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Abstract

Genomic data has strong potential to predict biologic classifications using gene expression

data. For example, tumor subtype can be determined using machine learning models and

gene expression profiles. We propose the use of Top Scoring Pairs in combination with ma-

chine learning to improve inter-study prediction of genomic profiles. Inter-study prediction

refers to two studies that are completely independent either in terms of platform or tissue.

Top Scoring Pairs (TSPs) rank pairs of genes according to how well they are expressed be-

tween di↵erent groups of subjects. For example, gene A will be lowly expressed in cases, and

gene B will be highly expressed in controls, while gene A will be highly expressed in controls,

and gene B will be lowly expressed in cases. The pairs demonstrate an inverse relationship

with respect to one and another. Using TSPs act not only as a feature selection step, but

also allows for a non parametric method that transforms the continuous expression data to

0,1, which is based on the rank of the pairs. Due to the robust nature of the transformed

data, our methods demonstrate that the use of TSP binary data is much more e↵ective in

prediction than continuous data, particularly in cross study prediction. Furthermore, we ex-

tend the use of TSPs to not only binary and multi-class label prediction, but also continuous

classification. The objective of this paper is to demonstrate how using dichotomized data

from TSPs as the feature space for machine learning methods, particularly random forest,

returns stronger prediction accuracy across independent studies than traditional machine

learning techniques with log2 and quantile normalization of data. This work has significant

public health impact as accurate genomic prediction is crucial for early detection of many

serious illnesses such as cancer.
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1.0 Introduction

With the recent advancements of high-throughput technologies such as microarray and

sequencing, omics data has become widely available to researchers interested in further un-

derstanding disease associations and gene expression. As more recent research supports the

relationship between genes and the development of diseases, such as tumor genesis of can-

cers, the data holds potential answers to the most pertinent biologic questions in medical

research. The availability of the data, and the relevance of the biologic significance that

the data presents, has encouraged new statistical and bioinformatic methods. Particularly,

supervised machine learning methods have been the most relevant tools for clinical use in

disease status classication. Treatment and prevention for various cancers implement expres-

sion based-biomarkers for disease prediction and subtyping, drug response, and survival. For

example, MammaPrint, Breast Cancer Index BCI and PAM50 are technologies frequently

used in breast cancer patients. MSK-IMPACT is also used to screen for mutations in genes

such as EGFR, KRAS, and ALK that are commonly seen in lung cancer tissues. Despite

these advances, many challenges in disease classication still exist. In the generation of tran-

scriptomics data, many aspects such as the genomic platform, tissue, and cohort vary greatly

between studies. Because of this, reproducibility of disease classication studies using expres-

sion data has been di�cult to achieve but is essential for clinical application. To ensure that

these classication methods are solid enough for clinical use, inter-study prediction (a predic-

tion model that is built in one study and tested in a completely independent test study) is

necessary for validation. The characteristics of appropriate independent training and testing

sets include expression profiles that are generated on di↵erent platforms (sequencing vs mi-

croarray), from di↵erent subjects, or from di↵erent (but related) brain tissues. For example,

a training cohort may have been generated on an a↵ymetrix platform, however, if a testing

cohort is generated using Illumina sequencing technology, machine learning methods alone

will generate a batch e↵ect and return systematic biases, due to the noise generated between

these platforms. Typical genomic models such as those used in Ogutu et al. (2004) and

You-Jia et al. (2008) rely on single study prediction, which presents biased study specific
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results and is not clinically applicable, or, commonly used machine learning methods with

raw expression data that returns poor prediction accuracy. In addition to the bias presented

in inter-study prediction, the noise generated requires a strong model that is robust enough

to minimize the e↵ects from varying factors (platform, cohort, and tissue type) of the stud-

ies. Literature has presented many applications of continuous expression data to machine

learning methods, such as support vector machines and other linearly based models (Madan,

Babu M. 2004), such as lasso and elastic net, as well as simple normalization methods (You-

jia, Hua et al. 2008). While these methods work well for within study predictions and do

provide some feature selection techniques to reduce data size applied to the models, they

lack the robustness required for inter-study analysis.

Top scoring pairs (TSPs), as proposed by Geman et al. (2004), perform classifcation of

case and control subjects using rank based gene pairs (see section methods 2.1 for details).

