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Abstract  

Roughness determines many functional properties of surfaces, such as adhesion, friction, and (thermal 
and electrical) contact conductance. Recent analytical models and simulations enable quantitative 
prediction of these properties from knowledge of the power spectral density (PSD) of the surface 
topography. The utility of the PSD is that it contains statistical information that is unbiased by the 
particular scan size and pixel resolution chosen by the researcher. In this article, we first review the 
mathematical definition of the PSD, including the one- and two-dimensional cases, and common 
variations of each. We then discuss strategies for reconstructing an accurate PSD of a surface using 
topography measurements at different size scales. Finally, we discuss detecting and mitigating artifacts at 
the smallest scales, and computing upper/lower bounds on functional properties obtained from models. 
We accompany our discussion with virtual measurements on computer-generated surfaces. This 
discussion summarizes how to analyze topography measurements to reconstruct a reliable PSD. 
Analytical models demonstrate the potential for tuning functional properties by rationally tailoring surface 
topography – however, this potential can only be achieved through the accurate, quantitative 
reconstruction of the power spectral density of real-world surfaces.  

1 Introduction 

1.1 The importance of surface roughness and of the power spectral density as a 
description of topography 

The surface roughness of a part has tremendous influence on its functionality. This has been reviewed 
extensively, e.g. in Ref. [1] and elsewhere. Roughness affects not only surface properties – such as 
hydrophobicity[2], optical and plasmonic behavior[3], adhesion[4–6], friction and Casimir forces[7] – but 
also “bulk” properties, such as fracture toughness and fatigue resistance[8]. For this reason, surface 
treatments are commonly used to control surface finish, and dozens of reference standards exist to 



describe measurement techniques and desired characteristics (such as ASME B46.1, ISO 4287, 
ISO 25178 and SEMI MF1811). 

The power spectral density (PSD) of a surface is a mathematical tool that decomposes a surface into 
contributions from different spatial frequencies (wavevectors). Mathematically, the PSD is the Fourier 
transform of the autocorrelation function of the signal, which contains just the power (and not the phase) 
across a range of wavevectors [9–11]. This allows identification of the spatial frequencies that can be 
found in the signal. Figure 1 illustrates the PSD schematically for a regular dual-sinusoidal surface, a self-
affine fractal surface, and a non-self-affine frozen capillary wave surface. Overall, the primary utility of 
the PSD is that it contains statistical information on the surface topography – which is largely unbiased by 
the choice of a particular scan size and pixel resolution picked by the researcher. 

 
Figure 1: Examples for regular and random surfaces. Row (a)-(c) shows a line scan of a surface and (d)-(f) illustrates the 
corresponding power spectral density (PSD). Panel (a) shows a superposition of two sine waves of different wavelengths 
(wavevectors), panel (b) a frozen capillary wave and panel (c) a self-affine, randomly rough surface. (d) For the sine waves, the 
PSD has a single peak at the respective wavevector. The PSDs of randomly rough surfaces, as shown here for a non-self-affine 
frozen-capillary-wave surface (e) and two self-affine surfaces (f), have contributions from many wavevectors. The scalar measure 
of root mean square height, 𝑆", is identical for these three surfaces, although their topography is clearly different. The value 𝑆"∗ 
shown for the randomly rough surface is measured over half the domain length indicated by the blue rectangle. This illustrates 
that 𝑆" depends on the domain over which the measurement takes place. Panel (f) shows the PSD for two surfaces with different 
Hurst exponents (solid and dashed line) but identical RMS slope ℎ%&'( = 0.1. 𝑞., 𝑞/ and 𝑞0 indicate roll-off, large and small 
wavelength cutoffs. 
 

Many contact mechanics models[12] have been constructed to compute functional properties of surfaces 
as a function of roughness. Specifically, quantities such as contact stiffness, adhesion, and the true contact 
area (which is distinct from the apparent contact area and which has relevance to friction[13–15] and 
electrical[16] and thermal[17] conductance across the contact) can be computed from knowledge of the 
PSD. Many of these models (such as Persson’s scaling theory for contact[18–20]) take as an input the 
entire PSD of the surface. Other models (such as Refs. [5,6,21–26]) use mathematical manipulations such 
that the only input parameters are three scalar quantities: the root-mean-square (RMS) height ℎ%&', the 
RMS slope ℎ%&'( , and the RMS curvature ℎ%&'((  - all of which are calculated most reliably from the PSD 



itself, as discussed in Section 1.2. No matter which type of contact mechanics model is used, the central 
challenge for the practical application of these models is the measurement and calculation of accurate, 
reliable PSDs of real-world surfaces. 

1.2 Using the power spectrum to compute accurate values for root-mean-square 
height, slope, and curvature of a surface 

In an ideal case of perfect knowledge of surface topography as a continuous map of heights ℎ(𝑥, 𝑦) at in-
plane position 𝑥, 𝑦 with zero mean, the values of ℎ%&', ℎ%&'( , and ℎ%&'((  can be computed directly from the 
real-space topography. In this case, the root-mean-square height is given by ℎ%&'6 = ℎ6  where the angle 
brackets denote 𝑓 = 𝐴9:;∫ 𝑓(𝑥, 𝑦)d𝑥d𝑦, i.e. the average over the x-y plane of the enclosed function 𝑓. 
The RMS slope is computed as ℎ%&'(6 = 〈 ∇ℎ 6〉 and and the RMS curvature is computed as ℎ%&'((6 =
;
6
〈 ∇6ℎ 6〉. Further, for many contact properties, just one of these three quantities will dominate the 

behavior. Specifically, the contact stiffness of an interface between two rough surfaces is primarily 
dependent on roughness at the large scale – and can be quantitatively related to the root-mean-square 
height hrms [22–25]. Analytical models and atomistic simulations show that other important quantities – 
such as the large-scale adhesive properties of a contacting junction[5,6,27], and the true contact 
area[21,26,28] – depend only on the smallest scales of roughness and therefore can be related to ℎ%&'( , 
and ℎ%&'(( . Note that ℎ%&', ℎ%&'( , and ℎ%&'((  are single-valued and unique for a particular surface assuming 
perfect knowledge of that surface.  

However, the central problem[29] of applying these analytical contact models to real-world surfaces is 
that it is not possible to determine a perfect description of surface topography as a continuous map of 
heights. Rather, we can only experimentally measure heights at discrete points, with finite resolution and 
over some finite measurement region. It is therefore not possible to directly determine ℎ%&', ℎ%&'( , and 
ℎ%&'((  from real-space measurements. 

From any real-space measurement, we can of course compute approximate values for RMS height 
(typically denoted Rq if obtained from a line scan and Sq if obtained from an area scan), RMS slope 𝑆A", 
and RMS curvature 𝑆AB". However, only in an ideal experimental measurement with infinite scan size 
and infinite resolution will these be representative of the surface (i.e. in the ideal case, 𝑆" ≡ ℎ%&', 𝑆A" ≡
ℎ%&'( , and 𝑆AB" ≡ ℎ%&'(( ). In real experiments, the measured value of 𝑆" will differ from the true ℎ%&' in 
cases where the measured region is insufficiently large or the resolution is insufficiently fine to accurately 
sample the topography. In almost every case, the measured values of 𝑆A" and 𝑆AB" will differ from ℎ%&'( , 
and ℎ%&'(( , because the true local slope and curvature are computed from a discrete set of height 
information which is subject to experimental noise. Noise at small scales affects gradients and higher-
order derivatives more than absolute height measurement. Additionally, there are multiple (infinite) ways 
to discretize the gradient operator, ∇ℎ. Two common standard slope measures 𝑆A" (ISO 25178-2) and 
𝑆A"D (ASME B46.1) use a first- and a sixth-order finite difference stencil for ∇ℎ, respectively. Both can 
introduce either smoothing or artificially sharp corners, which will lead to inaccuracies. Smaller 
measurements with higher resolution will result in values of 𝑆A" and	𝑆AB" that are closer to ℎ%&'( , and 
ℎ%&'((  for the surface, but processing and instrumental artifacts tend to be most severe when pushing the 
resolution limits of an instrument.   



The resolution to the problem of an incomplete measurement of a surface is to reconstruct the power 
spectral density (PSD) of the surface, as completely and accurately as possible. Specifically, one can 
compute, report, and analyze the PSD across many length scales. In some cases, it is possible to 
reconstruct an entire, complete PSD using multiple measurements and multiple techniques. Even in cases 
where the complete surface PSD cannot be measured due to instrument limitations, the partial PSD is 
extremely useful. It enables the calculation of upper and lower bounds for ℎ%&', ℎ%&'(  and ℎ%&'((  under 
certain assumptions; it can be used to identify and/or mitigate instrumental artifacts; and it can be 
extrapolated (in some cases) to learn about a surface beyond the limits of the measurement technique.  

