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Proton Transfer in Hydrated Molecular Ions 

Kaye A. Archer, PhD 

University of Pittsburgh, 2019 

 

 

In this work I employ quantum and mixed quantum mechanical/molecular mechanical 

techniques to describe proton transfer in solvated molecular ions. I explore the role of solvation in 

facilitating proton-coupled electron transfer in pyridine∙(H2O) n –. The underlying physics which 

accounts for the differences observed in the N−H region of the infrared spectra of pyridine ∙   

(H2O)n=3– when compared to the 𝑛 ≥ 4 clusters, is also explored. Theoretical challenges 

encountered when calculating one-dimensional potential energy surfaces are examined. The merits 

of mapping the potential energy surface of H+(H2O)21 by employing the multistate empirical 

valence-bond model are evaluated by calculating isomerization pathways.  
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1.0 Introduction 

Water is ubiquitous in nature and acts as a solvent in many reactions. One such reaction is 

proton transfer. Proton transfer features in many areas of chemistry and biology such as acid–base 

chemistry, electrolyte chemistry, atmospheric chemistry, macromolecular assembly such as in 

proteins and DNA, and in microbiological systems such as in mitochondrial respiration, ATP 

biosynthesis and enzyme catalysis. Proton transfer in these areas is influenced by the solvent water 

molecules hydrating the molecules and/or molecular ions which feature in these reactions. The 

solvent water molecules form a hydrogen-bond network. This network provides pathways for 

proton transfer to occur.  

Calculations of proton transfer in molecular gas phase ions are presented in this thesis. 

Energy differences, such as electron affinities and barrier heights, are leveraged extensively in this 

work since it dictates the chemistry of the hydrated molecular ions. Electron affinities are 

employed to determine whether changes in the nature of the anion has occurred. The mobile proton 

allows diabatic states that depend on the location of the excess proton to be sampled.  State mixing 

can be expected. In Chapter 3.3.0, this features in the potential energy surface as an avoided 

crossing. In the studies presented in Chapter 2.0 and 3.3.0, proton-coupled electron transfer occurs 

between the waters hydrating the pyridine anion forming C5H6N–H·OH–·(H2O)n. To determine 

how proton transfer impacts the nature of the ground state anion in pyridine–water cluster anions, 

the nature of the ground and excited anionic states of the molecular clusters were considered. 

Molecular anions considered in this work are of two types – valence-bound and dipole-bound. 

Evolution of the anion is observed along the proton transfer coordinate. The excess electron is first 
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bound in the dipole field of the pyridine and hydrating water molecules, then it becomes valence-

bound occupying a 𝜋∗ orbital of the pyridine molecule. 

Typically, potential energy curves are employed to demonstrate changes to a chemical 

system over a coordinate of interest. Utilizing post-Hartree-Fock theories to generating potential 

energy curves presents a challenge. The difficulty occurs in the neighborhood of avoided crossings 

where the energy difference between electronic states is small. Consequently, wavefunction 

convergence is difficult. In the neighborhood of the avoided crossing, two electronic 

configurations are possible due to a narrow energy separation. Hartree-Fock [1–3] is a single 

reference method which post-Hatree-Fock methods employ as an initial approximation to which 

electron correlation is added. Therefore, if the Hartree-Fock guess is incorrect post HF treatments 

will inherit this error. We therefore employ equation-of-motion electron affinity coupled-cluster 

singles doubles (EOM-EA-CCSD) [4,5] theory which circumvents the difficulties encountered at 

avoided crossings and recovers the requisite electron correlation needed to accurately model 

dipole-bond anions. 

In Chapter 4.0, we calculate isomerization pathways for H+(H2O)21. We assume that proton 

transfer can feature in high-energy H+(H2O)21 isomerization pathways. Therefore, a model 

allowing protons to be associated with different water monomers is employed.  Isomerization 

pathways are calculated to determine the accuracy of the model. There are several approaches for 

calculating minimum energy pathways which include the calculation of the Hessian, either directly 

or by employing quasi-Newton techniques [6], which partially construct an approximate inverse 

Hessian via a recursive algorithm. Another approach is to employ nudged elastic band (NEB) [7,8]. 

NEB is a chain-of-states approach that discretizes the reaction pathway. It employs quasi-

Newtonian methods to converge configurations along the pathway in order to identify stationary 
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point corresponding to transition and intermediate states. Mapping out the H+(H2O)21 potential 

energy surface is computationally expensive (though not prohibitively so) due to the complexity 

of the potential. In Chapter 4.0 the multistate empirical valence-bond model (MS-EVB) [9,10]  is 

employed to study H+(H2O)21. 

This thesis is laid out in the following manner: the rest of the introduction will serve as an 

overview of approximations for solving the Schrodinger equation mentioned in the text. Chapter 

2.0 will focus on proton-coupled electron transfer in pyridine – water anions and Chapter 3.3.0 

will explore the challenges to theory this chemical system presents. Chapter 4.4.0 will focus on 

the challenges encountered by employing the MS-EVB method to calculate minimum energy 

isomerization pathway between protonated water twenty-one isomers and evaluates the usefulness 

of the MS-EVB model for mapping the H+(H2O)21 potential energy surface. 

 

 

 

 

 

 



4 

1.1 Approximations to Schrodinger Equation 

There are two representations at the disposal of the computational chemist, in increasing 

order of computational cost and complexity, they are the adiabatic and diabatic representation each 

with its own merit based on the potential energy feature of interest.  

 

Figure 1: Comparison of potential energy curves calculated within the adiabatic and diabatic representations. 

In panel A is a diagram of a double well potential energy curve that results from mixing of diabatic states. Panel 

B shows the pure diabatic states that feature in panel A and B.  

1.1.1  Born-Oppenheimer Approximation 

The most commonly employed (ab initio) computational techniques within the adiabatic 

framework (that retain the atomic/molecular picture) are those which are predicated on the Born-

Oppenheimer approximation. This approach employs the notion that the electronic and nuclear 

degrees of freedom are separable due their differing time scales which arise from their large mass 

difference and sufficient energy separation. This leads to the postulate of the product 

wavefunction: 
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Ψ(𝐫, 𝛚;  𝐑) = 𝜑𝑒𝑙(𝐫, 𝛚;  𝐑)𝜒𝑁(𝐑) 1 

 

i.e. the total wavefunction can be factorized as the product of the nuclear, 𝜒𝑁(R), and electronic, 

𝜑𝑒𝑙(r, ω;  R), wavefunctions with the electronic wavefunction being parametrically dependent on 

the nuclear coordinates, R and dependent on electronic coordinates, r, and spin, ω. 

The total Hamiltonian (in atomic units) is defined: 

 

 
�̂�𝑇(𝐫, 𝐑) = 𝑇nuc(𝐑) + 𝑉(𝐫, 𝐑) = 𝑇nuc(𝐑) + 𝐻el + 𝑉𝑁−𝑁(𝐑) 2 

 

Multiplying by  ⟨Ψ(𝐫, 𝐑)from the left and integrating: 

 

 
⟨𝜑𝑒𝑙(𝐫, 𝛚;  𝐑) |�̂�𝑇(𝐫, 𝐑)|Ψ(𝐫, 𝐑)⟩ = 𝐸𝑇𝜒𝑁(𝐑) 3 

 

an expression containing the non-adiabatic coupling is obtained: 

 

 
𝐸𝑇𝜒𝑁(𝐑) = −

1

2
∑ [⟨𝜑𝑖(𝐫, 𝛚; 𝐑)|∇𝑅

2  𝜑𝑖(𝐫, 𝛚; 𝐑)⟩𝜒𝑁(𝐑)
𝑖

+ 2⟨𝜑𝑖(𝐫, 𝛚; 𝐑)|∇𝑅𝜑𝑖(𝐫, 𝛚; 𝐑)⟩∇𝑅𝜒𝑁(𝐑) + ∇𝑅
2 𝜒𝑁(𝐑)]

+ 𝑉𝑗(𝐑) 𝜒𝑁(𝐑) 

4 

 

{𝜑𝑖(𝐫, 𝛚; 𝐑)} are eigenfunctions of the electronic Hamiltonian, 𝐻el, and the non-adiabatic coupling 

between electronic and nuclear degrees of freedom is given by: Λ = −2T(1)∇𝑅 −
1

2
T(2) where T(1) 

(T(1)=∇𝑅𝜑𝑖(𝐫, 𝛚; 𝐑)) contains the derivative or adiabatic coupling elements and T(2) (T(2) =
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∇𝑅
2  𝜑𝑖(𝐫, 𝛚; 𝐑)) contain the scalar coupling elements (coupling between eigenstates through the 

kinetic energy term of the electronic Hamiltonian, 𝐻el). The resulting equation is: 

 

 
0 = [𝑇nuc + Λ + 𝑉 − 𝐸]𝜒(𝐑) 5 

 

 

 
0 = [−(∇ + 𝑇(1))

2
+ 𝑉 − 𝐸] 𝜒(𝐑) 6 

 

Under the Born-Oppenheimer approximation the non-adiabatic coupling, Λ, is zero. This 

approximation breaks down at avoided crossings and conical intersections where the coupling 

between electronic and nuclear degrees of freedom is non-negligible.  

1.1.2  Group Born-Oppenheimer Approximation 

When a group of states are close enough in energy to mix but are energetically well 

separated from the remaining electronic states, then only in a block (of the adiabatic coupling 

matrix) do electronic states mix. The energy separations between the group of electronic states, g 

are small, coupling between electronic and nuclear degrees of freedom is therefore strong (and 

constitutes a breakdown in the Born-Oppenheimer approximation but confined to the block i.e. 

non-adiabatic) and the non-adiabatic representation or the group Born-Oppenheimer 

approximation is obtained [11]: 

 

 
0 = [−

1

2
(∇ + 𝑇(1,𝑔))

2
+ 𝑇𝑗𝑖

(3,𝑔)(𝑅) − 𝐸] 𝜒(𝐑) 7 
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In this framework, adiabatic coupling is “turned on” within the block and “turned off” 

elsewhere. 𝑇(1,𝑔) contain the adiabatic coupling of the block of electronic states, g. The potential 

is then equivalent to a dressed potential of the block of electronic states, 𝑉(𝑔), to give, 𝑇𝑗𝑖
(3,𝑔)

 [12]: 

 

 
𝑇𝑗𝑖

(3,𝑔)(𝐑) = 𝑉𝑖
(𝑔)(𝑅)𝛿𝑖𝑗 +

1

2
⟨∇𝜑𝑗|(1 − �̂�𝑔)|∇𝜑𝑖⟩ 8 

 

 

where �̂�𝑔, is a projector onto the selected block. 

1.1.3  Diabatic Representation 

When states are degenerate a singularity exist in the derivative couplings, 𝑇(1,𝑔), and 

presents a challenge for the Born-Oppenheimer approximation. In perturbation theory, a 

singularity results because derivative coupling depends inversely on the energy separation of 

electronic states. The diabatic representation is more appropriate and is constructed so as to provide 

smooth potential energy and coupling surfaces. The diabatic basis is obtained via a unitary 

transformation, 𝕌, in the vector space of electronic states so that the derivative and scalar coupling 

is zero: 

 

 
𝜒(𝑎) = 𝕌𝜒(𝑑) 9 

 

The diabatic potential energy is 
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𝑉(𝑑) = 𝕌+𝑉𝕌 10 

 

and 

 

 
[(𝑉(𝑑) − 𝐸) − 𝑇nuc]𝜒(𝑑) = 0 11 

 

The impact of the unitary transform is that derivative and scalar coupling terms are 

eliminated with the coupling being described by off-diagonal elements of 𝑉(𝑑). This approach is 

computationally expensive since this depends on having access to a complete set of adiabatic 

states. This is not feasible; in practice, a quasi-diabatic representation in achieved by attempting 

to minimize (within a predefined tolerance) the derivative coupling. 

1.1.4  Ab Initio Adiabatic Approximations of the Schrödinger Equation 

A fundamental problem in modern quantum mechanics is the inability to provide an exact 

solution to the Schrödinger equation (SE) for (most) systems with more than one electron due to 

the inseparability of the electron-electron term of the SE. This, however, has not limited the 

practical uses for ab initio methods. Development of new approximations, both ab initio and 

empirical in nature, along with continued increase in available computing power has made 

quantum mechanical applications routine.  

One of the earliest methods employed within the Born-Oppenheimer approximation, is the 

Hartree-Fock method which models each electron as moving independently in the average 

potential of the remaining electrons. This approximation is said to be uncorrelated and in general 
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accounts for more than 99% of the total energy. The Hartree-Fock method serves as an initial 

estimation for post-Hartree-Fock methods that recover electron correlation such as configuration 

interaction (CI), second-order Møller-Plesset (MP2) [13] theory and coupled-cluster (CC) theory. 

[14] Determining how to leverage the approximations mentioned above is critical to probing 

proton transfer in solvated molecular ions. This work employs a variety of ab initio methods and 

an empirical force field to explore proton transfer in molecular cluster ions. In Chapters 2.0 and 

3.3.0, we apply density functional theory (DFT) [15–18] and equation-of-motion coupled cluster 

(EOM-CC) [5,19,20] to study proton transfer in micro-hydrated pyridine anions. 

1.1.4.1 Hartree-Fock Approximation 

The Hartree-Fock (HF) method is a wavefunction technique employed to describe chemical 

systems as a function of electronic coordinates, r, and spin, ω, given a set of nuclear coordinates, 

R (i.e. the electronic wavefunction is parametrically dependent on the nuclear coordinates): 

 

 
Ψ(𝝃; 𝐑) = Ψ(𝐫, 𝛚; 𝐑);  𝜔 ∈ {𝛼, 𝛽} 12 

 

The HF equations are formulated as a pseudo-eigenvalue problem where the eigenvalues and 

eigenfunctions are molecular orbital energies and functions. Chemical systems are fermionic in 

nature and therefore the wavefunction must be antisymmetric: 

 

 
Ψ(𝜉1, 𝜉2, … , 𝜉𝑁; 𝐑) = −Ψ(𝜉2, 𝜉1, … , 𝜉𝑁; 𝐑) 13 
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and adhere to Pauli’s exclusion principle. The wavefunction is expressed as a Slater determinant 

of one-electron wavefunctions: 

Ψ(𝝃; 𝐑) =
1

√𝑁!
|

𝜙1(𝜉1) 𝜙2(𝜉1)

𝜙1(𝜉2) 𝜙2(𝜉2)
… 𝜙𝑁(𝜉1)

… 𝜙𝑁(𝜉2)
⋮ ⋮

𝜙1(𝜉𝑁) 𝜙2(𝜉𝑁)
⋱ ⋮
… 𝜙𝑁(𝜉𝑁)

| 14 

Computational methods employed to solve the Schrödinger equation in this thesis express 

the one-electron wavefunction as a sum of products of atom-centered Gaussian functions, 𝜓(𝑅) 

and a spin function, 𝜎(𝜉): 

𝜙(𝛏) = ∑ 𝑐𝑖𝜓𝑖(𝐑)𝜎(𝑟, 𝜔)

𝑖

15 

where: 

𝜎(𝜔) = {
𝜎(𝛼): |𝑠 =

1

2
, 𝑚𝑠 =

1

2
⟩

 𝜎( 𝛽): |𝑠 =
1

2
, 𝑚𝑠 = −

1

2
⟩

16 

The HF electronic Hamiltonian operating on one-electron spin orbitals consists of one- and two- 

electron terms: 
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ℎ(1)𝜒𝑖(1) + ∑ [∫ 𝑑𝐫2|𝜒𝑗(2)|
2

𝐫12
−1]

𝑗≠𝑖

𝜒𝑗(1) − ∑ [∫ 𝑑r2𝜒𝑗
∗(2)𝜒𝑖(2)𝐫12

−1]

𝑗≠𝑖

𝜒𝑖(1)

= 𝜖𝑖𝜒𝑖(1)

17 

which can be re-expressed in terms of the electron – electron Coulomb operator, 𝒥𝑗(1) and

exchange operator, 𝒦𝑗(1), respectively and form the Fock operator:

𝑓(1)|𝜒𝑖⟩ = [ℎ(1) + ∑ 𝒥𝑗(1) − 𝒦𝑗(1)

𝑗

] |𝜒𝑖(1)⟩ = 𝜖𝑖|𝜒𝑖(1)⟩ 18 

since: 

[𝒥𝑖(1) − 𝒦𝑖(1)]|𝜒𝑖(1)⟩ = 0 19 

where the one electron operator, ℎ(𝑖) (in atomic units) is 

ℎ(𝑖) = −
1

2
∇𝑖

2 − ∑
𝑍𝐴

r𝑖𝐴
𝐴

20 

A more detailed derivation may be found in Ref.[21] 

1.1.4.2 Electron Correlation Energy 

The difference between the ground state energy, E0, and the Hartree-Fock energy, EHF, is 

called the correlation energy (relativistic effects are not taken into consideration in this work): 
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𝐸𝑐 = 𝐸0 − 𝐸𝐻𝐹 21 

 

The Hartree-Fock energy accounts for most of the exact energy. The missing portion is critical for 

correct chemical properties which include correct geometric configurations, reaction barrier 

heights and electron affinities. In many cases the Hartree-Fock method offers a good initial 

qualitative description. The goal of post-Hartree-Fock methods is to recover the correlation energy 

(since only same spin correlation is included) improving chemical accuracy. 

1.1.4.3 Kohn-Sham Density Functional Theory  

Kohn–Sham  density functional theory [15] (KS-DFT) approximates the energy as a 

function of electronic density, 𝜌. KS-DFT leverages the self-consistent-field approach of Hartree, 

[22] Slater [23] and Roothaan [24] to calculate orbitals and a many electron wavefunction which 

is employed to calculate electronic density. KS–DFT energy is partitioned thus: 

 

 
𝐸[𝜌] = 𝑇𝑆[𝜌] + 𝑉𝑁𝑒[𝜌] + 𝐽[𝜌] + 𝐸𝑥𝑐[𝜌] 22 

 

𝐸𝑥𝑐[𝜌] is the exchange correlation functional, 𝑇𝑠[𝜌] is the Kohn-Sham (KS) kinetic energy which 

is expressed in terms of a set of KS orbitals {ϕi}, which are employed to describe the ground-state 

electronic density: 

 

 𝜌(r) = ∑|ϕi(r)|2

𝑖

 23 
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 𝑇𝑠[𝜌] = −
1

2
∑⟨ϕi|∇𝑖

2|ϕi⟩

𝑖

 24 

 

𝑉𝑁𝑒[𝜌] and 𝐽[𝜌] are the nucleus-electron Coulomb energy and repulsive electron-electron energy 

respectively. 

