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Computational Design and Evaluation of New Materials for Energy and

Environmental Applications

Abhishek Bagusetty, PhD

University of Pittsburgh, 2019

With a constant demand for efficient energy devices, significant efforts were invested into

the development of proton exchange membrane (PEM) fuel cells. Yet, water management

and hydration in these PEM fuel cells are a well-known limiting factors for proton transport.

The first-principles density functional theory (DFT) study helped to develop two novel 2-

D materials that can potentially alleviate the need for aqueous conditions to propagate

proton conduction within fuel cells. Anhydrous proton conduction can be achieved when

graphane is functionalized with hydroxyl and amine groups as graphamine and graphanol,

respectively. Ab-initio molecular dynamics simulations indicated that the proton transport

is facile with a relatively low reaction barrier due to the presence of a self-assembling network

of hydrogen bonds established over the surface of these materials. Moreover, proton self-

diffusivity increases with temperature and thermodynamic stability calculations indicate that

these materials are appropriate for intermediate-temperature fuel cells.

Given the environmental concerns of tritiated water (HTO), this work is an attempt to

understand the fundamental nature of differential hydrogen bonding offered by the hydrogen

isotopes. When two phases (liquid and vapor) of water are in equilibrium, there can be

slight difference in the relative abundance of water isotopes for each phase. The treatment

of nuclei under classical mechanics is not appropriate for the study of lighter atoms like

hydrogen and its isotopes. By employing path-integral-based molecular simulations one can

account for quantum motion of the nuclei to determine isotopic fractionation ratios for water

isotopologues in phase equilibrium and cocrystallization of water isotopologues with poly-

oxacyclobutane. Due to the inherent computationally intensive nature of these calculations,

a combination of reduced-cost and accelerated techniques such as high-order splitting and

thermostating procedures were used to achieve convergence of quantum mechanical proper-

ties.
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1.0 Introduction

This dissertation encompasses two main research thrusts, each directed towards designing

new materials for energy and environmental applications from a computational and theoret-

ical approach. The first thrust is towards the design of materials that conduct protons along

an interface with very high efficiency in the complete absence of water for an intermediate

temperature fuel cells. The second thrust focuses on exploring nuclear quantum effects as-

sociated with liquid-vapour fractionation ratio for water isotopologues namely, deuterated

water (HDO) and tritiated water (HTO).

1.1 Anhydrous Proton Transport on a Functionalized Surface

Proton exchange membranes are one of the most critical components of PEM fuel cells.[1,

2, 3, 4] Nafion, a perfluorinated sulfonic acid ionomer, is considered to be a reference standard

for proton conducting membrane materials because of its favorable chemical, mechanical, and

thermal stability, together with its high proton conductivity when sufficiently hydrated.[5]

However, Nafion has several disadvantages, including high cost and low upper operating

temperature (<80°C). Increasing the operating temperature of PEM fuel cells would have

several benefits, including increased electrochemical reaction rates, the availability of higher

quality waste heat, and decreased carbon monoxide poisoning of the anode.[6, 7] Hence,

there is a critical need for development of anhydrous proton transport membranes in order

to increase the operating temperature of fuel cells. The overarching hypothesis of this work is

that a facile anhydrous proton transport will occur on a surface that has a continuous network

of hydrogen bonded functional groups. Furthermore, we hypothesize that functionalization of

graphane with hydroxyl and amine groups are prime examples of materials that can conduct

protons at high rates in the complete absence of water. First principles density functional

theory (DFT) calculations on few model systems were conducted as a proof-of-concept test

of our hypothesis and to obtain insights.
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Figure 1: A schematic of an idealized OH-functionalized graphane proton exchange mem-

brane (left) and a schematic representation of how proton transport takes place (right). In

practice, the membrane would consist of many stacks or layers of functionalized graphane to

achieve high proton flux.

The practical engineering motivation for this work is to improve performance and reduce

costs of hydrogen fuel cells through developing insights that can be applied to designing

the next generation of proton exchange membrane materials. Fuel cells offer the promise of

providing energy under a variety of conditions at very high efficiency. Hydrogen fuel cells

directly convert the free energy from the chemical reaction between H2 and O2 into electricity,

producing only water and heat as the byproducts. A proton exchange membrane (PEM)

fuel cell uses H2 at the anode to produce protons (H+) and electrons. The protons traverse a

PEM to arrive at the cathode, where they combine with oxygen and the electrons, which flow

through an external electrical circuit, to form H2O. This work is driven by two overarching

hypotheses: (1) surfaces having a contiguous network of hydrogen bonded functional groups

will be able to conduct protons in the complete absence of water and (2) computational

modeling can be used to design, test and optimize new materials that have facile proton

transport (PT) under anhydrous conditions.

We predict that graphane functionalized with hydroxyl groups, hydroxygraphane, can

conduct protons in the complete absence of water, as shown from density functional theory

calculations. Hydroxygraphane’s proton conductivity results from the self-assembling two-

dimensional network of hydrogen bonds on its surface. We show that the proton conduction
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occurs through a Grotthuss-like mechanism, as protons hop between neighboring hydroxyl

groups, aided by their rotation. We also report that graphane functionalized with amine

groups (graphamine) can conduct protons in the complete absence of water. Our calculations

show that graphamine is an electronic insulator having a direct band gap of 3.08 eV. The

following chapters discusses the transport, electronic, and structural properties required for

a viable anhydrous proton conduction membrane material.

1.2 Isotope Fractionation Ratio

This dissertation also covers an extensive study of understanding nuclear quantum ef-

fects associated with the water isotopologues in Chapter.5. These effects were known to

lower the melting point of H2O by atleast 8 K in comparison to water studied with classi-

cal description. In this work, the fundamental quantum nature of isotope effects in water

isotopologues were discussed to determine the liquid vapor isotope fractionation ratio and

also employing similar principles towards a technologically driven application leading to the

separation of diluted heavier water isotopologue - tritiated water (HTO) from light water

(H2O) and molecular isotopes of oxygen. Tritium with a half-life of 12.36 years is charac-

terized by beta decay with an 18.6 keV maximum energy. This has been considered one

of the most innocuous of fission produced radionuclides. The low energy and penetration

power of the tritium isotope particle associated with its decay does not pose a significant

external radiation hazard. However, tritiated water and its vapor posses a potential health

hazard for humans from skin and other modes of penetration. The retention of tritium in

the body is dependent on the chemical form it enters the body. Traditionally the HTO is

either stored in drums for 10 times its half life (120 years) or it is dispersed into the local

environment, hopefully in small enough quantities to create a minimum impact on the local

ecology. However, it is believed by many that any amount of tritiated water is detrimental to

living organisms. Several technologies such as membrane separation, electrolysis, freezing,

ion-exchange methods have earlier been reported in the literature but these methods are

expensive and inefficient. A membrane method exists for separating HTO from light water
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where the mixture is placed under pressured and forced through a polyphosphazene polymer

based membrane.[8] This method has the disadvantage of being expensive and complicated

(and therefore slow). The purpose of this work is to identify an inexpensive polymeric ma-

terial that can facilitate a separation of HTO from regular water under the conditions of

membrane separation. We have carried out path integral molecular dynamics simulations

on a given polymeric material as a proof-of-concept to test and verify our approaches and

assumptions. This work also illustrates the nuclear quantum effects of hydrogen bonds es-

tablished by water isotopologues (HTO, H2O) with a given candidate polymeric material to

bind the heavy isotopologue HTO strongly over the light H2O water. A separation can be

feasible if these heavier water isotopologues are selectively incorporated as water of hydration

within a crystalline polymeric material.(Chapter.6) Owing to the differences in the strength

of hydrogen bonding, a seperation could be feasible. By employing these nuclear quantum

effects, we have also investigated the separation of heavier molecular oxygen isotope (18O2)

from naturally abundant 16O2 using single walled carbon nanotubes.
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2.0 Facile Anhydrous Proton Transport on Hydroxyl Functionalized Graphane

This work was published as: Bagusetty, A., Choudhury, P., Saidi, W. A., Derksen,

B., Gatto, E., & Johnson, J. K. (2017). Facile anhydrous proton transport on hydroxyl

functionalized graphane. Phys. Rev. Lett., 118(18), 186101.

2.1 Introduction

Transport of protons through membranes is of vital importance across a broad range

of processes, ranging from biological systems to industrially-important technologies. We

here report the first principles design of a novel material capable of facile conduction of

protons in the complete absence of water, which addresses a critical challenge related to

proton exchange membrane (PEM) fuel cells.[4] The most widely used PEM materials are

polyelectrolyte polymers, such as Nafion.[9] These polymers conduct protons at appreciable

rates only when hydrated. As a result, the upper limit for the operating temperature of

PEM fuel cells is typically about 80°C because higher temperatures result in dehydration

of the polyelectrolyte polymer [10], which causes a dramatic decrease in the rate of proton

conduction. We show that functionalized graphane can conduct protons anhydrously at

elevated temperatures, making it a potential material for intermediate temperature PEM fuel

cells. There are several advantages to operating PEM fuel cells at intermediate temperatures

(100–200°C), including increased electrochemical reaction rates, the availability of higher

quality waste heat, and decreased CO poisoning of the anode.[7] Hence, there is a practical

need for anhydrous proton transport (PT) membrane materials that has motivated research

in this area.[6]

A key requirement for a material to exhibit fast PT is optimal donor-acceptor spacing.

Thus, facile anhydrous PT should occur on a surface having a fixed contiguous network of

hydrogen bonded hydroxyl (OH) groups. Accordingly, we have used density functional theory

(DFT) calculations to show that graphane (fully hydrogenated graphene) functionalized with
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hydroxyl groups has inherent near-optimal spacing for forming a surface network of hydrogen

bonds capable of facilitating fast anhydrous PT. We show that this novel material offers both

the opportunity for fundamental studies of anhydrous PT and the potential for creating new

practical PEM membrane materials. The mechanism of PT in aqueous systems has been

extensively studied and is well understood. In contrast, the PT mechanisms under anhydrous

conditions appear to depend on the material and are a matter of debate.[6, 11, 12, 13] This

work provides atomic-level insight into how PT takes place on OH-functionalized graphane

and why the barriers to PT on this material are so low.

2.1.1 Why Graphane?

There are at least two advantages for use of graphane instead of graphene as the plat-

form for constructing PT membranes: (1) proton exchange membranes must be electronic

insulators and graphene is a semimetal, whereas hydroxylated graphane is an insulator with

a direct band gap of 3.22 eV [14]; (2) graphane has sp3 structure, whereas functionalized

graphene has both sp2 and local sp3 structures, resulting in more strain compared with func-

tionalized graphane. In addition, hydroxylated graphane is predicted to be stable.[14] Our

model system is shown in Fig. 2 and consists of a periodic supercell of graphane having a

one-dimensional (1-D) chain of OH groups spanning the cell. This system contains 4 OH

groups and a single proton; the system has a +1e total charge. The hydroxyl groups can

rotate about the C–O bonds and our relaxed structures show that these OH groups sponta-

neously orient to form a 1-D chain of hydrogen bonds as a result of the inherent structure of

graphane, i.e., the natural distance of OH groups on graphane is nearly ideal for hydrogen

bonding, with O–O distances of about 2.3 to 2.4 Å.

2.2 Calculation Method

We carried out DFT calculations using the Vienna Ab-initio Simulation Package (VASP)

[15] and an in-house modified version of Quantum Espresso (QE) [16]. An energy cutoff of

6



Figure 2: (a) Top view, Hydroxylated graphane supercell containing 24 carbons and 4 hy-

droxyl groups with one excess proton (carbons in gray, oxygens in red, hydrogens bound to

oxygens in dark blue, hydrogens bound to carbon in light blue, red lines indicate hydrogen

bonding). (b) Side-on view for the configuration in (a). Supercell lattice parameters are

given in Table 2 of the Appendix A.4. Solid lines show the cell boundaries in the a and b

directions.

520 eV was used with the Perdew-Burke-Ernzerhof form of the generalized gradient approxi-

mation [17]. We checked the convergence of the k-point grid and vacuum spacing to validate

our computational setup. The minimum energy pathway (MEP) for PT was obtained using

the climbing image nudged elastic band (cNEB) method.[18] The size of the supercell in the

direction perpendicular to the graphane plane was 20 Å, insuring interactions between the

layers were negligible. Proton diffusivities were computed from Born-Oppenheimer ab-initio

molecular dynamics (AIMD) simulations in the NVE (microcanonical) ensemble with a step

size of 0.25 fs. Details are given in Appendix A.1.

2.3 Proton Transport Dynamics

The self-diffusion coefficients, D, at different temperatures are plotted in Fig. 3. Extrap-

olation of the data gives an estimate of D at room temperature of 4×10-5 cm2s-1, which is
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Figure 3: Self-diffusion coefficients at temperatures of 400, 600, and 800 K as determined

from AIMD simulations.

fortuitously close to the self-diffusion coefficient of protons through bulk water computed

from molecular simulations.[19] Diffusion coefficients of protons through Nafion depend dra-

matically on the hydration level. Simulations predict that diffusivity increases from 1.4×10−6

to 1.7× 10−5 cm2s-1 at room temperature as the number of water molecules increases from 6

to 15 per sulfonic acid group.[20] These simulations are in good agreement with experimental

measurements for Nafion under similar conditions.[21] Our data were fitted to an Arrhenius

expression, which yielded an activation energy of 60 meV. This is significantly lower than the

experimentally measured activation energy for proton conductance in Nafion, which ranges

from 0.1 to 0.36 eV, depending on water content [22]. Analysis of the AIMD simulations

indicated that proton hopping takes place in concert with the rotation of hydroxyl groups

and this rotation is expected to be the rate limiting step in PT.
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2.4 Proton Transport Energetics

The rate limiting step was confirmed by computing the MEP for PT from the cNEB

method. Our calculated barrier height for proton hopping along the OH chain is about 70

meV, as shown in Fig. 4. This barrier height is in very good agreement with the activation

energy of 60 meV estimated from AIMD diffusivity calculations. We note that exact agree-

ment is not expected between barrier heights from cNEB and apparent activation energies

from Arrhenius plots for several reasons: (1) the barrier heights from cNEB calculations

are zero Kelvin electronic energies while activation energies are temperature-averaged Gibbs

free energies, (2) the AIMD calculations include anharmonic effects that are not captured

in the cNEB calculations, and (3) the diffusivities are subject to statistical errors. The very

low barrier computed from cNEB (Fig. 4) provides a second confirmation (with the AIMD

results) of our expectation that hydroxylated graphane will conduct protons at fast rates

under anhydrous conditions. As we tentatively observed in the AIMD simulations, cNEB

confirms that the PT pathway consists of a concerted hopping mechanism involving rotation

of hydroxyl groups about the C–O bond axis, along with the displacement of a proton. Key

configurations from the MEP are shown in Fig. 5. We note an unexpected feature in the

MEP that is elucidated by examining the configurations in Fig. 5: the MEP has two transi-

tion states, separated by a very shallow local minimum metastable state. The two end-point

geometries, (a) and (e) in Fig. 5, are identical by translational symmetry and are character-

ized by a single OH bond pointing perpendicular to the 1-D chain of OH groups, with the

H atom pointing to the center of a hexagon in the underlying graphane. The metastable

intermediate, Fig. 5 (c), is similar in structure, except that the OH group perpendicular

to the chain is oriented over a graphane C–C bond. The two transition states are almost

isoenergetic (Fig. 4) and are visually identical, as seen in Fig. 5 (b) and (d). The transition

states correspond to an OH group just before and just after the C–C bond center crossing.

