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Abstract 

The role of content-focused coaching in fostering ambitious mathematics teaching practices 
in elementary classrooms 

 
Corinne Marko Murawski, EdD 

 
University of Pittsburgh, 2019 

 
 
 
 

Evidence exists that ambitious teaching in mathematics classrooms makes a difference for 

student learning, regardless of grade level, yet many teachers of mathematics do not employ such 

techniques. While there are multiple possible explanations for this, no one explanation has been 

proven. Additionally, some studies have shown success in helping teachers change pedagogical 

practices to implement more ambitious practices. This study proposes that teachers need more in 

situ professional learning in conjunction with outside-the-classroom professional development to 

catalyze a change in practice. One form of such in situ learning is content-focused coaching. This 

study compared teachers’ practices to attempt to show the increased effects of content-focused 

coaching plus outside-the-classroom professional development in contrast to only the outside-the-

classroom professional development component.  

Findings clearly showed that coached teachers had significantly more opportunities to learn 

about ambitious teaching practices than comparison teachers. However, results were not as clear 

when the use of such practices was assessed. While coached teachers significantly improved scores 

on Academic Rigor (AR) rubrics from the Instructional Quality Assessment (IQA) and had better 

scores than their counterparts in the comparison group, teachers scores on the composite IQA did 

not significantly improve and were not better than the uncoached teachers’ scores. Qualitatively, 

coached teachers’ experiences with the effective Mathematics Teaching Practices during coaching 

were different than the experiences of the uncoached teachers.  
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Findings from this study demonstrates that coaching matters. The content and the quality 

of what happens during coaching around the effective teaching practices for mathematics impacts 

teachers’ classroom practice. In addition, this study shows that pairing coaching with outside-the-

classroom professional development that also exposes teachers to ambitious teaching practices 

helps teachers better implement the practices. This is particularly true when the pairing is 

purposeful. In other words, when the same ambitious practice(s) is the focus of coaching and 

concurrently the focus of outside-the-classroom professional development, teachers more readily 

implement the practice(s) in their classroom. Purposefully integrating coaching with the content 

of teachers’ curriculum, and purposefully integrating coaching with teachers’ current position 

along a trajectory for learning about ambitious teaching practices also helps teachers more readily 

implement ambitious instructional methods. 
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1.0 Introduction 

Over the last decades, advances in fields as seemingly disparate as neuroscience, 

anthropology, and psychology have helped us determine how people, including students, best 

learn. As How People Learn tells us, these advances have “important implications for education. 

…[A] new theory of learning is coming into focus that leads to very different approaches to the 

design of curriculum, teaching, and assessment than those often found in schools today” 

(Bransford, Brown, Cocking, & National Research Council, 1999, p. 3). Darling-Hammond and 

Bransford echo this sentiment by stating, “great strides have been made in our understanding of 

learning and the teaching practices that support it” (Darling-Hammond & Bransford, 2005). 

Advances in learning theory include, but are not limited to, findings from research in 

mathematics education. Adding It Up succinctly summarizes some of the pertinent findings by 

stating, “The effectiveness of mathematics teaching and learning is a function of teachers’ 

knowledge and use of mathematical content, of teachers’ attention to and work with students, and 

of students’ engagement in and use of mathematical tasks” (National Research Council, 2005, p. 

9). However, while the field now has a more refined theory of how students learn mathematics 

(Findell, 2002; Lester Jr., 2007) and understands that teachers are a dominant contributing factor 

to student academic gain (Hiebert & Grouws, 2007; Wright, Horn, & Sanders, 1997), teachers of 

K-12 mathematics often do not employ practices that align with how students best learn (Hiebert 

et al., 2005).“Traditional models of instruction still dominate the educational landscape” (Staples, 

2007, p. 161). The mathematics learning of another generation is at stake. Many adults 

unabashedly admit, “I was never good at math.” In the globally competitive world of the twenty-

first century, it is no longer an option for students to head towards a similar fate. To reverse course, 
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and create a generation that understands and can use mathematics, teachers must change the way 

they teach mathematics in school. 

Professional development for teachers of mathematics is plentiful, and some of it aligns 

with research and publications on teacher professional learning (Borasi & Fonzi, 2002; Desimone, 

2009; Loucks-Horsley, Stiles, Mundry, Love, & Hewson, 2012; M. S. Smith, 2001) and student 

learning (Boston & Smith, 2011; Franke, Carpenter, Levi, & Fennema, 2001; Lampert et al., 2013). 

Despite this, a large proportion of mathematics teachers are still using traditional lecture or 

recitation methods (Horizon Research Inc., 2013). For some teachers, traditional methods persist 

even after having participated in professional development around best practices for teaching 

mathematics (Removcik, 2014; Wang & Romero, 2013). Ignoring best practices leads to the area 

of concern for the proposed research study. To introduce the problem of practice for this 

dissertation, the chapter first turns to a short, historical examination of the development of 

ambitious teaching practices. Following that, the chapter turns to examining the context of the 

problem that will be addressed in this dissertation including possible reasons the problem exists 

and potential solutions.  

1.1 Ambitious teaching practices 

Beginning before the publication of A Nation at Risk (The National Commission on 

Excellence in Education, 1983), there has been an increasing body of evidence that traditional 

methodologies for teaching mathematics are not effective with all students. In the 1980s, research 

aimed at improving instruction in mathematics came to the forefront with the publication of the 

NCTM’s Curriculum and Evaluation Standards for School Mathematics (National Council of 
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Teachers of Mathematics [NCTM], 1989) which made the case for changes in instructional 

practice, in part, by stating, 

All industrialized countries have experienced a shift from an industrial to an information 

society, a shift that has transformed both the aspects of mathematics that need to be 

transmitted to students and the concepts and procedures they must master if they are to be 

self-fulfilled, productive citizens in the next century. (p. 3)  

Prior to publication of the Standards, researchers at institutions across the country (e.g., 

Stanford, University of Pittsburgh) had already begun working with teachers to change the face of 

mathematics teaching (e.g., Cohen, 1990; Shulman, 1987; Stein & Wang, 1988). While the 

findings from a number of studies encouraged similar pedagogies, different labels were used over 

the years to describe such teaching. Terms such as “reform-oriented” (Stein, Grover, & 

Henningsen, 1996), based on the fact that mathematics teaching was reforming, and “standards-

based” (Resnick, Stein, & Coon, 2008), due to the fact that these practices were encouraged by the 

NCTM Standards (NCTM, 1989, 1991, 1995, 2000), were used to describe practices involving 

similar methodologies.  

Hiebert, et al. (1997) defined reform-oriented instruction as including: (1) the use of 

problematic tasks as chosen by the teacher; (2) the establishment of a culture of collaboration for 

learning; (3) the use of mathematical tools to support learning; and (4) mathematical discourse. 

Standards-based instruction, as defined in the Journal for Research in Mathematics Education 

includes an “emphasis on student-centered instruction that engages students in exploration of 

mathematical facts and principles through collaborative work on authentic problems” (Huntley, 

Rasmussen, Villarubi, Sangtong, & Fey, 2000, p. 329) wherein students construct meaning for the 

mathematical concepts and procedures they are investigating and engage in meaningful problem-
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solving activities…facilitated by teachers who elicit, support, and extend children’s mathematical 

thinking (Fraivillig, Murphy, & Fuson, 1999); promote discussions (e.g., Schifter & O’Brien, 

1997); use meaningful representations of mathematical concepts (Fuson, Smith, & Cicero, 1997; 

Fuson, Wearne, et al., 1997); and encourage use of alternative solution methods (Carpenter & 

Fennema, 1991; Hiebert & Carpenter, 1992). (Fuson, Carroll, & Drueck, 2000, p. 277). As one 

can see, the teaching pedagogies for reform-oriented mathematics instruction and standards-based 

mathematics instruction are parallel. 

As the body of educational research increased and the impetus to have a common set of 

content-related expectations reached critical mass, a new set of standards, the Common Core State 

Standards (CCSS) (National Governors Association Center for Best Practices and Council of Chief 

State School Officers [NGA and CCSSO], 2010), came into existence. Within the CCSS, the 

exposition and specification of habits of mind related to student learning, some common across 

content areas and some not (e.g., Standards for Mathematical Practice, Capacities for English 

Language Arts), remained critical guideposts for instruction. The teaching methods for allowing 

students to engage in the Standards for Mathematical Practice are closely related to what was 

known as “reform-oriented” or “standards-based” teaching. These teaching methodologies are now 

characterized as “ambitious instruction.” 

There are many groups with ideas about ambitious teaching (e.g., Ball & Forzani, 2009; 

Windschitl, Thompson, Braaten, & Stroupe, 2012 etc.,). As one looks across the work of these 

groups, the teaching practices associated with ambitious teaching become numerous. For this 

inquiry, the author employs the following definition of ambitious teaching offered by Lampert, 

Boerst, and Graziani (2011). “ ‘Ambitious teaching’ is teaching that aims to teach all kinds of 

students to not only know academic subjects but also to be able to use what they know in working 
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on authentic problems in academic domains” (p. 1361). Furthermore, this study will narrow the 

field of ambitious teaching practices by using the eight effective Mathematics Teaching Practices 

(NCTM, 2014) as a means of concretizing how ambitious teaching in mathematics is enacted in 

the classroom. As stated by Smith, Boston, and Huinker (2017) in the preface of the book series 

Taking Action: Implementing Effective Mathematics Teaching Practices, “Decades of empirical 

research in mathematics classrooms support these teaching practices” (p. v). Using the eight 

effective Mathematics Teaching Practices as indicative of ambitious instruction will serve to limit 

the number of methodologies teachers must consider while improving their teaching and making 

it more ambitious1. Throughout this document, the term "ambitious teaching" is used in reference 

to studies and ideas that may precede the use of such terminology, but which refer to teaching 

mathematics in ways that are synonymous with the current meaning of ambitious teaching. 

1.2 Context of the problem 

Ambitious teaching practices in mathematics (Lampert, Beasley, Ghousseini, Kazemi, & 

Franke, 2010; Lampert et al., 2011) result in higher student achievement. Boaler and Staples, 

(2008) provided evidence for this claim. Their work in high schools showed that students in 

classrooms where teachers employ ambitious mathematics teaching practices have “higher overall 

achievement on a number of measures” (p. 608). While Boaler and Staples made a persuasive 

argument for ambitious instruction, they are not the only ones to provide research, information, 

                                                 

1 Over decades, the author-researchers whose work inspired this study have been instrumental in developing, 
defining, and elaborating the eight effective Mathematics Teaching Practices within the volumes of the Taking Action 
series (Boston, Dillon, Smith, & Miller, 2017; Huinker & Bill, 2017; Smith, Steele, & Raith, 2017). 
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and data to support it. Boaler and Staples corroborated Stein, Grover, and Henningsen’s (1996) 

findings from research connected to middle school mathematics in the Quantitative Understanding: 

Amplifying Student Achievement and Reasoning (QUASAR) project (Silver & Stein, 1996). The 

Cognitively Guided Instruction (CGI) team (Fennema et al., 1996; Franke, Carpenter, Fennema, 

Ansell, & Behrend, 1998; Franke et al., 2001) showed effects on (1) teacher knowledge and beliefs, 

(2) classroom instructional practices, and (3) student learning as a consequence of professional 

development that assisted elementary school teachers of mathematics in using more ambitious, 

student-centered teaching practices. Thus, studies at each grade band of school mathematics 

showed that ambitious instructional strategies improve student learning in mathematics. Why is it, 

then, that mathematics teachers do not consistently implement such teaching practices in their 

classrooms?  

1.2.1  Possible barriers to ambitious mathematics teaching 

While there are multiple possible causes for the lack of ambitious mathematics teaching, 

including multiple contextual factors like unsupportive administrators or communities that push 

for preservation of the status quo, no primary reason has been determined. Some possible 

explanations for why teachers do not employ ambitious teaching practices in mathematics may 

involve a lack of content knowledge for teaching (Ball, Thames, & Phelps, 2008; Shulman, 1986); 

a dearth of pedagogical content knowledge, especially in relation to effectively implementing the 

cognitively demanding mathematics tasks that are an essential part of ambitious instruction (Smith 

& Stein, 2011; Stein, Smith, Henningsen, & Silver, 2000); a set of beliefs and attitudes that are 

incongruent with teaching in an ambitious manner (Knapp & Peterson, 1995; Warfield, Wood, & 

Lehman, 2005); or preparation and on-going training that is not well-aligned with practices 



 

7 

undertaken in the field (Grossman et al., 2009). This section will briefly discuss these possible 

reasons for the lack of ambitious mathematics teaching. 

The first possible reason for lack of ambitious mathematics instruction mentioned above is 

a lack of content knowledge for teaching. According to Ball, Thames, and Phelps (2008), 

mathematical knowledge for teaching includes “knowledge of content and students…knowledge 

of content and teaching and…specialized content knowledge which is distinct from the common 

content knowledge needed by teachers and non-teachers alike” (p. 389). One of the most pervasive 

problems in mathematics education is the lack of content knowledge for teaching (Ball et al., 

2008). So, is it plausible that a lack of mathematical knowledge for teaching influences the delivery 

of school mathematics to students such that ambitious mathematics teaching practices are either 

ignored or implemented without fidelity? What if teachers gained the necessary mathematical 

knowledge for teaching? Might their teaching practices become more ambitious in nature? 

A second possible reason for the lack of ambitious mathematics instruction is a deficiency 

in pedagogical content knowledge (Ball et al., 2008; Shulman, 1986) related to effectively 

implementing cognitively demanding tasks. Examining one of the aspects of ambitious 

mathematics teaching as presented by Hiebert et al. (1997), that of using problematic, cognitively 

demanding tasks, makes it evident that teachers need either pre-service or in-service professional 

development to learn what such tasks look like and how to implement these tasks. Both the TIMSS 

video study (National Center for Education Statistics [NCES], 2003), and research findings from 

the QUASAR project (Stein et al., 1996), demonstrate that if American mathematics teachers 

choose to implement cognitively demanding mathematics tasks, they tend to lower the cognitive 

demand of such tasks when they are enacted. (NCES, 2003; Silver & Stein, 1996; Stigler & 

Hiebert, 1999). So, is it possible that attaining the pedagogical content knowledge to successfully 



 

8 

implement cognitively demanding tasks can lay the groundwork for more ambitious mathematics 

instruction? 

Ambitious mathematics teaching practices are meant to attend to and be responsive to 

student thinking (Huinker & Bill, 2017). Beliefs and attitudes incongruent with ambitious 

mathematics teaching practices provide a third possible reason why teachers do not employ 

ambitious teaching methods. Some mathematics teachers subscribe to the belief that there is such 

a thing as a “math brain,” and that students either have it, or they don't (Boaler, 2015; Dweck, 

2006). If teachers subscribe to belief in a “math brain,” then student thinking about mathematics 

either gives the right answer or not, without any room for variation. Teachers, themselves, were 

often taught via rigid methods that emphasized one “right” or expected way of solving 

mathematics problems based on memorized facts and algorithms. Since teachers tend to teach in 

the way they were taught, learning to teach in their K-12 years as opposed to their teacher training 

courses (M. S. Smith, 2001; Wiliam, 2013), they may not have beliefs or attitudes conveying that 

all students are capable of doing mathematics to high levels (Boaler, 2013) or that there are many 

and varied ways to solve mathematics problems. If teacher attitudes and beliefs change to reflect 

that all students are capable of learning mathematics, might mathematics teaching become more 

ambitious in nature? If teachers begin to embrace the multiple ways mathematics problems may 

be solved, and become responsive to the student thinking behind the various methods, might there 

be evidence of that belief in their pedagogy2?  

One final reason why mathematics teachers may not employ ambitious teaching practices 

comes from the work of Grossman and her colleagues (2009). They discussed three common 

                                                 

2. While teachers' beliefs and attitudes provide a viable reason for why ambitious mathematics teaching is 
lacking, the author will not explore this reason during the anticipated study. 
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approaches for training future clergy, teachers, and psychologists. All these developmental 

programs involved representation, decomposition, and approximation of practice as key 

pedagogical components. In teaching, examples of representations of practice include vignettes of 

classroom episodes or videos explaining particular teaching techniques, like wait time. 

Decompositions of practice in the teaching profession include writing learning goals for a lesson 

or rehearsing the process of giving directions. “Approximations of practice refer to opportunities 

to engage in practices that are more or less proximal to the practices of a profession” (p. 2056). In 

teacher training, approximations might be launching an actual classroom lesson with a mentor 

present or scripting a portion of a lesson as it is being taught. Unfortunately, teaching has the least 

well-developed approximations of practice of the pre-professional programs studied by Grossman 

and her colleagues. The majority of what is commonly part of teacher professional development 

is made up of representation and decomposition of practice. Close approximation of practice is not 

the norm in most professional development sessions (Grossman et al., 2009), as it becomes 

difficult to replicate realistic classroom experiences with only teachers in attendance. Does the 

lack of close approximation of practice during professional development account for why many 

teachers of mathematics do not employ ambitious teaching practices? If more close approximation 

of practice were included in continuing teacher training, might teachers’ practice become more 

ambitious? 

Much of this section alludes to a deficiency or need for change in mathematics teachers’ 

knowledge, background, or experiences. Thus, it seems reasonable to conclude that teachers need 

professional development to deepen and expand their mathematical knowledge for teaching and 

pedagogical content knowledge (Ball et al., 2008) and to increase their opportunities to engage in 
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decompositions, representations and approximations of practice (Grossman et al., 2009). The next 

section examines responses to the barriers to ambitious instruction described above.  

1.2.2  Responses to barriers to ambitious instruction 

Despite the shortfalls and possible reasons for a lack of ambitious mathematics teaching 

cited in the previous section, there have been studies of professional development that has been 

effective in changing teacher’s classroom practice. While a lack of content knowledge for teaching 

provides one reason teachers do not employ ambitious practices, Heather Hill and colleagues have 

shown that there is a connection between teachers’ professional development experiences and (a) 

their mathematical content knowledge for teaching (Hill & Ball, 2004),  

(b) their classroom pedagogy related to mathematics instruction (Hill, Blunk, et al., 2008) and (c) 

their students’ subsequent mathematics learning (Hill, Rowan, & Ball, 2005). With these studies 

in mind, perhaps there is reason to believe that an increase in content knowledge for teaching can 

positively effect classroom practice to make it more ambitious. 

Hill and colleagues investigated changes in classroom pedagogy as a result of professional 

development, but other studies showed an impact on specific aspects of mathematics classroom 

pedagogy as a result of professional development. The second reason given in this chapter for the 

lack of ambitious mathematics instruction is a deficiency in pedagogical content knowledge related 

to effectively implementing cognitively demanding tasks. The writings of Boston and Smith (2009, 

2011) demonstrate that teachers can learn to implement high-level tasks while maintaining the 

level of cognitive demand inherent in the written version of the task. Boston and Smith worked 

with school-based mentor teachers for Masters of Arts in Teaching (MAT) students over two 

successive school years while examining the teachers’ use of tasks (Boston, 2013; Boston & Smith, 
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2009). The researchers subsequently followed up with seven of the teachers from the original 

study, demonstrating retention of the use of high-level, cognitively demanding tasks after the 

professional development concluded (Boston & Smith, 2011). With these studies in mind, perhaps 

there is reason to think that, like increasing mathematical knowledge for teaching, learning to 

effectively implement cognitively demanding tasks translates to making classroom practice more 

ambitious. 

A third possible reason provided for why teachers do not employ ambitious practices is 

that they may have beliefs and attitudes that are incongruent with teaching in an ambitious manner. 

Warfield, Wood, and Leham (2005) found that when teachers believed in their own and their 

students’ autonomy or ability to make decisions for themselves, there was a greater tendency to 

encourage and support student-created solution strategies for novel problems. This potentially 

relates to several of the effective mathematics teaching practices like eliciting and using student 

thinking and supporting productive struggle, among others (NCTM, 2014). Additionally, 

researchers in the CGI studies found that when teachers believed that children’s thinking was at 

the heart of their teaching practice, they were more likely to employ ambitious mathematics 

teaching (Franke et al., 1998, 2001). 3 

The last reason posed for why teachers do not employ ambitious mathematics teaching is 

preparation or on-going training that is not well-aligned with what actually occurs in the field. 

Cohen and Ball (1999) and Smith (2001) provide evidence that teacher training can align with 

what is undertaken by teachers in the field. They write that when teachers encounter materials from 

actual classrooms, akin to the close approximations of practice described by Grossman et al. 

                                                 

3 While teachers' beliefs and attitudes is a viable reason for why ambitious mathematics teaching is lacking, 
the author will not explore this reason during the anticipated study. 
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(2009), they have the chance to examine, explore, critique, and simply think more about some new 

or different teaching practices. To illustrate, Smith cites the example of professional development 

in which teachers interact with a “mathematical task along with a carefully selected set of student 

responses” and argues for teachers to engage in “the work of teaching” (p. 8) by planning, enacting, 

and reflecting upon instruction during professional development activities. Cohen and Ball bring 

up the idea of using tasks that are specifically designed for teachers in order that they engage 

directly with the work done during teaching, even though they are in a professional development 

setting. These author-researchers seem to argue that when close approximations of the teaching 

practice are a part of professional development, then teachers have the opportunity to transfer that 

learning to their classroom and engage in more ambitious teaching.  

While the counterarguments above show that there are cases of teachers using more 

ambitious teaching practices after: (1) increasing mathematical knowledge for teaching; (2) 

learning about the pedagogy of sustaining cognitive demand with task implementation; (3) 

adopting beliefs and attitudes that convey an interest in student learning; or (4) participating in 

professional development with close approximations of practice; these instances are certainly not 

ubiquitous. While the mathematics literature identifies cases where mathematics teachers learn to 

implement and sustain ambitious teaching practices (Boston & Smith, 2009, 2011; Franke et al., 

1998, 2001), there does not seem to be a consistent connection between professional development 

and use of ambitious practices in mathematics education (Horizon Research Inc., 2013; Staples, 

2007; Wang & Romero, 2013). Therefore, the need for teacher professional development or 

experiences that allow for close approximation of practice while increasing mathematical 

knowledge for teaching and increasing teachers’ opportunities to learn about implementing 

cognitively challenging tasks with fidelity still exists. Perhaps stand-alone, outside-the-classroom 
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professional development is not enough to consistently change teachers’ methodologies in the 

classroom. Perhaps something more is needed to increase mathematics teachers’ use of ambitious 

teaching practices. 

1.3 The problem of practice 

For more than 14 years, my work has focused on delivering professional development to 

PK-12 mathematics teachers, therefore, the connections between professional development and 

ambitious mathematics instruction are of interest. My workgroup, the Math & Science 

Collaborative (MSC), and I have experienced, firsthand, that even with professional development 

many teachers still do not implement ambitious teaching methods in their classroom. Over the 

years, my workgroup’s mathematics institutes focused on the development of mathematical 

knowledge for teaching, as elucidated by Ball and her colleagues (2008; Hill et al., 2008); the 

development of ambitious mathematics teaching practices, including the use of cognitively-

demanding, high-level tasks (Boston & Smith, 2011; Smith, Hughes, Engle, & Stein, 2009), the 

use of classroom discourse (Chapin, O’Connor, & Anderson, 2009; Michaels, O’Connor, & 

Resnick, 2008; M. S. Smith et al., 2009), and the use of appropriate mathematical tools (Carpenter, 

Fennema, Franke, Levi, & Empson, 1999; Hiebert et al., 1997; Huinker & Bill, 2017) among other 

ambitious practices. We also worked to help teachers develop positive beliefs and attitudes towards 

student-centered instruction (Warfield et al., 2005). Additionally, the professional development 

employed the key components of Grossman et al.’s (2009) pedagogies of practice, namely 

representation, decomposition, and approximations of practice.  
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In contrast to some of the previously cited work, where teachers employed ambitious 

teaching practices (Boaler & Staples, 2008; Boston & Smith, 2009; Franke et al., 2001), my 

group’s work did not show similar results (Removcik, 2014; Romero & Winters, 2013; Wang, 

2013; Wang & Romero, 2013). Few teachers used the pedagogy of ambitious teaching in their 

classroom or retained any ambitious teaching practices. Thus, the relevant questions become: Why 

is it that even with professional development geared towards ambitious mathematics instruction 

and with increased mathematical content knowledge, some teachers do not implement ambitious 

teaching methods in their classroom? Why do mathematics teachers continue with or return to 

traditional models of teaching? Do teachers need more or different experiences to help them bridge the gap between the 

professional development setting outside their classroom and the student-teacher interactions that take place in their classrooms? 

Could it be a lack of close approximations of practices, as Grossman and colleagues (2009) 

suggest, that account, at least in part, for the lack of ambitious teaching practices in use in 

mathematics classes? Might including professional development work inside the classroom help 

increase the use of ambitious mathematics teaching? 

The proposed study aims to find out if more proximal support for teachers helps or 

catalyzes teachers’ enactment of ambitious teaching practices that value and “attend to student 

thinking in an equitable and responsive manner” (Huinker & Bill, 2017, p. 4). More specifically, 

the purpose of this research study is to find out if pairing content-focused, outside-the-classroom 

professional development with coaching mathematics teachers in their classrooms impacts 

mathematics teaching to make it more ambitious. If so, how does that impact compare to the impact 

of the content-focused professional development without the added coaching component? Thus, 

the goal of the study is to investigate whether coaching added to outside-the-classroom 

professional development correlates with an increase in use of ambitious teaching practices. 
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1.4 Inquiry setting 

Putnam and Borko (2000) offer that in order to situate learning experiences for in-service 

teachers within their practice, professional development might take place in their schools or even 

their classrooms. One possible method for increasing proximal support for teachers that involves 

greater use of in situ professional learning (Putnam & Borko, 2000) is content-focused coaching 

(Gibbons & Cobb, 2016; West & Staub, 2003). Sustained coaching, over a period of years, has 

been shown to increase student achievement in schools (Campbell & Malkus, 2011). The 

implementation of coaching within an adaptable model, wherein the coach can alter the 

implementation within given parameters, has also been shown to be effective (Russell et al., 2019).  

Evidence exists to show that professional development can effect teacher practice (Boston 

& Smith, 2009, 2011; Franke et al., 1998) and that teacher practice effects student learning (Boaler 

& Staples, 2008; Fennema et al., 1996; Silver & Stein, 1996). Evidence exists to show that 

coaching can change teacher practice (Matsumura, Garnier, & Spybrook, 2013) and increase 

student achievement (Campbell, 2012; Campbell & Malkus, 2011). Thus, it seems the combination 

of coaching and outside-the-classroom professional development, both addressing ambitious 

mathematics teaching could be more effective than either outside-the-classroom professional 

development or coaching alone in changing teacher practice to make it more ambitious. Others 

have published about the combination of coaching and professional development. Neufeld and 

Roper (2003) wrote, “in light of our current knowledge about what it takes to change a complex 

practice like teaching, there are reasons to think that coaching, in combination with other 

professional development strategies, is a plausible way to increase schools’ instructional capacity” 

(p. 1). Cobb and Jackson (2011) concurred in calling for this pairing, saying what is needed is a 

“coherent system of supports for ambitious instruction” (p. 9) involving coaching as a key 
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component for “improving mathematics instruction at scale” (p. 9). I submit that if the professional 

developer helps the in-service teacher decompose and represent his or her practice during the 

outside-the-classroom professional development experience and is present to help the teacher 

approximate their professional practice (Grossman et al., 2009) while in the classroom, the teacher 

will be more likely to employ ambitious mathematics teaching practices.  

1.5 Inquiry questions 

The compilation of my previous experiences and much of the research referenced within 

caused me to consider investigating how the proximity of a more knowledgeable other, acting as 

both the professional developer and a coach, in the classroom environment might change the level 

of implementation of ambitious mathematics teaching practices. I hope to discover whether more 

proximal support for teachers helps or catalyzes mathematics teachers’ enactment of ambitious 

teaching practices. The proximal professional development will include working with the teacher 

in their school and classroom to plan, teach, and reflect upon the lesson. This type of professional 

development is, in essence, content-focused coaching (Gibbons & Cobb, 2016; Matsumura, 

Garnier, Correnti, Junker, & Bickel, 2010; West & Staub, 2003).  

I hypothesize that increasing the proximity of the professional development to the 

classroom will increase the likelihood of ambitious mathematics teaching practices. Therefore, the 

investigable research questions are: 
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How does proximal, in situ professional development in the form of content-focused coaching 

paired with outside-the-classroom professional development facilitate a change in mathematics 

teachers' pedagogical practices from traditional to more ambitious?   

 

• What is the impact on teachers’ opportunities to learn about ambitious teaching 

practices when content-focused coaching is added to professional development?  

 

• What is the impact on teachers’ use of ambitious teaching practices when content-

focused coaching is added to professional development? 
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2.0 Literature Review 

Ambitious mathematics instruction (Lampert et al., 2011) positively impacts student 

learning of the subject (Boaler & Staples, 2008; Carpenter & Fennema, 1991; Hiebert & Grouws, 

2007; Stein & Lane, 1996). However, teachers of mathematics at K-12 often do not employ 

ambitious mathematics teaching pedagogies (Hiebert et al., 2005; Horizon Research Inc., 2013). 

Despite availability of professional development (PD) experiences aligned with adult learning 

needs (M. S. Smith, 2001), and research on effective professional practice (Darling-Hammond & 

Bransford, 2005; Garet, Porter, Desimone, Birman, & Suk Yoon, 2001), teachers often persist in 

employing more traditional methodologies in their classrooms or do not sustain changes made to 

their teaching methods (Removcik, 2014; Staples, 2007; Stein & Wang, 1988; Wang & Romero, 

2013). The intention of this study is to uncover evidence about whether pairing content-focused 

coaching (Gibbons & Cobb, 2016; Matsumura et al., 2010; West & Staub, 2003) with outside-the-

classroom PD catalyzes a change in teaching practice from traditional to ambitious. Before 

embarking on the study, the literature surrounding ambitious mathematics teaching as well as 

content-focused coaching needs investigating. 

This chapter provides a literature review of the concepts relevant to the study. First, the 

chapter recounts a portion of the rich history of literature surrounding ambitious instruction and 

transitions to discussing current conceptions of ambitious mathematics teaching. Then, the chapter 

examines the literature showing that teachers of mathematics can change their practice from 

traditional to ambitious with PD supporting this change in practice. The last part of this chapter 

reviews the body of research on coaching in the classroom. The review includes an examination 

of coaching’s roots, its evolution, and its current state within the research findings. The chapter 
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closes by sharing some information relevant to the relationship between the proposed study and 

the current state of the literature on ambitious mathematics teaching and content-focused coaching, 

making the case that despite the extensive research base for ambitious instruction and despite the 

developing and evolving work being done in the field of coaching, there is room in the research 

field for this study. 

2.1 The roots of ambitious teaching 

There is a rich history surrounding what is currently called ambitious instruction in 

mathematics. What this dissertation calls ambitious mathematics instruction is defined by Lampert, 

Boerst, and Graziani as “teaching that aims to teach all kinds of students to not only know academic 

subjects, but also to be able to use what they know in working on authentic problems in academic 

domains” (2011, p. 1361). Mathematics instruction fitting this description has been labeled in a 

variety of different ways since its inception. Over the years, different projects and different 

researchers have used different labels for what this study calls ambitious mathematics teaching. 

The terms and labels used have evolved and, in some cases, become more precise.  

 Terminology associated with ambitious mathematics instruction 

Some early terminology used to describe ambitious mathematics teaching fell out of favor 

with time and the introduction of different terminology. Members of the Quantitative 

Understanding: Amplifying Student Achievement and Reasoning (QUASAR) research team used 

the term enhanced mathematics instruction in some early research publications (Silver, Smith, & 
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Nelson, 1995; Silver & Stein, 1996; Stein et al., 1996) when referring to instruction involving the 

implementation of high-level mathematics tasks and the use of classroom discourse in association 

with task implementation. Silver and Stein (1996) also used the term meaning-oriented instruction 

(p. 503) in contrast to instruction emphasizing memorized procedures. Meaning-oriented 

instruction uses cognitively challenging tasks to encourage deeper understanding of the concepts 

which students are learning.  

Other terminology used to describe what is now known as ambitious instruction employs 

the word “inquiry.” Inquiry-oriented was used by Silver (1994) and Hughes, Smith, Boston, and 

Hogel (2008). Silver used the term in the context of mathematical problem posing by discussing 

how problem posing is a natural part of inquiry-oriented instruction, which also included student 

problem solving and “discovery” of mathematical ideas. While the term “discovery learning” is 

no longer prevalent, ambitious instruction does include student formation of conceptual 

understanding enabled by engagement with cognitively challenging problems. Hughes et al. used 

the term inquiry-oriented in connection with teacher professional development provided during 

the Enhancing Secondary Mathematics Teacher Preparation (ESP) program. In the ESP program, 

inquiry-oriented instruction entailed the use of cognitively-challenging mathematics tasks and the 

related teaching practices meant to sustain a high-level implementation of the task. These practices 

included supporting and using student thinking about the task and related mathematics via 

questions and discourse practices that specifically call for justifying strategies used. The term 

inquiry-based was used by Fraivillig, Murphy, and Fuson (1999). This team wrote about a 

framework devised to support teachers during inquiry-based mathematics instruction. The 

framework had three parts: “Eliciting Children’s Solution Methods, Supporting Children’s 

Conceptual Understanding, and Extending Children’s Mathematical Thinking” (p. 148). The 
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labels for the parts of Fraivillig et al.’s framework are reminiscent of the eight effective 

Mathematics Teaching Practices (NCTM, 2014) describing ambitious mathematics instruction. 

The term “reform” was also frequently used to describe teaching practices that align with 

ambitious mathematics instruction. Reform-oriented was in the writings of Hiebert et al. (1997), 

Borasi and Fonzi (2002), and Boaler and Staples (2008). As mentioned in chapter 1 of this 

document, Hiebert and colleagues provided details around the elements of reform-oriented 

mathematics instruction in their publication, Making Sense: Teacher and Learning Mathematics 

with Understanding (1997). Components of reform-oriented instruction included changes in 

classroom tasks, the teacher’s role, the nature of and way in which tools are used, the classroom 

culture, and the accessibility and equity in the classroom. Like Hiebert et al. (1997), Borasi and 

Fonzi (2002) provided a definition of “reform-oriented” mathematics teaching, when they wrote 

that it “involves much more than ‘superficial features’ such as using manipulatives …. Rather, 

…we refer to a comprehensive approach to mathematics instruction that is centered on teaching 

for understanding and enabling students to engage with meaningful problems and ‘big ideas’” (p. 

9). Paramount in this definition were (1) developing student understanding, and (2) confronting 

meaningful mathematics by way of problems encountered. Boaler and Staples (2008) also referred 

to reform-oriented mathematics instruction. While the authors did not provide a definition for 

reform-oriented instruction like Hiebert et al. (1997) or Borasi and Fonzi (2002), they did provide 

that the “demands placed upon students in reform-oriented classrooms are quite different than 

those in more traditionally organized classrooms” (p. 610) and success of such an approach 

“depends on teachers’ careful and explicit attention to the ways students may be helped to 

participate in new learning practices” (p. 611). 
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Other terms employing the word “reform” to describe ambitious mathematics teaching are 

reform-aligned and reform practices both used by Staples (2007), and reformed teaching used by 

Sawada et al. (2002). Staples discussed practices such as questioning, communicating, explaining, 

and sense-making. Sawada and colleagues provided at least a partial definition for reformed 

teaching as “a movement away from the traditional didactic practice…Reform presupposes that 

teachers do not emphasize lecture, but rather stress a problem-solving approach and foster active 

learning” (p. 246).  

Finally, a term used quite often to imply ambitious teaching is Standards-based instruction. 

A number of researchers employed this term over the last few decades, including but not limited 

to, Tarr, et al. (2008) and Stein, Smith, Henningsen, and Silver (2000; 2009). Tarr and colleagues 

used the term in connection with a type of learning environment aligned to the view of student 

learning apparent in the NSF-funded curricular materials. Tarr et al. labeled this classroom 

environment a Standards-Based Learning Environment (SBLE) and described the SBLE as one 

that generally encourages “active engagement of students, a focus on problem-solving, and 

attention to connections between mathematical strands as well as real-life contexts” (p. 248). Stein 

et al.’s (2000, 2009) publication, Implementing Standard-Based Mathematics Instruction, was 

about using–choosing, setting-up, and carrying out–high-level, cognitively challenging 

mathematical tasks in the classroom. Stein et al.’s text discussed mathematics tasks, their cognitive 

demand, which is explained as “the kind and level of thinking required of students in order to 

successfully engage with and solve the task” (p. 1), and their classroom implementation. The text 

then employed a series of cases, to illustrate “research-based patterns of teaching and learning” (p. 

xxi) and help readers connect their own classroom instructional patterns, to the cases in hopes of 

supporting the use of Standard-based instructional strategies.  
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Use of the term Standards-based instruction leads to the NCTM Standards documents 

(1989, 1991, 1995, 2000b), especially the Professional Standards for Teaching Mathematics 

(NCTM, 1991). This document contained six standards for mathematics instruction from which 

the term Standards-based is derived. These standards were presented in four sections on tasks, 

discourse, environment, and analysis. These standards had labels such as: Worthwhile 

Mathematical Tasks; Teacher’s Role in Discourse, Learning Environment and Analysis of 

Teaching and Learning. The sections explaining each of the standards within the Professional 

Standards document contain verbiage much like that in other NCTM documents that were yet to 

be published in 1991, such as the Principles and Standards for School Mathematics (NCTM, 2000) 

and Principles to Action: Ensuring Mathematical Success for All (NCTM, 2014).  

Borko, Kieran, and Lester (2004), as quoted in Tarr et al. (2008), observed that “the general 

mathematics education community too often uses terms such as 'standards-based instruction,' 

'reform-based classrooms,' 'problem-based instruction,' and 'inquiry-based teaching' 

interchangeably" (p. 266). This statement seems to imply that the terms are not similar enough to 

be interchangeable. However, thorough examination of the Professional Standards (NCTM, 1991) 

leads to the conclusion that the other terminology mentioned in this section and associated with 

ambitious mathematics instruction is all connected to a core set of teaching practices that are 

similar in multiple facets, such as: emphasis on problems, high-level tasks, or challenging 

classroom experiences in mathematics; use of classroom discourse; and envisioning a classroom 

where all students’ contributions are valued.  
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 Early calls for ambitious teaching 

While some of the roots of ambitious mathematics teaching are in the Standards documents 

(NCTM, 1989, 1991, 1995, 2000b), another prevalent starting point for research around ambitious 

mathematics teaching lies with Lee Shulman’s (1986) Presidential address at the American 

Educational Research Association (AERA) annual meeting. Shulman began a conversation that 

continues today by stating that the practice of teaching needed to change and improve. He put forth 

a new theoretical framework around the practice of teaching. Shulman said more study about 

knowledge types and skills needed for teaching was necessary, and he proposed three categories 

of teacher knowledge: subject matter content knowledge, which is “the amount and organization 

of knowledge per se, in the mind of teachers” (p. 9); curricular knowledge, which includes 

understanding how and why topics are arranged a certain way in the curriculum; and pedagogical 

content knowledge, which is “subject matter knowledge for teaching” (p. 9).  