1.3 Challenges for the accurate experimental determination of the PSD 
The PSD has been fruitfully applied to surface topography measurements for decades[30–33]. Many 
useful reference texts (for example Ref. [9]) describe in detail the calculation of the PSD for a surface. 
There is also an international reference standard describing its calculation (SEMI MF1811). Nevertheless, 
the PSD is underutilized quantitatively (except for extracting the Hurst exponent, which is related to the 
fractal dimension of a surface (see Appendix A.3)), and is used inconsistently. We believe that there are 
three critical challenges that must be addressed to enable the use of the PSD as a quantitative tool for 
prediction of properties. We discuss them in the following sections and strive to establish strategies for 
computing, analyzing, and reporting quantitative PSDs. 

Challenge A: While the mathematical description of the PSD is well-defined, there are several 
variations in the way it can be computed from measured data – each of which will lead to 
meaningfully different numerical results. 

Challenge B: The theoretical PSD that is used in many mathematical descriptions of surfaces such as 
contact mechanical models, is complete, accurate, and describes an ensemble of surfaces or a 
surface of infinite spatial extent. By contrast, the experimental PSD that is computed from a 
single measurement is incomplete (bandwidth-limited), inaccurate (artifact-prone), and 
describes a single iteration of a surface, which is finite in extent. 

Challenge C: Finally, recent contact theories predict that surface properties such as contact area and 
adhesion depend strongly on the smallest-scale of roughness. The current state-of-the-art 
experimental characterization techniques contain instrumental and analysis artifacts at these 
scales, which must be detected and mitigated. 

The following sections serve to explain these challenges and to present strategies on how to mitigate 
them. To demonstrate these, we have created virtual surfaces whose structure we know down to the 
smallest-scale. By comparing the input PSD that was used to create the surface to the output PSD that 
was measured from the surface, the results demonstrate the influence of bandwidth and other instrumental 
limitations on the measured PSD. The purpose of the present paper is to discuss and review the 
application of spectral analysis to real, experimental surfaces. This topic has particular relevance to the 
application of self-affine scaling models; however, the concepts discussed apply equally well to the 
characterization of all surfaces – whether self-affine over a certain range or not. 



2 Challenge A: Variations in the mathematical definition of the power spectral 
density 

Many experimental investigations report the PSD as a useful measure of roughness for surfaces. 
However, a review of recent AFM-based PSD measurements on advanced-technology surfaces 
demonstrates significant inconsistency in the ways that PSDs are defined, computed, and analyzed. Even 
the units of the reported PSD vary from m2 (Refs. [34,35]) to m3 (Ref. [36–38]) to m4 (Refs. [39–41]) to 
“arbitrary units” (Refs. [42,43]). Furthermore, the PSD is frequently used qualitatively to distinguish 
surfaces[38,41] and, when used quantitatively, is typically only used to determine the fractal 
dimension[35,42]. There is variation among these investigations in the calculation and interpretation of 
this value as well. 

Here, we define and distinguish the various functions that are all referred to in common usage as the 
“power spectral density”. This section of the main text distinguishes conceptually between types of PSD; 
rigorous mathematical definitions are included in Appendix A. Each of the various types of PSDs is the 
Fourier transform of the height autocorrelation function. By virtue of the convolution theorem of Fourier 
analysis, this can be computed as the square of the Fourier transform of the surface height ℎ(𝑥, 𝑦). 
However, this calculation can be applied in several different ways to 1D and 2D signals. To concretely 
distinguish the different varieties and demonstrate their mathematical differences, the calculation of the 
root mean square height ℎ%&' is shown for each one. 

2.1 Conceptual understanding of the different curves that are called “PSD” 
For a one-dimensional signal (e.g., a line-scan from a stylus profilometer, as shown in Fig. 2a), the PSD 
C1D is a symmetric, one-dimensional function defined in frequency space (Fig. 2b). The units of C1D are 
[m3] and the units of qx are [m-1], such that the area under the curve, which is equal to ℎ%&'6 , has the 
correct units of [m2]: 

ℎ%&'6 = ;
6F

𝐶;H 𝑞I d𝑞I
J
:J 			 (1)	

C1D can be computed for a single measurement of a signal, or averaged over multiple measurements. 
Because this curve is always symmetric about qx=0, it is more commonly represented by only showing the 
q>0 region of the curve, which we designate C1D+ (Fig. 2c). Note that this is the most commonly-reported 
form of the PSD. When computing the RMS roughness using C1D+, the area under the curve must be 
multiplied by 2 in order to account for the region where q<0: 

ℎ%&'6 = ;
F

𝐶;HK 𝑞I d𝑞I
J
9 			 (2) 

Note that Eq. (1) and (2) assume that the mean of the signal is zero, because it is common to subtract the 
mean value from the data.  

 



 
Figure 2. Illustrating the various curves that are generally referred to as “power spectral density” (PSD). A 1D line scan 
ℎ(𝑥) (a) can be represented by a 1D PSD 𝐶;H(𝑞I) (b), but is more commonly indicated by a one-sided 1D PSD 𝐶;HK 𝑞I  (c) 
that omits wavevectors 𝑞I < 0. A 2D topographic scan ℎ(𝑥, 𝑦) (d) can be represented by a 2D PSD 𝐶6H(𝑞I, 𝑞M) (e) that is a 
surface in reciprocal space 𝑞I, 𝑞M. For isotropic surfaces this function is radially symmetric and only (f) the radial average 
𝐶N'O(𝑞) is typically shown. However, a pseudo-1D PSD is also commonly computed (according to Eq. (5) to enable easier 
comparison with C1D+). Note that the units and absolute values are distinct between Ciso and Cpseudo-1D. 
 

By contrast, for a two-dimensional signal (e.g., a topography map, as shown in Fig. 2d, the full two-
dimensional PSD C2D is a surface in frequency space, shown in Fig. 2e. The units of C2D are [m4] and the 
units of qx and qy are each [m-1]. In this case, the volume under the PSD surface is equal to hrms

2; this still 
has the correct units of [m2]: 

ℎ%&'6 = ;
PFB

𝐶6H 𝑞I, 𝑞M d𝑞Id𝑞M
J
:J

J
:J 			 (3)	

While any vertical cross-section of this surface that passes through the origin must be symmetric with 
respect to inversion about qx=qy=0 because h(x,y) is a real-valued function, the surface need not be 
radially symmetric with rotation about this point. In cases where it is radially symmetric – that is, where 
the real-space surface is isotropic – then the full PSD surface can be represented by taking a radial 
average about the origin. This yields the one-dimensional function Ciso (Fig. 2f), which still has units of 
[m4]. Converting (qx, qy) to polar coordinates (q, θ) and integrating out θ yields a factor of 2π since Ciso is 
invariant with θ. The result is:  

ℎ%&'6 = ;
6F

𝑞𝐶N'O(𝑞)d𝑞J
9 				 (4)	

Many commercial software packages report a 1D PSD with units of [m3] even for 2D surfaces because 
1D PSDs are in more common usage; however, there are different ways to compute this 1D PSD from 2D 
data – and there can be differences in the resulting values. For instance, one method is to take the 1D PSD 
of each line of data, and then to take an average over all lines; we refer to this as C1D+ for 2D data. 
Another method is to report a pseudo-1D PSD, 



𝐶Q'RSTO:;H 𝑞 	= "
F
𝐶N'O 𝑞 .					 (5)	

which follows C1D+ at intermediate wavevectors for self-affine surfaces. However, Cpseudo-1D cannot be 
treated like C1D+ when computing scalar parameters. This is easily seen by inserting Eq. (5) into (4) to 
obtain 

ℎ%&'6 = ;
6

𝐶Q'RSTO:;H(𝑞)d𝑞J
9 					 (6)	

which differs by a factor of 2 𝜋 from Eq. (2). 

To complicate the picture, all of the previously described functions – C1D, C1D+, C2D, Ciso, and Cpseudo-1D – 
are imprecisely referred to as “the power spectral density” [34–42]. However, it is clear that they must be 
treated differently when quantitative values are computed. There are exact mathematical expressions 
relating the various forms to each other (see Appendix A.2 for more detail). 

Most software packages are limited to reporting the one-dimensional representations C1D+ or Cpseudo-1D – as 
they are more amenable to conventional PSD analysis (most of which was developed for 1D time-series 
data). Indeed, the international reference standard SEMI MF1811 only discusses 1D profile measurements 
and some limited extension to 2D isotropic surfaces. These quantities are complete representations of the 
full C2D only in cases where the surface is isotropic. In the more general case, the mathematical 
integration over the full surface of C2D is required in order to compute accurate quantitative surface 
parameters. The mathematical use of Ciso instead of C2D for a non-isotropic surface will not lead to errors 
in the value of hrms as computed in Eq. (4), but will lead to errors in ℎ%&'(  and ℎ%&'((  – which are discussed 
in the next section. Yet many software packages do not report the full C2D and may obscure the fact that 
the surface is anisotropic – leading to quantitative values computed from Ciso that are unrepresentative of 
the surface. 

