
Algorithms and Optimizations for Incremental

Window-Based Aggregations

by

Anatoli U. Shein

B.S., Duquesne University, 2012

M.S., University of Pittsburgh, 2018

Submitted to the Graduate Faculty of

the School of Computing and Information in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2019

UNIVERSITY OF PITTSBURGH

SCHOOL OF COMPUTING AND INFORMATION

This dissertation was presented

by

Anatoli U. Shein

It was defended on

September 3rd 2019

and approved by

Dr. Panos K. Chrysanthis, Department of Computer Science, School of Computing and

Information

Dr. Alexandros Labrinidis, Department of Computer Science, School of Computing and

Information

Dr. Adam J. Lee, Department of Computer Science, School of Computing and Information

Dr. Vladimir I. Zadorozhny, Department of Informatics and Networked Systems, School of

Computing and Information

Dissertation Director: Dr. Panos K. Chrysanthis, Department of Computer Science, School

of Computing and Information

ii

Algorithms and Optimizations for Incremental Window-Based Aggregations

Anatoli U. Shein, PhD

University of Pittsburgh, 2019

Online analytics, in most advanced scientific, business, and social media applications, rely

heavily on the efficient execution of large numbers of Aggregate Continuous Queries (ACQs).

ACQs continuously aggregate streaming data and periodically produce results such as max

or average over a given window of the latest data.

Incremental Evaluation is widely accepted for processing ACQs . It involves storing and

reusing results of calculations performed over the unchanged parts of the window, rather

than performing the re-evaluation of the entire window after each update. Recently proposed

Incremental Evaluation techniques achieve high throughput and low latency in both single-

and multi-query environments. In multi-query environments, these techniques share partial

aggregates among all of the registered queries (i.e., all the queries are merged and processed as

a single execution tree) to achieve maximum sharing. However, it was shown that maximum

sharing does not always offer maximum performance, and selective sharing achieves better

results by splitting the query load into multiple execution trees. To strike a balance between

non-shared and fully shared query executions, the notion of Weavability was proposed, which

led to several new Multi-Query optimizers.

In this dissertation, we identify that (1) the current Incremental Evaluation techniques

fail to exploit the semantics of aggregation operations, leaving considerable room for im-

provement, and (2) the Weavability-based Multi-Query optimizers target the Incremental

Evaluation techniques that are agnostic towards the algebraic properties of the operations,

preventing them from achieving improved throughput and latency, and perform Weavabil-

ity calculations in an inefficient and resource-intensive way, hindering optimizers’ scalability

with the increasing ACQ load.

Motivated by the above observations, in this dissertation we re-examine how the principle

of sharing is applied in Incremental Evaluation techniques as well as in the Multi-Query opti-

mizers. Our hypothesis is that sliding-window aggregation processing can benefit from (1)

iii

improving the performance of Incremental Evaluation by exploiting the algebraic properties

of ACQ ’s underlying aggregate operations and (2) developing new Multi-Query optimizers

that can target multi-node distributed environments and efficiently generate high quality

execution plans by exploiting the new Incremental Evaluation techniques.

This dissertation research contributes new algorithms for both Incremental Evaluation

(FlatFIT and SlickDeque techniques), and Multi-Query optimization (Formula F1, Dis-

tributed ACQ Optimizers, and New Cost Estimation Methods). We evaluate all our con-

tributions both theoretically in terms of time and space complexities, and experimentally

in terms of throughput, latency, cost minimization, and load balancing using both real and

synthetic datasets.

iv

Table of Contents

Preface . xiii

1.0 Introduction . 1

1.1 Problem Statement . 3

1.1.1 Shortcomings of Incremental Evaluation 3

1.1.2 Shortcomings of Multi-Query Optimization 3

1.2 Our Approach . 5

1.3 Contributions . 6

1.4 Roadmap . 7

2.0 Background & Related Work . 9

2.1 Algebraic Properties . 9

2.2 Assumptions . 10

2.3 Incremental Evaluation Taxonomy . 11

2.3.1 Partial aggregation . 12

2.3.2 Final Aggregation . 14

2.4 Multi-Query Optimization . 21

2.4.1 Shared Processing of ACQs . 21

2.4.2 Weavability . 23

2.5 Other Related Work . 24

2.6 Summary . 25

3.0 FlatFIT: Accelerated Incremental Sliding-Window Aggregation For Real-

Time Analytics . 27

3.1 Introduction . 27

3.2 FlatFIT Operation . 28

3.2.1 The FlatFIT Algorithm . 28

3.2.2 Optimization . 36

3.3 Complexity Analysis . 37

v

3.3.1 Time Complexity of FlatFIT . 37

3.3.2 Space Complexity of FlatFIT . 40

3.4 Experimental Evaluation . 41

3.4.1 Experimental Testbed . 41

3.4.2 Experimental Results . 43

3.4.2.1 Exp 1: Single Query Throughput 43

3.4.2.2 Exp 2: Max-Multi-Query Throughput 44

3.4.2.3 Exp 3: Memory Consumption 46

3.5 Summary . 47

4.0 SlickDeque: High Throughput and Low Latency Incremental Sliding-

Window Aggregation . 48

4.1 Introduction . 48

4.2 SlickDeque Operation . 49

4.2.1 The SlickDeque Algorithm . 49

4.2.1.1 SlickDeque for Invertible Aggregates 49

4.2.1.2 SlickDeque for Non-Invertible Aggregates 54

4.3 Complexity Analysis . 60

4.3.1 Time Complexity of SlickDeque . 60

4.3.2 Space Complexity of SlickDeque . 62

4.4 Experimental Evaluation . 63

4.4.1 Experimental Results . 64

4.4.1.1 Exp 1: Single Query Throughput 64

4.4.1.2 Exp 2: Max-Multi-Query Throughput 66

4.4.1.3 Exp 3: Query Processing Latency 67

4.4.1.4 Exp 4: Memory Requirement 69

4.5 Summary . 70

5.0 F1: Accelerating the Optimization of Aggregate Continuous Queries . 72

5.1 Introduction . 72

5.2 Formula 1 (F1) . 73

5.2.1 Bit Set Approach . 73

vi

5.2.2 Case with NO Fragments . 74

5.2.3 Case WITH Fragments . 77

5.2.4 F1 Optimization . 82

5.3 Complexity Analysis . 82

5.4 Experimental Evaluation . 87

5.4.1 Experimental Testbed . 87

5.4.2 Experimental Results . 88

5.4.2.1 Exp 1: Number of ACQs Scalability 89

5.4.2.2 Exp 2: Max Slide Scalability 90

5.4.2.3 Exp 3: Input Rate Scalability 90

5.4.2.4 Exp 4: Slide Skew Sensitivity 91

5.4.2.5 Exp 5: Overlap Factor Sensitivity 92

5.4.2.6 Experimental Results Summary 93

5.5 Summary . 94

6.0 Processing of Aggregate Continuous Queries in a Distributed Environ-

ment . 95

6.1 Introduction . 95

6.2 System Model and Execution Plan Quality 96

6.3 Taxonomy of Optimizers . 98

6.4 Non-Cost-based Optimizers . 99

6.5 Cost-based Optimizers . 99

6.5.1 Category “To Lowest” . 100

6.5.2 Category “To Nodes” . 101

6.5.3 Category “Inserted” . 103

6.6 Experimental Evaluation . 106

6.6.1 Experimental Setup . 106

6.6.2 Experimental Results . 106

6.6.2.1 Exp 1: Evaluation of Distributed Environment Optimizers . . 106

6.6.2.2 Exp 2: Load Balancing . 110

6.7 Summary . 111

vii

7.0 Multi-Query Optimization of Incrementally Evaluated Sliding-Window

Aggregations . 112

7.1 Introduction . 112

7.2 Estimating Ω . 113

7.3 Experimental Evaluation . 117

7.3.1 Plan Generation Setup . 118

7.3.2 Plan Generation Results . 118

7.3.2.1 Exp 1: Number of ACQs Sensitivity 119

7.3.2.2 Exp 2: Max Slide Sensitivity 120

7.3.2.3 Exp 3: Overlap Factor Sensitivity 121

7.3.2.4 Exp 4: Input Rate Sensitivity 122

7.3.2.5 Exp 5: Slide Skew Sensitivity 123

7.3.2.6 Plan Generation Summary. 123

7.3.3 Practical Evaluation Setup . 124

7.3.4 Practical Evaluation Results . 124

7.3.4.1 Exp 6: WeaveShare: estimated vs actual throughput 125

7.3.4.2 Exp 7: TriWeave: estimated vs actual throughput 125

7.3.4.3 Practical Evaluation Summary. 126

7.4 Summary . 126

8.0 Conclusions & Future Work . 128

8.1 Summary of Contributions . 128

8.2 Future Work . 131

8.3 Broad Impact . 131

Bibliography . 133

viii

List of Tables

1 Partial Aggregation Technique Comparison . 12

2 Final Aggregation Complexities. 15

3 Final Aggregation Complexities (Complexities of the existing techniques are

derived in Section 2.3.2). 37

4 Final Aggregation Complexities. Our contributions are bolded. Complexities

of the existing techniques are derived in Section 2.3.2. 60

5 Experiment Parameters . 88

6 Experimental Results . 94

7 Optimizer Categories . 98

8 Experimental Parameter Values (Total number of combinations = 256) 107

9 WGI vs WGTN breakdown (for 256 experiments) 107

10 Average Plan Generation Runtime (for 256 experiments) 109

11 Estimated Final Aggregation Costs . 117

12 Experiment Parameters . 119

13 Practical Evaluation Parameters . 124

ix

List of Figures

1 Incremental Evaluation Taxonomy. Our contributions are marked with squares. 11

2 Panes Technique (range=4 and slide=1) . 13

3 Paired Window Technique (range=14 and slide=8) 13

4 Cutty-slicing Technique (range=5 and slide=3) 14

5 FlatFAT Technique . 17

6 B-Int Technique . 18

7 DABA Technique . 20

8 Shared Processing . 22

9 FlatFIT Technique . 29

10 Example of Panes and FlatFIT algorithms working in a Single Query Environ-

ment (processing just Q1) and in a Multi-Query Environment (processing both

Q1 and Q2) . 33

11 Theoretical operations per slide in a single query environment 38

12 Theoretical throughput in a single query environment running N operations per

second . 38

13 Theoretical operations per slide in a max-multi-query environment 39

14 Theoretical throughput in a max-multi-query environment running N operations

per second . 39

15 Theoretical Memory Usage in GB increments 40

16 Throughput in processed slides per second in single query environment 43

17 Throughput in processed slides per second in max-multi-query environment . . 44

18 FlatFIT / FlatFAT throughput ratio . 45

19 Experimental Memory Usage in GB increments 46

20 Example 5 processing of invertible aggregate queries Q1 and Q2 using Panes

and SlickDeque (Inv) algorithms. 53

21 SlickDeque (Non-Inv) Technique . 54

x

22 Example 6 processing of non-invertible aggregate queries Q1 and Q2 using Panes

and SlickDeque algorithms. 58

23 Throughput in processed queries per second in single query environment (Sum) 64

24 Throughput in processed queries per second in single query environment (Max) 65

25 Throughput in processed slides per second in multi-query environment (Sum) . 66

26 Throughput in processed slides per second in multi-query environment (Max) . 67

27 Latency in nanoseconds per query answer . 68

28 Latency spikes in nanoseconds per query answer 68

29 Experimental Memory Usage in Gigabyte increments 69

30 Marking edges produced by five different ACQs with NO fragments in the com-

posite slide, represented by a Bit Set . 75

31 F1 converging to the solution for 20 ACQs in 20 steps 77

32 Marking edges produced by four different ACQs WITH fragments in the com-

posite slide, represented by a Bit Set . 78

33 (slide 3, shift 0) and (slide 6, shift 3) DO overlap, but (slide 3, shift 0) and (slide 6,

shift 2) DO NOT . 79

34 Number of operations needed by Bit Set and F1 for plan generation. Top labels

show BitSet/F1 ratio . 86

35 Scalability of the number of ACQs . 89

36 Scalability of the maximum slide length . 90

37 Scalability of the input rate . 91

38 Sensitivity to the zipf distribution skew . 92

39 Sensitivity to the maximum overlap factor . 93

40 Average Plan Quality (from 256 experiments) where 0% and 100% are

the average plan costs of all best and worst plans, respectively, across all

optimizers. The error bars show the standard deviations Consistent with the

definition of a standard deviation, about 68% of all plans produced by these

optimizers lie in this margin. 108

41 Costs per node in a 4-node system . 110

xi

42 Plan cost with increasing number of queries using WeaveShare (left) and Tri-

Weave(right) . 119

43 Plan cost with increasing max slide using WeaveShare (left) and TriWeave(right)120

44 Plan cost with increasing max overlap usingWeaveShare (left) and TriWeave(right)121

45 Plan cost with increasing input rate using WeaveShare (left) and TriWeave(right)122

46 Plan cost with increasing zipf using WeaveShare (left) and TriWeave(right) . . 123

47 WeaveShare: estimated throughput in 1/cost_unit per second (left), actual

throughput in results per second (right) . 125

48 TriWeave: estimated throughput in 1/cost_unit per second (left), actual through-

put in results per second (right) . 126

49 Incremental Evaluation Taxonomy and Applicability. Our contributions are

bolded. 130

xii

Preface

Above all, I would like to express my appreciation to my academic advisor Dr. Panos

Chrysanthis. His profound belief in my work and irreplaceable guidance were essential for

the completion of this dissertation. Also, I gratefully acknowledge Dr. Alexandros Labrinidis

for his valuable input to my research, and my committee members Dr. Adam J. Lee and Dr.

Vladimir Zadorozhny for their insightful feedback.

I would like to thank all my friends and colleagues that I met throughout my PhD

journey for their constructive criticism and excellent cooperation, especially Briand Djoko,

Cory Thoma, Daniel Petrov, Hany Saleeb, Nickolaos Katsipoulakis, Rakan Alesghayer, and

Salim Malakouti. It was always helpful to bounce ideas off of them, and if I ever lost interest,

they kept me motivated.

I dedicate this work to my parents Liudmila and Vladimir, and my amazing wife Chris-

tine. Their unwavering belief in me kept me going through all of the hardships that I faced

along the way. Thank you.

xiii

1.0 Introduction

Data stream processing has gained momentum in many applications that require quick

responses based on incoming high velocity data flows. A representative example is a stock

market application, where multiple clients monitor the price fluctuations of the stocks. In

this setting, a system needs to be able to efficiently answer analytical queries (e.g., average

stock revenue, profit margin per stock, etc.) for different clients, each one with (potentially)

different timing requirements. Efficient data stream processing is also important in monitor-

ing applications and online analytics in the fields of health care, science, social media, and

network control.

Data Stream Management Systems (DSMS) were proposed in academia [1, 2, 18, 22, 40,

11, 10] and adopted in industry [48, 3, 8, 32, 37, 6, 56, 14] as the most suitable systems for

handling such data flows on-the-fly and in real time. Traditional Database Management Sys-

tems (DBMSs) struggle to meet the strict timing requirements of processing online analytics

on such data streams because they need to store the data into the system before processing it,

which incurs high I/O and computational costs. Conversely, in DSMSs clients register their

analytical queries on incoming data streams, which are processed in main memory continu-

ously by aggregating streaming data as it arrives, as such these queries are called Aggregate

Continuous Queries (ACQs). ACQs are typically associated with a range (or window) (r)

and a slide (s) which can be either tuple count or time-based. A slide denotes the period

at which an ACQ updates its outcome; a range is the window over which the statistics are

calculated. If the range is equal to or smaller than the slide, it is called a Tumbling Window,

otherwise a Sliding Window. In this work we focus on sliding-window aggregations (also

known as SWAG [45]) since it is the most commonly used case.

Example 1 Consider a stock trading application monitoring average stock prices every 3

seconds for the past 5 seconds. Such an application submits a time-based ACQ with SWAG

specifications of a 5 second range and 3 second slide. �

An ACQ requires the DSMS to maintain state over time while performing aggregations.

Normally, DSMSs only keep the window of the most recent data items, and when new data

1

arrives, the window slides by discarding the data items that fall outside of the window

specification and filling in the new data items. This allows the ACQ to execute over the

updated window and reflect recent changes. It is clear that the greater the range of an ACQ ,

the higher its cost is to maintain in the system since more data is kept in memory. Similarly,

the smaller the slide of an ACQ , the higher its computational cost since the query result

needs to be evaluated more frequently. It has been shown that in SWAG processing it is

beneficial to utilize Incremental Evaluation (IE), which operates by maintaining and reusing

calculations performed over the unchanged parts of the window, rather than executing the

re-evaluation of the entire window after each update [15, 34]. IE is also referred to as Two-

Ops because it is typically implemented as two operators and executes in two phases by (1)

running partial aggregations on the data while accumulating it and (2) producing the answer

by performing the final aggregation over the partial results [31, 33].

Initially SWAG processing assumed a single-node (CPU) processing infrastructure. The

advances in multi-core architectures and the high demand in processing huge volumes of

ACQs [3] led to the deployment of ACQs on multi-node processing environments such

as multi-core, distributed, multi-tenant cloud, or high performance computing (HPC) in-

frastructures. In a single-query setting, the focus is on supporting one long-running, high

accuracy ACQ by re-using its intermediate calculations and parallelizing the aggregation

operators [29, 30]. In a multi-query (MQ) setting, whether single or multi-node, multiple

ACQs with different window properties are executed simultaneously (which in practice can

reach millions of simultaneous queries [21, 23]) and for an extended period of time, until

they are explicitly terminated. In this execution environment ACQs often calculate similar

(or algebraically compatible) aggregation operations on the same stream. It has been shown

that such ACQs can be selectively combined into execution trees (that form an execution

plan) to increase the processing efficiency by sharing partial aggregations [20]. Clearly, it is

crucial to be able to generate high quality execution plans quickly. Unfortunately, this has

been proven to be NP-hard [57], and currently only approximation algorithms can produce

acceptable execution plans. Such approximation algorithms are utilized in the state of the

art MQ optimizers WeaveShare [20] and TriWeave [19].

2

1.1 Problem Statement

We distinguish the open problems of the current SWAG processing along the following

two dimensions of sliding-window aggregation processing: (1) Incremental Evaluation and (2)

Multi-Query Optimization. In this section we identify their shortcomings, which motivated

our contributions.

1.1.1 Shortcomings of Incremental Evaluation

S1. Current IE techniques do not scale with increasing window sizes.

The state-of-the-art IE solutions for processing ACQs are FlatFAT [47], TwoStacks [45],

and DABA [45]. Each of these solutions aims to increase ACQ processing throughput while

minimizing latency, however they leave substantial room for improvement. FlatFAT utilizes a

tree structure for reusing calculations, yielding logarithmic time complexity (i.e., O(log(n))

where n is the size of the window), which does not scale with increasing window sizes.

The other two techniques, TwoStacks and DABA, both have constant time complexities,

however TwoStacks introduces large latency spikes in ACQ processing due to the calculation

imbalance between its update operations, and DABA has a high constant in its complexity

due to its amortization strategy, leading to lower throughputs. That is, the main shortcoming

of the existing IE techniques is scalability, due to falling short of supporting ACQs processing

with high throughput and low latency.

One of the main reasons why the above shortcomings exist is that the current IE tech-

niques process aggregate operations with different algebraic properties uniformly, which rules

out their ability to further improve their performance by taking advantage of optimizations

targeted at specific algebraic properties (e.g., invertibility).

1.1.2 Shortcomings of Multi-Query Optimization

S2. Current IE techniques are not designed for MQ shared processing.

The state-of-the-art IE techniques focus solely on single-query processing where an ACQ is

reusing its intermediate calculations instead of re-evaluating the entire window after each

3

slide. However, most of them fail to consider MQ environments, where multiple ACQs

calculating similar aggregations with different ranges and slides can be processed within the

same data structure and share partial results with each other, achieving higher efficiency.

Even though some IE techniques were developed to operate in MQ environments, their

processing is always shared among all of the ACQs since they all are processed by a single

structure (or execution tree), which forces the maximum level of sharing. However, it was

shown that maximum sharing does not always offer maximum performance, and selective

sharing achieves better results by splitting the query load into multiple execution trees selec-

tively and processing them separately. WeaveShare [20] and TriWeave [19] MQ optimizers

were proposed to selectively combine ACQs into execution trees.

S3. Current MQ optimizers do not scale with the increasing number of ACQs.

State-of-the-art WeaveShare and TriWeave produce high quality execution plans using the

Weavability concept, and are theoretically guaranteed to approximate the optimal cost-

savings to within a factor of four for practical variants of the problem [12]. However, they

do not scale with the increasing ACQ load due to the bottlenecks in their resource-intensive

Weavability calculations, which currently are performed using an inefficient count-based ap-

proach to make collocation decisions.

S4. Current MQ optimizers are oblivious to distributed processing capabilities.

The state-of-the-art MQ optimizers are also targeting only single-node DSMSs , failing to ex-

ploit the availability of multi-node (multi-core and multi-processor) distributed environments

for the generation of cost-effective, high quality execution plans of ACQs .

S5. Current MQ optimizers do not support state-of-the-art IE techniques.

Ultimately, the above-mentioned state-of-the-art MQ optimizers currently make their query

collocation decisions based on the outdated IE technique, Panes. That is, the cost estimation

formulas of the state-of-the-art MQ optimizers are not applicable for use with the new IE

techniques because they perform different (smaller) numbers of final aggregation operations

per window slide.

The shortcomings outlined above motivated the research in this dissertation.

4

1.2 Our Approach

In order to address S1 and S2 we investigate how novel (not tree-based) ACQ processing

structures and algebraic query semantics can be utilized in new IE techniques leading to

improved scalability and enabled support for MQ processing.

We attack S3 by researching a new way of identifying window specification overlaps in a

more efficient (and not count-based) way. Specifically, we develop a formula that computes

the number of overlaps mathematically rather than materializing a composite slide and

counting them directly.

We examine challenges of S4 by tailoring new collocation decision algorithms for dis-

tributed systems. That is, we attempt to minimize the total execution plan cost (which

allows processing more ACQs) while also balancing the workload among computation nodes

evenly (which prevents the need to over-provision nodes in order to cope with unbalanced

workloads).

Finally, we explore the possible solutions for S5 by scrutinizing the behaviors of new

IE techniques in MQ settings and exploring how they can be used in MQ optimization. In

order for an IE technique to be supported by an MQ optimizer, two requirements must be

met: (1) the IE technique must support MQ processing within its structure, and (2) the MQ

optimizer must be able to estimate calculation costs of multiple ACQs processed together

using this technique. Thus, the opportunity arises to explore the suitability of new and more

efficient IE techniques for use in combination with the MQ optimizers.

Thereupon, our hypothesis is that sliding-window aggregation processing can benefit

from (1) improving the performance of Incremental Evaluation by exploiting the algebraic

properties of ACQ ’s underlying aggregate operations and (2) developing new Multi-Query

optimizers that can target multi-node distributed environments and efficiently generate high

quality execution plans by exploiting the new Incremental Evaluation techniques.

5

1.3 Contributions

This dissertation contributes new methods and understandings of both dimensions of

Incremental Evaluation (IE) and Multi-Query (MQ) optimization. These contributions sup-

port our hypothesis and address the shortcomings of the current state-of-the-art techniques.

1. A taxonomy of all IE techniques available today and their breakdown in terms of appli-

cability, complexity, and usability in MQ environments.

2. A new efficient final aggregation technique FlatFIT that allows higher ACQ process-

ing throughput (partially addresses S1) than FlatFAT which was the state-of-the-art

technique at the time. FlatFIT reduces the number of partials used in computing a fi-

nal aggregation by dynamically storing the intermediate results and their corresponding

pointers in a novel indexing structure. The indexing structure indicates how far ahead

FlatFIT can skip in each step of its calculation. FlatFIT is applicable for MQ processing

(addresses S2). We experimentally show that FlatFIT achieves up to a 17x throughput

improvement over FlatFAT for the same input workload while using less memory [43].

3. Another new final aggregation technique, SlickDeque, that maintains both high through-

put and low latency in ACQ processing by treating ACQs differently based on their

invertibility property (fully addresses S1). The invertible operations are processed using

SlickDeque (Inv), our new modified Panes (Inv) approach. The non-invertible ACQs are

processed with SlickDeque (Non-Inv), our novel deque-based algorithm that intelligently

maintains and utilizes intermediate partial aggregates, allowing a greater level of reuse

of previously calculated results. It is also applicable for MQ processing (addresses S2).

We show that SlickDeque maintains 283% lower latency spikes on average while achiev-

ing up to 345% throughput improvement over the state-of-the-art approaches along with

requiring up to 5 times less memory [44].

4. A novel closed formula, F1, that accelerates all of the Weavability-based Multi-Query

optimizers by replacing the iterative and calculation-heavy Bit Set method with a closed

formula for Weavability calculations (addresses S3). We showed that F1 can reduce the

computation time of any technique that combines partial aggregations within composite

6

slides of multiple ACQs by up to 60,000x, and that it is superior to the current ap-

proach [41] in both time and space complexities.

5. A set of novel Weavability-based Multi-Query optimizers that allow processing ACQs

in a distributed environment (address S4), including Weave-Group to Nodes (WGTN)

and Weave-Group Inserted (WGI) optimizers, that produce plans of significantly higher

quality than the rest of the optimizers by minimizing the total cost (whereWGTN is best

in 90% cases) and achieving better load balancing (whereWGI is best in 80% cases) [42].

6. A theoretical analysis of all of the available IE techniques that determines their average

operational cost (Ω) per slide given any set of input ACQs (addresses S5) and allows

estimating their performance on average within 22% of the actual performance.

7. A new MQ optimization implementation that incorporates the new IE techniques into

the into the state-of-the-art MQ optimizers WeaveShare and TriWeave using the theo-

retical study mentioned in Contribution 6. The new implementations of WeaveShare and

TriWeave reduce execution costs by up to 270,000x compared to the previous implemen-

tations (addresses S5).

We support all of our contributions by carrying out their extensive experimental eval-

uation using both synthetic and real data sets. Towards this we develop two experimental

testbeds: (1) a C++ based execution platform for measuring the performance of different IE

techniques, and (2) a Java based MQ optimization platform for generating execution plans

by selectively combining large numbers of ACQs into execution trees.

1.4 Roadmap

In Chapter 2 we summarize the related work, which constitutes the background of our

work, and we introduce our taxonomy of IE techniques. We also state our assumptions

about processing SWAG. We present and evaluate theoretically and experimentally our new

Incremental Evaluation techniques FlatFIT and SlickDeque in Chapters 3 and 4, respectively.

Our novel formula, F1, for accelerating Weavability-based MQ optimizers is proposed in

Chaper 5, our newMQ optimizers for distributed environment in Chapter 6, and in Chapter 7

7

we present our solution that combines the new IE techniques with MQ optimizers. We

conclude and provide an overview of proposed future work in Chapter 8.

8

2.0 Background & Related Work

In this chapter we review the underlying concepts of our work, which are the Incremental

Evaluation for sliding-window computation, and Weavability-based Multi-Query optimizers.

We also review other related work.

2.1 Algebraic Properties

One of the important metrics that allows for the evaluation of the difficulty of process-

ing a particular ACQ incrementally is the algebraic properties of the underlying aggregate

operation. Based on classification from [17], all aggregate operations are divided into three

broad categories: distributive, algebraic, and holistic.

• Distributive aggregation means that the aggregation for the set S can be computed

from two of the same aggregations of subsets S1 and S2, where subsets S1 and S2 were

constructed by splitting S in two. For example, if we have a set of 10 numbers and the

Sum of the first 7 is 20, and the Sum of the 3 remaining is 15, then we can get the Sum

of all 10 numbers by adding 20 and 15. Therefore, Sum is a distributive aggregation.

