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CONTROLLABILITY AND EXPLAINABILITY

IN A HYBRID SOCIAL RECOMMENDER SYSTEM

Chun-Hua Tsai, PhD

University of Pittsburgh, 2019

The growth in artificial intelligence (AI) technology has advanced many human-facing ap-

plications. The recommender system is one of the promising sub-domain of AI-driven ap-

plication, which aims to predict items or ratings based on user preferences. These systems

were empowered by large-scale data and automated inference methods that bring useful but

“puzzling” suggestions to the users. That is, the output is usually unpredictable and opaque,

which may demonstrate user perceptions of the system that can be confusing, frustrating or

even dangerous in many life-changing scenarios. Adding controllability and explainability

are two promising approaches to improve human interaction with AI. However, the varying

capability of AI-driven applications makes the conventional design principles are less useful.

It brings tremendous opportunities as well as challenges for the user interface and interac-

tion design, which has been discussed in the human-computer interaction (HCI) community

for over two decades. The goal of this dissertation is to build a framework for AI-driven

applications that enables people to interact effectively with the system as well as be able to

interpret the output from the system. Specifically, this dissertation presents the exploration

of how to bring controllability and explainability to a hybrid social recommender system,

included several attempts in designing user-controllable and explainable interfaces that al-

low the users to fuse multi-dimensional relevance and request explanations of the received

recommendations. The works contribute to the HCI fields by providing design implications

of enhancing human-AI interaction and gaining transparency of AI-driven applications.
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1.0 INTRODUCTION

1.1 MOTIVATION

The growth in artificial intelligence (AI) technology has advanced many human-facing appli-

cations. Recommender system is of the promising sub-domain of AI-driven systems, which

has been applied to many different real-world applications. For example, social recommen-

dation is one of the popular use cases, which has been widely adopted in many e-commerce

platforms or social media. Providing social recommendation is aims to filter out “irrelevant”

information so the users can reduce the efforts of decision making, e.g., purchase an item

online or follow a new friend on social media. The AI-driven social recommender systems are

usually empowered by large-scale data from multiple data sources and automated inference

methods that bring effectively but “puzzling” output to the users [4]. The output is usually

unpredictable and opaque, which may demonstrate user behavior that can be confusing,

frustrating or even dangerous in many life-changing scenarios. This dissertation presents

my exploration of the value of bringing controllability and explainability to a hybrid social

recommender system.

Hybrid social recommender systems attempt to improve the quality of recommendations

by engaging with several recommendation sources or approaches [12]. While hybrid recom-

menders are known for their performance, their sophisticated computational processes are

less transparent than those of other approaches to hybridization. Even the simplest parallel

hybridization approach, which fuses together multiple recommendation sources with differ-

ent weights might opaque to the users [12]. Usually, the optimal fusion weights are trained

or learned using ground truth data to optimize for the best overall performance. The result

might be optimal, but not easy to comprehend. As a result, user actions affecting one of

1



the sources might result in confusing changes to the final recommendation list. Moreover,

this hidden optimal fusion might not even work well for the users. In many real-world sce-

narios, a hybrid social recommender system can be preferred for different user needs [132]

or by multi-stakeholder [1]. For example, in an event-based social recommender, the event

attendees may look for other people for a range of reasons, i.e., a conference attendee may

wish to re-connect with an acquaintance, find new friends with similar research interests, or

just find someone with whom to share a ride to the airport. This diversity of information

needs makes it difficult to generate a static ranked social recommendation list that fits all

cases [17]. While an optimal static fusion could provide the best ranking across the cases, it

might be sub-optimal in each specific case.

These challenges were recognized and addressed in the new generation of research in-

volving interactive recommender systems [56]. These systems attempted to make the recom-

mendation process more transparent by visualizing some aspects of the process and offered

the user some form of control over the process. Starting with the pioneering work on Peer-

Chooser [98], several attempts were made to produce more transparent and controllable

recommender systems. In these systems, users were allowed to “influence” the presented

recommendations by interacting with different types of visual interfaces. Several studies of

interactive recommender systems demonstrated that users appreciate controllability in their

interactions with the recommender system [70, 55, 104, 29]. It has also been shown that the

visualization has helped users to understand how their actions can impact the system [62],

which contributes to the overall inspectability [70] or transparency of the recommendation

process [126].

A social recommender system is generating recommendations with user-generated data

and algorithms. The “reasons” of the receiving the recommendations usually stay in a black

box [58] that the user has little understanding about the mechanism behind the system. A

lower transparency system has been proved association with user satisfaction negatively [126].

To gain the transparency, the study of [58, 126] suggested providing proper explanations to

help the user to understand the reasoning process of the generated recommendations. The

approach aims to provide more details that make the users realize the reasons for receiv-

ing the recommendations. In many user-centered evaluations [58, 70, 125], the explanation
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positively contributes to the user experience, i.e., trust, understandability, and satisfactions

[41, 126]. However, ongoing advance in AI techniques generates tremendous opportunities

as well as challenges for the user interface and interaction design, which has been discussed

and debated in the human-computer interaction (HCI) [4]. For instance, how can we de-

sign an effective explanation interface? How can the explanations affect the recommender

system controllability? How does the user adopt these explanations in decision-making and

information seeking processes?

Enhancing explainability in recommender systems has drawn more and more attention

in the field of Human-Computer Interaction (HCI). Further, the newly initiated European

Union’s General Data Protection Regulation (GDPR) required the owner of any data-driven

application to maintain a “right to the explanation” of algorithmic decisions [32], which

urged to gain transparency in all existing intelligent systems. Self-explainable recommender

systems have been proved to gain user perception on system transparency [125], trust [107]

and accepting the system suggestions [70]. The problems of controllability and transparency

of hybrid recommendation processes have been explored in several projects [70, 104, 29],

however, these projects focused on either transparency or controllability of the fusion com-

ponent. My own experience demonstrated that visual interfaces for user-controlled fusion

cannot assure that these users will understand the underlying rationale of each contributing

data or methods; namely, how the recommendation has been made [62]. If a recommenda-

tion mechanism is too complicated for non-professional users to comprehend, considerable

transparency could be achieved by explainability, i.e., the system may justify why the rec-

ommendation was presented [132, 29]. I believe that to increase the transparency of social

recommender systems; interactive user interfaces should be augmented with multiple kinds

of explanations for each recommendation source or engine. Several interfaces and approaches

to provide explanations have been proposed and studied to assess the improvement of user

satisfaction and other system aspects [58, 125]. Explaining recommendations can achieve

different explanatory goals through single-style or hybrid explanations [75].

However, little is known about how the user will interact with the system when both

the fusion process and reasoning process are transparent. In this dissertation, I investigated

the effects of adding user control and visual explanations to an interactive hybrid social
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recommender system. I proposed Relevance Tuner+ to provide a controllable and explain-

able interface for the user to fuse social recommendations from multiple sources, using the

Conference Navigator platform [10]. My contribution covers several aspects of transparency

of recommendation. First, I proposed and evaluated novel user-controllable intelligent user

interface and explanatory visualizations to enhance the controllability and explainability

of a social recommender system. Second, I discussed the prospect trade-off between the

transparent fusion and reasoning processes, which implied the interaction effects between

controllability and explainability in a social recommender system. Third, I present implica-

tions for the design of the user interface to enhance user controllability and explainability

based on these results. My work has great potential to extend to other recommender sys-

tems beyond this context, thereby making significant contributions to the research topics on

the intelligent user interface (IUI), fair, accountable, and transparent (FAT) recommender

systems (RS) as well as the domain of Explainable AI (XAI).

1.2 RESEARCH QUESTIONS

The integration of controllability and explainability in a hybrid social recommender system

allowed me to address two important research questions (RQs).

• [RQ1] How do controllability and explainability affect the user perception,

user experience and user engagement with a hybrid social recommender

system?

The main research question in this dissertation is to explore how do controllability and

explainability affect the user perception, user experience and user engagement of the so-

cial recommender system. In this dissertation, I bridge this gap by building user interfaces

that provide social recommendations in ways that are compatible with effective user inter-

action and that can transparently present the recommendation reasoning process. I start

by building a set of controllable user interfaces that supports the users to effectively fuse

the multi-dimension recommendation relevance for different social information needs. I then
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follow a stage-based participatory process to design a set of explainable user interfaces by

exploring the recommendation reasoning process, user preference, and user performance. To

assure the effectiveness of the interfaces, I conduct several user studies [132, 134, 136, 135].

These studies focused on exploring an effective design of user-controllable and explainable

interfaces, which allows users to fuse multiple relevances for influencing the presentation of

recommendation as well as seeking the explanation of the received recommendation. Finally,

I integrated the evaluated controllable and explainable user interfaces into a hybrid social

recommender system. I discussed the effects on objective and subject metrics as well as

examined the system though a user-centric evaluation framework.

• [RQ2] Is there an interaction effect between controllability and explainability

in a hybrid social recommender system?

The secondary research question is to identify the interaction effect between control-

lability and explainability, which enhances a different level of system transparency. Many

studies have been investigated the effects of building controllable [98, 104, 56, 34] or ex-

plainable user interfaces [58, 126, 9, 140, 104] for recommender systems. However, neither a

direct comparison of these interfaces nor the interaction effects between controllability and

explainability were studied, i.e., little is known about how the user will interact with the

system when both the fusion process and reasoning process are transparent. In my experi-

ence [132, 134, 136, 135], I found offering controllability and explainability in a hybrid social

recommender system can improve the user perception of control and trust, respectively. It

shows preliminary evidence that the different levels of system transparency may contribute

to different user perceptions as well as be adopted in different information-seeking tasks.

Since controllability and explainability provide a different level of transparency to the sys-

tem, it is crucial to understand how a user will interact with a system that provides multiple

levels of transparency.
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1.3 CONTRIBUTIONS

The contributions of this dissertation can be summarized in four-fold.

1. This dissertation systematically explores the effective design of the user-controllable and

explainable interfaces and demonstrates the value of integration these interfaces into a

hybrid social recommender system. The experiment results provide empirical evidence to

explain the user experience and interaction pattern in the proposed controllable and ex-

plainable interface design. I build a conceptual framework to explain the user interaction

patterns which can be contributed to the theoretical confirmation and extension. The

design can be easily extended to other recommendation systems in different contexts.

2. This dissertation introduced several real-world information-seeking tasks in human ex-

periments. The experiment data would be beneficial in explaining the social information

seeking and exploration of applying social recommender in different information needs.

It provides a data-driven analysis of how users leverage a recommender system when

the recommendation fusion and reasoning is transparent. These findings provided design

implications that can be extended in a different context of AI-driven applications.

3. This dissertation presents a pioneer work that explores the use case of bringing effective

controllable and explainable interfaces in a hybrid social recommender system, which

contributes to the transparent on both of the recommendation fusion and reasoning

processes. This work helps to understand the effect of user perception on a different level

of system transparency. The interaction effect between the controllable and explainable

interfaces are also discussed in this dissertation.

4. This dissertation has great potential to extend to other recommender systems beyond this

context, thereby making significant contributions to the research topics on the intelligent

user interface (IUI), fair, accountable, and transparent (FAT) recommender systems (RS)

as well as the domain of Explainable AI (XAI).
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1.4 DISSERTATION ORGANIZATION

The chapters of this dissertation are organized as follows:

“Chapter 2: Related Works” presents a literature review on the related research

topics and works of this dissertation.

“Chapter 3: Research Platform and Experiment Settings” presents introduc-

tion of an event-based social recommender system, the recommendation models and the

experimental measurements.

“Chapter 4: User Controllable Interfaces for a Hybrid Social Recommender

System” presents the pre-study results on exploring effective user-controllable interfaces for

a social recommender system. The content of this chapter were partially published in [132]

and [137].

“Chapter 5: Designing Explanation Interfaces Using Stage-based Participa-

tory Design Approach” presents the investigation of designing explanation interfaces for

a social recommender system. The content of this chapter were partially published in [133].

“Chapter 6: Evaluating Prototypes of Explanation Interfaces” presents the

evaluation of the proposed explanation interfaces for a social recommender system. The

content of this chapter were partially published in [136, 135].

“Chapter 7: Explaining Social Recommendations in an Interactive Hybrid

Social Recommender” presents the experiment results of adding explainable user inter-

faces to an interactive hybrid social recommender system. The content of this chapter were

partially published in [136].

“Chapter 8: Evaluating Explanation Interfaces using Crowdsourcing Ap-

proach” presents the evaluation of the proposed explanation interfaces using crowdsourcing

approach.

“Chapter 9: Controllability and Explainability in a Hybrid Social Recom-

mender System” presents a lab-controlled, large scale user study of the proposed user

controllable and explainable interface.

“Chapter 10: Conclusions” presents the conclusion of this dissertation and the dis-

cussions of limitation and future works.
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2.0 RELATED WORKS

2.1 SOCIAL RECOMMENDER SYSTEMS

Social media is a place to share various kinds of information as well as react to information

shared, by using tags, likes, comments, or votes. The rapid growth of both content and data

can be leveraged to provide accurate item recommendations, but it can also cause information

overload, which makes it harder for users to filter interesting or relevant content [50]. This

problem has been addressed in two different ways, forming two main streams of research on

social recommendation. The first stream focuses on improving the traditional recommender

approaches (i.e., ranking-based collaborative filtering [69]) by using various kinds of social

data available in social media systems such as social links [82], tags [7], or reviews [99]. The

second stream focuses on people recommendations, which aims to reduce social overload

on making people-to-people connections. Within social media, recommendations of “people

you may know” [52] or new and interesting people to follow [51] could remarkably improve

access to relevant information. However, the value of people recommendation is not limited

to improving information access. For example, an online dating service can enable strangers

to establish new personal relationships, while academic recommendation helps to find co-

authors and project collaborators [117]. In this dissertation, I follow the second stream

(people recommendation) and explore it in a primarily academic context.

The people recommendation aims to reduce the social overload on people-to-people con-

nections. For example, the social matching application to facilitate the engagement between

people, like online dating service or people you may know in social media. The connections

can be categorized as four relations [50]:
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• Symmetric v.s. Asymmetric: The symmetric relationship requires the agreement between

the two parties in the connections. For example, when one user A sends an invitation

to the other user B, it requires approval from user B to establish the connections. The

friend request on Facebook is considered an asymmetric relationship. On the other hand,

the connection could be asymmetric if the relationship is one-way. For example, when

user A sends an invitation to the user B, the single connection is established without the

approval from the other party. The following request on Twitter can be considered as

an asymmetric relationship.

• Confirmed v.s. Non-Confirmed : The symmetric or asymmetric connections can be with

or without confirmation from both parties. Typically, the symmetric relationship requires

confirmation from both parties. An asymmetric may (not) require a confirmation from

one side.

• Ad-Hoc vs. Permanent : The connections can be established for permanent or just for

particular time or events. For example, on Facebook, once you agree on the friend

request, then you become friends until one side decides to terminate the connections. In

some cases, we may decide to establish the connections for particular events, e.g., the

connections between the participant of a summer hiking trip.

• Different Domains : The domains decide the property of the social recommender system.

For example, in Facebook, the connection would be friends, colleagues, or families. In

social media like Linkedin, the connection belongs to a more professional relationship.

Users could seek social recommendations based on different information needs. For ex-

ample, a user may approach the social recommender system for finding new friends with

similar interests or re-connect the acquaintance for chatting or browser. The scenario differ-

ence would change the method when recommending social connections. The study from [17]

presented the social coverage in different recommendation algorithms, i.e., the content-based

method would generate a list of social recommendations with more unknown users versus

a social-based method would contain more known users in the list. An effective social rec-

ommendation is scenario-dependent, i.e., there may not be a “one-fit-for-all” approach for

all social information needs. In this section, I will introduce three social recommendation

examples based on the literature review.
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First, recommending people to connect with is a well-known function of social media

[35]. It establishes a mutual connection between users on social media, which builds the

social network or social capital in cyberspace. The property of connecting is varied in many

different domains. The social recommender systems play a role in providing suggestions

for users to establish mutual connections, which require a mutual agreement from both

parties. The mutual connections vary in different systems, e.g., it may be a friendship in

a social networking service, professional networking between the employer and employee

in an employment-oriented social networking service, or a co-authorship in a knowledge-

based social network service. The connections can represent online as well as hyper-local

relationship. For example, the event-based social system presented in [10], provided a “make

a connection” function for connecting conference attendees and conference paper authors.

Second, since not all connections require mutual agreement, an important kind of rec-

ommendation is recommending people to follow. The goal is to establish a follower-followee

relationship between the users. More specifically, the goal is to establish the follower and fol-

lowee relationship between the users. For instance, on Twitter, the user can follow a friend,

politician, or movie star, which is a one-way relation. The study of [48] attempted using a

graph-based method to generate the recommendation on Twitter. The algorithm is applied

random-walk techniques based on the network follower and followee. An offline experiment

and online A/B testing were scheduled to test the approach, but how does the method can

facilitate the user to follow the interested person is not reported in the paper.

Third, social media is not limited to affirm or enforce the existing social connections

but may aim to extend the social network beyond the cycle. The third stream of social

recommendation research focuses on recommending strangers to the user. It is a useful

function in many different applications, e.g., seek advice from an expert, to find new co-

work opportunities or to know new friends. It may be a challenging task due to the fact of

cold-start issue. An efficient recommender system requires robust signals (user profile data)

to predict the valuables item to the user. However, in a scenario for recommending strangers,

the system may not have sufficient information to generate such suggestions. In the study of

[53], the authors introduced a social networking service called StrangerRS that attempted to

recommend the unknown user in a corporation. Their approach is to “present” the related
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information between the two parties who may be potentially interested in connecting. A

user interface was designed and deployed in a controlled field study. The experiment results

showed the interface could increase the number of unknown people recommendation to users.

However, how to apply the interface to improve the preference elicitation is a remaining open

question.

2.2 RECOMMENDER SYSTEM INTERFACES

There are studies that tried to enhance the recommendation diversity through exploratory

search interfaces. For instance, Orso et al. [100] introduced an interface for interactive

search, which uses overlaying graphs representing different information sources. The stud-

ies of [67, 68] proposed interfaces which can present multi-faceted information on map or

touch screen to diversify and explore the generated recommendations. The studies of [147]

adopted dimensional-reduction techniques to project the multidimensional data in two or

three dimensions for the purposes of visualization. SciNet interface [111, 42] recommends

keywords spatially in an interactive visualization to help diversification in exploratory search

in a visualized surface of polar coordinates. In the field of information retrieval, a similar

idea has been discussed to give users the capability to navigating and visualizing the search

results in a multidimensional image renderer [28]. The work of [79] further adopted a 3D item

space visualization for presenting multi-faceted data and user preferences in a movie recom-

mender using the collaborative filtering approach. The users can interactively manipulate

the recommended item by adjusting the “landscape” on the map.

Providing a visual interface is another approach to solving the diversity recommendation

problem. A visual discovery interface to increase the CTR rate in the e-commerce website

[122]. An interface to use a two-column format to present the two side opinions of controver-

sial subjects [83], which may reduce the distance of latent space among users’ ideology [44].

Explainable interfaces can be used to justify the reason for recommendations for the user to

actively access different contents [151, 150]. Pu et al. [107] designed an explanation interface

to justify the recommendation result. The explanation is useful for the user to understand
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the reason for getting a positive recommendation. The user can determine to explore more

based on the explanation. Schafer et al. [113] proposed a user-controllable interface for the

user to interactively change the ranking or feature weighting, for a better-personalized rank-

ing. It is a common approach to adopt user interfaces to show the various recommendation

result [36, 147, 60, 142]. In this section, I will introduce two examples that inspired my

dissertation works.

First, Verbert et al. [140] proposed TalkExplorer, an interactive visualization developed

on top of the Conference Navigator system (CN3) [10], which visualizing recommendation,

tags, and users with the content-based and tag-based recommender. The goal of the system is

to provide a talk recommendation of a conference with the explanation of the recommended

item in a transparent way and to support exploration and control by the end-users. The

target users are the conference attendees who need to explore the interesting talks to attend

or find some scholars to chat with. The visualization helps the user to gain the interact

with the recommendation result by the presence of multiple relevance prospects. The high-

level characteristics can be summarized as 1) explore the interrelationship between users as

well as agents and users. 2) identify relevant items (conference talks) in multiple relevance

prospects. 3) provide transparency and increase the trust of the recommended items. The

low-level characteristics of this visualization are: to discover a set of recommended items.

The user is with no prevalent knowledge of the target and location for an explore action.

After the exploration, the user can identify the relevant recommended items. Three types of

visualization tasks are proposed: 1) to show the relationship between items associated with

different entities. 2) to show clusters of talks linked by connected components. 3) the user

can select and confirm the recommended items in a textual list.

The visualization design of TalkExplorer can help to improve user understanding of the

“black-box” issue behind the recommendation system by providing the controllability and

multiple relevance relationships. The user can select the entities from the tag, user, and

recommended agents that to be displayed in a clustering style map with related links. The

user can further confirm or explore the detail by clicking the visualized clustering or entities

through a textual ranking list. The main contribution of this paper can be summarized as

1) the system provides visualization to helps users to efficiently and correctly explore the
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conference talks in multiple relevance prospects, which ’s hard on a separate page or tables.

2) the visualization helps the users to understand the reason for getting the recommended

item by revealing the relationship between data and algorithm. The user can directly inspect

the clustered recommended item from different agents or users.

Second, Parra et al. [104] proposed SetFusion, a user-controllable transparent hybrid

recommendation interface with the CN3 system. The interface adopted a Venn diagram to

show the item interrelationship of multiple recommender algorithms. The goal of the sys-

tem is to provide explanations on a paper recommender system for improving the aspects

of privileged transparency, scrutability, and user satisfaction. The target user is the con-

ference attendee who needs to filter the information for the useful paper of the conference.

The visualized interface helps the user to gain more controllability and inspectability on the

recommended items from multiple recommended methods. The high-level characteristics

can be summarized as 1) explore the recommended item interrelationship between a fusion

of weights and recommended methods. 2) identify relevant items (conference papers) in a

hybrid recommender system. 3) provide controllability on the fusion of methods and the in-

spectability on the recommended item list. The low-level characteristics of this visualization

are: to discover a set of recommended items. The user is with no prevalent knowledge of

the target and location for an explore action. After the exploration, the user can identify

the relevant recommended items. Based on the goal, three visualization task was proposed,

included 1) the list of recommended items: presents recommended papers ranked by rele-

vance from high to low. A color bar was attached to the left side of each paper to indicates

the used recommender methods. 2) the weights sliders: use to control the fusion of three

recommendation methods. Each slider was associated with the recommendation method

with one color code. 3) the Venn diagram: this is the primary visualization task. This is

a set-based representation of the recommended item by each method. Three ellipses repre-

sent the methods and each paper as the small cycle of the recommended paper. The paper

suggested by more than one method was described in the intersection of ellipses.

According to the visualization tasks, the paper visualizes three types of information in the

system, including the content of the conference paper, the weights of allocating to each rec-

ommender algorithm and the standalone and intersection relevance from three recommender
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algorithms. The content of the conference paper is to present the paper title, author, and

abstract. The method weights are a linear number from 0 to 1 shows by the sliders with

associated color code. The standalone and intersection relevance are displayed on a Venn

diagram with three color-coded ellipses and the four intersection areas. The user can explore

the paper cycle in a different location for the item recommended by a single method (stan-

dalone) or the item recommended by two or more methods (intersection). The visualization

design of SetFusion provides an intuitive interface for the user to explore the recommended

item between one to three recommended methods. The Venn diagram is a widely used vi-

sualization to show the intersection relationship between sets of data. The user can gain

the transparency of the recommended items from multiple recommended algorithm by the

explanation of the diagram, which leads to higher user perception and satisfaction. The user

can explore the different combination of methods by changing the slider and confirm the

recommended item in the ranking list.

2.3 CONTROLLABILITY IN RECOMMENDER SYSTEMS

Offering users some form of control over the recommendation process can be achieved by

two approaches. The first method is through preference elicitation: let the user tell the

system what they like, e.g., through forming a user profile [62] or through an adaptive

dialog [73]. The second method is through controlling the results: let the user adjust the

recommendation profile [55] to fuse recommendations from different sources of relevance

[132, 29] or to influence the presented layout [9, 140, 104]. While focused on control, all

these approaches contributed to increased transparency of the recommendation process.

Hybrid recommender systems [12] have been gradually becoming more and more popular

due to their ability to combine strong features of different recommender approaches. One

promising hybridization design is the paralleled hybrid recommender [12], which fuse rec-

ommendation results produced by diverse types of existing recommender algorithms as well

as multiple kinds of traces left by modern internet users, i.e., browsing trails, bookmarks,

ratings, created social links, etc. Typically, paralleled hybrid recommender fuses multiple
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relevance sources by assigning static weights to different sources. The optimal weights are

trained or learned using ground truth data (i.e., known ratings). The problem with this

approach is that users might seek recommendations for different reasons and in different

contexts. The individual sources in a hybrid recommender might become more or less valu-

able depending on each case. As a result, while the “optimal” static fusion could provide

the best ranking with high algorithm accuracy, it might be sub-optimal for the users in

some specific cases. The problem of optimal source fusion has been originally explored in

the domain of information retrieval where it was demonstrated that the user might be in a

better position to decide which weight should be assigned to each relevance source in each

case [3].

Bringing user control to a hybrid recommender system allows the users to have an im-

mediate effect on the recommendations [62], i.e., the users can further filter or re-sort the

recommendation based on their preference or information need. It usually requires an inter-

active visualization framework that combines recommendations with visualization techniques

to support user interaction or intervention into the recommendation process [56]. The idea

of the user-controllable interface of different recommendation approaches was originally pre-

sented in [113]. Bostandjiev et al. [9] suggested a slider-based interface that the user can

adjust the weights of the items and the social connections. Following that, the use of sliders

as a way to support user-controlled fusion has been explored in the domain of recommender

systems [104] and information retrieval [30] brings additional evidence in favor of using slid-

ers for user-controlled personalization. Verbert et al. [140] encouraged users to choose the

most appropriate sources of relevance for each case and provided a cluster-map interface to

support user-driven exploration and control of tags, agents, and users. Ekstrand et al. [34]

discussed a recommender-switching feature to let the users choose recommender algorithms.

Tsai and Brusilovsky [132] offered user-controllable interfaces, a two-dimensional scatter-lot,

and multiple relevance sliders, to a social recommender system for conference attendees.

Bailey et al. [5] further provides visualization for data analytic tasks using the conference

data.

User controllability has also been recognized as a crucial component in supporting the

exploratory search, i.e., allowing the users to narrow down the number of items and inspect
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the details during the information-seeking process [29]. Ahn et al. [2] presented a summary

of search results in the form of entity clouds, which allows the users to explore the results in a

controllable interface. Han et al. [54] offered users an option to re-sort people search results

based on multiple user-related factors. Di Sciascio et al. [30] proposed a uRank interface

for understanding, refining and reorganizing documents. [29] integrated controllable social

search functionality into an exploratory search system. An effective interactive visualization

representation can enable users to control the process of recommendation [56].

2.4 EXPLAINABILITY IN RECOMMENDER SYSTEMS

An alternative approach to increase the process transparency and user satisfaction explored

in the literature is providing explanations for recommendations [19]. Explanations that

expose the reasoning behind a recommendation could especially increase system transparency

[126]. The recommender system is generating recommendations with user-generated data

and algorithms. The “reasons” of the receiving the recommendations usually stay in a

“black box” [58] that the user has little understanding about the mechanism behind the

system. That is, it is a system with low transparency, which has been proved the association

with low user satisfaction [126]. To gain the transparency, the study of [126] argued to

provide proper explanations on helping the user to understand the related information of

the recommending items. That is to give more details that make the users realize the

reasons for receiving the recommendations. In a user-centered evaluation, the explanation

may significantly contribute to the user experience. The author of [126] summarized seven

explanatory goals.

• Transparency : the goal is to justify how the recommendation was chosen. In some

domains, the transparency of the system is quite important, e.g., the medical decision

support system [11]. It is also crucial in increasing usability and user experience, which

with a higher user acceptance and preference [119].

• Scrutability : the goal is to let a user reflect the incorrectness of the system. The scrutabil-

ity allows the user to change the “reasoning” of the system, or controls the weighting or
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parameter that re-order or re-generate the recommendations. An explanation function

may allow the user feedback or control to gain the system scrutability.

• Trust : the goal is to increase the confidence in the system. The user may intend to re-use

the system due to the trustworthy from the system [18] or an accurate recommendation

algorithm [91]. The two mentioned factors can be improved by a high-quality explanation

function [78].

• Persuasiveness : the goal is to convince the user to try. The explanation can increase the

user acceptance of the system suggestions [58], which actively influences the user behavior

to utilize the system. A proper explanation may help the user to realize the reasons for

receiving the recommendation and then increase the acceptance of the suggestions.

• Effectiveness : the goal is to help the users make a good decision. In the decision support

system, the system aims to help the user to make the right decisions. For example, in a

movie recommender system, the system provides more detail about why the user should

select a particular movie. The explanation may help the user make a better decision. In

a recent “human in a loop” research, an explanation function can plan a crucial role in

helping the user to make the critical decisions [65].

• Efficiency : the goal is to help users make a decision faster. Efficiency is one of the factors

of system usability. It represents how easy the user can make the concrete decision from

the recommendations. It is a “critiquing” process during the utilization [106] across

different user preference. A critiquing could be determined by the time used during the

search or exploration processes.

• Satisfaction: the goal is to make the system enjoyable. It is a critical factor in consti-

tuting the user experience. The user may enjoy to use (or re-use) the system if they feel

the system usability is high. A high-quality explanation function is positively associated

with user satisfaction [41], which is an important factor in a user-centered evaluation

framework [71].

Recommender systems explored two principal ways to offer users some form of control

over the recommendation process. The first method is through preference elicitation: let the

user tell the system what they like, e.g., through forming a user profile [62] or through an

adaptive dialog [73]. The second method is through controlling the results: let the user adjust
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the recommendation profile [55] to fuse recommendations from different sources of relevance

[132, 29] or to influence the presented layout [9, 140, 104]. While focused on control, all

these approaches contributed to increased transparency of the recommendation process. An

alternative approach to increase the process transparency and user satisfaction explored

in the literature is providing explanations for recommendations [19]. Explanations that

expose the reasoning behind a recommendation could especially increase system transparency

[126]. In an attempt to combine these independent streams of research, I focus on adding

explanations to a controllable interactive social recommender interface and study users’

subjective feedback and behavior across all design components.

Many scholars have suggested different explanation functions to increase the inspectabil-

ity of the recommender system [75]. The function provides the transparency that let users

realize how the system works [125, 58]. The exposure of the recommendation process through

visual interfaces can also increase the inspectability of the system [70]. Many different types

of research have been done on this subject. For example, Tsai and Brusilovsky [131] provides

recommendation visualization to increase the transparency of the recommender system. Ver-

bert et al. [140] provides a set-based visualization to let the user explore the desired recom-

mendation items. Other researchers further indicated that the value of explaining interfaces

could enhance user experiences. The explanation interface was associated with the percep-

tion of recommendation quality [125], gaining trust in the system [24] and experiencing the

competence of the system [144]. The studies of [45, 98, 97] have mentioned that providing a

controllable interface in the social recommender system can increase overall user satisfaction.

The authors adopted interactive graphical interfaces to present the social recommendations

that enable the controllability of an item or user-level preference in a collaborative recom-

mender system.

Enhancing explainability in recommender systems has drawn more and more attention.

Explaining recommendations can achieve different explanatory goals by single-style or hybrid

explanations [125, 116, 75]. A number of explanation interfaces and approaches have been

proposed and studied to assess the improvement of user satisfaction and other aspects [125].

However, most of the evaluation focus on solely user perception or preferences [103, 75]. In

most cases, it remains unclear whether different kinds of explanations could improve the
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objective parameters of user performance rather than their perception of which option is

better while inspecting the explanation interface [70]. In recent years, researchers in the field

of recommender systems explored a range of advanced interfaces to support exploration,

transparency, explainability, and controllability of recommendations [56].

Controllability enabled end-users to participate in the recommendation process by provid-

ing various kinds of input [9, 104, 131], e.g., adjust preference or explore recommendations.

Transparency features allowed interactive recommender systems to deal with the “black-

box” problem, i.e., to explain the inner logic of the recommendation process to the end users

[120, 141]. A visual interface for the user-controlled hybrid fusion of recommender sources

cannot assure that the users will understand the underlying rationale of each contributing

recommender; namely, the recommendation algorithm [62]. In the case when a recommenda-

tion mechanism is too complicated for non-professional users to explain, some considerable

transparency could be achieved by explainability, i.e., the system may just need to justify

why the recommendation was presented [124, 132, 29].

I believe that to increase the transparency of social recommender systems, and inter-

active user interfaces should be augmented with multiple kinds of explanations for each

recommendation source or engine [41, 75]. For example, Papadimitriou et al. [103] pro-

posed a three-dimensional explanation model using human, feature, and item information

for explaining social recommendations. A useful explanation model would help users to un-

derstand the recommendation reasoning process, which allows the users to make a better

decision or persuade them to accept the suggestions from a system [125]. Nonetheless, little

is known about how the user will interact with the system when both the fusion process and

reasoning process are transparent.

2.5 USER-CENTRED DESIGN AND EVALUATIONS

According to the literature review, there is two mainstream of evaluating social recommender

system (RS) with beyond relevance factors. The first stream is the offline experiment to test

the effect of applying the beyond relevance factors to RS, using an existing data set. The
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standard approach is to conduct cross-validation for algorithm efficient or learning-to-rank

for ranking performance. The second stream is conducting human subject study to see if the

user-perceived or satisfied the recommendation system through the interface or modeling

algorithm. The two mainstreams will be discussed in this section.