We also note two distinct proton hopping events in Fig. 5, as defined by a change in the

nearest O for a given H. We have ignored quantum diffraction effects in our calculations.

Zero-point energy corrections obtained from vibrational frequency calculations reduce the

classical barrier height from 70 to 40 meV. We have estimated rate constants for PT using
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three different transition state theory (TST) approximations. Rate constants were deter-

mined using classical and quasi-classical treatment of TST [23], and tunneling effects were

estimated using the semi-classical TST approximation.[24] Results from these calculations

are shown in Fig. 20 of the Appendix A.3. Tunneling effects were found to be negligible

for the temperatures considered here. This is not unexpected because the proton hopping

barrier is both small and broad (Fig. 4). On the other hand, quantum effects estimated

from zero-point energy corrections through the quasi-classical TST approximation increase

the rate constant by about a factor of 1.7 near room temperature. Therefore, our classical

treatment can be viewed as a lower bound estimate to the diffusivity.

Interestingly, although there is formally only one proton in the system, each of the H

atoms involved in hydrogen bonding behave essentially as protons, i.e., each H atom bound

to an O atom can potentially hop. Moreover, the effective charges on the H atoms, as

computed from the DDEC6 population analysis method [25], are almost identical (Table. 3,

Appendix A.6.3). Thus, the H atoms are, in a sense, indistinguishable, and the proton

is highly delocalized. The charge delocalization is an unexpected feature and so we have

verified that this is not an artifact due to system size effects by using a larger super cell; we

also eliminated the possibility that the charge delocalization was due to self-interaction error

by computing charges from Hartree-Fock level of theory (see Table 4 & 5 of Appendix A.6.3).

Charge delocalization decreases the barrier to PT by reducing the polarization associated

with moving a proton from one O atom to another.

We have estimated finite-size effects in our calculations by constructing a supercell con-

sisting of 70 C atoms, 7 OH groups, and a single proton. Note that this system has different

symmetry than the 4 OH system because of the odd number of OH groups in the unit cell.

We have computed the cNEB MEP in this 7 OH system and plotted the results in Fig. 4.

The MEP for the larger system has the same features as the smaller system and a barrier

that is about 12 meV higher. The one qualitative difference between the two systems is that

the 7 OH system has only a single proton hop (see Fig. 21 of Appendix A.4). This difference

can be attributed to finite-size effects because rotation of an OH group in the smaller system

has a larger influence due to periodic boundary conditions.
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Figure 4: Minimum energy pathway (MEP) computed from the cNEB method for proton

hopping on a 4-OH group system (see Fig. 2) computed from VASP (red circles) and Quan-

tum Espresso (QE) without (green triangles) and with (blue squares) density-countercharge

corrections. The MEP for a 7-OH group system is also shown (black diamonds) as a test of

finite system size effects.
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Figure 5: Atomic configurations computed from cNEB for the 4-OH group system (Fig. 2)

for the (a) initial, (b) first transition state, (c) metastable intermediate, (d) second transition

state and (e) final state. The concerted motion in each step is indicated with arrows (colors

defined in Fig. 2).
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2.4.1 Challenges in Charged Systems

Periodic DFT calculations of charged systems are problematic because of errors due to

imposing an artificial jellium background.[26] We have estimated the extent of this error by

implementing the density-countercharge (DCC) method of Dabo et al.[27] in an in-house

modified version of QE. We computed the cNEB pathways for the 4 OH system using both

the original QE code (no DCC) and the DCC corrected code. These MEPs are plotted in

Fig. 4. Adding the DCC corrections increases the barrier by about 5 meV, indicating that

the errors introduced due to the jellium background are very small. We also note that the 7

OH system provides an independent check of the error due to the charge because the system

is larger but has the same net charge. However, in this case, the difference between the two

systems includes other effects due to flexibility and periodicity, in addition to the charge

density.

2.4.2 Transport Mechanism Details

One might assume that PT in the 1-D systems studied here would result in single-file

mobility because the protons cannot pass one another. Single-file mobility is characterized

by the mean square displacement (MSD) of protons being proportional to t1/2, where t

is time.[28] However, we found that this system follows the Einstein relation for Fickian

diffusion (MSD ∝ t) [28], as seen in Fig. 23 of the Appendix A.5. We constructed a lattice

model to test whether the Fickian diffusion observed from AIMD simulations was due to

artifacts of system size or short simulation times. The results of the lattice model also show

Fickian diffusion (see Fig. 23). The system with a single proton effectively behaves as being

in the infinite dilution limit even though all of the hydrogens on OH groups can hop. This

unexpected outcome can be rationalized by considering the case without a proton. In this

case, one has a contiguous chain of hydrogen bonded OH groups, but no protons and therefore

no PT can take place. Thus, the 1-D system is analogous to a 1-D lattice model, where the

OH chain without a proton is like an empty lattice, the chain with a single proton is similar to

a lattice with one occupied site, but having the unique feature that any of the H atoms on the

chain can hop. Simulations of a lattice model with 8000 OH groups and 4000 protons show
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that this “half-filled” system exhibits the expected single-file mobility, with the MSD ∝ t1/2

(see Fig. 24, Appendix A.5. Note that system size effects can give rise to anomalously large

diffusivities for diffusion of fluids through very smooth nanopores.[29, 30] The hallmarks of

this system size artifact are: (1) calculated diffusion barriers that are inconsistently large

compared with measured diffusivities and (2) systematic deviations from MSD ∝ t.[29] Our

system does not display anomalous diffusivities because the calculated diffusion barrier from

cNEB is consistent with the barrier computed from AIMD (Figs. 3 and 4) and we clearly

observe MSD ∝ t (Fig. 23).

2.5 Conclusions

Several observations can be made based on our results. Firstly, the PT mechanism

identified here is significantly different from mechanisms in bulk water and 1-D water wires.

It has been shown that concerted PT through a Grotthuss mechanism [31] in both bulk

water and water wires confined to 1-D channels, such as carbon nanotubes [32], results

in unfavorable polarization of the water chain, the resolution of which requires significant

solvent reorganization.[33, 13] Hydroxylated graphane has no hydrogen bonding defects like

orientational D or L configurations as reported for PT in carbon nanotubes [33, 34], and

hence there is no need for solvent reorganization. The only reorganization required is local

in nature–involving the concerted rotation of a pair of adjacent OH groups. Moreover, since

this system is anhydrous there is no large electrostatic penalty for desolvation, and the

conductance of protons should not decrease with length of the 1-D path, as with narrow

carbon nanotubes.[32]

A second observation is that hydroxylated graphane is potentially a significantly better

material for anhydrous proton exchange membranes than existing materials. Proton conduc-

tion on OH functionalized polymers [6, 35], ionic crystals [36], and doped amorphous carbons

[37] has been demonstrated, but none of these materials have optimal placement of hydrogen

bonding groups. Hence, they lack the contiguous network of hydrogen bonds required for

truly facile water-free PT. As noted by Nagamani et al., the presence of a hydrogen bond
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network is vital to fast and robust PT [35]. Another advantage of a functionalized surface

over polymers is the reduced flexibility of the surface relative to a polymer; flexibility in the

polymer chain disrupts hydrogen bonds and decreases the PT rate.

It is interesting to note the similarities between the contiguous 1-D OH chain of Fig. 5 and

the hypothetical soliton system studied previously.[38] Although the charge is highly delocal-

ized, our system does not exhibit soliton-like collective PT. This is because proton transport

coupled with rotation of an OH group is inconsistent with the soliton mechanism.[38]

Hydroxylated graphane could potentially be produced by using electron-beam generated

plasmas, which have been used to functionalize graphene with F, H, and O atoms.[39] This

approach would produce a high degree of hydroxylation, rather than a 1-D chain of OH

groups, but having a 2-D network of hydrogen bonds will provide redundant pathways for

PT and thus be more robust than the 1-D system we have studied here. A single missing

OH group in a 1-D chain effectively blocks PT (the estimated barrier is about 4.4 eV, see

Fig. 28 and the discussion in the Appendix A.7 so for any practical material, a 2-D network

is desired. We are currently investigating the characteristics of PT in a 2-D network.
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3.0 Unraveling Anhydrous Proton Conduction in Hydroxygraphane

This work was published as: Bagusetty, A., & Johnson, J. K. (2019). Unraveling Anhy-

drous Proton Conduction in Hydroxygraphane. J. Phys. Chem. Lett., 10(3), 518-523.

3.1 Introduction

Proton conduction is of fundamental importance in fields as diverse as cell function,[40,

41] photosynthesis,[42, 43] enzyme catalysis,[44] and battery and fuel cell technologies.[45,

46, 4, 47] Proton transport in aqueous systems has been widely investigated through theo-

retical [48, 49] and experimental techniques [50, 49] for decades and is still an active area of

research, as seen from recent intriguing findings of proton transport for water dissociation in

nanoconfined channels[51, 52] and unusual proton transport characteristics at the tempera-

ture of maximum density.[53] In contrast, the study of of proton transport under anhydrous

conditions has not been studied as extensively.[6]

Proton exchange membrane (PEM) fuel cells are increasingly important in applications

such as fuel cell vehicles and portable power generation.[54] Limitations of current PEM fuel

cells include the requirement that the operating temperature not exceed about 80◦C and

that the membrane be sufficiently hydrated. Both of these requirements are the result of

materials property limitations of the polymer electrolyte membrane, Nafion,[5] used in the

current generation of fuel cells. The fundamental issue is that Nafion is not an intrinsic proton

conduction material—it is only capable of conducting protons when sufficiently hydrated.

There are significant advantages to increasing the operating temperature of PEM fuel cells

and eliminating the need for membrane humidification, including increased kinetic rates,

the availability of higher quality waste heat, higher resistance to electrode poisoning, and

simplified water management.[7, 55, 6] Hence, there is a need to develop new materials that

facilitate proton transport under anhydrous or low humidity conditions.[56, 57]
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Recent work has focused on the discovery and synthesis of new materials capable of

proton conduction under low-humidity or anhydrous conditions.[58, 59, 60, 61, 62, 63, 64,

65] Porous metal organic frameworks and related materials have been proposed as Nafion

replacements.[66, 67, 68, 59, 69, 63, 62, 70, 57] However, most of these materials have con-

ductivities that are lower than Nafion or require water to be bound to the porous structure to

facilitate proton conduction.[63] Even materials that have high intrinsic proton conductivity

have high resistance to conduction across grain boundaries and could suffer from stability

issues. Hence, there is still a need to both understand proton conduction under anhydrous

conditions and to develop materials that have higher conductivity and stability than those

now available.

In this letter we show that graphane (an sp3 hydrogenated version of graphene [71]) that

is functionalized with hydroxyl groups, which is known as graphanol or hydroxygraphane,[72]

has the potential to conduct protons via a Grotthuss-like mechanism [31] in the complete

absence of water. We have used density functional theory (DFT) to study proton conduction

on hydroxygraphane—a quasi two-dimensional (2-D) material constructed by replacing all

the hydrogen atoms on one side of graphane with hydroxyl groups (OH),[14] as shown in

Fig. 6. We note that hydroxygraphane has been reported to be thermodynamically stable,

according to ab-initio calculations.[73] More importantly, synthesis of hydroxygraphane has

been reported, based on hydroboration of graphane oxide,[72] yielding stoichiometric ratios

of OH and H groups.

We note that there have been two experimental reports in the literature of proton con-

duction on graphene oxide (GO).[74, 75] Karim et al.[75] found that GO conducts protons

on the surface when humidified. They hypothesize that protons are conducted through a hy-

drogen bonded network of water adsorbed on the surface. This work supports our hypothesis

that a hydrogen bonded network on the surface of graphene-related materials will facilitate

the conduction of protons. Cao et al.[74] demonstrated that sulfonated GO nanosheets can

be used to create three-dimensional networks when integrated with Nafion to form a poly-

mer matrix. This composite material was found to conduct protons at rates comparable

with Nafion. Cao and co-workers posit that the sulfonate groups favor formation of well-

connected water channels. Neither of these materials can conduct protons at low humidity
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because they lack a sufficient density of hydrogen bonding groups on the surface to create

a contiguous network of hydrogen bonds. In related work, Bagusetty et al. have predicted

that graphane functionalized with a 1-D chain of hydroxyl groups can conduct protons un-

der anhydrous conditions at appreciable rates.[76] However, this hypothetical material has

not been made and is probably very difficult to make. Moreover, a single defect (e.g., a

single missing OH group) will completely block proton conductivity along the 1-D chain.[76]

Hydroxygraphane, in contrast, has been synthesized[72] and because the OH groups form a

2-D network of contiguous hydrogen bonds across the surface,[14] it should exhibit robust

proton conductivity with respect to defects such as missing OH groups or carbon atoms.

Hydroxygraphane also features a key descriptor for the facile conduction of protons, namely,

an ordered and consistent distance between donor and acceptor (OH) groups of the hydro-

gen bonds, which was reported to enhance proton diffusivity in comparison to tortuous and

amorphous morphologies present in most polymer electrolyte membranes.[77, 78]

The successful synthesis of hydroxygraphane[72] suggests that it is possible to experi-

mentally test this material for proton conduction. Before doing so, it is highly advantageous

to use atomistic simulations to identify the potential for hydroxygraphane to function as a

PEM material. Some of the requirements that an effective intermediate temperature PEM

material must have are: (1) an ability to conduct protons at acceptably high rates over a

range of temperatures, even in the absence of water; (2) electrical insulation, i.e., it must

be a wide bandgap semiconductor; (3) mechanical robustness. It is the aim of this letter to

evaluate in silico the suitability of hydroxygraphane with respect to these three criteria.

