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Acute kidney injury (AKI) is a syndrome characterized by the rapid loss of kidney func-

tion and is typically diagnosed by an increase in blood-urea-nitrogen and serum creatinine,

a decrease in the glomerular filtration rate (GFR), and a decrease in urine output. AKI can

be brought on by a myriad of events: physical damage to the kidney, cardiac arrest, blood

loss, toxicologic effects from pharmacological drug use, and in most cases seen, sepsis. These

events introduce global and or local ischemic insult to the kidney, causing a decrease in renal

functionality. Originally, global renal hypoperfusion was thought to be the culprit causing

AKI. However, evidence is showing that AKI can occur in the absence of this, proved by the

normal or even increased blood flow seen in sepsis-induced AKI. In fact, studies are finding

similar results that show microcirculatory dysfunction, inflammation, and tubular oxidative

stress are the driving physiological factors for sepsis-induced AKI.

The development and use of intravital video microscopy (IVVM) allows in vivo studies of

biological systems to be conducted. The excitation and emission of Flourophores are used to

visualize specific structures and interactions within a system, and provide the means for anal-

ysis. Visualization of renal system structure and dynamics have be captured using IVVM,

specifically ATP generation activity seen in the tubular epithelial cells and the microvascu-

lar dysfunction of blood flow associated with sepsis-induced AKI. The work proposed here

focuses on using these images to quantify and explain the heterogeneity seen in the microhe-

modynamics of the cortical peritubular capillaries as well as mitochondrial energetics of the

renal system. The information learned regarding oxygen delivery and energy consumption

can be used to further understand the physio/pathophysio-logical interactions of the renal

system in states of health and AKI.
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1.0 Introduction

The kidney is a vital organ that is responsible for filtration of the blood, reabsorption

of water and nutrients, regulating blood pressure, hormone production, and homeostasis of

the body pH. These actions require a high energy consumption rate, making the kidney

second highest in mitochondrial density and oxygen consumption. The kidneys receive ap-

proximately 1000-1200 mL/min of blood flow, equating to 20-25% of the cardiac output

[44]. This high-volume flow is necessary to ensure adequate oxygen delivery and blood fil-

tration. The afferent arterioles of the kidney supply a group of glomerular capillaries (the

glomerulus), that aid in filtration of the blood. This is measured as the glomerular filtration

rate (GFR). The distal ends pertaining to each glomerulus combine to form the efferent

arterioles. The efferent arterioles in turn supply a second capillary network, the peritubular

capillaries, which surround the renal tubules of the nephrons [44], seen in Figure 1.1. The

glomerular capillary system and peritubular capillary system make up the microcirculatory

system of the kidney, which is responsible for plasma filtration, electrolyte exchange, water

reabsorption, and the delivery of oxygen [24].

The functional unit of the kidney is the nephron, whose total number averages between

900,000 to 1.2 million units per adult kidney. The nephron lies within the cortex and medulla

regions of the kidney. The nephron interacts with the microcirculation and is divided into

different segments that perform specific functions; the renal corpuscle (consisting of the

glomerulus and Bowmans capsule), the proximal (convoluted) tubule, the loop of Henle, the

distal (convoluted) tubule, the connecting tubule, and the collecting duct. The proximal

tubule receives the filtrate from the Bowmans capsule and is responsible for the bodys reab-

sorption of Na+, HCO−3 , Ca2+, Mg2+, Cl−, K+, glucose, lactate, H2O, and amino acids. High

concentrations of Na+/K+ATPase are located on the basolateral side of the epithelial cells

that pump Na+ ions into the peritubular capillaries. This is facilitated by the consumption of

Adenosine triphosphate (ATP). Similarly, the distal tubules also allow reabsorption of Na+

through Na+/K+ATPase along with other ions including Ca2+ [9, 13, 21, 39, 43, 44, 47].
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Figure 1.1: The nephron structure detailed and shown with the microcirculation.
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Disruption of kidney function can be brought on by a myriad of events: physical damage

to the kidney, cardiac arrest, blood loss, toxicologic effects from pharmacological drug use,

and sepsis. These events introduce ischemic insult to the kidney, causing a decrease in renal

functionality. This decrease in function has been given the diagnosis term of acute kidney

injury (AKI). Combating AKI has led to extensive research in understanding the physiology

and pathophysiology of the kidney. More recently, tools such as intravital video microscopy

(IVVM) have been used to study the renal dynamics. This chapter discusses AKI, with

a focus on sepsis-induced AKI, its effect on the kidney, past studies of the kidney that

incorporate IVVM, and concludes with an overview of this thesis.

1.1 Sepsis-Induced Acute Kidney Injury

Acute kidney injury (formerly known as acute renal failure) is a syndrome characterized

by the rapid loss of kidney function and is typically diagnosed by an increase in blood urea

nitrogen (BUN) and serum creatinine, a decrease in the glomerular filtration rate (GFR),

and a decrease in urine output [7, 10]. Recently, the Kidney Disease Improving Global

Outcomes (KDIGO) group produced a unified version of all key criteria (Table 1.1) for

classifying the stages of AKI, supplanting the previous RIFLE (Risk, Injury, Failure, Loss of

kidney function, and End-stage kidney disease) and AKIN (Acute Kidney Injury Network)

classifications [8].

AKI is commonly seen in hospital admissions (8-16%) [55], with ICU admission frequency

ranging from 20 to 50% [18]. Of those admitted to the ICU, 50-80% succumb to in-hospital

mortality [34]. AKI can be brought on as result of global or regional ischemia to the kidney

[7]. The exposure of the kidney to ischemic injury can come from events detailed in Figure1.2

[11, 14, 35]. Forward discussion will focus on sepsis-induced AKI.

Sepsis is a severe physiologic response that results from a dysregulated acute inflamma-

tory response to infection. It is responsible for 40-50% of all AKI cases seen in critically

ill patients in the ICU [22]. Proinflammatory mediators (e.g., TNF−α, Interleukin-6) are

produced and recruit neutrophils to fight the pathogen, while anti-inflammatory mediators
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(e.g., Interleukin-10) follow, often after the pathogen levels are falling, thereby concluding

the inflammatory response. Dysregulation of the inflammatory response can occur at the

neutrophil recruitment stage. Neutrophils remove the pathogen but also unavoidably cause

damage to surrounding healthy tissue. This damage generates further inflammation and a

continued inflammatory response, which continues to cause further tissue damage, regard-

less if the pathogen has been eliminated. Conversely, the anti-inflammatory response may

be elevated prior to complete pathogen removal, leaving the pathogen to grow and cause

further damage [64]. Recent studies have shown sepsis-induced AKI can occur without is-

chemic injury events, with cases seeing normal or even an increased renal blood flow [22].

In fact, studies are finding similar results that show microcirculatory dysfunction, inflam-

mation, and tubular oxidative stress are the driving physiological factors for sepsis-induced

AKI [2, 17, 22, 24, 40].

1.1.1 Microcirculatory Dysfunction

The microcirculation is responsible for oxygen delivery to the kidney for tubular trans-

port and oxidative metabolism [45]. 80% of the oxygen delivered will be used to produce

ATP that will in turn will be used to drive Na+/K+/ATPase in the proximal tubules, thick

ascending limbs, and distal tubules. The high energy demand for filtration makes the mi-

crovasculature highly susceptible to areas of hypoperfusion and hypoxic injury [24, 35, 48]. A

hallmark of sepsis is creating alterations in blood flow in the microvasculature. This creates

heterogeneity in blood flow with an increase in the number of capillaries with deficient blood

flow. These capillaries with deficient blood flow are seen having stopped flow, intermittent,

and/or sluggish flow, resulting in hypoxic conditions and inadequate oxygen delivery to the

surrounding renal tubular epithelial cells (TECs). Leukocytes also decrease in velocity in

the microcirculation. This decrease can cause a greater time of exposure of the endothelium

to these activated, cytokine secreting leukocytes and result in damage [25]. The damage

done to the endothelium results in capillary leakage and interstitial fluid collection. This

interstitial edema contributes to increased oxygen diffusion distances to the TECs and a

decrease in microvascular flow [53]. Nitric oxide (NO) also plays a role in microcirculatory
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dysfunction. Sepsis boosts the production of NO, through an increase in inducible nitric

oxide synthase (iNOS). NO produced in the capillary endothelium can help regulate the

vascular tone through vasodilation and control blood pressure. Even though NO production

increases with sepsis, it is done so in a heterogeneous fashion in the microcirculation. This

can lead to areas without means to vasodilate if necessary and thus, lead to shunting and

hypoxia [22, 63].

1.1.2 Downregulating Metabolism Through Prioritization of Energy Consump-

tion

Mitochondria are responsible for supplying the kidney its high energy demand, and are

highly populated in the proximal TECs. In addition to ATP production, mitochondria

also maintain intracellular calcium homeostasis, produce and control reactive oxygen species

(ROS) and reactive nitrogen species (RNS) levels, and perform their own repair from injury

[3, 22]. Hypoxia caused by altered flow can affect all mitochondrial functions, leading to loss

of energy production to the kidney. Specifically, ROS and NO levels increase with hypoxia,

and these can react and form peroxynitrite, an inhibitor of complex I and IV of mitochondria.

