
Optimizing Embedded Software of Self-Powered IoT

Edge Devices for Transient Computing

by

Chen Pan

BS, Wuhan University of Science and Engineering, 2009

MS, Oklahoma State University, 2017

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2019

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Chen Pan

It was defended on

May 30, 2019

and approved by

Jingtong Hu, Ph.D., Assistant Professor

Department of Electrical and Computer Engineering

Zhi-Hong Mao, Ph.D., Professor

Department of Electrical and Computer Engineering

Samuel Dickerson, Ph.D., Assistant Professor

Department of Electrical and Computer Engineering

Alex Jones, Ph.D., Professor

Department of Electrical and Computer Engineering

Feng Xiong, Ph.D., Assistant Professor

Department of Electrical and Computer Engineering

Youtao Zhang, Ph.D., Associate Professor

Department of Computer Science

Dissertation Advisors: Jingtong Hu, Ph.D., Assistant Professor

Department of Electrical and Computer Engineering

Zhi-Hong Mao, Ph.D., Professor

Department of Electrical and Computer Engineering

ii

Copyright c© by Chen Pan

2019

iii

Optimizing Embedded Software of Self-Powered IoT Edge Devices for

Transient Computing

Chen Pan, PhD

University of Pittsburgh, 2019

IoT edge computing becomes increasingly popular as it can mitigate the burden of cloud

servers significantly by offloading tasks from the cloud to the edge. Currently, there are tril-

lions of edge devices all over the world, and a majority of them work under power-constrained

scenarios such as outdoor environmental monitoring. Considering the cost and sustainability,

in the long run, self-powering through energy harvesting technology is preferred for these IoT

edge devices. Nevertheless, a common and critical drawback of self-powered IoT edge devices

is that their runtime states in volatile memory such as SRAM will be lost during the power

outage. Thanks to the state-of-the-art non-volatile processor (NVP), the volatile states can

be saved into the on-chip non-volatile memory before the power outage and recovered when

harvesting power becomes available. Yet the potential of a self-powered IoT edge device is

still hindered by the intrinsic low energy efficiency and reliability.

To fully exert the potentials of existing self-powered IoT edge devices, this dissertation

aims at optimizing the energy efficiency and reliability of self-powered IoT edge devices

through several software approaches. First, to prevent execution progress loss during the

power outage, NVP-aware task schedulers are proposed to maximize the overall task execu-

tion progress especially for the atomic tasks of which the unfinished progress is subjected

to loss regardless of having checkpoints. Second, to minimize checkpointing overhead on

non-volatile memory, an intelligent checkpointing scheme is proposed which can not only en-

sure a successful checkpointing but also predict the necessity of conducting checkpointing to

avoid excessive checkpointing. Third, to avoid inappropriate runtime MCU clock frequency

with low energy utility, a CPU frequency modulator is proposed which adjusts the runtime

CPU clock frequency adaptively. Finally, to thrive in ultra-low harvesting power scenarios,

a light-weight software paradigm is proposed to help maximize the energy extraction rate.

Besides, checkpointing is also optimized for more energy-efficient and light-weight operation.

iv

Table of Contents

1.0 Introduction . 1

1.1 Research Motivation . 1

1.2 Existing Work . 3

1.2.1 Optimizing Power Regulator . 3

1.2.2 Optimizing Checkpointing . 4

1.2.3 Optimizing Run-time Execution . 5

1.3 Research Contributions . 6

1.4 Dissertation Organization . 7

2.0 Technical Background . 8

2.1 System Architecture . 8

2.2 Basic Checkpointing . 9

2.3 Voltage Monitoring . 10

2.4 Sleep/Wake-up Managing . 11

3.0 Atomic Task Aware Task Scheduling . 13

3.1 Motivation . 13

3.2 Related Work . 16

3.3 System Overview . 17

3.4 Power Prediction . 18

3.5 Independent NVP Task Scheduler . 21

3.6 Dependent NVP Task Scheduler . 26

3.7 Experiments . 30

3.7.1 Evaluation of NVP Scheduler . 30

3.7.1.1 Hardware Platform . 30

3.7.1.2 Power Traces . 31

3.7.1.3 Software Setup . 31

3.7.1.4 Energy Consumption Analysis 32

v

3.7.1.5 Sleep Mode vs. Working Mode 32

3.7.1.6 Progress Comparison . 34

3.7.1.7 Efficiency and Overhead . 38

3.7.2 Evaluation of NTS Scheduler . 40

3.7.2.1 Hardware Platform . 40

3.7.2.2 Power Trace . 41

3.7.2.3 Software Setup . 41

3.7.2.4 Benchmark Setup . 43

3.8 Summary . 45

4.0 Intelligent Checkpointing Scheme . 46

4.1 Motivation . 46

4.2 Related Work . 46

4.3 Statisitic based Checkpointing Avoidance 48

4.3.1 Secure Checkpointing . 52

4.4 Experiments . 53

4.4.1 Experimental Setup . 53

4.4.1.1 Hardware Platform . 53

4.4.1.2 Power Trace . 53

4.4.1.3 Software Setup . 53

4.4.1.4 Performance of TCW . 54

4.5 Summary . 56

5.0 CPU Frequency Modulation . 57

5.1 Motivation . 57

5.2 Modeling and Analysis . 58

5.3 Frequency Modulator . 60

5.3.1 Off-line Stage . 60

5.3.2 On-line Stage . 61

5.4 Experiments . 61

5.4.1 Experimental Setup . 61

5.4.1.1 Hardware Platform . 61

vi

5.4.1.2 Power Trace . 62

5.4.1.3 Benchmarks . 62

5.4.2 Energy Utility Evaluation . 63

5.4.2.1 Overhead Analysis . 64

5.5 Summary . 65

6.0 Thriving on Ultra-Low Harvesting Power 66

6.1 Motivation . 66

6.1.1 Wake-up Voltage Determines Efficiency 68

6.1.2 Routines vs. Efficiency . 71

6.2 Related Work . 73

6.2.1 System Architecture . 75

6.3 Modeling and Analysis for ξ(vWak) . 75

6.3.0.1 Hardware Energy Efficiency 75

6.3.0.2 Software Energy Efficiency . 78

6.3.0.3 Execution Energy Efficiency 78

6.3.0.4 Influence of Checkpointing Data Size ω 79

6.3.0.5 Influence of Wake-up Voltage v 79

6.4 Modeling and Analysis for ξ(vWak, vslp) . 82

6.4.1 Energy Modeling . 82

6.4.1.1 Harvested Energy . 82

6.4.1.2 Hardware Energy Overhead 82

6.4.1.3 Software Overhead . 83

6.4.1.4 Effective Energy . 84

6.4.2 Efficiency Analysis . 84

6.4.2.1 Formulation of ξ . 84

6.4.2.2 Optimization of ζ . 85

6.4.2.3 Validation of modeling . 86

6.5 Optimizing Voltages for Sleep/Wakeup . 88

6.5.1 Routine Handler . 88

6.6 Experiments . 92

vii

6.6.1 Experimental Setup . 92

6.6.1.1 Hardware Platform . 92

6.6.1.2 Power Trace . 93

6.6.1.3 Benchmarks . 93

6.6.2 Experimental Evaluation . 93

6.6.2.1 Observation of ζ(vslp, vwak) . 93

6.6.2.2 Energy Efficiency Evaluation 95

6.7 Summary . 96

7.0 Conclusion . 97

Bibliography . 98

viii

List of Tables

1 Task Information (Tab) . 23

2 Task Information . 32

ix

List of Figures

1 System Architecture of Self-Powered Non-Volatile IoT Edge Device 8

2 NVP Architecture . 9

3 Atomic Task B is Unfinished Before The Power Outage Resulting in Progress

Setback. 14

4 Prioritizing atomic Task B to Finish Before The Power Outage Results in

Progress Maximization. 15

5 System Architecture . 18

6 NVP Scheduler Overview . 22

7 Example DAG . 29

8 Power Trace Used for Experiments . 31

9 Power Consumption of Benchmarks . 33

10 Power Consumption of Low Power Mode vs Working Mode 33

11 Execution Speed of Register Operation . 34

12 Execution Speed of SRAM Writes . 35

13 Execution Speed of FRAM Writes . 36

14 Execution Speed of Thermometer . 37

15 Execution Speed of Accelerometer . 38

16 Execution Speed of UART communication . 39

17 Energy Efficiency . 40

18 Energy and Time Overhead . 41

19 Power Traces . 42

20 Required Energy of Each Benchmark. 42

21 Average Single Execution Period with NTS. 44

22 Average Execution Power of Benchmarks Under Different Power Traces. . . . 45

23 Four Out of Nine Checkpointings Can Be Avoided without Progress Setback. 50

24 Dual-Backup Checkpointing Handler. 52

x

25 Single Execution Period with TCW. 55

26 Average Execution Power of Benchmarks Under Different Power Traces. . . . 55

27 Energy efficiency with different clock frequency 58

28 Frequency matching based task schedule . 61

29 Required energy of each benchmark . 62

30 Energy Utility under Available Frequencies 63

31 Time and energy overhead . 64

32 Changes of Charging Efficiency and Voltage on the Edge Device with Ultra-low

Harvesting Power . 68

33 Influence of Wake-up Voltage on Charging Cycle and Efficiency of the Edge

Device with Ultra-low Harvesting Power . 69

34 Influence of the Wake-up Voltage on Checkpointing Frequency of the Edge

Device with Ultra-low Harvesting Power . 70

35 Measurements of the Execution Progress with Different Working Voltages . . 71

36 Energy efficiency with different voltage combinations 72

37 Architecture of self-powered edge device . 75

38 Capacitor Charging Circuit . 76

39 Concavity of ζ in respect of vslp and vwak . 86

40 Optimal ζ and vwak with given vslp . 87

41 Execution speed (theoretical vs experimental) 87

42 Maximum Energy Efficiency and Optimal Wakeup Voltages with Different

Sleep Voltages . 94

43 Average execution power . 95

44 ENZYME vs. Baselines regarding energy efficiency 96

xi

1.0 Introduction

In this era of the Internet of Things (IoT), an increasing number of electronics “things”

that embedded with software, sensors, and connectivity forms a seamless web to facilitate

our daily life. Generally, the majority of these “things”, such as wireless sensor nodes, are at

the edge of IoT network, which bridges between the physical and cyber world by sensing the

real-life information and converting it into the digital representations for IoT applications.

It is estimated that IoT will consist of almost 50 billion devices by 2020, which brings a

challenge of how to power these vast number of edge devices sustainably and efficiently.

1.1 Research Motivation

While battery power is not a favorable solution in the long run due to size, longevity,

safety, and recharging concerns, energy harvesting, out of all possible energy sources, is one

of the most promising techniques to meet both the size and power requirements of edge

devices. A typical self-powered IoT edge device is usually composed of an energy harvester,

a power regulator, a storage capacitor, and an embedded edge device. Energy harvesters can

harvest different kinds of ambient energy, such as kinetic, electromagnetic radiation (light

and RF), and thermal energy. The harvested energy will be converted into electric energy

and flow through the power regulator to provide targeting voltage for charging the storage

capacitor or directly powering the edge devices.

Although the future of self-powered IoT edge devices is promising, a critical drawback of

most energy harvesters is that the harvesting power is often weak and intermittent, resulting

in frequent power interruptions to edge devices. Frequent system turning on and off will

jeopardize the data integrity causing significant progress setback if a program’s intermediate

execution state is not saved. With the help of non-volatile processors (NVP), both the

program’s execution state and active contents in its stack can be saved into non-volatile

memory (NVM), before each power outage. This process is known as checkpointing. The

1

next time when the harvesting power recovers, the execution state can be restored to volatile

RAM and program execution resumes. In this way, edge devices are resilient to power outages

and the execution progress can be “intermittently” accumulated.

Nevertheless, even with the help of NVP, the potential of a self-powered IoT edge device

is still severely hindered by the intrinsic low energy efficiency and reliability making it chal-

lenging to deliver reliable and efficient edge service for satisfying IoT service requests. These

drawbacks of self-powered IoT edge devices mainly come from the following four aspects.

• First, although all tasks’ runtime execution state can be saved successfully before power

outage by NVP, not all tasks can be resumed correctly. Tasks, such as sensing and

communication, are susceptible to the time delay. Their execution states, although can

be checkpointed successfully, become useless when being resumed after a period of time.

Therefore, extra energy and computation resources are required to compensate for their

progress loss during the power outage.

• Second, as the checkpointing involves write operation on non-volatile memory, which is

both time and energy-consuming, extra time and energy are required to support check-

pointing. Considering the limited harvesting power, checkpointing can significantly affect

the energy overhead especially when harvesting power becomes extremely small and un-

stable. What’s more, as the endurance of non-volatile memory gradually wears out with

each new write operation, checkpointing also threatens the lifetime of edge devices with

NVP. Further, if checkpointing is unsuccessful, a significant progress setback would occur.

• Third, each tasks has its own optimal CPU clock frequency for which neither too small nor

too large can bring optimal energy efficiency. Therefore, an inappropriate configuration

of run-time CPU clock frequency can escalate the already low energy efficiency.

• Finally, under the ultra-low harvesting scenario, the energy harvester and power regulator

bundle suffers from severe degradation in energy efficiency making energy efficiency much

lower and checkpointing much frequent which further escalates the energy efficiency and

QoS of IoT services.

These four challenges need to be addressed before the self-powered IoT edge device can

provide a reliable, energy-efficient, and environment-friendly IoT end service.

2

1.2 Existing Work

In order to solve the aforementioned challenges, existing work mainly focuses on three

optimization perspectives including improving power regulator efficiency, reducing check-

pointing overhead, and improving runtime execution efficiency.

1.2.1 Optimizing Power Regulator

As the power supply of self-powered IoT edge devices, the energy harvester extracts

energy from the ambient environment. Solar [38, 40, 48, 15], wind [38], footsteps [45, 47,

20], breathing [47], blood pressure [47], and body heat [21, 38, 47] are all possible energy

harvesting sources. The power harvested from these energy sources has different magnitudes.

For example, solar energy can generate a large magnitude of power at a power density of

15mW/cm2. The footstep is controllable human power, and the amount of harvested power

can be as much as 67W [20] during a brisk walk. For ultra-low-power devices, the sources

with low power densities, such as breathing (0.42W), and body heat (2.4∼4.8W), can provide

sufficient power to drive the devices at low duty cycles [17, 21, 48, 30, 52]. A common

drawback of these energy sources is that they are often weak or intermittent, When an edge

device is powered directly by an energy harvester, the supply voltage may be too low to

drive the edge device. Even if the supply voltage is higher enough such as solar power, the

intermittent nature would cause frequent power interruption resulting in data corruption

and execution progress setback. Therefore, the power regulator is a key component, which

harnesses the harvested energy for supplying targeting voltage to powering IoT edge device.

For a power regulator, upon supplying power to the IoT edge device, it also consumes

power rendering lower energy efficiency for powering edge devices. The situation will be

even worse when harvesting power is ultra-low and unstable. A considerable amount of re-

search has been conducted for reducing the hardware overhead by improving the regulator

efficiency through impedance matching techniques [8, 19, 9, 18, 46, 24]. These work mainly

focus on power regulator optimization, for instance [8] proposes effective switching frequency

technique for voltage converter to deliver maximum output power. [46] conducts circuit-level

3

design which enables the regulator to extract power from multiple low-power energy harvest-

ing sources with maximum efficiency. [9] proposes a duty cycle based impedance adjustment

technique for the maximum power extraction from a thermoelectric energy source without

sacrificing power conversion efficiency. what’s more [51, 49, 50] propose through-silicon-via

inductors which can be used by energy harvesting circuits with minimum footprint. Fur-

ther, [63] proposes a run-time simulation framework of both power delivery and architecture

and captures their interactions for energy efficiency optimization.

1.2.2 Optimizing Checkpointing

After harvesting power has been delivered to the edge device, a portion will be used to

support checkpointing which saves runtime state from volatile memory into the non-volatile

region before a power outage happens. Checkpointing involves write operation on nonvolatile

memory, which not only is time and energy consuming but also reduces the limited endurance

of NVP resulting escalation of reliability. Therefore, many pieces of research work focus on

reducing checkpointing overhead through both hardware and software techniques.

Hardware checkpointing stores the system state and data automatically by hardware.

For example, Yu et al. [16] propose a non-volatile processor architecture that integrates non-

volatile elements into volatile memory at bit granularity. Wang et al. [53] design a FRAM

based processor, which attaches an NV-FRAM cell to each volatile standard flip-flop. The

flip-flops are accessed for normal execution while the FRAM cells are used to checkpoint

the states in flip-flops at power failure. This processor can backup and restore the processor

state and data within 3µs. Sakimura et al. propose the non-volatile magnetic flip-flops [43]

and a 20MHz non-volatile micro-controller with STT-RAM [44]. Recently, Liu et al. propose

an enhanced NVP based on ReRAM which has the highest integration level [27]. Also, Li et

al. propose the non-volatile I/O enabling automatic reconfiguration of I/O interfaces [23].

Besides hardware checkpointing, there are also software mechanisms that checkpoint the

processor’s state and other volatile data into non-volatile memories. For example, Memen-

tos [42] is a software mechanism for transiently powered RFID-scale devices. Some trigger

points are placed after each call instruction or at each loop latch. At run-time, when these

4

trigger points are reached, the supply voltage is checked with an ADC. If this voltage is

below a threshold, a snapshot of the system state is saved to the flash memory. Quickre-

call [14] integrates FeRAM into the main memory to increase the checkpointing efficiency

which reduces the backup data size and lowers the failure voltage threshold. Hibernus [6] and

Hibernus++ [6] propose interrupt-based checkpointing mechanisms. In these mechanisms,

the system stated is checkpointed only once immediately before the power failure, then the

system hibernates. This mechanism requires frequent voltage checking and automatic inter-

rupts to checkpoint or restore the system state. MEU [34] proposes prototyping techniques

for a joint reduction of software and hardware overhead with software solutions.

1.2.3 Optimizing Run-time Execution

Even though the power regulator and checkpointing operation are optimized, inappropri-

ate runtime clock frequencies can significantly reduce the runtime energy utility. Previous

research on DVFS-based techniques [58, 12, 29] mainly focus on how to lower down the

execution frequency appropriately so that the power consumption of the embedded system

can be reduced. However, low CPU frequency doesn’t necessarily guarantee high energy ef-

ficiency. In fact, when CPU frequency becomes lower, the reduction of execution power may

not be significant. Yet the execution time could become significantly longer. As a result,

energy efficiency may become lower. Besides, accessing hardware with a large latency such

as non-volatile memory or GPIO can be the bottleneck of the actual execution speed. As

such, it is necessary to optimize execution frequency accordingly for each program. Therefore

runtime frequency should be adjusted accordingly.

All existing optimization techniques mentioned above that can be used to optimize the

energy efficiency of self-powered IoT edge devices can be categorized into hardware and

software solutions. Compared with hardware solutions, software solutions have advantages

including low cost, full of flexibility, significant reduction of development cost, better adapt-

ability, etc. Besides, what is even more important is that software solutions are able to

provide equally competitive performance optimization compared with hardware solutions.

Therefore, software solutions become increasingly popular to optimize the performance of

5

self-powered IoT edge devices. This dissertation is one of such kind that proposed several

embedded software approaches to address the aforementioned challenges so that the potential

of self-powered IoT edge devices can be fully exerted for better IoT edge services.

1.3 Research Contributions

This dissertation proposes embedded software solutions to address the aforementioned

challenges. Compared with the aforementioned research work, this dissertation includes a

project that focuses on maximizing execution progress of the atomic task which is subjected

to progress loss during the power outage regardless of having NVP equipped. What’s more,

this dissertation also covers the projects that optimize checkpointing and runtime clock

frequency accordingly for low-powered edge devices uniquely through software approaches.

Further, this dissertation includes a project which is the first to propose a software paradigm

dedicated to self-powered IoT edge devices to thrive in ultra-low harvesting power scenarios.

In a nutshell, this dissertation focuses on four different angles to address the aforementioned

critical issues challenging self-powered IoT edge devices.

• First, to prevent execution progress loss during the power outage, NVP-aware task sched-

ulers are proposed to maximize the overall task execution progress especially for the

atomic tasks which are better to finish execution before the power outage.

• Second, to minimize both the time and energy overhead of checkpointing operation,

an intelligent checkpointing scheme is proposed which not only can ensure a successful

checkpointing but also can predict the necessity of conducting checkpointing to avoid

excessive checkpointing overhead.

• Third, to avoid inappropriate runtime CPU clock frequency, which consumes extra energy

while delivering less execution progress, a CPU frequency Modulator is proposed which

adjusts the runtime CPU clock frequency accordingly.

• Finally, to thrive in ultra-low harvesting power scenarios, a light-weight software-based

paradigm is proposed to help maximize the energy extraction rate of energy harvester

6

and power regulator bundle. Besides, checkpointing under such an ultra-low scenario is

also optimized for more energy-efficient and light-weight operation.

1.4 Dissertation Organization

The remainder of this dissertation is organized as follows. Chapter 2 provides the tech-

nical background. After that, Chapter 3 proposes an NVP-aware task scheduler to prioritize

the atomic task before power outage so that the overall task execution progress can be

maximized. To minimize the checkpointing overhead, Chapter 4 proposes an intelligent

checkpointing scheme to avoid unnecessary checkpointing. To improve runtime energy effi-

ciency, Chapter 5 proposes a CPU frequency modulator to adjusts the runtime CPU clock

frequency accordingly for different tasks. To thrive in ultra-low harvesting power scenarios,

Chapter 6 proposes a light-weight software paradigm to optimize energy extraction rate as

well as a checkpointing scheme for more energy-efficient and light-weight operation. Finally,

Chapter 7 concludes this dissertation.

7

2.0 Technical Background

This chapter first proposes the targeting system architecture and then introduces the

fundamental supporting techniques of this dissertation including checkpointing, voltage mon-

itoring, and sleep/wakeup managing.

2.1 System Architecture

In this section, a general architecture of the self-powered non-volatile IoT edge device is

introduced which is shown in Figure 1.

Edge Device
(NVP)

RegulatorAmbient
Energies

Harvested Energy Power Supply

Storage
Cap

Energy
Harvesters

Piezo

… … … …

TEG RF

NVP
SystemRegulator

Ambient
Energies

Harvested
Energy

Power
Supply

Storage
Cap

Energy
Harvesters

Piezo

… … …

TEG RF

Figure 1: System Architecture of Self-Powered Non-Volatile IoT Edge Device

The targeting self-powered self-powered IoT edge device is equipped with a non-volatile

processor and can harvest energy from multiple energy sources in the ambient environment

and convert them into electrical energy. Typical energy sources include piezoelectric, thermal

(TEG), radio frequency (RF), etc. As most kinds of harvested energy are weak and intermit-

tent, in our target harvesting scenario, the energy harvester cannot power the edge device

continuously. Once the program execution has used up the stored energy in the capacitor,

8

the non-volatile processor conducts checkpointing for maintaining execution progress. After

that, the edge device goes to sleep and waits for the storage capacitor to be charged up

again by the regulator which harnesses the harvesting power and provides the target supply

voltage to the edge device. Once the capacitor has been charged up, the edge device can

start or resume the execution until the stored energy is used up again.

2.2 Basic Checkpointing

In this section, the basic checkpointing mechanism will be introduced. The targeting

edge device is equipped with NVP. Based on the structure difference of NVP, there are two

kinds of checkpointing operations which are software-based checkpointing and hardware-

based checkpointing. This dissertation only focuses on software-based checkpointing which

is flexible and easy for implementation. Figure 2 shows the targeting NVP architecture for

implementing software-based checkpointing.

Register File

SRAM (Stack)

On-Chip
NV Memory

NVP

Figure 2: NVP Architecture

As we can see from Figure 2, for NVP aside from containing traditional on-chip volatile

memory, including register file and SRAM, NVP also includes on-chip non-volatile memory.

When a power outage occurs, all contents of the processor registers and SRAM should be

9

checkpointed to on-chip non-volatile memory. Hence, all the computation states can be

saved. Once the power comes back on again, the computation can resume with the saved

computation states.

Since the targeting NVP only support software-based checkpointing, there is no hardware

to automatically save computation states. Hence, the software should take this responsibility.

