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Local Orthogonal Rectification: A New Tool for Geometric Phase Space

Analysis

Benjamin G. Letson, PhD

University of Pittsburgh, 2019

Local orthogonal rectification (LOR) provides a natural and useful geometric frame for

analyzing dynamics relative to manifolds embedded in flows. LOR can be applied to any

embedded base manifold in a system of ODEs of arbitrary dimension to establish a cor-

responding system of LOR equations for analyzing dynamics within the LOR frame. The

LOR equations encode geometric properties of the underlying flow and remain valid, in gen-

eral, beyond a local neighborhood of the embedded manifold. Additionally, we illustrate the

utility of LOR by showing a wide range of application domains. In the plane, we use the

LOR approach to derive a novel definition for rivers, long-recognized but poorly understood

trajectories that locally attract other orbits yet need not be related to invariant manifolds or

other familiar phase space structures, and to identify rivers within several example systems.

In higher dimensions, we apply LOR to identify periodic orbits and study the transient dy-

namics nearby. In the LOR method, the standard approach of finding periodic orbits by

solving for fixed points of a Poincaré return map is replaced by the solution of a boundary

value problem with fixed endpoints, and the computation provides information about the

stability of the identified orbit. We detail the general method and derive theory to show

that once a periodic orbit has been identified with LOR, the LOR coordinate system allows

us to characterize the stability of the periodic orbit, to continue the orbit with respect to

system parameters, to identify invariant manifolds attendant to the periodic orbit, and to

compute the asymptotic phase associated with points in a neighborhood of the periodic orbit

in a novel way. Finally, we generalize the definition of rivers beyond planar systems, and

demonstrate a fundamental connection between canard solutions in two-timescale systems

and generalized rivers. We will again use a blow-up transformation on the LOR equations,

which provides a useful decomposition for studying trajectories’ behavior relative to the

embedded base curve.
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1.0 Introduction

Often the dynamics of an ordinary differential equation (ODE) defies rectangular co-

ordinate schemes; that is, the geometry induced by a flow may be difficult to represent in

Cartesian coordinates. In fact, a common early step in analysis is to exchange Cartesian

coordinates for a geometry better suited for the problem [56, 9, 49, 67, 69, 59, 70]. In this

thesis, we present a technique that allows us to use any embedded manifold (not necessar-

ily invariant) to generate a natural coordinate frame for a dynamical system. We call this

technique Local Orthogonal Rectification (LOR).

We will be interested in ordinary differential equations (ODEs) of the form

ẋ = f(x;λ) x(0) = x0 ∈ Ω (1.1)

where ẋ := dx/dt, f : Ω × Λ → Ω is a sufficiently smooth (usually C 1) vector field which

may depend on a vector of parameters λ ∈ Λ, and Ω ⊆ Rn,Λ ⊆ R` are open subsets. We

say that (1.1) is a system of n ODEs, or an n-dimensional system with ` parameters. It is

well known [54, 63], that initial value problems (IVPs) like (1.1) can be reformulated as a

dynamical system or a flow, which is a smooth map Φλ : Ω× R→ Ω which satisfies

Φλ(x, 0) = x

Φλ(Φλ(x, t1), t2) = Φλ(x, t1 + t2)

for all x ∈ Ω, t1, t2 ∈ R, λ ∈ Λ [63]. We say that Φλ is the flow induced by (1.1) if

d

dt
Φλ(x, t) = f (Φλ(x, t), λ)

for all x ∈ Ω, t ∈ R; it is well known that every smooth ODE uniquely induces a smooth

flow, and vice versa [63]. Using the flow induced by an ODE, we can analyze differential

equations geometrically ; that is we can consider the trajectories of a flow φ(t;x0) = Φλ(x0, t),

for x0 ∈ Ω, as geometric objects in space. Many of the most elegant theorems in dynamical

systems rely on this geometric view of systems of ODEs.
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In broad strokes, local orthogonal rectification is a tool which allows us to exploit analyti-

cal coordinate changes while preserving geometric intuition. Oftentimes necessary coordinate

changes can squash geometric clarity, for example, when working with Floquet coordinates

near a periodic trajectory it is easy to lose track of where solutions to the linearized system lie

relative to the original periodic orbit. Or when we rectify a system about a given manifold,

the rectified system may have strange angles-of-approach, due to the non-conformal nature

of a standard rectification. LOR is designed to address these types of issues by leveraging the

orthogonality of the tangent and normal bundles of an embedded manifold and decomposing

our flow into these bundles. In a sense, LOR is a more Lagrangian reference frame than the

standard Eulerian viewpoint; using the LOR frame, we view the flow from the perspective of

an embedded manifold using an intrinsic coordinate, which we denote by η, and an extrinsic

coordinate, denoted ξ, which lies in the normal bundle. By tailoring our reference frame

to the problem at hand, we can quantify phase-plane contraction, study trapping regions

to understand asymptotic dynamics, identify periodic orbits and novel invariant manifolds

attendant to those periodic orbits, compute the asymptotic phase of a stable periodic orbit

in a natural way, and demonstrate that canard type solutions must lie very near weak river

solutions.

The rest of this chapter serves to lay out some background material for the problems we

will consider in the following four chapters. The four main chapters of this thesis are based

on four papers; the material in chapters 2-4 have been published, accepted, or submitted

for publication in [45],[47], [46], respectively, and chapter 5 is based on a paper which will

be submitted in short order. The remainder of this thesis is organized thusly: chapter 2

is devoted to deriving the LOR frame in total generality with full geometric rigor. In this

chapter we build the geometric machinery we require for understanding manifolds embedded

in Rn; our goal in this construction is not to further the field of differential geometry, but

rather to establish the notation and operators we will need in our derivation of the LOR

frame. In chapters 3-5 we apply the LOR frame to solve problems that are fundamentally

important in the study of dynamical systems.

Chapter 3 is devoted to identifying hitherto unexplained regions of phase-plane contrac-

tion which we term rivers ; we provide a novel, general, and rigorous definition for rivers
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using the zero-curvature set of a flow combined with a quantitative measure for the near-

invariance of a curve. In chapter 4 we show that the LOR frame can be used to identify and

analyze periodic trajectories in arbitrary dimensions. We transform the standard Poincaré

map identification technique into a boundary value problem (BVP) with fixed endpoints;

this approach also allows us to identify novel invariant manifolds attendant to periodic or-

bits using a novel angular reference frame. Chapter 5 generalizes the planar river definition

to a system arbitrary dimension and demonstrates that rivers and canard solutions are fun-

damentally equivalent; additionally we demonstrate that the LOR frame can be used to

analyze the dynamics near canard solutions and compute the way-in way-out function.

1.1 The Frenet Reference Frame and the Differential Geometry of Surfaces

We begin our background material with a brief explanation of the Frenet frame, which

is a moving normal form for a curve embedded in Rn. Suppose that γ : I → Rn is a C n−1

curve defined on some interval I ⊆ R. We say that γ is a Frenet curve if the first n − 1

derivatives of γ are linearly independent, that is, if

dimspan
{
γ′(η), γ′′(η), · · · , γ(n−1)(η)

}
= n− 1 (1.2)

for all η ∈ I, where γ′(η) = dγ/dη [40],[7]. Note that this condition is fairly generic, for

any fixed η we would expect (1.2) to hold, as n − 1 vectors in Rn are generically linearly

independent. Indeed, we would expect (1.2) to hold everywhere but a set of measure zero.

The construction which follows in this section can be performed on any sub-interval I ′ ⊆ I

on which γ is Frenet, however we will suppose in the sequel that γ is a Frenet curve.

We wish to construct an orthonormal moving frame for γ using the derivatives of γ. We

define the obvious tangent vector Tγ(η) = γ′(η)/ ‖γ′(η)‖ where ‖·‖ is the norm induced by

the standard Euclidean inner product, which we denote by 〈·, ··〉. Knowing that γ′′(η) is

linearly independent of γ′(η), we define

N1γ(η) =
γ′′(η)− 〈γ′′(η), Tγ(η)〉
‖γ′′(η)− 〈γ′′(η), Tγ(η)〉‖

3



i.e. we perform Gram-Schmidt orthonomalization on γ′(η), γ′′(η) [44]. We continue in this

fashion to define N2γ(η), · · · , Nn−2γ(η), at which point we have used the first n−1 derivatives

of γ (note that the index of Njγ is offset by one, reflecting the fact that we have a single

tangent vector). Given a set of n− 1 orthonormal vectors in Rn, there are exactly two unit

vectors which complete the set to an orthonormal basis [44], we use the wedge product to

choose Nn−1γ(η) in accordance with the right-hand rule

Nn−1γ(η) = Tγ(η) ∧N1γ(η) ∧ · · · ∧Nn−2γ(η)

where x1 ∧ · · · ∧ xn−1 is the standard wedge product in Rn [40]. We call the set of vector

valued maps, defined on the domain of γ, {Tγ(η), N1γ(η), · · · , Nn−1γ(η)} the Frenet frame

relative to γ. For notational convenience, we define k = n − 1 and call k the co-dimension

of γ.

The Frenet-Serret equations, which describe the derivatives of the moving frame in terms

of the frame itself, are central to the analysis of curves [40]. In matrix form, they are given

by

d

dη


Tγ(η)

N1γ(η)

N2γ(η)
...

 = ‖γ′(η)‖


0 κ1(η) 0 · · ·

−κ1(η) 0 κ2(η) · · ·

0 −κ2(η) 0
. . .

...
...

. . . . . .




Tγ(η)

N1γ(η)

N2γ(η)
...

 (1.3)

where the mappings κ1(η), · · · , κk(η) are called the Frenet curvatures of γ [40, 7]. The matrix

in (1.3) is a tri-diagonal, anti-symmetric matrix with a zero diagonal, and we have

κi(η) =
〈Ni−1γ

′(η), Niγ(η)〉
‖γ′(η)‖

where we define N0γ(η) := Tγ(η) for notational convenience. The first k−1 curvature terms

are positive definite for η ∈ I, while the last curvature κk(η) can take either sign, and can

be computed

κk(η) =
γ′(η) ∧ · · · ∧ γ(n)(η)

α(γ′(η), · · · , γ(n)(η))

where α(x1, · · · , xn) > 0, provided that γ is C n [40]. Being able to describe the change

in the Frenet frame in terms of itself is fundamentally important in the derivation of the

4



LOR frame in the plane; indeed we generalize the Frenet-Serret equations to what we call

differential-algebraic closures in our general conception of the LOR frame.

We will also draw on the theory of surfaces embedded in R3. We say that σ : U ⊆ R2 →

R3 is the chart of a regular, differentiable manifold if U is open, σ is a diffeomorphism on its

range and if

dimspan

{
∂σ

∂η1

(η1, η2),
∂σ

∂η2

(η1, η2)

}
= 2

for all (η1, η2) ∈ U . We will denote ∂i = ∂/∂ηi for compactness. This final condition,

reminiscent of the definition of a Frenet curve, is called regularity. A collection of charts with

overlapping domains {(Uα, σα)}α∈A is called an atlas, and the setM = ∪α∈Aσα(Uα) is called

a 2-manifold embedded in R3 [40]. We provide a rigorous definition of what ”overlapping

charts” means in chapter 2 when such technicalities are relevant.

As we did before, we are interested in a reference frame which is well-suited to a patch

of M. Indeed we can follow the same procedure as above, let

Nσ(η) =
∂1σ(η)× ∂2σ(η)

‖∂1σ(η)× ∂2σ(η)‖

then {∂1σ(η), ∂2σ(η), Nσ(η)} will form a basis of R3 for any η ∈ U , which is generically not

orthonormal. As with the Frenet frame, we will be interested in expressing the derivatives

of ∂1σ, ∂2σ,Nσ as linear combinations of ∂1σ, ∂2σ,Nσ, and we will do so in Chapter 2.

1.2 Periodic Trajectories and Relevant Coordinate Transformations

Oscillatory dynamics arise in a variety of physical and societal settings, emerging nat-

urally from intrinsic nonlinearities in some cases, such as in neuronal rhythm generating

circuits, circadian rhythms, and various chemical reactions, and resulting from periodic forc-

ing in other scenarios, such as in seasonality and the delivery of alternating current to certain

targets (e.g., [27, 42, 18, 32, 23]). Correspondingly, the problems of identifying and analyzing

periodic solutions are central in dynamical systems. Although periodic behavior in dynam-

ical systems has been extensively studied, a unified framework for analysis of oscillations is

lacking.
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A wide variety of methods have been applied to prove the existence of periodic solutions

to systems of ODEs or to generate numerical approximations to such orbits [28, 63, 8]. A

special case arises when periodic orbits bifurcate from a curve of equilibria, and another set of

tools allows for the identification of these bifurcations as well as others that involve periodic

orbits such as period-doubling [17, 43]. Bifurcation analysis may also provide information

about orbit stability sufficiently close to the bifurcation point; for an arbitrary given periodic

orbit, however, a separate Floquet analysis based on linearization is generally required for

assessment of stability. Given a stable periodic orbit, phase response curves provide a tool

to analyze responses to sufficiently small perturbations off of the orbit, or equivalently to

determine the asymptotic phases of points in a sufficiently small neighborhood of the orbit,

based on linearization and consideration of an adjoint equation [19, 30, 20].

For reference, we will establish standard notation for periodic trajectories. We say a

solution φ(t;x0) to (1.1) is periodic with period T > 0 if T is the smallest number such that

φ(t + T ;x0) = φ(t;x0) for all t > 0. The textbook approach for identifying periodic orbits

employs Poincaré sections and return maps: let Σ be a manifold which is transverse to the

flow at x0 ∈ Σ, if x0 eventually returns to Σ after time t then there exists δ > 0 and a smooth

map T : B(x0, δ)∩Σ→ R such that T (x0) = t and Φλ(x, T (x)) ∈ Σ for all x ∈ B(x0, δ)∩Σ.

The map H(x) := Φ(x, T (x)) is called a return map, and the trajectory φ(t;x1) with x1 ∈ Σ

is periodic if and only if H(x1) = x1 [54, 28, 63]. The map H can also be interrogated

to determine the stability of φ(t;x1) which gives rise to Floquet theory, which we will not

describe in detail here but rather refer the curious reader to [54, 63] for a full explanation.

The transient dynamics near periodic trajectories is of great interest in many theoretical

and applied problems. For example, circadian rhythms have long been modeled as periodic

trajectories with nearby dynamics dictating responses to changes in light exposure or mela-

tonin levels [64, 33]. Along these lines, when viewed in the context of dynamical systems,

jet lag can be thought of as a perturbation from a stable circadian oscillation and the resul-

tant discomfort is caused by the transient return to a stable rhythm [14]. A major effort in

theoretical neuroscience concerns the use of dynamics near stable periodic orbits to analyze

neuronal responses to inputs [20, 57]. Understanding the transient dynamics near periodic

orbits provides information about how trajectories behave as they approach a periodic limit,
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how the oscillator will respond to perturbations, and how to build dimensional reductions

that capture key features of system behavior.

Previous work has introduced new coordinate systems based on decomposing dynamics

into phase and amplitude components [9, 67, 59]. We define the asymptotic phase of a limit

cycle thusly: suppose that x0 is in the basin of attraction of the limit cycle Γ, then there

will be a value of θ ∈ [0, T ) such that

lim
t→∞
‖φ(t;x0)− Γ(t+ θ)‖ = 0

and we call θ(x0) the asymptotic phase map [20, 28]. In a sense, the trajectory φ(t;x0) will

approach Γ at phase θ. We call the level sets of θ, denoted Iθ = {x|θ(x) = θ}, the isochrons

of the system. Isochrons and asymptotic phase are crucial in understanding how coupled

oscillators can phase lock [20, 19, 30, 20], and the computation of asymptotic phase is often

done using a brute-force sampling approach.

Recent work has been focused on using isostable coordinates, which are defined using

the Poincare return map H(x). Suppose that H(x0) = x0, expanding near x0 we have

H(x) = x0 + J(x− x0) +O(‖x− x0‖2), where J = DxH(x0). If J is diagonalized by V and

has eigenvalues λ1, · · · , λn then we define

ψi(x) =

〈
V −1(P (x)− x0) exp

(
− log(λi)

T (x)

T (x0)

)
, ei

〉
where ei is the ith fundamental basis vector [69, 70]. Intuitively, ψi(x) measures how quickly

P (x) is converging to x0 along the ith eigenvector of J . Note that this definition only holds

on the Poincaré section Σ, however it is simple to extend it to the basin of Γ by flowing each

initial condition to Σ. The level-sets of ψi are called isostables [69, 49].

As the eigenvalues λi are the Floquet multipliers of Γ, λ1 = 1 (without loss of generality)

[28, 63], hence the first isostable map ψ1(x) is uninteresting. The remaining n− 1 isostable

maps, paired with the asymptotic phase θ(x) will form a coordinate scheme, which are

called isochron-isostable coordinates [69]. Using adjoint methods [20, 19, 69], we can derive

linearized dynamics governing θ, ψi and use these to understand the approximate transient

dynamics near the limit cycle. In Chapter 4 we will use the LOR frame to study the transient

dynamics near a limit cycle and demonstrate that the LOR frame serves as a geometric

reformulation of isochron-isostable coordinates.
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1.3 Fast-Slow Systems and Fenichel’s Theory

Physical and bio-physical systems often have dynamics which vary on vastly different

timescales. For example, consider the interaction of fast, weather variables and slow, climate

variables; clearly climate level dynamics will slowly affect weather patterns, and weather

patterns can affect climate dynamics over a long period of time (through desertification or

deforestation). Similarly, multi-reagent chemical reactions can happen on different timescales

[55]; indeed multi-timescale dynamics seem to be central in the ion dynamics governing

neurons [3, 29, 10, 60, 52, 37] and across a wide range of multi-mode oscillatory dynamics

[36, 31, 58].

We say a system of ODEs is a two timescale system or a fast-slow system if it can be

expressed as

ẋ = F (x, y)

ẏ = εG(x, y) (1.4)

where x ∈ Rnf , y ∈ Rns such that nf +ns = n, and 0 < ε� 1 [2]. The x variables are called

the fast variables, and the y variables are called the slow variables, as ε controls the size of

their derivative. If we consider (1.4) on the slow timescale, τ := εt we find

εx′ = F (x, y)

y′ = G(x, y) (1.5)

where x′ = dx/dτ . We call (1.5) the slow subsystem of (1.4). Note that, in the singular

limit ε → 0 these two formulations give very different perspectives on the system; the fast

subsystem becomes

ẋ = F (x, y)

ẏ = 0 (1.6)
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hence is a system of nf ODEs with ns parameters. The set of fixed points of (1.6), M =

{(x, y)|F (x, y) = 0}, is called the critical manifold of (1.4). Turning our attention to the

slow subsystem we find

0 = F (x, y)

y′ = G(x, y) (1.7)

which is a differo-algebraic system which is only defined on M. To analyze a fast-slow

system, we typically employ Geometric Singular Perturbation Theory (GSPT) which is also

called Fenichel Theory [21]. GSPT allows us to piece together the dynamics of (1.4) for

ε > 0 using (1.6) and (1.7).

In order to discuss Fenichel’s Theorem, we first must define the concept of a normally

hyperbolic invariant manifold. A manifold N with boundary ∂N is locally-invariant in the

flow Φλ if for all x ∈ N there is an open interval 0 ∈ (t1, t2) ⊆ R such that

Φλ(x, t) ∈ N t ∈ (t1, t2)

and Φλ(x, ti) ∈ ∂N for i ∈ {1, 2} [34]. Intuitively, N is locally invariant if points on N

remain in N with the exception of points which leave through the boundary ∂N . Supposing

thatN is an m-dimensional, locally invariant manifold, we say that N is normally hyperbolic

if there are n−m eigenvalues of the linearized vector field along N , S(Dxf(x;λ)) for x ∈ N

where S denotes the spectrum, with nonzero real part; that is

#[S (Dxf(x;λ)) \ {Re(z) = 0}] = n−m x ∈ N .

A normally hyperbolic invariant manifold will have the same types of stability as fixed points,

for example if N has n−m eigenvalues with negative real parts, then initial conditions near

N will approach N and we say that N is stable [68]. We can now state Fenichel’s theorem

which guarantees the persistence of the slow manifold for ε > 0, we follow the statement

from [34]

9



Theorem 1.3.1 (Fenichel’s First Manifold Theorem and Stable Manifold Theorem). Sup-

pose that M = {(x, y)|F (x, y) = 0} is a locally invariant, normally hyperbolic manifold,

then for ε > 0 sufficiently small there exists a manifold Mε which is diffeomorphic to M,

is O(ε) close to M and is locally invariant under (1.4). Furthermore, Mε will have the

same stability type as M, and the dynamics of the flow restricted to Mε will be an O(ε)

perturbation of the slow subsystem (1.7).

In broad strokes, there will be an nf -dimensional invariant manifold in (1.4) with the

same stability type asM and the dynamics along that manifold are effectively given by the

slow dynamics. In order to unpack the slow dynamics, we usually suppose that the critical

manifold can be expressed as the graph of a function, i.e. we can write x = h(y) for some h.

Note that this can always be done locally for a normally hyperbolic manifold, as we supposed

Dxf(x, y) is invertible on M [34, 68]. Using this graph expression we can simplify the slow

dynamics to y′ = G(h(y), y).

The condition thatM is normally hyperbolic is fairly mild, and is generically true; how-

ever Fenichel’s theorem will fail to hold ifM is not normally hyperbolic. Indeed, some of the

most interesting examples in GSPT are cases in which parts of M are not normally hyper-

bolic. The critical manifold can lose normal hyperbolicity through a fold, which is a set of

points such that our graph x = h(y) would have an infinite derivative. Oftentimes, the sta-

bility of the critical manifold will change across folds; one of the eigenvalues of S(Dxf(x;λ))

will cross the Re(z) = 0 axis at a fold, and N will fail to be normally hyperbolic.

One of the most interesting, and counterintuitive, features of dynamics nead folded crit-

ical manifolds is the canard solution. The origin of the name canard solution is foggy, but

each of the etymological explanations sheds light on the canard phenomenon; the first ex-

ample of a canard solution was found in the van der Pol system [38] and the trajectory of

interest is somewhat duck-shaped, and in British slang “canard” refers to a joke or a prank.

A canard solution is a trajectory with an initial condition near a stable branch of the critical

manifold, which we will denote by NS, which will evolve along NS, reach a fold in the critical

manifold, and spend a “long time” near the unstable branch of the critical manifold NU . We

would expect, given that NU is linearly unstable, that trajectories near NU should leave NU
in logarithmic time, as the fast variables will grow exponentially. However, a canard solution

10



will linger near the unstable critical manifold for an algebraic amount of time [38]. We will

show that this characteristic delay can be explained using curvature techniques paired with

the LOR blow-up coordinates.
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2.0 Local Orthogonal Rectification

The material in this chapter has been conditionally accepted for publication in DCDS as

”Local Orthogonal Rectification: Deriving Natural Coordinates to Study Flows Relative to

Manifolds” and was co-authored by Jonathan E. Rubin.

2.1 Motivation

Consider an ODE and initial condition

ẋ = f(x), x(0) = x0 ∈ Ω, (2.1)

where f ∈ C r(Ω,Rn) for n, r ≥ 1 and Ω is an open subset of Rn, which induces a flow

Φ : Ω × R → Ω. For simplicity, we introduce the notation ∂i = ∂/∂ηi. Suppose that M

is a codimension-k C s-regular manifold embedded in Ω. Specifically, suppose there exist an

indexing set A and an atlas of charts {(Uα, σα)}α∈A where M = ∪α∈Aσα(Uα), such that for

all α, β ∈ A:

1. each Uα ⊆ Rn−k is open with corresponding σα ∈ C s(Uα,Ω) a homeomorphism on its

image;

2. if σα(Uα)∩σβ(Uβ) 6= ∅ then the map κα,β : Uα∩σ−1
α ◦σβ(Uβ)→ Uβ ∩σ−1

β ◦σα(Uα) defined

by κα,β = σ−1
β ◦ σα is a diffeomorphism;

3. for all η ∈ Uα,

dimspan {∂1σα, . . . , ∂n−kσα} = n− k;

4. M can be equipped with a local normal frame; that is, there are mappings Njσα ∈

C 1(Uα,Rn) such that

〈Nj1σα(η), v〉 = 0, 〈Nj1σα(η), Nj2σα(η)〉 = δj1,j2 ∀η ∈ Uα, ∀v ∈ Tσα(η)M,
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where 〈·, ·〉 denotes the standard Euclidean inner product, j1, j2 ∈ {1, . . . , k}, and δj1,j2 is

the Kronecker delta.

We call these four conditions the LOR assumptions. These assumptions guarantee that

the tangent space to M at any point p ∈ M, denoted by TpM, is an n − k dimensional

space.

To simplify indexing, we will use the convention that any index related to tangential

objects will be denoted by i, or when necessary by i1, i2, . . ., and any index related to normal

objects will be denoted by j or by j1, j2, . . .. Stated simply, {Njσα(η)}kj=1 forms an orthonor-

mal basis of (Tσα(η)M)⊥ on Uα. The existence of such a basis is straightforward to establish

locally, and by refining our domains Uα we can guarantee that such mappings exist.

With our notation and assumptions in hand, we now motivate the underlying geometric

idea for constructing the LOR frame. Suppose that we are interested in studying the dy-

namics near a point x0 ∈ Ω that lies close to our embedded manifold. Furthermore, suppose

that x0 can be written in the form

x0 = σα(η0) +
k∑
j=1

ξ0,jNjσα(η0), η0 ∈ Uα, (ξ0,1, ξ0,2, . . . , ξ0,k) ∈ Rk. (2.2)

To write equation (2.2), we have assumed that x0 can be decomposed into a point on M,

namely σα(η0), and a vector in the orthogonal complement of Tσα(η0)M. We will establish

that such a decomposition is generic, sufficiently close toM. We define Ψα : Uα ×Rk → Rn

by

Ψ(η, (ξ1, · · · , ξk)) = σα(η) +
k∑
j=1

ξjNjσα(η)

and denote ξ = (ξ1, · · · , ξk), so that (2.2) can be more succinctly expressed as x0 = Ψ(η0, ξ0).

Now, denote by φ(t) the trajectory of (2.1) such that φ(0) = x0. We want to continue

tracking φ(t) in our decomposition. To do so, we seek smooth η : (−δ, δ)→ Uα, ξ : (−δ, δ)→

Rk such that φ(t) = Ψ(η(t), ξ(t)) for t ∈ (−δ, δ). We will establish that this continuation

can be achieved, providing a convenient new set of coordinates (η, ξ), which we will call the

LOR frame. We will also derive a system of ODEs that govern the evolution of η(t), ξ(t),

the LOR equations, by using the ODE satisfied by φ(t).
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We call (η, ξ) the LOR coordinates for the base manifold M. By choosing M to be

dynamically relevant (i.e., a structure that can be observed to play a role in organizing the

flow), we will be able to study the dynamics near M using the corresponding LOR frame.

The geometric nature of the LOR frame can offer striking insights into the local behavior of

the flow, representing a powerful approach for the theoretical study of dynamical systems.

The remainder of the chapter is organized as follows. In Section 2.2, we state our main

result, which stipulates the existence of the LOR frame and the form of the LOR equations.

Next, in Section 2.3, we set up the notation and definitions needed to prove this result,

while the proof itself appears in Section 2.4. In Section 2.5, we consider LOR in a variety

of settings. We treat the special cases where M is codimension-1 or codimension-(n − 1),

present an algorithm for constructing a particularly useful normal frame assuming that M

is equipped with a Frenet-type atlas, and introduce a blow-up approach to studying how

trajectories in Ω evolve relative to M. We conclude in Section 2.6 with a computational

example to explicitly illustrate the implementation of LOR, in this case to easily identify

trajectories organizing canard behavior near a fold of a critical manifold in a two-timescale

system.

2.2 Statement of the Main Result

In what follows, we will pick a specific chart ofM and drop our indexing subscript; that

is, we will study the LOR frame on the chart (U , σ) of M. Once our theory is established

locally, we will prove that transfer across charts is well-defined, a result that is critical to

the utility of LOR.

To state our main result, we define Tf : U × Rk → Rn−k, Nf : U × Rk → Rk by

Tf(η, ξ) =


〈f ◦Ψ(η, ξ), ∂1σ(η)〉

...

〈f ◦Ψ(η, ξ), ∂n−kσ(η)〉

 , Nf(η, ξ) =


〈f ◦Ψ(η, ξ), N1σ(η)〉

...

〈f ◦Ψ(η, ξ), Nkσ(η).〉

 . (2.3)

14



Note that Tf(η, ξ) projects the vector field at Ψ(η, ξ) into the tangent space of M and

Nf(η, ξ) projects the vector field at Ψ(η, ξ) into the normal space ofM. With this additional

notation, we can state our main result.

Main Result (LOR Equations Lemma). Suppose that x0 ∈ Ω can be expressed as x0 =

Ψ(η0, ξ0) for η0 ∈ U and ξ0 ∈ Rk. If ‖ξ0‖ is sufficiently small, then there exist δ > 0,

η ∈ C 1((−δ, δ),U), ξ ∈ C 1((−δ, δ),Rk) such that Φ(x0, t) = Ψ(η(t), ξ(t)). Furthermore,

η(t), ξ(t) satisfy the initial value problem

η̇ = Sσ(η, ξ)−1Tf(η, ξ) η(0) = η0,

ξ̇ = Nf(η, ξ)−Kσ(η, ξ)Sσ(η, ξ)−1Tf(η, ξ) ξ(0) = ξ0, (2.4)

where Sσ(η, ξ) ∈ Rn−k×n−k, Kσ(η, ξ) ∈ Rk×n−k are defined in Section 2.3.2.

The following section will supply the explicit forms of Sσ(η, ξ) and Kσ(η, ξ) and will

establish some key results that underlie the LOR Equations Lemma. We call Sσ(η, ξ) and

Kσ(η, ξ) the tangent and normal exchange operator, respectively, for reasons that will become

apparent in subsection 2.3.2 and in Section 2.4, where we give the proof of the LOR Equations

Lemma.

2.3 Constructing the LOR Frame

To start the construction, we will present a set of tools for the local analysis of embedded

manifolds and some of their properties, establish our notation and review relevant concepts

for readers. Subsequently, in subsection 2.3.3, we establish an important tracking result.

2.3.1 First and Second Fundamental Forms

When studying surfaces embedded in R3, the first and second fundamental forms, often

denoted I, II respectively, play a crucial role in representing local properties or shape. We

will review the generalization of these concepts to an (n− k)-manifold embedded in Rn.
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Remark 1. There is a substantial body of work regarding the differential geometry of

embedded manifolds including generalization of the concept of a second fundamental form

[40]. While there may be a more elegant presentation of the following material, we set up

just what we need for the problem at hand.

Definition 2.3.1. Given a chart (U , σ) of the C r codimension-k manifold M with r ≥ 2

and a C s normal frame {Njσ(η)}kj=1 with s ≥ 1, define the mappings I, IIj : U → Rn−k×n−k

entrywise by

(I(η))i1,i2 = 〈∂i1σ(η), ∂i2σ(η)〉

(IIj(η))i1,i2 = 〈∂i1σ(η), ∂i2Njσ(η)〉 (2.5)

where i1, i2 ∈ {1, · · · , n − k}, j ∈ {1, · · · , k}. We call I(η), {IIj(η)}kj=1 the first and second

fundamental forms of σ, respectively.

In the instance where n = 3 and k = 1, such that M is a surface embedded in R3,

our representations of the first and second fundamental forms reduce to the standard def-

inition. For any manifold embedded in Rn, the arclength of a curve along the manifold

is defined using the first fundamental form; given a C 1 curve γ : [0, 1] → M, there

is a parametrized curve γ̄ : [0, 1] → U such that γ(t) = σ ◦ γ̄(t), with 〈γ′(t), γ′(t)〉 =

〈[Dσ ◦ γ̄(t)]γ̄′(t), [Dσ ◦ γ̄(t)]γ̄′(t)〉 = 〈[I ◦ γ̄(t)]γ̄(t), γ̄(t)〉, where the final equality follows

from transposition. Therefore, the arclength functional may be expressed as

L(γ) =

∫ 1

0

√
〈[I ◦ γ̄(t)]γ̄′(t), γ̄′(t)〉dt.

