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Abstract 

Differential Item Functioning for Polytomous Response Items Using Hierarchical 
Generalized Linear Model  

 
Meng Hua, PhD 

 
University of Pittsburgh, 2019 

 
 
 
 

Hierarchical generalized linear model (HGLM) as a differential item functioning (DIF) 

detection method is a relatively new approach and has several advantages; such as handling 

extreme response patterns like perfect or all-missed scores and adding covariates and levels to 

simultaneously identify the sources and consequences of DIF. Several studies examined the 

performance of using HGLM in DIF assessment for dichotomous items, but only a few exist for 

polytomous items. This study examined the DIF-free-then-DIF strategy to select DIF-free anchor 

items and the performance of HGLM in DIF assessment for polytomous items. This study extends 

the work of Williams and Beretevas (2006) by adopting the constant anchor item method as the 

model identification method for HGLM, and examining the performance of DIF evaluation with 

the presence of latent trait differences between the focal and reference group. In addition, the study 

extends the work of Chen, Chen, and Shih (2014) by exploring the performance of HGLM for 

polytomous response items with 3 response categories, and comparing the results to logistic 

regression and Generalized Mantel-Haensel (GMH) procedure. 

In this study, the accuracy of using iterative HGLM with DIF-free-then-DIF strategy to 

select DIF-free items as anchor was examined first. Then, HGLM with 1-item anchor and 4-item 

anchor were fitted to the data, as well as the logistic regression and GMH. The Type I error and 

power rates were computed for all the 4 methods. The results showed that compared to 

dichotomous items, the accuracy rate of HGLM methods in selecting DIF-free item was generally 



 v 

lower for polytomous items. The HGLM with 1-item and 4-item anchor methods showed decent 

control of Type I error rate, while the logistic regression and GMH showed considerably inflated 

Type I error. In terms of power, HGLM with 4-item anchor method outperformed the 1-item 

anchor method. The logistic regression behaved similarly to HGLM with 1-item anchor. The GMH 

was generally more powerful, especially under small sample size conditions. However, this may 

be a result of its inflated Type I error. Recommendations were made for applied researchers in 

selecting among HGLM, logistic regression, and GMH for DIF assessment of polytomous items.  
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1.0 Introduction 

1.1 Background 

For the past few decades, measurement equivalence has been an increasing concern in 

psychological and health studies. If measurement bias is present, a measurement scale is no longer 

invariant across groups, which means the measures perform differently for different groups of 

participants, thereby threatening cultural fairness and the accurate estimation of treatment effects, 

and may lead to flawed public policies (McHorney & Fleishman, 2006). Measurement equivalence 

can be viewed from various perspectives (Borsboom, 2006); it is often examined under the item 

response theory (IRT) framework, which is essentially an examination of differential item 

functioning (Embretson & Reise, 2000). 

Differential item functioning (DIF) refers to a situation in which an item functions 

differently in two groups of participants conditioned by the latent measured trait. The presence of 

DIF is an indication of measurement bias; over the years, it has rendered concerns from numerous 

researchers. DIF assessment has a long history in education testing and is well-developed for 

dichotomous response items, possibly due to the popularity of multiple choice items that are scored 

as correct or incorrect, but it is less so for polytomous response items, which are scored on multiple 

points.  

DIF assessment, although originated in education testing, is now becoming popular in 

health studies (Teresi, 2006).  McHorney and Fleishman (2006) argued that DIF assessment is 

fundamental to health-related studies; as modern society becomes more culturally diverse in its 

age, racial, and socioeconomic status composition, it is crucial that health-related outcome 
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instruments are culturally fair. In 2017, a search of PubMed using the term “differential item 

functioning” resulted in 1271 articles, while in 2010, Scott et al. (2010) conducted a similar search 

that resulted in 211 articles. Researchers have been using DIF to evaluate the performance of 

measurement scales across participants of different age, gender, race, language, country, 

socioeconomic status, education, employment status, health care settings, and other characteristics. 

DIF has been identified in many health-related areas, such as mental health status, physical 

functioning and functional ability, patient satisfaction, and quality of life (McHorney & Fleishman, 

2006; Scott, et al, 2010). Polytomous items are common in psychological evaluations and health 

studies, as the instruments often employ a Likert-scale type of measure. Therefore, researchers 

have been increasingly interested in DIF assessment for polytomous items. 

1.1.1  DIF assessment for polytomous items 

DIF assessment for polytomous items, however, presents its unique challenges. Penfield 

and Lam (2000) discussed three issues pertaining to the extension of DIF assessment from 

dichotomous items to polytomous items. First, reliabilities are typically lower in polytomous items. 

This effect results from a combination of shorter scale length, inconsistency of the rater scores, 

and more dissimilar content domains, all of which are common in polytomous items. Lower 

reliability is often related to inaccuracies in the trait estimates, which leads to false identification 

of DIF items, known as the Type I error. 

Second, DIF assessment requires a matching variable to match examinees from the focal 

and reference groups with equal levels of latent trait so they are comparable. Traditionally, this is 

done by using the total score or some function of the total score as the matching variable. There 

are two classes of DIF procedures: the observed score approach uses the observed score as the 
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matching variables, while the latent trait approach uses an estimate of latent trait, which is a 

function of the observed score (Potenza & Dorans, 1995). The matching variable should be a 

sufficient estimate of the trait; in other words, information in the latent trait variable should be 

captured by the matching variable. In addition, the matching variable should be a reliable estimate 

of the latent trait (Meredith & Millsap, 1992). A mismatch between the latent trait and observed 

scores can inflate Type I error with the presence of different group abilities or trait levels (DeMars, 

2010). However, due to the typically shorter scale length, lower reliability, and potential 

multidimensionality, defining a matching variable is less straightforward for polytomous items 

(Zwick, Donoghue, & Grima 1993).  

One possible solution is using an external criterion to match the groups of examinees 

(Zwick, et al., 1993), as the chosen external variable can have high reliability. However, the main 

problem with this approach is that the external matching variable is not necessarily highly 

correlated with the target test; in other words, the external matching variable and the target test 

may not be measuring the same construct. Another solution is to improve the performance of the 

matching variable. Zwick et al. (1993) suggested including the studied item in the matching 

variable. Purifying the matching variable has also been found to result in more accurate results in 

polytomous DIF assessment (Hildago-Montesinos & Gómez-Benito, 2003; Su & Wang, 2005). 

Another way is to use a matching variable based on the estimated latent trait instead of the observed 

score (DeMars, 2008). 

Third, creating a measure of item performance is more complex for polytomous items. For 

dichotomous items, item performance can be assessed by estimating the probability of a correct 

response. However, for polytomous items with multiple response categories, there is no single 
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measure, but rather, several degrees of correct response; in addition, there is a potential group 

difference in each category of response.   

There are several solutions to this problem. One approach is to place the polytomous 

responses on an interval scale and compare the group mean score at each level of a matching 

variable, as adopted by the Mantel test (Mantel, 1963), and standardized mean difference (SMD) 

statistic (Dorans & Schmitt, 1991). The major problem with this approach lies in the 

appropriateness of treating ordinal responses on an interval scale. Sometimes the score categories 

may be nominal in nature, meaning the adjacent categories do not necessarily represent ordered 

levels of performance, making this approach more problematic. Another approach is to test for the 

group-by-score dependence at each level of matching variable, thus preserving the categorical 

nature of the rating scales. This is the method adopted by the generalized Mantel-Haenszel (GMH) 

approach (Somes, 1986).  A third approach is to dichotomize the polytomous scale using various 

strategies and to assess the group difference in odds of a certain response as in the dichotomous 

scale. This is the logic used by the polytomous logistic regression procedure (PLR) (Agresti, 2013; 

French & Miller, 1996). The Mantel test, SMD and GMH do not specify a parametric form to 

match the item score at each trait level; this is known as the nonparametric method. As the logistic 

type of procedures do specify a parametric form to match item score at each trait level using a 

mathematical function, they are known as the parametric method.  

1.1.2  DIF assess under hierarchical generalized linear model framework 

One of the relatively new methods for DIF assessment is to use the hierarchical generalized 

linear model, which has received increasing attention. The hierarchical generalized linear model 

(HGLM), also known as the generalized linear mixed model, is a general form for nested data that 
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models nonlinear relationships. The popular hierarchical linear model (HLM) is a special case of 

HGLM in which the sampling data is normal, the link function is canonical, and the structure 

model is linear (Raudenbush & Bryk, 2002). 

The relationship between IRT and HGLM has long been demonstrated by various 

researchers (Adams, Wilson, & Wu, 1997; Kamata, 2001). Kamata (2001) showed that the Rasch 

model is mathematically equivalent to a 2-level HGLM with fixed item parameters and random 

person parameters. Items are treated as repeated measures nested within participants. Willams and 

Beretvas (2006) expanded Kamata’s work and demonstrated the equivalence of polytomous 

HGLM and a constrained form of Muraki’s rating scale model. Since then, researchers have 

examined the HGLM for accounting for item dependence (Beretvas & Walker, 2012; Fukuhara & 

Paek, 2015; Paek & Fukuhara, 2015; Xie, 2014), and to account for both person and item 

dependence (Jiao, Kamata, Wang, & Jin, 2012; Jiao & Zhang, 2015). 

HGLM has several advantages over the traditional IRT approach for DIF evaluation. First, 

in the HGLM framework, DIF can be interpreted as the difference between item parameter 

estimates in the focal group and the reference group, specified as the cross-level interactions 

between group indicators and item parameters (Chen, Chen, Shih, 2014); thus, the model allows 

assessment of multiple sources of DIF by examining the variability of DIF across items (Beretvas, 

Cawthon, Lockhart & Kaye, 2012; Van den Noortgate & De Boeck, 2005). Furthermore, 

additional covariates can be incorporated into the model to provide alternate explanations for DIF, 

rather than the descriptive measurement approach that the traditional IRT model takes, which 

focuses on the performance of the scale at measuring the participant’ trait level (De Boeck & 

Wilson, 2004; Swanson, Clauser, Case, Nungester & Featherman, 2002). Thus, the model is more 

general, flexible, and conceptually useful. Second, the extreme response patterns of perfect scores 
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and all-missed scores can both be used for parameter estimation. Third, examination of the 

variability in person-level scale scores allows researchers to explore the consequences of DIF 

(Cheong & Kamata, 2013). Fourth, additional levels can be added to the model to account for 

higher-level clusters, such as doctor or hospital, while studies have shown that ignoring such 

nested structures can yield consequences such as inflated Type I error rate (French & Finch, 2010). 

Last, implementation of HGLM is more straightforward with widely available software. In 

addition, HGLM and its extensions can simultaneously handle item and person parameters, DIF, 

effect of covariates, as well as local item and person dependence. Thus, it has great potential for 

practical use (Ravand, 2015). 

1.2 Statement of the Problem 

One of the common issues for DIF detection is scale indeterminacy. Scale indeterminacy 

refers to the estimation of a DIF parameter that is not absolute but related to the other DIF 

parameters in the same scale (de Ayala, 2009). In order to solve this problem, it is necessary to set 

constraints to identify the model. Most studies that address this issue are in education testing 

settings. There are three popular approaches: the mean of the person ability parameter or the mean 

of the item difficulty parameter can be constrained to an arbitrary value (e.g., zero), or a set of 

anchor items can be selected to serve as a matching criterion variable (Chen et, al, 2014; Wang, 

2004). Some studies examined the effect of different constraining methods using HGLM on DIF 

detection for dichotomous items. Cheong and Kamata (2013) explored the performance of the 

equal mean difficulty method and the constant anchor item method and compared the results to 

the well-researched Mantel-Haenszel procedure. Chen et al. (2014) explored the performance of 
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the equal mean ability method with rank-based strategy (Woods, 2009) and the constant anchor 

item method with the DIF-free-then-DIF strategy (DFTD; Wang, Shih, & Sun, 2012) for two 

criteria: first the accuracy in selecting DIF-free items, and then for Type I error rate and power. 

They found that the equal mean ability method is sensitive to group difference in ability (usually 

referred to as “impact”) and is prone to Type I error under such conditions. As a result, it is not 

recommended if researchers suspect impact might be present (Chen et al., 2014). The equal mean 

difficulty method is more robust than the constant anchor item method when there is a violation 

of assumptions. Thus, it is recommended by Cheong and Kamata (2013). If the constant anchor 

item method is to be used, it is important that procedures be completed to make sure the reference 

items selected are free of DIF. However, these studies focused only on dichotomous items, not on 

polytomous items.  

With polytomous items, literature examining the performance of HGLM in DIF assessment 

is relatively scarce. As previously mentioned, Willams and Beretvas (2006) extended Kamata’s 

(2011) dichotomous HGLM to polytomous items and demonstrated the mathematical equivalence 

between Muraki’s rating scale model (Muraki, 1990) and polytomous HGLM. The authors 

compared the performance of HGLM and IRT models for parameter recovery and found the two 

performed similarly. A comparison between HGLM and the generalized Mantel-Haenszel (GMH) 

approach for DIF detection under the condition of no group ability difference showed the two 

approaches produced similar results in terms of Type I error rate and statistical power. Ryan (2008) 

extended this study and found similar results. However, these studies used equal mean person 

ability method to constrain the model; in addition, the ability of groups of examinees was set to be 

equal, meaning no impact among groups. Yet impact is most likely present in reality, and plays an 
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important role in DIF assessment. It is necessary to extend these studies by exploring the 

performance of HGLM with different constraining methods, as well as with the presence of impact.  

 

1.3 Purpose of the Study 

The purpose of this study is to evaluate the performance of HGLM in DIF assessment for 

polytomous items, and in comparison to the GMH and polytomous logistic regression procedures. 

Specifically, this study expanded the work of Chen et al. (2014) by applying HGLM with DFTD 

strategy to polytomous items, using the constant anchor item method. Additionally, this study 

expanded the work of Williams and Beretvas (2006) by exploring the performance of DIF with 

the presence of impact.  

1.4 Research Questions 

This study attempted to answer the following three questions:  

1. How accurately can HGLM select DIF-free items as anchor items for DIF analysis?  

2. What is the Type I error rate for DIF detection using HGLM, and how does it compare to 

using GMH and logistic regression?  

3. What is the statistical power for DIF detection using HGLM, and how does it compare to 

using GMH and logistic regression?  
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1.5 Significance of the Study 

DIF assessment, as a tool to evaluate item fairness, is an integrated part of health studies. 

As the instruments in health studies commonly employ a Likert-type of scale, researchers have 

been paying more attention to DIF assessment for polytomous items, which is less developed and 

studied than DIF assessment for dichotomous items. DIF assessment with HGLM is a relatively 

new approach; in previous studies it has been proved useful for dichotomous items and showed 

great potential for polytomous items. However, the performance of HGLM in DIF assessment for 

polytomous items is not yet fully understood. This dissertation study aims to provide more 

information on this subject and produce useful guidelines for practitioners.  

1.6 Organization of the Study 

The rest of this dissertation is organized as follows: the second chapter reviews DIF 

assessment for polytomous items and various detection methods followed by an introduction of 

using HGLM and its application for DIF detection. The third chapter describes the Monte Carlo 

study in detail; simulation factors, evaluation criteria, data generation, validation, and analysis are 

discussed. The fourth chapter reports the results, and the fifth chapter summarizes and discusses 

the findings.  
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2.0 Literature Review 

This chapter consists of several sections reviewing literature on DIF assessment on 

polytomous response items under the HGLM framework. First, DIF assessment for polytomous 

response items was reviewed; then, DIF detection using HGLM were discussed. 

2.1 DIF Assessment Methods for Polytomous Items 

To formulate DIF for polytomous items, assume y1, y2, …, yt as the T scores of a certain 

item, where T is the number of possible response category scores. Reference and focal groups are 

noted as F and R. K is the number of levels of stratification variable. Table 1 presented a 2×T 

contingency table for the kth stratum, with the row and column marginal totals fixed.  

Table 1 Data for the kth Level of a 2×T Contingency Table Tsed in DIF Tetection 

Group    Item Score   Total 

 y1 y2 … yt … yT  

Reference nRIk nR2k  nRtk  nRTk nR+k 

Focal nFIk nF2k  nFtk  nFTk nF+k 

Total n+Ik n+2k  n+2k  n+2k n++k 
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2.1.1  Nonparametric methods 

Methods such as the Mantel, SMD and GMH approaches do not assume a particular 

statistical model to link item scores to the matching variable; instead, they just focus on the group 

difference in the observed item scores at each level of the matching variable; thus they are known 

as nonparametric methods (Penfield & Lam, 2000).  

2.1.1.1 The Mantel test 

The Mantel test is a polytomous extension of the Mantel-Haenszel (MH) procedure, which 

is one of the most widely-used DIF detection methods. MH for dichotomous items utilizes a series 

of K 2×2 contingency tables for each scoring level after examinees in both groups are matched on 

the total scores; where K is the number of the levels of the matching variable (Mantel & Haenzel, 

1959). The Mantel test extended the MH by using a series of K 2×T tables with 2 rows and T 

columns, where T is the number of possible response category scores (Mantel, 1963). The test 

statistic is created by calculating weighted sum scores for the focal group and then summed for 

each response, conditioning on the total test score. Each table is created for each stratum of ability 

level. The null hypothesis is that the odds of correct response are the same in both the focal and 

the reference groups.  

The weighted sum of scores for the focal group in the kth table for the kth stratum is   

Fk = ∑ 𝑦𝑦𝑡𝑡𝑛𝑛𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇
𝑡𝑡=1                                                             (1) 

where yt is the item score for the T possible score on the item. nFtk is the number of focal group 

members with score t in the kth stratum. Under the hypothesis of no association, the rows and 

columns are considered independent; thus the rows and columns of frequencies for each group are 



 12 

distributed as multivariate hypergeometric variables; that is, nFk is a multivariate hypergeometric 

variable with parameters nF+k while n+k with parameters n++k. Thereby the expected value of Fk is  

E(Fk) = 𝑛𝑛𝐹𝐹+𝑘𝑘
𝑛𝑛++𝑘𝑘

∑ 𝑦𝑦𝑡𝑡𝑛𝑛𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇
𝑡𝑡=1                                                  (2) 

where a plus sign (+) indicates marginal sums meaning summation over the index; for example, 

nF+k represents summation over all the numbers of focal group members in the kth score level.  

The variance of Fk is 

V(Fk) = 𝑛𝑛𝑅𝑅+𝑘𝑘𝑛𝑛𝐹𝐹+𝑘𝑘
𝑛𝑛++𝑘𝑘
2 (𝑛𝑛++𝑘𝑘−1)

[(𝑛𝑛++𝑘𝑘 ∑ 𝑦𝑦𝑡𝑡2𝑛𝑛+𝑡𝑡𝑡𝑡𝑇𝑇
𝑡𝑡=1 ) − (∑ 𝑦𝑦𝑡𝑡𝑛𝑛+𝑡𝑡𝑡𝑡𝑇𝑇

𝑡𝑡=1 )2]               (3) 

Under the hypothesis of no association, the frequency counts can be viewed as following a 

multivariate hypergeometric distribution, and a chi-square test can be conducted to test the 

hypothesis, where the test statistic is distributed as a chi-square variable with 1 degree of freedom. 

To test the null hypothesis, a chi-square statistic is  

χ2 = [∑ 𝐹𝐹𝑘𝑘𝐾𝐾
𝑘𝑘=1 − ∑ 𝐸𝐸(𝐹𝐹𝑘𝑘)𝐾𝐾

𝑘𝑘=1 ]2

∑ 𝑉𝑉(𝐹𝐹𝑘𝑘)𝐾𝐾
𝑘𝑘=1

                                                  (4) 

with 1 degree of freedom for the χ2 statistic.   

A rejection of the null hypothesis provides evidence that even after the focal and 

reference group members are matched on the stratification variable of trait measures, there is still 

a group difference in the responses, indicating the presence of DIF. The Mantel test is easy to 

compute; however, it is designed to detect uniform DIF. Uniform DIF refers to a DIF when there 

is no interaction effect between group membership and item performances. In other words, the 

group difference in the measured property is constant among trait levels (Mellenbergh, 1982). 

The Mantel test is not defined for DIF with interactions between group membership and item 

performances (i.e., nonuniform DIF). A measure of overall DIF can be developed using odds 

ratios as described by Zwick et al. (1993) and Liu & Agresti (1996).   



 13 

2.1.1.2 Standardized mean difference (SMD) statistic 

SMD was originally proposed to condense information into a single value for dichotomous 

items (Dorans & Kulick, 1983, 1986). The null hypothesis is at each level of the matching variable, 

there is no group difference in proportion of the correct response, which is equivalent to the null 

hypothesis used by MH statistics (Dorans & Holland, 1993; Potenza & Dorans, 1995). Weighted 

difference in expected item scores are summed over levels of the matching variables to form DIF 

statistics.  

Zwick & Thayer (1996) extended SMD to polytomous items using the standardized 

expected item score; the mean item score for each stratum is weighted by the proportion of focal 

or reference group members at the stratum. The authors presented two different types of standard 

error; the hypergeometric version was recommended because of the superior performance over 

the independently distributed multinomial version in terms of standard error ratios. Thereby the 

DIF statistics can be tested on a standard normal variable. SMD is closely related to the Mantel; 

both focus on expected test scores at each level of the matching variable.  