When detecting a low voltage below the preset threshold, the system will enter the checkpoint

stage. First, all registers will be pushed onto the stack. Then the whole stack, which includes

contents of all registers and all temporary variables, will be checkpointed from SRAM to non-

volatile memory. One challenge here is how to save the program counter (PC) since we are

not allowed to move PC explicitly. The trick we used is that, whenever a callee is called

or interrupt service routine is invoked, the PC will be automatically pushed onto the stack.

Then, we can safely save the PC together with other registers to the on-chip NVM

2.3 Voltage Monitoring

In this section, the basic voltage monitoring procedure is introduced. For voltage moni-

toring, there are mainly two categories which are hardware-based and software-based voltage

monitoring. For hardware-based voltage monitoring techniques, there is dedicated hardware,

known as voltage monitor, to keep monitoring the voltage of the target. If the voltage reaches

the threshold, the voltage monitor will generate an I/O interrupt for preemption on NVP

which then will know the power interruption. For the software-based voltage monitoring

technique, the voltage detection is initiated by NVP which configures ADC accordingly for

different scenarios and even coordinate with timer for voltage monitoring in a timely manner.

Software-based voltage monitoring techniques have significant advantages over hardware-

based voltage monitoring mainly due to its flexibility and similar energy consumption. For a

hardware-based voltage monitor, it only warns NVP systems about the “poor” quality of the

harvesting power through I/O interrupts based on the hardwired voltage threshold. However,

this threshold has a large impact on the overall performance of self-powered IoT edge devices.

On the one hand, If the threshold is too high the NVP system wastes energy with frequent

10

checkpointing. On the other hand, if the threshold is too low, the checkpointing may fail.

For that matter, after deployment, if the condition of the environment keeps changing,

the hardwired threshold will degrade the performance of the edge devices. Therefore, for

self-powered IoT edge devices, the software-based voltage monitoring technique is preferable

where the NVP system needs to proactively initiate voltage detection. As the ADC detection

time is trivial compared with the execution time, this software-based voltage monitoring

overhead is negligible.

For the voltage monitoring target, many traditional techniques choose Vcc as the moni-

toring voltage source. However, Vcc is not suitable for monitoring and this dissertation uses

the voltage on the storage capacitor for monitoring. The disadvantages of monitoring Vcc

is that Vcc remains stable due to the power regulator unless the stored energy is almost

drained out. In this way, once the voltage monitor detects the Vcc drop, NVP may not

have enough time to respond for checkpointing, resulting in the progress setback. Therefore,

Vcc is ruled out as the voltage detection source. For the voltage on the storage capacitor,

it reflects the actual power supply of the energy harvester. Specifically, if the voltage on

the storage capacitor drops, the energy harvester generates less power than the edge device

consumed. Otherwise, the harvested power is sufficient to drive the edge device.

2.4 Sleep/Wake-up Managing

Once the checkpoint handler saves the run-time states into NVM, the edge device should

be in sleep mode other than continue execution or shut down the entire system. There are

mainly three reasons that make sleep mode a better option than the other two options.

1) After checkpointing, the remaining energy is insufficient to support another checkpoint-

ing. Therefore any further execution wastes energy as the state cannot be saved.

2) It is much faster for the NVP system to recover from sleep mode than cold reboot after

being shut down.

3) Once the system is dead, it will automatically restart once the input voltage is beyond

the cold start voltage. However, if the power supply is still insufficient, the system will

11

fail again at the very beginning. However, in sleep mode, ADC and timer are still allowed

to monitor the voltage with negligible energy consumption. So the system can wake up

when power is sufficient

.

Once the harvesting power comes back on again, the edge device will wake up given a

preset wake-up voltage Vwak, which should at least support one checkpointing and a period

of execution allowing new progress to be accumulated. Notice that, if the edge device is dead

and once the power comes back on again, the edge device will initiate the cold start which

requires much higher power than it was in low-power mode. In this case, if the harvesting

power is insufficient, the edge device will be stuck at the very beginning as the harvested

energy will always be drained out and cannot be preserved. Our solution is that at the very

beginning of the startup stage, the NVP system needs to measure Vcap. If Vcap < Vwak, the

NVP system needs to go back to sleep mode. This can avoid the system from stagnating at

the cold starting stage.

12

3.0 Atomic Task Aware Task Scheduling

This chapter presents the research topic regarding task scheduler design for self-powered

IoT edge devices with NVP. The organization of this chapter is as follows. First, research

motivation and related work are provided. Then, the targeting system overview is given.

After that, the proposed techniques including power prediction, independent task sched-

uler, and dependent task scheduler will be introduced in detail. Finally, the corresponding

experiments and summary are provided.

3.1 Motivation

For self-powered IoT edge devices, before the power outage, programs’ runtime execu-

tion state needs to be saved from volatile SRAM into on-chip NVM through checkpointing

operation. However, not all tasks’ execution states need to be pushed into stacks for check-

pointing. Tasks, such as sensing and communication, are susceptible to the time delay. Their

execution states, although can be checkpointed, become useless when being resumed after a

period of time. These tasks should finish before the power outage once scheduled. Otherwise,

their execution has to be started over when the power comes back on again. These tasks are

defined as atomic tasks. Other tasks that can be checkpointed such as computation and data

processing are defined as non-atomic tasks. To reduce the checkpointing overhead, the task

scheduler should try its best to finish schedule as many unfinished atomic tasks as possible

for completion before the power outage.

The following example will demonstrate how the unfinished atomic tasks affect system

performance. The system that we target in this example is checkpointing enabled and

equipped with both volatile and non-volatile memories. Assume that successful checkpoint-

ing can be ensured. For illustration purposes, task A is a non-atomic task and task B is an

atomic task. Initially, tasks are executed concurrently with a round-robin scheduler. Given

a harvesting power trace, the execution progress of both tasks are shown in Figure. 3.

13

𝑷𝒄𝒌

𝑷𝒎𝒂𝒙

Harvesting Power Execution Progress

𝟓𝟓%

𝟏𝟎𝟎%

𝟖𝟎%

Execution

Checkpointing

ExecutionSleep/Dead

Wakeup (A restarts)

Progress Lost

Progress
Maintained

: Task A (non-atomic)
: Task B (atomic)

Time

𝑷𝒄𝒌

𝑷𝒎𝒂𝒙

Harvesting Power Execution Progress

𝟏𝟎𝟎%
Execution

Checkpointing

ExecutionSleep/Dead

Wakeup

Progress
Maintained

: Task A (non-atomic)

: Task B (atomic)

Time

Power Drop Detected

Prioritize Task B
(atomic)

Task B
Finished

Significant Saving
of Time & Energy

Figure 3: Atomic Task B is Unfinished Before The Power Outage Resulting in Progress

Setback.

In Figure. 3, the red dash line represents the energy harvesting power trace, the yellow

shadow represents the execution progress of task A, and the green bars represent the exe-

cution progress of task B. From the beginning, the execution progresses of both tasks are

gradually accumulated until the harvesting power drops below Pck. Since A is non-atomic,

its execution status including all the register files and stack can be stored into non-volatile

memory when checkpointing is triggered. Therefore, once the power comes back on again

the system wakes up and the program execution of A resumes.

However, Since task B is atomic, it loses entire execution status during the power outage.

Once the power comes back on again, B has to restart from the very beginning. As we can

see, before the power outage, B is almost finished and has the execution progress of 80%,

which is a significant setback once this progress is completely lost during the power outage.

One simple and intuitive solution to avoid the progress setback is to prioritize B once before

the power outage happens. In this way, as A will not suffer from progress setback, if B can

finish before the power outage, the overall progress can be maintained. Given the same power

trace, figure. 4 shows the execution progress of both A and B with prioritized scheduling.

14

𝑷𝒄𝒌

𝑷𝒎𝒂𝒙

Harvesting Power Execution Progress

𝟓𝟓%

𝟏𝟎𝟎%

𝟖𝟎%

Execution

Checkpointing

ExecutionSleep/Dead

Wakeup (A restarts)

Progress Lost

Progress
Maintained

: Task A (non-atomic)
: Task B (atomic)

Time

𝑷𝒄𝒌

𝑷𝒎𝒂𝒙

Harvesting Power Execution Progress

𝟏𝟎𝟎%
Execution

Checkpointing

ExecutionSleep/Dead

Wakeup

Progress
Maintained

: Task A (non-atomic)

: Task B (atomic)

Time

Power Drop Detected

Prioritize Task B
(atomic)

Task B
Finished

Significant Saving
of Time & Energy

Figure 4: Prioritizing atomic Task B to Finish Before The Power Outage Results in Progress

Maximization.

From Figure. 4, we can see that after detecting the power drop, B has been prioritized

immediately and it finishes right before the system conducts checkpointing. In this way, the

execution progress of both A and B can be maintained. What is even more appealing is

that, compared with Figure. 3, a significant amount of time and energy are saved, which

can be further used for other program executions. Overall, the execution progress can be

significantly improved.

Although prioritizing B can maximize the overall execution progress, before conducting

the priority-based scheduling, it is crucial to know whether B can finish before the power

outage. This is because, if B cannot finish, the system will waste even more energy and have

a severe progress setback during the power outage. To evaluate whether task B can finish

before the power outage, the power analysis should be taken place for evaluation, which is

proposed in section 3.4

15

3.2 Related Work

Energy harvesting extracts power from the ambient environment and is often used to

deploy long lifetime battery-less devices. Solar, wind, footsteps, breathing, blood pressure,

and body heat [21, 38, 47] are all promising energy harvesting sources. They have different

characteristics of predictability, controllability, and magnitude. For example, solar energy is

predictable and can generate a large magnitude of power at a power density of 15mW/cm2.

The footstep is a controllable human power and the amount of harvested power can be

as much as 67W [20] during a brisk walk. For ultra-low-power devices, the sources with

low power densities, such as breathing (0.42W), and body heat (2.4∼4.8W), can provide

sufficient power to drive the devices at low duty cycles [48]. With proper configuration and

management [17], it is feasible to operate a whole system with purely harvested energy.

In order to make systems power-failure proof, non-volatile memory based processors

(NVP) [56] are developed. In these processors, non-volatile memory [35, 32] is attached to

the processor, and the volatile execution state is checkpointed into the non-volatile memory

upon the power outage. Researchers showed that checkpointing is a feasible method to save

the runtime state [41, 42] with nonvolatile memory for energy-harvesting devices. Micro-

controllers such as TI’s MSP430 series [2] employ FRAM as an on-chip memory. Ransford

et al. [42] present a software system, mementos, for transiently powered RFID-scale devices

with energy-aware state checkpointing method. This system deploys Flash memory to back

up the volatile content. Registers are pushed into the stack and then saved to the Flash

memory. Since Flash memory has a limited write endurance and slow write speed, the

time and energy overhead is large. Similarly, Wireless Identification and Sensing Platform

(WISP) [4] was developed to achieve a similar goal.

Instead of checkpointing the execution state into on-chip or off-chip memory at a low

speed, ferroelectric non-volatile register-based processors are proposed for energy-harvesting

devices [53, 64]. This kind of processor attaches a nonvolatile memory cell to each volatile ele-

ment and therefore allows fast local backup of intermediate results and fast recovery. FRAM-

based processors [64, 31, 57, 11, 65, 13, 31, 53], present a great potential to be deployed in

energy-harvesting devices. For example, Yu et al. [59] propose a non-volatile processor ar-

16

chitecture that integrates non-volatile elements into volatile memory at bit granularity. To

reduce the backup overhead and energy, different technologies have been proposed including

instruction scheduling [55], register reduction [62], and instruction selection [54].

Since harvested energy is limited for each power cycle, efficiently utilizing harvested

energy is critical. Smart task scheduling techniques can save a significant amount of energy.

[60] proposes a long-term deadline-aware scheduling algorithm to reduce energy consumption

and deadline miss rates of tasks. [22] proposes a performance-aware task scheduling strategy

for energy harvesting nonvolatile processors considering the power switching overhead. This

paper will propose a lightweight scheduler that can maximize task progress and thus reduce

energy consumption considering all types of tasks.

3.3 System Overview

In this section, the targeting system architecture of self-powered IoT edge devices re-

garding software and hardware layers is given in Figure 5.

As shown in Figure 5, the architecture of the targeted energy harvesting system includes

both hardware and software components from bottom to top. The power supply consists of

energy harvesters, a regulator, and a capacitor, which supplies energy for the whole system.

The energy harvester converts harvested energy from ambient sources, such as solar energy,

thermal energy, and radio frequency (RF) to electrical energy. The converted energy is

stored in a small-size storage capacitor, which is used to supply energy for checkpointing

upon power outages. The regulator is used to maintain a constant voltage level. The other

hardware components consist of MCU, timer, ADC, sensors, and I/O ports. The software

layer has full control of the onboard hardware to collect data and make decisions.

The software layer includes the proposed progress maximization scheduler assisted with

three auxiliary functional modules: voltage monitor, checkpoint handler, and routine han-

dler. These four functional modules interact with each other to maximize the task execution

progress and can be easily integrated into any existing energy harvesting embedded systems.

Further, all tasks to be scheduled can be divided into atomic tasks and non-atomic tasks.

17

 CK Tasks

S
o
ftw

a
re

C
o
m

p
o
n

en
ts

H
a
rd

w
a
re

C
o
m

p
o
n

en
ts

Original Functional Modules

Voltage

Monitor

Routine

Handler

NVP Scheduler

Checkpoint

Handler

Timer ADC Sensors I/O

Super

Capacitor

Energy

Harvester

MCU

Power

Regulator

Atomic Tasks

 Non-atomic Tasks

S
o
ftw

a
re

C
o
m

p
o
n

en
ts

H
a
rd

w
a
re

C
o
m

p
o
n

en
ts

Original Functional Modules

Voltage

Monitor

Routine

Handler

NVP Scheduler

Checkpoint

Handler

Timer ADC Sensors I/O

Super

Capacitor

Energy

Harvester

MCU

Power

Regulator

Atomic Tasks

Figure 5: System Architecture

3.4 Power Prediction

In this section, a voltage monitor designed to conduct voltage measurement and power

analysis will be presented. From Figure 5, we know that detecting the voltage of the storage

capacitor requires collaboration between hardware and software. On the hardware side, the

output of the storage capacitor needs to connect to an analog to digital converter (ADC)

channel of the MCU. On the software side, the ADC needs to periodically sample the storage

capacitor’s voltage. Here we define Vcap as the voltage on the storage capacitor.

Knowing the voltage of the storage capacitor Vcap is not enough to determine whether

the harvesting power can support the NVP system and there are mainly two reasons:

1) First, for the storage capacitor, even if Vcap is low, the harvesting power supply can still

be sufficient to support the NVP system if it is recovering;

2) Second, the power consumption of tasks varies. Therefore, even if the harvesting power

can support the current task, it cannot guarantee to support other tasks which consume

more power and energy.

18

These two concerns can be eased by calculating the discharging power of the capacitor. This

is because the working status of the system is directly determined by the amount of energy

on the capacitor. Also, given the same working power, the changes of the discharging power

equal the changes in the harvesting power. So given current ongoing execution of Tsk[cur],

the calculation of discharging power on the capacitor can estimate how long (T S) the system

can be in an execution before the outage happens.

Therefore, with current task Tsk[cur], task information table Tab, and ADC sample

period TADC , DPA algorithm is able to calculate the discharging power of Tsk[cur]. With

the discharging power, DPA can further estimate the duration of T S for the system to work

before the outage happens. The estimation also comes with the trustiness TrustP evaluation.

DPA is called each time by the NVP scheduler to evaluate the discharging power on

the capacitor before actually conducting task scheduling. At the beginning, DPA initiates

parameters including < ∆Ecap >N : an array to store N times of energy reductions on the

capacitor, < ∆Eest
cap >N : an array to store N times of estimated energy reduction on the

capacitor, < ∆Pcap >N : an array to store N times of discharging power reduction on the

capacitor, < Ψ >N : N times of the correctness of the estimation, and P ′cap : the estimated

reduction of the discharging power. The initialization process is shown in line 1 to 5.

After initialization, DPA calls ADC to sample N + 1 voltage samples on the capacitor.

After each sampling, DPA first calculates the reduction of the energy ∆Ecap on the storage

capacitor which is shown in line 8. Then, in line 9, DPA further calculates the reduction of

the discharging power ∆Pcap. To signal the status of the discharging power, DPA introduces

two coefficients υ and ν (υ > ν and υ + ν = 1), If ∆Pcap > 0, the discharging power is

reduced and DPA assigns ν to the weight factor K, otherwise,DPA assigns υ to K. The

rationale behind the weight assignment is to let the system be more aware of the most recent

increase of the discharging power, which indicates that the harvesting power is reducing.

The comparing process is shown in line 10 - 14.

After calculating ∆Pcap from the real samples of Vcap, in line 15 to 21, DPA conducts the

evaluation procedure. At first, in line 15, DPA estimates the reduction of the discharging

power as P ′cap. The estimation uses the weight factor of K. If the real discharging power is

reduced (harvesting power recovers), DPA gives more weight to estimation, otherwise, DPA

19

Algorithm 3.4.1 Discharging Power Analysis (DPA)
Input: Tab, and TADC .
Output: TS and TrustP .
1: < ∆Ecap >N← actual reduction of the capacitor energy;
2: < ∆Eestcap >N← estimated reduction of the capacitor energy
3: < ∆Pcap >N← actual reduction of the discharging power;
4: < Ψ >N← correctness of the estimations;
5: P ′cap ← the estimated reduction of the discharging power;
6: for each ADC cycle i from 1 to N + 1 do
7: if i > 1 then
8: ∆Ecap(i− 1) = C[V 2

cap(i− 1)− V 2
cap(i)]/2;

9: ∆Pcap(i− 1) = ∆Ecap(i− 1)−∆Ecap(i);
10: if ∆Pcap(i) > 0 then
11: K = ν; /* discharging power reduced */
12: else
13: K = υ; /* discharging power increased */
14: end if
15: P ′cap = (1−K)P ′cap +K∆Pcap(i);
16: ∆Eestcap(i− 1) = ∆Ecap(i− 2) + P ′cap;
17: if ∆Eestcap(i− 1) < ∆Ecap(i)− 1 then
18: Ψ(i) = 0; /* underestimate */
19: else
20: Ψ(i) = 1; /* overestimate */
21: end if
22: end if
23: end for
24: Eremcap = C[Vcap(N + 1)2 − V 2

ck]/2

25: ∆Eestcap =
∑N

i=1 ∆Eestcap(i)/N

26: TS = TADC ∗ Eremcap /∆E
est
cap

27: TrustP =
∑N

i=2 Ψ(i)/(N − 1);
28: return TS and TrustP ; =0

20

gives more weight to the real discharging power. After the calculation of P ′cap, DPA further

estimates the energy reduction ∆Eest
cap on the capacitor, which is shown in line 16. After

estimation, in line 17 to 21, DPA compares the estimation ∆Eest
cap with the real energy reduc-

tion ∆Ecap. If DPA underestimates the reduction of the discharging power, the estimation

is invalid and DPA assigns Ψ = 0 to indicate the invalidation. If DPA overestimates the

reduction, it accepts the estimation and assigns Ψ = 1 to indicate the acceptance. In this

way, the estimation can be more aware of the loss of the harvesting power.

After evaluation, DPA calculates the remaining energy Erem
cap in line 24 and the average

estimated energy reduction ∆Eest
cap in line 25. Then, based on Erem

cap and ∆Eest
cap, in line 26, DPA

estimates the duration T S for system to work before the power outage happens. Accompanied

by the estimation of T S, DPA also calculates the trustiness TrustP of the estimation in line

27. After the calculation, DPA returns T S and TrustP for NVP scheduler to use as references

to conduct task scheduling for progress maximization.

3.5 Independent NVP Task Scheduler

In this section, we will present a lightweight scheduler, which is specifically designed for

NVPs. The goal is to maximize system progress under unstable power supply.

Figure 6 shows the overview. The core component is the NVP scheduler and it is assisted

with three functional modules: voltage monitor, checkpoint handler, and routine handler.

The NVP scheduler can run on its own or be incorporated into an existing embedded OS. If

working with the existing OS, the modules in existing OS remain intact and will be invoked

when V < Vwarn, where Vwarn is the preset voltage threshold. The voltage monitor is active

all the time and responsible for voltage detection and analysis of power consumption of the

NVP system. Once voltage V drops below Vwarn, the NVP scheduler is triggered to maximize

task progress. If V continues to drop until it is below threshold Vck, the checkpoint handler

is triggered to ensure a successful checkpointing. After checkpointing, the routine handler

will put the system into sleep mode until the power recovers. By then, the routine handler

will wake up the entire system. These functional modules interact with each other.

21

Routine

Handler

NVP

Scheduler

ADC

Power
Analysis

Voltage
Detection

Sleep
Event

Trustiness
Evaluation

Progress
Maximization

Voltage

Monitor

𝑽

𝑽

Timer

Wakeup
Event

𝑽 ≥ 𝑽𝒘𝒂𝒌

NVOS

Original

Functional

Modules

NVO

S

𝑽 ≤ 𝑽𝒄𝒌

𝑽 > 𝑽𝒘𝒂𝒓𝒏

𝑽 ≤ 𝑽𝒘𝒂𝒓𝒏

 Harvested Power Quality

 Task Power Consumption

Trustiness of
Power Analysis

Trustiness of Task
To Be Finished

 Dual-backup locations

 Identify the changes Checkpointing
Finished

𝑻𝑨𝑫𝑪

Sampled Voltages
< 𝑽 >

𝑽𝒘𝒂𝒌 ≤ 𝑽𝒘𝒂𝒓𝒏

𝑽𝒘𝒂𝒌 > 𝑽𝒘𝒂𝒓𝒏

On-demand
Checkpointing

Checkpoint

Handler

Routine

Handler

NVP

Scheduler

ADC

Power
Analysis

Voltage
Detection

Sleep
Event

Trustiness
Evaluation

Progress
Maximization

Voltage

Monitor

𝑽

𝑽

TADC

Wakeup
Event

 𝑽 ≥ 𝑽𝒘𝒂𝒌

NVOS

Original

Functional

Modules

 𝑽 ≤ 𝑽𝒄𝒌

 𝑽 > 𝑽𝒘𝒂𝒓𝒏

 𝑽 ≤ 𝑽𝒘𝒂𝒓𝒏

 Harvested Power Quality

 Task Power Consumption

Trustiness of
Power Analysis

Trustiness of Task
To Be Finished

Checkpointing
Finished

𝑻𝑨𝑫𝑪

Sampled Voltages
< 𝑽 >

 𝑽𝒘𝒂𝒌 ≤ 𝑽𝒘𝒂𝒓𝒏

 𝑽𝒘𝒂𝒌 > 𝑽𝒘𝒂𝒓𝒏

Timer

Checkpoint

Handler

On-demand
Checkpointing

Figure 6: NVP Scheduler Overview

After the voltage monitor detects that the voltage on the storage capacitor drops below

Vwarn, in anxious of a potential power outage, the NVP Scheduler is triggered to maximize

progress with the remaining energy supply. The key idea of the scheduler is to differentiate

different tasks and all tasks can be categorized into two groups:

• Atomic tasks: tasks that even can be checkpointed before power outage still have to start

over when the power comes back on again. Typical examples include communication,

sensing, etc.

• Non-atomic tasks: tasks that can be checkpointed and resumed correctly during a power

outage without any problem. Typical examples include computation, data fusion, etc.

Several important pieces of information regarding each task also need to be maintained.

Of the most important are the task execution power, current progress, progress to time ratio,

and atomicity, as shown in Table 1.

For each task, the execution power is measured at offline stage. The execution progress

and the progress to time ratio are maintained by the OS and are updated when the task is

switched out by the scheduler. When voltage on the storage capacitor drops below Vwarn,

22

Table 1: Task Information (Tab)

Tasks Execution Power Current Progress Progress to Time Ratio Atomicity

Tsk[i] Pi Pgi Pg′i Non-atomic

Tsk[j] Pj Pgj Pg′j Atomic

in anxious of a potential power outage, NVP scheduler is triggered to prioritize the atomic

tasks. Given the task ready queue Q and the task information table Tab as the inputs,

Algorithm 3.5.1 shows details of NVP scheduler.

