Echeverri, Sebastian
(2020)
How spatial constraints on efficacy and dynamic signaling alignment shape animal communication.
Doctoral Dissertation, University of Pittsburgh.
(Unpublished)
Abstract
Effective communication is important to the survival and reproduction of many organisms. Signal transmission and reception have spatial constraints that interact to determine effectiveness. Signals are often best perceived from specific angles, and sensory systems may be limited in their ability to detect or interpret incoming stimuli from certain directions. Alignment between these directional biases can be critical to effective communication. Misalignment of either signal or sensor may disrupt signal perception. Signals also degrade during the distance traveled from signaler to receiver. Thus, how animals position themselves during communication may be under selection. Despite this, we know little about the spatial arrangement of signalers and receivers, what behaviors influence positioning, or the causes and consequences of variation in positioning. To address this fundamental gap in knowledge, I developed a geometric framework for studying the spatial constraints of communication and how they shape positioning across visual, sound, and chemical signaling. To investigate respective roles of signaler and receiver in managing these spatial constraints, I then characterized the spatial dynamics of visual signaling in the jumping spider Habronattus pyrrithrix. Males perform an elaborate courtship dance which includes arm waves and colorful ornaments; the latter are not visible from the side. The female can only perceive colors of male displays when they are presented in her frontal field of view. I recorded relative positions and orientations of both actors throughout courtship and established the role of each sex in maintaining signaling alignment. Finally, I tested how males control female orientation, and respond to signaling challenges. Using video playback, I asked how males’ arm-waving display and the visual environment determine how effectively they attracted female attention, as well as how males respond to variation in their signaling environment. These studies reveal that signaling alignment is frequently disrupted by females turning away from males, but that male arm-waving effectively re-captures her attention. Males also modulate displays in response to changing spatial and environmental conditions. Overall, this dissertation reveals the widespread role of spatial constraints in driving signaling behavior, and demonstrates that the spatial arrangement of signaler and receiver must be managed dynamically through behavioral responses.
Share
Citation/Export: |
|
Social Networking: |
|
Details
Item Type: |
University of Pittsburgh ETD
|
Status: |
Unpublished |
Creators/Authors: |
|
ETD Committee: |
|
Date: |
16 September 2020 |
Date Type: |
Publication |
Defense Date: |
21 May 2020 |
Approval Date: |
16 September 2020 |
Submission Date: |
7 August 2020 |
Access Restriction: |
No restriction; Release the ETD for access worldwide immediately. |
Number of Pages: |
171 |
Institution: |
University of Pittsburgh |
Schools and Programs: |
Dietrich School of Arts and Sciences > Biological Sciences |
Degree: |
PhD - Doctor of Philosophy |
Thesis Type: |
Doctoral Dissertation |
Refereed: |
Yes |
Uncontrolled Keywords: |
visual ecology, communication, signal efficacy, receiver psychology, attention |
Date Deposited: |
16 Sep 2020 13:43 |
Last Modified: |
16 Sep 2020 13:43 |
URI: |
http://d-scholarship.pitt.edu/id/eprint/37706 |
Metrics
Monthly Views for the past 3 years
Plum Analytics
Actions (login required)
|
View Item |