
HMC-Based Accelerator Design For Compressed Deep Neural

Networks

by

Chuhan Min

B.S. in Physics, Nanjing University, China, 2012

M.S. in Electrical Engineering, University of Pittsburgh, 2014

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2019

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Chuhan Min

It was defended on

November 20, 2019

and approved by

Yiran Chen, Ph.D., Professor, Department of Electrical and Computer Engineering

Samuel Dickerson, Ph.D., Assistant Professor, Department of Electrical and Computer

Engineering

Zhi-Hong Mao, Ph.D., Professor, Department of Electrical and Computer Engineering

Natasa Miskov-Zivanov, Ph.D., Assistant Professor, Department of Electrical and Computer

Engineering

Bo Zeng, Ph.D., Assistant Professor, Department of Industrial Engineering

Dissertation Director: Yiran Chen, Ph.D., Professor, Department of Electrical and Computer

Engineering

ii

Copyright © by Chuhan Min

2019

iii

HMC-Based Accelerator Design For Compressed Deep Neural Networks

Chuhan Min, PhD

University of Pittsburgh, 2019

Deep Neural Networks (DNNs) offer remarkable performance of classifications and regres-

sions in many high dimensional problems and have been widely utilized in real-word cognitive

applications. In DNN applications, high computational cost of DNNs greatly hinder their de-

ployment in resource-constrained applications, real-time systems and edge computing platforms.

Moreover, energy consumption and performance cost of moving data between memory hierarchy

and computational units are higher than that of the computation itself. To overcome the memory

bottleneck, data locality and temporal data reuse are improved in accelerator design. In an attempt

to further improve data locality, memory manufacturers have invented 3D-stacked memory where

multiple layers of memory arrays are stacked on top of each other. Inherited from the concept of

Process-In-Memory (PIM), some 3D-stacked memory architectures also include a logic layer that

can integrate general-purpose computational logic directly within main memory to take advantages

of high internal bandwidth during computation.

In this dissertation, we are going to investigate hardware/software co-design for neural network

accelerator. Specifically, we introduce a two-phase filter pruning framework for model compres-

sion and an accelerator tailored for efficient DNN execution on HMC, which can dynamically

offload the primitives and functions to PIM logic layer through a latency-aware scheduling con-

troller.

In our compression framework, we formulate filter pruning process as an optimization problem

and propose a filter selection criterion measured by conditional entropy. The key idea of our

proposed approach is to establish a quantitative connection between filters and model accuracy. We

define the connection as conditional entropy over filters in a convolutional layer, i.e., distribution

of entropy conditioned on network loss. Based on the definition, different pruning efficiencies of

global and layer-wise pruning strategies are compared, and two-phase pruning method is proposed.

The proposed pruning method can achieve a reduction of 88% filters and 46% inference time

reduction on VGG16 within 2% accuracy degradation.

iv

Table of Contents

Preface . xi

1.0 Introduction . 1

1.1 Motivation . 1

1.1.1 Challenge 1: massive number of operations for storage/compute 2

1.1.2 Challenge 2: PIM features . 3

1.2 Dissertation Contribution . 4

2.0 Two-Phase Filter Pruning Based on Conditional Entropy 5

2.1 Introduction . 6

2.2 Related works . 8

2.2.1 Model compression . 8

2.2.2 Information Plane . 9

2.3 Conditional entropy based compression . 11

2.3.1 Problem formulation . 11

2.3.2 Filter selection algorithm . 13

2.3.3 Statistical result of CIFAR10 on VGG-16 16

2.4 Experiments . 16

2.4.1 Experiment setup . 16

2.4.2 Global Pruning Approach . 18

2.4.3 Layer-wise Pruning Approach . 19

2.4.4 Stage Pruning Approach . 20

2.5 Summary . 22

3.0 NeuralHMC: An Efficient HMC-Based Accelerator for Deep Neural Networks . . 23

3.1 Introduction . 24

3.2 Background . 25

3.2.1 Overview of HMC . 25

3.2.2 HMC Communication . 28

v

3.3 Motivation . 29

3.3.1 Dataflows in DNN Accelerators . 29

3.3.2 Potential of DNN Execution on HMC . 30

3.3.3 Challenge of DNN Execution on HMC . 31

3.4 Accelerator Design of NeuralHMC . 32

3.4.1 Weight Sharing Pipelined MAC Design . 32

3.4.2 Asynchronous Packet Communication . 33

3.4.3 Packet Scheduling Algorithm . 36

3.5 Experiments . 37

3.5.1 Experimental Setup . 37

3.5.2 Evaluation of Single-HMC in NeuralHMC 38

3.5.3 Evaluation of Multi-HMC in NeuralHMC 40

3.6 Summary . 42

4.0 DSGAN: Acceleration of Generative Adversarial Networks (GAN) based on

Dynamic Scheduling of Kernel Offloading . 43

4.1 Introduction . 43

4.2 Background . 45

4.2.1 Generative Adversarial Networks (GANs) 45

4.2.2 Transposed Convolution . 47

4.2.3 Kernel Offloading to PIM . 48

4.3 DSGAN Architecture . 49

4.3.1 GAN’s Parallelism Limitation . 49

4.3.2 Overview of DSGAN . 50

4.3.3 Inter-Kernel Dependency . 51

4.3.4 Kernel Scheduling Algorithm . 52

4.3.5 Transposed Convolution Optimization . 53

4.4 Experimental Setup and Evaluation . 54

4.4.1 Execution Time Model . 54

4.5 Summary . 58

vi

5.0 Extending the Lifetime of Object-based NAND Flash Device with

STT-RAM/DRAM Hybrid Buffer . 59

5.1 Introduction . 60

5.2 Background . 62

5.2.1 Object-based NAND Flash Device (ONFD) 62

5.2.2 STT-RAM Characteristics . 64

5.2.3 Related Works . 64

5.3 Motivations . 65

5.4 STT-RAM/DRAM Hybrid Buffer Scheme . 66

5.4.1 Design Overview . 67

5.4.2 Hybrid Buffer Module . 68

5.4.3 Hybrid Buffer Management . 69

5.4.4 Software Implementation . 72

5.5 Evaluation . 72

5.5.1 Simulation Setup . 72

5.5.2 Overall Performance Improvement . 73

5.6 Summary . 75

6.0 Conclusions . 77

Bibliography . 79

vii

List of Tables

1 Comparison of filter importance criteria in layer-wise approach VGG-16/ResNet-50

on CIFAR10. 20

2 HMC Specification. 27

3 AlexNet Architecture Overview. 31

4 Power Consumption . 37

5 HMC timing configuration. 37

6 System configuration. 55

7 Classification of predicted execution time. 55

8 Workload characteristics . 73

viii

List of Figures

1 Basic scheme of our proposed 2PFPCE. This scheme show the network pruning

process consisting phase I and II. 7

2 Statistical result of VGG-16 on CIFAR10. 15

3 Trade-offs between computation complexity and classification accuracy. 18

4 Stage pruning with 98% accuracy threshold. 21

5 HMC module architecture. 26

6 HMC communication. 27

7 Weight sharing pipelined MAC design. 32

8 Flow control packet layout. 33

9 Asynchronous parameter communication between host and PIM. 34

10 Throughput vs. MAC ops per feature map. 38

11 Operation breakdown in AlexNet. 39

12 NoC latencies with RS and WS. 39

13 Total speedup and energy reduction. 40

14 Inter-vault bandwidth breakdown. 41

15 Performance of scalability. 41

16 Architecture of DCGAN. 45

17 Training process of DCGAN. 46

18 The influences of offloading granularity and concurrency of kernel executions. . . . 48

19 DSGAN overview. 50

20 Asynchronous pipeline flow for parallelism. 53

21 Execution time breakdown. 56

22 Speedup of kernel granularity. 57

23 Concurrent kernel computation performance. 57

24 Comparision of block-based and object-based storage models 61

25 The architecture of object-based storage system. 63

ix

26 The architecture of proposed scheme . 67

27 The per-object index table tree and an example of node update 68

28 Average write response time . 74

29 Total page write counts . 74

30 Total block erase counts . 75

x

Preface

This dissertation is submitted in partial fulfillment of the requirements for Chuhan Min’s de-

gree of Doctor of Philosophy in Electrical and Computer Engineering. The work is original to the

best of my knowledge, except where acknowledgement and reference are made to the previous

work.

I would like to thank my advisor, Yiran Chen, for his mentorship throughout graduate school.

I am so thankful to be a student of him and work with excellent colleagues at CEI lab. I would also

like to thank those who have graciously served on my committees through the years. Even though

I always came into these meetings in a nervous state of mind and emotion, I always left each

meeting feeling empowered and enthusiastic about the next stage. I’ve been fortunate in having

such encouraging members on my committees, so thank you all. Last but not least, my deepest

gratitude to my parents for their unconditional love, support, and patience. Without them, I would

have never been able to successfully finish my degree. It has been a great journey over these years

and now has come to an end. It’s time for a new and exciting adventure.

xi

1.0 Introduction

1.1 Motivation

The development of Deep Neural Networks (DNNs) has shown remarkable progress in im-

proving accuracy over the years. DNNs have demonstrated state-of-the-art performance and are

widely adopted in many artificial intelligence (AI) applications from computer vision to speech

recognition etc. However, the unprecedented accuracy comes at a cost of high computational com-

plexity and intensive memory accesses. For example, the ResNet50 [82] with 50 convolutional

layers needs over 95MB memory for storage and over 3.8 billion floating number multiplications

when processing an image. After discarding some redundant weights, the network still works as

usual but saves more than 75% of parameters and 50% computational time. The limitation hin-

ders DNN model deployment on resource-constrained devices, such as smartphones and wearable

gadgets.

Running state-of-the-art DNNs on current systems mostly relies on either general-purpose pro-

cessors, ASIC designs, or FPGA accelerators, all of which suffer from data movements due to

limited on-chip memory and data transfer bandwidth. Previous work [8] proposed to use dedicated

memory block such as SRAM to store large size of network weights and input data. In the context

of efficient DNN implementation, prior works employ a variety of techniques to perform DNN

computation but the memory still takes up to 90% of the energy consumption according to [71].

Processing-In-Memory (PIM) is a promising solution to address the issue by implementing

logic circuits within memory. Instead of sending a large size of data to the processing elements,

PIM performs a part of the operations such as bit-wise manipulation inside memory to reduce data

movements so that the overall application performance can be accelerated by avoiding memory

access bottleneck. The challenges in adopting PIM as DNN accelerator are summarized as fol-

lows: (1) massive number of operations for storage/compute, (2) PIM features (e.g., packet-based

protocol).

1

1.1.1 Challenge 1: massive number of operations for storage/compute

In recent years, deep neural networks have recently received lots of attention, been applied to

different applications and achieved dramatic accuracy improvements in many tasks. These works

rely on deep networks with millions or even billions of parameters, and the availability of GPUs

with very high computation capability plays a key role in their success. For example, [47] achieved

breakthrough results in the 2012 ImageNet Challenge using a network containing 60 million pa-

rameters with five convolutional layers and three fully-connected layers. Usually, it takes two

to three days to train the whole model on ImagetNet dataset with a NVIDIA K40 machine. In

architectures that rely only on fully-connected layers, the number of parameters can grow to bil-

lions [15]. As larger neural networks with more layers and nodes are considered, reducing their

storage and computational cost becomes critical, especially for some real-time applications such as

online learning and incremental learning. In addition, recent years witnessed significant progress in

virtual reality, augmented reality, and smart wearable devices, creating unprecedented opportuni-

ties for researchers to tackle fundamental challenges in deploying deep learning systems to portable

devices with limited resources (e.g. memory, CPU, energy, bandwidth). Efficient deep learning

methods can have significant impacts on distributed systems, embedded devices, and FPGA for Ar-

tificial Intelligence. For devices like cell phones and FPGAs with only several megabyte resources,

how to compact the models used on them is also important.

Achieving these goal calls for joint solutions from many disciplines, including but not lim-

ited to machine learning, optimization, computer architecture, data compression, indexing, and

hardware design. In this paper, we review recent works on compressing and accelerating deep

neural networks. The parameter pruning and sharing based methods explore the redundancy in

the model parameters and try to remove the redundant and uncritical ones. Low-rank factoriza-

tion based techniques use matrix/tensor decomposition to estimate the informative parameters of

the deep CNNs. The approaches based on transferred/compact convolutional filters design special

structural convolutional filters to reduce the parameter space and save storage/computation. The

knowledge distillation methods learn a distilled model and train a more compact neural network to

reproduce the output of a larger network.

2

1.1.2 Challenge 2: PIM features

One category of PIM is near-memory processing. The underlying principle is processing in

proximity of memory by physically placing monolithic compute units (multi-core, GPU, FPGA,

ASIC etc.) closer to monolithic memory to minimize data transfer cost. Another category of PIM

is in-memory processing, i.e. processing inside memory which seamlessly embeds computation in

memory array. For near-memory processing, computation is still performed in digital signals and

power consumption is dominated by memory read operations. For in-memory processing, memory

access and computation are combined, resulting mixed signal computation.

As the compute units become more tightly coupled with memory, one can exploit more fine-

grained parallelism for better performance and energy efficiency. In-memory processing is ex-

pected to achieve highest bandwidth with significant power and latency reduction. However, since

in-memory processing involves mixed signal processing, this option is less preferred considering:

• non-idealities of analog compute (sensitivity to process and temperature variations)

• conversion cost from analog to digital is expensive

• increase size of bit cell and increase size in peripheral will reduce storage density

• limited precision that can be stored in each storage element

Embedded DRAM (eDRAM) and 3D stack memory (SRAM, DRAM) are two promising tech-

nologies for the memory system of NN accelerators. In this work, 3D stack memory is preferred

for its high parallelism. The two well-known realizations of 3D memory are Micron’s Hybrid

Memory Cube (HMC) [13] and JEDEC High Bandwidth Memory (HBM) [59]. Hybrid Memory

Cube (HMC) vertically integrates multiple DRAM dies on top of a logic layer within a single

package by leveraging low-capacitance through-silicon vias (TSVs). Nowadays, each 3D memory

stack can use thousands of TSVs and provide an order of magnitude higher bandwidth (160 to 250

GBps) with 3 to 5 times lower access energy than DDR3 [6]. In addition, the large number of

TSVs can be organized into multiple, independently-operated channels that exploit memory level

parallelism. HMC utilizes a packet-based protocol. The total data access latency largely depends

on the packet processing and response generation steps in the HMC communication.

3

1.2 Dissertation Contribution

In this dissertation, we propose hardware/software co-design for neural network accelerator to

handle the design challenges from massive number of operations for storage/compute and specific

PIM features that limit performance.

Based on our observation on the different pruning efficiencies of global and layer-wise pruning

strategies, we propose to combine these two strategies to achieve a higher compression ratio of the

neural network compared to applying only one strategy in network pruning. The proposed pruning

method can achieve a reduction of 88% filters and 46% inference time reduction on VGG16 within

2% accuracy degradation.

With compressed model, we propose NeuralHMC, the first HMC-based accelerator for effi-

cient DNN execution. We analyze data movement overhead of multiple NoC designs with differ-

ent DNN data reuse strategies and adopt the optimal one in NeuralHMC for parallel multi-HMC

scheme. We propose a weight sharing MAC to reduce weight data access and a packet scheduling

method with pipelined decoder to maximize memory bandwidth utilization. We add multi-HMC

support in HMC-MAC simulator and test NeuralHMC with respect to energy consumption and

performance. Experimental results shows that NeuralHMC achieves both higher energy efficiency

and better execution performance when compared with the state-of-the-art PIM accelerator design

built with DDRx [9].

We then extend the proposed accelerator on Generative Adversarial Network (GAN) with dy-

namic scheduling. In this work, we offload computational kernels to PIM module with parsed

annotations from compilation time and use a SRAM buffer to reduce data movement. Also, we

an asynchronous training pattern to achieve blob level parallelism. Our experimental results show

that the proposed method can achieve 1.6× speedup.

4

2.0 Two-Phase Filter Pruning Based on Conditional Entropy

Deep Convolutional Neural Networks (CNNs) offer remarkable performance of classifications

and regressions in many high-dimensional problems and have been widely utilized in real-word

cognitive applications. However, high computational cost of CNNs greatly hinder their deploy-

ment in resource-constrained applications, real-time systems and edge computing platforms. For

example, smartphones nowadays cannot even run object classification with AlexNet [47] in real-

time for more than an hour. In addition to accuracy, the design of modern CNNs is starting to

incorporate new metrics to make it more favorable in real-world environments. The trend is to

simultaneously reduce the overall CNN model size and/or simplify the computation while going

deeper. This can be achieved either by pruning the weights of existing CNNs, i.e., making the

filters sparse by setting some of the weights to zero, or by designing new CNNs with (1) highly

bitwidth-reduced weights and operations (e.g., XNOR-Net [70]), or (2) compact layers with fewer

weights [55, 83, 35, 82].

To deploy CNNs in resource-constrained devices, model compression has been a promising re-

search topic in past decades. We notice that CNNs with a large scale usually have significant redun-

dancy of their filters and feature channels, which offer a large compression and pruning space. To

overcome this challenge, we propose a novel filter-pruning framework – two-phase filter pruning

based on conditional entropy (2PFPCE), to compress CNN models and reduce inference time with

minimum performance degradation. In our proposed method, we formulate filter pruning process

as an optimization problem and propose a novel filter selection criteria measured by conditional

entropy. Based on the assumption that the representation of neurons shall be evenly distributed,

we also develop a maximum-entropy filter freeze technique that can reduce over-fitting. Two filter

pruning strategies – global and layer-wise strategies, are compared. Our experiment result shows

that combining these two strategies can achieve a higher neural network compression ratio than

applying only each of them under the same accuracy drop threshold. Two-phase pruning, that

is, combining both global and layer-wise strategies, achieves ∼ 10× FLOPs reduction and 46%

inference time reduction on VGG-16, with 2% accuracy drop.

