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Abstract 

Control of telomeric homology-directed repair by poly(ADP-ribose) metabolism 

 

My Song Hoang, PhD 

 

University of Pittsburgh, 2019 

 

 

 

 

Immediately after single-stranded break (SSB) and double-stranded break (DSB) 

formation, the synthesis of poly(ADP-ribose) (PAR) reconfigures the local chromatin environment 

and initiates recruitment of DNA repair proteins. The degradation of PAR chains by poly(ADP-

ribose) glycohydrolase (PARG) is essential for DNA repair progression.  Here, we show that 

pharmacological interference of PAR metabolism disrupts the homology-directed repair (HDR) 

mechanisms that mediate alternative lengthening of telomeres (ALT). Using a proteomics strategy, 

we uncovered PAR-regulated telomere-associated proteins that coordinate the early stages of the 

ALT mechanism. These distinct factors exhibit PAR dependency for localization to ALT telomeres 

in order to orchestrate diverse functions, such as RNA stabilization, actin nucleation, and 

chromatin remodeling. Most significantly, we identified a key function for PARylation in 

recruiting the HIRA histone chaperone complex to ALT telomeres, where it is required for 

deposition of histone H3.3 specifically during G2 Break-Induced Replication (G2-BIR). We 

propose that HIRA acts to compensate for the loss of a functional ATRX-DAXX complex in ALT 

cancers and therefore adopts elevated importance in sustaining ALT+ cell viability.  



 

 v 

Table of Contents 

Preface .......................................................................................................................................... xv 

1.0 Introduction ............................................................................................................................. 1 

1.1 The Physiological Basis of ALT..................................................................................... 3 

 Clinical Relevance of ALT ................................................................................. 3 

 Phenotypic Characteristics of ALT cancers ..................................................... 4 

 Telomerase-Independent Lengthening of Yeast Telomeres ............................ 9 

1.2 Homology-directed Repair Mechanisms in ALT ......................................................... 9 

1.3 Chromatin Remodeling in ALT .................................................................................. 15 

1.4 Poly(ADP-ribosyl)ation ................................................................................................ 17 

 Poly(ADP-ribose) Polymerase (PARP) Family .............................................. 17 

 Poly(ADP-ribose) Polymerase 1 (PARP1) ...................................................... 18 

 Poly(ADP-Ribose) Glycohydrolase (PARG) ................................................... 20 

 Role of PARylation in DSB Repair .................................................................. 24 

 Role of PARylation in Replication ................................................................... 26 

 Role of PARylation in Chromatin Remodeling .............................................. 27 

 PARP Inhibitors ................................................................................................ 28 

 PARG Inhibitors ............................................................................................... 29 

1.5 Major Hypotheses ......................................................................................................... 31 

 PAR metabolism is an important regulator of the recombinogenic potential 

of telomeres in ALT cancer cells ............................................................................... 32 



 

 vi 

 PAR-regulated telomere-associated proteins coordinate the early steps of 

ALT telomere maintenance ....................................................................................... 33 

 HIRA adopts elevated importance in ALT due to loss of a functional ATRX-

DAXX complex ........................................................................................................... 35 

2.0 Disrupted PAR metabolism alters recombinogenic activity at ALT telomeres .............. 37 

2.1 Introduction .................................................................................................................. 37 

2.2 Results ............................................................................................................................ 39 

 Effectiveness of the PARP inhibitor (Olaparib) and PARG inhibitor 

(PDD00017273) ........................................................................................................... 39 

 PARP and PARG inhibition have opposing effects on ALT activity ........... 41 

 ALT cancer cells exhibit modest sensitivity to PARG inhibition ................. 46 

 PAR metabolism is required to sustain the key steps of the ALT mechanism

 ...................................................................................................................................... 47 

 PARG inhibition impairs G2-Break Induced Replication (G2-BIR) ........... 56 

2.3 Discussion ...................................................................................................................... 60 

2.4 Methods ......................................................................................................................... 62 

 Statistics ............................................................................................................. 62 

 Cell Culture ....................................................................................................... 62 

 PARP and PARG Inhibitors ............................................................................ 63 

 Western Blotting ............................................................................................... 63 

 Direct Immunofluorescence (IF) ...................................................................... 64 

 IF-FISH .............................................................................................................. 64 

 ALT-Associated PML Bodies (APBs) Quantification .................................... 65 



 

 vii 

 Chromatin Orientation Fluorescent In Situ Hybridization (CO-FISH) ...... 65 

 C-Circle Assay ................................................................................................... 66 

 Pulse Field Gel Electrophoresis ..................................................................... 67 

 Clonogenic Assay ............................................................................................. 67 

 Live Cell Imaging ............................................................................................ 68 

 TRF1-FokI Telomere Clustering ................................................................... 69 

 BrdU Pulldown Dot Blot ................................................................................. 69 

 DNA Fiber Combing Combined with Telomere FISH ................................ 70 

3.0 Proteomic interrogation of the ALT-associated PARylome ............................................. 72 

3.1 Introduction .................................................................................................................. 72 