• Algebraic aggregation means that the aggregation can be computed from a number of

distributive aggregations, e.g., Average, which is calculated from Sum and Count. The

list of common distributive aggregations includes Count, Sum, Sum of Squares, Product,

and Max. By combining these distributive aggregations we can calculate some commonly

used algebraic aggregations such as: Average (Count and Sum), Standard Deviation (Sum

of Squares, Sum, and Count), Geometric Mean (Product and Count), and Range (Max

and Min).

• Holistic aggregations are neither distributive nor algebraic, e.g., Median, Top-K, Quan-

tile, Collect Distinct. Holistic aggregates are out of the scope for this work since they

require specifically tailored algorithms which cannot be generalized [17].

9

In this dissertation we will focus on optimizing the distributive aggregations; calculating

the algebraic aggregations follows trivially. Distributive aggregations can be further classified

by their mathematical properties: associativity, invertibility, and commutativity. Below we

provide brief definitions of these properties.

• An operation ⊕ is associative if x⊕ (y ⊕ z) = (x⊕ y)⊕ z is true for all x, y, z.

• An operation ⊕ is invertible if there exists an operation 	 such that (x⊕ y)	 y = x for

all x, y, and 	 is feasibly inexpensive.

◦ Note: if operation ⊕ is non-invertible, then x⊕ y = z, where z ∈ {x, y}. This is only

true for non-holistic operations (which we target in this work).

• An operation ⊕ is commutative if x⊕ y = y ⊕ x is true for all x, y.

2.2 Assumptions

In this dissertation we make the following assumptions about processing SWAG:

Query Operation Assumptions In terms of query operation generality, all of the com-

pared non-naive IE techniques support non-invertible and non-commutative operations while

requiring the operations to be associative. In general, all operations that can be executed on

a window of values are associative. The common non-associative operations such as subtrac-

tion (x− y− z), division (x/y/z), exponentiation (xyz), and some binary operations such as

NAND and NOR, are generally impractical when executed on sets larger than two.

Window Structure Assumptions In non-FIFO window structures, the events of insertion

and expiration are not synchronized, which can cause window overflow situations when there

are not enough expiring tuples (or partial aggregates) to make room in the window for the

insertions. All of the compared approaches, including ours, are able to handle such cases

by performing dynamic resize operations. However in this work we are focusing on the

FIFO window environment which is the most common method of processing sliding-window

aggregations in practice.

Arrival Order Assumptions All of the compared IE techniques allow updates on multiple

10

Figure 1: Incremental Evaluation Taxonomy. Our contributions are marked with squares.

partial aggregates already stored within the window. However in this dissertation we focus

on the classic streaming scenario when all new partial aggregates are processed by the final

aggregator one-by-one as they become available. In such settings the arriving tuples have to

be in-order or slightly out-of-order. As long as the out-of-order tuples are within the same

partial aggregation, the final result will not be affected. If, however, some tuples fall outside

of their partial, inconsistencies in the final result may arise. The mechanism for coping with

such situations (e.g., [46]) are outside of the scope of this dissertation.

Result Accuracy Assumptions In this dissertation we focus on IE techniques that pro-

duce exact answers since it is crucial for many applications (e.g., financial, medical, etc.).

That is, we do not consider approximate calculation methods, which were proposed to save

time and space by sacrificing accuracy [7, 4, 13, 16].

2.3 Incremental Evaluation Taxonomy

In order to provide a better context to our work, we developed a taxonomy of existing

Incremental Evaluation (IE) techniques (illustrated in Figure 1). The IE techniques can

be broadly divided into partial aggregation and final aggregation categories. The final ag-

gregations can be further distinguished into Naive, Tree-based, Throughput Optimized, and

Latency Optimized approaches.

11

Table 1: Partial Aggregation Technique Comparison

Partial Aggregation # of partials per window # of partials per window

Algorithm when r%s = 0 when r%s 6= 0

Panes r/s r/GCD(r, s)

Pairs r/s 2 · br/sc+ 1

Cutty-slicing r/s dr/se

2.3.1 Partial aggregation

Partial aggregation can be thought of as the buffering of partial results until the query

result needs to be returned by the final aggregation. Since partial aggregation allows buffering

results that are later processed by a more expensive final aggregator, each buffered partial

aggregate (or simply partial) is reused multiple times as part of different final aggregations,

alleviating the use of CPU and memory resources. When processing time-based windows,

partial aggregation also helps to mask bursty inputs. Clearly, it is beneficial to reduce

the number of produced partials in order to minimize the amount of work done by the

final aggregator. To this end the following partial aggregation techniques were proposed

(summarized in Table 1).

Panes [33] was proposed as the first partial aggregation technique for processing ACQs

efficiently. The idea behind it is to partition the incoming datastream into “panes” (we refer

to them as partials), and maintain just one aggregate value for each partial. This way every

incoming tuple affects the aggregate value for just the current partial, and when the whole

aggregate is due to be reported, the answer is assembled by performing the final aggregation

over all of the partials in the current window. Therefore, each new partial is reused multiple

times for different final aggregations.

For example, in Figure 2 an ACQ is processed with a range of 4 partials and a slide

of 1. This way each final aggregation assembles a query answer from the 4 most recent

12

Figure 2: Panes Technique (range=4 and slide=1)

Figure 3: Paired Window Technique (range=14 and slide=8)

partials. Notice that partial P4 is used 3 times (during 3 consecutive slides) as part of the

final aggregations F1, F2, and F3.

The number of partials per window is range/slide if the range is divisible by slide,

otherwise it is range/GCD(range, slide), where GCD is the Greatest Common Divisor.

Paired Windows (or simply Pairs [31]) was a technique introduced to reduce the number of

partials in a window in cases where the range is not divisible by the slide. It works by splitting

each slide into two fragments of different lengths as illustrated in Figure 3, where fragment

lengths f1 and f2, were calculated as follows: f1 = range%slide and f2 = slide − f2 (in

Figure 3, f1 = 2 and f2 = 6). This way each window is composed of 2 · br/sc + 1 partials,

which significantly reduces the memory consumption and accelerates final aggregations.

13

Figure 4: Cutty-slicing Technique (range=5 and slide=3)

Cutty-slicing was proposed as part of the Cutty optimizer [9]. The advantage of Cutty-

slicing is that it starts each new partial only at positions that signify the beginning of

new windows. This way the final aggregation can execute in the middle of the partial

aggregation calculation by accessing the current value in the partial. An example of this is

shown in Figure 4, where partials of size 3 tuples are maintained, and the final aggregator

assembles the query answer from the current partial value (of 2 tuples) and the previous

partial aggregate (of 3 tuples). This reduces the number of partials per window to dr/se in

cases where the range is not divisible by the slide at the cost of requiring a more complicated

implementation.

2.3.2 Final Aggregation

The goal of final aggregation is to produce ACQ results by assembling them from the

partials. In this section we describe all of the available final aggregation techniques, and

provide our analysis of their time and space complexities (summarized in Table 2).

Complexity Evaluation We evaluate each algorithm’s time complexity in terms of the

number of aggregate operations it performs per slide to return all query answers given a

window size of n partial aggregates. This metric was chosen because the aggregate operations

are (1) applied directly to the input data, (2) constitute the the bulk of all performed

operations, and (3) their number correlates best with the actual query performance. In

14

order to cover the entire complexity space, we calculate amortized complexities as well as

worst-case complexities. Amortized complexities are important to us because they correlate

with ACQ processing throughputs, while worst-case ones reflect possible latency spikes.

In addition to providing calculations for a single query environment (where only one

query covering the entire window is executed each slide), we also evaluate an MQ envi-

ronment with the maximum number of queries (which we refer to as a max-multi-query

environment). This way, a single query environment can be thought of as a lower bound

of complexity per slide, while a max-multi-query environment (which executes all queries

covering all possible ranges from 1 to the window length (n) each slide), can be thought of

as the upper bound. It is clear that in most cases the complexity of the general case (with

any other numbers of queries) lays between these bounds.

Panes [33] (which we consider to be Naive in this work) works by simply iterating over the

partials and constructing the answer. The example in Figure 2 performs a final aggregation

F2 by iterating over partials P2, P3, P4, and P5. Naturally, such a solution quickly became

outdated due to the increasing workloads that created bottlenecks in the final aggregator.

Panes has an exact time complexity (with matching amortized and worst cases) because

Table 2: Final Aggregation Complexities.

Algorithm

Time Space

Single Query Max-Multi Single Max-Multi

Amort Worst Query Query Query

Panes n n n2 n n

Panes(Inv) 2 2 — n —

FlatFAT log(n) log(n) n · log(n) 2n** 2n**

B-Int log(n) log(n) n · log(n) 2n** 2n**

TwoStacks 3 n — 2n —

DABA 5 8 — 2n —

**true only when n is a power of 2, otherwise 3n.

15

it always executes the same number of operations per slide. In a single query environment,

its complexity is n− 1 (asymptotically n) because it simply iterates over all n partials and

aggregates them.

In a max-multi-query environment, Panes needs to return n answers each slide for ranges

from 1 to n, yielding 0 to n−1 operations, respectively. By summing this arithmetic sequence

we get n2

2
− n

2
(asymptotically n2).

Panes has the space complexity of n since it stores partials only once and does not keep

any additional structures. This complexity stands despite the number of registered queries,

since additional queries do not require any additional structures.

Panes (Inv) [33] (or Panes for Invertible/Differential Aggregate Queries) was proposed at

the same time as Panes to efficiently process invertible aggregates. In our taxonomy this

is the only technique that does not allow processing non-invertible aggregations. It works

by maintaining a running aggregate (e.g., running sum), and invoking the inverse operation

(e.g., subtract) on every expiring tuple. This algorithm (with minor differences) was also

proposed as R-Int [5] and Subtract-on-Evict [45].

Panes (Inv) has an exact time complexity of 2 operations per slide, since after each

arrival of the new partial aggregate, the query answer is updated twice: once by executing an

aggregate operation with the incoming partial, and once by executing the inverse operation

with the expiring partial. This technique’s space complexity is n, because it stores partials

only once similarly to the Panes technique. Despite being very effective, Panes (Inv) is only

applicable for invertible operations, and does not allow MQ processing.

FlatFAT [47] (or Flat Fixed-sized Aggregator) is a final aggregation technique which stores

tuples in a pre-allocated, pointer-less, tree-based data structure (Figure 5). Originally, Flat-

FAT allowed only one tuple per leaf, however it was later extended [9] to perform partial

aggregation by allowing it to store partial aggregates as tree leaves. Each internal node of

the tree contains an aggregate of its two children. The root node has the result of the entire

range allowed by the tree. In our experiments we compare our contributions to the improved

version of FlatFAT [9].

New partials are inserted into the leaves of the binary tree left-to-right. The leaves form

a circular array, meaning that after inserting a value to the rightmost leaf, the next insert

16

Figure 5: FlatFAT Technique

goes into the leftmost one. Each insert triggers the update procedure, which is performed by

walking the tree bottom-up and updating all internal nodes with new aggregate values. An

example of an update operation on leaf 15 is illustrated with green squares in Figure 5. The

look-up of the answer in FlatFAT is performed by returning the root node value if a query

requires the result for the maximum window, or by aggregating a minimum set of internal

nodes that covers the required range of leaf nodes. The example of answering a query with

a range of 11 partials starting from leaf 15 is shown with red triangles in Figure 5.

FlatFAT has an exact time complexity of log2(n) in a single query environment since

each new partial updates the binary tree in a bottom-up fashion from the leaf to the root.

Since the number of levels in a binary tree is log2(n) + 1, FlatFAT needs exactly log2(n)

operations to calculate the query answer. In a max-multi-query environment it is intuitive

that the upper bound of the time complexity is n · log2(n), since FlatFAT needs to iterate

over n different query ranges at each slide and each range would require log2(n) operations

at most to return the result. The exact complexity per slide can be produced by iterating

over all possible ranges and summing their required numbers of operations, which equates

to: n · log2(n) − 3n
2

+ 5log2(n)
2

+ 5
2
. For simplicity, we use the asymptotic equivalent of this

complexity: n · log(n).

FlatFAT has a space complexity of 2dlog(n)e+1. Due to its binary nature, it is more space

efficient when the window size is a power of two, in which case it consumes 2n of memory:

n for all leaf nodes and n− 1 for all tree nodes above the leaves. The first position within a

17

Figure 6: B-Int Technique

flat array normally remains unused in order to simplify the addressing of nodes within the

tree. In cases where the window size is not a power of two, FlatFAT rounds it up to the

closest power of two, which is mathematically expressed as: 2dlog(n)e. Therefore, the space

complexity of this algorithm yields 2dlog(n)e+1. The window rounding manifests the worst-case

space complexity of 3n.

B-Int [5] (or Base Intervals) is another final aggregation technique that uses a multi-level

data structure that consists of dyadic intervals of different lengths. On the bottom level

the interval length is one partial, on the next level the interval length is two partials, on

the third level the length is four partials, and so on until we reach the top level that just

has one interval of the maximum supported range length. The whole data structure is

organized in a circular fashion so that the rightmost interval on any level is followed by the

leftmost interval from the same level (Figure 6). The binary nature of this data structure

makes it similar to FlatFAT, and like FlatFAT, when producing the final aggregate B-Int

also determines the minimum number of intervals needed to represent the desired range and

aggregates them. For example, in Figure 6 B-Int aggregates all marked intervals to get the

answer for the specified query range. The algorithms for updates and look-ups are slightly

different. During insertions, unlike FlatFAT, B-Int only updates the intervals that end with

the inserted value instead of updating the entire structure bottom up until reaching the top

layer. This, however, slows down look-ups since more intervals need to be aggregated to get

the result.

18

B-Int, similarly to FlatFAT, is of a binary nature, and is only different in how it handles

updates and look-ups. In [47] B-Int has been shown to have the same asymptotic time

complexity as FlatFAT, with B-Int being slower by a constant factor, which we confirm in

this work as well. Also, B-Int and FlatFAT have the same space complexity of 2dlog(n)e+1.

TwoStacks [45] was shown to also achieve high throughput by using an old trick from

functional programming to implement a queue with two stacks, F (front) and B (back),

where all insertions push a value val and an aggregation agg of everything below it onto

B, and evictions pop from F. When F is empty, the algorithm flips B onto F, making it a

calculation-heavy step that introduces latency spikes. To produce the final aggregation, the

tops of both F and B stacks are aggregated.

TwoStacks executes different numbers of operations for different slides. During insertions,

when each new partial is added to the B stack, one aggregate operation is performed to

determine the new aggregate value of the entire stack B. After that, another operation is

performed using the top values of both the F and B stacks to return the query answer,

which makes the complexity of insertions 2 operations. The majority of evictions are free

since they are done by just popping the node from the F stack. When F becomes empty,

however, B is flipped onto F by popping values one-by-one from B and inserting them into

F while performing one aggregate operation per insertion (to populate agg values on F).

The flip procedure (n operations) clearly constitutes the worst-case complexity per slide.

To calculate the amortized complexity we add all operations per one full iteration of the

algorithm: n insertions (1 operation each), n queries (1 operation each), and one eviction

that causes a stack flip procedure (n operations), totalling 3n operations per n slides. Thus,

the amortized complexity of the algorithm is constant and equals 3 operations per slide.

TwoStacks does not currently allow MQ processing, however it might be possible to extend

it in the future to allow such functionality.

Since TwoStacks uses stack structures with nodes containing two values, and both stacks

combined can never have more than n nodes total by the nature of the algorithm, its space

complexity can be identified as 2n.

DABA [45] (or De-Amortized Bankers Algorithm) was proposed as an alternative to

TwoStacks that reduces the latency spikes while maintaining high throughput. The algo-

19

Figure 7: DABA Technique

rithm uses a principle of the Functional Okasaki Aggregator to de-amortize the TwoStacks

algorithm. DABA uses two queues, vals and aggs, as shown in Figure 7 implemented as

chunked-array queues with six ordered pointers which make up the F and B stacks similarly

to TwoStacks. However after each insertion and eviction event, a function fixup is called

which re-balances pointers and fixes the consistency of the aggs queue.

DABA has constant worst-case time complexity (though it still performs different num-

bers of operations each slide). To achieve that, DABA sacrificed its amortized time com-

plexity (and consequently its throughput). Per one full window iteration, DABA executes

2 flip actions, n shift actions, and n evict actions (which all cost 0 operations), n shrink

actions (costing 3 operations each), and also n insert actions and n answer look-up actions

(cost 1 operation apiece), totalling 5n operations per n slides, which yields the amortized

complexity of 5 operations. DABA’s worst-case complexity can be attributed to a step that

performs the following sequence of actions: Evict, Flip, Shrink, Insert, Shrink, Query, which

costs 8 operations in total. DABA also does not currently support MQ processing, however

it will also be interesting to see if it can be extended for this purpose, and what performance

it would have.

Similarly to TwoStacks, DABA maintains the front and back stacks with nodes consisting

of both values and aggregates, however it is implemented on top of the doubly linked list

of chunks. The space complexity of DABA depends on the number of underlying chunks,

20

specifically, having less chunks that are bigger in size saves space on pointers (left and right),

but wastes space on overallocations (periodically window slides between chunks during the

execution leaving up to two chunks’ worth of space wasted). If the window is split into k

chunks, then DABA’s space complexity is: 2n+4k+4n/k. If we take a derivative with respect

to k, equate it to zero, and solve for k, we conclude that the minimum space complexity for

DABA is achieved by setting k to
√
n, and it equals 2n+ 4

√
n (asymptotically 2n).

2.4 Multi-Query Optimization

The general objective of Multi-Query (MQ) optimization is to reduce (or eliminate) the

repeated processing of overlapping operations across multiple ACQs [39]. This repetition

happens due to the processing of the same data items by different queries which exhibit

an overlap in at least one of the following features: (1) predicate conditions, (2) group-by

attributes, or (3) window specification. In this work we focus on optimizers targeting the

window specification overlaps.

2.4.1 Shared Processing of ACQs

Since the ACQs are executed periodically (unlike one-shot, ad hoc queries), several pro-

cessing schemes, as well as ACQ optimizers, take advantage of the shared processing of

ACQs [31, 20, 9], which reduces the long-term overall processing costs by sharing partial

results. To show the benefits of sharing in such scenarios, consider the following example:

Example 2 (Figure 8) Assume two ACQs monitor the max stock value over the same data

stream. The first ACQ has a slide of 2 tuples and a range of 6 tuples, the second one has

a slide of 4 tuples and a range of 8 tuples. That is, the first ACQ is computing partial

aggregates every 2 tuples, and the second is computing the same partial aggregates every

4 tuples. Clearly the calculation producing partial aggregates only needs to be performed

once every 2 tuples, and both ACQs can use these partial aggregates for their corresponding

21

Figure 8: Shared Processing

final aggregations. The first ACQ then only needs to run each final aggregation over the last

three partials, and the second over the last 4. �

Partial results sharing is applicable for all matching aggregate operations, (e.g., three

different ACQs all calculating max can be processed in a single execution tree), and for

different but compatible aggregate operations (e.g., three different ACQs calculating sum,

count, and average can be processed in two execution trees calculating sum and count by

treating average as sum
count

).

To determine how many partial aggregates are needed after combining n ACQs into a

shared execution plan, we first find the length of the new composite slide, which is the Least

Common Multiple (LCM) of the slides of the combined ACQs (in Example 2 it is four).

Each slide is then repeated LCM/slide times to fit the length of the composite slide, and

all slide multiples are marked within the composite slide as edges. If slides consist of several

fragments due to partial aggregation, all fragments are also marked within the composite

slide as edges. If two or more ACQs mark the same location, it means that location is a

common edge. The more common edges that are present in the composite slide, the more

partial aggregation sharing that can be performed.

22

Originally, the Bit Set technique [20] was used to determine how many partial aggrega-

tions (edges) are scheduled within the composite slide. This technique performs the counting

of edges by traversing the entire composite slide, and thus is very inefficient. Later we pro-

posed a more efficient mathematical solution to this problem, Formula F1 [41] (described in

Chapter 5).

2.4.2 Weavability

Out of all the IE techniques mentioned in Section 2.3, only Panes, FlatFAT, B-Int,

FlatFIT, and SlickDeque are known to support MQ execution. These techniques share

partial aggregates among all of the registered queries (i.e., all the queries are merged and

processed as a single execution tree), thus achieving maximum sharing. However, it was

shown that this is not always beneficial, and selective sharing achieves better performance

by splitting the query load into multiple execution trees carefully.

Weavability [20] is a metric that measures the benefit of sharing partial aggregations

between any number of ACQs . If it is beneficial to share computations between these

ACQs , then these ACQs are known to weave well together and are combined into the same

shared execution tree. Intuitively, two ACQs weave perfectly when their LCM contains only

common edges.

The following formula can be used to calculate the cost (C) of the execution plan before

and after combining ACQs into shared trees so that the difference between these costs tells

us if the combination is beneficial:

C = mλ+
m∑
i=1

EiΩi (2.1)

where m is the number of the trees in the plan, λ is input rate in tuples per second, Ei is

Edge rate of tree i (the number of partial aggregations performed per second), and Ωi is the

total number of final-aggregation operations performed per edge of tree i.

The WeaveShare [20] and TriWeave [19] MQ optimizers both utilize the concept of Weav-

ability to produce execution plans for sets of input ACQs . The TriWeave optimizer was pro-

posed as a part of a more general state-of-the-art TriOps [19] optimizer, which besides target-

ing window specifications (using TriWeave), also targets predicate conditions and group-by

23

attributes. As pointed out above, the predicate and group-by optimizations are considered

in this work as being orthogonal, although we proposed an improvement in the predicate

optimization by intelligently generating fragment-signature pairs as part of our initial inves-

tigations [26].

Both WeaveShare and TriWeave optimizers selectively partition ACQs into multiple dis-

jointed execution trees (i.e., groups), resulting in a dramatic reduction in the total query plan

processing cost, and are theoretically guaranteed to approximate the optimal cost-savings

to within a factor of four for practical variants of the problem [12]. Both WeaveShare and

TriWeave start with a no-share plan, where each ACQ has its own execution tree. Then

they iteratively consider all possible pairs of execution trees and combine those that reduce

the total plan cost the most into a single tree, and produce final execution plans consisting

of multiple disjointed execution trees when they cannot find another pair that would reduce

the total plan cost further. The difference between WeaveShare and TriWeave is that the

former assumes separate partial aggregation processing on each execution tree, while the

latter assumes combined partial aggregation processing using a large composite slide that

passes ready partials to the execution trees.

2.5 Other Related Work

Work similar to sliding-window aggregation existed in Temporal Database Systems long

before DSMSs came around. Such systems store the entire stream of tuples and allow ag-

gregations over any continuous segments of the stream which are called Historical Windows.

Conversely, DSMSs (which we focus on in this work) generally only support Suffix Windows,

which end at or near the most recent results. In the context of Temporal Databases, [35]

utilized red-black trees for aggregations and [54] used SB-trees, which incorporate features

from both segment-trees and B-trees. Due to the tree-based nature of these algorithms, their

update complexities are O(log(s)), where s is the size of the entire stream history over which

they build their structures. Additionally, they do not allow non-invertible aggregations,

which significantly restricts their operation generality.

24

In order to save time and space by sacrificing accuracy, the following approximate calcu-

lation approaches were proposed: [7, 4, 13, 16]. Our approach focuses solely on computing

exact answers since it is crucial for many applications (i.e., financial, medical, etc.).

Under theMQ optimization techniques, the general principle is to minimize (or eliminate)

the repeated processing of overlapping operations across multiple aggregate queries. This

repetition occurs as a result of processing the same data by different queries, which exhibit

an overlap in at least one of the following specifications: 1) predicate conditions, 2) group-by

attributes, or 3) window settings.

Techniques leveraging the overlaps in predicate conditions and group-by attributes across

different ACQs are similar to classical multi-query optimization [38] that detects common

subexpressions. Techniques leveraging shared processing of overlapping windows across dif-

ferent ACQs emerged with the paradigm shift for handling continuous queries. The shared

time slices technique [31], for example, has been proposed to share the processing of mul-

tiple continuous aggregates with varying windows. It has also been extended into shared

data shards in order to share the processing of varying predicates, in addition to varying

windows. Orthogonally, [36] extends classical, subsumption-based, multi-query optimization

techniques towards sharing the processing of multiple ACQs with varying group-by attributes

and similar windows.

2.6 Summary

In this chapter we reviewed the related work in SWAG processing and proposed a tax-

onomy of all available IE techniques that can be broken down into into partial and final

aggregation techniques. Certainly, it is crucial to perform both partial and final aggrega-

tions efficiently.

For partial aggregation we conclude that in the setting where query ranges are divisible

by their corresponding slides, all three existing partial aggregation techniques perform the

same, otherwise the Cutty-slicing technique achieves the best results. The comparison of the

partial aggregation techniques is summarized in Table 1.

25

We break down the existing final aggregation techniques further into Naive, Tree-based,

Throughput Optimized, and Latency Optimized approaches, and analyze their operational

complexities (summarized in Table 2). Since there is clearly room for improvement in final

aggregation, in this dissertation we contribute two new techniques: FlatFIT (Chapter 3) and

SlickDeque (Chapter 4).

Additionally, we summarized the related work in MQ optimization since it is the next

logical step for further improving SWAG. We described the cost formula (Equation 7.1),

which is the foundation of our improvements to MQ optimization in Chapters 5, 6, and 7.

26

3.0 FlatFIT: Accelerated Incremental Sliding-Window Aggregation For

Real-Time Analytics

At the time of writing this chapter the state-of-the-art Incremental Evaluation (IE)

technique was FlatFAT , which executes ACQs with high efficiency, but does not scale well

with the increasing workloads. In this chapter we present our novel algorithm, FlatFIT ,

that accelerates such calculations by intelligently maintaining index structures, leading to

higher reuse of intermediate calculations and thus improved scalability in systems with heavy

workloads.

In the next section we outline the problems with the state-of-the-art approach at the

time. In Section 3.2 we introduce our new technique, FlatFIT for the final aggregation

calculations. The complexity analysis of FlatFIT and compared algorithms is presented

in Section 3.3. We discuss the evaluation platform and the experiments in Section 3.4 and

conclude in Section 3.5.

3.1 Introduction

Efficient handling of aggregate operations that are non-invertible and non-commutative

proved to be essential in calculation heavy domains such as finance and science. Examples

include Max, Min, Concatenate, First N, Last N, CountDistinct, CollectDistinct, ArgMax,

and ArgMin.

This chapter focuses on such non-invertible or non-commutative operations that are heav-

ily used in practical ACQs . We consider both Single Query environments where each ACQ

executes in isolation, for example for privacy reasons, and Multi-Query (MQ) environments,

where a large number of ACQs with different periodic properties (accuracies) are operating

on the same data stream, calculating similar aggregate operations.

The Reactive Aggregator framework was proposed to efficiently processing these kinds

of workloads. The framework was implemented using the Flat Fixed-sized Aggregator (also

27

known as FlatFAT) [47]. FlatFAT is able to achieve high throughput by utilizing a pre-

allocated memory circular tree-based data structure, however it does not scale well with

heavy workloads. Additionally, a new system, Cutty [9], was proposed that utilizes FlatFAT

in a MQ environment and contributes a novel slicing technique (referred to as Cutty-slicing

in this dissertation) for partitioning the incoming tuples. However it does not improve the

main query processing technique which is FlatFAT .