5

2.1 Introduction

Deep Convolutional Neural Networks (CNNs) have been widely utilized in many applications

and achieved remarkable success in computer vision [84], speech recognition [1], natural language

processing [12], etc. Going deeper has been proven as an effective approach to improve the model

accuracy in solving high-dimensional problems [5, 84]. However, when the network depth in-

creases, the number of parameters of the neural network increases too.

Model compression techniques aim at reducing the storage and computational costs of deep

neural networks (DNNs) [49, 17, 26, 91]. Network pruning is one important example of model

compression techniques that can reduce the network complexity and suppress the over-fitting is-

sue simultaneously. Han et al. [26, 27] proposed to reduce network parameters by pruning the

weights with small magnitudes and then retrain the network in an iterative manner to maintain

the overall accuracy. Majority of the pruned parameters is actually from fully connected layers.

Since fully connected layers contribute to very small portion of the total floating point operations

(FLOPS), e.g., less than 1% in VGG-16 [76], the overall computational cost reduction achieved

by this method is very limited [91]. Moreover, the random distribution of the removed weights in

memory hierarchy also incurs a high cache miss rate, which greatly harms the actual performance

acceleration obtained in real systems [91]. Recently, more and more works focus on pruning

convolutional layers to reduce computational cost in inference time [54, 60, 57]. Despite of the

significant weight sparsity in fully connected layers, the non-structured random connectivity ig-

nores the impact of cache and memory accesses as indicated in [91]. In some recent work on

CNNs [84, 30], the fully connected layers are replaced by average pooling layers in order to build

a deep architecture with hundreds of layers. The computational cost of the convolutional layers,

hence, dominates the overall computational cost of CNNs when the networks become deeper. We

note that CNNs with a large scale usually have significant redundancy of their filters and feature

channels, which offer a large compression and pruning space.

We propose a Two-Phase Filter Pruning framework based on Conditional Entropy, referred

to as 2PFPCE in this chapter, to prune the filters of CNNs based on conditional entropy in a two-

phase manner. The framework mechanism is as shown in Figure 1. The key idea of our proposed

approach is to establish a quantitative connection between the filters and the model accuracy. We

6

Pre-trained model

Global filter
selection

Remove the least
important filter

Freeze weights in
filter w.r.t. max

activation entropy

Fine-tuning

no

yes

Fine-tuning

Compensate bias
in corresponding

activation

Remove the
candidate filters

Layer-wise filter
selection

yes

Accuracy >
threshold?

Phase I Phase II

Next layer?

Pruned model

no

Accuracy >
threshold? yes

no

Figure 1: Basic scheme of our proposed 2PFPCE. This scheme show the network pruning process

consisting phase I and II.

adopt global pruning as Phase I and layer-wise pruning as Phase II, respectively. In Phase I, the

filters with the minimum conditional entropy is pruned filter-by-filter, followed by an iterative fine-

tuning constrained by an accuracy drop threshold. In Phase II, the filters are pruned layer-by-layer

in a greedy manner based on conditional entropy, followed by also a fine-tuning of the neural

network constrained by the accuracy loss threshold. Our major contributions can be summarized

as:

• We calculate the conditional entropy over the filters in a convolutional layer, i.e., the distribu-

tion of entropy conditioned on the network loss. We also propose to use conditional entropy as

a criteria to select the filters to be pruned in our method:

• When pruning filter in global and layer-wise method, we observe a difference in accuracy/filter

number at different pruning ratios. Based on our observation on the different pruning efficien-

7

cies of global and layer-wise pruning strategies, we propose to combine these two strategies

to achieve a higher compression ratio of the neural network compared to applying only one

strategy in network pruning.

• Based on the assumption that the information of the neurons in a layer shall be uniformly dis-

tributed, we propose a novel fine-tuning approach where the weights in a filter corresponding to

the neuron with the maximum entropy is kept constant during the back-propagation to reduce

over-fitting.

Experimental results show that 2PFPCE can achieve a reduction of 88% filters on VGG16 with

only 2% accuracy degradation. The data volume is decreased from 310784 bytes to 49165

bytes and the inference time is ∼ 54% of the original model. Under the same accuracy drop

threshold, our experiments show that applying a combination of both methods achieves higher

compression ratio than applying either independently.

2.2 Related works

2.2.1 Model compression

The compression techniques of convolutional layers can be roughly categorized into the fol-

lowing three types according to their approximation levels: Pruning reduces the redundancy in

parameters which are not sensitive to the performance at a level of weight and filter. Network

pruning, which aims at reducing the connectivities of the network, is a classic topic in model com-

pression and has been actively studied in the past years. Pruning has been performed at weight

level [26, 91] and filter level [54, 60]. Quantization compresses the network by reducing the

number of bits required to represent the weights [26]. Binarization [70] is an extreme case of

quantization where each weight is represented using only 1-bit.

Convolution reconstruction divides convolution into subproblems based on organization of

filters at layer level. Low rank approximation [16, 97, 85, 36] imitates convolutional operations by

decomposing the weight matrix as a low rank product of two smaller matrices without changing

the original number of filters. Based on the correlation between groups of filters, [11, 95] build a

8

convolutional layer from a group of base filters. FFT convolution [89] designs a set of leaf filters

with well-tuned in-register performance and reduces convolution to a combination of these filters

by data and loop tiling.

Knowledge distillation [33] compresses an ensemble of deep networks (teacher network) into

a student network with similar depth by applying a softened penalty of the teacher’s output to the

student. This compression method works at network level.

There is no golden rule to measure which one of the three kinds of approach is the best. In

this work, we focus on filter pruning. There exist some heuristic criteria to evaluate the importance

of each filter in the literature such as APoZ (Average Percentage of Zeros) [34], `1-norm [54] and

Taylor expansion [60].

• APoZ (Average Percentage of Zeros) [34]: calculates the sparsity of each channel in output

feature map as its importance score
∑N

k

∑M
j f(Oc,j(k)=0)

N×M .

• `1-norm [54]: measure the relative importance of a filter in each layer by calculating the sum

of its absolute weights
∑
|Fi,j|, i.e., its `1-norm ‖Fi,j‖1.

• Taylor expansion [60]: approximate change in the loss function with accumulation of the prod-

uct of the activation and the gradient of the cost function w.r.t. the activation
∣∣∣∣ 1
M

∑
m

δC

δz
(k)
l,m

z
(k)
l,m

∣∣∣∣.
Unlike the above mentioned criterion, we directly quantize contribution of each filter to accu-

racy via conditional entropy. The details will be discussed in the following section.

2.2.2 Information Plane

There is a fast-growing interest in understanding DNNs and this motivates our information

guided pruning. [87] proposed to analyze DNNs in the Information Plane. The idea is to optimize

the Information Bottleneck (IB) trade-off between compression and prediction, successively, for

each layer.

Two properties of the IB are very important in the context of network pruning. The first is the

necessity of redundancy during model training. According to [87], the Stochastic Gradient Decent

(SGD) optimization has two different and distinct phases: empirical error minimization (ERM)

and representation compression. In ERM, redundancy is necessary since the high non-convex

optimization is hard to be solved by current technologies. Considering convergence rate, reducing

9

model size after its training is more time efficient. The second is the conditional distribution of

output y on x̃, i.e., p (y | x̃), where x̃ is the compact expression of input x following the Markov

chain condition Y ← X ← X̃ . It is important to note that this not a modeling assumption and

the quantization x̃ is not used as a hidden variable in a model of the data. Hence, a network can

be decomposed to a cascade of sub-networks using its compact input feature maps as input and

original model’s output as output.

On information plane, Mutual Information (MI) quantifies the average number of relevant bits

that the input variable X contains about the label Y as:

I (X, Y) =
∑

(x,y)∈A

p(x, y) log[
p(x, y)

p(x)p(y)
]

=
∑

(x,y)∈A

p(x, y) log[
p(x | y)
p(x)

]

= H(X)−H(X|Y).

(2.1)

Minimal sufficient statistics Imin is defined as sufficient statistic with the least information. The

connection between mutual information and minimal sufficient statistics is based on its invariance

to invertible transformations:

I(X, Y) = Imin(ψ(X), φ(Y)) (2.2)

for any invertible functions ψ and φ. The invariance of the information measures to invertible trans-

formations comes with a high computational cost. For deterministic functions, the mutual infor-

mation is insensitive to the complexity of the function or the class of functions it comes from [74].

If we have no information on the structure or topology of X , there is no way to distinguish low

complexity classes from highly complex classes by using the mutual information alone.

In this work, instead of utilizing noise insensitive MI criteria, we propose to adopt conditional

entropy in terms of error probability in guessing a finitely-valued random variableX given another

random variable Y .

10

2.3 Conditional entropy based compression

In this section, we first formulate compression as an optimization problem, then propose a

conditional entropy based filter selection criteria and compare the statistical result of CIFAR10

on pre-trained VGG-16 model. Furthermore, we discuss the relationship of error probability and

conditional entropy.

2.3.1 Problem formulation

In [74, 73], each layer is seen as a single random variable. And the output distribution is

calculated by joining all neuron outputs in this layer. However, the same method might not be

optimal due to loss of the structure feature on both the input and the feature map.

Therefore we adopt the procedure in [45, 44] to estimate the mutual information of each con-

volutional layer. The first step is to use the entropy of each layer’s output as the measurement of

the information flow. The activation entropy can be calculated using the function below where pi

denotes the probability of i-th filter in the feature map.

HCn =
n∑
i=0

pi ∗ log pi. (2.3)

Considering the general scenario of a neural network whose operation is parametrized by a

vector θ ∈ <W (representing the weights), and whose input/output characteristics are described by

a conditional probability distribution pθ(xout | xin). Here xin ∈ <N and xout ∈ <M denote input

and output vectors, respectively. The performance of this network on a given input is measured by

a loss function ε(xin, xout). If the probability of an input xin is defined as p(xin), the global error

made by a network with parameter is given by

Eθ =

xin∑xout∑
ε(xin, xout)pθ(xout | xin)p(xin). (2.4)

We define pθ(x) = pθ(xout | xin)p(xin), x = (xin, xout) ∈ <N+M . It now combines both the

parametrized properties of the network and the likelihood of the input data.

11

When recognizing neural network as a stack of sub-networks, the above definition holds true

for each layer and thus error in convolutional layers can be calculated by:

EC
θ =

Cin∑xout∑
ε(Cin, xout)pθ(xout | Cin)p(Cin). (2.5)

Here Cin denotes the input feature maps of the convolutional layer. In this way, we reorganize

the compression problem as an optimization problem and minimize the distance
∥∥EC

θ − EC′

θ′

∥∥,

where C ′in is a minimum subset of Cin.

We adopt an 1-dimensional binary vector σ: 1 indicating the filter is selected and 0 indicating

the filter is discarded. Notation xσ indicates the vector of selected features, that is, the full vector x

projected onto the dimensions specified by σ. Notation xσ̃ is the complement, that is, the unselected

features. The full feature vector can therefore be expressed as x = {xσ, xσ̃}. As aforementioned,

we assume the process p is defined by a subset of the features, so for some unknown optimal vector

σ∗, p (y | x) = p (y | xσ∗). We approximate p using an hypothetical predictive model q, with two

layers of parameters: σ representing which filters are selected and τ representing the parameters

used to predict y. Our problem statement is to identify the minimal subset of features such that

we maximize the conditional likelihood of the training labels w.r.t. these parameters. For i.i.d data

D = {(xi, yi) ; i = 1..N} the conditional likelihood of the labels given parameters {σ, τ} is

L (σ, τ | D) =
N∏
i=1

q
(
yi | xiσ, τ

)
. (2.6)

The (scaled) conditional log-likelihood is

l =
1

N

N∑
i=1

logq
(
yi | xiσ, τ

)
. (2.7)

This is the error function we wish to optimize w.r.t. the parameters {σ, τ}; the scaling term has no

effect on the optima, but simplifies the exposition later. We now introduce the quantity p (y | xσ):

this is the true distribution of the loss given the selected filters xσ. Multiplying and dividing q by

p (y | xσ), we can re-write the Eq. (2.7) as:

l =
1

N

N∑
i=1

log
q (yi | xiσ, τ)
p (yi | xiσ)

+
1

N

N∑
i=1

log p
(
yi | xiσ

)
. (2.8)

12

The second term in Eq. (2.8) can be similarly expanded to introduce the probability p (y | x) term

for next step. These are finite sample approximations, drawing data points i.i.d. w.r.t. the distribu-

tion. We use Exy {.} to denote statistical expectation. For the convenience, we negate the above to

turn our maximization problem into a minimization, or:

−l ≈ Exy

{
log

p (y | xσ)
q (y | xσ, τ)

}
+ Exy

{
log

p (y | x)
p (y | xσ)

}
− Exy {log p (y | x)} .

(2.9)

In our experiments, we use the above training loss as the single variable. Then our problem

statement is to identify the minimal subset of features such that we maximize the conditional like-

lihood of the training loss w.r.t. these parameters.

2.3.2 Filter selection algorithm

Our filter selection algorithm is illustrated in Algorithm 1. For each sample, we calculate the

cross entropy loss and output activation corresponding to each filter. To achieve discrete statistical

requirement, each parameter is multiplied by a factor of 1e4 and quantized as 32-bit integer. For

each filter, c val denotes 1-D distribution on output activation and c bins denote a 2-D statistics

on output activation conditioned on the loss.

c total is the number of activations per filter, i.e., samples in a dataset. act ent denotes the

entropy of feature map, providing the distribution of output activation across the dataset. Notice

here zero activations are excluded because it’s considered to contain no information w.r.t. the next

layer. Given the probability of a specific output activation, enti denotes the entropy of output

activation conditioned on the distribution of cross entropy loss. con ent denotes the conditional

entropy of a filter, which is an accumulation of enti. Then, the con ent is sorted in ascending and

the filters corresponding to the top-r con ent are selected to be removed. In the above single-layer

illustration, the layer to prune is predefined. We note that this can be generalized to multiple layers

or the whole model.

13

Algorithm 1 Filter selection algorithm.

Input: a baseline model M , convolutional layer to prune l, training dataset xtrain, number of filters

to prune r

Output: candidate filter(s) to prune σr

procedure CONDITIONALENTROPY CALCULATION

eps h = 1e4

criteria = CrossEntropy(reduce = false).

for batch idx in batches do

output←M (xtrain[batch idx]).

loss[batch size]← criteria(output, target).

j = eps h ∗ loss[batch size].

for k in l do

i = eps h ∗ fmap outl[k].

ans[k].extend(i, j).

c bins[i][j]+ = 1.

c val[i]+ = 1.

c total =
c val∑
i

c val[i].

act ent =
c val∑
j 6=0

− c val[j]
c total

∗ log c val[j]
c total

enti =
c val[i]
c total

∑
j

− c bins[i][j]
c val[i]

∗ log c bins[i][j]
c val[i]

con ent =
∑
i

enti

sort con ent of each filter in layer l ascending

add corresponding filter of top-r con ent→ σr

14

0 3 7 10 14 17 20 24 27 30 34 37 40
0

1

2

3

4

5

(a) Maximum conditional entropy.

0 3 7 10 14 17 20 24 27 30 34 37 40

0.00

0.02

0.04

0.06

0.08

0.10

(b) Activation of maximum conditional entropy.

0 3 7 10 14 17 20 24 27 30 34 37 40

8000

16000

24000

32000

40000

(c) Number of zero activations.

0 3 7 10 14 17 20 24 27 30 34 37 40
0

1

2

3

4

5

(d) Average conditional entropy of filter.

0 3 7 10 14 17 20 24 27 30 34 37 40

0.8

0.4

0.0

0.4

0.8

(e) Maximum conditional entropy filter ratio.

0

1

2

3

4

5

(f) Zero activation ratio.

Figure 2: Statistical result of VGG-16 on CIFAR10.

15

2.3.3 Statistical result of CIFAR10 on VGG-16

As one of the core concepts in convolutional networks, feature maps reveals huge amount of

information about the information flow within the network. Entropy is a commonly used metric to

measure the disorder or uncertainty in information theory. A larger entropy value means the system

contains more information. In our filter pruning scenario, if a channel of activation tensor contains

less information, its corresponding filter is then less important, thus could be dropped. Thus, we

using statistical variable like conditional entropy, to measure the connection between feature map

and error probability.

Figure 2 is the statistical result of filters in each convolutional layer of CIFAR10 on VGG-16.

The x-axis indicate the index of convolution layer in the model. Figure 2a and Figure 2b shows the

maximum enti and its corresponding output activation, respectively.

Figure 2c depicts the number of zero activations and Figure 2f shows the negative zero acti-

vation ratio. We observe zero activation mostly reside in the first and last several convolutional

layers.

Figure 2d illustrates total conditional entropy of each filter. Figure 2e is the ratio of maximum

conditional entropy to total conditional entropy and it’s remains relatively uniform in different

layers.

2.4 Experiments

2.4.1 Experiment setup

In the initial stage of our experiment, we assume entropy H(Tn) can be used to measure infor-

mation flowed in the neural network. To testify our assumption, we perform several experiments

with MNIST datasets and a two-layered CNN. We added Gaussian noise to the picture and see

how the entropy in neural networks would change as the power of noise changes. If the entropy

effectively measures the information uncertainty in CNN, HT1 and HT2 should increase as the loss

increases. The result is affirmative, that is, HT1 and HT2 do increase as expected. As summarized

in Algorithm 1, the proposed Conditional Entropy Filter Selection algorithm can dynamically re-

16

move the filters. Specifically, the key is to keep updating the pruned filters in the training stage.

Such an updating manner brings several benefits. It not only keeps the model capacity of the com-

pressed deep CNN models as the same as the original models, but also avoids the greedy layer by

layer pruning procedure, allowing pruning almost all layers at the same time. After each epoch, the

`2-norm of all filters are computed for each weighted layer and used as the criterion of our filter

selection strategy.