This was the first mention of a category of teacher knowledge blending content and 

pedagogy. Shulman bolstered his argument for its existence by stating,  

Mere content knowledge is likely to be as useless pedagogically as content-free skill. But 

to blend properly the two aspects of a teacher's capacities requires that we pay as much 

attention to the content aspects of teaching as we have recently devoted to the elements of 

teaching process. (1986, p. 8) 

In addition to introducing educational researchers to the idea of pedagogical content 

knowledge (1986, 1987), Shulman also inspired a line of research into training teachers in the 

practice of teaching when he specifically called for case study development and usage in training 

programs; a call that continued in other writing (Shulman, 1998). Through these writings and by 

attempting to frame and codify effective teaching in content areas, Shulman and his team 
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established a foundation for the continuing conversation about ambitious teaching practices and 

related constructs. 

 Other constructs are related to ambitious instruction 

 Ambitious instruction leads to increased student learning 

Shulman’s (1986) address, along with NCTM’s Standards documents (1989, 1991, 1995, 

2000b) and government funding from the National Science Foundation (NSF), prompted multiple 

lines of research in mathematics education. Some research examined classroom instruction and its 

impact on student learning, showing that ambitious mathematics instruction increased student 

achievement (Boaler & Staples, 2008; Carpenter, Fennema, Peterson, Chiang, & Loef, 1989; Stein 

& Lane, 1996). As discussed in chapter 1 of this dissertation, ambitious teaching practices are 

connected to increased student learning in the mathematics classroom at every grade band.  

Cohen and Ball (2001) and Stein, Remillard, and Smith (2007) showed that it is the 

instruction, not textbooks or curricular materials, that makes the difference in student learning. 

Multiple studies reinforce this finding. Research associated with Cognitively Guided Instruction 

(CGI) showed that ambitious mathematics instruction at the elementary level leads to increased 

student achievement (Carpenter et al., 1989; Fennema et al., 1996). The QUASAR project’s 

interrelated studies (Henningsen & Stein, 1997; Silver & Stein, 1996; Stein et al., 1996; Stein & 

Lane, 1996; Stein & Smith, 1998) done at the middle school level indicated that “mathematical 

tasks with which students become engaged determine not only what substance they learn but also 

how they come to think about, develop, use, and make sense of mathematics” (Stein et al., 1996, 

p. 459). Furthermore, “the greatest learning gains for students are realized when students have 

consistent opportunities to engage with high-level tasks” (M. S. Smith & Stein, 2018, p. 130). 



 

26 

Boaler and Staples’ (Boaler, 2006a, 2006b; Boaler & Staples, 2008) longitudinal study of the 

pedagogical practices in high school mathematics classes evidenced that ambitious instruction 

increased student learning in high school, showing that students in a de-tracked, urban-like high 

school setting significantly outperformed their peers in tracked and suburban-like settings when 

ambitious teaching practices were employed. While there are differences among the studies, 

including but not limited to the grade bands, the CGI studies, the QUASAR studies, and the 

Railside study all demonstrate one common finding: Ambitious mathematics practices positively 

impact student achievement. 

 Increased teacher knowledge leads to ambitious instruction 

Another line of research directly influenced by Shulman’s (1986) challenge addressed the 

types of teacher knowledge, skills, proficiencies, expertise, and capacities needed to effectively 

instruct in mathematics classrooms. While there are those in the mathematics community, like 

Askey (2001), who contend that mathematics teachers in the United States do not have the content 

knowledge needed to teach in an ambitious manner, others, like Ball and her colleagues (Ball & 

Bass, 2000; Ball et al., 2008), believe there is more to teaching than extensive content knowledge. 

They examined subdomains of content knowledge and other forms of teacher knowledge, which 

have their genesis in the writings of Shulman (1987). The work of Ball and Bass (2000) on bridging 

content and pedagogy led the way to Ball, Thames, and Phelps’ (2008) conceptualization of the 

ideas into the domains of Mathematical Knowledge for Teaching (MKT) which is “the 

mathematical knowledge needed to carry out the work of teaching mathematics” (p. 395). (See 

Figure 2.1.) Mapping the domains of MKT was a large step towards understanding what teacher 

knowledge makes a difference for ambitious classroom practice. 
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Figure 2.1 Domains of Mathematical Knowledge for Teaching (Ball et al., 2008, p. 403) 

 

An additional consequence of the research done by Ball’s Learning Mathematics for 

Teaching (LMT) team was the eventual development of a set of survey instruments that reliably 

and validly measured the component parts of mathematics teachers’ knowledge for teaching4 (Hill 

& Ball, 2004; Hill, Ball, & Schilling, 2008; Hill, Shilling, & Ball, 2004). Twenty years after his 

initial address, this team brought additional clarity, detail, and coherence to Shulman’s (1986, 

1987) ideas and conceptual framework regarding teacher knowledge. 

Boston (2013) undertook a study related to increased teacher knowledge within the 

Enhancing Secondary Mathematics Teacher Preparation (ESP) project. Boston’s study explored 

whether a change in teacher knowledge took place as a result of ESP PD. Boston used Desimone’s 

(2009) conceptual framework as a model for tracing the effects of the PD through changes in 

teacher knowledge regarding high-level tasks to changes in teacher practice with regard to 

                                                 

4 The paper-and-pencil assessment of MKT, called the Learning Mathematics for Teaching (LMT) 
assessment, was used as a means of matching coached and comparison groups before the start of the study for this 
dissertation. That was the extent of its use. It was not used to re-assess teacher MKT after coaching, and teacher 
knowledge was not used as a variable in this study. 
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selecting and implementing high-level tasks. The study gathered data on teacher knowledge via a 

written-response task-sort, and the data was connected to learnings from the PD. The participants 

in the PD significantly increased their scores from pre- to post-PD, showing increased teacher 

knowledge regarding cognitive demands. At the conclusion of the ESP PD, participants also had 

significantly more knowledge than the contrast group of secondary teachers who has not 

participated in the ESP PD. Although Boston (2013) did not employ the tools developed by Ball’s 

group to measure teacher knowledge, she surmised one possible reason for the change in teachers’ 

ability to successfully select and implement cognitively challenging tasks was teachers’ increased 

knowledge. 

Aside from research already reviewed, the initial roots of ambitious instruction provided 

by Shulman (1986) and the Standards (NCTM, 1989, 1991, 1995, 2000b) inspired other lines of 

research related to ambitious mathematics instruction. One research line examined the impact of 

PD on content knowledge for teaching (Bell, Wilson, Higgins, & Mccoach, 2010; Hill & Ball, 

2004). Another, which will be reviewed later in this document, examined the impact of PD on 

mathematics instruction, showing that teachers’ practice can be positively impacted by 

professional development (Boston & Smith, 2009, 2011; Franke et al., 1998; Knapp & Peterson, 

1995). Other teams influenced by Shulman examined the possible connection between teacher 

knowledge and student learning (Ball, Hill, & Bass, 2005; Hill et al., 2005). Still others worked 

on tools to qualitatively and quantitatively measure ambitious mathematics instruction (Learning 

Mathematics for Teaching Project, 2011; Matsumura et al., 2013; Sawada et al., 2002). These tools 

will also be reviewed next, as they comprise one last construct related to ambitious instruction.  
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 Ambitious mathematics teaching can be measured 

As previously stated, for decades, studies at elementary, middle, and high school have 

provided evidence that ambitious mathematics instruction results in increased student learning 

(Boaler & Staples, 2008; Carpenter et al., 1989; Stein & Lane, 1996). Some of the studies 

demonstrating increased student learning employed classroom observation tools to help make the 

link between ambitious instruction and student learning. For example, Fennema et al. (1996) used 

a tool measuring “Levels of Cognitively Guided Instruction” (p. 412) in their study with first- 

through third-grade teachers. The QUASAR project created their own Classroom Observation 

Instrument (COI) and used it to evaluate the implementation of tasks (Henningsen & Stein, 1997; 

Stein et al., 1996). Currently, there are three tools that research studies frequently use for 

examining instruction in mathematics classrooms: the Mathematics Quality of Instruction (MQI) 

tool; the Reformed Teaching Observation Protocol (RTOP); and the Instructional Quality 

Assessment (IQA). 

The Mathematical Quality of Instruction (MQI) classroom observation tool links teacher 

knowledge to classroom practice. While the Learning Mathematics for Teaching (LMT) team 

developed paper-and-pencil measures of a subset of domains related to Mathematical Knowledge 

for Teaching (MKT) (Hill & Ball, 2004; Hill, Ball, et al., 2008; Hill et al., 2005), they also worked 

to develop an observational instrument for use in classrooms. Hill, Blunk, et al. (2008) published 

an exploratory study which showed a relationship between teachers’ MKT, measured via the 

paper-and-pencil survey, and their classroom instruction, assessed via the MQI. Teachers who 

scored higher on the paper-and-pencil assessment measuring MKT exhibited a number of 

ambitious teaching practices including an insistence on mathematical explanations of student 

thinking, use of discourse moves like agreeing or disagreeing with classmates’ reasoning, using 
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multiple representations or multiple solution methods, and choosing and sequencing mathematical 

tasks for instruction. Generally, teachers with low-MKT, exhibited fewer ambitious mathematics 

teaching practices than their colleagues with high MKT. “In terms of both affordances and deficits, 

high-MKT teachers provide better instruction for their students” (Hill, Blunk, et al., 2008, p. 457).  

The MQI has seven scales (Hill, Blunk, et al., 2008) with multiple subscales for each (LMT, 

2011). During the viewing of a videotaped lesson, scoring for the subscales occurs at five-minute 

intervals as “present-appropriate,” “present-inappropriate,” “not present-appropriate,” or “not 

present-inappropriate.” The score for each of the seven scales is obtained by averaging the number 

of “present-appropriate” or “not present-appropriate” scores, so the MQI can be cumbersome to 

score. The MQI instrument was revised in 2014 (Boston, Bostic, Lesseig, & Sherman, 2015). 

Codes were refined and the instrument was made to “explicitly align with the mathematical 

practices outlined in the Common Core State Standards for Mathematics” (Boston et al., 2015, p. 

161). This revised instrument emphasizes the use of in-context tasks and classroom discussion. 

Some subscales measure “student engagement in sense-making as indicated by the quality of 

student explanations; evidence of students’ questioning, conjecturing, and generalizing 

mathematical ideas; and the cognitive demand of the task” (p. 161). Thus, descriptions of items in 

the subscales align with ambitious instruction. 

The Reformed Teaching Observation Protocol (RTOP) (Sawada et al., 2002) is another 

instrument used to rate classroom mathematics (and science) lessons. It is a 25-item observation 

protocol for use in K-20 classrooms. The RTOP has three sections: Lesson Design and 

Implementation; Content; and Classroom Culture. The Content and Classroom Culture sections 

have two subscales each. With five items in each of the five sections rated on a 5-point (0-4) Likert-

scale, the researchers were aiming for high internal consistency and ease of use. The highest 



 

31 

possible overall score is 100, with an overall score of 50 or greater considered the minimum for a 

lesson having elements of reformed teaching. A score of 10 or greater on any subscale means there 

is evidence of reform orientation. Examination of sub-scores reveals if the reform orientation is 

consistent across subscales (Boston et al., 2015). Sawada et al. (2002) showed there was a 

correlation between RTOP scores and student achievement as measured by a comparison of pre- 

and post-tests on class content. As stated by the authors, “Data show that when teaching is highly 

reformed, student learning is significantly enhanced” (p. 251). 

A final tool being reviewed in this chapter is the Instructional Quality Assessment (IQA) 

toolkit. “The IQA assesses elements of ambitious instruction in mathematics, specifically, the level 

of instructional tasks and task implementation, opportunities for mathematical discourse, and 

teachers’ expectations” (Boston, 2012a, p. 76). The IQA is meant to be used at scale without any 

required videotaping. It is based on the constructs of Academic Rigor (AR) and Accountable Talk 

(AT) and uses a combination of observations, assignments collections, and student work (Boston 

et al., 2015). The theoretical framework for the AR rubrics is the Mathematics Task Framework 

(Stein et al., 2009). The foundation for the AT rubrics comes from Resnick and Hall (1998) and is 

based on accountability to the community and to the discipline. The IQA mathematics toolkit uses 

a series of descriptive rubrics to assign a score (0-4) to elements of classroom instruction 

(Matsumura, Garnier, Slater, & Boston, 2008). Eleven of the rubrics in the IQA mathematics 

toolkit are connected to classroom observations. (See Appendix A.1 for a summary of rubric 

categories and titles used for classroom observations in various publications.) The remaining six 

rubrics in the IQA mathematics toolkit are connected to assignments given by the teacher and the 

student work done for those assignments. Using the collection of assignments and student work is 

one thing that makes this instrument unique. (See Appendix A.2 for a summary of rubric categories 



 

32 

and titles used for assignment collections in various publications.) A score of 0 on a rubric indicates 

the item being measured is not present. Scores of 1 or 2 are considered low on the IQA. Low scores 

indicate the element is included but is of low quality and/or in low quantity with respect the desired 

state. To earn a high score of 3 or 4 on the IQA, the desired element must be present and be of 

high quality (Boston, 2012b, 2012d). A limited number of the IQA rubrics are purely holistic, but 

they all have a descriptive element. So, although the IQA scoring is quantitative and provides 

statistical data, there is a qualitative component to the tool (Boston, 2012a; Boston & Wilhelm, 

2017).  

Resnick, Matsumura, and Junker (2006), and Matsumura, Garnier, Slater, and Boston 

(2008) found that as few as four assignment collections or two classroom observations provided a 

“stable estimate of teacher quality” (Resnick et al., 2006, p. 1). Wilhelm and Kim (2015) performed 

a multivariate analysis and concluded that three or more observations are needed to reliably 

measure instructional quality with the IQA. Researchers found that both assignment collection and 

classroom observation were associated with elements of students achievement (measured via the 

SAT-10) (Boston, 2012a; Matsumura et al., 2008). Additionally, research established a strong 

association between the rubrics for classroom observations and those for assignment collections, 

demonstrating that, if observations are too time or resource intensive or too intrusive, collecting 

assignments and associated student work can stand in for classroom observations in mathematics 

classrooms. (Boston, 2012a; Matsumura et al., 2008; Resnick et al., 2006). The goal for the creators 

of the IQA toolkit was to robustly measure instructional quality without much burden for the 

teacher (Resnick et al., 2006). The two approaches used with the IQA–classroom observations and 

assignments collections with student work–directly measure enactment of content in the 

classroom, which is qualitatively different than using surveys or even teachers’ instructional logs 
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(Matsumura et al., 2008). With all these qualities, the IQA is unique among the observational tools 

reviewed. However, the IQA does have some drawbacks. It does not assess teachers’ mathematical 

accuracy in lesson delivery, like the MQI does, and because no videotaping is required, there is no 

permanent record of the instruction, aside from field notes. In summary, the IQA fills what was 

previously a gap in information about student learning by providing a “direct assessment of 

students’ opportunities to learn mathematics” (Boston & Wilhelm, 2017, p. 833). Much of the 

aforementioned research, findings, and tools from the related studies have led to the current 

conceptions of ambitious instruction. This chapter now examines those current conceptions. 

2.2 Current conceptions of ambitious instruction 

Years prior to the publication of the CCSSM (NGA and CCSSO, 2010), Adding it Up 

(National Research Council, 2001) explained ambitious instruction as teaching aimed at ambitious 

learning goals for students. The publication said that in mathematics education, ambitious teaching 

has the goal of mathematical proficiency for all, where this proficiency involves the interconnected 

strands of conceptual understanding, procedural fluency, strategic competence, adaptive 

reasoning, and productive disposition. As time moved forward after the publication of CCSSM 

and the Next Generation Science Standards (NGSS) (NGSS Lead States, 2013), others contributed 

to defining high-quality, ambitious instruction. Lampert, Boerst, and Graziani (2011) wrote 

“’Ambitious teaching’ is teaching that aims to teach all kinds of students not only to know 

academic subjects, but also to be able to use what they know in working on authentic problems in 

academic domains” (p. 1361). Cobb and Jackson (2011) wrote, “A central goal of ambitious 

teaching is that learning opportunities are distributed equitably (Lampert & Graziani, 2009; 
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NCTM, 2000). In this context, equity implies that all students should be able to participate 

substantially in all phases of classroom activities” (p. 8). More recently, Huinker and Bill (2017) 

wrote “Ambitious mathematics teaching involves skilled ways of eliciting and responding to each 

and every student in the class so that they learn worthwhile mathematics and come to view 

themselves as competent mathematicians (Anthony et al, 2015)” (p. 46). Each of these definitions 

of ambitious teaching involves all students and goes beyond viewing students’ learning as 

reproducing facts or methods. 

 Ambitious instruction across content areas  

Ball and Forzani (2009), in their article advocating for making teaching practice the core 

of teachers’ professional preparation, outlined the component parts of ambitious teaching and 

labeled these as high-leverage practices. The work of Ball and Forzani’s team at the University of 

Michigan in specifying high-leverage teaching practices across content areas resulted in, the 

creation of the TeachingWorks group and the related website (http://www.teachingworks.org/). 

This website defines a high-leverage practice as simply “an action or task central to teaching” 

(“The work of teaching,” n.d., para. 2). While this website is not specifically aimed at mathematics 

teaching, it certainly includes practices applicable in the teaching of mathematics. For example, 

the first listed high-leverage practice on the website is “Leading a group discussion” (“High-

Leverage Practices,” n.d., para. 1), which is a process of talking, listening, and using the 

contributions of others to develop a better understanding of the content being addressed. The 

TeachingWorks group has thus far enumerated 19 high-leverage practices. 

While work of the TeachingWorks group cuts across all content domains, another group, 

led by Windschitl and his colleagues at the University of Washington, seeks to apply ambitious 

http://www.teachingworks.org/
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teaching specifically to K-12 science. Their website, called “Tools for Ambitious Science 

Teaching” (https://ambitiousscienceteaching.org/), states “Ambitious teaching deliberately aims 

to support students of all backgrounds to deeply understand science ideas, participate in the 

activities of the discipline, and solve authentic problems” (“What is ambitious teaching,” n.d., 

para. 1). The group created an Ambitious Science Teaching Framework comprised of four core 

sets of practices: “Planning for engagement with important science ideas; Eliciting students’ ideas; 

Supporting on-going changes in student thinking; and Pressing for evidenced-based explanation” 

(“What is ambitious teaching,” n.d.). Together these four sets of practices create a framework for 

science teaching that is different from traditional science teaching. Teaching science using 

Windschitl’s framework is more ambitious. 

 Ambitious mathematics instruction  

Staples (2007) wrote about the need for a better vision of what teachers should be doing in 

classrooms to enact a reform agenda. Ball and Forzani’s group and Windschitl’s group provided 

frameworks for teacher actions in line with an ambitious teaching agenda, thus providing a better 

vision. In the content area of mathematics, NCTM created an initial vision for ambitious 

instruction in mathematics via their standards documents (1989, 1991, 1995, 2000b). NCTM’s 

vision was influenced by research cited throughout this chapter as well as research in cognitive 

psychology, social constructivism, and other academic arenas. Cobb and Jackson (2011) drew 

upon NCTM’s vision to ground the learning goals of the districts in the Middle School 

Mathematics and the Institutional Setting of Teaching (MIST) project, and wrote:  

[NCTM’s] vision is often referred to as ambitious teaching (Lampert, et al., 2010). In this 

vision, teachers support students to solve cognitively-demanding tasks (Stein, Smith, 

https://ambitiousscienceteaching.org/
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Henningsen, & Silver, 2000), press students to provide evidence for their reasoning and to 

make connections between their own and their peers’ solutions (McClain, 2002), and 

orchestrate whole class discussions in which they build on students’ contributions to 

achieve their mathematical agendas for students’ learning (Franke et al., 2007; Stein, 

Engle, Smith, & Hughes, 2008). Instructional practices of this type contrast sharply with 

typical teaching in most US classrooms and require teachers to anticipate and respond to 

students’ thinking (Kazemi, Franke, & Lampert, 2009). (p. 8) 

 Principles to action: Ensuring mathematical success for all 

NCTM’s current vision of ambitious mathematics instruction was published in Principles 

to Action: Ensuring Mathematical Success for All, (NCTM, 2014) and took the form of the eight 

effective Mathematics Teaching Practices. “These eight Mathematics Teaching Practices… 

represent a core set of high-leverage practices and essential teaching skills necessary to promote 

deep understanding of mathematics” (NCTM, 2014, p. 9). As written in Principles to Action, “an 

excellent mathematics program requires effective teaching that engages students in meaningful 

learning through individual and collaborative experiences that promote their ability to make sense 

of mathematical ideas and reason mathematically” (NCTM, 2014, p. 7). These practices help the 

mathematics education community frame and concretize what an excellent mathematics program 

enacting ambitious teaching looks, sounds, and feels like. The effective Mathematics Teaching 

Practices are a succinct way to frame ambitious teaching in mathematics.  

These teaching practices advocate for students engaging in challenging, collaborative work 

provided by the teacher and for teachers supporting learners in this work through their teaching 

actions, moves, and routines. The eight practices are: Establish mathematics goals to focus 

learning; Implement tasks that promote reasoning and problem solving; Use and connect 
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mathematical representations; Facilitate meaningful mathematical discourse; Pose purposeful 

questions; Build procedural fluency from conceptual understanding; Support productive struggle 

in learning mathematics; and Elicit and use evidence of student thinking. While these practices 

“provide a framework for strengthening the teaching and learning of mathematics” (Huinker & 

Bill, 2017, p. 4), they do not provide the whole picture of ensuring mathematical success for all 

students. The Principles to Action (NCTM, 2014) book was constructed around five Guiding 

Principles for School Mathematics (p. 5) updated from the initial set of Principles for School 

Mathematics in Principles and Standards for School Mathematics (NCTM, 2000b). While the 

eight effective Mathematics Teaching Practices make up the guiding principle of Teaching and 

Learning, the Teaching and Learning principle is just one of the five Guiding Principles for School 

Mathematics. The other four guiding principles–Access and Equity, Curriculum, Tools and 

Technology, Assessment, and Professionalism–round out the Principles to Action book and give 

additional context to the eight effective teaching practices for mathematics.  

 Taking action: Implementing effective Mathematics Teaching Practices 

Principles to Action (NCTM, 2014) provided initial information about each of the eight 

effective Mathematics Teaching Practices. For each practice, it offered some discussion of the 

practice including relevant research findings, an illustration of the practice with a classroom-based 

example, and a set of teacher and student actions indicative of the practice in use in the classroom 

setting. Three years hence, NCTM published a series of three texts, entitled, Taking Action: 

Implementing Effective Mathematics Teaching Practices (M. S. Smith, 2017), with one text aimed 

at each grade band: K-5, 6-8, and 9-12. These texts provided more information about how to 

successfully implement the eight effective teaching practices for mathematics  
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Each text contained ten chapters; one chapter for each of the eight practices. Spread 

throughout these chapters was a set of thinking exercises called Analyzing Teaching and Learning 

(ATL) activities. Each ATL prompted the reader to consider particular aspects of the effective 

teaching practice that was the focus of the chapter. The first chapter of each Taking Action book 

served to set the stage for ambitious instruction with a classroom vignette based on a grade band 

appropriate, cognitively demanding task. The same task or classroom episode was revisited in 

multiple chapters throughout the text to illustrate multiple effective teaching practices. The 

concluding chapter served to make the coherence and interconnectedness of the eight effective 

teaching practices for mathematics more explicit for the reader. Guiding the last chapter was a 

teaching framework showing the relationships in the practices. This framework is shown in Figure 

2.2. The figure served as an illustration that while each of the practices contributes to ambitious 

mathematics teaching, ambitious mathematics teaching is more than simply thinking about each 

practice individually. In relationship to ambitious mathematics teaching, one must consider the 

whole set of practices as greater than the sum of the parts.  
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Figure 2.2 The eight effective Mathematics Teaching Practices shown in a framework highlighting the 

relationships between and among them (Huinker & Bill, 2017, p. 245) 

 

NCTM continues to create tools for those embracing ambitious mathematics teaching, like 

the recently published update to the 5 Practices for Orchestrating Productive Mathematics 

Discussions (M. S. Smith & Stein, 2018), but despite the tools and research, the multiple labels, 

and the refinement of the vision, the original NCTM vision explicated in the Standards documents 

(1989, 1991, 1995, 2000b) and furthered in the CCSSM (NGA and CCSSO, 2010), has not come 

to fruition in American classrooms (Horizon Research Inc., 2013; Stein et al., 2007; Stigler & 

Hiebert, 2004; Weiss, Pasley, Smith, Banilower, & Heck, 2003). Therefore, the need still exists 

for teacher PD that furthers the vision of those who have long advocated for reformed, standards-

based, ambitious mathematics instruction. The chapter now turns to examining professional 

development that supports ambitious instruction in mathematics classrooms. 
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 Outside-the-classroom Professional Development can support ambitious instruction 

This chapter has discussed the evolution of terminology associated with ambitious 

mathematics instruction, early calls for ambitious instruction in the education community, and 

multiple studies showing that ambitious mathematics instruction results in greater student learning. 

The chapter has also discussed more recent conceptions of ambitious instruction as well as a few 

tools that will measure the quality of such instruction. This review now turns to literature showing 

the effects of professional development on teachers’ classroom practice.  

 Task-centric professional development allows for changes in teacher practices 

Boston and Smith (2009, 2011) and Boston (2013) undertook studies related to the ESP 

project. One component of the ESP project was a professional development initiative for secondary 

mathematics teachers who would later mentor a pre-professional mathematics teacher. Drawing 

on research from QUASAR which recognized the central role of high-level tasks in ambitious 

mathematics instruction (Henningsen & Stein, 1997; Stein & Lane, 1996), the PD was framed 

around the practice of using–choosing, setting up, and implementing–cognitively challenging 

classroom mathematics tasks. Following Shulman’s (1986) recommendation, ESP PD used “case 

methods” (Stein et al., 2009, p. 23) to relate the implementation of the mathematics tasks under 

consideration to actual classrooms and to motivate teacher reflection on the tasks, the cases, and 

their own instruction.  

Boston and Smith’s (2009) study examined the effects of participation in the ESP PD on 

the selection and subsequent use of cognitively demanding tasks. The study considered task 

selection and implementation patterns for 18 participating teachers. Data consisted of five 
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consecutive days’ worth of instructional tasks and teacher log sheets, class sets of student work for 

three tasks used in this five-day period, and a classroom observation conducted during the same 

five-day period. Data were collected at three different junctures throughout the school year (Fall, 

Winter, Spring). The same data were collected for a contrast group of ten teachers in the Spring. 

Data were coded using the Instructional Quality Assessment (IQA) Academic Rigor (AR) rubrics 

for Potential of the Task and Implementation of the Task. The rubrics, which are on a 5-point scale 

(0 to 4; 0 meaning not present), consider ratings of 1or 2 as low-level and ratings of 3 or 4 as high-

level. Rubrics were applied to the collected tasks, student work, and the classroom observation. 

Boston and Smith wanted to determine if teachers’ changed their instructional practices around the 

(1) use and (2) implementation of tasks during and after the PD as compared to their own 

instruction before the PD and as compared to the contrast teachers. The study also wanted to (3) 

determine if the curriculum type (conventional or standards-based) influenced the use of 

cognitively challenging tasks.  

The results showed that teachers who participated in the ESP PD significantly increased 

the average level of cognitive demand of the tasks selected for classroom use (i.e., mean score on 

the AR rubric for Potential of the Task) between the Fall and Winter and between the Fall and 

Spring. These gains were not influenced by the curriculum type being used. Participating teachers 

also significantly increased the percentage of high-level tasks selected, meaning more tasks with 

ratings of 3 or 4 were selected, when comparing Fall to Spring. Examining scores for 

implementation of the task yielded significant increases for the student work samples; however, 

scores for the classroom observations, while yielding higher scores, did not show significant 

increases on the Implementation of the Task rubric when participating teachers’ scores were 

compared in Fall, Winter, and Spring. Participating teachers did score significantly higher than 
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their counterparts in the contrast group for both selection and implementation of tasks. Boston and 

Smith discuss the implications of these results, stating, “These instructional changes…suggest that 

the ESP workshop can serve as one model of the type of professional development capable of 

supporting improvements in teachers’ instructional practices and students’ learning” (p. 147). 

Boston and Smith (2011) performed a follow-up study with seven of the 18 teachers from 

the original ESP cohort to determine if the teachers sustained high levels for task selection and 

implementation. The researchers visited teachers’ classes more than a year after the conclusion of 

PD. Like the original study, the follow-up study used IQA AR rubrics to score tasks, student work, 

and lesson observations. Results showed that the subset of ESP project teachers participating in 

the follow-up study maintained the changes they had made in the original study by (1) continuing 

to select high-level cognitively challenging tasks for use in their classrooms, and (2) continuing 

high-level implementation of tasks. In fact, the percentage of teacher-chosen high-level tasks 

increased for this follow-up compared to the time period directly after PD.  

Boston and Smith (2009, 2011) showed changes in the ability of participating teachers to 

select and implement cognitively challenging tasks and sustain their changed practices over time. 

Boston (2013) showed a connection between increased knowledge related to challenging tasks and 

classroom practice. She posed a hypothesis regarding this chain of events stating, “Teachers 

selected significantly more high-level tasks for instruction after their experiences in the workshop 

because they learned to attend to and value the opportunities for students’ learning embodied in 

such tasks” (p. 28). Results from the ESP project show that with under 40 hours of “task-centric” 

PD teachers can (1) change their knowledge about ambitious teaching practice, (2) change their 

practice from more traditional to more ambitious, and (3) sustain this change over time. 
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 Focusing on children’s thinking allows for changes in teacher practices 

CGI literature showing increased student achievement as a result of teachers’ implementing 

ambitious mathematics instruction has been reviewed. The PD component of CGI is considered 

now as an influence on changes in teacher practice. The PD associated with the CGI program was 

different from most mathematics workshops teachers attended at the time. The researchers did not 

train teachers in a new method of teaching. Rather, they shared (1) research findings showing that 

young children can solve many types of arithmetic word problems using a variety of materials and 

strategies; and (2) "frameworks" developed in conjunction with research (Carpenter et al., 1999). 

One framework categorized arithmetic word problems and the other described strategies that 

children tend to develop for solving word problems using concrete modeling and counting 

strategies leading to remembered facts (Knapp & Peterson, 1995). In many cases, once teachers 

started thinking about their students’ understanding of the four basic operations in terms of the 

frameworks, they began to make different decisions about how to instruct (Franke et al., 2001). 

Knapp and Peterson (1995) reported on patterns of CGI usage as a follow-up on the 1989 

Carpenter et al. study. They sought to determine if changes in instructional practice and beliefs 

seen in the original study endured5. Knapp and Peterson conducted phone interviews with half of 

the original CGI participants. They found that three or four years after participating in the 

workshops, teachers fell into one of three patterns of use. They either (1) saw CGI conceptually 

and had leveraged their learnings from the workshops to make it the main component of 

mathematics teaching, (2) became divorced from CGI, seeing it as a set of procedures to be used 

                                                 

5 Note that those teachers who were in the control group in Carpenter et al.’s original 1986 group, participated 
in the CGI workshop the following year, so all 40 teachers from the original study had participated in training prior to 
this follow-up study. 
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as a supplement to traditional practices, or (3) fell away from their original level of CGI usage, 

even though their beliefs about effective mathematics instruction suggested CGI principles.  

Teachers who used CGI as the main component of their mathematics teaching continued 

to develop their teaching practice after the conclusion of the CGI seminars. They focused on 

students’ development of conceptual understanding; believed elementary teachers needed 

substantial mathematics understanding to teach well; and allowed student-developed strategies. 

They used collaborative groups and encouraged interdependence of students. Likewise, teachers 

who saw CGI as supplementary shared characteristics. They focused on procedural competence, 

thought pedagogical knowledge in the absence of deep content knowledge was enough to teach 

mathematics to young children, and demonstrated mathematical procedures for children. Their 

students worked alone to get the right answers. Teachers who had fallen away from using CGI had 

incongruencies between what they said they believed and what they did in their classes. Those 

who saw CGI as the mainstay of their instruction proved that the CGI PD could have an effect on 

teachers’ overall classroom practice in mathematics.  

Franke, Carpenter, Fennema, Ansell, and Behrend (1998) provided case studies of three 

CGI teachers that showed patterns of CGI usage with similarities to those investigated by Knapp 

and Petersen (1995). Franke et al. used these cases to explain and provide examples of self-

sustaining, generative change in teaching practice following PD. Self-sustaining change is making 

an instructional change, like allowing multiple solution strategies or having students discuss 

strategies, then, seeing that students learned from or become more engaged because of the changed 

instruction, subsequently deciding to maintain that change. Generative change occurs when a 

teacher not only realizes that an instructional change is working, but also strives to understand why 

the change works, what is different in student thinking, and how instruction might further build on 
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this. Consequently, the teacher makes connections between instructional practice and student 

learning that can form the basis for future thinking and learning. As explained by Franke and 

colleagues, “self-sustaining, generative change…frequently entails teachers making changes in 

their basic epistemological perspectives, their knowledge of what it means to learn, as well as their 

conceptions of classroom practice” (p. 67). The qualities of the three case study teachers that 

aligned with whether they demonstrated, self-sustaining or generative change were leveraged in 

another follow-up study for CGI.  

As the ESP researchers followed up with their project participants after the conclusion of 

the professional development, CGI researchers also followed up with their 1990-1993 seminar 

participants to investigate whether teachers continued to use the CGI principles. Four years after 

the teachers’ participation in the CGI workshops concluded, Franke, Carpenter, Levi, and Fennema 

(2001) interviewed and observed 22 teachers’ patterns of change to determine if there was 

generative learning and what factors set the generative learners apart from the other CGI teachers. 

This study used a rating scale for “Levels of Engagement with Children’s Mathematical Thinking” 

(Franke et al., 2001) to measure the teachers’ level of generative growth. Raters used levels 1, 2, 

3, 4A, and 4B. Teachers above level 2 all valued children’s thinking as a central tenant of their 

teaching. Teachers above level 3 used more specificity when describing their children’s 

mathematical thinking. Teachers at level 4B had generative growth. They viewed children’s 

thinking as central; possessed detailed knowledge about children’s thinking; discussed frameworks 

for characterizing the development of children’s thinking; perceived themselves as creating and 

elaborating on their own knowledge about children’s thinking; and sought colleagues who had 

knowledge about children’s thinking. Ten of 22 teachers in the study showed generative growth. 
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They had not just maintained their learning from the previous CGI workshops but had continued 

to expand and grow their own knowledge about student thinking.  

In both CGI and ESP, the PD in which teachers took part led to changes in teacher 

knowledge and/or beliefs (Boston, 2013; Fennema et al., 1996; Franke et al., 2001). The change 

in knowledge and beliefs was associated with changes in classroom practice from traditional to 

ambitious (Boston, 2013; Carpenter et al., 1989). In CGI, it was a focus on children’s thinking in 

the PD that became embedded in teachers’ practice. For Boston and Smith “the task-centric 

approach allow(ed) for gradual, sustained growth along a continuum of task selection and 

implementation” (Boston & Smith, 2011, p. 974).  

2.3 Coaching of teachers can support ambitious instruction 

When compared to the literature surrounding ambitious instruction, the literature around 

coaching of teachers, and especially coaching of mathematics teachers, is not as rich. Although 

books about coaching and training of coaches are available (e.g., Confer, 2006; Hull, Balka, & 

Miles, 2009; Morse, 2009; West & Staub, 2003 etc.,) until recently, relatively few empirical 

studies examined the role of the mathematics coach (Chval et al., 2010; Cobb & Jackson, 2011; 

Murray, Ma, & Mazur, 2009) or the impacts of coaching on teacher practice and student learning 

(Matsumura et al., 2010; Neufeld & Roper, 2003; Polly, 2012). As Campbell and Malkus put it, 

“interest in mathematics specialist-coaches has outpaced not only research studies of their impact, 

but also clarity in terms of their expected baseline knowledge and professional expertise” 

(Campbell & Malkus, 2014, p. 215). For this reason, the literature review of coaching expands 

beyond the limits of coaching of mathematics teachers to coaching of teachers in more general 



 

47 

terms. First, this portion of the review of literature will examine some of the roots of coaching. 

Next, the chapter follows the evolution of peer coaching. The chapter then examines potential 

definitions of coaching as well as other coaching types or models before shifting to focus primarily 

on content-focused coaching. With regard to mathematics coaching, the literature review will 

examine the coach’s development, and roles and responsibilities, as well as the effectiveness of 

mathematics coaching, as measured in various studies. This portion of the literature review 

concludes by relating coaching to ambitious instruction.  

Perhaps because of the relative dearth of empirical studies about coaching’s effect on 

teaching practice and student achievement, “the evidence that coaching is an effective strategy for 

improving instruction and learning remains relatively weak” (Matsumura et al., 2010, p. 36). The 

review of literature around the impact of coaching on instruction and student learning revealed 

inconsistent findings. Campbell (2012) concurs with this, stating that “research frequently offers 

contradictory results” and offering that “one reason for the discrepancy may lie in the differing 

expectations for these specialists/coaches” (p. 157). Gibbons and Cobb (2016) discuss that even 

when expectations for coaching are consistent, there are considerable differences among the 

activities of the coaches in a given setting. The differing expectations and coaching activities are 

not a recent development. Even the earliest proponents of classroom coaching, Bruce Joyce and 

Beverly Showers, altered their expectations for coaches and the accompanying model of classroom 

coaching over the course of their writings. With all its inconsistencies, coaching is still a 

“promising alternative to traditional models of professional development” (Kraft, Blazar, & 

Hogan, 2018, p. 547).  
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 Roots of coaching of teachers 

The idea of coaching teachers evolved from its introduction within the work of Joyce and 

Showers. In 1980, Joyce and Showers published an article concerning teacher training in which 

they present ideas about how and why combinations of five training components–theory, 

demonstration, practice, feedback, and classroom application–are effective at allowing teachers to 

either fine tune existing teaching strategies or adopt new strategies. For these authors, coaching 

occurred to aid the classroom application component of the training. Joyce and Showers (1980) 

initially define this type of coaching as coaching for application. “Coaching for application 

involves helping teachers analyze the content to be taught and the approach to be taken and making 

very specific plans to help the students adapt to the new teaching approach” (p. 384). In the 1980 

writing, Joyce and Showers name numerous individuals in education-related roles who might serve 

as coaches; most of whom are knowledgeable others. However, the authors are attracted to the 

idea that coaching by peers might prove a convenient way to allow teacher change to occur.  

Roots of coaching teachers are also found in publications surrounding CGI. During the 

project, CGI staff and mentor teachers made observations and had informal interactions with 

participating teachers. The “type of support varied depending on the mentor and the teacher, but 

included observing in the teacher’s classroom and discussing the children’s thinking, planning 

lessons together, and assessing children together” (Franke et al., 1998, p. 71). This is similar to 

classroom coaching minus the aspect of co-planning classroom lessons with the supportive other. 

There is evidence in the CGI publications that this quasi-coaching made a difference in some 

teachers’ practice. In fact many high-level, generative teachers from the CGI project cited the 

support associated with the project as essential to their generative growth and continued level of 

engagement with children’s thinking (Franke et al., 2001). Regarding CGI project teachers who 
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were not generative in their growth, Knapp and Petersen (1995) wondered whether “more 

scheduled opportunities for ‘coaching’ and interaction with both researchers and other teachers 

over the school year might have helped teachers enlarge their interpretation of CGI” (p. 62).  