3.2 Results ............................................................................................................................ 75 

 Identification of the telomeric protein targets of PARG inhibition ............. 75 

 Characterization of the ALT telomeric PARylome ....................................... 78 

 PAR-regulated mediators of the ALT phenotype .......................................... 79 

3.3 Discussion ...................................................................................................................... 85 

3.4 Methods ......................................................................................................................... 90 

 Statistics ............................................................................................................. 90 

 Cell Culture ....................................................................................................... 90 

 Af1521 Pulldown ............................................................................................... 90 

 Mass Spectrometry............................................................................................ 91 

 Proteomic Analysis ............................................................................................ 92 

 Transient Transfection ..................................................................................... 93 

 In Vivo PARylation Assay ................................................................................ 94 



 

 viii 

 siRNA Knockdown ............................................................................................ 95 

 APBs Quantification ......................................................................................... 95 

 TRF1-FokI Telomere Clustering ................................................................... 95 

4.0 Regulation of HIRA-mediated chromatin assembly at ALT telomeres by 

PARylation............................................................................................................................... 97 

4.1 Introduction .................................................................................................................. 97 

4.2 Results .......................................................................................................................... 100 

 Enrichment of HIRA-UBN1-CABIN1 complex at ALT telomeres ............ 100 

 Depletion of HIRA complex abrogates HDR in ALT .................................. 101 

 HIRA is responsible for H3.3 deposition at ALT telomeres ....................... 103 

 Identification of a PAR-modulated HIRA region ........................................ 106 

 PAR modulation of HIRA is critical for its role in ALT ............................. 108 

 HIRA compensates for loss of ATRX/DAXX function in ALT cells .......... 111 

4.3 Discussion .................................................................................................................... 113 

4.4 Methods ....................................................................................................................... 117 

 Statistics ........................................................................................................... 117 

 Cell Culture ..................................................................................................... 117 

 siRNA knockdown ........................................................................................... 117 

 Lentiviral production and infection .............................................................. 118 

 APB Quantification ......................................................................................... 118 

 TRF1-FokI Telomere Clustering ................................................................... 119 

 BrdU Pulldown Dot Blot ................................................................................. 119 

 H3.3 and HIRA IF ........................................................................................... 120 



 

 ix 

 In Vivo PARylation Assay .............................................................................. 120 

 ATRX re-expression...................................................................................... 121 

 Clonogenic Assay ........................................................................................... 122 

5.0 Future Directions ................................................................................................................ 123 

5.1 Does Disrupted PAR Metabolism Have Direct Effects on ALT Telomere 

Maintenance? .................................................................................................................... 123 

5.2 How does PAR Modulation Contribute to HDR Pathway Choice? ....................... 125 

5.3 What is the Prospect of PARG Inhibitor Use in the Clinic? .................................. 133 

5.4 Is HIRA Directly PAR-modulated? .......................................................................... 138 

5.5 What is the Interplay between Factors that Mediate HIRA Recruitment to ALT 

Telomeres? ........................................................................................................................ 142 

5.6 What is the Role of PAR-mediated HIRA Chromatin Assembly at ALT Telomeres?

 ............................................................................................................................................ 145 

 Does PAR modulation of HIRA disrupt de novo H3.3 synthesis at ALT 

telomeres? ................................................................................................................. 145 

 How does HIRA-mediated H3.3 deposition couple with HDR mechanisms in 

ALT? ......................................................................................................................... 149 

 Why is H3.3 incorporation necessary at ALT telomeres? ........................... 154 

 Is there a crosstalk between PAR and H3.3 post-translational modifications?

 .................................................................................................................................... 157 

 Does HIRA contribute to TERRA function at ALT telomeres? ................. 158 

 What is the role of HIRA in ALT cell survival by autophagy? .................. 161 



 

 x 

5.7 How does ATRX Deficiency Contribute to Dependency on HIRA in ALT Cancers?

 ............................................................................................................................................ 164 

5.8 Can HIRA be Therapeutically Targeted to Specifically Kill ALT Cancer Cells? 169 

5.9 Concluding Remarks .................................................................................................. 175 

 ................................................................................................................................ 176 

A.1 Chapter 2 Supplemental Material ............................................................................ 176 

 ................................................................................................................................ 179 

B.1 Chapter 3 Supplemental Material ............................................................................ 179 

 ................................................................................................................................ 182 

C.1 Chapter 4 Supplemental Material ............................................................................ 182 

 ................................................................................................................................ 184 

D.1 Af1521 PAR proteomics ............................................................................................ 184 

 ................................................................................................................................ 189 

E.1 Plasmids, siRNAs, shRNAs, and Antibodies ........................................................... 189 

 ................................................................................................................................ 193 

F.1 List of Abbreviations ................................................................................................. 193 

Bibliography .............................................................................................................................. 197 



 

 xi 

List of Tables 

Table 1. Af1521 Mass Spectrometry Hits ............................................................................... 184 

Table 2. Plasmids ...................................................................................................................... 189 

Table 3. siRNAs ......................................................................................................................... 190 