• Offline Experiment

The offline analysis is one stream of the evaluation of beyond-relevance factors. Avoiding

the trade-off between accuracy and beyond relevance factors is hard. In this review, I found

the literature mentions the offline evaluation in two ways: 1) test with proposed metrics

or 2) test at a fixed accuracy level. For example, Moody et al. [? ] divide the Top-

N recommendation into different quadrants. The adopted the entropy metric to measure

the diversity of a list of recommendation results. Vargas et al. [139] proposed learning

to rank evaluation framework with novelty and diversity metrics. The idea is to provide

configurations on the rank and relevance of diversity and novelty metrics. The novelty

metric is defined as:

Novelty = EPC = C
∑
ik∈R

disc(k)p(rel|ik, u)(1− p(seen|ik)) (2.1)

where disc(k) represents the parameter on ranking position, p(rel|ik, u) represents the

parameter on item relevance. 1 − p(seen|ik) is the item popularity which measures the

frequency of viewing by other users.

The article of [110] adopted the SVD with 50 features, included accurate, novelty, and

diversity. By an offline music dataset, the goal of the experiment is to generate the most

precise recommendation list. The analysis showed a best-recommended model could be

combined with different features in each objective, but not all of the objectives. This study

adopted the recall, precision, and the EPC model to test the model performance.

Pampin et al. [101] analyzed the performance of item-based and user-based k-NN ap-

proaches in quality factors of accuracy and diversity. The authors used a MovieLens dataset

with a different ratio of the user and item-based approaches. The experiment result showed

a user-based approach generates more different results than the item-based approach. They

propose many useful metrics to evaluate neighborhood-based recommender systems. For
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example, the metric of 1) Diversity: pairwise comparison of the items in the list by cosine

similarity. 2) Popularity: based on the rating for the item and the total number of ratings

for all items in the system. 3) Uniqueness: based on the difference between the two recom-

mendation list generated by various algorithms. 4) Precision: based on the intersection of

recommended and reinvent items.

Bellogin et al. [6] conducted a study to compare three recommendation approaches:

rating-based, content-based, and social techniques. The experiment was used three famous

offline datasets for different approaches with a diversity-enhanced metric, e.g., α-nDCG [22]

plus the accuracy metric like NDCG. The test result showed the beyond-relevance factors

were shown in a different dataset with different methods. This result showed the beyond-

accuracy was varied between the dataset. This limitation leads to the second stream of the

evaluation approach.

• Human Subject Study

It is necessary to collect user feedback to evaluate the factor of beyond. Some literature

provided the framework for assessing the user feedback on RS. Pu et al. [108] proposed a

study to determine a set of recommendation quality criteria of a user’s perception of the

usefulness of the system. They classified the rules like 1) Perceived Accuracy: the degree

of the recommended items match the user’s preference and interests. 2) Novelty: the user

receives new, and interest suggested items. 3) Attractiveness: the recommended items were

attracted the real desire and attraction. 4) Diversity: the users were not bounded by the

same set of recommended items. 5) Context compatibility: consider the context features

to provide a context-aware recommendation. The authors conducted a correlation analysis

of the proposed 32 criteria within 15 categories. The result showed user-perceived higher

satisfaction by the perceived accuracy and novelty.

Knijnenburg et al. [71] proposed a framework for evaluating users’ experience of rec-

ommender systems. The framework included a factor set of accuracy, satisfaction, choice

difficulty, and diversity. The authors surveyed to collect the subject feedback from partic-

ipants. The study result showed when users perceived the diverse of the recommendation

list. It is with a positive relationship with perceived accuracy and eventually leads to higher
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user satisfaction. Ekstrand et al. [33] followed the framework to conduct a user study state-

of-the-art recommendation algorithms. The experiment result showed the user preferred on

the SVD item-item algorithms, but not the user-user algorithms.

Ziegler et al. [153] evaluated the recommendation diversification through a user study.

The user was randomly assigned to a user-based and item-based CF recommender. Each of

the users was asked to rate the relevance, diversity, and overall satisfaction. The experiment

uses a slight diversification on item-based CF increased user satisfaction, but not in user-

based CF. Celma et al. [15] conducted a similar study on music recommendation. The

author asked the users to rate the familiarity and appreciation of the songs recommended

by three algorithms. The experiment showed a complementing pattern between novelty and

accuracy metrics.

Hu et al. [60] proposed a visual interface to display the category diversity, compared to

the ranking list. They adopted the interface from an online shopping site with an organization

interface for a user to browse the related products. The user study by questionnaire showed

the user did perceive the product diversity and with higher user satisfaction. A similar visual

discovery study was conducted by [122]. They used the Click-through-Rate to examine if

the users browse a more diverse set of products.

Willemsen et al. [146] considered a user study on three levels of diversity - low, medium,

and high. For each level, the perceived diversity and attractiveness were measured. The

experiment result indicated the user did perceive high diversity in the high degree of di-

versity, but not for the attractiveness factor, which means the user may not appreciate a

recommendation list with variety. A similar study was done by [39] to put the ”diverse

item” in a different position of the recommendation list. The pilot study showed the users

were interested in the extra information about the diversity. Castagnos et al. [14] showed a

user survey result for the users’ appreciation of the transparency of the recommended items.

Zhang et al. [152] proposed a music recommendation system and offered a user study to ask

the participants to record the familiar, enjoyable, and serendipity. The serendipity-enhanced

interface was with high user preference compared to the baseline, although it is less pleasant

than the accuracy-oriented interface.

One advantage of human subject experiments is to explain user experience. An efficient
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recommender system usually consists of multiple facet components, i.e., user interface, in-

teraction mechanism, algorithm, or even aesthetic. A survey of a direct question may not

always reflect the full user feedback. For example, a survey question of “I am satisfied with

the system.” with five or seven scales is a common question to collect the user feedback

of system satisfaction. But it is not clear how should the researcher to interpret the feed-

back to a particular system aspect. The user may feel the satisfaction of the system due

to a user-friendly interface, no matter how efficient the recommendation algorithm is. If a

researcher considers this as the complete user feedback and uses it as the evidence of an

efficient algorithm, the result is biased by the unobserved variables.

It is challenging to “explain” the user experience for the proposed diversity enhanced

interface design. Knijnenburg et al. [71] proposed a user-centric evaluation framework for

recommender systems in explaining the user experience. The framework is structured with

two parts. First, the measured latent concepts should be examined through exploratory

factor analysis (EFA), so a researcher can confirm the latent concepts are associated with

a certain conceptual component in the framework. Second, the research needs to test the

structural relations between the manipulations (system aspects), latent concepts, and behav-

ioral measurement [72]. For the recommendation system evaluation, the author proposed a

framework represents six interrelated conceptual components, which can extensively answer

the meditating effects beyond the objective and subjective aspects.

1. Objective System Aspects (OSAs): As a recommender system is typically multi-

faceted with algorithms and interface designs, it is required to isolate the subset of all

system aspect in each experiment, so it is possible to claim the effects between control

measurements and the other measurements. Hence, in this framework, Knijnenburg et

al. [71] defined the objective system aspects as the system aspects that are currently

being evaluated, for example, the algorithm, number of recommendations, interface de-

sign or other interactions mechanisms. In this dissertation, the OSA represents the

diversity-enhanced interface with different manipulations.

2. Subjective System Aspects (SSA): The ultimate goal of this framework is to ex-

plain the user experience among different objective system aspects. However, even the

single system aspect is isolated for testing; the users still need to interact with the mul-
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tifaceted system. The user experience should be incrementally increased through the

controlled and manipulated aspects. For instance, if an experiment manipulates the rec-

ommendation algorithm as the objective system aspect and remains the interface design

as controlled aspects, the key is to measure if the user can perceive the manipulation

so that it can contribute to the overall user experience. Hence, Knijnenburg et al. [71]

proposed the subjective system aspects as the mediating variables of user experience,

user interactions, and the objective system aspects. The variables are the moderators

that help to establish connections through user perception on certain system aspects.

3. User Experience (EXP): The user experience is a self-relevant subjective metric that

reflects the emotions and attitudes of a user while using the system. Knijnenburg et al.

[71] classified the user experience into three types. First, the system-related user experi-

ence is measured user perception of the system’s effectiveness. Second, the process-related

user experience that determines if the user can choose or browse the recommendation effi-

ciently. Third, the outcome-related user experience measures if the recommendations can

help to decrease choice difficulties. The three types of user experience, which comes with

multiple constructed survey questions, can help researchers to understand and explain

the overall user experience on different system aspects.

4. User Interaction (INT): One of the crucial aspects of using the recommender system

is user interactions. There are two kinds of approaches to measuring user interactions:

subjective or objective. The subjective method is based on the user feedback regarding

the interactions while using the system. For example, the users may be questioned on the

intention of (re-)using the system or rating the recommendations. The objective approach

used the logged data, i.e., the number of recommendations clicked and inspected by the

user or the time they spent on using the system. The user interactions help to explain

and understand the effects of SSA and EXP above.

5. Personal and Situational Characteristics (PCs and SCs): The final two compo-

nents are related to the user instead of the system aspect. These two are used to test the

influence of the user’s characteristics and situational awareness while using the system.

The factors are beyond system aspects but have a significant impact on EXPs. It is

essential to consider the difference in the personal characteristics, e.g., the acceptance of
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the privacy and the expertise of using the system. Personal aspects usually play a crucial

role in subjective feedback, e.g., a user who with better knowledge of the system may

have a better chance to realize the technical details of the system. It may contribute

to a better trust of the advanced interface design. On the other hand, the situational

characteristics are worth considering while explaining the user experience. For example,

does the user really interact (or realize) the function in the system? In many cases, it

is not surprising that the users “ignore” the new design functions. A post-experiment

survey can help to measure if the user realizes or adopts the specific system components.
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3.0 RESEARCH PLATFORM AND EXPERIMENT SETTINGS

This chapter presents the research platform and the shared experiment settings in my dis-

sertation. I first introduce the social recommender system Conference Navigator and then

continue with the detail of the recommendation models, the measurements of recommen-

dation quality and diversity. The research platform and experiment settings were adopted

across all studies in this dissertation.

3.1 RESEARCH PLATFORM: CONFERENCE NAVIGATOR

Conference Navigator 1 (shown in Figure 1) is a online conference support system, which has

been developed to third version [105] and adopted by many different research and studies

[140, 10, 104, 127, 130, 131, 128]. The system is with tools to help the conference attendees in

browsing the conference program, publication, author, and attendees. Conference Navigator

system has been used to support more than 45 conferences at the time of writing this paper

and has data on approximately 7,045 articles presented at these conferences; 13,055 authors;

7,407 attendees; 32,461 bookmarks; and 1,565 social connections.

The users can follow or connect with scholars based on their interests (shown in Figure

2). The following function is a one-way relation without confirmation from the target user.

The connect function requires a confirmation to establish mutual relations. The user can use

the functions for different information-seeking scenarios, e.g., to pay attention to a scholar

with similar interests or to find a prospect collaboration in the conference venue. One of

the major functions is social recommendation for filtering relevant authors or attendees by

1http://halley.exp.sis.pitt.edu/cn3/portalindex.php
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Figure 1: Screenshot of the Conference Navigator System’s front page.

Figure 2: Screenshot of Conference Navigator System’s social recommendation page.
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fusing multi-relevance data. The function is aimed to help the users to facilitate social

interactions better. However, it also creates a challenge in providing the recommendations

in a hybrid model that fused multiple relevances. This dissertation presents my exploration

of how to bring controllability and explainability to a hybrid social recommender system in

the Conference Navigator system.

3.2 RECOMMENDATION MODELS

The hybrid social recommender system will rank the recommended attendees by their rel-

evance to the target user. It is a content-based recommender system that personalizes the

information to a user based on users’ interests or relevance. The system uses five separate

recommender engines (models) that rank other attendees along five dimensions. I select the

similarity measure through the nature of each recommendation model. First, the Publication

Similarity is calculated by the text-similarity of their academic publication text. I use co-

sine similarity to measure the similarity between two termvectors. It is a common measure

for comparing the similarity between two documents in the area of text mining. Second,

Topic Similarity is calculated by their research interests. I use Jaccard similarity to measure

the similarity between sets of topical words, which are generated by the topic modeling ap-

proach. Third, the Co-authorship Similarity is the overlap and distance of the co-authorship

network. I measure the similarity through network distance and overlaps. Fourth, the CN3

Interest Similarity is the similarity of their bookmarks in the Conference Navigator system.

I use Jaccard similarity to measure the similarity of two sets of bookmarked items. Fifth,

the Geographic Distance is representing the distance between the user’s affiliation. I use an

ad-hoc approach to measure the geo-distance between two locations.

The recommendation models are discussed as below:

1. Publication Similarity is determined by the degree of publication similarity between

two attendees using cosine similarity [89, 138]. The function is defined as:

SimPublication(x, y) = (tx· ty)/‖tx‖‖ty‖ (3.1)
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where t is word vectors for user x and y. I used TF-IDF (Term FrequencyInverse Docu-

ment Frequency) to create the vector with a word frequency upper bound of 0.5 and lower

bound of 0.01 to eliminate both common and rarely used words. The TF-IDF method is

widely used in information retrieval systems and a content-based recommender system.

The formula is shown below:

tf(t, d) = ft, d (3.2)

idf(t,D) = log
N

|d ∈ D : t ∈ d|
(3.3)

where the t represents the word, d represents a certain document and D represents a set

of documents. “tf” stands for the frequency of a word in a document. “idf” represents the

inverse of the document frequency among the whole corpus of documents. The purpose

of tf-idf is to highlight the importance of a certain word in a document. For example, if

one word appears in all documents, it may refer to a preposition which with no actual

meaning. So I choose a ratio from 0.01 to 0.5 to eliminate both common and rarely used

words.

2. Topic Similarity is a metric that measures the Distance between topic distributions [31].

The approach assumes that a mixture of topics is used to generate a string (document),

where each topic is a distribution of topical words. In my dissertation, the topics were

generated by topic modeling, Latent Dirichlet Allocation (LDA), by classifying their

publication text [31]. A higher topic similarity means a shorter distance between the two

scholars’ research interests, i.e., the two scholars shared more common research topics.

3. Co-authorship Similarity approximates the social Similarity between the target and

recommended users by combining co-authorship network distance and common neighbor

similarity from published data. In pre-study, I adopted the depth-first search (DFS)

method to calculate the shortest path p [121] and common neighborhood (CN) [95] for

the number n of coauthors overlapping in two degrees for user x and y.

SimCo−authorship(x, y) = p+ n (3.4)
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Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data

structures. I plan to formalize the co-authorship as a graph. The shortest distance will

determine the DFS from the original user to the target user. It is a method to measure

how close the two scholars link to each other. The formula is shown as: Let G = (V,E)

be a graph with n vertices of V. For α = (v1, ..., vm) be a list of distinct elements of V ,

for v ∈ V (v1, ..., vm), let vα(v) be the greatest i such that vi is a neighbor of v, if such i

exists or be 0 otherwise.

The common neighborhood (CN) [95] indicates the intersection set of neighbors of a

given author. Here I define the set of neighbors as all co-authors observed at t. The

formula is shown as: Let G = (V,E) be a graph with n vertices of V. For (v1, ..., vm)

be a list of distinct elements of V . The common neighborhood graph (congraph) of G

is a graph with vertex set (v1, ..., vm) in which two vertices are adjacent if they have at

least one common neighbor in the graph G. The formula will return the total number of

common neighborhood or 0 otherwise. I consider only the one-degree relationship, which

is also possible to extend to more degrees based on the system’s needs.

In study 5-6, I further extend the method to Personalized Hitting Time [85]. The method

adopted the theory of random walk, which provides a more sophisticated performance

in ranking the recommendations. Assuming given a weighted digraph G, let (xt)t >= 0

be a standard random walk on G. Define the random variable ρj = intt : Xt = j. The

hitting time between two nodes i and j is

SimHittingT ime(i, j) = E(ρj|X0 = i) (3.5)

4. The CN3 Interest Similarity is determined by the number of co-bookmarked papers

and co-connected authors within the experimental social system [10]. The function is

defined as

SimCN3(x, y) = (bx) ∩ (by) + (cx) ∩ (cy) (3.6)

where bx, by represent the paper bookmarking of user x and y; cx, cy represents the friend

connection of user x and y. The intersection is calculated by Jaccard Coefficient.
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The Jaccard Coefficient (JC) [21] measures similarity between finite neighbor sets. Here

I defined neighbors sets as co-bookmark or co-connection sets at t. For any two given

authors, it is the intersection of their co-authors sets divided by the union of their co-

authors sets. It is computed as SimJC = ‖Γ(x) ∩ Γ(y)‖/‖Γ(x) ∪ Γ(y)‖, where x or y is

the given author and Γ(· ) represents the co-bookmark or co-connection they have.

5. The Geographic Distance is a measure of geographic Distance between attendees. I

retrieve longitude and latitude data based on attendees’ affiliation information. I used

the Haversine formula to compute the geographic Distance between any pair of attendees

[138].

SimDistance(x, y) = Haversine(Geox, Geoy) (3.7)

where Geo are pairs of latitude and longitude coordinates for user x and y, the Geo

information is determined by the users’ affiliation data. For instance, for a scholar

who comes from the University of Pittsburgh, the latitude and longitude coordinate as

(40.440625,−79.995886). I use Google Map API to convert the affiliation information

(city, country) to the latitude and longitude format.

The Haversine formula can be used to calculate any two points on a sphere,: gives the

Haversine of the central angle between them.

hav(
d

r
) = hav(ρ2 − ρ1) + cos(ρ1)cos(ρ2)hav(λ2 − λ1)) (3.8)

where hav is Haversine function stands for hav(θ) = sin2( θ
2
) = 1−cos(θ)

2
. d is the distance

between the two points (along a great circle of the sphere), r is the radius of the sphere.

ρ1, ρ2 are latitude of point 1 and latitude of point 2, in radians. λ1, λ2 are longitude of

point 1 and longitude of point 2, in radians.
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3.3 EXPERIMENTAL MEASUREMENTS

3.3.1 Recommendation Quality

In this dissertation, I adopted the following measurement for recommendation quality.

• TopN@K: The metric measures the accuracy of a list of k recommendations [88]. For

a user u, the TopN@K of a list of recommendation is

TopN@k =
|rel|
k

(3.9)

• Mean Reciprocal Rank (MRR): The metric measures a list of possible responses

to a queries [25]. The queries ordered by probability of correctness, which is measured

by an inverse value of the rank of the first correct answer, e.g., score 1
2

for the query of

correct answer shown in second place .

MRR =
1

k

|k|∑
i=1

1

ranki
(3.10)

where ranki is the position of the first correct answer (relevant item) for i-th query.

• Normalized Discounted Cumulative Gain (nDCG): The metric measure the qual-

ity of a list of recommendations, which considered the ranking of relevance recommenda-

tions [88]. A higher nDCG value means the recommendation better fitting the user pref-

erence in top-ranking positions. Perfect ranked recommendations would lead to nDCG

metric equal to 1.

nDCG =
DiscountedCumulativeGain(DCG)

idealDiscountedCumulativeGain(IDCG)
(3.11)

where IDCG is a perfect case of the query, which is the highest possible nDCG value.

DCG is defined as

DCG =

|k|∑
i=1

2reli − 1

log2(i+ 1)
(3.12)

where k is the number of recommendation, reli is the relevance score from 0 to 1.
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3.3.2 Recommendation Diversity

The system allows the user to rank and visualize items using on different aspects of relevance

through our proposed interface. The recommendation diversity can be measured by two

diversification models.

1. Feature Diversification: the user can select any two pairs of proposed features and

spot the recommended items from the intersection of their relevance. All of the proposed

features were calculated on a different scale. For example, the distance feature is the

physical distance in miles, while the academic feature is calculated as a percentage. To

enable the comparison of diverse features, A standard Z-score was adopted to normalize

all the features to the same scale, from 0 to 1. The function was defined as:

ZScore =
xi − uj
σj

(3.13)

where xi is the ith recommended item and j represents the corresponding feature with

its average u and variance σ. Then, a standard Z-table was used to convert the ZScore

to the corresponding percentile pij. Hence, all the features can be presented on the same

scale, both in a ranked list and scatter plot diagram.

2. Category Diversification: it is a model of diversifying the different categories [63].

For example, in the scatter plot of pre-study, I color-code the items from different cat-

egories, such as title, position, and country. In the ranked list, I listed the category as

one column for a user to access.

3. Shannon Entropy: I can then measure the user selection/exploration diversity, based

on the two diversification models. I observe the user’s interaction with items from dif-

ferent ”quadrants” (feature intersections) [127], such as high academic and high social

features, or high academic and low social features. The extent of diversity is measured
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by Shannon Entropy :

Entropy : du = −
4∑
i=1

pilog4pi (3.14)

where pi is the probability for a particular quadrant (feature or category) and the pro-

portion of all of the user’s selections [94], based on the definition, I can measure the

diversity in the different aspects of the relevance dimension. I can compare the combina-

tions of all the proposed features, for example, in a recommendation system fused with

four features. I can measure the entropy difference among the 4 ∗ (4 − 1) = 12 pair of

dimensions.

4. alpha NDCG: it is relevant to NDCG but as used to measure for diversified search,

where it is appreciated by the number of covered intents [22].

alphanDCG =
DiscountedCumulativeGain(DCG)

IdealDiscountedCumulativeGain(IDCG)
(3.15)

where IDCG is a perfect case of the query, which is the highest possible alpha nDCG

value. DCG is defined as

DCG =

|k|∑
j=1

J(dk, i)(1− α)ri,k−1/(log2 1 + j) (3.16)

where J represents the intent probabilities of the given iter, α = 0.5 is the factor to

control the level of diversification, log is the discount function of ranking.
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4.0 USER CONTROLLABLE INTERFACES FOR A HYBRID SOCIAL

RECOMMENDER SYSTEM

This chapter presents the experiment results of pre-study that helps me to choose an effective

user controllable interface for later studies. In this pre-study, I extended the user interface

designs from the early two pilot studies and evaluated the design with a larger-scale and real-

world conference setting [129, 130]. I present two of my attempts that bring a two-dimension

scatter plot (Scatter Viz ) and ranking-based multi-relevance sliders (Relevance Tuner) to a

social recommender of academic conferences. The finding indicated a different usage pattern

in the two user interface and the Relevance Tuner was shown useful in enhancing recommen-

dation diversity as well as receiving positive user feedback. Hence, I will adopt the design of

Relevance Tuner as the core user interfaces in my study 1 to 6.

4.1 INTRODUCTION

The pre-study presented in this chapter reports my exploration of two visual recommender

interfaces. First, I proposed a recommender interface that explores the value of a two-

dimensional scatter-plot visualization to present recommendations with several dimensions

of relevance. In the context, the scatter plot interface was used to help users combine

different aspects of relevance for recommended items while providing inspectability to the

users. Second, I proposed a recommender interface that enhances the fusion control function

within a ranked list with meaningful visual encoding for multiple dimensions of relevance.

The users can adjust the relevance weightings to customize the recommendation results,

which provides the user with a higher level of control over their results.
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The two interfaces were designed to explore the value of user-controllable and diversity-

aware interfaces in a social recommender system. Each of the interfaces has been evaluated

in a controlled field study in the target context. The results show that the new visual

interfaces reduce exploration efforts for a set of realistic tasks, and also make the users more

aware of the diversity of recommended items. Also, the users’ subjective evaluation shows a

significant improvement in many user-centric metrics. I further discussed the effects of the

proposed interfaces on the users’ experience with a diversity-enhanced social recommender

system.

This chapter offers several contributions: 1) I propose two interfaces that support the

continuously controlled fusion of several relevance aspects with inspectability and control-

lability; 2) I provide evidence that the diversity-aware interface not only helps the user to

perceive diversity but also helps the user to improve usability in the real world beyond simple

relevance tasks; 3) the experiment results helps me to choose an effective user controllable

interface for this dissertation.

4.2 CANDIDATE INTERFACE #1: SCATTER VIZ

In a hybrid recommendation context with multiple types of relevance, the traditional ranked

list makes it hard for the user to recognize how different relevance aspects are correlated.

A typical example of this situation is recommending other attendees to meet at a research

conference. Here a range of similarity functions (social, past publications, current interest,

location) could indicate a person worth to meet. To help conference attendees in their

conference networking, I proposed a dual social recommender interface, Scatter Viz, which

includes a ranked list and visual scatter plot components. The ranked list was selected as a

traditional way of presenting recommended results in a single dimension, listed from high to

low relevance. The scatter plot was chosen as an intuitive way to present multidimensional

data [66] and inspect patterns in large data-sets [27], as it has been shown that users can

accurately judge data similarities between different shapes of scatter plots [102]. I hoped that

the ability to view recommended items in two dimensions could reveal the overall diversity
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of results and help to correlate multiple types of relevance among social recommendations.

Figure 3: The design of Scatter Viz: (A) Scatter Plot; (B) Control Panel; (C) Ranked List;

(D) User Profile Page. The interface supports exploration of recommended items in Section

A or C and detail inspection in section D. The scholar names have been pixelated for privacy

protection.

Figure 3 illustrates the design of the dual interface in four sections.

1. Section A is the scatter plot. The interface presents each item (a conference attendee)

as a circle on the canvas in two selected dimensions. The user can move the mouse over

the circle to highlight the selection.

2. Section B shows the control panel, with which the user can interact. The user can select

the number of recommendations to display and choose the major feature and the extra

feature to visualize the recommendations on the scatter plot. The major feature is used

to rank the results along the X-axis of the Scatter Plot (Section A) and in the ranked

list (section C). The extra feature is used to diverse the recommendations in respect to

the selected aspect along the Y-axis (thus spreading the results that have similar values
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Figure 4: Scatter plot layouts: the layout would adjust, based on the selected Major and

Extra features (Section B in Fig. 3). Here is an example that presents the same recom-

mended items in six dimension combinations: Academic/Social, Academic/Interest, Aca-

demic/Distance, Social/Interest, Social/Distance and Interest/Distance feature coordinates.

The nodes are colored using four equal quadrants that set Category as Smart Balance.

of the major feature but different values of the extra feature). To further investigate the

diversity of the displayed recommendations, the user can also use another data aspect
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as a category to color-code the results. The default category was Smart Balance, which

highlights four quadrants of the displayed data with a 0.5 ratio. Figure 4 presents six

sample scatter plot layout combining “Academic”, “Social”, “Interest” and “Distance”

relevance features that are color-coded using the Smart Balance Category.

3. Section C is the standard ranked list. More precisely, it is a combination of four ranked

lists produced by four recommender engines, as explained below. To make the four di-

mensions more comprehensive, the model normalized relevance scores from 0-1 of each

user to the target user, generated by each recommender engine. All the relevance scores

are shown on the right side of the ranked list. The user can hover over each row to

highlight the location in the scatter plot or click for a more detailed user profile.

4. Section D presents more detailed information about the person who has been selected

in either the visualization or the ranked list. Among other aspects, four of the six tabs

visually explain how each recommender engine calculates the relevance of the selected

user to the target user. Due to the page limitation, the details of each explanation tabs

are omitted. The design detail of the explanation functions can be found in [131].

The visual encoding affects the way users process the information. Pre-attentive process-

ing let users absorb and precept the enormous amount of information in a short period [30].

The proposed interface helps to present the recommendation results in two kinds of visual

encoding. First, the interface displays the recommendation relevance in two dimensions.

The visual encoding helps the user to spot the item in different dimensions. It helps the

user to make a decision beyond single or combined relevance, which is more realistic in many

real-world scenarios. For example, a user may be interested in a scholar who whose research

area is highly relevant to their research and who is also affiliated with nearby cities. The

scatter interface helps to filter a group of recommended items with the two desired relevance

features. Second, the node is color-coded in different categorical features; for example, in

Smart Balance mode, the node is color-coded by the four quadrants between two dimensions

of features. The user can perceive the tendencies of the recommendation item, based on

their coloring, and the user can also update the layout with different Category features,
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including the meta-data of the recommended scholar’s title, position, and home country. In

addition, both the node and table row are highlighted synchronously while the user moves

over the recommended items (see example in Figure 3). As a result, the scatter plot interface

can be used for recommended item selection or just as a diversity-oriented recommendation

explanation.

4.3 EVALUATION OF SCATTER VIZ

4.3.1 Data and Participants

The recommendations produced by all four engines are mostly based on data collected by the

Conference Navigator 3 (CN3) system [10]. The data was using the conference proceeding

of the 2017 Intelligent User Interfaces Conference (IUI 2017). A total of 25 participants (13

female) were recruited for the user study. All of the participants were attendees of the IUI

2017 conference. Since the primary goal of the system was to help junior scholars connect

with other people in the field, I specifically selected junior scholars, such as graduate students

or research assistants. The participants came from 15 different countries; their ages ranged

from 20 to 50 (M=37, SE=7.07). All of them could be considered as knowledgeable in the

area of the intelligent interface for at least one academic publication from IUI 2017. To

control for any prior experience with the recommender system, I included a question about

in the background questionnaire. The average answer score was (M=3.28, SE=1.13) on a

five-point scale.

4.3.2 Experiment Design and Procedure

To assess the value of the proposed interface, I compared the dual Scatter Viz interface

with the scatter plot and the ranked list (I will call this condition as SCATTER) with a

baseline interface using only a ranked list (RANK) with Section A (in Figure 3) removed.

The study used a within-subjects design. All participants were asked to use each interface

for three following tasks and to fill out a post-stage questionnaire at the end of their work
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with each interface. At the end of the study, participants were asked to compare interfaces

regarding their explicit preference. The order of using interfaces was randomized to control

for the effect of ordering. In other words, half of the participants started the study with

the SCATTER interface. To minimize the learning effect (becoming familiar with data), I

used data from two years of the same conference: the SCATTER interface used papers and

attendees from IUI 2017, while the RANK interface used the corresponding data from IUI

2016.

Participants were given the same three tasks for each interface. The tasks were explic-

itly designed as diverse but realistic tasks that could be naturally pursued by attendees at

research conferences.

• Task 1: Your Ph.D. adviser has asked you to find four Committee Member candidates

for your dissertation defense. You need to find candidates with expertise close to your

research field while trying to lower their travel cost to your defense.

• Task 2: Your adviser has asked you to meet four attending scholars, preferably from

different regions across the world, who have a close connection to your research group.

• Task 3: You want to find four junior scholars (not yet faculty members) with reasonably

similar interests among the conference attendees to establish networking.

The participants were asked to pick suitable candidates among conference attendees,

based on their best judgment in each task. When designing the tasks, I attempted to make

them realistic, yet focused on multiple aspects of relevance, as many real tasks are. I consider

that task 1 is relevance-oriented and that tasks 2 & 3 are diversity-oriented. For a relevance-

oriented task, I expect to see if the proposed interface helps the user to coordinate different

relevance aspects of the desired target efficiently. In contrast, for the diversity-oriented task,

I expect the system to help to recognize the diversity of recommended items, as compared

to the baseline interface.

4.3.3 Action Analysis

Table 1 shows the system usage for two interfaces. The data indicate that participants

extensively used both the control panel and explanation tabs to complete the tasks. The

41



Table 1: User action summary of Scatter Viz: the table shows the user interaction statistics

while performing each of the three tasks using two interfaces. (Statistical significance level:

(*) p < 0.05.)

RANK SCATTER

Task Action M (SE) User Count M (SE) User Count

T1

Control Panel 3.88 (2.40) 24 4.12 (2.02) 25

Explanation Tab 34.28 (29.50) 25 7.96 (7.48) 19

Click - Rank 26.28 (29.50) 25 4.92 (6.75) 15 *

Click - Scatter - - 3.04 (5.45) 13 *

Time Spending 345.44 (209.86) 25 389.12 (235.29) 25

T2

Control Panel 2.88 (1.64) 24 2.88 (1.12) 25

Explanation Tab 19.96 (17.47) 25 9.16 (6.28) 25

Click - Rank 16.96 (17.47) 25 2.68 (4.69) 15 *

Click - Scatter - - 3.48 (5.41) 13 *

Time Spending 216.6 (144.95) 25 190.84 (115.33) 25

T3

Control Panel 2.56 (1.04) 24 2.84 (1.10) 25

Explanation Tab 20.08 (20.29) 25 6.4 (7.22) 19

Click - Rank 19.08 (20.29) 25 3.48(7.80) 9 *

Click - Scatter - - 2.92 (2.95) 15 *

Time Spending 345.95 (156.39) 25 369.2 (169.77) 25

participants usually required more actions on the first task to familiarize themselves with

the system. There is no significant difference on the action of change control panel and

the click on the explanation tab between the interfaces in three tasks; although, in the

SCATTER interface, the users tended to click the explanation functions less. The click

frequency presented a significant difference between the two interfaces. This finding is not

surprising because the RANK interface lacks the visualization information that pushes the

participant to click more on the user profile page to inspect the necessary information. It is
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interesting to see that not every user clicked on the scatter plot. This data hints that some

participants treated the scatter plot visualization as an explanation function rather than an

interactive exploration interface. At the same time, I found no significant difference in the

time spent on the tasks. The data hints that each action taken in the SCATTER interface

delivered more interesting information with which to engage.
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Figure 5: The recommendation features usage of Scatter Viz. The red line is the usage of

major features, the purple line is the usage of extra features, and the blue line is the usage

of category features.