As he did with ambitious teaching, Lee Shulman influenced the development of coaching 

as a professional development tool. In particular, Shulman (1998) conceptualized the connection 

between theory and practice in the teaching profession. Shulman noted at the time of his writing 

that cognitive scientists were thinking about the apprenticeship model for teacher training, as 

proffered by Dewey in 1904. “Dewey had espoused…that only theoretical learning situated in 

practice would be rich and meaningful” (p. 524). Shulman’s research team posed that instead of 

pairing the trainee with a practicing professional after being immersed in the theory of the practice, 

educators should consider a “cognitive internship” in which the trainee’s field experience connects 

to theory currently being learned to more readily allow for connection and application. Shulman 

called this “situated intellectual work” because it “embed(s) the learning in the social context of 

practice” (p. 524). If one envisions applying the notion to in-service teachers involved in 

professional development instead of limiting it to pre-service teachers in training, this writing can 

be considered as a precursor of cognitive-coaching. 

While there are multiple threads of literature forming possible foundations for classroom 

coaching, the first of these lines, from Joyce and Showers, provided the initial progression of 

research studies and publications around coaching. This initial line of research explored the idea 

of peer coaching in the classroom and connected it to what was then called staff development. 
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 Peer coaching 

Joyce and Shower’s 1980 publication introduced the idea of coaching, but with their 1982 

publication, which was a review of existing literature on teacher training, Joyce and Showers 

embrace peer coaching, advocating that schools use teams of teachers to provide reciprocal 

assistance to and support for one another in the classroom. In peer coaching, teacher teams attend 

training and study a new teaching technique or method; They plan and practice the method with 

each other, watching demonstrations and working out points of confusion. The teams then take 

turns watching each other try the new method or technique in their respective classrooms with 

students. Afterwards, the teachers provide feedback and constructive criticism to each other. This 

repeats until the teachers develop proficiency with the newly learned teaching strategy. Joyce and 

Showers defend this method of coaching being paired with in-service training by writing 

“Coaching without the study of theory, the observation of demonstrations, and opportunities for 

practice with feedback will, in fact, accomplish very little” (Joyce & Showers, 1982, p. 5). 

In 1984, Showers further developed the idea of peer coaching within a study investigating 

whether (1) teachers can be trained to coach their peers in the classroom application of new 

teaching strategies; (2) teachers who are coached by peers transfer training at a greater rate than 

uncoached teachers (following identical initial training); and (3) students of peer-coached teachers 

perform better on specified tasks than students of uncoached teachers. The study involved 21 

teachers and six peer coaches. Findings from the study included: (1) Peer coaches were trained in 

a relatively brief period to provide follow-up training to other teachers; (2) Peer coaching increased 

the transfer of training rate for coached compared to uncoached teachers; (3) Students of coached 

teachers performed better on a concept attainment measure than students of uncoached teachers. 

However, there were some caveats to these findings. Firstly, the peer coaches in this study had 
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previously been trained in the new teaching technique and had taken a coaching training course 

prior to doing any coaching. Thus, the peer coaches were actually more knowledgeable than the 

teachers whom they coached and were not co-equal partners as peer coaching suggests. Secondly, 

“peer coaches varied considerably in the extent to which they analyzed appropriate use of newly-

learned strategies within curriculum areas” (p. 18) with two of the peer coaches providing 

reinforcement to their coachees to the point where the reinforcing feedback conflicted with the 

coaches’ “ability to provide accurate feedback on teacher performance following a lesson” (p. 18). 

With only six coaches in the study and considerable variability, the conclusion that peer coaching 

is a reliable method for increasing transfer of training may not be valid. Lastly, some teachers in 

the study chose not to fully participate in the study. This impacted transfer of training to the 

classroom for those teacher/coach pairs. While Showers’ study (1984) held promise for effective 

content coaching, it did not show that peer coaching is a model that will improve teacher transfer 

of training or student performance. 

In 1996, Showers and Joyce again claimed to have confirmed their hypothesis about 

training followed by coaching resulting in more transfer than training alone. They wrote, “teachers 

who had a coaching relationship…practiced new skills and strategies more frequently and applied 

them more appropriately than did their counterparts who worked alone” (p. 2). Not only will 

training alone result in less transfer, Showers and Joyce (1996) also claimed that coaching alone 

did not aid in student learning when they write, “There is no evidence that simply organizing peer 

coaching…will affect students' learning environments.” (p. 1). In this writing, Showers and Joyce 

recommended coaching first be done with someone who has more expertise, like a consultant or 

an outside expert. Following that, coaching could be peer-to-peer. Within this 1996 iteration of 

their coaching model, Showers and Joyce recommend coaching take place weekly and that it be 
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comprised of co-planning, observation, and time thinking about impacts on student learning 

without verbal feedback. The change to exclude verbal feedback was recommended because 

coaching seemed too much like an evaluation to participating teachers  

The same research team reiterated some of the 1996 findings in their 2002 writing, stating 

that even when a series of “high-powered” (Joyce & Showers, 2002, p. 77) PD sessions possessed 

the elements Joyce and Showers had deemed to be important (e.g., theory explanations, 

demonstrations, practice), the effect size was minimal to none, but with the addition of coaching, 

the effect size was 1.42. Joyce and Showers further added that if new skill or knowledge is to be 

put to use in the classroom, teachers need coaching, but in this iteration of their on-going 

endorsement of coaching, the team does not advocate for coaching by trainers, relative experts, or 

more knowledgeable others. This time, the authors advocate for coaching by co-equal peers, 

providing the rationale that “coaching by trainers will give the same effects, but is not practical in 

most settings” (p. 77). In fact, Joyce and Showers theorized that 95% of teachers would transfer 

their learning to the classroom, if peer coaching was used. Other changes in the Joyce and Showers 

coaching model appeared in the 2002 writing. For one, the person teaching was now the coach, 

and the person observing was the coachee. Additionally, peer coaching now consisted mainly of 

co-planning for lessons. Any conversations or feedback after the lesson is taught were no longer 

in the Joyce and Showers model for peer coaching. While their stance on who should serve as a 

coach and the model of coaching they advocated had morphed over the decades of their writing 

and researching, Joyce and Showers’ claim that training programs with a coaching component help 

teachers better transfer new knowledge and skills to their classroom was a constant. 

Kohler, Criley, Shearer, and Good (1997) also conducted a small study on “peer” coaching 

of four elementary teachers by one common coach. The study found coached teachers more likely 
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to try new techniques and strategies in their classrooms. However, the coach in this experiment, 

who was also the second author, had 35 years of experience teaching elementary school plus three 

years of experience in coaching and using the instructional technique under examination 

(integrated instructional approach or IIA). Because the coach was a relative expert and not a peer 

to the teachers in the study, the study is not truly one of peer coaching.  

Conversely, Murray, Ma, and Mazur (2009) undertook an empirical study of peer coaching 

in which the participants did have mutual expertise. The team used an experimental group of nine 

teachers and a control group of five teachers in a pre- and post-test design to study changes in 

mathematics or science knowledge of students in peer partners’ classes. Peer partners were to work 

collaboratively, observing one another and providing support and feedback, in an effort to 

implement what had been learned in a 1- or 2-week summer institute around middle school (grades 

7-9) mathematics or science teaching. Quantitative results on sample items drawn from the 

Programme for International Student Assessment (PISA) 2000 and 2003 show no statistically 

significant difference between pre- and post-test scores for students of treatment group teachers. 

Qualitatively, researchers found that post-conference sessions between peers lasted an average of 

13 minutes and involved an average of 12 topics. The conversations were superficial, lacking any 

degree of depth, and did not involve constructive criticism. Every conversation was positive 

“without a single negative comment made” (p. 207). The feedback peer coaches provided to one 

another during the post-conference was descriptive of the taught lesson. The conversations were 

not analytical or reflective. “Neither did the observers ask any question that would effectively 

motivate reflection or analysis” (p. 207). 

Perhaps Murray, Ma, and Mazur (2009) contributed to the current trend regarding peer 

coaching wherein coaching by co-equals has fallen out of favor and been supplanted with coaching 
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by more knowledgeable others (Cobb & Jackson, 2011; Krupa & Confrey, 2012; Polly, 2012). 

Since Joyce and Showers’ 2002 publication, researchers have not embraced the idea of coaching 

being the process of co-planning and observing without any feedback. In fact, the provision of 

feedback by the coach has become a critical component of most coaching models (Gibbons & 

Cobb, 2016; Kraft et al., 2018; Russell, Correnti, Stein, Hannan, & Bill, 2017; West & Staub, 

2003). The literature review now examines some of the definitions and types of coaching that 

evolved from Joyce and Showers’ original conception. 

 What is coaching? 

In the time period between the introduction of coaching in the 1980s and the present, 

multiple coaching types and definitions of coaching developed. Coaching has grown in its use; 

sometimes connected to outside-the-classroom PD and sometimes used on its own (Kraft et al., 

2018). For some schools, districts, or research initiatives, this form of PD has evolved to the point 

where the role of the coach has become an “important and pivotal resource” (Chval et al., 2010, p. 

194). Although “teacher coaching has emerged as a promising alternative to traditional models of 

professional development” (Kraft et al., 2018, p. 547), results from coaching-related studies vary, 

perhaps because there are many different definitions (Campbell, 2012; Kraft et al., 2018).  

The earliest explanation of coaching is from Joyce and Showers (1982). They name five 

major functions: provision of companionship; giving of technical feedback; analysis of 

application; adaptation to students; and personal facilitation. Neufeld and Roper (2003) provide 

another, more comprehensive explanation, including school leaders in the description. They say  

The term coaching includes activities related to developing the organizational capacity of 

whole schools (such as increasing leadership for instructional reform). It includes helping 



 

55 

principals and teachers reallocate their resources and improve their use of data in the 

service of improving instruction. And it includes activities directly related to improving 

instruction (such as one-on-one observation and feedback). (p. 4) 

Other publications provide explanations specific to mathematics coaching. Foster and 

Noyce, M.D. (2004) provide an explanation of mathematics coaching from the Mathematics 

Assessment Collaborative (MAC), a consortium of school districts near Silicon Valley for the 

purpose of improving mathematics instruction via the examination of student work within 

professional development. Their definition provides an allocation of coaches’ time. 

Mathematics coaches are accomplished teachers with records of leadership and strong 

understanding of mathematics content who are released from teaching duties to work with 

other teachers…The coaches spend 70% of their time supporting other teachers in the 

classroom and the remainder either offering professional development to groups of teachers 

or participating in further professional development of their own. (p. 373) 

Hull, Balka, and Miles’ Guide to Mathematics Coaching (2009) defines a mathematics 

coach as “an individual who is well-versed in mathematics content and pedagogy and who works 

directly with classroom teachers to improve students’ learning of mathematics” (p. 8). The 

publication states that coaches have to see the “big picture of mathematics teaching and learning” 

(p. 5). Coaches “improve the whole by improving component parts” (p. 5) and might be considered 

change agents. Coaches have many interconnected responsibilities and possess knowledge about 

content and teaching but also have the social skills to work well with other adults. 

Chval, et al. (2010) identify four main components of a mathematics coach’s role: 

supporter of teachers, supporter of students, supporter of school-at-large, and learner, and they 

draw from a portion of Virginia’s adopted description of mathematics specialists as  
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teacher leaders with strong preparation and background in mathematics content, 

instructional strategies, and school leadership. Based in elementary and middle schools, 

mathematics specialists are excellent teachers who are released from full-time classroom 

responsibilities so they can support the professional growth of colleagues, promoting 

enhanced mathematics instruction and student learning throughout their schools. They are 

responsible for strengthening classroom teachers’ understanding of mathematics content, 

and helping teachers develop more effective mathematics teaching practices that allow all 

students to reach high standards as well as sharing research addressing how students learn 

mathematics. (p. 192) 

Campbell and Malkus (2014) also call upon Virginia’s job description of a mathematics 

specialist, saying it is all-encompassing and includes co-planning, co-teaching, and debriefing as 

a part of the role, but the role also includes items as diverse as working with administrators to 

provide leadership for the mathematics program to interpretation of high-stakes assessment results. 

Campbell and Malkus sum up the role of specialist-coach as a “collegial mentor who helps foster 

and then works to sustain a practice-based professional community” (p. 214). 

While Gibbons and Cobb’s explanation goes beyond mathematics coaching, the 

researchers focus their definition on one form of coaching, content-focused coaching, and 

differentiate it from other forms by stating that content-focused coaches “(a) are more 

knowledgeable partners who have developed relatively accomplished instructional practices 

(Neufeld & Roper, 2003; Poglinco et al., 2003; West & Staub, 2003) and (b) aim to support 

teachers’ development of ambitious instructional practices in a particular discipline” (p. 239) by 

“provid[ing] teachers with ongoing, job-embedded support for improving the quality of their 

instruction and their students’ learning” (p. 255). 
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A recent all-encompassing definition of coaching comes from Kraft, Blazar, and Hogan’s 

(2018) meta-analysis of coaching. They “define coaching programs broadly as all in-service PD 

programs where coaches or peers observe teachers’ instruction and provide feedback to help them 

improve” (p. 548), but acknowledge that across the spectrum of the 60 studies included in the 

meta-analysis, there was not a common definition. Sometimes coaching was defined as a 

partnering of peers, but more often “coaches are thought to be experts in their fields, who model 

research-based practices and work with teachers to incorporate these practices into their own 

classrooms (Sailors & Shanklin, 2010)” (p. 551). No matter which definition of coaching was 

considered, “this is a demanding role, and a role that the profession does not understand and is 

only beginning to examine” (Campbell & Malkus, 2011). 

 Types or models of coaching 

Over the last decades, many coaching models evolved from peer coaching to the idea of 

“plac[ing] a highly knowledgeable teacher, who frequently does not have responsibility for the 

instruction of a classroom of students, in a school in order to advance instructional and 

programmatic change” (Campbell & Malkus, 2011). Even with the shift towards more 

knowledgeable others serving as coaches, as of 2015, no clear cut evidence on the effectiveness of 

one model over others had emerged. According to the National Mathematics Advisory Panel (U.S. 

Department of Education, 2008), “the Panel found no high-quality research showing that the use 

of any…types of math specialist teachers improves students’ learning” (p. xxii). However, the 

Panel did not cite research refuting the use of coaches. Hull, Balka, and Miles (2009) used the lack 

of refuting research, writing, “the key question should not be whether coaching works but under 

what conditions” (p. 2). Six years hence, Blazar and Kraft (2015) wrote, “Despite growing 
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evidence of the benefits of high-quality coaching, questions remain about the efficacy of different 

types of coaching programs” (p. 544). The literature review now examines models of coaching 

along with existing evidence of efficacy. 

 Expert coaching 

Polly (2012) performed a study in which he acted as an expert coach. The author stated his 

study was motivated by the need for research evidence to support the efficacy of coaching and to 

provide clarification about coaching models that are effective. The stated purpose was “to examine 

the types of support elementary school teachers seek from more knowledgeable others and the 

influence of various types of support on their teaching while attempting to implement standards-

based pedagogies” (p. 81).  

Polly (2012) recruited two third grade and two fifth grade mathematics teachers for his 

study. All of the teachers had six or fewer years of teaching experience. The author informed the 

teachers of standards-based instruction and said he would support their mathematics teaching in 

any ways they desired, including co-planning, co-teaching, modeling lessons, or providing 

curricular resources. Upon teacher request, the author performed observations and provided 

feedback, taught or co-planned and co-taught sample lessons, and provided curricular resources. 

At the conclusion of the study, Polly had performed 21 to 30 observations per teacher.  

Polly (2012) analyzed the beginning two, middle two, and ending two observations of each 

teacher to gauge teacher progress. He coded for cognitive demand of tasks (Stein & Smith, 1998) 

and used his own framework to code for the question types. Over the course of the school year, a 

greater percentage of enacted tasks were either Procedures without Connections or Procedures 

with Connections and a smaller percentage were Memorization tasks, which represents a shift 

towards tasks with greater cognitive demand. All four teachers shifted towards tasks with greater 
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cognitive demand from beginning to middle to ending observations. Additionally, “all four 

teachers asked more higher-level questions as the year progressed. Specifically, teachers posed 

more and higher-level questions towards the end of a lesson as students were sharing their work 

on mathematical tasks” (p. 88). However, no teacher asked any questions of the highest level on 

the authors’ hierarchy until the last observation period when one of the four teachers had 6% of 

her questions at the highest level. From this small study, Polly concluded that expert coaching has 

potential because the four teachers taking part in the study shifted to posing higher-level tasks and 

questions in one year with support. 

 Content coaching 

Neufeld and Roper (2003) defined content coaches as those who focus on improvements 

in instruction in a content area by working at the classroom and school level. Furthermore,  

Content coaches do not have a scripted role. They must understand the instructional reform 

they are helping teachers implement, they must be skillful in working with adult learners 

who may be skeptical about–or threatened by–the reforms, and they must know how to 

adapt their coaching methods to the knowledge and skill of the teachers. (p. 3) 

Neufeld and Roper also recommended that content coaches establish a non-evaluative 

environment for teachers, hold small-group PD sessions for their coachees, assist teachers in 

transferring knowledge attained in outside-the-classroom PD, and “help teachers develop 

leadership skills with which they can support the work of their colleagues” (p. 9).  

Krupa and Confrey (2012) performed a case study about instructional coaching in high 

school mathematics. They did not classify the coaching type for their study. Because the coaches 

in the study were relative experts assisting in continuous improvement in mathematics teaching, 

this study is grouped with content coaching. The model for coaching used in this project shared 
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similarities to another from Loucks-Horsley, Stiles, Mundry. Love, and Hewson (2012) which had 

five elements: “(1) teachers focusing on learning or improvement; (2) a climate of trust, 

collegiality, and continuous growth…; (3) coaches are well-prepared, with in-depth content 

knowledge; (4) mechanisms for observing practice and providing feedback…; and (5) 

opportunities for interaction” (p. 165). 

The Krupa and Confrey (2012) case study grew from the North Carolina Integrated 

Mathematics Project (NCIM), a two and a half-year project designed to support teachers in rural 

high schools in implementing a standards-based integrated mathematics curriculum. In this project, 

teachers attended a summer institute to learn about both content and pedagogy related to using the 

reformed curricular program. The project created a network for rural teachers which held follow-

up conferences and hosted a website to help teachers overcome some of the so-called “challenges 

of isolation” (p. 162). The project also instituted instructional coaches who were experienced 

teachers and who made monthly visits to each school. The coaches were relative experts in the use 

of the standards-based curriculum the teachers were using. They arranged the site visits, observed, 

and reflected with teachers to meet the individual needs of each teacher.  

Examination of coaches’ documentation revealed that teachers needed support for many 

elements of teaching, including content knowledge, planning, questioning, and formative 

assessment. Coaches’ activities with teachers fell into four broad categories: (1) curriculum and 

content assistance; (2) planning, enactment, and reflection; (3) assessment, feedback, and grading; 

and (4) professional community interactions (e.g., website use). Interviews revealed that teachers 

felt most helped by “planning, observing the coaches model teaching, getting access to technology 

and support in using it, and receiving feedback following an observation” (Krupa & Confrey, 2012, 

p. 167). This case study provided evidence of the effect professional development plus coaching 
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can have on teachers’ knowledge and practice. In particular, the case study teacher used traditional 

methods even after the first summer workshop. Her coach worked with her to provide resources, 

plan, provide access to classrooms using ambitious methods, and give feedback. Over the life of 

the project, the teacher changed her practice and, in fact, became willing to model teach and mentor 

new colleagues, but the transition was gradual and required working with the instructional coach. 

The study bolsters Krupa and Confrey’s statement: “Research has shown convincingly that 

teachers are not likely to change their instructional practices solely by attending isolated 

professional developments, and that ongoing support can help teachers implement the ideas 

presented in these professional developments” (p. 161). 

 Content-focused coaching 

Now, the literature review turns its attention to content-focused coaching. Expert coaching, 

content coaching, and content-focused coaching have some similarities. All involve a variety of 

possible activities (Hull et al., 2009; Morse, 2009; Polly, 2012; West & Staub, 2003). All employ 

more knowledgeable others in a coaching role. However, there also exist differences among these 

coaching types. For example, Polly (2012) allowed the four teachers in his expert coaching study 

to prompt him regarding their instructional needs and wants. While content-focused coaches 

differentiate their coaching based on each teacher’s background and the coach-coachee 

relationship, the content-focused coach does not wait for the coachee to prompt the coaching 

process, nor is the process driven solely by the coachee’s desires (West & Staub, 2003). 

Content-focused coaching was developed by the Institute for Learning at the University of 

Pittsburgh (Matsumura et al., 2010). According to West and Staub (2003), content-focused 

coaches want to improve student opportunities to learn by giving teachers opportunities to improve 

practice. “under the guidance of skilled mentors” (p. xiv). West and Staub were specific about the 



 

62 

goals, roles, and responsibilities of content-focused coaching in their book, Content-Focused 

Coaching: Transforming Mathematics Lessons. The authors recommended that coaching be 

specifically aimed at what should be taught by teachers and learned by students. Goals for coaching 

included (a) the design of lessons so students learn something that is a part of the core learning in 

the content area; (b) the creation of professional habits of mind along with communicative 

relationships with colleagues; and (c) the development or refinement of the teacher’s pedagogical 

content knowledge.  

Gibbons and Cobb (2016) say the “intent of content-focused coaching…is to provide 

teachers with ongoing, job-embedded support for improving the quality of their instruction and 

their students’ learning” (p. 255). They differentiate content-focused coaching from other forms 

by stating that content-focused coaches “(a) are more knowledgeable partners who have developed 

relatively accomplished instructional practices (Neufeld & Roper, 2003; Poglinco et al., 2003; 

West & Staub, 2003) and (b) aim to support teachers’ development of ambitious instructional 

practices in a particular discipline” (p. 239).  
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2.3.4.3.1 Research in literacy 

The first longitudinal, group-randomized study of content-focused coaching (CFC) with 

significant positive results for student learning was performed with elementary literacy coaches 

and teachers. Matsumura, Garnier, Correnti, Junker, and Bickel (2010) and Matsumura, Garnier, 

and Spybrook (2013) report on the study’s findings. The study involved the fourth and fifth grades 

at 29 schools: 15 treatment schools and 14 control schools. Data sources for the three-year study 

were numerous. They included (1) multiple sources of feedback and information directly from 

teachers; (2) a measure of the quality of classroom text discussions via the IQA (Matsumura et al., 

2008; Resnick et al., 2006); and (3) student test scores from the Texas Assessment of Knowledge 

and Skills (TAKS) and Degree of Reading Power Assessment. 

The coach-trainees in the study spent time learning about the pedagogy of best practices in 

reading instruction, learned the skills of coaching teachers, and developed coaching expertise from 

fellows at the Institute for Learning (IFL). While there was professional development for the 

coaches provided by IFL, there was no accompanying PD for the participating teachers. The 

research team attempted to have participating coaches avoid non-coaching tasks by having 

principals attend professional development with coaches from their buildings. Throughout the 

study, coaches were expected to hold weekly grade-level meetings and have a monthly coaching 

cycle (plan, teach, reflect) with each teacher. (Matsumura et al., 2010). 

The study was not without complications. Matsumura et al. (2010, 2013) created a second 

cohort of new teachers between years 1 and 2 of the three-year study because teacher turn-over in 

participating schools became problematic. Also, at the end of the second year, few teachers 

reported full participation in monthly coaching activities or weekly grade-level team meetings. 
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Despite the complications, the study bore positive results. Many teachers did participate in a level 

of activity close to the desired level. Teachers participated in coaching between four and six times 

a year and met in grade-levels once a month or more. This was significantly higher than in the 

comparison schools and impacted instruction as the research team hoped. “By the end of the second 

year of the program, text discussions in the CFC schools were more interactive and rigorous than 

in the comparison schools” (Matsumura et al., 2013, p. 44). This led to significant increases in 

student achievement as measured on the TAKS (Matsumura et al., 2013).  
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2.3.4.3.2 Research in mathematics 

An impactful study of content-focused coaching in elementary mathematics took place 

between 2005 and 2008. It measured the effect of elementary mathematics coaches on student 

achievement (Campbell, 2012; Campbell & Malkus, 2011), on teacher beliefs (Campbell, 2012), 

and on coaches’ content knowledge, mathematical knowledge for teaching, and beliefs about 

teaching and learning (Campbell & Malkus, 2014). Like the Matsumura et al. (2010, 2013) study 

in literacy, this was a three-year, randomized control study in elementary schools. Also, like the 

Matsumura et al. study, this one provided PD for coaches but not for teachers. Instead of pairs of 

schools, this study used 12 triples (36 schools) to provide two different cohorts of coaches in 

experimental schools with one control school per triple. Coaching began in 2005. Coaches in ten 

of the original 12 schools continued for the three years of the study as cohort 1. Cohort 2 coaches 

received training in 2006 and began coaching the following school year, so at the conclusion of 

the study, coaching in cohort 2 schools had been in place only one year. 

Student achievement in grades 3-5 at the cohort 1 experimental schools increased over 

time. Although test scores in comparison schools were higher than in control schools after the first 

year, significant increases in student achievement were not yet evident. The increases occurred as 

coaching became enculturated in the schools (i.e., coaches gained experience, school staff learned 

to work together). Increases became significant and were maintained in grades 4 and 5 after year 

2 and became significant in grade 3 after year 3 (Campbell & Malkus, 2011).. For the cohort 2 

schools, where coaches had been in their role for one year, having a mathematics coach did not 

significantly impact mathematics achievement scores (Campbell, 2012). “The pragmatic 

implication of this finding is the caution that a coach’s positive effect on student achievement 
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develops over time as a knowledgeable coach and the instructional and administrative staffs in the 

assigned school learn and work together” (Campbell & Malkus, 2011). This finding dovetails with 

a Chval et al. (2010) study showing that a coach’s identity develops over the first year of being in 

the role. 

Campbell (2012) analyzed teachers’ beliefs about mathematics teaching in the same set of 

schools. To measure changes in beliefs, researchers used a survey on which teachers rated 30 items 

from strongly disagree to agree. The items reflected perspectives about mathematics teaching 

ranging from “Traditional” views to what the authors called “Making Sense” views, labeled as 

such because they aligned with views espoused in Making Sense (Hiebert et al., 1997). Teachers’ 

views did not change with regard to either perspective of mathematics teaching, unless they were 

“highly engaged with the specialist” (p. 156). “The beliefs of teachers who were highly engaged 

with a specialist changed significantly, shifting away from the Traditional perspective toward a 

Making Sense perspective” (p. 156).  

Also using the same set of schools and coaches, Campbell and Malkus (2014) examined 

changes in coaches themselves as they trained for and transitioned to their coaching roles. Prior to 

placement, coaches in the Campbell and Malkus (Campbell, 2012; Campbell & Malkus, 2011, 

2014) study took a leadership course and five mathematics content courses. Courses emphasized 

a “Making Sense” approach, meaning participants were to reason, solve problems, participate in 

discourse, work collaboratively, and make connections among solution strategies and among 

mathematics concepts. The coaches learned content, but they experienced learning in a way that 

focused on ambitious teaching. Coaches took another leadership course with an emphasis on 

coaching during their first year of placement.  

Before and after participating in the first set of courses, coaches took (1) a test of content 
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knowledge; (2) a paper-pencil MKT assessment; and (3) a beliefs survey. After each year of 

coaching, the coaches again took the beliefs survey and the MKT assessment. Results showed a 

statistically significant increase on the content knowledge assessment in both cohorts of coaches. 

Over time, results also showed significant increases on MKT scores for both cohorts. Furthermore, 

for both cohorts beliefs were impacted significantly, becoming less traditional and more aligned 

with a “Making Sense” perspective. The combination of courses taken and experience in the role 

of a coach seemed to impact content knowledge, MKT, and beliefs. 

The effects on coaches resulting from this study suggest PD beginning in advance of 

coaching responsibilities and continuing during coaching impacts coaches’ knowledge and beliefs 

regarding mathematics and mathematics teaching and learning. The student achievement and 

teacher beliefs resulting from this study, along with Matsumura et al.’s (2010, 2013) results, 

suggest (1) the greater the time mathematics coaches spend on coaching, the greater their impact 

on student achievement, with the caveat that the first year bears no real fruit because of the 

transition to the new role and responsibilities; and (2) affecting teachers’ professional growth 

requires a coach establishing, developing, and maintaining relationships with coached teachers.  

Also in the area of mathematics, Gibbons and Cobb (2016) performed a case study with an 

instructional coach in middle-school mathematics. The case study was extracted from the MIST 

study on how to support mathematics teachers’ in becoming more ambitious and equitable in their 

classroom practice (Cobb & Jackson, 2011). Gibbons and Cobb’s case study uncovered five 

coaching practices the case study coach engaged in during planning that impacted her content-

focused coaching. Those coaching practices were: “(a) identifying long-term goals for teachers’ 

development, (b) assessing teachers’ current instructional practices, (c) locating teachers’ current 

instructional practices on general trajectories of teachers’ development, (d) identifying next steps 
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for teachers’ development, and (e) designing activities to support teachers’ learning” (p. 246) 

which involved modeling, co-teaching, and observing and debriefing with teachers. Gibbons and 

Cobb also named knowledge of ambitious teaching of mathematics and of the general trajectories 

mentioned in (b) and (c) as two areas of knowledge impacting the coach’s planning. 

 The TN + IFL Math Coaching Model 

The most comprehensive mathematics coaching model published to date grew from a 

collaboration among IFL and the Learning Research & Development Center (LRDC), both at the 

University of Pittsburgh, and the Tennessee Department of Education (TN DOE) and was called 

the TN Math Coaching Initiative (Russell et al., 2019). This model has roots in the content-focused 

coaching model from IFL but has additional elements which help scale the model for widespread 

use. Figure 2.3 displays the complete TN + IFL Math Coaching Model. The middle column of the 

figure shows the coaching practice framework which is briefly explained here and discussed in 

some detail in upcoming sections. The coaching practice framework is comprised of three parts: a 

coach development framework, which will be explained in greater detail in section 1.7.5; a 

coaching framework, which will be explained in greater detail in section 1.7.6; and “an ethos of 

continuous improvement that informs how coaches are trained to use disciplined inquiry cycles to 

adaptively integrate the coaching model into their diverse local contexts” (p. 5).  
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Figure 2.3 The TN + IFL Math Coaching Model (Russell et al., 2019, p. 6) 

 

Improvement science and the Plan-Do-Study-Act (PDSA) learning cycle of adaptive 

integration from Bryk, Gomez, Grunow and LeMahieu (2015) influenced the continuous 

improvement portion of the coaching practice framework for the Russell et al. (2019) study. Using 

continuous improvement science in a large scale study made this model nearly unique in the 

mathematics coaching literature. (Cobb and Jackson (2011) applied a continuous improvement 

model in developing their theory of action for improving mathematics instruction at scale in the 

MIST project. While their theory of action goes beyond coaching, mathematics coaching was one 

of the five key components in Cobb and Jackson’s theory of action.) The TN Math Coaching 

Project began developing, testing, and refining this TN + IFL Math Coaching Model in 2014 with 

32 mathematics coaches from 21 school districts. The coaches in the project each committed to 

work closely with two partner teachers. The partner teachers all taught mathematics in grades 3 
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through 8 for a total of 63 partner teachers. Aside from working intensively with two partner 

teachers, the coaches also provided documentation of all coaching activities, completed periodic 

surveys, and attended monthly webinars and three two-day meetings each year.  

Within the continuous improvement process, researchers gathered data from coaches and 

teachers about what coaches were doing during the coaching cycle. Knowing what the coaches 

had been trained to do, the researchers analyzed the effectiveness of the coaching process by 

examining planning documentation and videos from planning sessions, teaching lessons, and 

debriefing conversations. From these data sources, the researchers were quickly alerted to 

challenges and issues coaches encountered in attempting to implement the coaching framework. 

Then, the coaching framework within the larger, overall coaching model was adjusted to 

accommodate the findings. As Russell et al. (2019) put it, “researcher-driven inquiry cycles 

attended to variation in implementation of the model and sought to identify adaptations that were 

associated with positive coaching and/or teaching outcomes, which could become part of the 

model’s design” (p. 10-11). The process of examining data and fine-tuning the coaching model 

became a feedback loop with researchers and then coaches participating. Having a clear coaching 

model at the outset was important for scalability, but the model needed to be adapted once the 

relationships between coaching and its outcomes were established via data, so “the essence of the 

model” (p. 29) could surface. 

Regardless of the coaching model, many of the studies showing positive results, including 

the Russell et al. (2019) study, had coaches partake in professional development. Even though the 

teachers being coached were not necessarily getting PD outside the classroom, outside training 

was having an influence on teacher practice via in-the-classroom coaching. With that in mind, the 
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literature review now turns to examining research and publications concerning the transition to 

becoming a coach and the roles and responsibilities inherent therein. 

 The transition to coaching  

Joyce and Showers (1980) say coaches need to be collaborative and non-judgmental. 

Loucks-Horsley et al. (2012) say there needs to exist a climate of trust, long-term commitment to 

coaching, and support from administration for coaching to succeed. Hull, Balka, and Miles (2009) 

say coaches have to see the “big picture of mathematics teaching and learning” and they “improve 

the whole by improving component parts” (p. 5). Furthermore, Hull, Balka, and Miles say coaches 

might be considered change agents who have lots of interconnected responsibilities. They have to 

possess knowledge about content and teaching, but also need to have social skills to work well 

with other adults. Campbell (2012) says  

coaches must also learn how to support teachers while questioning them; how to frame a 

common goal across differing instructional philosophies while trying to build community 

within and across grade-level teams; how to facilitate positive discussion advancing 

mathematical knowledge while addressing teachers’ limited understandings; and how to 

navigate the organizational and cultural factors that exist in schools. (p. 150) 

Otherwise, added Campbell and Malkus (2014) “as has been found within peer coaching…, 

interactions within a coaching dyad may be positive but lacking in the level of analysis and 

reflection needed to advance or change a teacher’s understandings or classroom practices” (p. 221-

222). Lastly, Confer (2006) says “Our goal as math coaches is not to add a little spice, salt, or 

pepper to the stew of mathematics instruction, but instead to alter the menu entirely” (p. 2). Taken 

together, these writings make the job of the mathematics coach seem insurmountable, especially 
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because, as Chval et al. (2010) said, one of the issues inherent to coaching is that coaches don’t 

step out of the classroom ready to coach. 

As far back as Showers’ (1984), one finds mention of training for coaches, however; in the 

peer coaching model, Showers stated that “coaches can be trained in a relatively brief period” (p. 

48). This stands in stark contrast to the on-going and in-depth training provided within a number 

of the coaching studies reviewed in this chapter (Campbell & Malkus, 2011; Foster & Noyce M.D., 

2004; Krupa & Confrey, 2012; Russell et al., 2019), wherein coaches attend weeklong or weeks-

long training, sometimes every summer, with follow-up meetings or other PD throughout the 

school year. In fact, Campbell (2012) wrote that when coaches did not participate in professional 

development, there was minimal impact on student achievement.  

Aside from training, transitioning to coaching sometimes requires others with whom the 

coach will work to learn and adjust. Neufeld and Roper (2003) provided multiple 

recommendations regarding coaches’ development when writing, “principals and coaches [should] 

understand the ‘big picture’ of the reform in which they are engaged and the reasons that undergird 

the changes” (p. 11). Russell et al. (2019) echoed that others with whom the coach works need to 

support coaching. Their coaching model involved not only district and school actions but state 

actions to propagate the model. See Figure 2.3 for the TN + IFL Coaching Model showing district 

and state actions. Campbell (2012) wrote that coaches may not be as effective during their first 

year because there are many challenges associated with the transition from teacher to coach, 

including, but not limited to, enacting their training. Campbell said there exist “additional, distinct 

abilities…to be effective coaches of other teachers” (p. 150). Further, there is a shift in identity 

that involves changing “from being viewed by others and by oneself as an expert (as an expert 

teacher) to being viewed as a novice (a novice specialist or coach)” (p. 150). Chval et al. (2010) 



 

73 

added information about how the coach shifts identities over the first year of tenure in the same 

way as changes occur when a teacher transitions to an administrator.  

Through meetings, conversations, and surveys, Chval et al. (2010) identified four 

components of a mathematics coach’s identity that are different from a mathematics teacher’s 

identity but are related to the coach’s new and developing role within the school’s culture. The 

first is coach as supporter of teachers. The new coaches anticipated this would be the biggest part 

of their new job. The second recognized identity was coach as supporter of students. Coaches had 

to let go of their teacher identity to develop their coaching identity. The next identity was coach 

as learner. While the coaches taking part in this study recognized that a necessary part of their job 

was continued growth, coaches sometimes felt concern about how other teachers might view it. 

The last identity Chval et al. identified was coach as supporter of the school-at-large. Initially, 

coaches envisioned this as creating a school-wide vision of mathematics instruction. However, this 

identity involved various duties in support of the school that were unanticipated (e.g., making 

copies, cleaning the cafeteria) and did not seem related to the role of a mathematics coach. All in 

all, initially perceived identities were different from what the identities became in reality over the 

course of the first year in the position.  

 Roles and responsibilities of coaches 

Campbell and Malkus (2011) provided a raison d’etre for the mathematics coach. 

“Elementary mathematics coaches are placed in schools to construct leadership roles and to 

provide on-site, collaborative professional development addressing mathematical content, 

pedagogy, and curriculum in an effort to enhance instruction and improve student achievement” 

(p. 430). Aligned with this reason for their existence, Neufeld and Roper (2003) described a 
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number of broad roles and responsibilities for coaches at both the classroom and school level. 

Russell et al. (2019) extended the reach of support structures beyond the school and district level 

to the state level in their TN + IFL Coaching Model. 

Much like the definitions for coaching, the roles and responsibilities of coaches and those 

who support the work of coaches at school, district, and state levels are varied and numerous. In 

fact, Gibbons and Cobb (2016) cite this as a possible reason why results from empirical studies 

are inconsistent. However, in attempting to specify impactful roles and responsibilities, the authors 

uncovered “three potentially productive activities that coaches might enact one-on-one with 

teachers in their classrooms: (a) co-teaching, (b) modeling, and (c) debriefing” (p. 240). Co-

teaching, said Gibbons and Cobb (2016), can help teachers because instructional practices are 

impacted when a teacher witnesses what a coach does with the teacher’s own students or when a 

teacher works with a coach to plan the actions each will take during the lesson implementation and 

then witnesses what the students do in response. Modeling can be especially fruitful for 

encouraging ambitious instructional practices when the coach calls attention to actions he or she 

takes during the model lesson and to students’ responses or reactions. Debriefing a teacher-taught 

lesson with respect to challenges encountered can also be a fruitful coaching practice. By working 

with more knowledgeable others, teachers generate potential solutions to problems they might 

encounter during instruction, and the coach can provide specific pointers on a given ambitious 

teaching practice. It should be noted, according to Gibbons and Cobb, being an exemplary teacher 

is insufficient, although necessary, for developing the coaching expertise needed to successfully 

engage in modeling, co-teaching, and debriefing. 