Table 4. shRNAs ........................................................................................................................ 191 

Table 5. IF antibodies ............................................................................................................... 191 

Table 6. WB antibodies............................................................................................................. 192 



 

 xii 

List of Figures 

Figure 1. Schematic of ALT-associated HDR mechanisms occuring in APBs ........................ 8 

Figure 2. HDR mechanisms of ALT .......................................................................................... 15 

Figure 3. Distinct chromatin landscape of ALT facilitates HR .............................................. 17 

Figure 4. PARylation is an apical signal of DNA damage ....................................................... 24 

Figure 5. Mechanism of PARP and PARG inhibitors ............................................................. 31 

Figure 6. Western blot analysis of PAR induction ................................................................... 41 

Figure 7. PARP and PARG inhibition have opposing effects on APBs. ................................ 43 

Figure 8. PARP and PARG impact frequency of T-SCEs ...................................................... 44 

Figure 9. PARGi leads to telomere shortening in ALT+ cells ................................................ 45 

Figure 10. ALT+ cells display modest sensitivity to PARGi ................................................... 47 

Figure 11. TRF1-FokI schematic ............................................................................................... 49 

Figure 12. WT TRF1-FokI induces telomeric DNA damage .................................................. 50 

Figure 13. PARGi abolishes TRF1-FokI -telomere clustering................................................ 52 

Figure 14. PARylation is an early and direct mediator of TRF1-FokI DSB formation ....... 54 

Figure 15. PARylation perturbs long-range telomere movement in ALT cells .................... 56 

Figure 16. PARGi impairs G2-BIR ........................................................................................... 57 

Figure 17. Disrupted PAR metabolism interferes with telomeric replication ....................... 59 

Figure 18. Proteomics approach to characterize the ALT PARylome .................................. 77 

Figure 19. Distinct reconfiguration of ALT landscape upon PARGi ..................................... 79 

Figure 20. Distinct functional groups of PAR-regulated ALT telomeric proteins ............... 81 

Figure 21. PAR-regulated factors associate with ALT telomeres .......................................... 83 



 

 xiii 

Figure 22. siRNA knockdown of PAR-regulated factors impairs ALT actiivity. ................. 85 

Figure 23. The HIRA complex is enriched at ALT telomeres .............................................. 101 

Figure 24. Depletion of HIRA impairs ALT telomere maintenance .................................... 102 

Figure 25. HIRA mediates H3.3 localization at ALT telomeres ........................................... 103 

Figure 26. PAR-dependent localization of HIRA to ALT telomeres .................................... 105 

Figure 27. HIRA exhibits direct PAR-modulation ................................................................ 107 

Figure 28. PAR-modulation of HIRA B-domain recruits HIRA to ALT telomeres ........... 109 

Figure 29. PAR-modulation of HIRA is essential for its function in ALT .......................... 110 

Figure 30. HIRA localization to ALT telomeres relies on loss of ATRX ............................. 111 

Figure 31. Loss of HIRA induces greater cytotoxicity in ALT cancers ............................... 112 

Figure 32. Triple-FISH schematic to quantify BIR ............................................................... 129 

Figure 33. PARGi uncouples HDR proccesses at ALT telomeres ........................................ 133 

Figure 34. The fate of ALT-inhibited cancer cells ................................................................. 138 

Figure 35. H3.3 SNAP-TAG system to observe histone dynamics ....................................... 148 

Figure 36. Schematic of SIRF method. ................................................................................... 153 

Figure 37. RPA-HIRA-H3.3 complex at R-loops ................................................................... 159 

Figure 38. CRISPR-FLIP strategy for bi-allelic conditional gene modification ................. 167 

Figure 39. Proposed model of PAR-modulated HIRA at ALT telomeres ........................... 169 

Figure 40. HIRA and ASF1a interface .................................................................................... 172 

Figure 41. HIRA crystal structure reveals homotrimerization ............................................ 174 

Figure 42. PARP and PARG depletion induces opposing effects on frequency of APBs ... 176 

Figure 43. PARGi decreases telomere length in VA13 cells.................................................. 177 



 

 xiv 

Figure 44. PARGi diminishes telomere clustering in ALT+ VA13 cells and not TEL+ Hela 

LT cells ................................................................................................................................... 178 

Figure 45. PAR-dependent recruitment of factors to ALT telomeric DSBs ....................... 179 

Figure 46. PAR-regulated factors localize to ALT telomeres ............................................... 180 

Figure 47. Inhibition of ARP2/3 impairs HDR in ALT ......................................................... 181 

Figure 48. Selectivity of HIRA localization for UV-C damage ............................................. 182 

Figure 49. WB of HIRA KD using shRNA ............................................................................. 183 

 



 

xv 

Preface 

I would like to extend my deepest gratitude and appreciation to the people who have helped 

me bring this project to fruition. First and foremost, I would like to thank my advisor, Dr. Roderick 

O’Sullivan, for his guidance, expertise, and encouragement throughout this project. You have 

fostered my strengths and equipped me with the skills to be the best version of myself. You 

continually motivate me to be a better scientist with your keen questions and high, yet reasonable 

expectations. You have pushed me farther than I thought I could go. The most valuable lesson you 

have taught me is the importance of following through on all my tasks and commitments. You 

have been an incredible mentor during my graduate training – from inception to completion.  