To address the aforementioned shortcomings, in this chapter we propose a novel solution

named Flat and Fast Index Traverser, or simply FlatFIT, which accelerates the process-

ing of ACQs by significantly speeding up the final aggregation operation of incremental

sliding-window evaluation techniques. FlatFIT achieves this acceleration by maintaining

intermediate aggregates in intelligent indexing structures that reduce the number of partials

used in performing a final aggregation and allows a greater level of reuse of previously cal-

culated results. We show both theoretically and experimentally that our approach allows

better scalability in terms of window size, and it becomes advantageous to utilize FlatFIT

over FlatFAT starting with windows of a size as small as eight tuples (or partials in cases

when partial aggregation techniques are used).

3.2 FlatFIT Operation

In this section we describe our new algorithm, FlatFIT , that significantly speeds up the

final aggregation calculations in a sliding-window environment.

3.2.1 The FlatFIT Algorithm

In this subsection we provide the algorithm and implementation details for our approach

followed by two clarifying examples. We target single query and multi-query (MQ) environ-

ments, though single query can be considered a special case of MQ processing.

Intuition and Data Structures The FlatFIT algorithm works by dynamically storing

the intermediate results and their corresponding pointers indicating how far ahead FlatFIT

can skip in its calculation. It uses two circular arrays Pointers and Partials interconnected

28

Figure 9: FlatFIT Technique

with their indices and stack Positions, which is used to store the indices that are currently

processed. The Pointers and Partials arrays can be thought of as a single weighted jump

table that allows FlatFIT to skip to the position stored in the Pointers array while adding

the corresponding value from the Partials array to the running aggregate value.

A simple example of update and look-up operations at position (or index) 5 is illustrated

in Figure 9. To process a query with a range of 9 partials at this position, FlatFIT follows

the Pointers from position 8 to the starting position 5, and pushes visited positions (8 and 1)

on the Positions stack. Once position 5 is reached, all the Partials from the stored Positions

are aggregated to return the final answer. This way, the FlatFIT algorithm avoids costly and

unnecessary (re)computations and enables a higher reuse of the intermediate results than

previous methods. The full pseudocode for the FlatFIT algorithm is depicted in Algorithm 1

and consists of the Preparation and Execution phases.

The Preparation Phase given a set of queries Q and one of the partial aggregation tech-

niques discussed in Section 2.3.1 (i.e., Pairs) as an input, starts by building a shared

execution plan by executing the BuildSharedP lan function (line 5). The sharedP lan is

constructed as discussed in Section 2.4.1, and it includes a full list of partials (or edges)

augmented with their lengths and lists of queries that need to be evaluated at each partial.

The BuildSharedP lan function identifies the query with the longest range in terms of the

number of partials, and saves this range as the member wSize of the produced sharedP lan.

wSize signifies the necessary window length needed to process all input queries.

29

Algorithm 1 FlatFIT Pseudocode
1: Input: A set of aggregate continuous queries Q, aggregate operation ⊕, the initial value for ⊕ initVal,

and partial aggregation technique PAT
2: Output: Continuous answers to queries in Q according to their specifications.
3:
4: Phase 1 (Preparation)
5: sharedPlan = BuildSharedPlan(Q, PAT)
6: wSize = sharedPlan.wSize
7: Partials = new array[wSize]
8: Pointers = new array[wSize]
9: Positions = new stack()
10: for i=0 to wSize do
11: Partials[i] = initVal
12: Pointers[i] = i + 1
13: end for
14: Pointers[wSize - 1] = 0
15: currInd = 0
16: prevInd = wSize - 1
17:
18: Phase 2 (Execution)
19: while results are expected do
20: length = sharedPlan.getNextPartialsLength()
21: newPartial = PartialAggregator.aggregate(length, PAT)
22: Partials[prevInd] = newPartial
23: Pointers[prevInd] = currInd
24: queriesToAnswer = sharedPlan.getNextSetOfQueries()
25: for each query q in queriesToAnswer do
26: startInd = currInd - q.range
27: if startInd < 0 then
28: startInd += wSize
29: end if
30: do
31: Positions.push(startInd)
32: startInd = Pointers[startInd]
33: while startInd != currInd
34: end do while
35: answer = Partials[Positions.pop()]
36: while Positions.size() > 1 do
37: tempInd = Positions.pop()
38: answer = answer ⊕ Partials[tempInd]
39: Partials[tempInd] = answer
40: Pointers[tempInd] = currInd
41: end while
42: tempInd = Positions.pop()
43: answer = answer ⊕ Partials[tempInd]
44: send (answer)
45: end for
46: prevInd = currInd
47: currInd++
48: if currInd == windowSize then
49: currInd = 0
50: end if
51: end while

30

After generating the sharedP lan, FlatFIT initializes the data structures (lines 7-14).

The two circular arrays are both initialized to a length equal to wSize. The Positions stack

is initialized empty and can expand up to wSize – however normally it is much less (refer

to Section 3.2.2). The Partials array is initially filled with the initial value initVal for the

query operation ⊕ supplied as input. For example, initVal is 0 for the Sum operation or

−∞ for the Max operation. Each value in the Pointers array is initialized to point to the

next consecutive value in it (i.e., Pointers[2] is 3, and Pointers[wSize − 1] is 0, since it is

a circular array).

The currInd variable signifies the current position within the two arrays (line 15). It

starts at 0 initially and increases to wSize− 1 during execution, after which it wraps back

to 0. The arriving partial aggregates will be inserted into the Partials array always at the

index previous to the currInd, referred to as prevInd (line 16).

The Execution Phase is implemented as a loop that continuously returns all the query

results while they are expected. At the beginning of the loop (lines 20-24), FlatFIT gets

the next partial’s length from the sharedP lan, and supplies it to our Partial Aggregator

which uses the provided PAT technique to produce the newPartial value. The newParial

is then inserted into the Partials array at prevInd, and Pointers[prevInd] is updated to

point to the currInd. Now, the answers to all queries scheduled at this position need to be

produced.

After receiving the queriesToAnswer from the sharedP lan (which is a subset of Q),

FlatFIT loops over these queries to answer them. The loop starts by identifying the start

index startInd for each query q (lines 26-29) within the two arrays from which it will start

aggregating values. startInd is identified by rewinding currInd back by q’s range length.

Once the startInd of q has been determined, our algorithm traverses the Pointers array

while pushing all visited indices onto the Positions stack in a do-while loop until it reaches

the currInd again (lines 30-34). Then, in order to construct the final aggregation FlatFIT

needs to access the Partials array at all these indices, and at the same time update the

values in the Partials array to be reused in the future.

Towards this (lines 35-44), FlatFIT first initializes the answer variable to the value

found in the Partials array at the index popped from the top of the Positions stack. It

31

then continues by popping all the indices except for the last one from the Position stack

in a loop and saving them as a tempInd. The values found at the tempInd indices in

the Partials array are aggregated with the answer variable using the aggregate operation

⊕ supplied as an input. Each time a new partial is aggregated, FlatFIT also writes the

current value of the answer into the Partials array at tempInd, and copies the currInd

into the Pointers array also at tempInd. This technique allows FlatFIT to later skip from

tempInd to currInd by doing just one aggregate operation. The last index popped from the

Positions stack is also used to retrieve the corresponding partial from the Partials array

and is aggregated to the answer, however it does not need to update the two arrays because

it will be overwritten in the next iteration of the execution phase with the new partial.

Observations. Notice that the more queries with different ranges that are registered on the

datastream, the more result reusing is performed by FlatFIT . In cases where the number

of queries registered on the datastream is small, large parts of the Pointers and Partitions

arrays might be visited and updated by FlatFIT on certain slides (not more frequently than

once per wSize), which enables fast calculations on the rest of the window.

The least amount of calculation reuse for the FlatFIT algorithm happens in a single

query environment, since once per wSize + 1 all indices are visited and pushed onto the

Positions stack, which then causes an update on almost the entire window. In this work,

we refer to this event as wReset. wReset also happens as the first iteration of the execution

phase in any environment regardless of how many queries are registered on the datastream.

Even though a single query environment turns out to require the most computation for

FlatFIT , it still significantly outperforms all competitors including the FlatFAT technique.

This stands because despite wReset being a heavy calculation part, it only happens once

per wSize+ 1 and it enables FlatFIT to reuse calculated partials efficiently during the rest

of the execution.

The following Examples 3 and 4 (illustrated in Figure 10) should clarify the above algo-

rithm. In order to make the explanation more intuitive we execute the two queries Q1 and

Q2 on the same incoming datastream using two algorithms: Panes and FlatFIT , and we

illustrate each step of their calculations side-by-side.

32

Figure 10: Example of Panes and FlatFIT algorithms working in a Single Query Environment

(processing just Q1) and in a Multi-Query Environment (processing both Q1 and Q2)

33

Example 3 (Single query environment). Assume we have just one query Q1 which is seeking

the Max value over the range of 5 tuples with a slide of 1 tuple. The slide size is set to one

tuple in this example for simplicity, which means that there is no partial aggregation and

the answer to Max needs to be calculated after every new tuple arrival. A shared execution

plan is not needed in this example since we only have one query, which makes our window

size (wSize) equal to the range of Q1 (5 tuples).

In both the Panes and FlatFIT representations we mark the positions that have been

modified by the algorithms in each step. The Positions stack involved in the FlatFIT

calculation is not illustrated here, however its contents in each step are clear since we know

that all indices that are modified in that step were pushed onto the Positions stack and

then popped back off. The current index (currInd) at each step is bolded in Figure 10 for

convenience. The tuples enter the system in the order: 2, 4, 0, 3, 7, 6, 1, 8, 9, 5.

After the initialization in Step 0, in Step 1 the first tuple, 2, arrives. The Panes algorithm

stores the new tuple at the current index in its own Partials array, and it executes a full

iteration over the entire array in order to find the Max value, which in this case is 2.

FlatFIT writes the first tuple, 2, to the Partials array at the previous-to-the-current

index, which in this case is 4 (we refer to this index as prevInd). Now the algorithms

have to make a full circle over the Pointers array because in a single query environment,

the start index (startInd) for the query is always equal to the currInd. By the nature

of the FlatFIT operation discussed above, Step 1 always triggers the wReset event (the

update of the whole window except for the current index) because the Pointers at each

index are pointing to the next index after the initialization, and FlatFIT is unable to skip

any positions while producing the result. This way, all indices are pushed onto the Positions

stack and subsequently popped to construct the answer from the partials at those indices,

while also updating the arrays for future use. Thus, all indices (except the currInd) are

pointing now to index 0 and their corresponding values in the Partials array are set to 2.

In Step 2, the Panes algorithm places the new partial, 4, into the current index and

iterates again over the whole window comparing every value in order to get the Max value

(which now is 4). Our FlatFIT algorithm is able to provide the answer to Q1 here with

just one Max comparison. From the start index, 1, it skips to index 0 (since Pointers[1] is

34

0) and then again to index 1 since Pointers[0] is 1. The answer is then computed by taking

the Max of Partials[1] and Partials[0], which is 4, and it is then stored in Partials[0].

In Step 3 FlatFIT updates index 1 with the new tuple, 0, and it is able to make a full

circle from the currInd, 2, back to itself by visiting intermediate indices 0 and 1, after which

just index 0 was updated for future use.

In Steps 4, and 5 (and later 9) FlatFIT is able to get the answers in just two Max

comparisons similarly to Step 3, and in Steps 6 and 8 it takes just one comparison similarly

to Step 2, while Panes did 4 comparisons at each and every step. Step 7 forced FlatFIT to

execute 4 comparisons similarly to Panes because the wReset event happens at this step.

In a single query environment the wReset happens on the first inserted partial and then

repeats periodically every wSize + 1 slides. Since the period is greater than wSize by one,

the start position of the wReset operation keeps shifting right by one every cycle. �

Notice that this small example highlights the benefit of using FlatFIT over Panes by

showing that Panes had to execute 40 Max comparisons total to process Q1, while FlatFIT

executed just 21.

Example 4 (Multi-query environment). In this example we illustrate how FlatFIT works

in a MQ environment by augmenting Example 3 with one more query, Q2. The new query,

Q2, is also seeking the Max value and has a slide of 1 tuple, however its range is 2 tuples.

Thus, Panes and FlatFIT will need to answer both queries at every step. Since the range

of Q1 is 5, which is greater than the range of Q2, and the slides of Q1 and Q2 are the same,

the shared execution plan has a wSize of 5 tuples.

The Panes algorithm in this case does a full loop over the entire array in order to answer

Q1 each time, and then iterates over the most recent two partials to produce the answer for

Q2, and this process is repeated at every step.

Conversely, FlatFIT , after iterating over the whole structure in Step 1 to produce the

answer for query Q1, is able to generate the answer for Q2 with 0 comparisons, just by

calculating the start index, startInd, for Q2 (which is 3) and reading the answer from the

Partials array at this index (since the Pointers array at this index points us directly back

at the currInd). Similar behavior for calculating the answer for Q2 in 0 comparisons can be

also found in Steps 3, 7, and 9.

35

In Step 2, our FlatFIT algorithm calculates the answer for Q1 just by doing one com-

parison (explained in Example 3), and produces the answer for Q2 by executing also just one

Max comparison (of Partials[4] and Partials[0]). Similarly to this step, FlatFIT calculated

the answers for query, Q2, in just one comparison also in Steps 4, 5, 6, 8, and 10. �

Notice that even for query, Q2, with range as small as 2 tuples, FlatFIT needed just

6 comparisons for the entire example, while Panes had to perform 10. It is intuitive that

with increasing query numbers and their ranges, FlatFIT allows much better scalability.

Later in this chapter this intuition is backed up by both theoretical analysis (Section 3.3)

and experimental evaluation (Section 3.4).

3.2.2 Optimization

In order to reduce memory consumption by the Positions stack in a single query en-

vironment we made the following observation: the stack fills up to wSize − 1 only during

the wReset event, otherwise it can hold up to 2 values at most. In fact, the usage of the

Positions stack repeats with period wSize + 1 and it always contains wSize− 1 entries at

the first step of each cycle, one entry at the second and the last entries of the cycle, and two

entries in the rest of the wSize−2 steps. This means that the amount of memory consumed

by the Positions stack can be reduced from wSize − 1 to 2 by implementing the wReset

operation manually without using the stack.

In our optimized wReset function, we initialize the answer variable to the initial value,

initVal, for the query operation ⊕, and iterate over both the Partials and Pointers arrays

of FlatFIT backwards from prevInd until currInd is reached. At each iteration the value

from the Partials array is aggregated into the answer variable, and the current value of the

answer variable is written back to the Partials array. The Pointers array is updated to

point to the currInd at each iteration. After the traversal is finished, the value from the

answer variable is returned, and both arrays of FlatFIT are updated and ready to continue

executing the main algorithm.

This manual wReset function is triggered periodically every wSize+ 1 slides in a single

query environment, and triggered just once at the beginning of the execution phase of multi-

36

Table 3: Final Aggregation Complexities (Complexities of the existing techniques are derived

in Section 2.3.2).

Algorithm

Time Space

Single Query Max-Multi Single Max-Multi

Amort Worst Query Query Query

Panes n n n2 n n

FlatFAT log(n) log(n) n · log(n) 2n** 2n**

B-Int log(n) log(n) n · log(n) 2n** 2n**

FlatFIT 3 n 3n 2n 2n

**true only when n is a power of 2, otherwise 3n.

query environments. The full implications of this optimization on an algorithm’s space

complexity can be found in Section 3.3.2.

3.3 Complexity Analysis

In this section, we calculate the time and space complexities of FlatFIT and summarized

them in Table 3 in comparison with other general final aggregation techniques available at

that time. The theoretical time complexities of FlatFIT and the compared algorithms

(Section 2.3.2) are illustrated in Figures 11 & 13, theoretical throughputs in Figures 12 &

14, and theoretical memory consumptions in Figure 15.

3.3.1 Time Complexity of FlatFIT

When executed in a single query environment FlatFIT can be observed to execute differ-

ent numbers of operations for different slides to produce the answer, however the numbers

of operations follow a certain cyclical pattern which repeats every wSize+ 1 slides.

37

Figure 11: Theoretical operations per slide in a single query environment

Figure 12: Theoretical throughput in a single query environment running N operations per

second

In a single query environment the wReset event happens once per period. Its operational

complexity with or without the optimization explained in Section 3.2.2 is n− 1 operations.

wReset is surrounded by two slides that require just 1 operation, and the rest of the slides

38

Figure 13: Theoretical operations per slide in a max-multi-query environment

Figure 14: Theoretical throughput in a max-multi-query environment running N operations

per second

(n− 1) in a period require two operations each. Therefore, by summing everything, we have

the complexity for the natural period of FlatFIT : (n− 1) + 2(n− 2) + 2 = 3(n− 1). Since

the above complexity is calculated for a segment of n + 1 slides, for a fair comparison with

39

Figure 15: Theoretical Memory Usage in GB increments

other approaches, we need to convert this complexity to the period of length n. To do that

we multiply the above equation by n and divide by (n − 1), which results in 3n operations

for the segment of n slides, which in turn makes our complexity equal to just 3 operations

per slide and is asymptotically constant.

In a max-multi-query environment, FlatFIT updates all indices at each slide by an-

swering queries of all possible ranges, which allows it to keep the data structure maximally

updated. In this scenario the wReset event happens only once at the beginning of the execu-

tion phase and is never triggered again, since the algorithm keeps all of the indices updated

at all times. Due to this, at each slide FlatFIT is still able to return answers to all queries

in just 3 operations on average, making its operational complexity 3n operations per slide.

To summarize, FlatFIT is superior in time complexity in comparison with the algorithms

existing at the time of developing FlatFIT (See Figures 11 - 14 and Table 3).

3.3.2 Space Complexity of FlatFIT

FlatFIT needs two pre-allocated arrays of size n to operate and a stack that can grow up

to n in size, however after introducing the optimization (in Section 3.2.2) in a single query

40

environment, it cannot contain more than two values. In the max-multi-query environment

the stack can contain even less: just one value at max without regard to the size of n. This

makes asymptotic space complexity of FlatFIT 2n. However, in terms of space complexity,

single query and max-multi-query environments do not bound FlatFIT . In a general case

where we have more than one query and less than maximum queries registered, the stack

might have to store up to n/2 values at most, in the case with just two queries. However,

each additional query (of a different range) after that cuts the maximum stack memory

consumption in half by enabling higher reuse of calculations. Therefore, if the number of

queries is q, the space complexity of FlatFIT becomes 2n for q = 1 and q = n, and 2n+ n
2q−1

for the rest of the possible values of q.

To summarize, the existing Panes algorithm is superior to FlatFIT in space complexity,

however it is clearly not feasible for heavy workloads. FlatFIT offers the next best space

complexity while being the most scalable solution in terms of time complexity out of all the

algorithms existing at the time of developing FlatFIT (See Figure 15 and Table 3).

3.4 Experimental Evaluation

In this section, we present our experimental evaluation that confirms that the theo-

retical advantage of FlatFIT stands true in practice compared to other final aggregation

approaches.

3.4.1 Experimental Testbed

Platform In order to test the performance of our sliding-window aggregation technique,

we we built an experimental platform in C++ (compiled with G++5.4.1). Specifically, we

implemented a stand-alone stream aggregator platform and programmed all of the compared

IE algorithms within the same codebase, sharing data structures and function calls to enable

a fair comparison. Although all of these algorithms can be easily ported to any commercial

general purpose stream processing system, we chose to go with a stand-alone platform to

41

carry out our evaluation in an isolated environment in order to avoid any potential system

interference and overheads.

Dataset We utilized the DEBS12 Grand Challenge Dataset [24], which is widely utilized

in the workload-based evaluations like ours [27, 28, 25, 9]. The dataset contains events

generated by sensors of large hi-tech manufacturing equipment. Each tuple in this dataset

incorporates 3 energy readings (stored as 32 bit integers) and 51 (predominantly boolean)

values signifying various sensor states. The records were sampled at the rate of 100Hz,

and the whole dataset includes ~33 million events, which we separated into 3 datasets by

copying one energy reading per tuple into a separate file while discarding the sensor state

values. For each of the experiments we loaded each dataset into main memory before running

aggregations on it. In cases when all the values in the set were processed, but we still needed

to continue execution, we continued processing from the beginning of the set, i.e., circling

back.

Workload Clearly, the performance of the final aggregation techniques heavily depends on

the window size, i.e., the larger the window size the longer it takes to process updates to it.

Thus, we used tuple-based windows where we varied the window size from 1 to 134 million

tuples. Given that the goal of our evaluation is just to compare different final aggregation

techniques, we eliminated any side effects (i.e., overheads or benefits) induced by partial

aggregation by setting all query slides to one tuple.

Evaluation Metrics We chose to compare the algorithms using throughput and memory

requirement. Throughput is measured as the number of query results returned per second

in a single query environment, while in a multi-query environment it is measured as the

number of slides of a shared execution plan processed per second. We calculated it by

running each compared algorithm on each dataset for 10 minutes at the fastest possible rate

while computing the total numbers of returned results and processed slides, and at the end

divided them by 600 to get the results per second. Memory Requirement is measured by

the maximum resident set size of processes running the corresponding techniques, which we

calculated using Linux’s /usr/bin/time utility.

For our aggregations we chose a distributive operation, Max, as opposed to an algebraic

operation like Mean (which is decomposed into Count and Sum for processing) in order to

42

Figure 16: Throughput in processed slides per second in single query environment

benchmark the algorithms more accurately. Additionally, Max is a non-invertible operation

that illustrates generality of the algorithms.

SystemWe ran our experiments on an Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz machine

with 16 GB of RAM. For robustness, all experimental results are taken as averages of three

independent runs of each experiment aggregating three different energy readings from the

DEBS12 dataset.

3.4.2 Experimental Results

3.4.2.1 Exp 1: Single Query Throughput (Figure 16)

In this test we varied the window size from 1 tuple to 134 million tuples where each

window is a power of two, and ran a query calculating Max over the entire window after

each new tuple arrival. Clearly, increasing window size increases the amount of required

calculations causing lower throughputs for all four algorithms. The results are depicted in

Figure 16. Notice that the rates at which throughput decreases are very similar to what we

expected from the theoretical analysis of the algorithms (Figure 12).

Our statistical calculations show that FlatFIT ’s throughputs are on average 1.8 times

43

Figure 17: Throughput in processed slides per second in max-multi-query environment

higher than throughputs of FlatFAT with a maximum of 2.6 times. We also observed that

FlatFIT starts outperforming FlatFAT on windows as small as 8 tuples and increases its

gain on the rest of the algorithms rapidly. FlatFAT showed to be more beneficial than

FlatFIT only on window sizes from 1 to 4 tuples, however this benefit is negligible (4.4%

at max).

The advantage of our FlatFIT algorithm for bigger windows comes from the fact that

it is able to reuse calculations more efficiently. In contrast, in small windows the overhead

of maintaining the complex structures outweighs the benefit of reuse.

3.4.2.2 Exp 2: Max-Multi-Query Throughput (Figures 17 and 18)

In this test we again varied the window size from 1 to 134 million tuples, however we ran

a maximum number of queries calculating Max value over the ranges from 1 to the window

size after each new tuple arrives. In this environment, increasing window size decreases

throughputs for all four algorithms much faster, because we are processing many queries per

each slide, which makes the number of slides processed per second decrease quickly. The

results of processing up to a window size of 1000 are depicted in Figure 17). Similarly to

44

Figure 18: FlatFIT / FlatFAT throughput ratio

the previous experiment, the rates at which throughput decreases are very similar to what

we expected from the theoretical analysis of the algorithms (Figure 14). The improvement

of FlatFIT over FlatFAT is depicted separately in Figure 18. Our approach demonstrated

superior scalability again by yielding throughputs that are on average 10 times higher than

throughputs of the FlatFAT technique with a maximum of 17 times. Notice that in this

setting FlatFIT performs the best on all window sizes from 2 to 134 million tuples (and

only underperforms compared to Panes and FlatFAT on window size 1 by 2% and 1%,

respectively).

Notice that the advantage of the FlatFIT algorithm for the large windows becomes even

more clear in the multi-query environment due to the fact that FlatFIT ’s calculation reuse

increases with the increasing number of queries, which is not the case for the other compared

algorithms. On small window sizes (between 1 and 4 tuples) Panes and FlatFAT slightly

outperformed FlatFIT , which is consistent with the previous experiment with a single ACQ .

In such scenarios, the overhead of maintaining a complicated structure of FlatFIT outweighs

the benefit of using it since the updates to the structure itself prevail the useful operation.

45

Figure 19: Experimental Memory Usage in GB increments

3.4.2.3 Exp 3: Memory Consumption (Figure 19)

In this test we again varied the window size from 1 to 134 million tuples and included

window sizes that are not powers of two, and we executed a query calculating Max value

over the whole window size incrementally. We measured the maximum resident set size of

the processes for all runs. The results of this test are depicted in Figure 19). The increasing

window size increases the space requirement of the algorithms in addition to increasing the

processing cost. The rates at which memory increases are almost identical to what we

expected from the theoretical analysis of the space complexities (Figure 15), with only a

constant difference between any two corresponding data points of all algorithms. We believe

that this difference is caused by the buffering of the incoming tuples which is performed by

our platform and not accounted for in the theoretical analysis.

In this experiment FlatFIT demonstrated favorable scalability again by consuming on

average 1.4 times less memory than the FlatFAT with a maximum of 1.9 times. This

advantage is because FlatFIT ’s memory requirement increases linearly with the increasing

window size, while FlatFAT ’s memory requirement doubles every time the window size

crosses a power of two.

46

3.5 Summary

The main contribution of this chapter is a novel technique, FlatFIT , for incremen-

tal SWAG processing. It works by intelligently maintaining and reusing calculated partial

aggregations in an index structure, it supports both non-invertible and non-commutative

aggregate operations, and it is applicable for both single query and MQ environments.

In this chapter, we theoretically showed that FlatFIT significantly decreases the number

of operations required for a continuous query to produce the answer while reducing the

algorithm’s space consumption and supporting generality in query operations. It achieves a

time complexity of O(1) (compared to log(n) complexity of the the state-of-the-art at that

time FlatFAT approach) and a space complexity of 2n (compared to 2dlog(n)e+1 complexity

of FlatFAT).

We also showed experimentally that, with the exception of very small windows, FlatFIT

achieves up to 2.6 times higher throughputs in a single query environment and up to 17

times in a multi-query environment compared to FlatFAT , while also reducing memory

consumption by up to 1.9 times. As far as we know, FlatFIT is the first IE technique

that achieved constant amortized time complexity. In the next chapter we will present the

SlickDeque technique that further improves IE processing, and resulted from our experience

in designing and evaluating FlatFIT .

47

4.0 SlickDeque: High Throughput and Low Latency Incremental

Sliding-Window Aggregation

The current state-of-the-art Incremental Evaluation techniques FlatFIT and TwoStacks

aim to increase throughput, and DABA to minimize latency, while all process invertible

and non-invertible aggregates uniformly. In this chapter, we propose a novel algorithm,

SlickDeque, that distinguishes the execution between invertible and non-invertible aggregates

and offers better throughput and latency for both types. In addition, our method requires

less memory and efficiently supports multi-query processing.

In the next section we outline the problems with the state-of-the-art IE approaches.

We introduce our new technique, SlickDeque for the final aggregation calculations in Sec-

tion 4.2. The complexity analysis of SlickDeque is presented in Section 4.3. We summarize

the experimental evaluation in Section 4.4 and conclude in Section 4.5.

4.1 Introduction

Handling of aggregate operations that are both invertible and non-invertible proved to

be essential in domains such as finance and science. Invertible operations include Sum,

Product, Count, Average, and Standard Deviation, while non-invertible operations include

Max, Min, Range, Alphabetical Max (for strings), ArgMax of Cosine, and ArgMin of x2. It

was shown previously that invertible operations can be processed efficiently by maintaining

a running Sum (or other aggregation), and invoking the inverse operation (such as Subtract)

on every expiring tuple, however non-invertible operations require more effort to be processed

efficiently and remain a challenge.