Both Kennedy (2016), in her review of research on effective PD, and West and Staub 

(2003), in their content-focused coaching book, wrote about the behaviors of and expectations for 
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effective coaches. The identified behaviors were not all synonymous with those from Gibbons and 

Cobb (2016). Kennedy emphasized collaborative planning and goal-setting. Like Kennedy (2016), 

West and Staub (2003) focused on goal-setting and collaborative planning, but they added task 

analysis as an expectation for effective coaching, writing that the coach  

must know the mathematics in depth and be able to show teachers how to set specific 

learning goals for a lesson, devise or select powerful tasks, analyze the knowledge–correct 

and ‘misconceived’–that children are likely to bring to the tasks, and plan instructional 

conversations that are contingent on student responses. (p. xiv) 

To this end, “coach and teacher collaboratively plan, enact, and reflect on specific lessons, 

acting as resources for each other” (p. 2).  

Goal setting, using rich tasks, and collaborative planning are all coaches’ roles within the 

TN + IFL Math Coaching Model, but there is even more to the coach’s role in this model. The TN 

Math Coaching Project identified three main elements of their coaching framework encompassing 

the roles and responsibilities of coaches during the coaching process. (See the middle box in Figure 

2.3.) These three elements of the coaching framework are: a set of 3 Key Coaching Practices; the 

coach-teacher discussion process; and an inquiry stance. The 3 key coaching practices are: “(1) 

deep and specific discussions of the instructional triangle, (2) establishing mathematics and 

pedagogical goals, and (3) evidence-based feedback” (Russell et al., 2019, p. 5). Each of the 3 key 

coaching practices enters the coaching process at particular points during the coach-teacher 

discussion process, which is an updated, more sophisticated version of the plan, enact, reflect 

coaching cycle. The coach-teacher discussion process is shown in Appendix B. Throughout the 

discussion process, the coach maintains an inquiry stance. According to Russell et al. (2019), 

taking an inquiry stance involves using noticings and wonderings as opposed to giving direct 
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instruction. “The inquiry stance stems from…the need for active teacher participation in meaning 

making around shifts in practice” (p. 6).  

 The coaching cycle 

Enacting the coaching cycle of plan, enact, and debrief with teachers is the most visible 

part of a coach’s roles and responsibilities. West and Staub (2003) were not the only writers to 

discuss the coaching cycle. Confer (2006), in The Math Coach Field Guide, reified the detailed 

co-planning championed by West and Staub saying that the teacher brings expertise regarding the 

individual students that the coach probably does not have, but the coach may bring content or 

teaching knowledge the teacher can learn. Hull, Balka, and Miles (2009) used one chapter in their 

Guide to Mathematics Coaching to discuss planning and co-teaching and one chapter to discuss 

analysis and reflection in the coaching cycle.  

Campbell and Malkus (2014) also discussed a plan, teach, reflect cycle for mathematics 

coaches. They created a conceptual model, shown as Figure 2.4, illustrating the nature of this work 

as well as the learning occurring for both coach and coachee throughout the process. This model 

shows similarities to the cycle described by West and Staub (2003) in the cyclical nature of the 

planning, teaching, and reflecting occurring on the right side of the figure as well as in the elements 

of each phase in the coaching cycle. 
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Figure 2.4 Model of coach and teacher co-learning in coaching cycle (Campbell & Malkus, 2014, p. 217) 

 

Other similarities to West and Stuab elucidated in the Campbell and Malkus study are in 

the background the coach and teacher bring to the process and the learning that occurs throughout 

the process. The coach brings educative power–“the additional, accessible knowledge that a 

teacher educator needs in order to support teachers as they solve or address mathematical and 

pedagogical problems” (p. 216). Both coach and teacher bring mathematical and pedagogical 

expertise and their current beliefs about mathematics and mathematics teaching and learning to the 

coaching process. Beliefs are influenced by prior experiences and drawn upon during planning and 

teaching. Reflecting upon the lesson then contributes to changes in the beliefs and in the content 

and pedagogical knowledge each brings to the subsequent coaching cycle.  

Russell et al.’s (2019) version of the coaching cycle, called the coach-teacher discussion 

process, is one of the three elements of the coaching framework, along with inquiry stance and 3 

key coaching practices. See Figure 2.3 for a depiction of the overall TN + IFL Coaching Model, 

where the coaching framework is in the middle of the figure. The coach-teacher discussion 

process, as depicted in Appendix B, begins with coach and teacher identifying the mathematics 
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learning goal–which is one of the 3 key coaching practices–and selecting a cognitively demanding 

task for use during the lesson. Each then completes the task and identifies solution strategies 

students might use to solve the task. Next, there is a pre-observation planning conference, wherein 

deep and specific conversations of the instructional triangle (D. K. Cohen, Raudenbush, & Ball, 

2003) are to occur. The deep and specific conversations are another of the 3 key coaching practices. 

Then, the lesson observation takes place followed by the post-observation feedback conference. 

During the feedback conference, the final of the 3 key coaching practices, using evidence-based 

feedback, is facilitated via the use of an evidence based collection tool (Bill, personal 

communication). Evidence-based feedback is paramount during the lesson analysis within the 

feedback conference. Ever-present during the coach-teacher discussion process, is an inquiry 

stance of noticing and wondering on the part of the coach.  

West and Staub (2003) encouraged two kinds of coaching moves be used during the 

coaching cycle’s co-planning or reflecting phases, the first of which foreshadows the inquiry 

stance that umbrellas the coach-teacher discussion process of the TN Math Coaching Project. 

“Moves that invite the teacher to verbalize his or her perceptions, thoughts, plans, deliberations, 

and arguments” (p. 46) have the potential to encourage teachers to construct their own meaning 

regarding potential changes in professional practice much like the inquiry stance. The other move 

encouraged by West and Staub relates to some unforeseen results of the Russell el al. (2019) study. 

“Moves through which the coach provides direct assistance relevant to the planning and 

implementation of the lesson” (West & Staub, 2003, p. 46), in other words, being explicit with 

teachers about what they should or should not do in the lesson, is not aligned with the inquiry 

stance advocated by Russell et al. However, results from Russell et al. showed no difference in 

growth patterns for teachers who experienced increased explicitness from their coach and the 
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overall teacher group, demonstrating that “under the right conditions, explicitness may be 

efficacious; as such, it called for a reconsideration of the principle of taking an inquiry stance with 

teachers, a component of the coaching model’s design” (p. 22). 

In addition to studying the effect of explicitness, Russell et al. (2019) used the iterative 

cycles of coaching and continuous improvement (Bryk et al., 2015) to study coaching press. 

Coaching press served as an indicator that coaches were having deep and specific conversations 

with teachers about the instructional triangle–one of the 3 key coaching practices–and were 

pushing the teachers to construct their own ideas about effective mathematics instruction. In 

contrast to the results for an inquiry stance, results did show that increased press of the teacher by 

the coach during the coaching cycle resulted in positive change for teachers. 

As is apparent in the Russell et al. (2019) study, among others, “this approach to 

professional development is complex and requires considerable thought as well as ingenuity in 

order to take the core idea and create an effective coaching model” (Neufeld & Roper, 2003, p. 

19). One complexity, sensed by Showers over 30 years ago, was that “coaching is not a simple 

additive that can be tacked on to the school with a ‘business as usual’ attitude, but rather represents 

a change in the conduct of business” (1985, p. 26). This complexity is being addressed as 

researchers such as Campbell and Malkus, Russell and her team, and Cobb and his team examine 

systems so coaching can be effective, sustained, and taken to scale, resulting in a “change in the 

conduct of business” for schools. The literature review now turns to examining studies showing 

the effectiveness of coaching, including a meta-analysis of 60 coaching studies. 
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 Effectiveness of coaching  

Much has changed since Joyce and Showers first laid claim to coaching’s effectiveness in 

the mid-1980s. Studies of coaching have used increasingly sophisticated methodology and analysis 

(e.g., Matsumura et al., 2013; Russell et al., 2019). They have made use of reliable and valid tools 

(e.g., IQA from Boston, MKT assessment from the LMT group). They have expanded their scope 

and reach (e.g., MIST project, TN + IFL Math Coaching Project), and despite the fact that the 

number of empirical studies of coaching still pales in comparison to the number of empirical 

studies of ambitious instruction, they have become more numerous, to the point where meta-

analyses have now been performed with coaching studies.  

One such meta-analysis was published by Kraft, Blazar, and Hogan (2018), who “limited” 

their research to 60 coaching studies, most of which were randomized control studies. Using meta-

analysis methods allowed Kraft et al. to increase the statistical power afforded to the combined 

results, examine pooled results from a variety of coaching models, and compare the characteristics 

of models that may be related to effectiveness. Results from the Kraft et al. study showed “pooled 

effect sizes of 0.49 standard deviations (SD) on instruction” (p. 547) with an Interquartile Range 

(IQR) from 0.17 to 0.92 SD, and pooled effect sizes of “0.18 SD on [student] achievement” (p. 

547) with an IQR of 0.03 to 0.24 SD. However, the effect sizes increased by 0.31 SD for instruction 

and 0.12 SD for students achievement when coaching was paired with group training. In general, 

effects on student achievement were less than effects on classroom instruction in this group of 

studies. Additionally, effect sizes for larger studies were associated with smaller effect sizes for 

both changes in teacher instructional practice and student achievement. The majority of studies in 

the Kraft et al. (2018) meta-analysis focused on literacy, as did Matsumura et al.’s (2010, 2013) 

study showing positive effects of coaching on both classroom instruction and students 
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achievement. Only two of the studies included in this meta-analysis focused on mathematics. 

Regarding those studies, students’ mathematics achievement showed a very small positive effect 

of 0.050.  

While Matsumura et al. (2010, 2013) studied content-focused coaching’s effect in literacy, 

Campbell (2012) and Campbell and Malkus (Campbell & Malkus, 2011, 2014) reported on 

content-focused coaching in the mathematics classroom with positive outcomes for student 

achievement, teacher beliefs, coach beliefs, and coach content knowledge and MKT. Campbell 

and Malkus’ results showed effects of mathematics coaching at each juncture of Desimone’s 

(2009) proposed conceptual framework for studying professional development. As such, Campbell 

drew on the Desimone framework to create her own model showing how the mathematics coach 

impacts teachers’ learning in PD settings to ultimately impact teachers and students. Campbell’s 

model, as shown in Appendix C, depicts the coach’s interactions with teachers in three forms of 

professional development–one-on-one or grade-level coaching, school-based PD, and larger-scale 

PD. All these forms of coach/teacher interaction around professional learning impact the teacher 

knowledge and beliefs, which, according to Desimone, impact instruction and feed back to impact 

professional development. The instruction ultimately impacts student achievement, which also 

feeds back to impact teacher knowledge and beliefs. Lastly, the increased student achievement 

feeds back to impact instruction. Thus, effective coaching has consequences beyond the teacher, 

as shown by Campbell and Malkus.  

This literature review has made it apparent that (1) there are many models for coaching in 

schools, and those models have morphed and become more sophisticated; (2) there are many 

definitions or explanations of coaching that have also changed over time, but a consensus seems 

to have formed that the coaching is “instructional experts work(ing) with teachers to discuss 
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classroom practice in a way that is (a) individualized…; (b) intensive…; (c) sustained…; (d) 

context specific…; and (e) focused” (Kraft et al., 2018, p. 553); (3) the training, roles, and 

responsibilities allocated to coaches are also varied and can be intense; but despite, or perhaps 

because of, the evolving nature of coaching, (4) some studies have shown coaching as an effective 

form of PD to change teacher knowledge, beliefs, and instructional practices and even increase 

student achievement. The literature review concludes this section on coaching by examining 

literature making the connection between coaching and ambitious mathematics instruction more 

salient. 

 Coaching in relation to ambitious instruction 

Aside from already-reviewed literature making the direct connection between coaching and 

ambitious instruction, (e.g., Campbell & Malkus, 2014; Gibbons & Cobb, 2016; Kraft et al., 2018; 

Matsumura et al., 2013), Cobb and Jackson (2011) provided a “comprehensive, empirically 

grounded theory of action for improving the quality of mathematics teaching at scale” (p. 6) that 

involves mathematics coaching. This theory of action for district-level instructional improvement 

was created and refined over a years-long time period in association with the previously-mentioned 

MIST project. The theory of action explicated five key components for improving mathematics 

education at scale by making classroom instruction more ambitious. One of these five key 

components was “mathematics coaches’ practices in providing job-embedded support for teachers’ 

learning” (p. 9). Other key components involved teacher networks and the practices of both school 

and district leaders in support of ambitious instruction. These components, including that of 

mathematics coaches’ practices, all support the first key component for Cobb and Jackson’s theory 
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of action: “a coherent instructional system for supporting mathematics teachers’ development of 

ambitious teaching practices” (p. 10-11).  

In explaining their ideas about the coherent instructional system, Cobb and Jackson (2011) 

provided seven associated goals. The first of these was a set of explicit goals for students. The 

second was a vision of high-quality instruction with specific practices. The goals and vision 

“should drive the design of the remaining elements of the instructional system” (p. 13), and the 

vision is one place where Cobb and Jackson’s theory of action connected ambitious instruction to 

coaching. The authors recommended the district vision encompass an agreed-upon but “relatively 

small set of high-leverage instructional practices that are learnable in the context of high-quality 

professional development” (p. 13). These high-leverage or ambitious instructional practices should 

influence instructional leadership and PD that includes district-wide professional development, 

coaching, and Professional Learning Communities. 

Cobb and Jackson’s (2011) main point in making coaches a part of the five key components 

was to be clear about the fact that those who have already developed sound instructional practices, 

otherwise known as the mathematics coaches, should work with teachers in the classroom to 

develop the high-leverage, ambitious teaching practices that are a part of the coherent instructional 

system (the first of the five key components in this theory of action). Cobb and Jackson go on to 

state that participating in a coaching cycle of co-plan, enact, and analyze, akin to the cycle 

previously discussed in this chapter, could be productive in supporting ambitious teaching and that 

coaching activities may be even more productive if paired with district professional development. 

Accordingly, the district PD should support ambitious instruction, and the messages delivered to 

teachers via the professional development in all its forms should be reinforced in word and deed 

by district leaders and school instructional leadership. All in the organization–teachers, coaches, 
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school leaders, district leaders–must take a learning perspective and adjust their practice to further 

ambitious teaching in the name of instructional improvement, say Cobb and Jackson.  

Cobb and Jackson’s (2011) theory of action may be the most explicit one connecting 

coaching to ambitious mathematics instruction, but for at least a decade before their publication, 

others have implicitly connected ambitious instruction to forms of PD inherent in coaching. For 

example, Smith (2001), in her book encouraging Practice-Based Professional Development, 

considered designing professional development while keeping in mind the “cycle of teachers’ 

work and the nature of the activities in which teachers engage as they move through the cycle” (p. 

8). This cycle is aligned with the cycle of coaching activities as it begins with planning, continues 

with the actual teaching, and concludes with a reflection. Later, she reiterated the call to provide 

help for teachers that focuses on their everyday activities and stated, “This type of assistance can 

be provided by supportive ventures that focus directly on an individual teacher’s practice, such as 

coteaching, coaching, assistance with planning, and reflection on actual lessons” (p. 42). Thus, 

Smith provides assistance for those attempting to help teachers instruct in what was labeled a 

standards-based way and what has become known as ambitious. 

In addition to Smith (2001), Borasi and Fonzi (2002) discussed scaffolded field experiences 

(SFEs) as a PD technique. They defined SFEs as “opportunities for participating teachers to 

experiment with instructional innovation while receiving support” (p. 83) and claimed SFEs can 

help teachers learn to use effective teaching strategies, writing that until teachers have an 

opportunity to try a new teaching practice in their classrooms, they cannot know what it is really 

like, even if they have viewed videos or seen the practice modeled by others. The SFEs that 

encourage effective, ambitious instruction are aligned with the practice of coaching because the 

teachers being coached are experimenting while receiving support.  
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Borasi and Fonzi’s (2002) publication has commonalities to Grossman et al.’s (2009) 

study, the purpose of which was to develop a framework describing and analyzing the teaching of 

professional practice within education programs for relational professions. Grossman et al. set out 

to discover how practice was taught by gathering data from different preparation programs. The 

team identified three components common across the programs: decomposition, approximation, 

and representation of practice. Decomposition is the breaking down of practice into its component 

parts. Decomposition of practice is a part of Grossman et al.’s framework because the actual 

practice of these professionals is so complex that learners new to the practice need to have the 

chance to distinguish the components that make it up. Representations are made of the ways the 

profession shows the practice to the learners along with the pieces of the practice that are made 

visible. “Approximations of practice refer to opportunities…to engage in practices that are more 

or less proximal to the practices of a profession” (p. 2058).  

Coaching encompasses Grossman et al.’s (2009) framework because it (1) allows teachers 

and coaches to work together in discussing the components that make up ambitious instruction as 

well as those components pertinent to lessons being planned. This encompasses representation and 

decomposition. (2) Coaching allows teachers to try out the components of their teaching practice 

with extensive guidance from the coach during planning and during one phase of the lesson (e.g., 

the launch, the share-and-discuss). Thus, ambitious instruction can gradually take hold for the 

teacher. This is akin to Grossman et al.’s decomposition and approximation. Also in coaching, the 

teacher attempts to put all the pieces of ambitious instruction together when the coach and teacher 

implement the plan in the classroom. This demonstrates approximation and representation. 

Although Grossman et al., Smith (2001), and Borasi and Fonzi (2002) are not as explicit as Cobb 

and Jackson (2011) about how ambitious mathematics instruction and coaching are connected, it 
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is clear from all these writers that coaching is helpful in changing teachers’ practice from 

traditional to ambitious. 

2.4 Conclusions  

There exists a preponderance of information, in the form of texts, research and even internet 

sites, related to mathematics teachers’ development of ambitious instructional practices. Some of 

this information relates teacher practice to student achievement (see section 2.2); some relates PD 

to teacher practice (see section 2.3); some relates teacher knowledge to teacher practice or students 

achievement (see section 2.4); and some concerns quantifying ambitious instructional practice (see 

section 2.5). There is not as much information, especially in the form of empirical research, 

concerning mathematics coaching, but, as evidenced in this literature review, there is an ever-

increasing amount. In fact, some research has connected content-focused coaching in mathematics 

and ambitious instruction. For example, Gibbons and Cobb’s (2016) study outlined two aspects of 

coaching knowledge content-focused coaches need to bring to their coaching practice and five key 

practices that coaches should use to support the teachers with whom they work in developing more 

ambitious instructional practices. Cobb and Jackson’s (2011) “empirically grounded theory of 

action for improving the quality of mathematics teaching at scale” (p. 6) involved mathematics 

coaches as a form of job-embedded PD and on-going support for teachers within a “coherent 

system of supports for ambitious instruction” (p. 6). 

In addition to the inside-the-classroom PD and on-going support from coaches, Cobb and 

Jackson’s (2011) “coherent system of supports” included outside-the-classroom district PD around 

the desired instructional practices. Kraft et al. (2018) found studies pairing coaching with outside-
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the-classroom PD, in the area of literacy, were more effective in changing teacher practice and 

increasing student achievement. Putnam and Borko (2000) have also asserted that teachers should 

do a portion of their learning in the school or classroom and part outside the school, in other PD 

settings. Based on the situative perspective that states learning is situated, social, and distributed, 

if teachers confine their learning to coaching, their learning may be limited in its applicability. 

Putnam and Borko suggested that it may be the combination of approaches that holds the most 

promise for teacher learning resulting in changes in practice, when they wrote 

If the goal is to help teachers think in new ways,…it may be important to have them 

experience learning in different settings. The situative perspective helps us see that much 

of what we do and think is intertwined with the particular contexts in which we act. The 

classroom is a powerful environment for shaping and constraining how practicing teachers 

think and act. Many of their patterns of thought and action have become automatic-resistant 

to reflection or change. Engaging in learning experiences away from this setting may be 

necessary to help teachers "break set"-to experience things in new ways. (p. 6)  

The proposed study is in line with the suggestions of Putnam and Borko (2000) as well as 

the recommendation in Cobb and Jackson’s (2011) theory of action that mathematics coaches’ 

practices be included in a comprehensive strategy supporting ambitious mathematics instruction 

at scale. Additionally, few of the studies reviewed in mathematics education paired outside-the-

classroom professional development in mathematics for teachers with inside-the-classroom 

coaching. Thus, while there are studies showing that professional development and on-going 

training for coaches paired with coaching impacts mathematics teaching (Campbell & Malkus, 

2011; Russell et al., 2019), a place is still available within the existing field of research in 
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mathematics teaching and learning in the area of study described in this dissertation pairing outside 

professional development for teachers with coaching in mathematics.  
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3.0 Methods 

This study seeks to investigate whether and how content-focused coaching affects K-5 

mathematics teachers’ use of ambitious teaching practices by responding to the following research 

questions. 

• How does proximal, in situ professional development in the form of content-focused 

coaching paired with outside-the-classroom professional development facilitate a 

change in math teachers’ pedagogical practices from traditional to more ambitious in 

nature? 

o What is the impact on teachers’ opportunities to learn about ambitious teaching 

practices when content-focused coaching is added to professional 

development?  

o What is the impact on teachers’ use of ambitious teaching practices when 

content-focused coaching is added to professional development? 

This chapter outlines the approach to inquiry for the proposed study. First, the chapter 

outlines the study design, including a description of the participant-teachers. Next, information 

pertaining to and procedures for data collection are shared. Then, the chapter provides information 

about the instruments used during the study. Lastly, the chapter offers plans for analysis of the data 

collected.   
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3.1 Study design 

The study described within this chapter is an intervention study with a pre-post design. The 

change explored in this study is an alteration in teachers’ pedagogical practice in K-5 mathematics 

classrooms from more traditional practices to more ambitious teaching practices (Cobb & Jackson, 

2011; Lampert et al., 2011) as set forth in the eight effective teaching practices for mathematics 

(National Council of Teachers of Mathematics, 2014). To study the potential changes in 

pedagogical practice, the author engaged in coaching and observing one group of five teachers 

(referred to as the coaching group) and observing only a second group of five teachers (referred to 

as the comparison group). The samples were drawn from a larger cohort of educators participating 

in a Title II B Math and Science Partnership (MSP) grant awarded to the Math & Science 

Collaborative (MSC), where author is employed. Figure 3.1 provides the flow of the study. 

As a part of the MSP grant, the MSC delivered 14 days of professional development (PD) 

to grades K-5 mathematics teachers. The cohort of teachers from which this study’s coached and 

comparison groups were drawn began attending PD during Summer 2017. Before any PD began, 

all participants took a survey, called the MSP-MSC Survey (University of Pittsburgh, 2016), 

regarding their current beliefs about teaching and learning mathematics and the Learning 

Mathematics for Teaching assessment (LMT) (Hill et al., 2004), regarding their current level of 

mathematics knowledge for teaching. The ten summer days of PD focused on common and 

specialized content knowledge (Ball et al., 2008). However, the summer PD also implicitly 

involved pedagogy in a number of ways. For example, the tasks chosen for use in the PD were 

often tasks that could be used in K-5 classrooms or adapted for use in the elementary grades. 

Consequently, teachers often raised questions or made comments related to what their students 

might say or do when provided similar opportunities to learn mathematics. One such activity was 
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a “number talk” (Parrish, 2016) for 83 – 56. Participants noted that very few group members used 

the traditional US algorithm involving “borrowing” when solving this problem mentally. The 

teachers questioned its utility as a standard algorithm for students and concluded that instruction 

should allow for students’ sense making around the operation as opposed to memorizing steps in 

a solution process.  

Furthermore, while the participants did not discuss the connection between these 

pedagogical practices and the effective teaching practices for mathematics, at the conclusion of 

every other day, the facilitators of the summer PD asked the following closing question: “What 

are same ways we learned that (1) helped you make deeper sense of the mathematics than you 

might have otherwise? (2) helped you think of a different strategy than you might have used 

before? (3) kept you engaged?” Participants consistently responded that being asked to engage 

with challenging tasks instead of being told how to solve a problem deepened their sense-making. 

They often responded that having facilitators question them instead of simply saying if an answer 

was correct or incorrect helped them think about different strategies or kept them engaged with the 

mathematics. Thus, although not explicit, the connection to effective Mathematics Teaching 

Practices was present in the summer portion of the common PD experience. Additionally, 

discussion engendered by the closing question allowed teachers to make the connection between 

their own depth of learning in the summer PD and what was possible for their students. Therefore, 

although the summer experience was meant to deepen teacher content knowledge, it also allowed 

for opportunities to deepen the pedagogical content knowledge. This set of experienced formed a 

common foundation for all teachers in the cohort. 

Aside from the summer PD, all the teachers in this cohort also participated in four follow-

up PD sessions during the 2017-18 school year focused more on pedagogical content knowledge 
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but still involving some specialized content knowledge (Ball et al., 2008). As stated above, a 

smaller group of ten teachers, drawn from the larger cohort, participated in this study; Five in the 

coached group, and five in the comparison group. Once the two groups of five were finalized, the 

author visited each classroom to videotape one mathematics instructional period. Finally, before 

any coaching began, the author and another coder independently assessed the classroom instruction 

using four of the Academic Rigor (AR) rubrics from the Instructional Quality Assessment (IQA) 

(Boston, 2012a) (See Appendix H). The two raters compared and came to consensus on IQA AR 

ratings for each coached and each comparison teacher.  
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Figure 3.1 Overview of the Study 

The figure provides a framework for the study design. 
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Comparison teachers participated in the four remaining PD sessions during the school year. 

While the coached teachers participated in the follow-up PD like the comparison teachers, they 

were also involved in coaching activities intermingled with the PD. After the coaching activities 

and PD activities were completed for the 2017-18 school year, one additional mathematics class 

was videotaped. Again, the instruction was assessed by the author and outside evaluator using the 

same four IQA AR rubrics. Figure 3.2 shows the activities in which the coached and comparison 

teachers took part as well as the data collection that took place during the 2017-18 school year. 

 

 

Figure 3.2 Timeline for the study  

The figure displays a timeline of professional development and data collection activities for the teachers in 

this study. The shaded boxes for PD and data collection activities apply to all participants. The unshaded 

blocks of activities apply only to the coached teachers in the study. 

 Participants 

As previously stated, before the ten days of summer PD, all teachers were administered the 

LMT assessment (Hill et al., 2004), which provides a measure of teachers knowledge of 

mathematics for teaching (Ball et al., 2008). Teachers also completed a survey concerning their 

beliefs about teaching and learning called the MSP-MSC Survey (University of Pittsburgh, 2016). 
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Scores from the LMT and the survey provided a means for creating two matched groups of five 

teachers–one group to be coached and one for comparison. Excerpts from the LMT assessment are 

provided in Appendix D and excerpts from the MSP-MSC Survey are provided in Appendix E.  

One teacher in each group had an LMT score more than one standard deviation lower than 

the mean of the overall group of K-5 teachers receiving professional development. Two teachers 

in each group had scores within one standard deviation below the mean for the group. One teacher 

in each group had a score within one standard deviation above the mean, and the remaining teacher 

in each group had a score more than one standard deviation above the mean of the overall group. 

The survey scores for each pair of teachers were also within one standard deviation of one another 

with the exception of the teachers whose LMT scores were more than one standard deviation above 

the mean. Those scores were within 1.5 standard deviations of one another. While the groups of 

teachers were intended to be matched, the study did not intend to match teachers one-to-one 

between coached and the comparison groups, meaning that teachers whose survey and assessment 

scores matched did not necessarily match for grade level or school district type, even though efforts 

were made to have teachers from like schools and from the same grades represented in each group. 

The teachers participating in the study came from urban-like school districts or suburban 

districts. Two teachers in the coached group and two teacher in the comparison group taught in 

urban districts. Three teachers in each group taught in suburban school districts. Two teachers in 

each group taught grade 1. One teacher in each group taught grade 3, and one teacher in each group 

taught grade 5. The remaining teacher in the coached group taught grade 2, while the remaining 

teacher in the comparison group taught grade 4. Coached teachers were not drawn from the same 

schools as comparison teachers to avoid any contaminating effects of the coaching and to avoid 

any ill will, since coaching involves additional time and effort on a teacher’s part. In other words, 
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there was no school building with teachers in both the coached and comparison groups. See 

Appendix F for a summary table of data for teachers in the study. 

 Coach qualifications 

While the coach in this study did not engage in the same initial coach training or the same 

on-going elements of coaching training as the coaches in Tennessee, from the Russell et al. (2019) 

publication, the coach for this study did participate in an abbreviated version of that training. 

Victoria Bill, who oversaw this coach’s Supervised Internship (EDUC 3012) at the University of 

Pittsburgh’s IFL provided a shortened version of the Tennessee coach training as well as the 

opportunity to participate in some initial coaching sessions as an observer and then as a coach-in-

training.  

The coach for this study did not participate in the same year-long program of studies as the 

coaches in Campbell and Malkus’ (2014) study; however, the coach for this study has received on-

going experiences both in graduate programs and in the workplace to enhance her pedagogical 

content knowledge for teaching mathematics and for leading professional development. 

Additionally, the coach for this study did engage in some training that overlaps that of the coaches 

in the Campbell and Malkus studies. For example, the Campbell and Malkus coaches took 

Developing Mathematical Ideas (DMI) courses and facilitator training. The coach for this study 

participated in DMI courses and also took facilitator training from Dr. Deborah Schifter, and Dr. 

Virginia Bastable who, along with Dr. Susan Jo Russell are the creators of the DMI PD program 

and accompanying DMI materials. The coaches in Campbell and Malkus’ studies were also trained 

in use of the Fosnot (2007) instructional materials. While the coach for this study has not received 



 

97 

that training, she is familiar with and regularly uses the Contexts for Learning  (Fosnot, 2007) 

materials in PD sessions with elementary mathematics teachers.  

Likewise, while the coach for this study has not received formal CGI training like the 

university liaisons in the CGI studies (Franke et al., 1998), she has, however, been steeped in the 

CGI research and frameworks and has used them in professional development with elementary 

mathematics teachers. The coach also has more than a decade of previous experience delivering 

outside-the-classroom professional development. Much of that professional development was 

based on the tenets of standards-based, ambitious teaching, and much of the professional 

development was of high quality according to Desimone’s (2009) framework. The coach had 

training in delivering that type of professional development; however, the coach had more limited 

training or experience specifically geared towards content-focused coaching. Thus, the coach for 

this study has had some similar and some different experiences compared to coaches in the 

impactful mathematics coaching studies. 

 Coaching 

Figure 3.3 displays the coaching cycle as implemented for this study. Each coaching cycle 

consisted of three parts with distinct activities taking place: co-planning, co-teaching, and 

debriefing. The coaching cycle began with the co-planning or preparation phase of the lesson. Co-

planning prepares the coach and teacher for and leads into the co-teaching or implementation 

phase. Once the lesson has been taught, the coach and teacher debrief on the lesson and any related 

ideas. 
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Figure 3.3 Coaching Cycle 

 Co-planning 

The first consideration in the preparation phase is the student learning goal for the lesson 

to be taught. Establishing a clear goal to focus student learning is one of the eight effective 

Mathematics Teaching Practices. According to Taking Action: Implementing Effective 

Mathematics Teaching Practices “(l)earning goals inform the important decisions teachers make 

in planning and preparation for instruction, implementing lesson activities, and guiding student 

learning” (Huinker & Bill, 2017, p. 17). Thus, without a clear learning goal, subsequent planning 

decisions about which tasks or activities to use, how to launch and facilitate the chosen activities, 

which purposeful questions to ask, and how else to support students are potentially less impactful. 

Therefore, the co-planning or preparation phase of the coaching cycle begins before the coach and 

teacher meet face-to-face with the teacher attempting to craft a learning goal for the upcoming 

lesson. The pair communicates via electronic means (e.g., phone, email, video chat) to come to 
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consensus on the goal. Because establishing the learning goal is related to each of the other 

effective Mathematics Teaching Practices, without this target, engaging in ambitious teaching 

becomes more difficult. 

Once the learning goal has been established, the teacher, with some consultation from the 

coach, chooses the task or activity for the lesson. Because this inquiry and the related coaching 

activities encourage ambitious teaching of mathematics as embodied in the eight effective teacher 

practices for mathematics (NCTM, 2014), the chosen task should “promote mathematics reasoning 

and problem solving and allow multiple entry points and varied solution strategies” (NCTM, 2014, 

p. 17). While the teacher engaged in such tasks and examined student work related to such tasks 

during the outside-the-classroom PD, she or he may have had little to no experience implementing 

such tasks with students. Thus, although learning about cognitive demand of tasks was a part of 

the follow-up PD sessions, portions of the co-planning phase consistently entailed continuing 

discussions of the Task Analysis Guide (Stein et al., 2000).  

Once the task is selected, teacher and coach separately engage in the task, anticipating both 

correct and incorrect student solution strategies and crafting assessing and advancing questions 

related to the anticipated strategies (M. S. Smith & Stein, 2011). A planning template, called the 

Monitoring Tool (M. S. Smith et al., 2009), records these strategies and questions. The tool helps 

shift the emphasis of the lesson from teacher actions to student thinking and provides a common 

protocol from which teacher and coach speak when meeting face-to-face.  

After the coach and teacher each create their Monitoring Tool, they meet face-to-face to 

compare and discuss the strategies and questions they each crafted. At this point, it becomes 

incumbent upon the coach to push the teacher to think deeply about the students’ possible thinking. 

The coach asks about the details behind what students who use a given strategy might be thinking. 



 

100 

The coach asks about what the teacher anticipates students will say in response to an assessing 

question she or he has planned to use in association with a given strategy, and then asks, “What if 

the students don’t say that? What then?” The coach might suggest another strategy–one the teacher 

did not anticipate–and some questions related to it in order to deepen the teacher’s thinking 

regarding the task, the student thinking, or even the mathematics of the task. Decisions about what 

avenues to pursue are made based on a number of different factors, including, but not limited to: 

(1) the teacher’s expressed interest in a certain effective teaching practice; (2) trouble spots the 

teacher has previously encountered; or (3) the coach’s determination, based on past coaching 

episodes, of which effective teaching practice should be pursued. 

By anticipating student solution strategies and then comparing, discussing, and delving 

deeply into these strategies, it becomes more likely that the task, when implemented, will maintain 

its level of cognitive demand (Stein et al., 1996). Both teacher and coach are likely to routinize the 

problematics parts of the task or move the emphasis of the task from problem solving into 

completeness or correctness if they thought in advance about what students might say or do in the 

process of engaging in the productive struggle (NCTM, 2014). While thorough advanced planning 

is important for maintaining the level of cognitive demand, it is also critical for other components 

of ambitious mathematics instruction. For example, learning goals are less likely to be attained if 

teaching is done spontaneously instead of pre-planned. The instruction may end up being 

haphazard or disorganized instead of purposefully aimed at student learning (Huinker & Bill, 

2017). Additionally, adaptations may not be considered for students whose thinking is less or more 

sophisticated than most. Thus, the co-planning stage is critical to a coaching episode meant to 

encourage ambitious mathematics teaching. 
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 Co-teaching 

Soon after the co-planning process is completed (preferably the same day), the teacher and 

coach implement the task. During the initial coaching cycle, the coach may take on most of the 

responsibility for the implementation of the lesson, while the teacher takes on more of the 

observer’s role. The teacher may launch6 the lesson and then stay at the coach’s side during the 

explore or monitoring and summarize or share and discuss phases (M. S. Smith et al., 2009). As 

the study progresses, the coach will gradually relinquish more of the responsibilities for lesson 

implementation to the teacher. The teacher can learn from both observation and experience over 

the next coaching cycles. For example, during the second cycle of coaching, the teacher may 

launch the task and take on more of the monitoring responsibilities while students are working 

cooperatively in pairs or small groups. The coach may be at the teacher’s side suggesting some of 

the assessing or advancing questions that have been pre-planned, or the coach may ask an 

advancing question to the teacher’s assessing question to push students further towards the 

established learning goal.  

During the next cycle, the coach may step back even further during the monitoring or 

explore phase but still consult with the teacher about which student groups to select for sharing 

and in which order to have them share. Eventually, the coach may step back to only asking a few 

connecting questions during the share and discuss phase of the lesson. By the conclusion of the 

                                                 

6 Lessons co-planned and implemented in this study used a launch-explore-summarize model. In the launch, 
students are drawn into the context of the task, prior knowledge is activated, expectations are established, and the 
teacher assures that students understand the task and expectations. In the explore phase, students continue to process 
the problem, mostly in collaborative groups, try solution strategies and refine their thinking. The teacher is circulating 
during the explore phase so as to monitor student thinking and support students with well-placed questions or 
comments. In the summarize phase, the class reconvenes into a large group to share, discuss, compare, and contrast 
the strategies employed by peers in solving the task. The teacher’s role becomes pulling the students’ ideas together 
and facilitating the discourse to advance and deepen the understanding of all in the class (Michigan State University 
College of Natural Sciences, n.d.).  
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study, the teacher takes all or nearly all the responsibility for implementing the planned task with 

the students. At this point, the coach becomes more of an observer of the lesson who may 

occasionally interject a question or comment during the lesson implementation. Grossman et al 

(2009) used the analogy of learning to kayak on smooth waters which applies here as the coach 

allows the teacher the opportunity to learn from her and from her implementation of the lesson. 

 Debrief of the lesson 

Whether the coach is implementing much of the lesson or taking on the observer’s role, it 

is important for coach and teacher to reflect on the lesson implementation soon after its conclusion. 

This is a time for the coach to push the teacher to think deeply about the effective Mathematics 

Teaching Practices that lead to more ambitious instruction. The coach has considered, in advance, 

the different ways the lesson might play out, much like the teacher and coach jointly consider the 

implementation of the task. The coach thinks in advance about how to use the lesson in enabling 

the teacher to more effectively implement future lessons for the advancement of student learning. 

Doing so most likely entails facets of multiple effective mathematics teaching practices. The coach 

considers which of these facets to explore with the teacher and which to save for another time. The 

coach considers how to approach the conversation and connect it to student thinking related to the 

implemented task. This is all done to further the teacher’s progress towards ambitious mathematics 

teaching. 

The debrief allows coach and teacher to deliberately reflect upon the practice of teaching. 

The coach is the vehicle through which the teacher becomes “aware of what they and their students 

are doing and how their actions and interactions are affecting students’ opportunities to learn” 

(Huinker & Bill, 2017, p. 251). The coach and teacher jointly consider strengths, weaknesses, and 
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points of potential focus in the future. As cited in Taking Action (Huinker & Bill, 2017, p. 251), 

Hiebert, Morris, Berk, and Jansen (2007) suggest questions to assist in reflecting upon lessons.  

• What are students supposed to learn? 

• What did students learn? 

• How did the teaching help (or not help) students learn? 

• How could teaching more effectively help students learn?  

These questions assist the teacher in focusing on the students and their learning. 

Huinker and Bill (2017) make the point that although the first two questions in Hiebert et 

al.’s list are likely discussed more often, the last two questions warrant more time and energy in 

the debrief conversation. These questions focus on how the teacher actions or inactions affect 

students’ learning. “Basing reflections on evidence of teaching actions and student learning helps 

the teacher form hypotheses about the effects of particular teaching actions on students’ learning 

and to identify ways to improve specific teaching moves” (p. 259) This is the purpose of the 

coaching debrief. Therefore, focusing on these questions is a potential catalyst to more ambitious 

teaching practices, whereby students are provided more opportunities to learn.  