It would be valuable to see how the participants adopt the control and explanation

functions. Figure 5 presents the usage of four similarity features and three category features.

The red line shows how frequently the feature was selected as the primary ordering factor.

The factor determines 1) the ranking in the RANK interface, and 2) the x-axis layout in the

SCATTER interface. The purple line shows the frequency of its use as the second feature to
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Figure 6: The explanation function usage of Scatter Viz. The light plum color is the usage

of the RANK interface, while the light blue color is the usage of the SCATTER interface.

spread the results along the y-axis in the SCATTER interface. The blue line is the frequency

of feature used as the Category feature. The chosen category feature creates one additional

column in the RANK interface and updates the color-coding in the SCATTER interface. I

can observe the usage pattern between the three proposed tasks. In task 1, which focuses on

finding the 2-category optimum ranking, the participants most frequently used Academic as

the primary ranking feature, diversifying it by Distance and selecting the Position feature

to color-code the results. In diversity-oriented task 2, a number of diversification features

were tried with about the same frequency. In task 3 (find four junior scholars with similar

interests), the Interest feature was most frequently selected as the primary feature, while

Social was the primary diversification approach and Position was the primary color-coding

approach. The pattern was consistent between two interfaces. Overall, this result shows

that the users were quite efficient in selecting the most useful features for each task. Figure

6 shows the click frequency on six different explanation tabs. Overall, the users were most

interested with explanations presented in ScholarViz and Publication tabs (which explained

the Social and Academic similarities, respectively). The figure also shows that explanations

were requested more frequently for candidates accessed using the RANK interface.

44



Table 2: Post-stage questionnaire [108, 13].

Q1 The interface helps me to explore various interesting people in the conference.

Q2
It is helpful to see people attributes like Title, Country, and Position when
exploring interesting people in the list.

Q3 The interface helps me to perceive the diversity of explored attendees

Q4 The interface helps me to improve my trust in the people recommendation result.

Q5 The interface helps me to understand why specific attendees were recommended.

Q6 I like the people recommendation result from the system.

Q7 I became familiar with the system very quickly.

Q8 Overall, I am satisfied with the system.

Q9 I will frequently use the system at future conferences.

Q10
It was useful to see the explanation of scores produced by different
recommendation components.

Q11 It is fun to use the system.

Q12 The system has no real benefit for me.

4.3.4 User Feedback Analysis
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Figure 7: User feedback of Scatter Viz: the result shows that the SCATTER interface

received a significantly higher rating for six aspects. (A cut-off value was set at 3.5 on the 5

point scale. Statistical significance level: (*) p < 0.05.)

To compare subjective feedback, I analyzed the responses of the post-stage questions us-

ing paired sample t-tests. Figure 7 shows the result of this analysis. I compared the twelve

aspects of subjective feedback from the participants; among them, the SCATTER interface
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received a significantly higher rating for six aspects: Trust (Q4), Supportiveness (Q5), Inter-

est (Q6), Satisfaction (Q8), Intention to Reuse (Q9), and Enjoyable (Q11). In two questions,

facilitation (Q7) and the Reversed Benefit Question (Q12), the SCATTER interface scored

higher, but not significantly so. It is interesting to see that the RANK interface scored a bit

higher (though not significantly so) on explanation usefulness, which hints that the lack of

visualization made explanations more important in the RANK interface. In the final prefer-

ence test, the SCATTER interface received much stronger support than the RANK interface

in the user preference feedback (Figure 8). Most importantly, a majority of users (84%)

considered the SCATTER interface to be a better system for recommending attendees and

better help in diversity-oriented tasks, as well as a better system for recommending.

4.3.5 Recommendation Diversity Analysis

Table 4 shows the diversity analysis for each task and interface. The result shows the users’

responses to the tasks with a different pattern of exploration, which caused a variance of di-

versity and coverage measurements. All three tasks are shown a least one significance between

two interfaces but in the different aspects of features. For the SCATTER interface, task 1

(relevance-oriented) shows significance statically on less difference between academic/social

& social/interest features, but more coverage on the title category. Tasks 2 & 3 (diversity-

oriented) show higher selection diversity in the interest/distance and social/distance features,

respectively, as well as higher selection coverage in the title & country category features. The

data supports the finding that the SCATTER interface helped the participants to accurately

filter the attendees in the relevance-oriented task, as well as extend the selection diversity in

the diversity-oriented tasks.

4.3.6 Discussion

In study of Scatter Viz, I evaluated a dual visual interface for recommending attendees at a

research conference. A research conference context introduces several dimensions of attendee

relevance, such as social, academic, interest, and distance similarities. Due to these factors,

a traditional ensemble ranked list makes it difficult to express the diversity of recommended
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Figure 8: User preference analysis of Scatter Viz (the preferences were collected after the

users experienced both interfaces). The result shows the SCATTER interface was preferred

by the users in all aspects.

Table 3: Post-experiment questionnaire [60].

Q1 Which recommendation interface did you prefer?

Q2 Which recommendation interface did you find more informative?

Q3 Which recommendation interface did you find more useful?

Q4
Which recommendation interface was better at helping you to perceive the diversity
of recommendations?

Q5
Which recommendation interface was better at helping you to explore the diversity
of recommendation through different features and categories?

items (attendees). By spreading rankings over two dimensions, the suggested interface helps

users to explore recommendations and recognize their diversity in several aspects. To assess

the visual approach, I conducted a user study in a real conference environment to compare

the interface (SCATTER) with a traditional ranked list (RANK) in three practical tasks.

The experimental result shows a tangible incremental impact on the metrics of system usage,

efficiency, and diversity.

I found that the Scatter Viz interface can improve user inspection on recommendations
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Table 4: Diversity analysis of Scatter Viz: the table shows selection diversity for three tasks

in the feature and category dimensions. The result shows that the SCATTER interface can

help users to explore a more diverse set of recommendation in diversity-oriented tasks (T2

& T3). (Statistical significance level: (*) p < 0.05; (-) p < 0.1.)

Task 1 Task 2 Task 3

Dimensions
RANK
M (SE)

SCATTER
M (SE)

P
RANK
M (SE)

SCATTER
M (SE)

P
RANK
M (SE)

SCATTER
M (SE)

P

Academic
+ Social

0.14 (0.06) 0.11 (0.03) * 0.14 (0.06) 0.13 (0.04) 0.14 (0.06) 0.13 (0.03)

Academic
+ Interest

0.16 (0.09) 0.13 (0.08) 0.14 (0.09) 0.14 (0.08) 0.12 (0.07) 0.12 (0.08)

Academic
+ Distance

0.13 (0.07) 0.12 (0.04) 0.12 (0.07) 0.14 (0.04) 0.14 (0.07) 0.16 (0.04)

Social
+ Interest

0.27 (0.13) 0.21 (0.09) * 0.25 (0.13) 0.24 (0.11) 0.22 (0.12) 0.22 (0.14)

Social
+ Distance

0.27 (0.12) 0.24 (0.08) 0.26 (0.13) 0.28 (0.10) 0.24 (0.11) 0.31 (0.10) *

Interest
+ Distance

0.26 (0.13) 0.25 (0.13) 0.23 (0.14) 0.27 (0.13) - 0.21 (0.14) 0.23 (0.11)

Title 0.17 (0.12) 0.22 (0.07) * 0.17 (0.14) 0.31 (0.12) * 0.17 (0.16) 0.32 (0.10) *

Position 0.26 (0.12) 0.23 (0.10) 0.29 (0.17) 0.25 (0.14) 0.19 (0.14) 0.15 (0.08)

Country 0.49 (0.25) 0.46 (0.15) 0.46 (0.31) 0.68 (0.26) * 0.44 (0.26) 0.66 (0.26) *

with multi-relevance, which leads to a higher selection diversity in the given tasks. However,

I also noticed that some of the experiment participants still stick to the familiar ranked list,

even when an enhanced visualization was provided. This finding helps us to realize a user

preference on adopting the interface with lower learning efforts. Besides, the scatter visual-

ization requires additional space to present, which may not be feasible in many real-world

rank-based recommender systems. These findings lead to the second attempt at extending

the ranked list with multi-aspect awareness, controllability, and diversity-aware designs.
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4.4 CANDIDATE INTERFACE #2: RELEVANCE TUNER

The ranked list is widely applied to recommender systems for presenting recommendations

to users. Even in visual recommender systems, a basic ranked list is still essential for user

interactions [140, 104, 129]. A recommender system usually ranks recommended items from

high to low relevance, which may reduce users’ cognitive decision loading [8]. However,

as mentioned above, in a context with multiple relevance aspects, a statically “ensembled”

ranked list makes it more difficult for the user to recognize the impact of different aspects

and to adjust the recommendations to different needs. Moreover, the persuasive design of

the ranked list causes users to pay more attention to items on top of the list [26], which

further decrease selection diversity and caused the fitter bubble effect though narrowing the

recommendation selection [96].

As the first study shows, the users were able to properly combine relevance dimensions in

a two-dimensional scatter plot visualization, but that this ability came with a steep learning

curve. Despite benefits offered by the Scatter Plot, the more familiar Ranked List component

was used more heavily. In the second attempt, I explored a novel interface that allowed

users to explore multiple aspects of relevance within the familiar ranked list extended with

a controllable tuner and stackable color bars. I proposed the Relevance Tuner - a visual

interface with user-driven control function and meaningful visual encoding. This design

expanded the ranked list representation with an ability to visualize and control multiple

aspects of item relevance, which is especially important for diversity-oriented tasks. The

rank-based design reduces the user’s learning efforts in getting familiar with the interface.

The design is inspired by several previous research works. Ekstrand et al. [34] argued

for the need to use multiple recommendation algorithms within a single system. Their ap-

proach is to let users choose the algorithm based on specific information needs. For instance,

the content-based method performs better on exploring new friend while the collaborative-

filtering approach is out-performed others on re-connecting old friends [17]. A social recom-

mender system that supports multiple information needs should be controllable. In many

real-world scenarios, the user might need to fuse multiple methods or data sources to fulfill

their information needs. For example, a controllable slider has been adopted for fusing and
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Figure 9: Prestudy: The design of Relevance Tuner: (a) Relevance Sliders; (B) Stackable

Score Bar; (C) User Profiles. The interface enables the user to adjust the feature weighting

on-the-fly for retrieving a customized recommendation list. The user can examine the rele-

vant aspects of the recommended item through the multicolored score bar. (The Name and

Affiliation entities have been pixelated for privacy protection.)

filtering different recommendation features, i.e., information sources, algorithms, user tags

and keywords [9, 104, 142, 30]. Various kinds of stackable bars were suggested to visualize

sources of algorithms that used to support a specific recommendation [104, 30, 13]. When

designing Relevance Tuner, I intend to support source fusion with a set of relevance sliders

and proportional stackable bars. The design of the Relevance Tuner is shown in Figure 9.

1. Section A contains five controllable sliders with the different colors representing the

features of the Personalized Relevance Model. The scale of the slider ranges from 0 to

10. The user can change the weighting (W ) on the fly to re-rank the ranked list below.

It provides controllability for the user to adjust the ranking to different recommendation

needs and preferences. The interface also adds one new feature: Social Context. This

feature computes the Google search result based on the scholar’s name and affiliation

information; that is, the text similarity of the homepage and other related search results.
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2. Section B shows the stackable relevance score bar for each recommended item in the

ranked list. A stackable color bar interface is known for its ability to enhance controlla-

bility and transparency in a multi-aspect ranking [30]. In the system, the stackable color

bars help the user to perceive how different relevance aspects of a recommended item

are combined while adding transparency to the multi-aspect recommendation process.

Each colored segment in the bar corresponds to one of the relevance aspects indicated by

its color, which corresponds to one the sliders in section A. The length of the segment

can vary between 0 and 20 and is determined by both, item relevance within this aspect

(feature similarity) and the importance of this aspect (weight) selected by the user by

adjusting sliders. The relevance score (R) is defined as:

Rij = Round((
fij
maxj

∗ 10) ∗ Wj

5
) (4.1)

where fij is the ith recommended item’s feature similarity for the aspect j, maxj is

the local maximum value of j, and Wj represents the current slider weight for j. I use

the weighting percentage (
Wj

5
, ranged from 0 to 2) to convert the normalized feature

similarity score ( fi
maxj

∗ 10, ranged from 0 to 10) to the corresponding relevance score

(Rij, ranged from 0 to 20). For example, in Figure 9, the top-ranked recommendation’s

Normalized Publication Similarity Score is 10. If a user changes the Publication Similar-

ity slider weight (W) to 8, then the relevance score would be 10 ∗ 8
5

= 16. The second

recommendation’s relevance score would be 9 ∗ 8
5

= 14.4. I will get the final relevance

score as 15 after the roundup function. All relevance scores in each row will be updated,

the entire list will be re-ranked by the sum of five relevance scores.

3. Section C shows the recommended scholar’s meta-data, including name, social connec-

tion, affiliation, position, title, and country. The user can sort the ranked list by clicking

the head of each column, or can inspect the explanation tabs (same as Section C in

Figure 3) by clicking the name entities.
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4.5 EVALUATION OF RELEVANCE TUNER

4.5.1 Data and Participants

Study of Relevance Tuner was conducted through the Conference Navigator 3 (CN3) system.

The data was extended from Study of Scatter Viz to a new conference: the 25th Conference

on User Modeling, Adaptation, and Personalization (UMAP 2017). A total of 20 participants

(7 female) were recruited for the user study. All of the participants were attendees at the

UMAP 2017 conference. They were from 15 different countries; their ages ranged from 20

to 40 (M=31.19, SE=4.97). All of them had at least one publication from UMAP 2017.

The background knowledge of recommender systems score was (M=3.85, SE=0.79) on a

five-point scale.

4.5.2 Experiment Design and Procedure

In Study of Relevance Tuner, I compared the interface of the ranked list plus the relevance

tuner (TUNER) with a baseline of the scatter plot plus ranked list (SCATTER). The ex-

periment design and procedure repeat the setting of Study of Scatter Viz. I manipulated

the new proposed interface and adapted data from different conferences: the SCATTER

interface used papers and attendees from UMAP 2017, while the TUNER interface used the

same data from UMAP 2016, to minimize the learning effect between the two manipulations.

4.5.3 Action Analysis

Table 5 shows the system usage for the two interfaces of Study of Relevance Tuner. In

TUNER interface, the control panel usage is defined as each time the user moves the sliders.

The data supports the users interacting more frequently (it shows significance in all three

tasks) with the control panel in TUNER than in SCATTER. Conversely, the users clicked

more on explanation tabs in SCATTER than in TUNER. The data implies that the infor-

mation listed on the table was sufficient for the users to inspect and make decisions in three

proposed tasks. In task 1, the SCATTER has a significantly higher clicking frequency and

52



longer time spent (not significant) than the TUNER interface. The same pattern repeats in

task 2 & 3, which shows that the users took more time to get familiar with the SCATTER

interface. The users were gaining familiar with the TUNER interface more rapidly than with

the SCATTER interface.

Table 5: User action summary of Relevance Tuner: the table shows the statistics of user

interaction while solving each of the three tasks using each interface. (Statistical significance

level: (*) p < 0.05.)

TUNER SCATTER

Task Action M (SE) User Count M (SE) User Count

T

1

Control Panel 38.4 (37.71) 20 2.85 (2.23) 18

Explanation Tab 9.35 (8.28) 20 22.95 (23.71) 20 *

Click - Rank 5.05 (2.45) 20 9.8 (8.43) 17 *

Click - Scatter - - 4.1 (6.03) 11

Time Spending 357 (289.04) 20 537 (596.98) 20

T

2

Control Panel 15.2 (13.63) 19 2 (1.71) 17 *

Explanation Tab 6.5 (8.74) 20 8.45 (6.79) 20

Click - Rank 4.3 (1.21) 20 5.2 (3.76) 18

Click - Scatter - - 1.8 (2.94) 8 *

Time Spending 201 (235.43) 20 294 (470.78) 20

T

3

Control Panel 12.2 (11.67) 17 2.25 (1.80) 19 *

Explanation Tab 9.25 (8.75) 20 12.9 (14.38) 20

Click - Rank 5.15 (2.51) 20 10.2 (16.93) 17

Click - Scatter - - 2.05 (3.13) 10 *

Time Spending 153 (92.28) 20 285 (470.78) 20

The analysis of control and explanation function usage is reported in Figures 10 & 11

and 12. Figure 10 shows the re-weighting frequency of the TUNER interface. The red line

is the usage of Tuner sliders, and the blue line is the average feature score selected by the

user during re-tuning. The data indicates that the user tends to interact with the sliders
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Figure 10: Relevance slider usage of Relevance Tuner: The red line is the tuner usage, while

the blue line is the average weighting score of the overall re-tuning.
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Figure 11: Scatter plot features usage of Relevance Tuner: The red line is the usage of major

features, the purple line is the usage of extra features, and the blue line is the usage of

category features.

more in the beginning (task1), but interacts less in a later task (2 & 3). However, the overall

amount of manipulation with features was remarkably higher for TUNER than SCATTER

(Figure 11) for all tasks. The average weighting scores for TUNER show only a very slight
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Figure 12: Explanation function usage of Relevance Tuner: The light plum color is the usage

of RANK interface, while the light blue color is the usage of SCATTER interface.

association with the nature of the task at hand; that is, all features were potentially useful to

filter the recommendation result in both relevance and diversity-oriented tasks. In contrast,

the relatively rare use of SCATTER features (Figure 11) showed a consistent pattern with

Study of Scatter Viz - the users selected the recommendation features based on the tasks’

requirement. The comparative use of explanations shown in Figure 12 is also consistent

with Study of Scatter Viz showing that the main demand was for socialviz and publication

tabs. At the same time, it is interesting to observe that users in the TUNER group requested

explanation less frequently than the SCATTER group, as through a regular TUNER interface

provided more information for decision making than the SCATTER interface. However, I

also observed that the TUNER users took less time to finish the tasks, as compared to those

using the SCATTER interface.

4.5.4 User Feedback Analysis

Figure 13 shows the analysis of the post-stage survey. The high rating in both interfaces

shows the positive user acceptance in Study of Relevance Tuner (no significance on all the

factors). However, the user tends to favor the TUNER interface when considering the factors
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Figure 13: User feedback analysis of Relevance Tuner: I did not find significant difference in

all aspects, which indicates that the usability of two interfaces was comparable. (A cut-off

value was set at 3.5 on the 5 point scale. Statistical significance level: (*) p < 0.05.)

of Supportiveness (Q5), Interest (Q6), Facilitation (Q7), Satisfaction (Q8), Intend to Reuse

(Q9), and Usefulness (Q10). The SCATTER interface performs better on the measures of

Trustiness (Q4) and Enjoyable (Q11). This result supports the users in favor of rank-based

list more than the visual-based interface, but the visualization shows an increased level of

usability on gaining trust and enjoyment in using the interface. Surprisingly, the feedback

also indicates that the TUNER interface would be better for the user to fulfill the task on

the feature diversity (Q1) and category diversity (Q2), but that the SCATTER interface is

outperformed on the ability to Perceive Diversity (Q3).

This result shows that a user tends to use the ranked list with better controllability

and transparency to conduct diversity-oriented tasks. The scatter visualization would play

the role of helping the users to perceive diversity in multiple areas of relevance. The final

preference result in Figure 14 also confirms this conclusion. About half of the users select

the TUNER interface as the one with an advantage at helping to explore diversity, providing

more informative information, being more useful, and fitting their preference - but the users

also agree that the SCATTER interface could better help to perceive diversity after they

finished the three tasks on two interfaces.
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Figure 14: User preferences analysis of Relevance Tuner collected after the users experienced

both interfaces. The result shows that the TUNER interface was preferred by users in all

aspects except perceived diversity.

4.5.5 Recommendation Diversity Analysis

Table 6 shows the diversity analysis of Study of Relevance Tuner. In task 1 (relevance-

oriented), there is no significant difference between the two interfaces on the diversity mea-

surement, showing both of the interfaces can support the user to fulfill a relevance-oriented

task. However, in the diversity-oriented tasks 2&3, I found the TUNER group could achieve

higher entropy than the SCATTER group. This finding hints that even with a ranked-list

interface the user can achieve a reasonable level of selection diversity if controllability and

transparency for each considered dimension of relevance are available. At the same time,

the SCATTER interface performed slightly (but not significantly) better than the TUNER

interface in the category diversity metrics. This finding helps to highlight the value of color-

coding data in the SCATTER interface, a feature not supported by TUNER. The diversity

analysis of Social Context is omitted due to the page limitation.
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Table 6: Diversity analysis of Relevance Tuner: the table shows selection diversity for three

tasks for each feature combination and category dimensions. The result indicates that the

TUNER interface enabled users to explore a more diverse set of recommendation in diversity-

oriented tasks T2 & T3. (Statistical significance level: (*) p < 0.05.)

Task 1 Task 2 Task 3

Dimensions
TUNER
M (SE)

SCATTER
M (SE)

P
TUNER
M (SE)

SCATTER
M (SE)

P
TUNER
M (SE)

SCATTER
M (SE)

P

Academic
+ Social

0.12 (0.05) 0.12 (0.05) 0.15 (0.02) 0.12 (0.04) * 0.16 (0.03) 0.13 (0.05)

Academic
+ Interest

0.17 (0.10) 0.16 (0.07) 0.17 (0.07) 0.13 (0.07) * 0.14 (0.07) 0.14 (0.06)

Academic
+ Distance

0.13 (0.06) 0.12 (0.04) 0.16 (0.06) 0.12 (0.05) * 0.17 (0.05) 0.14 (0.05) *

Social
+ Interest

0.23 (0.11) 0.23 (0.10) 0.25 (0.07) 0.19 (0.08) * 0.32 (0.09) 0.26 (0.16)

Social
+ Distance

0.23 (0.10) 0.22 (0.09) 0.28 (0.07) 0.22 (0.10) * 0.32 (0.08) 0.26 (0.09) *

Interest
+ Distance

0.24 (0.16) 0.29 (0.12) 0.31 (0.15) 0.24 (0.13) * 0.28 (0.12) 0.26 (0.13)

Title 0.12 (0.04) 0.16 (0.13) 0.15 (0.02) 0.17 (0.12) 0.15 (0.02) 0.14 (0.05)

Position 0.29 (0.15) 0.27 (0.12) 0.28 (0.12) 0.32 (0.15) 0.16 (0.07) 0.22 (0.16)

Country 0.35 (0.20) 0.57 (0.29) * 0.41 (0.24) 0.58 (0.22) * 0.48 (0.19) 0.54 (0.32)

4.5.6 Discussion

In Study of Relevance Tuner, I presented a new rank-based interface for recommender atten-

dees at a research conference. A total of five dimensions of relevance were proposed from the

Personalized Relevance Model. I conducted a user study in a real conference environment

to compare the two interfaces of an enhanced ranked list (TUNER) and the visualization

interface (SCATTER). The experimental results suggested the different suitable scenarios

for the two interfaces. I found that, even in diversity tasks with multi-relevance settings, the

users were still able to fulfill the diversity task with a rank-based interface, but it required

the support of interface controllability and transparency through visual encoding. Besides,

while I found that the user would better perceive the diversity in the SCATTER interface,

the user would prefer to adopt the TUNER interface to fulfill the diversity tasks.
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Furthermore, when the user was interacting with the TUNER interface, the user spends

more time inspecting the information on each row, instead of checking the explanation func-

tions. This result shows that the higher level of diversity exploration was not triggered by

the diversity-enhanced visualization or explanation (fewer clicks on the explanation tabs),

but was instead contributed by the intention of the user reaction to the simulated diversity-

oriented tasks. In the SCATTER interface, the user relies more on the explanation function

and multi-relevance visualization to explore diversity-oriented tasks. Although the result

showed lower entropy measurement when the user adapted to the SCATTER interface,

the SCATTER interface can better help the user to perceive the diversity among multiple-

relevance dimensions, based on the user feedback analysis through post-study questionnaires.

4.6 SUMMARY

In this chapter, I presented experiments with three different social recommender interfaces:

Ranked List (RANK), Scatter Viz (SCATTER) and Relevance Tuner (TUNER). I first

showed that providing a scatter plot (SCATTER) can help the user to better fulfill the

diversity-related tasks, as compared to a simple ranked list (RANK). However, despite the

benefits of the new two-dimensional presentation, the users still extensively used the ranked

list component of the interface.

Based on the results of the Scatter Viz, I attempted to integrate the ability to coordinate

multiple aspects of relevance within the ranked list rather than offering it in a separate

component as in SCATTER. To compensate for the biasing nature of the ranked list, I

also provided a controllable fusion of relevance aspects. The resulting expanded ranked list

interface (TUNER) offered both controllability and visual encoding of multiple relevance

aspects. I showed that the users could adopt a rank-based list to fulfill diversity-oriented

tasks with higher selection diversity. The usability analysis revealed that both SCATTER

and TUNER were ranked by the conference users with high subjective ratings. However,
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TUNER required less learning effort. I also discussed the mediation effects of the proposed

interfaces on the user experience. The analysis helps to describe the benefits of the two

proposed interfaces in social recommender systems.

One of the goals was to understand how users apply the recommender interfaces to

diversity-oriented tasks. I prepared tasks that encourage users to explore the conference

attendees using multiple aspects of relevance. I found that both of the proposed interfaces

were capable of helping the user to fulfill the assigned tasks. The experimental result sup-

ported the finding that the participants were able to correlate multiple aspects of relevance

using two dimensions of visualization in SCATTER and the controllable ranked list with

multi-aspect visualization in TUNER. I found that an extension of a traditional ranked list

with controllability and visualization was better than a separate visualization component in

the sense of on getting familiar with the new interface (which led to a higher rating on the

user preference). In contrast, a separate diversity-enhanced visualization can also achieve

the goal, but it came at the cost of a steeper learning curve. However, once the users were

familiar with the interface, it brought an advantage of helping the users to perceive diversity

and gain trust in the recommendations.

The study has some limitations. First, the within-subject user study was conducted

using consecutive years of the same conference series. Some well-known and senior domain

experts may appear in the recommendation list for both conferences. This repetition may

cause bias in the user studies. Second, the data sparsity and cold-start problem may hurt

the recommendation performance; for example, the Interest feature is less useful for users

who never bookmarked any talks or papers within the Conference Navigator System (CN3).

I tried my best to send out emails both before and during the conference to improve interest-

based recommendations. Third, the scale of reported user studies is relatively small. It may

decrease the statistical power of the findings. Fourth, the experiment was conducted at mid-

size conferences, so I was not able to explore scaling issues which might occur at conferences

with a much larger number of attendees or in a different recommendation context with a

large set of items to explore.
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5.0 DESIGNING EXPLANATION INTERFACES USING STAGE-BASED

PARTICIPATORY DESIGN APPROACH

In this chapter, I presented the first three stages of a stage-based participatory process

[32] for designing explanation interfaces in a hybrid social recommender system. I report the

findings of Expert Mental Model, User Mental Model and Target User Model that determined

1) what should be explained of the recommendation models, 2) current user expectation and

3) new user expectation of the research platform system, respectively. The finding of this

chapter is used to design the prototype interfaces and the card-sorting factors in Chapter 6.

5.1 INTRODUCTION

Instead of the offline performance improvements, more and more researches focused on the

works of evaluating the system from the user experience, i.e., what is the user perception on

the explanation interfaces? Explaining recommendations (i.e., enhancing the system explain-

ability) can achieve different explanatory goals, which help users to make a better decision

or persuading them to accept the suggestions from a system [125, 116]. I followed the seven

explanatory goals that proposed by [126]: Transparency, Scrutability, Trust, Persuasiveness,

Effectiveness, Efficiency, and Satisfaction. Since it is hard to have a single explanation in-

terface that achieves all these goals equally well, the designer needs to make a trade-off while

choosing or designing the form of interface [126]. For instance, an interactive interface can

be adapted to increase user trust and satisfaction but may prolong the decision and explore

process while using the system (i.e., lead to decreasing of efficiency) [132].

Over the past few years, several approaches have been discussed to enhance the explain-

61



ability in the recommender systems. The approaches can be summarized by different styles,

reasoning models, paradigms, and information [37]. 1) Styles: [75] conducted an online user

survey to explore the user preference in nine explanation styles. They found Venn diagrams

outperformed all other visual and text-based interfaces. 2) Reasoning Models: [141] used

tags to explain the recommended item and the user’s profile. The approach emphasized

the factor of why a specific recommendation is plausible, instead of revealing the process

of recommendation or data. 3) Paradigms: [58] presented a model for explanations based

on the user’s conceptual model of the collaborative-based recommendation process. The re-

sult of the evaluation indicates two interfaces - “Histogram with grouping” and “Presenting

past performance” - improved the acceptance of recommendations. 4) Information: [107]

proposed explanations tailored to the user and recommendation, i.e., although one recom-

mendation is not the most popular one, the explanation would justify the recommendation

by providing the reasons.

Although many approaches have been proposed to enhance the recommender explainabil-

ity, bringing explanation interfaces to an existing recommender system is still a challenging

task. More recently [32] suggested a different approach to improve user mental model (UMM)

while bringing transparency (explanations) to a recommender system. The model described

the process of a user builds an internal conceptualization of the system or interface along

with user-system interactions, i.e., building the knowledge of how to interact with the sys-

tem. If the model is misguided or opaque, the users will face difficulties in predicting or

interpreting the system [32]. Hence, the researchers suggested to improve the mental model,

so the users can gain awareness while using the system as well as the explanation interfaces.

I adopted the stage-based participatory framework from [32], which intends to answer

two key questions while designing the explainable user interface (UI): a) What to Explain?

And b) How to explain?

The process can be summarized in four stages.

1. Expert Mental Model: What can be explained? I defined an expert as the recommender

system developer.

2. User Mental Model: What is the user mental model of the system based on its current

UI? The model should be built through the current recommender system users.

62



3. Target Mental Model: Which key components of the algorithm do users want to be made

explainable in the UI? The target user is the users who are new to the system.

4. Iterative Prototyping: How can the target mental model be reached through UI design.

The key is to measure if the proposed explanation interfaces achieved the explanatory

goals.

5.2 FIRST STAGE: EXPERT MENTAL MODEL

I adopted a hybrid explanation approach [103, 75], which mixed multiple visualizations to

explain the details of the recommendation model. I want to let the users understand both a)

the mutual relationship (similarity) between him/herself and the recommended scholar and

b) the key component in each recommendation model. I then discussed the Expert Mental

Model through the system developing process of the five recommendation models.

1. Publication Similarity: The similarity was determined by the degree of text similarity

between two scholars’ publications using cosine similarity. I applied tf-idf to create the

vector with a word frequency upper bound of 0.5 and a lower bound of 0.01 to eliminate

both common and rarely used words. In this model, the key components were the terms

of the paper title and abstract as well as its term frequency.

2. Topic Similarity: This similarity was determined by matching research interests using

topic modeling. I used latent Dirichlet allocation (LDA) to attribute collected terms

from publications to one of the topics. I chose 30 topics to build the topic model for

all scholars. Based on the model, I then calculated the topic similarity between any two

scholars. The key components were the research topics and the topical words of each

research topic [148].

3. Co-Authorship Similarity: This similarity approximated the network distance be-

tween the source and recommended users. For each pair of the scholar, I tried to find six

possible paths for connecting them, based on their coauthorship relationships. The net-

work distance is determined by the average distance of the six paths. The key components
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were the coauthors (as nodes), coauthorship (as edges) and the distance of connection

the two scholars.

4. CN3 Interest Similarity: This similarity was determined by the number of co-bookmarked

conference papers and co-connected authors in the experimental social system (CN3). I

simply used the number of shared items as the CN3 interest similarity. The key compo-

nent is the shared conference papers and authors.

5. Geographic Distance: This similarity was a measurement of the geographic distance

between attendees. I retrieved longitude and latitude data based on attendees’ affiliation

information. I used the Haversine formula to compute the geographic distance between

scholars. The key components are the geographic distance and affiliation information of

the scholars.

5.3 SECOND STAGE: USER MENTAL MODEL

As a first step towards understanding the design factors of explanatory interfaces, I deployed

a survey through a social recommender system, Conference Navigator [131], and analyzed

data from the respondents. I targeted the users who had created an account and interacted

with the system in their previous conference attendance (at least using the system for one

conference). The survey was initiated by sending an invitation to the qualified users in

December 2017. I sent out 89 letters to the conference attendees of UMAP/HT 2016, and

a total of 14 participants (7 female) replied to create the pool of participants for the user

study. The participants were from 13 different countries; their ages ranged from 20 to 40

(M=31.36, SE=5.04). I did an online survey to collect necessary demographic information

and self-reflection about how to design an explanation function in seven explanatory goals

[126].

The proposed questions were:

How can an explanation function help you to perceive system ...

1. Transparency - explain how the system works?

2. Scrutability - allow you to tell the system it is wrong?
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3. Trust - increase your confidence in the system?

4. Persuasiveness - convince you to explore or to follow new friends?

5. Effectiveness - help you make good decisions?

6. Efficiency - help you to make decisions faster?

7. Satisfaction - make using the system fun and useful?

I asked the participants to answer each question in 50-100 words, in particular, reflecting

the explanatory goals of the social recommendation. The data was published in [133].

1) Transparency: 71% of respondents pointed out the reasons of generated social

recommendations that help them to perceive higher system transparency, i.e., the personal-

ized explanation, the linkage and data sources, reasoning method and understandability. I

then summarized the feedback into five factors: 1) The visualization presents the similarity

between my interest and the recommended person. 2) The visualization presents the rela-

tionship between the recommended person and me. 3) The visualization presents where did

the data were retrieved. 4) The visualization presents more in-depth information on how the

score amounts up. 5) The visualization allows me to see the connections between people and

understand how they are connected.