The state-of-the-art solutions for processing ACQs , FlatFIT [43] and TwoStacks [45],

aim to increase throughput and DABA [45], to minimize latency. These solutions process

invertible and non-invertible aggregates uniformly, which negatively affects their performance

with increasing workloads. To address the aforementioned shortcomings, in this chapter we

48

propose a novel solution named SlickDeque, which handles aggregate operations differently

based on their invertibility property. The invertible operations are processed using SlickDeque

(Inv), our new modified Panes (Inv) approach, while non-invertible ACQs are processed

with SlickDeque (Non-Inv), our novel deque-based algorithm that intelligently maintains

and utilizes intermediate partial aggregates allowing a greater level of reuse of previously

calculated results. The separation based on invertibility leads to exceptional throughput and

latency for both invertible and non-invertible operations in systems with heavy workloads.

Additionally, in this work we consider Multi-Query environments, where large numbers of

ACQs with different ranges and slides operate on the same data stream, calculating similar

aggregations.

4.2 SlickDeque Operation

In this section we describe our new algorithm, SlickDeque, that significantly speeds up

the final aggregation calculations in a sliding-window environment by employing different

processing schemes for invertible and non-invertible aggregations.

4.2.1 The SlickDeque Algorithm

In this subsection we provide the algorithm and implementation details for our approach

followed by the clarifying examples. We break down our algorithm description based on

invertibility of the aggregate operator.

4.2.1.1 SlickDeque for Invertible Aggregates

For processing invertible aggregates we propose SlickDeque (Inv), a modified Panes (Inv)

approach which allows multi-query processing by maintaining running aggregates for each

unique range in a hashmap. Pseudocode for it is depicted in Algorithm 2. The algorithm

consists of two major phases: Preparation and Execution.

The Preparation Phase given a set of queries, Q, and one of the partial aggregation

49

Algorithm 2 SlickDeque (Inv) Pseudocode
1: Input: A set of aggregate continuous queries Q, invertible aggregate operation ⊕, the initial

value for ⊕ initVal, the inverse operation 	, and partial aggregation technique PAT
2: Output: Continuous answers to queries in Q according to their specifications.
3: Phase 1 (Preparation)
4: sharedPlan = buildSharedPlan(Q, PAT)
5: wSize = sharedPlan.wSize
6: partials = new array[wSize]
7: answers = new map(queryRange → answer)
8: for i=0 to wSize do
9: partials[i] = initVal
10: end for
11: for each query q Q do
12: answers.insert(q.range, initVal)
13: end for
14: currPos = 0
15: Phase 2 (Execution)
16: while results are expected do
17: length = sharedPlan.getNextPartialsLength()
18: newPartial = partialAggregator.aggregate(length, PAT)
19: for each (qR → ans) pair in answers do
20: startPos = currPos - qR
21: if startPos < 0 then
22: startPos += wSize
23: end if
24: ans = ans ⊕ newPartial 	 partials[startPos]
25: end for
26: queriesToAnswer = sharedPlan.getNextSetOfQueries()
27: for each query q in queriesToAnswer do
28: send answers.getVal(q.range) as answer to q
29: end for
30: partials[currPos] = newPartial
31: currPos++
32: if currPos == wSize then
33: currPos = 0
34: end if

35: end while

techniques (PAT) discussed in Section 2.3.1 (e.g., Pairs) as an input, SlickDeque (Inv) builds

a shared execution plan by executing the buildSharedPlan function (line 4). The sharedPlan

is constructed as discussed in Section 2.4.1, and includes a full list of partials (or edges)

augmented with their lengths and lists of queries to be evaluated for each partial. The

buildSharedPlan function identifies the query with the longest range in terms of the number

50

of partials, and saves the range as the member wSize of the sharedPlan (line 5). wSize

signifies the necessary window length needed to process all input queries.

After generating the sharedPlan, SlickDeque (Inv) initializes its data structures: a circular

array, partials, (line 6) and a map, answers, (line 7). The partials array is initialized to a

length equal to wSize, and is used to store partial aggregates. The answers map maintains

the mappings of all queries with unique ranges to their current answers. Queries operating

over the same range can share results even if they have different slides. Both the partials

array and the values of the answers map are initialized (lines 8-13) with the initial value

for the operation ⊕, initVal, supplied as input. For example, initVal is −∞ for the Max

operation.

The currPos variable signifies the current position within the partials array (line 14). It

starts at 0 initially and increases to wSize− 1 during execution, after which it wraps back

to 0. The arriving partial aggregates will be inserted into the partials array always at the

currPos.

The Execution Phase is implemented as a loop that continuously returns all query results

while they are expected. At the beginning of the loop (lines 17-18), SlickDeque (Inv) gets

the next partial’s length from the sharedPlan, and passes it to the newPartial Aggregator

which uses the provided PAT technique to produce the newPartial value.

Next, SlickDeque (Inv) loops over all range-to-answer mappings (qR → ans) in the

answers map (lines 19-25). The loop starts by identifying the start position, startPos, for

each mapping within the partials array from which the values need to be aggregated. startPos

is identified by rewinding currPos back by query range, qR, length.

Since SlickDeque (Inv) only works for the invertible queries, it utilizes both the aggregate

operation ⊕ (e.g., Sum if query is seeking Sum), and an inverse operation 	 (e.g., Subtract

if the original operation is Sum). This way each answer, ans, is updated by executing the

aggregate operation ⊕ with the newly calculated newPartial value and the inverse operation

	 with expiring partials[startPos] value (line 24).

Next, the answers to all queries scheduled at the current position need to be produced

(lines 26-29). After receiving the queriesToAnswer (a subset of Q) from the sharedPlan,

SlickDeque (Inv) loops over them while sending back the corresponding answers pulled from

51

the answers map. Then, the Parial value is inserted into the circular partials array at

currPos, and currPos is moved one position forward (lines 30-34).

The following Example 5 (illustrated in Figure 20) should clarify the above algorithm.

In order to make the explanation more intuitive we execute the two queries, Q1 and Q2, on

the same incoming datastream using two algorithms: Panes and SlickDeque (Inv), and we

illustrate each step of their calculations side-by-side.

Example 5 Assume we have queries Q1 and Q2, which are seeking the Sum over the ranges

of 3 and 5 tuples, respectively, both with a slide of 1 tuple. The slide size is set to one tuple

in this example for simplicity, which means that there is no partial aggregation and the

answers to both queries need to be calculated after every new tuple arrival. Since the range

of Q2 is 5, which is greater than the range of Q1, and the slides of Q1 and Q2 are the same,

the shared execution plan has a wSize of 5 tuples.

Both Panes and SlickDeque (Inv) algorithms use the partials array in order to maintain

incoming partial aggregates (in this case just tuples). The difference is that Panes produces

answers to queries by iterating over this array, while SlickDeque (Inv) utilizes the additional

answers map (Introduced above).

In the partials array we mark the positions that have been modified by the algorithm in

each step. The current position (currPos) at each step is bolded in Figure 20 for convenience.

The tuples enter the system in the order: 6, 5, 0, 1, 3, 4, 2, 7.

After the initialization in Step 0, in Step 1 the first tuple, 6, arrives. Both algorithms

store the new tuple at the currPos in the partials array, and Panes iterates over indexes 3, 4,

and 0 in order to answer Q1, and iterates over the entire array to answer Q2. Both answers

in this case are 6.

SlickDeque (Inv) on the other hand in step 1 just updates all answers in the answers map

by executing the operation ⊕ (in this example it is Sum) with the newly arrived tuple 6 and

the inverse operation 	 (in this example it is Subtract) with values at indexes 2 and 0 in the

partials array, which both are zeros. The updated answers are stored in the answers map.

In Step 2, the new partial, 5, arrives, and Panes iterates again over the past 3 tuples

to answer Q1 and over the whole window to answer Q2, and sums up all of the values that

were visited. The SlickDeque (Inv) algorithm on the other hand, is able to provide answers

52

Figure 20: Example 5 processing of invertible aggregate queries Q1 and Q2 using Panes and

SlickDeque (Inv) algorithms.

53

Figure 21: SlickDeque (Non-Inv) Technique

to both queries with just two operations each. It adds 5 and subtracts 0 from both answers

in the map, making both 11.

Skipping ahead, in Step 4 SlickDeque (Inv) adds the new tuple, 1, to both answers,

subtracts 6 from the answer to Q1 (since it is now out of range of Q1), and then subtracts

0 from the answer to Q2 (since 0 was in partials[3] in the previous step), returning 6 and 12

as answers to Q1 and Q2 respectively.

Skipping further, in Step 7 SlickDeque (Inv) adds 2 to both answers, and subtracts 1

from Q1’s answer (since it is now out of range for Q1) making it 9, and subtracts 5 from

Q2’s answer (since 5 was in partials[1] in the previous step) making it 10. �

Notice that in this example Panes had to execute a total of 48 Sum operations, while

SlickDeque (Inv) executed a total of 32 operations (Sum and Subtract).

4.2.1.2 SlickDeque for Non-Invertible Aggregates

For processing non-invertible aggregates we propose a novel algorithm, SlickDeque (Non-

Inv), which accelerates the processing of ACQs by intelligently maintaining and utilizing a

deque data structure consisting of nodes allocated in chunks interconnected with pointers.

For simplicity of explanation we assume that each node is allocated on a separate chunk.

The benefits of allocating multiple nodes per chunk are explained in Section 4.3.2.

The intuition behind the SlickDeque (Non-Inv) algorithm can be seen in in Figure 21,

which illustrates an update operation (insert partial 4 with sequential position 1) performed

on the deque structure. The look-up of the answer (max value) is performed by returning

54

the head node value if a query requires the result for the maximum window (in this example

value 5), or otherwise by looking up the correct node using its Position value. Notice that

value 8 expires in this example, and the new partial 4 removes existing partials 2 and 3 since

it is greater.

The full pseudocode for SlickDeck (Non-Inv) is depicted in Algorithm 3, and similarly to

SlickDeque (Inv) it consists of two major phases: Preparation and Execution.

The Preparation Phase Similarly to SlickDeque (Inv), the execution starts by building a

sharedPlan by executing the function buildSharedPlan (line 4). It is constructed using one of

the partial aggregation techniques as discussed in Section 2.3.1, and it includes a full list of

partials augmented with their lengths and lists of queries that need to be evaluated for each

partial. The query with the longest range in terms of the number of partials is identified

and saved as the member wSize of the sharedPlan, signifying the necessary window length

needed to process all input queries.

After generating the sharedPlan, SlickDeque (Non-Inv) defines node, Node, structure

that has members pos and val, and initializes deque, d, composed of nodes, Node, (lines 6-

7). SlickDeque utilizes the currPos variable to signify the sequential number of the current

partial aggregate. It starts at 0 initially and increases to wSize− 1 during execution, after

which it wraps back to 0.

The Execution Phase is implemented as a loop that continuously returns all query results

while they are expected, and identically to SlickDeque (Inv), it begins by aggregating a

newPartial. The if-statement on line 13 is removing the expired node (if present) from the

head of the deque, d. The while-loop after that (line 16) is executing operation ⊕ on two

values: the value of the tail node and of the new partial. If the new partial is returned by

the operation, the tail node is removed from the deque (it will never be a query answer), and

the next one is tested, otherwise the loop stops. The new node is then added to the deque

with currPos as the position and newPartial as the value (line 19).

Next, set queriesToAnswer (a subset of Q scheduled at this position) is accessed from the

sharedPlan, and the answers for its queries are produced in the for-loop below. Naturally,

when the sharedPlan was constructed, all queries in each queriesToAnswer set were ordered

descendingly by their range. We utilize this ordering to answer all queries by looping over the

55

Algorithm 3 SlickDeque (Non-Inv) Pseudocode
1: Input: A set of aggregate continuous queries Q, non-invertible aggregate operation ⊕, and partial

aggregation technique PAT
2: Output: Continuous answers to queries in Q according to their specifications.
3: Phase 1 (Preparation)
4: sharedPlan = buildSharedPlan(Q, PAT)
5: wSize = sharedPlan.wSize
6: Node with members pos and val
7: Deque d composed of nodes of type Node
8: currPos = 0
9: Phase 2 (Execution)
10: while results are expected do
11: length = sharedPlan.getNextPartialsLength()
12: newPartial = partialAggregator.aggregate(length, PAT)
13: if d.size > 0 AND d.front.pos == currPos then
14: d.pop_front()
15: end if
16: while d.size>0 AND d.back.val⊕newPartial == newPartial do
17: d.pop_back()
18: end while
19: d.push_back(new Node(currPos, newPartial))
20: queriesToAnswer = sharedPlan.getNextSetOfQueries()
21: i = d.firstNode
22: for each query q in queriesToAnswer do
23: startPos = currPos - q.range
24: boundaryCrossed = false
25: if startPos < 0 then
26: startPos += wSize
27: boundaryCrossed = true
28: end if
29: if boundaryCrossed == false then
30: //Answer Loop 1
31: while i.pos < startPos OR i.pos > currPos do
32: i = i.nextNode
33: end while
34: else
35: //Answer Loop 2
36: while i.pos < startPos AND i.pos > currPos do
37: i = i.nextNode
38: end while
39: end if
40: send i.val as answer to q
41: end for
42: currPos++
43: if currPos == wSize then
44: currPos = 0
45: end if

46: end while

56

deque only once, since the larger ranges always correspond to the deque nodes closest to the

head. Therefore, the position i within the deque is defined outside the loop and initialized

to the head of the deque (line 21).

The loop starts by identifying the startPos of the aggregation for each query, q, by

subtracting q’s range from currPos (line 23). If startPos is negative it means that this range

crosses a boundary between two windows, and thus the boolean boundaryCrossed is set to

true and startPos is increased by the wSize. Otherwise boundaryCrossed is set to false.

Then, based on whether the current range crosses the window boundary or not, one of

the two subsequent Answer Loops is executed (lines 29-39), iterating over nodes from the

current position i until the answer node is identified based on the pos member of each node,

and returned as an answer to the query, q. The next iteration (to answer the next query) will

continue working from the position i forward, until all queries are processed. After returning

all required answers the currPos is moved one position forward (lines 42-45).

The following Example 6 (illustrated in Figure 22) should clarify the above algorithm.

To make the explanation more intuitive we again execute the two queries Q1 and Q2 on the

same incoming datastream using Panes and SlickDeque (Non-Inv), and illustrate each step

of their processing side-by-side.

Example 6 Assume we have queries Q1 and Q2, which are seeking Max over the ranges

of 3 and 5 tuples respectively, both with a slide of 1 tuple. The slide size is again set to

one tuple for simplicity, which means that there is no partial aggregation and the answers

to both queries need to be calculated after every new tuple arrival. As before, the range of

Q2 (5) is greater than the range of Q1 (3), and the slides of Q1 and Q2 are the same, the

shared execution plan has a wSize of 5 tuples.

While Panes uses the circular partials array to maintain the incoming partials (in this

case just tuples), SlickDeque (Non-Inv) only utilizes deque in its operation. In both partials

and deque we mark the positions modified in each step. The tuples enter the system in the

same order as in Example 5: 6, 5, 0, 1, 3, 4, 2, 7.

After the initialization Step, in Step 1 the first tuple, 6, arrives. Panes stores it at the

currPos in the partials array, and iterates over the last 3 indexes (3, 4, and 0) to answer Q1,

and over the entire array to answer Q2. Both answers in this case are 6.

57

Figure 22: Example 6 processing of non-invertible aggregate queries Q1 and Q2 using Panes

and SlickDeque algorithms.

58

SlickDeque (Non-Inv) places a new node with pos = 0 (which is currPos) and val = 6,

at the head of the deque, and since its pos value is both within the last 3 and 5 positions

from currPos, its val is returned as the answer to both Q1 and Q2.

In Step 2, the new partial, 5, is placed into the currPos, and Panes iterates again over

the past 3 tuples to answer Q1 and over the whole window to answer Q2, and returns the

Max value from all values visited, which is 6. Our algorithm on the other hand, places the

new tuple 5 as a val of the new node (with pos = 1) at the end of the deque, and returns 6

(the val of the head node of the deque) as an answer to both queries.

Skipping ahead, in Step 4 SlickDeque (Non-Inv) removes the tail node of the deque since

the newly arrived tuple, 1, is greater than 0, which is the val of the tail node, and adds the

new node with pos = 3 and val = 1 at the end of the deque. Since Q2 has a larger range,

it is scheduled to be processed first. Its startPos is identified: 3 − 5 = −2, and since -2 is

negative, the window boundary is crossed. Therefore startPos is moved to −2 + 5 = 3, and

the Answer Loop 2 is executed returning the val of the head node, 6. The startPos of Q1 is

3−3 = 0, and since 0 is not negative, the window boundary is not crossed. Thus, the answer

is produced by iterating using Answer Loop 1, which returned 5, the val of the second node

from the head.

Skipping further, in Step 6 SlickDeque (Non-Inv) removes the head node of the deque

(with pos = 0 and val = 6) which expires at this step since the currPos is 0. Also, since the

newly arrived tuple, 4, is greater than 3, the last node of the deque is removed, and the new

node with pos = 0 and val = 4 is added at the end of the deque. Q2 and Q1 are then both

processed by executing the Answer Loop 2 and returning 5 and 4 respectively. �

Note that this example also shows the advantage of SlickDeque (Non-Inv) over Panes

by showing that Panes had to execute 48 Max operations total, while SlickDeque (Non-Inv)

executed 11.

59

Table 4: Final Aggregation Complexities. Our contributions are bolded. Complexities of

the existing techniques are derived in Section 2.3.2.

Algorithm

Time Space

Single Query Max-Multi Single Max-Multi

Amort Worst Query Query Query

Panes n n n2 n n

Panes(Inv) 2 2 — n —

FlatFAT log(n) log(n) n · log(n) 2n** 2n**

B-Int log(n) log(n) n · log(n) 2n** 2n**

FlatFIT 3 n 3n 2n 2n

TwoStacks 3 n — 2n —

DABA 5 8 — 2n —

Slick Inv 2 2 2n n 2n

Deque Non-Inv <2 n* n 2 to 2n* 2 to 2n*

*the probability of these cases is negligible: 1 in n!.

**true only when n is a power of 2, otherwise 3n.

4.3 Complexity Analysis

In this section, we calculate the time and space complexities of SlickDeque (summarized

in Table 4).

4.3.1 Time Complexity of SlickDeque

SlickDeque for Invertible Operations has an exact time complexity of just 2 operations

per slide in a single query environment, since after each arrival of the new partial aggregate,

the query answer is updated twice: once by executing an aggregate operation with the

incoming partial, and once by executing the inverse operation with the expiring partial. In

a max-multi-query environment SlickDeque (Inv) has to perform 2n operations, since one

60

aggregate operation and one inverse operation need to be executed on each of the answers

to n queries, which makes the algorithm’s exact time complexity 2n.

SlickDeque for Non-Invertible Operations executes variable numbers of operations per

slide. As opposed to FlatFIT, TwoStacks, and DABA which are input agnostic and have

their worst-case steps executed periodically, SlickDeque (Non-Inv) depends on the input, and

the probability of ever executing its worst-case step is minuscule as we point out below.

Intuitively, in the long-running environment with a non-infinite window, each partial can

causes at most two operations: one when it is inserted (invokes its comparison with the tail

of the deque), and one when it is deleted by another incoming partial (invokes comparison

of the incoming partial with the next item on deque). Clearly, the only two situations when

a partial performs less than two operations in its lifetime are:

1. When the partial becomes the first element of the deque after its insertion (either by

removing all other partials or by being inserted into an empty deque).

2. When the partial expires before being removed by another partial.

If both situations happen to the same partial it will be involved in 0 operations in its

lifetime. Also, it is impossible to execute a full window iteration without hitting one of the

two situations by one of the partials at least once, since we cannot have an element in a

deque that would both not get removed by another incoming partial as well as not expired

after a full window iteration. Thus, the amortized complexity of this algorithm depends on

the input, however it is always less than 2 operations.

The worst time complexity of this algorithm happens when the input (except the last

partial of the window) is ordered in the opposite way of the aggregate operator order, e.g.,

if Max is processed and the entire input is ordered descendingly, forcing the deque to fill up,

after which the next input partial has the largest value so far. This causes the new element

to perform n operations while deleting all nodes on the deque. Fortunately, such a situation

is highly unlikely on most inputs (1 in n! chance in the uniform case). Consider the state-

of-the art DABA algorithm that we showed to have a worst-case complexity of 8 operations.

In order for SlickDeque (Non-Inv) to have a step with the same complexity there should be

at least 9 ordered partials in the input. The probability of receiving 9 values ordered in a

61

specific way in a row is 1 out of 9! (equals 362880), which is unlikely. Yet, in long running

high velocity systems it is still possible, and thus DABA might occasionally have a lower

latency while processing a particular aggregation.

In a max-multi-query environment, to process all queries scheduled at a slide, the deque

is traversed from the head while answering each query. Clearly, if the number of nodes in the

deque is smaller than the number of different queries to answer, some nodes will have answers

to multiple queries. Thus, the worst case would again be when the input forced the deque

to completely fill up, for which the probability is again 1 in n!. In such a case, iterating over

the entire deque at each step will take n operations (and at worst 2 operations per step as

shown in the single query environment), so the complexity of the worst-case becomes 2n. In

the best case, the deque would have only one node each slide that would answer all queries,

which would make complexity just 2 operations total.

To summarize, the differentiated processing of invertible and non-invertible operations

allows SlickDeque to utilize optimizations tailored towards each type that are not available

in the general case. Thus, SlickDeque is superior in the time complexity for both invertible

and non-invertible cases compared to all other algorithms (See Table 4). However, in the

worst-case complexity per slide, theoretically SlickDeque has a small possibility (1 in 362880

based on the input) to be outperformed by DABA.

4.3.2 Space Complexity of SlickDeque

SlickDeque for invertible operations stores partial aggregates similarly to Panes. In

addition, it stores the answer for each query with a unique range, making its single query

space complexity n+ 1, and max-multi-query 2n.

SlickDeque for non-invertible operations performs node allocations in chunks to reduce

the space required by pointers similarly to DABA, causing an overallocation of up to two

chunks’ worth of space (at the beginning and at the end of the deque). The space complexity

of SlickDeque (Non-Inv) does not depend on the number of registered queries, but depends on

the input. In the worst-case, the input forces the deque to become full. In such a case, having

n nodes with two values each, and k chunks with two pointers each, the space consumption

62

becomes 2n+ 4k + 4n/k. By taking a derivative with respect to k, equating it to zero, and

solving for k, we conclude that k should be set to
√
n to minimize the worst-case complexity,

which becomes 2n+ 4
√
n (asymptotically 2n). Similarly to the time complexity, the chance

of the worst-case happening in normal conditions is very low: just 1 in n!. In the best case,

however, each incoming partial forces the deque to eliminate all of its nodes, making the

space complexity constant (2).

To summarize, SlickDeque shows a clear advantage over the rest of the algorithms in

terms of space complexity (See Table 4). SlickDeque (Inv) shares the space complexity of

n with Panes, while the rest of the algorithms have a complexity of at least 2n, and the

complexity of SlickDeque (Non-Inv) is always less or equal than 2n (based on the input).

This means that only Panes can possibly outperform it, however the probability of that

happening is low (just 1 in n!/2), and even then, Panes is still not a feasible solution because

of its high time complexity.

4.4 Experimental Evaluation

In this section, we present our experimental evaluation that confirms the theoretical

superiority of SlickDeque in practice, by comparing it to the Panes, FlatFAT, B-Int, FlatFIT,

TwoStacks, and DABA approaches.

In this evaluation we used the same experimental testbed as we used in Section 3.4.1,

with the difference that in addition to measuring Throughput and Memory Requirement, we

also measure Latency. Latency is measured in terms of the total wall clock time it took to

calculate and return the answer to each query. Also, in this evaluation, in addition to Max

operation, we also test with Sum operation to measure the performance of processing both

non-invertible and invertible aggregations respectively.

63

Figure 23: Throughput in processed queries per second in single query environment (Sum)

4.4.1 Experimental Results

4.4.1.1 Exp 1: Single Query Throughput (Figures 23 & 24)

Exp1(a) Invertible Aggregates (Figure 23) In this experiment we varied the window size

from 1 to 134 million tuples where each window is a power of two, and ran a query calcu-

lating the invertible aggregation Sum over the entire window after each new tuple arrival.

From the results in Figure 23 we clearly see that there are two groups of algorithms based

on their behavior with increasing window size: (1) with constant throughput (SlickDeque,

FlatFIT, TwoStacks, and DABA), and (2) with steadily degrading throughput (FlatFAT,

B-Int, and Panes). Notice that the throughput rates are similar to what we expected from

the theoretical analysis of the algorithms in Section 4.3.

Figure 23 shows that SlickDeque’s throughput is on average 15% higher than the through-

put of the second best algorithm (FlatFAT on windows 1 through 16, and FlatFIT on the

rest) with a maximum of 19%. We also observed that SlickDeque starts outperforming other

algorithms on windows as small as 4 tuples and increases its gain rapidly. FlatFAT showed

to be more beneficial than SlickDeque only on window sizes from 1 to 4 tuples, where the

overhead of SlickDeque is not amortized. However this benefit of FlatFAT is negligible (1%

64

Figure 24: Throughput in processed queries per second in single query environment (Max)

at max). In all other cases, including large windows, the advantage of SlickDeque (Inv)

can be attributed to its focus on processing solely invertible aggregations unlike the other

techniques, enabling it to use of the inverse operations to speed up processing.

Exp1(b) Non-Invertible Aggregates (Figure 24) In this experiment we replaced the

calculation of Sum with the non-invertible aggregation Max, that again runs over the entire

window after each tuple arrival. Similarly to Exp1(a), we see that the throughput of some

algorithms is practically unaffected by the increasing window size. The results are depicted

in Figure 24. Once again, the throughput rates correspond to what we expected from the

theoretical analysis of the algorithms.

In this experiment SlickDeque’s throughput is on average 7% higher than the throughput

of the second best algorithm with a maximum of 10%, and SlickDeque starts outperforming all

other algorithms on windows as small as 16 tuples. Consistent with the previous experiment

Exp1(a), FlatFAT showed to be more beneficial than SlickDeque only on window sizes from

1 to 8 tuples with an advantage of 7% at max. Also, the benef of using SlickDeque (Non-Inv)

is due to its focus on processing solely non-invertible aggregations, which allows it to discard

a significant portion of inputs and thus achieve a more efficient reuse of interim calculations.

65

Figure 25: Throughput in processed slides per second in multi-query environment (Sum)

4.4.1.2 Exp 2: Max-Multi-Query Throughput (Figures 25 & 26)

Exp2(a) Invertible Aggregates (Figure 25) In this experiment we ran a maximum number

of queries calculating Sum value over the ranges from 1 to the window size after each new

tuple arrives. In this context increasing the window also increases the number of queries

that are processed after each slide, enabling higher reuse of unchanged partial results among

them. Thus, in Figure 25 we see that the throughput gradually increases until the moment

when the overhead of dealing with the large window outweighs the benefit of sharing between

queries.

In this setting, our approach demonstrated superior scalability yet again by yielding

throughput that is on average 45% higher than the throughput of the second best technique

with a maximum of 60%. Notice that SlickDeque performs the best on window sizes from

4 tuples to 134 million tuples and only underperforms compared to other algorithms on

window sizes 1 and 2 by 3% and 2%, respectively. The observations here are similarly to

what we saw in Exp1(a).