3.2 Computational Methodology

Our calculations were carried out with DFT methods as implemented in the Vienna

ab-initio simulation package (VASP).[79, 15, 80] The structural relaxation of the supercell

shown in Fig. 6 gave lattice parameters of: a = 10.703 Å, b = 8.027 Å, c = 20.0 Å, α=β=90◦,

γ=120◦. Projector augmented-wave (PAW) pseudopotentials [81] were employed to describe

the interactions between valence electrons and frozen cores. A kinetic energy cutoff for the
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Figure 6: Top and side view of hydroxygraphane in the herringbone configuration (carbons

in gray, oxygens in red, hydrogens in white). The primitive cell (containing 10 atoms) is

shown by the solid blue lines. Solid black lines show the supercell which is a 3 × 2 replication

of the primitive cell.

plane-wave expansion was set to 520 eV and total energy convergence for self-consistent

field calculations was set to 10−9 eV to attain sufficient accuracy. The generalized gradient

approximation exchange-correlation (XC) functional of Perdew-Burke-Ernzerhof (PBE) was

used.[17, 82] The Brillouin zone sampling was performed using a Monkhorst-Pack k-point

grid size of 7 × 7 × 1. All the ionic positions were relaxed until the forces were less than

the tolerance of 10-3 eV/Å. A vacuum spacing of 20 Å in the direction perpendicular to the

surface of hydroxygraphane was employed to mitigate the interactions between the layers

under periodic boundary conditions. The calculated bond lengths for C—C, C—H, C—O

were found to be 1.57 Å, 1.11 Å and 1.43 Å, respectively, for the optimized configuration in

Fig. 6. These values agree well with those reported by Wang et al.[14]

Proton mobility was assessed by examining proton mean square displacements, which

were computed from a set of ten independent Born-Oppenheimer ab initio molecular dy-

namics (AIMD) simulations. These were performed on a 2 × 2 × 1 configuration of the

system shown in Fig. 6 having one excess proton, such that the system has an overall charge

of +1 e. Simulations were performed at 800 K. Further details are given in Appendix B.1.
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Calculations performed using DFT for charged systems under periodic boundary condi-

tions impose an artificial counter-charge jellium background, which results in an error.[26]

Bagusetty et al.[76] showed that this background charge error is not significant for com-

puting the diffusion barriers for a similar charged system of 1-D hydroxylated graphane by

comparing results with and without density-countercharge corrections.[27] The impact of

charge error decreases with increasing volume of the supercell for fixed total charge. The

supercell used in our AIMD calculations is about a factor of 4.5 larger in volume than that

that used previously,[76] which indicates that charge corrections are not needed in this work.

We also note that quantum effects such as diffraction and proton tunneling are neglected

in this study. Based on previous work,[76] we estimate that proton conduction rates will

increase significantly when quantum diffraction is accounted for, but that proton tunneling

will have a negligible impact.

The Heyd-Scuseria-Ernzerhorf (HSE06) short-range screened hybrid functional [83, 84]

was used for accurate band structure calculations because the PBE functional is known to

underestimate the bandgap of semiconductors. We have evaluated the structural stability

by exploring the harmonic phonon dispersion spectrum computed using the PHONOPY

software package [85] in conjunction with VASP. The phonon calculations were carried out on

a 3 × 3 × 1 supercell (containing 90 atoms) constructed from the primitive cell configuration

shown in Fig. 6.

3.3 Dynamics of Proton Conduction

We investigated the dynamic stability and proton conduction ability of hydroxygraphane

containing one excess proton (H+) by performing AIMD simulations at high temperatures

(about 800 K). We observed that hydroxygraphane with an excess proton is stable (or at least

metastable) because aside from proton hopping, no bond breaking events of the underlying

structure were observed in any of the ten independent simulations at 800 K. Our analysis

of the AIMD trajectories indicated that proton conduction occurs by hopping of an excess

proton from one OH group to the next over a 2-D network of hydrogen bonds. We noted that
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the hydroxyl groups surrounding the center of excess charge (i.e., OH group with an excess

proton) reorient themselves to accommodate the local changes made to the morphology

due to the presence of the excess proton. The key to facile intrinsic proton conduction is

the presence of a contiguous network of hydrogen bonds having an appropriate hydrogen

bonding distance across the hydroxygraphane surface, coupled with the ability of the OH

groups to rotate.[78, 35] We observed that proton conduction on hydroxygraphane takes

place through a Grotthuss-like mechanism, where a proton is transferred from one OH group

to another, followed by a different H+ moving to the next OH group, as illustrated in Fig. 7.

The mechanism of proton conduction is associated with a slight reorientation of the hydroxyl

groups surrounding the excess charge, resulting in a reconfiguration of the hydrogen bonding

network.

The proton mobility was quantified from the mean squared displacement (MSD) com-

puted at multiple time origins and averaged over x and y directions along the plane of

hydroxygraphane. A plot of the MSD as a function of time at 800 K is plotted in Fig. 8.

The proton self-diffusion coefficient was estimated from the MSD plots as described in the

Appendix B.1. Our computed value is D = 1.1 × 10−5 cm2/s with an uncertainty of

±2.6 × 10−6 cm2/s (twice the standard deviation). For comparison, the value of D for 1-D

hydroxylated graphane at 800 K is 1.56 × 10−4 cm2/s.[76] The observed reduction in the

proton mobility is expected in going from a 1-D chain of hydroxylated graphane to a 2-D

network in hydroxygraphane, and is due to the difference in the hydrogen bonding topol-

ogy. There is a maximum of two hydrogen bonds (one donor and one acceptor) on any

given OH group on 1-D hydroxylated graphane because there are only two neighboring OH

groups. However, any OH group on hydroxygraphane has a coordination of six neighboring

OH groups to which it can hydrogen bond. Hence, any given OH group could have three

hydrogen bonds, one donor and two acceptors, and therefore the energy required to rotate

an OH group is, on average, significantly higher than for the 1-D system.

Another difference between the 1-D hydroxylated graphane and 2-D hydroxygraphane

cases is that protons can obviously only diffuse along the 1-D chain of OH groups in the

former, but protons can diffuse in any direction on the hydroxygraphane surface. Indeed,

our MSD data show that proton mobility in the x and y directions is statistically equivalent,
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Figure 7: Snapshots of a proton conduction event in protonated hydroxygraphane from

AIMD simulations at 800 K. An excess proton associated with a hydroxyl group is marked

with a dashed circle to indicate the charge center. Protons participating in the conduction

event are colored blue and green to aid in visualization. Hopping of these protons illustrate

a Grotthuss-like mechanism (atom colors defined in Fig. 6).
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Figure 8: (a) Profiles of proton mean squared displacement as a function of time for hy-

droxygraphane with an excess proton at an average temperature of about 800 K. Thin lines

in various colors are results from each of the ten uncorrelated simulations. The mean MSD

profile is shown as the thick black curve. (b) Contributions of the proton MSD in x and y

directions.

as can be seen from Fig. 8(b). Hence, hydroxygraphane having defects (e.g., missing OH

groups or missing C atoms) will still conduct protons, whereas a missing OH group on 1-

D hydroxylated graphane will result in a complete blockage of proton conduction.[76] The

purpose of this paper is to establish that proton conduction does occur on hydroxygraphane,

and to explore its mechanical and electronic properties. This paper does not attempt to

fully characterize the diffusion coefficients and the corresponding conductivities, which can

be determined from the Einstein relation and Nernst-Einstein equation[86], respectively. We

will explore the temperature dependence of diffusivity and conductivity at longer time scales

and with higher statistical precision in a future paper.
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3.4 Electronic Properties

It is an obvious requirement that PEM materials be electronically insulating. We have

computed the bandgap of hydroxygraphane using four different exchange-correlation func-

tionals. We compared results from the PBE[17, 82] semi-local generalized gradient functional

and three hybrid functionals, HSE06,[83, 84] PBE0,[87] and B3LYP,[88] which include dif-

ferent amounts of Hartree-Fock (HF) exchange. Results of these calculations are shown in

Table 1. As expected, the bandgap predicted from PBE is significantly smaller than values

computed from the hybrid functionals. We believe that the HSE06 functional is the most

accurate of the exchange-correlation functionals we tested because it is known to be accurate

for semiconductors.[89] The larger bandgap computed from PBE0 is likely a result of using

a larger amount (25%) of full-range HF exchange, in comparison to B3LYP, which has 20%

full-range HF exchange and HSE06 with 25% short-range HF exchange.

The band structure for hydroxygraphane computed from the HSE06 functional is shown

in Fig. 14. We see from this figure that the bandgap is direct and is located at the Γ point.

We note that the band gap reported by Wang et al. computed from the PBE functional is

about 1 eV larger than our PBE value.

Table 1: Values of the bandgap of hydroxygraphane computed from various exchange-

correlation (XC) functionals

XC functional Bandgap (eV)

PBE 2.23

HSE06 3.43

PBE0 4.10

B3LYP 3.11

One might expect that an excess proton added to hydroxygraphane would create a lo-

calized charge center, i.e., one H atom bound to a hydroxyl group could be identified as the

“proton” and would have a significantly larger positive charge than the rest of the H atoms

bound to other OH groups. We have tested this hypothesis by computing the charge on each
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Figure 9: HSE06 electronic band structure of hydroxygraphane along a high-symmetry path.

The Fermi level is shifted to zero energy and represented by a horizontal red line.

atom of hydroxygraphane with a single added proton using the Density Derived Electrostatic

and Chemical (DDEC6) charge analysis approach.[25, 90] We found that the charges on H

atoms bound to OH groups are all very similar, indicating that the excess proton is fairly de-

localized (see Fig 30 and Tables 6 and 7 of Appendix B.2). This delocalization of the charge

is consistent with our observation of a Grotthuss-like proton conduction mechanism. This

is similar to the case for 1-D hydroxylated graphane [76] and for graphamine.[91] We have

computed phonon dispersion curves using the finite-displacement method [85] to investigate

the stability of hydroxygraphane (see Fig. 31 in Appendix B.3). Instabilities in the form

of soft modes (modes with imaginary frequencies) were not found along any high-symmetry

direction of the Brillouin zone under the harmonic approximation. The lack of soft modes

indicates that hydroxygraphane is mechanically stable.

3.5 Elastic Properties

The elastic properties were investigated to provide insights into the mechanical rigidity

of the hydroxygraphane. We have computed the in-plane Young’s modulus Y , which is a

2-D version of Young’s modulus, for hydroxygraphane as described in the Appendix B.4.
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These calculations gave Y = 252 J/m2. For comparison, this value of Y falls in-between

the reported values for chair graphane (243 J/m2) [92, 93] and graphene (340 ± 50 J/m2)

[94]. The increase in Y for hydroxygraphane relative to chair graphane is the result of

the 2-D network of hydrogen bonds on the surface of hydroxygraphane, which provides

resistance to in-plane stretching and compression. We have also computed Poisson’s ratio ν

for hydroxygraphane as described in Appendix B.4. Our computations gave ν = 0.11, which

is comparable to graphene (ν = 0.16) [94] and almost double that of the parent material,

chair graphane (ν = 0.07).[92] Our computed values of Y and ν for hydroxygraphane indicate

that it has reasonable mechanical properties for a PEM material.

3.6 Conclusions

We have demonstrated in silico that hydroxygraphane is an intrinsic proton conduction

material, capable of conducting protons anhydrously through a Grotthuss-like mechanism,

whereby a proton hops from one OH group to another, followed by a different proton hopping

to a third neighboring OH group. It is the contiguous network of hydrogen bonds on the

surface of hydroxygraphane that provides the necessary pathways for proton transport. We

believe that proton conduction will occur through a similar mechanism for any surface having

a network of hydrogen bonded moieties, even in the complete absence of water. Importantly,

morphological defects, such as the absence of one or more adjacent hydroxyl groups, will

have a minor impact on proton conduction because of the presence of redundant percolating

hydrogen bonding pathways. Our DFT calculations provide evidence that hydroxygraphane

has the requisite electronic and mechanical properties for making a practical proton exchange

membrane material capable of operating at intermediate temperatures and low humidities.

Given the recently reported synthesis of hydroxygraphane, [72] our work provides strong

motivation to experimentally test our predictions of anhydrous proton transport.
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4.0 Graphamine: Amine Functionalized Graphane for Intrinsic Anhydrous

Proton Conduction

This work was published as: Bagusetty, A., Livingston, J., & Johnson, J. K. (2018).

Graphamine: Amine-Functionalized Graphane for Intrinsic Anhydrous Proton Conduction.

J. Phys. Chem. C, 123(3), 1566-1571.

4.1 Introduction

Proton exchange membrane (PEM) fuel cells are becoming increasingly important for

use in applications such as fuel cell electric vehicles and portable power generation.[54] This

has lead to a search for more cost-effective and robust materials for proton conduction

(PC) to replace Nafion, the current default PC material. One of the main shortcomings

of Nafion is that it is not an inherent PC material, i.e., it only conducts protons when

hydrated. This leads to problems with water management and results in a relatively narrow

window of operating temperatures (< 80◦C) for Nafion-based PEM fuel cells. Development

of intrinsically PC materials would allow PEM fuel cells to operate over wider temperature

ranges, even under anhydrous conditions.[76, 68, 6]

New PC materials designed to function under anhydrous or low-humidity conditions

include organic polyelectrolytes [58] and crystalline porous materials, such as cucurbituril-

based organic molecular porous materials [67], metal organic frameworks [62, 57],

metallopolymers[95] and covalent organic frameworks.[59, 69] However, existing materials

are subject to a variety of limitations,[57] highlighting the need for development of new PC

materials that fulfill all property and cost requirements for PEM fuel cells.

Recently, graphane [71] functionalized with a 1D chain of hydroxyl groups has been

shown to exhibit facile PC under anhydrous conditions.[76] The key advantage of hydrox-

ylated graphane compared with other anhydrous PC materials is that the OH groups are

covalently bound to the surface with the correct spacing to form a percolating network of
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Figure 10: Schematic representation of top and side view of a graphamine supercell (carbons

in gray, nitrogens in blue, hydrogens in white). Solid lines show the supercell boundaries in

the ~a and ~b directions.

hydrogen bonds on the surface, which is required for rapid anhydrous PC. Moreover, this

network is relatively rigid, meaning that thermal fluctuations do not disrupt the hydrogen

bonding network as much as in more flexible materials, such as polymers. Given these fea-

tures, we seek to identify other functional derivatives of graphane for robust anhydrous PC.

In this work, we examine surface functionalization of chair graphane with amine groups (–

NH2) as a potential anhydrous PC material. The objectives of this paper are to: (1) test

whether amine-functionalized graphane (graphamine) can conduct protons under anhydrous

conditions, (2) estimate the bandgap of graphamine, and (3) explore the mechanical proper-

ties of graphamine. The bandgap is of interest because any practical PEM material must be

electrically insulating to avoid short circuiting the fuel cell. Good mechanical properties are

required for constructing robust fuel cell stacks. We here report density functional theory

(DFT) calculations predicting the PC, electronic, and mechanical properties of graphamine.
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4.2 Computational Methodology

All the AIMD simulations were performed using the Quickstep module [96] in the CP2K

package [97]. The Perdew-Burke-Ernzerhof (PBE) [17] generalized gradient approximation

(GGA) exchange-correlation functional was used, along with a hybrid Gaussian and plane

waves method, [98] employing DZVP-MOLOPT basis sets [99] with GTH pseudopotentials

[100]. A plane-wave energy cut-off of 440 Ry and a relative plane-wave energy cut-off of 40 Ry

for the reference grid represented by Gaussian functions in a multi-grid domain is used. The

orbital transformation method [101] was used to optimize the wave functions at each step of

the simulations. AIMD simulations within the NVT (canonical) ensemble were performed

for thermal equilibration using colored-noise GLE thermostat [102, 103]. A time step of

0.5 fs for integration under Γ point sampling of the Brillouin zone was employed. A set of

five independent NVE (microcanonical) ensemble simulations were performed starting from

initial configurations (positions and velocities) obtained from thermalized NVT simulations.

The NVE AIMD simulations were run for 30 ps for data collection.