Although the coach has a teaching practice or two in mind as the focus for each teaching 

cycle, it is impossible to totally separate the effective mathematics teaching practices from one 

another. As the teacher and coach work on supporting productive struggle, they must have a task 

that supports reasoning and problem solving. When working to facilitate meaningful discourse 

around the task, purposeful questions must be posed and student thinking must be elicited and used 

to further the productive discussion aimed at an established mathematical goal. However, as the 

main focus of the cycles shift over the course of the school year, the coach gains formative 

information about how the effective mathematics teaching practices are developing collectively 
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and individually. Perhaps the teacher shows more facility with choosing tasks that align with the 

student learning goals, but continues to struggle with questioning strategies. Perhaps the teacher 

begins to ask purposeful questions but then has trouble using the student responses in a productive 

way to further the learning. As this information becomes apparent, the coach adjusts the foci of 

the coaching cycles to bolster any continuing needs on the part of the teacher.  

3.2 Data Collection 

During the study, data was collected via four sources: the follow-up PD sessions, an initial 

classroom observation, coaching sessions, and a final classroom observation. Details concerning 

each of these data sources follows. 

 Follow-up professional development 

Data collection for the study overlapped with the selection of participants for the coaching 

and comparison groups. All teachers in the larger PD cohort began attending follow-up PD 

sessions in October, 2017. These follow-up PD sessions provided opportunities for all the teachers 

in the cohort, including those who were being selected for participation in the study, to learn about 

the effective mathematics teaching practices. A tool, called the Opportunities to Learn about 

Effective Teaching Practices Data Collection Tool (OtL-ETP), tracked which of the effective 

mathematics teaching practices cohort teachers encountered via the follow-up sessions.  

Four follow-up sessions occurred throughout the 2017-18 school year; one in October, one 

in November or December; one in January or February; and the final follow-up session in March 
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or early April 2018. The OtL-ETP tool recorded any effective mathematics teaching practices 

encountered therein by all cohort teachers, which included all ten of the study’s participating 

teachers. More information about this tool is within the section on Instruments in this chapter, and 

the tool itself is in Appendix G. 

 Classroom observations 

Following the selection of participants for the study, data collection began with an 

observation of each participating teacher’s classroom. One mathematics instructional period was 

videotaped in the five classrooms where coaching would occur and in each of the five comparison 

teacher’s classrooms. Beginning in December, 2017 and continuing into early 2018, the author 

and another trained rater, evaluated the mathematics instruction. The raters used four of the AR 

rubrics from the IQA tool (Boston, 2012a) Specifically, the AR rubrics are the ones associated 

with Potential of the Task (AR1), Implementation of the Task (AR2), Student Discussion 

following Task (AR3), and Rigor of Teachers’ Questions (AR-Q). The data gathered via classroom 

observations served as the starting point for comparisons in the study.  

Beginning in late April and continuing until late May, after the conclusion of coaching 

activities and follow-up PD, data collection concluded with a final observation in each 

participating teacher’s classroom. As with the initial observation, one mathematics class period 

was videotaped. These classroom episodes were examined and evaluated by the author and the 

same trained rater as the initial classroom observations. Once again, the raters four AR rubrics – 

AR1, AR2, AR3, and AR-Q – from the IQA tool.  
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 Coaching 

Coaching provided opportunities for the coached teachers to encounter the effective 

Mathematics Teaching Practices via the co-planning, the implementation of the task, and the 

debrief of the lesson. The coach used the OtL-ETP tool to record data about these opportunities. 

Additionally, the coach and coached teacher created qualitative data about each coaching cycle via 

the creation of Monitoring Tools for the planned lessons. The coach created more qualitative data 

with planning notes for the co-planning session with the teacher, with planning notes for the 

debrief, and with notes taken during the co-planning or debrief sessions connected to each 

coaching episode. 

3.3 Instruments 

Two instruments: The Opportunities to Learn about Effective Teaching Practices data 

collection tool and the Instructional Quality Assessment (Boston, 2012a; Boston et al., 2015; 

Matsumura et al., 2008) provide the bulk of the data related to this study. Notes and planning tools 

are additional sources of information and evidence related to the study. Another instrument, called 

the Effective Teaching Practices checklist was intended to be used during the study but was not 

validated and consequently, data from this tool was not used in the study. 
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 Opportunities to learn about effective teaching practices  

The first tool used in the study is called the Opportunities to Learn about Effective 

Teaching Practices data collection tool (OtL-ETP). The purpose of this tool is to compare and 

contrast coached and comparison teachers’ chances to learn about the eight effective Mathematics 

Teaching Practices. Data from this tool frames the response to the first research sub-question 

concerning teachers’ opportunities to learn about ambitious teaching practices: What is the impact 

on teachers’ opportunities to learn about ambitious teaching practices when content-focused 

coaching is added to professional development? 

Data gathered from the OtL-ETP data collection tool, provide a quantitative measure of 

how many opportunities to learn about each of the eight effective mathematics teaching practices 

each teacher experienced during the life of the study. Because each opportunity to learn is assigned 

a rating of “some” or “extended,” the tool also provides some qualitative information concerning 

the depth or extensiveness of each opportunity to learn about a given effective Mathematics 

Teaching Practice. Additionally, the tool displays notes, taken by the coach, pertinent to each 

opportunity to learn about any given effective Mathematics Teaching Practice. The full version of 

the OtL-ETP tool is in Appendix G. An excerpt from page 1of the tool is shown in Figure 3.4. The 

tool lists each of the eight effective Mathematics Teaching Practices in abbreviated form in the 

first column. (e.g. Establish mathematical goals to focus learning is abbreviated as “goals.”) The 

second column rates the learning opportunity provided to the teacher. The last column shows the 

notes taken in conjunction with the experience. 
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Figure 3.4 Excerpt from the Opportunities to learn about effective teaching practices data collection tool 

 

This tool was employed in conjunction with the four follow-up professional development 

sessions and the four coaching sessions for each coached teacher7. Following each professional 

development follow-up session and each coaching cycle, the coach reviewed the presentation notes 

and reflected upon the discussions among the participants to determine whether or not there was 

an opportunity to learn about any of the effective mathematics teaching practices. In addition to 

recording which effective Mathematics Teaching Practices teachers encountered during follow-up 

professional development sessions and coaching, the OtL-ETP data collection tool documented 

the depth or intensity of the learning opportunity. Each learning opportunity was assessed as “some 

opportunity to learn” or “extended opportunity to learn.”  

                                                 

7 As previously mentioned, the follow-up PD was preceded by ten days of summer PD. The summer PD is 
not included in data set because it focused on content and specialized content knowledge not pedagogical content 
knowledge via the effective teaching practices for mathematics. However, the author does acknowledge that the 
summer PD did implicitly involve pedagogy. 
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An “extended opportunity to learn” is a deep or lengthy encounter with a practice. It may 

entail multiple connected parts or one in-depth activity or conversation. For example, all the 

teachers in the study had an extended opportunity to learn about implementing tasks that promote 

reasoning and sense-making during the second follow-up of the school year. During that session, 

the facilitator introduced the Benchmark Task Grid (Boston, personal communication) (See 

Appendix L) and facilitated activities to engage participants in rating sample tasks, describing 

characteristics of the task(s) that make them rate as higher or lower on the grid, and come to 

consensus on which example tasks were of higher or lower demand and why. Next, the facilitator 

introduced the Task Analysis Guide (M. S. Smith & Stein, 2011), examines research about task 

usage from Boston and Wilhelm (2015), resurfaced a number of tasks in which participants had 

engaged during the summer PD (e.g., Joey’s Run, Shamrock Smile Mile, Box of Clay; See 

Appendices K.5, K.6, and K.7), and compared and contrasted two different place value worksheets 

to illustrate differing cognitive demand. Then, the participants engaged in The Hungry Caterpillar 

Task and read and discussed the Case of Ms. Bouchard (NCTM, 2014). To conclude the day, the 

facilitator circled back to some research from the QUASAR (Quantitative Understanding: 

Amplifying Student Achievement and Reasoning) project (Stein & Lane, 1996) to assure teachers 

they do not have to be perfect when implementing tasks. Teachers’ homework was to find a high-

level task and implement it. This opportunity to learn about implementing tasks that promote 

reasoning and problem solving was lengthy and entailed multiple connected parts. Thus, the rating 

became: “extended opportunity to learn.” 

“Some opportunity to learn” entails something shorter in duration or an encounter with less 

depth than an “extended” opportunity. Perhaps it has only one or two connected parts. An example 

of a learning encounter for all teachers in the study that rated as “some opportunity to learn” 
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occurred during the first follow-up session of the school year concerning the practice of eliciting 

and using student thinking. One of the foci for this session was the use of number talks (Parrish, 

2016) in the classroom as a way to assist in students’ development of fluency with numeric 

operations at K-5. Within the larger context of number talks, the group discussed how student talk 

provides the teacher with evidence of thought processes. While engaged in a number talk the 

teacher elicits and receives evidence of students’ ways of thinking about numbers–their flexibility, 

use of algorithms, etc.,–as well as information about student proficiency with calculations. The 

teacher uses the evidence gathered to make decisions about questions to ask (or not ask) as well as 

other appropriate, future number talks. Because this encounter with eliciting and using student 

thinking was of relatively short duration and did not examine multiple elements of using student 

thinking, the rating was: “some opportunity.”  

Lastly, in conjunction with either the rating of “some opportunity” or “extended 

opportunity,” notes about the opportunity to learn provided qualitative information concerning the 

encounter with the practice. The notes recorded specifics from the given learning opportunity.  The 

notes (1) helped in recalling the event and (2) provided evidence for the rating of “some 

opportunity to learn” or “extended opportunity to learn.” Thus, they added to the data collected 

about the teacher’s opportunity to learn. 

 Instructional quality assessment 

Formally titled the Instructional Quality Assessment (IQA) Mathematics Toolkit, “(t)he 

IQA assesses elements of ambitious instruction in mathematics” (Boston, 2012a, p. 76). The IQA’s 

use for measuring instructional quality in mathematics has been validated in multiple studies over 

the last decade (e.g., Matsumura et al., 2008; Wilhelm & Kim, 2015). During one of the validation 
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studies, Matsumura and colleagues (2008) found that “as few as two observations might yield a 

reliable estimate of quality” (p. 292) when using the IQA.  

The full IQA Mathematics Toolkit uses both classroom observations and the collection of 

student assignments to assess instructional quality in mathematics. This study uses only classroom 

observations. The portion of the IQA dedicated to lesson observations, known as the IQA 

Mathematics Lesson Observation Rater Packet, Rubrics, and Lesson Checklist (Boston, 2012c), 

contains rubrics for both Academic Rigor and Accountable Talk. This study uses only the 

Academic Rigor (AR) rubrics. There are five AR rubrics in the IQA. This study employs four of 

those five rubrics, eliminating the Mathematical Residue rubric (AR-X).  

Two trained raters used the four IQA AR rubrics for Potential of the Task, Implementation 

of the Task, Student Discussion following Task, and Rigor of Teachers’ Questions in this study. 

The rubric for AR1, Potential of the Task is shown in Figure 3.5, and the set of four AR rubrics 

used for the study is in Appendix H. The raters used the rubrics at two different junctures in the 

study: before any coaching activities began and after the conclusion of all coaching activities. 

Raters evaluated the classroom instruction of each of the ten teachers participating in the study at 

these two times. Changes in ratings from before coaching to after coaching show changes in the 

quality of instruction. More specifically, if a teacher chose a task that rated a 2 (low level: 

procedures without connections) for the Potential of the Task rubric (AR1) at the initial 

observation, but chooses a task rated as a 4 (high level: doing mathematics) on the same rubric at 

the final observation, this indicates a shift in ambitious teaching for the effective Mathematics 

Teaching Practice of implementing tasks that promote reasoning and problem solving (NCTM, 

2014).  
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Figure 3.5 Excerpt from the Instructional Quality Assessment Academic Rigor rubric (Boston, 2012c, p. 8) 

 

As another example, consider the rubric for Academic Rigor of the Teacher’s Questions, 

AR-Q. If the initially observed lesson rated a 1, the teacher asked only fact-based or procedural 

questions that had short or one-word responses (Boston, 2012c). If, however, at the final 
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observation, the teacher gave multiple chances for students to explain their thinking via the 

questions asked, and the questions helped students connect mathematical ideas (Boston, 2012d), 

then the final IQA score is a 3 or 4. Scoring a 3 or 4 on AR-Q indicates that the teacher asked 

“academically relevant questions that provide opportunities for student to elaborate and explain 

their mathematical work and thinking” (Boston, 2012c, p. 11). The change in rubric score indicates 

a change in the level of discourse in the mathematics classroom as well as a change in the types of 

questions asked. This aligns with the effective teaching practice of posing purposeful questions 

(NCTM, 2014). Taken together, higher scores on the AR rubrics provide evidence of more 

ambitious teacher practices being used in the mathematics classroom.  

As described in the paragraphs above, the IQA AR rubrics provide a quantitative score. 

These scores range from 0, meaning not present, to a high score of 4. Aside from the quantitative 

scores, the rubrics “represent qualitatively different instructional practices in each of the 

indicators” (Boston, 2012a, p. 94), so one can use the descriptors at each score level to form a 

picture of what instructional practice looks like in a given teacher’s classroom at the time the 

observation was done. In other words, the descriptors for each rubric score for a given AR rubric 

provide qualitative information about the teacher’s classroom practices. In sum, Boston wrote that 

“score levels on the IQA rubrics enable quantitative and qualitative interpretations, as scores 

represent different levels of instructional quality and specific features of mathematics instruction” 

(Boston, 2012a, p. 97). 

This study uses the eight effective teaching practices for mathematics (NCTM, 2014) as a 

frame to examine measures of ambitious mathematics teaching. The IQA AR rubrics are well-

aligned with a number of the effective Mathematics Teaching Practices. Boston (2012a) has 

written that the IQA AR rubrics “capture specific aspects of ambitious mathematics instruction: 
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cognitively challenging tasks, task implementation, students’ opportunities to explain their 

thinking and reasoning during discussions or in written work, and teachers’ expectations” (p. 97). 

Table 3.1 shows the alignment of the AR rubrics with these aspects of the effective teaching 

practices for mathematics mentioned by Boston. However, the AR rubrics do not explicitly align 

with all eight of the effective Mathematics Teaching Practices. Documentation of teachers’ use of 

each of the eight effective teaching practices for mathematics is not included the data documented 

for this study; however, a tool was created to document teachers’ use of any of the eight practices 

during the pre-coaching and post-coaching observations.  

 

Table 3.1 Alignment between the IQA AR rubrics used in this study and the effective Mathematics Teaching 

Practices 

IQA AR rubric Effective Mathematics Teaching Practice 

Potential of the Task (AR1) Implement tasks that promote reasoning and 
problem solving 

Implementation of the Task (AR2) Implement tasks that promote reasoning and 
problem solving 

Student Discussion Following Task (AR3) Facilitate meaningful mathematical  
discourse 

Rigor of Teacher’s Questions (AR-Q) Pose purposeful questions 

 

 Effective teaching practices checklist 

The Effective Teaching Practices Checklist is aligned to the descriptors for each of the 

eight effective Mathematics Teaching Practices provided in Principles to Action: Ensuring 

Mathematical Success for All (NCTM, 2014). This checklist potentially provides interesting 

information about changes in teacher practices aligned to effective mathematics teaching. 
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However, it does not have the proven reliability and validity of the IQA. An excerpt from the 

Effective Teaching Practices Checklist is in Figure 3.6. The current version of the full tool is in 

Appendix I. The Effective Teacher Practices Checklist is designed around the teacher actions 

associated each effective Mathematics Teaching Practice, therefore, the checklist has eight main 

sections; one for each of the eight effective mathematics teaching practices. Each effective 

teaching practice has between four and six teacher actions associated with it in Principles to Action. 

In the first iteration of the tool, the teacher actions were vetted to determine which actions were 

(1) observable and (2) non-negotiable in ambitious mathematics instruction. With that, the list of 

teacher actions was narrowed to between two and four for each effective Mathematics Teaching 

Practice, so each of the eight main sections is divided into two to four subsections based on these 

non-negotiable descriptors of observable actions. For example, section 4 of the checklist, shown 

in Figure 3.6 is associated with the effective Mathematics Teaching Practice of facilitate 

meaningful mathematical discourse. The section is divided into two subsections because there are 

two non-negotiable descriptors of observable teacher actions associated with facilitating 

meaningful mathematics discourse: engaging students in purposeful sharing of mathematical ideas 

by selecting and sequencing varied students approaches and solution strategies for whole-class 

analysis and discussion; and ensuring progress towards mathematical goals by making explicit 

connections to key mathematical ideas in the lesson. 

In the next iteration, a rating system was established and descriptors developed for each 

rating. The checklist assigns a (+), (0), or (-) for each descriptor within each effective Mathematics 

Teaching Practice based on the observations of teacher actions taken during the lesson. The 

descriptors within each of the subsections provide concrete guidance to the checklist’s user. 

Information from the checklists can be analyzed according to which teacher actions were exhibited 
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(+ rating), not exhibited (0 rating), or exhibited in a way that detracted from the intent of the 

practice (- rating). For example, within the subsection on engaging students in purposeful sharing 

of mathematical ideas from the section on facilitating meaningful mathematics discourse, if the 

teacher purposefully selects varied student approaches to share during the whole-class debrief, 

sequences them in a way that can potentially further student progress towards the leaning goal and 

a mathematically relevant discussion occurs, that would provide evidence of the teacher engaging 

in the practice of facilitating meaningful mathematics discourse. The checklist user records a (+). 

If on the other hand, any strategies are shared by the teacher, students only share final answers or 

steps in a procedure, and the teacher questions are in the Initiate-Response-Evaluate (IRE) pattern, 

then there is evidence the teacher engaged in actions that detract from the practice of facilitating 

meaningful mathematics discourse. The checklist user records a (-). There is a middle ground 

between these two extremes, wherein the student solutions might be shared but no discussion is 

engendered, or after students share a solution strategy, the teacher provides this analysis or 

connection, instead of the students. In that case, the teacher is not fully engaged with the practice, 

but neither is the teacher detracting from the practice. The checklist user records a (0). 

In its current form the Effective Teaching Practice Checklist generates a set of 27 ratings, 

if used in its entirety. The checklist uses characteristics of the lesson to determine alignment with 

the non-negotiable descriptors of observable teacher actions that are associated with each of the 

effective Mathematics Teaching Practices. The Effective Teaching Practices Checklist is meant to 

provide information about teachers use of or engagement with all eight of the effective teaching 

practices for mathematics.  

For this study, the Effective Teaching Practices Checklist was intended for use at the same 

times as the IQA AR rubrics were used –before coaching began and after coaching concluded. The 
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checklist was meant to add to the qualitative data provided by the IQA AR rubrics. It was not 

meant for quantitative data gathering. Although the IQA provides both quantitative and qualitative 

data regarding the use of ambitious mathematics teaching practices (Boston, 2012a) and is aligned 

to a subset of the eight effective Mathematics Teaching Practices (see Table 3.1 for this alignment), 

the Effective Teaching Practices Checklist provides additional information directly aligned to 

every one of the effective teaching practices in mathematics. Thus, the Effective Teaching 

Practices Checklist can provide a measure of ambitious mathematics teaching (M. S. Smith, Steele, 

et al., 2017). This qualitative analysis, when paired with the qualitative components of the IQA 

AR rubrics might provide insight into patterns in which coached teachers engage that are different 

from or the same as comparison teachers. For example, evidence of a teacher’s use of the effective 

Mathematics Teaching Practice of facilitating meaningful mathematics discourse (NCTM, 2014) 

includes “Engaging students in purposeful sharing of mathematical ideas by selecting and 

sequencing varied student approaches and solution strategies for whole-class analysis and 

discussion” as shown in Figure 3.6. An example of a qualitative pattern that might emerge from 

the data in the Effective Teaching Practice Checklist is that most or all coached teachers exhibit 

this action in the Spring, which would rate as a (+), in contrast to the Fall, when some exhibited 

only the teacher’s idea around a single representation, which would rate as (0).  

In sum, the Effective Teaching Practices Checklist can provide information about whether, 

how, and to what extent teachers employ the effective mathematics teaching practices in the 

observed lesson. However, development of the Effective Teaching Practices Checklist stopped at 

the second iteration. The tool was not validated within the context of this study. Data from the tool 

could not be used for analysis of changes in coached teacher actions, nor could the tool be used to 

qualitatively compare coached teacher actions to comparison teacher actions before coaching 
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began or after coaching concluded. The author hopes to pursue development of this tool in the 

future to enable a full examination of all eight effective Mathematics Teaching Practices. 

 

Figure 3.6 Excerpt from the Effective Teaching Practices Checklist 
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3.4 Data analysis 

 Research question 1 

To respond to research sub-question 1: What is the impact on teachers’ opportunities to 

engage with effective teaching practices when content-focused coaching is added to professional 

development?, the Opportunities to Learn about Effective Teaching Practices (OtL-ETP) was 

employed in conjunction with each coaching cycle and each follow-up PD session. The null 

hypothesis related to this question was, H0: Coached teachers did not have more opportunities to 

engage with the effective mathematics teaching practices than comparison teachers. The 

alternative hypothesis was, Ha: Coaching sessions provide teachers with more opportunities to 

engage with the effective mathematics teaching practices than participation in outside-the-

classroom, school year follow-ups alone. The OtL-ETP tool provides quantitative data in 

supporting or rejecting the alternative hypothesis. The tool also provides qualitative data to 

describe the variety of encounters teachers have throughout the study with the effective 

mathematics teaching practices. 

 Quantitative data 

Quantitative data from the OtL-ETP tool generates tables of values summarizing teachers’ 

encounters with the effective Mathematics Teaching Practices. In turn, the data summarized in the 

tables generates visual displays (e.g. bar graphs) to aid in analysis of similarities and differences 

between the two groups of teachers and among the group of coached teachers. One table of values 

generated from the OtL-ETP tool provides data from each follow-up session and each coaching 

cycle resulting in the total number of opportunities to learn about effective Mathematics Teaching 
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Practices for each teacher in the study. Note that comparison teachers only had encounters with 

the effective Mathematics Teaching Practices via the follow-up PD sessions, since the teachers in 

the comparison group did not engage in coaching. An empty sample of such a table is shown as 

Table 3.3. This provides a profile for learning opportunities each teacher had and when s/he had 

the opportunities. 

 

Table 3.2 Data generated from the Opportunities to learn about effective teaching practices tool 

 Follow Up PD Session  Coaching Cycle  

 1 2 3 4  1 2 3 4 Total 

Comparison Teacher 1           

2           

3           

4           

5           

Coached Teacher 1           

2           

3           

4           

5           

Note: Comparison teachers did not take part in coaching. Therefore, data from coaching cycles was not 

generated and is not applicable. 

 

Data from Table 3.3 translates to a graph with the horizontal axis having a listing of each 

teacher from Comparison Teacher 1 through Coached Teacher 5 and vertical axis being a count of 

effective Mathematics Teaching Practices encountered. A “baseline” bar is displayed across the 

set of teachers showing the number of effective Mathematics Teaching Practices encountered via 

the follow-up PD sessions. Each coached teacher’s bar then extends above this baseline, showing 
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the number of additional effective mathematics teaching practices s/he encountered via the 

coaching cycles. A sample of such a bar graph is in Figure 3.7. 

 

Figure 3.7 Sample graph displaying each teacher's total opportunities to learn about effective Mathematics 

Teaching Practices 

Another table of values generated from the OtL-ETP records the depth of the learning 

opportunity for the teacher. Because each learning opportunity is not only related to one or more 

effective mathematics teaching practices, but also rated as “some” or “extended,” the initial data 

from Table 3.3 can be extended to take the form of Table 3.4. This table separates the total number 

of opportunities to learn about the effective mathematics teaching practices into those rated as 

“some opportunity” and those rated as “extended opportunity.” This data produces a stacked or a 

side-by-side bar graph enabling the comparison of total opportunities to learn as well as 

comparison of the depth of teachers’ opportunities to learn. 
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Table 3.3 Data generated from the OtL-ETP tool, and separated by depth of learning opportunity 

 Some Extended Total 
Comparison teacher 1    

2    

3    

4    

5    

Total: Control Teachers    
Coached teacher 1    

2    

3    

4    

5    

Total: Coached Teachers    
 

Data from Table 3.4 generates additional bar graphs. One such graph displays the sum of 

the learning experiences rated as “extended opportunity to learn” for control teachers next to that 

same sum for coached teachers and the sum or “some opportunity to learn” for control teachers 

next to that sum for coached teachers. This provides a side-by-side comparison of the depth of the 

learning opportunities for the two sets of teachers in the study. A sample of such a graphical display 

is shown below as Figure 3.8. 
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Figure 3.8 Sample graph comparing the depth of control teachers’ opportunities to lean about effective 

mathematics teaching practices with the depth of coached teachers’ opportunities to learn 

 

A third table generated from the OtL-ETP data records the opportunities to learn about 

each of the eight effective Mathematics Teaching Practices examined individually. This table 

reveals patterns in where each practice was most encountered. These underlying patterns or 

connections might not be evident from the individual teacher data. Such a table is shown as Table 

3.5. Data from this table also generates a number of graphical displays. One such display is a side-

by-side bar graph like that described in association with Table 3.4. Instead of the depth of 

opportunity to learn, each set of two bars refers to one of the eight effective mathematics teaching 

practices. A sample of such a graphical display is shown in Figure 3.9.  
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Table 3.4 Opportunities to learn about effective mathematics teaching practices organized by practice 

 
Effective mathematics teaching practice Sum of 

Goals Tasks Rep’n Disc Ques Conc Strug St. Th  ETPs 

Comparison teacher 1          

2          

3          

4          

5          

Total: control teachers          

Coached teacher 1          

2          

3          

4          

5          

Total: coached teachers          

 
Note: Column headings are abbreviations for each of the effective mathematics teaching practices chose by 
the author. Goals => Establish mathematics goals to focus learning; Tasks=> Implement tasks that promote 
reasoning and problem solving; Rep’n => Use and connect mathematics representations; Disc =>  Facilitate 
meaningful mathematics discourse; Ques => Pose purposeful questions; Conc => Build procedural fluency 
from conceptual understanding; Strug => Support productive struggle in learning mathematics; St. Th => 

Elicit and use evidence of student thinking. 
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Figure 3.9 Sample graphical display contrasting control teachers’ opportunities to learn about each of the 

eight effective mathematics teaching practices with coached teachers’ opportunities 

 

These tables show whether coaching focused on different effective Mathematics Teaching 

Practices than the follow-up PD sessions and whether coaching increased the degree or depth 

(“some” vs. “extended”) of opportunities to learn. From the three tables and graphs generated via 

the OtL-ETP data, it became obvious that coached teachers had more opportunities for learning 

about the effective Mathematics Teaching Practices than did comparison teachers. It was 

anticipated that coached teachers would have a higher overall total of opportunities to learn, more 

numerous opportunities to engage in each of the eight practices, as well as a higher total of 

“extended” opportunities to learn.  
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 Qualitative data 

The last column of the OtL-ETP data collection tool contains notes about a given coaching 

cycle or follow-up PD session. The notes provide evidence or proof that the teacher did have an 

opportunity to learn about a particular effective mathematics teaching practice during the coaching 

cycle or PD session. For example, evidence showing that the teacher had the opportunity to learn 

about establishing mathematics goals to focus learning was “Coach created three possible goals 

statements related to the topic for the lesson. Together the coach and teacher analyzed each and 

chose the learning goal for the student lesson.” 

The notes provide a qualitative component to the OtL-ETP data collection tool. They 

provide information about what a given learning opportunity looked like, from the coach’s 

perspective. This qualitative component helps differentiate between an “extended” opportunity to 

learn and a learning opportunity rated as “some.” Thus, the notes help clarify the difference 

between the two possible ratings, potentially providing a “tipping point” of sorts between a 

learning opportunity that has less depth and one that has more depth.  

Additionally, the qualitative component of the notes helps clarify which of the eight 

effective Mathematics Teaching Practices teachers encountered. For example, an opportunity to 

learn about a particular teaching move like asking an assessing question followed by a student 

response and then an advancing question (M. S. Smith & Stein, 2011) is attributed to an 

opportunity to learn about the practice of posing purposeful questions, supporting productive 

struggle, eliciting and using student thinking, or some combination thereof. The notes taken in 

conjunction with this learning opportunity provide justification for the choice of teaching 

practice(s) encountered. Without the notes, the coach might default to recording this opportunity 

to learn as dealing only with posing purposeful questions. While this might be the case, it might 
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also be the case that the learning opportunity revolved more around eliciting and using student 

thinking than it did around questioning alone. 

 Research question 2 

The Instructional Quality Assessment (IQA) Academic Rigor (AR) rubrics respond to the 

second research question: What is the impact on teachers’ use of ambitious teaching practices 

when content-focused coaching is added to professional development?. There were two null 

hypothesis associated with this research question: H01: Coached teachers’ use of ambitious 

teaching is no different than comparison teachers’, and H02: Coached teachers’ use of ambitious 

teaching remains the same from the study’s beginning to the study’s end. The two alternative 

hypotheses associated with the question were: Ha1: Coached teachers employ more ambitious 

teaching than comparison teachers, and Ha2: Coached teachers increase their use of ambitious 

teaching from the beginning of the study to the end. 

 Quantitative data 

The author and an outside evaluator used four of the IQA AR rubrics to assess the ten 

teachers’ use of ambitious teaching practices. The author and outside evaluator used the rubrics 

before the start of any coaching activities and after the conclusion of all coaching activities. The 

IQA AR rubric scores were used (a) to compare the coached teacher group to the comparison 

teacher group and (b) to examine any changes in the scores for the coached teacher group from 

before coaching begins to after coaching concludes. The four rubrics from the IQA used in this 

study were AR1: Potential of the Task, AR2: Implementation of the Task, AR3: Student 

Discussion following Task, and AR-Q: Rigor of Teachers’ Questions. Appendix H shows the four 
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rubrics. Before the start of any coaching activities, the two evaluators performed consensus scoring 

for each of the teachers in the study on one lesson. After the conclusion of all coaching activities, 

the two evaluators again performed consensus scoring for each of the ten teachers. Data from the 

evaluators were summarized in data tables akin to Table 3.6.  

Table 3.5 IQA consensus scores 

  Fall 2017 
 

Spring 2018 

  AR1 AR2 AR3 AR-Q Total 
 

AR1 AR2 AR3 AR-Q Total 

C
om

pa
ris

on
 te

ac
he

rs
 

1      
 

     

2      
 

     

3      
 

     

4      
 

     

5      
 

     

C
oa

ch
ed

 te
ac

he
rs

 1      
 

     

2      
 

     

3      
 

     

4      
 

     

5      
 

     
 

Data from the IQA scores were also be shown with a bar graph to compare cumulative 

starting to ending scores or with stacked bar graph to compare individual AR rubric scores as well 

as cumulative scores before and after coaching. It was anticipated that coached teachers’ 

cumulative scores on the IQA would increase from Fall 2017 to Spring 2018 as would their scores 

on each of the AR rubrics. To determine if the composite scores on the IQA changed significantly 

from Fall to Spring for the coached teachers, the Wilcoxan Signed-Rank Test (nonparametric 

paired t-test) was used. The Wilcoxan Signed-Rank Test was also used to determine if scores on 

the AR rubrics change significantly. As the name says, this test uses signed ranks instead of 
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absolute scores. To determine significance of results, the signed ranks are summed, so the rank 

order of teachers’ scores, along with whether scores increased or decreased from Fall 2017 to 

Spring 2018, were important for this test.  

Whereas there were a total of 20 AR rubric scores to compare from the beginning of the 

study to the end, there were only five composite IQA scores to compare. With the lower number 

of scores for the composite IQA, there were only five signed ranks to add. With only five 

composite scores, all the composite IQA scores needed to either stay the same or increase for the 

sum of the signed ranks to be significant. With 20 AR rubric scores to compare, a limited number 

of the signed ranks can be negative, indicating a decrease in AR rubric score from fall to spring, 

and the Wilcoxan Signed-Rank test still provides a significant result. A significant result for both 

of these tests indicates that coached teachers changed the nature of their instruction away from 

traditional pedagogies and towards more ambitious teaching practices. If the only significant 

results comes from comparing the AR rubric scores, then the teachers in the coached group either 

increased their scores on certain rubrics or certain teachers increased scores while others did not. 

This means the group of teachers only changed some of the teaching practices measured by the 

IQA AR rubrics. Recall from Table 3.6 that those are: implement tasks that promote reasoning 

and problem solving, facilitate meaningful mathematical discourse, and pose purposeful 

questions. While it is certainly a better outcome for both results to be significant, having only AR 

rubric scores increase significantly still indicates a shift in practice. Boston and Smith (2009, 2011) 

saw significant changes in teacher practice as a result of the ESP professional development while 

examining only task selection and implementation. This study examined task selection and 

implementation as well as discourse and teachers’ use of questions. Seeing a significant increase 

on composite IQA scores and an insignificant change on AR rubric scores was possible but 
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unlikely. For this to occur, all coached teachers’ composite IQA scores needed to increase or stay 

the same while enough AR rubric scores decreased to make that change insignificant. If this would 

have occurred, a closer examination of changes in AR rubric scores would have been warranted. 

If the decreased scores were still considered high scores (meaning decreases from 4 to 3), then the 

indication from overall composite IQA scores of increased ambitious practice would be heeded. 

However, if AR rubric scores decreased rom from high scores to low scores (3 to 2) or decreased 

from low to lower scores (2 to 1), then the AR rubric outcome would take precedence, meaning 

that the group of coached teachers had not adopted more ambitious practices. 

It was also anticipated that while coached and comparison teachers’ scores were 

comparable in Fall 2017, they would be different in Spring 2018, with coached teachers outscoring 

comparison teachers. All composite scores from both coached and comparison teachers were 

compared in the Fall using the Mann-Whitney test (nonparametric unpaired t-test) to determine if 

there were differences between the two groups at the onset of the experiment. All composite scores 

for coached and comparison teachers were again compared in the Spring to determine if there were 

differences then. Like the Wilcoxan Signed-Rank test, the Mann-Whitney test uses rank order. 

Unlike the Wilcoxan Signed-Rank test, the Mann-Whitney test does not attach signs to the 

rankings. For one group’s scores to be statistically different from the other’s, the sum of their ranks 

(1 through 10 in this case) has to be significantly less or significantly more than the sum of the 

ranks for the other group. If results show what was expected, then the sum of the coached teachers’ 

rankings at the beginning of the study are close to the sum of the comparison teachers’ rankings, 

but the sums of rankings would diverge at the conclusion of the study, with coached teachers 

rankings being better. This would have shown that the coached teachers and comparison teachers 

started with similarly ambitious or traditional methodologies but the teacher group with the 
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significantly higher sum of ranks (presumably, the coached teachers) ended with more ambitious 

practice exhibited. However, if the sum of ranks was close at the beginning, and the sum of ranks 

was still close at the conclusion of the study, that indicates that the two groups of teachers had 

similarly ambitious practices at the beginning of the study and had similarly ambitious practices 

at the conclusion of the study. In this case, the scores warrant a close examination.  If closer 

examination shows that both groups increased their scores, maintained their scores, or decreased 

their scores from before to after coaching, then a better interpretation of results may be obtained 

from comparing the coached group to itself with the aforementioned Wilcoxan Signed-Rank test.  

Data from Table 3.6 was also used to track the number of high-level ratings–ratings of 3 

or 4 according to Boston (2012a)–each teacher received in the Fall and then in the Spring. The 

number of high-level ratings from coached and comparison teachers from Fall and from Spring 

was then compared via a chi-squared test. The chi-squared test tells if there is an association 

between being coached and the number of high-level ratings at two differing points in time. Table 

3.7 shows a table organized for showing the data used in the chi-squared test. If the number of 

high-level rankings was greater than “expected” for the coached teachers, in other words, if the 

result of the chi-squared test is significant, that means that coached teachers’ practices, as measured 

on the IQA, were more ambitious than the comparison teachers’ practices in the Spring 2018. 

Lastly, composite scores from the four AR rubrics for classroom observation were grouped 

according to ranges to facilitate the use of a variation of the chi-squared test for data sets where 

the expected valued may be less than or equal to five. This test is called the Fisher Exact Probability 

test. The test tells if there is an association between being a coached teacher and getting lower or 

higher composite IQA scores. Lower composite scores are those less than nine. Higher composite 

scores are greater than or equal to nine up to the highest total possible score of 16. A breaking 
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point of nine is used because teachers who earned a composite score of at least nine had to receive 

a high-level rating of 3 or 4 on at least one of the four AR rubrics in use. The Fisher Exact 

Probability test was run for the Fall 2017 data and again for the Spring 2018 data. A table like 3.8 

was used to summarize each data set according to ranges of scores. If the number of high-level 

composite scores was greater than “expected” for the coached teachers, in other words, if the result 

of the Fisher Exact Probability test is significant, then like the results of the chi-squared test just 

described, that means that coached teachers’ practices, as measured by the composite IQA scores, 

were more ambitious than the comparison teachers’ practices.  

 

Table 3.6  Summary table showing number of high-level ratings for each use of the IQA AR rubrics 

 Fall 2017 Spring 2018 Total 

Coached teachers    

Comparison teachers    

Total    

 

Table 3.7 Summary of composite scores for the four AR rubrics from the IQA used for this study 

 0 ≤ composite < 9 9 ≤ composite ≤ 16 total 

Coached Teachers    

Comparison Teachers    

Total    

 

 Qualitative data 

While the IQA provides the quantitative data for responding to the second research 

question in this study, the IQA is also a qualitative tool. As Boston, Bostic, Lesseig, and Sherman 

(2015) share, “The IQA score levels are also very descriptive, indicating specific characteristics 
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or frequencies of instructional practice necessary for each score level. The detailed descriptors for 

each score level and the consistency in score levels across rubrics facilitate qualitative 

interpretations of the IQA results” (p. 159). The qualitative analysis derived from the IQA AR 

rubrics provides insight into patterns in which coached teachers engage that are different from or 

the same as comparison teachers. For example, the descriptor for AR-Q: Rigor of Teachers’ 

Questions, level 4 states that “the teacher consistently asks academically relevant questions that 

provide opportunities for students to elaborate and explain their mathematical work and 

thinking,…identify and describe important mathematical ideas in the lesson, or make connections 

between ideas, representations, or strategies” (Boston, 2012b, p. 8). The level 2 descriptor for this 

same rubric states that “There are one or more superficial, trivial, or formulaic efforts to ask 

academically relevant questions probing, generating discussion, or exploring mathematical 

meanings and relationships” (p. 8). Beyond a rating being high or low on its face, these descriptors 

that are paired with the numeric value allow the coach or researcher insight into what is actually 

happening in the classroom regarding a teacher’s questioning patterns per se. The researcher can 

qualitatively compare the descriptions aligned with the coached teachers’ scores with the 

descriptions for the rubric scores earned by the comparison teachers. This comparison yields 

insights regarding the asking of which academically relevant questions. Asking questions that 

allow students to elaborate and explain their mathematical thinking aligns with the effective 

Mathematics Teaching Practice of posing purposeful questions (NCTM, 2014). While this 

qualitative information is gleaned from the same tool as the numeric scores, this information is 

different from a numeric score because it provides a window into the classroom regarding effective 

mathematics instruction. 
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Similar insights are gleaned from a comparison of coached teachers’ score descriptors from 

the fall and coached teachers’ score descriptors from the spring. The qualitative analysis provides 

information about changes in coached teachers practices that align with IQA AR rubric descriptors 

as well as the descriptors for the related effective Mathematics Teaching Practice. For example, 

Principles to Action (NCTM, 2014) describes the practice of facilitating meaningful mathematical 

discourse by stating, “Effective teaching of mathematics facilitates discourse among students to 

build shared understanding of mathematical ideas by analyzing and comparing student approaches 

and arguments” (p. 10). Facilitating meaningful mathematical discourse aligns with AR3: Student 

Discussion Following Task. The descriptors for the low level ratings of 1 or 2 on the AR3 rubric 

include information about students either showing procedural work or providing only brief 

responses to teacher questions. The descriptors for the high level ratings of 3 or 4 on this rubric 

include information about the quality of students’ sharing of their mathematical work and 

engagement in a discussion that is student-led or teacher guided. The high level descriptors sound 

similar to the description of facilitating meaningful mathematical discourse. So, if coached 

teachers earned more high level ratings for AR3 in the spring than they did in the fall, the 

qualitative nature of the IQA provides evidence that the classroom teacher’s practice has become 

more ambitious. Again, this goes beyond the numeric score and provides the coach with an 

awareness of ambitious practice. Taken together, the IQA AR rubrics provide information about 

whether, how, and to what extent the observed teacher employed ambitious teaching practices 

aligned with implementing tasks that promote reasoning and problem solving, facilitating 

meaningful mathematical discourse, and posing purposeful questions in the observed lesson. 



