1		1	1	1	-	-	-	-		ī	1	1	1		1	1		-	1	1	1	1	-	_
r(8) $d(9)$ $r(9)$ $d(10)$ $r(10)$ $d(11)$ $r(11)$ is the running average size minutes for month	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(9)	1	-	1	-	-	1	1	1	1	-	1	1	1	-	1	-	1	-	1	1	1	1		1	-	-	1	1	1	1	1	1	=
	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	1	1	1	-		1	1	1	1	П	1	1	1	-	1	-	1	П	1	1	1	1	П	1	1	П	1	1	1	1	1	1	
		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(7)	-	-		-	-	-	1	1	-	-	1	1		-	-	-	-	-	-	-	1	1	-	1		-	-	1	1	-	1	-	-
$\left\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5
$\begin{vmatrix} d(5) & r(5) & d(6) & r(6) & d(7) & r(7) \\ combined degree of membership and \\ \end{vmatrix}$	0.5 1	0.5	.5	0.5	0.5	0.5	0.5 1	.5 1	0.5 1	.5	0.5 1	.5	0.5	0.5	0.5	5.	0.5 1	.5	0.5 1	0.5	0.5 1	.5	0.5	.5 1	0.5 1	.5	0.5	5 1	0.5 1	.5	0.5 1	.5	0.5 1
r(5) $d(6)$ ned degree	1 0.	1	1 0	1 0	0.	1 0.	1 0	1 0.	1 0	1 0	1 0	1 0.	1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0.	1 00.	1 0.	1 0	1 0.	1 0.	1 0	1 0	1 0.	1 0	1 0.	1 0.	1	0 =
d(5) $r($	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
$r(4)\begin{vmatrix} r \\ d \end{vmatrix}$	1		1	_	_	-	1	1	1	_	1	1	1	_	1	_	1	_	1	-	1	1	_	1	_	_	1	1	1	1	1	-	
$d(4) \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix}$	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
$\begin{vmatrix} & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & $	Т	-	П	-	-	-	1	1	1	-	T	1	1	-	Т	-	-	-	1	-	1	-	-	1	1	-	1	1	T	П	T	1	_
d(3)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
$\begin{vmatrix} d(2) & r(2) \\ d(2) & r(2) \end{vmatrix}$ is the depl	1	1	П	1		1	1	1	1	-	1	1	1	-	1	Н	1	-	1	1	1	1	-	1	1	-		1	1	1	1	1	-
$ \begin{pmatrix} d(2) \\ d(3) \end{pmatrix} $	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
d(1) r(1) d(2) r(2) d(3) where $d(n)$ is the deployme	5 1	5	5 1	5	5	5	5 1	5 1	5			5 1	5 1	5	5	5	5	5	5	5	5 1			5 1	5 1	5	5	5 1	5 1	5	5 1	5	5 1
d(:	H	L 0.5		S 0.5	-	T 0.5	E 0.5		r 0.5		G.0		H	A 0.5	F	N 0.5	N 0.5			N 0.5	3 0.5	=	1 0.5		S 0.5				A 0.5	A 0.5		=	0 0.5
noitets	KATL	KATL	KBOS	KBOS	KBWI	KBW]	KCLE	KCLE	KCLT	KCLT	KCVG	KCVG	KDCA	KDCA	KDEN	KDEN	KDFW	KDFW	KDTW	KDTW		KEUG	KIAH	KIAH	KLAS	KLAS	KLAX	KLAX	KLGA	KLGA	KMCI	KMCI	KMCO
OLA	-	2		2		2	1	2	-	2	1	2	П	2	-	2	П	2	-	2	1	2	-	2	Π	2	П	2	П	2	-	2	1

Table 57: (continued)

1 0.51	1 0.31	1 0.31	2 0.47	2 0.47	2 0.52	2 0.52	1 0.22	1 0.22	0 0.58	0 0.58	9 0.61	9 0.61	1 0.59	1 0.59	1 0.43	1 0.43	2 0.53	2 0.53	89.0 2	7 0.58	2 0.58	2 0.58	1 0.43	1 0.43	4 0.51	4 0.51
0.56 0.91	0.35 0.91	0.35 0.91	0.51 0.92	0.51 0.92	0.57 0.92	0.57 0.92	0.31 0.71	0.31 0.71	0.64 0.90	0.64 0.90	0.68 0.89	0.68 0.89	0.65 0.91	0.65 0.91	0.48 0.91	0.48 0.91	0.58 0.92	0.58 0.92	0.59 0.97	0.59 0.97	0.64 0.92	0.64 0.92	0.47 0.91	0.47 0.91		0.60 0.84
_	1	-	1	-	-	-	1	-	1	1	1	-	-	-	-	-	1	-	1	-	1	-	1	-	1	-
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
_	1	1	1	-	-	1	1	-	1	1	1	-		-	-	1	1	1	1	1	1	1	1	1	1	1
0.5	9.0	0.5	9.0	0.5	0.5	0.5	0.5	0.5	9.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	9.0	0.5	0.5	0.5	9.0	0.5	0.5	0.5
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
_	1		1	-	1		1	-	1	-	1	-	-	-	1	-	1	-	1	-	1	-	1	П	1	
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	1			П	-			-	1			-		-	-				1				1			
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
_	1	-		-	-	-		-	1	-		-		-	-	-		-	1	-		-	1	-	-	-
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	1		1	П	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	1	-	1	-	-	-	-	-	1	-	-	-	-	-	-	П	1	П	1	П	-	П	1	-	-	-
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	1		1	П	-		1	П	1		1	П	-	П	-	-	1	-	1	-	1	-	1	-		
0.5	9.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	9.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	9.0	0.5	0.5	0.5	9.0	0.5	0.5	0.5
1	1	П	1	П	1	П	1		1	1	1				1	_	1	_	1	_	1	_	1	1	1	П
0.5	9.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	9.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	9.0	0.5	0.5	0.5	9.0	0.5	0.5	0.5
_	1	-	1	-	-	-	1	-	1	1	-	-	-	-	-	-	1	-	1	-	1	-	1	П	1	-
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
_	1	-	1	-	-	-	1	-	1		1	-	-	-	-	-	1	-	1	-	1	-	1			-
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
2 KMCO	1 KMSP	2 KMSP	1 KORD	2 KORD	1 KPHL	2 KPHL	1 KPHX	2 KPHX	1 KPIT	2 KPIT	1 KSAC	2 KSAC	1 KSAN	2 KSAN	1 KSAT	2 KSAT	1 KSEA	2 KSEA	1 KSFO	2 KSFO	1 KSMX	2 KSMX	1 KSTL	2 KSTL	1 KTPA	2 KTPA

Table 58: Average performance of the processing of OLAs 1 and 2 over all 30 weather stations by Fuzzy-Crisp Hybrid (variant $0\mathrm{x}2,\,\mathrm{i.e.},$ weather prediction, transitions unlimited) Rev. 1.4

OLA	Average	Metric
OLA 1	0.534	NetNorm
OLA 2	0.483	MQNetNorm

Please see Table 59 below and Table 60 on the next page. OLAs 3 & 4A.13.2.2

Table 59: Results of the processing of OLAs 3 and 4 by Fuzzy-Crisp Hybrid (variant 0x02, i.e., weather prediction, transitions unlimited) Rev. 1.4

m10N39NQM	0.39	60.0	0.29	0.49	0.49	0.38	0.38	0.44	0.44	0.38	0.38	0.38	0.38	0.38	0.38	0.34	0.34	0.43	0.43	0.51	0.51	0.43	0.43	0.36	0.36	0.48	0.48	0.33	0.33	0.38	0.38	0.46	0.46	0.31	0.31	0.37
МОМР	0.87	_	0.92	88.0		0.91	0.91	_	0.87	68.0	68.0	0.91	0.91	0.92	0.92	0.93	0.93	-	0.91	0.91	0.91	_		-	0.91	_	0.92	_		_	_			-		0.91
Met Norm	0.44	0.44	0.32	0.55	0.55	0.41	0.41	0.50	0.50	0.42	0.42	0.42	0.42	0.41	0.41	0.36	0.36	0.47	0.47	0.56	0.56	0.48	0.48	0.40	0.40	0.52	0.52	0.37	0.37	0.41	0.41	0.51	0.51	0.34	0.34	0.41
r(12)		-		-		-	-	П	-	-	-	-	-	-	-	-	-	1	-	-	1	1	1	1	-	1	1	T	1	-	1	-	1	-	1	1
$\begin{vmatrix} d(12) \\ n \end{vmatrix}$	то. о то. л	о и	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(11) month		-		-		_	-	-	-	_	-	-	-	-	-	-	-			-	1	-	1	1	_	1	1	1	1	-	1	_	1	-	1	
$ \begin{vmatrix} r(10) & d(11) \\ r(10) & d(11) \end{vmatrix} $ size minutes for month	о с го п	о И	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
(10) C(10)		-		-		_	_	1	_	_	_	-	1	1	1	-	1	1		1	1	1	1	1	_	1	1	1	1	1	1	_	1	1	1	
$r(9) \left\ \frac{d(10)}{d(10)} r(10) \right\ $ ing average size min	о. го п	о И	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
$d(9) r(9) \begin{vmatrix} d(10) \\ d(10) \end{vmatrix}$ running average		- -		-		-	_	1	_	-	-	1	1	-	1	-	1	1	1	1	1	1	1	1		1	1	1	1	-	1		1	-		_
d(9)	о о го п	о с л	0.5	75.	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(8) is the				-		-	-	1	-	-		-	-	-	-	-	-	1	1	1	1	1	1	1	П	1	1	-	1	-	1	П	1	-	1	=
$d(8) \over r(n)$	о. С л	о И	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(7)		,		ı		-	П	1	П		1	1	1	-	1	1	1	1	П	1	1	1	1	1	П	1	1	ī	1	1	1	П	1	-	1	1
$r(6) \left\ d(7) \right\ r(7)$ of membership and	O.0 70.0	о Э	0.2	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(6) of mea		-		-		_	-	1	-	-	-	-	1	-	1	-	1	1	-	1	1	1	1	-	-	1	1		1	-	1	-	-	-	1	-
$\begin{vmatrix} & & & & & & & & & $	O.0 75.70	о Э Б	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(5)		+		-		-	-		-	-	-	-	П	-		-	П		_	-	1		1	T	_	1	1		1	-	1	_	1	П	1	
$\begin{vmatrix} $	0.5 75.70	о О	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(4)		- -		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	1	-	-	1	-	-	1	-	1	-	1	-	-	_
$d(2)$ $r(2)$ $\begin{vmatrix} d(3) \\ d(4) \end{vmatrix}$ is the deployment threshold	O. O.) C	0.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.57	0.5	0.5	0.5	0.5	0.5	0.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
$\begin{pmatrix} & & & \\ & & & \\ & & & \\ \end{pmatrix} \begin{vmatrix} & & \\ & & \\ & & \\ \end{pmatrix} $ ent thre		\perp		-	1 1		1		1	1 1	1 1		1 1	1	1 1	1 1	1 1	1	10	1	1 1	1	5 1	5	1	5 1	5 1	-1	5 1	5	5 1	1		1	5 1	1
$\left \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	O. O.		0	0	0.5	0.8	0.5	0.8	0.5	0.8	0.5	0.8	0.5	0.8	0.5	0.8	0.5	0.5	0.5	0.8	0.8	0.8	0.8	0.5	0.5	0.5	0.8	0.5	0.8	0.5	0.8	0.5	0.5	0.8	0.8	- - -
$d(2) \begin{vmatrix} r(2) \\ r \end{vmatrix}$ is the depl	то и	о и	2 -	rc	2	5	1	5 1	1	1	5	5	5	1	5	1	5	5	5	5	5	5	5 1	5 1	5	5 1	5 1	1	5 1	5	5 1	5	5 1	5	5 1	5 1
	O. O.	<i>i</i> c	0.50	C	0.5	Ö.	0.5	0.	0.5	0.	0.5	0.5	0.	0.5	0.	0.	0.5	0.5	0	0.5	0.	0.5	0.	0.5	· •	0.5	0.	0.5	0.	0.5	0.	0.5	0.	o E		0.5
$d(1) \begin{vmatrix} r(1) \\ r(1) \end{vmatrix}$ where $d(n)$	0.5 7	5 м - L	0.5	0.5	0.5	.5	0.5	.5	0.5	0.5	0.5	.5	0.5	0.5	.5	0.5	0.5	0.5	5	0.5	.5	0.5 1	.5	0.5 1	.5	0.5 1	.5	0.5 1	0.5 1	0.5 1	.5	0.5	.5	0.5 1	0.5 1	0.5 1
d()		+		Ħ		H		F		+		H		H							_		=	H		_		-	=		=					
noitsta	KATL			KBWI	KBWI	KCLE	KCLE	KCLT	KCLT	KCVG	KCVG	KDCA	KDCA	KDEN	KDEN	KDFW	KDFW	_	KDTW	KEUG	KEUG	KIAH	KIAH	KLAS	KLAS	KLAX	KLAX	KLGA	KLGA	KMCI	KMCI	_	KMCO	_	$_{\rm KMSP}$	з КОВD
OFY	თ ≺	t c	o 4	c:	4	က	4	က	4	က	4	က	4	က	4	ಣ	4	က	4	က	4	က	4	က	4	3	4	က	4	က	4	ಣ	4	က	4	က

Table 59: (continued)

_						_									-	_					١.	
0.37	0.43	0.43	0.22	0.22	0.42	0.42	0.53	0.53	0.47	0.47	0.36	0.36	0.46	0.46	0.42	0.42	0.58	0.58	0.37	0.37	0.43	0.43
0.91	0.91	0.91	0.71	0.71	0.89	0.89	06.0	06.0	06.0	06.0	06.0	06.0	0.92	0.92	96.0	96.0	0.92	0.92	0.91	0.91	0.84	0.84
0.41 0.91	0.47	0.47	0.31	0.31	0.48	0.48	0.59	0.59	0.52	0.52	0.40	0.40	0.50	0.50	0.43	0.43	0.63	0.63	0.41	0.41	0.52	0.52
1	-	П	-	П	-	1	-	П	-	П	-	П	-	П	-	1	1	П	-	1	_	1
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
1	-	-	-	-	-	-	1	-	-	-	1	-	-	-	-	-	1	-	-	-	-	1
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
_	_	_	-	_	_	-	1	_	_	-	1	_	-	_	_	-	1	_	_	-	_	1
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
=							_				_						_					
- 5	5	75	75	70	5	τύ 	5	75	5.	75	5.	5	5	75	5	τύ 	5.	70	5	τύ 	5.	.5
= 0.	0.5	0	0.	0	0.5	<u>.</u>	0.5	0	0.	0	0.	0.5	0.5	0	0.5	<u>.</u>	0.	0	0.5	<u>.</u>	0.	0.
_	-	-	-	-		-		-	-			-		-	-	-		-		-	-	1
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
_		_	-	_		-		_	П	_		_	П	_		-		_		-	П	1
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
_		-	-	-		-		-		_		-		-		-		-		-	1	1
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
_	-	-	_	-	-	_	1	-			1	-		-	1	_	1	-	-	_	1	1
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
_	1	-	_	-	1		1	-			1	-			1		ī		1		1	1
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
_	1	-	_	-		_	1	-			1	-		-		_		-	1	_	ī	1
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
_	1	_		_	Ţ			_			ī	_		_				_	Ţ			1
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
_	-	_	-	_	-	-	1	_	-		1	_	-	_	-	-	1	_	-	-	ī	1
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
4 KORD 0.5	KPHL	KPHL	KPHX		KPIT	KPIT	KSAC	KSAC	KSAN		KSAT	KSAT	KSEA				KSMX	KSMX	KSTL	KSTL	H	
4 KC	3 KF	4 KF	3 KF	4 KPHX	3 KI	4 KI	3 KS	4 KS	3 KS	4 KSAN	3 KS	4 KS	3 KS	4 KSEA	3 KSFO	4 KSFO	3 KS	4 KS	3 K	4 KS	3 KTPA	4 KTPA

Table 60: Average performance of the processing of OLAs 3 and 4 over all 30 weather stations by Fuzzy-Crisp Hybrid (variant 0x2, i.e., weather prediction, transitions unlimited) Rev. 1.4

Metric	NetNorm	${\rm MQNetNorm}$
Average	0.451	0.406
OLA	OLA 3	OLA 4

Please see Table 61 below and Table 62 on the next page. $0LAs \ 5 \ \& \ 6$ A.13.2.3

Table 61: Results of the processing of OLAs 5 and 6 by Fuzzy-Crisp Hybrid (variant 0x03, i.e., weather prediction, transitions limited) Rev. 1.4

ттоИдыМДМ	0.26	0.26	0.22	0.22	0.26	0.28	0.18	0.18	0.28	0.28	0.18	0.18	0.24	0.24	0.15	0.15	0.21	0.21	0.22	0.22	0.24	0.24	0.24	0.24	0.18	0.18	0.22	0.22	0.23	0.23	0.20	0.20	0.25	0.25	0.17	0.17	0.19
МОМР	0.92	0.92	0.91	0.91	0.94	0.94	68.0	0.89	0.93	0.93	0.91	0.91	0.91	0.91	68.0	0.89	0.91	0.91	0.92	0.92	0.95	0.95	96.0	96.0	0.93	0.93	26.0	0.97	0.94	0.94	0.92	0.92	0.95	0.95	0.92	0.91	0.91
Met Norm	0.28	0.28	0.24	0.24	0.28	0.29	0.20	0.20	0.30	0.30	0.20	0.20	0.26	0.26	0.16	0.16	0.23	0.23	0.24	0.24	0.25	0.25	0.25	0.25	0.19	0.19	0.22	0.22	0.24	0.25	0.22	0.22	0.26	0.27	0.19	0.18	0.21
r(12)	31	31	91	121	1	121	1	1	1	1	121	121	1	-	31	31	-	1	31	31	1	1	61	61	1	1	61	61	31	1	91	91	1	1	31	31	121
d(12)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5	0.5
$ \begin{vmatrix} r(10) & d(11) \\ r(10) & d(11) \end{vmatrix} $ size minutes for month	61	61	31	31	31	31	31	31	31	31	121	121	31	31	1	1	31	31	31	31	1	1	121	121	1	1	61	61	91	91	121	121	121	121	31	31	31
$d(11) \left r(11) \right $	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(10)	1	П	91	91	31	31	61	61	31	31	91	91	1	-	31	31	-	1	121	121	31	31	31	31	1		1	1	121	121	1	1	1	1	121	121	121
$\begin{pmatrix} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & \\ & & \\ & & \\ & $	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
av av	31	31	121	121	1	1	121	121	121	121	31	31	1	-	121	121	31	31	121	121	31	31	1	П	31	31	1	1	1	1	121	121	121	121	61	61	31
$r(8) \begin{vmatrix} a \\ a \\ b \end{vmatrix} = r(6)$ is the running	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(8) is the	-	-	-	1	31	31	91	91	1	-	31	31	121	121	-	91	31	31	1	-	1	1	1	-	91	91	1	1		121	91	91	121	121	61	61	91
		0.2	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(7) lip and	121	121	121	121	1	1	T		1	-	61	61	-1	-	-		91	91	121	121	121	121	121	121	1		1	1	61	61	61	61	1		91	91	31
$\begin{vmatrix} r(6) & d(7) & r(7) \\ r(6) & d(7) & r(7) \end{vmatrix}$	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(6)	1	-	61	61	31	31	121	121	31	31	-	-	-	-	121	121	121	121	31	31	121	121	31	31	1	-	1	1	121	121	1	1	31	31	121	121	1
$\left\ \frac{d(6)}{d \cdot e^{-6}} \right\ $	n	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5	0.5
	31	31	31	31	121	121	1	_	1	П	121	121	1	-	31	31	1	1	1	1	121	121	121	121	121	121	91	91	121	121	31	31	91	91		1	
$ \frac{ d(5) _{r(5)}}{ combined } $	0.5	0.2	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(4) of the	31	31	31	31	121	1	31	31	1	П	1	1	121	121	121	121	1	1	1	1	61	61	1	1	1	1	121	121	1	1	1	1	121	121	31	1	91
d(4)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(3)	121	121		1	1	1	31	31	31	31	1	П	121	121	31	31	121	121	121	121	1	_	1	П	1	П	1	1	31	31	121	121	121	121	61	61	121
d(3)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(2)	1	-	91	91	91	91	91	91	121	121	-	-	121	121	-	П	121	121	-	-	91	91	31	31	61	61	1	1	91	91	31	91	31	31	121	121	31
d(2) is the	0.5	0.2	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
d(1) $r(1)$ $d(2)$ $r(2)$ $d(3)$ $r(3)$ $d(4)$ where $d(n)$ is the deployment threshold	31	31	31	31	121	121	31	31	121	121	31	31	31	31	-	1	31	31	61	61	1	1	1	Т	31	31	31	31	121	121	31	31	1	121	1	1	31
d(1) where	0.5	0.2	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
noitsta	KATL	KATL	KBOS	KBOS	KBWI	KBWI	KCLE	KCLE	KCLT	KCLT	KCVG	KCVG	KDCA	KDCA	KDEN	KDEN	KDFW	KDFW	KDTW	KDTW	KEUG	KEUG	KIAH	KIAH	KLAS	KLAS	KLAX	KLAX	KLGA	KLGA	KMCI	KMCI	KMCO	KMCO	KMSP	KMSP	KORD
OLA	ю	9	ю	9	2	9	ъ	9	2	9	ю	9	ъ	9	ъ	9	rO	9	rů		ъ	9	rO	9	ro	9	rc	9	ro	9	ro	9	2	\rightarrow	_	9	ಬ

Table 61: (continued)

-6	23	.22	6	6	6	6	<u></u>	.27	4.	4	6	0.	6	6	6	00	6	6	∞	00	4	4
1 0.19	2 0.22	0	2 0.19	2 0.19	1 0.19	1 0.19	5 0.27	0	7 0.24	7 0.24	1 0.19	1 0.20	4 0.29	4 0.29	4 0.19	4 0.18	6 0.19	6 0.19	1 0.18	1 0.18	5 0.2	5 0.2
0.91	0.92	0.92	0.92	0.92	0.91	0.91	0.95	0.95	76.0	0.97	0.91	0.91	0.94	0.94	0.94	0.94	96.0	96.0	0.91	0.91	0.95	0.95
0.21	0.24	0.24	0.21	0.21	0.20	0.20	0.28	0.28	0.25	0.25	0.21	0.22	0.31	0.31	0.20	0.20	0.20	0.20	0.20	0.20	0.25	0.25
121	-	Η	-	-	31	31	-	П	121	121	-	-	61	61	61	61	31	31	-	Η	91	91
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
31	91	91	121	121	121	121	1		61	61	61	61	91	61	121	121	91	91	31	31	121	121
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
121	1	_	61	61	31	31		31	_	_		_		_	1	_	121	.21	121	21	.21	.21
	2	ت. 	5 6	5	5 3		5	ro L	70	70	5	70	70		2	ت. 	5 12	5 12	5 12	5 12	5 12	5 12
= 0	0	0	0.	0.	0.	0.5	0.5	0	0.5	0.	0	· ·	0	0.5	0	0	0.	0	0.	0.	0.	0.
31	121	121	31	31	-	-	-	-	91	91	121	121	91	91	121	121	31	31	-	-		
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
91	Τ	-	91	91	121	121	61	61	121	121	31	31	121	121	121	91	31	31	61	61	31	31
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
31	91	91	121	121	-	-	91	91	1	-	-	-	61	61	-	П	121	121	-	-	121	121
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
_	121	121	1	-	61	61	1	-	91	91	1	-	31	31	1	-	61	61	121	121	1	
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	61	61	31	31	121	121	31	31	1	-	1	-	121	121	121	121	61	61	31	31	1	
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
91	121	61	61	61	121	121	31	31	1	1	1	1	121	121	121	1	1	1	1	1	121	121
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
121		П		_		П		-	121	121		_		_	31	31	31	31		П	31	31
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
31	1	П	61	31	-	П	1		31	31	31	-	31	31	1		1		31	31	121	121
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	9.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	9.0	0.5	0.5	0.5	9.0	0.5
31	1	_	91	91	1	-	121	121	61	61	31	31	121	121	1	-	1	-	_	_	-	_
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
6 KORD 0.5	KPHL	KPHL	KPHX	KPHX	KPIT	KPIT	KSAC	KSAC	KSAN	KSAN	KSAT	KSAT	KSEA	KSEA	KSFO	KSFO	KSMX	KSMX	KSTL	KSTL	KTPA	KTPA
9	20	9	2	9	ro.	9	70	9	5	9	70	9	70	9	20	9	2 I	9	πo 	9	20	9

Table 62: Average performance of the processing of OLAs 5 and 6 over all 30 weather stations by Fuzzy-Crisp Hybrid (variant 0x3, i.e., weather prediction, transitions limited) Rev. 1.4

Metric	NetNorm	${\rm MQNetNorm}$
Average	0.233	0.217
OLA	OLA 5	OLA 6

The membership function of the fuzzy set "Plenty of Allocated Visibility Minutes Remaining" is described by the following function:

$$1 - \frac{\text{(Minutes Visible Monthly)} + \text{(Time to Retract Minutes)}}{\text{(Maximum Minutes Allowed to Be Visible)}}$$
 (15)

where

- Minutes Visible Monthly is how many minutes that harvester has been visible this month,
- Time to Retract Minutes is the time it takes for the harvester to retract, and
- Maximum Minutes Allowed to Be Visible is the OLA-specifified allocation of minutes that the harvester is permitted to be visible each month.

An example plot of the membership function of the fuzzy set "Plenty of Allocated Visibility Minutes Remaining" is shown in Figure 42 for the following case:

- the harvester is allocated 8760 minutes per month (e.g., OLAs 3-6) and
- the harvester starts the month deployed and remains deployed.

A.14 PROBABILITY FOR FALSE PREDICTION AT KBOS

Let us analyze Fuzzy variant 0x3 which requires that today and tomorrow be windy, which is defined as when the rolling average windspeed has a membership value of 0.9 or more. (We chose the lambda-cut value to be 0.9 in Section 3.1.2.1.) Let us use the rolling-average window size of 1, which is sometimes the rolling-average window size chosen by our training algorithm for OLA5 for Fuzzy (Table 61 on page 258).

Using our assumption that the day-ahead windspeed prediction error for a site is approximately 0.3 times that site's average windspeed, the standard deviation (σ) for the day-ahead prediction error for the site having the highest average windspeed listed in Appendix A.8 (KBOS at 9.42 knots) is 0.3×9.42 knots = 2.8 knots. Thus, for all sites, the least probabilities that the actual day-ahead windspeed will be within $\sigma = 2.8$ knots of the predicted windspeed is 68% and that the actual windspeed will be within $2\sigma = 5.6$ knots is 95%.

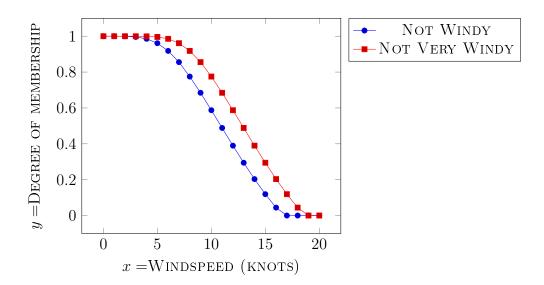


Figure 41: Example membership functions for the fuzzy set "Not Windy" and the set "Not Very Windy"

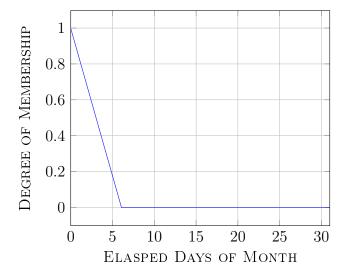


Figure 42: Example membership function for the fuzzy set "Plenty of Allocated Visibility Minutes Remaining" (See also Equation 15)

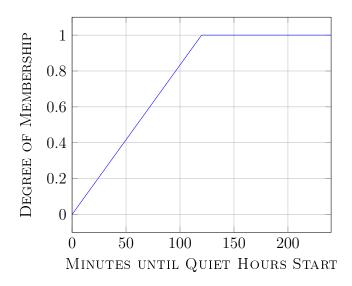
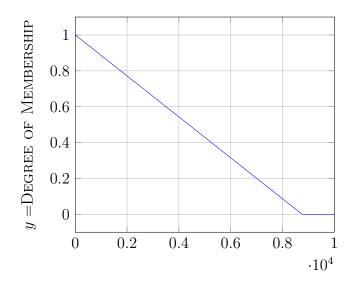



Figure 43: Membership function for the fuzzy set "Approaching Near the Start of Quiet Hours"

x= Minutes Remaining in Month - Remaining Allocation of Visibility Minutes

Figure 44: Example membership function for the fuzzy set "Approaching the Use Visibility Allocation or Lose It Point"

What is the probability that Fuzzy variant 0x3, will be fooled into deeming an actually windy tomorrow as being not windy (Type II error) or vice-a-versa (Type I error)?

Table 63 shows the probability for predicting tomorrow's windy day as not windy, given actual day-ahead windspeeds. (The table was substantially calculated using Excel's NORM.DIST() formula.) If the actual day-ahead windspeed is the lowest windspeed deemed to be windy at KBOS, which is 9 knots (Appendix A.2.4) since we chose the lambda-cut value to be 0.9, then because our simulated windspeed predictor uses a Gaussian distribution [47], the probability that the algorithm will receive a weather prediction that tomorrow will not be windy is 50%. If tomorrow's actual windspeed will be 10 knots, then the probability for a false negative is 36%.

Table 63: Probabilities at station KBOS for predicting tomorrow's windy day as not windy

Actual	Probability
day-ahead	of predicting
windspeed	windspeed less
(knots)	than 9 knots
9	50%
10	36%
11	24%
12	14%
13	8%
14	4%
15	2%
16	1%
17	0%

A.15 POPULATION OF MSA CORRESPONDING TO EACH OF THE 30 WEATHER STATIONS

Each of the 30 weather stations corresponds to a metropolitan statistical area (MSA). That correspondence is shown in Table 64. Also shown in Table 64 are the April 1, 2010 populations of each MSA [98]. The bottom lines of Table 64 indicate that the combined populations of the 30 MSAs comprise nearly 42% of the total U.S. population as counted on April 1, 2010 [98].

Table 64: Population of MSA corresponding to each of the 30 weather stations

		April 1, 2010
Station	MSA	(Census)
KATL	Atlanta-Sandy Springs-Roswell, GA Metro Area	5,286,728
KBOS	Boston-Cambridge-Newton, MA-NH Metro Area	4,552,402
KBWI	Baltimore-Columbia-Towson, MD Metro Area	2,710,489
KCLE	Cleveland-Elyria, OH Metro Area	2,077,240
KCLT	Charlotte-Concord-Gastonia, NC-SC Metro Area	2,217,012
KCVG	Cincinnati, OH-KY-IN Metro Area	2,114,580
KDCA	Washington-Arlington-Alexandria, DC-VA-MD-WV Metro Area	5,636,232
KDEN	Denver-Aurora-Lakewood, CO Metro Area	2,543,482
KDFW	Dallas-Fort Worth-Arlington, TX Metro Area	6,426,214
KDTW	Detroit-Warren-Dearborn, MI Metro Area	4,296,250
KEUG	Eugene, OR Metro Area	351,715
KIAH	Houston-The Woodlands-Sugar Land, TX Metro Area	5,920,416
KLAS	Las Vegas-Henderson-Paradise, NV Metro Area	1,951,269
KLAX	Los Angeles-Long Beach-Anaheim, CA Metro Area	12,828,837
KLGA	New York-Newark-Jersey City, NY-NJ-PA Metro Area	19,567,410
KMCI	Kansas City, MO-KS Metro Area	2,009,342
KMCO	Orlando-Kissimmee-Sanford, FL Metro Area	2,134,411
KMSP	Minneapolis-St. Paul-Bloomington, MN-WI Metro Area	3,348,859
KORD	Chicago-Naperville-Elgin, IL-IN-WI Metro Area	9,461,105
KPHL	Philadelphia-Camden-Wilmington, PA-NJ-DE-MD Metro Area	5,965,343
KPHX	Phoenix-Mesa-Scottsdale, AZ Metro Area	4,192,887
KPIT	Pittsburgh, PA Metro Area	2,356,285
KSAC	Sacramento-Roseville-Arden-Arcade, CA Metro Area	2,149,127
KSAN	San Diego-Carlsbad, CA Metro Area	3,095,313
KSAT	San Antonio-New Braunfels, TX Metro Area	2,142,508
KSEA	Seattle-Tacoma-Bellevue, WA Metro Area	3,439,809

Table 64: (continued)

KSFO	San Francisco-Oakland-Hayward, CA Metro Area	4,335,391
KSMX	Santa Maria-Santa Barbara, CA Metro Area	423,895
KSTL	St. Louis, MO-IL Metro Area	2,787,701
KTPA	Tampa-St. Petersburg-Clearwater, FL Metro Area	2,783,243
	Total population of the 30 MSA's listed above:	129,105,495
	Total U.S. population, census, April 1, 2010:	308,745,538
	30 MSA's population as a percentage of total:	41.82%

A.16 ENERGY CAPTURED AT EACH WEATHER STATION DURING TRAINING AND TESTING BY A PERMANENTLY DEPLOYED HARVESTER

The sources of the ASOS data are ASOS weather stations, which usually have anemometer heights of approximately 10 or 8 meters; "Typical ASOS wind sensor heights are 33 feet or 27 feet, depending on local site-specific restrictions or requirements" [59]. Please note that because windspeeds typically increase with altitude[17, p. 668] and wind turbines may be much higher than 10 meters, be careful to not underestimate wind resources at the site of a particular ASOS weather station. For information on assessing wind resources, please visit the National Renewable Energy Laboratory's web page entitled "Wind Resource Assessment" [65].)