Note that the second fundamental forms depend on the choice of normal frame and hence

are not (generically) intrinsic features ofM. However, I(η) is preserved under diffeomorphic

reparameterization. The following result presents the properties of these matrices that are

relevant for our analysis.

Lemma 2.3.2. The maps I(η), {IIj(η)}kj=1 are self-adjoint, I(η) is positive definite,

(IIj(η))i1,i2 = −〈∂i1∂i2σ(η), Njσ(η)〉 ,

and

I(η) = Dησ(η)TDησ(η), IIj(η) = Dησ(η)TDηNjσ(η). (2.6)
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Proof. For notational convenience we will suppress η-dependence. From the symmetry of

the inner product, we note that I is self-adjoint. Furthermore, the regularity of M (LOR

assumption 3) implies that {∂iσ}n−ki=1 forms a linearly independent set. Thus, I is a Gram

matrix and hence is positive definite.

Now consider

0 = ∂i20 = ∂i2 〈∂i1σ,Njσ〉 = 〈∂i1∂i2σ,Nj〉+ (IIj)i1,i2 . (2.7)

Equation (2.7) implies that (IIj)i1,j2 = −〈∂i1∂i2σ,Nj〉 and, as second derivatives commute,

IIj is self-adjoint. The equalities in (2.6) follow immediately from matrix multiplication.

2.3.2 The Tangent and Normal Exchange Operators

We will use the first and second forms to define a linear operator that is fundamental

to the LOR frame. We call this operator the tangent exchange operator because it takes

tangent vectors in Tσ(η)U and exchanges them for other tangent vectors in Tσ(η)M, as will

become clear later, in Section 2.4.

Definition 2.3.3. Given a chart (U , σ) of the C r codimension-k manifoldM with r ≥ 2 and

a C s normal frame {Njσ(η)}kj=1 with s ≥ 1, define the mapping Sσ : U ×Rk → Rn−k×n−k by

Sσ(η, ξ) = I(η) +
k∑
j=1

ξjIIj(η). (2.8)

As noted in Section 2.2, we call Sσ(η, ξ) the tangent exchange operator of σ.

For our analysis, we will require the following result, which shows that given an embed-

ding into Rn, Sσ is invariant under change of normal frame (i.e., Sσ is extrinsically invariant).

Lemma 2.3.4. For any η ∈ U and ξ ∈ Rk sufficiently small in norm, Sσ(η, ξ) is invertible.

Suppose that {Njσ(η)}kj=1, {N̂jσ(η)}kj=1 are distinct normal frames to σ(η). If

σ(η) +
k∑
j=1

ξjNjσ(η) = σ(η) +
k∑
j=1

ξ̂jN̂jσ(η), (2.9)

then Sσ(η, ξ) = Ŝσ(η, ξ̂) where Sσ is the tangent exchange operator calculated from normal

basis {Njσ(η)} and Ŝσ is the tangent exchange operator calculated from {N̂jσ}.
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Proof. Note that Sσ(η, 0) = I(η), which is a positive matrix, and hence there is a δ >

0 such that detSσ(η, ξ) > 0 for ξ ∈ Bδ(0), from the continuity of Sσ. Suppose that

{Njσ(η)}kj=1, {N̂jσ(η)}kj=1 are distinct normal frames to σ(η), with corresponding second

fundamental forms (IIj(η))i1,i2 , (ÎIj(η))i1,i2 . As each {Njσ(η)}, {N̂jσ(η)} forms an orthonor-

mal basis,

Nj1σ(η) =
k∑

j2=1

〈
Nj1σ(η), N̂j2σ(η)

〉
N̂j2σ(η).

Let Bj1,j2(η) =
〈
Nj1σ(η), N̂j2σ(η)

〉
. Subtracting σ(η) from both sides of (2.9) and projecting

onto Nj1σ(η) yields

ξj1 =
k∑

j2=1

ξ̂j2

〈
Nj1σ(η), N̂j2σ(η)

〉
=

k∑
j2=1

Bj1,j2(η)ξ̂j2 .

Therefore, for fixed i1, i2 ∈ {1, · · · , n− k},

(Sσ(η, ξ))i1,i2 = (I(η))i1,i2 +
k∑

j1=1

ξj1(IIj1(η))i1,i2

= (I(η))i1,i2 −
k∑

j1=1

(
k∑

j2=1

Bj1,j2(η)ξ̂j2

)〈
∂2
i1,i2

σ(η), Nj1σ(η)
〉

= (I(η))i1,i2 −
k∑

j1=1

k∑
j2=1

ξ̂j2Bj1,j2(η)

〈
∂2
i1,i2

σ(η),
k∑

j3=1

Bj1,j3(η)N̂j3σ(η)

〉

= (I(η))i1,i2 −
k∑

j1=1

k∑
j2=1

k∑
j3=1

ξ̂j2Bj1,j2(η)Bj1,j3(η)
〈
∂2
i1,i2

σ(η), N̂j3σ(η)
〉

= (I(η))i1,i2 +
k∑

j1=1

k∑
j2=1

k∑
j3=1

ξ̂j2Bj1,j2(η)Bj1,j3(η)(ÎIj3(η))i1,i2 . (2.10)

Next we derive a simple identity to simplify this flurry of indices. Note that

N̂j1σ(η) =
k∑

j2=1

Bj2,j1(η)Nj2σ(η)

=
k∑

j2=1

Bj2,j1(η)

(
k∑

j3=1

Bj2,j3(η)N̂j3σ(η)

)

=
k∑

j2=1

k∑
j3=1

Bj2,j1(η)Bj2,j3(η)N̂j3(η). (2.11)

18



Projecting both sides of (2.11) onto N̂j4σ(η) yields

δj1,j4 =
k∑

j2=1

k∑
j3=1

Bj2,j1(η)Bj2,j3(η)δj3,j4

=
k∑

j2=1

Bj2,j1(η)Bj2,j4(η). (2.12)

Applying (2.12) to (2.10) yields

(Sσ(η, ξ))i1,i2 = (I(η))i1,i2 +
k∑

j2=1

k∑
j3=1

ξ̂j2(ÎIj2(η))i1,i2 (δj2,j3)

= (I(η))i1,i2 +
k∑

j2=1

ξ̂j2(ÎIj2(η))i1,i2

= (Ŝσ(η, ξ̂))i1,i2 . (2.13)

Since i1, i2 were arbitrary, the result follows.

Corollary 1. If {Njσ(η)}kj=1, {N̂jσ(η)}kj=1 are normal frames and Ψ(η, ξ) = Ψ̂(η, ξ̂) then

(B(η))j1,j2 =
〈
Nj1σ(η), N̂j2σ(η)

〉
is a unitary matrix, and ξ = B(η)ξ̂.

To conclude this subsection, we present a definition for another linear map, which has

no obvious analogue in the theory of surfaces.

Definition 2.3.5. Given a chart (U , σ) of the C r codimension-k manifold M with r ≥ 2

and a C s normal frame {Njσ(η)}kj=1 with s ≥ 1, define the mapping Kσ : U ×Rk → Rk×n−k

by

Kσ(η, ξ) =
k∑
j=1

ξj[Nσ(η)][DηNjσ(η)], (2.14)

where

Nσ(η) := (N1σ(η), . . . , Nkσ(η))T . (2.15)

As noted in Section 2.4, we call Kσ the normal exchange operator.
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2.3.3 LOR Tracking Lemma

The following lemma provides the backbone of our main result.

Lemma (LOR Tracking Lemma). Suppose that x0 ∈ Ω can be expressed as Ψ(η0, ξ0) for

η0 ∈ U , ξ0 ∈ Rk and that γ : I → Rn is a C 1 curve defined on an interval I containing zero

with γ(0) = x0. If ‖ξ0‖ is sufficiently small, then there exist δ > 0 such that (−δ, δ) ⊆ I

and functions η ∈ C 1((−δ, δ),U), ξ ∈ C 1((−δ, δ),Rk) with η(0) = η0, ξ(0) = ξ0 such that

γ(t) = Ψ(η(t), ξ(t)) for t ∈ (−δ, δ).

Proof. We will apply the Implicit Function Theorem (IFT). Define F : U ×Rk× I → Rn by

F (η, ξ, t) = Ψ(η, ξ)− γ(t).

Note that F is C 1 and F (η0, ξ0, 0) = 0. Hence we need only show that D(η,ξ) F (η0, ξ0, 0) is

invertible. We compute

∂iΨ(η, ξ) = ∂iσ(η) +
k∑
j=1

ξj∂iNjσ(η)

∂Ψ

∂ξj
(η, ξ) = Njσ(η) (2.16)

for i ∈ {1, · · · , n − k}, j ∈ {1, · · · , k}. It suffices to prove that the n vectors described in

(2.16) are linearly independent. By way of contradiction suppose that there are non-zero

scalars {αi}n−ki=1 , {βj}kj=1 ⊆ R such that

n−k∑
i=1

αi∂iΨ(η, ξ) +
k∑
j=1

βj
∂Ψ

∂ξj
(η, ξ) = 0.

Projecting both sides of this relation into ∂i2σ(η) and simplifying yields

n−k∑
i1=1

(
〈∂i1σ(η), ∂i2σ(η)〉+

k∑
j=1

ξj 〈∂i1Njσ(η), ∂i2σ(η)〉

)
αi1 = 0

or, when vectorized, Sσ(η, ξ)α = 0 for i2 ∈ {1, · · · , n − k}. We can guarantee that there is

a δ > 0 such that Sσ(η, ξ) is invertible for all ξ0 ∈ Bδ(0), by Lemma 2.3.4, hence α = 0.

Furthermore, {Njσ(η)}kj=1 is an orthonormal set and thus βj = 0 follows for all j. Thus, we

obtain the desired contradiction and conclude that D(η,ξ)F (η0, ξ0, 0) is invertible, such that

our claim follows from the IFT.
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The non-constructive wording “for ξ0 sufficiently small in norm” in the LOR Tracking

Lemma can actually be made exact.

Definition 2.3.6. Given a chart (U , σ) of the C r codimension-k manifold M with r ≥ 2

and a C s normal frame {Njσ(η)}kj=1 with s ≥ 1, for each η ∈ U , let Pη be the maximal, by

inclusion, path-connected subset of Rk containing the origin such that

detSσ(η, ξ) > 0 ∀ξ ∈ Pη.

Define the maximal parameter domain P by

P =
⋃
η∈U

{η} × Pη.

The definition of the maximal parameter domain provides the following rewording of the

LOR Tracking Lemma.

Corollary 2. Suppose that x0 ∈ Ω can be expressed Ψ(η0, ξ0) for η0 ∈ U , ξ0 ∈ Rk, and

that γ : I → Rn is a C 1 curve defined on an interval I containing zero with γ(0) = x0. If

(η0, ξ0) ∈ P, then there exist δ > 0 such that (−δ, δ) ⊆ I and functions η ∈ C 1((−δ, δ),U), ξ ∈

C 1((−δ, δ),Rk) such that γ(t) = Ψ(η(t), ξ(t)) for t ∈ (−δ, δ).

With this result, the continuation of the LOR frame for curve tracking is guaranteed

up to but not across P0 := cl(P) ∩ {detSσ(η, ξ) = 0}. The reader may be worried that P

depends on our choice of normal frame and thus Ψ(P),Ψ(P0) ⊆ Rn may be dependent on

the choice of normal frame.Thankfully, we find that Lemma 2.3.4 can be used to eliminate

any such uneasiness.

Corollary 3. Ψ(P) and Ψ(P0) are invariant to choice of normal frame.

Proof. Pick any two normal frames {Njσ(η)}kj=1, {N̂jσ(η)}kj=1 and define corresponding

maximal parameter domains P , P̂ . For any x ∈ Ψ(P), there exist (η, ξ) ∈ P such that

Ψ(η, ξ) = x. Now, fix η ∈ U . Denote by γ : [0, 1] → Pη any path connecting 0 to ξ, let

Γ(s) = (η, γ(s)) for all s ∈ [0, 1], and note that detSσ ◦ Γ(s) > 0.

From Lemma 2.3.4 we know that there is a unitary change of basis matrix, U , between

{Njσ(η)}kj=1 and {N̂jσ(η)}kj=1. Therefore the curve Γ will lift to Γ̂(s) = (η, Uγ(s)). By
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Lemma 2.3.4, det Ŝσ ◦ Γ̂(s) = detSσ ◦Γ(s) > 0, and hence (η, Uξ) ∈ P̂ by maximality. Thus

x ∈ Ψ̂(P̂) and Ψ(P) ⊆ Ψ̂(P̂).

Reversing the proof gives the opposite inclusion. Note that Ψ is defined on an approriate

domain of (η, ξ) independent of LOR tracking, so Ψ(P) is uniquely defined as desired, and

the claim regarding Ψ(P′) follows analogously.

2.4 Proof of the Main Result

With our definitions and preliminary results laid out, we can prove our main result.

Proof of the LOR Equations Lemma. Suppose that x0 ∈ Ω can be expressed as Ψ(η0, ξ0) =

x0 for η0 ∈ U , ξ0 ∈ Rk. Denote φ(t) = Φ(x0, t) and note that φ ∈ C 1. If ‖ξ0‖ is sufficiently

small, then there exist δ > 0, η ∈ C 1((−δ, δ),U), ξ ∈ C 1((−δ, δ),Rk) such that φ(t) =

Ψ(η(t), ξ(t)) for t ∈ (−δ, δ), by the LOR Tracking Lemma.

Suppressing time dependence, we compute

φ̇ =
d

dt
Ψ(η, ξ) =

(
Dησ(η) +

k∑
j=1

ξjDηNjσ(η)

)
η̇ +

k∑
j=1

ξ̇jNjσ(η). (2.17)

Note that φ̇ = f ◦ φ = f ◦Ψ(η, ξ). Acting on the left by Dησ(η)T yields(
Dησ(η)TDησ(η) +

k∑
j=1

ξjDησ(η)TDηNjσ(η)

)
η̇ = Dησ(η)Tf ◦Ψ(η, ξ),

which reduces to

Sσ(η, ξ)η̇ = Tf(η, ξ). (2.18)

Thus η̇ = Sσ(η, ξ)−1Tf(η, ξ), as Sσ is invertible near (η0, ξ0). The equation governing ξ̇

follows analogously by left acting on equation (2.17) by the expression given in (2.15).

Remark 2. Equation (2.18) highlights the exchange of tangent vectors via the action of Sσ

that motivates our choice to name this the exchange operator. Note that the standard shape

operator from differential geometry also exchanges tangent vectors, but these operators are

not identical.
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We have once again used non-constructiive language to constrain ξ0. We can strengthen

this language by using P and “reverse” the statement of the main result.

Corollary 4. Suppose that η(t), ξ(t) solve system (2.4) for (η0, ξ0) ∈ P for t ∈ (−δ, δ). Then

Ψ(η(t), ξ(t)) = Φ(Ψ(η0, ξ0), t) for t ∈ (−δ, δ).

Given a vector field f and a chart (U , σ) of a smooth, regular, codimension-k manifold,

we denote the LOR vector field by

Lσf(η, ξ) =

 Sσ(η, ξ)−1Tf(η, ξ)

Nf(η, ξ)−Kσ(η, ξ)Sσ(η, ξ)−1Tf(η, ξ)

 .

Interestingly, the operator Lσ is linear; that is,

Lσ(αg + βf)(η, ξ) = αLσg(η, ξ) + βLσf(η, ξ)

as f, g only appear in Tf, Tg,Nf,Ng, which are vectors of inner products. Therefore the

LOR dynamics respects additive perturbations. We hope to take advantage of this fact in

future work.

It is natural to wonder whether the LOR flow is topologically conjugate to the flow

induced by (2.1). It can be computationally difficult to find a codomain on which Ψ is a

homeomorphism. However, the flow induced by (2.1) is a submersion of the LOR flow via

Ψ.

Definition 2.4.1. Suppose that ΦX ,ΦY are both continuous flows on X, Y respectively,

with ΦX defined on {(x, t) : x ∈ X, t ∈ Ix} for time intervals Ix ⊂ R. The flow ΦY is a

submersion of ΦX via H if there is a continuous, surjective map H : X → Y such that

H ◦ ΦX(x, t) = ΦY (H(x), t) ∀x ∈ X, t ∈ Ix.

This is simply the definition of topological conjugacy of flows with the injectivity of the

homeomorphism relaxed.

Corollary 5. The flow induced by f is a submersion of the flow induced by Lσf via Ψ.
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2.5 Extensions and Applications

In this section, we highlight several scenarios where the computations involving LOR

simplify in useful ways. We also discuss certain auxiliary ideas, namely a measure of near-

invariance for a surface in a flow that can be defined based on LOR and a blow-up trans-

formation that can be applied to the LOR equations, that enhance the utility of LOR. The

near-invariance measure plays a useful role in Section 2.6.

2.5.1 Hypersurfaces and Frenet Curves

In the cases where k = 1 and k = n − 1, which correspond to M being a curve and

a hypersurface, respectively, there is a canonical choice of normal frame that allows us to

simplify the LOR dynamics. First, suppose that k = n − 1 and M is a codimension-1

manifold. In this case, TpM is a n−1 dimensional space, with a one-dimensional orthogonal

complement in Rn. Therefore there are exactly 2 unit vectors that could serve as a normal

frame. We choose the normal vector is accordance with the right hand rule; specifically, we

define

Nσ(η) =
∂1σ(η) ∧ · · · ∧ ∂n−1σ(η)

‖∂1σ(η) ∧ · · · ∧ ∂n−1σ(η)‖
(2.19)

where x1 ∧ · · · ∧ xn−1 is the outer product of n− 1 vectors, which is a generalization of the

cross product. We easily attain the following result.

Proposition 1. For Nσ(η) given in (2.19), Kσ(η, ξ) = 0.

Proof. Note that 〈Nσ(η), Nσ(η)〉 = 1 and hence

0 = ∂i 〈Nσ(η), Nσ(η)〉 = 2 〈∂iNσ(η), Nσ(η)〉 .

Therefore, Kσ(η, ξ) = 0.

Thus, with this choice of Nσ(η), the ξ̇ equation in (2.4) simplifies significantly.

The study of curves is more interesting. Suppose that σ parameterizes a curve in Rn.

By imposing additional structure on σ we can generate a natural normal frame, namely we

will assume that σ is a Frenet curve.
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Using the Frenet frame allows us to greatly simplify the LOR equations; we find that,

I(η) = ‖σ′(η)‖2

IIj(η) = −‖σ′(η)‖2
δ1,jκ1(η)

hence Sσ(η) = ‖σ′(η)‖2 (1− ξ1κ1(η)). With significantly more index wrangling, we find that

Kσ(η, ξ) = ‖σ′(η)‖ Ĉ(η)ξ

where Ĉ(η) is the (1, 1)-principal minor of C(η). Therefore (2.4) simplifies to

η̇ =
〈f ◦Ψ(η, ξ), Tσ(η)〉
‖σ′(η)‖ (1− ξ1κ1(η))

ξ̇ = Nf(η, ξ)− 〈f ◦Ψ(η, ξ), Tσ(η)〉
1− ξ1κ1(η)

Ĉ(η)ξ. (2.20)

We call system (2.20) the Frenet LOR equations. This example illustrates that when σ is a

Frenet curve, Kσ reduces to the matrix of curvatures. If we take σ(η) to be a trajectory of

(2.1), then Nf(η, ξ) = 0 and η̇|ξ=0 = 1.

By dividing through by η̇ to eliminate time from system (2.20), we find

dξ

dη
= ‖σ′(η)‖ (1− ξ1κ1(η))

Nf(η, ξ)

〈f ◦Ψ(η, ξ), Tσ(η)〉
− ‖σ′(η)‖ Ĉ(η)ξ. (2.21)

This set of equations (2.21) is well-suited to study transition maps: suppose we choose σ to

be a dynamically relevant trajectory, and we want to study how the normal space of σ at

η = 0 is mapped to the normal space at η = 1. Usually, one has to deal with approximating

the time it takes for trajectories to travel from one section Σ1 to another section Σ2, defined

to represent this mapping. In (2.21), however, we have eliminated time dependence; thus,

we can simply integrate trajectories from η = 0 to η = 1. Therefore it is very natural to

represent Poincaré maps in the LOR frame.
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2.5.2 A Measure for Near-Invariance

In this section, we present a natural generalization of a technique used for curves in

planar systems in [45]; namely, we construct a quantitative measure that quantifies how

close a surface is to being invariant under a flow. We will focus on the simplest case k = 1,

when M is a hypersurface embedded in Ω. Recall, from the preceding section that the ξ

dynamics in the LOR frame for a codimension-one chart is given by ξ̇ = Nf(η, ξ). Note

that σ(U) is locally invariant if and only if ξ̇|ξ=0 = 0; that is, Nf(η, 0) = 0 for all η ∈ U .

Geometrically, Nf(η, 0) = 0 if and only if f ◦σ(η) ∈ Tσ(η)M; thus, the normal vector Nσ(η)

is orthogonal to our vector field along σ. Heuristically, we note that σ(U) is closer to being

invariant if |Nf(η, 0)| is small, as LOR trajectories cannot rapidly escape U × {0}.

There are several natural candidates for constructing a measure of this “near-invariance”

property. We choose one that we find particularly informative.

Definition 2.5.1. Given a chart (U , σ) of the C r codimension-1 manifold M with r ≥ 2

and a C s normal vector Nσ(η) with s ≥ 1, we define µσ : U → R+ by

µσ(η) = inf
ξ∈Pη
{|ξ| : Nf(η, ξ) = 0}. (2.22)

with the convention that inf ∅ = −∞. We call µσ the near-invariance measure of σ. Fur-

thermore, define Ξσ : U → R by

Ξσ(η) = arg inf
ξ∈Pη
{|ξ| : Nf(η, ξ) = 0}.

We call Ξσ the correction to σ.

Intuitively, µσ(η) represents the closest point (η, ξ) ∈ {η} × Pη such that Nf(η, ξ) = 0;

it measures how far off the manifold we must travel to reach the ξ-nullsurface. Note that

Ξσ(η), when defined, is the smallest ξ, in norm, such that Nf(η, ξ) = 0.

Initially, these definitions seem cumbersome; however, µσ,Ξσ have interesting properties.

For example, µσ(η) ≡ 0 if and only if σ(U) is locally invariant. The correction Ξσ allows

us to study how non-invariant manifolds can create trapping regions. If Nf(η, 0) > 0 and

Ξσ(η) > 0 for η ∈ U , then the set W = {(η, ξ) : η ∈ U , 0 ≤ ξ ≤ Ξσ(η) is positively locally

invariant if 〈∇Ξσ(η), f ◦ Ξσ(η)〉 > 0 for η ∈ U . This type of trapping region can help to
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explain how non-invariant manfiolds can play an organizing role in dynamics. Indeed, the

use of the near-invariance measure plays a key role in the precise definition and identification

of rivers in planar systems [45].

Furthermore, we can utilize the function Ξσ to obtain useful nearly invariant manifolds.

If Ξσ is well-defined and C 1 on Û ⊆ U , then consider the function σ̂ : Û → Ω defined by

σ̂(η) = σ(η) + Ξσ(η)Nσ(η).

Generically, σ̂ is a regular chart itself; that is, it parametrizes a codimension-1 manifold M̂,

in which case we call σ̂ the corrected chart of σ. Interestingly, the corrected chart is often

more nearly-invariant than the original chart, with µσ̂(η) < µσ(η) for η ∈ Û . We make use

of this property in our computational example 2.6 to identify canard behavior in the normal

form system for a folded-saddle node bifurcation [39, 66].

2.5.3 Constructing a Normal Frame to a Manifold à la Frenet

In the theory presented thus far, we have simply assumed that the user can provide a

normal frame. In this section, we present a rigorous algorithm for constructing these frames.

In the construction of the Frenet frame for the k = 1 case, we used higher derivatives of

the curve to “fill-up” TpM
⊥ and then applied the Gram-Schmidt process to orthonormalize

these derivatives and thus construct our moving frame. Here, we apply the same ideas, albeit

with more notation, to generalize this construction to higher codimensions.

Suppose that f ∈ C r(Rm,Rn). Given an index α = (α1, · · · , αm) ∈ Nm such that∑m
i=1 αi := |α| ≤ r, we use ∂α to denote the indicial derivative:

∂αf(x) =
∂|α|f

∂α1
x1 ∂

α2
x2 · · · ∂αmxm

(x).

Note that, when represented indicially, ∂i := ∂/∂xi = ∂ei where ei is the ith canonical basis

vector.
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Definition 2.5.2. A chart (U , σ) of a regular, C r≥2, m-manifold M embedded in Ω ⊆ Rn for

n > m is a Frenet chart if there are indices {αj}nj=m+1 such that αj ∈ Nm, 2 ≤ |αj| ≤ r − 1

for m+ 1 ≤ j ≤ n, and

dim span
{
∂e1σ(η), · · · , ∂emσ(η), ∂αm+1σ(η), · · · , ∂αnσ(η)

}
= n ∀η ∈ U . (2.23)

In this case, {αj}nj=m+1 is a Frenet index set.

When considering curves, the m = 1 case, taking αj = j for m + 1 = 2 ≤ j ≤ n, the

above condition is equivalent to the curve in question being Frenet. Definition 2.5.2 allows

for the use of more complicated configurations of derivatives to build a basis for Rn.

To simplify notation, given a Frenet index set {αj}nj=m+1, we define αj = ej for 1 ≤ j ≤

m, after which condition (2.23) simplifies to

dim span
{
∂αjσ(η)

}n
j=1

= n ∀η ∈ U .

Clearly we can perform the Gram-Schmidt process on {∂αjσ} to construct an orthonor-

mal basis. The first m vectors will be linear combinations of {∂ejσ} and hence form an

orthonormal basis for Tσ(η)M ; thus, we denote them Tiσ(η), i = 1, . . . ,m. The final n −m

orthonormal vectors produced will be orthogonal to Tσ(η)M and can be denoted Njσ(η)

without any abuse of notation; they form a normal frame per LOR assumption 4. Therefore,

we can produce normal frames to manifolds in an algorithmic way, provided that we make a

fairly generic assumption about the manifolds’ higher derivatives.

One advantage of the Frenet frame in the preceding section is that it allows us to easily

compute IIi, Kσ using inherent properties of the LOR base curve. We shall next establish

that we can compute IIi, Kσ from the properties of our generalized Frenet frame as well.

The Gram-Schmidt process, being linear, can be represented as a matrix multiplication.

That is, there is an n× n matrix G : U → Rn×n such that

G(η)


∂α1σ(η)

...

∂αnσ(η)

 =


T1σ(η)

...

Nkσ(η)

 ,
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and G is C 1, everywhere invertible, and lower triangular. Note that G is of the form

G(η) =

 G1(η) 0

G2(η) G3(η)

 (2.24)

where G1(η), G3(η) are C 1, invertible, m×m, k×k (respectively), lower triangular matrices,

and G2(η) is a C 1 k ×m matrix. Define

Ĝ(η) =

 I 0

G2(η) G3(η)

 (2.25)

where I is the m×m identity matrix, then by definition

Ĝ(η)



∂e1σ(η)
...

∂emσ(η)

∂αm+1σ(η)
...

∂αnσ(η)


=



∂e1σ(η)
...

∂emσ(η)

N1σ(η)
...

Nkσ(η)


. (2.26)

To finish our generalization of the Frenet frame, we need to understand how the deriva-

tives of Tiσ,Njσ can be expressed as linear combinations of Tiσ,Njσ, as in the Frenet-Serret

equations. To this end, we define the following.

Definition 2.5.3. Suppose that (U , σ) is a Frenet chart with index set {αj}nj=1. Then

{∂αjσ(η)}nj=1 forms a basis for Rn and therefore there are matrices Ai : U → Rn×n such that

∂ei


∂α1σ(η)

...

∂αnσ(η)

 =


∂α1+eiσ(η)

...

∂αn+eiσ(η)

 =: Ai(η)


∂α1σ(η)

...

∂αnσ(η)

 .

We call these matrices the differo-algebraic closures of the index set.
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Remark 3. At first glance, the entries of Ai(η) appear to be arbitrary and thus could be

difficult to compute. However, by filling out our normal frame with higher derivatives of σ, we

can greatly simplify Ai. Note that ∂ei∂αsσ(η) = ∂αs+eiσ(η), and therefore if αs+ei ∈ {αj}nj=1,

then the sth row of Ai(η) is a canonical basis vector; that is, if αs + ei = αj then Ai(η)s = ej,

hence Ai can be fairly sparse. In fact, the remarkable simplicity of the Frenet-Serret equation

is caused by the sparseness of the relevant differo-algebraic closure.

Proposition 2. If (U , σ) is a Frenet chart with index set {αj}nj=1 and differo-algebraic

closures {Aj(η)}nj=1, then for i = 1, . . . ,m,

∂eiv(η) =
[
(∂eiĜ(η) + Ĝ(η)Ai(η))Ĝ−1(η)

]
v(η), (2.27)

where Ĝ is given in equation (2.25), and

v(η) = (∂e1σ(η), · · · , ∂emσ(η), N1σ(η), · · · , Nkσ(η))T (2.28)

Proof. Taking derivatives of both sides of (2.26), using the definition of the differo-algebraic

closures, and applying (2.26) yields the result.

Proposition 2 allows us to compute IIi, Kσ from first principles, after we define the fol-

lowing operators.

Definition 2.5.4. Given a chart (U , σ) of the C r codimension-k manifold M with r ≥ 2

and a C s normal frame {Njσ(η)}kj=1 with s ≥ 1, we define mappings IIIj1 : U → Rk×n−k

entry wise by

(IIIj1(η))j2,i = 〈∂iNj1σ(η), Nj2σ(η)〉 ,

where j1, j2 ∈ {1, · · · , k}, i ∈ {1, · · · , n − k}. We call {IIIi(η)}n−ki=1 the third fundamental

forms of σ.

These operators have no clear analogue in the theory of surfaces; however, they bear some

resemblance to the Christoffel symbols. The third fundamental forms are useful insofar as

they determine Kσ.
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Lemma 2.5.5. Given a chart (U , σ) of the C r codimension-k manifold M with r ≥ 2 and

a C s normal frame {Njσ(η)}kj=1 with s ≥ 1,

Kσ(η) =
k∑
j=1

ξjIIIj(η).

Now we can derive formulae for IIj, IIIj using properties of our Frenet-type frame. Let

Ai(η) =

 Ai,1(η) Ai,2(η)

Ai,3(η) Ai,4(η)



where Ai,1(η) is m×m, Ai,2(η), Ai,3(η)T are m× k and Ai,4(η) is k × k. Let

B1(η) =


II1(η)i,1 · · · IIk(η)i,1

... · · · ...

II1(η)i,m · · · IIk(η)i,m

 B2(η) =


III1(η)i,1 · · · III1(η)i,k

... · · · ...

IIIk(η)i,1 · · · IIIk(η)i,k



Corollary 6. If (U , σ) is a Frenet chart with index set {αj}nj=1, then

B1(η) = −Ai,2(η)G3(η)−1 (2.29)

B2(η) = ∂eiG3(η)G3(η)−1 +G3(η)Ai,4(η)G3(η)−1.

Proof. From the definition of IIi, IIIi and Lemma 2.3.2 we can compute

∂eiv(η) =

 −B1(η)

B1(η)T B2(η)

 v(η)

where the blank m×m matrix block is irrelevant, and v(η) is defined in (2.28) Comparing

this expression to (2.27) and using the definitions (2.24), (2.25) yields the result, after some

simple block matrix computation.
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2.5.4 Blowing Up an Invariant Manifold to Study Local Transient Dynamics

Suppose that (U , σ) is a chart of a locally invariant codimension-k manifold M that

satisfies our LOR assumptions. We will study the LOR flow generated by (2.4) to determine

the dynamics near σ(U) and will introduce what we term LOR blow-up coordinates to serve

in this process.

First we let ξ = rξ̄ where
∥∥ξ̄∥∥ = 1 such that r2 = 〈ξ, ξ〉. Intuitively, r represents the

Hausdorff distance of Ψ(η, ξ) from the manifoldM and ξ̄ represents the “angle” of ξ relative

to the manifold.