Using the notations of Table 1, the test statistic for SMD is expressed as 

SMD = [∑ 𝑛𝑛𝐹𝐹+𝑘𝑘
𝑛𝑛𝐹𝐹++

∑ 𝑦𝑦𝑡𝑡𝑛𝑛𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇
𝑡𝑡=1
𝑛𝑛𝐹𝐹+𝑘𝑘

𝐾𝐾
𝑘𝑘=1 ]-[ ∑ 𝑛𝑛𝐹𝐹+𝑘𝑘

𝑛𝑛𝐹𝐹++

∑ 𝑦𝑦𝑡𝑡𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇
𝑡𝑡=1
𝑛𝑛𝐹𝐹+𝑘𝑘

𝐾𝐾
𝑘𝑘=1 ]                   (5) 

under the hypergeometric framework of Mantel (1963), and under the null hypothesis Var (Fk) = 

Var(Rk); thus the covariance between Fk and Rk is expressed as  

Cov(Fk, Rk) = Cov (∑ 𝑦𝑦𝑡𝑡𝑛𝑛𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇
𝑡𝑡=1 ,∑ 𝑦𝑦𝑡𝑡(𝑛𝑛+𝑡𝑡𝑡𝑡 − 𝑛𝑛𝐹𝐹𝐹𝐹𝐹𝐹)𝑇𝑇

𝑡𝑡=1                    (6) 

= - ∑ 𝑦𝑦𝑡𝑡2𝑉𝑉𝑉𝑉𝑉𝑉(𝑛𝑛𝐹𝐹𝐹𝐹𝐹𝐹)𝑇𝑇
𝑡𝑡=1   = - Var(Fk) 

Thus there is  
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Var(SMD) = ∑ 𝑛𝑛𝐹𝐹+𝑘𝑘
𝑛𝑛𝐹𝐹++

2
[� 1
𝑛𝑛𝐹𝐹+𝑘𝑘

�
2
𝑉𝑉𝑉𝑉𝑉𝑉(𝐹𝐹𝑘𝑘) + � 1

𝑛𝑛𝑅𝑅+𝑘𝑘
�
2
𝑉𝑉𝑉𝑉𝑉𝑉(𝑅𝑅𝑘𝑘) −𝐾𝐾

𝑘𝑘=1

2 � 1
𝑛𝑛𝐹𝐹+𝑘𝑘

� � 1
𝑛𝑛𝑅𝑅+𝑘𝑘

� 𝐶𝐶𝐶𝐶𝐶𝐶(𝐹𝐹𝑘𝑘,𝑅𝑅𝑘𝑘)] 

= ∑ 𝑛𝑛𝐹𝐹+𝑘𝑘
𝑛𝑛𝐹𝐹++

2
� 1
𝑛𝑛𝐹𝐹+𝑘𝑘

+ 1
𝑛𝑛𝑅𝑅+𝑘𝑘

�
2
𝑉𝑉𝑉𝑉𝑉𝑉(𝐹𝐹𝑘𝑘)𝐾𝐾

𝑘𝑘=1                                    (7) 

Using the variance formula, it is possible to test the SMD statistic on a standard normal 

distribution. A positive SMD indicates that the item favors the focal groups, while a negative SMD 

indicates that the items favors the reference group, after conditioned on the matching variable. In 

addition, SMD can also be used as a descriptive statistic to measure the size of DIF (Zwick & 

Thayer, 1996). 

2.1.1.3 Generalized Mantel-Haenszel (GMH) 

GMH is an alternate generalization to the MH procedure. GMH is computed by calculating 

the proportion of group members for each response category, at each level of the matching 

variable. Under the null hypothesis of no conditional association between item response and group 

membership, the test statistic is asymptotically distributed as a chi-square variable with T-1 

degrees of freedom. Unlike the Mantel test which treats the response categories on an ordinal scale, 

GMH treats response categories on a nominal scale; thus the order of the response is irrelevant. 

The test statistic for GMH is multivariate normal, while for Mantel it is univariate for the weighted 

linear combination of item scores that formed the average score (Potenza & Dorans, 1995). In 

addition, GMH utilizes the entire item response scale to detect nonspecific different patterns across 

distribution when comparing the performance of focal and reference groups, while the Mantel test 

and SMD focus on mean item scores across the matching variable. Theoretically, this would 
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indicate that GMH is sensitive to both uniform and nonuniform DIF, even though it does not 

produce separate coefficients.  

Using the notations of Table 1, there is  

𝐴𝐴𝑘𝑘′ = (𝑛𝑛𝑅𝑅1𝑘𝑘,𝑛𝑛𝑅𝑅2𝑘𝑘, … , 𝑛𝑛𝑅𝑅(𝑇𝑇−1)𝑘𝑘)                                          (8) 

where 𝐴𝐴𝑘𝑘′  is a 1× (T-1) vector consisting of the T-1 pivotal cells for the kth strata. Let  

𝑛𝑛𝑘𝑘′ = (𝑛𝑛+1𝑘𝑘,𝑛𝑛+2𝑘𝑘, … ,𝑛𝑛+(𝑇𝑇−1)𝑘𝑘)                                           (9) 

the expected value of 𝐴𝐴𝑘𝑘′  is  

E(𝐴𝐴𝑘𝑘′ ) = 𝑛𝑛𝑅𝑅+𝑘𝑘𝑛𝑛𝑘𝑘
′

𝑛𝑛++𝑘𝑘
                                                    (10) 

The variance-covariance matrix of 𝐴𝐴𝑘𝑘′  is  

V(𝐴𝐴𝑘𝑘′ ) = 𝑛𝑛𝑅𝑅+𝑘𝑘𝑛𝑛𝐹𝐹+𝑘𝑘 𝑛𝑛++𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛𝑘𝑘)−𝑛𝑛𝑘𝑘𝑛𝑛𝑘𝑘
′

𝑛𝑛++𝑘𝑘
2 (𝑛𝑛++𝑘𝑘−1)

                                (11) 

where dig(nk) is a (T-1)×(T-1) diagonal matrix with elements Ak, The GMH statistic is expressed 

as  

𝜒𝜒𝐺𝐺𝐺𝐺𝐺𝐺2  = [∑𝐴𝐴𝑘𝑘 − ∑𝐸𝐸(𝐴𝐴𝑘𝑘)]’[∑𝑉𝑉(𝐴𝐴𝑘𝑘)]-1[∑𝐴𝐴𝑘𝑘 − ∑𝐸𝐸(𝐴𝐴𝑘𝑘)]                (12) 

under the null hypothesis of no association between item response category and group membership 

conditioned on the matching variable; this statistic follows a chi-square distribution with T-1 

degrees of freedom.  

2.1.2  Parametric methods 

Methods such as Polytomous logistic regression (PLR) and close-related logistic 

discriminant function analysis (LDFA) approaches do use statistical functions to link item scores 

to the matching variable, thus known as the parametric methods. 
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2.1.2.1 Polytomous logistic regression (PLR) 

Swaminathan and Rogers (1990) proposed to use logistic regression for DIF detection for 

dichotomous items. Using this approach, the probability of an item response is estimated as a 

function of the group membership and the person ability using the observed score as a proxy. Both 

uniform and nonuniform DIF can be incorporated into the model: uniform DIF is specified as the 

group coefficient, while nonuniform DIF as interaction coefficient for group and item variables 

(Rogers & Swaminathan, 1993). The null hypothesis is a variation of the SMD definition as a 

mathematical function is specified to the empirical regression assumed by SMD (Potenza & 

Dorans, 1995). One approach to test for DIF is to test the significance of the group coefficient and 

item-by-group interaction coefficient using the Wald test. Another approach is to compare the 

models using the likelihood ratio test since the models are nested. 

The dichotomous logistic model approach can be extended to polytomous items using 

various multinomial logistic regression (MLR) methods to form a logit construct, so the two 

response categories or the combination of response categories can be compared in a dichotomous 

manner (French & Miller, 1996; Miller & Spray, 1993). The most popular MLR methods are the 

cumulative model, the continuation ratio model, and the adjacent categories model (Agresti, 2013). 

For the cumulative model, cumulative probabilities of responses equal to or greater than a certain 

response category are compared to those smaller than the category. For the continuation ratio 

model, probability of a certain response category is compared to that of all the combined response 

categories beneath it. For the adjacent categories model, probability of a certain response category 

is compared to that of the category beneath it. For items with T response categories, there are T-1 

models corresponding to one model in the dichotomous situation, where DIF can be evaluated in 

a similar manner.  
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The logistic model for dichotomous items can be reparametrized as  

logit (u) = 𝛽𝛽0 + 𝛽𝛽1𝜃𝜃                                                 (13) 

logit (u) = 𝛽𝛽0 + 𝛽𝛽1𝜃𝜃 +  𝛽𝛽2𝐺𝐺 

logit (u) = 𝛽𝛽0 + 𝛽𝛽1𝜃𝜃 +  𝛽𝛽2𝐺𝐺 + 𝛽𝛽3𝜃𝜃𝜃𝜃 

where u is the response to the given item; θ is the observed ability of the participant represented 

by the total score, while G is the group membership; θG is the interaction between group and 

ability. β0, β1, β2, β3 are model coefficients for the intercept, ability, group effect and the ability by 

group interaction effect. The models are nested and thereby uniform DIF can be tested by 

conducting the likelihood ratio test of Equation 13(1) and Equation 13(2); a significant test 

indicates the presence of uniform DIF for the item. Likewise, a significant likelihood ratio test of 

Equation 13(2) and Equation 13(3) indicates the presence of nonuniform DIF for the item.  

For the cumulative model,  

logit (ut)  = ln� 𝑝𝑝1+⋯ 𝑝𝑝𝑡𝑡
𝑝𝑝𝑡𝑡+1+⋯+𝑝𝑝𝑇𝑇

�                                           (14) 

where ut is the response to the tth response category in the given item; p1, … pT are the probabilities 

of response for each item category.  

For the continuation ratio model, there is  

logit (ut)  = ln� 𝑝𝑝𝑡𝑡
𝑝𝑝𝑡𝑡+1+⋯+𝑝𝑝𝑇𝑇

�                                           (15) 

for the adjacent categories model, there is  

logit (ut)  = ln� 𝑝𝑝𝑡𝑡
𝑝𝑝𝑡𝑡+1

�                                                 (16) 

For all three models, for an item with T categories, there are T-1 logistic functions 

expressed as:  

logit (ut-1)  = 𝛽𝛽0𝑇𝑇−1+𝛽𝛽1𝑇𝑇−1𝜃𝜃 + 𝛽𝛽2𝑇𝑇−1𝐺𝐺 + 𝛽𝛽3𝑇𝑇−1𝜃𝜃𝜃𝜃                    (17)  
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One possible solution to reduce the number of regression functions is by constraining the 

slope coefficients across functions to be equal, while freely estimating the intercept coefficients. 

By assuming equal-slope regression lines across functions, Equation (17) is reduced to  

logit (ut-1)  = 𝛽𝛽0𝑇𝑇−1+ 𝛽𝛽1𝜃𝜃 +  𝛽𝛽2𝐺𝐺 +  𝛽𝛽3𝜃𝜃𝜃𝜃                           (18) 

The advantage of the polytomous logistic regression approach is that it has the ability to 

distinguish uniform and nonuniform DIF; additionally, the group difference in various 

combinations of response categories can be examined. However, there is no omnibus measure of 

DIF across all response categories. In addition, the sample size demand is usually large (Miller & 

Spray, 1993). Moreover, T-1 logistic functions produce a large amount of parameter estimates; 

therefore, the results can be difficult to interpret. Furthermore, some MLR methods contain 

underlying assumptions, such as equal-slope regression lines, which may not necessarily be met 

in practice (French & Miller, 1996). 

2.1.2.2 Polytomous logistic discriminant function analysis (LDFA) 

LDFA predicts the probabilities of group membership as a function of the matching 

variable (usually total score), item scores, and the interaction between total score and item score 

(Miller & Spray, 1993). LDFA is essentially a dichotomous logistic model, therefore it requires 

only one simple logistic function. Instead of predicting the probability of item responses given the 

total score and group membership, the LDFA function is reversed. The item score can take on 

continuous values instead of dichotomous ones. The coefficients can then be tested in a similar 

manner as in the dichotomous logistic regression procedures: uniform DIF can be examined by 

comparing the model predicting group membership from total score to the model predicting group 

membership from the total score and item score. Nonuniform DIF can be examined by comparing 
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the model with total score and item score as predicters of the model with the total score, the item 

score, and the interaction effect of total and item score as predictors. A detection of DIF indicates 

that the prediction of being in a certain group by total score is only different from that by total 

score and item score.  

Logit (g) = α + α1X                                                 (19) 

Logit (g) = α + α1X + α2U                                            (20) 

Logit (g) = α + α1X + α2U + α3XU                                     (21) 

where g is the group membership; X is the total score; U is the item score; α is the regression 

coefficient corresponding to β in logistic regression. Uniform DIF can be tested by conducting the 

likelihood ratio test of Equation (19) and Equation (20); a significant test indicates the presence of 

uniform DIF for the item. Likewise, a significant likelihood ratio test of Equation (20) and 

Equation (21) indicates the presence of nonuniform DIF for the item. 

Advantages of LDFA are that it does not require multiple regression functions; it can 

produce an overall estimation of DIF across items and categories, as well as being able to  

distinguish between uniform and nonuniform DIF. However, LDFA is prone to false identification 

of DIF items when there is large ability difference between groups, and tends to lose power when 

the discrimination index is high. 

2.1.2.3 IRT likelihood-ratio test (IRT-LR) 

Instead of using the observed score as the matching variable, DIF methods based on IRT 

use the latent trait measures as the matching variable (Potenza & Dorans, 1995). Under the IRT 

framework, DIF exists when there are differences in the item response functions for the reference 

and focal groups with the same latent trait measures (Lord, 1980). One of the most popular and 

flexible IRT methods for DIF is the likelihood-ratio test (IRT-LR) (Thissen, Steinberg, & Gerrard, 
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1986; Thissen, Steinberg, & Wainer, 1988). For IRT-LR, DIF exists when there are differences in 

the probabilities of obtaining a certain score category for the reference and focal groups with the 

same latent trait measures (Bolt, 2002; Thissen et al., 1988). The general form of likelihood ratio 

test for DIF is a comparison between the log likelihood of the compact model (LC) and the log 

likelihood of the augmented model (LA). For the compact model, an item’s parameters for the focal 

and reference groups are constrained to be equal, while for the augmented model such constraints 

are relaxed. The test statistics G2 follows a chi-square distribution, with the null hypothesis of no 

DIF. The degree of freedom equals to the differences in numbers of parameter estimated for the 

two models.  

 G2 = (-2logLC) - (-2-logLA)                                          (22) 

The IRT-LR can distinguish uniform and nonuniform DIF by estimating certain item 

parameters for the focal and reference groups during model comparisons. In the IRT frame, 

uniform DIF is a function of item difficulty parameter b while nonuniform DIF is a function of 

item discrimination parameter a (Camilli & Shepard, 1994). Thus IRT-LR can produce separate 

coefficients for statistical testing. However, the IRT-LR is computationally intensive, since for 

every testing one model must be fitted twice.  

2.1.3  Comparisons of DIF detection methods 

DIF assessment originated in education testing; thereby, most of the simulation studies on 

DIF assessment were conducted in the education setting. DIF assessment in health studies is a 

relatively new topic; little simulation studies exist to examine the behaviors of various methods 

and provide guidelines for practitioners. As a result, in this dissertation, the discussion of DIF 

detection methods were mostly conducted in the education setting.  
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The Mantel, GMH and SMD are all nonparametric methods. Nonparametric methods 

typically are simple to compute and involves less assumptions than parametric methods. However, 

Woods (2011) observed that the two MH statistics seem to have underlying assumptions regarding 

equal ability and equal item discrimination between groups. The Mantel test, while focusing on 

mean difference to match examinees from difference groups at each stratum of the matching 

variable, are more sensitive to group difference in ability. In addition, the Mantel is not designed 

to detect DIF that involves interactions between group membership and item responses, and thus 

not powerful to detect nonuniform DIF. This is also true for SMD, which is closely related to the 

Mantel. For well-behaved items with constant, uniform DIF, SMD and the Mantel are very 

powerful. However, when the ability between groups are unequal, and there are unparallel 

response functions between groups, the Mantel and SMD lose power and are more prone to Type 

I error. Under balanced DIF, the response functions for focal and reference groups are no longer 

parallel. Thereby the Mantel loses power, and GMH is recommended, for it compares group 

difference across the entire distribution of response categories. Furthermore, since GMH is 

designed to detect group difference in overall distribution patterns, it is more capable in detecting 

complex DIF patterns. It is more robust against presence of impact, and generally more powerful 

for balanced or nonuniform DIF (DeMars, 2008; Fidalgo and Bartram, 2010; Kristjansson et.al, 

2005; Woods, 2011).  

PLR and LDFA are parametric methods that rely on a mathematic model to make statistic 

inference. PLR detects DIF by predicting probability of certain item response as a function of total 

score and group membership, and then evaluating the group effect for DIF. However, this requires 

multiple functions to correspond to each item response category. Thereby the computation can 

become cumbersome and the results can be hard to interpret. LDFA avoids this problem by 
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reversing the logistic function and evaluate DIF by comparing the prediction of group membership 

as a function of total score and item score. Theoretically, both methods are capable of detecting 

uniform as well as nonuniform DIF. Studies of PLR are relatively scarce. Kristjansson et al. (2005) 

compared the Mantel, GMH, PLR and LDFA with the presence of small to moderate impact, three 

different magnitude of item discrimination parameter, and different skewness for ability 

distribution and found that all four methods performed well for uniform DIF. For nonuniform DIF, 

the power was poor for the Mantel and LDFA, while GMH and PLR performed very well. 

Performance of PLR under large impact is unclear. LDFA in general performs similarly to the 

Mantel (Kristjansson et al., 2005; Su and Wang, 2005). When the group ability is equal, LDFA 

can be more powerful than PLR (Hidalgo & Gómez, 2006). 

All the aforementioned methods use the observed score as the matching variable. Another 

approach is to use an estimate of latent trait as the matching variable (Potenza & Dorans, 1995). 

The IRT-LR is a latent parametric method that operate using the IRT framework. It is flexible, 

informative, and powerful when the assumptions are met. Woods (2011) found IRT-LR to be more 

robust against the nonnormality of latent trait distribution than the Mantel and GMH methods. 

However, IRT-LR can be computationally intensive. In addition, as a parametric method relying 

on IRT model for statistical inferences, it is sensitive to model misfit (Bolt, 2002). Since during 

the model comparison process the IRT-LR relays on anchor items for calibration, the purity of 

anchor items are crucial (Cohen, Kim, & Baker, 1993; Kim & Cohen, 1998); when the anchor 

items are not DIF-free, IRT-LR can be prone to inflated Type I error (Elosua & Wells, 2013).  
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2.1.4  Factors considered in DIF detection studies 

2.1.4.1 Examinee factors 

Latent trait parameter distribution The mean trait difference between the focal and 

reference groups is often referred to as “impact”. When a large amount of impact is present, the 

matching variable, which used the observed score to match examinees on their ability level, may 

not be a sufficient index of the latent proficiency; this mismatch between the observed test score 

and latent proficiency may cause inflated Type I error, especially for less reliable tests (DeMars, 

2010). The Mantel, SMD, GMH and LDFA all showed a tendency to have inflated Type I error 

rates when impact is present, particularly in combination with a high percentage of DIF items, a 

shorter matching variable, and smaller magnitude of DIF (Chang, Mazzeo, & Roussos, 1996; 

DeMars, 2008; Su & Wang, 2005; Wang & Su, 2004; Woods, 2011; Zwick, Thayer, & Mazzeo, 

1997). However, Kristjansson, Aylesworth, McDowell, & Zumbo (2005) found the group 

difference to be of little effect; the authors speculated that it might be because the size of impact 

is moderate in their simulation studies (mean difference = .5 on standard normal distribution), 

whereas it is large in other studies (≥1). They speculated that the influence of impact is only strong 

when the size of impact is large.  

Few studies have examined the effect of nonnormality of ability distribution on polytomous 

DIF detection. Moyer (2013) found a decrease of accuracies in non-normal ability estimation even 

when test length and sample size increase, suggesting more difficulty involved in estimation with 

nonnormal ability distribution. Woods (2011) found that even though  nonparametric methods, 

such as the Mantel and GMH, do not make explicit assumptions regarding the distribution of latent 

variables since the matching variable is matched on observed score, they showed decreased 

performance when the ability distribution was not normal, which suggests a mismatch between the 
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matching variable and the latent trait, and that the matching variable is no longer a sufficient proxy. 

This effect suggests a possible underlying assumption of equality about latent variable 

distributions between groups. Kristjansson et al. (2005) examined the skewness of ability 

distribution and found little effect on the performance of DIF detection, again possibly due to the 

moderate impact size.  

Sample size A larger sample size is usually related to higher power (proportion of items 

with DIF that were detected or true positive); however, in some conditions it may inflate Type I 

error. This has been observed for the Mantel, GMH and SMD (Chang, et. al, 1996; DeMars, 2008; 

Woods, 2011) as well as for PLR and LDFA (Hildago & Gómez, 2006; Hidalgo, López-Martínez, 

& Gómez-Benito, Guilera, 2016; Hildago-Montesinos & Gómez-Benito, 2003), especially in 

combination with a large impact, high percentage of DIF items, and shorter test.  

Wood (2011) examined the Mantel and other nonparametric methods and found that under 

small sample condition (R40/F40 and R400/F40), power is generally too low for practical use (< 

60%). Ryan (2008) found similar results for GMH with the only exception when the magnitude of 

DIF is really large (.75). It could be concluded that a sample size smaller than 500, especially when 

the number of examinees for the focal and reference groups is not equal, may be too small for 

achieving sufficient power.  

The parametric methods have larger sample size requirements than the nonparametric 

methods. For PLR, to acquire a decent power rate, a total sample size of 2000 is necessary (French 

& Miller, 1996) A sample size smaller than 1000 typically does not produce sufficient power 

(Elosua & Wells, 2013; Hildago & Gómez, 2006). LDFA seemed to have a similar sample size 

requirement as PLR, although it seemed to perform slightly better than PLR in smaller sample size 

conditions.  (Hildago & Gómez, 2006; Hildago-Montesinos & Gómez-Benito, 2003). 
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Sample size ratio The effect of unequal number of examinees for the focal and reference 

groups is not consistent across studies. Some studies found GMH showed a decrease of power 

when the ratio between reference and focal group change from 1:1 to 4:1, especially for uniform 

DIF (Kristjansson et. al, 2005; Ryan, 2008). This result is not surprising; an unequal sample size 

means smaller subjects in the focal group, and consequentially fewer data at each level of the 

matching variable, resulting in less reliable matching. However, Wood (2011) found a ratio of 10:1 

under small sample condition has larger power for the Mantel. 

