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Discovery of precise biomarkers are crucial for improved clinical diagnostic, prognostic, and

therapeutic decision-making. They help improve our understanding of the underlying physio-

logical (and pathophysiological processes) within an individual. To discover precise biomark-

ers, we must take a personalized medical approach that accounts for an individual’s unique

clinical, genetic, omic, and environmental information. The molecular-level omic information

provides an opportunity to understand complex physiological processes at an unprecedented

resolution. The reducing costs and improvements in high-throughput technologies, which

collect omic data from an individual, has now made it feasible to include a person’s omic

information as a standard component to their medical record. This information can only

be clinically actionable if it is understandable to a clinician and applicable in the correct

medical context. Biomarker discovery from omic data is challenging because they are 1)

high-dimensional, which increases the chance of false positive discoveries from traditional

data mining methods; 2) most diseases are multifactorial, where many factors influence the

disease outcome, making it challenging to be modeled by most data mining algorithms while

keeping the model understandable to a clinician; and 3) traditional data mining methods

discover only statistically significant biomarkers but do not account for clinical relevance,

therefore they do not translate well in clinical practice.

In this dissertation, I formulate the problem of learning both statistically significant

and clinically relevant biomarkers as a knowledge discovery problem. In computer science,
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knowledge discovery in databases is “a non-trivial process of the extraction of valid, novel,

potentially useful, and ultimately understandable patterns in data”. Clinical practice guide-

lines in decision support systems are often presented as explicit propositional logic rules

because they are easy for a clinician to understand and are often actionable instructions

themselves. Bayesian rule learning (BRL) is a rule-learning classifier that learns patterns

as a set of probabilistic classification rules. I develop BRL search to efficiently learn from

high-dimensional data. I study different BRL model representations to help obtain a ro-

bust set of rules that can encode context-specific independencies found in the data. To help

efficiently model multifactorial diseases, I study various ensemble methods with BRL, col-

lectively called Ensemble Bayesian Rule Learning (EBRL). I also develop a novel ensemble

model visualization method called Bayesian Rule Ensemble Visualization tool (BREVity)

to make EBRL more human-readable for a researcher or a clinician. I develop BRL with

informative priors (BRLp) to enable BRL to incorporate prior domain knowledge into the

model learning process, thereby further reducing the chance of discovering false positives.

Finally, I develop BRL for knowledge discovery (BRL-KD) that can incorporate a clinical

utility function to learn models that are clinically more relevant. Collectively, I use these

BRL methods, developed for the task of biomarker discovery, as the knowledge engine of an

intelligent clinical decision support system called Bayesian Rules for Actionable Informed

Decisions or BRAID, a concept framework that can be deployed in clinical practice.
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1.0 INTRODUCTION

Medical practice depends upon precise biomarkers to help better understand the underly-

ing physiological (and pathophysiological) processes within an individual to make correct

diagnostic, prognostic, and therapeutic decisions. A biomarker is “a characteristic that is

objectively measured and evaluated as an indicator of normal biological processes, pathogenic

processes, or pharmacologic responses to a therapeutic intervention” [Group et al., 2001].

Biomarkers commonly used in medical practice include macroscopic factors such as— age,

smoking, blood pressure, gender, family history of disease, etc. Biomarkers can also include

microscopic, biomolecular factors, such as— cholesterol, blood glucose, harmful mutations

in BRCA genes is a diagnostic biomarker because it substantially increases the risk of devel-

oping breast or ovarian cancer [Levy-Lahad and Friedman, 2007], a mutation in the EGFR

gene can help predict if tumor cells will respond to therapeutic treatment using tyrosine

kinase inhibitors [da Cunha Santos et al., 2011], an increase in prostate-specific antigen in

blood serum of men helps predict an increased risk developing a prostatic disease [Catalona

et al., 1991] etc. Biomarker discovery is the process of discovering novel biomarkers to help

improve our understanding of the biological process under study.

Based on their functional relationship to the clinical outcome of interest, biomarkers can

be classified into two types, namely— predictive and mechanistic biomarkers [Shortliffe and

Cimino, 2013]. Predictive biomarkers are correlated to the clinical outcome. They may or

may not be causal of the outcome. They are useful for decision support (e.g., finding a sub-

population at a high risk of developing a disease or behaving differently to standard therapy)

and suggest focus for research (e.g., study its role in the biological system). Mechanistic

biomarkers, on the other hand, are causes of the pathological condition, disease progression,

or sensitivity to a given drug. They are potential candidates for interventions to either
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activate or inhibit pathways relevant to the disease mechanism. In this dissertation, when I

mention biomarkers, I am referring to predictive biomarkers.

Precise descriptions of biological processes can only be achieved with a personalized

medical approach, which takes into account an individual’s unique clinical, genetic, omic,

and environmental information [Ginsburg and Willard, 2009]. The omic information includes

information from the whole molecular mechanism within an individual, from the genome to

its derivatives (RNA, proteins, and metabolites). These molecular fingerprints help identify

and distinguish each individual’s unique physiology. Omic information promises to improve

our understanding of biological systems at an unprecedented resolution. Biomarkers derived

from omic datasets can help realize the goals of personalized medicine.

High-throughput technologies are methods of automation for performing a large num-

ber of experiments in parallel. They can measure omics information from a large number

of individuals (experiments). Since the completion of the Human Genome Project [Collins

et al., 2003] in 2003, high-throughput sequencing technologies have undergone remarkable

developments in terms of speed, resolution, and cost-efficiency [Mardis, 2011]. These devel-

opments have also made it feasible to include omic information as a standard component of

an individual’s medical record, thereby moving a step closer towards personalized medicine.

To discover biomarkers associated with the clinical outcome of interest, from these complex

omic datasets, we need data mining tools to efficiently discover patterns of such associations

from the data. Particularly, machine learning methods offer promising solutions to learn

models from these complex and voluminous datasets [Olson et al., 2017]. Omic datasets are

high-dimensional, noisy, and usually collected from complex multifactorial disease processes

making them challenging for analysis using traditional data mining methods. I describe

these challenges and their effect on traditional data mining methods in Section 1.1.

Information learned from data analysis of omic datasets can only be clinically useful if it

is ultimately understandable to a clinician and can be applied in a specific medical context.

Translational medicine is a field that deals with the translation of biological knowledge

discovered from basic scientific research (bench-side) to clinical practice (bed-side), which

can eventually help improve population health. [Lenfant, 2003, Sung et al., 2003] identify

two main barriers, T1 barrier and T2 barrier, which must be overcome, to successfully
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translate newly discovered biological knowledge into clinical practice. I depict these barriers

by modifying a figure from [Shortliffe and Cimino, 2013], as shown in Figure 1.

Figure 1: Translational medicine roadblocks. Figure was obtained and modified from Figure

25.3 in [Shortliffe and Cimino, 2013].

The T1 translational barrier comes from the hesitation in translating knowledge from new

discoveries in biological research to changing clinical care guidelines. The T2 translational

barrier comes from the hesitation in adopting the changed clinical guidelines into regular

clinical practice by health practitioners. Currently, these barriers are long and can take

about 10 to 20 years to overcome the T1 barrier alone. [Burke, 2016] reported in 2016,

that there were 768,000 papers indexed in PubMed about biomarkers. Yet, despite all the

technological advances in omics research, we are still very far from widespread clinical use

of these omic biomarkers. Currently, there are only a few dozen clinically relevant cancer

biomarkers [Selleck et al., 2017].

In data-driven sciences, there are three levels of informatics— data, information, and

knowledge. Data is simply the raw observations recorded in a database. Information is

giving meaning to the data by discovering patterns via data analysis methods. Knowledge

is to interpret the information in a specific clinical context and to use that information to
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guide actions. To help motivate crossing the T1 and T2 barriers, we must seek knowledge

and not just information from our omic data analysis.

Clinical context comes from the validation of utility in the intended clinical application

of the the discovered biomarkers. Traditional data analysis methods do not account for

clinical utility. They seek information and not knowledge. Their focus is to find patterns

with high statistical significance i.e., the certainty that the discovered pattern (of associa-

tion between biomarker and the clinical outcome) is correct. Statistical significance is not

clinical relevance. Clinical relevance is a measure of how useful the discovered pattern is

in guiding clinical care. Clinical relevance, in addition to statistical significance, also ac-

counts for clinical utility such as invasiveness, efficacy, safety, and cost of the discovered

biomarkers [Shortliffe and Cimino, 2013, Selleck et al., 2017]. [Selleck et al., 2017] emphasize

that it is not enough to identify variants but to identify actionable variants that have the

potential to revolutionize healthcare. Traditional data analysis methods don’t account for

clinical relevance because it is hard to quantify a metric for clinical relevance. To reduce

the translational medicine barriers, we need data analysis methods that not only discover

patterns with high statistical significance but can also find those with high clinical relevance.

The data mining model that learns statistically significant and clinically relevant as-

sociation patterns between the clinical outcome of interest and the biomarkers, must also

ultimately be understandable to a clinician for it to be actionable in practice. A minimum

requirement for the biomarker model to be routinely applied in medical practice is for it to

be deployed using clinical decision support systems [Selleck et al., 2017]. A clinical decision

support system (CDS) is a health information technology that assists physicians and other

medical practitioners with clinical decision support i.e. it provides relevant knowledge and

patient-specific information, intelligently filtered or presented at appropriate times, to en-

hance patient health and healthcare [Osheroff et al., 2007]. A popular approach to modeling

CDS is using rule-based models that use simple propositional logic statements of the form IF-

<condition>-THEN-<consequent> (e.g., MYCIN [Shortliffe, 1977], Leeds Abdominal Pain

System [De Dombal et al., 1972], HELP system [Kuperman et al., 1991], etc., each described

further in Section 2.3). Rule-based CDS are popular because they are human-readable and

are often actionable instructions themselves.
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In this dissertation, I formulate the problem of discovering statistically significant and

clinically relevant biomarkers as a knowledge discovery problem. In computer science, knowl-

edge discovery in databases (KDD) is the process of discovering knowledge from data. For-

mally, [Fayyad et al., 1996b] define the KDD process as “the non-trivial process of identifying

valid, novel, potentially useful, and ultimately understandable patterns in the data”. In this

definition, knowledge patterns refer to associations between biomarkers and clinical outcome

of interest. They must be understandable to a clinician for it to be deployed in a CDS and

for the medical practitioner to be able to act on this knowledge. Valid patterns generalize to

unseen patient population. We can achieve this with models that contain patterns that are

statistically significant. Novel biomarkers are useful in research, whereas useful patterns can

mean non-invasive, cost-effective, high efficacy, and safe biomarkers. So, to solve the problem

being tackled in this dissertation, we need to solve the problem of knowledge discovery.

Real-world application:

After developing the data mining method that solves the knowledge discovery problem, I

will demonstrate its use on a real-world problem of discovering biomarkers associated with

cardiovascular diseases. Cardiovascular disease (CVD) is a group of disorders of the heart,

vascular diseases of the brain, and diseases of blood vessels [Mendis et al., 2011]. CVDs

includes a range of serious medical conditions including heart attacks, some types of stroke,

and heart failure. In 2015, collectively CVDs were responsible for over 15 million deaths

in the world [Organization et al., 2017]. In the last 15 years, CVDs have been the leading

global cause of deaths. In the clinical management of CVD, risk assessment scores are used

to identify high-risk individuals to help target preventive therapies to those with high-risk

of developing CVD. Heart SCORE (Strategies Concentrating on Risk Evaluation) project,

is a longitudinal prospective study undertaken to— help identify racial differences in the

development of cardiovascular diseases, to evaluate mechanisms for these differences, and to

improve risk stratification. The project studies a cohort based on the greater Pittsburgh

metropolitan area. The Heart SCORE project collects a myriad of data from the cohort

including demographics, medical history, laboratory assessment, lifestyle variables, etc. The

project also collects the metabolomic profile of the cohort. High-throughput technologies

for metabolomics provide a holistic view to study small-molecule metabolites created as the
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end products of specific cellular processes [Shortliffe and Cimino, 2013]. [Shah and Newgard,

2015] calls for an integrated metabolomics and genomics approach in order to decipher the

mechanism of CVDs. In this dissertation, I develop the data mining method for knowledge

discovery method and apply it in the real-world problem of discovering the clinical and

metabolic biomarkers associated with CVD.

1.1 PROBLEM DESCRIPTION

To implement efficient statistical methods for biomarker discovery, with the ultimate goal of

being used in clinical practice, the statistical method must overcome some of the challenges

posed by these, otherwise promising, omic datasets. Particularly, high degree of uncertainty

in modeling these datasets are attributable to their high-dimensionality, noise, and class

imbalance. The statistical method should be able to model multifactorial diseases, the

most prevalent and complex type of diseases, which these omic datasets can help better

understand. With the ultimate goal of being clinically useful, the statistical method should

be able to learn models that are not only statistically valid but also clinically useful. Finally,

for knowledge derived from statistically valid and clinically useful models to be actionable

in medical practice, it is important for the clinician to be able to interpret the reasoning

behind the predictions made by the statistical model.

We further discuss each of these challenges as follows—

1. High-dimensionality: Omic datasets are high-dimensional. High-dimensional datasets

can often have several thousands of candidate variable measurements (e.g., genes, SNPs,

or metabolites) that can potentially explain an outcome variable of interest (e.g., phe-

notype or disease states) but they have only a few samples (e.g., number of patients in

study cohort) as evidence to support any patterns inferred from such datasets. These

large numbers of candidate variables generate a model search space that is too large for

most data mining algorithms to explore efficiently, and having only a few samples as

evidence generates uncertainty for the algorithm to determine the statistical correctness

of any proposed hypothesis [Ein-Dor et al., 2006]. In such a model search space, data
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mining algorithms can easily get stuck in local optima.

High-dimensional data also have an increased risk of supporting false positives. With

such a large number of variables and little evidence, the algorithms can easily infer

associations— between spurious variables and the outcome variable— by chance [Hastie

et al., 2005].

2. Data noise: Many biomedical datasets are generated from noisy and unreliable data

measurement methods [Shortliffe and Cimino, 2013]. Faulty and miscalibrated equipment

can lead to erroneous measurements. Poor record-keeping and incorrect reporting is

also an important source of noise. As an example from omics, gene-expression data

measurements are known to be noisy. As a result gene-signatures discovered from such

datasets are often unreliable and non-reproducible [Koscielny, 2010]. Non-reproducibility

of biomarkers is one of the most important reasons why biomarkers, discovered from data

analytical methods, do not eventually get used in clinical practice.

Many powerful statistical techniques, including boosting classifiers, are known to struggle

with modeling noisy data as they rely on the correctness of each data sample [Freund

et al., 1996].

3. Class imbalance: A very common source of uncertainty from biomedical datasets is

from class imbalance. This means that out of the samples collected in a study, there are

much fewer positive samples than negative samples. Since most diseases have fewer cases

than normals in the general population, often even careful selection of at-risk patients

may lead up to only a few individuals in the cohort that eventually develop the disease.

Many powerful statistical methods in machine learning— including C4.5 and C5.0 deci-

sion trees, logistic regression, neural networks, and support vector machines— perform

poorly on class imbalanced data [Japkowicz and Stephen, 2002]. The main problem is

that their heuristic score (e.g., loss functions like least-squared error) used to evaluate

the quality of the model rewards accuracy (i.e., getting as many correct predictions as

possible) instead of class discrimination (e.g., quantitatively separate the positive sam-

ples from the negative samples). As a result, in their over-eagerness to get as many

correct predictions as possible, these methods end up predicting all samples as negative

(i.e., the majority class). Such statistical models have very limited clinical value.
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4. Multifactorial diseases: Most diseases are multifactorial in nature. Single factor dis-

eases are those that have only one causal factor that leads to the disease state. Examples

of single-factor disease are monogenic disorders (or Mendelian disorders), where a sin-

gle gene is responsible for the pathological condition. Examples of single-factor diseases

include cystic fibrosis (caused from variants of the CTFR gene) [Riordan et al., 1989]

and Huntington’s disease (caused from variations in HTT gene) [Vonsattel and DiFiglia,

1998]. These diseases and their causes are important to study, not only from the disease

and treatment standpoint but also from the perspective of functional genomics. Single

factor diseases are, however, much rarer compared to the far more prevalent, multifac-

torial diseases [Antonarakis and Beckmann, 2006]. Multifactorial diseases are diseases,

where many common variants, each with a small effect, collectively increase the disease

risk. Commonly occurring diseases like type II diabetes [Fuchsberger et al., 2016] and

coronary heart disease [Poulter, 1999] are known to be multifactorial. An example of

a clinically used multifactorial biomarker model is— a 21-gene score that helps predict

the likelihood of distant recurrence in node-negative and estrogen-receptorpositive breast

cancer patients treated with tamoxifen [Paik et al., 2004].

Popular data mining methods like decision trees struggle with modeling such diseases

[Seni and Elder, 2010]. These tree-based methods use nodes and edges in the tree to

specify a variable-value condition. The samples in the dataset are split by being assigned

to a tree leaf, if they match the variable-value conditions specified by the path from

the root to that leaf. As a result of this algorithmic nature, they suffer from data

fragmentation i.e., with each specialization of the tree, the depth of the tree increases

and the dataset is further split into fewer subsets in form of tree leaves. The algorithm

is now left with fewer examples to help validate any new specialization to its hypothesis.

Hypotheses inferred from a small number of samples don’t generalize well to unseen data

and therefore have poor validity.

5. Clinical utility: Statistical significance is not clinical relevance [Shortliffe and Cimino,

2013]. Statistical significance is the certainty that the test will give the correct answer.

Clinical relevance is a measure of how valuable this information is in guiding clinical

care. Clinical relevance includes specificity, efficacy, safety, non-invasiveness, and cost-
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effectiveness associated with the answer. If a test significantly lowers the quality of life,

then the test, while statistically significant, is not clinically relevant. Ultimately, newly

discovered biomarkers must prove to be better in some capacity from the current clinical

standard. One way to do this is to show general improvement of predictive performance.

In case of personalized medicine approach, this can come from an improvement in predic-

tion for a specific molecular subtype. Clinical utility can also come from similarly good

predictive models but with biomarkers at a cheaper cost. For example, both finger stick

glucose test and venipuncture can be used to measure blood glucose as they measure this

fairly accurately for a certain range. If the goal was to just measure blood glucose for

that range and nothing else, finger stick testing is clinically more relevant because they

are cheaper, faster, and less-invasive than venipuncture, all the while offering the same

accuracy.

To the best of my knowledge, there is no data mining method that allows us to define

clinical utility and seek clinically more relevant statistical models. Often in the biomarker

development process, establishing clinical utility is left to a later stage of the process

using decision theoretic and econometric methods. Such an approach does not include

the dataset used for biomarker discovery and as a result loses valuable information from

the data about alternative models with varying trade-offs between statistical significance

and clinical relevance.

6. Model interpretability: Interpretable models offer human-readable explanations for

their predictions. Interpretable machine learning models provide knowledge that can be

more actionable in practice. Interpretable models provide both the context and reasoning

for their predictions to the medical practitioner to assist in their decision making. A

context is a description of a sub-population that behave differently in terms of their

clinical outcome when compared to the general population. Models that learn symbolic

representations of data—for example, Bayesian networks, decision trees, and rule-based

classifiers— readily provide these human-readable explanations for their predictions and

also describe the contexts for the different clinical outcomes.

Rule-based models and decision trees are among the most frequently used statistical

models in biomedicine due to their simplicity and interpretability [Esfandiari et al., 2014].
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Rule learning is one of the oldest, intensively developed, and widely applicable fields in ma-

chine learning. Rule learning methods are particularly useful for knowledge discovery tasks,

like biomarker discovery, where model parsimony (succinct representations of patterns in the

data), interpretability (human readable explanations for predictions), and actionability (use

the model inferred knowledge in some way, like biomarker validation). [Fürnkranz et al.,

2012] present a comprehensive overview of the wide range of modern rule learning methods,

including relational and propositional rule learning, under a unified framework. Rule mod-

els offer both descriptive and predictive explanations of the data. Descriptive learning in

statistics is a metric meant to group a sub-population based on their unique characteristics.

For example— individuals over the age of 60, with low cholesterol, or containing a particu-

lar molecular subtype. Being able to identify sub-populations with a significant statistical

support can help assist in personalized medicine if this subpopulation behaves differently

than the general population. Predictive rules are actionable instructions themselves with an

IF-THEN statement. If the condition part of the rule is true, then the consequent must also

be true. Then there is an associated confidence value for such a claim.

Two rule learning classifiers that have achieved considerable success in modeling high-

dimensional omic datasets are— Rule Learning (RL) [Clearwater and Provost, 1990, Ganchev

et al., 2011, Ogoe et al., 2015] and Bayesian Rule Learning (BRL) [Gopalakrishnan et al.,

2010]. In [Gopalakrishnan et al., 2006] modified RL algorithm was used for the analysis of

high-dimensional proteomic mass spectrometry data to identify protein biomarkers for early

detection of Amyotropic Lateral Sclerosis (ALS) a chronic neurodegenerative disease. The

discovered markers were validated with immunoblot and immunohistochemistry using com-

mercially available antibodies [Ranganathan et al., 2005]. RL was used to develop a panel

of 10 serum biomarkers to identify indviduals at risk of developing lung cancer using data

generated from Luminex xMAP (Luminex Corporation) multiplexed immunoassays [Bigbee

et al., 2012]. BRL was shown to achieve significantly better predictive performance when

compared to other popular decision tree and rule-based classifiers, on average, over 24 high-

dimensional genomic and proteomic datasets [Gopalakrishnan et al., 2010]. A 4-protein

serum biomarker panel was designed using BRL for the detection of esophageal adenocar-

cinoma from mass spectrometrybased spectral count data [Zaidi et al., 2014]. There have
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been many other successful applications of RL and BRL for the task of biomarker discov-

ery using high-dimensional datasets [Gopalakrishnan et al., 2004, Gopalakrishnan et al.,

2006, Ranganathan et al., 2005, Ryberg et al., 2010, Zeng et al., 2011].

As a result of its past success, BRL classification models are suitable candidates to help

overcome the challenges listed in this section and develop it further into a valuable tool for

biomarker discovery. In the next section, I outline the plan for its development.

1.2 THE APPROACH

In this dissertation, I design a decision support system, powered by a suite of Bayesian Rule

Learning-based methods that tries to overcome the challenges posed by omic data analysis, as

discussed in the previous section, and develop it into a valuable tool for biomarker discovery.

Specifically, this dissertation proposes to overcome the challanges with the following four

developments to BRL, namely— 1) Bayesian Rule Learning methods to represent context-

specific independencies (BRL.G, BRL.DT, and BRL.DG), 2) Ensemble methods in Bayesian

Rule Learning (EBRL), 3) Bayesian Rule Learning with informative priors (BRLp), and 4)

Bayesian Rule Learning for Knowledge Discovery (BRL-KD). The four methods collectively

solve the problem of knowledge discovery and are part of the Bayesian Rule Learning System

suite of algorithms. These algorithms are part of a larger framework of a decision support

system that provides actionable decision support to a medical practitioner. This decision

support system is called Bayesian Rules for Actionable Informed Decisions or BRAID. The

BRAID framework is illustrated in Figure 2.

The cloud component of the BRAID framework can be run on a cloud-based server and

involves the computational work of developing the predictive model from BRL. An expert or

a team of experts iteratively run BRL, with feedback, to learn rule models that are clinically

relevant at the point-of-care. The computational work includes running the machine learning

algorithms in the BRL system, validating the knowledge discovered by BRL, and deploying

the validated knowledge as a decision support system. The first component of this is a

data repository. BRAID uses BRL to discover knowledge relevant to the clinical problem.
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Figure 2: Bayesian Rules for Actionable Informed Decisions (BRAID): An overview of the

conceptual cloud-based clinical decision support system that uses the Bayesian Rule Learning

(BRL) system as the knowledge engine. The user is a medical practitioner, who queries a

patient record to BRAID, which will in turn return the probability of the different clinical

outcomes for the patient, and also offer human-readable explanation of factors driving the

predicted outcome. The expert helps develop the knowledge base, iteratively generated from

BRL system, to develop a rule model that is clinically relevant at the point-of-care.
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This data source can be historical electronic health records or a record of a clinical study.

We must specify the candidate biomarkers and an outcome variable of interest. This is fed

into the BRL suite of algorithms. Using the various methods developed in this dissertation,

BRL learns clinically relevant knowledge from the data with the help of the expert. The

expert iteratively develops the BRL models leveraging its various functionalities to help

improve the clinical relevance of the model. Once a rule is validated, this knowledge is

entered into an editor that maps the BRL rule base into clinical standardized terminologies.

This module is called Ensemble of Rules Integrated Expert (ERIE). This module allows the

domain expert to accept, edit, or validate the rules. This editor can also be used by an

expert to add new knowledge or integrate knowledge from other sources, including existing

clinical practice guidelines. The expert can also delete or modify rules from this module.

Finally, the approved model is deployed by BRAID as a clinical decision support system for

a physician.

In the hospital component of the BRAID framework, the medical practitioner is the

user. The user can query a patient record to BRAID. BRAID identifies the variables from

the patient record that are relevant to its model. It returns the probability of the outcome

variable of interest to the user. Additionally, it offers human-readable reasoning behind the

prediction.

To realize this BRAID framework, I formulate BRL’s role as a knowledge discovery al-

gorithm. In computer science, knowledge discovery in databases (KDD) is the process of

discovering knowledge from data. Formally, [Fayyad et al., 1996b] define the KDD process

as “the non-trivial process of identifying valid, novel, potentially useful, and ultimately un-

derstandable patterns in the data”. In this dissertation, the patterns learned by BRL are

explicit propositional rules, which are understandable because rules are human-readable. To

learn valid rules, they must generalize well to unseen data by overcoming the challenges

described in 1.1. Novel and useful rules account for clinical relevance. Having framed the

problem in such a way, I describe how the four algorithms within the BRL system, together

help discover knowledge—

1. BRL.G, BRL.DT, BRL.DG: Three representations of BRL were studied to improve

the understandability of the BRL rule model. Specifically, BRL was extended to represent
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all possible context-specific independencies. The BRL model represents the data using a

full decision tree i.e., the paths from the root node to each leaf node are all of the same

length. Collectively, these paths represent all possible variable-value (biomarker-value)

combinations using the variables (biomarkers) selected by the model. BRL translates

each unique path from the root to leaf as an IF-THEN rule. Using the rules to exactly

represent a full-decision tree limits the use of the expressive power of rules. Each of

these rules describe a context, using variable-value assignments, to uniquely identify a

sub-population in the data. Context-specific independence means that this subpopula-

tion does not depend upon a variable that the general population depends upon. Full

decision trees cannot represent context-specific independencies. Rules are more flexi-

ble representations of these context-specific independences. Explicitly encoding these

independences as rules is beneficial to biomarker discovery. Such rules are more com-

pact because there are fewer rules needed to describe the entire study population. This

makes the rule model more readable. These representations also reduces the number of

biomarkers that need to be validated for the subpopulation (described by the rule) by

removing biomarkers that this subpopulation does not depend upon.

In this dissertation, I study three representations— 1) Bayesian Rule Learning with global

constraints (BRL.G), 2) Bayesian Rule Learning with local constraints represented as a

decision tree (BRL.DT), and 3) Bayesian Rule Learning with local constraints repre-

sented as a decision graph (BRL.DG). Each of these methods represent different degrees

of context-specific independences.

2. EBRL: BRL was extended to better model multifactorial diseases to improve its validity

on such problems. Multifactorial diseases are challenging to model for tree-based (or

graph-based) algorithms because of data fragmentation as described earlier (see point

4 in Section 1.1). BRL is also a tree-based algorithm and as a result isn’t efficient

in modeling multifactorial diseases. One approach to overcome this challenge is to use

ensemble methods to combine predictions from several models, each focusing on different

aspects of the prediction problem.

An unwanted consequence of using ensemble methods is the loss of interpretability that

was the main motivation of using rule-based methods in BRAID. To help alleviate this
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problem, we developed an ensemble model visualization method called Bayesian Rule

Ensemble Visualization tool (or BREVity) that helps interpret the reasoning behind the

predictions made by EBRL.

3. BRLp: BRL was extended to BRLp that can include prior domain knowledge into

the model learning process to help further improve its validity. [Fayyad et al., 1996a]

emphasized the importance of prior domain knowledge in all steps of the KDD process.

In biomedicine, often in addition to the dataset, we have some prior domain knowledge

about the dataset. This domain knowledge can help guide the data mining algorithm to

focus on regions in the model search space that are either objectively more promising for

a given problem. The prior knowledge can come from domain literature (e.g., searching

through PubMed), a domain expert (e.g., a physician), domain knowledge-bases (e.g.,

bioinformatics databases or ontologies like Gene Ontology) or from other related datasets

(e.g., from public data repositories like Gene Expression Omnibus). It is imperative to

develop data mining methods that can leverage domain knowledge to assist with the

data mining process.

I develop BRLp by leveraging the Bayesian learning framework within BRL to incorporate

prior domain knowledge into the model learning process by BRL. The benefit of this

capability can be seen for problems involving high-dimensional datasets. When there are

considerably large number of variables and only a few examples in the data, associations

between spurious variables in the data can occur by chance (false positive discovery).

By incorporating reliable prior knowledge from other sources, we can help the search

algorithm focus on model subspace with known and reliable patterns. This can help

reduce false positive discoveries.

4. BRL-KD: All the methods described so far attempt to improve the validity of the rule

patterns. This method is developed to improve the clinical relevance of the discovered

knowledge by also accounting for novelty and usefulness. BRL-KD can incorporate a

clinical utility function into the model learning process. An example of that is to learn

cost-efficient biomarkers. By incorporating the costs associated with each biomarker,

BRL-KD is able to offer a set of BRL models, each offering a different trade-off between

cost and validity. The choice of the ideal trade-off depends upon the clinical point-of-care
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and the current clinical standard in use.

With the help of all these four methods, BRL can perform knowledge discovery that

finds valid, novel, useful, and understandable patterns from the data.

1.2.1 Thesis

The main hypothesis of this dissertation is that—

the designed BRAID system powered by the BRL, EBRL, BRLp, and BRL-KD methods
developed herein, learn classifiers for biomarker discovery that are, on average, statistically
more significant compared to traditional supervised learning methods, while also being able
to find clinically more relevant classifiers.

To test this hypothesis, I pursue two main aims— 1) To design and develop the four

algorithms BRL, EBRL, BRLp, and BRL-KD, that collectively help learn clinically rele-

vant knowledge, and 2) To evaluate these developed methods, using 25 publicly available

gene-expression diagnostic datasets over 10-fold cross-validation design, in terms of its pre-

diction and calibration performance, and compared to state-of-the-art traditional supervised

methods in machine learning. For BRL-KD, I will also evaluate for clinical utility using an

objectively defined utility function and evaluate the clinical utility on a held-out test set.

1.3 SIGNIFICANCE

The contributions of this dissertation include the following—

1. To my knowledge, this is the first work to learn and represent context-specific inde-

pendencies existing in the data, using rule-based classifiers. This is important because

rule-based models are widely applicable in biomedicine (including in the design of clin-

ical decision support systems). Explicitly representing context-specific independencies

in rules make them succinct because each rule describes a subpopulation with a unique

outcome distribution. Such rules are also more robust because they exclude any vari-

ables that the population as a whole may depend upon but the subpopulation does not

depend upon. This is especially important in biomarker development process during the

validation of the discovered biomarkers.
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2. This would be the first work to combine BRL models in an ensemble learning frame-

work to study the properties of the different strategies of model generation and model

aggregation, in the context of omic data analysis.

3. Bayesian Rule Ensemble Visualization (BREVity) tool in the BRAID system would be

a novel model visualization tool to help visualize variable relationships in an ensemble

of rule-based classifiers. BREVity could prove to be an important tool in the biomarker

development process.

4. BRLp would be a novel rule-based method capable of allowing the user to incorporate

prior domain knowledge into the rule learning process. There is a wealth of knowledge

in various bioinformatics resources that can potentially assist in learning more accurate

classifiers. BRLp would enable the user to use this knowledge in model learning.

5. BRL-KD would be a novel algorithm that can incorporate clinical utility into the model

learning process, in order to learn clinically more relevant classifiers. This can be im-

portant in both machine learning and medicine. In machine learning, to my knowledge,

there exists no model learning method, without manual intervention by experts, that can

learn models that are clinically more useful. From the medical perspective, this tool can

be important to improve the chances of clinical adoption of the learned models.

6. The BRAID system is a novel clinical decision support system design that uses machine

learning algorithms to learn statistically significant and clinically relevant classifiers that

offers decision support to a physician, while providing readable explanations for its pre-

dictions in form of rules or the BREVity model visualization tool.

1.4 DISSERTATION OVERVIEW

The dissertation is organized as follows— in chapter 2, I provide an overview of the biomarker

development process, the wealth of knowledge available from the disciplines of bioinformatics

and translational informatics, description of clinical decision support systems, and a concep-

tual background on knowledge discovery in databases. I also provide the reader with a review

on the Bayesian approach to probability and statistics, which then sets up understanding
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a popular and robust statistical model called Bayesian networks. We will then review rule

learning methods, one of the oldest and still widely used statistical models. I then introduce

the reader to Bayesian Rule Learning, a rule learning algorithm that leverages the bene-

fits of the Bayesian inference framework. Chapter 3 contains the motivation and design of

each of the Bayesian Rule Learning methods developed in this dissertation study. Chapter

4 describes the experimental design, evaluation metrics, and results from the evaluation of

the BRL algorithms in terms of their predictive and calibration performance on real-world

gene-expression datasets. Here, BRL performance is compared with other popular super-

vised learning methods. Chapter 5 applies the developed Bayesian Rule Learning methods

in the BRAID system to a real-world biomarker discovery problem for predicting cardiovas-

cular disease outcomes. Finally, in Chapter 6 we summarize the dissertation and consider

directions for future work.
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2.0 SIGNIFICANCE AND BACKGROUND

In this chapter, I provide some necessary background and useful references, to the reader,

to help understand the ideas explored and developed in this dissertation. In section 2.1, I

introduce biomarkers and walk through the process of biomarker development in biomedical

research. In this process, we see the statistical challenge of analyzing biomedical datasets and

also the challenge of identifying clinically relevant biomarkers. Section 2.2 describes the fields

of bioinformatics and translational bioinformatics. We take a look at the wealth of resources

available from tools in these fields that can help bridge the gap between knowledge discovered

from basic biomedical research into its adoption in clinical practice. Section 2.3 describes

clinical decision support systems, a commonly used application of biomarkers in clinical

practice. Section 2.4 defines some important concepts, from computer science, pertaining

to a field knowledge discovery from databases. As seen in the introduction chapter, we

formulate the problem of finding statistically significant and clinically relevant biomarkers as

a knowledge discovery problem. Section 2.5 introduces the Bayesian approach to probability

and statistics. Here, we see that Bayesian methods are ideally suited to help solve the

problem of finding subjectively interesting knowledge from data. We also take a look at

Bayesian networks, a powerful statistical model to represent and learn knowledge from data.

Section 2.6 provides the background for rule learning, one of the oldest, intensively studied,

well-developed, and widely deployed models in machine learning. Rules are popularly used

in clinical decision support systems. Section 2.7 describes Bayesian Rule Learning, a rule

learning method that infers rule models from Bayesian networks, thereby leveraging the

benefits of both Bayesian methods and rule learning methods.
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2.1 BIOMARKERS

A biomarker is a characteristic that is objectively measured and evaluated as an indicator

of normal biological processes, pathogenic processes, or pharmacologic responses to a thera-

peutic intervention [Group et al., 2001]. Biomarkers help better understand the underlying

physiological and pathophysiological processes within an individual. Scientific investigators

discover novel biomarkers for a wide range of purposes including improved clinical decision

making and guiding research directions for biomedicine.

Sources of biomarkers can be macroscopic clinical variables like gender, age, cholesterol,

family history of a disease, environmental exposure, etc. They can also come from omics

data that contain molecular measurements from the DNA, RNA (and its derivatives), pro-

teins, metabolites, and epigenomics. Biomarkers can be measured from blood, serum, lymph,

tissues, or body fluids like urine and saliva. Biomarkers help influence biomedical research

directions, clinical practice, and public health practice. An example of a biomarker com-

monly applied in public health practice is weight loss, a lifestyle marker associated with

many substantial health benefits like improved glycemic control, reduced blood pressure,

and reduced cholesterol levels [Goldstein, 1992]. In medicine, biomarkers are used for risk

stratification, screening, diagnosis, prognosis, to predict response to therapy, and to predict

clinical outcomes.

Based on the common clinical applications of biomarkers, they can be broadly classi-

fied into three types— diagnostic, prognostic, and effect modifiers [Micheel et al., 2012].

Diagnostic markers for a specific disease help differentiate an individual with the disease

from a healthy individual (e.g., certain harmful mutations in BRCA genes can lead to sub-

stantial increase in risk of developing breast or ovarian cancer [Levy-Lahad and Friedman,

2007]; prostate-specific antigen is increased in serum of men with prostatic disease, includ-

ing prostate cancer [Catalona et al., 1991]). Prognostic markers help predict survival or

disease progression (e.g., a 21-gene score that helps predict the likelihood of distant re-

currence in node-negative and estrogen-receptorpositive breast cancer patients treated with

tamoxifen [Paik et al., 2004]). Effect modifiers predict response to some therapeutic inter-

vention (e.g., for individuals with abnormal expression of ALK gene, a molecular driver for
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non-small-cell lung cancer, crizotinib is a more effective treatment than standard chemother-

apy [Shaw et al., 2013]; an EGFR mutation can help predict if tumor cells will respond to

treatment using tyrosine kinase inhibitors [da Cunha Santos et al., 2011]).

Based on their biological function in relation to the outcome of interest, biomarkers can

be classified as either predictive or mechanistic. Predictive biomarkers are correlative to the

outcome event of interest. They may or may not be causal of the outcome. They merely help

predict a clinical outcome of interest. Mechanistic biomarkers, on the other hand, are causes

of pathology, disease progression, or sensitivity to a given drug. They suggest interventions,

for example, therapeutic targets to potentially alter the clinical outcome.

2.1.1 Biomarker development

The biomarker development process consists of four stages [Goossens et al., 2015]— 1)

biomarker discovery, 2) analytical validation, 3) clinical utility validation, and 4) clinical

implementation. The process has been summarized in Figure 3.

Biomarker discovery: In the biomarker discovery stage, new biomarkers are proposed

often using data analysis methods performed on a training dataset containing a cohort of

relevant patients. The proposed biomarkers are then validated either on an independent

test cohort or using a cross-validation study design. The research question and the purpose

of the biomarker needs to be articulated before the relevant data is even collected. The

clinical endpoints, which are the clinical outcomes of interest, should be clearly defined. We

also need to determine if we seek predictive or mechanistic biomarkers. These decisions

will help design the statistical data analysis and knowledge discovery tasks. Leaving this

decision to the end of the data analysis step can lead to many false positive predictions that

will not translate well into clinical practice. Decision on the patient cohort description and

distribution, and the number of samples necessary (using power analysis) for a required effect

size for the biomarker to be clinically useful, has to be made before the data is collected. The

source for the biospecimen and the technology used to quantify the candidate biomarkers

also have to be decided early on with respect to the clinical application.

Analytical validation: In the analytical validation stage, the proposed biomarkers from
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Figure 3: The four stages of the biomarker development process.

the biomarker discovery stage are evaluated for how reliably the analytes can be measured

in the patient biospecimen. Often the original samples from the biomarker discovery stage

are assayed again to test for the robustness and reproducibility of the measurements made in

the discovery stage. The assay technology used for this validation is the same one that will

be clinically deployed. For example, poor reproducibility of measurements is an important

reason why gene-expression signatures are not used in clinical practice [Koscielny, 2010].

[Goossens et al., 2015] discuss the promise and limitations of various emerging technologies to

help improve reproducibility of analyte measurements. They include direct digital counting

of transcripts without target amplification, clinical gene sequencing, and sensitive assays like

single cell profiling.

Clinical utility validation: Once we establish that the analytes can be reliably repro-

duced in the clinical setting, we establish the clinical utility of the biomarker. One aspect is
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to validate if the proposed biomarkers indeed reliably predict the clinical outcome of interest,

as predicted in the discovery stage. Ideally, this is done on well-designed prospective study

with a large enough sample cohort. This stage is constrained by time, financial resources,

and the availability of patient cohorts fitting the requirements. Additionally, clinical utility

also includes establishing clinically meaningful benefit of the new test. [Parkinson et al.,

2014] outline key steps to evaluate clinical utility of any new proposed test. An important

first step is to determine what benefit the new test brings in comparison to existing meth-

ods either in terms of sensitivity/specificity, non-invasiveness, efficacy, and cost-effectiveness.

Some of the other steps outlined by [Parkinson et al., 2014] are covered in the other stages

of biomarker development described in this section.

Clinical implementation: Before implementing the new test clinically, we must con-

sider regulatory approval, commercialization, coverage by health insurance companies, and

incorporation in clinical practice guidelines. Regulatory approval strategies can be either

to deploy the test by obtaining a Food and Drug Administration (FDA) approved in vitro

diagnostic device (IVD) test or as a laboratory developed test (LDT) with clearance from

Clinical Laboratory Improvement Amendments (CLIA) with no need for approval from the

FDA [Parkinson et al., 2014]. Cost-effectiveness and improvement in performance when com-

pared to standard procedures can help determine commercial success. Coverage by health

insurance companies is necessary for the physicians to be able to order these tests. By estab-

lishing the benefits of the new tests and observe success in clinical practice, we can change

clinical practice guidelines with the discovered biomarkers.

2.1.2 The promise and challenges from omic data

Biomarkers derived from high-throughput measurements of molecular information from the

DNA (genomics), RNA and its derivatives (transcriptomics), proteins (proteomics), metabo-

lites (metabolomics), and epigenetics (epigenomics), are collectively called omics datasets.

Omics data usually measures a comprehensive molecular profile of an individual. This dataset

offers us an opportunity to understand biological mechanisms at an unprecedented resolution.

With the ever-reducing costs and improvements in the accuracies of these high-throughput
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technologies, it is now feasible to include omics data as a standard component to a person’s

health record. This will allow us to discover novel biomarkers that improve clinical diagnos-

tic, prognostic, and therapeutic decision making thereby eventually improving population

health.

Statistical modeling is necessary for biomarker discovery from omic datasets. But omic

datasets are often marred with many sources of uncertainties. Uncertainty can stem from

data scarcity (number of samples or patients in the training data). This can happen if, for

example, the occurrence of the disease being studied is rare or it is too expensive to add

individuals to the study. This is very common in many biomedical studies. Uncertainty can

also come from noisy or unreliable data measurements. Faulty/miscalibrated equipments can

give erroneous measurements. As we saw earlier, gene-expression measurements can also be

unreliable [Koscielny, 2010].

Omic datasets are high-dimensional datasets. They are challenging to data mining algo-

rithms because typically several thousands of candidate variables (e.g. gene expressions or

SNPs) can potentially explain an outcome variable of interest (e.g. phenotypes or disease

states) but have only a few instances as evidence to support an explanation. These large

numbers of candidate variables generate a model search space that is very large for data

mining algorithms to explore efficiently, and having only a few instances generates uncer-

tainty for the algorithm to determine the correctness of any candidate model. In such model

search spaces, statistical modeling methods can easily get stuck in local optima or they may

infer associations between spurious variables and the outcome variable, by chance (high false

positives).

Omic datasets are often used to differentiate disease phenotypes. A lot of diseases

are multifactorial in nature. Single factor diseases, for example, monogenic disorders (or

Mendelian disorders), while important to study, are relatively rare compared to the more

common, multifactorial diseases [Antonarakis and Beckmann, 2006]. Examples of single fac-

tor diseases include cystic fibrosis (caused from variants of the CTFR gene) [Riordan et al.,

1989] and Huntington’s disease (caused from variations in HTT gene) [Vonsattel and Di-

Figlia, 1998]. Whereas the more common diseases like type II diabetes [Fuchsberger et al.,

2016] and coronary heart disease [Poulter, 1999] are multifactorial, where many common
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genetic variants, each with a small effect, collectively increase the disease risk.

All these sources of uncertainties make omic data analysis a challenging task for statistical

modeling. We need statistical models for biomarker discovery that can efficiently learn models

from high-dimensional datasets for multifactorial diseases.

2.1.3 Clinically relevant biomarkers

From the biomarker development process, we can see that in addition to a good study

design, we may still not pass the clinical utility validation step if our proposed biomarkers

are not clinically meaningful. The new proposed test should improve upon the existing

clinical standard either in terms of sensitivity, specificity, efficacy, non-invasiveness, and

cost-effectiveness.

[Selleck et al., 2017] emphasizes that it is not enough to identify variants but to identify

actionable variants that has the potential to revolutionize healthcare. [Burke, 2016] reported

in 2016, that there were 768,000 papers indexed in PubMed about biomarkers. Yet, despite

all the technological advances in omics research and bioinformatics methods, we are still very

far from widespread clinical use of these omic biomarkers. Currently there are only a few

dozen clinically relevant cancer biomarkers. There is also a general lack of support from clini-

cal practice guidelines. The European Society of Medical Oncology (ESMO) clinical practice

guidelines for lung, breast, colon, and prostate cancers give only a weak recommendation for

the use of about 20 omic biomarkers.

The process of translating new biological research knowledge into clinical practice is slow.

However, there are other factors that also determine the potential for success of biomarker

discovery projects. It is to establish clinical relevance.

For example, specificity of the biomarkers is an important aspect of clinical relevance.

Some biomarkers may serve as a test for many pathological conditions and are not specific to

the disease it is being developed as a test for. For example, cancer antigen 19-9 (CA19-9) is a

biomarker for pancreatic cancer with high statistical significance [Steinberg, 1990]. However,

this antigen is elevated in many other pathological conditions, such as biliary obstruction,

that often co-exists with pancreatic cancer.
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[Selleck et al., 2017] suggest a 4 step evaluation process for newly discovered biomarkers

to improve their chances of being clinically useful. Their evaluation is directly inspired by the

biomarker development process described earlier. They are— 1) Analytical validity, the test

should be reproducible; 2) Clinical validity, the biomarker should be able to distinguish one

group from another in a meaningful way (for example, we must either show improvement in

predictive performance in general or for a defined molecular subpopulation, for personalized

medicine); 3) clinical utility, will the result of the new test change clinical outcomes?, and

4) cost-effectiveness, psychological and ethical implications.

2.2 BIOINFORMATICS AND TRANSLATIONAL INFORMATICS

In this section, we take a look at the disciplines of bioinformatics and translational bioinfor-

matics. We account for the wealth of information available from the various public resources

available in bioinformatics. We also take a look at the challenges faced by and resources

available in the field of translational bioinformatics.

2.2.1 Bioinformatics

Bioinformatics is the study of the storage and analysis of information in basic biological sys-

tems. The field mainly deals with molecular-level information [Lesk, 2019]. From omics data

generated from high-throughput technologies, various bioinformatics methods can help inter-

pret and integrate various knowledge resources in biological research, to provide researchers

with consolidated scientific resources to improve our understanding of complex biological

systems. Currently, statistical methods do not try to leverage this wealth of information.

Finding efficient ways to incorporate this knowledge can be crucial to help learn clinically

more relevant biomarkers.

There are five major research areas in bioinformatics, they are— 1) DNA and protein

sequence analysis, 2) macromolecular structure-function analysis, 3) gene expression analysis,

4) proteomics, and 5) system biology.
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Sequencing data analysis can help identify genetic variants associated with phenotypes of

interest like disease outcomes, predict gene function, and provide evolutionary information by

comparing sequences from other species. Metagenomics is a new subdomain that studies mi-

croorganism ecosystems using DNA sequencing from, for example, the human gut flora. This

can open up promising new resources for biomarker discovery in the future. National Center

for Biotechnology Information (NCBI) GenBank [Benson et al., 2018] is a publicly available

comprehensive database of biologically annotated with literature references for nucleotide

sequences of more than 400, 000 formally described species. The European Bioinformatics

Institute (EBI), Swiss Institute of Bioinformatics (SIB), and Protein Information Resource

(PIR) collectively maintain a comprehensive publicly available resource of annotated protein

sequences called UniProt [Consortium et al., 2018].

Predicting macromolecular function from 3D structures of macromolecules is a challeng-

ing but worthwhile effort. They can help infer biological functions, identify therapeutic

targets, and predict drug efficacy. Protein Data Bank [Burley et al., 2018] is a publicly

available data repository of 3D structures of proteins and nucleic acids obtained from X-ray

diffraction, nuclear magnetic resonance, and electron microscopy experiments. As of 4th July

2019, Protein Data Bank contains 3D structures of 153, 601 macromolecular structures.

In gene expression analysis, the transcriptomes (mRNA or cDNA copied from a template

RNA) are quantified from two groups of cells that are exposed to different physical conditions

(e.g., disease vs. healthy cell, cells with drug treatment vs. cells without treatment, etc.).

Using DNA microarrays or RNAseq, the transcriptome in different conditions are quantified.

Using these measurements, genes that are differentially expressed can be identified. This

information can provide insights into the collective gene function. NCBI’s Gene Expression

Omnibus (GEO) [Edgar et al., 2002] is a publicly available repository of gene expression

experiments. The database also provides metadata from the conducted experiments that

can be very useful for data analysis.

Proteomics, in addition to sequence analysis also deals with determining their structure

and post-translational modifications. UniProt and Protein Data Bank additionally provide

such comprehensive information about proteins.

Systems biology is the study the entire biological system including all molecular infor-
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mation from genomics to metabolomics. It includes the study of relationships between the

different genes, transcripts, proteins, and drugs, in the orchestration of a biological pro-

cess. This field is still young but promises high-impact scientific discoveries. A popular

public database that looks at system level information is Kyoto Encyclopedia of Genes

and Genomes (KEGG) [Kanehisa et al., 2011], which is a collection of databases including

genomes, pathways, diseases, drugs, and metabolites.

In addition to those major bioinformatics resources, biomedical literature is an invaluable

knowledge resource that can also help with data analysis. The U.S. National Library of

Medicine’s MEDLINE is a bibliographic database for life sciences and medicine. PubMed is

a search engine that helps efficiently search this database.

2.2.2 Translational bioinformatics

Translational medicine is the translation of biological knowledge discovered from basic scien-

tific research (bench-side) to clinical practice (bed-side), which can eventually help improve

population health. Translational Bioinformatics (TBI) is a sub-field in bioinformatics that

enables translational medicine by applying the concepts and methods developed in bioin-

formatics to human healthcare [Butte and Chen, 2006]. TBI can help realize the goal of

personalized medicine by developing methods to discover and translate knowledge pertinent

to clinical care, which are contained in the voluminous omics datasets. Traditional clinical

guidelines were based on macroscopic symptoms and physiological observations made in a

course of a physical exam or what is reported by the patient. In a personalized medicine

approach, we must consider omic biomarkers that provide us with the unique molecular fin-

gerprint of the individual. Such an approach to personalized medicine can lead to improved

clinical care. TBI needs to develop methods for standardized data storage and retrieval,

novel methods for biomedical data analysis and interpretation, and provide decision support

to clinicians.

As illustrated in Figure 1 in the introduction section, there is a translational barrier in

translating discoveries made in basic biomedical research to its adoption in clinical practice.

There are two such barriers— 1) T1 barrier, which is the translation of scientific discoveries
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into changes in clinical guidelines [Lenfant, 2003], and 2) T2 barrier, the adoption of clinical

guidelines into medical practice by health practitioners [Sung et al., 2003].

There are three levels of informatics— data, information, and knowledge. Data is the raw

recorded observations in the database. Example of raw data is proteomic assay from a cohort

of patients and a label for each patient indicating whether or not they have a phenotype of

interest, say, prostate cancer = {case, normal}. Information is giving meaning to the data

using data analysis methods. For example, if the data analysis finds an association between

the phenotype and a protein, say, prostate-specific antigen. Knowledge is to interpret the

information in a specific context. In translational medicine, this is the clinical context. For

example, knowing that a combination of ultrasonography and elevated levels of prostate-

specific antigen, has a higher precision in detecting prostate cancer than ultrasonography

alone. So, for patients over the age of 50, a combination of the two tests can be routinely

conducted to detect prostate cancer with improved clinical precision. However, as we saw

in section 2.1, precision is only one aspect of clinical utility. Efficacy, cost-effectiveness, and

non-invasiveness are other aspects of clinical utility that can better define clinical context.

In section 2.4, we will see how we can formulate the statistical data analysis task to seek

such knowledge instead of just information.

2.3 CLINICAL DECISION SUPPORT SYSTEMS (CDS)

A clinical decision support system (CDS) is a health information technology that assists

physicians and other medical practitioners with clinical decision support i.e. it provides

relevant knowledge and patient-specific information, intelligently filtered or presented at ap-

propriate times, to enhance patient health and healthcare [Shortliffe and Cimino, 2013, Os-

heroff et al., 2007]. They are mainly of three types— 1) infobuttons that retrieves relevant

documents for a clinical context, 2) provide patient-specific or situation-based alerts or re-

minders, physician order sets, etc., and 3) present information in a way as to facilitate

decision making.

A classic example of a CDS is de Dombal’s Leeds Abdominal Pain System [De Dombal
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et al., 1972]. They use Bayesian reasoning from high-quality data to calculate the probability

of seven possible explanations for acute abdominal pain. For 304 patient cases, CDS’s overall

diagnostic accuracy of 91.8% was found to be significantly higher than that of the most

senior member of the clinical team, who obtained an accuracy of only 79.6%. However,

this system did not generalize well in practice. One possible explanation is that different

subpopulations may exhibit different probabilistic dependencies in the domain. Another

explanation is inconsistency in agreement between physicians, while reporting the results of

a physical examination.

MYCIN is a famous rule-based CDS for diagnosing and managing infections [Shortliffe,

1977]. The rules chained together, where the output of a rule that fires for a case is taken as

an input for another rule in the system. The sequence of fired rules offered human-readable

explanations for MYCIN’s decisions. Extending MYCIN was easy, it involved simply adding,

altering, or removing rules from the system. MYCIN was evaluated for therapy selection for

patients suffering from blood-borne bacterial infections and meningitis. For the evaluation

with meningitis patients, MYCIN performed better than experts. While MYCIN was never

used clinically, it offers an excellent, flexible framework to develop future CDS.

The HELP system is another famous CDS, which was integrated into the LDS Hospital

system at Salt Lake City [Kuperman et al., 1991]. HELP is a patient record monitoring

system that generated alerts to medical practitioners when there was an aberration detected

in a patient’s medical record. These alerts were stored as simple decision logic rules, called the

Arden Syntax. HELP communicated to medical practitioners via the hospital information

system’s workstation or using written reports.

CDS typically have three parts— 1) a knowledge base, 2) an inference engine, and 3)

a communication system [Soufi et al., 2018]. The knowledge base has domain knowledge

encoded, usually in form of IF-THEN rules. The inference engine links a specific patient to

the set of relevant rules from the knowledge base. The communication system allows the

user to query the system and conveys the relevant information to the user.

Musen et al. [Shortliffe and Cimino, 2013] observe that with the increased adoption of

health information technology in medical practice, investigators are considering large-scale

data-mining methods to design CDS for a wide range of applications including population
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monitoring, public health surveillance, and offer patient-specific recommendations based on

cohort data when there is no information available to guide therapeutic decisions.

2.4 KNOWLEDGE DISCOVERY IN DATABASES

Knowledge Discovery in Databases (KDD) in computer science, is an important process of

discovering useful knowledge from data. Formally, [Fayyad et al., 1996b] define the KDD

process as follows—

Knowledge discovery in databases is the non-trivial process of identifying valid, novel, po-
tentially useful, and ultimately understandable patterns in the data.

Data, D, is a collection of observations, called instances. Each instance contains values

for a set of recorded variables. For example, data collected to study the influence of smoking

on lung cancer would attempt to collect information from several individuals in a population,

i.e, instances, and record two variables of interest from them— 1) their smoking history, and

2) whether or not they have lung cancer. A pattern, E, is an expression in some language,

say L, that uniquely identifies a subpopulation of instances from data D. An example of a

language is propositional logic, which expresses a pattern in form of IF-THEN statements.

For example, the pattern “IF the individual does not smoke THEN they do not have lung

cancer”, uniquely identifies a subpopulation in D, containing individuals who do not smoke

and do not have lung cancer.

Valid patterns generalize well to unseen test instances. If our previous example pattern

were to be valid, then for any new individual not represented inD, who happens to not smoke,

would also not have lung cancer. The confidence that the pattern would map correctly to an

unseen test instance is uncertain. A mapping function, c, can be used to assign a uncertainty

in a pattern’s validity. This can be any mapping function, c = C(E,D), that takes as input,

the data D and pattern E and maps it to a metric space MC .