Coupled with the release of cytochrome C from mitochondria and oxidative stress, the host

cell will not maintain homeostasis and will succumb to death [3]. In scenarios such as this,

the mitochondria would signal for apoptosis of the host cell, yet this is not largely viewed

in the TECs of sepsis-induced AKI [22, 63]. Research points to the fact that the ETC

response to injury may be attributed to reprogramming its metabolism to optimize and

prioritize energy consumption, where available energy is put to functions that are required

for cell survival, i.e. membrane potential, and less into high energy requiring processes

such as sodium transport [22]. Mitochondria itself play a role in the protective response

of TECs through mitophagy, the process of digesting and eliminating mitochondria beyond

repair, and biogenesis, the rebuilding of new and healthy mitochondria. These processes are

protective in that dysfunctional mitochondria are removed (decreasing ROS production),

healthy mitochondria are present to facilitate low energetic functions, and proapoptotic

signals are eliminated, stopping apoptosis [23].

5



1.2 Intravital Microscopy of the Kidney

Microscopy of living animals, called intravital microscopy, is a technique that provides a

real-time in vivo view of functioning organs and has advanced imaging of the kidney where in

vitro information can be supplanted with in vivo, allowing the quantification of distribution,

behavior, and dynamic interactions of molecules to be recorded simultaneously in 3D space

and time [19, 54]. IVVM is dependent on the sophistication of the microscope system and

fluorescent probes (fluorophores) used. Fluorescence occurs upon the absorption of a photon

by a fluorophore that moves an electron of the fluorophore to its excited state. The return of

the electron to its ground state releases a photon which is detected by the system, producing

an image.

Typical intravital confocal microscopy uses a single stream of photons for excitation

whereas multi-photon microscopy (MPM) uses two or more low energy photons that arrive

simultaneously to excite the fluorophore. MPM is desired for imaging intact organs because

of the advantages it has over conventional methods. Tissue penetration is increased due

to a decrease in scattering of long wavelength light. Less tissue phototoxicity is observed

due to the use of lower excitation energy photons. All emitted light can be collected due

to the removal of the conventional microscope pin hole. This is made possible because the

probability of fluorescent excitation drops drastically as one moves away from the exact focal

point, severely lowering the out of plane signal [25, 58]. These advantages have made MPM

the gold standard approach for imaging processes in intact organs. Table 1.2 gives a list of

areas pertaining to the kidney that can be studied using MPM [4].

Image capture is dependent on the microscope setup and can produce either greyscale or

color images. Greyscale images consist of a single channel made up of pixels. Color images

will consist of three separate channels, each representing the red, green, and blue contribution

to the image. When combined, the 3 channels create the desired color(s). Figure 1.3 shows

how the three channels make a color image when combined.

Fluorophores used in kidney studies will dictate what will be visualized. A fluorescent

dye commonly used in the assessment of renal function is fluorescein isothiocyanate (FITC)-

Dextran. FITC-Dextran is used routinely in cell permeability and microvasculature research.
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Administration of a high weight (150-500 kDa) FITC-Dextran allows the capillaries of the

renal microcirculation to be made visible upon excitation. This is because the high weight

molecule (relative larger size) is not filtered by the kidney and therefore resides strictly in

the capillary space and not in the tubular lumen [19]. Excitation of FITC-Dextran (along

with proper image capture techniques) also allows red blood cells (RBCs) to be visualized

in the capillary space as silhouettes, and therefore can also be used to observe and measure

peritubular blood flow. Wu et al.[61] demonstrated that intermittent and stopped/no flow

was present in the peritubular capillaries of mice with sepsis-induced AKI using IVVM. This

was shown by using the cecal ligation and puncture (CLP) model coupled with administration

of FITC-Dextran. In addition, the percentage of capillaries with continuous flow decreased

over the duration of imaging of 22 hours while giving rise to intermittent and no flow.

Quantification of peritubular blood flow has been previously performed by using the

“linescan’ method. The rate of image capture increases as the number of scanned lines

decreases. The capture of a single line running parallel in the capillary space can be recorded

every 2 milliseconds [32, 41]. Stacking the line outputs results in a column of streaks running

down the image, where the width is the distance of the line representing the region of interest

and the height is the time span of image capture. The approximate slope of the streaks can

be used to estimate the velocity [32, 41, 54]. Using this method, numerous studies have

been conducted in estimating RBC velocity in the renal peritubular capillaries. Yamamoto

et al. [62] estimated Wistar-Kyoto rat RBC velocity as 1069±146 µm/s. Renal ischemia was

brought on, and upon 24 hours of reperfusion, the RBC velocity was measured as 227±113

µm/s. Matsumoto et al. [38] estimated the RBC velocity of the Sprague-Dawley rat as being

476±47 m/s. Molitoris et al. [41] estimated the normal peritubular capillary RBC velocity

of the Sprague-Dawley rat as 500 µm/s (standard error not reported). Renal ischemia

reperfusion via removing an arterial clamp was done, with the RBC velocity being measured

at less than 100 m/s. Kang et al. [30] estimated the RBC velocity of the Munich-Wistar

rat as 4.7±0.3 mm/s. Sandoval et al. [54] estimated rat RBC velocity of being 1462.2±86.7

µm/s. Renal ischemia was brought on, and upon recovery, the RBC velocity was measured

being 426.6±27.8 µm/s. Holthoff et al. [29] were one of the few that investigated peritubular

RBC velocity in sepsis-induced AKI not using the “linescan” method. They reported that
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for healthy sham mice RBC velocity in continuous flowing capillaries was 370±20 µm/s,

while sepsis-induced AKI mice saw a reduction in RBC velocity to 126±16 µm/s. These

velocities were calculated by inspecting 450 capillary segments and if continuously flowing

capillaries were identified, the velocity was calculated by measuring the distance traveled by

a single RBC over time.

Another fluorescent dye widely used is tetramethyl rhodamine methyl ester (TMRM).

TMRM is a lipophilic cationic dye. This dye accumulates in mitochondria proportional to

its membrane potential ∆Ψm. Mitochondria generate ATP by utilizing a proton electro-

chemical gradient potential, or electrochemical proton motive force (∆p), generated by the

reduction of electrons through the respiratory electron transport chain. The reductive trans-

fer of electrons through ETC protein complexes IIV in the inner mitochondria membrane

provides the energy to drive protons against their concentration gradient across the inner

mitochondrial membrane (out of the mitochondrial cytoplasm) [50]. This results in a net

accumulation of H+ outside the membrane, which then flows back into the mitochondria

through the ATP-generating F11/F0 ATP-synthase (Complex V), thus producing ATP and

completing the ETC. Uptake of TMRM can be measured as the intensity recorded when

using MPM.

Hall et al. [27] studied the effects of ischemia reperfusion in rats using MPM in real

time. TMRM was administered along with a ligature placed around the left renal artery.

At rest, TMRM was rapidly taken up by tubular cells. TMRM intensity decreased in the

proximal tubules upon ischemia via tightening of the ligature, indicating a decrease in ∆Ψm

and ATP generation. The ability to measure mitochondrial function can be combined with

other dynamics such as blood flow to give a better understanding of the renal physiology and

pathophysiology. Wu et al. found that ROS/RNS generation in the renal tubules of sepsis-

induced AKI mice was increased in areas that were bordered by capillaries with perfusion

reduction [61]. This was shown by using the fluorescent dihydrorhodamine-123 (DHR). DHR

is oxidized to fluorescent rhodamine by hydroxyl radical, nitrogen dioxide, peroxynitrite,

and peroxidase derived species [28]. Pixel intensity fluorescence was elevated in areas that

bordered capillaries with intermittent or no flow. This correlation shows that sepsis-induced

AKI effects the microcirculation and mitochondrial function in a heterogeneous fashion.
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1.3 Thesis Overview

This collective body of work addresses the overall oxygen content seen in the microcircu-

lation and how this can interact with the energetics of the renal system. The structure of this

body of work is as follows. Chapter 2 focuses on the cortical peritubular capillaries of the

microcirculation. Image processing and analysis is performed to learn about capillary space

characteristics and blood flow in sepsis-induced AKI. Capillary space diameter is investigated

as well as red blood cell linear density and red blood cell velocity. These measurements give

vital information regarding oxygen content available for metabolic use. Chapter 3 evaluates

the energetics and the microcirculation of the renal system using MPM. Imaging results are

discussed along with methods on how to quantify the relationship of mitochondrial activity

and blood flow seen spatially and temporally in heterogeneous areas. The thesis concludes

with Chapter 4, which presents the summary and recommendations for future work.
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Table 1.2: Applications for multi-photon microscopy within the kidney

Glomerular structure and function

Filtration rate

Permeability characteristics

Size/volume of glomerulus

Cell toxicity

Cell injury including necrosis or apoptosis

Surface membrane blebbing or internalization

Mitochondrial function

Cell function

Endocytosis - quantitative analysis

Intracellular trafficking and subcellular localization

Exocytosis

Metabolic State

Sites of tubular reabsorption and secretion

Ion concentrations

Microvasculature

Blood flow rate

Endothelial permeability

White blood cell adherence/rolling

Vasoconstriction

12



Figure 1.3: Visualization of the three channels that when combined create the desired image.