 

 𝑉𝑁𝑒[𝜌] = − ∫ 𝑑r𝜌(r) ∑
𝑍𝐴

|r − R𝐴|
𝐴

  25 

 

 

 
𝐽[𝜌] =

1

2
∫ 𝑑r′ ∫ 𝑑r

𝜌(r)𝜌(r′)

|r − r′|
  26 

 

where r and r´ are electronic degrees of freedom. The form of the exchange-correlation functional, 

𝐸𝑥𝑐[𝜌], is not explicitly known but can be expressed in a constraint formulation [25] or via the 

adiabatic connection. [26,27] Density exchange-correlation functionals are arranged in a hierarchy 

referred to as a Jacob’s ladder.[28] Each successive rung increases in complexity with the goal of 

providing better non-local electron correlation description. 
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Figure 2: Jacob's ladder of density functional approximations, adapted from the work of Zbiri et al.[29] 

 

The lowest rung, referred to as the local density approximation (LDA), expands the 

exchange-correlation functional in terms of the ground state electronic density:  

 

 
𝐸𝑥𝑐

𝐿𝐷𝐴[𝜌] = ∫ 𝑑𝑟𝑛 (𝑟)𝜀𝑥𝑐[𝜌(𝑟)] 27 

 

The second rung, referred to as the generalized gradient approximation (GGA), includes the first 

derivative of the electron density in the exchange-correlation functional.  

 

 
𝐸𝑥𝑐

GGA[𝜌] = ∫ 𝑑𝑟𝑛 (𝑟)𝜀𝑥𝑐[𝜌(𝑟), ∇𝜌(𝑟)] 28 

 

The third rung referred to as meta-GGAs, which includes second derivatives of electron density: 
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𝐸𝑥𝑐

Meta−GGA[𝜌] = ∫ 𝑑𝑟𝑛 (r)𝜀𝑥𝑐[𝜌(𝑟), ∇𝜌(𝑟), Δ𝜌(r)] 29 

 

Higher rungs include hybrid DFT – HF functionals where a percentage of exact exchange (from 

Hartree-Fock) is employed to describe non-local exchange. While previous rungs required input 

from occupied orbitals, higher than the 5th rung requires functionals which include unoccupied 

orbitals, as seen in the random-phase approximation originally of Bohm and Pines. [30–32]  

Origin of the Self-Interaction Error 

In DFT the exact result is dependent on the use of the exact exchange-correlation 

functional. In practice, errors arise due to the approximate nature of exchange-correlation 

functionals. The exchange-correlation functional is the source of the self-interaction error (SIE) 

when an electron interacts with its own mean-field. [33,34] DFT fails in circumstances where 

accurate treatment for non-locality of exchange-correlation is crucial as in dissociation and non-

bonding interactions. Several strategies have been employed to correct SIE, which include 

employing GGA’s and meta-GGA density functional. It has been accepted that the use of both 

GGA and meta-GGA functionals alone cannot capture dispersion effects accurately [35–37] or 

completely remove SIE problem. This is especially true for the study of the hydrated molecular 

ions presented in this thesis. 

Density functional theory (DFT) is used widely for modeling large systems since it offers 

attractive scaling (when compared to wave-function methods) while recovering electron 

correlation effects in an approximate manner. Though it is accepted that SIE can be partially 

remedied by including exact exchange, as in the hybrid GGA, partitioning of density functionals 

to employ 100% HF exchange for long-range cannot completely compensate for the non-locality 
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of the correlation hole fundamental to the exchange-correlation functional. Empirical dispersion 

correction in tandem with a hybrid GGA functional is used in Chapter 2.0.    

Empirical Dispersion Correction Approximations 

Failure of standard DFT for long-range dispersion interactions has been well documented 

in the literature. [38–45]. DFT approximation models [46–54] for accurate London dispersion 

interactions [55–57] are critical for accurate descriptions of physical and chemical properties of 

heterogenous water clusters. Dispersion interactions can be empirically defined as attractive 

contributions to the van der Waals (vdW)-type interaction potential between atoms and molecules 

that are not directly bonded to each other. [49] Generalized gradient approximation (GGA)  

functionals such as BLYP [58,59], their hybrids such as B3LYP [59,60], which partially replace 

local exchange with non-local HF exchange (referred to as exact exchange), and meta-GGAs do 

not reproduce long-range dispersion interactions.[49,61] Dispersion interactions are a purely 

electron correlation effect and are non-local in nature. To alleviate long-range electron correlation 

deficiencies most empirical dispersion correction models introduce an additive term [62]: 

 

 
𝐸disp = − ∑

𝐶6
𝑖𝑗

R𝑖𝑗
6

𝑁𝑎𝑡

𝑖,𝑗

 30 

 

that is, the leading term from the more general pairwise-additive description of dispersion 

interactions, which can be represented as a summation of the form: 

 

 
𝐸vdW = ∑ (−

𝐶6
𝑖𝑗

R𝑖𝑗
6 −

𝐶8
𝑖𝑗

R𝑖𝑗
8 −

𝐶10
𝑖𝑗

R𝑖𝑗
10 − ⋯ )

𝑁𝑎𝑡

𝑖,𝑗

 31 
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C6, C8, C10 are dipole-dipole, dipole-quadrupole and dipole-octupole plus quadrupole-quadrupole 

dispersion coefficients, respectively.  

Dispersion interactions of order n=6 persist at long-range where negligible wavefunction 

overlap is expected. It is now known that both semilocal and hybrid functionals fail to capture the 

long-range tail of dispersion interactions.[47,63] In this section, we focus on the dispersion 

correction of Grimme [48,64] employed in this work. A more comprehensive review of dispersion 

corrections can be found in Dilabio et al. [65] 

Grimme’s DFT-D2 Dispersion Correction 

Grimme’s DFT-D2 [47] dispersion correction is additive: 

 

 𝐸DFT−D2 = 𝐸KS−DFT + 𝐸disp 32 

 

The empirical dispersion correction functional form employed in Grimme’s DFT-D2 [47] is: 

 

 
𝐸disp = −𝑠6 ∑

𝐶6
𝑖𝑗

R𝑖𝑗
6

𝑁𝑎𝑡

𝑖,𝑗

𝑓damp(R𝑖𝑗) 33 

 

where 𝑁𝑎𝑡, is the number atoms; 𝑠6, is a global scaling factor; 𝐶6
𝑖𝑗

, is the geometric mean of the 

dispersion coefficients for a given atom pair, (i, j), which has the form: 
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𝐶6

𝑖𝑗
= √𝐶6

𝑖𝐶6
𝑗
 34 

 

The damping function, 𝑓damp(R𝑖𝑗), employed to prevent near singularities for small interatomic 

distances, R𝑖𝑗, is given by [66]: 

 

 
𝑓damp(R𝑖𝑗) = (1 + 𝑒

𝛼(
R𝑖𝑗

R0
−1)

)

−1

 35 

 

R0, is the sum of atomic vDW radii. 𝛼, the steepness parameter is assigned the value 20. The 𝐶6
𝑖𝑗

 

and R0 parameters employed to calculate dispersion corrected physical properties for heterogenous 

water clusters in this work are presented in Table 1 below. Dispersion coefficients, 𝐶6
𝑖, are derived 

from PBE0 [67,68] atomic ionization potential and static dipole polarizability calculations: 

 

 
𝐶6

𝑖 = 0.05 𝑁𝐼𝑝
𝑖 𝛼𝑖 36 

 

The proportionality constant, 0.05, was employed to reproduce binding energy and bond 

distances of rare gas dimers and select third row complexes.[66] N is assigned 2 and 10 for period 

1 and 2 elements respectively. 𝐼𝑝
𝑖  is the atomic ionization potential and 𝛼𝑖 is the static dipole 

polarizability of atom i. It should be noted that DFT–D2 was parameterized [47] to be used with 

the GGA functional, B97 of Becke. [69] 
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Table 1: Dispersion coefficients and vdW radii parameters  

employ in BLYP–D2 and B3LYP–D2 calculations. 

Atom C6 (Jnm6mol-1) R0 (Å) 

C 1.75 1.452 

N 1.23 1.387 

O 0.70 1.342 

H 0.14 1.001 

 

Highly parameterized meta GGA functionals such as M06-2X [70] capture electron 

correlation effects in the medium range ≤ 5Å but underperform in the long-range > 5Å when 

compared to PBE0 [71] plus D2 [47] dispersion correction. It is worth mentioning, that when 

compared to M05-2X [72], M06-2X and B97-D [73], [47,69] the dispersionless density function 

(dlDF) method of Szalewicz et al., [74] which is semilocal in nature, plus the Grimme D2 [47] 

dispersion correction, perform better due to then uniform treatment of long-range interactions.  

 

Grimme’s DFT-D3 Dispersion Correction 

The DFT-D3 energy is given by [66]: 

 

 𝐸DFT−D3 = 𝐸KS−DFT + 𝐸disp 37 

 

where the dispersion correction is a sum of two- and three- body dispersion interaction correction: 

 

 
𝐸disp = 𝐸disp

(2)
+ 𝐸disp

(3)
 38 
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The two-body contribution is given by: 

 

 𝐸disp
(2)

= − ∑ ∑ 𝑠𝑛

𝐶𝑛
𝑖𝑗

R𝑖𝑗
𝑛 𝑓𝛼,𝑛(R𝑖𝑗)

𝑛=6,8,10,…𝑖𝑗

 39 

 

where 𝐶𝑛
𝑖𝑗

refers to the nth order (n = 6, 8, 10, …) dispersion coefficient for atom pair (i, j). 

In this iteration of Grimme’s dispersion correction [48] the s6 global scaling parameter is 

1, i.e. there is no scaling unless it is employed in conjunction with a doubly-hybrid density 

functional then s6 < 1. Higher order two-body contribution, n = 8, 10 etc., are scaled. It was found 

that including n = 8 contributions resulted in increased accuracy, while including n = 10 

contributions and beyond did not.[48] To avoid double counting in the region where there is 

overlap of charge density the n = 8 term is scaled by a damping function. Employing different 

damping functions allows n = 6 and n = 8 contributions to influence only the long and medium 

regimes respectively.[75] The functional form of the damping function is as follows: [73,76] 

 

 
𝑓𝛼,𝑛(R𝑖𝑗) = (1 + 6 (

R𝑖𝑗

𝑠
R0

𝑖𝑗
,𝑛

R0
𝑖𝑗)

−𝛼𝑛

)

−1

 40 

 

𝑠
R0

𝑖𝑗
,𝑛

, is the order dependent scale factor of the R0
𝑖𝑗

 cutoff radii for the atom pair ( i, j).The steepness 

parameter 𝛼𝑛 was not fitted but taken to be 𝛼𝑛+2 = 𝛼𝑛 + 2; 𝛼6 = 14. 

The three-body contribution is given by the Axilrod–Teller–Muto triple dipole dispersion 

[56,77,78] scaled by a damping function: 
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 𝐸(3) = ∑ 𝑓𝛼,(3)(R̅𝑖𝑗𝑘)

𝑖𝑗𝑘

𝐶9
𝑖𝑗𝑘

(3 cos 𝜃𝑖 cos 𝜃𝑗 cos 𝜃𝑘 + 1)

(R𝑖𝑗R𝑗𝑘R𝑖𝑘)
3  41 

 

𝜃𝑖 , 𝜃𝑗, and 𝜃𝑘 are the internal angles of the triangles formed by R𝑖𝑗, R𝑗𝑘 and R𝑖𝑘, and 𝐶9
𝑖𝑗𝑘

 is the 

triple dipole constant. For any atom triplet if the internal angles are < 90·º the three-body 

contribution is repulsive. The form of the damping function is the same as that employed in the 

two-body term: the parameters employed are 𝛼 = 16 and sr = 4/3. R̅𝑖𝑗𝑘 is the geometric averaged 

radii and R0
𝑖𝑗𝑘

 is taken to be less short range that the dipole-quadrupole two-body terms. Kohn-

Sham – time-dependent density functional theory (KS–TD DFT) was employed to calculate 

dipole-dipole dispersion coefficients for atom pairs using the Casimir-Polder formula. Higher 

order terms are calculated recursively. It is within this framework that (coordination number) 

hybridization was considered. [48] 

In both DFT-D2[47] and DFT-D3, [48] the dispersion energy, 𝐸disp, is functional 

dependent and is not physically meaningful. To obtain physically meaningful information on the 

decomposition of intermolecular interacts methods such as symmetry-adapted perturbation theory 

(SAPT) [79] are required. In hydrated water anions DFT-D2 and D3 corrections to London 

dispersion interactions affect geometries. A drawback of these dispersion correction methods is 

that they are not electronic structure dependent nor do they impact electronic structure.[48] A large 

part of the residual error originates in the underlying density functional. [48] The reproduction of 

electron binding energy of [Py(H2O)n=3]– (see Chapter 2.0) was used as the standard for 

determining validity of the theoretical calculations. Due to the afore mentioned issues with DFT 

one can attribute the reproduction of the electron binding energy to a Pauling point [80]. The errors 
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associated with DFT however is demonstrated in the theory dependent electronic structure 

discrepancies between Chapter 2.0 and 3.0. 

1.1.4.4 Post-Hartree-Fock Electron Correlation Recovery  

Configuration Interaction  

One of the simplest approaches to recovering electron correlation is the configuration 

interaction (CI) method in which the wavefunction is described as a linear combination of Slater 

determinants: 

 

 ΨCI = 𝑐0|Φ0⟩ + ∑ 𝑐𝑎
𝑖

𝑎,𝑖

|Φ𝑎
𝑖 ⟩ + ∑ 𝑐𝑎𝑏

𝑖𝑗

𝑎<𝑏,𝑖<𝑗

|Φ𝑎𝑏
𝑟𝑠 ⟩ + ∑ 𝑐𝑎𝑏𝑐

𝑖𝑗𝑘

𝑎<𝑏<𝑐,𝑖<𝑗<𝑘

|Φ𝑎𝑏𝑐
𝑟𝑠𝑡 ⟩ + ⋯ 42 

 

𝑐𝑘
𝑘′

 are coefficients of Slater determinants, |Φ𝑘
𝑘′⟩, where k = 0, 1, 2, 3, … occupied orbitals (a, b, 

c, …) are replaced with k’ = 0, 1, 2, 3, …  virtual orbitals (i, j, k). The leading term Φ0, is the HF 

determinant. In theory 𝑁 = ∞, where N is the number of excitations, in practice a finite basis is 

chosen by weighing computational cost, gains in accuracy for increased N, and basis set 

completeness. The variational principle is employed to determine the coefficients c. The matrix 

formulation of the characteristic equations for determining CI coefficients and eigenvalues is given 

by: 

 
(H − 𝐸S)c = 0 43 

 

where S is the overlap matrix. When truncated, CI is not size consistent i.e. given a dimer AB at 

infinite separation the energy of the dimer is not equal to the sum of the energies of A and B.  



23 

Møller-Plesset Theory 

Møller-Plesset (MP) theory recovers electron correlation via perturbation theory. [81] The 

MP Hamiltonian, 𝐻(1), is expressed as a perturbation of the simpler HF, the zeroth-order 

Hamiltonian, 𝐻(0), wavefunction and energy.  

 

 
𝐻 = 𝐻(0) + 𝜆𝐻(1) 44 

 

 
Ψ = Ψ(0) + 𝜆Ψ(1) + 𝜆2Ψ(2) +… 45 

 

 
𝐸 = 𝐸(0) + 𝜆𝐸(1) + 𝜆2𝐸(2) +… 46 

 

The form of the nth order perturbative energy, 𝐸(𝑛), and wavefunction, Ψ(𝑛)can be by determined 

recursively. The perturbation series begins at 2nd order, since the first order correction is zero due 

to Brillouin’s theorem: [21,82] 

 

 
𝐸0

(2)
= − ∑

|⟨Φ0|�̂�|Φ𝑛⟩|
2

𝐸𝑛
(0)

− 𝐸0
(0)

𝑛≠0

 47 

 

Several difficulties arise within this approach: 1) MP theory is predicated on the idea that the 

perturbation is small, 2) If the Hartree-Fock reference is not a good starting point the MP theory  

wavefunction, and energy is not valid, 3) the MP series is not variational, and 4) the MP series 

may diverge at higher order. A more detailed review can be found here [21,83].  

 



24 

Coupled-Cluster Theory 

Like the configuration interaction method, coupled-cluster (CC) theory [84] is 

multiconfigurational. Coupled-cluster theory is a size consistent reformulation of the CI excitation 

operator, �̂�. Untruncated these theories are equivalent i.e., full CI (FCI) is equal to full CC (FCC). 

The CC wavefunction is expressed as an exponential ansatz: 

 

 
|ΨCC⟩ = 𝑒 �̂�|Φ0⟩ 48 

 

where the excitation operator, 𝑒 �̂�, can be expanded as: 

 

 
𝑒 �̂� = (1 + �̂� +

�̂�2

2!
+

�̂�3

3!
+ ⋯ ) |Φ0⟩ 49 

 

This allows for an expression which can be truncated in the same manner as CI, at n-tuple 

excitations, �̂�𝑛: 

 

 |ΨCC⟩ = |Φ0⟩ + ∑ 𝑡𝑎
𝑖 |Φ𝑎

𝑖 ⟩ + ∑ 𝑡𝑎𝑏
𝑖𝑗

|Φ𝑎𝑏
𝑖𝑗

⟩ + ∑ 𝑡𝑎𝑏𝑐
𝑖𝑗𝑘

|Φ𝑎𝑏𝑐𝑑
𝑖𝑗𝑘𝑙

⟩

𝑎𝑏𝑐𝑖𝑗𝑘𝑎𝑏𝑖𝑗𝑎𝑖

+ ⋯ 50 

 

The equations for calculating the CC amplitudes are: 

 

 
⟨Φ0|𝑒 �̂�𝐻𝑒−�̂�|Φ0⟩ = 𝐸 51 

 

 



25 

 
⟨Φ𝑖𝑗…

𝑎𝑏…|𝑒 �̂�𝐻𝑒−�̂�|Φ0⟩ = 0 52 

 

CC theory becomes more accurate with the inclusion of higher order excitations, the gold 

standard in practice being coupled cluster singles-doubles with perturbative triples CCSD(T). [85] 

In the CCSD(T) singles and doubles contributions are determined as shown above (iteratively), 

but the triples are determined using perturbation theory, see Ref. [85]  Like other post-HF methods, 

the performance of CC theory hinges on whether HF provides a good initial guess. It inherits the 

difficulties experienced by HF at near degeneracies (narrow energy gaps). 

Equation-of-Motion Electron Affinity Coupled Cluster 

An alternative approach for calculating the potential energy surface for proton transfer in 

the pyridine·(H2O)3 anion is the equation-of-motion coupled-cluster theory (EOM-CC) [86,87]. 

EOM-CC exploits the spectroscopic picture of electronic structure, describing the electronic 

wavefunction description as an ionization, excitation, or electron affinity of a chosen reference. 

This gives rise to several variants of EOM, ionization potential EOM (EOM-IP), excitation energy 

EOM (EOM-EE), electron affinity EOM (EOM-EA). In this work electron affinity equation-of-

motion coupled cluster is appropriate. Here the neutral species is designated as the reference, and 

the anion the target state. In chapter 3.0, an avoided crossing is demonstrated along the reaction 

coordinate between the dipole-bound anion, [Py·(H2O)3]–, and the valence-bound proton transfer 

anion, PyH·OH–·(H2O)2. The EA-EOM-CCSD energy of the anion along the proton transfer 

coordinate converges. 

