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Effective Field Theory Interpretation of ATLAS Top Quark

Measurements
Sebastian Andreas Merkt, PhD

University of Pittsburgh, 2019

In the first part of this dissertation, the combination of ATLAS top quark mea-
surements to constrain dimension-six operator coefficients is presented. Top quark
measurements provide a powerful tool to constrain the electroweak interaction of
top quarks. Many models of physics Beyond the Standard Model (BSM) predict
deviations of top quark interactions from the Standard Model. The Standard Model
Effective Theory (SMEFT) provides a framework to parameterize BSM effects in a
model independent way. Combining top quark measurements allows to constrain
several Wilson coefficients of the dimension-six SMEFT operators at once. Specifi-
cally, the combination of the y/s = 8 TeV t-channel single top cross section, the W
helicity fractions and the single top decay distributions is studied. This allows to
constrain a set of five Wilson coefficients, four of which generate modifications to
the Wtb interaction vertex and one four-quark interaction. Systematic uncertainties
are correlated between the measurements and these correlations are calculated and
included in the combination. Limits are set simultaneously on all Wilson coefficients
as well as individually. All limits are in accordance with Standard Model predictions.

In the second part, the new ATLAS 3D event display VP1-Light is presented.
VP1-Light is a lightweight, standalone version of the general purpose 3D event display
VP1. VP1 is tightly integrated into the ATLAS experiment’s software framework,
making the use of VP1 rather restrictive. With VP1-Light these restrictions have

been eliminated giving ATLAS physics analysis users an easy to use event display.
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1.0 Introduction

The Standard Model of particle physics was established in the 1960’s and was
since confirmed by numerous experiments. Among the most important discoveries
were the electroweak gauge bosons in 1983 and the recent discovery of a heavy scalar
boson at the LHC, that looks much like the Higgs boson, predicted by the Standard
Model. All these features provide reason to measure every aspect of the Standard
Model to highest precision. On the other hand, the Standard Model can not provide
answers to all phenomena found in the universe. Some of these, like the presence of
dark matter, the matter-antimatter asymmetry or the existence of neutrino masses
can not be explained by the Standard Model and thus needs an extended or modified
theory. This gives reason to not only measure the Standard Model in full precision,
but also to search for effects of new physics that may provide answers to these
unsolved questions. in this work, an analysis is presented, that constrains the effects
of physics beyond the Standard Model in terms of effective couplings. Constraining
these couplings is possible by fitting the couplings to a combination of different
top quark measurements conducted by ATLAS. Each measurement has its own
advantages and is able to constrain different regions of the parameter space of the
effective couplings. This combination will be the first part of this work.

In the second part, the new standalone event display of the ATLAS collaboration,
VP1-Light is presented. VP1-Light is a lightweight version of the event display VP1,
which served the experiment for many years as one of the primary event displays to
generate graphics of the ATLAS detector and collision events, but also as a tool for
development and debugging. However, VP1 is tightly integrated into the experiments

software framework and can therefore not be used on personal computer. VP1-



Light does not have this constraint and it is possible to run VP1-Light on personal
computers running macOS or Linux.

This work is organized as follows. In Chapter 1, an introduction to the physics
concepts is given. The Standard Model of particle physics is reviewed and the concept
of Effective Field Theories is introduced. An overview of the physics of the top quark
is also given. Further, some technical details required for this combination are given.
This includes some basics of statistics and Monte Carlo Generation. In Chapter
2, the combination of the ATLAS top quark measurements is given in full detail.
Finally, in Chapter 3, the new standalone event display of ATLAS, VP1-Light is

presented.

1.1 The Standard Model Of Particle Physics

The Standard Model (SM) of elementary particle physics describes three of the
four known interactions of the universe, namely the strong interaction, the weak
interaction, and the electromagnetic interaction. Furthermore it describes the inter-

action of these with the fermions that form the known matter. The gauge group of

the SM is

SU(3)e x SU(2);, x U(1)y = SU(3)¢ x U(1),,,, (1.1)

where SU(3)¢ is the gauge group of the strong interaction or Quantum Chromo-
dynamics (QCD), SU(2);, the gauge group of the weak interaction and U(1)y the
hypercharge gauge group. Each interaction has its corresponding gauge bosons and
coupling constant g, which are independent parameters in the SM. The SU(3)¢ group
has 8 gauge fields G**, a = 1,--- , 8 called gluons, the SU(2), group has three gauge



fields W#e a = 1,2,3 and the U(1)y group has one gauge field B*. The Lagrangian

density or Lagrangian of the Standard Model is given in short notation by
1 1

— __B,, B" —
Lsn Vit 4

+ (DMQO)T (DMO) —V(p)
+i (LIPL + éplper + qlpq + urlug + drlpdg)

— (EfeeRgp + qUyurp + qUadryp + h.c.) ) (1.2)

1
I i A ~Auv
WL W G G

The first row holds the kinetic terms of the gauge fields. The second row cor-
responds to the Higgs sector. It contains the kinetic term of the Higgs field ¢, its
interaction with the SU(2) gauge fields and the Higgs potential. The Higgs potential,
given by

V() =—p*lo+ %A (¢'e)’, (1.3)
contains the self-interaction terms of the Higgs field. The coefficients 1 and A need
to be determined experimentally. The covariant derivative applied to the Higgs field
is given by

D,y = (a“ —ig'YB, — iggwg) . (1.4)
The third row contains the kinetic terms of the fermions and their interactions with
the gauge bosons. The physical fermion fields after spontaneous symmetry braking
are grouped according to their transformation properties under SU(2), into doublets

and singlets

€Li

Li = y €Ri, (15)
Vri
UL

q; = ) UiR, dRi7 (16)
dri



where L and ¢ are the left-handed doublets of leptons and quarks, respectively. eg,
ugr and dg are the right-handed charged leptons and the up and down type quarks,

respectively. The generation index ¢ denotes the three generations of leptons

e; = e (electron), ey = p (muon), es = 7 (tau), (1.7)

and quarks
u; = u (up), ug = ¢ (charm), ug =t (top), (1.8)
d; = d (down), dy = s (strange), d3 = b (bottom). (1.9)

A right-handed neutrino does not exist in the Standard Model, since would be a
singlet under all three gauge groups. The covariant derivative for the leptons and

quarks is given by
D,L=10,—-1igYB, — zg;WH L (1.10)
7_[ s )\A "
D,q = (@ —ig'YB, — zg;Wu — ng?@t) q. (1.11)

Through the covariant derivative, the fermions get their interaction terms with the
gauge fields. The gluon field GZ‘ only couples to the color carrying quarks. The
last row of Eq. 1.2 holds the Yukawa interactions between the Higgs field and the
fermions. It also provides masses to the fermions through the Higgs mechanism
[3, 4, 5]. The Yukawa couplings I" are matrices in generation space of the fermion
and @ = iT2p*.

The Standard Model gauge group of Eq. 1.1 is spontaneously broken via the
Higgs mechanism to

SU(3)e % U(1)em, (1.12)



Name (Symbol) Electric Charge Weak Isospin Mass

Electron neutrino (v,) 0 : < 1.1 eV[1]
Muon neutrino (v,) 0 : <1l1eV
Tau neutrino (v,) 0 i <11eV
Electron (e) -1 —3 0.511 MeV
Muon (p) -1 —1 105.66 MeV
Tau (1) -1 -1 1776.86 MeV
Up (u) +2 ! 2.16 MeV
Charm (c) +32 : 1.27 GeV
Top (t) +2 3 173.29 GeV
Down (d) —3 -1 4.67 MeV
Strange (s) -3 —3 93 MeV
Bottom (b) —3 -1 4.18 GeV

Table 1: The fermions of the Standard Model are divided into leptons and quarks.
They are shown here with their electric charge, weak isospin and mass. All masses

taken from Ref. [2] unless otherwise stated.

where U(1)ey, is the electromagnetic gauge group. In the Higgs mechanism, an addi-

tional SU(2), invariant doublet is introduced, which acquires a non-vanishing vacuum



expectation value. The Higgs doublet is given by

ot 0
p(r) = = pl@)=| (1.13)
o Z5lv + h(z)]

where v is the vacuum expectation value and h is the physical Higgs field. The
Higgs-doublet field ¢(z) is given in its general form on the left side of Eq. 1.13 and
in the unitary gauge on the right side. In the unitary gauge, the unphysical degrees
of freedom have been eliminated. The vacuum expectation value is the minimum of

the Higgs potential in Eq. 1.3. Its value, given by

v
v 1.14
|l 7 (1.14)
v = <\/§GF)_i ~ 246.2 GeV, (1.15)

can not be predicted by the Standard Model, but it can be expressed in terms of
the well measured Fermi constant [6]. The mass of the Higgs boson is likewise not
predicted by the Standard Model. It was discovered in 2012 by the ATLAS [7] and
CMS [8] experiments and subsequently its mass was measured to m;, = 125.094+0.24
GeV [9]. Plugging in the Higgs field in unitary gauge into the Higgs part of the
Standard Model Lagrangian in Eq. 1.2, the term involving the covariant derivative
of the Higgs field provides both interactions of the Higgs and the gauge bosons and
mass terms for the gauge boson. The physical, charged gauge bosons can now be
written as

W = % (W W?) | (1.16)

and the neutral gauge bosons are

A, cos By — sin By, B, (1.17)
Z, sinfy,  cos Oy Wj’ ’ .



where the sine and cosine of the Weinberg angle 6y, are given by a ratio of the weak

and hypercharge coupling constants as

/

g
9

e = gsinfy = ¢ cos by = Vira. (1.19)

sin Oy =

cos Oy = (1.18)

The last equation relates the Weinberg angle to the electric charge and the electro-
magnetic coupling constant. The charges of the SU(2);, x U(1)y are related to the
charge of the U(1)ey, group through the Gell-MannNishijima formula

Q=1+Y, (1.20)

where () is the generator of the electric charge. The masses of the gauge bosons are

then given by

Table 2 lists the bosons of the Standard Model including their electric charge, spin
and mass. The masses of the fermions are generated via Yukawa couplings in the last
row of the Standard Model Lagrangian in Eq. 1.2. Diagonalizing the matrices I" cre-
ates mass terms for the fermions. However, this diagonalization involves a rotation
of the fermions from their flavor eigenstates to their mass eigenstates. Writing the
interaction terms of the fermions with the gauge bosons in terms of the mass eigen-

states introduces the matrices from the diagonalization to the interaction terms. In



Name (Symbol) Electric Charge Spin  Mass [2]

Photon (A) 0 1 0
W boson (W) +1 1 80.4 GeV
Z Boson (Z) 0 1 91.2 GeV
Gluon (g) 0 1 0
Higgs (h) 0 0 1251 GeV

Table 2: The bosons of the Standard Model are the electroweak gauge bosons (7,
W, Z), the gauge boson of the strong interaction (g) and the Higgs boson (h) listed

with their electric charge, spin and mass.

most cases they drop out, however, there is one remaining matrix in the interaction

term between the VW boson and the quarks. This interaction term can be written as

3
g 7 _
£gauge D) E Z dLm“VijuLqu + h.C., (122)

i,j=1

where the unitary matrix V' is the Cabibbo-Kobayashi-Maskawa (CKM) matrix [10].
The first consequence of the CKM matrix is that its off-diagonal elements induce
flavor changing currents. Flavor refers to the different types of quarks in Eq. 1.9.
Further, the CKM matrix is a complex matrix and in general V;; # (%j)T. Therefore,
a process that is proportional to V;; differs from its conjugate process. This leads to

C' P-violation in the Standard Model.



1.1.1 QCD At Hadron Colliders

In a Quantum Field Theory like the Standard Model, higher order corrections
in the perturbation series introduce divergences. To remove these divergences, the
theory has to be renormalized. However, renormalization introduces a scale depen-
dence of physical quantities such as masses and couplings. The scale is referred to
as the renormalization scale pg. In theory, this scale dependence drops out when
calculating observables such as cross sections or decay rates. However, in practice
this might not always be the case. As an example, the dependency of strong coupling

2 . . . .
constant o, = = on the renormalization scale is given by

5 o, (17
as (uR) = — o (1.23)
( ) 1+ (Sglzinf) s (1?)In Ea

where is the ug is the renormalization scale and «j (u?) is the coupling constant
at a known scale u. A common choice for p is the Z boson mass, u = my,
where a,(m%) ~ 0.1181. The scale at which the strong interaction becomes non-
perturbative, that is cs (Ag¢p) = 1, is called the QCD scale and Agep ~ 200 MeV.

In proton collisions at high energies the proton can not be described simply
by its valence quarks p = (uud). Instead, a more detailed description in terms
of all partons occurring in a proton has to be used. In the parton description of
the proton, the proton consists of a sea of strongly interacting particles. Since the
proton’s quantum numbers are still given by the valence quarks, the contribution
of the quantum numbers of the quarks and gluons in the sea has to vanish. As a

consequence, sea-quarks always come in quark-anti-quark pairs. When two protons

collide, the hard interaction is then described by the collision of two partons, rather



than the protons themselves. The cross section of a collision process between two

protons p into some final state X can then be written as

ory(pp— X) = Z /dxidxjfi/l (xi,u%) fis (xj,,u%) o(ij = X), (1.24)

icl,jed

where 7, 7 are the two parton coming from proton I, .J, respectively. The parton
distribution functions (PDF) f;/; (z;, pu%) and fj/y (z;, uF) give the probability of
finding parton ¢, j in proton 7, J, with momentum fractions z; and x;. The momen-
tum fraction x; is the fraction of the total momentum of the proton carried by parton
. The factorization scale up is the scale that separates the perturbative QCD inter-
action that are part of the hard interaction cross section from the non-perturbative
QCD interactions, such as soft gluon radiation, that are part of the PDF. Figure 1
shows the PDF of the protons for two different energy scales. It gives a measure
of the probability of finding a parton with momentum fraction x in the proton. At
low proton energies, the valence quarks carry most of the momentum, while the
contribution of the gluons and sea quarks becomes more and more important with
increasing energy. The hard scattering process of the partons is given by o (ij — X).
The hard scattering process is calculated perturbatively at the renormalization g

as an expansion in oy as

0ij (Lr) = oLO + O (/ﬁz) oNLo + o (M?g) onnro + O (ai’) , (1.25)

where 01,0 is the Leading-Order (LO), onro is the Next-to-Leading-Order (NLO),

and oxnpo is the Next-to-Next-to-Leading-Order (NNLO) cross section, and so on.
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Figure 1: The proton’s parton distribution function for different energy scales p% =
10 GeV? (left) and p% = 10* GeV? as given by the NNPDF3.1 NNLO PDF sets
[11].

1.2 Effective Field Theory

The approach of effective theories has been used in physics for a long time, be
it the multi-pole expansion in electrodynamics, planetary motion or the spectrum of
the hydrogen atom. All these examples have one thing in common. They connect
different sizes, length, or energy scales. In the multi-pole expansion one is not in-
terested in the details of a charge distribution if the region of interest is located at

a large distance from that charge distribution. Similarly, for the planetary motion

11
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Figure 2: In the Fermi interaction, an up quark in a proton is converted into a
down quark, a positron and a neutrino. On the left, the full model shows the decay
through the mediation of a W boson. On the right, the effective conversion is

shown as a four-fermion point interaction.

the size of the planets is of no interest, and when calculating the spectrum of the
hydrogen atom one is usually not concerned about the nucleus consisting of quarks.

In a quantum field theory, large scale differences decouple such that the physics
at a high energy scale does not affect the physics at a low scale. More precisely, the
large scale effects are suppressed by powers of the ratio of the scales in the problem.
This leads to an Effective Field Theory (EFT) that can be parameterized in terms
of the symmetries and degrees of freedom of the low scale. One such example is the
Fermi theory of beta decay [12], which explains the decay of a neutron through the
transition of a down quark within the neutron into an up quark, an electron and an
electron anti-neutrino. It is described in the Standard Model (full theory) by the
mediation of a W boson. Therefore, the high scale of this problem is the W boson

mass. The momentum transfer in the transition through the W boson is however

12



much lower than the W boson mass. At this low scale, the beta decay can be de-
scribed by a four-fermion contact interaction. Figure 2 shows the transition of the
up quark into a down quark, an electron and an electron anti-neutrino. On the left
side, the transition is mediated by a W boson. On the right side, the transition is
described by a contact interaction, where the coupling constant G is proportional
to the inverse of the W boson mass squared. The W boson, the heavy degree at
the high scale has been integrated out. Matching the two diagrams one gets an

expression of the Fermi constant

Gp = %, (1.26)
w

where ¢ is the weak coupling constant and myy is the W boson mass.

In an EFT that is a power expansion in terms of the high energy scale A, each
order in the expansion is suppressed by more powers of that scale and therefore
contributes less and less to the low energy phenomena. This expansion contains in
principle to an infinite number of terms. However, in practice only a few terms need
to be considered and the number of terms depends on the required accuracy of the
problem. In the example of the beta decay, the Fermi contact interaction is only
the first term in such a series. The interaction is formally calculated by integrating
out the W boson, that is by performing the path integral over those degrees of
freedom. In practice, integrating out is usually done using the Feynman diagram
methods instead of path integrals. In the Feynman diagram method, an interaction
is calculated in both, the full and the effective theory and the coupling terms are then
matched onto each other. This approach is also known as the top-down approach in

which the full theory is known and an effective theory is constructed by integrating

out the heavy degrees.
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In the bottom-up approach, a known theory is assumed to be an effective theory
of some unknown theory. The most prominent example of the is the Standard Model
Effective Theory (SMEFT). In the SMEFT, the Standard Model is treated as an EFT
of an unknown theory Beyond the Standard Model (BSM) at a higher scale, where
the scale of the Standard Model is characterized by the electroweak scale given by the
vacuum expectation value v. Even though the BSM theory is not know, its effects
can still be parameterized by higher dimension operators in the power expansion.

Therefore, the effective SM Lagrangian can be written as an expansion
IO S CPNCORE. (6) ((6) 1
zeﬁ_LSM+K;q O +in:ci O +O(F)’ (1.27)

with expansion parameter A, the energy scale of the BSM physics. The ¢; are the
Wilson coefficients [13] or EFT coefficients of the operators O; which contain all the
degrees of freedom at the scale A. The scale A is the cut-off scale at which the power
expansion breaks down and the BSM theory can not be explained described by the
effective theory anymore. At this scale the heavy degrees of freedom can be produced
on-shell and need to be taken into account. The number in parentheses is the mass
or energy dimension of the respective operators. The operators consist of SM fields
and respect all the SM symmetries. At dimension 5 there only exists one possible
operator, called the Weinberg operator [14] given by

o) =3 (F'L) € (3'L). (1.28)
where C'is the charge conjugation operator, ¢ = iT2p*, where ¢ is the Higgs doublet
and 72 is the second Pauli matrix. 4, j are the generation indices of the leptons. Since

there are two charged leptons in the Weinberg operator, it violates lepton number
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by AL = 2. After spontaneous symmetry breaking and in the unitary gauge the

Weinberg operator becomes

) A
/ZX; O o ﬁvz’jzi’/w, (1.29)

giving a Majorana mass to the neutrinos through the mass matrix

5) U
M;; CEJPF. (1.30)

For Wilson coefficients of order one and neutrino masses of less than about 1 eV this
implies a mass scale of O (10'), which is well out of reach for the LHC.

At dimension 6, there is a significant amount of operators the can be constructed
from the Standard Model degrees of freedom [15]. However, many of the possible
operators are redundant and can be removed from the basis by using the equations
of motion of the fields or Fierz identities. A complete, non-redundant basis has been
found [16] which consists of 59 independent operators, not counting flavor indices
and hermitian conjugates.

To study the interactions of top quarks only a subset of these operators, involving
at least one top quark, is needed. Ref. [17] gives a detailed overview of the SMEFT
top quark sector, listing all dimension-six operators that couple to at least one top
quark. However, not all of these operators contribute to the processes studied in this

analysis. In particular, there are six contributing dimension-six operators. Four of
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these contribute directly to the Wtb vertex which governs both the single top quark

production and decay. The general form of these operators is given by

.. <~
O3 = (¢T1D£w> (@ 7"7'q;)

0L = (3'iD,p) (@ y"d;) .
ulé& = ( G o rlu ) le,,
O = (G o™ 7d) o WL, (1.31)

The operators that contribute specifically to top quark physics are given by Eq. 1.31
by setting ¢« = 3, j = 3 to select the operators that involve third generation quarks.
Then, writing Eq. 1.31 in the physical basis, each of these operators contribute to
the Wtb Lagrangian as by
3 gv*- -
qu D ——va“tLW# ,

V2

qu? - 1
Ouip O | —=bgY*"tgW | |,
otb [2\/5 RV IR #}

Ow D QUZ_)Lia“”qthWl:,

Oww D [20bgic" gt W, ]". (1.32)

Note, that the flavor indices have been dropped. Each of the operators contributes
to the Wtb vertex with a different Lorentz structure. (9;3% has a Lorentz struc-
ture similar to the SM in Eq. 1.22 and therefore modifies the left-handed vector
coupling present in the SM. O induces a right-handed vector coupling and Oyw
and Oy contribute as left-handed and right-handed tensor couplings, respectively.
Furthermore, Oy, Oy, and Oy are non-Hermitian operators and therefore their
Wilson coefficients are complex. A non-vanishing imaginary part can then lead to

CP violation.
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It is customary to write the general for of the Lagrangian describing the Wtb
interaction in terms of the so called anomalous couplings as [18, 19]
g 510"y

9 7 _
Lyww =——=by" (VL P, + VrPg)t W, — —=b
Witb 2'7(LL rPR) " /2 mw

(9. + grPr)t W, +h.c.,

&l

(1.33)

where Pr/p is the left- and right handed projection operator, my is the mass of the
W and g is the weak couplings constant. The anomalous couplings V;, Vi, g1, and

gr are then each proportional to one dimension-six Wilson coefficient

2 2

v v
— (3) — /9
VL — ‘/tb + Fcpqu gL = \/ﬁAgcbW7
1%, v?
VR = 5@04‘0%7 gr = —\/ipctw. (134)

There is a relative minus sign between the definitions in Ref. [18, 19] and Eq. 1.34 in
the coefficients g;, and gr. This sign difference arises from different conventions for
the covariant derivative. In Eq. 1.32 the covariant derivative is defined with a minus
sign as shown in Eq. 1.4 where in Ref. [18, 19] the sign of the B, and W, terms is a
plus sign. This sign difference can be absorbed by a field redefinition

B, — —B,,

WH — _W,u,, (135)

leaving the operators Oiq and O,y unchanged. However, the operators Oy and
Opw contain an explicit ij in their definition. Therefore, Eq. 1.35 introduces a

relative minus sign for these two operators.

17



The remaining two operators contributing to the top quark physics studied in
this analysis are two four-quark operators. These operators are given by, assuming

minimal flavor violation (MFV),

O = (g7,q5) (@7 a)

O™ = (@, a;) (@' m°a) - (1.36)

Minimal flavor violation (MFV) assumes a unit CKM matrix and only non-vanishing
Yukawa couplings for the top and bottom quarks so that I', = diag(0,0,y;) and
Iy = diag (0,0, y) and the third generation of quarks does not mix with the first two

generations. The four-quark operators can be rewritten as

3,1 3(ii33 1(233¢ 3(2331
€Qq = ch(z '+ 6 (th(z = th(z )>
3,8 _ 1(i33i 3(i33i
€Qq = th(z ) - ng )’ (1-37)

where the first one is an SU(2) triplet and color singlet and the second one is an SU(2)
triplet and color octet. From these two, only the color singlet interferes with the
Standard Model amplitude, while the color octet contributes at O (A™*). Therefore,
it is assumed that the color singlet operator dominates and this analysis restricts the

study to the operator c:é?’;.
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1.3 The Top Quark

The existence of the top quark was first proposed by Kobayashi and Maskawa in
1973 [10] to explain the CP violation in the decay of K mesons. 22 years later, in
1995, the top quark was discovered by the CDF [20] and DO [21] experiments at the
Tevatron collider at Fermilab, the only collider with a sufficiently high center-of-mass
energy to produce top quarks. With a pole mass of m; = 173.29 + 0.95 GeV it is the
heaviest particle in the Standard Model. This mass corresponds to the current LHC
combination shown in Figure 3. It is a combination of top mass measurements from
the ATLAS and CMS experiments for different channels at different center-of-mass
energies. Since the discovery and especially since the start-up of the LHC, top quark
interactions have been an active field of research. Having a a very short lifetime of
approximately 3 x 1072 s [23], the top quark does not hadronize before it decays,
since the hadronization time scale is much larger, O (10723s). This makes the top
quark the only quark in the Standard Model that can be studied almost as a free
quark. Due to the short lifetime, the decay products of the top quark also retain
the information of the top quarks polarization. This makes the study of single top
quarks especially interesting, since the top quarks are produced predominantly left-
handed through electroweak interaction. Precise measurements of these interactions
may then reveal new forms of interactions. The following sections give a review of
the different production mechanism of top quarks at the LHC are discussed. Further,

the top quark decay and related observables are discussed.
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Figure 3: Comparison of ATLAS and CMS top mass measurements taken from

Ref. [22].

1.3.1 Top Quark Production

At the LHC, the production of top quarks are produced through two different
mechanisms. Top quark pairs are predominantly produced through the strong inter-

action and single top quarks are produced through electroweak processes. The single
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Figure 4: Leading order Feynman diagrams of top pair production through gluon
fusion (a), (b) and quark-anti-quark annihilation (c). Single top quark production
through the t-channel process (d), s-channel process (e) and production in

association with a W boson (f).

top productions is again divided into three different types. The top quark can be
produced in a t-channel W boson scattering process, an s-channel Drell-Yan process
and in association with a W boson. All processes are shown in Figure 4. The top
row shows the top pair production processes and the bottom row shows the single
top production processes. Top pairs can be produced either through gluon fusion
(a), (b) or quark-anti-quark annihilation (c). Diagram (c) exists in principle also
with an intermediary photon or Z boson. However, their contribution to the cross

section is very small compared to the QCD process involving gluons. The single top

21



production processes are ranked according to the size of the cross section, t-channel
(d), associated production with a W boson (e), and s-channel (f). To illustrate the
relative size of the cross sections, Tables 3—6 shows the cross sections of all processes
for different center-of-mass energy. Both theoretical predictions' and experimental
results by ATLAS and CMS are shown. Both top pair production and t-channel
single top production were measured at ATLAS and CMS at /s = 7,8,13 TeV. Ev-
idence was found for the single top production in association with a W boson at /s
= 7 TeV and it was subsequently measured at /s = 8, 13 TeV. For the s-channel
single top production, evidence was first found at /s = 8 TeV at both ATLAS and
CMS. This analysis focuses on the t-channel single top quark production, which is
the dominating single top process at the LHC. In the t-channel process, a bottom
quark and a light quark or anti-quark interact through the exchange of a t-channel
W boson, to produce a top quark and a light quark or anti-quark. The t-channel
process is shown in Figure 5 in the 5 flavor-scheme (a) corresponding to the 2 — 2
process pp — tj and in the 4 flavor-scheme (b) corresponding to the 2 — 3 process
pp — tbj. In the 5 flavor scheme, the mass of the bottom quark is assumed to be neg-
ligible compared the the energy scale of the process. The bottom quark is therefore
taken to be massless and there is a non-zero probability of finding a bottom quark
in the proton. The light quark ¢ in Figure 5 (a) can be either of ¢ = u, ¢, d, 5 for top
quark production and ¢ = d, s, u, ¢ for top anti-quark production. Since the abun-
dance of u valence quarks is twice the abundance of down valence quarks, the top
quark cross section is approximately a factor of two larger than the top anti-quark

production. In the 4 flavor scheme, the bottom quark mass is taken to be non-zero.

