

Title Page

Hybrid Modeling of Dynamic Networks: Towards Standardized Representation and
Automated Model Design

by

Khaled Sayed Ahmed Sayed

B. S. in Systems and Biomedical Engineering, Cairo University, Egypt, 2012

M. Sc. in Systems and Biomedical Engineering, Cairo University, Egypt, 2015

Submitted to the Graduate Faculty of the

Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2019

 ii

COMMITTEE PAGE
UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Khaled Sayed Ahmed Sayed

It was defended on

November 13, 2019

and approved by

Zhi-Hong Mao, Ph.D, Professor, Department of Electrical and Computer Engineering

Amro El-Jaroudi, Ph.D, Associate Professor, Department of Electrical and Computer
Engineering

Samuel J. Dickerson, Ph.D, Assistant Professor, Department of Electrical and Computer

Engineering

James R. Faeder, Ph.D, Associate Professor, Department of Computational and Systems Biology

Cheryl A. Telmer, Ph.D, Research Biologist, Department of Biological Sciences, Carnegie
Mellon University

Dissertation Director: Natasa Miskov-Zivanov, Ph.D, Assistant Professor, Department of

Electrical and Computer Engineering

 iii

Copyright © by Khaled Sayed Ahmed Sayed

2019

 iv

Abstract

Hybrid Modeling of Dynamic Networks: Towards Standardized Representation and
Automated Model Design

Khaled Sayed Ahmed Sayed, Ph.D.

University of Pittsburgh, 2019

Computational modeling has become an efficient tool for studying complex systems such

as biological, environmental, and economic systems. For instance, computational models of intra-

and inter-cellular networks can provide important insights into biological systems and guide

scientists toward the missing information, and thus, speed up biological discoveries and reduce the

cost and time of conducting unnecessary or impractical biochemical experiments. Creating

accurate models requires the knowledge not only about the key components of the system and their

causal or mechanistic relationships, but also about relative timing of events, as well as the various

timescales of relevant processes. In biology, different timescales of processes can be captured with

reaction rate constants and modeled with differential equations, however, these quantitative

constants are often unknown or difficult to measure, especially for large models. Therefore,

abstraction methods such as logical and discrete modeling have been developed to overcome the

limitations of uncertain information. Although several methods to incorporate timing into discrete

models have been proposed, a methodology for modeling common biological motifs at varying

timescales and at different regulatory conditions is necessary. In this work, we introduce a

methodology to standardize modeling of common motifs occurring in many domains, with a

special focus on accurately incorporating timing information into dynamic network models.

Additionally, we propose several deterministic and stochastic simulation approaches that can be

used to analyze these models. Overall, the goal of this work is to facilitate automated design of

 v

hybrid models of dynamic networks. Finally, we demonstrate our efforts using existing models of

intra- and inter-cellular signaling occurring in T cell differentiation and budding yeast cell cycle.

We also apply the developed methods on socio-economic systems such as food insecurity in South

Sudan in order to study the factors leading to humanitarian crises.

 vi

Table of Contents

Acknowledgement ... xvii

1.0 Introduction ... 1

1.1 Motivation ... 1

1.2 Scope .. 2

1.3 Contribution .. 6

1.4 Dissertation Statement ... 7

1.5 Dissertation Organization .. 7

2.0 Background ... 8

2.1 Logical Modeling .. 8

2.2 Timing in Logical Models .. 9

2.2.1 Buffer Insertion ... 10

2.2.2 “Dummy” Nodes ... 12

2.2.3 Boolean Delay Equations (BDEs) .. 13

2.2.4 Piecewise Linear Differential Equations (PWLDEs) 15

2.2.5 Overview of the Current Methods ... 17

3.0 DiSH Simulator ... 19

3.1 Simulation Schemes .. 19

3.1.1 Simultaneous (SMLN) Scheme .. 21

3.1.2 Random-order Sequential (RSQ) Scheme .. 23

3.1.3 Round-Based Random-order Sequential (RB-RSQ) Scheme 23

3.1.4 Step-Based Random-order Sequential (SB-RSQ) Scheme 24

 vii

3.1.5 Ranked-order Sequential (RKSQ) Scheme .. 26

3.2 Additional Functionalities .. 26

3.2.1 Grouped rules .. 26

3.2.2 Toggle Implementation ... 27

3.3 Discrete DiSH .. 28

4.0 Model Representation ... 33

4.1 Tabular Representation Format ... 33

4.2 Representation of Common Biological Motifs ... 37

4.2.1 Simple Interactions ... 38

4.2.2 Binding Interactions ... 40

4.2.3 Nested Interactions ... 41

4.2.3.1 Positive Regulation of Activation ... 41

4.2.3.2 Positive Regulation of Inhibition .. 42

4.2.3.3 Negative Regulation of Activation. ... 43

4.2.3.4 Negative Regulation of Inhibition. ... 43

4.2.4 Gene expression ... 44

4.2.5 Receptor activation ... 45

4.2.6 Translocation Motif .. 46

5.0 Time in Discrete Models ... 48

5.1 Time Modeling .. 49

5.1.1 General State Transitions ... 51

5.1.2 Conditioned State Transitions ... 53

5.1.2.1 Reset Delays .. 54

 viii

5.1.2.2 No-Reset Delays ... 55

5.1.3 Spontaneous and Balancing delays .. 55

5.2 Timing in Motifs ... 56

5.2.1 Receptor Activation .. 56

5.2.2 Translocation ... 57

5.2.3 Gene Expression .. 57

5.2.4 Phosphorylation, Dephosphorylation, and Ubiquitination 58

5.2.5 Complex Formation .. 58

5.3 Timing under Different Simulation Schemes ... 58

5.3.1 SMLN Scheme ... 59

5.3.2 RSQ Scheme .. 60

5.3.3 Random-delay SMLN update scheme ... 61

5.3.4 Overview of the Proposed Delay Methods .. 62

5.4 Inferring Timing Parameters from Data ... 64

5.4.1 Data preparation ... 65

5.4.2 Optimization-based Simulations .. 67

6.0 Applications ... 70

6.1 Naïve T cell differentiation .. 70

6.1.1 Model Description ... 71

6.1.2 Effect of simulation schemes .. 73

6.1.3 Effect of scoring functions .. 78

6.1.4 Effect of time modeling ... 90

6.2 Buddying yeast cell cycle .. 98

 ix

6.2.1 Model Description ... 99

6.2.2 Model Simulations ... 100

6.3 Food security in South Sudan .. 105

6.3.1 Model Description ... 105

6.3.2 Model Simulations ... 107

6.3.3 Effect of timing .. 111

7.0 Conclusion and Future Work .. 118

Bibliography .. 121

 x

List of Tables

Table 2-1 A comparison between the available time abstraction methods............................ 18

Table 4-1 Element type and ID database. ... 35

Table 4-2 The list of cellular locations and their IDs from the Gene Ontology (GO) database.

... 35

Table 4-3 A tabular representation for the toy example in Figure 4-1(a). 39

Table 4-4 A tabular representation for the toy example in Figure 4-1(b). 39

Table 4-5 A tabular representation for the nested interactions in Figure 4-3. 42

Table 4-6 A tabular representation for the gene expression motif in Figure 4-4. 45

Table 4-7 A tabular representation for the gene expression motif in Figure 4-5. 46

Table 4-8 A tabular representation for the gene expression motif in Figure 4-6. 47

Table 5-1 A truth table with delays for 𝒙𝒙𝒙𝒙 in the toy example of Figure 5-2. 54

Table 5-2 Highlights of the proposed methods in terms of the comparison in Table 2-1. ... 63

Table 6-1 Values of delay variables in Figure 6-7. ... 91

Table 6-2 Values of delay variables in Figure 6-7 before and after applying the optimization

algorithm in section 5.4... 97

Table 6-3 Conditions for activation of model elements with corresponding activation and

inhibition delays. ... 101

Table 6-4 Manual and optimized delay steps assigned to model elements. S represents

spontaneous delays, 𝜽𝜽𝜽𝜽 → 𝒍𝒍 represents the regulation delay for the transition from discrete

level k to l, and B represents the balancing behavior delays (balancing behabior is set to

decrease)... 113

 xi

Table 6-5 Manual and optimized delay steps for the reset of model elements. 114

 xii

List of Figures

Figure 2-1 A toy example of three interacting elements and the corresponding Boolean

update functions. ... 9

Figure 2-2 a) A toy example of four interacting components, b) the equivalent logic circuit.

... 10

Figure 2-3 The representation of the toy example in Figure 2-2 using the Buffer Insertion

method. (a) The toy example with the added delay nodes, (b) the equivalent logic circuit,

and (c) the timing diagram of 𝒙𝒙𝒙𝒙 using the simultaneous update scheme. 11

Figure 2-4 The representation of the toy example in Figure 2-2 using the dummy nodes

method. (a) The toy example with the added delay nodes, (b) the equivalent logic circuit,

and (c) the timing diagram of 𝒙𝒙𝒙𝒙 using the simultanoues update scheme. 13

Figure 2-5 The representation of the toy example in Figure 2-2 using the BDEs. (a) The toy

example with delays, (b) the equivalent logic circuit without a clock signal, and (c) the

timing diagram of 𝒙𝒙𝒙𝒙 over a continuous time period. ... 15

Figure 2-7 The timing diagram of 𝒙𝒙𝒙𝒙 in Figure 2-6(a) under random changes in the

regulators’ values. ... 17

Figure 2-6 The representation of the toy example in Figure 2-2 using the Piecewise linear

differential equations. (a) The modified toy example, (b) the equivalent logic circuit

without a clock signal, and (c) the changes of 𝑿𝑿𝑿𝑿 and 𝒙𝒙𝒙𝒙 when 𝒇𝒇𝒇𝒇 is updated. 17

Figure 3-1 a) A toy example: three nodes (A, B and C), and their update rules specified. b)

Simulation schemes. .. 20

 xiii

Figure 3-2 STG for the toy example in Figure 3-1(a), for (a) the SMLN scheme and (b) the

RSQ scheme. Labels on graph edges indicate which elements are selected for update. .. 22

Figure 3-3 STG for the toy example in Figure 3-1(a) using the RB-RSQ scheme. 24

Figure 3-4 Logic rules and STG in the (a) USB-RSQ and (b) NUSB-RSQ scheme. 25

Figure 3-5 An example of ranked rules... 26

Figure 3-6 (a) Grouped and Ranked rules, (b) Grouped rules with different rates, (c) two

small examples of STG when grouped rules are used. .. 27

Figure 4-1 A toy example for a small network that can be simulated by calculating (a) logical

scores or (b) arithmetic scores ... 39

Figure 4-2 Schematic representation of a situation common to many biological signaling

pathways where the regulation of complex formation, 𝒙𝒙𝒙𝒙 binding to 𝒙𝒙𝒙𝒙, is regulated by a

third protein, 𝒙𝒙𝒙𝒙, so that the 𝒙𝒙𝒙𝒙/𝒙𝒙𝒙𝒙 complex can activate 𝒙𝒙𝒙𝒙 and 𝒙𝒙𝒙𝒙. 40

Figure 4-3 Examples of nested interactions. a) Positive regulation of Activation interaction,

b) Positive regulation of Inhibition interaction, c) Negative regulation of Activation

interaction, d) Negative regulation of Inhibition interaction .. 42

Figure 4-4 Gene expression motif. ... 44

Figure 4-5 Receptor activation motif. ... 45

Figure 4-6 Translocation motif. ... 47

Figure 5-1 The representation of the toy example in Figure 2-2 using the proposed methods.

(a) The modified toy example showing the propagation and the regulations delays, (b) The

element update schematic using the logical scoring, and (c) the element update schematic

using the arithmetic scoring. .. 51

Figure 5-2 A toy example of three interacting components. ... 54

 xiv

Figure 5-3 Timing diagram for the toy example in Figure 5-1(a) using the SMLN simulation

scheme. ... 60

Figure 5-4 Timing diagram for the toy example in Figure 5-1(a) using the RSQ simulation

scheme .. 61

Figure 6-1 Trajectories for Foxp3 using different simulation schemes: a) SMLN, b) RB-RSQ,

c) USB-RSQ, d) NUSB-RSQ, e) RKSQ, f) Toggling feature with USB-RSQ, and g) A list

of simulation scenarios. .. 77

Figure 6-2 Steady state values of Foxp3 and IL-2 using a) logical scoring, b) arithmetic

scoring, and c) the difference between the values using the logical scoring minus the

arithmetic scoring. .. 80

Figure 6-3 Steady state values of Foxp3 using a) the logical scoring, b) the arithmetic scoring

with PTEN initialized at 100% and with different number of levels, N, and TCR values.

The green (blue) highlighted range represents the percentage of Foxp3+ cells with low

(high) antigen dose in the experimental results (Miskov-Zivanov, Turner, Kane, Morel, &

Faeder, 2013a). .. 81

Figure 6-4 Trajectories of Foxp3, IL-2, mTOR, and PTEN using a) the logical scoring, b) the

arithmetic scoring with N = 6, different initial levels of TCR, and PTEN is initialized at

100%... 83

Figure 6-5 a) A network diagram of the upstream elements of Foxp3 as well as the simulation

trajectories of b) PTEN, c) mTOR, d) Foxp3, e) SMAD3, f) NFAT, and g) STAT5 from the

original model, using logical and arithmetic scoring with N = 3, PTEN initialized at

different levels, and TCR is set to 50% (low dose). ... 85

 xv

Figure 6-6 Percentage of attractors with antigen dose removal at time steps T1:T5 as a) in

the original model, b) using the logical scoring, c) using the arithmetic scoring, d)

attractors frequencies when the antigen dose is removed at T3. .. 87

Figure 6-7 A subnetwork of the extended naive T cell differentiation model before (left) and

after (right) assigning propagation and regulation delays. ... 90

Figure 6-8 Foxp3 trajectories under the simulation scenarios shown in Figure 6-1(g) usnig

the Random-Delay SMLN update scheme for the extended model. 92

Figure 6-9 A comparison between Foxp3 trajectories obtained by different models with the

experimental results under low Ag dose. .. 93

Figure 6-10 A comparison between the simulation time of running the extended model using

the Buffer Insertion (BI) method and the Propagation Delay method (PD) when a different

amount of delay steps (x-axis) are added to different percentages of model elements and

interactions. ... 95

Figure 6-11 Change in naïve T cell model size in terms of a) number of variables b) number

of interactions at different amounts of delay steps that are added to different percentages

of model elements and interactions. .. 95

Figure 6-12 Foxp3 trajectories when the extended model is simulated with the manually

defined delays and the delays found by the optimization algorithm compared to the

experimental data.. 97

Figure 6-13 A network diagram of the buddying yeast cell cycle model in (Irons, 2009). ... 99

Figure 6-14 Cyclic attractors of the budding yeast cell cycel model. a) Attractors obtained

with the No-Reset delay method, b) attractors obtained with the Reset delays method. Each

 xvi

row represents an attractor state where white/black boxes represent an active/inactive

state of each model element. ... 102

Figure 6-15 A comparison between the simulation time of the budding yeast cell cycle model

using the Dummy Nodes (DN) method and the Regulation Delay method (RD) when a

different amount of delay steps (x-axis) are added to different percentages of model

elements. ... 103

Figure 6-16 Change in the budding yeast model size in terms of a) number of variables b)

number of interactions at different amounts of delay steps that are added to different

percentages of model elements and interactions. ... 104

Figure 6-17 Network diagram of the food security in South Sudan model. Nodes with many

interactions are highlighted with different colors for better visualization. 107

Figure 6-18 Simulation trajectories of the four scenarios (left column) and historical data

(right column) for a) crop yield, b) conflict, c) inflation, and d) diseases. 109

Figure 6-19 Simulation trajectories for a) food security and b) refugees population. 111

Figure 6-20 Average simulation trajectories of a) crop yield, b) conflict, c) inflation, and d)

diseases with manual and optimized delays. Harvest season is highlighted with blue boxes

in the crop yield plot. .. 115

Figure 6-21 average simulation trajectories of a) crop yield, b) conflict, c) food security, d)

inflation, e) diseases, and f) inflation using the Random-Delay SMLN scheme with the

optimized delays under the four simulation scenarios described in section 6.3.2. 117

 xvii

Acknowledgement

I would like to express my sincere thanks and gratefulness to my advisor, Prof. Natasa

Miskov-Zivanov for her endless support and continuous guidance. I wouldn’t have been the person

who I’m today without her invaluable advice and help. I really enjoyed being her student and had

a great time working with her.

I’d also like to extend my gratitude to Dr. Cheryl Telmer who has been helping me since

my first day at Pitt. I wouldn’t have reached this far without her support and guidance. I want also

to thank all my lab members for their valuable feedback on my work throughout my PhD which

allowed me to write a better dissertation.

I would like to express my deepest appreciation and sincere thanks to my committee

members, Prof. James Faeder, Prof. Zhi-Hong Mao, and Prof. Samuel Dickerson, for their great

feedback and valuable comments. Also, I’m really thankful and grateful to Prof. Amro El-Jaroudi and

Prof. Mahmoud El-Nokali for their support and encouragement and for the valuable discussions

throughout my journey at Pitt.

I would like also to express my gratitude to all my family and friends who have always

been there for me. I’d like to thank Aya Fawzy for having faith in me and for supporting me during

my difficult times. I’d also like to thank Khalid Gomaa, Hossam El-Dien, Ali Abdullah, Yassin

Khalifa, Amr Mahmoud, Mohamed Bayoumy, Rashad Eletreby, Yasmine Ahmed, Mona

Ramadan, Adam Butchy, Busra Susam, and Faezeh Movahedi for their support and

encouragement.

To my beloved mother, brothers, sisters and to the memory of my father

 1

1.0 Introduction

1.1 Motivation

Studying complex systems is enhanced by building computational models that improve our

understanding of the system and guide researchers to conduct more focused experiments or to

collect more relative data. Building accurate models of complex systems requires not only

knowledge about the key elements in the system and their regulatory sets, but also the relative

timing of events as well as the different timescales of the different processes. For example,

timescales of intra- and inter-cellular events in biological systems range from fractions of seconds

to hours or even days. For instance, protein-protein interactions, signaling events such as

phosphorylation reactions, and the physical movements of signaling molecules can take

milliseconds while DNA replication and mRNA degradation can last for hours.

Recent efforts to automate the extraction of information about complex systems events,

followed by fast assembly of reliable and useful models, have shown that the available information

is often incomplete, or specific interaction mechanisms are unknown. While timing information

can be captured within reaction rate constants, and used in differential equations when modeling

biochemical networks, often these constants are unknown and difficult to measure. Therefore, to

overcome the problems of missing or uncertain information, researchers have applied more

abstract or coarse-grained approaches, such as logical and discrete modeling. These modeling

approaches include time representations varying from discrete to continuous, and utilize analysis

methods such as formal methods, and deterministic or stochastic simulations. To consider different

timescales of events, varying nature of component interactions (also called motifs), and the

 2

stochasticity in event occurrence time, a comprehensive representation and analysis framework is

necessary. Such a framework will allow for capturing key, or available, system attributes in a

standardized manner and allow for rapid automated model design and exploration.

1.2 Scope

Creating hypotheses through studying and analyzing available biological data has become

the focus of the computational and systems biology realm, where mathematical and engineering

principles are utilized to model and analyze biological interactions. Modeling biological systems

can help biologists predict future states of the system under different perturbations, thus leading to

insightful hypotheses, as well as guiding experimental designs (Epstein, 2008; Singh & Dhar,

2015). In the last few decades, scientists have introduced several modeling methodologies to reveal

the underlying rules that control a biological system at different scales according to the available

data. For instance, biochemical reactions can be modeled by a set of ordinary differential equations

(ODEs) that can be used to describe the rate of production or consumption of metabolites when

the kinetic parameters are available (Materi & Wishart, 2007; Schmidt & Jirstrand, 2005).

Additionally, considering the cell as a system of mixed molecules allows for modeling the

interactions between these different molecules using reaction rule-based modeling which is based

on Gillespie’s algorithm (Gillespie et al., 1998). In reaction rule-based modeling, a set of human-

readable rules is written to describe reactive motifs in a particular model, such as phosphorylation

and binding events, instead of listing all possible molecules and their corresponding reactions

(Harris et al., 2016). Existing tools can quickly translate these rules into ODEs, which can be

solved and simulated to create dynamic trajectories showing model element changes over time.

 3

Although reaction rule-based modeling introduces a simple way for creating biological

models, it still requires quantitative data, such as reaction rate constants and other kinetic

parameters in order to correctly simulate the model (Blinov, Faeder, Goldstein, & Hlavacek, 2004).

For large systems, it is usually difficult to find all kinetic parameters for all reactive motifs, and

hence, qualitative modeling approaches such as logical modeling are introduced in order to model

biological events using a more abstract yet powerful approach (Kauffman, 1969; Thomas, 1973).

In logical models, each model element is represented by a Boolean variable which can take one of

two values: 1 or 0, representing on/off states or high/low concentrations or activity levels,

respectively. Additionally, a logic update rule which is formed usually using primitive logic

operators such as AND, OR, and NOT is assigned to each variable to specify the relationship

between the model element and its regulators. The variables and their update rules constitute an

executable model that can be simulated (Wang, Saadatpour, & Albert, 2012).

Despite its apparent simplicity, logical modeling can encompass positive and negative

feed-forward and feedback loops, which makes it an efficient tool for capturing complex dynamics

of intra- and inter-cellular networks such as oscillatory behaviors and multi-stability (R. Albert &

Robeva, 2015). Additionally, in the absence of quantitative parameters, the information to

construct logical models can be automatically extracted from qualitative textual descriptions

utilizing natural language processing (NLP) methods (Sayed, Bocan, & Miskov-Zivanov, 2018;

Sayed, Telmer, Butchy, & Miskov-Zivanov, 2017). However, restricting model elements to have

only two values (i.e., 0 or 1) limits modelers from studying cases where multiple drug doses or

multiple protein activity levels are needed to better represent the biological system (Miskov-

Zivanov, Turner, Kane, Morel, & Faeder, 2013a). Therefore, techniques have been developed to

model multiple activity levels, while preserving the advantages of abstraction in qualitative models

 4

(Aldridge, Saez-Rodriguez, Muhlich, Sorger, & Lauffenburger, 2009; Gan & Albert, 2018;

Miskov-Zivanov, Marculescu, & Faeder, 2013; Morris, Saez-Rodriguez, Clarke, Sorger, &

Lauffenburger, 2011; Schaub, Henzinger, & Fisher, 2007). In (Aldridge et al., 2009) and (Morris

et al., 2011), authors introduced fuzzy logic and constrained fuzzy logic as methods for mapping

quantitative biological data into multi-valued variables that can be used to build a logical network.

However, the lack of quantitative data in some cases limits the application of their methods to

model large systems. Miskov-Zivanov et al. (Miskov-Zivanov, Marculescu, et al., 2013) and Gen

et. al. (Gan & Albert, 2018) modeled multi-valued elements by creating multiple Boolean variables

corresponding to the discrete value that each element can take. Following this approach, Sayed et.

al. (Khaled Sayed, Yu-Hsin Kuo, Anuva Kulkarni, & Natasa Miskov-Zivanov, 2017a) introduced

DiSH-simulator (Discrete, Stochastic, Heterogeneous model simulator), which implements

discrete multi-valued elements as multiple Boolean variables.

Although the aforementioned methods allow representation of multiple qualitative levels

for each variable, they increase the size and complexity of models due to the creation of multiple

Boolean variables to represent each element. Representing discrete values using multiple Boolean

variables requires defining logic rules in terms of the individual Boolean variables, which increases

the size and complexity of the executable model, and increases the difficulty of constructing and

interpreting the logic rules. For example, if an element has n regulators and each one of them is

modeled by m discrete values, then one must create a truth table of size 𝑚𝑚𝑛𝑛+1 in order to represent

the output for each Boolean variable (Miskov-Zivanov, Marculescu, et al., 2013). Although logic

minimization techniques such as Quine-McCluskey algorithm (McCluskey, 1956; Quine, 1955)

can be used to reduce update rules, the complexity of creating an executable model still increases

with more discrete levels and the number of element regulators. To reduce the model complexity,

 5

Schaub et. al. (Schaub et al., 2007) suggested using discrete variables and applying mathematical

operations instead of constructing logic rules as functions of Boolean variables. In the

methodology introduced by (Schaub et al., 2007), the next value of the regulated element is

determined by comparing the score of positive regulators to the score of negative regulators. The

positive and negative scores are calculated by adding up the activity level of each regulator after

multiplying it by a weight of 1 (in case of activation) or -1 (in case of inhibition). Consequently,

the value of the regulated element goes up by one discrete level if the positive score is greater than

the negative score, and vice versa. The regulator’s value stays at its current state if the positive and

negative scores are equal. Although this method reduces the model complexity by avoiding the

step of creating several Boolean variables, it does not provide a way for modeling logical

operations such as AND and OR which might be needed to model different biological motifs such

as receptor activation (Sayed, Telmer, & Miskov-Zivanov, 2016) and complex formation in

addition to using only two values for weights (i.e. 1 or -1).

The weights used by Schaub et. al. (Schaub et al., 2007) were introduced to differentiate

between the activators and inhibitors of the regulated element. However, intra- and inter-cellular

networks and biological systems in general are complex and some regulators might have a different

impact on the regulated element (Miskov-Zivanov, Turner, Kane, Morel, & Faeder, 2013a).

Therefore, assigning different weights to different interactions might be useful in capturing

accurate dynamics. Therefore, we expand the capabilities of DiSH-simulator to include three main

functionalities: (1) defining logic rules in terms of discrete variables, (2) enabling the assignment

of weights on different biological interactions in the discrete logic rules, and (3) modeling different

timescales of complex interactions. The added functionalities to DiSH-simulator provide a way

for creating hybrid models utilizing different update functions and allow for automating model

 6

design and analysis especially for large and complex systems that require abstract representations

in order to avoid the problem of missing and uncertain information. We also apply the developed

tools in this dissertation into other domains such as socio-economic systems to evaluate their

effectiveness in building accurate models of complex systems.

1.3 Contribution

The goal of this research is to develop methods for building and simulating accurate models

of dynamic networks through developing standardized representations for common network

motifs, as well as incorporating timing information into discrete models of complex systems. The

following points summarize the main contributions of this work:

• Development and implementation of a simulation framework that supports models at

several different abstraction levels, incorporates timing information where available, and

relies on a standardized notation for representing network motifs.

• Development and implementation of formal methods for incorporating timing information

in discrete models, to capture varying timescales of different events.

• Development of an optimization heuristic to match the in-silico simulation timescales with

the timescales of the available data.

• Application and evaluation of the developed methods using several existing computational

models and experimental results.

 7

1.4 Dissertation Statement

Standardized representation is essential for automating modeling process, while

incorporating timing information within this representation allows for designing accurate and

reliable models; the work on developing methods and tools that rely on such representation, and

additionally, account for missing or uncertain information in the modeled system, will significantly

speed up the modeling of complex and complicated systems and advance our understanding and

explanation of these systems.

1.5 Dissertation Organization

The dissertation includes 7 chapters. Chapter 2 provides background on logical modeling

and a review of the current literature on different time representations in discrete models. Chapter

3 introduces our DiSH simulator with a description of the different simulation schemes as well as

our methods for simulating models with discrete variables. Chapter 4 presents our model

representation format which shows how different network motifs are represented and simulated.