The original image (top left) and the red (top right), green (bottom left), and blue (bottom

right) channels are shown.
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2.0 Quantification of the Cortical Peritubular Capillary and Red Blood Cell

Flow Heterogeneity in the Renal Microcirculation

2.1 Introduction

The renal system becomes compromised upon injury, resulting in a decline in kidney

function. This is diagnosed as acute kidney injury (AKI), with sepsis being the cause of

most reported cases. Sepsis-induced AKI is complex in its pathogensis, contributing to a

dysfunctional microcirculation, an increases in reactive oxygen and nitrogen species, and the

deregulation of the inflammatory system.

Intravital video microscopy (IVVM) allows the dynamics of the renal microcirculation to

be visualized in real time. Of importance is the study of red blood cell (RBC) movement. As

previously discussed, Wu et al. [61] used IVVM to show qualitatively the heterogeneity that

exists in dysfunctional microcirculation and was able to categorize the peritubular capillaries

that exhibited continuous, intermittent, and no flow in healthy and diseased states of the

renal microcirculation in mice. RBC velocity has been evaluated as well using the line-scan

method and manual evaluation of continuously flowing red blood cells [29, 41]. The study

of RBC linear density and of the peritubular capillaries is notably absent when pertaining

to the change in size brought on by vasodilation or vasoconstriction via injury.

The wealth of information that IVVM provides can be analyzed using computer vision.

A challenge in computer vision, the field of extracting information from images or movies,

is creating methods that allows a computer to see what the human eye sees. To accomplish

this, processing techniques such as filtering and segmentation can be applied to images to

give an enhancement of features that can aid a computer in what to look for in an image.

Filtering uses a neighborhood of pixels in a convolution mask or kernel, to transform the

intensity of pixels into an image. Kernels are typically rectangular by application and odd

numbered in rows and columns, allowing assignment of a central pixel within the kernel.

Different filtering methods result in different intensity outputs of the image. Smoothing

filters reduce image noise, via assigning an overall average value to the pixel of interest
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based on the kernel. Of these, a blurring filter takes the average of the kernel and applies

it to the pixel of interest while a Gaussian filter uses a weighted average of intensity values

from nearby pixels and applies it to the pixel of interest, where this weight is based on a

Gaussian distribution. Conversely, median filters reduce “salt and pepper noise” by assigning

the median value of neighboring pixels to a pixel of interest. Filters can be combined to

achieve image enhancement as well. An unsharpening filter involves subtracting a blurred

image fb(x,y) from the original image f(x,y), then adding a weighted result g(x,y) of that image

to the original. This returns the unsharpened image funsharp(x,y) , whose features show an

enhancement of contrast in the image. Another type of filter, the bilateral filter, is a is

nonlinear, edge-preserving and noise-reducing smoothing filter. The intensity value at each

pixel in an image is replaced by a weighted average of intensity values from nearby pixels.

This weight is based on a Gaussian distribution. Crucially, the weights depend not only on

the Euclidean distance of pixels, but also on the radiometric differences. This preserves sharp

edges by looping through each pixel and adjusting the weights to the adjacent neighboring

pixels [60].

Image segmentation partitions pixels into homogeneous clusters, giving an image a more

meaningful representation of structures within it. The simplest thresholding approach is

grey level thresholding, where objects and background are separated based on an intensity

threshold value. Global thresholding is based on the assumption that the image has a

bimodal histogram where the foreground object can be extracted from the background.

Otsu’s method of global thresholding is commonly utilized in such a case, where a threshold

is selected for separation based on the minimization of within-class variance. Regions of

high homogeneity will exhibit low variance, thus separating the foreground and background

pixels into their respected groups [51].

This chapter focuses on the use of image processing to describe the characteristics of

the cortical peritubular capillaries and to mathematically model the quantification of red

blood cell movement from images of the renal microcirculation in vivo. Our goal is to better

understand how the renal microcirculation is heterogeneously dispersed as it pertains to the

dynamics of oxygen delivery to the surrounding tubular epithelial cells (TECs). An image

processing pipeline was developed to calculate capillary diameter and RBC movement. The
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pipeline was developed using ImageJ software [56] and in Python version 3.6, with prominent

use of scikit-image [60], openCV [12], and trackpy [1] libraries. Following image acquisition,

unwanted movement on a per frame basis of the renal microcirculation videos was stabilized

to more accurately locate positions of RBCs and capillary space. Next, regions of interest

were chosen within the image sequence for analysis. The location of the capillary space

and individual red blood cells was found, allowing capillary radius and RBC velocity to be

calculated. Methods to estimate RBC linear density in the capillaries were developed for

situations where individual RBCs could not or cannot be identified. The results presented

show a means to map the heterogeneity seen within each capillary as well the capillaries

captured in the images. Discussion pertaining to how this can aid mathematical modeling

of oxygen delivery in the renal microcirculation and therapeutic evaluation concludes this

section.

2.1.1 Image Acquisition and Description

Images in vivo of the renal microcirculation were collected using IVVM from a C57BL/6J

mouse with sepsis-induced AKI from cecal-ligation and puncture (CLP). A high weight

FITC-Dextran was administered to the mouse via tail vein injection and resided within

the capillary space. An inverted confocal microscope equipped with a digitizing camera

was used to collect the images. Images were acquired through Dr. Hernando Gomez of

UPMC, Department of Critical Care Medicine and Center of Critical Care Nephrology. 17

videos of the microcirculation were recorded and labeled, with video five being selected for

initial video processing and analysis. Video five was chosen after visual inspection revealed a

heterogeneity in blood flow. This was expressed as continuous, intermittent, or stopped/no

flow in the capillaries, the hallmark signs of microcirculatory dysfunction from sepsis. Two

capillary regions of interest (ROIs) within video five were selected for image processing and

analysis, shown in Figure 2.1.
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Figure 2.1: The microcirculation during sepsis-induced AKI. The capillary space (arrow) is

made visible with FITC-dextran. Red blood cells (arrowhead) and the renal structure (∗)

are seen as silhouettes in the capillary space. The capillary space enclosed in a yellow oval

is identified as region of interest (ROI) 01. The capillary space enclosed in a red box is

identified as ROI 02. Scale bar = 50 µm.
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These two ROIs, labeled ROI 01 (the yellow oval), and ROI 02 (the red box), were selected

because of their blood flow heterogeneity seen in the vascular space over time. Figure 2.2

shows a selection of frames from ROI 01 and ROI 02 highlighting the heterogeneity of blood

flow within the capillaries. Metadata pertaining to video five is described in Table 2.1.

2.2 Methods

Accurate identification of the peritubular capillary space requires image stabilization and

the means to differentiate the capillaries from the renal structures. Once located, analysis

of the capillaries can be conducted, primarily determining the medial axis radius along a

capillary length. Having the location of the capillary space allows the means to locate

RBCs, their characteristics, their quantity in a capillary, and their velocity.

2.2.1 Image Stabilization

The videos received from the experiment possessed an inherent jitter due to the pulsation

of the heart and respiration of the mouse. This movement caused distortion and disconnected

the pixel locations of the capillary space from one another on a frame by frame basis. To

correct this, the Lucas-Kanade algorithm [5] was used to stabilize the image sequence. This

algorithm aligns a template image T (x) to an input image I(x), where x=(x,y)T is a column

vector containing the pixel coordinates. First, let W (x;p) be the parameterized set of

allowed warps, where p = (p1, . . . pn)T is a vector of parameters. The warp W (x;p) takes

the pixel W (x;p) in the coordinate frame of the template T and maps it to the sub-pixel

location W (x;p) in the coordinate frame of the image I. The goal of the Lucas-Kanade

algorithm is to minimize the sum of squared error between the template image T and the

image I warped back onto the coordinate frame of the template:

min
∑
x

[I(W (x;p))− T (x)]2 (2.1)

18



A

B

Figure 2.2: Select frames from video five visually confirming blood flow heterogeneity, seen

by the different red blood cell linear density in A) ROI 01 and B) ROI 02. Scale bar = 20

µm.
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Table 2.1: Video five metadata

Description Units Value

Width µm 224.46

Width pixels 464

Height µm 167.37

Height pixels 346

Size megabytes 162

Resolution pixels per µm 2.0672

Video length seconds 26.35

Number of frames N/A 527

Frames per second N/A 20

The Lucas-Kanade algorithm uses the assumption that a current estimate of p is known

and then iteratively solves for changes to the parameters ∆p, which can be shown as

min
∑
x

[I(W (x;p) + ∆p)− T (x)]2 (2.2)

Equation (2.2) is approximately minimized with respect to ∆p, which is used to update

the parameter set

p←− p + ∆p (2.3)

Iteration of Equations 2.2 and 2.3 occur until the estimates of the parameters p converge.

