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NETWORK VIRTUALIZATION IN NEXT-GENERATION CELLULAR NETWORKS:

A SPECTRUM POOLING APPROACH

Ayman AbdelHamid, PhD

University of Pittsburgh, 2019

The hardship of expanding the cellular network market results from the tremendous high cost

of mobile infrastructure, i.e. the capital expenditures (CAPEX) and the operational expenditures

(OPEX). Spectrum Sharing is one of the proposed solution for the high-cost of scalability of cel-

lular networks. However, most of the proposed spectrum pooling frameworks in the literature are

mostly approached from a technical view besides there are no good cost models based on real data

sets for quantifying the circumstances under which sharing the spectrum and network resources

would be beneficial to mobile operators.

In this thesis, by studying different sharing scenarios in a fiber-based backhaul mobile network,

we assess the incentives for service providers (SPs) to share spectrum/infrastructure in different

cellular market areas/economic areas (CMA/BEAs) with different population density, allocated

bandwidth (BW), spectrum bid values and considering different network topologies. Moreover,

we look at the technical problem of sharing the spectrum between two SPs sharing the same bases-

tation (BS), yet they have different traffic demand as well as different QoS constraints. We design

a resource allocation scheme to provision real-time (RT), non-real-time (NRT) as well as Ultra-

reliable Low Latency Communications (URLLC) traffic in a single shared BS scenario such that

SPs achieve isolation, fairness and enforce their QoS constraints.

Finally, we exploit spectrum pooling to develop an approach for dynamically reconfiguring

the base stations that survive a disaster and are powered by a microgrid to form a multi-hop mesh

network in order to provide local cellular service.
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1.0 INTRODUCTION

Within the last decade, there has been an enormous increase in the demands of mobile users due

to the varieties of services that service providers (SPs) have introduced such as video streaming

and massive Machine Type Communications (mMTC) [1]. In Ericsson’s report (June 2017), voice

over LTE (VoLTE) subscriptions were expected to exceed 540 million by the end of 2017 (more

than 60 % of the voice calls on LTE smartphones) [2]. Moreover, Next-Generation Mobile Net-

works (NGMN) are being designed to connect a variety of industries, e.g., manufacturing and

processing, intelligent transportation, smart grids, e-health, etc. Such different environments and

applications will bring the challenge of speed, latency and heterogeneity. For example, Enhanced

Mobile BroadBand (eMBB) service requires a very high throughput (≥ 100 Mbps) to provision

high data rate requests such as video gaming and tactile communications, whereas mMTC in-

cluding IoT traffic encompases tremendous numbers of connections and ultra-reliable low latency

crtitical communications (URLLC) flows are delay sensitive (user-plane delay ≤ 0.5 msec ) and

require ultra-reliable links, i.e. link reliability ≥ 0.999 [3].

Due to the diversity of applications and associated network service requirements (e.g. QoS,

speed, latency, reliability and security) for each application, the capital expenditures (CAPEX)

and operational expenditures (OPEX) of developing current mobile networks to cope with the

requirements of NGMN are expected to be significantly high [4]. Thereby, the roll-out of mobile

networks will require high sunk investments and the need to recover those by charging the user

heavily for accessing mobile services [5]. In addition to CAPEX and OPEX, NGMNs need more

spectrum resources to achieve the aforementioned stringent QoS requirements. In short, CAPEX,

OPEX and the spectrum availability are the main issues that arise for upgrading LTE networks

to 5G networks. Wireless Network Virtualization (WNV) has been extensively proposed in the

literature as a key solution to the challenges of both high CAPEX and OPEX as well as spectrum

1



utilization challenges accompanied with upgrading to the NGMN [4]. Virtualizing the NGMN

infrastructure saves on CAPEX and OPEX whereas virtualizing the physical spectrum resources

(i.e., spectrum pooling) enhances spectrum utilization by sharing the spectrum efficiently between

different mobile network operators (MNOs). In this thesis, we address some of the challenges

of spectrum pooling as an approach of WNV. In the following section, we define virtualization,

we discuss its challenges and we show how spectrum pooling can be exploited to solve the afore-

mentioned challenges in NGMN. In this thesis, we will use the terms service provider (SP)/virtual

entity (VE)/mobile network operator (MNO) interchangeably, without regard to the business model

interpretation of each of the terms.

1.1 WIRELESS NETWORK VIRTUALIZATION (WNV)

In wired networks, virtualization has occurred for decades. Two early forms of virtualization are

virtual private networks (VPNs) over wide area networks (WANs) and virtual local area networks

(VLANs) in enterprise networks [6, 7]. The Xen project [8] is a primary example of virtualization,

an x86 virtual machine monitor which allowed multiple commodity operating systems to share

conventional hardware in a safe and resource managed fashion. Challenges of wired virtualization

have been extensively studied in the literature including flexibility, heterogeneity, manageability,

isolation and legacy support [9]. Nevertheless, the challenges of virtualization are of a differ-

ent nature when applied to wireless networks [10]. For example, unlike wired networks where

bandwidth resource abstraction and isolation can be done on hardware (e.g., port and link) basis,

in wireless environment, radio resource abstraction and isolation are not straightforward, due to

the inherent broadcast nature of wireless communications and stochastic fluctuation of wireless

channel quality. Thus, WNV can be categorized into infrastructure virtualization (InV) and radio

resource virtualization (RRV), which we interchangeably use with spectrum pooling.

Infrastructure virtualization (InV) is defined as decoupling the roles of a traditional network

operator into two independent entities, infrastructure providers (InPs) who manage the physical

substrate/spectrum and service providers (SPs) or Virtual Entities (VEs) who access different re-

sources of the InP through a virtual network (VN) [11]. InV enables sharing the same infrastruc-
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ture, i.e., core network, radio access network (RAN), backhaul or all of them, between different

mobile network operators (MNOs), i.e., SPs, and hence, reduces the cost of establishing or ex-

panding the backhaul/radio network. On the other side, RRV, namely spectrum pooling, is sharing

radio resources, i.e., spectrum resource blocks (RBs), between different MNOs to utilize the spec-

trum more efficiently and also reduce the CAPEX and OPEX of expanding and upgrading current

cellular networks to attain the requirements of NGMN.

Spectrum pooling as a network virtualization technique has many economical and technical chal-

lenges. First, most of the proposed spectrum pooling frameworks in the literature are solely ap-

proached from the technical side and do not explore the economic side, i.e., costs and revenues of

different sharing scenarios, in order to assess the incentives to sharing entities. To the best of our

knowledge, there are no good cost models based on real data sets for quantifying the circumstances

under which sharing of spectrum and network resources would be beneficial to operators. On the

technical side, pooling the spectrum between different SPs with different traffic demands and use

cases is a big challenge. More precisely, allocating resource blocks (RBs) from the spectrum pool

to the sharing MNOs such that both isolation, fairness and the target QoS for various traffic types

is attained, is a non-trivial problem as we depict in the following chapters. Finally, it is not clear

yet, how a greenfield design of a spectrum pooled network can be accomplished.

In short, this thesis is divided into three main parts: (i) understanding the economic perspective of

pooling the spectrum resources between different MNOs and comparing the incentive of spectrum

pooling with the incentive of infrastructure sharing, (ii) analyzing the technical side of spectrum

pooling, i.e., developing an efficient spectrum sharing technique to allocate physical resources in a

virtualized base station such that heterogeneous traffic demands are provisioned as well as support-

ing isolation and fairness between multiple SPs, and (iii) applying the spectrum pooling approach

as a means to recover a cellular network from disruption during disasters, such as earthquakes, due

to the disconnection between the core network and the RAN.
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1.2 THESIS OBJECTIVE

The objective of this thesis is to construct an economic and efficient solution to the establishment

of greenfield 5G networks by tackling the aforementioned challenges of spectrum pooling. By

studying different sharing scenarios in a fiber-based backhaul network, we aim at assessing the in-

centives for SPs to share spectrum/infrastructure in different cellular market areas/economic areas

(CMA/BEAs) and hence break the market between new roll-outs. Moreover, we look microscopi-

cally at the technical side of sharing the spectrum between two SPs sharing the same BS, yet they

have different traffic demands as well as different QoS constraints. We developed two resource

allocation schemes to provision real-time (RT), non-real-time (NRT) as well as Ultra-reliable Low

Latency Communications (URLLC) traffic when the spectrum resource blocks (RBs) are shared

between two SPs such that our schemes achieve isolation, fairness and satisfy QoS constraints.

Finally, we propose exploiting spectrum pooling between different eNBs that belong to different

MNOs in a disaster disrupted CMA/BEA to recover the cellular communications by forming a

wireless mesh network between the survivor BSs.

1.3 THESIS STATEMENT

To get more specific, this thesis aims to tackle the following spectrum pooling scenarios and answer

the accompanied design questions:

Question 1. Given a certain Cellular Market Area/Economic Area (CMA/EA), a greenfield LTE

network, a fiber-based backhaul network, two service providers (SPs) who share the spectrum,

the backhaul infrastructure or both of them at the same time in this CMA/EA: Which sharing

scenario has more incentives for MNOs to adopt: (i) to share their own spectrum resources, (ii)

to share their infrastructure resources or (iii) sharing both infrastructure and spectrum (i.e.,

full sharing)? Moreover, how does this incentive change with the type of the backhaul network

topology, the operating frequency band, the number of BSs deployed to cover this area as well

as the population density in this area?
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Question 2. After empirically showing the conditions for economic incentives to pool the spec-

trum, we expose the technical part of pooling the available spectrum at a single BS between two

SPs. Sharing the spectrum resource blocks (RBs) between different SPs with different traffic de-

mands and new 5G use cases such as ultra-reliable low latency communications (URLLC) raises

up the design question: How can we design an efficient resource allocation scheme that allocates

RBs among SPs such that the resource manager (hypervisor) would assign resources according

to each virtual network’s demand, i.e., traffic demand and classes of service, and the quality

of channels in each virtual network, while preserving isolation between different SP/VEs, i.e.,

achieving high utility for one SP/VE should not affect other entities sharing the same pool of

resources?

Question 3. To recover the cellular communications network from disruption due to natural disas-

ters by pooling the spectrum between the survivor eNBs and establishing a wireless mesh network

between the eNBs and without using any alternative technology: How can we reconfigure the

cellular network at the disrupted CMA with new optimal power allocations, optimal operating

frequencies and optimal BW assignments per eNodeB such that the survivor eNodeB mesh net-

work achieves the maximum average cell throughput, the target QoS constraints for each type

of service and meets the transmission power limits?

The layout of this thesis is described as follows. In Chapter 2, we present some of the recent

literature review in the topics of Infrastructure Virtualization (InV) and Radio Resource Virtual-

ization (RRV) from both the technical and economical perspective. In Chapter 3, we discuss the

thesis main statement, the model assumptions and the thesis contributions as well as future work.

Afterwards, in Chapter 4 we develop a cost model to assess the deployment cost of a greenfield

LTE network to obtain insights into the costs and benefits of sharing the network infrastructure

and radio spectrum. In Chapter 5, we propose two resource allocation schemes to enhance spec-

trum sharing between heterogeneous types of traffic in 5G networks in both 700 and 2100 MHz

bands. Last but not least, in Chapter 6, we propose a disaster recovery algorithm based on the

results concluded in Chapter 5 to recover a heterogeneous wireless network via multihop wireless

mesh network using different frequency carriers for different traffic types. Eventually, Chapter 7

concludes this thesis.
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2.0 BACKGROUND AND LITERATURE REVIEW

WNV has been addressed in the literature in two aspects: technically and economically. In this

chapter we provide a succinct literature review that is relevant to these aspects.

2.1 THE ECONOMIC APPROACH OF WNV

Different business models for spectrum sharing were abstractly discussed with few details in [12]

including sharing between equal primary devices, sharing between primary and secondary, sharing

among equal secondaries and sharing among equal regional infrastructures 1. Also, in [13] and [14]

the authors discussed various scenarios of infrastructure sharing for MNOs in cellular networks,

i.e. core network sharing, passive RAN sharing, active RAN sharing and etc, and abstractly spec-

ify the primal benefits and drawbacks of each, however the treatment is abstract and there are no

technical simulations. Also, in [15], different sharing scenarios are investigated such as: capacity

sharing, spectrum sharing and Mobile Network Operator sharing in collocated and non-collocated

base stations models using a system-level 4G LTE simulation testbed. Recently, the tradeoff be-

tween the probability of coverage and the data rate was investigated in infrastructure, spectrum and

full, i.e. infrastructure + spectrum, sharing scenarios [16]. In [16], J.Kibilda et al. use stochastic

geometry to analyze different scenarios of sharing for independent, clustered and co-located in-

frastructure. Stochastic geometry is used to analyze cellular networks based on the probabilistic

spatial distribution of BSs rather than on a specific network realization [17]. Abstracting each BS

location to a point in Euclidean space, stochastic geometry models the probabilistic BS locations

1A regional infrastructure is a mobile infrastructure that covers a certain cellular market area or economic area
based on the demography and topography of each region.
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by a stochastic point process (PP) which describes the random spatial patterns formed by points in

space. It was shown in [16] that infrastructure sharing outperforms spectrum and full sharing in

terms of the coverage probability. However, spectrum sharing outperforms in terms of average user

throughput. None of these research work consider the economics by looking at the actual costs of

building a greenfield next-generation network or buying spectrum from the FCC.

2.2 TECHNICAL BACKGROUND OF WNV

One of the first proposed virtualized wireless network is OpenRoads [18] which was designed to

replace the current WiFi network with a centralized WiFi network controlled by Network Oper-

ating System (NOX). This NOX is virtualized through different clients such that each client can

control his own flows and set his own policies. As an upgrade to OpenRoads, Odin [19] is consid-

ered the first detailed WiFi virtualized architecture where the WiFi physical Access Point (AP) is

virtualized between different clients using the notion of Light Virtual Access Point (LVAP). The

main purpose of LVAP is to facilitate seamless mobility between APs. As an extension to Odin

[19], OpenSDWN [20] is a virtualized Wifi network that takes into account the user application

QoS to enable service differentiation, and allows administrators or users to specify application and

flow priorities on the wired and wireless portion of the network. Later on, SoftRAN [21] proposed

a centralized architecture as an alternative to the distributed control plane currently implemented

in LTE networks. It abstracts out all the base stations deployed in a geographical area as a vir-

tual ”big-base station” while considering all the physical base stations as just radio elements with

minimal control logic. Also, in Cloud RAN [22], base-band units (BBUs) are separated from the

remote radio unit (RRU) to do signal processing and filtering. Meanwhile, BBUs are migrated into

a BBU pool, which is virtualized and shared by different cell sites, and RRUs are connected to the

BBU pool via the fronthaul links. Later on, [23] introduced the Hypervisor as the LTE network co-

ordinator which is responsible for scheduling network resources between different virtual instances

running on top of it, i.e. virtual networks. The Hypervisor assigns resources abstractly based on in-

formation from the individual virtual eNodeB stacks, like user channel conditions, loads, priorities,

QoS requirements and information related to the contract of each of the virtual operators.
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It is clearly noticeable that literature is extensively filled with research work in wireless virtual-

ization, nevertheless most of the aforementioned work had a very abstract business analysis of both

InV and RRV without delving into different possible network conditions such as: network topol-

ogy, type of Backhaul infrastructure, user/population density and etc. Furthermore, inter-operator

spectrum sharing has not been economically evaluated from the network operator perspective. For

example, it is not clear yet if pooling the licensed spectrum will have the sufficient monetary in-

centive to motivate mobile network operators (MNOs) to allow partial or full spectrum sharing.

Hence, in this thesis, we investigate different sharing scenarios in an LTE greenfield network un-

der different network conditions, i.e. network topologies, backhaul types and some demographic

features of different cellular market areas (CMAs)/ economic areas (BEAs).

2.3 RESOURCE ALLOCATION AND MANAGEABILITY IN VIRTUALIZED

NEXT-GENERATION MOBILE NETWORKS

After analytically evaluating the economic incentives to pool spectrum resources between MNOs,

we investigate a major challenge of spectrum pooling in literature which is resource management

and allocation. In [24], NVS, a resource scheduling framework, is proposed to efficiently allocate

resources to different virtual network slices, i.e., a group of flows that belong to a certain SP/VE,

subject to its fluctuating demands. Later on, NVS was improved into a scheme called NetShare in

[25] where the utility function which is maximized includes the proportional fairness (PF) demand

for each SP/VE, i.e., it includes both the SP/VE’s throughput in preceding time slots as well as the

current user demands of an SP/VE, to schedule resources among different SP/VEs (this work as-

sumes SP/VEs share more than one BaseStation (BS)). Also, [26] addresses resource allocation in

virtualized wireless networks when using full-duplex relaying where radio spectrum, base stations

and full-duplex relay stations are virtualized as virtual resources. On the same line of relaying

networks, [27] accomplishes a simple form of spectrum and infrastructure sharing by exploiting

multiple antennas at the relay via block diagonalization (BD). Later on, [28] used a controller

for resource scheduling not only among different SPs but also taking into consideration fairness

between users belonging to different SPs. The work in [29] proposes an opportunistic resource
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sharing in wireless virtualized networks such that some of the physical spectrum is opportunisti-

cally accessed by users, i.e. content-based sharing.

Unlike the literature mentioned above, we address the resource allocation problem when ap-

plied to next-generation virtualized mobile networks. To the best of our knowledge, this problem

has not been technically investigated in the literature. Unlike traditional cellular networks, the

diversity of service classes in NGMN networks, i.e., enhanced Mobile BroadBand (eMBB), Ultra-

reliable critical communications (URCC) and Machine Type Communications (MTC), makes re-

source allocation among different SP/VEs, sharing the same physical network and sharing spec-

trum, a multi-dimensional problem. The dimensions of this problem is depicted as follows.