Chapter 5 introduces the developed methods for incorporating timing information into discrete

models of intra- and inter-cellular networks and discusses how the proposed methods can be

applied on various biological motifs and how the simulation trajectories are affected by the utilized

simulation scheme. In chapter 6, we show and discuss the results obtained when the introduced

methods are applied to three complex systems models which are naïve T cell differentiation,

buddying yeast cell cycle, and food security in South Sudan. Chapter 7 concludes the dissertation

and lists the future work.

 8

2.0 Background

2.1 Logical Modeling

Complex networks can be represented by a directed graph of interacting components

𝐺𝐺(𝑉𝑉,𝐸𝐸) where 𝑣𝑣𝑖𝑖 ∈ 𝑉𝑉 represents a node, while 𝑒𝑒𝑖𝑖𝑖𝑖 ∈ 𝐸𝐸 represents an edge from node 𝑣𝑣𝑖𝑖 to node

𝑣𝑣𝑗𝑗 (Wang, Saadatpour, & Albert, 2012). In biology, nodes in graph 𝐺𝐺 represent elements in the

biological network such as proteins, genes, mRNA, and/or cellular processes while edges represent

regulatory interactions (e.g., activation or inhibition) among elements. A logical model 𝐵𝐵(𝑋𝑋,𝐹𝐹) is

defined by a set of Boolean variables 𝑋𝑋 and their corresponding update functions 𝐹𝐹. Each variable

𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋 represents a model element and can take one of two values, 0 for inactive and 1 for active

(i.e. 𝑥𝑥𝑖𝑖 ∈ {0,1}). Additionally, an update function 𝑓𝑓𝑖𝑖 ∈ 𝐹𝐹 is assigned to each model variable to

determine its next-state value based on the current-state values of the element’s regulators 𝑥𝑥𝑗𝑗=1,…,𝑘𝑘𝑖𝑖,

where 𝑘𝑘𝑖𝑖 is the total number of regulators of an element 𝑣𝑣𝑖𝑖 that is modeled by 𝑥𝑥𝑖𝑖. The initial values

of the set of variables X and their update functions F form an executable model that can be

simulated in order to study the evolution of the model elements over time. The update functions

are created using primitive logic operators such as AND, OR, and NOT, which specify the

regulation logic, and hence, 𝑓𝑓𝑖𝑖 can be evaluated into either 0 or 1 (i.e. 𝑓𝑓𝑖𝑖: {0,1}𝑘𝑘𝑖𝑖 → {0,1}). Figure

2-1 shows a toy example of three interacting elements and their regulatory sets where variables 𝑥𝑥2

and 𝑥𝑥3 have to be active in order to switch the value of variable 𝑥𝑥1 from 0 to 1. In contrast, either

𝑥𝑥1 or 𝑥𝑥3 can switch the value of 𝑥𝑥3 from 0 to 1 when it is active.

 9

Figure 2-1 A toy example of three interacting elements and the corresponding Boolean update functions.

Although complex systems contain many components, usually only a few of them are used

as markers of particular behaviors of the system under different scenarios. These elements are

referred to as elements of interest (EOI), and their values can determine the state of the system at

each simulation step 𝑡𝑡. The total number of states of a complex system is calculated as 2𝑝𝑝 where

𝑝𝑝 is the number of the EOI. Therefore, constructing and analyzing a Boolean model for a complex

system network require 6 steps; 1) listing all system components and their influence sets (i.e.

activators and inhibitors), 2) assigning a Boolean variable 𝑥𝑥𝑖𝑖 for each model element, 3) defining

an update function 𝑓𝑓𝑖𝑖 for each variable to determine its value at simulation step t+1, 4) specifying

different simulation scenarios and assigning initial values for all variables accordingly, 5)

identifying the EOI that will determine the state of the system at each simulation step, and 6)

running simulations to create trajectories for each model element showing how its value changes

over time.

2.2 Timing in Logical Models

Logical and discrete models are categorized into two main groups according to the way the

update functions are evaluated over time. The first category can be realized as clocked logic

circuits where the update functions are evaluated at discrete time steps either simultaneously

 10

(synchronous) or sequentially (asynchronous) (Kauffman, 1993; Thomas & d'Ari, 1990) while the

second category can be described as event-triggered models where an update function is evaluated

only if a change happens in the value of one of the element’s regulators and hence the updates do

not explicitly depend on time (unclocked logic circuits). The first category is referred to as discrete-

time logical models while the second category is considered as continuous-time logical models

(Dee & Ghil, 1984; Ghil & Mullhaupt, 1985).

In the following subsections, we use the small network in Figure 2.2(a) as an example of a

few network interactions and show how the current methods model the different timescales by

introducing delays as well as utilizing different simulation schemes. Also, Figure 2.2(b) shows an

equivalent logic circuit for the example in Figure 2.2(a) where 𝑥𝑥1 and 𝑥𝑥2 are activators of 𝑥𝑥4 while

𝑥𝑥3 is an inhibitor.

2.2.1 Buffer Insertion

Buffer insertion is an intuitive method for adding delays to an interaction. In the buffer

insertion method, modelers insert extra nodes between the regulator and the regulated element as

shown in Figure 2-3(a) (Miskov-Zivanov, Turner, Kane, Morel, & Faeder, 2013a). The equivalent

Figure 2-2 a) A toy example of four interacting components, b)

the equivalent logic circuit.

 11

logic circuit is shown in Figure 2-3(b) where a buffer is added between each input signal and the

next logic gate in addition to a clock signal that triggers the updates. Therefore, any change in the

regulators’ values will be delayed by the specified amount of delay steps. The update rule for the

regulated element 𝑥𝑥4 has to be written in terms of the delay variables such as

𝑥𝑥4 = (𝑑𝑑1 𝑂𝑂𝑂𝑂 𝑑𝑑2) 𝐴𝐴𝐴𝐴𝐴𝐴 (𝑁𝑁𝑁𝑁𝑁𝑁 𝑑𝑑3) (2-1)

Where 𝑑𝑑1 = 𝑥𝑥1, 𝑑𝑑2 = 𝑥𝑥2, and 𝑑𝑑3 = 𝑥𝑥3. Figure 2-3(c) shows a timing diagram for the example in

Figure 2-3(a) under arbitrary changes in the values of the regulators (i.e. 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) assuming that

𝑑𝑑1 = 1, 𝑑𝑑2 = 1, and 𝑑𝑑3 = 2 steps. The timing diagram in Figure 2-3(c) shows how 𝑥𝑥4 changes

over time under the simultaneous update scheme where all update rules are evaluated at the same

time. If the random sequential update scheme (only one update rule is evaluated at each simulation

Figure 2-3 The representation of the toy example in Figure 2-2 using the Buffer Insertion method.

(a) The toy example with the added delay nodes, (b) the equivalent logic circuit, and (c) the timing

diagram of 𝒙𝒙𝟒𝟒 using the simultaneous update scheme.

 12

step) is utilized, the actual number of delay steps may vary because the update rules of the delay

nodes might not be selected for evaluation at some simulation steps.

2.2.2 “Dummy” Nodes

The method of creating “dummy” nodes is first introduced by Iron (Irons, 2009), in order

to add delays to the updates of specific elements. In (Irons, 2009), the delays are added after

evaluating the update function instead of inserting delay nodes between each regulator and the

regulated element as in the buffer insertion method. Figure 2-4(a) shows how the dummy nodes

are inserted into the toy example of Figure 2-2 where 𝑓𝑓𝐴𝐴 is the activation, and 𝑓𝑓𝑑𝑑 is the degradation

functions. The degradation process is defined as the removal of the activation signal which is

different from the inhibition signal that is determined by 𝑥𝑥3. Figure 2-4(b) shows the equivalent

logic circuit assuming that the activation delay is 2 steps, the degradation delay is 3 steps, and with

no inhibition delays (i.e. the inhibition signal from 𝑥𝑥3). The timing diagram in Figure 2-4(c) shows

the time course of 𝑥𝑥4 using the simultaneous update scheme according to the logic update rules

given by Equations (2-2) through (2-7) that describe the relationships between the nodes in Figure

2-4(a).

𝑓𝑓𝐴𝐴 = 𝑥𝑥1 𝑶𝑶𝑶𝑶 𝑥𝑥2 (2-2)

𝑑𝑑1 = 𝑓𝑓𝐴𝐴
(2-3)

𝑑𝑑2 = 𝑑𝑑1
(2-4)

 13

𝑓𝑓𝑑𝑑1 = 𝑓𝑓𝐴𝐴 𝑨𝑨𝑨𝑨𝑫𝑫 𝑑𝑑1
(2-5)

𝑓𝑓𝑑𝑑2 = 𝑓𝑓𝑑𝑑1 𝑨𝑨𝑨𝑨𝑨𝑨 (𝑓𝑓𝐴𝐴𝑶𝑶𝑶𝑶 𝑑𝑑1𝑶𝑶𝑶𝑶 𝑑𝑑2)
(2-6)

𝑥𝑥4 = (𝑓𝑓𝑑𝑑1 𝑶𝑶𝑶𝑶 𝑓𝑓𝑑𝑑2) 𝑨𝑨𝑨𝑨𝑨𝑨 (NOT 𝑥𝑥3)
(2-7)

Figure 2-4 The representation of the toy example in Figure 2-2 using the dummy nodes method. (a) The toy

example with the added delay nodes, (b) the equivalent logic circuit, and (c) the timing diagram of 𝒙𝒙𝟒𝟒 using

the simultanoues update scheme.

2.2.3 Boolean Delay Equations (BDEs)

Boolean delay equations are used to build event-triggered models where the update

functions are only evaluated when a regulation signal is received by the regulated element and not

evaluated at specific simulation steps (Dee & Ghil, 1984; Ghil & Mullhaupt, 1985). Event-

 14

triggered models are continuous-time models where a delay 𝜏𝜏𝑖𝑖𝑖𝑖 ∈ ℝ is assigned to the interaction

between elements 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑗𝑗 defining the amount of time needed for a regulation signal from a

regulator, 𝑣𝑣𝑖𝑖, to reach a regulated element, 𝑣𝑣𝑗𝑗 (Sevim, Gong, & Socolar, 2010). The change in the

value of an upstream element (e.g. 𝑣𝑣𝑖𝑖) triggers the re-evaluation of the update functions of all

downstream elements (e.g. 𝑣𝑣𝑗𝑗) after the specified time delay (i.e. 𝜏𝜏𝑖𝑖𝑖𝑖) has elapsed. Formally, the

value of a model variable 𝑥𝑥𝑗𝑗 at time 𝑡𝑡 is determined by equation (2-8) as:

𝑥𝑥𝑗𝑗(𝑡𝑡) = 𝑓𝑓𝑗𝑗�𝑥𝑥1�𝑡𝑡 − 𝜏𝜏1𝑗𝑗�, … , 𝑥𝑥𝑘𝑘�𝑡𝑡 − 𝜏𝜏𝑘𝑘𝑘𝑘� �, 𝑗𝑗 = 1, 2, … , 𝑛𝑛 (2-8)

where n is the total number of elements in the model, k is the total number of regulators of element

𝑣𝑣𝑗𝑗 , and 𝑓𝑓𝑗𝑗 is the update function which is defined by modelers using logical operators.

Figure 2-5(a) shows the representation of the toy example in Figure 2-2 after assigning

delays to each interaction. It is also shown in Figure 2-5(b) that there is no need for a clock signal

to trigger evaluating an update function. Additionally, the timing diagram in Figure 2-5(c) shows

the evolution of the 𝑥𝑥4 according to the logic update rule that is defined as:

𝑥𝑥4(𝑡𝑡) = [𝑥𝑥1(𝑡𝑡 − 𝜏𝜏14) 𝑶𝑶𝑶𝑶 𝑥𝑥2(𝑡𝑡 − 𝜏𝜏24)] 𝑨𝑨𝑨𝑨𝑨𝑨 [𝑵𝑵𝑵𝑵𝑵𝑵 𝑥𝑥3(𝑡𝑡 − 𝜏𝜏34)] (2-9)

 15

2.2.4 Piecewise Linear Differential Equations (PWLDEs)

Piecewise linear differential equations are used to build continuous-time continuous-state

models where each element is represented by two variables; a continuous variable, 𝑋𝑋𝑖𝑖, and a

Boolean variable, 𝑥𝑥𝑖𝑖. The value of the continuous variable 𝑋𝑋𝑖𝑖 is determined by the differential

equation shown by Equation (2-10) as:

𝑑𝑑𝑋𝑋𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝜆𝜆𝑖𝑖 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖𝑘𝑘) − 𝛾𝛾𝑖𝑖𝑋𝑋𝑖𝑖 (2-10)

Figure 2-5 The representation of the toy example in Figure 2-2 using the BDEs. (a) The toy

example with delays, (b) the equivalent logic circuit without a clock signal, and (c) the timing

diagram of 𝒙𝒙𝟒𝟒 over a continuous time period.

 16

Where 𝑓𝑓𝑖𝑖: {0,1}𝑘𝑘 → {0,1} is a Boolean function of the regulators of 𝑥𝑥𝑖𝑖 and it is determined by the

modeler, 𝑘𝑘 is the total number of regulators, 𝑖𝑖 = 1,2, … , 𝑛𝑛 where 𝑛𝑛 is the total number of elements

in the model, 𝜆𝜆𝑖𝑖 is production constant, and 𝛾𝛾𝑖𝑖 is the degradation rate.

The analytical solution of Equation (2-10) is given as:

𝑋𝑋𝑖𝑖(𝑡𝑡) = 𝑋𝑋𝑖𝑖(𝑡𝑡0) 𝑒𝑒−𝛾𝛾𝑖𝑖(𝑡𝑡−𝑡𝑡0) +
𝜆𝜆𝑖𝑖
𝛾𝛾𝑖𝑖

 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖𝑘𝑘)(1− 𝑒𝑒−𝛾𝛾𝑖𝑖(𝑡𝑡−𝑡𝑡0)) (2-11)

Where 𝑡𝑡0 is the time when a change happens in the value of 𝑓𝑓𝑖𝑖. The Boolean states of each

continuous variable are calculated as:

𝑥𝑥𝑖𝑖 = �1 𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖 ≥ 0.5
0 𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖 < 0.5 (2-12)

with a production delay, 𝑇𝑇𝑖𝑖, 1/2 = ln (2𝜆𝜆𝑖𝑖
2𝜆𝜆𝑖𝑖−𝛾𝛾𝑖𝑖

) when 𝑥𝑥𝑖𝑖(𝑡𝑡0) = 0 and 𝑓𝑓𝑖𝑖 = 1 and a degradation

delay, 𝑇𝑇𝑖𝑖, 1/2 = 1
𝛾𝛾𝑖𝑖

ln (2) when 𝑥𝑥𝑖𝑖(𝑡𝑡0) = 1 and 𝑓𝑓𝑖𝑖 = 0. The models built using the piecewise linear

differential equations are event-triggered models and hence, any change in the regulators’ values

triggers the re-evaluation of the update function 𝑓𝑓𝑖𝑖. Figure 2-6(a) shows the representation of the

toy example in Figure 2-2 using piecewise linear differential equations while Figure 2-6(b) shows

the analogy of the toy example in terms of a logic circuit. Figure 2-6(c) shows the relationships

between the update function 𝑓𝑓4 as well as the continuous and discrete variables 𝑋𝑋4 and 𝑥𝑥4.

Additionally, Figure 2-7 shows the timing diagram of 𝑥𝑥4 with random changes in the regulators’

values according to the update function, 𝑓𝑓4 that is defined as:

𝑓𝑓4(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3) = (𝑥𝑥1 𝑶𝑶𝑶𝑶 𝑥𝑥2) 𝑨𝑨𝑨𝑨𝑨𝑨 (𝑵𝑵𝑵𝑵𝑵𝑵 𝑥𝑥3)
(2-13)

 17

Figure 2-7 The timing diagram of 𝒙𝒙𝟒𝟒 in Figure 2-6(a) under random changes in the regulators’ values.

Figure 2-6 The representation of the toy example in Figure 2-2 using the Piecewise linear differential

equations. (a) The modified toy example, (b) the equivalent logic circuit without a clock signal, and (c) the

changes of 𝑿𝑿𝟒𝟒 and 𝒙𝒙𝟒𝟒 when 𝒇𝒇𝟒𝟒 is updated.

 18

2.2.5 Overview of the Current Methods

Table 2-1 shows a comparison between the available methods for incorporating timing

information into logical models. The table shows that each method can add delays to either delay

the signal or to delay the regulation process but not both. Also, the added delays in all methods do

not depend on the values of the regulators or the regulated element and hence it is not possible to

assign different delays under various regulation conditions (i.e. different combinations of the

current values of the regulators and the regulated element)

Table 2-1 A comparison between the available time abstraction methods.

 Buffer Insertion Dummy Nodes BDEs PWLDEs

States, 𝑥𝑥 Discrete Discrete Discrete Discrete/Continuous

Time, 𝑡𝑡 Discrete Discrete Continuous Continuous

Update orders Simultaneous/

Sequential

Simultaneous/

Sequential

Event-triggered Event-triggered

Type of Delays Signal delays Regulation delays Signal delays Regulation delays

Conditions for

Delays

Delays do not depend on the value of the regulator or the regulated element.

 19

3.0 DiSH Simulator1

In this chapter, we present our simulator, DiSH (Discrete, Stochastic, Heterogeneous model

simulation), a stochastic simulator for discrete models with heterogeneous elements and

interactions. DiSH implements multiple simulation schemes, and allows for fast simulation of

discrete models. Compared to other existing simulators (I. Albert, Thakar, Li, Zhang, & Albert,

2008; Bock, Scharp, Talnikar, & Klipp, 2014; Danos, Feret, Fontana, Harmer, & Krivine, 2008;

Faeder, Blinov, & Hlavacek, 2009; Gonzalez, Naldi, Sanchez, Thieffry, & Chaouiya, 2006;

Helikar & Rogers, 2009; Müssel, Hopfensitz, & Kestler, 2010; Yu, Tung, Park, Lim, & Yoo, 2012;

Zheng et al., 2010), our contribution with DiSH is two-fold: (1) We developed a representation

that allows for multi-valued hierarchical models to be translated into logic circuit-like models and

used by our simulator; (2) We incorporated rates of biological processes by associating

probabilities with element update rules.

3.1 Simulation Schemes

In this section, we describe model execution schemes that our simulator supports (also

shown in Figure 3-1(b)). Two main categories of simulation schemes are supported by DiSH:

1 Based on Khaled Sayed, Yu-Hsin Kuo, Anuva Kulkarni, and Natasa Miskov-Zivanov. "DiSH simulator:

Capturing dynamics of cellular signaling with heterogeneous knowledge." In Proceedings of the 2017 Winter

Simulation Conference, p. 64. © [2017] IEEE Press.

 20

Simultaneous (SMLN), also sometimes referred to as synchronous, and Sequential (SQ), also

referred to as asynchronous scheme. As shown in Figure 3-1(b), in the SQ scheme, elements can

be updated using either Ranked-order (RKSQ) or Random-order (RSQ) scheme. In addition, the

selection of an element to be updated next in the RSQ scheme can be done in two ways: Round-

based (RB-RSQ) selection and Step-based (SB-RSQ) selection, as described in the subsequent

sections. The probability of selecting a rule to be updated in the SB-RSQ scheme can be Uniform

(USB-RSQ), that is, the same probability value is assigned to each logic rule, or Non-Uniform

(NUSB-RSQ), where the assigned probability is different for each rule.

Formally, the following holds for all the simulation schemes that we use. Let £ be the set

of all possible states of the system, then we can compute the size of £ as: |£| = 𝑁𝑁1 · 𝑁𝑁2 · … · 𝑁𝑁𝑛𝑛

where 𝑁𝑁𝑖𝑖 is the number of discrete levels assigned to element 𝑣𝑣𝑖𝑖 and n is the total number of

elements in the model. In general, the probability 𝑝𝑝(𝑺𝑺𝒕𝒕+𝟏𝟏 = 𝑺𝑺𝑚𝑚) that, at time step 𝑡𝑡 + 1, the state

S of the overall model is equal 𝑺𝑺𝑚𝑚, where m is an integer between 1 and |£|, can be computed as:

Figure 3-1 a) A toy example: three nodes (A, B and C), and their update rules specified. b) Simulation

schemes.

 21

𝑝𝑝(𝐒𝐒𝑡𝑡+1 = 𝐒𝐒𝑚𝑚) = �𝑝𝑝(𝐒𝐒𝑡𝑡+1 = 𝐒𝐒𝑘𝑘|𝐒𝐒𝑡𝑡 = 𝐒𝐒𝑙𝑙) ∙ 𝑝𝑝(𝐒𝐒𝑡𝑡 = 𝑺𝑺𝑙𝑙)
|£|

𝑙𝑙=1

 (3-1)

Furthermore, the probability that element 𝑣𝑣𝑖𝑖 will take value 𝑉𝑉𝑗𝑗 where 𝑗𝑗 = 0, . . ,𝑁𝑁𝑖𝑖 − 1 in

time step 𝑡𝑡 + 1 during simulation, 𝑝𝑝�𝐄𝐄𝑖𝑖𝑡𝑡+1 = V𝑗𝑗�, is then given by the following equation:

𝑝𝑝�𝐄𝐄𝑖𝑖𝑡𝑡+1 = V𝑗𝑗� = 𝑃𝑃𝑣𝑣𝑖𝑖 ∙ 𝑝𝑝�𝑓𝑓𝒗𝒗𝑖𝑖
𝑡𝑡 = V𝑗𝑗� + (1 − 𝑃𝑃𝑣𝑣𝑖𝑖) ∙ 𝑝𝑝�𝐄𝐄𝑖𝑖

𝑡𝑡 = V𝑗𝑗� (3-2)

where 𝑃𝑃𝑣𝑣𝑖𝑖 represents the probability that element 𝑣𝑣𝑖𝑖 is selected to be updated next, and 𝑓𝑓𝑣𝑣𝑖𝑖
𝑡𝑡 is the

update function for element 𝑣𝑣𝑖𝑖 at time step 𝑡𝑡 during simulation. Then, 𝑝𝑝�𝑓𝑓𝒗𝒗𝒊𝒊
𝑡𝑡 = V𝑗𝑗� can be computed

as:

𝑝𝑝�𝑓𝑓𝒗𝒗𝒊𝒊
𝑡𝑡 = V𝑗𝑗� = � 𝑝𝑝�𝑓𝑓𝒗𝒗𝒊𝒊

𝑡𝑡 = V𝑗𝑗|𝐒𝐒𝑡𝑡 = 𝐒𝐒𝑙𝑙� ∙ 𝑝𝑝(𝐒𝐒𝑡𝑡 = 𝐒𝐒𝑙𝑙)
|£|

𝑙𝑙=1
 (3-3)

Therefore, one can then compute the probability of state 𝑺𝑺𝒕𝒕+𝟏𝟏 being equal to state 𝑺𝑺𝑚𝑚 =

 (V𝑚𝑚,1, V𝑚𝑚,2, … , V𝑚𝑚,𝑛𝑛), where V𝑚𝑚,𝑖𝑖 is the value of element 𝑣𝑣𝑖𝑖 in state 𝑺𝑺𝑚𝑚 as:

𝑝𝑝(𝐒𝐒𝑡𝑡+1 = 𝐒𝐒𝑚𝑚) = � 𝑝𝑝�𝐄𝐄𝑖𝑖𝑡𝑡+1 = V𝑚𝑚,𝑖𝑖�
𝑛𝑛

𝑖𝑖=1
 (3-4)

3.1.1 Simultaneous (SMLN) Scheme

In the SMLN scheme, all elements are updated simultaneously, that is, current state values

of all variables are used to simultaneously compute next state values. SMLN scheme is therefore

 22

deterministic: for each state, there is only one possible next state. In SMLN, if an initial state of

the system is given, one can determine the steady state or steady cycle that the system will reach.

In other words, the probability 𝑃𝑃𝒗𝒗𝑖𝑖 in Equation (3-2) is equal 1 for all elements 𝑣𝑣𝑖𝑖, and in each

given time step 𝑡𝑡, the probabilities 𝑝𝑝(𝐒𝐒𝑡𝑡 = 𝐒𝐒𝑙𝑙) will be equal 0 for all but one value l=L, for which

it will be 𝑝𝑝(𝐒𝐒𝑡𝑡 = 𝐒𝐒L) = 1. A state transition graph (STG) resulting from the simulation of our toy

example from Figure 3-1(a), using the SMLN scheme, is depicted in Figure 3-2. Given elements

of the toy model, 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, and their corresponding values, 𝑉𝑉1,𝑉𝑉2,𝑉𝑉3, if the simulation starts at

time 𝑡𝑡 = 0 we denote this as state 𝑺𝑺𝟎𝟎 = (𝑉𝑉10,𝑉𝑉20,𝑉𝑉30). The probability of the following states

𝐒𝐒𝑡𝑡+1 = 𝐒𝐒𝑚𝑚 for time steps 𝑡𝑡 = 0, … ,𝑇𝑇 where 𝑇𝑇 is the total number of simulation steps, will in each

time step be equal 1 for one specific 𝑚𝑚 = 𝑀𝑀𝑡𝑡, and will be 0 for all other 𝑚𝑚 ≠ 𝑀𝑀𝑡𝑡. For example, in

our toy system, as shown in Figure 3-2(a), if the simulation starts from any state except states 000

and 010, we will always reach state 101, and the model will then oscillate between states 011 and

101. In addition, if the simulation starts at state 000 or 010, it keeps oscillating between these two

states and never moves to any other state.

Figure 3-2 STG for the toy example in Figure 3-1(a), for (a) the SMLN scheme and (b) the RSQ scheme.

Labels on graph edges indicate which elements are selected for update.

 23

3.1.2 Random-order Sequential (RSQ) Scheme

In the RSQ scheme, model variables are not updated simultaneously, instead they are

updated sequentially and in random order. In other words, once element 𝑣𝑣𝑖𝑖 is updated in time step

t by computing its new value according to its update function 𝑓𝑓𝒗𝒗i, this new value is used to

determine model element values in the following time steps until the same element 𝑣𝑣𝑖𝑖 is selected

for update again. This scheme allows for modeling cellular signaling and processes in a more

realistic way than in the SMLN scheme, as it accounts for the randomness that exists in the timing

of biological events. The STG of our toy example system, when simulated using the RSQ scheme,

is shown in Figure 3-2(b). As shown in the STG, a state can have multiple next states, and thus, a

given initial state can be followed by multiple different paths through STG and result in different

steady-states. This means that the probability 𝑃𝑃𝒗𝒗𝑖𝑖 in Equation 3-2 does not have to be equal 1 for a

given element 𝑣𝑣𝑖𝑖 at a given time step 𝑡𝑡, as it was the case in the SMLN scheme. Instead, this

probability will depend on the method used for selecting elements for update, as described in the

following subsection. Furthermore, in each given time step 𝑡𝑡, the probabilities 𝑝𝑝(𝐒𝐒t = 𝐒𝐒𝑙𝑙) can vary

between 0 and 1 for different values of l.