The test for convergence is done by evaluating if the norm of the vector ∆p is below a defined

threshold level ε, ||∆p|| ≤ ε. The Lucas-Kanade algorithm was applied to video five using

ImageJ and the Image Stabilizer plugin [31]. The first frame of the video was used as the

template for template matching. The edges of the stabilized videos were cropped to remove

noise introduced by the stabilization.
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2.2.2 Location of Peritubular Capillary Space

The greyscale intensity values assigned to each pixel of the images was reduced from 16

bit to 8 bit, ranging now from a value of 0 to 255, where an intensity value of zero is black

and an intensity value of 255 is white. Visually, one can see from Figure 2.1 that pixels

representing the capillary space void of particles are of higher intensity values than that of

the renal structure and red blood cells. Figure 2.3A shows a histogram of the pixel intensity

values of frame 1.

The distribution of intensity values makes it difficult to locate a definitive value or value

range to assign to pixels that represent the capillary space. An increase in contrast alleviates

this problem by making the capillary space distinguishable from the rest of the image. This

is done by subjecting the images to an unsharpening mask filter, implemented in ImageJ [8].

Figure 2.3B shows a histogram of the pixel intensity values of frame 1 after the unsharpening

mask has been applied. It can be seen that a large increase in pixels with high intensity

occurred due to the unsharpening mask. These high intensity pixels give a better represen-

tation of where the capillary space is in the image. Figure 2.3(C,D) shows the difference

in appearance between frame 1 before and after the unsharpening mask filter was applied.

This technique also enhances the contrast and difference in pixel intensity between the red

blood cells and the capillary space. This creates a more defined edge between the capillary

space and epithelial tissue boundary as well as the edges between the capillary space and

RBCs. Moving forward, the images that have undergone stabilization and unsharpening will

be defined as stabilized contrast images.

The stabilized contrast images were evaluated with an L-infinity norm described by:

||I(i,j)||∞ = max(|Ik(i,j)|)∀k ∈ {1, 2, . . . , p ;∀i ∈ {1, 2, . . . ,m ;∀j ∈ {1, 2, . . . , n (2.4)

Here I is the intensity, m equals the number of pixels in the x direction, n equals the

number of pixels in the y direction, and p equals the number of frames in a video. This

calculates the highest intensity value on a per pixel basis, pertaining to that pixel location,

over all frames. The image created by Equation (2.4) can be seen in Figure 2.4 (middle).
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Figure 2.3: Histogram analysis shows that the pixel intensity distribution becomes stretched

upon applying an unsharpening filter, with capillary space becoming identifiable by its high

intensity values. Histograms of A) frame 1 and B) frame 1 after applying an unsharpening

filter. The contrast enhancement is seen from the difference in C) the original frame 1 and

D) the stabilized contrast frame 1. Scale bar = 40 µm.

The left hand side of Equation (2.4) was binarized using Otsu’s global thresholding. Otsu’s

threshold was chosen as we are locating the capillary space as a foreground/background
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problem, where the capillaries are the foreground and all other structures are the background.

A median filter was applied to the thresholded image to eliminate spurious pixels that were

mistakenly identified as the foreground. The final binarized image of the capillary space is

viewed in Figure 2.4 (bottom). With this image, all pixel locations pertaining to the white

pixels are now known.

2.2.3 Estimation of Red Blood Cell Linear Density

The density of RBCs within the microcirculation can describe the concentration of oxygen

available for use in cellular metabolism. It has been shown using IVVM that blood flow

exhibits instances of low and of high linear density. In both cases, RBCs can crowd, overlap,

and surpass one another as they flow through a capillary. This presents a challenge in how

to accurately assess how many RBCs pass through an arbitrary capillary length at a given

time. A mathematical model estimating the number of RBCs seen in an arbitrary space

was developed based on data collected pertaining to various RBCs identified in a series of

frames.

2.2.3.1 Image Segmentation of Red Blood Cells Estimation of the number of RBCs

seen requires information as to what the RBCs look like in the capillary space. Figure 2.5

shows frames selected to help describe how individual RBCs are portrayed. These frames will

be given the name selected frames when discussed or referenced. Each frame in the selected

frames set contains a predefined number of RBCs that were visually non-overlapping with

one another.

Segmentation of the RBCs was done by taking a foreground/background segmentation

approach, where the RBCs were the foreground and the capillary space was the background.

The method presented by Crocker and Grier [15] was used for locating the RBCs. Originally

presented as a means for colloidal suspension particle tracking, Crocker and Grier’s method

can be applied to a wide range of particle finding studies. Colloidal suspension particles,

when imaged, can be explained as Gaussian distributed 2-dimensional spheres, where the

pixel centroid of the particle has the highest intensity. The pixel intensity of the particle then

23



Figure 2.4: The progression of image processing to find capillary space location. All frames

were subjected to an unsharpening filter followed by an L-infinity norm analysis. The final

image generated by this was binarized using Otsu’s global threshold followed by a median

filter. The original frame (top), result of the L-norm infinity analysis (middle), and binarized

image using Otsus method (bottom). Scale bar = 40 µm.
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Figure 2.5: Image segmentation of RBCs from the capillary space. The selected frame num-

bers shown were chosen because they all exhibit non-overlapping RBCs. K-means clustering

resulted in well-defined locations corresponding to the RBCs in the selected frames (seen in

corresponding images with the blue background). Frames 4-7 are of note in how clustering

was able to segment the RBCs that are in proximity of one another. Scale bar = 20 µm.

decreases as you move radially out towards the edge. The stabilized microcirculatory images

were pre-processed using a bilateral filter and inverted to give the RBCs an appearance

more representative of the particles described by Crocker and Grier. Once pre-processed,

the algorithm was implemented.

The algorithm is as follows:

1. Apply a blurring average filter to the image.

2. Apply a Gaussian filter to the original image.
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3. Subtract the blurred average image from the Gaussian filtered image. Background fea-

tures and imperfections will have been removed leaving an image with ideal estimates of

the features belonging to the particles (RBCs).

4. Identify local brightness maxima within the image as potential particle centroids. A

threshold is used as a cutoff for accepting a brightness maxima value.

5. Refine local estimates. Calculate the offset (εx, εy) from the pixel at (x,y) found in step 4

to the brightness-weighted centroid of the pixels in a region around (x,y). The centroid

of the particle is defined as (x0, y0) = (x + εx, y + εy). If |εx| or |εy| exceeds more than

0.5, the pixel is moved and refinement is recalculated. If not, (x,y) is recorded as the

particle centroid.

Steps 1-3 of The Crocker and Grier algorithm was performed on each selected frame

to produce an ideal estimate image of the foreground RBCs from the background capillary

space. This separated the individual RBC pixels from the empty capillary space pixels. This

was accomplished with Trackpy [1], a Python open-source software package. The contours of

each RBC in each frame were found using the scikit-image function findcontours in Python.

The contours provided the pixel coordinates needed to analyze the surface area intensity of

each RBC. From the contours, the total and average pixel intensity of each individual RBC

was calculated.

In some instances, contour mapping enclosed multiple RBCs due to the proximity of

one to another, altering the true number of RBCs that are seen. This was alleviated by

introducing a k-means clustering of the RBC pixels. The k-means algorithm searches for

a pre-determined number of clusters within an unlabeled dataset. This is done by first

assigning each observation to a cluster center or centroid. The Euclidean distance between

each observation and centroid is calculated. Next, the mean of the observations with the

minimum Euclidean distances from its pre-existing centroid is calculated. This mean is

used to update the centroid. This process is iterated until the assignment of centroids does

not change. Knowing the true number of RBCs in each frame, the k-means algorithm was

implemented using the scikit-learn kmeans function in Python [49]. Clustering resulted in

129 individual RBCs and can be seen in Figure 2.5.
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2.2.3.2 Assessment of Background Intensity Image capture can lead to unwanted

intensities due to camera placement, camera exposure, or inherent noise. This can distort

the image and create biased intensity outputs. Assessment of the background intensity can

be done to see if any areas are a result of poor image development. The renal lumen in the

frames should all have the same relative intensity output and can be deemed the background

intensity value. Average intensities of different locations of the lumen were calculated over

all frames to see if the values differed from one another. Figure 2.6 shows the location of

where the average intensities were calculated.

Figure 2.6: Assessment of the background intensity. Different locations within the back-

ground were chosen to see if intensity values differed from one another. Each numerically

labeled box was a location where the average intensity value was calculated.

The area of the square regions ranged from 25 to 169 pixels to see if an expansion in

pixel area altered the results. All frames were subjected to this analysis, with the results

shown in Figure 2.7.