2.3.1 Problem Dimension 1: Time-varying Resource Quality

One aspect of the problem is how the resource manager (hypervisor) should assign resources ac-

cording to each virtual network’s demand, i.e., traffic demand and classes of service, and the qual-

ity of channels in each virtual network, while preserving isolation between different SP/VEs, i.e.

achieving high utility for one SP/VE should not affect other entities sharing the same pool of re-

sources. In this thesis, we use LTE as the cellular system of interest, where the pooled resources

are the wireless spectrum resource blocks (RBs). RBs comprise of a subset of frequency channels

over a given time unit and are calculated every time slot by the RM based on the traffic demand and

the type of applications used by each user. An intuitive proposition for fair resource scheduling

among SP/VEs may be to simply apply the well known proportional fairness (PF) algorithm [30]

that is used for scheduling mobile users of a single operator in current cellular networks. This

algorithm uses the historical throughput that a mobile user has received and the channel conditions

to determine whether or not resources are allocated to this user in the current transmission time

interval (TTI). However, if such a PF algorithm is naively applied in the virtualized case, one pos-

sible scenario is that one SP/VE may not be able to acquire resources due to relatively bad channel

conditions for its users. This clearly violates the isolation required between SP/VEs and hence

PF scheduling cannot be directly applied to virtualized NGMN networks prior to initializing the

allocation process. Thus, in our resource allocation proposed scheme, we add a prioritization step

before the PF-scheduler as we will discuss in Chapter 3.

9



2.3.2 Problem Dimension 2: Traffic Heterogeneity in Next-generation Mobile Networks

The other aspect of the NGMN dilemma is the heterogeneity of user applications in NGMN

(e.g., delay-sensitive applications, elastic applications and ultra-reliable applications). As it is

well known, the characteristics of real-time communication applications differ significantly from

those which are elastic [31]. For instance, in [32], it was shown that 99% of inter-arrival times for

VoIP traffic are below 20 ms and the jitter delay is almost always less than 2 ms. Also, real-time

traffic is transmitted in small sized packets every constant epoch of time. We can mostly model

RT traffic as comprising of constant bit-rate (CBR) traffic. Furthermore, the ultra-reliable low la-

tency communications (URLLC) is one of the emerging services in next-generation networks, i.e.

5G [4]. URLLC refers to communication services where data packets are exchanged at moder-

ately low throughput (e.g., 50 Mbit/s) but with stringent requirements in terms of reliability (e.g.,

99.999%) and latency (e.g., 1-4 ms). Examples of URLLC include reliable cloud connectivity,

critical connections for industrial automation, tactile communications, and reliable wireless coor-

dination among vehicles [33]-[34]. However, such stringent level of reliability is hard to attain in

today’s LTE networks (presumably the average error probability of sending a packet is no more

than 10% [35]).

Based on the aforementioned resource allocation challenges, the second contribution of this

thesis is developing a PF-based resource allocation scheme to handle traffic heterogenity of the

RT-nonURLLC, NRT-nonURLLC, RT-URLLC and NRT-URLLC communications in virtual LTE

networks. More precisely, we achieve isolation between different SPs with the Virtual Prioritized

Slice (VPS) scheme. We argue by simulation results that serving the RT requests jointly for all

SP/VEs using a fixed number of resource blocks (RBs) prior to scheduling positively impacts

SP/VEs by reducing the user blocking probability for RT flows and in the meantime helps increase

the total throughput per each individual SP/VE. While doing this, we consider the allocation of the

worst resource blocks to RT traffic since they do not necessarily need the best throughput. Fur-

thermore, we enhance the VPS scheme to provision diverse types of user traffic more efficiently

where the RT/NRT-URCC requests achieve their ultra-reliability while preserving the target useful

throughput. This is done through optimizing the coding rates of the transmitted packets instead

of relying on the traditional CQI-coding mapping in current LTE networks which is not satisfac-
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tory to establish ultra-reliable links. Moreover, we change the minimum allocation of resources

Qmin, by taking into account the channel conditions. We propose a PF-based scheme that dynam-

ically assigns Qmin to each of the SP/VEs based on their user demands as well as their historical

transmission rates. We argue that such an assignment of Qmin improves the virtualized system

performance through simulation results.

2.4 SPECTRUM POOLING IN DISASTER RECOVERY NETWORKS

2.4.1 Disaster Recovery for Cellular Networks in Literature

Due to natural disasters such as earthquakes, hurricanes and etc., base stations in cellular networks

are prone to be disconnected and out of service. Unfortunately, the disruption of the cellular net-

work in such situations put up the risk of losing more victims due to the miscommunication and the

slower emergency response. Hence, in the research literature many solutions have been proposed

to recover the cellular network in disastrous situations. In [36], disastrous network challenges are

classified based on intent (non-malicious or malicious), scope (nodes, links and areas) and domain

(wired or wireless). Wired networks such as passive optical networks (PONs) [37], which are

widely used for today’s backhaul networks, are sensitive to failures because multiple leaf nodes

share one optical fiber. Consequently, the radio access network may get detached from the core

network (the mobility management entity (MME), the packet gateway (PGW) and other core enti-

ties/functions). Hence, the RAN network becomes isolated and incapable of providing services to

users. Most of the disaster recovery proposed solutions consider the replacement for the cellular

communications access networks by establishing an adhoc network, using satellite communica-

tions and other alternative solutions to cellular communications. In [38] Lien at. al. proposed to

use WiFi-ready notebooks to construct a MANET based group communication system to support

emergency communication and information network, i.e. P2Pnet. On the same lines, Wireless

Mesh Networks (WMN) were introduced as a solution during emergency and disaster recovery.

The work in [39] proposed a multicast enabled dual radio wireless mesh network called Swan-

Mesh where a multicast upgrade of the Adhoc On-Demand Distance Vector (AODV) protocol is

11



used to deliver live video and audio real time data to multiple users (multicast) during disasters.

In [40] an adhoc routing protocol is developed to help communicate between BSs and user nodes

where the nodes that connect directly to BSs operate in cellular mode; while nodes that do not re-

ceive signals from any BS communicate with their neighbors in adhoc mode. However, the adhoc

network protocol is not compatible with cellular communication standards, e.g. 3GPP. Moreover,

adhoc protocols lack efficiency in terms of handoff, synchornization and average user throughput

compared to SAFECOM Public Safety Statement of Requirements Reports issued by the United

States Department of Homeland Security as was shown in [41]. Satellite communications systems

were introduced as a core network for emergency management and disaster recovery including

satellite network topologies, service configuration, and recommended technical specifications for

broadband communications during disaster or emergency times [42]. However, such type of com-

munications requires huge infrastructure to operate and manage the network. Also, a lot of changes

to the governance is needed to make the end-to-end reference architecture work as standardized by

the 5G standards. The 911-network on wheels (911-NOW) solution was also introduced to enable

first responders and emergency management teams to communicate mission-critical information

on a secure and rapidly deployable wireless network [43]. The 911-NOW solution relies basically

on deploying a basestation router (BSR) in the RAN on wheel where the radio resource and mobil-

ity management functionalities are deployed. Also, OEMAN [44] is an On-the-fly Establishment

of Multihop Wireless Access Networks to quickly extend Internet connectivity from the surviv-

ing access points to form on-the-fly multihop wireless access networks that effectively help bring

Internet connectivity to disaster victims.

2.4.2 Spectrum Pooling: An Enabler to Disaster Recovery Networks

Due to the challenges of integrating other technologies such as satellites and WiFi in cellular net-

works as aforementioned, we argue that saving some of the RANs using back-up power supplies

such as micro-grids can help recover the communication network between the survivor RANs

efficiently without introducing any other technology. However, in most cases of severe natural

disasters, the core network is detached from the radio access network and thus the RAN capabil-

ities become limited to the same cell unable to communicate with other cells. To solve this issue,
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[45] suggests that every cluster of eNBs should be attached to an Emergency Communication Net-

work Server (ECNS). An ECNS is a server that encompases additional functions performed

by the core network such as mobility management (MME), Authentication, Authorization

and Accounting (AAA), PTP based clock synchronization and other auxiliary services. The

following part spotlights some of the literature work in micro-power grids as power supplies in

cellular networks.

2.4.2.1 Powering eNBs using Micro Power Grids The RAN can be powered using a back up

power source in critical cellular communications. There are two main backup approaches used in

the literature [46]: (i) either to power the RAN using a local backup power plant with batteries and

a diesel generator or (ii) to use a micro-grid with varying alternatives for the local distributed gen-

eration power sources 2. Both backup power approaches typically require some external source of

energy that is delivered into the service area by one or more primary energy supply infrastructures

(PESIs). Meanwhile, micro-grids show promise to achieve improved power supply resiliency to

critical events over other backup approaches because well designed micro-grids, i.e., microgrids

with diverse power supply from at least two distinct PESIs eliminate the single point of failure [47].

The basic requirements for micro-grids in disaster recovery networks are to operate in a stand-alone

mode (i.e., the so called island mode) in which the micro-grid operates on local sources of energy

(wind turbines, solar systems) with the local microgrid control system providing voltage and fre-

quency (in the case of AC) stability for optimal power flows, and ensuring minimal load shedding

and disruption during transitions from the main power grid [48].

In [49] an architecture for green cellular networks that is based on a microgrid configuration was

proposed to power a cluster of seven cellular base stations mostly using renewable sources. This

study shows that it is possible to feed the base stations with power obtained from renewable sources

for up to 90 % of the time when using 250 kW wind turbine and at each cell site a solar panel with

an area of 3 m2.

2A local distributed generation power sources (LDPS) typically use renewable energy sources, including small
hydro, biomass, biogas, solar power, wind power, and geothermal power to generate electric power. A grid-connected
device for electricity storage can also be classified as an LDPS system and is often called a distributed energy storage
system (DESS).

13



2.4.2.2 Challenges of Micro-grid Power Supplies : The cost of tens of small microgrids just

to power a cellular network throughout a city during power outages is prohibitive [45]. There-

fore, [45] proposes multi-user microgrids to be deployed such that the cost is shared by the smart

infrastructure owners with mission critical loads (e.g., water system, cellular networks), societal

important locations with mission critical loads (e.g., hospital), and the local government (police,

fire, 911 service) that will utilize the communication network powered by the microgrid for public

safety communications.

2.4.2.3 Spectrum Pooling Enabling Cellular-based Disaster Recovery : Building on the

aforementioned proposals of micro-grid power supplies used to power up some of the RAN net-

work and adopting the ECNS idea, we propose a multi-hop wireless mesh network between sur-

vivor BSs (SBSs) to provision mobile users without integrating any alternative technology. Regard-

less of the mobile network operator who owns each BS and assuming a number of BSs die after

electricity blackout, we pool the available spectrum at all BSs in this area and then we reallocate

the pooled resource blocks (RBs), the BS transmission power as well as the operating frequencies

available at this cellular area to each BS to provision the requests of the remaining SBSs so that the

inter-links (wireless links between BSs) as well as the intra-links (wireless links between a BS and

corresponding users within the same cell) are maintained while achieving the maximum average

throughput per cell as well as satisfying the traffic demand and QoS constraints (power and delay

constraints).

In the next Chapter, we describe the thesis statement, assumptions and methodology in detail.
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3.0 SUMMARY OF DISSERTATION

In this chapter, we describe the main challenges that we propose to tackle in this thesis as well as

the proposed solutions, the thesis statement, the model assumptions, the thesis contributions and

we conclude with suggested future work.

3.1 OVERVIEW

As discussed in Chapter 1, due to new uses cases and business models in next-generation cellular

networks, the CAPEX and OPEX of building new infrastructure can be very high and impracti-

cal. Hence, the core idea of this dissertation is the establishment of greenfield next-generation

cellular networks by exploring infrastructure and spectrum sharing. By studying different sharing

scenarios in a fiber-based backhaul network, we aim at evaluating incentives for SPs to share spec-

trum/infrastructure in different CMA/BEAs and hence break the market between new roll-outs.

Moreover, we look microscopically at the technical side of pooling the spectrum between two SPs

sharing the same BS yet they have different traffic demands as well as different QoS constraints.

In our work in Chapter 5, we developed two resource allocation schemes to provision real-time

(RT), non-real-time (NRT) as well as Ultra-reliable Low Latency Communications (URLLC) traf-

fic when the spectrum resource blocks (RBs) are shared between two SPs such that our schemes

achieve isolation, fairness and guarantee the QoS constraints. We evaluate the performance of the

newly proposed approaches when sharing in the LTE 700 MHz and the AWS 2100 MHz spec-

trum bands. Eventually, we use spectrum pooling to resolve the disruption in the cellular network

due to disasters by providing the survivor eNBs with Emergency Communication Network Server

(ECNS) and reconnect these eNBs together using a multi-hop wireless mesh network.

15



3.2 THESIS CHALLENGES AND PROPOSED SOLUTIONS

Our research work aims to address the following challenges:

3.2.1 Assessment of The Economic Incentive of Spectrum Pooling

Given a certain Cellular Market Area/Regional Economic Area (CMA/EA), a greenfield LTE-like

network, a fiber-based backhaul network and two service providers (SPs), the first task of this

thesis is to collect FCC data as well as backhaul infrastructure data for more than 1000 cellular

market areas/economical areas (CMA/BEAs) across US in the 700 MHz as well as the 2100 MHz

spectrum bands. We use the collected data as well, develop new cost models in different sharing

scenarios and compare the resultant profits of these scenarios. We specifically analyze the backhaul

sharing, the spectrum sharing and the backhaul+spectrum sharing scenarios. We provide answers

to the following questions,

Is there an incentive for SPs to share their own spectrum resources, infrastructure resources

or both of them (full sharing)? And how does this incentive change with the change of the

backhaul network topology, the operating frequency band, the number of BSs deployed to

cover this area as well as the population density in this area?

The proposed solutions:

1. We developed a cost model to assess the cost and revenues of establishing a greenfield network

using a fiber-based backhaul and considering different network topologies as well as different

CMAs with different population density, allocated BW and spectrum bid values. We show

that spectrum sharing and backhaul sharing are not always beneficial. However, the sharing

incentive is affected by different conditions of the network and the demography of the area

of deployment. Also, from the FCC auction data, we observed that the 2100 MHz spectrum

bidding value is much lower than the bidding value of the 700 MHz band. Thereby, the incen-

tive to pool the spectrum should decrease and be less dependent on the designated population

density. To confirm these inferences, we extended the proposed cost model to include the

FCC data on spectrum bids for the 2100 MHz-AWS band to explore the change in the sharing
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incentive for different bands.

2. Moreover, we apply our cost models to different areas, i.e., rural and urban areas [50]. Mi-

crotrenching, horizontal directional drilling (HDD) and manual trenching are well suited for

urban areas, and cost approximately $50, $37 and $25 per meter respectively. However, in rural

areas, more cost-effective techniques, such as direct cable burying (plouging), machine trench-

ing (in areas not suitable for ploughing) and aerial deployment could be used instead and at a

cost of approximately $7, $14 and $4 per meter, respectively. We show by numerical results

that this big difference in trenching costs between urban and rural areas will affect the CAPEX

cost (backhaul cost) and hence will change the sharing incentive for SPs. Accordingly, the

backhaul network cost in rural areas is much less than the backhaul cost in urban areas. Thus,

sharing the backhaul infrastructure in urban areas is expected to show higher incentive than in

rural areas.

3.2.2 Efficient Resource Allocation in a Spectrum Pooled NGMN

Since there exists an economic incentive to share spectrum resources in CMAs with high popula-

tion densities, we expose the technical part of sharing a single BS between two SPs with different

traffic demands. Given two SPs who share the same RAN and agreed to share their radio spectrum

to provision heterogeneous types of traffic, i.e., RT, NRT and URLLC, How should we reallocate

the pooled spectrum (RBs) so that the resource manager guarantees isolation and fairness

among requests from different SPs?

Proposed solutions:

We answer the aforementioned question by developing a resource scheduling scheme for a single

shared BS scenario that comprises of the following features.

3.2.2.1 Joint Prioritization of Delay-sensitive traffic flows Unlike traditional LTE networks,

in virtualized NGMN networks, it may not be the best approach to execute the prioritization step,

for delay sensitive flows, for each SP/VE separately. We claim that prioritization between differ-

ent traffic types should be performed for all SP/VEs jointly at the network scheduler prior to the
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allocation of resources to SPs. This can better leverage the economies of scale effects of spectrum

pooling.

To clarify this, suppose we have a total of 8 PRBs and SP1 and SP2 each have 2 RT requests at the

beginning of a TTI. Also, we presume it takes 2 PRBs to serve a single RT request. As explained in

Chapter 5, we assume also for simplicity that SP1’s PRBs all correspond to CQIindex = 11 in the

modulation-coding scheduling table [51] and similarly, SP2’s PRBs transmission rates correspond

to CQIindex = 14. Hence, assuming both SPs have the same transmission rates in previous time

slots and assuming a proportional fairness scheduler, SP1 experience worse channel quality and

consequently lower number of RBs than SP2. Accordingly, the resource manager will assign 5

RBs to SP2 and 3 RBs to SP1 (more RBs to the SP with better channel quality). As a result, this

will hinder SP1 from serving all of its RT requests and it would have one dropped RT request and

hence violate the isolation principle.

In contrast, let us suppose that the network scheduler prioritizes RT requests altogether first and

serves them using all of the available RBs. Then, none of the VEs would encounter drops of RT re-

quests. Using this idea, our proposed resource scheduling scheme takes into account the existence

of a priority-phase prior to allocating resources where all RT requests from all SPs are prioritized

jointly at the resource manager first in a single queue called the virtual prioritized slice (VPS), in-

dependent of the PF-criterion to ensure that RT requests are better provisioned while maximizing

the throughput of NRT users.

3.2.2.2 Provisioning URLLC traffic using URLLC coding Optimizer The second feature of

our proposed scheme is serving URLLC traffic. The LTE CQI calculations in the MCS table is

designed to maximize the user throughput such that the UE power and delay constraints should be

met. Also, it is presumed that the average error probability of sending a packet is no more than 10%

[35] for a maximum delay of 1 - 10 msec. Figure 1 shows the reliability (%) versus the user-plane

delay in traditional LTE networks, i.e. traditional CQI mapping. This figure is produced assuming

AWGN channels for uplink and downlink in a cell with a radius of 500 meters and a total of 2

mobile users. We assume that one of the users is downloading a file in a size of 0.5 MBytes and

the other one has a URLLC request with a packet size of 100 Bytes and an arrival rate of 2 packets

per TTI. We generate the locations of the users in the cell randomly, we iterate the simulation
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1000 times and we take the average over 1000 observations. Using the MCS table, we simulate an

LTE cell using MATLAB and derive the average link reliability. In Figure 1, we plot the average

link reliability versus different maximum delay values. Similarly, we plot the average BS antenna

transmission power versus different delay constraints in Figure 2. From Figure 1, we can clearly

see that achieving a user plane latency as low as 0.5 msec makes the target 5G ultra-high reliability

unattainable, i.e. ' 0.999. Moreover, the transmitting power reaches the maximum allowable

transmission power by a pico BS, i.e. 38 dBm according to 3GPP standard [52]. Thus, the LTE

network reliability is very loose compared to the stringent requirement by URLLC applications.