Electronic and mechanical properties (phonon density of states and elastic constants)

require a higher level of accuracy than PC dynamics calculations; we have therefore carried

out these calculations using the Vienna Ab initio Simulation Package (VASP) [79, 15, 80].

Projector augmented-wave pseudopotentials [81] were employed to describe the interactions

between valence electrons and frozen cores. A kinetic energy cut-off for the plane-wave

expansion of 520 eV was used. We used the PBE[17] GGA exchange-correlation functional for

the structural and mechanical calculations. The structural relaxation and lattice properties

(a = 10.703 Å, b = 8.027 Å, c = 20.0 Å, α=β=90◦, γ=120◦) for the supercell shown in

Fig. 10 were computed on a 7 × 7 × 1 k point grid. The energies were converged to within

10-9 eV and the ionic positions were optimized until the forces were converged to less than

10-3 eV/Å. A vacuum spacing of 20 Å in the ~c direction was used to mitigate the periodic

interactions. Harmonic phonon dispersion calculations were computed at the PBE level of

theory using Phonopy [85]. We used a 3 × 3 × 1 supercell of the configuration shown in

Fig. 10 for the phonon calculations.
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Our DFT calculations were carried out using a single layer of graphamine supercell, as

shown in Fig. 10 (see Appendix C for atomic coordinates). Graphamine was constructed by

replacing the surface H atoms on one side of graphane with amine groups. As a result of func-

tionalization, the C–C bond length increases from 1.54 Å [93] to 1.62 Å. Alternately, one could

completely functionalize both sides of graphane, producing a fully saturated graphamine to

increase the overall conduction. We employed ab initio molecular dynamics (AIMD) simula-

tions performed at a temperature of about 1000 K in the constant energy (microcanonical)

ensemble to estimate the thermodynamic stability and proton diffusivity of graphamine hav-

ing one additional proton per supercell, such that the system has a +1 e charge. It is well

known that periodic DFT calculations of charged systems are problematic because of the

errors due to imposing an artificial jellium background.[26] However, Bagusetty et al. have

shown that no significant errors arise for computing PC on hydroxylated graphane.[76] We

therefore do not apply any charge-based corrections in this work.

4.3 Results and Discussion

4.3.1 Structural Configuration

Chemical functionalization of sp3 hybridized graphane to form aminated graphane gives

a C—N covalent bond length of 1.48 Å in comparison to the semi-ionic C—N bond length

of 1.518 Å reported for amine functionalized graphene.[104] The hydrogens of the amine

groups in graphamine tend to orient roughly towards the centers of the underlying graphane

hexagons rather than to align with the C—C bonds, as seen in Fig. 10. The average H—N—H

bend angle is 107.8◦, as computed for the configuration in Figure 10. We have computed the

electron localization function for graphamine with one excess proton; the resulting isosur-

faces is shown in Fig. 11. We see from this plot that hydrogen atoms on an amine group are

generally oriented toward the lone pairs on a neighboring nitrogen, confirming the expecta-

tion that graphamine forms a hydrogen bonding network. The isosurface densities along the

amine group with an excess proton (highlighted with a dotted circle in Fig. 11) indicate the
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Figure 11: Top and side views of an electron localization function with an isosurface value

of 0.6 for graphamine with an excess proton. Dotted circle represents the amine group with

an excess proton.

covalent bonding nature of the excess proton with the –NH2 group, as seen by the apparent

equivalence of the isosurface for all three H atoms. This is also confirmed from the consis-

tency of the N–H bond lengths on the –NH3 group, which are 1.01, 1.06, and 1.06 Å. An

analysis of the hydrogen bonds gave a mean N· · ·H and N· · ·N hydrogen bond distance of

2.2(±0.32) and 2.68(±0.08) Å, respectively. In comparison, hydrogen bonding distances for

N· · ·H and N· · ·N in liquid ammonia are reported to be 2.7 and 3.35 Å, respectively.[105]

The shorter hydrogen bonding donor-acceptor distances observed in graphamine compared

to liquid ammonia, coupled with the observation that the NH2 groups on graphamine can

rotate (as seen from AIMD simulations) indicate that proton transfer should be more facile

on graphamine than in liquid ammonia.

4.3.2 Proton Conduction Dynamics

An analysis of the AIMD simulations showed that PC occurs through proton hopping

along the 2-D hydrogen bonding network of graphamine, accompanied by rotation of NH2
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Figure 12: Snapshots from an AIMD simulation showing an example of a Grotthuss-like

proton conduction event. The system contains one excess proton and the charge center is

marked with the shaded circle in each snapshot. The direction of the proton hop is indicated

by the arrow (colors are defined in Figure 10).

groups. Given the morphology of graphamine, the protons are transported by hopping

between adjacent amine groups in a Grotthuss-like mechanism, [31] facilitated by hydrogen

bonding between neighboring amine groups. The average number of hydrogen bonds (donor

and acceptor) per NH2 group is about 3, as computed from a distance-based criterion.

Hydrogen bonds were determined based on a geometric distance criterion of an N—H distance

≤ 2.7 Å for non-bonded atoms.[105] Hydrogen bond distance data and PC events were

collected from AIMD trajectories at 1000 K.

An example of a proton hopping event obtained from snapshots from an AIMD simulation

is shown in Fig. 12, from which one can observe only slight reorientation of the neighboring

amine groups as a result of the hopping event. We have computed mean square displacements

(MSD) of all H atoms bound to N atoms from AIMD simulations at about 1000 K for the

graphamine system with one proton. The plot of MSD/t, where t is time is shown in Fig. 13.

The flat profile (MSD/t = constant at large values of t) is a signature of Fickian diffusion,

i.e., dr2 ∝ Ddt where D is the Fickian diffusion coefficient.[28] The diffusion coefficient at

1000 K, estimated from the Einstein relation (D = limt→∞〈|r(t)−r(0)|2〉/(2dt), where d = 2

is the dimensionality of the system) is 1.62×10−5 cm2/s. For comparison, simulations of PC

in Nafion at room temperature give D in the range of 1.4× 10−6 cm2/s to 1.7× 10−5 cm2/s,

depending on the level of hydration.[20] We note that proton diffusivity in Nafion drops

32



dramatically above about 80◦ C because of the loss of water from the membrane.[10] We

have plotted the components of MSD/t in the x and y directions in the inset of Fig. 13. The

approximate equivalence of the MSD in these directions implies that the diffusivity in the x

and y directions is the same.

We observed from AIMD simulations that the PC mechanism involves a proton moving

from the —NH3 group to a neighboring —NH2 group, as seen in Fig. 12. One might reason-

ably assume that one or more of the H atoms on the —NH3 group would have a significantly

larger charge than the H atoms on the —NH2 groups on the graphamine surface. In other

words, it seems reasonable to assume that the center of charge would be highly localized. We

have checked this assumption by computing the charge distribution on the H atoms bound

to N atoms for the system with a single proton using the Density Derived Electrostatic and

Chemical (DDEC6) charge analysis approach [90]. However, our DDEC6 calculations show

that the charge is highly delocalized (see charge analysis in Fig. 35 and Tables 9 and 10 of

the Appendix C). The largest value of the charge is 0.287 e, and while it does belong to an

H atom on the —NH3 group, this value is only slightly larger than the next largest charge of

0.277 e, which is on an —NH2 group. The mean charge on all H atoms bound to N is 0.257

e and the standard deviation is 0.013 e. This indicates that the charge center is delocalized,

even though graphamine is a wide bandgap semiconductor (as shown below).

4.3.3 Mechanical and Electronic Properties

Having established that graphamine has the ability to conduct protons under anhydrous

conditions, we turn to questions of whether it has suitable electronic and mechanical prop-

erties for a PEM material. Specifically, PEM materials must be electrically insulating and

mechanically robust.

4.3.4 Electronic Band Structure

Graphane is a wide bandgap material with a direct bandgap of 3.5 eV as estimated

from GGA for the ground state chair conformation.[106] Functionalization of graphane can

reduce the bandgap; it has been reported that introducing a hydroxyl group defect by the
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Figure 13: Plots of the mean square displacements divided by time of all the H atoms bound

to N atoms on the graphamine surface having one proton. Plots for five independent runs are

shown in various colors and the average of the five runs is shown as the thick black curve.

The average temperature of the simulations was about 1000 K. Inset shows the isotropic

nature of diffusivity in the x and y directions.
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Figure 14: (a) PBE (dashed red lines) and HSE06 (solid blue lines) band structure of

graphamine along high-symmetry paths showing a direct bandgap of 2.04 and 3.08 eV re-

spectively. The Fermi level is shifted to zero energy. (b) Phonon dispersion curves calculated

for graphamine.
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replacement of an H atom in a 3 × 3 graphane supercell reduces the GGA bandgap to

3.3 eV.[106] Replacing all the H atoms on one surface of graphane with hydroxyl groups

gives a material with an estimated bandgap of 3.22 eV [14]. Given these trends, we expect

that the bandgap of graphamine will be reduced with respect to graphane. We employed

the Heyd-Scuseria-Ernzerhorf (HSE06) hybrid functional [83] to obtain an accurate band

structure because it is well-known that the GGA formalism generally underestimates the

bandgap of semiconductors. We have computed the band structure of graphamine using

both the PBE and hybrid HSE06 functionals. Both methods predict that graphamine is a

wide-bandgap semiconductor with a direct gap at the Γ point. The PBE bandgap is 2.04 eV

while the screened-hybrid HSE06 functional, which predicts accurate bandgaps for typical

semiconductors, [89] gives a gap of 3.08 eV. Both the PBE and HSE06 band structures are

shown in Fig. 14(a). An upward offset of the valence band maximum (VBM) is observed

when going from PBE to HSE06 leading to the increase in the bandgap from 2.04 eV to

3.08 eV. There are no significant differences observed for the alignment of conduction band

minimum (CBM) using both the functionals. These calculations indicate that graphamine

has an appropriate bandgap to be used as a PEM material.

In the Figure 15, we show a plot of the partial density of states indicating the contribution

from various atomic orbitals. The contribution to the valence band maximum is dominated

by the amine groups, while the regime close to conduction band minimum is from the sp3

carbon atoms. This suggests that an electron charge transfer occurs from the plane of amine

groups to the sp3 carbon atoms.

4.3.5 Phonon and Elastic Properties

We have computed the phonon dispersion curves for graphamine in order to estimate its

stability. The curves are plotted in Figure 14(b). The absence of soft modes (modes with

imaginary frequencies) along any high-symmetry direction of the Brillouin zone indicates

that there are no instabilities in graphamine, within the harmonic approximation. Only

the lower frequency dispersion branches with values less than 10 THz are shown in Figure

14(b) in order to focus on the acoustic modes along principle directions (the full phonon
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Figure 15: Calculated partial density of states according to the atomic types for graphamine.

dispersion spectrum in shown in Figure 36 of Appendix C). The longitudinal acoustic LA

and transverse acoustic TA branches show linear profiles, while the out of plane acoustic ZA

modes show quadratic dispersion. This is very similar to the behavior observed for graphene

and its layered derivatives.[107] We have also calculated the phonon density of states, shown

in Figure 36 of Appendix C. Thermal properties of graphamine computed from the phonon

density of states, are shown in Figure 37 from Appendix C. We performed calculations for

the elastic properties under harmonic strain limits (ε ¡ ± 2%) by applying uniaxial and equi-

biaxial in-plane strain. Calculation of in-plane Young’s modulus, (Y ) and Poisson’s ratio,

(ν), are estimated from elastic constants C11 and C12 related by the expressions (details are

presented in Appendix C.4),

Y =
C2

11 − C2
12

C11

(4.1)

ν =
C12

C11

(4.2)

The calculated value of Y is 262 J/m2, which falls in between the reported values for chair

graphane (243 J/m2) [92, 93] and graphene (340 ± 50 J/m2).[94] Note that the in-plane

Young’s modulus is appropriate for a 2-D material and has different units than the Young’s

modulus for a bulk material, i.e., the correct units for the in-plane Young’s modulus is energy
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per unit area, rather than energy per unit volume. The reduction of the in-plane Young’s

modulus for chair graphane relative to graphene is the result of sp3 hybridization, which

makes graphane easier to deform under loading compared to sp2 hybridized graphene. Our

calculations show that functionalization of graphane with amine groups yields a higher value

of Y compared to graphane because the hydrogen bonded network of amine groups provides

additional resistance to applied strain. Hence, there should be an opportunity to tune Y to

a certain degree through control of the degree of functionalization. We note that our results

are for graphamine with a single side functionalized with amine groups. We predict that

functionalization of both sides of graphane with amine groups will produce an even larger

value of Y . The value of Poisson’s ratio was determined to be 0.13, which is close to the

values reported for graphene (0.16) [94] and almost double than chair graphane (0.07) [92].

An observed increase in the value of ν compared to chair graphane can be attributed to

the formation of a 2-D network of hydrogen bonding layer from amine groups. This dense

network of hydrogen bonds provides resistance to longitudinal elongation thus increasing the

value of ν.

4.4 Conclusions

In summary, we have predicted that graphamine is a promising PEM material for fa-

cilitating PC under anhydrous and low-humidity conditions. Graphamine has a contiguous

network of hydrogen bonds that are much closer than in liquid ammonia. This compressed

hydrogen bonding network, coupled with the ability of the —NH2 groups to rotate, facilitates

PC in the compete absence of water, as seen from our AIMD simulations. We have shown that

graphamine is a wide bandgap semiconductor, having a direct gap of 3.08 eV. The phonon

density of states and dispersion relations indicate that graphamine is mechanically stable. It

has an in-plane Young’s modulus larger than unfunctionalized graphane. Amine functional-

ized graphene oxide has been experimentally synthesized,[108, 109, 110, 111, 112, 113] but

that fully aminated graphane has not yet been produced. Our work provides motivation for

synthesis and characterization of more uniformly functionalized graphamine.
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5.0 Role of Nuclear Quantum Effects on the Isotopic Fractionation of Water

Isotopologues

5.1 Introduction

The relative abundance of an isotope between two coexisting phase has been of interest

for several decades and more specially towards the understanding of liquid-vapor isotope

fractionation ratio (IFR). Recent analysis from IFR studies have revealed a new perspectives

regarding the role of microalgae inducing isotope fractionation in Uranium.[114] This IFR

have been historically related to the ratio of vapor pressures of light and heavy isotopic

species in the liquid and vapor phases.[115, 116, 117] Moreover, there are several studies

focused on the deuterium and hydrogen (D/H) IFR in water liquid-vapor [117, 118] and

vapor-ice phases.[119, 120] In contrast, tritium and hydrogen (T/H) IFR in water has not

been investigated as extensively.[121]

Nuclear quantum effects (NQE) are known to impact the properties of water in sub-

tle ways. The main reason for this is that hydrogen bonding is central to water’s unique

properties, and hydrogen bonding is subject to NQE, even at room temperature, because

of the light mass of the hydrogen atom. The salient role of nuclear quantum effects asso-

ciated with the hydrogen and its isotopes has long been of interest.[122, 123] Although the

chemical composition of water being H2O is quite simple, there are a number permutations

for hydrogen isotopes (1H, 2H, 3H) and oxygen isotopes (16O, 17O, 18O) that can alter the

inherent properties. The determination of relative abundance of these isotopes in any given

two phases in equilibrium poses a challenge. In this work, we characterize the H/X (X:D,T)

fractionation ratio associated with the liquid-vapor equilibrium involving deuterated water

(HDO) or tritiated water (HTO). This equilibrium fractionation ratio determines the ratio

of isotopic species when liquid and vapor phases are in equilibrium.