Here, we trained a VGG-16 [76] network with tanh activation function on CIFAR10 [46] and

logged the output of each layers. The network has 13 convolution layers, each of which has 64

filters to 512 filters with a size of 3. The network converged at around 100 epochs, but we trained

it for 400 epochs. The final accuracy is 99.6% on training set and 92.68% on test set. As we can

observe from Figure 2d, conditional entropy in filters are almost uniformly distributed, except for

the first convolutional layer where conditional entropy is slightly higher. Also, the number of zero

activations shown in Figure 2c indicates the same fact that the first convolutional layer in VGG-16

is greatly redundant in CIFAR10 classification.

However, the philosophy that each neuron in network is interchangeable and informative equiv-

alent [92] indicates a uniform distribution of information across the layers. As a result, filters are

supposed to be pruned in a layer-wise manner where the percentage of the filters to be pruned in

each layer should keep at a similar value, e.g. prune 16 filters in a convolutional layer with 64

filters, and pruning 32 filters of a convolutional layer with 128 filters, etc.

In our experiments, we evaluate the tradeoffs between accuracy and pruning ratio in global

and layer-wise approaches, respectively. Inspired from above observations, we propose a two

phase filter pruning framework based on conditional entropy, namely 2PFPCE. The filter selection

criteria is described in Algorithm 1. The procedure is shown in Figure 1.

In phase I, filters are pruned and fine-tuned iteratively until the accuracy drop reach the thresh-

old (1%). The purpose is to remove the redundancy filters w.r.t. the dataset. Notice that dataset

plays a crucial role during the model compression: The number of involved features in an 1000-

category dataset is probably much larger than that in a 10-category dataset. After a layer is pruned,

weights in the filter w.r.t the maximum activation entropy are kept constant and cannot be updated

during fine tuning. Similar to dropout [80], this aims at penalizing any single neuron that may

overly fitted to the dataset.

17

(a) Accuracy vs. pruning ratio of VGG16. (b) Accuracy vs. pruning ratio of Preact-
ResNet18.

Figure 3: Trade-offs between computation complexity and classification accuracy.

In phase II, filters are pruned in a layer-wise manner: in each iteration, a small portion filters

(1/32 or 1/16) of each layer are pruned until the accuracy drop reach the threshold γ. The threshold

γ is a hyper-parameter and can be adjusted to satisfy certain application constraint. To retain the

information in pruned filters and avoid time consuming fine-tune, we update the bias term as the

activation of maximum conditional entropy filter (see Figure 2b).

2.4.2 Global Pruning Approach

In this experiment, we evaluate the tradeoffs between computation complexity and classifica-

tion accuracy in global pruning approach. To comprehensively understand global pruning, we test

the accuracy of different pruning rates for Preact-ResNet18 and VGG-16.

As shown in Figure 3a and Figure 3b, the relationships between accuracy and pruning ratio are

similar in both networks. Without fine-tuning, the accuracy in VGG-16 and ResNet-18 decrease

significantly to 27% and 16% within a pruning ratio of 10% and 21%, respectively. As the pruning

rate increases, the accuracy of the pruned model first rises above the baseline model and then drops

approximately linearly. For the pruning rate before turning point, the accuracy of the pruned model

18

is higher than that of the baseline model. This shows that our global pruning has a regularization

effect on the neural network because global pruning reduces the over-fitting of the model. After

the turning point, in VGG-16 the accuracy slowly decrease to 15% as the pruning ratio increases

while in ResNet-18 the accuracy drop is within 1%. With fine-tuning, each network can remain its

accuracy with a pruning ratio below 20% and then slowly degrade with a marginal accuracy drop

between 1%-2% until the pruning ratio reaches 90%. The results also show that the performance

of DNNs can recover from small disturb with fine tuning. The contribution of each filter is very

similar in a converged convolutional neural network. Through the experiment results on VGG-16

and ResNet-18, we can conclude that our global pruning approach can prune about 40% and 80%

filters with 1% and 2% accuracy compromises, respectively.

This result is reasonable, since pruning too many filters at one time would greatly harm the

overall generalization ability of CNN models, making it hard to restore its original performance.

In fact, if we adopt the same network architecture but train the model from scratch, we cannot

obtain the same level accuracy.

2.4.3 Layer-wise Pruning Approach

Layer-wise pruning iterates over the filter selection, filter pruning and reconstruction steps.

After the model converges, we can obtain a sparse model containing many zero filters. One zero

filter corresponds to one feature map. The features maps that corresponding to those zero filters

will always be zero during the inference procedure. There will be no influence on accuracy if we

remove these filters as well as the corresponding feature maps.

Table 1a compares the obtained accuracy of different filter importance criterion under the same

pruning ratios. For a fair comparison, the DNNs are pruned in a layer-wise approach and fine-tuned

for the same number of epochs to recover the accuracy after pruning. At each pruning iteration,

we remove a certain percentage of feature maps and then perform 20 minibatch SGD updates with

batch-size = 32, momentum = 0.9, learning rate = 10−4, and weight decay = 10−4. The pruning ratio

is guided by a feedback loop in fine tuning. As we can see from the table, our proposed conditional

entropy filter selection criteria outperforms counterparts by achieving the highest accuracy on both

pruning ratios of 25% and 50%.

19

Table 1b compares the obtained pruning ratios of filter that achieved by all methods at approx-

imately the same error rate, e.g., within 2% accuracy loss. The baseline is L1-Norm which has a

pruning ratio of 60% on both networks. Our experiments confirmed that conditional entropy based

criterion can always achieve the highest pruning ratio with a marginal accuracy loss.

(a) Filter importance criteria vs. accuracy.

VGG16/CIFAR10: 92.98%

Prune L1-Norm APoZ Act. ent Cond. ent

25% 92.86% 92.94% 92.93% 93.50%

50% 92.11% 92.02% 92.00% 92.76%

ResNet50/CIFAR10: 93.16%

20% 94.42% 94.36% 94.33% 94.84%

50% 94.48% 94.25% 94.42% 94.44%

(b) Filter importance criteria vs. pruning ratio.

VGG16/CIFAR10: 92.98%

Acc. L1-Norm APoZ Act. ent Cond. ent

91.0(±0.3)% 1.0× 0.88× 1.27× 1.32×

ResNet50/CIFAR10: 93.16%

92.0(±0.2)% 1.0× 0.93× 0.96× 1.05×

Table 1: Comparison of filter importance criteria in layer-wise approach VGG-16/ResNet-50 on

CIFAR10.

2.4.4 Stage Pruning Approach

We focus on reducing the number of convolutional feature maps and the total estimated float-

ing point operations (FLOPs). During pruning we were measuring reduction in computations by

FLOPs, which is a common practice [26]. Reduction in FLOPs result in monotonically decreasing

20

inference time of the networks because of removing entire feature map from the layer. However,

time consumed by inference depends on particular implementation of convolution operator, par-

allelization algorithm, hardware, scheduling, memory access pattern, etc. Unlike previous works

where execution time is approximated through inaccurate proxy (e.g., FLOPS), in our experiments,

we directly measure real-world inference time by executing the model on GPU (NVIDIA Titan Xp

with CUDNN 8.0). The measured improvement of the inference time are summarized in Figure 4.

A two-phase pruning approach is applied.

0

10000

20000

30000

40000

50000

60000

70000

0

5

10

15

20

25

og
image

conv conv pool conv conv pool conv conv conv pool conv conv conv pool conv conv conv pool

da
ta

 v
ol

um
e

(B
)

tim
e

el
ap

se
d

(m
s)

layers

bandwidth/time

time_original

time_prune_s1

time_prune_s2

bandwidth_original

bandwidth_prune_s1

bandwidth_prune_s2

Figure 4: Stage pruning with 98% accuracy threshold.

Figure 4 shows that the two-phase pruning approach can achieve a pruning ratio of 88% within

mere 2% accuracy loss. Here the adopted dataset is CIFAR10 with a minibatch size of 32. The

inference time on the pre-trained VGG-16 is 22.69ms.

In Phase I, the number of filters decrease from 4224 to 3960 and total data volume reduces from

310784 bytes to 273658 bytes. The inference time reduces to 19.24ms. The removed filters are

mostly from the first convolutional layer and this verifies our observation on redundancy: ∼ 60%

filters are removed from the first convolutional layer, reducing the total data memory requirement

21

from 64M to 35M. Because of the high computing parallelization in GPU, the reduction in the

inference time of a single layer is not as significant as that in data volume. In Phase II, the number

of filters decrease from 3960 to 532 (or 87% pruning ratio) and total memory requirement from

273658 bytes to 49165 bytes . The inference time decreases to 12.34ms.

2.5 Summary

Inspired from the statistical result of information flow in neural networks, in this work, we

propose to use conditional entropy as the filter selection criteria in filter pruning. For each sample

in a dataset, we calculate the cross entropy loss and output activation corresponding to each filter.

We then evaluate the filter selection criteria in a layer-wise pruning approach. The filters are

pruned layer-by-layer in a greedy manner based on conditional entropy, followed by fine-tuning

of the neural network constrained by the accuracy loss threshold. Experimental result shows that

the performance of conditional based filter selection criteria outperforms the approaches based L1-

Norm, APoZ and activation entropy. The proposed criteria can achieve 92.76% accuracy when

pruning ratio is 50% and ∼ 93.5% accuracy when pruning ratio is 25% on VGG16, while the

baseline L1-norm results in 92.11% accuracy for 50% and 92.86% accuracy for 25% pruning ratio.

To comply with the network information distribution, we adopt a two phase pruning framework

which combines global approach with above layer-wise approach. The filters with the minimum

conditional entropy are pruned filter-by-filter globally followed by layer-wise pruning. The above

framework can achieve a pruning ratio of 87% within 2% accuracy drop of pre-trained VGG-16

model on CIFAR10.

22

3.0 NeuralHMC: An Efficient HMC-Based Accelerator for Deep Neural Networks

As the traditional benefits for expanding the processing capability of computers through tech-

nology scaling has diminished with the end of Dennard scaling, limitations in traditional compute

system, also known as “Memory Wall” [93] are being outpaced by the growth of data volume to

the point where a new paradigm is needed. As such, Processing-in-Memory (PIM) has reignited

interest among industry and academic communities, largely driven by the recent advances in tech-

nology (e.g., die stacking, emerging nonvolatile memory) and the ever-growing demand for large-

scale data analytics. For instance, Hybrid Memory Cube (HMC) that stacks multiple DRAM dies

on top of a CMOS logic layer using through-silicon-via (TSV) technology effectively addressed

the previous limitations of implementing near-memory processing.

In Deep Neural Network (DNN) applications, energy consumption and performance cost of

moving data between memory hierarchy and computational units are significantly higher than that

of the computation itself. Optimizing data movement becomes crucial for these memory-intensive

workloads. In these workloads, there exist some primitives and functions that overwhelm the

overall data movements. Typically, each workload contains simple functions that contribute to

a significant amount of the overall data movement. We investigate whether these functions are

feasible to implement using PIM, given the limited area and power constraints of 3D memory.

However, it’s still hard to efficiently deploy large-scale matrix computation in DNN on HMC

because of its coarse grained packet protocol. In this work, we propose NeuralHMC, the first

HMC-based accelerator tailored for efficient DNN execution. NeuralHMC can dynamically of-

fload the functions like multiply-accumulate (MAC) to PIM logic layer through a vault controller

to boost the DNN execution on HMC. Experimental results show that NeuralHMC reduces the

data movement by 1.4× to 2.5× (depending on the DNN data reuse strategy) compared to Von

Neumann architecture. Furthermore, compared to state-of-the-art PIM-based DNN accelerator,

NeuralHMC can promisingly improve the system performance by 4.1× and reduces energy by

1.5×, on average.

23

3.1 Introduction

Deep Neural networks (DNNs) have demonstrated great potential in tasks such as object de-

tection, recognition, and classification. In many benchmark suites [38, 67], DNN models even

obtained an accuracy higher than the level that humans can achieve. However, a typical DNN con-

tains thousands of network layers and hundreds of millions of parameters [47, 58]. Data movement

between different DNN layers incurs large number of memory accesses.

To overcome the memory bottleneck during DNN execution, many DNN accelerators are pro-

posed to improve data reuse [9, 41] and data locality [8]. To improve data reuse, an on-chip

scratchpad memory is introduced in [8] to support data reuse of local accelerators. In [41], many

processing elements (PEs) are organized as a systolic array to allow temporal data reuse among

the PEs. To improve data locality, Processing-in-Memory (PIM) structure is recently adopted in

DNN acceleration, eliminating the costly data movement between memory and computation host.

PRIME [10], for example, utilizes resistive memory to store the data and performs the DNN exe-

cutions directly on the local data.

In an attempt to further improve data locality, memory manufacturers have invented 3D-

stacked memory where multiple layers of memory arrays are stacked on top of each other [13]. 3D

stacking not only helps in providing a compact footprint, but it also reduces the latency of com-

munication between circuits on different layers. One prominent example is Hybrid Memory Cube

(HMC), which was announced by Micron Technology in 2011 [13]. Inherited from the concept

of PIM, some 3D-stacked memory architectures [13] also include a logic layer that can integrate

general-purpose computational logic directly within main memory to take advantages of high inter-

nal bandwidth during computation. With the HMC allowing to embed custom logic, novel non-von

Neumann architectures can be accomplished, overcoming the performance gap while achieving a

new path for scaling the computing performance. The logic layer in an HMC structure provides

a convenient point where data transformations can be performed on the contents of the memory

stack. Such transformations can filter data before the data are provided to a host processor for

further processing, thereby reducing bandwidth requirements and latency at the interface between

the host processor and memory. A broad spectrum of custom logic could be integrated into a mesh

of HMCs, enabling holistic design-space explorations for computing systems in breadth and depth.

24

Although HMC-based PIM designs significantly reduce data movements between the memory

and the computation host, challenges still exist before applying them to DNN applications:

• HMC utilize a Network-on-Chip (NoC) to connect their internal structural elements. As

pointed out in [25], inter-vault data movement overhead increases with the degree of com-

putational parallelism.

• Unique features of HMC (e.g., packet-based protocol, unidirectional lane, internal queuing

characteristics, etc.) largely constrain the memory bandwidth utilization.

In this work, we propose NeuralHMC, the first HMC-based accelerator for efficient DNN execu-

tion. Our major contributions are:

• We analyze data movement overhead of multiple NoC designs with different DNN data reuse

strategies and adopt the optimal one in NeuralHMC for parallel multi-HMC scheme.

• We propose a weight sharing MAC to reduce weight data access and a packet scheduling

method with pipelined decoder to maximize memory bandwidth utilization.

• We add multi-HMC support in HMC-MAC simulator and test NeuralHMC with respect to

energy consumption and performance. Experimental results shows that NeuralHMC achieves

both higher energy efficiency and better execution performance when compared with the state-

of-the-art PIM accelerator design built with DDRx [9].

The rest of this paper is organized as follows: Section 3.2 introduces HMC architecture; Sec-

tion 3.3 illustrates the motivation of NeuralHMC; Section 3.4 describes the design details of Neu-

ralHMC; Section 3.5 shows the experimental setup and evaluation result; Section 3.6 concludes

this work.

3.2 Background

3.2.1 Overview of HMC

Figure 5 illustrates a typical organization of HMC architecture. HMC consists of up to eight

DRAM dies stacked on top of a logic die and vertically connected by 512 Through-Silicon Vias

25

vault

eDRAM

PE Array

FIFO

global

buffer

quadrant

eD
R

A
M

Figure 5: HMC module architecture.

(TSVs). As shown in Figure 5, each layer in HMC is divided into 16 partitions and every partition

is a vault with a corresponding vault controller in the logic layer. A vault employs a 32-byte DRAM

data bus using 32 TSVs. A group of eight vaults composes a quadrant that is connected to a shared

external full duplex serialized link. Our work adopts HMC2.0 specification as shown in Table 2.

The HMC interface utilizes a packet-based communication protocol. An HMC has two or four

external links to connect to other HMCs or hosts. Each independent link is connected to a quadrant

that is internally connected to other quadrants, which routes the packets to their corresponding

vaults. Commands and data are transmitted in both directions across the link using a packet based

protocol where the packets consist of 128-bit flow units called “FLITs.” These FLITs are serialized,

transmitted across the physical lanes of the link, then re-assembled at the receiving end of the link.

Three conceptual layers handle packet transfers:

• The physicallayer handles serialization, transmission, and deserialization.

• The link layer provides the low-level handling of the packets at each end of the link.

• The transaction layer provides the definition of the packets, the fields within the packets, and

the packet verification and retry functions of the link.

26

Table 2: HMC Specification.

Configuration

Memory density 8GB (8 memory layer)

Memory per bank 16MB

of external links 2, 4

Link lane speed (Gb/s) 12.5, 15, 25, 28, 30

of quadrants 4

of vaults/quadrant 8

of partitions/vault 8

of memory banks/partition 2

Max DRAM data bandwidth 320GB/s (2.56Tb/s)

Max vault data bandwidth 10GB/s (80Gb/s)

Max cubes connectable 8

Inter-HMC Communication Intra-HMC Communication

HMC Controller

Tx

NoC

Vault

Controller

DRAM

Bank

Vault

Controller

DRAM

Bank

Rx

Figure 6: HMC communication.

27

3.2.2 HMC Communication

Two logical blocks exist within the link layer and transaction layer:

• The link master (LM), is the logical source of the link where the packets are generated and the

transmission of the FLITs is initiated.

• The link slave (LS), is the logical destination of the link where the FLITS of the packets are

received, parsed, evaluated, and then forwarded internally.

Requester: Represents either a host processor or an HMC link configured as a pass-thru link.

Responder: Represents an HMC link configured as a host link. A responder transmits packets

upstream to the requester. As a result of that, accessing a local vault in the same quadrant has a

shorter latency than accessing a vault in another quadrant.

There exist two levels of communications in the whole HMC architecture, including (1) inter-

HMC communication that is performed on the switch path and (2) intra-HMC communication that

is handled by the HMC controller.