3.1.3 Round-Based Random-order Sequential (RB-RSQ) Scheme

The RB-RSQ simulation scheme has been previously described in (I. Albert et al., 2008;

S. Li, Assmann, & Albert, 2006) and used in (Miskov-Zivanov, Turner, Kane, Morel, & Faeder,

2013a). It is important to distinguish here between simulation step and simulation round. While

the simulation step accounts for updating value of a single element, and can also correspond to

time step in our earlier discussion, the simulation round represents a cycle within which all

 24

elements are updated exactly once according to their update functions. Formally, if a model has n

elements, 𝑣𝑣𝑖𝑖, 𝑖𝑖 = 1, . . ,𝑛𝑛, and their update functions are 𝑓𝑓𝒗𝒗𝑖𝑖, then each round consists of n steps,

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1, . . . , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛), and in each round a new random order is determined, in which

the values of these function are computed. Thus, in a given round R, the element update order is a

random permutation 𝑃𝑃𝑟𝑟 of the vector (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1, . . . , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛): 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑅𝑅 =

 (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅1 , . . . , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑛𝑛) = 𝑃𝑃𝑟𝑟(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1, . . . , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛) such that the step at which element 𝑣𝑣𝑖𝑖, is

updated is 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑖𝑖. Given that every element gets updated exactly once within a round, the

probability 𝑃𝑃𝒗𝒗𝑖𝑖 that an element 𝑣𝑣𝑖𝑖 is selected for update in a given time step 𝑡𝑡 depends on the

𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑅𝑅𝑖𝑖 within round when this update occurs: 𝑃𝑃𝐯𝐯𝑖𝑖 = 1 �𝑛𝑛 − �𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑖𝑖 − 1�� .� The two simulation

rounds when the RB-RSQ method is applied to our toy example starting at state 100 are shown in

Figure 3-3.

3.1.4 Step-Based Random-order Sequential (SB-RSQ) Scheme

In the SB-RSQ simulation scheme, one model element is chosen for update in each time

step. There are no round-based restrictions for element selection, and therefore, the same element

can be updated in consecutive steps. In addition, elements can be chosen for update all at the same

rate or at different rates. Thus, we define the following two sub-schemes.

Figure 3-3 STG for the toy example in Figure 3-1(a) using the RB-RSQ scheme.

 25

Uniform (USB-RSQ): In this simulation approach, all elements have the same update rate,

and for a model with n elements, in each step the probability for an element 𝑣𝑣𝑖𝑖 to get selected for

update is: 𝑃𝑃𝒗𝒗𝑖𝑖 = 1/𝑛𝑛

This approach is used when the time scales of changes in system elements are not well

known, and thus the default approach is to assume that the rates at which elements are updated are

equal.

Non-uniform (NUSB-RandSeq): In this simulation approach, each model element 𝑣𝑣𝑖𝑖 has

an assigned update rate, 𝑟𝑟𝒗𝒗𝑖𝑖. We assign update rates to elements based on prior knowledge, such

that the system evolves over time following the rate of change observed in experiments. For

example, since gene transcription and translation occur at a different time scale compared to

protein modifications, we assign higher rates to protein interactions and lower rates to gene

activation and protein synthesis. In this simulation approach, the probability of element being

selected next for update is a function of these update rates: 𝑃𝑃𝒗𝒗𝑖𝑖 =
𝑟𝑟𝒗𝒗𝑖𝑖

∑ 𝑟𝑟𝒗𝒗𝑖𝑖
𝑛𝑛
𝑖𝑖=1

 where the probability of

selecting an element 𝑣𝑣𝑖𝑖 to update its rule is proportional to the sum of all update rates in the model.

We illustrate both types of SB scheme, USB and NUSB, in Figure 3-4(a) and (b).

Figure 3-4 Logic rules and STG in the (a) USB-RSQ and (b) NUSB-RSQ scheme.

 26

3.1.5 Ranked-order Sequential (RKSQ) Scheme

Element update rules can also be assigned rank numbers. This feature is adopted from the

BooleanNet tool developed by (I. Albert et al., 2008). Those rules that have same rank are executed

using RB-RSQ scheme. Similarly, groups with different rank are executed according to their rank:

all rules in the group with rank 1 are executed first, then all the rules with rank 2 are executed, and

so on. As shown in Figure 3-5, 𝑥𝑥2 and 𝑥𝑥3 should be updated first in random order before we update

𝑥𝑥1 which has rank 2.

3.2 Additional Functionalities

3.2.1 Grouped rules

Often, we are interested in grouping some variables together such that they are updated

either simultaneously, or in the order in which they are listed in the model file. Examples of such

situations are (i) all Boolean variables representing the same model element 𝑣𝑣𝑖𝑖 are grouped and

updated simultaneously; (ii) if there are different model elements that need to be updated at the

same time, all their corresponding variables will be grouped and updated simultaneously; (iii) if it

Figure 3-5 An example of ranked rules.

 27

is required for a group of different model elements or for a group of model variables corresponding

to the same element to be updated in a specific order, but in random order with the other elements

or variables in the model, they are grouped and executed sequentially, in the order in which their

update rules are listed in the model file. The update rules of all variables that need to be updated

together are specified within curled braces ‘{}’ in the model file. In the SMLN scheme, this does

not change the execution of rules, since the grouped rules are executed at the same time with the

other rules. However, in the SQ scheme, the grouped rules are executed together when the group

is selected to be updated at a specific time step. Figures 3-6(a) and (b) show examples where nodes

𝑥𝑥1 and 𝑥𝑥3 are grouped and ranked (Figure 3-6(a)) or given different update rates (Figure 3-6(b)).

The difference in resulting simulated model behavior is illustrated with two state diagrams when

the first (initial) state is the same, as shown in Figure 3-5(c).

3.2.2 Toggle Implementation

It is possible to toggle the value of a variable (i.e., switch from 1 to 0 and from 0 to 1) at a

specific round or step by specifying this in the model file next to the variable initialization. This is

often a useful feature of simulations that allows us to closely mimic wet-lab experiments. For

Figure 3-6 (a) Grouped and Ranked rules, (b) Grouped rules with different rates, (c) two small examples

of STG when grouped rules are used.

 28

example, toggling the value of the T-cell receptor (TCR) signal in the T-cell model in (Miskov-

Zivanov, Turner, Kane, Morel, & Faeder, 2013a) allows for studying the impact of the duration of

a high signal on the system’s behavior. This functionality should be used with the RSQ simulation

schemes.

3.3 Discrete DiSH

In this section, we expand the capabilities of DiSH-simulator to include two main

functionalities: (1) defining rules in terms of multi-valued variables, and (2) enabling the

assignment of weights to different biological interactions.

Similar to the steps of creating and analyzing Boolean models, listed in Section 2.1, the

design of discrete models starts with listing all model elements, where each model element is

assigned (a) a discrete variable, (b) an update rule which is a function of the element’s activators

and inhibitors, (c) a number of allowable discrete levels, N. Next, discrete model simulation

requires (a) initial values for all model elements for a given simulation scenario, and (b) specifying

a simulation scheme. In this work, we extend the DiSH-simulator (Khaled Sayed, Yu-Hsin Kuo,

Anuva Kulkarni, & Natasa Miskov-Zivanov, 2017a) to include two approaches for evaluating the

update rules of multi-valued variables.

To update the values of model elements, we evaluate the differential strength of their

positive and negative regulators (i.e. activators and inhibitors). The strength of the activators and

inhibitors can be either calculated by simply using max, min, and N’s complement in place of

AND, OR, and NOT in logical models (Aldridge et al., 2009; Morris et al., 2011) , or by assigning

weights to activating and inhibiting interactions and using addition, subtraction, and multiplication

 29

operators. More formally, let 𝔽𝔽𝑁𝑁 = {0, 1, … , 𝑁𝑁 − 1} , where N is the maximum number of

discrete levels that are assigned to each model element, and 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} be a finite set of

the variables that are assigned to model elements. The value of a variable, 𝑥𝑥𝑖𝑖 , represents the

discrete level of the element’s concentration or activity at each simulation step 𝑡𝑡 such that 𝑥𝑥𝑖𝑖(𝑡𝑡) ∈

 𝔽𝔽𝑁𝑁. The next value of a variable, 𝑥𝑥𝑖𝑖(𝑡𝑡 + 1), is determined by the current value, 𝑥𝑥𝑖𝑖(𝑡𝑡), and the

differential strength of activators and inhibitors, 𝑆𝑆𝑖𝑖(𝑡𝑡), or:

𝑥𝑥𝑖𝑖(𝑡𝑡 + 1) = 𝑓𝑓(𝑥𝑥𝑖𝑖(𝑡𝑡), 𝑆𝑆𝑖𝑖(𝑡𝑡)) (3-5)

where 𝑆𝑆𝑖𝑖(𝑡𝑡) is calculated by subtracting the regulation score of the set of inhibitors, 𝑋𝑋𝐼𝐼𝑖𝑖, from the

regulation score of the set of activators, 𝑋𝑋𝐴𝐴𝑖𝑖, of element 𝑥𝑥𝑖𝑖 at simulation time step 𝑡𝑡 as:

𝑆𝑆𝑖𝑖(𝑡𝑡) = 𝑆𝑆𝐴𝐴𝑖𝑖(𝑡𝑡) − 𝑆𝑆𝐼𝐼𝑖𝑖(𝑡𝑡) (3-6)

𝑆𝑆𝐴𝐴𝑖𝑖(𝑡𝑡) is called activators score while 𝑆𝑆𝐼𝐼𝑖𝑖(𝑡𝑡) is called inhibitors score. The sets of activators and

inhibitors of model elements are assigned by the modeler such that:

𝑋𝑋𝐴𝐴𝑖𝑖 = {𝑥𝑥𝐴𝐴𝑖𝑖,1 ,𝑥𝑥𝐴𝐴𝑖𝑖,2 , … , 𝑥𝑥𝐴𝐴𝑖𝑖,𝑚𝑚} ⊂ 𝑋𝑋, and

𝑋𝑋𝐼𝐼𝑖𝑖 = {𝑥𝑥𝐼𝐼𝑖𝑖,1 , 𝑥𝑥𝐼𝐼𝑖𝑖,2 , … , 𝑥𝑥𝐼𝐼𝑖𝑖,𝑙𝑙} ⊂ 𝑋𝑋

where 𝑚𝑚 and 𝑙𝑙 are the number of activators and number of inhibitors for element 𝑥𝑥𝑖𝑖 respectively.

In order to calculate both 𝑆𝑆𝐴𝐴𝑖𝑖(𝑡𝑡) and 𝑆𝑆𝐼𝐼𝑖𝑖(𝑡𝑡), we apply a function 𝑔𝑔 ∈ {𝑔𝑔1,𝑔𝑔2} such that

𝑆𝑆𝐴𝐴𝑖𝑖(𝑡𝑡) = 𝑔𝑔(𝑥𝑥𝐴𝐴𝑖𝑖,1(𝑡𝑡), 𝑥𝑥𝐴𝐴𝑖𝑖,2(𝑡𝑡), … , 𝑥𝑥𝐴𝐴𝑖𝑖,𝑚𝑚(𝑡𝑡)) and 𝑆𝑆𝐼𝐼𝑖𝑖(𝑡𝑡) = 𝑔𝑔(𝑥𝑥𝐼𝐼𝑖𝑖,1(𝑡𝑡), 𝑥𝑥𝐼𝐼𝑖𝑖,2(𝑡𝑡), … , 𝑥𝑥𝐼𝐼𝑖𝑖,𝑙𝑙(𝑡𝑡)). Function

𝑔𝑔1applies a set of operators ⋄1∈ {𝑚𝑚𝑚𝑚𝑚𝑚, 𝑚𝑚𝑚𝑚𝑚𝑚, 𝑁𝑁′𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐} while function 𝑔𝑔2 applies the set

 30

of operators ⋄2∈ {+, −, ∗}. The score calculated by 𝑔𝑔1: 𝔽𝔽𝑁𝑁𝑘𝑘 → 𝔽𝔽𝑁𝑁, for 𝑘𝑘 ∈ {𝑚𝑚, 𝑙𝑙}, is called

logical score because ⋄1 contains operators that are equivalent to the logical operators AND, OR,

and NOT while the score calculated by 𝑔𝑔2: 𝔽𝔽𝑁𝑁𝑘𝑘 → ℝ is called arithmetic score because ⋄2 contains

only arithmetic operators. The order of applying an operator ⋄ ∈ {⋄1,⋄2} when calculating 𝑆𝑆𝐴𝐴𝑖𝑖(𝑡𝑡)

and 𝑆𝑆𝐼𝐼𝑖𝑖(𝑡𝑡) is determined by modelers when they list all the activators and inhibitors of an element

𝑥𝑥𝑖𝑖. Additionally, a weight, 𝑤𝑤𝑖𝑖𝑖𝑖, can be assigned to the interaction between 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗, and included

in calculations of arithmetic score when applying function 𝑔𝑔2 such that:

𝑆𝑆𝐴𝐴𝑖𝑖(𝑡𝑡) = 𝑔𝑔2(𝑤𝑤𝐴𝐴𝑖𝑖,1 ∗ 𝑥𝑥𝐴𝐴𝑖𝑖,1(𝑡𝑡),𝑤𝑤𝐴𝐴𝑖𝑖,2 ∗ 𝑥𝑥𝐴𝐴𝑖𝑖,2(𝑡𝑡), … ,𝑤𝑤𝐴𝐴𝑖𝑖,𝑚𝑚 ∗ 𝑥𝑥𝐴𝐴𝑖𝑖,𝑚𝑚(𝑡𝑡)) (3-7)

𝑆𝑆𝐼𝐼𝑖𝑖(𝑡𝑡) = 𝑔𝑔2(𝑤𝑤𝐼𝐼𝑖𝑖,1 ∗ 𝑥𝑥𝐼𝐼𝑖𝑖,1(𝑡𝑡),𝑤𝑤𝐼𝐼𝑖𝑖,2 ∗ 𝑥𝑥𝐼𝐼𝑖𝑖,2(𝑡𝑡), … ,𝑤𝑤𝐼𝐼𝑖𝑖,𝑙𝑙 ∗ 𝑥𝑥𝐼𝐼𝑖𝑖,𝑙𝑙(𝑡𝑡)) (3-8)

Since cellular components do not change their expression or activity level suddenly, and

instead they degrade or form steadily, we apply a staircase function f , as shown in Equation (3-

9), to increment/decrement an element’s value at simulation step t+1 depending on the calculated

regulation score 𝑆𝑆𝑖𝑖(𝑡𝑡).

𝑥𝑥𝑖𝑖(𝑡𝑡 + 1) = 𝑓𝑓(𝑥𝑥𝑖𝑖(𝑡𝑡), 𝑆𝑆𝑖𝑖(𝑡𝑡)) = �
𝑚𝑚𝑚𝑚 𝑛𝑛(𝑁𝑁 − 1, 𝑥𝑥𝑖𝑖(𝑡𝑡) + 𝛿𝛿) 𝑆𝑆𝑖𝑖(𝑡𝑡) > 0
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏/𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑆𝑆𝑖𝑖(𝑡𝑡) = 0
𝑚𝑚𝑚𝑚𝑚𝑚 (0, 𝑥𝑥𝑖𝑖(𝑡𝑡) − 𝛿𝛿) 𝑆𝑆𝑖𝑖(𝑡𝑡) < 0

 (3-9)

where 𝛿𝛿 is a discrete increment/decrement value that is determined by the modeler. In this work,

we assume 𝛿𝛿 = 1, that is, we increase/decrease the value of the regulated element by at most one

level. In general, a modeler can choose to use 𝛿𝛿 ≥ 1. For example, a threshold value can be given,

 31

ST, such that, when 𝑆𝑆𝑖𝑖(𝑡𝑡) > ST, and 𝑥𝑥𝑖𝑖(𝑡𝑡) < 𝑁𝑁 − 2, the next value, 𝑥𝑥𝑖𝑖(𝑡𝑡 + 1), can increase directly

to 𝑁𝑁 − 1.

When an element has both activators and inhibitors, its regulation score can be either

positive, zero, or negative. As shown in Equation (3-9), positive or negative scores indicate that

the element value will increase or decrease, respectively, by a value 𝛿𝛿. Additionally, a zero score

is also possible, and it can occur when there is a balance between positive and negative regulation.

In this work, we allow modelers to specify whether the value of the regulated element should

increase, decrease, or hold when the score is zero; and we call this a balancing behavior.

For elements with only activators (or only inhibitors), the regulation score can only be

positive (negative) or zero and consequently, the value of elements with only activators (inhibitors)

will only ever increase (decrease) or hold. In order to make the value of the elements with only

activators (or only inhibitors) decrease (increase) when the regulation score is zero, we allow

modelers to choose whether or not they apply a spontaneous behavior (i.e. spontaneous decrease

or spontaneous increase) for those elements.

When spontaneous decrease is applied for an element with only activators, the update

function f will take the form:

𝑥𝑥𝑖𝑖(𝑡𝑡 + 1) = 𝑓𝑓(𝑥𝑥𝑖𝑖(𝑡𝑡), 𝑆𝑆𝑖𝑖(𝑡𝑡)) = �
𝑚𝑚𝑚𝑚 𝑛𝑛(𝑁𝑁 − 1, 𝑥𝑥𝑖𝑖(𝑡𝑡) + 𝛿𝛿) 𝑆𝑆𝐴𝐴,𝑖𝑖(𝑡𝑡) > 0
𝑚𝑚𝑚𝑚𝑚𝑚 (0, 𝑥𝑥𝑖𝑖(𝑡𝑡) − 𝛿𝛿) 𝑆𝑆𝐴𝐴,𝑖𝑖(𝑡𝑡) = 0 (3-10)

Similarly, in case of applying spontaneous increase for elements with only inhibitors, the

function f will be defined as:

 32

𝑥𝑥𝑖𝑖(𝑡𝑡 + 1) = 𝑓𝑓(𝑥𝑥𝑖𝑖(𝑡𝑡), 𝑆𝑆𝑖𝑖(𝑡𝑡)) = �
𝑚𝑚𝑚𝑚 𝑥𝑥(0, 𝑥𝑥(𝑡𝑡) − 𝛿𝛿) 𝑆𝑆𝐼𝐼,𝑖𝑖(𝑡𝑡) < 0
𝑚𝑚𝑚𝑚𝑚𝑚 (𝑁𝑁 − 1, 𝑥𝑥𝑖𝑖(𝑡𝑡) + 𝛿𝛿) 𝑆𝑆𝐼𝐼,𝑖𝑖(𝑡𝑡) = 0 (3-11)

The application of spontaneous behavior is necessary for the value of the regulated element

to follow the calculated value of its regulatory set (in this case, either activators or inhibitors).

However, we still include the option to disable this behavior for cases where the modeler may wish

to represent a cumulative regulation effect. It is worth mentioning that the Discrete-DiSH simulator

can be used to simulate Boolean models by applying the spontaneous behavior to all elements that

have only positive or only negative regulators in addition to choosing the balancing behavior to be

‘decrease’ for the elements that have both activators and inhibitors and setting N = 2.

 33

4.0 Model Representation2

In this chapter, we introduce a representation format that can be used to construct and

represent discrete models of complex systems with focus on intra- and inter-cellular biological

networks. The introduced format enables biologists to build models more easily and to use all the

functionalities that included in DiSH-simulator. It is important to note that the tabular

representation does not include final update rules, that is, the tabular version of the model is further

translated into an executable model that can be simulated.

4.1 Tabular Representation Format

The model is created and stored in a spreadsheet table where each row in the model table

corresponds to one specific model element (i.e., modeled system component), while the columns

are organized in several groups: (i) information about the modeled system element, (ii) information

about the element’s regulators, and (iii) information about knowledge sources. This format enables

straightforward model extension to represent both additional system elements as new rows in the

table, and additional element-related features by including new columns in the table.

2 Based on Khaled Sayed, Cheryl A. Telmer, Adam A. Butchy, and Natasa Miskov-Zivanov. "Recipes for

translating big data machine reading to executable cellular signaling models." In International Workshop on Machine

Learning, Optimization, and Big Data, pp. 1-15. © [2017] Springer Nature.

 34

The first group of fields in our representation format includes element-related

information. This information is either used by the executable model, or kept as background

information to provide specific details about the element when creating a hypothesis or explaining

outcomes of wet-lab experiments. The first group of fields includes the following:

A- Name – full name of element, e.g., “Epidermal growth factor receptor”.

B- Nomenclature ID – name commonly used in the field for cellular components, e.g.,

“EGFR” is used for “Epidermal growth factor receptor”.

C- Type –types of biological components that are stored in different databases as in Table 4-1.

D- Unique ID – we use identifiers corresponding to elements that are listed in databases,

according to Table 4-1.

E- Location - we include subcellular locations and the extracellular space, as listed in Table

4-2.

F- Location ID – we use location identifiers as listed in Table 4-2.

G- Cell line – The cell line of the wet-lab experiment.

H- Cell type – The type of cells that are used in the experiment.

I- Tissue type – The name of the tissue that contains the cells.

J- Organism – The name of the organism where the cells are extracted.

K- Variable name – variable names, currently include above described fields B, C, E, and H.

 35

Table 4-1 Element type and ID database.

Element Type Database Name

Protein UniProt (UniProt)

Protein Family Pfam(Pfam), InterPro (InterPro)

Protein Complex Bioentities (Bioentities)

Chemical PubChem (PubChem)

Gene HGNC (HGNC)

Biological process GO (GO), MeSH (MeSH)

Table 4-2 The list of cellular locations and their IDs from the Gene Ontology (GO) database.

Location Name Location ID

Cytoplasm GO:0005737

Cytosol GO:0005829

Plasma Membrane GO:0005886

Nucleus GO:0005634

Mitochondria GO:0005739

Extracellular GO:0005576

Endoplasmic Reticulum GO:0005783

 36

The second group of fields in the representation format includes element regulators-

related information that is mainly used by executable models, with a few fields used for

bookkeeping, similar to the first group of fields.

L- Positive regulators – list of positive regulators of the element.

M- Negative regulators – list of negative regulators of the element.

N- Interaction type – for each listed regulator, in case it is known whether interaction is

direct or indirect.

O- Interaction mechanism – for each known direct interaction, if the mechanism of

interaction is known.

P- Spontaneous behavior – This column can include one of the three options {NA, Yes,

No} where “NA” means not applicable and it is used when the regulated element has both

“Activators” and “Inhibitors” while “Yes” or “No” are used to indicate whether the modeler

wants to apply the spontaneous regulation or not in case of having only “Activators” or only

“Inhibitors”.

Q- Balancing behavior - the “balancing behavior” column can include one of four

options: {NA, Decrease, Increase, Hold}. If an element has only “Activators” or only

“inhibitors”, the corresponding “balancing behavior” value will be “NA”; otherwise, the

modeler should indicate whether the regulated element should “Decrease”, “Increase” or

“Hold” its value when the regulation score, 𝑆𝑆𝑖𝑖(𝑡𝑡) is zero.

R- Maximum Discrete Level (N) –Allows modelers to assign a different number of

discrete levels for each element.

 37

S- Initial value – Contains the initial discrete value of the element. If the modeler wants

to randomly initialize and element, the word “random” can be placed instead of the discrete

value.

The third group of fields in our representation includes interaction-related provenance

information.

T- Reference paper IDs – for each interaction, we list IDs of published papers that

mention the interaction.

U- Sentences – for each interaction, we list sentences describing the interaction.

It is worth mentioning that this representation format can be converted into the SBML

format to be used by different software tools and shared between different working groups.

Additionally, the tabular format provides an interface that can be easily created or read by

biologists, and generated or parsed by a machine.

4.2 Representation of Common Biological Motifs3

Biological interactions vary in nature and can take multiple forms. In this section, we show

how to represent some of the different biological interactions into our representation format in

order to build a model in a standardized way. Here, we assume that biological processes such as

phosphorylation, acetylation, methylation, and transcription represent positive regulations, while

3 Based on Sayed, Khaled, Cheryl A. Telmer, and Natasa Miskov-Zivanov. "Motif modeling for cell signaling

networks." In 2016 8th Cairo International Biomedical Engineering Conference (CIBEC), pp. 114-117 ©[2016] IEEE.

 38

dephosphorylation, ubiquitination, demethylation, and gene degradation represent negative

regulations.

4.2.1 Simple Interactions

Simple interactions such as activation and inhibition are translated into the tabular format

by listing all the activators in the Positive regulators column and all the inhibitors in

the Negative regulators column. If an element has multiple activators or multiple

inhibitors, the modeler has to list them in specific notations in order to indicate which logic or

arithmetic operator should be used to evaluate the regulation score. To apply logical scoring, the

activators and inhibitors have to be separated by a comma or a comma inside parentheses to

indicate max (logical OR) or min (logical AND) operations respectively. Alternatively, to apply

the arithmetic scoring, the activators and inhibitors have to be listed using plus, minus, and

multiplication signs. Figure 4-1 shows a toy example of a small network, with and without weights,

that can be simulated by either calculating logical scores (Figure 4-1(a)) or arithmetic scores

(Figure 4-1(b)). The representation of the network in Figure 4-1(a) is shown in Table 4-3 while

the representation of the network in Figure 4-1(b) is described in Table 4-4.

 39

Table 4-3 A tabular representation for the toy example in Figure 4-1(a).

Variable name Positive regulators Negative regulators

𝑥𝑥2 𝑥𝑥4 𝑥𝑥1

𝑥𝑥4 𝑥𝑥3, 𝑥𝑥5 𝑥𝑥1

𝑥𝑥6 𝑥𝑥5

𝑥𝑥7 𝑥𝑥1, 𝑥𝑥2 (𝑥𝑥4, 𝑥𝑥6)

Table 4-4 A tabular representation for the toy example in Figure 4-1(b).

Variable name Positive regulators Negative regulators

𝑥𝑥2 0.5 ∗ 𝑥𝑥4 3 ∗ 𝑥𝑥1

𝑥𝑥4 1 ∗ 𝑥𝑥3 + 2.5 ∗ 𝑥𝑥5 2 ∗ 𝑥𝑥1

𝑥𝑥6 4 ∗ 𝑥𝑥5

𝑥𝑥7 3 ∗ 𝑥𝑥1 + 2 ∗ 𝑥𝑥2 5 ∗ (𝑥𝑥4 ∗ 𝑥𝑥6)

a) b)

Figure 4-1 A toy example for a small network that can be simulated

by calculating (a) logical scores or (b) arithmetic scores

 40

4.2.2 Binding Interactions

Binding interactions represent formation of protein complexes in most cases. However, in

order to include both individual proteins and complexes in which they participate within a single

model, we defined rules for representing complexes into our model representation format as

described by the example shown in Figure 4-2.

If an element is a complex that is formed by the binding of two other elements, we create

a separate table row for each component of the protein complex, and change the regulation set as

follows: If the formation of complex 𝑥𝑥2/𝑥𝑥3 is regulated by 𝑥𝑥1, then we create two rows; one for

element 𝑥𝑥2, which is also positively regulated by 𝑥𝑥7, and one for element 𝑥𝑥3. The positive

regulation rule for element 𝑥𝑥2 becomes (𝑥𝑥1 AND 𝑥𝑥3) OR 𝑥𝑥7, while the positive regulation rule for

element 𝑥𝑥3 becomes (𝑥𝑥1 AND 𝑥𝑥2). Additionally, if an element is regulated by a complex, we list

all components of that complex as positive regulators for the element. In the example in Figure 4-

2, the positive regulation rule for element 𝑥𝑥4 is (𝑥𝑥2 AND 𝑥𝑥3) because 𝑥𝑥4 is regulated by the

complex 𝑥𝑥2/𝑥𝑥3.

