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Abstract 

Cabaret: A Suite of Characterized Discrete Models for Benchmarking Systems Biology Tools 

 

 

Handa Ding, M.S. 

 

 

University of Pittsburgh, 2019 

 

 

 

  

Computational modeling tools have a great potential to increase our understanding of 

complex biological systems. With the significant increase in publicly available biomedical data, 

systems biology methods have advanced, resulting in numerous frameworks that are accessible for 

the whole community. However, with many different methods proposed to solve computational 

biology problems, there is a tremendous need for standards to measure capabilities of the tools. 

Accordingly, assessing and deciding which tools to use to address specific questions and problems 

is often a considerable challenge. One solution to address this challenge is to follow the practice 

of other fields, such as computer engineering, and create benchmarks. In biology, a suite of models 

that are evaluated using typical measures would allow researchers to compare the performance 

among different tools in an unbiased fashion. Thus, we propose CABARET, a Characterized 

Assembly of Benchmarks for Automation, Reproducibility and Evaluation of Tools in biology. 

Our benchmark suite (CABARET) will provide a set of models and analysis methods for 

biological modelers to comprehensively evaluate their tools. In this thesis, we selected seven 

discrete cell signaling and gene regulation network models of immune system and cancer cells. 

These models are then simulated both deterministically and stochastically to explore their steady 

states and transient responses. Using the same simulation approach and analysis methods on all 

models allows for standardized measures and reporting of the features of the models and results in 
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a well characterized set of benchmark models. For this characterization, feedback loop, fan-in and 

fan-out cone analyses, as well as the analysis of paths between inputs and outputs, and additional 

features of scenarios specific for modeled systems have been documented. We believe these 

models can serve as standardized, calibrated, benchmarks to evaluate future tools developed by 

the biology community. 

 

 

 

 

 

Keywords: Biological Systems, Boolean Model, Cancer Systems, Benchmarking 

Characteristics, Logic, CABARET, Python, Automation, Tools. 
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1.0 Introduction 

Benchmarking is defined as evaluating or checking by comparison with a standard, so the 

differences can be used to identify gaps in a method [1] in order to achieve a strategic advantage. 

The terminology first originated in the entrepreneurial community as a common strategy: when 

you have no idea what to do, check what your competitors are doing instead of creating a new 

product [2]. In other words, benchmarking is a procedure for acquiring a standard for performance. 

Benchmarks are the “what”, and benchmarking is the “how”. Creating and updating solid 

benchmarks significantly lower operating costs and improve efficiency within limited resources 

[3].  

Currently, benchmarking methodology is not only well adopted in many business areas, 

such as corporate management, where the benchmark approach helps to understand fundamental 

relationships in financial market [4].  It is also used in other fields such as higher education, where 

benchmarks lead to institutionalized assessment practice – a unique methodology can improve 

learning outcomes of undergraduate business program [5]. Benchmarking also plays a critical role 

in computer architecture, where standardized assessments of, for example, CPU, hard drive, or 

power consumption, are used to help researchers compare computer system performance across 

different platforms. Computational biology methods also require rigorous benchmarks in order to 

compare performance.  

In experimental biology there are many standards and calibrating compounds, and there 

are nomenclature and data standard in genomics, however there is a lack of standard for 

computational modeling.  There has been a large increase in the number and types of models being 

created, but it is difficult to compare approaches to select the method most appropriate for the 
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biological question. In the past few decades, the number of systems biology publications has grown 

rapidly. Correspondingly, the amount of experimental data has increased, and by computationally 

modeling biological systems, we can better understand the relationship from the cellular level up 

to the macroscopic level [6]. Usually, there are a number of solutions for modeling biological 

systems including the Monte-Carlo method [7], ordinary differential equations (ODE) [8], rule-

based modeling approach [9], and Boolean network or logical modeling approach. These methods 

can provide both efficient and accurate analysis. As we know, the biology community has already 

developed many methods and software packages to address the dynamic modeling issue. However, 

there is lack of suitable benchmark suites which allow a fair and systematic evaluation of these 

contributions. Owing to the extremely complex nature of biological systems, creating a gold 

standard for the crucial list of model characteristics that can suitably highlight features of model 

building and analysis tools becomes a necessary and urgent task.  

In this work, we focus on discrete logical models of biological signaling networks. A 

Boolean model is a special case of discrete model that has been used to mimic the ON (logic 1) 

and OFF (logic 0) state of each element. Accordingly, there are a few analytical methods in 

biological modeling. For example, sensitivity analysis plays a critical role in measuring system 

robustness and adaptability under perturbations [10]. Applying both static and dynamic sensitivity 

analysis can provide various different perspectives based on different applications—the former 

one focuses on uniform state distribution, the latter one uses distribution from stochastic simulation 

results [10].   