Because of the ranking nature of TSPs, the model becomes non parametric. Figure 1 il-

lustrates the definition of a strong top scoring gene pair. Figure 1A presents a binary TSP

of breast cancer subtypes. The triangle symbol indicates one gene while the dot symbol

indicates another gene. The left of figure A includes gene expression levels for subjects who

have Her2 tumors and on the Basal on the right. The TSP pattern is evident as we see the

level of expression changes in each gene across the subtypes. Figure 1B extends the binary

TSP to a multi-class TSP across an additional breast cancer subtype. Lastly, Figure 1C is

an example of a continuous TSP using expression data from brain region Broadman Area

47 and subject age. We use the rank based pattern to dichotomize the subjects according

to their direction of gene expression for each TSP. The details are presented in the methods

section. The use of binary data, proves to be very helpful in inter-study prediction, because

this reduces noise due to the batch e↵ect between studies and noise within the studies that

can occur during poor quality sequencing. Previous papers have applied TSPs as the feature

space to simple prediction models, such as majority vote (Bahman, Asfari et al. 2015, Pitts,

Todd M et al. 2010). In our paper, we present the use of TSPs as a feature pre-screening

method in tree based machine learning methods. The result is a non parametric model that

is robust enough to compensate for the heterogeneity among studies. In this article, not only

do we propose methods for binary prediction using TSPs in conjunction with tree methods,

2
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Figure 1: TSP Example, (A) binary, (B) multi-class, (C) continuous

but also an algorithm for selection TSPs in continuous and multi-class prediction. Transcrip-

tomics data sets from lung, breast, and brain tissue are used to evaluate the performance of

our methods.
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2.0 Methods

2.1 TSP and KTSP for binary classification

Top scoring pairs were originally introduced by Geman et al. (2004), for the use of

binary classification. Define X = {xgn} be a gene expression intensity matrix for all gene

g and sample n, such that 1  g  G and 1  n  N . Define yn as the class label for

sample n and yn 2 {0, 1} for binary outcomes. A TSP is conceptually defined as a gene

pair, i’,j’ 2 [1, G] such that when samples in the learning set are classified as y = 0, xi0 > xj0

generally holds,and when samples in the learning set are classified as y = 1, the opposite

order xi0 < xj0 is more frequent. The reverse relationship also holds and can be extended

to multi-class Top scoring pairs are selected by the probability, Tij(C), indicating the prob-

ability that expression levels of gene i are less than gene j, given a subject is classified to

label C. Mathematically, Tij(C) = Pr(xin < xjn|y = C). Tij(C) can be estimated empirically

by the number of subjects that xin < xjn over the total number of subjects with class label, C.

T̂ij(C) =

PN
n=1 I(xin < xjn)I(yn = C)

PN
n=1 I(yn = C)

Each pair of genes is then given a score, Sij, representing the di↵erence of the probabil-

ities between the two class labels: Sij= Tij(1)� Tij(0). This score can also be empirically

estimated as Ŝij = T̂ij(1)� T̂ij(0). Since the probability Tij(C) ranges from 0 to 1, the gene

pair score by definition ranges from -1 to 1. TSP will be selected based on this score value.

A strong TSP pattern will have score close to 1 or -1, meaning that the probability of seeing

xi < xj will be very high in one of the classes, C1, but very low in another class C2. In

terms of cases and controls, for example, Ŝij = �1 implies xi > xj in cases (1) while xi < xj

in controls (0), and the vice versa. The high absolute value of the score | Ŝij | can be used

as selection criteria for top pairs. For binary classification, Geman et al. (2004), and other
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papers (Pitts, Todd M et al. 2010) used only one top scoring pair to classify subjects. Given

a new testing sample ~x = {xi...xG} and the TSP i
0
, j

0, the class label is determined by:

8
<

:Ĉ(~x) =
1 if x(test)

i0 � x
(test)
j0  0

0 if x(test)
i0 � x

(test)
j0 > 0

The TSP classifier Ĉi0j0(~x(test)) is based on only one TSP, hence, the method is not

very robust as it is sensitive to noises in the data. Bahman et al. (2015), proposed the

kTSP algorithm to combine multiple TSPs for a more robust classification. Instead of

choosing just one TSP, the top K TSPs, {(i01, j01)...(j0K , j0K)}, are selected with highest ab-

solute value score, | Ŝij |. Given, the new test sample, ~x is now classified by Ĉ(~x(test)) =

argmax
C

PK
k=1 I(ĈK(~x(test)) = C). The kTSP is an ensemble classifier that aggregates multi-

ple weak classifiers by majority vote. To avoid the potential for ties, the top number K is

typically selected to be odd in binary classification. Previous papers including Kim et al.