Exp2(b) Non-Invertible Aggregates (Figure 26) In this experiment we ran the maximum

number of queries calculating Max over all ranges from 1 to the entire window after each

66

Figure 26: Throughput in processed slides per second in multi-query environment (Max)

tuple arrival. The results are depicted in Figure 25, and are close to our results in experiment

Exp2(a).

In this setting SlickDeque yielded throughput on average 266% higher than the through-

put of the second best technique with a maximum of 345%. SlickDeque showed to perform

the best on windows from 4 tuples to 134 million tuples while falling behind Panes and

FlatFAT on windows 1 and 2 by 7% on average. The observations here are similarly to what

we saw in Exp1(b).

Conclusions In all throughput experiments SlickDeque exhibits the best results, while being

slightly outperformed on small window sizes (between 1 and 8 tuples) when the overhead of

maintaining its structure outweighed the benefit of using it.

4.4.1.3 Exp 3: Query Processing Latency (Figure 27)

In this experiment we fixed our window size at 1024 tuples and ran all algorithms on

the first million tuples of the DEBS data set while recording how long it took to return an

answer to each query. We executed a single query processing Sum (invertible) in the first

test, and Max (non-invertible) in the second test. We dropped the highest 0.005% latencies

67

Figure 27: Latency in nanoseconds per query answer

Figure 28: Latency spikes in nanoseconds per query answer

from all algorithms as outliers. The latency results of both tests were nearly identical for all

algorithms except SlickDeque, thus we combined them in Figure 27, where only SlickDeque

has separate entries for invertible and non-invertible cases.

Figure 27 shows that both invertible and non-invertible SlickDeque versions exhibited the

68

Figure 29: Experimental Memory Usage in Gigabyte increments

lowest latency in all the following categories: Min, Max, Average, Median, 25th Percentile,

and 75th Percentile. Across all of the abovementioned categories, SlickDeque outperformed

the second best algorithm by 8% on average and 17% at most (for the non-invertible ver-

sion), and by 75% average and 548% at most (for the invertible version). Also, SlickDeque

outperformed the second best DABA algorithm by 283% on average in terms of the lowest

max latency spike. Yet, as exhibited in a snapshot of execution of this experiment in Fig-

ure 28, SlickDeque (Non-Inv) occasionally has latency spikes that are higher than the latency

of DABA algorithm at that point due to its worst case latency being linear. However under

no circumstances SlickDeque exhibited a spike higher than the highest spike of DABA. Also,

during the bulk of the execution DABA’s latencies are considerably higher.

Similarly to Experiments 1 and 2, the latency improvements when using the SlickDeque

algorithm can be credited to its ability to process invertible and non-invertible aggregations

differently, and thus being able to use more efficient structures for each type.

4.4.1.4 Exp 4: Memory Requirement (Figure 29)

In this experiment we again varied the window size from 1 tuple to 134 million tuples (but

69

also included window sizes that are not powers of two). We executed a query calculating the

invertible Sum aggregation in the first experiment, and the non-invertible Max aggregation

in the second. We measured the maximum resident set size (RSS) of the processes for

all runs. The results of this test are depicted in Figure 29. On this graph, we combined

the results of both invertible and non-invertible runs of all algorithms since their space

requirements were identical in both Sum and Max cases except for SlickDeque, which we

plotted separately for each case. Notice that due to the great similarity of space requirement

for several algorithms, we plotted: FlatFAT together with B-Int, FlatFIT together with

TwoStacks and DABA, Panes together with SlickDeque (Inv), and SlickDeque (Non-Inv)

was plotted separately. The memory requirement rates correspond to what we predicted

from the theoretical analysis in Section 4.3. SlickDeque demonstrated excellent scalability

by matching the space usage of Panes for the invertible case due to storing the input partials

only once, and for the non-invertible case outperforming the second best algorithm (Panes)

by 2 times on average with a maximum of 5 times due to being able to discard incoming

partials dynamically before they expire.

4.5 Summary

The key contribution of this chapter is SlickDeque, a novel technique for incremental

sliding-window final aggregation processing for single and MQ environments. Its power is

the differentiated handling of aggregate operations based on their invertibility, which allows

SlickDeque to use optimizations tailored towards each type and that are not available in the

general case.

We theoretically show that SlickDeque significantly decreases the number of operations

required for a continuous query to return results while reducing its space requirement. As

far as we know, there are no prior algorithms that can achieve the same time and space

complexities without loss of query generality.

We experimentally evaluate SlickDeque based on a real dataset and show that it sig-

nificantly outperforms state-of-the-art techniques in all tested scenarios by increasing the

70

ACQ throughput by up to 19% in a single query environment and by up to 345% in an MQ

environment, while maintaining 283% lower latency spikes on average and reducing memory

consumption by up to 5 times. We also show that our approach becomes superior to the

state-of-the-art approaches at window sizes as small as eight tuples with its benefits increas-

ing rapidly as window sizes increase, making SlickDeque widely applicable for processing

ACQs in a variety of DSMSs . In addition, SlickDeque is the most effective IE technique

when used in MQ optimizers as we will show in Chapter 7.

It is important to note that in some cases it is still more beneficial to use other techniques

instead of SlickDeque. For example, when our query workload consists of very small windows

it would be beneficial to utilize the naive Panes technique, since with other techniques the

overhead of maintaining complex structures outweighs the benefit of utilizing them. Also,

in scenarios that have strict deadlines for the ACQ result arrivals and where the occasional

spikes are completely unacceptable, the DABA technique should be used at the expense of

more calculation intensive processing.

71

5.0 F1: Accelerating the Optimization of Aggregate Continuous Queries

In the previous two chapters we focused on single-query processing where an ACQ is

reusing its intermediate calculations instead of re-evaluating the entire window after each

slide. In MQ environments, multiple ACQs calculate similar aggregations with different

ranges and slides can be processed within the same data structure and share partial results

with each other, achieving higher efficiency. State-of-the-art WeaveShare and TriWeave

produce high quality execution plans using the Weavability concept.

In this chapter we propose a novel closed formula, F1, that accelerates Weavability calcu-

lations, and thus allows WeaveShare (and TriWeave) MQ optimizers to achieve exceptional

scalability in systems with heavy workloads. In general, F1 can reduce the computation

time of any technique that combines partial aggregations within composite slides of multiple

ACQs .

In the next section we outline the problems with existing Bit Set approach. We introduce

our new formula, F1, for the Weavability calculation and its additional optimization in

Section 5.2. The complexity analysis on it is presented in Section 5.3. The evaluation

platform and the experiments are discussed in Section 5.4. We conclude in Section 5.5.

5.1 Introduction

The state-of-the-art WeaveShare algorithm produces very high quality execution plans

by utilizing the Weavability concept [20], which is used to decide which ACQs are similar

enough to be combined. WeaveShare is theoretically guaranteed to approximate the optimal

cost-savings to within a factor of four for practical variants of the problem, which was shown

to be more than an order of magnitude improvement over the best existing alternatives [12].

However, when we tried to implement it in a multiple-tenant DSMS , we observed that the

current approach of calculating Weavability using Bit Set is very computationally expensive.

This motivated us to explore a more efficient algorithm to accelerate the calculation

72

process in order to make the WeaveShare algorithm more scalable for systems with heavy

workloads. Towards this, in this chapter we propose a mathematical solution Formula 1 (or

F1), which reduces the number of operations needed to produce the efficient execution plan

and by doing so speeds up the plan generation time. F1 also eliminates concerns over the

amount of system memory as it does not need to store any large data during its operation. In

fact, F1 acceleration has enabled us to explore additional cost savings that can be achieved

by utilizing the distributed nature of the Cloud Infrastructure by intelligently colocating

ACQs on different computing nodes [42]. In general, F1 can reduce the computation time of

any technique that combines partial aggregations within composite slides of multiple ACQs .

5.2 Formula 1 (F1)

In this section, we overview the current Bit Set approach, and then describe our new

formula F1 that significantly speeds up the edge rate calculation in a composite slide. We

target two scenarios for ACQs with matching or compatible aggregate operations: 1) when

all ACQ slides are factors of their corresponding ranges, and 2) when some of the ranges are

not multiples of their corresponding slides.

5.2.1 Bit Set Approach

In order to show how the Bit Set approach works, consider the following example:

Example 7 There are two ACQs that perform the count aggregate operation on the same

data stream. The first ACQ has a slide of 2 sec and a range of 6 sec, the second one has a

slide of 4 sec and a range of 8 sec. Therefore, the first ACQ is computing partial aggregates

every 2 sec, and the second is computing the same partial aggregates every 4 sec.

Clearly, the calculation producing partial aggregates only needs to be performed once

every 2 sec, and both ACQs can use these partial aggregates for their corresponding final

aggregations. The first ACQ then will run each final aggregation over the last three partial

aggregates, and the second ACQ will run each final aggregation over the last 4 partial

aggregates. �

73

The procedure to determine how many partial aggregations is needed after combining n

ACQs using a Bit Set is formalized as follows:

• Find the length of the new combined (composite) slide, which is the Least Common

Multiple (LCM) of all the slides of the combined ACQs .

• Each slide is then repeated LCM/slide times to fit the length of the new composite slide.

All partial aggregations happening within each slide are also repeated and marked in the

composite slide as edges.

• If the location is already marked, it cannot be marked again. If two ACQs mark the

same location, it means that location is a common edge.

The most complex part of the calculation occurs when the system is scheduling each

partial aggregation operation (edge) and is tracking these operations using a Bit Set. The

size of the Bit Set increases rapidly if the ACQs ’ time properties differ. For each ACQ added

to the execution tree, WeaveShare needs to traverse the whole Bit Set to make sure that

all partial aggregations necessary for this ACQ are marked in a Bit Set for future execu-

tion. Since the size of a Bit Set increases exponentially with the increase of the input size,

traversing it becomes prohibitively time-consuming as we show in Section 5.3. Additionally,

the exponential increase of the size of the Bit Set puts a hard limit on system’s capabilities,

based on the amount of memory available.

5.2.2 Case with NO Fragments

In the case when all of the ranges of the ACQs that are installed onto the DSMS are

divisible by their corresponding slides, we can store partial aggregates at every slide. For

example, if we have an ACQ with a slide of 3 sec and a range of 9 sec, we can store partial

results every 3 sec, and perform the final aggregations on the 3 last saved partial aggregations

to get the answer for the last 9 sec. In order to calculate the edge rate after weaving together

n ACQs , we need a Bit Set of the length equal to the LCM of all n slides. At first, the

Bit Set is populated with zeros. For each one of n ACQs we traverse the whole Bit Set and

mark all bits whose indexes are divisible by the corresponding ACQ ’s slide with ones. If the

bit was already marked, the algorithm does nothing and just moves to the next bit.

74

Figure 30: Marking edges produced by five different ACQs with NO fragments in the com-

posite slide, represented by a Bit Set

Example 8 Consider five stock monitoring ACQs with the following slides: 2, 3, 4, 5, and

6. Their LCM is 60, therefore we need a Bit Set of size 60. First, we traverse the Bit Set

and mark all indexes divisible by 2 (all even numbers up to 60). Now the Bit Set has 30

bits marked. Next we mark all indexes that are divisible by 3. The Bit Set already has 40

bits marked (10 overlapped with already marked ones). Next we mark all indexes that are

divisible by 4. The Bit Set still has 40 bits marked since all of the bits we were trying to

mark were already marked by a slide of 2. After repeating the same for slides of 5 and 6,

we calculate how many bits we have in our Bit Set, and the answer is 44. This method is

illustrated in the Figure 30. �

To accelerate this calculation process we propose the Formula 1 (or F1):

LCMn

n∑
i=1

[(−1)i+1G1(n, i)] (5.1)

Where LCMn = LCM(s1, s2, . . . , sn), and function G1(n, i) is a sum of the inversed LCMs

of all possible groups of slides of size i from a set of size n. For example:

G1(3, 2) =
1

LCM(s1, s2)
+

1

LCM(s1, s3)
+

1

LCM(s2, s3)
(5.2)

F1 can be expanded as follows:

LCMn[G1(n, 1)−G1(n, 2) + . . .±G1(n, n− 1)∓G1(n, n)] (5.3)

Equation 5.3 is composed of an alternating series of function G1 multiplied by the LCMn.

LCMn ·G1(n, 1) and represents the number of all edges produced by all ACQs and therefore

75

includes all overlapping edges. The goal of the calculation is to count every edge only once,

even if it overlaps multiple times in different ACQs . Therefore, the rest of the elements of

the series will eliminate all of the overlapping edges from the current result. LCMn ·G1(n, 2)

represents the number of edges that overlap in all different pairs of slides and after subtracting

it, we get a smaller number than the number we are looking for, because there are potentially

some edges where more than two slides overlap at the same time. For example, if slides a,

b, and c overlap at some specific edge e, we add it three times: for pairs (a, b), (a, c), and

(b, c). The following element LCMn ·G1(n, 3) compensates for these cases by adding back all

edges that overlap in each set of three slides. After adding it, we have again a larger number

than the sought-after number, because we might have four or more slides overlapping at the

same edge. Therefore, each element compensates for the previous ones’ inaccuracies up to

the point when we add/subtract the final edge of the composite slide, which clearly occurs

only once, since LCMn ·G1(n, n) = LCMn

LCMn
= 1. The last added/subtracted edge has an index

equal to the LCMn.

Equation 5.3 is an alternating series and we know in advance that the number of elements

is always equal to the number of ACQs in the execution tree and is a finite number. Therefore,

by definition, the sequence always converges.

The following is an example of using F1 to calculate the number of edges:

Example 9 Consider the same set of stock monitoring ACQs as we had in Example 8:

slides are 2, 3, 4, 5, and 6. As a first step of our algorithm we calculate the LCMn of the

whole set of slides. LCMn = LCM(2, 3, 4, 5, 6) = 60. Next we substitute our values into

Equation 5.15:

60 ·G1(5, 1)− 60 ·G1(5, 2) + 60 ·G1(5, 3)− 60 ·G1(5, 4) + 1 (5.4)

Every element is expanded as shown above. For example, the expansion of element 60 ·

G1(5, 2) is as follows. (Note that LCMab denotes LCM(a, b)).

60 ·G1(5, 2) =
60

LCM23

+
60

LCM24

+
60

LCM25

+

+
60

LCM26

+
60

LCM34

+
60

LCM35

+
60

LCM36

+

+
60

LCM45

+
60

LCM46

+
60

LCM56

= 70

(5.5)

76

Figure 31: F1 converging to the solution for 20 ACQs in 20 steps

Finally we have: 87 − 70 + 36 − 10 + 1 = 44. This answer matches the solution from

Example 8. �

Notice that the elements of the alternating series are interchangeably increasing and

decreasing the solution as we approach the end of the calculation. For 20 different ACQs ,

the calculation of overlapping edges using F1 consists of 20 addition operations, causing the

total number to change as depicted in Figure 31.

5.2.3 Case WITH Fragments

In case some of the ranges of the ACQs that are being installed onto the DSMS are

not divisible by their corresponding slides, according to the Paired Window approach, the

slides should be broken into fragments. This enables us to store partial aggregates for every

fragment. For example, if we have an ACQ with slide 5 sec and range 7 sec, the slide is

split into two fragments: f2 = 7 (mod 5) = 2 and f1 = 5− 2 = 3. Now we can store partial

results for first 3 sec, then for following 2 sec, then again for the following 3 sec and so on.

In the original WeaveShare [20], in order to calculate the edge rate after weaving together

n ACQs with fragments, we again need to work with a Bit Set of the length equal to the LCM

77

Figure 32: Marking edges produced by four different ACQs WITH fragments in the com-

posite slide, represented by a Bit Set

of all n slides. The Bit Set is pre-populated with zeros again. For each ACQ we traverse

the whole Bit Set and mark bits corresponding to the times when partial aggregations will

happen with ones. If the bit was already marked, the algorithm does nothing and just moves

to the next location.

Example 10 Consider four stock monitoring ACQs with the following slides: 3, 4, 6, and 9.

ACQs with slides of 4 and 6 consist of fragments (3, 1) and (2, 4) respectively. ACQs 3 and

9 do not have fragments. The overall LCM of all slides together is 36, therefore we need a

Bit Set of size 36. First, we traverse the Bit Set and mark all indexes divisible by 3 for the

ACQ with a slide of 3 and no fragments. Now the Bit Set has 12 bits marked. Next consider

an ACQ with a slide of 4 and fragments (3, 1). We traverse the Bit Set by starting from 0

and adding fragment 3 followed by fragment 1 repeatedly. Thus, the Bit Set will be marked

at indexes 3, 4, 7, 8, 11, 12, etc. Now there are 24 marked bits. Next we continue to an ACQ

with a slide of 6 and fragments (2, 4). Again, we start at 0 and by adding 2 and 4 repeatedly

we mark the following bits: 2, 6, 8, 12, 14, etc., marking 27 bits in total. For the last ACQ

with a slide of 9 and no fragments, we traverse the Bit Set at increments of size 9 and mark

each 9th bit with one. The total number of set bits stays 27, because the last ACQ did not

add any new bits, therefore our answer is 27. This method is illustrated in Figure 32. �

To generalize F1 for both cases (if we do have ACQs with fragments and if we do not)

we introduce the notion of shifts. Each ACQ that does not have fragments has a shift of

zero. Each ACQ that does have fragments must be presented as two ACQs with the same

slides, but different shifts. First one has a shift of zero, and the second one has a shift equal

78

Figure 33: (slide 3, shift 0) and (slide 6, shift 3) DO overlap, but (slide 3, shift 0) and (slide 6,
shift 2) DO NOT

to the first fragment of the original ACQ . When counting overlapping edges of ACQs , and

when at least one of their shifts is not zero, we can encounter two different cases:

• ACQs overlap, and the number of common edges is the same, as it would be if all of the

ACQs ’ shifts were zeros.

• ACQs do not overlap at all. Since the shifts are not compatible, the number of common

edges is zero.

Example 11 Assume two ACQs with slides of 3 and 6. If their corresponding shifts are 0

and 3, there is an overlapping edge every 6 time units. However, if the corresponding shifts

are 0 and 2, there are no overlapping edges. This is illustrated in Figure 33. �

To decide whether two ACQs q1 and q2 (if at least one of them has non-zero shift)

will overlap, we propose the following Overlap Check Formula based on GCD (Greatest

Common Divisor):

|q1.shift− q2.shift| mod GCD(q1.slide, q2.slide) (5.6)

• If the Overlap Check Formula resolves to zero then the ACQs DO overlap

• Otherwise the ACQs DO NOT overlap

Proof of the Overlap Check Formula (by contradiction) Assume that we have two ACQs

q1 and q2, with corresponding slides s1 and s2, and shift difference h. Assume further

that h mod GCD(s1, s2) 6= 0 and (for the sake of contradiction) the ACQs DO over-

lap. Let us denote all edges produced by q1 as {e1−1, e1−2, . . . , e1−n}, and edges of q2 as

79

{e2−1, e2−2, . . . , e2−n}. Let us first look at the two ACQs separately. Since every edge pro-

duced by q1 is divisible by s1, and every edge produced by q2 is divisible by s2, and both s1

and s2 are divisible by GCD(s1, s2) (by definition of GCD), every edge produced by q1 and

q2 is divisible by GCD(s1, s2). Therefore, all edges that are not divisible by GCD(s1, s2)

cannot possibly overlap any of the edges produced by either q1 or q2. Without loss of gener-

ality, let us consider q2 from the standpoint of q1. Then, all edges of q2 are shifted by h with

respect to edges of q1, and they can be written as follows: {e2−1 + h, e2−2 + h, . . . , e2−n + h}.

These edges should be divisible by GCD(s1, s2) in order for them to overlap the edges of

q1: {e1−1, e1−2, . . . , e1−n}. We know that the edges {e2−1, e2−2, . . . , e2−n} are divisible by

GCD(s1, s2). However, by the initial assumption, the shift h that is being added to them is

not divisible by GCD(s1, s2). Thus, edges {e2−1 + h, e2−2 + h, . . . , e2−n + h} cannot possibly

be divisible by GCD(s1, s2). Therefore, none of the edges of q2 can possibly overlap with

the edges of q1. In the case that h would actually be divisible by GCD(s1, s2), all shifted

edges of q2 that are divisible by s1 would overlap with the edges of q1. However, the initial

assumption states that h is not divisible by GCD(s1, s2), which leads us to the conclusion

that the ACQs q1 and q2 do not overlap, which is a contradiction. Hence, the initial formula

is correct. �

Next we generalize our formula F1 for use in cases when ACQs have fragments, and

cases when none of the ACQs have fragments. The general F1 is:

LCMn

n∑
i=1

[(−1)i+1G2(n, i)] (5.7)

Where again LCMn = LCM(s1, s2, . . . , sn), and function G2 is the same as function G1,

however all elements produced by G2 have to be checked with the Overlap Check Formula

for redundancy as described below. Prior to using this formula, for each ACQ that has

fragments, we create two new ACQs : one of them has a shift of zero, another one has a

shift equal to the first fragment of the original ACQ . All new ACQs are added back to the

set of the original ACQs replacing the originals. To calculate each G2 we find all possible

groups of size x from the new set of ACQs just like in the case with no fragments. Some

of these groups are redundant because they do not have overlapping edges (because of the

shifts). To remove all redundant groups, we check all possible pairs within each group using

80

the Overlap Check Formula, and if any of the pairs return a non-zero value, then the whole

group is discarded. Otherwise, G2 is calculated and used the same way as in the case with

NO fragments. The generalized formula F1 still converges, which can be proven using the

same strategy as in the case with no fragments.

Equation 5.7 expands into an alternating series likewise:

LCMn[G2(n, 1)−G2(n, 2) + . . .±G2(n, n− 1)∓G2(n, n)] (5.8)

We show how Equation 5.8 works with the following example.

Example 12 Assume the same set of stock monitoring ACQs as in Example 10: slides

are 3, 4, 6, and 9, and ACQs with slides of 4 and 6 consist of fragments (3, 1) and (2, 4)

respectively. As a first step of our algorithm we calculate the LCMn of the whole set of

slides. LCMn = LCM(3, 4, 6, 9) = 36. Next we replace the ACQs that have fragments with

the ACQs that have corresponding shifts. In our set we now have two ACQs with a slide

of 4 (shifts 0 and 3), and two ACQs with a slide of 6 (shift 0 and shift 2). The rest of the

ACQs stay the same. We can substitute our values into the generalized formula F1:

36 ·G2(6, 1)− 36 ·G1(6, 2) + 36 ·G1(6, 3)− 36 ·G1(6, 4) (5.9)

The calculation is almost identical to the case with no fragments, except every group pro-

duced by G2 has to be checked with the Overlap Check Formula to see if it is redundant or

not. For example, the expansion of the second group is shown below. Note that 3043 denotes

a group of ACQs with slides of 3 and 4 and shifts of 0 and 3, respectively. The fractions

that have been crossed out did not pass the test with the Overlap Check Formula.

36 ·G1(6, 2) =
36

LCM3043

+
��

����36

LCM3062

+
36

LCM3090

+

36

LCM3040

+
36

LCM3060

+
��

����36

LCM4362

+
36

LCM4390

+

���
���36

LCM4340

+
���

���36

LCM4360

+
���

���36

LCM6290

+
36

LCM6240

+

���
���36

LCM6260

+
36

LCM9040

+
36

LCM9060

+
36

LCM4060

= 26

(5.10)

Finally we have: 46−26+8−1 = 27. This answer matches the solution from Example 10.

�

81

5.2.4 F1 Optimization

Since we are using the Euclidean GCD algorithm for all of our LCM calculations, we

found that we can achieve a significant additional speed up by utilizing the technique of

memorization. We adopted this technique by preloading a table of GCDs into main memory

before the execution begins. If the user is willing to allocate b bytes of memory to store

the GCD table and each GCD takes g bytes of memory, we can store in memory GCDs of

all the possible pairs of numbers up to
√

2b/g. In our implementation we are using 8 byte

numbers of the Long type for calculations, so if we want to allocate 4 GB of main memory

to store GCDs, we can fit GCDs of all the pairs of numbers up to 32, 768. If we calculate

the GCD for numbers that are larger than the above limit, the GCD table still save us some

time by taking advantage of the recursive nature of the Euclidean algorithm. The effects of

the optimization are shown in Section 5.4.

5.3 Complexity Analysis

In this section, we calculate the difference between the complexities of Bit Set calculation

and our F1 method.

Time Complexities To compare the time complexities we start by identifying the initial

calculations needed by both algorithms. We denote the number of ACQs as n, and the max

slide as max. The following steps need to be done at the beginning of both algorithms.

• Remove all duplicate slides, since the same slides produce the same edges, and we do not

want to repeat the same calculation for every duplicate. This is done by sorting slides

with duplicate removal in n · logn time.

• Precalculate the LCMn, which is the LCM of all slides and store it in the main memory.

This operation takes (n−1)·log(max) at worst, since we need to perform LCM operation

pairwise n− 1 times, and each LCM(a, b) needs at worst log(min(a, b)) operations [51].

• Remove all slides that are multiples of other slides included in the set. We do this because

all edges produced by such slides are already produced by their factors. This can be done

82

in n · (n− 1)/2 operations since our slide set is sorted, and for each subsequent slide we

need to do a number of comparisons that equals the number of comparisons performed

by the previous slide minus one.

Therefore, precalculation takes n·logn+(n−1)·log(max)+n·(n−1)/2 operations, however

since it is performed by both algorithms, we can ignore it for the matter of comparison. After

completing the initial computation, we now have LCMn stored in main memory, and a set

of slides which does not contain any duplicates or multiples. Therefore, the set can now only

have either prime numbers or numbers for which their multiples do not appear in the set.

To better illustrate differences in complexity we utilize two different sets of slides:

• Working Set (Sw) is a set of slides that includes only prime numbers and numbers that

do not have their multiples in this set. This is a set produced after the initial preparation

and it is used in real working scenarios. An example of a valid working set: Sw =

3, 5, 8, 14, . . . ,max. |Sw| = n, and the maximum element is denoted as max.

• Auxiliary set (Sa) is a set of slides, that consists of sequential numbers. Sa = 1, 2, . . . , n.

|Sa| = n, and the maximum value max equals n. Note that this set contains all nat-

ural numbers from one to n, including multiples of other numbers from this set. It is

still a valid set for our computation, and can be obtained by skipping the preliminary

optimization that removes all multiples.

Next we show that the lower bound of the Bit Set calculation is higher than the upper

bound of the F1 computation.

The complexity of the Bit Set calculation is:

n∑
i=1

LCMn

si
(5.11)

Where LCMn = LCM(s1, s2, . . . , sn). The complexity holds since for each of n ACQs

we would need to traverse the whole Bit Set, whose length is equal to the LCM of all slides

of all ACQs , with a step equal to each ACQ ’s slide. We can expand the Equation 5.11 to

the following:

LCMn · (
1

s1
+

1

s2
+ . . .+

1

sn
) (5.12)

83

First, we perform complexity analysis using the Auxiliary set Sa. Let us focus on the

first part of the product in Equation 5.12: LCMn. We know that the LCM of all numbers

in this set is the product of the highest prime powers occurring in the set. The log of the

LCM is therefore the sum of the logs of the prime powers in the set:

log(LCMn) =
n∑

i=2

f(i), where f(i) =

log(p) if i = pm, wherem ≥ 1 & p is prime

0 Otherwise

(5.13)

This sum has significance in the Prime Number Theorem and it is well known to be

asymptotically equal to en [53].