The target wavefunction defined relative to a reference state is given by: 
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|φEA−EOM−CCSD⟩ = ℛ|φCC⟩ 53 

 

where ℛ, is the excitation operator and φCC is the CC wavefunction of the neutral species. The 

EA-EOM-CC wavefunction of the target state is expanded: 

 

 
ℛ|φCC⟩ = (ℛ1 + ℛ2 + ⋯ )|φCC⟩

= ∑ 𝑟𝑎

𝑎

𝑎𝑎
†|φCC⟩ +

1

2
∑ ∑ 𝑟𝑖

𝑎𝑏

𝑎𝑏

𝑎𝑎
†

𝑖

𝑎𝑖𝑎𝑏
†|φCC⟩ + ⋯ 54 

 

At the EOM-EA-CCSD level of theory [86,87] when the excitation operator, ℛ, is applied, 

a one-particle, and a two-hole one-particle excitations are performed on the CCSD wavefunction, 

φCC, resulting in the construction of the target state. 

1.1.5  Role of Basis Set Choice for Accurate Molecular Description 

The basis-set choice influences the accuracy of calculated electron affinities. This is 

especially true for accurately modeling dipole-bound anions, studied in Chapters 2.0 and 3.3.0. 

Basis-set choice requires optimization: if the basis set is too small basis set superposition error 

(BSSE) can occur. When compared to valence-bound anions the excess electron of dipole-bond 

anions [88,89] is very diffuse [90] and requires very diffuse functions. It should be noted that a 

good basis set choice cannot compensate for deficiency of the method, e.g. binding a weakly bound 

excess electron in the dipole field of the a molecule at density functional level of theory, since the 

excess electron is unbound in the complete basis set limit due to self-interaction error.[91] 
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1.1.6  Multistate Empirical Valence-Bond Theory 

The advancement of spectroscopic techniques has prompted computational inquiry [92] 

into the structural evolution of protonated water clusters, such as the magic twenty-one cluster 

(H+(H2O)21), to uncover the physics encoded in the measured spectra. Ab initio methods become 

prohibitively expensive for increasingly large clusters, for this reason MS-EVB in conjunction 

with an empirical water model is employed to describe valence-bond states. In Chapter 4.0, we 

employ MS-EVB as implemented in the OPTIM software package [93], The water model is a 

flexible, three-site TIP3P empirical force field [94–97] with modified intramolecular parameters 

of Voth et al. [98]. Isomerization pathways are calculated as a means of determining whether this 

approach is suitable for mapping out the potential energy surface of H+(H2O)21.  

For the Eigen cation, MS-EVB, developed by Warshel et al. [10], provides a description 

of H5O9+ in terms of mixing of four empirical valence-bond. 

 

 

 

 

 

 

 

 

Figure 3: Empirical valence bond states of the Eigen cation (|1>, |2>, |3>, |4>). 
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MS-EVB approximates proton delocalization by allowing the excess proton to be 

associated with different water monomers and considers bond breaking and formation reactions as 

the system evolves from one diabatic state to the other. The result is a set of empirical valence-

bond states forming a basis, {|𝑖⟩}. 

Diagonal MS-EVB Hamiltonian elements, hii, are given by: 

 

 
hii = VH3O+

intra + ∑ VH2O
intra,k + ∑ VH3O+,H2O

inter,k +

NH2O

k

∑ VH2O
inter,kk′

NH2O

k<k′

NH2O

k

 55 

 

where the hydronium–water and water–water intermolecular are approximated by a Lennard-Jones 

potential, Coulomb energy term and a repulsive potential. Off-diagonal terms of the Hamiltonian 

mix the diabatic, EVB, states and are given by: 

 

 
hij = (Vconst

ij
+ Vcomplex

ij
) ∙ A(ROO, q) 56 

 

when states |𝑖⟩ and |𝑗⟩ share a hydrogen atom the following reaction: |𝑖⟩ → |𝑗⟩ results in proton 

transfer and hij is non-zero. Vconst
ij

 is a coupling constant term and Vcomplex
ij

 is the electrostatic 

potential between the Zundel complex and the remaining water monomers. A(ROO, q) has the 

form: 

 

A(ROO, q) = ((1 + 𝑃𝑒−𝑘(ROO−DOO)2
) ∙ (

1

2
(1 − tanh[ROO − ROO

0 ]))

+ 10𝑒−𝛼(ROO−ROO
0 )) ∙ 𝑒−𝛾𝑞2

 

57 
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where ROO is the O–O distance of the Zundel cation resulting from the coupling of two MS-EVB

states. q is the asymmetric stretch coordinate of the Zundel cation. Values for the parameters 

employed in A(ROO, q) can be found in Ref. [98]
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2.0 Water Network-Mediated, Electron-Induced Proton Transfer in Anionic 

[C5H5N·(H2O)n]¯ Clusters 

This work1 was published as: Andrew F. DeBlase, Conrad T. Wolke, Gary H. Weddle, 

Kaye A. Archer, Kenneth D. Jordan, John T. Kelly, Gregory S. Tschumper, Nathan I. Hammer, 

and Mark A. Johnson, J. Chem. Phys. 143, Vol. 143 (14) 144305 (2015). Kaye A. Archer carried 

out molecular dynamics simulations and potential energy surface calculations. 

2.1 Introduction 

The role of proton-assisted charge accommodation in electron capture by a heterocyclic 

electron scavenger is investigated through theoretical analysis of the vibrational spectra of cold, 

gas phase [Py∙(H2O)n=3-5]¯ clusters.  These radical anions are formed when an excess electron is 

attached to water clusters containing a single pyridine (Py) molecule in a supersonic jet ion source. 

Under these conditions, the cluster ion distribution starts promptly at n = 3, and the photoelectron 

spectra, combined with vibrational pre-dissociation spectra of the Ar-tagged anions, establish that 

for n>3, these species are best described as hydrated hydroxide ions with the neutral pyridinium 

1 A. F. D., C. T. W., G. H. W. carried out experiments and IR calculations; K.A. A, carried out the MD 

simulations and PES calculations. J.T. K carried out DFT calculations; K D. J, G S. T, N.I. H., and M.A. J guided 

theoretical, computational and experimental discussions. 
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radical, PyH(0), occupying one of the primary solvation sites of the OH¯.  The n = 3 cluster appears 

to be a special case where charge localization on Py and hydroxide is nearly isoenergetic, and the 

nature of this species is explored with ab initio molecular dynamics calculations of the trajectories 

that start from metastable arrangements of the anion based on a diffuse, essentially dipole-bound 

electron.  These calculations indicate that the reaction proceeds via a relatively slow rearrangement 

of the water network to create a favorable hydration configuration around the water molecule that 

eventually donates a proton to the Py nitrogen atom to yield the product hydroxide ion.  The 

correlation between the degree of excess charge localization and the evolving shape of the water 

network revealed by this approach thus provides a microscopic picture of the “solvent coordinate” 

at the heart of a prototypical proton-coupled electron transfer reaction.  

As an isolated species, the radical anion of pyridine, Py¯, exists as an unstable transient 

negative ion,[99–106] while in aqueous environment it is known[107] to undergo rapid protonation 

to form the neutral pyridinium radical PyH(0) along with hydroxide.  Consequently, the presence 

of water plays two essential roles underlying the chemical behavior of Py¯: one to provide a 

dielectric medium that can electrostatically prevent the valence anion from undergoing electron 

autodetachment, and the other to facilitate proton transfer by stabilizing the nascent hydroxide ion.  

Such a scenario provides an interesting opportunity to explore the detailed manner by which these 

two processes unfold as water molecules are sequentially added to the ionic ensemble 

[Py∙(H2O)n]¯. This study is motivated by earlier cluster work of Desfrançois and coworkers,[108] 

who made the important observation that the [Py∙(H2O)n]¯ distribution begins promptly at n = 3 

when formed using Rydberg electron transfer.  Estimates [100,102–105,108–111] of the Py 

electron affinity range from -0.48 and -0.79 eV, which means that the isolated anion is unstable 

with respect to electron detachment. 
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Figure 4: Schematic representation of the potential energy curves for converting Py∙(H2O)n to the lowest valence 

anion state of [Py∙(H2O)n]¯ with n = 2 and 3 water molecules.  While in the bottom case (n = 3) the charged 

species is energetically favored, removal of a single water molecule to give n = 2 (top trace) leads to 

autodetachment of the excess electron.  This charge- stabilization by a critical number of solvent molecules has 

been used to rationalize the observed prompt onset of the [Py∙(H2O)n]¯ distribution at n = 3 in Rydberg electron 

transfer. [108] 

 

Desfrançois and coworkers[102] attributed the onset of the distribution at n = 3 in the 

hydrated clusters to the greater stabilization of the Py¯ anion (relative to the neutral) with 

increasing hydration, as indicated schematically in Figure 4. This raises the question, however, of 

whether such a radical ion can be prepared and isolated as a locally stable arrangement in the early 
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hydration regime prior to the proton transfer event.  Indeed, the values for the vertical detachment 

energies of the untagged [Py∙(H2O)n≥3]¯ clusters measured in recent negative ion photoelectron 

spectra [111] have been interpreted to indicate that both PyH(0) created electron-induced proton 

transfer and reactant Py¯ anions were present at n = 3, while the spectra of the larger clusters were 

most consistent with the PyH∙(OH)¯∙(H2O)n-1 species. [111] This leaves open the questions of how 

these conclusions depend on the internal energies of the ions, as well as what exact internal 

rearrangements drive formation of the proton-transferred products.  In particular, these results 

point to an interesting scenario where the proton is effectively titrated from water to Py¯ according 

to the number and arrangement of water molecules in the spirit of our recent study of network-

mediated, intracluster proton transfer in the conversion of nitrosonium NO+ to nitrous acid HONO. 

[112] Our approach involves an integrated analysis of the photoelectron angular distribution, 

vibrational predissociation, and photo-induced vibrational autodetachment spectroscopies of the 

Ar-tagged products from the reaction between neutral Py and the negatively charged water 

clusters: 

 
Py + (H2O)n¯ → Py·(H2O)n¯ → PyH·(OH¯)∙(H2O)n-1 58 

 

and thus extends the recent photoelectron work of Wang et al.[111] We then explore the 

mechanism by which an excess electron, initially delocalized in a diffuse orbital of the system, 

[113,114] becomes localized into a valence molecular orbital through the cooperative interplay 

between the water network and the key proton transfer reaction coordinate:  N···H···OH.   
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2.2 Experimental and Computational Methods 

2.2.1  Vibrational Photodissociation, Photo-Induced Vibrational Autodetachment, and 

Photoelectron Spectroscopy 

Anionic clusters of H2O with Py were synthesized in an electron-impact ionized supersonic 

jet expansion of Ar carrier gas (60 psi) seeded with trace water and Py vapors, which were co-

expanded through a single pulsed valve (Parker Hannifin General Valve Series 9, 0.030 in. 

aperture).  A 1 keV electron beam counterpropagating along the axis of the supersonic expansion 

generated negatively charged cluster ions in the resulting neutral plasma.  Conditions were 

optimized for attachment of weakly bound Ar atom “tags” to the cluster anions, thus enabling 

vibrational predissociation spectroscopy by photoevaporation of the Ar atoms:  

 

 
[Py·(H2O)n]¯∙Arp + ℎ𝜈 → [Py·(H2O)n]¯∙Arp-q + q Ar 59 

 

using the Yale double focusing, tandem time-of-flight photofragmentation mass spectrometer 

described previously. [115] 

The parent [Py·(H2O)n]¯∙Arp ion and [Py·(H2O)n]¯∙Arp-q photofragment were separated by 

a secondary (reflectron) mass spectrometer. The [Py·(H2O)3]¯∙Arp cluster also exhibited 

vibrational autodetachment above 3000 cm-1: 

 

 
[Py·(H2O)3]¯∙Arp + ℎ𝜈 → [Py·(H2O)3] + p Ar + e¯ 60 
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The action spectrum for electron ejection through Equation 60 was recorded as a function of 

photon energy by monitoring the electron signal on microchannel plates positioned below the laser 

interaction region. 

All vibrational predissociation and photo-induced vibrational autodetachment spectra 

between 2250 and 3800 cm-1 were obtained using a LaserVision OPO/OPA mid infrared system 

pumped by a Nd:YAG laser (10 Hz, 8 ns pulse width).  Radiation in the 600-2500 cm-1 region was 

produced by generating the difference frequency between the ~1.5 and ~3 μm beams from the 

OPO/OPA in a AgGaSe2 crystal.  The spectra of the low and high frequency regions (600-2500 

cm-1 vs. 2250-3800 cm-1) were combined by normalizing the intensities of transitions that occur in

the overlap region from 2250 to 2500 cm-1 that can be reached with both configurations.  In 

addition, the photofragment signal was divided by the laser pulse energy to account for changes 

over the course of a scan.  Experimental spectra represent the summation of 15-20 individual scans. 

Photoelectron spectra were acquired by velocity map imaging at an excitation energy of 

2.33 eV using an instrument described in detail elsewhere. [116–120] Images were converted to 

photoelectron spectra using the BASEX transformation. [118] The vibrational structure of the NO¯ 

spectrum was used to calibrate the spectrometer. 

2.2.2  Structure Optimizations and Harmonic Frequency Calculations 

To aid in assigning the vibrational spectra, the geometries of various possible structures of 

the [Py∙(H2O)n]¯, n = 2-5 clusters were optimized using M06-2X [70] density functional method 

with the 6-31++G(d,p) [121–123]basis set. This approach was chosen because it has recently been 
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shown to accurately reproduce experimental photodetachment energies of hydrated azabenzene 

anions. [111] The X-H (X = N,O,C) stretching fundamentals were scaled by 0.980 for this level of 

theory, while the lower energy, non-stretching modes were not scaled.  These calculations were 

performed using the Gaussian09 program. [124] 

2.2.3  Born Oppenheimer Molecular Dynamics Simulations 

In order to gain insight into the rearrangement dynamics, we also carried out Born-

Oppenheimer molecular dynamics (BOMD) simulations of [Py∙(H2O)3]¯ starting from the 

structure corresponding to the dipole-bound anion.  The simulations were carried out in the NVE 

ensemble with an excess energy corresponding to T = 270 K, randomized over all atoms.  This 

temperature corresponds to ~180 cm-1 per degree of freedom, whereas excitation of an OH stretch 

would deposit ~120 cm-1 into each intermolecular degree of freedom (assuming validity of the 

equipartition theorem and that no energy is deposited into the high-frequency intramolecular 

modes after randomization).  Thus, the simulations were carried out at an energy content in excess 

of that in play under the experimental conditions, which leads to accelerated dynamics.  The 

BOMD simulations were carried out using the CP2K [125] code and were conducted using the 

BLYP density functional method, [58,126] including the D2 long-range interaction correction of 

Grimme [64] and employing the Goedecker-Teter-Hutter pseudopotentials, [127] aug-DZVP-

GTH basis sets, [127,128] and a plane wave cutoff of 280 Ry. The Martyna Tuckerman Poisson 

solver [129] was employed in the calculation of the electrostatic interactions. A cubic box of 18 Å 

sides was employed, and a time step of 1.0 fs was used.  
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2.3 Results and Discussion 

2.3.1  The Py∙(H2O)n¯ Cluster Distribution: An Abrupt Onset at n = 3 

The mass spectrum obtained from the ionized free jet, as described above, is displayed in 

Figure 5, which shows the distribution of [Py∙(H2O)n]¯ clusters (red) and their complexes with an 

argon atom (blue). Bare hydrated electron clusters with n = 6 and 7 (colored gray) and their Ar 

adducts (bronze) are also generated in abundance.  The abrupt onset of [Py∙(H2O)n]¯ anions at 

n = 3 is in accordance with the earlier observations by Desfrançois and co-workers, as discussed 

in the Introduction.  While not our focus in this work, we note in passing that we were able to 

generate the smaller n = 2 species using Ar-mediated condensation, 

   

 
Py + (H2O)n¯·Arm → [Py·(H2O)n]¯·Arm* → [Py·(H2O)n]¯·Arp + (m-p) Ar 61 

 

in a different source scheme where the Py vapor is introduced with a second pulsed valve and 

entrained into the electron beam ionized expansion.  That approach was used earlier to form very 

low adiabatic electron affinity (AEA) anions [e.g., (H2O)4¯] as well as metastable anions with 

diffuse excess electrons. [130–133] 

It is useful to consider the origin of the onset of the cluster distribution at n = 3 in the 

context of the behavior of related systems.  For example, the (H2O)n¯ distribution, at high water  
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Figure 5: Mass spectrum of electron-impact ionized species generated by coexpanding trace water and pyridine 

vapor in a supersonic jet with Ar carrier gas. The peaks due to the [Py∙(H2O)n]¯ clusters are colored red, while 

the blue peaks designate the Ar-tagged species, [Py∙(H2O)n]¯∙Ar.  The hydrated electron clusters (H2O)n¯ as 

well as their Ar-tagged derivatives, (H2O)n¯∙Ar, are also present in the mass spectrum (gray and bronze, 

respectively).  The dotted vertical red line points out that the [Py∙(H2O)2]¯ species is not present under these 

source conditions. 

 

partial pressures [134,135] displays an abrupt onset at n = 15, which has been traced to a condition 

where the AEA becomes roughly equal to the water binding energy at this cluster size.  In that 

case, the onset occurs because the smaller cluster anions are neutralized due to electron ejection 

when the condensation energy released upon attachment of a water monomer is larger than the 

AEA (i.e., a type of associative detachment reaction). [136] The onset of the [Py∙(H2O)n]¯ cluster 

distribution at n = 3 therefore indicates that the AEA increases much more rapidly with increasing 

cluster size than for neat water clusters.   
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2.3.2  Velocity Map Imaging Photoelectron Spectroscopy of the [Py∙(H2O)3]¯ Cluster:  

Evidence for a Valence Anion  

To assess the nature of the excess electron orbital in the [Py∙(H2O)n]¯ clusters, the angular 

distributions of photoelectrons were obtained by velocity map imaging using an excitation 

wavelength of 532 nm (2.33 eV).These results for n = 3 are given in Figure 6, where the raw image 

and photoelectron energy distributions (after BASEX transformation) [118] are given in traces (a) 

and (b), respectively.  The spectrum is very broad, consistent with that reported by Wang et al., 

[111] 

 

Figure 6: Velocity map image (a) and resulting photoelectron spectrum (b) of [Py∙(H2O)3]¯ after the BASEX 

transform procedure. [137] This spectrum was obtained using an excitation energy of 2.33 eV and plotted as a 

function of the electron binding energy. The white arrow in the image indicates the direction of the electric field 

vector (E) of the laser.  Arrows above the spectrum indicate the VDE values for Py¯∙(H2O)3 and PyH∙ (OH¯) 

∙(H2O)2 assigned by Wang et al. 
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displaying a full width at half maximum (FWHM) of 0.85 eV, indicating that the vertical electron 

detachment energy (VDE) is much greater than the AEA.  The peak photoelectron yield of the 

distribution occurs at 1.53 eV, corresponding to the VDE, which is in close agreement with the 

VDE of 1.56 eV reported by Wang et al. [111] Most importantly, the image in Figure 6a) exhibits 

a significantly negative anisotropy parameter [138] of about -0.5, indicating that photoelectrons 

are preferentially ejected perpendicular to the direction of the electric field vector (double-headed 

white arrow in Figure 6a).  This behavior is opposite to that displayed by the hydrated electron 

clusters, (H2O)n¯, for which 𝛽 values are observed close to +2, [139,140] the limiting value 

expected for a s→p electron ejection scenario.  Furthermore, anionic water clusters in the size 

range around n = 5 have much lower VDEs (< 0.5 eV) [130,141–143] with narrow photoelectron 

distributions closer resembling that displayed by diffuse, dipole-bound electrons. [144] These 

results indicate that the excess electron in the [Py∙(H2O)3]¯ cluster occupies a valence molecular 

orbital and is likely associated with a solvated OH¯  ion.  Photoelectron spectra of the n = 4 and n 

= 5 clusters are also given in the Supplemental Material (Figure 33). [105] As reported earlier, the 

binding energy increases with hydration such that the band becomes distorted due to threshold 

effects when the VDE approaches the photon energy.  