1

Theory values calculated with a top quark mass of m; = 172.5 GeV using Top++ [24] for ¢f cross
section and the HATHOR v2.1 tool [25] for the single top cross sections.
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Experiment/Theory! /s (TeV) o (pb)

Theory tt 7 177.311}18
Theory tt 8 252.8911231
Theory tt 13 831.767 354
ATLAS tt 7 18294 7.15 [26]
ATLAS tt 8  242.948.76 [26]
ATLAS tt 13 818 + 36 [27]
CMS tt 7 174.5 4+ 6.1 [28]
CMS tt 8 245.6 + 9.0 [28]
CMS tt 13 803 + 32 [29]

Table 3: Predicted and measured values of the top quark pair production cross

sections.

In this case, the bottom quark comes from a gluon splitting into a bb pair, as seen in
(b) of Figure 5. A similar diagram in the 4 flavor-scheme where the gluon splits into
a tt pair also contributes, although with a much smaller cross section. In principle,
there is also a remaining b quark in the 5 flavor scheme. However, the b quark is not
part of the hard process. Instead, the b is part of the initial state radiation process
and is taken care of by the PDF set of the proton. This also means, that the b has

a small transverse momentum and goes undetected along the direction of the beam
pipe.

The t-channel single top production proceeds through the Wtb vertex and there-
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Experiment/Theory! Process /s (TeV) o (pb)

Theory t-chan 7 63.897327
Theory t-chan 8 84.691%51
Theory t-chan 13 216.991991
ATLAS t-chan 7 68 + 8 [30]
ATLAS t-chan 8 89.6 + 6.7 [31]
ATLAS t-chan 13 247 + 46 [32]
CMS t-chan 7 67.2+6.1 [33]
CMS t-chan 8 83.6 + 7.7 [34]
CMS t-chan 13 219 =+ 36 [35]

Table 4: Predicted and measured values of the combined top quark and anti-quark

t-channel cross section.

fore the top quarks in this production mechanism are highly polarized. This is due
to the V' — A structure of the Wtb interaction in Eq. 1.22, which restricts couplings
of the W boson to left-handed top quarks. The polarization of the top quark in
t-channel production is usually defined through the direction of the spectator quark

momentum py, that is the 2-direction of the polarization is

(1.38)

When referring to the top quark polarization, the polarization in the Z-direction

P = P, is meant, unless otherwise stated. The Standard Model NNLO prediction of

24



Experiment/Theory! Process /s (TeV) o (pb)

Theory Wt 8 22.37122
Theory Wt 13 717582
ATLAS Wt 8 23.0 4 3.8 [36]
ATLAS Wt 13 94 + 27 [37]
CMS Wt 8 23.4 4+ 5.4 [38]
CMS Wt 13 63.1 %+ 6.97 [39]

Table 5: Predicted and measured values of the combined top quark and anti-quark

Wt cross section.

Experiment/Theory! Process /s (TeV) o (pb)
Theory s-chan 8 5241522
ATLAS s-chan 8 4.8 + 1.7 [40]
CMS s-chan 8 13.4+ 7.3 [41]

Table 6: Predicted s-channel cross section and results of searches for s-channel

single top production by ATLAS and CMS.

the polarization is P ~ 0.91 [42]. Experimentally, the top quark polarization can be

accessed by measuring the angular distribution of the analyzer in a top quark decay,
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Figure 5: Single top quark production in the 5 flavor scheme (a) and in the 4 flavor
scheme (b). The black dot represents the Wtb vertex with possible contributions

from EFT operators, see Section 1.2.

e.g. the lepton coming from the W boson decay. Then, the top quark polarization

can be determined from

1 dI 1
T doos O 2( + Pay cosfx), (1.39)

where 0y is the angle between the momentum of the decay product X = (T, vy,
q, ¢, W, bin the top quark rest frame and the top spin direction. Since the top
quark is predominantly left-handed, its spin points in the opposite direction of its
momentum, which corresponds to the direction of the spectator quark momentum,
or the z-direction. Here, ¢ and ¢’ denote up and down type quarks from the W boson
decay. ay is the spin analysing power of the decay product X, where —1 < ax <1,
e.g. apm =~ oy ~ 1 and oy = —0.32 at leading order. The product of the spin
analysing power and the polarization was measured at ATLAS at a center-of-mass

energy of y/s = 8 TeV in the lepton channel to be oy P = 0.97 £ 0.12 [43].
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Figure 6: Semi-leptonic decay of a top quark into a bottom quark and a W boson,
where the W boson subsequently decays into a charged lepton and a neutrino. The
black dot represents the Wtb vertex with possible contributions from EFT

operators, see Section 1.2.

1.3.2 Top Quark Decay

The decay of the top quark proceeds through the electroweak interaction vertex
given in Eq. 1.22 and shown in Figure 6 including also the leptonic decay of the
W boson. Since the CKM matrix element Vj, ~ 1 > Vi, Vi, top quarks decay

predominantly into a W boson and a bottom quark.

1.3.2.1 W Boson Helicity The W boson coming from the decay of a top quark
is produced on-shell. An on-shell W has three distinct polarization states, two trans-
verse and one longitudinal. These polarization states can be measured in terms of
the helicity fractions Fy, F, and Fg, where Fj is the fraction of longitudinal and Fp,
and Fg are the fractions of left- and right-handed W bosons, respectively. In the W

boson rest frame, a differential cross section can be written down in terms of the W
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Figure 7: Event display of a t-channel single top event. The top quark decays into

a b-quark and a W boson. The b-quark initializes a b-jet which is shown as a blue
cone. The W boson then decays into a muon, shown as a curved red line and a
neutrino (not shown). The yellow cone represents the jet initiated by the spectator
quark from the single top quark production. Also shown are parts of the ATLAS

detector, discussed in Section 1.4.2.

helicity fractions as [44]

Edco(sfe* =1 (1 —cos®0) Fy + S (1 —cos0*)” Fp, + S (14 cos0)? Fp.  (1.40)
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Here, 6* is the angle between the reversed direction of b-quark momentum and the
lepton momentum in the W rest frame. In the Standard Model the W helicity

fractions are given at leading order for my, = 0 by [45, 46]

Vi

0= ———s - (1.41)

Vis|™ + 223 [Vis|

222, |V |?

_ fW’ ol ) (1.42)

Vio| ™ + 223 |V
Fr=0. (1.43)

For Vi, = 1 and oy = ’:‘n—"t‘/ this gives

Fy=0.7, (1.44)
F, =0.3, (1.45)
Fp=0. (1.46)

1.3.2.2 Top Quark Decay Distributions The previous section discussed the
W helicity fraction which are described through the angular distribution of the b-
quark coming from the top decay and the charged lepton coming from the W decay.
It is possible to describe the decay of the top quark in a more general form. Eq. 1.40
of the W helicity fractions parameterizes the decay through a single angle between
b-quark and lepton. In a similar way, the semi-leptonic decay of the top quark as
depicted in Figure 6, can be written down in a more generalized, triple differential

decay rate as [47, 48]

2 2

]ifd cosé’ dQ* ZZ Z apm My (0,07, 6%), (1.47)

k=0 =0 m=-1
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Figure 8: Coordinate system used in the single top decay distribution
measurement. € measures the angle between the direction of the W boson, given by
z, and the spectator quark momentum p;. The angle 6* and ¢* measure the polar
and azimuthal angle of the charged lepton momentum p;* and the W boson. See

text for more details.

where the M-functions are given by a product of spherical harmonics
M (0,07, ¢%) = V2rY," (0,0) Y, (07, ¢"), (1.48)

and ay,, are the angular expansion coefficients. There are 9 non-zero angular coef-
ficients ay;,, plus one constant normalization factor. The angles of the M-functions

are defined through the right-handed coordinate system shown in Figure 8. 6 is the
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angle between the direction of the W boson indicated by 2 = ¢/|q] and the spectator
quark p, in the top quark rest frame. The spectator quark is the light quark ¢ that
is produced along the top quark in on the left side of Figure 5. These two vectors,
z and p, define the & — Z plane of the coordinate system and the remaining y axis
is perpendicular to that. The angles #* and ¢* are the azimuthal and polar angle
between the direction of the W momentum and the momentum of the charged lepton
p;*, respectively.

The additional information from the angles # and ¢* allows to not just measure
the helicity of the W boson, but instead the four decay amplitudes A, », given
through the helicities of both the W boson Ay and the b-quark \,. These decay

amplitudes correspond to a top quark decaying into

e a longitudinal W plus a left-handed b-quark |Wyby), given by Aoﬁ%’
e a longitudinal W plus a right-handed b-quark [Wobr), given by A, 1
e a left-handed W plus a left-handed b-quark |[Wpby), given by A, 1,
e aright-handed W plus a right-handed b-quark [Wgbg), given by A; 1.

From these decay amplitudes, generalized helicity fractions and phases can be con-

structed. There are three fractions given by

2 2
‘Al,% + )Afl,fé
fl = ) ) ) 2 (149)
‘Al,% —i—’Afl’f% —i—‘AO’% —l—’AO’f%
2
414
= ; 5 (1.50)
‘ALl +’A_1 1
2
40
f(;r = 2 2 (15].)
‘A0’1 + A07 1
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where f; is the fraction decays containing transverse W bosons, f; is the fraction
of events containing right-handed W bosons and f; is the fraction of events that
contain longitudinal W bosons together with right-handed b-quarks. The two relative

phases are

0y = arg (AL%AS,Q : (1.52)

o —arg (A, 45 ), (1.53)

where 0, is the relative phases between the amplitudes of top quarks decaying into
right-handed W bosons and longitudinal W bosons, together with a right-handed
b-quark. The phase §_ is the phase between the amplitudes of top quarks decaying
into left-handed W bosons and longitudinal W bosons, together with a left-handed
b-quark. The generalized fractions f; and f;~ are related to the W helicity fractions
in Eq. 1.43. The W helicity fraction

Fr=fi(1-f),
FR = f1f1+7
Fo=1-f, (1.54)

such that f; = Fj, + Fr. With these fractions and phases, the angular coefficients

akm can be written in terms of the helicity amplitudes as

1

Q0,00 = ——

0010—\/7f1(f1——>,
aozo—m( f1—1) (1.55)
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1,00 = (fl (2f1 ) (1_f1) (1_2f5L))’
ai,1,0 =
a0 = +P (fl (2f1 )—2(1—f1) (1—2f0+)),

V480

*
1,11 = 411 1

1 5. »
:—P\/ﬁ fl(l—fl){\/fl 6+\/1_f1 ) (1= fo)e 5}

Q121 = G’I,Q,,l
P VR 1) {\/ff et = (- 1) (1- fo*)e“-} - (156)

Expressions of the generalized helicity fractions and phases in terms of the EFT

coefficients can be found in Appendix B.

1.4 The LHC And The ATLAS Experiment

1.4.1 The Large Hadron Collider

The Large Hadron Collider is the largest, most energetic particle collider build
to date. The LHC concept started in 1984 and after 25 years of planning and
construction the first proton - proton collisions occurred on the 20. November 2009
at a beam energy of 450 GeV. It then exceeded the previous record of 0.98 TeV
per beam held by Fermi National Accelerator Laboratorys Tevatron collider 10 days
later with an energy of 1.18 TeV per beam. Subsequently, the collision energy was
increased to /s = 7 TeV during the first part and /s = 8 TeV during the second
part of Run-1 (2010 - 2013). In its latest configuration during Run-2 (2015 - 2018)
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Figure 9: Schematic overview of the LHC located near Geneva, Switzerland,
approximately 100 m underground. The four main experiments, ATLAS, CMS,
LHCb and ALICE, and their location at the LHC are also shown. Graphic taken
from [49].

the LHC had a center-of-mass energy of 1/s = 13 TeV with an expected increase to
its maximum design center-of-mass energy of /s = 14 TeV during Run-3 stating in
2021. The LHC measures approximately 27 km in circumference and it is located 100
m underground the Swiss - French border near Geneva, as seen in Figure 9. The four

main experiments at the LHC are the ATLAS (A Large Toroidal LHC ApparatuS)
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experiment at Point 1 [50], CMS (Compact Muon Solenoid) at Point 5 [51], LHCb
(LHC beauty) at Point 8 [52], and ALICE (A Large Ion Collider Experiment) at
Point 2 [53]. Both ATLAS and CMS are general purpose experiments, LHCD is a
flavor physics experiment specialized in measuring properties of b flavored hadrons
and CP violation. ALICE is a dedicated heavy ion detector, designed to measure
the physics of strongly interacting matter.

The LHC is a collider with the ability to run either proton - proton (pp), heavy
ion (HI) lead - lead collisions, or a combination of proton - lead. For the protons
or heavy ions to reach their final collision energy, they pass through several pre-
acceleration steps. Initially, the protons are separated from hydrogen atoms, then
accelerated in the linear accelerator LINAC-2 to an energy of 50 MeV. Next, the
Proton Synchrotron Booster (PSB) accelerates the protons to an energy of 1.4 GeV.
After that, the protons enter the Proton Synchrotron (PS) where they reach an
energy of 25 GeV. Then, they are transferred to the Super Proton Synchrotron (SPS),
where they are further accelerated to an energy of 450 GeV. Finally, they are injected
into the LHC where they reach their final energy of 6.5 TeV. Figure 10 schematically
shows the steps of this acceleration process. Once the protons have reached their
collision energy in the LHC, they circulate in two counter-rotating beams. The
beams cross at four points along the ring at the sites of the four experiments. To
keep the beams on their circular track, superconducting dipole magnets cooled to a
temperature of 1.9 K are placed along the beam pipe and quadrupole magnets are
used to focus the beams.

To measure the performance of the LHC the interaction rate is used. The inter-
action rate, that is the number of events per time, is given by

dN
= oL 1.
P 0Lins, (1.57)
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Figure 10: Schematics of the acceleration process used to boost the protons to their
final energy. The LHC is the last setup in this acceleration process where the

proton reach their collision energy of 6.5 TeV. Graphic taken from [54].

where ¢ is the cross section of a given process and L;,, is the instantaneous lumi-
nosity, a measure of the number of collisions per cm? per second, which depends
only on accelerator parameters. The integrated luminosity gives a measure on the
total number of events that occurred and therefore the amount of data taken. This

quantity is useful since it can be used to calculate the cross section of a given process
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Figure 11: Integrated luminosity during 2012 at /s = 8 TeV (a) and during 2018
at /s = 13 TeV (b) during stable proton - proton collisions. Courtesy of ATLAS.

by counting the number of events of that process

= 1.58

g L ) ( )
where L = [ L;,sdt is the integrated luminosity. During the /s = 8 TeV Run-1 the
luminosity delivered by the LHC was 23.3 fb~! of which 21.7 fb=! was recorded by
ATLAS, see Figure 1.58. Due to upgrades of the LHC, both the luminosity delivered
by the LHC and the luminosity recorded by ATLAS increased significantly during
Run-2.

1.4.2 The ATLAS Detector

The ATLAS detector is one of the two large general purpose experiments at the
LHC. It has a diameter of about 25 m and a length of 46 m, weighting 7,000 tons.

37



Figure 12: VP1-Light displaying the full ATLAS detector with a ¢-sector cut-out

to reveal the various sub-detector systems.

The detector itself is divided into three main sub-detector systems: Inner Detector
(ID), Calorimeters, and Muon Spectrometer (MS). In addition, there are two types of
magnet systems, a superconducting solenoid magnet surrounding the Inner Detector
and a system of toroid magnets integrated into the Muon Spectrometer. Both magnet
systems generate a magnetic field needed for tracking of charged particles. The sub-
detector systems are arranged in cylindrical layers around the center of the detector

and endcaps cover the region along the beam pipe. With this setup, the ATLAS
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() (b)

Figure 13: The ATLAS coordinate system (a) as described in Section 1.4.2.1, where
the x-axis is displayed in red, the y-axis in green and the z-axis in blue. The letters
A and C refer to the two sides of the detector towards the positive and negative

z-directions. In (b), a view of the 1 cones at || =1 (yellow) and |n| = 2.5 (orange)

is shown.

detector is near hermetic which means that almost all the energy of the collision is

absorbed within the detector.

This section shows several images displaying parts of the ATLAS detector. These

images were created using the new VP1-Light event display covered in Section 3.

1.4.2.1 The ATLAS Coordinate System In ATLAS, a right-handed coordi-
nate system is defined as follows. The center of the coordinate system is located
at the interaction point (IP) at the center of the detector. From there, the positive
x-axis points towards the center of the LHC ring, the positive y-axis points upwards

to the surface and the z-axis points along the beam pipe. The coordinate system is

39



shown in Figure 13 (a) along with the beam pipe and the Inner Detector. In the
plane perpendicular to the beam pipe a polar coordinate system (r, ¢) is used, where
r measures the radial distance from the beam pipe and ¢ is the angle measured from
the x-axis. The direction perpendicular to (r, @) is given by the polar angle 0, defined
from the positive z-axis. In practice, the pseudorapidity 7 is used instead of the polar

angle #. The pseudorapidity is defined by

6
n = —log (tan 5) (1.59)

In Figure 13 (b) two 7 cones are shown at || = 1 and |n| = 2.5 along with the Inner
Detector and calorimeters. In the limit of massless particles, the pseudorapidity is
invariant under Lorentz boosts in the direction of the beam axis. Since in a hadronic
collider the momenta of the initial partons is unknown, total momentum conservation
can not be applied. However, momentum in the direction transverse to the beam
pipe is conserved. Therefore, instead of the total momentum p of a particle or physics

object, the transverse component of the momentum p is used for its description.

1.4.2.2 The Inner Detector The inner detector (ID) is located around the
beam pipe nearest to the interaction point. The main function of the inner detec-
tor is to locate the primary and secondary interaction vertices and the tracking of
the charged particles in the magnetic field of the superconducting solenoid. Particle
tracks are reconstructed from hits in the detector material of the ID. From the cur-
vature of the track, particle properties such as direction, momentum and charge can
be determined. Locations in the interaction region of the detector where multiple
tracks intersect indicated the locations of primary and secondary vertices. The pri-
mary vertex represents the point of the initial interaction between the constituents

of the protons. Secondary vertices are vertices that are displaces from the primary
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Figure 14: VP1-Light displaying the Inner Detector. The left image shows the
Inner detector with a ¢-sector cut-out which reveals details of the sub-detector
systems. On the top left is a detailed view of the TRT which shows a close-up of
the straw tubes. On the bottom left is a view of the Pixel (turquoise) and SCT

(gray/blue)), where the silicon sensors are displayed in dark green.

vertex. They indicate the location of the decay of short-lived particles such as B
hadrons. B hadrons are hadrons that consist of a b-quark. These are important for
the identification of jets initiated by b-quarks, which is essential for top quark physics
at the LHC. The innermost layer of the ID is the Pixel Detector which consists of
80 million silicon pixels for a very precise measurement of of the tracks close to the
interaction point. The next layer is the Semiconductor Tracker (SCT), a silicon mi-
crostrip tracker. Similar to the Pixel Detector, it is made out of silicon modules.

However, unlike the Pixel Detector, the modules are large silicon strips to cover a
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wider region in the radial direction. The outermost layer of the ID is the Transition
Radiation Tracker (TRT). The TRT consists of 50,000 straw tubes, each with a gold-
plated tungsten wire at the center. Different kinds of gases between the straw tubes
act as a transition radiation detector that allows to differentiate between different
charged particles, such as electrons and pions. Figure 14 shows the ID including

detailed views of the Pixel and SCT’s silicon sensors and the TRT’s straw tubes.

1.4.2.3 The Calorimeters The calorimeters are designed to measure the energy
of the particles in the detector. Ideally, the total energy of the particles is deposited
in the calorimeter. The calorimeters are constructed in layers of absorbing and active
media. The absorbing medium is a high density material that initiates the shower-
ing of the incoming particles and the active medium measures the deposited energy
through sampling. Besides the energy, the calorimeters are also able to measure the
direction, that is the polar angle in the plane perpendicular to the beam axis and
the pseudorapidity, of a particle shower. In ATLAS, two calorimeters are present, an
electromagnetic calorimeter to measure the energy of electrons and photons, and a
hadronic calorimeter to measure the energy of hadrons such as pions and kaons. Both
calorimeters combined cover a pseudorapidity range of |n| < 4.9. The Liquid Argon
(LAr) calorimeter is the electromagnetic calorimeter located radially just outside of
the solenoid magnet. It uses liquid argon cooled down to a temperature of —183°C as
an active material and layers of lead as the passive material. The barrel and end-caps
of the LAr electromagnetic calorimeters cover a pseudorapidity range of |n| < 3.2.
In addition, the remaining pseudorapidity range is covered by copper/LAr and tung-
sten/LAr modules acting as electromagnetic and hadronic calorimeters, respectively.
Figure 15 (a) shows a cut-out view of the LAr calorimeter where the layers of ab-

sorber /liquid argon can be seen in both the central and the forward region. The Tile
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tiles
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Figure 15: VP1-Light displaying the calorimeters. Shown on the left (a) is a
close-up of the LAr calorimeter. Part 1) on the left side of the image shows the
end-cap region acting as both electromagnetic and hadronic calorimeter. The red
discs shown are copper absorbers of the hadronic calorimeter and the light blue
disks represent the liquid argon filled space. In the detailed view of 2) the barrel
region is shown, where a close-up of the accordion-shaped lead absorbers can be
seen. The right image (b) shows the tile calorimeter. A detailed close up shows the

scintillator tiles (green).

Hadronic Calorimeter (TileCal) uses plastic scintillator tiles to measure the energy of
the hadronic particles and steel absorbers to initiate showering. It is segmented into
three barrel structures covering a pseudorapidity range of |n| < 1.7. The end-cap
region is covered by a copper/LAr hadronic calorimeter. Figure 15 (b) shows the tile

calorimeter including a detailed view of the scintillator tiles.
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Figure 16: VP1-Light displaying the Muon System with a ¢-sector cut-out. Also
shown in the black box is a detailed view of one of the end-cap MDT’s (green/blue)
which consists of an arrangement of drift tubes (shown as gray cylinders). The

remaining parts of the Muon System are the CSC (yellow) and TGC (purple).

1.4.2.4 The Muon Spectrometer Muons usually pass the Inner Detector and
the calorimeters without interacting with the detector itself. Therefore, a large Muon
Spectrometer (MS) is installed outside of the calorimeters. From the center axis of
the detector, the MS ranges from a radius of 4.25 m to a radius 11 m. The MS

is constructed from four different detection systems, Thin Gap Chambers (TGC),
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Resistive Plate Chambers (RPC), Monitored Drift Tubes (MDT), and Cathode Strip
Chambers (CSC). Three layers of MDT’s measure the curves of muon tracks in a
pseudorapidity range of |n| < 2.7 by measuring the distance of the track to the
wire at the center of the tubes. The CSC’s precisely measure the coordinates at the
ends of the detector in a pseudorapidity range of 2.0 < |n| < 2.7 Due to the high
background in this region the CSC are designed to operate at a high event rate. The
muon trigger system consists of the TGC and the RPC which also act as a second
coordinate measurement in a non-bending direction at the ends of detector and in
the central region, respectively. The RPC’s cover a pseudorapidity range of |n| < 1.5
and are arranged in layers with the MDT’s and CSC’s. The TGC’s cover the endcap
region with a pseudorapidity range of 1.05 < |n| < 2.7. Figure 16 shows both the
barrel and end-cap region of the MS. A detailed view of MDT’s drift tubes is also

shown.

1.4.2.5 The Magnet System The magnets bend the tracks of charged particles
and allow the measurement of the momentum. For the momentum measurement in
the inner detector, a 5.3 m long and 2.4 m diameter superconducting solenoid magnet
surrounds the ID, providing a magnetic field of 2 T parallel to the beam axis. Liquid
helium is used to cool the solenoid to an operating temperature of 4.5 K. The muon
spectrometer includes a system of superconducting air-core toroid magnet with 8
separate coils in the barrel region (shown in Figure 17) and 2 end-caps with 8 coils
each for the precision measurement of the muon tracks. The barrel toroids cover a
pseudorapidity range of || < 1.4 and the end-caps cover a range of 1.6 < |n| < 2.7.
The field integral of the toroids ranges between 2.0 Tm and 6.0 Tm throughout the
detector. With a length of 25.3 m and an outer diameter of 20.1 m it is one of the
larges systems within the ATLAS detector. Since the magnetic field is produced by a
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Figure 17: VP1-Light displaying the eight superconducting toroid magnets in the

barrel region.

combination of barrel and end-cap toroids, the resulting magnetic field is non-uniform
and therefore a detailed modelling is required for precise momentum measurement

of the muons.

1.4.2.6 The Trigger And Data Acquisition The trigger system of the ATLAS
detector reduces the rate at which events are selected for storage on disk. Due to
limitations in the electronics and storage capabilities only a fraction of the events
occurring in the ATLAS detector can be permanently stored. The trigger system
reduces the number of events in two stages.

The first stage is the Level-1 (L1) hardware trigger build from custom electronics
and directly build into the hardware of the detector. The L1 trigger uses a subset
of the information from the calorimeters and triggers of the muon spectrometer to

identify events with predefined signatures for further processing. L1 also identifies
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regions of interest (Rol) that will be further investigated in the second stage. This
reduces the 40 MHz bunch crossing rate to about 100 kHz.

In the second stage, the High-Level Trigger (HLT), a software based trigger
operated on a large farm of CPU’s. The HLT performs a more detailed analysis
of the events that passed the L1 trigger, by examining the whole event for specified
sub-detectors, such as calorimeters, tracker or MS and by focusing on a Rol of that
event. Information on the Rol are passed down by the L1 trigger. This allows to
categorize an event based on further details, such as identifying it as having a b-
tagged jet. All of this results in a reduction of the event rate from about 100 kHz to
about 1 kHz. In the second step of the HLT, the event filter further reduces the rate
to about 200 Hz based on the fully reconstructed events. All events that passed the

trigger systems are then written to permanent storage.
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2.0 Combination Of ATLAS Top Quark Measurements

2.1 Introduction And Motivation

Constraining the size of possible BSM interactions by constraining the coefficients
of the dimension 6 operators discussed in Section 1.2 is an important milestone on
the way of understanding the physics beyond the Standard Model. In ATLAS, many
precision measurements are able to measure the interactions of top quarks in such
detail, that makes it possible to look for deviations from the expected Standard
Model behaviour.