In this work, we present seven benchmarks, seven discrete logical models: Albert’s ABA 

plant model [11] and large granular leukemia (LGL) model [12], Sahin’s breast cancer model [13], 

Bauer’s angiogenesis model [14], naïve Tcell differentiation model [15],  macrophage model [16], 
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and pancreatic cancer cell (PCC) model [17]. The bio-benchmark suite uses standardized 

spreadsheet representation format [18] for all models, from which both graphical representation of 

benchmarks and executable models can be generated. The standardized and systematic description 

of the characteristics of the static model networks and dynamic model behavior will enable reliable 

evaluation of systems biology tools, and therefore, lead to higher confidence in findings provided 

by these tools. 
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2.0 Background 

2.1 Existing benchmark suites in various fields 

Successful benchmarks provide a standard performance evaluation between the new 

product and the existing reference. In other words, technological gaps can be identified, thus 

further improvement can be done. Hence, benchmarking methodology has been widely used in 

various fields such as business and technology as mentioned in the Chapter 1.0. In this paper, we 

learn more lessons and acquire experience from the benchmark suites in electrical and computer 

engineering and I believe their processes will lead us to establish better benchmarks for the biology 

community 

2.1.1 SPEC benchmark suites 

The well-known industry SPEC (System Performance Evaluation Corporation) tool was 

invented in 1988 by a small group of workstation vendors who realized that a set of standardized 

performance tests for computer systems was desperately needed for the current market. Nowadays, 

SPEC has successfully become one of the best performance evaluation entities and it contains over 

60 members including hardware and software vendors, universities, and researchers. Specifically, 

the SPEC benchmark suite is an umbrella structure that has diverse subcommittees, which contains 

evaluation kits for CPU (central processing units), Cloud, Graphics, Workstation, High 

performance computing, Power, Storage.  
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Among all kits, SPEC CPU is one of the oldest groups within SPEC OSG (Open Systems 

Group), of which the most updated version CPU 2017 owns 43 benchmarks, categorized into 4 

groups: SPECrate2017-Integer, SPECspeed2017-Integer, SPECrate2017-Floating Point, and 

SPECspeed 2017-Floating Point[19]. For SPECrate , the calculated metrics are based on 

equation 2-1:  

 

                          
𝑡𝑖𝑚𝑒 𝑜𝑛 𝑎 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 

𝑡𝑖𝑚𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑆𝑈𝑇 
                                      2-1    

 

Naturally, the higher scores mean that less time is needed for SUT (system under test). As 

for SPECspeed, the tester chooses the number of parallel copies to run, thus the performance is 

given by equation 2-2: 

 

            
 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑝𝑖𝑒𝑠 ∗ (𝑡𝑖𝑚𝑒 𝑜𝑛 𝑎 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑚𝑎𝑐ℎ𝑖𝑛𝑒) 

𝑡𝑖𝑚𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑆𝑈𝑇
                  2-2 

 

And the higher scores indicate more work can be done per unit of time. Based on those 

metrics, the readers or consumers can easily compare the performance metrics between the new 

product and existing benchmarks, allowing them to make an evaluation on processor, memory and 

compilers in an unbiased fashion.  
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2.1.2 Embedded Microprocessor Benchmarks Consortium (EEBC). 

EEBC was established in 1997 and focuses on creating the standard benchmarks for 

hardware and software in embedded systems [20]. The member companies can use benchmark 

suites to evaluate the performance of their own devices either for business purpose or further 

improvement in next-generation product. Currently, the benchmark contains several suites toward 

different applications, such as: Ultra-Low Power and Internet of Things, Heterogeneous Compute, 

Single-core processor performance, Multi-core processor performance, Phone and tablet [21]. For 

example, CoreMark of Single-core processor performance group can measure the performance of 

CPU used in embedded systems, and the evaluation score is based on the performance of list, 

matrix, and state machine processing [22].  

2.1.3 Lessons from SPEC and EEBC 

For both SPEC and EEBC, each benchmark suites measures the performance of hardware 

based on several algorithms. As an example, in SPECrate CPU 2017 Floating Point Rate Result 

for ASUS RS700-E9 Server System, 13 different benchmarks are selected to measure the overall 

floating-point performance [23], and the final metrics gives an overall fair evaluation for the Server 

System. Similarly, in modeling biological systems by using new different tools, if the ground truth 

characteristics of the model has been provided, researchers can compare characteristics and make 

a much more unbiased decision among various tools. Repositories that contain automatically 

generated models, such as BioModels [24], would benefit from a standardized benchmark suite. 

Different modeling results of the same bio-medical system be compared to the benchmarks, so that 

researcher can select the best tool in an unbiased fashion. 
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2.2 Discrete and logical modeling approaches 

To study the increasing complexity of cell microenvironment, typically a large biological 

signaling network, discrete element-based modeling has advantage over the traditional types (such 

as ODE, rule-based, etc.) [25]. Simulating a large complex system usually takes from hours to 

days with ODE solvers. Hence, creating a biological model at a higher level of abstraction by 

implementing finite set of discrete levels and neglecting a few precise mechanism details, allows 

for capturing direct or indirect system dynamics, while significantly saving runtime [26]. Boolean 

logic as the special case in discrete logic is the modeling approach of choice for all the benchmarks 

we discuss in this work. Proposed by Kauffman in 1969, Boolean network concept was 

implemented for description of a biological system to observe and measure biosynthesis [27], 

where each element has two possible states, either ON or OFF. Also, logic rules are associated 

with a subset of elements and are used to update elements’ states at each time step according to 

the states of their regulators. There are two types of regulations, positive and negative, and they 

are represented graphically as regular and blunt arrows, respectively, as shown in Figure 1. 