Due to the lighter mass of the hydrogen, nuclear quantum effects (NQEs), such as delo-

calization, zero-point energy, and tunneling, manifest their effects on the nature of hydrogen

bonds and in turn become the source of the anomalous behavior of water. These NQEs are
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much less pronounced for tritium than the other isotopes of hydrogen because it has the

heaviest mass. Tritium can readily react with water or hydrocarbons from the surround-

ing environment via isotopic exchange of the hydrogen atoms. Despite being of interest for

a wide range of technological applications, there has been a significant gap in the funda-

mental understanding of quantum effects and its associated dynamics of tritium with the

surrounding environments.[124, 125] In contrast, hydrogen/deuterium (H/D) fractionation

has been extensively assessed ranging from interstellar environment,[126, 127] proteins,[128]

rocks samples[129] to water at triple point[130] and phase equilibrium.[118]

With the advances in molecular simulation methodologies, the inclusion of isotopic effects

have emerged from simple ratio of vapor pressures, Van’t Hoff relation[131] and Feynman-

Hibbs effective potentials[132] to quantum instanton approximation,[133] quasi-harmonic

approximation,[134] multiple time step integrators,[135] thermodynamic integration,[136]

free energy pertubation,[134] and direct thermodynamic estimators.[137, 138] Along with

an emerging adoption of machine learning techniques to molecular simulations, neural net-

work (NN) based force fields have gained popularity for their higher accuracy, lower com-

putational costs, transferability, ease of adoption and scaling. With the limitations offered

by the conventional classical force fields and the computationally intensive nature of first

principles based methods, there has been tremendous progress towards the development

of NN-based force fields for water clusters [139, 140, 141] and bulk water.[142, 143, 144,

145, 146] Several NN-based force fields were also reported to explicitly investigate NQEs of

water.[130, 147, 148] Recently, Ceriotti et al.[147] have reported a flexible and dissociable

revPBE0-D3-based NN force field for bulk water that can reproduce the electronic structure

description and NQEs in comparison to experiments. With the computational performance,

linear-scaling characteristics and its integration with the widely adopted molecular simula-

tion framework LAMMPS [149], this revPBE0-D3-based NN force field was used to evaluate

the liquid vapor isotope fractionation ratio of water isotopologues, HDO and HTO. In this

work, we demonstrate theoretical predictions of liquid vapor isotope fractionation ratio of

water isotopologues (HDO and HTO), inversion temperature for their flipping of abundance

from liquid to vapor phase and with an evaluation of the NN-revPBE0-D3 based water

model.

40



5.2 Simulation Methodology

5.2.1 Isotope Fractionation Ratio

The relative abundance of any isotopic species for a given thermodynamic media is gov-

erned by the equilibrium isotope fractionation ratio. In this work, the thermodynamics re-

lated to the isotope fractionation ratio between two media specifically liquid(l) and vapor(v)

for the two isotopic species X and X
′

is denoted by α(l−v) and given by the equilibrium,

X(l) + X
′

(v) � X(v) + X
′

(l) (5.1)

The α(l−v) for the above equilibrium is determined by the atomic ratios of naturally abundant

isotope (X) and rare isotope X
′

in both liquid and vapor phase and conveniently associated

with the change in equilibrium free energy (∆∆Al−v) as given by,

α(l−v) =
(X

′
/X)l

(X ′/X)v
= e−β∆∆Al−v (5.2)

where ∆∆Al−v = ∆Al −∆Av, is the difference between the change of free energy for isotopic

substitution in liquid and vapor phase.

The α(l−v) is traditionally determined by performing thermodynamic integration with

respect to a virtual isotopic mass (µ) undergoing transition from the abundant isotopic mass

µ = X to rare isotopic mass µ = X
′

given by,

∆∆Al−v =

∫ X
′

X

〈
Ek(µ)

〉
v

µ
−

〈
Ek(µ)

〉
l

µ
dµ (5.3)

where 〈Ek(µ)〉 is the quantum kinetic energy of nuclei with mass µ.

We consider two separate isotopic exchange reactions in which tritium present in the

diluted tritiated water liquid phase is replaced as tritium oxide or tritiated water vapor

(HTO). Isotopic exchange involves the transfer a HTO molecule in the vapor phase to the

liquid phase with a simultaneous transfer of a H2O molecule from liquid phase to vapor phase

given the reaction,

H2O(l) + HXO(v) � H2O(v) + HXO(l) (5.4)
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5.2.2 Path Integral Molecular Dynamics

The IFR was determined for the above equilibrium reaction using PIMD framework

as implemented in the python package i-PI[150, 151] to evolve nuclear degrees of freedom.

The forces and energies for the nuclear coordinates of the system were evaluated using

LAMMPS.[149] The liquid water phase configuration consisted of 216 water molecules and

a single water molecule in vacuum to represent the vapor phase. The PIMD simulations

were performed for temperatures ranging between 300 and 620 K under NVT ensemble with

the configurations kept at appropriate densities. A time step of 0.25 fs and 32 imaginary

time slices or beads were used for each particle with in PIMD framework as it was shown

to sufficiently convergence the desired properties for the temperature range.[130, 118] Our

simulations were performed using two different water models (a) a flexible anharmonic q-

TIP4P/F water model[152], and (b) a revPBE0-D3-based neural network (NN-revPBE0-D3)

potential.[147] We note here that the NN-revPBE0-D3 potential was shown to predict the

structural properties and contributions of NQE quite accurately for the systems of cubic

ice, hexagonal ice and liquid water.[147] Interface for the NN potential with LAMMPS was

accomplished by using USER-NN package.[153]

5.2.3 Acceleration Schemes

Given the computationally expensive nature of evaluating the thermodynamic mass inte-

gral, we have used the scheme of direct scaled-coordinates (SC) estimator to evaluate isotope

fractionation ratio α(l−v).[137] The SC estimator was chosen over direct thermodynamic esti-

mator to evaluate α(l−v) because of the inherent inefficiency in handling this transformation

mass ratio ≈ 3 and sensitive to statistical errors with the number of time slices.[137, 134] The

protocol essentially involves a virtual isotopic substitution of one of the H atom in a random

H2O molecule to the T atom for any given thermodynamic phase. With the relative ratio

of partition functions of both the isotopes involved in the substitution for each phase, α(l−v)

is directly determined. To reduce any statistical errors associated with the direct substitu-

tion of a single H2O molecule in the liquid phase, we have employed quantum alchemical

exchanges to also sample the rest of the water molecules for direct substitution, to avoid
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performing multiple independent simulations.[154] It was reported that a direct substitution

associated with H/D fractionation leads to a large fluctuations in the estimator.[134] Hence,

a similar strategy as reported in Ref. [130], was adopted to perform back substitution start-

ing with a heavier isotope atom (mT=2.992 mH, mD=1.9984 mH) to hydrogen atom (mH)

over few intermediate masses (m1=2.5 mH, m2=2.0 mH, m3=1.5 mH). The resultant H/T

fractionation ratio for the l-v equilibrium is determined by the inverse combined product of

the fractionation ratio of the intermediate masses involved in the back substitution given by,

αH→X
l−v =

1(
αX→m1
l−v · αm1→m2

l−v · αm2→m3
l−v · αm3→mH

l−v

) (5.5)

5.3 Results and Discussion

5.3.1 Isotope Fractionation of Water Isotopologues, HDO and HTO

The liquid-vapor IFR of H/D and H/T for the equilibrium reaction in Eq. 5.4 was

shown in the Fig. 16. An inversely proportional relation between IFR and the square of the

temperature was reported.[157] Our simulations predicted a crossover inversion temperature

for which the isotopic abundance of the heavier water isotopologues changes from the liquid

to vapor phase as the temperature increases. Over the temperatures regime (< 400 K),

the enrichment of HDO and HTO was preferred in the bulk liquid phase over vapor phase

implied by the value of α > 1. At 293 K, the value of 103 log(α) for H/T is greater than H/D

indicating that the selectivity of HTO/H2O is larger than that for HDO/H2O in the liquid

phase as estimated from the simulations and as well as experiments. Similarly, at 613 K, the

enrichment of HTO in the vapor phase is larger than that for HDO. However, the crossover

for enrichment of HTO and HDO from liquid to vapor phase was observed at a temperature

of about 470 K and 550 K respectively (inset of Fig. 16).

In comparison to experiments, the magnitude of 103 log(α) for both the H/D and H/T

IFR was over estimated by the simulations employing the q-TIP4P/F water model as seen

in Fig. 16. We note here that the inversion temperature for H/D determined from the
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Figure 16: Liquid-vapor equilibrium isotope fractionation ratio (IFR) for HXO (X: D,T).

Inversion temperature of IFR was observed above 490 K and 550 K for T and D respectively.

Inset shows the temperature regime of isotopic inversion from liquid to vapor abundance for

T and D. H/T is shown for experiments (red triangles)[155, 156] and simulations (red circles).

Data for H/D from experiments (blue triangles)[116] and simulations (blue circles, this work

& Ref. [130]). The solid lines are just a guide for the data obtained from simulations using

q-TIP4P/F water model.[152] Standard deviations are indicated by error bars. The data is

shown in Table. 12 and 11 of Appendix D.
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simulations was about 550 K in comparison to 500 K as reported from the experiments.[116]

This agrees well with the similar theoretical observations reported by Markland et al.[118] for

H/D. Due to the lack of experimental studies for the higher temperature ranges of H/T IFR,

no such comparisons about the inversion temperature was possible between the simulations

and experiments.

The theory of vapor pressure isotope effects (VPIE) was historically employed to study

the system of H2O/HTO under equilibrium vaporization for a wide range of

temperatures.[155] Under this formalism, the value of α(l−v) were approximated for any given

water isotopologue (HXO) by the ratio of partial pressure of H2O to its heavier isotopologue

given by the relation:

P s
H2O/P

s
HXO ≈ α(l−v) =

(X
′
/X)l

(X ′/X)v
(5.6)

where Ps
H2O and Ps

HXO are the saturation vapor pressures of H2O and HXO respectively. By

employing VPIE, an approximation to the temperature of inversion for IFR from liquid to

vapor phase for HDO and HTO was approximated to be around 500 K and 550 K respectively.

This interpretation of IFR from the VPIE provides us with an estimation of the range of

temperatures for the inverse IFR.

5.3.2 Evaluation of NN-revPBE0-D3 Potential for IFR

Fig. 17 shows a comparison for the prediction of 103 log(α) for H/D IFR using NN-

revPBE0-D3, q-TIP4P/F with the experimental data. When it comes to the H/D IFR,

NN-revPBE0-D3 water model produces the most accurate results in agreement with the

experiments. Over the regime of HDO abundance in liquid phase, the NN-revPBE0-D3

performs better over q-TIP4P/F water model but the error marginally increases for the

temperature 613 K, where the isotopologue abundance is preferred in vapor phase. At the

lowest temperature of 293 K, the well-known q-TIP4P/F water model over predicts the H/D

IFR by over 40%, where as the average error margin for NN-revPBE0-D3 model is only

12%. The tabulation of 103 log(α) for both the H/D and H/T were reported in Table. 11

and 12. Moreover, a different NN-based water model (NN-B3LYP-D3) trained from B3LYP
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Figure 17: Evaluation of the water models q-TIP4P/F[152] and NN-revPBE0-D3[147] for

the determination of H/D isotope fractionation ratio in comparison with experiments.

functional with D3 dispersion correction reported an accuracy for H/D liquid vapor IFR

in comparison to experiments[116] with an average over-prediction of about 43% for the

temperatures, 273 and 300 K.[130] The H/T liquid vapor IFR estimated from NN-revPBE0-

D3 observe a similar trend as seen for H/D IFR with the values predicted by NN-revPBE0-

D3 were lower than q-TIP4P/F (see Table. 11). We note here that the inversion of isotope

fractionation ratio into the vapor phase abundance of HTO was predicted by qTIP4P/F at

493 K where as the liquid phase abundance was suggested by the NN-revPBE0-D3 for the

same temperature. However, there is also a general agreement of both the water models

predicting a relative abundance of HTO over HDO (αH/T > αH/D) in both the liquid and

vapor phase for the temperature range between 293 K and 613 K.

5.4 Conclusions

In conclusion, this work illustrates the predictions for H/D and H/T fractionation ra-

tios and that these ratios provide an excelled metric to assess the magnitude of quantum
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effects predicted by different water models. We have demonstrated that there is relatively

an abundance of HTO over HDO in both the liquid and vapor phases. These IFRs for

various water isotopologues were computed quite efficiently using direct scaled coordinates

estimator to directly determine the fractionation ratios over traditional approaches of per-

forming computationally intensive thermodynamic integration. The NN-revPBE0-D3 model

predicts the H/D ratio better in comparison to experiments and hence we predict that this

NN-based water model would also be a better fit to compute H/T ratio, since there is a lack

of experimental data for the H/T ratio.
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6.0 Investigating Cocrystallization of the Mixture of Poly-oxacyclobutane and

Water Isotopologues

6.1 Introduction

Among the polyoxyalkene (—[(CH2)mO]n—) series, a unique member polyoxacyclobu-

tane (POCB) exhibits unusual characteristics of cocrystallization when mixed with water to

form POCB crystalline hydrate [158]. Four different crystal polymorphs (Forms I, II, III,

IV) [159, 160] were reported, out of which Form I was stabilized in a crystalline form only

in the presence of water via hydrogen bonding to form a crystalline hydrate [161]. With one

water molecule per monomeric unit, the unit cell was shown to have the POCB chain in a

planar zig-zag form, all-trans backbone with the water molecules located along channels so

that they hydrogen-bond with the ether oxygen of POCB as well as with neighboring water

molecules. The unit cell of POCB hydrate is shown in Fig. 18.

Recent work by Velankar et al.[158] have investigated a peculiar phase diagram of POCB

water mixtures. This work have also reported on the formation of POCB crystalline hydrate

that is in solid-liquid equilibrium obtained for the case of higher molecular weight POCB

and a liquid-liquid equlibrium was also observed for the lower molecular weights of POCB.

Our hypothesis was to understand whether a POCB crystalline hydrate can be formed

that is enriched with the heavier water isotopologues of HDO and HTO with in the hydrate

framework. This process of cocrystallization lead to a low cost and energy efficient means

of concentrating the heavier isotopologues present in dilute proportions. By employing path

integral molecular dynamics simulations, we have investigated the feasibility of cocrystal-

lization of POCB-water mixture enriched by HDO and HTO by determining the isotopic

selectivity factor.
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Figure 18: Unit cell configuration of Poly-oxacyclobutane (POCB) crystal.
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6.2 Experimental Characterization of POCB and Water Cocrystallization

There has been extensive work covering the domain of preparing POCB polymer with

higher molecular weights ranging several thousands of g/mol.[162, 163, 164] However, a

very few processes were developed that involves the polymerization of lower molecular

weight grades of POCB namely from the condensation polymerization of 1,3-propanediol

by DuPont.[165, 166, 167] Experiments were conducted using the mixtures of lower molecu-

lar weight POCB and water in different proportions that resulted in unusual phase behavior.