(2016) have used cross validation and optimization to decide the optimal number, K, for

number of TSPs. While the kTSP algorithm is beneficial from its non-parametric property,

as discussed in the introduction section, simple majority vote does not create enough model

complexity for e�cient learning, where many samples will be classified right on the decision

boundary. Furthermore, kTSP algorithm assigns equal weight to all top scoring pairs but

ignores their inter-relationships/correlations.

2.2 rfTSP For binary classification

To overcome the above limitations, we develop a Robust tree-based model with order-

based feature selection method (rfTSP). Specifically, we propose a two-stage approach which

selects top scoring pairs as the feature space (stage 1) and dichotomizes these gene features

as input for tree-based prediction models (stage 2), including random forest (RF), boosting

and bagging with classification and regression tree (CART). The first step of our method is

the selection and dichotomization of the top scoring pairs. We calculate the score, Ŝij, for

each gene pair using the same method as introduced in section 2.1. The absolute value of
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Ŝij indicates the strength of rank perturbation of gene pairs between two class labels, where

|Ŝij| closing to 1 indicates high di↵erential pattern and 0 means almost no association with

outcomes. Top TSPs will be selected by this score. Then their expression continuous data

will be transformed into binary format according to the ranks of gene expression of selected

pairs for each sample. To be specific, for a top scoring pair with gene i and j for sample n,

their expression value xin and xjn will be binarized to B(i,j),n as follows,

8
<

:
1 if Ŝij(xim � xjm)  0

0 if Ŝij(xim � xjm) > 0

8
<

:B(i,j),n =
1 if xin  xjn

0 if xin > xjn

By the above feature selection and dichotimization procedure, the continuous data matrix

X = {xgn} will be transformed into a binary matrix B = {bkn}, where 1  k  K and

1  n  N indicates gene pair k of sample n. In the scenario of classification, top TSP will

be selected from training data X
(train) and binarized as B(train). These top features will be

applied to new testing data X
(test) and binarized as B(test).

To decide the number of TSPs for the training model, we propose a hypothesis test pro-

cedure which utilizes a binominal proportion test. Recall from the TSP selection algorithm,

that | Sij | = | Tij(1) � Tij(0) |, where Tij = Pr(xi < xj|y = C) = Pij(C). A score of Sij

close to 1 implies that Pij(C = 1) >> Pij(C = 0), and a score, Sij, close to -1 implies the

reverse: Pij(C = 1) << Pij(C = 0). For these scores, pair (i, j) would be categorized as

strong top scoring pair. When Sij = 0, this implies that Pij(C = 1) = Pij(C = 0), meaning

(i, j) is not likely to be a top scoring pair. Under the null assumption, for any given pair

(ij), there is a 0.5 probability that Pij(C = 1) = Pij(C = 0), meaning the possibility of any

pair following a top scoring relationship with respect to case and control subjects is random.

The alternative distribution is that Pij(C = 1) 6= Pij(C = 0). If a pair of genes is truly top

scoring, we would expect to see the alternative probability not equal to .5, meaning the top

scoring relationship is not random. The two sample proportion test can generate a p value

distribution that calculates the proportion of observed scores that are more extreme than

6



the null scores. If (i, j) is any pair; Tij will follow a binomial distribution Tij ⇠ BIN(n, p =

.5) where n is the number of subjects in the training set. The hypotheses are as follows:
8
<

:
Ho : Pij(C = 1) = Pij(C = 0)

Ha : Pij(C = 1) 6= Pij(C = 0)

Di↵erent p value cut-o↵s give us di↵erent number of TSPs. While a p value cut o↵ of .05

may seem to return many false positives, machine learning methods, such as random forest,

only require the very top pairs as the feature space and have imbedded feature selection

methods as well. Because of this, we do not need to worry about having too many false

positives as the input to our feature space. Alternatively, cross validation can also be used.