Figure 4-2 Schematic representation of a situation common to many biological signaling pathways where the

regulation of complex formation, 𝒙𝒙𝟐𝟐 binding to 𝒙𝒙𝟑𝟑, is regulated by a third protein, 𝒙𝒙𝟏𝟏, so that the 𝒙𝒙𝟐𝟐/𝒙𝒙𝟑𝟑

complex can activate 𝒙𝒙𝟒𝟒 and 𝒙𝒙𝟓𝟓.

 41

4.2.3 Nested Interactions

Some interactions are nested where an element can regulate another activation or inhibition

interaction. The following sub-sections show several examples of these interactions and how they

are translated into the model tabular format.

4.2.3.1 Positive Regulation of Activation

As shown in Figure 4-3(a), element 𝑥𝑥1 is activating element 𝑥𝑥2, while element 𝑥𝑥3 is

positively regulating the interaction between 𝑥𝑥1 and 𝑥𝑥2. We also include in this and the following

examples an element 𝑥𝑥4 and assume that 𝑥𝑥4 is a negative regulator of 𝑥𝑥2 to show how the nested

interactions can be combined with the simple interactions in our model format.

The example in Figure 4-3(a) shows that 𝑥𝑥3 will activate 𝑥𝑥2 only when 𝑥𝑥1 is active. If 𝑥𝑥1

is inactive, only 𝑥𝑥4 will inhibit 𝑥𝑥2, while 𝑥𝑥3 will not have any effect on 𝑥𝑥2. This can be represented

as shown in the first row of Table 4-5 where the notation “{𝑥𝑥1}[𝑥𝑥3]” is used to indicate that 𝑥𝑥3 is

a necessary activator of 𝑥𝑥2 but not sufficient since 𝑥𝑥1 has to be active in order to see the effect of

𝑥𝑥3. We call this notation as “necessary pair”. The activators score of element 𝑥𝑥2, 𝑆𝑆𝐴𝐴𝑥𝑥2(𝑡𝑡), is

calculated for the necessary pair “{𝑥𝑥1}[𝑥𝑥3]” as:

𝑆𝑆𝐴𝐴𝑥𝑥2(𝑡𝑡) = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥1, 𝑥𝑥3) 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑥𝑥1 > 0 (4-1)

If we assume that 𝑥𝑥1, 𝑥𝑥2, and 𝑥𝑥3 are multi-valued variables with three discrete levels (i.e.

0, 1, and 2), and in case of 𝑥𝑥1 = 1 and 𝑥𝑥3 = 2, then 𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥1, 𝑥𝑥3) will be 2 which means that 𝑥𝑥3

enhances the positive regulation of 𝑥𝑥2 by 𝑥𝑥1.

 42

Figure 4-3 Examples of nested interactions. a) Positive regulation of Activation interaction, b) Positive

regulation of Inhibition interaction, c) Negative regulation of Activation interaction, d) Negative regulation of

Inhibition interaction

Table 4-5 A tabular representation for the nested interactions in Figure 4-3.

4.2.3.2 Positive Regulation of Inhibition

Figure 4-3(b) shows an example of a nested interaction where 𝑥𝑥1inhibits 𝑥𝑥2, and 𝑥𝑥3

positively regulates this inhibition, which means that 𝑥𝑥3 will increase the inhibition of 𝑥𝑥2 by 𝑥𝑥1,

when 𝑥𝑥1 is active. This motif is translated into our tabular format as shown in the second row of

Table 4-5. The inhibition score for element 𝑥𝑥2 is calculated as:

Variable name Positive regulators Negative regulators

𝑥𝑥2 {𝑥𝑥1}[𝑥𝑥3] 𝑥𝑥4

𝑥𝑥2 {𝑥𝑥1}[𝑥𝑥3], 𝑥𝑥4

𝑥𝑥2 (𝑥𝑥1,! 𝑥𝑥3) 𝑥𝑥4

𝑥𝑥2 (𝑥𝑥1,! 𝑥𝑥3), 𝑥𝑥4

 43

𝑆𝑆𝐼𝐼𝑥𝑥2(𝑡𝑡) = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑥𝑥4,𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥1, 𝑥𝑥3) 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑥𝑥1 > 0) (4-2)

In case of 𝑥𝑥1 = 1 and 𝑥𝑥3 = 2, 𝑆𝑆𝐼𝐼𝑥𝑥2(𝑡𝑡) will equal 𝑚𝑚𝑚𝑚𝑚𝑚 (2, 𝑥𝑥4) which means that 𝑥𝑥3 enhances

the inhibition of 𝑥𝑥2 by 𝑥𝑥1. However, if 𝑥𝑥1 is zero, 𝑆𝑆𝐼𝐼𝑥𝑥2(𝑡𝑡) will equal 𝑥𝑥4 (the other inhibition signal).

4.2.3.3 Negative Regulation of Activation.

The example in Figure 4-3(c) shows that 𝑥𝑥3 negatively regulates the activation of 𝑥𝑥2 by 𝑥𝑥1.

So, if 𝑥𝑥1 is inactive/low, 𝑥𝑥3 will not have any effect on 𝑥𝑥2. The translation of this event is show in

the third row of Table 4-5 and the activation score is calculated as follows:

𝑆𝑆𝐴𝐴𝑥𝑥2(𝑡𝑡) = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑥𝑥1,𝑁𝑁𝑁𝑁𝑁𝑁 𝑥𝑥3) (4-3)

Where “!” is used to indicate logical NOT (or N’s complement).

4.2.3.4 Negative Regulation of Inhibition.

Figure 4-3(d) shows that 𝑥𝑥3 negatively regulates the inhibition of 𝑥𝑥2 by 𝑥𝑥1 which is

translated into the tabular format as shown in the fourth row of Table 4-5. The inhibition score is

calculated for this interaction as:

𝑆𝑆𝐼𝐼𝑥𝑥2(𝑡𝑡) = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑥𝑥4,𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥1,𝑁𝑁𝑁𝑁𝑁𝑁 𝑥𝑥3) 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑥𝑥1 > 0) (4-4)

Which means that the inhibition of 𝑥𝑥2 by 𝑥𝑥1 can happen only when 𝑥𝑥3 is inactive. It is worth

mentioning that Equations (4-1) through (4-4) utilize logical scoring. However, the arithmetic

scoring can also be applied by replacing min and max by multiplication and addition signs.

 44

4.2.4 Gene expression

Gene expression is a process of synthesizing proteins to reflect the information encoded by

their corresponding genes. To model gene transcription and translation, we define three model

elements and their corresponding variables: gene, mRNA, and protein. As shown in Figure 4-4,

the activation of gene X is controlled by regulators such as transcription factors (TFs) which work

as positive regulators and/or inhibitors (Inh). An mRNA, Xrna, is then activated and only regulated

by gene X. The activation of Xrna leads to synthesis of protein, Xprotein. It is worth mentioning

that the mRNA is used to synthesize proteins that are then translocated to various cellular

compartments (e.g. cytoplasm or plasma membrane).

The translation of the gene expression motif into the tabular format is shown in Table 4-6

where we create three rows for the three variables and list their regulators on the positive and

negative regulators columns.

Figure 4-4 Gene expression motif.

 45

Table 4-6 A tabular representation for the gene expression motif in Figure 4-4.

Variable name Positive regulators Negative regulators

Xgene TF Inh

Xrna Xgene

Xprotein Xrna

4.2.5 Receptor activation

To implement receptor activation in our models, we define three elements: receptor on the

cell membrane, ligand in extracellular space, and activated receptor on membrane. As shown in

Figure 4-5, receptor Y exists on the cell membrane but it is not active until it binds with the

extracellular ligand X. Only the activated version of Y can relay the signal to the cytoplasmic

molecules and activate protein Z. In addition, receptor Y and the extracellular ligand X may result

from expression of X and Y gene elements in the model. The translation of this motif is shown in

Table 4-7 where Y has to be initialized at high to indicate its existence.

Figure 4-5 Receptor activation motif.

 46

Table 4-7 A tabular representation for the gene expression motif in Figure 4-5.

Variable name Positive regulators Negative regulators

Y

Yact (Y,X)

4.2.6 Translocation Motif

Some cellular elements have to be translocated from their original cellular compartment to

other compartments to regulate elements there. To model this process, we define two elements in

our model: elements in its original compartment, and element in the new compartment. While the

element in original compartment can be regulated by other elements, the translocated element is

regulated by the original element and possibly by the translocation regulators. For example,

element Z may be regulated first by the active form of receptor Y before it translocate into the

nucleus as depicted in Figure 4-6. Also, element Z inside the nucleus (Znuc) is only regulated by

the cytoplasmic form of Z (Zcyto). Only Znuc and not Zcyto can regulate element X, which can

be translocated into the extracellular matrix (Xex) after activation. There might be some other

examples of translocations such as the translocation from the nucleus to the cytoplasm (element A

in Figure 4-6) and the direct diffusion of some molecules (e.g. steroid hormones) from the

extracellular matrix into the cytoplasm (element B). The representation of the translocation motif

in the tabular format is shown in Table 4-8 assuming that there are no inhibitors.

 47

Table 4-8 A tabular representation for the gene expression motif in Figure 4-6.

Variable name Positive regulators Negative regulators

Zcyto Yact

Znuc Zcyto

Xnuc Znuc

Xex Xnuc

Figure 4-6 Translocation motif.

 48

5.0 Time in Discrete Models

The time abstraction methods that are presented in Chapter 2 show that a more accurate

representation of timing of biological events can take one of two forms: (1) delaying the regulation

signals by either inserting extra nodes between the element and its regulators (e.g. the buffer

insertion and the “dummy” nodes methods) or by updating the regulated element’s value according

to delayed versions of its regulators (e.g. the Boolean delay equations method), (2) delaying the

transition of the element’s value from one Boolean level to another after the update rule is

evaluated (e.g. Piecewise linear differential equations).

Although the time abstraction methods that are briefly described in Chapter 2 provide a

way for incorporating timing information into logical models, each method has its drawbacks. For

instance, modelers cannot assign different amounts of delays for the activation verses the inhibition

using the buffer insertion method because the inserted nodes delay the signal from specific

regulators to the regulated element and do not delay the regulation process (i.e. activation or

inhibition). Also, when the random sequential update scheme is utilized, the signal can take a

longer time to propagate from the regulator to the regulated element than previously specified

because updating some of the delay nodes might be skipped due to the random updates. On the

other hand, the “dummy” nodes method which allows for assigning delays to the regulation

process, does not allow for delaying the regulation signal which might be needed to represent some

biological motifs such as translocation. Additionally, the model with dummy nodes becomes more

complicated with adding a few numbers of delays as shown in Figure 2-4(b) where adding 2 delay

steps for activation and 3 delay steps for degradation ended up with a large logic circuit with many

update rules even without assigning inhibition delays. Models with BDEs are event-triggered

 49

which only allow for delaying the regulation signal and not the regulation process. On the other

hand, models with piecewise linear differential equations allow for delaying the regulation process

and not the individual regulation signals. Also, the delay values are determined by the reaction rate

constants of the biological event which are quantitative values that are difficult to measure

especially for large models.

Therefore, developing methodologies for representing time in discrete models considering

the different timescales of systems events, the different natures of biological motifs and the

stochasticity of the complex systems events is necessary. In this chapter, we describe our

methodology for incorporating timing information into discrete models of complex networks that

can be built using automatic literature reading. The proposed methods allow for simulating systems

events with different timescales using discrete-time, discrete-state simulators such as DiSH

(Khaled Sayed, Yu-Hsin Kuo, Anuva Kulkarni, & Natasa Miskov-Zivanov, 2017a). Unlike the

existing methods, we allow modelers to model the different timing of both signal propagation and

element regulation which provides a more realistic time representation in discrete models of

complex networks as well as giving flexibility to modelers to model different natures of events.

5.1 Time Modeling

In order to incorporate timing information into discrete models of complex networks, we

define two timing parameters:

(1) Propagation delay, τ𝑖𝑖𝑖𝑖 , which is defined as the length of time needed for a change in a

regulator, 𝑥𝑥𝑖𝑖, to be seen by a regulated element, 𝑥𝑥𝑗𝑗.

 50

(2) Response time, θ𝑗𝑗, which is defined as the length of time needed for a regulated element

𝑥𝑥𝑗𝑗 to change its value from one discrete level to another after its regulation score, 𝑆𝑆𝑗𝑗,

changes.

The propagation delay, τ𝑖𝑖𝑖𝑖 can be defined as a set of multiple delays representing each

transition in the value of a regulator, 𝑥𝑥𝑖𝑖, (i.e. the transition from one activity level to another) such

that

 τ𝑖𝑖𝑖𝑖 ∈ {τ𝑖𝑖𝑖𝑖,0→1, τ𝑖𝑖𝑖𝑖,1→2, … , τ𝑖𝑖𝑖𝑖,𝑁𝑁−2→𝑁𝑁−1 , τ𝑖𝑖𝑖𝑖,𝑁𝑁−1→𝑁𝑁−2 , … , τ𝑖𝑖𝑖𝑖,2→1, τ𝑖𝑖𝑖𝑖,1→0}

where N is the maximum number of discrete levels assigned to element 𝑣𝑣𝑖𝑖. However, we assume

that the propagation time is the same for all transitions because the signal travels through the same

medium and we can use only one τ𝑖𝑖𝑖𝑖 value.

Similarly, the response time, θ𝑗𝑗, can be defined by multiple regulation delay variables

representing each transition in the value of the regulated element, 𝑥𝑥𝑗𝑗, such that

θ𝑗𝑗 ∈ {θ𝑗𝑗,0→1, θ𝑗𝑗,1→2, … , θ𝑗𝑗,𝑁𝑁−2→𝑁𝑁−1 ,θ𝑗𝑗,𝑁𝑁−1→𝑁𝑁−2 , … , θ𝑗𝑗,2→1, θ𝑗𝑗,1→0}

Figure 6-1 shows the representation of the toy example in Figure 2-2 using the proposed

methods as well as the equivalent schematics that show how the scoring functions are applied.

Two different methods are introduced in this work for updating the element’s value when

propagation delays and response times are used; (1) general state transitions and (2) conditioned

state transitions. In the general state transitions method, the response time, θ𝑗𝑗, is related to the

transition from one discrete level to another, regardless of the regulators’ values (i.e. the regulated

element’s value will go up/down as long as the activators score is higher/lower than the inhibitors

 51

score) while in the conditioned state transitions, the response time, θ𝑗𝑗, can vary with varying the

regulators’ values as explained in section 5.1.2.

5.1.1 General State Transitions

To update the regulated element’s value under the general state transitions method, the

regulation score, 𝑆𝑆𝑗𝑗(𝑡𝑡), that is defined by Equation (3-6) has to be changed to include the

propagation delay, τ𝑖𝑖𝑖𝑖 , as follows:

Figure 5-1 The representation of the toy example in Figure 2-2 using the proposed methods. (a)

The modified toy example showing the propagation and the regulations delays, (b) The element

update schematic using the logical scoring, and (c) the element update schematic using the

arithmetic scoring.

 52

𝑆𝑆𝑖𝑖(𝑡𝑡) = 𝑆𝑆𝐴𝐴𝑖𝑖(𝑡𝑡) − 𝑆𝑆𝐼𝐼𝑖𝑖(𝑡𝑡) (5-1)

𝑆𝑆𝐴𝐴𝑗𝑗(𝑡𝑡) = 𝑔𝑔(𝑥𝑥𝐴𝐴𝑗𝑗,1�𝑡𝑡 − τ1𝑗𝑗�, 𝑥𝑥𝐴𝐴𝑗𝑗,2�𝑡𝑡 − τ2𝑗𝑗�, … , 𝑥𝑥𝐴𝐴𝑗𝑗,𝑚𝑚�𝑡𝑡 − τ𝑚𝑚𝑚𝑚�)
(5-2)

𝑆𝑆𝐼𝐼𝑗𝑗(𝑡𝑡) = 𝑔𝑔(𝑥𝑥𝐼𝐼𝑗𝑗,1�𝑡𝑡 − τ1𝑗𝑗�, 𝑥𝑥𝐼𝐼𝑗𝑗,2�𝑡𝑡 − τ2𝑗𝑗�, … , 𝑥𝑥𝐼𝐼𝑗𝑗,𝑙𝑙�𝑡𝑡 − τ𝑙𝑙𝑙𝑙�)
(5-3)

where 𝑥𝑥𝐴𝐴𝑗𝑗,𝑖𝑖 (𝑥𝑥𝐼𝐼𝑗𝑗,𝑖𝑖) is the ith activator (inhibitor) of the regulated element, 𝑣𝑣𝑗𝑗 . Accordingly, the next

value of a regulated element, 𝑥𝑥𝑗𝑗(𝑡𝑡 + 1), will be defined as:

𝑥𝑥𝑗𝑗(𝑡𝑡 + 1) = 𝑓𝑓(𝑥𝑥𝑗𝑗(𝑡𝑡), 𝑆𝑆𝑗𝑗�θ𝑗𝑗�) = �
𝑚𝑚𝑚𝑚 𝑛𝑛�𝑁𝑁 − 1, 𝑥𝑥𝑗𝑗(𝑡𝑡) + 𝛿𝛿� 𝑆𝑆𝑗𝑗�θ𝑗𝑗� > 0
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏/𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑆𝑆𝑗𝑗�θ𝑗𝑗� = 0
𝑚𝑚𝑚𝑚𝑚𝑚 (0, 𝑥𝑥𝑖𝑖(𝑡𝑡) + 𝛿𝛿) 𝑆𝑆𝑗𝑗�θ𝑗𝑗� < 0

 (5-4)

where 𝑆𝑆𝑗𝑗�θ𝑗𝑗� represents the regulation score during the whole response time period θ𝑗𝑗.

In some cases, the regulation score 𝑆𝑆𝑗𝑗�θ𝑗𝑗� changes before the response time, θ𝑗𝑗, has

elapsed. Therefore, we apply a “noise rejection” technique in order to avoid any unnecessary and

quick changes. In this work, we define “noise” as follows: if the regulation score, 𝑆𝑆𝑗𝑗�θ𝑗𝑗�, changes

from one state to another and stays at the new state for a small number of time steps (i.e. less than

or equal to τ𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 < θ𝑗𝑗), the new state of 𝑆𝑆𝑗𝑗�θ𝑗𝑗� is rejected and the state of 𝑆𝑆𝑗𝑗�θ𝑗𝑗� that was stable

for a number of steps > (θ𝑖𝑖 − τ𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) is used to update the value of 𝑥𝑥𝑗𝑗(𝑡𝑡 + 1). The value of τ𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

can be set by the modeler based on background knowledge, otherwise, it is assumed as τ𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =

0.1 ∗ θ𝑗𝑗.

 53

5.1.2 Conditioned State Transitions

We allow modelers to assign different response times under different regulation conditions.

For example, if an element has k activators and k inhibitors, one can assign a long response time

if the inhibitors have the same values as the activators and a short response time if the differential

strength of activators and inhibitors is large. In this case, instead of applying the scoring and update

functions given by Equations (5-1) and (5-4), we allow modelers to create a truth table with a

different response times, θ𝑗𝑗, under different conditions (i.e. all possible values of activators and

inhibitors.) as shown in Table 5-1 which represents an example truth table for the toy example in

Figure 5-2 assuming that 𝑥𝑥1, 𝑥𝑥2, and 𝑥𝑥3 are discrete variables with three levels (i.e. 0, 1 , and 2).

The shaded values on the columns show all possible states of 𝑥𝑥2 and 𝑥𝑥3 at simulation step t while

the shaded values on the rows represent all possible states of 𝑥𝑥1 at step t. The values inside the

cells represent the value of the regulated element 𝑥𝑥3 at simulation step t+1. The number of assigned

delays under each regulation condition are indicated by the number placed after the point in each

cell. For example, 1.4d means that the value 𝑥𝑥3(𝑡𝑡 + 1) will change to 1 after 4 delay steps if the

values of 𝑥𝑥1, 𝑥𝑥2, and 𝑥𝑥3 stay at 1, 1, and 0 for four consecutive simulation steps. The concept of

noise reduction is also applied here which means that if any of the regulators’ values switched

from one discrete level to another and returns back to its previous value within τ𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁, this change

will be considered as noise and will be rejected. Otherwise, the new values of the regulators will

be considered in the next update of the regulated element.

In this work, we introduce two techniques for considering delays when updating the

regulated element’s value using the conditioned state transitions method: (1) Reset Delays, and (2)

No-Reset Delays as explained below.

 54

Table 5-1 A truth table with delays for 𝒙𝒙𝟑𝟑 in the toy example of Figure 5-2.

5.1.2.1 Reset Delays

In the reset delays method, the regulators values as well as the current value of the regulated

element (i.e. a specific regulation condition) have to hold for the whole period of the assigned

response time, θ𝑗𝑗, in order for the regulated element to change its state. For example, 𝑥𝑥3 should

change its current state from 0 to 1 after 4 delay steps when 𝑥𝑥1 = 1 and 𝑥𝑥2 = 1 according to Table

5-1. However, if the value of either 𝑥𝑥1 or 𝑥𝑥2 changes during the 4 delay steps, the value of 𝑥𝑥3

doesn’t change and we restart counting the 4 delay steps whenever the same condition is repeated

(i.e. the condition when 𝑥𝑥1 = 1, 𝑥𝑥2 = 1, and 𝑥𝑥3 = 0).

 𝑥𝑥2(𝑡𝑡 − 𝜏𝜏23), 𝑥𝑥3(𝑡𝑡)

0,0 0,1 0,2 1,0 1,1 1,2 0,2 1,2 2,2

𝑥𝑥1(𝑡𝑡 − 𝜏𝜏13)

0 0 1 2 0 0 1 0 1 0

1 1 2 2 1.4d 2.5d 2 2 1 1.4d

2 1 2 2 1.2d 2.3d 2 2 2 1.2d

Figure 5-2 A toy example of three interacting components.

 55

5.1.2.2 No-Reset Delays

In the No-Reset delays method, the response time, θ𝑗𝑗, is related primarily to the next state

of the regulated element instead of depending on both the regulators’ values and the current value

of the regulated element. For example, the next value of 𝑥𝑥3 is equal to 1 under 4 conditions

according to Table 5-1 where 𝑥𝑥3 switches to 1 after 4 delay steps when 𝑥𝑥1 = 1, and 𝑥𝑥2 = 1 𝑜𝑜𝑜𝑜 2

and switches to 1 after 2 delay steps when 𝑥𝑥1 = 2, and 𝑥𝑥2 = 1 𝑜𝑜𝑜𝑜 2. If any of these conditions

occur, we start counting up until the assigned response time has elapsed and then, we switch the

value of 𝑥𝑥3. However, if the regulation condition changes to another condition that is supposed to

lead to the same outcome (i.e. the same next value) before the response time has elapsed, we keep

counting up and do not reset the counting. For example, if 𝑥𝑥1 = 2 and 𝑥𝑥2 = 2, the delay variable

starts from 0 and increases to 2 (i.e. the assigned delays under that condition) and then the value

of 𝑥𝑥3 switches from 2 to 1. However, if the condition changes after only 1 delay step to another

condition that should lead to the same next value (i.e. 𝑥𝑥3 = 1) such as 𝑥𝑥1 = 1 and 𝑥𝑥2 = 1, we start

counting from 1 instead of 0 and keep increasing the counting up to 4 and then switch the value of

𝑥𝑥3 from 0 to 1.

5.1.3 Spontaneous and Balancing delays

When the spontaneous and balancing behaviors are applied, a delay can be assigned to each

transition in the element’s value to mimic the amount of time needed for an element to go back to

its previous state when the regulation signal is off. For example, if an element has only activators

and the activation signal is turned off, a modeler can slow down the decrease in the element’s value

over time by adding more delays to the spontaneous decrease option. Similarly, if an element has

both positive and negative regulators and the score is balanced, the modeler can specify the amount

 56

of time needed for the regulated element’s value to increase or decrease by adding a suitable

number of delay steps.

5.2 Timing in Motifs

In this section, we propose some rules for assigning different delays to different biological

motifs. These rules do not show how to choose the best propagation and/or regulation delays for

each element, but instead they show whether we should assign delays for a biological event or not

in order to standardize the way of creating discrete models for inter- and intra-cellular networks

especially when an automated reading technique is involved in building large models.

5.2.1 Receptor Activation

Since some receptors take a considerable time in order to get activated once the ligands

bind to them, we specify a regulation delay, θ, to each receptor in the model in order to represent

the time needed for homo or heterodimerization and recruitment of adaptor proteins that are

involved in the activation process. Here, we assume that the ligands are already in the extracellular

space and hence we do not assign a propagation delay to the ligand. However, if a ligand has to

move from a cellular compartment to the extracellular space, one can assign a propagation delay

to represent the translocation time.

 57

5.2.2 Translocation

If a regulator is not in the same cellular compartment as the regulated element, the regulator

has to translocate to the same compartment first. Therefore, we create two variables representing

the translocation process as described in section 4.2.6. Then, we specify a propagation delay, 𝜏𝜏, to

represent the time needed for an element to move from one compartment to another. For example,

if an element 𝑣𝑣𝑖𝑖 translocate from the nucleus to the cytoplasm, we create two variables, 𝑥𝑥𝑖𝑖_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and

𝑥𝑥𝑖𝑖_𝑛𝑛𝑛𝑛𝑛𝑛, and assign a propagation delay to 𝑥𝑥𝑖𝑖_𝑛𝑛𝑛𝑛𝑛𝑛 which is the only activator of 𝑥𝑥𝑖𝑖_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.

5.2.3 Gene Expression

Gene expression is one of the biological events that require a large amount of time than

protein-protein interactions since adaptor proteins and RNA polymerases has to be recruited before

starting the process of transcription which requires more time. Therefore, we assign a regulation

delay, θ , to all the gene variables in the model to represent the transcription time while another

regulation delay is assigned to all the mRNA variables to represent the translation time. We also

assume that the gene transcription process does not stop once started. Therefore, if the update rule

of a gene variable is selected to be evaluated at a specific simulation step, we wait until the response

time that is assigned to the selected gene has elapsed and then we update the value of the

corresponding variable even if the regulation signal has changed during the response time.

 58

5.2.4 Phosphorylation, Dephosphorylation, and Ubiquitination

We deal with most of the phosphorylation processes as activation events while the

dephosphorylation and ubiquitination processes are assumed to be inhibition events. Therefore,

we assign both propagation and regulation delays to these events.

5.2.5 Complex Formation

Complexes are usually formed from the binding of multiple elements and therefore, each

element can have a propagation time. Additionally, if the complex takes time to be formed, we

also assign a regulation delay.