Novel patterns either deviate from what is already known in the domain by stating a

contradiction to what is known or enhance the current knowledge of the domain. In our
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example, the pattern that relates smoking to lung cancer can be trivial as it is common

knowledge. However, a novel pattern would be something that either finds a previously un-

known variable now found to be associated with lung cancer or an unexpected contradiction,

like a pattern that links smoking to lung cancer but with an exception. Let us hypothesize,

like in validity, it is possible to measure the novelty of a pattern using a mapping function

n = N(E,D) into a metric space, MN .

Useful patterns are actionable in the domain, both in terms of feasibility and domain

impact. In the lung cancer example, if we found a pattern that associates a variable with

lung cancer that is very expensive to evaluate for new test instances or impossible to modify

(e.g. age) then they aren’t quite useful to a user. Again, let us assume it is possible to

specify a utility function u = U(E,D) that maps the pattern into a metric space, MU .

Understandable patterns are those that are comprehensible to the user. Examples of

understandable patterns are pattern languages that are interpretable by a user for example,

rules, Bayesian networks, and decision trees. Examples of patterns relatively not inter-

pretable include support vector machines, näıve Bayes, and neural networks. It is hard

to measure pattern understandability but a helpful substitute is measuring the semantic

complexity of the pattern. For example, if the pattern language is a rule then a more un-

derstandable pattern would have fewer disjuncts or clauses. Say, we can measure this with

a mapping function for semantic readability, s = S(E,D).

Further, [Fayyad et al., 1996b] define interestingness as a measure that distinguishes

patterns that are ”valid, novel, potentially useful, and ultimately understandable” from

those patterns that are not. Let us assume that we can quantify the interestingness, i, of

a pattern using the previously defined metrics for validity (C), novelty (N), usefulness (U),

and understandability (S). This mapping function i = I(E,D,C,N, U, S) would map the

pattern into a metric space, MI . Mapping functions that map a pattern into MI are called

subjective interestingness measures because while validity is typically an objective metric

with respect to the data, novelty, usefulness, and understandability are subjective measures

with respect to a user.

To summarize, knowledge that is subjectively interesting to a user is a pattern that for a

user specified threshold i ∈MI achieves an interestingness measure of I(E,D,C,N, U, S) > i.
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2.4.1 Subjective interestingness measures

[Silberschatz and Tuzhilin, 1996] point out that objective evaluation of interestingness from

the data alone do not represent the most important patterns present in the data, with

respect to a user. Important patterns should be subjectively interesting to the user. We need

subjective interestingness measures to evaluate such patterns. In the following subsection,

we will review current literature in quantifying subjective interestingness.

There is a large body of work done on subjective interestingness measures, especially in

descriptive rule induction approaches like association rule mining and relational rule min-

ing. [Geng and Hamilton, 2006] and [McGarry, 2005] provide an extensive review of the

approaches to subjective interestingness in KDD. We summarize some of those works here.

[Silberschatz and Tuzhilin, 1996] points out that objective evaluation of interestingness from

the data alone do not represent the most important patterns present in the data for a

user. The patterns most important to a user are those that are unexpected and actionable.

Unexpected patterns add to the user’s knowledge, and actionable patterns are potentially

useful to the user. As an example, consider the rule pattern, IF(PERSON PREGNANT =

TRUE) THEN (PERSON = FEMALE). While this association pattern is likely to get a lot

of support in the dataset, this isn’t interesting because it is obvious and this knowledge isn’t

useful. However, consider two rule patterns learned from a dataset studying accidents— 1)

IF(SEAT BELT = TRUE) THEN (INJURY = FALSE), and 2) IF((SEAT BELT = TRUE)

AND (PASSENGER = CHILD)) THEN (INJURY = TRUE). These two associations are

interesting and unexpected because they contradict each other. This makes us wonder what

happens in the instances where the second rule fires. It turns out that children are too short

for the chest portion of the seat belt and only wear the lap portion of the seat belt. This is a

problem because during an accident, their heads are projected in front towards some object

causing head injuries. This is due to the lack of restraint on the chest by the seat belt. This

discovery is actionable because we know that we can act upon it. So, there is now a law by

National Highway Traffic Safety Administration in the USA that requires children under a

certain height to have child restraint in the car.

An approach to quantifying subjective interestingness is to represent the entire known
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knowledge about the domain. [Silberschatz and Tuzhilin, 1996] describe a probabilistic

way to represent prior beliefs, which is then updated using Bayesian inference. [Liu et al.,

1999] represent known knowledge using simple propositional rule patterns. They quantify

interestingness using semantic distance between the pattern learned from the data to the

specified prior knowledge. The main limitation of this approach of prior knowledge coding is

that it is infeasible to specify all of the known knowledge in a domain. This is especially true

for biomedicine. [Fabris and Freitas, 2000] propose a subjective metric for rule learning that

intentionally looks for a Simpsons’s paradox. Since these paradoxes are usually unexpected,

they quantify unexpectedness from the number of paradoxes. This method is useful if we

feel such paradoxes are useful. [Piatetsky-Shapiro and Matheus, 1994] quantify actionability

in term of profits made by the organization. The limitation here is the need to specify a

mapping between the space of all models to some utility like profits. This may not be feasible

for most problems. [Sahar, 2002] incorporate subjectiveness into the association rule mining

process of APRIORI algorithm by creating constraints in the search space of association

rules. In each iteration, the user provides feedback to the rule mining process. This is very

applicable because it does not require the user to specify all known knowledge at once.

2.5 BAYESIAN PROBABILITY AND STATISTICS

Bayesian methods give us a systematic way to include subjective knowledge (subjective

interestingness). [Heckerman, 2008] provide a detailed introduction to learning with Bayesian

networks including a sound background on Bayesian approach to probability and statistics.

A Bayesian probability refers to a person’s degree of belief in an event. It is the subjective

property of an individual who assigns the probability. Instead, classical probability refers to

the physical property of the system generating the event. It is the objective property of the

world.

The Bayesian approach to probability and statistics is philosophically different from

the classical (or frequentist) approach. In the classical approach, it is believed that our

observation is variable but the system that generates these observations is deterministic. On
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the other hand, the Bayesian approach posits that our observations are deterministic but

the system that generates these observations is a variable. As an example, take the coin-

toss problem. The outcome of a coin toss is either heads or tails. We want to predict the

outcome of the next coin toss i.e, the probability of heads. In the classical approach, the

probability of heads is deterministic albeit unknown. The observation of toss outcomes differ

in each trial. In theory, if we could find the relative frequency of heads over infinite series

of identical coin tosses, where each outcome differs but the probability of heads remains

deterministic, we can calculate the true probability of heads. Alternatively, in the Bayesian

approach, the toss outcomes is deterministic but the probability of heads is a variable.

The probability of heads is influenced by a number of initial conditions of the system that

generates a coin toss, for example— the force applied to the coin, the effects of atmosphere

on the toss outcome, obstructions to the coin, etc. If all these initial conditions of the system

is mimicked identically then the toss outcome would be deterministic. In theory, if we knew

all the variables affecting the outcome, we do not need infinite trials of data to predict the

outcome, in fact, we only need one observation for a particular set of initial conditions. There

is a joke comparing the classical (or frequentist) approach to the Bayesian approach that

does a good job of summarizing the differences— ”the frequentists believe there is infinite

data, while the Bayesians believe there is infinite initial conditions”. Of course, for most

practical purposes, the frequentists don’t need infinite data and the Bayesians do not have

to identify all the finitely large initial conditions.

The Bayesian approach is a more natural view of reality that makes it more applicable

in practice. For example, say we want to know— what is the probability that the Pittsburgh

Steelers will win the next football game against Baltimore Ravens? In the classical approach,

we want a dataset of an infinite series of identical games between the Steelers and the Ravens.

Note that the games should be identical, with the same set of players, in the same physical

condition, and the same environmental conditions. Such a dataset does not exist and so

the application of the correct classical approach is not feasible. However, the Bayesian

approach is still applicable because here we just want to assess an individual’s belief in

Steelers winning the game. There have been many methods developed for accurate and

precise Bayesian probability assessment from an individual [Heckerman, 2008].
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2.5.1 Learning from the data

Let us identify the elements of the classical and the Bayesian approach to solving the coin

toss problem by formalizing the problem. We start by defining some notations. A random

variable in the system is denoted by an upper-case letter, e.g., X, Y , Θ. Lower-case letters

denote the state or the value for the variables denoted by their upper-case letters, e.g., x,

y, θ. Bold font is used to indicate a set of variables, e.g., XXX, YYY , ΘΘΘ, or a set of variable

value assignments, e.g., xxx, yyy, θθθ. A set of variable value assignments xxx is also called as a

configuration of XXX. The outcome variable of interest, that which we wish to predict, will be

represented by Y . In the coin toss problem Y is the outcome of a coin toss. The outcome

value is represented by Y = y or simply y. The probability of the outcome y is represented

as p(Y = y) or simply p(y). We use the variable ξ to represent an individual’s subjective

belief. The classical physical probability of heads from a coin toss is p(Y = heads). The

Bayesian probability of heads is p(Y = heads|ξ). p(Y = heads|ξ) can refer to any of Bayesian

probability, probability distribution, or a probability density. Its meaning will be clear from

the context in which it is used. A single observation of a random variable (or a set of

variables) contains an assignment (or a configuration). A collection of observations into a

dataset is represented by D. We index the dataset to refer to the i-th observation in D using

a superscript for the variable (or set of variables) observed, e.g., X i.

In the classical approach, say we collect a large number of observations of coin toss

outcomes, Y and store it in D. We make a total of m such observations. We need to

predict the probability that the next toss outcome would be heads given this data, i.e.,

p(Y = heads|D).

p(Y m+1 = heads|D, ξ) =

∫
θ

p(Y m+1 = heads|θ, ξ) · p(θ|D, ξ) · dθ

=

∫
θ

θ · p(θ|D, ξ) · dθ

= Ep(θ|D,ξ)[θ]

(2.1)
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To compute p(θ|D, ξ), we use the Bayes’ theorem, as shown below.

p(θ|D, ξ) =
p(θ|ξ) · p(D|θ, ξ)

p(D|ξ)
(2.2)

Here, p(D|θ, ξ) =
∫
θ
p(θ|ξ) · p(D|θ, ξ) · dθ. The term p(D|θ, ξ) is the likelihood function.

This term is similar for both classical and Bayesian probability. For binomial outcomes we

can use the binomial distribution to compute this, i.e., θh · (1− θ)t, where h is the number of

heads and t is the number of tails. All we need to do is compute the total number of heads

h and tails t from our training data to compute this term.

Bayesian probability has this additional prior probability term, p(θ|ξ). We can encode

this using a conjugate prior distribution to the binomial distribution, for example, the Beta

distribution. Having a conjugate prior ensures we can compute the integral in the denom-

inator in closed form. We can now compute the prior term using the beta distribution—

p(θ|ξ) = Beta(θ|αh, αt). So, all we need is to estimate, before seeing the data, of all the coin

tosses we have experienced relevant to the current situation, how many were heads αh and

how many were tails αt. There are many probability assessment methods in literature to

assess these values from an individual [Heckerman, 2008].

From the objective count of heads and tails from the data, and the subjective count

assessments of prior heads and tails from an individual, we now can compute the probability

that the next coin toss would be a heads using Equation 2.1. Unlike Bayesian probability of

this outcome, classical probability does not include subjective counts and only uses the data

to infer the probability. So, using classical probability, the probability of heads is simply

the likelihood function without the prior term, p(D|θ, ξ). We computed this using binomial

distribution using only the counts of heads and tails from the data.

2.5.2 Bayesian networks

A Bayesian belief network or Bayesian network (BN) is a probabilistic graphical model, a

type of statistical model, represented by nodes and edges, where the nodes represent variables

and the edges encode the probabilistic relationships between those variables.

There are many possible ways to represent knowledge in Artificial Intelligence. They
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include rules, decision trees, linear models, artificial neural networks, etc. However, BNs

have several advantages over other methods [Heckerman, 2008] including—

1. Since BNs encode the probabilistic relationships between all input variables, they are

well suited to handle missing values. If two input variables are strongly correlated, if one

of the variables has a missing value, the encoded relationship between the two variables

can help infer the missing value from the known value of the correlated variable. Most

other representations do not encode these relationships.

2. BNs can be used to learn causal relationships [Pearl, 2009]. This is useful when we want

to make causal inferences from the model. For example, if we plan to intervene on the

cause variable to alter the outcome of the effect variable.

3. Since BNs have both causal and probabilistic semantics, they are suited for encoding

prior domain knowledge (often specified in causal form) and combine with the knowledge

induced from the data.

4. Bayesian methods offer a principled approach for avoiding overfitting to the data. So,

all training data can be used for modeling without the need for a hold out test set. This

is particularly attractive for domains with scarce data.

2.5.2.1 Bayesian network representation We begin this section with some notations,

which will be used throughout this dissertation. A random variable in the domain is rep-

resented with an upper-cased letter, e.g., X or Y . Assume, the domain is composed of n

discrete-valued variables. The i-th variable in the domain is represented with a subscript,

Xi, where i = 1, · · · , n. Such a domain is said to have n dimensions or an n-dimensional

dataset. A set of variables is represented with a bold upper-cased letter, e.g.,XXX. The domain

is therefore XXX = {X1, · · · , Xn} = {Xi=1:n}. The discrete value or state taken by a random

variable is represented with a lower-cased letter of the variable name, e.g., X = x or simply

x. The values or states taken by a set of variables is represented with a bold lower-cased

letter, e.g., XXX = xxx or simply xxx. These values given to each of the variables in the set is called

an assignment or a configuration.

A Bayesian network (BN) is a probabilistic graphical model that uses directed acyclic

graphs (DAGs) to represent the joint probability distribution of the problem domain [Pearl,
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2014]. Say, the domain is XXX = {Xi=1:n}. A BN uses DAGs to encode the joint probability

distribution of the domain variables, p(XXX). A BN is represented as a tuple B = (BS,Θ),

where BS is the DAG network structure and Θ is a set of numerical parameters encoded in the

network. The DAG, BS, is composed of nodes and directed edges, where a node represents

a variable, Xi ∈ XXX, and directed edges represent probabilistic dependencies between the

variables. A missing edge between nodes indicates conditional independencies between the

nodes. In this paper, we use the terms node and variable interchangeably. The numerical

parameters, Θ, is a set of conditional probability distributions associated with each node in

the network. A node Xj is said to be a parent of another node Xi, when there is a directed

edge from Xj → Xi. A set of all nodes that are the parents of Xi is represented as ΠXi
. Let

us assume that we have a variable ordering, such that, the parents of any variable can only

come from variables earlier in the ordering. Then, using the chain rule of probability, we can

get the expression for the full joint distribution of the domain from Equation 2.3.

p(X) =
n∏
i=1

p(xi|x1, x2, · · · , xi−1) (2.3)

A variable is independent of its non-descendents, given its parents [Pearl, 2014], i.e.,

p(xi|x1, x2, · · · , xi−1) = p(xi|ΠxiΠxiΠxi), where ΠxiΠxiΠxi ⊆ {x1, x2, · · · , xi−1}. From the BN structure

BS, we can identify the parents of each node. And so, the complex Equation 2.3 can be

reduced to Equation 2.4. Such functions that can be factored into a product of the node

and its parents are called node decomposable functions. Parameter set Θ, associated with

the network B is nothing but a set of these conditional distributions associated with each

variable in the network. These probabilities are also code local probability distributions.

p(X) =
n∏
i=1

p(xi|ΠxiΠxiΠxi) (2.4)

2.5.2.2 Learning Bayesian networks We now look at learning a BN from data for

a classification problem. The discussion in this dissertation is limited to learning of the

Bayesian network structure and local conditional probabilities associated with only one vari-

able as shown in Equation 2.4. The variable there would be a target variable of interest,
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for example disease outcome. For the purpose of understanding the work done in this dis-

sertation, this knowledge about BNs would suffice. The discussions here will not extend to

generalized Bayesian networks constructed over all the variables in the dataset and making

probabilistic inference from such a generalized network. For a detailed discussion on those

topics, please refer to [Koller and Friedman, 2009].

Assume, we have some data D containing a set of m examples or instances. Each instance

here is an independent and identically distributed sample from some true joint distribution

over the variables in D. Let’s say the variables in D = {X1:n, Y } = {XXX,Y }, where Y is

some outcome variable of interest, for example, disease phenotype like Y ∈ {Case,Normal}.

This variable is also known as target variable. In a classification problem, this is the variable

that we want to predict. The remaining variables in D, i.e., X1:n are possible candidate

variables that may help us predict the target variable. We refer to the variable values for the

i-th instance in the dataset using a super-script, {X iX iX i, Y i}. For example, in gene expression

datasets being used to learn differentially expressed genes between samples with abnormal

and normal phenotype, the target variable is the phenotype (normal, abnormal) and the

candidate variables are the various gene expressions. We assume that all these variables

occur earlier in the variable ordering to Y . Under these assumptions, from Equation 2.4 we

know that we need only learn the parents of Y to help predict Y , shown in Equation 2.5.

p(X) = p(Y |ΠYΠYΠY ) (2.5)

Of the candidate BN structures (BS), BRL attempts to find the BN that maximizes the

posterior probability of the structure given the observed data, p(BS|D). From the definition

of conditional probability, we can write the expression for posterior probability of the BN

structure with Equation 2.6.

p(BS|D) =
p(BS, D)

p(D)
(2.6)

During the search we compare candidate BN models, say BS1 and BS2 , to evaluate which

one is better, and so, the denominator p(D) does not help make this decision. So, we only

need to compute the odds of the joint probability of the BN structure and the data, in order
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to compare them as shown in Equation 2.7.

p(BS1|D)

p(BS2|D)
=

p(BS1
,D)

p(D)

p(BS2
,D)

p(D)

=
p(BS1 , D)

p(BS2 , D)
(2.7)

In other words, the posterior probability of the BN is proportional to the joint probability

of the BN and data as seen in Equation 2.8.

p(BS|D) ∝ p(BS, D) (2.8)

From Bayes theorem, the joint probability of the BN and the data can be expressed

using Equation 2.9. Here, the joint distribution of the networks and data is expressed as a

product of the prior distribution over networks and the likelihood function of the data being

generated by the network.

p(BS, D) = p(BS) · p(D|BS) (2.9)

Buntine [Buntine, 1991], under certain assumptions, proposed a heuristic score called the

BDeu (Bayesian Dirichlet equivalence uniform) score to compute the joint probability of the

networks and the data. This score is shown in Equation 2.10.

p(BS, D;α) = p(BS) ·
n∏
i=1

qi∏
j=1

Γ( α
qi

)

Γ(Nij + α
qi

)

ri∏
k=1

Γ(Nijk + α
riqi

)

Γ( α
riqi

)
(2.10)

Here, p(BS) is the prior distribution over the possible network structures. Index i iterates

through each of the n nodes in the network structure. Index j iterates though each of the

qi possible variable-value assignments (or configuration) of the parents of node i. Index k

iterates through each value taken by node i, with ri being the number of values it can take on.

Hyperparameter α, also called the prior equivalent sample size, expresses the strength of our

belief in the prior distribution over the networks. The expression α
riqi

assigns a uniform prior

probability to each parental configuration. Γ(·) is the gamma function, where Γ(x+ 1) = x!.

Nijk is the number of instances in D, where node i takes the value k, while its parents take

the configuration j. And, Nij =
∑

kNijk.
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2.6 RULE LEARNING

Machine learning is a sub-domain in computer science concerned with building algorithms for

the discovery of mathematical models, patterns, and other regularities in the data [Mitchell

et al., 1997]. There are primarily two kinds of machine learning methods— 1) symbolic meth-

ods, and 2) statistical methods. Symbolic methods perform inductive learning of human-

readable symbolic descriptions, like rules and decision trees, from the data (example algo-

rithms include C4.5 [Quinlan, 2014], PART [Frank and Witten, 1998], RIPPER [Cohen,

1995]). Statistical methods infer parameters of statistical models from the data. These in-

clude human-readable models like— generalized Bayesian networks [Pearl, 2014] and unread-

able models like— logistic regression [le Cessie and van Houwelingen, 1992], support vector

machines [Platt, 1999], and ensemble methods [Breiman, 1996, Freund et al., 1996, Seni and

Elder, 2010].

Given a suitable choice of machine learning method, the data analysis problem itself

can be categorized under different categories based on their properties. The primary two

types of problems are— 1) supervised learning and 2) unsupervised learning. Supervised

learning involves models learned with respect to a target variable of interest. Unsupervised

learning involves general pattern discovery from the data, without focusing on a particular

variable. A model usually refers to a global explanation of the entire input training dataset.

Pattern is a local hypothesis that only explains a subset of the training data. In unsupervised

learning, patterns can help describe a subpopulation that is over-represented in a dataset.

In supervised learning, patterns are useful to help describe a subpopulation that behaves

differently with respect to a target variable. For example, in biomedicine, we can discover

patterns that describe a subpopulation that responds differently to a treatment. Further

study of this subpopulation may help discover what is different about this subpopulation

that leads to a different physiological process from the general population.

Rules are an effective representation of patterns. Classification rules are induced by

supervised rule learning algorithms from the data, such that they can describe a subpop-

ulation in association with a target variable. For example, the rules learned by most rule

learning algorithms are in form of explicit propositional logic statements i.e., IF 〈antecedent〉-
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THEN〈consequent〉. The rule antecedent is a sequence of predictor variable-value pairs

joined by the logical-AND. This antecedent provides a subpopulation description, in form of

a condition using a logical series of variable-value pairs, which if all true, implies that the

rule consequent is also likely to be true. The consequent part of the rule provides a variable

value of the target variable of interest. For example, if the predictor variables can be a set of

genes (say, Gene1 and Gene2 ) in gene-expression data. The target variable of interest can

be a disease phenotype (say, disease outcome represented by T ). To represent a rule that

indicates that if an individual has up-regulated Gene1 and down-regulated Gene2, then as

a consequence, the individual is at risk of developing the disease T . This sentence is rep-

resented using propositional logic as follows— IF 〈(Gene1 = UP )AND(Gene2 = DOWN)〉

THEN 〈T = true〉.

Therefore, by representing in form of IF 〈antecedent〉-THEN〈consequent〉, rules of this

nature provide both descriptive statistics, to help describe a subpopulation, and predictive

statistics, that describes how the subpopulation differs within the general population with

respect to a target variable of interest. Due to these attractive properties, rule models are

very popular in biomedicine, including for clinical decision support systems.

Propositional rule learning is a rule learning method that learns patterns and/or models,

expressed in form of propositional logic, from a dataset [Fürnkranz et al., 2012]. Another

popular form of supervised rule learning is relational learning. Relational learning involves

inducing patterns/models expressed using relational formalism of first-order logic [Lavrac

and Dzeroski, 2001].

A rule model is a collection of predictive rule patterns, together explain the training

dataset, and ideally the domain as a whole. There are two major approaches in rule learning

for inducing a complete rule model [Fürnkranz et al., 2012]— 1) decision tree induction, and

2) rule set induction.

A decision tree consists of a tree structure composed of nodes and edges, where the nodes

represent variables and edges represent values taken by the variable. The top-most node of

the model is called the root of the tree. The set of nodes in the bottom of the tree, which

themselves do not have edges are called leaves. In supervised learning the leaves of the

decision tree represent the target variable-value distributions. The path from the root to the
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leaf is a sequence of node-edge relationships that describes a subpopulation in the dataset.

The leaf typically encodes the target variable-value distribution. As it can be clearly seen,

each path in this tree can be represented as a rule, where the path from root to leaf is the

rule antecedent, and the target variable-value distribution determines the rule consequent.

The goal of the tree learning algorithm to have leaves with examples primarily of one of

the values of the target variable. Having such a tree model helps in differentiating the various

target values via different branches representing varying paths. For example, it will help us

identify patterns that differ between cases and controls for a target variable representing

disease outcome. During learning, the tree is specialized by adding variable-values to a

leaf, thereby describing a smaller subpopulation. By so, doing the leaf has fewer examples

from the original dataset. So, any target value distribution would have fewer evidence to

support the pattern described by the pattern from the root to leaf. This problem is called

data fragmentation. This is due to the restriction imposed by the tree data structure. One

positive reason to use decision tree to model your data is because they are exclusive and

exhaustive explanation of your entire dataset. So, for an unseen test example, there will be

a prediction made by the decision tree, and only one rule will fire. A popular example of

a decision tree is the C4.5 tree induction algorithm [Quinlan, 2014]. It uses a concept of

information entropy to learn decision tree with leaves each representing examples primarily

belonging to one of the values of the target variable. Bayesian Rule Learning is another

example of a rule learning method that uses decision tree for learning. This method is

explained in better detail in the next section (see 2.7).

The other type of rule model learning is rule set induction. Unlike decision trees, rule set

induction methods do not attempt to explain the entire training dataset. So, while decision

trees contain mutually exclusive rules, with rule sets, we may have overlaps. When multiple

rules explain a single example, we need a way to resolve the rule conflict to decide on the

rule consequent. An advantage of this approach is if we face data scarcity, for example in

case of high-dimensional datasets, we can still learn local patterns without having to specify

a global hypothesis that explains the entire training dataset. On the other hand conflict

resolution of multiple rules firing for the same example, and sometimes no rules explaining

a given example, make this model unfavorable in certain applications.
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Examples of rule set induction algorithms include— Repeated Incremental Pruning

to Produce Error Reduction (RIPPER) [Cohen, 1995], PART (short for partial decision

trees) [Frank and Witten, 1998], and Rule Learning (RL) [Clearwater and Provost, 1990].

RIPPER splits the training data into growth data and prune data. It greedily learns a rule

for one target-value from the growth data. Then based on a heuristic evaluated over prune

data, it generalizes the greedily learned rule from the growth data. One rule for each target

value is learned this way. Then in the optimization step, the rule with the largest heuristic

score on the prune data is selected. The examples covered by this rule is removed from the

data, and the process is repeated. PART iteratively learns a partial C4.5 tree, and selects

the leaf with the most coverage, turns it into a rule and adds it to a rule set, removes the

examples covered by the rule, and re-iterates the process until no examples are left. PART

does not optimize the model on a global metric and yet was found to be better than RIP-

PER and similar to C4.5 [Frank and Witten, 1998]. RL [Clearwater and Provost, 1990]

uses breadth-first marker propagation to specialize the rules. It uses inductive strengthening

to select newly learned rules, such that the new rule must cover a certain number of new

examples from the training dataset.

For a thorough overview of rule learning methods, please refer to [Fürnkranz et al.,

2012].

2.7 BAYESIAN RULE LEARNING

Bayesian Rule Learning (BRL) [Gopalakrishnan et al., 2010] is a rule-based classifier that

takes as input, a dataset and returns a rule set model. A rule model is a set of mutually

exclusive and exhaustive rules that can be applied to new data to predict a target variable

of interest. Mutually exclusive rules mean that only one rule fires for a unique instance

representing an individual observation in the dataset. Exhaustive rules mean that at least

one rule fires for a given individual. Unlike traditional rule learning methods, BRL quantifies

the uncertainty of the validity of the rule model using a Bayesian score. It uses this score

for model selection.
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Let the dataset D be an observed instantiation of a system with a probability distribution

over a set of n random variables and a target random variable of interest, D = {Xi, T ; i ∈

1 · · ·n}. Here, T is the target variable of interest, which is the dependent variable for the

prediction task. Each of the other variable, Xi in D is an independent random variable that

may help predict T . There are a total of m instances in D. In the classification problem,

our task is to accurately predict the value of the target variable.

The BRL search algorithm explores a space of probabilistic graphical models called

Bayesian-belief networks (BNs), learned from observed dataset D and returns the most op-

timal BN found during the search. A BN is a tuple, B = (BS,Θ), where BS is the network

structure, and Θ is the network parameters. The network structure consists of a directed

acyclic graph (DAG). The nodes represent variables, and variables are related to each other

by directed arcs that do not form any directed cycles. When there is a directed arc from

node A to node B, node B is said to be the child node, and node A is said to be the parent

node. The network parameters Θ are a conditional probability distributions over each node

in the network. A probability distribution is associated with each node, X, in the graphical

structure given the state of its parent nodes, θX = p(X|Π(X)), where Π(X) represents the

different discrete value assignments of the parents of node X. A constrained BN, that BRL

learns, is the network structure of T and its parents, Π(T ). This probability distribution

is generally called a conditional probability distribution (CPD). For discrete-valued random

variables, the CPD can be represented in form of a table called conditional probability table

(CPT ) [Koller and Friedman, 2009, Chickering et al., 1997]. Furthermore, any CPT can be

represented as a rule base. Here, we consider only the CPT for the target variable. Each

possible value assignments of the parents represent a different rule in the rule base. The

evidence in form of the distribution of instances, for each target value, in the training data

helps infer the rule consequent. The resulting rule base consists of rules that are mutually

exclusive and exhaustive. In other words, at least one rule from the rule base matches a

given instance and only one rule matches that instance.

The BRL rules are represented in the form of explicit propositional logic, IF 〈antecedent〉-

THEN〈consequent〉, as described in section 2.6. The rule antecedent is the condition made

up of conjunctions of the independent random variable-value pairs, which when matched to
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a test instance, implies the rule consequent composed of the dependent target variable-value.

The search algorithm searches to find the BN model that maximizes the search heuristic

of Bayesian score, using the K2 score [Cooper and Herskovits, 1992]. K2 is a popular

Bayesian Score from the Bayesian Dirichlet Score family used to compute the joint probability

P (BS, D). It makes the following four assumptions—

1. The database variables are discrete.

2. The instances in the dataset are independent and identically distributed.

3. There are no missing values.

4. A uniform prior probability distribution of the network parameters, given its structure.

The K2 score (used by BRL) is shown in Equation 2.11.

P (BS, D) = P (BS)

q∏
j=1

(r − 1)!

(Nj + r − 1)!

r∏
k=1

Njk! (2.11)

Here, P (BS) is the prior probability of the BN being the data generating model. [Gopalakr-

ishnan et al., 2010], set this to be 1, which indicates an uninformative prior where a prior no

BN is more likely to be correct than another. The rest of the term is the likelihood function

that computes the probability that the data D was generated by the BN, BS. Variable

j iterates through all q different variable-value instantiations of the parents of the target

variable. The number of values the target variable takes, r. Nj is the number of instances

in D that take the j-th instantiation of predictor variables. Variable k iterates through the

different values of the target variable. Njk is the number of instances in the dataset with

j-th instantiation of the predictor variables and the target variable takes value k.

Figure 4 shows an example of a BN structure learned from BRL. Panel (a) displays a

constrained BN structure (BS) with two predictive variables, Gene1 and Gene2, as parents

of the target variable T . The two predictive variables are binary with values of UP and

DOWN . The target variable is binary having values Case and Control. Figure 4(b) shows

the parameters for the target node as a complete decision tree. The interior nodes of the

tree are the predictive variables (represented by ellipses) and the leaf nodes (represented by

rectangles) show the probability distribution over T . Figure 4(c) shows the rule set inferred

from the decision tree by BRL. Each rule antecedent is a path from a leaf to the root node.
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The consequent is the probability distribution of T . The following parentheses show the

number of Case instances and the number of Control instances that match the antecedent,

respectively.

Figure 4: Bayesian Rule Learning (BRL): (a) Bayesian network (BN) learned by BRL. (b) decision
tree inferred from the BN. (c) a set of mutually exclusive and exhaustive rules inferred from the
decision tree.

[Gopalakrishnan et al., 2010] show a greedy best-first search, and a beam search to

search over the space of BNs. The search takes as input— 1) the training dataset, D, 2)

MAX CONJ , the maximum number of predictor variables that can be included into BRL.

They compared BRL with greedy-best-first and beam search algorithms to 3 popularly used

rule- or decision tree-based classifiers— Conjunctive Rule Learning, RIPPER [Cohen, 1995],

and C4.5[Quinlan, 2014]. They evaluated on balanced accuracy (average of sensitivity and

specificity) and relative classifier information (RCI). This comparison was done on 24 publicly

available high-dimensional datasets. Over the 24 datasets they show that BRL performs

statistically significantly better than Conjunctive Rule Learning, RIPPER, and C4.5 both

in terms of balanced accuracy and RCI. BRL was also shown to require significantly fewer

variables for prediction than C4.5. Fewer variables mean fewer biomarkers for subsequent

validation, which can be important for biomarker discovery.
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3.0 BAYESIAN RULE LEARNING METHODS DEVELOPMENT

In this chapter, I describe the Bayesian Rule Learning (BRL) methods developed in the

Bayesian Rules for Actionable Informed Decisions (BRAID) system to help solve the Knowl-

edge Discovery in Databases (KDD) problem (as defined and described in Section 2.4).

Section 3.1 describes the BRL search algorithm. Here, I explore three model representations

of BRL that may help improve the understandability of BRL rule model (as explained with

the KDD definition in Section 2.4). I also describe the model search algorithm and the

heuristic score used to evaluate the quality of the models encountered during the search. To

improve the validity of the BRL model (per the KDD definition), I study two methods—

an ensemble method and a method to incorporate prior domain knowledge into the model

learning process. Specifically, Section 3.2 describes the Ensemble Bayesian Rule Learning

(EBRL) methods that explore different ensemble techniques applied to BRL models. Ensem-

ble methods are a popular approach in statistics known to efficiently improve the predictive

performance of a classifier. An important drawback of ensemble methods is the loss of un-

derstandability of the model. To help overcome this, I describe a novel visualization method

to help make the EBRL model more understandable to the user. Section 3.3 describes the

second method to help improve model validity called BRL with informative priors (BRLp).

BRLp enables BRL to incorporate prior domain knowledge into the model learning process.

Finally, section 3.4 describes a BRL method designed to search novel and useful patterns

(per the KDD definition). The method is called BRL for knowledge discovery (BRL-KD). It

enables BRL to incorporate information about the relative clinical relevance of each variable

and uses this information to search for models that are clinically more relevant.
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3.1 BAYESIAN RULE LEARNING (BRL)

The Bayesian Rule Learning (BRL) [Gopalakrishnan et al., 2010] search algorithm searches

over a hypothesis space of Bayesian networks (BN) to identify the BN most likely to have

generated the observations in a given dataset, D. BRL then infers a set of rules from the

parameters of this BN. Sub-section 3.1.2 describes different representations of the parameters

of the BN that were explored in this study. Sub-section 3.1.3 explains the heuristic score used

to evaluate the quality of a BN in terms of explaining the observations in D. Finally, sub-

section 3.1.4 describes a search algorithm to help find the BN that maximizes the heuristic

score.

3.1.1 Background and motivation

The joint probability distribution over all variables of a domain provides useful predictive

and descriptive insights into the modeled system. Computing this joint probability distri-

bution is expensive for even moderately-sized problems because the number of parameters

of the joint distribution grows exponentially with the number of variables in the domain.

The graphical structure of a Bayesian network (BN) represents dependence relationships

between variables in the domain. Particularly, the absence of an edge between two nodes (or

variables) indicates independence. It is these absence of edges that help BNs decompose the

joint probability distribution into a product of modularized smaller distributions, thereby

significantly reducing the number of parameters in the joint probability distribution of the

domain [Pearl, 2014]. The conditional independence in a BN is defined below.

Definition 2.1.1: Conditional independence— Let UUU = {XXX,YYY ,ZZZ} be a domain of three

disjoint subsets of variables (XXX, YYY , and ZZZ). To claim that XXX is independent of YYY , given ZZZ

i.e., XXX ⊥⊥ YYY |ZZZ implies that Equation 3.1 is true.

p(XXX,YYY |ZZZ) = p(XXX|ZZZ) · p(YYY |ZZZ) (3.1)

Conditional independence is a numerical property of the domain variables. BN structures

explicitly encode these independencies using a graphical structure (described in detail in
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Section 3.1.2). Conditional independencies over the variables of the domain are also called

global independencies.

In addition to the graphical structure, BNs also encode parameters, which are probability

distributions associated with each variable of the domain. They are probability distributions

conditioned on the parents of the variable in the BN. They are typically encoded as tables

and are called conditional probability tables (CPTs) [Koller and Friedman, 2009]. CPTs

with respect to a variable X represents the probability distribution over its values given all

the possible assignments of its parent values. CPTs are typically represented as a complete

decision tree with all leaves at the same depth. The nodes of this tree are the parent variables

of the node. The different edges from a node represents the different values assigned to the

variable in the node. The depth of the complete tree is the same as the total number

of parents. BRL parses this complete tree from root to each leaf and translates it into a

propositional logic rule.

However, there exist certain regularities in the probability distribution in the rows of

a CPT. With a table or a complete tree representation, these regularities cannot be ex-

pressed explicitly. These regularities represent context-specific independence (CSI) [Koller

and Friedman, 2009, Boutilier et al., 1996] as defined below.

Definition 2.1.2: Context-specific independence— Let UUU = {XXX,YYY ,ZZZ} be a domain

of three disjoint subsets of variables (XXX, YYY , and ZZZ). Let CCC include overlapping variables

from the set {XXX ∪ YYY ∪ ZZZ}. A context, CCC = ccc is a configuration of CCC. To claim that XXX is

contextually independent given ZZZ and context ccc i.e., XXX ⊥⊥ccc YYY |ZZZ,ccc implies that Equation 3.2

is true.

p(XXX|YYY ,ZZZ,ccc) = p(XXX|ZZZ,ccc) (3.2)

The regularities of form that indicate CSIs are quite common occurence in data [Boutilier

et al., 1996]. CSIs are also a numerical property like conditional independences but they

are not represented in the BN graphical structure. They also cannot be represented us-

ing a complete decision tree representation of the parameters of the BN. We need special

representations to encode these CSIs.

The main advantage of explicitly encoding these CSIs is that there are much fewer number

of rules. Rule models with fewer rules are more efficiently represented and therefore more
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understandable. Fewer rules mean there are fewer parameters of the BN model to either

learn from the data or to elicit priors for them from an expert.

Like Bayesian networks, rule models (e.g. BRL) are both— a descriptive statistical model

and a predictive statistical model. By enabling BRL to represent CSIs we have a unique

model that has an additional benefit over plain BNs. As a descriptive model, unlike BNs,

BRL can capture both global condition independences from the BN structure and also CSIs

from the propositional rules. To make a prediction, BRL uses the explicit propositional rules

containing a rule consequent. If the condition part of the propositional rule is satisfied, it

implies that the outcome described by the rule consequent, is more likely. For biomarker

discovery it can be beneficial to know the CSIs of a subpopulation. In personalized medicine,

this could mean a molecular subtype whose condition does not depend upon certain variable

that is globally picked by the model. To learn such independencies, we modified BRL to

include representations that can encode CSIs.

Previous works to encode CSIs largely pertain to extending BNs to represent CSIs. [Heck-

erman, 1990] used probabilistic similarity networks, which are a type of influence diagrams

that can represent CSIs. [Friedman and Goldszmidt, 1998] and [Boutilier et al., 1996] use

decision trees to represent CSIs. Decision trees can capture many types of regularities in the

CPT but not all regularities. [Chickering et al., 1997] proposed the use of decision graphs

to represent all regularities in CPTs. [Jabbari et al., 2018] show that an instance-specific

learning approach to finding BNs, represented using a decision tree [Boutilier et al., 1996],

can retrieve CSIs with high precision.

There has also been an earlier work in using rule set representation of BN that can

explicitly encode CSIs. This was done using a language called probabilistic Horn abduction

[Poole, 1993]. Such a representation can easily be coded into the Prolog programming

language. The work in this dissertation differs in many important ways. Firstly, Bayesian

score is used to search for the BN and the parameters. Therefore, we have a measure of

the uncertainty in the validity of the model from which the rules were generated. This

will be helpful in the implementation in Section 3.2 of this dissertation. Secondly, the BN

parameters are encoded using propositional logic, which are simple IF-THEN rules.

The decision graphs proposed by [Chickering et al., 1997] is the basis of the approach
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used in this dissertation to learn rules for BRL. These decision graphs can represent all

possible CSIs. However, decision graphs can become fairly complex with more and more

variables. In the following sections, I parse these learned decision graphs to be represented

as explicit propositional logic rules in disjunctive normal form to help make these decision

graphs more readable.

3.1.2 Model representation

The conditional probability table of the constrained BN (see Equation 2.5) of the BN is

represented here in form of a decision tree. For example, see Figure 4a. The constrained

BN contains one target node Y with two parents X1 and X2. The conditional probability

distribution is represented in the table next to the BN. Note that when X1 = 1, regardless

of the value X2 takes, the distribution over the values of Y does not change. In this context,

where X1 = 1, Y is independent of X2. So, in the learned decision tree by BRL (see Figure

4b) the leaf containing X1 is not specialized further with X2. Each path from the root to the

leaf of this tree is a rule as seen in Figure 4c. In the rules, TP corresponds to the number

of true positives for the rule i.e., out of the number of instances in the training dataset that

matches the left hand side (LHS) of the rule, the number of instances that were labeled with

the positive class, say Case, is 50 for rule 1. The number that were labeled with the negative

class, say Normal, is 5 for rule 1. How we compute the probability distribution values will

be clear in the next subsection (with Equation 3.6 to be specific).

3.1.2.1 Bayesian Rule Learning— Global Structure Search with Complete De-

cision Trees (BRL.G) The BRL with global structure uses a complete decision tree to

represent the CPT, as shown in Figure 5a.

Figure 5a depicts a possible conditional probability distribution table. The first row

of the table says that if variable A takes the value 0, and variable B takes the value 0,

then according to this probability distribution, the probability of such an instance having

the variable T value as 1 is with a probability 0.8. Each row is a probability distribution

conditioned on the values taken by A and B. So, the probability distribution of each row
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(a) CPT (b) CPT represented as a complete tree.

Figure 5: Model representation in BRL.G

sums to 1.

The complete decision tree in Figure 5b represents each row of the CPT with a leaf.

BRL parses each path from root to leaf of this tree. Each path is then translated into an

IF-THEN rule.

3.1.2.2 Bayesian Rule Learning— Local Structure Search with Decision Trees

(BRL.DT) We notice in BRL.G representation that the first two rows in the CPT (see

Figure 5a) have the same distribution. Yet BRL.G represents them as separate rules. This

is an example of context specific independence. The value distribution over T only depends

upon the value taken by A. In fact these instances are independent of the value of B.

BRL.DT representation (see Figure 6) helps overcome this problem. in BRL.DT, the first

two rows with the same distribution removes the dependency for those rule with variable B.

This can be beneficial to biomarker validation as for this subpopulation, there was no need

to validate variable B.

This representation alone was studied and evaluated in my earlier work [Lustgarten

et al., 2017]. In this dissertation study, I will also include the decision graph representation

as described in the next section.
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(a) CPT
(b) CPT represented as a generalized
decision tree.

Figure 6: Types of context-specific independencies represented in BRL.DT

3.1.2.3 Bayesian Rule Learning— Local Structure Search with Decision Graphs

(BRL.DG) There are certain kinds of independencies that BRL.DT cannot represent. An

example of that is shown in Figure 7.

Here, regardless of the value take by variable A, if variable B takes the value 0, then the

distribution over T remains the same. This means that, this subpopulation is independent

of the root of the tree. We represent that with a decision graph. Here, we can see a benefit

of representing the CPT as a decision graph that enables us to find a regularity that could

not be discovered using the decision tree structure. A being the root node of a decision tree

would be incorrectly inferred as a variable that all subpopulations depend upon. However,

we see in this example that this is not necessarily true.

To translate decision graph into rules, we use a disjunctive normal form. The logical OR

helps account for multiple paths from the root to leaf of a decision graph.

3.1.3 Heuristic score

We use the same heuristic score as in Section 2.5.2.2 called the BDeu score [Buntine, 1991].

The equation for the joint probability of the BN structure and data using BDeu score is

55



(a) CPT
(b) CPT represented as a generalized
decision graph.

Figure 7: Types of context-specific independencies represented in BRL.DG

shown below.

p(BS, D;α) = p(BS) ·
n∏
i=1

qi∏
j=1

Γ( α
qi

)

Γ(Nij + α
qi

)

ri∏
k=1

Γ(Nijk + α
riqi

)

Γ( α
riqi

)
(3.3)

Here, p(BS) is the prior distribution over the possible network structures. Index i iterates

through each of the n nodes in the network structure. Index j iterates though each of the qi

possible variable-value assignments (or configuration) of the parents of node i. Index k iter-

ates through each value taken by node i. Hyperparameter α, also called the prior equivalent

sample size, expresses the strength of our belief in the prior distribution over the networks.

The expression α
riqi

assigns a uniform prior probability to each parental configuration. Γ(·)

is the gamma function, where Γ(x + 1) = x!. Nijk is the number of instances in D, where

node i takes the value k, while its parents take the configuration j. And, Nij =
∑

kNijk.

While modeling high-dimensional data, it is preferable to have models with fewer vari-

ables needed to predict the target variable. So, sparser models are preferred. One way to

achieve this is to create a penalty on the number of parents added to the target variable. We

can use the prior distribution over networks, p(BS), to favor models that are sparser. Koller

et al. [Koller and Friedman, 2009], describes a node decomposable prior distribution score

to help favor models with fewer parents added to any given node in the network. This prior
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term is shown in Equation 3.4.

p(BS;κ) =
n∏
i=1

κ|Πi| (3.4)

Here, the power term |Πi| is a count of the total number of parents that node i has in

structure BS. Hyperparameter κ is some value 0 < κ ≤ 1. A value of κ = 1 represents a

uniform prior over all network structures. Smaller values of κ generates a distribution that

prefers structures with nodes having fewer parents. Larger values for κ gives a distribution

that allows more parents.

For a constrained Bayesian network, we only need to compute the score for one node,

the target variable Y . Substituting Equation 3.4 into Equation 2.10 and reducing the terms

to just one node Y , we get Equation 3.5.

P (BS, D;α, κ) = κ|Πi| ·
qY∏
j=1

Γ( α
qY

)

Γ(Nj + α
qY

)

rY∏
k=1

Γ(Njk + α
rY qY

)

Γ( α
rY qY

)
(3.5)

BRL search algorithm searches over a space of constrained Bayesian networks to find

the model that maximizes the heuristic score shown in Equation 3.5. Ultimately, the goal

of the model is to make a prediction on the probability that a new test instance, t, belongs

to a particular class k i.e., p(Y t = k|X tX tX t = jjj, BS, D) or θjk ∈ Θ. These probabilities can

be computed using the expectation of the model parameter for node Y taking class value

k and its parent configuration taking state j that corresponds to test instance X tX tX t. This is

computed using Equation 3.6.

p(yt = k|xtxtxt = jjj, BS, D) = E[θjk|BS, D] =
Njk + α

rY qY

Nj + α
qY

(3.6)

To get BRL to make a prediction, we need to choose a cut-off. If the predicted probability

for a class, say c, exceeds this cut-off value, then the classifier decides to label the test instance

with class c. The choice of the cut-off depends upon the application domain and the cost

of false positives and false negatives. Assuming no such information is available, by default,

BRL simply classifies the instance with the class value c ∈ C with the highest predicted class
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probability. Here, C is a set of all rY classes. This is shown in Equation 3.7.

ŷ = arg max
c∈C

p(yt = c|xtxtxt = jjj, BS, D) (3.7)

3.1.4 Search algorithm

BRL uses a greedy best-first search algorithm to find the model that best explains the

observed dataset, D. This BRL algorithm pseudocode is presented in Algorithm 1. The

algorithm takes a training data, D as an input. The user specifies the variable in the

dataset that is the target variable of interest (or dependent variable) Y . All other variables

are treated as candidate predictive or independent variables in the system. The algorithm

outputs the BN represented as a decision tree that maximizes the Bayesian score in Equation

3.5. For this paper, we fix the value of α = 1.0 and κ = 0.01. In practice, values of these

hyperparameters can be explored to further optimize the learned model. BRL parses the

resulting decision tree into a set of rules, one for each path from root to leaf as shown in

Figure 4c.

There are three main model specialization operators used in the algorithm, namely— 1)

complete split, 2) binary split and 3) merge. For a predictive variable, Xi, with s values,

the complete split operator splits the data at the leaf of the decision tree into s branches,

one for each possible value of Xi. The resulting s leaves only contains examples from D

that take the values specified by the branch. Binary split operator splits the data into 2

branches. If the number of possible values, s > 2, for a variable Xi, the binary split operator

merges branches from a complete split to find all possible binary splits. For example, if the

set of values that Xi takes is {0, 1, 2}, the binary split operators splits them as {{0, 1}, {2}},

{{0, 2}, {1}}, and {{1, 2}, {0}}. All these resulting trees are generated from this operator in

the algorithm. The merge operator merges any two leaves from the tree.

In steps 1-3 of the greedy best-first search algorithm, we create singleton BNs. Singleton

BNs have two nodes— target variable Y and a parent selected from the set of candidate

predictive variables Xi:n. In the decision tree, the root of the tree undergoes both complete

split and binary split from a candidate variable and the tree with the best Bayesian score
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Algorithm 1: BRL greedy best-first search

Input : Data (D = {Xi=1:n, Y }), where Xi=1:n are discrete-valued attributes and Y is
the user-specified target variable. BRL algorithm = {G,DT,DG}, where G is
complete tree, DT is decision tree, and DG is decision graph.

Output: Optimal model Mbest found using greedy best-first search.
1 Create Priority Queue beam that sorts models contained in them by their Bayesian score

in descending order;
2 foreach Attribute Xi ∈ D do
3 Create a constrained BN with one parent Π(Y ) = Xi to target Y ;

4 sortedAttributes← add attributes Xi ∈ D in order in which they appear in beam
models each with one attribute as parent;

5 bestModel← beam.poll();
6 iterationImprovedModel← true;
7 while iterationImprovedModel do
8 beam← ∅;
9 iterationImprovedModel← false;

10 foreach Attribute Xi ∈ sortedAttributes do
11 if algorithm = DG then
12 foreach Leaf l ∈ bestModel do
13 beam← add Complete-Split (bestModel, Xi, l);

14 if algorithm = DT OR DG then
15 beam← add Complete-Split (bestModel, Xi);
16 beam← add Binary-Split (bestModel, Xi);

17 if algorithm = DG then
18 beam← add Merge (bestModel, Xi);

19 bestModelInIteration← beam.poll();
20 if bestModelInIteration.score() > bestModel.score() then
21 bestModel← bestModelInIteration;

22 return bestModel;
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is selected to represent the singleton BN for that candidate variable. We create a singleton

model for each of the candidate variables in the dataset. These BNs are added to a priority

queue that sorts the models in descending order of their Bayesian scores. So, the top of

the queue contains the model with the highest Bayesian score. Step 4 selects the BN with

the highest Bayesian score. This model is the best one seen so far and undergoes further

specialization. The specialization happens in the loop from steps 6-14. At step 7, the priority

queue is cleared. Steps 9-11, applies the complete split and the binary split operator once for

each leaf of the decision tree using each variable in the dataset. The resulting decision trees

are added to the priority queue. When the split operator is being applied to a leaf of the

decision tree, if the path from the root to that leaf already contains a specific variable, then

that variable isn’t used to split the leaf again. After all the specializations are done, we pick

the model on top of the priority queue. We compare the Bayesian score of this model to the

one that was being specialized at the beginning of the loop. If the score of the specialized

model was higher, then the iteration appears to have helped improve the score. So, this

model, with the highest score seen so far, is put into another specialization loop from steps

6-14. The loop breaks if the iteration does not help improve the model score.

Finally, the model with the highest Bayesian score seen so far is returned as the best

model. BRL parses each path from root to leaf and translates them into IF-THEN rules as

shown in Figure 4c.

3.2 ENSEMBLE BAYESIAN RULE LEARNING (EBRL)

In this section, I describe the methods I developed to enable BRL to model multifactorial

diseases. I start with the motivation and some background, in subsection 3.2.1, explain-

ing why this problem is currently difficult for BRL to solve due to data fragmentation. In

subsection 3.2.2, I propose and implement ensemble methods in BRL to help model multifac-

torial diseases. Subsection 3.2.3 shows how we can calculate variable importance from these

ensemble models. In subsection 3.2.4, I propose a novel method to visualize the ensemble

model.
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3.2.1 Background and motivation

As described earlier, omic datasets are challenging for data analysis due to their high-

dimensionality. In addition to that, they are often collected from samples with complex,

multifactorial diseases. Single factor diseases only have one biomarker associated with the

outcome of interest. Single factor diseases include monogenic disorders (or Mendelian dis-

orders), where variation in one gene is the cause of the disease. Examples of single factor

diseases include cystic fibrosis (caused from variants of the CTFR gene) [Riordan et al.,

1989] and Huntington’s disease (caused from variations in HTT gene) [Vonsattel and Di-

Figlia, 1998]. Single factor diseases, while important to study themselves, are relatively rare

compared to the more prevalent, multifactorial diseases [Antonarakis and Beckmann, 2006].

The more common diseases like type II diabetes [Fuchsberger et al., 2016] and coronary heart

disease [Poulter, 1999] are known to be multifactorial, where many common genetic variants,

each with a small effect, collectively increase the disease risk. We need data mining methods

for biomarker discovery that can efficiently learn models from high-dimensional datasets for

multifactorial diseases.

BRL is very adept for biomarker discovery from high-dimensional datasets and has

been shown to perform better than state-of-the-art classifiers typically used in such ap-

plications [Gopalakrishnan et al., 2010, Lustgarten et al., 2017]. A single BRL model alone

is not sufficient to model multifactorial diseases because it selects a small set of variables

to learn the model. Similar to learning decision trees, BRL also suffers from data fragmen-

tation, where model specialization by addition of more variables in the model leads to the

training data being split into smaller subsets. As a result, to test the association between

a new variable and the target, after each specialization, we are left with fewer examples to

evaluate the relationship from. This leads to a loss of statistical power to validate any new

associations.

One potential solution to this problem comes from ensemble methods. In statistics and

machine learning, ensemble models are predictive models built by integrating multiple models

(called base models) and they often achieve predictive performances better than any of its

constituent models [Polikar, 2006]. Bootstrap aggregating or bagging [Breiman, 1996] is one
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such approach that learns a set of base models each from a different bootstrap sample of

the original training dataset. To predict a class in bagging, the base model predictions are

aggregated either by averaging or majority voting. Another popular ensemble method is

boosting [Freund et al., 1999] where, base models learned in each subsequent iteration of the

algorithm tries to focus more on the examples from the training data that were harder to

predict in the previous iteration. The ensemble predictions are then made using a weighted

sum of predictions from the base models. Ensemble methods have achieved a lot of success

in applications where predictive performance is critical [Seni and Elder, 2010]. Ensemble

methods have also been successfully used in bioinformatics including for biomarker discovery

tasks [Yang et al., 2010, Günther et al., 2012].

The theoretical Bayes optimal classifier [Mitchell et al., 1997] is an ensemble that makes

predictions from a weighted combination of all possible models in the model space. On

average, no other model can outperform this classifier using the same model space and prior

knowledge. An explanation for its success comes from Bayesian learning theory [Bernardo

and Smith, 2009] which posits that a single model ignores the uncertainty associated with

the correctness of the model as a result of limited data and noise. Ensembles, on the other

hand, combine predictions from several models weighed by their uncertainty of being correct.

By doing so, they have a mechanism to account for model uncertainty. In Bayesian methods,

Bayesian model averaging [Hoeting et al., 1999] is the standard way to handle uncertainty

in model correctness. In BRL, we implemented this approach and found that it indeed helps

improve the predictive performance of BRL in biomarker discovery tasks [Balasubramanian

et al., 2014].

Domingos showed that simple ensemble methods like bagging easily outperform model

averaging [Domingos, 2000]. Minka suggests that model averaging is not model combina-

tion [Minka, 2000] because model averaging still works on the premise that only one of the

base models is correct. This does not enable us to benefit from the enriched space of models

that ensemble methods provide. Unlike model averaging, ensemble methods work on the

premise that a combination of models from the model space is the correct model. Monteith

et al. [Monteith et al., 2011], further showed that by accounting for the uncertainty in the

correctness of the combination of models, using Bayesian model combination, we can further
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improve the performance of ensemble methods like bagging.

BRL has been shown to be successful in modeling from high-dimensional datasets and

has this useful utility for biomarker discovery tasks of being able to incorporate prior do-

main knowledge (see section 3.3), which makes it a good candidate to be used as base

classifiers for ensemble models. BRL has been shown to consistently perform better than

state-of-the-art classifiers including C4.5 decision trees [Quinlan, 2014] on high-dimensional

datasets [Gopalakrishnan et al., 2010, Lustgarten et al., 2017]. We would like to see if this

advantage also translates into an ensemble methods. Specifically, we want to test if a bagged

BRL model achieves a better predictive performance than BRL alone, C4.5, and bagged or

boosted C4.5 trees. We would also like to do the same comparison using boosted BRL.

Additionally, we would like to evaluate if there is an added benefit over an ensemble

BRL model if we account for the uncertainty in the correctness of model combination of

BRL models by using Bayesian model combination [Monteith et al., 2011]. We would also

like to compare its predictive performance to our previous work on model averaged BRL

model. With respect to the observations by Domingos [Domingos, 2000], Minka [Minka,

2000], and Monteith et al. [Monteith et al., 2011], we expect both bagged (or boosted) BRL

and BRL with model combination to perform better than model averaged BRL. While being

a misnomer because model averaging isn’t model combination (an ensemble method), we will

still collectively call the algorithms (bagged BRL, boosted BRL, model combination of BRL

classifiers generated from either bagging or boosting, and model averaging of BRL classifiers

generated from bagging or boosting) as Ensemble Bayesian Rule Learning (EBRL).