The average intensities seen from regions 2 and 3 are similar to one another, while region 1

demonstrates a higher average intensity. This difference could indeed change image analysis

based on image location. Interestingly, the average intensity values of all regions exhibit

similar profiles. Correlation analysis showed that all regions showed strong correlation with

one another. Knowing this, a correction factor was created to account for any background

intensity influencing the capillary space. The average intensity of the 81 square pixels from

region 1 and region 2 were averaged for each frame to create the correction factor. This

was calculated to correct for any background intensity influencing the capillary space. All
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averaged data points were divided by the first averaged data point and multiplied with their

corresponding frames. This approach alleviated the influence of background intensity on the

capillary space and RBCs.

2.2.3.3 Transformation of Intensity Values to Absorption Values Red blood cells

are assigned a lower intensity value when compared to the capillary space, as a result of

the experimental setup and use of FITC-Dextran. Accordingly, individual RBCs have a

higher intensity value when compared to RBCs that overlap with one another. To have the

data, i.e. the RBCs, increase in value from single to overlapped RBCs, pixel intensity was

transformed to represent what has been termed “absorption” values. The highest intensity

values represent the void capillary space. The assumption can be made that these pixels

represent the baseline, corresponding to an absorption value of zero. Frame 21, seen in

Figure 2.8, provides excellent viewing of the void capillary space, completely empty of RBCs

and other solutes. Averaging the values of the empty capillary space pixels results in an

average intensity value of 174. This value was used to transform the intensity value to an

absorption value. This is done by subtracting a pixel intensity from 174. With this approach,

overlapping RBCs are represented with a higher pixel value than that of individual RBCs.

Figure 2.8: Frame 21 from ROI 02. The absence of RBCs in the capillary space provides

an ideal estimate in how to transform the pixel intensity value to an absorption value. This

absorption value better represents RBCs seen in the capillary. Scale bar = 20 µm.

The relationship between a known number of RBCs and their total pixel absorption level

was explored. This was done to have a better understanding of how multiple RBCs are

represented on an absorption value basis. Boxplots were created to show the variation in

assigning an absorption value to a known number of RBCs specific to the selected frames. A
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combination method of calculating the absorption of a specific number of RBCs pertaining

to each frame was used to ensure sufficient data collection. For each frame that had more

than 1 RBC, all combinations of (N − 1) RBCs are evaluated for absorption. This method

is outlined in Table 2.2.

Table 2.2: Steps to calculate total absorption values of RBCs.

1 FOR each selected frame

2 perform segmentation of RBCs

3 FOR number of segmented RBCs

4 IF number greater than 1

5 select (number - 1) RBC(s)

6 calculate total pixel absorption of the number of segmented RBC(s)

7 repeat number times by removing each RBC once

8 ELSE

9 calculate total pixel absorption of the number of segmented RBC(s)

10 END

Boxplots showing the variation in assigning an absorption value to a known number

of RBCs specific to the selected frames is shown in Figure 2.9. This showed a general

linear increase in total absorption as the number of RBCs present in the frame increased. To

further examine this, boxplots of total absorption values corresponding to a number of RBCs

regardless of frame were plotted, as seen in Figure 2.10. A clear linear relationship was seen

between absorption value and number of RBCs. A line was fit to the average absorption

value, giving the equation

y = 2040.25x− 90.37 (2.5)

where y equals the total absorption and x equals the number of RBCs.

Equation (2.5) shows a negative y intercept, a value realistically not possible, as the

absorption value of zero RBCs should be zero. The assumption to neglect the y-intercept
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Figure 2.10: Boxplots showing the variation in total absorption value relating to the number

of RBCs seen. Red diamonds represent the average of the total absorption pertaining to

each number of RBCs. A line was fit to the average total absorption values. The equation

and its r2 value are seen in the lower right hand corner.

was justified given the fact that the absorption value for one RBC resides around 2000.

Equation (2.5) now can be used as a model to estimate the number of RBCs present given

a total absorption value.

2.3 Estimation of Red Blood Cell Velocity

Quantification of red blood cell velocity can provide a means to measure blood flow

and the amount of oxygen transport seen within the capillaries. Blood flow within the re-

nal microcirculation can change with AKI, resulting in a change in oxygen delivery to the

surrounding cells. Understanding this quantitative change in the availability of oxygen for

cellular metabolism can therefore help in explaining kidney function seen in AKI. Continuous

blood flow within the described ROIs was analyzed to determine RBC velocity. It was deter-

mined that locating RBCs in continuous flow within the capillary space could be presented
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as a foreground/background segmentation problem, with the RBCs being the foreground and

the empty capillary space being the background. Once located, the tracking of the RBCs

through the capillary was performed to estimate their velocity.

2.3.1 Location of Red Blood Cell Centroids

Individual RBC centroid coordinates within the images were obtained as the initial step

in calculating the velocity of the blood. Similar to the method outlined in section 2.2.3.1,

a thresholding approach of segregating the foreground (RBCs) from the background (the

capillary space) was taken. The full alogrithm (steps 1-5, see secrion 2.2.3.1) presented by

Crocker and Grier [15] was used for locating the RBC centroids. The Trackpy [1] package was

used to find the centroids of the RBCs of the first 100 frames of ROI 01. Centroid coordinates

were only recorded if they were found inside the capillary space. Manual inspection of ROI

01 was performed to remove any false centroid labeling or to add any centroids that were

not labeled. Figure 2.11 shows the first 12 frames of ROI 01 with red circles superimposed

on where centroids were located as a demonstration of performing RBC location.

2.3.2 Particle Tracking

All RBC centroids were assigned a pixel location corresponding to a point on the ROI 01

medial axis skeleton (see section 2.4.1) on a per frame basis. The reason for assigning RBC

centroids to skeletal coordinates is to minimize error in measuring the potential distance a

RBC travels in sequential frames. For example, the line point measurement between two

frames may take a trajectory outside the capillary space, creating a false representation

of movement. Measuring the distance traveled along the medial axis skeleton circumvents

this. Centroid assignment was done by calculating the Euclidean distance between each

RBC centroid and each medial axis skeleton pixel coordinate. The medial axis coordinate

corresponding to the minimum Euclidean distance from the centroid was assigned a 1 to

represent a centroid while the other coordinates were assigned a zero. This mapping was

created as a means to organize centroid location(s) pertaining to each frame and to be used

to efficiently link RBC movement from one frame to the next.
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Figure 2.11: Centroid location of individual RBCs within the capillary space. The first 12

frames of ROI 01 are shown, with each RBC centroid displayed with a red circle. Comparison

of centroid location to original image is shown. Scale bar = 20 µm.

Semi autonomous particle tracking was applied to link RBC movement seen on a frame

by frame basis. Determination of the RBCs that entered and left the capillary on a frame

by frame basis was incorporated to ensure accurate linking. A maximum limit of potential

movement was also incorporated to further increase the accuracy in measurement. RBCs

were linked by using the particle’s pixel location coordinates. These instantaneous velocities

were then evaluated to determine multiple frame trajectories. Linking the RBC movements
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over the frames pertaining to each identified RBC created averages of RBC velocity through

the entire capillary, represented as the mean ± the standard error of mean (s.e.m.).

2.4 Results

2.4.1 Capillary Radial Mapping

A medial axis transform was used to calculate the medial axis capillary radius of the

ROIs. The transform returns the skeleton of an image with the corresponding distance to

a boundary in the foreground object. The transform was used on the binarized images of

the ROIs using the medial axis function in Python, housed in the scikit-image library [60].

Figure 2.12 shows the profiles generated for ROI 01 and ROI 02. It is shown that the medial

axis is visually accurate, and the peritubular radius is mapped along its skeleton.

2.4.2 Red Blood Cell Linear Density

A similar approach in the segmentation of RBCs from the capillary space to measure

their absorption values in all frames was done. The same steps described in section 2.2.3.1

was used, with the omission of k-means clustering of the pixels. This returned RBCs as

they were seen in the capillary. The total RBC absorption value from each frame was

used to calculate the estimated number of RBCs using Equation (2.5) with omittance of

the y intercept. Visual comparison in estimating the number of red blood cells seen in the

capillary space using the absorption value and Equation (2.5) can be seen in Figure 2.13.

Estimation of the amount of red blood cells in different image sequences reflect and highlight

the heterogeneity seen in linear density and oxygen concentration present in the capillary.

2.4.3 Red Blood Cell Velocity

The first 100 frames of ROI 01 was used to calculate the RBC velocity. Manual inspection

resulted in the addition of 57, and the removal of 6, RBC coordinates, to give a total of 441
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Figure 2.12: Medial axis transform of the ROIs. A) (Top) The original (top left), binarized

image (top right), its skeleton (bottom left), and the skeleton and edges superimposed on the

ROI 01 capillary (bottom right), its medial axis transform profile (middle), and the medial

axis radius (bottom). B) The same images for the ROI 02 capillary. Scale bar = 20 µm.

recorded RBC centroids. The higher RBC linear density and increase in overlapping RBCs

seen in the remaining frames in ROI 01 resulted in a higher uncertainty in locating centroids
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of individual RBCs. Also, the uncertainty in knowing how many RBCs left and entered the

capillary increased due to the limits of the capture speed of the images. Because of this,

locating RBC centroids was subjected to only the first 100 frames of ROI 01. The omission

of the centroid location of RBCs in ROI 02 was chosen as sequential frames containing

identifiable individual RBCs were of limited quantity.