2.2 Self-affine surfaces, and the resulting simplifications to the PSD 
It has been shown that a wide range of natural and synthetic surfaces[44] – from coastlines[45] to 
mountain ranges[46,47] to fracture surfaces[48] to machined surfaces[49] – show characteristics of self-
affine (also called fractal) scaling[30,32,50–52]. The underlying picture is that roughness consists of 
asperities (bumps), which are covered with smaller asperities, which in turn are covered with smaller 
asperities, etc. as was described by Archard in 1957.[12] The power spectral density (PSD) of a perfectly 
self-affine surface has a power-law dependence on the spatial frequency of roughness, and its exponent is 
related to the fractal dimension[32] of the surface (Fig. 1f). The calculations in Section 2.1 and Appendix 
A.1 and A.2 apply to all surfaces, regardless of self-affinity. However, in cases where self-affine 
roughness is observed, some of the calculations can be simplified. 

Power spectra of real surfaces often show 𝐶N'O 𝑞 ∝ 𝑞:6:6Y over many (but not all) scales [28,32]. This 
is the signature of a self-affine surface with Hurst exponent H (see Appendix A.3 for more details). At 
small wavelength 𝜆 (large wavevector q), the power-law will be cut off by the atomic spacing. The details 
of this cutoff are still debated. For the sake of the discussion in this paper, we assume that a sharp cutoff 
happens at a wavelength 𝜆0 (wavevector 𝑞0 = 2𝜋 𝜆0). At large wavelength 𝜆/ the power law typically 
crosses over to constant power, 𝐶N'O 𝑞 = const	 for 𝑞 < 𝑞/ = 2𝜋 𝜆/. We assume that this “roll-off” can 



only extend up to a wavelength 𝜆. (wavevector 𝑞. = 2𝜋 𝜆.) where the power drops to zero. The 
idealized power-spectrum of a self-affine, randomly rough surface is therefore: 

𝐶N'O 𝑞 = 𝐶9

0 if	𝑞 < 𝑞.
𝑞/:6:6Y = const. if	𝑞. ≤ 𝑞 < 𝑞/
𝑞:6:6Y if	𝑞/ ≤ 𝑞 < 𝑞0
0 if	𝑞 ≥ 𝑞0

     (7) 

where 𝑞. < 𝑞/ < 𝑞0 and 𝐶9 is a constant. This power-spectrum is shown schematically in Fig. 1f. Shown 
there are two Hurst exponents (solid and dashed line) with identical RMS slope ℎ%&'( = 0.1. 

Self-affine scaling typically extends over many decades such that 𝑞0 ≫ 𝑞/. In this limit, we obtain simple 
analytical expressions for RMS slope and curvature (see also Appendix A.1): 

ℎ%&'( 6 = ;
6F

𝑞e𝐶N'O 𝑞 d𝑞J
9 = ;

PF
fg
;:Y

𝑞06:6Y    (8) 

ℎ%&'(( 6 = ;
hF

𝑞i𝐶N'O 𝑞 d𝑞J
9 = ;

;DF
fg
6:Y

𝑞0P:6Y    (9) 

It is important to note that because 𝑞0 ≫ 𝑞/, those expressions do not depend on 𝑞. and 𝑞/. Slope and 
curvature are entirely determined by the structure at the smallest scales of the surface. Even if we did not 
have a sharp cutoff at 𝑞0, the integral expressions that give ℎ%&'(  and ℎ%&'((  would be dominated by what 
happens at the smallest scales because of the power-law scaling of the PSD. This is graphically illustrated 
in Fig. 3. 

 
Figure 3: Demonstration of the increasing contribution of the high-frequency content. The calculation of ℎ%&' is relatively 
insensitive to errors in the value of the short-wavelength (high-wavevector) cut-off 𝑞' or the amplitude of Ciso at that value. 
However, in the ℎ%&'(  and ℎ%&'(( , the high-wavevector information becomes increasingly more important. Because surface 
properties such as contact area and macroscopic adhesion depend on the ℎ%&'(  and ℎ%&'(( , the accuracy of calculations and 
predictions will depend on the accuracy of short-wavelength measurements. Note that unlike figures of other PSDs in this paper, 
this illustration shows all quantities on linear scales for both axes. 
 

By contrast, the expression for RMS height depends on the power at the scale 𝑞/ where the power-law 
region ends. With no roll-off 𝑞. ≡ 𝑞/ we get 

ℎ%&'6 = fg
PFY

𝑞/:6Y     (10) 

while for a very large roll-off region 𝑞. ≪ 𝑞/ we obtain 

ℎ%&'6 = fg
PF

1 + ;
Y
𝑞/:6Y     (11) 

Both expressions depend only on 𝐶9 and 𝑞/ and neither on 𝑞. nor on 𝑞0. 



We can analytically compute the PSD 𝐶;HK of a line profile that corresponds to the 2D, isotropic PSD 
given by Eq. (7). The resulting expression is (see Appendix A.3 for more detail): 

𝐶;l 𝑞I ≈ "n
F
𝐶N'O(𝑞I) 1 − "n

"p

6
,    (12) 

which forms the basis for the pseudo-1D PSD defined in Eq. (5). However, the 1D PSD will taper off 
approximately as 1 − 𝑞I 𝑞0 6 rather than drop to zero sharply. This behavior is illustrated in Fig. 2(c). 

2.3 Strategies for the calculation of PSD and scalar roughness quantities 
For the measurement and reporting of a PSD, we suggest the following guidelines. For quantitative 
numerical calculations such as in Refs. [21,53], Ciso [m4] is the correct form of the PSD to be used. 
However, the surface should also be checked for anisotropy, as most of the contact models assume 
isotropic roughness. For a 2D image of topography, this can be assessed by computing the surface PSD 
C2D, in which the presence or absence of radial symmetry should be obvious, or by comparing C1D+ 
against Cpseudo-1D, which should be identical for an isotropic surface.   

If anisotropy is detected, it must be determined whether the surface is anisotropic or whether its origin is 
true anisotropy in the surface or artificial anisotropy introduced by the measurement technique, as is 
common for characterization techniques with a preferred direction. (For instance, in AFM the direction 
parallel to the scanning axis is sampled in less than one second, while topography in the perpendicular 
direction may take several minutes to measure: the latter is therefore much more prone to artifacts from 
drift.) This can be determined by repeating the measurement on the same surface in three different 
directions: horizontal, vertical and at a third, oblique direction. If the C1D+ as calculated in these three 
directions is identical, then the surface is likely isotropic and, for self-affine surfaces, Ciso can be 
approximated using 𝐶N'O 𝑞 = 	𝐶;HK 𝑞 𝜋/𝑞. If, on the other hand, C1D+ is very different in the three 
directions, then the surface is likely to be truly anisotropic and isotropic contact models may not apply.  

3 Challenge B: Reconstructing the theoretical PSD and scalar roughness 
parameters from incomplete data 

In this section, we will distinguish among the PSD of a measurement, the PSD of a surface, and the PSD 
of a class or an ensemble of surfaces. One can always mathematically compute the PSD from any 
topography measurement carried out on a subsection of the full surface; however, the computed spectrum 
from any single measurement can only yield information for a limited range of wavelengths and will 
typically contain instrumental artifacts. Even ignoring instrumental artifacts (one of which is discussed in 
detail in Section 4), care is required to accurately reconstruct the full theoretical PSD to avoid artifacts 
due to: aperiodicity; artifacts of stitching; and small sample sizes. Finally, the calculation of upper and 
lower bounds of hrms, h’rms, and h’’rms will be discussed.  

To demonstrate each of these issues, we have analyzed computer-generated surfaces that were 
“measured” at various locations and resolutions. These synthetic measurements are, of course, free of 
measurement artifacts and therefore are useful for demonstrating the errors that can arise due to analysis 
procedure, rather than experimental procedure. These synthetic, computer-generated surfaces were 
created under the assumptions of the random process model of surface topography[30,50,51]. We start 



with a well-defined self-affine PSD of the form of Eq. (7), which we refer to as 𝐶NrQSs
N'O (𝑞), which is the 

input PSD. We then construct a surface as a superposition of waves of the form ℎ" 𝑟 = 𝜒" exp 𝑖𝑞 ⋅ 𝑟 +
𝑖𝜙" . The amplitude 𝜒" is chosen randomly from a Gaussian distribution with a standard deviation given 

by the square-root of the PSD, 𝐶NrQSs
N'O 𝑞

; 6
, for each 𝑞. Each realization of a surface that corresponds 

to this input PSD will be subject to random (statistical) fluctuations. These fluctuations come from the 
random value of 𝜒". We additionally chose a random phase shift 𝜙" within the interval 0,2𝜋  from a 
uniform distribution; however, this phase-shift does not affect the measured PSD. This way of creating 
synthetic PSDs is often referred to as the Fourier-filtering algorithm. All synthetic surfaces discussed here 
have a Hurst exponent of H=0.8. 