An important advantage of BRL is its interpretability i.e., the model predictions are

supported by human-readable explanations in rule forms. These explanations can be very

helpful in the clinical validation step of the biomarker development process [Goossens et al.,

2015] following the biomarker discovery stage. However, these rule models become less

interpretable when combined into an ensemble model. So, we also propose a novel method to

visualize an ensemble of BRL called Bayesian Rule Ensemble Visualizing tool (or BREVity)

to help interpret an ensemble of BRL models.

To summarize, we implement and evaluate the various methods in EBRL and present a

novel visualization method to help interpret these models to assist in the biomarker devel-

63



opment process.

3.2.2 Ensemble Bayesian Rule Learning (EBRL) algorithms

In this section, I describe the implementation of ensemble methods using BRL to help im-

prove the predictive performance using BRL classifiers. Collectively, we call these methods as

Ensemble Bayesian Rule Learning or EBRL. We start by explaining the theoretical concept

of Bayes optimal classifier and its attractive properties.

Most model search algorithms like the one shown in Algorithm 1 attempt to find the

most probable hypothesis given the training data i.e., maxh∈H p(h|D). The hypothesis, h,

here is a BRL model but can be any classifier. The hypothesis space H is the space of

all possible BRL classifiers. The ultimate goal of a classifier is to provide accurate class

probabilities for a queried test instance. Mitchell et al. [Mitchell et al., 1997] point out that

it is possible to do better than to just use the class probabilities from the most probable

hypothesis for prediction. The most probable class probabilities, for a test instance, can be

obtained by combining the predicted class probabilities from all hypotheses in the hypothesis

space h ∈ H, weighed by their posterior probability, p(h|D). Such a classifier is called the

Bayes optimal classifier. On average, no other classification approach can outperform this

method using the same hypothesis space and prior knowledge. The Bayes optimal classifier

computes the class probabilities as shown in Equation 3.8.

p(yt|xtxtxt, H,D) =
∑
h∈H

p(yt|xtxtxt, h) · p(h|D) (3.8)

By using default cut-offs, we can assign a class to the test instance with the class that

had the highest class probability. This is shown in Equation 3.9.

ŷ = arg max
c∈C

p(yt|xtxtxt, H,D) (3.9)

Ideally, to employ the Bayes optimal classifier in Equation 3.8, we should have access

to the space of all possible hypotheses in the hypothesis space. The hypothesis space grows

exponentially to the number of variables in the dataset. So, it is computationally prohibitive

for even problems with a moderate number of variables. In biomedicine, we often deal with
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problems with several tens of thousands of variables. In such cases, it is not feasible to

compute the entire hypothesis space. Instead, we can sample a diverse set of classifiers that

focus on different aspects of the classification problem. Bootstrap sampling and boosting are

two popular methods to do this. These approaches are described in the next subsection.

3.2.2.1 Model generation We implement two approaches to generate models to rep-

resent the hypothesis space in Equation 3.8. The first approach is bagging, where different

datasets are generated by bootstrap sampling. The other approach is boosting, where iter-

atively, we focus more on instances that were misclassified in the previous iterations.

Bagging In statistics, bootstrap sampling [Efron, 1992] is a popular data sampling

technique. For a dataset with m instances, D = {X i, Y i}mi=1, a bootstrap sample, Dj,

is a dataset with m instances that uniformly samples with replacement, instances from

the original dataset D. There are |H| such bootstrap samples generated, Dj=1:|H|. Each

bootstrap sample is expected to have ≈ 63.2% of the unique instances in D, while the rest

are duplicates as a result of sampling with replacement [Aslam et al., 2007]. A BRL classifier,

h is learned on each of the |H| bootstrap samples and added to the set of H hypotheses.

Boosting AdaBoost [Freund et al., 1999], short for Adaptive Boosting, is a popular ma-

chine learning meta-learning method that iteratively tries to focus more on the misclassified

instances from the previous iteration of the algorithm. AdaBoost with decision trees is often

considered as the best off-the-shelf classifier in machine learning [Kégl, 2013].

AdaBoost was written for binary classifiers. Stagewise Additive Modeling using Multi-

class Exponential loss function or SAMME is a powerful extension of AdaBoost meant to

handle multi-class problems. The pseudocode for boosting with SAMME using BRL classi-

fiers is shown in Algorithm 2.

The input to the SAMME is the training data D = {X i, Y i}mi=1 with m instances. We

also specify the number of models to generate for the hypothesis space H. The output of

the algorithm is a set of models H to combine into an ensemble classifier using Equation

3.8. SAMME also gives a model weight distribution α, which can be substituted into p(h|D)

term in Equation 3.8 to make a prediction. Step 1 of the algorithm creates an empty set

of H and α. Step 2 initializes instance weights to uniform distribution. Step 3 iterates
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Algorithm 2: Boosting

Input : Data (D = {Xi=1:n, Y }) containing m instances and |H|, the
number of boosting models.

Output: A set of models H and associated model weight distribution α.
1 Initialize H ← ∅ and α← ∅;
2 Initialize uniform weights, wj = 1

m , for each instance {Xj
i=1:n, Y

i} in D;
3 foreach t = 1 to |H| models do
4 Learn with weighted instances, ht ← BRL-Search(D(wj));
5 Compute error, εt =

∑
j=1:m w

t
1{Y j 6=ht(Xj)}/

∑
j=1:m w

j ;

6 Compute model weight, αt = log 1−εt
εt + log(r − 1);

7 Add model, H ← ht;
8 Add associated model weight, αt ← αt;
9 Update, wj = wj · exp(αt1{Y j 6=ht(Xj)}); j = 1 : m;

10 Normalize, w to sum to 1;

11 return H and α;

over |H| times to focus more on instances misclassified in the previous iteration. Step 4

learns the BRL model using the greedy best first search in Algorithm 1. To enable BRL

to calculate from weighted instances, the Njk and Nj terms in the Bayesian score shown

in Equation 3.5 are modified to take in sum of weights of instances instead of counts. For

example, if two instances have the configuration j and belong to class k, Njk = 2. Say, from

boosting, their weights of the two instances were 0.02 and 0.01, then the sum Njk = 0.03.

Step 5 calculates the total error made by BRL, by summing the normalized weights of all the

instances misclassified by the BRL classifier, learned in this iteration, when used to classify

each training instance. Step 6 computes the model weight, α, with the log odds of the

error and an additive weight where, r is the number of classes in Y . The models from the

iteration and the learned weight is added to H and α, respectively. The weights of instances

are updated for the next iteration in steps 9 and 10 to focus on misclassified instances and

is weighted by the α weight.

The next step in designing the ensemble model is to aggregate the predictions from

classifiers in H for making a prediction using the ensemble model.

3.2.2.2 Model aggregation We will describe three different approaches to combining

the BRL classifiers in H approximating the same general equation for the Bayes optimal

classifier in Equation 3.8. The first approach is linear combination of model weights (Bagging-
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BRL-LC and Boosted-BRL-LC). It is a special case of model averaging where all models

weights are uniform in bagging or weighted by the model weights detemined by the SAMME

algorithm in the previous section. The second approach of model combination is the more

general case of weighting each predicted classifier probabilities with the likelihood of the data

having been generated by the model. This is called Bayesian model averaging (Bagging-

BRL-BMA and Boosted-BRL-BMA). The final approach we use to aggregate the models is

Bayesian model combination (Bagging-BRL-BMC and Boosted-BRL-BMC), which accounts

for the uncertainty in the correctness of model combination. Here, we sample different model

weight distribution to aggregate the ensemble over and weigh each ensemble with a posterior

probability of the correctness of that ensemble.

Linear combination (Bagging-BRL-LC and Boosted-BRL-LC): This is the clas-

sic model combination strategy used in bagging and boosting. We approximate the Bayes

optimal classifier in Equation 3.8 by obtaining the predicted class probabilities from each

of the base BRL classifiers in H and weigh its prediction with a weight p(h|D). In bagging

this weight is uniform p(h|D) = 1
|H| . Note that the sum of

∑
h∈H p(h|D) = 1. This EBRL

classifier places equal importance on each of the models learned from the bootstrap samples,

for the prediction task. In boosting, we use the α weight given by the SAMME algorithm

for each model in H. This weight is also normalized to sum to 1. In short, Bagged-BRL-LC

and Boosted-BRL-LC methods refer to classic bagging and boosting using BRL classifiers

as base models.

Bayesian model averaging (Bagged-BRL-BMA and Boosted-BRL-BMA): A

more general case of model aggregation is Bayesian model averaging (BMA). BMA tries to

integrate out the uncertainty about which of the models in the ensemble is correct. This

is similar to the model we implemented and evaluated in our previous work in [Balasubra-

manian et al., 2014], with some important changes. The model generation step is different.

Here, we generate the different models learned on bootstrap samples. Here, again, we do not

average over the space of all possible models, which is computationally unfeasible. So, this

approach is also selective model averaging, to be precise, as it was in our previous work.

Unlike linear combination approach that weighs all classifiers equally, the Bayesian model

averaging weighs them with the likelihood that the original training data was generated by
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that particular classifier. This is shown in Equation 3.10.

p(h|D) =
p(D|h) · p(h)∑
h∈H p(D|h) · p(h)

(3.10)

For EBRL, the term p(D|h)·p(h) is directly obtained from the Bayesian score in Equation

3.5. The denominator term normalizes the Bayesian score for only the models in H. This

way, the sum of
∑

h∈H p(h|D) = 1. The only distinction between Bagged-BRL-BMA and

Boosted-BRL-BMA is that the hypothesis space is generated using bagging and boosting,

respectively.

Bayesian model combination (Bagged-BRL-BMC and Boosted-BRL-BMC):

Monteith et al., [Monteith et al., 2011] show how to modify BMA to Bayesian model combina-

tion (BMC). Following the implementation in that paper, we implement the BMC approach

for BRL. To modify BMA to BMC, Equation 3.8 is modified to Equation 3.11.

p(yt|xtxtxt, H,E,D) =
∑
e∈E

p(yt|xtxtxt, H, e,D) · p(e|D) · p(e) (3.11)

Here, e represents a model combination strategy i.e., a specific distribution of model

weights p(h|e,D) to be used in Equation 3.8 to obtain a prediction from the Bayes optimal

classifier. Given the model weights specified by e, we can now perform the ensemble pre-

diction using Equation 3.8— p(yt|xtxtxt, H, e,D) =
∑

h∈H p(y
t|xtxtxt, h,D) · p(h|e,D). However, to

implement BMC, we need a way to generate a set of possible model weight distribution, E,

and also to compute the posterior probability of that ensemble, p(e|D), and finally the prior

probability of the ensemble, p(e). We first describe how to compute the terms p(e|D) and

p(e) before explaining the method we used to generate the set of model weight distributions.

We compute the posterior of the ensemble combination method using Bayes theorem

in Equation 3.12 that assumes all instances in the training dataset, xi; i = 1, · · · ,m, are

independent.

p(e|D) =
p(e)

p(D)
·
m∏
i=1

p(yi|e) (3.12)

Here, in the Bayes theorem expression, the value of the likelihood is set to p(D|e) =∏m
i=1 p(y

i|e). Assuming uniform class noise model [Domingos, 1997], which posits that each

example in the training dataset is corrupted with a probability ε. Then the probability of
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making a correct prediction is 1− ε; and the probability of making an incorrect prediction is

ε. If there are r correct predictions made over m instances by the ensemble, Equation 3.12

shows how to compute the posterior of the ensemble.

p(e|D) ∝ p(e) · (1− ε)r(ε)m−r (3.13)

One consequence of using Equation 3.13 to compute p(e|D) is that it prefers model

weight distribution that leads to predictions with higher accuracies. If the goal was instead

to optimize on some other metric, we should alter the computation of p(e|D) by using the

other metric.

We set the ensemble prior to follow a uniform distribution p(e) = 1
|E| . Here, |E| is the

total number of ensembles we generate for Equation 3.11. Finally, we normalize to ensure

that
∑

e∈E p(e|D) · p(e) = 1.

Finally, we show how we generate a set of possible model weight distributions. Even for a

moderate number of base models in H, we would need to sample over a very large number of

possible model weight distributions. So, we need an informative way of sampling over these

model weights. We do this using the Dirichlet distribution as shown in [Monteith et al., 2011].

We initialize the Dirichlet distribution for |H| categories and set the initial hyperparameters

all to 1.0, i.e., αi=1:|H| = 1.0. Please distinguish this α from the one used for the Bayesian

score. This generates a normalized weight, one for each model in the ensemble. Then, we

sample U times using the Dirichlet distribution with the same α hyperparameter. We refer

to this value U as number of Dirichlet samples. We evaluate each model weight distribution

using the ensemble posterior probability in Equation 3.12. The weight distribution that

achieved the highest posterior probability is summed to the current values of the Dirichlet

hyperparameters, and the Dirichlet distribution with updated parameters is used to sample

the model weights distribution in the next iteration. This iteration is repeated |E| times, to

generate a set of |E| model weight distribution. We now have everything we need to compute

Equation 3.11.

While BMA tries to integrate out the uncertainty about which of the models in the

ensemble is correct, BMC integrates out the uncertainty about which of the ensemble com-

bination methods is correct. As Minka [Minka, 2000] pointed out, such a combination no
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longer assumes that only one of the BRL model is correct, instead assumes that only one of

the ensemble combination of BRL models is correct.

Again, the only distinction between Bagged-BRL-BMC and Boosted-BRL-BMC is that

the hypothesis space is generated using bagging and boosting, respectively.

3.2.3 Variable importance

In biomarker discovery, it is helpful to have a ranked list of the most important biomarkers

according to the ensemble. For Bagged-BRL-LC, Boosted-BRL-LC, Bagged-BRL-BMA, and

Boosted-BRL-BMA, we compute variable importance for Xi in the ensemble of H models

using Equation 3.14.

p(Xi|H,D) =
∑
h∈H

1Xi∈hp(h|D) (3.14)

This is nothing but the sum of the weights of all BRL models in the ensemble that se-

lected the variable Xi. This is the same approach used by Yeung et al. [Yeung et al., 2005], to

evaluate gene relevance using their approach to Bayesian model averaging of logistic regres-

sion models. Since we ensured that
∑

h∈H p(h|D) = 1, the variable importance p(Xi|H,D)

can simply be interpreted as the percent of weight carried by models containing variable Xi.

To compute the variable importance using Bagged-BRL-BMC and Boosted-BRL-BMC,

we use Equation 3.15.

p(Xi|H,E,D) =
∑
h∈H

∑
e∈E

1Xi∈hp(h|e,D) · p(e|D) · p(e) (3.15)

Again, we had normalized the ensemble weights to ensure that
∑

e∈E p(e|D) · p(e) = 1. So,

the variable importance p(Xi|H,E,D) can be interpreted as the percent of the ensemble-

weighted average of model-weight carried by models containing variable Xi.

3.2.4 Bayesian Rule Ensemble Visualizing tool (BREVity)

An advantage of using BRL for biomarker discovery tasks was its interpretability. BRL

offered IF-THEN rules explanations for each prediction it made. This could particularly

prove useful for biomarker validation step of the biomarker development process. Ensemble
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predictions made by EBRL are less interpretable. We develop a novel method to visualize

an ensemble of BRL models and we call this tool— Bayesian Rule Ensemble Visualizing tool

or BREVity. BREVity is a tree-graph, where paths from root to nodes in the tree represent

rule patterns in EBRL. The edge weights in BREVity is the relative importance of the rule

patterns in EBRL. We will clarify BREVity with the help of Figure 8.

Figure 8: Bayesian Rule Ensemble Visualizing tool (BREVity)— (a) A set of 3 models in

EBRL with their posterior probabilities in the top-right corners; (b) edge weights using set

variable importance computed for all variable combinations in EBRL; and (c) the BREVity

graph of EBRL.

Assume, we learned either of the three types of EBRL model using 3 bootstrap samples.
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After running BRL greedy best first search on each of the three bootstrap samples, we

obtain 3 models— {H1, H2, H3}. The learned models and the posterior probabilities of each

model is shown in Figure 8a. Note that the posterior probabilities sum to 1 since they

were normalized in each implementation of EBRL. Also, if the EBRL model being used is

Bagged-BRL-BMC, p(H|D) =
∑

e∈E p(H, e|D) · p(e|D) · p(e).

Next, we compute the importance of each variable in EBRL just as we did in section

3.2.3. We extend the equations in section 3.2.3 to compute the variable importance for a

set of variables in EBRL. For Bagged-BRL-LC and Bagged-BRL-BMA, we extend Equation

3.14 for a set of variables with Equation 3.16.

p(XXX|H,D) =
∑
h∈H

1Xi∈XXX,Xi∈h p(h|D)

where, XXX ⊂ X1:n (3.16)

Similarly, we extend Equation 3.15 for a set of variables with Equation 3.16.

p(XXX|H,E,D) =
∑
h∈H

∑
e∈E

1Xi∈XXX,Xi∈hp(h|e,D) · p(e|D) · p(e)

where, XXX ⊂ X1:n (3.17)

With these new extended equations to compute the variable importance to a set of

variables importance, we can now compute a pattern importance. A pattern importance is

the variable set importance for all variables in the pattern. Simply put, pattern importance is

the sum of the normalized model weights of each model that contains the variable. In Figure

8, there are cumulatively 4 variable set patterns in all the models in EBRL— 1) only X1, 2)

only X2, 3) both X1 and X2, and 4) both X1 and X2. We compute the pattern importance

for these sets using Equations 3.16 and 3.17. This computation is shown in Figure 8b.

Finally, we construct the BREVity tree visualization as shown in Figure 8c. Each path

from the root to a node can represent a possible rule in EBRL. For example, the rule pattern

from model H1, ‘IF (X1 = 0) AND (X2 = 0)’ is the left-most path in the BREVity tree. The

variable importance of X1 was computed to be 0.8. The pattern importance of set {X1, X2},
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was computed to be 0.5. So, the edge weight of the BREVity tree from root to X1 is 0.8,

and the weight of edge to root to X2, while crossing X1, is 0.5.

This visualization has a useful utility in having the left-most part of the tree in each

level of the tree to be the most important pattern in EBRL. For example, only look until

depth 1 of the tree. The left-most pattern is X1, which is also the most important pattern of

length 1 in EBRL. given that we chose to look at variables associated with X1, at depth two,

we notice that pattern {X1, X2} has higher importance than pattern {X1, X3}. In the real-

world application with many trees, this tree is likely to be very dense, breadth-wise. Such

a pattern importance sorting helps the user focus only on the most important patterns in

EBRL. So, the left-most patterns are the best candidates for validation according to EBRL.

We implemented BREVity as a javascript web application that is deployed within an

open-source Eclipse Jetty Web server/servlet container. The BREVity tree is constructed as

a Java object by EBRL. This Java object is translated into a JSON formatted file. Given a

JSON input file, the javascript code parses the file and creates a hierarchical tree structure

that is passed into a d3 visualization tree layout and displayed in a web browser. It includes

the ability for the user to expand nodes from root to leaf, and to filter tree nodes based on

tree edge weights.

A useful function of BREVity visualization is that the weights in the edges of the tree

are simply the strength of influence of the pattern in the EBRL prediction. By setting a

filter, to say, θ > 0.5, we only focus on patterns that contributed at least 50% to the total

EBRL prediction.

While this collection of patterns is more complex to interpret than the patterns in a

single BRL rule model, BREVity helps the user focus on interpretable patterns of the most

influence for prediction made by the EBRL model. In multifactorial diseases, many variables

must interact in different ways with other variables. This visualization offers us to have an

interpretable access to the understanding of a complex model that is very adept in explaining

multifactorial disease processes.
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3.3 BAYESIAN RULE LEARNING WITH INFORMATIVE PRIORS

(BRLP)

In this section, I describe the implementation of BRLp, an extension to the BRL algorithm to

enable it to incorporate prior domain knowledge. This is a published work [Balasubramanian

and Gopalakrishnan, 2018], described here in detail to show how it contributes to solving

the KDD problem 2.4. We saw in the background section (see section 2.2), that there

are plenty of sources of knowledge in biomedicine available in the various bioinformatics

resources including the literature. When presented with such a challenging problem of high-

dimensionality, it may help us reduce the chances of making false positive predictions, if we

focused more on promising regions of the model space. In subsection 3.3.1, I motivate the

problem further and in section 3.3.2, I show an implementation of the BRLp algorithm.

3.3.1 Background and motivation

Omic datasets are high-dimensional. The large numbers of candidate variables generate

a model search space that is very large for data mining algorithms to explore efficiently,

and having only a few instances generates uncertainty for the algorithm to determine the

correctness of any candidate model. In such model search spaces, data mining algorithms

can easily get stuck in local optima or they may infer associations between spurious variables

and the outcome variable, by chance (false positive).

Fayyad et al. [Fayyad et al., 1996b], emphasized the importance of domain prior knowl-

edge in all steps of the Knowledge Discovery in Databases (KDD) process. In biomedicine,

often in addition to the training dataset, we have some prior domain knowledge. This domain

knowledge can help guide the data mining algorithm to focus on regions in the model search

space that are either objectively more promising for a given problem or subjectively more

interesting to a user. The prior knowledge can come from domain literature (e.g. search-

ing through PubMed), a domain expert (e.g. a physician), domain knowledge-bases (e.g.

Gene Ontology) or from other related datasets (e.g. from public data repositories like Gene

Expression Omnibus). It is imperative to develop data mining methods that can leverage
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domain knowledge to assist with the data mining process.

BRL takes a dataset as input and searches over a space of Bayesian belief-networks (BN)

to identify the BN that best explains the input dataset. BRL then infers a rule model from

this BN. BRL uses the Bayesian score as a heuristic to evaluate a BN during search. The

score allows the user to specify a prior belief distribution over the space of BNs that encodes

our prior beliefs about which models are more likely to be correct than others with respect

to our domain knowledge. Typically, in literature and in the BRL methods discussed so

far, uninformative priors are used, which means that we claim that a priori all models are

equally likely to be correct. As said earlier, often along with the dataset, additional domain

knowledge is available that can assist with the data mining process. These sources lead us

to believe that some models are more likely to be correct than others even before we see

the dataset. We can specify this belief using informative priors. Two approaches to using

informative priors in literature have shown promise [Castelo and Siebes, 2000, Mukherjee and

Speed, 2008]. In the next subsection, we discuss each of the two approaches and describe ways

to extend BRL to specify such informative priors that can incorporate domain knowledge.

3.3.2 BRLp algorithm

The Bayesian score, the heuristic score used by BRL from Equation 3.5 is reproduced below

for easy reference—

P (BS, D;α, κ) = κ|Πi| ·
qY∏
j=1

Γ( α
qY

)

Γ(Nj + α
qY

)

rY∏
k=1

Γ(Njk + α
rY qY

)

Γ( α
rY qY

)

Here, the structure prior term is p(BS) = κ|Πi|, which helps us prefer models with fewer

variables. This structure prior represents the prior distribution over all network structures.

Here, we can specify our prior bias of certain network structure over others to skew the

BRL search to focus on certain network structures more than others. Typically, in literature

uninformative priors are used, i.e., they set p(BS = 1). This means that a priori we claim

that we do not have any preference of network structures over the others. BRL in this case

lets the data alone decide the final learned model. The challenge of specifying these priors

is that the total number of network structures grows super-exponentially with the number
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of variables n [Harary and Palmer, 2014]. It often becomes unfeasible to specify structure

priors for each of these network structures for even moderately sized datasets.

Castelo and Siebes [Castelo and Siebes, 2000] describe a promising approach to elicit

structure priors by specifying the probability of the presence or absence of each edge in the

network structure. The user only needs to specify the probability of a subset of edges in the

network structure. The probabilities for all the remaining edges are assigned a discrete

uniform distribution value. A challenge using this approach is to specify the values of

these probabilities. In our experiments with BRL using these priors, we observed that the

likelihood term in Equation 3.5 always dominates the structure prior term. It would help us

if we could control the influence of structure priors over the likelihood term using a scaling

factor. As we described earlier in the introduction section, the background knowledge, we

specify, itself has uncertainty associated with it. A scaling factor would help us control the

influence of data and our prior knowledge.

Mukherjee and Speed [Mukherjee and Speed, 2008] propose an informative prior that uses

a log-linear combination of weighted real-valued function of the network structure, fi(BS).

This function is called the concordance function. It can be any function that monotonically

increases with the increase in agreement between the learned network structure and the prior

beliefs of the user. This is shown in Equation 3.18.

p(BS) ∝ exp

[
λ ·
(∑

i

wi · fi(BS)
)]

(3.18)

The hyperparameter wi are the positive weights that represent the relative importance

of each function. The hyperparameter λ is a scaling factor that helps to control the overall

influence of the structure prior. This will help us quantify the uncertainty in the validity of

our prior knowledge.

The structure prior we used for BRLp comes from an instantiation of the general form

of this prior, shown in Equation 3.18, as described by Mukherjee and Speed [Mukherjee and

Speed, 2008]. It allows the user to specify their prior beliefs about the presence and absence

76



of the edges in the network structure. This instantiation is shown in Equation 3.19.

p(BS) ∝ exp

[
λ ·
(
|E(BS ∩ E+)| − |E(BS ∩ E−)|

)]
(3.19)

Here, set E+ (positive edge-set) represents the set of edges the user believes should be

present in the model, and set E− (negative edge set) represents the set of edges the user

believes should be absent from the model. So, the concordance function in this instantiation

simply gives a positive count for if the candidate graph contains an edge from the positive

edge-set, and a negative count (penalty) when it contains an edge from the negative edge-

set. In this instantiation, the weights hyperparameter is set to 1, since our counts are all

valued 1. We need to learn the value of the hyperparameter λ. The range of values it can

take depends upon the well-known Jeffreys scale [Jeffreys, 1998]. When λ = 0, the whole

exponent becomes 0, and p(BS) = exp(0) = 1, which is the uninformative prior. In other

words, when λ = 0, BRLp should have no effect of structure prior and so would behave the

same as the baseline model, BRL. As we increase the value of λ, the effect of the structure

prior would have an increased influence over the likelihood term in Equation 3.5.

Figure 9: BRLp framework.

To summarize, BRLp uses a heuristic score called the BDeu score, shown in Equation

3.5, and encodes the structure prior in that score using Equation 3.19. The BRLp framework

is shown in Figure 9. The inner dotted box, labeled BRL, is the classic BRL without prior

knowledge, which takes in an input dataset, uses BRL algorithm to learn and output a model.
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The outer dotted box is our extension, BRLp that can incorporate domain knowledge. The

translator process, currently done manually, converts knowledge from various sources to

input into Equation 3.19.

3.4 BAYESIAN RULE LEARNING FOR KNOWLEDGE DISCOVERY

(BRL-KD)

In this section, I describe the method I developed to not only seem models that are statisti-

cally significant, but also clinically relevant. This work is currently available in bioRxiv, an

open access preprint repository, here [Balasubramanian et al., 2019].

One important conflict to resolve before designing a solution to this problem was to

determine— is finding novel/actionable biomarkers a statistical problem or a decision the-

oretic problem? If it is a statistical problem, then we must learn a model that is capable

of picking biomarkers that are novel/actionable. We can do so by either making changes to

learning representations, scoring functions (loss functions), or optimization methods. How-

ever, if it was a decision theoretic problem, then the task of statistics would just be to provide

the most accurate model possible to explain the observed dataset. Then the decision theo-

retic approach would help us pick biomarkers that were novel/actionable. My choice boiled

down to one important observation of reality summarized succinctly by George E. P. Box—

“All models are wrong, but some are useful“ [Box, 1976]. The choice of rule learning for

deploying clinical decision support was one such choice. Perhaps neural networks were more

correct in the scenario but rule models were more useful. Similarly, I argue that there are

applications where certain models, perhaps sub-optimal, may be more useful. In this case,

they are useful because they are more novel/actionable. For example, if the application is de-

veloping models for medical screening. Models selecting cheaper biomarkers are more useful,

within a constraint of reasonable model performance, because they are easier to produce for

mass screening. Similarly, if the application is research, models picking biomarkers that are

more novel are more useful. The definition of clinical relevance depends upon the eventual

application.
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As a result, I developed BRL-KD, a statistical approach to discover clinically relevant

models. In subsection 3.4.1, I provide the background and motivation for BRL-KD. Subsec-

tion 3.4.2 describes the BRL-KD algorithm.

3.4.1 Background and motivation

[Selleck et al., 2017] emphasize that it is not enough to identify variants but to identify ac-

tionable variants that has the potential to revolutionize healthcare. [Burke, 2016] reported in

2016, that there were 768,000 papers indexed in PubMed about biomarkers. Yet, despite all

the technological advances in omics research and bioinformatics methods, we are still very far

from widespread clinical use of these omic biomarkers. Currently, there are only a few dozen

clinically relevant cancer biomarkers. There is also a general lack of support from clinical

practice guidelines. The European Society of Medical Oncology (ESMO) clinical practice

guidelines for lung, breast, colon, and prostate cancers give only a weak recommendation for

the use of about 20 omic biomarkers.

To improve the translation of biomarker discovery projects into clinical practice, we

must incorporate clinical relevance into the model development process. Clinically relevant

biomarkers are not only statistically significant but account to many practical aspects of

biomarker including its specificity to the condition, efficacy, cost-effectiveness, and non-

invasiveness. For example, specificity of the biomarkers is an important aspect of clinical

relevance. Some biomarkers may serve as a test for many pathological conditions and are not

specific to the disease it the being developed as a test for. For example, cancer antigen 19-9

(CA19-9) is a biomarker for pancreatic cancer with high statistical signficance [Steinberg,

1990]. However, this antigen is elevated in many other pathological conditions, such as

biliary obstruction, that often co-exists with pancreatic cancer.

For example, there are two prominent ways to measure blood glucose— 1) finger stick

tests and venipuncture. Both are known to have similar accuracy in quantifying blood

glucose. However, finger stick tests are cheaper and less invasive than venipuncture. So, in

this scenario where we want to measure a patient’s blood glucose alone, finger stick method

is clinically more relevant.
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Various bioinformatics resources can help us quantify these subjective metrics of clinical

relevance. For example, efficacy can be quantified by PharmGKB [Hewett et al., 2002] drug

entries for each molecule. To quantify specificity, we can look at gene ontology [Ashburner

et al., 2000] that include known associated diseases. If a gene is known to be associated with

many diseases, the gene is not specific enough and is a poor candidate to be a biomarker for

a disease.

One way to solve this is using a classical constrained optimization search. We specify a

utility function to determine the clinical relevance of the model. Say, our goal is to develop

a model that is cost-effective, then the utility function can be a simple sum of the cost of

including all the biomarkers (present in the model) in clinical practice. We assume that

we have some pre-specified cost constraint, exceeding which, we lost the clinical relevance

by being more expensive than the current methods in practice. In a classical constrained

optimization search using BRL, while we search for BRL models that optimize the Bayesian

score, we can add a search constraint, such that, if the sum of the cost of the biomarkers in

the current model being specialized exceeds the user-defined cost constraint, then we simply

do not accept the model. Using the classical constrained search, we can find a model from

the search, which is the most optimal model seen during the search that did not exceed the

user-specified cost constraint. This approach is not ideal for two reasons— 1) the limitations

of greedy search, and 2) the uncertainty in the specification of the utility function.

In the greedy search such as the one we developed in section 3.1, the search may pick a

marker that is very expensive in the first step because of it being the most optimal single

marker. However, the cost constraint may not allow us to add any more markers to the

model. There may exist a model without this expensive first marker, that combines to give

a better predictive performance with a combined cost less than the constraint. We will not

be able to find such a model using greedy search and the classical constrained optimization

procedure.

There is uncertainty associated with the specification of the utility function. For example,

in practice specifying the cost-constraint is difficult. The cost depends upon many factors

including medicare and the type of insurance the individual is on. Perhaps the patient being

evaluated cannot afford the cost constraint set during the classical constrained search. Or
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perhaps, the patient is found to be at high-risk of developing the disease and we need to use

the model to help get a more precise evaluation in exchange of an increased cost. In such

scenarios, the user would need to have run BRL specifying a wide range of cost-constraints

to accommodate the different scenarios in the point of care. It is also hard to quantify such

a constraint for utility functions like novelty or efficacy, which can be hard to interpret.

In these above two scenarios, classical constrained optimization search would not suffice.

Instead, Bayesian methods offer an elegant way to specify this useful information of the

uncertainty of our own knowledge about the utility function. In this study, we formulated

the problem of discovering clinically relevant knowledge as a knowledge discovery problem.

We extended the heuristic score used by BRL to include clinical relevance to help search for

clinically more relevant models.

3.4.2 BRL-KD algorithm

We formulate the problem of identifying clinically relevant models as a knowledge discovery

problem. Knowledge Discovery in Databases (KDD) is an important process of discovering

useful knowledge from data. KDD is the non-trivial process of ”identifying valid, novel, po-

tentially useful, and ultimately understandable patterns in the data”[Fayyad et al., 1996b].

According to this definition, we want BRL to discover knowledge. The current BRL al-

gorithm is designed to mine valid and understandable patterns from the data. The rule

patterns generated by BRL are human-readable and such IF-THEN statements are easy to

understand. The BRL search finds valid patterns by trying to optimize its heuristic score.

In this work, we modified the heuristic score to help BRL search for valid, novel, potentially

useful, and understandable patterns from the data. We define novel and potentially useful

patterns together as clinically relevant patterns. Based on the clinical application, novel

patterns are desired, for example, in biomedical research to help improve our understanding

of a physiological process. In such a case, novel patterns are useful. But if the clinical

application is to develop medical screening methods, many factors— novelty, cost-efficiency,

biomarker specificity, efficacy, and non-invasiveness— together define useful patterns. So, in

this study, we combine the terms novel and potentially useful from the KDD definition and
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together call them useful patterns.

The heuristic score used by BRL search algorithm (from Equation 3.5) is shown below.

P (BS, D;α, κ) = κ|Πi| ·
qY∏
j=1

Γ( α
qY

)

Γ(Nj + α
qY

)

rY∏
k=1

Γ(Njk + α
rY qY

)

Γ( α
rY qY

)

Here, the structure prior term is p(BS) = κ|Πi|, is the prior distribution that represents

our belief in which of the models in the hypothesis space is likely to be correct a priori.

This structure prior represents the prior distribution over all BN structures. We encode

it to κ|Πi| to prefer BNs with fewer variables. In BRLp, we used the structure prior term,

p(BS), to incorporate prior domain knowledge to create a bias in the search to prefer network

sub-structures that have been shown to be promising from previous works. The rest of the

term in the equation is called the likelihood function that encodes the likelihood that the

observed training data was generated by a given BN model. The likelihood function gives us

a measure of how well the model fits the data. Generally speaking, the better the model fits

the data, the more likely it is to generalize to unseen test data. The prior term encodes the

prior probability of which of the BNs is the correct data-generating model. Together, the

likelihood function and the prior term assist the search algorithm in identifying promising

candidate BNs that are most likely to have generated the training dataset. In KDD definition,

these two terms help the search algorithm find valid patterns from data.

To include assistance to find useful patterns, we modify the heuristic score to Equation

3.20.

P (BS,Ψ, D;κ, α) = p(BS) · p(Ψ|BS) ·
qY∏
j=1

Γ( α
qY

)

Γ(Nj + α
qY

)

rY∏
k=1

Γ(Njk + α
rY qY

)

Γ( α
rY qY

)
(3.20)

This equation encodes the joint probability of the BN structure (BS), the data (D), and

the clinical relevance as encoded by the utility function Ψ. The utility function p(Ψ|BS)

takes as input the BN structure, and outputs the clinical relevance of the model. The term

p(Ψ|BS) encodes a probability distribution that represents our belief about which of the

models in the hypothesis space is more clinically relevant.

We encode the utility function similar to how we encoded the prior distribution over

models in BRLp. We use the informative prior as specified by [Mukherjee and Speed, 2008].
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The utility function is a log-linear combination of weighted real-valued function (concordance

function) of the network structure, BS. The utility function monotonically increases with

the increase in clinical relevance of the model. The utility function is shown in Equation

3.21.

p(Ψ|BS;λ,w) ∝ exp

[
λ ·
(∑
t∈T

wt · ft(BS)
)]

(3.21)

As an example, if we want more cost-effective models, the utility function simply prefers

cheaper models. One way to compute that is the sum of costs associated with each biomarker

in the model. To enable BRL-KD to look for cost-effective models, the set T in Equation

3.21 iterates through each biomarker in the dataset. Weight wt is the weight of the biomarker

t. For cost-effectiveness we set the weight to the cost of the biomarker. The concordance

function here can be an indicator function that returns 1, when the variable t exists in the

BN structure, BS. Of course, we maximize the heuristic score in BRL search. However,

we have encoded the current utility function as a minimization problem. To convert this

into a maximization problem, we simply encode the negative value of cost, instead of the

cost. Now, the utility function needs to be maximized in order to minimize the overall cost.

Another important consideration is the value of the weights. By encoding the cost, some

markers may cost a few US dollars. Some other may cost thousands of dollars. This will

lead to this term being either too large or too small. To avoid this, we can perform min-max

scaling for the values to range between 0 and 1.

Similarly, we can encode marker specificity by looking at gene-disease ontologies and

encoding the weights with the reciprocal of the number of known diseases associated with

the gene. By maximizing such a function, BRL-KD would prefer biomarkers with fewer

known disease associations. Similar approaches can be done to encode efficacy, invasiveness,

or a combination of multiple utilities.

In Equation 3.21, λ = 0 implies no confidence in the specified values of each biomarker.

λ ≥ 25 asks the search algorithm to prioritize cost before looking at the likelihood function.

The user may search over a range of values for λ in between. The set of models generated

by varying λ generate a pareto set of solutions, all accommodating our constraints while

incorporating our specified knowledge at varying degrees. We can leave the decision of

which model to use based on the circumstances at the point-of-care. One way to cut-down
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on the number of models to examine further is by specifying a constraint like the required

AUROC (or cost per life years gained) achieved by each λ over 10-fold cross-validation.

Now, as before with BRL, BRL-KD maximizes the heuristic function in Equation 3.20 to

identify patterns that are valid, novel, potentially useful, and understandable, from the data.

It is easy to see how BRL-KD can be extended to EBRL methods. Consider the outcome

for one individual being predicted by EBRL. A set of rules would fire, aggregated in a specific

way depending upon the EBRL method used. For that individual, a set of biomarkers are

found to be relevant to help predict their outcome. Using BRL-KD specified priors over each

base model, for the same individual, the original set of biomarkers would ideally be replaced

by clinically more relevant biomarkers.
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4.0 EXPERIMENTS AND RESULTS

In this chapter, the methods developed in this dissertation are evaluated and compared to

other state-of-the-art methods commonly used in data mining. To evaluate each developed

method, an experiment is designed, results are presented and discussed. The goal of this

dissertation was to develop algorithms that learn classifiers, which are actionable in the

field of biomedicine. As discussed in the Significance and Background section, one of the

major challenges in biomedical data analysis comes from high-dimensional datasets generated

from high-throughput technologies. An example of such a dataset is gene expression data.

Section 4.1 introduces the problem and importance of finding differentially expressed genes

from gene expression data. Section 4.2 outlines the general experimental design used to

evaluate the performances, of the developed methods, on publicly available gene expression

datasets. This section includes the description of— gene-expression data collection from

public data repositories, data pre-processing, metrics used to evaluate the performance of

each classifier, and finally the statistical methods used to establish significance of the results

from the analysis. Sections 4.3, 4.4, 4.5, and 4.6 show the experiment design, results, and

discussions after evaluating BRL (see 3.1), EBRL (see 3.2), BRLp (see 3.3), and BRL-KD

(see 3.4), respectively.

4.1 PROBLEM DESCRIPTION: DISCOVERING DIFFERENTIALLY

EXPRESSED GENES

Broadly speaking, the DNA present inside cells in the human body contain genes that encode

proteins. The proteins, in turn, helps the cell perform biological functions necessary for life.
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Gene expression is a multi-step process of the genes synthesizing proteins. The first step,

called transcription, involves the information in the DNA being passed into mRNA molecules.

The second step, called translation, involves the information from mRNA molecules being

passed into proteins. Quantitatively measuring the mRNA levels is cheaper than measuring

proteins. The abundance of the different mRNAs can give us a good estimate of the abun-

dance of related proteins. Each cell can have a different composition of mRNA levels based

on its state. A cell state can be described by its tissues of origin, the stage of cell develop-

ment cycle, environmental response, and disease states. The functional differences between

states can be measured by the difference in the composition of the cell mRNA levels called

transcriptome profile. Difference in the transcriptome profiles can also provide molecular

fingerprints of normal and aberrant (disease state) tissue behavior. Each of these mRNAs

can be mapped to genes that they are transcribed from. The differentially expressed mRNAs

therefore correspond to differential expression of genes. These differentially expressed genes

(DEGs) between the cell states are useful to not only understand the function of genes but

also to understand the overall mechanism of a biological process. As a result, analyzing

gene expression data and identifying DEGs is an important knowledge source for functional

genomics, molecular medicine, and pharmacogenomics. This knowledge improves our un-

derstanding of the disease, suggests potential therapeutic target, and provides venues for

personalized treatments.

The mRNA levels are usually quantified either using high-throughput technologies like

RNA sequencing or hybridization microarrays. These are called platforms. RNA sequencing

(or RNA-seq) is currently the more popular approach. It uses next generation sequencing

(NGS) to quantify the amount of each type of transcripts present in a sample at any given

time. Hybridization microarrays, on the other hand, is a microarray chip composed of a glass

slide with an array containing single-stranded DNA molecules, called probes, embedded in

fixed locations. The probe molecule may be RNA, cDNA or oligonucleotides depending upon

the microarray platform technology being used. There are tens of thousands such probes.

The mRNAs are then extracted from the tissue samples collected for the experiment. They

then hybridize with the probes in the chip. Raw microarray data are images, which are

then transformed into numerical gene expression matrices. Regardless of the platform we
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use, we obtain a numerical matrix, where the rows are genes and the columns are samples.

These samples represent different entities or experimental conditions. These can be different

individuals with different phenotype (e.g., disease state and healthy) or two tissue samples

from the same individual but with different phenotype of the tissue (e.g., tumor cells and

normal cells). For a detailed introduction to genomics, the various genomic technologies,

and the importance of genomic data analysis, please refer to [Lesk, 2017].

Recent efforts have been made to make the data, from high-throughput gene expression

profiling studies, publicly available. Popular public data repositories for gene expression

datasets include The Cancer Genome Atlas (TCGA) [Edgar et al., 2002] and Gene Expression

Omnibus (GEO) [Weinstein et al., 2013].

The gene expression datasets are high-dimensional with tens of thousands of candidate

variables to help explain a few tens or hundreds of samples (e.g., individuals in the cohort).

Such datasets are challenging for data mining methods. This dissertation focused on de-

veloping BRL methods to handle such data. In the next section, I explain how publicly

available gene expression data was collected from the GEO data repository, pre-processed to

prepare them for data analysis, modeled using BRL methods to find differentially expressed

genes, and the experimental design and metrics used to evaluate the performance of BRL

methods on the gene-expression datasets. These metrics will help compare BRL methods to

other state-of-the-art data mining methods.

4.2 EXPERIMENTAL DESIGN

Experiments were conducted to evaluate each of the developed methods and were compared

against state-of-the-art methods. Sub-section 4.2.1, gives the details about how these pub-

licly available gene-expression datasets were collected from the GEO data repository for

these experiments.
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4.2.1 Data collection

A total of 25 real-world gene expression datasets were collected to evaluate the developed

BRL methods. These were downloaded from the Gene Expression Omnibus (GEO) [Barrett

et al., 2012], a public gene-expression data repository. The list of datasets downloaded are

listed in the Table 1.

Data ID GEO ID Disease name Platform name Year submitted Year updated

1 GSE66360 Acute Myocardial Infarction (AMI) Affymetrix Human Genome U133 Plus 2.0 Array 2015 2019

2 GSE62646 Acute Myocardial Infarction (AMI) Affymetrix Human Gene 1.0 ST Array 2014 2018

3 GSE41861 Asthma Affymetrix Human Genome U133 Plus 2.0 Array 2012 2019

4 GSE20881 Inflammatory Bowel Disease (IBD) Agilent Whole Human Genome Oligo Microarray 2010 2017

5 GSE3365 Inflammatory Bowel Disease (IBD) Affymetrix Human Genome U133A Array 2006 2018

6 GSE16879 Inflammatory Bowel Disease (IBD) Affymetrix Human Genome U133 Plus 2.0 Array 2009 2019

7 GSE15245 Multiple Sclerosis (MS) Affymetrix Human Genome U133A Array 2009 2018

8 GSE6613 Parkinson’s Disease Affymetrix Human Genome U133A Array 2007 2018

9 GSE20295 Parkinson’s Disease Affymetrix Human Genome U133A Array 2005 2018

10 GSE30999 Psoriasis Affymetrix Human Genome U133 Plus 2.0 Array 2011 2019

11 GSE55447 Systemic Lupus Erythematosus (SLE) Illumina HumanHT-12 V4.0 expression beadchip 2014 2018

12 GSE19429 Myelodysplastic syndrome (MDS) Affymetrix Human Genome U133 Plus 2.0 Array 2009 2019

13 GSE9006 Diabetes Affymetrix Human Genome U133A Array 2007 2018

14 GSE48350 Alzheimer’s disease Affymetrix Human Genome U133 Plus 2.0 Array 2013 2019

15 GSE5281 Alzheimer’s disease Affymetrix Human Genome U133 Plus 2.0 Array 2006 2019

16 GSE35978 Schizophrenia, Bipolar, Depression Affymetrix Human Gene 1.0 ST Array 2012 2019

17 GSE53987 Schizophrenia, Bipolar, MDD Affymetrix Human Genome U133 Plus 2.0 Array 2014 2019

18 GSE12288 CAD Affymetrix Human Genome U133A Array 2008 2018

19 GSE15852 Breast Cancer Affymetrix Human Genome U133A Array 2009 2018

20 GSE42568 Breast Cancer Affymetrix Human Genome U133 Plus 2.0 Array 2012 2019

21 GSE29431 Breast Cancer Affymetrix Human Genome U133 Plus 2.0 Array 2011 2019

22 GSE18520 Ovarian Cancer Affymetrix Human Genome U133 Plus 2.0 Array 2009 2019

23 GSE19804 Lung Cancer Affymetrix Human Genome U133 Plus 2.0 Array 2010 2019

24 GSE10072 Lung Cancer Affymetrix Human Genome U133A Array 2008 2018

25 GSE68571 Lung Cancer Affymetrix Human Full Length HuGeneFL Array 2015 2016

Table 1: Datasets collected from GEO data repository.

4.2.1.1 Data pre-processing The probes are mapped to the genes they represent. Mul-

tiple probes can map to a single gene. In the final dataset, only one random variable is

intended to represent a unique gene. Among the multiple probes that map to one gene, the

probe with the largest inter-quantile range was chosen to represent the gene. This process is
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Figure 10: Data pre-processing

called inter-quantile range (IQR) filtering. We also extracted the tissue phenotype (tumor

or normal) for each sample and add to this dataset as labels for classification.

4.2.1.2 Cross-validation design The experiment design is setup to perform a 10-fold

stratified cross-validation. Each collected gene expression dataset is split into 10-folds. In

each fold, the entire dataset is randomly split into 90% training data (on which the classifier

is learned) and 10% test data (on which the learned classifier is evaluated). Over the 10

folds, the test datasets from each of the folds together compose mutually exclusive and

exhaustive set of instances from the dataset. Stratified cross-validation ensures that the

class distribution between the train and test datasets is similar.

4.2.1.3 Variable discretization Many data mining methods, for example— rule learn-

ing methods, Bayesian networks, decision tree learning algorithms, etc., cannot handle
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Data ID GEO ID # instances Class distribution (Case/Normal) # variables # variables mapped to genes

1 GSE66360 99 49/50 54675 20192

2 GSE62646 42 28/14 33297 18842

3 GSE41861 138 91/47 30427 14255

4 GSE20881 172 99/73 44290 17625

5 GSE3365 127 85/42 22283 12236

6 GSE16879 73 61/12 54675 19700

7 GSE15245 65 51/14 22215 12403

8 GSE6613 105 50/55 22283 12267

9 GSE20295 93 40/53 22283 12403

10 GSE30999 170 85/85 54675 20192

11 GSE55447 52 42/10 48107 18513

12 GSE19429 200 183/17 54675 19876

13 GSE9006 77 53/24 22283 11304

14 GSE48350 68 25/43 54675 20192

15 GSE5281 161 87/74 54675 20010

16 GSE35978 305 206/100 33297 18842

17 GSE53987 205 150/55 54675 19836

18 GSE12288 222 110/112 22283 12157

19 GSE15852 86 43/43 22283 11288

20 GSE42568 121 104/17 54675 20192

21 GSE29431 66 54/12 54675 20192

22 GSE18520 63 53/10 54675 19850

23 GSE19804 120 60/60 54675 20192

24 GSE10072 107 58/49 22283 12403

25 GSE68571 96 86/10 7129 4896

Table 2: Data properties
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Figure 11: k -fold cross-validation study design

continuous-valued variables. In such cases, these variables need to be converted into discrete-

valued variables before data analysis. Gene expression data contain variables that are raw

microarray images that are transformed into a numerical matrix. So, all variables are

continuous-valued.

Discretization is the process of transforming a continuous-valued variable into a discrete-

valued variable. Minimum Description Length Principle Criterion method [Fayyad et al.,

1993] (or MDLPC) is a popular univariate, supervised discretization method. Univariate

discretization methods discretize one variable at a time (as opposed to multi-variate dis-

cretization approaches). Supervised discretization methods use the class variable-values to

assist in finding the best discretization for a variable. Supervised discretization have even

been shown to help improve the predictive performance of classifiers such as Support Vector

Machines and Random Forests [Lustgarten et al., 2008]. This is because supervised dis-

cretization also acts as a feature selector that eliminates variables without any signal to help

predict the class. Such a variable cannot be discretized using a supervised method. There

can be many noisy variables or variables not associated with the class variable. Supervised
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discretization can help remove some of these variables from the model learning process.

MDLPC is a greedy algorithm uses a decision tree to split a continuous-valued variable

into bins divided at a specific value (called the cut-point). The algorithm evaluates all

possible cut-points and computes the entropy (lower is better) of the resulting split. The

split that resulted in the lowest entropy is chosen and the gain in entropy is computed.

Finally, a decision criterion based on Minimum Description Length [Rissanen, 1978] is used

to evaluate whether or not we accept the chosen split. If accepted, the value ranges in the

bins, as defined by the winning cut-point, is used to give a discrete label to the continuous

values in the bin.

For each fold, the training data is used to perform supervised discretization using MDLPC

(as described above). The learned cut-points are used to discretize the test dataset in the

same fold. This is repeated for each of the 10 folds. This is done so that MDLPC does

not look at the class values of the test dataset to learn the cut-points. Otherwise, the

results would be biased when evaluating the data mining methods as they would have used

the discretized variables that had cut-points learned using the information from the test

dataset.

4.2.2 Evaluation metrics

All evaluated classifiers were evaluated using the same implementation of the predictive

metric computation. This was done to avoid biased estimates computed in Weka, for certain

evaluation metrics, across cross-validation as pointed out by [Forman and Scholz, 2010].

4.2.2.1 Predictive metrics In a classification problem, predictive metrics measure the

discrimination ability of a classifier in distinguishing the different classes in the problem do-

main that the instance may belong to. Six predictive metrics are measured in the experiments

here, they are—

(i) Accuracy

(ii) Precision

(iii) Recall
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(iv) F-measure

(v) Area under receiver operator characteristic curve (AUROC)

(vi) Area under precision recall gain curve (AUPRG)

(i) Accuracy Every classification task can be simplified as a binary classification prob-

lem by iteratively labeling each class as class positive and labeling every other class as class

negative. For a binary classification task, when a classifier makes a prediction on the likely

class for a given instance, the prediction can belong to one of the four possible scenarios— 1)

True positive or TP : the instance belongs to the positive class and the classifier also predicts

positive. 2) False positive or FP : the instance belongs to the positive class but the classifier

incorrectly predicts class negative. This is also known as Type I error. 3) False negative

or FN : the instance belongs to class negative but the classifier incorrectly predicts as class

positive. This is also known as Type II error. 4) True negative or TN : the instance belongs

to class negative and the classifier correctly predicts as class negative.

Accuracy is a measure of the total number of instances whose class the classifier predicts

correctly, divided by the total number of instances predicted. Accuracy is computed with

Equation 4.1.

Accuracy =
TP + TN

TP + FP + FN + TN
(4.1)

Accuracy ranges from 0.0% to 100.0%. Higher values generally indicate better predictive

classifiers. For a k-fold cross-validation evaluation design, for a given dataset, TP , FP ,

FN , and TN are summed across all of the k folds and then the accuracy is computed using

Equation 4.1. A drawback of using accuracy to evaluate the classifiers is that they sensitive

to class imbalance. In those cases, higher values of class accuracy does not necessarily mean

that the classifier is good at discriminating the two classes.

(ii) Precision Precision (or positive predictive value) is the fraction of correctly predicted

instances among all instances predicted to belong to the positive class by the classifier.

Precision is an important metric to monitor when it is expensive to make an incorrect

positive prediction. For example, in fraud detection, it may be expensive for a bank to
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falsely accuse an innocent user of fraud. Precision is computed by Equation 4.2.

Precision =
TP

TP + FP
(4.2)

Precision ranges from 0.0 to 1.0. Higher values generally indicate better predictive clas-

sifiers. For a k-fold cross-validation evaluation design, for a given dataset, precision is com-

puted for each fold and then averaged across the k folds. For a fold, where TP and FP are

both 0, the precision is set to 0, in accordance with [Forman and Scholz, 2010].

(iii) Recall Recall (or sensitivity) is the fraction of positive class instances that are

correctly predicted to belong to the positive class by the classifier. Recall is a useful metric

to monitor in applications, where it is expensive to miss predicting a positive instance. For

example, it may be very expensive to miss identifying a patient who may develop a certain

disease. Recall is computed by Equation 4.3.

Recall =
TP

TP + FN
(4.3)

Recall ranges from 0.0 to 1.0. Higher values generally indicate better predictive classifiers.

For a k-fold cross-validation evaluation design, for a given dataset, recall is computed for

each fold and then averaged across the k folds. For a fold, where both TP and FN are 0,

then recall is set to 0, in accordance with [Forman and Scholz, 2010].

(iv) F-measure F-measure (or F1 score) is a metric that computes the harmonic mean

between precision and recall. This metric is insensitive to class imbalance and particularly

interesting when the data suffers from class imbalance as is typically the case in gene ex-

pression data and many other biomedical datasets. F-measure is given by Equation 4.4.

F1 = 2 · Precision ·Recall
Precision+Recall

(4.4)

The F-measure ranges from 0.0 to 1.0. Higher values generally indicate better predictive

classifiers. As described in [Forman and Scholz, 2010], for k-fold cross-validation evaluation

design, for a given dataset, unbiased estimate for F-measure is computed by first summing
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TP , FP , and FN across all k folds and then calculated using Equation 4.5.

F1 =
2 · TP

2 · TP + FP + FN
(4.5)

If all of TP , FP , and FN are equal to 0, the F-measure is set to 0.

(v) Area under receiver operator characteristic curve (AUROC) Most classifiers

produce a continuous-valued score to predict the probability that the queried instance belongs

to the positive class. A receiver operating characteristic curve (or ROC curve) [Fawcett,

2006] is a graphical plot that represents the trade-off between true positive rates and false

positive rates for different threshold values of the classifier scores. For a given instance and

a specific threshold value for the classifier score, if the classifier evaluates a score for the

instance that is higher than or equal to the threshold, the classifier predicts the instance

to belong to the positive class. If the score is less than the threshold, then the classifier

predicts the instance to belong to the negative class. For each threshold value, we can assign

class memberships to the instances in the test dataset and calculate the true positive rate

and false positive rate for that threshold. The true positive rate (or recall, which we saw

earlier) is the fraction of individuals correctly predicted positive by the model, among all

the positive instances i.e., True positive rate = TP
TP+FN

. The false positive rate (or false

alarm rate) is the fraction of instances correctly predicted negative by the classifier, among

all negative instances i.e., False positive rate = TN
TN+FP

. Once this curve is plotted, the area

under the ROC curve (AUROC ) is calculated. This area corresponds to the probability that

the classifier score will rank a randomly chosen positive instance higher than a randomly

chosen negative instance. The AUROC provides a convenient one-dimensional metric to

evaluate the ability of the classifier to discriminate the positive and the negative class.