It is straightforward, using the fact that
〈
ξ̄, ξ̄
〉

= 1 and hence
〈

˙̄ξ, ξ̄
〉

= 0, to compute

that for r > 0,

ṙ =
〈
ξ̇, ξ̄
〉
,

r ˙̄ξ = ξ̇ −
〈
ξ̇, ξ̄
〉
ξ̄. (2.30)

System (2.30) becomes potentially problematic in the r → 0+ limit, which is precisely what

we are interested in, in order to study dynamics local to M. Note that if limr→0+ ξ̇/r is

well-defined then we can continuously extend the dynamics of (2.30) to r = 0. In our new

coordinate scheme, the LOR equations (2.4) give us

ξ̇ = Nf(η, rξ̄)−Kσ(η, rξ̄)Sσ(η, rξ̄)−1Tf(η, rξ̄). (2.31)

By definition, Kσ(η, rξ̄) = rKσ(η, ξ̄); hence, as r → 0+, the right hand side of (2.31) limits

to 0. Therefore, we can compute the L’Hôpital type limit

lim
r→0+

ξ̇

r
=

d

dr
ξ̇

∣∣∣∣
r=0

= DξNf(η, 0)ξ̄ −Kσ(η, ξ̄)Sσ(η, 0)−1Tf(η, 0) =: g(η, ξ̄) (2.32)

so that from (2.31), (2.32), and ξ = rξ̄, we have

η̇ = Sσ(η, 0)−1Tf(η, 0) +O(r)

˙̄ξ = g(η, ξ̄)−
〈
g(η, ξ̄), ξ̄

〉
ξ̄ +O(r)

ṙ =
〈
g(η, ξ̄), ξ̄

〉
r +O(r2). (2.33)
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Note that in the above representation, at leading order, the η̇ equation depends only upon

η and the ˙̄ξ equation depends only on η, ξ̄. Therefore, we have decoupled the dynamics along

the manifold (the η dynamics) from the angular dynamics relative to the manifold (the ξ̄

dynamics) from the contraction/expansion dynamics (the r dynamics) for r sufficiently small.

This non-trivial decoupling is possible because we have chosen to represent our dynamics in

their natural frame.

We call the (η, ξ̄, r) coordinates the LOR blow-up coordinates, as the corresponding phase

space has the form U × Sk−1 × [0, ε), where Sk−1 = {x ∈ Rk| ‖x‖ = 1} is the k-sphere and

0 < ε� 1. This coordinate representation is effectively equivalent to performing geometric

desingularization on the entirety of M [12].

The stability ofM depends only on the sign of
〈
g(η, ξ̄), ξ̄

〉
;M is stable in regions where〈

g(η, ξ̄), ξ̄
〉
< 0 and unstable where

〈
g(η, ξ̄), ξ̄

〉
> 0.

To study the dynamics near the manifold, we first consider the η dynamics on r = 0,

denoting by Φη the flow induced by η̇ = Sσ(η, 0)−1Tf(η, 0). Next, we consider the ξ̄ dynamics

on r = 0, treating η as a non-autonomous forcing term. Denote the corresponding flow by

Φξ̄. Finally, we can approximate the r solution by

r(t) ≈ r0 exp

(∫ t

0

〈
g(η(s), ξ̄(s)), ξ̄(s)

〉
ds

)
.

We will use these blow-up coordinates to aid our analysis in Chapters 4 and 5.

2.5.5 Fast-Slow Analysis

Consider now the C r fast-slow system

ẋ1 = f1(x1, x2; ε)

ẋ2 = εf2(x1, x2; ε) (2.34)

with x1 ∈ Rk, x2 ∈ Rn−k and critical manifold M0 := {f1(x1, x2; 0) = 0}. When ε = 0, M0

is a set of equilibria and hence is trivially invariant. Using the rescaled slow time variable
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τ = εt, equation (2.34) becomes

εx′1 = f1(x1, x2; ε)

x′2 = f2(x1, x2; ε) (2.35)

where ′ = d/dτ . The ε→ 0+ limit of system (2.35) specifies the slow timescale dynamics on

M0. Suppose that (U , σ) parameterizes a chart ofM0. If σ(U) is normally hyperbolic, then

Fenichel’s Theorem [22] guarantees the existence of ε+ > 0 for which there exists a chart

σ̃ : U × [0, ε+)→ Rn such that: σ̃ parameterizes a locally-invariant, regular, codimension-k

manifold Mε for each ε ∈ [0, ε+), σ̃(η; 0) = σ(η), and σ̃(η; ε) is C r O(ε)-close to σ.

As long as our chosen normal frame is continuous in ε, we can perform the LOR trans-

formation, treating ε as a parameter, which will yield dynamics of the form

η̇ = εSσ̂(η, ξ; ε)−1T̂ f(η, ξ; ε),

ξ̇ = Nf(η, ξ; ε)− εKσ̂(η, ξ; ε)Sσ̂(η, ξ; ε)−1T̂ f(η, ξ; ε) (2.36)

where εT̂ f(η, ξ; ε) = Tf(η, ξ; ε), which remains well-defined as Tf(η, ξ; ε) = O(ε). Hence the

LOR equations are also fast-slow. Tranforming to LOR blow-up coordinates and expanding

in ε yields, from equations (2.33) and (2.32),

η̇ = εSσ̂(η, 0; 0)−1T̂ f(η, 0; 0) +O(r, ε2)

˙̄ξ = B(η)ξ̄ −
〈
B(η)ξ̄, ξ̄

〉
ξ̄ +O(r, ε)

ṙ =
〈
B(η)ξ̄, ξ̄

〉
r +O(r2, ε) (2.37)

where B(η) = DξNf(η, 0; 0). Note that since Sσ̂, T f,Nf are being evaluated on ε = 0, we

use the existence of σ̂ only to justify our derivation; the equations in (2.37) that we have

obtained depend only on the critical manifold M0. Thus, system (2.37) gives a natural

framework to study dynamics relative to a slow manifold Mε that relates the dynamics

relative to Mε to the dynamics relative to M0.

Equation (2.37) is similar to the Fenichel Normal Form presented in [34]; the η coordinate

plays the role of the slow dynamics defined on the rectified critical manifold, while the (ξ̄, r)

coordinates track the fast variables as they approach or depart from the critical manifold.
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The ξ̄ coordinate allows us to anticipate the “angle” at which fast trajectories will approach

M; i.e. they are playing the role of the fast fibration, which is critical in technical Fenichel

analysis [34, 68]. We conclude this computation by noting that it is unclear how, if at all,

the ideas of fast-fibrations may be applied to general dynamical systems; the LOR blow-

up coordinates are a natural contender for generalizing fast-slow type analysis to arbitrary

invariant manifolds.

2.6 A Computational Example

In this final section, we present a long-form computational example of the LOR frame

in action. We choose a well-known, fast-slow system for our analysis, the normal form for a

folded-saddle node canard [61], which is given by


ẋ

ẏ

ż

 =


ε(by + cz)

εa

x+ z2

 =: f(x, y, z; ε) (2.38)

for parameters a, b, c as well as 0 < ε � 1. In the ε → 0+ limit, the critical manifold

M0, parameterized by σ(η1, η2) = (−η2
2, η1, η2), becomes a surface of critical points. Let

UL = {(η1, η2)|η2 < 0},UR = {(η1, η2)|η2 > 0},UF = {(η1, η2)|η2 = 0}, then σ(UL) is a

sheet of normally hyperbolic, stable fixed points in the ε = 0 system, while σ(UR) is a sheet

of normally hyperbolic, unstable fixed points. The set σ(UF ), called the fold, is a line of

nilpotent fixed points.

Fenichel theory guarantees, for ε > 0 but sufficiently small, the existence of charts

σL,ε, σR,ε such that σi,ε(Ui) is a locally-invariant manifold, ‖σ(η)− σi,ε(η)‖ = O(ε) for η ∈ Ui,

and σi,ε(Ui) has the same stability properties as σ(Ui) for i ∈ {L,R}.

The most intriguing feature of (2.38) is the existence of trajectories beginning in σL,ε(UL)

that cross into σR,ε(UR); these trajectories are referred to as canards and play an organizing

role in various forms of fast-slow dynamics including mixed-mode oscillations.
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The standard technique for identifying canards is to perform geometric desingularization

in a neighborhood of the origin of system (2.38) and track carefully chosen trajectories across

the multiple “charts” of the desingularized variables. Here, we present an approach based

on LOR techniques.

To begin, we note that

∂1σ(η1, η2) = (0, 1, 0)

∂2σ(η1, η2) = (−2η2, 0, 1)

hence

Nσ(η) =
(2η1, 0, 1)√

4η2
1 + 1

forms a normal frame to σ. We compute

I(η) =

 4η2
1 + 1 0

0 1

 , II(η) =

 2√
4η21+1

0

0 0

 ,

and therefore

Sσ(η, ξ) =

 α(η)2 + 2ξ
α(η)

0

0 1


where α(η) =

√
4η2

1 + 1. Note that Sσ(η, ξ) is invertible as long as ξ 6= −α(η)3/2. Thus,

Pη =

{
ξ ∈ R

∣∣∣∣ξ > −α(η)3

2

}
.

Note that the normal exchange operator is zero, as demonstrated in Proposition 1.

We find the LOR dynamics have the form

η̇1 =
2∑
i=0

pi(η)ξi (2.39)

η̇2 = εa (2.40)

ξ̇ =
2∑
i=0

qi(η)ξi (2.41)

where pi, qi are rational functions of η1, η2. Interestingly, it turns out that q0(η) = O(ε), so

that ξ̇ = O(ε, ‖ξ‖).
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We can solve ξ̇ = 0 explicitly to obtain two solution manifolds ξ = Ξ±(η). We find that

Ξ+(η) is O(η−3
1 ) near η1 = 0 while Ξ−(η) takes the form

Ξ−(η) = −b
c
η2 +

2b

c2ε
η1η2 +O(η2

1).

Thus, for η1 sufficiently small, the correction Ξ(η) is given by Ξ(η) = Ξ−(η).

In this system, the correction plays a central role in organizing the dynamics near {ξ = 0}

and we can use it to easily build a simple trapping region and demonstrate the existence of a

perturbed slow manifold. The trajectories of interest in this system begin in {η1 < 0, η2 < 0}

and evolve towards the fold {η2 = 0}. We find that

ξ̇|ξ=0 = ε
µη1 − 2(µ+ 1)η2

2α(η)

and note that if

η2 < 0 and
η1

η2

<
2(µ+ 1)

µ

then ξ̇|ξ=0 > 0, for this reason, we define a first “funnel”

F1 =

{
η ∈ R2

∣∣∣∣η2 < 0,
η1

η2

<
2(µ+ 1)

µ

}
.

If (η0, ξ0) ∈ F1 × R+ then ξ(t) > 0 for as long as η(t) ∈ F1. By refining F1 we can also

bound ξ(t) from above.

Proposition 3. Let

F = {(η1, η2) ∈ F1 |s(η) < 0}

where s(η) is defined by

s(η) =
(−16η4

2 − µ2 (2η2 − η1) (8η2
2 (−η2 + η1) + η1)− 2 (12α4 + 1) η2µ (−2η2 + η1))

16η3
2 (4η2

2 + 1)
3/2

+O(ε).

(2.42)

If η(t) ∈ F then 0 < ξ(t) < Ξ−◦η(t) for ε > 0 sufficiently small. Furthermore, if η0 ∈ F and

there exists a T > 0 such that η(T ) 6∈ F then there exists 0 < tF < T such that η2(tF ) = 0.
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Proof. If ξ0 < Ξ−(η0) and η0 ∈ F then we need only satisfy ξ̇(t) <
〈
∇Ξ− ◦ η(t), ˙η(t)

〉
for

η(t) ∈ F and ε > 0 sufficiently small. An order expansion of ξ̇|ξ=Ξ−(η)−
〈
∇Ξ−(η), η̇|ξ=Ξ−(η)

〉
at ε = 0 yields the expression on the right hand side of equation (2.42), which we require

to be negative, yielding the region F . We find that Ξ− ◦ η(t) is a supersolution of ξ̇ exactly

when η(t) ∈ F . Hence the first part of the result follows.

The second claim follows from similar subsolution arguments. For ε > 0 sufficiently

small, the boundary of F1, given by η1 + 8η1η
2
2 − 8η3

2 = 0, is impassible when η2 < 0. Thus

any trajectories that escape F × R+ must cross the fold curve {η2 = 0}.

Two features of this result bear mentioning. First, we have demonstrated that any tra-

jectories that escape from a neighborhood of the stable critical manifold must do so through

the fold. Second, recalling that Ξ−(η) = O(ε), we have verified a weak version Fenichel’s

Theorem for system (2.38). The organizational role of the correction is demonstated in the

left half of Fig. 1.

By performing an additional transformation of our system, we can extract canard-type

solutions, which pass across the fold {η2 = 0}, in a very natural way. We have demonstrated

that the correction manifold plays a strong role in organizing the flow near the critical mani-

fold, so it is natural to use the correction as a base manifold for another LOR transformation.

That is, we define

σ̂(η̂) = σ(η̂) + Ξ−(η̂)Nσ(η̂),

which is a manifold embedded in our original space that satisfies all of our LOR assumptions,

such that we can compute the LOR dynamics relative to σ̂. We suppress the computations

for brevity; however, they follow exactly along the lines of the previous computations, and

can be executed extremely quickly by symbolic computation software (e.g., Mathematica,

Maple, Julia). Note that in this trasformation, η̂ is geometrically equivalent to η; that

is, η̂1 still corresponds to x in the original system, just as η̂2 corresponds to y, but we

need the η̂ notation to represent the change from ξ to ξ̂. We could iterate this process to

better approximate the canard solution, however only the ε terms in the remainder term will

improve.
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The lowest order terms of the resultant system are given by

˙̂η1 = ε+O(ε2, ξ) (2.43)

˙̂η2 =
ε

4

(
2 +

(
2− η̂1

η̂2

)
µ

)
+O(ε2, ξ) (2.44)

˙̂
ξ = 2η̂2ξ̂ +O(εξ̂, ε2). (2.45)

Note that {ξ̂ = 0} is invariant to O(ε2), which is an improvement to the previous system;

trajectories starting on {ξ̂ = 0} must spend an O(ε−2) amount of time near {ξ̂ = 0} before

escaping.

We remain interested in trajectories beginning in {η̂2 < 0} that cross the fold curve. If

we numerically plot the η̂ dynamics on {ξ̂ = 0}, we notice that there is a single trajectory

that plays an outsized role in organizing the η̂ phase plane.

It is easily verified that γ(t) = (εt, εµt/2, 0) solves (2.43) to O(ε2), and this is, in fact, the

“central” trajectory of the approximate dynamics. We also note that γ is the only trajectory

that remains well-defined as it crosses the fold, through a L’Hopital type limit. Finally, we

note that γ(t) approximate solution is constrained to lie in a plane, as its trace in η̂ is a line;

stated equivalently, γ(t) has everywhere vanishing curvature.

Previous work has established the zero curvature set plays an organizational role in planar

systems [1, 24, 25], we use the LOR frame to study where the zero curvature set is invariant.

One advantage of this definition, is that it generalizes easily to arbirary dimension. In Rn

we define a river to be a Frenet trajectory Γ(t) whose Frenet curvature κn−2(t) vanishes to

second order; that is, if there exists t∗ such that

κn−2(t∗) = κ̇n−2(t∗) = 0

then Γ(t) is a river, and we call Γ(t∗) a confluence [45].

Our analysis suggests that γ(t) is an organizing trajectory that lies in a plane and thus has

identically zero Frenet curvature. This result suggests a strong connection between canards

and rivers. In fact, if we study the zero curvature locus of the original system (2.38), we find

that there are seven trajectories that have identically zero curvature and hence are rivers by
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our definition. The most interesting of these, in terms of apparent correspondence to γ(t),

can be given by

Γ(z) =

(
−z2 +

εµ

2
,
2z

µ
, z

)
and is invariant, such that it can be reparameterized as a solution. For z < 0, Γ lies near

the stable branch of the critical manifold, at z = 0 it passes near the fold, and for z > 0 it

remains O(ε) close to the unstable critical manifold. We examine this surprising connection

in Chapter 5.
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2.7 Figures and Tables

Notation Name Short Description

M LOR base-manifold m-manifold (co-dimension k) embed-

ded in Rn of dynamical interest

(U , σ) chart σ : U ⊆ Rm → Rn parameterizes a

patch of M

∂1σ(η), · · · , ∂mσ(η) tangent basis basis of the tangent space at σ(η)

N1σ(η), · · · , Nkσ(η) normal basis orthonormal basis of the normal space

at σ(η)

I(η) first fundamental form defined in (2.5), defines the Riemann

metric

II1(η), · · · , IIk(η) second fundamental forms defined in (2.7), measures deformation

of the tangent space in the normal di-

rections

Sσ(η, ξ) tangent exchange operator defined in (2.8), pulls vectors into TηU .

Kσ(η, ξ) normal exchange operator defined in (2.14), pulls vectors into

TηU⊥

Tf(η, ξ) tangential dynamics defined in (2.3), the vector field f pro-

jected into the tangent space

Nf(η, ξ) normal dynamics defined in (2.3), the vector field f pro-

jected into the normal space

Table 1: A Cheat Sheet of LOR Terminology
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M

σ(U)

σ ◦ η(t)

x0

σ(η0)

φ(t)

Figure 1: The geometric setup for Local Orthogonal Rectification: We consider an inital

condition x0 near a given manifold, and decompose the trajectory through x0, denoted by

φ, into a curve on the manifold and a curve in the normal bundle to the manifold.
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η1

η2

ξ

η1

ξ

η2

Ξ(η)

Ξ ◦ γ(η)

Figure 2: The dynamics near the critical manifold. (Left) The trapping region detailed in

Prop. 3, between {ξ = 0} and the correction Ξ. Note how trajectories with η(t) ∈ F cannot

escape, as they are bounded above by Ξ. Our approximate canard solution Ξ◦γ(η) is shown

in orange. The blue and red curves are trajectories, red curves have initial conditions further

from the fold. (Right) The full trapping region, where the O(ε2) term of (2.42) is negative.

Note the twisting of orbits as they escape from the influence of the correction.
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η̂2

η̂1

x

z

y

γ(t)

Figure 3: Dynamics near the canard solution. (Left) The dynamics on {ξ̂ = 0} of system

(2.43). Note how the approximate trajectories organize around the orange curve, called γ in

the text. (Right) A plot of the rivers of (2.38), three of which cross the fold of the critical

manifold. The orange curve, γ(z), is indistinguishable from the identified approximate canard

solution Ψ2(γ(t), 0).
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3.0 Rivers in the Plane

The material in this chapter has been published in SIADS as ”A New Frame for an Old

(Phase) Portrait: Finding Rivers and Other Flow Features in the Plane” and was co-authored

by Jonathan E. Rubin.

3.1 Motivation

A fundamental problem in dynamical systems is to identify the structures in phase space

that organize the trajectories generated by a flow. Methods to achieve this identification

often focus on attractors defined asymptotically in time, as well as on separatrices between

attractor basins formed by stable manifolds of saddle points, which are themselves defined

in terms of their asymptotic properties. In multiple-timescale systems, classical methods

due to Fenichel [34] provide a link from normally hyperbolic critical manifolds that act as

attractors for fast dynamics to nearby invariant structures, or slow manifolds, that exist for

and organize trajectories of the full flow when the separation between timescales is sufficiently

strong. These methods ensure a closeness between slow manifolds and critical manifolds but

do not otherwise guide the process of precisely identifying the locations of slow manifolds, and

they do not indicate how strong of a timescale separation qualifies as “sufficiently strong” for

any particular system. Other analytical methods or frameworks to characterize structures

that may exert a finite-time organizing influence or even an asymptotic time influence in

the absence of a strong timescale separation [13] are rather limited, particularly in terms of

pinpointing the locations of these structures. Such structures may include periodic orbits,

for example, or rivers, which are orbits that attract nearby trajectories over some finite time

window. Rivers have been identified by inspection in various systems [6, 62], but have never

been methodically analyzed or precisely defined outside of polynomial vector fields on R2

that satisfy a particular algebraic homogeneity condition [16, 15].

In this chapter, we introduce a general approach to locating trajectories with particu-
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lar properties within a given flow generated by a system of ordinary differential equations

(ODEs). The idea of this approach is to start with a curve in phase space as an initial guess

for such a trajectory and then use a coordinate transformation that we call a local orthogonal

rectification (LOR), based on the well-known Frenet frame [41, 7], to generate a frame in

which a correction to the guess can easily be derived. Importantly, the initial guess need not

be particularly close to the sought-after trajectory. It should simply be tailored somewhat

to the property of interest; for example, the guess should consist of a simple closed curve if

the goal is to find a periodic orbit.

The LOR provides a new system of ODEs that can be analyzed to supply the desired

correction and thus locate an actual trajectory of the original flow with the property of

interest. We apply the LOR approach to define rivers in a way that relates attractiveness,

invariance, and the curvature of trajectories, and to locate them, as well as periodic orbits

and extensions of invariant manifolds away from the singular, separated-timescale limit, in

planar dynamical systems. Interestingly, the LOR yields a differentiable surjective mapping

that provides a submersion of the flow in the LOR frame into the original phase space; in

the river case, we therefore observe that it takes a submersion to find a river.

The remainder of this chapter is organized as follows. We define a notion of near-

invariance that proves useful for analyzing the flow within the LOR frame, and we extend

the LOR frame to the study of asymptotic dynamics defined in the long-time limit. We

will present an example of this asymptotic analysis in the context of fast-slow analysis. In

Section 3.3, we plunge into rivers. We define quantities that are specifically useful for that

study, including the zero-curvature locus that has been used by some previous authors [1, 26],

and provide precise definitions for rivers and their points of origin, which we call confluences

for reasons that we explain. We argue that the presented definitions are particularly useful

and illustrate these ideas in examples. Moreover, we consider bifurcation-like events in which

confluences interact as well as asymptotic rivers, which can separate regions of phase space on

which trajectories exhibit distinct transient dynamics as they approach a common attractor.

The chapter finishes with a summary of our conclusions and a discussion of some natural

future directions, of which there are many.
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3.2 Nearly Invariant Curves

We will use curves in the plane, γ : (δ1, δ2) → Ω, as LOR basecurves. We begin by

presenting how the near invariance measure, described in section 2.5.2 can be used to study

asymptotic approach.

3.2.1 Nearly Invariant Curves

Consider a curve γ : (δ1, δ2) → Ω, we would like to have a quantitative measure of

how close γ is to being an actual solution along its domain. The ξ component of the LOR

dynamics in the case of a curve in the plane is given by

ξ̇ = 〈f ◦Ψγ(η, ξ), Nγ(η)〉

and consider the ξ nullcline, which we denote by

C = {(η, ξ) ∈ Uγ| 〈f ◦Ψγ(η, ξ), Nγ(η)〉 = 0}. (3.1)

Hence µγ : (δ1, δ2) → R+, defined in (2.22) can be used to describe curves which are nearly

invariant.

Immediately, we note that µγ(δ1, δ2) = 0 if and only if γ(δ1, δ2) is invariant. Note also

that Ξγ(η) is simply the branch of {ξ̇ = 0} that is closest to {ξ = 0}; see Figure 4. With this

new measurement in hand, we can define a weak notion of invariance, which we call near

invariance.

Definition 3.2.1. Suppose that γ : (δ1, δ2)→ Ω is a simple, regular C 2 curve and f : Ω→ R2

is a C 1 vector field. We say that γ is ε-nearly invariant on {η1, η2} ⊆ (δ1, δ2) if

µγ(η) ≤ ε for all η ∈ {η1, η2},

where {η1, η2} represents any type of interval (open, half-closed, etc.).
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3.2.2 LOR Asymptotics

The LOR frame extends naturally and usefully for studying asymptotic dynamics. This

analysis is based on a fairly general lemma that we prove, using the LOR coordinates, which

relies on Ξγ(η) and hence on near invariance. Note that Ξγ(η) may be positive or negatve;

we use [0,Ξγ(η)] to refer to both cases in the following statement.

Lemma 3.2.2. Suppose that f : Ω → R2 is C 1 and γ : [0,∞) → Ω is a regular C 2 curve

such that

lim
η→∞
‖γ(η)‖ =∞ and lim

η→∞

1

κγ(η)
6= 0.

Additionally, suppose that the correction to γ, Ξγ(η), is C 1 and Ξγ(η)→ 0 monotonically as

η →∞ with

〈f ◦Ψγ(η, ξ), Tγ(η)〉 > 0 for all η ≥ 0, ξ ∈ [0,Ξγ(η)].

If 〈f ◦Ψ(0, 0), Nγ(0)〉 and Ξγ(0) have opposite signs, then there is a trajectory φ(t) =

Ψγ(η(t), ξ(t)) such that

lim
t→∞

dH(φ(t), γ)↘ 0.

where dH is the Hausdorff distance. Furthermore, we can choose φ such that (η(0), ξ(0)) =

(0, ξ∗) for ξ∗ ∈ [0,Ξγ(0)] and we have that ξ(t) ∈ [0,Ξγ(η(t))] for t > 0.

Proof. As Ξγ(η) → 0 monotonically, either Ξγ(η) > 0,Ξ′γ(η) < 0 or Ξγ(η) < 0,Ξ′γ(η) > 0.

We will treat the first case here; the second case follows in the same manner. In what follows,

we will use (η, ξ) to denote the coordinates in the LOR frame with basecurve γ.

Define the following sets:

W = {(η, ξ)|η ≥ 0, 0 ≤ ξ ≤ Ξγ(η)},

W+ = {(η,Ξγ(η))|η ≥ 0} ∪ {(η, 0)|η ≥ 0},

W0 = {(0, ξ)|0 ≤ ξ ≤ Ξγ(0)}. (3.2)

We will show that there must be some trajectory φ with φ(0) ∈ W0 such that φ(t) ⊆ W

for all t ≥ 0. To do so we will use Wazewski’s Lemma. Denote the flow induced by

(η̇, ξ̇) = Lγf(η, ξ) by Φ(x, t). We define Wi = {x ∈ W |∀t1 > 0,∃t2 ∈ (0, t1) : Φ(x, t2) 6∈

W},We = {x ∈ W |∃t > 0 : Φ(x, t) 6∈ W} and we call Wi,We the immediate and eventual
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exit sets of W , respectively. Then Wazewski’s Lemma can be stated as follows; see [11] for

a proof of a more general version of this result.

Wazewski’s Lemma: If Wi and W are closed, then We is a strong deformation retract of

Wi.

To clarify, X is a strong deformation retract of A ⊆ X if there exists a homotopy

h : X× [0, 1]→ X such that for x ∈ X, a ∈ A, t ∈ [0, 1] we have h(x, 0) = x, h(x, 1) ∈ A, and

h(a, t) = a. That is, h is a homotopy between X,A that restricts to the identity on X ×{0}

and on A× [0, 1]. For our purposes we will only need the following fact: the number of path

connected components of a closed set is preserved under homotopy.

Returning to our problem, we see that Wi = W+ and that W,W+ are closed sets; there-

fore, Wi,We are homotopic and hence have the same number of path connected components.

Suppose that W = We; that is, all trajectories beginning in W leave W eventually. Then

We is path connected and hence W+ is path connected, which is false. Therefore, W 6= We,

and there is at least one trajectory φ(t) = (η(t), ξ(t)) that has φ(t) ⊆ W for all t ≥ 0. We

note that η̇ > 0 on W and hence η(t)↗∞ (see Figure 5). Therefore, our assumptions that

ξ̇ < 0 on W \Wi, 0 ≤ ξ(t) ≤ Ξγ(η(t)), and Ξγ(η) → 0 monotonically as η → ∞ imply that

ξ(t)↘ 0 as η →∞.

Furthermore, reversing time, we can flow φ backwards in time until η(t) = 0. Hence, we

can take φ(0) = (0, ξ∗) for some ξ∗ ∈ [0,Ξγ(0)].

We remark that if we change the parameterization of γ in the above result such that

γ : (−∞, 0)→ Ω, then we can reparameterize to meet the conditions of Lemma 3.2.2, hence

the parameterization of γ is immaterial.

3.2.3 Tracking Slow Manifolds in the LOR Frame

There is already a substantial body of work dealing with identifying invariant manifolds

in multiple timescale systems. The most powerful and most cited result is Fenichel’s theorem

[34], which states that given a C r, r ≥ 1 system ẋ = f(x, y), ẏ = εg(x, y), with a C r connected

critical manifold defined by M0 ⊂ {(x, y) : f(x, y) = 0}, such that the matrix Dxf(x, y)
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is normally hyperbolic (i.e., has no eigenvalues of zero real part) for all (x, y) ∈ M0, there

exists, for ε > 0 sufficiently small, a perturbed C r slow manifold Mε that is invariant, is

diffeomorphic to M0, and lies C 1O(ε)-close to M0.

Despite its significant generality and utility, Fenichel’s Theorem does not provide any

a priori indication of what values of ε qualify as sufficiently small. This constrains the

applicability of Fenichel’s theorem in concrete settings, as it is difficult to determine whether

a particular parameter set fits the bill. Using our concept of near invariance, we will illustrate

a way to derive information about the range of ε over which a family of slow manifolds extends

and can be tracked.

We will consider the FitzHugh-Nagumo system given by

v̇ = v − v3

3
− w − I

ẇ = ε(v + a− bw), (3.3)

where a, b, ε, I are positive constants, traditionally we require that 0 < ε � 1. In the

singular limit, ε → 0, we see that the parameterization of the critical manifold given by

γ(η) = (η, η − η3/3 − I) is an invariant curve, as it is a curve of fixed points. This curve

is normally hyperbolic everywhere except for η = ±1; therefore, Fenichel’s theorem tells us

that there will be invariant perturbations to γ away from η = ±1 for ε sufficiently small.

If we take our LOR basecurve to be the critical manifold, then

‖γ′(η)‖ =

√
1 + (1− η2)2 Tγ(η) =

(1, 1− η2)

‖γ′(η)‖

Nγ(η) =
(η2 − 1, 1)

‖γ′(η)‖
κγ(η) =

−2η

‖γ′(η)‖3 . (3.4)

We will not display the full details of the LOR equations, but we claim that they are simple

to compute and take the form

σ(η, ξ)η̇ =
3∑
i=0

αi(η)ξi =: fη(η, ξ)

ξ̇ =
3∑
i=0

βi(η)ξi =: fξ(η, ξ) (3.5)
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where σ(η, ξ) = ‖γ′(η)‖ (1− ξκγ(η)) and

α0(η) = −ε(η
2 − 1)(3a− 3(b− 1)η + bη3 + 3bI)

3 ‖γ′(η)‖
β0(η) =

ε(3a− (3b− 1)η + bη3 + 3bI)

3 ‖γ′(η)‖

α1(η) = −1− ε+
ε(1 + b(η2 − 1))

‖γ′(η)‖2 β1(η) = 1− η2 +
ε(η2 − 1− b)
‖γ′(η)‖2

α2(η) = −η(η2 − 1)2

‖γ′(η)‖3 β2(η) = −η(η2 − 1)3

‖γ′(η)‖3

α3(η) = − (η2 − 1)3

3 ‖γ′(η)‖4 β3(η) = − (η2 − 1)4

3 ‖γ′(η)‖4 ..

Figure 6 shows us that the ξ-nullcline plays a strong role in organizing trajectories in the

region {|η| > 1}. We will focus our analysis on showing how {ξ̇ = 0} informs us about how

the critical manifold perturbs on {η < −1}.

Proposition 4. Given ε, b > 0, there is a trajectory φ(t) of (3.3) such that dH(φ(t), γ)↘ 0

as t→ −∞.