Algorithm 3.5.1 NVP Scheduler
Input: Q and Tab
Output: schedule tasks for maximum task progress
1: while (Vck < Vcap < Vwarn) do
2: TS , T rustP ⇐ DPA(Tab, TADC); /*Algorithm 3.4.1*/
3: Trustmax = 0;
4: for each atomic Tsk[i] in ready queue Q do
5: Trusti ⇐ TCE(TS , T rustP , T sk[Cur], T sk[i], Tab); /* Algorithm 3.5.2 */
6: if Trusti > Trustmax; then
7: Trustmax = Trusti;
8: Sel = Tsk[i];
9: end if

10: end for
11: if Trustmax > TrustTH then
12: execute Sel
13: else
14: break;
15: end if
16: end while
17: while (Vck < Vcap < Vwarn) do
18: round-robin scheduling for non-atomic tasks∈ Q;
19: end while =0

The purpose of NVP Scheduler is to achieve overall task progress maximization by giving

more scheduling priority to atomic tasks in the ready queue Q when a potential power outage

may happen. The inputs include ready task queue Q and task information table Tab. NVP

Scheduler proceeds with a voltage range of [Vck, Vwarn]. Once Vcap < Vwarn, in anxious of

23

a possible power outage, NVP Scheduler starts scheduling. When Vcap ≤ Vck, the NVP

Scheduler stops and initiates checkpointing procedure.

At first, the NVP scheduler needs to prioritize the scheduling for atomic tasks, which

is shown in line 1 to 16. Before conducting scheduling, preparation needs to be made. In

line 2, NVP scheduler calls the Discharging Power Analysis (DPA) algorithm to assess the

harvesting power and output the estimated execution time T S that the system can support

to the current ongoing task Tsk[cur], along with which DPA also provides the trustiness

value TrustP of the estimation. DPA is detailed in Algorithm 3.4.1. After calling DPA, in

line 3, NVP scheduler initiates the parameter Trustmax which will be further used to select

the best atomic task candidate for scheduling.

After preparation stage, in line 4 to 10, NVP scheduler evaluates the possibility of each

task Tsk[i] to finish before the power outage. Given the parameter of T S and TrustP from

DPA, the current task Tsk[cur], targeting task Tsk[i], and the task information table Tab,

the Task Completion Evaluation (TCE) algorithm is called by NVP scheduler to evaluate the

possibility that Tsk[i] is able to finish before the power outage. This possibility for Tsk[i]

is defined as Trusti. Details of TCE is given in Algorithm 3.5.2. During the calculation of

Trusti for each atomic task, NVP scheduler is able to find the best Tsk[i] with the maximum

Trusti, which will be selected by NVP scheduler for further evaluation. The best Tsk[i] and

its Trusti are assigned to Sel and Trustmax respectively.

With Sel and Trustmax, in line 11 to 15, NVP scheduler compare Trustmax with TrustTH

which is a threshold to decide whether it is worthwhile to execute Sel. If Trustmax >

TrustTH , NVP scheduler believes that Sel can finish before the power outage and proceeds

the scheduling for Sel. Otherwise, the NVP scheduler will break out the while loop to

schedule for atomic tasks. This is because, if the best atomic candidate Sel is not worthwhile

for scheduling, no other atomic tasks will be.

Finally, once there is no suitable atomic candidate for scheduling, NVP will conduct

round-robin scheduling for non-atomic tasks in the task ready queue Q until Vcap drops

below Vck, when the checkpointing starts. This is shown in line 17 to 19

During the scheduling, NVP scheduler needs to call its sub-algorithm TCE to conduct

task completion evaluation for each atomic task. The evaluation is to find out the trustiness

24

Trusti of Tsk[i] to be able to finish before the power outage. Given a targeting task Tsk[i],

the current task Tsk[cur], task information table Tab, and the calculated values of T S and

TrustP from DPA, Algorithm 3.5.2 shows the details of the the evaluation.

Algorithm 3.5.2 Task Completion Evaluation (TCE)

Input: Tsk[i], Tsk[cur], Tab, TS , and TrustP

Output: Trusti : the trustiness of Tsk[i] to be able to complete;
1: Pcur, Pi ← powers of Tsk[cur] and Tsk[i] from Tab;
2: Pgi ← progress of Tsk[i] from Tab;
3: Pg′i ←progress to time ration of Tsk[i] from Tab;
4: ti = (1− Pgi)/Pg′i;
5: TSi = TrustP ∗ TS ∗ Pcur/Pi;
6: Trusti = TSi /ti;
7: if Trusti > 1 then
8: Trusti = 1;
9: end if

10: return Trusti =0

At the beginning, TCE acquires several pieces of necessary information from Tab. For

current task Tsk[cur], TCE needs the execution power Pcur. For the targeting task Tsk[i],

TCE needs to access the execution power Pi, the execution progress Pgi, and the progress

to time ratio Pg′i. The entire information fetching process is given in line 1 - 3.

With these pieces of information, TCE calculates how long that Tsk[i] still needs before

completion and how long the system can offer Tsk[i] for execution. Here ti is defined as

the time required for Tsk[i] to finish which is calculated in line 4 using parameters Pgi and

Pg′i. T
S
i is defined as the time that the system is able to provide for Tsk[i] before the power

outage. T si is calculated in line 5. Also because TS is an estimated value, we need to consider

about its trustiness TrustP .

Finally, Given ti and T Si , TCE is able to calculate Trusti in line 6. Then, TCE trims the

value of Trusti to be between 0 and 1 and delivers Trusti to the NVP scheduler to make a

final decision.

For auxiliary modules, the NVP scheduler also has a checkpointing handler and a routine

handler. For the checkpointing handler, instead of checkpointing run-time data periodically,

it is only triggered once the voltage on the storage capacitor Vcap drops below Vck. After

25

checkpointing, the routine handler will take over the system for sleep. In the sleep mode,

ADC and timer are still allowed to monitor the voltage with negligible energy consumption.

If Vcap < Vwak, the edge device needs to go back to sleep mode. Otherwise, the edge device

can wake up. This can save energy by avoiding the system from stagnating at the cold

starting stage.

3.6 Dependent NVP Task Scheduler

In this section, an NVP-aware task scheduler (NTS) considering data dependence is

proposed to maximize the execution progress and reduce the energy consumption on check-

pointing. The main goals of NTS are bifold. First, to maximize the chance for tasks to meet

their deadlines, the earliest deadline first (EDF) based list scheduling is used to schedule

NVP tasks. Then, NTS differentiates tasks’ atomicity based on their IO characteristics and

schedules a task whose execution state can be stored and recovered successfully before the

power outage. In this way, the harvested energy can be fully used for execution and the

progress of the unfinished task can be maintained successfully without wasting energy to

start over the execution.

Besides, NTS also considers the fact that tasks on the self-powered IoT edge device are

usually iterative. For instance, the temperature sensing task on a self-powered IoT edge

sensor node will keep collecting data periodically after the node has been deployed. This is

true as the use of an energy harvesting system as the power source is mainly for devices to

have long-term autonomous operations. Therefore, the type of tasks on these devices and

their goals tends to be unchanged.

Aside from considering atomicity and task iteration, NTS also considers the data de-

pendency, all father tasks should also be scheduled before their children. All tasks and the

dependencies among these tasks are represented with Directed Acyclic Graph (DAG) where

a parent task always requires data from its child tasks. Each task also has its own time

constraint and energy consumption. Having all these concerns addressed, with the task set

{tsk} which contains the data dependency and energy requirements of each task. The task

26

ready queue Q, wake-up voltage vwak, and current delay set {d} as inputs, algorithm 3.6.1

provides details for task grouping and scheduling (NTS).

Given a DAG, scheduled task list sch, wake-up voltage vwak, time constraint set 〈t〉, and

energy consumption set 〈e〉 of each task’s energy requirement as inputs, Algorithm 3.6.1

provides the details of the NVP-aware Task Scheduling (NTS) algorithm. NTS is executed

when the edge device is temporarily awake to monitor the capacitor voltage. The purpose

of the NTS algorithm is to schedule tasks for the next execution cycle such that the size of

checkpointing data can be as small as possible. Initially, NTS searches for all subtrees in

DAG and removes the scheduled tasks in sch from subtrees which are then stored into task

tree set 〈tree〉 as shown in line 1. Then, in line 2, NTS calculates the amount of energy E

that can be stored in a capacitor-based on the wake-up voltage vwak. E will first be used

to finish the previous checkpointed task tskp, if any. This is shown in line 4. Next, NTS

initiates parameter Ψ which is used to indicate whether the scheduling is finished. After

that, the deadline of each tree is calculated by adding its time constraint and the current

time, which is shown in line 7 to 9. In line 10, NTS sorts all trees in ascending order of

their deadlines. With the sorted tree sequence, in line 11, NTS starts picking up tasks for

scheduling from the tree with the most imminent deadline.

For tasks on the selected tree, NTS keeps scheduling tasks as long as the stored energy

E is beyond the required energy of all scheduled tasks. Because of data dependencies, leaf

tasks need to be scheduled first. When a leaf task tskji on treei has been chosen, NTS adds

tskji into both tsknx and sch. After that, NTS removes tskji from the current task tree

and subtracts the required energy eji from E so that the following scheduling has updated

information. These steps are shown in line 13 to 16. Once the energy in the capacitor is

not enough to support a new task, in line 18 to 27, NTS adds an existing non-atomic leaf

task, if any, to the end of the scheduling list and marks Ψ = 1 to indicate the completion of

scheduling process.

Before breaking out the scheduling process, NTS checks whether all tasks in treei have

been scheduled. If so, NTS will release them from sch. In this way, these tasks can continue

their next iteration in the coming execution cycle. In the end, NTS returns the schedule list

tsknx. These steps are shown in line 30 to 37.

27

Algorithm 3.6.1 NVP-aware Task Scheduling (NTS)

Input: DAG, sch, vwak, 〈t〉, and 〈e〉
Output: The task schedule list for the next execution cycle, tsknx
1: Build up unscheduled task tree set 〈tree〉 based on DAG and sch;
2: Calculate energy storage E based on vwak;
3: if previous task tskp has been checkpointed then
4: E = E − ep;
5: end if
6: Ψ = 0 /* indicator of completing scheduling */
7: for each treei do
8: di = tcur + ti; /* deadline of treei */
9: end for

10: Sort trees in ascending order of di;
11: for each treei do
12: for each leaf task tskji in treei do

13: if E > eji then

14: Add tskji to tsknx and sch;

15: Remove tskji from treei;

16: Update E = E − eji ;
17: else
18: for each leaf task tskki in treei do
19: if tskki is a non-atomic task then
20: Add tskki to tsknx and sch;
21: Remove tskki from treei;
22: Update E = E − eki ;
23: Break;
24: end if
25: end for
26: Ψ = 1;
27: Break;
28: end if
29: end for
30: if treei is empty then
31: Release all tasks of treei from sch;
32: end if
33: if Ψ = 1 then
34: Break;
35: end if
36: end for
37: return tsknx; =0

28

s sini=0 s1=1 s2=1 s3=0 s4=0 s5=1 s6=1 s7=1 s8=1
cs csini=0 cs1=10 cs2=3 cs3=0 cs4=0 cs5=4 cs6=8 cs7=12 cs8=5
λ λini=0.250 0.625 0.813 0.406 0.203 0.602 0.801 0.900 0.950

 cŝini=8.000 4.000 7.000 5.000 2.500 1.250 2.625 5.313 8.656
out outini=1 0 1 1 1 0 0 0 1

 A1 B1 C1 D1

E1 F1

G1

A2 B2 C2 D2

E2 F2

G2

30 50 20 20
The 1st execution cycle

The 2nd execution cycle

The 3rd execution cycle

t1 = 5 time units

t2 = 7 time units

E = 100 energy units

1st tsknx: A1 -> B1 -> E1 -> D1

2nd tsknx: C1 -> F1 -> G1 -> A2 -> C2

3rd tsknx: B2 -> D2 -> E2 -> F2 -> G2

10

atomic atomic

atomic

20

10

15 1035 5

2510

151st subtree 2nd subtree

𝐜𝐬̂

Figure 7: Example DAG

The example DAG in Fig. 7 will be used for better understanding of how NTS works. As

we can see, this DAG has two subtrees. The first tree is on the left with the time constraint

of 5 time units. The second tree is on the right with the time constraint of 7 time units.

Both trees have seven nodes representing tasks. The atomic tasks are labeled at the bottom

of each node and the unlabeled tasks are non-atomic. Each task’s energy consumption is

given on the right of each node. The energy in the capacitor is 100 energy units.

For the first execution cycle, NTS selects the 1st tree for scheduling because of its earlier

deadline. Then, NTS starts to schedule leaf task A1 and B1, which leaves E1, C1, and D1 as

the leaf tasks. After that, NTS selects E1 for scheduling. The energy left in the capacitor

after the execution of E1 becomes 100-90=10. When NTS selects C1 for scheduling, it finds

out that energy consumption of C1 is more than the energy available in the capacitor. At

this point, NTS starts searching for unscheduled non-atomic leaf tasks, if any, in the 1st tree

and selects D1 for scheduling. The scheduled tasks in the first execution cycle are in black.

For the second execution cycle, D1 needs to be resumed at the beginning. NTS assumes

that D1 has to be started over which will consume all its required energy. Therefore, the

energy left for the rest of the tasks is 100-20=80. Then, NTS schedules C1, F1, and G1, which

completes the scheduling of the 1st tree and leaves 80-50=30 energy units for scheduling tasks

on the 2nd tree. For this subtree, NTS first schedules A2, which leaves 15 energy units in the

capacitor. When NTS selects B2 for scheduling, it finds out that the energy consumption of

29

B2 is more than the energy available in the capacitor. At this point, NTS starts searching

for unscheduled non-atomic leaf tasks in the 2nd tree and selects C2 for scheduling. The

scheduled tasks in the second execution cycle are in white.

For the third execution cycle, C2 needs to be resumed at the beginning, which leaves

100-10=90 energy units for the rest of the unscheduled tasks. Since the total amount of

required energy of the remaining unscheduled tasks on the 2nd tree is also 90 energy units,

all tasks on the 2nd tree can be scheduled. The scheduled tasks in the third execution cycle

are in grey.

NTS has the time complexity of O(n) where n is the number of tasks. Due to the limited

number of runtime programs on an edge device, the energy consumption of NTS is trivial

compared with that of task execution. Experiments will show the performance and overhead

of the NTS algorithm.

3.7 Experiments

In this section, the experiments are conducted to evaluate the performance of both the

NVP scheduler and the NTS scheduler.

3.7.1 Evaluation of NVP Scheduler

3.7.1.1 Hardware Platform The experiment platform of the NVP embedded system

is TI’s MSP430FR5739 ultra-low-power evaluation board, which consists of a 16-bit MCU,

a 10-bit ADC module, a 1kB volatile SRAM, a 16KB nonvolatile FRAM memory, and

different peripherals for sensing and wireless sensing applications. The Bq25570 ultra-low-

power regulator is used to supply a stable voltage, which can work with a minimum of the

120mV input voltage and a maximum of 4.2V boost voltage. The only hardware overhead

of our design is that there should be an extra wire to connect between the storage capacitor

and the ADC channel so that the voltage on the capacitor can be constantly monitored.

30

3.7.1.2 Power Traces To evaluate the performance of the NVP scheduler, five different

power traces are generated as shown in Figure 8.

Figure 8: Power Trace Used for Experiments

The source power is provided by the MSP430FR5969 evaluation board which is pro-

grammed to generate different power traces through a GPIO pin which can provide a 3.6V

output once the pin is set to be high, otherwise the output is 0. Then, power will be har-

nessed by the power regulator Bq25570 to power the MSP430FR5739. Power source 1 is

for the output pin to set low for 0.9 seconds in every 10 seconds period; Power source 2 is

for the output pin to set low for 2 seconds in every 5 seconds period; Power source 3 is for

the output pin to set low for 4 seconds in every 5 seconds period; Power source 4 is for the

output pin to set low for 1 second in every 1.3 seconds period; Power source 5 is for the

output pin to set high all the time.

3.7.1.3 Software Setup Experimental software includes a lightweight NVP scheduler

and the proposed three functional modules of Voltage Monitor, Checkpoint Handler, and

Routine Handler. The original scheduler of the system is a round-robin scheduler. For

the NVP scheduler, the Voltage Monitor keeps monitoring the voltage of the capacitor.

Specifically, for every TADC period, the timer will wake up the ADC module for a short

period during which Vcap will be sampled and analyzed, and the progress to time ratio of

the executing task will be updated. If Vcap > Vwarn, the original round-robin scheduler

is in charge. Otherwise, the NVP scheduler will take over task scheduling for progress

maximization. Before presenting experimental results, parameters are listed in Table 2.

31

Table 2: Task Information

C TADC Vwarn Vck Vsafe ν υ ϕ ψ

470µF 37.5ms 2.5V 1.2V 0.5V 0.2 0.8 0.9 0.1

The benchmarks include three atomic tasks of acceleration measurement (the results are

written in SRAM), temperature sensing (the results are written in SRAM), and UART

communication (the data are written in FRAM). There are also three non-atomic tasks

including register operations, SRAM writes, and FRAM writes. These six benchmarks are

iterative and independent of each other.

With power traces, the experiments start with the power measurements of these six

benchmarks. The baselines of this experiment are NoCP and RRCP. NoCP represents a

round-robin scheduler without a checkpoint handler. The RRCP represents the round-robin

scheduler with checkpointing ability. The proposed NVP scheduler which is incorporated

into the baseline RRCP is defined as NVCP. For NVCP, the voltage monitor is always active

to sample the voltage V on the capacitor. Once V < Vwarn, NVP scheduler is activated and

takes over the task scheduling, otherwise, it remains inactive.

3.7.1.4 Energy Consumption Analysis The power consumption of the six bench-

marks is measured with a stable power supply. Figure 9 shows the measurements. All

benchmarks are iterative and the duration of each iteration is trivial. For instance, the

benchmark 6 has the largest iteration period of 24ms and benchmark 1 has the lowest pe-

riod of 0.18ms. During these periods, the changes in voltage on the capacitor are negligible.

So it is reasonable to use µJ/Iteration representing the power consumption of each task.

3.7.1.5 Sleep Mode vs. Working Mode The first experiment is to show the power

consumption of NVP system in sleep mode. In Figure 10, we adjust the Vcc from 3.7 to 1.4

gradually and measure the input current.

32

20dB 30dB 40dB
Power Consumption (μJ/Iteration)

0 10dB 50dB 60dB

B
en

ch
m

a
rk

s

1

2

3

4

5

6

Accelerometer+ SRAM Writes

UART Communication + FRAM Writes

Thermometer+ SRAM Writes

FRAM+ Writes

SRAM Writes

Register

Figure 9: Power Consumption of Benchmarks

Vcc (v)
3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4

In
p

u
t

C
u

r
r
e
n

t
(m

A
)

0

2

4

6

8

10

12

14

16
Working Mode

Low Power Mode

Figure 10: Power Consumption of Low Power Mode vs Working Mode

33

As we can see from Figure 10, in sleep mode, the maximum current is 0.3392mA which is

significantly smaller than 16.724mA in working mode. Once the voltage drops, the current

in sleep mode remains almost the same. Once the voltage drops below 1.8V, the system is

dead and MCU loses control of all the peripherals and previously terminated GPIOs can

allow current to go through, which increases the current. We can see that the NVP system

in sleep mode consumes much less power than in working mode, therefore, it is better to go

to sleep after conducting checkpointing.

3.7.1.6 Progress Comparison Figure 11-16 show the average execution speed of each

task in term of iterations per second given different power traces. The larger the speed, the

more energy is used for execution, and vice versa.

Power Traces
1 2 3 4

E
x

ec
u

ti
o

n
 S

p
ee

d
 (

It
er

a
ti

o
n

s/
s)

0

150

300

450

600

750

900
NoCP

RRCP

NVCP

Register Operations

Figure 11: Execution Speed of Register Operation

Figure 11 shows the execution speed of register operation. As we can see from trace 4,

when power is sufficient and stable, the NVP scheduler will not be activated. Therefore,

the execution speeds of all comparing techniques are almost the same, except that NVCP

34

requires a constant voltage monitoring, however, the overhead of which is trivial and will

be evaluated in section 3.7.1.7. When power becomes weaker, the execution speed for using

NVCP is reduced more drastically. Take a look at power trace 3 and 4, under which, the

source powers are extremely weak. Trace 3 enables NVCP to deliver the execution speed

of 65.9 Iterations/s which is only 29.9% of what the NoCP can deliver and 29.3% of what

RRCP can deliver. The reason why the execution is slower when NVCP is active is that

more energy will be used to execute atomic tasks. The execution speed of non-atomic tasks

such as register operation will be reduced because of reduced energy. Under the worst-case

scenario of power traces 4 where the source power is minimum and sparse, only NVCP shows

the execution speed of 58.2 Iterations/s and baselines show on speed. This is because the

source power is so small and without sleep mechanism, NoCP and RRCP will cause the NVP

system to stuck at cold starting once the stored energy has been drained out.

Power Traces
1 2 3 4

E
x

ec
u

ti
o

n
 S

p
ee

d
 (

It
er

a
ti

o
n

s/
s)

0

50

100

150

200

250

300

350

400 NoCP

RRCP

NVCP

SRAM Writes

Figure 12: Execution Speed of SRAM Writes

Figure 12 shows the execution speed of SRAM writes. Similar to register operation, when

power is sufficient and stable, NVCP will not be activated. When power becomes weaker,

35

the execution speed for using NVCP is reduced more drastically. Taking a look at trace 3,

as more energy is used by atomic tasks, for SRAM writes, NVCP only delivers the execution

speed of 30.95 Iterations/s which is only 29.2% of what RRCP can deliver and 30.44% of

what NoCP can deliver. Yet under the worst-case scenario of power trace, 4 where the source

power is extremely weak and sparse, NoCP and RRCP cause NVP system to stuck at cold

starting and only NVCP shows the execution speed of 27.32 Iterations/s.

Power Traces
1 2 3 4

E
x

ec
u

ti
o

n
 S

p
ee

d
 (

It
er

a
ti

o
n

s/
s)

0

25

50

75

100

125

150

175

200
NoCP

RRCP

NVCP

FRAM Writes

Figure 13: Execution Speed of FRAM Writes

Figure 13 shows the execution speed of FRAM writes. As we can see, similar to SRAM

writes, the non-atomic tasks share less energy when power becomes weaker, thus, the execu-

tion speed of FRAM writes for using NVCP is reduced more drastically. under power trace

3, NVCP can only deliver the execution speed of 14.7 Iterations/s which is only 29.28% of

what RRCP can deliver and 31.14% of what NoCP can deliver.

Figure 14 shows the execution speed of the Thermometer which samples proximity tem-

perature and transfers it into digital representations. The thermometer is an atomic task

as the unfinished temperature data is inaccurate and useless. Therefore, when source power

36

Power Traces
1 2 3 4

E
x

ec
u

ti
o

n
 S

p
ee

d
 (

It
er

a
ti

o
n

s/
s)

0

10

20

30

40

50

60

70

80

90
NoCP

RRCP

NVCP

Thermometer + SRAM Writes

Figure 14: Execution Speed of Thermometer

becomes weaker, more energy portions will be given to atomic tasks to finish them before the

power fails. As we can see, when power is sufficient and stable, NVCP will not be activated.

When power becomes weaker, the execution speed for using NVCP is increased significantly

over baseline techniques. Under power trace 3, NoCP and RRCP won’t be able to keep the

progress for the unfinished atomic tasks, so the execution speeds are the same. However,

NVCP assigns a large portion of energy for atomic tasks and the execution speed of NVP is

50.92 Iterations/s which is 712.77% of what baseline can deliver.

Figure 15 shows the execution speed of Accelerometer which samples 3-axis accelerations.

Similar to Thermometer, Accelerometer is also an atomic task and the unfinished sensing

data are inaccurate and useless. Therefore, when source power becomes weaker, a larger part

of the energy will be used to execute Accelerometer for it to complete before power fails. As

we can see, when power becomes weaker, the execution speed for using NVCP is increased

significantly over baseline techniques. Under power trace 3, NVCP delivers the execution

speed of 11.8 Iterations/s which is 513.53% of what the baseline can deliver.