 

135 

3.5 Summary 

This chapter outlined the approach for the proposed study. The chapter described the design 

of the study including information about the participants and the coaching model. Special attention 

was given to explaining the phases of the coaching cycle. Next, the chapter described the junctures 

at which data was collected: during follow-up PD, via the classroom observations before the start 

and after the conclusion of the coaching cycles, and via the coaching cycles themselves. Then, the 

chapter discussed the two main tools used in the study and one tool created for the study but not 

validated for use. Those tools employed in the study were the Opportunities to Learn about 

Effective Teaching Practices data collection tool (OtL-ETP) and the Instructional Quality 

Assessment (IQA). The unvalidated tool was the Effective Teaching Practices Checklist. Finally, 

the last section of the chapter summarized the data analysis procedures for answering each research 

question, including both qualitative and quantitative methods 
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4.0 Results 

This chapter presents the research results of the study described in the previous chapter. 

The chapter attempts to answer the questions:  

• How does proximal, in situ professional development in the form of content-focused 

coaching paired with outside-the-classroom professional development facilitate a 

change in mathematics teachers’ pedagogical practices from traditional to more 

ambitious in nature?  

a. What is the impact on teachers’ opportunities to learn about ambitious teaching 

practices when content-focused coaching is added to professional 

development?  

b. What is the impact on teachers’ use of ambitious teaching practices when 

content-focused coaching is added to professional development?   

The results are organized by research question. Within the results for the first research 

question, overall opportunities to learn are analyzed first, followed by the depth of opportunity to 

learn and finally an analysis pertaining to each of the eight effective Mathematics Teaching 

Practices is provided. Quantitative results precede qualitative results in each of these subsections. 

Quantitative results also precede qualitative results in responding to the second research question. 

4.1 Opportunities to learn about ambitious teaching 

The Opportunities to Learn about Effective Teaching Practices data collection tool (OtL-

ETP) (see also Appendix G), as described in chapter 3, tracked the occasions when teachers 

involved in the study had the chance to learn about one or more of the practices associated with 
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ambitious teaching. Recall that this study uses the effective Mathematics Teaching Practices 

(National Council of Teachers of Mathematics [NCTM], 2014) to exemplify practices associated 

with ambitious teaching in mathematics. The OtL-ETP recorded teachers’ opportunities to learn 

about the effective Mathematics Teaching Practices during (1) each of the four coaching cycles 

for the five coached teachers and (2) each of the four follow-up professional development (PD) 

sessions spread throughout the 2017-18 school year8. Data gathered for the follow-up PD on K-5 

mathematics teaching applies to the five coached teachers and the five comparison teachers. The 

overall data is analyzed in section 4.1.1. Following that, in section 4.1.2, the depth of teachers’ 

opportunities to learn is analyzed. Lastly, in section 4.1.3, data analysis pertaining to each of the 

eight effective Mathematics Teaching Practices is provided. Within each section, qualitative data 

is examined after quantitative data. 

 Overall opportunities to learn about effective Mathematics Teaching Practices 

 Quantitative results 

Because data from the follow-up PD sessions applies to all ten teachers in the study, there 

exists a set of common opportunities to learn about the effective Mathematics Teaching Practices. 

In three of the four follow-up PD sessions, teachers had opportunities to learn about four distinct 

effective Mathematics Teaching Practices, while the last of the follow-up PD sessions had five 

                                                 

8 As mentioned in chapter 3 of this document, all teachers participating in the outside-the-classroom PD 
attended ten days of content-focused PD during Summer 2017. While those ten days focused on content knowledge 
and specialized content knowledge, there was the implicit involvement of pedagogical practices during the summer.  
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such opportunities. Thus, all teachers9 had 17 opportunities to learn about the effective 

Mathematics Teaching Practices during the follow-up PD sessions for the 2017-18 academic year. 

That is the sum total of opportunities to learn about the effective Mathematics Teaching Practices 

for the comparison teachers. Table 4.1 contains this data in the columns headed by “Follow-up PD 

Session.” See Appendix J for a listing of which effective Mathematics Teaching Practices were 

encountered in each of the four follow-up PD sessions. 

 

Table 4.1 Number of opportunities to learn about effective Mathematics Teaching Practices by session 

  Follow-Up PD Session  Coaching Session  

Total 
  1 2 3 4 1 2 3 4 

C
om

pa
ris

on
 te

ac
he

rs
 1 4 4 4 5 n/a n/a n/a n/a 17 

2 4 4 4 5 n/a n/a n/a n/a 17 

3 4 4 4 5 n/a n/a n/a n/a 17 

4 4 4 4 5 n/a n/a n/a n/a 17 

5 4 4 4 4 n/a n/a n/a n/a 16 

C
oa

ch
ed

 te
ac

he
rs

 1 4 4 4 5 4 6 7 8 42 

2 4 4 4 5 5 7 7 6 42 

3 4 4 4 5 7 6 7 5 42 

4 4 4 4 5 4 5 5 8 39 

5 4 4 4 5 4 5 8 6 40 
 

Note: Comparison teacher 5 was absent from an afternoon of follow-up PD and missed an opportunity to 
learn about one of the effective Mathematics Teaching Practices. Therefore, this teacher’s total number of 

opportunities to learn is one less than that of the other four comparison teachers. 
 

                                                 

9 Control teacher 5 was absent from an afternoon of follow-up PD and missed an opportunity to learn about 
one of the effective mathematics teaching practices. Therefore, this teacher’s total number of opportunities to learn is 
one less than that of the other four control teachers. This is also reflected in tables and figures to follow.  
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Figure 4.1 shows the 17 common opportunities to learn as a horizontal segment atop the 

bars for comparison teachers. Table 4-1 and Figure 4-1 show coached teachers had more exposures 

to the effective Mathematics Teaching Practices compared to comparison teachers.  

 

 

Figure 4.1 Opportunities to learn about effective Mathematics Teaching Practices by teacher 

 

Cumulatively, the group of five comparison teachers had 84 opportunities to learn about 

effective Mathematics Teaching Practices, while the group of five coached teachers had 205 such 

opportunities. Each comparison teacher had 17 opportunities to learn about the practices, except 

for one teacher, who had 16 chances. In comparison, coached teachers had an average of 41 

chances to learn about the same practices during the 2017-18 school year, with a range of 39 to 42 

opportunities per teacher.  

Each teacher who received coaching had more than two times the number of chances to 

learn about the practices critical to ambitious mathematics teaching compared to any teacher in the 

comparison group. This finding seems logical based on the number of interactions each teacher 
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had with coaching and professional development within the school year. Coached teachers 

interacted directly with the coach or facilitator for professional development eight times: four 

during coaching cycles and four during the follow-up PD. During the same period, comparison 

teachers interacted with the facilitator four times; only during the follow-up PD episodes. 

 Qualitative results 

All participants in the study had access to quality professional development both during 

the ten summer days and during the four follow-up sessions because the common PD experiences 

were focused on content knowledge, involved active learning, and were coherent with mathematics 

standards (Garet et al., 2001). As mentioned above, some of these common PD experiences from 

the follow-up sessions were directly connected to the effective Mathematics Teaching Practices. 

One such experience connected to the practice of facilitating meaningful mathematical discourse. 

At this follow-up PD session, participants first read the Case of Ms. Bouchard (Huinker & 

Schefelker, 2016). Next, participants received information about the effective Mathematics 

Teaching Practices from Principles to Action (NCTM, 2014) and discussed where Ms. Bouchard 

had facilitated discourse. This led to discussion of the 5 Practices for Orchestrating Productive 

Mathematics Discussions (M. S. Smith & Stein, 2011). Then, participants engaged in using the 5 

Practices with a task called Maria’s Money (The Charles A. Dana Center at the University of 

Texas at Austin, n.d.) (See Appendix K.1). For the task, they anticipated student solution strategies, 

devised assessing and advancing questions to be used during monitoring, and used sample student 

work to decide which questions to ask. 

While the previous example applies to all teachers involved in the study, the data shows 

that coached teachers had many additional opportunities to learn about the effective Mathematics 

Teaching Practices. Some of the added opportunities had commonalities across the group of 
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coached teachers. For example, the first coaching session for each teacher contained an opportunity 

to learn about establishing mathematics goals to focus learning. In advance of the planning 

session, the coach created three possible goal statements related to the topic for the lesson. The 

coach shared the possible goals with the teacher, and together the coach and teacher analyzed the 

strengths, weaknesses, and affordances of each. Together, they chose the goal that provided the 

best alignment to the desired learning. The coach provided some information gleaned from Taking 

Action: Implementing Effective Mathematics Teacher Practices in Kindergarten-Grade 5 

(Huinker & Bill, 2017) to compare and contrast learning goals to performance goals. Then, the 

coach and teacher turned to their monitoring charts to refine the goal statements each had initially 

provided before meeting face-to-face. By the conclusion of the planning discussion, the teacher-

coach pair collaboratively crafted a learning goal appropriate for the upcoming lesson. Following 

the implementation of the lesson, when the teacher and coach reconvened to debrief, they discussed 

whether and how the learning goal informed decisions during the lesson as well as decisions about 

instructional next steps. This general encounter repeated itself for each of the five coached 

teachers. The coached teachers’ opportunities to learn about goals were qualitatively different from 

the one opportunity that all teachers had to learn about goals in the context of a follow-up PD 

session. The goals the coached teachers wrote were immediately relevant to their lessons and their 

students’ learning. The goals the coached teachers wrote were the actual goals to be attained in 

short order by the children in their classrooms. In contrast, the encounter with goals from the 

follow-up PD session dealt with learning goals in connection to a discussion of strategies for 

effective formative assessment (Wiliam, 2013) wherein “clarifying, sharing, and understanding 

goals for learning and criteria for success” (p. 1) is the first of five such strategies. The discussion 
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during the follow-up PD session was not immediately relevant a given lesson as was the case in 

coaching, nor did the teachers write goals for their students during the follow-up session. 

The coach purposefully pre-planned for each coached teacher to have a similar encounter 

with establishing mathematics goals to focus learning during their first coaching cycle. However, 

regardless of the effective Mathematics Teaching Practice(s), most of the additional learning 

encounters provided during the coaching sessions took on a more unique flavor than the initial 

opportunity each coached teacher had to learn about establishing mathematics goals to focus 

learning. For example, a unique opportunity to learn about building procedural fluency from 

conceptual understanding presented itself with Coached teacher 3. This teacher implemented a 

sequence of related tasks. A task in the middle of this series was purposefully scheduled during 

the last coaching cycle. Because the teacher chose to implement a sequence of tasks, the coach and 

teacher were able to talk in detail, during the planning session, about whether and how these tasks 

connected and how the teacher might leverage the tasks to help students work from conceptual 

understanding towards procedural fluency. Then, in the debrief session, the coach-teacher team 

discussed that students had not yet made as much progress towards the ultimate learning goal as 

hoped. This led to a decision to integrate an additional, jointly agreed-upon task in the progression. 

Finally, the coach and teacher used the remainder of their discussion time to revisit the group’s, as 

well as students’ individual trajectories from conceptual understanding towards procedural 

fluency.  
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 Depth of opportunities to learn about effective Mathematics Teaching Practices 

 Quantitative results 

Within the OtL-ETP data collection tool, each opportunity to learn was judged as an 

“extended” opportunity or as “some” opportunity to learn. An “extended opportunity to learn” is 

a deep or lengthy encounter with a practice. It may entail multiple connected parts or one in-depth 

activity or conversation. A learning opportunity judged as “some opportunity to learn” entails 

something shorter in duration or an encounter with less depth than an “extended” opportunity. 

Perhaps it has only one or two connected parts. As previously discussed, every teacher attended 

the four follow-up PD sessions and had 17 common opportunities to learn about the effective 

teaching practices. Of these 17 common experiences for each teacher, 12 were rated as “some,” 

with the remaining five experiences rated as “extended.” Figure 4.2 shows the breakdown of the 

ratings for the common experiences by follow-up session. 

 

Figure 4.2. Depth of opportunities to learn about effective Mathematics Teaching Practices common to all 

teachers 
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Table 4.2 shows the numeric data concerning depth of the learning experiences for each 

teacher. Cumulative data shows that of the 84 opportunities for the group of comparison teachers 

to learn about the effective Mathematics Teaching Practices, 60 of them were rated as “extended,” 

while the remaining 24 were rated as “some” opportunity to learn. Of the 205 opportunities for the 

group of coached teachers to learn about the effective Mathematics Teaching Practices, 136 were 

“extended” and 69 were rated as “some.”  

 

Table 4.2 Number of opportunities to learn about effective Mathematics Teaching Practices by depth of 

learning experience 

 Some Extended Total 

Comparison teacher 1 12 5 17 

Comparison teacher 2 12 5 17 

Comparison teacher 3 12 5 17 

Comparison teacher 4 12 5 17 

Comparison teacher 5 12 4 16 

Total: Comparison Teachers 60 24 84 

Coached teacher 1 28 14 42 

Coached teacher 2 29 13 42 

Coached teacher 3 29 13 42 

Coached teacher 4 25 14 39 

Coached teacher 5 25 15 40 

Total: Coached Teachers 136 69 205 

 

 Qualitative results 

There were certainly quantitative differences in the overall number of encounters 

comparison teachers had with the effective teaching practices for mathematics compared to the 
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number of encounters coached teachers had with the same practices. There were also differences 

in the number of “extended” encounters each group of teachers had with the effective teaching 

practices for mathematics as well as differences in the encounters rated as “some” opportunity to 

learn. In addition to the differences in the raw numbers of encounters, there was a qualitative 

difference in the opportunities provided through coaching.  

In planning for the implementation of a task called Scaling Up and Down (Illustrative 

Mathematics, 2016b) (See Appendix K.2), a coached teacher had an “extended” opportunities to 

learn about the effective Mathematics Teaching Practice of posing purposeful questions. In their 

planning session, the teacher and coach each created and then shared and discussed assessing and 

advancing questions for each of five different anticipated student solution strategies. Unlike the 

purposeful questions created by teachers in follow-up PD, the questions created for use during the 

implementation of this task were employed in this teacher’s actual class, with the teacher’s actual 

students. Some questions were used as they were written in the Monitoring Chart, some were 

modified when used, and some questions were not used during the lesson. After the lesson 

implementation, the teacher and coach debriefed about the questions’ effectiveness in moving 

students towards the learning goal of understanding the effect of the scalar in a multiplicative 

expression. Even when comparison teachers had the occasion to create assessing and advancing 

questions, they never had an opportunity such as the one afforded to this coached teacher, wherein 

questions were created with the direct support of a more knowledgeable other, implemented with 

the teachers’ own students, and reflected upon after the lesson with the continued support of the 

coach10.  

                                                 

10 Throughout the results section, the author selected examples of both coached and comparison teachers’ 
encounters with learning about the effective teaching practices for mathematics. Please note that illustrations for each 
of the eight effective Mathematics Teaching Practices will not appear in all sections of the results chapter. However, 
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Even learning opportunities rated as “some” often took on a different flavor during 

coaching than they did during the follow-up PD. Another illustration provides a sense of the 

qualitative difference between the encounter for a comparison versus a coached teacher, even when 

both encounter the same effective Mathematics Teaching Practice rated at the same depth of 

opportunity to learn. While the effective mathematics teaching practice of facilitating meaningful 

mathematical discourse had been discussed in follow-up PD, this practice had not migrated into 

all of the coached teachers’ classrooms. One coached teacher in particular was hesitant to use pairs 

or groups in her class of primary students because she believed the children did not know how to 

talk to one another. During the debrief portion of the first coaching cycle, the advantages of using 

student groups to engender mathematical discourse were discussed. Subsequently, in the planning 

portion of the second coaching cycle, the coach and teacher designed an introduction to discourse 

for the students. At the beginning of class, the coach and teacher role-played a turn-and-talk for 

the students who sat on the carpet, attending to the exchange. The coach and teacher then asked 

the students what they noticed about the exchange and made note of student responses. In the 

coaching cycles that followed, these students consistently worked in pairs or small groups. Though 

this opportunity to learn was rated as “some,” it was qualitatively different from an opportunity 

with the same rating provided to all teachers in the follow-up PD. A learning opportunity afforded 

to all teacher entailed a discussion of facilitating classroom discourse as it related to the article, 

“Five ‘Key Strategies’ for Formative Assessment,” (Wiliam, 2007). One of these key strategies 

discussed in the follow-up PD session was called “Engineering effective classroom discussion, 

questions, activities, and tasks that elicit evidence of students’ learning” (p. 2). Within this key 

                                                 

between chapter 3 and chapter 4 of this document, the reader will find at least one illustration for each of the eight 
practices. 
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strategy, teachers are supposed to use or craft formative assessment items and use the student 

group’s responses to engender a discussion during which student views can be aired with 

justifications. Teachers discussed the example formative assessment item provided in the article 

along with possible responses students might provide for their justifications. This encounter with 

facilitating meaningful mathematical discourse was different than the one provided for the 

coached teacher. 

 Opportunities to learn analyzed by effective Mathematics Teaching Practice 

 Quantitative results 

Not only does the OtL-ETP data collection tool code opportunities to learn as “some” or 

“extended,” the tool also codes the data according to which of the effective Mathematics Teaching 

Practice(s) were encountered within the learning opportunity. What follows is the quantitative 

analysis of that data. Table 4.3 provides this data, showing the spread of the 17 common 

opportunities to learn about the effective Mathematics Teaching Practices for all teachers and the 

differential spreads for each coached teacher. During the follow-up sessions, teachers had the 

greatest number of opportunities to learn about the practices of facilitate meaningful mathematics 

discourse and pose purposeful questions. Teachers had four chances to learn about each of these 

two practices; one opportunity in each of the four follow-up sessions for a total of 20 opportunities 

to learn about each of these to effective Mathematics Teaching Practices. 
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Table 4.3 Number of opportunities to learn about each effective Mathematics Teaching Practice ordered from 

least to greatest according to the comparison group 

 
Effective Mathematics Teaching Practice Sum of 

ETPs Conc Strug Goals St. Th Rep’n Tasks Disc Ques 

Comparison teacher 1 0 1 1 2 2 3 4 4 17 

Comparison teacher 2 0 1 1 2 2 3 4 4 17 

Comparison teacher 3 0 1 1 2 2 3 4 4 17 

Comparison teacher 4 0 1 1 2 2 3 4 4 17 

Comparison teacher 5 0 1 1 1 2 3 4 4 16 

Total: Comparison group 0 5 5 9 10 15 20 20 84  

Coached teacher 1 2 3 5 5 6 7 6 8 42 

Coached teacher 2 2 3 5 4 6 7 7 8 42 

Coached teacher 3 3 3 5 4 6 6 7 8 42 

Coached teacher 4 2 3 5 3 6 7 5 8 39 

Coached teacher 5 2 3 5 3 6 7 6 8 40 

Total: Coached group 11 15 25 19 30 34 31 40 205 

 
Note: Column headings are abbreviations for each of the effective Mathematics Teaching Practices chosen by 
the author. Conc => Build procedural fluency from conceptual understanding; Strug => Support productive 
struggle in learning mathematics; Goals => Establish mathematics goals to focus learning; St. Th => Elicit 

and use evidence of student thinking; Rep’n => Use and connect mathematics representations; Tasks=> 
Implement tasks that promote reasoning and problem solving; Disc =>  Facilitate meaningful mathematics 

discourse; Ques => Pose purposeful questions. 
 

The data for coached teachers in Table 4.3 reflects that each coached teacher’s experiences 

were different from that of the other coached teachers. Therefore, the number of opportunities each 

teacher had to learn about each of the effective Mathematics Teaching Practices are sometimes 

different. For the coached teachers, the total includes learning opportunities from follow-up 

sessions and coaching sessions. The table provides evidence that coached teachers not only had 
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more overall opportunities to learn, they also had more opportunities to learn about each individual 

effective Mathematics Teaching Practices compared to comparison teachers. 

Figure 4.3 uses the totals for the group of comparison teachers and the totals for the group 

of coached teachers from the bolded rows in Table 4.3 to illustrate the distribution of teachers’ 

opportunities to learn across the eight effective teaching practices for mathematics. The sets of 

bars illustrate the distribution of teachers’ opportunities to learn about the effective Mathematics 

Teaching Practices in Principles to Action: Ensuring Mathematical Success for All (NCTM, 2014). 

The pairs of bars are ordered from the practice least encountered by the comparison group of 

teachers to the practices most encountered by the comparison teacher group, namely facilitate 

meaningful mathematics discourse and pose purposeful questions. Coached teachers’ encounters 

with each practice are shown beside the number of encounters for comparison teachers. This 

display makes apparent that the number of opportunities to learn about each effective Mathematics 

Teaching Practice for coached teachers exceeded that of comparison teachers. 

 



 

150 

 

Figure 4.3 Comparison teachers' opportunities to learn about each practice compared to coached teachers' 

opportunities ordered from comparison teachers' least to most-encountered practice 

 

Teachers' encounters with the eight effective Mathematics Teaching Practices elicit a set 

of side-by-side, stacked bars as well. Figure 4.4 exhibits the same data as Figure 4.3, except that 

each bar is stacked with the number of times an opportunity was rated as “some” on the bottom of 

the stack and the number of “extended” opportunities to learn on the top of the stack. Thus, Figure 

4.4 shows not only the data gathered for each effective Mathematics Teaching Practice but also 

the data about the depth of the learning opportunities. Figure 4.4 makes it apparent that coached 

teachers had more overall experiences, more experiences with each effective Mathematics 

Teaching Practice, more experiences rated as “some” for every effective Mathematics Teaching 

Practice, and more experiences rated as “extended” for six of eight effective Mathematics 

Teaching Practices. The exceptions are facilitate meaningful mathematical discourse and support 

productive struggle in learning mathematics. 
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Figure 4.4 Opportunities to learn about effective Mathematics Teaching Practices shown by practice 

Note: Because one comparison teacher missed an afternoon of follow-up PD, the group of comparison 
teachers had only four extended opportunities to learn about student thinking instead of five. No coached 

teachers had an extended opportunity to learn about this practice during coaching. Although their group had 
one additional opportunity to learn about this practice, this occurs only because all coached teachers were in 

attendance at all the follow-up PD. 
 

In examining data concerning the individual effective Mathematics Teaching Practices, 

some stark difference in opportunities to learn emerge. Teachers in the comparison group had no 

opportunity to learn about the effective Mathematics Teaching Practice of building procedural 

fluency from conceptual understanding during the follow-up PD. Albeit the practice with which 

the coached teachers had the fewest encounters, each coached teacher had two or three chances to 

learn about building procedural fluency from conceptual understanding. 

Another dramatic difference in opportunity to learn about a single effective Mathematics 

Teacher Practice is in the practice of establishing goals to focus learning. As a group, the coached 

teachers had five times as many chances to learn about goals as did the comparison group teachers. 

While all of the teachers in the study encountered the difference between learning goals and 
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performance goals in one of the school year follow-ups, each of the coached teachers had four 

additional encounters with the practice of writing learning goals: one during each of the four 

coaching cycles. One of these four additional encounters with goals was an “extended” learning 

opportunity that was described earlier. (See section 4.1.1.2 of this chapter.) 

Both coached and comparison teachers had multiple opportunities to learn about the 

effective mathematics teaching practice of posing purposeful questions. All the teachers 

participating in the study attended the four follow-up PD sessions where questioning was a portion 

of each day’s learning. Each of the coached teachers had four additional opportunities to learn 

about posing purposeful questions because each coaching cycle involved some discussion of this 

practice. Therefore, the coached teachers had twice the number of chances to learn about 

questioning, with each coached teacher having eight chances and each comparison teacher having 

four chances.  

The greater difference in opportunities to learn about questioning is in the depth of the 

opportunities. While each of the follow-up PD sessions discussed questioning, there were no 

follow-up PD sessions that discussed questioning in-depth. In contrast, nearly every coaching 

cycle involved an in-depth opportunity to learn about posing purposeful questions. Four of the five 

coached teachers had three extended encounters to learn about questioning and one opportunity 

rated as “some” within their coaching cycles. The remaining coached teacher had four extended 

encounters with questioning–one in each of the coaching cycles. This accounts for the 16 extended 

opportunities for coached teachers to learn about posing purposeful questions, as seen in Figure 

4.4.  

Even though coached teachers had twice as many opportunities to learn about the practice 

of posing purposeful questions, it is actually the second lowest relative difference between the two 
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groups. The only practice with a lower relative difference is the effective mathematics teaching 

practice of facilitating meaningful mathematics discourse. As a group, the five coached teachers 

had 31 opportunities to learn about discourse, while the group of five comparison teachers had one 

opportunity at each of the follow-up PD sessions for a total of 20 chances to learn about discourse, 

meaning coached teachers had 1.55 times as many opportunities to learn about discourse.  

While facilitating meaningful discourse had the smallest relative difference between the 

coached and comparison teachers, two other practices had the smallest raw difference. The 

practices of eliciting and using evidence of student thinking and of supporting productive struggle 

in learning mathematics had a net difference of 10 occurrences when comparing the group of 

comparison teachers to the group of coached teachers. All the teachers in the study had one in-

depth experience with productive struggle during a follow-up PD session. The coached teachers 

each had two additional chances to learn about productive struggle during their coaching cycles, 

but both of those learning chances were less intense than the one provided during follow-up PD. 

All teachers in the study had one in-depth experience rated as “extended” and one less 

comprehensive encounter with eliciting and using student thinking rated as “some” opportunity to 

learn. Each coached teacher had at least one more chance to learn about eliciting and using student 

thinking during their coaching cycles. As with the practice of supporting productive struggle in 

learning mathematics, the coaching experiences related to eliciting and using student thinking 

were not in-depth encounters.  

Coached teachers had a total of 30 encounters with using and connecting mathematical 

representations: 26 (87%) rated as “some” and four (13%) rated as “extended.” Comparison 

teachers had only ten encounters with using and connecting mathematical representations, all of 

which were rated as “some” opportunity to learn. The group of coached teachers had three times 
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as many chances to learn about this practice compared to the group of uncoached teachers. This 

practice also saw the greatest raw difference between coached and comparison teachers’ chances 

to learn about an effective Mathematics Teaching Practice. It is tied with establish mathematics 

goals to focus learning and posing purposeful questions for this distinction. All three practices 

have a difference of 20 between the groups of comparison and coached teachers.  

With regard to the teaching practice of implementing tasks that promote reasoning and 

problem solving, coached teachers had 34 opportunities to learn, which is close to the number of 

encounters this group had with using and connecting mathematical representations, but the ratio 

of “some” to “extended” opportunities to learn is very different from the ratio for the 

aforementioned practice. Coached teachers had 11 opportunities rated as “some” (32%) and 23 

“extended” opportunities (68%). Comparison teachers had 15 total chances to learn about tasks 

that promote reasoning and sense making: ten rated as “some” (67%) and five rated as “extended” 

(33%) So, the ratio of some to extended opportunities to learn for the comparison group of teachers 

is the inverse of the ratio for the coached teachers. A high proportion of coached teachers’ 

interactions with learning about tasks were rated as “extended” because the task is the avenue 

through which the students will interact with the mathematics. The task frames the activity through 

which students will draw closer to attaining the learning goal (Stein et al., 1996), so it becomes the 

focus of the lesson, only to be preceded by becoming the focus of the planning and to be followed 

by becoming the focus of the lesson’s debrief. 

 Qualitative results 

Examining the qualitative side of the analysis of which effective Mathematics Teaching 

Practices were encountered affords a multitude of data. Table 4.4 provides brief examples of 

teachers’ opportunities to learn about each practice. It is followed by expansion upon a few 
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learning opportunities in narrative form within the text of this chapter. Within Table 4.4, there are 

two examples for each effective Mathematics Teaching Practice pertaining to all teachers in the 

study: one example of an opportunity to learn rated as “some” and one example of a learning 

opportunity rated as “extended.” Two additional examples pertaining only to coached teachers are 

likewise provided. 

Narrative examples for encounters with many of the effective Mathematics Teaching 

Practices have been previously provided; however, illustrations for effective Mathematics 

Teaching Practices not previously put into narrative form may further elucidate the qualitative 

differences between encounters that occurred in the follow-up PD sessions and encounters from 

coaching. One practice that has not yet been discussed in the narrative is supporting productive 

struggle in learning mathematics. All teachers had an “extended” opportunity to learn about 

supporting productive struggle in the third follow-up PD session, where the theme for a portion of 

the day was growth mindset (Dweck, 2006). The session began with a discussion of four “research 

findings with implications for learning” (Stanford Graduate School of Education, n.d.). 

Specifically, those finding are:  

• Every child can learn at high levels. 

• Mistakes grow your brain. 

• Messaging from adults influences children’s achievement and  

• When you believe in yourself your brain operates differently. 
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Table 4.4 Examples of opportunities to learn about each effective Mathematics Teaching Practice 

 Common experiences for coached & comparison 
teachers 

Experiences unique to coached teachers 

 Some Extended Some Extended 
Establish 
Mathematics 
Goals to 
Focus 
Learning 

Discussed learning goals 
within the context of a 
reading. 

Not applicable Clarified difference between 
learning and performance 
goals. Came to consensus on 
learning goal(s). 
 

Engaged in an iterative cycle of 
choosing and revising or refining 
learning goal(s). 

Implement 
tasks that 
promote 
reasoning 
and problem 
solving 

Revisited the Task 
Analysis Guide (Stein, et 
al., 2000), examining 
same content addressed 
at each level of cognitive 
demand. 

Examined Benchmark Task 
Grid (Boston, 2012d), rated 
sample tasks, described 
characteristics, introduced 
Task Analysis Guide (Stein, 
et al., 2000), examined 
research, surfaced previous 
tasks, etc. 
 

Discussed whether task was 
high level as written and as 
implemented.  Discussed 
challenges and affordances of 
the task.  

Used Task Analysis Guide (Stein et 
al., 2000) for discussion of whether 
the planned task was high level. 
Jointly implemented task. Debriefed 
and considered a future task. Coach 
shared other resources. 

Use and 
connect 
mathematical 
representa-
tions 

Discussed 
representations students 
may use during a 
number talk and how to 
connect the 
representations therein. 

Not applicable Discussed the lack of 
representations directly 
elicited by the chosen task 
and how to remedy that 
situation. 

Discussed representations students 
might use, relative strengths of each, 
struggles students might encounter 
with each. This led to other helpful 
representations and models. 
Discussion continued in debrief. 
 

Facilitate 
meaningful 
mathematical 
discourse 

Engaged in the  
5 Practices for 
Orchestrating 
Productive Mathematics 
Discussions (M. S. 
Smith & Stein, 2011). 
 

Discussed facilitating 
discourse in context of a 
case; connected to Principles 
to Action (NCTM, 2014) 
Discussed and used the 5 
Practices (M. S. Smith & 
Stein, 2011). 

Discussed strategies for 
subtly quieting dominant 
voices to balance student 
group participation and allow 
quieter voices to be heard. 

Not applicable 
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 Common experiences for coached & comparison 
teachers 

Experiences unique to coached teachers 

 Some Extended Some Extended 
Pose 
purposeful 
questions 

Discussed appropriate 
and not-as-appropriate 
questions to avoid 
funneling student 
thinking. 
 

Not applicable Discussed focusing versus 
funneling questions in 
relation to the planned and 
employed questions for the 
lesson. 
 

Planned and revised assessing and 
advancing questions; Teacher 
observed coach using the questions 
in the monitoring phase and other 
connecting questions in the 
share/discuss phase. Discussed how 
this focused thinking. 

Build 
procedural 
fluency from 
conceptual 
understand-
ing 

Not applicable Not applicable Discussed where the planned 
task was on the progression 
from developing conceptual 
understanding to finding 
more generalized methods to 
eventual procedural fluency. 
 

Discussed how and why the planned 
series of connected tasks would help 
students work towards procedural 
fluency. 

Support 
productive 
struggle in 
learning 
mathematics 

Not applicable Read article about mindset 
and discussed findings 
related to growth versus 
fixed mindset (Dweck, 
2006). 
 

Discussed how and why the 
chosen and implemented task 
did not support productive 
struggle.  

Not applicable  

Elicit and use 
evidence of 
student 
thinking 

Discussed how student 
talk provides evidence 
of student thought 
processes as well as 
student level of 
proficiency. 

Engaged in magnetic quote 
activity. Watched videos. 
Discussed research brief and 
encountered Formative 
Assessment Lessons (FALs). 

Discussed how the task and 
its facilitation would elicit 
student thinking via 
questions, written work, and 
manipulative models. 
Revisited in the debrief with 
instances from the lesson. 

Not applicable 
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The last finding concerning “belief in self” led to more extensive discussion of growth 

versus fixed mindset (Dweck, 2006), how and when to best use praise, and how and when not to 

use praise. Next, participants read short articles about mindset (Dweck, 2007; Mindset Works Inc., 

2016) as it related to supporting students in productively struggling. Then, participants viewed 

online videos, visited websites, and examined teacher-created posters to support the development 

of growth mindset and support students’ willingness to engage in struggle in mathematics 

classrooms. To conclude the portion of the day about mindset, teachers discussed how best to 

communicate ideas about mindset and struggle to parents, administrators, and other teachers. 

A coaching cycle illustrating the use of productive struggle that was rated as “some” 

opportunity to learn occurred during the last coaching cycle of the year. For that cycle, one of the 

coached teachers chose a task she believed would provide an indication of her students’ progress 

towards understanding addition of two-digit numbers. The task, called Ford and Logan add 45+36 

(Illustrative Mathematics, 2016a) (See Appendix K.3), asked students to solve 45+36 and then 

examine and analyze two other fictitious students’ methods for solving the addition problem. 

During the planning portion of the coaching cycle, the teacher and coach discussed scaffolding 

student thinking without taking over via the use of questions geared specifically towards students’ 

anticipated struggles. The pair discussed providing encouragement for students to reflect on their 

own strategies as well as the strategies of Ford and Logan from the task. The pair also discussed 

the best ways to acknowledge student contributions, especially during the share-and-discuss phase 

of the lesson. During task implementation, the teacher assured that adequate time was provided for 

students to struggle with the task.  

According to Taking Action: Implementing Effective Mathematics Teaching Practices in 

K-Grade 5 (Huinker & Bill, 2017), each of the moves mentioned above supports students’ 
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productive struggle in mathematics. In this coaching cycle, the actions were personalized by the 

teacher to her class for that particular lesson. For example, during the implementation of this task, 

student groups were struggling with making sense of one of the fictitious character’s ways of 

solving the addition problem. The coach-teacher team had anticipated this and planned specific 

questions to support students in making sense of the solution strategy without removing the 

struggle. This teacher’s opportunity to learn about supporting productive struggle was rated as 

“some” because it was not the main focus for this coaching session and was not a lengthy encounter 

with the practice of supporting productive struggle. However, this teacher’s encounter with the 

practice was qualitatively different from that provided during the follow-up session on growth 

mindset (Dweck, 2006), when the learning opportunity was rated as “extended.” 

Just as all teachers had an opportunity to learn about supporting productive struggle during 

one of the follow-up PD sessions, all teachers had an opportunity to learn about the effective 

Mathematics Teaching Practice of using and connecting representations during the second follow-

up PD session. The main body of this session dealt with facilitating meaningful mathematical 

discourse and implementing tasks. To start the session, participants engaged in the Hungry 

Caterpillar Task and read the Case of Ms. Bouchard (Huinker & Schefelker, 2016). Using and 

Connecting representations entered the session when the large group discussed (1) Ms. Bouchard’s 

use of different pieces of student work that had drawings or number sentences on them and (2) 

how Ms. Bouchard helped students connect one representation to another during the share-and-

discuss portion of the case. This learning opportunity was rated as “some.” 

During coaching, an instance of using and connecting representations occurred when the 

teacher and coach collaborated to implement a variation of the Building a Rabbit Pen Task (Math 

Design Collaborative, 2015). (See Appendix K.4.) Coach and teacher conferred about the learning 
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goal for this lesson, created monitoring charts for the task, and began to talk in detail about the 

student solution strategies. At this point, the coach-teacher team realized that students would likely 

have trouble creating a drawing of the rabbit pen on the grid provided with the task, so they 

brainstormed available tools students might use to create a concrete model of the pens. Popsicle 

sticks were the tool of choice and provided a way for students to model and manipulate the pretend 

rabbit pens during the lesson. In this example, the rating for the practice of using and connecting 

representations was “some.” Even though the discussion of representations was not rated as an 

“extended” opportunity to learn about this teaching practice, the representations were an important 

part of students’ engagement in the task. 

In summary, as expected, coached teachers in the study had more opportunities to learn 

about the effective Mathematics Teaching Practices than the comparison teachers. Coached 

teachers experienced four coaching cycles, each of which entailed some learning about at least 

four of the eight effective teaching practices for mathematics, in addition to the four follow-up PD 

sessions, each of which involved learning about four or five of the practices. All told, the coached 

teachers had more than two and a half times as many chances to learn about effective practices 

associated with ambitious mathematics teaching (204) compared to comparison teachers (84). The 

coached teachers had more than twice as many experiences where they learned “some” about a 

practice with 136 chances compared to 60. They had nearly three times as many in-depth chances 

to learn about an effective mathematics teaching practice with 69 chances compared to 24. 

Additionally, the encounters with the effective Mathematics Teaching Practices were qualitatively 

different for coached teachers than for the comparison group teachers who only attended PD 

sessions. While coaching added quite a bit to teachers’ opportunities to learn about ambitious 
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mathematics teaching, the following section will discuss the differences in teachers’ use of 

ambitious teaching practices. 

4.2 Use of ambitious teaching practices 

Recall from the chapter introduction that the second question this study seeks to address 

is: What is the impact on teachers’ use of ambitious teaching practices when content-focused 

coaching is added to professional development? The Instructional Quality Assessment (IQA) 

(Boston, 2012) (Appendix H) was used to measure teachers’ use of ambitious teaching practices11. 