2.1.4.2 Test factors 

Percentage of DIF items Some studies have shown that a high percentage of DIF is related 

to inflated Type I error. Some researchers argue that it is not the percentage of DIF items but the 

magnitude of overall DIF for the test, which is a function of the percentage of DIF items and the 

DIF patterns, that is causing the inflation (Su & Wang, 2005; Wang & Su, 2004; Wang & Yeh, 

2003). Woods (2011) found that the Mantel and GMH are more sensitive to the percentage of DIF 

when the test is short. For PLR and LDFA, an increase in the percentage of DIF items under the 

condition of nonuniform DIF can result in an increase of both Type I error and power (Hildago & 

Gómez, 2006; Hildago-Montesinos & Gómez-Benito, 2003). 

Test length Studies have shown that with the presence of a large impact, increasing the 

length of the test can help control Type I error rates (DeMar, 2008; Hidalgo, López-Martínez, & 

Gómez-Benito, & Guilera, 2016; Wang & Su, 2004; Woods, 2011). DeMars (2008) found that for 

a 5-item test, Type I error rates were inflated when a large impact was present. Hidalgo et. al 

(2016) found that for short tests (4 - to 10 - items), LDFA showed inflated type I error especially 

combined with larger sample size and higher percentage of DIF items. Wang and Su (2004) found 

that for a 10-item test, the Mantel and GMH could not control Type I error well with the presence 
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of a large impact. Woods (2011) found that Type I error rates for both methods are acceptable only 

when there are at least 12 items in the matching variable. For a longer test, test length had little 

effect (Fidalgo & Bartram, 2010; Su & Wang, 2005; Wang & Su, 2004; Woods, 2011). It seemed 

that a test with less than 10 items may be too short; observed score based on a short test is less 

reliable and more likely not a sufficient proxy for the latent ability. This mismatch is more serious 

when large ability difference between groups is present. For a test with more than 20 items, test 

length had an insignificant impact on the performance of DIF assessment.  

2.1.4.3 DIF factors 

DIF pattern For dichotomous items, when DIF items are in favor or against one group 

constantly across items, it is known as constant pattern. When some DIF items favor the focal 

group and others favor the reference group, the magnitude of DIF are balanced across items, known 

as the balanced DIF. For polytomous items, DIF can take on more complex patterns since the 

patterns can also be exhibited in response categories, resulting in “within-item” patterns as well as 

“between-item” patterns (Wang & Su, 2004). For an item with unbalanced DIF within categories, 

it is possible for DIF to only exist in the lower categories or only in the higher categories.  

Studies have shown that constant DIF usually has more power, while balanced DIF is 

harder to detect. When DIF is only present in the highest or lowest response category, power can 

be very poor, mostly below 50% (Fidalgo & Bartram, 2010; Su & Wang, 2005). Typically, the 

Mantel is more powerful for constant DIF (Su & Wang, 2005), while GMH performs better for 

DIF that is not constant (Fidalgo & Bartram, 2010; Woods, 2011; Zwick et al., 1993).    

Uniform and nonuniform DIF Uniform DIF refers to the situation when the probability 

of answering an item does not change at different levels of trait levels for different groups; in other 

words, there is no interaction between item responses and group membership. For nonuniform 
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DIF, such interactions exist. Many nonparametric methods are designed to detect uniform DIF. 

However, GMH is constructed to utilize the entire item response scale to detect DIF with non-

specific patterns, hence theoretically it should be sensitive to nonuniform DIF as well, even though 

it does not produce separate test coefficients. For parametric methods like the logistic regression, 

uniform and nonuniform DIF can be tested with separate coefficients.  

In IRT terms, uniform DIF is a function of item location while nonunifrom DIF is a 

function of item discrimination for dichotomous items. However, for polytomous items, 

nonuniform DIF is not necessarily only a function of item discrimination parameters; for example, 

Su and Wang (2005) had shown that nonuniform DIF can occur for a balanced DIF pattern without 

the interfering of item discrimination parameter. Thus, the terms “uniform DIF” and “nonuniform 

DIF” are not necessarily accurate. Many researchers seemed to use the term “uniform DIF” as 

analogous to “parallel DIF” defined by Hanson (1998) and use the term “nonuniform DIF” when 

response functions are not parallel between groups.     

Some studies found that the presence of high item discrimination was related to inflated 

Type I error (Chang et.al , 1996; Su & Wang, 2005; Wang & Su, 2004; Woods, 2011; Zwick, et. 

al, 1997) while some found an insignificant effect on Type I error (Elosua & Wells, 2013; Fidalgo 

& Bartram, 2010; Hidalgo & Gomex, 2006; Kristjansson et al., 2005). On the other hand, unequal 

item discrimination parameters with high variation leads to a significant decrease in power 

(Fidalgo & Bartram, 2010; Kristjansson et. al, 2005; Woods, 2011).  

Magnitude of DIF Increasing the magnitude of DIF is typically related to the increase of 

power; DIF of a small size can be hard to detect (Ryan, 2008; Su & Wang, 2005; Wang & Su, 

2004; Zwick et. al., 1993). When the magnitude of DIF is small (.1), power is very poor; for 

constant DIF, increase the magnitude of DIF can increase the power rate.  
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For PLR and LDFA, increasing the magnitude of DIF is typically related to the increase in 

power (Hildago-Montesinos & Gómez-Benito, 2003). The effect is more prominent when 

combined with a large sample size (Hildago & Gómez, 2006); however, there is also a slight 

increase of Type I error rate. Elosua & Wells (2013) also found that PLR showed inflated Type I 

error when the magnitude of DIF is large.   

2.2 DIF Assessment Using HGLM 

The relationship between HGLM and IRT has long been recognized; however, using 

HGLM as a DIF assessment method has not drawn much attention until recently. HGLM is a 

general and flexible approach to DIF assessment, while DIF can be directly manipulated as model 

parameters. A two-level HGLM with fixed item effect and random person effect is equivalent to 

the Rasch model, while DIF can be specified as group-by-item interaction terms. Multiple sources 

of DIF, as well as the consequence of DIF, can be examined simultaneously. 

2.2.1  A HGLM framework for DIF 

Kamata (2001) verified the mathematical equivalence of IRT and HGLM for dichotomous 

data in the education testing framework. Under the Rasch model, the probability of a correct 

response of person j to item i is a function of the person ability θj and the item difficulty parameter 

bi:  

Logit (pij) = θj - bi  with θj ~ N (0, τ)                                      (23) 
 



 29 

The Rasch model can be re-parameterized into a two-level logistic model. The level-1 

model for the probability of correct response pij of student j (j = 1,…, J) on item i (i = 1, …, I) for 

a test with I items is 

Logit (pij) = 𝛽𝛽0𝑗𝑗 + ∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝑊𝑊𝑘𝑘𝑘𝑘𝑘𝑘
𝐼𝐼−1
𝑖𝑖=1                                        (24) 

where Wkij is the ith dummy-coded item indicator for student j with Wkij = 1 if k = i, otherwise 

Wkij = 0. The level 2 equation at person level with random intercept for 𝛽𝛽0𝑗𝑗 across persons is 

expressed as  

𝛽𝛽0𝑗𝑗 =  𝛾𝛾00 +  𝑢𝑢𝑜𝑜𝑜𝑜, with u0j ~ N(0, τ)                                    (25) 
 

𝛽𝛽𝑖𝑖𝑖𝑖 = 𝛾𝛾𝑖𝑖0  for i = 1, …, I-1 
 

where u0j is a random component represents the ability for person j. Combine the level-1 and level-

2 models and the log-odds of the probability of a correct response to item i for person j is  

Logit (pij) = u0j + γ00 + γi0 = u0j - (-γ00 – γi0)                              (26) 
 

where u0j is the random person effect; -γ00 – γi0 is the fixed item effect.  

This two-level logistic model can be extended to assess DIF by modeling the main effect 

of the group membership as a function of additional dummy-coded covariates for the groups. The 

level-2 model is  

𝛽𝛽0𝑗𝑗 =  𝛾𝛾00 + 𝛾𝛾01𝐺𝐺𝑗𝑗 +  𝑢𝑢𝑜𝑜𝑜𝑜,  with u0j ~ N(0, τ)                             (27) 
 

𝛽𝛽𝑖𝑖𝑖𝑖 = 𝛾𝛾𝑖𝑖0 +𝛾𝛾𝑖𝑖1𝐺𝐺𝑗𝑗  for i = 1, …, I-1 
 

where Gj is the dummy group membership indicator (for example, gender). γ01 represents the 

common effect of being in the focal group compared to the reference group, and γi0 represents the 

mean item effect. A significant γi1 indicates a significant uniform DIF exists for item i between the 

two levels of group indicator variable G. γi1 can be tested by performing a t-test or a likelihood 

ratio test. The combined model is 
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Logit (pij) = 𝛾𝛾00 + 𝛾𝛾01𝐺𝐺𝑗𝑗 + ∑ 𝛾𝛾𝑖𝑖0𝑊𝑊𝑘𝑘𝑘𝑘𝑘𝑘
𝐼𝐼−1
𝑖𝑖=1  + ∑ 𝛾𝛾𝑖𝑖1𝐺𝐺𝑗𝑗𝑊𝑊𝑘𝑘𝑘𝑘𝑘𝑘

𝐼𝐼−1
𝑖𝑖=1  + u0j               (28) 

Williams and Beratvas (2006) extended the Kamata (2001) model to polytomous items and 

demonstrated the mathematical equivalence polytomous HGLM and a constrained form of 

Muraki’s rating scale model (Muraki, 1990).  

Muraki’s rating scale model is closely related to Samejima’s (1969) grade response model. 

In graded response model, for each item with T response categories, there are a discrimination 

parameter ai and T – 1 category boundaries bit. The probability of scoring x and above for item i is  

Pi1 (θ) = 1 - exp[𝑎𝑎𝑖𝑖(𝜃𝜃−1)]
1+exp[𝑎𝑎𝑖𝑖(𝜃𝜃−𝑏𝑏𝑖𝑖1)]

, t = 1                                      (29) 

Pit (θ) = exp[𝑎𝑎𝑖𝑖(𝜃𝜃−𝑏𝑏𝑖𝑖(𝑡𝑡−1))]
1+exp[𝑎𝑎𝑖𝑖(𝜃𝜃−𝑏𝑏𝑖𝑖(𝑡𝑡−1))]

 - exp[𝑎𝑎𝑖𝑖(𝜃𝜃−𝑏𝑏𝑖𝑖𝑖𝑖)]
1+exp[𝑎𝑎𝑖𝑖(𝜃𝜃−𝑏𝑏𝑖𝑖𝑖𝑖)]

, 1 < t <T 

𝑃𝑃𝑖𝑖𝑖𝑖 (𝜃𝜃) = exp[𝑎𝑎𝑖𝑖(𝜃𝜃−𝑏𝑏𝑖𝑖𝑖𝑖)]
1+exp[𝑎𝑎𝑖𝑖(𝜃𝜃−𝑏𝑏𝑏𝑏𝑏𝑏)]

, t = T 

Muraki’s rating scale model is a special case of the graded response model with equal 

category thresholds for each category across items.  

Pit (θ) = exp[𝑎𝑎𝑖𝑖(𝜃𝜃−𝑏𝑏𝑖𝑖+𝑐𝑐𝑡𝑡)]
1+exp[𝑎𝑎𝑖𝑖(𝜃𝜃−𝑏𝑏𝑖𝑖+𝑐𝑐𝑡𝑡)]

 - exp[𝑎𝑎𝑖𝑖(𝜃𝜃−𝑏𝑏𝑖𝑖+𝑐𝑐𝑡𝑡−1)]
1+exp[𝑎𝑎𝑖𝑖(𝜃𝜃−𝑏𝑏𝑖𝑖+𝑐𝑐𝑡𝑡−1)]

                                (30) 

where t is the category score, bi is the location parameter for item i. ct is the category threshold 

parameter and is constant across items for each t.  

With the item discrimination parameters set to 1, the constrained form of Muraki’s rating 

scale model is expressed as  

Logit [pij (Xi ≥ t)] = θj – bit                                                                          (31) 

where bit is the category difficulty parameter for category t with bit = bi – ct, where bi is the location 

parameter for item i and ct is the category threshold for category t. For an item with three response 

categories, for the first category boundary, the probability of a response in category 1 over the 

probability of a response in a category higher than category 1 is 
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𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖(𝑋𝑋𝑖𝑖=1)
𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖(𝑋𝑋𝑖𝑖=2,3)

 = exp (bi2 - θj) = exp (bi – c2 - θj)                                      (32) 

where bi2 is the first category boundary value, c2 is the category threshold for the second category. 

For the second category boundary, the probability of a response in category 1 or 2 over the 

probability of a response in category 3 is  

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖(𝑋𝑋𝐼𝐼=1,2)
𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖(𝑋𝑋𝑖𝑖=3)

 = exp (bi3 - θj) = exp (bi – c3 - θj)                                     (33) 

The constrained Muraki’s Rating scale model can be re-parameteriazed as polytomous 

HGLM. The level 1 model for the probability of a response pij of student j on item i with three 

response categories is  

Logit(p1ij) = β0j + ∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝑊𝑊𝑘𝑘𝑘𝑘𝑘𝑘
𝐼𝐼−1
𝑖𝑖=1                                              (34) 

Logit(p2ij) = β0j + ∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝑊𝑊𝑘𝑘𝑘𝑘𝑘𝑘
𝐼𝐼−1
𝑖𝑖=1  + δj 

where p1ij is the probability of person j responding in category 1; p2ij is the probability of person j 

responding in category 1 or 2; δj is the fixed threshold difference between response categories. The 

level 2 equation at person level with random intercept for β0j is expressed as 

β0j = γ00 + u0j                                                                                            (35) 

βij = γi0  for i= 1, …, I-1 

δj = δ 

Combining the level 1 and level 2 models and the log odds of the probability of a response 

in category 1 over the probability of a response in a category higher than category 1 is  

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖(𝑋𝑋𝑖𝑖=1)
𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖(𝑋𝑋𝑖𝑖=2,3)

 = exp (γ00 – γi0 + u0j)                                             (36) 

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖(𝑋𝑋𝐼𝐼=1,2)
𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖(𝑋𝑋𝑖𝑖=3)

 = exp (γ00 – γi0 + δ + u0j)                                           (37) 

It can be seen that the Equation (35) is equivalent to Equation (31), where the difficulty of 

responding to Category 2 or 3 is (bi – c2) for item i, which corresponds to (γ00 – γi0). Equation (36) 
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is equivalent to Equation (32), where the difficulty of responding to Category 3 is (bi – c3) for item 

i, which corresponds to (γ00 – γi0 + δ). It can also be seen that δ = c2 – c3.  

2.2.2  Model identification 

Scale indeterminacy refers to the estimation of a DIF parameter that is not absolute but 

related to the other DIF parameters in the same test (de Ayala, 2009). To solve scale indeterminacy, 

it is necessary to set constrains in order to identify the model. There are three popular approaches: 

the mean of the person ability parameter or the mean of the item difficulty parameter can be 

constrained to an arbitrary value (e.g., zero), or a set of anchor items can be selected to serve as a 

matching criterion variable (Chen et, al, 2014; Wang, 2004).  

If the mean person ability is fixed to zero, then 𝛾𝛾00 is equal to zero; thus, item difficulty 

parameters can be directly estimated by 𝛾𝛾𝑘𝑘0 without the need to use a reference indicator. 

Equation (26) reduces to  

Logit (pij) = u0j + γ00 + γi0 = u0j - (- γi0)                              (38) 
 

which is an equivalent of the Rasch model where u0j is equal to person ability θj and γi0 is the fixed 

item effect equal to item difficulty bi. This is referred to as the “person centering” approach (de 

Ayala, 2009). Although this method can assess all items for DIF, the assumption of equal ability 

for the reference and focal group is questionable in practice.  

If the mean item difficulty is fixed to zero, referred to as the equal mean difficulty method 

(EMD) by Wang (2004), γ00 can be freely estimated and represents the overall ability level in 

Equation (23). The number of dummy-coded item indicator variables Wkij equals to I – 1 to ensure 

the model is identifiable. In the DIF model Equation (26), γ00 now represents the mean ability level 

for the reference group. γi0 is the fixed item effect, while γi1 represents the difference in item effect 
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between the groups. This is referred to as the “item centering” (de Ayala, 2009) approach. By 

definition, the EMD method requires the presence of DIF in a test to be balanced in size and 

direction. In other words, the sum of all DIF should equal zero; otherwise, the equal mean item 

difficulties for the reference and focal group assumption is violated.  

If an unbiased item or item set is used to anchor the scale, referred to as the constant anchor 

item method by Wang (2004), the magnitude of DIF parameters of the reference items are fixed to 

establish a common metric and all the other items can be assessed for DIF. For example, if the 

difficulty of the reference items is assumed to be zero, then γ00 can be freely estimated and 

represents the overall ability level in Equation (23). In the DIF model Equation (26), γ00 now 

represents the mean ability level for the reference group. γi0 is the item difficulty in Equation (23). 

In the DIF model Equation (26), γi0 now represents the item difficulty for the reference group, 

while γi1 represents the group difference in item difficulty. The constant anchor item method 

assumes that the set of reference items are free of DIF; thereby, the selection of reference items is 

crucial.  

2.2.3  Performance of HGLM in DIF detection  

Dichotomous items Cheong & Kamata (2013) explored the performance of the EMD 

method and the constant anchor item method for DIF detection in the HGLM framework and 

compared the results to the well-researched MH procedure. For the EMD method, the item 

centering approach was used and constraints for the dummy-coded item indicators were designed 

to deviate the indicator from the reciprocal of the total number of items. For the constant anchor 

item method, person centering was used and constrains were 0 and 1. Six dichotomous items with 
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one reference item for 1000 examinees were simulated (R55/F500, where R represented the 

reference group and F the focal group). The ability difference between the reference and focal 

groups (i.e., impact) was set to .2 and indicated small impact. The authors manipulated the DIF 

patterns (constant and balanced), percentage of DIF items (1/3, 5/6, and 1), and whether the 

reference item was DIF-free. If the DIF pattern was constant, meaning DIF items were in favor or 

against one group, the sum of DIF for each item would not equal zero; then the assumption of the 

EMD method was violated. If the reference item exhibited DIF, then the assumption of the constant 

anchor item was violated.  

The results showed that both methods performed well when their respective assumptions 

were met. When the pattern of DIF was asymmetric, especially when most items with DIF are 

biased in favor of or against one group (i.e., constant pattern of DIF), the EMD method showed a 

tendency to overestimate the magnitude of DIF for an item that is DIF-free. The method tended to 

underestimate the magnitude of DIF for an item with DIF. The mean group difference of ability 

estimates was biased as well. In addition, the EMD method produced similar DIF estimates to that 

of the MH procedure. When the reference item was not DIF-free, the constant anchor item method 

falsely identified items that were DIF-free and overestimated the magnitude of some items with 

DIF while underestimating the magnitude of other items with DIF. The constant anchor item 

method also severely overestimated the group mean ability difference parameter. The authors 

concluded that if the sum of DIF is approximately zero, or when there is a small amount of items 

that exhibit DIF so the total DIF magnitude is relatively small, the EMD method is recommended 

since it is more robust and the consequence of violating its assumption is relatively small. For the 

constant anchor item method, it is crucial that the reference items are DIF-free.  
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Chen et al. (2014) explored the performance of HGLM in DIF detection using the equal 

mean ability (EMA) method with rank-based strategy (Woods, 2009) and the constant anchor item 

method with the DIF-free-then-DIF strategy (DFTD; Wang, Shih, & Sun, 2012). For the EMA 

method, the mean ability for both groups was fixed to zero; I item indicators were used. The 

reference items were selected using the rank-based strategy proposed by Woods (2009). For the 

constant anchor item method, the difficulty of the anchor items were fixed to zero; I -1 item 

indicators were used. The reference items were selected by performing the constant anchor item 

method iteratively to choose the items with the smallest mean absolute DIF effect values. The 

authors manipulated the amount of impact (0 and .5), number of reference items (1 and 4), DIF 

patterns (constant and balanced), percentage of DIF items (0%, 20%, and 40%), and sample size 

(R500/F250, R250/250, and R250/F150).  

The authors first compared the accuracy rate in selecting DIF-free items and found that the 

constant anchor item method with DFTD outperformed the EMA method with rank-based strategy 

across various conditions, and thus recommended the former. The EMA method performed poorly 

with the presence of impact when the DIF pattern was balanced; the authors concluded that it was 

because the ability and item parameters for the focal group were shifted under the equal group 

mean ability constraint; thus, the magnitude of DIF for the DIF items that favored the focal group 

were shifted towards the mean ability because of being incorrectly selected as the reference items. 

The authors then compared the Type I error rates and power rates of DIF assessment. For the 

constant anchor item method with DFTD, the presence of impact had little effect. Its power rates 

decreased when the sample size decreased, percentage of DIF increased, or DIF pattern was 

constant instead of balanced. The lowest power rate combination was when the sample size was 

small with high percentage of DIF items and constant DIF pattern, possibly due to the slight 
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inaccuracy in selecting the reference items. Four reference items produced a higher power rate but 

also slightly increased the Type I error rate. The EMA method with rank-based strategy performed 

well under the no-impact condition; however, with the presence of impact, it performed poorly 

with highly inflated Type I error; thereby, the authors recommended against it. 

Polytomous items The performance of HGLM in DIF detection for Polytomous items is 

relatively sparse; thus more research is needed. Willams & Beretvas (2006) extended Kamata’s 

(2011) dichotomous HGLM to polytomous items and compared the results to GMH. The threshold 

difference between response categories is a constant fixed effect across items and persons. The 

item discrimination parameter was not estimated, instead fixed at 1. The authors generated the data 

using the original Muraki’s rating scale model and the constrained version with fixed item 

discrimination parameter a, using item parameters adapted from Koch (1983). Parameter 

recoveries of HGLM were compared with IRT. With the original rating scale model, IRT 

performed better in parameter recoveries; while with the constrained model, which is the correct 

model for HGLM, both HGLM and IRT performed similarly well.  