37

Power Traces
1 2 3 4

E
x

ec
u

ti
o

n
 S

p
ee

d
 (

It
er

a
ti

o
n

s/
s)

0

5

10

15

20

25

30

NoCP

RRCP

NVCP

Accelerometer + SRAM Writes

Figure 15: Execution Speed of Accelerometer

Figure 16 shows the execution speed of UART communication which constantly sends

data through serial port given the baud rate of 9600. Similar to the other two atomic

tasks, unfinished UART communication is useless and should be forfeited. The unfinished

transmission data should be transmitted all over again when power is recovered. Therefore,

when source power becomes weaker, a larger part of the energy will be used to execute UART

communication to finish it before the power fails. As we can see, when power becomes weaker,

the execution speed for using NVCP is increased significantly over baseline techniques. Under

power trace 3, NVCP delivers the execution speed of 2 Iterations/s which is 381.24% of

what the baseline can deliver.

3.7.1.7 Efficiency and Overhead In this section, the efficiency and overhead of NVCP

is evaluated. Considering the power consumption of each benchmark in Figure 9, we com-

pare the energy efficiency of NVCP with baseline techniques. For trace 1, NVCP shows

10.87% improved energy efficiency than NoCP and 10.26% improved energy efficiency than

38

Power Traces
1 2 3 4

E
x

ec
u

ti
o

n
 S

p
ee

d
 (

It
er

a
io

n
s/

s)

0

1

2

3

4

5

6

NoCP

RRCP

NVCP

UART Communication + FRAM Writes

Figure 16: Execution Speed of UART communication

RRCP. For trace 2, NVCP shows 24.46% improved energy efficiency than NoCP and 22.48%

improved energy efficiency than RRCP. For trace 3, NVCP shows 79.44% improved energy

efficiency than NoCP and 74.79% improved energy efficiency than RRCP. For trace 4 NVP

scheduler has not been triggered, there is no obvious difference in terms of energy efficiency.

Overall, the advantages are significant.

Due to the periodical voltage monitor, there are extra amounts of energy and time

overhead compared with baseline techniques. From Figure 18, both energy and time overhead

increase when the source power becomes weaker. For the worst-case scenario in power trace 3,

NVP scheduler generates an extra 3.52% energy overhead and 7.79% time overhead compared

with baseline round-robin scheduler. However, considering the extra gained progress, the

influence of overhead is negligible. Notice that based on the energy and time consumed by

voltage monitor, the power consumption of voltage monitor is 0.08mW which is more than

enough to support by source power if it can the charge up the capacitor.

39

Power Traces
1 2 3 4

R
el

a
ti

v
e

E
n

er
g

y
 E

ff
ic

ie
n

cy

100%

120%

140%

160%

180% NoCP

RRCP

NVCP

Figure 17: Energy Efficiency

3.7.2 Evaluation of NTS Scheduler

3.7.2.1 Hardware Platform The hardware platform includes a non-volatile IoT edge

device and an energy harvesting module, which are detailed as follows.

• The experimental platform of a non-volatile IoT edge device is TI’s MSP430FR5739

ultra-low-power evaluation board, which consists of a 16-bit MCU, a 10-bit ADC, a 1kB

volatile SRAM, a 16KB nonvolatile FRAM memory, and different peripherals for sensing

and data communication.

• For the energy harvesting module, a signal generator is used to generate ultra-low power.

Then, the power regulator Bq25570 + LTC3459EDC harnesses the power and supply a

constant voltage of 3.3V to power the edge device and a maximum voltage of 4.2V to

charge the capacitor.

40

0 0.34 0.68 1.02 1.36 1.70 2.03 2.37 2.71 3.05 3.39

1

2

3

4

5 Energy Overhead

Overhead (%)
0 0.75 1.50 2.25 3.00 3.75 4.50 5.25 6.00 6.75 7.50

P
o

w
e
r
 T

r
a

c
e
s

1

2

3

4

5 Time Overhead

Figure 18: Energy and Time Overhead

3.7.2.2 Power Trace Four power traces in Figure 19 using signal generators for perfor-

mance evaluation. The four power traces with different power magnitudes are recorded from

the oscilloscope at the sample rate of 240KSa/s. On average, the power they can provide

is 7.27mW, 6.19mW, 4.94mW, and 4.11mW, respectively. The harvesting power is far less

than the working power of edge devices.

3.7.2.3 Software Setup The parameter settings of the following experiments includes

C = 470µF , vck = 2.1V , m = 10, and TADC = 37.5µs For experimental evaluation, five

benchmarks, SRAM, FRAM, Thermometer, Accelerometer, and UART, are used. Their

required energy is show in Figure 20.

Here, SRAM writes data into sram; FRAM writes data into fram; Thermometer and

Accelerometer sense temperature and acceleration; UART send data with the baud rate

of 9600. All five benchmarks are iterative and make up two task trees. The first tree

consists of Thermometer, SRAM, and UART, which is represented by Tree (therm). At first,

41

1.389
1.189

0.989

0.789

0.589

0.389

0.189

100 200 600500400300 9008007000
Time (ms)

Vo
lta

ge
 (v

)

(a) Trace A (Average 7.27mW)

1.389
1.189

0.989

0.789

0.589

0.389

0.189

100 200 600500400300 9008007000
Time (ms)

Vo
lta

ge
 (v

)

(b) Trace B (Average 6.19mW)

1.389
1.189

0.989

0.789

0.589

0.389

0.189

100 200 600400300 9008007000 500
Time (ms)

Vo
lta

ge
 (v

)

(c) Trace C (Average 4.94mW)

1.389
1.189

0.989

0.789

0.589

0.389

0.189

100 200 600400300 9008007000 500
Time (ms)

Vo
lta

ge
 (v

)

(d) Trace D (Average 4.11mW)

Figure 19: Power Traces

0 10 100 1000

1
2
3
4
5

Energy Consumption (µJ)

B
e
n

c
h

m
a
rk

s

UART
Accelerometer

Thermometer
FRAM

SRAM

Figure 20: Required Energy of Each Benchmark.

42

Thermometer senses temperature data; then the data is written into a particular location

on sram by SRAM. This sense-and-store operation continues for ten iterations. Then, these

sensed temperature data is sent out by UART. After seven times of data transmission, a

single execution period of Tree (therm) completes. Similarly, FRAM, Accelerometer, and

UART make up the second tree, which is represented by Tree (accel). At first, Accelerometer

and FRAM conduct sense-and-store operation repetitively ten times, during which the sensed

acceleration data are written into a particular location on fram by FRAM. After that, UART

sends out the acceleration data after seven times of data transmission, a single execution

period of Tree (accel) completes. We also set up different execution deadlines for each task

tree and measure the execution speed of each tree as well as the execution power regarding

energy per iteration.

3.7.2.4 Benchmark Setup In this section, the performance of NTS will be evaluated

regarding time and energy efficiency. The given five benchmarks make up two trees and are

executed with the proposed NTS algorithm. Under each power trace, five pairs of deadlines

are selected for each tree, which are (5s, 2.5s), (2.5s, 5s), (8s, 4s), (4s, 8s), and (8s, 8s),

respectively. Here, the first number of each pair represents the deadline for Tree (accel),

and the second number of each pair represents the deadline for Tree (therm). The baselines

for evaluating NTS include the Round-Robin (RRB) scheduler which executes each tree

sequentially and the Priority-based Task Scheduling (PTS) proposed in [34] where the whole

system is defined as MEU (maximizing energy utility). Fig. 21 shows the single execution

period of each task trees with NTS vs. RRB and MEU (PTS).

In Fig. 21, the experiments are represented in five regions that have different deadlines

for the targeting task trees. Regions are separated by the gray bars. The left side of each

region shows the average single execution period of Tree (accel) and the right side shows the

average single execution period of Tree (therm). The deadline for each tree is marked with a

bold horizontal line. Notice that, for both trees, when supply power is weak, all techniques

result in more time to finish a single execution period. For RRB, the deadlines of each task

tree will not change the scheduling order which is the same situation when applying MEU

(PTS). For MEU (PTS), the scheduling priority of is based on the stack size of each task

43

Power Traces

4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1

A
v
e
ra

g
e
 S

in
g

le
 E

x
e
c
u

ti
o

n
 P

e
ri

o
d

 (
s
)

0

3

6

9

12

15

NTS

MEU(PTS)

RRB
Tree

(accel)

Tree

(therm)

Tree

(therm)
Tree

(accel)

Tree

(therm)

Tree

(accel)

Tree

(therm)

Tree

(accel)

Figure 21: Average Single Execution Period with NTS.

which is ideal for scheduling tasks which are independent to each other. However, the data

dependency of each task within the same tree renders the PTS useless.

For the first deadline pair (5s, 2.5s) of NTS, Tree (accel) has a longer single execution

period for Tree (therm), which is because Tree (Therm) has a shorter deadline, thus higher

scheduling priority. For deadline pair, (2.5s, 5s), Tree (accel) has a significantly shorter

execution period with NTS over RRB and MEU (PTS) due to a higher scheduling priority.

Due to the tight deadline (2.5s), All three techniques cannot enable Tree (accel) to meet the

deadline. For Tree (therm), due to a lower priority, only under power trace 1 can it meet the

deadline with NTS. For deadline pair (8s, 4s), the advantage of NTS over RRB and MEU

(PTS) becomes salient, that is NTS only fails twice, yet RRB and MEU (PTS) fails four

times. For deadline pairs, (4s, 8s) and (8s, 8s), NTS only fails twice and once respectively.

Overall, both RRB and MEU (PTS) result in 23 times of fails to meet the deadlines while

NTS only results in 18 times of fails.

Considering the execution power of each benchmark shown in Figure 20, the average

execution power of each benchmark under different power traces is shown in Fig. 22.

NTS utilizes 36.1% more energy on average than RRB and MEU (PTS). Since the amount

of harvested energy is the same for both schedulers, NTS has a higher energy efficiency than

the round-robin scheduler. The reason for NTS to have a higher efficiency is that both

44

Average Execution Power (mW)
0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
o

w
e
r

T
ra

c
e
s

1

2

3

4
NTS MEU(PTS) RRB

Figure 22: Average Execution Power of Benchmarks Under Different Power Traces.

RRB and MEU (PTS) are unaware of task classification. If the last executing task before

conducting checkpointing is an atomic task such as Acceleration or Thermometer, the on-

going execution has to start over once the power comes back on again. However, for NTS,

the last task before conducting checkpointing is always a non-atomic task such as SRAM

and FRAM, no progress setback will happen. This results in better energy utilization.

3.8 Summary

This chapter proposes NVP-aware task schedulers to maximize the overall task execution

progress. Considering the tasks’ atomicity, the unfinished atomic tasks will be scheduled for

completion as many as possible before the power outage to mitigate the progress loss. The

proposed NVP scheduler can be easily incorporated into embedded systems as an auxiliary

to the existing scheduler with great compatibility which takes effect when harvesting power

is not enough. Experiments confirm the effectiveness of the proposed techniques.

45

4.0 Intelligent Checkpointing Scheme

In this chapter, the basic checkpointing technique will be optimized for better reliability

and energy-efficiency

4.1 Motivation

Although the progress of atomic tasks can be saved. The checkpointing operation also

needs to be optimized mainly due to three reasons. First, as the checkpointing involves write

operation on non-volatile memory, which is both time and energy-consuming, extra time and

energy are required to support checkpointing. Considering the limited harvesting power,

checkpointing can significantly affect the energy overhead especially when harvesting power

becomes extremely small and unstable. Second, as the endurance of non-volatile memory

gradually wears out with each new write operation, checkpointing also threatens the lifetime

of edge devices with NVP. Third, if checkpointing is unsuccessful, a significant progress

setback would occur. To tackle the aforementioned challenges, an intelligent checkpointing

scheme is proposed which not only can ensure a successful checkpointing but also can predict

the necessity of conducting checkpointing to avoid excessive checkpointing overhead.

4.2 Related Work

The intermittent nature of energy harvester increases the energy consumption of program

execution. This is because, when the power outage happens, the on-going processor’ states

along with all the other volatile data will be lost. When the power comes back on, all the

unfinished program executions have to start over again resulting in reduced energy efficiency.

Therefore, it is necessary to maintain the execution progress for each program. To enable

continuous execution of programs across different power cycles, both hardware [16, 53, 43,

46

44, 27, 23] and software [14, 26, 28, 41, 42] recovery mechanisms have been proposed to

support an automatic recovery of computation tasks on the processor.

Hardware checkpointing stores the system state and data automatically by hardware.

For example, Yu et al. [16] propose a non-volatile processor architecture that integrates non-

volatile elements into volatile memory at bit granularity. Wang et al. [53] design a FRAM

based processor, which attaches an NV-FRAM cell to each volatile standard flip-flop. The

flip-flops are accessed for normal execution while the FRAM cells are used to checkpoint

the states in flip-flops at power failure. This processor can backup and restore the processor

state and data within 3µs. Sakimura et al. propose the non-volatile magnetic flip-flops [43]

and a 20MHz non-volatile micro-controller with STT-RAM [44]. Recently, Liu et al. propose

an enhanced NVP based on ReRAM which has the highest integration level [27]. Also, Li et

al. propose the non-volatile I/O (NVIO) enabling efficient automatic reconfiguration of I/O

interfaces [23].

Besides hardware checkpointing, there are also software mechanisms that checkpoint the

processor’s state and other volatile data into non-volatile memories. For example, Memen-

tos [42] is a software mechanism for transiently powered RFID-scale devices. Some trigger

points are placed after each call instruction or at each loop latch. At run-time, when these

trigger points are reached, the supply voltage is checked with an ADC. If this voltage is

below a threshold, a snapshot of the system state is saved to the flash memory. Quickre-

call [14] integrates FeRAM into the main memory to increase the checkpointing efficiency

which reduces the backup data size and lowers the failure voltage threshold. Hibernus [6]

and Hibernus++ [6] propose interrupt-based checkpointing mechanisms. In these mecha-

nisms, the system stated is checkpointed only once immediately before the power failure,

then the system hibernates. This mechanism requires frequent voltage checking and auto-

matic interrupts to checkpoint or restore the system state. MEU [34] proposes prototyping

techniques for a joint reduction of software and hardware overhead with software solutions.

MEU requires constant harvesting power analysis which is expensive and tends to be less

accurate compared with the proposed techniques.

47

4.3 Statisitic based Checkpointing Avoidance

In this subsection, a tentative checkpointing Withdrawal (TCW) algorithm is proposed

based on statistic evaluation which allows the edge device to tentatively avoid checkpointing

so that further reduction of checkpointing overhead upon NTS can be achieved.

Normally, the system needs to checkpoint before it goes to sleep mode when detecting

a low voltage. However, if the harvesting power is enough to charge up the capacitor after

the edge device enters sleep mode, this checkpointing is unnecessary and can be avoided.

In this way, a substantial amount of energy for checkpointing can be used for program

execution instead. However, the challenge is that the edge device needs to know whether the

harvesting power is enough to charge up the capacitor when the edge device is in sleep mode.

Otherwise, the edge device is at risk of losing all the data during sleep mode, which incurs

progress setback. Therefore, TCW is proposed to evaluate the risk and avoid checkpointing

properly, which is detailed in Algorithm 4.3.1.

The inputs of TCW include initial charging voltage vini, wake-up voltage vwak, charging

period τ , the previous wake-up state sp, the current wake-up state sc, estimated charging

speed ĉs, and the confidence indicator of power goodness λ ∈ [0, 1]. Here, the wake-up

state indicates whether the edge device wakes up from the sleep mode or reboots from the

power outage (1: waking up from the sleep mode; 0: rebooting from a power outage).

Since the harvesting power is inherently weak and unstable, at the very beginning, TCW

conservatively initiates λ as 0. The output of TCW is out which indicates the necessity of

the next checkpointing (1: necessary; 0: unnecessary).

The key of TCW is using the latest two wake-up states (sc and sp) to determine the

necessity of the next checkpointing. Specifically, if current wake-up state sc and previous

wake-up state sp are both 1, TCW considers that the harvesting power is sufficient and could

last longer. In this case, the next checkpointing is more likely to be avoided than in other

cases. If current wake-up state sc = 1 but previous wake-up state sp = 0, TCW thinks that

the harvesting power of the current charging cycle is only sufficient temporarily and may

become insufficient at any moment shortly. In this case, the next checkpointed is less likely

to be avoided than in the previous case. Finally, if the current wake-up state sc = 0, the

48

Algorithm 4.3.1 Tentative Checkpointing Withdrawal (TCW)

Input: vini, vwak, τ , sp, sc, ĉs, and λ
Output: out /* the necessity of the next checkpointing (0: unnecessary; 1: necessary) */
1: λ = (λ+ sc)/2; /* update the confidence of power goodness */
2: if sc = 1 then /* current wake-up is from sleep mode */
3: cs = (v2

wak − v2
ini)/τ ; /* calculate the charging speed */

4: if sp = 1 then /* previous wake-up was from sleep mode */
5: if cs ≥ λ ∗ ĉs then
6: out = 0;
7: else
8: out = 1;
9: end if

10: else /* previous wake-up was from reboot */
11: if λ ∗ cs ≥ ĉs then
12: out = 0;
13: else
14: out = 1;
15: end if
16: end if
17: else /* current wake-up is from reboot */
18: cs = 0;
19: out = 1;
20: end if
21: ĉs = (cs+ ĉs)/2; /* update the estimated charging speed */
22: return out =0

49

harvesting power is insufficient to charge up the capacitor when the edge device is in the

sleep mode and has drained out all the stored energy and rebooted after the harvesting power

recovery. In this case, TCW cannot acquire the actual charging period of τ . Therefore, TCW

conservatively forces the next checkpointing to be mandatory no matter how large cs is. An

auxiliary example in Fig. 23 details TCW.

s sini=0 s1=1 s2=1 s3=0 s4=0 s5=1 s6=1 s7=1 s8=1
cs csini=0 cs1=10 cs2=3 cs3=0 cs4=0 cs5=4 cs6=8 cs7=12 cs8=5
λ λini=0.250 0.625 0.813 0.406 0.203 0.602 0.801 0.900 0.950

 cŝini=8.000 4.000 7.000 5.000 2.500 1.250 2.625 5.313 8.656
out outini=1 0 1 1 1 0 0 0 1

 A1 B1 C1 D1

E1 F1

G1

A2 B2 C2 D2

E2 F2

G2

30 50 20 20

The 1st execution cycle

The 2nd execution cycle

The 3rd execution cycle

t1 = 5 time units

t2 = 7 time units

E = 100 energy units

1st tsknx: A1 -> B1 -> E1 -> D1

2nd tsknx: C1 -> F1 -> G1 -> A2 -> C2

3rd tsknx: B2 -> D2 -> E2 -> F2 -> G2

10

Un_CK Un_CK

Un_CK

20

10

15 10 35 5

25 10

15 1st subtree 2nd subtree

𝐜𝐬̂

Figure 23: Four Out of Nine Checkpointings Can Be Avoided without Progress Setback.

Fig 23 shows nine times of continuous decision-making for checkpointing, sini → s8 rep-

resents the wake-up states, csini → cs8 represents the charging speeds during each charging

cycle, λ represents confidence indicator, ĉs represents estimated charging speed, and out

represents the checkpointing decision.

Initially, sc = sini = 0, according to line 17, the edge device wakes up from reboot. In this

case, the charging speed is unmeasurable, hence, TCW considers that the charging power is

insufficient to charge up the capacitor and power outage could continue happening. Then,

it set csini = 0 and out = 1 to indicate that the next checkpointing is necessary. Before

returning out, given ĉsini = 8, TCW updates ĉs = 4 based on line 21 which will be used

during the next cycle.

After the 1st charging cycle, the sc = s1 = 1. In this case, given λini, TCW first updates λ

based on line 1. Since currently sc = 1 and sp = sini = 0, TCW considers that the harvesting

power is only temporarily sufficient and may become insufficient at any moment shortly. In

this case, TCW calculates out based on the criterion in line 11. Specifically, On one hand, if

λ is small, TCW is less confident that the current sufficient harvesting power could last long,

hence cs needs to be higher to convince TCW to avoid checkpointing. On the other hand, if

λ is large, TCW is more confident that current sufficient harvesting power could last long,

50

hence a smaller cs can convince TCW to avoid checkpointing. Yet, overall, cs needs to be

larger than ĉs as TCW still holds the idea that the harvesting power may become insufficient

shortly. Here, because cs1 = 10 , ĉs = 4, and λ = 0.625, we have λ ∗ cs > ĉs, hence, the

out = 0, which means the next checkpointing can be avoided. Finally, TCW updates ĉs = 7

before returning the output.

After the 2nd charging cycle, sc = 1. In this case, TCW first updates λ. Since currently

sp = sc = 1, TCW considers that the harvesting power is sufficient to charge up the capacitor

when the edge device is in sleep mode. In this case, TCW calculates out based on the criterion

in line 5. As harvesting power gets better, λ and ĉs become larger, even if cs is smaller than

ĉs, the harvesting power can be still sufficient to charge up the capacitor when the edge device

is in sleep mode. In this case, cs can allow being smaller than ĉs to avoid more checkpointing

operations. Here, because cs2 = 3 , ĉs = 7, and λ = 0.813, we have cs < λ ∗ ĉs, hence,

the out = 1, so the checkpointing is necessary. The reason behind this checkpointing is that

TCW noticed the sharp drop in charging power which is normally a sign of an imminent

power outage. So it is necessary to conduct checkpointing. Finally, TCW updates ĉs before

returning the output.

From the following 3rd to 8th charging cycles, TCW determines out following the same

procedure as before. In the end, four out of nine checkpointing operations were avoided

without inducing progress setback, which saves a significant amount of energy for program

execution.

Notice that, for harvesting power, TCW is cautious about the improvements while sen-

sitive to the drops. Specifically, on the one hand, when harvesting power changes from weak

to strong, unless the improvements are significant (e.g. cs4 → cs5), TCW will cautiously

consider that checkpointing is necessary. On the other hand, when harvesting power changes

from strong to weak, even if harvesting power still seems to be far beyond the sleep power

of edge devices (e.g. cs7 → cs8), TCW will sensitively consider that checkpointing is neces-

sary. This can significantly reduce the misprediction of checkpointing, yet it cannot always

guarantee the correctness of the prediction. For sudden complete power outage from a stable

power supply (sp = 1 and sc = 1), the edge device will lose the previous computation state

by failing to checkpoint. However, the sleep power can be infinitesimally small compared

51

Figure 24: Dual-Backup Checkpointing Handler.

with the working power, which allows the edge device to stay alive for a significant amount

of time by using residual energy in the storage before harvesting power comes back on again.

For instance, with our experimental settings, the residual energy in the capacitor after check-

pointing is around 300µJ and the standby power of edge device in low power mode can be as

low as 20µW . In the worst case, the edge device can last more than two minutes by totally

sustaining on its residual energy, which makes our system robust enough to cope with most

intermittent energy harvesting scenarios where the power outage is usually temporary lasting

for less than a minute.

4.3.1 Secure Checkpointing

In the case of checkpointing failures, two areas in NVM should be reserved for check-

pointing alternatively. With double backups, even if current checkpointing fails, the NVP

system can still roll back to the previous successful checkpoint other than start over from

the very beginning as shown in Figure 24.

52

During each checkpointing, checkpointing handler should also compare the new data

with the latest successful backup and only checkpoints the differences. This is to minimize

the energy consumption of checkpointing.

4.4 Experiments

4.4.1 Experimental Setup

This section details the experimental setup both on hardware and software.

4.4.1.1 Hardware Platform The hardware platform includes a non-volatile IoT edge

device and an energy harvesting module, which are detailed as follows.

• The experimental platform of a non-volatile IoT edge device is TI’s MSP430FR5739

ultra-low-power evaluation board, which consists of a 16-bit MCU, a 10-bit ADC, a 1kB

volatile SRAM, a 16KB nonvolatile FRAM memory, and different peripherals for sensing

and data communication.

• For the energy harvesting module, a signal generator is used to generate ultra-low power.

Then, the power regulator Bq25570 + LTC3459EDC harnesses the power and supply a

constant voltage of 3.3V to power the edge device and a maximum voltage of 4.2V to

charge the capacitor.

4.4.1.2 Power Trace Four power traces in Figure 19 using signal generators for perfor-

mance evaluation. The four power traces with different power magnitudes are recorded from

the oscilloscope at the sample rate of 240KSa/s. On average, the power they can provide

is 7.27mW, 6.19mW, 4.94mW, and 4.11mW, respectively. The harvesting power is far less

than the working power of edge devices.