For the second stage of our method, binary classifier will learn from the training binarized

matrix B
(train) and perform prediction on the new testing binarized matrix B

(test). We

selected some well-developed classifiers, including random forest (RF), boosting and bagging

with classification and regression tree (CART). These tree-based methods, on the one hand,

will provide robust prediction results between training and testing binary data. On the

other hand, gene-pair features will be ranked and selected at each split node of the decision

tree. These top gene-pairs and associated gene features are straightforward for biological

interpretation. To select the top number of gene pairs for classifier input, we will apply

5-fold cross validation (CV) method to tune the parameters. That is, training samples will

be equally divided into 5 exclusive partitions, and for each CV, 4-folds will serve as training

samples and the remaining 1 fold will serve as testing. The overall performance will be

evaluated by the Youden index (sensitivity + specificity -1) of the 5-fold prediction result.

Top number K will be tuned from 5 to 50 and the best K value will be the one with the

highest CV Youden index.

2.3 Multi-class prediction

We directly used the methodology outlined in the binary setting to address the problem

of multiple classes. Instead of having two class labels, we now have m class labels. Let

7



c = (c1, c2, c3, ....cm, ...cM) be a vector of class labels. Similar to the previous binary method,

we can calculate a score Sij = Tij(cm) � Tij(c0m) using one-versus-others strategy. We can

view Tij(cm) as we would in the binary setting: the probability that gene expression, xi

is less than gene expression xj given subject class label is cm. Tij(c0m) is the probability

that gene expression, xi is less than gene expression xj given subject class label is not

equal to cm. Mathematically, we can write this as: Tij(c0m) = Pr(xi < xj|y 6= cm) =

Pr(xi < xj|y =
S

1iM ;I 6=m ci). T̂ij(cm) and T̂ij(c0m) are calculated empirically as:

T̂ij(cm) =

PN
n=1 I(xin < xjn)I(yn = cm)PN

n=1 I(yn = cm)

T̂ij(c
0
m) =

PN
n=1 I(xin < xjn)I(yn 6= cm)PN

n=1 I(yn 6= cm)

so that we have an empirical score, | ˆSijm | = | ˆTij(cm) � ˆTij(c0m) |. We repeat this process

for each class label, 1  m  M . Due to biological variation, some class labels are better

separated from others but some are less. Because of this, rather than using the same TSP

score threshold for each class label, we choose equal number of TSPs in each class label. We

then use cross validation techniques to choose an optimal number of pairs from each group.

This way, each class label has a fair chance of being predicted, and we don’t risk adding bias

to the model by only having gene pairs that have strong prediction power for a subset of

well-separated class labels.

2.4 Continuous prediction

In this section, we extend the use of TSPs to the continuous data regression setting. The

definition of a TSP in the continuous case is similar to the binary and multi-class case, but

pairs of genes are ranked with respect to a monotone continuous outcome. Let yi (i = 1...N)

be the age for subject i, and Y = {y1....yN} is the vector of length N for age variable. We

first select the genes that undergo age-related changes, by fitting robust linear regression to

each of genes. Only top outcome related genes are used to construct TSPs for our model.
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A pair of genes (xi, xj) is a TSP if the age trajectories of two genes intersect at a certain

age (we call this as ”crossing point”, y⇤, where y1 < y
⇤
< yN). For y < y

⇤, xi > xj and for

y > y
⇤, xi < xj, and vice versa. For the first stage of our algorithm, we propose a pipeline to

select TSPs, which incorporate the usage of crossing monotone continuous outcomes. The

idea is to quantify if the ranks of a pair of genes di↵er before and after the crossing point.