Combinations of measurements in order to get a better hold on the BSM param-
eters haven been carried out for a long time. However, most of these combinations
neglect the possibility that the measurements that are combined can be correlated
and these correlations have the potential to change the limits obtained for the BSM
parameters. In this analysis, a combination of top quark measurement is performed,
where the correlations of systematic uncertainties between the measurements is taken
into account in a systematic way, by utilizing the full detail of each measurement.
The measurements combined in this analysis are the single top decay distributions,
that measure a set of generalized helicity fractions and phases, the W helicity frac-
tion that measure the fractions transversely and longitudinally polarized W bosons
in top quark decays and the /s = 8 TeV t-channel fiducial top quark and anti-quark
cross section.

This chapter is organized as follows. First, an introduction to the basics of
statistics needed to combine the measurements is given in Section 2.2. Then, a short

review of Monte Carlo simulations is given in Section 2.3. In Section 2.4, the mea-
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surements are reviewed and then in Section 2.5, the relevant EFT coefficients used
in the fit are discussed. At that point, previous results are discussed in Section 2.6.
In Sections 2.7 and 2.8 the parameterization of the cross section in terms of the
EFT coefficients and the calculation of these parameters is described. Section 2.9
gives a detailed explanation of the uncertainties of the measurements and how the
correlations between the measurements are evaluated. In Section 2.10 discusses the
dependency of the observables of the single top decay distribution measurement on
the EFT parameters and how this dependency was included in the fit. Finally, in
Section 2.11 the results of the combined fit are discussed and Section 2.12 gives the

conclusion.

2.2 Statistical Background And The EFTfitter Tool

Bayes Theorem

For a given set of measured quantities & and a set of parameters 0 the posterior
probability distribution of the parameters given the measured quantities is given by

Bayes Theorem [55]

p(x[0)p(6)
p (=)

where 0 is a set of parameters to be determined and x is a set of measured quanti-

p(6la) = (2.1)

ties, or the data. Then p (8| x) is the posterior probability distribution, that is the
probability of the parameters given the data. p (x| @) is the probability of the data
given a set of parameters, also called the Likelihood of 8. The evidence p (x) is a

normalization factor

p(x) = / 40p (2] 0) p (0). (2.2)
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The prior p(0) is the probability of the parameters @ and has to be estimated. It
describes ones prior knowledge of the distribution of the parameters. For an unbiased

analysis, a constant or uniform prior p (0) = 1 is chosen.

Maximum Likelihood and the Method of Least Squares

Given the Likelihood L () = p (x |0 ) for a set of measured quantities « and a set

of parameters @ = (61, . . . 0y ), the maximum Likelihood is defined such that
Oln L
(;91 - i=1,...,N. (2.3)

The set of parameters that fulfills this equation is called the maximum Likelihood
estimator. Here, the logarithm is used since it simplifies working with the Likelihood
and the same parameters 0 that maximize L also maximize In L. For a set of N
uncorrelated, normally distributed measurements y; at known points z; with variance

o? and mean p (x;]0) the method of Likelihood is related to the method of least

i
squares by

x?(8) = —2In L () + const. = Z (i = ’ua(;:i; 0))2. (2.4)

Then, maximizing the Likelihood is equivalent to minimizing the chi-square function

x2. If the measurements y; are correlated, then Eq. 2.4 becomes

X2 (0)=(y—p®) V7' (y—pn@)), (2.5)

where V;; = cov [y;, y;] is the covariance matrix of the measurements y and the vector
w1 (@) contains the predicted values. The specific set of parameters @ that minimizes
x? are called the least-squares estimators. The minimum of the y? gives a measure

of agreement between the measurements and the fit.
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Combining Measurements in EFT fitter

Constraining a set of parameters can often be done by combining a set of mea-
surements and finding the posterior probability distribution of the parameters. The
EFTfitter tool has been developed to combine a set of measurements and constrain
the effects of EFT operator coefficients.

The set of N measurements & can be any direct observable, such as cross sections,
decay rates or angular distributions. The set of n observables y (6) corresponding to
these measurements can be described analytically in terms of the EFT coefficients.

Then the x? function in Eq. 2.5 can be written as

T —
X0)=> > (x-U-y(0), V;' (x-U-y(9)),, (2.6)
i=1 j=1
where U is an n X N matrix with non-zero elements only for entries where mea-
surement z; corresponds to observable y;. In the Bayesian treatment, Eq. 2.6 can be

combined with Eq. 2.4 and Eq. 2.1 to calculate the posterior probability distribution.

Marginalization

The Likelihood fit is performed in the full parameter space of the EFT coefficients.
To obtain results in the form of 2-dimensional regions or 1-dimensional limits it is
necessary to reduce the dimensionality. This is achieved by marginalizing over the
remaining dimensions of the parameter space. For this, the parameters that one is

not interested in can be treated as nuisance parameters and integrated out

p (6| x) :/dup(e’,u|a:), (2.7)
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where 0’ is the subset of parameters of interest and v are the nuisance parameters
that are integrated out. This allows to calculate one or two dimensional distributions
that correspond to allowed regions of parameters. It also allows the treatment of
other parameters of the problem. E.g. the single top decay distribution discussed
in Section 1.3.2.2 are written in terms of the EFT coefficients and the polarization
P. When constraining the EFT coefficients, the polarization can be treated as a

nuisance parameter and integrated out.

2.3 Monte Carlo Event Generation

This section gives a short review of the Monte Carlo (MC) simulation of collision
events. The event generation consists of several steps, that are briefly discussed here.

In the first step, the two partons participating in the hard collision process are
selected according to the proton’s PDF and the physical process. This is shown in
Figure 18 in purple. The three lines connected to the proton represent the valence
quarks, where the red lines are the partons taking part in the hard scattering process
and the purple lines are the proton remnants. The red line is not necessarily a valence
quark, but could also be a sea quark or gluon, depending on the process.

In the second step, the hard interaction is calculated. This is shown in Figure 18
in red. Event generators performing this task are referred to as Matrix Element (ME)
generators. Some examples of ME generators are MADGRAPH [56, 57|, POWHEG
[58, 59] or PROTOS, where the first ones are general purpose ME generators and the
last one is specifically for the generation of top quark events including the effects
of anomalous couplings. The hard process is calculated perturbatively using matrix

elements derived from Feynman rules. The integrals are computed using Monte
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Hard Scattering

Process

Figure 18: Schematic overview of a simulated event. The incoming protons p are
shown in purple. The hard scattering process, in this case a t-channel event, is
shown in red. After the hard interaction, any heavy particles are decayed, shown in
blue. Then, the remaining particles are showered, shown in teal. Finally, all colored
particles are hadronized to form colorless hadrons. This is shown in yellow. Also
shown is the Initial and Final State Radiation, ISR and FSR, respectively. Not

shown is the possibility of an underlying event.

Carlo (MC) methods. The advantage of using MC methods for integration is that
the uncertainty of the MC integration is proportional to the inverse of the number

of events generated, independent of the integral’s dimensionality. Therefore, the
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uncertainty can be reduced by increasing the number of generated events. The hard
interaction process consists of the interaction of the partons going to some predefined
final state. In addition, some ME generators can also decay heavy on-shell particles.
This is also done perturbatively as part of the hard process. Otherwise, specific
tools for the decay of heavy resonance can be used such as MADSPIN [60], TAUOLA
[61] or EVTGEN [62]. MADSPIN also keeps track of spin correlations between initial
particles and their decay products. TAUOLA and EVTGEN are specific tools for
for the decay of tau leptons and heavy flavor particles such as B and D mesons,
respectively.

Once the hard interaction is calculated, the remaining particles are showered.
All colored particles created in the event can initiate gluon radiation, which can in
turn radiate more gluons or quark anti-quark pairs. This is called the Final State
Radiation (FSR). Besides the final states, also the initial states can radiate gluons,
This is called Initial State Radiation (ISR). The collective process of soft gluon
radiation is called the Parton Shower (PS). Here, any remaining unstable particles
are also decayed. An unstable particle as defined in ATLAS is any particle with a
mean life greater than 0.3 - 107" s or ¢7 ~ 10 mm. Once the colored particles are
showered, that means they not have enough energy to radiate off more gluons, they
form stable hadron. This process is called Hadronization. The collection of particles
created from an initial quark or gluon is called a jet. Examples of Parton Showering
tools are HERWIG [63, 64, 65] and PyTHIA [66]. These are in principle also ME
generators, but are commonly linked to other ME generators such as POWHEG and
MADGRAPH for the purpose of showering.

In principle the is also the possibility of an Underlying Event (UE). This is the ad-
ditional low energy QCD interaction between other partons from the initial protons.

Further, there is the possibility of pile-up. This is when more than one proton-proton
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collision per proton bunch occurs. In 2018 the mean number of interactions per event
was around 35 and it can go as high as 130 -140 at the High Luminocity LHC (HL-
LHC). This can impact the reconstruction of the event, but will not be discussed

further since no full simulation is used in this analysis.

2.4 The Measurements

In the following section, the top quark measurements relevant for this analysis
will be discussed. First, the single top cross section is summarized and all important
aspects are pointed out. This includes the number of contributing operators and how
they contribute. Second, the single top decay distribution measurement is discussed,
again focusing on the the contributing operators. On overview is also given on
which regions of the EFT parameter space can be constrained by the single top
decay distribution measurement alone. Lastly, the W polarization measurement is
reviewed. Also here, the different aspects relevant for this analysis are addressed and
the constraints set by the W helicity measurement. Also discussed in this section

are the specific input parameters used in the fit for each one of the measurements.

2.4.1 Single Top Quark Production

In Section 1.3.1 the production of a single top quarks was discussed, in particular,
the single top production in which the top quark or anti-quark is produced through
t-channel scattering of a b-quark and a light quark, mediated by a W boson in the
t-channel. In this section, the experimental details of the single top cross section

measurement used for this analysis is given in more detail. The single top t-channel
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Predicted Measured

o(tq) 54.97%3 pb 56.7753 pb

o(tq) 29.7717pb 329159 pb

Table 7: Predicted and measured values of the total top quark and top anti-quark
cross section. The theoretical predictions correspond to next-to-leading (NLO)
calculations in QCD (See Section 2.9.3). The experimental uncertainties correspond

to total statistical + systematic uncertainties.

cross section has been measured at ATLAS at a center-of-mass energy of \/s = 8 TeV
[31]. The total, fiducial and differential cross section was measured. Here, focus is
placed on the total and fiducial cross section. The total cross section corresponds to
the inclusive cross section, and the fiducial cross is defined through a set of fiducial
cuts that are closely related to the geometrical properties of the ATLAS detector
and the analysis strategy used. In this particular case, analysis strategy refers i.a.
to the specific decay channels of the top quark and W boson. Therefore, the fiducial
cross section not only measures the production, but also the decay of the top quark.
More details about the fiducial region are given later in this section. The relation

between fiducial and total cross section is given by

0fd = Aﬁd0t0t7 (2~8)

where Agq is the fiducial acceptance given by

(2.9)



where Ny, is the total number of events and Ngq is the number of events that pass
the fiducial cuts.

There are a number of advantages and disadvantages for choosing either the total
or fiducial cross section for the EFT combination. The total cross section has the
advantage that it only includes the production of the top quark or anti-quark. From
Figure 5 one can see that this implies that the expression for the cross section is at
most quadratic in the EFT coefficients, since the matrix element only contains one

Witb vertex and

Mtot X ¢4, (210)

= Oyt X Co. (2.11)

where ¢; can be any of the Wtb related EFT coefficients. An expression for the total
cross section in terms of the EFT coefficients is given in Eq. C.6 of Appendix C. To
use this expression in the fit, the coefficients x in the parameterization of the cross
section in Eq. C.6 have to be calculated. Details for the calculation of the coef-
ficients k for the fiducial cross section are given in Section 2.8. For the total cross
section, there are 8 combinations of EFT coefficients that contribute to the cross
sections, as can be seen in Eq. C.6. All other combinations are zero. The reason
is that in the 5-flavor scheme, for vanishing b-quark mass the terms that includes
a combination of a left- and right-handed EFT coefficients vanish. Consequently, 8
different coefficients x need to be determined. The disadvantage of using the total
cross section is, that the dependence of the acceptance on the EFT coefficients is not
known and has to be evaluated. The total cross section involves the extrapolation
from the signal region to the full phase space. This extrapolation is usually done

assuming Standard Model acceptance. However, the EF'T operators can modify the
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Figure 19: Single top quark production and subsequent decay in the 5-flavor
scheme. The black dots represent EFT vertices. Left: t-channel single top
production. Right: Single top production through a four-quark interaction.

kinematics of the process and therefore change the acceptance which makes an in-
terpretation of the cross section result difficult if the acceptance in terms of the EFT
coefficients is unknown.

The fiducial cross section on the other hand suffers less from this problem, since
no extrapolation is required. Therefore, the dependency on the EFT coefficients is
expected to be much smaller. The lack of an extrapolation also reduces the Monte
Carlo generator uncertainties of the fiducial cross section that enter through the cal-
culation of the fiducial acceptance. The disadvantage of including the fiducial cross
section is that the parameterization of the cross section in term of the EFT coeffi-
cients is more complex. Since the fiducial cross section includes both the production
and decay of the top quark or anti-quark, EFT coefficients can enter the amplitude
in two vertices depicted as block dots in Figure 19. The Wtb vertex governs both
the production and decay of the single top quark or anti-quark. In addition the

four-quark operator can also contribute to the production of the top quark or anti-

o8



Measured

0fd (tq) (978 + 057) pb

oga (tq)  (5.77 £ 0.45) pb

Table 8: Measured fiducial top quark and anti-quark cross section [31].

Agaq (tg)  Aga (tq)

17.267548 1752754

Table 9: Fiducial acceptance in % calculated with POWHEG-BOX + PyTHIA6 [31].

quark. Therefore, the expression of the cross section is a quartic function in the EF'T
coefficients. This increases the number of coefficients x that need to be computed.
For the fiducial cross section there are a total of 61 coefficients . Detail on these
coefficients and their calculation are given in Section 2.8.

Both the fiducial and total cross section measure total rates and therefore the
cross sections provide constraints on absolute values of the EFT coefficients. Conse-
quently, no phases of the EFT coefficients can be constraint. The cross sections are
also the only observables that can put constraints on both the Standard Model like

EFT coefficient cg’g) and the four-quark coefficient cgé.
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Predicted Measured

Fy  0.687 £0.005 0.709 £ 0.019
Fr, 0.311 £0.005 0.299 £ 0.015
Fr 0.0017£0.0001 —0.008 +0.014

Table 10: Predicted [46] and measured [67, 68] values of the three W helicity

fractions.

2.4.2 W Helicity Fractions

The theoretical background of the W helicity fraction was discussed in Sec-
tion 1.3.2.1. Since the decay of the top quark proceeds via the Wtb vertex, this
also provides an opportunity to constrain EFT coefficients that could potentially
modify that vertex. The W helicity fractions have been measured at ATLAS in tf
events at a center-of-mass energy of /s = 8 TeV [67, 68]. Specifically, the analysis
studied ¢t events where one top quark decays into a bottom quark and a W which
subsequently decays into a charged lepton and a neutrino. The charged lepton serves
as the analyzer as discussed in Section 1.3.2.1. The W coming from the other top
quark decays hadronically into a light quark and anti-quark. The case of a hadronic
analyzer, where instead of the charged lepton the down quark is used as the analyzer,
is also studied and measured. However, these results do have considerably larger un-
certainties. This is because the two light quarks from the W boson decay are hard
to separate and correctly identify. Therefore, only the leptonic analyzer is consid-

ered in this work. The results of the W helicity fraction measurement is detailed
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Figure 20: Marginalized confidence limits on pairs of EFT coefficients from the W
helicity fractions. For each plot, the remaining coefficient is set to zero. All

coefficients are assumed to be real. Also shown is the Standard Model point.

in Table 10. Listed are the predicted and measured values and their respective un-
certainties. Uncertainties of the measured helicity fractions correspond to statistical
and systematic uncertainties. The predicted values correspond to next-to-next-to-
leading order (NNLO) calculations in QCD [46]. Constraints on the EFT coefficients
can already be made by solely looking at the W helicity fractions. However, some

care needs to be taken. The three helicity fractions are constrained to add up to one,

Fo+ Fp+ Fr=1, (2.12)

so that only two independent observables remain. Therefore, the W helicity fractions
can only constrain pairs of EFT coefficients, while the remaining coefficients are set

to their respective Standard Model values. Further, the W helicity fractions measure
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only ratios of couplings. Typically, the ratio is taken with respect to V, =V, = 1.
This can be seen from Eq. 1.43 in Section 1.3.2.1. Including the effects of the EF'T
coefficients, Eq. 1.43 are modified as

Vi, — zworl” + Ve — zwor|’

Fy = 2 2 2 2
Ve — 2wgrl” + Ve —owgr|” +2|zw Ve — grl” + 2 |rw Ve — g1
P = 2|lzwVy, — gl
Vi — 2warl? + [V — 2war|” + 2 |lawVe — grl* + 2|2w Ve — g2)?
2 lew Ve — g1l
Fr 2wV = 91 (2.13)

- Vi — 2wgrl” + Ve — awarl” + 2 |ew Ve — grl* + 2 |ow Ve — gol*
where the EFT coefficients are written in terms of the anomalous couplings, see
Eq. 1.34. Expressions for the W helicity fractions in terms of the anomalous couplings
for massive b-quarks can be found in Appendix A. Furthermore, the W helicity
fractions are real so that limits can only be set on real parts of EFT coefficients.
Putting everything together, this allows to put limits on pairs of three real EFT
coefficients c,u, ¢y and ¢y, Figure 20 shows the limits on all possible combinations
of the EF'T coefficients. In this special case, where all coefficients are real and only
two couplings are non-zero at a time, the limits on the coefficients are fairly strong. It
is also possible to see the strong anti-correlations between the left-handed coefficients
cow and ey in Figure 20 (a) as is expected from Eq. 2.13 (Note that there is a relative
minus sign between the definition of g, and cpy). Limits on the anomalous couplings
were set by the measurement under the assumption that V;, = 1, all couplings are

real, and only one couplings is active at a time. These limits are given by

Vg € [-0.17,0.25],
g1 € [~0.11,0.08],

gr € [~0.03,0.06] ,[0.74,0.78] . (2.14)
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Figure 21: Marginalized confidence limits on pairs real of EFT coefficients from the
W helicity fractions. Varying the real parts of cy, conr and cy freely significantly
increases the allowed regions of the coefficients. Note that the constraints on

Re (cyw) are due to the limited range of Re (cu).

These limits can be translated into EFT coefficients by using Eq. 1.34 so that

Com € [—6.51,8.25]
Cow € [—093, 128] s
cow € [—9.10, —8.63] , [—0.70, 0.34] , (2.15)

where ¢, cpw and cy are real. Note the sign change due to the sign difference
between anomalous couplings and EFT coefficients.

Some of the constraints can also be loosened in order to evaluate how the limits
change. Specifically, the restriction of setting the remaining coefficient to zero can be
dropped. Figure 21 shows the same plots as Figure 20, with the difference that the
remaining coupling is not fixed to zero, but instead is marginalized. It is clear that

removing this constraint significantly increases the limits of the EFT parameters in
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Eq. 2.15 and no definite limits can be obtained. This is to be expected, since it
is not possible to constrain more than two parameters with only two independent
observables. Furthermore, once the coefficients are allowed to be complex valued,
the parameter space is too large and determining the confidence regions of the EFT

coefficients through marginalization is not possible.

2.4.3 Single Top Quark Decay Distribution

In the previous section, the W helicity fractions measured in top quark decay
distributions was discussed. This section covers a more generalized measurement of
the top quarks angular decay distributions. The theoretical background was given
in Section 1.3.2.2. This section discusses the experimental aspects, which EFT coef-
ficients can be constrained and what the limits on those coefficients are.

The generalized fractions and phases in Section 1.51 were measured at ATLAS
in single top quark events at a center-of-mass energy of /s = 8 TeV [69]. Table 11
shows the predicted and measured values of the fractions and phases. The predicted
values are leading-order (LO) expression [46, 70]. Measured values are only available
for f; and §_. Upper bounds are set on f;" and f;”. Due to this, there was no
sensitivity on the phase d,. As with the W helicity fractions, the single top decay
distributions measure ratios of couplings taken with respect to V, &~ 1. However, the
number of observables is larger. Having three generalized helicity fractions and two
phases allows to constrain almost the full parameter space of the Witb vertex. One
limitation lies in the number of complex phases. This will be the topic the following
Section 2.5. Figure 22 shows limits on some of the EFT coefficients. In all plots,
Vi, = 1 while all other coefficients are varied freely. In Section 1.3.2.2, Eq. 1.54 the

relations between W helicity fractions and the generalized fractions was discussed.
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Predicted Measured

fi  0.304 0.29610053
0001 <0.120 (95%CL)
S+ 6-107° < 0.085 (95%CL)

o 0.0

o_ 0.0 0.0027100057

Table 11: Predicted [46, 70] and measured [69] values of the three generalized

fractions and phases.
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Figure 22: Limits on EFT coefficients from the single top decay distributions. All

other coefficients are marginalized.

Here we can see how this relation is reflected in the probability distributions of the
EFT coefficients. Figure 20 (a) and Figure 22 (a), both showing the real parts of ¢,

and ¢y, exhibit the same behaviour. One important difference is that in the former
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the remaining coefficient ¢,y is set to zero, while it is a free parameter in the latter.
The measurement of the generalized fraction f; and the phase d_ also puts limits
on the range of the anomalous couplings and therefore on the EFT coefficients.
The ratio of the real and imaginary part of the coupling gr was constraint to the
confidence interval
Re {Q—R} €[-0.12,0.17] Im {Q—R} € [~0.07,0.06] , (2.16)
Vi Vi

and by Eq. 1.34 the limits on the EFT coefficients are

Re | W | € [~1.98,1.40] Im || € [-0.70,0.82] . (2.17)
Vi Vi

Upper limits have also been set on the magnitude of the ratios

V| <037 (95%CL),

VL

ILY ~ 029 (95%CL), (2.18)
%5

and again for the EFT coefficients

Setbl ©12.21  (95%CL),
VL

OWI 338 (95%CL). (2.19)
Vi

All limits are for the coefficients with respect to the Standard Model couplings V7,
and could change once Vj, is taken as a free parameter. Limits for the top quark

polarization are also given at

P <0.72 (95%CL),
P <086 (95%CL). (2.20)

All limits are in accordance with the Standard Model predictions.
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2.5 Choice Of Parameters

As seen in Section 1.1, the dimension 6 operators contributing to the top quark

interactions considered in this analysis are

0%, Owm  Ow, Ow, O (2.21)

. . 3 3,1
The corresponding EFT coefficients Cfoq)) and cg, are real, ¢y, cow, and ¢y are com-

plex, giving a total of 7 free parameters. However, the measurements discussed in
Sections 2.4.1-2.4.3 do not constrain sufficiently many complex parameters. Both the
cross sections and the W helicity measurement only measure real observables. The
single top decay distributions constrain three real factions and two complex phases.
It is therefore necessary to reduce the number of complex parameters in the EFT
coefficient space. In the measurements of the single top decay distributions as well
as the W helicity fractions the dominant terms are proportional to linear combina-
tions of either V; and ¢, or cop and ey, see Eq. 2.13 for the W helicity fractions
and their relation to the generalized fractions of the single top decay distributions
in Eq. 1.54. Both Vi, and ¢y correspond to left-handed and both cyy, and ey cor-
respond to right-handed couplings. Therefore, the coefficients can be divided into
two sectors, a left-handed sector Vi, - ¢ and a right-handed sector cu4 - cowr. The
coefficient ¢y interferes directly with the purely real Standard Model contribution
V. Therefore, the single top decay distribution measurement could determine the
phase difference of ¢,y with respect V. However, due do the small magnitude of
both ¢, and ¢y, there was little sensitivity for the phase between the left-handed
and right-handed sector and the phase difference between the two coefficients of the
right-handed sector.

To study the effect of the phases on the EFT parameter limits, the EFT pa-
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Figure 23: Probability distribution of the phases of the EFT coefficients ¢y, (a),
cow (b) and ¢y (c) from the single top decay distribution measurement. The

phases of ¢y, and ¢y are unconstrained due to the interference with the Standard

Model term V7.

rameters are written in this section in polar form as
cj=Re(¢) +ilm(c;) = ¢ =p;e, (2.22)

where p; and ®; are the magnitude and phase of coefficient j = ¢tb, bW, tW. The
arguments are allowed to vary freely between 0 and 27 in the fits. Figure 23 shows the
probability distributions of the phases of the EFT coefficient ¢y, ¢y and ¢y coming
from the single top decay distribution measurement. Both the phases of c 4 and ¢y
are unconstrained. The phase of ¢;;r, however, is constraint around the Standard
Model value of zero. The distributions were generated with the EF T fitter tool taking
only the single top decay distribution measurement as input. Adding the W helicity

fraction measurement and/or the cross sections does not change the distributions.
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Figure 24: Probability distribution of the phases of the EFT coefficients ¢y (a)

and ¢y (b) for ¢py, = 0. Fixing the phase of c,y, does not affect the phase of ¢y .

The phase of ¢y is still largely unconstrained.

This is expected, since the single top decay distribution measurement is the only

measurement giving any constraints for the imaginary parts of the coefficients.

Since the phase of cyy is unconstrained, it is fixed to zero, making c .y a real,
positive parameter. This leaves two imaginary parameters that can in principle be
constrained by the single top decay distribution measurement. Of course, there is
still the issue that only one of the two phases in the single top decay distribution
measurement was actually measured (the phase 6_ in Table 11), which means that
also in this analysis, only one of them can be constrained. As can be seen in Figure 24
the phase that is constrained is the phase of the coefficient ¢;y, while the phase of
cpw 1s still largely unconstrained. The phase of ¢y, will be kept as a free parameter,
since fixing ¢y has a large effects on the probability distribution of the left-handed

coefficients. This can be seen in Figure 25, where the probability distribution of the
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magnitude of c 4 and ¢y is shown for different values of their respective phases.
Fixing the phases also fixes the relative sign, which strongly affects the correlation
between c,y and ¢y Contrarily, solely fixing the phase of ¢y, has no effect on the
magnitude or phase of ¢;y, as can be seen when comparing Figure 23 and Figure 24.
This is also true for the remainder of the free parameters, that is the magnitudes of
the coefficients cy, cyw and ¢y as well as the polarization. In conclusion, the free

parameters in the fit are given by

ng : c%’; real (2.23)
Cow s Cew complex (2.24)
Coth real, positive (2.25)

here ¢ and ¢! ] t d ] t d
where CL,OQ all CQq are rea parame ers, Cpiy and Cyyy are COHlp ex parame ers an

Cewp 1s a real, positive parameter. Note that fixing c 4 is done in the fit for purely
practical purposes and does not constrain the coefficient ¢,y to positive or even
real values. Multiplying c,q with an arbitrary phase does not change the posterior
probability distributions of the fit as long as ¢y is multiplied by the same phase.
The only quantity that is fixed is the absolute phase of c,y and ¢y to reduce the
number of complex parameters.