The study author and an outside evaluator12 used four of the IQA Academic Rigor (AR) rubrics 

pre- and post-coaching activities to assess the ten teachers’ use of ambitious teaching practices. 

Before the start of any coaching activities, the two evaluators performed consensus scoring for 

each of the coached and comparison teachers in the study on one lesson. After the conclusion of 

all coaching activities, the two evaluators again performed consensus scoring for each of the five 

coached and five comparison teachers. The four rubrics from the IQA used in this study were AR1: 

Potential of the Task, AR2: Implementation of the Task, AR3: Student Discussion following Task, 

and AR-Q: Rigor of Teachers’ Questions131415. This section of the results chapter is spent 

                                                 

11 Recall that while the study was initially to use both the IQA and the Effective Teacher Practices checklist, 
use of the checklist had to be abandoned because it was never validated before the conclusion of the study.  

12 Special thanks to Dante Orsini for serving as the outside evaluator for this study and to Dr. Melissa Boston 
for her role facilitating the work. 

13 Classroom observation rubrics were employed. Assignments collection rubrics were not employed in order 
not to burden participating teachers. 

14 While ambitious mathematics instruction is aligned with both the AR and AT rubrics, it was recommended 
by the dissertation committee that AR rubrics be used in observing ambitious teaching practices over AT rubrics. It 
was impractical to use the full set of rubrics for classroom observation. 

15 The fifth AR rubric, AR-X (Residue), was not used. It was still in pilot form at the time of this study.  
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analyzing the IQA scores. The composite scores from the IQA are analyzed in subsection 4.2.1. 

Following that, in section 4.2.2, the data gathered from individual rubric scores is analyzed. This 

portion of the chapter concludes with a section on qualitative results. 

 IQA composite scores 

Table 4.5 provides the data from the consensus scoring on the IQA AR rubrics used in this 

study. Because four AR rubrics, scored from 0 to 4, were employed, the maximum composite score 

is 16 for this study. Two of the comparison teachers increased their composite IQA scores. One 

comparison group teacher, the highest scoring teacher in the comparison group, had the same 

composite score in the fall and in the spring. Two comparison teachers’ composite scores 

decreased from Fall 2017 to Spring 2018; one by three points and the other by five points. In 

comparison, four of the five coached teachers increased their composite scores on the IQA from 

Fall 2017 to Spring 2018 with one teacher increasing the composite score by seven points, which 

is the greatest change in IQA composite score seen in this study. The only coached teacher who 

did not increase in composite IQA score decreased by one point. 
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Table 4.5 Summary of IQA AR rubric scores for Fall 2017 and Spring 2018 
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Comparison Teacher 1 11 3 3 1 4 8 2 2 2 2 

Comparison Teacher 2 13 4 3 3 3 8 2 2 2 2 

Comparison Teacher 3 12 3 3 3 3 14 4 3 3 4 

Comparison Teacher 4 14 4 4 2 4 14 3 4 3 4 

Comparison Teacher 5  6 2 2 1 1 12 4 2 2 4 

Coached Teacher 1 7 2 2 2 1 14 3 4 3 4 

Coached Teacher 2 10 3 3 2 2 14 3 4 3 4 

Coached Teacher 3 11 2 2 3 4 15 3 4 4 4 

Coached Teacher 4 8 3 1 2 2 7 2 2 1 2 

Coached Teacher 5  7 2 2 1 2 10 2 2 2 4 
 

The Mann-Whitney nonparametric t-test for independent samples was used on each 

teacher’s composite IQA score to analyze differences between the comparison teachers and the 

coached teachers. The Mann-Whitney test uses rankings instead of raw scores to focus attention 

on the ordered relationships instead of the spread of the data. At the onset of the study, comparison 

teachers’ rankings were better than coached teachers, with comparison teachers having four of the 

top five rankings (Tinitial(comparison) = 20.5; Tinitial(coached) = 34.5), but the difference between 

the groups was not significant (zinitial = -1.36, with area beyond z = 0.0869). At the conclusion, 

coached teachers’ rankings were better than comparison teachers, with coached teachers having 

three of the top five rankings. Four of the five coached teachers increased their overall rank 

(Tfinal(comparison) = 30; Tfinal(coached) = 25). Although the difference between the groups was 

directionally different, the difference was still not significant (zfinal = 0.42; with area beyond z = 
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0.3372). Thus, findings from the IQA composite scores for the four AR rubrics show no significant 

differences in instructional practice between the two groups of teachers either before or after 

coaching during the 2017-18 school year.  

Additionally, the group of coached teachers did not significantly improve their composite 

IQA scores from Fall 2017 to Spring 2018. In comparing coached teachers’ composite IQA scores 

from fall to spring, four of five teachers improved their composite IQA score. The test of 

significance for this data is the Wilcoxan Signed-Rank test. This test is for nonparametric data 

with matched samples, which applies to the coached teachers’ scores for fall and for spring. By 

using ranks instead of the actual composite IQA scores, the Wilcoxan Signed-Rank test removes 

concerns with the amount of variation within the samples. Unfortunately, with a sample size of 

five, because one of the five coached teachers did not improve their composite IQA score from 

Fall 2017 to Spring 2018, the result for composite IQA scores was not significant16 (n=5, W=13). 

To be significant with only five subjects, the sum of the signed ranks (W) must be 15, which is the 

maximum value W can have for n=5. Thus, findings from the IQA composite scores for the four 

AR rubrics show no significant differences in instructional practice for the coached teachers from 

Fall 2017 to Spring 2018. 

Continuing to examine the composite IQA scores yields other information. The individual 

AR rubrics are scored from a low score of 0 to a high score of 4. A high rating on an individual 

AR rubric is considered a score of 3 or 4 (Boston, 2012a). To earn what is considered a “high” 

composite IQA score, the teacher cannot have all the individual AR rubric scores at 2 or lower. 

Said another way, the teacher has to earn at least one 3 or higher on an AR rubric, even if all the 

remaining scores are considered low-level ratings. Thus, “high” composite IQA scores must total 

                                                 

16 No z score is calculated when n is small because it is feasible to list all possible cases. 
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9 or greater for the set of four scores. Only two of the coached teachers had a high composite score 

before coaching began, while four of the comparison group teachers had a high composite score 

in Fall 2017. After the conclusion of coaching, four of the coached teachers earned a high 

composite score. Three of the comparison group teachers had a high composite score in Spring 

2018. See Tables 4.6. and 4.7 for this data.  

 

Table 4.6 Number of teachers in each group earning low (< 9) or high (≥ 9) composite IQA scores 

 Composite IQA–Fall 2017  Composite IQA–Spring 2018 

 0 ≤ sum <9 9 ≤ sum ≤ 16  0 ≤ sum < 9 9 ≤ sum ≤ 16 

Comparison  teachers 1 4  2 3 

Coached teachers 3 2  1 4 

Total 4 6  3 7 
 

Table 4.7. Number of coached teachers earning low (<9) or high (≥9) composite IQA scores in fall and spring 

 Composite IQA – Coached Teachers  
 0 ≤sum<9 9 ≤sum ≤16 Total 

Fall 2017 3 2 5 

Spring 2018 1 4 5 

Total 4 6 10 
 

Because the expected values for the cells in these tables are less than five, chi squared 

cannot be used. Instead, the Fisher Exact Probability test was used to examine the difference 

between the coached and comparison teachers in Spring 2018. One can likely determine from 

inspection that these results do not show a significant difference between coached and comparison 

teachers (p = 0.50). The Fisher Exact Probability test was again used to examine the difference 

between the number of high composite scores for coached teachers in Fall 2017 and Spring 2018. 
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Results show that this difference is also not significant (p = 0.26). Examining the findings for the 

IQA composite scores shows no significant differences between the group of comparison teachers 

and the group of coached teachers. Additionally, findings from the IQA composite scores show no 

significant differences in instructional practice for the coached teachers from Fall 2017 to Spring 

2018. 

 Academic Rigor rubric scores 

The coached teachers, taken as a group, exhibited significantly higher scores on the 

individual AR rubrics, in contrast to findings for the composite IQA scores. See Table 4.5 for these 

scores. In comparing coached teachers’ IQA AR rubric scores from the fall to the spring, fully 18 

of 20 individual AR ratings for the five coached teachers taken from AR1, AR2, AR3, and AR-Q 

either improved or were maintained. Of those 18 improved or stable AR ratings, 16 belong to the 

four teachers who improved their composite IQA scores. In other words, four of the five coached 

teachers either improved or maintained every one of the AR ratings that comprise their composite 

IQA score. In fact, 12 of the 16 AR ratings for the four improved teachers increased from fall to 

spring; four of these 12 improved ratings increased by two points; and one rating increased by 

three points.  

This three point increase from a “1” to a “4” is seen on AR-Q and pertains to a coached 

teacher who increased the score on every one of the four AR rubrics used in the study. Two other 

coached teachers increased the scores on three of the four AR rubrics while maintaining their score 

on the fourth AR rubric. Another coached teacher maintained scores on two of the four rubrics and 

increased scores on the other two rubrics. The fifth coached teacher had a different profile. The 
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AR rubric scores for this teacher increased on one rubric, stayed the same on a second rubric, and 

decreased on the remaining two rubrics. See Figure 4.5 for a visual display of this data.  

 

 

Figure 4.5 Stacked side-by-side bar graph with individual AR rubric scores for coached teachers 

 

As with the composite IQA scores, the test of significance is the Wilcoxan Signed Rank 

test for nonparametric data with matched samples. The difference in the test for the AR rubric 

scores is that the sample size is no longer a small one. There are now 20 rubric scores to compare 

(4 AR rubrics x 5 coached teachers) instead of five composite IQA scores to compare. Because so 

many of the 20 individual AR rubric scores for the coached teachers increased or remained the 
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same and only two of the 20 decreased, the results of the Wicoxan Signed Rank test for this data 

were significant17 (n = 15; W = 98; z = 2.77, P = 0.0028).  

Continuing to examine individual AR rubrics yields more information. As noted 

previously, the AR rubrics are scored from 0 to 4, and a high rating on an individual AR rubric is 

a score of 3 or 4 (Boston, 2012a). At the onset of the study, the group of five comparison teachers 

earned more high ratings on the AR rubrics than did the group of five coached teachers. There 

were 14 high ratings for the comparison group as opposed to five high ratings for the coached 

group. At the conclusion of the study, coached teachers earned more high ratings on the AR rubrics 

than comparison teachers: 13 high ratings for coached teachers and ten for comparison teachers. 

The chi squared test determined that coached teachers had earned more high scores than expected 

in Spring 2018, and comparison teachers had earned fewer high scores than expected. Thus, the 

chi squared test shows a significant difference between the groups  

(χ2 = 2.75, df = 1, P = 0.049) for the number of AR rubrics earning high scores. 

In general, larger grain results from the IQA, such as the composite scores, show a lack of 

significant difference between the coached and comparison teachers in Spring 2018, when it was 

hoped coached teacher would score higher. The composite IQA scores also show a lack of 

significant change in scores from fall to spring for coached teachers. However, results are 

significant when looking at finer grain results, such as the individual AR rubric scores. Coached 

teachers made significant gains in their AR rubric scores from Fall 2017 to Spring 2018. Coached 

teachers also earned significantly more high ratings on the AR rubrics than did comparison 

teachers in the Spring 2018. Aside from the quantitative differences in coached teachers’ IQA AR 

                                                 

17 There were 20 individual AR rubric scores among the five coached teachers in Fall 2017 and Spring 2018. 
Five of these AR rubric scores stayed the same from fall to spring, so n=20-5=15 for the Wilcoxan Signed Rank test. 
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rubric scores, there existed qualitative changes in coached teachers from before coaching to 

afterwards. This dissertation now turns to examining some of the qualitative changes. 

 Qualitative analysis 

Although the overall IQA composite scores do not show a significant increase in coached 

teacher scores, the changes in their composite scores provide some qualitative information about 

differences in ambitious teaching practices. The individual AR rubric scores provide additional 

qualitative data. As Boston wrote, “Score levels on the IQA rubrics enable quantitative and 

qualitative interpretations, as scores represent different levels of instructional quality and specific 

features of mathematics instruction” (2012a, p. 95). This section will examine qualitative changes, 

some dramatic and some more subtly, in some of the coached teachers’ practices as evidenced by 

the indicators and descriptors for the set of four AR rubrics employed in this study. Following that, 

the chapter contrasts changes in coached teachers’ practice with qualitative changes in some of the 

comparison teachers’ practice. 

Within both groups of teachers, there were changes in the observed instruction. The most 

drastic improvement occurred with the first coached teacher. Coached Teacher 1, a first grade 

teacher, earned improved AR scores on each of the four rubrics used in the study and improved 

the overall IQA score by seven points. Her classroom was qualitatively different from the pre-

coaching observation to the post-coaching observation. This teacher initially chose a low-level 

task during the pre-coaching observation, but used a high-level task after coaching. According to 

the AR1 rubric, this shows the teacher used a task that had “the potential to engage students in 

complex thinking or in creating meaning for mathematical concepts, procedures, and/or 

relationships” (Boston, 2012b, p. 9). She moved from having her students engage in performing a 
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procedure to allowing them to explore mathematical concepts. This corresponds to a change in 

score on AR2 from a 2 to a 4. The discussion after the task moved from a recitation of steps to 

solve, to a sharing of different strategies; a shift on AR3 from a score of 2 to a score of 3. The 

largest change for this teacher occurred with AR-Q. The score changed from low, where the 

teacher asked only procedural questions, to the highest rating. During the post-observation, the 

teacher asked questions that allowed students the chance to explain their thinking and elaborate on 

their written work by verbalizing it. These changes in the type of task used and the manner in 

which it was implemented, including the questions asked and the discourse that occurred during 

the monitoring and share-and-discuss phases of the lesson account for a qualitatively different 

teaching experience for the teacher and a qualitatively different learning experience for the 

students in this classroom when comparing the pre-coaching observation to the post-coaching 

observation. 

Other qualitative changes are seen with examining changes in teacher scores on some of 

the individual AR rubrics employed. Some large qualitative changes occurred with the rubric 

examining teachers’ questioning practices, AR-Q. Aside from Coached Teacher 1, two other 

coached teachers improved their AR-Q rubric scores from a low rating to the highest rating. To 

earn this rating, teachers must “consistently ask academically relevant questions” (Boston, 2012b, 

p. 39). These types of questions allow students access to the underlying mathematical ideas of the 

lesson and allow connections to be made by students. Hearing the coached teachers ask 

mathematically important probing or focusing questions; seeing the teachers encourage student 

reflection on the mathematics; witnessing the teachers’ use of questions to help make the 

mathematics visible to students; and hearing the students discuss their reasoning with classmates 

as a consequence of the teachers’ questions were qualitative changes seen in the classrooms of the 
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teachers whose AR-Q scores changed from low to high. These changes indicated the use of 

ambitious teaching practices in classrooms where they had not previously been used. These 

teachers were now engaging in the effective Mathematics Teaching Practices of posing purposeful 

questions and facilitating meaningful mathematics discourse (NCTM, 2014). Of the four coached 

teachers who used questioning tactics aligned to the highest rating on the AR-Q rubric during the 

post-coaching observation, three had not done so before coaching began. 

Coached teachers also made improvements on the AR2 rubric for Implementation of the 

Task. Before coaching began, four of the five coached teachers either engaged students in a 

procedural exercise with no connections to the meaning of the procedure or the underlying 

mathematics, or the teacher engaged students in a memorization activity. One teacher engaged 

students in a procedures with connections task, rated as “3” for Implementation of the Task. 

However, at the conclusion of coaching, three of the five coached teachers had ratings the highest 

level, a “4” on the AR2 rubric. This means that the students in their class were “engaged in 

exploring and understanding the nature of mathematical concepts, procedures, and/or 

relationships” (Boston, 2012b, p.21). The students explored connections among the mathematical 

procedure and the underlying meaning or engaged in problems where they, themselves had to 

uncover the mathematics to solve the problem. For the two teachers whose initial AR2 scores were 

low, the change to the highest rating indicated a qualitative shift from students reproducing facts 

or procedures to students engaging in doing mathematics. As with AR-Q, this indicates teachers’ 

capabilities to use ambitious teaching practices. Higher ratings on the AR2 rubric indicate use of 

the effective Mathematics Teaching Practice of implementing tasks that promote reasoning and 

sense making. Additionally, implementation of tasks at a higher level on the AR2 has the potential 
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to build the conceptual understanding on which future procedural fluency is built (NCTM, 2014) 

for students in these coached teachers’ classes.  

Aside from the first coached teacher mentioned in this section of the chapter, two other 

coached teachers also earned all high-level ratings on the post-observation with the IQA. One of 

these teachers ended with two “4” ratings, and the other ended with three “4” ratings. Earning 

more high-level ratings, and especially earning the highest ratings, on the AR rubrics generally 

indicates more ambitious mathematics instruction, since “(t)he IQA assesses elements of ambitious 

instruction in mathematics; specifically, the level of instructional tasks and task implementation, 

opportunities for mathematical discourse, and teachers’ expectations” (Boston, 2012a, p. 76). 

While this study did not employ the entire IQA tool, the four chosen AR rubrics still provide 

indicators of (1) the use of challenging tasks that promote mathematical reasoning, encourage the 

development of conceptual understanding, and allow for the use of varying mathematical 

representations; (2) the employment of purposeful questions that can form the basis for meaningful 

mathematical discourse; (3) opportunities for students to engage in complex thinking and 

productive struggle and subsequently demonstrate evidence of this to their teacher. Thus, the 

chosen rubrics provide connected qualitative and quantitative evidence of ambitious teaching 

practices. 

The group of five comparison teachers’ AR scores ended with a different profile from the 

coached teachers. While two AR scores decreased for the coached teachers, eight AR rubric scores 

decreased in the comparison teacher group. One of the comparison teachers began with all high 

scores of 3 or 4 on the four IQA AR rubrics but had all low scores of 2 at the conclusion. This 

decrease was the most drastic decline in teacher scores. Another comparison teacher whose AR 

rubric scores declined had three of four high scores at the pre-coaching observation but had all low 
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scores for the post-coaching observation. According to Boston (2012a), lower ratings on the 

rubrics mean “students are rarely asked to describe, explain, justify, prove, or generalize their 

mathematical work and ideas by instructional tasks, and rarely provide complete and thorough 

descriptions, justifications, proofs, or generalizations during classroom instruction” (p. 94). Thus, 

the comparison teachers whose scores dropped did not engage in ambitious teaching practices 

during the post-coaching observation, which means that students’ opportunities to deeply learn 

and the likelihood of students’ development of thorough understanding of mathematical ideas were 

diminished.  

4.3 Conclusion 

It is clear from the quantitative data that coached teachers had many more opportunities to 

learn about the effective Mathematics Teaching Practices over the course of this study when 

compared to comparison group teachers, who attended follow-up PD sessions but received no 

coaching. The increased opportunities included more “extended” opportunities and more 

opportunities that were not as in-depth. Additionally, the qualitative data demonstrates how 

coached teachers’ opportunities to learn about effective Mathematics Teaching Practices were 

different than comparison teachers’. Coached teachers’ opportunities to learn also had direct and 

immediate use with students because the planned lessons were enacted on the same day as the 

planning conference for the coaching cycle occurred. 

This study showed mixed results as to whether coached teachers used more ambitious 

teaching practices in their classroom lessons following coaching. Examining the larger grain data 

does not show significant differences between coached and comparison teachers, as evidenced by 
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IQA composite scores. However, in examining smaller grain information, there exist 

improvements in teachers’ AR rubric scores within the composite IQA. Some coached teachers 

made large improvements in their AR rubric scores (and the composite IQA score) from before 

coaching to after, but the anecdotal and qualitative data gathered before, after, and throughout the 

coaching cycles is telling as well. The teachers who made the greater strides in scores and ratings 

were also the teachers who found and used cognitively demanding tasks or a series of such tasks, 

which is reflected in AR1. They were the teachers who continued to ask probing questions and 

generate more discussion about the mathematics as reflected in AR-Q and AR3. This shows 

movement towards more ambitious teaching practices in the coached teachers’ classrooms. 

However, movement towards ambitious instruction on the part of the coached teachers is 

especially seen in maintenance of cognitive demand upon implementation of the task, as reflected 

in the AR2. It has previously been shown in research that maintaining the cognitive demands of 

mathematical tasks has substantial impact on student learning. (Boston & Smith, 2011; Stein et al., 

2009) In fact, the largest increases in student learning have been shown to occur when students 

interact with high-level, cognitively demanding mathematical tasks on a regular basis (Boaler & 

Staples, 2008; NCES, 2003; Stein & Lane, 1996). Thus, it is possible that for the coached 

mathematics teachers participating in this study, the proximal, in situ professional development in 

the form of content-focused coaching paired with outside-the-classroom professional development 

facilitated a change in their pedagogical practices from traditional to more ambitious in nature. 
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5.0 Discussion 

The purpose of this study was to determine whether content-focused coaching that is paired 

with outside-the-classroom professional development facilitates a change in classroom practice 

towards more ambitious teaching for elementary mathematics teachers. This chapter begins by 

summarizing the results and sharing the conclusions of the study regarding the addition of content-

focused coaching to outside-the-classroom professional development. Then, possible explanations 

for the results of the study are offered. Following these explanations, the chapter turns to 

contextualizing the findings of the study. Next, the chapter examines possible implications of the 

study’s findings to discuss what may be learned from this investigation and how the study’s findings 

can inform professional development efforts involving coaching. The chapter then turns to a 

discussion of some limitations of the study, and concludes with recommendations for future 

research. 

5.1 Conclusions 

 Summary of results 

One conclusion drawn from this study is clear. In response to the first research question, 

coached teachers received more and different exposures to and experiences with the effective 

Mathematics Teaching Practices that represent ambitious mathematics instruction for this study. 

When content-focused coaching was added to outside-the-classroom professional development, 
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coached teachers had significantly more opportunities to learn about ambitious teaching practices. 

Results of this study showed that coached teacher had more opportunities than comparison teachers 

to learn about the effective teaching practices for mathematics, viewed through several different 

lenses. Coached teachers had more overall opportunities to learn about the effective Mathematics 

Teaching Practices; in fact, coached teachers had 2½ times as many opportunities to learn about 

these practices compared to uncoached teachers. Coached teachers also had more opportunities to 

learn that were in-depth, and coached teachers had more opportunities to learn about each of the 

eight individual effective Mathematics Teaching Practices.  

The response to the second research question is not as clear as the response to the first. The 

question asks about the impact on teachers’ use of ambitious teaching practices when content-

focused coaching is added to professional development. The answer to the question depends upon 

the grain size used to quantitatively analyze the data. When examining the larger grained results 

provided by the composite IQA scores, coached teachers did not use significantly more ambitious 

teaching practices than control teachers, and coached teachers did not change their teaching 

practices to make them more ambitious from the beginning to the end of the study. In contrast, 

when examining smaller grained results provided by the AR rubric scores from the IQA, the results 

are different. Coached teachers significantly improved the scores on the AR rubrics from fall to 

spring, and at the end of the study they earned more high scores (3 or 4) on these AR rubrics 

compared to the uncoached teachers. Thus, the answer to the second research question about usage 

of ambitious teaching practices is not a simple “yes” or “no.” Instead, it depends on whether one 

examines large-grained or small-grained results. Qualitative data aligned with the descriptors for 

the scores on the AR rubrics indicate that most coached teachers made improvements, sometimes 

dramatic improvements, to their teaching practices.  
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 Explanation of the results 

The results for the first research question aligned largely with expected results. As 

anticipated, the coached teachers received more exposures to the effective teaching practices for 

mathematics. One unanticipated result with respect to the opportunities to learn about the effective 

teaching practices, was in the depth of opportunities to learn about the individual practices. It was 

anticipated that the coached teachers would have a larger number of “extended” exposures to learn 

about every one of the eight effective Mathematics Teaching Practices. Even though the coached 

teaches had more “extended” exposures to six of the eight teaching practices, coached and 

comparison teachers had the same number of “extended” exposures for two of the practices. 

Namely, coached teachers did not have a greater number of “extended” opportunities to learn about 

supporting productive struggle or facilitating meaningful mathematical discourse.  

Reflecting upon the nature of the coaching in this study leads one to conclude that it should 

not have been anticipated that the coached teachers would necessarily have more “extended” 

opportunities to learn about every one of the effective Mathematics Teaching Practices. This is 

because of the adaptive nature of the coaching activities in this study. After the co-planning session 

for the initial coaching session, wherein the coach had pre-planned a very similar conversation 

about learning goals with each of the coached teachers, the subsequent coaching activities were 

largely determined based on individual coached teachers’ grade level, curriculum, stated strengths 

and needs, and perceived strengths and needs. Thus, each coached teacher’s experiences departed 

from the others’ experiences. Examining this in retrospect, it should not have been expected that 

all of the individual effective teaching practices for mathematics would necessarily receive more 

in-depth exposure for the coached teachers compared to the uncoached teachers, especially with 

only four coaching sessions for each coached teacher in the scope of the study.  
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The results for the second research question were partially aligned with expected results. 

An unexpected result for this study was that composite IQA scores for the coached teachers did 

not significantly increase from before the start of the study to after the conclusion of the study. 

The Wilcoxan Signed-Rank test of significance was used when comparing coached teachers 

composite IQA scores from before coaching to after coaching. This test is used for nonparametric 

data with matched samples. The test uses ranks instead of absolute scores, so the order, along with 

whether scores increased or decreased, is important. There is no concern about whether the scale 

of measurement (composite IQA scores in this case) is an equal-interval scale. For this data set, 

there are only five sets of scores to compare, so only five rankings (from 1 through 5) were 

generated, based on the relative magnitude of change. Then, signs are attached to the rankings, 

according to whether there was an increase or decrease in score. N is less than 10 for this study, 

so the sample size is small. The maximum sum of the rankings (W) is 15 (1+2+3+4+5). To be 

significant, the sum of signed rankings in this case has to be 15. That means all the IQA scores had 

to increase for all the signs of the rankings to be positive. However, one of the five coached 

teacher’s IQA score decreased, which means one of the signs was negative. (The score decreased 

by one total point, but the amount of decrease does not matter with the Wilcoxan Signed-Rank 

test.) The W was 13 (-1+2+3.5+3.5+5). If the teacher whose score decreased had increased the 

composite IQA from fall to spring by any amount then the Wilcoxan Signed-Rank test would have 

given a significant result. Results would also have been significant if the teacher’s composite IQA 

score had remained the same. In that case, the maximum W would have changed to 1+2+3+4=10, 

and the sum of signed ranks (W) would have been 10 (1+2.5+2.5+4). All coached teachers’ IQA 

score did not stay the same or increase, which means the results for composite IQA scores are not 

significant. 
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A possible reason why the change in coached teachers’ composite IQA scores from before 

coaching to after coaching was not significant involves the length of the study and the role of the 

coach. Previous studies of coaching show there is a transition period when coaches are learning 

about, adjusting to, and developing in their new role (Campbell, 2012; Chval et al., 2010). Previous 

studies also show that the effect of coaching on student achievement begins to appear during the 

second year of implementation and continues thereafter (Campbell, 2012; Matsumura et al., 2013). 

This study occurred over only one school year with only four coaching sessions per teacher. Thus, 

there may not have been adequate time for teachers to adjust to the expectations of coaching or for 

the coach to develop a strong identity in her role. The study may have shown more significant 

results if the teachers and coach had continued to work together into a second year of paired 

outside-the-classroom professional development and inside-the-classroom coaching. 

Another unexpected result was in the data surrounding the second research question 

concerned with use of ambitious practices. These results showed that coached teachers’ composite 

IQA scores were not significantly better than comparison teachers’ scores at the conclusion of the 

study. The test used to determine whether coached teachers’ composite IQA scores were different 

from comparison teachers’ scores was the Mann-Whitney nonparametric t-test. Like the Wilcoxan 

Signed-Rank test, it uses rank orders instead of a direct comparison of raw scores, but unlike the 

Wilcoxan, the Mann-Whitney does not attach signs to the rankings. For one group’s scores to be 

deemed different from the other’s, the sum of their ranks (1 through 10 in this case) has to be 

significantly less or significantly more than the sum of the ranks for the other group at the 

conclusion of the study. In this case, the sum of the ranks for the coached group was too close to 

the sum of the ranks for the comparison group and was not significant.  



 

180 

Regarding the unexpected result that coached teachers’ composite IQA scores were not 

significantly better than comparison teachers’ scores at the conclusion of the study, there were 

some unanticipated factors at work. Two of the comparison teachers, who work in the same school, 

began with two of the three highest composite IQA scores. After the coaching study, one of these 

two comparison teachers maintained the same composite IQA score, and one increased the 

composite IQA score by two points. This school building previously employed a mathematics and 

literacy coach. The individual who had been in the coaching role is now a Title I support teacher. 

However, during the outside-the-classroom follow-up PD sessions, it became apparent that the 

Title I support teacher was still acting as a coach for the two control teachers in her building (as 

well as some other teachers not attending PD). These two control teachers ended the study with 

the highest scores in the control group, and tied for second highest in the ranked order of scores 

used in the Mann-Whitney nonparametric t-test. There is no way to determine the impact of the 

Title I teacher on the teachers’ composite IQA scores. There may have been no impact, meaning 

these two comparison teachers would have scored just as well on the IQA without the support they 

had at their school, but there may have been great impact, meaning that without the support, the 

teachers might not have scored as well on the IQA.  

On the other hand, expected results for this study were seen regarding AR rubric scores. 

AR rubric scores were used as another measure of teachers’ use of ambitious teaching practices. 

Coached teachers significantly improved their scores on the AR rubrics from before the coaching 

study to after the conclusion of the coaching study. Like the composite IQA scores, the Wilcoxan 

Signed-Rank test was used to analyze the AR rubric scores. However, there was more data for the 

AR rubric scores. The sample size was 20 because there were five coached teachers with four AR 

rubric scores each. Unlike the analysis of the composite IQA scores, it was not necessary for every 
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one of the AR rubric scores to increase for the result to be significant. Eighteen of the 20 rubric 

scores either increased of remained the same, leading to a significant result for the change in AR 

rubric scores for the coached teacher group. Also as expected, coached teachers’ AR rubric scores 

were significantly better than the comparison teachers’ AR rubric scores at the conclusion of the 

study, as evidenced with a chi squared test of significance. 

One possible reason that the results of the study varied depended on the grain size deals 

with the size and scope of the study itself. The study examined the practices of five coached 

teachers and five control group teachers, so it was quite small. The study entailed only four 

coaching cycles for each of the coached teachers spread over a time period of less than six months 

during one academic year, so its scope was also small. If the study had been expanded to include 

more teachers in the coaching aspect that was paired with the professional development, the results 

may have been more consistent between small-grained data and larger-grained data. If the study 

had been expanded over a longer time period, such as two or even three academic years instead of 

one, the results may have been more consistent (Campbell, 2012; Matsumura et al., 2013). If 

coaching had been more frequent, happening every few weeks as opposed to approximately once 

a month, perhaps differences from beginning to end or between coached and comparison group 

would have crystalized into consistently significant or consistently insignificant results.  

Another possible reason for the inconsistency in results between larger and smaller grain 

sized data may involve an unmeasured variable. Teacher attitudes and beliefs were not measured 

at any point during the study. This may have impacted teachers’ willingness to change instruction 

and consequently may have impacted whether instruction was changed and the degree to which 

instruction was changed to involve more ambitious teaching practices as measured via the IQA.   
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 Context of the findings 

With the results explained, this chapter now turns to contextualizing the results within some 

of the research reviewed in the literature review related to this study. In particular, this section 

contextualizes the coaching model, the results regarding changes in teacher use of ambitious 

practices, and the research design.  

While the length of time for this dissertation’s study was less than that of impactful 

coaching studies and consequently may have limited the results, a factor at play in this study that 

compares to other studies was the coaching model. The coaching model used for this study is 

closely aligned to many of the prevalent coaching studies in the literature. The coaching cycle used 

for this study involved a content-focused coaching model of co-planning, enacting, and debriefing. 

This coaching cycle is not only consistent with the content-focused coaching model developed at 

IFL and written about by West and Staub (2003), it also aligns with core portions of the coaching 

model used by Campbell and Malkus (Campbell & Malkus, 2011, 2014), the MIST study (Gibbons 

& Cobb, 2016), and the TN + IFL Mathematics Coaching Project (Russell et al., 2019). Also 

consistent with the larger TN + IFL Math Coach Model, the coach for this study had pedagogical 

and content goals in mind during coaching, and she assured that her coaching feedback was 

evidence-based. Like the Russell et al. project, this study also refined coaching as the study 

progressed. While the coach in this study did not specifically use of the Plan-Do-Study-Act cycle 

(Bryk et al., 2015), she did use teacher feedback and notes from coaching that provided insight 

into teachers’ perceived needs to plan for the next coaching cycle. Thus, the coach in this study 

did adapt her coaching to needs–both needs expressed by the coachees and needs perceived by the 

coach–of the teachers with whom she was working.   
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There are also elements of the Tennessee + IFL model that are not in common with this 

study. The study under consideration in this dissertation did not examine the depth and specificity 

of coaching conversations, nor did this study examine the degree to which the coach maintained 

an inquiry stance with coachees. The coach in this study did not consistently think about the 

instructional triangle (D. K. Cohen et al., 2003) during coaching conversations, as is prescribed 

within the TN + IFL Math Coaching Model. However, the consistency of the coaching cycle used 

in this study with that of other studies in combination with the use of teacher expressed and 

perceived needs aligns this study with other impactful coaching studies. 

Also aligned with some previously reviewed studies of professional development, were the 

results that coached teachers in this study did exhibit more ambitious teaching in mathematics, as 

measured via the AR rubric scores within the IQA toolkit. Research done in conjunction with the 

ESP program (Boston, 2013; Boston & Smith, 2009, 2011) found that teachers in the study 

changed their instruction by choosing and implementing more cognitively challenging tasks while 

better maintaining the level of demand. Teachers in the study for this dissertation also improved 

their selection of cognitively challenging tasks as measured on AR1: Potential of the Task and 

their sustenance of the cognitive demand, as measured on AR2: Implementation of the Task. These 

two rubrics from the IQA toolkit align with the effective Mathematics Teaching Practice of 

implementing tasks that promote reasoning and sense making.  

As previously observed, while coached teachers in the study for this dissertation did 

significantly improve AR rubric scores, their composite IQA scores did not significantly improve. 

This differs from some previously reviewed studies of coaching. For example, Matsumura et al.’s 

(2013) results showed that coached teachers increased their mean IQA score when seven AR 

rubrics for literacy were averaged. Using an average of AR rubric scores as representative of an 
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overall IQA score, as Matsumura et al. did, is commensurate with employing a composite IQA 

score that sums rubric scores, as this study did. Therefore, the Matsumura et al. study in literacy 

coaching showed more positive results compared to this study in mathematics coaching. Kraft, 

Blazar, and Hogan’s (2018) meta-analysis found that pooled results for coaching studies had an 

overall positive effect size for classroom instruction. The study completed for this dissertation did 

not show an overall positive effect for classroom practices when the composite IQA scores are 

used as a measure. 

Lastly, three elements of the research design of this study: pairing coaching with outside-

the-classroom professional development; measuring the instructional practices of teachers; and 

using opportunities to learn about ambitious teaching practices as a dependent variable will be 

contextualized within current research. Firstly, this research study aligns with the design of some 

of the current research on coaching that uses or advocates for a coaching model pairing inside-the-

classroom coaching with outside-the-classroom professional development. Within their five-part 

theory of action for improving mathematics teaching, Cobb and Jackson (2011) recommend 

pairing more formal teacher professional development with job-embedded professional 

development in the larger frame of a “coherent system of supports for ambitious instruction” (p. 

9). Coaching is one part of the job-embedded PD recommended by Cobb and Jackson. Along with 

teacher networks, coaching is mentioned as a key component for “improving mathematics 

instruction at scale” (p. 9). Krupa and Confrey (2012) echoed this sentiment in their case study of 

a coach within their paired coaching and PD model. They said, “research has shown convincingly 

that teachers are not likely to change their instructional practices solely by attending isolated 

professional developments, and that ongoing support can help teachers implement the ideas 

presented in these professional developments” (p. 161). Neufeld and Roper (2003) also said 
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coaching plus outside-the-classroom professional development could increase schools’ 

instructional capacity, writing, “in light of our current knowledge about what it takes to change a 

complex practice like teaching, there are reasons to think that coaching, in combination with other 

professional development strategies, is a plausible way to increase schools’ instructional capacity” 

(p. 1).  

While recommendations for and discussion of pairing coaching with outside-the-classroom 

PD are within the cited research, none of these publications studied the changes in teachers’ 

instructional practices when coaching was paired with outside PD as this study did. One 

consequential difference between this study and previous studies of coaching is the on-going 

nature of the outside-the-classroom PD for both the coaches and the comparison teachers. All 

teachers in the study attended ten days of summer PD, and all teachers in the study attended four 

follow-up sessions during the school year. Some studies, like Boston and Smith (2009, 2011), have 

shown that PD of this nature can make a difference in teachers’ instructional practices. However, 

even with the on-going PD with its potential impact for all teachers, the coached teachers’ AR 

rubric scores outpaced the scores of the comparison group in this study.  

Another part of the research design for the study under consideration in this dissertation is 

aligned in part with that of Matsumura et al. (2013). The Matsumura group measured the 

instructional practice of teachers involved in coaching in their longitudinal study, as did the study 

for this dissertation. While Campbell (2012) did not directly measure teacher practice, she did 

measure teacher beliefs on a continuum from Traditional to Making Sense and used that as an 

indicator for teacher practice. However, many other recent coaching studies focused on the coaches 

and their coaching practices, not on the teachers and their teaching practices. For one, Campbell 

and Malkus (2014) followed teachers making the transition to coaching and documented changes 
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in the coaches’ content knowledge, MKT, and beliefs about mathematics teaching and learning. 

Gibbons and Cobb (2016) examined a case study coach’s work in middle-school mathematics over 

a period of four years as she developed in her role of “support[ing] teachers’ development of 

ambitious instructional practices” (p. 238). While the team isolated five important aspects of 

coaching practice and two important aspects of coaching knowledge, Gibbons and Cobb did not 

subsequently examine the teachers’ practice in their study to determine if it became more 

ambitious. Russell18 et al. (2019) discussed their coach training and model of coaching used in 

Tennessee in an effort to (a) analyze the research team and coaches’ use of the continuous 

improvement model of adaptation and (b) determine which portions of the broad coaching model 

and more specific coaching framework resulted in “students’ opportunities to engage in conceptual 

thinking” (p. 22).  