The detailed steps are as follows:

(i) Let zn = xin � xjn be the di↵erence in expression levels for gene pair (i, j) and subject n,

then we have z = {z1...zN}. To find the crossing age, we fit a regression to z with respect

to y as ẑ = â + b̂y, where we can derive the crossing point y⇤ = �a
b . (ii) The crossing point

and the regression line at ẑ = 0 define four mutually exclusive sets of subjects:

| A |= {n : yn  y
⇤ \ zn � 0}. | A | is the number of subjects with outcome (yn) less than

the crossing point and zn greater than 0.

| B |= {n : yn � y
⇤ \ zn � 0}. | B | is the number of subjects with age (yn) greater than the

crossing point and zn greater than 0.

| C |= {n : yn  y
⇤ \ zn  0}. | C | is the number of subjects with age (yn) less than the

crossing age and zn less than 0.

| D |= {n : yn � y
⇤ \ zn  0}. | D | is the number of subjects with outcome (yn) greater

than the crossing point and zn less than 0.

(iii) Under the null assumption, where the number of subjects before and after the crossing

point will follow binomial distributions with m1 as the number of subjects in regions | A | +

| C | and m2 as the number of subjects in regions | B |+ | D |, respectively. m1 ⇠ BIN(| A |

+ | C |, p1) and m2 ⇠ BIN(| B | + | D |, p2), where p1 and p2 are the proportions of subjects

that fall into regions | A | and | D |, respectively. We can estimate these values as sensitivity

and specificity by p̂1 =
A

A+C and p̂2 =
D

D+B . (iv) We define a Youden index J = p1+p2�1 to

quantify the strength of a gene pair, which can be estimated as Ĵ = p̂1+ p̂2�1. Indices close

to 1 or -1 indicate pairs with strong top scoring patterns. The corresponding 95% confidence

interval for Ĵ is Ĵ ± 1.96 ⇤
q

var(Ĵ) and can be used to determine suitable cut o↵s for the

Youden index. Once the TSPs are selected, the original expression data is transformed from

continuous to binary, in a similar fashion as the binary case. For each subject n, given a

TSP (i0, j0), if xin > xjn then a binary coding 1 will be assigned, otherwise 0 will be given

9



exactly as described in section 2.1. This results in an k x n matrix of indicators 0 and 1,

where k is the number of selected top scoring pairs. For the second stage of our method,

similarly to the binary case in section 2.1, we treat the transformed binary data as an input

to tree-based machine learning methods.

While the number of top scoring pairs used in the model can be arbitrarily selected as

pairs that have a Youden index magnitude close to one, we used cross validation to select

an optimal Youden index cut o↵. We repeated 10-fold cross validation for a lower bound

confidence interval of .6,.7,.8, and .9, for positive Youden indices, and an upper confidence

limit of -.6,-.7,-.8, and -.9 for negative Youden indices. We selected the cut o↵s that returned

the lowest average mean square error across all cross validated iterations.

10



3.0 Results

3.1 Binary prediction

We tested our methods on lung, breast, and brain tissue. For binary prediction, we

used data on lung disease from the six di↵erent sources, breast cancer data from Wang et

al. (2005) and glioblastoma brain cancer from The Cancer Genome Atlast (TCGA). Table

6 in the appendix shows subject and platform information for all 6 lung disease studies as

well as the breast cancer study. The outcomes of interest were case versus control in lung

disease, estrogen receptor positive versus negative in breast cancer subjects, and malignant

glioblastoma versus benign tumor in brain tissue. Within each disease, we have multiple

independent studies from di↵erent subjects and platforms. Figure 2 shows the results of

our application. In Figure 2A, we use 6 di↵erent independent lung disease studies across

di↵erent cohorts and platforms to train and classify disease status using random forest with

log2 normalization, rfTSP, and kTSP. The 6 lung studies were assigned to testing or training,

such that only the 3 largest sets are used as training. Table 7 in the appendix lists all of

the training and testing study pairs. prediction accuracy is calculated as the number of

correctly classified subjects over the number of total subjects. Overall, we can see that the

non-parametric rfTSP methods outperform random forest with normalized data. In 2B,

we train our model using RNAseq data from breast and lung tissue and test our model

using microarray data from lung and breast. Not only do we apply our method to random

forest, but we also evaluated other commonly used machine learning methods as well, such

as bagging, boosting, and CART. We also directly compare our method to the kTSP method

used in Bahman et al. (2015). For both diseases, the methods using dichotomized data from

top scoring pairs outperform the classical machine learning methods. Due to the inherent

noise between the studies, the robustness of dichotomized data proves to be imperative for

inter-study prediction. Because machine learning methods have imbedded feature selection

methods, people commonly pour many features into the methods, requiring more computing

power and time. Because our method is two stage and selecting TSPs acts as a feature

11
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Figure 2: Binary prediction on breast and lung tissue

selection step, we are able to reduce the required computing time.