Interstingly, it was also reported from the experimental investigations that the POCB can

readily crystallize with the adsorption of water from the moist air. The melting point of the

POCB crystalline hydrate was reported to be about 310 K, which is higher the melting tem-

perature of both the pure species POCB and water. Note that the melting temperature of the

crystalline hydrate is independent of the composition of the POCB and water. Phase equilib-

ria studies found that the POCB is not miscible with water indicating liquid-liquid equilibria

under liquid conditions. However, a solid-liquid equilibrium was also established between

POCB crystal hydrate with either the water-rich phase or polymer rich phase depending on

the composition of water. Techniques of cloud point and melting point determination for

the POCB-water mixture and hydrate crystals were performed respectively. Also differential

scanning calorimetry was used to examine the hydrate crystals.[158] These experiments were

performed with POCB obtained from DuPont under the commercial name of Cerenol. Most

of the experiments were performed with grade H650 denoting a molecular weight was 650

g/mol.

6.3 Theory and Computational Methods

The preferential adsorption of water isotopologues HDO and HTO in the form of cocrys-

tallization of water POCB mixture to yield a POCB crystal hydrate was investigated using

path integral molecular dynamics (PIMD) framework as implemented in the i-PI package[150,

151]. Since H2O, HDO and HTO differ only by their nuclear mass, the relative difference of
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their physical properties were mostly dictated by the differences in their NQEs. These NQEs

can be quantified within the PIMD formalism. Every classical particle was transformed into

several imaginary beads or replicas (P=32 in this case) governing imaginary time path in-

tegral framework of quantum mechanics schematically represented in the Figure 18. In this

work, we have computed equilibrium isotopic fractionation ratio or selectivity factor (α) for

the water isotopologues HXO {X: D,T} represented by their selective adsorption into POCB

hydrate given by,

H2O(POCB) +HXO(l) � H2O(l) +HXO(POCB) (6.1)

α =
[HXO/H2O](POCB)

[HXO/H2O](l)
(6.2)

where [HXO/H2O] represents the relative mole fractions of HXO and H2O for a given phase

and the subscripts (l) and (POCB) represents the bulk water and POCB crystal hydrate

phase respectively. For instance, the value of α greater than unity represents a dominant

preference of heavier water isotopologue HXO in POCB crystal hydrate over the bulk water

phase.

All the PIMD simulations were performed using the NVT ensemble over a temperature

range of 240 K to 300 K the melting point of POCB crystalline hydrate (310 K) [158] to

determine the temperature dependence of isotopic selectivity. These PIMD simulations were

performed using a time step of 0.25 fs in conjuction with the LAMMPS package [149] to

evaluate the forces and energies. Configurations for the bulk water and POCB crystalline

hydrate phase were equilibrated to appropriate densities. The bulk water configuration

consisted of 216 water molecules and POCB crystalline hydrate was represented by a 2 ×
2 × 4 super cell (unit cell in Fig. 18) encompassing 64 water molecules as the water of

crystallization. A flexible, anharmonic q-TIP4P/F water model [152] and OLSA-AA [168]

for POCB were used to appropriately consider the nuclear quantum effects.
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6.4 Results & Summary
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Figure 19: Isotope fractionation ratio (α) for HTO/H2O and HDO/H2O as a function of

temperature for the cocrystallization of POCB and water isotopologues mixture. The solid

line is just a guide for the eye. Standard deviations are indicated by error bars.

Results from our PIMD simulations revealed that a positive value of α was observed

for HDO and HTO indicating the formation of POCB crsytalline hydrate with either HDO

or HTO isotopologues as shown in Fig. 19. A maximum value of α was observed for both

the HDO and HTO isotopic preference at around 280 K. It was also observed in Fig. 19

that the isotopic selectivity of HTO is more favorable over HDO towards the formation of

crystal hydrate for the temperatures considered for this study. This seperation factor was

attributed to the manifestation of nuclear quantum effects in the form of differences in the

nuclear quantum kinetic energy for different water isotopologues.
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7.0 Future Work

7.1 Investigating Cocrystallization of the Mixture of Poly-oxacyclobutane and

Water Isotopologues

The work to understand the isotopic affinity of HDO and HTO for the formation of crys-

talline hydrate of POCB was discussed in the Chapter. 6. The above studies were performed

using OPLS and q-TIP4P/F force fields to represent POCB polymer and water molecules

respectively. It would be imperative to investigate the interplay of the above mentioned

force fields to accurately determine the isotope fractionation ratio of cocrystallization of

POCB-water mixtures. The future work under this thrust is summarized below:

• Develop a force-field based on the data obtained from DFT simulations using PBE0

function with D3 dispersion corrections. This DFT data is obtained by performing ab-

initio Hessian matrix calculations in cartesian coordinate space using the framework of

QuickFF protocols.

• Perform the path integral molecular simulations again using the newly developed DFT-

based force field to determine the isotope selectivity factor for HDO and HTO.

• Compare and contrast the relevant results obtained from the native force-field of using

OPLS and q-TIP4P/F with the DFT-based force field.

7.2 Addressing Thermodynamic Stability and Temperature Dependence of

Proton Diffusivity

Having established the characterization of graphane functionalized with hydroxyl (Chap-

ters. 2 and 3) and amine groups (Chapter 4) for efficient and facile proton transport, it would

be an interesting step to investigate the thermodynamic stability and also the temperature

dependece of proton diffusivities for the above said materials. The future work under this

thrust is summarized below:
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• Perform free calculations to understand the thermodynamic stability associated with the

formation of defects in the form of (a) creating of water molecule from the center of

exccess or protonated hydroxy group of graphanol and (b) in the form of creating an

ammonia molecule from the center of excess charge represented as protonated amine

group on graphamine.

• Perform AIMD simulations to compute the proton diffusivities at different temperatures

with one excess proton for graphanol and graphamine.

7.3 Molecular Recognition of Water in Porous Coordination Polymer

To shed light on molecular recognition of water adsorption with in a porous framework,

we have focused on calcium squarate, [Ca(C4O4)(H2O)]· 1.5H2On, a family of porous coordi-

nation polymers that can encapsulate water molecules with in the cavities. Calcium squarate

(CaSq) was also reported to be synthesized according to Robl et al.[169] It was reported from

the experimental investigations that a shrinkage of lattice volume was observed with the load-

ing of water molecules in the 3D cavities established by the framework. A gradual loading

of 0.5, 1.0 and 1.5 molecules of water (guest water molecules) per Ca ion in the unit cell

induces incremental shrinkage of lattice as observed by the variation of lattice parameters

with respect to an unoccupied configuration of CaSq. Our current workflow is to perform

structural relaxation calculations and ab-initio molecular dynamics (MD) simulations in the

NpT ensemble for CaSq with an empty framework and also with different loading amounts of

guest water molecules to determine the lattice parameters for the temperature of 303 K and

1.0 bar. Our priliminary results obtained from the simulations performed for the unoccupied

lattice configuration and with a maximum occupied configuration with guest molecules (i.e.,

1.5 water molecules per Ca ion) revealed a shrinkage of 0.3% for the lattice parameter a.

This lattice shrinkage can be attributed to the formation of hydrogen bonding between the

H2O molecule that are inherent part of the framework and the guest water molecules. The

future work is summarized below:
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• Perform structural relaxations for the configurations of 0.5 and 1.0 loading of guest water

molecules.

• Determination of lattice parameter from AIMD-NpT simulations for the above said load-

ings.

• Publish the manuscript that provides insights into the lattice shrinkage, hydrogen bond

dynamics of water adsorption with in CaSq framework from the perspective of ab-initio

simulations.

7.4 Facile Separation of Medically Indispensable 18O2 from 16O2 Using Carbon

Nanotubes

Isotopic selectivity of molecular oxygen 18O2 from 16O2 was observed from our force-field

based path integral molecular simulations of 1 nm diameter isolated single walled carbon

nanotube (SWCNT) of chiral index (7,8). This selectivity was achieved for the (7,8) SWCNT

adsorbed with the molecular oxygen loading of 7.0 mmol/g. Given the observed isotopic

selection factor for (7,8) SWCNT, we would like to investigate the dependence of 18O2 isotope

selectivity for different diamter of SWCNT and with appropriate adsorbent loadings. The

future work is summarized below:

• Perform GCMC simulations using RASPA to achieve appropriate adsorbate loading of

16O2 with different SWCNT chiral index configurations of (4,4), (5,5), (7,7) and (10,10).

• Dependence of isotope selectivity for 18O2 would be investigated for the above chiral

indices.

• Investigation of isotope selecitivity factor for zero loading configurations of SWCNTs

with indices (4,4), (5,5), (7,7) and (10,10) would also be performed.

55



7.5 Unraveling the Affinities of Tritiated Water for Polymeric Materials

The hypothesis of this work is to investigate the affinity of strongly binding tritiated

water to a polymeric material. The analysis for the affinity of tritiated water is based on the

Gibbs free energy of the following equilibrium,

H2O(bulk) +HTO(polymer) � H2O(polymer) +HTO(bulk) (7.1)

where, the reactant states are the configurations of HTO bound to the polymer denoted

with “HTO(polymer)” along with the bulk water phase “H2O(bulk)”. On the products side, the

tritiated water bound to polymer is now replaced with normal water “H2O(polymer)” and the

tritiated water is displaced to the bulk phase “HTO(bulk)”. The above reaction measures the

affinity for the tritiated water to be associated with the polymer in the form of free energy

change of hydrogen bonding strength. It also signifies the importance of displacing a HTO

molecule hydrogen bonded with the polymer to the bulk aqueous phase and replacing the

same with a light water H2O taken from the bulk aqueous phase. The free energy change

for the above reaction determines whether the HTO prefers to be bound more strongly to

the polymer compared to the bulk aqueous phase. The future work under this thrust is

summarized below:

• Perform isotope selectivity studies at different temperatures for poly-vinyl acetate.

• Refine the exisiting manuscript with updated results section.
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Appendix A Facile Anhydrous Proton Transport on Hydroxyl Functionalized

Graphane

A.1 Molecular Dynamics Calculations

Ab initio molecular dynamics calculations were performed to estimate the self-diffusivity

of protons as a function of temperature. Constant temperature runs of 1 ps were initially

performed to equilibrate the system. The temperature was scaled every 25 time steps to

the target value during the equilibration period. The ending configuration and velocities

were used to run AIMD NVE simulations to avoid thermostat errors that were noted in test

runs using the Nosé thermostat [170]. The simulations were run for an additional 20 ps for

data collection at nominal temperatures of 400, 600, and 800 K. The proton self-diffusivity

was calculated using the Einstein expression, D = limt→∞MSD/(2t), where D is the self-

diffusivity, t is the time, and MSD is the mean square displacement in the direction of the

1-D OH chain. At least 100 independent simulations were performed at each temperature

for statistical accuracy.

A.2 Energy Barrier Calculations

VASP calculations were performed with projector augmented-wave pseudopotentials [81].

Vanderbilt ultrasoft pseudopotentials [171] were used for QE calculations. The climbing-

image nudged elastic band (cNEB) technique [18] was used to find the energy barrier height

related to the proton hopping process. The replicas were allowed to converge until the forces

were less than 0.025 eV/Å. The end points representing initial and final states along the

proton transport (PT) process were relaxed to a force convergence of 5 × 10−3 eV/Å be-

fore performing cNEB calculations. We have optimized the transition states and metastable

intermediate state to high accuracy (5× 10−4 eV/Å) followed by vibrational frequency anal-

ysis; each of the transition states has a single mode with an imaginary frequency. This strict
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relaxation tolerance was adopted because the PT barrier was found to be so low. Vibrational

frequency analysis confirmed that the metastable intermediate state was a true minimum (all

modes had real frequencies). Test calculations using the PW91 [172] exchange-correlation

functional gave similar results.

A.3 Rate Constants for Proton Transport

The classical barrier for PT obtained from cNEB was used to estimate rate constants

for the PT process as a function of temperature. Plots of the rate constants computed

from classical harmonic transition state theory (TST), quasi-classical harmonic [23], and

semi-classical TST approximations [24] as a function of temperature are given in Fig. 20.
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Figure 20: Rate constants for proton transport computed from classical, quasi-classical, and

semi-classical transition state theory approximations for temperatures ranging from 300 to

1200 K.
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A.4 Finite-size Effects

We have constructed a larger hydroxylated graphane supercell to investigate finite-size

effects. The larger supercell contains 70 C atoms and seven hydroxyl groups forming a

periodic 1-D chain of hydrogen bonds, shown in Fig. 21. The supercell lattice parameters

for the four and seven hydroxyl group systems are given in Table 2.

Table 2: Lattice parameters for the supercells containing 4 and 7 hydroxyl groups.

System a (Å) b (Å) c (Å) α (°) β (°) γ (°) C H O

4-OH 9.856 7.392 20.000 90 90 120 24 25 4

7-OH 17.534 12.524 40.000 90 90 120 70 71 7

A.5 Lattice Monte Carlo Simulations

A lattice Monte Carlo (LMC) model was constructed in order to verify that the Fickian

diffusion profile observed from the AIMD simulations is not an artifact of system size or

short simulation time. The model incorporates the observed PT mechanism by requiring

that a proton hop only happen if a proton aligned perpendicular to the OH chain can rotate,

such that the the excess proton is shuttled along the OH chain. The LMC model consists

of a 3×N grid, with N particles on the center row representing the protons associated with

OH groups aligned along the 1-D chain. Excess protons can be randomly placed in the two

off-center rows of the grid. This setup is shown in Fig. 22 for a grid size of N = 4 with one

excess proton and is analogous to configuration observed from AIMD simulations for the 4

OH group system, also shown in that figure.

The concerted proton hopping mechanism cannot be directly mapped into the LMC

model, since a slightly different mechanism was used to simulate a move in the LMC model.

The LMC algorithm is as follows: (1) a lattice size N is selected and a number of excess

protons M ≤ N are randomly populated either above or below the center lattice, subject to
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Figure 21: Atomic configurations computed from cNEB for the 7-OH group system for the

(a) initial state, (b) first transition state, (c) metastable intermediate, (d) second transition

state, and (e) final state.
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Figure 22: (Top panel) Representative configuration for the LMC model. The off-center

particle (blue) initiates a move to a center row location (blue underscore). The center

particle (green) displaces to a target off-center location (green underscore). (Bottom panel)

Analogous configurations to the LMC model as observed from AIMD simulations. Curved

blue arrow indicates the rotation of the hydroxyl group and the green arrow represents the

shuttle of proton. The final configurations are shown to the right.

the constraint that the adjacent sites in that row are empty and the site directly opposite

(below or above the center) is also empty; (2) one of the off-center particles (representing OH

groups aligned perpendicular to the 1-D chain) is randomly selected to initiate the move; (3)

the selected particle is randomly assigned a direction (left or right) for the attempted move,

which mimics the rotation of a hydroxyl group from an orientation perpendicular to the 1-D

chain to an orientation aligned with the chain; (4) if the lattice site on the opposite side of

the 1-D chain and in the direction of travel (left or right) is empty then the move is deemed

feasible, and a particle in the center row in the direction of travel is displaced to that empty

site (as illustrated in Fig. 22), else the move is rejected. This last step can be interpreted as

the rotation of an OH group aligned with the 1-D chain to a position perpendicular to the

chain. Steps (2)-(4) are repeated a specified number of times.