At this point, a few words should also be said about the effects of other dimension
6 operators. As seen in Section 1.2 the list of dimension 6 operators contributing
to top quark physics is long and in principle other operators could be included in
a global fit. Further, additional measurements that are sensitive to the operators
in Eq. 2.21. For example, the top quark production in association with a W boson
is also sensitive to the Wtb couplings. However, the Wt production also gets a

contribution from other operators such as the top gluon coupling ¢;;. This operator
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Figure 25: Fixing both phases of the left-handed sector, ¢, and ¢y, has a strong
impact on the limits of the magnitudes of the respective coefficients. Each plot
shows the probability distribution of the magnitudes of c 4 and ¢y, while the

phase ¢y is fixed to ¢ = 0, and the phases ¢p = 0 (a) and the phases ¢p = 7

(b).

in turn is also constrained by the tf cross section, so inclusion thereof would be
required as well. Both processes can be seen in Figure 26, where the Wt production
shows an alternative Feynman diagram to the one shown in Figure 4. This would
vastly increase both the number of observables and the parameter space. This could
be the subject of a wider effort and is beyond the scope of this work. Therefore,
this analysis is restricted to the observables listed in Section 2.4 and the parameters

discussed in this section.
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Figure 26: Single top quark production in association with a W boson and top pair
production receive contributions from dimension 6 the top-gluon operator O,s. (a)

shows the Wt production, (b) shows the top pair production.

2.5.1 Dependency Of The Top Quark Polarization On The EFT Coeffi-

cients

The polarization in the context of the top quark was discussed in Section 1.3.1.
In this section, the dependency of the EFT coefficients on the polarization and its
effects on the combined fit is evaluated. The polarization directly appears in the
expressions of the angular coefficients in Eq. 1.56 in the single top decay distribution
analysis, where a lower bound of P > 0.72 at 95% CL [69] was found. In this analysis,
the polarization can be treated in two ways in the fit. It can be defined as one of the
free parameters in the fit. Then, the polarization will be varied within its allowed
range and marginalized when calculating the allowed regions of the remaining EFT
coefficients. Alternatively, the polarization can be parameterized in terms of the EF'T
coefficients. This has been done in the literature for the anomalous couplings of the

Witb vertex [71] and the four-quark operators contributing to single top production
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[72]. The four-quark operator considered in this analysis does not have a significant
effect on the polarization and is therefore not further investigated.

However, the anomalous couplings can have a sizable effect on the polarization.
To study this effect, expressions of the polarization taken from Ref. [71] have been
included in the combined fit. After performing the fit, the resulting probability
distributions of the EFT coefficients were compared with the distributions of the
fit when marginalizing over the polarization. Figure 27 shows the comparison for
the coefficients cfgg, Re (cpw), and cyy,. These coefficients show a slight shift when
marginalizing over the polarization. All other coefficients show no shift in the dis-
tribution. The reason that the variation of the polarization in terms of the EFT
coefficients is only slightly noticeable is due to the uncertainty of the polarization,
which is still larger than the predicted variation of the polarization in terms of the
EFT coeflicients. More precise measurements of the polarization can provide valu-
able input for future combinations of measurements. In particular, measurements
of the polarization directions P, and P, could provide unique information on the
coefficient ¢;;7. Here, the more conservative method is chosen and the polarization
is treated as a free parameter in this fit and marginalized when stating confidence

regions of the EFT coefficients.

2.6 Previous Combinations

Many studies have been done in the past to constrain EF'T coefficients by combin-
ing different measurements. In this section, a short review of the latest combinations
that put constraints on one or more of the dimension 6 operator coefficients discussed

in the previous sections is given.
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Figure 27: Comparison of the 1D probability distributions when varying the
polarization according to Ref. [71] (red) and when marginalizing over the

polarization (blue). Three of the EFT coefficients show slight shifts in their
distributions, cffgg (a), Re (cow) (b), and ¢y, (c), all other coefficients do not

change. All plots show a combination of W helicity fractions, single top decay

distributions and 8 TeV cross sections.

Most recently, a combination of the top pair production cross section in associ-
ation with a photon o (tty) with the B — X,y branching ratio was performed [73].
Limits were set on the EFT coefficients c,p, cu.g, and c,r. Both individual and
marginalized limits are given. Individual limits are obtained by setting non-zero one
coefficient at a time, while the marginalized limits come from a simultaneous fit of
all three coefficients at once. Limits on the 90% confidence intervals on the coeffi-
cient Coyy = X—chuw range from approximately Cow € [—0.50, —0.18] , [—0.14, 1.4]
for the marginalized limits, to Cav € [—0.4,0.8] for the individual limits. In

terms of the notation used in the analysis presented here, these limits translate
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to cuw € [—8.2,-3.0],[—2.3,2.3] for the marginalized limits, to ¢, € [—6.6,13.2]
for the individual limits. Assumptions were made in that the coefficients were re-
stricted to be real and no four-quark operators contribute. Correlations between the
measurements were not calculated, but instead estimated by varying the correlation
coefficient in the fit. It was found that the correlation can have an effect on the size
of the confidence regions by as large as 30%, but the general shape and location is
unchanged.

A more global analysis was performed by fitting more than 30 measurements
to a total of 34 EFT coefficients [74]. Assumptions include that all coefficients are
real and correlations between the measurements are not taken into account. The
95% confidence limits set by this global fit are Cgc)g € [-5.5,5.8], con € [—27,8.7],
aw € [—2.6,3.1], o € [—1.8,0.9], and C%}I € [-1.1,1.3]. These limits correspond
to the marginalized limits. The individual limits on one coefficient at a time are
given by 0;322 € [—0.9,0.6], cuw € [—9.4,9.5], o € [—0.6,0.2], o € [—0.4,0.2], and
e € [—0.1,0.09].

In addition, the single top decay distribution and W helicity fraction measure-
ments set limits on the Wtb related EFT coefficients. These limits were stated in

Egs. 2.16-2.19 of Section 2.4.3 and Eq. 2.15 of Section 2.4.2, respectively.

2.7 Parameterization Of The Cross Section

In Section 2.4.1, the single top production cross section measurement was dis-
cussed and it was found that the inclusion of the cross sections in the combined fit
requires that the expression for the cross sections in terms of the EF'T coefficients is

known. This section discusses the full parameterization of the cross section in terms

5



of the EFT coefficients and the calculation of the coefficients k, that are needed for

this parameterization. In general, the cross section can be written as

6a (9) = osasm (Vo +9-K), (2.26)

for the fiducial and
Otot (Ql) = Otot,SM (V[? + g/ ' K/,) ) (227)

for the total cross section. The vector g = g (p) contains all possible combinations
of EFT coefficients evaluated at a point in the EFT coefficient space, here defined

as
p= (Re (cow) ,0:22’;, Re (cpw) , Re (cow) , Im (cpw) , Im (wa)) ) (2.28)

Detailed expressions for g and g’, the possible combinations of EFT coefficients for
the fiducial and total cross sections in terms of p can be found in Appendix C.3.
In case of the fiducial cross section, the components of g are products of four EFT
coefficients. For the total cross section, the components are products of two EFT
coefficients. The coefficients k include all contributions to the cross sections that are
not contained in the Standard Model cross section ogy;. Therefore, to parameterize
the cross section and include it into the combination, the coefficients k need to be
computed.

In the following, only the fiducial cross section is considered and therefore o
refers to oggq, unless otherwise stated. The calculation of the coefficients K can be
accomplished by first factoring out the SM-like coupling V7. Then, g depends on the
ratio of the remaining 6 EFT coefficients with respect to V. For the fiducial cross

section, g has in principle

=210 (2.29)
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components, where n = 4 for a quartic function and m = 6 is the number of EFT
coefficients. However, not all of the components in g contribute to the cross section.
First of all, since the cross section is calculated in the 5 flavor-scheme with my;, = 0
only certain combinations of left- and right-handed couplings are non-zero. More
specifically, if there is an odd number of left- or right-handed EFT coefficients in
any component of g then this component vanishes. Secondly, since the cross section
is a CP-conserving observable, imaginary parts of the EFT coefficients should only
appear in either a square or quartic combination. Any component of g that is linear
or cubic in the imaginary parts vanishes. Lastly, the four-quark coupling cgé only
contributes to the production of the top quark or anti-quark. Therefore, this coupling
can only appear up to a quadratic in the cross section. After applying all of these
restrictions, there are 61 remaining, non-zero components in g, shown in Appendix
C.3. In the next step, the 61 coefficients k are calculated by solving a system of
61 coupled equations for the cross section evaluated at different values of the EFT

coefficients p. The system of equations is given by

omai = OrasmVy <1 + Z%’(P?en)f@j> : (2.30)

J

where, j = 1,...,61 and omg,; are cross sections calculated in MADGRAPH at 61
different coupling points p!*". More on the calculation of the cross sections in MAD-
GRAPH will be given in Section 2.8. In vector form this equation can be written

as

oMG = UﬁdySMVf (J1761 + M - R) , (2.31)

where J;6; is an all-ones column vector of length 61. The matrix M;; = ¢;(p/™") is

a square matrix that has as its row elements all 61 combinations of EFT coefficients
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where each row is evaluated at a different, generated point p{“*. Details on the
generation of these points is given below. Further, in Eq. 2.31, V7, has been factored
out, so the EFT coefficients in g and M are now ratios of EFT coefficients with

respect to V. Then, the coefficients k are simply given by inversion of Eq. 2.31 as

k=M ( NG _ g, 61) , (2.32)

and the uncertainty on the coefficients k is given by

2
0fid,sM 0fid,SM

2
fm | (22 s (e 00 | e
J

where 0o, o, 18 the uncertainty of the Standard Model cross section and Cy,,, is the

oOMG
covariance matrix of the MADGRAPH calculation. Table 12 lists all coefficients &
and their uncertainties. At this point, the question arises on how to choose the 61
points at which to evaluate the cross sections. From Eq. 2.32 it is clear that the
matrix M which is constructed from the 61 generated points, needs to be invertible.
Further, the generated points should be spread throughout the coupling space in
such a way as to minimize the uncertainty on the cross section evaluated at a point
of interest. Points of interest in this case are points within the EFT parameter space
other than the 61 generated points. In other words, the maximum uncertainty of
the cross section within the parameter space should be minimized. The next section

will discuss in detail how the uncertainty is calculated and ways to optimize the

generation of the 61 points to minimize the uncertainty.
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k(t) or(t) K (t) ow(t) | g(p)
k1| 0.018929  0.000287 | -0.073498 0.000216 | cfyy, V7
Ko | -0.459320 0.000657 | -0.372440 0.000241 | g,V
ks | 0.030647 0.000097 | 0.017244 0.000052 | (cfy)* V7
ka | -0.013769 0.000068 | 0.004523 0.000048 | cGoctty V7
ks | 0.116716  0.000167 | 0.065442 0.000041 | (c5)* V2
kg | 0.002465 0.000008 | 0.002197 0.000004 | V2c2,,
k7 | -0.000408 0.000012 | -0.002479  0.000009 | ¢ty Vicum
ks | 0.017933  0.000057 | 0.025086 0.000037 | (cfy)” V2
Ko | 0.005544 0.000059 | 0.002239 0.000041 | (cky )" V7
ko | 0.007029  0.000055 | 0.016299 0.000041 | (chy)* V2
ki1 | -0.000095  0.000003 | 0.000325 0.000002 | (ciy)* V4
k12 | 0.000470  0.000002 | 0.000426 0.000002 | ¢} (c&)* v,
k15 | -0.000910  0.000002 | -0.000421 0.000001 | () iy V7
k14 | 0.000006 0.000000 | -0.000003 ~0.000000 | cffy, Vi,
k15 | -0.000034 0.000000 | -0.000016 0.000000 | cfyy chiy Vicom
ki | -0.000258  0.000002 | -0.000134  0.000001 | (cfy)” ey Vi

Continued on next page

Table 12: Coefficients x; and uncertainties dx; for the 8 TeV fiducial top quark and
anti-quark cross section. Also shown is the combination of EFT coefficients g; (p)

associated with each k;
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K(t) ok(t) K (t) dr(t) | g(p)
2
k17 | 0.000261  0.000001 | 0.000235 0.000001 | (cfyy)” ciiy Ve
ks | -0.000107  0.000002 | -0.000298  0.000002 | (chyy)” ey Vi
k19 | -0.000016 0.000000 | 0.000004 0.000000 | g, Vic?y,
k2o | -0.000020  0.000000 | -0.000008 0.000000 | cgsectyy Vicom
ko1 | 0.000157 0.000003 | -0.000099 0.000002 | ¢! (cfty)* Vi
k2 | 0.000553  0.000002 | 0.000359 0.000001 | ¢} (chy)* Vi
23 | 0.000148  0.000002 | -0.000092 0.000002 | ¢} (chy)* Vi
K2a | -0.000027  0.000000 | -0.000004 0.000000 | iy iy Vo
ko5 | 0.000114  0.000001 | 0.000030  0.000001 | cpy iy chy Ve
4
k26 | -0.000084 0.000001 | -0.000014 0.000001 | (cfiy)
ko7 | 0.000072  0.000001 | 0.000018 0.000000 | ¢! (cfy)”
Kos | -0.000096 0.000000 | -0.000078 0.000000 (Q) (&)
2
K29 | -0.000003 0.000000 | -0.000003 0.000000 | (cfiy)” cZyy
g0 | -0.000018 0.000000 | -0.000014  0.000000 | ¢ty (ciy) com
kg1 | -0.000041 0.000000 | -0.000025 0.000000 | (cfy)* (&)
2 2
K32 | -0.000004 0.000000 | 0.000010 0.000000 | (cjy)” (chy)

Continued on next page

Table 12: Coefficients x; and uncertainties dx; for the 8 TeV fiducial top quark and

anti-quark cross section. Also shown is the combination of EFT coefficients g; (p)

associated with each k;
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r(t) ok(t) r(t) dr(t) | g(p)
kg3 | 0.000036  0.000000 | 0.000002 0.000000 | (chy)® (cfy)?
k31 | 0.000001 0.000000 | 0.000002 0.000000 | g chyc2y,
K35 | -0.000002 0.000000 | -0.000000 0.000000 | cochiycitycom
s | -0.000041  0.000000 | -0.000048  0.000000 | €5} (cfyy)* el
ka7 | -0.000040  0.000000 | -0.000023 0.000000 | ¢! (chy)” iy
iz | 0.000030  0.000000 | 0.000031 0.000000 | ¢} (chy)” ey
k39 | -0.000002  0.000000 | -0.000001  0.000000 | chy CrypChiyCot
Ko | 0.000008  0.000000 | 0.000001  0.000000 | chy iy chycity
ka1 | -0.000003  0.000000 | -0.000003 0.000000 | (c51)* 2,
ko | 0.000019  0.000000 | 0.000009 0.000000 | (c5)* ey con
kg | 0.000051  0.000000 | 0.000041 0.000000 | (c5)* (cfy)?
ks | 0.000023  0.000000 | -0.000008 0.000000 (cg;f(ctw)
ka5 | 0.000006  0.000000 | -0.000008 0.000000 | (c5)* (chy)?
Kae | -0.000000 0.000000 | -0.000000 0.000000 | C3oChiy Chiy Coto
ka7 | -0.000002 0.000000 | 0.000001 0.000000 | g, chyychiy chy
Kas | -0.000001  0.000000 | -0.000000 0.000000 | ¢y,

Continued on next page

Table 12: Coefficients x; and uncertainties dx; for the 8 TeV fiducial top quark and

anti-quark cross section. Also shown is the combination of EFT coefficients g; (p)

associated with each k;
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K(t) OK(t) K (t) dr(t) | g(p)

Kao | 0.000001  0.000000 | 0.000001 0.000000 | cfiycly,

50 | -0.000007 0.000000 | -0.000006 0.000000 | (cfy)* 2y,
k51 | -0.000001  0.000000 | 0.000002  0.000000 | (cky)” 2y,
sz | -0.000002 0.000000 | 0.000002  0.000000 | (chy)” 2y,
k53 | -0.000003  0.000000 | -0.000001  0.000000 | (cBy)* con
Ks4 | -0.000003  0.000000 | -0.000002 0.000000 | ety (chy)? com
k55 | -0.000006  0.000000 | 0.000003 0.000000 | (chy)* cBycom
ks | -0.000021 0.000000 | 0.000017 0.000000 | (c&,)*

k57 | 0.000020  0.000000 | -0.000013  0.000000 | (&) (chy)”
kss | -0.000014  0.000000 | -0.000062  0.000000 | (chy)* (cBy)?
k5o | 0.000007  0.000000 | 0.000020 0.000000 | (cky)”

keo | 0.000065 0.000000 | 0.000049  0.000000 | (chy)” (chy)”
ke | 0.000037  0.000001 | 0.000010  0.000000 | (chy )"

Table 12: Coefficients x; and uncertainties dx; for the 8 TeV fiducial top quark and

anti-quark cross section. Also shown is the combination of EFT coefficients g; (p)

associated with each k;
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2.7.1 Uncertainty Of The Cross Section

Eq. 2.26 gives the fiducial cross section in terms of the EFT coefficients. However,
since the coefficients k have been determined through a minimal set of generated
points, any cross section that lies between the generated points might have a sizable
uncertainty due to interpolation effects. In this section, the uncertainty on the cross
section for any point in the parameter space of the EFT coefficients is derived. To
start, Eq. 2.26 is rewritten in terms of the cross sections generated in MADGRAPH

as

o
ot (9) = orasmVy {1 +gM™ (LG - Jﬂ (2.34)

Ofid,SM

where again V7, is factored out and oy g are the cross sections calculated in MAD-

GRAPH. The uncertainty squared on the cross section ogq (g) is given by

0o, = (Mfagﬁw + (M) Couc: (M>T, (2.35)

00ga,5m dovic dovc

where 0y, 4, 18 the uncertainty of the SM cross section and C,,,, is the variance

matrix of the MADGRAPH calculation. Taking the derivatives in Eq. 2.35 we get

Jo54 (9) _ (4 -1
G~ ViM . (2.36)
and
—gaﬁd 9) _yi g (2.37)
Ofid,SM

where g" M~'J = 37, (gM '), is the sum of the elements of the vector g” M.
Then, Eq. 2.35 takes the form

2 =VE(1—gM'J) & +VE(gM)C

Ofid Ofid,SM

(gM )" (2.38)

OMG
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This equation allows to calculate the uncertainty on the fiducial cross section at any
point in the parameter space of the EFT coefficients. To evaluate the behavior of
the uncertainty of the cross section in the EFT coefficients parameter space, a grid
search over the parameters was done to confirm that the uncertainty does not blow
up at any point. This grid search was done as follows. Each EFT parameter was
varied independently between its minimum and maximum value. For each set of
parameters, the fiducial cross section and the uncertainty on the cross section at
that point were calculated. If the cross section plus its uncertainty at that point is
smaller than half the Standard Model cross section, that point is disregarded. The
same applies to a point where the cross section minus the uncertainty is twice the
Standard Model cross section. In particular, this excludes cross sections that are very
small and have a relatively large uncertainty. These uncertainties are not compatible
with the measured cross sections and therefore will not enter the fit. In the remaining
parameter region, the relative uncertainty on the cross section is calculated.

It is found, that the relative uncertainty does not go above 0.5%. In fact, the
highest values of the uncertainties are in the regions where at least several EFT
coefficients take on values at the larger end of their ranges. For the parameter
region, where none of the EFT coefficients is larger that half its allowed value, the

maximum uncertainty is below 0.3%.

2.7.2 Generation Of The Set Of Points

To generate the set of 61 points, the range of the EFT coefficients is first set to
be —1 < ¢ < 1 for the coefficients ¢ = cfg?, Re (cw), Re(aw), Im (¢) and c%’(l]
and 0 < ¢ < 1 for ¢,y and Im (¢;i). The reason for the positive range of ¢y is

that this coefficient is defined to be positive, see Section 2.5. The imaginary part
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of the coefficient ¢;; can be restricted to positive values, since it always appears as
either a square or quartic with itself or the imaginary part of c,y. Therefore, only
the relative sign between the two imaginary parts contributes. Once an optimal set
of points is found, the range of the couplings can be scaled to their desired values.
This scaling does not affect the invertibility of the matrix M and therefore does not
affect the set of points. The generation of the set of points takes part in three stages.
First, an initial set of points is generated. This initial set is chosen manually in such

a way that

1. as many points as possible are set at the corners and edges of the parameter
space,

2. the resulting matrix M is not singular.

In the second stage, the initial set of points is optimized by moving one point at a

time while

1. reducing the 2-norm condition number of the matrix M constructed from the
set of points. The condition number gives a measure on the uncertainty of the
result of the matrix inversion;

2. reducing the maximum approximate uncertainty of the cross section in the pa-

rameter space.

The approximate uncertainty of the cross section is given by

02 =02, [(1—gM1J) + (M) (2.39)

OSM

This approximate uncertainty is derived from the full uncertainty of the cross sec-
tion at any point in the parameter space, Eq. 2.38, by assuming the uncertainty of

any cross section in the parameter space is equal to the uncertainty of the Standard
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Model cross section. This is certainly not the case and the uncertainty can devi-
ate significantly from the Standard Model uncertainty. However, the approximate
uncertainty can still give a measure on how large the uncertainty at a point in the
parameter space grows with respect to the uncertainty of the Standard Model cross
section. It also serves as a measure to determine the uncertainty at a point before
and after moving one point. After the second stage, the set of points is already
optimized to a good degree. Therefore, this set is used in the third stage, to perform
the calculation of the cross sections in Eq. 2.31. This calculation is done in MAD-
GRAPH with a reduced number of events. In this particular case, the calculation
was done with 50,000 events. The reason to keep the number of events low is that
a full calculation in MADGRAPH is time and resource consuming and should only
be done in the last step, when the most optimal set of points is found. Once the
calculation is done the cross section at any point in the EFT coefficient space can be
parameterized according to Eq. 2.34 and the uncertainty is given by Eq. 2.38. From
this uncertainty, another approximate uncertainty can be derived, that utilizes the
cross sections and coefficients k previously calculated.

For N generated events, the statistical uncertainty J; on the cross section o; is

0;

5 = i, (2.40)

=

and the relative uncertainty on the cross section should not vary too much in the
EFT coefficient space if all cross sections are calculated with the same number of
events. Then, the relative uncertainty of the cross section at any point can be related
to the relative uncertainty of the Standard Model cross section as

52 2

)
Ofd ,_ Ofid,SM
i (2.41)
0tid 0fid,SM
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It is then possible to write the variance matrix C in Eq. 2.38 as

OMG

(CO'NIG)Z'j = 3’1\1(‘;,7: 'L]

2
IMGi 5
1

N

2

Ofd,SM _2
R 5 OMG,i0ij
O8d,SM

2

0,
Corree = LM T5 160 (2.42)

OMG 2
O8d,SM

~

Here, 67, . ; are the uncertainties squared of the generated cross sections and d;; is

the Kronecker delta. I is the identity matrix and

oMG = {Ul%/[G,(bUl%/[G,laal%/[G,Zaal%/[G,?n .} (2.43)

is the vector that holds the squares of the generated cross sections. Then, the un-

certainty squared on ogq (g) in Eq. 2.38 becomes

2

0
5gﬁd = Vf? (1 - gMilJ)Z 5<27ﬁd,SM + VLS (gMil) (;g% (Igne) (ngl)T. (2.44)
d,SM

Further, the relative uncertainty on ogq (g) can be calculated as

53 (52 2 I T
B MM yS (] gMTU) 4 (gM ) 5 (M) L (2.45)
od (9) 064 (9) Ofd,SM

Plugging in the general expression for the cross section ogq (g) = opasm (1 +9 - K)

this leads to

52 o 1%

Ofd __ 0fid,SM

oha (9)°  Thasm (1 +g-K) ORd.SM

; [(1 M) (gt 1O (ng)T] _
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In this expression, o \¢ depends on the generated cross sections and can be expressed

as

oM, = 0gasm (1 + ;- K), (2.47)

where g! depends on the choice of the ith point generated in the second stage.
Eq. 2.46 now only depends on the coefficients k and the choice of points generated
in the second stage. Even though the set calculated in the second stage and thereby
the coefficients k are not the most optimal set, they do provide a good approximation
for the uncertainties of the cross sections. Finally, Eq. 2.46 can be used to find a new
set of points that minimizes the relative uncertainty at every point in the parameter

space.

2.8 Monte Carlo Simulations Of The Cross Section

In the previous section the generation of a set of points to calculate the coef-
ficients k in the parameterization of the fiducial cross section defined in Eq. 2.26
was discussed. In this section, the generated set of points is used to compute the
coefficients k according to Eq. 2.32. Each entry in o g of Eq. 2.32 corresponds to
a cross section calculated at a specific point p in the EFT coefficient space, where
p is defined in Eq. 2.28. This set of cross sections corresponding the the set of gen-
erated points was calculated in MADGRAPH5 (version 2.6.2) [56, 57]. The events
are then decayed using MADSPIN [60] and subsequently showered with PyYTHIAS
(v8.235) [66]. MADSPIN ensures that the spin correlations between the top quark

and its decay products are preserved. Event generation and showering was done in
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MCProd 19.2.5.36.3
dimétop_LO_UFO model
MadGraph5 ‘ MadSpin - PYTHIAS
o /

)

Fiducial Selection I TRUTH Reco
8J

AnalysisBase 21.2.4 AthDerivation 21.2.6.0

Figure 28: Workflow of the Monte Carlo generation. Events are generated in
MADGRAPHS then decayed with MADSPIN. Both steps use the dim6top_LO_UFO
model. Events are then showered in PYTHIA8 which generated HepMC and xAOD
files as output. The xAOD files are then reconstructed at TRUTH level. The
reconstructed events are then processed by an Athena algorithm for fiducial

selection.