The AUROC is closely related to the Wilcoxon signed-ranks test or the Mann-Whitney

U test [Hanley and McNeil, 1982]. The AUROC can be calculated using the U statistic

as follows— Each test instance is assigned a score corresponding to the probability of it

belonging to the positive class according to the classifier being evaluated. After all instances

are scored, they are sorted in ascending order of scores. The instance with the lowest score

is assigned a rank of 1, second lowest gets the score of 2, and so on. Instances with tied

scores have their ranks averaged. After each instance has been given a rank this way, we
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look at only the instances that actually belonged to the positive class. We sum the ranks

obtained by the positive instances and refer to this number as Rp. U statistic is calculated

using Equation 4.6.

Up = Rp −
np(np + 1)

2
(4.6)

Rp is the average rank achieved by the positive instances and np is the total number of

positive instances in the test dataset. The AUROC for the positive class is calculated using

Equation 4.7.

AUROCp =
Up

npn¬p
(4.7)

Here, n¬p is the total number of instances in the test dataset that do not belong tot

he positive class. To compute the AUROC for multi-class problem, the AUROC can be

averaged using Equation 4.8.

AUROC =
1

|C|
∑
c∈C

AUROCc (4.8)

Here, C is the set of all classes, |C| is the total number of classes, c is the c-th class, and

AUROCc is the AUROC computed by Equation 4.7, where c-th class is considered positive

and all other classes are considered negative class.

The AUROC ranges from 0.0 to 1.0. Higher values generally indicate better predictive

classifiers. As described in [Forman and Scholz, 2010], for k-fold cross-validation evaluation

design, for a given dataset, unbiased estimate for AUROC is computed by averaging AUROC

across the k folds.

(vi) Area under precision recall gain curve (AUPRG) In some binary classification

problem, true negative predictions do not help evaluate the classifier predictive performance.

This is especially true in domains where data is skewed with significantly more negatives

examples than positive examples. In such cases, often precision-recall curves are used. [Flach

and Kull, 2015] argue that this is a source of many biases and propose the area under the

precision-recall gain curve. Just as AUROC generalizes the accuracy metric by accounting

for all possible threshold values, AUPRG generalizes the F-measure to account for all possible
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β values in the more generalized F-beta score. The F-beta score is computed using Equation

4.9.

fβ = (1 + β)
precision · recall

β · precision+ recall
(4.9)

The AUPRG ranges from −1.0 to 1.0. Higher values generally indicate better predictive

classifiers. For k-fold cross-validation evaluation design, for a given dataset, AUPRG is

computed by averaging AUPRG across the k folds.

4.2.2.2 Calibration metrics In a classification problem, classifiers typically compute

the probability that a new test instance belongs to a specific class, called class membership

probability, using a score. Calibration refers to the transformation of classifier scores for class

membership into probabilities. In prediction and forecasting, calibration metrics is used to

evaluate the prediction accuracy of class membership probabilities assigned by a classifier,

when compared to the actual frequency of the observed outcomes. A well-calibrated classifier

predicts the probability of an outcome as p, when the outcome does occur p fraction of the

times, for all values of p [DeGroot and Fienberg, 1983].

I evaluate the calibration of the classifiers studied here using the following three metrics—

(i) Brier score

(ii) Expected Calibration Error (ECE)

(iii) Maximum Calibration Error (MCE)

(i) Brier score Brier score [Brier, 1950] is a popular calibration metric to compute the

accuracy of the classifier predicted probabilities. It is computed for each instance predicted

by the classifier, i ∈ 1 · · ·m, for m total predictions. For a specific positive class, Brier score

is computed as shown in Equation 4.10.

Brier score =
1

m

m∑
i=1

(fi − oi)2 (4.10)

Here, fi is the probability that the instance belongs to the positive class, as predicted by the

classifier. oi is the actual outcome for the ith instance. For our classification problem, this

function returns value 1 if the instance belongs to the positive class, or value 0 otherwise.
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Error is computed by subtracting the predicted probability of the outcome and the actual

outcome. The error is squared then summed across all predicted instances. We then compute

the mean of the sum of the squared error. In effect, the Brier score is the same as mean

squared error.

Brier score ranges from 0.0 to 1.0. It is the expected squared calibration error for an

instance. Classifiers with lower Brier score are better calibrated.

(ii) Expected Calibration Error (ECE) [Naeini et al., 2015] define an intuitive

calibration metric, meant for classifers, called Expected Calibration Error (ECE). The clas-

sifier probability predictions of m test instances are binned into B equal-sized bins. B is a

user-defined parameter set to B = 10, like the authors of the paper. ECE is computed as

shown in Equation 4.11.

ECE =
B∑
i=1

P (i) · |oi − fi| (4.11)

Here, P (i) is the proportion of predicted instances contained in bin i. So, total number of

instances in bin i divided by the total number of instances; oi is the observed outcomes, i.e.,

the proportion of positive instances in the ith bin; fi is the classifier predicted probability of

belonging to the positive class, averaged for instances in the ith bin. We take the absolute

error between the predicted outcome and actual outcome, weighted by the proportion of

instances.

ECE ranges from 0.0 to 1.0. It is the expected calibration error for an instance. Classifiers

with lower ECE are better calibrated.

(iii) Maximum Calibration Error (MCE) [Naeini et al., 2015] define another cal-

ibration metric, for classifiers, called Maximum Calibration Error (MCE). Similar to ECE,

MCE takes a user-defined parameter of the number of bins, B, set B = 10 for the experiments

here. MCE is computed as shown in Equation 4.12.

MCE =
B

max
i=1

(|oi − fi|) (4.12)

Here, oi is the proportion of positive instances in the ith bin. fi is the average classifier

predicted probability of belonging to the positive class, for the ith bin. We compute the

absolute error and return the maximum error over B bins.
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MCE ranges from 0.0 to 1.0. It measures the largest calibration error for an instance

made by the classifier. Classifiers with lower MCE are better calibrated.

4.2.2.3 Semantic complexity metrics Semantic complexity metrics help assess the

readability of models. In the following experiments, we evaluate semantic complexity in

terms of the Number of rules (NR) and Number of variables (NV).

Number of rules (NR) Number of rules (NR) is the total number of rules used by

the rule learning model. Generally, rule models with fewer rules are considered to be more

readable.

Number of variables (NV) Number of variables (NV) is the total number of unique

variables selected by the rule learning model to build the entire set of rules within the

classifier. Generally, rule models with fewer variables are considered more readable. They

are also more efficient since in practice, fewer variables need to be validated to evaluate the

proposed model.

Both these metrics are only relevant to the rule-based classifiers used in the experiments,

including C4.5, RIPPER, PART, and the BRL methods. A method to return this metric

was implemented in BRL API. However, Weka API does not provide this metric, we wrote

a parser in BRL that parses the Weka model output and computes this metric.

4.2.3 Decision theory: choosing an optimal threshold

Typically, in a classification task, statistics helps us learn a model that assigns optimally

calibrated probabilities for an instance belonging to the positive class. This is also known

as the prediction problem. The classification problem, on the other hand, is using the model

predicted probabilities to decide the class of the instance. To that end, the reliable metrics

for evaluating model predictive performance are— area under the ROC curve (AUROC),

area under the Precision-Recall gain curves (AUPRG), Brier score, expected calibration

error (ECE), and maximum calibration error (MCE). The unreliable metrics are— Accuracy,

Precision, Recall, and F-measure. The reason those metrics are unreliable is because they

are meant to evaluate classification performance. We often choose an arbitrary threshold
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for classification. For example, choosing a probability cut-off of 0.5, such that if the model

evaluates the probability of the instance belonging to the positive class is greater than 0.5

then we classify the instance as positive. This choice of cut-off is arbitrary. The evaluation

section in this chapter is also done using this arbitrary cut-off of 0.5, which means the

metrics Accuracy, Precision, Recall, and F-measure will not be used for judging the predictive

performance of the classifiers.

The classification problem requires a decision theoretic approach. Prematurely assuming

that the cost of false positive and false negative is equal, thereby using a cut-off value of

0.5, incorrectly makes a decision ahead of the decision maker. Instead, the choice of cut-off

should be made at the point-of-care and is not a part of data analysis. For optimum decision

making, the decision maker needs all the available data, reliable model predictions, and a

utility function. The utility function could be to minimize the expected loss, maximize some

utility function ( e.g., F1-score, Recall), etc.

4.2.4 Significance testing

For each dataset, an evaluation metric is computed across 10-folds as described above. Then

the metric is averaged across the 25 datasets. We now want to know if one or more algorithms

is statistically significantly different than other algorithms, for a given metric, evaluated over

the 25 datasets.

4.2.4.1 Parametric or non-parametric method The first question in significance

testing is whether to use parametric or non-parametric methods. Parametric methods are

more powerful but only when the assumptions hold. Specifically, the assumptions of nor-

mality and homoscedasticity must hold. Normally distributed data follow the Gaussian

distribution. They are unimodal and symmetric. Homoscedastic data have variables with

the same finite variance. These assumptions can be tested using methods like Shapiro-Wilk

test for normality and the Bartlett’s test for homoscedasticity. However, both these methods

are not powerful and are affected by small sample sizes, which make them uneffective. Al-

ternatively, we can visually check for normality and homoscedasticity by simply plotting the
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data. Also, quantile-quantile plots can help us visually test for normality. However, [Demšar,

2006] argues that machine learning experiment analysis and evaluation of optimization al-

gorithms do not generate data that hold these assumptions and so, no parametric tests are

suitable in these scenarios. For all the hypotheses testing in this chapter, I performed the

visual tests of normality. All of them were found to be non-normal. So, non-parametric tests

were used for significance testing.

4.2.4.2 Global test for significance The second question in significance testing is to

check whether one (or more) of the algorithms, being compared, behave significantly different

from others. The null hypothesis here is that all classifiers perform the same and the observed

differences are merely random. The alternate hypothesis is that all classifiers do not perform

the same. If the normality and homoscedasticity assumptions were to hold, we can test this

using the parametric repeated-measures ANOVA test. If these assumptions don’t hold, we

must use non-parametric tests for significance.

Wilcoxon signed-ranks test: For comparing only two algorithms, [Demšar, 2006]

recommends using Wilcoxon signed-ranks test[Wilcoxon, 1992]. It is the non-parametric

equivalent of paired Student’s t-test. Here, the null hypothesis is that the median difference

between the performances of the two classifiers is zero. The alternate hypothesis is that the

median difference between the two classifier performance is not zero.

We first list the classifier performance for each of the n datasets. The difference between

the classifier performance values is computed, then its absolute values are computed. The

absolute differences are then ranked in ascending order. The ranks for tied ranks are av-

eraged. If the second classifier outperformed the first classifier, their ranks are summed to

R+. If the first classifier outperforms the first, their ranks are summed to R−. Absolute

differences of 0 are split evenly among the sums and if there are odd numbers of them, one

is dropped.

To compute the Wilcoxon statistic, we simply take the minimum of the two sums i.e.,

T = min(R+, R−). We then compare this statistic to the critical value Tc from the Wilcoxon

distribution for a specified confidence level of α and n degrees of freedom (number of datasets

compared). If T < Tc, we reject the null hypothesis that the median difference between the
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performances of the two classifiers is zero.

Friedman test: For comparing more than two algorithms, [Demšar, 2006] recommends

using the Friedman test [Friedman, 1937]. It is the non-parametric equivalent of repeated-

measures ANOVA test. For each dataset being evaluated, this test ranks the classifiers in

order of their performance. Rank 1 being the best performing classifier, rank 2 being second

best, and so on. In case of ties, the ranks are averaged. Say, we want to compare k algorithms

over n datasets. Let rji be the rank of the j-th algorithm on the i-th dataset. Then Freidman

test compares the average rank of classifiers across the n datasets i.e., Rj = ( 1
n
)
∑n

i=1 r
j
i .

Under the null hypothesis that the average rank of the classifiers are equal, the Friedman

statistic is given by Equation 4.13.

χ2
F =

12 · n
k(k + 1)

[
k∑
j=1

R2
j −

k(k + 1)2

4

]
(4.13)

Under the null hypothesis, the statistic is distributed according to χ2
F with (k − 1) degrees

of freedom.

Friedman test with Iman-Davenport correction: [Iman and Davenport, 1980] show

that the Friedman statistic is overly conservative and suggested an F-statistic with a correc-

tion, as shown in Equation 4.14.

FF =
(n− 1) · χ2

F

n · (k − 1)− χ2
F

(4.14)

Under the null hypothesis, this statistic is distributed according to the F-distribution

with (k − 1) and (k − 1)(n− 1) degrees of freedom.

Friedman aligned rank test: Friedman test depends upon n sets of ranks, one for

each dataset, containing the classifier rankings based on their performance.

χ2
F−align =

(k − 1) ·
[∑k

j=1R
2
j − (kn2/4)(kn+ 1)2

]
{[kn(kn+ 1)(2kn+ 1)]/6} − (1/k)

∑n
i=1R

2
i

(4.15)

Under the null hypothesis, this statistic is distributed according to χ2
F−align with (k− 1)

degrees of freedom.

Quade test: The Friedman test assumes all datasets to be equally important. However,

sometimes, some datasets are harder than others. There are datasets where the classifier
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performances differ a lot. The Quade test computes rankings for each dataset, scales it based

on the differences in the classifier performances on that dataset, and conducts a weighted

ranking analysis of the results.

When comparing multiple classifier performances, if the null hypothesis is rejected by

any of these global methods, we need to perform post-hoc tests to detect which classifiers

actually differ.

4.2.4.3 Post-hoc test for significance Given that we rejected the null hypothesis that

all the compared classifiers perform the same, post-hoc tests further help us identify which

classifiers perform differently. There are two main approaches to performing post-hoc tests—

1) Finding pairwise differences and 2) Comparing with a control classifier.

For pairwise differences, we used Bergmann and Hommel‘s method to correct the p-

values generated by the global test. For comparison with control, we used the following four

methods to correct the p-values— Holland, Finner, Rom, and Li’s method [Garćıa et al.,

2010].

4.3 EXPERIMENT 1: EVALUATING BRL METHODS

In experiment 1, we will test 3 hypotheses, as follows—

1. Experiment 1a (see subsection 4.3.1): Does BRL.G achieve better predictive and calibra-

tion performance when compared to other popular state-of-the-art (SOTA) rule learning

classifiers (C4.5, RIPPER, and PART)? BRL.G is also expected to require significantly

fewer variables to model the data than the compared SOTA classifiers.

2. Experiment 1b (see subsection 4.3.2): BRL.G, BRL.DT, and BRL.DG are expected to

have similar predictive and calibration performance. BRL.DG is expected to achieve

significantly higher Bayesian scores and fewer rules than BRL.DT. In turn, BRL.DT

is expected to achieve significantly higher Bayesian scores and require fewer rules than

BRL.G.
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3. Experiment 1c (see subsection 4.3.3): Experiment 1b is repeated with an improved search

space using beam search instead of greedy best-first search. Since BRL.DT and BRL.DG

search over a much denser space than BRL.G, we expect the improved search to benefit

the performances of BRL.DT and BRL.DG.

Subsection 4.3.4 compares the AUROC, AUPRG, and Brier scores of the best performing

BRL algorithm (from the experiments), to other popular state-of-the-art algorithms (not just

limited to rule learning classifiers). Subsection 4.3.5 summarizes the results from experiment

1.

4.3.1 Experiment 1a: BRL.G compared to state-of-the-art rule learning classi-

fiers

This experiment was conducted to test if BRL.G achieves a better predictive performance

than other state-of-the-art rule learning classifiers. The representative examples for state-of-

the-art rule learning classifiers compared here are— C4.5 [Quinlan, 2014], RIPPER [Cohen,

1995], and PART [Frank and Witten, 1998].

Accuracy, Precision, Recall, and F-measures achieved by the classifiers over the 25

datasets are shown in Appendix C (see 9.1). They do not help us determine which of

the compared models have a better predictive performances. So, no significance testing was

done with these metrics.

To compare the model predictive performance and test if BRL.G performs better than

the other algorithms; AUROC, AUPRG, Brier score, ECE, and MCE performances are

compared. Significance testing is only performed on these predictive performance metrics.

AUROCs achieved by the different classifiers were first compared against BRL.G. The

results are shown in Table 3. Friedman’s test (p-value = 0.001586), Friedman’s test with

Iman-Davenport correction (p-value = 0.0008853), Friedman’s aligned ranks test (p-value =

0.01641), and Quade test (p-value = 0.005958) all suggest that we must reject the null hy-

pothesis suggesting that all classifiers have the same AUROC. Post-hoc test is now conducted

to determine which of the classifiers are different from others. The p-values generated by

Friedman’s test were adjusted using Holland’s method to find that the AUROC achieved by
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BRL.G is statistically significantly different from C4.5 (p-value = 0.002050848), RIPPER

(p-value = 0.006169899), and PART (p-value = 0.002050848). Similar conclusions were

reached using Finner, Rom, and Li methods. These results suggest that BRL.G generally

achieves a statistically significantly higher AUROC than C4.5, RIPPER, and PART.

AUPRGs achieved by the different classifiers were first compared against BRL.G. The

results are shown in Table 4. Friedman’s test (p-value = 0.07718), Friedman’s test with Iman-

Davenport correction (p-value = 0.07408), Friedman’s aligned ranks test (p-value = 0.1227),

and Quade test (p-value = 0.1531) all suggest that we cannot reject the null hypothe-

sis suggesting that all classifiers have the same AUPRGs. However, the average AUPRG

achieved by BRL.G (0.5939±0.0644) is much higher than C4.5 (0.5473±0.00638), RIPPER

(0.5382 ± 0.0656), and PART (0.5475 ± 0.0644). These results suggest that perhaps more

datasets need to be evaluated to establish a more definitive conclusion from this metric.

The next three metrics— Brier score, ECE, and MCE— help evaluate the calibration

performance.

Brier scores achieved by the different classifiers were first compared against BRL.G. The

results are shown in Table 5. Friedman’s test (p-value = 0.001508), Friedman’s test with

Iman-Davenport correction (p-value = 0.0008321), Friedman’s aligned ranks test (p-value =

0.001865), and Quade test (p-value = 0.0005386) all suggest that we must reject the null

hypothesis suggesting that all classifiers have the same Brier scores. Post-hoc test is now

conducted to determine which of the classifiers are different from others. The p-values gen-

erated by Friedman’s test were adjusted using Holland’s method to find that the Brier score

achieved by BRL.G is statistically significantly different from C4.5 (p-value = 0.001676764),

RIPPER (p-value = 0.02845974), and PART (p-value = 0.001676764). Similar conclusions

were reached using Finner, Rom, and Li methods. These results suggest that BRL.G gener-

ally achieves a statistically significantly better Brier score than C4.5, RIPPER, and PART.

ECEs achieved by the different classifiers were first compared against BRL.G. The results

are shown in Table 6. Friedman’s test (p-value = 0.04123) and Friedman’s test with Iman-

Davenport correction (p-value = 0.03772) suggest that we must reject the null hypothesis

suggesting that all classifiers have the same ECE. However, Friedman’s aligned ranks test

(p-value = 0.1309), and Quade test (p-value = 0.2444) suggest that we cannot reject the null
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hypothesis. Continuing from the results from Friedman’s test, post-hoc test is conducted

to determine which of the classifiers are different from others. The p-values generated by

Friedman’s test were adjusted using Holland’s method to find that the ECE achieved by

BRL.G is statistically significantly different from C4.5 (p-value = 0.02983163) and PART

(p-value = 0.04883991) but not different from RIPPER (p-value = 0.2733217). Similar

conclusions were reached using Finner, Rom, and Li methods. These results suggest that

BRL.G generally achieves a statistically significantly worse ECE than C4.5 and PART.

MCEs achieved by the different classifiers were first compared against BRL.G. The results

are shown in Table 7. Friedman’s test (p-value = 0.5351), Friedman’s test with Iman-

Davenport correction (p-value = 0.5434), Friedman’s aligned ranks test (p-value = 0.7471),

and Quade test (p-value = 0.9455) all suggest that we cannot reject the null hypothesis

suggesting that all classifiers have the same MCE.

The next two metrics— average number of rules (NR) and average number of variables

(NV)— help evaluate the model parsimony.

Average NR needed by the different classifiers were first compared against BRL.G.

The results are shown in Table 8. Friedman’s test (p-value = 5.597e − 12), Friedman’s

test with Iman-Davenport correction (p-value < 2.2e − 16), Friedman’s aligned ranks test

(p-value = 7.603e − 11), and Quade test (p-value = 2.22e − 16) strongly suggest that we

reject the null hypothesis suggesting all classifiers use the same number of rules. Post-hoc

test is conducted to determine which of the classifiers are different from others. The p-values

generated by Friedman’s test were adjusted using Holland’s method to find that the NR

needed by BRL.G is statistically significantly different from C4.5 (p-value = 0.0001956923),

RIPPER (p-value = 1.280736e− 08), and PART (p-value = 1.54583e− 11). Similar conclu-

sions were reached using Finner, Rom, and Li methods. These results suggest that BRL.G

on average needs statistically significantly more rules than C4.5, RIPPER, and PART.

Average NV needed needed by the different classifiers were first compared against BRL.G.

The results are shown in Table 9. Friedman’s test (p-value = 0.01922), Friedman’s test with

Iman-Davenport correction (p-value = 0.01626), Friedman’s aligned ranks test (p-value =

0.0001692), and Quade test (p-value = 5.741e− 06) strongly suggest that we reject the null

hypothesis suggesting all classifiers use the same number of rules. Post-hoc test is conducted
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to determine which of the classifiers are different from others. The p-values generated from

Friedman’s test did not identify significantly different performing classifiers using any of

Holland, Finner, Rom and Li methods. Instead, the p-values generated by Friedman’s aligned

test were used. They were adjusted using Holland’s method to find that the NV needed by

BRL.G is statistically significantly different from C4.5 (p-value = 0.001833508) and PART

(p-value = 6.749709e − 05) but not RIPPER (p-value = 0.6173192). Similar conclusions

were reached using Finner, Rom, and Li methods. These results suggest that BRL.G on

average needs statistically significantly fewer variables than C4.5 and PART.

4.3.1.1 Experiment 1a: Conclusion Experiment 1a shows that BRL.G achieves a

statistically significantly better predictive performance than C4.5, RIPPER, and PART in

terms of AUROC and Brier score. But BRL.G had statistically significantly worse ECE than

C4.5 and PART. However, in terms of AUPRG and MCE the classifiers were statistically

indistinguishable. In terms of model parsimony, BRL.G requires significantly more rules but

requires significantly fewer variables than C4.5 and PART.

To summarize, BRL.G presents an alternative to C4.5, RIPPER, and PART that is

likely to attain better predictive and require fewer variables to achieve this performance.

These results indicate that BRL.G is a suitable candidate for biomarker discovery, when it is

expensive to validate the biomarkers. By choosing fewer and better predicting biomarkers,

BRL.G is an important model to consider for biomarker discovery tasks.

4.3.2 Experiment 1b: Comparing BRL.G, BRL.DT, and BRL.DG

Experiment 1b compares the performances of BRL.G, BRL.DT, and BRL.DG. The tables

showing the Accuracy, Precision, Recall, and F-measures achieved by the three classifiers

over the 25 datasets is moved to Appendix C (see 9.2).

To compare the model predictive performance of the different BRL algorithms, the met-

rics Bayesian score, AUROC, AUPRG, Brier score, ECE, and MCE are compared. Signifi-

cance testing is only performed on these predictive performance metrics.

Bayesian scores achieved by the three classifiers are shown in Table 10. Friedman’s
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Data C4.5 RIPPER PART BRL.G

GSE66360 0.6940 0.6995 0.7040 0.8640

GSE62646 0.9083 0.9083 0.9083 0.9083

GSE41861 0.7164 0.7531 0.7267 0.7401

GSE20881 0.7518 0.8246 0.7182 0.8117

GSE3365 0.7994 0.7931 0.7940 0.9311

GSE16879 0.9845 0.8917 0.9845 0.9845

GSE15245 0.6083 0.4550 0.6233 0.6950

GSE6613 0.5847 0.5887 0.5590 0.4563

GSE20295 0.6413 0.5775 0.6650 0.5750

GSE30999 0.9458 0.9646 0.9396 0.9722

GSE55447 0.6125 0.4825 0.5525 0.6175

GSE19429 0.6254 0.7003 0.5838 0.9157

GSE9006 0.7383 0.7483 0.7783 0.8458

GSE48350 1.0000 1.0000 1.0000 1.0000

GSE5281 0.8263 0.8540 0.8170 0.8436

GSE35978 0.5129 0.5960 0.5917 0.6013

GSE53987 0.5502 0.5029 0.5041 0.5581

GSE12288 0.5357 0.5996 0.5207 0.5669

GSE15852 0.7631 0.7888 0.7831 0.8569

GSE42568 0.8955 0.8455 0.8955 0.8109

GSE29431 0.9417 0.9317 0.9417 0.9417

GSE18520 0.9900 0.9900 0.9900 0.9900

GSE19804 0.8806 0.8931 0.8889 0.9153

GSE10072 0.9425 0.9258 0.9425 0.9425

GSE68571 0.9938 0.9938 0.9938 0.9938

Average ± SEM 0.7777± 0.0326 0.7723± 0.0341 0.7762± 0.0334 0.8135± 0.0329

Table 3: Experiment 1a: Area under the ROC cruves (AUROCs) for each dataset, averaged over
10-fold cross-validation, using state-of-the-art rule learning classifiers compared to BRL. Classifier
with higher values of AUROCs are better performing for a given dataset. The last row calculates
the average for each classifier across 25 datasets and also reports the standard error of mean.
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Data C4.5 RIPPER PART BRL.G

GSE66360 0.4213 0.4575 0.4313 0.7558

GSE62646 0.7833 0.7833 0.7833 0.7833

GSE41861 0.4223 0.4780 0.4263 0.3882

GSE20881 0.5146 0.6616 0.4456 0.6381

GSE3365 0.5734 0.5187 0.5600 0.8003

GSE16879 0.8845 0.7417 0.8845 0.8845

GSE15245 0.1481 -0.0308 0.1882 0.3119

GSE6613 0.1942 0.2067 0.1447 -0.0736

GSE20295 0.3233 0.1661 0.3819 0.2157

GSE30999 0.8988 0.9404 0.8863 0.9548

GSE55447 0.2500 -0.0075 0.1400 0.1175

GSE19429 0.1514 0.2630 0.1069 0.4804

GSE9006 0.4379 0.4405 0.5267 0.6300

GSE48350 1.0000 1.0000 1.0000 1.0000

GSE5281 0.6788 0.7374 0.6619 0.6881

GSE35978 0.0644 0.1473 0.2064 0.1944

GSE53987 0.0854 0.0417 0.0286 0.1127

GSE12288 0.0855 0.2562 0.0591 0.1829

GSE15852 0.5590 0.6043 0.6103 0.7579

GSE42568 0.7955 0.6955 0.7955 0.5631

GSE29431 0.8417 0.7817 0.8417 0.8417

GSE18520 0.9400 0.9400 0.9400 0.9400

GSE19804 0.7937 0.8244 0.8020 0.8435

GSE10072 0.8920 0.8645 0.8920 0.8920

GSE68571 0.9438 0.9438 0.9438 0.9438

Average ± SEM 0.5473± 0.0638 0.5382± 0.0656 0.5475± 0.0644 0.5939± 0.0644

Table 4: Experiment 1a: Area under precision-recall gain curves (AUPRGs) for each dataset,
averaged over 10-fold cross-validation, using state-of-the-art rule learning classifiers compared to
BRL. Classifier with higher values of AUPRGs are better performing for a given dataset. The last
row calculates the average for each classifier across 25 datasets and also reports the standard error
of mean.
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Data C4.5 RIPPER PART BRL.G

GSE66360 0.2889 0.2475 0.2886 0.2169

GSE62646 0.0700 0.0701 0.0700 0.0684

GSE41861 0.2482 0.2254 0.2470 0.2339

GSE20881 0.2442 0.1724 0.2687 0.2007

GSE3365 0.1884 0.1590 0.1887 0.1039

GSE16879 0.0268 0.0539 0.0268 0.0257

GSE15245 0.3128 0.3079 0.2984 0.2235

GSE6613 0.4097 0.3620 0.4243 0.4136

GSE20295 0.3467 0.3915 0.3228 0.3568

GSE30999 0.0530 0.0354 0.0587 0.0497

GSE55447 0.3194 0.3348 0.3402 0.2805

GSE19429 0.1436 0.0850 0.1302 0.0824

GSE9006 0.2049 0.2162 0.1753 0.2125

GSE48350 0.0000 0.0000 0.0000 0.0001

GSE5281 0.1804 0.1510 0.1847 0.1621

GSE35978 0.3918 0.3057 0.3383 0.2577

GSE53987 0.2996 0.3101 0.3549 0.2401

GSE12288 0.4541 0.3469 0.4587 0.3149

GSE15852 0.2271 0.1998 0.2045 0.1668

GSE42568 0.0251 0.0417 0.0251 0.0806

GSE29431 0.0286 0.0429 0.0286 0.0279

GSE18520 0.0167 0.0167 0.0167 0.0159

GSE19804 0.1125 0.0980 0.1122 0.1092

GSE10072 0.0556 0.0743 0.0556 0.0552

GSE68571 0.0111 0.0111 0.0111 0.0106

Average ± SEM 0.1864± 0.0283 0.1704± 0.0254 0.1852± 0.0284 0.1564± 0.0234

Table 5: Experiment 1a: Brier scores for each dataset, averaged over 10-fold cross-validation, using
state-of-the-art rule learning classifiers compared to BRL. Classifier with lower values of Brier score
are better calibrated for a given dataset. The last row calculates the average for each classifier across
25 datasets and also reports the standard error of mean.
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Data C4.5 RIPPER PART BRL.G

GSE66360 0.0309 0.0220 0.0309 0.0265

GSE62646 0.0250 0.0250 0.0250 0.0289

GSE41861 0.0000 0.0250 0.0005 0.0281

GSE20881 0.0005 0.0115 0.0061 0.0119

GSE3365 0.0243 0.0161 0.0244 0.0130

GSE16879 0.0000 0.0302 0.0000 0.0030

GSE15245 0.0455 0.0572 0.0444 0.0535

GSE6613 0.0456 0.0201 0.0558 0.0644

GSE20295 0.0433 0.0341 0.0535 0.0507

GSE30999 0.0059 0.0117 0.0060 0.0060

GSE55447 0.0210 0.0572 0.0210 0.0408

GSE19429 0.0599 0.0529 0.0603 0.0468

GSE9006 0.0404 0.0672 0.0397 0.0798

GSE48350 0.0000 0.0000 0.0000 0.0016

GSE5281 0.0000 0.0083 0.0002 0.0064

GSE35978 0.0385 0.0370 0.0360 0.0433

GSE53987 0.0564 0.0642 0.0508 0.0481

GSE12288 0.0279 0.0165 0.0402 0.0459

GSE15852 0.0600 0.0484 0.0486 0.0379

GSE42568 0.0167 0.0259 0.0167 0.0268

GSE29431 0.0000 0.0000 0.0000 0.0008

GSE18520 0.0000 0.0000 0.0000 0.0042

GSE19804 0.0173 0.0255 0.0173 0.0131

GSE10072 0.0000 0.0004 0.0000 0.0004

GSE68571 0.0000 0.0000 0.0000 0.0027

Average ± SEM 0.0224± 0.0043 0.0263± 0.0043 0.0231± 0.0043 0.0274± 0.0045

Table 6: Experiment 1a: Expected calibration errors (ECEs) for each dataset, averaged over 10-
fold cross-validation, using state-of-the-art rule learning classifiers compared to BRL. Classifier with
lower values of ECEs are better calibrated for a given dataset. The last row calculates the average
for each classifier across 25 datasets and also reports the standard error of mean.
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Data C4.5 RIPPER PART BRL.G

GSE66360 1.0000 0.9877 0.9977 0.9953

GSE62646 0.3000 0.3037 0.3000 0.3096

GSE41861 0.9988 0.9813 0.9940 0.9926

GSE20881 0.9978 0.9835 0.9974 0.9988

GSE3365 0.8919 0.8985 0.8935 0.7581

GSE16879 0.2000 0.3250 0.2000 0.2135

GSE15245 0.9042 0.9934 0.9042 0.7487

GSE6613 1.0000 0.9894 0.9977 0.9456

GSE20295 1.0000 0.9937 0.9917 0.9990

GSE30999 0.6026 0.3166 0.7013 0.4987

GSE55447 0.8400 0.9692 0.8900 0.9743

GSE19429 0.6452 0.6006 0.6481 0.4968

GSE9006 0.8053 0.9736 0.7955 0.8316

GSE48350 0.0000 0.0000 0.0000 0.0109

GSE5281 0.9667 0.8897 0.9970 0.9982

GSE35978 0.8729 0.8425 0.8041 0.7997

GSE53987 0.9783 0.9650 0.9213 0.8011

GSE12288 0.9763 0.8948 0.9750 0.7927

GSE15852 0.9004 0.8914 0.8978 0.9423

GSE42568 0.2084 0.4032 0.2084 0.7815

GSE29431 0.2000 0.3008 0.2000 0.2151

GSE18520 0.1000 0.1000 0.1000 0.1211

GSE19804 0.9001 0.7001 0.8982 0.9866

GSE10072 0.4113 0.5063 0.4113 0.4289

GSE68571 0.1000 0.1000 0.1000 0.1211

Average ± SEM 0.6720± 0.0716 0.6764± 0.0686 0.6730± 0.0712 0.6705± 0.0668

Table 7: Experiment 1a: Maximum calibration errors (MCEs) for each dataset, averaged over
10-fold cross-validation, using state-of-the-art rule learning classifiers compared to BRL. Classifier
with lower values of MCEs are better calibrated for a given dataset. The last row calculates the
average for each classifier across 25 datasets and also reports the standard error of mean.
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Data C4.5 RIPPER PART BRL.G

GSE66360 4.3 3.0 2.4 10.4

GSE62646 2.0 2.0 2.0 2.0

GSE41861 7.8 4.1 2.2 37.6

GSE20881 10.0 4.8 2.4 86.4

GSE3365 4.8 3.1 2.3 14.4

GSE16879 2.0 2.0 2.0 2.0

GSE15245 4.5 3.8 2.2 10.2

GSE6613 9.5 5.0 2.7 13.2

GSE20295 9.8 4.9 3.7 103.0

GSE30999 3.5 2.2 3.2 3.6

GSE55447 3.9 2.3 2.4 5.7

GSE19429 5.3 2.4 2.3 12.4

GSE9006 3.8 2.8 3.0 8.4

GSE48350 2.0 2.0 2.0 2.0

GSE5281 6.1 4.5 2.3 25.6

GSE35978 19.8 7.1 8.0 31.2

GSE53987 11.6 4.0 4.7 27.2

GSE12288 17.4 8.8 6.9 27.2

GSE15852 4.9 3.3 3.1 8.3

GSE42568 2.0 2.2 2.0 3.0

GSE29431 2.0 2.0 2.0 2.0

GSE18520 2.0 2.0 2.0 2.0

GSE19804 3.0 2.7 2.1 6.2

GSE10072 2.0 2.2 2.0 3.2

GSE68571 2.0 2.0 2.0 2.0

Average ± SEM 5.84± 0.96 3.41± 0.35 2.88± 0.31 17.97± 5.09

Table 8: Experiment 1a: Average number of rules (NRs) for each dataset, averaged over 10-fold
cross-validation, using state-of-the-art rule learning classifiers compared to BRL. Classifier with
lower values of NRs are more succinct, and perhaps more readable for a given dataset. The last
row calculates the average for each classifier across 25 datasets and also reports the standard error
of mean.
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Data C4.5 RIPPER PART BRL.G

GSE66360 3.3 3.2 3.3 3.1

GSE62646 1.0 1.0 1.0 1.0

GSE41861 6.8 5.2 7.0 4.3

GSE20881 8.8 6.9 9.0 5.4

GSE3365 3.8 3.5 4.0 3.2

GSE16879 1.0 1.0 1.0 1.0

GSE15245 2.4 3.1 2.5 2.4

GSE6613 8.4 6.6 9.4 3.3

GSE20295 6.7 5.6 7.3 3.5

GSE30999 2.5 1.2 2.5 1.5

GSE55447 2.6 1.8 3.0 1.8

GSE19429 4.3 2.9 4.6 3.4

GSE9006 2.8 2.7 2.9 3.0

GSE48350 1.0 1.0 1.0 1.0

GSE5281 5.1 4.7 5.1 3.8

GSE35978 17.9 15.0 32.8 4.1

GSE53987 10.3 12.2 15.0 4.3

GSE12288 16.3 13.3 29.8 4.3

GSE15852 3.9 3.5 4.0 2.7

GSE42568 1.0 1.2 1.0 1.4

GSE29431 1.0 1.0 1.0 1.0

GSE18520 1.0 1.0 1.0 1.0

GSE19804 1.9 1.7 1.9 2.4

GSE10072 1.0 1.3 1.0 1.6

GSE68571 1.0 1.0 1.0 1.0

Average ± SEM 4.63± 0.93 4.06± 0.80 6.08± 1.67 2.62± 0.27

Table 9: Experiment 1a: Average number of variables (NVs) for each dataset, averaged over 10-
fold cross-validation, using state-of-the-art rule learning classifiers compared to BRL. Classifier with
lower values of NVs are more parsimonious, and perhaps easier to validate for a given dataset. The
last row calculates the average for each classifier across 25 datasets and also reports the standard
error of mean.
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test (p-value = 2.087e − 06), Friedman’s test with Iman-Davenport correction (p-value =

1.906e−08), Friedman’s aligned ranks test (p-value = 2.761e−07), and Quade test (p-value =

1.412e− 10) all strongly suggest that we must reject the null hypothesis suggesting that all

classifiers have the same Bayesian scores. Post-hoc test is now conducted to determine which

of the classifiers are different from others. The p-values generated by Friedman’s test were

corrected using Bergmann and Hommel‘s method. Each of the pairwise corrected p-values

are shown in Figure 12a. Each of BRL.G, BRL.DT, and BRL.DG were found to have

statistically significantly different Bayesian scores from each other. BRL.DG, on average,

achieves the highest Bayesian score, followed by BRL.DT and then BRL.G.

AUROCs achieved by the three classifiers are shown in Table 11. Friedman’s test

(p-value = 0.01317), Friedman’s test with Iman-Davenport correction (p-value = 0.01041),

Friedman’s aligned ranks test (p-value = 0.005371), and Quade test (p-value = 0.001472)

all suggest that we must reject the null hypothesis suggesting that all classifiers have the

same AUROCs. Post-hoc test is now conducted to determine which of the classifiers are

different from others. The p-values generated by Friedman’s test were corrected using

Bergmann and Hommel‘s method. Each of the pairwise corrected p-values are shown in

Figure 12b. BRL.DG is found to have significantly worse AUROC when compared to BRL.G

and BRL.DT.

AUPRGs achieved by the three classifiers are shown in Table 12. Friedman’s test

(p-value = 0.01317), Friedman’s test with Iman-Davenport correction (p-value = 0.01041),

Friedman’s aligned ranks test (p-value = 0.006131), and Quade test (p-value = 0.001409) all

suggest that we must reject the null hypothesis suggesting that all classifiers have the same

AUPRGs. Post-hoc test is now conducted to determine which of the classifiers are different

from others. The p-values generated by Friedman’s test were corrected using Bergmann and

Hommel‘s method. Each of the pairwise corrected p-values are shown in Figure 12c. BRL.DG

is found to have significantly worse AUPRG when compared to BRL.G and BRL.DT.

The next three metrics— Brier score, ECE, and MCE— help evaluate the calibration

performance.

Brier achieved by the three classifiers are shown in Table 13. Friedman’s test (p-value =

0.2894), Friedman’s test with Iman-Davenport correction (p-value = 0.295), Friedman’s
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aligned ranks test (p-value = 0.2222), and Quade test (p-value = 0.1193) all suggest that we

cannot reject the null hypothesis suggesting that all classifiers have the same Brier scores.

BRL.G, BRL.DT, and BRL.DG were all found to have comparable Brier scores.

ECEs achieved by the three classifiers are shown in Table 14. Friedman’s test (p-value =

0.2894), Friedman’s test with Iman-Davenport correction (p-value = 0.295), Friedman’s

aligned ranks test (p-value = 0.3333), and Quade test (p-value = 0.2748) all suggest that we

cannot reject the null hypothesis suggesting that all classifiers have the same ECEs. BRL.G,

BRL.DT, and BRL.DG were all found to have comparable ECEs.

MCEs achieved by the three classifiers are shown in Table 15. Friedman’s test (p-value =

0.6977), Friedman’s test with Iman-Davenport correction (p-value = 0.706), Friedman’s

aligned ranks test (p-value = 0.4795), and Quade test (p-value = 0.4639) all suggest that we

cannot reject the null hypothesis suggesting that all classifiers have the same MCEs. BRL.G,

BRL.DT, and BRL.DG were all found to have comparable MCEs.

The next two metrics— average number of rules (NR) and average number of variables

(NV)— help evaluate model parsimony.

Average NR needed by the different classifiers is shown in Table 16. Friedman’s test

(p-value = 1.53e−06), Friedman’s test with Iman-Davenport correction (p-value = 1.013e−

08), Friedman’s aligned ranks test (p-value = 1.121e − 07), and Quade test (p-value =

1.751e − 11) all strongly suggest that we must reject the null hypothesis suggesting that

all classifiers need the same number of rules. Post-hoc test is now conducted to determine

which of the classifiers are different from others. The p-values generated by Friedman’s test

were corrected using Bergmann and Hommel‘s method. Each of the pairwise corrected p-

values are shown in Figure 12d. Each of BRL.G, BRL.DT, and BRL.DG were found to learn

statistically significantly different number of rules from each other. BRL.DG requires the

fewest rules, followed by BRL.DT and then BRL.G.

Average NV needed by the different classifiers is shown in Table 17. Friedman’s test

(p-value = 0.0008169), Friedman’s test with Iman-Davenport correction (p-value =

0.0003252), Friedman’s aligned ranks test (p-value = 3.054e−06), and Quade test (p-value =

2.993e− 06) all strongly suggest that we must reject the null hypothesis suggesting that all

classifiers need the same number of variables. Post-hoc test is now conducted to determine
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which of the classifiers are different from others. The p-values generated by Friedman’s test

were corrected using Bergmann and Hommel‘s method. Each of the pairwise corrected p-

values are shown in Figure 12e. BRL.DT and BRL.DG learn similar number of variables

but BRL.G requires significantly fewer number of variables.

4.3.2.1 Experiment 1b: Conclusion Experiment 1b shows that BRL.G and BRL.DT

achieves a statistically significantly better predictive performance than BRL.DG in terms

of AUROC and AUPRG. BRL.G and BRL.DT themselves were indistinguishable. Calibra-

tion performance using Brier score, ECE, and MCE showed that all BRL methods have

statistically indistinguishable performance. In terms of model parsimony, BRL.G requires

significantly more rules but requires significantly fewer variables than BRL.DT and BRL.DG.

BRL.DG required significantly the fewest number of rules.

To summarize, BRL.DT presents an efficient alternative to BRL.G by achieving similar

predictive and calibration performance as BRL.G but requiring much fewer rules. How-

ever, BRL.G still requires much fewer variables. If the application requires fewer rules for

readability/validation, I recommend BRL.DT. If the application requires fewer variables, I

recommend BRL.G.

BRL.DG using greedy best-first search does not give a good predictive performance

when compared to BRL.G and BRL.DT. Although, it requires the fewest rules. BRL.DG

has important benefits. Rules there represent context-specific independences. Such rules are

parsimonious in the sense the sub-population represented by the leaf does not depend on all

variables in the path from root to leaf. It should also be noted that BRL.DG searches over a

much larger model search space than BRL.DT, which itself searches over a much larger space

than BRL.G. Perhaps greedy best-first search is very limiting to BRL.DG and warrants a

better search algorithm. In the next experiment, I expand the greedy best-first search to

beam search and hope to improve the predictive performance of BRL.DG.
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(a) Comparing Bayesian
scores

(b) Comparing AUROCs (c) Comparing AUPRGs

(d) Comparing number of
rules

(e) Comparing number of
variables

Figure 12: Experiment 1b: Corrected p-values using Bergmann and Hommel‘s method while

comparing BRL.G, BRL.DT, and BRL.DG using greedy best-first approach.

4.3.3 Experiment 1c: Comparing BRL classifiers using beam search

In Experiment 1c, I extend greedy best-first search to beam search that keeps memory of 100

best models seen in each iteration. Greedy best-first search only keeps track of 1 best model

in each iteration. This should help the BRL algorithms to search over a much larger space

that may lead to BRL.DG learning models with better predictive performance than when

using greedy best-first search. To distinguish tthe two search procedures, I add a suffix “-
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Data BRL.G BRL.DT BRL.DG

GSE66360 -23.01 -22.97 -21.59

GSE62646 -7.47 -7.47 -7.47

GSE41861 -47.33 -39.18 -33.39

GSE20881 -57.76 -49.92 -42.62

GSE3365 -26.41 -26.76 -22.72

GSE16879 -7.63 -7.63 -7.63

GSE15245 -19.75 -19.03 -18.04

GSE6613 -55.32 -50.46 -43.99

GSE20295 -49.42 -39.15 -32.22

GSE30999 -15.97 -15.05 -14.96

GSE55447 -14.59 -14.27 -13.65

GSE19429 -24.58 -22.12 -20.61

GSE9006 -20.72 -20.87 -19.54

GSE48350 -7.73 -7.73 -7.73

GSE5281 -40.47 -33.09 -29.32

GSE35978 -147.63 -135.53 -123.93

GSE53987 -95.87 -89.36 -84.09

GSE12288 -123.56 -115.81 -106.12

GSE15852 -24.85 -23.89 -21.92

GSE42568 -11.31 -10.99 -10.72

GSE29431 -7.60 -7.60 -7.60

GSE18520 -7.55 -7.55 -7.55

GSE19804 -17.17 -16.68 -16.08

GSE10072 -11.00 -10.59 -10.37

GSE68571 -7.67 -7.67 -7.67

Average ± SEM −34.89± 7.43 −32.05± 6.79 −29.26± 6.18

Table 10: Experiment 1b: Log of Bayesian score for each dataset, averaged over 10-fold cross-
validation, comparing BRL.G, BRL.DT, and BRL.DG using greedy best-first search. Higher
Bayesian scores indicate more optimal models in the model search space. The last row calculates
the average for each classifier across 25 datasets and also reports the standard error of mean.
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Data BRL.G BRL.DT BRL.DG

GSE66360 0.8640 0.8490 0.8435

GSE62646 0.9083 0.9083 0.9083

GSE41861 0.7401 0.7717 0.7300

GSE20881 0.8117 0.8649 0.7895

GSE3365 0.9311 0.9174 0.8193

GSE16879 0.9845 0.9845 0.9845

GSE15245 0.6950 0.7150 0.7150

GSE6613 0.4563 0.4697 0.4987

GSE20295 0.5750 0.6221 0.6338

GSE30999 0.9722 0.9764 0.9535

GSE55447 0.6175 0.5325 0.4825

GSE19429 0.9157 0.9001 0.7529

GSE9006 0.8458 0.8658 0.7883

GSE48350 1.0000 1.0000 1.0000

GSE5281 0.8436 0.8801 0.8136

GSE35978 0.6013 0.5436 0.5295

GSE53987 0.5581 0.5564 0.5483

GSE12288 0.5669 0.5723 0.5519

GSE15852 0.8569 0.8194 0.8075

GSE42568 0.8109 0.8109 0.8109

GSE29431 0.9417 0.9417 0.9417

GSE18520 0.9900 0.9900 0.9900

GSE19804 0.9153 0.9083 0.9083

GSE10072 0.9425 0.9425 0.9225

GSE68571 0.9938 0.9938 0.9938

Average ± SEM 0.8135± 0.0329 0.8135± 0.0336 0.7887± 0.0332

Table 11: Experiment 1b: Area under the ROC cruves (AUROCs) for each dataset, averaged over
10-fold cross-validation, comparing BRL.G, BRL.DT, and BRL.DG using greedy best-first search.
Classifier with higher values of AUROCs are better performing for a given dataset. The last row
calculates the average for each classifier across 25 datasets and also reports the standard error of
mean.
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Data BRL.G BRL.DT BRL.DG

GSE66360 0.7558 0.7234 0.7167

GSE62646 0.7833 0.7833 0.7833

GSE41861 0.3882 0.4126 0.3982

GSE20881 0.6381 0.7311 0.5785

GSE3365 0.8003 0.7627 0.6226

GSE16879 0.8845 0.8845 0.8845

GSE15245 0.3119 0.3070 0.3070

GSE6613 -0.0736 -0.0205 0.0118

GSE20295 0.2157 0.3450 0.3519

GSE30999 0.9548 0.9599 0.9141

GSE55447 0.1175 -0.0075 -0.0200

GSE19429 0.4804 0.6025 0.3636

GSE9006 0.6300 0.6413 0.5035

GSE48350 1.0000 1.0000 1.0000

GSE5281 0.6881 0.7763 0.6360

GSE35978 0.1944 0.0948 0.0835

GSE53987 0.1127 0.0819 0.0661

GSE12288 0.1829 0.1860 0.1459

GSE15852 0.7579 0.6777 0.6526

GSE42568 0.5631 0.5631 0.5631

GSE29431 0.8417 0.8417 0.8417

GSE18520 0.9400 0.9400 0.9400

GSE19804 0.8435 0.8420 0.8420

GSE10072 0.8920 0.8920 0.8520

GSE68571 0.9438 0.9438 0.9438

Average ± SEM 0.5939± 0.0644 0.5986± 0.0655 0.5593± 0.0646

Table 12: Experiment 1b: Area under precision-recall gain curves (AUPRGs) for each dataset,
averaged over 10-fold cross-validation, comparing BRL.G, BRL.DT, and BRL.DG using greedy
best-first search. Classifier with higher values of AUPRGs are better performing for a given dataset.
The last row calculates the average for each classifier across 25 datasets and also reports the standard
error of mean.
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Data BRL.G BRL.DT BRL.DG

GSE66360 0.2169 0.1675 0.1686

GSE62646 0.0684 0.0684 0.0684

GSE41861 0.2339 0.2492 0.2538

GSE20881 0.2007 0.2059 0.2154

GSE3365 0.1039 0.1642 0.1482

GSE16879 0.0257 0.0257 0.0257

GSE15245 0.2235 0.1910 0.1922

GSE6613 0.4136 0.4566 0.4503

GSE20295 0.3568 0.3234 0.3287

GSE30999 0.0497 0.0552 0.0576

GSE55447 0.2805 0.2943 0.2973

GSE19429 0.0824 0.0708 0.0717

GSE9006 0.2125 0.2111 0.2085

GSE48350 0.0001 0.0001 0.0001

GSE5281 0.1621 0.1717 0.1731

GSE35978 0.2577 0.3237 0.3309

GSE53987 0.2401 0.2711 0.2759

GSE12288 0.3149 0.3319 0.3566

GSE15852 0.1668 0.1929 0.1885

GSE42568 0.0806 0.0650 0.0649

GSE29431 0.0279 0.0279 0.0279

GSE18520 0.0159 0.0159 0.0159

GSE19804 0.1092 0.0992 0.0984

GSE10072 0.0552 0.0726 0.0761

GSE68571 0.0106 0.0106 0.0106

Average ± SEM 0.1564± 0.0234 0.1626± 0.0248 0.1642± 0.0252

Table 13: Experiment 1b: Brier scores for each dataset, averaged over 10-fold cross-validation,
comparing BRL.G, BRL.DT, and BRL.DG using greedy best-first search. Classifier with lower
values of Brier score are better calibrated for a given dataset. The last row calculates the average
for each classifier across 25 datasets and also reports the standard error of mean.
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Data BRL.G BRL.DT BRL.DG

GSE66360 0.0265 0.0168 0.0169

GSE62646 0.0289 0.0289 0.0289

GSE41861 0.0281 0.0302 0.0284

GSE20881 0.0119 0.0173 0.0173

GSE3365 0.0130 0.0241 0.0244

GSE16879 0.0030 0.0030 0.0030

GSE15245 0.0535 0.0289 0.0288

GSE6613 0.0644 0.0608 0.0533

GSE20295 0.0507 0.0225 0.0224

GSE30999 0.0060 0.0060 0.0060

GSE55447 0.0408 0.0188 0.0188

GSE19429 0.0468 0.0354 0.0365

GSE9006 0.0798 0.0819 0.0700

GSE48350 0.0016 0.0016 0.0016

GSE5281 0.0064 0.0064 0.0064

GSE35978 0.0433 0.0419 0.0421

GSE53987 0.0481 0.0585 0.0590

GSE12288 0.0459 0.0272 0.0347

GSE15852 0.0379 0.0368 0.0422

GSE42568 0.0268 0.0260 0.0261

GSE29431 0.0008 0.0008 0.0008

GSE18520 0.0042 0.0042 0.0042

GSE19804 0.0131 0.0172 0.0168

GSE10072 0.0004 0.0130 0.0140

GSE68571 0.0027 0.0027 0.0027

Average ± SEM 0.0274± 0.0045 0.0244± 0.0041 0.0242± 0.0037

Table 14: Experiment 1b: Expected calibration errors (ECEs) for each dataset, averaged over
10-fold cross-validation, comparing BRL.G, BRL.DT, and BRL.DG using greedy best-first search.
Classifier with lower values of ECEs are better calibrated for a given dataset. The last row calculates
the average for each classifier across 25 datasets and also reports the standard error of mean.
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Data BRL.G BRL.DT BRL.DG

GSE66360 0.9953 0.8840 0.8796

GSE62646 0.3096 0.3096 0.3096

GSE41861 0.9926 0.9979 0.9973

GSE20881 0.9988 0.9986 0.9977

GSE3365 0.7581 0.8828 0.8982

GSE16879 0.2135 0.2135 0.2135

GSE15245 0.7487 0.7891 0.7947

GSE6613 0.9456 0.9920 0.9958

GSE20295 0.9990 0.9976 0.9982

GSE30999 0.4987 0.6697 0.6862

GSE55447 0.9743 0.9854 0.9886

GSE19429 0.4968 0.4447 0.4525

GSE9006 0.8316 0.9418 0.8600

GSE48350 0.0109 0.0109 0.0109

GSE5281 0.9982 0.9969 0.9978

GSE35978 0.7997 0.8063 0.8212

GSE53987 0.8011 0.8838 0.8742

GSE12288 0.7927 0.8926 0.8910

GSE15852 0.9423 0.9032 0.8929

GSE42568 0.7815 0.5946 0.5951

GSE29431 0.2151 0.2151 0.2151

GSE18520 0.1211 0.1211 0.1211

GSE19804 0.9866 0.8899 0.8850

GSE10072 0.4289 0.6289 0.6485

GSE68571 0.1211 0.1211 0.1211

Average ± SEM 0.6705± 0.0668 0.6868± 0.0666 0.6858± 0.0661

Table 15: Experiment 1b: Maximum calibration errors (MCEs) for each dataset, averaged over
10-fold cross-validation, comparing BRL.G, BRL.DT, and BRL.DG using greedy best-first search.
Classifier with lower values of MCEs are better calibrated for a given dataset. The last row
calculates the average for each classifier across 25 datasets and also reports the standard error of
mean.
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Data BRL.G BRL.DT BRL.DG

GSE66360 10.4 5.4 3.2

GSE62646 2.0 2.0 2.0

GSE41861 37.6 8.2 2.7

GSE20881 86.4 10.7 2.8

GSE3365 14.4 6.9 2.7

GSE16879 2.0 2.0 2.0

GSE15245 10.2 4.8 3.2

GSE6613 13.2 7.8 2.9

GSE20295 103.0 14.2 7.5

GSE30999 3.6 3.3 3.0

GSE55447 5.7 3.9 2.9

GSE19429 12.4 5.7 2.7

GSE9006 8.4 4.3 2.4

GSE48350 2.0 2.0 2.0

GSE5281 25.6 9.1 3.3

GSE35978 31.2 11.5 4.2

GSE53987 27.2 8.4 2.9

GSE12288 27.2 8.9 3.4

GSE15852 8.3 5.2 2.3

GSE42568 3.0 3.2 2.6

GSE29431 2.0 2.0 2.0

GSE18520 2.0 2.0 2.0

GSE19804 6.2 4.1 2.8

GSE10072 3.2 3.2 2.6

GSE68571 2.0 2.0 2.0

Average ± SEM 17.97± 5.09 5.63± 0.68 2.88± 0.22

Table 16: Experiment 1b: Average number of rules (NRs) for each dataset, averaged over 10-
fold cross-validation, comparing BRL.G, BRL.DT, and BRL.DG using greedy best-first search.
Classifier with lower values of NRs are more succinct, and perhaps more readable for a given
dataset. The last row calculates the average for each classifier across 25 datasets and also reports
the standard error of mean.
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Data BRL.G BRL.DT BRL.DG

GSE66360 3.1 3.4 3.4

GSE62646 1.0 1.0 1.0

GSE41861 4.3 5.9 6.0

GSE20881 5.4 8.2 8.1

GSE3365 3.2 4.3 4.2

GSE16879 1.0 1.0 1.0

GSE15245 2.4 2.4 2.4

GSE6613 3.3 5.9 6.5

GSE20295 3.5 5.4 5.2

GSE30999 1.5 1.9 1.9

GSE55447 1.8 1.7 1.7

GSE19429 3.4 3.7 3.6

GSE9006 3.0 3.2 3.1

GSE48350 1.0 1.0 1.0

GSE5281 3.8 5.6 5.5

GSE35978 4.1 9.2 9.0

GSE53987 4.3 7.1 6.9

GSE12288 4.3 7.4 7.8

GSE15852 2.7 3.8 3.7

GSE42568 1.4 1.5 1.5

GSE29431 1.0 1.0 1.0

GSE18520 1.0 1.0 1.0

GSE19804 2.4 2.5 2.5

GSE10072 1.6 1.6 1.6

GSE68571 1.0 1.0 1.0

Average ± SEM 2.62± 0.27 3.63± 0.51 3.62± 0.51

Table 17: Experiment 1b: Average number of variables (NVs) for each dataset, averaged over
10-fold cross-validation, comparing BRL.G, BRL.DT, and BRL.DG using greedy best-first search.
Classifier with lower values of NVs are more parsimonious, and perhaps easier to validate for a
given dataset. The last row calculates the average for each classifier across 25 datasets and also
reports the standard error of mean.
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Beam“ to the algorithm names. While BRL.G, BRL.DT, and BRL.DG are optimized using

greedy best-first search; BRL.G-Beam, BRL.DT-Beam, and BRL.DG-Beam are optimized

using beam search.