The last element of the research design to be contextualized within the current research is 

the use of “opportunities to learn about ambitious teaching practices” as a variable. While there 

exist studies of coaching that aimed to measure the use of ambitious teaching (Matsumura et al., 

2013), as this study does, there were no studies in the literature reviewed by this author that used 

teachers’ opportunities to learn about ambitious teaching practices as a variable in the study. There 

were studies that measured the number of coaching sessions in which teachers partook, but that 

variable is different from measuring the number of exposures to ambitious teaching practices, as 

this study did. Related to the number of exposures to ambitious teaching practices in mathematics, 

this study also examined the depth of each exposure, and documented the specific teaching 

                                                 

18 Russell et al. (2019) do not provide information about improved teacher practice in their publication. 
However, the coaching model for the TN + IFL Math Coaching Study does include “Improve Mathematics Teaching” 
as an output and lists four indicators (e.g., Engage students in productive struggle, Maintain cognitive demand of high 
level tasks) that align with four of the eight effective teaching practices for mathematics. One expects that future 
publications may address teacher practice. 
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practice(s) each learning opportunity exposed. Measuring opportunities to learn about ambitious 

teaching practices instead of the number of coaching sessions provided additional information 

about the content of the coaching. Knowing about the content of the coaching, specifically with 

regard to the effective Mathematics Teaching Practices addressed, provides the potential for better 

indicators of why or how teachers who changed their teacher practices did so. This leads to 

considering the implications of examining teachers’ opportunities to learn about ambitious 

mathematics teaching practices as well as implications of other aspects of this study and its results. 

 Implications of the findings 

The study forming the basis for this dissertation and the findings from this study have 

possible implications for the practice of coaching. This study implies that it is not just the act of 

coaching that helps teachers become more ambitious in their practice, it is the purposeful 

integration of coaching with outside-the-classroom professional development and with ideas 

teachers are currently considering or ready to consider regarding their students, in other words, the 

teacher’s expressed and perceived needs.  

Before commentary on the idea of purposeful integration of coaching with outside-the-

classroom professional development and with where teachers are in the curriculum and in their 

learning progression about ambitious teaching, it is important to comment on three other aspects 

of this study that contribute to current research recommendations: (a) high-quality professional 

development, (b) pairing outside professional development with coaching, and (c) framing 

coaching within a set of practices associated with ambitious instruction. Firstly, as previously 

discussed, coached teachers in the study for this dissertation had many more opportunities to learn 

about the effective Mathematics Teaching Practices, and the opportunities to learn were 
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qualitatively different from those of the comparison teachers. This implies that it was the content 

and quality of the coaching that made a difference for the coached teachers, not just participation 

in coaching. Concerning the value of the content in this experiment, the coaching that was provided 

in this study allowed teachers opportunities to learn about the eight effective teaching practices for 

mathematics, interact with them during the coaching cycle, and use them during instruction with 

the support of an instructional coach who was knowledgeable about those practices. Kennedy 

(1999) commented on this saying, “A program whose content is not valuable will not be improved 

by increasing the number of content hours, distributing contact hours over time, providing in-class 

visits, and so forth. Structural features alone provide no guarantee of improved teacher learning or 

of eventual benefit to students” (p. 6). This study reifies Kennedy’s statement.  

Concerning quality, the coaching plus outside-the-classroom professional development 

provided during this study aligned with four of the five components of high-quality professional 

development as depicted by Desimone (2009). Those five components are (a) content focus; (b) 

active learning; (c) coherence; (d) duration; and (e) collective participation. The coaching for this 

study focused on pertinent mathematical and pedagogical content; had teachers as active and 

critical participants in the coaching cycle; was coherent from cycle to cycle as one debrief provided 

information that partially informed the next focus for coaching; was not a “one and done” 

occurrence. This study did not have the collective participation of all teachers in a school or even 

in a grade level at a school, so that quality of Desimone’s framework was not present. 

The second item for commentary is the pairing of outside-the-classroom professional 

development with coaching. This study strengthened current recommendations regarding the 

pairing of outside professional development and coaching. As stated earlier in this chapter, Cobb 

and Jackson (2011) advocate for mathematics coaching that provides “job-embedded support for 
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teachers’ learning” (p. 9) as one of the five key components in their theory of action for improving 

mathematics teaching at scale along with “a coherent system of supports for ambitious instruction” 

(p. 9) that also includes district professional development. Neufeld and Roper (2003) say that the 

pairing can increase instructional capacity, and Krupa and Confrey (2012) echo that sentiment 

saying that professional development with on-going support can help with implementation of ideas 

from PD. This study demonstrated that teachers who were coached and attended outside-the-

classroom PD significantly increased their AR rubric scores and had better AR rubric scores than 

uncoached teachers who only attended the outside-the-classroom PD. The idea of pairing the two 

forms of teacher learning is reinforced by the results of this study because the outside-the-

classroom PD alone did not allow comparison teachers to make the same instructional changes 

towards ambitious mathematics instruction. The comparison teachers attended the on-going 

follow-up PD, like the coached teachers. However, teachers’ participation in coaching with the 

outside PD was the catalyst that facilitated teachers’ movement towards more ambitious practice.  

The last aspect of this study corroborating current research recommendations is the framing 

of coaching within a set of practices associated with ambitious teaching. One can think of this set 

of practices in two ways: the set of instructional practices or the set of coaching practices. In this 

study, the set of instructional practices framing coaching was the eight effective Mathematics 

Teaching Practices. Again, this study lends to the strength of Cobb and Jackson’s (2011) work. In 

their theory of action, Cobb and Jackson continuously mention that all five of the key components 

for improving mathematics instruction interconnect around a small set of specific “high-leverage 

instructional practices” (p. 16). This study did that with the eight effective Mathematics Teaching 

Practices and had some positive results. The study was purposeful about its use of these eight 

practices. The first coaching session for each coached teacher was framed around the effective 
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teaching practice of establishing learning goals to focus learning. (See Figure 2.2 for a graphic 

representation of the eight effective Mathematics Teaching Practices.) Additionally, every 

coaching session involved the effective practice of implementing tasks that promote reasoning and 

problem solving, and most of these coaching sessions rated the as in-depth opportunities to learn 

about tasks. Thus, the practice of considering high-level tasks was ever-present during coaching. 

Then, the coaching in this study took on some individualization within the box in Figure 2.2 where 

facilitating meaningful mathematical discourse backgrounds four other effective mathematics 

teaching practices. As the four coaching sessions occurred, each teacher’s needs were 

differentiated one from the other. Teachers’ expressed and perceived needs were different, so 

coaching focused on different effective practices, as happens with improvement science (Bryk et 

al., 2015).  

Considering a set of coaching practices, some researchers have recently written about 

effective coaching practices. For example, Gibbons and Cobb’s (2016) case study identified five 

important coaching practices that included “(a) identifying long-term goals for teachers’ 

development, (b) assessing teachers’ current instructional practices, (c) locating teachers’ current 

instructional practices on general trajectories of teachers’ development, (d) identifying next steps 

for teachers’ development, and (e) designing activities to support teachers’ learning” (p. 246). 

Russell et al. (2019) also completed research pertaining to a small set of coaching practices. They 

found that having goals for teachers’ pedagogical and content learning in mind during coaching 

and having deep and specific conversations with teachers were critical aspects of a coach’s 

practice. This study substantiated both sets of findings. Coaching in this study considered learning 

goals for teachers as well as teacher’s current knowledge and skill set when designing coaching. 

This connects to the first implication of this study that may add to the existing research base. 
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Kennedy (2016) commented on the idea of transfer, saying,  

PD programs typically meet with teachers outside of their classrooms to talk about 

teaching, yet they expect their words to alter teachers’ behaviors inside the classroom. They 

are at risk for what Kennedy (1999) called the problem of enactment, a phenomenon in 

which teachers can learn and espouse one idea, yet continue enacting a different idea, out 

of habit, without even noticing the contradiction. (p. 3) 

Pairing coaching with outside PD changes the scenario described by Kennedy, but it may 

not be just the paired nature of the coaching and outside-the-classroom professional development, 

nor is it just the quality of the professional development, it may be the purposeful integration of 

the outside and inside PD that makes the transfer of ambitious teacher practices happen more 

readily. During this study, portions of the four follow-up professional development sessions were 

sometimes purposefully and sometimes serendipitously coordinated with coaching cycles. For 

example, every coaching cycle involved selection and use of a cognitively challenging task. Three 

of the four follow-up professional development sessions also involved experiences with 

challenging tasks. Therefore, coached teachers were often concurrently thinking about and 

discussing high-level tasks in both the PD outside their classroom and during coaching. Perhaps 

as a related consequence of this, the AR2 rubric: Implementation of the task saw four of five 

coached teachers improve their score from before to after the study, while the last coached teacher 

maintained the score. The AR-Q rubric on the quality of teachers’ questions also saw 

improvements in coached teachers’ scores. Three of five coached teachers improved from low 

level scores to the highest score on this rubric. The two other coached teachers’ scores remained 

the same with one of these teacher’s scores being the highest possible score. Related to this 
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outcome, the effective teaching practice of posing purposeful questions had received coordinated 

focus in the outside-the-classroom PD and coaching during the school year.  

Adding further to this implication that purposeful integration made transfer occur more 

readily are examples of how coaching was “same but different” when compared to the outside-

the-classroom PD. Coaching was the same because it focused on improving teaching practice, like 

the outside PD did, but coaching was different because of its direct applicability. So, purposefully 

integrating the two differing situations for learning may have been beneficial. For example, all 

coached teachers had a “same but different” encounter with the teaching practice around writing 

learning goals. While all teachers were introduced to learning goals in one of the follow-up PD 

sessions, the first coaching cycle’s co-planning session also involved a discussion of the difference 

between learning goals and performance goals with examples from Taking Action (Huinker & Bill, 

2017). Teachers had already written a goal for the lesson, but in all cases, it was a performance 

goal or a listing of content. The coach and teacher worked together, using Huinker and Bill’s 

example, to craft an appropriate learning goal for the upcoming lesson. Thus, learning about the 

practice of establishing goals to focus learning was coordinated between outside-the-classroom 

PD and coaching. Perhaps this coordination made the practice more meaningful and readily 

transferred by coached teachers.  

Other examples of a “same but different” encounters occurred with Coached teacher 3 

around discourse, Coached teacher 1 around productive struggle, and Coached teacher 5 around 

representations. Even after a follow-up session concerning discourse, Coached teacher 3 was 

hesitant to try using small groups with her primary students. However, after the teacher and coach 

worked together to plan and demonstrate a turn-and-talk for the children during their math class, 

she moved towards using student groups. Without this “same but different” chance during 
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coaching, to work through the details of getting students started with discourse, this teacher may 

not have begun to use this teaching practice in her classroom. Coached teacher 1 had an impactful 

encounter with productive struggle during one of her coaching cycles. Perhaps serendipitously, the 

coached teacher had just experienced a follow-up session involving the growth mindset (Dweck, 

2006) when the coach and teacher began planning for the Ford and Logan add 45+36 task 

(Illustrative Mathematics, 2016a). (See Appendix K.2.) During planning and teaching the task, the 

coached teacher had the chance to think about how to support students’ productive struggle and 

then subsequently support that struggle in her class with the coach by her side. Coached teacher 5 

had a “same but different” chance to learn about representations during a coaching cycle. She 

planned and implemented the Rabbit Pens task (Math Design Collaborative, 2015) with the 

coach’s support. (See Appendix K.3.) The coach-teacher team decided to use popsicle sticks to 

allow children to model the pens. Representations were an important part of students’ engagement 

in this task, so the effect of this encounter with the practice may have been different for this teacher 

than if she had only had the encounter with using and connecting representations from the follow-

up PD. Even though both learning experiences involved discussion of multiple representations and 

the connections among them, without the coaching coordinated with the PD, the teacher may not 

have included concrete materials in the implementation of the Rabbit Pens task. 

Grossman (2009) found that training for the profession of teaching lacks close 

approximations of practice. The in situ nature of coaching provides the close approximations, that 

is true, but it may be more than just the close approximation; it may be the connection between the 

close approximation of practice and the other learning concurrently taking place around the same 

concept in a different situation. This implication aligns with writing about the situative perspective 

by Putnam and Borko (2000) wherein they state that “cognition is (a) situated in particular physical 
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and social contexts; (b) social in nature; and (c) distributed across the individual, other persons, 

and tools” (p. 4), and add that “the physical and social contexts in which an activity takes place 

are an integral part of the activity, and that the activity is an integral part of the learning that takes 

place within it” (p. 4).  

There is another element of integration taking place here that may be just as important as 

the integration of outside-the-classroom professional development with coaching; it is the 

integration of coaching with where teachers are–meaning both where teachers are in their 

curriculum so that coaching is consistent with learning goals teachers have for students and where 

teachers are in terms of their perceived and expressed needs. For example, Coached teacher 2 

realized he needed to work on questioning He noticed himself asking a lot of leading questions. 

He detected questions where he was “just leaving a place for the students to fill in the blank.” He 

stated that he really needed to work on “asking more open questions, so students’ thought processes 

would become more important and valued.” During the implementation of the coaching lesson, he 

still asked multiple “fill-in-the-word” questions but commented on it during the post-coaching 

conversation, saying that during the lesson he caught himself and asked himself, “I wonder why I 

am asking so many of these low-level questions again?” So, he became consciously aware of this 

aspect of his teaching. This teacher was now ready to learn more about better questioning, and 

fortunately, the coaching was integrated with the teacher’s need.  

Another, perhaps more somber, implication of this study is the old adage that you “cannot 

get blood from a stone.” If teachers are not ready to learn; if they are not willing to get onto a 

learning trajectory for ambitious teaching, then they will either not become ambitious in their 

practice or they will “play along” during coaching but not change their practice outside the 

coaching episodes. This was the case with Coached teacher 4. Coached teacher 4 collaborated with 
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the coach during the coaching cycle. The teacher began to write learning goals for the coached 

lessons instead of performance goals. She accessed resources suggested by the coach to find 

cognitively challenging tasks for her students to engage in during the coaching sessions. While 

there was some struggle to do so, with the coach’s guidance, the teacher did begin to ask questions 

without one-word answers that were pertinent to the lesson, and during coaching, students in the 

class engaged productively for a greater percentage of the class time. However, during the post-

observation, there was little evidence of the progress made during coaching. Coached teacher 4 

selected a low-level (procedures without connections) task for use with the students. The demand 

of the task did not increase upon implementation, as is usual with implementation of low-level 

tasks (Boston & Wilhelm, 2017). Any discussion that took place had students provide brief or one-

word responses, and the questions asked by the teacher were formulaic in that the teacher asked 

the same question of all students instead of inquiring about their thinking or work. Thus, the 

conclusion is that those who continue not to want to make their teaching practice more ambitious, 

even after coaching, will not do so. Neufeld and Roper(2003a) comment on this aspect of coaching, 

saying, “They [coaches] can diagnose their learners’ [the teachers’] needs and employ multiple 

coaching approaches; but, in the end, if the learner–either teacher or principal–does not or is not 

willing to learn, coaches cannot be successful” (p. 18).  

On the other hand, for those teachers ready and willing to become more ambitious in their 

practice, coaching can make a difference. One of the coached teachers who made improvements 

had an interaction with his principal in the midst of his coaching experiences. The principal noticed 

that the teacher had made changes in his practice and that the teacher had become enthusiastic for 

taking on a leadership role around an upcoming district initiative regarding mathematics 

curriculum.  The principal said to the coach, “This [the coaching and PD] has really been a turning 
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point for you this year.” The teacher replied to the principal that “This has been a turning point in 

my career.” Thus, the anecdotal and qualitative information indicates that if teachers were ready 

and willing to work at becoming more ambitious in their teaching practice, they did. However, 

questions persist about whether teachers will continue becoming more ambitious in their 

instruction without coaching.  

The final implication of this study deals with scalability. Scalability of a professional 

development model that integrates outside-the-classroom PD with in situ coaching is difficult to 

with a large number of teachers. Although the author believes this study provides an important 

way of studying the impact of coaching plus outside PD, the difficulty of providing more than a 

few coaching sessions per teacher must be acknowledged. If a scale-up of the model in this study 

were attempted, the researchers would need to consider trade-offs of what it would take to take 

such a model to scale. 

5.2 Limitations 

Certainly, scalability is one limitation that applies to this study, but the study for this 

dissertation has a few other limitations that likely affected the results. Firstly, the size of the study 

was indeed a limitation. Secondly, the time frame of the study limited its effectiveness. Lastly, use 

of only two groups of teachers: one coached and one uncoached, but both receiving outside-the-

classroom professional development, may have limited the generalizability of the findings. The 

chapter addresses each of these limitations in turn. 
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 Size of the study  

This study involved a small number of teachers overall and small number of coached 

teachers. The study involved ten teachers total; five teachers were coached. With such a small 

sample, the generalizability of the findings is limited. Additionally, some statistical tests cannot 

be used or must be used in an altered form when sample size is small. For example, the Wilcoxan 

Signed-Rank test is altered for samples sizes of ten or fewer, and with a sample size of five coached 

teachers, all summed ranks must have consistent (positive or negative) signs for the test to show 

significant results. The variation of the chi-squared test for data sets where the expected valued 

may be less than or equal to five, called the Fisher Exact Probability test, had to be used for data 

analysis. Thus, the small size of his study served as a limitation for its utility. 

 Length of the study 

This study reported on in this dissertation lasted less than one school year, and four 

coaching sessions occurred for each coached teachers The impactful studies of coaching (or of 

teacher support approximating a coaching model) mentioned in the literature review of this 

dissertation often lasted multiple school years and called for more frequent teacher-coach 

interactions. For example, the CGI study with elementary teachers used mentor teachers and CGI 

university staff who served as liaisons for the teachers in the study over three school years (Franke 

et al., 2001). The “type of support varied depending on the mentor and the teacher, but included 

observing in the teacher’s classroom and discussing the children’s thinking, planning lessons 

together, and assessing children together” (Franke et al., 1998, p. 21). The university liaison visited 

each teacher’s classrooms about every other week in the first two years of the study and monthly 



 

198 

in the third year of the study. Over the life of the CGI study, teachers showed changes in classroom 

practices with “increased emphasis on problem solving, more communication by the children 

about their problem-solving strategies, and clear evidence that the teacher was more apt to attend 

to her own students' thinking” (Fennema et al., 1996, p. 415). 

Campbell’s (2012) and Campbell and Malkus’ (Campbell & Malkus, 2011, 2014) studies 

also provide support for the idea that longer-term coaching has a greater impact. The study 

employed two different cohorts of coaches and one control group. One cohort of coaches worked 

with teachers for a three-year period. The other cohort of coaches worked with teachers for a one-

year period before the conclusion of the study. The coaches who had been in their roles for three 

years had a greater impact on the teachers and the students of those teachers. Significant increases 

in student achievement for grades 3, 4, and 5 were not seen after the first year of a coach’s 

placement. The increase occurred as coaching became enculturated in the schools in years 2 and 3 

of the coach’s placement (Campbell, 2012). “The pragmatic implication of this finding is the 

caution that a coach’s positive effect on student achievement develops over time” (Campbell & 

Malkus, 2011). The study done for this dissertation did not have the opportunity to allow the 

positive effect of the coach to develop over multiple years. 

Campbell (2012) reported on changes in teacher beliefs as a stand-in for examining 

instructional changes in teachers’ practice, writing, “teachers’ perceptions of mathematics teaching 

and learning interrelate with their instructional practices…so change in teacher beliefs about 

mathematics teaching and learning is another way of evaluating the effect of specialists” (p. 155). 

The findings from this study show that “the beliefs of teachers who were highly engaged with a 

specialist changed significantly, shifting away from the Traditional perspective toward a Making 

Sense perspective” (p. 156), but the beliefs of teachers not “highly engaged” with a coach 
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neglected to change in one direction or the other. While Campbell does not specify what “highly 

engaged” means with respect to frequency of coaching episodes, Matsumura, Garnier, and 

Spybrook (2013) do. 

Like Campbell and Malkus (Campbell & Malkus, 2011, 2014), Matsumura et al. (2013) 

performed a longitudinal coaching study. Matsumura et al. also had two cohorts of coaches 

working with teachers. The first cohort of coaches was in place for three years, and the second 

cohort was in place for two years. The research team expected coaches to coach each of the 

teachers once a month and host grade-level meetings once a week. While most coaches did not 

fully meet this expectation, many teachers did participate in a level of activity close to the desired 

level. Teachers participated in coaching four to six times a year and met in grade levels at least 

once a month or more. While this study took place in literacy, not mathematics, its results had 

similarities to Campbell and Malkus’. By the end of the second year of the study, significant 

improvements occurred in teacher practice, as measured by the IQA, and significant improvements 

occurred in student achievement, as measured by the TAKS assessment. In comparison to the study 

for this dissertation, the more impactful studies occurred over multiple years with the accumulation 

of more coaching sessions or activities mirroring coaching. 

Lastly, regarding the time period over which coaching occurs, Neufeld and Roper (2003) 

wrote “it will take several years for teachers to master what are fundamentally new and different 

instructional strategies even when teachers are eager to implement what they are learning” (p. 22). 

They wrote that the process will take even longer with reticent teachers. This leads to the 

possibility that the study reported on for this dissertation may have seen stronger, consistently 

significant results, if the time period of the study had been extended to multiple years. 
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 Coaching capacity 

Another limitation of this study was its restricted coaching capacity. One coach participated 

in this study. There was a total of ten teachers across the coached and comparison groups with 

eight schools involved. The impactful studies of coaching involved multiple coaches and larger 

numbers of teachers across numerous schools, and sometimes numerous districts. Russell et al. 

(2019) involved the state of Tennessee in its coaching initiative. The MIST study (Cobb & Jackson, 

2011; Gibbons & Cobb, 2016) involved four large urban school districts. Campbell and Malkus’ 

(Campbell, 2012; Campbell & Malkus, 2011, 2014) studies involved 36 schools. Matsumura et al. 

(2013) involved 29 schools. Having one coach in this study limited its capacity. 

5.3 Recommendations for future research 

Although this study adds to the overall picture of coaching’s effectiveness as a form of 

teacher professional development, there is still much more than should be studied. 

 Design experiments 

The TN + IFL Math Coaching Model (Russell et al., 2019) and the MIST project (Cobb & 

Jackson, 2011) both used a form of a continuous improvement model. Russell et al. used the Plan-

Do-Study-Act (PDSA) cycle (Bryk et al., 2015). Cobb and Jackson’s team used design 

experiments (Cobb, Confrey, DiSessa, Lehrer, & Schauble, 2003). One recommendation for future 

research in a small scale coaching experiment like the one described in this dissertation is to 



 

201 

integrate more of the idea of the design experiments and the continuous improvement model. 

While Russell et al. used the PDSA cycle to refine their model of coaching, smaller scale studies 

can use the iterative nature of the PDSA cycle in conjunction with the coaching cycle of planning, 

enacting, and debriefing to purposefully allow the debrief to shape the planning and 

implementation of the next lesson. While the debriefing conversations in this study did shape the 

future coaching cycles, there was no extensive documentation recording the decision-making 

process in detail along with descriptions of rationales for the decisions made. Future studies can 

create and use tools or detailed notes as a means of being more explicit and purposeful about 

choices made for the next coaching cycle and reason for the choices made. 

 Development of effective teaching practices checklists  

Another avenue for future research is the development of an observation tool for explicitly 

and specifically examining the eight effective teaching practices for mathematics based on the 

expected teacher behaviors as listed in Principles to Action: Ensuring Mathematical Success for 

All (NCTM, 2014). Although the IQA continues to be an effective tool for examining ambitious 

mathematics teaching and for examining elements of the eight effective Mathematics Teaching 

Practices, perhaps there is a place for a tool that parses the eight effective teaching practices for 

mathematics one from the other and is specific about measuring the occurrence of each. There 

exist IQA AR rubrics specifically measuring the teaching practices of implementation of tasks, 

facilitation of discourse, and posing purposeful questions. As a means of illustrating this direct 

connection, AR1:Potential of the Task is directly related to the effective Mathematics Teaching 

Practice called implement tasks that promote reasoning and sense making. One of the indicators 

for the effective Mathematics Teaching Practice is “posing tasks that require a high level of 
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cognitive demand” (NCTM, 2014). To earn a 4 on AR1, the teacher must use a task rated as either 

a Doing Mathematics or Procedures with Connections (Boston, 2012c). These are the terms used 

in the Task Analysis Guide (Stein et al., 2000) to describe tasks that require a high level of 

cognitive demand. However, this sort of direct connection between the IQA and the effective 

Mathematics Teaching Practices is not ubiquitous.  

Although the IQA measures the aforementioned practices and implicitly aligns with other 

effective Mathematics Teaching Practices, as evidenced in the rubric descriptors (e.g., support 

productive struggle), the IQA was developed prior to the publication of Principles to Action 

(NCTM, 2014). Thus, it could not have intentionally aligned with those exact indicators of 

ambitious mathematics teaching. In designing this study and performing the data analysis, the 

researcher perceived a need for a direct measurement of all of the effective Mathematics Teaching 

Practices. The researcher for this study attempted development of such a tool but did not complete 

the process. The Effective Teaching Practice (ETP) checklist (See Appendix I), was developed 

with some input from outside experts. The Effective Teaching Practices checklist directly relates 

to each effective mathematics teaching practice, but it was developed explicitly for this study. The 

tool was employed during the study solely by the researcher. No one substantiated the ratings 

teachers earned on these checklists for the pre-observation or post-observation. There was no 

opportunity for the repeated, iterative review and subsequent norming that goes into developing a 

valid and reliable research tool. 

Getting to the point of qualitatively or quantitatively measuring as many as possible (or at 

least as many as possible that are not explicitly included in IQA rubrics), up to all eight, of the 

effective Mathematics Teaching Practices would take extensive additional work. Some of that 

work entails gathering group of mathematics educators to discuss the tool and its indicators; using 
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the tool in mathematics classrooms with different coders in pilot tests; discussing ratings and 

reasons for ratings to attempt to reach consensus; reshaping indicators based on those 

conversations; and repeating the cycle until all could agree on indicators and on what a particular 

rating for that indicator looks like in the mathematics classroom. For example, in the current 

untested version of the ETP checklist, the indicators for productive struggle seem especially poorly 

developed and poorly articulated in the tool. In any future improvement cycle, these indicators 

would likely be the subject of extensive discourse.  

Ultimately, this potential ETP checklist would have to answer the base question of “What 

in the tool indicates ‘effective’ or ‘ambitious’ for each of the eight practices and for the overall 

tool?” Determining what rating(s) or indicator(s) in the tool constitute effective mathematics 

instruction might also be arduous. One point for such a discussion may be whether to use the 

number of indicators exhibited, the average rating for the indicators, or both to make the 

determination of effectiveness or ambitiousness. One other potential point for discussion during 

the development of a tool such as the ETP checklist might be whether and how use the new tool 

in conjunction with the IQA to “drill down” on specific effective Mathematics Teaching Practices. 

 Additional comparison groups  

All teachers involved in this study received the outside-the-classroom portion of the 

professional development experience. The study was designed to investigate how coaching paired 

with outside-the-classroom professional development facilitated a change in pedagogical practice. 

More specifically, the study measured differences between teachers who received coaching plus 

outside-the-classroom professional development and teachers who received only the outside-the-

classroom professional development. There was no attempt to quantify or qualify any differences 
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between teachers who received no professional development and the other groups of teachers. Nor 

was there any attempt to quantify or qualify differences between the groups and teachers who 

received only coaching without any other form of professional development.  

Outside-the-classroom professional development may have been a factor in some of the 

control group teachers use of the effective Mathematics Teaching Practices as measured via the 

IQA AR rubrics. Perhaps there was some transfer of learning, contrary to previous findings for 

outside-the-classroom professional development provided by the MSC group (Removcik, 2014; 

Wang & Romero, 2013). The addition of other comparison groups in future studies: a coaching 

only group and a group with no professional development, may allow for findings that discriminate 

among more the factors responsible for the results.  

 More purposeful integration of out-of-class professional development with coaching  

An area for continued study comes from the implication that purposeful coordination of 

coaching with outside-the-classroom professional development may have facilitated transfer of 

ambitious teaching practices to the classroom. If each of the effective Mathematics Teaching 

Practices received focus in outside-the-classroom professional development at nearly the same 

time as the practices received focus in coaching, might there be an even better opportunity for 

teachers to transfer and subsequently maintain the effective Mathematics Teaching Practice in 

question? Thus, a new question arises about whether being even more purposeful about the 

integration of the outside-the-classroom PD into the coaching cycles will have greater impact on 

teaching effectiveness.  

Looking from the coaching end of the professional development experience, perhaps the 

outside-the-classroom PD could be altered to align better with coaching. An example of this might 
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be purposefully using Case Stories (Hughes et al., 2008) in the professional development. Coached 

teachers could use one of their coaching episodes for their case story. The case stories from the 

participating teachers can be used as a determinant of which effective Mathematics Teaching 

Practice(s) become the foci of the follow-up session that day. In this way, there might be a more 

purposeful connection between the two forms of professional development. 

 Additional research  

In chapter 1 of this dissertation, the author posed four possible explanations for why 

mathematics teachers do not adopt ambitious teaching practices. Those possible explanations 

were: (a) a lack of content knowledge for teaching; (b) use of low-level tasks or the lowering of 

task demands upon implementation; (c) attitudes and beliefs not commensurate with ambitious 

instruction; and (d) a lack of close approximations of practice (Grossman et al., 2009) during 

professional development.  The study implicitly addresses the second reason concerning use and 

implementation of cognitively challenging tasks. Each of the coached teachers helped to find and 

implement high-level tasks for the coaching sessions in which they engaged, and their IQA AR1 

and AR2 scores generally increased. However, the research questions for this study were not 

specifically about the use of tasks. The research questions concerned exposure to and use of 

ambitious mathematics teaching practices. This study explicitly addressed the fourth of these four 

possible explanations. Coaching provided the close approximations of practice via its in situ 

nature, and data was gathered concerning teachers’ opportunities to learn about ambitious teaching 

practices. The argument might also be made that this study partially addressed the first issue 

surrounding a lack of MKT, but the data was not gathered to tackle that possible explanation for a 

lack of ambitious mathematics teaching.  
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Future research should more explicitly examine each of these four potential reasons for 

why teachers do not adopt ambitious teaching practices. Perhaps future studies might expand to 

gather data that addresses multiple reasons within one study. For example, this study might have 

employed questionnaires, or interviews, or a combination thereof, to measure teacher attitudes and 

beliefs. This study might have employed a post-post-assessment of MKT by re-administering the 

LMT assessment to the ten teachers in the study or to all of the teachers in the outside-the-

classroom professional development. 

Future research might also examine coaching practices in addition to teaching practices. 

The research might use the five key coaching practices espoused by Gibbons and Cobb (2016) to 

anchor research about coaching’s effectiveness. Alternatively, research teams might examine the 

use of Russell et al.’s (2019) coaching framework and its effect on teacher practices in the 

classroom. Another option might be to pair a coaching framework – either Gibbons and Cobb’s or 

Russell et al.’s – with the eight effective teaching practices for mathematics to track the effect of 

this pairing. 

5.4 Concluding remarks 

In an article confronting why teachers go back to the same pedagogical practices after 

participating in professional development as they had employed before participation in the 

professional development, Stein and Wang (1988) commented, “Over the past two decades, there 

has been continuing growth in the research base on what constitutes effective teaching” (p. 171). 

Three decades hence, the research community is still confronting the problem of why teachers do 

not consistently transfer learning from professional development to the classroom. The difference 
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is that there now exists a set of well-defined practices that constitute effective teaching in 

mathematics. As Boston and Wilhelm (2017) wrote, “mathematics education research consistently 

identifies a set of instructional practices that appear to support students’ learning of mathematics 

with understanding, collectively called ‘ambitious mathematics instruction’ (Franke, Kazemi, & 

Battey, 2007)” (p. 830) This study employed that set of instructional practices for mathematics, 

now called the eight effective Mathematics Teaching Practices, in hopes of finding an avenue to 

catalyze a change in teachers’ pedagogical practice. The study sought to change teachers’ practice 

by pairing professional development outside teachers’ classrooms with content-focused coaching 

performed in the classroom.  

The results from this study revealed a number of things regarding the pairing of outside 

professional development with coaching. Firstly, the coached teachers in this study had more 

opportunities to learn about effective teaching practices for mathematics than did their uncoached 

counterparts. Secondly, the coached teachers improved their scores on rubrics measuring 

ambitious mathematics teaching, and coached teachers scores’ were better than the comparison 

teachers’ scores at the conclusion of the study. Thirdly, the coached teachers’ experiences with the 

effective Mathematics Teaching Practices during coaching were qualitatively different than the 

experiences of the uncoached teachers, whose only opportunities to learn were during the outside-

the-classroom professional development. These findings, with special focus on the third finding, 

connect to the an important implication of the study. 

These findings not only imply that coaching matters, they also show that the content and 

the quality of what happens during coaching around a small set of well-defined ambitious practices 

(Cobb & Jackson, 2011) (e.g., the effective teaching practices for mathematics) makes a difference 

for teachers’ classroom practice. These findings also imply that pairing coaching with outside-the-
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classroom professional development focused on the same set of well-defined ambitious practices 

helps teachers better implement the teacher practices in their classrooms. This is especially true 

when the pairing purposefully integrates the foci of coaching with outside-the-classroom 

professional development insofar as ambitious teaching practices are concerned and purposefully 

integrates coaching with teachers’ expressed and perceived needs. Coaching doesn’t just need to 

happen; coaching needs to count. 
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Appendix A Comparison of rubrics and rubric labels used for instructional quality 

assessment toolkit for mathematics 

Appendix A.1 Instructional quality assessment classroom observation rubric labels from 

three studies 

Resnick et al. (2006)  Matsumura et al. (2008)  Boston (2012a)* 

Academic Rigor (AR) rubrics  Cognitive Demand rubrics  Instructional Tasks/ 
Task Implementation 

Potential of the task  Potential of the task  Potential of the task 

Implementation of the task  Implementation of the task  Implementation 

Student discussion of math 
concepts following task  

 
Classroom Talk rubrics  

Explanations of 
Mathematical Thinking and 

Reasoning 
Accountable Talk (AT) 

rubrics 
 Rigor of discussion 

following the task 
 Rigor of the discussion 

Student participation in the 
discussion 

 Student participation in the 
discussion 

 Participation 

Teacher links student 
contributions to each other 

 Teacher links student 
contributions to each other 

 Teacher’s linking 

Students link to each other’s 
contributions 

 Students link to each other’s 
contributions 

 Students’ linking 

Teacher presses for evidence 
or for students to explain 

 Teacher presses for accurate 
knowledge and for students 
to explain 

 Teacher’s press 

Students give evidence or 
explain their thinking 

 Students provide accurate 
knowledge and explain their 
thinking 

 Students’ providing 

Clear Expectations (CE) 
rubrics  Teacher’s Expectations 

rubrics  Teacher’s Expectations 
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Clarity and detail of 
expectations 

 Clarity and detail of the 
expectations for student 
learning 

 Clarity and detail 

Rigor of expectations  Rigor of the expectations 
for student learning 

 Rigor 

Student access to 
expectations 

 Student access to 
expectations 

 Student access 

 
*Note that while Boston’s training tools (Boston, 2012d, 2012c, 2012b) use the AR, AT, and CE categories for 

the IQA rubrics, the article cited here (Boston, 2012a) used a different alignment to call out the IQA’s 
alignment with four indicators of ambitious mathematics instruction. 

Appendix A.2 Instructional quality assessment assignments collections rubric labels from 

three studies 

Resnick et al. (2006)  Matsumura et al. (2008)  Boston (2012a) 

Academic Rigor (AR)  Cognitive Demand  Instructional Tasks/ 
Task Implementation 

Potential of the task  Potential of the Task  Potential of the Task 

Implementation of the task  Implementation of the 
Task 

 Implementation 

Rigor in students’ responses 
to the task  

 Rigor of student work 
following task 

 Explanations of 
Mathematical Thinking 

and Reasoning 
Rigor in teacher’s 
expectations 

   Rigor of students’ written 
responses 

Clear Expectations (CE)  Teacher’s Expectations  Teacher’s Expectations 

  Rigor of the expectations 
for student learning 

 Rigor of teacher’s 
expectations 

Clarity and detail of 
expectations 

 Clarity and detail of the 
expectations for student 
learning  

 Clarity and detail 

Student access to 
expectations 

 Student access to 
expectations 

 Student access 
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Appendix B Coach-teacher discussion process 

 

Appendix Figure 1 Coach-Teacher Discussion Process (Russell et al., 2019, p. 7) 
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Appendix C Campbell’s (2012) adaptation of Desimone’s (2009) framework 

 

Appendix Figure 2 How mathematics specialist/coaches influence professional development, classroom 

practice, and student learning (Campbell, 2012, p. 147) 
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Appendix D Sample items from learning mathematics for teaching 
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(Hill & Ball, 2004, pp. 350-351) 
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Appendix E Excerpt from MSP-MSC survey: Beliefs and attitudes 

 

(University of Pittsburgh (Collaborative for Evaluation and Assessment Capacity), 2016) 
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Appendix F Summary table of data for teachers in the study 

Appendix Table 1 Summary data for teachers included in the study 

Teacher School type Grade Level LMT Score Survey Score 

Comparison Teacher 1 Urban-like 4 83 76 

Comparison Teacher 2 Suburban 5 40 84 

Comparison Teacher 3 Suburban 1 73 82 

Comparison Teacher 4 Suburban 3 53 73 

Comparison Teacher 5 Urban-like 1 50 80 

Coached Teacher 1 Suburban 1 80 96 

Coached Teacher 2 Rural 5 57 70 

Coached Teacher 3 Suburban 1 57 82 

Coached Teacher 4 Urban-like 2 73 82 

Coached Teacher 5 Urban-like 3 37 81  
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Appendix G Opportunities to learn about effective teaching practices data collection tool 
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Appendix H Academic rigor rubrics from the instructional quality assessment used for this 

study 
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(Boston, 2012b, p. 9)  
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(Boston, 2012b, p. 21)  
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(Boston, 2012b, p. 32) 
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(Boston, 2012b, p. 39) 
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Appendix I Effective teaching practices checklists 
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Appendix J List of effective teaching practices encountered in follow-ups 

Appendix Table 2 Depth of encounters with effective Mathematics Teaching Practices in follow-up PD 

   
 E

ffe
ct

iv
e 

M
at

he
m

at
ic

s T
ea

ch
in

g 
Pr

ac
tic

e 

 Depth of opportunity to learn 

 Follow-up 1 Follow-up 2 Follow-up 3 Follow-up 4 

Goals    some 

Tasks  extended some some 

Representations some some   

Discourse extended extended some some 

Questions some some some some 

Procedural from 
Conceptual 

    

Productive Struggle   extended  

Evidence of Student 
Thinking 

some   extended 
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Appendix K Sampling of tasks used during coaching and outside-the-classroom 

professional development 

Appendix K.1 Maria’s money 
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Appendix K.2 Scaling up and down 
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Appendix K.3 Ford and Logan add 45 + 36 
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Appendix K.4 Building a rabbit pen task 

Name _______________________________________________ 

Building Rabbit Pens 

Antoine wants to build a rectangular pen for his rabbits.   

He has 24 feet of fence that he can use to make his pen. 

He plans to use all 24 feet of fence to make the best pen he can for his rabbits. 

Use the grid to create some possible rabbit pens that Michael could build, making sure to label the 
pens.  
Antoine wants his rabbits to have lots of space to run around.  Which of the pens should Antoine 
build? 

 

On the back of this sheet, explain WHY you think the pen you chose is the best one for Antoine’s 
rabbit. 
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Appendix K.5 Joey’s run 

 

(tasks.illustrativemathematics.org) 
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Appendix K.6 Shamrock smile mile 

 

(www.teachingchannel.org) 
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Appendix K.7 Box of clay 
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Appendix L Benchmark tasks grid 
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