Ryan (2008) expanded on the work of Williams and Beretvas (2006) by exploring the use 

of continuous grouping variable, and more simulation conditions. Both studies used a person 

centering with equal mean ability method to identify the model; neither simulated group difference 

in ability, i.e. no impact. Both studies found that HGLM performed similarly to GMH, with GMH 

showed higher power in certain small sample size conditions. For sample size larger than 1000, 

the two methods behaved similarly. 
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2.3 DIF Assessment with Rating Scale 

In the field of psychological measurement and health studies, questionnaires are widely 

used. Traditionally, these instruments are developed and validated based on classical testing theory 

(CTT) (Andrich, 2011; Pesudovs, 2010). In recent years, IRT is becoming increasingly popular 

(Massof, 2011). Compared to simple summary of scores over response categories as in the CTT 

framework, a probabilistic model in the IRT framework, such as a rating scale model, has obvious 

advantages in evaluating the psychometric properties of a questionnaire with rating scales, which 

is commonly used in health studies (Andrich, 2011; De Ayala, 2013). 

It has been increasingly common for researchers to use the rating scale model to validate 

the instruments in health studies. Massof (2005) evaluated the measurement properties of 4 visual 

functioning instruments with both Andrich’s and Muraki’s rating scale model. Estimates of model 

parameters, model fits, and measurement precision were compared. The author found that the two 

models produced linearly related parameter estimates, with Muraki’s model produced a better 

overall fit, while Andrich’s model a better average fit for person and item. Gothwal and colleges 

(2012) fitted Andrich’s rating scale model to data of two forms of the visual functioning scales, 

and assessed the instruments’ psychometric properties, such as measurement precision, 

dimensionality, DIF, and so forth. The authors concluded that the rating scale model fitted the data 

well and can be a useful tool in processing such data. Similar studies includes using rating scale 

model to validate visual functioning instruments (Dougherty & Bullimore, 2010; Massof, 2007; 

Stelmack et al., 2004 ;Velozo, Warren, Hicks, & Berger, 2013; ), quality of life instruments 

(Denny, Marshall, Stevenson, Hart, & Chakravarthy, 2007; du Toit, Palagyi, Ramke, Brian, & 

Lamoureux, 2008; Williams, Brian, & Toit, 2012), and other health-related instruments 
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(Dougherty, Nichols, & Nichols, 2011; Eakman, 2012; González, Sierra, Martínez, Martínez-

Molina, & Ponce, 2015; Rovner et al., 2011).  

Although DIF assessment in health studies is becoming increasingly popular, DIF 

assessment under the rating scale model framework is relatively new and studies are lacking. 

Researchers have been using rating scale model to validate instruments and analyze empirical data 

(e.g. Wolle et al., 2011; Massof, Deremeik, Park, & Grover, 2007), but few discussed the 

application to DIF. Ahmadian and Massof (2008) fitted a rating scale model to a visual functioning 

instrument and examined DIF in low vision patients using the implemented procedure in 

RUMM2020 (Andrich, Lyne, Sheridan, & Luo, 2003). Visual measures were binned into arbitrary 

ranges and the observed mean of the bin was compared with the item characteristic curve. The 

authors found a result of 15 flagged items out of 48. Gothwal and colleges (2012) briefly discussed 

DIF in terms of difference in logits without statistical testing. Dye, Eakman, and Bolton (2013) 

fitted a rating scale model to a gait ability instrument to examine the psychometric properties of 

the instrument, while also discussed DIF using the logistic regression t-test implemented in 

WINSTEPS (WINSTEPS, 2009). These studies were conducted using empirical data, so it was 

difficulty to discuss type I error rate and power. It is necessary to have more studies to explore the 

behavior of DIF in rating scale model.  
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3.0 Method 

The purpose of this study is to evaluate the performance of HGLM and its comparison to 

the GMH procedure and logistic regression when used to evaluate DIF for polytomous items. Two 

simulation studies were used for this purpose. For study 1, HGLM with DFTD strategies were 

evaluated for its accuracy in selecting anchor items. For study 2, HGLM with constant anchor item 

method was used for DIF detection, and the results were compared to GMH and polytomous 

logistic regression. Three research questions were addressed: 

1. How accurately can HGLM select DIF-free items as anchor items for DIF analysis?  

2. What is the Type I error rate for DIF detection using HGLM and how does it compare to 

using GMH and logistic regression?  

3. What is the statistical power for DIF detection using HGLM and how does it compare to 

using GMH logistic regression?  

In this chapter, the fixed factors and manipulated factors of the simulation study are 

discussed first, followed by evaluation criteria, an introduction of data generation and validation, 

and finally, a description of data analysis.  
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3.1 Fixed Factors 

3.1.1  Scale length 

Studies have shown that for a long test (> 20 items), scale length has little effect on DIF 

detection. A scale with less than 10 items is likely to be too short to produce sufficient power since 

observed score based on a short scale is less reliable and more likely not a sufficient proxy for the 

latent ability; and this mismatch is more serious when large trait differences between groups are 

present. However, Scott et. al (2009) found that a scale as short as 5 items could produce similar 

results as 20 items using polytomous logistic regression (PLR) on simulated health-related data. 

For a scale with more than 20 items, scale length has an insignificant impact on the performance 

of DIF assessment. For this reason, in this study the number of items was fixed at 20. 

3.1.2  Item discrimination parameter α 

Item discrimination parameter pertains to what has been referred to as the uniform and 

nonuniform DIF. For dichotomous items, a varying a parameter means a nonuniform DIF pattern; 

however, for polytmous items, nonuniform DIF is not necessarily only a function of a, but can 

occur without the inferencing of a as shown by Su and Wang (2005).  

Although the item discrimination parameter a could vary for each score category, 

polytomous DIF studies commonly define the model or simulate data with a common item 

discrimination parameter. In the two studies which explored polytomous HGLM compared to 

GMH (Ryan, 2008; Williams & Beretvas. 2006), item discrimination parameter was held constant 

across all items. 
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Since complicated patterns of DIF can occur without involving item discrimination 

parameter a, in this study, the item discrimination parameter was held constant in data generation 

when manipulating DIF for reference group. Instead, the constant and unbalanced patterns of DIF 

were manipulated. 

3.1.3  Model identification method 

In HGLM, in order to identify the model, it is necessary to set constraints. There are three 

popular approaches for this purpose: equal mean ability method, equal mean item difficulty 

method, and constant anchor item method. Equal mean ability method assumes the mean ability 

for focal and reference groups is equal, which is an unlikely scenario in practice. In addition, 

numerous studies have shown that when there is impact, most DIF estimation methods perform 

poorly. Equal mean item difficulty method assumes the presence of DIF in a test to be balanced in 

size and direction. When this assumption is met, it performs well; however, when the pattern of 

DIF becomes complicated, equal mean item difficulty method can show an inflated Type I error, 

and in the meantime, underestimate the true size of DIF (Cheong & Kamata, 2013). Thus, constant 

anchor item method is recommended. However, the constant anchor item method requires the 

anchor items to be free of DIF and when this assumption is violated, performs very poorly. Based 

on these studies, the constant anchor item method was chosen for this study. 
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3.2 Manipulated Simulation Conditions 

In this study, 6 independent variables were manipulated for study 1(Table 2): 1. number of 

anchor items (1, 4); 2. impact size (0, 1); 3. sample size (R400/F100, R250/F250. R800/F200, and 

R500/F500); 4. percentage of DIF (0%, 20%, and 40%); 5. magnitude of DIF (.2, .6); 6. DIF 

patterns (constant, balanced, and unbalanced). In total there are 208 conditions. For study 2, the 

same 6 independent variables were manipulated, with 2 extra levels of sample size (R4000/F1000, 

R2500/F2500) added to the original sample size of 4 levels. For study 2, in total there are 312 

conditions.   

3.2.1  Anchor items 

As Cheong and Kamata (2013) demonstrated, the consequence of using a contaminated 

anchor item is serious; thereby the anchor items must be carefully selected. Two approaches have 

been proposed in literature for selecting anchor items. Woods (2009) proposed a rank-based 

method based on the all-other-items method, in which all the other items except the studied item 

are used as reference. This method was originally proposed for IRT with the likelihood ratio test, 

but can be generalized to HGLM as well. The other approach is to use an iterative method (Shin 

& Wang, 2009), which involves the following steps:  

1. Use Item 1 as anchor and test all the other items for DIF using HGLM, and estimate 

DIF index for each studied item.  

2. Use the next item as anchor and test all the other items for DIF using HGLM, and 

estimate DIF index for each studied item.  

3. Repeat Step 2. 
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4. Compute an absolute value of DIF index for each item over all iterations, and then 

choose the item(s) with the smallest index as the anchor item(s). 

Chen et al. (2014) compared the accuracy of these two methods and found that iterative 

constant anchor item method with DFTD outperformed the equal mean ability method with rank-

based strategy across various conditions. The equal mean ability method performed poorly with 

the presence of impact when the DIF pattern was balanced. The authors concluded that it was 

because the ability and item parameters for the focal group were shifted under the equal group 

mean ability constraint. Thus, the magnitude of DIF for the DIF items that favored the focal group 

were shifted towards the mean ability as a result of being incorrectly selected as the reference 

items. The authors thus recommended constant anchor item method with DFTD method; as a result 

this is the anchor selecting method for this study.  

The appropriate number of anchor items was investigated in many studies; generally 

speaking, a larger number of anchor items is associated with higher power of DIF detection. This 

effect is more prominent when the number increases from 1 to 4, but less so when the number 

increases to 50 (Thissen et al., 1988). Wang and Yeh (2003) explored 1-, 4-, and 10- items as 

anchor for IRT likelihood ratio test and found that 1 anchor item could give satisfying results, 

although 4- and 10- anchor items can produce even higher power. Shih and Wang (2009) found 

similar results using the MIMIC method, and concluded that 4 anchor items were enough to 

produce sufficient power. Woods (2009) discussed that using a 1- item anchor can minimize DIF 

contamination, which is crucial considering the consequences of contaminated anchor items are 

serious. However, for a small sample, 1-item anchor may not produce enough power; in addition, 

1-item anchor may not be a sufficient estimation of the matching variable. Given these results, in 

this study, 1 and 4 anchor items were compared.  
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3.2.2  Latent trait parameter difference between groups and impact (0, 1) 

The mean latent trait difference between the focal and reference groups, or “impact”, has 

significant influence on the performance of DIF detection. When impact is present, the matching 

variable may not be a sufficient index of the latent proficiency; thereby may cause inflated Type I 

error. Many studies have found that with large impact (mean difference ≥ 1 on standard normal 

distribution), many parametric and nonparametric methods show a tendency to have inflated Type 

I error rates, particularly when in combination with a high percentage of DIF items, a shorter scale, 

and smaller magnitude of DIF. However, some studies found that when the size of impact is 

moderate (mean difference = .5 on standard normal distribution), group mean trait difference 

shows little effect (Kristjansson et. al., 2005).  

In the few studies that examined the effect of nonnormality of ability distribution on 

polytomous DIF detection, some found that nonnormality in ability distribution causes more 

difficulty in estimation (Moyer, 2013). Some found it has little effect on the performance of DIF 

detection when impact size is moderate (Kristjansson et. al., 2005). 

Given these results, the latent trait parameter θ for the reference group were simulated from 

a standard normal distribution N (0, 1), while for the focal group θ were simulated from either a 

standard normal distribution N (0, 1) or N (-1, 1). This represents a medium-large impact between 

groups, which is also reportedly a common value of impact between focal and reference groups 

(Donoghue, Holland & Thayer, 1993).  
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3.2.3  Sample size and sample size ratio 

Various studies have shown that a larger sample size is usually related to higher power; 

however, in some conditions it may inflate Type I error. The parametric methods tend to have 

larger sample size requirements than the nonparametric methods; to acquire a decent power rate, 

some studies suggest a total sample size of 2000 is necessary, while a sample size smaller than 

1000 typically does not produce sufficient power (Elosua & Wells, 2013; French & Miller, 1996; 

Hildago & Gómez, 2006). In education setting, most sample size for DIF detection studies with 

polytomous responses is between 300-1000, with the smallest total sample size considered is 250 

(Ryan, 2008). For health studies, the guidelines are lacking; Scott and colleges (2009) 

recommended a sample size of at least 200 participants per group for ordinal logistic regression to 

achieve satisfying power.   

The effect of unequal number of participants for the focal and reference groups is not well 

understood. Some studies found unbalanced sample size ratio causes a decrease of power 

(Kristjansson et. al, 2005; Ryan, 2008). This result is not surprising; an unequal sample size means 

smaller subjects in the focal group, and consequentially fewer data at each level of the matching 

variable, resulting in less reliable matching. Researchers have considered sample size ratio as 

extreme as R20:F1 (Woods & Grimms, 2011). Typically, the sample size ratio is between R1:F1 

and R4:F1. 

Given these previous findings, in this study 4 combinations of sample size were considered 

in study 1: R400/F100, R250/F250, R800/F200, and R500/F500. R400/F100 represents a 

relatively small and unbalanced reference to focal group ratio, which will provide meaningful 

guidelines for practitioners to use regarding minimum sample size requirement; while R500/F500 

is a more ideal condition. In order to make the findings more comparable to previous studies such 
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as Williams and Beretevas (2006), and to see how the methods would perform under large sample 

size, 2 extra large sample size combinations were included for study 2: R4000/F1000 and 

R2500/R2500.   

3.2.4  Percentage of DIF items (0%, 20%, and 40%) 

A higher percentage of DIF can cause difficulty in selecting anchor items, and affect the 

accuracy of the matching variable, thus result in inflated Type I error and reduced power. Some 

researchers argue that it is not the percentage of DIF items but the magnitude of overall DIF for 

the test, which is a function of the percentage of DIF items and the DIF patterns, that is causing 

the inflation (Su & Wang, 2005; Wang & Su, 2004; Wang & Yeh, 2003). Most studies on 

polytomous responses explored DIF contamination at 5% to 30% (e.g. Fidalgo & Bartram, 2010; 

Flowers, Oshima, & Nambury, 1999; Gomez-Benito et. al., 2013; Hidalgo & Gomez, 2006; 

Meade, Lautenschlager, & Johnson, 2007; Penfield, 2007; Penfield & Algina, 2003; Wang & Su, 

2004), while some studies explored contamination as high as 66% (Woods & Grimm, 2011). In 

this study, 3 conditions were manipulated: 0%, 20%, and 40%.  

3.2.5  Magnitude of DIF (.2, .6) 

Studies have shown that DIF of a small size can be hard to detect, while increasing the 

magnitude of DIF is typically related to the increase of power. This effect is more prominent when 

combined with a large sample size. When the magnitude of DIF is small (.1 or .2), power is very 

poor; for constant DIF, increase the magnitude of DIF (> .4) can increase the power rate. However, 

there is also a slight increase of Type I error rate (Elosua & Wells, 2013; Hildago & Gómez, 2006; 
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Scott, 2009). Typically, the magnitude of DIF is between (.2, .8) for simulated DIF studies. In 

health studies, it is common to use guidelines from education settings (for example, the simulation 

study conducted by Scott et. al, 2009). Magnitude of DIF smaller than .2 is common in empirical 

health studies (for example, Dorans& Kulick, 2006; Terluin, Smits, Brouwers, & de Vet, 2016).  

In this study, 2 levels of magnitude were studied. A magnitude of .2 represents a relatively 

small DIF effect, while .6 represents a medium-large DIF effect.   

3.2.6  DIF patterns (constant, balanced, unbalanced) 

For dichotomous items, a constant pattern refers to when DIF items are in favor or against 

one group constantly across items; while balanced DIF refers to when some DIF favor the focal 

group and others favor the reference group, resulting the magnitude of DIF to be balanced across 

item categories. In polytomous items, DIF can take on more complex patterns since the patterns 

can also be exhibited in response categories. For an item with unbalanced DIF within categories, 

it is possible for DIF to only exist in the lower categories or only in the higher categories. Studies 

have shown that balanced DIF is harder to detect and can decrease power rate. When DIF is only 

present in the highest or lowest response category, power can be as poor as below 50% (Fidalgo 

& Bartram, 2010; Su & Wang, 2005). Although the effect size of DIF remained the same 

(measured by the unsigned area measure), Fidalgo and Bartram (2010) found that the high-

unbalanced pattern seemed to produce worse results than low-unbalanced pattern in terms of Type 

I error and power rate.  

Typically, DIF studies manipulate DIF patterns by manipulating category boundary 

parameter. As previously demonstrated, for an item i with t score categories, the category boundary 
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parameter in graded response model is partitioned into two parameters in Muraki’s rating scale 

model: the location parameter bi and the category threshold ct.  

This study manipulated 3 DIF patterns: constant, balanced, and high-unbalanced similar to 

Fidalgo and Bartram (2010). For an item that exhibits DIF, the item difficulty parameter bit for the 

focal group were changed accordingly. 

Constant DIF: bitF = bitR + s, t = 1, 2                                   (39) 

Balanced DIF: bi1F = bi1R + s;  bi2F = bi2R - s 

High-unbalanced DIF: bi2F = bi2R + s 

where s represents the magnitudes of DIF, t represents the tth response category. These DIF 

patterns are common in the literature (e.g. Chen et al., 2014; Su & Wang, 2005). 

Note that since bit = bi – ct, DIF can exhibit at bi or ct. When DIF is exhibited at bi, since bi 

is constant across response categories within an item, the only DIF pattern possible is the constant 

pattern.  

bi1F = biF - c2 = (biR + s) – c2 = bi1R + s                                        (40) 

bi2F = biF – c3 = (biR + s) – c3 = bi2R + s 

When DIF is exhibited at ct rather than bi, DIF can exhibit more complicated patterns.  

Constant DIF: bi1F = biF - c2 = biR – (c2 + s) = bi1R – s                            (41) 

                         bi2F = biF – c3 = biR – (c3 + s) = bi2R - s 

Balanced DIF: bi1F = biF - c2 = biR – (c2 + s) = bi1R – s                           (42) 

                          bi2F = biF – c3 = biR – (c3 - s) = bi2R + s 

High-unbalanced DIF: bi1F = biF - c2 = biR – c2 = bi1R                           (43) 

                          bi2F = biF – c3 = biR – (c3 +s) = bi2R - s 
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Since Equation (40) and Equation (41) showed the same constant pattern except on 

different direction, these two patterns are combined into one condition. This simulation study 

manipulated 3 DIF patterns as defined in Equation (39). 

Table 2 Specifications of Simulation Conditions 

1. Number of anchor items 

1.1. 1 

1.2. 4 

2. Impact  

2.1. 0 

2.2. 1 

3. Sample size  

3.1. R400/F100  

3.2. R250/F250 

3.3. R800/F200 

3.4. R500/F500 

3.5. R4000/F1000 

3.6. R2500/F2500 

4. Percentage of DIF 

4.1. 0% 

4.2. 20% 

4.3. 40% 

5. Magnitude of DIF 

5.1. .2 
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5.2. .6 

6. DIF pattern 

6.1. Constant  

6.2. Balanced 

6.3. Unbalanced 

 

3.3 Evaluation Criteria 

3.3.1  Accuracy of selecting DIF-free items  

After fitting HLGM on the data, iterative constant anchor item method was applied in order 

to select DIF-free items as anchor to identify the model and connect the metric scales between 

groups. The accuracy rate in selecting such DIF-free items were evaluated; for example, for the 4-

anchor condition, the accuracy rate were .25, 50, .75, and 1, respectively, if 1, 2, 3, or 4 selected 

items are indeed DIF-free.  

3.3.2  Type I error rate 

Type I error rate is defined as the percentage of the mis-identification of a DIF-free item 

as a DIF item over the number of replications. When using a level of α=.05, type I error rate should 

be around .05.   
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3.3.3  Statistical power 

Statistical power is calculated by the proportion of the times a DIF item is correctly 

identified over the number of replications. Statistical power, as well as type I error rate, are 

meaningful tools for practitioners.  

3.4 Data Generation and Validation 

3.4.1  Data generation 

Trait parameter θ for the focal and reference group examinees were simulated from a 

standard normal distribution. For the reference group θ were simulated from a standard normal 

distribution N (0, 1); while for the focal group θ were simulated from either a standard normal 

distribution N (0, 1) (no impact) or a normal distribution N (-1, 1) (impact present). 

Item responses were generated using a constrained form of Muraki’s rating scale model 

(Muraki, 1990; Williams & Beretvas, 2006), as showed in Equations (31)-(33). Since there was no 

simulation study conducted in the health research area using HGLM, item parameters used in this 

study were modified from Willams and Beretvas (2006). The a parameter was constrained to 1 in 

order to obtain a constant threshold difference adopted by the HGLM. The location parameter bi 

was generated from a uniform distribution [-1, 1] while the two threshold parameters c1 and c2 

were fixed to .5 and -.5, respectively. The two category difficulty parameters bi1 and bi2 were 

generated as bi1 = bi – c1 and bi2 = bi – c2. The location parameter bi for the first item is set to zero 

in order to identify the HGLM. For the condition of 20% items with DIF, the last 4 items were 
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manipulated to exhibit DIF by applying Equations (39). For the condition of 40% items with DIF, 

the last 8 items were manipulated to exhibit DIF.  

Item responses were generated using the IRTGEN program (Whittaker, Fitzpatrick, 

Williams, & Dodd, 2003) for SAS, a collection of SAS macros for generating dichotomous and 

polytomous IRT data. Data generation was performed using SAS 9.4. 

Table 3 Item Parameters for Data Generation for the Reference Group 

Item  ai bi1 bi2 

1 1 -0.50 0.50 

2             1 0.01 1.01 

3 1 -0.02 0.98 

4 1 -0.90 0.10 

5 1 -0.91 0.09 

6 1 0.49 1.49 

7 1 -1.08 -0.08 

8 1 -0.91 0.09 

9 1 -0.37 0.63 

10 1 -1.07 -0.07 

11 1 -0.40 0.60 

12 1 -1.23 -0.23 

13 1 -0.04 0.96 

14 1 -0.51 0.49 

15 1 -0.93 0.07 

16 1 0.38 1.38 

17 1 0.09 1.09 

18 1 -0.65 0.35 

19 1 0.44 1.44 

20 1 -1.30 -0.30 
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3.4.2  Data validation 

To examine the adequacy of generated data, data validation was performed on a few 

randomly selected datasets with 100 replications. First, generated trait parameter θ were checked 

by examining the descriptive statistics such as means and variances (Table 4). The simulated 

participants’ responses were fitted to a graded response model with fixed a parameter equaled to1 

to check for discrepancies between the estimated parameters for focal and reference group using 

MULTILOG. Table 5 presents an example of estimated parameters for focal and reference groups 

with 4 items exhibiting constant DIF with a magnitude of .6. 