5.3 Timing under Different Simulation Schemes

The effect of the added delays varies according to the simulation scheme that is used to

simulate the model. In the following subsections, we show how the two major simulation schemes

(i.e. Simultaneous and Random Sequential) affect the simulation trajectories when the propagation

delay and the response time are applied. The toy example in Figure 5-1(a) will be used in the

following subsections to illustrate the key differences between the simulation trajectories under

different simulation schemes. Figure 5-1(a) shows how the small network in Figure 2-2 is realized

in our modeling framework where a propagation delay, τ𝑖𝑖𝑖𝑖 , is assigned to each signal from the

regulators (i.e. 𝑥𝑥1, 𝑥𝑥2, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥3) to the regulated element, 𝑥𝑥4 in addition to assigning a regulation

delay, 𝜃𝜃4, to 𝑥𝑥4 in order to represent the response time. Assuming that the logical relationship

 59

between the activators of 𝑥𝑥4 is OR, and assuming that we calculate a logical scoring, then the

scoring function can be evaluated as:

𝑆𝑆𝐴𝐴4(𝑡𝑡) = 𝑔𝑔�𝑥𝑥𝐴𝐴4,1(𝑡𝑡 − τ14),𝑥𝑥𝐴𝐴4,2(𝑡𝑡 − τ24) � = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑥𝑥2(𝑡𝑡 − τ14),𝑥𝑥2(𝑡𝑡 − τ24)� (5-5)

𝑆𝑆𝐼𝐼4(𝑡𝑡) = 𝑔𝑔(𝑥𝑥𝐴𝐴4,3(𝑡𝑡 − τ34)) = 𝑥𝑥3(𝑡𝑡 − τ34)
(5-6)

𝑆𝑆3(𝑡𝑡) = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑥𝑥2(𝑡𝑡 − τ14), 𝑥𝑥2(𝑡𝑡 − τ24)� − 𝑥𝑥3(𝑡𝑡 − τ34)
(5-7)

 Then we apply Equation (5-4) to calculate the value of 𝑥𝑥4(𝑡𝑡 + 1) if the update rule of 𝑥𝑥4

is selected to be evaluated at any simulation step. For simplicity, we assume that N = 3, τ14 =

3steps, τ24 = 2 step, τ34 = 4 steps, θ4 = 3 steps for any transition, and τ𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 1 step.

5.3.1 SMLN Scheme

In the SMLN update scheme, all update functions are evaluated at every time step.

However, the value of the elements that require response time will not be updated until the

response time elapses. Additionally, the value of the regulators that will be taken into consideration

when the regulation score is calculated will be delayed by the amount of the assigned propagation

delay as shown in the timing diagram in Figure 5-3 which shows how the value of 𝑥𝑥4 changes over

the simulation steps assuming arbitrary changes in the values of 𝑥𝑥1, 𝑥𝑥2, and 𝑥𝑥3. At each simulation

step, the value of the regulation score, 𝑆𝑆4 is evaluated according to the values of 𝑥𝑥𝑖𝑖 at simulation

step 𝑡𝑡 − τ𝑖𝑖4, then the value of 𝑥𝑥4 is updated according to the value of the regulation score, 𝑆𝑆4, at

time step 𝑡𝑡 − θ4 considering the timing of the noise.

 60

5.3.2 RSQ Scheme

Under the RSQ simulation scheme, only one update function is evaluated at each

simulation step. Here, we assume that there are two signals: (1) a clock signal that generates

simulation steps and (2) an enable signal that determines which update function is being evaluated

at the current simulation step. The timing diagram in Figure 5-4 shows the changes in the value of

𝑥𝑥4 using the RSQ simulation scheme where the red bars indicate the update functions that are

chosen to be evaluated at each simulation step. It’s shown that the value of 𝑆𝑆4 has to stay at one

state for a time period of (𝜃𝜃4 − 𝜏𝜏𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) in order to have a change in the value of 𝑥𝑥4. Also, the state

of 𝑆𝑆4 changes according to the old values of the regulators (i.e. 𝑥𝑥1, 𝑥𝑥2,𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥3).

Figure 5-3 Timing diagram for the toy example in Figure 5-1(a) using the SMLN simulation

scheme.

 61

5.3.3 Random-delay SMLN update scheme

Each of the two major update schemes (i.e. SMLN and RSQ) has its pros and cons. For

instance, the SMLN scheme runs fast and is useful for studying the steady states of the system but

it doesn’t provide accurate transient responses. On the other hand, the RSQ scheme provides more

accurate transient and steady state responses but it takes more time to run. With delays, we can run

fast simulations using the SMLN scheme and still get accurate trajectories and dynamic responses

with randomized delay values. In the Random-Delay SMLN scheme, the number of assigned

delays is changed randomly in each simulation run leading to stochastic simulations. Here, we

consider the assigned delay value as the mean for a statistical distribution (such as uniform

distribution) and randomly choose a different delay value in each simulation run. The minimum

and maximum values of the uniform distribution are defined as 𝑥𝑥 − 𝛿𝛿 and 𝑥𝑥 + 𝛿𝛿, respectively,

where 𝑥𝑥 is the assigned delay value and 𝛿𝛿 is a small number determined by the modeler.

Figure 5-4 Timing diagram for the toy example in Figure 5-1(a) using the RSQ simulation scheme

 62

5.3.4 Overview of the Proposed Delay Methods

The highlights of the proposed methods are shown in Table 5-2. Comparing the proposed

methods to the methods summarized in Table 2-1, we can see that the proposed methods allow for

modeling propagation delays as well as regulation times while the current methods in literature

allow for representing either propagation delays or regulation times. Also, we allow for assigning

fixed delays as well as varying delays where the values of the assigned delays can be chosen from

an interval if the modeler wants to model the stochasticity in the system. We also incorporate our

timing methods into discrete-time, discrete-state systems and run multiple simulation schemes

such as Simultaneous, Random Sequential, and Random-Delay Simultaneous.

 63

Table 5-2 Highlights of the proposed methods in terms of the comparison in Table 2-1.

 General State Transitions Conditioned State Transitions

States, 𝒙𝒙 Discrete Discrete

Time, 𝒕𝒕 Discrete Discrete

Update orders SMLN/Random-delay SMLN /RSQ SMLN/RSQ

Type of Delays Propagation and regulation delays Propagation and regulation delays

Delay values Fixed (assigned by a modeler) or varying (randomly chosen from an interval)

Conditions for

Delays

Different delays can be assigned depending on either the combined values of

the regulators and the regulated elements or the type of transition that the

regulated element is supposed to make.

No-Reset

Delays updates

Not Applied The overall influence doesn’t

change during the delay interval,

while individual regulator values

may change, the expected regulated

element transition stays the same.

Reset Delays

updates

Not Applied The overall influence doesn’t

change during the delay interval,

and individual regulator values are

not allowed to change; if they

change, while the overall influence

value doesn’t change, the delay

interval starts over.

 64

5.4 Inferring Timing Parameters from Data

One of the goals of this work is to develop methods and tools that allow modelers to

automatically incorporate timing information into discrete models. Therefore, providing an

automated method for estimating the suitable number of delay steps needed for different events is

helpful and can be used as a guide in building good models. In this section, we describe our

methods for estimating the timing parameters for a few interactions based on the available data.

For example, in Miskov-Zivanov et. al. (Miskov-Zivanov, Turner, Kane, Morel, & Faeder, 2013a),

the flow cytometry data was used to count the percentage of cells that have high expression of

Foxp3 under high and low antigen (Ag) doses after 18 hours, 3, and 7 days from the onset of the

stimulation. Although the highest percentage of Foxp3+ cells was ~33% in the experimental data

under low Ag dose, the simulation results of the logical model in (Miskov-Zivanov, Turner, Kane,

Morel, & Faeder, 2013a) showed that the percentage of cells with Foxp3+ is a 100% which means

that all naïve T cells should be differentiated into Treg cells under low Ag dose. This could lead

to false conclusions especially when the obtained results under low Ag dose are compared to the

simulation results of high TGF𝛽𝛽 stimulation (in case of cancer) which show that almost all the

naïve T cells are differentiated into Treg cells even with high Ag dose.

In order to automate the process of assigning delays to specific model elements and

interactions, we utilized an optimization-based simulations technique which is the Nelder-Mead

algorithm (Nelder & Mead, 1965) that runs many simulations and keep changing the timing

parameters until it finds a minimum error between the simulation results and the experimental or

historical data. The first step in applying the Nelder-Mead algorithm is to define a cost function

which is basically the difference between the simulation trajectories and the experimental results.

 65

In the following subsections, we describe our steps in defining and running the optimization-based

simulation algorithm.

5.4.1 Data preparation

Before we run simulations, we need to define the cost function. The cost function in this

work is defined as the mean square error between the simulation trajectories and the available time

series data. More formally, if 𝑥𝑥 represents the simulation trajectory of a model element, 𝑋𝑋, which

has experimental or historical time series data, 𝑦𝑦, then the cost function 𝑓𝑓 will be defined as:

𝑓𝑓 =
1
𝑚𝑚

 �(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑚𝑚

𝑖𝑖=1

 (5-8)

where 𝑚𝑚 is the total number of data points. One important issue here is that 𝑥𝑥 and 𝑦𝑦 should have

the same length and the same units. In discrete models, the trajectory of a discrete variable 𝑥𝑥 is

usually calculated as the average of the 𝑥𝑥 values over hundreds or thousands of simulations runs.

The average trajectory is then normalized by dividing its values by the maximum discrete level

assigned to 𝑥𝑥 which leads to trajectory values between 0 and 1. In order for 𝑥𝑥 and 𝑦𝑦 to have the

same units, the historical or experimental data, y, should also be normalized. Equation 5-9 shows

how the normalization is performed.

𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑦𝑦 − min (𝑦𝑦)

max(𝑦𝑦) − min (𝑦𝑦)
 (5-9)

 66

The next step is to make sure that both 𝑥𝑥 and 𝑦𝑦 have the same length. Although the length

of the simulation trajectory is variable and defined by the modeler, the length of the historical data

or experimental results is usually fixed and limited by the length of the collected data. In order to

make both 𝑥𝑥 and 𝑦𝑦 have the same length, modelers have to assume how much time each simulation

step represents. Fox example, in the naïve T cell differentiation model (Miskov-Zivanov, Turner,

Kane, Morel, & Faeder, 2013a), the percentage of cells with high Foxp3 expression was collected

at four time points which are the beginning of the Ag dose stimulation, after 18 hours, 3 days, and

7 days. Therefore, in order to map the simulation steps into actual timing, the modeler has to

assume that each simulation step corresponds to 𝑢𝑢 time units (e.g. sec, min, hour, … etc). Then,

the total number of simulation steps is calculated as

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑢𝑢
 (5-10)

After determining the total number of simulation steps, a linear interpolation is performed

in order to expand the length of the historical data and provide data points at each time unit. For

example, if we assume that each simulation step corresponds to 5 min (i.e. 𝑢𝑢 = 5 𝑚𝑚𝑚𝑚𝑛𝑛/𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) and

we know that the historical or experimental data in the naïve T cell differentiation model were

collected over 7 days, then the total number of simulation steps should be

7(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)∗24(ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)∗60(min)
5 𝑚𝑚𝑚𝑚𝑚𝑚/𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

= 2016 steps. The linear interpolation is then utilized to provide

continuous data over the 2016 steps instead of the four data points that were collected over 7 days.

Now, the length and the units of the experimental or historical data, 𝑦𝑦, are the same as the values

of the normalized average trajectory, 𝑥𝑥, which allows for evaluating the cost function.

 67

5.4.2 Optimization-based Simulations

The goal of the optimization-based simulation algorithm is to search for the optimal values

of the timing parameters that minimize the cost function defined by equation 5-8. In this work, we

apply the Nelder-Mead algorithm (Nelder & Mead, 1965) which utilizes a simplex or polytope of

𝑛𝑛 + 1 vertices in 𝑛𝑛 dimensions to find a local optimum where 𝑛𝑛 is the total number of timing

parameters. For a model with 𝑙𝑙 nodes, 𝑘𝑘 interactions, and 𝑝𝑝 discrete levels, the maximum number

of timing parameters (i.e. propagation delay variables, 𝜏𝜏, and regulation delay variables, 𝜃𝜃) is

calculated as:

𝑛𝑛 = 𝑘𝑘 + 𝑙𝑙 ∗ [2 ∗ (𝑝𝑝 − 1)] (5-11)

where the value [2 ∗ (𝑝𝑝 − 1)] represents the number of transitions of the node value. For example,

if a node is modeled by 3 discrete levels, the value of that node will have 2 ∗ (3 − 1) = 4

transitions which are the transitions from 0 to 1, 1 to 2, in case of activation, and from 2 to 1, 1 to

0 in case of inhibition.

Equation 5-10 shows that the number of parameters that the Nelder-Mead algorithm should

find values for is increasing linearly with the number of nodes, interactions, and discrete levels

which makes the task of finding a global optimum is very difficult and hence the algorithm will

always be stuck in a local minimum that might not be the best value. Therefore, limiting the search

space by specifying the most influential timing parameters will have a huge impact on the

performance of the algorithm. Specifying the most important timing parameters requires a closer

look at the initial simulation results in order to spot the regulators that have a large influence on

 68

the nodes of interest. The following steps summarize the process of finding the optimal timing

parameters semi-automatically:

1- Determine the nodes in the model that have historical or experimental data and call

them elements of interest (EOI).

2- Map each simulation step to a specific time interval and calculate the total number of

simulation steps using equation 5-10.

3- Perform data normalization as indicated by equation (5-11)

4- Perform linear interpolation on the available data in order to get values at each time

point.

5- Run initial simulations and look at the average trajectories of the EOI and compare

them with the interpolated data.

6- If the simulation trajectories have the same trend as the historical or experimental data,

check how fast the simulation trajectories reach the steady states.

a. If the simulation trajectories reach the steady state faster than the historical data,

then (I) look at the trajectories of the regulators of the EOI and find the

regulators that largely affect its behavior. (II) Add propagation or regulation

delays to the regulator. (III) The regulator that largely influences the behavior

of the EOI is now considered the new element of interest. (V) Repeat step

number 6 until the simulation trajectories of the original EOI becomes as close

as possible to the trend of the historical data.

b. If the simulation trajectories reach the steady state slower than the historical

data, then (I) look at the trajectories of the regulators of the EOI and find the

regulators that largely affect its behavior. (II) Add delays to the other parts of

 69

the network so that the signal that controls the behavior of the EOI propagates

faster. (III) Repeat step number 6 until the simulation trajectories of the original

element of interest becomes as close as possible to the trend of the historical

data.

7- If the simulation trajectories do not have the same trend as the historical or

experimental data, change the structure of the model or the update functions until they

match.

 70

6.0 Applications

In this chapter, we show results for applying the methods introduced in this dissertation on

three discrete models of complex systems, namely, naïve T cell differentiation, buddying yeast

cell cycle, and food security in South Sudan.

6.1 Naïve T cell differentiation

T cells are part of the immune system which can detect foreign bodies (antigens) and

initiate immune responses in order to attack invaders. The naïve T cells can be differentiated into

either helper cells (Th), which activate an immune response, or regulatory cells (Treg), which

suppress the Th mediated immunity and prevent autoimmune diseases that can be caused by the

prolonged activation of Th cells (Shevach, 2000). However, the uncontrolled suppression of the

immune response by Treg cells can lead to serious diseases such as cancers (Curiel et al., 2004).

Therefore, understanding the key factors that control the differentiation outcomes of naïve T cells

into Th or Treg cells can help in developing therapies for activating Th cells in case of cancer,

while activating Treg cells in case of autoimmune diseases (Facciabene, Motz, & Coukos, 2012).

It has been shown that both strength and duration of the antigen (Ag) dose stimulation steer the

differentiation process, where low Ag dose leads to the differentiation into Treg cells, while high

Ag dose leads to the production of Th cells (Turner, Kane, & Morel, 2009). Additionally, Miskov-

Zivanov et al. (Miskov-Zivanov, Turner, Kane, Morel, & Faeder, 2013a) showed that the duration

of the Ag dose stimulation highly affects the differentiation outcome, where a prolonged high Ag

 71

dose will lead to more Th cells, while a short-time high dose stimulation will produce more Treg

cells.

6.1.1 Model Description

The logical model in (Miskov-Zivanov, Turner, Kane, Morel, & Faeder, 2013a) includes

39 elements representing extracellular molecules, cell receptors, and intracellular molecules that

propagate the signal from the cell receptors to the nucleus of the naïve T cell to start gene

expression. The two signals that are necessary to activate the naïve T cells include the binding of

the major histocompatibility complex (MHC) molecules and the co-stimulatory ligand CD86

which are located on the surface of the antigen-presenting cells (APC) to the T cell receptor (TCR)

and the co-stimulatory receptor CD28 respectively. Once the ligands on the APC bind to the

receptors on the membrane of the naïve T cell, the signal is relayed to the intracellular space

through activating three transcription factors which are Activator Protein 1 (AP-1), Nuclear Factor

of Activated T-cells (NF-AT), and Nuclear Factor-κ-light-chain-enhancer of B-cells (NF-κB).

These activated transcription factors translocate to the nucleus to start the expression of gene

Interleukin 2 (IL-2) as well as the α subunit of IL-2 receptor (i.e. IL-2R, also known as CD25)

(Kim & Leonard, 2002; Macian, 2005). The IL-2R receptor has three subunits; α, β, and δ.

Subunits β and δ are always present on the cell membrane and by expressing the α subunit, IL-2R

becomes capable of receiving IL-2 from the extracellular space and activate transcription factor

Signal Transducer and Activator of Transcription 5 (STAT5) which activates Foxp3; a

transcription factor that regulates the production of Treg cells through inhibiting the expression of

IL-2 (Turner et al., 2009; Yao et al., 2007; Ziegler, 2006).

 72

The expression of FOXP3 gene starts after the binding of either STAT5 alone, three

transcription factors which are NF-AT, AP-1, and STAT5, or two transcription factors; NF-AT

and mother against decapentaplegic homolog 3 (Smad3) to its promoter (Ohkura, Kitagawa, &

Sakaguchi, 2013). Another feedback loop that controls the relative expression of IL-2 and Foxp3

is controlled by the expression of Foxp3 where the activity of Foxp3 upregulates PTEN -a

phosphatase present in naïve cells- which is inhibited by the TCR activation (Buckler, Liu, &

Turka, 2008). PTEN also inhibits the signaling through the PI3K/Akt/mTOR pathway and hence

allow more Foxp3 expression which results in generating more Treg cells. By studying the

expression levels of IL-2 and Foxp3 under different stimulation conditions, we can determine the

type of the differentiated cells: Treg cells are characterized by the high expression of Foxp3 and

low expression of IL-2, while Th cells are characterized by the opposite expression levels (i.e. high

IL-2 and low Foxp3). The experimental results in (Miskov-Zivanov, Turner, Kane, Morel, &

Faeder, 2013a) showed that almost all naïve T cells (>90%) are differentiated into Th cells under

high Ag dose while ~33% of the naïve cells are differentiated into Treg cells under the low Ag

dose, forming a mixed population of Th and Treg cells.

Recent data from (Kerdiles et al., 2010) has shown that the increase in PTEN levels, in case

of low Ag dose stimulation, is due to the transcription factor FoxO1 while the phosphorylation of

FoxO1 by Akt inhibits the differentiation into Treg by limiting the increase in PTEN levels. Hawse

et. al. (Hawse et al., 2015) extended the model developed by Miskov-Zivanov et. al. (Miskov-

Zivanov, Turner, Kane, Morel, & Faeder, 2013a) by incorporating the new information into the

model and evaluating the expression levels of Foxp3 under low Ag dose. Their simulation results

showed better performance where the percentage of Foxp3+ cells was found to be ~70% which is

 73

more closer to the experimental data than the simulation results of the original model that has been

developed by (Miskov-Zivanov, Turner, Kane, Morel, & Faeder, 2013a).

6.1.2 Effect of simulation schemes

In the following discussion we refer to run as a single simulation run from the starting

point, when we assign initial values to all variables, through a pre-determined number of rounds

or number of steps (depending on the simulation scheme used). A trajectory of values is obtained

for each element in the run, and the trajectories may vary across consecutive runs. The values for

variables in each round or step are averaged over all the runs and this average trajectory can be

plotted for analysis. In this section, we investigate the effect of the different simulation schemes

introduced in sections 3.1 and 3.2 by simulating the original model using Boolean variables in

order to keep similar simulation settings as in Miskov-Zivanov et. al. (Miskov-Zivanov, Turner,

Kane, Morel, & Faeder, 2013a) where elements TCR, PIP3, and PI3K are implemented in the

executable model using two Boolean variables, such as TCRHIGH and TCRLOW to represent discrete

values 0, 1, and 2.

Here, we simulate two main scenarios; Scenario I, which includes 5 sub-scenarios, and

Scenario II, which includes 3 sub-scenarios, all of them listed in Figure 6-1(g). The five sub-

scenarios under Scenario I consider low and high levels of antigen dose (TCRHIGH=0 and

TCRLOW=1, TCRHIGH=1 and TCRLOW=0, respectively), as well as different initial values of

proteins TGF-β and AKT, also responsible for regulating the T-cell differentiation. On the other

hand, the three sub-scenarios of Scenario II consider the antigen dose removal at certain time steps

to reflect the impact of the time at which the high antigen dose is removed during the wet-lab

experiments on the differentiation outcomes of naïve T cells. The removal of the high antigen dose

 74

is simulated by toggling the value of the TCRHIGH variable from 1 to 0 at specific simulation steps,

which changes the value of the TCR variable from HIGH to LOW.

In this section, we show the simulation results obtained by running the simulator using the

simulation schemes that were described in sections 3.1 and 3.2, for Foxp3 which is the main

indicator of the differentiation outcomes. However, we discuss the response of Foxp3 in terms of

other key elements such as IL-2, mTORC1, CD25, and STAT5, for the scenarios shown in Figure

6-1(g) where mTORC1 is a key player in the inhibition of Foxp3 at high antigen dose, while the

early activation of Foxp3 by CD25/STAT5 pathway is an essential requirement for the

differentiation of the naïve T cells into Treg cells at low antigen dose (Miskov-Zivanov, Turner,

Kane, Morel, & Faeder, 2013a).

The SMLN scheme is deterministic as each state has only one possible next state. All variable

values at time t +1 are computed using the values of their regulators at time t. The SMLN scheme

computes steady-states that the system can reach, but it cannot account for the randomness of

occurrence of events that is common for biological systems. In Figure 5-1(a), we show the

simulation results for Scenarios I using the SMLN scheme. The T cell model is simulated 1000

times (i.e., 1000 runs), each run consisting of 50 steps, assuming random initial values for all

elements, except for TCR, TGF-β and AKT which were selected to satisfy the requirements of

each sub-scenario in Figure 6-1(g). It can be seen that the steady-state value of Foxp3 in sub-

scenario I1 (high antigen dose) is lower than the steady-state value in sub-scenario I2 (low antigen

dose), which was expected, according to (Miskov-Zivanov, Turner, et al., 2013a). However, the

steady-state value of Foxp3 is not very low in sub-scenario I1 because the expression level of

STAT5 and CD25 is high (activators of Foxp3), even with high expression level of mTORC1

(inhibitor of Foxp3). Also, we can see some oscillations in the transient response of Foxp3 in

 75

Figure 6-1(a), which arise from the random initializations of the model elements enabling each

simulation run to start from a different state, i.e., a different point in the state space. Additionally,

these plots show that the SMLN scheme is useful for quickly identifying different steady-states

that the system can reach. However, the SMLN scheme may not provide accurate trajectories for

studying the transient response of the system, as it does not account for the stochasticity in the

biological systems.

A more detailed analysis can be performed using RSQ scheme, which computes transient

behavior of elements, and provides a better resolution of small changes occurring on element

trajectories. As described in section 3.1.2, the RSQ scheme has two sub-types, round-based (RB-

RSQ) and step-based (SB-RSQ) schemes. Here, we show simulation results using the RB-RSQ

scheme for all sub-scenarios of Scenario I, where the value of each element is updated once per

round according to the element’s update rule. The results of our DiSH simulator are in agreement

with those presented in (Miskov-Zivanov, Turner, et al., 2013a), that were obtained using the

simulator described in (I. Albert et al., 2008). As shown in Figure 6-1(b), the steady-state value of

Foxp3 is low (high) in scenario I1 (I2) which represents the high (low) antigen dose. In addition,

Foxp3 exhibits a transient increase at high antigen dose (Scenario I1), due to the activation of

CD25 and STAT5. This increase of the Foxp3 activation is quickly turned off because of the

activation of mTORC1, which is a Foxp3 inhibitor. We can also see that initializing TGF-β at high

level, with low antigen dose stimulation (Scenario I4) can provide a rapid increase in the Foxp3

expression, which inhibits any transient response of IL-2. The other sub-type of the RSQ

simulation scheme is the SB-RSQ scheme which has also two sub-types, the uniform (USB) and

non-uniform (NUSB) probability simulation schemes. The simulation results for Scenario I with

the USB-RSQ scheme are shown in Figure 6-1(c). The simulation results in Figure 6-1(c) are

 76

similar to the ones in Figure 6-1(b), where the RB-RSQ scheme was used, except that the transient

responses shown in Figure 6-1(c) are delayed. This is happening due to the nature of the updating

scheme. So, while each element gets updated once per round in the RB-RSQ scheme, only one

element is updated in a step in the SB-RSQ scheme. Due to such updating schemes, the RB

simulations will show faster rates of change than the SB ones. In the RB simulation, the number

of time steps in each round is equal to the number of variables. In the T cell model, there are 61

variables, and in each of the 50 rounds, each variable is updated 50 times. On the other hand, in

the step-based simulation, it may take more than 50 steps to update all elements because some

elements may be updated several times within those 50 steps, while some other elements will not

get updated. Figure 6-1(c) also emphasizes an interesting biological finding which was confirmed

by the experimental results in (Miskov-Zivanov, Turner, et al., 2013a), suggesting that initializing

TGF-β at high even with high antigen dose stimulation (Scenarios I3 and I4) will produce more

Treg cells.

As described previously, in the NUSB-RSQ scheme, in each time step one variable is chosen

for update according to the assigned update probabilities. When studying the T cell model using

this scheme, we divide all the variables of the T-cell model into two blocks. Block A contains

CD25, Foxp3 and IL2 variables, and has lower probability value, which is 0.1, and Block B, which

contains the rest of the variables, is assigned probability 0.9. The blocks have been constructed

using prior knowledge about the biological system – it is known that protein-protein interactions

(Block B) occur at a faster speed than transcription reactions in Block A (such as transcription of

the FOXP3 gene in the nucleus). Figure 6-1(d) shows that we get fast transient responses for Foxp3

because of the fast transient response of the elements in Block B (i.e. STAT5 and mTORC1),

 77

which regulate Foxp3. However, the overall biological behavior of the system is almost the same

as in the USB-RSQ scheme, with faster response since Block B elements are updated more often.

In the RKSQ simulation scheme, we can order the rules based on a priori knowledge about

the sequence of the biological events. Here, we assign rank 1 for the rules that represent the cell

membrane elements (e.g., TCR) and rank 2 for the elements that are regulated by the cell

membrane elements, and we continue with the same procedure until we reach the last elements in

the signaling pathway (e.g., gene transcriptions usually have the last rank). Figure 6-1(e) shows

the simulation results for the sub-scenarios of Scenario I using the RKSQ scheme. The results for

RKSQ are almost the same as the results shown in Figure 6-1(b), which were obtained using the

RB-RSQ scheme, suggesting that the RKSQ scheme can be used if the information about the order

of the biological events are known. Also, this shows that the RSQ scheme is able to capture the

biological events even if the prior knowledge about the signaling events is not available.

Finally, we ran the simulator using USB-RSQ scheme for the three sub-scenarios II1, II2,

and II3, when the TCR signal is turned off at simulation steps 100, 300, and 1500, respectively.