Specifically, from Figure 1, element A positively regulates element B (A→B); and element B 

negatively regulates element C (B ⎯| C); also, element C negatively regulates element A (C ⎯| 

A).  
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Figure 1: Toy example of a logical model 

 

If we include all the regulation information for each element, where each element could be 

either positively or negatively regulated by other elements, then the next state of every element is 

computed as a function of the previous state of its regulators. More formally, for any node yi in the 

model that consists of m elements, the regulatory function (or, update function) can be written as 

in equation 2-3: 

 

                                  𝑦𝑖
∗ = 𝑓𝑖(𝑦1, 𝑦2, … , 𝑦𝑚)                                2-3 

 

Where 𝑦𝑖
∗ represents the next step logic state of node 𝑦𝑖, and 𝑦1, 𝑦2,…, 𝑦𝑚 represent the 

rest of elements state before updating 𝑦𝑖. We show an example of update functions written as 

Boolean expressions for the toy model in Figure 1. Using these update functions, we can compute 

state transitions of the system, starting from a given initial state, until the system reaches steady 

state, or for a given number of time steps. 
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3.0 Benchmark Characteristics 

Similar to the benchmark suites we discussed in Chapter 2 [23], we created comprehensive 

metrics to measure the performance of tools for modeling and analysis in systems biology. 

Accordingly, a suite of benchmarks, Characterized Assembly of Benchmarks for Automation, 

Reproducibility and Evaluation of Tools in Biology (CABARET), and the standardized list of 

benchmark characteristics and metrics is proposed in this thesis. This list includes the following 

three groups of characteristics.  

1) Standardized representation format for discrete models of biological networks: We use a 

standardized spreadsheet format as the simulation input, the spreadsheet describes the biological 

system in many perspectives, such as: Element Type, Element IDs, Cell Lines, Cell Type, 

Organism, Tissue Type, Location, Location ID, Variable, Positive Regulators, Negative 

Regulators, Model Input (I) / Output (O), Levels. For example, breast cancer model is illustrated 

in the standard spreadsheet format shown in Figure 2, which acts as a comprehensive recipe for 

bio-modeling [18].  

 

 

     Figure 2 Standardized spreadsheet format 
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2) Graph-specific network characteristics: To evaluate each model from graph theory perspective, 

we proposed to measure benchmarks on number of nodes/edges, fan-in and fan-out cone, inner 

loop counting, and pathfinding analysis.  

3) Executable model characteristics: Executable model analysis under different scenarios using 

both deterministic and stochastic simulations and generating heatmap visualization can provide 

insights into the transient behavior of the biological system, as well as the steady states that are 

reachable under these scenarios.  

In the following subsections, we will discuss in detail the metrics we propose to evaluate 

both graph-based and executable model characteristics.  

 

3.1 Number of nodes and edges 

Computational models of signaling networks can vary in size, from small models of only 

a few nodes and edges, to large models of hundreds of nodes and edges. While the size of the 

model may not be a complicated metric, it is the first step in comparing models. The number of 

inputs and outputs of a model contribute heavily to model dynamics; therefore, this metric has also 

been utilized to describe the benchmark model. While many signaling networks are visualized with 

clear inputs (cytokines, exogenous chemicals, etc.) and outputs (genes, cell processes, etc.), this 

can be difficult for larger models. Additionally, different types of models may have different 

expected inputs and outputs, which can affect the behavior of the model. Identification of all 

outputs of the model can help identify potential observables of the model, as some outputs will be 
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cell processes such as “inflammation” or “cell cycle progression”, brought on by gene 

transcription.  

3.2 Feedback loops 

Stable biological systems, such as cells and organs, not only receive external stimulus, but 

also perceive their internal environment information. The information is used to make suitable 

adjustments through internal mechanisms [28], which is defined as a feedback system. Feedback 

loops are a common feature of signal transduction networks and play a critical role in regulating 

their behavior. This regulatory motif is capable of inducing complex behavior by connecting a 

downstream element to one of its regulators. While there are several types of feedback loops 

(negative, positive, dual negative and positive, etc.) all adapt the input of the model to its outputs. 

Feedback loops are common in signaling networks, such as the p53 [29], ERK[30] and Wnt [31] 

pathways. If elements are connected as a directed cycle [32], then it is defined as a feedback loop. 

A simple m elements feedback loop contains m elements and m interconnected edges.  

 

 

Figure 3 (left) Positive loop, (middle) Negative loop, (right) Dual negative feedback loop 
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Figure 4 Pseudocode for finding how many positive and negative feedback loops 

3.3 Inner loop 

An inner loop can be defined as a subset of a graph constituting a feedback loop, in which 

the nodes and edges of the subset are also connected in a directed cycle. Figure 5 is an example 

of a feedback loop containing several inner loops. The biggest feedback loop is (A-B-C-D-A), 

which is a positive feedback loop, and has three inner loops. The algorithm described in Figure 6 

enumerates the inner loops (A-B-D-A), (A-D-A), and (A-C-D-A). While the largest feedback loop 

in Figure 5 is positive, all three inner loops are negative. Depending on the activity of the 
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elements B, C, and D, the overall effect element A has on its own activity may be inhibitory 

rather than activating. Additionally, incoherent feedback loops converge to different attractors 

than coherent loops, and show differences in robustness [33]. Identification of inner loops in 

biological signaling networks provides crucial information on complex regulatory behavior, 

considering that nested feedback loops in signaling pathways are exceedingly common [34].  

 

 

Figure 5 Toy example for an inner loop 

 

 

Figure 6 Pseudocode for the identification of inner loops 
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3.4 Pathfinding 

Signaling networks models can be complex, with hundreds of genes and proteins connected 

by even more interactions. For this reason, finding paths between two elements in a model has 

been implemented previously [35]. We can use several different path metrics for describing the 

benchmark models- the shortest path, longest path, and all paths between a source and target. The 

first two metrics can identify differences in the timing of two different regulation mechanisms. By 

finding all paths, we can identify different regulatory mechanisms for a pair of elements.  