Table 65: Energy captured at each weather station ws during training and testing by permanently deployed harvester hm defined in Appendix A.3

	$E_{\mathrm{Harvested}}^{(\mathrm{Permanent},wrk)}$ (GWh)									
Station	Training	Testing								
KATL	11.08164373	2.313831367								
KBOS	24.62576615	5.124163067								

Table 65: (continued)

KBWI	8.529008367	1.6589851
KCLE	17.7525112	4.426799383
KCLT	4.898122183	1.082148483
KCVG	11.54389702	2.520545983
KDCA	12.9294752	2.79856035
KDEN	20.52796085	4.692598817
KDFW	25.16715067	6.362182917
KDTW	14.93492915	3.617316633
KEUG	7.234854417	1.490479333
KIAH	10.82712013	2.402683117
KLAS	14.10018065	3.675125867
KLAX	9.040475867	1.947226767
KLGA	24.14711153	5.16765185
KMCI	21.16693805	4.87104135
KMCO	10.06265663	1.886246417
KMSP	15.34392997	3.693996417
KORD	17.19378537	3.938879683
KPHL	16.6037386	3.530311733
KPHX	6.110979783	1.2980193
KPIT	9.992927967	2.311737383
KSAC	6.023616267	1.217522833
KSAN	4.329993183	0.783599983
KSAT	13.56972367	3.12457265
KSEA	9.219178417	2.016763933
KSFO	29.17697397	6.20793595
KSMX	11.70718298	2.629237233
KSTL	14.20177952	3.131923483

Table 65: (continued)

KTPA	5.465520333	1.06674115
KIFA	0.400020000	1.00074113

A.17 ESTIMATED SHAPE AND SCALE PARAMETERS OF WEIBULL DISTRIBUTION FOR EACH STATION

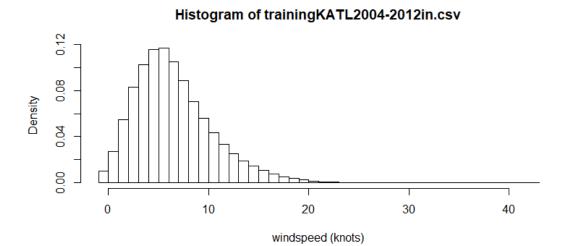


Figure 45: Histogram of densities of windspeeds in KATL's training file: training KTPA 2004-2012 in.csv

We used the R script below to generate the estimates (Table 66) of the shape (B) and scale (A) parameters of a Weibull distribution [6, Equation 5.45, p.185] (e.g., Figure 45) fitted to the densities of windspeeds for each station. Note that in some cases, the script may truncate data to avoid the following error:

- 1 Error in checkparamlist(arg_startfix\$start.arg, arg_startfix\$fix.arg...;
- 2 'start' should not have NA or NaN values.

Also note that the script estimates the Weibull distribution for a location parameter (ν) of -1. (The location parameter is -1 because zero-knot windspeeds are placed in the first bucket of the histogram generated by the script's line starting with

```
x = hist(DF$wind_knots, freq=FALSE, plot=FALSE, breaks=
seq(-1,max(DF$wind_knots))
. )
    stations <- c ("KATL",
 1
   "KBOS" ,
   "KBWI",
 3
 4
   "KCLE"
5
   "KCLT"
 6
   "KCVG",
 7
    "KDCA"
8
   "KDEN"
   "KDFW",
9
   "KDTW",
10
11
    "KEUG",
   "KIAH",
12
   "KLAS",
13
14
   "KLAX"
   "KLGA",
15
16
   "KMCI",
17
   "KMCO",
   "KMSP"
18
19
    "KORD",
   "KPHL",
20
21
    "KPHX"
22
    "KPIT"
   "KSAC" ,
23
24
   "KSAN",
25
   "KSAT"
   "KSEA",
26
   "KSFO" ,
27
    "KSMX",
28
29
    "KSTL"
30
    "KTPA")
31
32 \# stations \leftarrow c("KATL")
33
34 library ("fitdistrplus")
35
36 \text{ iter} < - \text{length} (\text{stations}) + 1
37 m <- matrix (NA, nrow=iter, ncol=6)
```

```
38 \text{ rowIndex} = 1
39 m[rowIndex,] <- c("station", "shape", "scale", "Kolmogorov-Smirnov
      statistic", "Cramer-von Mises statistic", "Anderson-Darling
      statistic")
40
   rowIndex=rowIndex+1
   for(station in stations) {
41
42
43
    print (station)
44
45
    inputFilenameBase = paste ("training", station, "2004-2012 in", sep="
       ")
            inputFilename = paste(inputFilenameBase, ".csv", sep="")
46
47
    DF <- read.csv(inputFilename, header=TRUE)
48
49
50
           x = hist(DF$wind knots, freq=FALSE, plot=FALSE, breaks=seq
               (-1, max(DF$wind knots)), main=paste("Histogram of",
               inputFilename), xlab="windspeed (knots)")
    #If a zero exists, truncate data to avoid the following error:
51
    ## Error in checkparamlist(arg_startfix$start.arg, arg_startfix$fix
52
        .arg, :
    ## 'start' should not have NA or NaN values.
53
54
    finalIndex = if(x\$density[which.min(x\$density)] == 0) which.min(
       x$density)-1 else length(x$density)
    #d = fitdistr(x$density[1:finalIndex], "weibull")
55
    d = fitdist(x$density[1:finalIndex], "weibull",lower=0)
56
    k = gofstat(d)
57
58
    m[rowIndex,] <- c(station, d$estimate, k$ks, k$cvm, k$ad)
    rowIndex = rowIndex + 1
59
60
61 }
62
63 options (width = 200)
64 sink ("WeibullAllStations.txt")
65 print (m)
66 sink()
```

Table 66: Estimated shape and scale parameters of Weibull distribution for each station where the location parameter (ν) is -1

		estim	estimated Goodness-of-fit statistics								
s	station	shape	scale	Kolmogorov-Smirnov	Cramer-von Mises	Anderson-Darling					

Table 66: (continued)

KATL	0.28	0.004	0.12	0.21	1.42
KBOS	0.37	0.008	0.11	0.14	0.96
KBWI	0.31	0.006	0.10	0.12	0.93
KCLE	0.30	0.005	0.12	0.19	1.34
KCLT	0.29	0.005	0.11	0.13	0.94
KCVG	0.27	0.003	0.13	0.22	1.48
KDCA	0.36	0.009	0.11	0.14	0.97
KDEN	0.35	0.006	0.09	0.09	0.72
KDFW	0.31	0.006	0.14	0.26	1.74
KDTW	0.31	0.005	0.11	0.15	1.10
KEUG	0.28	0.004	0.12	0.17	1.19
KIAH	0.31	0.004	0.21	0.44	2.55
KLAS	0.35	0.008	0.11	0.17	1.13
KLAX	0.36	0.009	0.14	0.12	0.79
KLGA	0.39	0.011	0.11	0.15	1.12
KMCI	0.31	0.006	0.12	0.23	1.62
KMCO	0.26	0.001	0.15	0.36	2.21
KMSP	0.31	0.006	0.13	0.22	1.54
KORD	0.38	0.011	0.13	0.18	1.23
KPHL	0.35	0.008	0.11	0.15	1.04
KPHX	0.26	0.002	0.11	0.15	1.12
KPIT	0.35	0.008	0.12	0.16	1.06
KSAC	0.25	0.002	0.16	0.26	1.82
KSAN	0.31	0.006	0.13	0.14	0.95
KSAT	0.29	0.005	0.13	0.24	1.63
KSEA	0.31	0.005	0.11	0.17	1.16

Table 66: (continued)

KSFO	0.36	0.007	0.14	0.24	1.65
KSMX	0.31	0.006	0.12	0.18	1.23
KSTL	0.32	0.006	0.12	0.17	1.16
KTPA	0.32	0.005	0.13	0.16	1.01

A.18 LOOKING FOR TRENDS IN WINDSPEED DATA

In Section 4.2.0.2, we suggested that control algorithms look for trends in the training data. We looked for yearly trends using the following method for each station:

- 1. For each year of windspeeds in the nine years of training data (2004 to 2012), create a density distribution table.
- 2. From the density distribution table, estimate Weibull scale and shape parameters to create two eleven-year time series.
- 3. For the training partition (the first nine years), run two modified Mann-Kendall (MK) tests; one test for the scale yearly time series and another test for the shape yearly time series.
- 4. For the entire eleven years, run two modified MK tests; one test for the scale yearly time series and another test for the shape yearly time series.

The first three steps of the method directly above are implemented by the R script at the end of this section.

Table 67 includes an eleven-year time series of Weibull shape estimates for each station. The question can be addressed of whether or not each shape-estimate time series by examining the data in Table 68 which has statistics generated from original and modified MK tests. If the MK statistics suggest that a trend exists within the reader's toleration, then the reader may find the slope statistics in Table 67 helpful.

The scale estimates and MK statistics are in Tables 69 and 70.

Table 67: Weibull shape estimates and Sen's Slopes

.vg.	ar		\sigma	\o			vo.						\o				\ 0	\o	\o	\o			\ 0						\o	\o	
normalized to avg.	11-year	1%	-1%	-1%	%0	%0	-1%	%0	1%	%0	1%	%0	-1%	1%	1%	%0	-1%	-1%	-1%	-2%	1%	1%	-1%	%0	2%	%0	%0	1%	-2%	-1%	%0
normali	9-year	2%	-1%	-1%	%0	-2%	-3%	-1%	2%	-1%	2%	%0	-1%	%0	1%	-2%	-1%	1%	2%	-3%	%0	%0	-1%	%0	2%	%0	%0	1%	-3%	-1%	-1%
Slope	11-year	0.003	-0.004	-0.004	0.001	0.000	-0.006	-0.001	900.0	-0.001	0.004	0.000	-0.002	0.005	900.0	0.000	-0.003	-0.003	-0.003	-0.009	0.004	0.003	-0.005	0.000	0.007	0.001	0.001	0.003	-0.007	-0.004	-0.002
Sen's Slope	9-year	0.010	-0.003	-0.003	-0.001	-0.007	-0.013	-0.004	0.008	-0.003	0.00	0.001	-0.003	-0.002	900.0	-0.007	-0.003	0.002	0.007	-0.012	0.002	0.002	-0.004	-0.001	0.007	0.000	0.001	0.005	-0.013	-0.002	-0.003
age	11-year	0.39	0.46	0.39	0.40	0.38	0.40	0.42	0.42	0.45	0.40	0.38	0.38	0.42	0.44	0.45	0.43	0.38	0.38	0.45	0.44	0.36	0.39	0.38	0.38	0.41	0.39	0.50	0.44	0.37	0.39
average	9-year	0.40	0.46	0.40	0.40	0.38	0.40	0.42	0.42	0.45	0.40	0.38	0.39	0.41	0.44	0.45	0.42	0.38	0.40	0.45	0.44	0.35	0.40	0.37	0.38	0.41	0.39	0.49	0.44	0.37	0.39
	2014	0.41	0.43	0.32	0.41	0.43	0.44	0.40	0.43	0.46	0.40	0.36	0.40	0.49	0.46	0.52	0.37	0.34	0.29	0.45	0.49	0.38	0.38	0.40	0.36	0.45	0.45	0.53	0.43	0.35	0.40
	2013	0.34	0.45	0.42	0.38	0.39	0.41	0.45	0.47	0.45	0.38	0.41	0.35	0.52	0.44	0.44	0.50	0.38	0.37	0.40	0.45	0.39	0.34	0.45	0.44	0.41	0.34	0.51	0.47	0.32	0.39
	2012	0.47	0.48	0.35	0.40	0.37	0.35	0.39	0.47	0.48	0.42	0.41	0.36	0.40	0.42	0.40	0.39	0.39	0.34	0.42	0.47	0.34	0.39	0.42	0.38	0.37	0.40	0.57	0.46	0.39	0.39
	2011	0.30	0.42	0.36	0.38	0.35	0.35	0.41	0.40	0.43	0.46	0.31	0.37	0.39	0.53	0.41	0.42	0.36	0.47	0.42	0.40	0.39	0.37	0.29	0.40	0.46	0.36	0.45	0.35	0.34	0:30
	2010	0.48	0.42	0.47	0.35	0.36	0.40	0.42	0.44	0.43	0.45	0.34	0.41	0.42	0.50	0.47	0.35	0.43	0.43	0.39	0.43	0.35	0.41	0.30	0.40	0.32	0.37	0.52	0.40	0.32	0.40
	2009	0.44	0.50	0.36	0.39	0.39	0.36	0.39	0.37	0.44	0.42	0.45	0.37	0.39	0.39	0.43	0.49	0.34	0.39	0.45	0.45	0.37	0.39	0.36	0.39	0.44	0.47	0.50	0.41	0.39	0.39
	2008	0.38	0.49	0.42	0.37	0.41	0.36	0.48	0.45	0.45	0.40	0.41	0.39	0.39	0.41	0.40	0.39	0.40	0.39	0.50	0.37	0.31	0.39	0.42	0.41	0.46	0.40	0.42	0.39	0.42	0.42
	2002	0.39	0.49	0.45	0.50	0.34	0.42	0.44	0.44	0.40	0.31	0.41	0.41	0.41	0.41	0.52	0.47	0.40	0.37	0.46	0.52	0.38	0.42	0.43	0.38	0.41	0.41	0.56	0.54	0.43	0.35
	2006	0.39	0.38	0.43	0.40	0.40	0.45	0.40	0.42	0.49	0.40	0.34	0.36	0.46	0.37	0.52	0.46	0.37	0.43	0.49	0.44	0.29		0.39	0.36	0.37	0.36	0.36	0.40	0.33	0.41
	2002	0.36	0.50	0.41	0.40	0.43	0.47	0.40	0.38	0.47	0.37	0.38	0.38	0.36	0.41	0.45	0.42	0.42	0.32	0.42	0.44	0.36	0.39	0.43	0.35	0.44	0.36	0.49	0.49	0.35	0.41
	2004	0.40	0.47	0.33	0.37	0.37	0.41	0.44	0.38	0.45	0.39	0.40	0.41	0.43	0.48	0.43	0.42	0.34	0.41	0.53	0.42	0.37	0.43	0.29	0.33	0.40	0.39	0.54	0.51	0.39	0.39
	station	KATL	KBOS	KBWI	KCLE	KCLT	KCVG	KDCA	KDEN	KDFW	KDTW	KEUG	KIAH	KLAS	KLAX	KLGA	KMCI	KMCO	KMSP	KORD	KPHL	KPHX	KPIT	KSAC	KSAN	KSAT	KSEA	KSFO	KSMX	KSTL	KTPA

Table 68: Original and modified Mann-Kendall statistics for shape estimates

				_
Z-value Empirical Bootstrap CI	11-year	(-1.492781, 1.5794944)	(-1.6499158, 1.5762208)	(-1.5665209,1.5894388)
	9-year	(-1.5067416,1.5811388)	(-1.497786,1.6050968)	(-1.5811388,1.5990054)
Kendall's Tau Empirical Bootstrap CI	11-year	(-0.3818182,0.3818182)	(-0.3818182,0.3818182)	(-0.3636364,0.3636364)
Kendall's Tau Emp	9-year	(-0.4444444,0.4166667)	(-0.3888889,0.4444444)	(-0.4444444,0.4166667)
Kendall's Tau	9-year 11-year	60.0	-0.24	-0.20
Kendal	9-year	0.22	-0.17	-0.06
23	11-year	22	-13	-11
51	9-year	8	9-	-2
alue	11-year	0.31	-0.93	-0.78
A-Z	9-year	0.73	-0.52	-0.10
	station	KATL	KBOS	KBWI

Table 68: (continued)

			_	_	_		_	_					_	_			_									
(-1.5794944,1.6029951)	(-1.5894388,1.5794944)	(-1.5927956,1.723173)	(-1.5762208,1.505221)	(-1.5665209,1.505221)	(-1.6099045,1.5762208)	(-1.5665209,1.6636654)	(-1.6499158,1.505221)	(-1.5794944,1.4958621)	(-1.505221,1.537735)	(-1.5794944,1.5762208)	(-1.6636654,1.5927956)	(-1.5794944,1.4489141)	(-1.5665209,1.6499158)	(-1.505221,1.6099045)	(-1.5794944,1.5794944)	(-1.492781,1.5762208)	(-1.6029951,1.5665209)	(-1.537735,1.5665209)	(-1.6499158, 1.6099045)	(-1.5762208, 1.6533212)	(-1.6499158, 1.5794944)	(-1.6499158, 1.505221)	(-1.505221, 1.6499158)	(-1.6499158,1.5762208)	(-1.6601958,1.5794944)	(-1.6499158, 1.5244784)
(-1.4895865, 1.5811388)	(-1.483997, 1.6050968)	(-1.483997,1.5811388)	(-1.483997,1.6050968)	(-1.630178,1.5429086)	(-1.5067416,1.483997)	(-1.5067416,1.483997)	(-1.6050968, 1.5990054)	(-1.5067416,1.5429086)	(-1.5811388,1.5811388)	(-1.5811388, 1.5067416)	(-1.5811388, 1.5811388)	(-1.5067416, 1.4895865)	(-0.9742786,1.1468293)	(-1.5067416,1.483997)	(-1.5811388,1.5811388)	(-1.5067416, 1.5067416)	(-1.5811388,1.5067416)	(-1.5429086, 1.5067416)	(-1.5811388, 1.5685187)	(-1.6431677, 1.5067416)	(-1.5685187, 1.5811388)	(-1.483997, 1.5811388)	(-1.6050968, 1.5685187)	(-1.5811388,1.5811388)	(-1.6050968, 1.5429086)	(-1.483997, 1.5990054)
(-0.3818182,0.3636364)	(-0.3818182,0.3636364)	(-0.3818182,0.3636364)	(-0.4,0.3818182)	(-0.3818182,0.3818182)	(-0.3818182,0.3818182)	(-0.3818182,0.3818182)	(-0.3818182,0.3636364)	(-0.3636364,0.4)	(-0.3636364,0.3818182)	(-0.3818182,0.3636364)	(-0.3818182,0.3636364)	(-0.3636364,0.3818182)	(-0.3636364,0.3818182)	(-0.3818182,0.4)	(-0.3636364,0.3818182)	(-0.3818182,0.3818182)	(-0.3818182,0.3818182)	(-0.3636364,0.3818182)	(-0.3818182,0.3818182)	(-0.4,0.3818182)	(-0.3818182,0.3818182)	(-0.3818182,0.4)	(-0.4,0.3818182)	(-0.3818182,0.3818182)	(-0.3818182,0.3818182)	(-0.3636364,0.3636364)
(-0.4166667, 0.4444444)	(-0.4444444,0.4444444)	(-0.4166667,0.4166667)	(-0.4444444,0.4444444)	(-0.444444,0.4444444)	(-0.4166667,0.4166667)	(-0.4166667,0.4166667)	(-0.4166667,0.4444444)	(-0.4166667,0.4444444)	(-0.4444444,0.4166667)	(-0.4166667,0.4444444)	(-0.4444444,0.4444444)	(-0.4166667,0.4444444)	(-0.333333,0.333333)	(-0.4166667,0.4444444)	(-0.4166667,0.4166667)	(-0.4166667,0.4444444)	(-0.4166667,0.4444444)	(-0.444444,0.4166667)	(-0.4166667,0.4444444)	(-0.4166667,0.4444444)	(-0.4166667, 0.4166667)	(-0.4444444,0.4444444)	(-0.444444,0.4166667)	(-0.4444444,0.4722222)	(-0.4166667,0.4166667)	(-0.4444444,0.4166667)
0.05	-0.05	-0.31	-0.13	0.35	-0.02	0.27	0.02	-0.27	0.27	0.31	0.02	60.0-	60.0-	-0.13	-0.42	0.27	0.27	-0.67	0.02	0.45	60.0	0.02	0.20	-0.20	-0.24	-0.16
-0.06	-0.33	-0.67	-0.22	0.33	-0.22	0.61	90.0	-0.28	-0.06	0.28	-0.28	-0.17	0.11	0.17	-0.50	90.0	90.0	-0.61	-0.22	0.61	00'0	90.0	0.17	-0.39	-0.17	-0.28
က	-3	-17	2-	19	-1	15	1	-15	15	17	1	-5	-5	2-	-23	15	15	-37	1	25	5	1	11	-11	-13	6-
-2	-12	-24	8-	12	<u>~</u>	22	2	-10	-2	10	-10	9-	4	9	-18	2	2	-22	8-	22	0	2	9	-14	9-	-10
0.16	-0.16	-1.25	-0.47	1.40	0.00	1.09	00.00	-1.09	1.09	1.25	00.00	-0.31	-0.31	-0.47	-1.71	1.09	1.09	-2.80	00.0	1.87	0.31	00.00	82.0	-0.78	-0.93	-0.62
-0.10	-1.15	-2.40	-0.73	1.15	-0.73	2.19	0.10	-0.94	-0.10	0.94	-0.94	-0.52	0.31	0.52	-1.77	0.10	0.10	-2.19	-0.73	2.19	0.10	0.10	0.52	-1.36	-0.52	-0.94
KCLE	KCLT	KCVG	KDCA	KDEN	KDFW	KDTW	KEUG	KIAH	KLAS	KLAX	KLGA	KMCI	KMCO	KMSP	KORD	KPHL	KPHX	KPIT	$_{ m KSAC}$	KSAN	KSAT	KSEA	KSFO	KSMX	KSTL	KTPA

Table 69: Weibull scale estimates and Sen's Slopes

		_	_		_	_		_	_
11-year	3%	-3%	-2%	%0	%0	-2%	-1%	4%	%0
9-year	2%	-5%	-1%	%0	-4%	-7%	-2%	3%	-1%
11-year	0.0003	-0.0004	-0.0002	0.0000	0.0000	-0.0003	-0.0001	0.0004	0.0001
9-year	6000.0	-0.0003	-0.0002	0.000.0	-0.0005	-0.0008	-0.0003	0.0003	-0.0001
11-year	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
9-year	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
2014	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.02
2013	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.02
2012	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02
2011	00.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
2010	0.02	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01
2009	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01
2008	0.01	0.02	0.01	0.01	0.01	0.01	0.02	0.01	0.01
2002	0.01	0.02	0.01	0.02	0.01	0.01	0.01	0.01	0.01
2006	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02
2002	0.01	0.01	0.01	0.01	0.02	0.02	0.01	0.01	0.02
2004	0.01	0.02	0.01	0.01	0.01 0.02	0.01	0.02	0.01	0.01
tation	<pre><atl< pre=""></atl<></pre>	(BOS	KBWI	CCLE	KCLT	CVG	CDCA	CDEN	DFW

Table 69: (continued)

_		_	_			_			_						_	_			_	
2%	-1%	1%	3%	2%	%0	-2%	%0	-3%	-2%	2%	4%	-3%	1%	4%	%0	%0	1%	-4%	-5%	1%
2%	-3%	%0	-2%	%0	-3%	-3%	2%	3%	%9-	-1%	%0	-2%	-5%	2%	-2%	%0	2%	-1%	-4%	2%
0.0002	-0.0001	0.0001	0.0003	0.0003	-0.0001	-0.0003	0.000.0	-0.0003	-0.0007	0.0003	0.0003	-0.0003	0.0001	9000'0	0.0000	0.000.0	0.0002	-0.0005	-0.0004	0.0002
0.0007	-0.0003	-0.0001	-0.0002	0.000.0	-0.0004	-0.0004	0.0005	0.0004	-0.0009	-0.0001	0.000.0	-0.0002	-0.0005	900000	-0.0003	0.000.0	0.0002	-0.0010	-0.0004	0.0002
0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
0.01	0.01	0.01	0.02	0.02	0.02	0.01	0.01	00.0	0.01	0.02	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.01	0.01	0.01
0.01	0.02	0.01	0.02	0.02	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.01	0.01	0.01	0.02	0.01	0.01
0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01
0.01	00.00	0.01	0.01	0.02	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	00.00	0.01	0.02	0.01	0.01	0.01	0.01	0.01
0.01	0.01	0.02	0.01	0.02	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.02
0.01	0.02	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01
0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.02	0.02	0.01	0.01	0.01	0.01	0.02
0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.01	0.01	0.02	0.02	0.01	0.01	0.02	0.01	0.01	0.01	0.02	0.02	0.01	0.01
0.01	0.01	0.01	0.02	0.01	0.02	0.02	0.01	0.02	0.02	0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.02	0.01	0.02	0.02	0.01	0.01
0.01	0.01	0.01	0.01	0.02	0.01	0.01	00.0	0.01	0.02	0.01	0.01	0.01	00.0	0.01	0.01	0.01	0.02	0.02	0.01	0.01
KDTW	KEUG	KIAH	KLAS	KLAX	KLGA	KMCI	KMCO	KMSP	KORD	KPHL	KPHX	KPIT	KSAC	KSAN	KSAT	KSEA	KSFO	KSMX	KSTL	KTPA

Table 70: Original and modified Mann-Kendall statistics for scales estimates

		_	_		_	_		_	_	_	_	_	_	_	_
Z-value Empirical Bootstrap Cl	11-year	(-1.6099045,1.5794944)	(-1.6499158,1.5794944)	(-1.6398245,1.5894388)	(-1.5762208,1.505221)	(-1.5995735,1.5794944)	(-1.505221,1.5665209)	(-1.5762208,1.505221)	(-1.5894388,1.5179774)	(-1.505221,1.505221)	(-1.505221,1.5665209)	(-1.5762208,1.5762208)	(-1.505221,1.5762208)	(-1.5665209,1.5894388)	(-1.5653199,1.505221)
Z-value Empiri	9-year	(-1.5067416, 1.483997)	(-1.483997,1.5811388)	(-1.483997,1.5067416)	(-1.5305651, 1.5067416)	(-1.5305651,1.5811388)	(-1.5429086,1.5811388)	(-1.6050968, 1.483997)	(-1.5811388,1.483997)	(-1.5429086, 1.5685187)	(-1.5429086,1.5067416)	(-1.483997,1.5811388)	(-1.483997,1.5811388)	(-1.5305651, 1.5811388)	(-1.6050968, 1.4895865)
Kendall's Tau Empirical Bootstrap Cl	11-year	(-0.4,0.3818182)	(-0.3818182,0.3818182)	(-0.3818182,0.3818182)	(-0.3818182,0.3636364)	(-0.3818182,0.3818182)	(-0.3636364,0.3818182)	(-0.3818182,0.3818182)	(-0.3636364,0.3636364)	(-0.3818182,0.3636364)	(-0.3636364,0.3818182)	(-0.3636364,0.3636364)	(-0.3818182,0.3818182)	(-0.4,0.3818182)	(-0.3636364,0.3818182)
Kendall's Tau Emp	9-year	(-0.4444444,0.4166667)	(-0.444444,0.4444444)	(-0.4444444,0.4444444)	(-0.4166667, 0.4166667)	(-0.4166667, 0.4166667)	(-0.4166667, 0.4444444)	(-0.4166667, 0.4166667)	(-0.4166667, 0.4166667)	(-0.444444,0.444444)	(-0.444444,0.444444)	(-0.4444444,0.4166667)	(-0.4444444,0.4166667)	(-0.4166667, 0.4166667)	(-0.4166667, 0.4166667)
Kendall's Tau	11-year	0.20	-0.20	-0.13	60.0	0.05	-0.16	60.0-	0.31	60.0	0.16	60.0-	60.0	0.20	0.13
Kendal	9-year	0.39	-0.11	-0.06	00.0	-0.33	-0.56	-0.39	0.28	-0.11	0.50	-0.17	00.0	-0.17	0.00
S	11-year	11	-11	2-	ಬ	က	6-	-i-	17	22	6	-5	22	11	7
	a-year	14	-4	-2	0	-12	-20	-14	10	-4	18	9-	0	9-	0
Z-Value	11-year	82.0	82.0-	-0.47	0.31	0.16	-0.62	-0.31	1.25	0.31	0.62	-0.31	0.31	84.0	0.47
\-Z	9-year	1.36	-0.31	-0.10	0.10	-1.15	-1.98	-1.36	0.94	-0.31	1.77	-0.52	0.10	-0.52	0.10
	station	KATL	KBOS	KBWI	KCLE	KCLT	KCVG	KDCA	KDEN	KDFW	KDTW	KEUG	KIAH	KLAS	KLAX

Table 70: (continued)

(-1.5762208,1.5762208)	(-1.5762208,1.537735)	(-1.5179774,1.5762208)	(-1.5894388,1.6099045)	(-1.5762208,1.6499158)	(-1.505221,1.492781)	(-1.5665209,1.5927956)	(-1.5794944,1.6499158)	(-1.505221,1.5653199)	(-1.5762208,1.5310636)	(-1.6029951,1.5244784)	(-1.5653199,1.505221)	(-1.5665209,1.505221)	(-1.505221,1.6499158)	(-1.5894388,1.5794944)	(-1.505221,1.6099045)
(-1.5067416, 1.6237976)	(-1.5990054, 1.5067416)	(-1.5811388,1.5067416)	(-1.5811388,1.5811388)	(-1.5429086,1.483997)	(-1.5067416,1.5685187)	(-1.5067416,1.5811388)	(-1.5067416,1.5305651)	(-1.5811388,1.6050968)	(-1.5067416,1.5429086)	(-1.5067416,1.5811388)	(-1.5429086,1.4895865)	(-1.5429086,1.5811388)	(-1.5811388,1.483997)	(-1.5067416, 1.5429086)	(-1.5305651,1.5811388)
(-0.3818182,0.3636364)	(-0.3818182,0.3818182)	(-0.4,0.3636364)	(-0.3818182,0.4)	(-0.3818182,0.3818182)	(-0.4,0.3636364)	(-0.3818182,0.4)	(-0.3818182,0.3818182)	(-0.3818182,0.3636364)	(-0.3636364,0.3818182)	(-0.3636364,0.3818182)	(-0.3636364,0.3818182)	(-0.3818182,0.3636364)	(-0.3818182,0.3818182)	(-0.4,0.3818182)	(-0.3818182,0.3636364)
(-0.444444,0.4166667)	(-0.444444,0.4166667)	(-0.4444444,0.4166667)	(-0.4444444,0.4166667)	(-0.4166667,0.444444)	(-0.4444444,0.4444444)	(-0.4444444,0.4166667)	(-0.4166667,0.4166667)	(-0.4444444,0.4166667)	(-0.4444444,0.4166667)	(-0.4166667,0.444444)	(-0.4444444,0.4166667)	(-0.4444444,0.4444444)	(-0.4166667,0.444444)	(-0.444444,0.4166667)	(-0.4444444,0.4166667)
-0.05	-0.16	0.02	60.0-	-0.53	0.24	0.24	-0.42	0.02	0.35	-0.02	0.02	0.16	-0.27	-0.42	0.16
-0.39	-0.28	0.11	0.22	-0.56	-0.06	0.00	-0.28	-0.22	0.44	-0.17	0.00	0.11	-0.50	-0.28	0.11
e-	6-		-5	-29	13	13	-23		19	-1	П	6	-15	-23	6
-14	-10	4	8	-20	-2	0	-10	8-	16	9-	0	4	-18	-10	4
-0.16	-0.62	0.00	-0.31	-2.18	0.93	0.93	-1.71	0.00	1.40	00.00	00.00	0.62	-1.09	-1.71	0.62
-1.36	-0.94	0.31	0.73	-1.98	-0.10	0.10	-0.94	-0.73	1.56	-0.52	0.10	0.31	-1.77	-0.94	0.31
KLGA	KMCI	KMCO	KMSP	KORD	KPHL	KPHX	KPIT	KSAC	KSAN	KSAT	KSEA	KSFO	KSMX	KSTL	KTPA

An R script generating trend statistics for the first nine years of data follows.