To see the Accuracy, Precision, Recall, and F-measures achieved by the classifiers over

the 25 datasets, see Appendix C (9.3).

To compare the model predictive performance of the different BRL algorithms, the met-

rics Bayesian score, AUROC, AUPRG, Brier score, ECE, and MCE are compared. Signifi-

cance testing is only performed on these predictive performance metrics.

Bayesian scores achieved by the three classifiers are shown in Table 18. Using Wilcoxon

signed ranks test, we can see that the Bayesian scores achieved by— BRL.G-Beam is better

than BRL.G (p-value = 1.83e − 05), BRL.DT-Beam is better than BRL.DT (p-value =

1.234e− 05), and BRL.DG-Beam is better than BRL.DG (p-value = 0.0003291). It is clear

that each of the BRL methods benefitted from the expanded search space. Friedman’s

test (p-value = 4.644e − 06), Friedman’s test with Iman-Davenport correction (p-value =

9.06e−08), Friedman’s aligned ranks test (p-value = 3.597e−06), and Quade test (p-value =

1.913e− 08) all strongly suggest that we must reject the null hypothesis suggesting that all

classifiers have the same Bayesian scores. Post-hoc test is now conducted to determine which

of the classifiers are different from others. The p-values generated by Friedman’s test were

corrected using Bergmann and Hommel‘s method. Each of the pairwise corrected p-values

are shown in Figure 13a. Each of BRL.G-Beam, BRL.DT-Beam, and BRL.DG-Beam were

found to have statistically significantly different Bayesian scores from each other. BRL.DG-

Beam, on average, achieves the highest Bayesian score, followed by BRL.DT-Beam and then

BRL.G-Beam.

AUROCs achieved by the three classifiers are shown in Table 19. Using Wilcoxon signed

ranks test, we can see that the AUROCs achieved by— BRL.G-Beam is similar to BRL.G

(p-value = 0.2156), BRL.DT-Beam is similar to BRL.DT (p-value = 0.9143), and BRL.DG-

Beam is similar to BRL.DG (p-value = 0.3065). While not significantly different from

best-first search, beam search slightly deteriorates the performance of BRL.G but slightly

improves the performance of BRL.DT and BRL.DG. Friedman’s test (p-value = 0.06522),

Friedman’s test with Iman-Davenport correction (p-value = 0.06233), Friedman’s aligned
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ranks test (p-value = 0.0146), and Quade test (p-value = 0.07982) all but Friedman’s aligned

ranks test suggest that we must not reject the null hypothesis suggesting that all classifiers

have the same AUROCs. Continuing with the result from Friedman’s aligned ranks test,

post-hoc test is now conducted to determine which of the classifiers are different from others.

The p-values generated by Friedman’s test were corrected using Bergmann and Hommel‘s

method. Each of the pairwise corrected p-values are shown in Figure 13b. BRL.DG-Beam

is found to have significantly better AUROC when compared to BRL.G-Beam. BRL.DT-

Beam is found to have significantly better AUROC when compared to both BRL.G-Beam

and BRL.DG-Beam.

AUPRGs achieved by the three classifiers are shown in Table 20. Using Wilcoxon signed

ranks test, we can see that the AUPRGs achieved by— BRL.G-Beam is similar to BRL.G

(p-value = 0.3696), BRL.DT-Beam is similar to BRL.DT (p-value = 0.6158), but BRL.DG-

Beam is significantly better than BRL.DG (p-value = 0.03453). It appears like BRL-DG

benefited a lot in terms of AUPRG using beam search. Friedman’s test (p-value = 0.1791),

Friedman’s test with Iman-Davenport correction (p-value = 0.1807), Friedman’s aligned

ranks test (p-value = 0.07778), and Quade test (p-value = 0.1544) all suggest that we

cannot reject the null hypothesis suggesting that all classifiers have the same AUPRGs.

All of BRL.G-Beam, BRL.DT-Beam, and BRT.DG-Beam appear to now have comparable

AUPRG. Again, the beam search has helped improve the performance of BRL.DG.

The next three metrics— Brier score, ECE, and MCE— help evaluate the calibration

performance.

Brier achieved by the three classifiers are shown in Table 21. Using Wilcoxon signed

ranks test, we can see that the Brier scores achieved by— BRL.G-Beam is similar to BRL.G

(p-value = 0.3696), BRL.DT-Beam is similar to BRL.DT (p-value = 0.6158), and BRL.DG-

Beam is significantly better than BRL.DG (p-value = 0.03453). Friedman’s test (p-value =

0.1409), Friedman’s test with Iman-Davenport correction (p-value = 0.1409), Friedman’s

aligned ranks test (p-value = 0.08571), and Quade test (p-value = 0.06874) all suggest that

we cannot reject the null hypothesis suggesting that all classifiers have the same Brier scores.

BRL.DG significantly benefits from beam search, in terms of the Brier score.

ECEs achieved by the three classifiers are shown in Table 22. Using Wilcoxon signed
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ranks test, we can see that the ECEs achieved by— BRL.G-Beam is similar to BRL.G

(p-value = 0.1135), BRL.DT-Beam is similar to BRL.DT (p-value = 0.5965), and BRL.DG-

Beam is similar to BRL.DG (p-value = 0.1645). Friedman’s test (p-value = 0.8869), Fried-

man’s test with Iman-Davenport correction (p-value = 0.8909), Friedman’s aligned ranks

test (p-value = 0.6445), and Quade test (p-value = 0.9771) all suggest that we cannot reject

the null hypothesis suggesting that all classifiers have the same ECEs.

MCEs achieved by the three classifiers are shown in Table 23. Using Wilcoxon signed

ranks test, we can see that the MCEs achieved by— BRL.G-Beam is similar to BRL.G

(p-value = 0.9785), BRL.DT-Beam is similar to BRL.DT (p-value = 0.1965), and BRL.DG-

Beam is similar to BRL.DG (p-value = 0.1965). Friedman’s test (p-value = 0.6188), Fried-

man’s test with Iman-Davenport correction (p-value = 0.628), Friedman’s aligned ranks test

(p-value = 0.651), and Quade test (p-value = 0.4916) all suggest that we cannot reject the

null hypothesis suggesting that all classifiers have the same MCEs.

The next two metrics— average number of rules (NR) and average number of variables

(NV)— help evaluate model parsimony.

Average NR needed by the different classifiers is shown in Table 24. Using Wilcoxon

signed ranks test, we can see that the number of rules needed by— BRL.G-Beam is similar

to BRL.G (p-value = 0.5523), BRL.DT-Beam requires fewer rules than BRL.DT (p-value =

0.03796), and BRL.DG-Beam is similar to BRL.DG (p-value = 0.05691). Friedman’s test

(p-value = 1.625e−06), Friedman’s test with Iman-Davenport correction (p-value = 1.146e−

08), Friedman’s aligned ranks test (p-value = 8.296e − 08), and Quade test (p-value =

1.591e− 11) all strongly suggest that we must reject the null hypothesis suggesting that all

classifiers need the same number of rules. Post-hoc test is now conducted to determine which

of the classifiers are different from others. The p-values generated by Friedman’s test were

corrected using Bergmann and Hommel‘s method. Each of the pairwise corrected p-values

are shown in Figure 13c. Each of BRL.G-Beam, BRL.DT-Beam, and BRL.DG-Beam were

found to learn statistically significantly different number of rules from each other. BRL.DG-

Beam requires the fewest rules, followed by BRL.DT-Beam and then BRL.G-Beam.

Average NV needed by the different classifiers is shown in Table 25. Using Wilcoxon

signed ranks test, we can see that the number of variables needed by— BRL.G-Beam is sim-
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ilar to BRL.G (p-value = 0.1431), BRL.DT-Beam is similar to BRL.DT (p-value = 0.1655),

while BRL.DG-Beam requires seignificantly fewer variables than BRL.DG (p-value =

0.007125). Friedman’s test (p-value = 0.08982) and Friedman’s test with Iman-Davenport

correction (p-value = 0.08779) do not recommend rejecting the null hypothesis. Whereas,

Friedman’s aligned ranks test (p-value = 0.02686), and Quade test (p-value = 0.009083) sug-

gest that we reject the null hypothesis suggesting that all classifiers need the same number

of variables. Continuing with the results from Friedman’s aligned ranks test and Quade test,

post-hoc test is conducted to determine which of the classifiers are different from others.

The p-values generated by Friedman’s aligned ranks test were corrected using Bergmann

and Hommel‘s method. Each of the pairwise corrected p-values are shown in Figure 13d.

BRL.G-Beam requires significantly fewer variables than BRL.DT but similar to BRL.DG.

4.3.3.1 Experiment 1c: Conclusion Experiment 1c shows how expanding the search

space using beam search has significant benefits, especially for BRL.DG which had a much

larger search space than BRL.G. It benefits in terms of predictive performance, calibration,

and model parsimony. Using beam search, it appears like BRL.G-Beam, BRL.DT-Beam,

and BRL.DG-Beam all have similar predictive performances. BRL.DG requiring much fewer

rules than others and requires similar number of variables as BRL.G.

To summarize, BRL.DG-Beam has now emerged as a competent alternative to BRL.G

with similar predictive performance, calibration, and the number of variables, while requiring

significantly fewer rules. With an added benefit of the rules capturing all types of context-

specific independence, BRL.DG-Beam is now an attractive model for biomarker discovery.

4.3.4 BRL compared to other state-of-the-art classifiers

In this section, I compare the AUROC, AUPRG, and Brier scores achieved by state-of-the-art

classifiers and the best performing BRL mode, BRL.DT and BRL.DT-Beam. The complete

table containing the metrics for each dataset is shown in Appendix C (see 9.4). Instead,

in this section, only the average (and standard error) of the metric values, across the 25

datasets, is shown in a bar plot in Figure 14.
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(a) Comparing Bayesian scores (b) Comparing AUROCs

(c) Comparing number of rules (d) Comparing number of variables

Figure 13: Experiment 1c: Corrected p-values using Bergmann and Hommel‘s method while

comparing BRL.G-Beam, BRL.DT-Beam, and BRL.DG-Beam that use greedy beam search.

The AUROCs (see Figure 14a) and AUPRGs (see Figure 14b) by BRL.DT and BRL.DT-

Beam is better than rule learning SOTA classifiers (C4.5, RIPPER, and PART). However,
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Data BRL.G BRL.G-Beam BRL.DT BRL.DT-Beam BRL.DG BRL.DG-Beam

GSE66360 -23.01 -19.76 -22.97 -18.08 -21.59 -17.02

GSE62646 -7.47 -7.47 -7.47 -7.47 -7.47 -7.47

GSE41861 -47.33 -37.28 -39.18 -31.86 -33.39 -28.96

GSE20881 -57.76 -48.16 -49.92 -38.17 -42.62 -33.93

GSE3365 -26.41 -20.66 -26.76 -18.97 -22.72 -17.48

GSE16879 -7.63 -7.63 -7.63 -7.63 -7.63 -7.63

GSE15245 -19.75 -18.03 -19.03 -17.23 -18.04 -16.18

GSE6613 -55.32 -49.90 -50.46 -40.74 -43.99 -38.90

GSE20295 -49.42 -38.72 -39.15 -35.33 -32.22 -58.14

GSE30999 -15.97 -15.97 -15.05 -15.05 -14.96 -14.64

GSE55447 -14.59 -12.89 -14.27 -12.29 -13.65 -11.79

GSE19429 -24.58 -20.50 -22.12 -18.02 -20.61 -16.83

GSE9006 -20.72 -20.11 -20.87 -18.95 -19.54 -18.01

GSE48350 -7.73 -7.73 -7.73 -7.73 -7.73 -7.73

GSE5281 -40.47 -30.85 -33.09 -25.70 -29.32 -23.90

GSE35978 -147.63 -143.51 -135.53 -119.99 -123.93 -116.04

GSE53987 -95.87 -93.89 -89.36 -86.17 -84.09 -81.89

GSE12288 -123.56 -120.58 -115.81 -107.22 -106.12 -101.46

GSE15852 -24.85 -20.40 -23.89 -18.85 -21.92 -17.82

GSE42568 -11.31 -11.11 -10.99 -10.91 -10.72 -10.70

GSE29431 -7.60 -7.60 -7.60 -7.60 -7.60 -7.60

GSE18520 -7.55 -7.55 -7.55 -7.55 -7.55 -7.55

GSE19804 -17.17 -15.00 -16.68 -14.21 -16.08 -13.90

GSE10072 -11.00 -11.00 -10.59 -10.59 -10.37 -10.37

GSE68571 -7.67 -7.67 -7.67 -7.67 -7.67 -7.67

Average ± SEM −34.89± 7.43 −31.76± 7.19 −32.05± 6.79 −28.16± 6.15 −29.26± 6.18 −27.74± 6.00

Table 18: Experiment 1c: Log of Bayesian score for each dataset, averaged over 10-fold cross-
validation, comparing greedy best-first and greedy beam search. The last row calculates the average
for each classifier across 25 datasets and also reports the standard error of mean.
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Data BRL.G BRL.G-Beam BRL.DT BRL.DT-Beam BRL.DG BRL.DG-Beam

GSE66360 0.8640 0.8700 0.8490 0.9135 0.8435 0.8760

GSE62646 0.9083 0.9083 0.9083 0.9083 0.9083 0.9083

GSE41861 0.7401 0.6451 0.7717 0.7464 0.7300 0.7392

GSE20881 0.8117 0.7897 0.8649 0.8629 0.7895 0.8189

GSE3365 0.9311 0.8723 0.9174 0.9021 0.8193 0.8522

GSE16879 0.9845 0.9845 0.9845 0.9845 0.9845 0.9845

GSE15245 0.6950 0.5450 0.7150 0.6400 0.7150 0.6400

GSE6613 0.4563 0.5410 0.4697 0.4610 0.4987 0.5303

GSE20295 0.5750 0.5638 0.6221 0.6254 0.6338 0.6292

GSE30999 0.9722 0.9722 0.9764 0.9764 0.9535 0.9479

GSE55447 0.6175 0.8000 0.5325 0.8375 0.4825 0.8000

GSE19429 0.9157 0.8646 0.9001 0.8174 0.7529 0.7432

GSE9006 0.8458 0.8975 0.8658 0.8750 0.7883 0.7667

GSE48350 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

GSE5281 0.8436 0.8463 0.8801 0.9232 0.8136 0.8547

GSE35978 0.6013 0.5763 0.5436 0.5851 0.5295 0.5735

GSE53987 0.5581 0.4409 0.5564 0.4847 0.5483 0.4820

GSE12288 0.5669 0.4526 0.5723 0.5394 0.5519 0.5741

GSE15852 0.8569 0.8431 0.8194 0.8644 0.8075 0.8600

GSE42568 0.8109 0.8159 0.8109 0.8159 0.8109 0.8405

GSE29431 0.9417 0.9417 0.9417 0.9417 0.9417 0.9417

GSE18520 0.9900 0.9900 0.9900 0.9900 0.9900 0.9900

GSE19804 0.9153 0.9264 0.9083 0.9250 0.9083 0.9042

GSE10072 0.9425 0.9425 0.9425 0.9425 0.9225 0.9025

GSE68571 0.9938 0.9937 0.9938 0.9937 0.9938 0.9937

Average ± SEM 0.8135± 0.0329 0.8009± 0.0362 0.8135± 0.0336 0.8222± 0.0336 0.7887± 0.0332 0.8061± 0.0310

Table 19: Experiment 1c: Area under the ROC cruves (AUROCs) for each dataset, averaged over
10-fold cross-validation, comparing greedy best-first and greedy beam search. Classifier with higher
values of AUROCs are better performing for a given dataset. The last row calculates the average
for each classifier across 25 datasets and also reports the standard error of mean.
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Data BRL.G BRL.G-Beam BRL.DT BRL.DT-Beam BRL.DG BRL.DG-Beam

GSE66360 0.7558 0.7582 0.7234 0.8392 0.7167 0.7767

GSE62646 0.7833 0.7833 0.7833 0.7833 0.7833 0.7833

GSE41861 0.3882 0.3340 0.4126 0.4384 0.3982 0.4515

GSE20881 0.6381 0.6270 0.7311 0.7340 0.5785 0.6533

GSE3365 0.8003 0.6762 0.7627 0.7401 0.6226 0.6857

GSE16879 0.8845 0.8845 0.8845 0.8845 0.8845 0.8845

GSE15245 0.3119 0.1052 0.3070 0.2362 0.3070 0.2070

GSE6613 -0.0736 0.1284 -0.0205 -0.0488 0.0118 0.0927

GSE20295 0.2157 0.1528 0.3450 0.2800 0.3519 0.2993

GSE30999 0.9548 0.9548 0.9599 0.9599 0.9141 0.9030

GSE55447 0.1175 0.4500 -0.0075 0.5000 -0.0200 0.4625

GSE19429 0.4804 0.5775 0.6025 0.4856 0.3636 0.4680

GSE9006 0.6300 0.7073 0.6413 0.6607 0.5035 0.4991

GSE48350 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

GSE5281 0.6881 0.6688 0.7763 0.8603 0.6360 0.7325

GSE35978 0.1944 0.1513 0.0948 0.1380 0.0835 0.1404

GSE53987 0.1127 0.0069 0.0819 0.0124 0.0661 0.0144

GSE12288 0.1829 -0.0448 0.1860 0.1700 0.1459 0.2073

GSE15852 0.7579 0.7095 0.6777 0.7399 0.6526 0.7474

GSE42568 0.5631 0.5909 0.5631 0.5909 0.5631 0.6677

GSE29431 0.8417 0.8417 0.8417 0.8417 0.8417 0.8417

GSE18520 0.9400 0.9400 0.9400 0.9400 0.9400 0.9400

GSE19804 0.8435 0.8731 0.8420 0.8770 0.8420 0.8443

GSE10072 0.8920 0.8920 0.8920 0.8920 0.8520 0.8120

GSE68571 0.9438 0.9438 0.9438 0.9438 0.9438 0.9438

Average ± SEM 0.5939± 0.0644 0.5885± 0.0663 0.5986± 0.0655 0.6200± 0.0643 0.5593± 0.0646 0.6023± 0.0595

Table 20: Experiment 1c: Area under precision-recall gain curves (AUPRGs) for each dataset, av-
eraged over 10-fold cross-validation, comparing greedy best-first and greedy beam search. Classifier
with higher values of AUPRGs are better performing for a given dataset. The last row calculates
the average for each classifier across 25 datasets and also reports the standard error of mean.
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Data BRL.G BRL.G-Beam BRL.DT BRL.DT-Beam BRL.DG BRL.DG-Beam

GSE66360 0.2169 0.2064 0.1675 0.1409 0.1686 0.1224

GSE62646 0.0684 0.0684 0.0684 0.0684 0.0684 0.0684

GSE41861 0.2339 0.2503 0.2492 0.2294 0.2538 0.2274

GSE20881 0.2007 0.1964 0.2059 0.1786 0.2154 0.1681

GSE3365 0.1039 0.1359 0.1642 0.1200 0.1482 0.1280

GSE16879 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257

GSE15245 0.2235 0.2885 0.1910 0.2308 0.1922 0.2318

GSE6613 0.4136 0.4198 0.4566 0.5334 0.4503 0.4620

GSE20295 0.3568 0.3813 0.3234 0.3707 0.3287 0.2503

GSE30999 0.0497 0.0497 0.0552 0.0552 0.0576 0.0571

GSE55447 0.2805 0.1939 0.2943 0.1737 0.2973 0.1358

GSE19429 0.0824 0.0542 0.0708 0.0499 0.0717 0.0448

GSE9006 0.2125 0.2143 0.2111 0.1981 0.2085 0.1888

GSE48350 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

GSE5281 0.1621 0.1557 0.1717 0.1074 0.1731 0.1499

GSE35978 0.2577 0.2853 0.3237 0.3570 0.3309 0.3106

GSE53987 0.2401 0.2947 0.2711 0.3082 0.2759 0.3038

GSE12288 0.3149 0.4010 0.3319 0.3687 0.3566 0.3458

GSE15852 0.1668 0.2022 0.1929 0.1479 0.1885 0.1305

GSE42568 0.0806 0.0587 0.0650 0.0568 0.0649 0.0494

GSE29431 0.0279 0.0279 0.0279 0.0279 0.0279 0.0279

GSE18520 0.0159 0.0159 0.0159 0.0159 0.0159 0.0159

GSE19804 0.1092 0.0747 0.0992 0.0828 0.0984 0.1062

GSE10072 0.0552 0.0549 0.0726 0.0719 0.0761 0.0942

GSE68571 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106

Average ± SEM 0.1564± 0.0234 0.1627± 0.0261 0.1626± 0.0248 0.1572± 0.0278 0.1642± 0.0252 0.1462± 0.0239

Table 21: Experiment 1c: Brier scores for each dataset, averaged over 10-fold cross-validation,
comparing greedy best-first and greedy beam search. Classifier with lower values of Brier score are
better calibrated for a given dataset. The last row calculates the average for each classifier across
25 datasets and also reports the standard error of mean.
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Data BRL.G BRL.G-Beam BRL.DT BRL.DT-Beam BRL.DG BRL.DG-Beam

GSE66360 0.0265 0.0102 0.0168 0.0103 0.0169 0.0005

GSE62646 0.0289 0.0289 0.0289 0.0289 0.0289 0.0289

GSE41861 0.0281 0.0328 0.0302 0.0370 0.0284 0.0370

GSE20881 0.0119 0.0029 0.0173 0.0118 0.0173 0.0118

GSE3365 0.0130 0.0164 0.0241 0.0158 0.0244 0.0238

GSE16879 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030

GSE15245 0.0535 0.0441 0.0289 0.0445 0.0288 0.0449

GSE6613 0.0644 0.0539 0.0608 0.0532 0.0533 0.0383

GSE20295 0.0507 0.0259 0.0225 0.0003 0.0224 0.0443

GSE30999 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060

GSE55447 0.0408 0.0408 0.0188 0.0405 0.0188 0.0206

GSE19429 0.0468 0.0400 0.0354 0.0471 0.0365 0.0430

GSE9006 0.0798 0.0700 0.0819 0.0710 0.0700 0.0674

GSE48350 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016

GSE5281 0.0064 0.0065 0.0064 0.0065 0.0064 0.0002

GSE35978 0.0433 0.0420 0.0419 0.0424 0.0421 0.0367

GSE53987 0.0481 0.0559 0.0585 0.0522 0.0590 0.0585

GSE12288 0.0459 0.0493 0.0272 0.0403 0.0347 0.0336

GSE15852 0.0379 0.0009 0.0368 0.0006 0.0422 0.0117

GSE42568 0.0268 0.0297 0.0260 0.0260 0.0261 0.0256

GSE29431 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008

GSE18520 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042

GSE19804 0.0131 0.0090 0.0172 0.0168 0.0168 0.0168

GSE10072 0.0004 0.0004 0.0130 0.0085 0.0140 0.0004

GSE68571 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027

Average ± SEM 0.0274± 0.0045 0.0231± 0.0043 0.0244± 0.0041 0.0229± 0.0042 0.0242± 0.0037 0.0225± 0.0040

Table 22: Experiment 1c: Expected calibration errors (ECEs) for each dataset, averaged over 10-
fold cross-validation, comparing greedy best-first and greedy beam search. Classifier with lower
values of ECEs are better calibrated for a given dataset. The last row calculates the average for
each classifier across 25 datasets and also reports the standard error of mean.
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Data BRL.G BRL.G-Beam BRL.DT BRL.DT-Beam BRL.DG BRL.DG-Beam

GSE66360 0.9953 0.9899 0.8840 0.8948 0.8796 0.7967

GSE62646 0.3096 0.3096 0.3096 0.3096 0.3096 0.3096

GSE41861 0.9926 0.9496 0.9979 0.9973 0.9973 0.9975

GSE20881 0.9988 0.9997 0.9986 0.9979 0.9977 0.9978

GSE3365 0.7581 0.8980 0.8828 0.7009 0.8982 0.6998

GSE16879 0.2135 0.2135 0.2135 0.2135 0.2135 0.2135

GSE15245 0.7487 0.9969 0.7891 0.8967 0.7947 0.8965

GSE6613 0.9456 0.9489 0.9920 0.9975 0.9958 0.9959

GSE20295 0.9990 0.9997 0.9976 0.7996 0.9982 0.8302

GSE30999 0.4987 0.4987 0.6697 0.6697 0.6862 0.5495

GSE55447 0.9743 0.6944 0.9854 0.6936 0.9886 0.6021

GSE19429 0.4968 0.4997 0.4447 0.4705 0.4525 0.4295

GSE9006 0.8316 0.8880 0.9418 0.8558 0.8600 0.8649

GSE48350 0.0109 0.0109 0.0109 0.0109 0.0109 0.0109

GSE5281 0.9982 0.9117 0.9969 0.8975 0.9978 0.9756

GSE35978 0.7997 0.8183 0.8063 0.8381 0.8212 0.8455

GSE53987 0.8011 0.8568 0.8838 0.9386 0.8742 0.9581

GSE12288 0.7927 0.8818 0.8926 0.9446 0.8910 0.8697

GSE15852 0.9423 0.8941 0.9032 0.6986 0.8929 0.6978

GSE42568 0.7815 0.5450 0.5946 0.4963 0.5951 0.5034

GSE29431 0.2151 0.2151 0.2151 0.2151 0.2151 0.2151

GSE18520 0.1211 0.1211 0.1211 0.1211 0.1211 0.1211

GSE19804 0.9866 0.7186 0.8899 0.7176 0.8850 0.7975

GSE10072 0.4289 0.3998 0.6289 0.5791 0.6485 0.7975

GSE68571 0.1211 0.1211 0.1211 0.1211 0.1211 0.1211

Average ± SEM 0.6705± 0.0668 0.6552± 0.0661 0.6868± 0.0666 0.6430± 0.0626 0.6858± 0.0661 0.6439± 0.0633

Table 23: Experiment 1c: Maximum calibration errors (MCEs) for each dataset, averaged over
10-fold cross-validation, comparing greedy best-first and greedy beam search. Classifier with lower
values of MCEs are better calibrated for a given dataset. The last row calculates the average for
each classifier across 25 datasets and also reports the standard error of mean.
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Data BRL.G BRL.G-Beam BRL.DT BRL.DT-Beam BRL.DG BRL.DG-Beam

GSE66360 10.4 8.0 5.4 4.2 3.2 2.2

GSE62646 2.0 2.0 2.0 2.0 2.0 2.0

GSE41861 37.6 54.8 8.2 6.8 2.7 2.8

GSE20881 86.4 120.0 10.7 9.1 2.8 2.7

GSE3365 14.4 9.2 6.9 4.9 2.7 2.4

GSE16879 2.0 2.0 2.0 2.0 2.0 2.0

GSE15245 10.2 9.6 4.8 5.2 3.2 3.5

GSE6613 13.2 51.2 7.8 8.0 2.9 2.8

GSE20295 103.0 143.0 14.2 12.7 7.5 4.7

GSE30999 3.6 3.6 3.3 3.3 3.0 3.4

GSE55447 5.7 4.3 3.9 3.2 2.9 2.3

GSE19429 12.4 8.0 5.7 4.6 2.7 2.6

GSE9006 8.4 8.0 4.3 4.1 2.4 2.4

GSE48350 2.0 2.0 2.0 2.0 2.0 2.0

GSE5281 25.6 21.6 9.1 6.0 3.3 2.6

GSE35978 31.2 98.4 11.5 15.0 4.2 3.9

GSE53987 27.2 32.8 8.4 8.7 2.9 3.0

GSE12288 27.2 120.8 8.9 10.8 3.4 3.7

GSE15852 8.3 8.8 5.2 4.1 2.3 2.2

GSE42568 3.0 3.9 3.2 3.1 2.6 2.8

GSE29431 2.0 2.0 2.0 2.0 2.0 2.0

GSE18520 2.0 2.0 2.0 2.0 2.0 2.0

GSE19804 6.2 4.0 4.1 3.1 2.8 2.5

GSE10072 3.2 3.2 3.2 3.2 2.6 2.6

GSE68571 2.0 2.0 2.0 2.0 2.0 2.0

Average ± SEM 17.97± 5.09 29.01± 8.74 5.63± 0.68 5.28± 0.72 2.88± 0.22 2.68± 0.14

Table 24: Experiment 1c: Average number of rules (NRs) for each dataset, averaged over 10-fold
cross-validation, comparing greedy best-first and greedy beam search. Classifier with lower values
of NRs are more succinct, and perhaps more readable for a given dataset. The last row calculates
the average for each classifier across 25 datasets and also reports the standard error of mean.
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Data BRL.G BRL.G-Beam BRL.DT BRL.DT-Beam BRL.DG BRL.DG-Beam

GSE66360 3.1 3.0 3.4 3.0 3.4 3.0

GSE62646 1.0 1.0 1.0 1.0 1.0 1.0

GSE41861 4.3 5.3 5.9 5.2 6.0 5.0

GSE20881 5.4 6.2 8.2 6.6 8.1 6.4

GSE3365 3.2 3.0 4.3 3.0 4.2 3.0

GSE16879 1.0 1.0 1.0 1.0 1.0 1.0

GSE15245 2.4 2.4 2.4 2.5 2.4 2.5

GSE6613 3.3 5.2 5.9 6.7 6.5 6.0

GSE20295 3.5 4.7 5.4 5.3 5.2 1.0

GSE30999 1.5 1.5 1.9 1.9 1.9 2.4

GSE55447 1.8 1.9 1.7 1.9 1.7 1.9

GSE19429 3.4 3.0 3.7 3.0 3.6 3.0

GSE9006 3.0 3.0 3.2 3.0 3.1 3.0

GSE48350 1.0 1.0 1.0 1.0 1.0 1.0

GSE5281 3.8 4.1 5.6 4.2 5.5 4.1

GSE35978 4.1 6.0 9.2 12.4 9.0 9.1

GSE53987 4.3 4.7 7.1 7.4 6.9 6.8

GSE12288 4.3 6.1 7.4 9.4 7.8 7.7

GSE15852 2.7 2.9 3.8 3.0 3.7 3.0

GSE42568 1.4 1.5 1.5 1.5 1.5 1.7

GSE29431 1.0 1.0 1.0 1.0 1.0 1.0

GSE18520 1.0 1.0 1.0 1.0 1.0 1.0

GSE19804 2.4 2.0 2.5 2.0 2.5 2.0

GSE10072 1.6 1.6 1.6 1.6 1.6 1.6

GSE68571 1.0 1.0 1.0 1.0 1.0 1.0

Average ± SEM 2.62± 0.27 2.96± 0.36 3.63± 0.51 3.58± 0.59 3.62± 0.51 3.17± 0.47

Table 25: Experiment 1c: Average number of variables (NVs) for each dataset, averaged over 10-
fold cross-validation, comparing greedy best-first and greedy beam search. Classifier with lower
values of NVs are more parsimonious, and perhaps easier to validate for a given dataset. The last
row calculates the average for each classifier across 25 datasets and also reports the standard error
of mean.
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(a) Comparing AUROCs (b) Comparing AUPRGs

(c) Comparing Brier scores

Figure 14: Experiment 1: Average AUROCs, AUPRGs, and Brier scores by state-of-the-art classi-
fiers, BRL.DT, and BRL.DT-Beam.

complex models like multivariate Logistic regression, SVM, Bagged and Boosted C4.5, and

Random Forest outperform BRL.DT and BRL.DG. Same conclusion can be reached from

Brier scores (see Figure 14c) where lower values indicate better calibrated classifiers.
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4.3.5 Experiment 1: Conclusion

If the application were to require the user to use BRL off-the-shelf, I recommend BRL-DT

starting with a default κ value of 0.01. These applications include exploratory data analysis

for identifying potential hypotheses suggested by the data. The user may then optimize on

different κ values, smaller κ values for learning models with fewer rules, and larger κ values

for learning models with more rules. The user can perform optimization on this parameter

using either grid search or more sophisticated methods like distributed asynchronized hyper-

parameter optimization [Bergstra et al., 2015] or Bayesian optimization [Martinez-Cantin,

2014].

While BRL-DT performs similar to BRL-G, BRL-DT has a more parsimonious repre-

sentation i.e., uses fewer rules and variables. Fewer rules means there are generally more

instances covered by any given rule in the model. This offers more confidence in the pre-

dictions made by the rule. Fewer variables provides models that are cheaper to validate in

practice.

4.4 EXPERIMENT 2: EVALUATING EBRL METHODS

All experiments in experiment 2 were performed using BRL.DT. And so, I use the terms

BRL and BRL.DT interchangeably in this section. We had conducted the experiments with

BRL.G and BRL.DG as well. The conclusions reached from each representation were not

different. And so, to minimize the required number of tables, we only show results from

BRL.DT.

In experiment 2, we will test 4 hypotheses. They are follows—

1. Experiment 2a (see subsection 4.4.1): We compare Bagged-BRL-LC to BRL, C4.5,

Bagged-C4.5, and Boosted-C4.5. Since BRL has was previously shown to be better

at modeling high-dimensional data, we expect it to be better at leveraging the enriched

search space from bagging. As a result, we expect Bagged-BRL-LC to have better pre-

dictive and calibration performance than the other compared classifiers
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2. Experiment 2b (see subsection 4.4.2): We compare the three EBRL models that use

different strategies to combine a set of base classifiers. All base classifiers in this exper-

iment are generated from bootstrap sampling. The three combination methods are—

linear combination (Bagged-BRL-LC), Bayesian model averaging (Bagged-BRL-BMA),

and Bayesian model combination (Bagged-BRL-BMC).

3. Experiment 2c (see subsection 4.4.3): Experiment 2a is repeated but this time we com-

bine BRL models using Boosting as opposed to Bagging.

4. Experiment 2d (see subsection 4.4.4): Experiment 2b is repeated but by comparing the

EBRL models that had base classifiers generated from Boosting.

We primarily focus on three metrics— predictive performance evaluated using AUROC

and AUPRG, and calibration performance evaluated using Brier score.

In subsection 4.4.5, we take a closer look at Bayesian model combination method and

outline situations where this aggregation method is superior to traditional bagging. In

subsection 4.4.6, we compare the best performing EBRL method with the state-of-the-art

classifiers in machine learning. We summarize the observations from this experiment in

subsection 4.4.8.

4.4.1 Experiment 2a: Comparing Bagged-BRL-LC to BRL, C4.5, Bagged-C4.5,

and Boosted-C4.5

In this experiment, we compare Bagged-BRL-LC (classic bagging with BRL) to BRL, C4.5,

Bagged-C4.5, and Boosted-C4.5. We hypothesized Bagged-BRL-LC to take advantage of

both bagging procedure and BRL’s abilities in modeling high-dimensional datasets to achieve

better predictive performance than BRL, C4.5, Bagged-C4.5, and Boosted-C4.5. The accu-

racy, precision, recall, and F-measure do not help us test the hypothesis, so those results

were moved to Appendix D (see 10.1). Tables 26, 27, and 28 show the AUROCs, AUPRGs,

and Brier scores attained by C4.5, Bagged-C4.5, Boosted C4.5, BRL, and Bagged-BRL-LC,

respectively. The last row of the table shows the average of the metrics across the 25 datasets

and the standard error of mean.

AUROCs achieved by the different classifiers were first compared against Bagged-BRL-
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LC. The results are shown in Table 26. Friedman’s test (p-value = 3.037E−08), Friedman’s

test with Iman-Davenport correction (p-value = 2.536E − 10), Friedman’s aligned ranks

test (p-value = 4.859E − 08), and Quade test (p-value = 6.534E − 10) all strongly suggest

that we must reject the null hypothesis suggesting that all classifiers have the same AU-

ROC. Post-hoc test is now conducted to determine which of the classifiers are different from

others. The p-values generated by Friedman’s test were adjusted using Holland’s method

to find that the AUROC achieved by Bagged-BRL-LC is statistically significantly differ-

ent from BRL (p-value = 0.0005836114), C4.5 (p-value = 1.086147E − 08), Bagged-C4.5

(p-value = 0.03966867), and Boosted-C4.5 (p-value = 6.45522E − 05). Similar conclusions

were reached using Finner, Rom, and Li methods. These results suggest that Bagged-BRL-

LC generally achieves a statistically significantly higher AUROC than BRL, C4.5, Bagged-

C4.5, and Boosted-C4.5.

AUPRGs achieved by the different classifiers were first compared against Bagged-BRL-

LC. The results are shown in Table 27. Friedman’s test (p-value = 5.937E−08), Friedman’s

test with Iman-Davenport correction (p-value = 7.571E−10), Friedman’s aligned ranks test

(p-value = 6.503E−09), and Quade test (p-value = 2.156E−10) all strongly suggest that we

must reject the null hypothesis suggesting that all classifiers have the same AUPRG. Post-hoc

test is now conducted to determine which of the classifiers are different from others. The

p-values generated by Friedman’s test were adjusted using Holland’s method to find that

the AUPRG achieved by Bagged-BRL-LC is statistically significantly different from BRL

(p-value = 0.0001377093), C4.5 (p-value = 9.073899E − 08), and Boosted-C4.5 (p-value =

9.585383E − 05) but not Bagged-C4.5 (p-value = 0.08924165). Similar conclusions were

reached using Finner, Rom, and Li methods. These results suggest that Bagged-BRL-LC

generally achieves a statistically significantly higher AUPRG than BRL, C4.5, and Boosted-

C4.5. The gain of AUPRG over Bagged-C4.5, however, is not statistically significant.

Brier scores achieved by the different classifiers were first compared against Bagged-BRL-

LC. The results are shown in Table 28. Friedman’s test (p-value = 9.266E−08), Friedman’s

test with Iman-Davenport correction (p-value = 1.543E − 09), Friedman’s aligned ranks

test (p-value = 1.071E − 11), and Quade test (p-value = 4.619E − 14) all strongly suggest

that we must reject the null hypothesis suggesting that all classifiers have the same Brier
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score. Post-hoc test is now conducted to determine which of the classifiers are different from

others. The p-values generated by Friedman’s test were adjusted using Holland’s method to

find that the Brier score achieved by Bagged-BRL-LC is statistically significantly different

from BRL (p-value = 0.001039498), C4.5 (p-value = 3.210044E − 07), and Boosted-C4.5

(p-value = 0.001039498) but not Bagged-C4.5 (p-value = 0.3710934). Similar conclusions

were reached using Finner, Rom, and Li methods. These results suggest that Bagged-

BRL-LC generally achieves a statistically significantly higher Brier scores than BRL, C4.5,

and Boosted-C4.5. The gain of Brier score over Bagged-C4.5, however, is not statistically

significant.

4.4.1.1 Experiment 2a: Conclusion The results from experiment 2a shows that on

an ensemble using BRL as base classifiers (Bagged-BRL-LC) gives better AUROC than

an ensemble using C4.5 as base classifiers (Bagged-C4.5 and Boosted-C4.5). Bagged-BRL-

LC also has better AUROC than BRL, showing that the ensemble model better represents

multifactorial diseases than single model.

4.4.2 Experiment 2b: Comparing Bagged-BRL-LC , Bagged-BRL-BMA, and

Bagged-BRL-BMC

In this experiment, we compare the three different model combination strategies using BRL

models generated from bootstrap samples. The three models are Bagged-BRL-LC, Bagged-

BRL-BMA, and Bagged-BRL-BMC. We hypothesized Bagged-BRL-BMC would have the

better predictive performance by accounting for the uncertainty in the correctness of model

combination. The accuracy, precision, recall, and F-measure do not help us test the hypoth-

esis, so those results were moved to Appendix D (see 10.2). Tables 29, 30, and 31 show the

AUROCs, AUPRGs, and Brier scores attained by Bagged-BRL-LC, Bagged-BRL-BMA, and

Bagged-BRL-BMC, respectively. The last row of the table shows the average of the metrics

across the 25 datasets and the standard error of mean.

AUROCs achieved by the different classifiers were first compared against Bagged-BRL-

LC. The results are shown in Table 29. Friedman’s test (p-value = 0.03239), Friedman’s
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Data Bagged-BRL.DT-LC BRL.DT C4.5 Bagged-C4.5 Boosted-C4.5

GSE66360 0.9630 0.8490 0.6940 0.9500 0.8320

GSE62646 1.0000 0.9083 0.9083 1.0000 0.9083

GSE41861 0.9242 0.7717 0.7164 0.8539 0.8961

GSE20881 0.9153 0.8649 0.7518 0.9118 0.8342

GSE3365 0.9680 0.9174 0.7994 0.9661 0.9875

GSE16879 1.0000 0.9845 0.9845 1.0000 0.9845

GSE15245 0.7000 0.7150 0.6083 0.6850 0.5800

GSE6613 0.6260 0.4697 0.5847 0.5817 0.6130

GSE20295 0.7292 0.6221 0.6413 0.7729 0.7046

GSE30999 0.9812 0.9764 0.9458 0.9826 0.9458

GSE55447 0.6450 0.5325 0.6125 0.5000 0.6375

GSE19429 0.9642 0.9001 0.6254 0.7019 0.8828

GSE9006 0.9200 0.8658 0.7383 0.8967 0.8150

GSE48350 1.0000 1.0000 1.0000 1.0000 1.0000

GSE5281 0.9626 0.8801 0.8263 0.9560 0.8808

GSE35978 0.7444 0.5436 0.5129 0.6642 0.6435

GSE53987 0.4917 0.5564 0.5502 0.5291 0.5493

GSE12288 0.6003 0.5723 0.5357 0.5361 0.5339

GSE15852 0.9487 0.8194 0.7631 0.8988 0.8475

GSE42568 0.9614 0.8109 0.8955 0.9682 0.8705

GSE29431 1.0000 0.9417 0.9417 0.9917 0.9417

GSE18520 1.0000 0.9900 0.9900 0.9900 0.9900

GSE19804 0.9639 0.9083 0.8806 0.9861 0.9431

GSE10072 0.9867 0.9425 0.9425 0.9933 0.9425

GSE68571 1.0000 0.9938 0.9937 0.9937 0.9937

Average ± SEM 0.8798± 0.0311 0.8135± 0.0336 0.7777± 0.0326 0.8524± 0.0348 0.8303± 0.0306

Table 26: Experiment 2a: AUROCs for each dataset, averaged over 10-fold cross-validation, using
state-of-the-art rule learning classifiers compared to BRL. Classifier with higher values of AUROCs
are better performing for a given dataset. The last row calculates the average for each classifier
across 25 datasets and also reports the standard error of mean.
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Data Bagged-BRL.DT-LC BRL.DT C4.5 Bagged-C4.5 Boosted-C4.5

GSE66360 0.9357 0.7234 0.4212 0.9104 0.6697

GSE62646 1.0000 0.7833 0.7833 1.0000 0.7833

GSE41861 0.8179 0.4126 0.4223 0.6425 0.7755

GSE20881 0.8139 0.7311 0.5146 0.8094 0.6763

GSE3365 0.9078 0.7627 0.5734 0.9063 0.9611

GSE16879 1.0000 0.8845 0.8845 1.0000 0.8845

GSE15245 0.5400 0.3070 0.1481 0.3100 0.1195

GSE6613 0.2774 -0.0205 0.1942 0.2267 0.2677

GSE20295 0.4984 0.3450 0.3233 0.5638 0.4296

GSE30999 0.9747 0.9599 0.8988 0.9768 0.8988

GSE55447 0.2150 -0.0075 0.2500 0.1025 0.2000

GSE19429 0.6556 0.6025 0.1514 0.1807 0.4480

GSE9006 0.7486 0.6413 0.4379 0.6576 0.5752

GSE48350 1.0000 1.0000 1.0000 1.0000 1.0000

GSE5281 0.9291 0.7763 0.6788 0.9009 0.7618

GSE35978 0.4257 0.0948 0.0644 0.2591 0.2303

GSE53987 0.0139 0.0819 0.0854 0.0633 0.0597

GSE12288 0.1119 0.1860 0.0855 0.0440 0.0883

GSE15852 0.9038 0.6777 0.5590 0.8100 0.7237

GSE42568 0.8455 0.5631 0.7955 0.8955 0.7455

GSE29431 1.0000 0.8417 0.8417 0.9417 0.8417

GSE18520 1.0000 0.9400 0.9400 0.9400 0.9400

GSE19804 0.9358 0.8420 0.7937 0.9793 0.9083

GSE10072 0.9700 0.8920 0.8920 0.9850 0.8920

GSE68571 1.0000 0.9438 0.9438 0.9438 0.9438

Average ± SEM 0.7408± 0.0622 0.5986± 0.0655 0.5473± 0.0638 0.6820± 0.0697 0.6330± 0.0618

Table 27: Experiment 2a: AUPRGs for each dataset, averaged over 10-fold cross-validation, using
state-of-the-art rule learning classifiers compared to BRL. Classifier with higher values of AUPRGs
are better performing for a given dataset. The last row calculates the average for each classifier
across 25 datasets and also reports the standard error of mean.
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Data Bagged-BRL.DT-LC BRL.DT C4.5 Bagged-C4.5 Boosted-C4.5

GSE66360 0.1009 0.1675 0.2889 0.1012 0.2044

GSE62646 0.0355 0.0684 0.0700 0.0466 0.0700

GSE41861 0.1107 0.2492 0.2482 0.1499 0.1414

GSE20881 0.1201 0.2059 0.2442 0.1313 0.2096

GSE3365 0.0672 0.1642 0.1884 0.0831 0.0371

GSE16879 0.0304 0.0257 0.0268 0.0265 0.0268

GSE15245 0.1604 0.1910 0.3128 0.1461 0.2312

GSE6613 0.2485 0.4566 0.4097 0.2656 0.4011

GSE20295 0.1942 0.3234 0.3467 0.1955 0.3384

GSE30999 0.0323 0.0552 0.0530 0.0298 0.0531

GSE55447 0.1731 0.2943 0.3194 0.1875 0.3071

GSE19429 0.0506 0.0708 0.1436 0.0799 0.0721

GSE9006 0.1130 0.2111 0.2049 0.1348 0.1826

GSE48350 0.0010 0.0001 0.0000 0.0006 0.0000

GSE5281 0.0901 0.1717 0.1804 0.0898 0.1517

GSE35978 0.1860 0.3237 0.3918 0.2427 0.3300

GSE53987 0.2414 0.2711 0.2996 0.2445 0.3003

GSE12288 0.2590 0.3319 0.4541 0.3047 0.4413

GSE15852 0.1023 0.1929 0.2271 0.1086 0.1490

GSE42568 0.0308 0.0650 0.0251 0.0239 0.0379

GSE29431 0.0138 0.0279 0.0286 0.0248 0.0286

GSE18520 0.0111 0.0159 0.0167 0.0176 0.0167

GSE19804 0.0664 0.0992 0.1125 0.0464 0.0743

GSE10072 0.0306 0.0726 0.0556 0.0258 0.0555

GSE68571 0.0143 0.0106 0.0111 0.0140 0.0111

Average ± SEM 0.0993± 0.0160 0.1626± 0.0248 0.1864± 0.0283 0.1089± 0.0178 0.1548± 0.0267

Table 28: Experiment 2a: Brier scores for each dataset, averaged over 10-fold cross-validation,
using state-of-the-art rule learning classifiers compared to BRL. Classifier with lower values of
Brier scores are better performing for a given dataset. The last row calculates the average for each
classifier across 25 datasets and also reports the standard error of mean.
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test with Iman-Davenport correction (p-value = 0.02896), Friedman’s aligned ranks test

(p-value = 0.0007198), and Quade test (p-value = 0.0007889) all suggest that we must reject

the null hypothesis suggesting that all classifiers have the same AUROC. We perform a

post-hoc test to see which of the classifiers behave differently from one another. We do this

using a pairwise comparison by correcting the p-values obtained by Friedman’s test with

Bergmann and Hommel’s method. Bagged-BRL-BMA has statistically significantly weaker

predictive performance than Bagged-BRL-LC (p-value = 0.04) and Bagged-BRL-BMC (p-

value = 0.05). However, Bagged-BRL-LC is similar to Bagged-BRL-BMC (p-value = 0.62).

AUPRGs achieved by the different classifiers were first compared against Bagged-BRL-

LC. The results are shown in Table 30. Friedman’s test (p-value = 0.05448) and Friedman’s

test with Iman-Davenport correction (p-value = 0.0513) do not recommend rejecting the

null hypothesis suggesting that all classifiers have the same AUPRG. However, Friedman’s

aligned ranks test (p-value = 0.003475) and Quade test (p-value = 0.002091) both support

rejecting the null hypothesis. We proceed with the results from Friedman’s aligned ranks

test. We perform a post-hoc test to see which of the classifiers behave differently from

one another. We do this using a pairwise comparison by correcting the p-values obtained

by Friedman’s aligned ranks test with Bergmann and Hommel’s method. Bagged-BRL-

BMA has statistically significantly weaker predictive performance than Bagged-BRL-LC

(p-value < 0.01) and Bagged-BRL-BMC (p-value < 0.01). However, Bagged-BRL-LC is

similar to Bagged-BRL-BMC (p-value = 0.95).

Brier scores achieved by the different classifiers were first compared against Bagged-BRL-

LC. The results are shown in Table 31. Friedman’s test (p-value = 3.167E−05), Friedman’s

test with Iman-Davenport correction (p-value = 2.645E − 06), Friedman’s aligned ranks

test (p-value = 9.428E − 07), and Quade test (p-value = 5.073E − 07) all strongly suggest

that we must reject the null hypothesis suggesting that all classifiers have the same Brier

scores. We perform a post-hoc test to see which of the classifiers behave differently from

one another. We do this using a pairwise comparison by correcting the p-values obtained by

Friedman’s test with Bergmann and Hommel’s method. Bagged-BRL-BMA has statistically

significantly weaker calibration performance than Bagged-BRL-LC (p-value < 0.01) and

Bagged-BRL-BMC (p-value < 0.01). However, Bagged-BRL-LC is similar to Bagged-BRL-
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BMC (p-value = 0.26).

4.4.2.1 Experiment 2b: Conclusion The results from experiment 2b shows that

Bagged-BRL-LC and Bagged-BRL-BMC have similar predictive and calibration

performance. But they are significantly better than Bagged-BRL-BMA. These results are

consistent with the observations of [Minka, 2000]. However, we expected Bagged-BRL-BMC

to outperform Bagged-BRL-LC. We explore this result further in subsection 4.4.5.

4.4.3 Experiment 2c: Comparing Boosted-BRL-LC to BRL, C4.5, Bagged-

C4.5, and Boosted-C4.5

In this experiment, we compare Boosted-BRL-LC (classic bagging with BRL) to BRL, C4.5,

Bagged-C4.5, and Boosted-C4.5. We hypothesized Boosted-BRL-LC to take advantage of

both bagging procedure and BRL’s abilities in modeling high-dimensional datasets to achieve

better predictive performance than BRL, C4.5, Bagged-C4.5, and Boosted-C4.5. The accu-

racy, precision, recall, and F-measure do not help us test the hypothesis, so those results

were moved to Appendix D (see 10.3). Tables 32, 33, and 34 show the AUROCs, AUPRGs,

and Brier scores attained by C4.5, Bagged-C4.5, Boosted C4.5, BRL, and Boosted-BRL-LC,

respectively. The last row of the table shows the average of the metrics across the 25 datasets

and the standard error of mean.

AUROCs achieved by the different classifiers were first compared against Boosted-BRL-

LC. The results are shown in Table 32. Friedman’s test (p-value = 0.0003144), Friedman’s

test with Iman-Davenport correction (p-value = 0.0001339), Friedman’s aligned ranks test

(p-value = 0.0001994), and Quade test (p-value = 0.0005432) all suggest that we must reject

the null hypothesis suggesting that all classifiers have the same AUROC. Post-hoc test is

now conducted to determine which of the classifiers are different from others. The p-values

generated by Friedman’s test were adjusted using Holland’s method to find that the AUROC

achieved by Boosted-BRL-LC is statistically significantly different from any of the classifiers.

Similar conclusions were reached using Finner, Rom, and Li methods. The results indicate

that the source of difference between the classifiers does not come from Boosted-BRL-LC.
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Data Bagged-BRL.DT-LC Bagged-BRL.DT-BMA Bagged-BRL.DT-BMC

GSE66360 0.9630 0.9300 0.9630

GSE62646 1.0000 1.0000 1.0000

GSE41861 0.9242 0.8811 0.9358

GSE20881 0.9153 0.8731 0.9158

GSE3365 0.9680 0.9693 0.9764

GSE16879 1.0000 0.9833 0.9833

GSE15245 0.7000 0.6800 0.6800

GSE6613 0.6260 0.6013 0.6247

GSE20295 0.7292 0.7183 0.7533

GSE30999 0.9812 0.9812 0.9799

GSE55447 0.6450 0.5250 0.6900

GSE19429 0.9642 0.9642 0.9670

GSE9006 0.9200 0.9117 0.9400

GSE48350 1.0000 1.0000 1.0000

GSE5281 0.9626 0.9172 0.9597

GSE35978 0.7444 0.6593 0.7338

GSE53987 0.4917 0.4941 0.4859

GSE12288 0.6003 0.5619 0.5630

GSE15852 0.9487 0.9175 0.9325

GSE42568 0.9614 0.9614 0.9432

GSE29431 1.0000 1.0000 1.0000

GSE18520 1.0000 1.0000 1.0000

GSE19804 0.9639 0.9639 0.9583

GSE10072 0.9867 0.9867 0.9900

GSE68571 1.0000 1.0000 1.0000

Average ± SEM 0.8798± 0.0311 0.8592± 0.0341 0.8790± 0.0314

Table 29: Experiment 2b: AUROCs for each dataset, averaged over 10-fold cross-validation, using
state-of-the-art rule learning classifiers compared to BRL. Classifier with higher values of AUROCs
are better performing for a given dataset. The last row calculates the average for each classifier
across 25 datasets and also reports the standard error of mean.
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Data Bagged-BRL.DT-LC Bagged-BRL.DT-BMA Bagged-BRL.DT-BMC

GSE66360 0.9357 0.8835 0.9357

GSE62646 1.0000 1.0000 1.0000

GSE41861 0.8179 0.6648 0.8471

GSE20881 0.8139 0.7336 0.8131

GSE3365 0.9078 0.9185 0.9354

GSE16879 1.0000 0.8917 0.8917

GSE15245 0.5400 0.3700 0.4800

GSE6613 0.2774 0.2232 0.2767

GSE20295 0.4984 0.4754 0.5506

GSE30999 0.9747 0.9747 0.9731

GSE55447 0.2150 0.1025 0.3275

GSE19429 0.6556 0.6556 0.6828

GSE9006 0.7486 0.7319 0.8207

GSE48350 1.0000 1.0000 1.0000

GSE5281 0.9291 0.8242 0.9255

GSE35978 0.4257 0.2191 0.3733

GSE53987 0.0139 0.0349 0.0022

GSE12288 0.1119 0.1210 0.0724

GSE15852 0.9038 0.8353 0.8494

GSE42568 0.8455 0.8455 0.8455

GSE29431 1.0000 1.0000 1.0000

GSE18520 1.0000 1.0000 1.0000

GSE19804 0.9358 0.9358 0.9254

GSE10072 0.9700 0.9700 0.9797

GSE68571 1.0000 1.0000 1.0000

Average ± SEM 0.7408± 0.0622 0.6964± 0.0656 0.7403± 0.0616

Table 30: Experiment 2b: AUPRGs for each dataset, averaged over 10-fold cross-validation, using
state-of-the-art rule learning classifiers compared to BRL. Classifier with higher values of AUPRGs
are better performing for a given dataset. The last row calculates the average for each classifier
across 25 datasets and also reports the standard error of mean.
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Data Bagged-BRL.DT-LC Bagged-BRL.DT-BMA Bagged-BRL.DT-BMC

GSE66360 0.1009 0.1394 0.0985

GSE62646 0.0355 0.0363 0.0377

GSE41861 0.1107 0.1646 0.1071

GSE20881 0.1201 0.1675 0.1209

GSE3365 0.0672 0.0993 0.0649

GSE16879 0.0304 0.0312 0.0310

GSE15245 0.1604 0.1590 0.1615

GSE6613 0.2485 0.3194 0.2495

GSE20295 0.1942 0.2297 0.1929

GSE30999 0.0323 0.0374 0.0347

GSE55447 0.1731 0.2322 0.1640

GSE19429 0.0506 0.0571 0.0498

GSE9006 0.1130 0.1867 0.1167

GSE48350 0.0010 0.0021 0.0011

GSE5281 0.0901 0.1389 0.0882

GSE35978 0.1860 0.2969 0.1929

GSE53987 0.2414 0.3225 0.2509

GSE12288 0.2590 0.3914 0.2720

GSE15852 0.1023 0.1267 0.1060

GSE42568 0.0308 0.0292 0.0319

GSE29431 0.0138 0.0167 0.0161

GSE18520 0.0111 0.0116 0.0123

GSE19804 0.0664 0.0696 0.0693

GSE10072 0.0306 0.0306 0.0300

GSE68571 0.0143 0.0148 0.0142

Average ± SEM 0.0993± 0.0160 0.1324± 0.0227 0.1006± 0.0163

Table 31: Experiment 2b: Brier scores for each dataset, averaged over 10-fold cross-validation,
using state-of-the-art rule learning classifiers compared to BRL. Classifier with lower values of
Brier scores are better performing for a given dataset. The last row calculates the average for each
classifier across 25 datasets and also reports the standard error of mean.
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The difference likely stems from Bagged-C4.5 since Bagging appears to do better in these

datasets than Boosting.