3.1 Power spectral density of a single measurement – aperiodicity and the need for 
windowing 

Experimental surfaces and their measurements will never be fully periodic. This introduces problems with 
a straightforward application of the Fourier transform described in Section 2 that treats the signal as 
periodic; thus, windowing[54] of the data is required [55]. The nonperiodic data is multiplied with a 
periodic windowing function that goes smoothly to zero at the edges of the topography image. In Fourier 
space, this window acts as a low-pass filter, removing the high-frequency components that are introduced 
by edges of the topography. While windowing is common practice in the signal-processing community, 
many conventional windows have a maximum that is set to unity. When using self-affine scaling laws to 
compute scalar roughness parameters, the sum rules that are used to compute ℎ%&', ℎ%&'(  and ℎ%&'((  must 
be conserved. Therefore, the area beneath the squared window w needs to be normalized to return the 
length 𝐿 or area 𝐿I𝐿M of the window’s support: 

𝑤6 𝑥 dx = 𝐿/
9    or   𝑤6 𝑥, 𝑦 d𝑥d𝑦/~

9
/n
9 = 𝐿I𝐿M.     (13) 

Here we demonstrate the effect of aperiodicity, and artifacts that can arise from improper windowing 
using a realization of a well-defined random and statistically isotropic, periodic surface of 2048×2048 
pixels that is shown in Fig. 4a. We assume the full surface is a 2µm×2µm scan of a surface topography. 
The example surface used in this section has no power below a wavelength of 30	nm and has a Hurst 
exponent of 0.8. 



 
Figure 4: Non-periodicity of measured data. A synthetic periodic surface (a) containing 2048×2048 pixels was created with 
self-affine scaling properties and Gaussian statistics. The power-spectra are obtained using a straight FFT (b) and an FFT after 
applying a Hann window to the full topography (b). The black solid lines in show the input PSD that was used to generate these 
surfaces, and match well with measured values (red, blue lines). By contrast, the 1µm×1µm central section of the topography (d) 
has been cropped from the surface shown in (a), and the resulting smaller surface is aperiodic. PSDs of the cropped region are 
then computed using a straight (e) and windowed (f) FFT. Without windowing, the PSD picks up an artificial contribution ∝ 𝑞:6 
(dashed line in panel (e)) at large wavevectors (small wavelengths). The dashed line in panel (f) shows the PSD if a conventional 
normalization of the window is used, rather than normalizing to conserve the sum rules (Section 3.1). Further, the use of the 
square of a simple 1D Hann window (g) can introduce artificial asymmetry into the PSD; while the radial Hann window (h) 
faithfully reproduces the surface.  
 

In the present paper, we exclusively use the Hann window[54], but results obtained with other windowing 
functions are virtually indistinguishable. The one-dimensional Hann window is given by 

𝑤��rr;H 𝑥 = 6
e

; 6
1 − cos 2𝜋𝑥 𝐿I ,    (14) 

where 𝐿I is the length of the signal in the relevant direction (here designated x). Note that Eq. (14) fulfills 
the normalization conditions discussed above. In computing the 1D PSD, we apply this one dimensional 



window to each line scan independently, ℎ�NrTO�RT 𝑥 = 𝑤��rr;H 𝑥 ℎ(𝑥). Computing the 2D PSD 
requires a windowing function that is a function of x and y position within the plane. A common 
construction is to use the product of two one-dimensional windows, 𝑤��rr6H 𝑥, 𝑦 = 𝑤��rr;H 𝑥 𝑤��rr;H 𝑦 . 
However, the resulting window is not rotationally symmetric. Even if the surface is isotropic, the PSD of 
the windowed surface will become anisotropic, as shown in Fig. 4g. For these reasons, we use the radially 
symmetric Hann window, 

𝑤��rr6l 𝑥, 𝑦 = eF
h
− 6

F

:; 6
1 + cos 6F �BK�B

&Nr /n,/~
   for   𝑋6 + 𝑌6 < min 𝐿I, 𝐿M /2

6
,   (15) 

where 𝑋 = 𝑥 − 𝐿I/2 and 𝑌 = 𝑦 − 𝐿M/2 and the function is equal to zero everywhere the inequality is not 
satisfied. 

Figure 4b shows the 1D PSD 𝐶"n
;HK of the periodic surface shown in Fig. 4a, alongside 𝐶"

Q'RSTO:;H. These 
results show that the 1D and 2D PSDs for self-affine surfaces are equivalent, except for the region near 
the short-wavelength cutoff where the 1D PSD tapers off smoothly and the 2D PSD is cut off sharply [cf. 
Eq. (12)]. Both fall right on top of the input PSD shown by the black solid line. The PSD obtained with a 
Hann window, Fig. 4(c), follows the same power-law as the straight computation of the PSD and also 
recovers the same power in absolute terms. There are minor variations in the fluctuation of the PSD.  

We now emulate a measurement of this surface by cutting out the central 1µm×1µm section which is no 
longer periodic. The resulting surface is shown in Fig. 4d and the non-windowed and windowed PSDs are 
shown in Figs. 4e and 4f. It is clear that windowing is crucial to reconstructing the true PSD for non-
periodic data. Critically, the non-windowed PSD makes the self-affine scaling appear to extend to the 
resolution limit of the measurement. In terms of windowing, the non-periodicity acts like a square 
window whose Fourier transform has a 1/q asymptotic behavior. The tail of the PSD in Fig. 4e therefore 
scales as 1/q2, as shown by the dashed line in that plot. Note that this looks like self-affine scaling with a 
Hurst exponent of H=0.5. For a real measurement of a real-world surface (where the true PSD is 
unknown), it could be erroneously concluded that self-affinity extends much further than it actually does. 
This artifact is particularly problematic when estimating the contact area using analytical models, as it 
would cause significant inaccuracy in the calculation of ℎ%&'(  (and ℎ%&'(( ), which in turn causes error in 
many predicted surface properties calculated from the PSD. Figure 4f shows that using the appropriate 
window resolves this issue. 

Finally, Figs. 4g and 4h illustrate the effect of using a square and a radial window, respectively, on the 2D 
PSD. The window symmetry can clearly be seen in both images. The square window introduces apparent 
asymmetry into the 2D PSD: a vertical and a horizontal line of increased power. The use of a radial 
window does not bias the 2D PSD in any direction.  

3.2 Power spectral density of a set of measurements 
Mathematically and in simulations, the PSD of a surface can be perfectly understood over the whole 
frequency range. By contrast, the range of spectral information for a single measurement is limited[11] 
the maximum wavelength is determined by the size 𝐿I×𝐿M of the domain over which the measurement 
was taken; the minimum wavelength is determined by the pixel size. The limit of accurate spectral 
information may be further reduced by instrumental artifacts[56], but this section is not considering 



instrumental artifacts. By combining multiple measurements, an individual technique is capable of 
providing spectral information over the range of wavelengths from the minimum instrument resolution to 
the maximum analysis size.  

The most common measurement techniques employ scanning probes (i.e., stylus profilometry and atomic 
force microscopy) or light and/or x-rays (i.e, optical profilometry and angle-resolved scattering) to probe 
topography [57]. These techniques are summarized in Table 1. Stylus profilometry [58] has been used in 
some form for over 100 years and drags a sharp needle (typically 2-10 µm radius, but sometimes less than 
1 µm) across a surface and records the deflection as a measure of surface topography. While the 
procedure is extremely robust and versatile, it is also relatively time-intensive, can cause sample damage, 
and can be limited by the relatively large tip. Atomic force microscopy (or, more generally, scanning 
probe microscopy) [59] is a class of techniques where a nanoscale tip is raster scanned over a surface. 
This tip can be in contact (contact mode), in intermittent contact (tapping mode), or out-of-contact (non-
contact AFM or scanning tunneling microscopy). In all cases, the tip is used to sense the vertical position 
of the surface over an array of pixels in a grid. This technique can measure the smallest-scale features of 
any of the conventional surface characterization approaches and can achieve atomic resolution on ultra-
flat samples. For rough samples, the lateral resolution is severely degraded by instrument noise and tip 
artifacts (see Section 3).  

Optical profilometry [60] refers to a family of techniques that use either phase shifts of monochromatic 
light or optical coherence of white light to determine the vertical position of each pixel in an analysis 
region. Using analysis algorithms and fitting routines (such as those discussed in Refs. [61] and [62]), 
sub-nanometer resolution can be achieved in the vertical direction while the lateral resolution is 
diffraction limited to typical ranges of 500 nm–1 µm. The analysis size depends on the chosen 
microscope objective; while it is typically limited to approximately 5 mm for a single image, an encoded 
stage plus digital image registration can be readily used to stitch together multiple images to achieve 100 
mm regions for analysis. Light scattering [9] and x-ray scattering [63] are a class of techniques that 
compare incident and scattered beams to measure changes in intensity as a function of wavelength. The 
details of this topic are beyond the scope of this paper, but unlike the other techniques discussed, 
scattering techniques do not measure the real-space topography of the sample, but rather using theories of 
wave-surface interactions [64] to relate the measured spectrum of the scattered beam to the spectrum of 
the surface. The scattered beam can be affected differently from different types of surfaces [65] and can 
be strongly affected by surface properties other than topography [63] and therefore various assumptions 
about the surface are often required. X-ray scattering can, in theory, sample roughness down to the 
wavelength of the x-ray (less than 1 Å), but in practice instrumental and measurement difficulties limit 
this to several nanometers.  