Figure 6-1 Trajectories for Foxp3 using different simulation schemes: a) SMLN, b) RB-RSQ, c) USB-RSQ,

d) NUSB-RSQ, e) RKSQ, f) Toggling feature with USB-RSQ, and g) A list of simulation scenarios.

 78

The simulation results in Figure 6-1(f) show that the time at which the TCR signal is turned off is

critical for the T cell differentiation as confirmed by (Miskov-Zivanov, Turner, et al., 2013a). It

can be seen that turning off the TCR signal at very early simulation step (e.g., Scenario II1) will

lead to undifferentiated cells that are characterized by the low expression of both Foxp3 and IL-2.

On the other hand, turning off the TCR signal at an intermediate step (e.g., Scenario II2) will cause

the naïve T cells to be differentiated into Treg cells that are characterized by high expression of

Foxp3. Additionally, turning off the TCR signal at later steps (e.g., Scenario II3) will produce

more Th cells which are characterized by low expression of Foxp3. This behavior can be explained

by looking at the trajectories of mTORC1 and CD25/STAT5 where the inhibition signal for Foxp3

through mTORC1 lasts longer when we remove the antigen dose at later simulation steps.

The SMLN and RSQ simulation schemes in DiSH enable analysis of both dynamic system

behavior and its attractors. Deterministic discrete model simulations that assume simultaneous

element update enable quick attractor analysis. However, when we have prior knowledge about

faster and slower events, simultaneous simulations are not a good choice. In the discrete modeling

approach, we can incorporate a priori knowledge about observed difference in event rates using

delays and probabilistic simulation. Therefore, DiSH simulator allows scientists to look at

biological systems from various perspectives, and learn more about the system by

conducting multiple simulations under different conditions.

6.1.3 Effect of scoring functions

In this section, we study the effect of the scoring functions introduced in section 3.3 on the

behavior of the original model in (Miskov-Zivanov, Turner, Kane, Morel, & Faeder, 2013a) by

focusing on results for Foxp3 and IL-2 under different scenarios and conditions such as: multiple

 79

discrete levels N, different initial values of PTEN, and different TCR signal strengths. Here, we

assume that each simulation run represents one cell so that we can identify the heterogenous

population by studying the values of Foxp3 and IL-2 at the end of each simulation run (i.e., the

steady state value).

Figure 6-2 shows the steady state values of Foxp3 and IL-2 using the logical scoring

(Figure 6-2(a)), arithmetic scoring (Figure 6-2(b)), and the difference between the steady state

values of Foxp3 and IL-2 using the logical scoring minus the arithmetic scoring (Figure 6-2(c))

under different parameterizations (i.e. different N, initial PTEN values, and initial TCR signal

strength) . It’s shown in Figure 6-2(a) that the steady state value of Foxp3 is influenced by all

parametrizations used in this work. Figure 6-2(a) shows that the activity level of Foxp3 is around

25% (indicating a heterogenous population) with low TCR levels. Specifically, Foxp3 is around

25% when the initial value of PTEN is equivalent to the initial value of TCR and both are initialized

at low and medium levels (i.e. TCR and PTEN = 33%, 50%, and 67%) when N is 3 or 4. However,

when N is greater than 4, Foxp3 stays at 0% with low TCR levels indicating wrong differentiation

outcome. This happens because increasing N leads to a slow increase in the value of Foxp3 which

prevents PTEN from increasing after reaching 0% due to the inhibition by TCR since SA =

max(PTEN, Foxp3) and SI = TCR. If PTEN stays low, Foxp3 stays low as well (see Figure 5) and

hence we see low levels of Foxp3 even with low TCR levels. When the initial value of TCR is

100% or it is larger than the initial value of PTEN (specifically when N = 4 and 5), the steady state

value of Foxp3 reaches 0% which is similar to the case of high Ag dose in the original model

(Miskov-Zivanov, Turner, Kane, Morel, & Faeder, 2013a). The values of IL-2 in Figure 6-2(a) are

opposite to the values of Foxp3 which is expected due to the reciprocal relationship between Foxp3

and IL-2 (Miskov-Zivanov, Turner, Kane, Morel, & Faeder, 2013a).

 80

Applying the arithmetic scoring with delays and weights as described in section 4.3

provides more cases where Foxp3 is not at either 0 or 100% which indicates a heterogenous

population of Treg and Th cells. As seen in Figure 6-2(b), the steady state value of Foxp3 is

decreasing with increasing TCR when PTEN is initialized at 100%. Foxp3 is at 0% when PTEN

is less than 100% and N = 3 or 4. However, Foxp3 can reach a 100% when N is larger than 4 and

TCR is very low (i.e. TCR = 20% and 25%) even when PTEN is less than 100%. Figure 6-2(c)

shows that, in most cases, both logical and arithmetic scoring can obtain similar results. However,

we can see some differences due to the added weights and delays with the arithmetic scoring.

Figure 6-2 Steady state values of Foxp3 and IL-2 using a) logical scoring, b) arithmetic scoring, and c) the

difference between the values using the logical scoring minus the arithmetic scoring.

 81

In order to compare the simulation results of applying the logical and the arithmetic scoring

with the experimental results, we show in Figure 6-3 the steady state values of Foxp3 at different

discrete levels including N = 2 (i.e. the results from the original model) with PTEN initialized at

100% as in (Miskov-Zivanov, Turner, Kane, Morel, & Faeder, 2013a). The Foxp3 values obtained

using the logical scoring (Figure 6-3(a)) are all at either 0% (when TCR = 100%) or a 100% (when

TCR < 100%) which is similar to the simulation results of the original model. On the other hand,

Figure 6-3(b) shows that the steady state value of Foxp3 decreases with increasing the TCR value

at all values of N. The intermediate values of Foxp3 indicate that we get a heterogenous population

at some cases when TCR is low which is more similar to the experimental results that are

highlighted in Figure 6-3 by green and blue bars that represent the percentages of the Foxp3+ cells

Figure 6-3 Steady state values of Foxp3 using a) the logical scoring, b) the arithmetic scoring with PTEN

initialized at 100% and with different number of levels, N, and TCR values. The green (blue) highlighted

range represents the percentage of Foxp3+ cells with low (high) antigen dose in the experimental results

(Miskov-Zivanov, Turner, Kane, Morel, & Faeder, 2013a).

 82

in the wet-lab experiment when applying low and high Ag doses, respectively (Miskov-Zivanov,

Turner, Kane, Morel, & Faeder, 2013a).

Figure 6-4 shows simulation trajectories for Foxp3, IL-2, mTOR, and PTEN using the

logical (Figure 6-4(a)) and the arithmetic scoring (Figure 6-4(b)) with N = 6, PTEN is initialized

at 100%, and TCR is initialized at different levels. It is depicted in Figure 6-4(a) that PTEN stays

high with all TCR levels except when the initial level of TCR is 100%. High PTEN levels prevent

mTOR from going up which, in return, allows Foxp3 to increase and inhibit IL-2 indicating the

differentiation into Treg cells. In contrast, when TCR is initialized at 100%, PTEN decreases to

zero which allows mTOR to increase and inhibits Foxp3 and hence, IL-2 increases indicating the

differentiation into Th cells. Applying the arithmetic scoring with delays and weights as described

in section 4.3 shows that we can get heterogenous populations with TCR at intermediate levels

such as 60 and 80%. Figure 6-4(b) shows how PTEN is decreased with increasing the TCR level

which results in trajectories of mTOR at intermediate levels. Having mTOR at levels that are not

either 0 or 100% allows Foxp3 to increase to medium levels indicating the differentiation into both

Th and Treg cells which is closer to the experimental results that show a heterogenous population

of Treg and Th cells under low Ag dose stimulation.

 83

Figure 6-4 shows how PTEN plays an important role in determining the differentiation

outcome of the naïve cells by controlling mTOR which inhibits Foxp3. Therefore, in Figure 6-5,

we show the complete pathway from PTEN to Foxp3 and its regulators (i.e. SMAD3, NFAT, and

STAT5) as well as the simulation trajectories of PTEN, mTOR, Foxp3, SMAD3, NFAT, and

STAT5 with N = 3, TCR = 50%, and initial PTEN levels = 50 and 100% to study the effect of

changing the initial value of PTEN on response of Foxp3 and IL-2. The network diagram in Figure

6-5(a) shows the pathway from PTEN to Foxp3 as presented in (Miskov-Zivanov, Turner, Kane,

Morel, & Faeder, 2013a) with the nodes that were initialized at levels greater than 0% highlighted

Figure 6-4 Trajectories of Foxp3, IL-2, mTOR, and PTEN using a) the logical scoring, b) the arithmetic

scoring with N = 6, different initial levels of TCR, and PTEN is initialized at 100%.

 84

in red. The simulation trajectories of PTEN and Foxp3 show that we can get intermediate levels

of Foxp3 at steady state in two cases; when PTEN is initialized at 50% with logical scoring, and

when PTEN is initialized at 100% with arithmetic scoring. Initializing PTEN at 50% with TCR at

50% makes PTEN decreases when the logical scoring is applied because the inhibitors score (SI =

TCR) is equivalent to the activators score (SA = PTEN + Foxp3, Foxp3 is initialized at 0) and the

balancing behavior is set to “decrease”. The decrease in PTEN is followed by an increase due to

the increase in Foxp3 as a response to the signal from TCR and CD28 that propagate through the

PI3K/PIP3/mTOR pathway. When PTEN is initialized at 100% with the logical scoring, it does

not decrease since the inhibitors score is always less than the activators score.

On the other hand, initializing PTEN at 50% and applying the arithmetic scoring keeps

PTEN at an intermediate level that can’t inhibit mTOR and hence Foxp3 reaches 0% at steady

state even with a low TCR level. Low Foxp3 expression with low TCR levels is not correct in

terms of the experimental results that show high Foxp3 levels under low Ag dose stimulation

(Miskov-Zivanov, Turner, Kane, Morel, & Faeder, 2013a). However, initializing PTEN at 100%

and applying the arithmetic scoring shows more accurate results (i.e. heterogenous population)

since Foxp3 reaches a medium level with low TCR value (i.e. TCR = 50%). The reason for having

Foxp3 at a medium concentration is that the added weight to the inhibition signal from TCR to

PTEN makes the inhibitors score (SI = 𝑤𝑤𝑇𝑇𝑇𝑇𝑇𝑇−| 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃*TCR) equivalent to the activators score (SA =

PTEN + Foxp3, Foxp3 is initialized at 0) at the beginning of the simulations which allows PTEN

to decrease. It is also shown in Figures 6-5(e), (f), and (g) that the three activators of Foxp3 have

the same response under the different initializations of PTEN and the two update methods (i.e.

logical or arithmetic scoring), which shows that only mTOR can change the response of Foxp3.

 85

Figures 6-3, 6-4, and 6-5 show that initializing PTEN at 100% and applying logical scoring

with low levels of TCR failed to reproduce the experimental results that showed a heterogenous

population of Treg, Th, and undifferentiated cells in the case of low Ag dose stimulation (Miskov-

Zivanov, Turner, Kane, Morel, & Faeder, 2013a). Therefore, Miskov-Zivanov et. al. (Miskov-

Zivanov, Turner, Kane, Morel, & Faeder, 2013a) studied the effect of varying, not only the strength

of the Ag dose, but also the duration of a high Ag dose stimulation on the differentiation outcomes.

The in-silico experiment in (Miskov-Zivanov, Turner, Kane, Morel, & Faeder, 2013a) was

conducted by initializing TCR at 100% and toggling its value to 0% at different time points and

Figure 6-5 a) A network diagram of the upstream elements of Foxp3 as well as the simulation trajectories of

b) PTEN, c) mTOR, d) Foxp3, e) SMAD3, f) NFAT, and g) STAT5 from the original model, using logical and

arithmetic scoring with N = 3, PTEN initialized at different levels, and TCR is set to 50% (low dose).

 86

counting the number of Th, Treg, and undifferentiated cells at steady state. In this work, we

conducted a similar experiment with N = 3, initial value of PTEN = 100%, and initial TCR value

= 100% to study the effect of using the two update methods (i.e. logical and arithmetic scoring) on

the steady state responses of key model elements when varying the duration of applying a specific

stimulus such as the Ag dose. Figure 6-6 shows the frequency of the fixed-point attractors that we

got when the level of TCR was toggled from 100% to 0% at time points, designated T1,…, T5:

300, 400, 500, 600, and 700 from (a) the original model, (b) using logical, and (c) arithmetic

scoring methods. Since N = 3 and we are focusing on two model elements (i.e. Foxp3 and IL-2),

we can get up to 9 different attractors as shown in Figure 6-6(d). The most frequent attractors were

A0, A2, and A6 which correspond to undifferentiated cells, Th cells, and Treg cells, respectively.

It is also shown in Figure 6-6(a), which shows results of toggling TCR in the original

model, that toggling the TCR value at later steps favors attractor A2 which corresponds to the

differentiation into Th cells (i.e. IL-2 = 100% and Foxp3 = 0% at steady state) and shows that we

can get a heterogenous population of cells if a strong TCR signal is applied but doesn’t last for a

sufficient amount of time. A similar trend is seen Figure 6-6(b) when the logical scoring is applied

but with more frequencies of attractor A6 and less frequencies of attractor A0. This happens

because increasing the number of discrete levels, N, to 3 means that PTEN takes more time to

decrease from 100% to 0% when TCR is still high. The delayed decrease of PTEN allows less Th

cells to develop since Foxp3 will have more time to increase which enhances the chance of PTEN

to recover after toggling TCR to zero (TCR is a PTEN inhibitor). Similarly, Figure 6-6(c) shows

that applying the arithmetic scoring with delayed inhibition of PTEN gives even less time for Th

cells to develop and increases the chance of PTEN recovery. Therefore, when more time is given

to TCR to stay high such as toggling the TCR value at T5 in Figure 6-6(c), we can see more

 87

undifferentiated cells (i.e. A0) that can be differentiated into Th cells if TCR stays high for a longer

time.

The first version of DiSH-simulator has been introduced as a tool for simulating logical

models of biological systems allowing modelers to run in-silico simulations using many update

schemes as well as integrating information from automated literature reading into models using

model extension methods such as the genetic algorithm (Sayed et al., 2018; Sayed, Telmer, et al.,

2017). In this section, we introduced and new version of DiSH simulator that expand its

capabilities that are described in sections 3.1 and 3.2 by allowing modelers to assign as many

discrete levels as needed to model elements and run simulations using two update methods; logical

and arithmetic scoring. The results of simulating the naïve T cell differentiation model by using

both scoring methods showed that we can get, not only results similar to those obtained by

Figure 6-6 Percentage of attractors with antigen dose removal at time steps T1:T5 as a) in the original model,

b) using the logical scoring, c) using the arithmetic scoring, d) attractors frequencies when the antigen dose is

removed at T3.

 88

simulating the original model in (Miskov-Zivanov, Turner, Kane, Morel, & Faeder, 2013a), but

showed also that we can recapitulate, more accurately, the experimental results which included a

heterogenous population of Treg, Th, and undifferentiated cells under low Ag doses stimulation.

Although both scoring methods along with the other introduced methods (i.e. staircase

update function, spontaneous and balancing behavior, normalization, and delays) were capable of

recapitulating the simulation results in (Miskov-Zivanov, Turner, Kane, Morel, & Faeder, 2013a)

in addition to capturing more dynamics such as the heterogenous population, there are key

differences between the logical and arithmetic scoring methods. In logical scoring, the min and

max functions can have a huge influence on the regulated element if one of its regulators is at 0 or

N-1. For example, if an element, 𝑥𝑥, has three ANDed activators, the activators score, 𝑆𝑆𝐴𝐴, will

always be 0 if any one of the activators is 0 no matter what the values of the other two activators

are. Similarly, if the three activators are ORed and only one of them is at N-1, the value of 𝑆𝑆𝐴𝐴 will

always be N-1 even if the other two activators are at 0. In these situations, only one regulator can

influence the overall update rule which, in some cases, not preferable and limits the ability of

modelers to combine the effect of multiple regulators. On the other hand, the arithmetic scoring

considers all the regulators’ values and combines their effect according to the assigned weights

which gives modelers more flexibility and control over their models. However, choosing the

correct weights requires more knowledge about the system in addition to going through multiple

iterations of model simulations and evaluations trying to find the best set of parameters.

Choosing the number of discrete levels, N, can also affect the simulation results as shown

in Figure 6-2(a) where Foxp3 reaches 0% at steady state when N is greater than 4 even with low

TCR levels which is the opposite to the results of the original model in (Miskov-Zivanov, Turner,

Kane, Morel, & Faeder, 2013a). Increasing N means that the element will take more time (i.e.

 89

simulation steps) to change from 0% to 100% or vice versa because it has to go to the intermediate

levels first which increases the chance of receiving an interruption signal that makes the element

stay at an intermediate level or to switch back to its original level. For example, if an element x

has 6 discrete levels and it is initialized at level 0, then the update rule has to be selected 5 times

before x reaches level N-1 assuming that the activators score is larger than the inhibitors score

during the whole time. If we run the USB-RSQ simulation scheme, then the selection of the same

update function 5 times requires, on average, 5*k simulation steps where k is the total number of

elements in the model. During these simulation steps, the inhibitors score of x can increase to be

more than or equal to the activators score forcing x to stop increasing or it could make it decrease

according to the specified rules of the balancing and spontaneous behaviors. The effect of

increasing N is shown in Figure 6-6 where more Treg cells are developed when the logical and

arithmetic scoring are used with N = 3 compared to the results of the original model with N = 2.

Increasing N for PTEN from 2 to 3 makes PTEN take more time to decrease which is reflected on

Foxp3 as a delayed inhibition that changes the differentiation outcome.

The results of this work indicate also that the structure of the network and the logical

relationships between the system components are not the only factors that determine the transient

and the steady state responses of the elements of interest, but also the model parameterizations and

the update method. The results show that we can still get a heterogenous population of cells by

changing the number of discrete levels and the initial values of some of the key elements such as

PTEN even without changing the structure of the network. Having many parameterizations to

change and multiple update methods to choose from provides more degrees of freedom for

modelers to build accurate models even when they are restricted to change the model structure due

to a priori knowledge that prevents them from changing the relationship between model elements.

 90

These degrees of freedom include also deciding whether to apply the spontaneous behavior or not

and what balancing behavior is suitable for each model element. For example, if the value of a

model element is not supposed to increase after being degraded due to an inhibition signal, a

modeler can shut its spontaneous behavior off. Similarly, having the ability to decide whether the

value of the element increases, decreases, or stay the same when its activators and inhibitors scores

are balanced is useful when there is no information that favors one type of regulation over the other

and gives modelers more control over their models which allows them to test multiple options in

order to get the most accurate results.

6.1.4 Effect of time modeling

The extended naïve T cell differentiation model in (Hawse et al., 2015; Miskov-Zivanov,

Turner, et al., 2013b) is used to study the effect of incorporating timing information into discrete

models on the performance of the model in terms of the percentage of cells with high Foxp3

Figure 6-7 A subnetwork of the extended naive T cell differentiation model before

(left) and after (right) assigning propagation and regulation delays.

 91

expression. Here, we rebuilt the model in (Hawse et al., 2015) with representing the common

motifs as described in sections 4.2.4, 4.2.5, and 4.2.6 in order to follow a unified way for building

models that contain gene expression, receptor activation, and translocation motifs. Figure 6-7

shows the main pathways in the extended model that needed delays in order to get simulation

trajectories similar to the experimental results. The propagation and regulation delays shown in

Figure 6-7 were determined manually with multiple iterations of simulations and comparisons

between the simulation trajectories and the experimental data. Since all model variables are

Table 6-1 Values of delay variables in Figure 6-7.

 Delay variable Number of delay steps

Propagation delays

𝜏𝜏1 5

𝜏𝜏2 8

𝜏𝜏3 5

𝜏𝜏4 6

Regulation delays

{𝜃𝜃1𝑎𝑎,𝜃𝜃1𝑖𝑖} {2,10}

{𝜃𝜃2𝑎𝑎,𝜃𝜃2𝑖𝑖} {2,3}

{𝜃𝜃3𝑎𝑎,𝜃𝜃3𝑖𝑖} {2,2}

{𝜃𝜃4𝑎𝑎,𝜃𝜃4𝑖𝑖} {0,10}

{𝜃𝜃5𝑎𝑎,𝜃𝜃5𝑖𝑖} {3,2}

{𝜃𝜃6𝑎𝑎,𝜃𝜃6𝑖𝑖} {2,1}

{𝜃𝜃7𝑎𝑎,𝜃𝜃7𝑖𝑖} {2,1}

{𝜃𝜃8𝑎𝑎,𝜃𝜃8𝑖𝑖} {3,2}

 92

Boolean, the regulation delays are represented by two variables, 𝜃𝜃𝑎𝑎 and 𝜃𝜃𝑖𝑖 which represent the

activation and inhibition delays respectively. Table 6-1 shows the values of the delay variables

that are added manually to the model.

Following the steps-to-time mapping procedure in section 5.4.1, we assumed that each

simulation step corresponds to 3.36 hours and hence, the total number of simulation steps needed

to provide results for 7 days is calculated by Equation 5-10 to be 50 steps. Leveraging the process

of adding delays to the extended model, we utilized the Random-Delay SMLN update scheme to

simulate the model because it provides accurate transient and steady state responses with less

simulation steps and less simulation time as depicted in Figure 6-8 which shows the Foxp3

response when the extended model is simulated under the simulation scenarios presented in Figure

6-1(g). Figure 6-8 shows that the steady state value of Foxp3 under low Ag dose (Scenario I1) is

more closer to the steady state value of Foxp3 in the experimental results (i.e. ~33%). It also shows

that the percentage of cells with high Foxp3 reaches 0% at steady state with high Ag dose (Scenario

I2) which is equivalent to the experimental results. The simulation results in Figure 6-8 show also

that a 100% of the cells will be differentiated into Treg cells with high Foxp3 if TGF𝛽𝛽, which is

secreted by cancer cells, is present under either high or low Ag dose (Scenarios I3 and I4)

Figure 6-8 Foxp3 trajectories under the simulation scenarios shown in Figure 6-1(g)

usnig the Random-Delay SMLN update scheme for the extended model.

 93

suggesting that the cancer cells will shut down the immune response even with high Ag stimulus.

The results of Scenario I5 also confirms the findings in (Miskov-Zivanov, Turner, Kane, Morel,

& Faeder, 2013a) where inhibiting Akt will lead to the differentiation into Treg cells even with

high Ag dose stimulation which means that the Random-Delay SMLN scheme is efficient in

providing accurate simulation trajectories with less simulation steps and less simulation time. The

trajectories in Figure 6-8 are obtained by taking the average over a 1000 simulation runs. The

simulation time of simulating one scenario for 1000 runs is about 2.5 min when the SMLN or the

Random-Delay SMLN update schemes are utilized while the simulation time of one scenario can

take up to 10 min when the RSQ update scheme is utilized.

In order to evaluate the effect of the added delays on the performance of the model, we

compare the trajectories of Foxp3 obtained by the original model in (Miskov-Zivanov, Turner,

Kane, Morel, & Faeder, 2013a), the extended model in (Hawse et al., 2015), the extended model

with motifs, and the experimental results with trajectories obtained by the extended model with

delays. Figure 6-9 shows that both the extended model and the extended model with motifs provide

better results than the original model. The model with motifs provides a slightly better trajectory

than the extended model without motifs because motifs modeling adds delays to the genes,

Figure 6-9 A comparison between Foxp3 trajectories obtained by different

models with the experimental results under low Ag dose.

 94

receptors and translocated elements as discussed in (Sayed et al., 2016). The extended model with

delays provides the most accurate Foxp3 trajectory with steady state value equivalent to the

percentage of Foxp3+ cells in the experimental results after 7 days of the low Ag dose stimulation

as shown in Figure 6-9. These results suggest that the propagation and regulation delays are

efficient tools for incorporating timing information into discrete models of complex systems when

time series data is available to calibrate the model.

Comparing the performance of the propagation and regulation delays method to the buffer

insertion method that was used in (Miskov-Zivanov, Turner, Kane, Morel, & Faeder, 2013a) shows

that the proposed delay method has a fixed simulation time when different delay steps are added

to many percentages of nodes and interactions in the model. Figure 6-10 shows how the simulation

time changes with respect to the percentage of nodes and interactions that have delays as well as

the number of delay steps added. We chose 10%, 20%, and 30% of the nodes and interactions in

the extended model at random and assigned 2, 4, 6, 8, and 10 delay steps to compare the effect of

the buffer insertion method and the proposed delay method on the simulation time. The simulation

times shown in Figure 6-10 are obtained by running the Random-Delay SMLN scheme with 50

simulation steps and 1000 simulation runs. Figure 6-10 shows that the simulation time increases

with both the number of added delay steps and the number of nodes and interactions that have

delays if the buffer insertion method was used while the simulation time is almost fixed when the

proposed delay method is applied (i.e. the propagation and regulation delays). The reason for the

increase in simulation time when the buffer insertion method is utilized is that we have to create

extra nodes in order to delay the signal from one node to another while the proposed method offers

delaying the signals without creating any extra nodes which makes the model size smaller as shown

in Figure 6-11. Figure 6-11 shows how the numbers of variables and interactions increase with

 95

increasing the number of assigned delay steps when the buffer insertion method is applied and

shows that the model size is fixed when the proposed method is used.

Figure 6-10 A comparison between the simulation time of running the extended model using

the Buffer Insertion (BI) method and the Propagation Delay method (PD) when a different

amount of delay steps (x-axis) are added to different percentages of model elements and

interactions.

Figure 6-11 Change in naïve T cell model size in terms of a) number of variables b) number of interactions at

different amounts of delay steps that are added to different percentages of model elements and interactions.

 96

As mentioned in sections 5.4, the timing parameters (i.e. the propagation and regulation

delays) could be inferred using the Nelder-Mead optimization algorithm when time series data are

available. The extended naïve T cell model contains 66 Boolean variables and 107 interactions

which means that the optimization algorithm has to find optimal values for 346 timing parameters

if we don’t specify a smaller set to focus on. Here, we focus on the set of parameters shown in

Figure 6-7 which were obtained manually and run the Nelder-Mead algorithm in order to see if

there is a better set of values that can decrease the error between the experimental results and the

simulation trajectories of Foxp3. The cost function was defined by Equation 5-8 as the difference

between the interpolated Foxp3 experimental data and the simulation trajectories under low and

high Ag doses. Figure 6-12 shows the trajectories of Foxp3 under low Ag dose stimulation using

the manually added delays and the optimized delay values as well as the experimental results. As

seen in Figure 6-12, the steady state values of both manual and optimized delays are similar while

the transient response is different. The transient response of the model with optimized delays is

less delayed and closer to the transient response of the experimental results. This suggests that

some of the manual delays were not necessary and we could have used a less amount of delays.

Table 6-2 shows the actual delay steps that were added manually and the updated value using the

optimization algorithm.

Although the optimization algorithm didn’t change the values of the timing parameters

drastically as shown in Table 6-2, it provided better transient response for Foxp3 which enhances

the performance of the model by decreasing the error between the experimental results and the

simulation trajectories. It also confirms that the manually added delays were good enough to start

with which increases the modeler’s confidence in the values chosen for the timing parameters.