Proof. From (3.5), the ξ-nullcline has the form

3∑
i=0

βi(η)ξi = 0, (3.6)

which has three computable root functions ξj(η) : R→ C, j ∈ {1, 2, 3}. Furthermore, we can

determine the number of real solutions at each value of η by computing the discriminant of the

cubic polynomial (3.6), which we will denote ∆ξ(η, ε). Employing a symbolic computation

program, we find that

∆ξ(η, ε) =
(η2 − 1)4

3 ‖γ′(η)‖10

(
−η18 + εp(η, ε)

)
where p(η, ε) is a multinomial in (η, ε) that has orders (16, 3) respectively, p(η, ε, a, b, I) can

be written in the form p(η, ε, a, b, I) =
∑16

i=0 pi(ε, a, b, I)ηi .

If ∆ξ(η, ε) < 0 then (3.6) has a single real root, if ∆ξ(η, ε) > 0 then there are 3 real

solutions, and if ∆ξ(η, ε) = 0 then further analysis is required. Note that, for all ε, as

η → ±∞, ∆ξ(η, ε)→ −∞. Therefore there are functions η−(ε) ≤ η+(ε) such that

∆ξ(η, ε) < 0 ε ∈ R, η ∈ R \ [η−(ε), η+(ε)],
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as the solutions to ∆ξ(η, ε) = 0 are bounded. Thus, for η < η−(ε), there is exactly one real

branch to {ξ̇ = 0}, and therefore Ξγ(η) is a smooth function for η < η−(ε).

We will use the following simple asymptotic approximation for Ξγ(η). It can be shown

by direct computation, for any δ ∈ R and for fξ given in (3.5),

fξ

(
η,
δ + bε

3η

)
= −δ

3
η +

ε(9− b(3 + bε)) + δ(3− 2bε)− δ2

9η
+O

(
1

η2

)
as η → −∞. Therefore, given any α, β > 0 we have

lim
η→−∞

fξ

(
η,
−α + bε

3η

)
= −∞, lim

η→−∞
fξ

(
η,
β + bε

3η

)
=∞.

Hence there exists an H̃ sufficiently negative such that for η < H̃,

β + bε

3η
< Ξγ(η) <

−α + bε

3η
.

Therefore Ξγ(η)→ 0 as η → −∞. Note that

Ξ′γ(η) = −∂ηfξ(η,Ξγ(η))

∂ξfξ(η,Ξγ(η))

and it can be shown that

−∂ηfξ
∂ξfξ

(
η,
β + bε

3η

)
=
−2β − bε

η2
+O

(
1

η3

)
.

Thus, we can choose β > 0 and H ≤ H̃ such that Ξ′γ(η) < 0 for η < H, which implies

that Ξγ(η) converges to 0 monotonically as η → −∞. We can compute that 1/κγ(η) blows

up as η → −∞ and hence limη→−∞ 1/κγ(η) 6= 0. Additionally, using the same asymptotic

approach employed above, 〈f ◦Ψγ(η, ξ), Tγ(η)〉 < 0 for η sufficiently negative and ξ ∈

[0,Ξγ(η)]. Finally we note that 〈f ◦Ψγ(η, 0), Nγ(η)〉 < 0 for η sufficiently small (in fact,

limη→−∞ 〈f ◦Ψγ(η, 0), Nγ(η)〉 = −∞). Therefore, for η sufficiently negative,

〈f ◦Ψγ(η, 0), Nγ(η)〉 and Ξγ(η) have the same sign.

Hence, in backwards time, our system satisfies all of the hypothesis of Lemma 3.2.2,

therefore there is a trajectory φ(t) of (3.3) such that dH(φ(t), γ)↘ 0 as t→ −∞.

Corollary 7. Given ε, b > 0 and η sufficiently negative, (η, 0) is a super-solution of (3.5)

and (η,Ξγ(η)) is a sub-solution of (3.5).
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Proof. Choose H < −1 so that Ξ′γ(η) < 0, fη(η,Ξγ(η)) > 0 (so that fη(η,Ξγ(η)) > 0 in

backwards time) and fξ(η, 0) < 0 for all η < H, which was shown to exist in the proof of

Proposition 4 in the supplementary materials. Clearly (η, 0) is a super-solution. We note

that fξ(η,Ξγ(η)) = 0 by construction, hence Ξγ(η) is a sub-solution.

Furthermore, we can compute H. Let A1 = {η|∂ηfξ(η,Ξγ(η)) = 0},

A2 = {η|fη(η,Ξγ(η)) = 0}, and A3 = {η|fξ(η, 0) = 0}. Taking H = min(A1∪A2∪A3∪{−1})

will suffice.

This result allows us to track φ along γ. Denote by H(ε) the value of H in the previous

proof as a function of ε.

Therefore, for η < H(ε) our “slow manifold” is trapped in between (η, 0) and (η,Ξγ(η))

in the LOR frame. When we map back to (x, y) space, our identified trajectory φ must

satisfy dH(φ(t), γ) < µγ(η(t)) as long as η(t) < H(ε). Furthermore, we note that Ξ′γ(η) <

0,Ξγ(η) < 0 for η < H(ε) hence µγ(η(t)) ≤ µγ(H(ε)) for η(t) < H(ε). Thus we have the

uniform estimate dH(φ(t), γ) ≤ µγ(H(ε)) as long as η(t) < H(ε).

We chose to parameterize γ by the x coordinate, so η = x. If we employ the asymptotic

estimate from the proof of Prop. 4 (supplementary materials) we see that

dH(φ(t), γ) < µγ(x(t)) ≤ bε

3|x(t)|

as long as x(t) is sufficiently negative. This proves that dH(φ(t), γ) = O(ε) as ε → 0, thus

we have recovered a Fenichel-type tracking estimate. Yet our method also demonstrates that

the existence of “perturbed critical manifolds” is a geometric feature of the flow that is not

necessarily dependent on timescale separation.

While we chose to study η < −1, one can just an easily study η > 1 and attain analogous

results. In Figure 7, we display the family of perturbed critical manifolds as ε varies and a

plot of H(ε) against ε. One seemingly counterintuitive feature of this figure is the positive

jump in H(ε). That is, as ε increases, we can track the perturbation of the critical manifold

closer to where normal hyperbolicity is lost, which would correspond to H = −1, although

with an increase in distance from the critical manifold corresponding to larger µγ(H). In

other words, our technique performs better as ε becomes larger, which is contrary to standard

Fenichel Theory. This outcome is possible due to the asymptotic nature of this approach.
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3.3 Curvature of a Flow and Rivers

In the second main section of this chapter, we study how the curvature of a flow can be

used to understand certain phase space structures. We will continue to make use of the LOR

frame and the associated invariance measure, and we will turn our focus to understanding

“rivers”. Recent work has demonstrated that the curvature of trajectories can relate to

interesting dynamical effects [26, 13, 1]. We will argue that rivers, the attractiveness of

which has hitherto remained insoluble, are caused by curvature phenomena.

3.3.1 Curvature of Trajectories

We wish to characterize the curvature of trajectories of the flow induced by ẋ = f(x). As

we rarely, if ever, can express a trajectory φ : (t1, t2) → Ω explicitly, we will use properties

of f(x) to compute the curvature of φ(t). For φ̇(t) = f(φ(t)), taking a time derivative yields

φ̈(t) = [Dxf(φ(t))]φ̇(t) = [Dxf(φ(t))]f(φ(t))

where [Dxf(x)] is the Jacobian of f(x). Define f (2) : Ω → R2 by f (2)(x) = [Dxf(x)]f(x)

such that by definition φ̈(t) = f (2)(φ(t)). Similarly, taking an additional time derivative, we

find
...
φ (t) =

[
Dxf

(2)(φ(t))
]
f(φ(t));

thus, we define f (3)(x) = Dxf
(2)(x)f(x) so that

...
φ (t) = f (3)(φ(t)). Clearly we can inductively

define f (i)(x) for i ≥ 1 as long as f is smooth enough. Recall that the curvature of φ(t) is

given by

κφ(t) =
φ̇(t) ∧ φ̈(t)∥∥∥φ̇(t)

∥∥∥3 (3.7)

where x∧y = det(x, y). All of the quantities on the right hand side of (3.7) can be computed

from f(x); that is,

κφ(t) =
f(φ(t)) ∧ f (2)(φ(t))

‖f(φ(t))‖3 , (3.8)

which leads us to the following definition.
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Definition 3.3.1. Suppose that f : Ω → R2, where Ω ⊆ R2 is open, is a C 2 vector field.

Denote

Ω0 = f−1({0}).

We call the function κ : Ω \ Ω0 → R defined by

κ(x) =
f(x) ∧ f (2)(x)

‖f(x)‖3 (3.9)

the curvature of the flow induced by f(x). Additionally we denote

∆i,j(x) = f (i)(x) ∧ f (j)(x) (3.10)

for i, j such that f (i)(x), f (j)(x) are well-defined.

The following smoothness estimate follows directly from the definition of κ(x).

Proposition 5. If f ∈ C α(Ω,R2) with α ≥ 2, then κ ∈ C α−1(Ω \ Ω0,R). If φ : (t1, t2)→ Ω

is a trajectory of the flow induced by f(x), then κφ(t) = κ(φ(t)).

Proof. The smoothness conditions come from noticing that f (i)(x) is C α+1−i (where f 1(x) :=

f(x)). The second condition follows from Definition 3.3.1.

3.3.2 Confluences and Rivers

Define the set

Zκ = {x ∈ Ω \ Ω0|κ(x) = 0},

which we call the zero-curvature locus (ZCL). We remark that Zκ has been studied in previous

papers [26, 13, 1]; however, our use of the LOR frame in the current chapter to identify special

flow-organizing trajectories will be novel. Let γz : (−δ, δ)→ Ω be a regular parameterization

of Zκ so that κ(γz(η)) = 0 for η ∈ (−δ, δ). Before plumbing the role of Zκ, we use our

invariance measure to identify a phenomenon that we call a river.

Definition 3.3.2. We say that η∗ ∈ (−δ, δ) is confluent if µγz(η
∗) = 0. Additionally we call

the point γz(η
∗) a confluence. We say that a trajectory ρ(t) of ẋ = f(x) is a river if ρ(0) is

a confluence.
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Remark 4. 1. While there is no general, precise definition of a river, except for the defi-

nition of Diener and Diener [16, 15] that applies only to polynomial flows, there are two

key features of trajectories that are typically dubbed rivers: other trajectories experience

a strong contraction/repulsion towards them, and there is a lack of a clear cause for this

contraction. That is, the definition of river shold apply to a trajectory that is not a stable

manifold, limit cycle or some other clearly distinguished solution yet locally organizes

the flow nonetheless. Although it is not particularly apparent at this point, we shall see

that Definition 3.3.2 provides the former property without requiring that a river is any

sort of otherwise distinguished curve.

2. It has been noted in the literature [1] that there are curves where κ = 0 that have no

clear effect on the flow. Such branches of Zκ are called ghosts. By studying how Zκ

aligns with the flow (via µγz), we not only identify points where Zκ is instantaneously

invariant, but we also eliminate ghosts.

3. Finally we justify our use of the word “confluence”. Typically a confluence is where two

rivers come together. We use the term because there are special manifolds that do cross

at our confluences, discussed below in Theorem 3.3.3, and it is exactly these crossings

that give birth to rivers. Since the term “source” already has other meaning, we decided

to name these points based on the crossing property rather than selecting a more obscure

term for birthplace of a river.

3.3.3 Rivers in the FitzHugh-Nagumo System

We return to the FitzHugh-Nagumo system (3.3) for a brief example of how we can fish

for rivers. In our study of “slow manifolds” in Interlude 2, by focusing on {|η| > 1}, we

completely omitted any mention of the middle, unstable branch of the critical manifold for

the FHN system. We address this omission here in the context of rivers.

We can explicitly compute the ZCL for the FitzHugh-Nagumo system. The curvature of

the flow has the form

κ(v, w) =

∑2
i=0 εαi(v)wi

‖f(v, w)‖3

where αi(v) are computable polynomials in v. For each v ∈ R there are up to two branches
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to Zκ. Let w±(v) denote the solutions to
∑2

i=0 αi(v)wi = 0. Consider Figure 8(a), which

shows w+(v), w−(v) in red and blue, respectively, in the flow. The outer branches of w+(v)

and the central branch of w−(v) seem to be nearly invariant. For now, we will search for

confluences along the central branch of w−(v) by taking γ−(v) := (v, w−(v)) for this branch

of w−(v) as a LOR basecurve.

Computing the LOR dynamics using this basecurve yields Figure 8(b) for small ξ, with

the correction Ξγ−(η) shown in blue. We see that Ξγ−(0) = 0, which is caused by symmetries

of the FHN system. Therefore, the point γ−(0) = (0, w−(0)) is a confluence, and hence,

the trajectory through (0, w−(0)) is a river, which we will denote ρ−. Examining the LOR

dynamics, it appears that this river is unstable, as nearby trajectories seem to be pushed

away, which is consistent with the appearance of the original flow.

We confirm this intuition by studying the river more carefully in (v, w) space, shown

in Figure 8(c). The submersion of the river ρ− is shown in orange; this trajectory evolves

counter-clockwise and asymptotically approaches the periodic orbit. We take a sequence of

initial conditions from a transverse section to ρ− and integrate them backward in time, and

we note that ρ− is highly unstable in forward time. This observation raises the important

point that rivers, as we have defined them, may attract trajectories in forward time or in

backward time; in the latter case, they repel trajectories in forward time.

We also see that ρ− lies fairly close to the middle branch of the v-nullcline, so we suggest

that this river may be playing the role of an unstable slow manifold. As we have taken

ε = 0.3, however, we are far from the singular limit; nontheless, our curvature analysis has

apparently located a remnant of the fast-slow structure in the FHN system. This observation

is consistent with the previous literature; in [1], the authors note that the ZCL does a good

job of identifying fast-slow behavior.

The final panel in Figure 8 shows a more efficient method of identifying confluences,

which is stated in Theorem 3.3.3. We also note that there is a second river in the FHN

system, outside of the periodic orbit.
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3.3.4 A Basic Theory of Confluences

The FHN example in Interlude 3 illustrates how the definition of rivers based on conflu-

ences aligns with desirable properties of the flow (possibly in backward time) but also can

be tedious to apply. To locate rivers using these ideas, the ZCL must be parameterized and

the LOR frame must be computed with a basecurve derived from the ZCL. Here we provide

a list of equivalent conditions that may simplify the divining process.

Theorem 3.3.3. Suppose that ρ(t) is a trajectory of ẋ = f(x) such that ρ(0) = ρ0. The

following are equivalent:

1. ρ(t) is a river,

2. ∆1,2(ρ0) = ∆1,3(ρ0) = 0,

3. κρ(0) = κ̇ρ(0) = 0,

4. dim span{f(ρ0), f (2)(ρ0), f (3)(ρ0)} = 1.

Proof. To show that 1⇔ 2, it suffices to show that µγz(η
∗) = 0 if and only if ∆1,3(γz(η

∗)) =

0. Recall that κ(γz(η)) ≡ 0 for the parameterization γz(η) of the ZCL defined on (−δ, δ). Dif-

ferentiating both sides of this equation yields 〈Dxκ(γz(η)), γ′z(η)〉 = 0. Therefore, Dxκ(γz(η))

is collinear with Nγz(η) for all η ∈ (−δ, δ). Thus

〈f(γz(η)), Nγz(η)〉 = 0 if and only if 〈Dxκ(γz(η)), f(γz(η))〉 = 0,

where Dxκ(γz(η)) 6= 0 is assured by our assumption that γz has a regular parameterization.

To conclude, fix η ∈ (−δ, δ) and note that for the trajectory φ(t) such that φ(0) = γz(η),

〈Dxκ(γz(η)), f(γz(η))〉 =
d

dt
κ(φ(t))

∣∣∣∣
t=0

and

d

dt
κ(φ(t)) =

d

dt
κφ(t) =

det(f(φ(t)), f (3)(φ(t)))

‖f(φ(t))‖3 − 3κφ(t)

〈
f (2)(φ(t)), f(φ(t))

〉
‖f(φ(t))‖2 .

As κφ(0) = κ(γz(η)) = 0, definition (3.10) for ∆i,j implies that µγz(η
∗) = 0 if and only

if ∆1,3(γz(η
∗)) = 0. The above computation clearly shows that 2 ⇔ 3, and 2 ⇔ 4 by

definition.
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Remark 5. Theorem 3.3.3 helps justify the choice to refer to the birthplace of a river as a

confluence. Conditions (2) and (3) in the theorem both show that a confluence, as we have

defined it, corresponds to a point where the sets satisfying two different conditions come

together.

Theorem 3.3.3 provides simple conditions for identifying rivers. We would also like to

have a simple condition for differentiating between attracting and repelling rivers. Express

the dynamics in a neighborhood of a confluence in the LOR frame, using our parameterization

γz of Zκ as our base curve. We suppose without loss of generality that the confluence occurs

at γz(0) =: ρ0. A simple Taylor expansion reveals that

η̇ = ±‖f(ρ0)‖
‖γ′z(0)‖

+O(η, ξ),

ξ̇ = 〈[Dxf(ρ0)]Nγz(0), Nγz(0)〉 ξ +O(η, ξ2). (3.11)

Hence the attractivity of γz is determined by the sign of 〈[Dxf(ρ0)]Nγz(0), Nγz(0)〉. To

simplify matters, we note that Nγz(0) = ±Nρ(0) where ρ(t) is the river. Hence

〈[Dxf(ρ0)]Nγz(0), Nγz(0)〉 = 〈[Dxf(ρ0)]Nρ(0), Nρ(0)〉 ,

which allows the following simple classification of rivers.

Definition 3.3.4. A river ρ is hyperbolic if 〈[Dxf(ρ0)]Nρ(0), Nρ(0)〉 6= 0. If

〈[Dxf(ρ0)]Nρ(0), Nρ(0)〉 > 0

then ρ is attracting, if

〈[Dxf(ρ0)]Nρ(0), Nρ(0)〉 < 0

then ρ is repelling.
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3.3.5 Some Limnology and Fluvial Cartography

Since we have already inundated the reader with results about the FHN oscillator, we

will now study another well known system: a pair of coupled oscillators of the form

θ̇ = 1− cos(θ) + (1 + cos(θ))(I1 + P (θ)− g1P (φ)),

φ̇ = 1− cos(φ) + (1 + cos(φ))(I2 + P (φ)− g2P (θ)) (3.12)

where P (α) = (1 − cos(α))/2π and g1, g2, I1, I2 > 0. These are basic self-excitatory theta

model [5] oscillators with asymmetric coupling representing the effects of inhibitory synapses,

which have been studied for example in [48]. For the sake of concreteness, we take I1 = 1, I2 =

2, g1 = 1, g2 = 3 for our phase portrait, shown in Figure 9. Note that our vector field is

invariant under the transformation (θ, φ) 7→ (−θ,−φ), thus its flow is symmetric about the

origin.

With our equivalent formulations in hand, we set out in search of rivers. We find the

most promising dowser to be condition 2 of Theorem 3.3.3. Using this condition, we can find

all of the rivers in our domain simultaneously without having to worry about parameterizing

each branch of Zκ and computing its correction. Our algorithm for identifying rivers is as

follows: compute the zero-level sets of ∆1,2(x),∆1,3(x) on the domain of interest x ∈ Ω, look

for regions where the two level sets are close, and then use Newton’s Method to approximate

the location of the river to arbitrary accuracy.

We find that there are four crossings of {∆1,2(x) = 0}, {∆1,3(x) = 0} in [−π, π]2, the

coordinates of which we label C1 through C4, and therefore our system has four rivers.

From the aforementioned symmetry in the system (which induces symmetry in {∆1,2(x) =

0}, {∆1,3(x) = 0}), C4 = −C1, C3 = −C2. We designate the four rivers of the system as

{Ri}4
i=1 in the natural way. A simple computation reveals that all four confluences yield

hyperbolic rivers, R1, R2 are attracting and R3, R4 are repelling. Figure 10 shows the four

rivers and how they interact.

We see that R1 and R2 rapidly contract towards one another, but R2 seems to exert more

“influence” on the flow, similarly with their antipodes. So in a sense, R2, R3 are the dominant

rivers in the system; we will comment on this in more detail in the following section.
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Note that all four confluences lie near the identity line, which is more than a passing

curiosity. If g1 = g2 and I1 = I2, then it is easy to verify that {θ = φ} is an invariant

subset of the flow. We see that this set has everywhere vanishing curvature, as all lines do.

Furthermore, the set {θ = φ} has everywhere vanishing torsion, as its curvature is constant.

Thus, by Theorem 3.3.3 every point in {θ = φ} is a confluence, with corresponding flow

shown in Figure 11(a).

As we vary our parameters away from the symmetric case, it is unsurprising that this

continuum of confluences breaks apart. However, some of the crossings of {∆1,2(x) =

0}, {∆1,3(x) = 0} persist, as shown in Figure 11(b). Hence, the proximity of the conflu-

ences to the identity line in Figure 10 can be viewed as an artifact of the symmetry of

system (3.12).

Hopefully, this quick dip into the rivers of the theta model is enough to whet the appetite

of our readers for a deeper look at the interactions of confluences, which we present in the

next subsection.

3.3.6 Confluence Bifurcations

We have seen that the theta model (3.12) has four rivers, two attracting and two re-

pelling, for the parameter values that we initially studied. For small g2 close to g1, however,

the system has just two rivers. Hence, we are led to float some interesting questions: Are

confluences robust under parameter perturbation? Can confluences undergo “bifurcations”?

If so, is there a numerical condition to identify bifurcation values? In this section we will pro-

vide answers to these questions, and demonstrate that confluences (and therefore rivers) are

generically robust in parameter space. At the end of the section we will consider parameter

dependence of rivers in system (3.12).

First, we compute a sufficient condition for confluences to persist in parameter space.

Proposition 6. Suppose that f(x, λ) is C 3 in x on Ω and C 1 in λ on some open param-

eter set Λ ⊆ Rn. Suppose M1 = {∆1,2(x, λ) = 0},M2 = {∆1,3(x, λ) = 0} are smooth,

codimension-1 (in Ω× Λ) manifolds such that (x0, λ0) ∈M1 ∩M2. If

∆1,4(x0, λ0) 6= 0
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then there is there is a submanifold M̃ ⊆ (M1 ∩ M2) ∩ B((x0, λ0), δ). Additionally, if

∂λi∆1,3(x0, λ0) 6= 0 for any i ∈ {1, · · · , n}, then M̃ 6⊆ {λ = λ0}.

Proof. Suppose that σ1 : U1 ⊆ Rn−1 → Ω×Λ is a chart ofM1 at (x0, λ0), that is ∆1,2◦σ1(y) =

0 for all y ∈ U1. Hence for each 1 ≤ i ≤ n+ 2,

0 = ∂i(∆1,2 ◦ σ1(y)) = 〈Dx∆1,2 ◦ σ1(y), ∂iσ1(y)〉 .

Therefore, T(x0,λ0)M1 ⊥ Dx∆1,2(x0, λ0) and analogously T(x0,λ0)M2 ⊥ Dx∆1,3(x0, λ0). We

note that

0 = ∆1,3(x0, λ0) = 〈Dx∆1,2(x0, λ0), (f(x0, λ0), 0, · · · , 0)〉 ;

hence, (f(x0, λ0), 0, · · · , 0) ∈ T(x0,λ0)M1. Therefore, if

〈Dx∆1,3(x0, λ0), (f(x0, λ0), 0, · · · , 0)〉 6= 0,

then (f(x0, λ0), 0, · · · , 0) 6∈ T(x0,λ0)M2, hence Rn = (f(x0, λ0), 0, · · · , 0) ⊕ T(x0,λ0)M2 ⊆

T(x0,λ0)M1 ⊕ T(x0,λ0)M2, and thus M1,M2 intersect transversely at (x0, λ0). To conclude

we note that

〈Dx∆1,3(x0, λ0), (f(x0, λ0), 0, · · · , 0)〉 = ∆1,4(x0, λ0) + ∆2,3(x0, λ0)

yet ∆2,3(x0, λ0) = 0 by condition 4 of Theorem 3.3.3. Hence,

〈Dx∆1,3(x0, λ0), (f(x0, λ0), 0, · · · , 0)〉 = ∆1,4(x0, λ0).

Thus, the transverse manifold theorem gives the existence of M̃ . The last remark in the

proposition statement holds as T(x0,λ0)M̃ ⊆ T(x0,λ0)M2 and T(x0,λ0)M2 6⊆ {λ = λ0}.
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Thus we have shown that generic confluences are robust in parameter space. Additionally,

applying the contrapositive of the above proposition, if two (or more) confluences come

together, then we must have a loss of transversality. Thus, we have an analytic condition for

“bifurcations” of confluences: a confluence bifurcation is a point in phase space that satisfies

∆1,2(x, λ) = ∆1,3(x, λ) = ∆1,4(x, λ) = 0. (3.13)

Now, we will discuss why we refer to the events identified by condition (3.13) are “bi-

furcations” and not bifurcations. We note that curvature (and therefore, the curvature of a

flow) is not a topological invariant. That is, if we consider a diffeomorphism F : R2 → R2

and a curve γ : [0, 1]→ R2, the curvatures of γ and F ◦ γ will generally differ. For example,

if we stretch a circle of radius one to a circle of radius two, the curvature of the circle changes

from 1 to 1/2. Therefore, the zero-curvature locus is not necessarily a topological invariant

of the flow.

As an example, we consider the parameter dependence of rivers of (3.12). Note that we

can express ∆1,2,∆1,3 for (3.12) as

∆1,2(θ, φ) =
∑
i,j,k,l

ai,j,k,l(I1, I2, g1, g2) sini(θ) cosj(θ) sink(φ) cosl(φ)

∆1,3(θ, φ) =
∑
i,j,k,l

bi,j,k,l(I1, I2, g1, g2) sini(θ) cosj(θ) sink(φ) cosl(φ) (3.14)

where ai,j,k,l(I1, I2, g1, g2), bi,j,k,l(I1, I2, g1, g2) are known functions. We define

(x, y, u, v) = (sin(θ), cos(θ), sin(φ), cos(φ))

which transforms (3.14) into a multinomial equation, which is additionally subject to x2 +

y2 = 1, u2 + v2 = 1. We employ a numerical root solver to identify all real roots of

∆1,2(x, y, u, v) = ∆1,3(x, y, u, v) = 0, x2 + y2 = u2 + v2 = 1 as one parameter is varied away

from our base parameter value (I1, I2, g1, g2) = (1, 2, 1, 3). These solutions are transformed

back into (θ, φ) confluences via (θ, φ) = (arctan(y/x) arctan(v/u).

We present two one-parameter bifurcation diagrams, varying g1 and I1, respectively.

Figure 12 shows plots of the θ coordinate of the confluences of (3.12) versus the parameter

being varied; the color of each branch denotes the stability of the confluence, with blue for
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stable and red for unstable. The dotted vertical lines denote parameter values at which

confluence bifurcations occur (including two that occur at the same g1 value).

As we vary g1 ∈ [0, 1.3] we find that there are four confluence bifurcations that fall into

three phenomenological categories, which we term (+,+) confluence bifurcations, (−,−)

confluence bifurcations, (+,−) confluence bifurcations. In the (+,−) bifurcations, a stable

confluence meets an unstable confluence and the pair annihilate; we see both subcritical and

supercritical variations of this bifurcation. The (+,+) and (−,−) bifurcations, in which con-

fluences with the same stability type collide, only occur in Fig 12(a) , but they demonstrate

that confluences do not behave like fixed points, as we can have two attracting or repelling

rivers arbitrarily near one another. Two (+,−) confluence bifurcations occur as we vary

I1 ∈ [0, 6.4] (Figure 12(b)).

3.3.7 Asymptotic Rivers

Note that, in Figure 8(d), the ZCL (shown in red) and {∆1,3(x) = 0} (shown in blue)

cross exactly twice. Additionally, in the upper left and lower right corners of the figure,

these two sets seem asymptotically approach one another. To study this type of behavior,

we extend our definition of rivers to an asymptotic setting.

Having already defined rivers, we note that a river is born when the ZCL is (momentarily)

invariant in the flow. We generalize this formulation to allow for asymptotic invariance of

the ZCL as it escapes to infinity.

Definition 3.3.5. Let γz : (0,∞) → Ω be a parameterization of the ZCL such that

limη→∞ ‖γz(η)‖ = ∞; that is, γz escapes to infinity. We say that γz has an asymptotic

confluence if

lim
η→∞

µγz(η) = 0.

A trajectory φ(t) is an asymptotic river if

lim
t→±∞

dH(φ(t), γz) = 0

and γz has an asymptotic confluence.
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We note that the first condition (µγz → 0) gives rise to a “confluence at infinity”, and

the second condition is analogous to Definition 3.3.2, where a river is a trajectory that passes

through a confluence; here, an asymptotic river is a trajectory that limits to a confluence at

infinity along the ZCL.

If we take γz to be a LOR basecurve, we can use Lemma 3.2.2 to derive a sufficient

condition for an asymptotic river to exist.

Lemma 3.3.6. Suppose that f : Ω → R2 is C 1 and γz : [0,∞) → Ω is a regular C 2

parameterization of the ZCL such that

lim
η→∞
‖γz(η)‖ =∞ and lim

η→∞

1

κγz(η)
6= 0.

Additionally, suppose that the correction to γz, Ξγz(η), is C 1 and Ξγz(η)→ 0 monotonically

as η →∞ with

〈f ◦Ψγz(η, ξ), Tγz(η)〉 > 0 for all η ≥ 0, ξ ∈ [0,Ξγz(η)].

If 〈f ◦Ψγz(0, 0), Nγz(0)〉 and Ξγz(0) have opposite signs, then there is a trajectory φ(t) such

that

lim
t→∞

dH(φ(t), γz)↘ 0;

that is, φ is an asymptotic river.

Proof. We note that µγz(η) = |Ξγz(η)| hence γz has an asymptotic confluence by assumption.

The existence of φ follows from Lemma 3.2.2.

Finally, we remark that the necessary conditions derived in Theorem 3.3.3 do not neces-

sarily generalize to the asymptotic case, due to possibly ill-behaved limits at infinity.
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3.3.8 A Deluge of Rivers in a Hodgkin-Huxley Type Neuron Model

To conclude our study of rivers, we will consider a neural oscillator with more complicated

dynamics than the FitzHugh-Nagumo system. We take from [62] a Hodgkin-Huxley type

neuron with dynamics given by

Cv̇ = −INa(v, n)− IK(v, n)− IL(v),

ṅ = φ

(
n∞(v)− n
τn(v)

)
, (3.15)

where INa, IK , IL, n∞, τn are of a form that is standard within this class of models; We

consider three ion currents

INa(v, n) = gNam
3
∞(v)(1− n)(v − vNa)

IK(v, n) = gKn
4(v − vk)

IL(v) = gL(v − vL)

where

m∞(v) =

(
1 + exp

(
−(v − θm)

σm

))
n∞(v) =

(
1 + exp

(
−(v − θn)

σn

))
τ∞(v) = τ0 + τ1

(
1 + exp

(
−(v − θτ )

στ

))
and parameter values given by Table 2.

Over a broad range of parameter values the model (3.15) supports a stable periodic

oscillation, which flows counter-clockwise. Denote this limit cycle by Γ(t) and its period by

T . In their antediluvian but prescient analysis, the authors of [62] show that two intrinsically

oscillatory neurons governed by (3.15) that are coupled by mutual synaptic inhibition can

display irregular dynamics that is robust to parameter changes. Specifically, they construct

a return map from the coupled neuron dynamics that exhibits hallmarks of chaos. The

authors also suggest that part of the mechanism underlying the observed irregular dynamics

is a contraction of trajectories to a river-like structure not obviously associated with any

particular phase plane structure. We will show that, in the absence of coupling, the system
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(3.15) already has a rich river structure, and its rivers can be useful in classifying the transient

manner by which trajectories approach the periodic solution.

First, we remark that this system has four rivers (see black dots in Figure 13(a)), three

asymptotic rivers, and one additional structure that we term a weak river. We will study

each of these in turn.

One interesting river lies inside Γ(t), shown in Figure 13(b) in orange and labeled ρ2.

This river is hyperbolic and repelling. We note that ρ2 passes very close to the v-nullcline

and hence can be thought of as a relic of the fast-slow structure in the system even though

φ is not particularly small. This river plays a very similar role to the river shown in Figure

8(a), in that it seems to demonstrate extreme sensitivity to asymptotic phase. For the sake

of brevity, we omit a figure demonstrating this. A connection between rivers and phase

separatrices clearly exists, and a rigorous study of this relationship is underway.