 

2.3.3  Calculated Structures  

The calculated [M06-2X/6-31++(d,p)] minimum energy structures for the n = 3-5 clusters 

identified earlier by Wang et al. are reproduced in Figure 7.  Interestingly, the n = 3 cluster has 

two nearly isoenergetic isomers: one that exhibits proton-transfer from a water molecule to the 

pyridine leaving a solvated hydroxide ion (Figure 7a) and another that contains a hydrated Py¯ ion 
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(Figure 7b).   

 

Figure 7: Calculated low energy M06-2X/6-31++G(d,p) structures.  a) and b) are two low lying isomers of n = 

3, where correction for the vibrational zero-point energy brings the intracluster proton transfer structure (a) 

lower in energy.  The formation of the PyH radical is a robust feature of the larger clusters c) n = 4 and d) n = 

5.  

 

Thus, the n = 3 cluster appears to represent a tipping point in the electron-driven intracluster proton 

transfer reaction, and indeed introduces the interesting possibility that vibrational excitation of the 

cold cluster can promote large amplitude rearrangements associated with this process. 
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2.3.4  Vibrational Predissociation and Photo-Induced Vibrational Autodetachment 

Spectroscopies: Evidence for Strong Ionic H-Bonding 

2.3.4.1 Infrared Photophysics of the Ar-Tagged and Bare Clusters 

The broad photoelectron spectra do not allow structural determination of the molecular 

nature of the species that bear the negative charge.  To help clarify this situation, we obtained the 

vibrational pre-dissociation spectra of the [Py·(H2O)n]¯ clusters tagged with Ar, with the results 

presented in Figure 8.  The average number of Ar atoms lost is found to be linearly dependent on 

the photon energy (see Supplemental Material, Figure 31), [Appendix B.0] establishing that each 

tag has a similar binding energy on the order of 750 cm-1/Ar.  In the case of the smallest persistent 

cluster at n = 3, it was only possible to observe fragment anions corresponding to Ar loss below 

3300 cm-1, while strong features were observed in the higher energy range for the n = 4 and 5 

species.  This type of behavior has been observed in (H2O)n¯·Arm clusters, [145] for which the 

nascent anionic fragment, (H2O)n¯*, is unstable with respect to electron autodetachment, [119]  

    

 
(H2O)n¯·Arm + h𝜈 → (H2O)n¯* + m Ar → (H2O)n + e¯ 62 

 

unless it is sufficiently cooled by Ar evaporation.  We therefore also monitored the electron photo-

detachment channel: 

    

 
Py·(H2O)n¯·Ar + h𝜈 → [Py·(H2O)n]¯* + Ar → Py·(H2O)n + e¯ 63 
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with the results displayed in the insert in Figure 8a) for the Ar-tagged n = 3 cluster.  The “missing’ 

bands are indeed recovered in the electron loss channel, and these transitions can also be observed 

in the photofragmentation spectrum of [Py·(H2O)3]¯ tagged with 4 Ar atoms (see Supplemental 

Material, Figure 30). [Appendix B.0] This observation of vibrational autodetachment is significant 

in that it emphasizes the close proximity of the adiabatic electron continuum and the significant 

rearrangement that is required to access the intersection between the anionic and neutral potential 

surfaces.   

2.3.4.2 Comparison with the Vibrational Spectrum of the OH¯(H2O)n Anion 

A striking qualitative aspect of the vibrational spectra is that they are extremely broad.  For 

n = 3 and 4, for example, diffuse absorptions span most of the 900-3300 cm-1 range in contrast to 

the sharp features displayed by the water cluster anions in this size regime. [130,146] This behavior 

is also unusual for the microhydration of small molecular anions (e.g., CO2¯·(H2O)n) [131] of 

similar size.  Even the intramolecular HOH bending mode is obscured in the n = 3 spectrum, and 

the only features that can be assigned by inspection are the relatively sharp bands near 3700 cm-1 

due to the free OH stretching modes and those near 3000 cm-1 arising from the ring CH stretching 

fundamentals.  Interestingly, the transitions in the lower energy range are much better defined in 

the larger (n = 5) cluster spectrum, with the onset of the diffuse band shifted toward higher energy, 

beginning at 2400 cm-1. 

The calculated harmonic spectra for the minimum energy structures displayed in Figure 7 

are included in Figure 8 as inverted traces.  Perhaps the most important conclusion from this 

comparison is that the spectra are so dominated by strong anharmonicities that even the most 

cursory assignments are not obvious.   
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Figure 8: Vibrational action spectra of the [Py∙(H2O)n]¯ clusters. The full infrared spectrum for the 

[Py∙(H2O)3]¯∙Ar species was recorded by combining the photo-induced vibrational autodetachement channel 

above 3000 cm-1 (a) with the Ar-predissociation spectrum measuring formation of bare [Py∙(H2O)3]¯ 

photofragment ions (b).  The spectra of [Py∙(H2O)4]¯ (d) and [Py∙(H2O)5]¯ (f) were obtained by Ar-

predissociation between 800 and 3800 cm-1.  Calculated harmonic spectra [M06-2X/6-31++G(d,p) level] of the 

low energy proton transfer structures for n = 3, 4, and 5 are shown in the inverted grey traces of (d), (f), and 

(h), respectively, while the harmonic spectrum of the Py¯∙(H2O)3 is shown in trace (c).  Key features are 

indicated by the dotted guidelines, including:  free OH stretching (𝝂𝑶𝑯
𝒇𝒓𝒆𝒆

) and CH stretching (𝝂𝑪𝑯), and other 

distinct bands (𝝂𝜶, 𝝂𝜷, and 𝝂𝜸) that are addressed in the discussion. 



45 

 

 

Figure 9: Vibrational predissociation spectrum of the OH¯·(H2O)4 cluster (a) with the minimum energy 

structure consistent with the spectrum depicted in the insert. This spectrum is from Science, 299, 1367 (2003), 

and has been reprinted with permission from AAAS. Vibrational predissociation spectra of the Ar-tagged 

[Py·(H2O)n]¯ clusters with n = 4 (b) and 5 (c) are shown for comparison.  Bands are assigned according to their 

number of H-bond acceptor (A) and donor (D) interactions of specific water molecules in the network. 

 

Rather than engage a very difficult exercise in simulating the anharmonic spectra of floppy 

systems clearly at play here, we find it more useful to empirically evaluate the chemical 

compositions of the [Py∙(H2O)n]¯ clusters by comparing their vibrational spectra to that of the 

OH¯·(H2O)4 cluster reported earlier, [147] and included at the top of Figure 9.  Interestingly, a 

similarly diffuse band is also found in this species, where three water molecules are directly 

attached to the hydroxide ion and a fourth lies in the second solvation shell as illustrated in the 

inset structure.  This diffuse band has been attributed to excitation of the OH groups engaged in 

H-bonds to the ion, while the sharp pattern highest in energy arises mostly from non-bonded OH 
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groups or OH groups of the water molecule in the second solvation shell in a double H-bond donor 

(DD) configuration (𝜈𝛼).  Note that the intensity of the hydroxide OH fundamental has been found 

to be dramatically suppressed upon completion of its hydration shell. [148] The fact that the 

spectral signatures of all three classes of OH environments (primary shell, secondary shell, and 

free) in hydrated hydroxide clusters are present in [Py·(H2O)4,5]¯ strongly suggests that these 

clusters adopt PyH·(OH¯)∙(H2O)n-1 arrangements that would be consistent with an intracluster 

variation of the proton transfer process observed in solution (Equation 58).  
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2.3.4.3  Identification of the CH Bending Fundamentals of PyH(0) 

Figure 10: A comparison between the Ar-predissociation spectrum [Py·(H2O)5]¯ (a), the infrared spectrum of 

PyH(0) taken in solid p-hydrogen (b), [149] and the infrared spectrum of neutral pyridine vapor [150] in the OH 

and CH bending regions (c). The spectrum in trace (b) is a convolution of the tabulated frequencies and 

intensities in Ref.[149] with a Lorentzian (4 cm-1 FWHM). (c) is a convolution of tabulated peaks in Ref.[150], 

with 20 cm-1 half-width Lorentzians. The normal mode displacement vectors of the Py/PyH(0) moiety in each of 

these species are illustrated next to the corresponding transitions. The green and orange dotted guidelines 

highlight the proximity of transitions in the two model compounds to those observed in the spectrum of 

[Py·(H2O)5]¯.The reduction in complexity of the n = 5 spectrum in the fingerprint region warrants an effort to 

identify key well-defined peaks in the context of the hydroxide product, specifically the sharp features labeled 

𝝂𝜷 and 𝝂𝜸 in Figure 8. This region of the spectrum is expanded in Figure 10. The bands in question are quite

close in frequency to the predicted ring CH bending modes of PyH(0), denoted 𝝂𝟐𝟑
𝑷𝒚

 and 𝝂𝟐𝟏
𝑷𝒚

 and colored green

and orange, respectively in Figure 10. Here the mode numbering is that for isolated PyH(0) with C2v symmetry 

(numbered in order of highest to lowest symmetry and highest to lowest energy).   
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In light of the difficulties with the harmonic predictions discussed above, it is again useful 

to compare the observed spectra with empirical data to further assess the viability of the PyH∙ 

(OH¯)∙(H2O)n-1 motif. Figure 10 compares the vibrational predissociation spectrum of 

[Py∙(H2O)5]¯ to the IR absorption spectrum of the PyH(0) radical isolated in a matrix of frozen 

para-hydrogen[149] and to the gas phase vibrational spectrum of neutral Py. [150] PyH(0) in the 

para-hydrogen matrix was synthesized by Lee et al. by electron bombardment and photolysis of 

Cl2/Py/p-H2.  For a simplified comparison to our data, we have simulated their spectrum using the 

tabulated wavenumbers and intensities that were assigned to the PyH(0) species (convoluted using 

a Lorentzian with a FWHM of 4 cm-1).  Both 𝜈23 and 𝜈21 of the PyH(0) species are very close to 

the observed sharp bands in the [Py∙(H2O)5]¯ vibrational predissociation spectrum (Figure 10a) 

with similar relative intensities, albeit with a small red-shift (14 and 30 cm-1 for 𝜈23 and 𝜈21, 

respectively) in the solid p-hydrogen matrix.  Most importantly, these bands are quite different 

from the pattern displayed by the neutral Py molecule, which has been obtained from vapor-phase 

measurements and is included in Figure 10c).   
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2.3.5  Theoretical Exploration of the Rearrangement Pathways in [Py∙(H2O)3]¯ 

2.3.5.1 Potential Surface for Intracluster Proton Transfer 

The empirical evidence points to a situation where the system explores both Py¯∙(H2O)n 

and PyH∙(OH¯)∙(H2O)n-1 components with the latter dominating but with the relative weights of 

the two terms depending on the degree of solvation of the OH¯.  Qualitatively, as the hydroxide-

based clusters accommodate additional water molecules on the emergent network, the 

configuration with the excess charge on the OH is stabilized, while that with the charge on the Py 

 

Figure 11: One-dimensional potential energy curves for proton transfer in [Py∙(H2O)3]¯ (solid blue line) and 

Py∙(H2O)3 (dashed blue line). The minimum energy structure of the anion used in generating these potentials is 

shown in the inset on the left. The potentials are calculated by varying the NH distance, keeping all other 

degrees of freedom frozen. On the left-hand side of the anion potential the structure is dominated by 

PyH∙(OH¯)∙(H2O)2, while on the right-hand side it is dominated by Py¯∙(H2O)3.  Estimates of the energies of the 

v = 0 and 1 levels of the anion are illustrated by red horizontal lines. 
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becomes less important.  Thus, in the n = 3 case, the proton is more strongly shared in the 

N···H···O motif, giving rise to very broad spectral features typical for shared protons. [151] At 

smaller n, excitation of the nominal NH stretch samples the Py¯·(H2O)n configuration, in essence 

driving the proton transfer reaction with concomitant excess charge displacement.  Such a scenario 

has been demonstrated to be at play in the binary complex F¯·HOH, [152] where excitation of the 

bridging proton stretch samples a region in the potential surface corresponding to HF···OH¯.  

When this occurs in a system where the associated water network responds to the change in the 

charge distribution, it is expected that vibrational excitation will induce substantial heavy particle 

rearrangements, thus rationalizing the nearly continuous nature of the spectrum for n = 3.   

To better quantify the nature of the potential surfaces governing the heavy particles and 

excess electron, we calculated one-dimensional potential energy curves for proton transfer in 

[Py∙(H2O)3]¯ and Py∙(H2O)3.  The potentials were calculated starting from the M06-2X optimized 

structure shown in Figure 7b with a PyH∙(OH¯)∙(H2O)2 configuration, and then carrying out a 

series of single-point calculations for the anion and neutral for different values of the NH distance, 

assuming linear motion between the N atom and the O of the hydroxyl, and keeping all other 

degrees of freedom frozen.  The resulting anion potential energy curve, shown in Figure 11, is 

exceedingly anharmonic, such that even the zero-point level samples the Py¯∙(H2O)3 structure.  

The vibrational zero-point level of the neutral potential along this slice lies above the 𝜈 = 1 level 

of the anion; however, relaxation of the geometry of the neutral causes its zero-point level to fall 

below the 𝜈 = 1 level of the anion (as evidenced by the experimentally observed opening of the 

electron autodetachment channel).  We note that the actual energy gap between the proton-transfer 

and non-proton transfer structures may be somewhat larger than predicted by the M06-2X method.  

In particular, preliminary results using the restricted open-shell MP2 method [13,153] predict the 
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non-proton transfer structure to be about 477 meV less stable than the proton-transfer structure, 

rather than being nearly isoenergetic as predicted by the M06-2X method.  In either case, however, 

it is still anticipated that excitation of the 𝜈 = 1 OH manifold will induce significant large amplitude 

motions that mediates interconversion between these two structures.   

As the charge becomes more stabilized on the OH¯, the spectra become simpler as 

excitation of one quanta of OH stretch no longer leads to sampling of the Py¯·(H2O)n class of 

structures.  A primitive manifestation of this type of blue-shifting by differential solvation of 

charge-localized, asymptotic partners (in this case Py¯·H2O vs. PyH·OH¯) has, in fact, been 

routinely invoked to understand the rare gas tag effects in binary complexes. The case of solvation 

by water can thus be viewed as an extreme example of a generic solvent response by an anionic, 

proton bound complex. [154–156] The case of solvation of water can thus be viewed as an extreme 

example of a generic solvent response by an anionic, proton bound complex.  
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2.3.5.2 Calculation of the Reaction Path for Water-Mediated Electron Capture by Py 

 

 

Figure 12: VDE of [Py∙(H2O)n]¯ along a BOMD trajectory with an initial kinetic energy consistent with T = 270 

K. The MP2 level charge differences (anion - neutral) for the reactant, intermediate and product are displayed. 

 

The preceding discussion emphasized the close energetic proximity of the 

PyH∙(OH¯)∙(H2O)n-1 and Py¯∙(H2O)n valence-bond arrangements.  There is actually a third low-

lying valence-bond structure that corresponds to a dipole-bound Py∙(H2O)n¯ anion with a diffuse 

excess electron, which is expected to be involved in early stages of (H2O)n¯ + Py condensation.  

For example, our calculations indicate that excitation of one quanta into the NH or OH stretch 

vibrations of the most stable PyH∙(OH¯)∙(H2O)2 species would deposit sufficient energy for the 

system to sample such dipole-bound structures as exit channel configurations leading to electron 
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autodetachment.  To further evaluate the dynamics of the interconversion between the Py∙(H2O)3¯ 

and PyH∙(OH¯)∙(H2O)2 structures, we performed Born-Oppenheimer molecular dynamics 

(BOMD) simulations on the [Py∙(H2O)3]¯ cluster (see Section II.C for details). Ten trajectories, 

four between 1 and 5.5 ps and six for between 14.7 and 19.3 ps, were run. Of these only two gave 

rise to the solvated OH¯ ion, one near 16 ps and the other it occurred near 1.6 ps. In these 

simulations, the Py∙(H2O)3¯ isomer was heated to 270 K and changes to the geometry and 

electronic structure were recorded in 1 fs increments.  An example video of one of these trajectories 

is given in the Supplemental material. [105] Figure 9 plots the electron binding energy along one 

of the trajectories together with the differences in the charge densities of the anion and neutral, 

calculated at the MP2/aug-cc-pVDZ [157,158] level, for the final, key intermediate, and product 

structures (MP2-level charge densities are employed rather than BLYP [58,126] charge densities 

as the MP2 method is expected to give more reliable charge distributions).  For the indicated 

trajectory, the electron remains dipole bound to the (H2O)3 water network for about 1.65 ps, before 

evolving into an intermediate structure of the form Py¯···H+···OH¯(H2O)2.  This is followed by 

rapid formation of the pyridinium radical PyH·(OH¯)∙(H2O)2.  In the product structure both an 

electron and a proton have transferred to the Py, with the former occupying the π* LUMO of the 

neutral Py molecule.  Evolution to the product PyH·(OH¯)∙(H2O)2 structure requires the two H2O 

monomers to adopt an arrangement that effectively solvates the OH¯.  For the indicated trajectory, 

the system rapidly evolves from the intermediate to the product, although for other trajectories (not 

shown) there are fluctuations between the intermediate and reactant-like Py·(H2O)3¯ structures 

before the product is accessed.  As seen in Figure 11, the electron binding energy increases as the 

PyH·(OH¯)∙(H2O)2 product is formed, approaching a VDE similar to that observed from the 

photoelectron spectrum (1.53 eV).   
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2.4 Conclusions 

Gas phase cluster chemistry, together with analyses of the pre-dissociation and 

photoelectron spectroscopies with electronic structure calculations, have been used to clarify the 

chemical rearrangements that occur when pyridine (Py) combines with hydrated electron clusters 

(H2O)n¯ for n = 3-5.  The photoelectron spectrum of the resulting [Py·(H2O)n]¯ species supports 

the presence of a valence anion, in which the VDE is much greater than its AEA.  Analysis of the 

vibrational patterns then confirms the formation of neutral pyridinium radical PyH(0) and hydrated 

hydroxide, where the neutral radical occupies one of the sites in the primary solvation shell around 

the hydroxide anion:  PyH∙(OH¯)∙(H2O)n-1.  Synthetic access to this arrangement now presents an 

attractive opportunity to follow the reaction chemistry of the PyH(0) radical in the microhydration 

regime. A particularly timely choice in this regard is the activation of CO2 by proton coupled 

electron transfer, which has been proposed for the catalytic activity of Py by Musgrave [159] and 

Bocarsly. [160]  

2.5 Acknowledgements 

This work was supported the by Mississippi Center of Supercomputing Research and the 

National Science Foundation under Grant Numbers CHE-1338056 (G.S.T.) and CHE-0955550 

(N.I.H).  Both G.S.T. and N.I.H. acknowledge NSF EPSCoR support under grant no. EPS-

0903787.  M.A.J. and K.D.J want to thank the U.S. Department of Energy for support under grant 

DE-FG02-06ER15800 and DE-FG02-06ER15066.  M.A.J. also expresses gratitude to the staff and 

facilities of the Yale University Faculty of Arts and Sciences High Performance Computing 



55 

Center, and NSF grant CNS 08-21132, which partially funded acquisition of the facilities.  KDJ 

also acknowledges use of computational facilities in the University of Pittsburgh’s Center for 

Simulation and Modeling.   