4.4.1.3 Software Setup The parameter settings of the following experiments includes

C = 470µF , vck = 2.1V , m = 10, and TADC = 37.5µs For experimental evaluation, five

53

benchmarks, SRAM, FRAM, Thermometer, Accelerometer, and UART, are used. Their

required energy is show in Figure 20.

Here, SRAM writes data into sram; FRAM writes data into fram; Thermometer and

Accelerometer sense temperature and acceleration; UART send data with the baud rate

of 9600. All five benchmarks are iterative and make up two task trees. The first tree

consists of Thermometer, SRAM, and UART, which is represented by Tree (therm). At first,

Thermometer senses temperature data; then the data is written into a particular location

on sram by SRAM. This sense-and-store operation continues for ten iterations. Then, these

sensed temperature data is sent out by UART. After seven times of data transmission, a

single execution period of Tree (therm) completes.

Similarly, FRAM, Accelerometer, and UART make up the second tree, which is repre-

sented by Tree (accel). At first, Accelerometer and FRAM conduct sense-and-store operation

repetitively ten times, during which the sensed acceleration data are written into a particular

location on fram by FRAM. After that, UART sends out the acceleration data after seven

times of data transmission, a single execution period of Tree (accel) completes. We also set

up different execution deadlines for each tree and measure the execution speed of each tree

as well as the execution power regarding energy per iteration.

4.4.1.4 Performance of TCW In this section, the performance of TCW will be eval-

uated upon applying NTS. TCW avoids unnecessary checkpointing to reduce the further

energy consumption of checkpointing. The baseline for comparison includes NTS and ten-

tative checkpointing avoidance (TCA) in MEU which avoids checkpointing based on a more

complicated evaluation of harvesting power. Fig. 25 shows the single execution period of

each task with TCW vs. NTS and MEU (TCA).

In Fig. 25, for the first deadline pair (5s, 2.5s), upon implementing NTS, TCW can further

improve the energy efficiency, which meets deadlines four times. For deadline pair, (2.5s, 5s),

TCW further meets the deadline four times. For deadline pair, (8s, 4s), (4s, 8s), and (8s, 8s),

TCW enables both trees to meet their deadline under all power traces. Considering the

execution power of each benchmark, the utilized energy of each method is shown in Fig. 26.

With TCW, energy efficiency can be further improved by 77.95% on average compared with

54

Power Traces

4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1

A
v
e
ra

g
e
 S

in
g

le
 E

x
e
c
u

ti
o

n
 P

e
ri

o
d

 (
s
)

0

3

6

9

12

15

TCW

NTS

MEU(TCA)

Tree

(accel)

Tree

(therm)

Tree

(therm)
Tree

(accel)

Tree

(therm)

Tree

(accel)

Tree

(therm)

Tree

(accel)

Figure 25: Single Execution Period with TCW.

applying NTS only. While with MEU (TCA), the energy efficiency can only be improved by

16.38% on average upon applying MEU (PTS). Hence the improvement of TCW is significant

Compared with MEU (TCA). The main reason for such improvement is that MEU (TCA)

responds to the harvesting power fluctuation much slower than TCW, which results in more

progress setback and unnecessary checkpointing. Overall, after applying TCW, more energy

can be used for execution which significantly improves energy efficiency.

Average Execution Power (mW)
0.2 0.4 0.6 0.8 1 1.2 1.4

P
o

w
e

r
T

ra
c

e
s

1

2

3

4
TCW NTS MEU(TCA)

Figure 26: Average Execution Power of Benchmarks Under Different Power Traces.

55

4.5 Summary

This chapter proposes an intelligent checkpointing scheme that not only can ensure a

successful checkpointing but also can predict the necessity of conducting checkpointing to

avoid excessive checkpointing overhead. The experimental results show that the proposed

checkpointing scheme not only can significantly reduce the energy overhead but also be able

to help the system meet the time bound for execution.

56

5.0 CPU Frequency Modulation

In this chapter, a CPU frequency Modulator is proposed which adjusts the runtime CPU

clock frequency adaptively to reduce energy consumption due to inappropriate runtime CPU

clock frequency configuration.

5.1 Motivation

Even though the checkpointing overhead can be minimized, inappropriate execution fre-

quencies can also significantly reduce runtime energy efficiency which is defined as energy

utility. The optimal frequency varies from program to program. This is because, for task

execution, the higher clock frequency can help reduce the execution time yet it also induces

extra power consumption. If the reduction of time is lower than the increment of power,

the energy efficiency becomes lower, In this case, the higher clock frequency is not advis-

able. Similarly, the lower clock frequency can help reduce the power consumption yet it also

induces extra time for execution. If the reduction of power is lower than the increment of

time, energy efficiency also becomes lower. In this case, the lower clock frequency is not ad-

visable. To further understand the implication of clock frequency to the energy efficiency, an

observation is conducted on TI’ MSP430FR6989 with seven fixed frequencies available. The

testing benchmark is 16 bit 2dim which reads from ADC as an input data source. Figure 27

shows the execution speed of the device when running this benchmark with seven available

clock frequencies.

As we can see, under different clock frequencies, the execution speed varies greatly and

thus the energy efficiency. Specifically, the frequency that achieves the best energy efficiency

is neither the maximum nor the minimum frequency. Instead, when the clock frequency

equals to 4MHz (half of the maximum frequency), maximum energy efficiency is achieved.

The truth behind this observation is that, when the clock frequency is high, the delay of

ADC sampling becomes a bottleneck of the execution speed. When the clock frequency is

57

Clock Frequency (MHz)
8 7 5.33 4 3.5 2.67 1

E
x

e
c

u
ti

o
n

 S
p

e
e

d
 (

It
e

ra
ti

o
n

s
/s

)

0.054

0.056

0.058

0.06

0.062

Figure 27: Energy efficiency with different clock frequency

low, the working power is not reduced with the same magnitude to the runtime execution

speed. Therefore, selecting a clock frequency appropriately is crucial to each program.

5.2 Modeling and Analysis

This subsection will explore the potential of energy utility maximization through runtime

clock frequency modulation.

Assume there are n tasks running on the edge device and the runtime clock frequency

for the ith task is denoted by fi. Let Siexe(fi) denote the amount of execution progress per

time unit and P i
W (fi) denote the execution power, Siexe(fi) and P i

w(fi) are both in a positive

correlation to fi. When frequency switches, the energy εsw is required for oscillator settling.

With these parameters, the energy utility λ can be calculated as

λ〈f1, f2, ...fn〉 =

∑n
i=1 S

i
exe(fi)τ

i
ex∑n

i=1(P i
W (fi)τ iex +mκiεsw)

(5.1)

58

Let m represent the number of execution rotations for all tasks. κi ∈ {0, 1} is a frequency

switch indicator. If fi = fi−1, then κi = 0; otherwise, κi = 1. For the ith task, let Siexe(fi)

denote the average execution speed, P i
W (fi) denote the average working power, fi denote the

clock frequency, and τ iex denote the amount of execution time, given the progress that the

ith task has made as gi, we have

λ〈f1, f2, ...fn〉 =

∑n
i=1 gi[∑n

i=1

(
P iW (fi)gi

Siexe(fi)
+mκiεsw

)] (5.2)

For edge devices, since task routine is preset, the progress ratio between any two tasks

tends to be a constant in a long run. In this case, we have Gi = gi/
∑n

i=1 gi as a constant.

In addition, during each execution rotation, the total amount of progress of all tasks is a

constant which is defined as Gs =
∑n

i=1 gi/m. Hence, eq. (5.2) can be transformed into

λ〈f1, f2, ...fn〉 =

(
n∑
i=1

λαi Gi +
εsw
Gs

n∑
i=1

κi

)−1

(5.3)

Here, λαi =
P iW (fi)

Siexe(fi)
. As Gi and Gs are constants, in order to maximize λ, both

∑n
i=1 κi

and
∑n

i=1 λ
α
i Gi should be minimized. Achieving such optimality could be time consuming.

Yet, considering the fact that εsw
Gs

∑n
i=1 κi �

∑n
i=1 λ

α
i Gi, the utility optimization priority

should be focused on

Minimize λαi =
P i
W (fi)

Siexe(fi)
∀i ∈ {1, 2, .., n} (5.4)

Generally, P i
w(fi) increases when fi becomes larger. However, this is not true for Siexe(fi)

which may be affected by the latency of accessing hardware modules such as memory, I/O,

and ADC. Therefore, a minimum of λαi varies from task to task. Aside from minimizing λαi ,∑n
i=1 κi can also be reduced by properly scheduling independent tasks so that more adjacent

tasks could have the same optimal frequency. In this way, less frequency switch overhead is

required and further energy utility can be achieved.

59

5.3 Frequency Modulator

In this section, the Frequency Modulator (FM) is introduced which picks up the op-

timal clock frequency for each task so that maximum energy utility can be achieved. The

implementation of FM contains both off-line and on-line stages which are detailed as follows.

5.3.1 Off-line Stage

At the off-line stage, the FM first needs to measure the optimal MCU frequency for each

task. Then, a task is scheduled based on these optimal frequencies.

5.3.1.1 Optimal Frequency Measurement : As tasks on edge devices are generally iterative and

involve accessing different hardware modules, the bottleneck of execution utility varies from

task to task. In this case, based on the analysis in section 5.2, for each task tski ∈ 〈Tsk〉, FM

needs to measure the average power P i
W (f j) and execution speed Siexe(f

j) with any operable

frequency f j. Then for each tski, f
opt
i = arg min

P iW (fj)

Siexe(f
j)

.

5.3.1.2 Optimal Frequency Aware Task Scheduling : After acquiring the optimal frequency

〈f opt〉, based on section 5.2, the utility can be further improved with the reduction of fre-

quency switching overhead. Considering task dependency, all tasks can be divided into in-

dependent task chains. Therefore, for any two chains TCα and TCβ, if f optTCα.tail
= f optTCα.head

,

then TCα and TCβ can form a new chain with TCα.tail.next← TCα.head.

Figure 28 shows an ideal frequency matching based task schedule where tasks within

the same dash rectangle box are with data dependencies and form an independent task

chain to others. As we can see, f opth = f opth+1, f optk = f optk+1, f optm = f optm+1, f optn = f opt1 allow

four independent task chains to connect together and form a iterative schedule. In a real

application, the number of operable frequencies is usually limited. However, there is still a

high chance that chains cannot match frequencies with all others. In this case, these chains

will be randomly connected with others at the end of the matching process, so that minimum

frequency switching overhead can be achieved.

60

Tsk1 Tsk2 …… Tskh

Tskk Tskh+2…… Tskh+1

Tskk+1 Tskk+2 …… Tskm

Tskn Tskm+2…… Tskm+1

𝒇𝒉
𝒐𝒑𝒕

= 𝒇𝒉+𝟏
𝒐𝒑𝒕

𝒇𝒌
𝒐𝒑𝒕

= 𝒇𝒌+𝟏
𝒐𝒑𝒕

𝒇𝒎
𝒐𝒑𝒕

= 𝒇𝒎+𝟏
𝒐𝒑𝒕

𝒇𝒏
𝒐𝒑𝒕

= 𝒇𝟏
𝒐𝒑𝒕

Figure 28: Frequency matching based task schedule

5.3.2 On-line Stage

During the online stage, FM acts as an auxiliary module of the existing scheduler by

setting the frequency to the optimal value for each new task during task switching.

5.4 Experiments

5.4.1 Experimental Setup

In this section, the details of the hardware platform, power traces, and benchmarks are

described.

5.4.1.1 Hardware Platform The targeted ultra-low-power edge device is TI’s ultra-

low-power evaluation board with MSP430FR6989, which consists of a 16-bit MCU, a 12-bit

ADC, a 2KB volatile SRAM, a 128KB nonvolatile FRAM memory, and different peripherals

for sensing and data communication. The power regulator is Bq25570 + LTC3459EDC

61

which is able to supply a constant voltage of 3.3V to power the edge device and a maximum

voltage of 4.2V to charge up the capacitor with the capacitance of 470µF .

5.4.1.2 Power Trace We collect the power traces from Powercast RF energy harvester.

Then, we synthesize four power traces in Figure 19 using signal generators for performance

evaluation.

The four power traces with different power magnitudes are recorded from the oscilloscope

at the sample rate of 240KSa/s. On average, the power they can provide is 7.27mW,

6.19mW, 4.94mW, and 4.11mW, respectively. The harvesting power is far less than the

working power of edge devices.

5.4.1.3 Benchmarks Ten MSP430 benchmarks from Texas Instruments [1] are used for

performance evaluation. Among them, four benchmarks 16 bit 2dim, Floating Point Math,

Matrix Multiplication, and Fir F ilter are modified with ADC sampling and FRAM access

in order to evaluate the execution speed bottleneck caused by hardware modules. Figure 29

shows the energy requirement of each task when the clock frequency is 4MHz.

Energy Consumption (nJ)
1 10 10

2
10

3
10

4
10

5
10

6
10

7

M
S

P
4
3
0
 B

e
n

c
h

m
a
rk

s

32_bit_math

Floating_Point_math

Matrix_Multiplication

16_bit_switch

16_bit_2dim

16_bit_math

8_bit_switch

8_bit_math

8_bit_2dim

Fir_Filter

Figure 29: Required energy of each benchmark

62

To evaluate the performance of Routine Handler, each benchmark is executed repeti-

tively to measure the average execution speed. To measure the performance of Frequency

Modulator, all benchmarks are scheduled one after another in a round-robin style.

5.4.2 Energy Utility Evaluation

In this section, the performance of ENZYME is evaluated in terms of the energy utility.

The baseline is the ENZYME with the default constant clock frequency of 4MHz. First, each

benchmark is evaluated with the comparison among all available frequencies. The results

are shown in Figure 30.

1 2 3 4
0

500

1000

8 MHz 7 MHz 5.33 MHz 4 MHz (Default) 3.5 MHz 2.67 MHz 1 MHz

1 2 3 4
0

50

1 2 3 4
0

2000

1 2 3 4
0

500

1000

1 2 3 4

E
x
e
c
u

ti
o

n
 S

p
e
e
d

 (
It

e
ra

ti
o

n
s
/s

)

0

0.1

0.2

1 2 3 4
0

2000

1 2 3 4
0

500

1 2 3 4
0

0.5

Trace 1 Trace 2 Trace 3 Trace 4
0

0.2

Trace 1 Trace 2 Trace 3 Trace 4
0

0.02

(a) 8 bit math (b) 8 bit 2dim

(j) Fir filter(i) Matrix multiplication

(h) Floating point math(g) 32 bit math

(e) 16 bit 2dim (f) 16 bit switch

(d) 16 bit math(c) 8 bit switch

Figure 30: Energy Utility under Available Frequencies

As we can see from Figure 30, given the same amount of energy for execution, with

proper selection of clock frequency, the execution can be further speeded up, which means

extra energy utility can be gained. For benchmarks (e) 16 bit 2dim, (h) Floating-point math,

(i) Matrix multiplication, and (j) Fir filter, due to the access of ADC and FRAM with long

latency, a faster clock frequency cannot reduce the run-time delay. Instead, it brings extra

energy overhead. Hence, their optimal frequency is lower than the maximum frequency of

63

8MHz. For all other benchmarks, the access only involves register, SRAM, etc. which have

short access latency and the maximum clock frequency can deliver the optimal energy utility.

After applying Frequency Modulator, the system can achieve 35.71% improvement regarding

energy utility which further speeds up the execution.

5.4.2.1 Overhead Analysis In this section, the overhead of frequency modulation is

evaluated in terms of energy and time. For ENZYME, the overhead mainly comes from

voltage detection and frequency modulation. In our experiments, each voltage detection

takes 100 clock cycles and each frequency switch takes 400 clock cycles. When benchmarks

are executed in a round-robin style with their optimal frequency, averagely, each voltage

detection takes 25.9µs, each frequency switch takes 103.8µs, and voltage detection happens

every 5 ∗ 104 clock cycles. In our experiments, we compare the overhead with and without

frequency matching technique and the results are shown in Figure 31.

Trace A Trace B Trace C Trace D

T
im

e
 O

v
e
rh

e
a
d

 (
%

)

0

0.5

1

1.5

2

2.5

3
With Frequency Matching

W/O Frequency Matching

(a) Time Overhead (%)

Trace A Trace B Trace C Trace D

E
n

e
rg

y
 O

v
e
rh

e
a
d

 (
%

)

0

2

4

6

8

10

12
With Frequency Matching

W/O Frequency Matching

(b) Energy Overhead (%)

Figure 31: Time and energy overhead

Without frequency matching, the time overhead is 1.94% and energy overhead is 9.54% on

average. With frequency matching, the time and energy overhead are reduced to 1.07% and

5.30% respectively. The overhead does not downgrade the performance. Instead, ENZYME

can achieve maximum energy efficiency and energy utility for edge devices.

64

5.5 Summary

This chapter proposes a frequency modulator that can avoid inappropriate runtime CPU

clock frequency by adjusting the runtime CPU clock frequency accordingly. The frequency

modulator is build upon the observation and comprehensive analysis that different tasks have

their own optimal clock frequencies for execution which can yield the maximum energy effi-

ciency. Besides, MCU frequency switch overhead is considered for optimization. The overall

performance from the experiments shows the effectiveness of the the proposed frequency

modulator for energy utilization.

65

6.0 Thriving on Ultra-Low Harvesting Power

This chapter proposes a software paradigm, ENZYME, to improve the energy efficiency

of edge devices for transient computing with ultra-low energy harvesting power supplies.

ENZYME is a lightweight yet highly efficient software module that can maximize power

extraction from energy harvesters with proper operation routines. The lightweight and

highly efficient natures enable ENZYME to be integrated into ultra-low-power IoT edge

devices easily and efficiently.

6.1 Motivation

In this era of the Internet of Things (IoT), all “things” tend to be embedded with elec-

tronics, software, sensors, and connectivity in our daily life. The edge of the IoT network,

consisting of many interconnected small devices such as wireless sensor nodes, shoulders the

responsibility of converting the sensed real-life information into digital representations for

IoT. Edge devices usually work under power-constrained scenarios like outdoor environmen-

tal monitoring, where energy harvesting technology is preferred, considering the cost and

sustainability in the long run. Although the future of implementing energy harvesting sys-

tem is promising, the weak and transient nature of the harvesting power jeopardizes the data

integrity and performance of edge devices. With the help of emerging non-volatile processor

(NVP) [55, 31, 57, 10], transient computing [25, 5] becomes practical through checkpointing

techniques [16, 53, 42] which ensure data integrity and aggregated progress. When a power

outage is imminent, the edge device will conduct checkpointing by backing up all execution

state from volatile memory into non-volatile memory (NVM) [33, 39, 37]. Then the edge

device is put to sleep mode until the capacitor is charged up. After power recovery, the edge

device will wake up and resume execution from the previous checkpoint.

Without appropriate power management, however, edge devices suffer from severe per-

formance degradation during transient computing, especially when the source power is ex-

66

tremely low. The underlying reason is the low energy efficiency as only a small amount of

the harvested energy is used for program execution. Besides, a large amount of the har-

vested energy is consumed by the supporting hardware and software. The hardware energy

consumption is from the power regulator and the energy harvester itself due to the internal

resistance. The software energy consumption is from checkpointing and resuming.

Reducing either hardware or software energy overhead can increase energy efficiency.

Conventional energy efficiency optimization mainly focuses on reducing hardware energy

overhead such as through optimizing regulator [8, 46, 9]. Besides reducing hardware over-

head, it is equally important to reduce software overhead of edge devices, especially under

ultra-low-power scenarios. This is because, during each duty cycle, the supporting software

such as checkpointing tend to consume the same amount of energy. When the harvesting

power is ultra-low, the duty cycle of edge devices becomes extremely small. During such

an ephemeral active period, software overhead could be gigantic compared with effective en-

ergy, which severely undermines the performance of edge devices. Current research regarding

such software overhead mainly focuses on reducing the energy consumption of checkpoint-

ing. [55, 34, 61, 36]. These methods largely improve the performance of embedded systems.

Orthogonal to reducing hardware or software overhead directly, managing the routine for

the edge device is another effective yet rarely explored realm for reducing energy overhead.

When harvesting power is ultra-low, the edge device has to periodically checkpoint, sleep,

wake up, resume, and execute. These periodical events together make up a routine of

transient computing. The key events that define a unique routine are sleep and wakeup

events, which are determined by sleep and wakeup voltages. [34] has recently discovered that

by dynamically adjusting the wakeup voltage based on the quality of harvesting power, the

overall overhead on hardware and software can be minimized. However, to implement the

dynamic wakeup strategy, edge devices need to constantly monitor the voltage and analyze

the quality of harvesting power. This could cost a tremendous percentage of harvested

energy considering its scarcity. Aside from the wakeup event, sleep event also dominates

energy efficiency. Therefore, this paper first explores the relationship of wakeup/sleep events

and energy efficiency and then proposes a lightweight and highly efficient routine handler to

deliver the maximum energy efficiency for edge computing.

67

 Time

 Voltage

 𝑽𝑳𝑾

 𝑽𝑯𝑾

Efficiency

Long Charging Cycle

Short Charging Cycle

 𝑽𝒔𝒍𝒑

Efficiency
 Voltage

 𝑽𝒄𝒉𝒂𝒓

 𝑽𝒄𝒌

 𝑽𝒔𝒍𝒑

 Time

 𝑽𝒘 𝜼𝒎𝒂𝒙

 𝜼𝒎𝒊𝒏

 Checkpointing Wakeup Sleep

Voltage Rises

Efficiency Drops

Executing Executing Charging Charging

Charging Executing

Good Efficiency

Poor Efficiency

Significant Charging

Overhead

(𝑽𝑳𝑾 → 𝑽𝑯𝑾)

𝒕𝟐(3.5) 𝒕𝟑(7.5)

)

𝒕𝟒(𝟏𝟗. 𝟓) 𝒕𝟎(𝟏) 𝒕𝟏(𝟐)

 𝑽𝒄𝒌

Checkpointing Frequency

𝟏/(𝒕𝟑 − 𝒕𝟏)

𝟏/(𝒕𝟒 − 𝒕𝟎) 𝑽𝑳𝑾:

 𝑽𝑯𝑾:

Figure 32: Changes of Charging Efficiency and Voltage on the Edge Device with Ultra-low

Harvesting Power

6.1.1 Wake-up Voltage Determines Efficiency

Fig. 32 shows the changes of both the charging efficiency (red line) and the voltage (green

line) on a self-powered IoT edge device through the entire executing and charging cycles with

ultra-low harvesting power supply. In this figure, the power regulator is assumed to be able

to maintain a constant input voltage for the edge device and the harvesting power is far

smaller than the working power but higher than the idle power of the edge device.

Initially, when the storage capacitor is charged up to the target voltage Vw, the edge

device wakes up and starts to work. Since the harvesting power is smaller than the working

power of the edge device, the energy in the storage capacitor drops quickly and so does the

voltage on the capacitor. Once the voltage on the capacitor drops to Vck, the checkpointing

needs to be conducted which backs up the execution state. After checkpointing, the voltage

drops to Vslp and the edge device enters the sleep mode with low power consumption so that

the harvesting power is sufficient to charge up the storage capacitor. As shown in Fig. 32, for

the storage capacitor, there is always a negative correlation between the charging efficiency

and the voltage. Therefore, achieving a higher wake-up voltage of Vw is time-consuming with

poor energy efficiency.

68

 Time

 Voltage

 𝑽𝑳𝑾

 𝑽𝑯𝑾

Efficiency

Long Charging Cycle

Short Charging Cycle

Efficiency
 Voltage

 𝑽𝒄𝒉𝒂𝒓

 𝑽𝒄𝒌

 𝑽𝒔𝒍𝒑

 Time

 𝑽𝒘 𝜼𝒎𝒂𝒙

 𝜼𝒎𝒊𝒏

 Checkpointing Wakeup Sleep

Voltage Rises

Efficiency Drops

Executing Executing Charging Charging

Charging Executing

Good Efficiency

Poor Efficiency

Significant Charging

Overhead

(𝑽𝑳𝑾 → 𝑽𝑯𝑾)

𝒕𝟐(3.5) 𝒕𝟑(7.5)

)

𝒕𝟒(𝟏𝟗. 𝟓) 𝒕𝟎(𝟏) 𝒕𝟏(𝟐)

 𝑽𝒄𝒌

Checkpointing Frequency

𝟏/(𝒕𝟑 − 𝒕𝟏)

𝟏/(𝒕𝟒 − 𝒕𝟎) 𝑽𝑳𝑾:

 𝑽𝑯𝑾:

Figure 33: Influence of Wake-up Voltage on Charging Cycle and Efficiency of the Edge

Device with Ultra-low Harvesting Power

Fig. 33 shows the influence of wake-up voltage on the duration of the charging cycle

and the efficiency of the edge device with ultra-low harvesting power. The harvesting power

PH and working power PW are assumed to remain constant for simplicity. There are two

different wake-up voltages: VHW represents the higher wake-up voltage and VLW represents

the lower wake-up voltage.