I would like to acknowledge my exceptional committee members, each of whom has 

provided invaluable advice and guidance throughout my research process. Dr. Ben Van Houten: 

You never stopped challenging me. In doing so, you helped me develop a meticulous scientific 

approach. Dr. Kara Bernstein: Your unwavering support helped me overcome several scientific 

hurdles. Dr. Patricia Opresko: Your knowledge and expertise helped move my project forward. 

Dr. Andrea Berman: Your keen questions and feedback helped me become more inquisitive about 

my research. 

I also appreciated the tremendous support from the Molecular Pharmacology program at 

the University of Pittsburgh School of Medicine. The academic training that I received here has 

been pivotal to my accomplishments. I would like to specifically mention Dr. Bruce Freeman, Dr. 

Patrick Pagano, Dr. Guillermo Romero, Dr. Tija Jacobs, and Dr. Jonathan Beckel, who have 

contributed to creating a training program that fosters collaboration and innovation.   



 

xvi 

I am indebted to my former mentors who were instrumental in shaping my love of learning. 

My highschool teachers at the United Nations International School of Hanoi, Mr. Wayne 

Hodgkinson, Mr. Jeremy Thompson, Mrs. Julie Shaw, and Mr. Steve Powers, encouraged me to 

keep an open-mind. My English and Biology professors at Union College, Dr. Robert Lauzon, Dr. 

Jill Salvo, Dr. Quynh Chu-LaGraff, and Dr. Hugh Jenkins, showed me the importance of an 

interdisciplinary approach to solving problems. Dr. Larry Karnitz, my advisor during a summer 

research fellowship at the Mayo Clinic, instilled in me the confidence to ask questions and the 

curiosity to pursue scientific questions.  

Last, but not least, I am extremely grateful for my tremendous support system. My mom 

and dad: You are my ultimate role models. You came to the United States to lead a better life for 

our family. Your courage and sacrifices have given me bountiful opportunities to fulfill my 

dreams. Your love and guidance encouraged me to pursue my passions. My brother, James: I am 

extremely thankful that we are close siblings – from the early childhood days when we shared a 

RuneScape account to currently, as we explore the atypical food scene together.  

Additionally, I have to give a huge thanks to my friends who have dealt with my weirdness 

and have kept me positive during difficult times. The current and past O’Sullivan lab members, 

Nicole Kaminski, Michelle Lynskey, Jonathan Barroso-Gonzalez, Ragini Bhargava, Laura Garcia-

Exposito, Justin Roncaioli, and Marco De Vitas: Each of you has contributed to such a great lab 

environment that is conducive to high-quality science with a side of fun and laughter. Alex Layden: 

You have been incredibly supportive of my aspirations in and out of the lab. Our peculiar 

Pittsburgh adventures have kept me sane! Ethan Bassin, Manoj Chelvanambi, and Daniel Zuppo: 

The Stack’d 9PM crew lasted for so many years. Braulio Bonilla: I always enjoy our reagent 

exchanges. Alp Asan: Over the years, we have become close friends, beyond Molecular 



 

xvii 

Pharmacology buddies! Sam Herron: Our Sunday brunches has led to many insightful discussions 

on science and random things. Chris Chuckran: I am glad we became close friends after our 

awkward encounter during the summer Microscopy class. Matt Wu: Our update phone calls always 

cheer up my day.  

Everyone in my life has directly or indirectly helped me reach my aspirations. I am excited 

for what the future holds for me. I look forward to seeing where my curiosity takes me next! 

 



 

 1 

1.0 Introduction 

Telomeres are specialized nucleoprotein structures that protect the ends of chromosomes 

from degradation and fusion. Telomeric DNA sequences are tandem arrays of the 5’-TTAGGG-

3’ hexanucleotide (1). Telomeres consist of a 3’ G-rich overhang that folds back and anneals to 

the double-stranded hexameric repeats, forming a lariat-like structure termed the t-loop (2–4). The 

six-member protein complex, Shelterin (TRF1, TRF2, POT1, RAP1, TPP1, and TIN2), associates 

at telomeres and stabilizes the t-loop (5). TRF1 (Telomere Repeat Binding Factor 1) and TRF2 

(Telomere Repeat Binding Factor 2) bind to the double-stranded TTAGGG region. RAP1 

(Repressor/Activator Protein 1) associates with and stabilizes TRF2. POT1 (Protection of 

Telomere 1) binds to the single-stranded telomeric overhang. TPP1 (Adrenocortical Dysplasia 

Homolog (ACD)) is a binding partner of POT1. TIN2 (TRF1-and TRF2-Interacting Nuclear 

Protein 2) tethers the TPP1/POT1 complex to TRF1 and TRF2, which bridges the single-stranded 

and double-stranded regions of the telomere (5). These properties are integral to chromosome end-

protection and act as a safeguard to shield exposed chromosome ends from being recognized as 

double-stranded breaks (DSBs) by the DNA repair machinery (6).  