Listing 3: R script generating trend statistics for the first nine years of data

```
stations <- c("KATL",
 1
 2 "KBOS",
  "KBWI" ,
 3
 4 "KCLE",
   "KCLT"
5
 6
   "KCVG"
7
  "KDCA",
8
   "KDEN",
9
   "KDFW"
10 "KDTW"
11 "KEUG",
12
  "KIAH",
13 "KLAS"
14 "KLAX",
15 "KLGA",
  "KMCI",
16
17
  "KMCO"
18 "KMSP"
   "KORD",
19
20
   "KPHL",
   "KPHX" ,
21
   "KPIT",
22
23
   "KSAC" ,
24
  "KSAN"
25
   "KSAT" .
26
   "KSEA",
27
   "KSFO",
28
   "KSMX",
29
   "KSTL"
30
   "KTPA")
31
32 \# stations \leftarrow c("KATL")
33
34 library ("fitdistrplus")
   library (modifiedmk)
35
36
37
38
   for(station in stations) {
39
    inputFilenameBase = paste("training", station, "2004-2012in", sep="
40
41
            inputFilename = paste(inputFilenameBase, ".csv", sep="")
42
            outputFilename = paste(inputFilenameBase, "
```

```
TrendStatisticsModifiedMK.txt", sep="")
43
44
    DF <- read.csv(inputFilename, header=TRUE)
45
    iter < 9+1 \#for header
46
    m < - matrix(NA, nrow=iter, ncol=7)
47
48
    rowIndex = 1
    m[rowIndex,] <- c("station", "year", "shape", "scale", "Kolmogorov-
49
       Smirnov statistic", "Cramer-von Mises statistic", "Anderson-
       Darling statistic")
    rowIndex = rowIndex + 1
50
51
52
    DF <- read.csv(inputFilename, header=TRUE)
53
54
    for (year in 2004:2012) {
55
56
     print (year)
     prex = DF[as.numeric(substr(DF$timestamp, 0, 4)) == year,]$wind
57
        knots
58
             x = hist(prex, freq=FALSE, plot=FALSE, breaks=seq(-1,max(DF))
                $wind knots)),main=paste("Histogram of", inputFilename),
                xlab="windspeed (knots)")
59
     #If a zero exists, truncate data to avoid the following error:
60
     ## Error in checkparamlist (arg startfix $ start.arg, arg startfix $
         fix.arg,
     ## 'start' should not have NA or NaN values.
61
62
     finalIndex = if(x density which.min(x density)) == 0) which.min(x density)
         density)-1 else length(x$density)
     d = fitdist(x$density[1:finalIndex], "weibull",lower=0)
63
     k = gofstat(d)
64
     m[rowIndex,] <- c(station, year, d$estimate, k$ks, k$cvm, k$ad)
65
     rowIndex = rowIndex + 1
66
67
68
69
    }
70
71
    print (station)
72
73
    # print to file
    options (width = 200)
74
75
    sink (outputFilename)
    print(station)
76
77
    print (m)
78
79
    shape = m[,3]
80
    print("ModifiedMKshape")
    # The 2 index in the shape array omits heading row
81
```

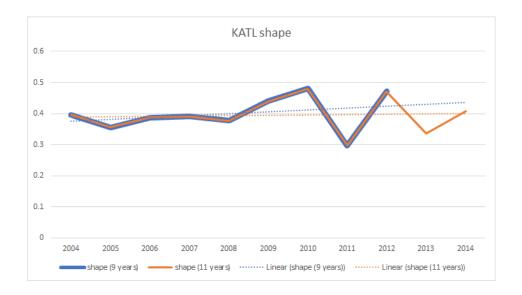


Figure 46: Shape estimates of Weibull distributions for each year of windspeeds for station KATL with 9-year and 11-year trend lines

```
82
    bbsmk(as.numeric(shape[2:length(shape)]), ci=0.95, nsim=2000, eta
       =1, bl.len=NULL)
83
84
    print("ModifiedMKscale")
85
    scale = m[,4]
    # The 2 index in the scale array omits heading row
86
87
    bbsmk(as.numeric(scale[2:length(shape)]), ci=0.95, nsim=2000, eta
       =1, bl.len=NULL)
88
89
    sink()
90
91
```

Plots for estimates of the Weibull shape and scale parameters for station KATL are shown in Figs. 46 and 47, which show trend lines for the first nine years of data and the entire eleven years. In both cases, the 9-year trend lines have a greater slope than the 11-year trend lines.

However, does a modified MK test suggest that trends exist for station KATL? Let us work through the following example to determine whether or not to behave as if there is a trend there. We shall walk through the following steps:

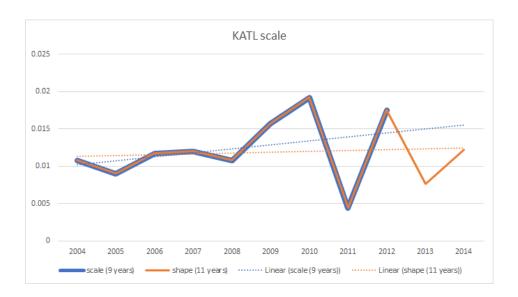


Figure 47: Scale estimates of Weibull distributions for each year of windspeeds for station KATL with 9-year and 11-year trend lines

- "[Make] an initial assumption.
- "[Collect] evidence (data).
- "Based on the available evidence (data), [decide] whether to reject or not reject the initial assumption" [15].

In the context of the p-value approach, the steps immediately above are realized by the following four steps:

- 1. "Specify the null and alternative hypotheses" [15].
 - The null hypothesis H_0 is KATL's Weibull scale parameter exhibits no yearly monotonic trend.
 - The alternative hypothesis H_A is KATL's Weibull scale parameter exhibits a yearly monotonic trend.
- 2. "Using the sample data and assuming the null hypothesis is true, calculate the value of the test statistic" [15]. To calculate the value of the test statistic, we passed nine estimates of the Weibull scales (one estimate for each of the nine years of training data) for station KATL to the R function bbsmk() in the context of the R script shown in Listing 3 on

- page 276. That script shows that the parameter "ci=0.95" is passed to bbsmk(). Thus, the returned confidence interval will contain a value that applies to the entire population 95% of the time. (For example, if we had access to the entire population of windspeeds for station KATL for all years and if we could measure the windspeed with 100% accuracy and if we could somehow not affect the wind by our measurements, then we would be able to make with 100% accuracy statements about the entire population of windspeeds because we would have access to the entire population of KATL's windpseeds, which is data from every year in history.) The function bbsmk()returned (-1.5067416,1.483997) as the Z-value empirical bootstrap confidence interval for KATL's scale (and returned other statistical information for KATL and the other 29 stations as shown in Table 70). Thus, we have 95% confidence that the Z-value of the modified MK test of the scale of the Weibull estimate for entire population of windspeeds around KATL is in the range (-1.5067416,1.483997).
- 3. "Using the known distribution of the test statistic, calculate the **P-value**: 'If the null hypothesis is true, what is the probability that we'd observe a more extreme test statistic in the direction of the alternative hypothesis than we did?' [15]. We are assuming that the distribution of the test statistic is normal. If the Z-score is at the lowest part of that range, namely at -1.51 rounding to two decimal places, then the Z-score's corresponding P-value is 0.06552 according to a Z-score table that gives the area to the left of the Z-score. If the Z-score is the highest part of that range, namely at 1.48 rounding to two decimal places, then the Z-score's corresponding P-value is 1 .93056 = 0.06944. Thus, the Z-score confidence interval corresponds to the two P-values: 0.06552 and 0.06944. Of those two P-values, we are interested in the lower, 0.07 rounded to two decimal places, in the next step.
- 4. "Set the significance level, A, the probability of making a Type I error to be small 0.01, 0.05, or 0.10" [15]. We would commit a Type I error if we reject the null hypothesis when we the null hypothesis is actually true [15, Table S.3.2]. We examine two cases for the significance level. "Compare the P-value to A. If the P-value is less than (or equal to) A, reject the null hypothesis in favor of the alternative hypothesis. If the P-value is greater than A, do not reject the null hypothesis" [15].

- If we set the significance level A to 0.05, then the P-value of 0.07 is larger than A and we would not reject the null hypothesis thereby behaving as if no trend exists in KATL's scale estimates.
- If we loosen the significance level A to 0.10 (increasing the probability of making a Type I error), then the P-value of 0.07 is smaller than A and we would reject the null hypothesis thereby behaving as if a trend exists in KATL scale estimates, examining the Sen's slope of the nine-year series of scale estimates (Table 69).

Now that we have examined the 9-year scale data for KATL, let us repeat the process for KATL's 9-year shape data.

- 1. The null hypothesis H_0 is KATL's Weibull shape parameter exhibits no yearly monotonic trend.
 - The alternative hypothesis H_A is KATL's Weibull shape parameter exhibits a yearly monotonic trend.
- 2. As we did for the scale parameter above, we calculate the test statistic for the shape data. The R function bbsmk() returned (-1.5067416, 1.5811388) as the 95% confidence interval for the Z-value empirical bootstrap (Table 68 on page 272).
- 3. Assuming that the Z-value distribution is normal, we calculate the P-values: The lowest part of the Z-score range, -1.51 rounding to two decimal places, corresponds to the P-value 0.06552 according to a Z-score table that gives the area to the left of the Z-score. The highest part of the Z-score range, 1.58, maps to the P-value 1 0.94295 = 0.05705. The lower of the two P-values is $0.05705 \approx 0.06$.
- 4. We choose two significance levels, A. We compare the lower of the two P-values to the two choices for A:
 - If we set the significance level A to 0.05, then the P-value of 0.06 is larger than A and we would not reject the null hypothesis thereby behaving as if no trend exists in KATL's shape estimates.
 - If we loosen the significance level A to 0.10 (increasing the probability of making a Type I error), then the P-value of 0.06 is smaller than A and we would reject

the null hypothesis thereby behaving as if a trend exists in KATL shape estimates, examining the Sen's slope of the nine-year series of shape estimates (Table 67).

A.19 LOOKING FOR TRENDS IN HOURLY ELECTRICITY PRICE DATA

In Section 4.1.6.3, we raised the possibility that a trend could be developing where the second peak's dominance of the first peak is growing. In this section, we explore that possibility using the same procedure we used in Appendix A.18:

- 1. Let the null hypothesis H_0 be that the proportions plotted in Figure 12 on page 66 do not exhibit a yearly monotonic trend.
 - The alternative hypothesis H_A be that they do.
- 2. As we did in Appendix A.18, we calculate the test statistic for the proportions plotted in Figure 12 on page 66. As shown in Listing 4, the R function bbsmk() returned (-1.6431677, 1.596677) as the 95% confidence interval for the Z-value empirical bootstrap (Line 15).
- 3. Assuming that the Z-value distribution is normal, we calculate the P-values: The lowest part of the Z-score range, −1.64 rounding to two decimal places, corresponds to the P-value 0.05050258 according to R's pnorm() function (which gives the area to the left of the Z-score). The highest part of the Z-score range, 1.61, maps to the P-value 1−0.9452007 = 0.05479929. The lower of the two P-values is 0.05050258 ≈ 0.051.
- 4. We choose two significance levels, A. We compare the lower of the two P-values to the two choices for A:
 - If we set the significance level A to 0.05, then the P-value of 0.051 is larger than A and we would not reject the null hypothesis thereby behaving as if no trend exists in yearly proportions.
 - If we loosen the significance level A to 0.10 (increasing the probability of making a Type I error), then the P-value of 0.051 is smaller than A and we would reject the null hypothesis thereby behaving as if a trend exists in the yearly proportions,

examining the Sen's slope of fifteen-year series of proportions, which is 0.025, as shown in Line 7 of Listing 4.

Note the re-running bbsmk() results in different returned intervals in Lines 34, 57, 60, respectively, than Line 15: (-1.606034,1.6394097), (-1.6391088,1.6431677), and (-1.6006671,1.5670696). Those intervals mapped to no P-values less than 0.05 (Lines 62 to 72.)

Listing 4: R commands to calculate trend statistics for proportions of electricity price data plotted in Figure 12

```
1 > library (modifiedmk)
 2 > \text{proportions} = c(1.01, 1.06, 1.02, 0.98, 0.97, 0.98, 0.95, 1.08,
        1.05, 1.20, 1.20, 1.29, 0.99, 1.65, 1.36)
 3 > bbsmk(proportions, ci = 0.95, nsim = 2000, eta = 1, bl.len = NULL)
 4 \text{ Z-Value} =
 5 \quad 2.2820051
 6 \text{ Sen's Slope} =
 7 0.025
8 S =
9 47
10 Kendall's Tau =
11 \quad 0.447619047619048
12 Kendall's Tau Empirical Bootstrapped CI =
13 \quad (-0.3238095, 0.3142857)
14 Z-value Empirical Bootstrapped CI =
15 \quad (-1.6431677, 1.596677) >
16 > pnorm(-1.64)
17 [1] 0.05050258
18 > pnorm(1.60)
19 [1] 0.9452007
20 > 1-pnorm(1.60)
21 [1] 0.05479929
22 > \text{results} = \text{bbsmk}(\text{proportions}, \text{ci}=0.95, \text{nsim}=2000, \text{eta}=1, \text{bl.len}=
       NULL)
23 Z-Value =
24 \quad 2.2820051
25 \text{ Sen's Slope} =
26 \quad 0.025
27 \, S =
28 	 47
29 Kendall's Tau =
30 \quad 0.447619047619048
31 Kendall's Tau Empirical Bootstrapped CI =
```

```
32 \quad (-0.33333333, 0.3047619)
33 Z-value Empirical Bootstrapped CI =
34 \quad (-1.606034, 1.6394097) >
35 > \text{results} = \text{bbsmk}(\text{proportions}, \text{ci}=0.95, \text{nsim}=2000, \text{eta}=1, \text{bl.len}=
       NULL)
36 \text{ Z-Value} =
37 \quad 2.2820051
38 \text{ Sen's Slope} =
39 0.025
40 \, S =
41 47
42 Kendall's Tau =
43 \quad 0.447619047619048
44 Kendall's Tau Empirical Bootstrapped CI =
45 \quad (-0.3047619, 0.3047619)
46 Z-value Empirical Bootstrapped CI =
47 \quad (-1.6391088, 1.6431677) >
48 > \text{results} = \text{bbsmk}(\text{proportions}, \text{ci}=0.95, \text{nsim}=2000, \text{eta}=1, \text{bl.len}=
       NULL)
49 \text{ Z-Value} =
50 \quad 2.2820051
51 Sen's Slope =
52 \quad 0.025
53 S =
54 47
55 Kendall's Tau =
56 \quad 0.447619047619048
57 Kendall's Tau Empirical Bootstrapped CI =
58 \quad (-0.3142857, 0.2952381)
59 Z-value Empirical Bootstrapped CI =
60 \quad (-1.6006671, 1.5670696) >
61 > pnorm(-1.606034)
62 [1] 0.05413322
63 > 1-pnorm(1.6394097)
64 [1] 0.05056398
65 > pnorm(-1.6391088)
66 [1] 0.0505953
67 > 1 - pnorm(1.6431677)
68 [1] 0.05017412
69 > pnorm(-1.6006671)
70 [1] 0.05472534
71 > 1 - pnorm (1.5670696)
72 \quad [1] \quad 0.05854921
```

Listing 5: R commands to calculate trend statistics for monotonic increasing data

 $1 \ > \ t\,e\,s\,t$

```
4.01
                 2.01
                        3.01
                                      5.01
                                             6.01
                                                    7.01
                                                           8.01
                                                                  9.01 10.01
2
          1.01
        11.01 \quad 12.01 \quad 13.01 \quad 14.01 \quad 15.01
   > bbsmk(test, ci=0.95, nsim=2000, eta=1, bl.len=NULL)
   Z-Value =
   5.1466653
   Sen's Slope =
6
 7
8
   S =
9
   105
10
   Kendall's Tau =
11
12
   Kendall's Tau Empirical Bootstrapped CI =
13
   (-0.33333333, 0.4761905)
14
   Z-value Empirical Bootstrapped CI =
15
   (-1.7903285, 2.3028804)
```

A.20 ALGORITHM PERFORMANCE PER STATION PER OLA

Recall that algorithms are trained to try to maximize the metric by which the algorithm's performance will be measured. Odd-numbered OLAs measure performance using NetNorm. Even-numbered OLAs use MQNetNorm. Thus, an algorithm may achieve different scores for odd-numbered OLAs than it does for even-numbered OLAs because training an algorithm in the context of odd-numbered OLAs may chose different settings (e.g., running-average-window size) than the training chooses for the algorithm in the context of even-numbered OLAs.

Tables 71, 72, and 73 show algorithm performance per station for OLAs 1 and 2, OLAs 3 and 4, and OLAs 5 and 6, respectively. Each row is a unique OLA-and-station pair. For each row, the column of the highest scoring algorithm is marked with a capital X. Rows having multiple X's indicate that ties occurred. (Trained fuzzy variants 0x0 and 0x2 tie for OLAs 1 - 4.) Each row's highest score is in either the NetNorm column (odd OLAs) or the MQNetNorm column (even OLAs). The performance of each row's applicable non-highest algorithms is given by a negative value x, which is how many points the non-highest algorithm's score y is less the row's highest score z, i.e., x = y - z. Each non-applicable cell is indicated by a hyphen.

Table 71: Highest scoring algorithms for each station for OLAs 1 and 2 $\,$

	(8x0	tnsitsv)	Fuzzy		1	1	1	,	1 1	1	1	1	1	1 1	1		1 1	1 1	1	1	1 1	1	1	1		1 1	1		1 1	1 1	1	-	1 1
	(2x0	tnaitav)	Fuzzy		1	-0.07		-0.Ub	-0.1	1	-0.06	1	-0.07	-0.09	- 0	00.0-	-0.0-	-0.05	1	-0.07	-0.08		-0.09	-	-0.02	-0.09	1	-0.05	-0.06	-0 0	:	-0.04	-0.08
	(1×0	tnaitav)	Fuzzy		1	1	1	1	1 1	1	1	1	1	1 1	1		1 1	1 1	1	- 1	1 1	1	1	1	1	1 1	1	1	1 1	1 1		1	1 1
icable.	(0×0	tnaitav)	Fuzzy		1	-0.06		-0.04	-0.08	1	-0.04	1	-0.05	0.07	- 0.05	-0.05	-0.04	0.04	1	-0.05	-0.04		-0.06	-	-0.01	-0.04	-	-0.04	-0.04	-0.07		-0.03	-0.06
rppl	(£x0	tnsitsv)	зи із А			-	1		1 1	١.	1	1	-	1 1	1		1 1	1 1	-	-	1 1	-	1	1		1 1		-	1 1	1 1	T	-	1 1
here a	(2x0	tnsitsv)	зп із А		-	-0.03	, 5	-0.UI	-0.05		-0.01	1	-0.01	-0.02	- 0	-0.01	-0.02	-0.02	1	-0.02	-0.02		-0.03	-	-0.02	-0.02	-	-0.02	-0.02	-0 04		-0.03	-0.01
E N	(1×0	tnsitsv)	gn ig A		1	-	1	1	1 1	1	1	1	1	1 1	1		1 1	1 1	1	- 1	1 1	1	1	1	-	1 1	1	╗	1 1	1 1	1		1 1
Net.Nor best.	(0×0	tnsitsv)	зп із А		1	×	٠ >	×	· ×	1	×	1	×	· ×	. >	۲	· ×	- X	1	×	· ×		×	- 28	<	· ×		×	· ×	· ×	: -	×	· ×
MQN	(£x0	tnsitsv)	Static		1	-	1		1 1	1	1	1	-	1 1	1		1 1	1 1	-	-	1 1	1	1	1		1 1	1	-	1 1	1 1	1	-	1 1
m or Mility.	(2×0	tnsitsv)	Static		1	-0.02	. 5	-0.01	-0.04	,	-0.01	1	-0.01	-0.02	- 0	10.01	-0.02	-0.04	1	-0.02	-0.02		-0.03	1 0	cn.n-	-0.01	,	-0.01	-0.03	- 0	! .	-0.02	-0.01
Norr cabi	(1x0	tnsitsv)	Static		1	-	1	1	1 1	1	1	1	1	1 1	1		1 1	1 1	+	-	1 1	,	1	1	-	1 1	-	-	1 1	1 1	_	1	1 1
achieving best NetNorm or indicates non-applicability. e indicates algorithm's scor	(0×0	tnsitsv)	Static		1	×	٠ >	<	· ×	1	×	1	×	- ×	. >	<	- ×	-0.01	1	×	· ×	; .	×	1 %	<	×		×	· ×	· ×		×	· ×
s al	(8x0	tnsitsv)	Fuzzy		1		1	,	1 1	1	1	1	1	1 1	1		1 1	1 1	1	-	1 1	,	1	1		1 1	1	-	1 1	1 1	1		1 1
chieving idicates r		tnsitev)			90.0-	1	-0.06		-0.09	-0.09		90.0-	ı	-0.09	90.0-		-0.12	90.0-	-0.08	1	-0.1	-0.09		-0.05		11.0	-0.05		-0.06	-0.1	-0.03	-	-0.09
acl ind ie ir	(1×0	tnsitsu)	Fuzzy		1	_		,	1 1	Ť		1	1	1 1	1	\pm	1 1	1 1	1		1 1	1		1	-	1 1	1	\neg	1 1	1 1	1	-	1 1
Legend: 'X' indicates algorithm(s) achieving best NetNorm or MQNetNorm where applicable. '-' indicates non-applicability. Negative value indicates algorithm's score less best.	(0×0	tnaitav)	Fuzzy		-0.04	1	-0.04	. !	-0.07	-0.07	1	-0.03	ı	-0.07	-0.05		-0.09	-0.04	-0.05	ı	-0.06	90.0-	1	-0.03	- 0	70.0	-0.04		-0.04	80.0-	-0.02	-	-0.06
algorithi Negative	(ex0	tnsitsv)	3n i3A			=	1		1 1	Ť,		1	,	1 1	1	+	1 1	1 1	-		1 1			1	#	1 1	Ī.	╗	1 1	1 1	1	_	1 1
ates al		tnsitsv)			-0.16	\rightarrow	-0.13	. !	-0.17	-0.04		-0.08	1	-0.12	-0.07		-0.14	80.0-	-0.1	1	-0.13	-0.13		-0.13	- 00		-0.2	-	60:0-	-0.11	90.0-	,	-0.06
dica	(Ix0	tnsitsv)	3n i3A		,	\neg		1	1 1	Ť,		1	1	1 1	,	+	1 1	1 1	١,	-	, ,	+		1	-	,		-	1 1	1 1	H	_	1 1
ii (X,		tnsitsv)			×	,	×	. !	-0.02	-0.02	1	×	ı	-0.01	×	, ;	×·	x ·	-0.03	ı	×	-0.02	1	×	, >	٠ ;	×		× ·	×	-0.02	-	-0.01
:pue	(8x0	tnsitsv)	Static		,	1		7	1 1	Ť,		1	_	1 1	1		1 1	1 1	Ī.	_	1 1	F		1		1 1	1		1 1	1 1	-	=	1 1
Lege		tnsitev)			×	\dashv	×	†	× ·	-0.02	1	×	ı	× ·	×		-0.02	-0.01	-0.01	-	-0.01	×		-0.01	, >	٠ ,	×	-	× ·	×	×	-	-0.01
	(1x0	tnsitav)	Static		1	1	1	1	1 1	1		1	,	1 1	1	+	1 1	1 1	1		1 1	,	1			1 1	1	1	1 1	1 1	1	_	1 1
	(0×0	tnsitsv)	Static		X	1	×	. ;	×	-0.02	1	×	ı	× ·	×		-0.02	×	×	1	-0.01	×	1	-0.01	, >	< ·	×		× ·	×	×	-	-0.01
				E		Ħ		†		T			T			Ť			t			t			\dagger		T	Ħ			Ħ	Ŧ	\equiv
			Best	MQNetNorm	1	0.52	, c	0.35	- 0.63	1	0.54	1	0.63	- 0.6	- 0.48	0.40	0.47	- 0.44	1	0.55	- 0.66	1	99.0	- 0	0.59	- 0.8	1	0.38	0.62	- 0		0.35	0.55
						1										İ			İ						T		Ĺ	1			T	7	
			Best	NetNorm	0.57	1	0.38		0.69	0.61	1	0.7	1	0.66	0.5	1 0	0.56	0.47	9.0	1	0.74	0.72	1	0.45	000	50.0	0.42		0.66	99.0	0.38	1	9.0
			Station		KATL	KATL	KBOS	MBOS	KBWI	KCLE	KCLE	KCLT	KCLT	KCVG KCVG	KDCA	WDCA.	KDEN KDEN	KDFW KDFW	KDTW	KDTW	KEUG	KIAH	KIAH	KLAS	NLAS VI AV	KLAX	KLGA	KLGA	KMCI	KMCO	KMSP	KMSP	KORD
			OLA		1	2	.	.71	- 2	-	2	_	2	1 2	1 0	١,	1 2	1 2	_	2	- 2	-	2	1	7 -	- 2	-	2	1 2	1 %		2	2 1
<u> </u>						1									<u> </u>				_			_					1			l			

Table 71: (continued)

	(exn a	(varian	Azzn a	1	Ι,	i.	1	i.	,	i.	1		,	ı		- 1	1		1	1	1		1	7.	1		1
	6-0 +	- ; ••••)			H	00	H	<u>.</u>	H		Ė	_	Ė		Ė	9	H		H		Ė		H	70		00	Ė
	(2x0)	пвітву)	Λzznд	[-	-0.08	1	-0.09	1	-0.09	1	-0.11	1	-0.07	1	-0.06	1	-0.07	1	-0.05	-	-0.14	1	-0.05	1	-0.08	0
	(1x0 t	пвітьу)	Λzznд	[1	1	1	1	1	1	1	-1	1	1	1	-1	1	-1	1	1	1	-1	1	-1	1	-1	-
icable.	(0×0)	пвітву)	Ոzznը	I	1	-0.06	1	-0.08	1	-0.07	-	-0.06	1	-0.04	1	-0.05	1	-0.05	1	-0.04	-	-0.07	ı	-0.04	-	-0.05	0
lqq ₁	(Ex0 t	nsitav)	8π ig A	,	1	1	,	1	-	1	1	1	,		,	1	,	1	-	1	1	1	-	-	,	1	,
here a		nsitsv)			1	-0.03	1	-0.02	1	-0.03		-0.03	1	-0.01	1	-0.01	1	-0.02	,	-0.09		-0.01	1	-0.02	1	-0.02	0
M W	(1×0 t	пвітву)	8n ig A	,		0	,	0	,	0	,	1	,	1	,	1	,	1	,	0	1	1	,	-		1	,
NetNorn best.	(0×0 t	nsitsv)	3π i3 A	,	1	×	ı	×	1	×	ı	-0.01	1	×	1	×	1	×	,	×	-	×	ı	Х	1	×	56
1Q1 less	(Ex0 t	nsitav)	Static	;	-	1	7	1	-	1	-	1	,	1	-	,	,	1	-	1	1	1	-	-	-	1	
n or N lity. score]	(2x0)	nsirsv)	static	;	1	-0.03		-0.02	1	-0.03		-0.03	1	-0.01	1	-0.01	1	-0.02	1	-0.03		-0.02	1	-0.01	1	-0.02	0
Norn Sabi	(1×0 t	пвітву)	Static	;	-	0	,	0	,	0	-	1	,	1	1	1	,	1	,	0	1	1	7	1		1	1
(s) achieving best NetNorm or MQNetNorm. '-' indicates non-applicability. alue indicates algorithm's score less best.		пвітву)			1	×	1	-0.01	,	×	1	×	1	×	1	×	1	×	,	×		-0.01	1	X	1	-0.01	56
be:	(8x0 t	пвітьч)	Azzn,		-	1	,	1	7	1		,	,	,	,	1	,	,	7	1	,	,	_	,	,	,	,
m(s) achieving l'.' indicates n		пвітву)			-0.08	1	90.0-	1	-0.1	1	-0.1	1	-0.07	- (-0.05	1	-0.08	1	60.0-	1	-0.16	1	90.0-	1	-0.07	1	0
ack ind e in	(1×0 1	пвітву)	£zzn,		1	1		1	,	1	1	1	,		-	1	,		,	1	-	1	Ť	1	+		
		nsinsv)			90.0-	1	-0.03	1	-0.07	1	-0.04	1	-0.04	- (-0.04	1	90.0-	1	-0.07	1	-0.1	1	-0.04	1	-0.03	1	0
algorithi Negative	(exn a	пвітву)	Ցս ւՑ Ն	7		0	,		_		,	0	,		_	1	,	0	,		-	0	_	-	,	0	,
ates alg		nsitsv)			-0.1	1	60.0-	1	-0.14	1	-0.17	1	80.0-	1	-0.19	1	-0.13	1	-0.07	1	-0.11	1	-0.07	1	-0.11	1	0
dica	(I×0 3	пвітву)	Su ig A	,		0	i	0		0	,			1	<u> </u>	1			i	0	1		i	1			
ii 'X'		nsitsv)			-0.01	1	×	1	-0.02	1	-0.01	1	×	1	-0.01	1	×	1	×	1	×	1	×	1	-0.01	1	18
pua	(Ex0 t	пвітву)	Static	;	,	1	,	1	,	1	1	1	,	1	,	1	,	1	,	1	1	1	-	,	,	1	,
Leg		пвітву)			×	1	-0.01	1	×	1	×	,	×	1	×	1	×	,	×	1	×	,	×	1	-0.01	,	21
	(1x0 t	пвітву)	Static	;		ı,	,	ı,	1	ı,		1	1	1	,	1	1	1	1	ı,	1	1	1	1	1	1	1
	(0×0 t	пвітву)	Static	3	×	1	-0.01	1	×	1	×	1	×	1	×	1	×	1	×	1	×	1	×	1	-0.01	1	23
			Roct	MQNetNorm		9.0	-	0.31	1	0.67	-	0.72	1	99'0		0.49	1	9.0	1	0.63	1	0.72	1	0.48	1	0.59	
			Rest	NetNorm	0.65	ı	0.37	1	0.74	ı	0.78	ı	0.72	ı	0.53	ı	99'0	ı	0.68	ı	8.0	1	0.53	-	0.67	1	
			0.+ o.+ o.		KPHL	KPHL	KPHX	KPHX	KPIT	KPIT	KSAC	KSAC	KSAN	KSAN	KSAT	KSAT	KSEA	KSEA	KSFO	KSFO	KSMX	KSMX	KSTL	KSTL	KTPA	KTPA	
			V IO	V T	П	2	-	2	1	2	1	2	Т	2	П	2	-	2	1	2	1	2	-	2	1	2	

Table 72: Highest scoring algorithms for each station for OLAs 3 and 4 $\,$

	(8x0	tnsitsv)	Λzzn,	H	1	-	1	1	1 1	1	-1	1	1	1 1		1 1	1	ı	1 1	1	1	1 1	1	1	1	1	1	1	1 1	1		1 1	Ti	1	1 1
	(2x0	tnairsv)	Λzzn	H		×	- 0	-0.03	· ×		×	1	×	- X	4	· ×	٠ >	×	· ×	1	×	· ×		×	1	-0.01	. >	<	×		×	· ×	1	-0.02	· ×
	(1×0	tn s ir sv)	Λzzn,	H	1	1	ı	1	1 1	1	-1	-	1	1 1		1 1	1	1	1 1	1	1	1 1	1	1	1	1	1	,	1 1	1	7	1 1	-	-	1 1
icable.	(0×0	tna irsv)	Λzzn	H	ı	-0.06	- 0	Z0:0-	-0.0-	1	-0.08	-	-0.06	90 O-	00.0-	-0.08	- 0	-0.04	-0.07	1	-0.08	-0.07		-0.05	-	×	- 0	-0.04	-0.05	-	-0.07	-0.03	1	-0.02	-0.08
hppl	(£x0	tnsitsv)	gu ig 1	√	,	-		,	1 1	١.	1	,	1	1 1		1 1	1		1 1	-	-	1 1	-	1	1	7	1	,	1 1	-	-	1 1	T	-	1 1
rhere	(2x0	(variant	3n i31	V		-0.09	- 0	-0.04	-0.15	ı	-0.12	-	-0.16	- 0.19	71.0	-0.12	, 6	-0.12	-0.06	1	-0.1	-0.14		-0.09	1	-0.09	- 0	en.u-	-0.08		-0.14	-0.14		-0.06	-0.11
M H	(1×0	tnsinsv)	gn ig A	√	,		1	$^{+}$	1 1	1	1	1	1	1 1	$^{+}$	1 1	1	_	1 1		-	1 1	1	1	1	-	1		1 1		\exists	1 1			1 1
achieving best NetNorm or MQNetNorm where applicable, indicates non-applicability. e indicates algorithm's score less best.	(0×0	tnaitav)	3n i3.	₫		-0.06	- 0	-0.02	-0.08	1	-0.03	1	-0.05	-0.04	F 0.0	-0.04	, 6	-0.03	-0.05	,	-0.04	-0.08		-0.02		-0.03	. 0	-0.02	-0.03		-0.04	-0.09		×	-0.03
/IQN less	(£x0	tnsitsv)	sitati	5 S	1	-		-	1 1	1	1		1		T	1 1	1		1 1	1	,	1 1	1	1	1	-	1		1 1	-	\exists	1 1	T	1	1 1
m or Mility.	(2x0	tnaitav)	pitst	S		-0.07	- 60	-0.03	-0.08		-0.1	1	-0.13	- 11	11.0	-0.06	. :	-0.11	0.0-	1	-0.08	-0.11		-0.08	1	-0.05	- 0	70.0	-0.03		-0.13	-0.0-		-0.04	-0.11
Nor cab m's	(1×0	tnsinsv)	oitati	S	1	-	1		1 1	1	- 1	1	1	1 1	Ť	1 1	1	1	1 1		-	1 1	1	1	1	-	1	-	1 1	1	╗	1 1	T	-	1 1
achieving best NetNorm or indicates non-applicability, e indicates algorithm's scor	(0×0	tnaitav)	sitati	S	1	-0.03	. >	<	-0.04	1	-0.06	1	-0.09	- 0	0.0	-0.03	, 6	-0.07	-0.04	1	-0.05	-0.06		-0.05		×	- 0	00.0	· ×		-0.08	-0.04		×	-0.0-
g be nor	(8x0	(variant	Λzzn.	H	1	-	1	,	1 1	١,	-1	,	1	1 1	Ţ	1 1	1		1 1	1	,	1 1	1	1	1	7	1		1 1	-	-	1 1	-	-	1 1
chieving idicates r indicates	(2×0	tnairsv)	£zzn,	ď	×	1	-0.02	1 }	× ·	×	1	X	ı	×	;	× ·	×	,	× ·	×	,	×	×	1	-0.01	1	×	. >	< -	×		×	-0.01	-	× -
ac, inc	(1×0	tn s ir sv)	Λzzn.	H	,	-			1 1	١,	1		1	1 1	Ť	1 1	1		1 1	,	,	1 1	1	1		1	1	,	1 1		-	1 1	-	1	1 1
Legend: 'X' indicates algorithm(s) e '-' ii Negative value	1.	tnairev)	£zzn,	H	-0.07	1	-0.01	, 0	-0.09	-0.09	1	60.0-	ı	-0.04		-0.04	-0.03	,	-0.08	-0.11	,	-0.09	-0.05	1	×	1	-0.04	- 0	00:0-	-0.09		-0.03	×	-	-0.11
algorit Negativ	(8x0	tnaitav)	Su i S	√	,	,	,		1 1	١,	1	1	1	1 1		1 1	1		1 1	,	,	1 1	,	1		,	1		1 1	,	₹	1 1		╗	1 1
ates al Ne	(2×0	tnaitav)			-0.11	ı	-0.04	1 7	-0.15	-0.13	1	-0.14	ı	-0.15		-0.14	-0.11		-0.04	-0.15	,	-0.12	-0.11	1	-0.07	,	-0.05	. 0	70:0-	-0.19	-	-0.15	-0.07	-	-0.12
ıdic	(1×0	tnsinsv)	gu ig A	√	1			$^{+}$	1 1	١,	1		1	1 1	+	1 1		1	1 1		-	1 1	+			\rightarrow	1	-	1 1		7	1 1	-	-	1 1
ii (X,	(0×0	tnsitsv)	3n i31	√	-0.08	ı	-0.02	' '	-0.I	-0.03	1	20.0-	1	-0.02	1	-0.05	-0.07	-	-0.02	-0.04	,	-0.1	-0.05	ı	-0.04	1	-0.02	. 0		-0.05		-0.11	-0.01	-	-0.04
end	(8x0	tnsinsv)	oitst	s S	,	,	1		1 1	Ī	1		1	1 1		1 1	1		1 1	,	7	1 1	,	1	,	7	1		1 1	,	7	1 1	,	7	1 1
Leg	(2×0	tnaitav)	pitstic	S	60.0-	ı	-0.01	' '	-0.1	-0.09	ı	-0.14	ı	-0.1	100	-0.07	-0.09	1	-0.07	-0.09	,	-0.11	-0.1	ı	-0.04	1	-0.08	, 0		-0.11	-	-0.08	-0.02	-	-0.11
	(1x0	tnsitsv)	sitati	S	1		1	,	1 1	١.	1	1	1	1 1	+	1 1	1		1 1	,	-	1 1	,	1	1	7	1	_	1 1		-	1 1		-	1 1
	(0×0	tnsirsv)	pitst	S	-0.05	ı	×	1 0	-0.05	-0.07	ı	-0.12	ı	-0.08	0	-0.05	-0.07	,	-0.04	-0.06	,	-0.07	-0.07		-0.01	1	-0.07	. 0	-0.02	-0.09	-	-0.06	×		-0.09
				Į.						Ī					İ			1					T			1		Ť			Ħ		T	Ŧ	
			ţ	Best MQNetNorm	ı	0.39	- 0	0.32	0.49	ı	0.38	į	0.44	- 0 38	0.0	0.38	, 6	0.38	0.34	ı	0.43	0.51		0.43	i	0.37	. 0	0.40	0.33	1	0.38	0.46	1	0.33	0.37
				st orm	4		4.	1	ō	1		2		2		2	1		99	2		9	∞		-11		2	1	_	11			55		
			ţ	Best NetNon	0.44	1	0.34	1 1	0.55	0.41	1	0.5	1	0.42		0.42	0.41	1	0.36	0.47	1	0.56	0.48	ı	0.41		0.52	- 0) c.o	0.41	1	0.51	0.35		0.41
			•	Station	KATL	KATL	KBOS	SOGA	KBWI	KCLE	KCLE	KCLT	KCLT	KCVG KCVG	2000	KDCA KDCA	KDEN	KDEN	KDFW KDFW	KDTW	KDTW	KEUG	KIAH	KIAH	KLAS	KLAS	KLAX	NEAA	KLGA	KMCI	KMCI	KMCO KMCO	KMSP	KMSP	KORD
				OLA	8	4	m √	, ,	ъ 4.	8	4	3	4	8 4	١,	ю 4	m -	4	8 4	33	4	es 4	3	4	3	4	oo ∠	# c	o 4	2	4	8 4		4	8 4
			Č	o						Ľ																							L		