  



 

Table 1: Bandwidth limitations of various techniques for measuring surface topography. The ranges indicated cannot be 
achieved in a single measurement, but rather represent the ultimate limits of the techniques if multiple measurements are 
performed from the highest resolution through the highest scan size. Note that the frequency range for reliable data will 
be significantly reduced due to tip-size and noise artifacts, as discussed in Section 4. 
Technique Approx. 

maximum 
analysis size  

Approx. 
lateral 

resolution 
limit  

Frequency 
range 

Advantages Limitations 

Stylus 
profilometry 

50 mm 
(200 mm with 

stitching) 

1 µm 102 (101) 
to 

107 m-1 

Sub-nanometer 
height resolution. 
Unaffected by 
sample’s optical 
properties 

Contact method, can 
cause damage. 
Measurement is 
time-intensive.    Tip 
shape can introduce 
artifacts 

Optical 
profilometry 

5 mm 
(100 mm with 

stitching) 

1 µm 103 (102) 
to 

107 m-1 

Rapid, non-contact. 
Sub-nanometer 
height resolution. 

Diffraction-limited 
spatial information. 
Difficult to use on 
very rough surfaces. 
Artifacts from 
transparent thin 
films. 

Light and    
x-ray 
scattering 

5 mm 10 nm 103 
to 

109 m-1 

Rapid, non-contact. 
Insensitive to 
vibration.  

Relies on models, 
assumptions to relate 
scattered beam to 
surface spectrum. 
Does not recover 
real-space 
topography 

Scanning 
probe 
microscopy 

100 µm 1 Å 105 
to 

1011 m-1 

High-resolution  Small areas. 
Sensitive to 
vibration. Tip shape 
can introduce 
artifacts. 

 

To recover the complete PSD of a surface is typically necessary to combine the results from various 
techniques and multiple measurements per technique that are all performed on the same surface. The 
resultant PSDs can be stitched together over many orders of magnitude[11,47,66]. However, the process 
of stitching can introduce artifacts into the final PSD which cause a lack of overlap between scales[11]. 
To demonstrate this, we have created a very large (65,536 pixels per side) computer-generated surface 
that has a well-defined PSD. We use the central 50,000 pixels per side section of this surface as our 
realization of a 100-micron by 100-micron surface. The surface has then been “measured” (see Figs. 5a-c) 
with scan sizes down to 1 micron on a side. Each “measurement” had 500 by 500 pixels, therefore the 
pixel size scaled with scan size – as is common in measurement techniques such as AFM and optical 
profilometry. The measurement of the images was carried out by picking a random height value within 
each subpixel; though other ways to “sample” each pixel were also tested (i.e. picking subpixels at equal 
distances and finding the highest point in each pixel), but these details did not affect the results. 



 

Figure 5: Stitching PSDs and reproducibility of measurements. A very large synthetic self-affine surface of 50,000×50,000 
pixels has been digitally “measured” in blocks of 500×500 pixels with a variety of scan sizes ranging from the full surface with 
100 microns width (a) to 10 microns (b) to 1 micron (c), with pixel sizes scaling accordingly. The individual PSDs are computed 
and plotted (d) after applying tilt equilibration and a Hann window independently to each emulated measurement. These are 
compared with the input PSD (black line) that was used to generate the surfaces. The inset shows the result without tilt 
correction, and demonstrates artifacts that cause a lack of overlap between the lowest frequencies of one measurement and the 
highest frequencies of the next. 

Figure 5d shows the PSD stitched from three individual measurements at 100	µm, 10	µm and 1	µm 
image size taken in the middle of the surface. These results show first that sub-images must be tilt-
compensated to eliminate errors at low q, as are evident in the inset image. The surfaces are untilted by 
subtracting an inclined plane ℎ 𝑥, 𝑦 = 𝑎𝑥 + 𝑏𝑦 + 𝑐 to the topography such that the average slope of the 
surface is zero. While such a tilt compensation is commonplace in AFM measurements, there are other 
measurements where it is not typically done. An example is the technique recommended in Ref. [55] 
where one very large surface measurement is taken using optical reflectometry - then this large 
measurement is divided into sub-images for individual analysis. Even in this case, the sub-images must be 
tilt compensated so that each one is flat. When the sub-images are correctly windowed and correctly tilt-
compensated, the overlay of PSDs is nearly perfect.  

Finally, experimental measurements will almost always be limited to a range of wavevectors, such that 
the “true” surface PSD can never be fully determined. To account for this, any surfaces that show self-
affine scaling over all or part of the spectrum can be fit with a power-law. This enables the use Eqs. (8)-
(11) to compute hrms, h’rms, and h’’rms for known bounds on long 𝑞/ and short 𝑞0 wavelength cutoffs. For 
example, a lower bound on 𝑞/ can be obtained from the measurement at the lowest resolution (if the PSD 
levels off) and an upper bound to 𝑞/ is 2𝜋 𝐿 where 𝐿 is the maximum length of the geometry of the 



surface under investigation. Similarly, a lower bound on 𝑞0 is 2𝜋 𝑎9 where 𝑎9 is some characteristic 
interatomic spacing. The upper bound on 𝑞0 is given by the resolution of the instrument used for the 
highest resolution topography measurement; a possible measure for scanning probe techniques is 
described in Section 4. These upper- and lower bounds for the cutoffs directly lead to upper and lower 
bounds on the scalar roughness parameters. Ideally, these bounds should be reported rather than a single 
value in all roughness investigations. 

3.3 Strategies to reconstruct a multi-scale PSD 
In light of the various factors discussed in this section, it is recommended that a tilt correction and a 
window (in this order) always be applied to every PSD measurement. We recommend that conclusions 
never be drawn about a surface from a single topography measurement. Surfaces may not be self-affine 
over all length scales and, even those that are, will have high and low-frequency cutoffs that affect the 
calculation of roughness parameters. Rather, it is recommended to compute a “master PSD” of the surface 
by combining PSDs from many topography measurements over as large a frequency range as possible. 
Not only should this master PSD include multiple surfaces and multiple locations per surface, but it 
should also include multiple different analysis techniques and a variety of sampling sizes for each 
technique. Finally, once this master PSD is computed, it should be used to compute upper and lower 
bounds for hrms, h’rms, and h’’rms. These will serve as a guide about whether more precise measurements 
are required for a given surface, and also will enable the calculation of uncertainty in surface properties 
predicted from contact models.  

4 Challenge C: Accurately measuring topography at the smallest scales 
Every measurement technique introduces artifacts in the measurement. Here we focus on artifacts 
introduced by scanning probe microscopy, because it provides the highest-resolution information of any 
conventional surface measurement technique and is commonly used to characterize surfaces at the 
nanoscale. AFM introduces many artifacts[67] into the measured data, including tip size effects, drift, 
acoustic and electronic noise, and image bow. In the context of prediction of surface properties, the most 
significant is the effect of tip size[68]. The purpose of this section is: to introduce the particular 
significance of this problem with respect to scalar roughness parameters; and to show the effect of tip-size 
on our synthetic surfaces and discuss practical upper limits on the frequency range that can be measured 
reliably.  

4.1 Limitations of scanning probe microscopy for rough surfaces at the small scale 
The finite size of the tip presents two related, but distinct problems: tip convolution; and feature 
deletion/creation. Tip convolution is the apparent blunting of sharp features because of the moving point-
of-contact between the feature and the finite-size tip[69]. For example, the AFM measurement of an 
infinitely sharp spike will yield an inverse image of the tip itself. This effect has been extensively 
investigated[70–72] and algorithms have been developed to mathematically compensate, and reconstruct 
the unconvoluted surface topography[73–76]. However, feature deletion/creation occurs when the 
bluntness of the tip prevents the sampling of topography that is smaller than a certain spatial wavelength, 
and/or creates kinks in the data when there is a trench that is too narrow for the tip to reach the 
bottom[77]. While it is common in hard materials, it can also occur for soft samples when the surface 
fully conforms to the blunt tip, such that roughness features below a characteristic size cannot be 
sampled[78]. In these cases, there is no mathematical route to reconstruct the original surface from the 



measured data. The surface has not been accurately sampled and is indistinguishable from a range of 
other surfaces with the same problem.  