If the edge device wakes up at VLW , the execution time is t2− t1 = 1.5 time units. Then

it takes t3 − t2 = 4 time units to charge the capacitor until it reaches the wake-up voltage

VLW . The energy efficiency for the wake-up voltage VLW is 1.5PW
4PH

. If the edge device wakes

up at VHW , the execution time is t2 − t0 = 2.5 time units. Then it takes t4 − t2 = 16

time units to charge the capacitor until it reaches the wake-up voltage VHW . The energy

efficiency for wake-up voltage VHW is 2.5PW
16PH

. Therefore, although increasing the wake-up

voltage up from VLW to VHW leads to one extra time unit of execution time, it takes 12

more time units from t3 to t4 to charge up the capacitor from VLW to VHW to wake up the

system again. The energy efficiency when waking up at VLW is 1.5PW
4PH

/2.5PW
16PH

= 2.4 times

of the energy efficiency when waking up at VHW . Therefore, the wake-up voltage is better

to be low. The experimental results in section 6.6 show that with the appropriate setting

69

of wake-up voltages, the charging efficiency can remain in the good efficiency zoom which

significantly improves the efficiency of energy extraction from the ambient environment. The

results show that the charging efficiency can be boosted up by 54.03% by solely selecting

appropriate wake-up voltages, which is significant for self-powered IoT edge devices with

ultra-low energy harvesting supply.

Nevertheless, with a low wake-up voltage, checkpointing becomes more frequent. Fig. 34

shows the influence of the wake-up voltage on the checkpointing frequency.

 Time

 Voltage

 𝑽𝑳𝑾

 𝑽𝑯𝑾

Efficiency

Long Charging Cycle

Short Charging Cycle

 𝑽𝒔𝒍𝒑

Efficiency
 Voltage

 𝑽𝒄𝒉𝒂𝒓

 𝑽𝒄𝒌

 𝑽𝒔𝒍𝒑

 Time

 𝑽𝒘 𝜼𝒎𝒂𝒙

 𝜼𝒎𝒊𝒏

 Checkpointing Charged/Wakeup Sleep

Voltage Rises

Efficiency Drops

Executing Executing Charging Charging

Charging Executing

Good Efficiency

Poor Efficiency

Significant Charging

Overhead

(𝑽𝑳𝑾 → 𝑽𝑯𝑾)

𝒕𝟐

𝒕𝟑 𝒕𝟒

𝒕𝟎 𝒕𝟏

 𝑽𝒄𝒌

Checkpointing Frequency

𝟏/(𝒕𝟑 − 𝒕𝟏)

𝟏/(𝒕𝟒 − 𝒕𝟎) 𝑽𝑳𝑾:

 𝑽𝑯𝑾:

Figure 34: Influence of the Wake-up Voltage on Checkpointing Frequency of the Edge Device

with Ultra-low Harvesting Power

Based on Fig. 33, for the wake-up voltage of VHW , the entire executing/charging period

is t4 − t0 = 18.5 time units during which only one checkpointing needs to be conducted.

Therefore, the checkpointing frequency can be computed as fH = 1
t4−t0 = 1

18.5
. Similarly, for

the wake-up voltage of VLW , the checkpointing frequency is fL = 1
t3−t1 = 1

5.5
. As fL is more

than three times of fH , a low wake-up voltage results in a more intensive checkpointing

accompanied by a large energy overhead. Therefore, the wake-up voltage should be high

enough to maintain a low checkpointing frequency.

From the above analysis, we can see that a conflict exists between the reduction of

checkpointing (software) overhead and the improvement of charging (hardware) efficiency.

Since the wake-up voltage determines both aspects, an appropriate wake-up voltage which

strikes an optimal tradeoff between these two optimization goals should be determined so

that the overall energy efficiency can be maximized. With the experimental setup described

in Section 6.6.1, Fig. 35 shows how the selection of different wake-up voltages influences

the overall energy efficiency. In this figure, more program execution progress means better

overall energy efficiency.

70

Program Execution Progress (Iterations)

 Fully Charged:

Energy Efficiency (𝜼) =
𝑬𝒘

𝑬𝒘+𝑬𝒄𝒌+𝑬𝒔𝒄
%

𝑬𝒘

𝑬𝒄𝒌

𝑬𝒔𝒄

𝑽𝒘 = 𝟑. 𝟗𝟖 𝑽

𝑬𝒘

𝟐𝟎

𝑬𝒔𝒄

𝑽𝒘
𝟏

𝑽𝒘
𝟐

𝑽𝒘
𝟐 > 𝑽𝒘

𝟏

 : Work : Checkpoint : Self-Consumption

 Least Charged:

 Partially Charged:

𝑽𝒘 = 𝟐. 𝟒𝟔 𝑽 𝟐𝟒

𝑽𝒘 = 𝟐. 𝟖𝟗 𝑽 𝟒𝟏

Figure 35: Measurements of the Execution Progress with Different Working Voltages

When the three testing wake-up voltages are 2.46V, 2.89V, and 3.98V, the benchmark

program has the corresponding execution progress of 24, 41, and 20 iterations respectively.

Therefore, the energy efficiency is low with both the lowest wake-up voltage 2.46V and the

highest wake-up voltage 3.98V. When the wake-up voltage is 2.46V, the high checkpointing

frequency predominantly affects energy efficiency. When the wake-up voltage is 3.98V, the

low charging efficiency predominantly affects energy efficiency. However, if the wake-up

voltage is set to be in between the two voltages such as 2.89V in this example, the energy

efficiency is significantly increased, which is 41 iterations. Therefore, between 2.46V and

3.98V, there should be an optimal solution which achieves the maximum energy efficiency.

6.1.2 Routines vs. Efficiency

After observation the relationship between wake-up voltage and energy efficiency. It is

time to further observe the influence of the voltage selections regarding sleep and wake-

up events together (routine) to energy efficiency. The observation is conducted on TI’

MSP430FR6989 [3], with an ultra-low source power of 4.11mW . The average working power

of MSP430 benchmark 8 bit math from [1] is 28.95mW which is far greater than 4.11mW .

Hence, transient computing is necessary to achieve progress accumulatively. Here four rou-

tines with different sleep and wakeup voltage combinations are created for evaluating the

execution speed which can reflect energy efficiency. For each routine, the benchmark is exe-

71

cuted repetitively to measure the average execution speed, i.e. the number of iterations per

second. Higher speed means more energy is extracted from the energy harvester for program

execution within the same amount of time. Figure 36 shows the program execution speed

corresponding to four routines with four green bars. The sleep voltage and wake up voltage

for each routine are labeled in each bar.

Execution Speed (Iterations/s)

0 30 60 90 120 150 180 210 240 270 300 330

V
o

lt
a
g

e
 C

o
m

b
in

a
ti

o
n

s

v
slp

=2.48V, v
wak

=2.78V

v
slp

=3.02V, v
wak

=3.78V

v
slp

=2.48V, v
wak

=4.04V

v
slp

=2.68V, v
wak

=3.48V

Figure 36: Energy efficiency with different voltage combinations

From Figure 36, different routines result in significant differences in execution speed and

thus the energy efficiency. The reason is that different routines cause different charging

efficiency for transient computing. For example, although routine 1 and routine 3 have the

same sleep voltage of 2.48V , the energy efficiency of the third routine with wakeup voltage

2.78V is almost triple of the first routine which has the wakeup voltage of 4.04V . The reason

is that the charging efficiency of the first routine is significantly smaller than the third routine

due to the high wakeup voltage, hence, the third routine enables a faster execution speed.

Therefore, it is crucial to devise the edge computing routine appropriately.

72

6.2 Related Work

For self-powered edge devices, the harvested energy, other than being solely consumed by

the edge device itself, is also consumed by the power regulator resulting in significant hard-

ware energy overhead. A considerable amount of research has been conducted for reducing

the hardware overhead by improving the regulator efficiency through impedance matching

techniques. [8] proposes effective switching frequency technique for voltage converter to de-

liver maximum output power. [46] conducts circuit-level design which enables the regulator

to extract power from multiple low-power energy harvesting sources with maximum effi-

ciency. [9] proposes a duty cycle based impedance adjustment technique for the maximum

power extraction from a thermoelectric energy source without sacrificing power conversion

efficiency. what’s more [51, 49, 50] propose through-silicon-via inductors which can be used

by energy harvesting circuits with minimum footprint. Further, [63] proposes a run-time sim-

ulation framework of both power delivery and architecture and captures their interactions

for energy efficiency optimization.

Aside from hardware overhead, software overhead such as checkpointing and resuming

also degrades the performance of edge devices. The situation will become even worse when

harvesting power is extremely small as the percentage of software overhead will be amplified.

Current research regarding software overhead mainly focuses on reducing the energy con-

sumption of checkpointing. [55] proposes a checkpoint aware instruction scheduling algorithm

to reduce the writes to nonvolatile registers. [34] proposes a priority-based task scheduling

which prioritizes the execution of tasks with less checkpointing content to lower down check-

pointing overhead. [61] observes the runtime stack size variation and inserts checkpoints for

a long program when its stack size is small so that checkpointing overhead can be reduced.

These methods largely improve the performance of embedded systems.

Orthogonal to reducing overhead directly, managing the routine for the embedded system

is another effective yet rarely explored realm for reducing energy overhead. There are only a

few research work that has explored this topic. [36] proves that the energy harvesting powered

embedded system is better to be put to sleep mode instead of being shut down completely

upon power outage. After exploring the sleep event, [7] observes that when harvesting power

73

is getting better, it is unnecessary for the system to stay, if any, in sleep mode. Based on

this idea, a tentative wakeup strategy is proposed which allows the self-powered embedded

system to temporarily wake itself up, evaluate the quality of harvesting power, and determine

whether the system can wake up earlier. In this way, the charging efficiency can be improved.

This method is effective when a power outage happens sporadically. However, with ultra-

low harvesting power, checkpointing could happen intensively which incurs extra software

overhead. After realizing such a problem, [34] further discovers that checkpointing overhead

is in a negative correlation to the charging efficiency while both subjects are determined by

wakeup voltages.

However, when the harvesting power becomes extremely low, the aforementioned tech-

niques may not achieve desirable performance. There are mainly two reasons. First, the

harvesting power, most of the time, should be far less than the active power of an edge

device. In this case, tentative wakeup would further lower down the energy efficiency for

execution. Second, to implement a dynamic wakeup strategy, an edge device needs to con-

stantly monitor the voltage and analyze the quality of source power. This could cost a

tremendous amount of energy considering the scarcity of harvested energy. Therefore, this

paper addresses the aforementioned issues and proposes a simple yet highly efficient routine

handler to deliver the maximum energy efficiency for edge computing.

Even though overhead can be minimized with the aforementioned techniques, inappro-

priate execution frequencies can significantly reduce the runtime energy utility. Previous

research on DVFS-based techniques [58, 12, 29] mainly focus on how to lower down the

execution frequency appropriately so that the power consumption of the embedded system

can be reduced. However, low execution frequency doesn’t necessarily guarantee high energy

utility. Besides, accessing hardware with a large latency such as non-volatile memory or

GPIO can become be the bottleneck of the actual execution speed. Therefore, it is nec-

essary to optimize the execution frequency accordingly for each program. Therefore, aside

from improving energy efficiency, this paper also focuses on improving energy utility through

runtime frequency modulation.

74

6.2.1 System Architecture

Edge
Device

Power
Regulator

Ambient
Energies

Harvested
Energy

Power
Supply

Storage
Cap

Energy
Harvesters

Piezo

… … …

TEG RF

Power
Regulator

Ambient

Energy

Energy

Harvesters

Piezo

… …

TEG RF

Edge
Device

Energy
Storage

Figure 37: Architecture of self-powered edge device

Figure 37 shows a typical architecture of self-powered edge devices which consists of

energy harvesters, power regulator, and storage capacitor. The energy harvesters harvest

ambient energy and convert it into electrical energy. Then the power regulator harnesses the

electrical energy and provides targeting voltage for charging the storage capacitor or directly

powering the edge devices.

6.3 Modeling and Analysis for ξ(vWak)

6.3.0.1 Hardware Energy Efficiency The charging circuit of the self-powered IoT

edge device can be simplified as shown in Fig. 38.

In this figure, the storage capacitor has a time constant RCC where generally RC � RN

and the voltage of this capacitor is v. The energy harvester and the power regulator together

75

NVP

Syste
m

C

Rc

RNVP

Vcap

A

B

C

D

Vmax

V

RN

I

Icap

INVP

Id
e

a
l

V
o

lt
a
g

e
 S

o
u

rc
e

C

RC

vmax

v

R

N

Ideal Voltage Source

I

Figure 38: Capacitor Charging Circuit

can be considered as an ideal voltage source which connects the inner resistance RN . The

ideal voltage source maintains a constant voltage which equals the rated output voltage vmax

of the regulator. RN is not a constant and it becomes smaller when the harvesting power PH

increases (source power becomes stronger) and vice versa. To calculate the hardware energy

efficiency ξH , Theorem 1 is proposed.

Theorem 1. Given PH � PW and τ as the charging period, the hardware energy efficiency

ξH can be formulated in Eq. (6.1),

ξH = Ecap(V)/EH(τ) (6.1)

where 
Ecap(v) = C(v2 − v2

min)/2

EH(τ) =

∫ τ

0

PH(t)dt
(6.2)

.

Proof. Assume that the actual hardware energy efficiency is ξHa which is defined as the

amount of harvested energy over the maximum amount of energy that can be harvested

during the entire execution and charging cycles. Therefore, ξHa can be formulated in Eq. (6.3)

ξHa =
Eτ
cap(v)

EH(τ) + EH(γ)
(6.3)

76

Here, τ is the charging period and γ is the working period. Considering PH and PW , Eq. (6.3)

can be reformulated as Eq. (6.4)

ξHa =
PWγ/η

PH(τ + γ)
(6.4)

Where PH is the average harvesting power, PW is the average working power of the edge

device, and η is the efficiency of the regulator to utilize the stored energy for execution.

Assuming PW = ΨPH , since ξHa < 1 and η < 1, we have Eq. (6.5)

γ

τ
=

ξHa η

Ψ− ξHo η
< Ψ−1 (6.5)

Therefore, we approximate the hardware energy efficiency as Eq. (6.6).

ξH =
Eτ
cap(v)

EH(τ)
=
PWγ/η

PHτ
(6.6)

And the error ε of the approximation can be calculated in Eq. (6.7).

ε =
ξH − ξHa
ξHa

=
γ

τ
(6.7)

Based on the assumption Pw � PH , we have Ψ−1 → 0. Therefore, ε → 0. We further

analyze the influence of Ψ in the experiments. This completes the proof of Theorem 1.

Theorem 1 explores the influence of the relationship between PW and PH to the accuracy

of the formulation.

In Eq. (6.2), vmin represents the minimum voltage on the capacitor for the regulator to

maintain the rated output voltage for the edge device. Since Ecap(v) and EH(τ) are with

different independent variables v and τ , a further transformation is required. First Eq. (6.8)

shows the calculation of PH .

PH(t) = v2
max/RN(t) (6.8)

Then, according to Kirchhoff Voltage Law, the parameters in Fig. 38 have the following

relation:

vmax − v = C
dv

dτ
(RN +RC) (6.9)

77

Since RN � RC , RC can be omitted in Eq. (6.9). Therefore, based on Eq. (6.8), we further

have

vmax − v = C
dv

dτ

v2
max

PH
(6.10)

Hence, EH(τ) can be further transformed into Eq. (6.11).

EH(τ) = Cv2
max

[
ln

(
vmax − vmin
vmax − v

)]
(6.11)

Considering Eq. (6.2) and Eq. (6.11) together, the hardware energy efficiency ξH in Eq. (6.1)

can be further transformed into the function of v in Eq. (6.12).

ξH(v) =
(v2 − v2

min)/2

v2
max [ln(vmax − vmin)− ln(vmax − v)]

(6.12)

6.3.0.2 Software Energy Efficiency Based on the aforementioned analysis, the soft-

ware energy efficiency ξS can be calculated as in Eq. (6.13).

ξS(v, ω) = (Ecap(v)− Eck(ω)− Ewak)/Ecap(v) (6.13)

6.3.0.3 Execution Energy Efficiency Considering ξH and ξS together, the overall

energy efficiency of program execution can be calculated as in Eq. (6.14)

ξ(v, ω) =
(v2
exe − v2

ck)/2

v2
max [ln(vmax − vmin)− ln(vmax − v)]

(6.14)

where,  vck =

√
2E

(1)
ck (ω)/C + v2

min

vexe =
√
v2 − 2Ewak/C

(6.15)

Here, vck represents the voltage for starting checkpointing and vexe represents the voltage for

starting program execution.With Eq. (6.14), we can analyze the influences of both ω and v

on the energy efficiency ξ.

78

6.3.0.4 Influence of Checkpointing Data Size ω Take a derivative of ξ with respect

to ω, then we have Eq. (6.16).

∂ξ(v, ω)

∂ω
=

−(E
(1)
ck + E

(1)
rs)/C

v2
max [ln(vmax − vmin)− ln(vmax − v)]

< 0 (6.16)

As we can see from Eq. (6.16), ω should be as small as possible in order to maximize the

execution energy efficiency.

6.3.0.5 Influence of Wake-up Voltage v Under the circumstance that Pw � PH , if

we define vop as the optimal wake-up voltage that maximizes the execution energy efficiency

ξ, then we have the following properties.

Theorem 2. The optimal solution vop exists.

Proof. Take a derivative of ξ with respect to v and we have Eq. (6.17)

∂ξ(v, ω)

∂v
=
G(v)− F (v)

M(v)
(6.17)

where, G(v), F (v), and M(v) are

G(v) = vv2
max ln(

vmax − vmin
vmax − v

)

F (v) =
[
(v2
exe − v2

ck)/2
]
v2
max/(vmax − v)

M(v) =

[
v2
max ln(

vmax − vmin
vmax − v

)

]2

(6.18)

When the edge device starts program execution, the stored energy should be at least enough

for checkpointing and waking up the edge device, therefore, v should satisfy Eq. (6.19)

 v ≥ vini

vini =
√
v2
ck + 2Ewak/C

(6.19)

Also, because v < vmax, we have Eq. (6.20).

vini ≤ v < vmax (6.20)

79

Initially based on Eq. (6.15), v = vini ⇒ G(vini) > F (vini) = 0. In this case,

∂ξ

∂v
|v=vini > 0 (6.21)

Since lim
v→v−max

τ(v) = +∞, we have


lim

v→v−max
G(v) = +∞

lim
v→v−max

F (v) = +∞
(6.22)

Therefore, to calculate ∂ξ
∂v
|v→v−max , we need to know the second derivative of both G(v) and

F (v) with respect to v. Since any sudden loss or burst of PH can be flattened by the storage

capacitor, PH(τ) can be considered irrelevant to τ . Given Eq. (6.18), we have Eq. (6.23).
G(v)′ =v2

max

[
ln(

vmax − vmin
vmax − v

) +
v

vmax − v

]
F (v)′ =v2

max

[
v

vmax − v
+

(v2
exe − v2

ck)/2

(vmax − v)2

] (6.23)

Since G(v)′ = o(F (v)′)|v→v−max , we further need to employ the L′Hôpital′s rule which

leads to the result shown in Eq. (6.24).

lim
v→v−max

G(v)

F (v)
= lim

v→v−max

G(v)′

F (v)′
= 0 (6.24)

Further referring to Eq. (6.22), we have

∂ξ

∂v
|v→v−max = −∞ (6.25)

Hence, considering the Eq. (6.21) and (6.25), there should be at least one global maximum

solution for ξ that satisfies

∂ξ

∂v
|v=vop = 0 (vck ≤ vop < vmax) (6.26)

This completes the proof of Theorem 2.

80

Theorem 3. For a given ω, vop is unique.

Proof. Since ξ, aside from wake-up voltage v, is also determined by the checkpointing data

size ω. The changes of ω will affect the value of vop. For a given ω, let’s define K(v) =

G(v)− F (v), so the first derivative of K(v) with respect to v is

K ′(v) = v2
max

[
ln(

vmax − vmin
vmax − v

)− (v2
exe − v2

ck)/2

(vmax − v)2

]
(6.27)

Further, we have the second derivative of ξ with respect to v as

∂2ξ

∂v2
=
K ′(v)M(v)−K(v)M ′(v)

M(v)2
(6.28)

For optimal solution, we have K(vop) = 0, hence

∂2ξ

∂v2
|v=vop =

K ′(vop)

M(v)
(6.29)

For K ′(vop), since F (vop) = G(vop), based on Eq. (6.18) and (6.27), we have

K ′(vop) = v2
max

[
(vmax − 2vop)(v

2
op − v2

ini)/2

(vmax − vop)2

]
(6.30)

Assume that there are multiple optimal solutions, since
∂ξ

∂v
|v=vini > 0

∂ξ

∂v
|v→v−max < 0

for the smallest local maximum solution vop1 that satisfies ∂ξ
∂v
|v=vop1 = 0, it should also satisfy

∂2ξ
∂v2
|v=vop1 < 0. Since M(v) > 0, based on Eq. (6.29), we have

K ′(vop1) < 0 (6.31)

Bring Eq. (6.31) into Eq. (6.30), we have vop1 > vmax/2. Since vop1 is the smallest local

maximum solution, we have

∀vop > vop1 : K ′(vop) < 0⇒ ∂2ξ

∂v2
|v=vop < 0 (6.32)

Hence, all optimal solutions should be maximal. However, as ξ is continuous on v, if there

are more than one solutions for ξ′ = 0, the maximum and minimum solutions should appear

alternatively. However, Eq. (6.32) means that all solutions are maximum, which is impossible

unless there is only one solution vop1 which is also the global maximum for ξ.

This completes the proof of Theorem 3.

81

6.4 Modeling and Analysis for ξ(vWak, vslp)

This section provides energy modeling and evaluates the influence of vwak and vslp to-

gether to the energy efficiency ξ. First, the architecture of a general self-powered edge device

is given. Then, an energy consumption model for self-powered IoT devices is proposed. Based

on this energy model, a thorough analysis is conducted regarding achieving maximum energy

efficiency.

6.4.1 Energy Modeling

This subsection models the energy distribution of the harvested energy during a complete

transient computing cycle. A cycle consists of four periods including charging τch, resuming

τrs, execution τex, and checkpointing τck. During a complete transient computing cycle,

the harvested energy is distributed into hardware overhead, software overhead, and effective

energy.

6.4.1.1 Harvested Energy Given the harvesting power PH(t), the four routine periods,

then the harvested energy EH(τ) can be defined as

EH = τPH(t) (6.33)

where τ = τch + τrs + τex + τck represents a transient computing cycle and PH(t) represents

the average harvesting power during a complete transient computing cycle.

6.4.1.2 Hardware Energy Overhead On the hardware aspect, the harvested energy

is consumed by the edge device and supporting hardware including the power regulator and

the energy harvesters themselves. To find out hardware energy overhead Eho, the power

regulator and the energy harvester can be considered as a whole. Eq. (6.34) shows the

definition of Eho.

Eho = EH − Eed (6.34)

82

where Eed represents the energy consumption of the edge device in a transient computing

cycle. Given the efficiency η of the regulator and harvester, wakeup voltage vwak, sleep

voltage vslp, and capacitance C, Eed can be formulated as

Eed = η
{
ψPψ

H(t) + τchPC

}
(6.35)

where PC = C
2τch

(v2
wak − v2

slp) represents the average charging power of the capacitor during

the charging period, ψ = τre+τrs+τex+τck represents the active period, and Pψ
H(t) represents

the average harvesting power in active period. With Eq. (6.35), Eho in Eq. (6.34) can be

transformed into Eq. (6.36)

Eho = (1− η)EH + η
{
τchP

τch
H (t)− τchPC

}
(6.36)

where P τch
H (t) represents the average harvesting power in the charging period when edge

device is in sleep mode.