There is another river of note outside the limit cycle, labeled by ρ1 in Fig. 13(b). This

river captures the rapid contraction in the neighborhood of its confluence. In [62], the authors

note that the contraction in this region, combined with the local instability of the limit cycle

(which we also relate to river activity in this section) cause extreme sensitivity to initial

conditions. Additionally, ρ1 informs the shape of the limit cycle and how trajectories must

approach the limit cycle.

Next, we catalogue and consider the asymptotic rivers of (3.15). The three asymptotic

rivers, labeled as ρ∞,i for i ∈ {1, 2, 3} in Figure 13(b), are drawn to three different branches

of the ZCL (i.e., of {∆1,2(x) = 0}), specifically the branches labeled A,B,D in Figure 13(a).

These asymptotic rivers meet the conditions laid out in Lemma 3.2.2 in backwards time. We

note that all three of these trajectories also asymptotically approach the nullclines of the

system in backwards time; ρ∞,1 limits to the v-nullcline and ρ∞,2, ρ∞,3 limit to the n-nullcline.

System (3.15) is a fast-slow system for φ sufficiently small. In the analysis of [62] and here

as well, the parameter φ = 0.2, which is not so small, yet we still see dynamical effects related

to the critical manifold. Thus, the existence and behavior of the asymptotic river ρ∞,1, which

limits to the v-nullcline, is not surprising; it is, in the sense of Interlude 2, a slow manifold.

However, framing the system as fast-slow makes the existence and behavior of ρ∞,2, ρ∞,3 all

the more perplexing, as these are trajectories that limit to the “wrong” nullcline! Hence
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these asymptotic rivers are novel phenomena, outside of usual multiple-timescale theory.

The asymptotic rivers ρ∞,1, ρ∞,2 have an additional interesting dynamical effect: they

serve to funnel trajectories towards the limit cycle (black dashed curve in Figure 13(b) and

in Figure 14(a)). One of the outstanding features of this system is the geometry of the limit

cycle; the left portion of the curve (as n plunges from ≈ .9 to ≈ .2) is nearly vertical, after

which the limit cycle develops a peninsular shape. In their analysis, the authors of [62] note

that, near this vertical plunge on the exterior of the limit cycle, trajectories are repelled

away from the limit cycle, yet rapidly converge to some structure below the limit cycle. We

claim that the asymptotic rivers ρ∞,1, ρ∞,2 can be used to explain this effect.

We can study the local attractivity of a trajectory φ by studying the quantity Hφ(t) :=

〈[Dxf(φ(t))]Nφ(t), Nφ(t)〉. Specifically, if Hφ(t) < 0 then the Hausdorff distance between φ

and nearby trajectories is decreasing, with the opposite true if Hφ(t) > 0; this relation arises

through linearization in the LOR frame, given in (3.11). In the phase plane, similar to our

earlier analysis, we can define a map H : Ω→ R by

H(x) =
〈[Dxf(x)]Rf(x), Rf(x)〉

‖f(x)‖2 ,

where R is rotation by π/2 such that Nφ(t) = Rf(φ(t))/ ‖f(φ(t))‖, with Hφ(t) = H(φ(t)).

The function H(x) quantifies the attracting qualities of the trajectory with respect to x.

As the the limit cycle Γ(t) of (3.15) traces its course, it makes four intersections with

{H(Γ(t)) = 0} (see Fig. 14(a), where the shaded blue region is {H(x) ≤ 0}), corresponding

to four changes in local stability. As mentioned earlier, the loss of stability in the upper left

sector of the plane is more dynamically interesting. Here, the limit cycle becomes locally

unstable for about 10% of it’s period (and about 25% of its arc length).

Note from Fig.14(a) that there is a narrow portion of the region {H(x) ≤ 0}, near the

rectangle, which extends all the way to n = 1; this region is also evident in the zoomed

view in panel (b). We note that ρ∞,1 lies in this region, and as trajectories are repelled by

Γ, they pass into {H(x) ≤ 0} and are pulled towards ρ∞,1. Subsequently, Γ itself reenters

{H(x) ≤ 0} and all trajectories near Γ contract together. This sequence may contribute to

the expansion, orientation reversal, and subsequent contraction yielding chaos in the coupled

version of this system [62].
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The structure that we call a weak river, denoted by ρw in Figure 13(b), is neither a river

nor an asymptotic river. If we examine the branch of the ZCL near C, which we denote by

γz,C , we find that there are no points such that µγz,C (η) = 0. However, we can compute that

there is a maximally nearly-invariant point on γz,C ; that is, there is an η∗ such that

µγz,C (η∗) = inf
η∈I

µγz,C (η)

where I is the domain of this branch of γz. We compute that γz,C(η∗) ≈ (14.1,−1.1) and

µγz,C (η∗) ≈ 0.00041. The trajectory ρw satisfies ρw(0) = γz,C(η∗), which is outside of our

meaningful phase region; however, in forward time ρw flows into 0 ≤ n ≤ 1 as shown in

Figure 13(b). We also see that this trajectory evolves along the v-nullcline for a non-trivial

amount of time, hence ρw can be seen as a form of slow manifold.

To conclude this section, we show how ρ∞,1, ρ∞,2, ρw serve as transient attraction modes

to Γ. Although we do not provide a rigorous definition, we say that a trajectory φ is a

transient attraction mode to a limit cycle Γ if initial conditions near φ converge to φ more

quickly than they converge to Γ. The idea we seek to study is how the phase plane feeds

into the attracting periodic orbit Γ. In a standard relaxation oscillation, we note that there

should be two transient attraction modes, the attracting slow manifolds corresponding to

the attracting branches of the critical manifold.

In system (3.15), we seem to have three transient attraction modes. To study this obser-

vation in more detail, we fix a rectangular region of space, here [−120, 120]× [−0.1, 1.1], we

pick 1000 uniformly spaced initial conditions on the boundary, and we integrate these initial

conditions forward in time. Then we color code the resultant trajectories. The trajectory

emanating from the upper left corner is colored red and trajectories uniformly blend to blue

as we move clockwise along the boundary. The results are shown in Figure 15, with the rivers

ρ∞,1, ρ∞,2, ρw shown in black. We see that some trajectories are rapidly drawn towards these

three modes before eventually feeding into Γ.

While we have left the concept of transient attraction modes, which we hope to study

more rigorously in the future, rather vague, we hope that we have demonstrated that rivers

serve as easily identifiable trajectories that have interesting transient dynamical effects in
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this complicated system and that could naturally be important in many other planar systems

as well.

3.3.9 A Theta Model with Adaptation and the Liouville System

The following one-variable phase reduction with adaptation is presented in [6]:

θ̇ = 1− cos θ + J(1 + cos θ)− 2

3
(IE − J) sin θ

τI J̇ = IE − J (3.16)

where θ represents the phase of an oscillator and J is an adaptive current. The authors

of [6] note the existence of two rivers that completely organize the phase plane; we will

demonstrate that these structures are asymptotic rivers. Performing a change of variables,

system (3.16) is equivalent to system (27.11) presented in [4]. Furthermore, equation (3.16)

is structurally similar to the Liouville system, given by

ẋ = y − x2

ẏ = 1. (3.17)

This system plays an important role in Fenichel theory; in a system with one fast variable

and one slow variable (ẋ1, ẋ2) = (f1(x1, x2), εf2(x1, x2)) in which the critical manifold loses

normal hyperbolicity via a generic fold, blow-up analysis reveals that (3.17) represents the

flow near the fold [38]. Additionally, Diener et al. remark in [16, 15] that (3.17) contains two

fleuves, by their definition. We will show that these are asymptotic rivers by our definitions.

Trajectories of (3.16) are shown in Fig. 16(b) along with several organizing rivers and

asymptotic rivers. The two asymptotic rivers, shown in black, actually correspond to the

rivers that Börgers et al. identify. There are also three rivers in this system; the set {J = 1}

is an invariant line hence is a river, and there are two additional crossings of {∆1,2 =

0}, {∆1,3 = 0}, shown in Fig. 16(a). The asymptotic river limiting in the direction B

has a clear attracting influence. The other asymptotic river initially repels trajectories.

Interestingly, in forward time, all of the river structures come together, along with the other

system trajectories, as flow progresses in the direction of increasing θ near {J = 1}, although

they collect into two separate groupings along the way.
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3.3.10 A Templator System

In [1], the authors present a two variable chemical templator system which has dynamics

Ẋ = a1 − a2X
2 − a3X

2T

Ṫ = a2X
2 + a3X

2T − a4T

a5 + T
. (3.18)

where we take a1 = 0.9, a2 = .01, a3 = a4 = 1, a5 = 0.02, as do Benoit et al.

The authors note that this system displays dynamics which are very similar to fast-slow

behavior, however there is no temporal separation. Benoit et al. demonstrate that this

behavior is linked to low-curvature phenomena, and claim that the set {∆1,2 = 0} organizes

the phase but remark that there are regions where {∆1,2 = 0} seems completely unrelated to

the flow; they call these curves “ghosts”. With our invariance measure and asymptotic rivers

we can eliminate these “ghosts” and show that this phase plane can be organized around

two asymptotic rivers.

To make these dynamics more apparent, we perform a logarithmic change of variables

(x, y) = (X, log T ) to study the region where T is small. Figure 17 displays the rapid

contraction towards the asymptotic rivers we identify in the transformed system. Note that

the shape of the limit cycle can also be predicted from the structure of these asymptotic

rivers.

3.3.11 A River in a Changing World

Diener et al. [16] defined a fleuve as a trajectory in a planar polynomial system that

satisfies a certain algebraic homogeneity condition. In [16], they remark that the ODE given

by

ẋ = 1

ẏ = x(y − x) + 1 (3.19)

exhibits a fleuve given by {y = x}. Specifically, {y = x} is an invariant set that is une fleuve

de rank (1, 1). This set, being an invariant line, has zero curvature hence is a river by our

definition as well. This river serves as a separatrix for asymptotic behavior (Figure 18).
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This is a fragile river, however. We note that the sets {∆1,2 = 0}, {∆1,3 = 0} are given

by {y = x} and {y = x} ∪ {x = 0} respectively; therefore, {y = x} is a continuum of

non-transverse intersections of {∆1,2 = 0}, {∆1.3 = 0}.

To study this fragility we apply a diffeomorphism that alters the curvature of the flow,

namely let ε > 0 and define (α, β) = (x, y − εx2). We note that this transformation bends

the plane in a way that does not preserve the curvature of trajectories. Futhermore, we can

continuously control the extent of this distortion by tuning ε.

We compute the new flow

α̇ = 1

β̇ = α(β − α) + 1 + εα(α2 − 2), (3.20)

which is obviously equivalent to (3.19) when ε = 0. The river in this system with ε = 0

({y = x}) is degenerate with regard to our persistence result, Proposition 6. Even with

ε > 0, however, a river persists through the point (0, 2ε) and there is a doubly asymptotic

river that serves as a separatrix between trajectories that blow up to −∞ in β and those

that blow up to +∞, just as {y = x} does in system (3.19). By doubly asymptotic river, we

mean that this trajectory is an asymptotic river as t→ ±∞ (Figure 19).

The true river in our perturbed system no longer serves as a separatrix, but rather at-

tracts trajectories in a local region near its confluence. As α gets larger, the curvature

deformation introduced by our diffeomorphism becomes more extreme, as does the devia-

tion of the asymptotic river from the identity line. Nonetheless, the separating role of the

asymptotic river remains clear.
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3.4 Figures and Tables

Conductances Potentials Activations Slopes Rates Other

(nS) (mV) (mV) (1/ms)

gNa = 100.0 vNa = 55.0 θm = −37.0 σm = 10.0 φ = 0.2 C = 1.0 pF

gK = 10.0 vK = −80.0 θn = −50.0 σn = 14.0 α = 5.0 τ0 = 0.05 ms

gL = 0.02 vL = −30.0 θτ = −40.0 στ = −12.0 β = 1.0 τ1 = 0.27 ms

Table 2: Parameter Values for System (3.15)

(a) (b)

Figure 4: A pictorial representation of the correction and invariance measure. (a) Two

branches of the nullcline {ξ̇ = 0}, denoted C1, C2, plotted in black (dotted and solid), as η

varies. Note that the solid black curve is Ξγ(η), formed from the branches closest to ξ = 0

(red). (b) C1, C2 from (a) are both reflected to one side (without loss of generality, the

positive side) of ξ = 0 and the solid black parts of these curves form the graph of the actual

invariance measure µγ(η) over the plotted range. That is, µγ(η) = |Ξγ(η)|.
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Figure 5: A sketch of the geometric consequences of the assumptions of Lemma 2.9. In blue

is Ξγ(η). Arrows designate the direction of the flow along Ξγ(η), ξ = 0, and η = 0. These

three curves are used to construct the boundary of a Wazewski set.
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(a)

(b)

Figure 6: Streamplots of the (η, ξ) dynamics. (a) For ε = 0.05, the η-nullcline is shown

in purple, the ξ-nullcline is shown in red, and the boundary of the maximal parameter set

is shown in dashed black. Recall that the correction is defined by selecting branches of the

ξ-nullcline near ξ = 0; its magnitude µγ(η) is shown to the right. Note that trajectories

rapidly converge to the ξ-nullcline for |η| > 1, where the nullcline is very close to ξ = 0.

(b) For a much larger choice, ε = 0.5, using the same color assignations, we see that the

ξ-nullcline has moved away from ξ = 0, yet trajectories in {η < −1} ∪ {η > 1} still rapidly

converge to the correction set. In both (a) and (b), in {−1 < η < 1}, we see the opposite

effect: trajectories seem indifferent to the correction set.
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(a) (b)

Figure 7: Tracking slow manifolds for arbitrary ε. (a) H(ε) is the value of η to which we can

track our perturbed slow manifolds, and µγ(H(ε)) is an upper bound on the distance to the

critical manifold. (b) A sampling of the asymptotic trajectories for various values of ε with

coloring going from blue to red as ε increases from 0.0001 to 2.
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(a) (b)

(c) (d)

Figure 8: The river structure of the FHN system. (a) The ZCL (red and blue branches) and

the v-nullcline (black dashed) presented together with a field of representative trajectories.

(b) The LOR dynamics derived by taking the central blue portion of the ZCL as a basecurve.

The correction is shown in blue, and the river identified in the frame is shown in orange.

(c) The river (orange) and nearby trajectories (shaded from red to blue). We see that the

river is highly unstable. (d) The ZCL in red and the set {∆1,3(x) = 0} in blue. In Theorem

3.3.3 we show that the two crossings of these curves, indicated by points, are confluences;

the lower of these corresponds to the river show in (b) and (c).
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(a)

(b)

(c)

Figure 9: Dynamics of the theta model (3.12) with I1 = 1, I2 = 2, g1 = 1, g2 = 3. (a) A time

plot of a representative solution of (3.12), with θ(t) in red and φ(t) in blue. Note that, after

some initial transient dynamics, the system settles into regular oscillations. (b) The level

sets ∆1,2(x) = 0,∆1,3(x) = 0 in red and blue, respectively, along with a stream plot of the

system. We see that these contours cross four times on [−π, π]2, at points with coordinates

C1, . . . , C4 depicted here in black, and therefore we have four rivers.
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(a) (b)

Figure 10: Rivers in the theta model (3.12) with I1 = 1, I2 = 2, g1 = 1, g2 = 3. (a) The

four rivers of the system, issuing forth from {Ci}. In solid blue and red we have R1, R2,

respectively, which are attracting rivers, and in dashed blue and dashed red we have R3, R4,

respectively, which are repelling rivers. (b) A zoom of the rectangle shown in (a). Note the

strong local contraction in the region near R1 and R2.
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(a) (b)

Figure 11: Theta model (3.12) with symmetry and after symmetry breaking. Parameter

values common to both panels are I1 = 1, I2 = 1, g1 = 1. (a) In the symmetric case with

g2 = 1, (3.12) has an invariant set {θ = φ} that is a continuum of confluences. (b) In the case

that g2 = 1.1, with the parameter symmetry broken, the system has only two confluences (

shown as black points), which lie close to the identity line.

(a) (b)

Figure 12: Confluence bifurcations in the theta model (3.12). We plot the branches of

confluences as we vary a single parameter, with stable confluences in blue and unstable

confluences in red. (a) Varying g1 ∈ [0, 1.3] yields four confluence bifurcations, including two

at the same g1 value. (b) Varying I1 ∈ [0, 6.4] yields two confluence bifurcations.
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(a) (b)

Figure 13: Analysis of rivers of (3.15) in the vicinity of an attracting periodic orbit (black

dashed). (a) The sets {∆1,2(x) = 0}, {∆1,3(x) = 0} appear in red and blue, respectively. We

find that these sets cross to form confluences 4 times, shown here as black points, giving birth

to 4 rivers. Letters A, B, C, D label curves along which {∆1,2(x) = 0}, {∆1,3(x) = 0} come

together asymptotically. (b) A phase plane view for system (3.15), including nullclines (grey

dashed). We identify two dynamically relevant rivers ρ1,2, three asymptotic rivers ρ∞,1,2,3,

and one weak river.
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(a) (b) (c)

Figure 14: Studying the local stability of the limit cycle of (3.15). (a) The shaded blue

regions depict the set {H(x) ≤ 0} (H(x) is defined in the text) whose boundary, in darker

blue, is {H(x) = 0}. The black curve is the limit cycle of (3.15), shown in solid where it

belongs to {H(x) = 0} and hence is locally attracting and dashed where locally repelling.

In red and purple (lower left) are ρ∞,1, ρ∞,2 respectively. Where the limit cycle is locally

unstable, the collective effects of ρ∞,1, ρ∞,2 serve to trap nearby trajectories near the limit

cycle. (b) Zoomed view of the rectangle shown in (a). The additional curves are trajectories

of (3.15). (c) The Hausdorff distance between the trajectories shown in (b) and the limit

cycle Γ, which are color coordinated. Note that these distances initially increase, yet are

well controlled by dH(ρ∞,1(t),Γ) (outermost red curve)

.
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Figure 15: The dynamical effects of ρ∞,1, ρ∞,2, ρw. A plot of 1000 trajectories with initial

conditions chosen uniformly along the rectangular boundary. More detail is provided in the

text. We see that trajectories are drawn towards the three river features as they approach

the limit cycle. Rivers allow us to identify transient features of the flow.
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Figure 16: Rivers in system (3.16) with IE = τI = 1. In (a), the sets {∆1,2 = 0}, {∆1,3 = 0},

shown in blue and red respectively, cross transversely twice at the black points and intersect

non-transversely along {J = 1}. The blue shaded region represents {H(x) ≤ 0}, which is

described in Section 3.6 of the main text. In (b), the rivers through the transverse crossings

are shown in red and the to asymptotic rivers, which limit to the {∆1,2 = 0} along the

branches of {∆1,2 = 0} and {∆1,3 = 0} near A,B in (a), are shown in black.
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Figure 17: Rivers in system (3.18). (a) The sets {∆1,2 = 0}, {∆1,3 = 0}, shown in blue

and red respectively, approach one another along the branches near A,B. These give rise

to asymptotic rivers. While these sets lie near each other, they do not cross. (b) The

asymptotic rivers, which limit to the {∆1,2 = 0} along the branches near A,B, are shown in

black. Shown in dashed orange is the limit cycle of the system.
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Figure 18: The river in system (3.19) along with representative trajectories. The blue region

corresponds to {H(x) ≤ 0} (see Section 3.6 of the main text).
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Figure 19: The rivers in the perturbed system (3.20) for ε = 0.3. (a) The sets {∆1,2 =

0}, {∆1,3 = 0}, shown in blue and red respectively, approach one another along the branches

near A,B. These give rise to a double asymptotic river. The blue shaded region is {H(x) ≤

0}. (b) The doubly asymptotic river, which limits to the set {∆1,2 = 0} along the branches

near A,B, is shown in black. The red curve is the (non-asymptotic) river of the system.
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4.0 Periodic Orbits and Transient Dynamics

The material in this chapter has been accepted for publication in SIADS as ”LOR Anal-

ysis for Periodic Orbits: A One-stop Shop Approach” and was co-authored by Jonathan E.

Rubin.

4.1 Identification of Periodic Orbits

In this section, we will use the LOR frame to reformulate the identification of a periodic

trajectory into a boundary value problem (BVP) in a simplified geometry. To begin, we will

assume that our LOR basecurve γ lies near a suspected periodic trajectory. Furthermore,

we will suppose that γ is a simple closed curve. Without loss of generality, we parameterize

γ to have period 2π (i.e., γ(η + 2π) = γ(η)).

4.1.1 From Basecurve to Periodic Orbit

Suppose that we are looking for periodic trajectories of the system

ẋ = f(x) x(0) = x0 (4.1)

where f is sufficiently smooth (continuosly differentiable will suffice) on an open set Ω.

Suppose also that we suspect that our periodic trajectory lies near the curve γ : R → Ω

which is a simple closed curve with period 2π. We will seek this periodic solution in the

following way: we will choose a parameter value, say η = 0, and search the normal hyperplane

of γ at η = 0 for an initial condition that returns to itself after some amount of time. In this

respect, our technique is similar to studying Poincaré maps; however, the LOR frame allows

us to use geometric time and hence to avoid computing the first return times associated with

initial conditions.

In the LOR frame, with flow Φγ, we are looking for an initial condition η = 0, ξ = ξ0

such that there exists a time T > 0 that satisfies Φγ((0, ξ0), T ) = (2π, ξ0); recall that γ
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is 2π-periodic, such that Ψ(2π, ξ0) = Ψ(0, ξ0) and thus the initial condition with normal

coordinates ξ0 will be a T -periodic trajectory. Hence we have exchanged our initial value

problem for a BVP of the form η̇

ξ̇

 = Lγf(η, ξ), η(0) = 0, η(T ) = 2π, ξ(0) = ξ(T ). (4.2)

To eliminate the computation of the first return time T , we need a definition that we

call compatibility. Intuitively, a parameterized curve is compatible with a vector field if the

parameterization of the curve advances in the same direction as time along the flow.

Definition 4.1.1. A smooth curve γ : I → Ω is compatible with a vector field f : Ω→ Rn

if

〈Tγ(η), f ◦ γ(η)〉 6= 0 ∀η ∈ I.

Definition 4.1.1 allows us eliminate time from our LOR equations, as stated in the fol-

lowing result.

Lemma 4.1.2. Given a compatible, Frenet, 2π-periodic curve γ, there exists δ > 0 such that

dξ

dη
=
ξ̇

η̇
=: g(η, ξ)

is well-defined and equivalent to the LOR dynamics for (η, ξ) ∈ [0, 2π]×B(0, δ).

Proof. Compatibility guarantees that η̇|ξ=0 does not change signs. Hence by continuity

there is a tube around {ξ = 0} such that η̇ is not zero. The claim of equivalence follows

from standard ODE theory.

Now that we can safely eliminate time from our ODE, we can restate our BVP as follows:

dξ

dη
= g(η, ξ), ξ(η = 0) = ξ(η = 2π). (4.3)

Therefore, we have exchanged our autonomous, n-dimensional BVP with a variable endpoint

for a non-autonomous, (n− 1)-dimensional, periodic BVP. The key insight in this procedure

is to use η as a time variable; in the LOR frame, η quantifies how trajectories advance along

γ and hence serves as a natural geometric substitute for time, as long as γ is a compatible

curve. To summarize, we have shown the following result.
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Theorem 4.1.3. Suppose that γ : R → Ω is a compatible, Frenet, 2π-periodic curve and

f : Ω→ Rn is a smooth vector field. There exists δ > 0 such that

dξ

dη
= g(η, ξ) (4.4)

is well-defined and equivalent to the LOR dynamics for (η, ξ) ∈ [0, 2π]×B(0, δ). If ξ(η) solves

the above ODE subject to ξ(0) = ξ(2π), i.e., system (4.3), then there is a reparameterization

of the curve Ψ(η, ξ(η)) that is a periodic solution to (4.1).

Thus, LOR provides an approach to identifiying periodic orbits via the solution of a

single BVP, without a need to solve for the period itself.

Remark 6. In the statement of Theorem 4.1.3, we start from a basecuve γ and use the

LOR equations to check for corresponding periodic orbits. This approach may suggest the

question of whether every periodic orbit can be found this way. In fact, it is obvious that

every periodic orbit Γ will solve a corresponding LOR BVP as given in Theorem 4.1.3,

derived trivially by using Γ itself as the basecurve. On the other hand, there is no reason

to expect that a single such BVP could be used to identify all periodic orbits of a system if

more than one is present.

We also note that this technique will identify periodic trajectories regardless of their

stability type. If a periodic solution is not attracting, then the numerical implementation of

the technique may become more complicated, but the theory does not change.

4.1.2 An Example of Identifying a Periodic Orbit with LOR

In this section, we use our LOR approach to identify a periodic orbit in a four-dimensional,

competitive Lotka-Volterra type ecosystem model and describe a generic technique for con-

structing LOR basecurves computationally that we find useful in practice. We consider the

system

ẋi = rixi

(
1−

4∑
j=1

αi,jxj

)
i ∈ {1, 2, 3, 4} (4.5)

where ri, αi,j are positive parameters. The quantities xi represent the relative populations

of four competing species, the parameter ri quantifies the rate at which xi would grow in
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the absence of competitors, and the parameter αi,j represents the effect of population xj

on population xi for each i, j; we require that αi,i = 1 to impose a logistic-type carrying

capacity on each species.

We choose values of ri, αi,j near those used in [65] to demonstrate that system (4.5)

displays chaotic behavior, but we decrease α1,2, α1,3 slightly to avoid entering a regime of

period-doubling bifurcations. Specifically, we use

r =


1

0.72

1.53

1.27

 α =


1 0.7 1.2 0

0 1 0.44 1.36

2.33 0 1 0.47

1.21 0.51 0.35 1


where we have vectorized the parameter sets {ri}, {αi,j} in the obvious way.

To begin the process of locating a periodic orbit for system (4.5), we choose a sample

trajectory of the system, say the trajectory φ such that φ(0) = (.5, .5, .5, .5). After some

initial transient dynamics, we note that φ is “nearly-recurrent”; that is, it passes near itself,

specifically in the time window [47, 100], which is shown in Fig. 20. We will use this nearly-

recurrent trajectory to construct an admissible, simple closed curve which will serve as the

basecurve for LOR, which we will apply to identify the periodic orbit of the system.

Recall that a curve γ is admissible if it satisfies 〈f ◦ γ(η), Tγ(η)〉 > 0 for η in the domain

of γ; if γ is a trajectory, then we have 〈f ◦ γ(η), Tγ(η)〉 = ‖γ′(t)‖ > 0 and thus all trajectories

are admissible curves. To construct a simple closed curve which is likely to be admissible,

we compute the truncated Fourier series for each coordinate of φ; as φ is admissible and

nearly-recurrent, our hope is that the Fourier approximation of φ, call it φ̄, will also be

admissible. Note that φ̄ will be simple and closed by construction, with period 2π.

In general, we recommend constructing a basecurve as follows: first identify a trajectory

φ which is nearly-recurrent, which is to say there is are times t1, t2 such that ‖φ(t1)− φ(t2)‖ <

δ, where δ is a tolerance parameter. Second, for each vector component of φ we compute the

truncated Fourier series, considering terms up to some maximum frequency F . Third, we

check to see if our computed basecurve is admissible; if the computed curve is not admissible,

we can increase F and allow more terms in our approximation. If allowing more terms does
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not yield an admissible curve, then we decrease the initial tolerance δ and reselect our

trajectory φ.

For system (4.5) and trajectory φ we find that a Fourier approximation with three terms

suffices; the approximation φ̄ is an admissible curve that can be used to identify the periodic

orbit of (4.5). We proceed with the exact process described in the preceding section: we

compute the Frenet frame for φ̄, compute the LOR equations of system (4.5) with basecurve

φ̄, and then solve the dξ/dη BVP (4.3) to identify the periodic orbit.

We remark that there is an efficient way to implement the computation of the Frenet

frame and the LOR equations with basecurve φ̄. Note that the derivatives of Fourier ap-

proximations are themselves Fourier approximations. Thus the vectors of the Frenet frame

can be expressed as rational functions (perhaps with square roots) of trigonometric func-

tions and the LOR equations can be similarly represented. The formulation allows us to

perform computations on the sequences of Fourier coefficients, as opposed to operating on

large combinations of trigonometric functions.

The results of this analysis are summarized in Fig. 20. Standard techniques for identi-

fying a periodic orbit would require searching a three-dimensional transverse section of the

flow for a fixed point of the Poincaré map, which would involve the computation of many

trajectories. The LOR approach completely eschews the need to estimate the period of the

cycle and only requires computing a single trajectory, producing a Fourier approximation of

this trajectory, and solving a three-dimensional fixed-endpoint BVP.

4.2 Identifying Periodic Orbits in the Plane

4.2.1 Planar LOR Stability

We begin by presenting the LOR BVP technique, described in the preceding section,

in the planar case. Given the simplicity of the LOR dynamics in two-dimensional systems,

we will also derive a quantity for testing the stability of planar periodic trajectories. We

generalize this stability quantity in the following section and show it is functionally equivalent
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to the Floquet stability test.

Corollary 8. Suppose that f : Ω→ R2 is a C 1 vector field, and γ : [0, 2π]→ Ω is a simple,

regular, C 2 curve such that γ(0) = γ(2π). Then (4.3) becomes

g(η, ξ) =
Lγ,2(η, ξ)

Lγ,1(η, ξ)
= ‖γ′(η)‖ (1− ξκγ(η))

〈f ◦Ψγ(η, ξ), Nγ(η)〉
〈f ◦Ψγ(η, ξ), Tγ(η)〉

on the domain where 〈f ◦Ψγ(η, ξ), Tγ(η)〉 6= 0.

Furthermore, the periodic orbit φ, the periodic trajectory through x0 = Ψγ(η0, ξ0), is

stable if and only if λ < 0, where

λ :=

∫ 2π

0

∂

∂ξ
g(η, ξ∗(η))dη. (4.6)

Proof. The first claim follows directly from Theorem 4.1.3 after simplifying the LOR dy-

namics. To study the stability of ξ∗(η) we will exploit the geometry of the LOR frame with

a closed basecurve. Now, note that (0, ξ∗(0)) ∈ {〈f ◦Ψγ(η, ξ), Tγ(η)〉 6= 0} by assumption,

and therefore f ◦Ψγ(0, ξ
∗(0)) is transverse to Nγ(0). Thus, given δ > 0 we can define

Σδ = {γ(0) + ξNγ(0)|ξ∗(0)− δ < ξ < ξ∗(0) + δ},

for δ sufficiently small such that Σδ is a transverse section to φ at φ(0). We can choose δ, δ̄ > 0

such that there exists a Poincaré return map P : Σδ → Σδ̄ with P (φ(0)) = φ(0). Given any

x ∈ Σδ, there is a unique ξx such that x = γ(0) + ξxNγ(0), provided that x is sufficiently

close to γ(0). Therefore there is a mapping P̂ : (ξ∗(0)− δ, ξ∗(0) + δ)→ (ξ∗(0)− δ, ξ∗(0) + δ)

such that

P (x) = P (γ(0) + ξxNγ(0)) = γ(0) + P̂ (ξx)Nγ(0).

Note that, given x, y ∈ Σδ, ‖P (x)− P (y)‖ =
∣∣∣P̂ (ξx)− P̂ (ξy)

∣∣∣; thus, φ(0) is a stable fixed

point of P (x) if and only if ξ∗(0) is a stable fixed point of P̂ (ξ). Given x ∈ Σδ denote the

first return time function by t(x). Then P (x) = Φ(x, t(x)) where Φ(x, t) denotes the flow

induced by ẋ = f(x), and by construction Φ(x, t) = Ψγ ◦ Φ̂(Ψ−1
γ (x), t) where Φ̂ denotes the

LOR flow. Therefore P̂ (ξ) = π2Φ̂((0, ξ), t(Ψγ((0, ξ))), where π2 is projection onto (0, 1).
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By shrinking δ > 0 as necessary, we can assume that g(η, ξ) remains bounded for all

trajectories with initial conditions in B ∩ {η = 0} for

B := {(η, ξ∗(η)) + (0, ξ)| − δ < ξ < δ, 0 ≤ η ≤ 2π}.