 97

Table 6-2 Values of delay variables in Figure 6-7 before and after applying the optimization algorithm.

 Delay variable Manual delay steps Optimized delay steps

Propagation delays

𝜏𝜏1 5 4

𝜏𝜏2 8 8

𝜏𝜏3 5 5

𝜏𝜏4 6 6

Regulation delays

{𝜃𝜃1𝑎𝑎,𝜃𝜃1𝑖𝑖} {2,10} {2,10}

{𝜃𝜃2𝑎𝑎,𝜃𝜃2𝑖𝑖} {2,3} {2,3}

{𝜃𝜃3𝑎𝑎,𝜃𝜃3𝑖𝑖} {2,2} {1,1}

{𝜃𝜃4𝑎𝑎,𝜃𝜃4𝑖𝑖} {0,10} {0,10}

{𝜃𝜃5𝑎𝑎,𝜃𝜃5𝑖𝑖} {3,2} {1,0}

{𝜃𝜃6𝑎𝑎,𝜃𝜃6𝑖𝑖} {2,1} {2,1}

{𝜃𝜃7𝑎𝑎,𝜃𝜃7𝑖𝑖} {2,1} {1,1}

{𝜃𝜃8𝑎𝑎,𝜃𝜃8𝑖𝑖} {3,2} {3,1}

Figure 6-12 Foxp3 trajectories when the extended model is simulated with the manually defined

delays and the delays found by the optimization algorithm compared to the experimental data.

 98

6.2 Buddying yeast cell cycle

The budding yeast Saccharomyces cerevisiae is an organism that is commonly used as a

biological model for studying the eukaryotic cell cycle. The first phase in the eukaryotic cell cycle

is S phase where each chromosome in the DNA is replicated into two identical chromatids in a

process called DNA synthesis. After DNA synthesis, the cell enters M phase or mitosis where

replicated chromosomes are separated into two nuclei before the cell divides into two new cells.

The eukaryotic cell cycle can be considered as two phases process; S phase and M phase which

are separated by two gap phases G1 and G2. Features such as cell shape, size, and DNA damage

are considered as checkpoints that are built into the regulatory process to ensure successful cell

cycle process (Bähler, 2005). The S. cerevisiae cell grows slightly different from other eukaryotes

during cell cycle where a bud forms from the side of the cell to hold one pole of the mitotic spindle.

After cell division (CD), the bud becomes the daughter cell with one copy of the DNA.

Mathematical models have been developed in the past to study the S. cerevisiae cell cycle

using different approaches such as ordinary differential equations (ODEs) and logical modeling

(Chen et al., 2004; Chen et al., 2000; Irons, 2009; F. Li, Long, Lu, Ouyang, & Tang, 2004). Irons

(Irons, 2009) built a logical model to summarize the existing knowledge about the buddying yeast

cell cycle and to introduce a method for incorporating timing information into logical models with

Boolean variables. The time modeling method described in (Irons, 2009) is called “dummy nodes”

and it has been described in section 2.2.2. Here, we rebuild Irons’ model using our modeling

framework and use DiSH to simulate it. We also compare our time modeling methods to the

dummy nodes method in terms of model size and simulation time. Since the delays in the model

in (Irons, 2009) are assigned under different regulation conditions, we apply the Conditioned State

Transition technique described in section 5.1.2.

 99

6.2.1 Model Description

The S. cerevisiae cell cycle model in (Irons, 2009) is a logical model with 18 Boolean

variables. The four cell cycle events “DNA synthesis”, “Bud growth”, “entry into Mitosis”, and

“cell division” are refered to as “S”, “B”, “M”, and “CD” in the model respectively. The transition

from the gap phase (G1) to S phase begins with cyclin Cln3 activating Cln2, Clb5 through SMBF

and inhibiting cyclin-dependent kinase inhibitor (CKI) through the SMBF/Clb5 pathway. The

transition to S phase promotes the DNA synthesis and Bud formation processes. Following Bud

formation, Clb2 becomes active through B and SFF leading to the transition into M phase which

ends with the activation of Cdc14. The activation of Cdc14 triggers a number of interactions such

as activating Cdh1, Swi5, and CKI which results in cell division (CD) and preparing the cell for

another cycle of G1 phase. Figure 6-13 shows a newtork diagram of the model. A full description

of the main interactions in the model are presented in (Irons, 2009).

Figure 6-13 A network diagram of the buddying yeast cell cycle model in (Irons, 2009).

 100

Since the model contains different kinds of biological interactions and processes, the author

in (Irons, 2009) assigned different delay steps to each interaction and event. For example, all

protein-protein interactions, phosphorylation, and dephosphorylation interactions were assumend

to have 0 delay steps while interactions corresponding to transcrption, degrdation, and cell cycle

events are assumed to have varying delay values. In Irons’ model, all transcriptional activations

are assumed to have 1 delay step except for a few elements. For example, the activation of Clb5

takes 3 delay steps when CKI is present because Clb5 and CKI mutually inhibit each other and it

takes more time for Clb5 to build up and become active. The activation delay of the cell cycle

events S, M, and CD are assumed to have 1 delay step while the Bud formation event is assumed

to have 5 delay steps. The value of the assigned delays are different under different regulation

conditions as shown in Table 6-3 which includes all elements that have delays and the

corresponding regulation conditions. The rest of the update rules are fully described in (Irons,

2009).

6.2.2 Model Simulations

For the purpose of conducting a fair comparison, the simultaneous (SMLN) update scheme

is used to simulate the buddying yeast cell cycle model because it is the scheme used in (Irons,

2009). We also compare the attractors of the model when the Reset and the No-Reset Delays are

utilized as explained in section 5.1.2. Figure 6-14 shows the cyclic attractors obtained by the No-

Reset (part a) and Reset (part b) delay methods where white/black represent active/inactive state.

Each row in Figure 6-14 represnts an attractor state and each column shows the value of the

corresponding element in a specific attractor. The attractors in Figure 6-14 are cyclic which means

 101

Table 6-3 Conditions for activation of model elements with corresponding activation and inhibition delays.

Variable

name

Activation Condition Activation

delay steps

Inhibition

delay steps

Cln3 Yhp1 = 0 1 0

Cln2 SMBF = 1 1 0

Clb5
Cdc20 = 0 AND CK1 = 1 AND SMBF = 1 3 0

Cdc20 = 0 AND CK1 = 0 AND SMBF = 1 1 2

Yhp1 SMBF = 1 1 5

Cdc20 M = 1 AND Clb2 = 1 AND SFF = 1 1 0

Swi5
(Clb2 = 0 AND SFF = 1) 1 2

(Cdc14 = 0 AND SFF = 1) 1 2

CKI
(Cdc14 = 1 AND Swi = 1) 1 0

(Cln2 = 0 AND Clb5 = 0 AND Clb2 = 0 AND Swi = 1) 1 0

S CD = 0 AND (Clb5 = 1 OR Clb2 = 1) 1 0

B CD = 0 AND (Cln2 = 1 OR Clb5 = 1) 5 0

M CD = 0 AND S = 1 AND Clb2 = 1 1 0

CD M = 1 AND FEAR = 1 AND Cdc14 = 1 1 0

 102

that the attractor states will be repeated if the model is initialized at attractor state A0 (i.e.

simulation step #0) and reaches attractor state A18 (with No-Reset delays) or A21 (with Reset

delays). These cyclic attractors represent the budding yeast cell cycle which starts with S phase

(DNA synthesis) and go through B (budding), M (mitosis), and CD (cell division) phases before

the new cell goes through the same cycle. Figure 6-14 shows similar attractor to those reported in

(Irons, 2009) which means that the developed methodologies were capable of recapitulating the

results of the original model. Figure 6-14(a) shows that the No-Reset delay method is equivalent

to the dummy nodes method in terms of the similarities between the attaractors (both generate 19

attractors (A0 A18) and same changes happen at the same simulation steps). The differences

between the No-Reset and Reset methods are shown in Figure 6-14 where the Reset delays method

shows more delayed attractors than those obtained with the No-Reset delays (21 attractors vs. 18

attractors). These differences are due to the delayed activation of Clb5 which takes one more step

to be activated with the Reset delay method. The assigned activation delay to Clb5 is 3 steps when

Figure 6-14 Cyclic attractors of the budding yeast cell cycel model. a) Attractors obtained with the No-Reset

delay method, b) attractors obtained with the Reset delays method. Each row represents an attractor state

where white/black boxes represent an active/inactive state of each model element.

 103

CKI = 1, SMBF = 1, and Cdc20 = 0 and it is only one step when CKI = 0, SMBF = 1, and Cdc20

= 0 as shown in Table 6-3. Therefore, with the No-Reset delay method, Clb5 changes to 1 after

three steps following the change of SMBF from 0 to 1. However, Clb5 needs one more step with

the Reset delay method because CKI changes to 0 at step # 4 (A4) which resets the delay variable.

Although the Reset and No-Reset delay methods were able to reacpitualte the results of the

dummy node method, there is a significant decrease in the simulation time and the model size

when the Reset and No-Reset methods are used. Figure 6-15 shows how the simulation time

increases when the dummy nodes method is used to add different delay steps (e.g. 2, 4, …, 10) to

different percentages of model elements (e.g. 10%, 20%, and 30%) while the simulation time is

almost the same when the proposed delay methods are used. Figure 6-16 shows that the number

of variables and number of interactions do not change with the proposed delay methods while these

numbers increase significantly with the dummy nodes method.

Figure 6-15 A comparison between the simulation time of the budding yeast cell cycle model

using the Dummy Nodes (DN) method and the Regulation Delay method (RD) when a different

amount of delay steps (x-axis) are added to different percentages of model elements.

 104

Figure 6-16 Change in the budding yeast model size in terms of a) number of variables b) number of interactions

at different amounts of delay steps that are added to different percentages of model elements and interactions.

In addition to the decrease in the simulation time and the model size, the introduced

methods in this work are easier to implement and can be easily integrated into an automated

framework for model construction than the dummy nodes method which requires a human

intervention to create a complex network for the added delays, as shown in section 2.2.2. The need

for a human to build a complex network of nodes and developing complex update functions for

each node is error-prone and time consuming.

 105

6.3 Food security in South Sudan

South Sudan is an African country that received its independence from Sudan on July 9,

2011. Following its independence, a civil conflict erupted in December 2013 as a result of power

struggle. Civil conflict affected mostly rural areas and led to sever agriculture damage, disruption

in food production, plundering of crops and livestock, loss of life, health, assets, and income which

caused acute food insecurity and malnutrition (FAO, 2016). In this section, we introduce a discrete

model that was built to study the factors leading to food insecurity in South Sudan using automated

literature reading. An automated reading engine such as Eidos (Sharp et al., 2019) is utilized to

extract events from published literature that describe the situation in South Sudan and to build an

initial version of the model. The automatically created model is then refined by removing the

wrong interactions, changing the update rules, and adding interactions manually in order to make

the simulation results match historical data. The historical data that are used to calibrate the model

are indicators for conflict, inflation, crop yield, rainfall, and refugees population that were

collected from international organizations websites such as Food and Agriculture Organization of

the United Nations (FAO), World Bank, International Monetary Fund (IMF), The Armed Conflict

Location & Event Data Project (ACLED, 2019), and World Health Organization (WHO).

6.3.1 Model Description

The discrete model of the food security in South Sudan contains 38 nodes and 91

interactions. Four nodes in the model are inputs (i.e. nodes without regulators) which are rainfall,

drought, fertile soil, and assistance. The input nodes can be used to test different scenarios such as

predicting what will happen if international organizations provide assistance to the people of South

 106

Sudan and/or how refugees population will change if conflict is decreased. We also used the

historical data of 4 nodes which are crop yield, conflict, inflation, and diseases (i.e. infectious

diseases such as HIV and malaria) to calibrate the model. The simulations were assumed to

represent the situation in Jonglei region during the period from January 2014 to December 2018

and hence, all the historical data were collected during that time period with different resolutions

(the data were collected daily, monthly or yearly). The data were discretized and normalized as

described in section 5.4.1 and the discrete values corresponding to January 2014 were used as

initial values for all the nodes that we have data for except rainfall. The discretized rainfall data

(collected from (CHIRPS, 2019)) is used as input during the whole time period and not just the

initial value.

Figure 6-17 includes a network diagram of the model and shows that the direct positive

regulators for food security are market supply, food availability, assistance and road accessibility

while the direct negative regulators are physical insecurity, trade disruption, and food price. Trade

disruption is caused by conflict and road accessibility is limited by conflict as well which means

that food security will decrease if conflict erupts in the region. Conflict also indirectly increases

physical insecurity and food price which leads to a decreased food security. Therefore, food

security can be restored if conflict is contained and foreign assistance is introduced. In the

following sections, we study the effect of introducing assistance and decreasing conflict at the

beginning of 2018 on food security and the number of refugees in South Sudan as well as studying

the effect of timing on the simulation trajectories of these two nodes.

 107

Figure 6-17 Network diagram of the food security in South Sudan model. Nodes with many interactions are

highlighted with different colors for better visualization.

6.3.2 Model Simulations

In order to calibrate the model and to predict how food security and the number of refugees

will change when assistance is delivered and conflict is reduced, we simulated the model under

four scenarios. Scenario 0 represents the situation without introducing assistance and without

decreasing conflict, Scenario 1 represents the situation when assistance is delivered but without

decreasing conflict, Scenario 2 represents the situation when conflict is decreased to zero but

without introducing assistance, and Scenario 3 represents the situation with assistance and reduced

conflict. Scenario 0 is designed to calibrate the model and to assure that the average simulation

 108

trajectories match the trends of the historical data for the specified nodes. The data from January

2014 to December 2017 were used to calibrate the model before introducing interventions in

January 2018.

Each model variable is assigned three discrete levels (i.e. 0, 1, and 2) except rainfall which

is modeled by 10 discrete levels because of the high resolution of the rainfall data. We also used

the Random-Sequential update scheme (RSQ) to simulate the model assuming that each simulation

step corresponds to one week. We used the toggle functionality described in section 3.2.2 to toggle

the value of assistance from 0 to 2 (in scenarios 1 and 3) and conflict from 2 to 0 (in scenarios 2

and 3) at simulation step 209 which corresponds to January 2018. Figure 6-18 shows the historical

data and the average simulation trajectories of crop yield, conflict, inflation, and diseases under

the four simulation scenarios. It’s shown in Figure 6-18 that the historical data is heterogenous

with different scales and different time spans. For example, the historical data of crop yield,

inflation, and diseases are yearly while the conflict data is monthly. We can also see that the

average simulation trajectories of scenario 0 match the general trend of the historical data. The

average simulation trajectory of crop yield represents weekly changes and the general trend is

increasing as indicated by the historical yearly data. Similarly, the average trajectory of conflict

shows a decrease in the middle of the simulation followed by a small increase which resembles

the general trend of the conflict monthly data. The simulation trajectory of inflation also follows

the trend of the yearly inflation data showing an increase over the whole simulation time before it

stabilizes at a medium level. The diseases node combines data for the percentage of HIV

prevalence in adult population and the number of malaria incidents per 1,000 population at risk

and the simulation trajectory of scenario 0 shows a steady decrease which is also shown in the

historical data trends.

 109

Figure 6-18 Simulation trajectories of the four scenarios (left column) and historical data (right column) for

a) crop yield, b) conflict, c) inflation, and d) diseases.

 110

We don’t see a large difference in crop yield with the different simulation scenarios because

the regulators of crop yield do not change much when assistance is introduced or conflict is

decreased. The main driver for crop yield is rainfall which increases and decreases depending on

the season and hence, the simulation trajectory of crop yield oscillates. Although there is a direct

connection between assistance and crop planting which is a positive regulator for crop yield, the

effect of increasing assistance (i.e. scenario 1) on crop yield is not significant because assistance

is ORed with the other positive regulators of crop planting which makes the effect on crop yield

negligible if any other regulator is active (e.g. rainfall). We can also see in Figure 6-18(b) that

conflict starts to decrease at the end of the simulation (i.e. before December 2018) when assistance

is introduced at the beginning of 2018 (scenario 1). In scenarios 2 and 3, conflict is toggled to 0 in

order to see the effect of decreasing conflict on food security and the number of refugees as shown

in Figure 6-19. Figure 6-18(c) shows that inflation is slightly decreased at the end of the simulation

time when assistance is introduced (scenario 1) and it decreases a bit more with decreasing conflict

(scenarios 2 and 3). Additionally, the average trajectory of diseases shows that introducing

assistance, either with or without decreasing conflict (scenario 2), can help in decreasing the

prevalence of infectious diseases.

Figure 6-19 shows the average simulation trajectories of food security and refugees’

population under the four scenarios. As shown in Figure 6-19(a), the model suggests that food

security will continue to decrease because of the increase in trade disruption and physical

insecurity that is caused by conflict. When conflict is decreased at the beginning of 2018 (scenario

2), food security is not recovered quickly unless a humanitarian assistance is introduced (scenario

3). The food security trajectory of scenario 1 suggests that introducing assistance can help even

with the existence of conflict. However, when conflict is decreased and assistance is introduced,

 111

food security can be improved even more. Figure 6-19(b) shows that the number of refugees will

keep increasing, even if assistance is introduced (scenario 1), as long as conflict exists. In scenarios

2 and 3, the number of refugees starts to decrease when conflict is toggled to 0 at the beginning of

2018.

6.3.3 Effect of timing

In this section, we study the effect of adding delays to model elements and interactions in

order to better recapitulate the trends of the historical data. Although the simulation trajectories in

section 6.3.2 which were obtained using the RSQ scheme show that the model can provide accurate

trends, the timing of events might be shifted or unmatched. For example, Figure 6-18(a) shows

that crop yield is oscillating with an overall increasing trajectory that matches the trend of the

yearly historical data but the increase and decrease in the crop yield trajectory do not match the

time of the harvest and the rainy seasons in South Sudan. The harvest season in South Sudan starts

in September following a rainy season which runs from June to September. Therefore, we added

Figure 6-19 Simulation trajectories for a) food security and b) refugees population.

 112

delays to the model and utilized the Random-Delay SMLN update scheme described in section

5.3.3, assuming that each simulation step corresponds to a month, to get better matching between

the simulation trajectories and the historical data.

The procedure described in section 5.4 is used to find the best set of delays that can be

added to make the trajectories of the four elements in Figure 6-18 match the timing of their

historical data. We started with crop yield and manually added regulation delays to the crop yield

node and its upstream regulators until the average simulation trajectory showed an increase during

the time period of the harvest season and a decrease during the rainy season which is determined

by the monthly rainfall data that was obtained from (CHIRPS, 2019). The same manual procedure

is used to add delays to the conflict, diseases, and inflation nodes and their upstream regulators

until the average simulation trajectories were close enough to the trends of the historical data. Once

the added regulation and propagation delays were selected manually, the Nelder-Mead

optimization technique was utilized to find the optimal delay values using the optimization-based

simulation methodology described in section 5.4.2. The historical data of conflict, inflation, and

diseases as well as synthesized data for crop yield that show an increase during the harvest season

were used to create the cost function for the optimization algorithm as described by Equation 5-8.

Tables 6-4 and 6-5 show model variables and their corresponding manual and optimized

delays. Since each model element is assigned three discrete values, there are 4 state transitions (i.e.

from 0 to 1, 1 to 2, 2 to 1, and 1 to 0) and hence, we created four regulation delay variables, 𝜃𝜃. We

also created two more delay variables to represent the spontaneous and the balancing behavior

delays. The changed values between the manual and optimized delays are highlighted in red.

 113

Table 6-4 Manual and optimized delay steps assigned to model elements. S represents spontaneous delays,

𝜽𝜽𝒌𝒌→𝒍𝒍 represents the regulation delay for the transition from discrete level k to l, and B represents the

balancing behavior delays (balancing behabior is set to decrease)

Variable name Manual delays

S, [𝜃𝜃0→1 ,𝜃𝜃1→2 ,𝜃𝜃2→1 ,𝜃𝜃1→0], B

Optimized delays

S, [𝜃𝜃0→1 ,𝜃𝜃1→2 ,𝜃𝜃2→1 ,𝜃𝜃1→0], B

Access_to_land 6, [0,0,5,7], 0 6, [0,0,4,7], 0

Civil_insecurity 6, [6,6,0,0], 0 5, [6,6,0,0], 0

Community_violence 0, [6,6,2,3], 7 0, [6,6,2,3], 6

Conflict 0, [6,4,5,5], 5 0, [6,4,5,4], 4

Crop_demand 6, [6,6,0,0], 0 6, [5,6,0,0], 0

Crop_planting 8, [6,8,0,0], 0 7, [5,8,0,0], 0

Crop_price 0, [5,5,6,4], 6 0, [5,4,6,4], 6

Crop_supply 6, [3,2,0,0], 0 6, [3,2,0,0], 0

Crop_yield 0, [5,5,0,0], 5 0, [4,5,0,0], 5

Currency_depreciation 0, [5,5,0,0], 0 0, [5,5,0,0], 0

Economy 0, [4,3,5,6], 5 0, [4,3,4,6], 5

Fishing 8, [0,0,4,2], 0 8, [0,0,4,2], 0

Food_price 8, [5,7,0,0], 0 7, [5,7,0,0], 0

Food_security 0, [4,3,5,4], 6 0, [4,2,5,4], 6

Inflation 4, [3,4,0,0], 0 3, [3,3,0,0], 0

Livelihood_disruption 5, [4,5,4,2], 0 5, [4,5,4,2], 0

Livestock 0, [5,6,2,3], 6 0, [5,6,2,3], 5

Local_market_access 0, [5,6,7,6], 6 0, [4,5,7,6], 6

 114

Table 6-5 Manual and optimized delay steps for the reset of model elements.

Variable name Manual delays

S, [𝜃𝜃0→1 ,𝜃𝜃1→2 ,𝜃𝜃2→1 ,𝜃𝜃1→0], B

Optimized delays

S, [𝜃𝜃0→1 ,𝜃𝜃1→2 ,𝜃𝜃2→1 ,𝜃𝜃1→0], B

Market_supply 6, [6,5,0,0], 0 6, [6,4,0,0], 0

Poor_household 5, [6,5,0,0], 0 5, [6,5,0,0], 0

Refugees 6, [6,6,0,0], 0 6, [6,6,0,0], 0

Resource_based_conflict 5, [0,0,5,6], 0 5, [0,0,5,6], 0

Trade_disruption 6, [6,6,0,0], 0 6, [6,6,0,0], 0

Worker_displacement 7, [6,6,0,0], 0 7, [5,6,0,0], 0

Diseases Hold, [5,6,4,6], 0 Hold, [4,6,4,6], 0

Food_availability 0, [5,6,4,5], 6 0, [5,5,4,5], 6

The effect of adding manual and optimized delays is shown in Figure 6-20 which includes

the average trajectories of crop yield, conflict, inflation, and diseases. It can be seen in Figure 6-

20(a) that the increase in crop yield (highlighted with blue boxes) is synchronized with the harvest

season which follows the rainy season (where crop yield is decreased). However, there is no

difference between the average trajectory obtained with the manual or the optimized delays. Figure

6-20(b) shows that conflict is more decreased compared to the simulation results in Figure 6-18(b)

which includes the average trajectory of conflict without delays. It’s also shown in Figure 6-20(b)

that the optimized delays make conflict decreases more which is closer to the trend of the historical

data in Figure 6-18(b) indicating that the optimization algorithm was capable of finding a better

set of delay values that make conflict matches better the historical data. In Figures 6-20(c) and (d),

we see a small decrease in the trajectories of inflation and diseases with the optimized delays than

 115

the manual delays which is not significant but it shows that the optimization algorithm doesn’t

damage the model if it can’t find a better solution.

Figure 6-20 Average simulation trajectories of a) crop yield, b) conflict, c) inflation,

and d) diseases with manual and optimized delays. Harvest season is highlighted with

blue boxes in the crop yield plot.

 116

The effect of adding the optimized delays on food security and the refugees’ population is

tested under the different simulation scenarios described in section 6.3.2 as shown in Figure 6-21.

Similar to the results in Figures 6-18 and 6-19, we see that food security is improved in scenario 1

when assistance is introduced in January 2018 and in scenario 3 when both assistance is introduced

and conflict is decreased at the beginning of 2018. There is a small increase in food security under

scenario 2 when only conflict is decreased and without introducing assistance which suggests that

assistance is crucial for the developing country even after the conflict is stopped. Figures 6-21(d)

and (e) show also that inflation and diseases can be decreased if assistance is introduced regardless

of the conflict status. However, Figure 6-21(f) shows that the number of refugees can decrease

dramatically if conflict is decreased even without assistance.

The simulation results in Figures 6-18, 6-19, and 6-21 show that both the RSQ and

Random-Delay SMLN schemes can provide average trajectories similar to the trends of the

historical data and can predict what will happen for food security and refugees’ population when

interventions such as providing humanitarian assistance and stopping conflict are made. However,

each method represents the time of events differently. In the RSQ scheme, time is implicit and

evaluating each update function can be separated by a number of simulation steps (i.e. time)

equivalent to the number of model variables since the probability of evaluating a function at a

specific simulation is 1/𝑛𝑛 where 𝑛𝑛 is the total number of model variables. On the other hand, time

is explicitly represented as delay steps in the Random-Delay SMLN scheme where all update

functions can be evaluated at each simulation step after the delay steps have elapsed. Although the

Random-Delay SMLN scheme with the introduced time modeling methods are efficient in

recapitulating the trends of the historical data, knowledge about the relative timing of events has

to be available. If such knowledge is not available, the RSQ scheme can provide accurate

 117

simulation trajectories with less effort because of the randomness that the simulation scheme

introduces when selecting an update function for updating. Additionally, using an optimization-

based simulation method for finding the optimal set of delay variables can help in increasing the

modeler’s confidence in the manually added delays and can make the simulation trajectories match

the historical or experimental trends of data which improves the model accuracy.

Figure 6-21 average simulation trajectories of a) crop yield, b) conflict, c) food security, d) inflation, e)

diseases, and f) inflation using the Random-Delay SMLN scheme with the optimized delays under the four

simulation scenarios described in section 6.3.2.

 118

7.0 Conclusion and Future Work

In this work, we introduced methods for facilitating the process of creating and analyzing

discrete models of complex systems with special focus on explicit representation of time in order

to provide means for modeling the relative timing of systems’ events. We developed a

representation format that is easy for modelers to interact with and easy for machines to process

when automated model creation through literature reading is needed. The representation format

works as a scaffold for holding the information extracted from automated or manual literature

reading as well as being a good interface for modelers to change the parameterizations of the model

such as adding initial values, changing the structure of the update functions, adding delays,

controlling the spontaneous and balancing behaviors, and storing the metadata of the model. The

representation format is also readable by the DiSH simulator which is developed to simulate

logical and discrete models under many simulation schemes as described in Chapter 3. We also

introduced techniques for evaluating the update functions when multiple discrete levels are

assigned to model elements. The developed techniques utilize min, max and/or weighted sum

functions to evaluate the update functions at each simulation step. The modeler can also control

the spontaneous behavior of elements that have only positive or only negative regulators as well

as choosing what should happen if the strength of the positive and negative regulators of an element

is equal (balancing behavior). Choosing between the min, max, or weight sum functions and

controlling the spontaneous and balancing behavior is all integrated with the representation format

with special notations that makes it easy for modelers to make many changes. Additionally, we

developed methods for standardizing the representation of common network motifs in order to

 119

facilitate the process of converting the unstructured interactions that can be extracted using

automated literature reading into well-structured interactions with specific update functions.