For inter-HMC communication, as depicted in the left part of Figure 6, each HMC has four

serialized links with a packet-based protocol. Traditionally, the off-chip controller generates the

packet of memory requests in a coarse-grained manner. Such a scheme, however, results in low

communication bandwidth utilization and large performance degradation in multi-HMC environ-

ment because (1) the communication latency differs between the near and the distant quadrants and

(2) packets have to be decoded before accessing the destination quadrant. A customized switch de-

sign is highly desired to reduce the overhead of inter-HMC data movement and to improve the

scalability of multi-HMC.

For intra-HMC communication, the vault controllers are connected by an internal NoC, which

is shown in the right part of Figure 6. At 1.25GHz execution frequency [75], HMC supplies a

maximum bit-rate of 30 Gbit/s and 480 Gbit/s in transmission (Tx) and receive (Rx) directions,

respectively, at each of the 16 link lanes.

As a result, total 384 bits can be transferred between memory dies and switch per cycle. The

TSV bit-width is assumed to be 32 bits (e.g., 32 TSV data lanes) and the bit-rate is 2.5 Gbit/s.

Hence, the bandwidth of the TSV bus is 64 bits per cycle at the execution frequency of 1.25GHz.

In NeuralHMC, a packet scheduling scheme is introduced to improve the efficiency of HMC com-

28

munication, which will be detailed in Section 3.4 and different external NoC designs are examined

with DNN data reuse strategies in Section 3.5.

With multiple objectives for the HMC modeling tool set, three key aspects needed to be im-

plemented. First, a holistic HMC simulator, capable of being adjusted easily regarding its internal

components and properties. Second, a multi-HMC environment needed to be established that al-

lowed to route HMC request and response packets to find a path through the HMC network to

either store or load data or execute HMC commands. And last, significant simulation performance

improvements were required, since single cycle or bandwidth accurate simulation models already

tend to execute slowly or even poorly, whereas a multitude of these rapidly accumulate to an in-

feasible simulation. Consisting of multiple components such as the switch, the external links and

internal communication, the quads, the vault controllers, vaults, and partitions and banks, one main

objective for building the HMC simulator was to leverage actual freely available simulation tools.

The initial simulator was based on the HMC-Sim that supported the HMC specification 2.0, since

it offered the appealing opportunity to load ‘custom memory cube’ (CMC) operations and was

already integrated into the SST full system simulation framework. As multiple aspects of HMC-

Sim were either partially or barely working, such as the internal addressing of quads or vaults,

the routing within a multi-HMC environment, or the internal processing of packets that does not

rely on FLITs, the best piece i.e. in particular the vault handler was retrieved for the herewith

established simulator. Moving forward, the simulator models HMCs according to the cutting-edge

HMC specification 2.1, which allows for 4GB or 8GB cubes.

3.3 Motivation

3.3.1 Dataflows in DNN Accelerators

It has been proven that the execution of a DNN is composed of many multiplications and

additions, which can be accelerated using dedicated accelerators [96]. The dataflow graph for the

DNN computations can be mapped onto a PE array in multiple ways, leading to different dataflow

characteristics.

29

We follow the taxonomy introduced in Eyeriss [9]. Eyeriss divides a DNN accelerator design

into the following three key components:

• Weight Stationary (WS): In a WS accelerator, each PE fetches a unique weight from the global

buffer (GB) and retains it until the PE completes all the calculations involving that weight. GB

transfers input activations via a broadcast to each PE. The PEs may forward psums back to the

GB (awaiting to be redistributed later), or accumulate them locally within the PE array.

• Output Stationary (OS): An OS accelerator maps an output pixel on to a PE in every iteration.

Each PE fetches both weights and input activations from the GB and accumulates partial sums

internally. When the accumulation completes or an output activation is generated, each PE

sends the output activation to the GB.

• Row Stationary (RS): A RS accelerator maps a row of partial sum calculations to a column of

the PE array to facilitate data reuse of weights and input activations. Partial sums are accumu-

lated by forwarding the computation along the column, and the PEs at the top of the column

send the final output activations to the GB.

3.3.2 Potential of DNN Execution on HMC

A recent work named HMC-MAC [39] was proposed to offload multiply-accumulate (MAC)

functions to logic layer in HMC without major modifications of HMC structure and control logic in

the vault. According to their simulation result, the execution time of MAC operations is stabilized

around 50ns. Because the MAC operation in [39] is carried out in parallel under the HMC-MAC

architecture with the support of parallel vault operations, bank interleaving and data block accesses.

According to HMC specification, up to 128KB of data, which is the product of the number of vaults

(32), the number of banks (16) and the maximum block size (256B), can be processed in parallel

in a HMC.

Such high efficiency of HMC execution inspires us to exploit the execution efficiency of HMC

on DNN-related applications, which has rarely been exploited in previous arts. Take the specifi-

cation of AlexNet [47] as an example, the numbers of parameters of each layer and the associated

MAC operations are summarized in Table 3. Assume the bit width of the MAC is 16B (data type:

long long), the computation time of 106M MAC ops in CONV1 layer is within a second (not in-

30

cluding the data movement to the PEs). This observation shows that HMC-MAC is an effective

PIM architecture to accelerate the MAC operations in DNN applications. When the scale of the

neural networks increases, a larger parallelism can be exploited with a multi-HMC structure.

3.3.3 Challenge of DNN Execution on HMC

However, the above estimation in Section 3.3.2 is too optimistic and ignores the communica-

tion cost and data access latency from/to the PEs. As aforementioned in Section 3.2, HMC utilizes

a packet-based protocol. The total data access latency largely depends on the packet processing

and response generation steps in the HMC communication.

Dense matrix multiplication in DNN execution exhibits a high fine-grained parallelism and

is computation-extensive, e.g., the ratio between computations and memory accesses is high. As

illustrated in [39], to ensure one memory request can only access a single vault, one memory

request is regenerated into multiple requests. In consequence, final result is the accumulation over

multiple vaults per request. When a regenerated memory request arrives at the vault controller, this

memory request is stored in the request buffer and then converted into a DRAM command. The

vault controller works as a conventional memory controller and issues this DRAM command. In

addition, memory requests that access the same address are processed in the order of their arrival to

guarantee the memory data coherency, similarly to the FR-FCFS scheduling. Constrained from the

memory power consumption, there can exist only two active HMCs. As a result, the parallelism

of packet decoder is limited. Hence, in Section 3.4.3, we optimize the multi-HMC by decoupling

packet decoding and memory access with an always-on HMC.

Table 3: AlexNet Architecture Overview.

Layer name CONV1 CONV2 CONV3 CONV4 CONV5 FC6 FC7 FC8

Parameter # 35K 307K 884K 1.3M 442K 37M 16M 4M

of MAC Operations 106M 448M 150M 224M 150M 37M 16M 4M

31

3.4 Accelerator Design of NeuralHMC

3.4.1 Weight Sharing Pipelined MAC Design

The size of weights in modern large-scale DNNs is growing fast, which accounts for a large

amount of memory access and thus introduces long memory access latency. To tackle this problem,

in this work, we innovatively adopt the weight sharing technology in [26] to our DNN accelerator

design. Weight sharing quantifies the original DNN weights into several clusters and the clusters

can be represented as cluster index, which is typically 5 bits for fully-connected layers and 8 bits

for convolutional layers. Research shows that weight sharing incur no accuracy loss under most

scenarios [26]. Such representation reduces the original 32 bits floating points weights to 5 or 8

bits cluster index, saving much memory consumption.

Cluster Index Data Width: 5 Bit
Weight Register File

Feature Map

Data Width: 32 Bit

Index Weight25

25

31

0 2.7

1.5

4.6

3.1

Result Register

2.2 6.85

3.1 × 1.5 = 4.65

4 Pipelined Multipliers 4.65 + 2.2 = 6.85

Adder

Update Result

Figure 7: Weight sharing pipelined MAC design.

Figure 7 depicts the details of our proposed weight sharing pipelined MAC design. First, we

use the cluster index to locate the quantized weights in the weight register file in O(1) time com-

plexity. The weight register file is implemented in the logic layer and connected to the FIFO. Then,

as shown in Figure 7, the feature map and the quantized weight are fed into the pipelined multi-

32

pliers. Because multiplication require 4× of cycles required for adder, we leverage 4 multipliers

to amortize the workload so that the whole MAC can generate one result for each cycle. After

the available multiplier get the result, it will be added with the former accumulated results in an

efficient way.

3.4.2 Asynchronous Packet Communication

Register
Value

Physical
Start

PC

Offload
Packet

ID

Target
PIM
ID

Active
Thread
Mask

PIM
ID

Queue
Index

!"#. %&'" × # *+ !"#.
×(# *+ -./&0" /ℎ2"345)

Figure 8: Flow control packet layout.

The HMC controller uses three types of packets: flow control, request, and response packets.

The packet control layout is shown in Figure 8. The communication between the host and the

PIM is asynchronous with the assistant of flow control packet. As also demonstrated in Figure 8,

the total size of register for instruction in the targeted PIM equals multiplication of register size,

number of register files and number of active threads. The size of register denotes the number of

instructions in PIM instruction set. In this way, the flow packet can deliver instruction directly to

PIM so long as the ISA is compatible between CPU and PIM.

A flow control packet is transmitted via a master-slave link. We aim to reduce data transferring

cost between the CPU and the PIM and allow them to operate independently and simultaneously.

When offloading computations to PIM, the flow packet is generated with the corresponding thread

id of the CPU encapsulated in packet header. Figure 9 illustrates the asynchronous communication

between the host and the PIM. Calculations on the CPU and the PIM are performed simultaneously

33

in Figure 9. Furthermore, the data transmission between the CPU and the PIM can be hidden

behind the calculations. After the computation completes, the PIM will update the flow packet in

the tail and transmit it via the link layer to the CPU. Upon receiving the flow packet from PIM, the

CPU checks the completion bit in the tail and thread id in the header.

The consecutive memory data of an HMC-MAC memory request may access more than one

vault when the execution count is relatively big. In such a case, each memory request will regener-

ate its memory request as one memory request can access only one vault. Decoding a packet might

introduce extra processing latency if it retrieves multiple memory requests in serial. The packet

decoder in the off-chip controller is also enhanced to support packets: it firstly decodes the univer-

sal header to obtain the size of the packet (which indicates the number of the memory requests) as

well as the request type; it then retrieves the address and granularity information of each memory

request.

CPU
Allocation

load for CPU
and PIM

Calculate
on CPU

Calculate
on PIM

In OutPIM

Parameter
Sync

Calculate
on CPU

Calculate
on PIM

In Out

Figure 9: Asynchronous parameter communication between host and PIM.

Two optimizations are conducted to reduce the decoding latency:

• Multiple memory requests can be decoded in parallel while the offset of each memory request

in a packet can be efficiently calculated in advance because the size of the ADDR field in the

packet tail is fixed;

• A packet can be decoded before received completely in a pipeline manner: decoding the mem-

ory requests from the previous packet and receiving the next packet can be simultaneous.

34

Algorithm 2 Packet Scheduling Algorithm

procedure PACKET SCHEDULING ALGORITHM

(Global Cycle, Request Time, Active HMC, Sleep HMC)

1: while Req Queue 6= ∅ and Active HMC < HMC Cap do

2: Global Cycle++.

3: for Req in Req Queue do

4: Req Waiting ++

5: if exist Req Waiting > Starvation Thd then

6: V ictim HMC ← dequeue Req

7: wakeup(Victim HMC)

8: Sleep HMC ← Sleep HMC − V ictim HMC

9: Active HMC ← Active HMC ∪ V ictim HMC

10: if Req Queue 6= ∅ and ∃Free HMC ∈ Active HMC then

11: V ictim HMC ← LRU(Free HMC)

12: sleep(Victim HMC)

13: Active HMC ← Active HMC − V ictim HMC

14: Sleep HMC ← Sleep HMC ∪ V ictim HMC
Return =0

35

3.4.3 Packet Scheduling Algorithm

In a traditional multi-HMC system, the memory power budget allows only two active HMCs

at the same time [13]. We denote the ready packet as the packet destined to the active HMC. The

starvation time is defined as the waiting time for the next ready packet in queue.

Assuming there are two packets – one is destined to HMC 0 and the other destined to HMC 1.

HMC 0 is initially active while HMC 1 is in sleep mode. After the completion of the first packet,

the second memory request must wait until the power manager turns off HMC 0 and then turns on

HMC 1. In this situation, the decoding process is serialized, incuring long memory access latency.

Therefore, we proposed Algorithm 2 in NeuralHMC to deal with the aforementioned situation.

In the above situation, when the request queue is drained and the waiting time for the next ready

request (Req waiting in Algorithm 2) exceeds the starvation time (Starvation Thd in Algorithm 2),

the second packet is issued to active HMC 0. The header of the next not-ready packet (CUBID) is

decoded in HMC 0 and then the sleep of HMC 0 is issued. In the next cycle, the activation of the

target HMC (HMC 1) is issued. During the activation of the target HMC, the packet is forwarded to

HMC 2 that is always active and the packet body is decoded. The data in HMC 1 is then retrieved

once it’s activated. In this way, the packet decoding and the memory access are decoupled from

each other, the packet decoding is pipelined with the activation/sleep of HMC.

In traditional HMC-MAC implementation, the multi-request packets are regenerated as mul-

tiple fine-grained packets to perform accumulation. This packet regeneration process incurs ad-

ditional computation cost. In our DNN accelerator design, we optimize this packet regeneration

process by avoiding across vault memory access in the first place when composing a packet in

on-chip HMC controller. By keeping a page table of starting address of each vault in on-chip con-

troller, the maximum number of MAC operation is computed given the start address of the memory

operand.

36

3.5 Experiments

3.5.1 Experimental Setup

The power model adopted in NeuralHMC is based on [3], which can be summarized in Table 4.

Here B is the requested bandwidth, K is the number of clusters and f is the clock frequency.

Experiments in this section are performed on an a cycle-accurate simulator HMC-MAC [39], which

Table 4: Power Consumption

Component Power

DRAM power Pdram(B) = 7.9W +B × 21.5Ws/GB

Cube power P = Pdram(B) +K × 165pJ × f

has been modified to adopt multi-HMC backend in HMC-Sim [51]. In the multi-HMC simulator,

an undirected graph depicts the link connections among the HMCs and the host. The memory trace

file is generated by Gem5 [7] – a full system memory simulator, then loaded into HAC-MAC by

the trace loader module. The activating/sleep latency is set to 2µs and the timing configuration of

the simulator is shown in Table 5.

Table 5: HMC timing configuration.

tCK 0.8ns

tRAS, tRCD, tRRD, tRC, tRP 27, 13, 4, 10, 10

tCCD, tRTP, tWTR, tWR, tRFC 4, 7, 10, 74, 24

tRTRS, tCMD, tXP, tRP, tRC 1, 1, 4, 10, 40

RL, WL, BL 13, 3, 1

37

CONV

FC

1x1-CONV

Th
ro
ug
hp
ut
(M
op
/S
ec
on
d)

of MAC

350
300
250
200
150
100
50
0
1 10 100 1000

Figure 10: Throughput vs. MAC ops per feature map.

3.5.2 Evaluation of Single-HMC in NeuralHMC

In single-HMC schemes, we evaluate our proposed weight-sharing pipelined MAC optimiza-

tion in HMC-MAC.

Figure 10 depicts the scalability of the single-HMC’s throughput when MAC ops/fmap in-

creases. We evaluated 3 neural network layer types in DNN, including convolution layer (CONV),

fully-connected layer (FC) and 1x1 convolution layer (1x1-CONV). With the MAC operations per

feature map scaling, the throughput does not scale in linear. In CONV, FC and 1x1-CONV, number

of MAC operations per output ranges from 100 to 1000. The saturation of the throughput when the

MAC ops/fmap increases is because the computation parallelism is also constrained by the number

of vaults (i.e. MAC units).

Figure 11 is the breakdown of the operations in AlexNet executions, including the MAC op-

erations, the data accesses from global buffer (GB) to PE and the data access from PE to PE. The

results of three data reuse strategies – WR, RS, and OS are all included. Note that only RS involves

the data transfer from PE to PE. Because the partial sums are accumulated by forwarding the com-

putation along the column. The accumulation result is transferred to GB per MAC operation. From

38

MAC GB-PE PE-PE1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

#
o
f

O
p
er

at
io

n
s

(B
il

li
o
n
)

WS RS OS
CONV1

WS RS OS
CONV2

WS RS OS
CONV3

WS RS OS
CONV4

WS RS OS
CONV5

Figure 11: Operation breakdown in AlexNet.

Bus Mesh Crossbar3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

N
o
C

L
at

en
cy

(C
yc

le
)

WS Latency
PE #:16 PE #:32 PE #:64 PE #:16 PE #:32 PE #:64

RS Latency

Figure 12: NoC latencies with RS and WS.

39

Figure 11, we find that RS has the smallest number of overall operations across most convolution

layers among three data reuse strategies. Because both WS and OS involves parameter multi-cast

and uni-cast, while in RS only accumulation result is transferred to GB.

Figure 12 shows the NoC latencies in different NoC topology with WS and RS. Bus achieves

the lowest latency in WS among all three topology. It is because bus is very efficient in broadcasting

and WS repeats broadcasting the activations to PEs in convolutions. In RS, however, crossbar

exhibits the lowest latency. In RS, the NoC latency is generally longer than that in WS in spite of a

relatively high data reuse level. The Mesh performance is non-optimal in all cases because it needs

to serialize all the scatter traffic.

3.5.3 Evaluation of Multi-HMC in NeuralHMC

Speedup

Energy Reduction

AlexNet VGG16 GoogleNet ResNet Average

5

4

3

2

1

0

6

Figure 13: Total speedup and energy reduction.

Figure 13 shows the speedup and energy consumption of an 8-HMCs architecture. Our baseline

is Eyeriss [9] – an spatial DNN accelerator with 128 processing elements. We use RS data reuse

strategy and crossbar NoC topology in both baseline and proposed accelerator. In above four

benchmarks (i.e., AlexNet, VGG16, GoogleNet, ResNet-50), the speedup of GoogleNet can be up

to 5.6× and energy consumption reduction is up to 1.85×.