56 

3.0 Proton-Coupled Electron Transfer in [Pyridine •( H2O)n]−, n = 3, 4, Clusters 

This work was published as: Kaye A. Archer, Kenneth D. Jordan, Chem. Phys. Lett, Vol. 

661, 196-199 (2016) 

3.1 Introduction 

The equation-of-motion method is used to map out one-dimensional potentials for proton-

coupled electron transfer in the [pyridine • (H2O)n ] − , n = 3, 4, clusters. In both cases there is an 

avoided crossing between valence-type pyridinyl•(OH−) (H2O)n-1  and dipole–bound pyridine • 

(H2O)n  − anion species. For the n = 3 cluster, the mixing is sufficiently strong that both limiting 

structures are predicted to be sampled in the vibrational zero-point level. 

The anions of pyridine•(H2O)n clusters, [Py•(H2O)n]− , have been the subject of 

experimental and theoretical investigation. [111,161,162] These are intriguing and challenging 

systems because of the possibility of three different types of anions that are expected to be close 

in energy. The limiting cases are Py•(H2O)n−   in which the excess electron is dipole bound [88,163], 

Py−•(H2O)n  in which the excess electron is localized in a valence π* orbital of the pyridine, and 

the PyH•(OH−)•(H2O)n-1 species formed by proton-coupled electron transfer (PCET) from (H2O)n− 

to pyridine.  The isolated Py− ion is unstable with respect to electron detachment, lying 0.62 eV in 

energy above the ground state of the neutral pyridine molecule [164], but upon sufficient solvation 

it will become stable, with respect to electron detachment. Figure 13 schematically reports the 

relative energies of the various fragments and products for the n = 3 cluster. The (H2O)3− dipole-
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bound anion has a vertical detachment of  0.13 eV and is nearly isoenergetic with the global 

minima structure of the neutral (H2O)3 cluster. [146] In the case of the Py− • (H2O)3 and Py • 

(H2O)3− complexes, the energies of the unmixed diabatic states were obtained from constrained 

geometry optimizations. 

The photoelectron spectra of the [Py(H2O)3]−, n ≥ 3, clusters are consistent with PyH· 

(OH–)·(H2O)n-1 structures. However, the vibrational spectrum of the n = 3 anion is fundamentally 

different from that of the n = 4 and 5 anions in the region of the NH stretch. Specifically, the 

spectrum of the n = 3 anion is fundamentally different from that of the n = 4 and 5 anions in the 

region of the NH stretch. Specifically, the spectrum of the n = 3 cluster displays three broad 

features with ~350 cm-1 spacing (~2050, 2400, 2750 cm-1) while for the n = 4 and 5 clusters, the 

vibrational structure in the NH stretch region consists of a very broad feature peaked near 2600 

cm-1. These results suggest a change in the electronic structure of the cluster in going from n = 3 

and n = 4. 
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Figure 13: Energies of the various non-interacting fragments as well as of the possible products of the [Py • 

(H2O)3]– cluster. The energies of the neutral species were calculated using the MP2 method, and those of the 

anionic species were calculated using the EA-EOM-CCSD(2) method.  All calculations employed the aug-cc-

pVDZ+7s7p basis set, described in the text.  

 

In this work we present electronic structure calculations on [Py•(H2O)3] − and [Py • (H2O)4] 

− to better understand how these species evolve along the proton transfer coordinate. These clusters 

pose a significant challenge to theory. Specifically, density functional methods, even with the 

inclusion of exact exchange, tend to strongly over-bind dipole-bound anions with the basis sets 

typically used for such systems, and the spin-unrestricted Hartree-Fock method suffers from 

sizable spin contamination for the various [Py•(H2O)n] − structures calling into question the validity 

of spin-unrestricted second-order Møller-Plesset (MP2) [165–167]calculations. The spin-restricted 

(MP2) [168] method avoids the spin-contamination problem, but application of this approach to 

the [Py•(H2O)3] − system gave a discontinuous potential energy curve as a result of the restricted 



59 

Hartree-Fock (RHF) calculations converging to different solutions at different geometries. To 

avoid this problem, we adopt the EA-EOM-CCSD(2) method. [4,5] In this approach one carries 

out MP2 calculations on the neutral closed-shell cluster, and the resulting doubles [86,169] 

amplitudes are used to carry out a similarity transformation of the Hamiltonian, which, in turn, is 

used to carry out one-particle (1p) plus two-particle-one-hole (2p1h) configuration interaction 

calculations on the anion states.  

The present investigation, thus, has two goals: (1) to provide insights into the difference in 

the electronic structure of the n=3 and 4 clusters and the implications of this difference on the 

vibrational spectra, and (2) to provide benchmark electronic structure results for assessing the 

performance of more approximate electronic structure methods for describing proton-coupled 

electron transfer in anionic complexes. 

3.2 Computational Details 

The EA-EOM-CCSD(2) calculations were carried out using the CFOUR code [170] and 

employed the aug-cc-pVDZ basis set [171,172] supplemented with a set of 7s7p diffuse functions. 

[173] The exponents of the supplemental functions were chosen to be in a geometric ratio of 3.33, 

with the tightest of these functions having exponents 3.33 times smaller than those of the 

corresponding “aug” functions. The supplemental diffuse functions were centered on the C atom 

situated opposite the N atom of the pyridine ring and were included primarily for the purpose of 

describing dipole-bound anions. For the PyH•(OH−)•(H2O)2 form of the n=3 cluster, EA-EOM-

CCSD(2) calculations were also carried out with the aug-cc-pVTZ basis set [171,172] 

supplemented with the 7s7p set of diffuse functions [174] in order to check the convergence of the 
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electron binding energy with basis set expansion. Starting with the PyH•(OH−)•(H2O)n-1 species, 

optimized using the ROHF-MP2 method as implemented in GAMESS [175,176] in the frozen core  

 

Figure 14: One-dimensional potential energy curves for the PyH•(OH−)•(H2O)2 → Py • (H2O)3−  rearrangement. 

The energies of the anion states were calculated using the EOM-EA-CCSD(2) method, using the aug-cc-

pVDZ+7s7p basis set, with the starting structure being that of PyH•(OH−)•(H2O)2 optimized using the ROMP2 

method.   At each step along the reaction coordinate, the MP2 energy of the neutral cluster is also reported. 

There is an avoided crossing between the valence-like and dipole-bound anions near ΔNH = 0.45 Å. 

 

approximation, a series of single-point calculations, in which the shared proton was moved along 

the line connecting the N atom of the pyridine ring and the O atom of the OH− ion, were carried 

out. The resulting potential energy curves for the n = 2 and n = 3 clusters are shown in Figure 14 

and Figure 15, respectively. The figures also display the dominant natural orbitals for the unpaired 

electron as obtained for the EOM calculations. 
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Figure 15: One-dimensional potential energy curves for the PyH•(OH−) • (H2O)3 → Py • (H2O)4− rearrangement.  

The energies of the anion states were calculated using the EOM-EA-CCSD(2) method, using the aug-cc-

pVDZ+7s7p basis set. The initial structure of PyH • (OH−) • (H2O)3 was optimized using the ROMP2 method.   

At each step along the reaction coordinate, the MP2 energy of the neutral cluster is reported. There is an 

avoided crossing between the lowest valence-type and dipole-bound anion near ΔNH = 0.60 Å.  

3.3 Results 

At the minimum energy structure of the n = 3 anion, the calculated vertical detachment 

energy (VDE) at the EOM-EA-CCSD(2)/aug-cc-pVDZ+7s7p level is 1.16 eV, as compared to the 

experimental result 1.56 eV. Upon enlarging the basis set to aug-cc-pVTZ+7s7p, the calculated 
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vertical detachment energy increases to 1.35 eV, in reasonable agreement with experiment. At this 

geometry there is also a dipole-bound anion lying energetically about 0.3 eV below the neutral 

cluster. The natural orbitals associated with the unpaired electron are also shown in Figure 14. As 

the proton is displaced along the reaction coordinate (from the PyH•(OH−)•(H2O)2) starts near 0.26 

eV, which implies that the 𝜈=1 level of this vibration lies about 0.4 eV above the potential energy 

minimum. Thus, as seen from Figure 14, the vibrational excited state of the anion samples the 

Py(H2O)3− structure. 

The potential energy curves depicted in Figure 14 were generated by simply stretching the 

NH bond, keeping all other degrees of freedom frozen. Separate calculations indicate that the 

energy of the neutral cluster drops by 0.40 eV upon geometry relaxation. At the potential energy 

minimum of the neutral, ΔNH = 0.77 Å, and at the geometry the dipole-bound anion is calculated 

to lie only by 0.03 eV below the neutral. Thus, on the relaxed potential the dipole-bound anion 

near ΔNH = 0.77 Å would be expected to lie only a few hundredths of an eV above the PyH • 

(OH−)•(H2O)2 species at its optimized structure. We have optimized the geometry of the anion at 

the ROMP2 level for ΔNH values between -0.2 and 0.35 Å. The relaxed potential has a barrier of 

~0.12 eV near ΔNH = 0.25 Å. This result establishes that, both limiting PyH • (OH−) • (H2O)2 and 

Py • (H2O)3− configurations are sampled in the vibrational zero-point level of the n = 3 anion. This 

is consistent with the fact that the peak in the photodetachment spectrum for the n = 3 cluster 

extends from 0 to 2 eV. Our calculations also predict that autoionization should become an open 

channel for PyH•(OH−)•(H2O)2 following excitation of one quanta of the NH stretch mode. The 

experimental vibrational spectrum of [Py•(H2O)3]– was obtained by use of Ar-tagged [Py•(H2O)3]– 

•Ar cluster. For this species electron detachment is observed at energies above 0.4 eV, while at 

lower energies the vibrational excited anion decays by Ar-atom loss. The Ar atom is expected to 
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stabilize the valence anion state relative to the neutral cluster, acting so as to suppress the electron 

detachment channel. It is also likely that the Ar tag causes a reduction of the amount of Py • (H2O)3− 

character in the wavefunction for the ground state anion. 

Interestingly, our calculations do not provide evidence for a bound Py−•(H2O)3 ion. This 

suggests that this form of the anion, at least for the geometries considered, lies energetically above 

the neutral, and is thus subject to electron detachment. However, this temporary anion state could 

be involved in the initial electron capture with rapid decay to the dipole-bound and/or valence 

anion, and thus lead to the observed PyH•(OH−)•(H2O)2 product. Calculations using the M06-2X 

density functional method [177], in contrast to those with the EA-EOM-CCSD (2) methods, 

predict the Py−•(H2O)3 ion to be stable with respect to electron detachment. This appears to be an 

artifact of the DFT calculations. Table 2 summarizes experimental and calculated detachment 

energies of [pyridine• (H2O)3] – and [pyridine• (H2O)4] –. Unless noted otherwise the M06-2X 

detachment energies were calculated using M06-2X optimized geometries and using the 6-

31++G(d,p) basis set [122,178], and the EOM detachment energies were calculated using ROMP2 

optimized geometries and the aug-cc-pVDZ+7s7p basis set. The exceptions are the M06-2X 

calculations on the Py•(H2O)3 – form of the anion, which were carried out at the ROMP2 optimized 

geometry and the EOM calculations on the Py−•(H2O)3 form of the anion, which were carried out 

at the M06-2X optimized structure. The M06-2X calculations predict the Py−•(H2O)3 and 

PyH•(OH−)•(H2O)2 species to be isoenergetic, with the Py•(H2O)3– form of the anion lying 0.13 

eV higher in energy. In contrast the EOM calculations predict the PyH•(OH−)•(H2O)2 form of the 

anion to be most stable, with the Py•(H2O)3– and Py−•(H2O)3 forms lying, respectively, 0.06 eV 

and 0.12 eV higher in energy. 
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Table 2: Vertical detachment energies of [Py (H2O)3]− and [Py (H2O)4]−. 

Cluster 

Experimental (eV) 

Isomer 

Theory 

Wang et ala Deblase et alb

Wang et al Current work 

M06-2X/6-

31++G(d, p) 

EOM-EA-CCSD(2) 

aug-cc-pVDZ+7s7p 

[Py (H2O)3]- 0.75 1.56 1.53 

Py− (H2O)3 0.84 0.39c 

Py (H2O)3− 0.74d 0.12 

PyHOH− 
(H2O)2 

1.44 1.16(1.35e) 

[Py (H2O)4]- 1.79 1.63 

Py− (H2O)4 1.33 – 

Py (H2O)4− – 0.71 

PyHOH−(H2O)3 1.7 1.45 

a Ref.[179] 

b. Ref.[180]

c. Calculated at the M06-2x/6-31++G(d,p) optimized geometry.

d. Calculated at the ROMP2/aug-cc-pVDZ optimized geometry.

e. The value in the parentheses was obtained using the aug-cc-pVTZ+7s7p basis set.

For the n = 4 cluster, the calculated vertical electron detachment energy at the minimum 

energy structure of the anion is 1.45 eV, which is in reasonable agreement with the experimental 

VDE value of 1.63 eV [179]. As for the n = 3 cluster, the adiabatic ground state of the anion of the 

n = 4 cluster evolves from valence-bound at ΔNH ~ 0 Å to dipole-bound at large ΔNH values (~0.6 

Å). The energy of the n = 4 cluster drops by 0.50 eV when the geometry is fully relaxed. At the 

relaxed geometry ΔNH = 0.85 Å. Thus, the relaxed potential for proton transfer in the ground state 

anion is much steeper for the n = 4 than for the n = 3 anion. As a result, the cluster in its zero-point 

level is essentially PyH • (OH−) • (H2O)3 in nature, but in its v = 1 NH stretch level, it could acquire 

a small amount of dipole-bound anion character. From Figure 15 it is seen that in addition to the 

ground state valence-type anion and the dipole-bound anion, the n = 4 cluster also has a bound 

excited state valence-type anion, in which the excess electron occupies the second lowest lying π* 

orbital of the pyridine ring. 
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3.4 Conclusion 

Our calculations of the potential energy curve for proton transfer in [Py • (H2O)3] – provide 

evidence that even in its vibrational zero-point level the anion samples both the dipole-bound Py • 

(H2O)3− and valence-type PyH • (OH−) • (H2O)2 configurations. This conclusion is consistent with 

the complex vibrational spectrum observed for the anion in the [Py • (H2O)3]– cluster.  The 

presence of the additional water molecule in [Py • (H2O)4]- causes the PCET limiting structure to 

be preferentially stabilized with respect to the dipole-bound anion [compared to Py(H2O)3–]. At 

the ROMP2 level of theory the preferential stabilization is about 0.21 eV.  This suppresses the 

large amplitude motion along the proton transfer coordinate and the sampling of dipole-bound 

structures in the zero-point and first vibrationally excited (NH stretch) levels. While M06-2X 

calculations indicate that the strong mixing between Py− • (H2O)3 and PyH • (OH−) • (H2O)2 the 

present EA-EOM-CCSD (2) calculations indicate that the strong mixing is between the Py • 

(H2O)3− and PyH • (OH−) • (H2O)2. 
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4.0 Mapping the Potential Energy Surface of H+(H2O)21 

4.1 Introduction 

The H+(H2O)21 cluster is a magic number cluster [181], which has been the subject of much 

theoretical and experimental investigation [92,181,190–199,182,200–209,183,210–213,184–189]. 

Mapping the potential energy surface of H+(H2O)21 can offer physical insights that can serve to 

explain the OH stretch peaks observed experimental IR spectra. [130] Proton transfer is known to 

proceed via hydrogen-bond networks. Therefore, an effective model for mapping the H+(H2O)21 

potential energy surface should allow for proton transfer and subsequent polarization of the 

electronic distribution. An appropriate model for proton transfer should allow the excess proton to 

be associated with different water monomers. [214] Multistate empirical valence-bond theory 

[10,98,214–216] describes molecular systems as linear combinations of (chemically motivated) 

valence-bond states. In the present study the multistate empirical valence-bond (MS-EVB) model 

incorporates the TIP3P [94,95,97,98] water model (MS-EVB/TIP3P). 

The surface-bound hydronium, due to its interaction with the water molecules of its 

solvation shells, is subjected to an electric field that causes a redshift of the hydronium infrared 

peaks in H+(H2O)21 [217]. Jordan et al.  [217] demonstrated that when the interaction of the first 

and second solvation shells with hydronium were considered, the hydronium peaks in H+(H2O)21 

IR spectra are reproduced. The dispersion energy contribution to the total interaction energy also 

converges with the inclusion of water monomers located in the first and second solvation shell. 

[217] For improved accuracy, we consider empirical valence-bond (EVB) states where the excess

proton is localized on water molecules in the first three solvation shell. Doubly nudged elastic 
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band (DNEB) [218] is employed to calculate the minimum energy isomerization pathway between 

two minima presented in literature. [219] Intermediate states from an isomerization pathway 

generated at MS-EVB/TIP3P level of theory are re-optimized at B3LYP-D3 [59,220,221]/6-

31+G(2d, p) level of theory. The comparison of the geometry configurations of intermediate states 

and energetic ordering at MS-EVB/TIP3P and B3LYP-D3/6-31+G(2d,p) levels of theory will 

serve as a feasibility study of the appropriateness of the MS-EVB/TIP3P approximation for 

mapping the potential energy surface of H+(H2O)21.  

DNEB, as implemented in the OPTIM software package [93], is employed to carry out a 

double ended search between two known extrema, in this study, two minima. The pathlength 

between the extrema is minimized (in Euclidean space). A series of images is generated via linear 

interpolation between the coordinates of the endpoints, to discretize the pathway. Each image is a 

vector that describe geometry configurations along the DNEB pathway. Adjacent images are 

connected by springs; springs ensure that images are equidistant on the DNEB pathway. Limited–

memory BFGS [222] was used to relax the DNEB pathway to the minimum energy pathway. 