Therefore, we argue that the traditional LTE MCS table should be adjusted for URLLC requests to

accommodate ultra-reliable users in NGMN networks, i.e., our e-VPS resource scheduler designed

in Chapter 5.

Figure 1: Reliability versus user delay constraint in traditional LTE networks

3.2.2.3 Dynamic Allocation of Qmin to Virtual Entities The last feature that we propose in

our scheme is allocating a dynamic minimum reserved number of RBs for SP i, named Qi
min, such

that resources do not remain unused or no SP/VE is assigned fewer resources than possible to

improve the average throughput and user blocking probability. Unlike nowadays static Qmin that
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Figure 2: Transmitting Power versus user delay constraint in traditional LTE networks

are stated in SLAs, since the traffic demand changes with time and thus the number of allocated

resources changes as well, the minimum number of allocated resources Qmin should not be fixed

per an SLA. However, Qmin should be computed every number of TTIs based on the traffic de-

mand provisioned by each SP and the transmission rates in former TTIs. Thus, in this proposal,

we present an efficient method to derive Qi
min for SPi based on both the average long term trans-

mission rate of SPi in previous slots allocated to its users as well as the current demands of this

SP/VE, albeit at an SP/VE level than a user/flow level.

We compare our scheme to a recently proposed scheme called NetShare and we show with simu-

lation results that our newly proposed scheme outperforms NetShare in terms of the average cell

throughput, the bandwidth utilization as well as link reliability in case of provisioning URLLC

traffic.
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3.2.3 Using Spectrum Pooling as a Disaster Recovery Technique in Cellular Networks

Given a certain CMA in a disaster situation where the backhaul network is severely affected and

assuming a number of surviving BSs that belong to different SPs, we answer the following ques-

tion,

Can we use spectrum pooling in next-generation networks as an enabler to recover post-

disaster cellular networks without integrating any alternative technology? How can we op-

timally allocate different frequency bands (700, 2100 MHz) to satisfy different 5G QoS con-

straints?

The Proposed disaster recovery approach:

We propose a multi-hop wireless mesh network between survivor BSs (SBSs) to provision mobile

users without integrating any alternative technology. Regardless the mobile network operator who

owns each BS and assuming a number of BSs die after electricity blackout, we pool the available

spectrum at all BSs in this area and then we reallocate the pooled physical resource blocks (PRBs),

the BS transmission power as well as the operating frequencies available at this cellular area to

each BS to provision the requests of the remaining SBSs so that the inter-links (wireless links be-

tween BSs) as well as the intra-links (wireless links between a BS and corresponding users within

the same cell) are maintained while achieving the maximum average throughput per cell as well as

satisfying the traffic demand and QoS constraints.

Unlike the standardized X2 links between BSs, the interlinks between BSs in the wireless mesh

network have to operate on ultrahigh frequencies (UHF) to ensure better signal propagation in high

interference and fading cellular environment. And hence, BSs are able to provision user equipment

(UE) traffic and satisfy the QoS constraints for different applications (BS transmission power, user

delay and throughput constraints). Yet, operating on the same frequency bands as for the intralinks

will cause severe interference for UEs. More specifically, to establish line of sight (LoS) connec-

tions between BSs, using UHF frequencies will impose significant interference to the intra-cell

radio links. Therefore, designing the cellular wireless mesh network is not a trivial problem. We

argue that selecting the carrier frequency of the interlinks based on intra-cell transmitting powers

as well as intra and inter-cell traffic demand is very crucial in designing the links between SBSs so
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that the interference between inter-links and intra-links is minimized.

To address the above problem, we formulate a joint RB-power optimization problem to find the

optimal transmission powers , the optimal inter-cell frequencies and the optimal intra-cell fre-

quencies. We also, in this part of the thesis, we examine the feasibility of recovering the cellular

network using a wireless mesh network between SBSs such that the UE QoS needs and power

constraints are still viable. Moreover, in the second phase, we allocate the intra-cell frequencies

such that the different QoS for the real-time, non-real time and URLLC services are satisfied. As

we can see in Figures 3 and 4, using the 700 MHz bands achieves better reliability (≥ 99.999).

We show by numerical results that applying the previously proposed e-VPS scheme at the

700 MHz band achieves higher reliability. However, the link reliability is deteriorated when

sharing the spectrum at the 2100 MHz. Hence, we assign the lower intra-cell frequencies to

URLLC traffic to enhance the reliability while achieving the minimum throughput and the

maximum allowable delay. On the other hand, we assign the 2100 MHz-AWS frequencies to

the non-real time requests that need very high data rates.

Figure 3: Reliability versus URLLC load in the 700 MHz band
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Figure 4: Transmitting Power versus URLLC load in the 2100 MHz band

3.3 SCOPE AND ASSUMPTIONS

Throughout this research, we assume the following:

1. The considered cellular network is an LTE network with fiber-based backhaul networks.

2. We assume all cells are of the same size to simplify the analytical cost model and use some

approximations.

3. Cells can be micro or femto cells.

4. We assume a reuse factor of (n = 1), i.e. all frequencies are used in all cells using Fractional

Frequency Reuse (FFR).

5. The backhaul network can be based on either a tree or a ring topology.

6. The user traffic is uniformly distributed across the cell.

7. The number of users per cell is directly depending on the population density at the CMA/BEA

region.

8. All network deployment costs are estimated for urban areas only (disregarding the difference

in costs between urban and rural areas).
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Notwithstanding their importance, there are some related issues left outside the scope of this work:

1. The non-homogeneity of topography of the CMA/BEA: the assumed topography is homoge-

neous and regular-shaped, i.e., square or rectangle.

2. Different cell sectorization: we assume a fractional frequency reuse of 1.

3. Reducing the computational complexity of the proposed algorithms: despite the high compu-

tational cost, we assume a time granularity of 1 TTI.

4. Optimizing the time granularity of updating the RM with the channel state information, Qmin

as well as the user demand.

3.4 METHODOLOGY

We answer the first question by developing a cost model to assess the cost and revenues of estab-

lishing a greenfield LTE network using a fiber-based backhaul and considering different network

topology as well as different CMAs with different population density, allocated BW and spectrum

bid values. We show that spectrum sharing and backhaul sharing is not always beneficial, however

sharing incentive is affected by different conditions of the network and the demography of the area

of deployment.

Afterwards, we answer the second question by proposing two efficient schemes for resource allo-

cation in virtualized mobile networks. These schemes uses prioritization as well as a new channel

coding optimizer to schedule RT requests and URLLC, respectively, and hereafter provisions the

NRT requests using the proportional fairness scheduler. We compare our schemes to a recently

proposed scheme called NetShare in terms of cell throughput, bandwidth utilization and reliability.

We apply the proposed schemes to inter-band sharing, i.e. LTE-AWS, and intra-band sharing, i.e.

using 700 MHz LTE band. We show the throughput gain achieved by inter-band sharing. However,

intra-band sharing (in the 700 MHz spectrum band) achieves higher reliability for URLLC traffic.

Eventually, we exploit the different gains from inter-band and intra-band sharing to best pool the

spectrum between different BSs in post-disaster cellular networks. In particular, we pool the spec-

trum in the dead area between SBSs so that the total throughput is maximized while provisioning

heterogeneous classes of traffic (real-time and non-real time). We will formulate a maximization
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problem to maximize the cell throughput of the wireless mesh network as well as satisfying the

power and QoS constraints. The target of the optimization problem is to find the inter-cell fre-

quencies as well as the optimal transmitting power and bandwidth to be allocated to inter and

intra-links.

3.5 FUTURE WORK

This thesis does not address the computational complexity of the proposed algorithms. Moreover,

our assumption of updating the channel state information as well asQmin every Transmission Time

Interval (TTI) will add significantly to the complexity of the scheduling algorithms. How can this

complexity be reduced is an important futuristic task to explore.

On another side, a main assumption of our model is the fixed resource assignment of RT requests.

This may not be feasible for HD video streaming as an example. This is because having a high

number of RBs assigned to RT requests will limit the spectrum resources to RT traffic exclusively

and thus reduce the NRT traffic throughput significantly. Hence, it is worth studying such scenarios

in future work and enhance the resource scheduling algorithm to take into account various RT

applications.
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3.7 CONTRIBUTION

In this thesis proposal, we proceed as follows.

– In [53], we proposed a QoS-aware disaster recovery algorithm in cellular networks. He for-

mulated and numerically solved a convex optimization problem to find the optimal frequencies

and bandwidth allocations for inter-links and intra-links.

– In [55], we proposed the analytical cost models for different sharing scenarios and conducted

the data analysis and mining.

– Unlike the existing literature, our proposal in [55] develops an analytical model and uses

real population data, spectrum bids from FCC, and network component costs (fibre, splic-

ing, etc.) from FiberStore to obtain insights about spectrum and infrastructure sharing in US

CMA/BEAs.

– In [54], we developed the virtual Prioritized Slice (VPS) scheme, a resource allocation scheme

to schedule the RT and NRT traffic that belong to different VEs sharing the same eNB as well

as the same spectrum. Afterwards, we validated the scheme using Matlab simulations.

– In [56], we enhance the resource allocation scheme proposed in [54] to include a new 5G

use case, i.e. ultra-reliable low latency critical communications (URLLC). Also, in [56], we

developed a minimum allocation criterion for the sharing SPs such that both isolation and

fairness are achieved.

– To the best of our knowledge, our proposed scheme in [56] is the first work to handle re-

source allocation considering the provision of ultra-reliable critical communications (URLLC)

in next-generation networks.

26



4.0 INFRASTRUCTURE VIRTUALIZATION VS RADIO RESOURCE

VIRTUALIZATION: AN ECONOMIC FRAMEWORK

To the best of our knowledge, there are no good cost models and data sets for quantifying the

circumstances under which sharing of spectrum and network resources would be beneficial to

operators. The objective of this chapter of the thesis is to (i) develop cost models that can help

assess such benefits (ii) use these models with publicly available data to obtain insights into the

costs and benefits of sharing the network infrastructure and radio spectrum in real world data.

Unlike the existing literature, we develop an analytical model and we use real census population

data, spectrum bids, and network component costs (fibre, splicing, etc.) to obtain insights from the

model. We rely on data from the FCC for the spectrum costs (expressed as the net bid amount)

in a total of 1054 cellular market areas (CMAs)/ economic areas (BEAs) [57]. The infrastructure

fiber costs are obtained from FiberStore [58]. We use the model to show how the backhaul and

spectrum costs change with the population density, the backhaul network topology as well as the

number of Base Stations (BSs) deployed in these CMAs/BEAs.

4.1 SYSTEM MODEL

In this section we describe our model assumptions and specify the backhaul construction. We

assume that all cellular networks are LTE-based networks that operate in the 700 MHz and 2100

MHz bands. For simplicity, we assume the area A in our model a regular area which is structured

such that the number of BSs aggregated per hop = 3 and ` ≤ h as shown in Figure 5. We mean

by h hops × ` levels : the number of hops needed to reach the core network × the number of

eNodeBs per each hop as shown in Figure 5. We consider an area A of NeN e-NodeBs (eNBs)
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such that A is h hops × ` levels as shown by the 3 hops × 3 levels example in Figure 6. Without

loss of generality, we use h = NeN

α
, where α is a parameter to control the relationship between `

and h. Assuming the system model in Figure 5, the total number of BSs in area A can be given as

NeN = `
(
3h+ 1

)
(4.1)

Using h = NeN

α
and equation (4.6), ` can be written as a function of h as follows.

` =
αh

3h+ 1
(4.2)

It is worth noting that it is very hard to obtain an empirical value for α. Nevertheless, in Section

4.2, we prove by numerical results and using the mathematical cost model that α does not signifi-

cantly affect the incentive of sharing network resources. Also, we assume a homogeneous network

such that all BSs have coverage in a hexagon shape inscribed in a circle with radius R.

General area assumed to 
be tessellated with hexagonal cells

eNodeB covers three 
hexagons (corner excited)

Core 
Network

hop 1

level 1 level 2 level l
backhaul links organized

as parallel trees

Figure 5: A Schematic Diagram for 4 hops by 3 levels backhaul topology in non-sharing scenario

These eNodeBs are connected together using a fiber based backhaul network. In the conducted

analysis, we consider two different topologies: the tree and ring network topology.
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4.1.1 Dimensioning the LTE Network

In order to get the different costs that contribute to establishing a greenfield LTE network, we need

to calculate the number of BSs covering a certain CMA as well as the mile.sq areas covered by

each BS. In this paper, we consider different approaches to get the number of BSs in a certain

CMA/BEA.

4.1.1.1 Approximate Approach: In this approach, we use the data for the BS density from

Deloitte 5G research study [59]. Deloitte roughly estimates the number of base stations per 10000

people in americas to be almost 5. Hence, we can get the number of base stations in every CMA

according to the population density in such CMA.

4.1.1.2 Set Coverage Approach: For simplicity and assuming the area structure in Figure 5,

we apply the set coverage optimization problem [60]. Given that S is the set of BSs in area A and

τi is a subset of the set T of test points where τi is the subset of test points within the cell of BS

i ∈ S, the set coverage problem can be formulated as follows

Minimize
x

cT .x

subject to

γi,j ≥ γth, i ∈ S,

Pi
c ≥ Ptarget, i ∈ S,

x ∈ {0, 1}

(4.3)

where x is a binary vector such that xi = 0 if at point i there is no need to establish a mobile BS

and xi = 1 when there should be a mobile BS at point i to achieve the target SINR threshold γth

and the target probability of coverage Pc ≥ Ptarget. Also, c is the cost vector where ci indicates

the total cost of establishing a BS at point i.

After deriving the BS location vector x, the number of eNBs (NeN ) needed to cover a certain

CMA/BEA area can be calculated as the sum of elements of vector x, i.e. NeN =
∑
i∈S

xi.
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4.1.1.3 Real Data Approach In this approach, we use real data that was gathered by OpenCel-

lid [61] featuring all the BSs located in US. The data contains the BS location, the cell range, the

location area code, and other features. We use the location area code, the longitudes and latitudes

to classify BSs that belong to a certain CMA and group them together. Accordingly, we can find

the number of BSs in a certain CMA based on the aforementioned classification.

4.2 A COST MODEL FOR A SINGLE MOBILE NETWORK: NO SHARING

In this section, we analytically derive the cost of establishing a single MNO in both tree and ring

topology.

4.2.1 The Backhaul Cost in Tree Topology

As shown in Figure 6 we assume that the fiber backhaul is connected together in a tree topology

such that there are three types of nodes, the source nodes (S-node), the kth-hop aggregating eN-

odeBs and the last hop eNodeBs. The S-node is an enodeB that forwards traffic to other nodes

but has no aggregation capabilities. The kth-hop aggregating node is an eNodeB that aggregates

the traffic from the eNodeBs in a former hop where k = 2, 3, ..., e.g., the 2nd hop aggregating

nodes aggregate the traffic originated from the eNodeBs in the 1st hop and so forth. Also, the last

hop nodes are the group of eNodeBs which are directly connected to the core network. It is worth

noting also that in our work we assume that each aggregating node k − 1 aggregates only 3 of

the kth hop nodes. In addition, according to [62] we assume two types of fibers, the feeder fiber

(the bold segments) and the distribution fiber (the non-bold segments) as shown in Figure 6. The

feeder fibers have higher capacity, i.e., 40 GB fibers, and hence are used in the aggregating hops.

However, the distribution feeders have less capacity, i.e., 10 GB fibers, hence they carry the data

from the S-nodes to the aggregating nodes.
Figure 6 shows that we have two types of fiber segments, short segments with length 2.7R and

long segments with length 5.2R according to the cell geometry shown in Figure 7.
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Internet and 
other IP 
networks

Source eNodeB
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1st mile eNodeB

Distribution Fiber 
Feeder Fiber

2nd mile Aggregating 
eNodeB

2.7*R

5.2*R
2.7*R

1st hop

2nd hop

3rd hop

level1

level2

level3

Figure 6: A Schematic Diagram for 3 hops by 3 levels backhaul tree topology in no-sharing sce-

nario
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Figure 7: A Schematic Diagram for a standard Macro BS

Table 1 summarizes the infrastructure equipment and the corresponding symbols that we use

in our model. From the backhaul perspective, each eNodeB should be equipped with an optical

transceiver, an optical network unit(ONU), an optical line terminal (OLT) and a passive splitter-

combiner (PSC) if it is an aggregating eNodeB [62]. It is common for fiber networks that fiber

cables are not deployed as a single segment from source to destination. The total fiber length

is chunked into a number of fixed length segments L, e.g., if the distance between source and

destination is 10 miles and L = 2 miles, hence we need 5 fiber segments [63]. To connect between

these segments, fusion splices are used [64].

In this section, we estimate the total backhaul cost in an area A with a total census of Cen. The

census is the total population of a CMA/BEA. According to the LTE dimensioning in Section 4.1.1,

for an area A, we can find the total expected number of eNodeBs with a radius R, where a standard

macro BS covers three hexagon cells via sectorization as shown in Figure 7. Each of the blue cells

in Figure 7 is a regular hexagon with a side length R. Now, we can find the total backhaul cost of
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Table 1: Symbols of the prices for different fiber network components

component symbol cost

Distribution Fiber d Prd

Feeder Fiber f Prf

Fiber Trenching tr Prtr

Optical Line Terminal (OLT) OLT PrOLT

Optical Network Unit (ONU) ONU PrONU

10 GBASE transceiver trans10 Prtrans10

40 GBASE transceiver trans40 Prtrans40

Passive Splitter-Combiner (PSC) PSC Prpsc

Fusion splices sp Prsp

WDM Multiplexer mux Prmux

the NeN eNodeBs as follows

Cbk = Fiber Cost+ trenching cost+ Transceiver Cost+ PSC cost+ splicing cost

= Cfiber + Ctrench + Ctrans + Cpsc + Csplice

(4.4)

where the five terms are given by the following equations respectively.