At present, there is no simple solution to solving the high-frequency problem for atomic force 
microscopy. However, the investigator can determine the maximum frequency that can be reliably 
measured for a certain technique on a certain surface. This enables the determination of uncertainty on 
any quantities computed from the PSD.  

The radius of the AFM probe determines the maximum spatial frequency that can be measured[68,79,80]. 
For a simple sine wave surface, the minimum wavelength 𝜆� that can be sampled by a spherical-ended tip 
of radius Rtip is given by [77,81,82]: 

minimum wavelength = 𝜆� = 2𝜋 𝜒𝑅sNQ   (16) 

where	c	is	the	amplitude	of	the	sine	wave.		

Church and Takacs [77] estimate more generally that the finite tip size leads to an asymptotic behavior of 
the power spectrum that follows, 

𝐶N'O 𝑞 = 𝐶sNQ𝑞:i   or   𝐶;H 𝑞I =
f���
F
𝑞I:P.     (17) 

In the context of the PSD, a critical wavevector 𝑞� can be defined at which the contribution from tip 
curvature takes over and hides the true topography. This transition occurs at the wavevector where RMS 
curvature and tip curvature are approximately equivalent, 

ℎ%&'(( 𝑞� ≈ 𝑐/𝑅sNQ,    (18) 

where c is a constant of order unity[77]. This criterion can be applied to a self-affine surface by 
combining Eq. (18) and Eq. (9) to yield 

𝑞� =
;DF�B 6:Y

fg����
B

�
� B¡

    (19) 

This value of 𝑞� provides a reliability cutoff for AFM measurements. Data obtained at wavevectors larger 
than this value of 𝑞� are not reliable and no meaningful information about the PSD can be obtained. The 
prefactor of the tip-induced PSD is given by 

𝐶sNQ = 𝐶9𝑞�e:6Y.       (20) 

To demonstrate Eq. (20) we have scanned a synthetic surface of 0.5	µm×0.5	µm size and lower 
wavelength cutoff 𝜆0 = 5	nm with a spherical tip of radius 40	nm. For each in-plane position x, y, we 
lowered the tip onto the surface until the first point on the tip surface touched the rough specimen surface. 
Original and measured surfaces are shown in Fig. 6a and 6b, respectively. The resulting PSD is shown in 
Fig. 6c. It shows the proper power-law scaling down to 𝑞� where tip-shape effects take over. The dashed 
line shows the power-law given by Eq. (20) with 𝑐 = 1 2 and a prefactor 𝐶9 adjusted such that Eq. (18) 
is fulfilled numerically. It sits right on top of the simulated measurement, indicating that the analytical 
expression does indeed give the correct asymptotic behavior for a given tip radius. Data points in and near 



the blue region can therefore not be trusted in this measurement. If an investigator naively computed 
scalar roughness parameters from the measured PSD, the results would be in error by 9% for 𝑆∆" and by 
27% for 𝑆AB".    

 
Figure 6. Effect of tip radius. A 0.1-µm square synthetic surface containing 200 pixels per side has been created from a 
subsection of a periodic self-affine surface 0.5 µm in size. When the surface is scanned with an infinitely sharp tip (a), the 
original surface is recovered. When the surface is scanned with an ideal spherical tip of radius 40	nm (b), some blunting is 
readily apparent. The blunted surface is used (after the application of a Hann window) to compute a PSD (d). The PSD of the 
scanned surface shows a 𝑞:P noise term at large wavevectors (small wavelengths). The asymptotic behavior is given Eq. (17) and 
shown by the dashed line. The black solid line shows the input PSD that was used to generate these surfaces. Note that the 
transition from real data to artifact-prone data is not readily visible in the computed PSD. Rather it is up to investigator to 
determine the reliability cutoff – using Eq. (19) - and to discard any PSD data for q above this cutoff.  

4.2 Effect of instrumental white noise 
Each measurement instrument introduces noise into the process. The source of noise is manifold and 
ranges from thermally-induced oscillations in cantilever-based measurements [83] to thermal and shot 
noise in the measurement electronics [84]. We here test the influence of noise on the measurements of 
PSD by simply assuming uncorrelated white noise. This is an appropriate model for many sources of 
noise, such as thermal or shot noise. 

White noise has a constant, wavelength-independent PSD. We introduce it into our synthetic surfaces by 
adding a random height, drawn from a Gaussian distribution with standard deviation 𝜎rON'R, to each 
topographic point. From Eq. (30) we immediately see that this leads to a constant contribution to the PSD 
with power 

𝐶rON'R
N'O = 𝑙I𝑙M𝜎rON'R6 				 (21)	

𝑙I𝑙M is the pixel area; 𝑙I = 𝑁I 𝐿I and 𝑙M = 𝑁M 𝐿M where 𝑁I and 𝑁M is the number of grid points in x- 
and y-direction, respectively. For a one-dimensional PSD the expression becomes 



𝐶rON'R;H = 𝑙I𝜎rON'R6 .						 (22)	

It is interesting to note that the power depends not just on amplitude but also explicitly on measurement 
resolution. However, 𝜎rON'R is a length which depends on the details of how the measured signal is 
converted into height information; this conversion may itself be affected by measurement resolution, care 
must therefore be taken in interpreting Eqs. (21) and (22) with respect to their scaling with resolution. 

To demonstrate the effect of white noise, we calculate the PSD of a synthetic surface with additional 
noise consisting of 2000×2000 pixels. For each pixel 𝑖, 𝑗 we draw a random height Δℎ§¨ from a 
Gaussian distribution with standard deviation 𝜎rON'R and add Δℎ§¨ to the topography map. The 
corresponding PSDs are shown in Fig. 7; 𝜎rON'R was set to 20% of the root mean square height ℎ%&'. The 
dashed lines in Fig. 7 show that white noise appears as a region of constant power for both 1D and 2D 
PSDs (panels (a) and (b), respectively) that is well-described by Eqs.  (21) and (22). When the resolution 
is decreased to 200×200 pixels, the power of the noise increases as predicted. Note that for the low-
resolution scan the noise intersects the power-law of the self-affine surface at a wavelength that is larger 
than the cutoff. The PSD then tapers off smoothly to constant power. 

 

Figure 7. Effect of instrumental white noise. Blue lines show (a) 1D and (b) isotropic 2D PSDs of a periodic 2-µm square 
synthetic surface containing 2000 pixels per side. To mimic instrumental noise, we added random white-noise with standard 
deviation 𝜎rON'R = 0.2	ℎ%&' to the synthetic topography image. Red lines show the PSD of the same surface but at a resolution of 
200 pixels per side. The solid black line is the input PSD and the dashed lines are the noise amplitude given by Eqs. (21) and 
(22). Because surfaces are periodic, no window was applied before computing the PSD. Panel (c) shows the ratio of 𝐶N'O 𝐶;HK 
for the surface with 2000 pixels per side. The horizontal dashed line on this plot at 𝐶N'O 𝐶;HK = 𝑙M indicates a reliability cutoff, 
where data below and close to this line are affected by instrumental noise and should be discarded.  

The fact that white noise leads to a region of constant power in 1D and 2D PSDs can be used to detect it. 
The ratio of Eqs.  (21) and (22) should be equal to the scan resolution in y-direction, 𝑙M. Figure 7c shows 

this ratio as a function of wavevector 𝑞 for our synthetic surface. The dashed line shows 𝐶iso 𝐶1D+ ≡ 𝑙𝑦. 
The wavevector at which the ratio 𝐶iso 𝐶1D+ intersects this line is the limit of reliability of the noisy data. 
Values at higher 𝑞 are affected by instrumental noise. 

4.3 Strategies to detect and mitigate small-scale artifacts 
Care must be taken when measuring and analyzing spectral content at the smallest scales. Perhaps the 
most concerning aspect of this reliability issue is that PSDs can be mathematically computed for 
arbitrarily small scan sizes and correspondingly large wavevectors. In many cases, the data will appear 
normal and there will be no inherent indication of where this “reliability cutoff” lies. Further, the effect on 



the PSD after this cutoff is not predictable. Depending on the profile and the tip shape, it may smoothen 
or roughen the profile, and may change the shape of the PSD[77]. Therefore, when performing AFM, it is 
recommended to determine the tip radius (by direct imaging[40,85] or by tip-reconstruction numerical 
algorithms[71,75]) and then to use Eqs. (19) and (20) to determine the maximum frequency that can be 
accurately measured using that combination of tip and surface. Then the noise must be analyzed, either 
qualitatively by looking for a level-off or quantitatively by computing 𝐶N'O 𝐶;HK to determine the limit 
of the measurement noise. Spectral content beyond these limits should not be trusted, nor used for 
analysis. One can therefore specify only a lower bound for the high-frequency cut-off – and all properties 
that are computed from the PSD should reflect the uncertainty in this value. If higher-resolution 
information is required, then sharper tips and lower-noise equipment must be used, but even the sharpest 
tips have a limit of approximately 3-5 nm radius. For most surfaces that are not atomically smooth, this 
limits the small-wavelength limit to >10 nm. For this reason, new approaches must be devised in the 
future for transcending the limits of conventional techniques and rough surfaces down to the smallest 
scales.  