Solving equation (4.4) with ξ(0) ∈ B∩{η = 0} defines P̂ (ξ), and the expression (4.6) defines

the corresponding eigenvalue, which determines stability of fixed points of P̂ (ξ) and hence

of the periodic orbit φ(t), as desired.

Corollary 9. Suppose that f : Ω → R2 is a C 1 vector field and that Γ(t) is a T -periodic

trajectory of ẋ = f(x). Γ is asymptotically stable if and only if λ < 0 where

λ =

∫ T

0

〈[Dxf ◦ Γ(t)]NΓ(t), NΓ(t)〉 dt.

Proof. Taking Γ as a LOR basecurve, our BVP (4.4) has ξ ≡ 0 as a solution. The result

follows from the previous stability analysis and computing ∂ξg(η, 0).

With a slight modification to this technique, we can track a periodic trajectory as we

vary parameters, which may be present in our flow. Suppose that our original vector field

is of the form f : R2 × Λ → R2, where Λ ⊆ Rm is a set of parameter values. Then, given a

basecurve γ, it is simple to see that equation (4.4) will become

dξ

dη
= g(η, ξ(η);λ) ξ(0) = ξ(2π)

where λ ∈ Λ is a parameter value. Suppose that we can solve the above for λ0 ∈ Λ, that is,

we have a solution ξ(η;λ0).
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4.2.2 Periodic orbits in the FitzHugh-Nagumo Equations

We will now illustrate the utility of the LOR approach by considering the stable limit cy-

cle of the FitzHugh-Nagumo (FHN) equations. Of course, we could proceed in the standard

fashion: by identifying a positively invariant compact region, invoking Poincaré-Bendixson,

identifying an appropriate Poincaré section, computing a return map and studying the sta-

bility of its fixed point. None of these steps is difficult on its own, but by computing a single

LOR transformation, we can essentially achieve a complete analysis in one fell swoop.

Specifically, we will find the periodic solution of the system

v̇ = v − v3

3
− w − I

ẇ = ε(v + a− bw), (4.7)

initally taking the parameter values a = −0.6, b = 0.8, I = 0.5, ε = 0.3. The choices of a, b, I

eliminate any symmetries that make the periodic orbit easier to find, and our choice of ε of

a similar magnitude to the other parameters eliminates any strong fast-slow structure.

To start, we face the question of how to choose a basecurve to find a periodic orbit. In

fact, nothing special is needed; we choose γ to be the simplest closed curve: a circle. We

take the center and the radius of the circle so that γ lies inside the region where a quick

check of the direction field hints at rotation. Specifically, we let

γ(η) =

(
3

5
cos(η),

3

5
sin(η)− 3

5

)
(4.8)

as shown in Figure 21 and compute ‖γ′(η)‖ = 1/κγ(η) = 3/5, Tγ(η) = (− sin(η), cos(η))

and Nγ(η) = (− cos(η),− sin(η)). Therefore Uγ = (−∞,∞) × (−∞, 5/3) and Ψγ(Uγ) =

R2 \ {(0,−3/5)}. Our LOR equations take the form

(5− 3ξ)η̇ =
2∑
j=0

α1,j(ξ) cos(jη) +
4∑
j=1

α2,j(ξ) sin(jη)

ξ̇ =
4∑
j=0

β1,j(ξ) cos(jη) +
2∑
j=1

β2,j(ξ) sin(jη) (4.9)
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where

α1,0(ξ) =
1 + ε

2
β1,0(ξ) = −(3− 5ξ)(100bε+ (7 + 5ξ)(5ξ − 13))

1000

α1,1(ξ) =
ε(5a+ 3b)

3− 5ξ
β1,1(ξ) =

5I − 3

500

α1,2(ξ) =
ε− 1

2
β1,2(ξ) = −(3− 5ξ)(66 + 75bε+ 5(6− 5ξ)ξ)

750

α2,1(ξ) =
5I − 3

3− 5ξ
β1,3(ξ) = 0

α2,2(ξ) = −141 + 150bε+ 5(6− 5ξ)ξ

300
β1,4(ξ) =

(3− 5ξ)2

3000

α2,3(ξ) = 0 β1,1(ξ) = −ε(5a+ 3b)

500

α2,4(ξ) =
(3− 5ξ)2

600
β1,2(ξ) =

(1− ε)(3− 5ξ)

10
.

.

A quick glance at system (4.9) might suggest that we have made our problem much more

difficult; indeed, we find that the LOR dynamics can be analytically intractable.

Note that in (4.9), η only appears in the arguments of trigonometric functions. Therefore,

our LOR equations are 2π-periodic in η; this property is inherited from the 2π-periodicity of

γ. In other words, we have separated the rotational properties of our flow from its contractive

properties.

First, we will demonstrate that a periodic orbit does, in fact, exist for these parameter

values. There is exactly one fixed point in (v, w) space, which is unstable. Note that, in

Figure 21(b), the ξ-nullcline does not cross the line ξ = −6; hence, ξ̇ does not change signs

along ξ = −6. Specifically, we can compute analytically that 〈f ◦Ψγ(η,−6), Nγ(η)〉 > 0 for

η ∈ [0, 2π]. Interpreting this condition geometrically, the flow along the circle defined by

Ψγ(η,−6) (which is the circle of radius 6+3/5 centered at (0, 3/5) in (x, y) space) must have

only inward flux, as Nγ(η) points inwards. That is, we have shown that the circle Ψγ(η,−6)

is positively invariant, which we observe is more straightforward than finding an explicit

trapping region from (4.7) directly. The Poincaré-Bendixson Theorem gives us a periodic

orbit inside Ψγ([0, 2π],−6).

With existence established, we next use the LOR frame to compute the actual periodic

orbit. We consider the non-autonomous boundary value problem (BVP) given in (4.4) with
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basecurve γ specified by (4.8), on a region where 1/η̇ is well-defined. We implement a

standard shooting algorithm in Mathematica to find a solution to (4.4), which we denote

ξp(η), on this region. That is, ξp(η) is a solution to a temporal re-scaling of (4.9), and hence

Ψγ(η, ξp(η)) is a temporal rescaling of a trajectory, which in turn is a periodic orbit, from

Theorem 4.1.3. The relevant orbit is shown in the LOR frame and in the original phase

plane in Figure 21.

Note that, if we were to try this BVP approach in (v, w) space, by solving dw/dv = ẇ/v̇,

we could not find the periodic solution, as any periodic orbit must cross each of the v, w

nullclines at least twice and hence dw/dv, dv/dw must each blow up twice along any such

cycle. Thus, we would be faced with solving at least four separate BVPs with a chain of

boundary conditions. By pulling our flow back onto γ, we reduce the complexity of our task.

There are several additional advantages of this approach. First, solving first order non-

autonomous boundary value problems with periodic forcing is a fairly standard capability

of most numerical integrators and the existence/uniqueness of such solutions is fairly well

understood. Second, we have eliminated all temporal dependence in finding a limit cycle; we

are computing an invariant 1-manifold that is diffeomorphic to S1, our basecurve, hence in

this formulation there is no need to guess the period of the underlying solution. Third, this

method is robust to changes in parameters and can be used to study periodic orbit parameter

dependence as demonstrated in Figure 22. This technique also becomes more powerful in

higher dimensions, where we can use analogous ideas to identify invariant manifolds that are

diffeomorphic to tori and n-spheres.

To generate each panel of Figure 22, we vary one parameter over an mesh of values within

an interval and, for each value, we numerically solve the LOR BVP (4.4) with basecurve from

(4.8) to find the periodic orbit. The coloration is added to emphasize the progression of each

parameter. In (a), for example, we vary ε ∈ [0.01, 0.7414]; the blue curve corresponds to the

computed periodic orbit for ε = 0.01, the red curve corresponds to the computed periodic

orbit for ε = 0.7414, and the remaining curves are also periodic orbits colored uniformly as

ε increases.

To conclude, we note that we can also assess the stability of a periodic trajectory com-

puted via (4.4) by direct integration, as specified in (4.6) in Theorem 4.1.3. For the FHN
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limit cycle we have identified, we find λ ≈ −9.1, and thus the periodic orbit identified by

our method is stable.

4.3 Analysis near Periodic Orbits

In this section, we will demonstrate that the LOR frame can be used to decouple the

temporal and normal dynamics near a periodic orbit. Using this decoupling, we can study

the stability of the underlying orbit and, in R3, construct novel invariant manifolds that

organize the local phase space and identify regions of phase advance and retreat relative to

an attracting periodic orbit.

Suppose that Γ is a T -periodic solution to (4.1). For convenience, although we may very

well have found Γ using a first LOR transformation, we will now use Γ as a basecurve for

LOR, and we denote the flow for the new LOR system by ΦΓ. Note that when we use Γ

as a basecurve, we define LOR on [0, T ) rather than on [0, 2π), since the period T is now a

known quantity. The stability of Γ can be computed from the original LOR equations that

are used to find it (see the preceding section for the planar case). Alternatively, deriving new

LOR equations based on Γ requires just one additional step, with the advantage that the

LOR equations simplify somewhat if the basecurve is a trajectory of the flow being studied.

Specifically, we will use the Frenet Frame based along the trajectory in question as a normal

frame and analyze the LOR blow-up coordinates.

4.3.1 Radial Dynamics: Stability

Note that Γ is compatible, and hence there is a tube around {ξ = 0} on which dξ/dη

is well-defined. To better understand the LOR dynamics, we will change coordinates by

decomposing ξ into radial and angular components. Specifically, we define r = ‖ξ‖ , u = ξ/r.

Intuitively, r measures the Hausdorff distance from the periodic orbit and u represents the

bearing in the normal hyperplane within the LOR frame. We can derive dynamics on r, u
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from Theorem 4.1.3:  r′

u′

 =

 〈g(η, ru), u〉

g(η, ru)− 〈g(η, ru), u〉u
r

 (4.10)

for r > 0, where ′ = d/dη. System (4.10) appears to be ill-defined at r = 0; however,

the dynamics actually extends continuously to r = 0. To establish this property, note that

g(η, 0) = 0 and that the limit

lim
r→0+

g(η, ru)− 〈g(η, ru), u〉u
r

= [Dξg(η, 0)]u− 〈[Dξg(η, 0)]u, u〉u

is a well-defined L’Hopital type limit.

In fact, since we are interested in the r � 1 regime, we will consider the Taylor expansion

of the r, u dynamics from (4.10), given by

r′ = 〈[Dξg(η, 0)]u, u〉 r +O(r2)

u′ = [Dξg(η, 0)]u− 〈[Dξg(η, 0)]u, u〉u+O(r). (4.11)

We compute that Dξg(η, 0) = DξNf(η, 0)− C(η). Interestingly, as C(η) is anti-symmetric,

〈C(η)u, u〉 = 0. Hence, the curvature matrix does not directly influence the r dynamics yet

can affect the evolution of u.

Note that the set {r = 0}, which corresponds to {ξ = 0} in our original LOR coordinates,

is invariant, as expected. Furthermore we have uncovered nontrivial angular dynamics on

{r = 0}; intuitively, this dynamics captures how trajectories rotate around Γ for r � 1.

This approach is similar in spirit to geometric desingularization, or blow-up, techniques, and

the LOR frame allows us to perform these computations in a tractable way.

We can use the order expansion (4.11) to study both the stability of Γ and the transient

angular dynamics governing trajectories in a neighborhood of Γ. Our plan of attack is as

follows. For small r, we note that the r = 0 terms will dominate the u dynamics in (4.11),

which decouples from r in the r → 0 limit. Thus, we will approximate u by a solution ũ that

solves the second equation from (4.11) with r = 0, and then we will use this approximation

to estimate the behavior of r.
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Theorem 4.3.1. Suppose that (r(η), u(η)) solve (4.10) subject to initial conditions

(r(0), u(0)) = (r0, u0) and that ũ(η) solves

ũ′ = [Dξg(η, 0)]ũ− 〈[Dξg(η, 0)]ũ, ũ〉 ũ, ũ(0) = u0. (4.12)

Let r̃(η) be defined by

r̃(η) = r0 exp

(∫ η

0

〈[DξNf(s, 0)]ũ(s), ũ(s)〉 ds
)

There exist constants C1, C2, L1, L2 > 0 such that

‖u(η)− ũ(η)‖ ≤ C1r0 exp(L1t)

|r(η)− r̃(η)| ≤ C2r
2
0 exp(L2t) (4.13)

for t ≥ 0.

Proof. We approximate the solution (r(η), u(η)) to (4.10) where r(0) � 1; namely we let

ε = r(0) and expand

r(η) = εr1(η) +O(ε2)

u(η) = u0(η) +O(ε).

The ε0 term of r(η) vanishes, as {r = 0} is invariant under (4.10). Expanding the derivatives

of r, u we find

r′1 = 〈[Dξg(η, 0)]u0(η), u0(η)〉 r1

u′0 = [Dξg(η, 0)]u0 − 〈[Dξg(η, 0)]u0, u0〉u0

where r1(0) = ε, u0(0) = u∗0. Note that these are the dynamics of r̄, ū; standard perturbation

theory yields our exponential bounds.
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Therefore, we can study the stability of Γ by considering integrals of a quadratic form.

Denote by Φa
Γ : Sn−2×R→ Sn−2 the flow induced by the angular equation (4.12), and define

the mapping L : Sn−2 → R by

L(u0) =

∫ T

0

〈DξNf(η, 0)Φa
Γ(u0, s),Φ

a
Γ(u0, s)〉 ds.

We can use this function to completely characterize the stability of Γ.

Corollary 10. If L(u0) < 0 for all u0 ∈ Sn−2, then Γ is a stable periodic orbit. If Γ is an

unstable periodic orbit, then there exists a u∗0 ∈ Sn−2 such that L(u∗0) ≥ 0.

Proof. If L(u0) < 0 for a point u0 ∈ Sn−2, then for any initial condition (r0, u0) the solution

to (4.10) has

r(T ) = |r(T )− r̃(T ) + r̃(T )| ≤ r0 exp(L(u0)) + C2r
2
0 exp(L2T ) (4.14)

for each u0. Since L(u0) < 0 and T is fixed, we can choose r0 > 0 sufficiently small to

guarantee from (4.14) that r(T ) < r0. Therefore, since r = ‖ξ‖, we have shown that

trajectories sufficiently close to Γ become closer to Γ after one period and thus Γ is stable.

The second claim follows analogously.

We have derived a novel approach to studying the stability of a periodic orbit that is

more geometric in spirit than the standard linearization technique; the two methods are

related though, as

DξNf(η, 0) =


〈[J(η)]N1Γ(η), N1Γ(η)〉 · · · 〈[J(η)]NkΓ(η), N1Γ(η)〉

〈[J(η)]N1Γ(η), N2Γ(η)〉 · · · 〈[J(η)]NkΓ(η), N2Γ(η)〉
...

. . .
...

〈[J(η)]N1Γ(η), NkΓ(η)〉 · · · 〈[J(η)]NkΓ(η), NkΓ(η)〉

 (4.15)

where J(η) = Dxf ◦ Γ(η) is the Jacobian of the vector field of (4.1) evaluated along its

periodic solution Γ. If we define the k × n matrix NΓ(η) = (N1Γ(η), N2Γ(η), · · · , NkΓ(η))T

then the above simplifies to DξNf(η, 0) = NΓ(η)J(η)NΓ(η)T , which is the projection of the

linearized dynamics of (4.1) into the normal space of the curve Γ. This quantity appears

101



as H(x) in Section 3.6 of [45], in the study of regions of flow contraction in a Hodgkin-

Huxley type planar system, and also arises in [51], where Nave and Ross use it to identify

coherent Lagrangian structures. Next, we show that by separating the rotational and radial

components of the normal flow, we can easily identify regions of contraction and expansion

of trajectories in the neighborhood of Γ.

4.3.2 Angular Dynamics: Organizing Transient Behavior

In this section we will study the angular dynamics of the (r, u) system (4.11) and show

that we can use T -periodic solutions of the r = 0 subsystem to construct invariant manifolds

that organize the transient dynamics near a Γ.

Recall from (4.11) that the r = 0 subsystem has the form

du

dη
= [Dξg(η, 0)]u− 〈[Dξg(η, 0)]u, u〉u

and hence is a non-autonomous ODE on the hypersphere Sn−2, with flow that we denote Φa
Γ.

As the vector field is cubic, and therefore odd, the angular flow Φa
Γ is antipode-preserving;

that is, Φa
Γ(−u, η) = −Φa

Γ(u, η), so we need only study the dynamics on half of the sphere.

In the planar case, with n = 2, our angular dynamics is trivial as ξ would be a scalar, i.e.

r = |ξ| and u = 1. For the analysis of three-dimensional systems, it is helpful to write

u = (cos θ, sin θ) =: z(θ) and derive dynamics on the angle θ. This dynamics takes the form

dθ

dη
= κ2(η)− [DξNf(η, 0)]z(θ) ∧ z(θ), (4.16)

which suggests that the torsion κ2(η) of a periodic orbit in R3 greatly influences how nearby

trajectories rotate azimuthally. In higher dimensions, one could use hyperspherical coordi-

nates and derive dynamics on the associated set of angles; however, we will not present such

computations here.

The key point for our analysis is that the T -periodic solutions to system (4.12) can

naturally be used to construct invariant manifolds attendant to our periodic trajectory, which

correspond to analogous structures in the LOR equations and in the original system (4.1).

Suppose that u∗ ∈ Sn−2 satisfies Φa
Γ(u∗, T ) = u∗ and hence u∗ is a fixed point of the map
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P (x) := Φa
Γ(x, T ). Using standard discrete dynamical systems theory, if u∗ is a hyperbolic

fixed point of P , then we can construct stable and unstable manifolds W s(u∗, 0),W u(u∗, 0)

in Sn−2 × R, defined by

W s(u∗, 0) = {x ∈ P|P k(x)→ u∗ as k →∞}

W u(u∗, 0) = {x ∈ P|P k(x)→ u∗ as k → −∞}. (4.17)

We call these the invariant angular manifolds attendant to Γ. With the aforementioned

odd-ness of (4.12), we have the following result.

Theorem 4.3.2. Suppose that u∗ ∈ Sn−2 satisfies Φa
Γ(u∗, T ) = u∗. If u∗ is a hyperbolic fixed

point of P with ns negative real part eigenvalues and nu positive real part eigenvalues, then

there exist invariant ns-dimensional stable and nu-dimensional unstable manifolds attendant

to (u∗, 0) in Sn−2×R. Furthermore, −u∗ is also a hyperbolic fixed point of P with the same

stability properties as u∗.

Remark 7. The requirement of hyperbolicity is not necessary. Since the examples we will

consider do not have invariant angular center manifolds, we have simply assumed hyperbol-

icity for notational convenience.

Next, we return to the full cylindrical dynamics (4.11). The set {r = 0} is an invariant,

(n−1)-dimensional set in our n-dimensional (r, u, η) phase space (i.e., in the relevant subspace

of R+ × Sn−2 × R). Thus, as long as 〈[Dξg(η, 0)]u, u〉 6= 0, the manifolds W s,W u extend

in this phase space to (ns + 1)- and (nu + 1)-dimensional invariant manifolds in {r ≥ 0},

respectively, and these manifolds will organize the local transient dynamics. Note that

even if Γ is stable, it can still have both stable and unstable invariant angular manifolds.

Trajectories will contract in the r direction to {r = 0}, and their angular behavior will be

organized by the invariant angular manifolds. An example of the organizational power of

these manifolds in R3 is presented in the next section.

We conclude this section with a result on the existence of the T -periodic angular solu-

tions, which form the basis for our invariant angular manifolds. The following statement

demonstrates that such solutions are a topological necessity in even dimension.

Theorem 4.3.3. If n is even, then there exists u∗ ∈ Sn−2 such that Φa
Γ(u∗, T ) = u∗.
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Proof. We will use a standard result from algebraic topology, namely the hairy coconut

theorem: if F : Sm → Sm is homotopic to the identity map and m is even, then F must have

at least one fixed point. The map P : Sn−2 → Sn−2 defined by P (x) = Φa
Γ(x, T ) is naturally

homotopic to the identity, via H(x, s) = Φa
Γ(x, sT ) for s ∈ [0, 1]. Hence when n is even, P

must have a fixed point [50].

Thus we find that T -periodic angular trajectories and their attendant invariant angular

manifolds are always present in even dimension. Interestingly, the smallest dimension of

interest, n = 3, is not guaranteed to have invariant angular dynamics. Indeed, for n = 3, our

flow map P will map from S1 to S1 and thus may be characterized by Denjoy’s Theorem:

either Pm(x) has a fixed point for some m or P is topologically transitive. Interestingly, we

shall see in the next section that fixed points of P can give rise to angular manifolds with

complicated twisting geometries in the LOR frame.

4.3.3 Asymptotic Phase

The asymptotic phase of a point x0 in the basin of a stable limit cycle Γ is the value

Θ(x0) such that [20]

lim
t→∞
‖Γ(t+ Θ(x0))− Φ(x0, t)‖ = 0.

That is, there is a one-to-one mapping between points on Γ and phase values between 0

and the period of Γ. Each point x0 in the basin of Γ is effectively linked to a corresponding

base point on Γ, such that in the long-time limit, as x0 converges to Γ, Φ(x0, t) becomes

arbitrarily close in Euclidean distance to the trajectory of the base point. Thus, we can

uniquely assign the phase of the base point to x0. This phase is what we have denoted as

Θ(x0), and the isochron of Γ associated with Θ(x0) is defined as the collection of all basin

points with Θ(x0) as their asymptotic phase.

Thus far in our analysis, we have largely disregarded the η dynamics, opting instead

to use η as a convenient parameterization representing geometric time. In this section, we

study the η dynamics and demonstrate that, in the t → ∞ limit, η is intimately related to

the asymptotic phase.
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Theorem 4.3.4. Suppose that x0 = Ψ(η0, ξ0) is in the basin of the stable, Frenet limit cycle

Γ. Then

Θ(x0) = lim
t→∞

η(t)− t.

Proof. Note that by construction, Φ(x0, t) = Ψ ◦ΦΓ((η0, ξ0), t). Therefore, for any phase θ,

‖Γ(t+ θ)− Φ(x0, t)‖ =

∥∥∥∥∥Γ(t+ θ)− Γ ◦ η(t)−
k∑
j=1

ξj(t)NjΓ ◦ η(t)

∥∥∥∥∥
≤ ‖Γ(t+ θ)− Γ ◦ η(t)‖+ ‖ξ(t)‖ . (4.18)

As Γ is Frenet, it is C 1[0, T ] and hence is Lipschitz. Thus, (4.18) implies that there exists

L > 0 for which

‖Γ(t+ θ)− Φ(x0, t)‖ ≤ L|t+ θ − η(t)|+ ‖ξ(t)‖ . (4.19)

Since ‖ξ(t)‖ → 0 as t→∞, it follows that if we can demonstrate that limt→∞ η(t)− t exists,

then by choosing θ = limt→∞ η(t) − t and taking the limit t → ∞ in inequality (4.19), we

will obtain the desired result.

Let {tn}∞n=1 be any positive sequence such that tn → ∞. We will first show that φn :=

η(tn) − tn is a Cauchy sequence. We note that when ξ = 0, η̇ = 1, and hence we can write

η̇ = 1 +O(ξ). Thus, there exist constants C,M > 0 such that

|φn − φm| =
∣∣∣∣∫ tn

tm

(η̇(s)− 1) ds

∣∣∣∣
≤M

∫ tn

tm

‖ξ(s)‖ ds

≤ CM

∫ tn

tm

exp(−αs)ds (4.20)

where ‖ξ(s)‖ ≤ C exp(−αs) follows from the stability of Γ, with −α is the smallest (in norm)

Floquet exponent of Γ. Taking tm, tn sufficiently large, we find that φn is Cauchy and hence

is convergent. Finally, note that although tn was arbitrary, any other sequence t̃n →∞ will

result in a sequence φ̃n with the same limit as φn. Indeed, if φ̃n → φ̃, then for any ε > 0

there exists an N such that

|φ− φ̃| ≤ |φ− φn1|+ |φn1 − φ̃n2|+ |φ̃n2 − φ̃| < ε

for n1, n2 > N , where the middle term is bounded using the integral calculation in (4.20).
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Thus, we can use the LOR dynamics to extract the asymptotic phase for initial conditions

in the basin of attraction of a stable periodic orbit. Furthermore, it is quite natural to study

the phase dynamics in the LOR frame. For x0 in the basin of attraction of Γ, denote the

corresponding LOR coordinates as (η0, ξ0) and let Θ(η0, ξ0) denote the asymptotic phase in

the LOR frame. Clearly, we have that

Θ(η0, 0) = η0

as Ψ(η0, 0) ∈ Γ. This equality corresponds to our earlier observation that η provides a

reasonable approximation of phase.

Furthermore, the LOR representation of the phase dynamics allows us to easily consider

phase sensitivity for points in a neighborhood of Γ. If we perturb the point (η0, 0) ∈ Γ

by ξ0 (a small vector in the ξ direction as represented in LOR coordinates), then the new

asymptotic phase will have a value Θ(η0, ξ0) and thus the change in the phase value is given

by ∆Θ(η0, ξ0) := Θ(η0, ξ0) − η0. If |∆Θ(η0, ξ0)| is large, then the oscillation is sensitive

to perturbations at η0. If the orbit has saddle-type invariant angular manifolds, i.e. both

stable and unstable T -periodic angular manfiolds, then we would expect that perturbations

in the direction of the unstable angular manifold should elicit the largest phase response.

The unstable angular trajectory will serve as an angular separatrix, and initial conditions

on opposite sides of the angular manifold will have long, potential asymmetric excursions as

they approach any stable angular manifolds. In the next section, we demonstrate how this

effect sculpts the phase sensitivity of the Goodwin oscillator.

4.4 The Goodwin Oscillator

4.4.1 Identification of the Periodic Orbit

In this section we will demonstrate our LOR techniques in action, using the well-known

Goodwin oscillator [27, 32] as a proving ground. The Goodwin system is a model for an
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oscillatory genetic circuit that has been considered in the study of circadian rhythms. The

model is given by three ODEs, which have the form

ẋ = a
kn + zn

− bx

ẏ = αx− βy

ż = γy − δz

(4.21)

where a, k, n, b, α, β, γ, δ are positive parameters. Here we use a = 360, k = 1.368, n = 12, b =

α = γ = 1, β = .6, δ − .8 for our numerical simulations. It is known that this system has

a globally stable periodic trajectory across a wide range of parameter values, provided that

n > 8 (e.g., [32]). We will use the LOR technique to identify this limit cycle.

The first step in our analysis is to choose a reasonable LOR basecurve. If we have a

sense of the region in which a periodic orbit might lie, based for example on the direction

field or nullsurface structure, then we can choose any simple closed curve in this region (e.g.,

see [45]). For the example at hand, we will use the flow itself to do most of the work in

specifying this curve.

That is, we somewhat arbitrarily pick the initial point (1, 1, 1), which seems to be near

the core of rotation in the vector field of (4.21), and we denote by ψ(t) the trajectory of

(4.21) with initial condition ψ(0) = (1, 1, 1). Integrating forward, we note that the segment

ψ([5, 10]) exhibits a looping structure (see Fig. 23A, red curve), so we will build a simple

closed curve from this portion of the trajectory. To do so, we will sample this trajectory

segment at regular time intervals {ψ(5 + iδt)}50
i=1, where δt = .1, and fit a planar ellipse to

this data, for example using a least squares calculation, which we take as our basecurve γ

(also shown in Fig. 23A, blue curve).

It is important to note that while this is a fairly ad hoc procedure for producing a LOR

basecurve, we have found that it is successful in multiple examples. The basecurve need not

be a close match to the periodic trajectory, just a reasonable first guess, and generating the

basecurve need not involve any integration, as we find that an arbitrary simple closed curve

in an appropriate region of the phase space will generally work as well.

With our best-fit planar ellipse γ in hand, we next verify that it is a compatible curve by

checking that η̇ remains nonzero along γ, or equivalently along {ξ = 0}; see Fig. 23B. Once
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this property is established, we are prepared to solve the BVP (4.3) and identify the periodic

trajectory. We use Mathematica for this process, but any software package with a numerical

integrator and a symbolic computation engine would suffice. The solver provides a unique

solution to our LOR BVP, as shown in Fig. 23C; the orbit maps back to the corresponding

periodic solution in the original coordinates shown in Fig. 23A (purple curve).

To conclude this first part of the example, we briefly discuss the strengths and weaknesses

of this approach to periodic orbit identification. Computationally, we have eliminated the

need to compute the first return time to a fixed Poincaré section, which can be a nontrivial

task in higher dimensions or, alternatively, to solve a two-point BVP with a phase condition

and with period as a free parameter. Furthermore, we remark that numerical BVP solvers

subject to fixed endpoint, periodic boundary conditions are fast and stable. The tradeoff is

that for complicated flows, identifying a compatible basecurve that approximates the shape of

the desired periodic orbit can become a nontrivial task, and the normal frame computations

required for the LOR approach can also become involved. We use the Mathematica symbolic

computation software to execute the LOR method, and we plan to make our code available

on GitHub.

While the normal frames and LOR dynamics may be expensive to compute, there is an

added bonus of the approach to capturing a periodic orbit: if one is interested in continuing

periodic trajectories across an interval of parameter values, a single LOR transformation

can often be used multiple times. If our original dynamics depends on parameters – that

is, our vector field is of the form f(x;λ) – then the right-hand side of the LOR BVP will

also depend on the parameter vector λ; however, the λ-dependence will only appear in the

Tf(η, ξ;λ), Nf(η, ξ;λ) terms, while the underlying curve γ and the Frenet frame will not

depend on λ. Each computationally expensive LOR transformation can therefore be used

for multiple inexpensive iterations of BVP solution, one for each parameter set. We display

projected solutions to the LOR BVP for the Goodwin oscillator (4.21) as the parameter a

ranges from 330 to 390 in Fig. 23D, all produced using a single LOR transformation.

108



4.4.2 Analysis of Transient Dynamics near the Periodic Orbit

We continue our analysis of the Goodwin oscillator to demonstrate the ideas of section

4.3. We use the periodic orbit identified in subsection 4.4.1 as our LOR basecurve Γ. Recall

that in the LOR frame, the basecurve corresponds to {ξ = 0}. The rectified limit cycle

together with nearby trajectories of the resulting LOR dynamics are shown in Fig. 24. Note

how the trajectories emanating from a circle of initial conditions seem to collapse onto a

2-manifold as they contract towards {ξ = 0}.

To identify the manifold to which these trajectories are contracting, we will consider

the angular {r = 0} dynamics, given by (4.16). As the angular flow is antipode-preserving,

we note that the dynamics on θ is invariant under a π shift, and as θ only appears in

trigonometric functions in (4.16), the most natural domain for the dynamics in (η, θ) is the

torus S1 × S1. We find that there are two T -periodic angular trajectories that (with their

π-shifted counterparts) organize the phase space; these periodic angular solutions are shown

with a sweep of initial conditions in Fig. 25A. Note that in the interval η ∈ [0, T ), one of

these periodic angular solutions, which we denote as θs,0, is stable and attracts almost all

initial conditions, while the other periodic angular solution, say θu,0, is unstable and plays

the role of an angular separatrix.

Next, we will construct the invariant angular manifolds to Γ. In (η, θ, r) space, which

includes the radial direction, {r = 0} is invariant and is partitioned between the trajectories

θs,0, θu,0 and their translates, which we will henceforth collectively refer to as θs, θu. We have

〈[Dξg(η, 0)]u, u〉 r < 0, such that the radial dynamics given in (4.11) is contracting toward

{r = 0}. Hence there are 2-dimensional invariant angular manifolds of system (4.11) atten-

dant to each of θs, θu in {(η, θ, r) : r > 0}, which we denote by W s(θs),W
s(θu), respectively.