Next we focus on the second part of the product in Equation 5.12: (1
s1

+ 1
s2

+. . .+ 1
sn

). Since

our set only has sequential numbers from one to n, this part will look like: (1
1

+ 1
2

+ . . .+ 1
n
),

which is a classic example of a diverging harmonic series
∑∞

n=1
1
n
. For any n, this series can

be calculated as follows:
∑∞

n=1
1
n

= ln(k) + γ+ εk, where γ is the Euler-Mascheroni constant

(γ ≈ 0.577) and εk ∼ 1
2k
, which approaches zero as k goes to infinity[52]. For our purposes,

since γ is a constant and εk is negligible, they are ignored. Also, we can say that time

complexity en · ln(n) is asymptotically equal to en, therefore we can assume asymptotical

time complexity of the Bit Set computation for set Sa is en.

When we use set Sw, the time complexity for LCMn is larger than when using set

Sa. This is true because we replace n sequential numbers that start from 1 with n non-

duplicate primes and non-multiples, which are larger and have a larger total LCM . The

time complexity for the part
∑n

i=1
1
si

becomes smaller, because we are increasing numbers in

the denominator, however it is still insignificant, because even in the worst case we can lower

bound it with ln(max)− ln(max−n). Thus, the time complexity of the Bit Set computation

for the working set Sw is at least en.

To calculate the complexity of F1, we need to determine the number of operations that

need to be performed based on the size of the input. First, we know that the number of

elements in our alternating series is equal to the number of ACQs in the set. Let us take

84

Equation 5.3 and expand LCMn into the parentheses:

LCMn ·G1(n, 1)− LCMn ·G1(n, 2) + . . .

±LCMn ·G1(n, n− 1)∓ LCMn ·G1(n, n)
(5.14)

As we previously mentioned, LCMn ·G1(n, n) = 1, therefore:

LCMn ·G1(n, 1)− LCMn ·G1(n, 2) + . . .

± LCMn ·G1(n, n− 1)∓ 1
(5.15)

To determine how many groups will be produced by each one of these elements we use

binomial coefficients. Each element of type LCMn ·G1(n, k) therefore produces
(
n
k

)
of distinct

k-element groups of type LCMn

LCMk
, where LCMk = LCM(s1, s2, . . . sk). Therefore, the total

number of all of these groups is:
(
n
1

)
+
(
n
2

)
+
(
n
3

)
+ . . .+

(
n

n−1

)
+
(
n
n

)
. By the additive property

of binomial coefficients, this sum equals 2n − 1. Next we determine how many calculations

are performed in each group. The numerator of all groups is LCMn and since it is kept

in main memory, we do not need to recalculate it every time. The denominator is LCMk,

and it is determined by calculating the LCM of the first two elements, and then iteratively

calculating the LCMs of the resulting number with the rest of the elements in the group.

Therefore, for each group we need to perform k − 1 LCM calculations, and one calculation

to add the group to the total number, which makes k calculations total. Since each group

with k elements needs k calculations, the total number of calculations needed for all groups

becomes: 1
(
n
1

)
+ 2
(
n
2

)
+ 3
(
n
3

)
+ . . . + (n − 1)

(
n

n−1

)
+ n

(
n
n

)
. This resolves to 2n−1· n, which

can be calculated by taking the generalization of binomial series: (1 + x)a =
∑∞

k=0

(
a
k

)
· xk

and differentiating it with respect to x and then substituting x = 1 [50]. Due to the use of

the Euclidean algorithm to calculate the LCM , the complexity of each LCM calculation is

log(min(a, b)) at most [51]. Therefore, at worst F1 has a time complexity of 2n−1·n·log(max),

which asymptotically equals 2n.

Thus, we have determined that the Bit Set calculation has a time complexity of at least en,

and F1 has a time complexity of at worst 2n. Clearly, when n goes to infinity, it is increas-

ingly beneficial to use F1 versus Bit Set.

Additionally, since we have calculated the formulas for determining the exact number

of operations done by both Bit Set and F1, we can compare the increase in the amount of

85

Figure 34: Number of operations needed by Bit Set and F1 for plan generation. Top labels

show BitSet/F1 ratio

operations performed by Bit Set and F1 with the increase of the number of input ACQs .

The comparison is shown in Figure 34. ACQs for this comparison were sequentially drawn

from the Auxiliary set (Sa) introduced above. Note that since the difference between Bit Set

and F1 operation numbers is drastic and grows exponentially we had to use a logarithmic

scale to still see the operations of F1. This comparison shows that F1 is much more scalable

than Bit Set in terms of the number of operations required.

Space Complexities The space complexity of the Bit Set calculation is LCMn, since we

have already shown that the Bit Set grows at the rate of en. The space complexity of the

F1 calculation is O(1) (constant) since it does not require storing edges. Edge overlaps

are calculated strictly mathematically. Since F1 expands into a sum, we only need to keep

one number in memory, which is increased or decreased by the elements of the alternating

series sequentially. The improvement in space complexity is extremely important for the

WeaveShare algorithm, since the leading cause of its failures with large workloads is “out of

memory” errors.

86

5.4 Experimental Evaluation

In this section, we summarize the results of our experimental evaluation of the scalability

of F1 in terms of the size of the input set of the ACQs , the diversity of their time properties,

and the input rate of the data stream.

5.4.1 Experimental Testbed

In order to show the significance of our Weavability calculation optimization we built an

experimental platform in Java. Specifically, we implemented the WeaveShare optimizer as

described in [20] with different options for calculating Weavability. Our workload is com-

posed of a number of ACQs with different characteristics. We are generating our workload

synthetically in order to be able to fine-tune system parameters and get a more detailed

sensitivity analysis of the optimizer’s performance. Moreover, it allows us to target possible

real-life scenarios and analyze them.

Our system’s experimental parameters are:

[Algorithm] specifies which technique is used for Weavability calculations. The available

techniques are: (a) Bit Set (BS), (b) Formula 1 (F1), and (c) Formula 1 + Optimization

(F1 +Opt). The F1 +Opt technique uses a 4 GB table for keeping GCDs in main memory.

[Qnum] Number of ACQs . We assume that all ACQs are installed on the same data stream

and their aggregate functions allow them to share partial aggregations among them. The

actual function does not have any effect on performance other than the ability to share

partial aggregations.

[Smax] Maximum slide length, which provides an upper bound on how large slides of our

ACQs can be. The minimum slide allowed by the system always equals one.

[λ] The input rate, which describes how fast tuples arrive through the input stream in our

system.

[Zskew] Zipf distribution skew, which depicts the popularity of each slide length in the final

set of ACQs . A Zipf skew of zero produces uniform distribution, and a greater Zipf skew is

skewed towards large slides (for more realistic examples).

87

Table 5: Experiment Parameters

Qnum Smax λ Zskew Omax Gen

1 100 - 1M 1K 0.002 0.5 10 Nrm

2 1K 100-10K 1 3 100 Div

3 1K 100 100-1M 1 1K Nrm

4 50 500 0.1 0-100 100 Nrm

5 1K 600 1 3 100-1 Div

[Omax] Maximum overlap factor, which defines the upper bound for the overlap factor.

The overlap factor of each ACQ is drawn from a uniform distribution between one and the

maximum overlap factor.

[Gen] Generator type, which defines whether the workload is normal (Nrm), which includes

any slides or diverse (Div), which includes only slides of a length that is a prime number.

When the slides are prime, their LCM is equal to their product, which makes it more difficult

to share partial aggregations.

We ran all our experiments on a dual processor 8 core Intel(R) Xeon(R) CPU E5-2650

v2 @ 2.60GHz server with 96 GB of RAM available. All results are taken as averages of

running each experiment five times.

5.4.2 Experimental Results

To test the scalability of our approaches F1 and F1 + Opt versus BS in terms of the

parameters Qnum, Smax, λ, Zskew, and Omax, we ran five experiments, where we varied

each one of these parameters while keeping the rest of them fixed. The parameters were

selected separately for each experiment in a way that would highlight the differences in the

scalabilities of the three approaches the best. The experimental parameters are specified in

the Table 5. Please note that since F1 and F1 + Opt showed to have significantly smaller

runtimes compared to BS, we had to use logarithmic scale to be able to display all

techniques’ performances in the same graphs.

88

Figure 35: Scalability of the number of ACQs

5.4.2.1 Exp 1: Number of ACQs Scalability (Figure 35). In this test we varied the

Qnum from 100 to 1,000,000 (given that simultaneously processing such large numbers of

queries is becoming increasingly crucial [21, 23]). Clearly, increasing the Qnum also increases

the amount of required calculations, causing higher runtimes for all three algorithms. The

results are depicted in Figure 35. The Bit Set approach did not finish execution, because

after we crossed Qnum of 550 it started running out of memory (on a 96GB RAM machine)

and eventually crashed (on all runs). Otherwise, the growth rates of these techniques are

similar to what we expected from the theoretical analysis of the time complexities of their

underlying algorithms. The statistics show that our techniques’ runtimes are on average 350

times faster than runtimes of BS with a maximum of 790 times, and our techniques are able

to scale up to 1,000,000 ACQs on this setting without running out of memory. Also, the

F1 +Opt plan outperformed the F1 plan by approximately 28% on average, validating our

optimization expectations.

89

Figure 36: Scalability of the maximum slide length

5.4.2.2 Exp 2: Max Slide Scalability (Figure 36). In this test we varied the Smax from

100 to 10,000. Similarly to Exp 1, increasing the Smax also increases the amount of required

calculations. This happens because with a higher max slide parameter, the generated ACQs

have longer slides, which results in higher LCMs and fewer overlapping edges. In Figure 36

we see that the BS approach did not finish execution again after we crossed Smax of 800

because of the “out of memory” error. The growth rates of our techniques however are again

similar to what we expected from our theoretical analysis of their time complexities. Our

proposed techniques’ runtimes in this experiment are on average 2,200 times faster than

runtimes of BS with a maximum of 10,000 times, and our techniques are able to scale up

to the Smax of 10,000 ACQs on this setting and finish the plan generation successfully. The

F1 +Opt plan outperformed the F1 plan by an average of 18%.

5.4.2.3 Exp 3: Input Rate Scalability (Figure 37). In this test we varied λ from

100 to 100,000. Increasing λ also increases the amount of required calculations because with

higher input rates, according to the Equation 7.1, it becomes more beneficial to combine

90

Figure 37: Scalability of the input rate

more execution trees. This forces WeaveShare to combine some trees with different time

properties that would not have been combined if the input rate was lower. Thus, increasing

λ leads to higher LCMs and higher runtimes. The average number of execution trees formed

at the end of the plan generation is 71 when λ = 100, 29 when λ = 400, 15 when λ = 900,

4 when λ = 10, 000 and 1 when λ = 100, 000 or 1,000,000. The fact that at some λ all

trees get merged into one explains why runtimes stop increasing after this λ. In this setting

it happened at λ = 100, 000 (see Figure 37). In this experiment the BS approach crashed

when λ reached 900, and the average number of trees at that point was 15. Our approaches

demonstrated good scalability again and were able to increase input rate to the point where

all trees are Weaved into one. On average our techniques ran 3,800 times faster than BS

with a maximum of 16,000. The F1 +Opt plan outperformed the F1 plan by the average of

19%.

5.4.2.4 Exp 4: Slide Skew Sensitivity (Figure 38). In this test we varied the Zskew

from 0 to 100. This experiment is similar to the max slide scalability experiment, because

91

Figure 38: Sensitivity to the zipf distribution skew

in both experiments we are gradually increasing the amount of ACQs with large slides and

therefore increasing the amount of required calculations. The difference is that, when skewing

all slides drawn from the same set to the larger side, at some point they start repeating, which

then reduces the amount of the required calculations. In our experiment (see Figure 38) we

first observe the initial increase in the amount of computation, which leads the BS approach

to crash with an “out of memory” error (at Zskew = 2.25), and then we see gradual decrease

in computation, because there are many repeating slides in the input set. In this setting our

proposed techniques’ runtimes are on average 14,000 times faster than runtimes of BS with

a maximum of 60,000 times, and our techniques are able to scale up to the Zskew of 100 and

finish the plan generation successfully. The F1 +Opt plan outperformed the F1 plan by the

average of 18% again.

5.4.2.5 Exp 5: Overlap Factor Sensitivity (Figure 39). In this test we varied the

Omax from 100 to 1. We did it in reverse order since its value is inversely proportional to the

amount of computation required to generate an execution plan using WeaveShare. Based

92

Figure 39: Sensitivity to the maximum overlap factor

on Equation 7.1 we can see that smaller Omax benefits the total cost if the corresponding

ACQs are combined to fewer execution trees, which causes WeaveShare to Weave more trees

with different time properties together. In our experiment (see Figure 39) the BS approach

crashed when Omax reached 40. Our approaches again demonstrated good scalability and

were able to finish the plan generation successfully even with the minimum value of Omax = 1.

On average our techniques ran 5,600 times faster than BS with a maximum of 16,000. The

F1 +Opt plan outperformed the F1 plan by the average of 26%.

5.4.2.6 Experimental Results Summary

Clearly, the above experimental results show that our techniques F1 and F1 + Opt

deliver the best performance in terms of plan generation runtimes and scalability, while

producing same high quality execution plans as the original WeaveShare optimizer. These

drastic improvements result from substituting the expensive count-based approach with a

more efficient compute-based one. The results of our experiments are summarized in Table 6.

93

Table 6: Experimental Results

Experiment Best Achieved Runtime: BS/F1 F1 vs
Param BS F1 Avg Max F1 +Opt

1 Qnum 550* 1M 350 790 28%
2 Smax 800* 10K 2,200 10,000 18%
3 λ 900* 1M 3,800 16,000 19%
4 Zskew 2.25* 100 14,000 60,000 18%
5 Omax 40* 1 5,600 16,000 26%

*Execution stopped with “out of memory” exception

5.5 Summary

The main contribution of this chapter is a novel closed formula, F1, for accelerating

Weavability calculations required for determining the best execution plans for sharing partial

aggregations of ACQs . Our approach replaces the counting of the edges within a Bit Set

with mathematical computation and is applicable for all cases (with and without fragments).

We theoretically evaluated the state-of-the-art Weavability calculation approach against

F1 and provided a mathematical proof that F1 improves the time complexity from at least en

to at most 2n, and the space complexity correspondingly from at least en to constant. Thus,

F1 significantly decreases the number of operations required for the plan generation while

reducing the algorithm’s space consumption to the bare minimum.

We showed experimentally that the F1 approach achieves up to 60,000 times faster plan

generation compared to the current state of the art, and is able to achieve much better

scalability in terms of the number of input ACQs , their diversity, and the input rate of the

data stream. We showed that F1 is able to successfully process 1,000,000 ACQs whereas

the limit of the current technique is 550.

It should be noted that F1 can reduce the computation time of any optimization tech-

nique that requires scheduling partial aggregations within composite slides of multiple ACQs .

In the next chapter we will show this in the context of MQ optimization in a distributed

environment.

94

6.0 Processing of Aggregate Continuous Queries in a Distributed Environment

In this chapter, we study the problem of generating high quality execution plans of

ACQs in DSMSs deployed on multi-node (multi-core and multi-processor) distributed envi-

ronments. Towards this goal, we classify optimizers based on how they partition the workload

among computing nodes and on their usage of the concept of Weavability, which is utilized by

the state-of-the-artWeaveShare optimizer to selectively combine ACQs and produce low cost

execution plans for single-node environments. For each category, we propose an optimizer,

which either adopts an existing strategy or develops a new one for assigning and grouping

ACQs to computing nodes. We implement and compare all of our proposed optimizers in

terms of (1) keeping the total cost of the ACQs execution plan low and (2) balancing the

load among the computing nodes.

In the next section, we provide the rationale for this work. We describe the challenges

of producing execution plans for distributed processing environment and define the new

performance metrics in Section 6.2. The categorization and various multi-node optimizers

are presented in Section 6.3 and their descriptions in Secs. 6.4 and 6.5. The evaluation

platform and the quality of produced multi-node plans are discussed in Section 6.6. We

conclude in Section 6.7.

6.1 Introduction

The state-of-the-art WeaveShare optimizer is a cost-based ACQ optimizer that produces

low cost execution plans by utilizing the concept of Weavability [20]. Since WeaveShare is

targeting single-node DSMSs , it is oblivious to distributed processing capabilities, and as our

experiments have revealed, WeaveShare cannot produce ACQ execution plans of equivalent

cost that can be assigned to the various computing nodes. This motivated us to address the

problem of generating high quality execution plans of ACQs in DSMSs deployed on multi-

node (multi-core and multi-processor) distributed environments with a Weavability-based

95

optimizer. Formally, given a set Q of all ACQs submitted by all clients and a set N of all

available computing nodes in the distributed DSMS , our goal is to find an execution plan

P(Q,N , T) that maps Q to N (Q → N) and generates a set T of local ACQ execution

trees per node, such that the total cost of the ACQs execution is low and the load among

the computing nodes is balanced.

The rationale behind these two optimization criteria is (Section 6.2):

• Minimizing the total cost of the execution plan allows the system to support more ACQs .

In the case of the Cloud, since Cloud providers charge money for the computation re-

sources, satisfying more client requests using the same resources results in less costly

client requests.

• Balancing the workload among computation nodes saves energy while still meeting the

requirements of the installed ACQs , which directly translates to monetary savings for the

distributed infrastructure providers. Additionally, it is advantageous for the providers to

maintain load balancing, because it prevents the need to over-provision in order to cope

with unbalanced workloads.

6.2 System Model and Execution Plan Quality

In this chapter, we assume a typical DSMS deployed over a set of servers (i.e., computing

nodes). These servers can be a local cluster or on the Cloud and are capable of executing

any ACQs using partial aggregation. Submitted ACQs are assumed to be independent of

each other and have no affinity to any server. Furthermore, without a loss of generality, we

target ACQs that perform similar aggregations on the same data stream.

In a single node system, the main metric defining the quality of an execution plan is the

Cost of the plan. The Cost of the plan is measured in operations per second. That is, if

the plan cost is X, then we would need a server that can perform at least X operations per

second in order to execute this plan and satisfy all users by returning the results of their

ACQs according to their specified range and slide.

In the context of the distributed environment, we have to split our workload between the

96

available nodes. Since our workload consists of ACQs , we can assign them to the available

computing nodes in the system and group them into execution trees within these nodes.

Thus, in any distributed environment, the Total Cost of a plan P is calculated as a sum of

all costs Ci (according to the Equation 7.1) of all n nodes in the system:

TotalCost(P) =
n∑

i=1

Ci (6.1)

This metric is important for the Cloud environment, because lowering the total cost T allows

DSMSs to handle larger numbers of different ACQs on the same hardware, which in turn

can potentially lower the monetary cost of each ACQ for the clients.

Another important metric in a distributed environment is the Maximum node cost of

all computational nodes. The maximum node cost of a plan P is calculated by finding the

highest cost Ci of all n nodes in the system:

MaxCost(P) = Maxni Ci (6.2)

Minimizing the Max Cost is vital for distributed DSMSs with heavy workloads. In such a

case, if we optimize our execution plans purely for the Total Cost, due to the heavy workload,

the Max Cost can become higher than the computational capacity of the highest capacity

node in the system, and the system will not be able to accommodate this execution plan.

Furthermore, it is advantageous for the providers to maintain load balancing, because it

prevents the need for over-provisioning in order to cope with unbalanced workloads.

Additionally, good load balancing could enable power management that executes ACQs

at lower CPU frequency. This could lead to significant energy savings, ergo monetary savings,

given that the energy consumption is at least a quadratic function of CPU frequency [55].

97

Table 7: Optimizer Categories

Optimizers

Non-Cost-based Cost-based

Random Round Robin to Lowest to Nodes inserted

Categories

Group Only GRAND GRR GTL - -

Weave Only WRAND WRR WTL WTN WI

Weave + Group WGRAND WGRR WGTL WGTN WGI

6.3 Taxonomy of Optimizers

As mentioned in the Introduction, in order to structure our search for a suitable multi-

query optimizer for a distributed DSMS in a systematic way, we categorize possible ACQ

optimizers based on how they utilize the concept of Weavability for both non-cost-based

and cost-based optimization. This taxonomy is shown in Table 7. Below, we highlight the

underlying strategy of each category.

Group Only This category allows for the grouping of ACQs on different computation

nodes. No sharing of final or partial aggregations between ACQs is allowed. Optimizers in

this category are expected to be effective in environments where sharing partial aggregates is

counter productive, for example, when there are no similarities between periodic properties

of ACQs . Even though there is no sharing between ACQs in this category, it is still essential

to maintain the load balance between computation nodes in a distributed environment. Since

node costs in this case are calculated trivially by adding together separate costs of ACQs

running on this node, there can be many analogies (such as CPU scheduling in OS) to

optimizers from this category.

Weave Only This category allows the sharing of final and partial aggregations between

ACQs . The Weavability concept is used in this category to generate the number of execu-

tion trees matching the number of available nodes. As a result, only one execution tree can

98

be present on each computation node in the resulting plan. Optimizers in this category are

expected to be effective in the environments where partial result sharing is highly advanta-

geous, for example, if the submitted ACQs all have similar periodic properties (ACQ slides

are the same or multiples of each other).

Weave and Group This category allows both the sharing of aggregations between ACQs

within execution trees and the grouping of them on different computation nodes. Thus, mul-

tiple execution trees can be present on any node. Optimizers in this category are attempting

to be adaptive to any environment and produce high quality execution plans in different

settings by collocating and grouping ACQs in an intelligent way.

6.4 Non-Cost-based Optimizers

In this section, we provide the details on the Non-Cost-based optimizers, which we further

classified as Random and Round Robin optimizers. Random and Round Robin optimizers

iterate through a set of input ACQs , selecting a node for each ACQ in a random or round

robin fashion respectively.

Depending on the way ACQs on a node are woven,

• GRAND & GRR (GroupOnly) add the ACQs to the selected node as a separate tree.

• WRAND & WRR (WeaveOnly) weave the ACQs into a single, shared tree on the node.

• WGRAND & WGRR (WeaveAndGroup) choose (in random or round robin fashion)

whether to add this ACQ as a separate tree, or to weave it with one of the available

trees on this node.

6.5 Cost-based Optimizers

In this section, we provide the details on the second class of optimizers: Cost-based op-

timizers (Table 7), which includes three categories: “To Lowest”, “To Nodes”, and “Inserted”.

99

Note that no representatives for the “Group Only – Insert" and “Group Only – To Nodes"

categories are listed in Table 7 because in both cases the representative is effectively GTL

without weaving. In all optimizers, we consider the initial cost of each node to be zero.

6.5.1 Category “To Lowest”

Optimizers in this category follow the “To Lowest” algorithm shown in Algorithm 4.

Algorithm 4 The “To Lowest” Algorithm
Input: A set of Q Aggregate Continuous Queries, N computation nodes, and Category
Output: Execution plan P
Create an execution tree (t1, t2, . . . , tQ) for each query
Calculate costs for all execution trees (c1, c2, . . . , cQ)
Sort all execution trees from expensive to cheap
Assign N most expensive trees to N nodes (n1, n2, . . . , nN) . assign one tree per node
T ← Q−N . T is the number of remaining trees to be grouped/weaved
for i = 0 to T do . iterate over the trees until all are grouped/weaved to nodes
MinNode ← findMinNode() . determine the node with the current smallest cost
switch Category do

case GroupOnly . each node can have multiple trees
group(ti,MinNode) . group ti as a separate tree to MinNode

case WeaveOnly . each node can have only one tree
weave(ti,MinNode) . weave ti to the tree in MinNode

case WeaveAndGroup . each node can have multiple trees
Cost1 ← group(ti,MinNode) . new cost of MinNode if ti is grouped to MinNode
MinTree ← findMinTree(MinNode) . minimal costing tree in MinNode
Cost2 ← weave(ti,MinNode) . new cost of MinNode if ti is weaved to MinTree

if Cost1 < Cost2 then
group(ti,MinNode) . group ti as a separate tree to MinNode

else
weave(ti,MinNode) . weave ti to MinTree

end if
end switch

end for
end (Return P)

Group to Lowest (GTL) This optimizer is a balanced version of a No Share generator,

which assigns each ACQ to run as a separate tree and that are then assigned to available

nodes in a cost-balanced fashion.

Algorithm: The trees are first sorted by their costs, then, starting from the most expensive

one, each tree is assigned to the node that currently has the lowest total cost.

100

Discussion: Since this optimizer does not perform any partial result sharing, it is only useful

in cases when sharing is not beneficial (when none of the slides have any similarities in their

periodic features).

Weave To Lowest (WTL) This optimizer builds on the GTL algorithm and weaves all ACQs

on a node into a single, shared tree.

Algorithm: After sorting ACQs by cost (as in GTL), WTL assigns each ACQ to a node with

the current lowest total cost and weaves it into the shared tree on the node.

Discussion: The WTL optimizer executes Weavability calculation only once per input which

makes it more expensive to run than GTL. Additionally, by limiting to a single shared tree

and not considering the compatibility of existing ACQs with new ones, it produces plans with

high Total Cost, and, consequently, high Max Cost, even though it performs rudimentary

cost balancing.

Weave-Group To Lowest (WGTL) This approach also builds on GTL, but as opposed to

WTL, it allows both selective weaving and grouping ACQs together.

Algorithm: Similar to GTL andWTL,WGTL first sorts the ACQ trees, then iteratively assigns

each ACQ to the node with the current smallest cost. At a node, an ACQ is either woven

with the smallest costing tree in the node or added as a separate tree, whichever leads to

the minimum cost increase.

Discussion: The WGTL has similar runtime cost as WTL as both optimizers use the Weav-

ability calculations only once per ACQ . Even though WGTL attempts to take advantage of

grouping, it does not produce much better execution plans than WTL. By focusing only on

the lowest cost tree on a node, it weaves together some poorly compatible ACQs , leading to

comparatively low quality execution plans.

6.5.2 Category “To Nodes”

Optimizers in this category follow the “To Nodes” algorithm depicted in Algorithm 5.

Weave to Nodes (WTN) This optimizer is directly based on the single node WeaveShare

algorithms, thus it is targeted at minimizing the Total Cost.

Algorithm: WTN starts its execution the same way as the single node WeaveShare. If it

101

Algorithm 5 The “To Nodes” Algorithm
Input: A set of Q Aggregate Continuous Queries, N computation nodes, and Category
Output: Execution plan P
Create an execution tree (t1, t2, . . . , tQ) for each query
T ← Q . T is the number of remaining trees
loop
MaxReduction← −∞ . maximum cost reduction is set to minimum
for i = 0 to T − 1 do . iterate over all trees

for j = 1 to T do . iterate over all trees again (to cover all pairs)
CostRed← weave(ti, tj) . cost reduction if weaving trees ti and tj
if CostRed > MaxReduction then . find largest CostRed
MaxReduction← CostRed . and save it to MaxReduction
ToWeave← (ti, tj) . trees ti and tj are saved to be weaved later

end if
end for

end for
if MaxReduction > 0 then . there is a benefit in weaving
weave(ToWeave) . weave saved trees

else
switch Category do

case WeaveOnly

if T ≤ N then
end (Return P)

else
weave(ToWeave) . weave saved trees

end if
case WeaveAndGroup

P ← GTL(T) . run GroupToLowest optimizer on remaining T trees
end (Return P)

end switch
end if
T ← T − 1

end loop

reaches the point where the current number of trees is less than or equal to the number of

available nodes,WTN stops and assigns each tree to a different node. If, however, WeaveShare

finishes execution, and the current number of trees is still greater than the number of available

nodes, theWTN optimizer continues theWeaveShare algorithm (merging trees pairwise), even

though it is no longer beneficial for total cost. The execution stops when the number of trees

becomes equal to the number of available nodes.