Hybrid eigenvector following, EF/L–BFGS, was employed to refine the transition states.  

Low-energy isomers have been identified by Christie et al. [130] utilizing density 

functional theory (DFT) and by Xantheas [219] using second-order Møller-Plesset theory (MP2). 

[81,153,223–226] The present study employs multistate empirical valence-bond (MS-EVB) theory 

of Voth et al. [98] This iteration of the MS-EVB potential employs a flexible TIP3P force field. 

Since TIP3P is meant as a water model, point (permanent) dipoles were introduce into the MS-

EVB/TIP3P to accommodate the response of the electronic degrees of freedom due to the presence 

of a mobile excess proton. [98,227] MS-EVB can be viewed as being a mixed quantum mechanics 

/molecular mechanics (QM/MM) approximation. 
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4.2 Computational Details 

The OPTIM package of Wales et al. [93] was employed to calculate the minimum energy 

isomerization pathway. MS-EVB/flexible TIP3P of Voth et al. was chosen to evaluate the potential 

energy surface. LBFGS was employed to converge minima and hybrid eigenvector-following/ 

LBFGS was employed to refine transition states. Changes to NEB parameters such as the number 

of images (this influences pathway resolution), the connection algorithm, cost function (weights 

connection attempts of minima closer in Euclidean space as more important), and BFGS step size, 

and NEB forces impact which isomerization pathway is found. Preference is given to shorter path 

lengths via the Dijkstra [228] weighted completeness graph approach, the lowest isomerization 

energy pathway is therefore not guaranteed. While each pathway appears to be reasonable, there 

seems to be no systematic way to optimize parameters in order to guarantee that the minimum 

energy isomerization pathway is found. Therefore, a methodical approach to NEB parameter 

convergence is not apparent  

4.3 Results 

Due to the complexity of the H+(H2O)21 potential energy landscape, many isomerization 

pathways (transforming the Christie et al. isomer into the Xantheas isomer), with transition states 

occurring in the same energy regime, are feasible. Twenty-five distinct isomerization pathways 

with transition states no more than 9 kcal mol-1 above the Christie et al. isomer (which we will 

refer to as Isomer 1) and the Xantheas minima (which we will refer to as Isomer 2) have been 

identified. Several isomerization pathways overlap i.e., have many of the same transition states 
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and intervening intermediate states. The calculated isomerization pathways have between 7 and 

22 transition states. The DNEB calculations uncovered 350 unique minima, 89 of which function 

as intermediate states on the isomerization pathways shown below in Figure 16. The other 261 

minima are connected to only one intermediate state (rather than the requisite two needed for it to 

feature in the isomerization pathway) along the isomerization pathways presented. This occurred 

because the DNEB algorithm, as implemented in the OPTIM software package, [93] first finds 

transition states, it then proceeds to calculate minima directly connected to the transition states 

(forming a set of  minima-transition-minima segments). Finally, these segments are connected to 

form the entire isomerization pathways (this allows for local minima which are not featured on the 

isomerization to be found).  

Figure 16: Isomerization pathways of differing lengths for the transformation of the H+(H2O)21 isomer found 

by Christie et al. [130] to the isomer found by Xantheas. [219] 
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Represented below is a pathway which has 13 intermediate states with the highest 

intervening transition state located 5.40 kcal mol-1 above Isomer 1 (see Figure 17). On the MS-

EVB/flexible TIP3P PES Isomer 2 is located 0.55 kcal mol-1 above Isomer 1. It should be noted 

that when Isomers 1 and 2 are compared, there are 7 water molecules oriented differently in 

pentagonal rings (see Figure 18), while the donor – acceptor (hydrogen-bond) arrangements of the 

hydronium and every other water molecule remain the same (see the first and last columns of Table 

3 and Table 4).  

 

Figure 17: Isomerization pathway between the minima of Christie et al. [130] and Xantheas. [219] 
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Changes to these 7 water molecules impact the donor – acceptor motif of 8 waters along the 

minimum energy isomerization pathway. The isomerization pathway is characterized by concerted 

rotation of 7 water molecules which results in hydrogen-bond formation and breaking.  Each 

consecutive intermediate state results from a net of no more than one broken or formed hydrogen-

bond (relative to the previous intermediate). Table 3 and Table 4 document donor – acceptor motif 

changes of the intermediate states along the isomerization pathway. Figure 20 demonstrates how 

the geometric configuration changes along one isomerization pathway. 

Figure 18: Comparison of Isomers 1 (panel a) and 2 (panel b) molecular arrangement. The internal H2O is 

labeled 21; H3O+ is labeled 5. The 3D H+(H2O)21 molecule is represented by a 2D structure where the dotted 

lines indicate hydrogen bonds and the orange arrows indicate O-H bonds (originating on O atoms and 

terminating on H atoms). The lighter lines indicate H-bonds to the central water monomer (labeled 21). The 

green circles identify water monomers that undergo changes to the H-bond motif on the isomerization pathway. 

A   B 
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Figure 19: Comparison of Isomers 3 (panel a) and 4 (panel b). On the MS-EVB/TIP3P potential energy surface 

Isomers 3 & 4 are lower in energy than Isomers 1 & 2. The green circles identify differences in the H-bond 

motif when compared to Isomer 2.

C  D 
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Table 3: Donor - acceptor motif along minimum energy isomerization pathway. A, D and d represents acceptor, donor and dangling O-H bonds 

respectively. * identifies the trapped H2O molecule. Green indicates motif changes relative to previous intermediate state. 

Table 4: Donor – acceptor motif of water monomers of intermediate states that remain the same on the isomerization pathway. * identifies the H3O+. 
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Figure 20: Comparison of isomer geometry along the minimum energy isomerization pathway. A and O are Isomers 1 and 2 respectively. B - N are 

intermediate states. The green circles identify the monomers that experience changes to their hydrogen-bond motif along the isomerization pathway. 
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Figure 21: Comparison of isomer ordering at the MS-EVB/TIP3P and B3LYP-D3 levels of theory. 

Two intermediate states (which we have designated Isomers 3 and 4) that were found on 

one of the isomerization pathways) are lower in energy than Isomer 1 and 2, see Figure 19. Isomer 

3 is most similar to Isomer 2 with the only difference being that the acceptor – donor motif of two 

waters molecules are interchanged (labelled 11 and 13 – in isomer 2 monomer 13 is ADD and 

monomer 11 is AD with a dangling O–H bond, isomer 3 the acceptor – donor motif is reversed). 

Isomer 4 has two tetragonal rings and two hexagonal rings (see Figure 19). These geometries were 

re-optimized at the B3LYP-D3/6-311+G(2d,p) level of theory. On the MS-EVB/TIP3P potential 

energy surface Isomer 2 of Xantheas is 0.55 kcal mol-1 above Isomer 1 of Christie et al, while at 

B3LYP-D3/6-311+G (2d, p) level of theory Isomer 1 is 0.21 kcal mol-1 above Isomer 2. On the 

MS-EVB/TIP3P potential energy surface Isomer 3 is 0.25 kcal mol-1 below Isomer 1, while at 
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B3LYP-D3/6-311+G(2d,p) level of theory Isomer 3 is 1.40 kcal mol-1 above Isomer 2 (see Figure 

21). Isomers 3 and 4 are higher in energy than isomers 1 and 2 at B3LYP-D3/6-311+G(2d,p) level 

of theory while the reverse is true on the MS-EVB/TIP3P potential energy surface. While the 

pathway presented above seems reasonable as an isomerization pathway, the MS-EVB/flexible 

TIP3P potential energy surface does not reproduce the energetic ordering of B3LYP-D3/6-311+G 

(2d,p) level of theory as shown in Figure 22.  

 

 

Figure 22: Comparison of minima at MS-EVB/TIP3P, B3LYP-D3 and B3LYP-D3+ZPE. 

  

Figure 22, shows that the energetic ordering observed at MS-EVB/TIP3P level of theory 

(indicated by blue line) is not the same at B3LYP with D3 correction (B3LYP-D3) (indicated by 

the gray line) and B3LYP-D3 with vibrational zero-point energy correction (the orange line) 

calculated at the B3LYP-D3/6-31G(2d,p) level of theory. The red circles identify minima along 

an isomerization pathway on the MS-EVB potential energy surface that when re-optimized at 
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B3LYP-D3 level of theory (with or without ZPE correction) converge to a different isomer. When 

the indicated (red circles) isomers on the MS-EVB/TIP3P pathway are optimized at B3LYP-D3 

level of theory, we find that the isomers differ by one rotated water molecule. The first red circle 

(in Figure 22) on the MS-EVB potential energy surface, which is 4.0 kcal/mol above Isomer 1 

(Christie et al), is consistent with a H+(H2O)21 isomer which has a surface Zundel cation. [229] 

This does not exist as a local minimum on the B3LYP-D3 potential energy surface. When 

considering the usefulness of the MS-EVB/TIP3P method as a viable model chemistry approach 

for mapping the potential energy surface of H+(H2O)21, a minimum requirement is the qualitative 

reproduction of the potential energy surface. When energetic ordering of intermediate states is 

compared at MS-EVB/TIP3P and B3LYP-D3 levels of theory, no clear trend can be established. 

Also, minima on the MS-EVB/TIP3P potential energy surface are not guaranteed to exist on the 

B3LYP-D3 surface. 

4.4 Conclusion 

The MS-EVB/TIP3P method does not accurately describe the potential energy surface of 

H+(H2O)21. Capturing both dispersion and polarization effects accurately is known to be important 

for characterizing the structures of water clusters. The underlying water model in the MS-EVB 

method is the flexible TIP3P empirical force field.  TIP3P does not include explicit polarization. 

Therefore, incorporation in MS-EVB of a polarizable water force field parameterized against 

accurate ab initio calculation may offer a way forward for mapping the potential energy surface of 

H+(H2O)21. Also, computational resources permitting, employing an ab initio method to describe 

the water monomers can provide more accurate results. MS-EVB is routinely employed to study 
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proteins and extended solids. This study serves as a cautionary tale that the accuracy of MS-EVB 

calculation is only as good as the empirical force field employed to describe the water-water and 

proton-water interaction. 
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Appendix A Structural and Electronic Properties of Ultrathin Picene Films on the Ag(100) 

Surface 

This work2 was previously published as: S. J. Kelly, D. C. Sorescu, J. Wang, K. A. Archer, 

K. D. Jordan, P. Maksymovch, Surface Science 652 (2016) 67–75. Kaye A. Archer carried out

EOM calculations. 

A.1 Introduction

Using scanning tunneling microscopy and electronic structure calculations, we investigated 

the assembly and electronic properties of picene molecules on the Ag(100), Ag(111), and Cu(111) 

surfaces, with particular emphasis on Ag(100). In each case, picene molecules are found to lie 

parallel to the surface at coverages up to half a monolayer and to adopt alternating parallel and 

tilted orientations at full monolayer coverage. In the latter case, the arrangement of the molecules 

is roughly similar to that in the bulk crystal. On the metal surfaces considered, the growth mode 

of picene is quite different from that of its structural isomer pentacene which forms a bilayer 

overlayer on top of a dense monolayer of flat-lying molecules on metal surfaces. Tunneling 

spectroscopy measurements provide estimates of the energies of several low-lying unfilled 

molecular orbitals as well as of the highest occupied molecular orbital of the absorbed picene 

2 SJK and JW carried out experiments, DFT and MD simulations calculations; KAA carried out EOM 

calculations; KDJ, DCS and PM guided theoretical, computational and experimental discussions. 
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molecules. From analysis of these results, we establish that the on-site Coulomb repulsion for 

picene decreases by ~ 2 eV in going from the gas phase to the full monolayer on Ag(100), bringing 

it close to that of the undoped bulk crystal. 

Picene, an isomer of pentacene with an armchair arrangement of benzene rings, has 

attracted considerable interest for potential applications in electronic materials. Significantly, for 

the gas-phase molecules, the one-particle band gap is appreciably larger for picene than for 

pentacene (7.00 vs. 5.35 eV [230] ) making it more stable (the band gaps of the corresponding 

crystals are 3.1 eV for picene  and [231] 1.8 eV for pentacene [232]). In addition, it has been 

reported that the picene crystal, when intercalated with potassium, can become superconducting 

with a Tc below 7 K or even as high as 18 K [233,234], although this result has been questioned 

by other researchers.[235] Following the report of superconductivity in picene, several other PAHs 

(polycyclic aromatic hydrocarbons) with zig-zag fusion of the rings have been reported to become 

superconducting when doped with alkali or other metal atoms.[234] Equally intriguing is the 

nature of the electronic structure of the crystal at high doping levels but under conditions that it is 

not superconducting. [236] 

At the same time, evidence is mounting that the doping picture itself is complex. Resistive 

measurements have revealed that picene undergoes a superconducting transition, [237] where the 

state above Tc is granular-metal-like. Other reports have suggested strong inhomogeneities in 

alkali-doped polyacenes. [238,239] This would be consistent with the inference of filamentary 

superconductivity where only a fraction of the total sample becomes superconducting. [240] 

Recent calorimetry measurements indicate that the reported superconductivity in alkali-doped 

picene may be due to ferromagnetic impurities, or that the molecules may even react with the 

intercalated K atoms. [238] In light of the inconsistencies concerning the nature of doped picene 
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films and crystals, it is clear that additional studies providing a molecular level under-standing of 

both the doped and undoped systems are required. Of particular importance for understanding the 

electronic structure of picene is the extent of electrostatic screening changes in going from the 

isolated molecule to condensed-phase systems.[236,241,242] 

In this work, we present the first steps toward the development of such picture. Using 

tunneling microscopy and spectroscopy as well as electronic structure calculations, the monolayer 

structures of picene on Ag(111), Cu(111), and Ag(100) were characterized. As reported earlier by 

the Hasegawa group, [243] picene on Ag(111) displays two distinct phases in which all adsorbed 

molecules are in direct contact with the metal surface. We determined that this behavior also occurs 

for picene on the Ag(100) and Cu(100) surfaces. Furthermore, for picene/ Ag(100) we determined 

using tunneling spectroscopy the energies of cation states associated with the highest occupied 

molecular orbital (HOMO), and the anion states associated with the lowest unoccupied molecular 

orbital (LUMO) and several higher energy unoccupied orbitals. In a simple orbital model, the 

HOMO–LUMO gap of a molecule depends linearly on U, the on-site Coulomb repulsion. [244] In 

condensed phase systems, the U value is reduced by screening effects. We deter-mined that the 

value of U for picene molecule on the metal surface is comparable to that of picene in the bulk 

crystal. Our first attempt toward intercalation of K atoms into the picene film, aiming to reduce 

the nearly neutral adsorbed molecule to an open-shell anion state, introduced very strong disorder 

into the picene layer, although the procedure used is known to produce well-ordered structures of 

doped C60.[245] 
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A.2 Experimental and Computational Methods

A.2.1 Experimental

Picene films were grown in a custom-modified UHV chamber equipped with a deposition 

source, LEED and a quartz-crystal microbalance. Metal surfaces were cleaned by 

sputtering/annealing cycles prior to molecular deposition. The molecules were deposited on the 

metal surfaces at temperatures between 77 and 150 K. Subsequent ordering of the films was 

achieved by post-annealing to T = 300 K. STM images were acquired and tunneling measurements 

were carried out with a commercial scanning tunneling microscope (SPECS JT-STM) at T = 77 

and 4.5 K. Tunneling spectroscopy was used to determine the HOMO–LUMO gap as well as the 

energies of higher-lying anion states of picene on Ag(100). 

A.2.2 Computational Methods

The adsorption properties of picene molecules on the Ag(100) sur-face as a function of 

coverage were investigated using density functional theory calculations carried out with the 

Quickstep module [246] of the CP2K program. [247] The calculations made use of the PBE 

functional [67] with the Grimme-D3 [63] correction for long-range dispersion. The DZVP-

MOLOPT [248] Gaussian-type orbital (GTO) basis set was used for the Ag atoms, and the TZV2P-

MOLOPT GTO basis set was used for the C and H atoms of the picene molecule Goedecker, Teter 

and Hutter (GTH) pseudopotentials [127] were used to represent the core electrons. A plane-wave 

basis set with a cutoff of 400 Ry was used for expansion of the electronic density. 
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The binding configurations of the picene molecule at different cover-ages were 

investigated using two sets of slab models. The first set of models which included the (4 × 4), (6 

× 6) and (8 × 8) square surface models with their axes aligned parallel and perpendicular to the [0, 

0.5, −0.5] axis was used to characterize the adsorption of picene on the sur-face at low coverage. 

The second set used (7 × 5) and (8 × 5) rectangular supercells with their axes oriented along the 

[0,1,0] and [0,0,1] directions. This set of supercells allowed the analysis of adsorbed picene 

molecules at higher coverage, including arrangements having a surface packing and orientation 

similar to that observed experimentally. In all instances the slabs used in calculations contained 

five Ag layers, with the top two layers of metal atoms being allowed to relax, and the bottom three 

layers being kept frozen at their bulk optimized positions. A vacuum region of 26 Å was employed 

in the direction perpendicular to the surface. 

To aid in the analysis of the features observed in the tunneling measurements, we have also 

carried out calculations of the anion states using the electron-affinity equation-of-motion 

MP2(EA–EOM–MP2) method [249] as implemented in the CFOUR code [170] and in conjunction 

with the cc-pVDZ Gaussian-type orbital basis set.[250] This basis set was chosen to prevent 

collapse of the anion states onto the continuum. [251] In addition, we also report electron affinities 

estimated from experimental ionization potentials [252] and from application of the pairing 

theorem.[253] According to the pairing theorem, the energies of π and π* orbitals of alternant 

hydrocarbons are symmetrically located about a reference energy. 
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A.3 Results and Discussion

A.3.1 STM Results

At sub-monolayer coverage (Figure 23 a), the constant current STM image of a picene 

molecule on Ag(100) has a characteristic crescent shape due to the zig-zag arrangement of the 

benzene rings in the molecular backbone. The apparent approximate size of the molecule is ~1.35 

nm long and ~ 0.7 nm wide. The long-axis of the molecule is oriented along the <010> direction 

of the Ag(100) surface. At low coverage, the molecules are isolated consistent with repulsive 

intermolecular interactions. These are likely to be dominated by H–H repulsion but could also 

include dipolar repulsive interactions [254] due to small charge transfer between the surface and 

the molecules and Pauli repulsion. [255] 

Upon increasing the surface coverage to about 0.5 ML (region 1 in Figure 23 b and Figure 

24 d), the picene molecules are seen to adopt a partially ordered arrangement with the molecular 

axes twisted slightly off the original 45° orientation, and with the molecules stacked along the 

short axes. We refer to this structure as phase 1. The intermolecular spacing along the rows is 

~0.7–0.8 nm, while that across the rows is ~1.5 nm. The ordering is not regular, as evidenced by 

meandering of the molecular displacements along the close-packed rows. Further increase of the 

coverage completes the monolayer (region 2 in Figure 23 b and d). In contrast to the low coverage 

where the molecules repel one another (e.g. Figure 23 a), a new phase, denoted phase 2, nucleates 

within phase 1 and grows as islands (Figure 41). Moreover, as will be seen from the calculations 

discussed below, about half the molecules in phase 2 are tilted with respect to the surface and 

bonded to it via one of their edges. As will be discussed later the net intermolecular interactions 

when in-creasing the coverage to 1.0 ML are attractive, in contrast to those at or below 0.5 ML. 
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The STM images of the full monolayer, display an alternating pattern along the rows (Figure 23 

d), implying that the unit cell is comprised of two inequivalent molecules. There is also a subtle 

modulation of the intermolecular spacing, which doubles the size of the unit cell, with the net 

dimensions being v = 3 nm and u = 1.1 nm (Figure 23 d). Despite being more highly ordered than 

the phase 1 structure in which the molecules are bound parallel to the surface (Figure 23 b and d, 

as well as Figure 24 d), the tilted molecules in the phase 2 structure display small, random 

deviations from translational periodicity that are apparent in high-resolution images (Figure 23 d). 