2) Scrutability: Half of the respondents mentioned they needed “inspectable details”

to figure out the wrong recommendation. 35% of respondents suggested the mechanism of

accepting user feedback on improving wrong recommendations, such as a space to submit

user ratings or yes/no options. 14% of respondents preferred a dynamic exploration process

to determine the recommendation quality. I then summarized the feedback into four factors:

6) The visualization allows me to understand whether the recommendation is good or not. 7)

The visualization presents the data for making the recommendations. 8) The visualization

allows me to compare and decide whether the system is correct or wrong. 9) The visualization

allows me to explore and then determine the recommendation quality.

3) Trust: 28% of respondents mentioned that they trusted the system more when they

perceived the benefits of using the system. 35% of respondents preferred to trust a system

with reliable and informative explanations, more detailed information or understandable.

35% of respondents mentioned they trust a system with transparency or passed their veri-

fication. I then summarized the feedback into three factors: 10) The visualization presents
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a convincing explanation to justify the recommendation. 11) The visualization presents the

components (e.g., algorithm) that influenced the recommendation. 5) The visualization al-

lows me to see the connections between people and understand how they are connected.

4) Persuasiveness: Half of the respondents mentioned the explanation of social famil-

iarity would persuade them to explore novel social connections, namely, when shown social

context details or shared interests. 21% of respondents indicated that an informative in-

terface could boost the exploration of a new friendship. 28% of respondents preferred a

design that inspired curiosity, implicit relationships. I then summarized the feedback into

three factors: 12) The visualization shows me the shared interests, i.e., why my interests

are aligned with the recommended person. 13) The visualization has a friendly, easy-to-use

interface. 14) The visualization inspired my curiosity (to discover more information).

5) Effectiveness: 64% of respondents mentioned that the aspects of social recommen-

dation relevance helped them to make a good decision. The aspect included explaining the

recommendation process, understandable or more informative. 28% of respondents suggested

a reminder that a historical or successful decision could help them to make a good decision,

i.e., a previously-made user decision and success stories. I then summarized the feedback

into three factors: 15) The visualization presents the recommendation process. 5) The vi-

sualization allows me to see the connections between people and understand how they are

connected. 11) The visualization presents the components (e.g., algorithm) that influenced

the recommendation.

6) Efficiency: 28% of respondents mentioned that a proper highlighting of the rec-

ommendation helped to make the decision faster. For example, they are emphasizing the

relatedness, identifying the top recommendations or providing success stories. 28% of re-

spondents preferred a tune-able or visualized interface to accelerate the decision process,

such as tuning the recommendation features, visualizing the recommendations. However,

the explanations may not always be useful. 21% of respondents argued that the explanation

would prolong the decision process instead of speeding it up: the user may need to take

extra time to examine the explanations. I then summarized the feedback into two factors:

16) The visualization presents highlighted items/information that is strongly related to me.

17) The visualization presents aggregated, non-obvious relations to me.
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7) Satisfaction: The feedback on how an explanation can help the user satisfy the

system was varied. Three aspects received an equal 7% of respondents’ preferences. That is,

users preferred to view the feedback from the community, shown the historical interaction

record, and provided a personalized explanation. Two aspects received an equal 14% of

respondents’ preference, i.e., a focus on a friendly user interface and saved decision time. 21%

of respondents reported a higher satisfaction on using the explanation as a “small talk topic”,

i.e., as an initial conversation in a conference. 28% of respondents preferred an interactive

interface for perceiving the system to be fun, e.g., a controllable interface. I then summarized

the feedback into four factors: 18) The visualization presents the feedback from other users,

i.e., I can see how others rated the recommended person. 19) The visualization allows me

to tell why does this system recommends the person to me. 1) The visualization presents

the similarity between my interest and the recommended person. 13) The visualization is a

friendly, easy-to-use interface.

Based on the result of the online survey, I concluded a total of 19 factors in the second

stage of building the user mental model.

1. The visualization presents the similarity between my interest and the recommended

person.

2. The visualization presents the relationship between the recommended person and me.

3. The visualization presents where the data was retrieved.

4. The visualization presents more in-depth information on how the scores sum up.

5. The visualization allows me to see the connections between people and understand how

they are connected.

6. The visualization allows me to understand whether the recommendation is good or not.

7. The visualization presents the data for making the recommendations.

8. The visualization allows me to compare and decide whether the system is correct or

wrong.

9. The visualization allows me to explore and then determine the recommendation quality.

10. The visualization presents a convincing explanation to justify the recommendation.

11. The visualization presents the components (e.g., algorithm) that influenced the recom-

mendation.
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12. The visualization shows me the shared interests, i.e., why my interests are aligned with

the recommended person.

13. The visualization has a friendly, easy-to-use interface

14. The visualization inspired my curiosity (to discover more information).

15. The visualization presents the recommendation process clearly.

16. The visualization presents highlighted items/information that is strongly related to me.

17. The visualization presents aggregated, non-obvious relations to me.

18. The visualization presents feedback from other users, i.e., I can see how others rated a

recommended person.

19. The visualization allows me to tell why does this system recommends the person to me.

I also found some factors across different exploratory goals. For example, Factor 1 were

shared by the exploratory goal of Transparency and Satisfaction. Factor 5 were shared by

Transparency, Trust and Effectiveness. Factor 11 was shared by Trust and Effectiveness.

Factor 13 was shared by Persuasiveness and Satisfaction.

5.4 THIRD STAGE: TARGET MENTAL MODEL (STUDY 1)

In this stage, I conducted a controlled lab study 1a for creating the Target Mental Model.

The model is used to identify the key components of the recommendation model that the

users might want to be explainable in the UI. Since the goal is to identify the information

need for new users, I specifically selected subjects who never used the CN3 system. A total

of 15 (6 female) participants (N=15) were recruited for this study. They are first, or second-

year graduate students (major in information sciences) at the University of Pittsburgh with

ages ranged from 20 to 30 (M=25.73, SE=2.89). All participants had no previous experience

of using the CN system. Each participant received USD$20 compensation and signed an

informed consent form.

I asked the subjects to complete a card-sorting task about their preference for the 19

factors I identified in the second stage. I started by presenting the CN3 system (shown

in Figure 9) to the subjects and introducing the five recommendation models through the
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Expert Mental Model. After the tutorial, the subjects were asked to do a closed card-sorting

that assigns cards into four predefined groups. The four groups are 1) very important; 2)

less important; 3) not important, and 4) not relevant.

The survey result is reported in Table 7. I found that for the target users, factors 1,

13, 16 outperformed other factors: more than ten subjects assigned the three factors into

the “very important” group. The factor 2, 6, 10, 12, 14, 15 and 19 formed the secondary

preference group with at least 10 subject assigning them into “very important” or “less

important” groups. The subject’s least preferred factor were 3, 7, 11, 18 with at least nine

subjects assigning these factors into “not important” or “not relevant” groups.

Based on the card-sorting result, I found the user preferred an explainable UI is presenting

the similarity between his/her interests and the recommended person (F1). The UI should

be friendly and easy-to-use (F13) as well as highlighted the items or information that is

strongly related to the user (F16). Besides, some factors are also liked by the subjects.

For instance, the UI is presenting the mutual relationship (F2), shared interests (F12), and

recommendation process (F15). The UI should also allow the user to understand (F6) and

justify (F10) the quality of recommendation as well as inspired the curiosity of exploration

(F14) and recommendation process (F19). Interestingly, I also found the users were less

interested in a UI of presenting the data source (F3) and raw data (F7) as well as the detail

of algorithm (F11) and the recommendation feedback from the other users in the same

community (F18).

Hence, I decide to filter out the factors that were less preferred by the subjects. I choose

to keep the factors with more than ten votes in the groups of “Very Important” and “Less

Important”, which are F1, F2, F6, F10, F12, F13, F14, F15, F16, F19, the chosen factors

were highlighted in red color in Table 7. The factors can be projected back to the original

explanatory goals. The mentioned percentage of each exploration goal is listed as below:

Transparency (40%, 2 out of 5), Scrutability (0%, 0 out of 4), Trust (33%, 1 out of 3),

Persuasiveness (67%, 2 out of 3), Effectiveness (33%, 1 out of 3), Efficiency (50%, 1 out of

2) and Satisfaction, (75%, 3 out of 4). That is, the Target Mental model was built through

the exploratory goal of (rank from high to low importance) Satisfaction, Persuasiveness,

Efficiency, Transparency, Trust, and Effectiveness.
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5.5 SUMMARY

In this chapter, I presented a participatory process of bringing explanation interfaces to a

social recommender system. I proposed three stages in responding to the challenge questions

in identifying the key components of explanation models and mental models. In the first

stage, I discussed the Expert Mental Model by discussing the key components (based on

the similarity algorithm) of each recommendation model. In the second stage, I reported

an online survey of current system users (N=14) and identified 19 explanatory goals as the

User Mental Model. In the third stage, I reported the card-sorting results of a controlled user

study (N=15) that created the Target Mental Model through the target users’ preference of

the explanatory factors.
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Table 7: The target users card-sorting results

Very

Important

Less

Important

Not

Important

Not

Relevant

Factor 1 11 1 3 0

Factor 2 9 5 1 0

Factor 3 0 2 10 3

Factor 4 1 8 3 3

Factor 5 5 4 6 0

Factor 6 7 6 2 0

Factor 7 3 2 9 1

Factor 8 4 3 3 5

Factor 9 7 2 4 2

Factor 10 3 9 2 1

Factor 11 0 6 6 3

Factor 12 4 6 5 0

Factor 13 13 2 0 0

Factor 14 0 13 2 0

Factor 15 4 7 3 1

Factor 16 10 5 0 0

Factor 17 3 6 3 3

Factor 18 1 5 5 4

Factor 19 1 10 3 1
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6.0 EVALUATING PROTOTYPES OF EXPLANATION INTERFACES

This chapter presents my two stages of the investigation of iteratively implement and evaluate

explanation interfaces for five recommendation models. In this first stage, I introduce a total

of 25 prototype interfaces for the five recommendation models and report the card-sorting

result of study 2. In the second stage, I conduct the first round of evaluation identified the

effective design for the five recommendation models through study 3.

6.1 FIRST STAGE: ITERATIVE PROTOTYPING (STUDY 2)

After the card-sorting task of study 1, I asked the same group of subjects to identify the

chosen ten factors across some UI prototypes, as study 2. A total of 15 (6 female) participants

(N=15) were recruited. They were first, or second-year information science graduate students

at the University of Pittsburgh with ages ranged from 20 to 30 (M=25.73, SE=2.89). All

participants had no previous experience of using the CN system. Each participant received

USD$20 compensation and signed an informed consent form. Subjects took between 40 and

60 minutes to complete the study.

A total of 25 interfaces (five interfaces for each recommendation model) were exposed in

this stage. I used a within-subject design, i.e., all participants required to do a card-sorting

task. In each session, the participants were asked to sort the given five interfaces into groups

1 to 5 (1: Strongly Agree, 5: Strongly Disagree), in each exploratory factor. If one interface

is not contributing to the factor, the participant can mark it as irrelevant (not applicable).

I continued with a semi-interview after the subject completed each session to collect the

qualitative feedback.
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I conducted study 2 to determine the user preferred visual interfaces of explaining the

five similarity-based recommendation models (E1, E2, E3, E4 & E5). The participants

were asked to complete closed card-sorting tasks to organize the proposed interfaces into

predefined groups. The tasks were designed to evaluate how well a visual interface supports

the exploratory goal. A total of nineteen factor across seven explanatory goals were introduced

in the study [125, 133]. The seven factors included Transparency (TP), Scrutability (SC),

Trust (TS), Persuasiveness (PE), Effectiveness (ET), Efficiency (EF) and Satisfaction (SA).

The detailed statement of each factor can be found in this section.

There were a total of five card-sorting sessions for all five recommendation model. At

the beginning of the study, I introduced the CN system and the recommendation models

(from Expert Mental Model) to the subjects. After the introduction, I asked the subjects

to complete a closed card-sorting task for each recommendation model. In each task, I

presented five explanation interfaces (paper mock-ups) and asked the subjects to assign the

interfaces to group 1-5 (from Group 1: Strongly Agree; to Group 5: Strongly Disagree, or

Not Applicable) based on the given exploratory factors (listed in Table 9). The experiment

followed the within-subject design, i.e., all participants required to perform three card-sorting

tasks (i.e., one for each group) with the same nineteen explanatory factors. The order of

tasks and factors was the same for all participants. I continued with a semi-interview after

each task to collect the qualitative feedback.

6.1.1 Explaining Publication Similarity

The key component of publication similarity is terms and term frequency of the publication

as well as its mutual relationship (i.e., the common terms) between two scholars. I presented

four visual interface prototypes (shown in Figure 15) for explaining publication similarity

and one text-based interface (E1-1), which simply says “You and [the scholar] have common

words in [W1], [W2], [W3].”

E1-2: Two-way Bar Chart The bar chart is a common approach in analyzing the

text mining outcome [118] using a histogram of terms and term frequency. I extended the

design to a two-way bar chart to show the mutual relationship of two scholars’ publication
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(a) E1-2: Two-way Bar Chart (b) E1-3: Word Clouds

(c) E1-4: Venn Word Cloud (d) E1-5: Interactive Word Cloud

Figure 15: The prototype interfaces for Publication Similarity in study 2.

terms and term frequency, i.e., one scholar in positive and the other scholar on a negative

scale. The design is shown in Figure 15a.

E1-3: Word Clouds Word cloud is a common design in explaining text similarity [131].

I adopted the word cloud design from [149], which presented the term in the cloud and the

term frequency by the font size. This interface provided two word clouds (one for each

scholar) so the user can perceive the mutual relationship. The design is shown in Figure

15b.

E1-4: Venn Word Cloud Venn diagram was recognized as an effective hybrid expla-

nation interface by [75]. This interface could be considered as a combination of a word cloud

and a Venn diagram [136], which presents term frequency using the font size. The unique

terms of each scholar are shown in a different color (green and blue) while the common terms

are presented in the middle, with red color, for determining the mutual relationship. The
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design is shown in Figure 15c.

E1-5: Interactive Word Cloud A word cloud can be interactive. I extend the idea

from [131] and used Zoomdata Wordcloud [154], which follows the common approach to

visualize term frequency with the font size. The font color was selected to distinguish the

scholars’ terms, i.e., different term colors for each scholar. A slider was attached to the bot-

tom of the interface that provides real-time interactive functionality to increase or decrease

the number of terms in the word cloud. The design was shown in Figure 15d.

Results The card-sorting result was presented in Table 8. I found the E1-4 Venn Word

Cloud was preferred by the participants, received 76 votes in Rank 1, which was outperformed

the other four interfaces. According to the post-session interview, 13 subjects agreed E1-

4 is the best interface versus the other four interfaces. The supporting reasons can be

summarized as 1) the Venn diagram provided common terms in the middle, which highlighted

the common terms and shared relationship; 2) it is useful to show non-overlapping terms

on the sides (N=5) and 3) the design is simple, easy to understand and require less time

to process (N=3). Two subjects mentioned they preferred E1-2 the most due to histograms

gives them the “concrete numbers” for “calculating” the similarity, which was harder when

using word clouds.

6.1.2 Explaining Topic Similarity

The key component of topic similarity is research topics and topical words of the scholar as

well as its mutual relationship (i.e., the common research topics) between two scholars. I

presented four visual interfaces prototypes (shown in Figure 16) and one text-based prototype

for explaining the topic similarity. The text-based interface (E2-1) simply says “You and

[the scholar] have common research topics on [T1], [T2], [T3].”

E2-2: Topical Words This interface followed the approach of [90], which attempted

to help users in interpreting the topic by presented topical words in a table. I adopted the

idea as E2-2 Topical Words that present the topical words in two multi-column tables (each

column contains the top 10 words of each topic). The design is shown in Figure 16a.

E2-3: FLAME This interface followed [149], which adopted a bar chart and two word
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(a) E2-2: Topical Words (b) E2-3: FLAME

(c) E2-4: Topical Radar (d) E2-5: Topical Bar

Figure 16: The prototype interfaces for Topic Similarity in study 2.

clouds in displaying the opinion mining result. In their design, each bar would be considered

as a “sentiment”; then, the user can interpret the model by the figure (for the beta value of

topic) and table (for the topical words). I extended the idea as E2-3: FLAME that showed

two sets of research topics (top 5) and the relevant topic words in two word clouds (one for

each scholar). The design is shown in Figure 16b.

E2-4: Topical Radar The E2-4 Topical Radar was used in [136]. The radar chart was

presented on the left. I picked the top 5 topics (ranked by beta value from a total of 30

topics) of the user and compared them with the examined attendee through the overlay. A

table with topical words was presented in the right so that the user can inspect the context

of each research topic. The design is shown in Figure 16c.

E2-5: Topical Bars I adopted several bar charts in this interface as E2-5: Topical Bar.

The interface showed the top three topics of two scholars (top row and the second row) and

the topical information (top eight topical words in the y-axis and topic beta value in x-axis)
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using a bar chart with histograms. The design was shown in Figure 16d.

Results The card-sorting result was presented in Table 8. I found the E2-4 Topical

Radar received 86 votes in Rank 1 outperforming all other interfaces. E2-3 ended up being

second, with most votes in the R2 group. According to the post-session interview, 13 subjects

agreed E2-4 is the best interface among all examined interfaces. One subject preferred E2-3,

and one subject suggested a mix of E2-3 and E2-4 as the best design. The supporting reasons

for E2-4 can be summarized as 1) It is easy to see the relevance through the overlapping

area from the Radar chart and the percentage numbers from the table (N=12). 2) It is

informative to compare the shared research topics and topical words (N=9).

6.1.3 Explaining Co-Authorship Similarity

The key component of co-authorship similarity is coauthors, coauthorship and distance of

connections of the scholars as well as its mutual relationship (i.e., the connecting path)

between two scholars. I presents the five prototyping interfaces (shown in Figure 17, E3-1

presented in text below) for explaining publication similarity. In addition to four visualized

interfaces, I also include one text-based interface (E3-1). That is, “You and [the scholar]

have common co-authors, they are [A1], [A2], [A3].”

E3-2: Correlation Matrix E3-2 Correlation matrix was inspired by [57] that was

used to present overlapping user-item co-clusters in a scalable and interpretable product

recommendation model. I extended the interface to a user-to-user correlation matrix that

the user can inspect the scholar co-authorship network. The design was shown in Figure

17(a).

E3-3: ForceAtlas2 E3-3: ForceAtlas2 was inspired by [38] that presented Co-authorship

graph of NiMCS and related research with both high and low-level network structure and in-

formation. Nodes and edges are representing authors and co-authorship, respectively. Graph

layout uses the ForceAtlas2 algorithm [38]. Clusters are calculated via Louvain modularity

and delineated by color. The frequency of co-authorship is calculated via Eigenvector cen-

trality and represented by size. The design was shown in Figure 17(b).

E3-4: Strength Graph E3-4 Strength Graph was inspired by [131] that tried to present
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(a) E3-2: Correlation Matrix (b) E3-3: ForceAtlas2

(c) E3-4: Strength Graph (d) E3-5: Social Viz

Figure 17: The prototype interfaces for Co-Authorship Similarity in study 2.

the co-authorship network using D3plus network style [80]. Nodes and edges are representing

authors and co-authorship, respectively. The edge thickness is the weighting of the co-

authorship (number of co-worked papers). The node was assigned different color by their

groups, i.e., the original scholar, target scholar and via scholars. The design was shown in

Figure 17(c).

E3-5: Social Viz The E3-5 Social Viz was used in [136]. There were six possible paths

(one shortest and five alternatives). The user will be presented in the left with a yellow circle.

The target user will be presented in the right with a red color. The circle size represented
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the weighting of the scholar, which was determined by the appearing frequency in the six

paths. For example, the scholar Peter is the only node that scholar Chu can reach scholar

Nav, so the circle size was the largest one (size = 6). The design was shown in Figure 17(d).

Results The card-sorting result was presented in Table 8. I found the E3-4 Strength

Graph was preferred by the participants, received 45 votes in Rank 1. However, the votes

were close with E3-2 Correlation Matrix (37 votes) and E3-3 ForceAtlas2 (32 votes). Ac-

cording to the post-session interview, four subjects agreed E3-4 is the best interface versus

the other four interfaces. The supporting reasons were the interface highlighted the mutual

relations and let the user can understand the path between two scholars. The arrow and

edge thickness were also useful. Two subjects supported E3-2; they liked the correlation

matrix provided a clear number and correlation information that easier for them to process.

Three subjects supported E3-3; they preferred the interface provided a piece of high-level

information by giving a “big picture”. Also, E3-3 would be good to explore the co-authorship

network beyond the connecting path, although the interface was reported to be too compli-

cated as an explanation. Four subjects supported E3-5, they enjoy the simple, clear, and

“straightforward” connecting path as the explanation for co-authorship network.

6.1.4 Explaining CN3 Interest Similarity

The key component of CN3 interest similarity is papers and authors of the system book-

marking as well as its mutual relationship (i.e., the common terms) between two scholars.

I presented the five prototyping interfaces (shown in Figure 18, E4-1 presented in the text

below) for explaining publication similarity. In addition to four visualized interfaces, I also

include one text-based interface (E4-1). That is, “You and [the scholar] have common book-

marking, they are [P1], [P2], [P3].”

E4-2 Similar Keywords E4-2 Similar Keywords was proposed and deployed in Con-

ference Navigator [109]. I extended the interface to explain shared bookmarks between two

scholars. The interface represents the scholars in two sides and the common co-bookmarking

items (e.g., the five common co-bookmark papers or authors) in the middle. A strong (solid

line) or weak (dash line) tie will be used to connect the item was bookmarked by the one-side
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(a) E4-2: Similar Keywords (b) E4-3: Tagsplanations

(c) E4-4: Venn Tags (d) E4-5: Itemized List

Figure 18: The prototype interfaces for CN3 Interest Similarity in study 2.

or two-sides. The design was shown in Figure 18(a).

E4-3: Tagsplanations E4-3 Tagsplanations was proposed by [141]. The idea is to show

both tag, user preference, and relevance that used to recommend movies. I extended the

interface to explain the co-bookmarking information. In my design, the co-bookmarked

item will be listed and ranked by its social popularity, i.e., how many users have fol-

lowed/bookmarked the item? The design was shown in Figure 18(b).

E4-4: Venn Tags The study of [75] has pointed out the user preferred the Venn dia-

gram as an explanation in a recommender system. In the interface of E4-4: Venn Tags, I

implemented the same idea with the bookmarked items. The idea is to present the book-
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marked item, using an icon, in the Venn diagram. The two sides are the bookmarked item

belong to one party. The co-bookmarked or co-followed item will be placed in the middle.

The users can hover the icon for detail information, i.e., paper title or author name. The

design was shown in Figure 18(c).

E4-5: Itemized List An itemized list has been adopted to explain the bookmark. I

proposed E4-5: Itemized List that presented the bookmarked or followed items in two lists.

The design was shown in Figure 18(d).

Results The card-sorting result was presented in Table 8. I found the E4-4 Venn Tags

was preferred by the participants, received 64 votes in Rank 1, which was outperformed

all other four interfaces. E4-3 Tagsplanations was also be favored by the subject, which

received 49 votes. According to the post-session interview, eight subjects agreed E4-4 is the

best interface versus the other four interfaces. The supporting reasons can be summarized

as 1) the Venn diagram is more familiar or clear than other interfaces (N=4); 2) The Venn

diagram is simple and easy to understand (N=4). Three subjects mentioned they preferred

E4-3 the most due to the interface provide extra attribution, don’t need to hover for detail,

and easy-to-use.

6.1.5 Explaining Geographic Similarity

The key component of geographic similarity is location and distance of the two scholars

as well as their mutual relationship (i.e., the geographic distance). I presented the five

prototyping interfaces (shown in Figure 19, E5-1 presented in the text below) for explaining

the geographic similarity. In addition to four visualized interfaces, I also include one text-

based interface (E5-1). That is, “From [Institution A] to [sample]’s affiliation ([Institution

B]) = N miles.”

E5-2: Earth Style Using Google Map [61] for explaining geographic distance in a social

recommender system has been discussed in [? ]. I extended the interface to a different style.

In E5-2 Earth Style, I “zoom out” the map to an earth surface and place the two connected

icons (with geographic distance) on the map. The design was shown in Figure 19(a).

E5-3: Navigation Style E5-3 Navigation Style followed the same Google Map API
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(a) E5-2: Earth Style (b) E5-3: Navigation Style

(c) E5-4: Icon Style (d) E5-5: Label Style

Figure 19: The prototype interfaces for Geography Similarity in study 2.

(shown in E5-2), but presented navigation between the two locations, either by car or flight.

To be noted, the transportation time, i.e., the fly or driving time in E5-2 or E5-3, did not be

considered in the recommendation model. The design was shown in Figure 19(b).

E5-4: Icon Style E5-4 Icon Style followed the same Google Map API (shown in E5-2),

but presented two icons on the map without any navigation information. The users can hover

to see the detail affiliation, but the geographic distance information was not presented. The

design was shown in Figure 19(c).

E5-5: Label Style E5-4 Label Style followed the same Google Map API (shown in E5-

2), but presented two labels on the map without any navigation information. The users can

see the detail affiliation profile through the floating label without extra clicking or hovering

interactions. The design was shown in Figure 19(d).

Results The card-sorting result was presented in Table 8. I found the E5-3 Navigation

Style was preferred by the participants, received 42 votes in Rank 1. However, the votes are

close with E5-3 Label Style (40 votes). In the post-session interview, six subjects agreed E5-3
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is the best interface versus the other four interfaces. Three subjects particularly mentioned

the navigation function was irrelevant in explaining or exploring the social recommendations.

The supporting reasons for E5-3 can be summarized as 1) The map is informative (N=2).

2) It is useful to see navigation (N=5). Three subjects mentioned they preferred E5-5 the

most due to the label contains affiliation information that they can understand the affiliation

without extra actions. Although there is no geographic distance information, one subject

pointed out he will realize the distance after knowing the affiliation title.

6.1.6 Summary and Discussion

In this stage, I proposed a total of 25 explanation interfaces for five recommendation models

and reported the card-sorting and semi-interview results. I found, in general, the partici-

pants preferred visualization interfaces more than the text-based interface. Based on study

2, I found E1-4: Venn Word Cloud, E2-4: Topical Radar, E3-4: Strength Graph, E4-4:

Venn Tags, E5-3: Navigation Style were preferred by the study participants. I further

discussed the top-rated and second-rated explanation interfaces and user feedback in each

session. Based on the experiment results, I concluded the design implication of bringing the

explanation interface to a real-world social recommender system.

I choose the explanation interface design using seven factors. The seven factors included

Transparency (TP), Scrutability (SC), Trust (TS), Persuasiveness (PE), Effectiveness (ET),

Efficiency (EF), and Satisfaction (SA). The detailed statement of each factor can be found

in Table 9. In this dissertation, I select the user preferred explanation interface design by

the votes in the first rank, i.e., the preferred interface design in general. However, it is also

possible to elaborate on the design selection by a deeper analysis of the card-sorting results.

That is, a recommender system may aim to enhance one particular exploratory goal. For

example, instead of selecting the general preferred design, the researcher or designer may

select an interface design that can persuade users to accept the recommendation. In this

case, factor 12, 13, 14 should be assigned with higher weightings. Another example is to

allow the users to tell if the recommendation is correct, i.e., to enhance the scrutability of the

system. In this case, the factor of 6, 7, 8, and 9 would better reflect the design implications.
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Table 8: The card-sorting results of study 2.

R1 R2 R3 R4 R5
Not

Applicable
Total
Votes

E1-1 19 25 21 19 44 22 150

E1-2 23 37 17 30 26 17 150

E1-3 7 16 42 44 19 22 150

E1-4 76 32 27 2 0 13 150

E1-5 19 31 33 28 20 19 150

E2-1 12 8 14 21 60 35 150

E2-2 6 2 9 73 36 24 150

E2-3 24 78 28 7 2 11 150

E2-4 86 31 13 11 0 9 150

E2-5 13 21 70 14 11 21 150

E3-1 13 5 9 18 69 36 150

E3-2 37 26 17 36 20 14 150

E3-3 32 38 29 28 11 12 150

E3-4 45 41 37 11 0 16 150

E3-5 15 32 41 36 11 15 150

E4-1 8 11 6 31 64 30 150

E4-2 17 61 48 16 2 6 150

E4-3 49 41 41 11 3 5 150

E4-4 64 28 41 7 1 9 150

E4-5 8 5 6 65 46 20 150

E5-1 20 7 13 24 55 31 150

E5-2 16 22 6 45 36 25 150

E5-3 42 16 44 11 6 31 150

E5-4 15 49 36 18 4 28 150

E5-5 40 35 26 20 3 26 150
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6.2 SECOND STAGE: FIRST-ROUND EVALUATION (STUDY 3)

This section presents study 3, which I conducted to develop and evaluate explanation in-

terfaces for five similarity-based people recommendation models. In study 2 (N=15), I

introduced a card-sorting task to identify the user preferred explanation interface design

for multiple explanation goals. I assessed a total of twenty-five explanation interfaces and

selected the top-voted interface designs for each similarity-based recommendation model. In

study 3 (N=18), I used a performance-focused evaluation approach to investigate whether

using two types of explanations in parallel could offer an advantage over a single type of

explanation. I compared ten explanation interfaces, one baseline plus one enhanced version

for each of the five recommendation models. In each case, I use the top-rated interface as

a baseline for each model and a combination of first and second preferred interfaces as an

enhanced version. I implemented ten explanation interfaces using the data from a state-

of-the-art scholarly social recommender system. I evaluated the explanation interfaces by

asking the participant to “sort” recommendation based on the relevance. I analyzed the

findings combined with the sorting result, user perception survey, and NASA-TLX survey.

6.2.1 Similarity-Based Recommendations

In this section, I present the results of my attempts to design and evaluate visual explanations

for five similarity-based people recommendation models: text similarity, topic similarity, co-

authorship similarity, CN3 interest similarity, and geography similarity. These models are

widely adopted in many content-based recommender systems [132, 136, 141].

Text similarity (E1) is a metric that measures similarity or dissimilarity (distance)

between two text strings [43]. The “strings” can consist of various information sources.

For example, in a scholarly people recommender system, the string can be generated from

scholars’ academic publications. To measure the text-similarity (distance), one promising

approach is to convert the strings into a term vectors and then compute their cosine simi-

larity [132]. A higher similarity (i.e., the shortest distance) between “strings” representing

publications of two researchers indicates that the two researchers have a larger fraction of
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common terms in the text of their publications.

Topic similarity (E2) is a metric that measures the distance between topic distributions

[31]. This is another approach to measure the similarity between the publications of two

researchers. The approach assumes that a mixture of topics is used to generate a string

(document), where each topic is a distribution of topical words. A social recommender

engine, based on the topic-based approach, can represent the scholars’ research interests

through the learned topics. The topic similarity could be computed as the pairwise similarity

of the topic distributions [136]. In my study, the topics were generated by topic modeling,

Latent Dirichlet Allocation (LDA), by classifying their publication text [31]. A higher topic

similarity means a shorter distance between the two scholars’ research interests, i.e., the two

scholars shared more common research topics.

Co-authorship similarity (E3) is a metric that measures the connectivity of two

vertices in a social network. The connectivity can be defined by different measurements, for

example, the number of common neighborhood, number of paths or shortest distance [121,

95, 132]. In a scholar recommender system, the co-authorship similarly can be calculated by

measuring the distance between two scholars, based on their co-authorship network. A higher

social similarity means that the two scholars have a shorter distance in their co-authorship

network, i.e., the two scholars are connected with a fewer node degree.

CN3 interest similarity (E4) is a metric that measures the portion of shared items,

which can be varied in a different context. For example, items shared by two users could

be user-generated tags [141] or friends followed on social media. In a scholar recommender

system, the item similarity between two scholars can be calculated by measuring the inter-

section of the bookmarked papers [10, 81], e.g., using Jaccard similarity [132, 136]. A higher

item similarity means that the two scholars have more similar interests with respect to the

academic articles or conference presentation, i.e., they co-bookmarked a larger number of

papers at the same conference.

Geography similarity (E5) is a metric that measures the geographic distance between

two entities. For example, the distance can be determined through longitude and latitude

data based on locations. In a scholar recommender system, the geography similarly can be

calculated by two scholars’ affiliation information, The affiliation location can be converted
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in a coordinate system, and then applied the Haversine formula to compute the geographic

distance between scholars [138]. A higher geography similarity means that the two scholars

are affiliated with the nearby institutions, i.e., the two scholars may live or work in the

nearby cities or regions.

6.2.2 Developing Explanation Interfaces

I designed visual interfaces to explain five similarity-based models for recommending confer-

ence attendees to meet implemented in a conference support system Conference Navigator

(CN) [10]. All interfaces were selected to visually explain one type of “similarity” between

the user and a recommended scholar described in the previous section. My goal at this

stage was to find visualizations that can better explain the similarity model as measured

by user perception. Existing state-of-the-art explanation interfaces or models motivated my

interface designs. Due to the page limit, this paper shows only top-performing designs (see

Figure 20). The full set of designs can be found in [134].

6.2.2.1 Explaining Text Similarity (E1) The key component of text similarity is

terms and term frequency of the publication as well as its mutual relationship (i.e., the

common terms) between two scholars. I presented one text-based interface (E1-1) and four

visual interfaces (E1-2 to E1-5) for explaining text similarity.