 

 

Figure 7 Pseudocode for the finding paths between all input and output 
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3.5 Fan-in and fan-out cone analysis 

Albert’s paper [36] discusses the concept of “centrality” in biological modeling, where 

researchers are usually interested in connectivity and functionality of each node. Similarly, for the 

benchmarking characteristics in this paper, identification of fan-in and fan-out cones will be 

discussed. First of all, the concept of fan-in and fan-out originates from digital electronic design.  

Fan-in is defined as the number of inputs a logic gate can handle [37]. For instance, the fan-in for 

the AND gate in Figure 8 is three. Similarly, the fan-out is defined as the number of gate inputs it 

can drive for a logic gate’s output [37]. We are also interested in finding all predecessors and 

successors of an element. Thus, if we traverse all the predecessors of element A, we define it as 

the fan-in cone area of element A. On the other hand, all the successors of element A are defined 

as fan-out cone area. From Figure 9, it is clear that fan-in cone of element A contains three elements 

(B, C, D), and fan-out cone contains total five elements (E, F, G, H, I).  Identification of the fan-

in and fan-out cones for key elements in a signaling pathway can help illuminate differences 

between models. Specifically, this is a straightforward method to compare regulation of the same 

element between pathways. 

 

 

 

Figure 8 AND gate 
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Figure 9 Fan-in and Fan-out cone  

 

3.6 Scenario analysis 

The final analysis of the benchmark models is the activity of model elements during a 

simulation. For all of our benchmark models, we use the DiSH simulator [26, 38], which is capable 

of both deterministic and stochastic simulations. With the right parameters, a simulation provides 

vital information on model behavior, and is a powerful standard for comparing models. For two 

models of the same disease or pathway, the activity of key elements is vital to comparing their 

accuracy. We can compare the steady state or end values of model elements to biological data, 

which further improves the characterization of our benchmark model. 

Deterministic update scheme. Deterministic simulations execute all rules in a model in a 

pre-determined order. This order may be simultaneous or ranked-order. Model elements need 

much less time to reach a steady state than other simulation schemes [26]. We can use the number 

of steps needed to reach a steady state as a benchmark for model dynamics, in addition to model 

element end values. However, these end values may not be comprehensive.   
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Stochastic update scheme. Unlike the deterministic simulation scheme, the stochastic 

simulation scheme incorporates random choices when choosing which rules to execute. The rules 

for each update step can be chosen uniformly, or according to user-input probabilities. While this 

method takes more time, it is more indicative of a biological system. Different runs may have 

different element steady states due to the order of the selected update rules. Depending in the 

problem statement, stochastic or deterministic simulations may be more suitable.  

Randomized initial values. For many situations, the inputs to a model may not be 

established. The starting activity of an element is highly context-specific, due to disease state, cell 

type, tissue, etc. To study the different states a model may reach, DiSH can use randomized initial 

values for model elements. Depending on the number of randomized initial values, this simulation 

scheme can traverse all possible model outcomes. We can use the possible model outcomes as a 

measure of how adaptive a benchmark model is.  

3.6.1 Heatmap visualization 

A heatmap of element activity over the course of the simulation can be treated as another 

useful benchmark. In this thesis, individual element values are represented with two colors 

(black or white). Black represents the OFF state, while white represents the ON state. Through 

heatmap visualization, we can better benchmark and visualize the model, where the final state 

and initial value can be observed in a cleaner fashion than the previous trace method. The 

heatmap benchmark is also able to succinctly portray element activity for all runs, not just the 

average over the course of the simulation. In Chapter 4.0, we will generate heatmap benchmarks 

for the breast cancer, angiogenesis, and Tcell model.  
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4.0 Benchmark specifics and discussions 

The philosophy of designing different benchmarks are proposed in the last chapter. In this 

chapter, the detailed metrics are studied and presented for ABA plant model, LGL, breast cancer 

model, angiogenesis model, Tcell model, macrophage model, and PCC model. From the result, we 

can compare the differences between each model and make the conclusions as well. The hardware 

computation platform chosen for CABARET project was based on MacBook Pro 2017, macOS 

Catalina, Dual-Core Intel Core i5, and 16GB RAM.  

4.1 ABA plant model 

The biological system of this analysis is the signal transduction network that is activated 

when plants experience drought conditions. During drought, a type of hormone abscisic acid 

(ABA) in plants will be synthesized. Then, the stomatal closure will increase, and finally the 

internal water evaporation can be minimized to balance the water distribution. Previously, a 

comprehensive analysis has been published by Li et al. (2006) [39], which indicated the network 

includes oscillations. However, whether the oscillation can be sustained needs further work. The 

whole model contains 54 nodes that include proteins, ion channels and secondary messengers and 

a few conceptual nodes such as “depolarization” and “stomatal closure”. 

 In this paper by Albert et al. (2010) [11], a systematic study of long-term dynamic behavior 

was performed with a traditional synchronous method and three other asynchronous updating 

algorithms under both perturbed and unperturbed scenarios. Overall, the dynamic behavior of 
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stomatal closure is observed when a biologically significant node is perturbed, also due to the 

change of existing positive feedback loops or negative loops. 

It is observed that fan-in and fan-out cone analysis in Figure 10 indicates 12 elements (dark 

blue bars) such as ABA, GCR1, ABH1, AGB1, ERA1 have no elements in their fan-in cone area. In 

other words, those 12 elements are not regulated by any other elements, which means they should 

be close to the model input side. The dark green bars, such as Closure, DAG, ROP10 indicate 

elements with a fan-out cone size of zero, it is not regulating any other elements, which means it 

should be acting as the model output. In Figure 11, the pie chart illustrates how many elements are 

in the feedback loops, and the distribution of the size of all feedback loops. In the ABA model, the 

most common feedback loop size contains four elements, which accounts for 36.36% of all loops. 