Athena [75] release MCProd 19.2.5.36.3. To include the effect of the dimension 6 oper-
ators, the Universal FeynRules Output (UFO) model dim6top_LO_UFO Ref. [17] was
used. This UFO model is an implementation of all dimension 6 operators including
at least one top quark and is based on the Warsaw basis of dimension 6 operators

[16]. In the last step, the showered events are reconstructed at truth level to convert
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SM inputs

gy 132.2332298
Gr 1.16639 x 107° GeV 2
O 0.1181

Masses
my 0.0
My 172.5 GeV

PDF set
PDF CT10 [76]

EFT inputs

A 1 TeV

Table 13: Input values for the MADGRAPH event generation.

the final state particles into physics objects that are measured in the detector. The
complete workflow from event generation to fiducial selection is shown in Figure 28.
Also show are the data formats of the output after each section. More details on the
data formats are given below. In the following, details of the individual steps of this

event generation chain are given.

Matrix Element Generator: The generation of the top quark or anti-quark in

MADGRAPH is according to the 5 flavor-scheme t-channel processes shown in
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Figure 5 in Section 2.4.1
pp = tj,  pp — 1, (2.48)

where the proton and spectator jet are defined as

p = {u7 ﬂ? d7 J7 S’ '§7 C’ E’ b7 B} ) (2.49)
j= {u,ﬂ,d, d,s,3,c, E}. (2.50)

The spectator jet j is a jet initiated by a light quark. All input values for the
event generation are given in Table 13. Some of these input values were chosen
in such a way as to reproduce known physical quantities. In particular, the
Fermi constant Gr (Eq. 1.15) and ajy, (Eq. 1.19) are adjusted such that the W
boson mass is set to myy = 80.39 GeV. This also fixes the value of the vacuum
expectation value to v = 246.2 GeV. The renormalization and factorization scale

is set to its default value. By default, both scales are calculated event-by-event

fr = pr = \/m? + pi, (2.51)

where pp is the renormalization scale and up is the factorization scale defined in

according to

Section 1.1.1. Eq. 2.51 is used as is for a single particle and corresponds to the
geometric mean for a pair of heavy particles. In case of a massless particle the
renormalization and factorization scales are equal to the transverse momentum
of that particle. With these settings, a total of one million events has been
generated for each of the 61 generated points in the EFT parameter space plus
the Standard Model point. After the event generation in MADGRAPH, the top

quark is then decayed using MADSPIN according to the decay chain

t— Wb, W — v (2.52)

91



where ¢ = e, u, 7 and vy is the respective neutrino. The top quark is assumed to
decay into a W boson and a b quark 100% of the time. This is due to the relative
size of the CKM matrix elements V;;,, Vi, and, V4 as discussed in Section 1.1 and
Section 1.3.2.1. No restrictions are made for the decay of the tau lepton, which
decays both leptonically and hadronically. The missing lepton in the case of a
hadronic decay of the tau lepton is taken care of in the fiducial event selection,
discussed further down in this section.

Showering and Hadronization: After the events have been generated and the
top quarks are decayed, the events are showered using PYTHIAS to account for
initial and final state radiation. PYTHIAS showers all remaining unstable particles
such as the b quarks and tau leptons. In addition to the showering, PYTHIAS
also adds initial and final state radiation to the events. See Section 2.3 for more
details on Monte Carlo event generation.

Reconstruction: After showering, the event file only consists of stable particles
that can be measured in the detector. In principle, the events need to be passed
though detector simulation and reconstruction. Full detector simulation and re-
construction however is computationally very expensive. For this analysis, a truth
reconstruction is sufficient. In truth reconstruction, all final state particles that
are stored in a HepMC [77] format after showering are converted into an xAOD
[78] format. The xAOD format stores the physics objects in terms of physics
analysis objects such as jets and dressed leptons that are reconstructed from the
HepMC record. The physics analysis objects can then be used to perform the
fiducial selection. The main physics object containers used in this analysis are
the TruthElectrons and TruthMuons container, which hold the records of the
electrons and muons, respectively, and the truth jet container. Specifically, the

truth jets used are the AntiKt4 TruthDressed WZ Jets. The jets stored in this con-
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tainer are small-R jets with an anti-k; radius 0.4 and a transverse momentum
of pr > 20 GeV. To identify b-tagged jets, the TrueFlavor decoration is used.
This corresponds to a merging of the two decorations, one by the Heavy Flavor
(HF) tagging group for identifying a jet as b- or c-tagged at particle level and the
other by the jet group for identifying a jet as quark- or gluon-initiated. Truth

reconstruction was done in Athena release AthDerivation 21.2.6.0.

Once the reconstructed data sets were generated, the fiducial cuts were applied. For
that, an Athena algorithm using Athena release AnalysisBase 21.2.48 was devel-
oped. The fiducial acceptance was then calculated from the total number of events

generated Ny and the number of events that passed the fiducial cuts Ngq as

Agg =

. 2.53
Ntot ( )

The fiducial cuts are defined in such a way as to resemble the experiments constraints

as closely as possible. Here, a short review of the fiducial cuts is given.

Decay Chain: As discussed before, the top quark is assumed to decay into a W
boson and a b-quark 100% of the time. The W subsequently decays leptonically
into an electron, muon or tau and the respective neutrino. In case of the decay
into a tau lepton, only those events pass the fiducial cuts, where the tau decays
leptonically into an electron or muon.

Leptons: Exactly one electron or muon with transverse momentum of pp > 25 GeV
and |n| < 2.5 is required. In principle, the decay chain is defined in such a way
that the W boson only decays leptonically. However, in the case of a hadronic
tau, there is no lepton associated with the W decay and the event is a background

event.
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Jets: There have to be two jets with a transverse momentum of pr > 30 GeV.
Exactly one of the jets is required to be tagged as a b-jet. In addition, the
light jet is required to lie within |n| < 4.5 and the b-jet is required to lie within
In| < 2.5.

Separation: If the lepton is found within a cone size of AR < 0.4 of a jet the event

is removed since the lepton is likely to be originated from that jet. Here, AR is

given by AR = /(An)? + (A¢)2.

Invariant Mmass: The invariant mass of the lepton - b-jet system is required to
be my < 160 GeV. This is because current Monte Carlo event generators are

not able to model off-shell effect of the top decay above this region.

With this, the fiducial cross section at each point in the EFT parameter space was
calculated according to Eq. 2.8 and the coefficients k used as input for the fit were
calculated as described in Section 2.7.

To verify the calculation, coefficients # calculated at 7 TeV and 14 TeV for the
total cross section have been compared to the literature. The coefficients for the 7
TeV cross section are compared to the coefficients taken from the default example
in the EFTfitter code [79]. A comparison is given in Table 15 where sign differences
in the definition of the dim. 6 operators as discussed in Section 1.2 are taken into
account. The coefficients of the 14 TeV cross section are compared with coefficients
calculated in Ref. [18] and shown in Table 14. Again, sign differences from different
definitions of the dim. 6 operators are taken into account. In both cases, generally
good agreement between the coefficients k is found. One sign difference is present in
the coefficients K of the 14 TeV cross section. The coefficient corresponding to the
cross term between Vi and gy, in the top anti-quark cross section has an opposite

sign. This does not occur when comparing the coefficients with EFT fitter.
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MG5 o(tj) Ref. o(tj) MG5 o(tj) Ref. o(tj)
Vigr | -0.461  -(0.348-0.365) | -0.006  -(0.038 - 0.040)
g% 2.219 2.18 1.866 1.75 - 1.77
V3 0.883 0.916 - 0.923 1.111 1.082 - 1.084
Vrgr | -0.035  -(0.006 - 0.008) 0.485  -(0.399 - 0.408)
g2 1.680 1.75 - 1.79 2.372 2.16 - 2.17

Table 14: Comparison of coefficients /& for the 14 TeV total cross section. MGbH

stand for the coefficients calculated in MADGRAPHDS in this work. Ref. stands for

the coefficients taken from Ref. [18].

MGS5 o(tj) EFTfitter o(tj) | MG5 o(tj) EFTfitter o(tj)
Vigr | -0.536 -0.537 0.035 0.002
g% 2.080 1.829 1.545 1.366
V2 0.864 0.863 1.158 1.139
VraL 0.102 0.050 -0.639 -0.597
92 1.287 1.199 2.271 2.008

Table 15: Comparison of coefficients & for the 7 TeV total cross section. MGbH
stand for the coefficients calculated in MADGRAPH) in this work. EFTfitter stands

for the coefficients taken from the EFTfitter code in Ref. [79].
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Furthermore, the event generation was verified with additional control plots.
These plots included distributions of kinematic variables such as the transverse mo-
mentum of the leptons and jets, their pseudorapidity distributions and the separa-
tion of leptons and jets. In addition to this, control plots were made reproducing
the distributions of the neural network input variables of the 8 TeV cross section
measurement. All checks were done on the fiducial and the full phase space. The
input variables of the neural network in the cross section analysis consisted of the
invariant mass of the light jet and the b-jet, m (jb); the absolute value of the pseu-
dorapidity |n ()| of the light jet; the top quark mass reconstructed from the charged
lepton, neutrino and b-jet, m (fvb); the transverse mass of the reconstructed W
boson my (KE{,EﬂSS)l; the absolute value of the difference in pseudorapidity of the
reconstructed W boson and the b-jet, An (¢v,b); the invariant mass of the charged
lepton and the b-jet, m (¢b); the cosine of the polarization angle 6* between the
charged lepton and the spectator jet in the rest-frame of the top quark, cos8* (¢, j)
(see Section 1.3.1). In addition to these variables, control plots of the W boson he-
licity angle (see Section 1.3.2.1, that is the angle between the charged lepton and the
b-jet in the W boson rest frame were made. These plots ensured that the decay of
the top quark and W boson are as expected. This specifically helped in identifying
an issue in the decay with MADSPIN and to evaluate the sign differences discussed
in Section 1.2. Figures 29-32 shows the various distributions for the fiducial and

total phase space for different values of the real part of the EFT coefficient ¢;y,. The

1

The transverse mass of the W boson is given by

mr (lv) = \/(pT,e +p10)% = Dot + Pan)’ = Pyt +Pyu)’

where pr¢ and pr, is the transverse momentum and p;, and p,, is the z component of the
momentum of the charged lepton and the neutrino, respectively. Similarly for the y components

Dy,c and py ..
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values chosen are Re (¢) = £2,£5. These values do lie outside of the confidence
limits found in as seen in Section 2.11. However, they are chosen in such a way as
to see the change in the distributions with respect of the EFT parameters. For the
coefficient c,y, only positive values of ¢,y = 10,25 are chosen since this coefficient is
restricted to positive values, see Section 2.5. All other coefficients were set to their
Standard Model values. This ensures that the specific features of one EFT operator
does not overshadow or cancel another. For most variables variations of Re (¢ )
do not affect the distributions of that variable. In some cases the large coefficient
values lead to slight deviations in the distributions without changing the overall
behaviour. Overall, the deviations are less severe in the fiducial region than when
considering the whole phase space. The largest deviations is in the distributions of
the angles cos0* (¢, 7). However, only large coefficients values of Re (cy) = £5 lead
to a sizable deviation, while the smaller values of Re (¢;r) = 2 are still close to
the Standard Model. Therefore, deviations in the cos6* (¢, 7) distribution due to
Re () should not affect the acceptance correction of the neural network of the 8
TeV cross section analysis. The imaginary part of ¢;;y has a similar behavior as the
real part. A few more deviations in the remaining coupling shown in Appendix E
should be mentioned here. The four-quark operator corresponding to coefficient C%;
in Figures 67-70 does show large deviations from the Standard Model distributions
in several variables. Most notably these are the n distribution of the spectator jet.
In the Standard Model, as with the remaining EFT coefficients, the single top pro-
duction goes via a t-channel process. Due to the nature of the t-channel process,
the n distribution of the spectator jet is shifted towards large values of 7, that is
the direction of the beam pipe. The four-quark operator c%; corresponds to a point
interaction where the direction of the spectator jet is uniformly distributed. In addi-

tion, the transpose momentum of the spectator jet takes larger values. This behavior
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is predominant for a large positive value of c?éz’;. Figures 71-74 of Appendix E also
shows the distributions of the input variables when varying the Standard Model like
coefficient cg’gg. This coefficient however only affects the normalization, but not the

shape of the distributions.
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Figure 29: Control plots of simulated top quark (left) and top anti-quark (right)
events when varying Re () in the fiducial phase space. Shown are, from top to

bottom row, the input variables m (¢b), m (jb), An (¢v,b), |n (4)].
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Figure 30: Control plots of simulated top quark (left) and top anti-quark (right)
events when varying Re () in the fiducial phase space. Shown are, from top to

bottom row, the input variables my ((EF™), m ((vb), cos 6* (¢, j), cos 6* (£,b).
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Figure 31: Control plots of simulated top quark (left) and top anti-quark (right)
events when varying Re (¢;) in the full phase space. Shown are, from top to
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2.9 Uncertainties

This section gives an overview of the systematic uncertainties of the measure-
ments described in Section 2.4. Further, the correlations between observables within
one measurement and the correlations between observables of different measurements
are discussed. In order to get reliable bounds on the EFT coefficients all the correla-
tions between the different measurements need to be taken into account. Many of the
systematic uncertainties are potentially correlated. To account for these correlations,
the up and down variations of each uncertainty of every observable in all measure-
ments are checked to determine whether they vary in a correlated or anti-correlated
way. Then, their correlation coefficient is set to be either +1 in the correlated or —1
in the anti-correlated case. The up and down variations of a systematic uncertainty
are variations of the nominal value of an observable when one of the systematic uncer-
tainties is varied within its 0 bounds. If a systematic uncertainty can only be varied
in one direction, this variation is taken as both up and down variation. Examples
for these systematic uncertainties are resolution uncertainties like jet energy reso-
lution or lepton momentum resolution. Some systematic uncertainties do not have
variations, but instead the nominal value of the observable is compared to the value
of that observable computed using a different technique. Examples for these varia-
tions are the Monte Carlo event generator and parton showering tools. Appendix I
lists all systematic uncertainties for the measurements discussed in Section 2.4 that
contribute to the correlations between these measurements In the next sections, de-
tails of the different measurements, their systematic uncertainties and correlations
between their observables are given. After that, details on the calculation of the

total systematic correlation matrix used in the combined fit are give.
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2.9.1 W Helicity Fractions Systematic Uncertainties

In this section, the uncertainties of the W helicity fractions as well as their cor-
relations are discussed. Uncertainties that enter the combined fit come from both,
the experimental uncertainties of the W helicity fraction measurement and the the-
oretical uncertainties that enter the fit through the parameterization of the helicity
fractions in terms of the EFT coefficients. First, the mean values and uncertain-
ties, both experimental and theoretical, of the W helicity fractions that are used in
EFTfitter are discussed. When parameterizing the W helicity fractions in terms of
the EFT coefficients, they are normalized to their predicted values as

FEFT
E — ENNLOZ_ (254)

FSM Y
where i = 0, L. F)"NLO is the theoretical prediction at next-to-next-to-leading-order
(NNLO) in the strong coupling constant [46], and FFFT and F°M are the helic-
ity fractions in terms of the EFT coefficients and in terms of only SM parameters,
respectively. Expressions for FF'T can be found in Appendix A. The NNLO pre-

dictions are given by

FINEO — (0,687 + 0.005, (2.55)
FNNLO — 0,311 4 0.005, (2.56)
FRNEO = 0.0017 + 0.0001, (2.57)

for my = 4.8 GeV and m; = 172.8 GeV. Fp is listed here for completeness. These
predictions come with a theoretical uncertainty and therefore lead to another uncer-

tainty in the combined fit. An additional, theoretical uncertainty on the experimental
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value of 0.73% for Fy and 1.6% for F}, is assigned. Therefore, the experimental values

for the helicity fractions used in EFT fitter are

Fy = 0.709 & 0.012 (stat.+bkg.) &+ 3917 (syst.) & 0.005 (th.)

= 0.709 £ 0.020, (2.58)
and

Fr, = 0.299 £ 0.008 (stat.+bkg.) + T3 (syst.) + 0.005 (th.)

= 0.299 £ 0.016, (2.59)

where the statistics, background and systematic uncertainties are taken from [67, 68]
and the theoretical uncertainty corresponds the uncertainty discussed above. All
systematic uncertainties of the W helicity fractions that contribute to the correlations
with the other measurements are listed in Table 29 of Appendix I.

Next, a detailed look at the systematic uncertainties of the W helicity fractions
is given, in order to calculate the correlations between the helicity fractions and the
remaining measurements. For the majority of the systematic uncertainties in the
W helicity fraction analysis up and down variations are available. The correlation
coefficients of the helicity fractions with other observables can therefore be calculated
in a straight forward way, see Section 2.9.4. In case no up and down variations are
given, the sign of the variation needs to be evaluated in another way. In the following,
details of the uncertainties with no up and down variations and the calculation of

the signs are given.

Initial and Final State Radiation: The initial and final state radiation uncer-
tainty corresponds to the scale uncertainties from the parton shower generator
and is labeled radLo and radHi in the systematics table. These correspond to

the up and down variations, respectively.
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ME Generator: The variation of the central values of Fy and F;, when switching
from the default matrix element generator POWHEG to the alternative generator
MC@NLO are given in the W helicity fraction analysis. It shows that the central
value of Fy decreases, while the central value value of Fj, increases. Since the
PDF variation is one-directional, a negative sign is assigned to the variation of
Fy and a positive sign is assigned to the variation of Fp,.

Parton Shower: The variation of the central values values of Fy and F}; when
switching from the default parton shower generator PYTHIA to the alternative
generator HERWIG is given in the W helicity fraction analysis. Under this varia-
tion, Fy increases and F, decreases and therefore Fj gets assigned a positive and
F}, gets assigned a negative sign.

PDF: Variations of the helicity fractions with respect to the different PDF’s are
available. These show that going from the default PDF CT10 NLO to either
of the other PDF, MSTW2008 68% CL NLO or NNPDF 2.3 NLO increases the
values of Fy and decreases the values of Fp. Therefore, the variation of Fj is
assigned a positive sign and the variation of Fj, a negative sign.

Top Mass: The variation of the helicity fractions with respect to the top mass is
available. The fraction Fj increases with increasing m; and F}, decreases with
increasing m;. Therefore, the variations of Fj is assigned a positive sign and F7,

is assigned a negative sign.

Lastly, the correlation coefficients between the two helicity fractions is discussed.
This correlation coefficient is not calculated here, but instead the value is taken from

the analysis. The correlation coefficient is given by
PFF, = —0.82 (260)

and includes both systematic and statistical correlations.
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Mean value Uncertainty

ap10 -0.058381 0.016316
@p20 -0.055868 0.016787
a100 0.045245 0.017026
a110 0.027649 0.018197
@120 -0.045311 0.015230
Re(ai -0.066725 0.015932

)
(a111)  0.035573  0.004670
Re(a11)  0.008963  0.015141
(a121)  0.001532  0.005956

Table 16: Mean values and total uncertainties of the measured angular coefficients

Ak lm-

2.9.2 Single Top Decay Distribution Systematic Uncertainties

The mean values and total uncertainties of the angular coefficients ay;,, of the
single top decay distribution measurement are listed in Table 16. Similar to the W
helicity fractions, the angular coefficients are normalized to their Standard Model
predictions as

EFT

a
_ ,LO Tkilm
a’k’lvm_ak,l,m SM (261)
k,l,m

for all ajm, except for the imaginary parts of a;;; and aj9;, where the a%}\l/fm = 0.

In Eq. 2.61 a;;,, is the angular coefficient parameterized by the EFT coefficients
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as given by Eq. B.1 in Appendix B and a};ﬁm are the angular coefficients given
in Eq. 1.55 and Eq. 1.56 of Section 1.3.2.2 evaluated at the leading-order Standard
Model predictions [70, 80] of

fi=10.304 5, =0 (2.62)
fit =0.001 5. =0 (2.63)
ff=6x107° P=09 (2.64)

Detailed information on all systematic uncertainties considered for correlations
with the remaining measurements can be found in Tables 31-35 of Appendix I. To
evaluate the correlations with the other measurements, the up and down variations
of the systematic uncertainties are considered. Up and down variations are available
for all systematic uncertainties and the sign of the correlation coefficients can be
determined in a straight forward way, see Section 2.9.4.

The correlation coefficients between the angular coefficients ay,, is taken from
the single top decay distribution analysis. The full correlation matrix is shown in

Table 17.

2.9.3 Cross Section Systematic Uncertainties

The cross section systematic uncertainties are available as symmetrized uncer-
tainties only. No up and down variations are given. There, the behavior of the
cross section when varying one of the systematics within its allowed range has to be
evaluated. For that, the single top decay distribution measurement can be used. In
the single top decay distribution measurement, the signal fraction of the t-channel
process was measured. The change of the signal fraction when varying on of the sys-

tematic uncertainties follows the same sign as the cross section, when varying that
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R I R I
aplo Qo0 Q100 Q110 G120 Q17 G111 Q91 Q1o

aoo | 1.00 -0.45 0.69 -0.65 052 042 0.06 -0.16 -0.08
ago | -0.45  1.00 -043 061 -0.39 -0.28 0.16 -0.07 0.12
ao | 0.69 -0.43 1.00 -0.68 042 045 -0.09 -0.01 021
ano | -0.65 0.61 -0.68 1.00 -0.60 -0.62 0.15 025 0.11
a0 | 052 -0.39 042 -0.60 1.00 033 -0.06 -0.21 0.00
al, | 042 -028 045 -0.62 033 1.00 -0.26 -0.23 0.03
aly, | 0.06 016 -009 0.5 -0.06 -0.26 1.00 0.05 -0.26
al, [-0.16 -0.07 -0.01 025 -021 -0.23 0.05 1.00 0.07
aly, [-0.08 012 021 011 000 003 -0.26 0.07 1.00

Table 17: Correlation matrix of the angular coefficient [69]. Superscripts R and I

stand for real and imaginary parts, respectively.

same uncertainty. Therefore, a study of the signal fraction gives an estimate of the
sign of the up and down variations of the cross section. The signs calculated this
way can then be combined with the symmetrized uncertainties taken from the cross
section analysis.

Not all uncertainties of the cross section measurement have a corresponding un-
certainty in the single top decay distribution measurement. However, uncertainties
that do not have a corresponding one in the other measurements are not correlated
with these. In particular, the uncertainties bb acceptance and electron charge ID
are not present in either the single top decay distribution or the W helicity fraction

analysis. These uncertainties then only contribute to the correlation between the
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top and anti-top cross section. Since the correlation between the two cross sections
is evaluated in a different way (see further down in this section) the uncertainties
bb acceptance and electron charge ID do not need any further evaluation here. One
exception is the multijet normalization uncertainty which is present in both the cross
section and the single top decay distribution measurement. However, the uncertainty
is negligible for all angular coefficients ay ,, in the single top decay distribution anal-
ysis and therefore does not lead to correlations with the cross sections.

To account for the theoretical uncertainties of the predicted cross section, an
additional uncertainty similar to the one in the W helicity fraction is applied. In
EFTfitter, the cross sections are normalized to the theoretical predictions. At next-
to-leading-order (NLO) in the strong coupling constant, the total top quark and

antiquark cross sections are predicted to be

o (tq) = 54.975 pb,

o (tq) = 29.7717 pb, (2.65)

for my = 172.5 GeV. They are calculated with the HATHOR v2.1 tool [25] and work
based on [81]. To get the prediction of the fiducial cross sections, the total cross

sections are multiplied by the respective fiducial acceptances, given by

Ana (tq) = (17.26°3:8) %,

Asa (tq) = (17~52t8238) %, (2.66)
taken from [31]. Therefore, the predicted values for the fiducial cross sections are

osd (tq) = 9.48 + 0.41 pb,

oq (tq) = 5.20 £ 0.30 pb, (2.67)
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From this, an additional uncertainty on the cross sections of 4.4% for top quark and
5.7% for top anti-quark is calculated and applied to the experimental cross sections.

The experimental, fiducial cross sections used in EFTfitter are therefore

oga (tq) = 9.78 £ 0.57 (exp.) & 0.43 (th.) pb,

=0.78 £ 0.71 pb, (2.68)

and

oga (fg) = 5.77 + 0.45 (exp.) & 0.33 (th.) pb,

= 5.77 £ 0.56 pb, (2.69)

where the experimental uncertainty is taken from [31] and the theoretical uncertainty
is the additional uncertainty due to the theoretical predictions calculated above.
The correlation coefficient between the two cross sections is not known from the
analysis. Here, we take the statistical and systematic uncertainties from the analysis
and calculate the correlation coefficient by assuming the statistical uncertainties to
be uncorrelated and the systematic uncertainties 100% correlated. This leads to a

correlation coefficient

Poro; = 0.91. (2.70)

As a check, the correlation coefficient has been varied between 0 < p,,,, < 1 and no

significant change in the combined fit was found.
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2.9.4 Constructing The Correlation Matrix

In the following, the construction of the total correlation matrix from the up
and down variations of the different measurements is described. To combine the
systematic uncertainties of the measurements into a single correlation matrix, all
the uncertainty categories that are present in the different measurements have to be
matched onto each other. As described in the previous sections, detailed tables of all
uncertainty categories are available for the W helicity fraction and single top decay
distribution measurements. For the cross sections, the up and down variations have
been calculated from information available from the single top decay distribution
analysis, see Section 2.9.6.

Matching the uncertainty categories onto each other proceeds in different steps.
First, all categories that have a one-to-one correspondence in two or more measure-
ments are matched. This matching is done by simply adjusting the uncertainty
name. Comparing the W helicity fractions and single top decay distributions, un-
certainty categories that can be directly matched are listed in Table 18. A detailed
list matched uncertainties between the single top decay distributions and the cross
sections can be found in Tables 22-25. In the second step, uncertainties that are
only present in one of the measurements are dropped, since they do not contribute
to the correlations between observables of different measurements. Finally, some of
the uncertainties are divided into sub-categories in some of the measurements, but
only listed as a total uncertainty in other measurements. An example for this is the
jet energy resolution uncertainty, which is a single uncertainty in the single top decay
distribution measurement, but has 11 distinct sub-categories in the cross section and
W helicity fraction measurements. For these uncertainties, the sub-categories have

to be combined first, before they can be matched onto each other. The procedure
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single top decay distribution W helicity fractions

jes_Modelling1 JES modelling/theory (1)
jes_RhoTopology JES pile-up (rho term)
jes_FlavourComp JES flavour composition
jes_FlavourResponse JES flavour response

jvt JES Jet vertex fraction

jes_Etalntercalibration_TotalStat JES eta inter-calibration (stat. term)

jes_Statisticall JES statistics (1)

ELE_ID Electron scale factor id
ELE_RECO Electron scale factor reco
ELE_TRIGGER Electron scale factor trigger
MUON_ID Muon scale factor id
MUON_RECO Muon scale factor reco
MUON_TRIGGER Muon scale factor trigger
ME Generator ttbar NLO modelling
Parton Shower ttbar hadronization

Table 18: Comparison of the uncertainty categories present in both W helicity

fractions and single top decay distribution measurements.

for combining the sub-categories is described in Section 2.9.5.