E1-1 Text-Based Explanation: The text-based interface was presenting the explana-

tion as: You and [the scholar] have common words in [W1], [W2], [W3].

(Second-rated) E1-2 Two-way Bar Chart: The bar chart is a common approach

in analyzing the text mining outcome using a histogram of terms and term frequency [118].

I extended the design to a two-way bar chart to better compare two scholars’ publication

terms and term frequency, i.e., one scholar on the right and the other scholar on the left

(Figure 20b).

E1-3 Word Clouds: Word cloud is a universal design in explaining text similarity

[40, 131]. I adopted the word cloud style from [149], which presented the term in the cloud

and the term frequency by the font size. I used two-word clouds (one for each scholar), so
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Table 9: The explanation factors of study 3

Factor Statement

1 TP, SA
The visualization presents the similarity between my
interest and the recommended person.

2 TP
The visualization presents the relationship between the
recommended person and me.

3 TP The visualization presents where the data was retrieved.

4 TP
The visualization presents more in-depth information
on how the scores sum up.

5
TP, TS

ET
The visualization allows me to see the connections
between people and understand how they are connected.

6 SC
The visualization allows me to understand whether the
recommendation is good or not.

7 SC
The visualization presents the data for making
the recommendations.

8 SC
The visualization allows me to compare and decide
whether the system is correct or wrong.

9 SC
The visualization allows me to explore and then
determine the recommendation quality.

10 TS
The visualization presents a convincing explanation
to justify the recommendation.

11 TS
The visualization presents the components
(e.g., algorithm) that influenced the recommendation.

12 PE
The visualization shows me the shared interests, i.e., why
my interests are aligned with the recommended person.

13 PE, SA The visualization has a friendly, easy-to-use interface.

14 PE
The visualization inspired my curiosity to
discover more information.

15 ET
The visualization presents the recommendation
process clearly.

16 EF
The visualization presents highlighted items
or information that is strongly related to me.

17 EF
The visualization presents aggregated,
non-obvious relations to me.

18 SA
The visualization presents feedback from other users,
i.e., I can see how others rated a recommended person.

19 SA
The visualization allows me to tell why does this system
recommend the person to me.

the user can perceive the mutual relationship.

(Top-rated) E1-4 Venn Word Cloud: This interface could be considered as a com-

bination of a word cloud and a Venn diagram [136], which presents term frequency using the
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(a) E1-4: Venn Word Cloud (Top-rated) (b) E1-2: Two-way Bar Chart (Second-rated)

(c) E2-4: Topical Radar (Top-rated) (d) E2-3: FLAME (Second-rated)

(e) E3-3: ForceAtlas2 (Top-rated) (f) E3-2: Correlation Matrix (Second-rated)

(i) E4-4: Venn Tags (Top-rated) (j) E4-3: Tagsplanations (Second-rated)

(k) E5-3: Navigation Style (Top-rated) (l) E5-5: Label Style (Second-rated)

Figure 20: The top-rated and second-rated visual interfaces study 3.
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font size. The unique terms of each scholar are shown in a different color (green and blue)

while the common terms are presented in the middle, with red color, for determining the

mutual relationship (Figure 20a).

E1-5 Interactive Word Cloud: A word cloud can be interactive. I extend the idea

from [131] and used “Zoomdata Wordcloud” tool [154], which follows the common approach

to visualize term frequency with the font size. The term color was selected to distinguish

the scholars’ terms, i.e., different term colors for each scholar. A slider was attached to

the bottom of the interface that provides real-time interactive functionality to increase or

decrease the number of terms in the word cloud.

6.2.2.2 Explaining Topic Similarity (E2) The key component of topic similarity is

research topics and topical words of the scholar as well as its mutual relationship (i.e., the

common research topics) between two scholars. I presented one text-based interface (E2-1)

and four visual interfaces (E2-2 to E2-5) for explaining topic similarity.

E2-1 Text-Based Explanation: The interface was presenting the explanation as You

and [the scholar] have common research topics on [T1], [T2], [T3].

E2-2 Topical Words: This interface extended the approach by [90], which attempted

to enable topic interpretation by presenting topical words in a table. I adopted the idea as

E2-2 Topical Words that present the topical words in two multi-column tables (each column

contains ten topical words).

(Second-rated) E2-3 FLAME: This interface was proposed by [149], which adopted a

bar chart and two word-clouds in displaying the topical mining result. The user can interpret

the topic model by the diagram (for the beta value of the topic) and the table (for the topical

words). I extended the idea as E2-3: FLAME that showed two sets of research topics (top

5) and the relevant topic words in two word-clouds (one for each scholar). (Figure 20d)

(Top-rated) E2-4 Topical Radar: The interface was introduced by [136], which pre-

sented a radar diagram with a topical word table. The radar filed the top 5 topics (ranked

by beta value) of the user and the corresponding value of the recommended scholar. The

table with topical words was presented in the right so that the user can inspect the context

of each research topic. (Figure 20c)
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E2-5 Topical Bars: Bar chart have been shown useful in analyzing the frequency

across different topics [118]. In this interface, I adopted multiple bar charts to show six topic

distribution of two scholars and the topical information (words and topic beta value).

6.2.2.3 Explaining Co-Authorship Similarity (E3) The key component of co-authorship

similarity is coauthors, coauthorship and distance of connections of the scholars as well as its

mutual relationship (i.e., the connecting path) between two scholars. I adopt one text-based

interface (E3-1) and four visual interfaces (E3-2 to E3-5) for explaining topic similarity.

E3-1: Text-Based Explanation: The interface was presenting the explanation as

“You and [the scholar] have common co-authors, they are [A1], [A2], [A3].”

E3-2: Correlation Matrix E3-2 Correlation matrix was inspired by [57] that was

used to present overlapping user-item co-clusters in a scalable and interpretable product

recommendation model. I extended the interface to a user-to-user correlation matrix that

the user can inspect the scholar co-authorship network (Figure 20f).

(Second-rated) E3-3: ForceAtlas2 E3-3: ForceAtlas2 was inspired by [38] that pre-

sented Co-authorship graph of NiMCS and related research with both high and low-level

network structure and information. Nodes and edges are representing authors and co-

authorship, respectively. Graph layout uses the ForceAtlas2 algorithm [38]. Clusters are

calculated via Louvain modularity and delineated by color. The frequency of co-authorship

is calculated via Eigenvector centrality and represented by size (Figure 20e).

(Top-rated) E3-4: Strength Graph E3-4 Strength Graph was inspired by [131] that

tried to present the co-authorship network using D3plus network-style [80]. Nodes and edges

are representing authors and co-authorship, respectively. The edge thickness is the weighting

of the co-authorship (number of co-worked papers). The node was assigned different colors

by their groups, i.e., the original scholar, target scholar, and scholars.

E3-5: Social Viz The E3-5 Social Viz was used in [136]. There were six possible paths

(one shortest and five alternatives). The user will be presented in the left with a yellow circle.

The target user will be presented in the right with a red color. The circle size represented

the weighting of the scholar, which was determined by the appearing frequency in the six

paths. For example, the scholar Peter is the only node that scholar Chu can reach scholar
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Nav, so the circle size was the largest one (size = 6).

6.2.2.4 Explaining Item Similarity (E4) The key component of item similarity is the

papers and authors of the bookmarking as well as its mutual relationship (i.e., the common

items) between two scholars. I present the five prototyping interfaces for explaining item

similarity. In addition to four visualized interfaces (E3-2 to E3-5), I also include one text-

based interface (E3-1) for explaining item similarity.

E4-1 Text-Based Explanation: The interface was presenting the explanation as: You

and [the scholar] have common bookmarking, they are [B1], [B2], [B3].

E4-2 Similar Keywords: The interface was proposed and deployed by the CN system

[109]. I extended the interface to explain common bookmarks between two scholars. The

interface represents the scholars in two sides and the common co-bookmarking items (e.g.,

the five common co-bookmark papers or authors) in the middle. A strong (solid line) or

weak (dash line) tie will be used to connect the item was bookmarked by the one-side or

two-sides.

(Second-rated) E4-3: Tagsplanations: The visualization was proposed by [141].

The idea is to show tag and relevance in an ordered bar. I extended the interface to explain

the co-bookmarking information. In my design, the co-bookmarked item will be listed and

ranked by its social popularity, i.e., how many users have followed/bookmarked the item?

(Figure 20j)

(Top-rated) E4-4: Venn Tags: The study [75, 104] pointed out that users preferred

Venn diagrams as a way to explain recommendation. In the interface, presented items

bookmarked by compared scholars as icons on the Venn diagram. Two sides of the diagram

show bookmarked item belonging only to one of the compared scholars. The co-bookmarked

items are presented in the middle. The users can mouse over the icon for detail information,

i.e., paper title. (Figure 20i)

E4-5: Itemized List: An itemized list has been adopted to explain the bookmark in [?

]. I extended the design in presenting the bookmarked or followed items in two comparable

itemized lists.

92



6.2.2.5 Explaining Geographic Similarity (E5) The key component of geographic

similarity is location and distance of the two scholars as well as their mutual relationship

(i.e., the geographic distance). I presented the five prototyping interfaces (shown in Figure

??, E5-1 presented in the text below) for explaining the geographic similarity. In addition

to four visualized interfaces, I also include one text-based interface (E5-1). That is, “From

[Institution A] to [sample]’s affiliation ([Institution B]) = N miles.”

E5-2: Earth Style I adopt Google Map [61] for explaining geographic distance in a

social recommender system. I extended the interface to a different style. In E5-2 Earth

Style, I “zoom out” the map to an earth surface and place the two connected icons (with

geographic distance) on the map.

(Top-rated) E5-3: Navigation Style E5-3 Navigation Style followed the same Google

Map API (shown in E5-2), but presented navigation between the two locations, either by

car or flight. To be noted, the transportation time, i.e., the fly or driving time in E5-2 or

E5-3, did not be considered in the recommendation model (Figure 20k).

E5-4: Icon Style E5-4 Icon Style followed the same Google Map API (shown in E5-2),

but presented two icons on the map without any navigation information. The users can hover

to see the detail affiliation, but the geographic distance information was not presented.

(Second-rated) E5-5: Label Style E5-4 Label Style followed the same Google Map

API (shown in E5-2), but presented two labels on the map without any navigation informa-

tion. The users can see the detail affiliation profile through the floating label without extra

clicking or hovering interactions (Figure 20l).

6.2.2.6 Card-Sorting Analysis The card-sorting results are presented in Table 10.

The first (top-rated) and the second (second-rated) most-preferred interfaces are highlighted

in red and blue color, respectively. In general, the result indicated that the participants

preferred visual explanations over text-based explanations. The pattern was consistent in

all five tasks; the text-based explanations were always received the most Group 5 and Not

Applicable votes.

In explaining text similarity (E1), E1-4 Venn Word Cloud was preferred by the partic-

ipants (received 117 votes in Group 1) outperforming the other four interfaces. According
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Table 10: The card-sorting results of study 3

R1 R2 R3 R4 R5
Not

Applicable
Total
Votes

E1-1 32 39 30 30 76 78 285

E1-2 47 55 31 56 35 61 285

E1-3 12 33 68 68 34 70 285

E1-4 117 57 44 8 2 57 285

E1-5 38 50 56 45 31 65 285

E2-1 18 9 23 29 113 93 285

E2-2 18 18 22 119 49 59 285

E2-3 48 125 56 13 2 41 285

E2-4 137 55 26 25 2 40 285

E2-5 30 39 108 35 13 60 285

E3-1 17 6 15 24 127 96 285

E3-2 74 46 38 58 25 4 285

E3-3 74 71 42 44 14 40 285

E3-4 67 76 71 21 1 49 285

E3-5 20 51 70 73 17 54 285

E4-1 11 13 6 48 113 94 285

E4-2 32 103 87 22 2 39 285

E4-3 91 75 66 14 4 35 285

E4-4 101 48 68 15 2 51 285

E4-5 17 10 12 116 63 67 285

E5-1 45 12 16 41 93 78 285

E5-2 25 36 13 77 59 75 285

E5-3 75 37 65 16 9 83 285

E5-4 23 74 65 39 6 78 285

E5-5 59 63 55 28 6 74 285

to the post-stage interview, 13 subjects agreed that E1-4 is the best interface due to the

following reasons. 1) the Venn diagram provided common terms in the middle, which high-

lighted the common terms and shared relationship; 2) it is useful to show non-overlapping

terms on the sides (N=5) and 3) the design is simple, easy to understand and require less

time to process (N=3). Two subjects particularly mentioned they preferred E1-2: Two-way

Bar Chart (received 47 votes in Group 1, second-rated interface) since histograms give them
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the “concrete numbers” for “calculating” the similarity, which was harder when using word

clouds.

In explaining topic similarity (E2), E2-4 Topical Radar received 137 votes in Group 1,

outperforming all other interfaces. E2-3 FLAME ended up second in Group 1 as well as

received the most votes in Group 2. According to the post-stage interview, 13 subjects

agreed E2-4 is the best interface among all examined interfaces. The supporting reasons for

E2-4 can be summarized as 1) It is easy to see the relevance through the overlapping area

from the radar chart and the percentage numbers from the table (N=12). 2) It is informative

to compare the shared research topics and topical words (N=9). One subject specifically

preferred E2-3, and one subject suggested a mix of E2-3 and E2-4 as the best design.

In explaining co-authorship similarity (E3), E3-3: ForceAtlas2 and E3-2: Correlation

Matrix both received 74 votes in Group 1. The card-sorting result is surprising due to the

two interfaces were explaining co-authorship similarity in a different way. When the votes in

Group 2 were considered, the social network-style interfaces (E3-3: ForceAtlas2 and E3-4:

Strength Graph) were still favored more by the users. According to the post-stage interview,

user preference was diverse. There were three subjects preferred E3-3 due to the simplicity

of recognizing the big picture as well as the detailed information. There were three subjects

supported E3-4 due to the better usability of only showing the relevant information. Two

subjects top-ranked E3-2 due to their familiarity and the presenting of correlation. One

subject particularly mentioned she preferred E3-1 due to all visualize interfaces were too

complicated for her.

In explaining item similarity (E4), E4-4 Venn Tags received 101 votes in Group 1 out-

performing the other four interfaces. E4-3 Tagsplanations finished as a very close second

receiving 91 votes. According to the post-stage interview, eight subjects agreed that E4-4

is the best interface among the five interfaces. The supporting reasons can be summarized

as 1) the Venn diagram is more familiar or clear than other interfaces (N=4); 2) The Venn

diagram is simple and easy to understand (N=4). Three subjects particularly mentioned

that they preferred E4-3 since this interface provides extra information without requiring

extra Mouse-hovering efforts while inspecting the details.

In explaining geography similarity (E3), E5-3: Navigation Style received 75 votes in
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Group 1. E5-5: Label Style ended up second in Group 1 with 59 votes. According to

the post-stage interview, six subjects supported E5-3 is the best design. The supporting

reasons included it was clear to show the distance, navigation, and routes. To be noted, the

navigation information was irrelevant to the recommendation engine, but the participants

were still in favor of the interface design. Three subjects supported the design of E5-5;

they agreed the interface is showing clear, detailed affiliation information. Although the

distance information was missing, one subject particularly mentioned he could “appraise”

the distance based on the affiliation. Three subjects preferred E5-2 due to the viability of

the global map and locations. One subject chosen E5-1 due to it is less complexity of getting

the distance information.

6.2.3 Assessing Visual Enhanced Explanations

Based on the card-sorting result of study 1b, I implemented the top-rated designs to assess

visual explanation interfaces more reliably. The screenshot of the most-preferred interfaces

can be found in Figure 20. I proposed 1) E1-4 Venn Word Cloud to explain text similarity

(Sim1), 2) E2-4 Topical Radar to explain topic similarity (Sim2), 3) E3-4: Strength Graph

to explain co-authorship similarity (Sim3), 4) E4-4: Venn Tags to explain item similarity

(Sim4) and 5) E5-3: Navigation Style to explain geography similarity (Sim5). for the

visualizations.

At the same time, the result of the post-stage interview indicated that while second-rated

interfaces collected fewer votes than top-rated interfaces, participants mentioned different

reasons for preferring these interfaces. I hypothesized that the features of first and second

design choices could complement each other and decided to explore whether I could improve

the value of the most-preferred interface by enhancing it with the second-most-preferred

design. That is, I added the E1-2 Two-way Bar Chart to E1-4 Venn Word Cloud to provide

additional term comparison information (Sim1+, Figure 21), attached two word clouds to

E2-4 Topical Radar to mix up the user preferred component of E2-3 (Sim2+, Figure 22),

revised E3-4 Strength Graph of different edge thickness (Sim3+, Figure 23), provided an

extra list to E4-4: Venn Tags (Sim4+, Figure 24) to decrease the need for mousing-over

96



(a) Sim1+

Figure 21: The visual interfaces that used to explain publication similarity-based recommen-

dation model in study 3.

while getting the item details, and added location label to the design of E5-3 Navigation

Style (Sim5+, Figure 25). I aimed to answer the following research questions (RQs):

• How does the visual interface reach the explanation goals?

• How does user perception vary with the enhanced interface?

• How does the explanation interface affect user performance (inspectability) across rec-

ommendations?

6.2.4 Evaluating Enhanced Explanation Interfaces

I conducted a controlled user study to evaluate and compare the selected interfaces for

explaining the five similarity-based recommendation models. I introduced a total of ten ex-
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(a) Sim2+

Figure 22: The visual interfaces that used to explain topic similarity-based recommendation

model in study 3.

planation interfaces (five baseline and five enhanced interfaces) in the context of the attendee

recommender component of the Conference Navigator (CN) [10]. A total of 18 (11 female)

participants (N=18) were recruited for this study. There were 16 information science grad-

uate students and two graduate from nursing and linguistics programs at the University of

Pittsburgh. Their age ranged from 21 to 35 years (M = 24.94, SE = 3.24). All participants

had no previous experience of using the CN system. Each participant received USD$20

compensation and signed informed consent.

In the beginning of study 3, I first introduced the CN system and the recommenda-

tion models to the subjects. After the introduction, I asked the subjects to complete a

“recommendation-sorting task” using the given explanation interface, i.e., the subjects were

required to rank the recommendation relevance solely based on the visual explanation. The
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(a) Sim3+

Figure 23: The visual interfaces that used to explain co-authorship similarity-based recom-

mendation model in study 3.

tasks were designed to evaluate how well an explanation interface supports the user per-

formance of comparing the relevance across recommendations. The experiment adopted a

within-subject design, i.e., all participants were asked to perform six sorting tasks using the

proposed explanation interfaces. In each task, the subject received five people recommen-

dations generated by one recommendation model. To make the conditions equal, all users

received the same recommendation generated using data of a scholar who used the CN sys-

tem for at five conferences. The subjects can click the recommendation link to open the

corresponding explanation interface. The five people recommendations were displayed as

five links with the names of the recommended scholars. All related background information

(e.g., list of publications, affiliation, title, etc.) was hidden to reduce the bias. The order of

recommendation and explanation interfaces were randomized to avoid the ordering effect. To

reduce the learning bias, I used data from different conferences to generate recommendations,

i.e., IUI 2017, for the baseline interfaces and UMAP 2017 for the enhanced interfaces.

After each task, the subjects were asked to fill in a three-part post-stage questionnaire.

First, the subjects were asked to rank the five recommendations by relevance (from high
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(a) Sim4+

Figure 24: The visual interfaces that used to explain CN3 interest similarity-based recom-

mendation model in study 3.

to low relevance). I measured the correct rate by Levenshtein Distance, i.e., given correct

order as “ABCDE” and submitted answer as “ABDCE”, the Levenshtein distance is 2 and

the correct rate is 60% ((5− 2)/5 = 0.6). Second, the subjects answered the nineteen-factor

questions (shown in Table 9). Third, the subjects answered four NASA-TLX questions [46].

The NASA-TLX question included: (TLX1) Mental Demand: How mentally demanding was

the task? (TLX4) Performance: How successful were you in accomplishing what you were

asked to do? (TLX5) Effort: How hard did you have to work to accomplish your level of

performance? and (TLX6) Frustration: How insecure, discouraged, irritated, stressed, and

annoyed were you? The order of question was the same to all participants with a 5-point

100



(a) Sim5+

Figure 25: The visual interfaces that used to explain geography similarity-based recommen-

dation model in study 3.

scale (1=Strongly Disagree/Very Low, and 5=Strongly Agree/Very High).

6.2.4.1 Behavior Difference User activity while performing the recommendation-sorting

tasks, was logged. All explanation interfaces were static, so the user behavior was relatively

simple. I tracked the number of mouse clicks (click to view explanation interface) as well as

the time spent in each task. The result of the log analysis is reported in Table 11. To analyze

behavior differences among treatments, I performed Wilcoxon Rank Sum and Signed Rank

Test on log activity variables. The normality assumption did not hold in my analysis.
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Table 11: Log activity analysis of study 3

Clicks Time (Secs)

M (SE) M (SE)

Sim1 11.16 (1.68) 383.27 (206.70)

Sim1+ 18.22 (5.74)** 383.94 (165.03)

Sim2 5.17 (0.39) 346.58 (122.23)

Sim2+ 10.37 (2.14)** 399.88 (132.56)

Sim3 6.11 (1.67) 406.72 (197.01)

Sim3+ 6.66 (3.85) 450.22 (269.12)

Sim4 6.00 (1.57) 308.00 (176.43)

Sim4+ 6.94 (2.38) 348.88 (172.77)

Sim5 7.00 (2.44) 357.22 (142.168)

Sim5+ 6.77 (2.94) 373.94 (176.58)

• Text similarly group: there was a significant difference in the number of clicks for Sim1

(M=11.16, SD=1.68) and Sim1+ (M=18.22, SD=5.74) interface; W(18)=9.5, p < 0.01.

The users clicked more, i.e., inspecting the explanation interface more, in the interface

of Sim1+. I did not find a significant effect on the time spent, but the time variance of

Sim1+ was smaller.

• Topic similarly group: there was a significant difference in the number of clicks for

Sim2 (M=5.17, SD=0.39) and Sim2+ (M=10.37, SD=2.14) interface; W(18)=0, p <

0.01. The users clicked more, i.e., inspecting the explanation interface more, in the

interface of Sim2+. I did not find a significant difference for the time spent, but the

subjects took a longer time at average to complete the sorting task while using the

Sim2+ interface.

• Co-authorship similarity group: I didn’t find significant difference between Sim3

and Sim3+, in both clicks and time variables. However, there was a similar tendency

that the users tended to click more and spend more time to solve the given tasks.
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• Item similarly group: I did not find significant differences for clicks or time spent,

but I can observe that the enhanced interface (Sim4+) required on average slightly more

clicks and time to complete the tasks.

• Geography similarity group: I didn’t find a significant difference between the two

interfaces (Sim5 and Sim5+), in both clicks and time variables. Although the users

spent more time on Sim5+ interface, it required fewer clicks in completing the given

tasks.

In general, I found adding additional visual component resulted in more clicks and time

spent to complete the sorting tasks. The combined explanation interface produced more

user interactions than a single explanation. Furthermore, the tasks were demanding to the

subjects since they spent at average 5 to 6 minutes to complete the sorting. The subjects

faced more difficulties while interacting with the Sim1 interfaces, which took the longest

time and the most clicks to complete the task.

6.2.4.2 Survey Difference The survey feedback was collected after performing each of

the recommendation-sorting tasks. The subjects were asked to answer questions for nineteen

explanation factors and four NASA-TLX questions. I summarized the factor questions into

seven exploratory goals (shown in Table 9), e.g., the goal of Transparency (TP) was consisted

by the average score of Q1, Q2, Q3, Q4, and Q5, etc. The results of task survey and NASA-

TLX survey were reported in Table 12 and Table 13, respectively. To analyze behavior

differences among treatments, I performed Wilcoxon Rank Sum and Signed Rank Test on

log activity variables. The normality assumption did not hold in my analysis.

• Text similarly group: the enhanced interface (Sim1+) received significantly higher

ratings in the goal of Transparency (TP); W(18)=97.5, p < 0.05, Scrutability (SC);

W(18)=54, p < 0.01, Trust (TS); W(18)=96.5, p < 0.05, and Effectiveness (ET);

W(18)=73.5, p < 0.01. The result indicated that the baseline explanation interface

(Sim1 ) benefited from the additional explanation component. I further analyzed the re-

sult of NASA-TLX survey and found similar effects. The subjects perceived significantly

better performance (TLX4 ) in accomplishing the sorting task. I did not find significant
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Table 12: Task survey analysis of study 3

TR SC TS PE ET EF SA

M (SE) M (SE) M (SE) M (SE) M (SE) M (SE) M (SE)

Sim1
3.37

(0.77)

3.22

(0.76)

3.33

(0.77)

3.62

(0.78)

3.25

(0.66)

3.41

(0.82)

3.40

(0.70)

Sim1+
3.92

(0.71)*

4.26

(0.77)**

3.88

(0.64)*

3.87

(0.83)

3.92

(0.64)**

3.66

(0.98)

3.62

(0.72)

Sim2
3.64

(0.91)

4.02

(0.81)

3.70

(0.92)

4.15

(0.60)

3.68

(0.85)

3.38

(0.92)

3.70

(0.69)

Sim2+
4.00

(0.78)

4.05

(0.96)

4.01

(0.75)

4.09

(0.66)

4.00

(0.80)

3.63

(0.92)

3.91

(0.66)

Sim3
3.66

(0.66)

3.56

(0.79)

3.70

(0.98)

3.38

(0.90)

3.59

(0.71)

3.16

(0.76)

3.37

(0.70)

Sim3+
3.91

(0.61)

3.79

(0.87)

4.01

(0.68)

3.53

(0.92)

4.03

(0.65)

3.58

(0.80)

3.50

(0.76)

Sim4
3.71

(0.83)

3.76

(0.80)

3.75

(0.88)

3.92

(0.87)

3.59

(1.04)

3.13

(0.70)

3.65

(0.61)

Sim4+
3.80

(0.74)

3.81

(1.04)

3.72

(0.85)

4.14

(0.77)

3.64

(0.93)

3.25

(0.89)

4.04

(0.71)

Sim5
3.15

(0.99)

3.23

(1.13)

3.22

(0.91)

3.24

(0.75)

3.33

(0.97)

2.66

(1.11)

3.04

(0.90)

Sim5+
3.05

(1.04)

3.38

(1.19)

3.18

(1.06)

3.03

(1.00)

3.33

(0.90)

2.77

(1.03)

3.08

(1.00)

differences in other questions, however, the users reported lower mental demand (TLX1 ),

effort (TLX5 ) and frustration (TLX6 ) while interacting with the enhanced explanation

interface (Sim1+).

• Topic similarly group: I did not find any significant differences in explanation goals.
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Table 13: NASA-TLX survey analysis of study 3

TLX1 TLX4 TLX5 TLX6

M (SE) M (SE) M (SE) M (SE)

Sim1 2.77 (1.16) 3.66 (0.76) 2.61 (1.09) 2.05 (1.16)

Sim1+ 2.55 (1.38) 4.22 (0.94)* 2.16 (1.38) 1.77 (1.06)

Sim2 2.00 (1.38) 4.52 (0.51) 1.52 (0.79) 1.23 (0.75)

Sim2+ 2.33 (1.28) 4.22 (0.73) 1.88 (0.90) 1.50 (0.70)

Sim3 2.50 (0.98) 3.77 (0.87) 2.61 (1.24) 1.88 (0.90)

Sim3+ 2.77 (1.06) 3.83 (0.70) 2.61 (1.03) 1.94 (1.05)

Sim4 2.22 (1.35) 4.27 (0.82) 1.66 (1.02) 1.50 (0.92)

Sim4+ 2.22 (1.55) 4.44 (0.70) 1.88 (1.32) 1.16 (0.51)

Sim5 1.94 (1.21) 3.72 (1.27) 1.94 (1.21) 1.44 (0.92)

Sim5+ 1.72 (1.17) 4.38 (1.03) 1.77 (1.06) 1.55 (1.19)

However, I can still observe the similar improving tendency when adding a visual compo-

nent to the baseline interface. The subject’s perception increased on average for almost

all explanation goals, except Persuasiveness (PE). The result hints that the additional

explaining component might improve the explainability of the baseline interface (Sim2 ).

Interesting, in the survey of mental questions, I found the enhanced interface led on aver-

age to higher mental demand (TLX1 ), lower performance (TLX4 ), higher efforts (TLX5 )

and higher frustration (TLX5 ), although none of the differences were significant.

• Co-authorship similarity group: I did not find significant differences in the seven ex-

planation goals. However, I can still observe the similar improving tendency when adding

a visual component to the baseline interface. The subject perception score increased on

average for all explanation goals. The result hints that the additional explaining com-

ponent (the edge thickness) might improve the explainability of the baseline interface

(Sim3 ). In the survey of mention questions, I found the enhanced interface led on av-

erage to higher mental demand (TLX1 ), higher performance (TLX4 ), the same level of
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efforts (TLX5 ) and higher frustration (TLX5 ), although none of the differences were

significant.

• Item similarly group: I did not find any significant differences in the item similarly

group but observed the same tendency of improved user perception when adding a visual

component to the baseline interface. The subjects’ average perception increased for

almost all explanation goals, except the goal of Trust (TS). The result indicated that

the explainability of the baseline interface (Sim4 ) could be improved by adding a paper

or user list to the Venn Tag interface. The survey of mental questions provided an

interesting finding. I found the subjects perceived comparable mental demand (TLX1 ),

higher performance (TLX4 ), higher efforts (TLX5 ) and lower frustration (TLX5 ). That

is, the subjects did not feel a higher mental demand, yet adding an extra list still made

them perceive the sorting task as harder to accomplish.

• Geography similarity group: I did not find any significant differences in the geography

similarly group but observed a different user perception pattern when adding a visual

component to the baseline interface (Sim5 ). I found adding a geo-location label may

decreased the user perception score in the aspect of Transparency (TR), Trust (TS), and

Persuasiveness (PE). The result indicated that the explainability of the baseline interface

(Sim4 ) may not always be benefited from the additional explanation component. In the

survey of mention questions, I found the enhanced interface led on average to higher

mental demand (TLX1 ), higher performance (TLX4 ), lower efforts (TLX5 ) and higher

frustration (TLX5 ), although none of the differences were significant.

In general, I found that adding a visual component leads to a higher user perception

score in the explanation goals. However, the improvement in the explanation goals did not

guarantee a better user mental model. I found the interface Sim1 was benefited the most by

the additional visual component, either in user perception or mental survey. Adding a visual

component to Sim2 improved user perception but impaired the user mental model. In the

interface Sim4, adding the extra component improved the user perception while maintaining

a comparable user mental model.
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Figure 26: The correct rate of the recommendation-sorting tasks of study 3. Statistical

significance level: (**) p < 0.01; (*) p < 0.05)

6.2.4.3 Sorting Difficulty In addition to the subjective feedback, I am interested in

the question of how do the interfaces help the user to compare (sort) the relevance across

recommendations. In each interface, I generated five recommendations using the associated

recommendation model with a sample scholar profile. I then asked the subjects to sort the

relevance among the five given recommendations and compared the answer with the ground

truth. I used the correct rate to define the sorting difficulty among the explanation interfaces.

It was an essential metric of performance when the user adopted the explanations interfaces

in the exploring recommendations. The result was reported in Figure 26.

• Text similarly group: there was a significant difference in the correct rate for Sim1

(M=0.43, SD=0.15) and Sim1+ (M=0.61, SD=0.17) interface; W(18)=75.5, p < 0.01.

The result was surprising to show the subjects achieve only 43% correct rate when at-
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tempting to sort the given five recommendations with relevance. In this case, adding a

visual component can be pretty helpful in assisting the subjects in completing the sort-

ing task. However, a 61% correct rate may not be considered as an effective explanation

interface, in particular, when the users have a chance to browse multiple recommenda-

tions and compare the explanations. The inconsistency would hurt the user trust and

satisfaction to the explanation interfaces.

• Topic similarly group: there was a significant difference in the correct rate for Sim2

(M=0.97, SD=0.09) and Sim2+ (M=0.70, SD=0.20) interface; W(18)=286, p < 0.001.

I found adding extra visual components impaired the judgment on sorting the recom-

mendation relevance. In the baseline interface (Sim2 ), the subjects can achieve a 97%

correct rate, which is strong evidence to support the explanation interface did help the

users to sort the recommendation relevance. However, when adding the extra two topical

word clouds, I found the correct rate was significantly decreased to 70%, which indicated

the users might be “mislead” by the extra information. The result implied that adding

the extra visual component can misinform the user, although the explanation interface

was preferred and received higher user perception ratings by the user.

• Co-authorship similarity group: there was no significant difference in the correct

rate for Sim3 (M=0.66, SD=0.24) and Sim3+ (M=0.52, SD=0.20) interface, the correct

rate is between 52% to 66%. The result represents the graph-based explanation interface

that may mislead the users in comparing the recommendation relevance, which calculated

by scholar co-authorship networks. Adding an extra component made it become more

difficult to compare tasks. Due to this, the two explanation interfaces may not be

considered as an effective explanation interface.

• Item similarly group: I did not find a significant difference in the correct rate, in the

item similarly group. Both of the interfaces helped the user to achieve a high correct

rate (¿90%): Sim4 (M=0.93, SD=0.20) and Sim4+ (M=0.91, SD=0.21). The result

implied adding an extra list to the Venn Tag diagram may not impair or improve the

user inspectability (performance) of sorting the recommendations.