Table 1 below also explores how the algorithms perform under di↵erent normalization

methods. We apply data from brain tissue to predict glioblastoma status using TCGA data.

We build the model in an RNAseq set and test the model in microarray, using random forest

alone with quantile normalization as well as rfTSP and kTSP. rfTSP has the highest accuracy,

while random forest with quantile normalization fails completely. It’s also interesting to note

that rfTSP has the highest sensitivity and specificity at .8 and .84 respectively. While kTSP’s

performance is comparable, it’s specificity drops to .65.

Table 1: Glioblastoma tumor prediction

RF+QN rfTSP kTSP

Accuracy .4301 .8172 .7204

CI (.33,.54) (.72,.89) (.62,.81)
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3.2 Multi-class prediction

We next tested our multi-class prediction method using breast cancer data from TCGA

and MetaBric. We have three PAM50 tumor subtype classifications present in the data,

HER2, Basal-like, and Luminal A. We build our model using RNAseq data from TCGA and

test our method in microarray data from MetaBric. As mentioned in the methods section

2.2, we used 10 fold cross validation within the training set to select the optimal number of

top scoring pairs. Based on having optimal accuracy, 40 TSPs from each class label group

were selected, so a total of 120 pairs were used as input features to the model. Again, this

greatly reduces computational time that would be required to run random forest if without

an e↵ective feature selection step. Our method, rfTSP was able to generate 78 percent

accuracy in METABRIC data, while RF alone produced only 40 percent accuracy. Table

2 and Table 3 show the confusion matrix as well as sensitivity and specificity breakdown

of the rfTSP prediction result, while Tables 4 and 5 show the breakdown of the random

forest used only with log2 normalization. Our method is able to classify each luminal A

subject correctly and 70 percent of basal subjects correctly. Furthermore, the specificity

across all three classes remains high. Random forest alone classifies each subject as HER2.

Because HER2 appeared genetically more similar to both basal-like and luminal A cancers

in the MetaBric and TCGA, when there is noise present between the studies, random forest

selects the class label that is seemingly an average of the other two, allowing for a ”safer”

classification. The dichotomized and rank based data in rfTSP, however, allows the three

individual class labels to remain unique even in the presence of noice during inter-study

prediction.

Table 2: Confusion matrix for breast cancer tumor sub-type using rfTSP (true x predicted)

Basal Her2 LumA

Basal 33 11 6

Her2 1 34 15

LumA 0 0 50
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Table 3: Sensitivity and specificity analysis for breast cancer tumor sub-type using rfTSP

Basal Her2 LumA

Sensitivity .7 .5 1

Specificity .84 1 .79

Table 4: Confusion matrix for breast cancer tumor sub-type using RF with log2 normaliza-

tion

Basal Her2 LumA

Basal 20 20 10

Her2 15 20 15

LumA 19 12 19

3.3 Continuous prediction

Lastly, we test our continuous method to predict subject’s molecular age using brain

tissues from Broadmann areas 47 and 11 from the University of Pittsburgh Medical Center.

While the two brain areas are similar and are both generated using RNA-seq technology,

there is always inherent noise associated with cross tissue prediction. In Figure 4, we use

our method, rfTSP, and RF alone to build the model in BA47 and test in BA11. We select

the number of top scoring pairs based on 10-fold cross validation within the BA47 data at

various confidence interval cut o↵s. We find that a confidence interval cut o↵ of .7 and -.7

is optimal and it estimates about 150 pairs. Likely, due to the more complicated nature of

continuous prediction, more features are needed for random forest to succeed. Our method

returns a mean squared error of 6.54, while random forest alone has a mean square error of