40

WS RS OS

B
an

d
w

id
th

(G
b
p
s

/
1
6

P
E

s) GB-PE PE-PE

500

1500

0

1000

Figure 14: Inter-vault bandwidth breakdown.

of HMC

N
o
rm

al
iz

ed
 s

p
ee

d
u

p
 p

er
 H

M
C

0.0

0.4

0.2

0.6

0.8

1.0

1.2

1 82 3 4 5 6 7

Figure 15: Performance of scalability.

In all benchmarks shown in Figure 13, the energy consumption reduction is not as high as

speedup. The reason lies in the constraint of the MAC logic in TSV and the control logic in

vault controller. Even for the AlexNet, our proposed architecture still outperforms the Eyeriss

implementation in both speed and energy consumption. Thanks to our NeuralHMC accelerator

architecture and weight sharing MAC, an average speedup over all benchmarks is 4.1× and an

energy reduction of 1.5×.

We evaluate the inter-vault bandwidth of the three data reuse dataflow in ResNet-50 as shown

in Figure 14. The PE-PE bandwidth is 300Gops by assuming there are 16PEs (1 HMC) in RS. The

GB-PE bandwidth is 1000Gops in both WS and OS. The performance scalability of multi-HMC

is illustrated in Figure 15. As we can observe in Figure 15, the speedup scales in linear when the

number of the HMCs is smaller than 5. With proposed packet scheduling, the decoding process is

pipelined and the performance degradation is offset with an active HMC. However, keep increasing

the number of HMCs will not maintain linear performance improvement. This is mainly because

the parameters are not evenly distributed in multiple HMCs.

41

3.6 Summary

In this work, we propose a neural network accelerator based on processing-in-memory multi-

HMC called NeuralHMC. NeuralHMC is optimized to perform MAC operation in DNN applica-

tion. The optimizations include: (1) using a weight sharing MAC to reduce weight data access,

(2) packet scheduling in multi-HMC architecture to pipeline packet decoding, (3) avoiding packet

regeneration in vault controller by calculating the maximum MAC count in on-chip controller. Ex-

perimental results show that our proposed NeuralHMC can improve the system performance by

4.1× in speedup and 1.5× in energy reduction compared to the DNN accelerator design built with

conventional low-power DRAM memory. Furthermore, our NeuralHMC outperforms the base-

line for all the DNN architectures and neural network layer types, showing excellent generality for

different DNN implementations.

42

4.0 DSGAN: Acceleration of Generative Adversarial Networks (GAN) based on

Dynamic Scheduling of Kernel Offloading

Wide applications of Generative Adversarial Network (GAN) have inspired great interest in

acceleration of adversarial training. However, the asynchronization of loss calculation between

adversarial phases limits training efficiency of GAN on traditional neural network accelerators. In

this work, we propose a new accelerator design, namely, DSGAN that can dynamically schedule

kernel offloading to process-in-memory modules to minimize the data movement and synchro-

nization overheads in GAN training. Experimental results show that the DSGAN can achieve

1.6× speedup compared to the state-of-art compiler-based acceleration techniques on multicore

systems.

4.1 Introduction

Deep Neural networks (DNNs) is usually composed of multiple layers so that they can be

trained to extract complex features from raw input data. DNNs, hence, have been widely utilized

in many cognitive applications such as computer vision [37], speech recognition [32] and natural

language processing [67]. Since adding more layers and more parameters has been proven as an

efficient way to improve the accuracy of DNNs, executing the modern DNN models consumes a

large amount of computing resources [14].

Since the operation of DNNs is primarily based on data movement in the network model, many

DNN accelerators were proposed to optimize the memory accesses [8] and data reuse [9, 41] of

DNN executions. In [8], for example, an on-chip scratchpad memory is introduced to support data

reuse of local accelerators. In [41], many processing elements (PEs) are organized as a systolic

array to allow temporal data reuse among the PEs and alleviate the reliance on memory bandwidth.

Recently, Processing-in-Memory (PIM) structure was also adopted by DNN acceleration to elim-

inate the costly data movement between the pipeline and the memory. PRIME [10], for example,

uses resistive memory to both store the data and perform the DNN executions on the data at local.

43

Another factor that greatly hinders the applications of DNNs is the availability of labeled train-

ing examples, which are needed to train the DNN for specific functions. Generative adversarial

network (GAN) [18], therefore, is recently proposed to generate “fake” training examples through

the coordination of two DNN models: generator and discriminator: Based on the feedback given

by the discriminator, the generator is able to generate fake examples from a uniform noise distri-

bution; Eventually, the generated fake examples cannot be distinguished by the discriminator and

can be used to support unsupervised or semi-supervised learning [68, 79, 63].

Execution of GAN generates a memory usage pattern very different from that of conventional

DNN: For example, training data fetching is one of the major contributors to memory traffic in a

DNN accelerator [14]. In GAN, however, half of the inputs to the discriminator is generated by the

generator at runtime, making data fetching very inefficient. As another example, the adversarial

training procedure includes four different phases, each of which involves different pipeline stages

or inputs and leads to various memory access patterns.

We note that utilizing PIM to accelerate GAN naturally solves the above challenges in mem-

ory access optimization as the execution is performed near the stored training examples and the

generated examples. In this work, we propose DSGAN – a GAN accelerator based on dynamic

scheduling of computation kernel offloading to PIM modules. DSGAN is implemented on Hy-

brid Memory Cube (HMC) – a recently proposed PIM architecture with enhanced capability of

logic-die. Compared to the prior arts, our major contributions are:

• We analyze the training procedure of GAN and demonstrate that a uniform pipeline involves

pipeline frequently stalls due to the asychrononization of loss calculation. In specific, feed

forward propagation of discriminator is always 1.5× network layer cycles ahead of generator

before backpropagation can proceed. Based on our analysis, we proposed DSGAN to better

support different computational phases of GAN by exploiting the limiting data dependency;

• We propose to offload computational kernels to PIM module with parsed annotations from

compilation time and use a SRAM buffer to reduce data movement. We also propose to use an

asynchronous training pattern to achieve blob level parallelism;

• We evaluate DSGAN on Sniper [31] with 32 cores CPU as host and 32 vaults on DCGAN in

Caffe framework and compare it with a state-of-the-art compiler-based optimization [86]. Our

experimental results show that DSGAN can achieve 1.6× speedup.

44

The rest of this paper is organized as follows: Section 4.2 gives preliminary about GAN and in-

troduces traditional CNN accelerator design and its limitations;Section 4.3 describes our proposed

DSGAN architecture; Section 4.4 shows the experimental setup and the evaluation; Section 4.5

concludes this work.

4.2 Background

4.2.1 Generative Adversarial Networks (GANs)

Figure 16: Architecture of DCGAN.

Generative Adversarial Networks (GANs) are a class of generative models that perform train-

ing process through coordination between a generator network G and a discriminator network D.

As a basic variation of GAN, DCGAN [68] has been widely adopted in image processing applica-

tions [94]. Figure 16 depicts a typical DCGAN where the discriminator network D is a convolu-

tional neural network (CNN) and the generator network G is a fractionally strided CNN. The D is

45

trained to distinguish the samples generated by the G from the training data by taking the samples

from the G as negative instances and the samples from the real data as positive instances. Here

the G tries to “trick” the Dby generating fake samples from a uniform noise distribution. Through

a series of fractionally strided convolution layers, the 1D noise distribution is projected to a high

dimensional latent space to produce a sample image.

Figure 17: Training process of DCGAN.

The training process of DCGAN can be formulated as a min −max game of a differentiable

objective and solved greedily by iteratively performing gradient descent steps to improve the G and

the D to reach a Nash equilibrium [18]. As shown in Figure 17, the training process of DCGAN

can be divided into 2 phases and 9 stages:

1. Phase 1: During training of the D, the G only process forward pass and no backpropagation is

applied;

2. Phase 2: In opposite, train the G and freeze the D.

We will discuss the details of training and its limitations on parallel computing in Section 4.3.1.

46

Algorithm 3 A transposed convolution on CPU.
for ic = 0toIC − 1 do

for ih = 0 to IH − 1 do

for iw = 0 to IW − 1 do

for oc = 0 to OC − 1 do

for kh = 0 to K − 1 do

for kw = 0 to K − 1 do

oh ← S × ih + kh − P

ow ← S × iw + kw − P

out[oc][oh][ow]← in[ic][ih][iw]× kernel[oc][ic][kh][kw]
=0

4.2.2 Transposed Convolution

In DCGAN, fractionally strided convolution or so called transposed convolution is a upsam-

pling procedure that adds zeros between each input in the feature maps with zero padding and

computes the extended feature maps and the kernel.

It has been proven that CNN can be decomposed into multiplications and additions that can

be accelerated using dedicated accelerators like [96]. However, transposed convolution arithmetic

involves adding columns and rows of zeros to the input and incurs overlapping regions between

the output blocks to be summed together. The overlap region scales with dimension of the input

feature maps and creates a chessboard-like pattern. In practice, the input feature map is divided

into blocks, and the PEs read each block from an off-chip memory and process the transposed

convolution on each block. The computation results are then stored back to the off-chip memory.

Considering the sparse structure of the input feature map and the overlapping summation, the

involved memory accesses this procedure can be very inefficient. The pseudo code of a transposed

convolution on CPU can be found at Algorithm 3. As we shall show in Section 4.3.5, we propose

to perform partly loop unrolling and resize the tensor shape with the nearest interpolation to skip

strided holes in the transposed convolution.

47

4.2.3 Kernel Offloading to PIM

Figure 5 shows a typical organization of PIM architecture. Memory is organized into vaults

and each vault is controlled by a vault controller. The PIM cores are usually ISA-compatible with

the processor cores but do not have large cache and dedicated ILP techniques for implementation

simplicity. Performing computation in the memory can substantially eliminate memory traffic and

improve the computation efficiency. The PIM architecture adopted in this work – Hybrid Memory

Cube (HMC) in this work shares the similar architecture and also implements a weight buffer to

reduce the weight access latency.

Due to the limited shared cache in PIM, application level offloading benefits only for irregular

or random data access pattern, for instance, BFS [62]. Figure 18 demonstrate the tradeoffs in the

offloading scheduling in a PIM architecture when different granularity and concurrency of kernel

executions, which is often constrained by the data dependency between the tasks.

Figure 18: The influences of offloading granularity and concurrency of kernel executions.

48

4.3 DSGAN Architecture

In this section, we introduce our DSGAN architecture for GAN acceleration through the ex-

ploration on the limitation of computation parallelism.

4.3.1 GAN’s Parallelism Limitation

As shown in Figure 17, the training process alternates between two phases until reaches con-

vergence. The loss function D loss fake is first calculated based on a true label in stage ¬ which

is ‘0’ for generated images. The error and partial derivatives are computed and stored though

backpropagation is deferred. Again, in stage ­, the loss function of discriminator D loss real is

calculated based on the true label, which is ‘1’ for real images this time. After the summation of

D loss real and D loss fake (both are cross entropy loss functions) in ®, error and partial deriva-

tives backpropagate and the propagation is constrained to D as in ¯. In the training of G, which

is shown as °-´, the loss function is calculated based on a false label, which is ‘1’ for the gener-

ated images. The error and partial derivatives backpropagate to update the weights in G while the

weights in D is fixed.

The complex training procedure above introduces two limitations in GAN execution:

1. Limited parallelism that resulting from the synchronization requirement for the computations

of D loss (¬-®); G loss(¬-°).

2. Increased memory requirement for the intermediate results (e.g. partial update and error) stor-

age due to the deferred backpropagation.

Previous work [10] use a Map Topology () function to map the topology of the neural network

to full function (FF) arrays. However, the mapping process is constrained by directed acyclic

computation graph and can not achieve a uniform pipeline when taking the discriminator and

generator as a whole network. If discriminator and generator are mapped to FF arrays separately,

then the training procedure involve two dependent pipelines which stall from stage ­ to stage ±.

49

Figure 19: DSGAN overview.

4.3.2 Overview of DSGAN

Figure 19 gives an overview of our architecture. The baseline memory technology is Hybrid

Memory Cube (HMC) [66].

An affinity detector identifies kernels with high data locality and executes them in the corre-

sponding vault. We decide the memory vault that an kernel has affinity with by using the following

equation:

affinity =
kernel id

Nthreads per vault

mod Nvaults (4.1)

Nthreads per vault is the number of threads that can run concurrently in one vault. For example, if

one vault has four PEs and each of which can run six threads,Nthreads per vault is 24. WhenN is the

number of memory vaults and T is the total number of kernels, T/N kernel have the same affinity.

With the affinity information, whenever an PE is available, instead of assigning any unscheduled

kernel to it, the scheduler picks one that has affinity to that memory vault. On the other hand, where

the data should be located can also be computed, as the affinity-based scheduling algorithm already

50

determines where the computation will be performed. The equations to compute chunk size and

vault id are as follows:

chunk size = min(4KB,B ×Nblocks per vault) (4.2)

vault id =
(virtual addr − virtual start addr)

(chunk size)
mod Nvaults (4.3)

The chunk size is bounded by 4KB, when the result is not a multiple of page size, misaligned

pages will be allocated in the next consecutive memory vault. In this scenario, whether to localize

or distribute each memory object is based on its anticipated access pattern and the affinity-based

scheduling algorithm guides kernel to the memory stack where the data they access is located to

reduce PIM-to-PIM communications.

The computation overhead of affinity detector depends on the kernel size. Traditionally, PIM

targets execution of medium sized computation kernels having less than a few kilobytes of instruc-

tions. To reduce the affinity detector overhead, we further partition kernel into subcomputation

segment and offload these ”sub-kernels” instead. To accommodate the abundant the variable com-

puting phases in GAN, we deploy a weight buffer in HMC logic die and utilize SRAM buffer in

eDRAM to store intermediate results in each pass.

To further parallelize kernel level execution, a kernel level data dependence data graph is re-

quired to decide which kernel can execute in parallel. Since most existing compilers targeting

array-based applications already run dependence analysis for loop kernel, what we concern here is

actually across kernel dependency.

4.3.3 Inter-Kernel Dependency

Despite the compile time awareness of intra-kernel dependency, inter-kernel dependency is

examined to maintains the logical behavior. We use a state machine to speculate inter-kernel de-

pendency. At the PIM kernel completes, the PIM core transmits a compressed signatures with

all addresses that the PIM core reads or writes to host processor. If a conflict is detected, a roll-

back signal is sent to corresponding PIM core. Otherwise, the read/write operation is committed.

Thanks to the sub-kernel partitioning, we may perform a commit after each sub-kernel completes.

51

First, we lower the probability of conflicts as the transmitted signal contains fewer read and write

operations, which reduces the detection window. Second, the overhead of rollback operation is al-

leviated, because the PIM kernel only need to rollback to the conflict sub-kernel checkpoint instead

of the begin of the kernel. Third, the signal size shrinks as less addresses are kept.

4.3.4 Kernel Scheduling Algorithm

The kernel request is queued to PEs in Algorithm 4. The host processor is responsible for

generating different kernels to initiate the offloaded execution on the PIM while transferring reg-

ister data and generating memory requests on behalf of the PIM. When OFLD.BEG instruction is

executed on an affinity detector at the beginning of an kernel, the affinity detector generates an

offload command packet with all information needed for initiation of offloaded execution on the

PIM, including the register values that need to be transferred.

An asynchronous method is applied in host to PIM level communication. We aim to reduce

data transferring cost between CPU and PIM and allow them to calculate independently and simul-

taneously. One thread is created on the CPU and the signal mechanism is support by PIM device

driver. After allocating load for CPU and PIM, the host will set the calculation signal. Calculation

on CPU and PIM will be carried out simultaneously and the data transmission between CPU and

PIM is hidden. After training of every n batches, the PIM will set the synchronization signal and

parameters will be synchronized between host and PIM.

Algorithm 4 Dynamic kernel management.
p,q denotes the candidate PEs, h is the affinity offload queue

if p = Idle ∧ p.queue 6= 0 ∧ h.queue 6= 0 then

partition kernel into sub kernels

for each sub kernel in sub kernels(h.queue) do

if
∑
time(sub kernel, h) + executed(sub kernel, p) >

∑
time(sub kernel, p)

then

offload kernel to p; h.dequeue

else offload kernel to q; h.dequeue

52

Figure 20: Asynchronous pipeline flow for parallelism.

To achieve more parallelism, an asynchronous pipeline is proposed as shown in Figure 20.

The red block in the figure denotes the data dependency between discriminator and generator. In

this scenario, D loss fake is one iteration behind the original DCGAN but can parallel pipeline by

number of layers per iteration.

4.3.5 Transposed Convolution Optimization

To avoid the overlapping summation problem described in Sec 4.2.2, we first take a block

in the output space and determine which inputs are needed to calculate the values in the block.

Then, for each block, the input is fractionally strided convoluted and the appropriate output is

extracted. This is done sequentially until values have been computed for the entire output space.

However, when the kernel size is not divided by the stride, the input is not traversed sufficiently.

An approach to overcome this is to separate out upsampling to a higher resolution to compute

feature [64]. We recast output along one dimensional into two variables with nearest-neighbor

(NN) interpolation, then do a convolution to compute features. In this way, instead of using the

output space to determine which input blocks to upsampling and thus eliminating the need for the

additional summation operations.

53

Based on the time prediction model in [65], we build our own sub-kernel execution time

model. For inter-kernel dependency, we utilize GAN layer wise execution to profile the depen-

dency graph which involves typical training procedures: (1) CNN forward propagation; (2) Trans-

posed CNN forward propagation; (3) CNN backward propagation; (4) Transposed CNN backward

propagation.

4.4 Experimental Setup and Evaluation

Experiments in this section are performed on a Sniper [31] multicore simulator to model the

processor simulating the same affinity detector process. We modified Sniper to support fine-

grained (cycle-by-cycle) multithreading for the HMC cores and TLB management. We then use

the gem5 [7] architectural simulator in full-system mode, using the x86 ISA to implement pro-

posed kernel offloading mechanism. To emulate the high in-memory bandwidth within HMC for

the PIM cores, the DRAM model is modified in gem5. DRAMSim2 [72] is applied to model the

memory timing. Below is the system configuration for simulation. We examine how the DSGAN

compares with prior compiler optimized approach [86]. We show results of kernel commit and

sub-kernel commit normalized to processor only baseline in Figure 22. The system configuration

is summarized in Table 6.