Whereas the loops that contain only two elements have the lowest frequency among all feedback 

loops. In Figure 12, the average in-degree and average out-degree indicate how many input or 

output edges directly connect to the element. Additionally, the average length for feedback loop, 

positive feedback loop, negative feedback loop could be provided as useful benchmarks, which 

the comparative result among them could evaluate the oscillation or homeostasis behavior.   

Last but not least, researchers are usually interested in finding all paths between system 

input and output. In Figure 13, we can clearly see which path length exists the most frequently. 

Obviously for ABA model, the path between input and output that contains 13 nodes is the most 

frequent type among all paths. Also, the longest path traverses 18 nodes and it only exists a very 

few times. The benchmark analysis indicates that the observable Closure is dependent upon several 

types of input and is subject to complex regulatory behavior due to upstream feedback loops. 

However, this model also has several “unconnected” nodes, which have a fan-in and fan-out cone 

size of zero. This benchmark reveals a potential weakness of the ABA model. 
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Figure 10 Fan-in and fan-out analysis for ABA model 

 

 

 

Figure 11 Feedback loop analysis for ABA model 
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Figure 12 Average for other characteristics in ABA model 

 

 

 

 

Figure 13 Information about pathfinding in ABA model 
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4.2 LGL model 

T cell large granular lymphocyte (T-LGL) leukemia is characterized by abnormal clonal 

expansion of mature cytotoxic T lymphocytes (CTL). Thus, it can successfully escape activation-

induced cell death (AICD) and remain competent for a long time. By extensive literature review 

and a Boolean model implementation, Albert et al. (2008) [12] found that the continuous 

expression of IL-15 and PDGF is sufficient enough to reconstruct all the signaling abnormalities. 

Also, focusing on the model output Apoptosis in leukemia T-LGL, two nodes SPHK1 and NF𝑘B 

are verified experimentally. In other words, by inhibition of SPHK1 and NF𝑘B, apoptosis in T-

LGL can be induced. Overall, the systematic re-construction of T-LGL model can help both 

biologists and clinical professionals, which provides them with the maximized available pathway 

information and possible key mediators in future therapeutic treatment.  

From Figure 14, we can clearly observe elements like Stimuli, IL15, PDGF, CD45, TAX, 

y1(dummy node), y2(dummy node) have zero fan-in cone, which indicate they act as system 

inputs. Also, Apoptosis, Cytoskeleton_signaling and Proliferation contain zero fan-out cone 

element, which should be identified as system output. Additionally, we can clearly see large 

portion of homogeneous fan-in and fan-out cone elements, such as LCK, ZAP70, GRB2, PLCG1, 

etc., which is due to the large number of cycles in the model.  

In Figure 15, there are various types of length for feedback loops, the feedback loop that 

contains 20 elements is the most frequent type. For simplicity, the rest of 19 different feedback 

loops are grouped together. From the average characteristics in Figure 16, LGL model has 

approximately the same average length for all positive and negative feedback loops which can be 

further studied. Finally, in Figure 17, the normal distribution shape informs us the length between 
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input and output which reaches the peak at 25 elements. Also, the shortest path needs to traverse 

at least 9 nodes from the input to the output.  

 

Figure 14 Fan-in and fan-out analysis for LGL model 

 

 

 

Figure 15 Feedback loop analysis for LGL model 
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Figure 16 Average for other characteristics in LGL model 

 

 

 

Figure 17 Information about pathfinding in LGL model 
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4.3 Breast cancer model 

In breast cancer, overexpression of protein HER2 is an adverse prognostic marker, which 

occurs in almost 30% of patients. For clinical intervention, HER2 is targeted by monoclonal 

antibody trastuzumab. In reality, de novo resistance to this antibody remains a serious problem. To 

solve this issue, precise modeling and knockdown experiments are implemented to find possible 

novel therapeutic targets for trastuzumab resistant breast cancer [13].  

Extracting model for HER2 receptor-regulated G1/S transition from various publications, 

which the whole model contains 20 protein elements from input EGF to output pRB 

(phosphorylated tumor suppressor retinoblastoma protein). Biologically, hyperphosphorylation of 

pRB will lead to the release of E2F transcription factor, initiating the transcription of essential 

genes for DNA replication. In other words, in normal and tumor cells, pRB will toggle between 

the active (hypophosphorylated) state and the inactive (hyperphosphorylated) state. 

Correspondingly, the phosphorylation and subsequent inactivation of pRB stands for a marker for 

cell growth (proliferation).  

From Figure 18, we can see that EGF does not have any fan-in cone, which verifies the 

original paper’s description [13], that EGF is the input for the breast cancer model. Similarly, and 

naturally, pRB with zero fan-out cone verifies the original output statement as well. For the 

feedback analysis in Figure 19, over 57% feedback loops contain more than 2 elements. Another 

interesting point can be observed from Figure 20, that there is no negative feedback loop in the 

breast cancer model. Lastly, the longest length between input and output traverses 13 nodes and it 

exists 180 times. On the contrary, the shortest path contains only six nodes and it shows up around 

10 times. From the knockdown experiment perspective, if we can know which path contains 
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targeted node CMYC, which happens to be one of the shortest lengths, we might able to speed up 

the inhibition analysis.  