Similar results as AUROC were obtained using AUPRG and Brier score.

4.4.3.1 Experiment 2c: Conclusion The results from experiment 2c shows that

Boosting method generally performs poorly on these datasets. There is a gain in performance

when compared to single BRL models but the gain isn’t statistically significant. We tried

tuning some parameters of boosting with little improvement on these datasets.

One possible explanation comes from [Freund et al., 1996]. Boosting methods generally

perform poorly on noisy datasets. This is because noisy instances are likely to be misclassified

by a good classifier. boosting iteratively focuses on misclassified instances. This forces the

classifiers to try and fit a model with more emphasis on noisy instances. This leads to

learning poor classifiers.

4.4.4 Experiment 2d: Comparing Boosted-BRL-LC , Boosted-BRL-BMA, and

Boosted-BRL-BMC

In this experiment, we repeat the experiment 2b (see 4.4.2) but we now test the combination

of base classifiers generated from boosting. The accuracy, precision, recall, and F-measure do

not help us test the hypothesis, so those results were moved to Appendix D (see 10.4). Tables

35, 36, and 37 show the AUROCs, AUPRGs, and Brier scores attained by Boosted-BRL-LC,

Boosted-BRL-BMA, and Boosted-BRL-BMC, respectively. The last row of the table shows

the average of the metrics across the 25 datasets and the standard error of mean.

AUROCs achieved by the different classifiers were first compared against Boosted-BRL-

LC. The results are shown in Table 35. Friedman’s test (p-value = 0.0455), Friedman’s

test with Iman-Davenport correction (p-value = 0.04216), Friedman’s aligned ranks test

(p-value = 0.00205), and Quade test (p-value = 0.002149) all suggest that we must reject

the null hypothesis suggesting that all classifiers have the same AUROC. We perform a

post-hoc test to see which of the classifiers behave differently from one another. We do

this using a pairwise comparison by correcting the p-values obtained by Friedman’s aligned
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Data Boosted-BRL.DT-LC BRL.DT C4.5 Bagged-C4.5 Boosted-C4.5

GSE66360 0.9110 0.8490 0.6940 0.9500 0.8320

GSE62646 0.9083 0.9083 0.9083 1.0000 0.9083

GSE41861 0.7618 0.7717 0.7164 0.8539 0.8961

GSE20881 0.8938 0.8649 0.7518 0.9118 0.8342

GSE3365 0.9118 0.9174 0.7994 0.9661 0.9875

GSE16879 0.9845 0.9845 0.9845 1.0000 0.9845

GSE15245 0.6750 0.7150 0.6083 0.6850 0.5800

GSE6613 0.4433 0.4697 0.5847 0.5817 0.6130

GSE20295 0.6458 0.6221 0.6413 0.7729 0.7046

GSE30999 0.9764 0.9764 0.9458 0.9826 0.9458

GSE55447 0.7525 0.5325 0.6125 0.5000 0.6375

GSE19429 0.7895 0.9001 0.6254 0.7019 0.8828

GSE9006 0.9325 0.8658 0.7383 0.8967 0.8150

GSE48350 1.0000 1.0000 1.0000 1.0000 1.0000

GSE5281 0.8940 0.8801 0.8263 0.9560 0.8808

GSE35978 0.5642 0.5436 0.5129 0.6642 0.6435

GSE53987 0.4844 0.5564 0.5502 0.5291 0.5493

GSE12288 0.5732 0.5723 0.5357 0.5361 0.5339

GSE15852 0.8550 0.8194 0.7631 0.8988 0.8475

GSE42568 0.8705 0.8109 0.8955 0.9682 0.8705

GSE29431 0.9417 0.9417 0.9417 0.9917 0.9417

GSE18520 0.9900 0.9900 0.9900 0.9900 0.9900

GSE19804 0.9486 0.9083 0.8806 0.9861 0.9431

GSE10072 0.9425 0.9425 0.9425 0.9933 0.9425

GSE68571 0.9937 0.9938 0.9937 0.9937 0.9937

Average ± SEM 0.8258± 0.0337 0.8135± 0.0336 0.7777± 0.0326 0.8524± 0.0348 0.8303± 0.0306

Table 32: Experiment 2c: AUROCs for each dataset, averaged over 10-fold cross-validation, using
state-of-the-art rule learning classifiers compared to BRL. Classifier with higher values of AUROCs
are better performing for a given dataset. The last row calculates the average for each classifier
across 25 datasets and also reports the standard error of mean.
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Data Boosted-BRL.DT-LC BRL.DT C4.5 Bagged-C4.5 Boosted-C4.5

GSE66360 0.8339 0.7234 0.4212 0.9104 0.6697

GSE62646 0.7833 0.7833 0.7833 1.0000 0.7833

GSE41861 0.4558 0.4126 0.4223 0.6425 0.7755

GSE20881 0.7685 0.7311 0.5146 0.8094 0.6763

GSE3365 0.7534 0.7627 0.5734 0.9063 0.9611

GSE16879 0.8845 0.8845 0.8845 1.0000 0.8845

GSE15245 0.1786 0.3070 0.1481 0.3100 0.1195

GSE6613 -0.0974 -0.0205 0.1942 0.2267 0.2677

GSE20295 0.3391 0.3450 0.3233 0.5638 0.4296

GSE30999 0.9599 0.9599 0.8988 0.9768 0.8988

GSE55447 0.3400 -0.0075 0.2500 0.1025 0.2000

GSE19429 0.4636 0.6025 0.1514 0.1807 0.4480

GSE9006 0.8004 0.6413 0.4379 0.6576 0.5752

GSE48350 1.0000 1.0000 1.0000 1.0000 1.0000

GSE5281 0.7847 0.7763 0.6788 0.9009 0.7618

GSE35978 0.1322 0.0948 0.0644 0.2591 0.2303

GSE53987 0.0194 0.0819 0.0854 0.0633 0.0597

GSE12288 0.1237 0.1860 0.0855 0.0440 0.0883

GSE15852 0.7421 0.6777 0.5590 0.8100 0.7237

GSE42568 0.7455 0.5631 0.7955 0.8955 0.7455

GSE29431 0.8417 0.8417 0.8417 0.9417 0.8417

GSE18520 0.9400 0.9400 0.9400 0.9400 0.9400

GSE19804 0.9170 0.8420 0.7937 0.9793 0.9083

GSE10072 0.8920 0.8920 0.8920 0.9850 0.8920

GSE68571 0.9438 0.9438 0.9438 0.9438 0.9438

Average ± SEM 0.6218± 0.0673 0.5986± 0.0655 0.5473± 0.0638 0.6820± 0.0697 0.6330± 0.0618

Table 33: Experiment 2c: AUPRGs for each dataset, averaged over 10-fold cross-validation, using
state-of-the-art rule learning classifiers compared to BRL. Classifier with higher values of AUPRGs
are better performing for a given dataset. The last row calculates the average for each classifier
across 25 datasets and also reports the standard error of mean.

155



Data Boosted-BRL.DT-LC BRL.DT C4.5 Bagged-C4.5 Boosted-C4.5

GSE66360 0.1195 0.1675 0.2889 0.1012 0.2044

GSE62646 0.0658 0.0684 0.0700 0.0466 0.0700

GSE41861 0.1896 0.2492 0.2482 0.1499 0.1414

GSE20881 0.1720 0.2059 0.2442 0.1313 0.2096

GSE3365 0.1168 0.1642 0.1884 0.0831 0.0371

GSE16879 0.0314 0.0257 0.0268 0.0265 0.0268

GSE15245 0.1798 0.1910 0.3128 0.1461 0.2312

GSE6613 0.2629 0.4566 0.4097 0.2656 0.4011

GSE20295 0.2293 0.3234 0.3467 0.1955 0.3384

GSE30999 0.0402 0.0552 0.0530 0.0298 0.0531

GSE55447 0.1857 0.2943 0.3194 0.1875 0.3071

GSE19429 0.0592 0.0708 0.1436 0.0799 0.0721

GSE9006 0.1434 0.2111 0.2049 0.1348 0.1826

GSE48350 0.0046 0.0001 0.0000 0.0006 0.0000

GSE5281 0.1410 0.1717 0.1804 0.0898 0.1517

GSE35978 0.2364 0.3237 0.3918 0.2427 0.3300

GSE53987 0.2255 0.2711 0.2996 0.2445 0.3003

GSE12288 0.2475 0.3319 0.4541 0.3047 0.4413

GSE15852 0.1489 0.1929 0.2271 0.1086 0.1490

GSE42568 0.0388 0.0650 0.0251 0.0239 0.0379

GSE29431 0.0346 0.0279 0.0286 0.0248 0.0286

GSE18520 0.0256 0.0159 0.0167 0.0176 0.0167

GSE19804 0.0858 0.0992 0.1125 0.0464 0.0743

GSE10072 0.0598 0.0726 0.0556 0.0258 0.0555

GSE68571 0.0211 0.0106 0.0111 0.0140 0.0111

Average ± SEM 0.1226± 0.0164 0.1626± 0.0248 0.1864± 0.0283 0.1089± 0.0178 0.1548± 0.0267

Table 34: Experiment 2c: Brier scores for each dataset, averaged over 10-fold cross-validation, using
state-of-the-art rule learning classifiers compared to BRL. Classifier with lower values of Brier scores
are better performing for a given dataset. The last row calculates the average for each classifier
across 25 datasets and also reports the standard error of mean.
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ranks test with Bergmann and Hommel’s method. Boosted-BRL-BMA has statistically

significantly weaker predictive performance than Boosted-BRL-LC (p-value < 0.01) and

Boosted-BRL-BMC (p-value < 0.01). However, Boosted-BRL-LC is similar to Boosted-

BRL-BMC (p-value = 0.97).

AUPRGs achieved by the different classifiers were first compared against Boosted-BRL-

LC. The results are shown in Table 36. Friedman’s test (p-value = 0.02548), Friedman’s

test with Iman-Davenport correction (p-value = 0.02214), Friedman’s aligned ranks test

(p-value = 0.0007343) and Quade test (p-value = 0.0009154) both support rejecting the

null hypothesis suggesting that all classifiers have the same AUPRG. We perform a post-hoc

test to see which of the classifiers behave differently from one another. We do this using a

pairwise comparison by correcting the p-values obtained by Friedman’s test with Bergmann

and Hommel’s method. Boosted-BRL-BMA has statistically significantly weaker predictive

performance than Boosted-BRL-LC (p-value = 0.04) and Boosted-BRL-BMC (p-value =

0.04). However, Boosted-BRL-LC is similar to Boosted-BRL-BMC (p-value = 0.78).

Brier scores achieved by the different classifiers were first compared against Boosted-BRL-

LC. The results are shown in Table 37. Friedman’s test (p-value = 6.007E−05), Friedman’s

test with Iman-Davenport correction (p-value = 7.386E − 06), Friedman’s aligned ranks

test (p-value = 2.592E − 07), and Quade test (p-value = 2.355E − 07) all strongly suggest

that we must reject the null hypothesis suggesting that all classifiers have the same Brier

scores. We perform a post-hoc test to see which of the classifiers behave differently from

one another. We do this using a pairwise comparison by correcting the p-values obtained by

Friedman’s test with Bergmann and Hommel’s method. Boosted-BRL-BMA has statistically

significantly weaker calibration performance than Boosted-BRL-LC (p-value < 0.01) and

Boosted-BRL-BMC (p-value < 0.01). However, Boosted-BRL-LC is similar to Boosted-

BRL-BMC (p-value = 1.00).

4.4.4.1 Experiment 2d: Conclusion The results from experiment 2d are largely con-

sistent with the results of experiment 2b. This shows that the superior performance of

the true ensemble methods Boosted-BRL-LC and Boosted-BRL-BMC, when compared to

Boosted-BRL-BMA, was not dependent upon the method of generation of base models (Bag-
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ging and Boosting).

Data Boosted-BRL.DT-LC Boosted-BRL.DT-BMA Boosted-BRL.DT-BMC

GSE66360 0.9110 0.9020 0.9060

GSE62646 0.9083 0.9083 0.9083

GSE41861 0.7618 0.7163 0.7801

GSE20881 0.8938 0.7593 0.9186

GSE3365 0.9118 0.8620 0.9168

GSE16879 0.9845 0.9845 0.9845

GSE15245 0.6750 0.5950 0.6550

GSE6613 0.4433 0.4333 0.4433

GSE20295 0.6458 0.5900 0.6750

GSE30999 0.9764 0.9764 0.9764

GSE55447 0.7525 0.7525 0.7525

GSE19429 0.7895 0.7923 0.7895

GSE9006 0.9325 0.9325 0.9325

GSE48350 1.0000 1.0000 1.0000

GSE5281 0.8940 0.8386 0.8936

GSE35978 0.5642 0.5283 0.5586

GSE53987 0.4844 0.5083 0.4856

GSE12288 0.5732 0.5180 0.5840

GSE15852 0.8550 0.8488 0.8613

GSE42568 0.8705 0.8705 0.8705

GSE29431 0.9417 0.9417 0.9417

GSE18520 0.9900 0.9900 0.9900

GSE19804 0.9486 0.9458 0.9486

GSE10072 0.9425 0.9425 0.9425

GSE68571 0.9937 0.9937 0.9937

Average ± SEM 0.8258± 0.0337 0.8052± 0.0356 0.8283± 0.0336

Table 35: Experiment 2d: AUROCs for each dataset, averaged over 10-fold cross-validation, using
state-of-the-art rule learning classifiers compared to BRL. Classifier with higher values of AUROCs
are better performing for a given dataset. The last row calculates the average for each classifier
across 25 datasets and also reports the standard error of mean.
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Data Boosted-BRL.DT-LC Boosted-BRL.DT-BMA Boosted-BRL.DT-BMC

GSE66360 0.8339 0.8221 0.8277

GSE62646 0.7833 0.7833 0.7833

GSE41861 0.4558 0.3624 0.4848

GSE20881 0.7685 0.5198 0.8256

GSE3365 0.7534 0.6254 0.7691

GSE16879 0.8845 0.8845 0.8845

GSE15245 0.1786 0.1786 0.1786

GSE6613 -0.0974 -0.1307 -0.1058

GSE20295 0.3391 0.2038 0.4012

GSE30999 0.9599 0.9599 0.9599

GSE55447 0.3400 0.3400 0.3400

GSE19429 0.4636 0.4891 0.4636

GSE9006 0.8004 0.8004 0.8004

GSE48350 1.0000 1.0000 1.0000

GSE5281 0.7847 0.6434 0.7998

GSE35978 0.1322 0.0252 0.1159

GSE53987 0.0194 0.0052 0.0194

GSE12288 0.1237 0.0587 0.0903

GSE15852 0.7421 0.7324 0.7518

GSE42568 0.7455 0.7455 0.7455

GSE29431 0.8417 0.8417 0.8417

GSE18520 0.9400 0.9400 0.9400

GSE19804 0.9170 0.9133 0.9170

GSE10072 0.8920 0.8920 0.8920

GSE68571 0.9438 0.9438 0.9438

Average ± SEM 0.6218± 0.0673 0.5832± 0.0706 0.6268± 0.0679

Table 36: Experiment 2d: AUPRGs for each dataset, averaged over 10-fold cross-validation, using
state-of-the-art rule learning classifiers compared to BRL. Classifier with higher values of AUPRGs
are better performing for a given dataset. The last row calculates the average for each classifier
across 25 datasets and also reports the standard error of mean.
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Data Boosted-BRL.DT-LC Boosted-BRL.DT-BMA Boosted-BRL.DT-BMC

GSE66360 0.1195 0.2496 0.1197

GSE62646 0.0658 0.2290 0.0967

GSE41861 0.1896 0.2309 0.1761

GSE20881 0.1720 0.2457 0.1631

GSE3365 0.1168 0.2283 0.1141

GSE16879 0.0314 0.1647 0.0459

GSE15245 0.1798 0.1855 0.1812

GSE6613 0.2629 0.2497 0.2696

GSE20295 0.2293 0.2472 0.2256

GSE30999 0.0402 0.2492 0.0604

GSE55447 0.1857 0.1783 0.1750

GSE19429 0.0592 0.1209 0.0621

GSE9006 0.1434 0.2236 0.1413

GSE48350 0.0046 0.2364 0.0401

GSE5281 0.1410 0.2488 0.1370

GSE35978 0.2364 0.2278 0.2328

GSE53987 0.2255 0.2096 0.2364

GSE12288 0.2475 0.2500 0.2473

GSE15852 0.1489 0.2496 0.1443

GSE42568 0.0388 0.1515 0.0386

GSE29431 0.0346 0.1737 0.0550

GSE18520 0.0256 0.1625 0.0359

GSE19804 0.0858 0.2491 0.0847

GSE10072 0.0598 0.2454 0.0666

GSE68571 0.0211 0.1323 0.0344

Average ± SEM 0.1226± 0.0164 0.2136± 0.0083 0.1273± 0.0151

Table 37: Experiment 2d: Brier scores for each dataset, averaged over 10-fold cross-validation,
using state-of-the-art rule learning classifiers compared to BRL. Classifier with lower values of
Brier scores are better performing for a given dataset. The last row calculates the average for each
classifier across 25 datasets and also reports the standard error of mean.
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4.4.5 Experiment 2: Bagged-BRL-LC and Bagged-BRL-BMC compared with

unreliable base classifiers

Bagged-BRL-LC and Bagged-BRL-BMC do appear to benefit from the enriched ensemble

space that Bagged-BRL-BMA does not take advantage of. However, based on these results

alone, it would appear that Bagged-BRL-BMC has an additional overhead of computation to

Bagged-BRL-LC, which results in no apparent gain in predictive performance. One explana-

tion for this could be because BMC attempts to evaluate the uncertainty in the correctness

of model combination and it could be that bagging (LC) approach already had the most

likely correct way of combining the models given the way that we generate the ensemble of

base models. From bagged samples followed by greedy best-first BRL search it is possible

that we learn models that are more or less equally correct. So, BMC ends up learning that

the uniform model weight distribution used by Bagged-BRL-LC is most likely the correct

weight distribution.

We conducted an additional experiment to test how LC and BMC behave, when the

base classifiers are not all, more or less, equally correct. To test this, we conducted an

experiment wherein we deliberately added substandard models to the hypothesis space and

let LC and BMC learn models from this hypothesis space. So, instead of generating base

models using the bagging approach, we instead create an alternate approach to generating

base classifiers for the ensemble to combine. We call this alternate approach— 1N9R (short

for 1 normal and 9 random classifiers). 1N9R generates the first base classifier, learned using

the BRL greedy-best first search on the original data. Here, the first model is a reliable

base classifier for the ensemble. The next 9 iterations learn random BRL classifiers. A

random BRL classifier randomly guesses the label of a queried test instance, with a toss of

a coin. The probability associated with the random prediction itself is randomly sampled

uniformly from 0.0 to 1.0. To summarize, the first base model is reliable, generated from

BRL’s greedy best-first search, and the remaining 9 models are unreliable random classifiers.

We expect that BMC would learn a model weight distribution, where the first model gets

weighed significantly more than the remaining nine models during model combination. LC,

on the other hand, would be forced to treat all models equally during combination from the
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equal model weight distribution that it assigns.

Data 1N9R-BRL-LC 1N9R-BRL-BMC

GSE66360 0.6730 0.8420

GSE62646 0.7000 0.9500

GSE41861 0.6392 0.7664

GSE20881 0.7087 0.7759

GSE3365 0.6622 0.8648

GSE16879 0.6750 0.9690

GSE15245 0.6600 0.7400

GSE6613 0.4600 0.4720

GSE20295 0.6992 0.7158

GSE30999 0.7014 0.9542

GSE55447 0.6000 0.4450

GSE19429 0.5241 0.7228

GSE9006 0.7617 0.7733

GSE48350 0.6667 1.0000

GSE5281 0.6558 0.8047

GSE35978 0.4776 0.5639

GSE53987 0.5200 0.5344

GSE12288 0.5205 0.5796

GSE15852 0.7787 0.7912

GSE42568 0.6609 0.8377

GSE29431 0.6533 1.0000

GSE18520 0.7767 0.9800

GSE19804 0.7028 0.8944

GSE10072 0.8148 0.9032

GSE68571 0.7444 1.0000

Average ± SEM 0.6575± 0.0189 0.7952± 0.0337

Table 38: AUROCs of 1N9R-BRL-LC and 1N9R-BRL-BMC. The modified base model gen-

eration method generates the first model using greedy best-first BRL search on the original

training data and the subsequent 9 models are random classifiers.

As theorized, the average AUROC obtained by 1N9R-BRL-LC (average AUROC =

0.6575) is now much lesser than 1N9R-BRL-BMC (average AUROC = 0.7952). Wilcoxon
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signed ranks test (W-statistic = 13 is lesser than W-critical-value = 76) suggests us to reject

the null hypothesis that the two classifiers have the same AUROC. 1N9R-BRL-BMC achieves

a much better predictive performance than 1N9R-BRL-LC.

4.4.6 Bagged-BRL.DT-BMC compared to other state-of-the-art classifiers

In this subsection, we compare Bagged-BRL-BMC with other state-of-the-art classifiers in

machine learning. The AUROC, AUPRG and the Brier scores are plotted in Figure 15a,

15b, and 15c, respectively.

We see the impressive improvements offered by Bagged-BRL-BMC. On average, Bagged-

BRL-BMC achieves the best AUROC, AUPRG, and Brier scores. Note that the only choice

we made on EBRL was whether or not we use Bootstrapped samples or use Boosting pro-

cedure. EBRL models were not cherry-picked to find the model that performs optimally. In

fact, the best performing model happens to be Bagged-BRL.DG-LC. So, this improvement

in performance is a significant result. It is consistent with our hypotheses and is unlikely to

have happened by chance.

4.4.7 Experiment 2: Model visualization

The purpose of this case study is to observe the models generated by BRL and Bagged-BRL-

BMC methods. Among the datasets in Table 1, GEO ID GSE19429 appears to have benefited

the most from BRL methods, when compared to other classifiers. In this case study, we take a

closer look at the model learned by the BRL and related methods. GSE19429 corresponds to

a study on myelodysplastic Syndromes (MDS), a group of bone marrow disorders that results

in a scarcity in the production of healthy blood cells in afflicted individuals. The instances

are individuals with their global gene expression profiles done on the hematopoietic stem

cells (HSC). The target variable of interest for this data analysis was whether or not the

individual has MDS. A total of 183 instances were cases (MDS patients) and the remaining

17 individuals were normal (do not have MDS).

The BRL model achieves an average 10-fold cross-validation AUROC of 0.9001. The

learned BRL model is shown in Figure 16.
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(a) Comparing AUROCs (b) Comparing AUPRGs

(c) Comparing Brier scores

Figure 15: Experiment 2: Average AUROCs, AUPRGs, and Brier scores by state-of-the-art classi-
fiers, BRL.DT, BRL.DT-Beam, and Bagged-BRL.DT-BMC.

The BRL model contains 6 rules composed of 4 genes (OR7A5, SORT1, ASB7, and

SCAMP1-AS1 ). We now explain how to read the rule model using the first rule of the

model as an example. The first rule states that if the expression of gene OR7A5 is less than

or equal to 44.06 and the expression of gene SCAMP1-AS1 is less than or equal to 72.65,

then the individual is most likely normal. Confidence is the posterior probability of this rule.

TP is the number of true positives, i.e., the number of instances in the dataset that agrees to

both the left-hand and the right-hand side of the rule. FP is the number of false positives,

164



Figure 16: BRL model for GSE19429.

i.e., the number of instances that agree with the left-hand side of the rule but disagree with

the right-hand side of the rule.

The EBRL model of Bagged-BRL-BMC achieves an average 10-fold cross-validation AU-

ROC of 0.9670. The relative variable importance computed for each variable selected by

Bagged-BRL-BMC is shown in Table 39.

A part of the learned Bagged-BRL-BMC model is visualized by running BREVity on a

web browser as shown in Figure 17.

The figure shows the pattern (OR7A5 = -inf to 44.06) is the most important pattern for

the predictions made by Bagged-BRL-BMC. Indeed, this pattern covers 171 MDS patients

and misclassifies 1 normal patient in the data. The edge weight of 0.42 shows the importance

of the pattern, computed by simply summing up the model weights containing this pattern.

We explore this important pattern further to see that some models contain the specialized

pattern (OR7A5 = -inf to 44.06) AND (KRT73 = -inf to 57.38). Indeed, this specialization

results in covering 171 MDS patients and 0 normal patients.

With this demonstration, we hope to show the utility of BREVity in helping explain
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Rank Variable Importance Rank Variable Importance Rank Variable Importance

1 OR7A5 0.4246 11 EVC2 0.1143 21 RANBP17 0.0691

2 KRT73 0.2449 12 FAM104B 0.1124 22 ANKRD36BP2 0.0691

3 HSPA2 0.1326 13 MUSK 0.1093 23 STAT1 0.067

4 FCRL1 0.1326 14 GPR176 0.1093

5 WFS1 0.1238 15 OGFRL1 0.1011

6 SETBP1 0.1238 16 ABCF3 0.1011

7 PER3 0.1238 17 NCKIPSD 0.0955

8 MMP12 0.1238 18 MME 0.0955

9 SAMD4B 0.1143 19 MAP3K11 0.0955

10 IGHV5-78 0.1143 20 IFIT1 0.075

Table 39: Variable importance of the Bagged-BRL-BMC model on GSE19429 dataset.

EBRL model predictions. Typically, ensemble methods do not offer any interpretation for

their predictions. With BREVity, we can interpret EBRL models as a complex decision tree.

Specifically, BREVity highlights the important relationships between variables in the model

of the domain. Such interpretations may help in biomarker validation.

4.4.8 Experiment 2: Conclusion

In general Bagging methods performed better than Boosting methods. One explanation is

that Boosting methods are sensitive to noise from the data [Freund et al., 1996]. Gene expres-

sion datasets are notoriously noisy. This should explain why Boosting methods, regardless

of the base classifiers used, performed poorly on these datasets.

Ensemble methods Bagged-BRL-LC and Bagged-BRL-BMC appear to do better than

Bagged-BRL-BMA, which does not take advantage of the enriched hypothesis space offered

by the ensemble. Bagged-BRL-LC and Bagged BRL-BMC perform similarly. However, when

we deliberately created a scenario where sub-standard models were added to the ensemble

hypothesis space, BMC performed better than LC. This is because BMC has the ability to
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Figure 17: Bagged-BRL-BMC model for GSE19429.
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learn the uncertainty in the correctness of model combination. BMC managed to learn the

model weights so as to weigh the predictions from the superior model much higher than the

inferior models in the ensemble. So, if we are dealing with performance sensitive applications,

we recommend using Bagged-BRL-BMC as the preferred EBRL method. This is because

there may be situations, where the base classifiers (hypothesis space) generation method may

have included substandard models for the ensemble to combine. Instead of blindly accepting

predictions from each base classifier, BMC weighs the decisions made by the reliable models

higher than the less reliable models. In the worst case, where all models are more or less

equally reliable, BMC would perform similar to LC (bagging).

4.5 EXPERIMENT 3: EVALUATING BRLP

We evaluated BRLp using two experiments— 1) with a simulated data and 2) with a real-

world lung cancer prognostic dataset. Subsection 4.5.1 shows the data generation/collection,

pre-processing, evaluation metrics, and methods compared for the two experiments. Subsec-

tion 4.5.2 summarizes the results from the experiments.

4.5.1 Experiments

We were interested in the ability of BRLp to incorporate the supplied prior domain knowledge

with respect to the structure prior hyperparameter λ. Additionally, we also monitored the

changes in the predictive power of the learned model resulting from the influence of the

supplied prior domain knowledge. We studied the functionality of BRLp on a simulated

dataset, and then on a real-world dataset. Each is described, in detail, in the following

subsections.

4.5.1.1 Simulated data study : The simulated dataset was generated from the graph

in Figure 18. It has 1000 binary variables and one target variable T . Only one variable,

R1000, is relevant and 999 irrelevant variables, {I1···999}. The conditional distributions in the
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graph are Bernoulli with the success parameter p depending upon the value instantiation

of their parent variables. The irrelevant and relevant variable values are randomly sampled

with p = 0.5. The T variable value is sampled with p = 0.9 if its parent, R1000, takes the

value 1, and p = 0.1 otherwise. We specify the edges in Figure 18 as the structure prior.

We calculated the Graph Edit Distance [Riesen, 2015] (described in the next paragraph)

between the model learned by BRLp and the true data-generating model. We also measure

AUROC. We evaluate these metrics over 5 runs of 10-fold cross-validation.

Figure 18: The data-generating graph for the simulated data.

Graph Edit Distance (GED) [Cortés et al., 2016] is a metric of similarity between two

graphs. In the experiment with the simulated data, it is used to compare two constrained

BNs. Specifically, it is used to measure how closely the BN learned by BRLp, i.e., B̂S (learned

by BRLp) resembled the true BN, BS, which generated the simulated dataset (Figure 18).

This was used to estimate the value of adding structure prior knowledge for model learning

when the true model is available for comparison. We computed this metric using Equation

4.16.

dvmin(BS ,B̂S) = min
υ∈Υ(BS ,B̂S)

∑
ei∈υ

c(ei) (4.16)

Here, dvmin(BS ,B̂S) is a function that returns the GED between the two BNs. A specific ei

is an edit operation to transform one graph into another. For the constrained BN we have

two available edit operations— delete edge and insert edge. There is a cost c(ei) associated
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with each edit operation. We set c(ei) = −1, for both the edit operations. A υ is an edit path

containing a sequence of edit operations to transform graph BS into B̂S. The set Υ(BS, B̂S)

is a set of all possible edit paths. To compute the graph edit distance, we find the edit path,

υ, that minimizes the overall cost and then return this minimum cost value indicating the

minimum number of operations needed to transform one graph to another. Therefore, an

edit distance of 0 indicates that the predicted graph is identical to the true graph. Since

the maximum parents resulted from BRL is constrained to 8 from the user parameter, the

worst possible model contains all 8 irrelevant variables. So, we get dvmin
= 9 (8 edge deletion

operations from irrelevant variables, 1 insert edge operation to the relevant variables).

4.5.1.2 Real-world lung cancer prognostic data study : We extract a real world

lung cancer prognostic dataset from Gene Expression Omnibus [Barrett et al., 2012]. We

extract the dataset from a study [Lu et al., 2010] that collected both tumor and normal

tissue samples from 60 non-smoking female, non-small cell lung cancer (NSCLC) patients

in Taiwan. The GEO accession ID for this study is GSE19804. The data was prepared

by processing it with the affy package in Bioconductor in R. We normalize the data using

Robust Multichip Analysis (RMA) for background correction, quantile normalization, and

probe summarization. Multiple probes can map to a single gene. In the final dataset, we

would like to have just one random variable representing a unique gene. Among the multiple

probes that map to a single gene, we chose the probe with the largest inter-quantile range

to represent the gene. We also extracted the tissue phenotype (tumor or normal) for each

sample and add to this dataset. The outcome variable of interest was this tissue phenotype.

After this pre-processing step, we were left with 16382 genes. So, the final dataset for our

analysis had 16382 variables and 120 instances.

To specify a structure prior, we look into the literature for relevant, known prognostic

markers for our study population. Epidermal growth factor receptor (EGFR), a receptor ty-

rosine kinase is prognostic marker known to be frequently over-expressed in NSCLC [Bethune

et al., 2010]. In NSCLC patients, [Shigematsu et al., 2005] observed that EGFR domain mu-

tations are statistically significantly more frequent in women than men (42% versus 14%), in

adenocarcinomas than other histologies (40% verses 3%), in non-smokers than smokers (51%
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verses 10%), and in East Asians than other ethnicities (30% verses 8%); all with a p-value

of < 0.001. This description is very similar to the subjects in the dataset we are studying.

So, we specify EGFR in the positive edge set of the structure prior of BRLp.

We evaluate on two metrics— 1) Prior Frequency (PF), the fraction of models that con-

tains EGFR, we need the true data generating graph to calculate Graph Edit Distance, which

is not feasible for real-world problems; and 2) AUROC. We calculate them over 5 runs of 10-

fold cross-validation. We study the effect of the hyperparameter λ = {0, 1, 2, 4, 6, 8, 10, 20}.

Finally, we compare their performance to some state-of-the-art classifiers.

4.5.1.3 Methods compared : We again evaluated BRLp here. We set its of maximum

conjuncts to 8. We evaluated the effect of the hyperparameter λ by assigning it values of

λ = {0, 1, 2, 4, 6, 8, 10, 20}. The value λ = 0 represents the baseline model of BRL with no

structure priors. We included λ = 20, to study the scenario where the structure priors over-

whelmingly dominates the likelihood score. Additionally, we compared these models with

some state-of-the-art classifiers including three rule learning classifiers namely— C4.5 [Quin-

lan, 2014], RIPPER [Cohen, 1995], and PART [Frank and Witten, 1998]; and three other

popular SOTA classifiers namely— Random Forests [Breiman, 2001], näıve Bayes [John and

Langley, 1995], and Support Vector Machines [Platt, 1999]. C4.5 is a popular decision tree

learning algorithm, where each path of the decision tree can be interpreted as rules. RIPPER

(Repeated Incremental Pruning to Produce Error Reduction) is a propositional rule learning

algorithm that uses a divide-and-conquer strategy during model training. PART is a rule

learning method that combines the approaches of both C4.5 and RIPPER by building par-

tial decision trees, inferring rules from the trees, and using a divide-and-conquer strategy to

build the rule model. Random Forest is an ensemble learning method that learns a number

of decision trees during training, and combines predictions from them during inference. The

näıve Bayes classifier is a simple probabilistic classifier that learns a network with strong

independence assumption between the variables, and uses the Bayes theorem for inference

from the learned network. Support Vector Machines is an algorithm that learns a hyperplane

function to differentiate the classes in the problem space. We ran these classifiers from the

Weka [Frank et al., 2016] workbench (version 3.8.1) using the default parameters for each
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classifier.

4.5.2 Results

We take a look at the results from our experiments to learn the relation between the λ

hyperparameter and the degree of incorporation of prior knowledge in BRLp’s model learning

process.

4.5.2.1 Simulated data study results : The results from the 5 runs of 10-fold cross-

validation are summarized in Figure 19. In Figure 19a, the x-axis shows the various values

of the hyperparameter λ and the y-axis shows the average GED. This average is obtained

across the 10-folds of each run, and then averaged across the 5 runs. Each data-point in the

graph is this average, and the error bars represent the standard error of mean. The dotted

line shows the value of BRLp with λ = 0, which as we mentioned earlier is the same as BRL,

where we use uninformative priors. We see that even with λ = 1, we see the effect of the

structure priors in bringing the learned model closer to the data-generating model. We see

a sharp gain of GED from λ = 2 to 3. For λ ≥ 6, BRLp returns the true data-generating

model specified by the structure priors. This shows that BRLp effectively and correctly

incorporates the specified domain knowledge. The degree of incorporation is controlled by

λ.

Figure 19b displays the average AUROC. The overall trend is a gain in AUROC but the

trend is noisy, especially with low λ values when the GED > 0. This region indicates models

that pick up irrelevant variables, which are spurious and are associated with T , by chance.

Their AUROC fluctuate a lot because random associations are found. When λ ≥ 6, where

the GED reaches the perfect 0, we see a rise in AUROC. The noise reduces in this region of

the graph. Random samplings from our simulation generate slightly different values of the

parameters, which are reflected in the fluctuations here. So, from the AUROC graph we see

a gradual gain in predictive performance with the incorporation of prior knowledge of the

truth.
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(a) Different values for structure prior hyperpa-
rameter λ compared to the Graph Edit Distance
between the true data-generating graph and the
BRLp model.

(b) Different values for structure prior hyper-
parameter λ compared to the AUROC of BRLp

model.

Figure 19: Simulated data analysis by BRLp.

4.5.2.2 Real-world lung cancer prognostic data study results : The results from

the 5 runs of 10-fold cross-validation on the real-world lung cancer prognostic dataset are

summarized in Figure 20. We specified the structure prior of an edge between EGFR and the

outcome Class variable to be present. We alter the values of λ and observe its effect on the

learned model. Figure 20a, shows the effect of the different values of λ on PF, the fraction of

models that contain EGFR. From λ = 2 to 6, we see a steep gain in PF. For λ ≥ 8, EGFR

is present in every learned model. This again shows that BRLp effectively incorporates the

specified prior knowledge and the λ hyperparameter allows the user to determine the degree

of incorporation of this knowledge by BRLp.

Figure 5b, shows the gain of average AUROC across 5 runs of 10-fold cross-validation.

We observe a steady gain of AUROC for λ > 2. For λ ≥ 8, the AUROC gain tapers off. The

results show that the EGFR prior knowledge helped improve the AUROC of BRLp.

Finally, we compare two BRLp models with state-of-the-art classifiers using average AU-

ROC achieved across 5 runs of 10-fold cross-validation. The two BRLp models are— 1) with
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(a) Different values for structure prior hyperpa-
rameter λ compared to Prior Frequency (frac-
tion of BRLp models with EGFR.)

(b) Different values for structure prior hyper-
parameter λ compared to the AUROC of BRLp

model.

Figure 20: Real-world lung cancer prognostic data analysis by BRLp.

λ = 0, which represents the baseline BRL model with uninformative priors, and 2) with

λ = 8 incorporating EGFR into the structure prior, which achieved the highest average AU-

ROC of 0.935. The state-of-the-art classifiers compared are C4.5, RIPPER, PART, Random

Forests, näıve Bayes, and Support Vector Machines. This comparison is done in Figure 21.

The first two bars in Figure 21 are BRLp algorithms, BRLp with λ = 0 is indicated as

BRL, and then BRLp with λ = 8. We see a gain in performance from incorporating EGFR as

structure priors. The next three bars— C4.5, RIPPER, and PART are rule learning models,

which are human readable. C4.5 is a decision tree learning algorithm. RIPPER and PART

are rule learning algorithms. We notice that these three algorithms perform worse than both

BRLp algorithms in this dataset. The last three bars in Figure 21 are— Random Forest,

näıve Bayes, and Support Vector Machines. These are examples of complex models that use

all variables in the dataset to generate a classifier. It is not easy to explain the reasoning

behind their predictions. But all three algorithms here outperform BRLp on this dataset.

This comparison shows the trade-off of predictive performance and interpretability. On this

dataset, BRLp offers an rule learning model that outperforms other popular rule learning
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Figure 21: Comparison of AUROC achieved by BRLp with state-of-the-art classifiers.

models but does not perform as well as the other, less-interpretable SOTA models.

4.5.3 Experiment 3: Conclusion

We demonstrated the ability of BRLp to incorporate this knowledge on simulated data and a

real-world lung cancer prognostic dataset. We observed that the λ hyperparameter allows us

to control the degree of incorporation of prior knowledge. This parameter can be helpful if

we are uncertain about the specified prior knowledge. We also observed that dataset relevant

prior knowledge could sometimes help improve the predictive performance of BRLp.

4.6 EXPERIMENT 4: EVALUATING BRL-KD

We evaluate BRL-KD using a real-world dataset collected to study the features that can help

discriminate individuals at risk of developing cardiovascular diseases from those who will not

develop the disease. In this section, we do not analyze this data in depth. Instead, the focus
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will be to study the functionality of BRL-KD algorithm. As a result, we do not make any

biological inferences from the models learned in this section. For an in-depth analysis of

this cardiovascular disease dataset, including modeling with BRL, and inferring biological

significance of the induced model, please refer to Chapter 5.

Subsection 4.6.1 contains the description of the experimental design for studying BRL-

KD, including— data collection, pre-processing, evaluation metrics used, and methods com-

pared. Subsection 4.6.2 summarizes the results from the experiments with BRL-KD.

4.6.1 Experiment design

The goal of the experiment here was to study the changes in behavior of models learned from

BRL-KD, while tuning the hyperparameter λ. Specifically, we wanted to observe the changes

in two metrics— 1) a clinical relevance metric as defined by a utility function (based on the

clinical application of the model), and 2) a predictive performance metric using AUROC.

In this experiment, we use a real-world dataset collected to learn differential features

between individuals who are at risk to develop cardiovascular disease and those who are

unlikely to develop the disease in the near future. We assume that the goal of modeling this

dataset using BRL here is to develop a medical screening method. Screening methods help

identify individuals that are at risk of developing cardiovascular disease in the near future.

Many definitions of clinical relevance is pertinent to screening methods including test

specificity, cost-efficiency, and non-invasiveness. Specific tests minimize the chance of in-

correctly giving a negative test result to an individual who would eventually develop the

disease. Cost-efficient tests are cheap and effective that enable us to compute the risk of a

larger population when compared to a more expensive test. Non-invasive tests do not require

the use of medical equipment used by medical practitioners to physically enter an individual’s

body. In this experiment, we will only focus on cost-effectiveness as a measure of clinical

relevance. The same ideas developed in this study can be extended to other definitions of

clinical relevance.

We assume that the most cost-effective BRL model is the clinically most relevant model.

Cost-effective models have both good predictive performance and are cheaper than the clin-
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ical standard currently used in practice. In general, cheaper models are clinically more

relevant given that there is no significant loss of predictive performance.

In subsection 4.6.1.1, we provide some background on the data collection process and

the description about the study cohort. We also describe the pre-processing performed on

the dataset to prepare it for analysis using BRL-KD. In subsection 4.6.1.3, we describe the

two metrics we monitor in BRL-KD i.e., the clinical relevance using cost of the model and

predictive performance using AUROC of the model. We summarize the results from the

experiment in section 4.6.2.

4.6.1.1 Data collection and pre-processing Heart SCORE (Strategies

Concentrating On Risk Evaluation) is an ongoing longitudinal prospective study, initiated

in 2003, that follows 2000 middle-aged, primarily black and white individuals from Allegheny

County, Pennsylvania, USA [Bambs et al., 2011]. We consider two types of variables mea-

sured from individuals in the study at the time of enrollment. They are— clinical and

metabolic variables.

The clinical variables include— age, sex, race, patient medical history, physical examina-

tion, medications, Vertical Auto Profile test for lipids, finger stick tests, and questionnaires

about the individual’s physical activities, lifestyle markers, social network, diet, sleep quality,

and various psychological questionnaires. The data has a total of 654 such clinical variables.

The metabolic variables had 1228 biochemicals including 893 named and 335 unnamed bio-

chemicals. These biochemicals include xenobiotics, cofactors, vitamins, and metabolites from

amino acid, lipid, carbohydrate, and energy metabolism. Out of the 2000 study participants,

only 1901 had metabolites measured for them. So the dataset had 1901 instances.

The data had to be pre-processed to prepare it for analysis using BRL. We first had to

clean the data. The original dataset had 654 clinical variables. This step included defining

discrete value bins for certain variables (e.g race), correcting typographical errors, and re-

moved redundant or unreliable measurement variables in the dataset in accordance to the

dataset manual. After discussions with an expert we also dropped the variable indicating

the patient history of having undergone percutaneous coronary intervention as it may act as

a confounding variable. We also removed variables indicating dates as they are unlikely to
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help as predictive variables. The cleaned dataset had 608 variables. For this data analysis,

we assume that the missing values are Missing Completely at Random (MCAR). Under the

MCAR assumption, when the variable with missing values have ≤ 5% of the values missing,

we can impute a single complete dataset, with minimal bias, using median/mode value im-

putation. In this analysis, we dropped the variables with > 5% of its values missing. The

rest of the variables had missing values imputed with median/model imputation.

We set the outcome variable of interest as Major Adverse Cardiac Event or MACE, here

defined to include any of— Cardiac death, myocardial infarction (MI), acute ischemic stroke

(AIS), or revascularization.

The final dataset had 1617 candidate predictive variables including 389 clinical variables

and 1228 metabolic variables. There are 1901 instances with 101 positive cases of individuals

who eventually developed a MACE outcome by 2018. The remaining 1800 individuals were

labeled negative.

We split the dataset randomly into 70% training data and 30% test data. We will use

the training data to choose the correct value for hyperparameter λ by observing the average

cost and average AUROC achieved by the specific value of λ. The average of the metrics

is computed over 10-fold cross-validation. We then choose the λ with the ideal trade-off

between cost and AUROC, and use that to model the training dataset. We observe these

models and evaluate their performance on the held-out test set.

Since BRL can only handle discrete-valued data, we discretize the continuous valued

variables from the Heart SCORE data under cross-validation. When the training data is

split into 10-folds, in each iteration of the cross-validation, we discretize on the training fold

using the supervised minimum description length (MDL) principle method [Fayyad et al.,

1993] and use the learned bins to discretize the test dataset. Once we detemine the ideal

value for λ from the cross-validation experiment, we discretize the 70% training data using

the MDL method and use the learned bins to discretize the 30% test data.

4.6.1.2 Methods compared : We will study the change in behavior of BRL-KD with

the change in hyperparameter λ. We first need to encode clinical relevance in terms of cost-

efficiency, into the BRL-KD heuristic score. We reproduce the heuristic score for BRL-KD,
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from Equation 3.20, below.

P (BS,Ψ, D;κ, α) = p(BS) · p(Ψ|BS) ·
qY∏
j=1

Γ( α
qY

)
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qY

)
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rY qY
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We encode the term p(Ψ|BS) with a distribution that represents our belief about which of

the models in the hypothesis space is more cost-efficient. We do this using Equation 4.17,

similar to how we encoded informative priors for model validity using BRLp (see 3.3.2).

p(Ψ|BS;λ,w) ∝ exp

[
λ ·
(
wPE · 1{|E(BS)∩EPE |6=0} + wV AP · 1{|E(BS)∩EV AP |6=0}

+ wFS · 1{|E(BS)∩EFS |6=0} + wMB · 1{|E(BS)∩EMB |6=0}

)]
(4.17)

In this equation, λ represents the relative importance of considering cost as opposed

to the likelihood term (that tries to optimize predictive performance). The set of weights,

w = {wPE, wV AP , wFS, wMB}, represent the cost of physical examination (wPE), cost of

Vertical Auto Profile test for lipids (wV AP ), cost of finger stick tests (wFS), and the cost of

running a full metabolome profile of 1228 biochemicals (wMB).

We want to emphasize that none of the values encoded here represented reality and were

not done consulting a medical practitioner. Instead, they were estimated just to demonstrate

BRL-KD as a proof of concept. In reality, the cost can be influenced by many factors

including time, insurance, medicare, and the location of point-of-care. For now, we assume

that the cost associated with each biomarker presented in the next paragraph is correct and

we observe the function of BRL-KD in light of having specified such values in practice.

The Heart SCORE dataset contains clinical and metabolic variables. For all the demo-

graphic and questionnaire variables, we set the cost of the biomarkers to $0. We assume that

it is free to obtain markers that can be supplied by asking the individual or can be obtained

from their medical history. We set the cost of a physical exam (wPE) to $146 (estimated

from the cost of a 15 minute physical per UPMC Presbyterian/Shadyside hospital’s Charge

Description Master file). by setting the value of wPE = 146, we state that if the BRL model

requires the use of any one or more variables from the physical examination (e.g., height,
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weight, or body mass index), the model would incur a cost of $146. We then set the cost

of Vertical Auto Profile (VAP) test for lipids wV AP to $2813 (again estimated from UPMC

Presbyterian/Shadyside hospital’s Charge Description Master file). The cost of finger stick

tests is assumed to be wFS = $1 (estimated from the equipments cost from Cholestech LDX

assuming the analyzer is available). The cost of the whole metabolic panel is assumed to be,

wMB = $1000 (an arbitrary estimate).

The costs range in thousands leading to this probability ranging widely. To prevent this,

we scale the cost using min-max scaling to have the cost values between the range 0 and 1.

We also take the negative value of the scaled cost in order to convert this utility function

into a maximization problem.

4.6.1.3 Evaluation metrics We observe the change in the BRL-KD model behavior

under the changing values of the λ hyperparameter with two metrics— 1) clinical relevance

using the total cost of the model, and 2) predictive performance using AUROC.

The cost metric is simply the sum of the costs of each marker selected by the BRL

classifier. If the BRL model would select any variable from one of the sets with specified

costs, the model would incur a cost as specified by the associated weight. For example, if the

BRL model selects 2 metabolic variables, it would still only incur the cost of wMB once, since

we assume that the whole metabolic panel is run. Again, we emphasize that our description

of utility is meant to merely depict a real-world application and that our choice may not

reflect reality. Our goal is to evaluate the use of BRL-KD in a possible real-world problem.

4.6.2 Experiment 4: Results

On the 70% training data, we perform 10-fold cross validation. In each fold, the training data

is split into 90% train and 10% development data. The 90% train is used to run BRL-KD

using the heuristic score in Equation 4.17. We do this for the following different values of

the hyperparameter λ = {0, 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20}. We plot the average cost and

average AUROC across 10 fold cross validation in Figure 22a and Figure 22b, respectively.

We observe that the average cost steadily declines with the increase in the value of λ.
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(a) Change in average cost. (b) Change in average AUROC.

Figure 22: Average cost and AUROC, over 10 folds, of the models learned under different

values of hyperparameter λ.

The average AUROC is more or less steady with the change in λ. The value of λ = 0 sets

the whole expression of p(Ψ|BS) in Equation 3.20 to 1. As a result this value corresponds

to the baseline of not using BRL-KD. The average cost of the BRL model without BRL-KD

is $2687.8 and the associated average AUROC is 0.5930.

As we increase the value of λ, the BRL-KD model starts to pick more cost-efficient

markers. This means markers that are of similar or slightly poorer quality but at a cheaper

cost. As we increase the λ value, we get cheaper and cheaper BRL-KD models. Value λ = 4

corresponds to an average cost of $1000 and average AUROC of 0.5575. This λ value presents

with a cheaper option at the loss of some predictive power. Value λ = 10 corresponds to

an average cost of $400.2 and average AUROC of 0.5566. Value λ = 20 corresponds to

an average cost of just $0.2 and average AUROC of 0.6001. This λ value results suggest

that there are similarly good AUROC performing models by simply using variables that are

available for free (according to our definition).

We now look at the models learned on the overall 70% training dataset, for λ = {0, 4, 10},

to observe the BRL-KD models. Note that we also looked at models with greater values of

λ but those models remained consistent after λ = 10. The value λ > 10 corresponded
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with models with a total cost of $0 so there was nothing to optimize further using the λ

hyperparameter. We estimate the AUROC by evaluating the model on the held-out 30%

test dataset. Together, the various BRL-KD models, offering trade-offs between cost and

AUROC, present a Pareto set of solutions.

The resulting BRL-KD model cost and AUROC is shown in Figure 23. We see that with

increasing λ, we get cheaper models but we get them at a loss of AUROC performance on

the test set.

Figure 23: BRL-KD model with λ = {0, 4, 10}.

Figure 24 shows the BRL-KD rule model we get when λ = 0. This sets the whole

expression of p(Ψ|BS) in Equation 3.20 to 1. This means no attempt is made to search for

cost-efficient markers in the dataset and is equivalent of just running plain BRL.

This model picks up a metabolic variable 35137 (cost = $1000), a variable from the VAP

test LAB HDL2A (cost = $2813), and a demographic variable SCR AGE (cost = $0). So,
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Figure 24: BRL-KD model with λ = 0.

the total cost of this baseline model is $3813 and the AUROC performance of this model on

the held-out test set is 0.6906.

Figure 25 shows the BRL-KD rule model we get when λ = 4.

Figure 25: BRL-KD model with λ = 4.

This model picks up two metabolic variables 35137 and 1898 (cost = $1000) and a

demographic variable SCR AGE (cost = $0). So, the total cost of this cost efficient model

is brought down to $1000 and the AUROC on the test set is 0.6250. Trying to come up with

more cost-efficient markers, BRL-KD loses the most expensive marker from the VAP test

and substitutes it with a metabolic variable. However, we see that this also leads to a loss

of AUROC on the test set.

Figure 26 shows the BRL-KD rule model we get when λ = 10.

This model uses a single demographic variable that is available for free, SCR AGE. This

leads to a further saving of cost down to $0. However, we do that by compensating on the

AUROC performance of 0.5722.
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Figure 26: BRL-KD model with λ = 10.

4.6.3 Experiment 4: Conclusion

We saw that increasing the λ hyperparameter helped us specify a range of possible trade-off

values between clinical relevance and predictive performance. We used cost as the utility

function measuring clinical relevance. Using BRL-KD, we tuned the hyperparameter λ to

study a range of different trade-offs between cost and predictive performance.

We saw that by decreasing the cost of the model, we lost predictive performance in terms

of AUROC on the test set. Note that not all clinical relevance utility functions may conflict

with predictive performance. For example, while venipuncture is more costly than finger

stick tests to measure, say blood glucose, they generally have similar measurement accuracy.

So, both lead to the same predictive performance. If BRL had chosen venipuncture variable

by chance, BRL-KD here would have helped us substitute finger stick test to obtain a cheaper

test with similar predictive performance.

The ultimate decision on λ requires us to know a few things about the current clinical

standard being used in practice. This will help us determine from the data if there exists

a λ value that gives us a model that is clinically more relevant than the one being used in

medical practice today. However, from the experiments it appears to be clear that BRL-KD

is a useful tool to help us find clinically more relevant models and encourages a real-world

application.
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5.0 BRAID SYSTEM FOR PREDICTING CARDIOVASCULAR DISEASE

RISK

In this chapter, I apply the developed BRL algorithms, within Bayesian Rules for Actionable

Informed Decisions (BRAID), for the task of assisting clinicians in computing the risk of

developing cardiovascular disease in an individual. In addition to calculating the risk, BRAID

will also provide a graphical explanation for the computed risk value. The intelligent core

of the system is the BRL suite of algorithms that have been described in Chapter 3.

In this chapter, section 5.1 introduces the reader to the challenge of the clinical manage-

ment of cardiovascular diseases in the general population. Some of the currently used, clinical

state-of-the-art methods are also discussed. We then look at Heart SCORE, a prospective

study developed to help improve our understanding of cardiovascular diseases. Section 5.2

will begin with an explanation of how we collected and pre-processed retrospective data

from the Heart SCORE study for analysis using BRL. The section also describes the exper-

imental design, evaluation metric, and the various predictive models being evaluated in this

study. This section also describes a method we implemented to perform functional analysis

(Metabolite set enrichment analysis) of the biomarkers selected from the best performing

model. Section 5.3 shows the results from the experiments. Section 5.4 explains how the

BRAID concept framework architecture could be deployed in practice. We conclude this

case study in section 5.5.
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5.1 INTRODUCTION

Globally, in 2016, ≈ 17.6 million (95% CI, 17.3-18.1 million) deaths were attributed to

cardiovascular diseases (or CVD, here defined as a set of diseases comprising of coronary

heart disease, heart failure, stroke, and hypertension) [Benjamin et al., 2019]. This is an

increase of 14.5% (95% CI, 12.1%-17.1%) from 2006. Heart diseases remain the leading cause

of death in the United States with 2, 744, 248 new deaths, in 2016. According to NHANES

(National Health and Nutrition Examination Survey) 2013-2016 data, the prevalence of CVD

in adults (age ≥ 20 years), in the United States, is 48.0% overall (121.5 million in 2016).