We developed also techniques for incorporating timing information into discrete and

logical models of complex systems in order to consider the relative timing of systems events. The

developed methods include assigning delays to control the time needed for a regulation signal to

travel from the regulator to the regulated element and to control the time needed by an element to

change its state from one discrete level to another. We also allow modelers to assign different

delays under different regulation conditions which gives them flexibility to try multiple options

when building the model. The developed delay methods allowed us to introduce a new simulation

scheme (i.e. Random-Delay SMLN) which runs fast as the SMLN scheme and provides stochastic

and accurate trajectories as the RSQ but with explicit time representation. Additionally, we utilized

the Nelder-Mead algorithm to optimally find the best set of delay parameters that reduce the error

between the average simulation trajectories and the trend of the historical or experimental data.

The developed optimization-based simulation technique allows for direct mapping between the

simulation steps and the actual timing of systems events and provides a means for matching the

historical and experimental data in an automated way.

The developed methods in this dissertation were applied on three models of complex

systems such as the naïve T cell differentiation, the budding yeast cell cycle, and food security in

South Sudan. The introduced methods showed better performance compared to the methods in

literature and indicated that we can get better simulation results in less time and with less complex

models. The time modeling methods showed that, when timing information is available, we can

get more accurate trajectories that have transient and steady state responses similar to the trends

of the historical and experimental data. If timing information are not available, as in the food

 120

security model, the RSQ without delays can provide accurate trajectories in less time and with less

effort because we don’t need to try many delay values. The results of applying the optimization

algorithm suggest that we can improve the trend of the simulation trajectories if we start from a

good initial point and therefore modelers have to manually add delays to selected model elements

based on background knowledge until the behavior of the elements of interest becomes closer to

the trend of the experimental or historical data which is time consuming and labor intensive.

As a future work, more optimization-based simulation techniques such as the genetic

algorithm could be used to find the optimal delay values. The genetic algorithm is a global

optimization algorithm that traverses the solution space with less probability of getting stuck in a

local minimum. Also, developing methods for automatically extracting timing information from

literature and linking them to the optimization algorithm could be useful in speeding up the

modeling process because modelers might not need to add manual delays to start the optimization

algorithm with. Computer vision techniques could be used to read charts and figures from

published literature and the extracted information can be organized into a time series format that

could be used by modelers to build the cost function that is needed by the optimization algorithms.

Additionally, code parallelization is essential for reducing the simulation time and speeding up the

run times of the optimization-based simulation techniques which will allow modelers to try many

parameterizations in a less amount of time. The introduced methods could also be applied on

cancer progression and organs development models where time is crucial and can largely affect

the simulation results.

 121

Bibliography

ACLED. (2019). The Armed Conflict Location & Event Data Project. Retrieved from
https://www.acleddata.com/

Albert, I., Thakar, J., Li, S., Zhang, R., & Albert, R. (2008). Boolean network simulations for life
scientists. Source code for biology and medicine, 3(1), 16.

Albert, R., & Robeva, R. (2015). Signaling networks: Asynchronous boolean models. In Algebraic
and discrete mathematical methods for modern biology (pp. 65-91): Elsevier.

Aldridge, B. B., Saez-Rodriguez, J., Muhlich, J. L., Sorger, P. K., & Lauffenburger, D. A. (2009).
Fuzzy logic analysis of kinase pathway crosstalk in TNF/EGF/insulin-induced signaling.
PLoS computational biology, 5(4), e1000340.

Bähler, J. (2005). Cell-cycle control of gene expression in budding and fission yeast. Annu. Rev.
Genet., 39, 69-94.

Bioentities. Bioentities Database. Retrieved from https://github.com/sorgerlab/bioentities

Blinov, M. L., Faeder, J. R., Goldstein, B., & Hlavacek, W. S. (2004). BioNetGen: software for
rule-based modeling of signal transduction based on the interactions of molecular domains.
Bioinformatics, 20(17), 3289-3291.

Bock, M., Scharp, T., Talnikar, C., & Klipp, E. (2014). BooleSim: an interactive Boolean network
simulator. Bioinformatics, 30(1), 131-132.

Buckler, J. L., Liu, X., & Turka, L. A. (2008). Regulation of T‐cell responses by PTEN.
Immunological reviews, 224(1), 239-248.

Chen, K. C., Calzone, L., Csikasz-Nagy, A., Cross, F. R., Novak, B., & Tyson, J. J. (2004).
Integrative analysis of cell cycle control in budding yeast. Molecular biology of the cell,
15(8), 3841-3862.

https://www.acleddata.com/
https://github.com/sorgerlab/bioentities

 122

Chen, K. C., Csikasz-Nagy, A., Gyorffy, B., Val, J., Novak, B., & Tyson, J. J. (2000). Kinetic
analysis of a molecular model of the budding yeast cell cycle. Molecular biology of the
cell, 11(1), 369-391.

CHIRPS. (2019). Climate Hazards Group InfraRed Precipitation with Station Data. Retrieved from
https://developers.google.com/earth-engine/datasets/catalog/UCSB-
CHG_CHIRPS_DAILY

Curiel, T. J., Coukos, G., Zou, L., Alvarez, X., Cheng, P., Mottram, P., . . . Burow, M. (2004).
Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege
and predicts reduced survival. Nature medicine, 10(9), 942.

Danos, V., Feret, J., Fontana, W., Harmer, R., & Krivine, J. (2008). Rule-based modelling,
symmetries, refinements. In Formal methods in systems biology (pp. 103-122): Springer.

Dee, D., & Ghil, M. J. S. J. o. A. M. (1984). Boolean difference equations, I: Formulation and
dynamic behavior. 44(1), 111-126.

Epstein, J. M. (2008). Why model? Journal of Artificial Societies and Social Simulation, 11(4),
12.

Facciabene, A., Motz, G. T., & Coukos, G. (2012). T-regulatory cells: key players in tumor
immune escape and angiogenesis. Cancer research, 72(9), 2162-2171.

Faeder, J. R., Blinov, M. L., & Hlavacek, W. S. (2009). Rule-based modeling of biochemical
systems with BioNetGen. Systems biology, 113-167.

FAO. (2016). PEACE AND FOOD SECURITY Investing in resilience to sustain rural livelihoods
amid conflict. Retrieved from http://www.fao.org/3/a-i5591e.pdf

Gan, X., & Albert, R. (2018). General method to find the attractors of discrete dynamic models of
biological systems. Physical Review E, 97(4), 042308.

Ghil, M., & Mullhaupt, A. J. J. o. s. p. (1985). Boolean delay equations. II. Periodic and aperiodic
solutions. 41(1-2), 125-173.

Gillespie, A., Rokugawa, S., Matsunaga, T., Cothern, J. S., Hook, S., & Kahle, A. B. (1998). A
temperature and emissivity separation algorithm for Advanced Spaceborne Thermal

https://developers.google.com/earth-engine/datasets/catalog/UCSB-CHG_CHIRPS_DAILY
https://developers.google.com/earth-engine/datasets/catalog/UCSB-CHG_CHIRPS_DAILY
http://www.fao.org/3/a-i5591e.pdf

 123

Emission and Reflection Radiometer (ASTER) images. IEEE transactions on geoscience
and remote sensing, 36(4), 1113-1126.

GO. Gene Ontology Database. Retrieved from http://geneontology.org

Gonzalez, A. G., Naldi, A., Sanchez, L., Thieffry, D., & Chaouiya, C. (2006). GINsim: a software
suite for the qualitative modelling, simulation and analysis of regulatory networks.
Biosystems, 84(2), 91-100.

Harris, L. A., Hogg, J. S., Tapia, J.-J., Sekar, J. A., Gupta, S., Korsunsky, I., . . . Faeder, J. R.
(2016). BioNetGen 2.2: advances in rule-based modeling. Bioinformatics, 32(21), 3366-
3368.

Hawse, W. F., Sheehan, R. P., Miskov-Zivanov, N., Menk, A. V., Kane, L. P., Faeder, J. R., &
Morel, P. A. (2015). Cutting edge: differential regulation of PTEN by TCR, Akt, and
FoxO1 controls CD4+ T cell fate decisions. The Journal of Immunology, 194(10), 4615-
4619.

Helikar, T., & Rogers, J. A. (2009). ChemChains: a platform for simulation and analysis of
biochemical networks aimed to laboratory scientists. BMC systems biology, 3(1), 58.

HGNC. Database of Human Gene Names. Retrieved from http://www.genenames.org

InterPro. InterPro Database. Retrieved from https://www.ebi.ac.uk/interpro/

Irons, D. (2009). Logical analysis of the budding yeast cell cycle. Journal of theoretical Biology,
257(4), 543-559.

Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly constructed genetic nets.
Journal of theoretical Biology, 22(3), 437-467.

Kauffman, S. A. (1993). The origins of order: Self-organization and selection in evolution: Oxford
University Press, USA.

Kerdiles, Y. M., Stone, E. L., Beisner, D. L., McGargill, M. A., Ch'en, I. L., Stockmann, C., . . .
Hedrick, S. M. (2010). Foxo transcription factors control regulatory T cell development
and function. Immunity, 33(6), 890-904.

http://geneontology.org/
http://www.genenames.org/
https://www.ebi.ac.uk/interpro/

 124

Kim, H. P., & Leonard, W. J. (2002). The basis for TCR‐mediated regulation of the IL‐2 receptor
α chain gene: role of widely separated regulatory elements. The EMBO journal, 21(12),
3051-3059.

Li, F., Long, T., Lu, Y., Ouyang, Q., & Tang, C. (2004). The yeast cell-cycle network is robustly
designed. Proceedings of the National Academy of Sciences, 101(14), 4781-4786.

Li, S., Assmann, S. M., & Albert, R. (2006). Predicting essential components of signal transduction
networks: a dynamic model of guard cell abscisic acid signaling. PLoS Biol, 4(10), e312.

Macian, F. (2005). NFAT proteins: key regulators of T-cell development and function. Nature
Reviews Immunology, 5(6), 472.

Materi, W., & Wishart, D. S. (2007). Computational systems biology in drug discovery and
development: methods and applications. Drug discovery today, 12(7-8), 295-303.

McCluskey, E. J. (1956). Minimization of Boolean functions. Bell Labs Technical Journal, 35(6),
1417-1444.

MeSH. MeSH Database. Retrieved from https://www.ncbi.nlm.nih.gov/mesh

Miskov-Zivanov, N., Marculescu, D., & Faeder, J. R. (2013). Dynamic behavior of cell signaling
networks: model design and analysis automation. Paper presented at the Proceedings of
the 50th Annual Design Automation Conference.

Miskov-Zivanov, N., Turner, M. S., Kane, L. P., Morel, P. A., & Faeder, J. R. (2013a). Duration
of T cell stimulation as a critical determinant of cell fate and plasticity. Science signaling,
6(300), ra97.

Morris, M. K., Saez-Rodriguez, J., Clarke, D. C., Sorger, P. K., & Lauffenburger, D. A. (2011).
Training signaling pathway maps to biochemical data with constrained fuzzy logic:
quantitative analysis of liver cell responses to inflammatory stimuli. PLoS computational
biology, 7(3), e1001099.

Müssel, C., Hopfensitz, M., & Kestler, H. A. (2010). BoolNet—an R package for generation,
reconstruction and analysis of Boolean networks. Bioinformatics, 26(10), 1378-1380.

https://www.ncbi.nlm.nih.gov/mesh

 125

Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The computer
journal, 7(4), 308-313.

Ohkura, N., Kitagawa, Y., & Sakaguchi, S. (2013). Development and maintenance of regulatory
T cells. Immunity, 38(3), 414-423.

Pfam. Pfam Database. Retrieved from http://pfam.xfam.org/

PubChem. PubChem Database. Retrieved from https://pubchem.ncbi.nlm.nih.gov

Quine, W. V. (1955). A way to simplify truth functions. The American Mathematical Monthly,
62(9), 627-631.

Sayed, K., Bocan, K. N., & Miskov-Zivanov, N. (2018). Automated Extension of Cell Signaling
Models with Genetic Algorithm. Paper presented at the Engineering in Medicine and
Biology Society (EMBC), 2018 40th Annual International Conference of the IEEE.

Sayed, K., Kuo, Y.-H., Kulkarni, A., & Miskov-Zivanov, N. (2017a). DiSH simulator: Capturing
dynamics of cellular signaling with heterogeneous knowledge. Paper presented at the 2017
Winter Simulation Conference (WSC), Las Vegas, NV.

Sayed, K., Telmer, C. A., Butchy, A. A., & Miskov-Zivanov, N. (2017). Recipes for Translating
Big Data Machine Reading to Executable Cellular Signaling Models. Paper presented at
the International Workshop on Machine Learning, Optimization, and Big Data.

Sayed, K., Telmer, C. A., & Miskov-Zivanov, N. (2016). Motif modeling for cell signaling
networks. Paper presented at the Biomedical Engineering Conference (CIBEC), 2016 8th
Cairo International.

Schaub, M. A., Henzinger, T. A., & Fisher, J. (2007). Qualitative networks: a symbolic approach
to analyze biological signaling networks. BMC systems biology, 1(1), 4.

Schmidt, H., & Jirstrand, M. (2005). Systems Biology Toolbox for MATLAB: a computational
platform for research in systems biology. Bioinformatics, 22(4), 514-515.

Sevim, V., Gong, X., & Socolar, J. E. J. P. c. b. (2010). Reliability of transcriptional cycles and
the yeast cell-cycle oscillator. 6(7), e1000842.

http://pfam.xfam.org/
https://pubchem.ncbi.nlm.nih.gov/

 126

Sharp, R., Pyarelal, A., Gyori, B., Alcock, K., Laparra, E., Valenzuela-Escárcega, M. A., . . . Tang,
Z. (2019). Eidos, INDRA, & Delphi: From free text to executable causal models. Paper
presented at the Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics (Demonstrations).

Shevach, E. M. (2000). Regulatory T cells in autoimmmunity. Annual review of immunology,
18(1), 423-449.

Singh, V., & Dhar, P. K. (2015). Systems and synthetic biology: Springer.

Thomas, R. (1973). Boolean formalization of genetic control circuits. Journal of theoretical
Biology, 42(3), 563-585.

Thomas, R., & d'Ari, R. (1990). Biological feedback: CRC press.

Turner, M. S., Kane, L. P., & Morel, P. A. (2009). Dominant role of antigen dose in CD4+ Foxp3+
regulatory T cell induction and expansion. The Journal of Immunology, 183(8), 4895-4903.

UniProt. UniProt Database. Retrieved from http://www.uniprot.org

Wang, R.-S., Saadatpour, A., & Albert, R. (2012). Boolean modeling in systems biology: an
overview of methodology and applications. Physical biology, 9(5), 055001.

Yao, Z., Kanno, Y., Kerenyi, M., Stephens, G., Durant, L., Watford, W. T., . . . Moriggl, R. (2007).
Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood, 109(10), 4368-4375.

Yu, S. J., Tung, T. Q., Park, J., Lim, J., & Yoo, J. (2012). ezBioNet: A modeling and simulation
system for analyzing biological reaction networks. Journal of the Korean Physical Society,
61(8), 1267-1273.

Zheng, J., Zhang, D., Przytycki, P. F., Zielinski, R., Capala, J., & Przytycka, T. M. (2010).
SimBoolNet—a Cytoscape plugin for dynamic simulation of signaling networks.
Bioinformatics, 26(1), 141-142.

Ziegler, S. F. (2006). FOXP3: of mice and men. Annu. Rev. Immunol., 24, 209-226.

http://www.uniprot.org/

	Title Page
	Committee Page
	Abstract
	Table of Contents
	List of Tables
	Table 2-1 A comparison between the available time abstraction methods.
	Table 4-1 Element type and ID database.
	Table 4-2 The list of cellular locations and their IDs from the Gene Ontology (GO) database.
	Table 4-3 A tabular representation for the toy example in Figure 4-1(a).
	Table 4-4 A tabular representation for the toy example in Figure 4-1(b).
	Table 4-5 A tabular representation for the nested interactions in Figure 4-3.
	Table 4-6 A tabular representation for the gene expression motif in Figure 4-4.
	Table 4-7 A tabular representation for the gene expression motif in Figure 4-5.
	Table 4-8 A tabular representation for the gene expression motif in Figure 4-6.
	Table 5-1 A truth table with delays for ,𝒙-𝟑. in the toy example of Figure 5-2.
	Table 5-2 Highlights of the proposed methods in terms of the comparison in Table 2-1.
	Table 6-1 Values of delay variables in Figure 6-7.
	Table 6-2 Values of delay variables in Figure 6-7 before and after applying the optimization algorithm.
	Table 6-3 Conditions for activation of model elements with corresponding activation and inhibition delays.
	Table 6-4 Manual and optimized delay steps assigned to model elements. S represents spontaneous delays, ,𝜽-𝒌→𝒍. represents the regulation delay for the transition from discrete level k to l, and B represents the balancing behavior delays (balancing...
	Table 6-5 Manual and optimized delay steps for the reset of model elements.

	List of Figures
	Figure ‎2-1 A toy example of three interacting elements and the corresponding Boolean update functions.
	Figure ‎2-2 a) A toy example of four interacting components, b) the equivalent logic circuit.
	Figure ‎2-3 The representation of the toy example in Figure 2-2 using the Buffer Insertion method. (a) The toy example with the added delay nodes, (b) the equivalent logic circuit, and (c) the timing diagram of ,𝒙-𝟒. using the simultaneous update sc...
	Figure ‎2-4 The representation of the toy example in Figure 2-2 using the dummy nodes method. (a) The toy example with the added delay nodes, (b) the equivalent logic circuit, and (c) the timing diagram of ,𝒙-𝟒. using the simultanoues update scheme.
	Figure ‎2-5 The representation of the toy example in Figure 2-2 using the BDEs. (a) The toy example with delays, (b) the equivalent logic circuit without a clock signal, and (c) the timing diagram of ,𝒙-𝟒. over a continuous time period.
	Figure ‎2-6 The representation of the toy example in Figure 2-2 using the Piecewise linear differential equations. (a) The modified toy example, (b) the equivalent logic circuit without a clock signal, and (c) the changes of ,𝑿-𝟒. and ,𝒙-𝟒. when ,...
	Figure ‎2-7 The timing diagram of ,𝒙-𝟒. in Figure 2-6(a) under random changes in the regulators’ values.
	Figure ‎3-1 a) A toy example: three nodes (A, B and C), and their update rules specified. b) Simulation schemes.
	Figure ‎3-2 STG for the toy example in Figure 3-1(a), for (a) the SMLN scheme and (b) the RSQ scheme. Labels on graph edges indicate which elements are selected for update.
	Figure ‎3-3 STG for the toy example in Figure 3-1(a) using the RB-RSQ scheme.
	Figure ‎3-4 Logic rules and STG in the (a) USB-RSQ and (b) NUSB-RSQ scheme.
	Figure ‎3-5 An example of ranked rules.
	Figure ‎3-6 (a) Grouped and Ranked rules, (b) Grouped rules with different rates, (c) two small examples of STG when grouped rules are used.
	Figure ‎4-1 A toy example for a small network that can be simulated by calculating (a) logical scores or (b) arithmetic scores
	Figure ‎4-2 Schematic representation of a situation common to many biological signaling pathways where the regulation of complex formation, ,𝒙-𝟐. binding to ,𝒙-𝟑., is regulated by a third protein, ,𝒙-𝟏., so that the ,𝒙-𝟐./,𝒙-𝟑. complex can a...
	Figure ‎4-3 Examples of nested interactions. a) Positive regulation of Activation interaction, b) Positive regulation of Inhibition interaction, c) Negative regulation of Activation interaction, d) Negative regulation of Inhibition interaction
	Figure ‎4-4 Gene expression motif.
	Figure ‎4-5 Receptor activation motif.
	Figure ‎4-6 Translocation motif.
	Figure ‎5-1 The representation of the toy example in Figure 2-2 using the proposed methods. (a) The modified toy example showing the propagation and the regulations delays, (b) The element update schematic using the logical scoring, and (c) the elemen...
	Figure ‎5-2 A toy example of three interacting components.
	Figure ‎5-3 Timing diagram for the toy example in Figure 5-1(a) using the SMLN simulation scheme.
	Figure ‎5-4 Timing diagram for the toy example in Figure 5-1(a) using the RSQ simulation scheme
	Figure ‎6-1 Trajectories for Foxp3 using different simulation schemes: a) SMLN, b) RB-RSQ, c) USB-RSQ, d) NUSB-RSQ, e) RKSQ, f) Toggling feature with USB-RSQ, and g) A list of simulation scenarios.
	Figure ‎6-2 Steady state values of Foxp3 and IL-2 using a) logical scoring, b) arithmetic scoring, and c) the difference between the values using the logical scoring minus the arithmetic scoring.
	Figure ‎6-3 Steady state values of Foxp3 using a) the logical scoring, b) the arithmetic scoring with PTEN initialized at 100% and with different number of levels, N, and TCR values. The green (blue) highlighted range represents the percentage of Foxp...
	Figure ‎6-4 Trajectories of Foxp3, IL-2, mTOR, and PTEN using a) the logical scoring, b) the arithmetic scoring with N = 6, different initial levels of TCR, and PTEN is initialized at 100%.
	Figure ‎6-5 a) A network diagram of the upstream elements of Foxp3 as well as the simulation trajectories of b) PTEN, c) mTOR, d) Foxp3, e) SMAD3, f) NFAT, and g) STAT5 from the original model, using logical and arithmetic scoring with N = 3, PTEN ini...
	Figure ‎6-6 Percentage of attractors with antigen dose removal at time steps T1:T5 as a) in the original model, b) using the logical scoring, c) using the arithmetic scoring, d) attractors frequencies when the antigen dose is removed at T3.
	Figure ‎6-7 A subnetwork of the extended naive T cell differentiation model before (left) and after (right) assigning propagation and regulation delays.
	Figure ‎6-8 Foxp3 trajectories under the simulation scenarios shown in Figure 6-1(g) usnig the Random-Delay SMLN update scheme for the extended model.
	Figure ‎6-9 A comparison between Foxp3 trajectories obtained by different models with the experimental results under low Ag dose.
	Figure ‎6-10 A comparison between the simulation time of running the extended model using the Buffer Insertion (BI) method and the Propagation Delay method (PD) when a different amount of delay steps (x-axis) are added to different percentages of mode...
	Figure ‎6-11 Change in naïve T cell model size in terms of a) number of variables b) number of interactions at different amounts of delay steps that are added to different percentages of model elements and interactions.
	Figure ‎6-12 Foxp3 trajectories when the extended model is simulated with the manually defined delays and the delays found by the optimization algorithm compared to the experimental data.
	Figure ‎6-13 A network diagram of the buddying yeast cell cycle model in (Irons, 2009).
	Figure ‎6-14 Cyclic attractors of the budding yeast cell cycel model. a) Attractors obtained with the No-Reset delay method, b) attractors obtained with the Reset delays method. Each row represents an attractor state where white/black boxes represent ...
	Figure ‎6-15 A comparison between the simulation time of the budding yeast cell cycle model using the Dummy Nodes (DN) method and the Regulation Delay method (RD) when a different amount of delay steps (x-axis) are added to different percentages of mo...
	Figure ‎6-16 Change in the budding yeast model size in terms of a) number of variables b) number of interactions at different amounts of delay steps that are added to different percentages of model elements and interactions.
	Figure ‎6-17 Network diagram of the food security in South Sudan model. Nodes with many interactions are highlighted with different colors for better visualization.
	Figure 6-18 Simulation trajectories of the four scenarios (left column) and historical data (right column) for a) crop yield, b) conflict, c) inflation, and d) diseases.
	Figure ‎6-19 Simulation trajectories for a) food security and b) refugees population.
	Figure ‎6-20 Average simulation trajectories of a) crop yield, b) conflict, c) inflation, and d) diseases with manual and optimized delays. Harvest season is highlighted with blue boxes in the crop yield plot.
	Figure ‎6-21 average simulation trajectories of a) crop yield, b) conflict, c) food security, d) inflation, e) diseases, and f) inflation using the Random-Delay SMLN scheme with the optimized delays under the four simulation scenarios described in sec...

	Acknowledgement
	1.0 Introduction
	1.1 Motivation
	1.2 Scope
	1.3 Contribution
	1.4 Dissertation Statement
	1.5 Dissertation Organization

	2.0 Background
	2.1 Logical Modeling
	2.2 Timing in Logical Models
	2.2.1 Buffer Insertion
	2.2.2 “Dummy” Nodes
	2.2.3 Boolean Delay Equations (BDEs)
	2.2.4 Piecewise Linear Differential Equations (PWLDEs)
	2.2.5 Overview of the Current Methods

	3.0 DiSH Simulator0F
	3.1 Simulation Schemes
	3.1.1 Simultaneous (SMLN) Scheme
	3.1.2 Random-order Sequential (RSQ) Scheme
	3.1.3 Round-Based Random-order Sequential (RB-RSQ) Scheme
	3.1.4 Step-Based Random-order Sequential (SB-RSQ) Scheme
	3.1.5 Ranked-order Sequential (RKSQ) Scheme

	3.2 Additional Functionalities
	3.2.1 Grouped rules
	3.2.2 Toggle Implementation

	3.3 Discrete DiSH

	4.0 Model Representation1F
	4.1 Tabular Representation Format
	4.2 Representation of Common Biological Motifs2F
	4.2.1 Simple Interactions
	4.2.2 Binding Interactions
	4.2.3 Nested Interactions
	4.2.3.1 Positive Regulation of Activation
	4.2.3.2 Positive Regulation of Inhibition
	4.2.3.3 Negative Regulation of Activation.
	4.2.3.4 Negative Regulation of Inhibition.

	4.2.4 Gene expression
	4.2.5 Receptor activation
	4.2.6 Translocation Motif

	5.0 Time in Discrete Models
	5.1 Time Modeling
	5.1.1 General State Transitions
	5.1.2 Conditioned State Transitions
	5.1.2.1 Reset Delays
	5.1.2.2 No-Reset Delays

	5.1.3 Spontaneous and Balancing delays

	5.2 Timing in Motifs
	5.2.1 Receptor Activation
	5.2.2 Translocation
	5.2.3 Gene Expression
	5.2.4 Phosphorylation, Dephosphorylation, and Ubiquitination
	5.2.5 Complex Formation

	5.3 Timing under Different Simulation Schemes
	5.3.1 SMLN Scheme
	5.3.2 RSQ Scheme
	5.3.3 Random-delay SMLN update scheme
	5.3.4 Overview of the Proposed Delay Methods

	5.4 Inferring Timing Parameters from Data
	5.4.1 Data preparation
	5.4.2 Optimization-based Simulations

	6.0 Applications
	6.1 Naïve T cell differentiation
	6.1.1 Model Description
	6.1.2 Effect of simulation schemes
	6.1.3 Effect of scoring functions
	6.1.4 Effect of time modeling

	6.2 Buddying yeast cell cycle
	6.2.1 Model Description
	6.2.2 Model Simulations

	6.3 Food security in South Sudan
	6.3.1 Model Description
	6.3.2 Model Simulations
	6.3.3 Effect of timing

	7.0 Conclusion and Future Work
	Bibliography