 

 

 

Figure 18 Fan-in and fan-out analysis for breast cancer model 

 

 

 

Figure 19 Feedback loop analysis for breast cancer model 
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Figure 20 Average for other characteristics in breast cancer model 

 

 

 

Figure 21 Information about pathfinding in breast cancer model 
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Normally, there will be many experimental scenarios in one model. However, from thesis 

simplicity perspective, I will only demonstrate heatmap results for one key knockdown. In the 

original paper [13], the author found out by knocking down element CMYC, it will significantly 

decrease output pRB compared with the unperturbed case. The two plots in Figure 22 and Figure 

23 illustrate the unperturbed case, where CMYC will not be knocked down, and it will remain in 

high state. Correspondingly, output pRB will reach high state in the end. Not only steady state can 

be used as benchmark metrics, also initial values can be easily observed and confirmed, such as 

how initial values for CMYC and pRB are all randomly chosen shown in Figure 22 and Figure 23.  

 

  

Figure 22 Unperturbed CMYC Figure 23 Unperturbed pRB 

 

On the contrary, if CMYC knockdown is implemented, the pRB will show the opposite final steady 

state, which can be seen in Figure 24 and Figure 25. In other words, the heatmap results verify the 

paper’s proposal, which CMYC could be used as knockdown node in future targeted therapy.  
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Figure 24 Perturbed CMYC Figure 25 Perturbed pRB 

 

4.4 Angiogenesis model 

Tumors rely on a steady supply of oxygen and nutrients to maintain bulk. Cancer cells may 

induce blood vessel growth and development (angiogenesis) through emission of certain 

biochemical signals, leading to increased cancer invasion and metastasis. Without an increased 

blood supply, tumors are unable to proliferate at the same rate, which makes tumor-induced 

angiogenesis an attractive target for cancer treatments. Understanding precisely how endothelial 

cells synthesize multiple biochemical signals might help us to create novel therapeutic strategies.  

Based on the experimental data from published literature, the model network contains three 

inputs: VEGF-RTK, integrin, cadherin. Proliferation, apoptosis and motility are the model outputs. 

In this paper [14], the author tested all possible input combinations and found out the output 

configurations are independent of any internal node initial value. Also, a few other scenarios like 

inhibition analysis and feedback analysis (between two key crosstalk elements Rac1 and RhoA) 

are discussed as well. Through the experiments, we can discover a possible therapeutic approach 
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to control angiogenesis, which is based on identifying key element pathways.  Furthermore, we 

can apply the similar method for future cancer study.  

From Fan-in and Fan-out analysis in Figure 26, we can see cadherin, VEGF_RTK and 

ITG_integrin are the system inputs, where VEGF_RTK and ITG_integrin can cover more elements 

than cadherin. On the contrary, three outputs Proliferation, Apoptosis and Motility are reported, 

where Proliferation has higher capacity (can cover 19 nodes) than the rest two output nodes. If we 

compare the fan-in and fan-out cone analysis with previous LGL model, it is easily observed that 

the angiogenesis model has a considerably more heterogeneous fan-in and fan-out cone 

distribution for each element, which is mainly due to a no feedback system. Similarly, we have an 

empty box plot in Figure 27 for average feedback loop length because no cycle exists. As for 

Figure 28, we can clearly see the shortest path between input and output contains three elements 

and it only shows up one time. Additionally, the longest path has 11 nodes and traverses only one 

time as well.  

 

 

Figure 26 Fan-in and fan-out analysis for angiogenesis model 
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Figure 27 Average for other characteristics for angiogenesis model 

 

 

 

Figure 28 Information about pathfinding in angiogenesis model 

 

There are two key scenarios in angiogenesis model, where the first scenario focuses on 

input-output map that uniquely characterize cellular response to output stimuli. The iterative 
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simulations from DiSH generate heatmaps for total 16 sets of input-output pairs. For simplicity, I 

only demonstrate one set of them. Cadherin, VEGF_RTK, ITG_integrin, Rac (De)activation are 

the four inputs. When input combination is 0111 (Rac is activated), the output cell phenotype 

should contain both proliferation and motility which are all turned ON in Figure 32 and Figure 33. 

This finding contradicts the widely believed “go and grow” hypothesis, which means cell motility 

and proliferation cannot happen simultaneously. However, Figure 32 and Figure 33 not only 

confirm the original paper’s result [14], also, the time in x-axis indicates when the proliferation 

and motility will happen at the same time, or which one happens earlier. While the presence of all 

inputs increases both proliferation and motility, angiogenesis is turned OFF at the end of the 

simulation in Figure 34.  

 

   

Figure 29 Cadherin Figure 30 VEGF_RTK Figure 31 ITG_integrin 
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Figure 32  Proliferation Figure 33 Motility Figure 34 Angiogenesis 

 

The second scenario concentrates on inhibition analysis, where the author is trying to find out 

whether targeted inhibition of specific signaling molecules will induce expected anti-angiogenesis 

effects. The inhibition experimental results indicate six elements Grb-2/Sos, Ras, PIP3, Rac, GSK-

3 or FAK, they can all lead to apoptosis behavior regardless of any input configurations. For 

simplicity, PIP3 is selected for demonstrating inhibition analysis under input combination 0111. 

The benchmarked outputs are clear, Proliferation and Motility are all turned OFF, and apoptosis 

will be induced in Figure 41.  