 

Table 4 Estimated θ for the no impact and impact groups 

θ mean sd skewness 

No impact  .006 .1.002 .00 

Impact -1.004 1.003 -.002 

 

  



 54 

Table 5 Generated item parameters for the focal and reference groups when impact = 0 

   Estimated 
parameters 

for the 
reference 

group 

Estimated 
parameters 
for the focal 

group 

Discrepancies of 
parameter 
estimates 

between focal 
and reference 

groups 

Discrepancies 
between 

generating and 
estimated 

reference group 
parameters 

Discrepancies 
between 

generating and 
estimated focal 

group parameters 

item bi1 bi2 bi1 bi2 dbi1 dbi2 dbi1 dbi2 dbi1 dbi2 

1 -0.48 0.62 -0.55 0.42 0.07 0.20 -0.02 -0.12 0.05 0.08 

2 -0.68 0.38 -0.36 0.54 -0.32 -0.16 0.15 0.09 -0.17 -0.07 

3 0.55 1.57 0.47 1.50 0.08 0.06 -0.13 -0.15 -0.05 -0.08 

4 -0.69 0.25 -0.76 0.10 0.07 0.16 0.00 0.06 0.07 0.21 

5 0.10 1.19 0.21 1.31 -0.11 -0.12 0.21 0.12 0.10 0.00 

6 0.41 1.30 0.29 1.26 0.11 0.04 -0.02 0.09 0.10 0.13 

7 -1.52 -0.42 -1.46 -0.43 -0.06 0.01 0.09 0.00 0.03 0.01 

8 0.19 1.36 0.18 1.04 0.02 0.32 0.05 -0.12 0.06 0.20 

9 -1.45 -0.41 -1.20 -0.27 -0.25 -0.13 0.18 0.15 -0.06 0.01 

10 0.30 1.45 0.19 1.18 0.11 0.27 0.02 -0.12 0.13 0.15 

11 -0.03 1.03 0.01 1.07 -0.03 -0.05 0.12 0.07 0.08 0.02 

12 -0.67 0.29 -0.81 0.14 0.14 0.15 -0.11 -0.07 0.03 0.08 

13 -0.94 0.05 -1.09 -0.22 0.15 0.26 -0.11 -0.10 0.03 0.16 

14 0.49 1.40 0.42 1.65 0.07 -0.25 -0.03 0.06 0.03 -0.19 

15 -1.26 -0.26 -1.24 -0.21 -0.02 -0.05 -0.06 -0.07 -0.09 -0.12 

16 -1.09 -0.13 -1.16 -0.15 0.07 0.01 0.04 0.08 0.11 0.09 

17* 0.06 1.01 0.68 1.63 -0.62 -0.62 0.07 0.11 -0.55 -0.50 

18* -1.47 -0.62 -0.98 0.11 -0.49 -0.73 0.01 0.16 -0.48 -0.58 

19* -1.41 -0.40 -0.81 0.30 -0.60 -0.71 0.12 0.10 -0.48 -0.60 

20* -1.45 -0.32 -0.94 0.01 -0.51 -0.33 -0.02 -0.15 -0.52 -0.47 

 
Note: * indicates items with DIF for the focal group. The pattern of DIF is constant with s=.6. 
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3.5 Data Analysis 

3.5.1  Estimation methods 

Simulated examinee responses were analyzed by fitting a HLGM model using PROC 

GLIMMIX in SAS 9.4.  

There are various methods for estimating high dimension HGLM likelihood functions. 

Quasi-likelihood methods, such as MQL and PQL, linearize the estimation function for 

approximation, while integral approximation methods, such as GHQ, AGQ, and Laplace, 

approximate the true likelihood function using numeric integration. Bayesian methods, such as 

MCMC and MCEM, can also be used. Each of these methods presents its advantages and 

shortcomings. Laplace approximation performs well in general, balancing both computational 

intensity and estimation precision, thus recommended by many researchers (Capanu, et al., 2013; 

Kim et al., 2013). However, Laplace has a tendency to produce larger standard errors (Diaz, 2007; 

Joe, 2008; Schoeneberger, 2016); thereby, researchers suggest practitioners to use with caution 

when the estimation of standard errors is important to the study, such as for a Wald test. In addition, 

Laplace has also been observed to show inaccuracies in estimation of random effect variance 

(Browne & Draper, 2006; Goldstein & Rasbash, 1996; Cho, Rabe-Hesketh, 2011; Cho et al., 2012; 

Schoeneberger, 2016). If the size of random effect variance is small, PQL is recommended since 

it produces more accurate estimation with decent sample size; moreover, as a linearization method, 

it is easy to compute and implement (Schoeneberger, 2016). If the size of random effect variance 

is large, PQL should be avoided as it produces large downward bias, while Laplace is 

recommended (Capanu et al., 2013; Diaz, 2007; Kim et al., 2013; Pinheiro & Chao, 2006). If 

computational burden and implementation difficulty can be managed, AGQ is an accurate 
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approximation method, provided given a decent number of quadrature points, usually larger than 

5 is sufficient (Capanu, et al., 2013; Joe, 2008). However, for a complex model, the computation 

is likely to be intense. Bayesian methods, such as MCMC and AIP with adaptive quadrature, are 

also viable options (Cho et al., 2012; Jiao et al., 2013); however, computational intensity is a 

serious concern for this type of method; in addition, they are not as easy to implement.       

Given the complexity of the model, computational intensity is likely to be of concern for 

this study, thereby supporting the use of PQL or Laplace. Considering PQL’s many disadvantages, 

such as a tendency of producing downward bias toward zero and inconsistent estimates and a lack 

of proper model fit statistics, Laplace method was used in this study. 

3.5.2  Generalized Mantel-Haenszel and polytomous logistic regression 

As comparisons to HGLM, GMH and logistic regression were also be calculated for this 

study. GMH is not commonly used in health studies, but is one of the most popular methods used 

in education testing. Dorans and Kulick (2006) have applied the Mantel-Haenszel and standardized 

procedures to the Mini-Mental State Examination and demonstrated the potential of these types of 

DIF detection methods on health-related data. These types of methods are well-studied in 

education testing and have established guidelines for practitioners to use.  Therefore, it is useful to 

compare the performance of HGLM to GMH, which is particularly popular in education testing. 

Unlike GMH, logistic regression is very commonly used in health studies to evaluate DIF; thus, it 

is necessary to compare the results of HGLM to logistic regression as well. SAS 9.4 was used for 

the analysis.  
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4.0 Results 

This section presents the results for simulation study 1 and 2. The section is organized in 4 

sections. The first 3 sections correspond to each of the 3 research questions. Section 1 presents 

findings from study 1, answering the first research question: how accurately can HGLM select 

DIF-free items as anchor items for DIF analysis? Section 2 presents findings from on the Type I 

error rates from study 2, answering the second research question: what is the Type I error rate for 

DIF detection using HGLM, and how does it compare to using GMH and logistic regression? 

Section 3 presents findings on power from study 2, answering the third research question: what is 

the power rate for DIF detection using HGLM, and how does it compare to using GMH and logistic 

regression? Section 4 presents a summary of the results for study 2.  

4.1 Results of Study 1 

For study 1, datasets were generated for each of the 208 simulation conditions. Each item 

from each dataset was then fitted with a HGLM model with pseudo-likelihood with residual 

method. The convergence criterion for PROC GLIMMIX in SAS 9.4 was set to .001. One hundred 

replications were performed considering the long estimation time. Estimation of all replications 

converged. 

Once the model converged, accuracy of selecting DIF-free items was calculated. In the 

HGLM model, DIF was identified as the interaction terms between item and groups.  Interaction 

parameter estimations of all 20 items were ranked, and items with the smallest parameter 



 58 

estimations were selected as anchor items.  The selection was considered successful if the selected 

anchor item avoided any items with DIF. The percentage of accurate selection were computed over 

100 replications for each condition.  

4.1.1  Accuracy rates of using HGLM to select DIF free items 

For conditions with 20% DIF items, the results were presented in Table 6. For conditions 

with 40% DIF items, the results were presented in Table 7. 

 

Table 6 Accuracy (%) of Selecting DIF-Free Items as Anchor with 20% DIF Items 

   Impact = 0 Impact = 1 

Sample 

size 

Magnitude DIF 

patterns 

1-item 

anchor 

4-item 

anchor 

1-item 

anchor 

4-item 

anchor 

R400/F100 .2 Constant 81 85 82 84.25 

  Balanced 82 82 81 83.75 

  Unbalanced 80 81.5 82 77.75 

 .6 Constant 95 96.5 96 97 

  Balanced 88 86.25 85 83.25 

  Unbalanced 84 82.75 85 77.75 

R250/F250 .2 Constant 89 80.75 88 85.25 

  Balanced 82.5 83 79 81 

  Unbalanced 80 80.75 73 77 

 .6 Constant 99 99.25 98 98.5 
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  Balanced 86 86.5 86 84.25 

  Unbalanced 86 85.75 82 84 

R800/F200 .2 Constant 90 87 88 88 

  Balanced 84 84.75 80 82.25 

  Unbalanced 84 81.5 84 81 

 .6 Constant 100 99.5 100 99.75 

  Balanced 91 87 86 84.25 

  Unbalanced 87 87 86 84 

R500/F200 .2 Constant 93 88 93 88.5 

  Balanced 85 83.25 85 82.75 

  Unbalanced 86 81.75 83 81.75 

 .6 Constant 100 100 99 99.75 

  Balanced 86 86 85 84 

  Unbalanced 98 95.75 89 89.5 
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Table 7 Accuracy (%) of Selecting DIF-Free Items as Anchor with 40% DIF Items 

   Impact = 0 Impact = 1 

Sample 

size 

Magnitude DIF 

patterns 

1-item 

anchor 

4-item 

anchor 

1-item 

anchor 

4-item 

anchor 

R400/F100 .2 Constant 55 60.25 57 61.25 

  Balanced 55 59.5 62 57.25 

  Unbalanced 53 56.5 52 57 

 .6 Constant 83 78.25 78 75 

  Balanced 68 66.75 64 58.5 

  Unbalanced 56 62.25 53 58.25 

R250/F250 .2 Constant 54 58.25 67 62 

  Balanced 53 54.5 56 59.5 

  Unbalanced 53 60.25 59 58.5 

 .6 Constant 84 83.25 83 77.25 

  Balanced 63.5 61.25 56 57.5 

  Unbalanced 57.5 57.75 54 58.75 

R800/F200 .2 Constant 60 62.5 60 55.5 

  Balanced 62 60.75 51 58.75 

  Unbalanced 64.5 59.5 56 61 

 .6 Constant 90 85.25 84 84.75 

  Balanced 69 62.25 67 61.25 

  Unbalanced 61 61 57 57 

R500/F200 .2 Constant 64.5 62.75 65 63 
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  Balanced 49 60.25 58 60.5 

  Unbalanced 70 58.5 55 59 

 .6 Constant 89 89.75 90 91.5 

  Balanced 60 64.75 61 57.75 

  Unbalanced 65 68.25 62 60.5 

 

4.1.2  ANOVA results of study 1 

There were in total 6 conditions manipulated in Study 1, the number of anchor items (1, 4), 

the presence of impact (0, 1), the sample size and ratio (R400/F100, R250/F250, R800/F200, 

R500/F500), the percentage of DIF items (20%, 40%), the magnitude of DIF (.2, .6), and the 

pattern of DIF (constant, balanced, high unbalanced).  Mean and standard deviation for each of the 

condition were presented at Appendix A (Table A1). 

The results of a mixed Analysis of Variance (ANOVA) with 1 within-subject factor and 5 

between-subject factors were presented in Appendix A (Table A2). The number of anchor items 

was considered as a repeated measure and thus treated as a within-subject factor. There was only 

1 significant 3-way interaction with ρ < 0.5 and partial eta squared (η2) > .01 (Figure 1). Means 

and standard deviations were reported in Table 8. All factors considered in this study appeared to 

have significant influence on the accuracy rate in selecting anchor items except the number of 

anchor items (1-item anchor vs. 4-item anchor). The percentage of DIF items, sample size and 

sample size ratio, magnitude of DIF, DIF patterns and the presence of impact all had significant 

effect on the accuracy rate.  
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Figure 1 Three-way Interaction of Accracy among Pattern, Percentage, and Magnitude of DIF 

 

Table 8 Mean and Standard Deviation of  Accuracy for Pattern, Percentage and Magnitude of DIF 

% of DIF Magnitude Constant Pattern Balanced Pattern Unbalanced Pattern 

  Mean SD Mean SD Mean SD 

20%  0.2 86.92 3.70 82.58 1.75 80.94 3.08 

 0.6 98.58 1.61 85.91 1.82 86.47 4.94 

        

  Mean SD Mean SD Mean SD 

40% 500 60.50 3.76 57.31 3.91 58.30 4.52 

 1000 84.13 5.08 62.41 3.97 59.33 3.93 
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Figure 1 showed 3-way interaction among pattern, percentage, and magnitude of DIF. The 

left panel represented the mean accuracy rates of 3 DIF patterns for a magnitude size of 0.2 and 

0.6 for the 20% DIF condition, while the right panel represented the mean accuracy rates of 3 DIF 

patterns for the magnitude size of 0.2 and 0.6 for the 40% DIF condition.  The percentage of DIF 

significantly lowered the accuracy rates of selecting DIF-free items, this effect was more 

prominent when the magnitude of DIF was small. The combination of constant pattern and a large 

magnitude of DIF seemed to be more robust against the increasing of DIF-items.  

Four 2-way interactions were significant in predicting the accuracy rates: DIF pattern by 

sample size and ratio, DIF pattern by percentage of DIF, DIF pattern by magnitude of DIF, and 

percentage of DIF by magnitude of DIF. Simple main effects were analyzed for these factors, 

results presented in Appendix Table A3-A6. Plots of interactions effects were presented in 

Appendix Figure A1-A4. For each DIF pattern, there were significant differences on the accuracy 

rates among sample size and ratio, percentage of DIF items, and magnitude of DIF, with only 

exception: for balanced DIF there was no significant differences found among different sample 

sizes. Different levels of percentage of DIF items had significant effect on the accuracy rates 

between 2 levels of magnitude of DIF. The means and standard deviations for the interactions were 

presented in Appendix Table A7-A10.  

Percentage of DIF items (0%, 20%, and 40%) The percentage of DIF items appeared to be the 

most significant factor affecting the accuracy of selecting DIF-free items. With 20% DIF items, 

the mean accuracy rate is 86.90%, while with 40% of items exhibit DIF, the accuracy rate dropped 

down to range of 50% to 60%, with the mean accuracy rate dropped to 63.66% (Appendix Table 

A1). These results suggested that the HGLM method was having difficulties in selecting DIF-free 

items when many items were exhibiting DIF.  
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The percentage of DIF had significant interaction effects with the pattern of DIF and the 

magnitude of DIF. When the DIF pattern was constant, HGLM picked out DIF-free items about 

93% of the time when there were 20% items with DIF. But the successful rate dropped to 72% 

when there were 40% items with DIF. When the pattern of DIF was not constant, the accuracy 

rates were about 84% and 59% (Appendix Table A8). When the magnitude of DIF was small, 

HGLM picked out DIF-free items about 83% of the time with 20% items exhibiting DIF, and 58% 

when there were 40% items with DIF (Appendix Table A9). These results suggested that even 

with conditions less favorable, the percentage of DIF items in a scale was crucial; if most of the 

items were DIF-free, HGLM method could succeed in selecting DIF-free items as anchors more 

than 80% of the time.  

Magnitude of DIF The magnitude of DIF was also a very influential factor in the accuracy rate 

of selecting DIF-free items as anchors. When the magnitude of DIF equaled to .2, the mean 

accuracy rate was 71%, while with the magnitude of DIF equaled to .6, the mean accuracy rate 

was 79%. These results suggested that a smaller size of DIF would make detection of items with 

DIF more difficult.  

The magnitude of DIF had significant interaction effects with the pattern of DIF and the 

percentage of DIF items. When the pattern was constant, a smaller magnitude of DIF of .2 would 

result in a 74% accuracy rate; under the condition of 40% DIF, the accuracy rate would future drop 

down to only about 60% (Appendix Table A3). But a larger magnitude of DIF of .6 would result 

in an accuracy rate over 90%. When the pattern of DIF was not constant, the effect of DIF 

magnitude was smaller, but larger DIF still produced higher accuracy rates (Appendix Table A10).  

DIF patterns The pattern of DIF also had significant influence on the accuracy of selecting DIF-

free items. When the pattern of DIF was constant, the mean accuracy rate was the highest at 
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82.53%, while the mean accuracy rate was lower for balanced pattern at 72.05% and high-

unbalanced pattern at 71.26%. The constant pattern consistently out preformed the non-constant 

pattern, i.e. the balanced and un-balanced patterns, indicated that HGLM was sensitive to the 

pattern of DIF, and a non-constant pattern would reduce its performance in selecting DIF-free 

items as anchor. In addition, the constant DIF pattern seemed especially sensitive to the magnitude 

of DIF, as it showed a considerable drop of accuracy when the magnitude of DIF was small, from 

91% to 74% (Appendix Table A9). 

Sample size and sample size ratio The 4-level of sample size and sample size ratio also 

significantly affected the accuracy of selecting DIF-free items. With the least favorable condition 

a Rt400/F100, the accuracy rate was 73.45%, while with the most favorable condition at 

R500/F500, the accuracy rate was raised to 77.67%. These results were consistent with numerous 

literatures that suggested a larger sample size would produce more ideal analysis results. However, 

in this study, although the effect of sample size and sample size ratio was still statistically 

significant, the differences were less dramatic than some of the factors discussed.  

A future analysis of contrast decomposed the sample size and ratio factor into sample size 

and sample size ratio. The results showed that although sample size had a significant influence on 

HGLM’s accuracy rates, sample size ratio did not. These results indicated that unequal sample size 

ratio was less of a concern in using HGLM to select DIF-free items. However, even with a sample 

size of 1000, the accuracy rate was still less than 80%, suggested that even a sample size of 1000 

might still not be sufficient in producing ideal accuracy rates.  

Impact The presence of impact also had significant influence on accuracy. When there was no 

impact among the groups, the mean accuracy rate was 76.05% while with the presence of impact 

the mean accuracy rate was 74.51%. Chen et.al (2014) found that with dichotomous responses 
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impact did not make a significant difference, whereas, this study found that with polytomous data, 

impact did have some influence on the accuracy of selecting the DIF-free items, although not as 

influential as some other factors in the study.  

Number of anchor items The different numbers of anchor items produced very similar results. 

Chen et.al (2014) found that when fewer DIF-free items need to be selected, the accuracy rates 

increased; however, this study found that the number of anchor items needed to be selected did not 

make a significant difference in the accuracy rate.  

In general, the HGLM method performed well when, the percentage of DIF items is small 

(<20%), the magnitude of DIF was large, the pattern of DIF was constant, and the sample size was 

large (>1000). The percentage of DIF items appeared to be very influential; when the percentage 

is 40%, HGLM was often unable to correctly identify DIF free items; when combined with small 

size of DIF, HGLM was only accurate for about half the times. The influential factors were 

consistent with the findings by Chen et.al (2014), except that, Chen et al. (2014) showed that with 

dichotomous item responses, the accuracy of selecting DIF-free items was high for HGLM with 

iterative DFTD strategy, ranging from 90% to 100%. Table 6 and 7 showed that with polytomous 

responses, the accuracies were generally lower. 

4.2 Results of Study 2: Type I Error 

This section presents the results for the second research question: what is the Type I error 

rate for DIF detection using HGLM, and how does it compare to using GMH and logistic 

regression? In order to answer this question, datasets were generated for each of the 312 simulation 

conditions. Each item from each dataset was then fitted with a HGLM model using a 1-item anchor 
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or a 4-item anchor. The estimation method was the maximum likelihood method with Laplace 

approximation. The same dataset was then fitted with GMH and logistic regression methods to 

identify DIF items. The Type I error and power rates from the 4 methods were then estimated. 

Unlike study 1 with 100 replications, for study 2 500 replications were performed in order to 

increase estimation accuracy of Type I error and power rates. Estimation of all replications 

converged.  

4.2.1  Results of Type I error rates  

Type I error rate was calculated for each DIF-free item by computing the percentage of 

times the DIF-free item was identified as a DIF item over the total number of replications. The 

mean Type I error rates for all the DIF-free items for all conditions were presented in Figure 2. 

The first 4 columns represented the mean Type I error rate for the HGLM with a 1-item anchor, 

HGLM with a 4-item anchor, the logistic regression, and the GMH methods, respectively, for 

constant DIF pattern with a magnitude of 0.2 and a total of 20% DIF items. The full results of 

mean Type I error rate for all the conditions were presented in Appendix B (Table B11-B12). The 

mean and standard deviation for each condition were presented in Appendix B (Table B13).  



 68 

   

   

   

0%

20%

40%

60%

80%

100%

Impact = 0, R400/F100

0%

20%

40%

60%

80%

100%

Impact = 0, R250/F250

0%

20%

40%

60%

80%

100%

Impact = 0, R800/F200

0%

20%

40%

60%

80%

100%

Impact = 0, R500/F500

0%

20%

40%

60%

80%

100%

Impact = 0, R4000/F1000

H1 H4 LR GMH

0%

20%

40%

60%

80%

100%

Impact = 0, R2500/F2500

H1 H4 LR GMH



 69 

   

   

   

Figure 2 Type I error Rates for All Conditions 
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The Type I error rates of the two HGLM methods were consistently lower than that of the 

logistic regression and the GMH methods. The two HGLM methods exhibited decent control 

across the conditions, with an average lower than 4%. The number of anchor item did not seem to 

produce a significant difference. Whereas the control of logistic regression and the GMH 

fluctuated among the conditions, with an average over 10%. When the sample size was not large, 

and there was only a small amount of DIF present, the two behaved relatively better; however, 

when conditions turned less favorable, the logistic regression and the GMH methods could lose 

control entirely.  