5 Conclusions  
Recent analytical models and numerical simulations make predictions for functional properties, such as 
macroscopic contact properties (e.g., stiffness, contact area, and adhesion), on the basis of the power 
spectral density (PSD) of a surface. We have demonstrated three significant experimental challenges that 
hinder the application of these models to real-world surfaces – along with strategies to mitigate each one. 
First, there are several different well-accepted methods for the calculation of the PSD that result in 
different quantitative values. We review these and show how they relate to each other, and then discuss 
the considerations of using each. For analytical models of contact between randomly rough surfaces, the 
two-dimensional PSD is the correct one to use – rather than the “pseudo-one-dimensional PSD” that is 
computed by many software packages and recommended by international standards. Second, the 
analytical theories assume knowledge of the PSD of an infinite surface across a wide frequency range, 
while experimental measurements are plagued by edge effects and are necessarily limited to a narrow 
frequency band. We review the use of windowing and stitching to reliably combine multiple 
measurements, and discuss the calculation of upper and lower bounds on the true values of the scalar 
roughness parameters for a surface. Third, common techniques for surface topography measurement 
provide inaccurate data in the highest-frequency regime. We show the consequences of this issue for 
contact models and discuss the calculation of a “reliability cut-off” – beyond which measured PSD data 
should not be trusted, analyzed, nor reported. 

We have demonstrated these various considerations using computer-generated surfaces. This analysis has 
shown that various specific types of artifacts can be found in experimentally-measured PSDs: 

• Not properly accounting for the aperiodicity of the data by using the appropriate windows 
introduces a component ∝ 𝑞:6 into the 1D PSD (∝ 𝑞:e in the 2D PSD). This artifact appears 
identical to self-affine scaling with a Hurst exponent 𝐻 = 0.5, but can be avoided by computing 
the PSD with a properly normalized, radially symmetric window. 

• Not properly accounting for surface tilt introduces an overestimation of the PSD at low 
wavevectors, causing a lack of overlap between PSD measurements from scans of different sizes. 
This artifact can be avoided through tilt-compensation when computing the PSD. 



• Tip shape in AFM measurements introduces a spurious component ∝ 𝑞:P into the 1D PSD (∝
𝑞:i in the 2D PSD). This artifact can be partially mitigated by the use of sharper tips, but cannot 
be avoided entirely. We have proposed a parameter-free expression that allows AFM users to 
identify the region of the PSD that is unreliable and should not be reported or used for 
calculation. 

• Instrumental noise leads to constant power at the highest 𝑞. This artifact is easy to detect since it 
occurs in both 1D and 2D PSDs. We have proposed an approach for detecting the noise limit 
from the ratio of 2D and 1D PSDs. 

Taken together, this article provides theoretical and practical guidance for the application of analytical 
roughness models to real-world surfaces.  
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Appendix A 

A.1 Mathematical definition of the power spectral density 
Many excellent references describe the calculation of PSD, such as Ref. [28]. We will review the salient 
features here to establish the conventions used in this paper, and also to rigorously demonstrate the 
origins of some of the mathematical inconsistencies between the different types of PSDs which were 
mentioned in Section 2.  

We start by assuming that the surface topography is given by a continuous function ℎ(𝑥, 𝑦) with in-plane 
position 𝑥, 𝑦 and periodicity 𝐿I and 𝐿M in both Cartesian directions. We note that the choice of a function 
h(x,y) excludes surfaces with overhangs that are sometimes observed experimentally. Due to the 
periodicity of ℎ(𝑥, 𝑦), the Fourier transform ℎ"n,"~ is nonzero at discrete lattice points only. This type of 
transform is commonly referred to as the Fourier series, but we will use the term transform throughout the 
rest of the document. (We denote continuous functions using a typical function designation: ℎ(𝑥, 𝑦) and 
we will represent discrete functions using subscripts ℎI,M here and elsewhere in this manuscript.) The 
forward and inverse transforms in the plane are given by the expressions 

ℎ"n,"~ = ℎ 𝑥, 𝑦 𝑒:§ "nIK"~M d𝑥d𝑦	¬      (23) 

ℎ 𝑥, 𝑦 = ;
/n/~

ℎ"n,"~𝑒
§("nIK"~M)"n,"~ 	     (24) 

where the integral is over the full area 𝐴 = 𝐿I𝐿M of the periodic topography profile and the sum runs 
between negative and positive infinity in steps of 2𝜋/𝐿I and 2𝜋/𝐿M in x and y, respectively. 

Some authors use a pre-factor of 1/ 𝐴 in front of both transforms or a factor of 1/𝐴 in front of the 
forward transform. Using one of these other conventions will change some of the pre-factors in the 



equations throughout this paper. It does also influence the units of the Fourier transform and hence the 
values obtained for the PSD. It is therefore important to agree on a canonical expression for the forward 
and inverse transforms. 

Using Eq. (23) gives units of the Fourier transform ℎ as [m3]. In most real-world situations ℎ 𝑥, 𝑦  is not 
described as a well-defined continuous function, but rather is measured only at discrete sites on a regular 
rectangular grid with “pixel” size 𝑙I×𝑙M. Here 𝑙I = 𝑁I 𝐿I and 𝑙M = 𝑁M 𝐿M where 𝑁I and 𝑁M is the 
number of grid points in x- and y-direction, respectively. In this case, the integral becomes a sum over all 
lattice sites and the sum in the inverse transform runs (in steps of Δ𝑞I = 2𝜋/𝐿I) from 𝑞I = −2𝜋/𝑙I to 
2𝜋/𝑙I rather than from 𝑞I = −∞ to ∞. Eqs. (23) and (24) then become the forward and inverse discrete 
Fourier transforms (DFT), 

ℎ"n,"~ = 𝑙I𝑙M ℎI,M𝑒:§ "nIK"~MI,M     (25) 

ℎI,M =
;

/n/~
ℎ"n,"~𝑒

§("nIK"~M)"n,"~ 	     (26) 

The most common numerical algorithm to compute the DFT is the fast Fourier transform (FFT)[86]. 
Because it is pervasively used, the terms FFT and DFT are often used synonymously. Note that in 
algorithmic implementations of Eqs. (25) and (26), 𝑙I = 𝑙M = 1 and 1 𝐿I𝐿M = 1 𝑁I𝑁M where 𝑁I×𝑁M 
are the dimensions of the DFT grid. 

We now define the two-dimensional PSD as  

			𝐶"n,"~
6H = 𝐴:; ℎ"n,"~

6
     (27) 

𝐶"n"~
6H  has units of [m4]. Equation (27) removes all phase information from ℎ"n,"~, but retains its 

amplitude. Because the reciprocal space product 𝑔"n,"~ = ℎ"n,"~
∗ ⋅ ℎ"n,"~ (here * is the complex conjugate) 

becomes a convolution, 𝑔 𝑥, 𝑦 = ∫ ℎ∗ 𝑥 − 𝑥(, 𝑦 − 𝑦( ℎ(𝑥(, 𝑦()d𝑥(d𝑦( in real space, Eq. (27) is the 
Fourier transform of the height autocorrelation function. 

We show below that this normalization in combination with Eqs. (23) and (24) makes the PSD 
independent of sample size and allows comparison of PSDs measured over different areas. Eq. (27) is 
compatible with the definition of the 2D PSD in SEMI MF1811. Theoretical work by Persson uses a 
different normalization of the transform and the PSD, such that: 

𝐶"n,"~
°R%''Or = 𝐶"n,"~

6H 4𝜋6.		   (28) 

An important equality that derives from the properties of the convolution is Parseval’s theorem, which 
relates the real-space power to the reciprocal-space power. Given the definition of the Fourier transform 
in Eqs. (23) and (24), Parseval’s theorem has the form 

ℎ 𝑥, 𝑦 6d𝑥d𝑦¬ = 𝐴:; |ℎ"n"~|
6

"n"~ = 𝐶"n"~
6H

"n"~ .    (29) 



The PSD 𝐶"n,"~
6H  contains certain scalar roughness parameters as simple sum rules. These are in particular 

the RMS roughness ℎ%&' = ℎ 6 , RMS slope ℎ%&'( = ∇ℎ 6  and RMS curvature ℎ%&'(( =
;
6

∇6ℎ 6 . By virtue of Parseval’s theorem, we find 

ℎ%&'6 = ;
¬

ℎ6 𝑥, 𝑦 d𝑥d𝑦¬ = ;
¬B

ℎ"n,"~
6

"n,"~ = ;
¬

𝐶"n,"~
6H

"n,"~      (30) 

ℎ%&'( 6 = ;
¬

𝛻ℎ 𝑥, 𝑦 6d𝑥d𝑦¬ = ;
¬B

𝑞I6 + 𝑞M6 ℎ"n,"~
6

"n,"~ = ;
¬

𝑞6𝐶"n,"~
6H

"n,"~     (31) 

ℎ%&'(( 6 = ;
P¬

𝛻6ℎ 𝑥, 𝑦 6d𝑥d𝑦¬ = ;
P¬B

𝑞I6 + 𝑞M6
6
ℎ"n,"~

6
"n,"~ = ;

P¬
𝑞P𝐶"n,"~

6H
"n,"~    

 (32) 

with 𝑞 = 𝑞 = 𝑞I6 + 𝑞M6. 