Excluding hypertension, the CVD prevalence is still 9.0% overall (24.3 million in 2016). The

estimated average annual cost, direct and indirect, of CVD and Stroke was $351.2 billion,

in 2014 to 2015, in the United States. Better clinical management of CVD is critical to

help bring down its immense burden, in terms of the disease mortality, morbidity, and its

healthcare-related costs.

CVDs can broadly encompass the diseases of the heart, vascular diseases of the brain,

and diseases of blood vessels [Mendis et al., 2011]. CVDs involving the heart include— heart

failure, cardiomyopathy, congenital heart disease, heart arrhythmia, and congenital heart

disease. Vascular diseases under CVD involving the brain include— cerebrovascular diseases

like stroke. Vascular diseases involving the blood vessels include— coronary heart disease

(CHD) and peripheral artery disease. Atherosclerotic cardiovascular disease (ASCVD) are

diseases that are specifically of atherosclerotic origin (i.e., as a result of plaque clogging the

arteries) and includes CHD, stroke, and peripheral artery disease.

The clinical management of cardiovascular diseases today is primarily guided by cardio-

vascular risk scores. Physicians use these risk scores for screening. In medicine, screening

is a process of identifying individuals in a population with a high risk of developing a dis-

ease. Medical screening methods are not meant to be diagnostic of the disease and hence

often suffer from high false positives. The three popularly used risk scores for cardiac health

are— 1) Framingham Risk Score (FRS) [Dagostino et al., 2008], 2) Reynolds Risk Score

(RRS) [Ridker et al., 2008, Ridker et al., 2007] , and 3) Pooled Cohort Risk Equations

(PCRE) [Goff et al., 2014]. Each of these risk scores take in certain characteristics of an
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individual that is known to be associated with the disease, known as risk factors, and based

on these characteristics, assign them a score as a percentage. This score is the absolute risk

for developing certain cardiac events over a specified period of time (typically the next 10

years). FRS and RRS predicts the risk of developing CHD and CVD, while PCRE assesses

the risk ASCVD. [Goff et al., 2014] specify ASCVD events as— coronary death, CHD death,

nonfatal myocardial infarction, and fatal or non fatal stroke. The original reason for the

development of RRS was to develop separate risk scores for men [Ridker et al., 2008] and

women [Ridker et al., 2007]. However, FRS was later developed to include gender as one

of the risk factors. PCRE was developed to include race as a risk factor in assessing car-

diac event risk. All these risk scores use commonly known CVD risk factors including total

cholesterol, HDL cholesterol, systolic blood pressure, and smoking.

The Heart SCORE (Strategies Concentrating On Risk Evaluation) study is an ongoing

longitudinal prospective study, initiated in 2003, which follows 2,000 middle-aged, primarily

black and white individuals from Allegheny County, Pennsylvania, USA [Bambs et al., 2011].

The main goal of the study was to improve CVD risk stratification, identify racial disparities,

and evaluate mechanisms for population differences in CVD. To this end, the study measures

potential cardiovascular risk factors including demographic (e.g. age, gender, race, etc.),

clinical (e.g. LDL cholesterol, HDL cholesterol, diabetes, smoking, etc.), metabolic, genetic

risk factors among other factors in the study participants.

In this chapter, we will use the promising methods developed in this dissertation study

to learn classifiers that can find biomarkers that discriminate individuals who are likely to

develop CVD in the near future, from those who are not likely to develop the disease. By

doing so, we align with one of the goals of the Heart SCORE study— to evaluate mechanisms

for population differences in CVD. So, from the data analysis performed in this chapter, we

aim to discover biomarkers that provide insight into the CVD mechanism as opposed to

developing a medical screening method like the cardiovascular risk scores mentioned earlier.
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5.2 MATERIALS AND METHODS

We will formulate the problem of— finding differential biomarkers between two classes of

people, 1) those who are likely to develop CVD in the near future and 2) those who are

not likely to develop CVD in the near future— as a supervised classification problem in

machine learning. Here, we will use machine learning algorithms to learn classifiers that

discriminate the two classes. Machine learning classifiers use statistical methods to learn

a mathematical function of predictive variables to help discriminate the two classes. They

learn this mathematical function from the data.

In subsection 5.2.1, we describe the dataset collected for data analysis here. We will

also describe the pre-processing done to prepare the dataset for data analysis with machine

learning classifiers. Subsection 5.2.2 outlines the experimental design used to evaluate the

different classifiers. Subsection 5.2.3, lists and describes the machine learning classifiers

that will be compared and evaluated in the experiment. In addition to the machine learning

classifiers, we will use the cardiac risk scores as a classifier to use as a baseline to estimate the

current clinical standard in use. Subsection 5.2.4 describes our implementation of enrichment

analysis, a type of functional analysis of metabolic markers that were selected by our models.

5.2.1 Heart SCORE dataset and pre-processing

There are 2000 individuals enrolled into the Heart SCORE study. For this data analysis

task, we will only consider two types of variables measured from individuals in the study

at the time of enrollment (i.e., baseline measurements). They are— clinical and metabolic

variables.

The clinical variables include— age, sex, race, patient medical history, physical exam-

ination, medications, Vertical Auto Profile test for lipids, finger stick tests, and question-

naires about the individual’s physical activities, lifestyle markers, social network, diet, sleep

quality, and various psychological questionnaires. The data has a total of 2000 individu-

als or instances, and 654 clinical variables. The metabolic variables had 1228 biochemicals

including 893 named and 335 unnamed biochemicals. These biochemicals include xenobi-
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otics, co-factors, vitamins, and metabolites from amino acid, lipid, carbohydrate, and energy

metabolism. Out of the 2000 study participants, only 1901 had their metabolic profile mea-

sured. The metabolic dataset had 2000 instances for 1901 unique individuals from the study.

A total of 99 instances in the metabolic dataset were technical replicates. We averaged the

technical replicates. The final metabolic dataset had 1901 instances and 1228 variables

(metabolites measured).

The data had to be pre-processed to prepare it for analysis using BRL. We first had to

clean the data. The original dataset had 654 clinical variables. This step included defining

discrete value bins for certain variables (e.g race), correcting typographical errors, and re-

moval of redundant and unreliable measurement variables in the dataset (in accordance to

the dataset manual). We also removed variables indicating dates as they are unlikely to help

as predictive variables. The cleaned dataset had 608 clinical variables. For this data analysis,

we assumes that the missing values were Missing Completely at Random (MCAR). Under

the MCAR assumption, when the variable with missing values have ≤ 5% of the values

missing, we can impute a single complete dataset, with minimal bias, using median/mode

value imputation. In this analysis, we dropped the variables with > 5% of its values missing.

The rest of the variables had missing values imputed with median/model imputation.

We defined the outcome variable of interest as Major Adverse Cardiac Event or MACE.

It includes any individual who suffered from either of the following events by 2018— cardiac

death, myocardial infarction (MI), acute ischemic stroke (AIS), or revascularization.

The final pre-processed dataset had 1618 candidate predictive variables including 390

clinical variables and 1228 metabolic variables. There were 1901 instances with 101 positive

cases of MACE. The remaining 1800 individuals were labeled negative for MACE.

5.2.2 Experiment design

To select the best predictive classifier, for MACE outcome, we evaluated each classifier over

5 runs of 10-fold cross-validation. We do this because as a result of the output variable being

highly skewed, models learned for each fold had high variability. We significantly reduced

the variability by running the evaluation over 5 runs of 10-folds. Finally, the model that

189



had the best predictive performance, on average, across 5 runs of 10-folds were judged as

the best predictive model.

We evaluated the classifiers using two predictive metrics— AUROC (area under ROC

curve) and AUPRG (area under precision-recall gain curve) and one calibration metric— the

Brier score.

AUROC is the probability that any positive instance from the data is scored higher than

a negative instance. This reflects the ability of the classifier to discriminate the individuals

who are likely to develop a MACE outcome (i.e., MACE = Yes) from those who are unlikely

to develop a MACE outcome (i.e., MACE = No). AUROC can be seen as a generalization

of accuracy, where we do not a priori have to decide the cut-off for the classifier score, above

which the classifier would predict the instance as class positive.

AUPRG is a reliable metric like AUROC and is particularly useful when true negatives

do not contribute to model predictive performance. This metric is especially helpful in

heavily skewed datasets, where the number of negative examples far outnumber the positive

examples. This is true for the Heart SCORE dataset and so AUPRG presents a reliable

alternative to AUROC. AUPRG can be considered as a generalization of the F-score where

we do not have to decide a priori, which of precision or recall is more important for our

classifier.

Brier score is the mean squared error between the classifier assigned score (or probability)

and the actual outcome (value 1 set for positive class and 0 for negative class).

For a more detailed explanation of these metrics, please refer section 4.2.2.

5.2.3 Predictive classifiers compared

To predict the risk of cardiovascular disease, we evaluated the predictive performance of

2 cardiovascular risk scores, 9 state-of-the-art methods in machine learning, and BRL and

EBRL classifiers described in chapter 3.

5.2.3.1 Cardiovascular risk scores as baseline classifiers The cardiovascular risk

scores are not meant to be used as classifiers. However, we modify them as classifiers to set
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a clinical baseline model to compare the machine learning methods. Specifically we will use

Framingham Risk Score (FRS) [Dagostino et al., 2008] and Pooled Cohort Risk Equations

(PCRE) [Goff et al., 2014]. We do not use Reynolds Risk Score (RRS) here as one of the

variables (hemoglobin A1c) was not measured from Heart SCORE participants at the time

of enrollment. So, we cannot reliably compute RRS.

The clinical variables needed to compute FRS are— age, sex, LDL cholesterol, HDL

cholesterol, systolic blood pressure, blood pressure medication, smoking, and diabetes.

PCRE additionally requires race to compute the risk score. Both FRS and PCRE are

examples of Cox proportional hazard models [Cox, 1972] in statistics.

Proportional hazards models are a class of survival models in statistics, which analyze the

expected time until one or more events occur (e.g. disease or death) and relate this time to

covariates that it may be associated with. Survival models have two parts— 1) the baseline

hazard function (λ0(t)), and 2) effect parameters. The baseline hazard function maps how

the risk changes based on the baseline measurements of the covariates. Proportional hazards

models assume that the covariates are multiplicatively related to the hazard. The general

form of the Cox model is given by the following equation—

λ(t|Xi) = 1− λ0(t)exp
(∑|F |

i=1 βiXi−
∑|F |

i=1 βiX̄i

)
Where, Xi are the realized values of the co-variates (e.g. age of the individual in years,

LDL cholesterol in mg/dL, etc.). βi is the estimated regression co-efficients. λ0(t) is the

baseline survival at follow-up time t, here t = 10 years. |F | is the total number of covariates

or risk factors assessed by the model. Finally, λ(t|Xi) is the CVD risk at time t.

The covariates were estimated from study participants similar to the Heart SCORE

study. For example, FRS covariates were estimated from the Framingham Heart Study that

started in 1948 with 5,209 adult subjects in Framingham, Massachusetts. The study now

has had three generations of participants.

To treat FRS and PCRE as a classifier, we take the output probability from these Cox

models. The probabilities are then converted into percentages. We choose a score ≤ 10%

is considered low-risk, 10% < score ≤ 20.0% is intermediate-risk, and score > 20.0% is

high-risk. These cut-offs are arbitrary. To evaluate risk factors as classifiers, we classify
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any individual with risk score ≥ 10.0 as a positive case, else the individual is predicted as a

negative case. By doing so, we treat these clinical CVD risk scores as classifiers.

Note that it does not matter what cut-offs we choose because none of our evaluation

metrics (AUROC, AUPRG, and Brier score) depend upon this cut-off. As a result, it does

not matter what cut-offs we choose here.

5.2.3.2 Machine learning classifiers We also compared these models with 9 state-

of-the-art classifiers that includes three interpretable classifiers namely— C4.5 [Quinlan,

2014], RIPPER [Cohen, 1995], and PART [Frank and Witten, 1998]; and 6 complex and

non-interpretable classifiers namely— multivariate logistic regression [le Cessie and van

Houwelingen, 1992], support vector machines [Platt, 1999], näıve Bayes [John and Lang-

ley, 1995], Bagged-C4.5 [Breiman, 1996], Boosted-C4.5 [Freund et al., 1996], and Random

Forests [Breiman, 2001].

C4.5, RIPPER, and PART are interpretable classifiers i.e., the statistical model is human

readable. These models offer intelligible explanations for their predictions. C4.5 is a popular

decision tree learning algorithm, where each path of the decision tree can be interpreted as

rules. RIPPER (Repeated Incremental Pruning to Produce Error Reduction) is a proposi-

tional rule learning algorithm that uses a divide-and-conquer strategy during model training.

PART is a rule learning method that combines the approaches of both C4.5 and RIPPER by

building partial decision trees, inferring rules from the trees, and using a divide-and-conquer

strategy to build the rule model.

Multivariate logistic, support vector machines, näıve Bayes, Bagged-C4.5, Boosted-C4.5,

and Random Forest are non-interpretable classifiers. They do not offer human-readable

explanations for their predictions. Bagged-C4.5, Boosted-C4.5, and Random Forest are

ensemble learning methods that learn a number of decision trees during training, and combine

predictions from them during inference. For the experiments here, we learn 100 trees per

ensemble. The näıve Bayes classifier is a simple probabilistic classifier that learns a network

with strong independence assumption between the variables and uses the Bayes theorem for

inference from the learned network. Support Vector Machines is an algorithm that learns a

hyperplane function to differentiate the classes in the problem space.
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We ran these classifiers from the Weka [Frank et al., 2016] workbench (version 3.8.1)

using the default parameters for each classifier.

We also evaluate the BRL and EBRL models as we described in section 3.1 and 3.2, re-

spectively. BRL methods are simple rule-based classifiers, so they are interpretable. EBRL

are ensemble methods that are less interpretable but offer some human understandable ex-

planations via BREVity (see section 3.2.4).

5.2.4 Metabolite set enrichment analysis (MSEA)

We wanted to perform functional analysis of the set of metabolites selected by the best

performing classifier. One way to do this is using enrichment analysis [Subramanian et al.,

2005]. Enrichment analysis is a statistical method to help identify if a class of metabolites

is over-represented in a selected set of metabolites. The metabolites can be classed by the

pathways they are involved in. This is called pathway enrichment analysis. The metabolites

can also be classed by known associated diseases with the metabolites.

While there are reliable implementations of gene set enrichment analysis, where enrich-

ment analysis is performed for a given set of genes. We found no available tool that could

perform the same for metabolites. So, we implemented this using the human metabolite

ontology from Human Metabolite Database (HMDB) [Wishart et al., 2017].

The analysis of datasets from high-throughput studies, such as the one we perform on

the Heart SCORE metabolic dataset, involves the selection of a set of metabolites that are

found to be differentially expressed for a disease outcome. These selected set of metabolites

may include signatures of an underlying cellular process. The goal of the enrichment analysis

is to retrieve a functional profile for these metabolites and help identify the cellular processes

associated with the selected meatabolites. These cellular processes in turn can provide hints

to the overall biological system involved with the disease. This can be done by comparing

the selected set of metabolites to terms in biological ontologies that map known association

between metabolites and these terms. For example— say, we want to compare to an on-

tology that shows known associations between metabolites and diseases. A disease term of

interest for our analysis is ‘myocardial infarction’, which is a type of MACE. If we happen to
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select metabolites from our data analysis that is also known to be associated to ‘myocardial

infarction’, it helps us map our finding to the biological system that is well-understood. At

the same time, it should be noted that, an absence of expected associations does not invali-

date our findings and instead can potentially indicate novel biomarkers that may need to be

validated to complete the profile of the disease.

In this analysis, we explored two types of ontologies— one containing disease terms and

another containing pathways and super-pathways. A (metabolic) pathway is an intercon-

nected sequence of chemical reactions. A super-pathway is a combination of biochemical

pathways that collectively describe the metabolism of related compounds. An example of

super-pathway is ‘Glucose metabolism’. An example of a pathway is ‘Glycolysis’, which is

a pathways under ‘Glucose metabolism’ that specifically concerns with the breakdown of

glucose by enzymes, leading to the release of pyruvic acid and energy.

We developed a statistical test to compute the association between a set of metabolites to

the terms. We compute this probability of association using a hypergeometric distribution,

which describes the probability of k successes (metabolites associated to a term), in n draws

(set of metabolites) without replacement, from a finite population of N (total metabolites)

with K possible successes (metabolites known to be associated with the term). The result

of the random draw may be a success (associated with the term) or a failure (not associated

with the term). Say, X is a random variable that performs these random draws to select

metabolites from an analysis i.e. this is the data mining algorithm that selects metabolites

associated with CVD outcome. The p-value, i.e., the probability of X finding greater than

or equal to k metabolites associated with the term (p-value) is given by Equation 5.1.

Pr(X ≥ k) =

min(n,K)∑
i=k

(
K
i

)
·
(
N−K
n−i

)(
N
n

) (5.1)

Where, N is the population size (total number of metabolites in the database), K is the

number of success (total number of metabolites in the database that maps to a keyword of

interest, like ‘myocardial infarction’), n is the number of draws (total number of metabolites

selected by the learned classifier), and k is the number of trial successes (of the metabolites

selected by the learned classifier, how many map to a keyword of interest, like ‘myocardial
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infarction’).

A small p-value indicates that the data mining methods selecting a metabolite associated

with the term did not happen by chance. On the other hand, a large p-value indicates that

the data mining method finding a metabolite associated with the term could have happen

by chance. In statistical testing, we select a threshold for the p-value, below which, finding

metabolites associated with a term is considered significant. This threshold is represented

by α. For our analysis, we set α = 0.05.

An important limitation of existing methods in literature to perform our metabolite set

enrichment analysis is not being able to define the metabolites present in the population

N . In the existing methods, N includes a set of all known metabolites from the database.

However, Heart SCORE project metabolite dataset only includes 1228 metabolites. It should

be noted that these 1228 were not chosen in any informed way (for e.g. metabolites that

describe cellular pathways for functions related to the cardiovascular system) and instead,

were chosen based on the metabolites available from the Metabolon’s untargeted Precision

Metabolomics platform and were therefore random. So, we re-constructed the ontology from

the Human Metabolite Database [Wishart et al., 2017]. This enabled us to constrain N from

a list of all known metabolites to only the 1228 metabolites studied in Heart SCORE. We

were now able to compute the p-values both with and without constraining the population

set N .

5.3 RESULTS

We now look at the results from our experiments. Subsection 5.3.1 shows the AUROC,

AUPRG, and Brier scores achieved by each classifier that were evaluated. Subsection 5.3.2

lists the ranked list of the most important markers for classifying according to the best

performing EBRL classifier. Subsection 5.3.3 displays the best performing BRL and EBRL

classifier. Finally, 5.3.4 shows the results from the metabolite set enrichment analysis.
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5.3.1 Classifier predictive performance comparison

In these experiments, the best performing BRL classifier was using the decision tree repre-

sentation i.e., BRL.DT. The best performing EBRL classifier was Bagging with BRL.G i.e.,

Bagged-BRL.G-LC.

The AUROCs achieved by each classifier is compared in Figure 27.

Figure 27: Average AUROC (higher is better) achieved by classifiers over 5 runs of 10-fold cross-
validation.

The AUROCs of clinical standard baselines FRS (0.7637) and PCRE (0.7681) were much

better than the machine learning models learned from the Heart SCORE dataset. The

AUROC of BRL.DT (0.6442) was much better than other interpretable classifiers— C4.5

(0.5228), RIPPER (0.5206), and PART (0.5736). The ensemble classifiers Bagged-BRL.G-

LC (0.7343), Random Forest (0.7403) and näıve Bayes (0.7303) perform similarly. Bagged-

C4.5 (0.7089) and Boosted-C4.5 (0.7167) were close behind. Logistic (0.6819) and SVM

(0.4990) models perform poorly.

The AUPRGs achieved by each classifier is shown in Figure 28. Bagged-BRL.G-LC

(0.7903) achieves a much better AUPRG than other methods. Only BRL.DT comes close

(0.7495). Clinical standard baselines FRS (0.6450) and PCRE (0.6581) perform worse. Other
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Figure 28: Average AUPRG (higher is better) achieved by classifiers over 5 runs of 10-fold cross-
validation.

ensembles also don’t do so well— Random Forest (0.6471), näıve Bayes (0.5828), Bagged-

C4.5 (0.6916), Boosted-C4.5 (0.6487), Logistic (0.6256), and SVM (−0.0226). Note that

AUPRGs can take negative values [Flach and Kull, 2015].

The Brier scores are shown in Figure 29. The BRL-based classifiers performed the best on

calibration— BRL.DT(0.0481) and Bagged-BRL.G-LC (0.0472). The näıve Bayes (0.1488)

does poorly as is notoriously known. Others perform more or less similarly— FRS (0.0622),

PCRE (0.0532), C4.5 (0.0555), RIPPER (0.0568), PART (0.0790), Logistic (0.0584), SVM

(0.0584), Boosted-C4.5 (0.0590), Bagged-C4.5 (0.0502), and Random Forest (0.0486).

5.3.2 Variable importance

Bagged-BRL.G-LC classifier performs competitively on AUROC compared to other machine

learning methods. It does exceedingly well on AUPRG. It also does well on calibration

using Brier score. Table 40 shows the ranked list of the most important variables used for

prediction by Bagged-BRL.G-LC. The detailed explanation of how we compute this is shown
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Figure 29: Average Brier score (lower is better) achieved by classifiers over 5 runs of 10-fold cross-
validation.

in section 3.2.3. An intuitive way to think of the variable importance score is the fraction

of 100 BRL models (that were combined into the ensemble) that contains the particular

variable.

The variable for history of percutaneous coronary intervention is overwhelmingly the

most important predictive variable. This makes intuitive sense since those former patients

must already have conditions for poor heart health. A HDL cholesterol measurement from

the Vertical Auto Profile (VAP) lipid test also appears to be important. Metabolites—

15506 (choline), 35137 (N2,N2-dimethylguanosine), (unknown biochemical), and 48351 (N1-

methylinosine) all achieve variable importance of > 0.1.

5.3.3 Visualizing Bagged-BRL-L with BREVity

Figure 30 shows the rule model from our experiments. We use the same 0.1 cut-off for BRL

classifiers as we did for FRS and PCRE. For example, rule 2 in BRL.DT states that if the

individual has not undergone percutaneous coronary intervention but their HDL2A is less
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Rank Variable Score Rank Variable Score Rank Variable Score

1 History of PCI 0.75 21 Sex 0.04 41 Oral hypoglycemic(48 hrs) 0.01

2 HDL subfraction 2A 0.32 22 sphingomyelin(d17:1/14:0,d16:1/15:0)* 0.04 42 X - 24686 0.01

3 choline 0.2 23 N-acetylisoleucine 0.04 43 X - 24422 0.01

4 N2,N2-dimethylguanosine 0.18 24 adenine 0.03 44 C-glycosyltryptophan 0.01

5 X - 15461 0.14 25 sphingomyelin (d18:2/14:0, d18:1/14:1)* 0.03 45 X - 12026 0.01

6 N1-methylinosine 0.11 26 2-aminoheptanoate 0.03 46 X - 12117 0.01

7 Age 0.08 27 metformin 0.03 47 N-acetylmethionine 0.01

8 Finger-stick HDL 0.07 28 orotidine 0.03 48 N-acetylleucine 0.01

9 N1-methylinosine 0.07 29 1-ribosyl-imidazoleacetate* 0.02 49 β-hydroxyisovalerate 0.01

10 5α-androstan-3β,17β-diol disulfate 0.07 30 octadecanedioylcarnitine(C18-DC)* 0.02

11 hypotaurine 0.06 31 4-hydroxyphenylacetylglutamine 0.02

12 N-acetylglutamine 0.06 32 X - 24334 0.02

13 salicyluric glucuronide* 0.06 33 X - 15497 0.02

14 Social network Q5 0.05 34 isovalerylcarnitine (C5) 0.02

15 X - 24686 0.05 35 History of abnormal cath 0.01

16 X - 11564 0.05 36 Age category 0.01

17 pyroglutamine* 0.05 37 Time to peak LDL 0.01

18 formiminoglutamate 0.05 38 VAP HDL 0.01

19 N-acetylphenylalanine 0.05 39 HDL subfraction 3A 0.01

20 N-acetylneuraminate 0.05 40 HDL subfraction 3 0.01

Table 40: Ranked list of the most important variable for prediction using Bagged-BRL.G-LC
classifier.

Figure 30: Set of rules learned by BRL.DT algorithm.

than 10.25 from the VAP lipid test and their choline levels are above 1.32, then there is still

an increased risk of developing CVD disease. TP = 25 affirms that 25 individuals in the

Heart SCORE dataset had agreed to both the left and right hand side of the rule. FP =

110, states that 110 individuals with the condition described by the left hand side, did not

develop MACE outcome. Confidence is the score similar to FRS about the probability of

the individual described with this rule will develop the condition described in the right-hand

side of the rule.
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Figure 31 displays a portion of the visualization generated by the BREVity tool. In

Figure 31: Classifier Bagged-BRL.G-LC visualized using BREVity.

this example, we expanded the node for patients who had undergone percutaneous coronary

intervention. This node has an edge value of 0.75, which means that this pattern of having

had history percutaneous coronary intervention appears to have a 75% say by the prediction

made by Bagged-BRL.G-LC. If we go down the tree, we see the VAP test for HDL2A being

less than 10.25. This edge has a weight of 0.21. This means that the combined pattern of

having had undergone percutaneous coronary intervention and have a VAP test for HDL2A

less than 10.25, together have a 21% say in the prediction made by Bagged-BRL.G-LC.

While the model is clearly more complex than the BRL model. However, the model is

still interpretable since it offers still rule-like explanations for its prediction.

5.3.4 Metabolite set enrichment analysis results

We performed metabolite set enrichment analysis as we described in section 5.2.4. These

were performed on the metabolites picked by Bagged-BRL.G-LC. We compared it against
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the ontology of HMDB.

The top 10 most enriched biochemical pathways were as follows—

1. Histidine Metabolism (p-value = 0.0887)

2. Taurine and hypotaurine metabolism (p-value = 0.1128)

3. Betaine Metabolism (p-value = 0.2132)

4. Phospholipid Biosynthesis (p-value = 0.2441)

5. Amino/Sugar Metabolism (p-value = 0.2441)

6. Sarcosine Oncometabolite Pathway (p-value = 0.3024)

7. Azathioprine Action Pathway (p-value = 0.4521)

8. Mercaptopurine Action Pathway (p-value = 0.4521)

9. Purine Metabolism (p-value = 0.4295)

10. Thioguanine Action Pathway (p-value = 0.4521)

None of the associated biochemical pathway were found to be significant.

The top 10 most enriched known diseases withe metabolites chosen by Bagged-BRL.G-

LC were as follows—

1. Aspartylglucosaminuria (p-value = 0.0391)

2. Cholangiocarcinoma (p-value = 0.0391)

3. Mastocytosis (p-value = 0.0391)

4. Cervical cancer (p-value = 0.0391)

5. Ovarian cancer (p-value = 0.0391)

6. Colorectal cancer (p-value = 0.0391)

7. Stomach cancer (p-value = 0.0767)

8. 3-methyl-crotonyl-glycinuria (p-value = 0.0767)

9. Spina bifida (p-value = 0.0767)

10. 3-methylglutaconic aciduria (p-value = 0.0767)

Again none of the associated diseases stand out. One possible explanation for the under-

whelming results from enrichment analysis is the lack of studies in metabolomics, in general.
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5.4 BRAID CONCEPT FOR CVD RISK

This section describes the architecture of the concept framework of Bayesian Rules for Ac-

tionable Informed Decisions (BRAID) to deploy the BRL models, learned in this chapter, as

an intelligent clinical decision support system for clinical practice.

The model building for this project was conducted on a cloud, i.e., a remote server. The

data repository and case bases from the example here was from the baseline clinical and

metabolic factor measurements from the Heart SCORE study patients. From the Bayesian

Rule Learning System, only two algorithms were utilized— Bayesian Rule Learning and

Ensemble Bayesian Rule Learning. There are future opportunities to perhaps incorporate

prior domain knowledge in CVD into BRLp. Clinical utility can be defined and we can run

BRL-KD to find biomarkers that could translate better in clinical practice. These two can

be done in consultation with a domain expert. As a result, I do not explore it further in this

dissertation.

The learned BRL and EBRL rules from the best performing classifiers are then stored in

a Knowledge base. Here, we convert it into a JSON-formatted object file. This is sent into

BREVity tool for the expert to visualize, as we saw in the previous section. The next step is

validation of the rules, which also involves the domain expert. The physician may test the

BRL rules either on prospective studies or retrospective studies from historical studies that

measured these variables. If the rules are validated, they can be authored into Ensemble

of Rules Integrated Expert (ERIE). This section, shown in Figure 32 as containing two

functions (represented as boxes), allows the domain expert to accept, edit, and validate the

rules.

Finally, a physician queries a patient record to BRAID. The BRAID generates probabili-

ties of either a positive MACE outcome or a negative one. These probabilities for both BRL

and EBRL is generated from posterior probabilities for the rules that fired. These probabil-

ities are the computed risk. If BRL is used, BRAID supports the computed risk with the

rule that fired, as the explanation for its prediction. If EBRL is used, rules fired from each

of the models in the ensemble are combined into a BREVity tree to offer human-readable

explanation for the computed risk.
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Figure 32: Bayesian Rules for Actionable Informed Decisions (BRAID): An overview of the

conceptual cloud-based intelligent clinical decision support system for computing cardiovas-

cular disease risk.
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This concept framework was developed inspired by the flexible designs of the Leeds

Abdominal Pain System and MYCIN clinical decision support systems. BRAID offers a

visionary, intelligent, data-driven approach to generating these clinical decision support sys-

tems.

5.5 CONCLUSION

For modeling the Heart SCORE dataset, the BRL model achieved better predictive perfor-

mance, in terms of AUROC and AUPRG, and better calibration performance, in terms of

Brier score, when compared to other state-of-the-art interpretable classifiers. EBRL per-

formed similar or better than state-of-the-art methods in machine learning in terms of AU-

ROC, but was better than them on AUPRG and Brier score. This experiment successfully

demonstrates the efficiency of the models developed in this dissertation in biomarker discov-

ery tasks on high-dimensional datasets that contain samples from multifactorial datasets.

With respect to the clinical baselines of FRS and PCRE, both these models outperform

EBRL on AUROC but EBRL outperforms FRS and PCRE on AUPRG and Brier score.

This result indicates EBRL’s better performance on precision and recall when compared to

FRS and PCRE. This result is not surprising because FRS and PCRE are screening methods

that emphasize on recall more than precision.

Also, note that the coefficients learned to compute FRS were learned over three gener-

ations of study participants in Framingham, Massachusetts. The study dates back to 1948

with 5,209 adult participants [Mahmood et al., 2014]. Compared to that our machine learn-

ing algorithms only have had access to 2000 participants enrolled in 2003. So, data-driven

machine learning classifiers compared in this experiment are at a disadvantage over the

number of instances available to learn a statistical model.
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6.0 CONCLUSION

In this dissertation, I formulated the problem of discovering both statistically significant

and clinically relevant biomarkers, from complex omic datasets, as a knowledge discovery

problem. I use the definition for knowledge discovery in databases (KDD) from [Fayyad et al.,

1996b] i.e., “a non-trivial process of the extraction of valid, novel, potentially useful, and

ultimately understandable patterns in data”. To help solve the KDD problem, I developed

a set of BRL algorithms, namely— BRL (see Section 3.1), EBRL (see Section 3.2), BRLp

(see Section 3.3), and BRL-KD (see Section 3.4). These algorithms are included in the

Bayesian Rules for Actionable Informed Decisions (BRAID) system. Each BRL algorithm

in the BRAID system caters to a specific aspect of the KDD definition and, collectively,

these algorithms help solve the KDD problem. The motivation behind the design of each

algorithm and the observations made during its evaluation are summarized in the following

paragraphs.

BRL is a rule learning algorithm that learns a set of rule patterns. Rule patterns are

considered understandable because they are in form of explicit propositional logic state-

ments that are intelligible to humans. The version of BRL, at the inception this dissertation

study, generated a large number of rules. Rule models with a large number of rules can be

challenging to read and comprehend. To improve the understandability of BRL rule models,

I studied three representations to better capture regularities in the data. These regularities

are called context-specific independences. The three representations were studied— global

complete tree (BRL.G), decision tree (BRL.DT), and decision graph (BRL.DG). BRL.G

was found to have significantly better predictive performance and required significantly fewer

variables than other popular rule learning algorithms like C4.5, PART, and RIPPER (see

Section 4.3.1). However, BRL.G required significantly more rules than other rule learning
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methods. BRL.DT was found to be an effective alternative to BRL.G by achieving similar

predictive performance as BRL.G and required much fewer rules, being able to capture some

of these context-specific independencies (see Section 4.3.2). BRL.DG required the fewest

number of rules by being able to capture all possible context-specific independences. How-

ever, to achieve comparable predictive and calibration performance as BRL.G and BRL.DT,

BRL.DG required a more exhaustive search method (see Section 4.3.3). While BRL per-

formed better than other traditional, rule-based, supervised learning methods, they were

outperformed by supervised methods that picked a large number of variables for the predic-

tion task (see Section 4.3.4).

Two methods developed in this dissertation helped obtain more valid rule models,

namely— EBRL (Ensemble Bayesian Rule Learning) and BRLp (BRL with informative

priors).

EBRL is a set of ensemble BRL methods that overcomes the data fragmentation issue

of BRL to enable it to model multifactorial diseases, wherein many hundreds of biomarkers

may collectively contribute to the disease physiology, each with a small effect. Two ensemble

generation strategies were studied— Bagging (Bagged-BRL) and Boosting (Boosted-BRL).

Three model combination strategies were studied— Linear Combination (BRL-LC), Bayesian

Model Averaging (BRL-BMA), and Bayesian Model Combination (BRL-BMC). In general,

model generation using Bagging (see Sections 4.4.1, 4.4.2) was found to perform better than

Boosting (see Sections 4.4.3, 4.4.4) on gene-expression datasets. Bagged-BRL-LC (or classic

Bagging of BRL classifiers) was found to achieve significantly higher predictive performance

than BRL base classifier, C4.5, Bagged-C4.5, and Boosted-C4.5. Bagged-BRL-BMA also

performed better than BRL alone (see Sections 4.4.1, 4.4.2). The results indicate the ensem-

ble methods help improve model predictive performance and that BRL is a better choice for

a base classifier than C4.5 decision trees for modeling the studied gene-expression datasets.

However, both Bagged-BRL-LC and Bagged-BRL-BMC outperformed Bagged-BRL-BMA

(see Section 4.4.2). Between Bagged-BRL-LC and Bagged-BRL-BMC, Bagged-BRL-BMC

was the more reliable model by being able to account for the uncertainty in the correctness

of model combination (see Section 4.4.5). While EBRL models achieve high predictive per-

formance, they are much harder to interpret (i.e., less understandable). To help improve
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the understandablity of the EBRL models, two methods were designed— 1) to compute

relative variable importance in the EBRL model (see Section 3.2.3), and 2) a novel ensemble

BRL model visualization tool called Bayesian Rule Ensemble Visualizing tool (BREVity)

to infer variable relationships in the EBRL model (see Sections 3.2.4, 4.4.7). Finally, EBRL

methods were shown to outperform state-of-the-art, traditional, supervised learning methods,

on average, in terms of its predictive performance (see Section 4.4.6). In other words, pat-

terns learned by EBRL more statistically significant than the traditional supervised learning

methods.

BRLp allows user to incorporate prior domain knowledge into the BRL model learn-

ing process. I demonstrated its use in the analysis of a real-world lung cancer prognostic

dataset, where incorporation of an informative prior (EGFR gene associated with lung can-

cer outcome) led to an improvement in model predictive performance (see Section 4.5.2.2).

This showed that using BRLp, we can learn models with more validity when reliable prior

knowledge about the problem is available.

Finally, BRL-KD (BRL for knowledge discovery) is a novel method designed to help

learn novel and useful patterns that are clinically more relevant. BRL-KD can incorporate

a clinical utility function, like cost-effectiveness to help learn models that not only optimize

predictive performance but also the utility function. I demonstrated its application in the

analysis of a real-world cardiovascular disease diagnostic dataset. BRL-KD allowed the user

to obtain a set of BRL models, each with a different trade-off between cost and predictive

performance (see Section 4.6.2). The user now has the option to choose an acceptable trade-

off while being able to observe models that are clinically more useful. To my knowledge,

there exists no supervised learning method other than BRL-KD that enables the user to find

clinically more relevant classifiers.

In summary, I re-visit the thesis statement (see Section 1.2.1) and conclude that— the

BRAID system of algorithms, including BRL, EBRL, BRLp, and BRL-KD together help

learn classifiers for biomarker discovery that are, on average, statistically more significant

compared to traditional supervised learning methods, while also being able to find clinically

more relevant classifiers.
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6.1 FUTURE WORK

BRL.DG is capable of representing all context-specific independencies. Expanding the

search algorithm’s scope (by extending the greedy best-first search to beam search), allowed

BRL.DG to obtain comparable predictive performance to BRL.G and BRL.DT. BRL.DG

also had the best calibration performance. These results motivate more studies on BRL.DG

by further expanding the search space using non-incremental search methods such as particle

swarm optimization (e.g. Artificial bee Colony optimization) [Ji et al., 2017].

BRL depends upon discretization methods for pre-processing continuous variables before

being able to learn from them. This limits BRL to the capabilities of the discretization

method. Most biomarker measurements are continuous-valued. Future developments in BRL

should enable it to learn from both discrete- and continuous-valued data. There are many

scoring methods available to learn Bayesian networks from such mixed data types [Bøttcher,

2004]. It would be worth exploring if using scoring functions for mixed data types outperform

the scoring function that only takes in discrete valued input after having gone through

discretization.

In this dissertation, I restricted the Bayesian network to only the outcome variable and

its parents. In a Bayesian network, the value of the outcome variable does not only depend

upon the parents, but the whole Markov Blanket of the outcome variable. A Markov Blanket

(MB) of any target node in a Bayesian network (BN), is defined by Pearl [Pearl, 2014], as the

set of nodes including the target node’s parents, children, and spouses (i.e., other parents

of their common children). An interesting property of the MB is that, collectively, given

the values of the MB of the target node in a BN, all other nodes are independent of the

target node. In other words, the conditional probability of the target node, given values of

all other nodes in the BN is equal to the conditional probability of the target node given

the MB alone. Furthermore, the minimal MB or the Markov boundary is defined as the

smallest set of variables in the BN that has the MB property. For the purpose of this

section, when we refer to MB, we mean the minimal MB. MBs have also been proven useful

in practice as a feature selector [Koller and Sahami, 1996, Tsamardinos et al., 2003], for

learning BNs [Margaritis and Thrun, 2000], and for discovering causal relationships [Mani
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and Cooper, 2004]. One possible way to improve the MB search would be to try improving

the calibration of the probability of each edge in the learned BN [Jabbari et al., 2017].

For the development of EBRL, we mainly explored bagging and boosting procedures.

However, more recently, ensemble methods using random forest and gradient boosting [Chen

et al., 2015], have seen immense success. Experiments can be conducted to test if extending

these methods to EBRL can lead to further improvements in performance.

Many biomedical datasets contain variables with missing values. We encountered one

such dataset from the case study in the previous chapter. Currently, there is no method

available in BRL to handle missing data. In the case study, we performed a simple approach

to handle missing data by median/mode imputation. We did this by making an assumption

that each variable was missing completely at random (MCAR). We performed the median/-

mode imputation for the missing values resulting in a single imputed dataset. To keep these

assumptions, we had to drop any variable with more than 5% missing values. However,

some of the dropped variables are identified as interesting and potentially crucial by our

experts. In cases of variables with >5% missing values it is recommended to either perform

multiple imputations using methods like EM algorithm, Multiple Imputation (MI), or Full-

Information Maximum Likelihood (FIML) [Graham, 2009]. Each of these methods result in

multiple imputed datasets. There is a need for algorithms that can combine evidence from

such set of datasets and return a single learned classifier.

The work in this dissertation provides a framework using a machine learning algorithm

to perform knowledge discovery in databases. This work will hopefully lead to many appli-

cations, specifically in the improvement of biomarker discovery projects that lead to findings

that are better primed for clinical use. All the methods developed herein are made open-

source under the MIT license and is available at (https://github.com/jeya-pitt/Bayesian-

Rule-Learning).
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7.0 APPENDIX A

7.1 NOTATIONS

X, Y , BS, Θ Random variables in the problem domain. X is specifically used to indicate an

independent predictor variable. Y is used to indicate the dependent outcome

variable. Variable BS represents a Bayesian network structure. Θ represents

a set of parameters (conditional probability tables for a Bayesian network).

x, y, θ the state or the value assignment for the variables.

XXX, YYY , ΘΘΘ A set of random variables.

xxx, yyy, θθθ A set of variable-value assignments or configurations.

p(X = x) or p(x) Probability that the variable X takes the value x

p(A|B) Conditional probability of states of A given the state of B.

Xi i-th variable in a domain.

Xi=1:n A set of n variables in the domain.

D Dataset, a collection of examples and variable-values from the domain.

m Total number os examples in the dataset.

Xj j-th example/instance in a domain.

Γ(x) Gamma function, equal to (x− 1)!.

α Hyperparameter in the BDeu score called prior equivalent sample size.

rY Number of states taken by variable Y .

Π(Y ) Parents of Y in the Bayesian network structure.

qY Configuration of variable-values of the parents of Y in the Bayesian network

structure.
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Njk Number of examples in D with j-th parent configuration while the outcome

variable takes the k-th value.

ŷ Predicted value of y according to a predictor.

E[X] Expectation of X. Equal to
∫
x
x · p(x) · dx.

arg maxx∈X f(x) Returns the value of x that maximizes function f(x).

1condition Indicator function that returns 1 if the condition is true, or 0 otherwise.

Ψ Clinical utility.

λ Hyperparameter to control the influence of prior (in BRLp) or clinical utility

function (in BRL-KD).
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8.0 APPENDIX B: EXTRACTING AND PRE-PROCESSING GENE

EXPRESSION DATASETS

This appendix shows the R code used to extract and process the gene-expression data from

GEO data repository, using GEO ID GSE10072 as an example. Similarly all 25 gene expres-

sion datasets were prepared for experiments conducted in this dissertation.

1. Data extraction: R code to extract gene expression data using GEOquery.

GEO data extraction

l ibrary (GEOquery)

l ibrary ( Biobase )

geo id = ’GSE10072 ’

data <− getGEO( geo id , GSEMatrix=TRUE)

# Extrac t the gene e x p r e s s i o n data

data . exp <− as . data . frame ( exprs (data [ [ 1 ] ] ) )

2. Annoation: R code to annotate the extracted gene expression data using GE-

Ometadb. This code links probe IDs from the microarray to the gene symbols they map

to.

GEO data annotation

l ibrary (GEOmetadb)

s q l f i l e = getSQLiteF i l e ( )
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l ibrary (DBI)

con = dbConnect ( RSQLite : : SQLite ( ) , s q l f i l e )

# Function to g e t the name o f the annotat ion database

# f o r the microarray t e c h n o l o g y

get annotat ion db <− function ( gpl id ) {

query = paste ( ” s e l e c t gpl , t i t l e , b ioc package

from gpl

where gpl =’” , gp l id , ” ’ ” , sep=”” )

r e s = dbGetQuery ( con , query )

return ( r e s $bioc package )

}

# Get the name o f the annotat ion database to use

annotat ion db = get annotat ion db( ”GPL96” ) # r e t u r n s ”hgu133a . db”

# Probe names in the microarray

probe i d s = rownames(data . exp)

# Match probe names wi th gene symbols they map .

gene symbols = unlist (

mget ( probe ids , hgu133aSYMBOL , i f no t f ound=NA) )

# Merge columns f o r probe IDs and gene symbols

# i n t o the gene e x p r e s s i o n d a t a s e t

annotat ion = as . data . frame (cbind ( probe ids , gene symbols ) )

data . exp$probe i d s <− rownames(data . exp)

data . annotated = merge(data . exp , annotated , by . x=” probe i d s ” ,

by . y=” probe i d s ” )
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3. IQR filtering: Continuing with the annotation, several probes can map to the same

gene. For the problem of identifying differentially expressed genes, only one representation

in each gene is desired. In this code snippet IQR filtering is done to identify which of the

multiple probes mapping to the same gene is used to represent that gene.

IQR filtering

# S o r t i n g by gene symbols

data . annotated . so r t ed = data . annotated [

order (data . annotated$gene symbols ) , ]

# IQR f i l t e r i n g

l ogdata = data . annotated . so r t ed [ , ! (colnames (data . annotated . so r t ed )

%in% c ( ” probe i d s ” , ” gene symbols ” ) ) ]

unlogdata = 2ˆ logdata

# C a l c u l a t i n g IQR f o r a l l probes us ing unlogged data

i q r <− apply ( unlogdata , 1 ,IQR)

data . i q r = cbind (data . annotated . so r t ed [ ,

(colnames (data . annotated . so r t ed )

%in% c ( ” probe i d s ” , ” gene symbols ” ) ) ] ,

iq r ,

unlogdata )

# Keep probe wi th h i g h e s t i q r in case o f m u l t i p l e probes

names( i q r ) = data . annotated . so r t ed$probe i d s

i q r s = sp l i t . default ( iqr , data . annotated . so r t ed$gene symbols )

maxes = sapply ( i q r s , function ( x ) names(which .max( x ) ) )

data . s i n g l e p r o b e = data . i q r [ data . i q r $probe i d s %in% maxes ,

! (colnames (data . i q r ) == ” probe i d s ” ) ]
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9.0 APPENDIX C: ADDITIONAL RESULTS FROM EXPERIMENT 1

In this appendix, we show some additional results from BRL runs from experiment 1 in sec-

tion 4.3. These results were not necessary to test the hypotheses evaluated by the experiment

and so were moved to this supplement merely as a reference for the curious reader.

9.1 EXPERIMENT 1A: BRL.G COMPARED TO STATE-OF-THE-ART

INTERPRETABLE CLASSIFIERS

Classification performances achieved by the compared classifiers across the 25 datasets are

shown in Tables— 41 (Accuracy), 42 (Precision), 43 (Recall), and 44 (F1 score). In these

results, BRL.G used the arbitrary 0.5 threshold to predict the positive class. These metrics

were largely similar for all the methods compared.

9.2 EXPERIMENT 1B: COMPARING BRL.G, BRL.DT, AND BRL.DG

Classification performances achieved by the compared classifiers across the 25 datasets are

shown in Tables— 45 (Accuracy), 46 (Precision), 47 (Recall), and 48 (F1 score). In these

results, all of BRL.G, BRL.DT, and BRL.DG use the arbitrary 0.5 threshold to predict the

positive class. These metrics were largely similar for all the methods compared.
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Data C4.5 RIPPER PART BRL.G

GSE66360 70.71 73.74 70.71 77.78

GSE62646 92.86 92.86 92.86 92.86

GSE41861 74.64 74.64 74.64 71.01

GSE20881 74.42 81.40 72.67 76.74

GSE3365 81.10 83.46 81.10 90.55

GSE16879 97.26 94.52 97.26 97.26

GSE15245 67.69 66.15 69.23 73.85

GSE6613 58.10 59.05 55.24 47.62

GSE20295 62.37 53.76 64.52 55.91

GSE30999 94.71 96.47 94.12 93.53

GSE55447 69.23 65.38 65.38 71.15

GSE19429 85.50 91.00 86.50 91.50

GSE9006 79.22 77.92 81.82 75.32

GSE48350 100.00 100.00 100.00 100.00

GSE5281 80.75 83.23 81.37 80.75

GSE35978 57.05 64.26 63.93 60.33

GSE53987 64.39 62.44 59.02 66.34

GSE12288 52.25 59.01 51.80 59.01

GSE15852 76.74 79.07 79.07 81.40

GSE42568 97.52 95.87 97.52 91.74

GSE29431 96.97 95.45 96.97 96.97

GSE18520 98.41 98.41 98.41 98.41

GSE19804 88.33 90.00 88.33 88.33

GSE10072 94.39 92.52 94.39 94.39

GSE68571 98.96 98.96 98.96 98.96

Average ± SEM 80.54± 3.01 81.18± 2.95 80.63± 3.03 81.27± 3.04

Table 41: Experiment 1a: Accuracy for each dataset, averaged over 10-fold cross-validation, using
state-of-the-art rule learning classifiers compared to BRL. Classifier with higher values of accuracies
are better performing for a given dataset. The last row calculates the average for each classifiers
across 25 datasets and also reports the standard error of mean.
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Data C4.5 RIPPER PART BRL.G

GSE66360 0.6800 0.7660 0.6800 0.7712

GSE62646 0.9500 0.9500 0.9500 0.9500

GSE41861 0.8115 0.8320 0.8115 0.7834

GSE20881 0.7750 0.8472 0.7626 0.8072

GSE3365 0.8728 0.8853 0.8678 0.9019

GSE16879 1.0000 0.9607 1.0000 1.0000

GSE15245 0.8317 0.7707 0.8450 0.8283

GSE6613 0.5627 0.5848 0.5483 0.4633

GSE20295 0.6267 0.4617 0.6133 0.4362

GSE30999 0.9239 0.9650 0.9139 0.9046

GSE55447 0.8417 0.8067 0.8217 0.8167

GSE19429 0.9334 0.9473 0.9340 0.9514

GSE9006 0.8719 0.8648 0.8719 0.7964

GSE48350 1.0000 1.0000 1.0000 1.0000

GSE5281 0.8766 0.8696 0.8955 0.8262

GSE35978 0.6852 0.7469 0.7398 0.7130

GSE53987 0.7502 0.7356 0.7247 0.7268

GSE12288 0.5189 0.5815 0.4975 0.6031

GSE15852 0.7931 0.8267 0.8300 0.8131

GSE42568 0.9826 0.9644 0.9826 0.9568

GSE29431 0.9857 0.9857 0.9857 0.9857

GSE18520 1.0000 1.0000 1.0000 1.0000

GSE19804 0.8905 0.9264 0.8905 0.8702

GSE10072 0.9514 0.9490 0.9514 0.9514

GSE68571 1.0000 1.0000 1.0000 1.0000

Average ± SEM 0.8446± 0.0283 0.8491± 0.0287 0.8447± 0.0289 0.8343± 0.0312

Table 42: Experiment 1a: Precision values for each dataset, averaged over 10-fold cross-validation,
using state-of-the-art rule learning classifiers compared to BRL. Classifier with higher values of
precision are better performing for a given dataset. The last row calculates the average for each
classifiers across 25 datasets and also reports the standard error of mean.
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Data C4.5 RIPPER PART BRL.G

GSE66360 0.7800 0.7550 0.7800 0.7950

GSE62646 0.9667 0.9667 0.9667 0.9667

GSE41861 0.8033 0.7811 0.8033 0.7911

GSE20881 0.7967 0.8378 0.7667 0.8278

GSE3365 0.8306 0.8722 0.8431 0.9625

GSE16879 0.9690 0.9833 0.9690 0.9690

GSE15245 0.7467 0.8000 0.7467 0.8400

GSE6613 0.6600 0.6400 0.5000 0.4600

GSE20295 0.6250 0.4500 0.6750 0.4750

GSE30999 0.9750 0.9639 0.9750 0.9750

GSE55447 0.7250 0.7650 0.7050 0.8350

GSE19429 0.9064 0.9561 0.9175 0.9558

GSE9006 0.8500 0.8300 0.8900 0.9067

GSE48350 1.0000 1.0000 1.0000 1.0000

GSE5281 0.7778 0.8167 0.7667 0.8514

GSE35978 0.6690 0.7067 0.7224 0.6719

GSE53987 0.7667 0.7600 0.6933 0.8400

GSE12288 0.6455 0.6545 0.5636 0.5182

GSE15852 0.7350 0.7700 0.7400 0.8300

GSE42568 0.9909 0.9909 0.9909 0.9518

GSE29431 0.9833 0.9633 0.9833 0.9833

GSE18520 0.9800 0.9800 0.9800 0.9800

GSE19804 0.9000 0.8833 0.9000 0.9333

GSE10072 0.9500 0.9167 0.9500 0.9500

GSE68571 0.9875 0.9875 0.9875 0.9875

Average ± SEM 0.8408± 0.0250 0.8412± 0.0275 0.8326± 0.0286 0.8503± 0.0320

Table 43: Experiment 1a: Recall values for each dataset, averaged over 10-fold cross-validation,
using state-of-the-art rule learning classifiers compared to BRL. Classifier with higher values of
recall are better performing for a given dataset. The last row calculates the average for each
classifiers across 25 datasets and also reports the standard error of mean.
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Data C4.5 RIPPER PART BRL.G

GSE66360 0.7238 0.7400 0.7238 0.7800

GSE62646 0.9474 0.9474 0.9474 0.9474

GSE41861 0.8066 0.8023 0.8066 0.7826

GSE20881 0.7822 0.8384 0.7638 0.8039

GSE3365 0.8554 0.8757 0.8571 0.9318

GSE16879 0.9833 0.9677 0.9833 0.9833

GSE15245 0.7835 0.7885 0.7917 0.8350

GSE6613 0.6000 0.5981 0.5155 0.4554

GSE20295 0.6024 0.4675 0.6353 0.4810

GSE30999 0.9486 0.9647 0.9432 0.9379

GSE55447 0.7949 0.7805 0.7692 0.8235

GSE19429 0.9197 0.9511 0.9256 0.9537

GSE9006 0.8491 0.8381 0.8704 0.8348

GSE48350 1.0000 1.0000 1.0000 1.0000

GSE5281 0.8144 0.8402 0.8171 0.8268

GSE35978 0.6765 0.7268 0.7291 0.6952

GSE53987 0.7591 0.7475 0.7123 0.7850

GSE12288 0.5726 0.6128 0.5368 0.5561

GSE15852 0.7619 0.7857 0.7805 0.8182

GSE42568 0.9856 0.9763 0.9856 0.9519

GSE29431 0.9815 0.9720 0.9815 0.9815

GSE18520 0.9905 0.9905 0.9905 0.9905

GSE19804 0.8852 0.8983 0.8852 0.8889

GSE10072 0.9483 0.9298 0.9483 0.9483

GSE68571 0.9942 0.9942 0.9942 0.9942

Average ± SEM 0.8387± 0.0267 0.8414± 0.0279 0.8358± 0.0282 0.8395± 0.0309

Table 44: Experiment 1a: F-measure values for each dataset, averaged over 10-fold cross-validation,
using state-of-the-art rule learning classifiers compared to BRL. Classifier with higher values of F-
measure are better performing for a given dataset. The last row calculates the average for each
classifiers across 25 datasets and also reports the standard error of mean.
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Data BRL.G BRL.DT BRL.DG

GSE66360 77.78 81.82 81.82

GSE62646 92.86 92.86 92.86

GSE41861 71.01 73.19 73.19

GSE20881 76.74 79.07 77.33

GSE3365 90.55 81.89 84.25

GSE16879 97.26 97.26 97.26

GSE15245 73.85 80.00 80.00

GSE6613 47.62 47.62 49.52

GSE20295 55.91 65.59 65.59

GSE30999 93.53 92.94 92.94

GSE55447 71.15 69.23 69.23

GSE19429 91.50 92.50 92.50

GSE9006 75.32 75.32 76.62

GSE48350 100.00 100.00 100.00

GSE5281 80.75 82.61 82.61

GSE35978 60.33 59.34 59.67

GSE53987 66.34 61.95 60.49

GSE12288 59.01 59.01 56.76

GSE15852 81.40 80.23 81.40

GSE42568 91.74 93.39 93.39

GSE29431 96.97 96.97 96.97

GSE18520 98.41 98.41 98.41

GSE19804 88.33 90.00 90.00

GSE10072 94.39 91.59 91.59

GSE68571 98.96 98.96 98.96

Average ± SEM 81.27± 3.04 81.67± 2.93 81.73± 2.94

Table 45: Experiment 1b: Accuracy for each dataset, averaged over 10-fold cross-validation, com-
paring BRL.G, BRL.DT, and BRL.DG using greedy best-first search. Classifier with higher values
of accuracies are better performing for a given dataset. The last row calculates the average for each
classifiers across 25 datasets and also reports the standard error of mean.

220



Data BRL.G BRL.DT BRL.DG

GSE66360 0.7712 0.8283 0.8283

GSE62646 0.9500 0.9500 0.9500

GSE41861 0.7834 0.8255 0.8273

GSE20881 0.8072 0.8261 0.8358

GSE3365 0.9019 0.8689 0.8788

GSE16879 1.0000 1.0000 1.0000

GSE15245 0.8283 0.8817 0.8817

GSE6613 0.4633 0.4887 0.5157

GSE20295 0.4362 0.5679 0.5679

GSE30999 0.9046 0.8935 0.8935

GSE55447 0.8167 0.7950 0.7950

GSE19429 0.9514 0.9625 0.9625

GSE9006 0.7964 0.8068 0.8235

GSE48350 1.0000 1.0000 1.0000

GSE5281 0.8262 0.8518 0.8518

GSE35978 0.7130 0.7110 0.6909

GSE53987 0.7268 0.7416 0.7402

GSE12288 0.6031 0.5871 0.5700

GSE15852 0.8131 0.8648 0.8731

GSE42568 0.9568 0.9568 0.9568

GSE29431 0.9857 0.9857 0.9857

GSE18520 1.0000 1.0000 1.0000

GSE19804 0.8702 0.8905 0.8905

GSE10072 0.9514 0.9062 0.9062

GSE68571 1.0000 1.0000 1.0000

Average ± SEM 0.8343± 0.0312 0.8476± 0.0279 0.8490± 0.0278

Table 46: Experiment 1b: Precision values for each dataset, averaged over 10-fold cross-validation,
comparing BRL.G, BRL.DT, and BRL.DG using greedy best-first search. Classifier with higher
values of precision are better performing for a given dataset. The last row calculates the average
for each classifiers across 25 datasets and also reports the standard error of mean.