Table 72: (continued)

	(ex0	tnsitsv)	Λzzr	ĻЯ	1	1	1	1	1	1	Ī.	1	,	- 1	1	1	1	1	,	1	1	1	1	1	1	-1	
		tnariav)			,	×		-0.07	,	×		×	,	×	,	×		×	,	×	,	-0.01	-	×	,	X	25
		tnariav)			,		_	9	1	1	1	1	1	1	,	1	1	,	-	1	1	<u> </u>	1	1	,	-	1
able.		tnainav)			1	-0.06		-0.07	1	-0.02		-0.06	1	-0.07	1	-0.01	1	-0.04	1	-0.07	1	-0.02	-	-0.08	1	-0.01	-
pplic	(exo	tnsitsv)	SurS	V	,	1	1	1	,	1	-	1	,	1	,	1	-	· ·	,	1	,	1	1	1	,	-	1
ere a		tnsinsv)			,	-0.09		.03	,	-0.15		-0.09		-0.12	ļ ,	-0.09		-0.16	,	-0.08		-0.07		.12		-0.1	0
whe					,	<u>-</u>	1	- -	,	<u>-</u>	_	9-	,	<u>-</u>	,	<u>-</u>	_	<u>-</u>		<u>-</u>	_	<u>-</u>	1	- -	,)- -	1
form t.		tnsinsv)			<u>'</u>		-				'				<u> </u>						Ľ				Ľ		
NetN s bes	(0×0	tnsinsv)	Buig	¥	'	-0.04	1	×	1	-0.02	'	-0.03	,	-0.06	'	-0.06	'	-0.09	'	-0.05	'	-0.01	1	-0.05	'	-0.07	2
MQ.	(£x0	tnsitsv)	stic	₽S	1	1	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-	1	-	1	1
m or ility. score	(2×0	tnaitav)	oits	1S	1	-0.09	ı	-0.02	1	-0.1	1	-0.09	1	-0.07	,	-0.06	ı	-0.14	1	-0.07	1	-0.05	ı	-0.07	1	-0.04	0
:Nor icab im's	(1×0	tnsitsv)	stic	ls.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-	1	1	1	1
achieving best NetNorm or MQNetNo indicates non-applicability. e indicates algorithm's score less best.	(0×0	tnsitsv)	oits.	1S	1	-0.06	ı	×	,	-0.06	ı	-0.05	1	-0.07	1	-0.06	ı	-0.11	,	-0.04	ı	×	1	-0.04	1	-0.01	9
g be s nor	(8x0	tn s ir sv)	Λzzτ	ıЯ	,	,	1	,	,	,	,	1	,	1	,	1	,	,	,	,	,	,	1	,	,	-	-
n(s) achieving h '-' indicates n value indicates	(2×0	tnaitav)	Λzzr	ъ	×	ı	-0.03	ı	×	ı	×	1	×	ı	×	ı	×	1	×	ı	-0.01	ı	X	ı	×	-	25
acl inc ue ir	(1×0	tnsitsv)	Λzzτ	гД	,	1	1	1	,	1	1		,	1	,	1	1	1	,	1	,	1	1	1	,	,	1
thm(s -, ve val	(0×0	tnarian)	Λzzτ	ъ	60.0-	ı	-0.11	ı	-0.04	ı	×	1	-0.07	1	-0.02	1	-0.04	1	90.0-	ı	-0.03	ı	-0.13	ı	-0.05	-	3
algorithi Negative	(8x0	tnsitsv)	3n i3	¥	,	1	,	1	1	1	-	1	1	1	,	1	-	1	,	1	1	1		1	,	-	1
ates a Ne	(2×0	tnsitsv)	3n i3	V	-0.1	1	-0.02	1	-0.18	1	-0.14	ı	-0.1	ı	-0.1	ı	-0.22	1	90.0-	1	-0.05	1	-0.14	1	-0.13	1	0
ndic	(1×0	tnsitsv)	3n i3	V	1	1	1	1	,	1	1	1	,	1	1	1	1	1	,	1	1	1	-	1	1	1	1
Legend: 'X' indicates algorithm(s) achieving best NetNorm or MQNetNorm where applicable. '-' indicates non-applicability. Negative value indicates algorithm's score less best.	(0×0	tnsitsv)	3n i3	V	-0.05		Х		-0.04		90.0-	1	-0.07	1	-0.07	1	-0.1	1	-0.04		×		20.0-		-0.12	-	2
gend	(£x0	tnsitsv)	oits	₽S	,	1	1	1	1	1	,	1	1	1	,	1	1	1	1	1	1	1	-	1	,	-	1
Leg	(2×0	tnsinsv)	oits.	ıs.	-0.09	1	-0.02	1	-0.11	1	-0.1	1	-0.09	ı	-0.08	ı	-0.14	1	-0.05	1	-0.07	1	-0.08	1	-0.09	=	0
	(1×0	tnsitsv)	oits.	₽S	1	1	1	1	,	1	1	-1	,	1	1	1	1	1	,	1	,	1	1	1	1	1	1
	(0×0	tnsitsv)	oite	1S	-0.07	ı	Х	ı	-0.09	ı	-0.08	ı	-0.09	ı	-0.08	ı	-0.12	1	-0.03	ı	-0.02	ı	90.0-	ı	-0.05	1	33
			_	Best MQNetNorm	-	0.43	1	0.29	1	0.42	-	0.53	1	0.47	-	0.36	1	0.46	1	0.42	1	0.59	-	0.37	1	0.43	
				$_{ m Best}$	0.47	ij	0.34	ij	0.48	ij	0.59	ı	0.52	ı	0.4	ı	0.5	1	0.43	ij	0.64	ij	0.41	ij	0.52		
				OLA Station	KPHL	KPHL	XHAX	KPHX	KPIT	KPIT	KSAC	KSAC	KSAN	KSAN	KSAT	KSAT	KSEA	KSEA	KSFO	KSFO	KSMX	KSMX	TLSM	KSTL	KTPA	KTPA	
				OLA	က	4	3	4	3	4	က	4	3	4	က	4	က	4	3	4	အ	4	3	4	3	4	

Table 73: Highest scoring algorithms for each station for OLAs 5 and 6 $\,$

	(83	× 0	tn s i 1 s	v)	Fuzzy			×	1	-0.05	٠ >	<	-0.04	,	×	-0-04		-0.03	- 80	90.00	-0.04	- 0	-0.03	-0.01	1	×	-0.1		-0.02	1 0	-0.04	-0.02	-0.01	- 0	90.0-	-0.05
	(23	x 0	tn s ir s	١)	Fuzzy		1	-	1	1	1	1	1 1	+	1	1 1	T	1 1	1	+	1 1	1	\rightarrow	1 1	1	1	1 1	1	1	1	,	1 1	1 1	_	_	
le.	(1:	× 0	tn s i 1.67	r)	Fuzzy			-0.02	ı	-0.06	. 0	00.0-	-0.04		-0.01	-0 03		-0.03	- 0	0.00	-0.04	-	-0.04	-0.02	1	×	-0.1	1	-0.03	- 0	-0.05	-0.03	- X	0	-0.07	-0.05
icab	(0:	× 0	tn s ir s	١)	Fuzzy		1	1	1	ı	1	1	1 1	1	1	1 1		1 1	1		1 1	-	1	1 1	1	1	1 1	1	1	-	1	1 1	-		1 1	
e appl	(82	× 0	tnsits	r)	gn ig A			-0.04	1	-0.08	- 0	00.0-	-0.05	-	-0.04	-0 05	2	-0.07	- 80 0	00.0	-0.05	-	-0.08	-0.05	1	-0.04	-0.1	1	-0.04	-	-0.09	-0.05	-0.05	- 0	0.00	-0.07
her	(2)	× 0	tnsirs	r)	gn ig A			i		i		$^{+}$		_	-	1 1	+		1	$^{+}$	1 1	1	$^{+}$	1 1	_	i	1 1	1	1	1	\rightarrow	1 1	1 1	_	_	
form w		× 0	tnsits	r)	gn ig A			-0.04	ı	-0.09	. 6	90.0	-0.04	,	-0.04	- 0	3	-0.0-	, 0	90.0	-0.05	- 0	8n.u	-0.05	1	-0.04	-0.1	1	-0.04	- 0	-0.09	-0.05	-0.05	. 6	sn:n-	-0.07
VetNo	(0)	× 0	tasias	r)	gn ig A		1	-	1	\rightarrow	1	+	1 1	1	- 1	1 1	+	1 1	1	$^{+}$	1 1	1	\rightarrow	1 1	1	1	1 1		1	1	_	1 1	1 1	1	_	
MQN .	(0)	x 0	tnsirs	r)	Static		-	-0.01	1	×	1	70.0-	· ×	,	-0.08	· ×	:	· ×	٠ >	<	· ×	- 2	۲	- ×	1	×	· ×	,	×	- ;	×	· ×	- X	۱ >	٠ ٠	·×
m or lility.	(7)	× 0	tnsirs	١)	Static		1		1	1		+	1 1	1		1 1		1 1	1	,	1 1	1	1	1 1	1	1	1 1	1	1	1	,	1 1	1 1	1	1 1	
best NetNorm or non-applicability.	(1)	× 0	tnsits	r)	Static			-0.01	ı	×	1	70.0	· ×	,	-0.08	· ×	;	· ×	٠ >	۲	· ×	1 %	۲	· ×	1	×	· ×	1	×	1 ;	×	· ×	- X	. >	٠ ١	· ×
best N non-ap	(0)	× 0	tas i an t	r)	Static		,		1	,		\neg	1 1	1	1	1 1	Ť	1 1	1		1 1	1	1	1 1	1	,	1 1	1	1	1	1	1 1	1 1	1		1 1
achieving be indicates nor		× 0	tn s ir sv	۲)	Fuzzy		×	1	-0.04	1	×	200	00.0	×	1	-0.04	60.0		-0.08		-0.04	-0.06	. 0	-0.01	-0.01	-	-0.12	-0.04	1	-0.04		-0.02	×	-0.06	- 0.08	
achieving indicates	(2:	× 0	tn s ir s	١)	Luzzy		1	-	1	-	1	-	1 1	1	1	1 1	+	1 1	1	,	1 1	1	$^{+}$	1 1	1	,	1 1	1	1	1	\rightarrow	1 1	1 1		_	1 1
ಜ.⊟ ೄ		× 0	tnsits	۲)	Fuzzy		-0.02	1	-0.05	ı	-0.05	200	00.0	×	1	-0.03	60.0	70:0-	-0.07		-0.04	80.0-	. 0	-0.02	-0.01	1	-0.11	-0.04		-0.04		-0.03	×	-0.08	- 80 0	22
thm ve v		× 0	tn s ir s	١)	Fuzzy		1	-		1	1	-		,	1	1 1	+	1 1	1	,	1 1	1	$^{+}$	1 1	1	,	1 1	1	1	1	\rightarrow	1 1	1 1	 	_	
algorith	(8,		tnsits				-0.04	1	-0.07	1	-0.07	. 0	70.0	-0.04	1	-0.05	90 0		-0.08		-0.05	-0.12	1 0	-0.05	-0.05	1	-0.11	-0.06		80.0-	1	-0.05	-0.04	-0.08	, c	
ates	-	x n	tasias	1)	Su 13 V		1	-	1	1	1	_		,		1 1	+	1 1		-	1 1	1	$^{+}$	1 1	1	_	1 1	1	1	1	$^{-}$	1 1	1 1	+	+	
indica			tnsinsv				-0.04	1	-0.08	ı	-0.07	- 0	00.0	-0.04	1	-0.05	900	00.0	-0.08		-0.05	-0.12	1 0	-0.05	-0.05	1	-0.11	-0.06		-0.08	1	-0.05	-0.04	-0.08	' C	
ķ	(0)	× 0	tasias	١)	gn ig A		Ė		1	1	1	_		1		1 1	+	1 1	1		1 1	1	_	1 1	1	,	1 1	1	1		\dashv	1 1	1 1		1 1	1 1
Legend: 'X' indicates algorithm(s)	(8)	× 0	tnsirsv	r)	Static		-0.01	1	×	1	-0.05	. >	< '	-0.1	,	×	×	٠ ،	×	.	× ·	×	, ;	× ·	×	1	× ·	×		×	. ;	× ·	×	×	- ×	٠ ١
l l	(7)	× 0	tasias	١)	Static		Ė	_	1	1		,	1 1	1	1	1 1	t	1 1	1	,	1 1	1	1	1 1	1	1	1 1	1	1	1	1	1 1	1 1	1	1 1	
			tnsirsv				-0.01	1	×	ı	-0.05	, >	٠ ،	-0.1	1	×	×	٠ ،	×	.	× '	x	, ;	× ·	×	1	× ·	×	ı	X	. ;	× ·	×	×	- ×	٠ ١
	(0)	× 0	tnsits	r)	Static		 	1	1	-	1	,	1 1	,	1	1 1	t	1 1	1	,	1 1	1	,	1 1	1	7	1 1	,	1	1	,	1 1	1 1	1	1 1	
					Best	MQNetNorm	1	0.26	ı	0.27	. 0	07:0	0.22	1	0.28	- 0 22		0.27	- 0	0.50	0.25	1 0	0.25	0.25	1	0.24	0.28	1	0.24	- 0	0.27	0.22	0.26	- 0	0.23	0.24
					Best	NetNorm	0.28	1	0.28	1	0.28	- o	0.20	0.3	1	0.24	86.0	0.20	0.24	1 1	0.27	6.0	1 0	0.26	0.26	1	0.31	0.26	ı	0.28	1 1	0.24	0.26	0.25	- -	
					Station		KATL	KATL	KBOS	KBOS	KBWI	NDW1	KCLE	KCLT	KCLT	KCVG	KDCA	KDCA	KDEN	NDDN	KDFW KDFW	MLCM	WDI W	KEUG	KIAH	KIAH	KLAS KLAS	KLAX	KLAX	KEGA	KLGA	KMCI KMCI	KMCO	KMSP	KORD	KORD
					OI.A		70	9	22	9	ro c	2 h	. 9	70	9	5	и	9	20 0	,	0 n	20	، ا	9	τĊ	9	0 o	22	9	2	ا و	က	5	5	0 10	9

Table 73: (continued)

Column C																												
Station Past		(£x0	tnariav)	Λzzī	Fı		-0.05	1	-0.07		×	,	-0.01	,	-0.02	,	-0.04	1	-0.05		-0.03		-0.1	-	-0.07	1	×	9
Station Best NetNorm of MONetNorm MONETNORM MONETNORM of MONETNORM of MONETNORM of MONETNORM MONETNORM of MONETN		(2×0	tnsitsv)	Λzzτ	ы	,		,		,	0	,		,		,		,		1		1		1	,	1	7	
Station Best Best Ox0	ole.	(1×0	tnsinsv)	Λzzī	Fı		-0.03	,	-0.06	1	×	1	-0.03	1	-0.02	1	-0.06	,	-0.06	1		,	-0.09	1	-0.06	1	×	4
Station Best Best Ox0	ical	(0×0	tn s iz sv)	Λzzτ	ъ	,	- 1	1	ı,	1	ı,	1	1	1	- 1	1	ı,	1	1	-	-1	-		-	-1	1		1
Station Best Best Ox0	re appl	(8×0	tnsitsv)	3u i3	V	-	-0.08	1	-0.09	1	×	1	-0.09	1	-0.04	1	-0.06	1	-0.14	1	-0.05	1	-0.13	1	-0.08	1	-0.05	1
Station Best Best Ox0	vhе	(2×0	tnsitsv)	3n i3	V	1	1	1	- 0	1	- 0	1	1	1	-1	,	- 0	1	-0	1	-1	1	1	1	-1	1	-	1
Station Best Best Ox0	Vorm	(1×0	tnsinsv)	3u i3	V				-0.09		×		-0.09	1	-0.04	ı	-0.06		-0.13	-	-0.05	-	-0.13	-	-0.08	1	-0.05	_
Station Best Best Ox0	Vetľ bes	(0×0	tnsitsv)	3n i3	V	-		1	0	1	0	1	1	1	-1	1	0	1	1	=	-1	-	1	=	-1	-	-	1
Station Best Best Ox0	or MQI y. ore less	(8×0	tnsitsv)	stic	4S		×	1	×	,	×		×	1	×	1	×	,	×	-	Х	,	×	-	X	1	×	27
Station Best Best Ox0	rm silit s sec	(2x0	tnsitsv)	stic	1S	1	- 1	1	0	1	0	1	-1	1	- 1	1	0	1	-11	1	-1	1	- 1	1	-1	1	1	1
Station Best Best Ox0	NetNo oplical ithm's	(1×0	tnaitav)	sitic	4S	ı	×	ı	×	ı	×	ı	×	1	×	1	×	ı	×	1	X	ı	×	1	X	1	×	27
Station Best Best Ox0	sst l n-ap lgor	(0×0	tnsitsv)	stic	1S	,	- 1	,	O.	1	O.	1	1	,	-1	1	O.	,	1	1	-	1		1	-	1		1
Station Best Best Ox0	ving be tes no: cates a	(£×0	tn s ir sv)	Λzzτ	ъ	-0.04	1	-0.06	1	-0.02	1	-0.02	1	-0.02	1	-0.05	1	-0.05	1	-0.04	1	-0.1	1	-0.07	1	×	1	υ,
Station Best Best Ox0	shier dica ndic	(2x0	tnsitsv)	Λzzī	ъ	,	1	,	Ū.		Ū.	1	1		1	,	Ū.	,	1		-1	1		1	-1	1	-	1
Station Best Best Ox0	ı(s) ac in'.' value i	(1×0	tnaitav)	Λzzτ	гA	-0.01	1	-0.05	1	-0.01	1	-0.04	ı	-0.03	1	-0.05	1	-0.06	1	-0.05	1	60.0-	1	80.0-	1	×	1	3
Station Best Best Ox0	ithn ive	(0x0	tnsitsv)	Λzzτ	ч	_	1	1	0	1	0	1	-1	1	1	,	0	-	-0	1	1	1	1	1	1	1	-	1
Station Best Best Ox0	s algor Negat	(8×0	tnsitsv)	8u i8	V	-0.07	1	-0.09	1	-0.01	1	-0.1	1	-0.04	1	-0.07	1	-0.15	1	-0.07	-	-0.13	1	60.0-	-	-0.04	1	0
Station Best Best Ox0	ate	(2×0	tnsitsv)	3n ig	V	1	1	1	1		1	,	1		-1		1	1	1		-1	1	ı		1		7	
Station Best Best Ox0	' indic	(1×0	tnsitsv)	3n i3	V	-0.07	1	60.0-	1	-0.01	1	-0.1	1	-0.04	1	-0.07	1	-0.15	1	-0.07	1	-0.13	ı	60.0-	1	-0.04	1	0
Station Best Best Ox0	Χ, ::	(0×0	tnsitsv)	3n i3	V	,		1	1	1	1	1	1	1	1	1	1	1	ı	1	-1	1	ı	1	-1	1	-	1
Station Best Best Ox0	Legend	(8×0	tnsitsv)	stic	1S	×	ı	×	ı	×	ı	×	ı	×	1	×	ı	×	1	X	1	×	1	X	1	-0.01	,	56
Station Best Best Ox Ox		(2×0	tnsitsv)	stic	1S		1	1	11	1	11	1	1	1	- 1	1	11	1	1	1	-	1	1	1	1	1	1	1
Station Best Best RPHL 0.28 0.26 WPHX 0.27 0.26 WSAN 0.27 0.26 WSAN 0.27 0.26 WSAN 0.26 WSAN 0.26 WSEA 0.36 0.24 WSEA 0.36 0.24 WSEA 0.36 0.24 WSEA 0.36 0.24 WSEA 0.36 0.24 WSEA 0.36 0.24 WSEA 0.36 0.24 WSEA 0.36 0.24 WSEA 0.36 0.24 WSEA 0.36 0.24 WSEA 0.36 0.24 WSEA 0.36 0.24 WSEA 0.36 0.24 WSEA 0.36 0.25 WSEA 0.27 0.29 WSEA 0.27 WSEA 0.27 WSEA 0.27 WSEA 0.27 WSEA WSEA 0.27 WSEA WSEA 0.27 WSEA WSEA 0.27 WSEA WSEA WSEA 0.27 WSEA		(1×0	tnsinsv)	sits	4S	×	1	X	ı	X	ı	×	ı	X	1	×	ı	X	1	X	=	X	1	X	=	-0.01	1	26
Station Best NetNoum KPHL 0.28 KPHZ 0.28 KPHX 0.27 KPHY 0.27 KPHX 0.27 KPHY 0.26 KSAC 0.3 KSAC 0.3 KSAN 0.27 KSAN 0.27 KSAN 0.27 KSAN 0.27 KSAN 0.26 KSAN 0.27 KSAN 0.26 KSAN 0.27 KSAN 0.26 KSAN 0.27 KSAN 0.26 KSAN 0.27 KSAN 0.24 KSAN 0.25 KSAN 0.24 KSAN 0.25 KSAN 0.24 KSTO 0.24 KSTO 0.24 KSTO 0.24 KSTO 0.27 KSTO 0.		(0×0	tnsitsv)	atic	4S	,	- 1	1	1	1	1	1	1	1	- 1	1	1	1	1	-	-	1	-	-	-	1	1	1
Station Best KPHL 0.28 KPHL 0.27 KPHX 0.27 KPHX 0.27 KPHY 0.27 KPHY 0.27 KSAN 0.27 KSAN 0.27 KSAN 0.27 KSAN 0.27 KSAN 0.27 KSAN 0.27 KSAN 0.27 KSAN 0.27 KSAN 0.27 KSAN 0.27 KSAN 0.27 KSAN 0.27 KSAN 0.27 KSAN 0.27 KSTL 0.27					Best MQNetNorm	1	0.27	1	0.26	1	0.19	1	0.28	1	0.26		0.24	1	0.34	-	0.21	ı	0.29	-	0.25	1	0.24	Totals:
OLA Station						0.28	ı	0.27	ı	0.22	ı	0.3	ı	0.27	ı	0.26	ı	0.36	ı	0.24		0.3	1	0.27		0.25	1	
					Station	KPHL	KPHL	KPHX	KPHX	KPIT	KPIT	KSAC	KSAC	KSAN	KSAN	KSAT	KSAT	KSEA	KSEA	KSFO	KSFO	KSMX	KSMX	KSTL	KSTL	KTPA	KTPA	
					OLA	25	9	ಬ	9	ಬ	9	ಬ	9	ಬ	9	ಸು	9	ಬ	9	20	9	TÜ.	9	20	9	ಬ	9	

A.21 ANALYSIS OF ALGORITHM TO FIND OPTIMUM FOR OLA 3

We implemented an algorithm by Smith et al. [86] that solves the weight constrained shortest path problem with replenishment (WCSPP-R), which is NP-Hard, to attempt to find the optimum solution for OLA 3 [86]. The weight is allocated visibility time per month. Thus, replenishment occurs as each month begins. The path length is inversely proportional to the net energy harvested. We tried to run the algorithm to completion, but because the run-time did not complete after days and system problems frequently aborted the job, we abandoned the effort to find optimum for OLA 3. In this section, we examine a reason why the run-time takes so long: labels are not being dominated quickly enough, as we shall see. To explain what we mean by labels are not being dominated, we first need to describe the graph we built and Smith's WCSPP-R algorithm:

We built an acyclic, directed weighted graph with replenishment edges. The graph has two nodes for each time step: one node represents the stowed state; the other node represents the deployed states. Each node has two exit edges, which represent two possibilities: 1. remain in the current state, and 2. change states (i.e., deploy if stowed, stow if deployed). Recall that we model each minute. Thus, each full year has over 500,000 minutes, which means each year has over 1 million nodes.

Smith's algorithm preprocesses each node i by finding the least cost from the source node s to i and the least cost from the destination node t to i. Weight is also tracked during preprocessing in case the shortest path (i.e., least cost path) through i happens to not violate the weight budget. If pre-processing finds a shortest path that does not violate the weight budget, then preprocessing found a solution to the given WCSPP-R problem and Smith's algorithm ends.

If preprocessing does not find a solution, then preprocessing prunes infeasible nodes from the graph. It also prunes nodes that can only be part of a non-optimum path. Preprocessing passes the pruned graph to a label-correcting algorithm.

The label-correcting algorithm that we implemented "maintain[s] a set of non-dominated labels, where a label $L = (i, c_L, w_L)$, said to be on node i, represents a partial path from s to node i with cost c_L and weight w_L , and a label L_1 is said to dominate label L_2 if they are

on the same node, and if $c_{L_1} < c_{L_2}$ and $w_{L_1} \le w_{L_2}$ or $c_{L_1} \le c_{L_2}$ and $w_{L_1} < w_{L_2}$ " [86]. Thus, each node i has a set of labels. If a label is dominated by another label, then the dominated label is removed.

The problem with our implementation of the label-correcting algorithm is that the list of labels grows too large because labels are not dominated. For example, consider, the six-node, dual-weighted directed graph in Figure 48. The harvester in this particular simulation takes 1 minute to deploy and 1 minute to retract. Each node represents the state of the harvester, where nodes named with the prefix 'r' indicate that the harvester is in the retracted state and nodes named with the prefix 'd' indicate that the harvester is in the deployed state. Each node's is named with a number indicating a timestep. The retractable harvester begins and ends the simulation in the retracted state. Hence, for timesteps 0 and 3, each timestep has only one node, which indicates a retracted state. For timesteps 1 and 2, each timestep has two nodes; Having two nodes at the same timestep indicates that the harvester can either be fully deployed or fully stowed at that timestep.

Each directed edge $i \to j$ has two weights expressed by an ordered pair: (x, y) where x is the minutes of the harvester's monthly visibility budget the harvester consumes and y is a cost the harvester incurs if the harvester is the state represented by node i at timestep n and in the state represented by node j and timestep n+1. (The cost y, which we seek to minimize, is an inverse of the energy harvested during that timestep. A cost of 0 represents the highest amount of energy that the harvester converts during any timestep of the entire simulation. Our seeking to minimize y allows us to use shortest-path algorithms instead of longest-path ones.)

Let node r0 be the source node. And let us visit each node in ascending timestep order.

Node r0 is adjacent to two nodes: r1 and d1. Node r1 has only one label since there is only one path to it: (0, 10). Likewise, node d1 has only one label: (1, 15).

Node r1 leads to two nodes: r2 and d2. To obtain a label for r2, we add the weights of the r1 \rightarrow r2 edge (0, 10) to r1's label (0, 10) to obtain (0, 20). Similarly, we add the weights of the r1 \rightarrow d2 edge to obtain (1, 25).

Node d1 leads to two nodes: r2 and d2. To obtain a second label for r2, we add the weights of the $d1\rightarrow d2$ edge (1, 0) to d1's label (1, 15) to obtain (2, 15). Note that r2 now

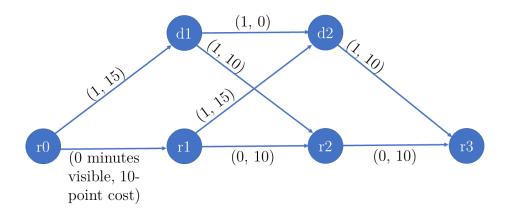


Figure 48: Weighted, directed graph through which to find shortest path within time budget

has two labels: (0, 20) and (2, 15). Neither label dominates the other because one label has a lower cost and the other label has a lower weight.

Now that we have explained what we mean by *labels are not being dominated*, we return to describing our implementation having over 1 million nodes. As we ran that implementation, the list of labels for each node was growing without seeming to decrease. Thus, we turned our attention to finding the "optimum" for a simpler case, OLA 5. We describe how we found "optimum" for OLA 5 in Section 4.3.

A.22 AN IN-DEPTH LOOK AT THE FUZZY-CRISP ALGORITHMS

In this section, we examine earlier versions (v1.2 and v1.3) of the Fuzzy-Crisp algorithms. Such analysis led to the creation of Fuzzy-Crisp v1.4.

A.22.1 Fuzzy v1.2's implementation of the retraction threshold has a greater margin than necessary

A difference between Fuzzy v1.2 and the other two algorithms (Static and Aging) is that Fuzzy is ensured to retract when the running windspeed average drops below the lowest

windspeed deemed to be windy k_{ws} at station ws instead of at $k_{ws} - 1$ knot. Fuzzy is observing a retraction threshold that is 1 knot higher than required by the OLA. As shown in the following code listing, Fuzzy is being extra careful that it does not violate the terms of the OLAs requiring the harvester to retract when the weather is not windy (OLAs 1 through 4).

```
1
   /* Ensure that algorithm meets the minimum requirements of OLA */
   if ((windspeed knots average < windy.
      getLowestWindspeedThatIsWindyKnots())
3
     ! (noiseAllowed.blsNoiseAllowed(sample.date))
     [ (harvester.getFractionVisbilePlusTimeToRetractMonthly(
4
5
       ws.iUsedAllItsAllocatedVisibilityMinutesPerMonth)) >= 0.99) {
6
7
    harvester.resetMode();
8
9
   }
```

Note that Fuzzy's code directly above is actually crisp code; The code directly above does not calculate a membership value of the variable windspeed_knots_average, but directly compares its value to the value returned by windy.getLowestWindspeedThatIsWindyKnots(). The code directly above uses the boolean bIsNoiseAllowed(sample.date) instead of a fuzzy set. Also the code ensures that the algorithm does not use more visibility time than it has been allocated by directly comparing the constant 0.99 to the sum of the allocated visibility time it has consumed plus the time the harvester takes to retract.

The Static and Aging algorithms use the following code:

```
if (windspeed_knots_average > deploymentThresholdKnots) {
    harvester.setMode();
} else if (windspeed_knots_average < retractionThresholdKnots) {
    harvester.resetMode();
}</pre>
```

where retractionThresholdKnots is calculated by the following lines

1

where getDeploymentThresholdKnots() gets the deployment threshold chosen by the training algorithm (or chosen by the user). (As stated in Section 3.7, the training algorithm searches a design space which starts at the lowest windspeed deemed to be windy k_{ws} at weather station ws.)