Cfiber = `× (2× 2.7R× h× Prd + 5.2R× Prd + 5.2R× (h− 1)× Prf )

Ctrench = Prtr × `× h× (2× 2.7R + 5.2R)

Ctrans = NeN × (PrOLT + PrONU) + (NeN − `× h)× Prtrans10 + `× h× Prtrans40

Cpsc = `× h× Prpsc

Csplice = Prsp × (
`× h× (2× 2.7R + 5.2R)

2
− 1) + Prsplicer (4.5)

Here the first equation represents the total length of the used fiber in the whole area A multiplied

by the price per unit distance of the distribution or the feeder fiber depending on which of them

is used. Then, the second equation stands for the total trenching cost and the third equation is
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the total transceiver costs which are split into two types based on which type of fiber is used, i.e.,

10GB or 40GB. Also, it includes the costs of the OLTs and ONUs. The next equation is the cost

of splitters and combiners and eventually the last one represents the splicing cost. The number of

fusion splices that are used are estimated to be: 1
2
× the number of existing fiber segments −1.

For more insights, we write the five aforementioned cost equations in terms of the number of BSs

NeN . Assuming the system model in Figure 5, the total number of BSs in area A can be estimated

as
NeN = `

(
3h+ 1

)
= `hR

( 3

R
+

1

Rh

)
' 3`h

(4.6)

This is since 1
Rh

≪ 1 so it can be neglected. Now, we can write the cost equations in 4.5 as

Cfiber = NeN ×R× [(1.8 +
1.7

h
)Prd +

1.7h

h− 1
Prf ]

Ctrench = 3.5×NeN ×R× Prtr

Ctrans = NeN × [PrOLT + PrONU +
2

3
Prtrans10 +

Prtrans40

3
]

Cpsc =
NeN

3
Prpsc

Csplice = Prsp × (1.75NeNR− 1) + Prsplicer (4.7)

From equation (4.7) we can apparently see that the backhaul cost is proportional to the number of

eNBs and the cell area (a larger R reflects a larger cell area).

The parameter α in equation (4.2) does not affect the results of the cost model. The reason for this

is the dominance of the fiber cost over all other backhaul costs as shown in Figure 8. Meantime,

the length of the deployed fiber relies solely on the number of eNodeBs in the CMA/BEA rather

than the number of hops h or the number of levels `.

4.2.2 The Backhaul Cost in Ring Topology

We assume the ring topology shown in Figure 9. In this topology, we assume that a ring is con-

structed between each 4 eNodeBs, i.e., ring cluster = 4. Moreover, the nodes shown in blue and
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Figure 8: A 3D plot for different backhaul costs Vs. α Vs. NeN

red colors are the aggregating eNBs of the network. Unlike the tree topology, the ring backhaul

fiber links are all of the same length, i.e., = 2.7R. Moreover, the backhaul cost depends mainly on

the ring size, i.e. number of eNBs per a single ring (cr). The backhaul ring topology changes the

backhaul capital fiber cost in 4.5 to be as follows

Cfiber = cr × `× 2.7R× (Prd + (h− 1)× Prf )

Ctrench = cr × Prtr × `× h××2.7R

Ctrans = (cr − 1)× `× h× (PrOLT + PrONU)

+ `× h× (cr − 2)× Prtrans10 + `× h× Prtrans40

Cpsc = `× h× Prpsc

Csplice = Prsp × (
cr × `× h× 2.7R

2
− 1) + Prsplicer (4.8)

In the ring topology scenario, the number of eNBs covering an `× h area is given as

NeN ' (cr − 1)× `× h (4.9)
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Figure 9: A Schematic Diagram for 3 hops by 3 levels backhaul ring topology in no-sharing

scenario

From equation (4.9) we can see that the number of eNodeBs is mainly dependent on the ring size

(cr). Hence, cr is the dominant factor to estimate the fiber and trenching costs. Moreover, when

cr = 4, the ring topology backhaul cost is the same as the tree topology cost.

4.2.3 The Operational Cost

The operational cost (OPEX) composes mainly of the man power, total power consumption, the

maintenance and the rental costs. In our model, we assume that the MNO/SP/VE rents the site,

the RAN and the core network. On another side, the consumed power in an eNodeB results from

the transceiver (PTr), the rectifier (Prec), the digital signal processor (Pdsp), the power amplifier

(Ppa), the microwave dish (Pmw) and air cooling (Pair) [65]. Given that the number of sectors

deployed in a BS is Nsec and the number of antennas is Nant, hence the total power consumption
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in (watts.hour) PowT can be written as

PowT =Nsec × (Nant × (PTr + Ppa) + Prec + Pdsp)

+ Pmw + Pair

(4.10)

Then, given the price per watt.hour, it is easy to calculate the total power consumption cost.

Furthermore, maintaining the BS periodically is mandatory to avoid abrupt failures. It is well

known that MNOs hire subcontractors for maintaining infrastructure devices. Assuming the time

taken to repair a certain device k is the Mean Time To Repair per month (MTTRk) in hours, the

total man power used in such job is Mmaint and the salary per worker per hour is Sw, then the total

maintenance cost can be written as

Cmaint =
∑
k

(MmaintSwMTTRk + δkCrep,k) (4.11)

where Crep,k is the cost of the replaced item in the infrastructure and δk is a binary variable that

takes 1 if item k is replaced and 0 otherwise.

Accordingly, the annual OPEX can be written as the sum of the costs in equations (4.10, 4.11) in

addition to the man power cost and the rental cost, i.e.

Cop = 12× (Nmac × (Cmaint + PowT + CRAN + Ccore) +MemSem) (4.12)

where Mem is the number of employees working for the MNO, Sem is the salary per employee per

month, CRAN and Ccore are the rental cost of the RAN and core networks, respectively. Note that

the total OPEX cost derived in equation (4.12) is calculated per year.
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4.2.4 The Revenue of A Single MNO

Generally, the net profit is defined as the difference between the revenue and the cost for a certain

entity. The main source of revenue is selling mobile services including voice, data and video to

subscribers using a certain tariff per MegaByte (MB). Normally, mobile operators have multiple

mobile plans for mobile users. Such plans are categorized according to the maximum allowable

MB to consume per month. Fundamentally, a plan is composed of a fixed subscription fees f , a

variable subscription cost V which changes according to the user plan and the excess consumption

cost $X per MB. Hence, the annual revenue of an MNO in the traditional scenario can be written

as

Rev = 12×Nmac ×Nsub × (f + V.P T + Prmb(Mavg −Mv)) (4.13)

where Nsub is the average number of subscribers belong to the VNO at a single macro BS, V is

the vector of all possible subscription categories according to the maximum consumption of MB

per month Mv, P is the probability vector which includes the probability of using each of the

aforementioned subscription categories (P T is the transpose of the row vector P ), Mavg is the

average MB consumption per user per month. Also, Prmb is the per excess MB price.

Accordingly, the annual profit the MNO can be written as

Prof = Rev − (Cbk + Cop + Csp) (4.14)

where Csp is the total cost of purchasing spectrum bands operating in this area A.

4.3 A COST MODEL FOR BACKHAUL SHARING SCENARIOS IN A GREENFIELD

NETWORK

In this section, we discuss the possible changes in the cost model of the network in case that one

of the backhaul sharing scenarios is applied. We assume that two MNOs/VEs/SPs (MNO 1, MNO

2) share either their backhaul networks such that both MNOs both MNOs are operating on the

same frequency band, e.g., 700 MHz, in a certain area A. The cost model is essentially based

on a greenfield deployment; that is, both MNOs start deploying the network infrastructure from

scratch.
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4.3.1 Backhaul Sharing Assumptions

In the backhaul sharing scenario, both MNOs agree to share the backhaul network in a certain area

A. Since we consider a greenfield network then both MNOs build their networks from scratch, i.e.,

each of them has his own eNodeBs. However, in our model we assume that the sharing MNOs

agree together to share the cost of the eNodeBs instead of replicating eNodeBs since they plan for

the same coverage. Hence, both MNOs share the eNodeBs, the ONUs, the OLTs and the PSCs

which decreases the total backhaul cost for each of the MNOs. Yet, the OPEX remains unaffected

since each MNO has his own operational plan, i.e., maintenance schedule, business and marketing

plan and etc.
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Figure 10: A Schematic Diagram for 3 hops by 3 levels LTE network in backhaul-sharing scenario

with/without WDM technology
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4.3.1.1 Sharing in An Intra-band Scenario In intra-band scenario, both MNOs use the same

band, i.e. 700 MHz (or 2100 MHz), and hence they have the same coverage through the area A

and therefore the same number of eNodeBs Nmac as shown in Figure 10. We address the backhaul

sharing scenario in two different cases, i.e. when no WDM (Wavelength Division Multiplexing) is

applied and when WDM technology is applied. We limit the analysis here to tree topology only

since the ring topology is subject to the same changes.

In NO-WDM case, each of the MNOs has to deploy his own fiber cables, yet they can share other

optical devices, i.e. optical transceivers, PSCs, ... etc. On the other hand, if the WDM technology

is applied, MNOs can share a single fiber cable that can carry two different wavelengths, i.e. the

same as Figure 10 but with single fiber deployment instead of the double deployment. Meanwhile,

in the latter case, a WDM multiplexer has to be added at each eNodeB to multiplex and demulti-

plex signals at their times of arrival. Accordingly, the backhaul cost in equation (4.7) is changed

to be as follows. If the WDM technology is not applied, the backhaul cost can be written as

Cbk−sh
fiber = NeN ×R× [(1.8 +

1.7

h
)Prd +

1.7h

h− 1
Prf ]

Cbk−sh
trench = 3.5×NeN ×R× Prtr

Cbk−sh
trans =

NeN

2
×

[PrOLT,bk + PrONU,bk +
2

3
Prtrans10,bk +

Prtrans40,bk

3
]

Cbk−sh
psc =

NeN

6
Prpsc,bk

Cbk−sh
splice = Prsp × (1.75NeNR− 1) + Prsplicer (4.15)

where the bold terms are the modified terms from the single MNO equations in (4.7). In the third

term, the cost of the ONUs, OLTs transceivers are changed to be PrONU,bk, PrOLT,bk, Prtrans10,bk

and Prtrans40,bk. PrONU,bk and PrOLT,bk are the prices of the ONU and OLT with higher number

of ports. Clearly, increasing the number of ports in the ONUs and OLTs to accommodate traffic

from both MNOs is less costly than duplicating the number of ONUs and OLTs in eNodeBs.

Consequently, the costs of the ONUs, OLTs and transceivers are halved between both MNOs as

indicated by NeN

2
. Similarly, in the fourth term, the cost of PSC is divided equally between MNOs.
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Eventually, in the last term of equation (4.15), we replace the traditional PSCs by PSCs with higher

number of ports.

Now, the backhaul cost in this sharing scenario can be written as

Cbk−sh
bk = Cbk−sh

fiber + Cbk−sh
trench + Cbk−sh

trans + Cbk−sh
psc + Cbk−sh

splice (4.16)

Further, we can write the total profit for an MNO in the backhaul sharing scenario as

Prof bk−sh = Rev − (Cbk−sh
bk +

Cop
2

+ Csp) (4.17)

where the operational cost is divided equally between MNOs as shown by the third term in the

equation. In the WDM case, only a single fiber backhaul is deployed since it can be shared via

both MNOs using WDM technology. Yet, the cost of the added WDM multiplexers has to be

considered while reevaluating the backhaul cost, i.e.

Cbk−wdm
fiber =

NeN ×R

2
× [(1.8 +

1.7

h
)Prd +

1.7h

h− 1
Prf ]

Cbk−wdm
trench =

3.5

2
×NeN ×R× Prtr

Cbk−wdm
trans =

NeN

2
× [PrOLT,bk + PrONU,bk +

2

3
Prtrans10,bk +

Prtrans40,bk

3
]

Cbk−wdm
psc =

NeN

6
Prpsc,bk

Cbk−wdm
splice = Prsp × (1.75NeNR− 1) + Prsplicer

+
Nmac × Prmux

2
(4.18)

where Prmux is the price of a WDM multiplexer unit. Moreover, the first and the second terms are

divided by 2 since the total fiber cost should be split into half between both MNOs. And now the

backhaul cost in this WDM scenario can be written as

Cbk−wdm
bk = Cbk−wdm

fiber + Cbk−wdm
trench + Cbk−wdm

trans−wdm + Cbk−wdm
psc + Cbk−wdm

splice (4.19)

In analog to equation (4.17), the profit of an MNO in the WDM-backhaul sharing scenario is

Prof bk−wdm = Rev − (Cbk−wdm
bk +

Cop
2

+ Csp) (4.20)
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4.3.1.2 Sharing in An Inter-band Scenario In this scenario, we assume that the MNOs are

operating in different bands, MNO 1 in 700 MHz LTE band, i.e., MNO-700, and MNO 2 in 2100

MHz AWS band, i.e. MNO-2100. Since different frequency bands leads to different coverage

areas, MNOs adjust the number of eNBs to ensure a full coverage of the whole area A. Figure 11

shows a 3 hops × 3 levels example of an LTE backhaul sharing scenario. In this figure, the black

cells (black hexagons) are for MNO-700 and the red cells are for the MNO-2100. The circles in

black (encircling the purple eNodeBs) are the additional micro cells which the MNO-2100 has to

add to have a full coverage of this area. This is because MNO-2100 has less cell coverage because

higher frequencies have shorter propagation ranges.
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Figure 11: A Schematic Diagram for 3 hops by 3 levels LTE network in backhaul-sharing scenario

with different bands (with WDM)

Again, the backhaul cost is similar to equations (4.15 and 4.18) for MNO 1 (700 MHz) in the

no-WDM and WDM cases respectively. Yet, the micro cells additional cost adds to MNO2 (2100
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MHZ) backhaul cost, i.e.

Cbk−sh,2
bk,diff = Cbk−sh

bk + `× (2h+ 1)×R× Prd︸
add. fiber row cost

+ Prtr × `× (2h+ 1)×R︸
add. trenching cost

+ `× (2h+ 1)× (PrOLT,bk + PrONU,bk

+ `× (2h+ 1)× Prtrans10︸
transceiver cost

+ Prsp × (
`× (2h+ 1)×R

2
− 1)︸

splicing cost

(4.21)

where the second term represents the row fiber cost for the additional eNodeBs. It is worth noting

that we assumed that the backhaul of each of the added micro cells are deployed such that it takes

the shortest path, i.e. length = R, and hence the lowest cost. Also, the OPEX changes for MNO-

2100 to include the additional cost of micro eNodeBs, i.e.

Cbk−sh,2
op,diff =12×

(
(Nmac × (Cmac

RAN + Cmac
core)

+ `× (2h+ 1)× (Cmic
RAN + Cmic

core))× (Cmaint + PowT )

+MemSem

) (4.22)

where Cmic
RAN and Cmic

core are the rental costs for both the RAN and the core networks for a micro

eNodeB which should be less than the rental costs for a macro eNodeB, i.e., Cmac
RAN and Cmac

core .

Now, the profit in this scenario can be found similar to equation (4.17).

Eventually, to reevaluate the profit in WDM based backhaul network, we replace Cbk−sh
bk in equa-

tion (4.21) by Cbk−wdm
bk from equation (4.19). Meanwhile, the backhaul cost of MNO-700 will be

the same as equation (4.19).

43



4.3.2 Infrastructure Sharing in Ring Topology

Similar to the infrastructure sharing in tree topology, the cost of sharing the ring topology infras-

tructure can be estimated as

Cfiber =
1

2
cr × `× 2.7R× (Prd + (h− 1)× Prf )

Ctrench =
cr
2
× Prtr × `× h××2.7R

Ctrans =
(cr − 1)

2
× `× h× (PrOLT + PrONU)

+ `× h× (cr − 2)× Prtrans10 + `× h× Prtrans40

Cpsc =
`× h×Prpsc

2

Csplice =
1

2
Prsp × (

cr × `× h× 2.7R

2
− 1) +

Prsplicer
2

(4.23)

4.4 SPECTRUM SHARING SCENARIOS

In the spectrum sharing case, we assume spectrum sharing in a greenfield network. Based on the

traffic demand at a certain CMA/BEA the network operator needs to plan the capacity and the

coverage of his network to estimate the bandwidth to be shared. Also, we consider two cases:

sharing spectrum only (no infrastructure sharing) and full sharing (spectrum and infrastructure

sharing). Assuming a greenfield network, a backhaul cost Cssh
bk and an operational cost Cssh

op , then

the profit in the spectrum sharing scenario can be written as

Prof ssh = Revssh − (Cssh
bk + Cssh

op + Cssh
sp ) (4.24)

where Cssh
sp is the spectrum cost in the spectrum sharing scenario and is calculated as

Cssh
spi = Cspi +Nbs−sh × Prj∗MHz × b

sh
j (4.25)

whereCspi is the basic spectrum cost for the spectrum owned by MNO i and Prj∗MHz is the spectrum

price per MHz of a total leased bandwidth by MNO j (b∗j ) in a certain CMA/BEA area. Also,
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Nbs−sh is the number of BSs adopting spectrum sharing in the area A. Note that Prj∗MHz and b∗j

are the optimal price per MHz and the optimal leased Bandwidth, respectively, such that the MNO

sharing profit is higher than the single MNO profit for both MNOs, i.e.,

Maximize
PrMHz ,bi,bj

Prof sshi + Prof sshj

subject to

Prof sshi > µ× Prof singlei , k ∈ {i, j}

PrkMHz > 0, k ∈ {i, j}

bk ≥ ε, k ∈ {i, j}

(4.26)

where ε is the minimum feasible bandwidth that can be shared, e.g. the bandwidth of two physical

resource block (PRB) in LTE systems, and µ is a tuning parameter to control the spectrum sharing

target incentive. Also,Cssh
bk andCssh

op are the backhaul and operational costs in the spectrum sharing

scenario, respectively, according to the sharing scenario as aforementioned in Sections 4.2 and 4.3.

In this case, the values of Cssh
bk and Cssh

op in equation (4.24) are substituted by the costs of a single

MNO given in equations (4.6) and (4.12), respectively. In this scenario, both spectrum and

infrastructure are shared between MNOs. Thus, the costs for the CAPEX and OPEX are given by

the sharing scenarios in equations (4.7 and 4.8) based on which topology is used in the backhaul

(tree or ring).