6.4.1.3 Software Overhead The software overhead includes checkpointing overhead

and resuming overhead. Among them, the first two are determined by the checkpointing

data size ω. Given the energy consumption for checkpointing and resuming a data unit as

E
(1)
ck and E

(1)
rs respectively, then energy for checkpointing (Eck(ω)) and resuming (Ers(ω))

can be defined as Eck(ω) = ωE
(1)
ck

Ers(ω) = ωE(1)
rs

(6.37)

With the aforementioned definitions, the total software overhead Eso can be formulated

as

Eso = Eck + Ers (6.38)

Notice that, Eso is irrelevant to time, hence, lowering the frequency of checkpointing can

reduce software overhead.

83

6.4.1.4 Effective Energy The effective energy Eee during a transient computing cycle

is the part of the energy that is consumed for execution. Effective energy is provided both

by the storage capacitor and the energy harvester. As the harvested energy is consumed

in three ways (hardware overhead, software overhead, and effective energy), based on the

previous modeling (6.34), the effective energy Eee can be calculated as

Eee = Eed − Eso (6.39)

Further taking eq. (6.35) into (6.39), we have

Eee = η
(
ψPψ

H(t) + τchPC

)
− Eso (6.40)

6.4.2 Efficiency Analysis

The purpose of this section is to explore strategies for maximizing the percentage of

effective energy in the harvested energy. This percentage is defined as energy efficiency ξ.

6.4.2.1 Formulation of ξ Based on Eq. (6.33) and (6.40), ξ can be formulated as

ξ = Eee/EH = ηχ
Pψ
H

PH
+ η(1− χ)

PC

PH
− Esoχ

PHψ
(6.41)

Here, χ = ψ/(τch + ψ) represents the duty cycle. Given the average working power of edge

device during active mode as PW , we have

η(ψPψ
H + τchPC) = ψPW (6.42)

Hence, the duty cycle χ can be transformed into

χ =
ηPC

PW + η(PC − Pψ
H)

(6.43)

84

Under ultra-low harvesting power scenario, the harvesting power PH is large enough to

charge up the capacitor but far smaller than the working power PW . In this case, we have

PC < PH � PW and eq. (6.41) can be simplified as

ξ =
ηPC − Eso/τch

PH
(6.44)

From this equation, ξ(PC , τch) is a monotonically increasing function with respect to

both PC and τch. Since PH is uncontrollable and independent from other parameters, the

optimization goal is

Maximize ζ = ηPC − Eso/τch (6.45)

where PC and τch are tunable by edge devices. It’s worth noting that, for the prerequisite

condition PH � PW , PH does not need to be infinitesimally smaller than PH in order to

make eq. (6.44) plausible. In fact, from the experimental observation, when PH ≤ PW/5,

the theoretic modeling turns out to be fairly effective, which will be detailed in section 6.6.

6.4.2.2 Optimization of ζ The equivalent charging circuit of the energy harvesting

system can be simplified as shown in Figure 38. With such modeling, PC and τch can be

considered as functions of both vslp and vwak.


PC = C(v2

wak − v2
slp)/(2τch)

τch = RNC ln

(
vmax − vslp
vmax − vwak

) (6.46)

With Eq. (6.46), ζ can be considered as a binary function of variable vslp and vwak. As long

as vwak > vslp and Eso < ητchPC are satisfied, the unique optimal solution which is also the

global maximum can be guaranteed.

85

11.522.5
v

wak
 (V)

33.540.511.52
v

slp
 (V)

2.533.5

0.1

0.3

0

0.2

ζ
(m

W
)

Figure 39: Concavity of ζ in respect of vslp and vwak

6.4.2.3 Validation of modeling We conduct both theoretical and experimental studies

to validate the proposed modeling. First, we conduct a theoretical case study of ζ(vslp, vwak).

Given vmax = 4.2V , RN = 10KΩ, C = 47µF , η = 0.7, and Eso = 4.15µJ , the graph of

ζ(vslp, vwak) can be observed in Figure 39. In this figure, ζ is an concave function in respect

of both vslp and vwak. Therefore, for each vslp, the optimal ζ is unique.

Figure 40 shows the maximum ζ and optimal vwak for each given vslp. From this figure, we

observe that different Vslp yield different optimal Vwak. When vslp = voptslp = 1.6V , ζ achieves

the global maximum of 0.285mW with the optimal voptwak = 2.75V . Since different power

regulators may have different vmin, vslp = max{vmin, voptslp} is able to yield the maximum ζ.

Further, we compare experimental results from a real-test bed (MSP430FR6989) with

results from a theoretic study to validate the modeling, which is shown in Figure 41. The

hardware parameters are shown in section 6.6.

For both theoretical and experimental evaluation, seven available sleep voltages are cho-

sen. For each Vslp, we incrementally change Vwak and measure the execution speed (energy

efficiency). The left figure shows the theoretical results and the right figure shows the ex-

perimental results. Due to the hardware constraints, the vslp should be no less than 2.34V .

As we can see, left and right have very similar trends and distribution. This validates the

effectiveness of the proposed modeling.

86

v
slp

 (V)
0.5 1 1.5 2 2.5 3 3.5

M
ax

im
u

m
 ζ

 (m
W

)

0.05

0.1

0.15

0.2

0.25

v
slp

 (V)
0.5 1 1.5 2 2.5 3 3.5

O
p

ti
m

al
 v

w
ak

 (
V

)

0

1

2

3

4

Figure 40: Optimal ζ and vwak with given vslp

Wakeup Voltage (v)

E
xe

cu
ti

o
n

 S
p

ee
d

 (
It

er
at

io
n

s/
s)

0

100

200

300

400

2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9
0

100

200

300

400

2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9

Vslp=2.37v
Vslp=2.62v

Vslp=2.87v

Vslp=3.12v

Vslp=3.37v

Vslp=3.62v

Vslp=3.87v

Vslp=2.37v

Vslp=2.62v

Vslp=2.87v
Vslp=3.12v

Vslp=3.37v

Vslp=3.62v

Vslp=3.87v

Theoretical Experimental

Figure 41: Execution speed (theoretical vs experimental)

87

6.5 Optimizing Voltages for Sleep/Wakeup

In this section, an energy-efficient routine management scheme is proposed to maximize

the execution progress of ultra-low self-powered IoT edge devices.

From the previous energy modeling analysis, for a given sleep voltage, there exists an

optimal wake-up voltage; for different pairs of sleep and wakeup voltages, there exists the

best pair that generates the highest energy efficiency. Therefore, the voltage profile is col-

lected offline which stores the optimal wake-up voltage concerning different sleep voltages.

This voltage profile is referenced during online execution for designing the routine handler.

Besides, for different tasks, there exists an optimal clock frequency to achieve the highest

energy efficiency. Therefore, the frequency profile is also collected offline which stores the

optimal clock frequency for each task. This frequency profile is referenced during online

execution by the frequency modulator.

Routine Handler is in charge of selecting the best sleep voltage vslp and wakeup voltage

vwak so that the maximum energy efficiency can be achieved for task execution. With op-

timized routines, the Frequency Modulator further maximizes energy utility by setting the

optimal frequency for each task during the runtime execution.

6.5.1 Routine Handler

In this section, a routine handler is designed which manages the routine events of edge

devices properly during transient computing, so that the maximum energy efficiency can

be achieved for program execution. Before moving to the details of Routine Handler, it is

necessary to find the optimal voltage set 〈vslp, vwak〉 for wakeup and sleep events which is

shown in Algorithm 6.5.1.

The inputs of Algorithm 6.5.1 include all possible voltages 〈v〉, the maximum voltage

vmax, and the minimum voltage vmin for power regulator to remain functional. The output

is the optimal voltage set 〈vslp, vwak〉 for wakeup and sleep events.

Initially, voltages in 〈v〉 are filtered to satisfy vmin ≤ v ≤ vmax, which is shown in line 3.

Then, from line 5 to 13, ζ is measured with all possible combinations of vslp and vwak. Here

88

Algorithm 6.5.1 Measure Optimal 〈vslp, vwak〉
Input: vmax, vmin, and 〈v〉
Output: optimal 〈vslp, vwak〉 set
1: if min 〈v〉 < vmin or max 〈v〉 > vmax then
2: remove any v which satisfies;
3: v < vmin||v > vmax;
4: end if
5: for each vi ∈ 〈v〉 do
6: for each vj ∈ 〈v〉 do
7: if vj > vi then
8: measure ζ(vi, vj);
9: end if

10: end for
11: vislp ← vi;

12: viwak ← arg maxvj ζ(vislp, vj)

13: add vislp and viwak into 〈vslpvwak〉;
14: end for
15: return 〈vslp, vwak〉. =0

ζ is reflected by the execution progress per time unit which is defined as execution speed.

After that, for each possible sleep voltage vslp ∈ 〈v〉, Algorithm 6.5.1 searches the optimal

wakeup voltage pair vwak = arg maxvj ζ(vislp, vj). Finally, current vslp and vwak will be both

added into 〈vslp, vwak〉.

After finding the optimal voltage set 〈vslp, vwak〉, the routine handling procedures are

detailed in Algorithm 6.5.2, whose purpose is to maximize the energy efficiency. The inputs

for this algorithm include the optimal voltage set 〈vslp, vwak〉, the required checkpointing

energy Eck, reserve energy ∆E, checkpointing indicator Invck (non-volatile), restart indicator

Ivrs (volatile), parameter-update indicator Invup (non-volatile), and the ADC period TADC .

Initially, from line 1 to 5, Routine Handler initiates intermediate parameters including

optimal sleep voltage voptslp , optimal wakeup voltage voptwak, checkpointing voltage vck, trigger-

point voltage vtr, and routine event ID Rid which can represent sleep (checkpointing), wakeup

(resuming), or execution. Here, Rid is initially set to sleep.

With the above initialization, the procedure of Routine Handler is detailed as follows.

For every TADC period in line 7, Routine Handler gets voltage v on the capacitor. Since

initially Rid = sleep, the edge device first enters into the sleep mode. When v > voptwak (line 8

- 11) , the edge device wakes up with Rid = wakeup.

89

Algorithm 6.5.2 Routine Handler
Input: 〈vslp, vwak〉, Eck, ∆E, Invck , Ivrs, I

nv
up , and TADC

Output: Maximum energy efficiency
1: voptslp = arg max ζ(vslp); /* optimal Vsleep; */

2: voptwak = arg max ζ(vwak); /* optimal Vwakeup; */

3: vck = (voptslp

2
+ 2Eck

C)
1
2 ; /* checkpointing */

4: vtr = (voptslp

2
+ 2(Eck+∆E)

C)
1
2 ; /* triggerpoint */

5: Rid = Sleep; /* routine event ID */
6: while t%TADC = 0 do
7: v ←voltage on capacitor;
7: switch Rid do
7: case Sleep
8: if v > voptwak then
9: wake up the system;

10: Rid ←Wakeup;
11: end if
12: if v ≤ vck then
13: if Invck = 0 then
14: conduct checkpointing;
15: Invck = 1;
16: end if
17: end if
17: case Wakeup
18: if Ivrs 6= 1 then
19: resume previous execution state;
20: end if
21: Invup = 0;
22: Rid ← Execution;

22: case Execution
23: if Invup = 0 then
24: APU();
25: end if
26: if v ≤ vtr then
27: Rid ← Sleep;
28: else
29: continue task execution;
30: end if
31: end while=0

90

During the wakeup stage (line 18 - 22), Routine Handler first checks the Ivrs. Ivrs 6= 1

means that the edge device has restarted and all the volatile data are lost. The trick here

is that Ivrs is a volatile variable which will be reset (Ivrs 6= 1) after restarting automatically.

In this case, the edge device needs to resume the previous execution state with an update

indicator Invup = 0 and Rid = Execution before proceeding any further.

During the execution stage, since Invup = 0, the adaptive parameter updating (APU)

algorithm first needs to be executed for parameter updating (line 24) which will be detailed in

Algorithm 6.5.3. After parameter updating, the edge device can continue execution. During

the execution, the Routine Handler keeps monitoring the voltage on the capacitor. When

v ≤ vtr, the edge device enters into sleep mode by setting Rid = sleep. During the sleep mode,

if the voltage keeps dropping, it means that a power outage may happen. Therefore, once v

continues to drop below vck (line 12 - 15), checkpointing needs to be conducted. However,

in case of v fluctuating around vck due to unstable harvesting power, the Routine Handler

sets checkpointing indicator Invck = 1 to prevent redundant checkpointing for energy saving.

Once execution resumes, APU updates Invck = 0 to allow new checkpointing. Algorithm 6.5.3

gives details of APU.

Algorithm 6.5.3 Adaptive Parameter Update (APU)

Input: ∆v, 〈RS〉nv, and inputs of Routine Handler
Output: updated Invck , I

v
rs, I

nv
up , v

opt
slp , v

opt
wak, vck, and vtr

1: Ivrs = 1; Invck = 0; Invup = 1;
2: if arg max ζ(vslp)−min〈vslp〉 > ∆v then
3: add Ivrs into non-volatile array 〈RS〉;
4: if any rsi ∈ 〈RS〉nv satisfies rsi 6= 1 then
5: voptslp = arg max ζ(vslp);
6: else
7: vα = {[arg max ζ(vslp)]

2 − 2(Eck+∆E)
C }

1
2 ;

8: vβ = min〈vslp〉+ ∆v;
9: voptslp = max(vα, vβ);

10: end if
11: vck = (voptslp

2
+ 2Eck

C)
1
2 ;

12: vtr = (voptslp

2
+ 2(Eck+∆E)

C)
1
2 ;

13: voptwak = arg max ζ(vwak, v
opt
slp);

14: end if
15: return Invck , I

v
rs, I

nv
up , v

opt
slp , v

opt
wak, vck, and vtr; =0

91

The inputs of APU include ∆v (a safe voltage distance), 〈RS〉nv (a non-volatile set to

record restart incidences), and all inputs of Routine Handler. The outputs contain updated

Invck , Ivrs, I
nv
up , voptslp , voptwak, vck, and vtr. The rationale of conducting APU is that even if voptslp

is optimal, the edge device enters into sleep mode when v ≤ vtr. If the harvesting power is

large enough to charge up the capacitor, no checkpointing will be conducted. In this sense,

the edge device does not sleep at voptslp . Therefore, further optimization is required.

At the beginning (line 1), APU sets Ivrs = 1 to monitor restart incidence, Invck = 0 to allow

new checkpointing to happen, and Invup = 1 to prevent redundant updating for energy saving.

Then, APU evaluates where the edge device is eligible for updating voptslp and voptwak (line 3).

Specifically, if the difference between vslpslp and minimum sleep voltage min〈vslp〉 is larger than

∆v, APU proceeds further voltage adjustment. Otherwise, APU stops parameter update.

Assume voltage updating is eligible, then, APU records the latest Ivrs into 〈RS〉nv. Here,

any rsi ∈ 〈RS〉nv satisfying rsi 6= 1 means that a power outage has happened recently. In

this case, APU sticks to original voptslp = arg max ζ(vslp). However, all rsi ∈ 〈RS〉nv satisfying

rsi = 1, indicates no power outage has happened recently. In this case, APU reduces voptslp

and tries to set the triggerpoint voltage vtr as close to arg max ζ(vslp) as possible (line 6 -

9). After updating voptslp , APU further updates vck, vtr, and voptwak (line 11-13). Finally APU

returns the updated parameters (line 15).

6.6 Experiments

6.6.1 Experimental Setup

In this section, details of the hardware platform, power traces, and benchmarks are

described.

6.6.1.1 Hardware Platform The targeted ultra-low-power edge device is TI’s ultra-

low-power evaluation board with MSP430FR6989, which consists of a 16-bit MCU, a 12-bit

ADC, a 2KB volatile SRAM, a 128KB nonvolatile FRAM memory, and different peripherals

92

for sensing and data communication. The power regulator is Bq25570 + LTC3459EDC

which is able to supply a constant voltage of 3.3V to power the edge device and a maximum

voltage of 4.2V to charge up the capacitor with the capacitance of 470µF .

6.6.1.2 Power Trace We collect the power traces from Powercast RF energy harvester.

Then, we synthesize four power traces in Figure 19 using signal generators for performance

evaluation.

The four power traces with different power magnitudes are recorded from the oscilloscope

at the sample rate of 240KSa/s. On average, the power they can provide is 7.27mW,

6.19mW, 4.94mW, and 4.11mW, respectively. The harvesting power is far less than the

working power of edge devices.

6.6.1.3 Benchmarks Ten MSP430 benchmarks in Figure 29 are from Texas Instru-

ments [1] are used for performance evaluation. Among them, four benchmarks 16 bit 2dim,

Floating Point Math, Matrix Multiplication, and Fir F ilter are modified with ADC

sampling and FRAM access to evaluate the execution speed bottleneck caused by hardware

modules. To evaluate the performance of Routine Handler, each benchmark is executed

repetitively to measure the average execution speed. To measure the performance of Fre-

quency Modulator, all benchmarks are scheduled one after another in a round-robin style.

6.6.2 Experimental Evaluation

6.6.2.1 Observation of ζ(vslp, vwak) In this section, we observe the energy efficiency

with respect to vslp and vwak based on Algorithm 6.5.1 by executing benchmark 8 bit math

which has the average active power of 28.95mW . Due to the discrete nature of ADC module,

the entire voltage range [vmin, vmax] is divided into 35 levels. For each vslp ∈ [vmin, vmax],

the maximum energy efficiency (execution speed) and the respective vslp are shown in Fig-

ure 42(a) and 42(b) respectively.

From Figure 42, when vslp = 2.37V and voptwak = 2.48V , the maximum energy efficiency

can be achieved, hence, they will be used by ENZYME to maximize the energy efficiency.

93

Sleep Voltage (V)
2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0E

x
e

c
u

ti
o

n
 S

p
e

e
d

 (
It

e
ra

ti
o

n
s

/s
)

100

200

300

400

500

600 Trace A Trace B Trace C Trace D

(a) Maximum Energy Efficiency with Different Sleep Voltages

Sleep Voltage (V)
2.4 2.5 2.6 2.7 2.7 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0O

p
ti

m
a
l
W

a
k
e
-u

p
 V

o
lt

a
g

e
 (

V
)

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

(b) Optimal Wakeup Voltages with Different Sleep Voltages

Figure 42: Maximum Energy Efficiency and Optimal Wakeup Voltages with Different Sleep

Voltages

94

Notice that the trends of the optimal vwak and the respective maximum ζ agree with the

theoretical analysis in section 6.4.2. Overall, referring to harvesting power and working

power of edge device, when PH ≤ PW/5, the proposed theory can be very effective. Due to

the hardware constraint, the power regulator cannot maintain a constant output voltage if

the voltage on the capacitor is lower than 2.2V , which may increase the chance of runtime

error. Therefore, we set the minimum sleep voltage to 2.34V to ensure a constant 3.3V

output voltage when MSP430FR6989 is in active mode.

Trace A Trace B Trace C Trace D

A
v

e
ra

g
e

 E
x

e
c

u
ti

o
n

 P
o

w
e

r
(m

W
)

0

0.5

1

1.5

2
ENZYME
Dyn_Wak
NVP_Sch

MinMax

Figure 43: Average execution power

6.6.2.2 Energy Efficiency Evaluation In this section, the performance of ENZYME

is evaluated in terms of energy efficiency. The baselines include Dyn Wak which conducts

dynamic wakeup strategy [34], NV P Sch which has a preset runtime routine for execu-

tion [36], and MinMax which has the minimum vslp and the maximum vwak. The results

are shown in Figure 44.

As we can see from Figure 44, ENZYME shows significant improvements in energy ef-

ficiency over baselines. The reason for such superiority is bifold. First, the optimal sleep

and wakeup voltage pairs can extract the maximum energy from energy harvester. Sec-

ond, without a sophisticated and energy-consuming power analysis procedure, ENZYME is

lightweight and can further save extra energy. Considering the energy consumption of each

95

Trace A Trace B Trace C Trace D

E
x

e
c

u
ti

o
n

 S
p

e
e

d
 (

It
e

ra
ti

o
n

s
/s

)

100

200

300

400

500

600 ENZYME
Dyn_Wak
NVP_Sch

MinMax

(a) 8 bit math

Trace A Trace B Trace C Trace D

E
x

e
c

u
ti

o
n

 S
p

e
e

d
 (

It
e

ra
ti

o
n

s
/s

)

0

10

20

30

40
ENZYME
Dyn_Wak
NVP_Sch

MinMax

(b) 8 bit 2dim

Trace A Trace B Trace C Trace D

E
x

e
c

u
ti

o
n

 S
p

e
e

d
 (

It
e

ra
ti

o
n

s
/s

)

0

500

1,000

1,500
ENZYME
Dyn_Wak
NVP_Sch

MinMax

(c) 8 bit switch

Trace A Trace B Trace C Trace D

E
x

e
c

u
ti

o
n

 S
p

e
e

d
 (

It
e

ra
ti

o
n

s
/s

)

100

200

300

400

500

600

700
ENZYME
Dyn_Wak
NVP_Sch

MinMax

(d) 16 bit math

Trace A Trace B Trace C Trace D

E
x

e
c

u
ti

o
n

 S
p

e
e

d
 (

It
e

ra
ti

o
n

s
/s

)

0

0.05

0.1

0.15

0.2

0.25
ENZYME
Dyn_Wak
NVP_Sch

MinMax

(e) 16 bit 2dim

Trace A Trace B Trace C Trace D

E
x

e
c

u
ti

o
n

 S
p

e
e

d
 (

It
e

ra
ti

o
n

s
/s

)

0

500

1000

1500

2000
ENZYME
Dyn_Wak
NVP_Sch

MinMax

(f) 16 bit switch

Trace A Trace B Trace C Trace D

E
x

e
c

u
ti

o
n

 S
p

e
e

d
 (

It
e

ra
ti

o
n

s
/s

)

0

100

200

300

400
ENZYME
Dyn_Wak
NVP_Sch

MinMax

(g) 32 bit math

Trace A Trace B Trace C Trace D

E
x

e
c

u
ti

o
n

 S
p

e
e

d
 (

It
e

ra
ti

o
n

s
/s

)

0

0.2

0.4

0.6

0.8 ENZYME
Dyn_Wak
NVP_Sch

MinMax

(h) Float-
ing point math

Trace A Trace B Trace C Trace D

E
x

e
c

u
ti

o
n

 S
p

e
e

d
 (

It
e

ra
ti

o
n

s
/s

)

0

0.1

0.2

0.3

0.4
ENZYME
Dyn_Wak
NVP_Sch

MinMax

(i) Ma-
trix Multiplication

Trace A Trace B Trace C Trace D

E
x

e
c

u
ti

o
n

 S
p

e
e

d
 (

It
e

ra
ti

o
n

s
/s

)

0

0.01

0.02

0.03

0.04
ENZYME
Dyn_Wak
NVP_Sch

MinMax

(j) Fir Filter

Figure 44: ENZYME vs. Baselines regarding energy efficiency

benchmark in a single iteration from Figure 29, the average execution power with different

techniques is shown in Figure 43. Overall, ENZYME has 8.8% improvement over Dyn Wak,

24.27% improvement over NV P Sch, and 105.42% improvement over MinMax.

6.7 Summary

This chapter proposes a routine handler which is able to govern the runtime routine

events of sleep and wake-up for self-powered IoT edge devices to help the energy harvester

and power regualator bundle to maximize the energy extraction rate. The significance of

this technique is that the the proposed routine handler is lightweight and highly efficient,

which makes it especially suited for energy constraint IoT Edge devices. Experiments show

that the routine handler can help the edge device to achieve an promising energy extraction

rate wthout any extra hardware support.

96

7.0 Conclusion

This dissertation aims at solving urgent low-energy efficiency and reliability issues for

self-powered IoT edge devices through software approaches, which are more flexible, cheaper,

and equally effective compared with hardware solutions. Specifically, first, to prevent exe-

cution progress loss during the power outage, NVP-aware task schedulers are proposed to

maximize the overall task execution progress especially for the atomic tasks which are bet-

ter to finish execution before the power outage. Second, to minimize both the time and

energy overhead of checkpointing operation, an intelligent checkpointing scheme is proposed

which not only can ensure a successful checkpointing but also can predict the necessity of

conducting checkpointing to avoid excessive checkpointing overhead. to avoid inappropriate

runtime CPU clock frequency, which consumes extra energy while delivering less execution

progress, a CPU frequency Modulator is proposed which adjusts the runtime CPU clock

frequency accordingly. To thrive in ultra-low harvesting power scenarios, a light-weight soft-

ware paradigm is proposed to help maximize the energy extraction rate of energy harvester

and power regulator bundle. Besides, checkpointing under such an ultra-low scenario is also

optimized for more energy-efficient and light-weight operation. The potential of this work

can be significant on social and economic perspectives as the contributions of this work can

help trillions of existing and more coming IoT edge devices thriving in power-constrained

scenarios without tampering hardware structure.