Discussion: Since WTN is a direct descendant of WeaveShare, it is optimized to produce the

102

minimum Total Cost. However, since WTN allows only one execution tree per node, in order

to match the number of nodes to number of trees, WTN forces WeaveShare to keep merging

trees with less compatible ACQs . Hence, WTN generates, in general, more expensive plans

than the basic WeaveShare. Additionally, WTN does not perform any load balancing, hence

it can generate query plans with execution trees whose computational requirements exceed

the capacity of the node with the most powerful CPU.

Weave-Group to Nodes (WGTN) Like WTN , this optimizer is also directly based on the

single node WeaveShare algorithm and is targeted at minimizing the Total Cost.

Algorithm: The WGTN optimizer starts by executing single core WeaveShare and, similarly

to WTN , stops execution if it reaches the point where the current number of trees is equal

to or less than the number of available nodes. However, if WeaveShare finishes execution

and the current number of trees produced is greater than the number of available nodes,

WGTN assigns them to the available nodes, without weaving them, in a balanced fashion by

applying the GTL optimizer. First, all trees are sorted by their costs, and, starting from the

most expensive ones, the trees are assigned to the nodes with the smallest current total cost.

Discussion: Unlike WTN , the WGTN optimizer is designed to produce the minimum Total

Cost and the minimum Max Cost. The latter is not always possible, since the execution

trees produced by WeaveShare are sometimes of significantly different costs, and the used

load balancing technique cannot produce the desired output. WGTN can achieve a better

Total Cost than WTN by not forcing trees that do not weave well together to merge, which

would have increased the total cost of the plan. However, the penalty of grouping execution

trees on nodes without merging them is that each tuple has to be processed as many times

as the number of trees on a node. This effectively increases the Total Cost by a factor equal

to the input rate multiplied by the number of the trees on each node. Clearly, the higher

the input rate of a stream, the more costly it will be for the system to group trees without

weaving them.

6.5.3 Category “Inserted”

Optimizers in this category follow the “Inserted” algorithm depicted in Algorithm 6.

103

Algorithm 6 The “Inserted” Algorithm
Input: A set of Q Aggregate Continuous Queries, N computation nodes, and Category
Output: Execution plan P
Assigning first N queries to N nodes (n1, n2, . . . , nN) as separate trees
Calculate node costs for all N nodes
Q← Q−N . Q is the number of remaining queries to be assigned
WeaveCost ←∞ . weave cost is set to maximum
for i = 0 to Q do . iterate over the queries until all are grouped/weaved
MinNode ← findMinNode() . determine the node with the current smallest cost
for j = 0 to N do . iterate over all nodes

for k = 0 to NumTrees in nj do . iterate over all trees within a node
TempCost← weave(qi, tk) . determine plan cost if weaving query qi into tree tk
if TempCost < WeaveCost then . find smallest TempCost
WeaveCost← TempCost . and save it to WeaveCost
ToWeave← (qi, tk) . query qi is saved to be weaved to tree tj later

end if
switch Category do

case WeaveOnly

weave(ToWeave) . weave saved trees
case WeaveAndGroup

GroupCost← group(qi,MinNode) . cost of MinNode if qi is grouped
if GroupCost < WeaveCost then
group(qi,MinNode) . group qi to MinNode as a separate tree

else
weave(ToWeave) . weave saved trees

end if
end switch

end for
end for

end for
end (Return P)

Weave Inserted (WI) This approach is based on the Insert-then-Weave optimizer intro-

duced in [20], in which every ACQ is either weaved in an existing tree or assigned to a new

tree, whichever results in the smallest increase in the Total Cost. The difference of the WI

optimizer from the original Insert-then-Weave approach is that WI keeps a fixed number of

trees equal to the number of nodes in the distributed system.

Algorithm: WI starts by randomly assigning an ACQ to each available node, then iterating

through the remaining ACQs . For each node it computes the new cost if the ACQ under

104

consideration is woven into the execution tree on the node and assigns the ACQ to the node

that has the smallest new cost.

Discussion: WI is attempting to optimize for the Max Cost, as well as the Total Cost, by

taking into account both the Weavability of the inserted ACQ with every available node and

performing cost-balancing of the computation nodes. The downside of WI is that, since load

balancing is the first priority of WI , it sometimes assigns ACQs to nodes with underlying

trees with which they do not weave well. This happens in cases where the tree that weaves

poorly with the incoming ACQ currently has the smallest cost. Additionally, since WI is

limited to one execution tree per node, the ACQs that do not weave well with any of the

available trees are still merged into one of these trees. This increases the Total Costs of the

generated plans.

Weave-Group Inserted (WGI) This optimizer is also a version of the Insert-then-Weave

approach and similar to WI . However, since the WGI optimizer does not have to be limited

to only one execution tree per node, it utilizes grouping to keep the Total Cost low while

maintaining load balance between nodes.

Algorithm:WGI starts by randomly assigning an ACQ to each available node, then iterating

through the remaining ACQs similarly to WI . By trying to weave each ACQ under con-

sideration into every execution tree in every node, WGI determines each node’s minimum

new cost and the most compatible underlying tree. Finally, the ACQ is either woven to the

selected tree on the node with the minimum new cost or added as a separate tree to the

tree with the minimum old cost, based on which option leads to the minimum Total Cost

increase.

Discussion: WGI is optimized for both Max Cost and Total Cost. However, even though

WGI allows grouping of execution trees, it does not always achieve a good Total Cost. This

happens (similarly to WI) in cases when the tree that weaves poorly with the ACQ under

consideration has the smallest cost and is located in the node with the smallest current node

cost, which forces WGI to weave the non-compatible ACQs .

Note A preprocessing step can be carried out for all optimizers by merging all ACQs with

identical slides into the same trees, since such ACQs weave together perfectly. This reduces

the workload down to a number of execution trees with multiple ACQs with the same slides.

105

Note that this preprocessing is always beneficial in terms of the Total Cost, however, it is

only beneficial in terms of the Max Cost if the distributed system has low number of nodes

compared to the number of input ACQs . Otherwise, since the number of entities in the

workload is decreased, it is more challenging to achieve balance among the high number of

computating nodes.

6.6 Experimental Evaluation

In this section, we summarize the results of our experimental evaluation of all the opti-

mizers for distributed processing environments listed in Table 7.

6.6.1 Experimental Setup

In order to evaluate the quality of our proposed optimizers, we used our testbed described

in Section 5.4.1. We implemented all of the optimizers discussed above as part of this system.

Our workload and experimental parameters utilized in our evaluation are the same as in

Section 5.4.1, however we add a new parameter Nnum, which represents the number of nodes

in the target system.

We measured the quality of plans in terms of the cost of the plans as the number

of aggregate operations per second (which also indicates the throughput). We chose this

metric because it provides an accurate and fair measure of the performance, regardless of

the platform used to conduct the experiments. Thus, our comparison does not include

the actual execution of the plans on a distributed environment, which we address later in

Chapter 7. All results are taken as averages of running each test three times.

6.6.2 Experimental Results

6.6.2.1 Exp 1: Evaluation of Distributed Environment Optimizers

Configuration (Table 8) To compare the quality of produced plans by the distributed

optimizers, we tried to cover as broad a range of different parameters as possible. Thus, we

ran a set of 256 experiments, which correspond to all possible combinations of the parameters

106

Table 8: Experimental Parameter Values (Total number of combinations = 256)

Parameter Qnum Nnum λ Smax Zskew Omax Gen

Values 250, 500 4, 8, 16, 32 10, 100 25, 50 0, 1 10, 100 Nrm, Div

options 2 4 2 2 2 2 2

from Table 8 (i.e., our entire search space). For each one of these experiments, we generated

a new workload according to the current parameters and executed all of the above mentioned

optimizers on this workload.

Results (Figure 40 and Tables 9 and 10). Out of a very large number of results, we

observed that the Weave to Nodes (WTN) and Weave-Group to Nodes (WGTN) produced

good plans in terms of Total Cost, while Weave Inserted (WI) and Weave-Group Inserted

(WGI) performed the best in terms of Max Cost (Figure 40). However, we noticed that in

the majority of the cases where the WTN and WI optimizers produced the best plans (in

terms of Total Cost and Max Cost, respectively), their matching optimizers from the Weave

and Group category (WGTN and WGI) produced output of either equal or very similar

Table 9: WGI vs WGTN breakdown (for 256 experiments)

Max
Cost

Weave-
Group
Inserted
(WGI)

Weave-
Group
to Nodes
(WGTN)

Wins Best in 80%
of cases

Best in 17%
of cases

Loses Not best in
20% of cases,
and within
3% from
the best on
average

Not best in
83% of cases,
and within
48% from
the best on
average

Total
Cost

Weave-
Group
Inserted
(WGI)

Weave-
Group
to Nodes
(WGTN)

Wins Best in 5%
of cases

Best in 90%
of cases

Loses Not best in
95% of cases,
and within
9% from
the best on
average

Not best in
10% of cases,
and within
0.2% from
the best on
average

107

(a) Max Cost Comparison

(b) Total Cost Comparison

Figure 40: Average Plan Quality (from 256 experiments) where 0% and 100% are the

average plan costs of all best and worst plans, respectively, across all optimizers. The error

bars show the standard deviations Consistent with the definition of a standard deviation,

about 68% of all plans produced by these optimizers lie in this margin.

108

Table 10: Average Plan Generation Runtime (for 256 experiments)

Optimizer GRand WRand WGRand GRR WRR WGRR GTL WTL WGTL WTN WGTN WI WGI

Time (sec) 0.01 2.31 0.02 0.01 2.34 0.01 0.01 12.6 9.11 2.95 2.83 5.68 3.94

quality. In some other cases where WTN and WI performed poorly, the optimizer Group to

Lowest (GTL) performed better. In such cases, our optimizers WGTN and WGI were still

able to match the best plans produced by GTL with equal or better quality plans in most of

the cases. Thus, we concluded that theWGTN andWGI optimizers were able to successfully

adapt to different environments and produce the best plans in terms of Total Cost and Max

Cost, respectively. It is intuitive that both winning plans are from the Weave and Group

category, which allows them to benefit from both weaving and grouping capabilities. WGTN

is best in terms of Total Cost because its strategy is to continuously find pairs of trees that

decrease the overall plan cost the most when combined. In contrast, WGI is best in terms of

Max Cost because its strategy is to continuously perform tree insertions that lead to smallest

node cost increases.

To compare and contrast the two winning optimizers, we provide the breakdown of

their performances in Table 9. From this table, we see that in terms of Max Cost, WGTN

significantly falls behind WGI , since balancing is not the first priority of WGTN . In terms

of Total Cost, WGTN always either wins or is within 0.2%, and WGI falls behind, but not

as significantly, since it is on average within 9% of the winning optimizer.

Additionally, we have recorded the runtimes of our optimizers (Table 10), and we see that

plan generation time on average does not exceed 13 sec per plan for all optimizers, which is

fast considering that after an execution plan is generated and deployed to the DSMS , it is

expected to run for a significantly longer time.

ConclusionsWGTN andWGI produce the best execution plans in terms of Total Cost and

Max Cost, respectively. WGTN falls behind WGI in terms of Max Cost more significantly

than WGI falls behind WGTN in terms of Total Cost. All optimizers generate plans fast (<

13 sec).

109

Figure 41: Costs per node in a 4-node system

6.6.2.2 Exp 2: Load Balancing

Configuration To show how all proposed algorithms compare in terms of balancing load

and minimizing the total plan cost, we fix a few parameters (Qnum = 250, Nnum = 4, λ =

100, Smax = 25, Zskew = 1, max = 100, Gen = Nrm) and run this experiment while record-

ing the individual node costs of produced plans for all optimizers.

Results (Figure 41). The results depict the typical behavior of the proposed algorithms

in a 4-node environment. Since algorithms WTN and WGTN are optimized mostly for Total

Cost, they produce plans with very imbalanced node loads. However, their Total Costs (as

well as their Average Costs) are low. On the other hand, WI and WGI produce plans that

are well balanced, and, at the same time, WGI produces plans that also have a low Total

Cost (practically as low as WGTN).

Conclusions Algorithms that are producing execution plans with the lowest Total Cost

typically perform poorly in terms of balancing load among the different nodes.

110

6.7 Summary

In this chapter, we explored how the sharing of partial aggregations can be done in the

environment of distributed DSMSs . We formulated the problem as a distributed multi-query

optimization which combines the sharing of partial aggregations and assignment to servers to

produce high quality plans that keep the total cost of the execution low and balance the load

among the computing nodes. We presented a classification of optimizers based on whether

or not they are cost-based and how they utilize the concept of Weavability. We implemented

and experimentally compared all of our proposed optimizers.

Our evaluation showed that theWeave-Group Inserted (WGI) optimizer delivers the best

quality in terms of load balancing among the nodes in the system, which makes it the most

beneficial for Cloud service providers, since balancing helps conserve energy and prevents

the need to over-provision systems hardware. At the same time, our evaluation showed that

the Weave-Group to Nodes (WGTN) optimizer best minimizes the total plan cost, which

makes WGTN the most beneficial for clients, since the monetary cost of ACQ computation

in multi-tenant environments becomes lower.

A closer look at the performance profiles of the two winning optimizers suggests that it

might be more advantageous to choose the WGI optimizer in the case where both service

providers and clients should be satisfied "equally" – WGI falls behind in terms of Total

Cost less significantly (only 9% on average) than WGTN does in terms of Max Cost (load

balancing).

111

7.0 Multi-Query Optimization of Incrementally Evaluated Sliding-Window

Aggregations

In this chapter, we re-examine how the principle of sharing is applied in Incremental

Evaluation (IE) techniques as well as in Multi-Query (MQ) optimizers. We provide a theo-

retical analysis of all of the available IE techniques that accurately determines their average

operational cost per slide (Ω) given any set of input ACQs . We also propose a new MQ

optimization solution that achieves significant improvement in execution costs by combining

the new IE techniques with the state-of-the-art MQ optimizers using the analysis above.

In the next section, we discuss how the new IE techniques can be used in MQ optimizers.

We present our theoretical analysis and our solution at combining IE techniques and MQ

optimization in Section 7.2. We discuss our experimental findings in Section 7.3, and present

our conclusions in Section 7.4.

7.1 Introduction

With the introduction of the SlickDeque technique, the final aggregation for a single

query can now be performed in constant time with no more than 2 operations per slide.

Thus, we believe that sharing at the level of partial and final aggregation has reached its

limit. In this chapter we focus on MQ optimization because it is the next logical step for

further improving SWAG and still has multiple unaddressed challenges.

Currently, the state-of-the-art MQ optimizers only work with the outdated Panes [33]

and Pairs [31] techniques for IE . Thus, the opportunity arises to explore the suitability of

new and more efficient IE techniques for use in combination with the MQ optimizers. To this

end, we propose a novel solution of using the new IE techniques as part of state-of-the-art

Multi-Query (MQ) optimizers in a way that significantly reduces the execution plan costs.

It is intuitive that by combining new IE techniques and the MQ optimizers, significant

benefits in ACQ processing can be achieved. To accomplish this, the plan cost calculation

112

process needs to be adjusted. The need for such adjustment can be extrapolated from the

Weavability cost calculation formula (also discussed in Section 2.4.2):

C = mλ+
m∑
i=1

EiΩi (7.1)

where m is the number of the trees in the plan, λ is input rate in tuples per second, Ei is

Edge rate of tree i (the number of partial aggregations performed per second), and Ωi is the

total number of final-aggregation operations performed per edge of tree i.

Currently optimizers WeaveShare and TriWeave always calculate Ωi as follows:

Ωi =
n∑

j=1

rj
sj

(7.2)

As demonstrated in Section 2.3.2, such a number of final-aggregation operations is only

applicable for the outdated Panes technique, and all other compared IE techniques perform

fewer operations.

For the new IE techniques the Ω estimation is more complex due to the variability

of operation numbers between different slides, and dependability on the input data, given

that our MQ optimizers need to be able to estimate Ω for any number of ACQs with any

periodical properties. Thus, a theoretical analysis (presented below) of all the IE techniques

is necessary.

7.2 Estimating Ω

In order to evaluate how different Incremental Evaluation (IE) techniques perform when

used in Multi-Query (MQ) optimizers, we need to calculate the number of final aggregation

operations (Ω) that they perform on average per slide (i.e. after receiving each new partial)

given nQ unique ACQs . After that Ω is used in their corresponding cost formulas in MQ

optimizers. The range and slide of each query qi we denote as ri and slide si respectively (i

is a sequential number of a query). IE techniques must support MQ processing in order to

be used in such optimizers, which rules out the TwoStacks and DABA techniques presented

113

in Section 2.3.2. Our analysis of Ω for the rest of the techniques (Panes, FlatFAT, FlatFIT,

and SlickDeque) follows below.

Panes. It is intuitive that Ω for this naive technique in single query environments can be

calculated as range divided by slide (r/s) since the query range is assembled from r/s slides.

Similarly, in MQ environments, since each added query increases Ω by its range divided by

slide, we calculate it as follows:

Ω =

nQ∑
i=1

ri
si

(7.3)

FlatFAT. Given that this technique utilizes a binary tree for its calculations, in single query

scenarios Ω = nQ·log2(nPmax), where nPmax is the total number of partials (or leaf nodes) in

the tree. nPmax is also the longest query range that can be processed by this structure. The

Ω formula follows from the fact that the number of levels in a binary tree are log2(nPmax)+1,

and on each update FlatFAT updates the tree in a bottom-up fashion from the leaf to the

root. The answer to the query with the longest range in this case could be simply taken from

the root of the tree without additional operations. For each additional query with a unique

range that consists of nPi < nPmax partials, the aggregate is composed from a minimum set

of internal tree nodes that covers the number of partials (tree leaves) nPi. Thus, given that

nPi can be calculated as ri divided by the average partial length, each new query qi increases

Ω by blog2(nPi − 1)c+ nPi−1
2dlog2(nPi)e , resulting in the formula:

Ω =

nQ∑
i=1

(blog2(nPi − 1)c+
nPi − 1

2dlog2(nPi)e
) (7.4)

Even though the actual number of partials processed is likely to be different for each

slide, in the long run the cost per partial averages out, making this estimation valid. For

quick approximate calculations Ω can be also estimated as log2(nPi− 1) + 1 for each unique

query.

FlatFIT. For this technique, we estimate Ω as 3 ·nQ, i.e., each unique ACQ requires about

3 operations per slide. We show in Section 3.3.1 that Ω is 3 operations per slide for a single

query environment and 3·nQ per slide in a max-multi-query environment (aMQ environment

with the maximum number of queries covering all possible ranges from 1 to rmax). Thus,

intuitively each added query should be adding 3 operations per slide to Ω. We confirmed

114

this formula experimentally by testing a large number of various query sets. Even though

there was slight variability in the results (due to the effect of periodic properties of ACQs),

Ω always stayed close to 3 ·nQ and never crossed 2 ·nQ or 4 ·nQ. Given our intuition above,

our closest estimation for FlatFIT appears to be:

Ω = 3 · nQ (7.5)

which we use in our experiments with cost-based MQ optimizers.

SlickDeque (Inv). In single query environments this technique has Ω = 2 because there

are only two operations performed for each new partial: (1) the aggregation of the arriving

partial with the running aggregate, and (2) the inversion operation of the expiring value (e.g.,

subtraction in the case of Sum). Similarly, in the case with multiple queries we get Ω by

multiplying the number of running aggregates by 2. Unfortunately, the number of running

aggregates does not always equal nQ due to the different periodic properties of ACQs , an

ACQ might assemble its final aggregate from different numbers of partials on different stages

of execution, which means we need to keep running aggregates for all of these possibilities.

However, if several queries need the same running aggregate (aggregating same number of

partials) it is shared. Thus, in order to calculate the exact number of running aggregates

required per query set we need to create a composite slide and iterate over it while counting

all possible numbers of partials needed at every edge, and to get Ω we finally multiply the

number of unique running aggregates by 2. Currently we do not know if there is a faster

approach to determine this. Due to the complexity of this calculation in our experiments we

use an approximation: first we divide each query range ri by the average partial aggregate

length to get nPi, and then take the count of all the unique nPi values and multiply by 2,

resulting in the following formula:

Ω = # of unique nPi (7.6)

Given that in our experiments we generally have nQ that is larger than the number of

unique slides (which are generated by factoring a large number), the variance of nPi values

115

is low, which makes our estimation valid (we also verified this experimentally), however this

estimation might slightly vary in the other case.

SlickDeque (Non-Inv). Previously [44] we proved that Ω is bounded by 2 operations per

slide (in single query environments), however in this work we worked out a more accurate

estimation and accounted for MQ overhead in order to use this technique in MQ optimizers.

SlickDeque (Non-Inv) performs exactly 2 operations per slide if we do not account for the

following two cases: (1) expiration of partials at the head of the deque, and (2) deletion of

the head node of the deque. When either of the two cases occur, 1 operation is performed

for that slide instead of 2.

Case (1) happens when the partial stayed on the deque for the entire max query range

worth of partials (nPmax), which means that there was no input partials that could displace

the expiring partial from the deque (e.g., if Max is calculated, there was not any input partial

greater or equal to our expiring partial). The probability of that happening (given uniform

input) is 1 to nPmax, where nPmax is the number of partials in the query with the longest

range. Thus we subtract 1/nPmax from Ω to account for the average number of times this

happens in a long running process.

Case (2) happens when any input partial displaces the head node of the deque (e.g.,

if Max is calculated, a partial higher than all the nodes including the head node arrives).

The probability of that happening is again 1/nPmax per slide since that is the probability of

the new partial displacing the most valuable partial from the latest nPmax (e.g., the highest

value if Max is calculated), thus we subtract another 1/nP from Ω.

Now, in order to account for MQ cases we have to account for operations required by

the algorithm to return query answers. In a single query environment this could be simply

done by returning the value of the head node on the deque, however if we need to return

answers to several queries with different ranges we traverse the deque. During the planning

stage all queries are ordered descendingly by their ranges, which makes it possible during

execution to get answers to all queries in just one full traversal of the deque. Each query

requires at least one operation to compare its required nPi to the current iterator position

within the deque. To account for that we add nQ to our cost estimate Ω. Also, to account

for the operations that need to be performed to traverse the deque (in the worst case) we add

116

Table 11: Estimated Final Aggregation Costs

IE technique Operations Per Edge (Ω)

Panes
∑nQ

i=1
ri
si

FlatFAT
∑nQ

i=1(blog2(nPi − 1)c+ nPi−1
2dlog2(nPi)e)

FlatFIT 3 · nQ

Slick Inv. # of unique nPi

Deque Non-I. 2− 2/nPmax + nQ+
∑nPmax

i=1
1
i!

the number of operations equal to the average length of the deque during execution. Given

the uniform input, as shown in [44], the length of the deque on average equals the sum of

the inversed factorials of sequential natural numbers from 1 to nPmax, where nPmax is again

the maximum number of partials needed by any query to assemble its answer, and can be

expressed as
∑nP

i=1
1
i!
. This follows from the fact that the probability of randomly picking x

numbers ordered in a particular way (e.g., ascending) is 1 to x!. Thus, we estimate Ω for

SlickDeque (Non-Inv) as:

Ω = 2− 2/nPmax + nQ+
nPmax∑
i=1

1

i!
(7.7)

We summarize our theoretical findings in Table 11.

7.3 Experimental Evaluation

In this section, we present the results of our experimental evaluation of using the new

IE techniques in MQ optimizers by (1) generating execution plans for the IE techniques

and comparing their estimated costs, and (2) actually executing several generated plans and

comparing the practical performance.

117

7.3.1 Plan Generation Setup

In this part of our evaluation we show the significance of IE technique selection on

generated plan costs using our plan generation testbed described in Section 5.4.1. Towards

this we utilized our Java platform where we implemented the WeaveShare and TriWeave MQ

optimizers as described in [20] and [19], and augmented them with the support of different

Ω calculations (estimation of final aggregations) for our compared IE techniques.

Our plan generation experimental parameters are:

[IE technique] It specifies which algorithm is used for Ω calculations. The available

techniques are: Panes, FlatFAT, FlatFIT, SlickDeque (Inv and Non-Inv).

[Qnum] Number of ACQs . We assume that all ACQs are installed on the same data

stream and their aggregate functions allow them to share partial aggregations among them.

The actual function does not have any effect on performance other than the ability to share

partial aggregations.

[Smax] Maximum slide length provides an upper bound on how large slides of our ACQs

can be. The minimum slide allowed by the system is one. The slides are drawn from the set

of factors of Smax.

[λ] The input rate describes how fast tuples arrive through the input stream in our system.

[Zskew] Zipf distribution skew depicts the popularity of each slide length in the final set

of ACQs . A Zipf skew of zero produces uniform distribution, and a greater Zipf skew is

skewed towards large slides.

[Omax] Maximum overlap factor defines the upper bound for the overlap factor. The

range of each ACQ is determined by drawing an ovelap factor from a uniform distribution

between one and Omax and multiplying it by ACQ ’s slide.

7.3.2 Plan Generation Results

To compare the sensitivity of the estimated plan costs produced by our new IE techniques

to the parameters Qnum, Smax, Omax, λ, and Zskew, we ran five experiments where we varied

one of these parameters at a time while keeping the rest of them fixed. The parameters were

selected separately for each experiment in a way that would highlight the differences in the

118

Figure 42: Plan cost with increasing number of queries using WeaveShare (left) and Tri-

Weave(right)

Table 12: Experiment Parameters

Qnum Smax Omax λ Zskew

1 1-10K 1K 10K 1 0

2 100 10-100K 10K 1 0

3 100 1K 100-1M 1 0

4 100 1K 10K 0.01-100 0

5 100 1K 10K 1 (-1)-1

scalabilities of the five compared IE techniques. The experimental parameters are specified

in the Table 12. All results are taken as averages of running each experiment ten times.

7.3.2.1 Exp 1: Number of ACQs Sensitivity (Figure 42)

In this test we varied the Qnum from 1 to 10,000. Clearly increasing the Qnum also in-

119

Figure 43: Plan cost with increasing max slide using WeaveShare (left) and TriWeave(right)

creases the amount of required calculations, causing higher costs for all of the generated plans

(for both WeaveShare and TriWeave optimizers). The growth rates (depicted in Figure 42)

of all underlying IE techniques are similar to what we expected from the theoretical analysis

of the time complexities of their underlying algorithms. Thus we see that using SlickDeque

(Non-Inv) and SlickDeque (Inv) show the best results by outperforming the closest compet-

ing IE technique (FlatFIT) by up to 3x and the current state-of-the-art Panes technique by

up to 5,000x. Additionally notice that TriWeave outperformed WeaveShare algorithm by 8%

on average.

7.3.2.2 Exp 2: Max Slide Sensitivity (Figure 43)

In this test we varied the Smax from 10 to 100,000. As opposed to to Exp 1, increasing the

Smax decreases the amount of required calculations. This happens because with a higher max

slide parameter, the generated ACQs have longer slides, which results in longer distances

between the edges (where the final aggregations are performed). This way the workload for

120

Figure 44: Plan cost with increasing max overlap using WeaveShare (left) and Tri-

Weave(right)

the final aggregator is reduced while keeping the same workload for the partial aggregator,

resulting in a decreased total cost. Notice again that SlickDeque shows vastly superior

performance by surpassing all other algorithms by up to 4,300x. WeaveShare and TriWeave

optimizers performed similarly in this experiment (within 2%).

7.3.2.3 Exp 3: Overlap Factor Sensitivity (Figure 44)

In this test we varied the Omax from 100 to 1,000,000. Similarly to Exp 1, increasing

the Omax also increases the amount of required calculations (in most cases). This follows

from the fact that increasing Omax increases query ranges, and increased ranges require

more partials to be assembled during each final aggregation. However, algorithms FlatFIT

and SlickDeque (both Inv and Non-Inv) have constant complexity in terms of increasing

window, thus their performance remains largely unaffected by the increasing ranges (which

can be observed in Figure 44). As a result, we can see that the difference between the

121

Figure 45: Plan cost with increasing input rate using WeaveShare (left) and TriWeave(right)

best performing SlickDeque technique and the currently used Panes technique grows much

faster than in the first two experiments, and reaches 270,000x improvement. WeaveShare

and TriWeave optimizers again performed similarly in this experiment (within 2%).