4.5 NUMERICAL RESULTS

In this section, we show different results for the different sharing scenarios that we addressed in

Section 4.3 and 4.4. We used Fiber Store [58] to get the monetary values of different fiber network

components as shown in Table 2.

It is worth noting that K-PON OLT-GPON is the price of the K-ports OLT unit if used for the

Gigabit Passive Optical Network(GPON) and similarly K-PON OLT-EPON for the Ethernet Pas-

sive Optical Network(EPON). Similarly, K-PON ONU-GPON is the price of K-ports ONU unit.

Also, 1× K PSC is the price of a 1 : K splitter-combiner unit. Also, note that the trenching cost
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Table 2: Cost values of the fiber network components

component cost

4-PON ports OLT - GPON $ 4275

4-PON ports OLT - EPON $ 1352

8-PON ports OLT - GPON $ 5063

8-PON ports OLT - EPON $ 2292

4-PON ports ONU - GPON $ 116

8-PON ports ONU - GPON $ 384

1× 4 PSC $ 30

1× 6 PSC $ 40

1× 8 PSC $ 55

10GBASE SFP+ transceiver $ 82

40GBASE QSFP transceiver $ 750

splicer $ 30000

fusion splice $ 9
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varies according to whether the deployment area is a rural area or an urban area [50]. Microtrench-

ing, horizontal directional drilling (HDD) and manual trenching are well suited for urban areas,

and cost approximately $50, $37 and $25 per meter respectively. The term microtrenching is used

to emphasize the small size of trench in the ground where the cable is deployed, and is typically

in the range of 1.5- 5cm in width and 20-40 cm in depth. HDD on the other hand, is a completely

trenchless cable deployment method. Here, an inner duct is placed in a drilled path and the cable

is subsequently pulled through. Both techniques are extremely effective in areas where significant

disruption of surface is undesirable. However, if cost is the main concern, manual trenching could

be used instead. On another note, in rural areas, more cost-effective techniques, such as direct cable

burying (plouging), machine trenching (in areas not suitable for ploughing), and aerial deployment

could be used instead and at a cost of approximately $7, $14 and $4 per meter, respectively. In the

following numerical results, we assume the use of microtrenching in urban areas with a cost of $50

per meter. On the other side, in rural areas we assume direct cable burying with a cost of $7 per

meter. Figure 12 shows the contribution of different costs in the total cost of the cellular network.
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Figure 12: Cost Contribution of OPEX, CAPEX and Spectrum costs in the total cost of establishing

a green-field cellular network

It is obvious that the OPEX is the dominant factor. Also, the spectrum net bidding amount is the

least contributing to the total cost of the LTE network.

In this section, we first analyze the different approaches to derive the number of eNBs, i.e. set cov-
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erage problem, approximation-based and real data based. Moreover, we show how the optimum

price/MHz and the optimum shared BW change in the spectrum sharing scenario after applying the

optimization formula in equation (4.26). Afterwards, we analyze and compare the proposed cost

model in different sharing scenarios, i.e. backhaul, backhaul-WDM and spectrum sharing. More-

over, we get insights about the efficacy of the population density, the number of BSs on the net

profit by using a dataset of about 1054 CMA and BEA areas in US that was derived from various

FCC auction data sheets [57]. The FCC data composes of the census, the spectrum net cost, the

area (in mile.sq), the used bands and bandwidths in different CMA/BEAs across US. We produce

the results for tree and ring topology.

Profits are calculated as a net present value assuming a cash flow period of 15 years with an

initial capital cost of Cbk+Csp, i.e. the initial investments in backhaul and spectrum, and an annual

interest rate of 5% [66].

4.5.1 Different Criteria to derive number of eNodeBs

Using the criteria proposed in Section 4.1.1, we derive the number of eNBs in each CMA and we

compare the cumulative frequency of occurrences as shown in Figure 13. In this figure we can

see that NeN for the approximation approach is lower than the actual real data while the results

of the set coverage problem approach high values compared to the real and approximated values.

It is worth noting that we removed the outliers from the data before analyzing it to understand

the effect of the different criteria clearly. In the upcoming results, we use the real values for NeN

unless otherwise is mentioned.

4.5.2 Optimum Spectrum Bandwidth and Price in Spectrum Sharing Scenario

Using the optimization formula in equation (4.26), we derive the optimum BW to be shared and the

leasing price/Hz in spectrum sharing scenario. Figures 14a and 14b show the optimum shared BW

versus the percentage of BSs that adopt sharing in a certain area A for two different areas with low

and high population densities, respectively. The blue curve represents spectrum sharing only sce-

nario wherein the red curve represents the spectrum plus backhaul sharing scenario (sharing both

the backhaul and the spectrum between SPs). It is worth noting that at the cases where the optimum

48



0 500 1000 1500 2000
Number of eNBs

200

400

600

800

1000

Cum
ulati

ve Fr
eque

ncy

set_coverage
Approx.
Real

Figure 13: The cumulative frequency for NeNassumingdifferentcriteria

BW is zero, it is an indication that the SP does not have the incentive to share the spectrum. This

is due to the in-feasibility of the profit constraint in the optimization problem in equation (4.26),

i.e. the profit of sharing the spectrum does not exceed the no-sharing profit. However, this sharing

incentive increases with the increase of the number of BSs that adopt spectrum sharing. Moreover,

the threshold at which the sharing incentive turns into a non-zero monetary value is correlated with

the population density at area A. For areas with higher population densities the incentive thresh-

old can be attained more faster than areas with lower population densities as depicted by the blue

curves in Figures 14a and 14b.

Similarly, Figures 15a and 15b show the profit per SP of sharing the spectrum between two identi-

cal SPs in the 700 MHz A band. It is obvious that the spectrum plus backhaul sharing outperforms

the spectrum sharing only scenario at all values of population densities and all percentages of

shared BSs. It is important to notice that a zero profit in the figures reflects a zeros incentive but

not necessarily a zero monetary value, i.e. we nullified the non-zeros profits that does not exceed

the target no-sharing profit.
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Figure 14: Optimum Shared BW versus the percentage of BSs deploying spectrum sharing

(Nsh−bs) in the 700 MHz A band
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Figure 15: SP profit versus the percentage of BSs deploying spectrum sharing in the 700 MHz A

band
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4.5.3 Comparing The profits of Different Sharing Scenarios

4.5.3.1 The Net Profit Versus The number of BSs per CMA/BEA Using the FCC datasheets,

we are able to derive the net profit for 1054 CMA/BEAs across US in different sharing scenarios

by applying the cost models proposed in Section 4.2 of this paper. Figures 16a, 16b and 16c show

the net profit versus the number of BSs per a CMA area A in different sharing scenarios that deploy

a tree-based backhaul topology with Nsh−bs = 10%, 50% and 90% respectively. Since it was clear

and affirmative that all the sharing scenarios outperform the no-sharing scenario in terms of net

profit, we do not show the no sharing curve for better presentation of the results. Interestingly in

these figures we can clearly see that backhaul sharing profit outperforms spectrum sharing profit

when Nsh−bs = 10% and the total number of eNBs (NeN ) is lower than 750. As the number

of BSs per CMA/BEA increases, spectrum sharing outperforms backhaul sharing. Moreover, for

higher Nsh−bs, i.e. Nsh−bs = 50% and 95%, spectrum sharing achieves higher profit than backhaul

sharing unconditionally as shown in Figures 16b and 16c. The reason for that is that as the number

of BSs increases the revenue from sharing the spectrum increases according to equation (4.25) and

hence the spectrum sharing profit increases accordingly. Meanwhile, the backhaul cost decreases

in the scenario of backhaul sharing. However, the increase in the revenue due to spectrum sharing

outweigh the decrease in the backhaul cost as the number of eNBs per CMA as well as the number

of BSs adopting spectrum sharing increases, i.e. in areas with high number of BSs.

Similarly, Tables 3 and 4 shows the ten first and last CMAs arranged with respect to the in-

centive of backhaul sharing, respectively. Moreover, Tables 5 and 6 shows the first and last 10

CMAs arranged with respect to the incentive of spectrum sharing. Figures 17a, 17b and 17c

show the net profit versus the number of BSs in different sharing scenarios for the 2100 MHz

(AWS) band with Nsh−bs = 10%, 50% and 90% respectively. Unlike the 700 MHz band, we can

see that at Nsh−bs = 10% spectrum sharing outperforms backhaul sharing when the number of

eNBs exceeds 1400. However, at Nsh−bs = 50% spectrum sharing outperforms backhaul sharing

when the number of eNBs exceeds 90. In conclusion, the 2100 MHz band requires higher number

of sharing eNBs to achieve higher incentive than the backhaul sharing. Similar to the tree-based

results, Figures 18a, 18b and 18c show the net profit versus the number of BSs per a CMA area

A in different sharing scenarios that deploy a ring-based backhaul topology. We can see two main
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Table 3: Highest 10 CMA/BEA profits of sharing backhaul

CMA/BEA Increase in profit %

Syracuse, NY 8.3

Carlisle, PA 4.9

State college, PA 3.5

Buffalo, NY 3.3

Niagara Falls, NY 3.3

Augusta, GA 2.6

Aiken, SC 2.6

Harrisburgh, PA 2.4

Lebanon, PA 2.4

Table 4: Lowest 10 CMA/BEA profits of sharing backhaul

CMA/BEA Increase in profit %

Great Falls, MT 0.73

Duluth, MN 0.76

Superior, WI 0.76

Bismarck, ND 0.77

Odessa, Tx 0.85

Midland, Tx 0.85

San Angelo, Tx 0.89

Rapid city, SD 0.93

Beaumont, Tx 1
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Table 5: Highest 10 CMA/BEA profits of sharing spectrum

CMA/BEA Increase in profit %

Boston, MA 100

Philadelphia-Atlantic city 95

Dallas, Tx 75.9

San Francisco, CA 45.6

Oakland, CA 45.6

San Jose, CA 45.6

Tampa, FL 45.0

San Diego, CA 36.9

Seattle, WA 30

Houston, Tx 23.3

Table 6: Lowest 10 CMA/BEA profits of sharing spectrum

CMA/BEA Increase in profit %

Odessa, Tx 1.13

Davenport, Iowa 1.68

Charleston, VA 2

Rochester, NY 2.23

Lincoln, NE 2.58

Evansville, IN 3.13

Fortwayne, IN 3.15

Topeka, KS 3.23

Portland, Maine 4.32

Columbia, SC 4.75
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Figure 16: Net Profit versus number of BSs (NeN ) in different sharing scenarios for the 700 MHz

band
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Figure 17: Net Profit versus number of BSs (NeN ) in different sharing scenarios for the 2100 MHz

band
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differences from the tree topology. The ring topology profits are almost 10 times greater than the

the tree topology profits. Moreover, the threshold where the spectrum sharing achieves better in-

centive than the backhaul sharing is at NeN ' 200 instead of 700 for the tree topology.
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Figure 18: Net Profit versus number of BSs (NeN ) in different sharing scenarios
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4.5.4 Mapping The Incentive of Different Sharing Scenarios Across US CMAs/BEAs

In this subsection, we project the results from the cost model in Section 4.2 on the US state map. All

the numerical values are pre-processed by standardization and normalization to eliminate outliers.

Since the gathered data is normally distributed, we normalized the data by subtracting the mean

and dividing by the standard deviation. Figure 19 shows the CMAs where MNOs have incentive to

share the network resources (either spectrum or backhaul). The numbers in the legend of the map

indicate the percentage of increase in the MNO profit thanks to sharing.

Figures 20 and 21 show the spectrum sharing and backhaul sharing incentive, respectively, in

different CMAs in the case of using the real data approach to derive NeN . It is obvious that spec-

trum sharing is superior to backhaul sharing in the areas where the population density is fairly high

such as California, Florida and a big part of the east-coast. However, interestingly, there are some

exceptions to this consensus when some of the CMAs/BEAs with high population density experi-

ence very high cost per MHz per population such as in New York, Washington D.C., Pennsylvania

and West Virginia. This ultra-expensive cost per MHz per population is due to that the spectrum

net bidding cost is very high and hence sharing the spectrum adds a high spectrum lease cost to

the OPEX. Recall that the spectrum lease rate is proportional to the spectrum cost per MHz per

population unit per CMA/BEA. This lease value increases the total LTE network cost significantly

since the OPEX cost is a dominant factor in the total cost of deploying a greenfield network as

pinpointed before in Figure 12. Therefore, Sharing the backhaul network in such CMAs makes

more sense than sharing the allocated spectrum.

Similarly, Figures 22 and 23 show the spectrum and backhaul incentive maps in case of using the

set coverage problem to derive NeN . Note that the numbers in the legend of the set coverage maps

are ratios not percentages, i.e. 0.25 = 25% increase in the profit.

4.5.5 Sensitivity Analysis

In this part, we conduct a sensitivity analysis for the profit of sharing in different scenarios. In

Table 7, we increase the cost per MHz per population by multiples of 2 and we deduce the threshold

of number of BSs and population density at which spectrum sharing incentive exceeds backhaul

sharing incentive. We can clealry see that increasing the spectrum cost per MHz still matches the
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concluded consensus about spectrum sharing and backhaul sharing. Yet, the number of sharing

eNodeBs decreases for higher spectrum coast per MHz per population, i.e., MNO/VE can achieve

spectrum sharing incentive with less number of sharing eNodeBs.

Table 7: Sensitivity Analysis of sharing

spectrum cost per MHz per population number of eNodeBs threshold population density threshold

× 1 1400 1900

×2 800 1200

×4 300 1000

×6 100 700

×10 0 350
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5.0 RESOURCE ALLOCATION IN HETEROGENEOUS VIRTUALIZED

NEXT-GENERATION MOBILE NETWORKS

After exploring the economic incentive of sharing the infrastructure and spectrum resources in cel-

lular networks, in this chapter, we propose an efficient scheme for resource allocation in virtualized

mobile networks. The scheme handles two main issues: isolation between different MNOs shar-

ing the same resources and the heterogeneity of next-generation mobile networks including new

service types such as enhanced mobile broadband (eMBB), ultra-reliable critical communications

(URCC) and massive machine type communications (mMTC).

5.1 SYSTEM MODEL AND MOTIVATION

In this section, we provide an overview of the system model and the motivation of the proposed

VPS algorithm. Also, we spotlight the lack of ultra-reliability in current LTE cellular networks and

hence examine an enhanced version of the VPS algorithm (e-VPS) to handle URLLC traffic in an

efficient manner.

5.1.1 System Model and Background

In this chapter, we consider a single cell of size dmax served by one BS (or evolved node B –

eNB in LTE) which is physically maintained by a certain InP. We assume two SP/VEs, VE1 and

VE2 operating on the same eNB. We assume both VEs have mobile users in the cell with the

same coverage. Also, we assume both SP/VEs share the entire spectrum (the 700 MHz-LTE bands

are aggregated to form a spectrum pool of bandwidth B = B1 + B2 where B1 and B2 are the
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bandwidths that are otherwise allocated to SP/VE1 and SP/VE2, respectively).

Since we assume SP/VEs are operating on an LTE-based physical substrate, physical resource

blocks are allocated to users based on the channel quality index (CQI). The CQI is used by the

eNB to infer the channel conditions for a given mobile in a given set of RBs during a TTI. In this

thesis, we compute CQI according to the table in [67]. The corresponding transmission rate per

Hz(η) is derived from Table 8 as below.

Table 8: CQI and MCS Table

CQI index modulation(M-ary) code rate x 1024 efficiency(η)
0 out of range
1 QPSK 78 0.1523
2 QPSK 120 0.2344
3 QPSK 193 0.3770
4 QPSK 308 0.6016
5 QPSK 449 0.8770
6 QPSK 602 1.1758
7 16QAM 378 1.4766
8 16QAM 490 1.9141
9 16QAM 616 2.4063
10 64QAM 466 2.7305
11 64QAM 567 3.3223
12 64QAM 666 3.9023
13 64QAM 772 4.5234
14 64QAM 873 5.1152
15 64QAM 948 5.5547

In LTE, RT VoIP traffic is assumed to consist of 40 byte packets that are generated every 20

ms., i.e., the inter-arrival time is 20ms [68]. A fixed number of PRBs are sufficient for RT traffic

packets. According to table 8, the lowest CQI corresponds to CQI = 1 with a code rate efficiency

of 0.1523 bits/Hz. If we denote the RB capacity, i.e. the maximum number of transmitted bits per

RB per TTI, by Brt, we can see that Brt can be computed roughly as:

Brt = 2× 12× 15 KHz × 0.1523 bits/Hz

= 54.83 Kb
(5.1)

Hence, one RB may be sufficient to serve a RT request (we do not include the overhead and control

signaling here). However the LTE standard [67] specifies 2 RBs to be the least number of RBs to

be acquired by a single request in a TTI.
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We also note here that since the lowest CQI can still serve RT requests, it will be beneficial to

allocate the worst channels to RT traffic and save the best channels, which have higher data rates

for non real-time traffic. We explore this later.

5.1.2 Motivation

In this part, we explore the motives for designing the VPS and e-VPS resource allocation schemes.

We start with reasoning for the joint scheduling of requests among different VEs. Then, we show

that high reliability is hard to attain in current LTE systems.