A LMC system was constructed with N = 4000 OH groups and one excess proton to

test system size effects. Simulations were run for 106 attempted moves, averaged over 104

independent runs. Results from these simulations are plotted in Fig. 23, where one can
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see that the MSD divided by time is essentially a constant, indicating Fickian diffusion.

Simulations involving smaller systems employing AIMD and finite size systems with longer

time scales employing LMC techniques showed qualitatively similar results as seen in Fig. 23.

Lattice Monte Carlo simulations were also carried out for a system of N = 8000 OH groups

and M = 4000 protons. A total of eight independent simulations, each carried out for 106

trial moves, were performed. The MSD divided by the square root of the time is plotted in

Fig. 24, from which one can see that MSD/t1/2 is essentially constant, confirming single-file

diffusion.
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Figure 23: Evidence of Fickian diffusion, as seen by a plot of MSD/t being a constant

computed from AIMD simulations at 800 K (dashed) and LMC model calculations (solid).

The LMC model results are in arbitrary units and have been scaled to facilitate plotting on

the same graph.

A.6 Analysis

A.6.1 Exchange-Correlation Functional Test

The effect of the choice of the exchange-correlation functional was tested by comparing

results computed from the Perdew-Burke-Ernzerhof (PBE) [17] form of the generalized gra-

dient approximation with calculations using the PW91 functional [172, 173], which has been

shown to give good results for water [174]. The proton hopping minimum energy pathway for
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Figure 24: Evidence of single-file diffusion, as seen by a plot of MSD/t1/2 being a constant,

computed from the LMC model with 8000 OH groups and 4000 protons. The LMC model

results are in arbitrary units.

the 4OH system computed from each of these functionals is plotted in Fig. 25. The results

are in remarkably good agreement, giving us confidence that the PBE results are physically

reasonable.

A.6.2 Hydrogen Bond Analysis

The distances between the oxygen atoms of the hydroxyl groups sharing the excess proton

in the PT process along the minimum energy pathway were measured for both the 4 and

7 OH systems. The excess proton is identified as the one that hops from one O atom to

the neighboring O atom. The results are plotted in Fig. 26. The data in the figure indicate

that the O–O spacing is close to optimial for PT, because the spacing decreases only slightly

when the PT event takes place.
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Figure 25: Comparison of relative single point energies computed from the PBE and PW91

exchange-correlation functionals for the 4 OH group system. The configurations were taken

from the PBE cNEB calcualtions.
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Figure 26: Plot of the O–O distances of the OH groups sharing the excess proton along the

minimum energy pathway for 4 and 7 OH group systems.

65



A.6.3 Charge Delocalization

The hypothesis of indistinguishable protons participating in the PT process was tested

by computing the partial atomic charges from the Density Derived Electrostatic and Chem-

ical (DDEC6) charge analysis approach [25, 90]. This analysis was performed for various

configurations on the minimum energy pathway describing the PT event as computed from

the climbing image nudged elastic band calculations. The electron densities for these config-

urations were computed from both PBE and Hartree-Fock as implemented in VASP (v5.4.1).

The Hartree-Fock calculations gave similar results to PBE, confirming that the charge delo-

calization is not due to density functional theory self-interaction error. Charges for the 7 OH

system were also computed to estimate finite size effects on the charges. The partial atomic

charges computed from PBE for the 4 OH and 7 OH systems are reported in Tables 3 and

4, respectively. The DDEC6 charges from Hartree-Fock calculations are shown in Table 5.

Figure 27: Atom labels corresponding to the Atom IDs in Tables 3 and 5.

A.7 Morphological Defects

The most common defect for the 1-D system studied in this work is expected to be

a missing hydroxyl group. We have estimated the proton diffusion barrier for a system

having a hydroxyl group vacancy. We removed a single hydroxyl group from the system

shown in Fig. 1 and replaced the missing OH group with a hydrogen atom to saturate the

carbon atom associated with vacancy (see Fig. 28). The barrier to proton hopping from the
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Table 3: Net partial charges computed from DDEC6 for protons participating in the hydro-

gen bonded network at different configurations on the diffusion pathway in a 4 OH system.

Atom IDs are defined in Fig. 27.

Atom ID Initial State TS 1 Local Min. TS 2 Final State

H1 0.3772 0.4148 0.4174 0.4172 0.4125

H2 0.4104 0.4163 0.4156 0.4134 0.3781

H3 0.4125 0.3814 0.3815 0.3803 0.3695

H4 0.3782 0.3680 0.3673 0.3677 0.3777

H5 0.3687 0.3817 0.3813 0.3821 0.4113

Table 4: Net partial charges computed from DDEC6 for protons participating in the hydro-

gen bonded network at different configurations on the diffusion pathway in a 7 OH system.

The atom IDs correspond to numbering the H atoms bound to oxygens in Fig. 21 from left

to right.

Atom ID Initial State TS 1 Local Min. TS 2 Final State

H1 0.3564 0.3741 0.3788 0.3876 0.3926

H2 0.3836 0.3922 0.3935 0.4041 0.4030

H3 0.4036 0.4044 0.4030 0.4030 0.4040

H4 0.3780 0.3887 0.3873 0.3800 0.3568

H5 0.3527 0.3598 0.3565 0.3560 0.3605

H6 0.3608 0.3543 0.3565 0.3564 0.3537

H7 0.4027 0.3605 0.3556 0.3574 0.3784

H8 0.4036 0.4048 0.4036 0.3954 0.3851
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Table 5: Net partial charges computed from DDEC6 using electon densities computed from

Hartree-Fock theory for protons participating in the hydrogen bonded network at different

configurations on the diffusion pathway in a 4 OH system. Atom IDs are defined in Fig. 27.

Atom ID Initial State TS 1 Local Min. TS 2 Final State

H1 0.4222 0.4841 0.4853 0.4886 0.4827

H2 0.4798 0.4889 0.4838 0.4802 0.4265

H3 0.4796 0.4335 0.4260 0.4235 0.3950

H4 0.4242 0.3962 0.3960 0.3971 0.4264

H5 0.3970 0.4266 0.4291 0.4342 0.4823

initial state to the final state shown in Fig. 28 was estimated by manually constructing the

transition state by placing the diffusing proton mid-way between the neighboring OH groups

and relaxing all the atoms in the system. Hence, we approximated the transition state barrier

by performing a series of geometry relaxations on transition state configurations estimated

from interpolated pathways between initial and final states. The configuration having the

lowest energy is shown in Fig. 28 (c) and (d). The barrier is estimated to be about 4.4 eV,

which clearly show that proton transport is effectively blocked by the presence of a single

hydroxyl group vacancy.
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Figure 28: Atomic configurations for a proton hopping event for a system containing a

hydroxyl group vacancy defect. (a) Initial state, shown with the hydroxyl group vacancy

defect, capped with a hydrogen atom, identified with a red circle, (b) final state, (c) transition

state, and (d) Side-on view of the transition state. All the hydrogen atoms participating

the hop are tagged with Greek letters (α, β, γ, δ) for identification and tracking (carbons in

gray, oxygens in red, hydrogens bound to oxygens in dark blue, hydrogens bound to carbon

in light blue).
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Appendix B Unraveling Anhydrous Proton Conduction in Hydroxygraphane

B.1 Computational Methodology

The AIMD simulations were performed using Γ point k-space sampling with a time

step of 0.25 fs on a 2 × 2 × 1 supercell of the configuration shown in Figure 1 to reduce

finite-size effects. The supercell used for AIMD simulations is shown in Figure 29. The

supercell, comprised of 241 atoms, included an excess proton such that the entire system

had a net charge of +1 e. Each run consisted of a canonical ensemble (NV T ) run, wherein

the temperature of the system was equilibrated to 800 K using a Nosé thermostat[170],

followed by a microcanonical (NV E) ensemble production run for at least 22 ps.

The mean squared displacement (MSD) was computed from each of the ten independent

AIMD simulations. Multiple time origins, with a time between origins of 200 fs, were used to

improve the statistics and the MSDs for each run were averaged over x and y directions along

the plane of hydroxygraphane. The diffusion coefficient was estimated from the Einstein

relation (D = limt→∞〈|r(t)− r(0)|2〉/(2dt), where d = 2 is the dimensionality of the system)

by fitting a line to the linear regions of the MSD verses time plots for each of the ten

independent runs. An average diffusion coefficient and a standard deviation were computed

from the ten values of D.

B.2 DDEC6 Partial Atomic Charges

The partial charges on the hydrogen atoms participating in the proton conduction process

were computed for the system shown in Figure 30 from the Density Derived Electrostatic

and Chemical (DDEC6) charge analysis approach.[25, 90] Table 6 presents the statistics of

partial atomic charges and the actual charges of the protons are given in Table 7. The net

atomic DDEC6 charges reported were computed by analyzing the charge densities obtained

from VASP.

70



Figure 29: Supercell of protonated hydroxygraphane used for AIMD simulations.

Figure 30: Configuration of protonated hydroxygraphane with net DDEC6 atomic partial

charges on the protons bound to hydroxyl groups. The center of excess charge is shown by

the circle.
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Table 6: Statistics (mean, maximum, minimum and standard deviation) of DDEC6 atomic

partial charges of protonated hydroxygraphane in comparison to the protonated 1-D hydrox-

ylated graphane.[76]

Quantity Hydroxygraphane 1-D hydroxylated graphane

q 0.347 0.380

qmax 0.37 0.404

qmin 0.32 0.3527

qσ 0.014 0.02

B.3 Phonon Properties

The spectrum of phonon bands is shown in Figure 31 for a 3×3 supercell configuration

(total number of atoms = 90) of the primitive cell of hydroxygraphane shown in Figure 6 of

Chapter 3.

B.4 Elastic Properties

The elastic properties of hydroxygraphane were computed from DFT under induced

deformations within harmonic strain limits (ε < ± 2%). The rectangular supercell used to

determine elastic properties is shown in Figure 38. With an application of uniaxial and equi-

biaxial strain to the lattice vectors, the in-plane 2-D Young’s modulus, (Y ) and Poisson’s

ratio, (ν), were estimated as a function of elastic constants C11 and C12 related by the

expressions,

Y =
C2

11 − C2
12

C11

(B.1)

ν =
C12

C11

. (B.2)
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Table 7: DDEC6 partial charges for protons of hydroxyl groups (coordinates in Cartesian

format) of the protonated hydroxygraphane shown in Figure 30.

x y z q

6.100916 3.933451 11.313620 0.319882

-1.363149 2.699204 11.244620 0.369235

2.220519 1.070927 11.296000 0.348896

4.665542 2.761095 11.324020 0.330375

-0.398904 5.920192 11.325260 0.339953

4.770224 5.933185 11.312980 0.346656

2.630429 5.201999 11.368980 0.364803

5.233040 0.632261 11.326840 0.362692

-2.551866 5.155654 11.306020 0.348524

7.366636 1.528383 11.334120 0.346649

0.237644 3.507186 11.282680 0.353881

-0.011377 0.624431 11.263460 0.359867

2.354982 2.959652 11.312660 0.326642
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Figure 31: Phonon dispersion spectrum for hydroxygraphane computed using the harmonic

approximation within PBE.

The elastic strain energy (Es) per unit area was estimated from the difference between the

electronic energy of the configuration under strain (ε 6= 0) and equilibrium (ε = 0). These

elastic strain energies (Es) were determined from geometry relaxation of the atoms under

deformation; the data were fitted to a parabolic expression to determine elastic constants. For

a system under uniaxial deformation, strain was applied only along the x-direction (εyy = 0)

and the calculated strain energy was fitted to a parabolic expression, Es(εxx) = C11ε
2
xx/2.

Similarly, equi-biaxial (εxx = εyy) strain energy was fitted to the expression Es(εxx) = (C11 +

C12)ε2xx. The fitted elastic constants were C11 = 254.31 J/m2, C12 = 27.27 J/m2. Note that

these are 2-D elastic constants, hence the units are J/m2 rather than J/m3, as would be the

case for 3-D materials. A plot of the fit is shown in Figure 39. A set of 20 lattice parameters

were obtained by perturbing the equilibrium lattice parameters to reflect compression and

tension. The atomic positions were then scaled to accommodate the new lattice parameters

and the atoms were allowed to fully relax until the energy convergence tolerance of 10−8 eV.
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Figure 32: Equilibrium supercell used to compute elastic properties is shown under (top)

uniaxial strain, (bottom) equi-biaxial strain.
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Figure 33: Parabolic fit of strain energy per unit area under uniaxial and equi-biaxial strain

loading with in the limits of ± 2% for hydroxygraphane in configuration shown in Figure 38.
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B.5 Atomic Coordinates for Graphanol

Fractional representation of positions in VASP format for hydroxygraphane in Fig. 1. of
main text.