The average velocity of individual RBCs moving through the first 100 frames of the ROI

01 peritubular capillary can be seen in Figure 2.14. Average velocities were reported as the

mean ± the standard error of the mean (s.e.m.). The overall average of all the tracked RBC

velocities was 230.81 ± 9.88 µm/s. Two distinct groupings of RBC velocity can be seen from

Figure 2.14. The first group, tagged numbers one to 46, had an average velocity of 261.33

± 7.4 µm/s, while the second, tagged numbers 47 to 58, had an average velocity of 113.80

± 4.8 µm/s.

2.5 Discussion

Mapping of the medial axis radius over entire lengths of the peritubular capillaries can

provide physiological insight into how AKI alters kidney function, with an emphasis on sepsis-

induced AKI. The microcirculatory dysfunction seen in sepsis-induced AKI is highlighted by

blood flow heterogeneity, which among other events, can be attributed to vasodilation of

the capillaries or lack thereof. The ability to map the radius of the capillaries establishes

capillary radius changes in a healthy renal system or a sepsis-induced AKI renal system

and quantities the difference in radius between capillaries that exhibit continuous flow and

intermittent/no flow.

These physiological changes in capillary radius also have the potential to aid in un-

derstanding the effectiveness of therapeutic intervention for sepsis-induced AKI. Wu et al.

[61] studied how inducible nitric oxide synthase inhibitor L-iminoethyl-lysine (L-NIL) af-

fected capillary dysfunction and RNS generation in sepsis-induced AKI via cecal ligation

and puncture. They reported that L-NIL significantly reversed the capillary perfusion alter-

ations (defined as the increase in capillaries with continuous flow using IVVM), blocked RNS

37



generation, and reduced AKI. Similarly, Holthoff et al. [29] studied the effects of Resvera-

trol (RES) when administered to mice with sepsis-induced AKI. IVVM confirmed that RES

prevented the change in the categorical distribution of cortical perfusion and the decline in

RBC velocity. These studies could benefit from analyzing the change in the radii of the

capillaries, as it could potentially lead to a better physio/pathophysio-logical understanding

of the effects caused by AKI and the potential treatments to combat it.

In addition to aiding experimental results, estimation of the capillary radius is of im-

portance when evaluating the delivery of oxygen from the RBCs to the tubular epithelial

cells. Oxygen delivery for cellular metabolism is dependent on many factors, with one being

the distance the oxygen molecules must travel to reach their desired destination. The de-

velopment of mathematical models to describe this oxygen transport was first described by

Krogh in 1919 [33], and subsequently further developed by Popel [52] and Secumb [36, 57].

Knowing the average radius can prove useful in simulating oxygen transport. These models

incorporate physiological representations of the microvascular networks, i.e, vessel radius, in

their calculations to explain the flux of oxygen from the vessel centerline to the tissue bound-

ary. The ability to estimate the capillary radius directly applies to these models. Change in

this distance can alter the transit time of oxygen delivery, and thus may result in a change of

cellular function and overall kidney performance. Changes in radius from healthy to diseased

states of the microcirculation impacts mathematical models describing oxygen delivery to

the renal system.

It was shown that the number of RBCs could be approximately estimated within the

capillary space in both instances of low and high linear density. Accuracy in estimation in

ROI 02 pertaining to low density images was confirmed via counting the number of RBCs

observed. Counting RBCs was not possible for areas of high linear density due to the large

amount of overlap and crowding. To address this issue, theoretical estimation of the number

of possible RBCs within the capillary space was calculated. This was done by assuming

the capillary can be represented as a uniform cylinder. The volume of the cylinder could

be found by using the capillary length and the maximum medial radius value. With this

information,
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along with the known volume of a red blood cell and hematocrit level, the theoretical number

of RBCs in the capillary could be compared with what was estimated using the images.

Physiologically-based assumptions play a role in RBC estimation as well. There exists a

physiological limit to the number of RBCs that can be stacked on top of one another within

the microcirculation. Geometric calculations could provide the bounds necessary when eval-

uating the number of RBCs seen in high density areas from a two dimensional perspective.

A Beer’s law experimental approach to light absorption may provide additional information,

providing a non-invasively measured value to how many RBCs are present (according to light

transmittance) when stacked. This upper limit combined with the RBC count obtained from

absorption values could create a much more robust approach in estimating the number of

RBCs seen in a capillary space.

The change in velocity may be attributed to the change in RBC linear density as frames

progress in time. RBCs 1-46 moved through the capillary at a very low linear density,

approximately 3.5 RBCs per frame (frame span 1-85), while RBCs 47-58 moved through

the capillary at a linear density of approximately 9.6 RBCs per frame (frame span 86-100),

almost a 3 fold increase in linear density from the earlier frames. The increase in linear

density may cause a reduced velocity profile for the cells. As cells aggregate together, their

overall movement could slow via interacting with one another or surrounding boundaries.

It should be noted that the capillaries shown are under microcirculatory dysfunction from

sepsis-induced AKI. Sepsis is known to cause a decrease in RBC deformability, a trait that

may reduce the cells ability to easily pass through the capillary space [6]. In addition, sepsis

is known to cause an increase in white blood cell adherence to the peritubular walls, and

thus can contribute to a reduction in RBC velocity [6, 54]. These events may factor into the

observed decrease in velocity.

There is limited reporting on RBC velocity in the renal microcirculation, and even fewer

reports when not using the line scan method (see section 1.2). Holthoff et al. [29] reported

that for healthy sham mice a RBC velocity in continuous flowing capillaries was 370 ±

20 µm/s, while sepsis-induced AKI mice via CLP saw a reduction in RBC velocity to 126

± 16 µm/s. These velocities were calculated by inspecting 450 capillary segments and, if

continuously flowing capillaries were identified, the velocity was calculated by measuring the
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distance traveled by a single RBC over time. These results are similar to the result presented

in this section, specifically the region of RBC velocity with a higher linear density.

Calculating RBC velocity in the healthy and diseased state can be of great aid in modeling

the renal microcirculation. Accurate reporting of RBC velocity can provide approximate

transit times oxygenated RBCs have to interact with the surrounding tissue. This can inform

models of realistic physiological amounts of oxygen available for metabolic consumption, and

in turn could describe hypoxic thresholds pertaining to the renal microcirculation.

The estimation of the number of RBCs combined with the known length of the capillary

space under scrutiny can give the RBC linear density. Calculation of RBC linear density

provides information regarding oxygen content seen within the capillaries. This content,

or oxygen concentration, gives a descriptive feature to the renal microcirculation, as to the

availability of O2 for metabolic consumption. This information helps in the mathematical

modeling of renal function. Similar as to how the radius of the capillaries aids in describing

oxygen transit delivery lengths, the available oxygen concentration can be used to simulate

scenarios that can describe hypoxic environments and how those environments affects renal

function.

The ability to use image processing as a technique to capture kidney microhemodynam-

ics was explored. Stabilization of the movement in the images gathered was alleviated by

applying the Lucas-Kanade algorithm. Capillary radial mapping of the cortical peritubular

capillaries was calculated using an L-infinity norm analysis to provide not only dimensions

of the capillaries, but also the means of giving the broad location of red blood cells. Image

segmentation was applied to capture red blood cells from the background. Once captured,

velocity was calculated for individual flowing RBCs when applicable. Analysis of the inten-

sity and absorption values of RBCs led to the formulation of a mathematical model that can

can be used as a measure of estimation of RBCs seen within the capillaries. This ability to

estimate the number of RBCs can aide in the determination of how much oxygen is being

delivered to the kidney for consumption.
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Figure 2.13: Visual comparison in estimating the number of red blood cells seen in the

capillary space. Results of estimating the amount of red blood cells in different image

sequences highlight the heterogeneity seen in linear density and oxygen concentration present

in the capillary.
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Figure 2.14: Individual RBC velocities seen traveling through the first 100 frames of ROI

01. Each RBC that passed through the capillary was given an ID tag number. Two average

velocity groups are seen: RBC tag numbers 1 to 46 and RBCs tagged 47 to 58. RBC tag

numbers 1 to 46 were seen in frames one through 85, and passed through the capillary with

low linear density, as opposed to RBCs tagged 47 to 58. These were seen in frames 86

through 100, and passed through the capillary with a 3 fold higher liner density as that of

the previously tagged RBCs.
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3.0 Quantification of Mitochondrial Energetics in the Kidney

3.1 Introduction

The kidney is responsible for the removal of waste from the blood, the reabsorption of

nutrients, regulating the balance of electrolytes and fluids, maintaining acid-base homeosta-

sis, and regulating blood pressure. These tasks make the kidney one of the most energy

demanding organs in the human body, causing it to have the highest resting metabolic rate

and mitochondrial content, and the second-highest oxygen consumption, behind the heart

[46].