5.1.2.1 Problems with Separate Scheduling for SP/VEs We examine why separate schedul-

ing of RT traffic flows after allocation of RBs may result in more blocked RT requests through

a simple example. In the framework shown in Figure 24, the Network Scheduler is in charge of

estimating the number of spectrum resources that should be assigned to each SP/VE based on the

proportional fairness allocation scheme. This scheme operates as follows:

maximize
cg

∑
g

υ(Γg)

subject to Γg ≥ Qg
min∀g

(5.2)

where υ(Γg) is the utility function which is maximized to attain the best resource allocation in a

TTI, Γ(g) is the total transmission rate in a TTI for VE g and g is the slice number, (for example,

slice 1 belongs to VE1, slice 2 belongs to SP/VE2, etc.). Also, Qg
min is the minimum guaranteed

number of resource blocks needed to satisfy the SLA for VE-g. According to [69], the proportional

fairness utility function can be written in terms of a concave function as follows

υ(Γg) =
Γg
Tg

log(Cg) (5.3)

where Cg is the number of RBs acquired by VE-g at the beginning of a TTI and Tg is the aggregate

transmission rate obtained by VE-g in all former TTIs starting from t = 1 where t is the slot

number. Note, that the higher Tg is, the lower the utility, whereas the higher Cg, the higher the

utility. While a log utility function is compatible with NRT traffic, the RT traffic with constant
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Figure 24: The new virtualization framework

inter-arrival times does not observe any improvement in utility with larger bandwidths1. In contrast,

real-time traffic is delay sensitive and should not encounter a delay beyond a maximum acceptable

delay. If the delay is larger, RT packets are dropped (or flows are blocked). Thus, one of the

common methods to handle RT traffic is the notion of priority queues [70]. In LTE, users requests

are initially prioritized before being served according to the criticality of the user application [68],

e.g. VoIP(2), Video call(4), ... and so forth. The highest priority flow request (the lowest priority

index) is served first. Unlike traditional LTE networks, in virtualized NGMN networks, it may

not be the best approach to execute the prioritization step for each SP/VE separately. We claim

that prioritization between different traffic types should be performed for all SP/VEs jointly at

the network scheduler prior to the allocation of resources. This can better leverage the economy of

scale effects of spectrum pooling. Furthermore, it is possible that an SP/VE would have insufficient

resources to serve all real-time requests if the Network Scheduler assigns resources on a fair-

throughput basis regardless of the traffic heterogeneity.

1This may change with different qualities of RT traffic, such as HD voice and video, which is outside the scope of
this thesis.
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To clarify this, we use a small example. Suppose we have a total of 8 PRBs and VE1 and VE2

each has 2 RT requests at the beginning of a TTI. We assume also for simplicity that VE1’s PRBs

all (with transmission rates per Hz) correspond to CQIindex = 11 in Table 8 and similarly, VE2’s

PRBs transmission rates correspond to CQIindex = 14. Hence, assuming T1 = T2 for simplicity

and solving the optimization problem in Equation (5.2) for two VEs (VE1 and VE2) where the

total utility function per Hz υtotal is given as,

υtotal

= maximize
C1,C2

υ(Γ1) + υ(Γ2)

= maximize
C1,C2

Γ1 logC1 + Γ2 logC2

(5.4)

we can derive C1 and C2 by solving equation (5.4). Note that Γ1 and Γ2 are the total transmission

rates per unit time for VE 1 and VE 2, respectively. Figure 25 shows the different feasible solutions

for C1 and C2. It is obvious that the proportionally fair allocation policy in this scenario is (C1 =

3, C2 = 5), i.e., these are the numbers of allocated RBs for VE1 and VE2 respectively which

achieve the maximum total utility. We now examine the impact of this solution on the blocking

rate of RT requests. First consider when prioritization is carried out individually by each SP/VE

after allocation of RBs by the Network Scheduler, i.e., post-allocation priority. As we previously

assumed, an RT request is served using 2 PRBs. Hence, VE1 would not be able to serve all of its

RT requests and would have one dropped RT request. In the second scenario, let us suppose that the

network scheduler prioritizes requests first and serves them using all of the available RBs. Then,

none of the VEs would encounter drops of RT requests. This simple example is just a motivation

to argue that the existence of a priority-phase prior to allocating resources and then serving RT

requests first, independent of the PF-criterion is useful to ensure that that RT requests are better

provisioned.

5.1.2.2 Reliability in Wireless LTE Systems Generally, link reliability is the ability of a radio

link to transmit and receive a certain amount of data successfully within a predefined deadline [71].

In this thesis, we focus on the reliability of the link between a user in the network and the network

itself. To clarify more, assume a user A communicates with the network through a single link. If

user A sends a packet of Mp bits (payload) and the control bits added to the payload is Mt, then
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the total packet size is K = Mp +Mt. This data is channel coded with Mc bits for error detection

and correction [72]. Hence, the total number of symbols received at the receiver is N = K + Mc.

The coding rate R of the communication system is defined as the fraction K/N of information

bits to the number of transmitted symbols. The task of the decoder at the receiver is to determine

the information bits B1; ....;BK from the N channel outputs Y1; ....;YN . We denote the packet

error probability as Pe. The packet error probability is the percentage of packets not successfully

received at the receiver within a certain period of time. Hence, the number of coding bits Mc is

chosen such that the error probability per packet per unit time is minimized and meanwhile the

user still achieves the target throughput. As Mc increases, the total number of transmitted symbols

N increases and hence the throughput deteriorates but Pe decreases and vice versa.

According to Polyanskiy et al. [73], the coding rate R̂ is upper-bounded by the following formula

R̂ = Φ−
√

Θ

N
Q−1(ε) +O(

logN

N
) (5.5)
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where ε is the maximum allowable total transmission error probability and O( logn
n

) comprises

remainder terms of order logn
n

. Also, Q−1 denotes the inverse of the Gaussian Q function. Θ is the

channel dispersion and Φ is the channel normalized capacity [73]. For the AWGN channel, Θ and

Φ can be written as

Φ(γ) = log(1 + γ) (5.6)

Θ(γ) = γ
(2 + γ)

(1 + γ)2
(log e)2 (5.7)

where γ is the received signal-to-noise ratio measured at the receiver. Also, a good approximation

for O( logn
n

) in equation (5.5) is proved to be (logn)/2n [74]. The formula in (5.5) gives the

maximum coding rate needed for a maximum allowable total transmission error probability of ε

and a total number of symbols N . A transmission error probability (ε) maps to a reliability rate of

Rel(ε,N) where Rel(ε,N) for a certain link can be written as

Rel(ε,N) = (1− εu)(1− εd) (5.8)

i.e. a link that carries N symbols with a maximal uplink error probability of εu and a downlink

error probability of εd is guaranteed to be reliable for a Rel(ε,N)% of the whole time this link is

active. We use the approach in equation (5.8) as an approximation for quantifying reliability in this

thesis. Unlike other reliability approaches used in the literature, this approach is tractable.

The LTE CQI calculations in Table 8 is designed to maximize the user throughput such that the UE

power and delay constraints should be met. Also, it is presumed that the average error probability

of sending a packet ε is no more than 10% [35]. Figure 26 shows the reliability (%) versus delay

in seconds in traditional LTE networks, i.e. traditional CQI mapping. This figure is produced

assuming AWGN channels for uplink and downlink in a cell with a radius of 500 meters and a total

of 2 mobile users. We assume that one of the users is downloading a file in a size of 0.5 MBytes and

the other one has a URLLc request with a packet size of 100 Bytes and an arrival rate of 2 packets

per TTI. We generate the locations of the users in the cell randomly, we iterate the simulation 1000

times and we take the average over 1000 observations. Using the modulation and coding schedule

(MCS) in Table 8, we simulate an LTE cell using MATLAB and derive the average link reliability

using equation (5.8). Then, we plot the average link reliability versus different maximum delay
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values in Figure 26. We also plot the average antenna transmission power versus different delay

constraints in Figure 27. From Figure 26, we can clearly see that achieving a user plane latency as

low as 0.5 msec makes the target 5G ultra-high reliability unattainable, i.e. ' 0.999. Moreover,

the transmitting power reaches the maximum allowable transmission power by a pico BS, i.e. 38

dBm according to 3GPP standard. Thus, the LTE network reliability is very loose compared to the

stringent requirement by URLLC applications. Therefore, the traditional LTE resource allocation

should be adjusted for URLLC requests to accommodate ultra-reliable users in NGMN networks,

i.e. our e-VPS new resource scheduler.

Figure 26: Reliability versus user delay constraint in traditional LTE networks

5.1.3 Problems with Static Allocation of Qmin RBs to Virtual Entities

The third problem that our proposed resource allocation tackle is determining the appropriate

choice of the minimum reserved number of RBs for SP/VEs such that resources do not remain

unused or no SP/VE is assigned fewer resources than possible to improve the average throughput

and user blocking probability. In this subsection, we show the impact of changing Qmin on system

performance through discussing various scenarios.

Intuitively, since the traffic demand changes with time and thus the number of allocated resources

71



Figure 27: Transmitting Power versus user delay constraint in traditional LTE networks

changes as well, the minimum number of allocated resources Qmin should not be fixed. In Net-

Share, the minimum QoS for VE i is just proportional to the total number of resources which is

agreed to be statistically reserved to such SP/VE in the SLA denoted by Li, i.e. Qi
min = ζLi.

However, we argue in this thesis that provisioning Qmin dynamically based on the actual number

of allocated resource per SP/VE can improve the total throughput for the SP/VE. For better clarifi-

cation, we simulate an LTE cell with Rayleigh fading channels and a path loss exponent of α = 2.

SP1 and SP2 have 10 and 5 users respectively and users are uniformly distributed through the cell

with a radius of 500 meters. Using the NetShare scheduling, i.e. Qi
min = ζLi, we define the loss in

resource utilization as the difference between the actual used RBs in transmission for VE-i denoted

by Ci and the total reserved RBs Li, i.e.,

loss(%) =
Li − Ci
Li

× 100% (5.9)

Figure 28 shows the variation of the spectrum utilization by VE1 and VE2 demands with Qmin

assuming the algorithm used by NetShare. It is apparent that as ζ increases, the expected loss

in resource utilization increases as well. In other words, the suggested Qmin deviates more from
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the actual number of resources needed to serve the SP/VE. Next, we discuss another scenario that
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Figure 28: The utilization loss versus Qmin for SP/VE 1 and 2

further shows the shortcoming of the static selection ofQmin. Again, we conduct simulations using

the aforementioned NetShare assumptions. However, in this experiment we artificially assume

quite poor quality of RBs for mobile users of VE2, by changing the path-loss exponent (α1 = 4).

We assume that VE1 has a path-loss exponent of α2 = 2. Since the received signal strength falls

with distance d as dα, mobile users of VE2 see poorer signal strength and thus CQI. We explore

two scenarios, Scenario I where Q1
min = 1

2
C1

C1+C2
CT = Qa and Q2

min = 1
2

C2

C1+C2
CT = Qb, i.e.

Qmin for VE i is proportional to the number of mobile users subscribed to that entity and ζ = 0.5

(we use ζ). The other scenario is Scenario II where Q1
min > Qa, Q

2
min > Qb. Figure 29 shows

the average flow throughput versus various percentages of RT requests for both scenarios. Clearly,

we can see that Scenario II has a better throughput than Scenario I for VE1, but the throughput

is roughly the same for VE2 in both cases. The reason for that is the very low quality RBs for

VE2, hence the throughput is not improved by increasing its Qmin. However, VE1’s throughput

is clearly enhanced by increasing Qmin from that in Scenario I to that in Scenario II. Generally

speaking, this comparison of scenarios implies that keeping Qmin static is probably not a good

idea. Dynamically changing Qmin according to the quality of RBs, as well as the traffic demand
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I and Π

may positively affect the virtualized system’s overall performance. Accordingly, in next section,

we present a new method to derive Qi
min for VEi based on both the average long term transmission

rate of VEi in previous slots allocated to its users as well as the current demands of this SP/VE,

i.e., it resembles a PF-based selection, albeit at an SP/VE level than a user/flow level.

5.2 E-VPS SYSTEM

In this section, we describe the model of our proposed approach. Unlike the virtualization frame-

work proposed for NVS [24] and NetShare [25], we adopt the VPS framework that was proposed

in previous work [54] as shown in Figure 24. In this framework, the Network Scheduler performs

resource scheduling in two main phases, a priority-phase and a virtual prioritized slice (VPS)

scheduling-phase as depicted in Figure 24. The primitive framework in [54] does not address

URLLC requests nor does it consider dynamic changes to Qmin. Hence, we extend this frame-
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work as shown in Figure 30 to an enhanced virtual prioritized slice, i.e. e-VPS, that includes

URLLC traffic. The e-VPS framework comprises of four phases as follows.

5.2.1 Priority-Phase

In the priority phase, instead of performing prioritization between different classes of applications

for each SP/VE separately after allocation of RBs (post-allocation priority), the Network Sched-

uler collects the flow requests from both entities VE1 and VE2, and jointly prioritizes the flows

according to a priority index that takes into account delay and reliability. This priority index con-

siders the type of application before allocation of RBs (pre-allocation priority). Flow requests from

all SP/VEs are queued as shown in Figure 24 into two queues – a virtual prioritized slice (VPS)

which contains all RT requests from both SP/VEs and the NRT slice containing all NRT requests

from both SP/VEs. The VPS is forwarded to the scheduler to be assigned RBs regardless of the

Proportional Fairness scheduling scheme in equation (5.2). This is because, as we discussed pre-

viously, each RT request needs a fixed assignment of RBs (two in this thesis). On the other hand,

the NRT slice is provisioned using the PF-scheduler in equation (5.2) according to the number

of requests per SP/VE as well as the PRBs quality for each SP/VE. The next step is scheduling

URLLC requests within both RT and NRT traffic flows.

5.2.2 Scheduling URLLC Requests

Assuming that URLLC requests are one of the service classes in the NGMN network, we redesign

our proposed VPS resource allocation scheme to fit the new scenario. We propose the enhanced

VPS algorithm (e-VPS) for allocating resources to RT, NRT and URLLC requests. Basically, the

URLLC requests can be RT or NRT. Examples of RT-URLLC include tactile communications,

e-health and Vehicle-to-Vehicle emergency communications where a real-time reliability is in-

evitable to guarantee the full functionality of such type of communications. On the other hand,

communicating ultra-reliably to a public cloud over short periods of time to analyze confidential

data could be an example of NRT-URLLC. Hence, in the e-VPS scheduler we have four classes

of traffic: RT-URLLC, RT only, NRT-URLLC and NRT only, arranged respectively according to

priority. After splitting the traffic into RT (VPS) and NRT queues as depicted in Figure 30, the
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NRT-URLLC and RT-URLLC requests are queued into a VCS (Virtual Critical Slice), i.e. the

queue in blue, as shown in Figure 30. The resources for VCS requests are scheduled through the

URLLC optimizer shown in Figure 30. Here, we optimize the coding rates over different URLLC

links through the URLLC optimizer as described next.

5.2.3 URLLC Coding Optimizer for URLLC Traffic

We argue that for the URLLC service class a new scheduling scheme is to be constructed based on

the required reliability level (Rel%), the SNRs of the available channels and the maximal allowable

error rate (ε) given in equations (5.5-5.8) as well as traditional LTE CQI metrics. The new optimal

scheduler criterion can be written as

maximize
Nj

υ(Nj)

subject to Rel%(Nj, εu,j, εd,j) ≥ rj, j ∈ κ

Dur−rt
j ≤ Drt

max, j ∈ κ

Dur−nrt
j ≤ Dnrt

max, j ∈ κ

Pj ≤ Pmax, j ∈ κ

ρu ≥ ρth, j ∈ κ

tup ≤ tco.

(5.10)

where κ is the set of links between mobile users and the network. Pj is the transmitting power

across link j, ρu is the user throughput and ρth is the minimum allowable user throughput. Dur−rt
j

and Dur−nrt
j denote the RT and NRT URLLC user-plane delay on link j which have to be lower

than or equal to the maximum allowable delays Drt
max and Dnrt

max, respectively. The optimization

problem in equation(5.10) finds the optimal number of symbols Nj to be transmitted on link j

(Nj) to maximize the throughput υ(Nj) over this link j such that the reliability is maintained at a

certain level Rel%, the uplink and downlink error probabilities are upper-bounded by εu,j and εd,j ,

respectively, and the application end-to-end delay requirement can be fulfilled.

On a system level, the VCS requests are routed to the URLLC optimizer shown in Figure 30

to apply the URLLC optimization criterion in equation (5.10) to obtain the optimal coding rates

(R = K/N ) for every individual request. Also, it is worth noting that the time granularity to run
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such optimization can not be less than the coherence time tco, i.e, tupdate ≤ tco. The reason for

that is to make sure that the scheduler copes with the fading duration [75]. However, we do not

address the issue of time granularity in this thesis. After optimally selecting the coding rates per

each link in κ, the number of resources per a request is determined as illustrated in the last phase,

i.e., optimal VPS scheduler.

5.2.4 Optimal VPS Scheduler

The last phase for the virtual framework consists of the VPS scheduler and the NRT scheduler.

The VPS scheduler allocates a fixed number of resources to RT requests, i.e. RBs each. More

specifically, RT requests are first allocated RBs. We examine two approaches later - assigning

the RBs with the lowest CQIs and assigning RBs with the highest CQIs. As noted previously,

assigning RBs with the highest CQI does not materially improve the performance for RT requests.

RT requests are also arranged in order of their delay budgets as explained later. The ones with the

smallest delay budgets are allocated RBs earlier. Next, the NRT requests are scheduled according

to Equation (5.2) using the residual RBs. Moreover, in our framework, since we propose a new

dynamic Qmin allocation, the NRT scheduler will not only estimate the resources allocated to each

SP/VE but also the appropriate assignment of Qmin based on a PF-criterion as we illustrate next.

5.2.5 PF-based Assignment of Qmin

We propose determining Qmin such that Qi
min is proportional to Γi

Ti
, i.e.

Qi
min = β

Γi
Ti

(5.11)

where Γi is the total estimated transmission rate for users belong to VE-i during the current slot t,

Ti is the aggregate cumulative transmission rate in the preceding t − 1 slots and β is a parameter

that enforces a necessary condition which is:

0 < Qi
min <

1

η
CT (5.12)

where η ≥ 2 and CT is the total number of available resource blocks. The β interval enforces

an intuitive constraint on Qmin which is the minimum guarantee of any SP/VE is strictly less than

78



half of the available resources in the system to assure isolation between SP/VEs (assuming they

are identical in demand, channel quality and etc.). Note that we assume that both SP/VEs have

the same rights to access the pooled spectrum without priorities. To achieve these conditions, we

define Qmin with the following criterion:

Qmin =
Γi

ηΓi + θTi
NT (5.13)

where θ is a parameter that controls the weight of Ti in selecting Qi
min, and θ ≥ 1.

5.3 SIMULATION RESULTS

In this section, we present some results which show how the schemes proposed in this chapter

outperform those that have been previously proposed in the literature. In particular, we evalu-

ate the performance of the two new features proposed in our model, pre-allocation priority and

the dynamic selection of Qmin. We show that these two new features are beneficial in compari-

son to NetShare [25]. It is worth noting that, in [25], it was shown by simulations that NetShare

outperforms NVS [24], i.e., it achieves more efficient resource scheduling. Hence, we limit our

comparison to NetShare only to provide more clarity to the plots. Moreover, we show by simula-

tions the superiority of handling URLLC requests compared to current traditional LTE networks.