This structure is shown in Fig. 26. Note that the saddle behavior of W s(θu) is interesting, as

initial conditions near W s(θu) yield trajectories that are pushed away from the manifold in

the angular direction yet have decreasing r values. Therefore, W s(θu) serves as a separatrix

in the 3-d flow. We also see that the hidden 2-manifold in Fig. 24 is, in fact, the stable

invariant angular manifold W s(θs), which is stable in the angular and radial directions.

Finally, we can transform back to our original coordinates (x, y, z) via Ψ, which also
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preserves invariance and stability, and note that our manifolds become topological annuli

that intersect transversely along the periodic orbit Γ. As trajectories converge toward Γ,

they will quickly approach the stable angular manifold, hence the flow on Ψ(W s(θs)) can

be used to provide a natural dimensional reduction for the full dynamics of (4.21). The

saddle type manifold Ψ(W s(θu)), being an angular separatrix, will display high sensitivity

to initial conditions, and thus represents a region of high asymptotic phase uncertainty. The

LOR frame allows us to study the local dynamics near the periodic solution of the Goodwin

oscillator model in greater detail than is afforded by standard linearization techniques while

maintaining a clear geometric perspective.

To conclude this section, we will show that the invariant angular manifolds do in fact

play a major role in determining phase sensitivity. We will use the approach laid out in

subsection 4.3.3, based on the observation that the phase of an initial condition can be

computed directly from limt→∞ η(t) − t. We study a 64 × 64 mesh of initial conditions

(η0, ξ0) on a cylinder ‖ξ‖ = 0.1. These initial conditions are integrated forward until a time

t = tend such that ‖ξ(t)‖ is sufficiently small (i.e., we have converged sufficiently close to

the limit cycle), and then we compute η(tend) − tend to extract an approximation to the

asymptotic phase Θ(η0, ξ0). Note that tend may be different for different initial conditions.

We show the results of these computations in Fig. 28A. As expected, the asymptotic

phase values correlate strongly with η0, as we are in a regime where ‖ξ0‖ is fairly small.

In Fig. 28B, we show the phase sensitivity ∆Θ(η0, ξ0) = Θ(η0, ξ0)−η0 sampled at various

(η, ξ) values. The multiple data points (blue) for each value of η all have different initial

ξ values. The dependence of ∆Θ on ξ can also be appreciated from the contour plot in

Fig. 28C; note that for moderate η values, different ξ values lead to very different ∆Θ.

To relate this phase sensitivity to the invariant angular manifolds, we consider the quantity

1/|θs(η) − θu(η)| =: 1/Z(η0), which grows as the invariant angular manifolds come closer

together. The red curve in Fig. 28B displays an appropriately rescaled rendering of Z(η).

We note that the magnitude of this quantity correlates strongly, albeit with a phase shift,

with the spread in the phase sensitivity. When Z(η) is small, then small changes in the

angular variable ξ/ ‖ξ‖ can push trajectories to the opposite side of θu, which causes a large

angular excursion. Therefore, it is reasonable to use 1/Z(η) to approximate the relative

110



phase sensitivity.

The final panel in 28 provides our attempt to portray the full geometry of phase sen-

stitvity in the Goodwin oscillator. The data are arranged as follows: we take an initial

condition on the cylinder {‖ξ‖ = .1}, say with coordinates (η0, ξ1,0, ξ2,0), and compute the

phase sensitivity δ := ∆Θ(η0, ξ1,0, ξ2,0), then we add a point to the mesh of panel D at the

value

(η0, ξ1,0, ξ2,0) + |δ|(0, ξ1,0, ξ2,0),

with the idea being that the further that a point is from {‖ξ‖ = .1}, the more sensitivity of

asymptotic phase to initial angle occurs at that point.

4.4.3 Numerical Computations

We conclude this lengthy example with some additional information about our compu-

tational methods. To create the figures in this section, we needed to approximate LOR

trajectories in both the (η, ξ) and (η, u, r) representations, which may seem daunting. How-

ever, we note that we can perform these computations in highly synergistic ways.

When we searched for periodic angular trajectories, we generated 80 trajectories of (4.16),

and from these we computed the map from η = 0 to η = T . We used these same trajectories

to compute the radial stability function L(u0). Hence, we were able to establish the exis-

tence of invariant angular manifolds and study the stability of the underlying periodic orbit

simultaneously.

Similarly, when approximating the invariant angular manifolds, which we implemented

numerically using the standard BVP continuation technique laid out in [35], we computed

a large number of trajectories that lie along our manifolds. We were able to use these

trajectories again to compute asymptotic phase values. Thus, we could approximate invariant

angular manifolds and study phase sensitivity simultaneously as well. Furthermore, it is

easy to imagine how knowledge of stable angular manifolds could be used to optimize the

computation of asymptotic phase values, although we have not implemented this technique

in these computations: following the computation of the stable angular manifold W s(θs), the

asymptotic phase on W s(θs) could be obtained using the BVP solutions that were produced
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to approximate W s(θs). Furthermore, we know that almost all trajectories will converge

to W s(θs) as they approach r = 0; thus, to estimate the asymptotic phase of an arbitrary

trajectory φ, we need only track it until it lies near W s(θs) and then we can use the values

of Θ on W s(θs) to approximate the asymptotic phase of φ.

As a benchmark, the computations performed in this section can be executed on a Mac-

book Air equipped with an Intel i5 processor and sixteen gigabytes of RAM via Wolfram

Mathematica in just under three hours; this includes the identification, stability integrals,

periodic-angle identification, approximation of invariant angular manifolds, and asymptotic

phase computations.

All of these computational shortcuts result from the unified nature of the LOR approach

to periodic dynamics. Were we to use standard theory to identify a periodic orbit, analyze

its stability, and then compute its invariant manifolds, we would be using computationally

unrelated approaches; however, once we have completed the expensive computation of the

LOR change of coordinates, we find that computations surrounding the analysis of periodic

orbits and their transient dynamics are highly efficient thanks to the LOR frame.

4.5 A Period-Doubling Bifurcation with a Twist

In this section, we examine a polynomial system that exhibits a period-doubling bifurca-

tion and demonstrate that the LOR approach provides an efficient, unified means to identify,

analyze, and continue the periodic orbits that arise. The system of interest is given by

ẋ = y

ẏ = z

ż = αx− x2 − βy − z (4.22)

where α, β > 0 are parameters [53]. For our initial analysis we will take β = 2, for which

it is known that (4.22) undergoes a period-doubling bifurcation at α ≈ 3.112. We will

begin by identifying the periodic orbit at α = 3; as in the Goodwin example, we choose a

“nearly recurrent” trajectory, sample over its pseudo-period and fit a planar ellipse to choose
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a basecurve. We omit the details of this computation, and show the identified periodic orbit

in Fig. 29.

Denote by Γ0 the periodic orbit identified for α = 3, with period T0. We next compute the

LOR vector field LΓ0f(x, y, z;α), noting that Γ0 is automatically compatible. As discussed in

Section 4.4, this one basecurve can subsequently be used to identify multiple periodic orbits

across a range of parameter values. As we have foreknowledge that our system undergoes a

period-doubling bifurcation, to find these orbits we amend our BVP approach and, rather

than (4.3), we solve the BVP

dξ

dη
= gΓ0(η, ξ;α) ξ(0) = ξ(2T0),

where T0 is the period of Γ0, for each of a set of α values. That is, we search for 2-periodic

points of the flow map. Using this approach, there is no need to piece together parameter

domains. The results of these computations are shown in Fig. 29B: we can smoothly continue

our BVP solution across the period-doubling bifurcation. Indeed, from the perspective of

our modified BVP, there is no bifurcation.

We now turn our attention to the invariant angular manifolds for these periodic orbits.

For each of our sampled parameter values, we compute the map P (θ;α) = Φa
Γ0

(θ, Tα;α),

where Tα is the period of the periodic trajectory at parameter value α, over a range of

initial conditions θ. The fixed points of P (θ;α) are Tα-periodic angular solutions and, as

P (θ + π;α) = π + P (θ;α), we note that P (P (θ;α);α) = θ if and only if P (θ;α) = θ or

P (θ;α) = θ + π. Therefore, we can also identify 2Tα-periodic angular solutions by studying

P (θ;α).

When α < αb, where αb denotes the α value at which the period-doubling bifurcation

occurs, we find that there are no periodic angular solutions; that is, P fails to have a fixed

point. Intuitively, this means that the angular flow is unconstrained, or the trajectories near

Γ rotate freely around Γ and do not converge to any angular manifold. For α > αb, we

again find that P has no fixed points; however, we find that there are 2 distinct solutions

to P (θ;α) = θ + π and hence we have 2T -periodic angular solutions. Interestingly, the

invariant angular manifolds attendant to these 2T -periodic solutions are non-orientable, as
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our angular flow is antisymmetric. The mapping P (θ;α) is shown at several values of α in

Fig. 30.

The existence of a stable non-orientable manfiold attendant to Γ for α > αb has already

been established [53]. In addition to this stable invariant angular manifold, the LOR tech-

nique also reveals an angularly unstable non-orientable manifold, which will play a large role

in organizing local phase dynamics. Furthermore, we have shown that as the limit cycle

undergoes a period-doubling bifurcation, our periodic angular trajectories (and hence their

attendant non-orientable manifolds) undergo a saddle-node bifurcation.

We suspect that the bifurcation of invariant angular manifolds is a common occurrence

and could provide a new tool for analyzing bifurcations that affect transient dynamics relative

to periodic orbits. For example, if a stable and an unstable angular manifold coincide and

then annihilate, then a transition will occur from a scenario in which a 2-manifold organizes

trajectories in the neighborhood of the underlying periodic orbit to a scenario in which

trajectories exhibit free rotation around the periodic orbit, which will significantly impact

the asymptotic phase structure of trajectories within the neighborhood.
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4.6 Figures

Figure 20: Identifying periodic orbit of (4.5). (Top Left) A three-dimensional projection of

the trajectory φ described in the text is shown in red, the dashed blue curve is the projected

Fourier approximation of φ, and the purple curve is a projection of the identified periodic

orbit. (Top Right) A plot demonstrating the admissibility of φ̄ as a basecurve. (Bottom

Left) The solution to the LOR BVP using φ̄ as a basecurve. (Bottom Right) A component

plot of the LOR BVP solution with ξ1(η) in red, ξ2(η) in green, and ξ3(η) in blue.
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(a) (b)

Figure 21: Dynamics for the FitzHugh-Nagumo equations (4.7) and the corresponding LOR

equations (4.9). (a) A stream plot in the phase space for (4.7), along with the basecurve γ

(black) and the unique periodic orbit of the flow (orange), along which the flow is counter-

clockwise. (b) A stream plot in the phase space for (4.9). The grey line is ξ = 0, which

corresponds to γ in (v, w) space since Ψ(η, 0) = γ(η). Our evolute condition, ξ 6= 1/κγ(η),

fails to hold at ξ = .6. The purple curve is the η nullcline, and the red curve is the ξ nullcline.

In orange is the unique limit cycle of the flow, found by solving (4.4) as computed from (4.8).
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(a) (b)

(c) (d)

Figure 22: A simple demonstration that the LOR approach for identifying periodic tra-

jectories is robust to parameter variations. In each panel, one of the four parameter val-

ues of (4.7) is varied while the other three remain constant. We perturb off of the point

(a, b, ε, I) = (−0.6, 0.8, 0.5, 0.3) in parameter space. In (a) we vary ε ∈ [0.01, 0.7414], in (b)

we vary a ∈ [−0.7,−0.2], in (c) we vary b ∈ [0.4, 1.2] and in (d) we vary I ∈ [0.3, 0.7]. The

colors of the obtained orbits transition uniformly from red to blue across each parameter

interval.
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(a) (b)

(c) (d)

Figure 23: Identifying the Goodwin oscillator. (a) The trajectory segment ψ([5, 10]) used

to “approximate” the periodic orbit (red), the best fit ellipse γ to that trajectory (blue)

and the identified periodic orbit (purple). The black point is the initial condition (1, 1, 1),

the blue point is φ(5) and the red point is φ(10). (b) A plot of 〈f ◦ γ(η), Tγ(η)〉, which is

positive for η ∈ [0, 2π], demonstrating that γ is a compatible curve. need axis labels, at least

on vertical axis. (c) The solution to the LOR BVP (4.3), or equivalently to (4.2), based on

with basecurve γ, shown in the LOR frame. (d) Projections of solutions for values of the

parameter a varying in [330, 390] with a stepsize of 5.
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Figure 24: The LOR dynamics near the periodic orbit. Trajectories generated by flowing

forward a circle of initial conditions of the LOR equations for system (4.21) from {η = 0}

until {η = T}.

(a) (b)

Figure 25: Dynamics of the r = 0 angular subsystem (4.12) for the Goodwin Oscillator.

(a) The five black curves are T -periodic angular solutions; the solid curves are stable and

the dashed curves unstable. The remaining curves are representative trajectories. (b) The

function L(θ0), which we use to show that Γ is stable.
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(a) (b)

Figure 26: The invariant angular manifolds of the Goodwin oscillator model (4.21) in the

LOR frame. (a) The red manifolds are W s(θu) and the blue manifolds are W s(θs). Note how

these surfaces organize phase space: trajectories are pushed away from the red manifolds

towards the blue manifolds as r → 0; furthermore, the red manifold serves as an angular

separatrix. (b) The invariant angular manifolds represented in our orignial LOR coordinates.

Note that the blue (stable) manifold is the object to which the trajectories in Fig. 24 are

drawn.
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Figure 27: The invariant angular manifolds Goodwin oscillator model (4.21) represented in

(x, y, z) space. The blue (stable) manifold the the object to which trajectories are drawn

as they approach φ. The red (saddle-stable) manifold serves is a separatrix, which displays

high sensitivity to initial conditions.
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(a)

(c)

(b)

(d)

Figure 28: Computing asymptotic phase using the LOR frame. (a) Contour plot of the

asymptotic phase Θ(η0, ξ0) for initial conditions on the cylinder ‖ξ‖ = 0.1 spaced uniformly

in the angular coordinate θ := tan−1(ξ2/ξ1). (b)Distance between the invariant angular

manifolds (red) provides an approximate envelope to the values of phase sensitivity ∆Θ,

computed numerically at initial conditions on the cylinder (blue dots). (c) A contour plot

of ∆Θ(η0, ξ0). (d) The same data represented in 3D; details are given in the text.
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(a) (b)

Figure 29: Identifying and continuing the limit cycle across a period-doubling bifurcation.

(a) The initial elliptical basecurve (blue) used to identify the periodic orbit at α = 3 (purple).

To find the basecurve, we find the best-fit planar ellipse to the trajectory of (4.22) with initial

condition (1, 1, 1), shown for t ∈ [0, 5] (red). (b) The continuation of the limit cycle in α,

computed using the LOR approach described in the text.
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(a) (b) (c)

(d)

Figure 30: Fixed points in the angular flow map. (a) The angular flow map P (θ; 3) which

has no fixed points nor k-periodic points for k < 6. (b) The angular flow map P (θ; 3.13)

which has two 2-periodic points. Note that one crossing of P (θ; 3.13) and θ + π are nearly

tangential, suggesting a saddle-node bifurcation has just occurred. (c) The angular flow

map P (θ; 3.15), which again has two 2-periodic solutions. (d) An approximation of the

invariant angular manifolds plotted in LOR coordinates. As θ(T ) = π + θ(0) for the stable

and unstable angular trajectories, these manifolds will be diffeomorphic to Möbius strips in

(x, y, z)-space.
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5.0 Rivers in Space, Identifying Canard Solutions

The material in this chapter is being prepared for publication and is co-authored by

Jonathan E. Rubin.

5.1 Motivation

In this chapter, we show that all canards lie in vanishing neighborhoods of rivers. In the

process, we observe that the methods involved in this demonstration are also convenient for

calculations related to canards. In particular, we can do way-in way-out without complexifi-

cation of time. Moreover, our approach also reveals some previously unrecognized structure

associated with canards, which gives novel insight into the development of small amplitude

oscillations during the passage near a critical manifold fold associated with canard dynamics.

5.2 Generalized River Theory

5.2.1 Rivers in Arbitrary Dimensions

Given a curve γ ∈ C n+2(I,Rn) for I ⊂ R, the Frenet curvature of γ is given by

κγ(η) =
γ′(η) ∧ · · · ∧ γ(n)(η)

α(γ′(η), · · · , γ(n)(η))

where ·′ = d·/dη and α is a smooth, nonzero function [40]. Therefore, we define the curvature

of the vector field f by

κ(x) :=
f(x) ∧ · · · ∧ f (n)(x)

α(f(x), · · · , f (n)(x))
,

which we can apply directly to compute κφ.
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We will again be most interested in the set of zero-curvature, {κ(x) = 0}, which we

call the zero-curvature locus (ZCL). Specifically, we are interested in analyzing how the

zero-curvature locus (ZCL) organizes phase space. For convienence and later use, we define

∆(i1,i2,··· ,in)f(x) := f (i1)(x) ∧ f (i2)(x) ∧ · · · ∧ f (in)(x) (5.1)

for i1, i2, · · · , in ∈ {1, · · · , n+ 2}. Clearly κ(x) = 0 if and only if ∆(1,2,··· ,n)f(x) = 0.

Generically, the ZCL will be a codimension-one manifold embedded in Ω, which we

denote by Z. To study the effect of the ZCL on the flow Φ, we will parameterize a patch

of Z using a chart σ : U ⊆ Rn−1 → Ω and we will use LOR to analyze the local dynamics.

Note that, because σ provides a parameterization of a level set of the curvature function, we

can choose

Nσ(η) =
∇κ ◦ σ(η)

‖∇κ ◦ σ(η)‖
as the normal vector to our chart. The LOR dynamics with base manifold σ will have the

form

η̇ = [Sσ(η, ξ)]−1Tf(η, ξ)

ξ̇ = 〈f ◦Ψ(η, ξ), Nσ(η)〉 =: g(η, ξ).

Note that in the (η, ξ) LOR frame, σ corresponds to {ξ = 0}. Correspondingly, the

manifold Z is locally invariant on a sub-patch σ(U ′) if and only if g(η, 0) = 0 for η ∈ int U ′,

or

〈f ◦ σ(η), Nσ(η)〉 = 0, η ∈ int U ′. (5.2)

Thus, the manifold Z is best-aligned with the flow when g(η, 0) = 0, and we call the set

Cσ = {σ(η)|g(η, 0) = 0} the confluence set corresponding to (U , σ). Note that Cσ need

not be invariant, as (5.2) is a only a necesary condition for invariance. Given an atlas (i.e.,

collection of charts) {(Uβ, σβ)}β∈B of Z, we define the full confluence set for Z by

CZ =
⋃
β∈B

Cσβ .

We define a river as a trajectory φ such that φ(0) ∈ CZ .
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Note that computing an atlas for Z may be a non-trivial task, so we present a chart-free

equivalent condition to membership in the confluence set, which is computationally efficient

and also explicitly connects rivers to curvature.

Theorem 5.2.1. The following are equivalent:

1. x ∈ Ω is a confluence.

2. ∆(1,··· ,n−1,n)f(x) = ∆(1,··· ,n−1,n+1)f(x) = 0.

3. The trajectory φ such that φ(0) = x satisfies

κφ(0) =
dκφ
dt

(0) = 0.

Proof. Suppose that x ∈ CZ . Thus, κ(x) = 0 and 〈f(x),∇κ(x)〉 = 0. Now, let φ be the

trajectory such that φ(0) = x. We have κφ(0) = κ ◦ φ(0) = 0 and

0 = 〈f ◦ φ(t),∇κ ◦ φ(t)〉
∣∣∣∣
t=0

=
d

dt
κ ◦ φ(t)

∣∣∣∣
t=0

=
dκφ
dt

(0)

where we have used the chain rule and the definition of κ(x), respectively. Thus we have

shown that 1 implies 3, and as the relations used are equalities, we have also shown that 3

imples 1.

From the definition of κφ, differentiation yields

dκφ
dt

(t) =
d

dt

(
φ̇(t) ∧ · · · ∧ φ(n)(t)

α(φ̇(t), · · · , φ(n)(t))

)
(5.3)

=
1

α

(
d

dt
φ̇(t) ∧ · · · ∧ φ(n)(t)− φ̇(t) ∧ · · · ∧ φ(n)(t)

α(φ̇(t), · · · , φ(n)(t))

d

dt
α(φ̇(t), · · · , φ(n)(t)).

)

Note that, at t = 0, φ̇(0) ∧ · · · ∧ φ(n)(0) = 0 and therefore the dα/dt term in (5.3) will

vanish. Hence, we need only compute the derivative of the wedge product. Based on the

multi-linearity of the wedge product and the ∆ notation from equation (5.1), we can write

this expression as

d

dt
φ̇ ∧ · · · ∧ φ(n) =

n∑
j=1

∆(1,··· ,n)+ejf ◦ φ(t) (5.4)

where ej is the jth canonical basis vector. Note that, for 1 ≤ j ≤ n − 1, the terms in the

above sum have a repeated index, e.g. (2, 2, 3, · · · , n), (2, 3, 3, · · · , n), and so on; these wedge
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products are zero, as repeated vectors in a determinant are obviously collinear. Hence (5.4)

reduces to

d

dt
φ̇ ∧ · · · ∧ φ(n) = φ̇ ∧ φ̈ ∧ · · · ∧ φ(n−1) ∧ φ(n+1)

and hence κφ(0) = dκφ/dt(0) = 0 is equivalent to ∆1,2,··· ,n−1,nf(x) = ∆1,2,··· ,n−1,n+1f(x) = 0.

Therefore we have shown that conditions 2 and 3 are equivalent, and hence 1 and 2 are

equivalent as well.

Theorem 5.2.1 provides an obvious corollary that can be used to compute CZ .

Corollary 11.

CZ = {∆(1,··· ,n−1,n)f(x) = 0} ∩ {∆(1,··· ,n−1,n+1)f(x) = 0}.

Note that computing CZ with Corollary 11 is chart-independent and hence is much more

efficient than using the condition derived directly from invariance of Z.

As a confluence is a point where the ZCL is well-aligned with the flow, we measure the

strength of a river by checking the order of this alignment. Note that for a river φ, we can

write

κφ(t) =
d2κφ
dt2

(0)t2 +O(t3)

for small t. Thus, the strength of φ should be inversely proportional to |d2κφ/dt
2(0)|. This

observation leads us to a classification of rivers.

Definition 5.2.2. A trajectory φ is a class k river if

dκφ
dt

(0) =
d2κφ
dt2

(0) = · · · = dkκφ
dtk

(0) = 0.

Clearly, every river is at least class 1. We can translate this condition into one involving

the ∆ notation from equation (5.1) after we establish some combinatorial notation.
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Definition 5.2.3. Let L0 = {(1, · · · , n)}. Using power set notation, define G : 2Nn+ →

2Nn+ , B : Nn
+ → Nn

+ as follows:

G(S) =
⋃
s∈S

j∈{1,··· ,n}

s+ ej

B(s1, s2, · · · , sn) =

(s1, s2, · · · , sn) si 6= sj for all 1 ≤ i < j ≤ n

∅ else

(5.5)

and given any subset S ⊆ 2Nn+ we define B(S) = ∪s∈SB(s).

Finally, define Lk = B ◦G(Lk−1) for k > 0. For convenience, we denote L = ∪k≥0Lk.

Intuitively, G adds every canonical basis vector to each element of a set of positive integer

vectors and B deletes any entry with a repeated index. With notation established, we provide

an efficient way for identifying class k rivers.

Theorem 5.2.4. A trajectory φ is a class k river if and only if x = φ(0) satisfies

∑
`∈Li

∆`f(x) = 0 ∀i ∈ {0, · · · , k}.

Before proving this theorem, we prove a helpful computational lemma.

Lemma 5.2.5. Suppressing time dependence,

di

dti
φ̇ ∧ · · · ∧ φ(n) =

∑
`∈Li

∆`f ◦ φ.

Proof. Note that L1 = {(1, · · · , n − 1, n + 1)}, hence we have already shown the i = 1

case within the proof of Theorem 5.2.1. If the desired equality holds at the ith level, then

differentiation yields
di+1

dti+1
φ̇ ∧ · · · ∧ φ(n) =

d

dt

∑
`∈Li

∆`f ◦ φ.

Expanding, we obtain

d

dt

∑
`∈Li

∆`f ◦ φ =
d

dt

∑
`∈Li

φ(`1) ∧ · · · ∧ φ(`n) =
∑
`∈Li

j∈{1,··· ,n}

φ(`1+δ1,j) ∧ · · · ∧ φ(`n+δn,j)
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where δi,j denotes the Kronecker delta function. Collecting terms and using our definition

of G gives

∑
`∈Li

i∈{1,··· ,n}

φ(`1+δ1,i) ∧ · · · ∧ φ(`n+δ1,i) =
∑
`∈Li

j∈{1,··· ,n}

∆`+ejf ◦ φ =
∑

`∈G(Li)

∆`f ◦ φ.

To conclude, we note that ∆` ◦ φ = 0 whenever ` features repeated indices. Hence,

∑
`∈G(Li)

∆`f ◦ φ =
∑

`∈B◦G(Li)

∆`f ◦ φ =
∑

`∈Li+1

∆`f ◦ φ,

and we have shown the result.

Proof of Theorem 5.2.4. Note that we have already proven the k = 1 case, which we will

again use as a base case for induction. Suppose that φ is a river of class k.

For simplicity, introduce the notation p(t) = α(φ̇(t), · · · , φ(n)(t))−1 so that, by definition,

κφ(t) = p(t)(φ̇(t) ∧ · · · ∧ φ(n)(t)).

Suppose that our assertion is true at the kth level and differentiate to progress to the (k+ 1)

term. Suppressing time dependence,

dk+1

dtk+1
κφ =

k+1∑
i=0

(
k + 1

i

)
dk+1−ip

dtk+1−i

(
di

dti
φ̇ ∧ · · · ∧ φ(n)

)
.

Application of Lemma 5.2.5 implies that

k+1∑
i=0

(
k + 1

i

)
dk+1−ip

dtk+1−i

(
di

dti
φ̇ ∧ · · · ∧ φ(n)

)
=

k+1∑
i=0

(
k + 1

i

)
dk+1−ip

dtk+1−i

∑
`∈Li

∆`f ◦ φ,

which, using our induction hypothesis, simplifies to

dk+1

dtk+1
κφ = p

∑
`∈Lk+1

∆`f ◦ φ.

Hence, φ is a river of class k + 1 if and only if

∑
`∈Li

∆`f ◦ φ(0) = 0 ∀i ∈ {1, · · · , k + 1},

as desired
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With this equivalent condition we can define a confluence of class k.

Definition 5.2.6. The set of class k confluences, denoted Ck
Z , is given by

Ck
Z =

k⋂
i=0

{∑
`∈Li

∆`f(x) = 0

}

and a point x ∈ Ω is a confluence of class k if x ∈ Ck
Z .

An immediate application of this definition gives the following relationship.

Corollary 12. A trajectory φ is a class k river if and only if φ(0) is a class k confluence.

In the generic case, the set of class k confluences will be an n−k−1 dimensional manifold.

Therefore, the strongest river we can expect (generically) in Rn is of class n− 1.

5.3 Normal Form Results

5.3.1 Rivers and Canards

Here we consider the truncated normal form for the flow near a canard point [61],
ẋ1

ẋ2

ẋ3

 =


ε(bx2 + cx3)

εa

x1 + x2
3

 =: f(x; ε) (5.6)

where 0 < ε � 1 is a timescale parameter, a, b, c ∈ R, and (0, 0, 0) is the canard point.

In system (5.6), we refer to x1, x2 as slow variables and x3 as a fast variable. As a two-

timescale system, (5.6) has a critical manifold, given by the set M = {x1 = −x2
3} where

ẋ3 = 0, which can be decomposed into stable and unstable branches and the fold set given

by MS = {x1 = −x2
3|x3 < 0},MU = {x1 = −x2

3|x3 > 0} and MF = {x1 = x3 = 0},

respectively. Trajectories of interest to us begin near the stable branch of M, approach the

fold, and linger near the repelling sheet for some amount of time.

To begin, we will identify the confluences of system (5.6), which we describe in the

following proposition.
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Proposition 7. If c2 − 8ab > 0 and b 6= 0 then there are two branches of infinite-class

confluences of system (5.6), given by

C∞Z,± =
{
x1 = −x2

3 −
ε

4
(c± ω), x2 = −x3

2b
(c∓ ω)

∣∣∣x3 ∈ R
}

where ω :=
√
c2 − 8ab. These branches are invariant in the truncated normal form.

Proof. Let

Γ±(η) =
(
−η2 − ε

4
(c± ω),− η

2b
(c∓ ω), η

)
denote parameterizations of C∞Z,±, respectively. First we will demonstrate that C∞Z,± is in-

variant under (5.6). Suppose we reparameterize Γ± by Γ± ◦ η(t) for some unknown function

η, then

d

dt
Γ± ◦ η(t) = (−2η,−c∓ ω

2b
, 1)η̇

and

f(Γ± ◦ η(t), ε) =

(
ε(c± ω)

2
η, εa,−ε(c± ω)

4

)
if we choose

η̇ = −ε(c± ω)

4
(5.7)

then
d

dt
Γ± ◦ η(t) = f(Γ± ◦ η(t), ε)

and hence C∞Z,± are invariant under (5.6). To conclude, we note that Γ± itself has identically

zero curvature, i.e.

det(Γ′±(η),Γ′′±(η),Γ′′′±(η)) ≡ 0,

which will be preserved under reparameterization. Thus, the trajectories φ±(t) := Γ± ◦ η(t)

have identically zero curvature for all time, which implies that

κφ±(t) =
d

dt
κφ±(t) = · · · = dk

dtk
κφ±(t) = · · · = 0 ∀k ∈ N, t ∈ R

and hence Γ± parameterize sets of infinite-class confluences.
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Corollary 13. If c2 − 8ab > 0 and b 6= 0 then

φ±(t) =

(
−α2
±t

2 − εc

4
± εω,−α±ct

2b
± α±ωt, α±t

)
(5.8)

are trajectories of (5.6), where ω =
√
c2 − 8ab, 4α± = −ε(c± ω).

Proof. Solving (5.7) with initial condition η(0) = 0 yields the result.

Corollary 14. The trajectories defined by (5.8) are the maximal canards for ε ≥ 0.

Proof. Note that φ±,1(t)+φ2
±,3(t)α±; hence for all t ∈ [0,∞), φ±(t) is O(ε) near the repelling

branch of the critical manifold and for all t ∈ (−∞, 0], φ±(t) is O(ε) close to the attracting

branch of the critical manifold.

Theorem 5.3.1. The maximal canards of (5.6) are rivers of infinite order.

Proof. The conditions c2 − 8ab > 0, b 6= 0 is the same condition presented in [61] for the

existence of canards, specifically it guarantees that the folded singularity is not a folded

focus or a folded saddle-node. The previous proposition with its corollaries demonstrate the

result. If c2 − 8ab ≤ 0, b 6= 0 the system (5.6) has nFo maximal canards, thus the result is

vacuously true.

Corollary 15. If b = 0, the maximal canards of (5.6) are rivers of inifinite order.

Proof. If b = 0, then the folded singularity in (5.6) is a folded saddle-node, in which case

the base normal form without non-linear terms becomes [66]
ẋ1

ẋ2

ẋ3

 =


ε
(
µ
2
x2 − (µ+ 1)x3

)
ε

x1 + x2
3

 (5.9)

which, following the proof techniques of the previous results, has two invariant branches of

infinite-class confluences, given by

C∞Z,i =

{
x = −z2 + ε

1 + i(µ− 1)

2
, y =

2z

1 + i(µ− 1)

∣∣∣∣ z ∈ R
}

for i ∈ {0, 1}. Replacing C∞Z,± with C∞Z,i in the previous proofs generates the result.
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5.3.2 Dynamics near the River-canard

We can use Local Orthogonal Rectification (LOR) to understand how trajectories behave

near our infinite-class rivers and, in so doing, provide a novel analysis tool for canards.

We will choose our basecurve as one of the curves Γ± identified in the previous section.