GOH

1.00000000000000

10.3651176752712431 0.0000000000000000 0.0000000000000000

-3.8869191282267161 6.7323414150000005 0.0000000000000000

0.0000000000000000 0.0000000000000000 20.0000000000000000

C O H

24 12 24

Direct

0.3792507164788759 0.2150116916096672 0.4790320906045538

0.2955072449047660 0.3252245491111579 0.4547671725778223

0.3792460551398376 0.5483399345503835 0.4790411399335247

0.2955030690847769 0.6585578133145953 0.4547751465095998

0.3792450998724700 0.8816770929189540 0.4790473181800216

0.2954984963769610 0.9918851073372994 0.4547790209940072

0.6292462853018826 0.2119888704610970 0.4790266427524623

0.5454989998873858 0.3234551264459297 0.4547713639932098

0.6292527863894348 0.5453269763590095 0.4790327274412142

0.5454946248110213 0.6567811567597820 0.4547813891172962

0.6292442679491165 0.8786541570345014 0.4790385005029515

0.5454916282395355 0.9901117784692494 0.4547792385606511

0.8792453392605699 0.2149898843208575 0.4790048659178773

0.7954897559372394 0.3251944171489057 0.4547520373965769

0.8792485015586791 0.5483236667546920 0.4790141852366289

0.7954903067388230 0.6585300292622956 0.4547593260147241

0.8792421551444159 0.8816588579209000 0.4790179079585860

0.7954824921920028 0.9918547018984870 0.4547568323591262

0.1292524610390123 0.2120225108093816 0.4790154208342526

0.0455024975226549 0.3234758553315547 0.4547505023225558

0.1292445201449964 0.5453447577202690 0.4790222379290814

0.0455023446872396 0.6568095703095792 0.4547613198823470

0.1292458330416058 0.8786801201192062 0.4790351710648837

0.0455008908615603 0.9901378717718454 0.4547618869124305

0.3847433591339376 0.5562326484920042 0.5507019056135376

0.6347769126001465 0.5447794749794829 0.5506978927250233

0.8847553377274346 0.5561719700162551 0.5506776485557086

0.1347359688999922 0.5447985363173408 0.5506851295924129

0.1347335939325067 0.8781575019694022 0.5506963940664330

0.8847570942981894 0.8895394138031458 0.5506760011082328

0.6347637537559074 0.8781137562509285 0.5507021306331106

0.3847389821713901 0.8895479685419041 0.5507076406263814

0.1347636414938087 0.2115171367232029 0.5506789737601686

0.8847523531222247 0.2228583110970639 0.5506647267060079

0.6347513863496504 0.2114430083211227 0.5506915341992961

0.3847382382997985 0.2229009434464586 0.5506959667039347

0.5447822160278437 0.6554850218901273 0.3995077682472400

0.7947719773589801 0.6588752998648914 0.3994854232165507

0.0448173086191046 0.6555799027882423 0.3994871415959929

0.2948454691686992 0.6589541809858316 0.3995002396799179

0.0448120061326918 0.9888411934350306 0.3994878245293470
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0.7947185971759594 0.9921383779466620 0.3994818450463025

0.5447637654130237 0.9887875180647171 0.3995046717259174

0.2948050286604451 0.9922228578980965 0.3995045196592619

0.2948428816566245 0.3256191849638153 0.3994906633752026

0.5447997212292095 0.3221801972183563 0.3994957320922050

0.7947653756207715 0.3255414133127753 0.3994757849368973

0.0448357159194306 0.3222382135601236 0.3994754380339630

0.7879437094456712 0.5453208626664405 0.5648617789944219

0.0379567051697393 0.4264836927742168 0.5648618593784426

0.2880088923732177 0.2123547331970839 0.5648549537951364

0.5380188740498560 0.4264582109717865 0.5648802572573879

0.2879714359901265 0.8788683396077296 0.5648817522644438

0.7879490152325660 0.8787183712499494 0.5648570744148479

0.5380012992224846 0.7597874976209332 0.5648854036994588

0.5379864725100917 0.0931020134424184 0.5648702031208674

0.0379623587177838 0.7598404185564294 0.5648728080081620

0.7879517469866288 0.2120594123049984 0.5648466783641682

0.2879737506987571 0.5455390754539268 0.5648750623644619

0.0380184504237384 0.0931703866677383 0.5648654269127545
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Appendix C Graphamine: Amine Functionalized Graphane for Intrinsic

Anhydrous Proton Conduction

C.1 Bonding & Lattice Parameters

The optimal lattice constant (a0=1.545) was determined by fitting first-principles E(V )

energy(volume) data to the third-order Birch-Murnaghan equation of state shown in Fig-

ure 34. A list of all appropriate bonding parameters for the graphamine is listed in Table 8.
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Figure 34: Total energy as a function of volume for the fit of the Birch-Murnaghan equation

of state.

Table 8: Average bond lengths (Å) for the topology of graphamine

Bond Bond

type length

C—C 1.62

C—H 1.10

C—N 1.48

N—H 1.02
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C.2 DDEC6 Partial Atomic Charges

The indistinguishable nature of the protons of the amine groups participating in the PC

process (for the configuration in Figure 30) was tested by computing the partial atomic

charges from the Density Derived Electrostatic and Chemical (DDEC6) charge analysis

approach.[90] Table 6 presents the statistics of partial atomic charges and the actual charges

of the protons are given in Table 7. The net atomic DDEC6 charges reported are computed

by analyzing the charge densities obtained from VASP.

Figure 35: Schematic representation of top view, graphamine (4 × 3) supercell with an

excess proton (carbons in gray, nitrogens in blue, hydrogens in white). DDEC6 atomic

partial charges of the protons are noted.

C.3 Phonon Properties

All the phonon bands for a 3×3 supercell of the configuration of graphamine shown in

Figure 1 of the main text (total of 648 atoms) are shown in Figure ??. The phonon modes

can be categorized into three regions: high, middle and low frequencies, which corresponds

to the ranges ≈ 80—110 THz, ≈ 45—55 THz, ≈ 0 —40 THz, respectively. A feature of
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Table 9: Statistics (mean, maximum, minimum and standard deviation) of DDEC6 atomic

partial charges of protonated graphamine in comparison to the protonated 1-D hydroxylated

graphane [76]

Quantity Graphamine 1-D

(this work) hydroxylated

graphane[76]

q 0.257 0.380

qmax 0.287 0.404

qmin 0.229 0.3527

qσ 0.013 0.02

degeneracy for the optical modes can be found at several frequency ranges along the principle

directions. We have also calculated the total phonon density of states (PDOS) (shown on the

right of Figure ??). An analysis of the PDOS suggests that the sharp peaks at ≈ 2950 cm−1

(88.44 THz) corresponds to C—H stretching and the region between ≈ 3000 and 3500 cm−1

(90 and 105 THz) is related to the N —H stretching modes. Convergence of the size of the

supercell was tested by comparing results from 2×2×1 and 3×3×1 calculations. We did not

find any significant differences in the computed phonon frequencies between the supercell

dimensions. Hence, a 3×3×1 supercell was used to assure accuracy of the calculations.

The phonon density of states calculations were used to generate thermodynamic prop-

erties of graphamine, specifically the Helmholtz free energy, the entropy, and the specific

heat capacity, as a function of temperature. The results of these calculations are plotted in

Figure 37.
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Table 10: DDEC6 partial charges for protons of amine groups (coordinates in Cartesian

format) of protonated graphamine shown in Figure 30

x y z q

0.089106 3.190138 4.418300 0.269171

-3.741856 6.902757 4.294100 0.243256

0.432799 1.610127 4.418560 0.246854

1.718076 3.723220 4.305420 0.252748

1.812217 5.348050 4.385620 0.262284

-2.205284 6.075514 4.271940 0.235236

1.978178 1.530945 4.298580 0.256931

3.039425 0.158753 4.403280 0.268328

3.368613 3.836946 4.308640 0.268068

3.449020 5.460538 4.281160 0.240221

3.475827 2.076492 4.349740 0.242828

0.263792 6.079977 4.377560 0.259875

4.831578 1.416657 4.303540 0.250217

4.975458 3.084845 4.440540 0.250497

5.528588 4.578911 4.218520 0.261013

5.776081 0.169570 4.419540 0.261804

6.945028 2.129403 4.339520 0.262915

6.987971 5.425487 4.329960 0.287465

7.115103 3.745863 4.222740 0.267854

7.341340 0.601628 4.356020 0.264667

4.757761 6.243540 4.449460 0.277082

8.804862 2.243281 4.409720 0.253956

9.319486 0.857380 4.404520 0.255595

-0.494370 4.674680 4.323420 0.229054

-1.957060 3.923983 4.356400 0.255776
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Figure 36: Phonon dispersion curves (left) and phonon density of states (right) computed

with the PBE functional for a 3×3 supercell of the graphamine system shown in Figure 1 of

the main text.
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Figure 37: Thermodynamic properties for graphamine computed from the phonon density

of states.
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C.4 Elastic Properties

A rectangular supercell (Figure 38) was used for these calculations. A set of 20 lattice

parameters were obtained by perturbing the equilibrium lattice parameters accordingly to

reflect compression and tension. The atomic positions were then scaled to accommodate the

new lattice parameters and the atoms were allowed to fully relax until the energy convergence

tolerance of 10−8 eV. The elastic strain energy (Es) per unit area was determined as a

difference between electronic energy under strain (Es(ε)) and system at equilibrium (Es(ε =

0)). Under uniaxial conditions, strain was applied only along x-direction (εyy = 0) and

strain energy was fitted to a parabolic expression Es(εxx) = C11ε
2
xx/2. Similarly, equi-biaxial

(εxx = εyy) strain energy was fitted to an expression Es(εxx) = (C11 +C12)ε2xx. Elastic strain

energies under the conditions of uniaxial and equi-biaxial strain loading were fitted to a

parabolic equation and the elastic constants (C11=267.09, C12=34.59) were determined. A

plot of the fit is shown in Figure 39.
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Figure 38: Equilibrium supercell used to compute elastic properties is shown under (top)

uniaxial strain, (bottom) equi-biaxial strain.
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Figure 39: Parabolic fit of strain energy under uniaxial and equi-biaxial strain loading within

the limits of ± 2%.
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C.5 Atomic Coordinates of Graphamine

Fractional representation of positions for graphamine in Figure 1. of main text.

GNH2

1.00000000000000

10.7030863061231525 0.0000000000000000 0.0000000000000000

-4.0136573647961828 6.9518584800000003 0.0000000000000000

0.0000000000000000 0.0000000000000000 20.0000000000000000

C N H

24 12 36

Direct

0.3745019151868440 0.6701008126533704 0.1251131538690408

0.2911539101208593 0.4490174884662125 0.1009129194218735

0.1259329597462816 0.0056141178947602 0.1256845331822101

0.5417074996849509 0.7801367759300702 0.1010436508308580

0.2917672193684045 0.1149743582445821 0.1003194786079173

0.3754008674383157 0.3363215189332098 0.1256296562766789

0.6243693821842402 0.6687346040384885 0.1256691637712113

0.5417520624068025 0.4475867940798414 0.1011368196390258

0.3756411734180066 0.0030422766520403 0.1241332594188878

0.7911271123402572 0.7805252046960237 0.1010434446443231

0.6261051273753336 0.3372083948153743 0.1251463131567982

0.5431279552719452 0.1159199560083629 0.1002211394994784

0.8760017479611026 0.6716780985818368 0.1255210304947640

0.7930419542784287 0.4489525020378679 0.1012258492993533

0.6257259041562309 0.0031220659804954 0.1246466243136691

0.8766031252736850 0.3381858712031018 0.1252776002766627

0.7923039416051012 0.1142556954419323 0.1011751974300411

0.8748960906478518 0.0035916363102297 0.1253499817774776

0.0421604743731989 0.1147027164416659 0.1011075816002014

0.1249865643394417 0.3381700991204697 0.1252081413061810

0.2921469323373777 0.7824621058642823 0.1003796168693751

0.0419695359534112 0.4484406558123500 0.0998499839370292

0.1252387294590578 0.6712460430963296 0.1252392969793828

0.0418337764971591 0.7826300735690455 0.1013318721602319

0.3660049385752613 0.6628626740152642 0.1985508021305322

0.1343050034029180 0.0133683241100714 0.1998813082292637

0.3736997228506665 0.3254800014843818 0.1984137896962267

0.6191193672046426 0.6631285819954507 0.2005437373345011

0.3801346074934819 0.0008068855080335 0.1982998927378331

0.6308889219221047 0.3405446850081187 0.1998468404420638

0.6219521771696791 0.9990580158918184 0.1990635732680583

0.8780583359935092 0.6793294756033262 0.2000804003074871

0.8806413385088154 0.3489265582169026 0.1988547046131471

0.8745178171525750 0.0046853441518751 0.1997405233194919

0.1220056148193333 0.3425313569502602 0.1983022835261791

0.1264398353524887 0.6725040979459497 0.1994079425657839

0.0476390068485501 0.0128776895667405 0.2198586839409126

0.2100006719959029 0.3445655319943516 0.2168206926823298

0.2910343053443395 0.4493298795557968 0.0456802570610256

0.4489639564353259 0.7780830671426546 0.2201965329867085

0.3687808537299232 0.5454308469366641 0.2144675691279299

0.1356900552396456 0.8914348101360496 0.2153294942271557
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0.2751620246499180 0.2093660482545394 0.2160473016184500

0.2913895841970933 0.1159985235077209 0.0450925730449632

0.5427586057952601 0.7791559280976835 0.0458078417410902

0.4566588775883882 0.4392091350226785 0.2221776900050058

0.6094278807606643 0.7787812473627004 0.2155983756392363

0.2904789273161307 0.8825139809018561 0.2161669058261494

0.3765349953695832 0.1208709398834178 0.2132787560884345

0.5414439206774475 0.4477088403966048 0.0459059571915337

0.5499036551586315 0.2156026587769895 0.2181560335847677

0.7179731163309935 0.6934069265890501 0.2173293609755484

0.7902666544230791 0.7790955573682163 0.0458084539962127

0.5446660633775094 0.1192988455347484 0.0450202434266973

0.6073927048936519 0.4429019117509038 0.2152301864465584

0.5250485380834565 0.9974761130484572 0.2110588375198703

0.7939106409582263 0.4498970534055076 0.0460265941311761

0.7006323836190045 0.1281429602770787 0.2157251685425796

0.7879269645446266 0.3439795961297961 0.2155536167657701

0.9729674508814385 0.6939496731138264 0.2167633262524777

0.8003215919038286 0.5499425431511600 0.2177638962131110

0.7922490822337065 0.1134237544731865 0.0459257533547933

0.7758607056068254 0.9794392785062501 0.2150815578673957

0.8988920655943218 0.2482775673152076 0.2197481015130545

0.8782825845554866 0.8818444905759782 0.2134961191629332

0.0408963467073360 0.1104411423336115 0.0458463366869580

0.2913480755583698 0.7814367839188858 0.0451500320335042

0.2085876570092023 0.6429207603662079 0.2121495324743093

0.0349048371283968 0.2176098096832405 0.2140061855606239

0.0406615554196859 0.4485213661264536 0.0445463404208492

0.0343721375900258 0.5431613071170532 0.2127858793570012

0.0409137106654046 0.7832208022190602 0.0460840834147081

88



Appendix D Liquid-vapor Isotope Fractionation Ratio for Water Isotopologues

Table 11: Data of Liquid-vapor H/D IFR for H2O(l) + HDO(v) � H2O(v) + HDO(l) from

q-TIP4P/F, NN-revPBE0-D3 and Experiements [116]

T (K) 103 ln(α)

[Expt]1 [q-TIP4P/F] [NN-revPBE0-D3]

293 81.147 113.507 ± 1.89 91.265 ± 1.88

393 20.858 37.112 ± 2.17 24.371 ± 2.67

493 0.933 6.394 ± 1.52 5.041 ± 1.12

613 -2.640 -2.783 ± 1.2 -3.496 ± 1.87

The experimental data of H/D fractionation ratio were regressed to the expression below,

1158.8(T 3/109)− 1620.1(T 2/106) + 794.84(T/103)− 161.04 + 2.9992(109/T 3) (D.1)

where T is temperature in K.
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Table 12: Data of Liquid-vapor H/T IFR for H2O(l) + HTO(v) � H2O(v) + HTO(l) from

q-TIP4P/F, NN-revPBE0-D3 and Experimets [155, 156]

T (K) 103 ln(α) T (K) 103 ln(α)

[Expt] [q-TIP4P/F] [NN-revPBE0-D3]

283 114.221 293 146.915 ± 5.0 121.845 ± 3.12

293 86.177 393 43.403 ± 1.33 22.092 ± 4.23

293.03 107.059 493 -5.605 ± 4.50 5.230 ± 1.23

303 75.107 613 -8.364 ± 0.12 -9.143 ± 1.043

303.01 91.667

313.02 73.250

323 63.913

73.250

333.01 50.693

343 36.332

353 52.592
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