• Geography similarity group: I did not find a significant difference in the correct rate,

in the geography similarly group. Both of the interfaces helped the user to achieve a high
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correct rate (> 90%): Sim4 (M=0.95, SD=0.18) and Sim4+ (M=0.95, SD=0.18). The

result implied adding an extra list to the map diagram may not impair or improve the

user inspectability (performance) of sorting the recommendations.

6.2.5 Relations Between Survey and Log Variables

To better understand the relationship between the survey, log activities, and sorting result.

I aggregated the variables in all three tasks (N=54). I then performed a correlation (using

Pearson′s r) analysis between task survey items and log variables revealed some interesting

associations. The result was reported in Table 14. In general, when subjects did more mouse

click activities, the recommendation-sorting correct rate was decreased (Correct Rate, r=-

0.44, p < 0.01) and the subjects will feel more frustrated (TLX6, r=0.20, p < 0.05). The

mouse click means spent more time (Time, 0.15, p = 0.12) in completing the tasks. The

longer time of completion negatively correlated to all explanation goals, e.g., lower the user

perception in system transparency (Transparency, r= -0.21, p < 0.05).

The better inspectability means the subjects can correctly sort the recommendation by

relevance. I found the subjects can better understand (Scrutability, r=0.21, p < 0.05), be con-

vinced by (Persuasiveness, r=0.20, p < 0.05) and be satisfied (Satisfaction, r=0.25, p < 0.01)

the explanation interface more when they can achieve high correct rate of recommendation-

sorting task. Furthermore, the subjects tended to feel less mental demand (TLX1, r=-0.22,

p < 0.05), less effort (TLX5, r=-0.39, p < 0.01), less frustration (TLX6, r=-0.24, p < 0.01)

but feel more confident in answering the sorting question (TLX4, r=0.43, p < 0.01).

I also found high internal consistency among all seven explanation goals, which implied

the post-experiment survey was reliable. The goal of transparency, trust, and effectiveness

were highly correlated with each other, which was reasonable because they shared one com-

mon factor (the Q5 in Table 9). That is, the correlation analysis suggested that if I can

provide an explanation interface with a high transparency rating, then I can assume the user

may tend to trust and feel the effects in the recommendations.

Higher user perception in the goal of scrutability (r=-0.27, p < 0.01), trust (r=-0.23,

p < 0.05), persuasiveness (r=-0.40, p < 0.01), and effectiveness (r=-0.29, p < 0.01) can
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reduce the storing difficulty (TLX5 ). Since the mental variable of TLX5 and TLX6 were

highly correlated with each other (r=0.65, p < 0.01), it was reasonable to expect if one

explanation goal was negatively correlated with TLX5 then it should matintain the same

pattern with TLX6, e.g., between Effectiveness and TLX6. However, in the explanation goal

of persuasiveness, I found a positive correlation with TLX6 (r=0.35, p < 0.01), i.e., when

the recommendations were very persuasive, the user tend to frustrate more in completing

the sorting tasks. I believe this is due to the explanation interface required the users to

inspect more details (i.e., the Q14 in Table 9), which leaded to a higher cognitive load.

6.3 SUMMARY AND DISCUSSION

In this section, I presented two user studies of explanation interfaces for three similarity-

based recommendation models. In study 2, I compared 25 explanation interfaces (20 visual

explanations and five text-based explanations) through nineteen explanation factors. The

experiment results suggested that participants preferred visual explanation interfaces over

text-based explanation interface. I selected top-rated interfaces to explain the recommen-

dation model. Based on the post-stage user interview, I further proposed enhanced visual

component to each explanation interface.

In study 3, I conducted a performance-focused evaluation of ten explanation interfaces.

For each model, I compared the top-rated design (baseline) with a combination of top and

second-rated interfaces (enhanced). I expected that the complementary nature of the top

designs could make their combination even stronger than the top choice alone. I found,

however, that adding another visual component may result in increasing the cognitive over-

load and even creating a mental conflict. The findings were varied of each recommendation

model: in the group of text similarity, I found adding a new visual component (Two-way

Bar Chart) to the original explanation interfaces significantly improves user performance.

However, in the group of topic similarity, I found that adding a new visual component (Word

Clouds) might impair the user perception and performance of the recommendation-sorting

task. In the group of item similarity, the extra explanation (list) did not change the user
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perception or performance scores.

Based on the outcome of two user studies, I found the proposed explanation interfaces

did reach the explanation goals. The result of the task survey suggested that adding a visual

component (enhanced explanation interface) might contribute to a higher user perception

score in the explanation goals. However, the improved explanation goals did not guarantee a

better user mental model, based on the index of NASA-TLX. The result of recommendation-

sorting tasks further suggested the inspectability (performance) can be improved by adding

the extra visual component, but the user-preferred interface may not guarantee the same

level of performance. Finally, I introduced a correlation analysis to discuss the relationships

between survey and user behavioral variables.

There are several limitations of the presented work. First, the scale of the conducted

studies was small. Larger-scale studies are needed for more definitive conclusions. Second,

user rating and post-stage question ordering are not normalized to control the potential bias.

Third, I do not consider the user personality that may influence user interaction. Fourth, the

recommendations were generated for the same sample system user rather than for subjects

themselves. All these issues will be addressed in my future work through a larger-scale, lab

controlled study.
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Table 14: Correlation analysis of study 3 (N=54)
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7.0 EXPLAINING SOCIAL RECOMMENDATIONS IN AN

INTERACTIVE HYBRID SOCIAL RECOMMENDER

In this chapter, I investigated the effects of adding explanations to an interactive hybrid

social recommender system through study 4. I conducted an online user study (N=33) at

three research conferences to evaluate user behavior and obtained subjective feedback of the

six proposed explainable interfaces. This study intends to answer two research questions:

1) Which visualization is better for explaining an interactive hybrid social recommender

system? 2) How do the explanations affect user perception and interaction with an interactive

hybrid social recommender system? The findings can be summarized in three-fold: First, I

confirm the user-driven fusion principle using a state-of-the-art user-controllable interface.

Second, I provide a new exploratory model (with six explainable interfaces) for explaining

an interactive hybrid social recommender system. Third, I show evidence to support the

interaction effect between the factors of controllability and explainability.

7.1 INTRODUCTION

In study 4, I propose relevance Tuner+, an extension of my earlier system [132], which

provides a controllable interface for the user to fuse social recommendations from multiple

sources. A total of five recommender engines were introduced in this study:

1. Publication Similarity: cosine similarity of users’ publication text.

2. Topic Similarity: topic modeling similarity of research interests (topics).

3. Co-Authorship Similarity: the network distance based on co-authorship networks.
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Figure 27: The design of Relevance Tuner+: (A) relevance sliders; (B) stackable score bar;

(C) explanation icon; (D) user profiles.

Figure 28: The pop-up window of clicking the explanation icon (shown in Figure 27 Section

C).

4. CN3 Interest Similarity: the number of papers co-bookmarked, as well as the authors

co-followed.

5. Geographic Distance: a measurement of the geographic distance between affiliations.

The users can “tune” (re-rank) the social recommendations using five sliders (see Figure

27, Section A). The user can explore the relevance scores (sum of personalized relevance

score of five recommendation engines) through the colored stackable bars in Section B and

access more information about recommended people using links in Section D. In this study,

I introduced a new explanation icon in Section C. The user can inspect the relevance by

clicking the icon. A window will pop up (Figure 28) to show a clickable explanation table. A

click on the first-row cell will open a visual explanation of calculated relevance for the selected

recommendation engine (as shown in Figure 29 (a) to (e)). A click on the second-row cell will

show the calculation process of the relevance scores (Figure 29f). In this design, I attempted
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to separate the explanation for the fusion process, which the user can influence by tuning

the sliders from the explanation of each relevance obtained by clicking the explanation icon.

To be more specific, I intend to help the user to get explanations for two kinds of questions:

fused relevance questions (i.e., “Why this recommendation is ranked at the top?”) and engine

relevance questions (i.e., “Why topic relevance is equal to 8?”).

7.2 PRESENTATION OF EXPLANATIONS

(a) Venn Word Clouds (b) Topic Similarity (c) Co-Authorship Graph

(d) Interest Similarity (e) Geographic Distance (f) Relevance Equation

Figure 29: I presented six interfaces for explaining the social recommendations in study 4.

a) Venn Word Clouds; b) Topic Similarity; c) Co-Authorship Graph; d) Interest Similarity;

e) Geographic Distance; f) Relevance Equation. The visualization (a) to (e) is matched

with the corresponding recommendation engine (first row of Figure 28), but (f) was adopted

across five recommendation engines (second row of Figure 28).

Instead of using a context-specific visualized recommendations [70, 140], I added an ex-

planation icon next to each social recommendation, leaving the choice of requesting the

details behind the reasoning to the users. The information was provided by a hybrid expla-

nation approach [103, 75], which mixed multiple visualization components for explaining the

details of the recommendation engine. A total of five visual explanations and five equations
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(one for each relevance) were proposed. I referred the user to present the current log-in

user who is using the interface. I used attendee to represent the recommended conference

attendee being inspected.

Publication Similarity: I adopted a Venn word cloud visualization inspired by tag

cloud [41, 104] as an approach to explaining the text-level similarity between the publication

of the user and the attendee (Figure 29a). This visualization presented the terms of the paper

title and abstract. The font size indicates the term frequency in the documents. The user’s

terms and the attendee’s terms will be presented on the left and right, respectively. The

terms in the middle presented the words-in-common, which means the terms were appearing

in the publications of both scholars.

Topic Similarity: I presented research topics in a radar chart and the topical words of

each research topic in table [148]. The visualization design can be found in Figure 29b. The

radar chart was presented on the left side. I selected the top 5 (ranked by beta value from

a total of 30 topics) topics of the user and compared them with the attendee. A table with

topical words was presented in the right so that the user can inspect the context of each

research topic.

Co-Authorship Similarity: I presented co-authorship network in a path graph [131].

The visualization design can be found in Figure 29c. For connecting the user (yellow circle in

the left) to the attendee (red color in the right), I tried to find six possible paths (one shortest

and five alternatives) by direct and in-direct co-authorship. The circle size represented the

connectivity, i.e., Peter is the only node that scholar Chu can reach scholar Nav, so the circle

size was the largest one (size = 6).

Interest Similarity: I presented co-bookmarking (conference paper) / co-following

(conference attendees) information in an itemized list, inspired by the user-based approach

[103]. The visualization design can be found in Figure 29d. I used two itemized lists to

show this information. The design helps the user to inspect the overlapped items that the

recommendation engine used to calculate the similarity.

Geographic Distance: I plotted cities of affiliations on a world map, inspired by

location-based explanation [103]. The visualization design can be found in Figure 29e. I

bundled the Google Map API for presenting the geo-location of the two affiliations on the
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map. The two pins were the affiliated institution of the user and the target user so that the

user can inspect the geo-distance, regions, or the country information.

Relevance Equation: I used relevance equation (Figure 29f) to explain the calculation

process of each of the five relevance scores shown in the stackable bars (Figure 27 Section B).

The relevance score equals the recommendation engine similarity multiply by tuner weighting

with a roundup function. For example, if the user tunes the Co-Authorship Similarity to 8

(Figure 27, Section A), then the normalized tuner weight is 8
5

= 1.6. As explained in Figure

29f, to obtain the resulting source relevance score 16, the tuner weight is multiplied by the

source similarity score 10.

7.3 EXPERIMENT DESIGN AND PROCEDURE (STUDY 4)

The recommendations produced by all five engines are based on data collected by the Con-

ference Navigator 3 system [10, 132]. To recruit the user study participants, I sent out

invitation emails to attendees of three conferences. A total of 345 emails were sent. I re-

ceived 43 responses (response rate=12.46%). After sending the personalized study link to all

respondents, there were 33 participants (12 female) who eventually accepted and completed

the online user study. Participation is voluntary. The participants attended Hypertext

2018 (10 participants); UMAP 2018 (12 participants), or EC-TEL 2018 (11 participants).

Their ages ranged from 20 to 59 (M=31.00, SE=7.74). All of them could be considered

as knowledgeable in their research area and had at least one academic publication at the

corresponding conference.

To assess the value of the proposed interface, I compared the explainable and controllable

Relevance Tuner+ interface (Tuner+) with a controllable-only interface (Section C in Figure

27 removed) (Baseline). The online study adopted a within-subjects design. A two-minute

tutorial video was provided for participants to familiarize themselves with the interface before

each treatment. All participants were asked to use each interface for three information-

seeking tasks and to fill out a post-stage questionnaire. The order of question was the

same to all participants with a 5-point scale (1=Strongly Disagree and 5=Strongly Agree).
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The order of treatment was randomized to control for the effect of ordering (half of the

participants started the study with the baseline interface). To minimize the learning effect

(becoming familiar with the conference data), I used data from different years of the same

conference (EC-TEL 2017 & 2018) or alternative conferences (HT/UMAP 2018) in the two

treatments.

Participants were given the same three tasks for each treatment. The tasks were explicitly

designed to be diverse but realistic tasks that could be naturally pursued by attendees of

research conferences.

• Task 1: “Please use the system to follow four conference attendees you would like to

talk during the coffee break.”

• Task 2: “Your advisor asks you to follow four conference attendees with close connec-

tion with your research group. He/she would also appreciate that the scholars be from

different regions of the world.”

• Task 3: “Please use the system to find four committee member candidates for your

dissertation defense. The candidates should be senior scholars with expertise close to

your research field”. The participants were asked to pick suitable candidates among

conference attendees, based on their best judgment in each task.

7.4 DATA AND MEASUREMENTS

I collected action logs for slider manipulations, explanation clicks, and the time to complete

the tasks the post-stage survey comprised of 16 questions that covered different user ex-

perience (UX) dimensions. In the Tuner+ treatment, three extra questions were presented

for collecting the user feedback on each explanation design. I then built a structural equa-

tion model (SEM) for analyzing the UX concepts and the directionality of causal effects.

I followed the framework introduced in [71]. I planned three latent constructs: two sub-

jective system aspects (SSA) (perceived control & perceived transparency) and one user

experience (EXP) (satisfaction). The model fit the statistics of χ2(66) = 411.65, p < 0.001,
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Figure 30: The user feedback of six explanation styles of study 4.

RMSEA = 0.18, 90%CI : [0.13, 0.17], CFI = 0.88, TLI = 0.89. The three factors listed

below showed good convergent validity (AVE) and internal consistency (Cronbach’s α).

• Perceived Control (SSA) (AV E = .60, α = .77): 3 items, e.g., “I feel in control of modi-

fying my preferences”,“I became familiar with the recommender system very quickly”.

• Perceived Transparency (SSA) (AV E = .55, α = .81): 5 items, e.g., “The recommender

explains why the conference attendees are recommended to me”,“I understood why the

contacts were recommended to me”.

• Satisfaction (EXP) (AV E = .64, α = .91): 8 items, e.g., “The recommender helped me

find the ideal contacts at conference”, “Overall, I am satisfied with the recommender”.

7.5 RESULTS

In the baseline group, I found that the participants extensively used the relevance sliders

to complete the three assigned tasks (M = 56.78, SD = 42.21, User Count = 30). There
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Figure 31: User feedback analysis of study 4: the result shows that the Tuner+ interface

received a significantly higher rating in the aspect of explainability (Q5). (Statistical signif-

icance level: (**) p < 0.01; (*) p < 0.05)

were only three users who didn’t interact with the sliders. In the Tuner+ group, I found a

similar pattern in using the sliders (M = 64.63, SD = 43.84, User Count = 32) that almost

all participants did interact with the sliders. However, only around 50% of the participants

clicked on the explanations icon (M = 5.90, SD = 8.36, User Count = 17), i.e., the

relevance sliders were used by the participants more extensively than the explanation icon.

The participants spent more time to complete the three assigned tasks in Tuner+ group i.e.,

when the explanations were provided (M = 733.69, SD = 766.10, in seconds), than baseline

group (M = 573.21, SD = 567.48).

Figure 30 shows user feedback on the six explanation styles. For a more understandable

visualization, the explanation style of word cloud, graph, and map received higher scores. For

better persuasive, i.e., convincing the user to accept the recommendation, the explanation

style of graph outperformed the other visualizations. One participant specifically commented

that the social network visualization is “really interesting and useful”. For better satisfying

the user (enjoyable), the explanation styles of word cloud and graph were preferred by the

participants after experiencing the system.

I performed a Wilcoxon signed-rank test for analyzing the subjective feedback (shown in

Figure 31). I found that many user-ratings are comparable between treatments, which means

that adding an explanation icon to the system does not impact the UX dimensions. However,
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Figure 32: The structural equation model (SEM) of study 4. The number (thickness) on the

arrows represents the β coefficients and standard error of the effect. (Statistical significance

level: (**) p < 0.01, (*) p < 0.5, (NS) no significance)

I found that the participants agreed the Tuner+ interface significantly better in providing

explainability (Q5), which indicated the attached explanations were useful in gaining system

transparency and providing the reasoning process of social recommendations. Interestingly,

I also found that if the explanations were presented, the participants’ perception of the easy-

to-use interface (Q7) and perceived control (Q8) were significantly decreased, which implied

the users might experience difficulties with a possibly overwhelming amount of information.

I confirmed the finding in SEM analysis (shown in Figure 32). I found that adding ex-

tra explanations (OSA) decreases the user perception of controllability (SSA). In Tuner+

condition, the participants to click the explanation icons more (INT) to inspect the social
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recommendations, which increases the average time spent (INT) in completing the tasks.

If more time spent on each task, the subjective system aspect (SSA) on perceived control

decreases. However, I also found the participants who perceived more transparency will pos-

itively associate this with perceived control and satisfaction. The pattern implied the extra

amount of information would not impair those who perceived higher system explainability

and understanding.

7.6 SUMMARY AND DISCUSSION

This section presents an evaluation of explainable recommendations in an interactive hybrid

social recommender, Relevance Tuner+. My works extended the earlier version of the con-

trollable interface Relevance Tuner with explanations in the form of five visualizations and

five equations. I found that the user extensively uses sliders to adjust source weights while

completing the conference-attendee exploration tasks. The result supports prior findings

[132] that an interactive interface helps to improve the user experience and initiate user-

driven exploration. At the same time, the explanations were not used as heavily. Among

visual explanations word cloud and graph were rated with a higher score in the aspects of

understandable, persuasive and enjoyable (shown in Figure 30).

I also found an interesting perception trade-off between controllability and explainabil-

ity. More specifically, the experiment result indicates that when users can inspect the social

recommendation with an on-demand explanation, it increases their perception of system ex-

plainability. However, the improvement comes with a price of reducing the user perception

of control (Q8) and the sense of ease of use (Q7). I confirmed this finding in the analysis

of SEM that shows the time spent in inspecting the social recommendations was negatively

correlated with the factor of Perceived Control, a possibly overwhelming amount of informa-

tion caused the users to decrease the perception of controllability. Although I didn’t find a

direct effect between providing an explaining icon and the user perception of transparency,

it nonetheless plays a crucial role in contributing to the factor of user satisfaction.

The finding of controllability and explainability trade-off is surprising, but not an un-
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charted area in the field of HCI. In explaining recommendations, one main goal is to provide

completeness of information so the users can gradually improve the mental model while in-

teracting with the system [77]. However, a detailed, full explanations may be “excessive”

to the users [84], which had a negative impact on user confidence and enjoyment [114]. To

overcome this problem, based on the context of information-seeking tasks, only the filtered

“relevant, and important information” should be presented as explanations [32]. In this sec-

tion, I asked the study participants to find conference attendees in different scenarios, e.g.,

“with close connection with your research group”. In this case, the essential information

is those recommendations with high “Co-Authorship Similarity”, which can be done easier

with the controllable sliders. The additional explanations may be attractive but not manda-

tory. When the overwhelming amount of information was provided, especially for those who

didn’t adopt the explanation interfaces, it impaired the user perception of controllability.

My work has some limitations. First, it is a small-scale user study (N=33). Second, in a

semi-controlled online study, I found only half of the subjects explored the explanation func-

tions (manipulated aspect), which may hurt the significant effect on the transparency factor

in my SEM analysis. Third, user rating and post-stage question ordering may be biased by

the rating tendency of each subject and might be better to normalize them. Fourth, there

are too many variables in my experimental design. Further investigation will be required to

control the interaction effects. All these issues will be addressed in my future work with a

larger-scale, lab controlled study to confirm the findings and model robustness.
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8.0 EVALUATING EXPLANATION INTERFACES USING

CROWDSOURCING APPROACH

In this chapter, I performed a card-sorting analysis to identify the user preferred interfaces

for explaining the five recommendation models. I found the interface design of E1-4: Venn

Word Cloud, and the participants favored E3-4: Strength Graph in study 2. I then conducted

the study 3 for evaluating the top-rated and second-rated interfaces. However, based on the

experiment result of study 3, I found two explanation interfaces, publication similarity and

co-authorship similarity, did not effectively support the sorting task of recommendation

relevance. In this chapter, I aim to improve the explanation interface designs by conducting

the second round evaluation, i.e., study 5.

8.1 INTRODUCTION

In the analysis of Sim1 & Sim1+, I found adding a visual component can assist the subjects

in completing the sorting task. That is, the user performance in the group of E1-4 Venn

Word Cloud could be improved by the additional term bar chart. Based on the after study

user feedback, the study participants pointed out the original word cloud was hard for them

to complete the comparing task. The style of word cloud was good for having an overview of

a group of text, but it is hard to tell the difference between the two word clouds. In contrast,

the participants also mentioned the bar chart would be clear and more straightforward for

them to complete the comparing tasks. Since the user performance is the focus on the

explanation interface, I decide to change the design to Two Way Bar Chart.

In explaining a text-based recommendation using the Two Way Bar Chart, I need to
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determine two settings. First, it is required to determine the number of terms that presents

in the bar chart. The ideal case is to show all terms in one figure. However, in the rec-

ommendation model, the length of the term vector is around 45,000, which makes it is not

realistic to show all the terms in one interface. Hence, there is a need to conduct an exper-

iment to determine the number of terms to explain the text-based recommendation model

better. I choose two conditions as 30 terms and 60 terms. Second, a typical bar chart was

ordered by one dimension relevance. However, in the Two Way Bar Chart, the relevance

can be displayed by two dimensions. I propose two order methods here: order by individual

relevance or order by mutual relevance. The method of order by individual relevance (shown

in Figure 33(a)) treats the bi-directional bar chart as independent. That is, the bar chart

will order by its own relevance, from high to low the benefit of this method to show two

term relevance distributions. order by mutual relevance (shown in Figure 33(b)) will order

the term mutually, i.e., sum of the bi-directional relevance and order them from high to low

relevance. It is an approach to present mutually important terms on the top. It is easier for

the user to perceive the high impact terms.

In the analysis of Sim3 & Sim3+, I found both of the Sim3 interfaces (Strength Graph)

were performing better in user performance than the interface of Sim3+. The enhanced

interface (Sim3+) highlighted the thickness of the network edges, i.e., the user performance

did not improve by the additional edge thickness information. It is not clear here that if

adding extra information can improve or impair the user performance. Hence, I would like

to conduct a larger-scale user study to confirm the effective design.

In explaining a text-based recommendation using the Strength Graph, the graph was

consisted of two components: edges and nodes. It is important to find out the most effective

settings so the users can better understand the recommendation though the interface. First,

it is important to define the edge thickness and determine the benefit of adding it to the

Strength Graph. Usually, the edge thickness represents the strength between two connected

nodes. In this case, it shows the strength between two scholars that I defined it as the

number of co-authored papers. If more publication is co-authored by two scholars, the edge

thickness will be increased. However, it is not clear if adding such information is a benefit to

understand the co-authorship recommendation model. The design is shown in Figure 34(a)).
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Second, the node size can also be controlled to show the importance of the node. In my case,

I define the important as the number of papers that published by the scholar. It is a signal

to show if one scholar’s seniority in the network. However, it is also not clear if adding such

information will help the user to understand the co-authorship recommendation model. The

design is shown in Figure 34(b)).

8.2 EXPERIMENT DESIGN AND PROCEDURE (STUDY 5)

To evaluate the effectiveness of the two explanation interfaces, I conducted a randomized

between-subject experiment on Amazon Mechanical Turk (MTurk) (study 5). We used a 2x2

design, resulting in four conditions of each interface. In the group of Two Way Bar Chart,

there are four conditions: Chart 1: 30 terms with order by individual relevance, Chart 2: 60

terms with order by individual relevance, Chart 3: 30 terms with order by mutual relevance,

and Chart 4: 60 terms with order by mutual relevance. In this group of Strength Graph,

there are four conditions: Graph 1: disabled edge thickness and disabled node size, Graph 2:

enabled edge thickness and disabled node size, Graph 3: disabled edge thickness and enabled

node size, and Graph 4: enabled edge thickness and enabled node size. The participants

were allowed to spend up to 24 hours to complete the study.

In study 5, I presented two figures (the same condition with high and low relevance) and

a short instruction of the interface. To make the instruction can easily follow by participants

from a diverse background. I chose to make the instruction from everyday life scenarios. In

the group of Two Way Bar Chart, the participants were told to distinguishes two bar chat

for different the similarity of hash-tags of two Twitter accounts. In the group of Strength

Graph, the participants were asked to determine the probability of connecting friendship on

social media, base on the two given social networks. The detail of the instructions was shown

below.

• Instruction of Two Way Bar Chart group: “Hashtag” is a type of metadata tag used on

social networks such as Twitter. “Hashtag” makes it possible for others to find messages

with a specific theme or content easily. In this study, we present two pairs of users’
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(a) Order by individual relevance (b) Order by mutual relevance

Figure 33: Explanation Interface of Publication Similarity using new Two-way Bar Chart:

(a) Order by individual relevance, (b) Order by mutual relevance.
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(a) Adding edge thickness

(b) Adding node size

Figure 34: Explanation Interface of Co-authorship Similarity using Enhanced Strength

Graph: (a) Adding edge thickness. (b) Adding node size.
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Twitter Hashtags, Peter/Mary & Peter/Kelly, in two bar charts. In the bar chart, we

present the name of hashtags on the y-axis and the “number of hashtags” in the x-axis.

Please answer the questions based on the two bar charts.

• Instruction of Strength Graph group: Please answer the following questions based on the

two social network visualizations. In both networks... Peter has several directed online

contacts. The red bubbles represent a portion of the large network accessible through

Peter’s social media profile. The blue bubble is the person Peter wants to contact. The

thickness of the edge represents the number of share friends (i.e., the thicker edge, the

more shared friends between the two people) The node size represents the number of

friends (the larger size, the more friends he/she has).

The subjects were expected to answer one testing question, one task question, and four

NASA-TLX questions [46]. The testing questions were simply asked the subjects to find

out information on the visualization [92, 20], i.e., What is the top (most popular) hashtag in

Peter’s Twitter account? and What are the names labeled in blue color?. The task question

tests if the subject can tell the difference between the two figures, it is a multiple-choice

question, shown below.

1. If we want to measure the “hashtag similairty”, i.e., if two users shared more hashtags,

then the “hashtag similairty” is higher. Which statement is true?

• (Correct) Option A : “Peter & Mary”’s hashtag similarity is higher than “Peter &

Kelly”.

• Option B: “Peter & Mary”’s hashtag similarity is lower than “Peter & Kelly”.

• Option C: The hashtag similarity of “Peter & Mary” and “Peter & Kelly” is the

same.

• Option D: The information is insufficient to determine the hashtag similarity.

2. If Peter wants to connect a new friend on his social media, which one of the following

statements is correct?

• (Correct) Option A: “Peter & Mark” is more likely to be connected than “Peter &

Jones”.

• Option B: “Peter & Mark” is less likely to be connected than “Peter & Jones”.
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• Option C: The probability of connecting “Peter & Mark” is the same as “Peter &

Jones”.

• Option D: The information is insufficient to determine the probability of connecting.

The NASA-TLX question included: (TLX1) Mental Demand: How mentally demanding

was the task? (TLX4) Performance: How successful were you in accomplishing what you

were asked to do? (TLX5) Effort: How hard did you have to work to accomplish your level of

performance? and (TLX6) Frustration: How insecure, discouraged, irritated, stressed, and

annoyed were you? The order of question was the same to all participants with a 5-point

scale (1=Strongly Disagree/Very Low, and 5=Strongly Agree/Very High).

The participants were randomly assigned to one of the four conditions. Each participant

received a payment of USD $0.1 if their submission was accepted. In the group of Two Way

Bar Chart, there were 458 participants joined the study and 400 participants passed the

testing question. The participants was equally distributed to the Chart 1 to Chart 4, i.e.,

100 subjects for each condition. In the group of Strength Graph, I requited 435 participants

and 417 participants passed the testing question. The participants were distributed as 111

subjects in Graph 1, 109 subjects in Graph 2, 103 subjects in Graph 3, and 103 subjects in

Graph 4.

8.3 RESULTS

The condition of Chart 2 (M=6.38, SD=8.23, in minutes) took the participants more time

to complete the study. The condition of Chart 1 (M=6.08, SD=8.21) took less time to

complete. The condition of Chart 2 (M=6.38, SD=8.23) and Chart 3 (M=6.77, SD=10.23)

was ranked in the middle. The subjects took surprisingly more time to complete the tasks,

which indicates the visualization may not be east-to-use to the subjects. However, due to

the mechanism of Amazon Murk, the participants can complete the task within 24 hours, the

actual execution time should be shorter than the reported number. I report the percentage

of each option in Table 15. I found the Chart 2 has the highest correct rate at 65%, which

indicates the higher number of terms and order by individual relevance was easier for the
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user to compare the different between the two bar charts. I also find a pattern between the

order methods. In the condition of ordered by mutual relevance (Chart 3 and Chart 4 ), the

participants took less time to complete the study but it did not guarantee a higher correct

rate. The TLX analysis of the group of Two Way Bar Chart is reported in Table 17. The

finding indicates the Chart 2 has lower score of mental demand (TLX1) and feel of difficulty

(TLX5). Moreover, the participants reported a higher score on perceiving success (TLX4)

of solving the task. Chart 2 also has a higher score of feel of stress (TLX6). I did not find

any significance between the survey scores and spent time.

The condition of Graph 2 (M=9.78, SD=10.99) took the participants more time to com-

plete the study. The condition of Graph 3 (M=6.23, SD=10.91) took less time to complete

the study. The condition of Chart 1 (M=7.90, SD=10.88) and Chart 4 (M=7.04, SD=10.91)

was ranked in the middle. The subjects took surprisingly more time to complete the tasks,

which indicates the visualization may not be east-to-use to the subjects. However, due to

the mechanism of Amazon Murk, the participants can complete the task within 24 hours, the

actual execution time should be shorter than the reported number. I report the percentage

of each option in Table 16. I found the Graph 2 has the highest correct rate at 63%, which

indicates enabled edge thickness, and disabled node size was easier for the user to compare

the differences between the two strength graphs. I also find a pattern between the edge con-

ditions. In the condition of enabled edge thickness (Chart 1 and Chart 3 ), the participants

took more time to complete the study, which also guarantees a higher correct rate. The TLX

analysis of the group of Strength Graph is reported in Table ??. The finding indicates the

Graph 2 has a higher score of mental demand (TLX1), perceiving success (TLX4), and a

feel of difficulty (TLX5). The finding indicates the design of Graph 2 is an effective design,

but the users may need extra cognitive effort to interact with the interface. I did not find

any significance between the survey scores and spent time.
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Table 15: User Feedback Analysis of study 5: Two-way Bar Chart

Condition

Number

of

Terms

Order

Method
Option A Option B Option C Option D

Chart 1 30 Individual 61% 25% 11% 9%

Chart 2 60 Mutual 65% 25% 10% 4%

Chart 3 30 Mutual 50% 37% 11% 8%

Chart 4 60 Individual 56% 26% 14% 8%

Table 16: User Feedback Analysis of study 5: Enhanced Strength Graph

Condition
Edge

Thickness

Node

Size
Option A Option B Option C Option D

Graph 1 Disabled Disabled 60% 17% 18% 8%

Graph 2 Enabled Disabled 63% 23% 21% 3%

Graph 3 Disabled Enabled 57% 27% 13% 6%

Graph 4 Enabled Enabled 59% 22% 16% 10%

Table 17: TLX analysis of study 5: Two-way Bar Chart

Condition
TLX1 TLX4 TLX5 TLX6

M (SD) M (SD) M (SD) M (SD)

Chart 1 4.03 (1.57) 5.04 (1.50) 4.27 (1.77) 3.14 (1.70)

Chart 2 3.96 (1.67) 5.37 (1.44) 4.17 (1.71) 3.31 (1.79)

Chart 3 4.00 (1.52) 5.24 (1.58) 4.30 (1.68) 3.31 (1.71)

Chart 4 4.16 (1.67) 5.27 (1.62) 4.39 (1.84) 3.17 (1.82)
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Table 18: TLX analysis of study 5: Enhanced Strength Graph

Condition
TLX1 TLX4 TLX5 TLX6

M (SD) M (SD) M (SD) M (SD)

Graph 1 4.34 (1.62) 5.13 (1.53) 4.38 (1.77) 3.24 (1.71)

Graph 2 4.45 (1.47) 5.18 (1.43) 4.73 (1.53) 3.28 (1.72)

Graph 3 4.17 (1.64) 4.98 (1.59) 4.21 (1.70) 3.36 (1.67)

Graph 4 4.20 (1.64) 5.01 (1.35) 4.53 (1.54) 3.28 (1.70)

8.4 SUMMARY AND DISCUSSION

In study 5, I ran a crowd-sourced online user study (study 5) through Amazon Mechanical

Turk. A total of 400 and 417 participants were recruited in the study. The study helps to

identify the effective design of Two Way Bar Chart and Strength Graph. I conducted a 2 by

2 design of the interface. In the group of Two Way Bar Chart, I controlled the conditions of

the number of terms and the order methods. In the group of Strength Graph, I controlled the

conditions of edge thickness and node size. The experiment results indicated the effectiveness

of the Chart 2 (60 terms with the order by individual relevance) and Graph 2 (enabled edge

thickness and disabled node size) design. The two improved interfaces will be adopted in the

later experiments as the explanation interfaces for publication similarity and co-authorship

similarity.
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9.0 CONTROLLABILITY AND EXPLAINABILITY IN A HYBRID

SOCIAL RECOMMENDER SYSTEM

In this chapter, I report my exploration on bringing evaluated controllable user interface

(pre-study) and explainable user interface (study 1 to 3) to a hybrid social recommender

system. The combined interface has been integrated into the study 2 for testing the interac-

tion between explanation visualizations in an interactive recommender system. A common

limitation for the pre-study, study 1 & 2 is the small scale of human subjects, which limited

the statistical power of the analyzed result. In this section, I intend to provide a large scale,

lab-controlled human subject experiment (N=50) that to confirm the affirm the finding on

user interface design and user performance, i.e., study 6.