4.2.2  ANOVA results of Type I error 

There were in total 7 conditions being manipulated for the simulation study, the presence 

of impact (0, 1), the sample size (500, 1000, 5000), the sample size ratio (1:1, 4:1), the percentage 

of DIF items (20%, 40%), the magnitude of DIF (.2, .6), the pattern of DIF (constant, balanced, 

high unbalanced), and the 4 different DIF detection methods (HGLM with a 1-item anchor, HGLM 

with a 4-item anchor, the logistic regression, the GMH).  

A 7-way mixed ANOVA was conducted and results were presented in Appendix B (Table 

B14). Most of the higher order interactions were significant at ρ < 0.5; however, since higher order 

interaction effects could be difficult and confusing to interpret, only 3-way interactions were 

considered for the final ANOVA. In addition, since this study focus on the HGLM methods 

performance comparing to the other methods, only 3-way interactions involving the 4 DIF 

detection methods were included. For the HGLM methods, different level of impact and sample 

size ratio produced similar Type I error rates, about 4%, for logistic regression and GMH, the error 

were similar at about 13%. In addition, none the two factors’ main effect analysis was significant. 
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Thereby only 3-way interactions among 4 DIF detection methods, sample size, magnitude, pattern, 

and the percentage of DIF with a significant ρ < 0.5 and partial η2 > 0.01 were included. Figure 3-

8 showed results from the 6 3-way interactions. The means and standard deviations were reported 

in Table 15-18.  

Figure 3 showed 3-way interaction among the 4 methods, sample size and DIF patterns. 

The left panel represented the Type I error rates of the 4 methods with 3 different sample sizes for 

the constant DIF pattern, while the middle and right panels represented the balanced and 

unbalanced DIF patterns, respectively.  

The two HGLM methods showed consistently good control of Type I error at around 4% 

and behaved similarly. The logistic regression and GMH methods showed good control as well 

when the total sample size was small (500). However, when the sample size increased, Type I error 

rate increased significantly, especially for the constant pattern (Table 9). When DIF pattern was 

constant, the Type I error rate was inflated even when the sample size was small, around 10%. 

When the sample size increased to 5000, Type I error rates were around 40% for the logistic 

regression and the GMH methods. When the pattern was balanced, meaning DIF was in different 

directions within an item’s response categories, there was no inflation of Type I error rates even 

when the sample sizes were large, suggested that the LR and GMH methods were sensitive to the 

sample size only when the absolute value of DIF within the items were substantial.  

Figure 4 showed the 3-way interaction among the 4 methods, sample size and the 

percentage of DIF items. The left panel represented the Type I error rates of the 4 methods with 3 

different sample sizes for the 20% DIF items condition, while right panel represented the 40% DIF 

items condition.  



 72 

 The two HGLM methods again behaved rather similarly and showed good control of Type 

I error rate overall. When 20% items exhibit DIF, the logistic regression and GMH were almost as 

good as the two HGLM methods at around 6%, with a slight inflation to over 10% when the sample 

size increased to 5000. However, when the percentage of DIF items increased to 40%, the increase 

of sample size resulted in a significant inflation of Type I error rate for the two methods. When 

the sample size was 5000, the Type I error rates of both methods increased to 30% for the logistic 

regression method and 28% for the GMH method, suggested that both were sensitive to the 

percentage of DIF items when the sample size was large.  

Figure 5 showed the 3-way interaction among methods, sample size and the magnitude of 

DIF. The left panel represented the Type I error rates of the 4 methods for the 3 different sample 

sizes when the magnitude of DIF was 0.2, while the right panel showed the results for when the 

magnitude of DIF was 0.6. 

Figure 5 showed similar findings as presented in Figure 4. The HGLM methods exhibited 

good control overall, while the logistic regression and the GMH’s control of Type I error decreased 

when the sample size increased to 5000, and especially so for the magnitude of 0.6.  

The above three analysis showed that the logistic regression and the GMH methods were 

sensitive to the non-balanced DIF pattern, larger sample size, magnitude and higher percentage of 

DIF items. When the sample size was 5000, magnitude was 0.6 with 40% of items exhibit constant 

DIF, the two methods showed a complete lack of control over Type I error that were around 90% 

(Appendix Table B11, B12). 

Figure 6 showed the 3-way interaction among methods, DIF patterns and the percentage of 

DIF. The left panel represented the Type I error rates of the 4 methods for the 3 different DIF 
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patterns with 20% of DIF items, while the right panel showed the results for the condition with 

40% DIF items.  

Figure 7 showed the 3-way interaction among methods, DIF patterns and the magnitude of 

DIF. The left panel represented the Type I error rates of the 4 methods for the 3 different DIF 

patterns with a magnitude of 0.2, while the right panel showed the results for the condition with 

the magnitude of 0.6.  

Figure 6 and Figure 7 produced similar results. The two HGLM methods, HGLM with a 

1-item anchor and HGLM with a 4-item anchor, behaved similarly and showed good control across 

conditions. The logistic regression and GMH methods showed a significant inflation of Type I 

error when detecting constant DIF with a larger magnitude or when there were a larger number of 

items exhibiting DIF; under such conditions about a third of the times the two methods would flag 

a DIF-free item as exhibiting DIF.  

Figure 8 showed the 3-way interaction among methods, DIF patterns and the percentage of 

DIF. The left panel showed the results of 4 methods for 2 different DIF magnitudes when there 

were 20% items with DIF. The right panel showed the results with 40% DIF.  

Consistent with previous analysis, the two HGLM method showed good control under 

these conditions. With 20% DIF, there was a slight elevation of Type I error rate when the 

magnitude was larger for the logistic regression and the GMH methods. With 40% DIF, the Type 

I error rates for the logistic regression and the GMH were 26% and 23%, respectively (Table 14), 

meaning there was a quarter of the items flagged by the two methods were in fact DIF-free items. 
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Note: H1=HGLM with 1-item anchor, H4= HGLM with 4-item anchor, LR=polytomous logistic regression, GMH = Generalized 

Mantel-Haenszel.  

Figure 3 Three-Way Interaction of Type I Error among Methods, Sample Size and DIF Pattern 
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Table 9 Mean and Standard Deviation of Type I Error Rates for Method, Sample Size and DIF Patterns 

Pattern Sample 

Size 

HGLM1 HGLM4 LR GMH 

  Mean SD Mean SD Mean SD Mean SD 

Constant 500 0.04 0.004 0.04 0.003 0.11 0.07 0.09 0.05 

 1000 0.04 0.01 0.04 0.005 0.16 0.13 0.13 0.10 

 5000 0.04 0.01 0.04 0.005 0.41 0.32 0.38 0.33 

          

  Mean SD Mean SD Mean SD Mean SD 

Balanced 500 0.03 0.003 0.03 0.003 0.05 0.00 0.05 0.003 

 1000 0.04 0.004 0.03 0.005 0.06 0.01 0.05 0.005 

 5000 0.03 0.01 0.04 0.01 0.08 0.03 0.06 0.02 

          

  Mean SD Mean SD Mean SD Mean SD 

Unbalanced 500 0.04 0.004 0.03 0.003 0.06 0.02 0.06 0.01 

 1000 0.04 0.01 0.04 0.004 0.07 0.03 0.07 0.03 

 5000 0.03 0.01 0.04 0.01 0.18 0.18 0.16 0.15 
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Figure 4 Three-Way Interaction of Type I Error among Methods, Sample Size and Percentage of DIF 
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Table 10 Mean and Standard Deviation of Type I Error Rates for Method, Sample Size and % of DIF 

% of DIF Sample 

Size 

HGLM 1 HGLM 4 LR GMH 

  Mean SD Mean SD Mean SD Mean SD 

0% 500 0.03 0.003 0.03 0.004 0.05 0.003 0.05 0.001 

 1000 0.04 0.005 0.03 0.005 0.05 0.002 0.05 0.001 

 5000 0.03 0.003 0.04 0.004 0.06 0.01 0.05 0.001 

          

  Mean SD Mean SD Mean SD Mean SD 

20% 500 0.04 0.004 0.04 0.003 0.06 0.02 0.06 0.01 

 1000 0.04 0.005 0.04 0.004 0.07 0.03 0.06 0.02 

 5000 0.03 0.005 0.04 0.01 0.14 0.13 0.12 0.12 

          

  Mean SD Mean SD Mean SD Mean SD 

40% 500 0.04 0.005 0.03 0.003 0.09 0.06 0.08 0.04 

 1000 0.04 0.01 0.03 0.005 0.12 0.11 0.11 0.09 

 5000 0.04 0.01 0.04 0.01 0.30 0.31 0.28 0.31 

 



 78 

   

Figure 5 Three-Way Interaction of Type I Error among Methods, Sample Size and Magnitude of DIF 
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Figure 6 Three-Way Interaction of Type I Error among Methods, DIF pattern and Percentage of DIF 
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Figure 7 Three-Way Interaction of Type I Error among Methods, Magnitude and Percentage of DIF 
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Figure 8 Three-Way Interaction of Type I Error among Methods, DIF Pattern and Magnitude of DIF 
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4.3 Results of Study 2: Power 

This section presents the results for the third research question: what is the statistical power 

for DIF detection using HGLM, and how does it compare to using GMH and logistic regression? 

4.3.1  Results of Power 

After the generated dataset were examined by the 4 DIF detection methods for DIF, 

statistical power was calculated along with the Type I error rate for each DIF item by computing 

the percentage of times the DIF item is correctly identified over the total number of replications. 

The mean power rates for all the DIF items for all conditions were presented in Figure 9. The 

average power rate for all the items with DIF were presented in Appendix B (Table B15, B16). 

The mean and standard deviation for each condition were presented in Appendix B (Table B17). 

The mean power for HGLM with 1-item anchor was 28%, while for HGLM with 4-item 

anchor 36%. The two HGLM showed good control over Type I error rates consistently. However, 

with power the two methods behaved vastly different under various conditions. HGLM with 4-

item anchor were significantly more powerful than the HGLM with 1-item anchor, but was less 

powerful than the GMH method, which showed a 66% mean power. Under various conditions, the 

GMH significantly outperformed the other three in terms of power.  
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Figure 9 Power for All Conditions 
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4.3.2  ANOVA results of Power 

A 7-way mixed ANOVA were conducted and results presented in Appendix B (Table B17). 

None of the high order interactions was significant, so only 3-way interactions were included in 

the ANOVA model. Only the significant interactions with ρ < 0.5 and partial η2 > 0.01 were 

presented. The results for the 3-way interactions were presented in Figure 10 -16, and the mean 

and standard deviation presented in Table 15-18.  

Figure 10 showed the interaction among the 4 DIF-detection methods, the 3 levels of 

sample size, and 3 different DIF patterns. For all the patterns and sample sizes, the HGLM with 1-

item anchor behaved similarly to the logistic regression method. The constant pattern produced 

much better results for the two HGLM methods, with 4-item anchor outperformed the 1-item 

anchor. When sample size was as large as 5000, the power rate for the two were 79% and 88%, 

respectively (Table 15). When the sample size was small, the power rates were much lower, but 

HGLM with 4-item anchor still outperformed the others.  

However, for the balanced and unbalanced patterns, the two HGLM methods were less 

powerful than the GMH method, which, although were having difficulties dealing with the 

constant pattern, showed a much significant improvement. The two HGLM methods’ power rates 

were typically less than 10% for the smaller sample sizes, especially for the balanced pattern. Even 

when the sample size was large, HGLM with 4-item anchor was still only about successful half 

the time at best for detecting items with DIF, while the GMH could correctly identify items with 

DIF over 90% of the times with the unbalanced pattern. 

Figure 11 showed the 3-way interaction among the 4 methods, sample size and 2 levels of 

DIF magnitude. When the sample size was small, all the methods were having difficulties dealing 

with the smaller magnitude of DIF, with the GMH seemed to perform better than the others. The 
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two HGLM methods were both poorly behaved with around 10% of power, although the HGLM 

with 4-item anchor was slightly better (Table 16). When the sample size was large at 5000, the 

performance improved, with HGLM with 4-item anchor given a 41% power. The GMH, however, 

had a power of 77% with a sample size of 5000 and a magnitude of 0.2.  

When the magnitude increased to 0.6, the performance for all the methods improved, 

especially when sample size was large. HGLM with 1-item anchor was behaving similarly to the 

logistic regression, less powerful than the HGLM with 4-item anchor, which was still not as 

powerful as the GMH. When the sample size and the magnitude were both large, the GMH could 

reach near 100% of power.  

Figure 12 showed the 3-way interaction of 4 methods, 3 DIF patterns, and 2 level of 

percentage of DIF items. The 2 HGLM methods behaved similarly, while HGLM with 4-item 

anchor slightly better. For the constant pattern and balanced pattern, the percentage of DIF 

produced little differences between the two HGLM methods. The constant pattern produced a 

power rate of 52% for HGLM with 1-item anchor and about 65% for HGLM with 4-item anchor, 

however, the unbalanced pattern reduced the power rates to 11% and 16%, respectively (Table 

17). With the unbalanced pattern, the increased percentage of DIF produced higher power rates for 

the two HGLM methods, this somewhat surprising results suggested that a larger the number of 

items with DIF would help the HGLM methods to identify DIF items with unbalanced patterns 

more easily, although the increased the power rates were still less than a third times for even the 

HGLM with 4-item anchor.  

The logistic regression and GMH methods, unlike the two HGLM methods, showed slight 

decrease in power when the percentage of DIF increased from 20% to 40%, which was consistent 

with the findings of previous studies. For the GMH, the constant pattern reduced its performance, 
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but with non-constant DIF patterns, the GMH was more powerful than the other three, especially 

with the balanced pattern. This suggested that the GMH was more sensitive to more complicated 

DIF patterns, although less powerful with constant pattern.  

Figure 13 showed the 3-way interaction of 4 methods, 3 DIF patterns, and 2 level of 

magnitude of DIF. The magnitude of DIF made a significant difference for all the methods, 

especially with the constant pattern, the HGLM with 4-item anchor showed an 89% power with a 

constant DIF size of 0.6, with HGLM with 1-item anchor a 78% power. When the magnitude was 

small and DIF pattern non-constant, the power rates were close to 10% for both HGLM methods. 

The GMH showed a similar behavior of not handling the constant DIF pattern very well, but 

outperformed the others when the pattern was non-constant.  
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Figure 10 Three-way Interaction of Power oor the Method, Sample Size, and DIF Pattern 
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Table 15 Mean and Standard Deviation of Power for Method, Sample Size and DIF Patterns 

Pattern Sample Size HGLM1 HGLM4 LR GMH 

  Mean SD Mean SD Mean SD Mean SD 

Constant 500 0.32 0.24 0.44 0.32 0.32 0.24 0.28 0.22 

 1000 0.47 0.34 0.60 0.35 0.48 0.33 0.43 0.32 

 5000 0.79 0.23 0.88 0.16 0.80 0.23 0.75 0.28 

          

  Mean SD Mean SD Mean SD Mean SD 

Balanced 500 0.07 0.03 0.09 0.03 0.09 0.03 0.72 0.30 

 1000 0.08 0.02 0.11 0.04 0.10 0.03 0.87 0.15 

 5000 0.19 0.14 0.27 0.16 0.25 0.16 1.00 0.00 

          

  Mean SD Mean SD Mean SD Mean SD 

Unbalanced 500 0.07 0.05 0.11 0.07 0.10 0.06 0.41 0.30 

 1000 0.13 0.10 0.20 0.16 0.17 0.12 0.58 0.37 

 5000 0.43 0.30 0.56 0.30 0.47 0.29 0.91 0.11 
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Figure 11 Three-way Interaction of Power for the Method, Sample Size, and Magnitude of DIF 
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Figure 12 Three-Way Interaction Of Power For The Method, DIF Pattern, and Percentage Of DIF 
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Figure 13 Three-way Interaction of Power for the Method, DIF Pattern, and Magnitude of DIF 

Table 18 Mean and Standard Deviation of Power for Method, DIF Pattern, and Magnitude of DIF 

Magnitude Pattern HGLM 1 HGLM 4 LR GMH 

  Mean SD Mean SD Mean SD Mean SD 
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4.4 Summary of the Results for Study 2 

To summarize, HGLM with 1- or 4-item anchor performed similarly good with Type I 

error control, but HGLM with 4-item anchor had better power than HGLM with 1-item anchor. 

The polytomous logistic regression and the GMH methods showed similar performance on Type 

I error, but the GMH was much more powerful. since type I error and power are closely related, it 

is necessary to examine them together. And since HGLM with 4-item anchor outperformed HGLM 

with 1-item anchor, while GMH outperformed the logistic regression, HGLM with 4-item anchor 

and GMH results were shown. Figure 14-17 showed the comparison of Type I error and power for 

HGLM with 4-item anchor and GMH.  

Figure 14 presented the Type I error and power rates for HGLM with 4-item anchor and 

GMH for the 3 levels of sample size and 3 different DIF patterns. For the constant pattern, the 

power steadily increased along with sample size for the HGLM, while the Type I error was 

consistently under control. The GMH was less powerful with significant inflation of Type I error 

when sample size was large. For the balanced pattern, the GMH was more powerful than the 

HGLM, with controlled Type I error rates. For the unbalanced pattern, the GMH was more 

powerful; when the sample size was small it showed good error control as well. But when the 

sample size was large as 5000, the error rate was also elevated. These results seemed to confirm 

previous findings that the GMH, as a nonparametric method, might be more suited for small 

sample conditions.  

Figure 15 presented the Type I error and power rates for HGLM with 4-item anchor and 

GMH for the 3 levels of sample size and 2 levels of magnitude of DIF. Smaller magnitude of DIF 

reduced the power for both methods, while the GMH seemed to be more sensitive. When 

magnitude of DIF increased, power increased as well, but for the GMH, Type I error rates was 
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also inflated. These results seemed to suggest that GMH was better suited for smaller magnitude 

conditions.  

Figure 16 presented the Type I error and power rates for HGLM and GMH for the 3 DIF 

patterns and 2 levels of percentage of DIF. The main effect of the percentage of DIF was small for 

power, but with notable interaction effect with DIF patterns. For HGLM, the percentage of DIF 

had little effect on Type I error and power rates. For GMH, higher percentage of DIF items would 

decrease power and inflated error for the constant pattern. The balanced pattern did not seem to be 

affected. For the unbalanced pattern, power was not affected, but higher percentage of DIF inflated 

the Type I error rates.  

Figure 17 presented the Type I error and power rates for HGLM and GMH for the 3 DIF 

patterns and 2 levels of magnitude of DIF. When the magnitude was large, HGLM behaved well 

with constant DIF, while GMH was good with balanced DIF. For the unbalanced pattern, HGLM 

was less powerful but with less error, while GMH was more powerful but with more error. When 

the magnitude was small, the power rates were much lower for both methods. The GMH was more 

powerful with non-constant DIF, while the GMH was more powerful with constant DIF.  
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Figure 14 Type I Error and Power Rates for Sample Size and DIF Pattern for HGLM with 4-item Anchor 

and GMH 
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Figure 15 Type I Error and Power Rates for Sample Size and Magnitude of DIF for HGLM with 4-item 

Anchor and GMH 
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Figure 16 Type I Error and Power Rates for DIF Pattern and Percentage of DIF for HGLM with 4-item 

Anchor and GMH 
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Figure 17 Type I Error and Power Rates for DIF Pattern and Magnitude of DIF for HGLM with 4-item 

Anchor and GMH 
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5.0 Discussion 

This study aimed to examine the performance of using HGLM as a DIF detection model to 

identify polytomous response items that exhibit DIF, and how it compared to other well-

established methods such as the logistic regression and the GMH methods. This chapter presents 

a summary of the study’s major findings and its practical implications to practitioners, followed 

by a discussion of limitation and directions for future research. The chapter is organized as follows: 

first, a discussion of major findings and implications was presented. The answer to three research 

questions were discussed first, then the factors that influence the DIF detection performance were 

discussed separately, followed by a conclusion. In the second section, the limitation of the study 

was discussed, followed by a prediction of future research directions.  

5.1 Major Findings and Implications 

5.1.1  Answers to research questions 

This study provides answers to three research questions in terms of using HGLM, logistic 

regression and the GMH methods for DIF detection. Findings are partly consistent with those from 

previous studies, while providing additional information for the use of HGLM as a DIF detection 

method.  

Research question 1: How accurately can HGLM select DIF-free items as anchor items for DIF 

analysis?  
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This study found that the average rate of using HGLM with interactive constant item 

method yield an average accuracy of 75% across all conditions. This method had been proved to 

be highly accurate with mostly over 98% in dichotomous items under similar conditions (Chen et 

al., 2014), however, with polytomous it was not as accurate. Consistent with previous findings, 

this method was robust against the number of anchor items, suggesting that using this method to 

select 1 DIF-free item or 4 would not impact its performance. 

The accuracy rate was most significantly influenced by the percentage of items with DIF, 

the magnitude of DIF, the pattern of DIF, and the sample size. When there was a small number of 

items that exhibited DIF in a scale, the iterative HGLM method could be mostly accurate at over 

80%, but when there was a larger number of items with DIF, its performance significantly 

worsened. In addition, the larger magnitude of DIF and a larger total sample size appeared to help 

with the performance and increased the accuracy rates. The HGLM method was also sensitive to 

the pattern of DIF, with the constant pattern resulted in a much higher accuracy rate of over 80%, 

while balanced and unbalanced pattern yielded significantly less accurate results.  