 In normal somatic human cells, telomeres shorten overtime after each cell division due to 

the end replication problem, which arises from incomplete replication of the lagging strand (7). 

Progressive and irreversible loss of telomeres eventually reaches a critical point when cellular 

senescence is triggered to prevent genomic instability (8). To bypass this barrier, cells containing 

inactivating mutations in p53 and Rb pathways gain proliferative activity (9–11). However, 

eventually chromosome ends can become too short and unprotected, which generates end-to-end 

fusions and dicentric chromosomes (12). Telomere crisis results in an array of genomic 
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aberrations, including chromosome deletions, amplifications, translocations, chromothripsis, 

kataegis, and polyploidization (12,13). As a consequence, these cells are eliminated by autophagic 

cell death and apoptosis (13).  

Cancer cells circumvent telomere dysfunction by adopting telomere maintenance 

mechanisms to achieve replicative immortality (14). Approximately 85% of cancers reactivate the 

specialized reverse transcriptase telomerase to synthesize de novo telomeric DNA (15). Two 

components of telomerase, the non-coding telomerase template RNA (hTR) and dyskerin, are 

constitutively expressed. The TERT promoter region is enriched with binding motifs for a range 

of transcription factors, including the MYC oncogene, but lacks TATA and CAAT boxes (16). 

Notably, the TERT promoter is unmethylated in normal somatic cells, which is thought to favor 

repressor-binding (17). Together, the silencing of the promoter and low basal transcription rate 

limit the number of molecules of the key catalytic subunit TERT (18). To counteract this, 

acquisition of TERT promoter mutations and upstream genomic rearrangements elevate TERT 

mRNA expression and telomerase activity. Genomic rearrangements in regions proximal to the 

TERT gene locus (5p15.33) can introduce enhancers that increase TERT expression (17). Hotspot 

mutations in the promoter of TERT, the catalytic subunit of telomerase, leads to telomerase 

activation (19–21). In familial and sporadic melanomas, two common non-coding mutations are 

located at -124 and -146 nucleotides upstream from ATG within the TERT promoter region (22). 

The prevalence of TERT promoter mutations varies according to cancer type and histology (23). 

However, TERT expression is permanently repressed in 10-15% of cancers, which are 

largely derived from the mesenchymal-adrenergic lineage (24). These cancers engage in the 

recombination-mediated pathway termed Alternative Lengthening of Telomeres (ALT) (25). ALT 

telomeres display a permissive chromatin state, stochastic DNA damage, replication stress, as well 
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as inactivation of type I interferon response – all of which contribute to a favorable environment 

for homology-directed repair (HDR) pathways that mediate telomere maintenance and aberrant 

tumor growth (26–30). Understanding how ALT cancers hijack HDR mechanisms is the primary 

focus of this dissertation, as discussed in detail below.  

1.1 The Physiological Basis of ALT 

 Clinical Relevance of ALT 

10%-15% of all cancers activate the ALT pathway for telomere maintenance (25,31–33). 

While ALT is not commonly detected in tumors of epithelial origin (carcinomas), it is prevalent 

in tumors of mesenchymal (osteosarcomas and soft tissue sarcomas) and neuroepithelial 

(astrocytomas) origins (24,34,35). In addition, it is detected in highly aggressive tumor types such 

as pancreatic neuroendocrine (PanNETs), glioblastoma multiforme, and neuroblastoma. It still 

remains elusive as to why these cancers rely on the ALT pathway. However, it has been proposed 

that tumors of mesenchymal origin may have greater barriers to upregulation of telomerase 

activity, which force cells to favor the emergence of ALT (36,37). It is speculated that these cell 

types have altered control of senescence and crisis, which lead to stochastic telomeric damage and 

replication stress. Another possibility is that varying tissue types may have differential regulation 

of recombination and chromatin remodeling pathways (33,37,38). Interestingly, hybrids of ALT 

and telomerase-positive (TEL+) cells continue to exhibit immortalization, but with suppressed 

ALT phenotypes (37,39,40). This suggests that there is the existence of an ALT repressor in 
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telomerase-positive cells. Nevertheless, it is unknown whether loss of such repressor occurs in 

cancer cells of mesenchymal lineage.  