9.1 INTRODUCTION

To explore the value of controllability and explainability in recommender context, I devel-

oped a social recommender interface for attendees of academic conferences. The system

called Relevance Tuner+ was implemented as a component of a conference support sys-

tem - Conference Navigator [10]. It is an extension of my early controllable recommender

system RelevanceTuner with several explanation-focused features [132, 136]. The original

RelevanceTuner allowed users to “tune” (re-rank) the list of recommended co-attendees to

meet using four sliders (see Fig 35, Section A). Each slider controlled the importance of

one of the four source recommender engines of the hybrid recommender engine - publication

similarity, topic similarity, co-authorship similarity, and interest similarity. By moving the

slider to the right, the relative importance of the component could be increased; by moving
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it to the left, the importance decreases. The final impact of a specific source on the rank-

ing of a specific co-attendee was determined by both the relevance of this attendee along

this source (for example, the similarity of her publication to the publications of the target

user) and the current importance of the source selected by the user (e.g., importance of the

Publication Similarity source). To make this hybrid fusion process more transparent, the

RelevanceTuner interface used colored stackable bar visualization to show how the total rel-

evance score of a recommended attendees was composed of source-level relevance scores (see

Fig 35, Section B). More information about recommended people could be obtained using

links in Section D. The RelevanceTuner+ further expanded this controllable interface with

a explanation icon shown next to each recommendation in Section C, which could be used

to inspect the relevance of this recommendation. Following a click on the explanation icon,

a window will pop up (see Fig 36) to show a clickable explanation table, presenting visual

explanations of calculated relevance for the selected recommendation engine.

The pop-up explanation window provided access to four explanation interfaces through

color-coordinated buttons. Each interface focused on explaining the recommendation score

delivered by the corresponding component of the hybrid engine: a) Two-way Bar Chart (for

Publication similarity) showed the mutual relationship between two scholars publication

terms and term frequency.; b) Topical Radar (for Topic Similarity) presented the top topics

of the user and compared them with the selected attendee; c) Strength Graph (for Co-

Authorship similarity) explained the strength of social connections by presenting the co-

authorship network connecting the recommender attendee to the target user (nodes and

edges are representing authors and co-authorship, respectively); d) Venn Tags (for CN3

Interest similarity) visualized the similarity of co-bookmarked, or co-followed item in the

form of a Venn diagram. The design can be found in Fig 37. The specific visualization was

constructed through a participatory design process presented in my previous study [134].

Relevance Tuner+ enhanced recommender system transparency in three ways. First,

the user can inspect the static colored stackable bar to understand the fused relevance score

in a multi-relevance context. Second, the user can influence the fusion by changing the

weighs and observing the immediate changes of the colored relevance bars and item ranking.

This controllability makes the fusion process transparent. Third, the user can access more
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Figure 35: The design of Relevance Tuner+: (A) relevance sliders; (B) stackable score bar;

(C) explanation icon; (D) user profiles.

Figure 36: The pop-up window of clicking the explanation icon (shown in Figure 35 Section

C).

information about the reasoning process by clicking the explanation icons. In the design

of Relevance Tuner+, I attempted to separate the fusion process transparency from the

explanation of each relevance obtained by clicking the explanation icon. To be more specific,

I intend to gain system transparency in the aspect of the recommendation process, as well

as the reasoning process.

To ensure the soundness of RelevanceTuner+, all its components were separately evalu-

ated in a sequence of studies. The evaluation of the controllable slider was presented in my
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previous study [132]. The findings showed that the visual interfaces significantly reduced

the information search efforts tasks and helped users to perceive recommendation quality as

well as an improvement in overall user satisfaction. The design of the explanation icon was

discussed in my previous studies [136], the finding indicated the effectiveness of the proposed

explanation models and a significant improvement in the perception of explainability, but

I found providing controllability, and explainability was complementary that the users may

not adopt both of the functions together. The visual interfaces for the four source explana-

tion models were selected through a stage-based participatory design process to discuss the

user preference of the interface prototypes [134] interactively. I further improved the design

by a performance-focused evaluation. The result suggests that the user-preferred interface

may not guarantee the same level of performance. To resolve the disagreements between

designs favored by user preferences and efficiency evaluation, I conducted a user study [135]

to determine the best designs for the recommendation models where the choice of the top

design was not evident after the two earlier studies. The following section reviews the final

version of the source recommendation model visualizations in more detail.

9.1.1 Explaining Recommendation Models

A total of four recommender models were introduced in RelevanceTuner+: 1) Publication

Similarity: cosine similarity of users’ publication text; 2) Topic Similarity: topic modeling

similarity of research interests (topics); 3) Co-Authorship Similarity: the degree of network

distance, based on a shared co-authorship network; 4) CN3 Interest Similarity: the number

of papers co-bookmarked, as well as the authors co-followed. The detailed design of the

explanations can be found here [134].

9.1.1.1 Publication Similarity: This similarity was determined by the degree of text

similarity between two scholars’ publication vectors using cosine similarity. I applied tf-idf

to create the vector with a word frequency upper bound of 0.5 and a lower bound of 0.01 to

eliminate both common and rarely used words. In this model, the key components were the

terms of the paper title and abstract as well as its term frequency.
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(a) Two-way Bar Chart (c) Strength Graph

(b) Topical Radar (d) Venn Tags

Figure 37: The explanation interfaces of study 6: (a) Two-Way bar chart for publication

similarity; (b) Topical Radar for topic similarity; (c) Enhanced strength network for co-

authorship network; (d) Venn Tag for CN3 interest similarity.

On the basis of my studies [134, 135] I adopted a Two-Way Bar Chart visualization as

an approach to explaining the text-level similarity between the publication of the user and

the attendee (Fig 37a). The visualization presented the mutual relationship of two scholars’

publication terms and term frequency, i.e., one scholar in positive and the other scholar on

a negative scale. This visualization presented the terms of the paper title and abstract.

The bar length indicates the term frequency in the documents. The user’s terms and the

attendee’s terms are presented on the left and right, respectively. The user can inspect the
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words-in-common through the term appear in both sides, e.g., the term visual in Fig 37a

means the term appeared the both of the scholars’ publications. I ran a crowdsourcing study

to determine the setting of the bar chat. Based on the study result, I choose 30 terms (versus

60 terms) ordered by individual relevance (versus the sum of relevance).

9.1.1.2 Topic Similarity: This similarity was determined by matching research inter-

ests using topic modeling. I used latent Dirichlet allocation (LDA) to attribute collected

terms from publications to one of the topics. I chose 30 topics to build the topic model

for all scholars. Based on the model, I then calculated the topic similarity between any

two scholars. The key components were the research topics and the topical words of each

research topic [148].

I presented research topics in a radar chart and the topical words of each research topic

in table [148]. The visualization design can be found in Fig 37b. The radar chart was

presented on the left side. I selected the top 5 (ranked by beta value from a total of 30

topics) topics of the user and compared them with the other scholar. A table with topical

words was presented in the right so that the user can inspect the context of each research

topic. I found this design is effective based on the user study of [136]. Based on the study

result, the users were able to achieve 97% correct rate of sorting multiple recommendation

models, solely using the visualization.

9.1.1.3 Co-Authorship Similarity: This similarity approximated the co-authorship

network distance between the source and recommended users. For each pair of the scholar,

I tried to find six possible paths for connecting them, based on their co-authorship relation-

ships. The network distance is determined by the average distance of the six paths. The

key components were the coauthors (as nodes), coauthorship (as edges) and the distance of

connection the two scholars.

I presented a co-authorship network in a path graph [131]. The visualization design can

be found in Fig 37c. For connecting the user (yellow circle on the left) to the attendee (red

color in the right), I tried to find six possible paths (one shortest and five alternatives) by

direct and in-direct co-authorship. In my original design [135], I found the user were failed
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to use this visualization in sorting the recommendations. I then ran a crowdsourcing study

to refine the network design. The study was a 2x2 factor design that has four conditions:

edge thickness as the relevance between the connected nodes (i.e., the co-authored papers

between two scholars) and node size as the number of papers (i.e., to make the node size

presented the additional number of paper information). Based on the study result, I decided

to set 1) node size as the number of papers; 2) edge thickness as the number of co-authored

papers. The improved design has been shown effective in getting a 60% correct rate of sorting

recommendations by relevance.

9.1.1.4 Interest Similarity: This similarity was determined by the number of co-bookmarked

conference papers and co-connected authors in the conference support social system Con-

ference Navigator (CN3). I used the number of shared items as the CN3 interest similarity.

The key component is the shared conference papers and authors.

I presented co-bookmarked papers in a design of Venn Tags (shown in Fig 37d). The

study of [75, 104] has pointed out the user preferred the Venn diagram as an explanation

in a recommender system. The interface shown in Fig 37d: Venn Tags, I implemented the

same idea with the bookmarked items. The idea is to present the bookmarked item, using an

icon, in the Venn diagram. The two sides are the bookmarked item belong to one party. The

co-bookmarked or co-followed item will be placed in the middle. The users can hover the

icon for detail information, i.e., paper title or author name. I found this design is effective

based on the user study of [136]. Based on the study result, the users were able to achieve

93% correct rate of sorting multiple recommendation models solely using the visualization.

9.2 SETUP (STUDY 6)

In study 6, I attempted to explore the effects of controllability and explainability in a realistic

recommendation context. This goal was facilitated by the practical nature of RelevanceEx-

plorer+, which was implemented and used as a social recommendation component or a

popular conference support system Conference Navigator 3 (CN3), which has been used at
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Table 19: Meta-data of the UMAP dataset

UMAP 2015 UMAP 2016 UMAP 2017 UMAP 2018

Number of Papers 143 129 168 108

Number of Authors 231 305 345 289

Number of Attendees 116 115 151 131

Number of Bookmarks 664 660 714 342

Assigned Interface BASE CONT EXPL FULL

many research conferences [10]. However, the real conference context makes it impossible

to run a reliable, controlled study. While in my past work, I did explore earlier versions of

RelevanceExplorer in conference-based field studies [132], the needs of a randomized con-

trolled study caused us to perform this study outside of a real conference context. However,

I used data from real conferences and engaged experienced graduate students who were a

close approximation to real conference participants. The study used different scenario-based

information tasks and data-driven analysis methods.

9.2.1 Data and Participants

The recommendations produced by all four recommendation models are based on data col-

lected by the CN3 system. I used real data from UMAP Conferences, from the year 2015 to

2018. UMAP is the premier international conference for researchers working on Personalized

Recommender Systems, Technology-Enhanced Adaptive Learning, Personalized Social Web

Adaptive Hypermedia and the Semantic Web. The dataset contained conference proceed-

ing data, including conference papers (author, title and abstract), author and attendee list

(name, published papers, affiliation, and position) and user feedback (bookmarks on papers

and authors). As in the real conference context, my study used recommendation mod-

els to provide a social recommendation, i.e., recommending conference attendees to meet.

The summary description of the UMAP dataset can be found in Table 19. Subjects were
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recruited by emails and ads posted at the building of the School of Computing and Infor-

mation, University of Pittsburgh. The promotional emails were sent to mailing lists of all

doctoral students and summer registered master students. The main requirement was that

the subjects should be able to perform an information search on web application as well

as were majored in Library Science (LIS), Information Sciences (IS), Telecommunications

(MST), Computer Sciences (CS) and the Intelligent Systems Program (ISP) at the School of

Computing and Information. Each participant received USD$20 compensation and signed

an informed consent form.

I conduct a power analysis to determine the size of the participants. A calculation of

power analysis involves the following four parameters. 1) Alpha (α): it is a cut-off p-value

that indicates the threshold probability for rejecting the null hypothesis (Type I error rate),

the α = 0.05. 2) Power: it is the probability of finding a true effect - the probability of

failing to reject the null hypothesis under the alternative hypothesis (Type II error rate). I

choose the power value as 0.8. 3) Effect size: it is the expected effect size, which refers to

the expected correlation coefficient in this case. The goal is to find medium-sized effects in

which the value is as 0.35. 4) Sample size N: this value determines the ’participant’s size

to maintain statistical power. I used G*Power software to calculate the sample size, which

results in the calculation result that a total sample size of 49. The sample size supports the

actual statistical power of 80%.

Based on the power analysis, a total of 50 participants (N=50) were recruited for the

user study, from May 30 to June 16, 2019. The subjects were 28 males and 22 females whose

ages ranged from 22 to 44 (M=28.82, SD=4.83). A total of 22 Master’s students joined

the study, included 21 IS and 1 MST majors. There were 28 doctoral students, included

18 IS, 3 LIS, 2 CS, and 5 ISP majors. All doctoral students had at least one publication

and one-time conference attending experience, but no Master’s students had any publication

or ever attended any conference. Subjects took between 52 and 192 minutes (M=106.05,

SD=28.80) to complete the study.
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9.2.2 Experiment Design and Procedure

In this study, I explored RelevanceTuner+, a controllable and explainable user interface for

the social recommendation. To access the separate and combined value of its controllability

and explainability features, I used a 2x2 experimental design with four conditions. There

were two intervention in this design: enable/disable relevance sliders (Section A in Fig 35)

and enable/disable explanation icon (Section C in Fig 35). The four conditions produced by

these interventions are: Baseline interface (BASE) with both slider and explanation icon

disabled; Controllable interface (CONT) with slider enabled; Explainable interface (EXPL)

with explanation icon enabled; Full interface (FULL) with both slider and explanation icon

enabled. Each condition was used with a specific year of UMAP conference data (see Table

19). I followed the within-subject design, so all participants were asked to use each interface

for one training and two study tasks and to fill out a post-stage questionnaire at the end

of their work with each interface. At the end of the study, participants were asked to fill a

post-study questionnaire. To minimize the learning effect and bias, I followed a Latin square

design to balance the conditions that appeared to each participant. The study procedure

can be summarized as followed steps:

1. Pre-study questionnaire (for user preference elicitation)

2. Interface 1: training session, task 1, task 2

3. Post-stage questionnaire

4. Interface 2: training session, task 1, task 2

5. Post-stage questionnaire

6. Interface 3: training session, task 1, task 2

7. Post-stage questionnaire

8. Interface 4: training session, task 1, task 2

9. Post-stage questionnaire

10. Post-study questionnaire

User Preference Elicitation: In the real-world conference scenario, most of the event

attendees have some publications that the system can use to generate social recommenda-

tions. However, in my study, only a part of the subjects have ever published papers. To
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better control the data sparsity, I asked the participants to complete a pre-study question-

naire before the user study. The pre-study questionnaire was aimed to conduct the user

preference elicitation process so I can generate personalized social recommendations. The

pre-study questionnaire has four questions. First, I asked subjects to pick five preferred

research topics (out of 30 topics) that generated by the Topic Similarity. Each topic came

with hundreds of topical keywords. I listed the top 10 keywords to let the user understand

the context of each topic. For example, “Topic#1: behavior, user, cultural, networks, social,

world, web, differences, mixed, models, effect”. I used the selected topics for matching Topic

Similarity. The topical keywords of the chosen topic were then used to calculate Publication

Similarity. Second, I asked subjects to select five mentors from the faculty directory of

the School of Computing and Information. I filtered 18 professors (out of 41 tenure-stream

professors) whose research interest close to the topics of the UMAP conference. The selected

mentors will be treated as the subjects’ coauthors for calculating the co-authorship similar-

ity. Third, I asked subjects to select three favorite papers from each year’s UMAP top 10

bookmarked papers (a total of 12 papers). The data was used to calculate CN3 Interest

Similarity.

In the study, the subjects were told to act as a researcher who is attending the conference.

They were requested to pick a suitable candidate among conference attendees, based on their

best judgment. Participants were given one training session and two information search tasks

for each interface. In the training session, I urged the user study participants to follow a few

steps so they have a chance to familiarize the system. The instrumentation details are listed

below.

Training Session:

1. Inspect the definition of “publication similarity” (click on the question mark next to it)

and read the text that appears.

2. Re-tune one or more sliders and inspect how adjusting that changes the stackable color

bar.

3. Click two scholar names and check their publications.

4. Click two “Explanation Icon” and inspect the four explanation functions in them.
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5. Follow any four scholars by clicking the Follow button, you will need to provide a reason

for your selection. Please type “test” as your answer.

To be noted, in step 1, the inspecting similarity were rotated across conditions to cover all

four similarities. Step 2 is only appeared in CONT and FULL interface. Step 4 is only

appeared in EXPL and FULL interface. In step 5, a pop-up box will present to collect user

feedback/comments when the user clicked on “follow” button (see Fig 35, “Follow” column).

The study tasks 1 and 2 were explicitly designed as a relevance-oriented and diverse-

oriented information search tasks, respectively. I tried to make the assigned tasks as realistic

that could be naturally pursued by attendees at research conferences. For relevance-oriented

task (Task 1), I expect to see the user to coordinate multiple relevance aspects and find out

the desired candidates efficiently. In contract, the diverse-oriented task (Task 2), I expect

the user to select candidates from different relevance aspects, which diverse their selection.

Both of the tasks asked the user to “follow” four scholars from the conference attendee list,

based on different criteria. To promote the function usage and advance the information need,

in each “following”, I asked the user to “justify” their choice by typing a couple of sentences

about the reasons they decided to follow the chosen scholar (same as the Step 5 above).

Task 1: Find Advisor/Mentor

• If you plan to pursue a doctoral degree after your current degree program, it is an

excellent opportunity to find your prospective advisor or mentor at the conference. For

this task, you will select scholars to follow as potential advisors/mentors.

• Please “follow” four scholars whose work in more relevant to your research interest(s).

The ideal candidates will be scholars who the system identified as more connected to

your chosen SCI professors (so they can provide you a strong recommendation letter).

• You are also expected to justify your selections (for example, to the Ph.D. admission

committee), so it is important to pay attention to why do you make the selection.

Task 2: Find a Guest Speaker

• You are asked to invite guest speakers for an academic seminar at your home school.

The main seminar theme is to encourage the inclusion of different types of research and

community.
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• Please Please “follow” four scholars from the conference whose work matches the seminar

theme. The ideal candidates are: 1) those who can represent the inclusion of different

types of research, i.e., those scholars are expected to work on different research topics;

2) those who are “less” connected to your chosen SCI professors.

• You are also expected to justify your selections (for example, to the dean’s office), so it

is important to pay attention to why do you make the selection.

9.2.3 Measurements

I used both subjective metrics and objective metrics to measure the effectiveness of the

controllable and explainable interfaces. The subjective measures were captured by question-

naires. I used the existing constructs (groups of questions) from the works of [108, 70, 71].

In this study, I collected the user feedback in seven constructs: Perceived Recommendation

Quality/Accuracy(Q), Perceived Recommendation Diversity/Variety(D), Perceived Control

(C), Perceived System Effectiveness (E), Perceived Trust (T), Perceived Transparency (P)

and Satisfaction (S). All these constructs were collected in the stage of the post-stage sur-

vey, i.e., after the participants interacted with each experiment condition. The questions are

listed below, and the survey results were shown in Table 22.

• Construct Q: Perceived Recommendation Quality/Accuracy

– Q1: The recommender was providing good recommendations.

– Q2: I liked the recommendations provided by the system.

– Q3: The recommended scholars fitted my preference.

– Q4: I did not like any of the recommended scholars.

• Construct D: Perceived Recommendation Diversity/Variety

– D1: The recommender helped me discover new contacts at conference.

– D2: The scholars that recommended to me are diverse.

– D3: The list of recommendations included scholars of many different research areas.

– D4: The list of recommendations was very similar.

• Construct C: Perceived Control

– C1: The recommender allows me to modify my preference.
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Table 20: The results of post-study survey of study 6: I collected three constructs of personal

characteristics (PC) and two constructs of system-specific characteristics (SC).

Construct Factor
Score

M (SD)

General
Trust in

Technology
(PC1)

1 I feel technology never works. 1.34 (0.65)
2 I’m less confident when I use technology. 1.76 (0.93)
3 The usefulness of technology is highly overrated. 2.82 (1.49)
4 Technology may cause harm to people. 3.52 (1.95)

Average 2.36 (1.59)

User
Characteristics:

Scholarly
Expertise

(PC2)

1
Compared to my peers, I have a lot of
collaborators or research experiences.

3.84 (1.62)

2
Compared to my peers, I am an expert
on the subject of the conference.

3.40 (1.51)

3 I only know a few scholars at the conference. 5.04 (1.51)
4 I frequently attend academic conferences. 3.50 (1.72)

Average 3.94 (1,71)

General
Acceptance

of
Diversity

(PC3)

1
I’d like to see scholars with dissimilar
research interests.

6.04 (1.02)

2
I would be satisfied if I was recommended
unfamiliar items.

4.54 (1.63)

3
I think the recommendation should cover
the scholars from different research areas.

5.96 (1.41)

4
I like to see the recommendations beyond
my interests.

5.48 (1.32)

Average 5.05 (1.48)

System-specific
Privacy
Concern
(SC1)

1
I’m afraid the system discloses private
information about me.

3.26 (1.84)

2
Personalized recommender usually invades
my privacy.

5.56 (1.83)

3
I’m uncomfortable providing private data
even if it helps me to receive better
recommendations

3.30 (1.75)

4
I think the recommender system should
respect the confidentiality of my data.

6.00 (1.37)

Average 4.03 (2.04)

System-specific
Familiarity

and
Understanding

(SC2)

1
Compared to my peers, I am familiar with
the technology of recommender systems.

4.80 (1.47)

2
I feel comfortable to solve some mathematical
or equation questions.

5.74 (1.32)

3
I am confident when I first time interacts with
a new information system.

5.26 (1.33)

4 I am familiar with programming language. 6.02 (1.31)
Average 5.45 (1.43)
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– C2: I became familiar with the system very quickly.

– C3: The layout of the recommender interface is adequate.

– C4: The recommender helped me to make the following decision faster.

• Construct E: Perceived System Effectiveness

– E1: Using the system is a pleasant experience.

– E2: I make better choices with the recommender.

– E3: I can find better items using the recommender.

– E4: I feel bored when Im using the recommender.

• Construct T: Perceived Trust

– T1: I am convinced by the scholar recommended to me.

– T2: I am confident I will like the items recommended to me.

– T3: The recommender made me more confident about my selection/decision.

– T4: The recommender can be trusted.

• Construct P: Perceived Transparency

– P1: The provided information was sufficient for me to make a good decision.

– P2: The recommender explained why the scholars were recommended to me.

– P3: I understood why the scholars were recommended to me.

• Construct S: Satisfaction

– S1: I will use this recommender again.

– S2: I will tell my friends about this recommender.

– S3: Overall, I am satisfied with the recommender.

– S4: The recommender helped me find the ideal contacts at the conference.

I further collect three constructs of personal characteristics (PC) and two constructs of

system-specific characteristics (SC) in the post-study survey. These constructs included Gen-

eral Trust in Technology (PC1), Scholarly Expertise (PC2), General Acceptance of Diversity

(PC3), System-specific Privacy Concern (SC1), System-specific Familiarity and Understand-

ing (SC2). The constructs help to understand the user personality and expertise that were

positively correlated with user perceptions [115]. The detail questions and survey results of

PC and SC constructs can be found in Table 20.
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I used objective metrics to measure user engagement and recommendation quality. In

all four study interfaces, the user can inspect the recommendation by clicking on different

links and interface elements. I logged five user action in this user study, included click on

Learn more Scholar Name, Relevance Tuner, Explanation Icon and Explanation Tabs. I also

logged the Time Spent to measure the time used in each task. In addition to user engagement

measures, I adopted four metrics to evaluate the recommendation quality [104]: 1) Top N: to

measure the accuracy of a list of top k recommendation. 2) Mean Reciprocal Rank (MRR):

MRR was determined by the ranking position of the first relevant element is matched [? ]. 3)

Normalized Discounted Cumulative Gain (NDCG): This metric penalized the lower-ranked

relevant items, which approached the relevant item to be ranked in the top positions [88].

4) alpha-NDCG: it is relevant to NDCG but as used to measure for diversified search, where

it is appreciated by the number of covered intents [22]. All these objective metrics provided

a sketch and description of the user interaction with the proposed interfaces.

9.3 RESULTS

9.3.1 Action Analysis

Table 21 presents system usage (number of clicks and time spent) of two study tasks in four

different conditions. Most importantly, the data indicates that the participants extensively

used both control tuners and an explanation icon when these options were provided. There

were 42 (out of 50) users who used the tuners to solve the tasks and 39 (out of 50) users who

used the explanation when solving the tasks. The users usually inspected 2-3 explanation

tabs each time after clicking the explanation icon. I found that the users used the tuners and

explanation icon more intensively in the first task than the second task. It is consistent with

my previous finding [132] that the user engagement rate is higher when the user interacts

with an intelligent interface for the first time. The time spent supports the argument that

it took less time to solve the second task. The analysis indicates that the need to examine

details about a specific candidate user by clicking Scholar Name is noticeably decreased
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Table 21: User action summary of study 6: the table shows the user interaction statistics

while performing each of the two tasks using four interfaces. (UC: User Count)

Actions
BASE (S1) CONT (S2) EXPL (S3) FULL (S4)

M(SE) UC M(SE) UC M(SE) UC M(SE) UC

T

A

S

K

1

Learn More
0.72

(1.52)
15

0.74

(1.58)
14

0.52

(0.97)
16

0.36

(0.98)
9

Scholar Name
13.66

(10.80)
44

15.12

(16.03)
43

10.52

(14.24)
41

11.72

(17.10)
40

Tuners - -
30.26

(39.97)
42 - -

22.38

(25.67)
42

Exp. Icon - - - -
7.28

(8.66)
39

7.42

(10.74)
35

Exp. Tabs - - - -
18.56

(23.63)
37

15.22

(18.44)
34

Time Spent

(in Seconds)

517.24

(343.80)
50

633.46

(682.92)
50

613.84

(409.65)
50

533.32

(303.71)
50

T

A

S

K

2

Learn More
0.24

(0.82)
6

0.22

(0.54)
8

0.26

(0.87)
6

0.50

(1.24)
9

Scholar Name
14.36

(14.35)
44

14.42

(11.89)
45

9.92

(9.86)
43

14.26

(16.79)
41

Tuners - -
19.34

(21.84)
44 - -

20.22

(25.81)
40

Exp. Icon - - - -
5.56

(7.70)
29

5.64

(8.26)
32

Exp. Tabs - - - -
11.26

(12.88)
29

12.88

(21.98)
31

Time Spent

(in Seconds)

418.28

(310.92)
50

479.24

(341.98)
50

460.12

(289.90)
50

481.56

(299.24)
50
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when explanations are available. i.e., users clicks Scholar Name least frequently in the

EXPL interface and most frequently in the CONT interface. It hints that the explanations

do help to understand the match. However, as I tested the user interaction parameters

between the four interfaces using a two-way ANOVA, but I did not find significance for

Learn More, Scholar Name and Time Spent metrics.

I further analyzed the user interaction of the control and explanation functions. Fig 38

presents the average re-weighting value of CONT and FULL interfaces through four box-

plots. The average re-weighting value was calculated by
∑n

i=1 Sliders(n)

n
, where n represents

number of click on the slider s and Ss(n) represents the selected weight for each slider

adjustment attempt (from 0 to 10). The usage analysis shows that the users tend to increase

the relevance weighs from its default weighting value of 5 in relevance-oriented Task 1 when

no compromise between sources is necessary and decrease the weights in diversity-oriented

Task 2 when a balance between sources has to be found. I can observe a similar pattern

across all four relevance sliders and both of the interfaces. In other words, the users tend

to enhance the source importance while seeking similar items, but to reduce the importance

while seeking dissimilar items. The effect was most visible in adjusting publication and topic

similarity, which were primary targets in both tasks and least pronounced for co-authorship

similarity in Task 1, where it was a secondary (although positive) consideration. However,

I found the effect is less obvious in the group of co-authorship similarity. This data hints

that the users understood the purpose of the sliders and used them in accordance with the

nature of the assigned information tasks.

9.3.2 Recommendation Quality

To measure recommendation quality, I treated user selections as ground truth, assuming

that the graduate-level users are the best judges on who is the right person for him or her to

meet. In essence, all metrics used in my evaluation attempted to measure in different ways

to what extent a specific version of the system, with or without the help of the user-driven

tuning, is able to place relevant items in the higher ranks of the recommended people list.

Given the well-known tendency of search and recommender system users to focus on the top

151



(a) Publication Similarity (b) Topic Similarity

0.0

2.5

5.0

7.5

10.0

CONT.
Task1

CONT.
Task2

FULL.
Task1

FULL.
Task2

A
ve

ra
ge

 W
ei

gh
tin

g

0.0

2.5

5.0

7.5

10.0

CONT.
Task1

CONT.
Task2

FULL.
Task1

FULL.
Task2

A
ve

ra
ge

 W
ei

gh
tin

g

(c) Co-Authorship Similarity (d) CN3 Interest Similarity

0.0

2.5

5.0

7.5

10.0

CONT.
Task1

CONT.
Task2

FULL.
Task1

FULL.
Task2

A
ve

ra
ge

 W
ei

gh
tin

g

0.0

2.5

5.0

7.5

10.0

CONT.
Task1

CONT.
Task2

FULL.
Task1

FULL.
Task2

A
ve

ra
ge

 W
ei

gh
tin

g

Figure 38: The average re-weighting value of CONT and FULL interfaces.

positions in the ranked list, a system that helps the user to find relevant people high the

ranked list offers a better recommendation quality than the one that pushes the user to go

to the lower ranks.

I present the analysis of objective measures in Fig. 39 showing curves for each measure

taken at points k = 10 to k = 100. A one-way between-subjects ANOVA was conducted to

compare the effect of user interfaces on recommendation quality in BASE, CONT, EXPL

and FULL conditions. In task 1, I did not find any significant differences between the four

conditions. That is, in relevance-oriented Task 1, I did not observe that between the four

interfaces, the users selected recommendations from significantly different ranking positions
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Figure 39: The recommendation quality analysis of study 6: Top-N, MRR, NDCG and

alpha-NDCG.
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as measured by TopN, MRR, and NDCG metrics. However, I can still see the FULL tends

to outperform all the other three conditions as measured by all performance measures. The

result hints that are providing controllable and explainable interfaces can increase the recom-

mendation quality, i.e., the useful recommendations selected by the users tend to be elevated

to the higher ranks. In task 1, it is also reasonable to see there is no difference in alpha-NDCG

metric since I didn’t expect the users to select a set of diverse recommendations.

In task 2, there was a significant effect of interface on recommendation quality metrics

at the p < 0.05 level for the four conditions. I found significance on TopN@10 [F(3, 196)

= 5.12, p = 0.001], MRR@10 [F(3, 196) = 7.44, p < 0.001] and NDCG@10 [F(3, 196) =

7.00, p < 0.001] metrics. I then conducted a post-test due to the significance. Post hoc

comparisons using the Tukey HSD test indicated that 1) the TopN mean score for the FULL

condition (M = 0.20, SD = 0.14) was significantly different than the BASE (M = 0.13, SD

= 0.15) and EXPL (M = 0.10, SD = 0.35) conditions. Moreover, the CONT condition (M

= 0.18, SD = 0.13) did significantly differ from the EXPL (M = 0.10, SD = 0.35) condition;

2) the MRR mean score for the FULL condition (M = 0.08, SD = 0.06) was significantly

different than the BASE (M = 0.04, SD = 0.05), CONT (M = 0.07, SD = 0.06) and EXPL

(M = 0.03, SD = 0.5) conditions. Moreover, the CONT condition (M = 0.07, SD = 0.06)

did significantly differ from the BASE (M = 0.04, SD = 0.05) condition. 3); the NDCG

mean score for the FULL condition (M = 0.36, SD = 0.27) was significantly different than

the BASE (M = 0.21, SD = 0.25) and EXPL (M = 0.16, SD = 0.23) conditions. Moreover,

the CONT condition (M = 0.33, SD = 0.26) did significantly differ from the BASE (M

= 0.21, SD = 0.25) and EXPL (M = 0.16, SD = 0.3) conditions. I found significance on

alpha-NDCG@10 [F(3, 196) = 4.80, p = 0.002] metric as well. The alpha-NDCG mean score

for the FULL condition (M = 0.17, SD = 0.14) was significantly different than the EXPL

(M = 0.09, SD = 0.12) conditions. Moreover, the CONT condition (M = 0.19, SD = 0.16)

did significantly differ from the EXPL (M = 0.09, SD = 0.12) condition.