 

   

Figure 35 Rac Figure 36 Cadherin Figure 37 VEGF_RTK 
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Figure 38  ITG_integrin Figure 39 Proliferation Figure 40 Motility 

 

  

Figure 41 Angiogenesis  

 

 

4.5 Tcell model 

CD4+ T cells has two sub-types, Thelper cell that can facilitate the immune response, and 

the Tregulator cell which can suppress the immune response. In other words, patients diagnosed 

with increased numbers of Tregulator might show greater suppressive immune system than healthy 

individuals. Also, Tregulator cells are characterized by Foxp3 (transcription factor forkhead box 

P3), which is a special pattern of cytokine production, and immunosuppressive function [15]. 
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With various simulation in different delay and doses scenarios, such as the removal of 

antigen at different time points during experiment [15], then we can observe three types of cells: 

𝐶𝐷25−𝐹𝑜𝑥𝑝3−, 𝐶𝐷25+𝐹𝑜𝑥𝑝3− , 𝐶𝐷25+𝐹𝑜𝑥𝑝3+, which represents non-activated cells,  Thelper 

cells, and Tregulator cells. Accordingly, the author found out the differential activation of TCR 

signaling pathways should be better modeled as various durations, rather than as signal intensity.  

As we can see in Figure 42, six elements TCR_low, TCR_high, CD28, IL2R_beta, 

IL2R_gamma and TGF_beta contain zero fan-in cone, which indicates they should be close to the 

system input. On the contrary, PI3K is closed to the output due to zero fan-out cone. For the 

feedback loop length analysis in Figure 43, the top three popular loops contain 14, 18 and 12 

elements, which can take more than 33% of the total feedback loop type. As for the nature of the 

feedback shown in Figure 44, Tcell model has a longer average length in negative loop (18 nodes) 

than positive loop (14 nodes). Lastly, for path analysis, Tcell model has the shortest path of 3 

elements and it only exists a few times. On the other side, the longest path of 29 nodes shows up 

approximately 90 times. Moreover, the most frequent paths between input and output have 23 

nodes. 
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Figure 42 Fan-in and fan-out analysis for Tcell model 

 

 

 

Figure 43 Feedback loop analysis for Tcell model 
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Figure 44 Average for other characteristics in Tcell model 

 

 

 

Figure 45 Information about pathfinding in Tcell model 

 

In this thesis, we test the model under low or high concentration of antigen (TCR). Some 

molecules, such as PTEN, Akt, PDK1, pS6, RHEB, S6K1, mTORC, and mTORC1, have activity 
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that is independent of TCR concentration. However, Foxp3 and IL2 are dependent upon TCR 

concentration. For simplicity reason, the heatmaps shown in Figure 46 – Figure 53 can clearly 

illustrate the output differences between Foxp3 and IL2. Foxp3 is activated by low antigen dose, 

while IL2 is activated by high antigen dose. In the presence of a high dose of TCR, T cells are 

susceptible to differentiating into Tregulator cells.  

 

High dose scenario: 

 

   

Figure 46 TCR_high = 1 Figure 47 TCR_low = 0 Figure 48 Foxp3 = 0 

 

  

Figure 49 IL2 = 1   
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Low dose scenario: 

   

Figure 50 TCR_high = 0 Figure 51 TCR_low = 1 Figure 52 Foxp3 = 1 

 

  

Figure 53 IL2 = 0   

4.6 Macrophage model 

Macrophages are ubiquitous throughout the body. While most macrophages reside in 

tissue, they can also mature from bone marrow monocytes circulating in the blood. Tissue-resident 

macrophages Macrophages are an incredibly diverse cell type, with almost as many tissue-specific 

variations as types of tissue in the body. Under normal conditions, macrophages are considered 
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part of the innate immune system, but they also provide key janitorial functions for the body by 

removing waste and clearing cellular debris. Under abnormal conditions, they have been shown to 

play a significant role in various cancers [40], arthritis[41], and diabetes[42], among others. 

Commonly, macrophages are broadly defined based aon which of these functions they serve: M1, 

considered classically activated macrophages, are triggered after bacterial infections and can elicit 

a powerful inflammatory response; M2, or alternatively activated macrophages, in contrast, are 

associated with an antiinflammatory response and wound healing. This simplistic paradigm is 

frequently criticized for its failure to account for the rich diversity seen in context-specific 

macrophage activation (M2a, M2b, M2c, Tumor Associated Macrophages or TAMs, etc.)[43-45].  

Due to their prevalence in many different diseases, they are frequently the subject of 

models, or heavily featured in others [46-53]. In our model, each type of molecule is refered to as 

a model element which can represent proteins, genes, and mRNAs. Each element is given: a 

discrete variable that represents its molecular concentration or activity at a given time; and an 

update function that combines the influence of all the regulators on the element and determines 

the element’s next value. Simulation of the model takes each element’s initial values and uses the 

update function to calculate its next value. Using out model, we were able to simulate the process 

of M1 activation using changes in ligand concentrations to elicit the phenotypes of each activation 

state. In addition, this model has undergone a preliminary round of validation and has been shown 

to accurately simulate M1 activation. This means that our current understanding of the 

differentiation pathway is sufficient to build functional differentiation models. 

As we can see in fan-in and fan-out cone analysis in Figure 54, 13 elements do not have 

any regulators, which are LPS, GlycosEndProdcf, IL4, IL13, TGFB1, CSF1R, TLR4, INAR1, 

INGR2, IL10R1, IL13RA1, IL4RGC, TGFR1. In other words, they should act as system inputs. 
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Similarly, elements with zero fan-out cone are recognized as system output, which are IL6, IL10, 

IL12, ARG, CD36, CD48, TNFA. From Figure 55, interestingly, over 50% feedback loops only 

have two elements. Also, 18.5% comes from a single element loop, which means self-regulating 

type happens frequently as well in Macrophage model. Moreover, in Figure 57, in average length 

comparison, the Macrophage model has longer average length in positive loop than negative loop. 