Once the uncertainty categories are matched, the covariance matrix for these
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categories can be constructed. For this, first a covariance matrix from the up vari-
ations and one from the down variations is constructed. Each covariance matrix is
the result of the outer product of the vector of up/down variations. Thus, e.g. the

covariance matrix from the up variations is

CP = (v"P)" v, (2.71)

7

where v is the vector containing all up variations of all the observables in one un-
certainty category. The index i =1,..., N, where N is the number of uncertainty
categories. Similarly, the covariance matrix from the down variations is constructed.
To calculate the total covariance matrix for each uncertainty category, the up and

down covariance matrices are averaged as in
1 up down
Ci=5 (CP + i) (2.72)

Once the the covariance matrices for all uncertainty categories are constructed, the
total covariance matrix can be computed by summing the individual covariance ma-

trices for all uncertainty categories

c=> C. (2.73)

Again, N is the number of uncertainty categories. From this covariance matrix, the

respective correlation matrix is constructed

N

corr = (diag (C))_% C (diag (C))~ (2.74)

and then used in EFTfitter for the combined fit. Here, diag (C) is the matrix that
contains only the diagonal elements of C. In order to calculate the correlation matrix

in Eq. 2.74, all uncertainties that are present in both the W helicity fraction and
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the single top decay distribution measurement have to be matched. We already saw
that many of the uncertainty categories easily map onto each other. Other categories
however, need a more careful approach. In particular, the uncertainties related to the
jet energy scale, jet energy resolution, the b-tagging related uncertainties and some

of the uncertainties related to lepton reconstruction need to be treated separately.

2.9.5 Matching Uncertainties With Sub-Categories

Some of the uncertainty categories, are divided into sub-categories in some of the
measurements, while in other measurements they are only given as a single uncer-
tainty value. An example for this is the jet energy resolution uncertainties, which
are split into matching sub-categories for both the cross sections and W helicity frac-
tions, but only appear as one category in the single top decay distribution analysis.
In this section, the general strategy of combining systematic uncertainties of this
kind is shown using the example of the jet energy resolution. Table 19 shows the jet
energy resolution sub-categories and up and down variations for the cross sections
and W helicity fractions. To add all uncertainties into a single covariance matrix,
the sub-categories of the cross sections and W helicity fractions have to be combined
first. To construct the covariance matrices of the up variations, the outer product
of all up variations of each category in Table 19 is taken. Next, all these covariance
matrices are summed up to get one single covariance matrix for the up variations.
Similarly, one covariance matrix for the down variations is constructed. Finally, the
up and down variation covariance matrices are added according to Eq. 2.72. This
is essentially the same procedure as shown in the last section. In the next step, the
covariance matrix of the cross sections and W helicity fractions needs to be combined

with the single top decay distribution uncertainties to get the total covariance matrix
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Foup Frpup Fydown Fp down

JER DataMC_Diff  -0.0021 0.0002  -0.0021 0.0002

JER_NPO 0.0013 -0.0044  -0.0021 0.0002
JER_NP1 -0.0021  0.0002  -0.0019  -0.0003
JER_NP2 -0.0013 -0.0016  -0.0018 0.0000
JER_NP3 -0.0025 0.0001  -0.0004  -0.0012
JER_NP4 -0.0013 -0.0001  -0.0024  -0.0006
JER_NP5 -0.0020 -0.0004  -0.0018  -0.0003
JER_NP6 -0.0025 0.0004  -0.0006  -0.0009
JER_NP7 -0.0028 -0.0000  -0.0013  -0.0005
JER_NP8 -0.0021  0.0002  -0.0018  -0.0001

JER _Noise_FwdReg -0.0020 0.0003  -0.0020 0.0003

Table 19: Up and down variations of the jet energy resolution in the W helicity

fractions measurement.

of the jet energy resolution uncertainty.
The total covariance matrix for the jet energy resolution can be written as
Cwuro P
C= ’ , (2.75)
PT Csrpp
where P includes the correlations between the single top decay distributions and the
cross sections and W helicity fractions. Cwnr,, is the combined covariance matrix of

the cross sections and W helicity fractions and Cstpp is the covariance matrix from
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the single top decay distributions. Since at this point the information on the up and
down variations is not available anymore, it must be deducted in another way. To
get a hold on the up/down variations of the total jet energy resolution of the cross
sections and W helicity fractions, the up/down variations for each observable are
added up. The sign of this result determines the sign of the variation. In that way,

each entry in P can be calculated as

P = pz] = Sgn (CSTDD i) S8I (Z CWHF Uzz) \/ CsToD,ii \/CWHF,U,M'- (2.76)

Here Cgfpp ; is the i'th coefficient of the single top decay distributions ag,, and
> Cyyr o4 18 the sum over all the up variations of one of either one of the cross
sections or W helicity fractions. As an example, the covariance of the single top

decay distribution coefficient ag;p and the W helicity fraction Fj for the up values is

PagioFe? = SN (5(16%) sgn <Z 5Fg€zz?> A /523501 /5%gp, (2,77)

where 9,2 = —0.0043 is the up variation of ag19 in Table 20 and > opee = —0.0194

given by

is the sum over all entries of the column Fy up in Table 19. This ensures, that the
sign of the covariance follows the overall sign of the up values of Fy. ¢ Fup =36 Fr
is the variance of F,” coming from the sum of the covariance matrices Cywur o -

Putting everything together, the covariance is

Pagorr = (—1) (1) (0.0043) +/0.000047
= 0.000029. (2.78)

In this way, all entries of P are calculated and the covariance matrix for each sys-

tematic uncertainty is calculated.
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R I R 1
010 020 a100 a110 a120 a an a121 721

-0.0043 0.0082 0.0009 0.0028 0.001 0.0003 -0.0006 -0.0027 0.0023

Table 20: Up variations of the jet energy resolution in the single top decay

distributions. Superscript R and I stand for real and imaginary part, respectively.

an10 ap20 a100 aiio a120 a{{u CLI111 011)‘21 @1121
-0.0043 0.0082 0.0009 0.0028 0.001 0.0003 -0.0006 -0.0027 0.0023

Table 21: Down variations of the jet energy resolution in the single top decay

distributions. Superscript R and I stand for real and imaginary part, respectively.

2.9.6 Estimation Of Cross Section Up/Down Variations

In this section, the estimation of the sign of the up and down variations of the
cross section uncertainties is described. As discussed in Section 2.9.3, only sym-
metrized values are given for the cross section uncertainties. Therefore, the sign
has to be estimated in a different way. The measurement of the single top decay
distributions was performed at a center-of-mass energy /s = 8 TeV using t-channel
single top events. Therefore, the signal fraction measured in the single top decay
distribution analysis is directly related to the cross section. In the single top decay
distribution analysis, the variation of the signal fraction when varying one of the
systematic uncertainties was saved as ROOT files. These ROOT files can be used to
calculate the sign of the change in signal fraction and therefore as an estimate of the

sign of the change in the cross section for each variation of systematic uncertainty.
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In the first step, the different systematic uncertainties of the cross section and
the single top decay distribution analyses need to be matched. Tables 22-24 show
a comparison between all systematic uncertainties that have been matched between
the analyses. Uncertainties that only contribute to one of the two analyses are not
listed since they do not lead to a correlation between the observables of the two
measurements. Next, the signal fraction of every matched systematic uncertainty
is calculated. The do this, four ROOT files are needed, the ROOT file containing
the up/down varied combined weight of the signal, the file containing the nominal
combined weight of the signal and both the containing the nominal and the up/down
varied combined weight of the background. In the following, all the sample files
used to determine the signs of the matched uncertainty categories are listed. All
signal and background sample files are divided into electron and muon channels.
When calculating the signal fraction, both channels are combined unless a specific
uncertainty only treats one of the two. Here, only the samples for the electron
channel are listed. Further, for the signal samples, equivalent files exist for both top
and antitop samples, unless otherwise stated. The sample files contain information
on the combined weights and the associated scale factors. With this information, the

signal fraction is calculated as

Ws

SF = (2.79)

)
Ws + Wy

where SF' is the signal fraction and w, and w, is the combined weight times the
scale factor of the signal and background, respectively. Variations of the systematic
uncertainties will affect the signal weight, background weight or both. The sign of

the change in the signal fraction is taken as the sign of the change in cross section.
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Single top decay dist.

t-channel cross section

JES b-tagging

JES single-particle
JES pile-up (p)

JES pﬂe'up (nvertices)
JES pile-up (pr term)
JES pile-up (p term)
JES punch through
JES flavor composition
JES flavor response

b-jet energyscale

JES single particle

JES pile-up (p)

JES pile-up (nyz)

JES pile-up (Pt)

JES pile-up (p)

JES PunchThrough
JES flavour composition
JES flavour response

JES 7 intercalibration (stat. term) JES 7 intercal. statistical

JES 7 intercalibration (modelling term) JES 7 intercalibration

JES detector (1) JES detector 1

JES detector (2) JES detector 2

JES detector (3) JES detector 3)

JES detector and modelling (1) JES mixed detector and modelling 1
JES detector and modelling (2) JES mixed detector and modelling 2
JES detector and modelling (3) JES mixed detector and modelling 3
JES detector and modelling (4)

JES modelling/theory (1)
JES modelling/theory (2)
JES modelling/theory (3)
JES modelling/theory (4)
JES statistics (1)

JES statistics (2)

JES statistics (3)

JES statistics (4)

Jet vertex fraction

JES mixed detector and modelling 4
JES physics modelling 1

JES physics modelling 2

JES physics modelling 3

JES physics modelling 4

JES statistical 1

JES statistical 2

JES statistical 3

JES statistical 4

Jet vertex fraction

Table 22: Comparison of the jet energy scale uncertainties taken from the single

top decay distribution analysis and the t-channel cross section analysis.
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Single top decay dist. t-channel cross section

Jet b-tagging scale factor b-tag scalefactorC0
b-tag scalefactorC1
b-tag scalefactorC2
b-tag scalefactorC3
b-tag scalefactorC4
b-tag scalefactorC5
b-tag scalefactorC6
b-tag scalefactorC7
b-tag scalefactorC8

Jet c-tagging scale factor c-tag scalefactorCO
c-tag scalefactorC1
c-tag scalefactorC2
c-tag scalefactorC3

Jet mis-tagging scale factor mis-tag scalefactorCO
mis-tag scalefactorC1
mis-tag scalefactorC2
mis-tag scalefactorC3
mis-tag scalefactorC4
mis-tag scalefactorC5h
mis-tag scalefactorC6
mis-tag scalefactorC7
mis-tag scalefactorC8
mis-tag scalefactorC9
mis-tag scalefactorC10
mis-tag scalefactorC11

Table 23: Comparison of the flavor tagging uncertainties taken from the single top
decay distribution analysis and the t-channel cross section analysis. Each category,
b-tagging, c-tagging and mis-tagging only has one uncertainty in the single top

decay distribution analysis.

121



Single top decay dist. t-channel cross section

t-channel NLO modelling #q NLO matching method
t-channel hadronization tq Parton-Shower model
t-channel scale variation  p variation of tq process

tt NLO modelling tt, Wt, tb NLO matching method
tt hadronization tt, Wt Parton-Shower model
tt scale variation @ variation of tf, Wt, tb process

Table 24: Comparison of the generator related uncertainties taken from the single

top decay distribution analysis and the t-channel cross section analysis.

The following sample files are used as nominal samples, unless otherwise stated.

For the signal, the nominal file is

mcl12_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.nominal.el.root

and the corresponding file for antitop. Further, this file corresponds to the electron
channel. A separate file was used for the muon channel. For the background, the

nominal file is

mcl2_8TeV_2jetbin.bkg.nominal.mu.root

for the electron channel and a corresponding file for the muon channel. In the fol-
lowing, all categories of systematic uncertainties are discussed. For each systematic,
the the sample files containing the systematic up variation of the electron channel
of both signal and background are listed. Unless otherwise stated, a corresponding
file for the down variation as well as files for the muon channel exist. If a nominal

sample other than the ones stated above is used, these are also listed here.

Jet Energy Resolution and Jet Reconstruction Efficiency: The samples
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Single top decay dist. t-channel cross section

Jet energy resolution Jet energy resolution

Jet reconstruction efficiency Jet efficiency

Muon momentum resolution (id.) Muon momentum resolution (ID)
Muon momentum scale Muon momentum scale

Muon momentum smearing resolution Muon momentum resolution

Electron energy resolution Electron energy resolution
Electron energy scale Electron energy scale
Electron scale factor (trigger) Lepton Trigger SF

Muon scale factor (trigger)

Electron scale factor (id.) Lepton ID SF

Muon scale factor (id.)

Electron scale factor (recon.) Lepton Reco SF

Muon scale factor (recon.)
Emiss (cell-out + soft jet resolution) Emiss CellOut + SoftJet Resolution

Emiss (cell-out + soft jet scale) Emiss CellOut + SoftJet Scale
Z-jets normalization Z+jets heavy flavour norm.
Luminosity Luminosity

Table 25: Comparison of the remaining uncertainties taken from the single top
decay distribution analysis and the t-channel cross section analysis. The lepton
scale factor uncertainties are split into electron and muon channel in the single top

decay distribution analysis.

used to estimate the sign of the jet energy resolution and jet reconstruction

efficiency uncertainties are

mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL. jer.el.root
mcl12_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.jeff.el.root

for top and antitop quark samples. No up or down variation is given since the

jet energy resolution can only be decreased. The background sample is

mcl2_8TeV_2jetbin.bkg. jer.el.root
mcl12_8TeV_2jetbin.bkg.jeff.el.root
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Jet Energy Scale: The signal samples used to estimate the sign of the jet energy

scale uncertainties are

mcl12_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.BJesUnc_up.el.root
mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.SinglePart_up.el.root
mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.Pileup_OffsetMu_up.el.root
mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.Pileup_OffsetNPV_up.el.root
mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.Pileup_Pt_up.el.root
mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.Pileup_Rho_up.el.root
mcl12_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.PunchThrough_up.el.root
mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.flavor_comp_up.el.root
mcl12_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.flavor_response_up.el.root
mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.jvf_up.el.root
mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.EtalntercalibrationModel_up.el.root
mcl12_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.EtalntercalibrationTotalStat_up.el.root
mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.JesEffectiveDetl_up.el.root
mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.JesEffectiveDet2_up.el.root
mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.JesEffectiveDet3_up.el.root
mcl12_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.JesEffectiveMixl_up.el.root
mcl12_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.JesEffectiveMix2_up.el.root
mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.JesEffectiveMix3_up.el.root
mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.JesEffectiveMix4_up.el.root
mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.JesEffectiveModell_up.el.root
mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.JesEffectiveModel2_up.el.root
mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.JesEffectiveModel3_up.el.root
mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.JesEffectiveModel4_up.el.root
mcl12_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.JesEffectiveStatl_up.el.root
mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.JesEffectiveStat2_up.el.root
mcl12_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.JesEffectiveStat3_up.el.root
mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.JesEffectiveStat4_up.el.root

and the background samples used are

mcl12_8TeV_2jetbin.bkg.BJesUnc_up.el.root
mcl12_8TeV_2jetbin.bkg.SinglePart_up.el.root
mcl2_8TeV_2jetbin.bkg.Pileup_OffsetMu_up.el.root
mcl2_8TeV_2jetbin.bkg.Pileup_OffsetNPV_up.el.root
mcl2_8TeV_2jetbin.bkg.Pileup_Pt_up.el.root
mcl12_8TeV_2jetbin.bkg.Pileup_Rho_up.el.root
mcl2_8TeV_2jetbin.bkg.PunchThrough_up.el.root
mcl12_8TeV_2jetbin.bkg.flavor_comp_up.el.root
mcl2_8TeV_2jetbin.bkg.flavor_response_up.el.root
mcl2_8TeV_2jetbin.bkg.jvf_up.el.root
mcl2_8TeV_2jetbin.bkg.EtalntercalibrationModel_up.el.root
mcl2_8TeV_2jetbin.bkg.EtalntercalibrationTotalStat_up.el.root
mcl2_8TeV_2jetbin.bkg.JesEffectiveDetl_up.el.root
mcl2_8TeV_2jetbin.bkg.SEL.JesEffectiveDet2_up.el.root
mcl12_8TeV_2jetbin.bkg.SEL.JesEffectiveDet3_up.el.root
mcl2_8TeV_2jetbin.bkg.SEL.JesEffectiveMixl_up.el.root
mcl12_8TeV_2jetbin.bkg.SEL.JesEffectiveMix2_up.el.root
mcl2_8TeV_2jetbin.bkg.SEL.JesEffectiveMix3_up.el.root
mcl2_8TeV_2jetbin.bkg.SEL.JesEffectiveMix4_up.el.root
mcl2_8TeV_2jetbin.bkg.SEL.JesEffectiveModell _up.el.root
mcl2_8TeV_2jetbin.bkg.JesEffectiveModel2_up.el.root
mcl2_8TeV_2jetbin.bkg.JesEffectiveModel3_up.el.root
mcl2_8TeV_2jetbin.bkg.SEL.JesEffectiveModel4_up.el.root
mcl12_8TeV_2jetbin.bkg.JesEffectiveStatl_up.el.root
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mcl2_8TeV_2jetbin.bkg.JesEffectiveStat2_up.el.root
mcl2_8TeV_2jetbin.bkg.JesEffectiveStat3_up.el.root
mcl2_8TeV_2jetbin.bkg.JesEffectiveStat4_up.el.root

Different samples we used as nominals for signal and background. For the jet

flavor composition and jet flavor response uncertainties, the nominals used are

mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.nominal_JESflavor_nominal.el.root
mcl2_8TeV_2jetbin.bkg.JESflavor_nominal.el.root

For the jet vertex fraction uncertainty, the nominals used are

mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.nominal.el.root
mcl2_8TeV_2jetbin.bkg.nominal.el.root

The remaining jet energy scale uncertainties use the default nominals

mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.nominal_JES_nominal.el.root
mcl2_8TeV_2jetbin.bkg.JES_nominal.el.root

Flavor Tagging: The signal samples used to estimate the sign of the flavor tagging

uncertainties are

mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL. jet_SF_btag_up.el.root
mcl12_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.jet_SF_ctag_up.el.root
mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL. jet_SF_mistag_up.el.root

and the background samples used are
mcl2_8TeV_2jetbin.bkg.jet_SF_btag_up.el.root
mcl2_8TeV_2jetbin.bkg.jet_SF_ctag_up.el.root
mcl2_8TeV_2jetbin.bkg.jet_SF_mistag_up.el.root
The nominal samples used are the default samples.
Lepton Reconstruction: The signal samples used to estimate the sign of the

lepton scale factor uncertainties are

mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.el_SF_Id.el.root
mcl12_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.el_SF_reco.el.root
mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.el_trigger_SF.el.root

and the background samples used are

mcl2_8TeV_2jetbin.bkg.el_SF_Id_up.el.root
mcl2_8TeV_2jetbin.bkg.el_SF_reco_up.el.root
mcl2_8TeV_2jetbin.bkg.el_trigger_ SF_up.el.root

The nominal samples are the default samples. Further, there are specific uncer-
tainties for electrons and muons separately. For those the signal and background

samples are given by
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mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.el_ees_up.el.root
mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.el_eer_up.el.root

mcl12_8TeV_2jetbin.bkg.el_ees_up.el.root
mcl2_8TeV_2jetbin.bkg.el_eer_up.el.root

for the electron energy scale and resolution and
mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.mu_musc_up.mu.root

mcl2_8TeV_2jetbin.bkg.mu_musc_up.mu.root

for the muon momentum scale. In addition, there are muon specific uncertainties
that only have a one-sided variation with respect to the nominal. The uncer-
tainties are the muon momentum resolution ID and muon momentum smearing

resolution. The signal samples used for these are given by

mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.mu_muid_res.mu.root
mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.mu_mums_res.mu.root

and the background samples are

mcl12_8TeV_2jetbin.bkg.mu_muid_res.mu.root
mcl12_8TeV_2jetbin.bkg.mu_mums_res.mu.root

MC Generator Uncertainties: In both analyses, single top decay distribution
and cross section, the MC generator uncertainty comes from the difference be-
tween the default generator POWHEG and the alternative generator MCQNLO
both interfaced with HERWIG. Therefore, to get the sign of that variation, we
take the difference of the signal fraction calculated from the MC@QNLO sample
file and the signal fraction calculated from the POWHEG sample, both with their

respective background samples.

mcl2_8TeV_2jetbin.sig.amcatnlo_herwig.SM_AFII.SEL.nominal.el.root
mcl12_8TeV_2jetbin.sig.powheg_herwig_top.SM_AFII.SEL.nominal.el.root
mcl12_8TeV_2jetbin.bkg.tchannel_aMCatNLOHerwig_AFII.el.root
mcl2_8TeV_2jetbin.bkg.tchannel_PowhegHerwig_AFII.el.root

Similarly, the sign for the MC generator uncertainty of the ¢t background is

calculated from the following samples:
mcl2_8TeV_2jetbin.bkg.ttbar_MCatNLOfHerwig.el.root
mcl12_8TeV_2jetbin.bkg.ttbar_PowhegfHerwig_hdampInf_ AFII.el.root
mcl2_8TeV_2jetbin.sig.powheg_herwig_top.SM_AFII.SEL.nominal.el.root

where the last sample is the signal sample used in this case.
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Parton Shower Uncertainties: As for the MC generator uncertainties, the par-
ton shower uncertainties are calculated from the difference in two parton shower
generators. In both analyses, the is the difference between the default PYTHIA
and the alternative generator HERWIG. In both cases, the MC generator is
PowHEG. The sample files used to calculate the sign of the change in the signal

fraction are

mcl2_8TeV_2jetbin.sig.powheg_herwig_top.SM_AFII.SEL.nominal.el.root
mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM_AFII.SEL.nominal.el.root
mcl2_8TeV_2jetbin.bkg.tchannel_PowhegHerwig_AFII.el.root
mcl12_8TeV_2jetbin.bkg.tchannel_PowhegPythia_AFII.el.root

For the tt background, the

mcl2_8TeV_2jetbin.bkg.ttbar_PowhegfHerwig_hdampInf_ AFII.el.root
mcl12_8TeV_2jetbin.bkg.ttbar_PowhegPythia_hdampInf_ AFII.el.root
mcl12_8TeV_2jetbin.sig.powheg_pythia_top.SM_AFII.SEL.nominal.el.root

where again the last sample is the signal sample used.

Scale and Initial/Final-State Radiation Uncertainties: Uncertainties from
the variation of the renormalization and factorization scale of the MC and parton
shower generators in both analyses, the MC generator POWHEG interfaced with
the showering generator PYTHIA is used and the scales are varied according to
Perugia 2011 tunes. The up and down variation correspond to a variation of the
scale by a factor of two, called P2012radLo, and a variation by a factor of 0.5,
called P2012radHi, respectively. The signal samples used to calculate the sign

are

mcl2_8TeV_2jetbin.sig.powheg_pythia_top.facsc2_rensc2_P2012radLo_AFII.SEL.nominal.el.root
mcl2_8TeV_2jetbin.sig.powheg_pythia_top.facscOp5_renscOp5_P2012radHi_AFII.SEL.nominal.el.root

for the up and down variation, respectively. The nominal signal sample used is

mcl12_8TeV_2jetbin.sig.powheg_pythia_top.P2012_AFII.SEL.nominal.el.root

Similarly, for the background the samples used are

mcl12_8TeV_2jetbin.bkg.tchannel PowhegPythiaP2012radLo_AFII.el.root
mcl2_8TeV_2jetbin.bkg.tchannel_PowhegPythiaP2012radHi_AFII.el.root

with the nominal background sample
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mcl2_8TeV_2jetbin.bkg.tchannel_PowhegPythiaP2012_AFII.el.root

For the scale uncertainty from the ¢t background, the samples used to calculate

the signs are

mcl12_8TeV_2jetbin.bkg.ttbar_hdampl172p5_scale2_P2012radLo.el.root
mcl2_8TeV_2jetbin.bkg.ttbar_hdamp345p0_scaleOp5_P2012radHi.el.root

with the default nominal samples for signal and background.

EXss and Luminosity: The signal samples used to estimate the sign of the ERiss

soft jet resolution and scale as well as the Luminosity uncertainties are

mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.res_soft_up.el.root
mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.sc_soft_up.el.root
mcl2_8TeV_2jetbin.sig.powheg_pythia_top.SM.SEL.lumi_up.el.root

and the background samples are

mcl2_8TeV_2jetbin.bkg.res_soft_up.el.root
mcl2_8TeV_2jetbin.bkg.sc_soft_up.el.root
mcl2_8TeV_2jetbin.bkg.lumi_up.el.root

in combination with the default nominals.

PDF: The cross section analysis gives a table of different generators using different
PDF sets. However, the variation of the cross section has no clear trend, meaning
that the ranking of the PDF sets according to their cross section also depends
on the generator. Unfortunately, the generator used in the single top decay dis-
tribution analysis, PROTOS + PYTHIA, is not listed in the cross section analysis.
Therefore, no direct comparison can be made and no sign of the correlation can
be estimated. The PDF uncertainties are therefore taken as uncorrelated between

the single top decay distribution and cross section measurements.

Background Normalization Uncertainties: The background normalization un-
certainties are small in both the single top decay distribution and cross section
measurements. A possible correlation between those does not have an effect on

the limits of the EFT coefficient and is therefore not included.
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2.9.7 Total Correlation Matrix

In the previous sections the strategy for combining all systematic uncertainties
into a single covariance matrix was discussed. Once this is achieved, the covariance
matrix needs to be converted into a correlation matrix, using Eq. 2.74, as input for

the EFT fitter tool. Table 26 shows the total correlation matrix used in the fit.
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2.10 Dependence Of The Migration Matrix In The Single Top Decay
Distribution Analysis On The EFT Coefficients

In this section the dependency of the migration matrix in the single top decay
distribution analysis is discussed. The y? function used in the single top decay dis-
tribution analysis to determine the generalized helicity fractions and phases defined
in Section 2.4.3 consists of two pieces. The first piece describes the fit of angular co-
efficients ay,, parameterized in terms of the physics parameters @ to the measured

angular coefficients and is given by
Xi= (@) —7)" -V (7(d) - k), (2.80)

where 1 is the vector of measured angular coefficients ay,,, and v/ (&) are the angu-
lar coefficients parameterized by a = { fi, i f 00,6, P }, the generalized helicity
fractions and phases. The matrix V is the covariance matrix of the measured co-
efficients. The second piece of the x? function accounts for the dependency of the
migration matrix on the physics parameters. The migration matrix G takes the
reconstructed coefficients A to their true values a, where both are vectors of an-
gular coefficients. This step is necessary to remove effects of the detector on the
measurements and is parameterized by the migration matrix. The relation between

reconstructed and deconvolved coefficients is given by
A=G.a, (2.81)

where A is the vector of reconstructed coefficients and @ is the vector of deconvolved

coefficients. However, the number of reconstructed coefficients is generally larger
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than the true coefficients, which means Eq. 2.81 can not be inverted. Instead, the

true coefficients @ can be determined by minimizing the x? function
— T —
M= (4-G-a) W (4-G-a), (2.82)

where Y3 is now the second piece of the total x?. The second x3 gives a measure
on how well a set of physics parameters describes the deconvolution of the detector

effects. The total x? was then given by

=X+ X (2.83)

The angular coefficients used for the combined fit in EFTfitter are the de-
convolved coefficients @. The deconvolution of these coefficients was done with a
Standard Model migration matrix. Therefore, additional information on the depen-
dency of the deconvolved coefficients on the EFT coefficients needs to be included in
EFTfitter. Furthermore, the second piece of the x? function in Eq. 2.82 needs to be
included in EFT fitter to account for the dependency of the migration matrix on the

EFT coefficients.