221



Data BRL.G BRL.DT BRL.DG

GSE66360 0.7950 0.8200 0.8200

GSE62646 0.9667 0.9667 0.9667

GSE41861 0.7911 0.7811 0.7700

GSE20881 0.8278 0.8278 0.7878

GSE3365 0.9625 0.8583 0.8931

GSE16879 0.9690 0.9690 0.9690

GSE15245 0.8400 0.8600 0.8600

GSE6613 0.4600 0.4000 0.4800

GSE20295 0.4750 0.6250 0.6250

GSE30999 0.9750 0.9750 0.9750

GSE55447 0.8350 0.8400 0.8400

GSE19429 0.9558 0.9558 0.9558

GSE9006 0.9067 0.8900 0.8900

GSE48350 1.0000 1.0000 1.0000

GSE5281 0.8514 0.8375 0.8375

GSE35978 0.6719 0.6681 0.7155

GSE53987 0.8400 0.7400 0.7133

GSE12288 0.5182 0.6091 0.5455

GSE15852 0.8300 0.7350 0.7600

GSE42568 0.9518 0.9718 0.9718

GSE29431 0.9833 0.9833 0.9833

GSE18520 0.9800 0.9800 0.9800

GSE19804 0.9333 0.9333 0.9333

GSE10072 0.9500 0.9500 0.9500

GSE68571 0.9875 0.9875 0.9875

Average ± SEM 0.8503± 0.0320 0.8466± 0.0300 0.8484± 0.0289

Table 47: Experiment 1b: Recall values for each dataset, averaged over 10-fold cross-validation,
comparing BRL.G, BRL.DT, and BRL.DG using greedy best-first search. Classifier with higher
values of recall are better performing for a given dataset. The last row calculates the average for
each classifiers across 25 datasets and also reports the standard error of mean.

222



Data BRL.G BRL.DT BRL.DG

GSE66360 0.7800 0.8163 0.8163

GSE62646 0.9474 0.9474 0.9474

GSE41861 0.7826 0.7933 0.7910

GSE20881 0.8039 0.8200 0.8000

GSE3365 0.9318 0.8639 0.8837

GSE16879 0.9833 0.9833 0.9833

GSE15245 0.8350 0.8713 0.8713

GSE6613 0.4554 0.4211 0.4752

GSE20295 0.4810 0.6098 0.6098

GSE30999 0.9379 0.9326 0.9326

GSE55447 0.8235 0.8140 0.8140

GSE19429 0.9537 0.9589 0.9589

GSE9006 0.8348 0.8319 0.8393

GSE48350 1.0000 1.0000 1.0000

GSE5281 0.8268 0.8391 0.8391

GSE35978 0.6952 0.6884 0.7050

GSE53987 0.7850 0.7400 0.7254

GSE12288 0.5561 0.5956 0.5556

GSE15852 0.8182 0.7901 0.8049

GSE42568 0.9519 0.9619 0.9619

GSE29431 0.9815 0.9815 0.9815

GSE18520 0.9905 0.9905 0.9905

GSE19804 0.8889 0.9032 0.9032

GSE10072 0.9483 0.9244 0.9244

GSE68571 0.9942 0.9942 0.9942

Average ± SEM 0.8395± 0.0309 0.8429± 0.0289 0.8443± 0.0283

Table 48: Experiment 1b: F-measure values for each dataset, averaged over 10-fold cross-validation,
comparing BRL.G, BRL.DT, and BRL.DG using greedy best-first search. Classifier with higher
values of F-measure are better performing for a given dataset. The last row calculates the average
for each classifiers across 25 datasets and also reports the standard error of mean.
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9.3 EXPERIMENT 1C: COMPARING BRL CLASSIFIERS USING BEAM

SEARCH

Classification performances achieved by the compared classifiers across the 25 datasets are

shown in Tables— 49 (Accuracy), 50 (Precision), 51 (Recall), and 52 (F1 score). In these

results, all of BRL.G, BRL.DT, and BRL.DG use the arbitrary 0.5 threshold to predict the

positive class. These metrics were largely similar for all the methods compared.

9.4 EXPERIMENT 1: BRL COMPARED TO OTHER

STATE-OF-THE-ART CLASSIFIERS

This section contains the complete tables for AUROC 53, AUPRG 54, and Brier scores 55

achieved by all state-of-the-art classifiers compared in experiment 1.
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Data BRL.G BRL.G-Beam BRL.DT BRL.DT-Beam BRL.DG BRL.DG-Beam

GSE66360 77.78 78.79 81.82 85.86 81.82 87.88

GSE62646 92.86 92.86 92.86 92.86 92.86 92.86

GSE41861 71.01 73.19 73.19 76.81 73.19 76.81

GSE20881 76.74 79.65 79.07 81.98 77.33 83.14

GSE3365 90.55 86.61 81.89 87.40 84.25 87.40

GSE16879 97.26 97.26 97.26 97.26 97.26 97.26

GSE15245 73.85 70.77 80.00 73.85 80.00 73.85

GSE6613 47.62 53.33 47.62 43.81 49.52 49.52

GSE20295 55.91 55.91 65.59 60.22 65.59 56.99

GSE30999 93.53 93.53 92.94 92.94 92.94 92.94

GSE55447 71.15 80.77 69.23 82.69 69.23 86.54

GSE19429 91.50 94.50 92.50 94.00 92.50 94.50

GSE9006 75.32 76.62 75.32 77.92 76.62 79.22

GSE48350 100.00 100.00 100.00 100.00 100.00 100.00

GSE5281 80.75 83.23 82.61 89.44 82.61 85.09

GSE35978 60.33 62.30 59.34 58.36 59.67 62.30

GSE53987 66.34 59.51 61.95 60.98 60.49 59.02

GSE12288 59.01 48.65 59.01 56.31 56.76 58.56

GSE15852 81.40 77.91 80.23 83.72 81.40 86.05

GSE42568 91.74 93.39 93.39 94.21 93.39 95.04

GSE29431 96.97 96.97 96.97 96.97 96.97 96.97

GSE18520 98.41 98.41 98.41 98.41 98.41 98.41

GSE19804 88.33 92.50 90.00 91.67 90.00 88.33

GSE10072 94.39 94.39 91.59 91.59 91.59 89.72

GSE68571 98.96 98.96 98.96 98.96 98.96 98.96

Average ± SEM 81.27± 3.04 81.60± 3.14 81.67± 2.93 82.73± 3.12 81.73± 2.94 83.09± 2.98

Table 49: Experiment 1c: Accuracy for each dataset, averaged over 10-fold cross-validation, com-
paring greedy best-first and greedy beam search. Classifier with higher values of accuracies are
better performing for a given dataset. The last row calculates the average for each classifiers across
25 datasets and also reports the standard error of mean.
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Data BRL.G BRL.G-Beam BRL.DT BRL.DT-Beam BRL.DG BRL.DG-Beam

GSE66360 0.7712 0.7867 0.8283 0.8581 0.8283 0.8781

GSE62646 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500

GSE41861 0.7834 0.7792 0.8255 0.8244 0.8273 0.8333

GSE20881 0.8072 0.8326 0.8261 0.8388 0.8358 0.8379

GSE3365 0.9019 0.9221 0.8689 0.9014 0.8788 0.9092

GSE16879 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

GSE15245 0.8283 0.8190 0.8817 0.8188 0.8817 0.8188

GSE6613 0.4633 0.5117 0.4887 0.4129 0.5157 0.4723

GSE20295 0.4362 0.5362 0.5679 0.5417 0.5679 0.5100

GSE30999 0.9046 0.9046 0.8935 0.8935 0.8935 0.8957

GSE55447 0.8167 0.8850 0.7950 0.8900 0.7950 0.9150

GSE19429 0.9514 0.9592 0.9625 0.9439 0.9625 0.9487

GSE9006 0.7964 0.8217 0.8068 0.8101 0.8235 0.8470

GSE48350 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

GSE5281 0.8262 0.8663 0.8518 0.9300 0.8518 0.9157

GSE35978 0.7130 0.7131 0.7110 0.6890 0.6909 0.7128

GSE53987 0.7268 0.7036 0.7416 0.7169 0.7402 0.7241

GSE12288 0.6031 0.4670 0.5871 0.5594 0.5700 0.5865

GSE15852 0.8131 0.7964 0.8648 0.8693 0.8731 0.9181

GSE42568 0.9568 0.9485 0.9568 0.9568 0.9568 0.9644

GSE29431 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857

GSE18520 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

GSE19804 0.8702 0.9321 0.8905 0.9298 0.8905 0.8923

GSE10072 0.9514 0.9514 0.9062 0.9121 0.9062 0.8812

GSE68571 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Average ± SEM 0.8343± 0.0312 0.8429± 0.0311 0.8476± 0.0279 0.8493± 0.0311 0.8490± 0.0278 0.8559± 0.0296

Table 50: Experiment 1c: Precision values for each dataset, averaged over 10-fold cross-validation,
comparing greedy best-first and greedy beam search. Classifier with higher values of precision are
better performing for a given dataset. The last row calculates the average for each classifiers across
25 datasets and also reports the standard error of mean.
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Data BRL.G BRL.G-Beam BRL.DT BRL.DT-Beam BRL.DG BRL.DG-Beam

GSE66360 0.7950 0.8000 0.8200 0.8800 0.8200 0.9000

GSE62646 0.9667 0.9667 0.9667 0.9667 0.9667 0.9667

GSE41861 0.7911 0.8378 0.7811 0.8378 0.7700 0.8267

GSE20881 0.8278 0.8178 0.8278 0.8567 0.7878 0.8878

GSE3365 0.9625 0.8806 0.8583 0.9167 0.8931 0.9056

GSE16879 0.9690 0.9690 0.9690 0.9690 0.9690 0.9690

GSE15245 0.8400 0.8000 0.8600 0.8600 0.8600 0.8600

GSE6613 0.4600 0.5400 0.4000 0.3400 0.4800 0.5200

GSE20295 0.4750 0.5750 0.6250 0.4750 0.6250 0.4250

GSE30999 0.9750 0.9750 0.9750 0.9750 0.9750 0.9750

GSE55447 0.8350 0.8750 0.8400 0.9000 0.8400 0.9250

GSE19429 0.9558 0.9833 0.9558 0.9944 0.9558 0.9944

GSE9006 0.9067 0.8867 0.8900 0.9300 0.8900 0.9067

GSE48350 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

GSE5281 0.8514 0.8403 0.8375 0.8847 0.8375 0.8139

GSE35978 0.6719 0.7562 0.6681 0.6869 0.7155 0.7207

GSE53987 0.8400 0.7533 0.7400 0.7733 0.7133 0.7133

GSE12288 0.5182 0.3727 0.6091 0.6364 0.5455 0.5455

GSE15852 0.8300 0.8150 0.7350 0.8650 0.7600 0.8150

GSE42568 0.9518 0.9818 0.9718 0.9818 0.9718 0.9809

GSE29431 0.9833 0.9833 0.9833 0.9833 0.9833 0.9833

GSE18520 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800

GSE19804 0.9333 0.9333 0.9333 0.9167 0.9333 0.9000

GSE10072 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500

GSE68571 0.9875 0.9875 0.9875 0.9875 0.9875 0.9875

Average ± SEM 0.8503± 0.0320 0.8504± 0.0316 0.8466± 0.0300 0.8619± 0.0333 0.8484± 0.0289 0.8581± 0.0318

Table 51: Experiment 1c: Recall values for each dataset, averaged over 10-fold cross-validation,
comparing greedy best-first and greedy beam search. Classifier with higher values of recall are
better performing for a given dataset. The last row calculates the average for each classifiers across
25 datasets and also reports the standard error of mean.
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Data BRL.G BRL.G-Beam BRL.DT BRL.DT-Beam BRL.DG BRL.DG-Beam

GSE66360 0.7800 0.7879 0.8163 0.8600 0.8163 0.8800

GSE62646 0.9474 0.9474 0.9474 0.9474 0.9474 0.9474

GSE41861 0.7826 0.8042 0.7933 0.8261 0.7910 0.8242

GSE20881 0.8039 0.8223 0.8200 0.8458 0.8000 0.8585

GSE3365 0.9318 0.8982 0.8639 0.9070 0.8837 0.9059

GSE16879 0.9833 0.9833 0.9833 0.9833 0.9833 0.9833

GSE15245 0.8350 0.8119 0.8713 0.8381 0.8713 0.8381

GSE6613 0.4554 0.5243 0.4211 0.3656 0.4752 0.4952

GSE20295 0.4810 0.5349 0.6098 0.5135 0.6098 0.4789

GSE30999 0.9379 0.9379 0.9326 0.9326 0.9326 0.9326

GSE55447 0.8235 0.8810 0.8140 0.8941 0.8140 0.9176

GSE19429 0.9537 0.9704 0.9589 0.9681 0.9589 0.9707

GSE9006 0.8348 0.8393 0.8319 0.8522 0.8393 0.8571

GSE48350 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

GSE5281 0.8268 0.8439 0.8391 0.9006 0.8391 0.8554

GSE35978 0.6952 0.7294 0.6884 0.6895 0.7050 0.7202

GSE53987 0.7850 0.7314 0.7400 0.7436 0.7254 0.7181

GSE12288 0.5561 0.4184 0.5956 0.5907 0.5556 0.5660

GSE15852 0.8182 0.7865 0.7901 0.8409 0.8049 0.8537

GSE42568 0.9519 0.9623 0.9619 0.9668 0.9619 0.9714

GSE29431 0.9815 0.9815 0.9815 0.9815 0.9815 0.9815

GSE18520 0.9905 0.9905 0.9905 0.9905 0.9905 0.9905

GSE19804 0.8889 0.9256 0.9032 0.9167 0.9032 0.8852

GSE10072 0.9483 0.9483 0.9244 0.9244 0.9244 0.9091

GSE68571 0.9942 0.9942 0.9942 0.9942 0.9942 0.9942

Average ± SEM 0.8395± 0.0309 0.8422± 0.0314 0.8429± 0.0289 0.8509± 0.0320 0.8443± 0.0283 0.8534± 0.0299

Table 52: Experiment 1c: F-measure values for each dataset, averaged over 10-fold cross-validation,
comparing greedy best-first and greedy beam search. Classifier with higher values of F-measure
are better performing for a given dataset. The last row calculates the average for each classifiers
across 25 datasets and also reports the standard error of mean.
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Table 53: Experiment 1: AUROC by state-of-the-art classifiers, averaged across 10-fold cross-validation for
each dataset. Last row contains the average across the datasets and the standard error of mean.
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Table 54: Experiment 1: AUPRG by state-of-the-art classifiers, averaged across 10-fold cross-validation for
each dataset. Last row contains the average across the datasets and the standard error of mean.
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Table 55: Experiment 1: Brier scores by state-of-the-art classifiers, averaged across 10-fold cross-validation
for each dataset. Last row contains the average across the datasets and the standard error of mean.
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10.0 APPENDIX D: ADDITIONAL RESULTS FROM EXPERIMENT 2

In this appendix, we show some additional results from BRL runs from experiment 2 in sec-

tion 4.4. These results were not necessary to test the hypotheses evaluated by the experiment

and so were moved to this supplement merely as a reference for the curious reader.

10.1 EXPERIMENT 2A: COMPARING BAGGED-BRL-LC TO BRL, C4.5,

BAGGED-C4.5, AND BOOSTED-C4.5

Classification performances achieved by the compared classifiers across the 25 datasets are

shown in Tables— 56 (Accuracy), 57 (Precision), 58 (Recall), and 59 (F1 score). In these

results, BRL methods used the arbitrary 0.5 threshold to predict the positive class. These

metrics were largely similar for all the methods compared.

10.2 EXPERIMENT 2B: COMPARING BAGGED-BRL-LC ,

BAGGED-BRL-BMA, AND BAGGED-BRL-BMC

Classification performances achieved by the compared classifiers across the 25 datasets are

shown in Tables— 60 (Accuracy), 61 (Precision), 62 (Recall), and 63 (F1 score). In these

results, BRL methods used the arbitrary 0.5 threshold to predict the positive class. These

metrics were largely similar for all the methods compared.
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Data Bagged-BRL.DT-LC BRL.DT C4.5 Bagged-C4.5 Boosted-C4.5

GSE66360 86.87 81.82 70.71 87.88 79.80

GSE62646 97.62 92.86 92.86 95.24 92.86

GSE41861 86.23 73.19 74.64 76.09 82.61

GSE20881 83.72 79.07 74.42 83.72 77.91

GSE3365 92.91 81.89 81.10 90.55 96.06

GSE16879 94.52 97.26 97.26 97.26 97.26

GSE15245 81.54 80.00 67.69 81.54 73.85

GSE6613 57.14 47.62 58.10 55.24 57.14

GSE20295 64.52 65.59 62.37 68.82 63.44

GSE30999 96.47 92.94 94.71 97.06 94.71

GSE55447 73.08 69.23 69.23 78.85 69.23

GSE19429 92.00 92.50 85.50 88.00 92.50

GSE9006 88.31 75.32 79.22 81.82 80.52

GSE48350 100.00 100.00 100.00 100.00 100.00

GSE5281 87.58 82.61 80.75 87.58 84.47

GSE35978 74.75 59.34 57.05 65.25 64.59

GSE53987 63.90 61.95 64.39 66.34 64.88

GSE12288 52.70 59.01 52.25 50.00 54.05

GSE15852 87.21 80.23 76.74 83.72 84.88

GSE42568 96.69 93.39 97.52 97.52 95.87

GSE29431 98.48 96.97 96.97 96.97 96.97

GSE18520 100.00 98.41 98.41 98.41 98.41

GSE19804 92.50 90.00 88.33 93.33 92.50

GSE10072 97.20 91.59 94.39 95.33 94.39

GSE68571 98.96 98.96 98.96 98.96 98.96

Average ± SEM 85.80± 2.77 81.67± 2.93 80.54± 3.01 84.62± 2.82 83.51± 2.87

Table 56: Experiment 2a: Accuracy for each dataset, averaged over 10-fold cross-validation, using
state-of-the-art rule learning classifiers compared to BRL. Classifier with higher values of accuracies
are better performing for a given dataset. The last row calculates the average for each classifiers
across 25 datasets and also reports the standard error of mean.
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Data Bagged-BRL.DT-LC BRL.DT C4.5 Bagged-C4.5 Boosted-C4.5

GSE66360 0.9050 0.8283 0.6800 0.9133 0.7905

GSE62646 0.9750 0.9500 0.9500 0.9750 0.9500

GSE41861 0.8689 0.8255 0.8115 0.8362 0.8556

GSE20881 0.8771 0.8261 0.7750 0.8497 0.8125

GSE3365 0.9435 0.8689 0.8728 0.9219 0.9733

GSE16879 0.9714 1.0000 1.0000 1.0000 1.0000

GSE15245 0.8564 0.8817 0.8317 0.8229 0.7936

GSE6613 0.5410 0.4887 0.5627 0.5321 0.5471

GSE20295 0.5762 0.5679 0.6267 0.6850 0.5917

GSE30999 0.9657 0.8935 0.9239 0.9857 0.9239

GSE55447 0.7883 0.7950 0.8417 0.8550 0.8100

GSE19429 0.9381 0.9625 0.9334 0.9208 0.9522

GSE9006 0.8848 0.8068 0.8719 0.8529 0.8695

GSE48350 1.0000 1.0000 1.0000 1.0000 1.0000

GSE5281 0.8686 0.8518 0.8766 0.8766 0.8746

GSE35978 0.7838 0.7110 0.6852 0.7481 0.7445

GSE53987 0.7204 0.7416 0.7502 0.7467 0.7364

GSE12288 0.5385 0.5871 0.5189 0.4900 0.5480

GSE15852 0.8967 0.8648 0.7931 0.8700 0.8531

GSE42568 0.9652 0.9568 0.9826 0.9742 0.9652

GSE29431 0.9857 0.9857 0.9857 0.9857 0.9857

GSE18520 1.0000 1.0000 1.0000 1.0000 1.0000

GSE19804 0.9214 0.8905 0.8905 0.9179 0.9321

GSE10072 0.9571 0.9062 0.9514 0.9657 0.9514

GSE68571 1.0000 1.0000 1.0000 1.0000 1.0000

Average ± SEM 0.8691± 0.0279 0.8476± 0.0279 0.8446± 0.0283 0.8690± 0.0278 0.8584± 0.0278

Table 57: Experiment 2a: Precision for each dataset, averaged over 10-fold cross-validation, using
state-of-the-art rule learning classifiers compared to BRL. Classifier with higher values of precision
are better performing for a given dataset. The last row calculates the average for each classifiers
across 25 datasets and also reports the standard error of mean.
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Data Bagged-BRL.DT-LC BRL.DT C4.5 Bagged-C4.5 Boosted-C4.5

GSE66360 0.8350 0.8200 0.7800 0.8600 0.8200

GSE62646 1.0000 0.9667 0.9667 0.9667 0.9667

GSE41861 0.9333 0.7811 0.8033 0.8133 0.8900

GSE20881 0.8489 0.8278 0.7967 0.8767 0.8178

GSE3365 0.9528 0.8583 0.8306 0.9403 0.9625

GSE16879 0.9690 0.9690 0.9690 0.9690 0.9690

GSE15245 0.9200 0.8600 0.7467 0.9800 0.9000

GSE6613 0.5000 0.4000 0.6600 0.5600 0.5600

GSE20295 0.6250 0.6250 0.6250 0.6500 0.6500

GSE30999 0.9625 0.9750 0.9750 0.9528 0.9750

GSE55447 0.9050 0.8400 0.7250 0.9050 0.7750

GSE19429 0.9781 0.9558 0.9064 0.9509 0.9670

GSE9006 0.9633 0.8900 0.8500 0.9067 0.8733

GSE48350 1.0000 1.0000 1.0000 1.0000 1.0000

GSE5281 0.9306 0.8375 0.7778 0.9083 0.8486

GSE35978 0.8688 0.6681 0.6690 0.7324 0.7214

GSE53987 0.8267 0.7400 0.7667 0.8200 0.8133

GSE12288 0.5091 0.6091 0.6455 0.5636 0.5818

GSE15852 0.8650 0.7350 0.7350 0.8150 0.8550

GSE42568 1.0000 0.9718 0.9909 1.0000 0.9909

GSE29431 1.0000 0.9833 0.9833 0.9833 0.9833

GSE18520 1.0000 0.9800 0.9800 0.9800 0.9800

GSE19804 0.9500 0.9333 0.9000 0.9667 0.9333

GSE10072 1.0000 0.9500 0.9500 0.9500 0.9500

GSE68571 0.9875 0.9875 0.9875 0.9875 0.9875

Average ± SEM 0.8932± 0.0287 0.8466± 0.0300 0.8408± 0.0250 0.8815± 0.0260 0.8709± 0.0258

Table 58: Experiment 2a: Recall for each dataset, averaged over 10-fold cross-validation, using
state-of-the-art rule learning classifiers compared to BRL. Classifier with higher values of recall are
better performing for a given dataset. The last row calculates the average for each classifiers across
25 datasets and also reports the standard error of mean.
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0.8632 0.8163 0.7238 0.8750 0.8000

0.9825 0.9474 0.9474 0.9643 0.9474

0.8995 0.7933 0.8066 0.8177 0.8710

0.8571 0.8200 0.7822 0.8614 0.8100

0.9474 0.8639 0.8554 0.9302 0.9704

0.9672 0.9833 0.9833 0.9833 0.9833

0.8868 0.8713 0.7835 0.8929 0.8440

0.5263 0.4211 0.6000 0.5437 0.5545

0.6024 0.6098 0.6024 0.6582 0.6118

0.9647 0.9326 0.9486 0.9701 0.9486

0.8444 0.8140 0.7949 0.8736 0.8049

0.9572 0.9589 0.9197 0.9355 0.9593

0.9189 0.8319 0.8491 0.8727 0.8598

1.0000 1.0000 1.0000 1.0000 1.0000

0.8901 0.8391 0.8144 0.8876 0.8555

0.8222 0.6884 0.6765 0.7389 0.7327

0.7702 0.7400 0.7591 0.7810 0.7722

0.5161 0.5956 0.5726 0.5277 0.5565

0.8706 0.7901 0.7619 0.8333 0.8506

0.9811 0.9619 0.9856 0.9858 0.9763

0.9908 0.9815 0.9815 0.9815 0.9815

1.0000 0.9905 0.9905 0.9905 0.9905

0.9268 0.9032 0.8852 0.9355 0.9256

0.9748 0.9244 0.9483 0.9565 0.9483

0.9942 0.9942 0.9942 0.9942 0.9942

Average ± SEM 0.8782± 0.0278 0.8429± 0.0289 0.8387± 0.0267 0.8716± 0.0265 0.8619± 0.0267

Table 59: Experiment 2a: F-measure for each dataset, averaged over 10-fold cross-validation, using
state-of-the-art rule learning classifiers compared to BRL. Classifier with higher values of F-measure
are better performing for a given dataset. The last row calculates the average for each classifiers
across 25 datasets and also reports the standard error of mean.
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Data Bagged-BRL.DT-LC Bagged-BRL.DT-BMA Bagged-BRL.DT-BMC

GSE66360 86.87 80.81 87.88

GSE62646 97.62 97.62 97.62

GSE41861 86.23 78.99 86.96

GSE20881 83.72 76.16 84.88

GSE3365 92.91 89.76 93.70

GSE16879 94.52 94.52 94.52

GSE15245 81.54 80.00 81.54

GSE6613 57.14 60.00 57.14

GSE20295 64.52 61.29 66.67

GSE30999 96.47 96.47 96.47

GSE55447 73.08 71.15 75.00

GSE19429 92.00 90.00 92.00

GSE9006 88.31 80.52 85.71

GSE48350 100.00 100.00 100.00

GSE5281 87.58 83.23 87.58

GSE35978 74.75 64.26 73.11

GSE53987 63.90 59.51 63.41

GSE12288 52.70 52.70 50.90

GSE15852 87.21 86.05 86.05

GSE42568 96.69 96.69 96.69

GSE29431 98.48 98.48 96.97

GSE18520 100.00 100.00 98.41

GSE19804 92.50 90.83 93.33

GSE10072 97.20 97.20 95.33

GSE68571 98.96 98.96 98.96

Average ± SEM 85.80± 2.77 83.41± 2.94 85.63± 2.76

Table 60: Experiment 2b: Accuracy for each dataset, averaged over 10-fold cross-validation, using
state-of-the-art rule learning classifiers compared to BRL. Classifier with higher values of accuracies
are better performing for a given dataset. The last row calculates the average for each classifiers
across 25 datasets and also reports the standard error of mean.
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Data Bagged-BRL.DT-LC Bagged-BRL.DT-BMA Bagged-BRL.DT-BMC

GSE66360 0.9050 0.8348 0.8833

GSE62646 0.9750 0.9750 0.9750

GSE41861 0.8689 0.8498 0.8823

GSE20881 0.8771 0.7926 0.8924

GSE3365 0.9435 0.9058 0.9467

GSE16879 0.9714 0.9714 0.9714

GSE15245 0.8564 0.8495 0.8564

GSE6613 0.5410 0.6112 0.5281

GSE20295 0.5762 0.5283 0.5733

GSE30999 0.9657 0.9675 0.9657

GSE55447 0.7883 0.7800 0.8050

GSE19429 0.9381 0.9314 0.9381

GSE9006 0.8848 0.8581 0.8514

GSE48350 1.0000 1.0000 1.0000

GSE5281 0.8686 0.8581 0.8745

GSE35978 0.7838 0.7190 0.7791

GSE53987 0.7204 0.7193 0.7311

GSE12288 0.5385 0.5386 0.5061

GSE15852 0.8967 0.8721 0.8800

GSE42568 0.9652 0.9652 0.9652

GSE29431 0.9857 0.9857 0.9714

GSE18520 1.0000 1.0000 1.0000

GSE19804 0.9214 0.9214 0.9214

GSE10072 0.9571 0.9571 0.9657

GSE68571 1.0000 1.0000 1.0000

Average ± SEM 0.8691± 0.0279 0.8557± 0.0280 0.8665± 0.0287

Table 61: Experiment 2b: Precision for each dataset, averaged over 10-fold cross-validation, using
state-of-the-art rule learning classifiers compared to BRL. Classifier with higher values of precision
are better performing for a given dataset. The last row calculates the average for each classifiers
across 25 datasets and also reports the standard error of mean.
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Data Bagged-BRL.DT-LC Bagged-BRL.DT-BMA Bagged-BRL.DT-BMC

GSE66360 0.8350 0.7950 0.8750

GSE62646 1.0000 1.0000 1.0000

GSE41861 0.9333 0.8356 0.9344

GSE20881 0.8489 0.8089 0.8489

GSE3365 0.9528 0.9542 0.9653

GSE16879 0.9690 0.9690 0.9690

GSE15245 0.9200 0.9200 0.9200

GSE6613 0.5000 0.5400 0.4800

GSE20295 0.6250 0.5500 0.6500

GSE30999 0.9625 0.9625 0.9625

GSE55447 0.9050 0.8850 0.9050

GSE19429 0.9781 0.9614 0.9781

GSE9006 0.9633 0.8667 0.9633

GSE48350 1.0000 1.0000 1.0000

GSE5281 0.9306 0.8500 0.9194

GSE35978 0.8688 0.7745 0.8388

GSE53987 0.8267 0.7333 0.7933

GSE12288 0.5091 0.5364 0.4909

GSE15852 0.8650 0.8850 0.8650

GSE42568 1.0000 1.0000 1.0000

GSE29431 1.0000 1.0000 1.0000

GSE18520 1.0000 1.0000 0.9800

GSE19804 0.9500 0.9167 0.9667

GSE10072 1.0000 1.0000 0.9500

GSE68571 0.9875 0.9875 0.9875

Average ± SEM 0.8932± 0.0287 0.8693± 0.0293 0.8897± 0.0291

Table 62: Experiment 2b: Recall for each dataset, averaged over 10-fold cross-validation, using
state-of-the-art rule learning classifiers compared to BRL. Classifier with higher values of recall are
better performing for a given dataset. The last row calculates the average for each classifiers across
25 datasets and also reports the standard error of mean.
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Data Bagged-BRL.DT-LC Bagged-BRL.DT-BMA Bagged-BRL.DT-BMC

GSE66360 0.8632 0.8041 0.8776

GSE62646 0.9825 0.9825 0.9825

GSE41861 0.8995 0.8398 0.9043

GSE20881 0.8571 0.7960 0.8660

GSE3365 0.9474 0.9257 0.9535

GSE16879 0.9672 0.9672 0.9672

GSE15245 0.8868 0.8785 0.8868

GSE6613 0.5263 0.5625 0.5161

GSE20295 0.6024 0.5641 0.6265

GSE30999 0.9647 0.9647 0.9647

GSE55447 0.8444 0.8315 0.8539

GSE19429 0.9572 0.9462 0.9572

GSE9006 0.9189 0.8598 0.9027

GSE48350 1.0000 1.0000 1.0000

GSE5281 0.8901 0.8457 0.8889

GSE35978 0.8222 0.7447 0.8075

GSE53987 0.7702 0.7261 0.7604

GSE12288 0.5161 0.5291 0.4977

GSE15852 0.8706 0.8636 0.8605

GSE42568 0.9811 0.9811 0.9811

GSE29431 0.9908 0.9908 0.9818

GSE18520 1.0000 1.0000 0.9905

GSE19804 0.9268 0.9091 0.9355

GSE10072 0.9748 0.9748 0.9565

GSE68571 0.9942 0.9942 0.9942

Average ± SEM 0.8782± 0.0278 0.8593± 0.0283 0.8765± 0.0280

Table 63: Experiment 2b: F-measure for each dataset, averaged over 10-fold cross-validation, using
state-of-the-art rule learning classifiers compared to BRL. Classifier with higher values of accuracies
are better performing for a given dataset. The last row calculates the average for each classifiers
across 25 datasets and also reports the standard error of mean.
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10.3 EXPERIMENT 2C: COMPARING BOOSTED-BRL-LC TO BRL, C4.5,

BAGGED-C4.5, AND BOOSTED-C4.5

Classification performances achieved by the compared classifiers across the 25 datasets are

shown in Tables— 64 (Accuracy), 65 (Precision), 66 (Recall), and 67 (F1 score). In these

results, BRL methods used the arbitrary 0.5 threshold to predict the positive class. These

metrics were largely similar for all the methods compared.

10.4 EXPERIMENT 2D: COMPARING BOOSTED-BRL-LC ,

BOOSTED-BRL-BMA, AND BOOSTED-BRL-BMC

Classification performances achieved by the compared classifiers across the 25 datasets are

shown in Tables— 68 (Accuracy), 69 (Precision), 70 (Recall), and 71 (F1 score). In these

results, BRL methods used the arbitrary 0.5 threshold to predict the positive class. These

metrics were largely similar for all the methods compared.

10.5 EXPERIMENT 2: BAGGED-BRL.DT-BMC COMPARED TO OTHER

STATE-OF-THE-ART CLASSIFIERS

This section contains the complete tables for AUROC 72, AUPRG 73, and Brier scores 74

achieved by all state-of-the-art classifiers compared in experiment 1.

241



Data Boosted-BRL.DT-LC BRL.DT C4.5 Bagged-C4.5 Boosted-C4.5

GSE66360 83.84 81.82 70.71 87.88 79.80

GSE62646 92.86 92.86 92.86 95.24 92.86

GSE41861 73.19 73.19 74.64 76.09 82.61

GSE20881 81.98 79.07 74.42 83.72 77.91

GSE3365 88.19 81.89 81.10 90.55 96.06

GSE16879 97.26 97.26 97.26 97.26 97.26

GSE15245 73.85 80.00 67.69 81.54 73.85

GSE6613 46.67 47.62 58.10 55.24 57.14

GSE20295 50.54 65.59 62.37 68.82 63.44

GSE30999 97.06 92.94 94.71 97.06 94.71

GSE55447 75.00 69.23 69.23 78.85 69.23

GSE19429 93.00 92.50 85.50 88.00 92.50

GSE9006 84.42 75.32 79.22 81.82 80.52

GSE48350 100.00 100.00 100.00 100.00 100.00

GSE5281 83.85 82.61 80.75 87.58 84.47

GSE35978 59.34 59.34 57.05 65.25 64.59

GSE53987 71.71 61.95 64.39 66.34 64.88

GSE12288 58.56 59.01 52.25 50.00 54.05

GSE15852 83.72 80.23 76.74 83.72 84.88

GSE42568 95.04 93.39 97.52 97.52 95.87

GSE29431 96.97 96.97 96.97 96.97 96.97

GSE18520 98.41 98.41 98.41 98.41 98.41

GSE19804 88.33 90.00 88.33 93.33 92.50

GSE10072 94.39 91.59 94.39 95.33 94.39

GSE68571 98.96 98.96 98.96 98.96 98.96

Average ± SEM 82.68± 3.11 81.67± 2.93 80.54± 3.01 84.62± 2.82 83.51± 2.87

Table 64: Experiment 2c: Accuracy for each dataset, averaged over 10-fold cross-validation, using
state-of-the-art rule learning classifiers compared to BRL. Classifier with higher values of accuracies
are better performing for a given dataset. The last row calculates the average for each classifiers
across 25 datasets and also reports the standard error of mean.
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Data Boosted-BRL.DT-LC BRL.DT C4.5 Bagged-C4.5 Boosted-C4.5

GSE66360 0.8681 0.8283 0.6800 0.9133 0.7905

GSE62646 0.9500 0.9500 0.9500 0.9750 0.9500

GSE41861 0.7885 0.8255 0.8115 0.8362 0.8556

GSE20881 0.8911 0.8261 0.7750 0.8497 0.8125

GSE3365 0.9085 0.8689 0.8728 0.9219 0.9733

GSE16879 1.0000 1.0000 1.0000 1.0000 1.0000

GSE15245 0.8195 0.8817 0.8317 0.8229 0.7936

GSE6613 0.1565 0.4887 0.5627 0.5321 0.5471

GSE20295 0.3429 0.5679 0.6267 0.6850 0.5917

GSE30999 0.9650 0.8935 0.9239 0.9857 0.9239

GSE55447 0.8450 0.7950 0.8417 0.8550 0.8100

GSE19429 0.9384 0.9625 0.9334 0.9208 0.9522

GSE9006 0.9014 0.8068 0.8719 0.8529 0.8695

GSE48350 1.0000 1.0000 1.0000 1.0000 1.0000

GSE5281 0.8472 0.8518 0.8766 0.8766 0.8746

GSE35978 0.6805 0.7110 0.6852 0.7481 0.7445

GSE53987 0.7385 0.7416 0.7502 0.7467 0.7364

GSE12288 0.5266 0.5871 0.5189 0.4900 0.5480

GSE15852 0.8579 0.8648 0.7931 0.8700 0.8531

GSE42568 0.9644 0.9568 0.9826 0.9742 0.9652

GSE29431 0.9857 0.9857 0.9857 0.9857 0.9857

GSE18520 1.0000 1.0000 1.0000 1.0000 1.0000

GSE19804 0.8940 0.8905 0.8905 0.9179 0.9321

GSE10072 0.9514 0.9062 0.9514 0.9657 0.9514

GSE68571 1.0000 1.0000 1.0000 1.0000 1.0000

Average ± SEM 0.8328± 0.0419 0.8476± 0.0279 0.8446± 0.0283 0.8690± 0.0278 0.8584± 0.0278

Table 65: Experiment 2c: Precision for each dataset, averaged over 10-fold cross-validation, using
state-of-the-art rule learning classifiers compared to BRL. Classifier with higher values of precision
are better performing for a given dataset. The last row calculates the average for each classifiers
across 25 datasets and also reports the standard error of mean.
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Data Boosted-BRL.DT-LC BRL.DT C4.5 Bagged-C4.5 Boosted-C4.5

GSE66360 0.8200 0.8200 0.7800 0.8600 0.8200

GSE62646 0.9667 0.9667 0.9667 0.9667 0.9667

GSE41861 0.8356 0.7811 0.8033 0.8133 0.8900

GSE20881 0.8089 0.8278 0.7967 0.8767 0.8178

GSE3365 0.9306 0.8583 0.8306 0.9403 0.9625

GSE16879 0.9690 0.9690 0.9690 0.9690 0.9690

GSE15245 0.8600 0.8600 0.7467 0.9800 0.9000

GSE6613 0.2200 0.4000 0.6600 0.5600 0.5600

GSE20295 0.4250 0.6250 0.6250 0.6500 0.6500

GSE30999 0.9750 0.9750 0.9750 0.9528 0.9750

GSE55447 0.8550 0.8400 0.7250 0.9050 0.7750

GSE19429 0.9889 0.9558 0.9064 0.9509 0.9670

GSE9006 0.8867 0.8900 0.8500 0.9067 0.8733

GSE48350 1.0000 1.0000 1.0000 1.0000 1.0000

GSE5281 0.8653 0.8375 0.7778 0.9083 0.8486

GSE35978 0.7160 0.6681 0.6690 0.7324 0.7214

GSE53987 0.9533 0.7400 0.7667 0.8200 0.8133

GSE12288 0.3636 0.6091 0.6455 0.5636 0.5818

GSE15852 0.8550 0.7350 0.7350 0.8150 0.8550

GSE42568 0.9818 0.9718 0.9909 1.0000 0.9909

GSE29431 0.9833 0.9833 0.9833 0.9833 0.9833

GSE18520 0.9800 0.9800 0.9800 0.9800 0.9800

GSE19804 0.9000 0.9333 0.9000 0.9667 0.9333

GSE10072 0.9500 0.9500 0.9500 0.9500 0.9500

GSE68571 0.9875 0.9875 0.9875 0.9875 0.9875

Average ± SEM 0.8431± 0.0413 0.8466± 0.0300 0.8408± 0.0250 0.8815± 0.0260 0.8709± 0.0258

Table 66: Experiment 2c: Recall for each dataset, averaged over 10-fold cross-validation, using
state-of-the-art rule learning classifiers compared to BRL. Classifier with higher values of recall are
better performing for a given dataset. The last row calculates the average for each classifiers across
25 datasets and also reports the standard error of mean.
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Data Boosted-BRL.DT-LC BRL.DT C4.5 Bagged-C4.5 Boosted-C4.5

GSE66360 0.8333 0.8163 0.7238 0.8750 0.8000

GSE62646 0.9474 0.9474 0.9474 0.9643 0.9474

GSE41861 0.8042 0.7933 0.8066 0.8177 0.8710

GSE20881 0.8377 0.8200 0.7822 0.8614 0.8100

GSE3365 0.9133 0.8639 0.8554 0.9302 0.9704

GSE16879 0.9833 0.9833 0.9833 0.9833 0.9833

GSE15245 0.8381 0.8713 0.7835 0.8929 0.8440

GSE6613 0.2821 0.4211 0.6000 0.5437 0.5545

GSE20295 0.4250 0.6098 0.6024 0.6582 0.6118

GSE30999 0.9708 0.9326 0.9486 0.9701 0.9486

GSE55447 0.8471 0.8140 0.7949 0.8736 0.8049

GSE19429 0.9628 0.9589 0.9197 0.9355 0.9593

GSE9006 0.8868 0.8319 0.8491 0.8727 0.8598

GSE48350 1.0000 1.0000 1.0000 1.0000 1.0000

GSE5281 0.8523 0.8391 0.8144 0.8876 0.8555

GSE35978 0.7033 0.6884 0.6765 0.7389 0.7327

GSE53987 0.8314 0.7400 0.7591 0.7810 0.7722

GSE12288 0.4651 0.5956 0.5726 0.5277 0.5565

GSE15852 0.8409 0.7901 0.7619 0.8333 0.8506

GSE42568 0.9714 0.9619 0.9856 0.9858 0.9763

GSE29431 0.9815 0.9815 0.9815 0.9815 0.9815

GSE18520 0.9905 0.9905 0.9905 0.9905 0.9905

GSE19804 0.8852 0.9032 0.8852 0.9355 0.9256

GSE10072 0.9483 0.9244 0.9483 0.9565 0.9483

GSE68571 0.9942 0.9942 0.9942 0.9942 0.9942

Average ± SEM 0.8398± 0.0374 0.8429± 0.0289 0.8387± 0.0267 0.8716± 0.0265 0.8619± 0.0267

Table 67: Experiment 2c: F-measure for each dataset, averaged over 10-fold cross-validation, using
state-of-the-art rule learning classifiers compared to BRL. Classifier with higher values of F-measure
are better performing for a given dataset. The last row calculates the average for each classifiers
across 25 datasets and also reports the standard error of mean.
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Data Boosted-BRL.DT-LC Boosted-BRL.DT-BMA Boosted-BRL.DT-BMC

GSE66360 83.84 52.53 83.84

GSE62646 92.86 66.67 92.86

GSE41861 73.19 65.94 75.36

GSE20881 81.98 57.56 83.14

GSE3365 88.19 66.93 88.98

GSE16879 97.26 83.56 97.26

GSE15245 73.85 78.46 73.85

GSE6613 46.67 52.38 43.81

GSE20295 50.54 43.01 59.14

GSE30999 97.06 61.76 95.88

GSE55447 75.00 80.77 75.00

GSE19429 93.00 91.50 93.00

GSE9006 84.42 68.83 83.12

GSE48350 100.00 63.24 100.00

GSE5281 83.85 54.04 84.47

GSE35978 59.34 67.21 61.97

GSE53987 71.71 73.17 60.49

GSE12288 58.56 50.45 56.76

GSE15852 83.72 54.65 83.72

GSE42568 95.04 85.95 95.04

GSE29431 96.97 81.82 96.97

GSE18520 98.41 84.13 98.41

GSE19804 88.33 86.67 90.83

GSE10072 94.39 54.21 94.39

GSE68571 98.96 89.58 98.96

Average ± SEM 82.68± 3.11 68.60± 2.84 82.69± 3.13

Table 68: Experiment 2d: Accuracy for each dataset, averaged over 10-fold cross-validation, using
state-of-the-art rule learning classifiers compared to BRL. Classifier with higher values of accuracies
are better performing for a given dataset. The last row calculates the average for each classifiers
across 25 datasets and also reports the standard error of mean.
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Data Boosted-BRL.DT-LC Boosted-BRL.DT-BMA Boosted-BRL.DT-BMC

GSE66360 0.8681 0.1250 0.8714

GSE62646 0.9500 0.6700 0.9500

GSE41861 0.7885 0.6599 0.8095

GSE20881 0.8911 0.5758 0.8755

GSE3365 0.9085 0.6692 0.9060

GSE16879 1.0000 0.8375 1.0000

GSE15245 0.8195 0.7881 0.8329

GSE6613 0.1565 0.0000 0.2971

GSE20295 0.3429 0.4311 0.5160

GSE30999 0.9650 0.4882 0.9539

GSE55447 0.8450 0.8067 0.8450

GSE19429 0.9384 0.9150 0.9384

GSE9006 0.9014 0.6893 0.8848

GSE48350 1.0000 0.6333 1.0000

GSE5281 0.8472 0.5404 0.8444

GSE35978 0.6805 0.6720 0.7077

GSE53987 0.7385 0.7321 0.7090

GSE12288 0.5266 0.0000 0.6090

GSE15852 0.8579 0.3989 0.8579

GSE42568 0.9644 0.8596 0.9644

GSE29431 0.9857 0.8190 0.9857

GSE18520 1.0000 0.8405 1.0000

GSE19804 0.8940 0.8774 0.9190

GSE10072 0.9514 0.5418 0.9514

GSE68571 1.0000 0.8956 1.0000

Average ± SEM 0.8691± 0.0279 0.8557± 0.0280 0.8665± 0.0287

Table 69: Experiment 2d: Precision for each dataset, averaged over 10-fold cross-validation, using
state-of-the-art rule learning classifiers compared to BRL. Classifier with higher values of precision
are better performing for a given dataset. The last row calculates the average for each classifiers
across 25 datasets and also reports the standard error of mean.
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Data Boosted-BRL.DT-LC Boosted-BRL.DT-BMA Boosted-BRL.DT-BMC

GSE66360 0.8200 0.1750 0.8200

GSE62646 0.9667 1.0000 0.9667

GSE41861 0.8356 1.0000 0.8356

GSE20881 0.8089 1.0000 0.8389

GSE3365 0.9306 1.0000 0.9431

GSE16879 0.9690 1.0000 0.9690

GSE15245 0.8600 1.0000 0.8400

GSE6613 0.2200 0.0000 0.5400

GSE20295 0.4250 1.0000 0.6750

GSE30999 0.9750 0.6778 0.9625

GSE55447 0.8550 1.0000 0.8550

GSE19429 0.9889 1.0000 0.9889

GSE9006 0.8867 1.0000 0.8867

GSE48350 1.0000 1.0000 1.0000

GSE5281 0.8653 1.0000 0.8875

GSE35978 0.7160 1.0000 0.7576

GSE53987 0.9533 1.0000 0.7333

GSE12288 0.3636 0.0000 0.5091

GSE15852 0.8550 0.7000 0.8550

GSE42568 0.9818 1.0000 0.9818

GSE29431 0.9833 1.0000 0.9833

GSE18520 0.9800 1.0000 0.9800

GSE19804 0.9000 0.8833 0.9167

GSE10072 0.9500 1.0000 0.9500

GSE68571 0.9875 1.0000 0.9875

Average ± SEM 0.8431± 0.0413 0.8574± 0.0630 0.8665± 0.0270

Table 70: Experiment 2d: Recall for each dataset, averaged over 10-fold cross-validation, using
state-of-the-art rule learning classifiers compared to BRL. Classifier with higher values of recall are
better performing for a given dataset. The last row calculates the average for each classifiers across
25 datasets and also reports the standard error of mean.
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Data Boosted-BRL.DT-LC Boosted-BRL.DT-BMA Boosted-BRL.DT-BMC

GSE66360 0.8333 0.2540 0.8333

GSE62646 0.9474 0.8000 0.9474

GSE41861 0.8042 0.7948 0.8172

GSE20881 0.8377 0.7306 0.8513

GSE3365 0.9133 0.8019 0.9195

GSE16879 0.9833 0.9104 0.9833

GSE15245 0.8381 0.8793 0.8350

GSE6613 0.2821 0.0000 0.4779

GSE20295 0.4250 0.6015 0.5870

GSE30999 0.9708 0.6328 0.9591

GSE55447 0.8471 0.8936 0.8471

GSE19429 0.9628 0.9556 0.9628

GSE9006 0.8868 0.8154 0.8785

GSE48350 1.0000 0.7748 1.0000

GSE5281 0.8523 0.7016 0.8603

GSE35978 0.7033 0.8039 0.7277

GSE53987 0.8314 0.8451 0.7309

GSE12288 0.4651 0.0000 0.5385

GSE15852 0.8409 0.5979 0.8409

GSE42568 0.9714 0.9244 0.9714

GSE29431 0.9815 0.9000 0.9815

GSE18520 0.9905 0.9138 0.9905

GSE19804 0.8852 0.8689 0.9091

GSE10072 0.9483 0.7030 0.9483

GSE68571 0.9942 0.9451 0.9942

Average ± SEM 0.8398± 0.0374 0.7219± 0.0529 0.8557± 0.0289

Table 71: Experiment 2d: F-measure for each dataset, averaged over 10-fold cross-validation, using
state-of-the-art rule learning classifiers compared to BRL. Classifier with higher values of F-measure
are better performing for a given dataset. The last row calculates the average for each classifiers
across 25 datasets and also reports the standard error of mean.
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Table 72: Experiment 2: AUROC by state-of-the-art classifiers, averaged across 10-fold cross-validation for
each dataset. Last row contains the average across the datasets and the standard error of mean.
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Table 73: Experiment 2: AUPRG by state-of-the-art classifiers, averaged across 10-fold cross-validation for
each dataset. Last row contains the average across the datasets and the standard error of mean.
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Table 74: Experiment 2: Brier scores by state-of-the-art classifiers, averaged across 10-fold cross-validation
for each dataset. Last row contains the average across the datasets and the standard error of mean.
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[Garćıa et al., 2010] Garćıa, S., Fernández, A., Luengo, J., and Herrera, F. (2010). Advanced
nonparametric tests for multiple comparisons in the design of experiments in computa-
tional intelligence and data mining: Experimental analysis of power. Information Sciences,
180(10):2044–2064.

[Geng and Hamilton, 2006] Geng, L. and Hamilton, H. J. (2006). Interestingness measures
for data mining: A survey. ACM Computing Surveys (CSUR), 38(3):9.

[Ginsburg and Willard, 2009] Ginsburg, G. S. and Willard, H. F. (2009). Genomic and
personalized medicine: foundations and applications. Translational research, 154(6):277–
287.

[Goff et al., 2014] Goff, D. C., Lloyd-Jones, D. M., Bennett, G., Coady, S., DAgostino, R. B.,
Gibbons, R., Greenland, P., Lackland, D. T., Levy, D., ODonnell, C. J., et al. (2014).
2013 acc/aha guideline on the assessment of cardiovascular risk. Circulation, 129(25 suppl
2):S49–S73.

[Goldstein, 1992] Goldstein, D. J. (1992). Beneficial health effects of modest weight loss. In-
ternational journal of obesity and related metabolic disorders: journal of the International
Association for the Study of Obesity, 16(6):397–415.

[Goossens et al., 2015] Goossens, N., Nakagawa, S., Sun, X., and Hoshida, Y. (2015). Cancer
biomarker discovery and validation. Translational cancer research, 4(3):256.

[Gopalakrishnan et al., 2006] Gopalakrishnan, V., Ganchev, P., Ranganathan, S., and
Bowser, R. (2006). Rule learning for disease-specific biomarker discovery from clinical
proteomic mass spectra. In International Workshop on Data Mining for Biomedical Ap-
plications, pages 93–105. Springer.

[Gopalakrishnan et al., 2010] Gopalakrishnan, V., Lustgarten, J. L., Visweswaran, S., and
Cooper, G. F. (2010). Bayesian rule learning for biomedical data mining. Bioinformatics,
26(5):668–675.

[Gopalakrishnan et al., 2004] Gopalakrishnan, V., Williams, E., Ranganathan, S., Bowser,
R., Cudkowic, M. E., Novelli, M., Lattazi, W., Gambotto, A., and Day, B. W. (2004). Pro-
teomic data mining challenges in identification of disease-specific biomarkers from variable
resolution mass spectra. In Proceedings of SIAM Bioinformatics Workshop, volume 10.
FL: Lake Buena Vista.

[Graham, 2009] Graham, J. W. (2009). Missing data analysis: Making it work in the real
world. Annual review of psychology, 60:549–576.

[Group et al., 2001] Group, B. D. W., Atkinson Jr, A. J., Colburn, W. A., DeGruttola, V. G.,
DeMets, D. L., Downing, G. J., Hoth, D. F., Oates, J. A., Peck, C. C., Schooley, R. T.,
et al. (2001). Biomarkers and surrogate endpoints: preferred definitions and conceptual
framework. Clinical pharmacology & therapeutics, 69(3):89–95.

258



[Günther et al., 2012] Günther, O. P., Chen, V., Freue, G. C., Balshaw, R. F., Tebbutt,
S. J., Hollander, Z., Takhar, M., McMaster, W. R., McManus, B. M., Keown, P. A., et al.
(2012). A computational pipeline for the development of multi-marker bio-signature panels
and ensemble classifiers. BMC bioinformatics, 13(1):326.

[Hanley and McNeil, 1982] Hanley, J. A. and McNeil, B. J. (1982). The meaning and use of
the area under a receiver operating characteristic (roc) curve. Radiology, 143(1):29–36.

[Harary and Palmer, 2014] Harary, F. and Palmer, E. M. (2014). Graphical enumeration.
Elsevier.

[Hastie et al., 2005] Hastie, T., Tibshirani, R., Friedman, J., and Franklin, J. (2005). The
elements of statistical learning: data mining, inference and prediction. The Mathematical
Intelligencer, 27(2):83–85.

[Heckerman, 1990] Heckerman, D. (1990). Probabilistic similarity networks. Networks,
20(5):607–636.

[Heckerman, 2008] Heckerman, D. (2008). A tutorial on learning with bayesian networks. In
Innovations in Bayesian networks, pages 33–82. Springer.

[Hewett et al., 2002] Hewett, M., Oliver, D. E., Rubin, D. L., Easton, K. L., Stuart, J. M.,
Altman, R. B., and Klein, T. E. (2002). Pharmgkb: the pharmacogenetics knowledge
base. Nucleic acids research, 30(1):163–165.

[Hoeting et al., 1999] Hoeting, J. A., Madigan, D., Raftery, A. E., and Volinsky, C. T. (1999).
Bayesian model averaging: a tutorial. Statistical science, pages 382–401.

[Iman and Davenport, 1980] Iman, R. L. and Davenport, J. M. (1980). Approximations
of the critical region of the fbietkan statistic. Communications in Statistics-Theory and
Methods, 9(6):571–595.

[Jabbari et al., 2017] Jabbari, F., Naeini, M. P., and Cooper, G. F. (2017). Obtaining
accurate probabilistic causal inference by post-processing calibration. arXiv preprint
arXiv:1712.08626.

[Jabbari et al., 2018] Jabbari, F., Visweswaran, S., and Cooper, G. F. (2018). Instance-
specific bayesian network structure learning. Proceedings of machine learning research,
72:169.

[Japkowicz and Stephen, 2002] Japkowicz, N. and Stephen, S. (2002). The class imbalance
problem: A systematic study. Intelligent data analysis, 6(5):429–449.

[Jeffreys, 1998] Jeffreys, H. (1998). The theory of probability. OUP Oxford.

[Ji et al., 2017] Ji, J., Yang, C., Liu, J., Liu, J., and Yin, B. (2017). A comparative
study on swarm intelligence for structure learning of bayesian networks. Soft Comput-
ing, 21(22):6713–6738.

259



[John and Langley, 1995] John, G. H. and Langley, P. (1995). Estimating continuous distri-
butions in bayesian classifiers. In Proceedings of the Eleventh conference on Uncertainty
in artificial intelligence, pages 338–345. Morgan Kaufmann Publishers Inc.

[Kanehisa et al., 2011] Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., and Tanabe, M.
(2011). Kegg for integration and interpretation of large-scale molecular data sets. Nucleic
acids research, 40(D1):D109–D114.
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