At still higher coverage, after saturation of phase 2, growth proceeds into the multilayer 

regime, where locally saturated 3D islands of two or more layers of picene molecules grow on top 

of the monolayer (Figure 23 c). Therefore, on the Ag(100) surface, phase 2 is the most ordered 

arrangement of molecules, while growth itself proceeds in the Stranski– Krastanov mode [157] 

where formation of the second layer precedes growth of a three-dimensional film. 

The growth mode of picene molecules is qualitatively similar on Cu(100) as seen in Figure 

24 . The largely disordered layer of flat-lying molecules (region 1 in Figure 24 a) begins to develop 

into more highly ordered islands (region 2 in Figure 24 a). For the Ag(111) surface, the coexistence 

of two types of structures is also observed [243], although the lower coverage phase 1 structure is 

more highly ordered than phase 2. The electronic properties of the resulting surface structures were 

probed using scanning tunneling spectroscopy. To eliminate the current-induced damage of the 

adsorbed layers, we have used the technique of Z–V spectroscopy [256], in which the tunneling 

current is kept constant during the voltage ramp. When the tunneling energy matches the energy 

of a molecular resonance (i.e., the energy of an occupied or unfilled orbital), the tip retracts to 

maintain overall a constant tunneling probability. The energies of the electronic states are therefore 

registered as steps in the height Z of the STM tip relative to the metal surface or as peaks in dZ/dV. 
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As seen in Figure 25 a, for the phase 1 structure of picene on Ag(100), broad resonances 

due to anion formation are registered at 1.3, 2.1, and 3.3 eV. There is also a sharp peak at 3.5 eV 

that we attribute to the image potential state of the metal surface. Figure 25 b shows the 

corresponding results for the phase 2 (monolayer) system. 

Figure 23: Constant current STM images of picene molecules on the Ag(100) surface: (a) at low coverage 

(acquired at bias V = 1 V and current setpoint I = 30 pA); (b) at higher coverage where both phase 1 (region 1) 

and phase 2 (region 2) coexist (U = 0.7 V, I = 140 pA); (c) at still higher coverage where the phase 2 structure 

is fully saturated (region 2) and multilayer islands up to nominally three layers begin to nucleate (U = 3.2 V, 

I = 100 pA). (d) A close-up STM image of the phase 2 system, with unit-cell vectors u and v described in the text 

(U = 0.7 V, I = 140 pA). (e–f) Topographic line profiles along green dashed lines in images (a–c), 

correspondingly. Numbers in the images and line-profiles correspond to the nominal thickness of the layers. 
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The resonances in phase 2 structure are notably narrower than those in the phase 1 structure, 

most likely due to reduced electronic coupling of the tilted molecules in phase 2 to the surface. 

Moreover, each of the first two peaks appears to be comprised of two closely spaced features as 

seen in Figure 25 c and d. Using Lorentzian fits (Figure 25 d), the energies of these features are 

estimated to be 1.55 and 1.69 eV and 2.23 and 2.35 eV. As with the phase 1 structure, the phase 2 

structure displays a sharp resonance centered at 3.5 eV (Figure 25 b) associated with the image 

potential state. In addition, a filled state resonance is observed at is observed at  ~−1.37 eV (Figure 

25 e). 

Figure 24: Constant current STM images of coexisting phases 1 and 2 on Cu(100) surface (a, b) (U = 0.3 V, 

I = 30 pA), Ag(111) surface (c) (U = 1.2 V, I = 20 pA), and Ag(100) surface (d) (U = 0.5 V, I = 30 pA). The phase 

1 and phase 2 regions are marked in each case. 
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Figure 25: Tunneling spectroscopy of empty electronic orbitals of picene on Ag(100). Blue is the average of 

several (2–20) individual I–V curves; gray is the error bar corresponding to one standard deviation; red is the 

fit to the observed peaks using a Lorentzian function. (a) Phase 1; (b) phase 2. (c) Mixed phase 1 and phase 2, 

(d) low-energy anions states of phase 2 picene/Ag(100) with observable fine structures within each of the first

two main peaks and the accompanying fit with four Lorentzians. (e) Filled state region of the phase 2 picene on 

Ag(100). (f) Overlay of three kinds of spectra in (a), (c) and (d) that reveals their relationship to each other. All 

spectra were acquired at 77 K using Z–V spectroscopic mode with a constant-current set-point of ~ 100 pA. 

Note that the spectra show dI/dV, acquired as the first harmonic of voltage-modulated tunneling current with 

the AC amplitude of 5–10 mV and frequency of 650 Hz. 
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A.3.2 Experimental Analysis of Picene Epilayers

As was previously concluded for picene on Ag(111) [243], the phase 1 structure should 

not be viewed as a complete monolayer because all molecules in the saturated phase 2 are in 

direct contact with the metal surface. This is not obvious upon visual inspection of the STM 

images in Figure 23 and Figure 24 where the molecules adsorbed in going from the phase 1 

structure to the phase 2 structure appear to have grown on top of the molecules adsorbed flat on 

the surface (e.g. Figure 24 d). However, both the apparent height measurements and the 

calculations discussed below support a phase 2 structure with about half of the molecules being 

tilted with respect to the surface and bound to it edge wise. The STM measurements give an 

apparent height of ~ 100 pm (Figure 23 e) for the picene molecules relative to Ag(100) in phase 

1, and a change in the apparent height of ~ 170 pm between phase 1 and phase 2 (Figure 23 f). 

The height difference between the top of the phase 2 and the second layer is ~600 pm and that 

between the second and third layers is 600–700 pm (Figure 23 g). The experimental 

measurements yield contours of constant tunneling probability rather than the topography. The 

positions of molecular resonances in the tunneling spectra (discussed below) do not significantly 

depend on tip–sample distance, which implies that the potential drops primarily across the 

vacuum gap, which is consistent with a wide gap (low tunneling current) and a dielectric constant 

of 3–4ε0 characteristic of organic semiconductors. Therefore, the apparent height difference of 

170 pm in going from phase 1 to phase 2 is expected to be quite close to the topographic height 

difference, even though the height of the molecules comprising phase 1 is clearly underestimated 

by STM topography. The smallest unit-cell dimension of bulk picene is 615.4 pm, which is 

comparable to the separations between the layers after the first full monolayer, but far greater 

than the 170 pm height difference between the phase 1 and phase 2 structures.  
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A.3.3 Structural Analysis from the DFT Calculations

Phase 1 

In the computational studies, we first examined the adsorption con-figurations of picene 

molecules on the Ag(100) surface at low surface coverage. This was accomplished by placing a 

single picene molecule in the (4 × 4), (6 × 6) and (8 × 8) supercells with the long axis of the 

molecule taken parallel to the Ag–Ag close contacts. The results of this analysis are summarized 

in Figure 26. At low coverage, corresponding to a single picene in the (8 × 8) surface unit (Figure 

26 a), the molecule adsorbs flat on the surface and can assume three different orientations. In one 

(denoted α), the molecular axis is parallel to the [0, 0.5, −0.5] axis of the Ag(100) surface, and in 

another (denoted δ), it is diagonally oriented along the [0,1,0] axis. The third orientation (denoted 

γ) corresponds to an intermediate structure with the axis rotated by about 18° relative to that 

defined by the Ag–Ag short distance. For each of these three orientations, we investigated 

structures with the molecular center initially located above fcc, hollow, or top sites. Panel a) in 

Figure 26 indicates the evolution from the initial structures to the optimized structures. For the α 

and δ configurations, adsorption at both the fcc and hollow sites is found to lead to stable minima, 

while for the γ configuration only a single stable structure located above the hollow site was 

determined. The adsorption energy is calculated to be relatively insensitive to the orientation of 

the molecule on the surface. As a result, at low coverages the adsorbed picene molecules should 

readily rotate and diffuse on the Ag(100) surface. Regardless of their positions or orientations, at 

low coverage the picene molecules are predicted to lie nearly flat on the surface. This is illustrated 

for δ(fcc) in the inset panel in Figure 26 a), which provides a side view of the adsorption structure. 

As seen in this panel, the picene molecule lies flat on the surface at a distance of about 3.0 Å above 

the metal atoms in the top layer. 
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The variations with increasing coverage of the calculated adsorption energies for the most 

stable α and δ configurations of a picene molecule on the Ag(100) surface are reported in Figure 

26 b). The results were obtain-ed from calculations performed using the (8 × 8), (6 × 6) and (4 × 

4) supercells.

Figure 26: Adsorption configurations of picene on Ag(100) in the dilute to phase 1 regime as determined by 

DFT calculations. In all these cases the molecules are lying flat on the surface. For the stable adsorption 

configurations, the binding energies in eV of the final optimized structures (shown in the figures) are given in 

parentheses. For unstable configurations the evolution of the depicted structure from the initial (shown in the 

figure) to final structures is indicated. Configurations in panels a) correspond to a single molecule adsorbed in 

the (8x8) unit cell. α, δ and γ labels denote configurations parallel to the [0, 0.5, -0.5] axis, diagonally oriented 

along the [0,1,0] axis and rotated by about 18˚ relative to [0, 0.5, -0.5] axis, respectively. The fcc, hollow (h) and 

top labels used refer to the specific locations on the surface of the middle of picene molecule. The α, δ and γ 

arrangements are defined in the text. Panel b) indicates the variation of the adsorption energy of configurations 

α and δ for different surface supercell models. Panel c) illustrates different arrangements of molecules in the δ 

state at 0.5 ML coverage with the long axis of neighbor molecules oriented either perpendicular (δ(I)) or parallel 

((δ(II) and δ(III)) to one another. 
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The calculated adsorption energies decrease with increasing coverage, although for the δ 

configuration the decrease is relatively moderate, going from 2.47 eV for the (8 × 8) supercell to 

2.31 eV for the (4 × 4) supercell. For the α configuration the adsorption energy drops precipitously, 

particularly when going from the (6 × 6) to the (4 × 4) supercell. Due to the increase of the lateral 

repulsion between H atoms on different molecules, the α configuration becomes highly 

destabilized at higher coverages. These calculations demonstrate that as 0.5 ML coverage is 

approached, only the δ adsorption configuration, in which the molecule is oriented “diagonal” 

along the [0,1,0] direction, would be expected to survive. This result is consistent with the 

experimental observation for the preferred orientation of picene molecules up to 0.5 ML coverage 

(Figure 23 a). For the δ configuration, we considered structures with the long axes of neighboring 

molecules oriented either perpendicular (δ(I) in Figure 26 c)) or parallel (δ(II) and δ(III) in Figure 

26 c)) to one another. Essentially the same binding energy is obtained for these arrangements at 

this coverage. We also examined the sensitivity of the adsorption configuration and binding energy 

of picene molecules to the surface as the lateral separation between the molecules is decreased. 

This was done using the 8 × 5 and 7 × 5 surface supercells (see Figure 27 a) and b)) oriented along 

the [0,1,0] and [0,0,1] directions, respectively, and containing two rows of molecules. The 

separation between the centers of the rows is 16.4 Å for the 8 × 5 supercell and 14.4 Å for the 7 × 

5 supercell. As seen from the side views of the resulting configurations depicted in panels a) and 

b) of Figure 27 the molecules at these coverages remain flat on the surface and have comparable 

binding energies of 2.49 and 2.46 eV. 

Phase 2 

We examined next the adsorption of picene molecule at coverages greater than 0.5 ML. 

This has been done for the case of the (7 × 5) supercell by increasing the number of molecules in 
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each row from two to three (see panels c) and d) in Figure 27). As shown in these figures, upon 

optimization, the structure changes from one with all molecules lying flat on the surface to 

structures in which either about a third of all molecules are tilted (see Figure 27 c) or all of them 

are tilted by some degree (see Figure 25 d) with respect to the surface. These two arrangements 

are essentially isoenergetic with adsorption energies of about 1.9 eV/ molecule, significantly 

smaller than that (2.5 eV/molecule) for phase 1. These findings suggest that a simple increase in 

the number of molecules in the first layer from two to three for each row in the (7 × 5) supercell 

(see Figure 27 c and d) is highly unfavorable and these higher coverage arrangements were not 

considered further. 

Additionally, we analyzed whether picene molecules could adsorb lying flat on top of the 

molecules already adsorbed flat on the surface. This has been done for the case of the (7 × 5) 

supercell containing a total of twelve molecules distributed equally in two rows (each containing 

two layers). Calculations reveal (for a typical case see Figure 42) that such arrangements are 

unstable with respect to those in which some of the molecules are tilted and some are bonded 

edgewise to the sur-face. For this reason, in the ensuing discussion we focus on structures in which 

some molecules are bonded directly to the metal surface but are tilted with respect to the surface. 
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Figure 27: Adsorption configurations of picene in phase 1 on Ag(100) at 0.5 ML (panels a) and b)), at 

intermediate coverages above 0.5 ML (panels c) and d)) and in phase 2 at full ML coverage (panels e) and f)) 

as determined by DFT calculations. The number of picene molecules per supercell is four (a), b)), six (c), d)), 

and eight (e), f)). The supercells used in calculations are indicated in the figures. The acronyms Ph2(I) and 

Ph2(II) refer to molecular configurations of picene in phase 2 in the (7 × 5) and (8 × 5) supercells, respectively. 

The other acronyms are explained in the main text. 

 

The most stable arrangement for phase 2 has all the molecules be-yond 0.5 ML tilted with 

respect to the monolayer and located in between the molecules of the first layer, as shown in panels 

e) and f) of Figure 27. The average binding energy of all molecules, both flat and tilted, is 2.16 

eV, for both the 7 × 5 and 8 × 5 supercells. The most tilted molecules are less strongly adsorbed 

than the nearly flat-lying molecules, with binding energies of 1.86 and 1.84 eV for 7 × 5 and 8 × 

5 supercells, respectively. However, we note that these adsorption energies are higher than the 

cohesive energy between picene molecules in the crystal. For picene crystal with a monoclinic 
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structure [257], we calculate a cohesive energy of 1.76 eV per molecule (for the optimized crystal, 

our calculated lattice parameters of 8.449, 6.112, and 13.454 Å agree to within 1.5%, with the 

experimental values of 8.480, 6.154, and 13.515 Å [257]). 

Calculations carried out with only the tilted molecules on the surface, give a binding energy 

of about 1.2 eV/molecule, which leads us to conclude that for the phase 2 structure, about 0.9 eV 

of the binding energy per molecule of the tilted molecules comes from interactions with the 

molecules bound flat (or nearly so) on the surface. This molecule–molecule interaction is expected 

to be dominated by dispersion and electrostatic contributions. While our calculations indicate that 

the average binding energy per molecule is reduced in going from phase 1 to phase 2, Hasegawa 

and co-workers [258], reached the opposite conclusion concerning the relative stabilities of the 

two phases on Ag(111). In this case, however, phase 2 would precede the formation of phase 1, 

which is not the case as seen from the results of our experiments. 

Overall, the results presented in Figure 27 and Figure 42 provide strong support that phase 

2 is a mixture of molecules lying nearly flat on the surface and molecules that are tilted with respect 

to the surface plane, in agreement with the experimental findings. The most notable conclusion is 

that the intermolecular interactions contribute as much as 0.9 eV/molecule to the binding, allowing 

the titled configuration to be energetically preferred over a hypothetical flat lying bilayer. 

Analysis of Tunneling Spectroscopy Measurements 

We now turn to the analysis of the tunneling spectra of the phase 2 structure (shown in 

Figure 25 b–f). Table 5 summarizes the energies of the anion states of picene (referenced relative 

to the ground state anion) obtained from EA-EOM-MP2 [249] calculations using the cc-pVDZ 

basis set, from use of the pairing theorem [253] and from experiment, together with our 

assignments. The calculated results are for the gas-phase molecule while the experimental results 
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are from the present measures of picene monolayer on Ag(100). 

For phase 2 picene/Ag(100) the relative energies of molecular resonances are 0.14, 0.67, 

0.79, 1.43 eV, and 2.55 eV (based on Figure 25). Comparison of the EOM and experimental results 

leads to the following assignment of the experimentally observed features: The first broad 

resonance (overlapping features at 0 and 0.14 eV) derives from the ground and first excited anions 

states, which are predicted to be nearly degenerate, the second broad resonance (overlapping 

features at 0.67 and 0.79 eV), is due to the third anion state, and the 1.43 and 2.55 eV features to 

the fourth and sixth anion states, respectively. The calculations place the fifth anion state 1.80 eV 

above the ground state, and although the experiment does not display a clear feature at this energy, 

it could be hidden under the low-energy shoulder of the image potential state. Finally, the 

predictions of the pairing theorem are close to those of the EOM calculations, providing further 

support for these assignments. 

The major issue with the above assignment concerns the (0.67, 0.79 eV) doublet observed 

experimentally, while the calculations predict only a single anion state in this energy range. We 

believe that it is unlikely that the experimentally observed splitting derives from picene molecules 

in different environments. A more likely possibility is that the splitting results from the interactions 

between picene molecules. If this is the case, then the lower energy doublet (0 and 0.14 eV) could 

also have as its origin the splitting caused by interactions between picene molecules. 

Overall good agreement is found between the computed relative energies of the anion states 

for the gas-phase molecule and the corresponding STS results for the phase 2 system. This 

indicates that there is an approximately uniform shift in the energies of the various π* anion states 

of picene in going from the gas-phase molecule to the phase 2 adsorbed species. The anion states 
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of the phase 1 structure are stabilized by additional 200–300 meV compared to titled molecules in 

the phase 2 structure, presumably due to the stronger interaction with the metal surface. 

Assuming that the broad peak at ~−1.3 eV in the STS measurements (Figure 25 e) 

corresponds to electron ejection from the HOMO, the HOMO– LUMO gap for picene molecules 

in the phase 2 structure is then 2.9 eV, 

Table 5: Relative energies (eV) of the π* anion states of picene. 