2.10.1 Parameterizing The Second Piece Of The Y? In Terms Of The
EFT Coefficients

To minimize the total x? in Eq. 2.83 a fit using Markov Chain Monte Carlo
(MCMC) calculation was performed. The Markov Chain stored both pieces of the
x? function, deconvolved angular coefficients in terms of the varied physics parame-
ters, and the physics parameters themselves. Therefore, it is possible to parameterize

X3 in terms of the physics parameters. This parameterization was done by fitting a
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Figure 33: Variation Ax3 due to the anomalous couplings. In each plot, the

remaining couplings are set to zero.

polynomial of second degree including cross terms in terms of the anomalous cou-
plings to x3. The anomalous couplings were chosen here, since the single top decay
distribution analysis parameterizes the dimension 6 operator’s effects in terms of
these. The fit results were then checked with a additional Markov chains and good
was agreement found. Once the dependency of x2 in terms of the anomalous cou-
plings is found, Eq. 1.34 can be used to rewrite it in terms of the EFT coefficients.
Figure 33 shows the resulting variation Ax?2 in terms of each of the anomalous cou-
plings. In each figure, all the remaining couplings are set to zero. Figure 34 also
shows the marginalized probability distributions of the EFT coefficients when adding
X2. Most of the coefficients do not change much. The distributions of the coefficients
050322, Re (cpw ), and cg; slightly decrease. Only the imaginary part of ¢y gets a sig-

nificant shift towards the SM value of Im (¢;17) = 0 as expected from the increase in

X3-
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Figure 34: Comparison of the marginalized probability distributions of the EFT
coefficients when including the additional x3 in Eq. 2.83. Only the imaginary part

of ¢y is significantly impacted and the distribution shifts towards the SM value.

2.10.2 Dependency Of The Deconvolved Angular Coefficients On The
EFT Coefficients

The parameterization of the deconvolved angular coefficients in terms of the
anomalous couplings can again be constructed from the output of the MCMC cal-
culation. For each angular coefficient ay,,, the points in EFT space of the Markov

chain are simultaneously fitted to a polynomial of degree 4. Again, the resulting
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fit was checked with test data from different Markov chains and good agreement
was found. Appendix F shows the fits for each angular coefficient ay;,, and each
anomalous coupling. In each plot, all other couplings are set to zero. Also shown are
point along the axis of the specific EF'T coupling. These points are selected in such
a way that all other couplings are as close to zero as possible. However, the MCMC
does not necessarily evaluate the coefficients at these points. In fact, it is unlikely
for the Markov chain to pick points where only one coupling has a large value and
the remaining ones are close to zero, since this combination will likely lead to a large
x? value. Furthermore, as was seen in the previous section, the imaginary part of
gr leads to a steep increase in the y? such that the MCMC does not choose large
values in Im(gg). Therefore, the spread of the MCMC points in the Im(gg) direction
is relatively small, particularly if the other couplings are required to be close to zero.
In addition to the fitted curves, each plot also shows the angular coefficient ay
deconvolved with a Standard Model migration matrix, including their uncertainties.
This allows to compare the fitted curves to the uncertainties of the measured coeffi-
cients and in most cases the variation of the angular coefficients with respect to the
anomalous couplings does no exceed the uncertainties of the measured angular coef-
ficients by much. In the cases where the dependency does have a potentially large
effect, that effect only exceeds the uncertainty of the measured coefficient at coupling
values beyond the expected allowed ranges of that coupling. From the polynomial
coefficients of the fit, the dependency of the angular coefficients aj;,, in terms of
the EFT coefficients cuu4, ¢y and ¢y can then be determined from Eq. 1.34 and
used in EFTfitter. Checking the posterior probability distributions in EFT fitter,
no difference could be observed after including the EFT dependency of the angular

coeflicients.
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2.11 Results

The following sections discuss the combination of the measurements listed in
Section 2.4. First, the combination of the single top decay distribution and W
helicity measurements will be discussed. The fit is performed using the EFT fitter
tool discussed in Section 2.2. A set of Ny, = 5 EFT coefficients is fitted to a total
of Nons = 11 observables. Details about the contributing EFT coefficients and the
allowed regions of these will be given. Next, the t-channel fiducial cross section is
added to the fit. This increases the number of independent observables to Ny, = 13,
while also increasing the number of free parameters N, = 7. Finally, a case study

is conducted by adding s-channel single top cross section to the fit.

2.11.1 Combination Of Single Top Decay Distributions And W Helicity

Fractions

This section discusses the combination of the single top decay distribution and
W helicity fraction measurements. Both analyses measure angular distributions of
the top quark decay products and therefore only ratios of coefficients with respect
to Vi can be constrained. In addition, both of the measurements measure only the
top quark decay and therefore the four-quark operator C%}I does not contribute. This
leaves the remaining coefficients cu, cyi, and ¢y as free parameters of the fit, where
Cop 1s Teal and positive and ¢ and ¢y are complex as discussed in Section 2.5.
Figure 35 shows marginalized, two-dimensional probability distributions of combi-
nations of the ratios of the real parts of the EFT coefficients cyy,, cowr and ¢y with
V1. Each figure shows the 95% confidence region that can be constrained by the W

helicity fraction measurement (WHEL), the single top decay distribution measure-
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Figure 35: Marginalized, two-dimensional probability distribution of the ratio of
the EFT coefficients (a) ¢, and Re (cpw), (b) o and Re (ciw), (¢) Re (cpw) and
Re (cpw ), with V. Also shown is the Standard Model point.

ment (STDD), and the combination of the two measurements (WHEL + STDD).
As discussed in Section 2.4, the coefficients ¢4 and Re () show a significant anti-
correlation. This can be seen in Figure 35 (a) for both the W helicity fractions and
the single top decay distributions. The constraints on the EFT coefficients coming
from the W helicity fractions alone are shown in yellow. The W helicity fractions do
not provide enough constraints to determine the confidence regions for complex EFT
coefficients. Rather, the regions in yellow correspond to regions where the posterior
probability distribution has non-negligible values. In Figure 35 (c¢) the coefficient
Re (cpw) is constrained to mostly negative values. The reason for this is that cyy
is set real and positive and therefore the coefficient Re (¢p) is essentially forced
to negative values, due to the anti-correlations between c,y and cyy. This behav-

ior only appears when looking at the W helicity fractions alone, since in the other
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Figure 36: Marginalized, two-dimensional probability distribution of the ratio of
the EFT coefficients (a) Re (cpw) and Im (cpw), (b) Re (¢w) and Im (), with V7.
Also shown is the Standard Model point.

measurements the coefficients c,y, and ¢y also appear in other combinations. Fig-
ure 35 also demonstrates how important correlations are in determining individual
limits on EFT coefficients. Neglecting correlations in the combination of the two
measurements would severely overestimate the smallness of the confidence limit on
the real part of ¢;u (blue region in (a)). The single top decay distributions can in
principle constrain all coefficients but adding the W helicity significantly improves
the size of the confidence regions. Figure 36 shows the marginalized two-dimensional
confidence regions of the two complex coefficients ¢y and ¢y, In (a), the real part
of ey is plotted against the imaginary part of ¢, and in (b), the real part of ¢y
is plotted against the imaginary part of ¢;;y. In Figure 36 (a) the same behaviour
of Re (cpw) is seen as in Figure 35 (c), where Re (¢p) is constrained to negative

values. The W helicity fractions can only exclude a region in the negative Re (c;y)
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plane. Adding the single top decay distributions individually constrains the real and
imaginary parts and pins the allowed region around the Standard Model point.
Limits are set on the ratios of the coefficients c,u4, cyw and ¢,y with respect to

V. The 68% and 95% confidence limits on the right-handed vector coefficients cy,

are
Cetb| ~ 792 (68%CL),
Vi
% <1357 (95%CL), (2.84)
L

the limits on the right-handed tensor coefficient ¢,y are

Re | W | € [~1.44,0.14] (68%CL),
Re | "W | € [-2.33,0.67] (95%CL),
Im | Y| € [-0.48,0.43]  (68%CL),

Im | 22| € [-0.89,0.84] (95%CL), (2.85)

and the limits on the left-handed tensor coefficient ¢y are

Re | YW | € [-0.05,0.50] (68%CL),
L Ve
Re | Y| € [-0.20,0.80] (95%CL),
L Ve
I || € [-0.36,0.34] (68%CL),
L VL |
Im C‘;—W € [-0.70,0.68] (95%CL). (2.86)
L VL |
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Figure 37: Individual 95% (yellow) and 68% (green) confidence limits on the EFT
coefficients for the combination of the W helicity fractions and single top decay

distributions.

All limits are in accordance with the Standard Model. Appendix G shows
the marginalized two-dimensional probability distributions of the EFT coefficients.
Limits on individual coefficients can also be given. Individual limits correspond to the

limits set on one of the EFT coefficients, while all other coefficients are set to their
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Standard Model values. Figure 37 shows the limits on the individual coefficients.
The larges effect of constraining the coefficients individually is in the coefficients cg
and ¢y, As stated earlier, this is due to the correlation between the two coefficients.

In this section it was demonstrated that it is possible to set tight limits on
the EFT coefficients by combining the W helicity fraction and single top decay
distribution measurements. However, these limits are given with respect to V. To
constrain the limits of the couplings themselves requires the addition of observables
that measure total rates, such as the cross section. This will be the topic of the

following section.

2.11.2 Combination Of The Single Top Decay Distributions, W Helicity

Fractions And Fiducial Cross Section

In the previous section the combination of the W helicity fractions and the single
top decay distributions was discussed. To be able to set constraints on the EFT
coefficients themselves and not just the ratio with respect to Vi, the /s = 8 TeV
fiducial t-channel cross sections are added to the combination. This also allows to
constrain the four-quark coefficient cé’;, which only contributes to the production
and not to the decay of the top quark. Therefore, the full EFT parameter space
CS%, Coths Cows Cew, and c‘g; can be constrained. Figure 38 shows how the 68%
and 95% confidence limits on the Wtb coefficients cu, ¢y and ¢ change when
constraining them with either only the single top decay distributions (STDD), a
combination of single top decay distributions and W helicity fractions (STDD +
WHEL), or a combination that also adds the cross sections (STDD + WHEL +

XSEC). In most cases, adding the cross section does not improve the limits by much.

However, it is important to keep in mind that in the combination with the cross
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Figure 38: Comparison of the EFT coefficients constraining the Wtb vertex. In
each plot, the marginalized 68% CL and 95% CL set by the single top decay
distributions (STDD), the combination of single top decay distributions and W
helicity fractions (STDD + WHEL), and the combination of single top decay
distributions, W helicity fractions and cross sections (STDD + WHEL + XSEC).
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section any assumptions on Vy, are dropped. Even with less assumptions, the limits
still improve slightly. For the tensor coefficients, the largest improvement comes from
adding the W helicity fractions. This is most prominent in the real part of ¢;;. The
imaginary part of ¢y is solely fixed by the single top decay distributions, since this
is the only measurement sensitive to imaginary coefficients. The imaginary part of
cpw 1s not that well constrained by either of the two angular measurements, but
combining the two decreases the limit by decreasing the overall magnitude of the
coefficient cp. Figure 39 also shows the one-dimensional probability distributions
of all EFT coefficients and the polarization. Each plot shows the 68% and 95%
confidence intervals. From the marginalized distributions the following limits on the
EFT coefficients are set. For the Standard Model like coefficient cf%, the limits are
found to be

c) €[0.68,2.49]  (68%CL),

c¥) € [-0.64,2.83]  (95%CL). (2.87)
The magnitude of the right-handed vector coefficient ¢,y the upper limits are

Com < 6.17  (68%CL)
Co < 1115 (95%CL) . (2.88)

For the real and imaginary parts of the coefficient right-handed tensor coefficient ¢,y

limits are found at

Re (cyw) € [~1.40,0.24]  (68%CL),
Re (cuw) € [<2.27,0.82]  (95%CL),
Im () € [—0.70,0.37]  (68%CL),
Im (cyy) € [~1.13,0.88]  (95%CL), (2.89)
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and for the left-handed tensor coefficient ¢y at

(caw) € [-0.49,0.01]  (68%CL),
(cow) € [—0.72,0.26]  (95%CL)
Im (o) € [0.04,0.82]  (68%CL),
Im (cyy) € [-0.35,1.20]  (95%CL).. (2.90)

The four-quark coefficient C%}Z is bound between

s €10.61,1.79]  (68%CL),
Ca €10.00,2.11]  (95%CL). (2.91)

All limits are in accordance with the Standard Model prediction. Since the polariza-
tion has been treated as a free parameter, the confidence limits from the marginal-

ization are also stated here,

P>086 (68%CL),
P>073 (95%CL), (2.92)

these limits are in accordance with the limits on the polarization from the single top
decay distribution measurement, given in Eq. 2.4.3. As was mentioned before, sev-
eral of the EFT coefficient are correlated in some of the measurements. Specifically,
the right-handed coefficients are correlated in the W helicity fraction measurement
and the single top decay distributions. It is therefore important to study the corre-
lations of the coefficients in the final result. Table 27 shows the correlations between
the EFT coefficients. The high correlation between the two right-handed coefficients
co and Re (cpi) as discussed in Section 2.4.2 and Section 2.4.3 is reflected here.

Similarly, the Standard Model like coefficient cgg and the four-quark coefficient cz’g’é
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Figure 39: Marginalized, one-dimensional probability distribution of the EFT

coefficients and the polarization.
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050322 Coth Chyy Chyy Ch Chw ngé P
|1 —058 048 009 -032 005 070 —0.12
cow | —0.58 1 —0.79 —0.18 035 —0.04 0.01 0.12
Rl 048 —079 1 0.13 —0.32 0.05 —0.01 —0.08
| 009 —018 013 1 —011 0.08 —0.01 —0.05
R, | —032 035 —032 —011 1  —0.07 —0.07 0.14
| 005 —0.04 005 008 —007 1 0.05  0.09
Coe | 070 001 —0.01 —0.01 —0.07 005 1  —0.01
P | -012 012 —0.08 —0.05 014 0.09 —001 1

Table 27: Correlations between the EFT coefficients and the polarization P. The

superscripts R and I stand for real and imaginary parts, respectively.

show a fairly strong correlation. In Table 12 of Section 2.7 lists the coefficients &
that parameterize the fiducial cross section in terms of the EFT coefficients. Given
the two coeflicients connecting CSC)Q and Cg; are ko and k4 (see Appendix C.3) a
correlation coefficient as in Table 27 is expected. Some medium sized correlations
exist between cg% and the right-handed coefficients ¢, and Re (cyi). As expected,
the imaginary parts are not correlated strongly with any of the other coefficients.
Also the polarization does not exhibit a strong correlation with any of the EFT coef-
ficients. Figure 40 shows the two-dimensional marginalized probability distributions

®) and ¢f5i. In both

of the coefficients c,y, and Re (cyi) as well as the coefficients ¢
cases the correlations can be seen. From this it is also clear, that a complete descrip-

tion of the confidence limits of the EFT coefficients can only be done when taking
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Figure 40: Two-dimensional probability distributions of the EFT coefficients (a)
cow and Re (epw), (b) ng and céé. In both cases the correlation seen in Table 27 is

visible.

into account the correlations between them. Without correlations, care needs to be
taken when interpreting the limits. The remaining pairs of coefficients are shown in

Figures 83-87 of Appendix H.

In addition to the marginalized confidence limits, also the individual limits are
shown. Figure 41 shows the individual 95% and 68% confidence limits of the EFT
coefficients. The Standard Model like coefficient cffgg and the four-quark coefficient
c?é’; are affected the most. For both coefficients the 95% CL decreases by roughly
70%. This can be explained by the large correlation between these two coefficients.

If one of the two is fixed to the Standard Model value, then the allowed region for the

one other should decrease accordingly. Further the right-handed vector coefficient
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con decreases by roughly 60% and the real part right-handed tensor coefficient cyy
by roughly 35%. Again, these two coefficients are correlated, which affects their
limits when looked at individually. The limits on the coefficient ;7 for both real
and imaginary part is decreased by roughly 20%. Finally, the imaginary part of ¢y

is not affected by fixing the remaining coefficients to their Standard Model values.

Impact Of The Correlations Between The Measurements

The results of the combination of the single top decay distribution, W helicity
fraction, and fiducial cross section take into account all correlations between the
individual observables but in particular also between the different measurements.
Details on the correlations were discussed in Section 2.9.4. In this section, the im-
pact of the correlations on the confidence limits of the EFT coefficients is shown.
Figure 42 shows how the one-dimensional 95% confidence regions shift when adding
the correlations between the measurement in the fit. Shown are the confidence limits
of the real and imaginary parts of the coefficients ¢,y and the polarization. There is
no noticeable change from the correlations on the remaining EFT coefficients. For
the real part of ¢y, the adding the correlations results in a slight shift of the confi-
dence interval towards more negative values, while the imaginary part of ¢y, shifts
towards more positive values. The confidence limit of the polarization decreases
slightly when adding the correlations. Nevertheless, the impact of the correlations

between the different measurements is small.
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Figure 41: Individual 95% (yellow) and 68% (green) confidence limits on the EFT
coefficients for the combination of the W helicity fractions, the single top decay

distributions and the cross section.
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Figure 42: Comparison of the marginalized, one-dimensional probability
distribution of the EFT coefficients (a) Re (¢;w), (b) Im (¢ ), and the polarization
P when including correlations between the measurements (red) and when
neglecting correlations between the measurements (blue). Correlations between the

observables within a measurement are always included.

2.11.3 Case Study: Adding the S-Channel Single Top Production Cross

Section

The confidence limits of the four-quark coefficient c%; found in the previous
section can in principle be improved by adding the /s = 8 TeV s-channel top +
anti-top cross section [40] to the fit. The s-channel cross section was discussed in
Section 1.3.1. Since the uncertainties of the s-channel cross section are still fairly
large it does not provide strong constraints on the EFT coefficients related to the
Wtb interaction. However, the s-channel cross section is sensitive to the four-quark

coefficient C:é?’;. In the Standard Model, the s-channel cross section is suppressed
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Figure 43: Dependency of the t-channel top quark cross section (a) and s-channel
top + anti-top cross section (b) on the four-quark coefficient céé. Figures taken

from EFTfitter output.

due to the intermediate W boson which is highly off-shell. This suppression does
not exist for the four-quark interaction, which is why small values of cg; can lead
to a large increase of the cross section. The dependency of both the t-channel and
s-channel cross section is shown in Figure 43. The increase with 0‘2’2’; is almost an
order of magnitude higher for the s-channel than it is for the t-channel in the same
range of the coefficient.

To parameterize the s-channel cross section in terms of the EFT coefficients
a similar approach as discussed in Section 2.7 and Section 2.8 is used. There are
some differences in the combinations of EFT coefficients that can appear in the
parameterization of the s-channel cross section. Here, combinations of left- and right-
handed coefficients do not vanish, even for massless b-quark. A list of coefficients

r for the s-channel cross section is given in Table 28. The coefficients k3 and ks
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k1 0.4583 || kg 0.0000
ke 0.0833 || kg  0.0009
k3 1.9268 || k19p  0.0002
ke 04738 || k11 -0.0003
ks 23176 || kK12 -0.0004
ke 0.0001 || k13 -0.0140
k7 0.0001 || kK14 0.0835

Table 28: Coefficients x for the s-channel cross section. The full expression of the

cross section is given in Appendix D.

corresponding to the interference with the Standard Model and the quadratic term
in cg;, respectively. Both are significantly larger than the x’s corresponding to the
remaining EFT coefficients. The full expression of the s-channel cross section in
terms of the EFT coefficients is given in Appendix D.

For the s-channel cross section, correlations are not taken into account with the
remaining measurements. As seen in the previous section, the correlations do not
affect the fit by much and it is assumed here that also the s-channel cross section is
not affected too much.

One remaining issue is the possible affect of the detector acceptance due to
changes in the kinematics from the EFT coefficients. Since the measured s-channel
is a total cross sections, acceptance effects could play a role. Nevertheless, as a case

study the s-channel is added to the fit here, to investigate the affects on the limits
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Figure 44: Comparison of the two-dimensional probability distribution of the EFT
coefficients cg’gg and ‘%(11' Shown is the combination of the single top decay
distributions and the W helicity fractions together with the t-channel fiducial cross
section (red), the s-channel cross section (blue), and the combination of t-channel

and s-channel cross section.

of the EFT coefficients. Figure 44 shows a comparison of the two-dimensional prob-
ability distribution of the single top decay distributions and the W helicity fractions
with either the t-channel, the s-channel or a combination of t-channel and s-channel
cross section. The coefficient cgg is not directly constrained by the s-channel cross
section in the limits studied in the previous sections. However, adding the s-channel
cross section does put strong constraints on the four-quark coefficient c%’;. Since cg(ll

and c&% are correlated, this in turn puts stronger limits on cffq)), as seen in Figure 44.
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2.12 Conclusion

This analysis studies the combination of different ATLAS top quark measure-
ments and the effect of this combination on the confidence limits of a set of EFT
coefficients. The EFT coefficients are the Wilson coefficients of an EFT expansion in
the Standard Model fields. The EFT coefficients considered here are a set of dimen-
sion 6 operators giving contributions to the Wtb and four-quark interactions. The
analysis relies on results of the single top decay distribution measurement, which
measures a set of generalised helicity fractions and phases in the top quark decay,
the W helicity fraction measurement, which measures the fractions of transversely
and longitudinally polarized W bosons in top quark decays, and the /s = 8 TeV
single top t-channel fiducial cross sections. Each of the measurements provides its
own advantages. The single top decay distribution measurement can constraint three
of the four Wtb related EFT coefficients at once. The Standard Model like coeffi-
cient ngg is taken as the normalization of the remaining coefficients. In addition,
the angular coefficients of the single top decay distributions are the only measured
quantities able to determine complex observables. Therefore, in this analysis, also
complex EFT coefficients could be constrained. The W helicity fraction measure-
ment is more precise and allows for tighter bounds on the Wtb interaction coefficients
Re (c;w) and Re (cw) when combined with the single top decay distributions. The
cross sections add the ability to constrain the magnitude of the EFT coefficients and
therefore also measure the Standard Model like coefficient CSC)?, which has to be fixed
to its Standard Model value in the measurements of the single top decay distribution
and W helicity fraction. Further, the cross sections are sensitive to the four-quark

interaction c:é?’i and therefore allow the constraint of an additional coeflficient.

Care was taken in the study and implementation of the correlations between
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the measurements. For this, all categories of systematic uncertainties have been
matched between the different measurements and correlations have been evaluated.
It was found that the correlations between measurements do not affect the poste-
rior probability distributions of the EFT coefficients in a significant way. A naive
combination neglecting correlations between different measurements already leads to
reasonable results.

Finally, limits were set on the EFT coefficients that are in accordance with the
Standard Model predictions. At 95% confidence limit, the Standard Model like
coefficients was determined as ch)) € [—0.64, 2.83], the right-handed vector coefficient
Cop < 11.15, the real and imaginary parts of the right-handed tensor coefficient
Re (cw) € [—2.27,0.82], Im (cw) € [—1.13,0.88], and the real and imaginary parts
of the left-handed tensor coefficient Re (cyw) € [—0.72,0.26], Im (¢w) € [—0.35,1.20].
Limits were also set on the four-quark coefficient C‘Zjé € [0.00,2.11]. All of these limits
improve on the limits set by the recent global fit [74] discussed in Section 2.6. In
obtaining these limits and adding the fiducial cross section to the combination no
assumptions are put on the EFT coefficients. However, as discussed in Section 2.4,
the fiducial cross section was chosen because the dependence of the acceptance on
the EFT coefficients is expected to be small. Due to technical restrictions, the neural
network used in the cross section analysis as a signal/background discriminant could
not be used to estimate the dependency of the acceptance on the EFT coefficients.
In case the acceptance does have a sizeable effect, variations in the allowed regions
could still occur. This effect could be further investigated in future combinations of
measurements. Nevertheless, the combination of the single top decay distributions
and the W helicity fractions discussed in Section 2.11.1 still provides constraints on
the Wtb related EFT coefficients without relying on the cross section.

Besides setting limits on EFT coefficients, the analysis presented here serves an-
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other role within the experiment. It presents as a study on how future analyses can
be conducted in such a way as to simplify combinations with other measurement.
This concerns in particular the treatment of the systematic uncertainties and cor-
relations. Besides this, the treatment of anomalous or EFT coefficients can also be
optimized for example in parameterizing the analyses’ procedures in terms of the
EFT coefficients; Do quantities such as the detector acceptance or deconvolution
depend in a significant way on the EFT parameters? Having the ability to combine
a greater variety of measurement in a systematic way would provide the ability to
constrain a larger set of EF'T parameters at once and lead the way to a more global

fit without the need for assumptions on the EFT coefficients.
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3.0 VPI1-Light

The following chapter discusses the new standalone ATLAS 3D event display
VP1-Light and the standalone GeoModel package. Both applications were presented
at the 23rd Computing in High Energy and Nuclear Physics 2018 conference in Sofia,
Bulgaria [82, 83].