Is Fuzzy performing on OLAs 3 and 4 much worse than Static and Aging because Fuzzy is observing a stricter retraction threshold than Fuzzy and Aging? We answer that question by running tests on a modified version Fuzzy shown here:

```
1
2
    /* Modified retraction threshold for Fuzzy */
4
    final int RETRACTION THRESHOLD DIFFERENCE = 1;
5
6
    /* Ensure that algorithm meets the minimum requirements of OLA */
7
    if ((windspeed_knots_average < (windy.
       getLowestWindspeedThatIsWindyKnots() -
       RETRACTION THRESHOLD DIFFERENCE)
      | | ! (noiseAllowed.blsNoiseAllowed(sample.date))
8
9
      (harvester.getFractionVisbilePlusTimeToRetractMonthly(
10
        ws.iUsedAllItsAllocatedVisibilityMinutesPerMonth)) >= 0.99) {
11
12
     harvester.resetMode();
13
14
    }
```

The test results (Appendix A.22.5 on page 306) indicate that the modified Fuzzy (which uses the RETRACTION-THRESHOLD-DIFFERENCE-equaling-1 code directly above) operation performed the same as the original Fuzzy (where RETRACTION THRESHOLD DIFFERENCE = 0) for OLAs 1 through 4. Thus, the test results imply that Fuzzy's crisp code listed directly above is being dominated by Fuzzy-Crisp's fuzzy code.

We explore whether Fuzzy-Crisp's crisp code listed directly above is being dominated by

Fuzzy-Crisp's fuzzy code in the following paragraphs. We added code to collect statistics about whether or not the crisp conditional in Fuzzy-Crisp evaluates the true when the fuzzy conditional evaluates to false as shown here:

```
1
2
    boolean bCrispRetractionThresholdReached = false;
3
4
    lCrispConditionalEvaluated++;
5
6
    /* Ensure that algorithm meets the minimum requirements of OLA */
7
    if (bCrispRetractionThresholdReached = ((windspeed_knots_average <
       (windy.getLowestWindspeedThatIsWindyKnots()-
       RETRACTION THRESHOLD DIFFERENCE)))
8
    ! (noiseAllowed.blsNoiseAllowed(sample.date))
9
    (harvester.getFractionVisbilePlusTimeToRetractMonthly(
     ws.iUsedAllItsAllocatedVisibilityMinutesPerMonth)) >= 0.99) {
10
11
12
    { if (bCrispRetractionThresholdReached)
       1CrispRetractionThresholdReached++;}
13
    harvester.resetMode();
14
  } else // use fuzzy logic to decide deployment and retraction
```

The code immediately above increments a long typed variable lCrispConditionalEvaluated that holds the number of times the code is reached. The code's boolean variable bCrispRetractionThresholdReached is incremented when the crisp inequality

```
1 windspeed_knots_average < (windy.getLowestWindspeedThatIsWindyKnots ()-RETRACTION THRESHOLD DIFFERENCE)
```

evaluates to true. If that conditional or either of the two other terms of the conditional evaluate to true, then the following fuzzy code is not executed:

The code immediately above can deploy (set) and retract (reset) a harvester. The value of the variable resultingMembershipValue is the harvester's membership value in a fuzzy set which we describe below. If resultingMembershipValue is greater than or equal to a deployment threshold membership value (which is expressed in the code above as deployment_threshold_mv and chosen by the training algorithm or by the user), then the code deploys the harvester (.setMode()).

If the harvester's membership value is not greater than or equal to the deployment threshold membership value, the code evaluates whether or not the resulting membership value is less than the retraction threshold membership value, which is 0.2 less than the deployment threshold membership value (deployment_threshold_mv - 0.2). If the membership value is less than the retraction threshold membership value, then the code reaches a statement involved with collecting statistics; The code increments the variable lFuzzyStricterThanCrisp, which means that the crisp if conditional (which is in the code listing above the the listing directly above) evaluated to false and the fuzzy inequality (resultingMembershipValue < retractionThresholdMembershipValue) evaluated to true. The else if clause ends by executing the code that retracts the harvester (.resetMode()).

How often does Fuzzy-Crisp's fuzzy code overrule Fuzzy-Crisp's crisp code? That is, how often does the fuzzy code deem that the harvester's membership value is less than the retractionThresholdMembershipValue when the crisp code finds no reason to retract? An answer to that question is given in Table 74 on the next page, which is a summary of Table 79 on page 315. Table 74 indicates that on average, when the crisp code finds no reason to retract, the fuzzy code retracts an average 46% of the time when the OLA is 3

and the RETRACTION THRESHOLD DIFFERENCE is 0 knots. That average increases to 54% of the time when the RETRACTION THRESHOLD DIFFERENCE is increased to 1 knot. (When the OLA is 4, that average number of times the fuzzy code overrides the crisp code likewise increases when the RETRACTION THRESHOLD DIFFERENCE is increased from 0 to 1 knots.) That overruling of Fuzzy-Crisp's crisp code by Fuzzy-Crisp's fuzzy code helps to explain why increasing the RETRACTION THRESHOLD DIFFERENCE from 0 knots to 1 knot does not improve Fuzzy-Crisp's NetNorm and MQNetNorm scores for OLA 3. Increasing the RETRACTION THRESHOLD DIFFERENCE from 0 knots to 1 knot increases the crisp code's leniency and does not affect the fuzzy code's strictness. Leniency is defined as not retracting the harvester.

Table 74: Summary of comparison of two values for RETRACTION THRESHOLD DIF-FERENCE for OLAs 3 and 4 for all stations

		${\rm lFuzzyStricterThanCrisp/lCr}$	rispFoundNoReasonToRetract
OLA	R.T.D.* (knots)	Average	Standard Deviation
3	0	46%	8%
3	1	54%	8%
4	0	51%	8%
4	1	59%	8%

^{*}R.T.D. is an acronym for RETRACTION THRESHOLD DIFFERENCE

Thus, we ask, Does the fuzzy code retract the harvester in every case that the average windspeed is between the two crisp retraction thresholds, i.e., when the more lenient crisp does not retract and when the less lenient crisp code retracts (if the fuzzy code were to examine every case)? To find an answer, we added boolean variables to the code to track whether or not each case causes retraction by the following tests, where the added boolean variable is enclosed in parentheses:

• The crisp retraction threshold is reached when the RETRACTION THRESHOLD DIF-FERENCE is 0 knots (bCrispRetractionThresholdReachedWhenRTDIsZero)

- The crisp retraction threshold is reached when the RETRACTION THRESHOLD DIF-FERENCE is 1 knot (bCrispRetractionThresholdReachedWhenRTDIsOne)
- The fuzzy retraction threshold is reached (bFuzzyRetractionThresholdReached) (Technically, the variable bFuzzyRetractionThresholdReached is crisp, being the result of defuzzification, as shown in the code listing which evaluates the boolean expression determining bFuzzyRetractionThresholdReached.)

We defined the boolean variable bMoreLenientCase to tell use when the average windspeed is between the two crisp retraction thresholds as shown in the following code:

The boolean variable bMoreLenientCase tells us when the average windspeed is in the interval [.getLowestWindspeedThatIsWindyKnots()-1,.getLowestWindspeedThatIsWindyKnots()). When the average windspeed is in that interval, does the fuzzy code cause retraction (if the fuzzy code is allowed to process that case)? The following code tells us:

```
1
     /* "MoreLenientCase" is defined as a windspeed that does not cause
         retraction when R.T.D. is 1, but
2
          does cause retraction when R.T.D. is 0.
3
4
     boolean bCrispRetractionThresholdReachedWhenRTDIsZero = (
        windspeed knots average <windy.
        getLowestWindspeedThatIsWindyKnots());
5
     boolean bCrispRetractionThresholdReachedWhenRTDIsOne = (
        windspeed knots average < (windy.
        getLowestWindspeedThatIsWindyKnots()-1);
6
7
     boolean bMoreLenientCase = !
        bCrispRetractionThresholdReachedWhenRTDIsOne &&
8
       bCrispRetractionThresholdReachedWhenRTDIsZero;
9
10
     boolean bRetractionConditionReached = false;
11
```

```
12
     /* Ensure that algorithm meets the minimum requirements of OLA */
13
     if (((windspeed knots average < (windy.
        getLowestWindspeedThatIsWindyKnots()-
        RETRACTION THRESHOLD DIFFERENCE)))
        | | ! (noiseAllowed.blsNoiseAllowed(sample.date))
14
        | | (harvester.getFractionVisbilePlusTimeToRetractMonthly(
15
16
         ws.iUsedAllItsAllocatedVisibilityMinutesPerMonth)) >= 0.99) {
17
18
      harvester.resetMode();
19
      bRetractionConditionReached = true;
20
     } else // use fuzzy logic to decide deployment and retraction
21
22
23
24
      final double retractionThresholdMembershipValue =
         deployment threshold mv - 0.2;
25
26
      if (resultingMembershipValue >= deployment threshold mv) {
27
28
       harvester.setMode();
29
30
      } else if (resultingMembershipValue <
         retractionThresholdMembershipValue) {
31
32
       bRetractionConditionReached = true;
33
34
       harvester.resetMode();
35
36
      }
37
38
     }
39
40
     if (bMoreLenientCase && !bRetractionConditionReached) {
41
42
      bEveryMoreLenientCaseRestricted = false;
43
44
     }
45
46
     boolean bFuzzyRetractionThresholdReached =
         resulting Membership Value < (deployment threshold mv - 0.2);
47
     if (bMoreLenientCase && !bFuzzyRetractionThresholdReached) {
48
49
      bEveryMoreLenientCaseReachesFuzzyRetractionThreshold = false;
50
51
     }
```

Now, we are ready to answer the question, Does the fuzzy code retract the harvester

in every case that the average windspeed is between the two crisp retraction thresholds? Running the code immediately above for every station for OLAs 3 and 4 indicates that the answer is Yes.

And we have the answer to our original question, Is Fuzzy-Crisp performing on OLAs 3 and 4 much worse than Static and Aging because Fuzzy-Crisp is observing a stricter retraction threshold than Static and Aging? The answer is No.

Now that we examined Fuzzy-Crisp's crisp code, let us turn to Fuzzy-Crisp's fuzzy code. Would Fuzzy-Crisp perform comparably on OLAs 3 and 4 to Static and Aging if Fuzzy-Crisp used only its crisp code to retract? In the next section, we ask, How does Fuzzy-Crisp perform on OLAs 3 and 4 using only its crisp code to retract?

A.22.2 How does Fuzzy-Crisp v1.2 perform on OLAs 3 and 4 using only its crisp code to retract?

We commented Line 34 in the code listing above so that Fuzzy-Crisp's fuzzy code does not retract the harvester; Fuzzy-Crisp relies solely on Fuzzy-Crisp's crisp code to retract to achieve the following test results: The modified Fuzzy-Crisp that uses crisp code to retract and not its fuzzy code achieves

- an average NetNorm() score of 0.386 for OLA 3, and
- an average MQNetNorm() score of 0.353 for OLA 4,

which are comparable to the average scores for Static and Aging for OLAs 3 and 4 (Table 4 on page 84). (Per-station results for the "retract-using-crisp-code-only" version of Fuzzy-Crisp are shown in Table 80 on page 323.)

Thus, one or more aspects of Fuzzy-Crisp's fuzzy code is causing Fuzzy-Crisp to perform relatively poorly for OLAs 3 and 4. We explore what in Fuzzy-Crisp's fuzzy code in the next section.

A.22.3 How Fuzzy-Crisp combines fuzzy sets to determine a resulting membership value

In Section A.22.1 above, we refer to a fuzzy set in which the harvester has the degree of membership indicated by the variable resultingMembershipValue. In the following paragraph, we describe that fuzzy set. The fuzzy set is a combination of fuzzy sets such as WINDY AT <STATION>, APPROACHING QUIET HOURS, and PLENTY OF ALLOCATED VISIBILITY MINUTES REMAINING. The combination of fuzzy sets we use is shown in the following code excerpt:

```
1 double resulting Membership Value = Math.min(
      membership Value Conditional,
2
  noPredictionResult = Math.min(windy.getMembershipValueForWindy((int)
       windspeed knots average),
4
   Math.max(
5
    not (noise Allowed.get Membership Value For Approaching Quiet Hours (sample
6
    MINUTES BEFORE QUIET HOURS X INTERCEPT)),
     harvester.
        getMembershipValueForPlentyOfAllocatedVisibilityMinutesRemaining
8
    ws.iUsedAllItsAllocatedVisibilityMinutesPerMonth)))
9
   );
```

where the variable membershipValueConditional depends on whether or not Fuzzy is using weather prediction:

```
1 if (bUseWeatherPrediction) {
    // If very windy tomorrow and running out of time, retract
    // -or-
3
    // Allow deployment if not very windy tomorrow
    //// -or-
6
    // if not running out of time
7
8
    membership Value Conditional = Math.max(
9
     not (windy.getMembershipValueForVeryWindy((int)
         windspeed knots average future)),
10
     harvester.
        get Membership Value For Plenty Of Allocated Visibility Minutes Remaining \\
11
     ws.iUsedAllItsAllocatedVisibilityMinutesPerMonth\\
12
```

```
13 );
14 } else {
15 membershipValueConditional = 1;
16 }
```

We briefly discuss the listing directly above in Section 3.6.2.3 and do not repeat that discussion here, but refer to the result of the code directly above as conditional prediction because it depends on whether Fuzzy is using weather prediction.

The two code listings directly above translate into the statement result = (conditional prediction AND (windy AND ((not approaching quiet hours) OR (plenty of allocated visibility minutes remaining))))
which, in turn, can be expressed by the following linguistic statement:

If weather prediction is not being used, then the resulting membership value is higher than otherwise when the weather is windy and if either of the following two cases are occurring:

- 1. the time is not approaching quiet hours or
- 2. plenty of allocated visibility minutes are remaining.

For example, if the time of day is approaching quiet hours but there are plenty of allocated visibility minutes remaining, then the harvester will tend to deploy if the weather is windy.

For another example, if the time of day is approaching quiet hours and the harvester has consumed most of its visibility minutes, the harvester will tend to not deploy, even if the weather is windy. Not only will the fuzzy code of version 1.2 of Fuzzy tend not to deploy, but the code will tend to retract under those conditions.

A.22.4 Effect the effect of Fuzzy-Crisp's "plenty-of-allocated-visibility-minutesare-remaining" condition

The membership value of the harvester in the fuzzy set PLENTY OF ALLOCATED MIN-UTES REMAINING is calculated by the following code:

```
3
     float membership Value = 1 -
         getFractionVisbilePlusTimeToRetractMonthly(
         maximumMinutesAllowedToBeVisible);
 4
5
     float ADJUSTMENT = (float) -0.1; // account for adjective "Plenty
              The plenty of time left overcomes the negative adjustment
6
     membershipValue += ADJUSTMENT;
 7
8
     if (membership Value > 1) {
9
10
      membershipValue = 1;
11
12
     } else if (membershipValue < 0) {</pre>
13
14
      membershipValue = 0;
15
16
     }
17
18
     return (membership Value);
19
20
    }
```

An example plot of the membership value function is shown in Figure 42 on page 261. The membership value function is a linear function dependent on the visibility minutes the harvester has consumed during the month and dependent on two constants: the retraction time (Section A.3.5) and an adjustment factor of -0.1.

That adjustment factor had been intended to account for the adjective *plenty* in the linguistic variable's name PLENTY OF ALLOCATED MINUTES REMAINING. It was intended to shift the x-axis from the perspective that if the adjustment factor were zero, then the code would be finding the harvester's membership value in the set A MEDIUM AMOUNT OF MINUTES REMAINING. However, the way that the adjustment factor is implemented in version 1.2 of Fuzzy actually shifts the y-axis.

That unintended implementation may be part of the reason that Fuzzy-Crisp 1.2 is not performing comparably to Static and Aging for OLAs 3 and 4. Thus, let us test Fuzzy-Crisp 1.3 where the adjustment factor shifts the x-axis. The Fuzzy-Crisp 1.3, where the only difference in code from Fuzzy-Crisp 1.2 is that Fuzzy-Crisp 1.3 shifts the x-axis instead of the y-axis as shown in the code listing immediately below achieves

• an average NetNorm() score of 0.367 for OLA 3, and

• an average MQNetNorm() score of 0.289 for OLA 4,

which is much better than Fuzzy-Crisp 1.2 which scored 0.221 and 0.191, respectively, but still not as good as the top-scoring Aging for OLAs 3 and 4, which scored 0.402 and 0.371 respectively (Table 4 on page 84) and less than the version of Fuzzy-Crisp 1.2 that does not use its fuzzy code to retract (Section A.22.2), which scored 0.386 and 0.353 respectively. (Per station results of Fuzzy-Crisp 1.3 are shown in Table 81 on page 325).

```
public float
getMembershipValueForPlentyOfAllocatedVisibilityMinutesRemainingShiftX(
   long maximumMinutesAllowedToBeVisible) {
   float ADJUSTMENT = (float) 0.9; // account for adjective "Plenty".
        The plenty of time left overcomes the fractional adjustment

   float membershipValue = 1 -
        getFractionVisibilePlusTimeToRetractMonthly((int) ADJUSTMENT *
        maximumMinutesAllowedToBeVisible);

   if (membershipValue > 1) {
        membershipValue = 1;
   } else if (membershipValue < 0) {
        membershipValue = 0;
   }

   return(membershipValue);
}</pre>
```

A.22.5 Data of exploration the effect of RETRACTION THRESHOLD DIF-FERENCE in Fuzzy

Below is the data to which we refer from Section A.22.1.

A.22.5.1 OLA 1 Please see Table 75.

Table 75: Results of the processing of OLA 1 by Fuzzy-Crsip (variant 0x0, i.e., current weather only, transitions unlimited) Rev. 1.2 when the subtraction Deployment Threshold less Retraction Threshold equals 0 and when it equals 1

					_																		
MQNetNorm	0.36	0.36	0.39	0.39	0.40	0.40	0.44	0.44	0.34	0.34	0.36	0.36	0.41	0.41	0.45	0.45	0.52	0.52	0.48	0.48	0.45	0.45	0.40
МОМР	0.62	0.62	0.75	0.75	99.0	99.0	69.0	69.0	0.48	0.48	0.60	0.60	0.67	0.67	62.0	0.79	08.0	0.80	0.72	0.72	69.0	0.69	0.66
тто ИзэИ	0.58	0.58	0.53	0.53	0.62	0.62	0.63	0.63	0.70	0.70	09.0	0.60	0.62	0.62	0.57	0.57	0.65	0.65	0.67	0.67	99.0	99.0	0.61
r(12)	1	-	1	1	1	-	1	1	1	1	-	1	1	1	1	1	1	1	-	1	1	1	
d(12) r(12)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.2
(11)	-	-	-		1		1	1	1	1	_	1		1	1	1	1	1	_	1	_	_	=
$\begin{pmatrix} d(11) \\ r(11) \end{pmatrix} \begin{pmatrix} r(11) \\ r(11) \end{pmatrix}$	7.0	0.5	70.	0.5	7.	0.5	0.5	ro.	0.5	5.	0.5	.5	0.5	٠. ت	0.5	.5	0.5	ъ.	0.5	ъ.	0.5	0.5	0.5
)) d(0	_	-	_	0	_	0	_	0	0	_	0	_	_	0 =	0	0	0	_	0	。 —	$\stackrel{\circ}{+}$	o =
	-		П	_	Т	-	-	_	1	1	_	1	_	1	1	1	-	-	_	1			_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	61	61		-	-	-	1	П	1	1	-	1	-	1	1	1	-	-	-	1	- -	-	
(9) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	0.5	0.57	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
	-	-	1	1	1	_	-	1	1	1	_	1	_	1	1	1	-	1	_	1		4	
	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(7)	-	-	-1	1	1	-	-	1	1	1	П	1	-	1	1	1	-	1	-	1		-	
	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.2
$r(5) \mid d(6) \mid r(6) \mid d(7) \mid r(7)$ degree of membership and $r(n)$	-	-	-	-	-	-	-	-	1	1	-	1	-	П	1	1	-	-	-	-	_	-	_
	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	-	-	-	П	1	-	1	1	1	1	-	1	-	1	1	1	-	1	-	1	1	-	
d(4) r(4) d(5) d of the combined	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
$\frac{r(4)}{r(4)}$	-	-	1	1	1	-	1	1	1	1	П	1	-	1	1	1	1	1	-	1	1	-	
(4) (4) old of	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
$\begin{vmatrix} a(2) & r(2) \\ a(3) & r(3) \end{vmatrix}$ is the deployment threshol	_	-	П	-	П	-	-	П	1	1	-	1	-	П	1	1	-	-	-	П	-	-	
(3)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(2)	L	П	1	1	-	П	1	1	1	1	П	1	П	1	1	1	1	1	1	1		-	
	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
$d(1) \begin{vmatrix} r(1) \\ r(d) \end{vmatrix}$	1	-	1	1	1	-	1	1	1	1	П	1	-	1	1	1	-	1	-	1		-	
(d(1))	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
noitst	KATL	KATL	KBOS	KBOS	KBWI	KBWI	KCLE	KCLE	KCLT	KCLT	KCVG	KCVG	KDCA	KDCA	KDEN	KDEN	KDFW	KDFW	KDTW	KDTW	KEUG	KEUG	KIAH
Deployment Threshold less Retraction Threshold	-		0	1 Y	0	1 7		1 F		1 F	0	-		1 K		1 k		1 X		1 X		\dashv	0

Table 75: (continued)

0.40	0.45	0.45	0.64	0.64	0.41	0.41	0.50	0.50	0.32	0.32	0.40	0.40	0.39	0.39	0.41	0.41	0.31	0.31	0.37	0.37	0.47	0.47	0.39	0.39	0.31	0.31	0.47	0.47	09.0	09.0	0.57	0.57	0.41	0.41	0.38	0.38
0.66	0.77	0.77	0.83	0.83	0.74	0.74	0.74	0.74	09.0	09.0	0.62	0.62	29.0	0.67	89.0	0.68	0.49	0.49	09.0	0.60	0.63	0.63	0.57	0.57	62.0	0.79	69.0	69.0	0.95	0.95	0.85	0.85	0.64	0.64	0.55	0.55
0.61	0.59	0.59	0.77	0.77	0.56	0.56	29.0	79.0	0.53	0.53	0.64	0.64	0.59	0.59	09.0	09.0	0.64	0.64	0.62	0.62	92.0	92.0	89.0	0.68	0.40	0.40	69.0	69.0	0.63	0.63	29.0	29.0	0.63	0.63	0.70	0.70
	-	1	1	1	-	1	1	-	-	-	1	1	1	1	1	1	-	1	-	1	1	1	_	1	1	1	1	1	1	1	1	1	1	1	1	1
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	1	-	1	-	-	-	1	-	-	-	1	-	1	-	1	П	-	-	-	-	1	-	-	П	1	-	1	-	1	-	1	-	1	1	1	-
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	-	-	1	-	-	-	1	-	-	-	1	-	1	-	1	1	-	-	-	-	1	-	-	1	1	-	1	-	1	-	1	-	1	1	1	1
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	1	-	1		-		1	-	-	-	1		ī		1	1	-		-		1		-	1	1		-		1		1		1	1	1	_
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5
	T	-	1	-	-	-	1		-		1	-	1	-	1	-	-	-	-	-	1	-	_	-	1	-	1	-	1	-	1	-	1	1	1	-
0.5		0.5	0.5	0.5	0.5		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	-	-	1	1	1	1	1	-	-	-	1	1	1	1	1	1	-	1	1	1	1	1	-	1	1	1	1	1	1	1	1	1	1	1	1	-
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	1	1	1	П	-	П	1	-	-	-	1	П	1	П	1	1	-	П	-	П	1	П	_	1	91	91	1	П	1	П	1	П	1	1	1	1
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
		-	1	-	-	-	1		-		1	-	1	-	1	П	-	-	-	-	1	-	_	П	31	31	1	-	1	-	1	-	1	1	1	-
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
_	1	1	1	1	-	1	1	-	-	-	1	1	1	1	1	1	1	1	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0.5		0.5		0.5	0.5		0.5	0.5	0.5		0.5		0.5			0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5		0.5		0.5		0.5	0.5		0.5	0.5	0.5
-	1	П	1		-		1	-	-	-	1		1		1	П	-		-		1		-	П	1		1		1		1		1	1	П	1
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
-	Т	П	1	П	-	П	1	-	-	-	1	П	1	П	1	1	-	П	-	П	1	П	-	1	1	П	1	П	1	П	1	П	1	1	1	1
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
-	1		1	1	1	1	1	П	1	П	1	1	1	1	1	1	1	1	1	1	1	1	П	1	1	1	1	1	1	1	1	1	1	1		1
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
KIAH	KLAS	KLAS	KLAX	KLAX	KLGA	KLGA	KMCI	KMCI	KMCO	KMCO	KMSP	KMSP	KORD	KORD	KPHL	KPHL	KPHX	KPHX	KPIT	KPIT	KSAC	KSAC	KSAN	KSAN	KSAT	KSAT	KSEA	KSEA	KSFO	KSFO	KSMX	KSMX	KSTL	KSTL	KTPA	KTPA
	0	П	0		0		0	-	0	-	0		0	-	_	-		-	0		0			-	0		0		0		0			1		

A.22.5.2 OLA 2 Please see Table 76 on the next page.

Table 76: Results of the processing of OLA 2 by Fuzzy-Crisp (variant 0x0, i.e., current weather only, transitions unlimited) Rev. 1.2 when the subtraction Deployment Threshold less Retraction Threshold equals 0 and when it equals 1

MQNetNorm	0.42	77.0	0.39	0.39	0.39	0.43	0.42	0.42	0.36	0.00	0.35	0.45	0.49	0.49	0.48	0.48	0.45	0.45	0.45	0.45	0.45	0.27
МОМР	99.0	0.0	0.75	99.0	0.66	0.73	0.64	0.64	09.0	30.0	0.80	92.0	2 8 0	0.84	0.72	0.72	0.69	28.0	0.84	0.77	-	0.79
m to N de N	0.60	00.0	0.53	0.59	0.59	0.59	0.65	0.65	09.0	0.00	0.44	0.57	20.00	0.58	29.0	0.67	0.66	0.00	0.53	0.59	0.59	0.34
r(12)		4 -		1	1			-		-		1	-		1	1		-			- -	_
d(12)	0.5	0 0	0.5	0.5	0.5	D. D.	0.5	0.5	0.5	. n	0.5	0.5	0 0	5.0	0.5	0.5	о. го. го) L	0.5	0.5	0.5	0.2
r(11)		4 -		_	1		1		1			1			1	1				1.	 	=
2	0.5	j 1	0.5	0.5	.5	v. 0.	5.5	0.5	0.5	o n	0.5	0.5 7	j 10	0.5	0.5	5.5	т. о г. л	, rc	0.5	0.5	2 1	0.5
н н н н н н н н н н н н н н н н н н н		+					t			+				_							+	=
0) r(10)	1 1	+	2 -	5 1		61	+	5 1	5 1	+	61	5 1	1 -		5	5		1		10.1		_
$\left\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	0.5		0.5	0.5	0.8	0.0 0.0	0.1	0.5	0.5	5 6	0.5	0.5	0	0.5	0.5	0.5	0.5	Ö	0.5	0.5		0.5
(9)	61	+			1		╄	91		+		1		-		-		Ŧ			4	_
(d(9))	0.5	0 0	0.5	0.5	0.5	0.0 7.00	0.5	0.5	0.5		0.5	0.5	0 0	0.5	0.5	0.5	0 0 0	0 0	0.5	0.5	U. J	0.5
(8)	91	+		91			-	П	-			Т-	1		-	1					4	_
(8) (a) is the	0.5	9 0	0.5	0.5	0.5	0.0 7.0	0.5	0.5	0.5	о о	0.5	0.5	0.0	0.5	0.5	0.5	O O		0.5	0.5	U.5	0.5
r(au)		+ +		1	1		61	61	1	٦ -		1	-		1	1		-			٦,	_
d(6) r(6) d(7) r(7) of membership and $r(n)$	0.5	0 0	0.5	0.5	0.5	0.0 5.0	0.5	0.5	0.5	о О	0.5	0.5)))	0.5	0.5	0.5	0.0 70.0		0.5	0.5	0.5	0.2
r(6)		4 +	- I	31	31		91	91	1	1 61	61	1	1 6	91	1	1		Ŧ 19	61	1	-	_
	0.0 70.70	9 0	0.5	0.5	0.5	0 0 0	0.5	0.5	0.5	о О	0.5	0.5		0.5	0.5	0.5	0.0 70.0) (0.5	0.5	U.5	0.5
r(5) degree	61	,			1		91	91	1	1 5	91	1	1 6	91	1	1				П.	<u> </u>	_
$\frac{d(5)}{d(5)}$	0.5	0 0	0.5	0.5	0.5	O. O.	0.5	0.5	0.5	о Б	0.5	0.5	5.0	0.5	0.5	0.5	0.0 70.0		0.5	0.5	0.5	0.5
$\begin{vmatrix} r(4) & d(5) \\ r(4) & d(5) \end{vmatrix}$		-		1	1			1	1	7 5	91	1	-		1	1		, lo	91		- -	_
a(4)	0.5	5 0	0.5	0.5	0.5	0.0 5.0	0.5	0.5	9.0	о Э	0.5	0.5	0.0	0.5	0.5	0.5	0.0 7.0		0.5	0.5	0.5	0.5
r(3)		4 +		1	1				-	-		1	÷ 19	61	1	1		-			- -	_
$a(2) \mid r(2) \mid a(3) \mid r(3) \mid$ is the deployment threshol	5.0		0.5	0.5	0.5	0.0 7.0	0.5	0.5	9'0	о Б	0.5	5.0	5.0	0.5	0.5	0.5	ο. ο. π	0 70	0.5	0.5	0.5	0.2
r(2) deploy		4 -		1	1			ī				1 -	-		1	1						-
$\frac{d(2)}{d(2)}$	0.5)))	0.5	0.5	0.5	0.0 7.0	0.5	0.5	0.5	о Э л	0.5	0.5	5. 5.	0.5	0.5	0.5	0.0 70.07		0.5	0.5	U.5	0.5
		٠,		1	1				1 -			1 -			1	1					7 2	91
$d(1) \left \begin{array}{c} r(1) \\ r(1) \end{array} \right $ where $d(n)$	0.0 7.0	0 0	0.5	0.5	0.5	0 0 v. v.	0.5	0.5	0.5) D	0.5	0.5 7))))	0.5	0.5	0.5	0 0 0 0) C	0.0	0.5	U.5	0.2
noitata	KATL KATI.	77.5	KBOS	KBWI	KBWI	KCLE	KCLT	KCLT	KCVG	5 0 0 0	KDCA	KDEN	KDFW	KDFW	KDTW	KDTW	KEUG	KIAH	KIAH	KLAS	KLAS #	KLAX
Deployment Threshold less Retraction Threshold	0 -	+	> x x	0 🛪	1 K	0 - x x	+		0 k	+	2 H	0 L	+		_	1 K	0 - X X	+		-	+	0 X

Table 76: (continued)