 Phenotypic Characteristics of ALT cancers 

 Loss of function mutations and deletions in ATRX/DAXX: One of the signature 

markers associated with ALT is the loss of expression of alpha-thalassemia/mental retardation 

syndrome, X-linked (ATRX) and death domain associated protein (DAXX) (41). Missense 

mutations and exon deletions that produce a non-functional or truncated ATRX protein, 

respectively, are identified in whole genome sequencing (WGS) of a wide range of tumor types 

that invariably become classified as ALT positive (42). Additionally, 70%-80% ALT cell lines 

have ATRX/DAXX mutations. Similarly, inactivating mutations in DAXX are also detected, 

particularly in vivo, with some ALT+ cell lines harboring a chimeric fusion protein formed 

between DAXX and kinesin motor protein KIFC3 (43). Clinical observations of PanNETs have 

identified loss of ATRX/DAXX protein expression and the manifestation of ALT as late events in 

tumor evolution, linked with metastatic disease (44). This late origin of ALT is consistent with 

numerous in vitro studies when the transient depletion or disruption of ATRX or DAXX is not 

sufficient to initiate ALT (42,45). The supposition is that additional genetic and/or epigenetic 

alterations in p53 or the acquisition of other passenger mutations may be mitigating factors for 

ALT initiation (46). Indeed, recurrent mutations in Isocitrate Dehydrogenase (IDH1) are more 

prevalent in gliomas and can promote ALT initiation in cells lacking ATRX in vitro (47,48). IDH1 

is a metabolic factor that catalyzes decarboxylation of isocitrate to -ketoglutarate (-KG). IDH1 

regulates the demethylation of histones and DNA. 
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ALT-associated PML bodies (APBs):  APBs are structural complexes enriched in 

promyelocytic leukemia (PML) bodies, telomeric DNA, telomere associated proteins, and DNA 

repair proteins (49). PML bodies are matrix-associated domains in the nucleus that recruit proteins 

with diverse cellular functions. Specifically, APBs are only observed within a small subset, 

approximately 5-10%, of asynchronously dividing ALT-positive cell populations (50). 

Immunofluorescence-Fluorescence in situ Hybridization (IF-FISH), based on colocalization of 

PML and telomeres, is used to detect APBs in ALT+ immortal cell lines and archived formalin-

fixed paraffin-embedded tumors (34,51). It has been reported that APBs are enriched in the G2/M 

phase and are decreased in frequency in cells exiting mitosis and re-entering the G1 phase. This 

suggests that the formation of APBs is a dynamic process and is coordinated with the cell cycle 

(52).  

APBs structurally comprise of PML/SP-100 that form a 0.01-1m diameter shell enclosing 

telomeric DNA, telomere specific proteins (Shelterin components TRF1 and TRF2), as well as 

DNA damage response and repair factors (such as gamma-H2A Histone Family Member X 

(H2AX), ATP-binding Cassette-ATPase (Rad50)/Meiotic Recombination 11 Homolog 1 

(Mre11)/Nijmegen Breakage Syndrome Protein 1 (NBS1), and Structural Maintenance of 

Chromosomes Protein 5/6 (SMC5/6)) (53–55). Several lines of evidence indicate that APB 

formation is driven by SUMOylation events mediated by SUMO E3 Ligase MMS21, a component 

of the SMC5/6 complex (55,56). SUMOylation is a post-translational modification that covalently 

conjugates small ubiquitin-like modifiers (SUMO) to an array of cellular proteins in a similar 

manner to ubiquitylation (57). To initiate APB formation, MMS21 SUMOylates telomere binding-

proteins, TRF1 and TRF2, to assemble PML/SP100 at telomeres through interactions between 

SUMO and SUMO-interacting motifs (SIM) (58). These SUMOylation events facilitate the 
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formation of liquid-liquid demixing condensates that can dynamically alter the scaffold-protein 

interaction (59). A positive SUMOylation feedback loop is established, leading to the recruitment 

of repair and recombination factors that promote telomere elongation (55,58). Additionally, NBS1, 

which is a vital component of the Mre11-Rad50-Nbs1 (MRN) repair and recombination complex, 

is essential for assembly of functional APBs (60,61) 

Although the function of APBs is not well-defined, there is strong evidence arguing that 

the presence of APBs promotes ALT activity. The presence of APBs have been used to identify 

most ALT+ tumors while the repression of ALT is accompanied by a decrease in APBs (34,62). It 

has been shown that PML bodies in ALT cells directly associate with chromosome ends, allowing 

for telomere clustering and recombination (63). In addition, a recent study proposed that ALT 

telomere DNA synthesis is exclusively detected in APBs during G2 (64). However, DNA synthesis 

could not be differentiated between a single telomere, multiple telomeres, or extrachromosomal 

circles. APBs likely serve as a recombinogenic platform to enrich proteins that enhance replication 

and homologous recombination. By sequestering these proteins to telomeres, APBs provide the 

prime environment for telomere recombination and extension in ALT. Understanding the exact 

mechanisms of APB formation will lead to improved assessment of ALT tumors. 

Extrachromosomal Telomeric Repeats (ECTRs): Although ECTRs are present in ALT 

cells, their function is not well-characterized (65–68). There are two common types of ECTRs that 

are linked with ALT. Firstly, partially single-stranded C-rich circles (c-circles) are abundant in 

ALT+ cancers, but not in TEL+ cancers (69–71). An established PCR-based method is used to 

measure c-circle levels in cancer cell lines and human blood samples (72). The abundance of c-

circles can be quantified using a modified rolling circle amplification (RCA) assay that relies on 

29 DNA polymerase. Thus, c-circles are widely used as a specific and quantitative biomarker for 
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ALT activation (69,72). Secondly, heterogenous double-stranded telomeric circles (t-circles) are 

also commonly found in ALT (65,70,73). However, t-circles are neither ALT nor cancer specific; 

they can be the result of telomere trimming in normal germline cells and in cells with 

overexpression of telomerase components, both of which have extensively long telomeres (74,75). 