These results suggested that the ideal condition for using HGLM method to select DIF-free 

items would be a sample size of at least 1000, with a scale that has less than 20% of items exhibiting 

significant size of DIF, and the pattern of DIF was constant. The presence of differences in group 

abilities would negatively affect the performance, but it was not as influential as the previous 

mentioned factors. When the conditions were less ideal, the performance of the iterative HGLM 

method was less desirable, and for the practitioners, the implication was that it would be wise to 

use some other methods to cross check the items for DIF. Since previous studies had shown that 

anchor items that exhibited DIF would result in biased estimations in identifying DIF items, the 

anchor items should be carefully selected to ensure they were indeed DIF-free (Cheong & Kamata, 
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2013). The iterative HGLM method showed nearly perfect accuracy with dichotomous data. 

However, since the HGLM method was not as accurate with polytomous data, researchers should 

consider other reliable methods to double check the items selected by the HGLM method.  

 

Research question 2: What is the Type I error rate for DIF detection using HGLM, and how does 

it compare to using GMH and logistic regression? 

The HGLM with 1-item anchor and 4-item anchor both showed decent control over Type 

I error rates under all conditions, which was consistent with previous studies (Chen et al., 2014; 

Wang, 2004). For both methods, nearly all Type I error rates were below 5%. The average error 

rates for the HGLM with 1-item anchor was 3.7%, and for the HGLM with 4-item anchor was 

3.61%. Consistent with the findings of Chen et al. (2014), these were rather conservative. The two 

models performed quite similarly to each other, suggested that for the purpose of controlling 

misidentification of DIF-free items as DIF, using 1-item anchor would be just as effective as the 

4-item anchor.  

The polytomous logistic regression and the GMH methods, on the other hand, showed 

general higher Type I error rates than the HGLM methods, as well as significant inflation of Type 

I error for certain conditions. The GMH method had been shown to have a general higher Type I 

error rates than the HGLM methods, but did not show a severe inflation (Ryan, 2008; Willams & 

Beretvas, 2006). However, these studies did not consider a scale with DIF items as much as 40%. 

The higher percentage of item with DIF seemed to relate to the strong inflation of error rates for 

the GMH as well as the logistic regression methods. The polytomous logistic regression method 

performed generally worse than the GMH, with an average error rate of 13.05% over 11.65%, with 

a similar pattern of behavior, which seemed to be consistent with previous findings (Kristjansson 



 102 

et al., 2005). For certain conditions, the GMH and the logistic regression showed significant 

inflation of Type I error rates, the risk factors being the constant DIF pattern, larger number of 

items exhibiting DIF, larger magnitude of DIF, and larger sample sizes. The number of items 

exhibiting DIF appeared to be especially influential.  

The inflated Type I error rates suggested that caution must be taken when using these two 

methods to identify DIF items for polytomous response items, since inflated Type I error rate might 

render the power of such testing meaningless. In addition, mistakenly marking DIF-free items as 

DIF is not desirable for practical use, as it could create unnecessary revising or modifying, thus 

increasing workload and disturbing the original scales.   

 

Research question 3: What is the statistical power for DIF detection using HGLM, and how does 

it compare to using GMH and logistic regression? 

The average power rates for the HGLM with 1-item anchor and 4-item anchor were 28% 

and 36%, respectively, which were somewhat consistent with previous findings (Ryan, 2008; 

Willams & Beretvas, 2006). In general, the 4-item anchor method out-performed the 1-item anchor 

method. Increasing sample size would increase the power rates, as many researchers had 

suggested, however, it was only combined with the constant pattern and a larger magnitude of DIF 

to achieve power rates over 90%. When sample size was 500, almost all the power rate would not 

exceed 50%.  

The polytomous logistic regression method had a similar performance as the HGLM with 

1-item anchor. The GMH method, however, behaved quite differently than the other three and in 

many conditions had very high power. Specifically, when the magnitude of DIF was large, the 

GMH displayed near perfect power with a balanced DIF pattern under all conditions. When the 
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sample size was also large, the GMH had high power at unbalanced DIF pattern as well. It appeared 

that the GMH was sensitive to the non-constant DIF patterns, while the HGLM methods performed 

poorly for such patterns. However, when sample size and the magnitude of DIF was large, the 

GMH showed inflated Type I error rates under the unbalanced pattern, so the power of the GMH 

on the unbalanced DIF pattern should be interpreted carefully. For the constant pattern, the GMH 

was generally not very powerful, and it showed such highly inflated Type I error rates, that the 

power, no matter how high, would be meaningless. 

These results suggested that sufficient power was difficult to achieve when the sample size 

was small. Smaller magnitude of DIF also made the detection of DIF items difficult, thereby 

resulting in very low power rates. With smaller sample size, the GMH was a little more powerful 

than the other three; however, the GMH was also associated with higher level of Type I error rates 

than the HGLM methods. The two HGLM methods performed similarly at controlling for Type I 

error rate, but the HGLM with 4-item anchor had better power, so the 4-item anchor should be 

favored over the 1-item anchor. The polytomous logistic regression method had similar pattern of 

power as the HGLM with 1-item anchor, but had much higher inflation of Type I error rates, hence 

it should be a less favorable choice.  

The HGLM methods had clear advantages for the constant pattern, which is the condition 

when all DIF were favoring one group. Under the constant pattern, practitioners should avoid the 

GMH method since its very much prone to Type I error rates. Thus, the HGLM with 4-item anchor 

method should be preferred when DIF pattern is constant. With a balanced pattern, the GMH 

method should be favored. With unbalanced DIF, the GMH were powerful but also more prone to 

Type I error, while the HGLM with 4-item anchor was less powerful but less prone to 
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misidentification. As a result, caution should be taken with selecting appropriate DIF detection 

methods.  

It is worth noting that the Type I error and power correlate with each other, so when type I 

error rate is high, the high power is related to the elevated Type I error rates. In this situation, 

discussing power is meaningless. Thus, caution should be taken when interpreting the polytomous 

logistic regression and GMH results, especially under risky conditions. It is sensible to make sure 

that the power is actually meaningful, and not the results of inflated Type I error, before proceeding 

with interpretation. 

5.1.2  Summary of major findings 

This study manipulated several factors: the number of anchor items, the presence of impact, 

sample size and ratio, the percentage of DIF items, the magnitude of DIF, and the pattern of DIF. 

The effect of these factors for the performance of the HGLM methods as well as the polytomous 

logistic regression and the GMH methods were discuss separately.  

 

Anchor items This study examined the performance of HGLM with 1-item anchor and 4-item 

anchor. Several studies had shown that an anchor with a larger number of items can produce higher 

power for DIF detection (Shin & Wang, 2009; Wang & Yeh, 2003), although a 1-item anchor 

could be enough in giving sufficient power. This study confirmed that a higher power rate was 

indeed associated with the 4-item anchor. The HGLM with 1-item anchor and 4-item anchor 

showed similarly good control over Type I error rates, but the 4-item anchor consistently 

outperformed the 1-item anchor in terms of power. These results seem to favor the HGLM with 4-

item anchor over the 1-item anchor.  
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However, although the 4-item anchor is more powerful, the 1-item anchor can minimize 

the risk of contamination by items with DIF (Woods, 2009), and since the consequences of such 

contamination is severe (Cheong & Kamata, 2013), this should be taken into consideration when 

it comes to the anchor selection. As this study showed, the accuracy rates of selecting DIF-free 

items using the HGLM methods for polytomous responses items were rarely perfect, on average 

only about 75%, thus raising the challenge of selecting a pure anchor without DIF.  

 

Latent trait parameter difference between groups The latent trait difference between the focal 

and reference groups, known as impact, was set at 0 and 1 for this study. When impact equaled to 

0, there was no group difference existed. When the impact was 1, there was medium to large group 

differences on the latent trait parameter between the reference and focal group. The effect of impact 

on polytomous DIF is not well studied; Kristjansson et. al. (2005) found an impact size of 0.5 has 

little effect on the performance of DIF. On dichotomous items, Chen et al. (2014) found that impact 

size of 1 has little effect on the HGLM constant anchor method. Consistent with previous findings, 

this study found that impact did not significantly affect the performance of Type I error rates nor 

power. These results suggest that the HGLM with constant anchor item method might be quite 

robust against the presence of medium-large impact.  

However, this study also found out that although the HGLM with constant anchor item 

method was quite accurate with dichotomous items, with polytomous response items, the existence 

of impact lowered the accuracy rate of selecting DIF-free items. These findings suggest that a 

medium-large impact should be taken into consideration when using HGLM with constant anchor 

item method to identify DIF-free items in polytomous response items.  
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Sample size and sample size ratio This study examined 6 sample size and ratio combinations 

(R400/F100, R250/F250, R800/F200, R500/F500, R4000/F1000, R2500/F2500) to study its 

influence on Type I error rate and power. Many studies suggested that a larger sample size may 

also inflate Type I error rates; however, this tendency was not found for the two HGLM methods. 

Even when the sample size was as large as 5000, the Type I error rates for the two HGLM methods 

were consistently below 5%. Consistent with findings from previous studies, a larger sample size 

was associated with larger power. The HGLM with 4-item anchor was more powerful overall than 

the 1-item anchor; however, neither was particularly powerful when sample size was 1000 and 

below. Willams and Beretvas (2006) found similar results with a sample size of 2000 and 

speculated that larger sample sizes would generate more power. However, this study showed that 

a higher power rate of over 80% would be difficult to achieve even when sample size was increased 

to 5000; the pattern and magnitude of DIF also had to be ideal. When the DIF pattern was constant 

and the magnitude of DIF was large, the HGLM with 4-item anchor was very powerful under 

larger sample size, and thus should be favored.  

 When sample size was small, the GMH method could generally produce much higher 

power than the other 3 methods. While it was associated with a slight elevation of Type I error 

rates, overall the GMH could be tentatively recommended for small samples. When the sample 

size increased, the GMH still tend to be more powerful than the other three; however, it was often 

associated with inflated Type I error rate as high as 95%. With such high error rates, the power, 

no matter how high, would be meaningless.  

 

Percentage of DIF items The percentage of DIF was set to 0%, 20%, and 40% for this study. For 

the two HGLM methods, the percentage of DIF had little effect on the control of Type I error nor 
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power on average. Although, the two methods showed a slight increase in power for the 

unbalanced pattern when percentage of DIF items increased. However, the percentage of DIF had 

significant effect on the accuracy of selecting DIF-free items. It appeared that a large number of 

items exhibiting DIF would increase the difficulty for the HGLM method to pick out DIF-free 

items.  

The logistic regression and GMH methods showed an increasing in Type I error rates and 

decreasing in power when the percentage of DIF increased, which was consistent with previous 

studies (Hidalgo & Gómez, 2006; Kristjansson et al., 2005). When the percentage of DIF was 

large, the two methods showed particularly large inflation of Type I error rates when sample size 

and magnitude of DIF were large. In addition, the constant pattern also resulted in inflated Type I 

error rate when the percentage was large. These results suggest that when there are a large number 

of items exhibiting DIF, caution should be taken when applying the logistic regression or GMH 

methods as DIF detection methods.  

 

Magnitude of DIF The magnitude of DIF was set to 0.2 and 0.6 for this study, representing a 

small and a medium-large magnitude of DIF. This study found that a smaller magnitude of DIF 

would result in more difficulty finding items with DIF, thus reduce power, which was consistent 

with findings from previous studies on dichotomous data (Elosua & Wells, 2013; Hildago & 

Gómez, 2006; Scott, 2009). When the magnitude of DIF was small, the GMH appeared to be most 

powerful out of the 4 methods, although it was still less than 50%. Since in health research the 

magnitude of DIF is commonly small, this brings challenges in DIF evaluation. When the 

magnitude was large, the power for all 4 methods increased, however, for the logistic regression 

and GMH methods, the Type I error rates were inflated as well. 
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DIF patterns The 3 pattern of DIF considered in this study were constant, balanced, and high-

unbalanced. For the constant pattern, all the DIF were in favor of the focal group. For the balanced 

pattern, some of the DIF favor the reference group and some favor the focal group, resulting the 

DIF to be balanced across item categories. For the high-unbalanced pattern, DIF were only present 

at the highest category within an item. Previous studies had shown that balanced and unbalanced 

DIF was especially difficult to detect, which was confirmed by this study.  

For the constant pattern, the HGLM with 4-item anchor method was the most powerful; 

this was consistent with the findings by Cheong and Kamata (2013). The GMH showed significant 

inflation of Type I error, thereby should be avoid when DIF were consistently favoring one group 

over another. For the balanced DIF, the GMH was most powerful, and the Type I error rates were 

well under control, although on some conditions were still slightly elevated. Since GMH is 

designed to measure group differences across the entire distribution of response categories, it is 

expected it would be more sensitive to the balanced pattern which favors different groups within 

the item categories.  For the unbalanced DIF pattern, the GMH was more powerful than the HGLM 

methods, but also more likely to have inflated Type I error.  

5.1.3  Conclusion 

This study extended the work of Chen et al. (2014), exploring the performance of the 

HGLM model using the constant anchor item method to identify the model and to select the DIF-

free items for the polytomous response items, instead of dichotomous items. In addition, this study 

extended the work of Willams and Beretvas (2006) and Ryan (2008) by using the constant anchor 

method instead of the equal mean ability method to set the model, and by comparing the results to 

the logistic regression method, as well as the GMH method. This study also included the presence 
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of ability differences between the reference and focus groups so the effect of impact could be 

studied.  

The study found out that compared to dichotomous items, the accuracy rate of HGLM 

methods in selecting DIF-free items was generally lower in polytomous item. While for 

dichotomous item the accuracy was near perfect as found in Chen et al. (2004), the accuracy for 

polytomous items were only about 75%. Since constant anchor method only performs well when 

the anchor items are free of DIF, practitioners should be very careful when using the iterative 

HGLM methods to select DIF-free items to serve as anchor items. 

Overall, the HGLM with 1-item anchor and 4-item anchor methods both have decent 

control over Type I error rates. However, the HGLM with 4-item anchor method is more powerful 

than the 1-item anchor method, so if possible, the 4-item anchor method should be favored. The 

polytomous logistic regression method has similar power rates as the HGLM with 1-item anchor 

method, but higher Type I error rates, thus is not recommended over the HGLM with 4-item anchor 

method.  

The GMH method is overall more powerful, but also prone to Type I error rates. Since high 

power without decently controlled Type I error rates is meaningless, the results of GMH should 

be used with caution. The GMH can handle balanced DIF pattern much better than the constant 

pattern. If all the DIF favor one group over the other, resulting in a constant DIF pattern, the GMH 

is not very powerful and prone to significantly inflated Type I error, thus is not recommended. 

Instead the HGLM with 4-item anchor is recommended. If the DIF with one item favors different 

groups on different response categories, resulting in a balanced DIF pattern, the GMH is 

recommended, since it is much more powerful, and the Type I error rate is more controlled. For 

the unbalanced DIF pattern, it is hard to give a general recommendation to balance the Type I error 
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and power rates. Typically, the GMH is more powerful when sample size and the magnitude of 

DIF is small, and under these conditions the inflation of Type I error is not too severe, so GMH 

could be considered. When the sample size and magnitude of DIF is large, the GMH tends to have 

highly inflated Type I error that renders the power meaningless. Whereas under these conditions, 

the power of HGLM with 4-item anchor increases, with the Type I error rate is still under control. 

Thus, the HGLM with 4-item anchor method could be considered. Cheong and Kamata (2013) 

suggested that the when the GMH type method is detecting a large number of DIF items, 

researchers should consider repeat the analysis with the HGLM with constant anchor item method. 

The findings from this study support this suggestion and recommend researchers and practitioners 

to re-check the analysis if a non-parametric method such as the GMH is flagging a large number 

of items for DIF, possibly with a method such as the HGLM with constant anchor item.  

5.2 Limitations and Future Research 

This study uses simulated data to explore the performance of HGLM methods as well as 

the logistic regression and GMH methods under various conditions for polytomous items. 

Although simulation studies have many advantages, it cannot fully substitute empirical data. The 

simulation factors were all taken from literature and meant to be close to mimic conditions present 

in real data situations. However, this study and its findings are restricted to these simulated 

conditions. The generalizability of findings is not guaranteed for real life datasets, as the real data 

may be much more complex than simulated data.  

Another clear limitation of this study is that only polytomous items with 3 categories were 

considered. Items with more categories were commonly used in psychology and health studies, so 
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it’s necessary to study DIF for polytomous items with higher number of categories. In addition, 

higher numbers of categories within items can result in much more complex DIF patterns, which 

may complicate the performance of DIF evaluation. Future studies are needed to investigate 

polytomous items with more than 3 response categories.  

Additionally, this study compared the HGLM method to only two other methods: the 

polytomous logistic regression and the GMH method. The GMH is a non-parametric method 

widely used in education settings while the logistic regression is a parametric method very 

commonly used in health studies and both are well-studied. However, another popular set of DIF 

detection methods based on the IRT likelihood ratio test was not discussed at all in this study. IRT 

model as DIF detection methods has several advantages and is becoming increasingly popular. In 

addition, although the HGLM method has been shown to mathematically comparable to certain 

IRT model, the two’s actual performance and comparability for DIF evaluation has not been 

explored. For these reasons, it is necessary for future research to study and compare the HGLM 

and IRT methods.    

Furthermore, the HGLM method is capable of identifying and investigating the source of 

DIF simultaneously by adding covariates into the model. The HGLM method can also handle more 

levels in the model to account for common clusters, such as schools and cohorts. This is a clear 

advantage of the HGLM method, yet its performance on exploring potential sources of DIF goes 

unexplored. It is necessary for future researchers to explore this feature of the HGLM method, and 

establish guidelines for practitioners to reference in empirical studies.  
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Appendix A Detailed Results for Study 1 

Appendix Table 1 Means and Standard Deviations for the Accuracy of Selecting DIF Items 

Source N Mean SD 

Number of Anchor Items    

Anchor=1 96 75.39 15.01 

Anchor=4 96 75.17 13.89 

    

Impact     

Impact=0 96 76.05 14.50 

Impact=1 96 74.51 14.38 

    

Sample size and ratio    

R400/F100  96 73.45 13.69 

R250/F250 96 73.82 14.55 

R800/F200 96 76.19 14.44 

R500/F500 96 77.67 15.02 

    

Percentage of DIF    

20% 96 86.90 6.42 

40% 96  63.66 10.20 
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Magnitude     

.2 96 71.09 13.08 

.6 96 79.47 14.54 

    

DIF Pattern    

constant 96 82.53 14.41 

Balance  96 72.05 12.83 

High-Unbalanced 96 71.25 13.34 
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Appendix Table 2 ANOVA Results for the Accuracy of Selecting DIF Items 

Source DF SS MS F p-value 𝜂𝜂𝑝𝑝2 

impact 1 115.24 115.24 11.40 0.001 0.09 

samplesize 3 576.70 192.23 19.01 <.001 0.32 

pdif 1 25917.95 25917.95 2562.93 <.001 0.95 

magnitude 1 3368.84 3368.84 333.13 <.001 0.74 

pattern 2 5067.93 2533.97 250.58 <.001 0.81 

       

pdif*magnitude*pattern 2 552.78 276.39 552.78 <.001 0.31 

samplesize*pattern 6 332.91 55.48 332.91 <.001 0.20 

pdif*pattern 2 190.15 95.08 190.15 <.001 0.14 

magnitude*pattern 2 2066.20 1033.10 2066.20 <.001 0.63 

pdif*magnitude 1 113.70 113.70 113.70 0.001 0.08 

       

residuals 74 748.33 10.11    

 

MANOVA test for Anchor 

Statistics Value  F Value DF p-value 

Wilks' Lambda 0.99 0.38 1 0.54 

Pillai's Trace 0.01 0.38 1 0.54 

Hotelling-Lawley Trace 0.01 0.38 1 0.54 

Roy's Greatest Root 0.01 0.38 1 0.54 
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Appendix Table 3 Simple Comparison for the Accuracy of Selecting DIF Items, DIF Pattern by Sample Size 

Source DF F p-value 

Constant 3 16.53 <.001 

Balance  3 2.46 0.07 

High-Unbalanced 3 17.00 <.001 
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Appendix Table 4 Simple Comparison for the Accuracy of Selecting DIF Items, DIF Pattern by Percentage of 

DIF Items 

Source DF F p-value 

Constant 1 793.14 <.001 

Balance  1 1128.91 0.07 

High-Unbalanced 1 1176.43 <.001 
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Appendix Table 5 Simple Comparison for the Accuracy of Selecting DIF Items, DIF Pattern by Magnitude of 

DIF Items 

Source DF F p-value 

Constant 1 590.91 <.001 

Balance  1 33.67 <.001 

High-Unbalanced 1 20.44 <.001 
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Appendix Table 6 Simple Comparison for the Accuracy of Selecting DIF Items, Percentage of DIF by 

Magnitude of DIF Items 

Source DF F p-value 

20% 1 133.20 <.001 

40%  1 280.10 <.001 
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Appendix Table 7 Means And Standard Deviations for The Accuracy of Selecting DIF Items, DIF Pattern by 

Sample Size 

Pattern Sample size N Mean SD 

Constant R400/F100 16 79.03 14.17 

 R250/F250 16 81.66 14.63 

 R800/F200 16 83.39 15.35 

 R500/F500 16 86.05 13.91 

Balanced R400/F100 16 72.64 12.16 

 R250/F250 16 70.59 13.70 

 R800/F200 16 73.20 12.84 

 R500/F500 16 71.77 13.66 

Un-Balanced R400/F100 16 68.67 13.41 

 R250/F250 16 69.20 12.74 

 R800/F200 16 71.97 12.99 

 R500/F500 16 75.19 14.42 
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Appendix Table 8 Means and Standard Deviations for the Accuracy of Selecting DIF Items, DIF Pattern by 

Percentage of DIF Items 

Pattern Percentage of 

DIF 

N Mean SD 

Constant 20% 32 92.75 6.55 

 40% 32 72.31 12.78 

Balanced 20% 32 84.24 2.44 

 40% 32 59.86 4.66 

High-Unbalanced 20% 32 83.70 4.93 

 40% 32 58.81 4.20 
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Appendix Table 9 Means and Standard Deviations for the Accuracy of Selecting DIF Items, DIF Pattern by 