0.27	0.38	0.38	0.50	0.50	0.38	0.38	0.37	0.37	0.49	0.49	0.38	0.38	0.29	0.29	0.23	0.23	0.53	0.53	0.48	0.48	0.34	0.34	0.45	0.45	09.0	09.0	0.57	0.57	0.37	0.37	0.42	0.42
62.0	0.82	0.82	0.74	0.74	89.0	0.68	0.65	0.65	0.74	0.74	0.73	0.73	0.67	0.67	22.0	0.77	0.73	0.73	0.65	0.65	0.82	0.82	02.0	0.70	0.95	0.95	0.85	0.85	99.0	99.0	0.74	0.74
0.34	0.46	0.46	29.0	0.67	0.56	0.56	0.57	0.57	29.0	0.67	0.52	0.52	0.43	0.43	0.29	0.29	0.73	0.73	0.74	0.74	0.42	0.42	0.64	0.64	0.63	0.63	29.0	0.67	0.56	0.56	0.58	0.58
	91	91	-	-	-	-	1	-	1	1	1	-	1	-	1	-	1	-	_	-	1	-	1	П	-	-	1	-	1	-	_	1
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	9.0	0.5	0.5	0.5	9.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
_	-	-	-	-	-	-	1	-		1	1	-		-	1	-	_		-	-	1	-	91	91			1		-	-	91	91
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
1	1	-	-		91	91	91	91	1	1	1	П	91	91	91	91	1		-	П	1	П	1	-			1		-	П	91	91
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	1		-	-	91	91	1	-	1	1	1	-	1	-	1	-	1	-	-	-	1	-	1	1		-	1	-	-	-	-	
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	1	-	-	-	91	91	1	-	1	1	61	61	91	91	1	-	1	-	-	-	31	31	1	1		-	1	-	31	31	91	91
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	-1	-	-		-	-	1	-	91	91	1	-	61	61	1	-	1		-	-	31	31	1	П			1		-	-	91	91
0.5	0.5	5.5	0.5	0.5	0.5	0.5	0.5	.5	0.5	5.	0.5	5.	0.5	0.5	5.		0.5	ω.	5.	5.	5.	0.5	0.5	π	ņ		n	τĊ		ro.	τċ	0.5
_	Ĺ	_	Ľ	_	_	_		_)	_	ו	_	_	_	0	0	0	0	0	_)	_)	0.	Ö	_	0	0	0	_	0	
	1		-	-		1		1		1 0	1 0	1	1	1	91 (61 0	_		1	-	91 (1	1 0	1 0	1 0	1 0	1 0.	1 0	1 0	91 0	
=	5 1	.5	0.5 1 (1 1	.5 1	1	-	5 1		.5 1	0.5 1 0	-	0.5 1 (1	.5 91	91		61		П	91			1	0.5 1 0	1 1	.5 1	_	5 1	0.5 1 0		91
5 1	5 1	.5	5 1	1 1	.5 1	.5 1	.5	5 1	.5 1	.5 1	1	-	Ţ	1	.5 91	.5 91	61	0.5 61	-	П	1 0.5 91	91	1	1	1	1 1	.5 1	1 1	5 1	5 1	91	0.5 91
0.5 1	1 0.5 1	.5	5 1 0.5 1	1 0.5 1	5 1 0.5 1	1 0.5 1	1 0.5 1	5 1	1 0.5 1	5 1 0.5 1	1	1 0.5 1	0.5 1	0.5	5 1 0.5 91	1 0.5 91	0.5 61	31 0.5 61	-	5 1 0.5 1	0.5 91	91 0.5 91	5 1 0.5 1	1 0.5 1	1	5 1 0.5 1	5 1 0.5 1	1 1	5 1 0.5 1	5 1	0.5 91	5 91 0.5 91
1 0.5 1	1 0.5 1	1 0.5 1	5 1 0.5 1	5 1 0.5 1	5 1 0.5 1	5 1 0.5 1	1 0.5 1	1 0.5 1	5 1 0.5 1	5 1 0.5 1	1 0.5 1	1 0.5 1	61 0.5 1	5 61 0.5 1	5 1 0.5 91	0.5 1 0.5 91	31 0.5 61	0.5 31 0.5 61	5 1 0.5 1	0.5 1 0.5 1	91 0.5 91	0.5 91 0.5 91	5 1 0.5 1	5 1 0.5 1	5 1 0.5 1	5 1 0.5 1	1 0.5 1	5 1 0.5 1	5 1 0.5 1	5 1 0.5 1	5 91 0.5 91	0.5 91 0.5 91
0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1	5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1	61 0.5 61 0.5 1	61 0.5 61 0.5 1	61 0.5 1 0.5 91	61 0.5 1 0.5 91	61 0.5 31 0.5 61	61 0.5 31 0.5 61	1 0.5 1 0.5 1	1 0.5 1 0.5 1	61 0.5 91 0.5 91	61 0.5 91 0.5 91	1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1	5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1	0.5 91 0.5 91	61 0.5 91 0.5 91
1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1	61 0.5 61 0.5 1	61 0.5 61 0.5 1	61 0.5 1 0.5 91	61 0.5 1 0.5 91	61 0.5 31 0.5 61	61 0.5 31 0.5 61	1 0.5 1 0.5 1	1 0.5 1 0.5 1	61 0.5 91 0.5 91	61 0.5 91 0.5 91	1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1	61 0.5 91 0.5 91	61 0.5 91 0.5 91
1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1	0.5 61 0.5 61 0.5 1	0.5 61 0.5 61 0.5 1	61 0.5 1 0.5 91	1 0.5 61 0.5 1 0.5 91	61 0.5 31 0.5 61	1 0.5 61 0.5 31 0.5 61	1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 61 0.5 91 0.5 91	61 0.5 91 0.5 91	1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1	1 0.5 61 0.5 91 0.5 91	61 0.5 91 0.5 91
5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1	5 1 0.5 1 0.5 1 0.5 1	5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1	5 1 0.5 1 0.5 1 0.5 1 0.5 1	5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1	91 0.5 61 0.5 61 0.5 1	5 91 0.5 61 0.5 61 0.5 1	1 0.5 61 0.5 1 0.5 91	1 0.5 61 0.5 1 0.5 91	1 0.5 61 0.5 31 0.5 61	1 0.5 61 0.5 31 0.5 61	5 1 0.5 1 0.5 1 0.5 1	5 1 0.5 1 0.5 1 0.5 1	1 0.5 61 0.5 91 0.5 91	1 0.5 61 0.5 91 0.5 91	1 0.5 1 0.5 1 0.5 1 0.5 1	5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1	5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1	1 0.5 61 0.5 91 0.5 91	5 1 0.5 61 0.5 91 0.5 91
5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1	0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1	5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1	91 0.5 61 0.5 61 0.5 1	5 91 0.5 61 0.5 61 0.5 1	1 0.5 61 0.5 1 0.5 91	1 0.5 1 0.5 61 0.5 1 0.5 91	1 0.5 1 0.5 61 0.5 31 0.5 61	1 0.5 61 0.5 31 0.5 61	1 0.5 1 0.5 1 0.5 1 0.5 1	5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 61 0.5 91 0.5 91	1 0.5 61 0.5 91 0.5 91	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1	5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 61 0.5 91 0.5 91	5 1 0.5 61 0.5 91 0.5 91
1 $ 0.5 $ $ 1 $ $ 0.5 $ $ 1 $ $ 0.5 $ $ 1 $ $ 0.5 $ $ 1$	1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1	5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 91 0.5 61 0.5 61 0.5 1	1 0.5 91 0.5 61 0.5 61 0.5 1	1 0.5 1 0.5 61 0.5 1 0.5 91	1 0.5 1 0.5 61 0.5 1 0.5 91	1 0.5 1 0.5 61 0.5 31 0.5 61	1 0.5 1 0.5 61 0.5 31 0.5 61	0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	0.5 1 0.5 1 0.5 61 0.5 91 0.5 91	1 0.5 1 0.5 61 0.5 91 0.5 91	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 61 0.5 91 0.5 91	1 0.5 1 0.5 61 0.5 91 0.5 91
$\mid 0.5 \mid 91 \mid \mid 0.5 \mid \mid 1 \mid \mid 0.5 \mid \mid 1 \mid \mid 0.5 \mid \mid 1 \mid \mid 0.5 \mid \mid 1 \mid \mid 0.5 \mid \mid 1 \mid \mid 0.5 \mid \mid 1 \mid \mid$	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 91 0.5 61 0.5 61 0.5 1	0.5 1 0.5 91 0.5 61 0.5 61 0.5 1	1 0.5 1 0.5 61 0.5 1 0.5 91	1 0.5 1 0.5 1 0.5 61 0.5 61 0.5 91	1 0.5 1 0.5 61 0.5 31 0.5 61	1 0.5 1 0.5 1 0.5 61 0.5 61 0.5 81 0.5 61	91 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	0.5 1 0.5 1 0.5 61 0.5 91 0.5 91	91 0.5 1 0.5 1 0.5 61 0.5 91 0.5 91	0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 61 0.5 91 0.5 91	1 0.5 1 0.5 61 0.5 91 0.5 91
$ 91 \parallel 0.5 \mid 1 \parallel 0.5 \mid 1 \parallel 0.5 \mid 1 \parallel 0.5 \mid 1 \parallel 0.5 \mid 1 \parallel 0.5 \mid 1 \parallel$	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 91 0.5 61 0.5 61 0.5 1 1	5 1 0.5 1 0.5 91 0.5 61 0.5 61 0.5 1	0.5 1 0.5 1 0.5 1 0.5 1 0.5 61 0.5 61 0.5 1 0.5 91	1 0.5 1 0.5 1 0.5 61 0.5 61 0.5 91	1 0.5 1 0.5 1 0.5 61 0.5 61 0.5 61 0.5	1 0.5 1 0.5 1 0.5 61 0.5 61 0.5 81 0.5 61	91 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	91 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	91 0.5 1 0.5 1 0.5 61 0.5 91 0.5 91	91 0.5 1 0.5 1 0.5 61 0.5 91 0.5 91	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	1 0.5 1 0.5 1 0.5 61 0.5 91 0.5 91	1 0.5 1 0.5 1 0.5 61 0.5 91 0.5 91

A.22.5.3 OLA 3 Please see Table 77 on the following page.

Table 77: Results of the processing of OLA 3 by Fuzzy-Crisp (variant 0x0, i.e., current weather only, transitions unlimited) Rev. 1.2 when the subtraction Deployment Threshold less Retraction Threshold equals 0 and when it equals 1

HI IO N 1 20 AT 22 IAI	17	0.17	0.15	0.15	50	0.20	0.15	0.15	0.18	0.18	0.12	0.12	0.17	0.17	0.16	0.15	0.15	0.17	17	0.23	0.23	17	0.17	0.18
mro M49 V Q M	3 0.17		-		37 0.20		-				_	-		-		+			-		\rightarrow	88 0.17	_	
МОМР	0.83		-	98.0	_	3 0.87	⊢	3 0.82	-	_	_	\rightarrow		-	0.85	+		-	-		\rightarrow		_	0.83 0.83
M10 V 49 V	0.2	0.21	0.17	0.17	0.23	0.23	0.18	0.18	0.26	0.26	0.15	0.15	0.19	0.13	0.19	0.17	0.17	0.20	0.20	0.26	0.26	0.19	0.19	0.21
r(12)	-	-	91	91	31	31	61	61	61	61	-	-	91	91	31	H	-	61	61	-	-	91	91	61
d(12)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0 0 10 1	0.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.2	0.5	0.5
$d(11) \begin{vmatrix} r(11) & d(12) & r(12) \\ r(12) & r(12) \end{vmatrix}$	91	91	61	61	61	61	91	91	91	91	-	_	61	10	01	91	91	_	-	91	91		1	1 1
$\left\ \frac{d(11)}{d(11)}\right\ $	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0 0 10 1	0.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	91	91	61	61	91	91	61	61	91	91	91	91	91	9.1	61	61	61	91	91	31	31	31	31	61 61
a(8) r(8) a(9) r(9) a(10) r(10) is the running average size minutes for	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.0 10.1	0.0	0.0 0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
$\frac{\Gamma(9)}{g}$	61	61	1	_	_	1	61	61	1	1	91	91		1 -		91	91	_	1	1	1	91	91	1 1
(d(9)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0 0 10 1	0.0	0.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(8)	91	91	31	31	31	31	-	-	31	31	-	-	91	9.1	61	31	31	31	31	31	31	31	31	61
		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.0	0.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
$\begin{pmatrix} r(7) \\ r(7) \end{pmatrix}$	L	1	-	-	-	1	61	61	1	1	-	1		1 5	91	91	91	-	1	91	91	31	31	91
d(6) $r(6)$ $d(7)$ $r(7)$ of membership and $r(n)$	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.0 10.0	0.0	0.0	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5
r(6)	-			-		-	61		31		61			4		+	61	-	_	31	-		4	61
	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.0	0.0	0.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
) r(5)		91	L	-	-		61		31					+	31 6	-			61			91		61
	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.0	0.0	0.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
$\begin{array}{c c} & & \\ & & \\ & & \\ \end{array}$	16	16			-		<u> </u>							+	91	╀				-				61
	0.5	0.5	H				3.0	0.5	0.5	0.5	0.5	3.0	0 0	Ŧ		t	0.5	3.0	0.5	0.5	 E.	0	9.0	0.5
$\begin{array}{c c} & & \\ & & \\ & & \\ \end{array}$	5 31	5 31	5 61		5 31		_	5	0.5 91		5	_	5 91	+	5 61	+	5			5 61		5		5 91 5 91
) (4(3) 0) (3)	0.	0.5	H				0.5					=	0.0	Ŧ	0.5	t	0.5			0.5		0.5		0.5
$\begin{array}{c c} & & \\ \hline & \\ \hline & & \\ \hline & \\ \hline & \\ \hline & & \\ \hline & \\ \hline & \\ \hline & \\ \hline & \\ \hline & \\ \hline & \\ \hline & \\ \hline & \\ \hline & \\$	5 91	5 91	5 61		5 91			5	5 61		5 91		5 61	+	5 31	+	5			5 91	\dashv	5 61	_	5 2 1
$\begin{pmatrix} 1 & a & b \\ a & b & c \\ a & b & c \\ a & b & c \\ a & b & c \\ a & c & c \\ a & c & c \\ b & c & c \\ a & c & c \\ c & c & c \\ c & c & c \\ c & c &$	1 1 0.	1 0.5	1 0.5		1 0.5		0.5		1 0.5		1 0.5	=	0.5	Ŧ	0.5	0.	0.5	1 0.5		0.5	1	1 0.5	=	0.5
d(1) r(1) d(2) r(2) d(3) r(3) d(4) r(4) d(5) where $d(n)$ is the deployment threshold of the combined	5 6	0.5 61	0.5 91		0.5 91		0.5	1.5	0.5 61		0.5 91	\dashv	0.5 91	+	0.5	5	0.5	0.5 31	_	0.5 1	\dashv	0.5 61	_	0.5 1
d (d)	H		H				H					=		+		ŧ					=		-	
noitest	KATL	KATL	KBOS	KBOS	KBWI	KBWI	KCLE	KCLE	KCLT	KCLT	KCVG	KCVG	KDCA	ADCA	KDEN	KDFW	KDFW	KDTW	KDTW	KENG	KENG	KIAH	KIAH	KLAS KLAS
Deployment Threshold less Retraction Threshold	0		0	-	0	1	0	-	0	1	0	-	0 -	1	O T	0		0	1	0	1	0		0 1

0.22	0.22	0.14	0.14	0.16	0.16	0.16	0.16	0.14	0.14	0.14	0.14	0.18	0.18	0.18	0.18	0.17	0.17	0.27	0.27	0.21	0.21	0.17	0.17	0.19	0.19	0.18	0.18	0.32	0.32	0.28	0.28	0.18	0.18
98.0	98.0	98.0	98.0	88.0	0.88	0.81	0.81	0.82	0.82	0.82	0.82	0.84	0.84	0.71	0.71	0.83	0.83	0.83	0.83	0.74	0.74	_	98.0	0.85	0.85	0.93	0.93	68.0	68.0	0.64	0.64	0.71	0.71
0.26	0.26	0.16	0.16	0.19	0.19	0.19	0.19	0.17	0.17	0.17	0.17	0.22	0.22	0.25	0.25	0.21	0.21	0.32	0.32	0.29	0.29	0.20	0.20	0.23	0.23	0.20	0.20	98.0	0.36	0.43	0.43	0.26	0.26
-	-	1	-	1	-	31	31	91	91	31	31	91	91	1	-	-	-	1	-	ī	-	91	91	61	61	1	1	1	-	1	-	61	61
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
1	-	91	91	1	-	61	61	1	-	1	-	31	31	1	-	-	-	31	31	ī	-	1	-	1		ī	1	1	-	ī	-	31	31
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5	0.5	0.5	0.5	0.5
31	31	91	91	_	1	91	91	31	31	91	91	91	91	61	61	91	91	91	91	61	61	61	61	_		91	91	31	31	1	_	61	61
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
31	31	91	91	I		Ţ		91	91	91	91	1		61	61	_	_	61	61	61	61	31	31	1		61	61	1		1	_	1	_
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
-	-	31	31	-	-	Ţ	-	61	61	1	-	31	31	31	31	-	-	31	31	61	61	61	61	-		91	91	-	-	1	-	31	31
0.5	0.5		0.5		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5	0.5	0.5	0.5	0.5
	П	1	-	31	31	1	П	61	61	31	31	1		91	91	-	-	31	31	1	П	91	91	1		61	61	31	31	1	-	31	31
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
91	91	91	91	61	61	61	61	91	91	1	-	1		91	91	-	-	31	31	T	-	61	61	1		1	1	1	-	T	-	1	
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
	-	61	61	61	61	31	31	1	-	31	31	31	31	1	-	91	91	-	-	61	61	61	61	1	-	61	61	1	-	1	-	61	61
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
31	31	91	91	1	1	1	1	16	91	61	61	91	91	61	61	-	-	91	91	1	1	1	1	1	1	91	91	31	31	1	-	1	1
	0.5	0.5	0.5		0.5	0.5	0.5	0.5			0.5		0.5	0.5	0.5		0.5		0.5	0.5	0.5	0.5	0.5		0.5		0.5	0.5	0.5		0.5	0.5	0.5
91	91	1	-	-	П	31	31	1	П	31	31	1	-	91	91	91	91	-	-	31	31	61	61	91	91	1	1	31	31	1	-	1	
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
31	31	91	91	91	91	91	91	61	61	1	1	91	91	1	П	61	61	91	91	1	1	91	91	1	П	61	61	31	31	1	П	1	
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	31		-		П	H	91	91				31	31	31			91	91		31		91		31		I	1	-	П	I	-		91
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
KLAX	KLAX	KLGA	KLGA	KMCI	$_{ m KMCI}$	KMCO	$_{\rm KMCO}$	$_{ m KMSP}$	$_{\rm KMSP}$	KORD	KORD	KPHL	KPHL	KPHX	KPHX	KPIT	KPIT	KSAC	$_{\mathrm{KSAC}}$	KSAN	$_{ m KSAN}$	$_{ m KSAT}$	KSAT	KSEA	KSEA	KSFO	$_{ m KSFO}$	KSMX	$_{\mathrm{KSMX}}$	KSTL	KSTL	KTPA	KTPA
0	1	0	П	0	1	0	-	0	1	0	1	0	-	0	П	0	П	0	-	0	1	0	1	0	1	0	1	0	1	0	П	0	-

A.22.5.4 OLA 4 Please see Table 78 on the next page.

Table 78: Results of the processing of OLA 4 by Fuzzy-Crisp (variant 0x0, i.e., current weather only, transitions unlimited) Rev. 1.2 when the subtraction Deployment Threshold less Retraction Threshold equals 0 and when it equals 1

MQNetNorm	0.17	0.17	0.15	0.15	0.20	0.20	0.15	0.21	0.21	0.14	0.14	0.19	0.19	0.17	0.15	0.15	0.17	0.17	0.28	0.28	0.18	0.18	0.17	0.22
МФМР	98.0	98.0	06.0	0.90	0.85	0.85	0.87	0.80	08.0	0.85	0.85	06.0	0.90	98.0	0.91	0.91	98.0	98.0	0.92	0.92	06.0	0.90	0.84	0.88
тто И зе И	0.20	0.20	0.17	0.17	0.24	0.24	0.18	0.26	0.26	0.16	0.16	0.21	0.21	0.19	0.16	0.16	0.19	0.19	0.31	0.31	0.20	0.20	0.20	0.25
.(12)	-	1	91	91	91	91	91	16	91	91	91	91	91	61	ī	-	91	91	91	91	91	91	91 91	61
(12)	0.5	0.5	0.5	0.5	0.5	0.5	0 0 10 10	0.5	0.5	0.5	0.5	0.5	0.5	ر ت ت	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
$a(11) \begin{vmatrix} f(11) & f(12) & f(12) \\ f(12) & f(12) \end{vmatrix}$	91	91	91	91	61	61	16	16	91	61	61	61	61	19	91	91	1	1	91	91	_	1	91	_
11) r(0.5		0. C	-		0.5		0.5	+	o.o.		0.5			0.5	_	5.0			0.5
	0					+		t			_		+		t					_				=
(100) (100) mtes for	91				91	-	61	-					+	9 19	+			_		91				31
d(8) r(8) d(9) r(9) d(10) r(10) is the running average size minutes for	0.5	0.5	0.5	0.5	0.5	0.5	0 0 0	0.5	0.5	0.5	0.5	0.5	0.5	O O	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	61	_		-	·	_	61	+	-	91			+	7 F	+	91	-		61	_	91			31
(9)	0.5	0.5	0.5	0.5	0.5	0.5	0 0 0	0.5	0.5	0.5	0.5	0.5	0.5	0.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	91				91	_		+		61	_	91	-	9 19	+		31	_	31	_	31	_	91	-
		0.5	0.5	0.5	0.5	0.5	0 0 0 0	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(7)		1		П		-	61	+		-	_	91	-	. 6. 1 6.	+		31	_	91	_	61	61	91	-
d(6) r(6) d(7) r(7) of membership and $r(n)$	0.5	0.5	0.5	0.5	0.5	0.5	0 0 0 0	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
$\frac{1}{r(6)}$	91	-	1	1	31	31	61	16	91	91	91	91	91		91	91	31	31	31	31		61	61 61	91
	0.5	0.5	0.5	0.5	0.5	0.5	0 0 0 0	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(5)		91	91	91		-	61	16	91	91	91	91	91	<u> </u>	П	-	61	61	31	31	91	91	61	-
d(4) r(4) a(5) d of the combined	0.5	0.5	0.5	0.5	0.5	0.5	0 0 0 0	0.5	0.5	0.5	0.5	0.5	0.5	O O	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
(4)	91	91	91	91	Τ.	-	61	16	91	91	91	61	61	T 6	91	91	1	1	91	91	91	91	61	91
		0.5	0.5	0.5	0.5	0.5	0 0 0 0	0.5	0.5	0.5	0.5	0.5	0.5	O O	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
a(2) r(3) a(3) r(3) is the deployment threshol	31	31	91	91	31	31	91	16	91	-	1	91	91	9 19	П		1	1	61	61	-		31	91
(3)	0.5	0.5	9.0	0.5	0.5	0.5	0.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(2)	91	91	61	61	91	91		- 16	91	91	91	61	61	. 6 1 6	61	61	91	91	91	91	61	61	1	91
(2) (2) (3) the case	0.5	0.5	0.5	0.5	0.5	0.5	0 0 0	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
d(1) r(1) where d(n)	91	91	91	91	91	91		91	91	91	91	91	91		1	1	91	91	91	91	61	61	1	91
d(1) where	0.5	0.5	0.5	0.5	0.5	0.52	O O	0.5	0.5	0.5	0.5	0.5	0.5	O. O.	0.5	0.5	0.5	0.5	0.5	0.5	0.2	0.5	0.5	0.5
noitata	KATL	KATL	KBOS	KBOS	KBWI	KBWI	KCLE	KCLT	KCLT	KCVG	KCVG	KDCA	KDCA	KDEN	KDFW	KDFW	KDTW	KDTW	KEUG	KEUG	KIAH	KIAH	KLAS KLAS	KLAX
Deployment Threshold less Retraction Threshold	+	1 K	_	1 K		4	0 - X X	+	1 X	0 K	-	0 Z	+	> - 3 Z	0 KI		0 KI	_		\dashv		-		0 X
	\perp														_					1				ш.

Table 78: (continued)

5 0.88 0.22	000	0	0.18			- 4		0.15	0.15	0.15	0.19	0.19	0.21	0.21	0.19	0.19	0.28	0.28	0.25	0.25	0.17	0.17	0.22	0.22	0.18	0.18	0.31	0.31	0.29	0.29	0.23	0.23
_		98.0	0.92	0.92 0.18	0.83 0	0.83 0.16	0.85 0.15	0.85 0	0.85 0	0.85 0		0.87 0	0.81 0	0.81 0	0.91 0	0.91 0	0.86 0	0.86 0	0.80	0.80	0.87 0	0.87 0	0.86 0	0.86 0	0.93 0	0.93 0	0.91 0	0.91 0	0.84 0	0.84 0		0.83 0
0.25	_	$0.16 \mid 0$	$0.19 \mid 0$	0.19 0	0.20	.20 0	0.17 0	0.17 0	0.17 0	0.17 0	$0.21 \mid 0$	0.21 0	0.26 0	0.26 0	$0.21 \mid 0$	0.21 0	0.32 0	0.32 0	$0.31 \mid 0$	$0.31 \mid 0$	0.20	0.20 0	0.26 0	0.26 0	$0.20 \mid 0$	0.20 0	0.33 0	0.33 0	$0.34 \mid 0$	0.34 0	_	0.28 0
61 0		1 0		61 0		1 0	91 0	91 0	31 0	31 0	91 0			31 0		91 0		1 0	61 0		91 0			91 0		1 0	0 1	1 0	91 0	91 0	91 0	
+		5				2		5		_																تر 	,,	رم 		5 9		
0.5	c.o	0.1	0.5	0	0.5	0.1	0.5	0.0	0.5	0.5	0.5	0	0.5	0.5	0.5	0	0.5	0.5	0.5	0.1	0.5	0	0.5	0.5	0.5	0	0.5	0	0.5	0.1	0.5	0.0
1 5	- A	91	П	-	61	61	91	91	1	П	31	31	91	91	T	-	61	61	Т	1	31	31	91	91	Т	-	61	61	Т	1	91	91
0.5	ი. ი	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
31	9.1	91	91	91	91	91	31	31	91	91	91	91	91	91	91	91	91	91	91	91	61	61	61	61	91	91	31	31	61	61	61	61
0.5	c.:0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
31	91	91	91	91	-	1	91	91	91	91	61	61	91	91	1	-	61	61	91	91	31	31	1	1	61	61	1	-	1	1	1	-
0.5	۰. د.	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5
1 0		91	31	31	61	61	61	61	1	1	61	61	91	91	31	31	61	61	61	61	91	91	1	1	91	91	1	-	31	31	91	91
0.5	o	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	-	1	91	91	61	61	61	61	91	91	1	-	91	91	1	-	61	61	1	1	91	91	1	1	61	61	31	31	1	1	91	91
0.5	o	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
91	- A	91	61	61	91	91	91	91	1	-	1	-	91	91	91	91	31	31	61	61	61	61	61	61	1	-	1	-	1	1	91	91
0.5	o.o	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
1	10	61	61	61	91	91	1	1	61	61	31	31	91	91	91	91	31	31	61	61	61	61	91	91	61	61	61	61	91	91	61	61
0.5	o.o	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
91	T6	91	I	П	-	1	91	91	19	61	16	91	19	61	16	91	16	91	T	1	1	П	16	91	16	91	31	31	16	91	16	91
	o. O		0.5		0.5	0.5	0.5	0.5	0.5		0.5		0.5		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5		0.5	0.5		0.5
91	-	1	1	1	31	31	1	1	31	31	1	1	91	91	91	91	1	1	61	61	91	91	91	91	1	1	31	31	16	91	1	1
0.5	o.o	0.5	0.5	0.5	0.5	0.5	0.5	0.5	9.0	0.5	9.0	0.5	0.5	0.5	9.0	0.5	0.5	0.5	9.0	0.5	0.5	0.5	9.0	0.5	9.0	0.5	0.5	0.5	9.0	0.5	0.5	0.5
91	9.1	91	91	91	91	91	91	91	61	61	91	91	1	1	91	91	91	91	61	61	91	91	91	91	61	61	31	31	1	1	91	91
0.5	o. O	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
91	-	1	61	61	91	91	91	91	91	91	61	61	61	61	91	91	91	91	61	61	91	91	91	91	1	1	91	91	1	1	91	91
0.5	o. O	0.5	9.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	9.0	0.5	0.5	0.5	9.0	0.5	0.5	0.5	9.0	0.5	0.5	0.5	9.0	0.5	9.0	0.5	0.5	0.5	9.0	0.5	0.5	0.5
KLAX	- ADTA	KLGA	KMCI	KMCI	KMCO	KMCO	KMSP	KMSP	KORD	KORD	KPHL	KPHL	KPHX	KPHX	KPIT	KPIT	KSAC	KSAC	KSAN	KSAN	KSAT	KSAT	KSEA	KSEA	KSFO	KSFO	KSMX	KSMX	KSTL	KSTL	KTPA	KTPA
+		1	0	-		1 1	0	1 1	0	1 1		-		-		-	0			1	0		_	-		_	0	1	0			-

A.22.5.5 Comparison of two values for RETRACTION THRESHOLD DIF-FERENCE for OLAs 3 through 4 for all stations Please see Table 79.

Table 79: Comparison of two values for RETRACTION THRESHOLD DIFFERENCE for OLAs 3 through 4 for all stations

Table 79: (continued)

4	KATL	1	1051150	722770	328380	180515	55%	11%				55%
3	KBOS	0	1051117	837708	213409	87130	41%		41%			
3	KBOS	1	1051117	808810	242307	116028	48%	7%		48%		
4	KBOS	0	1051117	831026	220091	99309	45%				45%	
4	KBOS	1	1051117	797782	253335	132553	52%	7%				52%
3	KBWI	0	1051080	761673	289407	103547	36%		36%			
3	KBWI	1	1051080	703920	347160	161300	46%	11%		46%		
4	KBWI	0	1051080	794185	256895	110283	43%				43%	
4	KBWI	1	1051080	725042	326038	179426	55%	12%				55%
3	KCLE	0	1051112	722009	329103	155492	47%		47%			
3	KCLE	1	1051112	670422	380690	207079	54%	7%		54%		
4	KCLE	0	1051112	727893	323219	179610	56%				56%	
4	KCLE	1	1051112	668454	382658	239049	62%	7%				62%
3	KCLT	0	1051188	661719	389469	233003	60%		60%			
3	KCLT	1	1051188	572034	479154	322688	67%	8%		67%		
$\mid 4 \mid$	KCLT	0	1051188	692493	358695	258937	72%				72%	
4	KCLT	1	1051188	587116	464072	364314	79%	6%				79%
3	KCVG	0	1051140	717780	333360	196232	59%		59%			
3	KCVG	1	1051140	648034	403106	265978	66%	7%		66%		
4	KCVG	0	1051140	730888	320252	194928	61%				61%	
4	KCVG	1	1051140	654816	396324	271000	68%	8%				68%
3	KDCA	0	1050534	793999	256535	126236	49%		49%			
3	KDCA	1	1050534	751441	299093	168794	56%	7%		56%		
4	KDCA	0	1050534	800075	250459	147483	59%				59%	
4	KDCA	1	1050534	747238	303296	200320	66%	7%				66%
3	KDEN	0	1051057	694819	356238	135351	38%		38%			

Table 79: (continued)

3	KDEN	1	1051057	$ _{642345} $	408712	187825	46%	8%		46%		
4	KDEN	0	1051057	756437	294620	146218	50%				50%	
4	KDEN	1	1051057	693007	358050	209648	59%	9%				59%
3	KDFW	0	1051013	782964	268049	110034	41%		41%			
3	KDFW	1	1051013	744976	306037	148022	48%	7%		48%		
4	KDFW	0	1051013	790443	260570	110559	42%				42%	
4	KDFW	1	1051013	752790	298223	148212	50%	7%				50%
3	KDTW	0	1051112	790573	260539	88498	34%		34%			
3	KDTW	1	1051112	741503	309609	137568	44%	10%		44%		
4	KDTW	0	1051112	792642	258470	94016	36%				36%	
4	KDTW	1	1051112	741013	310099	145645	47%	11%				47%
3	KEUG	0	1050961	777877	273084	135119	49%		49%			
3	KEUG	1	1050961	725335	325626	187661	58%	8%		58%		
4	KEUG	0	1050961	766882	284079	157295	55%				55%	
4	KEUG	1	1050961	705901	345060	218276	63%	8%				63%
3	KIAH	0	1051050	741267	309783	163510	53%		53%			
3	KIAH	1	1051050	674190	376860	230587	61%	8%		61%		
4	KIAH	0	1051050	732256	318794	170859	54%				54%	
4	KIAH	1	1051050	664574	386476	238541	62%	8%				62%
3	KLAS	0	1050899	866482	184417	85292	46%		46%			
3	KLAS	1	1050899	825713	225186	126061	56%	10%		56%		
4	KLAS	0	1050899	867701	183198	86095	47%				47%	
4	KLAS	1	1050899	827420	223479	126376	57%	10%				57%
3	KLAX	0	1050894	689170	361724	114184	32%		32%	_	_	
3	KLAX	1	1050894	633204	417690	170150	41%	9%		41%		
4	KLAX	0	1050894	708321	342573	113244	33%				33%	

Table 79: (continued)

4	KLAX	1	1050894	652456	398438	169109	42%	9%				42%
3	KLGA	0	1051144	848065	203079	105134	52%		52%			
3	KLGA	1	1051144	809147	241997	144052	60%	8%		60%		
4	KLGA	0	1051144	826118	225026	113496	50%				50%	
4	KLGA	1	1051144	784214	266930	155400	58%	8%				58%
3	KMCI	0	1051087	645927	405160	181086	45%		45%			
3	KMCI	1	1051087	581491	469596	245522	52%	8%		52%		
4	KMCI	0	1051087	652458	398629	185316	46%				46%	
4	KMCI	1	1051087	585640	465447	252134	54%	8%				54%
3	KMCO	0	1051136	820396	230740	133647	58%		58%			
3	KMCO	1	1051136	767817	283319	186226	66%	8%		66%		
4	KMCO	0	1051136	806564	244572	152546	62%				62%	
4	KMCO	1	1051136	746158	304978	212952	70%	7%				70%
3	KMSP	0	1051121	860814	190307	74626	39%		39%			
3	KMSP	1	1051121	826127	224994	109313	49%	9%		49%		
4	KMSP	0	1051121	857447	193674	78742	41%				41%	
4	KMSP	1	1051121	821154	229967	115035	50%	9%				50%
3	KORD	0	1051064	724595	326469	164170	50%		50%			
3	KORD	1	1051064	669328	381736	219437	57%	7%		57%		
4	KORD	0	1051064	717450	333614	174162	52%				52%	
4	KORD	1	1051064	657672	393392	233940	59%	7%				59%
3	KPHL	0	1051124	696194	354930	140689	40%		40%			
3	KPHL	1	1051124	646562	404562	190321	47%	7%		47%		
4	KPHL	0	1051124	741888	309236	166639	54%				54%	
4	KPHL	1	1051124	676945	374179	231582	62%	8%				62%
3	KPHX	0	1050999	793937	257062	68279	27%		27%			

Table 79: (continued)