7.93. As seen in the multi-class example, random forest has a tendency to predict towards

the middle of a class label spectrum. Because of this, random forest is often criticized for

its poor prediction along the tail. In our scenario, we see that random forest does struggle
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Table 5: Sensitivity and specificity analysis for breast cancer tumor sub-type using RF with

log2 normalization

Basal Her2 LumA

Sensitivity .37 .39 .43

Specificity .69 .70 .71

to accurately predict those over age 60. While rfTSP still shows this pattern, looking at

figure 3, we can see that the subjects over age 60 our model predicted a higher age than

subjects over age 60 using RF alone. rfTSP in the continuou setting is also robust enough

to maintain the information provided from the tail end subjects in our training set.
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A B

True Age True Age

Figure 3: Age prediction from brain tissue BA47. (A) rfTSP (B) RF with log2 normalization
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4.0 Discussion

Supervised machine learning is a critical analytic tool for many applications in biologic

research, including cancer, disease, and aging. As high-throughput genomic data becomes

more publicly availabel, e↵ective statistical and machine learning methods are required to

reach the full potential that the data can o↵er. accurate inter-study prediction is neces-

sary as single study classification often faces small sample size issues and study-specific

bias. Furthermore, commonly used machine learning techniques often have poor prediction

results in cross study application due to the between study noise. These typical genomic

prediction models experience low reproducibility across independent studies because of a

lack of robustness and expression measurement noises that is inevitable in varying tissue

types and platform technology. Regardless, researchers and clinicians still wish to classify

subjects across di↵erent cohorts, platforms, or tissue types; it remains a di�cult problem in

genomics that requires an accurage and robust model that will not falter under cross-study

heterogeneity. To overcome these limitations, we propose the use of top scoring pairs as

the nonparametric feature selection and data transformation engine for machine learning

methods, particularly random forest. TSPs not only act as a feature selection step, but

they also transform expression data from continuous measurement in gene features to binary

status in gene pairs, which minimizes noise from outliers within and between studies. Be-

cause rfTSP is a rank based non-parametric algorithm, the method is particularly successful

in cross platform prediction where we commonly see a baseline shift in expression between

two studies, noisy studies due to poor sequencing quality, and biological variation present

in cross-tissue prediction. We have implemented the use of top scoring pairs in not only bi-

nary classification but also multi-class and continuous classification. Our data applications

demonstrate that top scoring pairs have tremendous potential in robust machine learning

and can outperform typical genomic classification models. The use of top scoring pairs adds

another feature selection stop, potentially reducing computational time while still providing

crucial information to the training model. Despite the di�culties present in data, our exam-

ples prove that rfTSP can create a robust and accurate prediction. Our model can provide
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patients and researchers accurate classification without restricting them to a single study

prediction.

There are a few limitations and future directions to address. Currently, TSPs are selected

using the observed patterns present in training set only. This creates some challenge as a

gene pair that would be biologically relevant to the disease of interest and show a strong

pattern in the testing data may not in the training set due to poor data quality or outliers.

One way to overcome this would be to incorporate certain pathway analysis into the TSP

selection process and include gene pairs in the model that may not show a strong TSP

pattern in the training data but give us biological reason to believe they could happen in

the testing set. Furthermore, there are some challenges in the random forest algorithm,

particularly in predicting subjects whose class label is in the tail end. As mentioned in the

multi-class and continuous applications, rfTSP does improve tail end prediction, but there

is still room to improve the actual random forest algorithm itself. Lastly, our methods prove

very well in application, but we lack theoretical proofs that rigorously demonstrate under

which parameters our method will succeed. We plan to address these topics in future work

as well as extend our continuous classification model to other outcomes than age, such as

survival time. We will provide a publicly available R package ”rfTSP” on github.
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5.0 Supplementary Tables

Table 6: Data descriptions

Name Study Samples Control Case Reference

Tedrow A IPF 63 11 52 GSE47460

Tedrow B IPF 96 21 75 GSE47460

Emblom IPF 58 20 38 GSE17978

Konishi IPF 38 15 23 GSE10667

Pardo IPF 24 11 13 GSE2052

Larsson IPF 12 6 6 GSE11196

Wang BC 286 209 77 GSE2034
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Table 7: Training and testing assignments for IPF data

train test

1 A B

2 A Emblom

3 A Pardo

4 A Larsson

5 A Konishi

6 B Emblom

7 B Konishi

8 B Pardo

9 B Larsson

10 Emblom Konishi

11 Emblom Pardo

12 Emblom Larsson
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