4.4.1 Execution Time Model

We use DCGAN workloads with different number of layers from medium to large scale with

several hundreds of MBytes memory footprints to evaluate DSGAN. The neural network model

obtained from the training phase is sent to Caffe [40], with notations and variables added for

tracking the timing and other parameters of each layer. A typical five layer DCGAN and its classify

bin of execution time is summarized in Table 7. According to [4], a software-stack has been

developed for application to view PIM as a standard accelerator with a dynamic binary offloading

mechanism designed to detect the code at run-time. The PIM device driver provides a low overhead

and high-performance communication mechanism between parallel programming APIs and PIM.

54

Table 6: System configuration.

Component Configuration

Core 16 tiles (each tile 2 cores)

L1 I/D-Cache Private, 64KB, 4/8-way, 64B blocks

L2 Cache Private, 1MB, 8-way, 64B blocks

L3 Cache Shared, 64MB, 16-way, 64B blocks

TLB 32 entries, 2 MB page, 200-cycle miss penalty

Main Memory 32GB, 8HMCs

HMC 8GB, 32 vaults, 512 DRAM banks

Timing Parameters tCK = 1.6ns, tRAS = 22.4ns

tRCD = tCAS = tRP = 11.2ns, tWR = 14.4ns

weight buffer 64KB

Table 7: Classification of predicted execution time.

Layer Weight Shape Output Shape Cycles Classification

Bins

D conv 1 52x256x512 4x4x512 819, 200 3

D conv 2 52x128x256 8x8x256 819, 200 3

D conv 3 52x128x256 8x8x256 819, 200 3

D conv 4 52x3x64 32x32x64 76, 800 2

G dconv 1 52x128x3 64x64x3 76, 800 2

G dconv 2 52x256x128 32x32x128 13, 107, 200 4

G dconv 3 52x512x256 16x16x256 13, 107, 200 4

G dconv 4 52x1024x512 8x8x512 13, 107, 200 4

55

In kernel offloading, the host processor parses the binary computation kernel and dynamically

offloads .text and .rodata sections to PIM’s memory map. In [65], kernel affinity is predicted via

a regression model using three categories of metrics before it starts execution. In our work, the

performance the evaluated by the kernel efficiency, which we define as the the fraction of peak

theoretical FLOP can be achieved by pipeline and data reuse. The baseline is a CPU-only solution.

We also evaluate two different NDP solutions: one is a compiler based optimization [86] on state-

of-the-art many core system with 36 tiles of Intel Knights’s Landing (KNL) [78] interconnected

2D mesh NoC, another is the 2D baselines using a 16×16 PE array with a 1024byte register file

per PE and a 576kB global buffer.

Figure 21: Execution time breakdown.

Figure 21 illustrates simulation results for this application. The baseline sequential execution

is classified into several components. The host busy category accounts for the time spent executing

instructions. The L1 and L2 miss stall categories represent time spent waiting for memory accesses

to be satisfied from either the L2 cache or main memory. Note that additional coherence overhead is

charged as L1 and L2 cache misses in the host when PIMs are used; by flushing data from the cache

prior to PIM computations, extra cache misses in the host may occur in later host computation.

This cache miss effect due to flushing is not significant in the programs presented here because the

irregular accesses in the PIM computations were polluting the host cache when executed on the

host. Additional categories show time spent in the PIMs, including PIM-to-PIM communication

overhead and time spent in local memory stalls. As the results in figure indicate, the original

56

application suffers significantly from poor cache locality in CPU mode with overall L1 and L2

cache miss rates of up to 30% and 50%, while by adopting NDP method, the cache miss rate is

significantly reduced with a average of 15% in 2D memory stacking PIM and even lower with

DSGAN with weight buffer.

Figure 22: Speedup of kernel granularity.

Figure 23: Concurrent kernel computation performance.

Figure 22 shows the offloading granularity issue. The longer the pipeline, the further the

distance intermediate results are reused. For DSGAN, the computation of per batch per feature map

convolution is atomically scheduled and intermediate results is stored on the same memory vault

57

instead of a traditional bank interleaved distribution. Figure 23 shows the kernel ratio utilization

for a 32-core architecture (with 32 processor cores and 32 PIM cores) across different phases

of training process of GAN. Before the training of G started (annotated in compiler), the host

processor inserts a packet signal to check for the commit of cross entropy loss and make the

weights in SRAM invalid. As we can see from the simulation results, the DSGAN can achieve

of 1.6× speedup compared to NoC with data movement optimization on a 16-layer DCGAN.

4.5 Summary

In this work, we utilize affinity-based kernel offloading to accelerate GAN, in which pipeline

is deferred by loss synchronization. By adopting co-location of computation and data in HMC

memory stacks, the intermediate results including partial gradient and error, are stored in SRAM

buffer of the same vault where the computation takes place. In this way, despite the long data

reuse distance, gradient synchronization in backpropagation does not incur long memory access

latency. Moreover, we refined the training to be asynchronous for one iteration but achieve more

parallelism than the original GAN. Our simulation result demonstrates 1.6× speedup compared

with the compiler based Nearest-Data-Processing (NDP) system.

58

5.0 Extending the Lifetime of Object-based NAND Flash Device with

STT-RAM/DRAM Hybrid Buffer

NAND flash memory has achieved remarkable success in modern storage systems for its ad-

vantages in cost, capacity and non-volatility. However, its potential is not brought into full play

due to its architectural limitation in block-based storage system. A major limitation of NAND flash

memory is erase-before-program characteristics. It incurs write amplification, severely degrading

system performance and endurance. An object-based NAND flash storage system is proposed to

overcome the limit by offloading the storage management layer to device. Unlike block-based stor-

age device, object-based NAND flash device (ONFD) stores user data and metadata in different

chucks. Previous works reveal that metadata update substantially contributes to write amplifica-

tion in object-based NAND flash device (ONFD). Besides, write amplification severely degrades

the performance and endurance of ONFD by causing redundant page write and garbage collection

(GC). Also, in object-based NAND flash device (ONFD), power failure may cause inconsistency

between object data and object metadata and impair the system reliability.

In this work, we propose a design to alleviate write amplification and handle power failure in

ONFD. By adopting non-volatile STT-RAM as a complement buffer to existing on-device DRAM

buffer, redundant page writes of per-object indices are minimized and data recovery mechanism

can be implemented with acceptable circuit overhead. To further reduce the overhead of metadata

update in ONFD, we propose a hybrid buffer scheme (HBS) by utilizing the lower latency and byte-

addressable characteristics of the promising emerging non-volatile memory STT-RAM. Our HBS

proposes to store ONFD metadata with highest cost in a complement STT-RAM buffer to reduce

write amplification. Considering limited size of STT-RAM, we propose a hybrid buffer manage-

ment technique to maximize effective memory utilization. In addition, by leveraging non-volatility

of STT-RAM, our HBS can also substantially reduce data recovery overhead and complexity upon

power failure. Experiment results show that the proposed design can achieve up to 15% per-

formance improvement with average 34% endurance extension compared to the state-of-the-art

works.

59

5.1 Introduction

Thanks to high density, low power consumption and good scalability, NAND flash memory

has been widely adopted as µs-class storage media in various storage systems, ranging from con-

sumer electronic devices to high-end servers. A NAND flash cell is a floating gate transistor with

programmable threshold voltage. The stored values are represented by different voltage levels. In

NAND flash memory, data write is realized by program operation. Before re-programming, erase

operation has to be applied to NAND flash memory to remove the stored data. Besides long la-

tency, the program/erase (P/E) operation wears out the NAND flash cells, eventually leading to

cell failure. Program operation is performed in unit of page while erase operation is applied in

unit of block. Due to these inconsistent operation units and erase-before-program characteristics,

valid pages of a dirty block needs to migrate to clean blocks before the dirty one is erased during

garbage collection. To emulate the logical disk, handle the out-of-place update, and prolong the

system lifetime under limited memory endurance, a flash translation layer (FTL) is implemented in

NAND flash based storage system. FTL maintains the mapping information between the logic and

physical address spaces. To accommodate the out-of-place update feature of flash cells, FTL also

carries out the garbage collection which recycles the invalid pages for the upcoming write requests.

The adoption of block-based interface constrains the optimization of device performance. During

garbage collection, valid pages of the dirty blocks migrates to clean blocks before these blocks are

erased. As a result, a page write request from the file system usually incurs two ore more writes to

the NAND flash memory and more data is written to the NAND flash memory than requested. The

scenario is denoted as write amplification. Write amplification causes severe system performance

and endurance degradation. In addition, the block-based interface also results in the functionality

overlap in the file system layer and FTL as shown in Figure 24. The former maintains the mapping

relation between the file data and LBA, while the latter contains the mapping table of LBA and the

physical addresses. The extra mapping table incurs significant storage overhead [98].

Unfortunately, the traditional block-based storage model cannot efficiently reduce write ampli-

fication. Previous work [88] reveals that write amplification can be reduced by isolating hot and

cold data to different blocks. However, the traditional block-based storage model only passes logic

block address to the NAND flash storage device, which cannot accurately identify hot data [42].

60

To effectively mitigate the write amplification, a refactored design of I/O architecture, object-based

NAND flash storage model has been proposed [56].

In the object-based NAND flash storage model, data is stored in unit of object instead of logic

block. The high-level semantics of objects, such as object size and type, are delivered to object-

based NAND flash device (ONFD). Hot data can be identified with high-level semantics more

accurately. As a result, the efficiency of garbage collection is improved and write overhead is

reduced [42]. Despite architectural optimization and substantial performance improvement, there

still exists exploration space to reduce write amplification in ONFD.

Figure 24: Comparision of block-based and object-based storage models

As shown in [20], one major cause of write amplification is byte-level metadata update. Due

to inconsistent unit of NAND flash program operation and metadata update, partial page updates

can invoke up to 20× of write amplification. By separating data from metadata, optimization

based on data type and their access patterns can be explored. The issue of operation inconsistency

can be addressed by the emerging memory technology in recent decades, such as spin-transfer

torque memory (STT-RAM). Compared with NAND flash memory, STT-RAM has the advantage

61

of nearly unlimited endurance, ns-level access latency and byte-addressability [53]. By lever-

ing the byte-addressable characteristics of STT-RAM, we proposed a STT/DRAM hybrid buffer

scheme (HBS) to further reduce write amplification in ONFD in this work. The main contribution

of this chapter is summarized as follows:

• We proposed to differentiate ONFD metadata types and store the metadata with highest per-

formance cost in STT-RAM to minimize write amplification of NAND flash memory.

• Due to limited size of STT-RAM, we proposed a buffer management technique to maximize the

memory utilization and extend endurance by minimizing data migration during power failure.

• We also implemented a module in ObjNandSim to mimic the behavior of ONFD with hybrid

buffer.

We employed various types of real-world workloads to evaluate efficiency of our proposed

HBS. The experimental results show that compared with DRAM-only buffer scheme, our proposed

HBS scheme can achieve about 34% endurance improvement.

The following of the chapter is organized as follows: Section 5.2 introduces the background

knowledge; Section 5.3 presents the motivation of our work; Section 5.4 describes details of the

proposed design; Section 5.5 introduces the simulation platform and presents the simulation re-

sults; Section 5.6 concludes the work.

5.2 Background

5.2.1 Object-based NAND Flash Device (ONFD)

The object-based NAND flash storage model [42] is shown in Figure 25. In this model, object

serves as the basic storage unit. An object, uniquely identified by an 64-bit object ID, denotes a

variable-sized data container, e.g., a file in this chapter. Each object includes data and attributes.

The object data contains variable-length file data. The object attributes include file metadata such

as ownership and access control. The object-based storage model includes an object file system

and an object-based NAND flash device (ONFD). The object file system only maintains the name

space. The ONFD manages the storage of objects.

62

In the ONFD, the object data is accessed via object metadata, which includes both per-object

indices and onodes. Like the object data, the per-object indices and the onodes are also stored

in the NAND flash memories. The per-object index, with a tree structure, maintains the physical

addresses of the object data. The onode contains the object attributes and the address of the per-

object index root node page. The object attributes have different length and therefore, the onode

has a variable length too. For example, in the file system, every file has a fix-sized inode structure

to store the file attributes. Some objects have extended attributes that need additional storage space.

The physical addresses of the onodes are maintained in a global index. The global index, which is

arranged with a B+ tree data structure, resides in the DRAM for fast access.

Figure 25: The architecture of object-based storage system.

63

5.2.2 STT-RAM Characteristics

STT-RAM is one of most promising byte addressable non-volatile memories. With the ad-

vantages of non-volatility and density, the STT-RAM is emerging as an alternative of DRAM. In

addition, without any leakage current for data retention, STT-RAM can eliminate significant re-

fresh power and reduce the system power consumption. In addition, STT-RAM has the access

latency within the same magnitude of DRAM and much faster than NAND flash memory. How-

ever, the write performance of STT-RAM is degraded because the current required for writing into

an MTJ is notably higher than that needed for reading from it. By integrating DRAM with STT-

RAM, we can take advantage of both RAMs to 1) easily handle the data recovery during power

failure, 2) avoid unnecessary writes to STT-RAM by adopting lazy update policy, 3) reduce the

area budget with the dense STT-RAM cells.

5.2.3 Related Works

To reduce partial page update and cascading update induced data migration, a broad class

of solutions are proposed for architectural optimization of object-based NAND flash system. J.

Guo et al. proposed multi-level garbage collection and B+ table tree to mitigate onode incurred

partial page update and internal node page incurred cascade update [20]. Y.Lu et al. proposed lazy

back-pointer index and compact update to reduce object data incurred partial page update from file

system layer [56]. However, the lazy update scheme significantly increases memory consumption.

Our proposed scheme can work with these previous works to further improve write performance. Y.

Kang et al. proposed a object-based storage class memory (SCM) device model [42]. To evaluate

the efficiency of the proposed SCM device, a simulation infrastructure needs to be setup. There

are several simulators for NAND flash storage systems and object storage device. Fastsim [89] is

one of the most popular NAND flash based solid disk drive simulator.

Researchers and system designers are also dedicated to exploring the space of architectural

optimization by adopting non-volatile memory in NAND flash based storage systems. C. Sun et

al. proposed to buffer data in SCM to minimize partial page update [81]. J. Guo et al. proposed

to store flash translation layer (FTL) metadata in phase change memory (PCM) to minimize power

failure protection cost [24]. J. Kim et al. proposed to store file system metadata and FTL metadata

64

in PCM to avoid unnecessary data write and reduce main memory consumption [43]. Due to

architectural difference, our HBS stores different types of system metadata in STT-RAM from

these prior works. Despite a similar motivation as J. Kim’s work, our work is different from the

prior works at the aspect of optimization approach. Compared with PCM, STT-RAM has limited

density despite lower access latency and higher endurance. To increase memory utilization, our

HBS differentiates object metadata and buffers the metadata with most performance cost in STT-

RAM.

There are other works [90, 23, 19, 22] proposed to improve performance of NAND flash stor-

age system. Several prior works have proposed the use of STT-RAM to reduce energy consumption

in on-chip cache or as a substitute of embedded DRAM [69, 99, 77]. While [48] evaluated STT-

RAM as an alternative to DRAM in main memory.

5.3 Motivations

Write amplification shortens system endurance and incurs write performance degradation. De-

spite architectural optimization, write amplification still causes non-negligible write overhead in

ONFD. One cause of write amplification is per-object index cascading update. The per-object

indices are implemented with an B+ tree. The internal node page maintains physical addresses

of child nodes (i.e. per-object index entries) and offset. The leaf node page records index entries

indicating the address of the object data with format <offset, length, address>. When a node is

updated, its indirect node is updated due to the direct pointer update. If a leaf node page is up-

dated, due to erase-before-program issue, its direct index page should also be updated, leading to

per-object index cascading update. Such cascading updates can be avoided by using a node ad-

dress table [20, 50]. Each node page has a virtual address and a physical address. The internal

node entry stores the virtual address of its child node pages. Similarly, to further avoid frequent

onode update, virtual address of the index root page is stored in onode. When a leaf node page

address is updated, only the new physical address is updated in node address table. In this way,

cascade update can be effectively reduced. A per-object index cache may further reduce updates

of the per-object index pages, especially when the write pattern is sequential. For fast accesses,

65

updated leaf node page and its related internal node pages are cached. when the size of all buffered

pages is higher than a per-defined threshold, the tree node pages of least-recently accessed object

is evicted in a leaf-to-root sequence to the NAND flash memory. If the per-object index root page

is updated, onode is committed only after internal node pages. However, write cost of per-object

index and onode is still high due to its small size.

Similar to block-based NAND flash device, ONFD also poses a reliability challenge to system

designers. In a typical ONFD, DRAM is adopted to buffer the frequently accessed metadata and

data such as the node address table and per-object index table. To comply with data integrity during

power failures, super-capacitors are usually used as backup power supply to back up a large amount

of data from DRAM to NAND devices. However, according to Arrhenius law lifetime model,

the capacitance loss of super-capacitors under 60°can be as high as 30% within five years [24].

The capacitance degradation severely impairs the reliability of the entire storage device: With

DRAM-only buffer scheme, power failure may cause permanent loss of the node address table and

per-object index cache and lead to inconsistency between object data and metadata.

5.4 STT-RAM/DRAM Hybrid Buffer Scheme

A STT-RAM/DRAM Hybrid Buffer Scheme (HBS) is proposed to further mitigate write am-

plification by utilizing byte addressability of STT-RAM. HBS also utilizes non-volatility of STT-

RAM to simplify data recovery upon power failure.