3	KPHX	1	1050999	762349	288650	99867	35%	8%		35%		
4	KPHX	0	1050999	916283	134716	72323	54%				54%	
4	KPHX	1	1050999	864753	186246	123853	66%	13%				66%
3	KPIT	0	1051105	737087	314018	175265	56%		56%			
3	KPIT	1	1051105	667649	383456	244703	64%	8%		64%		
4	KPIT	0	1051105	742269	308836	180177	58%				58%	
4	KPIT	1	1051105	669443	381662	253003	66%	8%				66%
3	KSAC	0	1050950	755064	295886	132824	45%		45%			
3	KSAC	1	1050950	681701	369249	206187	56%	11%		56%		
4	KSAC	0	1050950	774246	276704	139123	50%				50%	
4	KSAC	1	1050950	694806	356144	218563	61%	11%				61%
3	KSAN	0	1050942	724452	326490	187399	57%		57%			
3	KSAN	1	1050942	682387	368555	229464	62%	5%		62%		
4	KSAN	0	1050942	739801	311141	183089	59%				59%	
4	KSAN	1	1050942	695258	355684	227632	64%	5%				64%
3	KSAT	0	1051059	759105	291954	155122	53%		53%			
3	KSAT	1	1051059	702972	348087	211255	61%	8%		61%		
4	KSAT	0	1051059	776116	274943	152739	56%				56%	
4	KSAT	1	1051059	717576	333483	211279	63%	8%				63%
3	KSEA	0	1050356	675363	374993	195477	52%		52%			
3	KSEA	1	1050356	605911	444445	264929	60%	7%		60%		
4	KSEA	0	1050356	667525	382831	198766	52%				52%	
4	KSEA	1	1050356	594022	456334	272269	60%	8%				60%
3	KSFO	0	1050904	782433	268471	115018	43%		43%			
3	KSFO	1	1050904	754832	296072	142619	48%	5%		48%		
4	KSFO	0	1050904	782433	268471	115018	43%				43%	

Table 79: (continued)

4	KSFO	1	1050904	754832	296072	142619	48%	5%				48%
3	KSMX	0	1050960	822403	228557	96097	42%		42%			
3	KSMX	1	1050960	788031	262929	130469	50%	8%		50%		
4	KSMX	0	1050960	824210	226750	99886	44%				44%	
4	KSMX	1	1050960	790506	260454	133590	51%	7%				51%
3	KSTL	0	1051128	769605	281523	123509	44%		44%			
3	KSTL	1	1051128	728849	322279	164265	51%	7%		51%		
4	KSTL	0	1051128	833532	217596	112619	52%				52%	
4	KSTL	1	1051128	787110	264018	159041	60%	8%				60%
3	KTPA	0	1051144	794480	256664	136915	53%		53%			
3	KTPA	1	1051144	716268	334876	215127	64%	11%		64%		
4	KTPA	0	1051144	796919	254225	137017	54%				54%	
4	KTPA	1	1051144	717706	333438	216230	65%	11%				65%
						Ave	rage:	8%	46%	54%	51%	59%
					Standa	rd Devia	tion:	2%	8%	8%	8%	8%

In Section A.22.1, we determined the answer to the question, Does the fuzzy code retract the harvester in every case that the average windspeed is between the two crisp retraction thresholds, i.e., when the more lenient crisp does not retract and when the less lenient crisp code retracts (if the fuzzy code were to examine every case)? The answer is Yes for every station for OLAs 3 and 4. Details are below, which are printed by the following print statement:

```
System.out.println("FuzzyVsCrisp: " + station + "," +

RETRACTION_THRESHOLD_DIFFERENCE + "," +

bEveryMoreLenientCaseRestricted + "," +

bEveryMoreLenientCaseReachesFuzzyRetractionThreshold);

FuzzyVsCrisp: KATL,1,true,true
```

```
FuzzyVsCrisp: KATL, 1, true, true
3 FuzzyVsCrisp: KBOS, 1, true, true
  FuzzyVsCrisp: KBOS, 1, true, true
   FuzzyVsCrisp: KBWI, 1, true, true
   FuzzyVsCrisp: KBWI,1,true,true
7
   FuzzyVsCrisp: KCLE, 1, true, true
8
   FuzzyVsCrisp: KCLE, 1, true, true
9
   FuzzyVsCrisp: KCLT, 1, true, true
10 FuzzyVsCrisp: KCLT, 1, true, true
11
   FuzzyVsCrisp: KCVG, 1, true, true
12
   FuzzyVsCrisp: KCVG, 1, true, true
13
   FuzzyVsCrisp: KDCA, 1, true, true
  FuzzyVsCrisp: KDCA, 1, true, true
15
   FuzzyVsCrisp: KDEN, 1, true, true
16 FuzzyVsCrisp: KDEN, 1, true, true
17
   FuzzyVsCrisp: KDFW, 1, true, true
18
   FuzzyVsCrisp: KDFW, 1, true, true
19
   FuzzyVsCrisp: KDTW, 1, true, true
20
   FuzzyVsCrisp: KDTW, 1, true, true
   FuzzyVsCrisp: KEUG, 1, true, true
22
   FuzzyVsCrisp: KEUG, 1, true, true
23
   FuzzyVsCrisp: KIAH, 1, true, true
24
   FuzzyVsCrisp: KIAH, 1, true, true
25
   FuzzyVsCrisp: KLAS, 1, true, true
26
   FuzzyVsCrisp: KLAS, 1, true, true
27
   FuzzyVsCrisp: KLAX, 1, true, true
   FuzzyVsCrisp: KLAX, 1, true, true
29
   FuzzyVsCrisp: KLGA, 1, true, true
30
  FuzzyVsCrisp: KLGA, 1, true, true
31
  FuzzyVsCrisp: KMCI, 1, true, true
32
  FuzzyVsCrisp: KMCI,1,true,true
33
   FuzzyVsCrisp: KMCO, 1, true, true
34 FuzzyVsCrisp: KMCO, 1, true, true
   FuzzyVsCrisp: KMSP, 1, true, true
   FuzzyVsCrisp: KMSP, 1, true, true
37
  FuzzyVsCrisp: KORD, 1, true, true
38
  FuzzyVsCrisp: KORD, 1, true, true
   FuzzyVsCrisp: KPHL, 1, true, true
39
40
   FuzzyVsCrisp: KPHL, 1, true, true
41
   FuzzyVsCrisp: KPHX, 1, true, true
42
   FuzzyVsCrisp: KPHX, 1, true, true
43
   FuzzyVsCrisp: KPIT, 1, true, true
44
  FuzzyVsCrisp: KPIT, 1, true, true
45
   FuzzyVsCrisp: KSAC, 1, true, true
46
   FuzzyVsCrisp: KSAC, 1, true, true
47
   FuzzyVsCrisp: KSAN, 1, true, true
   FuzzyVsCrisp: KSAN, 1, true, true
```

```
49 FuzzyVsCrisp: KSAT,1,true,true
50 FuzzyVsCrisp: KSAT,1,true,true
51 FuzzyVsCrisp: KSEA,1,true,true
52 FuzzyVsCrisp: KSEA,1,true,true
53 FuzzyVsCrisp: KSFO,1,true,true
54 FuzzyVsCrisp: KSFO,1,true,true
55 FuzzyVsCrisp: KSMX,1,true,true
56 FuzzyVsCrisp: KSMX,1,true,true
57 FuzzyVsCrisp: KSTL,1,true,true
58 FuzzyVsCrisp: KSTL,1,true,true
59 FuzzyVsCrisp: KTPA,1,true,true
60 FuzzyVsCrisp: KTPA,1,true,true
```

A.22.5.6 OLAs 3 and 4: Fuzzy-Crisp (variant 0x0, i.e., current weather only, transitions unlimited) 1.2 using only crisp code to retract Please see Table 80.

Table 80: Results of the processing of OLA 3 by Fuzzy-Crisp (variant 0x0, i.e., current weather only, transitions unlimited) Rev. 1.2 when the subtraction Deployment Threshold less Retraction Threshold equals 0 and when it equals 1

М QN et Norn	0.323	0.336	0.292	0.292	0.381	0.392	0.302	0.310	0.394	0.377	0.268	0.269	0.255	0.295	0.305	0.326	0.306	0.320	0.335	0.353	0.450	0.433	0.382	0.382	0.357	0.357	0.462	0.481	0.279	0.279	0.320	0.331	0.368	0.368
МФМР	0.878	0.921	0.900	0.900	-	0.871	0.920	0.934		0.900	0.920	0.920		0.922	0.892	688.0		0.931	_	0.925	-	_		-	_	0.891		0.912	0.880	0.880	_	0.947		0.890
m10N39N	0.368	0.365	0.325	0.325		0.451	-	0.332		0.419	0.291	0.292		0.320	0.342	0.367	_	0.344	0.363	0.381	_	0.481		0.426		0.401		0.527	0.317	0.317	_	0.349		0 414
r(12)	31	31	-	-	91	91	1	1	31	31	1	-	31	31	1	-	1	-	1	1	1	1	31	31		1	1	-	61	61	-	1	-	_
	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	7.
$r(11) \left \begin{array}{c} \\ \\ \\ \end{array} \right d(12)$	61	61	1	-	1	1	1	91	_	1	91	91	1	1	1	-	1		1	1	91	91	-	1	-	1	1	_	1	1	61	61	-	_
d(8) $r(8)$ $d(9)$ $r(9)$ $d(10)$ $r(10)$ $d(11)$ is the running average size minutes for month n	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
r(10) ses for n		31		-	-	-	31	31	-	31	31	31	1	1	1	-	1	-	1	31	1	1	-		-	-	1	-	1	1	91	91	-	-
d(10)	0.5	0.5	0.5	0.5	9.0	0.5	9.0	0.5	0.5	0.5	9.0	0.5	9.0	0.5	9.0	0.5	9.0	0.5	9.0	0.5	9.0	0.5	0.5	0.5	0.5	0.5	9.0	0.5	9.0	0.5	0.5	0.5	0.5	75.0
r(9)	91	91		-	-	-	1	1	61	61	1	-	1	1	ī	-	ī	31	1	1	1	1	П	1	-	1	61	61	T	1	П	1	91	5
$ \left\ \frac{d(9)}{d(9)} \right\ $	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	C
r(8)	_	61	-	T	1	1	T	1	31	31	1	-	T	1	I	-	I	Т	1	1	1	1	П	1	-	1	16	91	T	1	П	1	П	-
	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	С П
r(7)	ī	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	31	1	1	1	1	31	31	1	1	1	1	1	-
$d(6) \mid r(6) \mid d(7) \mid r(7)$ of membership and $r(n)$	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	ν. C
r(6)	1	1	1	1	1	1	1	1	31	31	1	1	1	1	1	1	1	91	1	1	1	1	1	1	1	1	1	1	1	1	1	31	1	-
	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	С П
ام ء	31	31	1	1	1	1	T	1	91	91	1	-	1	1	31	61	16	91	1	1	1	1	91	91	-	1	91	91	1	1	31	31	91	-
$ \begin{array}{c c} & 4) & d(5) \\ \hline & combined \end{array} $	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	С П
r(4) he con	31	31	-	1	1	31	91	91	91	91	91	91	1	31	31	31	61	61	31	31	1	1	_	1	-	1	1	31	1	1	91	91	31	3.1
$\left \frac{d(4)}{d} \right $	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	ς π
r(3)	_	31	-	-	-	-	1	91	61	61	П	-	1	31	31	31	91	91	31	31	61	61	91	91	-	П	1	-	T	1	-	91	-	-
$\begin{vmatrix} d(2) & r(2) \\ d(3) & r(3) \end{vmatrix} \frac{d(4)}{d(4)} r(4)$ is the deployment threshold of the	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	ν. -
r(2)	_	-	1	1	31	31	31	31	91	91	61	61	1	1	1	-	1	П	31	31	1	1	31	31	1	1	31	31	31	31	-	1	-	_
$\begin{vmatrix} d(2) \\ d \end{aligned}$ is the	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	75
r(1)		61	61	61	-	П	16	91	-	31	61	91	1	1		-	1		61	61	1	91	61	61	-	-	1	-	61	61	91	91	-	-
$\left egin{array}{c} d(1) \\ \mathrm{where} \end{array} \right $	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	л. П
noitata	KATL	KATL	KBOS	KBOS	KBWI	KBWI	KCLE	KCLE	KCLT	KCLT	KCVG	KCVG	KDCA	KDCA	KDEN	KDEN	KDFW	KDFW	KDTW	KDTW	KEUG	KEUG	KIAH	KIAH	KLAS	KLAS	KLAX	KLAX	KLGA	KLGA	KMCI	KMCI	KMCO	KMCO

OLA

Table 80: (continued)

0.290	0.284	0.257	0.256	0.319	0.366	0.184	0.206	0.374	0.383	0.479	0.455	0.412	0.412	0.322	0.333	0.425	0.419	0.343	0.351	0.559	0.559	0.245	0.245	0.388	0.406
0.864	0.871	0.940	0.931	0.911	0.913	0.849	0.761	0.885	0.878	0.833	0.887	0.894	0.894	268.0	868.0	0.894	0.903	0.973	0.977	0.929	0.929	668.0	0.899	0.861	0.891
0.336	0.326	0.274	0.275	0.350	0.401	0.217	0.271	0.423	0.436	0.575	0.513	0.461	0.461	0.359	0.371	0.476	0.464	0.353	0.359	0.602	0.602	0.273	0.273	0.451	0.456
	_	-		1	1	1	1	31	31	1		1	1	1		91	91	1		ī		1	1	31	31
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	_	-		1	31	1	1	31	31	1		1	1	1		1	31	1		I	1	1	1	31	31
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
			_			_	_			_				_		_		_) -) 		
	75.	5	.5 91	5 31	.5 31	5	.5.	5 31	5 31	5	5.	5 1	.5	5	5.	5 1	5 1	5	5.	5 1	5.	.5	.5 1	5 31	.5 61
0.5	·.	0.5	0.	0.5	0.	0.5	0.	0.5	0.5	0.5	0.	0.5	0.,	0.5	0.	0.5	0.5	0.5	0.	0.5	0.	0.0	0.,	0.5	0.,
5	.5	.5	5 1	0.5 1	.5	5 1	.5	5 1	5 1	5 1	.5	5 61	.5 61	0.5 1	.5	5 1	.5	5 1	.5	5 1	5	0.5 1	5 1	5 31	.5 31
0.5	o ·	0	<u>.</u>	0.	<u>.</u>	0.5	<u>.</u>	0.5	0.5	0.5	<u>.</u>	0.5	0.	0	<u>.</u>	0.5	0.	0.5	<u>.</u>	0.5	0	0.	0.	0.5	0.
1	5	1	5	1	5 1	1	5 1	1	.5 1	5	5 31	5 61	5 61	1	5	5 1	1	5 31	5 31	1	5	5 1	5 1	1	.5 61
0.5	··	0.5	0	0.5	0	0.5	0	0.5	0.1	0.5	0	0.5	0.1	0.5	0	0.5	0.5	0.5	0	0.5	0	0.1	0.1	0.5	0.1
_	31	-	1	-	1	1	31	1	1	1	1	61	61	31	31	1	1	91	91	1	1	1	1	1	1
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
-	_		-		П	1	31		1	1	31	91	91	31	31	1	П		61	-	-	1	1	31	31
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
-	-	91	91	31	31	1	31	-	1	91	91	1	1	61	91	1	1	91	91	61	61	31	31	31	31
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	-	61	61	-	31	31	31	-	1	91	91	1	1	31	31	1	1	91	91	31	31	61	61	1	31
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
П	1	91	91	1	П	1	П	1	1	1	1	91	91	31	31	1	1	31	31	31	31	1	1	31	31
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
-	П		-	91	91	1	-		1		-	1	1		31	T	31		-		-	1	1	31	31
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
-	П		-	1	1	1	1	61	91	1	-	1	1	1	-	1	1	1	-	1	П	1	1	1	61
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
KMSP	KMSP	KORD	KORD	KPHL	KPHL	KPHX	KPHX	KPIT	KPIT	KSAC	KSAC	KSAN	KSAN	KSAT	KSAT	KSEA	KSEA	KSFO	KSFO	KSMX	KSMX	KSTL	KSTL	KTPA	KTPA
<u>ი</u>	4	3	4	3	4	3	4	က	4	3	4	3	4]		4	3	4	3	4	3	4	3	4	3	4]
_						_																			_

OLAs 3 and 4: Fuzzy-Crisp (variant 0x0, i.e., current weather only, transitions unlimited) Rev. 1.3 Please see Table 81. A.22.5.7

Table 81: Results of the processing of OLA 3 by Fuzzy-Crisp (variant 0x0, i.e., current weather only, transitions unlimited) Rev. 1.3 when the subtraction Deployment Threshold less Retraction Threshold equals 0 and when it equals 1

III IO 110 2 1 20 7 11	22	28	02	21	22	30	56	56	22	22	22	25	92	53	33	31	22	56	31	30	37	37	30	56	30	90	49	05	22	21	82	56	92	22	22
m 10 N tet N or m	2 0.22		6 0.20	1 0.21	3 0.27	7 0.30	8 0.26	0.26	_	0.27	$^{-2}$ 0.22	34 0.25	2 0.26	3 0.23	3 0.33	2 0.31	-	0.26	6 0.31	5 0.30	1 0.37	5 0.37	.9 0.30	0.29	_	32 0.30	98 0.49	9 0.50	6 0.22	9 0.21	88 0.28	0.29	3 0.26		3 0.22
МОМР	0.72		3 0.76	2 0.91	7 0.73	9 0.77	⊢	06.0	⊢	3 0.80	-	0.84	3 0.72	3 0.83	9 0.83	8 0.82	-	06.0	3 0.86	5 0.85	_	8 0.75	8 0.79	0.00	-	3 0.82	98.0 2	68.0	-	62.0 2	2 0.88	3 0.90	-	-	0.73
M et Norm	0.31	0.31	0.26	0.22	0.37	0.39	0.29	0.29	0.42	0.33	0.31	0.30	0.36	0.28	0.39	0.38	0.31	0.29	0.36	0.35	0.52	0.48	0.38	0.32	0.36	0.36	0.57	0.57	0.29	0.27	0.32	0.33	0.35	0.34	0:30
r(12)	31	31	1	1	61	61	91	91	1	1	1	1	1	61	1	1	1	1	1	31	1	1	1	1	1	1	1	1	61	61	1	1	1		1
d(12)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5
$r(11) \mid d(12) \mid r(12)$	1	91	1	-	1	-	91	91	1		61	61	-	-	1	1	-	-	-	1	1	1	1	1	1	1	1	-	-	-	91	91	1	1	1
$\left\ \frac{d}{d} (11) \right\ _{2}$	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5
	1	61		61	_	_	_	-	1	61	1	31	_	31	1	-	_	-	_	1	1	-	1	-	1	1	1	-	_		-	91	1	91	1
$\left\ \begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & $	0.5	0.5	5.5	0.5	0.5	0.5	0.5	5.0	0.5	5.5	0.5	5.0	5.5	0.5	0.5	5.0	5.5	0.5	0.5	5.0	0.5	5.0	0.5	5.0	0.5	.5	0.5	5.5	0.5	5.	0.5	0.5	0.5	5.5	0.5
	E			1 C	1 C			_		_		_		31 0	1 C			61 C		1 C		1 C		_	1 0							1			1 0
$d(9) \left r(9) \right $ g average s		0.5 91	-	0.5	L	0.5 61	0.5	.5 61	0.5 91		0.5 1		0.5		0.5		0.5		0.5		0.5		0.5	.5 61	0.5		0.5 31		0.5		0.5		0.5 91		- 2
$r(8) \begin{vmatrix} d \\ d \end{vmatrix}$	1 0	91 0		1 0	1 0	91 0		1 0	1 0	1 0	1 0			1 0	1 0			1 0		1 0	1 0		1 0	31 0	1 0		31 0		1 0			1 0		91 0	1 0.
$d(8) \left r(8) \right $ is the ru	0.5	ю	-	0.5	0.5	0.5	м		0.5	0.5	0.5	r0	0.5	ro.	0.5	r0	_	0.5	0.5		0.5		0.5		0.5		0.5		0.5		20		20	22	0.5
$r(7) \begin{vmatrix} r \\ d \\ r(n) \end{vmatrix}$	1	1	H					1	1 (1			1				-		_	31 (1 (31 (31 (1	1	=
$d(7) \begin{vmatrix} r \\ r \end{vmatrix}$	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	_	0.5	0.5	0.5	0.5	0.5	0.5	n	0.5			0.5		0.5	0.5
$d(6) \left r(6) \right d(7) \left r$ of membership and	1	61		_	1	31	1		1		1			61	1		91			1	1		-	61	1		31	31	-		1	-	1	1	=
d(6)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(5)	-	61		31	-	_	-	61	61	61	1	31	-		1	61	61	61	-	-	1	-	91	91	1	1	31	31	-		61	91	31	31	1
	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
$r(4) \begin{vmatrix} d(5) \\ d(5) \end{vmatrix}$	1	31	1	-	1	31	61	61	1	91	1	61	-		1	31	-	31	31	31	1	1	91	91	1	1	1	31	-	-	1	91	1	61	1
	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(3)	1	91	1	П	1	1	91	91	91	91	1	61	-	31	1	1	91	91	-	1	1	61	91	91	1	1	31	61	-	-	61	61	1	31	1
$\begin{vmatrix} & & & & & & & & & & & & & & & & & & &$	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	9.0	0.5	9.0	0.5	0.5	0.5	9.0	0.5	0.5	0.5	0.5	0.5	9.0	0.5	0.5	0.5	9.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	9.0
$d(1) \mid r(1) \mid d(2) \mid r(2) \mid d(3) \mid r(3) \mid d(4)$ where $d(n)$ is the deployment threshold of		61	1	-	П	61	-	31	91	91	I	61	-	-	1	П	-	61	-	1	1	П	31	31	1	1	1	31	61	61	П	-	1	1	1
$\begin{vmatrix} d(2) \\ d \text{ is the} \end{vmatrix}$	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
r(1)	-	61	1	91	1	1	91	91	1	91	1	91	1	-	1	1	1	-	31	31	1	31	1	31	1	1	1	91	-	61	61	61	1	1	1
$\left rac{d(1)}{\mathrm{wher}} ight $	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
noitata	KATL	KATL	KBOS	KBOS	KBWI	KBWI	KCLE	KCLE	KCLT	KCLT	KCVG	KCVG	KDCA	KDCA	KDEN	KDEN	KDFW	KDFW	KDTW	KDTW	KEUG	KEUG	KIAH	KIAH	KLAS	KLAS	KLAX	KLAX	KLGA	KLGA	KMCI	KMCI	KMCO	KMCO	KMSP

Table 81: (continued)

0.22	0.24	0.26	0.26	0.27	0.14	0.16	0.24	0.23	0.32	0.38	0.29	0.28	0.26	0.24	0.32	0.33	0.34	0.34	0.50	0.49	0.26	0.23	0.31	0.32
0.84	0.81	0.87	0.87	0.87	0.48	0.71	0.79	0.84	0.68	0.76	0.68	0.82	0.75	0.87	0.84	0.84	96.0	0.98	0.88	0.89	69.0	0.87	0.70	0.82
0.26	0.30	0.30	0.30	0.31	0.29	0.23	0.31	0.27	0.47	0.50	0.42	0.34	0.35	0.28	0.38	0.39	0.34	0.34	0.57	0.55	0.37	0.26	0.45	0.39
1	-	-	91	91	-	-	-	91	1	-	1	-	-	-	61	61	1		-	-	-		1	1
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
1	1	91	1	-	1	1	1	1	1	-	1	-	-	-	61	91	1	1	1	1	1	1	31	91
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
61	31	61	1	61	1	61	1	91	1	-	1	-	-	61	1	1	1	1	1	1	1	1	1	61
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
-	-	-	1	-	-	-	1	П	1	-	1	-	-	-	-	-	1	П	-	-	1	П	1	61
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
-	-	-	1	61	-	61	-		ī	-	-	91	-	31	-	-	31	61	-	-	-	31	ī	61
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
61	-	-	1	-	-	31	1		1	31	1	61	31	31	-	-	31	31	-	-	1		1	1
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
-	-	61	1	-	-	61	1	61	1	91	61	61	91	91	-	-	91	91	-	-	1	91	1	91
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
-	-	61	П	61	-	31	-	_	31	91	-	91	31	61	-	-	61	61	61	61	-	31	31	91
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
61	-	61	31	31	-	61	91	91	61	61	91	91	91	91	1	1	91	91	61	61	1	61	1	31
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
_	31	31	1	-	1	31	1	31	1	-	31	31	-	31	61	61	31	31	1	31	1	61	91	91
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
-	1	31	31	91	-	1	1	1	1	-	1	-		-	1	1	1	1	-	1	1	1	1	1
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
31	1	-	91	91	-	-	1	-	1	П	1	91	-	91	1	-	1	-	1	-	1	-	1	91
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
KMSP	KORD	KORD	KPHL	KPHL	KPHX	KPHX	KPIT	KPIT	KSAC	KSAC	KSAN	KSAN	KSAT	KSAT	KSEA	KSEA	KSFO	KSFO	KSMX	KSMX	KSTL	KSTL	KTPA	KTPA
4	က	4	က	4	က	4	က	4	က	4	က	4	က	4	က	4	က	4		4	က	4	က	4

SENSITIVITY ANALYSIS OF THE RETRACTION THRESHOLD DIFFERENCE ON AGING (VARIANT 0X0) FOR OLAS 3 & 4 A.23

A.23.1 RTD is 0

Please see Table 82 on the next page.

Table 82: Results of the processing of OLAs 3 and 4 by Aging (variant 0x0) Rev. 1.1 when the RTD is 0

	4 70	10	0	2	اہ	ກວກວ	∞ ∝	מ מ	4 4	t [2]	1 4	2 6		_	2	41	х о	2	ا م	٠ ٢		-1-	1 4	9 6	H 6	1 4	4	0 6	4	<u>.</u> По	
MQNetNorm	2 0.34 1 0.35	+	0:30		0.42	0.35	0.38	+	0.34	+		3 0.32	-		-	\rightarrow	2 0.38 3 0.39	-	\rightarrow	3 0.47 3 0.47	-	0.31		0.36	+	+	\rightarrow	0.40	-	\rightarrow	0.40
МФМР	0.92	+	0.94		\rightarrow	0.92	0.89		0.93	+		0.93	-		06.0		0.92	_	_	0.92	-	0.92		0.89	+	+-	_	0.93	-	_	0.91
тто И 3 в И	0.36	0.32	0.32	0.46	0.46	0.38	0.43	0.39	0.37	0.37	0.37	0.34	0.43	0.43	0.46	0.48	0.42	0.37	0.38	0.49	0.33	0.33	0.37	0.40	0.34	0.37	0.36	0.43	0.33	0.33	0.43
r(12)	61 91	91	91	31	31	61	1 12	91	91	1 -	91	31	61	61	→ ;	31	121	- ;	61	31	121	121	31	31	1 1	31	121	61	}	121	91
y(12)	17	19	19	17	17	18	15	17	17	- œ	18	19	18	18	16	16	17	× ·	∞ I		19	61 8	18	17	∞ α	18	18	28 28	9	9 !	17
	1 61	31	121	61	61	61	31	121	31	1 1	31	1 12	91	91	91	91	91	;	61	31 61	31	31	31	31	1 1	121	121	31	;	31	61
y(11)	17	6	6	2	2	18	15	17	17	18	18	19	18	18	16	16	17	∞ .	∞ l		19	86	28	17	οο ο	18	18	18	9	9 !	17
y(10) r(10)	31	121	121	31	31	31	61	31	31	1 -	31	91	121	121	1	31	31	91	91	31	121	121	121	1 31	121	121	121	61 61	61	91	31
y(10)	17	6	6	17	17	18	15	17	17	2 2	18	6 0	18	18	16	16	17	∞ .	, 1,	17	6	D 0	18	17	∞ α	18	18	18	9	9 !	17
r(9)	121 121	121	121	121	121	31	31	61	121	121	31	31	31	31	- ;	31	121	;	31	1 31	121	121	31	121	91	121	121	31	31	121	31
y(9) r(9)	17	6	6	2	7	18	55 75	17	1 -1	<u>~</u>	18	6 0	18	18	16	16	2	∞ ·	, 1	17	6	D 0	18	17	∞ α	oo	œ	18	9	9 1	2
	31	121	121	31	31	121	31	121	31	T -	31	31	31	31	61	61	91	31	31	31	91	16	31	1 31	61	121	121	31	31	61	61 91
y(8) r(8)	17	6	6	17	17	00 00	7. T.	- 2	17	2 00	18	60	, ∞	-x	16	16	2	18	18	17	6	D 0	18	17	00 00	× ×	∞	18	9	9 1	2
r(7)	31 91	121	121	91	91	31	121	91	121	121	31	19	121	121	91	16	1	91	91	61	121	121	31	91	121	31	61	121	121	121	61
$\begin{vmatrix} y(7) & y(7) \\ y(7) & y(7) \end{vmatrix}$ for month n	2	6	6	7	7	18	ro ro	2	1 -1	<u>~</u>	18	6 0	000	œ	16	16	17	∞ ·	<u>1</u> , ∞	17	6	D 02	18		∞ œ	18	œ	∞ ∞	9	9 1	2
	121 121	91	91	121	121	31	31	31	121	121	61	31	31	61	31	31	91	121	121	61	61	31	31	121	61	31	31	121	61	61	31 61
$\begin{vmatrix} y(6) & r(6) \\ y(8) & r(6) \end{vmatrix}$ size minutes	2	6	6	2	2	18	5 5	17	1 -1	<u>~</u>	18	19	Ç 00	∞	16	16	17	18		17	6	D 0	18		∞ ∞	0 00	œ	∞ ∞	9	9 1	7
	31 61	121	121	31	31	31	31	31	31	61	61	121	31	31	31	31	31	31	31	91 91	121	121	91	121	31	31	31	31 121	121	121	31
y(5) ing av	17	6	6	2	2	18	25	17	17	<u>~</u> ∞	18	19	18	18	16	16	17	18		17	6	D 0	18	17	∞ ∞	18	18	8 ×	9	9 1	17
$\begin{array}{c c} & & & \\ & & \\ \end{array}$	31 61	31	31	91	91	121	121	31	31	121	121	91	31	31	- ;	31	121	121	121	121	121	121	121	31	121	121	121	91	31	61	61
<i>y</i> (, is	21 21	19	19	17	17	18	15	27	17	- 18	18	19	18	18	16	16	17	∞ ·	i ∞	17	6	9 ×	18	17	∞ ∞	18	18	18	9	9 1	27
r(3)	121	31	31	31	31	31	91	31	31	3 5	31	121	91	91	31	31	61	31	61	31	121	121	31	1 31	1 5	91	91	31	31	91	31
y(3)	17	19	19	7	7	18	15	17	17	<u>~</u>	18	19	18	18	16	9]	17	18	8	17	6	D &	2 82	17	∞ ∞	18	18	18	9	9 ;	17
$ \begin{array}{c c} r(2) & y(3) \\ \hline y \\ y \\ \text{-intercept and } r(n) \\ \end{array} $	31 61	31	31	31	61	31	61	31	31	T -	31	31	31	31	61	61	61	;	61	31	31	3.1	31	91	91	31	31	31	_ ;	121	31 91
$\begin{vmatrix} y(2) \\ y(3) \end{vmatrix}$ is the y	17	6	6	17	17	18	15	17	17	- ×	18	19	18	18	16	16	17	∞	, o	17	19	81	81	7	00 00	18	18	18	9	9 1	17
r(1)	31	61	61	31	31	91	31	121	31	31	31	91	61	61	61	61	121	- ;	31	91	31	31	31	31	121	31	31	121	- ;	61	121
$\begin{vmatrix} y(1) \\ y \end{vmatrix}$	17	19	19	17	17	18	15	17	17	2 2	18	19	18	18	16	16	17	∞	, x	17	19	18	18	17	∞ α	18	18	18	9	9 !	17
noitata	KATL KATL	KBOS	KBOS	KBWI	KBWI	KCLE KCLE	KCLT	KCVG	KDCA	KDEN	KDEN	KDFW	KDTW	KDTW	KEUG	KEUG	KIAH	KLAS	KLAS	KLAX	KLGA	KLGA	KMCI	KMCO KMCO	KMSP	KORD	KORD	KPHL KPHL	КРНХ	KPHX	KPIT KPIT
OFV	8 4	+	4		4	დ 4	1	_	-	_	4	თ <	-	4	m ·	_	თ 4.		_	υ 4.		_	2 4	ε 4	-	_	_	es 4	-	4 0	დ 4

Table 82: (continued)

_	_	_			_	_	_	_		_	_	_		_	_
0.41	0.48	0.37	0.42	0.30	0.31	0.35	0.39	0.37	0.38	0.57	0.56	0.32	0.35	0.34	0.37
06.0	0.94	88.0	0.91	0.93	0.93	68.0	0.93	0.94	0.95	0.91	0.91	0.92	0.92	0.85	06.0
0.45	0.52	0.42	0.45	0.32	0.33	0.40	0.42	0.40	0.40	0.62	0.62	0.35	0.38	0.39	0.41
1	121	61	61	31	31	121	121	1	91	31	91	31	31	1	91
9	9	2	rů	17	17	16	16	10	10	œ	œ	17	17	16	16
-	91	31	31	61	61	61	61	1	61	31	31	31	31	1	31
9	9	22	ы	17	17	16	16	10	10	∞	∞	17	17	16	16
	31	121	121	91	91	61	61	1	-	61	61	31	31	-	31
16	16	2	ю	2	7	16	16	20	20	∞	oc	17	17	16	16
_	31	61	61	121	121	31	31	121	121	61	61	61	61	31	31
16	16	2	rů	7	7	9	9	20	20	∞	∞	2	7	16	16
31	31	91	91	1	121	-	61	91	121	61	61	121	121	121	121
16	16	15	15	17	7	16	16	20	20	œ	œ	2	2	9	9
91	91	91	91	31	31	31	31	121	121	61	61	121	121	-	61
16	16	5	r0	17	17	9	9	20	20	œ	œ	2	7	9	9
31	61	_	31	121	121	_	121	91	91	1	31	31	31	-	31
16	16	15	15	17	17	16	9	30	30	18	18	17	17	16	16
91	91	-	31	31	31		61	31	31	91	91	91	91	121	121
16	16	15	15	17	17	16	16	30	30	18	18	17	17	9	9
91	91	-	31	121	121	-	91	121	121	61	61	91	61	1	61
16	16	15	15	17	17	16	16	20	20	18	18	17	17	16	9
31	31	31	31	31	31	31	31	121	121	91	91	П	61	31	31
16	16	15	15	17	17	16	16	20	20	18	18	17	17	16	16
-	61	_	31	91	121	-	31	61	91	121	121	31	31	121	121
9	9	15	15	2	2	16	16	10	10	œ	œ	17	17	9	9
121	121	-	61	31	61	91	91	121	121	121	121	31	61	61	61
9	9	22	ю	17	17	16	16	10	10	œ	œ	17	17	9	9
KSAC	KSAC	KSAN	KSAN	KSAT	KSAT	KSEA	KSEA	KSFO	KSFO	KSMX	KSMX	KSTL	KSTL	KTPA	KTPA
n	4	က	4	က	4	က	4	က	4	က	4	က	4	က	4

A.23.2 RTD is 1

Please see Table 41 on page 234.