We conducted simulations using MATLAB. The default parameters used in this simulation are

shown in Table 9 unless otherwise indicated. Also, we assume that all RBs face Rayleigh fading

with the parameters shown in Table 9. Our results are calculated based on an average of 5000

iterations per 20 TTIs. Also, the error bars shown in the figures correspond to the 95% confidence

intervals. Mobile users of both SP/VEs are distributed uniformly in the cell.

In estimating the received signal-to-interference and noise ratio (SINR) γ, we assume that the ser-

viced requests always undergo a given constant interference from surrounding cells during their

service, for simplicity. Generally, the received SINR γk at user k is given as:

γk =
Pr,k

PT + n
(5.14)
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Table 9: Simulation Parameters

operating frequency (f) 700 MHz

Transmitted BS power ≤ 40 dbm

Mobile User power 20 dbm

Cell Size(dmax) 600 m

Number of active users-SP/VE1(u1) 20

Number of active users-SP/VE2(u2) 5

flow length(L) 3× 105bits

SP/VE1-Bandwidth 1.4 MHz

SP/VE2-Bandwidth 1.4 MHz

shared BW(full sharing) 2.8 MHz

total number of RBs 15

subcarrier spacing(∆f ) 15 KHz

Number of subcarriers/RB 12

subframe(TTI) time 1 msec

Number of symbols/TTI 14

pathloss exponent (α) 2

RT maximum delay (Dur−rt
max ) 15 msec

NRT maximum delay (Dur−nrt
max ) 100 msec

minimum NRT user throughput (ρth) 10 Mbps

minimum RT user throughput (ρth) 1 Mbps

minimum URLLC user throughput (ρth) 1 Mbps

minimum Target Reliability (rj) ≥ 0.999
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where Pr,k is the received power at user k, PT is the total received power from surrounding cells

and n is the zero-mean additive white gaussian noise(AWGN) variance. In this thesis, we assume

the free space path-loss model and accordingly Pr,k is given by [76]

Pr,k dB = Pt,k dB + (
λ2d

(α−2)
o

16π2dαk
) dB + |Hk,m|2dB (5.15)

where Pt,kdB is the power of the transmitted signal by the BS (downlink) in dB, λ is the wavelength

of the transmitted signal, do is a reference signal for the antenna far field, usually set to 10-100 m

outdoors, dk is the distance from BS for user k and Hk,m is the multipath fading coefficient for RB

m used by user k. We assume that the received power at the user receiver Pr,k undergoes Rayleigh

fading with fading coefficients Hk,m. Then, the received SINR γ per TTI is a random variable with

an exponential probability density function (pdf) [76]

Pγ(γ) =
1

γ
exp(−γ

γ
) (5.16)

where γ is the average received SINR, calculated from the path-loss. The CQI, for determining the

throughput, is calculated using the following conversion equation based on [35]

j =
γk(dB)− b

a
(5.17)

where j is the CQI value, a and b are constants which are derived based on the linear relation

between the CQI value and the γk(dB) obtained in [77]. In [77], a and b are given as 13
7

and −55
7

,

respectively.

We assume RT requests with exponentially distributed maximum request delay budgets. We recall

that the maximum-request-delay budget is the maximum delay a request can tolerate before it is

discarded and dropped. Also, we assume that the inter-arrival time for RT requests is one TTI,

i.e., 1 ms. We recall that in our proposed VPS approach, each RT request is serviced by 2 PRBs

as we presumed antecedently. We assume the number of RT requests urt per SP1 and SP2 is

uniformly distributed within the interval [0, u1] and [0, u2], respectively. Also, the number of

URLLC requests per SP is uniformly distributed within the interval [0, urt].
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5.3.1 Effectiveness of pre-allocation prioritization at the Network Scheduler in different

frequency bands

In this section, we discuss the results of sharing in the 700 MHz, the 2100 MHz band and the

inter-band sharing between the 700 and 2100 MHz bands.

5.3.1.1 Sharing in the 700 MHz band : We first show the effect of sharing in a 700 MHz
band. Figure 31 shows the average total SP/VE throughput for VE1 versus the percentage of RT
requests (compared to the total network load) for the proposed approach VPS (pre-allocation) for
three cases – the best (highest) CQIs with URLLC (blue), the best (highest) CQIs case (without
URLLC)(red) and the worst (lowest) CQIs case (without URLLC)(yellow). Also, the result for
NetShare with URLLC (post-allocation) is shown by (purple) bars. It’s obvious that the VPS
approach with worst-CQI outperforms the best-CQI VPS until the network load of RT requests
exceeds 60%. When the RT load surpasses 60%, the throughput of the worst-CQI case deteriorates
due to the fact that our approach that assigns a fixed number of RBs, i.e. two RBs, to the RT
traffic helps NRT requests to obtain RBs with higher quality, i.e. higher SNRs and hence higher
throughput. This is why, as shown in Figures 35 and 36, the throughput for NRT traffic improves
drastically. Similarly, we can see the same performance for VE2 in Figure 32 but the change is
slight since VE2 has a much lower number of users than VE1.
Nevertheless, as the percentage of RT requests increases in the network, i.e., the network becomes
more loaded, the best-CQI VPS approach outperforms the worst-CQI approach since the NRT
throughput decreases while the dominant RT throughput is low due to using low-SINR channels
to provision RT requests as shown in Figures 33 and 34. Also, in Figure 33, NetShare achieves
better real-time throughput than our proposed e-VPS algorithm since NetShare assign RBs to VEs
independently subject to the net demand of each VE irrespective of the individual traffic loads
of different service types (RT, NRT and URLLC) such that the VE throughput is maximized.
However, the VPS scheme allocates only 2 RBs per each RT request to better utilize the spectrum
resources to provision both URLLC and NRT traffic. Moreover, when applying the proposed VPS
scheme to a network with URLLC type of service, Figures 31 and 32 show that the total throughput
of the VE decreases below the no-URLLC case, i.e. the blue bars compared to the yellow and the
red bars. The reason for that is the URLLC optimizer assigns higher channel coding to URLLC
requests to provide the target ultra-high reliability and hence the throughput decreases such that
the minimum user throughput is still achievable. We can also observe that guaranteeing PRBs
for RT requests does not significantly affect NRT requests since we limit the number of RBs per
an RT request to 2 RBs only. To support this statement, Figure 35 shows the average NRT traffic
throughput for VE1 versus the percentage of RT requests to the total number of requests. It is
apparent that the VPS approach has higher NRT throughput than NetShare. This is due to that
most of RBs are occupied by RT traffic flows leaving fewer capacity for NRT traffic, since RT
traffic is prioritized first. Similarly, Figures 32 and 36 show the total throughput as well as the
NRT throughput for SP/VE2 in different scenarios. The same conclusions apply to SP/VE2 but
with a negligible change with the increase of RT traffic percentage. This is due to the low number
of users served by SP/VE2, i.e. U2 = 5, and hence the change in the total, RT and NRT throughput
is slight.
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Figure 31: The Average Total throughput for SP/VE 1 for Pre-allocation and post-allocation prior-

ity cases
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ity cases

83



10 20 30 40 50 60 70 80 90

percentage of RT requests (in VE1)%

0

5

10

15

20

25

30
Av

er
ag

e 
re

al-
tim

e 
Th

ro
ug

hp
ut

 -V
E1

 (M
bit

/s)
proposed-with URLLC-700

proposed-no URLLC-700

proposed-worst RBs-700

NetShare-700

Figure 33: The real time traffic throughput versus the percentage of Real-Time requests for SP/VE1
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Figure 34: The real time traffic throughput versus the percentage of Real-Time requests for SP/VE2
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Figure 35: The Non-real time traffic throughput versus the percentage of Real-Time requests for
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Figure 36: The Non-real time traffic throughput versus the percentage of Real-Time requests for

SP/VE2
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5.3.1.2 Sharing 700-2100 MHz band : In this part, we assume inter-band sharing where SP1
uses the 700 MHz band and SP2 uses the 2100 MHz band. Similarly, Figures 37, 38, 39, 40, 41
and 42 show the total throughput, the real time throughput and non-real time throughput for SP1
and SP2 respectively. From the total throuhput figure, it is clear that inter-band sharing decreases
the total throughput due to higher attenuation in 2100 MHz bands. However, this deterioration
is relatively small compared to using 2100 MHz bands only. Hence, in cases where 2100 MHz
bands are used for higher bandwidth efficiency, 700 MHz bands can be used as supplementary
frequency bands to provide better throughput relative to using the 2100 MHz band only, especially
for URLLC use cases.
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Figure 37: The Average Total throughput for SP/VE 1 for Pre-allocation and post-allocation prior-

ity cases, inter-band sharing
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Figure 38: The Average Total throughput for SP/VE 2 for Pre-allocation and post-allocation prior-

ity cases, inter-band sharing
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Figure 39: The real time traffic throughput versus the percentage of Real-Time requests for

SP/VE1, inter-band sharing
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Figure 40: The real time traffic throughput versus the percentage of Real-Time requests for

SP/VE2, inter-band sharing
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Figure 41: The Non-real time traffic throughput versus the percentage of Real-Time requests for

SP/VE1, inter-band sharing
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Figure 42: The Non-real time traffic throughput versus the percentage of Real-Time requests for

SP/VE2, inter-band sharing
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5.3.2 Effectiveness of PF-based Qmin selection

In this set of numerical results, we study the use of PF-based dynamic Qmin with the proposed

VPS. The values of the additional parameters used in this study are listed in Table 10. We assume

these parameters hold for both SP/VEs. Figure 43 depicts the average total throughput for SP/VE1

Table 10: parameters for PF-based dynamic Qmin and NetShare

(a) PF-based

η 3

θ 4

(b) NetShare

Li 0.5NT

ζ 0.25

and SP/VE2 versus the percentage of RT requests. We can clearly note that the PF-based dynamic

Qmin selection outperforms the static one, i.e. NetShare, for both SP/VEs when the percentage of

RT requests is less than 50% of the total requests. This is due to the flexibility in choosing Qmin

for both SP/VEs according to their channel conditions as well as the number of users they have

resulting in improving the efficiency of resource scheduling.

5.3.3 Evaluation of The e-VPS Algorithm

Last but not least, in this part, we evaluate the e-VPS approach we proposed in Section 5.2. We

assume the same network parameters in Table 9. We assume that the number of users who have

URLLC requests is a uniform random variable with a mean of 0.3× Ux where x = 1, 2 and Ux is

the number of users belongs to SPs 1 and 2, respectively. Also, we use a URLLC packet size that

is exponentially distributed with an average size of L = 100 Bytes. The target level of reliability

for the produced figures is 0.99. After running our simulations for 1000 iterations, we have 4 users

of URLLC requests at SP 1 and 3 users of URLLC requests at SP 2.

Figures 44 and 45 show the average link reliability versus the percentage of URLLC traffic in

700 MHz and 2100 MHz spectrum sharing, respectively. As shown in the figures, the reliability

achieved via the e-VPS scheme outperforms the traditional LTE CQI-mapping in 700 MHz band.

This is because the proposed e-VPS approach uses the end-to-end link reliability as the target
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optimization objective function unlike the traditional LTE MCS table which is fundamentally es-

tablished to maximize the user throughput with a relatively loose constraint on the channel error

rate [77]. However, in the 2100 MHz band, neither of the schemes achieve the 99.999 % reliabil-

ity. More clearly, the e-VPS scheme adjusts the channel coding rates for different users based on

the modulation scheme, the received SINR and the transmission power levels to attain the target

URLLC reliability, i.e. ≥ 0.999, but limited to low frequencies where channels have enough qual-

ity for ulta-reliable connections.

Figure 44: Reliability Vs URLLC traffic load in LTE virtual networks-700 MHz

Figures 46, 47 and 48 show the total throughput of our proposed algorithm versus NetShare in

700, 2100 and 3500 MHz bands, respectively. It is clear that higher frequency bands have worse

channel quality due to lower average received signal strength, especially for users further away

from the BS. And hence the enhancement gap between our proposed e-VPS (with worst channels

for RT) and NetShare gets lower when using higher frequency bands.
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Figure 45: Reliability Vs URLLC traffic load in LTE virtual networks-2100 MHz
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Figure 46: Total throughput for VE1 Vs. time in LTE virtual networks-700 MHz
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Figure 47: Total throughput for VE1 Vs. time in LTE virtual networks-2100 MHz
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Figure 48: Total throughput for VE1 Vs. time in LTE virtual networks-3500 MHz

Also,, Figure 49 shows a degradation in the average user throughput using e-VPS due to higher

coding rates when the SNR decreases with cell radius increases. Nonetheless, the e-VPS through-
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put still satisfies the URLLC applications’ target.
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Figure 49: Average user throughput Vs Cell Radius in e-VPS LTE virtual networks
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6.0 RECOVERING POST-DISASTER CELLULAR NETWORKS USING QOS-AWARE

SPECTRUM POOLING

In this chapter, we examine the feasibility of recovering the disconnected cellular network using

a wireless mesh network between SBSs such that the UE QoS and power constraints are still

viable. In particular, we maximize the sum of the throughput across all cells such that the inter-

links (wireless links between BSs) as well as the intra-links (wireless links between a BS and

corresponding users) are maintained while maintaining the minimum average throughput per link

as well as satisfying the traffic demand and QoS constraints. We also allocate different bands,

i.e., 700, 2100 and 3500, to SBSs based on the traffic demand to enhance certain QoS such as

ultra-reliability

6.1 SYSTEM MODEL

In this section, we state the assumptions of the cellular network model used in this thesis. More-

over, we briefly recall from the literature the definitions and the expressions of user throughput

taking into consideration both real-time (RT) and non-real time (NRT) traffic requests.

6.1.1 System Model and Assumptions

We assume an LTE network of |Υ| BSs in a certain area A, where Υ is the set of all BS. Υc

denotes the set of actively connected SBSs in area A. These SBSs belong to different mobile

network operators (MNOs) and cover various cell ranges, i.e., macro cell of radius (Rmac), micro

cell of radius (Rmic) and femto cell of radius (Rfe). Also, we assume the total BW available
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at BS i is denoted by Bi. We use a as the subscript/superscript of the intra-links and e as the

subscript/superscript of the inter-links. We adopt the Okumura-Hata model [78] as the path-loss

propagation model over intra-links with a path loss in dB of

Gok(dB) = U + Z log(r)− E (6.1)

where U is given by

U = 69.55 + 26.16 log(F a
i )− 13.82 log(hb), (6.2)

Z is given by

Z = 44.9− 6.55 log(hb) (6.3)

and E can be written as

E = 3.2 log(h2
m)− 4.97 (6.4)

where F a
i is the operating frequency at cell i for intra-links, hb is the BS antenna height, hm is the

UE antenna height and r is the distance between the BS and the UE.

For the inter BS links forming the mesh network, we assume that Line of Sight (LoS) links between

SBSs exist and are subject to free space path loss which is given as

Hij(dB) = 20 log(
4πF e

ij

ν
) + 20 log(dij) (6.5)

where F e
ij denotes the operating frequency over the inter-cell link between SBSs i and j, ν is the

speed of light (3× 108 meters/sec) and Rij is the distance between SBS i and j.

For intra-cell links, the probability of coverage pc at a certain cell is defined as the probability that

a randomly chosen user can achieve a target signal-to-interference plus noise ratio SINRa
i , i.e.,

pc , P [SINRa
i > T ] (6.6)

In other words, a user is in coverage when the received SINR from the nearest BS is larger than

some threshold T . The downlink SINR at the UE at a distance r from its associated BS can be

expressed in dB as

SINRa
i = P a

i −Gok − Iai −
∑
x 6=i

Iex − σ2 (6.7)

where P a
i is base station transmit power on intra-link frequency F a

i theGok is the path-loss given in

equation (6.1), Iai is the interference power at the UE receiver at cell i (i.e., the sum of the received
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powers from all other base stations other than the home base station), Iex is the interference power

from inter-cell links and σ2 is the variance of the AWGN.

Similarly, the received SINR over an inter-cell link ij can be written as

SINRe
ij = P e

ij −Hij − Ii − Ij − σ2 (6.8)

where P e
ij is the transmitting power over link ij on frequency F e

ij , Ii is the total interference power

originating from cell i, Ij is the total interference power originating from cell j and Hij is the free

space pathloss from equation (6.5). It is worth noting that we assume that the interference over

inter-cell links occurs only due to intra-cell connections. This is due to our assumption in this

paper that all inter-cell links are established as a number of point-to-point single hop connections

and hence they do not cause interference to each other.

According to [78], the capacity of a fading channel with receiver Channel Side Information

(CSI) is given by

C =

∫ ∞
T

B × log2(1 + SINR)× Prob(SINR) dSINR (6.9)

where B is the bandwidth of the flat fading channel, SINR is the received SINR at the receiver (at

the UE in case of intra-links and at the SBS in case of inter-links), T is the SINR threshold and

Prob(SINR) is the probability distribution function (PDF) of the SINR.

6.1.2 Average Link Throughput in an LTE Network

In LTE networks, there are two major types of traffic: elastic traffic and real time traffic. Elastic

traffic, such as web browsing and FTP, is generated by non-real time applications and carried

over TCP. On the other hand, real time traffic, such as streaming, conferencing and VoIP, is very

sensitive to delay and requires specific requirements to be transmitted. In this paper, we assume

that the UE is able to use only 1/Q portion of the cell’s PRBs even when there are no other active

UEs, where Q is a parameter. The throughput of NRT and RT links can be calculated as follows.
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6.1.2.1 RT Link Throughput RT applications such as video streaming and voice are known

to have constant bit rate. More clearly, there should be a guaranteed number of PRBs every trans-

mission time interval (TTI) dedicated to the RT flow. Thus, assuming that the RT flow arrival is

Markovian, we can model the RT link as an M/D/1 queue with a service time of 1/µ. Assuming

that every user sends a single flow per unit time and an RT flow size of L bits, the average RT link

throughput in bits per unit time can be given as

Φu,rt =
L

E(Trt)
(6.10)

where L is the RT flow size and E(Trt) is the average delay over the RT link, i.e. the total time

taken to serve an RT flow of size L (service time + waiting time), and is given as [79]

E(Trt) =
2− ρrt,i

2µ(1− ρrt,i)
(6.11)

where 1/µ is the mean service time for an RT flow and ρrt,i is the PRB utilization for RT traffic

in cell i. According to 3GPP standardization, we recall that the PRB bandwidth in LTE systems is

180 KHz (Orthogonal Frequency Division Multiplexing), the average cell spectral efficiency is ηi

bits/sec/Hz and the total number of PRBs available at cell i is Rbi, the PRB utilization over the RT

links per cell can be written as i.e.