3.1 The VP1 Event Display And Why ATLAS Needs A Light Version

Displaying a particle physics event has been crucial part of an analysis since the
very beginning of particle physics. In the early days, track of charged particles were
both measured and visualized in Wilson or cloud chambers. The chambers consisted
of supersaturated vapor of water or alcohol. A charged particle passing through
the chamber ionizes the gas along its trajectory . The vapor condensates along the
ionized vapor which is then visible to the eye or a camera. Figure 45 (a) shows
a picture of a track in a Wilson chamber that led to the discovery of the positron
in 1933 [84]. With the advent of computer graphics, software too took the place
of photographic images. These tool to visualize particle physics events are usually
called event displays. Figure 45 (b) shows an event display of a Higgs boson candidate
recorded by the ATLAS experiment in June 2012. The Higgs event is displayed by
the ATLAS 3D event display VP1 [85, 86]. VP1 is one of the general purpose event
displays used in ATLAS. It is tightly integrated in the experiment’s offline software
framework Athena [75] to access all kinds of experimental data. This integration has

many advantages in terms of data access. VP1 can display the experimental data at
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Figure 45: Event displays from then and now. (a) A photographic display of a
track in a Wilson chamber that led to the discovery of the positron [84]. (b) Higgs
boson candidate event in the ATLAS event display VP1 [85, 86].

every step of the data chain without the need of additional converters. Figure 46
gives an overview of the data chain. The upper branch corresponds to the flow of
the data recorded by the ATLAS detector. The lower branch corresponds to the
flow of the simulated data. In between every step, VP1 can access and display the
data. Access to the detector geometry is given through the GeoModel [87] package
which builds the geometry on the fly from C++ code upon request. Some of the
other advantages are the direct access to other services such as the online geometry
and alignment database, conditions data for data taking, and track extrapolation
tools for the complex magnetic field. However, this tight integration also puts limits

when visualizing the geometry and developing or modernizing the code. VP1 can
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Figure 46: Data collected or generated through simulation by ATLAS. At every
step, VP1 can access and display the data that is processed within the ATLAS
software framework Athena. The GeoModel-based ATLAS geometry is also stored

and accessed through Athena.

only be used on platforms supported by the ATLAS software framework’s code?.
Many end-users do not have these platforms installed on their personal computers
and can therefore not run VP1 locally. They have to run VP1 either remotely or
in a virtual machine. This comes with several drawbacks. The performance can be
slow over the network when run remotely, since a lot of 3D data is sent back and
forth. On the other hand, for VP1 in a virtual machine not all graphics options are
available since the 3D rendering is done on the software rather than the hardware
side. Consequently, the quality of the resulting images is not as high as it could be

if VP1 were to be run natively. In addition, performance can still become an issue

1

At the time of writing, the ATLAS software framework can be fully compiled only on Scientific
Linux 6 (SLC6) and CERN Centos7 (CC7), CERN-customized versions of RedHat Linux 6 and
Centos7, respectively.
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Figure 47: An updated view of the flow chart shown in Figure 46. VP1-Light can
access xXAOD and DxAOD files in standalone mode, while taking the geometry
information from the persistent copy from the new standalone GeoModel packages,

without the need for the experiment’s software framework.

in a virtual machine, depending on the user’s hardware. Another disadvantage of
the integration of VP1 into Athena is the complex run time dependency that VP1
inherits from Athena. This makes the initialization of VP1 a lengthy process, taking
several minutes and significantly slowing down the start-up of VP1. All of this makes
VP1 a cumbersome tool for physics analysis users but also developers.

However, users who primarily run data analysis jobs on their custom filtered
event data on their personal computers do not use or need most of services accessed
by VP1 through Athena. A user who wants to debug an event or generate an event
display usually does not need the latest version of the detector geometry or detailed
alignment information. Similarly, They do not need access to every intermediate data
format of the ATLAS data process shown in Figure 46. These users would benefit

by being able to run the data visualization application VP1 on the same platform
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as their analysis. The data used for physics analyses are usually stored in xAOD
[78] files, and its derivatives DxAOD files, in a ROOT format [88], which does not
require full access to the ATLAS Athena framework.

For this purpose, and leveraging the use of the new experiment-agnostic Geo-
Model library and of the standalone detector description persistification mechanism,
the standalone, lightweight version of VP1, called VP1-Light, was developed. Fig-
ure 47 shows an updated version of the drawing shown in Figure 46, illustrating
framework-independent use of VP1-Light the standalone GeoModel. More one the

standalone GeoModel in the following section.

3.2 Display Of The ATLAS Detector

The full ATLAS event display VP1 uses the GeoModel package to display the
ATLAS geometry. GeoModel provides a detailed ATLAS detector description, not
just to VP1, but to a variety of ATLAS applications, including simulation and data
reconstruction. GeoModel provides both raw geometry data and time-dependent
alignment corrections. The geometry is built on the fly from C++ code while the
geometry data is stored in the ATLAS Geometry Database. This database is in-
tegrated into the ATLAS software framework and therefore GeoModel is required
to run inside the framework as well. In order to build the ATLAS geometry in a
standalone application, a standalone version of GeoModel was also required.

A standalone GeoModel was developed by extracting the GeoModel kernel from
the Athena framework. Fortunately, GeoModel did not have any dependencies on
other Athena software components, so the extraction did not pose any major com-

plications. In the process, the only external dependency on the CLHEP [89] library
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Figure 48: Overview of the ATLAS detector description. An Athena job, such as
simulation, reconstruction, or VP1 requests the ATLAS geometry. The raw
detector geometry is built on the fly from C++ code. On top of that,
time-dependent alignment data is applied from the Conditions DB.

was dropped and instead the Eigen [90] library was used. Since the standalone Geo-
Model package does not have access to the ATLAS Geometry DB, a new mechanism
to store the geometry data was implemented. A persistent version of the detector
geometry is generated in inside the experiments software framework that can then
be imported into the standalone application. Two different file format were chosen
to store the persistent detector geometry. The SQLite format [91], designed to store
the geometry in an optimized and compact way. The SQlite format therefore re-
sults in relatively small file sizes. As an example, the full ATLAS geometry used by
VP1-Light is stored in a SQLite file of only about 50 MB. The second format is the
JSON format [92]. It is a human readable format that can easily be split in multiple

files. This allows users to directly edit individual components of the geometry. Since
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the standalone GeoModel is independent of ATLAS software it can be use as an

experiment-agnostic detector description, serving other experiments as well.
VP1-Light is the first application to use both the standalone GeoModel package

and the persistification mechanism to visualize the the ATLAS detector geometry.

Views of the full ATLAS detector and its sub-detectors are shown in Section 1.4.2.

3.3 Display Of Physics Objects

Physics objects that can be displayed are jets, inner detector tracks, muon tracks
calorimeter clusters, primary and secondary vertices. These are the main collection
of objects. Each collection has different categories. These categories depend on
the input file and which object collections are saved during reconstruction and/or
slimming and thinning. Slimming and thinning is the reduction of a files size by
removing objects that are not needed. E.g. an analysis might not need Inner Detector
tracking information and thus this is removed from the xAOD file. Here, a short

overview of the physics object category is given.

Jets are displayed as as cones starting from the production vertex. The size is
proportional to the jet energy. b-tagging information is available and b-tagged

jets can be displayed in a separate color.

Calorimeter Clusters are displayed as columns in the respective 1 — ¢ direction
in the region of the calorimeters. The length of the column corresponds the the

energy deposited and can be scaled as desired.

Vertices are shown as small spheres in the interaction region. Different collections

such as primary or secondary vertices and displaced vertices are available.
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Inner Detector Track Particles are shown as curved lines in the ID region. The
curvature depends on the particles momentum. Track parameters can also be
shown. These parameters correspond to the different points of measurement,
such as first or last measurement or entry point of the calorimeter.

Electrons are essentially the same as track particles, kept in a different collections.
This allows to draw them separately from the remaining track particles.

Muons are displayed similar to other track particles. However, their range goes
beyond the Inner Detector and the track curve all the way through the calorimeter
to the muon spectrometer.

MET or Missing Transverse Energy is displayed as dashed lines in the (p — ¢)
plane. Depending on the input file, a range of MET collections are available,

such as MET from the tracks, calorimeters or reconstructed jets.

Figure 49 gives an overview of all the physics objects and how they are displayed
in VP1-Light. In addition to simply displaying the objects, users can also make
selection cuts on the physics objects. Selections on jet and calorimeter clusters can
be made according to their minimum or maximum (transverse) energy. Muons,
electrons and other track particles can be selected according to their (transverse)
momentum. 7 and ¢ cuts can be made on all these objects. This allows the user to
only view the objects used in an analysis. Further, information on the objects can
be viewed by selection. This will print out the selected objects properties, such as

energy, momentum, or invariant mass.
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3.4 Development

VP1-Light, just as VP1, is a C++ based modular framework, build as a collection
of packages each with its own function. VP1Systems packages enable the access
to the data, such as the xAOD files through the VP1AODSystems package or the
detector geometry through the VP1GeometrySystems. The GUI views are handled
by the VP1P1lugin which store dedicated views for the detector geometry, the physics
objects or a combination of both. To make VP1-Light a standalone application,
all relevant packages needed to be extracted from the Athena framework. For the
3D visualization of the geometry and the physics objects Coin [93], which is a free
software Open Inventor clone, is used. For the graphical user interface (GUI) the
Qt5 libraries [94] are utilized.

VP1-Light was embedded into a CMake build system for development. This pro-
vided a sandbox environment for the implementation of the required functionalities.
The initial version of VP1-Light, that was basically just the packages extracted from
Athena, only displayed the detector geometry. For this, the new standalone Geo-
Model was used. This made VP1-Light the first application to use the standalone
persistification mechanism. Access to physics objects was not initially available, since
the full VP1 version has access to the physics data through the Athena framework.
Therefore, a new implementation of the VP1A0DSystems had to be developed that
can access xAOD files independent from the software framework. Similarly, some of
the event access routines had to be rewritten. This is because the full VP1 runs as an
Athena algorithm, stepping through a data file one event at a time. However, VP1-
Light uses direct access to the xAOD files and it is therefore possible to browses the
event file. This allows the user to view any given event in the file without the need

to proceed through the file one event at a time. Other functionalities were added as
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(b) Calorimeter Clusters (c) Vertices

(d) Electrons & MET (e) Muons (f) ID Track Particles

Figure 49: Overview of the physics objects available in VP1-Light. (a) shows a set
of 3 jets (yellow) and one b-jet (turquoise). The background shows a cross sectional
view of the Tile calorimeter. (b) shows a set of calorimeters clusters in the
calorimeter region. (c) shows the primary vertices (red) and a set of jets (yellow).
The background shows a sectional view of the SCT and the beam pipe. (d) shows a
set of electron tracks (green) and missing transverse energy (white). The
background shows a cross sectional view of the SCT and TRT. (e) shows a Muon
track (red) passing the Muon Spectrometer’s end-caps. (f) shows a set of mostly
low energetic track particles (orange). The background shows a again the SCT and

TRT.
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well, such as settings dialogs for options that were set via environment variables in
full VP1. All of the developments make VP1-Light a more user-friendly application
that behaves more like a standard desktop application. Figure 50 shows a use case
of VP1-Light with a new settings dialog. The new event controls can also be seen at
the bottom left of the GUI.

Once the main features of VP1-Light were developed all packages were reinte-
grated into the ATLAS software framework. The decision to take this step was based
on the many advantages in having VP1-Light in the Athena build system.

e Since VP1-Light is based on the VP1 packages, the code base of VP1 and VP1-
Light is still the same. In the parts where they differ, a preprocessor flag deter-
mines whether VP1 or VP1-Light is compiled.

e Development can be done simultaneously on VP1 and VP1-Light.

e C(Code maintenance is kept to a minimum, since VP1 and VP1-Light share the
same code.

e External packages (Coin, Qt, ROOT, etc.) can be directly compiled from the
Athena code base. This makes the compilation and installation process much

easier for users and developers.

Reintegration into the Athena build system does not reintroduce a dependency of
VP1-Light on the framework. Once VP1-Light is compiled, it runs in standalone
mode without access to the framework.

Since VP1-Light is independent of the software framework, it is also free of its
the platform restriction. This makes VP1-Light a cross-platform application that is
supported for both Linux and macOS. Both of these operating systems are widely
used platforms for ATLAS physics analysis users. Figure 50 shows VP1-Light running

on macOS.
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Figure 50: View of the VP1-Light GUI on a macOS system. The 3D viewer is
showing parts of the ATLAS detector geometry (toroids and MS) and some physics
objects (calorimeter clusters, muon, electron). In the bottom left corner, new event
controls are added which allow the user to switch between events more easily. In
the foreground, a new settings dialog for general program settings is shown as well

as a dialog to adjust the geometry display.
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Besides its usage as an event display for end-users, VP1-Light is also designed as
a test-bed for new technologies. Being a standalone, lightweight application that only
takes a short time to start greatly simplifies improvement of visualization techniques,
engines, libraries, compared to the development workflow in a large framework such
as Athena. For a start, VP1-Light will be used to test new 3D graphics engines.
Currently, VP1 and VP1-Light are based on Coin3D, an aging library which will have
to be replaced eventually since it is causing compatibility issues with new software
releases. One promising candidate is Qt 3D which is now available as a stable version.

Further investigation needs to be done to ensure it fulfills all requirements.

3.5 Distribution

VP1-Light was developed with a focus on usability. Users should get an easy to
use application that is free of the of the drawbacks of the full VP1 application. In
Section 3.4, the reintegration of VP1-Light into the ATLAS Athena build system was
described. This reintegration into Athena does make the compilation of VP1-Light
straightforward. However, many user might still get shied away by the prospect of
compiling VP1-Light including its external requirements. Especially the compilation
of ROOT and the installation of Qt5 is a lengthy process. Therefore, a mechanism
to package the VP1-Light and external packages binaries into an application bundle
was developed. In a first step, the VP1-Light and external binaries were packaged
into an Applmage [95] bundle for Linux systems and an Apple Disk Image for macOS
systems. These app bundles are essentially mountable volumes that the user directly
run out of the box. In the second step, dedicated package managers of the operating

systems are used for the distribution of the VP1-Light packages. On the Linux side,
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VP1-Light is available for selected Long-Time Support (LTS) Ubuntu distributions.
Distribution is done through the Personal Package Archives (PPA). The user can
simply install the VP1-Light external dependencies and the main application and
use VP1-Light like a native Ubuntu application. For macOS, the distribution is

done through the HomeBrew [96] package manager in a similar way.

3.6 Conclusion

With the development of VP1-Light, all ATLAS analysis users, developers, out-
reach experts and more have a standalone 3D event display at their disposal that is
easy to get, easy to install and easy to use. VP1-Light is a standalone version of the
general purpose event display VP1. It has been detached from the ATLAS software
framework. Physics data is accessed from xAOD files in ROOT format. The ATLAS
detector geometry is is stored and read in by the standalone GeoModel package in a
SQLite database format. This format allows the persistification of the entire ATLAS
detector geometry in one file of order 50 MB.

VP1-Light is available for ATLAS users through dedicated package managers
of both Ubuntu Linux and macOS. It can also be installed on many other Linux

distributions.
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Appendix A

W Helicity Fractions To O (x})

The W helicity fraction in terms of the EFT coefficients to O (z}) are given by

Ay
Fy—=—"0 Al
07 Ay + 2B, (A1)
BO—2Z‘ B1
F, = a7 A2
L= A+ 2B, (A-2)
By + 22, B,
Fp= 20T 2a1 A3
B4, + 28, (A-3)

where

Lqg = \/ m2E - x%/va (A4)

1+ a3, — x?
rp=—0—10

and xW:’;—VtV and z, = &b,
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The form factors up to O(x}) are given by

AOI

A

B, =
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4
Dy = 1o (Vegg + Vrgy) (1 — 208, — 227 — 208,22 + o) (A11)
Tw
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Appendix B
Single Top Decay Distribution To O (z})

The coefficients of the angular expansion of the single top decay distribution
analysis ay , are given in Section 1.3.2.2 in terms of the generalized helicity fractions
and phases. The coefficients ay ,, in terms of the form factors defined in Eq. A.10

are given by

B \/? 22,8,
L0 =\ 8 Ay + 2By
1 By—4
00T Vir Ao+ 2By’
1 2Iq (Al + 2B1)
V24r  Ag+2By
1 2B,
e e At 2By
1 4z, (B1— A1)

ajo0 = +P

a120 = +P\/m Ao +2B, ’
Re(a11,1) = — P\/;_W$A0 502307
Im (a1,11) = — \/é_ﬂioniD;Bo’
Re (a12,1) = — P\/imé oniC;Bo’
Im (a1,2,1) = — \/iméflo _130230. .
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In addition, the generalized helicity fractions and phases can be written in terms of

the form factors as

2By
h=1—757
A0+2BO
. By+2z,B
=35
0
+_ AO —2$qA1
0 2A0 Y
DO — X D1
tand_ = ————~
o CO —qul’
Do + x4Dq
tand, = —— L —. B.2
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Appendix C

Fiducial And Total Cross Section In Terms Of EFT Coeflicients

The fiducial cross section in terms of the Wilson coefficients is then given by
osa =0p (Vi +9(p) - K), (C.1)

where g(p) is a column vector which components are quartic functions of the Wilson

coefficients. The explicit for of g - K, here written as

gp) - k=(g9(p) k), +(g(p) K),, (C.2)

(g(p) - k), = K1Re (caw) V7 + KJQCZ;VE + k3Re (cm/)2 VE+ /f4c‘22’(1]Re (cow) Vi
+ ks (cg’;)Q V2 + keVicoy + rrRe (cow) Vicow + ksRe (cow ) V2
+ kolm (caw)* V2 + kiolm (e ) V2 + k1iRe (e )’ Vi
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where the point p holds the couplings

p = (Vi,Re (cw) ,cg;, Re (cun) , Re (cow) , Im (caw) , Im (cow)) - (C.5)

The total cross section in terms of the EFT coeflicients can be written as
Otot :O-tsé\t/[ (VI? + g(p) ' K’) ) (06)
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where

g9(p) - k = k1Re () Vi + ko (Re (cow)” +Im (th)z) + mgVLc%’(l] + r4Re (ciw) C%}J

+ K5 (022)2 + H6Citb + KrcowRe (cow) + ks (Re (cow)? +Im (wa)2) ,
(C.7)

where p is given by Eq. C.5.
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Appendix D

S-Channel Cross Section In Terms Of EFT Coefficients

The s-channel single top cross section in terms of the EFT coefficients is given

by
Os-chan. :USS_I(\;/{lan, (V[? + g(p) : K’) ) (Dl)
where

g(p) -k = V2 + kiRe (cow) Vi + k2 (Re (cap) + Im (o)) + RgVLC%}J
2
+ r4Re (ciw) cg; + K5 (022;) + kVLVR + k7Re (o) Vi + ﬁgcg;VR
-+ :‘igvlg + moVLRe (wa) + K11 (Re (th) Re (wa) -+ Im (th) Im (wa))

+ /<;12cz’g’cllRe (cow) + K13VaRe (cow) + k14 (Re () +Im (ew))*. (D.2)
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Appendix E

Monte Carlo Generation: Control Plots

This section shows the remaining control plots discussed in Section 2.8.
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Figure 51: Control plots of simulated top quark and top anti-quark events when
varying Im (cyy) in the fiducial phase space. Shown are, from top to bottom row,

the input variables m (¢b), m (jb), An (¢v,b), |n ()]
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Figure 54: Control plots of simulated top quark and top anti-quark events when
varying Im (cyy) in the full phase space. Shown are, from top to bottom row, the

input variables my ((EFS), m ((vb), cos 6* (£, j), cos 6" (£,b).
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Figure 55: Control plots of simulated top quark and top

varying Re (cpw) in the fiducial phase space. Shown are, from top to bottom row,

the input variables m (¢b), m (jb), An (¢v,b), |n ()]
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Figure 56: Control plots of simulated top quark and top anti-quark events when
varying Re (cpw) in the fiducial phase space. Shown are, from top to bottom row,

the input variables my (CEF™), m (vb), cos6* (¢, j), cos 0 (¢, ).
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Figure 58: Control plots of simulated top quark and top anti-quark events when
varying Re (cpw) in the full phase space. Shown are, from top to bottom row, the

input variables my ((EFS), m ((vb), cos 6* (¢, j), cos 6" (£,b).
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Figure 59: Control plots of simulated top quark and top anti-quark events when

varying Im (cpp) in the fiducial phase space. Shown are, from top to bottom row,

the input variables m (¢b), m (jb), An (¢v,b), |n ()]
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Figure 60: Control plots of simulated top quark and top anti-quark events when
varying Im (cpp) in the fiducial phase space. Shown are, from top to bottom row,

the input variables my (CEF™), m (vb), cos6* (¢, j), cos 0 (¢, ).
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Figure 61: Control plots of simulated top quark and top anti-quark events when
varying Im (cpi) in the full phase space. Shown are, from top to bottom row, the

input variables m (¢b), m (jb), An (¢v,b), |n (5)].
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Figure 62: Control plots of simulated top quark and top anti-quark events when
varying Im (cpi) in the full phase space. Shown are, from top to bottom row, the

input variables my ((EFS), m ((vb), cos 6* (¢, j), cos 6" (£,b).
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Figure 63: Control plots of simulated top quark and top anti-quark events when
varying c,y in the fiducial phase space. Shown are, from top to bottom row, the

input variables m (¢b), m (jb), An (¢v,b), |n(5)].
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Figure 64: Control plots of simulated top quark and top anti-quark events when

varying c,y in the fiducial phase space. Shown are, from top to bottom row, the
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Figure 65: Control plots of simulated top quark and top anti-quark events when
varying c,q in the full phase space. Shown are, from top to bottom row, the input

variables m (¢b), m (jb), An (€v,b), |n ().
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Figure 66: Control plots of simulated top quark and top anti-quark events when
varying c,q in the full phase space. Shown are, from top to bottom row, the input

variables my (CERS*), m (€vb), cos0* (¢, j), cos 6" (£,b).
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Figure 67: Control plots of simulated top quark and top anti-quark events when
varying Cg}] in the fiducial phase space. Shown are, from top to bottom row, the

input variables m (¢b), m (jb), An (¢v,b), |n(5)].
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Figure 68: Control plots of simulated top quark and top anti-quark events when
varying cg’; in the fiducial phase space. Shown are, from top to bottom row, the

input variables my ((EFS), m ((vb), cos 6* (£, j), cos 6" (£,b).
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Figure 69: Control plots of simulated top quark and top anti-quark events when
varying c“z?’(l] in the full phase space. Shown are, from top to bottom row, the input

variables m (¢€b), m (jb), An (€v,b), |n ().
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Figure 70: Control plots of simulated top quark and top anti-quark events when
varying cg’; in the full phase space. Shown are, from top to bottom row, the input

variables my (CEPS*), m (€vb), cos0* (¢, j), cos 6* (£, b).
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Figure 71: Control plots of simulated top quark and top anti-quark events when
varying cg’é in the fiducial phase space. Shown are, from top to bottom row, the

input variables m (¢b), m (jb), An (¢v,b), |n(5)].
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Figure 72: Control plots of simulated top quark and top anti-quark events when
varying cg’é in the fiducial phase space. Shown are, from top to bottom row, the
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Figure 73: Control plots of simulated top quark and top anti-quark events when
varying cg’é in the full phase space. Shown are, from top to bottom row, the input

variables m (¢b), m (jb), An (€v,b), |n ().
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Figure 74: Control plots of simulated top quark and top anti-quark events when
varying cg’é in the full phase space. Shown are, from top to bottom row, the input

variables my (CEPS), m (€vb), cos0* (¢, j), cos 6" (£,b).
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Appendix F

Dependency Of Angular Coefficients On Anomalous Couplings

This section shows all fits of the deconvolved angular coefficients in terms of the
anomalous couplings. The light green points are the points in the Markov chain
selected for each coupling as described in Section 2.10.2 and the blue curve is the
fitted function. Also shown in red is the measured angular coefficient at the Standard

Model point including the uncertainty.
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Figure 75: Dependency of the angular coefficients agygp and aggg on the EFT

coefficients.
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207



S o0 Mo =
S = P é —0.04 B e
Fit
—0.04 ‘ &') W sMdeconvolved
- ‘ —0.06
~0.06 —0.08
203 —02 —01 00 01 02 03 03 —02 -01 00 01 02 03
Re(Vz) Re(Vz)
S o0 oo =
W Rt =
S W SMdeconvoived S -0.04
[0
—0.04 T
—0.06 —0.08
203 —02 —01 00 01 02 03 203 —02 —01 00 01 02 03
Re(gr) Re(gr)
8 oo oo -
5 | =
S n ;r‘wdmnnmvm S —0.04 - meMe
~— Fit
[¢] W sMdeconvolved
oo J T o0 |
~0.06 ’ —0.08 |
203 —02 —01 00 01 02 03 203 —02 —01 00 01 02 03
Im(gz) Im(gr)
R Hewe =
. W F =
S u S dcorvates S —0.04 meme
~— Fit
[¢] = S:Auacnnvo\vsd
—0.04 T o0
~0.06 —0.08
203 —02 —01 00 01 02 03 203 —02 —01 00 01 02 03
Re(gz) Re(gr)
8 o wowo -
= —0. W =
S ] L S —0.04 MoMe
o -~
—0.04 o |
—0.06 ‘ —0.08 ‘
203 —02 —01 00 o1 02 03 203 —02 —01 00 01 02 03
Im(gr) Im(gr)

Figure 77: Dependency of the angular coefficients aj99 and Re(aq11) on the EFT

coefficients.
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Figure 78: Dependency of the angular coefficients Im(a;11) and Re(ai91) on the
EFT coefficients.
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Figure 79: Dependency of the angular coefficients Im(aj21) on the EFT coefficients.
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Appendix G

2D Probability Distributions Of The Combination Of The Single Top
Decay Distributions And W Boson Helicity Fractions

This section shows the two-dimensional marginalized probability distributions of

the ratio of the EFT coefficients with respect to V7, corresponding to Section 2.11.1.
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Figure 80: Two-dimensional marginalized 68% (green) and 95% (yellow) confidence

regions of the EFT coefficients.
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Figure 81: Two-dimensional marginalized 68% (green) and 95% (yellow) confidence

regions of the EFT coefficients.
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Figure 82: Two-dimensional marginalized 68% (green) and 95% (yellow) confidence

regions of the EFT coefficients.
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Appendix H

2D Probability Distributions Of The Combined Fit

This section shows all remaining two-dimensional marginalized probability dis-
tributions of the EFT coefficients. The distributions of the coeflicients 0;322 and cgé

as well as ¢,y and Re () are shown in Figure 40 of Section 2.11.2.
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Figure 83: Two-dimensional marginalized 68% (green) and 95% (yellow) confidence

regions of the EFT coefficients.
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Figure 84: Two-dimensional marginalized 68% (green) and 95% (yellow) confidence
regions of the EFT coefficients.
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Figure 85: Two-dimensional marginalized 68% (green) and 95% (yellow) confidence

regions of the EFT coefficients.
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Figure 86: Two-dimensional marginalized 68% (green) and 95% (yellow) confidence

regions of the EFT coefficients.
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Figure 87: Two-dimensional marginalized 68% (green) and 95% (yellow) confidence
regions of the EFT coefficients.
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Appendix 1

Systematic Uncertainties

This section gives a list of all systematic uncertainties that contribute to the
correlations between the different measurements. Uncertainties that are only present

in on of the measurement are not listed.
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