A.23.3 RTD is 2

Please see Table 83 on the next page.

Table 83: Results of the processing of OLAs 3 and 4 by Aging (variant 0x0) Rev. 1.1 when the RTD is 2

				1.	_		1.	1	1	1			-		1.		_	1			. 1	-			_	l	1	1.			1
m10N39NQM	0.35	0.31	0.31	0.40	0.40	0.35	0.37	0.35	0.33	0.54	0.35	0.31	+		0.40	0.43	0.39	0.31	0.34	0.48	0.31	0.31	0.34	0.38	0.38	0.32	0.33	0.39	0.39	0.25	0.38
МФМР	0.90	26.0	0.93	0.88	06.0	0.89	0.86	0.88	0.92	28.0	0.91	0.92	0.93	0.91	0.87	0.91	0.91	0.83	0.91	0.90	06.0	0.91	0.92	0.89	0.91	0.91	0.90	0.91	0.92	0.73	0.88
тто И 19 И	0.38	0.32	0.34	0.46	0.45	0.39	0.43	0.40	0.36	0.30	0.38	0.34	0.34	0.41	0.46	0.47	0.43	0.37	0.38	0.53	0.34	0.34	0.37	0.43	0.42	0.35	0.37	0.43	0.42	0.34	0.43
r(12)	91	61	61	121	121	31	61	31	61	16	91	61	121	121	61	61	91	31	61	91	121	121	121	31	61	31	91	61	19	121	91
y(12)	17	, o	0	17	17	18	T 1.	17	17	, x	18	19	E X	18	9	9	17	œ	∞	1 -1	19	19	% x	17	17	∞ ∞	1 8 ×	28	2,58	9 9	17
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	31	15.	121	61	61	61	31	91	61	10 -	61	61	61	91	1	61	61 91		61	61	121	121	121	61	121	61 91	121	31	61	91	31
y(11)	- 1	- o	0	2	7	18	15 rd	17	17	18	18	19	1 ×	18	16	16	17	œ	∞	- 1	- 6	6	8 2	7	7	∞ ∞	± 1 ∞ ∞	18	18x	9 9	17
r(10)	91	121	121	61	61	61	61	61	61	121	61	121	121	31	31	61	91	31	121	31	91	121	61	121	121	31	61	61	121	31	61
$y(10) \mid r(10)$	2	- o	0	17	17	18	1. T.	17	1 -1	~ «) x 0	6	ρ <u>α</u>	18	16	16	<u></u>	∞	∞	- 1	- 6	6	8 2	7	7	∞ ∞	2 ×	18	18	9 9	7
r(9)	91	121	121	31	121	91	61	61	61	0.1	121	121	121	121	1	31	91 121	1	31	31	91	121	31	61	91	61 121	31	31	61	31	91
y(9) r(9)	17	; 6	. 6	7	7	οο οο	7. T.		1 -1	~ x) x	60	n 00) x	16	16	<u></u>	∞	∞	17	- 6	6	8 2	17	17	∞ ∞	∞ ∞	00 0	χ,	9 9	
	91	121	121	121	121	31	61	121	61	121	121	31	61	61	31	61	121	31	31	91	31	121	91	121	121	61	121	121	121	61 91	91
y(8) r(8)	- 1	- o	0	2	7	∞ ∞	ro ro	- 2	17	7.7) x	0.0	n ox) x	16	16	<u></u>	18	18	17	6	6	∞ ∞	2	7	∞ ∞	∞ ∞	000	, oc	9 9	2 2
r(7)	61	1 19	61	121	121	91	91	121	61	191	121	121	121	91	31	121	91	61	121	19 10	91	91	91	31	91	61	91	91	121	61	91
$\begin{vmatrix} y(7) & y(7) \\ y(7) & y(7) \end{vmatrix}$ for month n	7	- 6	6	2	7	00 00	ro ro	7	1 -1	~ x) x 0	6	n o) x 0	16	9		œ	∞	17	6	6	8 2	7	7	∞ ∞	00 00	00 0	χo,	9 9	7
	61	121	121	61	61	61	61	31	121	121	121	31	0 10	91	121	121	61	31	31	61	121	91	91	31	61	121	91	61	61	61	91
$\begin{vmatrix} y(6) & r(6) \\ y(8) & r(6) \end{vmatrix}$ size minutes	7 7	- o	6	2	7	18	ro ro	17	1 -1	~ a) x	6	n o	000	9	9	17	18	18	1 -1	- 6	6	00 00	2	7	∞ ∞	00 00	00 0	x (9 9	۷ ۷
	61	121	121	61	121	61	121	61	121	121	61	121	31	121	31	91	121 91	31	61	121	91	91	121	91	91	31	91	121	121	91	31
y(5) ing av	17	; o	0	7	7	oo oo	55 55	17	1 -1	~ <u>~</u>	18	19	ξ. α	18	16	16	17	18	18	17	6	6	18 2 ×	17	17	∞ ∞	8 2	oo o	x (9 9	7
$\begin{array}{c c} & & & \\ & & \\ \end{array}$	121	61	91	61	121	121	191	121	31	121	121	31	61	61		91	61 121	91	121	61	121	121	61	31	61	121	61	121	121	31	91
<i>y</i> (, is	7	- o	6	17	17	18	Ω Ω	17	1 -1	~ \(\frac{1}{\pi}	18	19	5 Z	18	9	9	17	∞	∞	17	6	6	% ×	17	17	∞ ∞	% <u>x</u>	18	χ, .	9	27
r(3)	61	121	121	31	91	61 91	31	61	61	10 1	31	91	91	61	61	91	121	61	91	61	121	121	61	61	91	121	61	31	61	31	61 91
$r(2) \left\ y(3) \right\ _{r(3)}$ y-intercept and $r(n)$	17	5	6	7	7	8 18	15 75	17	17	1 ×	18	19	E 2	18	16	16	17	∞	∞	17	6	6	<u>8</u> 2	2 2	7	∞ ∞	18	18	, 1 <u>x</u>	9	17
	121	12.1	121	61	91	31	31	31	121	3.1	31	31	3.1	31	121	121	31	П	61	31	61	61	31	91	121	31 91	91	61	61	1 61	31
y(2) is the	7	- 6	6	17	17	18	15	17	1 -1	, <u>x</u>	18	19	18	18	9	9	17	∞	∞	r - 1	19	19	18	2	7	∞ ∞	18	18	- 18 - 18 - 18	 	17
r(1)	91	3.1	91	31	61	61	31	31	91	16	31	31	10	91	91	91	61 91	31	91	31	61	61	121	121	121	31	31	121	121	1 61	121
y(1) where	2 2	- 6	19	17	17	18	T 1.	17	17	18	18	19	18	18	16	16	17	∞	∞	r -1	19	19	8 2	2	7	∞ ∞	2 %	18	200	9	17
noitst	KATL KATI.	KBOS	KBOS	KBWI	KBWI	KCLE KCLE	KCLT	KCVG	KDCA	KDEN	KDEN	KDFW	KDTW	KDTW	KEUG	KEUG	KIAH KIAH	KLAS	KLAS	KLAX KI AY	KLGA	KLGA	KMCI	KMCO	KMCO	KMSP KMSP	KORD	KPHL	KPHL	KPHX KPHX	KPIT KPIT
OFA	ω 4	1 65	4	-	4	භ අ	ω 4	_	-	_	7	თ -	_	4	m	4	es 4.	8	4	თ <	, co		დ 4	٠ c		υ 4	_	_	_	თ 4.	£ 4

Table 83: (continued)

0.51	0.52	0.37	0.39	0.29	0.30	0.36	0.36	0.37	0.37	0.56	0.59	0.33	0.33	0.35	0.37
06.0	0.92	78.0	06.0	06.0	0.92	68.0	06.0	0.92	0.95	68.0	06.0	0.91	0.91	0.85	0.89
0.56	0.56	0.43	0.43	0.33	0.33	0.41	0.40	0.40	0.40	0.63	0.65	0.37	0.37	0.41	0.42
61	121	_	91	31	91	91	91	-	91	-	61	61	61	31	91
9	9	2	ю	17	17	16	16	10	10	œ	œ	17	17	16	16
-	121	31	61	61	61	121	121	1	61	-	31	121	121	61	121
9	9	2	ю	17	17	16	16	10	10	∞	œ	2	7	9	9
31	121	121	121	91	121	31	91	121	121	31	31	31	31	31	16
9	9	22	ю	7	7	16	16	10	10	00	∞	17	17	16	16
121	121	61	121	91	121	61	121	91	91	121	121	61	91	1	121
9	9	22	ю	2	7	9	9	20	20	∞	œ	7	7	16	16
61	61	31	61	91	121	61	91	121	121	31	61	121	121	121	121
9	9	15	15	2	7	9	9	20	20	œ	œ	2	7	9	9
121	121	121	121	31	61	61	61	121	121	61	61	61	121	1	6:
9	9	22	ъ	17	17	9	9	20	20	∞	œ	2	7	9	9
121	121	61	91	121	121	121	121	61	61	121	121	61	91	31	6
9	9	15	15	17	17	9	9	30	30	œ	œ	2	7	16	16
31	91	121	121	121	121	31	61	91	91	61	61	121	121	121	121
16	16	22	ъ	17	17	16	16	30	30	18	18	2	2	9	9
61	61	121	121	121	121	31	91	121	121	61	61	91	91	121	121
16	16	22	ъ	17	17	16	16	20	20	18	18	17	17	9	9
121	121	61	61	31	61	61	91	61	61	31	31	31	61	31	55
9	9	15	15	17	17	16	16	20	20	18	18	17	17	16	16
91	121	31	31	31	91	91	91	31	91	91	91	121	121	121	121
9	9	15	15	2	2	9	9	10	10	œ	∞	2	2	9	9
121	121	-	121	121	121	31	121	31	61	121	121	91	91	91	16
9	9	22	ю	2	7	16	16	10	10	œ	œ	2	7	9	9
KSAC	KSAC	KSAN	KSAN	KSAT	KSAT	KSEA	KSEA	KSFO	KSFO	KSMX	KSMX	KSTL	KSTL	KTPA	KTPA
က	4	က	4	က	4	က	4	က	4	65	4	က	4	က	4

A.23.4 RTD is 3

Please see Table 84.

Table 84: Results of the processing of OLAs 3 and 4 by Aging (variant 0x0) Rev. 1.1 when the RTD is 3

MQNet Norm	0.34	0.36	0.30	0.30	0.44	0.44	0.34	0.35
МФМР	0.92	0.94	0.94	0.94	0.92	0.92	0.91	0.93
m to M to M	0.37	0.38	0.32	0.32	0.48	0.48	0.38	0.38
r(12)	91	91	91	91	121	121	1	61
y(12)	17	17	19	19	17	17	18	18
r(11)	1	61	61	91	31	31	31	31
	17	17	6	6	17	17	18	18
r(10)	31	31	91	91	31	31	31	31
y(10)	17	17	6	6	17	17	18	18
r(9)	121	121	121	121	121	121	31	31
y(9)	17	17	6	6	2	7	18	18
r(8)	1	31	121	121	31	61	121	121
y(8)	17	17	6	6	17	17	œ	œ
	31	31	121	121	31	31	1	31
$\left\ y(6) \right\ _{\Gamma(6)} \left\ y(7) \right\ _{\Gamma(7)}$ size minutes for month n	2	7	6	6	2	7	18	18
r(6)	121	121	91	91	91	91	1	31
$\begin{vmatrix} y(6) \\ ze min \end{vmatrix}$	2	7	6	6	2	7	18	18
5) r(5) average s	31	31	121	121	31	31	31	61
$\begin{vmatrix} y(5) \end{vmatrix}$	17	17	6	6	2	7	18	18
$\begin{array}{c c} & & & \\ & & & \\ \hline & & \\ & & \\ \end{array}$	31	31	31	31	61	61	121	121
$\begin{vmatrix} y(4) \\ y(4) \end{vmatrix}$ is th	17	17	19	19	17	17	18	18
$y(1) \mid r(1) \mid y(2) \mid r(2) \mid y(3) \mid r(3) \mid y(4)$ where $y(n)$ is the y-intercept and $r(n)$ is	121	121	31	31	121	121	31	31
 y(3) cept a	17	17	19	19	17	17	18	18
r(2) y-inter	-	31	31	31	31	31	91	91
$y(1)$ $\begin{vmatrix} r(1) \\ r(2) \end{vmatrix} \begin{vmatrix} r(2) \\ r(3) \end{vmatrix} \begin{vmatrix} r(3) \\ r(3) \end{vmatrix}$ where $y(n)$ is the y-intercept and $r(n)$	17	17	6	6	17	17	18	18
r(1) $r(n)$	31	31	61	61	31	31	61	61
y(1) where	17	17	19	19	21	17	18	18
noitsts	KATL	KATL	KBOS	KBOS	KBWI	KBWI	KCLE	KCLE
OFA	က	4	က	4	3	4	က	4

Table 84: (continued)

	l	I		.1.		l	I.a .	I			-	.1.		1.	_							J_	_		1	-		1		** **		T
0.36	0.35	0.34	0.33	0.31	0.40	0.43	0.36	0.33	0.36	0.45	0.30	0.31	0.30	0.37	0.40	0.31	0.31	0.31	0.00	0.40	0.25	0.39	0.39	0.45	0.42	0.42	0.30	0.33	0.38	0.38	0.55	0.33
0.91	0.91	0.91	0.89	0.93	0.93	0.93	0.92	0.89	0.93	0.92	0.92	0.93	$0.93 \\ 0.94$	0.91	0.93	0.94	0.94	0.93	0.95	0.93	0.82	0.92	0.93	$0.92 \\ 0.94$	0.91	0.91	0.93	0.92	0.94	$0.94 \\ 0.95$	0.91	06.0
0.40	0.39	0.37	0.37	0.33	0.42	0.47	0.40	0.37	0.38	0.49	0.33	0.33	0.32	0.41	0.43	0.33	0.34	0.34	0.00	0.42	0.30	0.42	0.42	0.49	0.46	0.46	0.33	0.36	0.40	0.40	0.60	0.37
31	91	31					121	\vdash	Ŧ		121	+	31	Ħ					Ŧ		191	Ħ		121	Ħ		1 31	91		1 61	31	Ħ
51 55	17	17	8 2	10 10	18 18	16	17	x	2 x	17	19	19	8 R	17	17	18	18	18	01 %	58	9 9	17	17	9	20	20	17	16	16	10	∞ ∞	17
1 61	121	1 1 2 3	3 3 3 3 3	3 1 2	91	91	91	3	19 0	91	- ;	31	31	1	31	1	31	121	121	31	1 1 61	91	91	91	31	31	31	_	61	31	31	31
15	17	17	81 8		18 18				+			+		\vdash			-		+			+			\vdash		17	26	56	10	∞ ∞	17
=======================================	31				91												_		+		91			1 31	\vdash	1					1 61	
								\vdash	+			+		+			_		+			+							-			+
		15 5	- 18 =	100	18 18				+			+		\vdash					+	18				16	12	=	17	16	ī	20 20	1 x	#
61	31	121	1 - 15	1 1 2	31	1 31	121	3	31	31	121	121	61	91	121	91	91	61	- -	31	1 5	91	91	31		-	31	-	31	121	61	121
7. T.	17	7 7	- 8 8	9 0 0	18	16	2 2	oo o	1 x	17	6	6	2 2	17	17	∞	∞	18	0 0	18	9	2	7	16	15	15	2	16	16	20	∞ ∞	<u> </u>
61	61	31	3 1	31	91	31	121	31	31	31	91	91		1	31	61	91	121	121	31	31	91	91	31	91	91	31 31	1	31	91 121	61	91
55 75	r r	17	81 8	6 6	x x	16	2	18	1 2	17	6	б ^ў ,	18	17	17	∞	œ	o o o	0 2	18	9	2	7	16 16	15	15	11 17	16	16	20	∞ ∞	2
31	121	91	1 31	121	61	91	1 31	121	121	61	121	121	1 31	91	91	61	61	1	101	121	121	91	91	91	91	91	31	1	31	121	61	; -
יט יט	r- r-	- 1	- 8 8	0 0	× ×	16	17	oo o	<u>1</u> 0x	17	6	6 ,	× ×	7	2	∞	8	18	o	0 00	9 9	2	7	16	rů	ю	17	16	9	2 2	∞ ∞	17
31		31	31	31	31		121	121	121		91	91	31	121	121	61	61	31	10	121	31	1 1	91	31	-	-	121 121	-	31	121		
75 75	17	17	- × ×	10	× ×	16	17	18	1 c	17	6	ъ °,	2 × ×	7	7	∞	œ	18	0 0	0 00	9 9	17	7	16	15	15	17	16	16	30	8 2 8	17
31	61	1 12	121	91	1 31	31	61	31	19		121	121	91	91	121	31	31	31	10	31	191	31	31	121	-	П	31	31	61	31	91	31
25	17	17	- × ×	61 61	8 18	16	17	18	2, 18	27	6	o (× ×	17	17	∞	œ	18	0 0	18	16	17	17	16	15	15	17	16	16	30	1 1 8 2 2	17
121	31	31	3 31	121	61	1 31	121	121	121	121	121	121	1 31	31	31	121	121	121	171	91	1 61	31	31	121	31	31	31	61	91	121	61	61
55 55	27	17	- 8 - 8	19	18 18	16	17	oo o	-1 x	17	6	6	8 8	17	17	∞	8	20 0	0 2	18	9 4	27	27	16	15	15	17	16	16	20	% <u>x</u>	17
121	91	31	3 31	121	91	91	31	31	3.1	31	- 1	121	31		31	31	121	121	121	31	121	31	121	1 31	31	31	31	-	61	121	31	;
55 75	17	17	<u> </u>	61	81 81	16	27	18	1 P	17	19	6	8 8	17	17	∞	8	18	0 0	18	9 9	17	17	16	15	15	17	16	16	20 20	<u>8</u> 20	17
91	61		31	- 1	91	31	31	- 3	9.1		31	31	91	61	61	91	91	31	51	61	61	31	91	31	-	31	91	-	61	61	121	<u> </u>
5 5	17	17	81 8	19	18	16	17	oo o	<u>1</u> x	17	19	19	× ×	7	7	∞	œ	200	0 0	18	9 4	17	17	9 9	15	15	2	16	16	10	2 ×	17
31	121	1 23	1 1 2	121	61	61	31	3	31	91	61	61	121	31	31	121	121	31	191	121	1 61	121	121	121	-	31	31	121	121	91	121	
1 1 1 1	17	17	- × ×	19	18	16	17	oo o	<u>1</u> x	17	19	19	× ×	17	17	∞	∞	200	0 2	18	9 9	17	17	9 9	70	ю	17	16	16	10	∞ ∞	17
KCLT	KCVG	KDCA	KDEN	KDFW	KDTW	KEUG	KIAH	KLAS	KLAS	KLAX	KLGA	KLGA	KMCI	KMCO	CMCO	KMSP	KMSP	KORD	NORD	KPHL	КРНХ	KPIT	KPIT	KSAC KSAC	KSAN	KSAN	KSAT KSAT	KSEA	KSEA	KSFO KSFO	KSMX	KSTL
£ 4	_	3 4			_	_	-	+	-	4	3	_	ю 4 П	-	4 F	3	_	ω ·	+	0 4 1 H	3 1	+-	4	65 4 I	+		3 1	-	_	2 T	£ 4	-

Table 84: (continued)

0.35	0.33	0.37
0.93	78.0	06.0
0.38	0.38	0.41
31	1	31
17	9	9
_	1	_
31	1	П
17	16	16
31	1	31
17	16	16
121	1	31
_	16	16
91	121	121
2	9	9
31	1	91
17	9	9
31	1	31
17	16	16
31	1	121
17	16	9
61	1	31
17	16	9
31	31	31
17	16	16
31	31	31
17	16	16
61	91	91
17	9	9
STL	TPA	TPA

A.24 EXPLORATION 2 FULL RESULTS

Please see Table 85.

Table 85: Results of the processing of OLAs 3 and 4 by Static (variant 0x0, i.e., current weather only, transitions unlimited) Future revision

OLA	station	deployment threshold (knots)	running average size (minutes)	NetNorm	MQMP	MQNetNorm	station	deployment threshold (knots)	running average size (minutes)	NetNorm	MQMP	MQNetNorm
3	KATL	9	40	0.44	0.90	0.40	KMCI	12	41	0.43	0.93	0.40
4	KATL	9	101	0.44	0.93	0.41	KMCI	12	62	0.43	0.94	0.41
3	KBOS	10	30	0.35	0.92	0.32	KMCO	9	23	0.51	0.88	0.45
4	KBOS	9	113	0.34	0.94	0.32	KMCO	9	76	0.50	0.92	0.46
3	KBWI	9	32	0.55	0.89	0.49	KMSP	8	67	0.35	0.93	0.33
4	KBWI	9	81	0.54	0.92	0.50	KMSP	8	76	0.35	0.93	0.33
3	KCLE	10	43	0.40	0.90	0.37	KORD	11	35	0.42	0.90	0.38
4	KCLE	10	71	0.40	0.91	0.37	KORD	11	56	0.42	0.92	0.39
3	KCLT	8	37	0.53	0.88	0.47	KPHL	10	48	0.47	0.91	0.43
4	KCLT	8	50	0.52	0.90	0.47	KPHL	10	104	0.47	0.93	0.44
3	KCVG	10	51	0.44	0.89	0.39	KPHX	6	46	0.34	0.84	0.29
4	KCVG	10	81	0.44	0.91	0.40	KPHX	7	66	0.33	0.86	0.28
3	KDCA	9	45	0.43	0.92	0.39	KPIT	10	57	0.52	0.91	0.47
4	KDCA	9	89	0.42	0.93	0.39	KPIT	10	72	0.52	0.92	$\left 0.47\right $
3	KDEN	10	36	0.41	0.89	0.36	KSAC	8	28	0.63	0.90	0.56

Table 85: (continued)

4	KDEN	11	109	0.38	0.94	0.36	KSAC	8	80	0.62	0.93	0.57
3	KDFW	11	28	0.36	0.92	0.34	KSAN	8	16	0.55	0.86	0.48
4	KDFW	12	68	0.36	0.95	0.34	KSAN	8	43	0.55	0.90	0.49
3	KDTW	10	44	0.48	0.92	0.44	KSAT	10	37	0.39	0.91	0.35
4	KDTW	10	44	0.48	0.92	0.44	KSAT	10	46	0.39	0.92	0.36
3	KEUG	8	38	0.57	0.90	0.51	KSEA	9	27	0.50	0.88	0.44
4	KEUG	8	71	0.57	0.92	0.52	KSEA	9	67	0.49	0.92	0.45
3	KIAH	10	31	0.49	0.90	0.44	KSFO	14	34	0.43	0.96	0.41
4	KIAH	10	52	0.49	0.92	0.45	KSFO	15	26	0.43	0.97	0.41
3	KLAS	9	34	0.40	0.91	0.36	KSMX	9	38	0.66	0.90	0.59
4	KLAS	9	63	0.40	0.93	0.37	KSMX	9	50	0.66	0.91	0.60
3	KLAX	10	22	0.56	0.90	$\left 0.50 \right $	KSTL	9	42	0.40	0.91	0.37
4	KLAX	10	72	0.54	0.92	0.50	KSTL	9	105	0.40	0.93	0.37
3	KLGA	10	53	0.37	0.92	0.34	KTPA	8	26	0.53	0.86	0.45
4	KLGA	10	86	0.36	0.92	0.34	KTPA	8	39	0.52	0.88	0.46

A.25 EXPLORATIONS 5 AND 6

A.25.1 Exploration 5: KATL

Please see Table 86.

Table 86: For KATL, results of the λ sensitivity analysis and extended dense design space search for processing of OLAs 3 and 4 by Fuzzy-Crisp (variant 0x0, i.e., current weather only, transitions unlimited) Future version

m10NetNom	0.25	0.26	0.25	0.26	0.25	0.26	0.25	0.26	0.25	0.26	0.25	0.26	0.25	0.26	0.25	0.26	0.25	0.26
МФМР	96.0	96.0	96.0	96.0	96.0	96.0	96.0	96.0	96.0	96.0	96.0	96.0	96.0	96.0	96.0	96.0	96.0	96.0
MetNorm	0.26	0.27	0.26	0.27	0.26	0.27	0.26	0.27	0.26	0.27	0.26	0.27	0.26	0.27	0.26	0.27	0.26	0.27
r(12)		-		-		-	-	-	-	-	-		-	-	-	-	-	-
$\left\ d(12) \right\ $	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	121	117	121	117	121	117	121	117	121	117	121	117	121	117	121	117	121	117
$\left\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array}\right. \left. d(11) \right.$ month \imath	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	0.8	8.0	8.0	8.0	8.0	8.0	0.8
	3	ಣ	3	က	3	က	65	က	3	ಣ	3	က	3	ಣ	3	ಣ	3	c:
$\left\ \frac{1}{d(10)} \left\ \frac{r(10)}{r(10)} \right\ $ size minutes for	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
r(9)	329	331	329	331	329	331	329	331	329	331	329	331	329	331	329	331	329	331
$\begin{vmatrix} d(9) \end{vmatrix}$	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
$d(8) \left r(8) \right d(9) \left r(9) \right $ is the running average	131	131	131	131	131	131	131	131	131	131	131	131	131	131	131	131	131	131
$\begin{vmatrix} d(8) \\ d \end{aligned}$ is the	2.0	0.7	2.0	0.7	7.0	0.7	0.7	0.7	0.7	0.7	2.0	0.7	0.7	0.7	7.0	0.7	2.0	0.7
r(7)	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43
$\begin{vmatrix} d(7) \\ d \end{vmatrix}$	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
d(6) $r(6)$ $d(7)$ of membership and	92	92	65	92	92	92	92	92	92	92	65	35	92	92	92	92	65	65
	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
r(5)	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36
$\begin{vmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ $	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
4) $r(4)$ $d(5)$ of the combined	186	186	186	186	186	186	186	186	186	186	186	186	186	186	186	186	186	186
	6.0	0.9	6.0	0.9	6.0	0.9	6.0	0.9	6.0	0.9	6.0	0.9	6.0	0.9	6.0	0.9	6.0	6.0
$d(3) \begin{vmatrix} r(3) \\ r(3) \end{vmatrix}$ ment thresh	153	153	153	153	153	153	153	153	153	153	153	153	153	153	153	153	153	153
$\begin{vmatrix} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & $	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.55
$\begin{vmatrix} a(2) & r(2) & d(3) & r(3) & d \end{vmatrix}$ is the deployment threshold	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	0.9	6.0	6.0	6.0	6.0	6.0	6.0
d(1) $r(1)$ where $d(n)$	174	174	174	174	174	174	174	174	174	174	174	174	174	174	174	174	174	174
d(1) where	6.0	6.0	6.0	6.0	0.9	6.0	6.0	6.0	0.9	6.0	6.0	0.9	0.9	6.0	6.0	6.0	6.0	6.0
~	0.1	0.1	0.2	0.2	0.3	0.3	7 0.4	0.4	0.5	0.5	9.0	9.0	7.0	7.0	8.0	8.0	6.0	6.0
noitsts	KATL	KATL	KATL	KATL	KATL	KATL	KATL	KATL	KATL	KATL	KATL	KATL	KATL	KATL	KATL	KATL	KATL	KATL
OFA	ю	9	rO	9	ю	9	ъ	9	ъ	9	ro	9	ъ	9	ю	9	ю	9

A.25.2 Exploration 6: KBOS

Please see Table 87 on the next page.

Table 87: For KBOS, results of the λ sensitivity analysis and extended dense design space search for processing of OLAs 3 and 4 by Fuzzy-Crisp (variant 0x0, i.e., current weather only, transitions unlimited) Future version

nroN teNQM	0.25	0.24	0.25	0.24	0.25	0.24	0.25	0.24	0.25	0.24	0.25	0.24	0.25	0.24	0.25	0.24	0.25	0.24
МФМР	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
MetN orm	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27
r(12)	202	202	202	202	202	202	202	202	202	202	202	202	202	202	202	202	202	202
d(12)	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
r(11)	98	15	98	15	98	15	98	15	98	15	98	15	98	15	98	15	98	15
	0.4	0.5	0.4	0.5	0.4	0.5	0.4	0.5	0.4	0.5	0.4	0.5	0.4	0.5	0.4	0.5	0.4	0.5
d(8) r(8) d(9) r(9) d(10) r(10) d(11) is the running average size minutes for month	352	352	352	352	352	352	352	352	352	352	352	352	352	352	352	352	352	352
$d(10)$ $\frac{1}{\eta}$	0.7	0.7	2.0	0.7	0.7	0.7	2.0	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	2.0	0.7
r(9) age size	2	ю	25	ы	2	ю	25	ы	2	ю	2	ы	2	ю	25	ъ	25	r0
d(9)	7.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	7.0	2.0	7.0	2.0	2.0	2.0	2.0	2.0	2.0	0.7
r(8)	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28
d(8) is the	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0
$\begin{vmatrix} r(7) \\ d \ r(n) \end{vmatrix}$	147	147	147	147	147	147	147	147	147	147	147	147	147	147	147	147	147	147
$\begin{vmatrix} d(7) \\ d(p) \end{vmatrix}$	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
d(6) $r(6)$ $d(7)$ $r(7)$ of membership and $r(n)$	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167
	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
r(5)	359	359	359	359	359	359	359	359	359	359	359	359	359	359	359	359	359	359
$\left \begin{array}{c} \\ d(5) \\ \end{array} \right $	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	0.9
(4) $r(4)$ $d(5)$ of the combined	283	283	283	283	283	283	283	283	283	283	283	283	283	283	283	283	283	283
	6.0	0.9	6.0	0.9	6.0	0.9	6.0	0.9	6.0	0.9	6.0	0.9	6.0	0.9	6.0	0.9	6.0	0.9
$\begin{pmatrix} r(3) \\ thresh$	157	243	157	243	157	243	157	243	157	243	157	243	157	243	157	243	157	243
$\left\ \frac{d}{d(3)} \right\ $	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	0.8	8.0	8.0
$\begin{vmatrix} a(2) & r(2) & a(3) & r(3) & d \\ a & \text{is the deployment threshold} \end{vmatrix}$	280	197	280	197	280	197	280	197	280	197	280	197	280	197	280	197	280	197
	0.3	0.4	0.3	0.4	0.3	0.4	0.3	0.4	0.3	0.4	0.3	0.4	0.3	0.4	0.3	0.4	0.3	0.4
$d(1) \left egin{array}{c} r(1) \\ ext{where } d(n) \end{array} \right $	93	56	93	59	93	56	93	59	93	56	93	59	93	56	93	56	63	59
d(1) wher	6.0	6.0	6.0	0.9	6.0	6.0	6.0	0.9	6.0	6.0	6.0	0.9	6.0	6.0	6.0	0.9	6.0	6.0
~	0.1	0.1	0.2	0.2	0.3	6.0	9.0	9.7	3.0.5	5.0	9.0	9.0	2.0	5.0	8.0.8	8.0	6.0	6.0
noitata	KBOS	KBOS	KBOS	KBOS	KBOS	$_{\rm KBOS}$	KBOS	KBOS	KBOS	$_{\rm KBOS}$	KBOS	KBOS	KBOS	$_{\rm KBOS}$	KBOS	KBOS	KBOS	KBOS
OFA	ъ	9	ъ	9	ъ	9	ъ	9	ъ	9	ъ	9	ъ	9	ъ	9	ъ	9

A.26 FULL RESULTS FOR EXPLORATION 8

Please see Table 88 on the following page and Table 89 on the next page.

Table 88: Effect of time horizon on Static (variant 0x3) processing KATL's data within OLA 5

			deployment				
		time	threshold	window size			
OLA	station	horizon	$({ m knots})$	(minutes)	NetNorm	MQMP	m MQNetNorm
5	KATL	30	14	14	0.273	0.932	0.254
5	KATL	60	13	105	0.281	0.928	0.261
5	KATL	120	14	84	0.274	0.940	0.258
5	KATL	240	14	116	0.271	0.943	0.255
5	KATL	480	14	117	0.273	0.947	0.258
5	KATL	720	13	119	0.267	0.941	0.251
5	KATL	1440	14	121	0.277	0.962	0.267

Table 89: Effect of time horizon on Static (variant 0x3) processing KATL's data within OLA 6

			deployment				
		time	threshold	window size			
OLA	station	horizon	(knots)	(minutes)	NetNorm	MQMP	MQNetNorm
6	KATL	30	14	99	0.276	0.935	0.258
6	KATL	60	14	106	0.272	0.935	0.254
6	KATL	120	13	105	0.286	0.940	0.269
6	KATL	240	14	116	0.271	0.943	0.255
6	KATL	480	14	117	0.273	0.947	0.258
6	KATL	720	13	119	0.267	0.941	0.251
6	KATL	1440	14	121	0.277	0.962	0.267