Note that, as we demonstrated in the proof of Prop.7, the curves Γ± are invariant under the

flow of our normal form, and have κ2(η) ≡ 0. Therefore we can simplify the LOR equations

greatly, as C(η) ≡ 0, hence we have

LΓ±f(η, ξ) =

 Tf(η, ξ)
‖γ′(η)‖ (1− ξ1κ1(η))

Nf(η, ξ)

 .

Furthermore, as Γ± are invariant, we know that Nf(η, 0) = 0 as {ξ = 0} maps to the set

{Γ(η)|η ∈ R} under Ψ, hence ξ̇|ξ=0 = 0, thus to lowest order

LΓ±f(η, ξ) =

 Tf(η,0)
‖γ′(η)‖ +O(‖ξ‖)

DξNf(η, 0)ξ +O(‖ξ‖2)

 . (5.10)

We will use this approximate system to understand how trajectories near our river-canards

are funnelled towards the canard point, linger near the fold, and are pushed away from the

repelling manifold; specifically we will demonstrate that trajectories approach the fold along

an invariant angular manifold, experience a short period of unconstrained rotation, and exit

the neighborhood of the repelling manifold along a stable invariant angular manifold.

In order to expose the angular dynamics hidden in system (5.10), we will represent our

ξ dynamics in polar coordinates, i.e. we let ξ = (r cos θ, r sin θ) and compute the ODEs

induced on r, θ, which are given by

η̇ =
Tf(η, r cos θ, r sin θ)

‖γ′(η)‖ (1− r cos θκ1(η))
(5.11)

ṙ =
〈

(cos θ, sin θ), ξ̇
〉

rθ̇ = (cos θ, sin θ) ∧ ξ̇. (5.12)

This change of coordinates is functionally equivalent to blowing up the entirety of the

river-canard trajectory; although we note that we can avoid using the unpleasant chart

conventions, as we do not need to increase the dimension of our system.
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At first glance, the third equation seems problematic, as we are interested in the region

where r � 1, however note that

lim
r→0

z(θ) ∧Nf(η, rz(θ))

r
= lim

r→0

z(θ) ∧DξNf(η, rz(θ))z(θ)

1
= z(θ) ∧DξNf(η, 0)z(θ)

from L’Hopitals rule, as Nf(η, 0) = 0. Therefore our small r dynamics are given by

η̇ = Tf(η, 0) +O(r)

ṙ = 〈DξNf(η, 0)z(θ), z(θ)〉 r +O(r2)

θ̇ = −DξNf(η, 0)z(θ) ∧ z(θ) +O(r) (5.13)

where z(θ) = (cos θ, sin θ). In effect, we have performed a geometric desingularization along

the entirety of Γ±, as the set {r = 0} is invariant under the above, and we have uncovered

non-trivial angular dynamics on the set {r = 0}, given by

η̇ =
Tf(η, 0)

γ′(η)

θ̇ = −DξNf(η, 0)z(θ) ∧ z(θ) (5.14)

which will be dominant in the region where r � 1, i.e. near the river-canards. Once

we understand these dynamics, we can piece together a full picture of the dynamics by

considering the ṙ equation to leading order, to learn how trajectories are drawn to, or pushed

away from, our river-canards.

First we will study the dynamics in the invariant subset {r = 0}. Let DξNf(η, 0; ε) =:

A(η; ε). Using the reparameterization described in Cor. 13, we have

Tf(η, 0)

γ′(η)
=
−ε(c± ω)

4

therefore system (5.14) is a fast-slow system. Note that this system is invariant under the

transformation θ 7→ θ+ π, hence if (η(t), θ(t)) is a solution to the above, (η(t), θ(t) + π) will

also be a solution. We have a critical manifold given by

Mang = {A(η; 0)z(θ) ∧ z(θ) = 0}
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which will change shape based on the folded singularity, several examples of which are shown

below.

Note that x ∧ y = 0 if and only if x = cy for some scalar c, hence our critical manifold

can be re-expressed as

Mang = {(η, θ)|∃λ : A(η; 0)z(θ) = λz(θ)}

or stated more naturally, (η, θ) ∈ Mang if and only if z(θ) is an eigenvector of A(η; 0), fur-

thermore as ‖z(θ)‖ = 1 the eigenvalue associated with z(θ) must be λ = 〈A(η; 0)z(θ), z(θ)〉.

Note that 〈A(η; 0)z(θ), z(θ)〉 appears as the leading order coeffecient of r in (5.13), hence

the radial stability is closely related to the angular manifolds. Furthermore, detA(η; 0) = 0

for all η regardless of a, b, c, thus the eigenvalues of A(η; 0) are 0, trA(η) = 2η. We will label

the two branches of the critical manifold:

Mang,0 = {(η, θ) ∈Mang|A(η; 0)z(θ) = 0}

Mang,tr = {(η, θ) ∈Mang|A(η; 0)z(θ) = 2ηz(θ)}.

The stability and hyperbolicity of the critical manifold will be determined by the sign of

∂θ̇/∂θ, which can be computed using (5.14)

∂θ̇

∂θ
= −A(η; 0)z′(η) ∧ z(θ)− A(η; 0)z(η) ∧ z′(θ).

We make use of the following equalities

A(η; 0)z(θ) ∧ z′(θ) = 〈A(η; 0)z(θ), z(θ)〉

−A(η; 0)z′(θ) ∧ z(θ) + A(η; 0)z(θ) ∧ z′(θ) = trA(η)

to reduce
∂θ̇

∂θ
= trA(η; 0)− 2 〈A(η; 0)z(θ), z(θ)〉 .

Given what we have deduced about 〈A(η; 0)z(θ), z(θ)〉, namely that it is either 0 or 2η on

Mang, we can reduce

∂θ̇

∂θ

∣∣∣∣∣
Mang,0

= 2η
∂θ̇

∂θ

∣∣∣∣∣
Mang,t

= −2η
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hence the branch of Mang associated with the zero eigenvector will be stable for η < 0, lose

hyperbolicity at η = 0, and become unstable for η > 0; the other eigenvector will have the

opposite stability.

With this information, we can organize the (η, θ, 0) plane: trajectories having initial

conditions with η < 0 will be attracted to the set {A(η; 0)z(θ) = 0} and travel along this set

until η(t) = O(ε). Trajectories will rotate freely in the neighborhood of η = 0 until they are

drawn to the set {A(η)z(θ) = 2ηz(θ)} and travel along this branch of the critical manifold

indefinitely.

Now we want to add the radial dynamics into the mix. We compute that

ṙ = 〈A(η; 0)z(θ), z(θ)〉 r + h(η, θ)r2 +O(ε)

where h(η, θ) is a smooth function which satisfies h(η, θ + π) = −h(η, θ). In the domain

where r is non-zero but small, we can use our knowledge of the (η, θ) dynamics on {r = 0}

to approximate the r dynamics.

Suppose that (η(t), r(t), θ(t)) is a solution to the system (5.11) with initial condition

(η0, r0, θ0). If r0 is small, then (η(t), θ(t)) will be well-approximated by (5.14). Denote by

(η̃(t), θ̃(t)) the solution to (5.14) with initial conditions (η̃(0), θ̃(0)) = (η0, θ0). In order to

approximate the radial dynamics we will consider the ODE

˙̃r =
〈
A(η̃; 0)z(θ̃), z(θ̃)

〉
r + h(η̃, θ̃)r2 (5.15)

where η̃, θ̃ are known functions of t, hence r̃ satisfies a Bernoulli equation, then |r(t)− r̃(t)|

should remain small for t near zero.

Furthermore, if η0 < 0, our approximate angular solutions will rapidly evolve toMang,0.

Interestingly, the bilinear form in (5.15) will vanish along Mang,0, as A(η̃; 0)z(θ̃) = 0, hence

our r̃ dynamics will display quadratic approach behavior. It can be shown that

h(η, θ)

∣∣∣∣
Mang,0

6= 0
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for all (η, θ), and, as Mang,0 contains 2 identical, π-shifted branches, which we will denote

by Mang,0,S,Mang,0,R, we conclude

h(η, θ)

∣∣∣∣
Mang,0,S

< 0 h(η, θ)

∣∣∣∣
Mang,0,U

> 0.

Unpacking this expression, there is one branch of Mang,0 which will be radially stable and

angularly stable, while the other branch of Mang,0 will be angularly stable and radially

unstable. Therefore, our canard solution will only trap trajectories which approach from the

right initial angles; this radial and angular analysis has demonstrated the existence of the

canard funnel effect.

The trajectories which are trapped in the canard funnel, those whose angular approxi-

mations approach Mang,0,S, will have quadratically decreasing radial components; therefore

our accuracy of our radial approximation will increase over time, as r(t) will be approaching

zero. Thus, we can use our approximation up to an O(ε) neighborhood of the fold {η = 0},

where the normal hyperbolicity of Mang,0,S breaks down.

To conclude this section, we will show that we can easily extract the way-in way-out

function for the system, using the LOR dynamics. Suppose that φ is a trajectory with initial

conditions φ(0) = (η0, r0, θ0) which are in the funnel (namely η0 < 0, θ0 is near Mang,0,S

, and r0 � 1) will be drawn towards r = 0 until it reaches the fold, η = 0. As we have

previously noted, the radial stability along the angularly-stable slow manifold changes as φ

crosses the fold; after the fold φ will be repelled from r = 0. However, φ will not immediately

escape the neighborhood of r = 0, indeed φ can be delayed for as long as O(1/ε) time. In

order to explain this delay effect, we will construct the WIWO function.

Let φ(t) =: (η(t), r(t), θ(t)) and define

T (r0, η0) = inf
t>0
{r(t) = r0|η(0) = η0}

which is, intuitively, the first time that r(t) has returned to its initial value. As r(t) will

decrease until after η has crossed zero, we expect T (r0, η0) to approximate the time at which

r(t) is escaping from zero. The WIWO function is the mapping

H(r0, η0) = η ◦ T (r0, η0)
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i.e. H measures the value of η at which r leaves a neighborhood of zero.

Note that we can numericaly integrate the solutions to the full, unapproximated system

(5.11) and compute the WIWO function directly, which is shown in Fig. 34. However this is

a mechanistically unsatisfactory solution, and we can better explain the cause of this delay

by approximation the radial dynamics implicitly.

Following the derivation of (5.15), we suppose we can solve the η, θ dynamics for r = 0,

which can be given by

dθa
dη

= − 4

ελ±
〈A(η; ε)z(θa), z(θa)〉 θa(η0) = θ0

where λ± = (c± ω)/2, which will be a reparameterized solution to (5.14). Then we approx-

imate the r dynamics by solving

dra
dη

= − 4

ελ±

(
l(η)ra + q(η)r2

a

)
where l(η) = 〈A(η; ε)z(θa(η)), z(θa(η))〉 , q(η) = h(η, θa(η)), recalling that h(η, η) is the coef-

fecient multiplying the r2 term in the expansion of the r dynamics. This ODE can be solved

explicitly, but it is most useful to semi-solve as

exp

(
− 4

ελ±

∫ η

η0

l(σ)dσ

)
1

ra(η)
=

1

r0

+
4

ελ±

∫ η

η0

exp

(
− 4

ελ±

∫ s

η0

l(σ)dσ

)
q(s)ds.

We are interested in approximating the η at which ra(η) = r0, subsitituting and re-arranging

1 = exp

(
4L(η)

ελ±

)(
1 +

4r0

ελ±

∫ η

η0

exp

(
−4L(s)

ελ±

)
q(s)ds

)
where L(η) =

∫ η
η0
l(σ)dσ. Hence

−4L(η)

ελ±
= ln

(
1 +

4r0

ελ±

∫ η

η0

exp

(
−4L(s)

ελ±

)
q(s)ds

)
.

Here we will apply what we know about L(η), namely that

L(η) =

0 η < 0

η2 η ≥ 0
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as θ will approach the fold along Mang,0 hence l(η)) = 0 for η < 0 and after the fold θ will

be attracted to Mang,t and l(η) = 2η. Making use of ln(1 + x) = x+O(x2) we find

−η2 = r0

(
Q0 +

∫ η

0

exp

(
−4s2

ελ±

)
q(s)ds

)
+O

(
r2

0

)
where Q0(η0) =

∫ 0

η0
q(s)ds, which we call the quadratic residual. Noting that Q0(η0) < 0 (as

we have approched on the funnel side), we rearrange this into its final form,∫ η

0

exp

(
− 4s2

ελ±

)
q(s)ds+

η2

r0

= −Q0(η0) +O(r0).

Now our escape condition is (somewhat) understandable; in order to escape from the

river-canard, our trajectory must overcome the quadratic residual term.

The integral on the left hand side of the above will diverge rapidly from zero, as exp( 1
ε2

)

is exceedingly large. Note, however, that the integral need not be increasing after η = 0;

indeed for η ∈ [0, .31], F (η) is decreasing in Fig. 35, as q(η) < 0 for those values.

Define

F (η) =

∫ η

0

exp

(
− 4s2

ελ±

)
q(s)ds+

η2

r0

(5.16)

and note that

F

(√
−ελ±
2

)
=

√
−ελ±
2

∫ 1

0

exp(u2)q

(√
−ελ±u

2

)
+
ε|λ±|

4

≤
√
−ελ±
2

∫ 1

0

q(0)du+O(ε)

and, as q = O(1), F (
√
−ελ±/2) = O(

√
ε) and hence Ha(r0, η0) >

√
−ελ±/2 for r0 suffi-

ciently small. The curves F (η),−Q0(η0) are shown in Fig. 35.

Note that the left-hand side of our escape condition is approach agnostic, changing η0

will only affect Q0(η0) on the right hand side. One of the more curious features of the WIWO

function is the buffer point effect: a buffer point is a value η∗ such that all trajectories will

leave the river-canard before η = η∗, regardless of η0. In some sense, the buffer point is the

longest a solution can be delayed. In our LOR system, the buffer point phenomenon is easily

understood; sending η0 → −∞, we find

lim
η0→−∞

Q0(η0) = Q∗0
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i.e. q(s) is integrable on (−∞, 0], hence our quadratic residual will always have finite size,

and the rapidly diverging integral will always overcome Q∗0, hence the buffer point solves

F (η∗) = −Q∗0.

The preceding analysis is summarized in the following proposition.

Proposition 8. The way-in way-out function, H(η0, r0) will satisfy

−4L ◦H(η0, r0)

ελ±
= ln

(
1 +

4r0

ελ±

∫ H(η0,r0)

η0

exp

(
−4L(s)

ελ±

)
q(s)ds

)
.

and will be approximated by the solution to

F ◦H(η0, r0) = −Q0(η0) +O(r0)

where

F (η) =

∫ η

0

exp

(
− 4s2

ελ±

)
q(s)ds+

η2

r0

and

Q0(η0) =

∫ 0

η0

q(s)ds.

Trajectories in the funnel which have r(0) = r0 � 1 must remain within a tube of radius r0

around Γ± until η >
√
−ελ±/2, or for at least 2/

√
−ελ± time after crossing the fold. Let

Q∗0 = lim
η0→−∞

Q0(η0)

all trajectories in the funnel must exit a tube of radius r0 around Γ± before η∗ given by

F (η∗) = −Q∗0.

The LOR frame has given us a new perspective on the dynamics near our river-canard

solutions. Instead of tracking solutions through multiple blow-up charts, we can desingular-

ize the dynamics along the entrie river-canard trajectory; instead of complexifying time to

evaluate way-in way-out integrals along elliptical contours, we can approximate the radial

dynamics explicitly. By viewing the normal-form flow from the perspective of the river-

canards, we expose non-trivial dynamics in a geometric way. This approach also exposes

the essential assymmetry in the way nearby trajectories appoach and depart from canards;

trajectories in the funnel region, which itself is the product of quadratic stability, will be

drawn to r = 0 algebraically yet will escape exponentially.
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5.4 Transformations

5.4.1 Nearly Curvature Preserving Maps

In this section we consider the case n = 3 for fast-slow systems. First we will estab-

lish two computational lemmas. The crux of these results is understanding how certain

transformations of a flow affect the curvature of the flow.

Definition 5.4.1. Suppose that ẋ = f(x) induces a flow for x ∈ R3, and H : R3 → R3 is a

smooth diffeomorphism. Let y = H(x), then we can induce the flow

ẏ = [DxH(x)]ẋ = [DxH ◦H−1(y)]f ◦H−1(y) =: g(y)

on y. We say that H is ∆`-preserving if ∆`f(x) = 0 if and only if ∆` g ◦ H(x) = 0 for all

` ∈ L .

If ẋ = f(x) is a fast-slow system with timescale parameter 0 < ε� 1, we say that H is

nearly ∆`-preserving to order k if there exists a smooth, positive definite, O(1) map C(x)

such that

C(x)∆`f(x)−∆` g ◦H(x) = O(εk)

for all x in an O(ε) neighborhood of the critical manifold.

Note, as curvature is a geometric property, most non-linear maps are not ZCL preserving.

Lemma 5.4.2. Non-degenerate linear mappings are ∆-preserving.

Proof. Denote H(x) = Ax where A is invertible, then it is simple to compute y(i) = Ax(i)

so ∆`g ◦H(x) = det(A)∆`f(x).

Lemma 5.4.3. Given a 1-fast 2-slow system

ẋ =


εg1(x1, x2, x3; ε)

εg2(x1, x2, x3; ε)

F (x1, x2, x3; ε)

 =: f(x; ε) (5.17)

then near identity transformations are nearly ∆` preserving to order |`|+ 1.

142



Proof. We can write H(x; ε) = x+ εh(x; ε), and inductively compute

y(i) = (In + εDxh(x, ε))x(i) +O(εi+1)

when x is in an O(ε) neighborhood of the critical manifold. Here we have used the fact that,

when x is O(ε) close to the critical manifold, x(i) = O(εi). Computing the wedge products

∆` g ◦H(x) = det(In + εDxh(x; ε))∆`f(x) +O
(
ε|`|+1

)
,

taking C(x) = det(In + εDxh(x; ε)) = 1 +O(ε) proves the result.

Note that in a fast-slow system, when x is O(ε) close to the critical manifold, we expect

∆`f(x; ε) to be O(ε|`|), which is to say it has the form

∆`f(x; ε) =
∂|`|

∂ε|`|
∆`f(x; 0)

ε|`|

|`|!
+O

(
ε|`|+1

)

from Taylor’s equation.

Definition 5.4.4. The set of class k near-confluences, denoted by Ck
Z,ε, is given by

Ck
Z,ε =

k⋂
i=0

{
x ∈ B(M,O(ε))

∣∣∣∣∣∑
`∈Li

∂|`|

∂ε|`|
∆`f(x; 0) = 0

}

143



5.4.2 On the Nonexistence of Terrestrial Canards

Combining this definition with Lemmas 5.4.2, 5.4.3 and Theorem 5.3.1 yields the follow-

ing result.

Theorem 5.4.5. Given a 1-fast 2-slow system of the form (5.17) which satisfies the sufficient

conditions for a canard point, then the canard solutions to (5.17) lie O(ε) close to the set

C3
Z,ε.

Proof. As (5.17) satisfies the sufficient conditions for a canard point, there are a sequence

of linear and near-identity transformations which convert (5.17) to the canard point nor-

mal form (5.6). We have already demonstrated the existance of river-canard solutions to the

truncated normal form in Theorem 5.3.1. Applying the inverse linear and near-identity trans-

formations (which are themselves linear and near-identity transformations, respectively), we

can track the set C3
Z using Lemmas 5.4.2, 5.4.3; namely they will be mapped to the set C3

Z,ε.

Finally, we note that under the inverse linear and near-identity transformations the canard

solution of the normal form (5.6) must remain O(ε) close to the image of C3
Z .

As the set C3
Z,ε can be computed, with the aid of numerical or symbolic computational

tools, we can use C3
Z,ε to find the canard solutions of any system in which they exist. More

details on the exact nature of this approximation are given in the following section, however

the outline of the process is quite simple: given the system (5.17) we identify C3
Z,ε by

computing series expansions of ∆1,2,3,∆1,2,4,∆1,2,5 +∆1,3,4 in ε, then we use this set as a pool

of initial conditions, the trajectories through C3
Z,ε will be O(ε) close to the canard solution

we desire. Indeed, canards must stay close to weak rivers.
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5.5 The Autocatalator System

In this final section of this chapter, we present a well-known example of a system which

displays canard solutions, the autocatalator system.

We will study the dynamics given by

ȧ = ε

(
µ

(
5

2
+ c

)
− ab2 − a

)
ḃ = ab2 + a− b

ċ = ε(b− c) (5.18)

where 0 < ε� 1, µ > 0 are parameters. The system represents the dynamics of a chemical

reaction involving three reactants, the concentrations of which are proportional to a, b, c. In

this reaction schema, reactant B slowly bolsters the concentration of reactant C, which, in

the presence of reactant A, produces more of itself and reactant B. The fact that reactant B

begets more of itself is the source of the name of the system.

In the singular limit, we find M = {a = b/(1 + b2)} to be the critical manifold of the

system, with

MS =

{
a =

b

1 + b2
, |b| < 1

}
MU =

{
a =

b

1 + b2
, |b| > 1

}
MF =

{
a =

b

1 + b2
, |b| = 1

}

where MS,MU ,MF are the stable, unstable portions of M. As a, b, c are unitless proxies

for concentrations, we only consider the dynamics in the first octant.

It is known that the system has a canard point at a = 1/2, b = 1, c = 1, indeed the

canard trajectories of the system influence the shape of the attractor of the system, which

is a mixed-mode oscillation. The attractor of the sytem is shown in Fig. 36. Note that the

system exhibits a large-scale oscillation which is modulated by smaller amplitude oscillations.
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5.5.1 Finding Canards in the Autocalator System

We will verify that the canard solutions of (5.18) lie near weak rivers. Recall that weak

rivers must lie O(ε) close to the critical manifold, thus we numerically search for weak-

confluences in a tube around the manfiold, i.e. we minimize |∆1,2,3f |, |∆1,2,4f |, |∆1,2,5f +

∆1,3,4f | on the set B(M, ε). Interestingly, we find an actual confluence point (i.e. ∆1,2,3f =

0,∆1,2,4f = 0,∆1,2,5f + ∆1,3,4f = 0) at (a, b, c) ≈ (0.498, 1.06, 1.06) which is not guaranteed

by our theory, but is a nice proof of concept.

Using a symbolic computation engine (Wolfram Mathematica) we find a set of weak

confluences of order 2, i.e. C2
Z,ε near the fold, which is shown in Fig. 37. To find the

canard solution, we minimize |∆1,2,5f + ∆1,3,4f | along the relevant branch of C2
Z,ε; in fact,

we find that the minimum occurs at (a∗, b∗, c∗) ≈ (0.495, 1.07, 1.04) which is almost on

top of the previously mentioned confluence point and the canard point. We find that

|∆1,2,5f(a∗, b∗, c∗) + ∆1,3,4f(a∗, b∗, c∗)| ≈ ε7.42 which places it reasonably close to the desired

ε8, as |`| = 8.

Denote by φ(t) the trajectory through our minimum (a∗, b∗, c∗), we claim that this tra-

jectory has all of the hallmark characteristics of a canard solution. The right portion of Fig.

37 shows that φ lingers near the canard point for an O(1/ε) amount of time, and upon its

exit from the canard point exhibits small scale ocsillations which grow rapidly.

To conclude this chapter, we demonstrate how we can use the weak confluence set C2
Z,ε

to approximate the perturbed slow manifold. It is well known that the perturbed slow

manifolds near a canard point will exhibit a complicated twisted shape due to the rotational

influence of the canard solution [61, 66]. To approximate these twisting manifolds, we flow

the points of C2
Z,ε forward in time; as the canard solution must lie near C3

Z,ε ⊂ C2
Z,ε and as

the canard solution must lie on MS,ε, the trajectories which flow from C2
Z,ε will be a good

approximation of MS,ε. Two views of this continuum of trajectories are shown in Fig. 38.

In the standard numerical approach, one starts by numerically approximating the per-

turbed slow manifoldsMS,ε,MU,ε, usually using a boundary value problem formulation [66].

The canard solution is found by computing the intersectionMS,ε∩MU,ε, as the canard solu-

tion begins onMS,ε and crossed intoMU,ε [61, 66]. In our formulation of this computation,
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we first identify the canard solution and use the results of that computation to identify the

perturbed slow manifold. However, there is no obvious way to identify the secondary canards

using curvature methods.
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5.6 Figures

Figure 31: Four configurations of the angular dynamics (Upper Left) A phase plot for the

node (a = b = 1, c = −3) case with ε = .01 for the river-canard Γ+. The colored curves are

the slow manifolds of the system, the stable manifolds are shown in blue and purple, and the

unstable manifolds are shown in red. The gray region is where 〈A(η; 0)z(θ), z(θ)〉 < 0, which

is the region of linear radial stability. (Upper Right) The same parameter configuration as

(a) for Γ−. (Lower Left) The angular dynamics of the folded saddle (−a = b = 2, c = −3),

again with ε = .01 for Γ+; note that η̇ < 0, hence Γ+ is a faux canard. (Lower Right)

The same parameter configuration as (Lower Left) for Γ−, which is the true canard for the

folded-saddle system.
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Figure 32: Organizing angular manifolds (a) A sketch of the angular manifolds for the

(η, θ, r) system; for small r0, the (η, θ) dynamics will quickly approach their slow limit, and

be drawn to the plotted manifolds. The stable manifolds are plotted in blue and purple,

and the unstable manifolds are shown in red; the purple manifold corresponds to the funnel

branch of the stale manifold. (b) The angular manfiolds shown in a ”blow-up” cartoon, the

manifolds from (a) are wrapped around the ”cylinder” ‖ξ‖ = 0. (c) The angular manifolds

in the original LOR coordinates.
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Figure 33: Organizing angular manifolds in (x1, x2, x3)-space. (a) The angular manifolds

mapped back to (x1, x2, x3) space on the funnel side. Note how the blue and purple stable

angular manifolds align with the original slow manifold, shown in yellow, while the unstable

angular manifolds, which here serve as funnel separatrices, intersect the original slow mani-

fold tranversely. (b) The exit side of the slow manifold, x3 > 0. Note that here, the unstable

angular manifolds in red lie along the original slow manifold, and the blue stable manifolds

intersect transversely. (c) The full view of the angular manifolds.
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Figure 34: The radial dynamics near the fold (a) Plots of (η(t), r(t)) for trajectories in the

funnel for various η0 values. Plots in redder colors have more negative η0 values, while bluer

colors have η0 values closer to the fold. (b) A zoom near the fold which displays small radial

oscillations in the exiting trajectories.
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Figure 35: An approximate way-in way-out sliderule. (Top) In red, we plot the function F (η)

defined by (5.16) against its indepenedent variable η in red on the bottom axis. In blue, we

plot −Q0(η0) against its independent variable η0 in blue on the top axis. Given an input η0,

to visualize the escape η, find the η value where −Q0(η0) is equal to F (η). Note that −Q0(η0)

aymptotically approaches −Q∗0 ≈ .21 hence all solutions must jump before η∗ ≈ .323. This

matches well with the radial dynamics we observe in Fig. 34, where all solutions jump

near η ≈ .32. Note that the right portion of the red curve is not vertical, however near

F ′(η∗) ≈ 1011, so F is growing extremely quickly. We use a = b = 1, c = −3, ε = 0.01 for

these plots, placing us in the folded-node regime. (Bottom) A zoom near η = 0, showing

that some solutions escape almost immediately.
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Figure 36: The attractor of the autocalator system. (Left) The attractor of system (5.18)

shown for ε = 0.013, µ = 0.299. The stable branch of the critical manifold MS is shown

in light blue, and the unstable branch of the critical manifold MU is shown in light red.

(Right) A zoom on the attractor near the canard point (1/2, 1, 1), note that the attractor

exhibits multi-scale oscillations.
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Figure 37: The weak confluences C2
Z,2 leading to the canard point. (Left) In gray we show

the critical manifold near the fold, which is shown in dashed black; note that the axes here

are a, b, 2a+ 2c, we chose to plot 2a+ 2c in order to make the following manifold plots more

digestable. The solid black curve which crosses the fold is the weak confluence set C2
Z,2. The

green curve is the trajectory through the point on C2
Z,2 which has minimal |∆1,2,5f +∆1,3,4f |

along C2
Z,2; we contend this is the canard solution. (Right) A plot of a(t) along the canard

solution; note the long delay near a = 1/2 followed by the onset of growing, small scale

oscillations.
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Figure 38: Approximations of MS,ε. We overlay the trajectories with initial conditions in

C2
Z,ε near the fold. Trajectories with initial conditions further from the fold are colored in

red, while trajectories with initial conditions nearer to the fold are colored bluer. The set

C2
Z,ε is shown in solid black, the fold in dashed black, and the canard solution (only visible

in the right panel) in green. Note that we again plot 2a+ 2c in place of c.
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6.0 Conclusions

LOR provides a general approach to deriving a natural coordinate frame, based on a

geometric representation, that is well suited to study dynamics relative to any manifold

embedded in the flow of an ODE of arbitrary dimensions. LOR is advantageous because, to

our knowledge, it is the unique approach with a full range of desirable properties: it is not

based on linearization, it is not limited to scenarios involving periodic orbits, it generally

extends well beyond the local neighborhood of the base manifold used to define it, and

it applies naturally in arbitrary dimensions. LOR leads to LOR equations describing the

evolution of trajectories in the LOR frame, which encode the geometry of the flow. These

equations do not depend on the choice of normal frame used in their derivation, which

allows a specific frame to be chosen to simplify associated calculations. An additional blow-

up transformation of the LOR equations provides an especially convenient decomposition for

studying transient aspects of the behavior of trajectories near structures in a phase space.

We have used LOR to present a rigorous definition for rivers, a class of attracting or

repelling trajectories that had previously been identified in the literature but had not been

defined precisely with any degree of generality. Our approach harnesses the LOR frame and

associated quantities, such as a measure of invariance, and links them with curvature, or

specifically with the zero-cuvature locus. Using the LOR frame to study the near-invariance

of the zero-curvature locus allows us to locate rivers and to avoid the “ghosts” that have

been previously identified by curvature-based techniques for identifying significant structures

in two-timescale systems [1]. Our definition of rivers does not encompass all attracting

structures that are “river-like”; however, we note that it unifies a variety of previously

unexplained or poorly understood phenomena. In a phase plane, our results provide a useful

new way to explain behavior of trajectories, both special trajectories that we identify and

other trajectories that approach attracting structures in the flow.

Also using the LOR frame, we can identify and compute continuations of periodic tra-

jectories, study local stability of these orbits, construct novel invariant manifolds associated

with these orbits (of particular utility in R3), and compute the asymptotic phases of trajecto-
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ries in the neighborhood of each orbit in a computationally synergistic way. The key insight

underlying the approach is that we can tailor our phase space geometry to the problem at

hand by considering curvilinear geometries.

While there is an initial computational cost to computing Frenet frames and curvatures

of curves, we note that there is a significant return on investment in using the LOR frame for

local analysis. For identification of periodic orbits, LOR allows us to solve a single BVP that

does not require the computation of the period itself. Although the cost of LOR increases

when we study stability and local dynamics near a periodic orbit by computing a second LOR

frame using the identified periodic orbit itself as the basecurve, there is no need to solve a

second time, and this second LOR transformation provides a computationally efficient LOR

frame for our subsequent analysis and directly allows for the derivation of invariant angular

manifolds, which are not accessible with traditional geometric approaches.

We plan to make all of the code for this thesis available on GitHub to facilitate future

use of the methods we have discussed, and we note that symbolic computation software

is well-suited to these differential-geometric computations. The ability to use the same

computed trajectories in multiple ways yields significant return on investment from these

startup computational costs; the benefit grows in applications involving continuation of

periodic orbits, in that the same LOR frame, based on the first periodic orbit found, can

be used repeatedly. Furthermore, LOR techniques can be used to quickly identify canards

solutions and avoid the complexification of time used in way-in way-out computations.

In the final chapter we generalized the definition of rivers beyond the plane, and demon-

strate that canard solutions must lie in an O(ε) neighborhood of weak rivers. Furthermore,

we can use this characterization of canards to perform detailed analysis of the dynamics

near these river-canards, specifically we can explain the onset of small scale oscillations and

approximate the way-in way-out function.
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