STS of phase 2 picene/Ag(100) 
Gas-phase picene 

EOM-MP2 Pairing theoremc 

0.0, 0.14a     0.0, 0.04 0.0, 0.13 

0.67, 0.79a 0.66        0.82 

1.43 1.30        1.52 

(1.80)b 1.80        1.74 

2.55 2.41        1.74 

a The doublet structures in the STS features were determined by a fitting  

procedure de-scribed in the text. 

b Although the STS measurements do not display a distinct feature near  

                1.80 eV, such a feature could be “hidden” on the low-energy side of the  

intense feature associated with the image potential state. 

c   These results are derived from the experimental IPs of picene reported  

in [252]. 

 

while the experimental IP–EA value for the gas-phase molecule is 7.0 eV. The 4 eV reduction in 

the HOMO–LUMO gap in going from the gas-phase molecule to the phase 2 structure, implies 

that the on-site Coulomb potential is reduced by about 2.0 eV due to screening by the neighboring 

molecules and the metal surface. 
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A similar conclusion is reached by estimating the extent of the screening from the shift in 

the LUMO in going from the gas phase molecule to the phase 2 structure. The first EA of picene 

in the gas phase is 0.6 eV (referenced to vacuum) [230] while the energy of the first anion state of 

the phase 2 structure of picene on Ag(100) is 1.55 eV relative to the Femi level. Since the work 

function of Ag(100) is ~4 eV, we conclude that the anion state is stabilized by 1.8 eV in going 

from the gas-phase molecule to the phase 2 structure. Thus, the reduction in the U value due to 

screening deduced from the shift of the LUMO level is consistent with that determined from the 

change in the HOMO–LUMO gap. The work-function of 4 eV was estimated from the position of 

the image potential state (3.5 eV), the binding energy of which is ~ 0.5 eV below vacuum level on 

Ag(100).[259] 

Interestingly, the band-gap of a crystalline picene is ~3.3 eV close to that determined here 

for phase 2 picene/Ag(100), which indicates that the screening due to the metal substrate and 

surrounding molecules in adsorbed picene is comparable to that in the picene crystal. This 

immediately suggests that despite close-proximity to the metal surface, Coulomb screening in 

polyaromatic molecular systems remains weak. Even for an electronic bandwidth (W) of ~ 0.5 eV, 

Uscr/W N 1, making the emergence of Mott-insulating state quite likely in doped picene. In prior 

studies, the Coulomb repulsion has been assumed to be ~1–2 eV in picene [236], but the models 

show a metal–insulator transition around a value of the Coulomb repulsion of 0.8 eV. [260] At the 

same time, the regime analyzed in Ref. [241], here there is suppression of the Mott insulating state 

and formation of ¾ filled bands in 3e-doped picene, necessitates U values of N5 eV. The screening 

in either bulk or adsorbed forms is too strong to allow such cross-over between ½ filled and two 

¾ filled bands, at least within the assumed approximations. This situation may be different 
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however, in a condensed phase adsorbed on insulators, where there would be no effects of image 

screening due to proximity to metallic substrate. 

We now examine more closely the resonance structure in the STS measurements of picene 

on Ag(100) under different coverages. Figure 25 (a) reports the spectrum for the phase 1 structure 

which corresponds to flat-lying molecules. Figure 25 b and d report the spectra for the phase 2 

structure, and Figure 25 c reports the spectrum due to a mixture of phase 1 and phase 2 structures. 

Figure 25 f demonstrates how the spectrum in Figure 25 c arises as a superposition of those from 

phase 1 and phase 2 structures. However, as we discussed above, the detailed origin of splitting in 

Figure 25 d (and its effect on spectra in Figure 25 c) will need further investigation, as the 

magnitude of the splitting of the peaks at ~ 1.5 eV is too large to be explained by the near-

degeneracy of LUMO/LUMO + 1 states, while the splitting of the peaks at ~ 2.25 eV is too small 

to be accounted for by LUMO + 2/LUMO + 3 splitting. 

Picene Epilayer Doped with Potassium 

Much of the controversy regarding K-doped picene and related polyaromatic hydrocarbons 

[261,262] has to do with the absence of well-defined single crystals and instability of such 

materials in ambient environment, which significantly hinder electron transport measurements on 

any kind of alkali doped material. Thin films would be very beneficial in this regard as would be 

the prospect of direct characterization of K-doping, or even the hypothesized superconducting 

state, with tunneling spectroscopy. To this end, we attempted to dope the well-characterized films 

with potassium. To avoid deposition of hot K atoms directly onto the molecular film, we first 

deposited K onto Ag(100) and then over-grew picene. K would not diffuse into the bulk of the Ag 

crystal under these conditions. We further confirmed that the work-function of the surface is 

lowered by at least 2 eV by K deposition .[263] 
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Figure 28: STM images of picene grown on top of a K-doped Ag(111) surface. (a, b) Large and small-scale 

constant-current topography images of typical structures. (c) 2D-FFT of the image in (b) that shows lack of 

apparent long-range order. (d) k-means cluster transform applied to (b). Here the constant-current heights 

from the STM image are partitioned into three clusters using the k-means++ clustering algorithm.[264] The 

colors in the image correspond to the cluster number. There are three characteristic features in this image. 

These are: the flat-lying picene molecules in cluster 1 (possibly phase 1), and slightly higher molecules in cluster 

2 (possibly tilted as in phase 1) and the bare surface in cluster 3. 

 

As clearly seen in Figure 28 a and b, the quality of the films that form on K-doped Ag(100) 

is far inferior to that observed on the clean metal surface. In particular, there is an almost complete 

lack of long-range ordering as evidenced by the Fourier transform of the STM image (Figure 28 

c). STM topography reveals multiple holes on the surface, which based on the constant current 

topography represent single molecular layers (Figure 28 d). The other characteristic feature is that 

the molecules sur-rounding the holes have slightly higher apparent topography (Figure 28 d). The 

cause of the observed disorder is not clear. However, one possibility would be the strong 
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electrostatic interactions involving negatively charged picene molecules and K+ ions. We could 

also be observing a chemical reaction between potassium and picene as suggested by the 

calorimetry study of Ref. [238] 

A.4 Conclusions 

In conclusion, picene is shown to be able to form two types of structures on noble metal 

surfaces. In the lower coverage phase, denoted phase 1, the molecules lie flat on the surface, and 

in the higher coverage phase, denoted phase 2, half of the molecules lie nearly flat on the surface 

and the other half lie tilted about 30° with respect to the plane of the surface plane. Our calculations 

show that a significant portion of the stability of phase 2 comes from attractive interactions 

between the tilted and flat lying molecules. Scanning tunneling microscopy measurements show 

that the HOMO–LUMO gap is reduced from 7 eV to about 3 eV for phase 2 picene on Ag(100), 

with the latter value being close to that of the bulk crystal. The sizable reduction in the on-site 

Coulomb repulsion upon formation of the monolayer makes it an interesting molecular model 

system for strongly correlated electronic ground states produced upon doping. Finally, we 

attempted to carry out K-doping of the picene monolayer and found that in the coverage regime 

tested, K-doping caused significant disorder, most likely caused by electrostatic interactions. We 

believe that scanning probe microscopy with molecular resolution may provide critical insight into 

the structure, chemistry and electronic states of the potassium doped polyaromatic hydrocarbons, 

particularly if bulk-like arrangements of molecules can be stabilized in ultrathin structures. Here, 

we showed that even a monolayer of picene on certain metal surfaces may satisfy this criterion 

and approach bulk-like “herringbone” arrangement of molecules as well as electrostatic screening 
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comparable to bulk values. Further effort combining tunneling spectroscopy and epitaxially grown 

films is likely to produce deeper insight into doping of polyaromatic hydrocarbons, with direct 

implications for their presumed phase-transitions. 
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Appendix B Supplementary Materials 

B.1 Supplementary Materials for “Water Network-Mediated, Electron Induced Proton

Transfer in Anionic [C5H5N·(H2O)n]¯ Clusters” 

B.1.1 Photoelectron Spectra of [Py∙(H2O)n]¯, n=3–5  Clusters

Photoelectron spectra of [Py∙(H2O)n]¯ clusters for n = 3-5 are presented in Figure 29. 

These were obtained by velocity map imaging with an excitation wavelength of 532 nm.  Trace 

(a) compares the spectra of the bare (black) and Ar-tagged (blue) n = 3 clusters.  One might 

expect that the negative charge is solvated more effectively when the Ar tag is present, 

increasing the VDE; however, the two spectra are very similar at the current resolution (about 50 

meV), which indicates that the tag is weakly bound. 

As n increases [Figure 29 (a) and (b)], it is evident that the electron binding energy also 

increases.  The increase in the electron binding energy also is apparent by the decrease in the radius 

of the raw velocity map image (insets in Figure 29). Furthermore, the negative anisotropy 

parameter (β) of the image is less evident in the larger clusters, as the most intense region of the 

image is at the center.  It is important to point out that the VDE approaches the energy of the 

excitation laser (2.33 eV) in the n = 4 and 5 clusters, causing the cross-section to fall off according 

to the Wigner Threshold law.[265] Thus, we present these results simply to demonstrate the 

increase in the VDE rather than to provide an accurate measurement, which would require 

modifications to our imaging apparatus to allow higher frequency excitations. 
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Figure 29: Photoelectron spectra of [Py·(H2O)n]¯ with n = 3-5 [(a), (b), and (c), respectively].  Raw velocity map 

images are shown above each spectrum, with a white arrow denoting the orientation of the electric field vector.  

In trace (a), the blue spectrum corresponds to argon tagged [Py·(H2O)3]¯·Ar.radius of the raw velocity map 

image (insets in Figure 29).  Furthermore, the negative anisotropy parameter (β) of the image is less evident in 

the larger clusters, as the most intense region of the image is at the center.  It is important to point out that the 

VDE approaches the energy of the excitation laser (2.33 eV) in the n = 4 and 5 clusters, causing the cross-section 

to fall off according to the Wigner Threshold law. Thus, we present these results simply to demonstrate the 

increase in the VDE rather than to provide an accurate measurement, which would require modifications to 

our imaging apparatus to allow higher frequency excitations.   
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B.1.2 Tag Dependence Study

To assess the effect of the Ar tag on the vibrational predissociation spectra of the 

[Py∙(H2O)3]¯∙Ar, we also recorded spectra of these cluster by tagging with four Ar atoms. The 

full vibrational spectra of [Py∙(H2O)3]¯∙Ar and [Py∙(H2O)3]¯∙Ar4 are compared in Figure 30.  The 

spectrum in trace (a) was obtained by monitoring the photofragmentation of the singly-tagged 

adduct to form bare [Py∙(H2O)3]¯ photofragments.  Note that transitions do not occur in the free 

OH stretching region (above 3500 cm-1) because the vibrational autodetachment channel, in which 

neutral fragments are generated, dominates in the high energy region of the spectrum (see section 

III.D. of the manuscript).  Traces (b)-(d) are spectra of [Py∙(H2O)3]¯∙Ar4, which were obtained 

by monitoring production of [Py∙(H2O)3]¯∙Arn, photofragments, with n = 0-2, respectively.  At 

high energies (above 2400 cm-1) all tag atoms are evaporated yielding the spectrum in Figure 

30(b).  Apparently, the additional solvation energy of the four Ar atoms increases the AEA enough 

that the free OH stretches (𝜈OH
free) become apparent.  Between 1600 and 2400 cm-1, production of 

[Py∙(H2O)3]¯∙Ar (loss of 3 Ar atoms) dominates [trace (c)], while predominantly 

[Py∙(H2O)3]¯∙Ar2 (loss of 2 Ar atoms) is produced below 1600 cm-1 [trace (d)].  The peak 

positions and band shapes in traces (b)-(d) are very similar to those of the singly tagged species, 

suggesting that the tag does not significantly perturb the spectrum of [Py∙(H2O)3]¯. 
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Figure 30: Tag dependence study of Py·(H2O)3¯·Arn, which compares the n = 1 species (a) with the n = 4 species 

in the loss of 4 (b), 3 (c), and 2 (d) Ar channels (blue traces).   

 

To estimate the binding strength of the tag, we plotted the average number of tag molecules 

evaporated against the photon energy (Figure 31).  The average number of Ar molecules lost (Δ�̅�) 

at a given photon energy was determined by integrating the total photofragmentation signal and 

multiplying the fractional contribution of each loss channel (𝜒𝑖) by the number of tags lost by that 

channel (𝑛𝑖) as described below: 

 

 
Δ�̅� = ∑ 𝜒𝑖𝑛𝑖𝑖 . 64 

 

The same procedure was used by Kamrath et al. to measure the binding energies of H2 tags on 

simple peptides. 

The linear correlation in Figure 31 confirms that the binding energy of all four tags is 

similar.  Therefore, the average binding energy (735 cm-1) was estimated by the inverse slope of 
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the best-fit equation.  Note that this approximation assumes that the electron loss channel was 

insignificant near 2500 cm-1.   

B.1.3 Calculated Isomeric Forms of PyH∙(H2O)n∙OH¯, with n = 3-5

Figure 31: Dependence of the average number of Ar atoms evaporated (�̅�𝑨𝒓) on the photon energy used for

photofragmentation.  The line of best fit is given in red, as well as the average binding energy (inverse slope). 

To determine the extent of the electron induced proton mediated charge transfer, we 

compare the experimental predissociation spectra to calculated harmonic spectra of the lowest 

energy isomers of PyH∙(H2O)n∙OH¯, with n = 3-5. Figure 32 presents the results for two low-lying 

n=3 isomers calculated using B3LYP/aug-cc-pVTZ.  Structures and relative energies (zero-point 

corrected) calculated for various isomers of the n = 4 and 5 species are shown in Figure 33, and 

Figure 34, respectively, with the corresponding spectra given in Figure 35 and Figure 36. 
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Figure 32: Comparison of the combined photo-induced vibrational autodetachment (a) and Ar-predissociation 

(b) spectra of [Py·(H2O)3]¯ to spectra calculated at the B3LYP/aug-cc-pVTZ level of theory [(c)-(d)].  The 

geometries are displayed above each spectrum, where the colors of the highlighted bonds correspond to the OH 

and NH stretches labelled in the calculated spectra.  Relative energies are displayed below each structure. 
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Figure 33: Structures of Py·(H2O)4¯ isomers and relative energies calculated at the B3LYP/aug-cc-pVTZ level 

of theory. 

 

Figure 34: Structures of Py·(H2O)5¯ isomers and relative energies calculated at the B3LYP/aug-cc-pVTZ level 

of theory. 
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Figure 35: Comparison of the Ar-predissociation spectrum of [Py·(H2O)4]¯ (a) to spectra calculated at the 

B3LYP/aug-cc-pVTZ level of theory [(b)-(f)].  The Roman numeral labels refer to the structures in Figure 33. 

Bands are assigned according to their number of H-bond acceptor (A) and donor (D) interactions of specific 

water molecules within the network, and are consistent with the manuscript. 
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Figure 36: Comparison of the Ar-predissociation spectrum of [Py·(H2O)5]¯ (a) to spectra calculated at the 

B3LYP/aug-cc-pVTZ level of theory [(b)-(g)].  The Roman numeral labels refer to the structures in Figure 34.  

Bands are assigned according to their number of H-bond acceptor (A) and donor (D) interactions of specific 

water molecules within the network and are consistent with the manuscript. The importance of long-range 

interactions for the proton transfer and subsequent reconfigurations of the hydroxide stabilizing water 

network, are not taken into account by the B3LYP functional.  In an attempt to account for these factors, we 

used the M06-2X functional, with the resulting structures, minimum energies and harmonic vibrational spectra 

summarized for n = 3-5 in Figure 37-Figure 39, respectively.  While both functionals establish the formation of 

the pyridinium radical [Py(0)] for clusters comprising of n =4 and n =5 water molecules, interplay between the 

solvent network and the radical ring are strongly enhanced for M06-2X.  These calculations suggest a π-type 

interaction of a single water molecule with the center of the ring, where B3LYP prefers a scenario in which the 

ring exhibits a hydrophobic character. 
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Figure 37: Comparison of the Ar-predissociation spectrum of [Py·(H2O)3]¯ (a) to spectra calculated at the M06-

2X/6-31++G(d,p) level of theory [(b)-(g)].  Structures and relative energies are included with each spectrum. 
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Figure 38: Comparison of the Ar-predissociation spectrum of [Py·(H2O)4]¯ (a) to spectra calculated at the M06-

2X/6-31++G(d,p) level of theory [(b)-(g)].  Structures and relative energies are included with each spectrum. 
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Figure 39: Comparison of the Ar-predissociation spectrum of [Py·(H2O)5]¯ (a) to spectra calculated at the M06-

2X/6-31++G(d,p) level of theory [(b)-(g)].  Structures and relative energies are included with each spectrum. 
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B.1.4 Double Resonance Spectroscopy of [Py∙(H2O)4]¯

Isomer specific double resonance spectroscopy was used to evaluate the possibility of 

multiple isomers in [Py∙(H2O)4]¯. In this experiment, a probe laser is fixed on a particular 

transition, while a hole-burning pump laser is tuned throughout the region of interest.  The 

photofragmentation signal of the probe laser is monitored to record an isomer specific dip 

spectrum.  This set-up employs two laser interaction zones and three stages of mass selection so 

that each photofragment is mass-isolated and is described elsewhere in more detail.  

Figure 40: IR-IR double resonance spectrum (red) of [Py·(H2O)4]¯·Ar (a). The probe laser was set to 3494cm-1 

(indicated by arrow).  The vibrational pre-dissociation spectrum in this region is given in trace (b).  Structures 

of feasible low-energy isomers and calculated harmonic spectra at the B3LYP/aug-cc-pVTZ level of theory are 

given in (c) and (d). The asterisk marks a transition that was not predicted in the harmonic level calculations. 
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As shown in Figure 42, the probe laser remained fixed on the lowest energy transition for 

solvation shell OH stretching (3494 cm-1), while the pump (hole burning) laser was tuned between 

3450 and 3775 cm-1.  As indicated by the asterisk, the peak that was not anticipated at the harmonic 

level of theory is evident in the double resonance spectrum [Figure 42 (a)], suggesting that it 

belongs to the same isomer. Higher in energy, free OH stretching is also visible; however, it 

appears that the lowest energy member of the doublet has disappeared in the hole-burning 

spectrum.  It is possible that a second isomer is present that does not contain water molecules in 

the second solvation shell, which gives rise to the lower energy member of the doublet.  It is also 

possible that the splitting results from isomers that differ in the placement of the Ar tag (i.e., bound 

to one of the free OH groups vs. elsewhere). For example, similar isomer splittings in free OH 

stretches were attributed to a tag effect in 1,8-disubstituted naphthalene derivatives.  
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B.2 Supplementary Information for “Structural and Electronic Properties of Ultrathin 

Picene Films on the Ag(100) Surface” 

 

 

Figure 41: STM image of picene epilayer at an intermediate coverage between phase 1 (indicated by 1) and 

phase 2 (indicated by 2). Phase 2 clearly grows as islands. 
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Figure 42: Adsorption configuration of a picene bilayer composed of twelve molecules distributed over two 

rows (each containing two layers) on Ag(100). Initially, all molecules were lying flat parallel to the surface and 

they become tilted upon optimization. Calculations were performed using the 7 x 5 supercell. 
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