The overall architecture of HBS is shown in Figure 26. Similar to the ONFD architecture

described in Section 5.2.1, our HBS also adopts three data types for object management: onode,

per-object index and object data. Unlike the baseline ONFD, the placement of object data depends

on data size. If the total size of inode and data are less than one physical page, inode and data are

stored together without per-object index; otherwise, object inodes, per-object internal indices and

object data are stored in different chucks.

The hybrid management layer implements flash management policies like page allocation,

garbage collection and wear-leveling. It also manipulates received requests in a data type differen-

tiating strategy.

66

5.4.1 Design Overview

Figure 26: The architecture of proposed scheme

For onode and object data, the object-based interface allows byte addressing. In NAND flash

memory, data is accessed in unit of a page. Hence, the management layer has to handle sub-page

write: 1) If sub-page write is performed to existing data, read-before-write operation is performed

as in [81]. 2) If sub-page write is performed to new data, the new data is first stored in page-size

buffer. DRAM is used as a page buffer before data are flushed into NAND flash array.

For per-object indices, a page table is used to address the cascading update problem resulted

from a chain of writes [50]. A STT-RAM is partitioned into three regions: metadata storage, per-

67

object index entry cache and backup region. The buffer management technique to maximize the

memory utilization and extend endurance by minimizing data migration during power failure.

5.4.2 Hybrid Buffer Module

Metadata storage contains a B+ tree page table and leaf nodes in page granularity. The idea is

using the concept of virtual address to prevent recursive update. The mapping between physical

address and virtual address is stored in a page table. Figure 27 is an example of tree node address

table. When a leaf node entry in virtual address (VA) 5 is updated, clean data with updated data is

migrated to the new physical address (PA) 14. Data in PA 4 becomes dirty and its mapping to VA

5 is invalidated. By updating the VA to PA mapping table, recursive updates in B+ tree is avoided.

Figure 27: The per-object index table tree and an example of node update

Despite reduced updates of the internal node pages and the onode pages, object data updates

still generate considerable write accesses to leaf node pages, especially for write-intensive work-

68

loads. An intuitive solution is to migrate leaf node pages to STT-RAM for better write performance

and faster access. To estimate the approximate capacity requirement for leaf node storage in STT-

RAM, we utilize a real world benchmark TPC-C. The benchmark involves 40GB of object data

and the maximum file size is 14GB. There are 600 objects in total and the per-object index tree

depth is 4. The page size is 8KB. Considering the tree depth, there are a maximum of 220 per-object

index leaf node entries and about 221 per-object index nodes in a balanced tree. In the page table,

a reasonable assumption of virtual address is 3B which is 1B less than physical address for space

optimization. Thus, the approximate size of the page table is 14MB. A leaf node entry contains

offset, length, physical address with 4B size each. Thus, the leaf node storage occupies about

12MB, which is acceptable. This estimation is not sufficient for reasons below: (1) the bench-

mark size is too small when compared to real world file system; (2) the leaf node number depends

heavily on benchmark characteristics, for example, benchmarks with a large amount of small size

user data tend to have more per-object index leaf nodes. However, we still take the validity of leaf

node storage in STT-RAM: (1) per-object index tree with more leaf nodes tends to have a higher

tree depth; (2) file systems with a majority of small files are uncommon and most desktops share

a similar file size distribution [2]. As a result, leaf node updates are in-place update and cascading

update is minimized. Scenarios still incur an cascading update include node insertion and deletion.

When power failure occurs, the DRAM data which has not been flushed into the NAND flash

array will be copied to the STT-RAM. In the proposed design, the size of data migration is min-

imized by levering the non-volatility of STT-RAM. Because capacitance budget is directly influ-

enced by the size of the DRAM data that has to be moved, the reduction of capacitance budget

enables the possibility of replacing the super-capacitors with the more reliable regular capacitors.

5.4.3 Hybrid Buffer Management

For read request, the onode address is retrieved from the global index tree and the per-object

index with offset is retrieved from corresponding onode page in NAND flash. Before accessing the

NAND flash chuck, internal node cache is referred to for fast accesses. On a cache hit, search for

subsequent tree data path until a cache miss or a leaf node address is achieved. On a cache miss, a

page-based popularity list is updated and NAND flash is accessed for the requested address.

69

The page popularity list is maintained in backup when power on and will be invalidated imme-

diately if there is a power failure. On a cache miss, we increment the page popularity by 1. Internal

node cache updates in LRU policy when the most popularity page count reaches a threshold.

For write request, sub-page write algorithm is shown below. The old object data is invalidated

first on updates to existing data. The new object data is wrapped into object operation and inserted

to the data queue for process. Once the object data is flushed into NAND flash, the per-object

indices are updated accordingly. The per-object index tree adopts a lazy update algorithm. Upon

node insertion/deletion, only the prior pointer is updated. The dirty internal nodes data is invali-

dated first. The new index is inserted into the internal node queue. After the internal node page

is flushed into NAND flash, the page table in STT-RAM is updated. The onodes are updated in a

similar approach. In write-before-read scenario, both the onode/per-object index page in NAND

and the onode/per-object index data queue are searched for the updated indices.

Algorithm 5 Read algorithm for HBS
1: procedure NAND READ OBJ(OID, OFFSET, LEN)

2: read onode from flash memory

3: STT-RAM:

4: while internal node cache hit & node != leaf do

5: retrieve child node

6: if node 6= leaf then

7: popularity list entry increment

8: if most popular index count > threshold then

9: LRU replacement in internal node cache

10: end if

11: end if

12: NAND flash:

13: while address ∈ per-object index data chuck do

14: look up per-object index

15: read object data

70

Algorithm 6 Write algorithm for HBS
1: procedure NAND WRITE OBJ(OID, OFFSET, LEN)

2: read onode and per-object index as in Algorithm 5

3: if <offset,len> ∈ flash memory then

4: remaining data→ data queue

5: invalid out-of-date data pages

6: end if

7: data to write with oid→ data queue

8: handle data queue:

9: while data queue 6= NULL do

10: dequeue data queue⇒ τ

11: if dirty chucks > threshold then

12: recycle dirty chuck()

13: end if

14: if <offset,len> of τ /∈ leaf node then

15: flush τ to flash memory

16: if avaliable leaf page = 0 then

17: nand write inode()

18: end if

19: insert leaf node entry

20: else

21: flush τ to flash memory

22: update page table in STT-RAM with new PA

23: end if

71

5.4.4 Software Implementation

ObjNandSim implements the device architecture described in Section 5.2.1. To facilitate code

modification, ObjNandSim provides a simple API for access to object data and metadata (inode)

in the OSD. The API functions are listed as follows:

• nand write obj(), nand read obj(): write and read object data;

• nand delete obj(), nand truncate obj(): delete or truncate object; and

• nand write inode(), nand read inode(): write and read object inode.

Since ObjNandSim provides sufficient modularity and extend-ability, we are able to implement

HBS by:

• making modifications to B+ tree operations by differentiating between internal node struct

bplus block and leaf node struct index block

• adding a LRU cache for internal node updates in meta-operation nand write inode()

• managing hybrid buffer in object operation struct obj op and nand handle queue op()

5.5 Evaluation

In this section, we evaluate object-based NAND flash storage with hybrid buffer using trace

driven simulations. For benchmarks in different access patterns, we measure the overall average

I/O response time, page write and erase statistics to compare with the DRAM-only scheme.

5.5.1 Simulation Setup

In our experiments, we adopt the same simulation platform as in [21]. The object file system,

object-based storage(OSD) initiator and the simulator run on the host machine equipped with Intel

Quad-Core Xeon 5-2609 v2 (10MB 2GHz) processor and 128GB RAM. The OSD initiator and

the simulator are connected via the Gigabit Ethernet. In addition, the clean chunk threshold is set

100 to quickly initiate garbage collection.

72

By default, the ObjNandSim is configured with device capacity 64 GB with 16 NAND flash

memory dies; the channel number and the chunk size are 16 and 2MB, respectively. The charac-

Table 8: Workload characteristics

Workload TPC-C [52] iPhoto [29] Pages [29] iMovie [29]

Pattern random access write intensive small data access sequential write access

Avg. request size (KB) 15.7 12 0.5 21

Avg. file size (KB) 67321 233 163 283

Write access 24.7% 90.3% 91% 60%

Write seq. 19% 36% 1% 92%

Read seq. 14% 15% 51% 18%

teristics of these workload traces are shown in Table 8. Benchmark entries are replayed to generate

input to the simulation platform. In this simulation platform, we adopt EXOFS in Linux kernel

3.2.67 as the object file system [28]. The OSD initiator is an existing Linux kernel library which

generates OSD request packets according to SCSI OSD command sets [61]. Finally, OSD requests

packets are sent to the OSD via open-iSCSI, an iSCSI initiator.

5.5.2 Overall Performance Improvement

We implement STT-RAM/DRAM HBS and supplement buffer management on ObjNandSim.

The performance evaluation results are shown in Figure 28-30. Compared to the default ObjNand-

Sim, HBS can achieves up to 15% average response time improvement and an average of 7% of

all benchmarks. The workload of iPhoto has the maximum response time reduction because of

a significant page write reduction. Even under read-intensive TPC-C, there is1̃0% response time

reduction due to page write reduction in HBS. However, the workload of Pages show little im-

provement in the overall efficiency. It is reasonable because per-object index write is completely

eliminated when object data and onode are small and reside in one page without per-object index.

The page write is reduced by 13% on average. Workloads of TPC-C and iPhoto have similar write

73

Figure 28: Average write response time

Figure 29: Total page write counts

74

Figure 30: Total block erase counts

request count and average write request size. In our simulation results, page write count improve-

ment of iPhoto (28%) outperforms TPC-C (20%). This may result from the better sequentiality in

write access in iPhoto. The per-object index entry cache has higher hit rate with sequential access

pattern. The average block erasure reduction is 31%. Due to reduction of page write and block

erasure, HBS improves the system endurance by 34% on average for a normalized write request

count of 1.0E+06 compared to ObjNandSim.

5.6 Summary

In an object-based NAND flash device, per-object indices are much more frequently updated

than object data and can be considered as “hot” data. A major cause of write amplification is

cascading update within per-object index. A page table is deployed to map the frequently updated

physical address to the constant virtual address, therefore, most of the internal node page updates

can be avoided. Moreover, a LRU cache is implemented to further reduce data migration. The

cache buffers the updated leaf node and its corresponding internal node entries. Updated internal

75

node entries are committed on cache replacement and merged to internal node page before eviction

to NAND flash device. For leaf nodes, we estimate its approximate size via a real-world benchmark

and propose to place all leaf nodes in STT-RAM for fast and frequent access. The per-object index

page table, LRU cache and leaf nodes are reside in STT-RAM for data and metadata consistency

during power failure. Finally, the rest of the 256MB STT-RAM is used as backup for DRAM,

considering the size of data to be migrated and P/E latency of NAND flash device. By adopting

STT-RAM as backup, super-capacitors can be replaced by normal capacitors for reliability. The

experimental results show that, compared with the state-of-art work, our proposed design can

reduce page write count by 13% with 34% endurance improvement.

76

6.0 Conclusions

Thanks to low energy and high throughput properties of the HMC, near-memory processing

has been a good candidate for neural network accelerator design. Despite efforts in exploring

model compression and architectural optimization, the system designers and researchers are still

faced with challenges from both aspects: 1) massive number of operations for storage/compute, 2)

specific PIM features.

In this dissertation, we first propose a filter pruning strategy to reduce computation and mem-

ory accesses. We propose to use conditional entropy as the filter selection criteria in filter pruning.

For each sample in a dataset, we calculate the cross entropy loss and output activation correspond-

ing to each filter. We then evaluate the filter selection criteria in a layer-wise pruning approach.

Experimental result shows that the performance of conditional based filter selection criteria out-

performs the approaches based L1-Norm, APoZ and activation entropy. The proposed criteria can

achieve 92.76% accuracy when pruning ratio is 50% and ∼ 93.5% accuracy when pruning ratio

is 25% on VGG16, while the baseline L1-norm results in 92.11% accuracy for 50% and 92.86%

accuracy for 25% pruning ratio. To comply with the network information distribution, we adopt a

two phase pruning framework which combines global approach with above layer-wise approach.

The filters with the minimum conditional entropy are pruned filter-by-filter globally followed by

layer-wise pruning. The above framework can achieve a pruning ratio of 87% within 2% accuracy

drop of pre-trained VGG-16 model on CIFAR10.

With compressed model, we then propose a neural network accelerator based on processing-

in-memory multi-HMC called NeuralHMC. NeuralHMC is optimized to perform MAC operation

in DNN application. The optimizations include: (1) using a weight sharing MAC to reduce weight

data access, (2) packet scheduling in multi-HMC architecture to pipeline packet decoding, (3)

avoiding packet regeneration in vault controller by calculating the maximum MAC count in on-

chip controller.

Experimental results show that our proposed NeuralHMC can improve the system perfor-

mance by 4.1× in speedup and 1.5× in energy reduction compared to the DNN accelerator design

built with conventional low-power DRAM memory. Furthermore, our NeuralHMC outperforms

77

the baseline for all the DNN architectures and neural network layer types, showing excellent gen-

erality for different DNN implementations.

As an extension of HMC based accelerator, we utilize affinity-based kernel offloading to ac-

celerate GAN, in which pipeline is deferred by loss synchronization. By adopting co-location of

computation and data in HMC memory stacks, the intermediate results including partial gradient

and error, are stored in SRAM buffer of the same vault where the computation takes place. In this

way, despite the long data reuse distance, gradient synchronization in backpropagation does not

incur long memory access latency. Moreover, we refined the training to be asynchronous for one

iteration but achieve more parallelism than the original GAN. Our simulation result demonstrates

1.6× speedup compared with the compiler based Nearest-Data-Processing (NDP) system.

In future work, to make HMC accelerator practically viable, there are other challenges that

need to be addressed, including virtual memory support to ensure a unified address space, mem-

ory/cache coherence, fault tolerance, security and privacy, thermal and power constraints, compat-

ibility with modern programming models, etc.

78

Bibliography

[1] Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, and Gerald Penn. Applying
convolutional neural networks concepts to hybrid nn-hmm model for speech recognition. In
Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference
on, pages 4277–4280. IEEE, 2012.

[2] Nitin Agrawal, William J Bolosky, John R Douceur, and Jacob R Lorch. A five-year study
of file-system metadata. In Proceedings of the 5th USENIX conference on File and Storage
Technologies, pages 3–3, 2007.

[3] Junwhan Ahn, Sungjoo Yoo, and Kiyoung Choi. Dynamic power management of off-chip
links for hybrid memory cubes. In Proceedings of the 2014 ACM/EDAC/IEEE Design
Automation Conference, pages 1–6, 2014.

[4] Erfan Azarkhish, Davide Rossi, Igor Loi, and Luca Benini. Design and evaluation of a
processing-in-memory architecture for the smart memory cube. In International Confer-
ence on Architecture of Computing Systems, pages 19–31. Springer, 2016.

[5] Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Advances in neural
information processing systems, pages 2654–2662, 2014.

[6] Rajeev Balasubramonian, Jichuan Chang, Troy Manning, Jaime H Moreno, Richard Mur-
phy, Ravi Nair, and Steven Swanson. Near-data processing: Insights from a micro-46
workshop. IEEE Micro, 34(4):36–42, 2014.

[7] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali Saidi,
Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh Sardashti, et al.
The gem5 simulator. ACM SIGARCH Computer Architecture News, 39(2), 2011.

[8] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, and Olivier
Temam. Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-
learning. ACM Sigplan Notices, 49(4), 2014.

[9] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural networks. IEEE Journal
of Solid-State Circuits, 52(1), 2017.

79

[10] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu Wang, and
Yuan Xie. Prime: A novel processing-in-memory architecture for neural network compu-
tation in reram-based main memory. In Proceedings of the 43rd International Symposium
on Computer Architecture, pages 27–39, 2016.

[11] Taco Cohen and Max Welling. Group equivariant convolutional networks. In International
conference on machine learning, pages 2990–2999, 2016.

[12] Ronan Collobert and Jason Weston. A unified architecture for natural language processing:
Deep neural networks with multitask learning. In Proceedings of the 25th international
conference on Machine learning, pages 160–167. ACM, 2008.

[13] Hybrid Memory Cube Consortium et al. Hmc specification 2.0, 2015.

[14] William Dally. High-performance hardware for machine learning. NIPS Tutorial, 2015.

[15] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Marc’aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. Large scale distributed
deep networks. In Advances in neural information processing systems, pages 1223–1231,
2012.

[16] Misha Denil, Babak Shakibi, Laurent Dinh, Nando De Freitas, et al. Predicting parameters
in deep learning. In Advances in neural information processing systems, pages 2148–2156,
2013.

[17] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolu-
tional networks using vector quantization. arXiv preprint arXiv:1412.6115, 2014.

[18] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in
neural information processing systems, pages 2672–2680, 2014.

[19] Jie Guo, Zhijie Chen, Danghui Wang, Zili Shao, and Yiran Chen. DPA: A data pattern
aware error prevention technique for NAND flash lifetime extension. In 2014 19th Asia
and South Pacific Design Automation Conference, pages 592–597, 2014.

[20] Jie Guo, Chuhan Min, Tao Cai, and Yiran Chen. A design to reduce write amplification
in object-based NAND flash devices. In Proceedings of the 11th IEEE/ACM/IFIP Interna-
tional Conference on Hardware/Software Codesign and System Synthesis, pages 5:1–5:10,
2016.

80

[21] Jie Guo, Chuhan Min, Tao Cai, Hai Li, and Yiran Chen. ObjNandSim: Object-based
nand flash device simulator. In Proceedings of the 5th Non-Volatile Memory Systems and
Applications Symposium, pages 1–6, 2016.

[22] Jie Guo, Wujie Wen, Jingtong Hu, Danghui Wang, Hai Li, and Yiran Chen. FlexLevel: A
novel nand flash storage system design for LDPC latency reduction. In Proceedings of the
52Nd Annual Design Automation Conference, pages 194:1–194:6, 2015.