To summarize, I found that in diversity-oriented task 2, providing controllability can

increase the recommendation quality. It means that using the sliders, users could better

tune the ranking to their preferences bringing most relevant items to the higher positions in

the ranked list. However, the findings also indicate that providing explainability may not
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help to increase the recommendation quality as measured by my metrics. As I observed, the

addition of an explanation function leads the user to go deeper into the ranking list when

inspecting and selecting recommendations, which is bad from the prospects of these metrics.

I argue, however, that the reduction of quality in the presence of explanations is likely the

effect of using traditional ranking-focused recommendation metrics, which were not designed

to assess the explanation aspects and might neither reflect the true performance of a system

nor the ultimate user satisfaction. It is known that when decision-support information is

scarce, ranking is one of the most important factors to assess item relevance [64], causing

people to prefer higher-ranked items. However, the presence of decision-support information

in the form of explanations could have made the users more confident to explore the lower

ranks and judge people positioned there as relevant to meet. In this study, I attempted to

minimize the inherent bias of higher ranking by assessing the value of each condition using

a combination of objective and subjective metrics.

At the same time, it is interesting to observe that selecting the recommendations beyond

the top-ranks is not a guarantee that the users will achieve a higher selection diversity. In the

finding of alpha-NDCG, I found a higher alpha-NDCG score in CONT and FULL conditions.

The EXPL demonstrated the lowest alpha-NDCG score, which implied the users failed to

select recommendations that covered sufficiently different research topics.

9.3.3 User Feedback Analysis

9.3.3.1 Interface Differences Table 22 shows the analysis of post-stage survey fo-

cused on differences between the interfaces. I built 7 constructs based on 27 questions,

included Perceived Recommendation Quality (Q), Perceived Recommendation Diversity (D),

Perceived Control (C), Perceived System Effectiveness (E), Perceived Trust (T), Perceived

Transparency (P) and Satisfaction (S). All these constructs reflected the user experience af-

ter using the four interface conditions. A one-way between subjects ANOVA was conducted

to compare the effect of user interfaces on user subjective feedback in BASE, CONT, EXPL

and FULL conditions.

I found significance on all constructs, included Perceived Recommendation Quality (Q)
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[F(3, 196) = 4.00, p < 0.001], Perceived Recommendation Diversity (D) [F(3, 196) = 2.96, p =

0.03], Perceived Control (C) [F(3, 196) = 12.82, p < 0.001], Perceived System Effectiveness

(E) [F(3, 196) = 4.62, p < 0.001], Perceived Trust (T) [F(3, 196) = 9.77, p < 0.001],

Perceived Transparency (P) [F(3, 196) = 17.63, p < 0.001] and Satisfaction (S) [F(3, 196)

= 6.17, p < 0.001]. I then conducted a post-test for all constructs that shown significance.

The Post-hoc comparisons using the Tukey HSD test was reported below:

1. The score of Perceived Recommendation Quality (Q) for the FULL condition (M = 4.72

SD = 0.68) was significantly higher than the BASE (M = 4.19, SD = 0.91) condition.

However, the CONT (M = 4.52, SD = 0.76) and EXPL (M = 4.50, SD = 0.71) conditions

did not significantly differ from the BASE condition.

2. The score of Perceived Recommendation Diversity (D) for the FULL condition (M = 5.24

SD = 0.78) was significantly higher than the BASE (M = 4.19, SD = 0.91) condition.

However, the CONT (M = 5.10, SD = 0.97) and EXPL (M = 5.14, SD = 0.78) conditions

did not significantly differ from the BASE condition.

3. The score of Perceived Control (C) for the FULL (M = 5.94 SD = 0.83) and CONT (M

= 5.66, SD = 0.90) conditions were significantly higher than the BASE (M = 4.84, SD

= 1.09) condition. Moreover, it was significantly higher for the FULL condition than the

EXPL (M = 5.18 SD = 1.00) condition.

4. The score of Perceived System Effectiveness (E) for the FULL (M = 5.04 SD = 0.72)

and CONT (M = 4.88, SD = 0.69) conditions were significantly higher than the BASE

(M = 4.49, SD = 0.87) condition. Moreover, it was significantly higher for the FULL

than the EXPL (M = 5.18 SD = 1.00) condition. However, the EXPL (M = 4.83, SD =

0.72) condition did not significantly differ from the BASE condition.

5. The score of Perceived Trust (T) for the FULL (M = 5.63 SD = 1.13), CONT (M =

5.25, SD = 1.06) and EXPL (M = 5.32, SD = 1.00) conditions were significantly higher

than the BASE (M = 4.84, SD = 1.09) conditions.

6. The score of Perceived Transparency (P) for the FULL (M = 5.74 SD = 1.12), CONT

(M = 4.81, SD = 1.27) and EXPL (M = 5.66, SD = 1.06) conditions were significantly

higher than the BASE (M = 4.16, SD = 1.53) conditions. Moreover, it was significantly

higher for the FULL and EXPL conditions than the CONT condition.
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7. The score of Satisfaction (S) for the FULL (M = 5.60 SD = 1.27) and CONT (M =

5.39, SD = 1.06) conditions was significantly higher than the BASE (M = 4.58, SD =

1.4353) conditions.

To summarize, I found that each of my two novel features, control, and explanations,

taken alone, tend to affect user experience positively, as measured by a range of experience-

focused constructs, reaching significance for several metrics. As a whole, controllability seems

to provide a slightly stronger impact generating higher scores and reaching a significant

difference with the baseline in more metrics (4 vs. 1). At the same time, the perceived

transparency is affected significantly stronger by adding explanations. Yet, it is together

that these features could provide the strongest impact producing highest experience scores

and reaching a significant difference with the baseline in all experience constructs.

9.3.3.2 Cohort Differences It is normal to assume the participants’ academic back-

ground would affect the perception of using the systems. To examine this aspect of the

study, I contrasted user perceptions between two academic groups, i.e. PHD group and

MASTER group. I found significant differences between the two groups for all constructs,

including Perceived Recommendation Quality (Q) [F(1, 192) = 7.56, p < 0.001], Perceived

Recommendation Diversity (D) [F(1, 192) = 11.46, p < 0.001 ], Perceived Control (C) [F(1,

192) = 7.08, p < 0.001], Perceived System Effectiveness (E) [F(1, 192) = 4.23, p < 0.001],

Perceived Trust (T) [F(1, 192) = 20.89, p < 0.001], Perceived Transparency (P) [F(1, 192)

= 15.13, p < 0.001] and Satisfaction (S) [F(1, 192) = 15.13, p < 0.001]. I then conducted

a post-test for all constructs that shown significance. The Post-hoc comparisons using the

Tukey HSD test was reported below:

1. The score of Perceived Recommendation Quality (Q) for the MASTER group (M = 4.69

SD = 0.76) was significantly higher than the PHD (M = 4.30, SD = 0.77) group.

2. The score of Perceived Recommendation Diversity (D) for the MASTER group (M =

5.32 SD = 0.81) was significantly higher than the PHD (M = 4.84, SD = 0.86) group.

3. The score of Perceived Control (C) for the MASTER group (M = 5.61 SD = 1.00) was

significantly higher than the PHD (M = 5.23, SD = 1.06) group.

157



Table 22: User feedback analysis: I found the FULL condition is significantly outperformed

the BASE condition. Statistical significance level: (*) p < 0.05. (**) p < 0.01)

Construct
Fac-
tor

Interfaces
BASE CONT EXPL FULL
M(SD) M(SD) M(SD) M(SD)

Perceived
Recommendation

Quality
(Q)

Q1 4.86 (1.48) 5.42 (0.99) 5.32 (1.25) 5.72 (1.08)
Q2 4.96 (1.59) 5.26 (1.27) 5.34 (1.08) 5.76 (1.02)
Q3 4.48 (1.46) 5.22 (1.25) 5.10 (1.16) 5.48 (1.29)
Q4 2.46 (1.45) 2.20 (1.41) 2.26 (1.33) 1.92 (1.19)
Ave 4.19 (0.91) 4.52 (0.76) 4.50 (0.71) 4.72 (0.68)**

Perceived
Recommendation
Diversity/Variety

(D)

D1 5.04 (1.51) 5.48 (1.38) 5.72 (1.12) 6.06 (1.05)
D2 5.18 (1.20) 5.30 (5.36) 5.32 (1.23) 5.36 (1.54)
D3 4.86 (1.67) 5.22 (1.44) 5.30 (1.26) 5.46 (1.18)
D4 3.96 (1.61) 4.42 (1.42) 4.22 (1.63) 4.08 (1.66)
Ave 4.76 (0.83) 5.10 (0.97) 5.14 (0.82) 5.24 (0.78)**

Perceived
Control

(C)

C1 4.02 (2.27) 6.02 (1.05) 4.52 (2.09) 6.20 (0.94)
C2 6.04 (1.17) 6.16 (1.07) 5.82 (1.27) 6.18 (0.91)
C3 4.70 (1.60) 5.02 (1.54) 5.12 (1.45) 5.60 (1.34)
C4 4.62 (1.80) 5.46 (1.23) 5.26 (1.39) 5.78 (1.35)
Ave 4.84 (1.09) 5.66 (0.90)** 5.18 (1.00) 5.94 (0.83)**

Perceived
System

Effectiveness
(E)

E1 4.42 (1.79) 5.26 (1.48) 5.10 (1.31) 5.50 (1.40)
E2 4.84 (1.53) 5.48 (1.24) 5.60 (1.01) 5.84 (1.21)
E3 4.92 (1.44) 5.58 (1.24) 5.34 (1.45) 5.82 (1.00)
E4 3.80 (1.86) 3.20 (1.69) 3.28 (1.69) 3.02 (1.77)
Ave 4.49 (0.87) 4.88 (0.69)* 4.83 (0.72) 5.04 (0.72)**

Perceived
Trust
(T)

T1 4.34 (1.67) 5.22 (1.20) 5.18 (1.38) 5.60 (1.24)
T2 4.40 (1.48) 5.30 (1.24) 5.20 (1.24) 5.52 (1.34)
T3 4.34 (1.67) 5.02 (1.37) 5.46 (1.14) 5.64 (1.34)
T4 4.64 (1.39) 5.48 (1.01) 5.44 (1.07) 5.76 (1.28)
Ave 4.43 (1.40) 5.25 (1.06) 5.32 (1.00) 5.63 (1.13)**

Perceived
Transparency

(P)

P1 4.08 (1.80) 4.90 (1.51) 5.16 (1.34) 5.58 (1.23)
P2 3.98 (1.84) 4.44 (1.78) 6.00 (1.17) 5.94 (1.39)
P3 4.42 (1.72) 5.10 (1.46) 5.82 (1.40) 5.70 (1.40)
Ave 4.16 (1.53) 4.81 (1.27)* 5.66 (1.06)** 5.74 (1.12)**

Satisfaction
(S)

S1 4.46 (1.70) 5.42 (1.27) 5.08 (1.50) 5.74 (1.42)
S2 4.64 (1.78) 5.38 (1.45) 5.12 (1.43) 5.74 (1.48)
S3 4.44 (1.57) 5.32 (1.16) 5.20 (1.27) 5.54 (1.32)
S4 4.80 (1.34) 5.46 (0.99) 5.12 (1.33) 5.40 (1.39)
Ave 4.58 (1.43) 5.39 (1.06)** 5.13 (1.22) 5.60 (1.27)**
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4. The score of Perceived System Effectiveness (E) for the MASTER group (M = 4.97 SD

= 0.79) was significantly higher than the PHD (M = 4.67, SD = 0.74) group.

5. The score of Perceived Trust (T) for the MASTER group (M = 5.50 SD = 1.17) was

significantly higher than the PHD (M = 4.86, SD = 1.21) group.

6. The score of Perceived Transparency (P) for the MASTER group (M = 5.39 SD = 1.32)

was significantly higher than the PHD (M = 4.83, SD = 1.44) group.

7. The score of Satisfaction (S) for the MASTER group (M = 5.47 SD = 1.23) was signifi-

cantly higher than the PHD (M = 4.93, SD = 1.31) group.

8. I did not find interaction effect between the interfaces and degree groups for any of the

constructs

The result shows a clear pattern: the MASTER group has higher user experience scores

than the Ph.D. group. The findings demonstrate that personal factors (such as level of ed-

ucation, domain experience, and familiarity with technology) could significantly affect user

perception of the system. Given the nature of the computer and information science field,

the difference between groups in their technical knowledge (i.e., interfaces, recommender sys-

tems, the Web) is likely to be much smaller than in their domain knowledge (i.e., research,

academia, publication, co-authorship, advising). It hints that an interactive and transpar-

ent recommender system could be of more value and importance to the users with lower

domain knowledge for whom making their own decision in a less familiar domain could be a

considerable challenge.

9.4 STRUCTURAL EQUATION MODELING

To build a complete understanding of the impact provided by my novel interface features

on user experience, I conducted a structural equation model (SEM) analysis advocated in

[70]. SEM analysis helps to explain the relationship between unobserved constructs (la-

tent variables) using observable variables. For example, I may not be able to find perfect

measurements that represent the user experience of using an intelligent system. However,

I can adopt several items (questions) to measure user experience. In this analysis, I build
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constructs through subjective measurements; I used the post-stage survey comprised of 16

questions that covered seven different user experience (UX) dimensions. I also combined

three constructs of personal characteristics (PC) and three constructs of system-specific

characteristics (SC).

In order to make sure the items (questions) in each construct are meaningful, I started

with confirmatory factor analysis (CFA) and examined the construct validity. I tested the

construct through two parameters: Convergent validity that makes sure the items in the

construct are related and Discriminant validity that makes sure the unrelated items are

really unrelated. The convergent validity of constructs was maintained by examining the

average variance extracted (AVE) of each construct. In my analysis, with one exception,

the AVEs of all constructs were higher than the recommended value of 0.50, indicating

adequate convergent validity [71]. I had to remove one item from several constructs due

to low variance, but the remaining items shared at least 48% of their variance with their

designated construct. In order to ensure discriminant validity, I ascertained that the square

root of the AVE for each construct was higher than the highest correlations of the construct

with other constructs. I planned three sets of latent constructs: 6 subjective system aspects

(SSA), one user experience (EXP) (satisfaction), three constructs of personal characteristic

(PC), and three constructs of system-specific characteristics (SC). All statistics summarized

below supports good convergent validity (AVE) and internal consistency (Cronbach’s α).

• SSA: Perceived Recommendation Quality (Q): 3 items (Q1, Q2, Q3). I removed items Q4

due to low variance (communality: 0.26) with the designated construct. (AV E = 0.75,
√
AV E = 0.86, α = 0.87, largest correlation = 0.85)

• SSA: Perceived Recommendation Diversity (D): 3 items (D1, D2, D3). I removed item D4

due to low variance (communality: 0.006) with the designated construct. (AV E = 0.60,
√
AV E = 0.77, α = 0.67, largest correlation = 0.75)

• SSA: Perceived Control (C): 4 items (C1, C2, C3, C4). While it is a popular construct,

in my study the convergent validity was not adequate for this construct (AV E < 0.5). I

discarded this construct in my analysis. (AV E = 0.37,
√
AV E = 0.60, α = 0.61, largest

correlation = 0.77)

• SSA: Perceived System Effectiveness (E): 3 items (E1, E2, E3). I removed item E4
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due to low variance (communality: 0.31) with the designated construct. (AV E = 0.75,
√
AV E = 0.86, α = 0.86, largest correlation = 0.75)

• SSA: Perceived Trust (T): 4 items (T1, T2, T3, T4). (AV E = 0.76,
√
AV E = 0.86,

α = 0.91, largest correlation = 0.85)

• SSA: Perceived Transparency (P): 3 items (P1, P2, P3). (AV E = 0.68,
√
AV E = 0.82,

α = 0.81, largest correlation = 0.73)

• EXP: Perceived Satisfaction (S): 4 items (S1, S2, S3, S4). (AV E = 0.81,
√
AV E = 0.90,

α = 0.91, largest correlation = 0.88)

I then built a structural equation model (SEM) for analyzing the UX concepts and the

directionality of causal effects. I followed the framework recommended in [71]. I iteratively

tested and removed the constructs in the SEM model until I found that the model is stable

and fitted. After the analysis, I kept only three constructs: Perceived Recommendation Qual-

ity (Q), Perceived Transparency (P), and Perceived Satisfaction (S) in the model. The model

fit the statistics of χ2(200) = 227.29, p < 0.001, RMSEA = 0.054, 90%CI : [0.040, 0.067],

CFI = 0.99, TLI = 1.00, which indicates an effective fitting model.

The built model is consistent with findings by [9, 70] that user satisfaction was medi-

ated through the constructs of perceived understandability (in my case, the construct of

perceived transparency) and perceived recommendation quality. I believe the selected con-

structs are essential in my user experiment design, i.e., users performing information-seeking

tasks through the recommender interfaces. At the same time, since the user tasks were not

designed to promote recommendation diversity, gain user trust, or let the user make the

decision faster (effectiveness), it is not surprising to see that the user experience was not me-

diated through these constructs. However, it is surprising to see the construct of perceived

control had to be removed as well. The results indicated that in my study, user satisfac-

tion was not mediated through the user perception of control; instead, the user satisfaction

steams from perceived transparency and perceived recommendation quality.

The model shows that the controllability and explainability manipulations each have

an independent positive effect on perceived transparency of the system. The controllable

interface is more transparent than interfaces with no control; however, explainability con-

tributes more to the perceived transparency than controllability. Perceived transparency is
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in turn contributes to the perceived quality of the recommendations. The perceived quality

finally determines participants’ satisfaction with the system. I also found the controllability

manipulations have positive effects on the factor of perceived quality, but the explainability

manipulation has a surprisingly negative effect on the factor of perceived quality.

I expanded the core model by adding additional variables: user activity and user char-

acteristics. I found three positive/negative effects of personal characteristics (PCs) on the

factor of perceived transparency. The finding revealed a higher transparency perception if the

participants have lower trust in technology (PC1), have a higher score of scholar expertise

(PC2), have a higher acceptance of diversity (of recommendation) (PC3), or have higher

privacy concern (SC1). A higher score of acceptance of diversity also has a direct positive

effect on the factor of perceived quality. Interestingly, I found that system familiarity has a

negative effect on user satisfaction, which indicates that experts may be harder to please. In

the variables of user activity, I found that the need to explore more scholars in detail (more

clicks on scholar name) has a negative effect on the factor of perceived quality. At the same

time, as the participants work with the system longer (spent more time in solving the tasks),

their perception of system transparency increases.

9.5 SUMMARY AND CONCLUSIONS

In this paper, I presented a large-scale human subject experiment (N=50) that assessed

the impact of controllable and explainable recommender interfaces in a hybrid social rec-

ommender system. For the purpose of the study, I augmented a hybrid recommender sys-

tem RelevanceTuner+, which offered a user-controllable fusing or recommendation sources

through sliders with a total of four explainable source recommendation models (publication,

topic, co-authorship and interest similarities). I then conducted a controlled user study using

four-year proceeding data of UMAP conferences. To examine separate and compound im-

pact of controllability and explainability, I used four conditions: Baseline interface (BASE)

with both sliders and access to explanations disabled; Controllable interface (CONT) with

slider enabled; Explainable interface (EXPL) with explanation access enabled; Full interface
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Figure 40: The structural equation model of study 6. The number (thickness) on the arrows

represents the coefficients and standard error of the effect. Significance: ∗ ∗ p < 0.01,

∗p < 0.05, −p < 0.1.

(FULL) with both slider and explanation access enabled. I followed the within-subject de-

sign and assigned the participants two scenario-based tasks, one relevance-oriented and one

diversity-orientated. I used a total of 7 constructs with 19 questions as subjective measures.

The objective measures were captured by analyzing user activity log and applying traditional

recommendation quality metrics.

The user action analysis demonstrated that the participants extensively adopted the

control and explanation functionality provided by my interfaces. I also observed that in

their work with sliders, the users boosted the relevance weighting in the relevance-oriented

task (Task 1) and decreased the weighting in the diverse-oriented task (Task 2) as expected

by the nature of the tasks.
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The analysis of recommendation quality using traditional ranking-focused metrics demon-

strated that in the diversity-oriented task, the availability of controllable fusion increased

the recommendation quality, that is, the users adopted more recommendations in the higher-

ranked items. In contrast, providing explanation function leads the users to click more rec-

ommendations beyond top-ranked items, decreasing all ranking-based metrics. Interestingly,

the analysis of alpha nDCG demonstrated that picking more items in the lower ranks may

not guarantee the high recommendation diversity, which was determined by the dissimilarity

between the recommending items.

The results of the subjective feedback analysis demonstrated that the FULL condition

is outperformed all other conditions, which answers RQ1. The analysis shows evidence that

the provision of the controllable and explainable user interface has a significant positive

effect on user perception. Moreover, the effect of providing controllable fusion and reasoning

transparency is additive. The FULL is outperformed than the single enhanced condition, i.e.,

CONT and EXPL. Another interesting finding indicates the academic background affects

user perception. I found the participants who are Master students are a more “easy-to-

please” group. Their subjective feedback score is significantly higher than Ph.D. students.

It is interesting to stress that traditional recommendation quality metrics and user feed-

back analysis are seemingly opposing conclusions on the effect of explainability. While con-

trollability had a clear positive impact on user perception of the system, it also caused users

to select relevant items in lower ranks. It is quite natural to expect that in the presence of

explanations, the user has more supporting information for making their choice than with

the ranking alone and would be willing to explore lower-ranked items with increased satisfac-

tion. However, it is a clear sign that traditional ranking-focused metrics have to be applied

with more caution to interactive recommender systems. In the absence of user-contributed

data, the ranking-based analysis might not be sufficient to determine a better design option.

In the section of the structural equation model (SEM) analysis, I used seven subjective,

three personal characteristics and three system-specific characteristic constructs. I firstly

ran a confirmatory factor analysis (CFA) to confirm the convergent validity and convergent

validity of constructs. I then included only the valid constructs in the SEM analysis. The

results indicate that both controllability (CONT ) and explainability (EXPL) positively con-
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tributed to the construct of Perceived Transparency (P), although the EXPL condition had

stronger effect than CONT condition. However, the effect of controllability and explain-

ability on Perceived Quality (Q) was the opposite. The CONT condition showed positive

contribution but EXPL condition was negatively contributed to the construct.

I found the best user experience happened when both controllability and explainability

were provided (FULL). However, I also found the interaction between the two functions.

Based on the score of Perceived Control (C), I found the controllability was additive when

the controllable sliders were provided. That is, although explanation function contributed

to Perceived Control (C), but the score can be strengthened by the controllable sliders. In

contrast, I found the explanation function contributed to the score of Perceived Transparency

(P) more than the controllable slider. That is, although the slider contributed to gain

recommender system transparency, the user perception can be improved by providing extra

explanations.

This paper confirmed some findings of previous studies while also offering new findings

and providing a deeper analysis. Overall, the results support my belief in the effectiveness

of the controllable and explainable user interfaces. Moreover, I found the effects of the two

explored enhancements are additive, which means the best user experience happens in the

FULL condition.
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10.0 CONCLUSIONS

10.1 SUMMARY AND CONTRIBUTIONS

In this dissertation, I explored the value of controllability and explainability in a hybrid social

recommender system. I systematically demonstrated the value through a set of exploration,

empirical studies, data-driven analysis, as well as statistical testing. I proposed an effective

user controllable interface in a hybrid social recommender system, which had been evaluated

through a pre-study, presented in chapter 4. In the study, I reported my exploration of two

sets of controllable interfaces: RANK vs. Scatter and Scatter vs. Relevance Tuner. The

study result supported Relevance Tuner is a useful interface that the users have extensively

adopted as well as perceive higher user perception of system control. I conducted a further

data analysis to show how do the users adopt Relevance Tuner in real-world information-

seeking tasks. Based on the experiment, and I choose Relevance Tuner as the first core

interface.

I then proposed user explainable interfaces in a hybrid social recommender system

through study 1, 2, and 3, presented in chapter 5 and 6. I conducted a stage-based partici-

patory study that iteratively designed and evaluated the explanation interfaces for a hybrid

social recommender system. In study 1, I conducted a user study to identify the Target

Mental Model, that is, to identify the key components of the recommendation model that

the users might want to be explainable in the user interface. I firstly identify 11 factors from

the card-sorting task. Based on the result of study 1, I proposed a total of 25 interfaces for

five recommendation models. These interfaces were evaluated trough study 2 for determin-

ing the top-rated and second-rated designs. I then implemented the top-rated interfaces and

continued with study 3 for the evaluation. The result showed the effectiveness of three ex-
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planation interfaces: E2-4 Topical Radar, E4-4 Venn Tags and E5-3 Navigation Style Map.

However, the E1-4 Venn Word Cloud and E3-3 ForceAtlas2 had a low user performance

that required a revision.

In study 4, I conducted an online study with real conference proceeding data. Based on

the finding of study 4 (chapter 7), I confirmed the fusion transparent and reasoning trans-

parency, i.e., the controllable and explainable interface could be combined in an interactive

social recommender system. The experiment results showed a trade-off pattern between

the system controllability and explainability. I then conducted the study 5 (chapter 8) for

the second round of evaluation through a crowd-sourced online study. Two revised expla-

nation interfaces, E1-2 Two-Way Bar Chart and E3-3 Strength Graph were porpoised and

evaluated. I identified the effective design though this experiment.

In study 6 (chapter 9), I conducted a large-scale human subject experiment to assess the

impact of controllable and explainable recommendation interfaces in a hybrid social recom-

mender system. I proposed Relevance Tuner+ that offered an integrated of user-controllable

and explainable interfaces. The goal of this study is to confirm the interface’s effectiveness

as well as further analyzed the interaction between controllability and explainability. I found

the best user experience happened in the full condition, that is, when both controllable and

explainable interface was provided. Through the action analysis, recommendation quality

analysis, and user feedback analysis, I showed a different pattern in terms of how do the

enhanced controllability and explainability affect the user perception, user experience, and

user engagement with a hybrid social recommender system.

I found there were a potential behavior and perception difference between users who have

a different level of expertise. For example, in study 6, I conducted an analysis to inspect

the cohort difference based on participants’ academic background, i.e., doctoral and master

students. I found a significant difference between the two groups in user perception analysis.

In general, the master students had higher user perception scores than Ph.D. students. It

provided evidence to support the correlation between user expertise and user perception,

which was also discussed in the work of [115]. The finding led to a design implication that

the interface design and evaluation should take user expertise into account. For example, less-

expertise users may appreciate an easy-to-use interface than the professional data analyst.
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It is also worth considering different approaches to evaluate the interfaces, e.g., to test the

interface with less-expertise users through random web users (A/B testing) or high-expertise

users through a lab-controllable study with multiple information-seeking tasks.

This analysis helps to answer the [RQ1] How do the enhanced controllability and explain-

ability affect the user perception, user experience, and user engagement with a hybrid social

recommender system?. I find the controllability and explainability effects are additive, which

answered the [RQ2] Is there an interaction effect between controllability and explainability in

a hybrid social recommender system? as well as indicated the best user experience happened

in both recommendation fusion and reasoning were transparent. I confirmed the interaction

effects between controllability and explainability in a hybrid social recommender system.

I found the controllability was additive when the controllable sliders were provided. The

user perception of control can be strengthened by the controllable sliders. I further found

the explanation interface contributed to the user perception of system transparency more

than the controllable sliders. It supported the extra layer of system transparency was also

additive.

10.2 DISCUSSION

Transferability: I made several contributions that can be transferred to another domain.

First, I proposed two user-controllable interfaces for the hybrid social recommendation. Sec-

ond, I distilled best designs for several kinds of similarity-based explanations, using participa-

tory design approaches. I discussed the guidelines and factors of combining recommendations

and explanations. Third, I designed approaches for constructing and assessing visual expla-

nations through the field, online, and lab-controlled studies. All these contributions have

the potential to transfer to other domains.

1. User-controllable Interfaces: My proposed user-controllable interfaces can be adopted in

different domains with content-based recommendations. For example, the relevance tuner

has been extended to the application of paper recommendation [109], which empowers

users to explore academic papers through multiple relevance scores. Another example
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has lied in music recommendation that provides a user-controllable interface on multiple

dimensions of music preference [93]. There are some possible domains, e.g., job recom-

mendation [49] for comparing different candidates, course recommendation for choosing

between courses [46] and health recommendation for selecting clinical treatments [112],

etc.

2. Similarity-based Explanations: Although the design of the explanation interface is context-

dependent, my works can provide insights on bringing transparency to such domains and

applications. Specifically, I proposed explanation interfaces across recommendation mod-

els using different data mining approaches, i.e., text mining, clustering, graph mining, set

relations, and spatial data mining. All these approaches are widely adopted in many dif-

ferent recommender systems or AI-driven appellations. My works provide an attempt to

bring transparency to these systems. For example, text analysis for tourism recommen-

dation [86], clustering algorithm for medical diagnosis[123], relationship recommendation

for social network [16], bipartite structure recommendation [143] and spatial item rec-

ommender system [145].

3. Evaluation Approaches: I designed several evaluation approaches to construct and assess

the proposed user interfaces, a mixture of quantitative and qualitative approaches [74].

All these attempts showed a boarder view of user experience from a different perspectives.

I presented the human subject experiments from different groups of users (e.g., the

hyper-local users, online system users, online crowd workers, and lab participants) and

from different study designs (e.g., participatory design, between-subject design, within-

subject design, and semi-interview). All these experiments can be used to answer different

research questions as well as present different scientific findings. The experience can be

transferred to a different stage of designing controllable and explainable AI systems. For

example, co-design the system across different stakeholders [59], user-centric evaluation

[87] and cross-domain personality modeling [47].

Future Works: The newly initiated European Union’s General Data Protection Regu-

lation (GDPR) required the owner of any data-driven application to maintain a “right to the

explanation” of algorithmic decisions [32], which urged to gain transparency in all existing

intelligent systems. It was also important to protect users’ privacy by increasing the inter-

169



pretability of AI-driven applications or models. My work aims to provide an exploration of

how to enhance system transparency through controllable and explainable user interfaces.

The similarity-based explanation is based on revealing the self-relevance of the users. How-

ever, it is worth considering if adding system transparency will further violate the privacy

guideline. For example, in a similarity-based explanation, my solution presents the similarity

between two users, which may expose sensitive data that the encounter party does not want

to share. A privacy tool may be able to control the data that can be used in the explanation,

but the interface can only provide a limited explanation if only a few data are accessible. It

worth a further exploration of adding privacy controls in the interface design.

There are still many open research questions in this field; for example, how can we

increase the reproducibility of the proposed prototype user interfaces? In some cases, the

user interfaces were evaluated in different experiment settings that may influence the findings

and design implications. For example, in this dissertation, based on the participatory design

process, I found the Venn Diagram was outperformed than the text-based explanation.

However, in the work of Kouki et al. [76], the researchers reported contradicted findings,

i.e., the text-based explanation was perceived better than the visualized Venn diagram.

The inconsistency pointed out a challenge in the stream of research, that is, the issue of

reproducibility. I found the two studies were conducted in different experimental designs

and contexts. In this dissertation, I conducted a human subject lab-controlled study with a

context of social recommendation. The participants came from college and university. The

work of Kouki et al. [76] ran their experiment in a crowd-sourced platform with a context of

music recommendation. It provides an explanation of why the findings are a contradiction

to each other; however, further exploration will be required to confirm the reproducibility of

the proposed user interface designs.

Limitations: I notice there are some limitations to the works of this dissertation. First,

my works are a focus on similarity-based recommendations that are naturally presenting in

multi-relevance structure. That is, my approaches may not apply in other recommendation

models, such as correlation similarity by matrix factorization or deep neural network [23].

Second, while a controlled user study with 50 subjects (study 6) is considered as a large scale,

some observed trends might not be able to reach significance due to the scale. Specifically,
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a larger number of subjects would be desirable to build a reliable structural equation model

of the process. Third, I also noticed that some participants, especially doctoral students,

maybe highly specific in their research interests. In this situation, UMAP conference data

used in my study may not offer a sufficient fit to the research interests of all participants.

A better match between participants’ general interests and the dataset might bring more

reliable results.

171



BIBLIOGRAPHY

[1] H. Abdollahpouri, G. Adomavicius, R. Burke, I. Guy, D. Jannach, T. Kamishima,
J. Krasnodebski, and L. Pizzato. Beyond personalization: Research directions in mul-
tistakeholder recommendation. arXiv preprint arXiv:1905.01986, 2019.

[2] J.-w. Ahn, P. Brusilovsky, J. Grady, D. He, and R. Florian. Semantic annotation based
exploratory search for information analysts. Information processing & management,
46(4):383–402, 2010.

[3] J.-w. Ahn, P. Brusilovsky, D. He, J. Grady, and Q. Li. Personalized web exploration
with task models. In the 17th international conference on World Wide Web, WWW
’08, pages 1–10. ACM, 2008.

[4] S. Amershi, D. Weld, M. Vorvoreanu, A. Fourney, B. Nushi, P. Collisson, J. Suh,
S. Iqbal, P. N. Bennett, K. Inkpen, et al. Guidelines for human-ai interaction. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems,
page 3. ACM, 2019.

[5] S. M. Bailey, J. A. Wei, C. Wang, D. Parra, and P. Brusilovsky. Cnvis: A web-
based visual analytics tool for exploring conference navigator data. Electronic Imaging,
2018(1):1–11, 2018.
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