ρrt,i =
Lλirt
Ci
rt

=
Lλirt

180× η ×Rbrt,i

=
D

η ×Rbrt,i

(6.12)

where λirt is the average RT flow arrival rate (per unit time) and Ci
rt is the cell capacity in bits per

unit time. Note that D = Lλirt/180 for simplicity.

η is a function of the operating frequency (F a
i and F e

ij) and the transmitting power (P a
i and

P e
ij). Further η can be related to the channel quality indicator (CQI) which is a function of the

SINR according to [35] as

η = f(CQI) = f

(
SINR(dB) + 55/7

13/7

)
(6.13)
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where SINR(dB) is given by equations (6.7) and (6.8). The function f() is given by the modulation

coding schedule (MCS) given in the 3GPP standard [80]. Accordingly, we can put the average RT

link throughput in cell i, Φu,rt in equation (6.10) as a function of the number of PRBs allocated to

BS i, namely Rbi, and the intra-link transmitting power Pi as well as the inter-links transmitting

power from BS i to BS j (Pi,j) as follows

Φu,rt =


µ
η(Pa

i )×Rbai−D
2η(Pa

i )×Rbai−D
for intra-links

µ
η(P e

ij)×Rbei−D
2η(P e

i,j)×Rbei−D
for inter-links

(6.14)

The LTE cell capacity is calculated using the Shannon bound in equation (6.9). Also, in this

chapter, we limit our analysis to a single class of the RT applications for simplicity.

6.1.2.2 NRT link Throughput For elastic traffic and assuming a proportional fairness (PF)

scheduler, the BS can be modelled as an M/G/QM processor sharing (M/G/QM − PS) queue

[81]. Here QM = Rbi/Q defines the fraction of PRBs a UE is allowed to utilize (a maximum

bound to the number of PRBs can be utilized by a single user in a cell). Then, the PRB utilization

can be calculated as

ρnrt,i =
Sλinrt
Ci
nrt

(6.15)

where S is the average NRT flow size (bits), λinrt is the flow arrival rate (per unit time) and Ci
nrt

is the radio link capacity for NRT (in bits per unit time). The radio link capacity available for

NRT is a function of the RT traffic since it is computed after provisioning the higher priority

traffic classes (real-time traffic in our model). Therefore, the NRT link capacity can be given as

Ci
nrt = Ci −

∑̀
Φrt,i, where Ci is the total capacity of the radio link at a single BS i, Φrt is the

RT link throughput (estimated from equation (6.10)) and
∑̀

Φrt,i is the total throughput in bits per

unit time consumed at BSi for all RT links ∈ `.

Based on the M/G/QM − PS queue modelling the NRT traffic provision, the mean link delay in

the NRT case is given as [79]

E[Tnrt] =
S

Ci
nrt(1− ρnrt,i)

(6.16)
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From queueing theory [82, 79], the average link throughput in a M/G/QM − PS queue can be

calculated by the following formula

Φu,nrt =
Ci
nrt(1− ρnrt,i)

ρnrt,i
ln

1

1− ρnrt,i
(6.17)

where Φu,nrt is the average throughput for a single NRT link initiated at cell i.

Similar to the RT scenario, we can put the average NRT link throughput in cell i Φu,nrt in equation

(6.17) as a function of Rbi, P a
i and P e

ij . Given that the radio link utilization for cell i in equation

(6.15) can be written as K
η(Pi)×Rbi , where K = Sλnrt and the average cell spectral efficiency η is a

function of the transmitting power Pi, the average NRT link throughput can be written as

Φu,nrt =


ηRbai (η ×Rbai −K) ln(

η×Rbai
η×Rbai−K

) intra-links

ηRbei (η ×Rbei −K) ln(
η×Rbei

η×Rbei−K
) inter-links

(6.18)

In Section 6.3, we use the RT and NRT average link throughput from equations (6.10) and (6.18),

respectively, in the objective function of our joint power and PRB optimization problem.

6.2 RECONFIGURING THE CELLULAR NETWORK AFTER DISASTERS

Prior to any disaster, a cellular network operates in the default mode (D-mode) where the Radio

Access Network (RAN) is connected to the core network as shown in Figure 50. Due to power

outage and/or failures BSs that do not have a backup source of power are disconnected from the

remaining network (inactive BSs in black, Figure 51). Moreover, the backhaul links for both SPs A

and B shown in Figure 50 are affected and the connection between the RAN and the core network

is cut off. Hence, we deploy an Emergency Communication Network Server (ECNS) where some

critical functions of the core network and other auxiliary services are executed locally at the RAN

to help resume network activity.

For example, the ECNS would perform authentication/security management, timing services,

mobility management, PSAP (911) services and Domain Name System (DNS) service. Mean-

while, the SBSs operate on power supplied locally via the shared microgrid as shown in Figure
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51. On the communication side, to enable mobile users to establish sessions and communicate

without a core network, we establish a multi-hop wireless mesh network between SBSs as shown

in Figure 51. Note,the SBSs must also communicate with the ECNS to enable the communica-

tions to the ECNS and between UEs from different cells, inter-cell links are established between

BSs. Moreover, the resource manager at the ECNS server pools the total bandwidth available in

the disaster area taking into account the frequency reuse factor. For example, assume the cellular

network shown by the diagram in Figure 52. Since many frequency bands bi are reused in more

than one cell, then the set of the pooled frequency bands can be computed as the Union set of all

non-overlapping sets of frequency bands that are used in different cells, i.e. ð =
⋃
i bi. Moreover,

the ECNS server is responsible for finding the best routes for traffic between SBSs, i.e. inter-cell

links. It is worth noting that we do not consider a fully connected mesh network, however we

assume the traffic between different BSs are processed following a shortest-path routing protocol

such as the Destination-Sequenced Distance-Vector Routing (DSDV) or the Ad Hoc On-Demand

Distance Vector Routing (AODV) [83]. Selecting the optimal wireless routing protocol is out of the

scope of this paper. In Section 6.3, we propose our Mobile Network Recovery Algorithm (MNRA)

algorithm to redefine the transmitting power levels, the allocated resources as well as the operating

frequencies for both the intra-links (F a
i ) and inter-links (F e

ij) such that the sum of the throughput

of all cells in the area of interest is maximized.

6.3 MOBILE NETWORK RECOVERY ALGORITHM (MNRA)

In this section, we formulate a joint power and PRB allocation optimization problem to determine

the optimal power as well as the allocation of the number of PRBs to different SBSs based on the

traffic demand, QoS and power constraints.

The first step in our MNRA algorithm is to pool the available spectrum in the disaster area into one

group and reassign it between all SBSs. We denote the total available PRBs by Rbt =
∑

i∈ðRb
i
o,

whereRbio is the number of PRBs that corresponds to frequency band bi before the disaster happens

and ð is the set of frequency bands available in area A as computed in Section 6.2. The second

step is to determine the set of connected SBSs based on the flow matrix M. M is a |Υ|× |Υ|matrix
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120o sectorization

where element m(i, j) is the number of flows arriving over link ij, i.e. from BS i at BS j, per unit

time and |Υ| is the cardinality of set Υ. Hence, the elements of the main diagonal of M represent the

intra-cell flow arrivals (arrivals from UE to BS and vice versa). Now, we determine Υc, i.e. the set

of actively connected SBSs, where Υc = {i ∈ Υ|m(i, i) 6= 0}. The next step is to select the inter-

cell frequency F e
ij ∈ Π, where Π is the set of operating frequencies adopted in the cellular system.

Afterwards, for each F e
ij ∈ Π we solve the throughput maximization problem in (6.19). We denote

optimal solution in every iteration y as (∆y), such that ∆ ≡ (Rba∗i , Rb
e∗
i , P

a∗
i , P

e∗
i ). Finally, we
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derive the global optimal solution per each BS i as ∆∗ = Max (∆y)
y

, for all y = 1, 2, 3, ...|Π|.

maximize
∆∗i

∑
i∈Υc

Φi
u,UR + Φi

u,rt + Φi
u,nrt

subject to SINRa
i ≥ γth, ∀i ∈ Υc,

SINRe
ij ≥ γth, ∀i, j ∈ Υc,

P a
i < Pmax, ∀i ∈ Υc,

P e
ij < Pmax, ∀i, j ∈ Υc, i 6= j,

E[Tnrt] ≤ τ,

E[Trt] ≤ ζ,

E[Trt] ≤ η,

Φi
u,rt ≥ ϕrt, ∀i ∈ Υc,

Φi
u,nrt ≥ ϕnrt, ∀i ∈ Υc,

F e
ij ∈ Π, ∀i, j ∈ Υc, i 6= j,∑

i∈Υc

Rbai +Rbei ≤ Rbt, ∀i ∈ Υc,

Rbai , Rb
e
i ≥ 0, ∀i ∈ Υc,∑

j∈Υc

Wj ≤ P g
v , ∀j ∈ Υc,∀v ∈ Ω,

P a
i , P

e
ij, P

g
v > 0, ∀i, j ∈ Υc,∀v ∈ Ω

(6.19)

Note that ∆i =
(
Rbt
2|| ,

Rbt
2Nb

, Pth

2
, Pth

)
is an initialization vector for Rba∗i , Rbe∗i , P a∗

i and P e∗
i , respec-

tively, to restrain the feasible region and attain the optimal solution in a lower number of iterations.

Also, Pmax is the maximum allowable transmitting power per single antenna according to FCC

[52].

Also, Φi
u,rt and Φi

u,nrt are the average link throughput for RT and NRT traffic given in equations

(6.14) and (6.18), respectively. The first two constraints are set to achieve the minimum average

SINR per cell (γth) across both intra and inter links, SINR
a

i and SINR
e

ij , respectively. The third

and forth constraints are on the intra-link and inter-link transmitting powers at every BS i, respec-

tively, to be no more than the maximum allowable transmitting power per single antenna by FCC

(Pmax). Recall that P a
i is BS i transmitting power for intra-cell links. Also, P e

i,j is the transmitting
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Algorithm 1 MNRA Algorithm
Input S,L,F a

i ,F e
i , Rmic,Rmac,Rfe,Ri

o,Pth,γth

Output ∆∗ = (Rba∗i , Rb
e∗
i , P

a∗
i , P

a∗
i )

Calculate Rbt =
∑
i∈ð
Ri
o

Find Υc

Initialize ∆i =
(
Rbt
2|Υ| ,

Rbt
2|Υ| ,

Pmax

2
, Pmax

)
for y = 1 : |Π| do

Set F e
i = F (y) ∈ Π

Find ∆y =
(
Rbay, Rb

e
y, P

a
y , P

a
y

)
from (19)

∆∗ = Max (∆y)
y

power on the inter-link from BS i to BS j. The fifth and sixth constraints are delay constraints

for NRT and RT traffic requests, respectively. The expected value of the NRT delay E[Tnrt] and

RT delay E[Trt] are derived in equations (6.16) and (6.11) in Section 6.1. Next, the seventh and

eighth constraints are to maintain a minimum target link (flow) throughput for both RT and NRT

flows respectively. We recall that the average link throughput for RT and NRT requests are given

by equations (6.10) and (6.18). The second to last constraint is a power consumption constraint on

the sum of BS power consumption per cluster limited by the micro-grid capacity, where Wj is the

total power consumption at BS j powered by power grid v that has a power capacity of P g
v . How-

ever, according to [45], the LTE BS power consumption is considered negligible compared to other

critical infrastructure consumption such as hospitals. Hence, we ignore this power consumption

constraint in our optimization problem.

6.4 NUMERICAL RESULTS

In this section, we show some numerical results for the optimal solution of the MNRA optimization

problem. Table 11 lists the parameters that are used throughout our simulations. We assume 10
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BSs of different ranges as shown in Table 11. We assume 2 clusters each of 5 BSs, i.e. frequency

reuse factor = 5. Each cluster has at least 1 Macro cell, 1 Micro Cell and 1 Pico cell. Further we

assume that minimum hop routing is used. Optimizing the multi-hop paths between BSs is out of

the scope of this paper. We denote the shortest path flow matrix as M, in which element m(i, j) is

the number of flows per link (ij) transmitted from BS i to BS j and m(i, i) represents the number

of flows within the same cell. A sample of the input flow matrix is given in Table 11 (some are

cut off due to space limitation). We model the path-loss over intra-links using the Okumura-Hata

model [78] and inter-links as free space path loss as discussed in Section 6.1. We also assume that

UEs are uniformly distributed across the cells.

The NRT traffic is modeled by an FTP application downloading a file of a size of 5 Mbytes with a

minimum average user delay of 10 msec. The RT traffic is modeled by VoIP calls with a voice code

rate of δ = 8 Kbps, an average speech period of ` = 3 seconds, average silence period of 3 seconds

and a constant call duration of d = 90 seconds. Accordingly, the RT flow size L can be estimated

as L = 0.5×δ× d
`
. We assume 5 frequencies for inter-cell frequencies (850, 2100, 2900, 3500 and

5000 MHz). We also assume that intra-cell frequencies for the pico(femto), micro and macro cells

are 2900, 850 and 700 MHz, respectively. We solve the optimization problem in (6.19) using the

nonlinear constrained optimization tool in Python [84], (Sequential Least Squares Programming).

The optimization is executed for 10 iterations and the results averaged over the different iterations.

We also run the optimization for different values of SINR threshold (γth). We pick our initialization

vector ∆i such that the initial number of PRBs allocated to BSs is 10, the initial value for inter-cell

transmission power is 14 dBm and the initial value for intra-cell transmission power is 30 dBm.

Figures 53 and 54 show the optimal number of PRBs allocated to intra-cell links and inter-cell

links, respectively, versus different values of SINR threshold (γth). Also, we can clearly see that

the optimal transmitting powers change with the change of the SINR threshold as shown in Figures

55 and 56. Interestingly, we can see also that the power allocations for inter-cell links are lower

than the intra-cell power allocations. The reason is that the LoS free space path loss is much less

than the Okumura-Hata path loss. Moreover, it is clear that femto cells use higher transmitting

powers than micro and macro BSs to compensate for the high attenuation due to higher operating

frequency.
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Table 11: Values of Generic Network Parameters

Macro Cell radius 1500

Micro Cell radius 500

Pico Cell radius 100

BS antenna height 35 meters

UE antenna height 1.5 meters

Max power (FCC) (Pmax) 37 dBm

Total Number of PRBs (Rbt) 100

Noise Variance (σ2) -90 dBm

F a (femto) 2900 MHz

F a (micro) 1800 MHz

F a (macro) 700 MHz

FTP traffic model

File Size 5 Mbyte

Maximum NRT flow delay E(Tnrt) 50 msec

Minimum NRT user throughput (φnrt) 10 Mbps

VOIP traffic model

voice codec δ 8 kbps coding rate

call activity (`) speech:exp.dist.(3 sec)

silence:exp.dist.(3 sec)

call duration (d) 90 seconds

Maximum RT flow delay E(Trt) 1 msec

Minimum RT user throughput (φrt) 0.5 Mbps
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Table 12: Shortest Path Flow Matrix (number of flows between BSs)

BS 1 2 3 ... 10

1 2 3 2 ... 3

2 7 4 8 ... 4

3 8 5 2 ... 1

. . . . ... .

. . . . ... .

10 4 2 3 ... 4

−5.0 −2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0
SINR threshold (dB)

0

2

4

6

8

10

Av
er
ag
e n
um
be
r o
f R
Bs
-In
tra
 lin
ks
 Femto

Micro
Macro

Figure 53: PRBs allocated to intra-links vs γth
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Figure 54: PRBs allocated to inter-links vs γth
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Figure 55: Average intra-cell transmit power vs γth
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Figure 56: Average inter-cell transmit power vs γth

Figure 57 shows the optimal inter-cell frequency per cell for the pico, micro and macro cells

versus the SINR threshold. It is obvious that the inter-cell links acquire for the highest available

frequencies, i.e. 3500 and 5000 MHz frequency bands. This is to keep the signal attenuation

and inter-link interference to minimum and achieve the target QoS per link. Figure 58 shows the

average total throughput (for all cells) in bits per seconds versus the SINR threshold (γth). We

can see that througputfemto > througputmicro > througputmacro. This is due to that small cell

networks are much more dense than micro and macro cells.
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Figure 57: Inter-cell frequency (MHz) vs γth
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Figure 58: Average Total Throughput per BS vs γth
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7.0 CONCLUSIONS

In this thesis, we considered three problems related to spectrum pooling for virtualized future

wireless networks including the economic and technical aspects. We studied infrastructure and

spectrum sharing to assess the economic incentives of different sharing scenarios in greenfield LTE

networks. We showed that spectrum sharing between SPs has more incentive in urban CMAs with

high population densities due to the ultra-high spectrum bidding value especially when many BSs

share spectrum. Moreover, sharing incentive is influenced by the number of BSs that adopt sharing,

the allocated BW and the frequency band (700 MHz or 2100). Also, we developed two resource

allocation schemes to allocate PRBs in 5G virtualized networks such that fairness, isolation and

heterogeneity between SPs are taken into consideration. We assume the provision of RT, NRT and

URLLC traffic. We also designed a PF-based minimum value of the PRBs allocated to SPs to

achieve high throughput and fairness. We show using numerical results that our proposed schemes

outperforms NetShare, a recently proposed resource allocation scheme. We also show that we

achieve the ultra-reliability constraint of URLLC while maintaining the target throughput with a

new optimal channel coding algorithm. Eventually, we use different gains from inter-band sharing

and intra-band sharing to enable disaster recovery in cellular networks. We share the spectrum

between SBSs to form a wireless mesh network between RANs. We optimally design the wireless

mesh network by finding the optimal allocated bandwidth, the optimal transmission power and the

optimal frequency bands allocated to different SBSs to mitigate interference as well as to achieve

different QoS constraints for URLLC, real-time and non-real time traffic.
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