97

Bibliography

[1] MSP430 Benchmarks. http://www.mcuzone.com/work/DIMM144-CPU-MSP430/

slaa205a.pdf.

[2] MSP430 MCU. http://www.ti.com/lsds/ti/microcontrollers_16-bit_32-bit/
msp/ultra-low_power/msp430frxx_fram/products.page.

[3] MSP430FR6989. http://www.ti.com/tool/MSP-EXP430FR6989.

[4] WISP Project. http://sensor.cs.washington.edu/WISP.html.

[5] D. Balsamo, A. Das, A. S. Weddell, D. Brunelli, B. M. Al-Hashimi, G. V. Merrett, and
L. Benini. Graceful performance modulation for power-neutral transient computing
systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 35(5):738–749, May 2016.

[6] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi, D. Brunelli, and
L. Benini. Hibernus: Sustaining computation during intermittent supply for energy-
harvesting systems. Embedded Systems Letters, IEEE, 7(1):15–18, 2015.

[7] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi, D. Brunelli, and
L. Benini. Hibernus: Sustaining computation during intermittent supply for energy-
harvesting systems. IEEE Embedded Systems Letters, 7(1):15–18, March 2015.

[8] S. Bandyopadhyay and A. P. Chandrakasan. Platform architecture for solar, thermal,
and vibration energy combining with mppt and single inductor. IEEE Journal of
Solid-State Circuits, 47(9):2199–2215, Sept 2012.

[9] C. L. Chang and T. C. Lee. A compact multi-input thermoelectric energy harvesting
system with 58.5 In 2014 International Symposium on Integrated Circuits (ISIC),
pages 1–4, Dec 2014.

[10] C. Ding, N. Liu, Y. Wang, J. Li, S. Heidari, J. Hu, and Y. Liu. Multisource indoor
energy harvesting for nonvolatile processors. IEEE Design Test, 34(3):42–49, June
2017.

98

http://www.mcuzone.com/work/DIMM144-CPU-MSP430/slaa205a.pdf
http://www.mcuzone.com/work/DIMM144-CPU-MSP430/slaa205a.pdf
http://www.ti.com/lsds/ti/microcontrollers_16-bit_32-bit/msp/ultra-low_power/msp430frxx_fram/products.page
http://www.ti.com/lsds/ti/microcontrollers_16-bit_32-bit/msp/ultra-low_power/msp430frxx_fram/products.page
http://www.ti.com/tool/MSP-EXP430FR6989
http://sensor.cs.washington.edu/WISP.html

[11] S. Ducharme, T. J. Reece, C. Othon, and R. K. Rannow. Ferroelectric polymer
langmuir-blodgett films for nonvolatile memory applications. IEEE Transactions on
Device and Materials Reliability, 5(4):720–735, 2005.

[12] V. Hanumaiah and S. Vrudhula. Energy-efficient operation of multicore processors by
dvfs, task migration, and active cooling. IEEE Transactions on Computers, 63(2):349–
360, 2014.

[13] Y. Horii, Y. Hikosaka, A. Itoh, K. Matsuura, M. Kurasawa, G. Komuro, K. Maruyama,
T. Eshita, and S. Kashiwagi. 4 mbit embedded fram for high performance system on
chip (soc) with large switching charge, reliable retention and high imprint resistance.
In International Electron Devices Meeting, 2002. IEDM ’02., pages 539–542, 2002.

[14] H. Jayakumar, A. Raha, and V. Raghunathan. Quickrecall: A low overhead hw/sw
approach for enabling computations across power cycles in transiently powered com-
puters. In VLSI Design and 2014 13th International Conference on Embedded Sys-
tems, 2014 27th International Conference on, pages 330–335. IEEE, 2014.

[15] X. Jiang, J. Polastre, and D. Culler. Perpetual environmentally powered sensor net-
works. In Fourth International Symposium on Information Processing in Sensor Net-
works, 2005., pages 463–468, 2005.

[16] W. kei Yu, S. Rajwade, S.-E. Wang, B. Lian, G. Suh, and E. Kan. A non-volatile
microcontroller with integrated floating-gate transistors. In IEEE/IFIP 41st Interna-
tional Conference on Dependable Systems and Networks Workshops (DSN-W),, pages
75–80, 2011.

[17] Q. A. Khan and S. J. Bang. Energy harvesting for self powered wearable health
monitoring system. Health, pages 1–5, 2009.

[18] H. Kim, S. Priya, H. Stephanou, and K. Uchino. Consideration of impedance match-
ing techniques for efficient piezoelectric energy harvesting. IEEE transactions on
ultrasonics, ferroelectrics, and frequency control, 54(9):1851–1859, 2007.

[19] N. Kong, D. S. Ha, A. Erturk, and D. J. Inman. Resistive impedance matching
circuit for piezoelectric energy harvesting. Journal of Intelligent Material Systems
and Structures, 21(13):1293–1302, 2010.

[20] J. Kymissis, C. Kendall, J. Paradiso, and N. Gershenfeld. Parasitic power harvesting
in shoes. ISWC’98, pages 132–139, 1998.

99

[21] V. Leonov. Thermoelectric Energy Harvesting of Human Body Heat for Wearable
Sensors. IEEE Sensors Journal, 13(6):2284–2291, 2013.

[22] H. Li, Y. Liu, C. Fu, C. J. Xue, D. Xiang, J. Yue, J. Li, D. Zhang, J. Hu, and H. Yang.
Performance-aware task scheduling for energy harvesting nonvolatile processors con-
sidering power switching overhead. In Design Automation Conference (DAC), 2016
53nd ACM/EDAC/IEEE, pages 1–6. IEEE, 2016.

[23] Z. Li, Y. Liu, D. Zhang, C. J. Xue, Z. Wang, X. Shi, W. Sun, J. Shu, and H. Yang.
Hw/sw co-design of nonvolatile io system in energy harvesting sensor nodes for optimal
data acquisition. In Proceedings of the 53rd Annual Design Automation Conference,
page 154. ACM, 2016.

[24] J. Liang and W.-H. Liao. Impedance modeling and analysis for piezoelectric energy
harvesting systems. IEEE/ASME Transactions on Mechatronics, 17(6):1145–1157,
2012.

[25] C.-W. Liu and J. S. Thorp. New methods for computing power system dynamic
response for real-time transient stability prediction. IEEE Transactions on Circuits
and Systems I: Fundamental Theory and Applications, 47(3):324–337, Mar 2000.

[26] Y. Liu, Z. Li, H. Li, Y. Wang, X. Li, K. Ma, S. Li, M.-F. Chang, S. John, Y. Xie,
J. Shu, and H. Yang. Ambient energy harvesting nonvolatile processors: from circuit
to system. In Proceedings of the 52nd Annual Design Automation Conference, page
150, 2015.

[27] Y. Liu, Z. Wang, A. Lee, F. Su, C.-P. Lo, Z. Yuan, C.-C. Lin, Q. Wei, Y. Wang,
Y.-C. King, et al. A 65nm reram-enabled nonvolatile processor with 6x reduction in
restore time and 4x higher clock frequency using adaptive data retention and self-
write-termination nonvolatile logic. In 2016 IEEE International Solid-State Circuits
Conference (ISSCC), pages 84–86. IEEE, 2016.

[28] A. Mirhoseini, E. Songhori, and F. Koushanfar. Automated checkpointing for enabling
intensive applications on energy harvesting devices. In 2013 IEEE International Sym-
posium on Low Power Electronics and Design (ISLPED), pages 27–32, 2013.

[29] A. Mishra and A. K. Tripathi. Energy efficient voltage scheduling for multi-core
processors with software controlled dynamic voltage scaling. Applied Mathematical
Modelling, 38(14):3456–3466, 2014.

100

[30] P. Mitcheson. Energy harvesting for human wearable and implantable bio-sensors.
In Engineering in Medicine and Biology Society (EMBC), 2010 Annual International
Conference of the IEEE, pages 3432–3436, 2010.

[31] H. Nakamoto, D. Yamazaki, T. Yamamoto, H. Kurata, S. Yamada, K. Mukaida,
T. Ninomiya, T. Ohkawa, S. Masui, and K. Gotoh. A passive uhf rf identification
cmos tag ic using ferroelectric ram in 0.35um technology. IEEE Journal of Solid-State
Circuits, 42(1):101–110, 2007.

[32] C. Pan, S. Gu, M. Xie, Y. Liu, C. J. Xue, and J. Hu. Wear-leveling aware page
management for non-volatile main memory on embedded systems. IEEE Transactions
on Multi-Scale Computing Systems, 2(2):129–142, 2016.

[33] C. Pan, S. Gu, M. Xie, Y. Liu, C. J. Xue, and J. Hu. Wear-leveling aware page
management for non-volatile main memory on embedded systems. IEEE Transactions
on Multi-Scale Computing Systems, 2(2):129–142, April 2016.

[34] C. Pan, M. Xie, and J. Hu. Maximize energy utilization for ultra-low energy har-
vesting powered embedded systems. In 2017 IEEE 23rd International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA), pages 1–6,
Aug 2017.

[35] C. Pan, M. Xie, J. Hu, Y. Chen, and C. Yang. 3m-pcm: exploiting multiple write
modes mlc phase change main memory in embedded systems. In Proceedings of the
2014 International Conference on Hardware/Software Codesign and System Synthesis,
page 33. ACM, 2014.

[36] C. Pan, M. Xie, Y. Liu, Y. Wang, C. J. Xue, Y. Wang, Y. Chen, and J. Hu. A
lightweight progress maximization scheduler for non-volatile processor under unstable
energy harvesting. SIGPLAN Not., 52(5):101–110, June 2017.

[37] C. Pan, M. Xie, C. Yang, Y. Chen, and J. Hu. Exploiting multiple write modes of
nonvolatile main memory in embedded systems. ACM Trans. Embed. Comput. Syst.,
16(4):110:1–110:26, May 2017.

[38] C. Park and P. H. Chou. Ambimax: Autonomous energy harvesting platform for
multi-supply wireless sensor nodes. In SECON’06., pages 168–177, 2006.

101

[39] Z. Qin, Y. Wang, D. Liu, Z. Shao, and Y. Guan. Mnftl: An efficient flash translation
layer for mlc nand flash memory storage systems. In Proceedings of the 48th Design
Automation Conference, pages 17–22. ACM, 2011.

[40] V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. Srivastava. Design consider-
ations for solar energy harvesting wireless embedded systems. In Fourth International
Symposium on Information Processing in Sensor Networks, pages 457–462, 2005.

[41] B. Ransford, S. S. Clark, M. Salajegheh, and K. Fu. Getting things done on com-
putational rfids with energy-aware checkpointing and voltage-aware scheduling. In
HotPower’08, pages 5–5, 2008.

[42] B. Ransford, J. Sorber, and K. Fu. Mementos: system support for long-running
computation on rfid-scale devices. ACM SIGPLAN Notices, 47(4):159–170, 2012.

[43] N. Sakimura, T. Sugibayashi, R. Nebashi, and N. Kasai. Nonvolatile magnetic flip-flop
for standby-power-free socs. IEEE Journal of Solid-State Circuits, 44(8):2244–2250,
2009.

[44] N. Sakimura, Y. Tsuji, R. Nebashi, H. Honjo, A. Morioka, S. Fukami, S. Miura,
N. Kasai, T. Endoh, H. Ohno, T. Hanyu, and T. Sugibayashi. 10.5a 90nm 20mhz
fully nonvolatile microcontroller for standby-power-critical applications. IEEE Inter-
national Solid-State Circuits Conference, 12(4):184–185, 2014.

[45] N. S. Shenck and J. A. Paradiso. Energy scavenging with shoe-mounted piezoelectrics.
Ieee Micro, 21(3):30–42, 2001.

[46] C. Shi, B. Miller, K. Mayaram, and T. Fiez. A multiple-input boost converter for
low-power energy harvesting. IEEE Transactions on Circuits and Systems II: Express
Briefs, 58(12):827–831, Dec 2011.

[47] T. Starner. Human-powered wearable computing. IBM systems Journal, 35(3.4):618–
629, 1996.

[48] J. Taneja, J. Jeong, and D. Culler. Design, modeling, and capacity planning for
micro-solar power sensor networks. In IPSN’08, pages 407–418, 2008.

[49] U. R. Tida, R. Yang, C. Zhuo, and Y. Shi. On the efficacy of through-silicon-via induc-
tors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 23(7):1322–
1334, July 2015.

102

[50] U. R. Tida, C. Zhuo, and Y. Shi. Novel through-silicon-via inductor-based on-chip dc-
dc converter designs in 3d ics. ACM Journal on Emerging Technologies in Computing
Systems (JETC), 11(2):16, 2014.

[51] U. R. Tida, C. Zhuo, and Y. Shi. Through-silicon-via inductor: Is it real or just a
fantasy? In 19th Asia and South Pacific Design Automation Conference (ASP-DAC),
pages 837–842, Jan 2014.

[52] C. Wang, N. Chang, Y. Kim, S. Park, Y. Liu, and H. Lee. Storage-less and converter-
less maximum power point tracking of photovoltaic cells for a nonvolatile micropro-
cessor. ASP-DAC, pages 379–384, 2014.

[53] Y. Wang, Y. Liu, S. Li, D. Zhang, B. Zhao, M.-F. Chiang, Y. Yan, B. Sai, and
H. Yang. A 3us wake-up time nonvolatile processor based on ferroelectric flip-flops.
In Proceedings of the ESSCIRC, pages 149–152, 2012.

[54] M. Xie, C. Pan, J. Hu, C. J. Xue, and Q. Zhuge. Non-volatile registers aware instruc-
tion selection for embedded systems. In 2014 IEEE 20th International Conference on
Embedded and Real-Time Computing Systems and Applications, pages 1–9, 2014.

[55] M. Xie, C. Pan, J. Hu, C. Yang, and Y. Chen. Checkpoint-aware instruction scheduling
for nonvolatile processor with multiple functional units. In The 20th Asia and South
Pacific Design Automation Conference, pages 316–321, 2015.

[56] M. Xie, C. Pan, M. Zhao, Y. Liu, C. J. Xue, and J. Hu. Avoiding data inconsistency
in energy harvesting powered embedded systems. ACM Trans. Des. Autom. Electron.
Syst., 23(3):38:1–38:25, Mar. 2018.

[57] M. Xie, M. Zhao, C. Pan, J. Hu, Y. Liu, and C. J. Xue. Fixing the broken time
machine: Consistency-aware checkpointing for energy harvesting powered non-volatile
processor. In Proceedings of the 52Nd Annual Design Automation Conference, DAC
’15, pages 184:1–184:6, 2015.

[58] H. Xu, R. Li, L. Zeng, K. Li, and C. Pan. Energy-efficient scheduling with reliability
guarantee in embedded real-time systems. Sustainable Computing: Informatics and
Systems, 2018.

[59] W.-k. Yu, S. Rajwade, S.-E. Wang, B. Lian, G. E. Suh, and E. Kan. A non-volatile
microcontroller with integrated floating-gate transistors. In Dependable Systems and

103

Networks Workshops (DSN-W), 2011 IEEE/IFIP 41st International Conference on,
pages 75–80. IEEE, 2011.

[60] D. Zhang, Y. Liu, X. Sheng, J. Li, T. Wu, C. J. Xue, and H. Yang. Deadline-aware task
scheduling for solar-powered nonvolatile sensor nodes with global energy migration.
In Design Automation Conference (DAC), 2015 52nd ACM/EDAC/IEEE, pages 1–6.
IEEE, 2015.

[61] M. Zhao, C. Fu, Z. Li, Q. Li, M. Xie, Y. Liu, J. Hu, Z. Jia, and C. J. Xue. Stack-size
sensitive on-chip memory backup for self-powered nonvolatile processors. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 36(11):1804–
1816, Nov 2017.

[62] M. Zhao, Q. Li, M. Xie, Y. Liu, J. Hu, and C. J. Xue. Software assisted non-volatile
register reduction for energy harvesting based cyber-physical system. In Proceedings
of the 2015 Design, Automation & Test in Europe Conference & Exhibition, DATE
’15, pages 567–572, 2015.

[63] C. Zhuo, K. Unda, Y. Shi, and W. K. Shih. From layout to system: Early stage
power delivery and architecture co-exploration. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, pages 1–1, 2018.

[64] M. Zwerg, A. Baumann, R. Kuhn, M. Arnold, R. Nerlich, M. Herzog, R. Ledwa,
C. Sichert, V. Rzehak, P. Thanigai, et al. An 82µa/mhz microcontroller with em-
bedded feram for energy-harvesting applications. In Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), 2011 IEEE International, pages 334–336. IEEE,
2011.

[65] M. Zwerg, A. Baumann, R. Kuhn, M. Arnold, R. Nerlich, M. Herzog, R. Ledwa,
C. Sichert, V. Rzehak, P. Thanigai, and B. Eversmann. An 82ua/mhz microcontroller
with embedded feram for energy-harvesting applications. In IEEE International Solid-
State Circuits Conference Digest of Technical Papers (ISSCC), pages 334–336, 2011.

104

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1. Task Information (Tab)
	2. Task Information

	List of Figures
	1. System Architecture of Self-Powered Non-Volatile IoT Edge Device
	2. NVP Architecture
	3. Atomic Task B is Unfinished Before The Power Outage Resulting in Progress Setback.
	4. Prioritizing atomic Task B to Finish Before The Power Outage Results in Progress Maximization.
	5. System Architecture
	6. NVP Scheduler Overview
	7. Example DAG
	8. Power Trace Used for Experiments
	9. Power Consumption of Benchmarks
	10. Power Consumption of Low Power Mode vs Working Mode
	11. Execution Speed of Register Operation
	12. Execution Speed of SRAM Writes
	13. Execution Speed of FRAM Writes
	14. Execution Speed of Thermometer
	15. Execution Speed of Accelerometer
	16. Execution Speed of UART communication
	17. Energy Efficiency
	18. Energy and Time Overhead
	19. Power Traces
	(a). Trace A (Average 7.27mW)
	(b). Trace B (Average 6.19mW)
	(c). Trace C (Average 4.94mW)
	(d). Trace D (Average 4.11mW)
	20. Required Energy of Each Benchmark.
	21. Average Single Execution Period with NTS.
	22. Average Execution Power of Benchmarks Under Different Power Traces.
	23. Four Out of Nine Checkpointings Can Be Avoided without Progress Setback.
	24. Dual-Backup Checkpointing Handler.
	25. Single Execution Period with TCW.
	26. Average Execution Power of Benchmarks Under Different Power Traces.
	27. Energy efficiency with different clock frequency
	28. Frequency matching based task schedule
	29. Required energy of each benchmark
	30. Energy Utility under Available Frequencies
	31. Time and energy overhead
	(a). Time Overhead (%)
	(b). Energy Overhead (%)
	32. Changes of Charging Efficiency and Voltage on the Edge Device with Ultra-low Harvesting Power
	33. Influence of Wake-up Voltage on Charging Cycle and Efficiency of the Edge Device with Ultra-low Harvesting Power
	34. Influence of the Wake-up Voltage on Checkpointing Frequency of the Edge Device with Ultra-low Harvesting Power
	35. Measurements of the Execution Progress with Different Working Voltages
	36. Energy efficiency with different voltage combinations
	37. Architecture of self-powered edge device
	38. Capacitor Charging Circuit
	39. Concavity of in respect of vslp and vwak
	40. Optimal and vwak with given vslp
	41. Execution speed (theoretical vs experimental)
	42. Maximum Energy Efficiency and Optimal Wakeup Voltages with Different Sleep Voltages
	(a). Maximum Energy Efficiency with Different Sleep Voltages
	(b). Optimal Wakeup Voltages with Different Sleep Voltages
	43. Average execution power
	44. ENZYME vs. Baselines regarding energy efficiency
	(a). 8_bit_math
	(b). 8_bit_2dim
	(c). 8_bit_switch
	(d). 16_bit_math
	(e). 16_bit_2dim
	(f). 16_bit_switch
	(g). 32_bit_math
	(h). Floating_point_math
	(i). Matrix_Multiplication
	(j). Fir_Filter

	1.0 Introduction
	1.1 Research Motivation
	1.2 Existing Work
	1.2.1 Optimizing Power Regulator
	1.2.2 Optimizing Checkpointing
	1.2.3 Optimizing Run-time Execution

	1.3 Research Contributions
	1.4 Dissertation Organization

	2.0 Technical Background
	2.1 System Architecture
	2.2 Basic Checkpointing
	2.3 Voltage Monitoring
	2.4 Sleep/Wake-up Managing

	3.0 Atomic Task Aware Task Scheduling
	3.1 Motivation
	3.2 Related Work
	3.3 System Overview
	3.4 Power Prediction
	3.5 Independent NVP Task Scheduler
	3.6 Dependent NVP Task Scheduler
	3.7 Experiments
	3.7.1 Evaluation of NVP Scheduler
	3.7.1.1 Hardware Platform
	3.7.1.2 Power Traces
	3.7.1.3 Software Setup
	3.7.1.4 Energy Consumption Analysis
	3.7.1.5 Sleep Mode vs. Working Mode
	3.7.1.6 Progress Comparison
	3.7.1.7 Efficiency and Overhead

	3.7.2 Evaluation of NTS Scheduler
	3.7.2.1 Hardware Platform
	3.7.2.2 Power Trace
	3.7.2.3 Software Setup
	3.7.2.4 Benchmark Setup

	3.8 Summary

	4.0 Intelligent Checkpointing Scheme
	4.1 Motivation
	4.2 Related Work
	4.3 Statisitic based Checkpointing Avoidance
	4.3.1 Secure Checkpointing

	4.4 Experiments
	4.4.1 Experimental Setup
	4.4.1.1 Hardware Platform
	4.4.1.2 Power Trace
	4.4.1.3 Software Setup
	4.4.1.4 Performance of TCW

	4.5 Summary

	5.0 CPU Frequency Modulation
	5.1 Motivation
	5.2 Modeling and Analysis
	5.3 Frequency Modulator
	5.3.1 Off-line Stage
	5.3.2 On-line Stage

	5.4 Experiments
	5.4.1 Experimental Setup
	5.4.1.1 Hardware Platform
	5.4.1.2 Power Trace
	5.4.1.3 Benchmarks

	5.4.2 Energy Utility Evaluation
	5.4.2.1 Overhead Analysis

	5.5 Summary

	6.0 Thriving on Ultra-Low Harvesting Power
	6.1 Motivation
	6.1.1 Wake-up Voltage Determines Efficiency
	6.1.2 Routines vs. Efficiency

	6.2 Related Work
	6.2.1 System Architecture

	6.3 Modeling and Analysis for (vWak)
	6.3.0.1 Hardware Energy Efficiency
	6.3.0.2 Software Energy Efficiency
	6.3.0.3 Execution Energy Efficiency
	6.3.0.4 Influence of Checkpointing Data Size
	6.3.0.5 Influence of Wake-up Voltage v

	6.4 Modeling and Analysis for (vWak, vslp)
	6.4.1 Energy Modeling
	6.4.1.1 Harvested Energy
	6.4.1.2 Hardware Energy Overhead
	6.4.1.3 Software Overhead
	6.4.1.4 Effective Energy

	6.4.2 Efficiency Analysis
	6.4.2.1 Formulation of
	6.4.2.2 Optimization of
	6.4.2.3 Validation of modeling

	6.5 Optimizing Voltages for Sleep/Wakeup
	6.5.1 Routine Handler

	6.6 Experiments
	6.6.1 Experimental Setup
	6.6.1.1 Hardware Platform
	6.6.1.2 Power Trace
	6.6.1.3 Benchmarks

	6.6.2 Experimental Evaluation
	6.6.2.1 Observation of (vslp,vwak)
	6.6.2.2 Energy Efficiency Evaluation

	6.7 Summary

	7.0 Conclusion
	Bibliography