These tasks, particularly the reabsorption of ions, nutrients, and glucose, rely on trans-

porters and channels driven by ion gradients. Mitochondria provide the energy for Na+/K+/

ATPase to generate these ion gradients across the cellular membrane. In the kidney, the prox-

imal tubule, the loop of Henle, the distal tubule and the collecting duct all require and rely

on active transport to reabsorb ions. The proximal tubules reabsorb 80% of the filtrate that

passes through the glomerulus, and therefore have more active transport mechanisms and

mitochondria than any other structure in the kidney. This makes proximal tubule function

susceptible to hypoxic conditions, as it relies on aerobic respiration to produce ATP and

meet its high energy demand.

Diseased states of the kidney, such as sepsis-induced AKI, disrupt mitochondrial func-

tion. Renal microcirculatory dysfunction has been reported in patients with sepsis-induced

AKI. This dysfunction causes flow abnormalities, characterized by a decrease in continuous

blood flow and an increase in vessels with intermittent or no flow [23]. This disrupts the de-

livery of oxygen to the mitochondria in the renal tubules. The reduction in ATP production

decreases the available energy for the tubules to perform their tasks, and in turn, changes

the bioenergetics of the system. The proximal tubules are a primary site of injury due to

its high dependence on oxygen for metabolic consumption. The changes of microcirculatory

flow and the consequences it and sepsis have on mitochondrial function must be addressed.

This can be done by first understanding the physiological heterogeneity of the blood flow
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and mitochondrial activity seen in healthy, normal kidney function. The monitoring of mi-

tochondrial health is mostly experimental work [20]. New and promising techniques such as

intravital video imaging can capture renal dynamics in vivo in real time, including microvas-

cular flow and mitochondrial activity. Establishing reproducible metrics to quantify normal

kidney state will provide the information needed to determine the extent of mitochondrial

dysfunction and the change in heterogeneity of the diseased kidney.

3.1.1 Image Acquisition and Description

Intravital multi-photon microscopy (MPM) was used to capture the microvascular (capil-

lary) space in the kidney and the mitochondrial activity in the tubules of a healthy C57BL/6J

mouse. Images were captured following experimental procedure outlined by K. Dunn et al.

[19] and were acquired through Dr. Hernando Gomez of UPMC, Department of Critical

Care Medicine and Center of Critical Care Nephrology. Briefly, FITC-Dextran was intra-

venously administered to visualize the capillary space as shown in in Figure 3.1. Mitochon-

drial activity was assessed with the cationic lipophilic dye tetramethyl rhodamine methyl

ester (TMRM). TMRM is a fluorescent dye used for measuring the mitochondrial membrane

potential (∆Ψm), a parameter that relates to the capacity of a cell to generate ATP via

oxidative phosphorylation. Therefore ∆Ψm can be used to measure cell heath or injury.

TMRM accumulates in the mitochondrial membrane matrix space in an inverse propor-

tion to ∆Ψm, where a more negative ∆Ψm will accumulate more dye, and vice versa. Proton

pumping from respiratory chain complexes I-V lead to a potential difference across the in-

ner mitochondrial membrane. Protons are driven against their concentration gradient (out

of the mitochondrial cytoplasm), only to flow back in upon ATP generation. This allows

the uptake of TMRM to occur freely, and accumulate in the membrane matrix space [50].

The more uptake that occurs because of a more negative ∆Ψm, results in a greater image

intensity value. Imaging recorded 66 frames at 16 frames per second. Figure 3.1 shows the

tubules and capillary space.

Inspection of the images taken revealed spatial heterogeneity in mitochondrial activity

and blood volume. High and low intensity areas of TMRM emission were seen, similar to
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A B

Figure 3.1: Visualization of mitochondrial function in the kidney. Multi-photon microscopy

captures the A) renal microvascular space (green) and mitochondial activity (red). The frame

stamp is located in the bottom right hand corner. B) TMRM is visualised as a red color

and is primarily taken up into the epithelium, which holds a high density of mitochondria.

FITC-Dextran is visualized as green and resides within the vascular space.

that of higher density regions blood volume when compared to other areas. These spatial

differences behave differently over time, seen in the images when viewed on a temporal scale.

3.2 Methods

3.2.1 Characterization of Blood Volume Space and Mitochondrial Activity

Description of the spatial heterogeneity seen in the images of the normal functioning

kidney was determined by analyzing the average blood volume and mitochondrial activity

pixel intensities. Each pixel contains a red channel intensity value and a green channel

intensity value. If a pixel represents the capillary space, the green intensity value will be

much larger in value compared to the red intensity value. The red intensity value of a

pixel indicates the level of mitochondrial activity occurring, with low intensity indicting low

activity, and high intensity indicating a high activity. Average blood volume pixel intensity
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was calculated by evaluating the green channel of each pixel of each frame. Similarly, the

mitochondrial activity pixel intensity was calculated using the red channel of each pixel of

each frame. First, a circular mask with a radius half of the image length was applied to

each image to remove the image frame identification stamp in the bottom right hand corner.

A spectrum of different surface area sizes of the images were used to specify what pixels

would be included when calculating the average channel intensities. These surface areas

can be thought of as windows that allow us to see specific regions of the images. Average

intensities were calculated using these surface areas to preserve the spatial relationship each

pixel has with its surrounding neighbors. Intensity values correspond to the physiological

aspects of the kidney. Mitochondrial activity is a factor of its surrounding environment, i.e.,

the capillaries and blood volume seen in proximity to mitochondria. Analysis based solely on

a pixel by pixel approach would disconnect the physiological relationship and misrepresent

the system dynamics.

These windows spanned the entire length of the image, with their size being dictated

by an arc length, θ (measured in degrees) oriented clockwise from the x axis. Different arc

lengths used spanned from a θ of seven to 180 degrees. The minimum arc length of seven

degrees was chosen because it represents the approximate diameter of the smallest renal

tubule seen in the images. This ensures that the surface area visualization encompasses

not just fragment intensities of the tubule but rather the entire tubule for analysis. Pixels

enclosed in the surface areas were captured using MATLAB’s poly2mask function from the

image processing toolbox [37]. Figure 3.2 shows the progression from the initial frame to the

desired surface area for analysis.

Spatial variations within the images was evaluated by rotating each surface area described

by θ around their center point in one degree increments for 180 degrees. Average green and

red channel pixel intensities were calculated for each rotation corresponding to each surface

area size for each frame and were plotted against one another. Figure 3.3 shows the result

of the average intensities collected using a surface area size θ of 60 degrees.

46



A B DC

Figure 3.2: Images showing the image processing steps taken to create the desired surface

area sizes used to calculate average pixel channel intensities. Images shown are A) The

original image, B) application of a circular mask to remove the frame time stamp, C) the

outline of the surface area window, defined in size by θ, and D) the final image used to

calculate the average intensity.

3.2.2 Pixel Analysis using Geometric Ellipses

A minimum volume enclosing ellipse (MVEE) was computed for the mitochondrial ac-

tivity vs blood volume intensity averages for each surface area size applied to the frames.

An ellipse in center form can be represented by:

ε = {x ∈ R2|(x− c)TE(x− c) ≤ 1} (3.1)

Here x is a set of real points, c is the center of the ellipse ε, E is a positive semi-definite

matrix, and T is the transpose. Methods described by Moshtagh [42] solve for the positive

semi-definite matrix and the center point of the ellipse. Determination of the eigenvalues

and eigenvectors of E gives the semi-major axes a, and semi-minor axes b as well as the

rotation of the ellipse τ by solving:

a = 1/
√
λ1 (3.2)

b = 1/
√
λ2 (3.3)
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Figure 3.3: Average mitochondrial activity versus the blood volume pixel intensities. The

surface area size that produced these average intensities had a θ of 60 degrees. The area

was rotated 180 degrees in one degree increments. For each degree rotation, the average

intensities were calculated for all frames. The color of each data point corresponds to the

rotational degree that was used in calculations. A minimum volume enclosing ellipse was

computed for the average pixel intensities. The parametric features of the ellipse are labeled

with (x, y) being the ellipse center, a being the semi-major axis, and b being the semi-minor

axis. The rotation of the ellipse (not labeled) is measured counter clockwise from the x axis.

τ = tan−1(ε2, ε1) (3.4)

Here λ1 and λ2 are the eigenvalues, with λ1 being greater than λ2, ε1 and ε2 are the eigenvec-

tors, and tan−1 is the inverse tangent. The rotation of the ellipse was measured in degrees

counterclockwise from the x axis. Because of this, the eigenvectors used in Equation (3.4)

were chosen to represent a positive value for τ . The ellipse and its parametric features were

plotted against the average green and red channel pixel intensities for each surface area

window.
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Figure 3.3 shows the MVEE, its semi-major and semi-minor axes, and its center point

computed from the average intensities collected using a surface area size θ of 60 degrees.