It is useful to consider the equivalent expressions for a PSD for a surface of infinite extent where 𝑞 
becomes a continuous variable and to derive analytical expressions for ℎ%&'6  and ℎ%&'( 6 given an 
analytical expression 𝐶6H(𝑞I, 𝑞M) for the PSD in this limit. For isotropic surfaces 𝐶"n,"~

6H = 𝐶"N'O or 

𝐶6H 𝑞I, 𝑞M = 𝐶N'O 𝑞 , and the PSD can be reported simply as a function of 𝑞. In many practical 
situations |ℎ"n,"~| is a Gaussian random variable. (Indeed isotropy and normal distribution of |ℎ"n,"~| is 
the basis of the random process model for surface topography[30,50,51] and hence also the basis for most 
modern theories of rough contact.) The isotropic PSD is obtained by averaging over all wavevectors that 
have 𝑞 = 𝑞, i.e., 𝐶N'O 𝑞 = 2𝜋 :;∫ 𝐶6H(𝑞 cos 𝜙 , 𝑞 sin 𝜙)d𝜙.  

We can make the transition from discrete 𝐶"n,"~
6H  to continuous 𝐶6H 𝑞I, 𝑞M  by letting 𝐴 → ∞. Then for 

any function 𝑓(𝑞I, 𝑞M) 

𝑓 𝑞I, 𝑞M"n,"~ = ;
´"n´"~

𝑓 𝑞I, 𝑞M 𝛥𝑞I𝛥𝑞M"n,"~ = ¬
P¶B

∫ 𝑓 𝑞I, 𝑞M d𝑞Id𝑞M     (33) 

and Eqs. (30), (31) and (32) become 

ℎ%&'6 = ;
PFB

∫ 𝐶6H 𝑞I, 𝑞M d6𝑞 = ;
6F
∫ 𝑞𝐶N'O(𝑞)d𝑞	   (34) 

ℎ%&'( 6 = ;
PFB

∫ 𝑞6𝐶6H 𝑞I, 𝑞M d6𝑞 = ;
6F
∫ 𝑞e𝐶N'O 𝑞 d𝑞    (35) 

ℎ%&'(( 6 = ;
;DFB

∫ 𝑞P𝐶6H 𝑞I, 𝑞M d6𝑞 = ;
hF
∫ 𝑞i𝐶N'O(𝑞)d𝑞	   (36) 

Note that these expressions are independent of area 𝐴 and hence well defined even in the limit 𝐴 → ∞.  

A.2 Relating the two-dimensional PSD to that of a line profile 
One-dimensional power spectra are much more common than the previously discussed two-dimensional 
version due to their use in electrical engineering with time-varying electrical signals. For the same surface 
h(x,y) the PSD of a line profile can be obtained from the one-dimensional Fourier series 



ℎ"n(𝑦) = ℎ 𝑥, 𝑦 𝑒:§"nId𝑥/n
    (37) 

ℎ 𝑥, 𝑦 = ;
/n

ℎ"n(𝑦)𝑒
§"nI"n      (38) 

The 2D Fourier transform given in Eqs. (23) and (24) is simply the consecutive application of this 
formula in x- and y-direction. The 1D PSD is then given by 

𝐶"n
;H 𝑦 = 𝐿I:; ℎ"n 𝑦

6
     (39) 

which has units of [m3] and depends explicitly on y, i.e., the line of the scan. PSDs for line scans are 
typically reported as averages over multiple scans, denoted with a line over C, 

𝐶"n
;H = 𝐿M:;∫ 𝐶"n

;H 𝑦 d𝑦   (40) 

Note that in the main text, the line over the C is dropped for brevity. By virtue of Parseval’s theorem, we 
can express this averaged 1D PSD in terms of the 2D PSD, 

𝐶"n
;H = 𝐿M:; 𝐶"n"~

6H
"~      (41) 

or for continuous 𝑞I, 𝑞M, 

𝐶;H 𝑞I = ;
6F

𝐶6H 𝑞I, 𝑞M d𝑞M	
J
:J      (42) 

Note that a 2D power-spectrum can be reconstructed from 1D power spectra if we assume that the surface 

is isotropic, i.e. if 𝐶6H 𝑞I, 𝑞M = 𝐶N'O(𝑞), with 𝑞 = 𝑞I6 + 𝑞M6 and 𝑞d𝑞 = 𝑞Md𝑞M. Substituting q for 𝑞M in 

Eq. (42) gives 

𝐶;H 𝑞I = ;
F

"f�·¸ "

"B:"nB
d𝑞J

"n
.  (43) 

Inversion of this expression yields 

𝐶N'O 𝑞 = −2 	 ;

"nB:"B

¹f�º "n
¹"n

d𝑞I
J
"       (44) 

As discussed in the following section, for self-affine surfaces this is approximately equal to 𝜋𝐶;H(𝑞I)/𝑞. 

A.3 Power spectra for self-affine random surfaces 
The two-dimensional PSD of a self-affine, randomly rough surface with Hurst exponent 𝐻 follows the 
power-law expression 𝐶N'O 𝑞 ∝ 𝑞:6:6Y (see also Eq. (7)). Self-affinity implies a certain scaling 
behavior that is encoded into this power-law. If all lengths are scaled by a factor of 𝜁, then 𝑞( = 𝑞/𝜁 and  

𝐶N'O 𝑞( d6𝑞( = 𝐶N'O(𝑞 𝜁)d6𝑞/𝜁6 = 𝜁6Y𝐶N'O 𝑞 d6𝑞,    (45) 



i.e. heights need to be rescaled by 𝜁Y to give a surface with the same (statistical) roughness. This is the 
essence of self-affinity[32]. The Hurst[52] exponent H of the power-law is related to the fractal dimension 
𝐷 = 3 − 𝐻. The values of 𝐻 are typically characteristic for the process that formed the surfaces. Typical 
values for 𝐻 on scales from atoms to mountains are between 0.7 and 0.9 (e.g., Refs. [46,48]). 

From Eqs. (34) to (36) we can easily derive the prefactor 𝐶9 in 𝐶N'O 𝑞 = 𝐶9𝑞:6:6Y	 [see also Eq. (7)] 
given either ℎ%&' and 𝑞/, or ℎ%&'(  and 𝑞0. Under the assumption of scale separation 𝑞0 ≫ 𝑞/ we get: 

𝐶N'O 𝑞 = 4𝜋 1 − 𝐻 ½¾¿·
À B

"p�
"
"p

:6:6Y
    (46) 

𝐶N'O 𝑞 = 4𝜋𝛼𝐻 ½¾¿·
"Â

6 "
"Â

:6:6Y
 with 𝛼 =

1 for	𝑞. = 𝑞/
1 + 𝐻 :; for	𝑞. ≪ 𝑞/

    (47) 

It is instructive to compute the PSD of a line scan of such an ideal isotropic and self-affine surface. We 
apply Eq. (43) to convert the two-dimensional PSD with 𝑞. = 𝑞/ into 

𝐶;H 𝑞I = fg
F
𝑞I:;:6Y		 𝐹6 ;

;
6
; 1 + 𝐻; e

6
; 1 − "p

"n

6
	 "p

"n

6
− 1    (48) 

where 𝐹6 ; is the Gauss hypergeometric function. The expression takes a particularly simple form for 𝐻 =
1/2 where 𝐹6 ; 1 2 , 3 2 ; 3 2 ; 𝑧 = 1 1 − 𝑧. This yields 

𝐶;H 𝑞I ≈ fg
F
𝑞I:;:6Y	 1 − "n

"p

6
    (49) 

and turns out to be an excellent approximation to Eq. (48) even for 𝐻 ≠ 1 2. The overall scaling is, as 
expected, ∝ 𝑞I:;:6Y i.e. same as the two-dimensional PSD but with a power increased by one. The 
additional factor 1 − 𝑞I 𝑞0 6 tapers the function off to exactly zero at 𝑞I = 𝑞0. The deviation from ∝
𝑞I:;:6Y starts to become significant at about 𝑞I 𝑞0 > 0.1.  

We can therefore express 

𝐶;H 𝑞I ≈ "n
F
𝐶N'O(𝑞I) 1 − "n

"p

6
,    (50) 

which forms the basis for the pseudo-1D PSD defined in Eq. (5). 
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