Although ALT+ and TEL+ cells are able to produce t-circles, only ALT+ cells contain c-circles, 

which suggests that c-circles may arise from an undetermined mechanism of altered telomerase 

activity (71).  

 Telomere Sister Chromatid Exchanges (T-SCEs): ALT cancers display hyper-

recombination, which manifests as elevated frequency of telomere-sister chromatid exchanges (T-

SCEs) (76–80). These events can be detected using telomere specific chromosome-orientation 

fluorescent in situ hybridization (CO-FISH), which utilizes specific telomere probes for the G-rich 

lagging and C-rich leading strands  (50). The exchange between two sister chromatids is visualized 

as a double signal at one telomere. Although T-SCEs are a marker of ALT, it is not indicative of 

telomere extension (81). Additionally, it is speculated that crossover events can also arise from 

recombination with non-sister telomeres or ECTR elements (78).  
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Figure 1. Schematic of ALT-associated HDR mechanisms occuring in APBs. SUMOylation of Shelterin 

components, TRF1 and TRF2, recruits PML/SP100 via SUMO-SIM interactions. SUMOylation-induced APB 

condensates lead to clustering of telomeres and DNA repair factors within the PML/SP-100 shell. A positive 

SUMOylation feedback loop enhances APB formation.  APBs act as a platform to concentrate repair and 

recombination factors to facilitate telomeric DNA synthesis, particularly of extra-chromosomal C-circles. APBs are 

disassembled as a result of deSUMOylation events. 
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 Telomerase-Independent Lengthening of Yeast Telomeres 

Budding yeast cells lacking a functional est1 gene, which encodes yeast telomerase, exhibit 

progressive shortening of the terminal G1-3T telomeric repeats  (82). While the majority of cultured 

yeast cells in an est1- culture die, a minor subpopulation of survivors regains the ability to divide 

and maintain telomere length. Thus, when the primary pathway for telomere maintenance is 

defective, an alternative pathway emerges to bypass senescence and cell death. These survivors 

consist of two types: Type I utilizes Rad51-dependent recombination while Type II engages in a 

Rad51-indpendent mechanism that is mediated by break-induced replication (BIR) (60,83). While 

POLD32, homolog of POLD3, is dispensable for replication and gene conversion, it is required 

for BIR to establish a full replication fork by recombination in the absence of an origin of 

replication (84). Type I survivors have tandem duplication of the Y’ element, a highly polymorphic 

repetitive sequence present in the subtelomeric regions of many yeast telomeres (83,85,86). These 

show amplification of the Y’ elements, but have very short G1-3T telomeric repeats. Meanwhile, 

Type II survivors exhibit rearrangement and/or tandem duplication of the distal portion of the Y’ 

element. Type II survivors demonstrate highly heterogeneous long tracts of G1-3T, resembling 

telomeres present in ALT cancers. These studies suggest that Type II survivors in budding yeast 

and the mammalian ALT pathway may share mechanistic similarities.  

1.2 Homology-directed Repair Mechanisms in ALT 

Through imaging of individual proteins and unbiased proteomics profiling of ALT 

telomere composition, an undoubted constitutive and selective association of HR factors with ALT 
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telomeres has been determined (87–90). They include the central recombinase RAD51, single-

stranded DNA binding Replication Protein A (RPA), the DNA resection MRN complex, Bloom 

helicase (BLM) and several HR accessory factors Breast Cancer Gene 1 (BRCA1), Breast Cancer 

Gene 2 (BRCA2), RAD51-associated Protein 1 (RAD51AP1) and RAD52 (27,28,64,91–94). 

These are frequently sequestered together with clusters of telomeres and Shelterin subunits in 

APBs, which are characteristic markers of recombination-mediated repair and extension of 

telomeres in ALT cancer cells (49). Recombination and extension are two independent, potentially 

competing HDR mechanisms that underpin ALT, both of which utilizes exposed DNA ends at 

stochastic telomere or stalled replication forks as primers (Figure 2). RAD51-dependent 

homologous recombination facilitates error-free repair of telomeres (95,96). Later in G2/M phase, 

a pathway that is dependent on RAD52, Proliferating Cellular Nuclear Antigen (PCNA), 

Replication Factor C 1-5 complex (RFC), and DNA polymerase  (PolD3) mediates conservative 

DNA synthesis and extends telomere length (93,97,98). Recent studies have shed light on the 

complex regulation of these HDR mechanisms. 