 

 

 

Figure 54 Fan-in and fan-out analysis for Macrophage model 

 

 

 

 

 

 



 42 

 

 

 

Figure 55 Feedback loop analysis for Macrophage model 

 

 

 

Figure 56 Average for other characteristics in Macrophage model 
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Figure 57 Information about pathfinding in Macrophage model 

4.7 PCC model 

Pancreatic cancer has very poor survival rate and the estimation shows that approximately 

44,330 people will die of pancreatic cancer in 2018 [1 Boveri 2008]. Due to the early activation of 

KRas mutation followed by TP53 and CDN2A inactivating mutation in most tumor cells [Zeitouni, 

Pylayeva-Gupta et al. 2016, Raphael, Hruban et al. 2017]. Hence, targeting KRas mutation and 

restore tumor suppressive function becomes a daunting task. With various biological modeling 

approaches, it helps biomedical community to better understand the complexity of disease. 

This new modeling approach is able to capture the dynamics features, timing of 

communication between cancer cells and their microenvironment, which the method contains 

parameterization and stochastic simulations [17]. Accordingly, the simulation results indicate the 
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influential signaling pathways and some key feedback and feedforward loops, which can be 

applied for future therapeutic study. Finally, with this precise modeling and signaling 

reconstruction, it will benefit more personalized cancer treatment and improve the quality of life.  

For a large model like PCC, the fan-in and fan-out cone plot can give the audience a bigger 

picture. For example, CCR2, CSF1R, CSF1, DUSP13 have zero fan-in cone, which indicates they 

are close to the system input. Whereas, elements like APC, CDK4 and AAHPROLIFERATION 

have zero fan-out cone, meaning they are close to the output. Although CDK4 and 

AAHPROLIFERATION both have zero fan-out cone, AAHPROLIFERATION contains much 

higher capacity in fan-in cone than CDK4, biologists might use this benchmark metric for the 

perturbed or knockdown study. As for the feedback path analysis in Figure 59, obviously, the PCC 

model has a highly uniformed feedback loop length distribution, which the top three feedback 

loops contain 44, 47, and 48 elements. Additionally, in PCC model, the average length for negative 

loop is a little bit higher than the positive loop which can be further investigated. Also, the reader 

might find out there is no pathfinding result for PCC model, because of 57 million paths between 

input and output, which exceed the computation power of our hardware platform.  
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Figure 58 Fan-in and fan-out analysis for PCC model 

 

 

 

Figure 59 Feedback loop analysis for PCC model 
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Figure 60 Average for other characteristics in PCC model 

 

4.8 Summary for all benchmarked models 

The benchmarking metrics for all models can be observed in Table 1, which the table 

includes a small model like breast cancer, a medium size model like Tcell model, to a complex 

model like PCC. Within the Table 1, the number of total feedback loops is not linearly increasing 

with a larger size of the model. Whereas, inner loop counting represents the membership from one 

loop to the other, the larger the number meaning we have a particular feedback loop is the subset 

of other loops many times. In the future work, more studies can be done for analyzing the 

redundancy problem of the inner loop. As for pathfinding metric, the total paths between input and 

output are listed in the last row of Table 1, if we use information from Figure 13, 17, 21, 28, 45, 

and 57. we can calculate exactly how many possibilities for certain length of path. Lastly, with the 

heatmap benchmarks, we can better visualize the biological process in time domain.  
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To summarize, with the mixed results from characterizations in Table 1 and visualization 

from heatmaps, we can clearly observe the inherent nature of any models, which the results can be 

used as the ground truth for future bio-modelers. Also, with fast developing speed of computation 

algorithms and tools, which proposed in this thesis can be verified and updated as well. So that the 

biology community can always have the up-to-date benchmarks to measure and compare the 

performance of different tools. 

 

Table 1 Benchmarked models and their characteristics 
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5.0 Conclusion and future work 

5.1 Conclusion  

Researchers in biology communities have developed a huge amount of methods and 

algorithms to address scientific problems. However, if many approaches exist, biologists usually 

have a hard time deciding which tool is the best compared to the rest, because a new method always 

claims its advantages superior to the previous. Accordingly, an ideal solution for this dilemma is 

to create benchmarks, which stands for golden ground truth, so that researchers can compare 

different tools in an unbiased fashion. 

Biological characteristics are the cornerstone of benchmark metrics to measure the 

preciseness and completeness of the model. As you can see in Table 1, we carefully select a few 

specifications, which are the most common metrics that suits the biology community’s interest.  

5.2 Future work  

To better improve the quantity and quality of biological benchmarks, there are several 

improvements which can be done. First of all, computation time for the large model like PCC is 

significantly longer than the small model like the breast cancer model. One of the characteristics, 

such as generating all paths between input and output, takes more than one day. If any hardware 

implementation such as FPGA acceleration can be designed, this could dramatically lower the 

benchmarking time. Secondly, except the most common metrics chosen in this paper, which lay 
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the foundation of biological benchmarking, I believe there should be more interesting and useful 

metrics can be added and expanded, such as model sensitivity analysis. Last but not least, instead 

of generating specifications and plots in Jupyter Notebook, an executable graph user interface 

(GUI) can better present the benchmarked models to all researchers. 
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