7.3.2.4 Exp 4: Input Rate Sensitivity (Figure 45)

In this test we varied λ from 0.01 to 100. Increasing λ increases the amount of required

calculations because with higher input rates partial aggregators have to do more work ag-

gregating the input tuples (which can be seen in Equation 7.1). Notice that the performance

of the Panes algorithm is not significantly affected by the increasing input rate. This hap-

pens because the cost of the Panes algorithm is largely dominated by the final aggregator

cost, and the increase in partial aggregation cost is proportionally small. SlickDeque again

outperforms other algorithms by up to 3,000x, and TriWeave outperforms the WeaveShare

optimizer by 18% on average.

122

Figure 46: Plan cost with increasing zipf using WeaveShare (left) and TriWeave(right)

7.3.2.5 Exp 5: Slide Skew Sensitivity (Figure 46)

In this test we varied the Zskew from -1 to 1. This experiment is similar to the max slide

scalability experiment, because in both experiments we are gradually increasing the amount

of ACQs with large slides and therefore decreasing the amount of required calculations. The

difference here is that when significantly skewing all slides drawn from the same set to one

side (when Zskew is close to -1 and 1), they start repeating, which lessens the affect on the

costs (we can see flatter lines on the figures in these places). SlickDeque outperforms all

the other IE techniques by up to 4,200x, and TriWeave outperforms WeaveShare by 5% on

average.

7.3.2.6 Plan Generation Summary.

The above experimental results showed that our SlickDeque technique delivers the best

quality execution plans when used as part of MQ optimizers. This was to be expected given

that SlickDeque is the most advantageous IE technique in terms of throughput as shown in

123

Table 13: Practical Evaluation Parameters

Qnum Smax Omax λ Zskew

100 1K 10K 1 0

Chapter 4. We also observed that the TriWeave optimizer produces slightly better execution

plans compared to WeaveShare.

7.3.3 Practical Evaluation Setup

In order to verify the correctness (and practical significance) of the plan cost estimations

produced by our updated MQ optimizers in the first part of our evaluation, we executed a

few selected plans on a real dataset using our own execution platform written in C++ and

examined their performance. The detailed testbed description can be found in Section 3.4.1.

Setup. We used our plan generation platform to generate one plan using WeaveShare and

one plan using the TriWeave optimizers for each of the compared IE techniques using the

query load parameters (specified in Table 13) that correspond to the middle point of each

figure from our plan generation experiments (Exp. 1-5).

Evaluation Metrics. Generally, a cost of a plan is estimated as the required computation

power to process this plan. It is clear that there is a reverse relationship between the plan cost

(measured in operations per second) and the actual throughput (measured as the number of

actual query answers received per second). Thus, to perform a fair comparison we converted

the plan cost to estimated throughput by inverting it (i.e. 1/Cost).

7.3.4 Practical Evaluation Results

To measure the actual throughput, we ran each execution tree of a plan for 30 minutes

at full speed while counting query results returned by the system. We added them together

to get the total number for the plan, and divided them by 1,800 to get the number per

124

Figure 47: WeaveShare: estimated throughput in 1/cost_unit per second (left), actual

throughput in results per second (right)

second. Even though the estimated and actual throughputs are measured in different units,

they should correlate and be proportionally similar if our calculations are correct.

7.3.4.1 Exp 6: WeaveShare: estimated vs actual throughput (Figure 47)

In this test we can see that visually our actual throughput correlates with the expected

one, which gives us confidence that our updated WeaveShare optimizer performs cost esti-

mation of all the IE techniques rather accurately. The statistics say that if we normalize

the scales of both estimated and actual throughputs by equating their largest readings (in

Figure 47), the average deviation between estimated and practical readings averages 31%,

which is a good result given the dependency of the actual performance on a variety of sys-

tem/environmental factors. Thus, we conclude that our estimations of the IE techniques are

accurate enough to be used in the MQ optimizer WeaveShare.

7.3.4.2 Exp 7: TriWeave: estimated vs actual throughput (Figure 48)

In this test we can again see that our actual throughputs are visually similar to the

125

Figure 48: TriWeave: estimated throughput in 1/cost_unit per second (left), actual through-

put in results per second (right)

expected ones. If we again normalize the scales of both estimated and actual throughputs in

Figure 48, the deviation is on average only 14%, which is even better than in Exp. 6. Again

we have confidence that our calculations have meaning and can be used in the MQ optimizer

TriWeave.

7.3.4.3 Practical Evaluation Summary.

The correlation that we see between the estimated and the actual performance numbers

(with an average deviation of only 22%) gives us confidence that our new final aggregation

cost calculations (Ω) are valid and can be utilized in cost-based MQ optimizers.

7.4 Summary

The key contribution of this chapter is combining the recently developed IE techniques

with the cost based MQ optimizers. We provided a theoretical analysis of all the available

126

IE techniques that determines their average operational cost (Ω) per slide given any set of

input ACQs .

We used this analysis in our cost estimation formulas and experimentally compared all

of the IE techniques as part of the MQ optimizers. We identified that SlickDeque allowed

the optimizers to produce the most efficient execution plans by outperforming the rest of the

techniques by up to 270,000x in terms of the estimated plan cost.

We also used the above analysis to experimentally show that our estimated performance

is on average within 22% of the practical performance using a real dataset, which proves the

validity of using our cost calculations (Ω) as part of any cost-based MQ optimizer.

127

8.0 Conclusions & Future Work

8.1 Summary of Contributions

This dissertation aimed to improve the state-of-the-art algorithms and optimizers used

for processing SWAG, which are at the core of modern data analytics. After we identified

the shortcomings in current IE techniques and MQ optimizers we examined how the IE

techniques and MQ optimizers apply the principle of sharing, which lead us to develop a

A Taxonomy of all IE techniques (Chapter 2) available today. This taxonomy organized

these techniques in terms of applicability, complexity, and usability in MQ environments,

and provided the foundation that led to our hypothesis:

Sliding-window aggregation processing can benefit from (1) improving the performance of

Incremental Evaluation by exploiting the algebraic properties of ACQ’s underlying aggregate

operations and (2) developing new Multi-Query optimizers that can target multi-node dis-

tributed environments and efficiently generate high quality execution plans by exploiting the

new Incremental Evaluation techniques.

We supported the first part of our hypothesis with the development of two novel IE

techniques, which we evaluated both theoretically and experimentally to demonstrate their

practical impact:

• FlatFIT (Chapter 3), a new efficient final aggregation technique that allows high ACQ

processing throughput by dynamically storing the intermediate results and their corre-

sponding pointers in a novel indexing structure, which indicates how far ahead FlatFIT

can skip in each step of its calculation, reducing the number of partials used in per-

forming a final aggregation. We experimentally show that FlatFIT achieves up to a 17x

throughput improvement over FlatFAT (the state-of-the-art approach at the time) for

the same input workload while using less memory.

• SlickDeque (Chapter 4), another new final aggregation technique that maintains both

high throughput and low latency in ACQs processing by treating ACQs differently based

on their invertibility property. The invertible operations are processed using SlickDeque

128

(Inv), our new modified Panes (Inv) approach, while non-invertible ACQs are processed

with SlickDeque (Non-Inv), our novel deque-based algorithm that intelligently maintains

and utilizes intermediate partial aggregates allowing a greater level of reuse of previously

calculated results. We show that SlickDeque maintains 283% lower latency spikes on

average while achieving up to 345% throughput improvement over the state-of-the-art

approaches along with requiring up to 5 times less memory.

Towards the second part of our hypothesis for developing new practical MQ optimizers

we developed (1) a closed formula for efficient calculations of overlapping windows, and

(2) multiple new approaches of MQ optimization for multi-tenant cloud environments that

utilize concepts of weaving and grouping and take advantage of our new formula:

• F1 (Chapter 5), a novel closed formula that accelerates all of the Weavability-based

Multi-Query optimizers by replacing the iterative and calculation-heavy Bit Set method

with a closed formula for Weavability calculations. We showed that F1 can reduce the

computation time of any technique that combines partial aggregations within composite

slides of multiple ACQs by up to 60,000x, and that it is superior to the current approach

in both time and space complexities.

• Distributed ACQ Optimizers (Chapter 6), a set of novel Weavability-based Multi-Query

optimizers for processing ACQs in a distributed environment, including Weave-Group to

Nodes (WGTN) and Weave-Group Inserted (WGI) optimizers, that produce plans of a

significantly higher quality than the rest of the optimizers by minimizing the total cost

(where WGTN is best in 90% cases) and achieving better load balancing (where WGI is

best in 80% cases).

Finally, to connect all the dots in our hypothesis we show how our newly proposed

IE techniques can be integrated into the MQ optimizers to achieve maximum performance

efficiency in SWAG processing:

• New Cost Estimation (Chapter 7), a new approach based on a theoretical analysis of all

of the available IE techniques that accurately determines their average operational cost

per slide (Ω) given any set of input ACQs , which allows estimating their performance on

average within 22% of the actual performance.

129

Figure 49: Incremental Evaluation Taxonomy and Applicability. Our contributions are

bolded.

• MQ Optimization of IE ACQs (Chapter 7), a novel solution that achieves up to 270,000x

improvement in execution cost by combining the new IE techniques with the state-of-

the-art MQ optimizers using the New Cost Estimation above.

In addition to algorithmic contributions, this dissertation produced two experimental

testbeds that allow extensive experimental SWAG evaluations to be carried out using both

synthetic and real data sets: (1) a C++ based execution platform for measuring the per-

formance of different IE techniques, and (2) a Java based MQ optimization platform for

generating execution plans by selectively combining large numbers of ACQs into execution

trees. These platforms can be potentially used for other experimentations as well.

All our experimental and theoretical findings in this dissertation lead us to a better

understanding of how the processing of aggregate continuous queries could be optimized to

achieve higher processing performance. As part of our investigation we determined the space

of applicability of IE techniques, which we summarize in Figure 49. We also learned that

the new IE techniques are not only applicable but also favorable when used as part of single-

130

and multi- node MQ optimizers, allowing them to achieve significantly higher computational

efficiency.

8.2 Future Work

Clearly, there are many potential directions for future work derived from this dissertation.

Our IE techniques and MQ optimizers can be expanded and improved to support:

• Heterogeneous computation environments, where each node has a different computational

capacity, which needs to be taken into account by the optimizer.

• Dynamic computation environments, where nodes can be added/removed on-the-fly, and

the execution plan needs to be adjusted accordingly.

• Evolving workloads, where the execution plans are adjusted based on the current demand

on the system, which includes dropping low priority ACQs in a system with insufficient

resources.

• Approximate query answers, where CPU time and memory can be saved by sacrificing

query result accuracy.

• Out-of-order processing, where the ACQs need to take into account late arrivals.

• ML-driven MQ optimization, where machine learning techniques can be applied to speed

up and/or improve our MQ plan generation process.

The obvious next step of this work is to implement the algorithms and optimizations

proposed in this dissertation on a real, general-purpose production system. One such system

in which our work can be incorporated is Apache Flink, which provides a general interface

to efficiently process window aggregations using general stream slicing [49].

8.3 Broad Impact

In the current business environment, a growing number of applications are becoming

available to wider audiences, resulting in an increasing amount of data being produced. A

131

large volume of this generated data often takes the form of high velocity streams. At the

same time, online data analytics have gained momentum in many applications that need

to ingest data fast and apply some form of computation, such as predicting outcomes and

trends for timely decision making. This dissertation addresses the challenges of efficiently

processing large amounts of data arriving with high velocities in the form of streams, and

our contributions open the possibilities to meet the near-real-time requirements of analytical

applications, whether they are business, health care, science, security, social media, etc.

Financially, this dissertation enables the enterprises to increase their profits by allowing

them to process analytics more efficiently and thus satisfying more client requests using the

same resources. In multi-node settings our work allows for the balancing of workloads among

computation nodes, preventing the need to over-provision in order to cope with unbalanced

workloads. This ultimately reduces infrastructure costs and saves energy while still meeting

the requirements of the installed analytical queries. Not only does this save on the monetary

cost of hardware, but it also saves on the manpower required to install, configure, and support

infrastructure throughout its lifecycle.

The above advancements result in cost decreases for online analytics, making the technol-

ogy more easily available to a number of industries, including health care, science, and social

media, empowering user to make better business decisions with a high degree of confidence

in the supporting data. Since almost every industry is growing their use of big data, the

opportunities to apply this work will only continue to grow.

132

Bibliography

[1] D. J. Abadi et al. Aurora: a new model and architecture for data stream management.
VLDBJ, 2003.

[2] D. J. Abadi et al. The design of the borealis stream processing engine. In CIDR,
2005.

[3] T. Akidau et al. Millwheel: Fault-tolerant stream processing at internet scale. In
VLDB, 2013.

[4] A. Arasu and G. S. Manku. Approximate counts and quantiles over sliding windows.
In SIGMOD, 2004.

[5] A. Arasu and J. Widom. Resource sharing in continuous sliding-window aggregates.
In VLDB, 2004.

[6] I. Brigadir, D. Greene, P. Cunningham, and G. Sheridan. Real time event monitoring
with trident. In RealStream, 2013.

[7] A. Bulut and A. K. Singh. Swat: Hierarchical stream summarization in large networks.
In DataEngConf, 2003.

[8] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas. Apache
flink: Stream and batch processing in a single engine. 2015.

[9] P. Carbone, J. Traub, A. Katsifodimos, S. Haridi, and V. Markl. Cutty: Aggregate
sharing for user-defined windows. In CIKM, 2016.

[10] S. Chandrasekaran et al. Telegraphcq: continuous dataflow processing. In SIGMOD,
2003.

[11] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Niagaracq: A scalable continuous
query system for internet databases. In SIGMOD, 2000.

133

[12] C. Chung, S. Guirguis, and A. Kurdia. Competitive cost-savings in data stream
management systems. In COCOON. 2014.

[13] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over
sliding windows. SIAM journal on computing, 2002.

[14] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo. Spade: the system s
declarative stream processing engine. In SIGMOD, 2008.

[15] T. M. Ghanem, M. A. Hammad, M. F. Mokbel, W. G. Aref, and A. K. Elmagarmid.
Incremental evaluation of sliding-window queries over data streams. TKDE, 2007.

[16] P. B. Gibbons and S. Tirthapura. Distributed streams algorithms for sliding windows.
In SPAA, 2002.

[17] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pel-
low, and H. Pirahesh. Data cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub-totals. Data mining and knowledge discovery, 1997.

[18] T. S. Group. Stream: The stanford stream data manager. IEEE Data Engineering
Bulletin, 2003.

[19] S. Guirguis, M. Sharaf, P. K. Chrysanthis, and A. Labrinidis. Three-level processing
of multiple aggregate continuous queries. In ICDE, 2012.

[20] S. Guirguis, M. A. Sharaf, P. K. Chrysanthis, and A. Labrinidis. Optimized processing
of multiple aggregate continuous queries. In CIKM, 2011.

[21] A. Gupte and R. Agrawal. Solving big data challenges with data science at uber. Uber
Engineering.

[22] M. A. Hammad et al. Nile: A query processing engine for data streams. In ICDE,
2004.

[23] D. Harris. Facebook shares some secrets on making mysql scale. Gigaom.

[24] Z. Jerzak, T. Heinze, M. Fehr, D. Gröber, R. Hartung, and N. Stojanovic. The debs
2012 grand challenge. In DEBS, 2012.

134

[25] Y. Ji, T. Heinze, and Z. Jerzak. Hugo: real-time analysis of component interactions
in high-tech manufacturing equipment (industry article). In DEBS, 2013.

[26] J. M. Joseph. Predicate decomposition for signature generation. In MS Project,
University of Pittsburgh, 2016.

[27] U. Jugel, Z. Jerzak, G. Hackenbroich, and V. Markl. M4: a visualization-oriented
time series data aggregation. VLDBJ, 2014.

[28] U. Jugel, Z. Jerzak, G. Hackenbroich, and V. Markl. Vdda: automatic visualization-
driven data aggregation in relational databases. VLDBJ, 2016.

[29] N. R. Katsipoulakis, A. Labrinidis, and P. K. Chrysanthis. A holistic view of stream
partitioning costs. VLDBJ, 2017.

[30] N. R. Katsipoulakis, A. Labrinidis, and P. K. Chrysanthis. Concept-driven load shed-
ding: Reducing size and error of voluminous and variable data streams. In Big Data,
2018.

[31] S. Krishnamurthy, C. Wu, and M. Franklin. On-the-fly sharing for streamed aggrega-
tion. In SIGMOD, 2006.

[32] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. M. Patel,
K. Ramasamy, and S. Taneja. Twitter heron: Stream processing at scale. In SIGMOD,
2015.

[33] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. No pane, no gain: efficient
evaluation of sliding-window aggregates over data streams. SIGMOD, 2005.

[34] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. Semantics and evaluation
techniques for window aggregates in data streams. In SIGMOD, 2005.

[35] B. Moon, I. F. V. López, and V. Immanuel. Scalable algorithms for large temporal
aggregation. In DataEngConf, 2000.

[36] K. Naidu, R. Rastogi, S. Satkin, and A. Srinivasan. Memory-constrained aggregate
computation over data streams. In ICDE, 2011.

135

[37] S. A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst, I. Gupta, and
R. H. Campbell. Samza: stateful scalable stream processing at linkedin. VLDB, 2017.

[38] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and extensible algorithms
for multi query optimization. In SIGMOD, 2000.

[39] T. K. Sellis. Multiple-query optimization. TODS, 1988.

[40] M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, and K. Pruhs. Algorithms and metrics
for processing multiple heterogeneous continuous queries. ACM Trans. Database Syst.,
2008.

[41] A. U. Shein, P. K. Chrysanthis, and A. Labrinidis. F1: Accelerating the optimization
of aggregate continuous queries. In CIKM, 2015.

[42] A. U. Shein, P. K. Chrysanthis, and A. Labrinidis. Processing of aggregate continuous
queries in a distributed environment. In BIRTE, 2015.

[43] A. U. Shein, P. K. Chrysanthis, and A. Labrinidis. Flatfit: Accelerated incremental
sliding-window aggregation for real-time analytics. In SSDBM, 2017.

[44] A. U. Shein, P. K. Chrysanthis, and A. Labrinidis. Slickdeque: High throughput and
low latency incremental sliding-window aggregation. In EDBT, 2018.

[45] K. Tangwongsan, M. Hirzel, and S. Schneider. Low-latency sliding-window aggrega-
tion in worst-case constant time. In DEBS, 2017.

[46] K. Tangwongsan, M. Hirzel, and S. Schneider. Sliding-window aggregation algorithms.
PVLDB, 2019.

[47] K. Tangwongsan, M. Hirzel, S. Schneider, and K.-L. Wu. General incremental sliding-
window aggregation. VLDB, 2015.

[48] A. Toshniwal et al. Storm@twitter. In SIGMOD, 2014.

[49] J. Traub, P. Grulich, A. R. Cuéllar, S. Breß, A. Katsifodimos, T. Rabl, and V. Markl.
Efficient window aggregation with general stream slicing. In EDBT, 2019.

136

[50] E. Weisstein. Binomial series. Wolfram MathWorld.

[51] E. Weisstein. Euclidean algorithm. Wolfram MathWorld.

[52] E. Weisstein. Harmonic number. Wolfram MathWorld.

[53] E. Weisstein. Prime number theorem. Wolfram MathWorld.

[54] J. Yang and J. Widom. Incremental computation and maintenance of temporal ag-
gregates. In DataEngConf, 2001.

[55] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu energy. In
FOCS, 1995.

[56] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica. Discretized streams: an efficient
and fault-tolerant model for stream processing on large clusters. In HotCloud, 2012.

[57] R. Zhang, N. Koudas, B. C. Ooi, and D. Srivastava. Multiple aggregations over data
streams. In SIGMOD, 2005.

137

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1. Partial Aggregation Technique Comparison
	2. Final Aggregation Complexities.
	3. Final Aggregation Complexities (Complexities of the existing techniques are derived in Section 2.3.2).
	4. Final Aggregation Complexities. Our contributions are bolded. Complexities of the existing techniques are derived in Section 2.3.2.
	5. Experiment Parameters
	6. Experimental Results
	7. Optimizer Categories
	8. Experimental Parameter Values (Total number of combinations = 256)
	9. WGI vs WGTN breakdown (for 256 experiments)
	10. Average Plan Generation Runtime (for 256 experiments)
	11. Estimated Final Aggregation Costs
	12. Experiment Parameters
	13. Practical Evaluation Parameters

	List of Figures
	1. Incremental Evaluation Taxonomy. Our contributions are marked with squares.
	2. Panes Technique (range=4 and slide=1)
	3. Paired Window Technique (range=14 and slide=8)
	4. Cutty-slicing Technique (range=5 and slide=3)
	5. FlatFAT Technique
	6. B-Int Technique
	7. DABA Technique
	8. Shared Processing
	9. FlatFIT Technique
	10. Example of Panes and FlatFIT algorithms working in a Single Query Environment (processing just Q1) and in a Multi-Query Environment (processing both Q1 and Q2)
	11. Theoretical operations per slide in a single query environment
	12. Theoretical throughput in a single query environment running N operations per second
	13. Theoretical operations per slide in a max-multi-query environment
	14. Theoretical throughput in a max-multi-query environment running N operations per second
	15. Theoretical Memory Usage in GB increments
	16. Throughput in processed slides per second in single query environment
	17. Throughput in processed slides per second in max-multi-query environment
	18. FlatFIT / FlatFAT throughput ratio
	19. Experimental Memory Usage in GB increments
	20. Example 5 processing of invertible aggregate queries Q1 and Q2 using Panes and SlickDeque (Inv) algorithms.
	21. SlickDeque (Non-Inv) Technique
	22. Example 6 processing of non-invertible aggregate queries Q1 and Q2 using Panes and SlickDeque algorithms.
	23. Throughput in processed queries per second in single query environment (Sum)
	24. Throughput in processed queries per second in single query environment (Max)
	25. Throughput in processed slides per second in multi-query environment (Sum)
	26. Throughput in processed slides per second in multi-query environment (Max)
	27. Latency in nanoseconds per query answer
	28. Latency spikes in nanoseconds per query answer
	29. Experimental Memory Usage in Gigabyte increments
	30. Marking edges produced by five different ACQs with NO fragments in the composite slide, represented by a Bit Set
	31. F1 converging to the solution for 20 ACQs in 20 steps
	32. Marking edges produced by four different ACQs WITH fragments in the composite slide, represented by a Bit Set
	33. (slide 3, shift 0) and (slide 6, shift 3) DO overlap, but (slide 3, shift 0) and (slide 6, shift 2) DO NOT
	34. Number of operations needed by Bit Set and F1 for plan generation. Top labels show BitSet/F1 ratio
	35. Scalability of the number of ACQs
	36. Scalability of the maximum slide length
	37. Scalability of the input rate
	38. Sensitivity to the zipf distribution skew
	39. Sensitivity to the maximum overlap factor
	40. Average Plan Quality (from 256 experiments) where 0% and 100% are the average plan costs of all best and worst plans, respectively, across all optimizers. The error bars show the standard deviations Consistent with the definition of a standard deviation, about 68% of all plans produced by these optimizers lie in this margin.
	(a). Max Cost Comparison
	(b). Total Cost Comparison
	41. Costs per node in a 4-node system
	42. Plan cost with increasing number of queries using WeaveShare (left) and TriWeave(right)
	43. Plan cost with increasing max slide using WeaveShare (left) and TriWeave(right)
	44. Plan cost with increasing max overlap using WeaveShare (left) and TriWeave(right)
	45. Plan cost with increasing input rate using WeaveShare (left) and TriWeave(right)
	46. Plan cost with increasing zipf using WeaveShare (left) and TriWeave(right)
	47. WeaveShare: estimated throughput in 1/cost_unit per second (left), actual throughput in results per second (right)
	48. TriWeave: estimated throughput in 1/cost_unit per second (left), actual throughput in results per second (right)
	49. Incremental Evaluation Taxonomy and Applicability. Our contributions are bolded.

	Preface
	Introduction
	Problem Statement
	Shortcomings of Incremental Evaluation
	Shortcomings of Multi-Query Optimization

	Our Approach
	Contributions
	Roadmap

	Background & Related Work
	Algebraic Properties
	Assumptions
	Incremental Evaluation Taxonomy
	Partial aggregation
	Final Aggregation

	Multi-Query Optimization
	Shared Processing of ACQs
	Weavability

	Other Related Work
	Summary

	FlatFIT: Accelerated Incremental Sliding-Window Aggregation For Real-Time Analytics
	Introduction
	FlatFIT Operation
	The FlatFIT Algorithm
	Optimization

	Complexity Analysis
	Time Complexity of FlatFIT
	Space Complexity of FlatFIT

	Experimental Evaluation
	Experimental Testbed
	Experimental Results
	Exp 1: Single Query Throughput
	Exp 2: Max-Multi-Query Throughput
	Exp 3: Memory Consumption

	Summary

	SlickDeque: High Throughput and Low Latency Incremental Sliding-Window Aggregation
	Introduction
	SlickDeque Operation
	The SlickDeque Algorithm
	SlickDeque for Invertible Aggregates
	SlickDeque for Non-Invertible Aggregates

	Complexity Analysis
	Time Complexity of SlickDeque
	Space Complexity of SlickDeque

	Experimental Evaluation
	Experimental Results
	Exp 1: Single Query Throughput
	Exp 2: Max-Multi-Query Throughput
	Exp 3: Query Processing Latency
	Exp 4: Memory Requirement

	Summary

	F1: Accelerating the Optimization of Aggregate Continuous Queries
	Introduction
	Formula 1 (F1)
	Bit Set Approach
	Case with NO Fragments
	Case WITH Fragments
	F1 Optimization

	Complexity Analysis
	Experimental Evaluation
	Experimental Testbed
	Experimental Results
	Exp 1: Number of ACQs Scalability
	Exp 2: Max Slide Scalability
	Exp 3: Input Rate Scalability
	Exp 4: Slide Skew Sensitivity
	Exp 5: Overlap Factor Sensitivity
	Experimental Results Summary

	Summary

	Processing of Aggregate Continuous Queries in a Distributed Environment
	Introduction
	System Model and Execution Plan Quality
	Taxonomy of Optimizers
	Non-Cost-based Optimizers
	Cost-based Optimizers
	Category ``To Lowest''
	Category ``To Nodes''
	Category ``Inserted''

	Experimental Evaluation
	Experimental Setup
	Experimental Results
	Exp 1: Evaluation of Distributed Environment Optimizers
	Exp 2: Load Balancing

	Summary

	Multi-Query Optimization of Incrementally Evaluated Sliding-Window Aggregations
	Introduction
	Estimating
	Experimental Evaluation
	Plan Generation Setup
	Plan Generation Results
	Exp 1: Number of ACQs Sensitivity
	Exp 2: Max Slide Sensitivity
	Exp 3: Overlap Factor Sensitivity
	Exp 4: Input Rate Sensitivity
	Exp 5: Slide Skew Sensitivity
	Plan Generation Summary.

	Practical Evaluation Setup
	Practical Evaluation Results
	Exp 6: WeaveShare: estimated vs actual throughput
	Exp 7: TriWeave: estimated vs actual throughput
	Practical Evaluation Summary.

	Summary

	Conclusions & Future Work
	Summary of Contributions
	Future Work
	Broad Impact

	Bibliography