[23] Jie Guo, Wujie Wen, Yaojun Zhang Li, Sicheng Li, Hai Li, and Yiran Chen. DA-RAID-5:
A disturb aware data protection technique for NAND flash storage systems. In Proceedings
of the 2013 Design, Automation & Test in Europe Conference & Exhibition, pages 380–385,
2013.

[24] Jie Guo, Jun Yang, Youtao Zhang, and Yiran Chen. Low cost power failure protection for
MLC NAND flash storage systems with PRAM/DRAM hybrid buffer. In Proceedings of
the 2013 Design, Automation & Test in Europe Conference & Exhibition, pages 859–864,
2013.

[25] Ramyad Hadidi, Bahar Asgari, Jeffrey Young, Burhan Ahmad Mudassar, Kartikay Garg,
Tushar Krishna, and Hyesoon Kim. Performance implications of nocs on 3d-stacked mem-
ories: Insights from the hybrid memory cube. In Proceedings of the 2018 IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software, pages 99–108, 2018.

[26] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

[27] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections
for efficient neural network. In Advances in neural information processing systems, pages
1135–1143, 2015.

[28] B Harrosh and B Halevy. The linux exofs object-based pnfs metadata server, 2009.

[29] Tyler Harter, Chris Dragga, Michael Vaughn, Andrea C Arpaci-Dusseau, and Remzi H
Arpaci-Dusseau. A file is not a file: understanding the I/O behavior of apple desktop
applications. ACM Transactions on Computer Systems, 30(3):10, 2012.

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

81

[31] Wim Heirman, Trevor Carlson, and Lieven Eeckhout. Sniper: Scalable and accurate par-
allel multi-core simulation. In 8th International Summer School on Advanced Computer
Architecture and Compilation for High-Performance and Embedded Systems (ACACES-
2012), pages 91–94. High-Performance and Embedded Architecture and Compilation Net-
work of Excellence (HiPEAC), 2012.

[32] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep
Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep
neural networks for acoustic modeling in speech recognition: The shared views of four
research groups. IEEE Signal Processing Magazine, 29(6):82–97, 2012.

[33] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural net-
work. arXiv preprint arXiv:1503.02531, 2015.

[34] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network trimming: A
data-driven neuron pruning approach towards efficient deep architectures. arXiv preprint
arXiv:1607.03250, 2016.

[35] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and
Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb
model size. arXiv preprint arXiv:1602.07360, 2016.

[36] Yani Ioannou, Duncan Robertson, Jamie Shotton, Roberto Cipolla, and Antonio Crimin-
isi. Training cnns with low-rank filters for efficient image classification. arXiv preprint
arXiv:1511.06744, 2015.

[37] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation
with conditional adversarial networks. arXiv preprint arXiv:1611.07004, 2016.

[38] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation
with conditional adversarial networks. In Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition, pages 5967–5976, 2017.

[39] Dong-Ik Jeon, Kyeong-Bin Park, and Ki-Seok Chung. Hmc-mac: Processing-in memory
architecture for multiply-accumulate operations with hybrid memory cube. IEEE Computer
Architecture Letters, 17(1), 2018.

[40] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Gir-
shick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast

82

feature embedding. In Proceedings of the 22nd ACM international conference on Multime-
dia, pages 675–678. ACM, 2014.

[41] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder
Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter perfor-
mance analysis of a tensor processing unit. In Proceedings of the 44th Annual International
Symposium on Computer Architecture, pages 1–12, 2017.

[42] Yangwook Kang, Jingpei Yang, and Ethan L Miller. Object-based SCM: An efficient in-
terface for storage class memories. In Proceedings of the 2011 IEEE 27th Symposium on
Mass Storage Systems and Technologies, pages 1–12, 2011.

[43] Jin Kyu Kim, Hyung Gyu Lee, Shinho Choi, and Kyoung Il Bahng. A PRAM and NAND
flash hybrid architecture for high-performance embedded storage subsystems. In Proceed-
ings of the 8th ACM International Conference on Embedded Software, pages 31–40, 2008.

[44] Artemy Kolchinsky and Brendan D Tracey. Estimating mixture entropy with pairwise
distances. Entropy, 19(7):361, 2017.

[45] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual informa-
tion. Physical review E, 69(6):066138, 2004.

[46] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
Citeseer, 2009.

[47] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105, 2012.

[48] Emre Kültürsay, Mahmut Kandemir, Anand Sivasubramaniam, and Onur Mutlu. Evaluat-
ing STT-RAM as an energy-efficient main memory alternative. In Proceedings of the 2013
IEEE International Symposium on Performance Analysis of Systems and Software, pages
256–267, 2013.

[49] Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in
neural information processing systems, pages 598–605, 1990.

[50] Changman Lee, Dongho Sim, Jooyoung Hwang, and Sangyeun Cho. F2FS: A new file
system for flash storage. In Proceedings of the 13th USENIX Conference on File and
Storage Technologies, pages 273–286, 2015.

83

[51] John D Leidel and Yong Chen. Hmc-sim-2.0: A simulation platform for exploring custom
memory cube operations. In Proceedings of the 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops, pages 621–630, 2016.

[52] Scott T. Leutenegger and Daniel Dias. A modeling study of the TPC-C benchmark. In
Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data,
pages 22–31, 1993.

[53] Hai Li and Yiran Chen. An overview of non-volatile memory technology and the implica-
tion for tools and architectures. In Proceedings of the 2009 Design, Automation & Test in
Europe Conference & Exhibition, pages 731–736, 2009.

[54] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters
for efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

[55] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint
arXiv:1312.4400, 2013.

[56] Youyou Lu, Jiwu Shu, and Weimin Zheng. Extending the lifetime of flash-based storage
through reducing write amplification from file systems. In Proceedings of the 11th USENIX
Conference on File and Storage Technologies, pages 257–270, 2013.

[57] Jian-Hao Luo and Jianxin Wu. An entropy-based pruning method for cnn compression.
arXiv preprint arXiv:1706.05791, 2017.

[58] Jiachen Mao, Xiang Chen, Kent W Nixon, Christopher Krieger, and Yiran Chen. Modnn:
Local distributed mobile computing system for deep neural network. In Proceedings of the
2017 Design, Automation & Test in Europe Conference & Exhibition, pages 1396–1401,
2017.

[59] JEDEC Standard High Bandwidth Memory. Dram specification. Standard JESD235A,
2015.

[60] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convo-
lutional neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440,
2016.

[61] David Nagle, ME Factor, Sami Iren, Dalit Naor, Erik Riedel, Ohad Rodeh, and Julian
Satran. The ANSI T10 object-based storage standard and current implementations. IBM
Journal of Research and Development, 52(4/5):401–411, 2008.

84

[62] Lifeng Nai and Hyesoon Kim. Instruction offloading with hmc 2.0 standard: A case study
for graph traversals. In Proceedings of the 2015 International Symposium on Memory
Systems, pages 258–261. ACM, 2015.

[63] Augustus Odena. Semi-supervised learning with generative adversarial networks. arXiv
preprint arXiv:1606.01583, 2016.

[64] Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and checkerboard
artifacts. Distill, 1(10):e3, 2016.

[65] A. Pattnaik, X. Tang, A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu, and
C. R. Das. Scheduling techniques for gpu architectures with processing-in-memory ca-
pabilities. In 2016 International Conference on Parallel Architecture and Compilation
Techniques (PACT), pages 31–44, Sept 2016.

[66] J Thomas Pawlowski. Hybrid memory cube: breakthrough dram performance with a fun-
damentally re-architected dram subsystem. In Hot Chips, volume 23, 2011.

[67] Yao Qian, Yuchen Fan, Wenping Hu, and Frank K Soong. On the training aspects of
deep neural network (dnn) for parametric tts synthesis. In Proceedings of the 2014 IEEE
International Conference on Acoustics, Speech and Signal Processing, pages 3829–3833,
2014.

[68] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning
with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434,
2015.

[69] Mitchelle Rasquinha, Dhruv Choudhary, Subho Chatterjee, Saibal Mukhopadhyay, and
Sudhakar Yalamanchili. An energy efficient cache design using spin torque transfer (STT)
RAM. In Proceedings of the 16th ACM/IEEE international symposium on Low Power
Electronics and Design, pages 389–394, 2010.

[70] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Im-
agenet classification using binary convolutional neural networks. In European Conference
on Computer Vision, pages 525–542. Springer, 2016.

[71] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M. Hernández-Lobato,
G. Wei, and D. Brooks. Minerva: Enabling low-power, highly-accurate deep neural net-
work accelerators. In 2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), pages 267–278, June 2016.

85

[72] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. Dramsim2: A cycle accurate mem-
ory system simulator. IEEE Computer Architecture Letters, 10(1):16–19, 2011.

[73] Andrew Michael Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky,
Brendan Daniel Tracey, and David Daniel Cox. On the information bottleneck theory of
deep learning. In International Conference on Learning Representations, 2018.

[74] Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via
information. arXiv preprint arXiv:1703.00810, 2017.

[75] Patrick Siegl, Rainer Buchty, and Mladen Berekovic. A bandwidth accurate, flexible and
rapid simulating multi-hmc modeling tool. In Proceedings of the 2017 International Sym-
posium on Memory Systems, pages 71–82, 2017.

[76] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[77] Clinton W Smullen, Vidyabhushan Mohan, Anurag Nigam, Sudhanva Gurumurthi, and
Mircea R Stan. Relaxing non-volatility for fast and energy-efficient STT-RAM caches. In
Proceedings of 2011 IEEE 17th International Symposium on High Performance Computer
Architecture, pages 50–61, 2011.

[78] Avinash Sodani. Knights landing (knl): 2nd generation intel® xeon phi processor. In Hot
Chips 27 Symposium (HCS), 2015 IEEE, pages 1–24. IEEE, 2015.

[79] Jost Tobias Springenberg. Unsupervised and semi-supervised learning with categorical
generative adversarial networks. arXiv preprint arXiv:1511.06390, 2015.

[80] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1):1929–1958, 2014.

[81] Chao Sun, Kousuke Miyaji, Koh Johguchi, and Ken Takeuchi. SCM capacity and NAND
over-provisioning requirements for SCM/NAND flash hybrid enterprise SSD. In Proceed-
ings of the 5th IEEE International Memory Workshop, pages 64–67, 2013.

[82] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-
v4, inception-resnet and the impact of residual connections on learning. In Thirty-First
AAAI Conference on Artificial Intelligence, 2017.

86

[83] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In Computer Vision and Pattern Recognition (CVPR), 2015.

[84] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1–9, 2015.

[85] Cheng Tai, Tong Xiao, Yi Zhang, Xiaogang Wang, et al. Convolutional neural networks
with low-rank regularization. arXiv preprint arXiv:1511.06067, 2015.

[86] Xulong Tang, Orhan Kislal, Mahmut Kandemir, and Mustafa Karakoy. Data movement
aware computation partitioning. In Proceedings of the 50th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 730–744. ACM, 2017.

[87] Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck princi-
ple. In Information Theory Workshop (ITW), 2015 IEEE, pages 1–5. IEEE, 2015.

[88] Benny Van Houdt. Performance of garbage collection algorithms for flash-based solid state
drives with hot/cold data. Performance Evaluation, 70(10):692–703, 2013.

[89] Nicolas Vasilache, Jeff Johnson, Michael Mathieu, Soumith Chintala, Serkan Piantino, and
Yann LeCun. Fast convolutional nets with fbfft: A gpu performance evaluation. arXiv
preprint arXiv:1412.7580, 2014.

[90] Danghui Wang, Jie Guo, Kai Bu, and Yiran Chen. Reduction of data prevention cost and
improvement of reliability in MLC NAND flash storage system. In 2014 International
Conference on Computing, Networking and Communications, pages 259–263, 2014.

[91] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured
sparsity in deep neural networks. In Advances in Neural Information Processing Systems,
pages 2074–2082, 2016.

[92] Ross S Williamson, Maneesh Sahani, and Jonathan W Pillow. The equivalence of
information-theoretic and likelihood-based methods for neural dimensionality reduction.
PLoS computational biology, 11(4):e1004141, 2015.

[93] Wm A Wulf and Sally A McKee. Hitting the memory wall: implications of the obvious.
ACM SIGARCH computer architecture news, 23(1):20–24, 1995.

87

[94] Raymond Yeh, Chen Chen, Teck Yian Lim, Mark Hasegawa-Johnson, and Minh N
Do. Semantic image inpainting with perceptual and contextual losses. arXiv preprint
arXiv:1607.07539, 2016.

[95] Shuangfei Zhai, Yu Cheng, Zhongfei Mark Zhang, and Weining Lu. Doubly convolutional
neural networks. In Advances in neural information processing systems, pages 1082–1090,
2016.

[96] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. Optimiz-
ing fpga-based accelerator design for deep convolutional neural networks. In Proceedings
of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
pages 161–170, 2015.

[97] Xiangyu Zhang, Jianhua Zou, Xiang Ming, Kaiming He, and Jian Sun. Efficient and ac-
curate approximations of nonlinear convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1984–1992, 2015.

[98] Yiying Zhang, Leo Prasath Arulraj, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-
Dusseau. De-indirection for flash-based SSDs with nameless writes. In Proceedings of
the 10th USENIX conference on File and Storage Technologies, pages 1–1, 2012.

[99] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. Energy reduction for STT-RAM using
early write termination. In Proceedings of the 2009 International Conference on Computer-
Aided Design, pages 264–268, 2009.

88

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1. Comparison of filter importance criteria in layer-wise approach VGG-16/ResNet-50 on CIFAR10.
	2. HMC Specification.
	3. AlexNet Architecture Overview.
	4. Power Consumption
	5. HMC timing configuration.
	6. System configuration.
	7. Classification of predicted execution time.
	8. Workload characteristics

	List of Figures
	1. Basic scheme of our proposed 2PFPCE. This scheme show the network pruning process consisting phase I and II.
	2. Statistical result of VGG-16 on CIFAR10.
	3. Trade-offs between computation complexity and classification accuracy.
	4. Stage pruning with 98% accuracy threshold.
	5. HMC module architecture.
	6. HMC communication.
	7. Weight sharing pipelined MAC design.
	8. Flow control packet layout.
	9. Asynchronous parameter communication between host and PIM.
	10. Throughput vs. MAC ops per feature map.
	11. Operation breakdown in AlexNet.
	12. NoC latencies with RS and WS.
	13. Total speedup and energy reduction.
	14. Inter-vault bandwidth breakdown.
	15. Performance of scalability.
	16. Architecture of DCGAN.
	17. Training process of DCGAN.
	18. The influences of offloading granularity and concurrency of kernel executions.
	19. DSGAN overview.
	20. Asynchronous pipeline flow for parallelism.
	21. Execution time breakdown.
	22. Speedup of kernel granularity.
	23. Concurrent kernel computation performance.
	24. Comparision of block-based and object-based storage models
	25. The architecture of object-based storage system.
	26. The architecture of proposed scheme
	27. The per-object index table tree and an example of node update
	28. Average write response time
	29. Total page write counts
	30. Total block erase counts

	Preface
	1.0 Introduction
	1.1 Motivation
	1.1.1 Challenge 1: massive number of operations for storage/compute
	1.1.2 Challenge 2: PIM features

	1.2 Dissertation Contribution

	2.0 Two-Phase Filter Pruning Based on Conditional Entropy
	2.1 Introduction
	2.2 Related works
	2.2.1 Model compression
	2.2.2 Information Plane

	2.3 Conditional entropy based compression
	2.3.1 Problem formulation
	2.3.2 Filter selection algorithm
	2.3.3 Statistical result of CIFAR10 on VGG-16

	2.4 Experiments
	2.4.1 Experiment setup
	2.4.2 Global Pruning Approach
	2.4.3 Layer-wise Pruning Approach
	2.4.4 Stage Pruning Approach

	2.5 Summary

	3.0 NeuralHMC: An Efficient HMC-Based Accelerator for Deep Neural Networks
	3.1 Introduction
	3.2 Background
	3.2.1 Overview of HMC
	3.2.2 HMC Communication

	3.3 Motivation
	3.3.1 Dataflows in DNN Accelerators
	3.3.2 Potential of DNN Execution on HMC
	3.3.3 Challenge of DNN Execution on HMC

	3.4 Accelerator Design of NeuralHMC
	3.4.1 Weight Sharing Pipelined MAC Design
	3.4.2 Asynchronous Packet Communication
	3.4.3 Packet Scheduling Algorithm

	3.5 Experiments
	3.5.1 Experimental Setup
	3.5.2 Evaluation of Single-HMC in NeuralHMC
	3.5.3 Evaluation of Multi-HMC in NeuralHMC

	3.6 Summary

	4.0 DSGAN: Acceleration of Generative Adversarial Networks (GAN) based on Dynamic Scheduling of Kernel Offloading
	4.1 Introduction
	4.2 Background
	4.2.1 Generative Adversarial Networks (GANs)
	4.2.2 Transposed Convolution
	4.2.3 Kernel Offloading to PIM

	4.3 DSGAN Architecture
	4.3.1 GAN's Parallelism Limitation
	4.3.2 Overview of DSGAN
	4.3.3 Inter-Kernel Dependency
	4.3.4 Kernel Scheduling Algorithm
	4.3.5 Transposed Convolution Optimization

	4.4 Experimental Setup and Evaluation
	4.4.1 Execution Time Model

	4.5 Summary

	5.0 Extending the Lifetime of Object-based NAND Flash Device with STT-RAM/DRAM Hybrid Buffer
	5.1 Introduction
	5.2 Background
	5.2.1 Object-based NAND Flash Device (ONFD)
	5.2.2 STT-RAM Characteristics
	5.2.3 Related Works

	5.3 Motivations
	5.4 STT-RAM/DRAM Hybrid Buffer Scheme
	5.4.1 Design Overview
	5.4.2 Hybrid Buffer Module
	5.4.3 Hybrid Buffer Management
	5.4.4 Software Implementation

	5.5 Evaluation
	5.5.1 Simulation Setup
	5.5.2 Overall Performance Improvement

	5.6 Summary

	6.0 Conclusions
	Bibliography