Magnitude of DIF Items 

Pattern Magnitude of 

DIF 

N Mean SD 

Constant 0.2 32 73.71 13.92 

 0.6 32 91.35 8.22 

Balanced 0.2 32 69.95 13.18 

 0.6 32 74.16 12.32 

High-Unbalanced 0.2 32 69.62 12.11 

 0.6 32 72.90 14.47 

 

Appendix Table 10 Means and Standard Deviations for the Accuracy of Selecting DIF Items, Percentage of 

DIF Items by Magnitude of DIF 

% of DIF Magnitude N Mean SD 

20% 0.02 48 83.48 3.86 

 0.06 48 90.32 6.68 

40% 0.02 48 58.70 4.21 

 0.06 48 68.62 11.94 
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Appendix Figure 1 Two-way Interaction of Accuracy between DIF Pattern and Sample Size  
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Appendix Figure 2 Two-way Interaction of Accuracy between DIF Pattern and Percentage of DIF Items 
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Appendix Figure 3 Two-way Interaction of Accuracy between DIF Pattern and Magnitude of DIF Items 
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Appendix Figure 4 Two-way Interaction of Accuracy between Percentage and Magnitude of DIF 
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Appendix B Detailed Results for Study 2 

Appendix B.1 Results for Type I Error  

Appendix Table 11 Mean Type I Error Rates (%), without Impact 

Sample Size DIF% Magnitude DIF 
Patterns 

HGLM1 HGLM4 LR GMH 

R400/F100 20% 0.2 Constant 3 3 5 5 

   Balanced 3 4 5 5 

   Unbalanced 3 4 5 5 

  0.6 Constant 4 4 8 7 

   Balanced 3 3 5 6 

   Unbalanced 4 3 5 5 

 40% 0.2 Constant 4 4 6 6 

   Balanced 4 3 5 5 

   Unbalanced 3 3 5 5 

  0.6 Constant 3 3 19 14 

   Balanced 3 3 6 5 

   Unbalanced 3 3 7 6 

 0 0 Reference 3 3 5 5 

R250/F250 20% 0.2 Constant 4 4 6 5 

   Balanced 3 3 5 5 

   Unbalanced 4 4 5 5 
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  0.6 Constant 4 4 10 9 

   Balanced 4 4 5 5 

   Unbalanced 4 4 6 5 

 40% 0.2 Constant 4 3 8 6 

   Balanced 3 3 5 5 

   Unbalanced 4 3 5 5 

  0.6 Constant 5 4 27 19 

   Balanced 4 3 6 6 

   Unbalanced 4 4 10 8 

 0 0 Reference 3 4 5 5 

R800/F200 20% 0.2 Constant 4 4 6 5 

   Balanced 4 4 5 5 

   Unbalanced 4 3 5 5 

  0.6 Constant 4 4 11 9 

   Balanced 4 4 6 5 

   Unbalanced 3 4 7 6 

 40% 0.2 Constant 5 4 8 7 

   Balanced 4 3 5 5 

   Unbalanced 3 3 6 5 

  0.6 Constant 5 3 31 22 

   Balanced 3 3 6 6 

   Unbalanced 4 4 12 9 

 0 0 Reference 3 3 5 5 
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R500/F500 20% 0.2 Constant 4 3 6 6 

   Balanced 4 4 5 5 

   Unbalanced 3 4 5 5 

  0.6 Constant 5 4 15 12 

   Balanced 3 3 5 5 

   Unbalanced 4 3 7 6 

 40% 0.2 Constant 4 4 10 8 

   Balanced 4 3 6 5 

   Unbalanced 4 3 6 5 

  0.6 Constant 5 3 47 35 

   Balanced 3 3 6 6 

   Unbalanced 5 3 16 12 

 0 0 Reference 4 4 5 5 

R4000/F1000 20% 0.2 Constant 3 3 9 7 

   Balanced 3 5 5 5 

   High 

unbalanced 

3 4 6 6 

  0.6 Constant 5 4 41 31 

   Balanced 3 4 6 5 

   High 

unbalanced 

3 5 13 10 

 40% 0.2 Constant 3 4 20 15 

   Balanced 4 3 5 5 
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   High 

unbalanced 

4 4 9 8 

  0.6 Constant 5 3 92 83 

   Balanced 3 3 8 7 

   High 

unbalanced 

4 3 37 28 

 0% 0 reference 4 4 5 5 

R2500/F2500 20% 0.2 Constant 4 4 11 9 

   Balanced 3 3 5 5 

   High 

unbalanced 

3 3 6 6 

  0.6 Constant 4 4 55 42 

  0.6 Balanced 3 4 7 6 

  0.6 High 

unbalanced 

3 3 17 12 

 40% 0.2 Constant 4 3 28 21 

   Balanced 3 3 5 5 

   High 

unbalanced 

1 1 11 9 

  0.6 Constant 8 4 98 95 

   Balanced 4 3 12 10 

   High 

unbalanced 

5 4 64 51 

 0% 0 reference 3 4 5 5 
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Appendix Table 12 Mean Type I Error Rates (%), with Impact = 1 

Sample Size DIF% Magnitude DIF 

Patterns 

HGLM1 HGLM4 LR GMH 

R400/F100 20% 0.2 Constant 4 4 6 5 

   Balanced 4 4 5 5 

   Unbalanced 3 3 5 5 

  0.6 Constant 4 4 10 7 

   Balanced 3 4 5 6 

   Unbalanced 3 3 5 5 

 40% 0.2 Constant 4 4 6 6 

   Balanced 4 3 5 5 

   Unbalanced 3 3 5 5 

  0.6 Constant 4 3 16 14 

   Balanced 3 4 6 5 

   Unbalanced 3 3 5 6 

 0 0 Reference 3 3 5 5 

R250/F250 20% 0.2 Constant 4 4 6 5 

   Balanced 4 4 5 5 

   Unbalanced 4 4 5 5 

  0.6 Constant 4 4 14 9 

   Balanced 4 3 6 5 

   Unbalanced 3 4 6 5 
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 40% 0.2 Constant 4 3 7 6 

   Balanced 3 3 5 5 

   Unbalanced 4 3 6 5 

  0.6 Constant 4 4 22 19 

   Balanced 3 3 6 6 

   Unbalanced 4 4 9 8 

 0 0 Reference 4 3 5 5 

R800/F200 20% 0.2 Constant 4 4 6 5 

   Balanced 4 4 6 5 

   Unbalanced 4 3 5 5 

  0.6 Constant 3 4 11 9 

   Balanced 4 4 6 5 

   Unbalanced 3 4 6 6 

 40% 0.2 Constant 4 3 6 7 

   Balanced 4 4 5 5 

   Unbalanced 3 3 5 5 

  0.6 Constant 4 4 20 22 

   Balanced 4 3 6 6 

   Unbalanced 4 3 7 9 

 0 0 Reference 3 3 6 5 

R500/F500 20% 0.2 Constant 5 5 8 6 

   Balanced 5 3 5 5 

   Unbalanced 5 4 6 5 
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  0.6 Constant 4 4 17 12 

   Balanced 4 4 6 5 

   Unbalanced 4 5 7 6 

 40% 0.2 Constant 5 4 9 8 

   Balanced 4 3 5 5 

   Unbalanced 4 3 6 5 

  0.6 Constant 5 4 39 35 

   Balanced 4 3 7 6 

   Unbalanced 4 4 14 12 

 0 0 Reference 4 4 5 5 

R4000/F1000 20% 0.2 Constant 3 3 8 7 

   Balanced 3 4 7 5 

   High 

unbalanced 

4 4 6 6 

  0.6 Constant 4 4 27 31 

   Balanced 3 4 12 5 

   High 

unbalanced 

4 4 7 10 

 40% 0.2 Constant 3 3 16 15 

   Balanced 4 4 6 5 

   High 

unbalanced 

4 7 7 8 

  0.6 Constant 3 4 78 83 
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   Balanced 3 4 15 7 

   High 

unbalanced 

3 4 18 28 

 0% 0 reference 3 4 7 5 

R2500/F2500 20% 0.2 Constant 3 5 13 9 

   Balanced 4 5 5 5 

   High 

unbalanced 

4 4 6 6 

  0.6 Constant 4 4 40 42 

  0.6 Balanced 4 4 9 6 

  0.6 High 

unbalanced 

3 5 13 12 

 40% 0.2 Constant 3 3 24 21 

   Balanced 4 4 5 5 

   High 

unbalanced 

2 2 10 9 

  0.6 Constant 5 4 89 95 

   Balanced 4 6 14 10 

   High 

unbalanced 

4 5 55 51 

 0% 0 reference 3 5 5 5 
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Appendix Table 13 Means and Standard Feviations for the Type I Error Rates 

Source   N Mean SD 

Impact    

Impact = 0              288 8.15 12.92 

Impact =1 288 7.86 11.68 

    

Sample size     

500 192 5.28 3.32 

1000 192 6.34 6.08 

5000 192 12.38 19.44 

    

Sample size ratio    

1:1 288 8.78 13.72 

4:1 288 7.22 10.67 

    

Percentage of DIF    

20% 288 6.12 6.16 

40% 288 9.89 16.07 

    

Magnitude     

.2 288 5.15 3.10 

.6 288 10.86 16.65 
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DIF Pattern    

constant 192 12.51 18.74 

Balance  192 4.72 1.75 

High-Unbalanced 192 6.78 8.29 

    

Method     

HGLM1 144 3.70 0.72 

HGLM4 144 3.61 0.65 

Logistic Regression 144 13.05 16.71 

GMH 144 11.65 15.84 
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Appendix Table 14 ANOVA Results for Type I Error Rates 

ANOVA results DF SS MS F p-

value 

𝜂𝜂𝑝𝑝2 

Impact 1 0.001 0.001 0.27 0.604 0.002 

Sample size 2 0.56 0.28 63.82 <.001 0.51 

Sample size ratio 1 0.04 0.04 7.97 0.006 0.06 

% of DIF 1 0.20 0.20 46.31 <.001 0.28 

magnitude 1 0.47 0.47 106.42 <.001 0.47 

pattern 2 0.63 0.31 70.96 <.001 0.54 

Residuals 122 0.54 0.004    

       

MANOVA results for 

interactions 

Num 

DF 

Den 

DF 

Wilks’ 

Lambda 

F p-

value 

𝜂𝜂𝑝𝑝2 

Method*sample size*pattern 12 137.78 0.56 6.54 <.001 0.41 

Method*sample size*% of DIF 6 240 0.79 5.07 <.001 0.19 

Method*sample 

size*magnitude 

6 240 0.63 10.27 <.001 0.34 

Method*% of DIF *pattern 6 240 0.79 5.06 <.001 0.19 

Method*% of DIF *magnitude 3 240 0.81 9.32 <.001 0.17 

Method *magnitude *pattern 6 240 0.61 11.13 <.001 0.36 

 
MANOVA test for Method 

Statistics Value  F Value Num DF Den DF p-value 
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Wilks' Lambda 0.28 100.39 3 120 <.001 

Pillai's Trace 0.71 100.39 3 120 <.001 

Hotelling-Lawley Trace 2.51 100.39 3 120 <.001 

Roy's Greatest Root 2.51 100.39 3 120 <.001 
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Appendix B.2 Results for Power  

Appendix Table 15 Mean Power Rates (%), without Impact 

Sample Size DIF% Magnitude DIF 

Patterns 

HGLM1 HGLM4 LR GMH 

R400/F100 20% 0.2 Constant 8 12 12 10 

   Balanced 4 6 7 33 

   Unbalanced 4 7 7 12 

  0.6 Constant 50 65 60 47 

   Balanced 7 10 13 100 

   Unbalanced 8 15 13 58 

 40% 0.2 Constant 8 12 8 7 

   Balanced 4 5 7 33 

   Unbalanced 4 6 6 12 

  0.6 Constant 45 64 38 29 

   Balanced 8 12 12 100 

   Unbalanced 8 14 9 56 

R250/F250 20% 0.2 Constant 11 16 16 12 

   Balanced 4 5 5 54 

   Unbalanced 5 7 7 14 

  0.6 Constant 67 85 77 68 

   Balanced 14 19 16 100 

   Unbalanced 14 24 23 81 
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 40% 0.2 Constant 11 17 11 9 

   Balanced 5 6 6 55 

   Unbalanced 6 8 7 15 

  0.6 Constant 63 84 53 43 

   Balanced 10 12 11 100 

   Unbalanced 21 32 21 79 

R800/F200 20% 0.2 Constant 13 22 19 14 

   Balanced 4 6 7 64 

   Unbalanced 7 8 7 19 

  0.6 Constant 73 90 85 76 

   Balanced 12 18 18 100 

   Unbalanced 22 38 33 92 

 40% 0.2 Constant 11 19 11 10 

   Balanced 6 6 7 63 

   Unbalanced 4 7 5 19 

  0.6 Constant 71 91 63 52 

   Balanced 9 13 13 100 

   Unbalanced 23 35 21 86 

R500/F500 20% 0.2 Constant 19 29 24 18 

   Balanced 6 6 6 86 

   Unbalanced 7 10 10 27 

  0.6 Constant 89 98 96 93 

   Balanced 7 11 8 100 
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   Unbalanced 27 39 39 97 

 40% 0.2 Constant 16 27 16 13 

   Balanced 5 7 7 86 

   Unbalanced 6 10 8 25 

  0.6 Constant 91 99 81 72 

   Balanced 11 16 13 100 

   Unbalanced 40 58 40 97 

R4000/F1000 20% 0.2 Constant 46 62 62 50 

   Balanced 6 12 10 100 

   High 

unbalanced 

14 16 23 75 

  0.6 Constant 100 100 100 100 

   Balanced 15 23 23 100 

   High 

unbalanced 

74 82 81 100 

 40% 0.2 Constant 50 59 41 31 

   Balanced 7 10 11 100 

   High 

unbalanced 

14 35 15 72 

  0.6 Constant 100 100 100 100 

   Balanced 18 29 27 100 

   High 

unbalanced 

69 87 63 100 
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R2500/F2500 20% 0.2 Constant 67 86 84 74 

   Balanced 4 6 6 100 

   High 

unbalanced 

27 35 38 91 

  0.6 Constant 100 100 100 100 

  0.6 Balanced 54 65 63 100 

  0.6 High 

unbalanced 

86 97 94 100 

 40% 0.2 Constant 66 88 59 48 

   Balanced 7 10 11 100 

   High 

unbalanced 

39 43 22 88 

  0.6 Constant 100 100 100 100 

   Balanced 41 49 43 100 

   High 

unbalanced 

98 100 96 100 
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Appendix Table 16 Mean Power Rates (%), with Impact = 1 

Sample Size DIF% Magnitude DIF 

Patterns 

HGLM1 HGLM4 LR GMH 

R400/F100 20% 0.2 Constant 9 14 13 10 

   Balanced 5 7 7 33 

   Unbalanced 4 5 6 12 

  0.6 Constant 41 58 49 47 

   Balanced 6 9 10 100 

   Unbalanced 4 8 7 58 

 40% 0.2 Constant 8 12 9 7 

   Balanced 6 8 8 33 

   Unbalanced 4 7 5 12 

  0.6 Constant 42 63 33 29 

   Balanced 6 9 10 100 

   Unbalanced 5 9 6 56 

R250/F250 20% 0.2 Constant 11 15 12 12 

   Balanced 6 9 8 54 

   Unbalanced 4 7 6 14 

  0.6 Constant 65 88 69 68 

   Balanced 8 10 11 100 

   Unbalanced 6 11 15 81 

 40% 0.2 Constant 11 16 10 9 

   Balanced 5 8 6 55 
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   Unbalanced 5 7 6 15 

  0.6 Constant 60 82 45 43 

   Balanced 8 10 9 100 

   Unbalanced 10 15 14 79 

R800/F200 20% 0.2 Constant 14 22 17 14 

   Balanced 8 9 10 64 

   Unbalanced 4 5 6 19 

  0.6 Constant 69 86 78 76 

   Balanced 10 13 14 100 

   Unbalanced 9 17 16 92 

 40% 0.2 Constant 11 19 14 10 

   Balanced 6 10 8 63 

   Unbalanced 4 6 5 19 

  0.6 Constant 64 84 57 52 

   Balanced 8 11 13 100 

   Unbalanced 11 17 13 86 

R500/F500 20% 0.2 Constant 21 41 22 18 

   Balanced 7 10 7 86 

   Unbalanced 6 7 8 27 

  0.6 Constant 88 99 92 93 

   Balanced 10 17 8 100 

   Unbalanced 13 26 25 97 

 40% 0.2 Constant 18 34 15 13 
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   Balanced 7 11 8 86 

   Unbalanced 6 8 7 25 

  0.6 Constant 88 99 71 72 

   Balanced 11 14 12 100 

   Unbalanced 19 32 24 97 

R4000/F1000 20% 0.2 Constant 46 67 61 50 

   Balanced 11 13 16 100 

   High 

unbalanced 

9 17 19 75 

  0.6 Constant 100 100 100 100 

   Balanced 28 35 40 100 

   High 

unbalanced 

39 57 56 100 

 40% 0.2 Constant 47 62 43 31 

   Balanced 13 23 15 100 

   High 

unbalanced 

10 30 14 72 

  0.6 Constant 100 100 99 100 

   Balanced 25 39 39 100 

   High 

unbalanced 

38 65 43 100 

R2500/F2500 20% 0.2 Constant 71 94 78 74 

   Balanced 12 29 6 100 
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   High 

unbalanced 

16 31 28 91 

  0.6 Constant 100 100 100 100 

  0.6 Balanced 19 27 36 100 

  0.6 High 

unbalanced 

47 74 70 100 

 40% 0.2 Constant 67 90 54 48 

   Balanced 14 23 13 100 

   High 

unbalanced 

22 36 17 88 

  0.6 Constant 100 100 100 100 

   Balanced 31 42 35 100 

   High 

unbalanced 

81 97 78 100 
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Appendix Table 17 Means and Standard Deviations for Power 

Source   N Mean SD 

Impact    

Impact = 0              288 .42 .36 

Impact =1 288 .39 .35 

    

Sample size     

500 192 .25 .27 

1000 192 .35 .34 

5000 192 .61 .34 

    

Sample size ratio    

1:1 288 .44 .36 

4:1 288 .36 .33 

    

Percentage of DIF    

20% 288 .41 .36 

40% 288 .39 .35 

    

Magnitude     

.2 288 .25 .26 

.6 288 .56 .36 
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DIF Pattern    

constant 192 .55 .34 

Balance  192 .32 .35 

High-Unbalanced 192 .34 .32 

    

Method     

HGLM1 144 .28 .30 

HGLM4 144 .36 .33 

Logistic Regression 144 .31 .30 

GMH 144 .66 .34 
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Appendix Table 18 ANOVA Results for Power 

Source DF SS MS F p-

value 

𝜂𝜂𝑝𝑝2 

Impact 1 0.09 0.09 4.87 0.03 0.04 

Sample size 2 12.99 6.50 357.66 <.001 0.85 

Sample size ratio 1 0.90 0.90 49.44 <.001 0.28 

% of DIF 1 0.05 0.05 2.96 0.09 0.02 

magnitude 1 14.47 14.47 796.49 <.001 0.86 

pattern 2 5.97 2.98 164.27 <.001 0.72 

Residuals 125 2.27 0.02    

       

MANOVA results for 

interactions 

Num 

DF 

Den 

DF 

Wilk’s 

Lambda 

F p-

value 

𝜂𝜂𝑝𝑝2 

Method*sample size*pattern 12 325.72 0.70 3.84 <.001 0.05 

Method*sample size*magnitude 6 246 0.37 26.13 <.001 0.32 

Method*% of DIF *Pattern 6 246 0.77 5.62 <.001 0.03 

Method*Magnitude*Pattern 6 264 0.68 8.54 <.001 0.12 

 

MANOVA test for Method 

Statistics Value  F Value Num DF Den DF p-value 

Wilks' Lambda 0.05 758.51 3 123 <.001 

Pillai's Trace 0.95 758.51 3 123 <.001 

Hotelling-Lawley Trace 18.50 758.51 3 123 <.001 

Roy's Greatest Root 18.50 758.51 3 123 <.001 
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Appendix C SAS Syntax Sample 

Appendix C.1 Sample Syntax for Study 1 

*HGLM 1-item anchor no impact; 
%do j=1 %to 20; 
ods output ParameterEstimates=fixed; 
ods output convergencestatus=converge; 
proc glimmix data=long order=data method=rspl maxopt=1000 PCONV=.001 
ABSPCONV=.001 noclprint noitprint; 
class subid r(reference="R&j") group; 
model resp= r group r*group/dist=multinomial solution link=clogit; 
random intercept/subject=subid; 
run; 
 
  



 150 

Appendix C.2 Sample Syntax for Study 2 

*HGLM with no impact; 
ods output ParameterEstimates=fixed1; 
ods output convergencestatus=converge1; 
proc glimmix data=long method=laplace maxopt=1000 noclprint noitprint  ;*1 
item anchor; 
class subid r(reference= first) group; 
model resp = r group r*group/dist=multinomial solution link=clogit; 
random intercept/subject=subid type=un g; 
run; 
 
ods output ParameterEstimates=fixed4; 
ods output convergencestatus=converge4; 
proc glimmix data=long method=laplace maxopt=1000 noclprint noitprint  ;*4 
item anchor; 
class subid r group; 
model resp = r5-r20 group r5*group r6*group r7*group r8*group r9*group 
r10*group 
r11*group r12*group r13*group r14*group r15*group r15*group r16*group 
r17*group r18*group r19*group r20*group 
/dist=multinomial solution link=clogit; 
random intercept/subject=subid type=un g; 
run; 
 
*GMH *********************; 
data total; * no impact; 
set rfd; 
total=sum(of r1-r20); run; 
proc rank data=total out=rank group=10; 
var total; 
ranks stratun; 
run; 
%do d=1 %to 20; 
ods output cmh=gmhout&d; * no impact; 
proc freq data=rank; *GMH; 
tables stratun*group*r&d/CMH; 
run; 
%end; 
 
*LOGISTIC *********************; 
%do d=1 %to 20; 
proc logistic data=total;*no impact; 
model r&d=total group; 
ods output parameterestimates=logout&d; 
run; 
%end; 
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