3.3 Results

The parametric features for each ellipse found pertaining to the investigated window sizes

are shown in Figure 3.4. Surface area size has be expressed as the fractional surface area

coverage when compared to the original circle mask applied, described in Figure 3.2B. We

see that the center x and y coordinates stay in relatively the same position after a change in

location from a surface area of 1 to 0.7. An increase in both semi-major and semi-minor axis

lengths is seen as surface area decreases, with the semi-major axis length increasing faster

than the semi-minor axis. Oppositely, the rotation of the ellipse decreases as the surface

area size decreases. The elliptical area calculated using the semi-major and minor axes was

also found and plotted in Figure 3.4 The area increased as the surface area window size

decreased.

The trends described above show the spatial heterogeneity seen in the blood volume

and mitochondrial activity. As the surface area size used for characterization decreased, the

semi-major axis rapidly increases, and the semi-minor axes increases, resulting in an increase

in the overall area of the ellipses. This means a larger distribution in ratios of pixels that

are identified as capillary space to pixels identified as renal tubules occurs. This shows that

there exists spatial heterogeneity at and when different sections of the images are evaluated.

If the images presented showed a homogeneous landscape, there would be little variation in

the semi-major and semi-minor parametric features, and a uniform elliptic area would be

seen, as opposed to the increase in elliptic area shown in Figure 3.4(right).

In addition to showing spatial heterogeneity, the parametric features can describe and

show the spatial and temporal relationships of kidney function. Parametric features can

spatially show where low and high mitochondrial activity is present in relation to blood

volume. For example, in Figure 3.3(right), the semi major axes point stem from the center

point to regions (described by the rotation of the surface area window) of low and high
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mitochondrial activity. The same can be done for the blood volume intensity. Temporal

changes in the functioning kidneys can also be measured as a result of the methods applied.

Temporal changes are seen within the ellipse, where if there are large changes in the ratio of

intensities as time progresses, the data recorded will be more distributed within the ellipse,

and not as one concentric ellipse, i.e, data points would be recorded solely on the curve of

the ellipse and not within the ellipse.

Figure 3.4: The parametric features of the ellipses enclosing the average mitochondrial and

blood volume intensity values for all surface area sizes. The left hand plot shows the para-

metric features of the ellipse where the left side y axis (black) corresponds to the values for

the x center coordinate, the y center coordinate, the semi-major axis, and the semi-minor

axis and the right side y axis (red) corresponds to the values for the rotation of the ellipse.

The x axis is shown in log scale to highlight the change in rotation as surface area size

decreases.The right hand plot shows the minimum volume enclosing ellipse (MVEE) area

for the mitochondrial activity and blood volume intensity values that were calculated as

different surface area windows were rotated around the center point of the images. The area

increases as the semi-major and semi-minor length increase, indicating different ratios of

activity to volume intensities, and an increase in spatial distribution.
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3.4 Discussion

Imaging in vivo of the kidney provides an excellent means to study renal dynamics,

with multi-photon microscopy acting as the gold standard to collect these images. The

use of fluorescent dyes FITC-Dextran and TMRM in tandem with MPM allow the blood

volume space and the mitochondrial activity to be observed. TMRM allows the viewer to

observe not only where mitochondrial activity is present but also how active mitochondria

are, based on the concentration of TMRM in the mitochondrial membrane. The work of

Hall [25, 26, 27] has extensively investigated the changes in mitochondrial function under

normal renal function and ischemia-reperfusion injury (IRI) using multi-photon microscopy.

IRI was mimicked by clamping the left renal artery, where cessation of blood flow caused a

decrease in mitochondrial activity in the proximal tubules.

Visualization of the mitochondrial function and microcirculation of the renal system

using MPM showed a landscape of spatial heterogeneity. This heterogeneity was evaluated

by analyzing the average blood volume and mitochondrial activity pixel intensities pertaining

to a wide range of spatial regions within the images. Once the average intensities were found,

a minimum volume ellipse enclosed the data points when plotted against one another (Figure

3.3). Analysis of the parametric features allows for the spatial heterogeneity to be shown

quantitatively in addition to qualitatively. It also quantitatively describes the spatial and

temporal interactions between the blood volume and mitochondrial activity.

The images shown represent the normal functionality of mitochondria in the kidney.

The methods created that analyze these images can also be applied to images showing

sepsis-induced AKI. Mitochondrial injury has been clearly seen in sepsis via biochemical

and structural studies [59]. This may be attributed to the hypoxia introduced from the

dysfunctional microcirculation and the inflammatory effects brought on by sepsis. In addition

to ATP production, mitochondria also maintain cellular functions including appropriate

levels of reactive oxygen species. Superoxide is the main oxidant to be produced from

respiratory complexes I, II, III of the mitochondria. Appropiate levels of ROS are kept by

manganese superoxide dismutase.
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Elevated levels of nitric oxide are associated with sepsis, and react with superoxide to form

peroxynitrite, a reactive nitrogen species [16]. This causes harm to the host cell and can

lead to death.

Results of mitochondrial dysfunction associated with sepsis-induced AKI would be high-

lighted using MPM and suitable fluorophores. The uptake of TMRM would decrease in the

mitochondrial membrane matrix in areas that exhibit hypoxia and/or higher levels of ROS

and RNS generation. Quantifying both healthy and injured kidney energetics and blood flow

could shed light on the physiological relationships seen between the two states.
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4.0 Summary and Future Work

4.1 Summary

Intravital video microscopy has allowed the renal microcirculation and the mitochondrial

activity to be analyzed. Acute kidney injury, namely sepsis-induced AKI, causes microcir-

culatory and mitochondrial dysfunction to occur [22], where the the blood flow becomes

sluggish or even stopped/no flow in regional areas. The lack of oxygen, (as well as the detri-

mental effects brought on by sepsis, such as the increase in ROS and RNS species) causes

the mitochondria to dysfunction, yielding an overall decrease in renal function.

The heterogeneity seen in the dysfunctional microcirculation was studied using IVVM.

The use of image processing created methods to map the capillary radius of the capillaries,

calculate the velocity of RBCs in continuous flow, and estimate the linear density of RBCs.

The results collected can be used to better inform researchers in how the microcirculation

behaves as well as how oxygen delivery and availability changes from healthy to diseased

states.

Mitochondrial activity and blood volume dynamics were evaluated using MPM and image

processing. The spatial and temporal heterogeneity was quantified in an effort to explain

potential variability in kidney function and to characterize the normal kidney state. Different

sized regions within the images were analyzed to evaluate this heterogeneity. The methods

created to explain the heterogeneity can be applied to healthy and diseased states of renal

function, with the motive to compare and contrast the difference seen between the two. The

approach may give insight as to how energy consumption changes when AKI has caused

changes to the microcirculation.
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4.2 Future Work

The directions the future works of these projects can take is wide. The foremost impor-

tant step is an increase in data collection. Collecting more images of the kidney in both the

healthy and diseased states is necessary to improve the current work presented. More images

can bolster the information obtained from the current work and can aid in explaining the

differences seen when the kidney succumbs to renal disease.

A specific area in need of attention is addressing how overlapping RBCs influence es-

timation. Preliminary work has identified that representation of RBC intensity values as

absorption values (see Section 2.2.3.3) may give better insight in how to label RBCs that

are overlapped. In an absorption value approach, the overlapped RBCs will have a higher

absorption value than single RBCs, although the value may not follow a linear approach.

From the experimental viewpoint, the RBCs will have a light saturation limit, contributing

to the assumption that overlapped RBCs will follow a nonlinear absorption value.

The nonlinear relationship with overlapped RBCs and absorption value indicates that a

nonlinear term must be added to the model formed from assessing single RBC absorption

values. The linear model does not take into account the saturation limit the RBCs and the

images themselves have. Michaelis-Menten kinetics was explored as a means to address both

the linear non overlapping RBC absorption values and the nonlinear overlapping absorption

values. Attempts to incorporate this kinetic model was tried, although more analysis is

needed to prove meaningful results. Moving forward, a robust model that incorporates both

linear and nonlinear terms must be used to explain RBC absorption values along with a

more in depth understanding of the light saturation limits the RBCs have. These tools

would greatly enhance the ability in estimation of RBCs in the capillaries and how this

number affects kidney function.

The analysis of the capillary radius, oxygen concentration, and mitochondrial activity all

contribute to the understanding of how the renal system works, under normal and diseased

states. This information can directly be used in the building of mathematical models that

explore and simulate oxygen delivery and consumption in the kidney.
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This would aid in understanding the heterogeneity seen in the microcirculatory dynamics,

the changes seen when there is a challenge in oxygen, and how the renal system responds to

hypoxic conditions.
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