The intrinsic difficulty of replicating long tracts of GC rich telomeric sequences has been 

implicated as the basis for constitutive HDR activity at ALT telomeres (Figure 2). Stalling of 

replication forks pose a threat to genome stability. This can arise due to polymerase collision with 

DNA nicks, DNA gaps or polymerase barriers like G-quadruplexes that can readily form within 

ALT telomeres (99,100). These replisome collisions are detected by the DNA damage sensor 

kinase, Ataxia-Telangiectasia and Rad-3 related (ATR) (98). The ATR signaling cascade initiates 

the processing of stalled forks and downstream signaling to attenuate telomere replication (101–

103). Subsequently, repair and restart of these stalled forks involves dedicated remodeling 

enzymes like SWI/SNF-related, matrix associated, actin-dependent regulator of chromatin, 
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subfamily A-like 1 (SMARCAL1), an ATP-dependent strand annealing helicase, and/or Fanconi 

anemia complementation group M (FANCM), a DNA-dependent ATPase/Translocase subunit of 

the Fanconi Anemia (FA) core complex (29,30,104). FANCM also works with RNaseH1 to 

dissolve aberrant R-Loops that form between the TERRA lncRNA and telomeric DNA sequences, 

which can accumulate and destabilize replication forks and HR intermediates within ALT 

telomeres (105). The activity of these proteins is essential for mediating replication fork reversal 

and repair. Preventing fork remodeling, by depletion of SMARCAL1 or disruption of FANCM, 

unleashes staggering increases in APB frequency and size (27,29,30). These cells exhibit elevated 

RAD51-dependent clustering of telomeres, chromosomal abnormalities, and DNA damage 

signaling that is consistent with rampant, uncontrolled recombination. ALT cell lines that are 

deficient in these proteins, particularly FANCM, display acute cell death. Thus, this initial 

response by SMARCAL1 and FANCM represents a critical mechanism to salvage stalled forks at 

ALT telomeres (12,13,69). It also acts as a front-line tolerance mechanism that limits excessive 

telomere recombination and damage to preserve ALT cancer cell survival and proliferation.  

Once stabilized and repaired, an active fork can be restored by RAD51-dependent HR 

(Figure 2). RAD51 presynaptic filaments explore nuclear space, probing for identical telomeric 

sequences that provide the template for error-free repair (96). At genomic DSBs, RAD51-

dependent homology search involves the consumption of ATP and polymerization of nuclear F-

actin filaments that propel homologous DNA sequences into proximity of each other (106). 

Though yet to be determined, the same processes are likely to stimulate telomere clustering in 

ALT. As with HR at genomic DSBs, homology search during ALT is co-regulated and stimulated 

by HR accessory factors such as BRCA1, BRCA2, RAD51AP1 and the SMC5/6 heterodimer 

(28,55,91). However, ALT is distinct from conventional HR due to the involvement of the 
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Homologous Pairing Protein 2-Meiotic Nuclear Division Protein 1 (HOP2-MND1) heterodimer 

that is normally associated with meiotic HR (98). The involvement of HOP2-MND1 at telomeres 

could assist in overcoming reduced homology search and capture kinetics at G-C rich regions, 

such as those at telomeres. It was also proposed that HOP2-MND1’s role in gametogenesis is a 

remnant of a primordial meiotic origin of ALT that is reactivated in telomerase deficient cancer 

cells (96). However, the basis of meiotic factors like HOP2 involvement in ALT remains unclear.  

Once homologous telomeric sequences have been captured, the presynaptic filament 

invades, aligns and combines with the double-stranded partner DNA, forming the synaptic 

complex (Figure 2). This action displaces a strand of DNA, forming the Displacement Loop (D-

Loop). At the terminal 3’hydroxyl group, PCNA is loaded by RFC to prime and initiate semi-

conservative DNA synthesis. Given the high GC-rich content at telomeres, the translesion DNA 

polymerase, Pol , might be employed to initiate DNA synthesis before Pol  takes over (87). 

During DNA synthesis that emanates from stalled forks, the translocase activity of FANCM works 

in unison with the DNA unwinding and decatenation activities of the BLM-TOP3A-RMI1-2 

(BTR) complex to promote branch migration and eventual dissolution of D-loops and Holliday 

Junctions (HJs) (81,107,108). The dissolution activity of the BTR complex is crucial as it 

facilitates Pol  -dependent telomere extension and suppresses telomere sister chromatid exchange 

(t-SCE) events, thereby preserving the original orientation of telomeric DNA strands (81).  

In addition to HJ resolution, BLM has also been shown to alleviate persistent telomere 

replicative stress at forks that escape reversal (Figure 2). Here, BLM’s helicase activity can 

facilitate EXO1-DNA2 dependent resection that potentially sets the stage for repair by an alternate 

RAD51-independent HDR pathway (93). RAD52 could be recruited and initially stabilize these 

HR intermediates, perhaps to limit resection. Then, utilizing its single-strand annealing (SSA) 
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activities, RAD52 subsequently facilitates intra-chromosomal pairing of telomeric DNA 

sequences located on proximal sister chromatids and D-loop formation (64,94). This process 

primes break induced replication (BIR)-related DNA synthesis at ALT telomeres. In fact, recent 

evidence has implicated several BIR-like pathways that are essential aspects of ALT telomere 

maintenance (98). These conservative DNA synthesis pathways take place beyond the confines of 

S-phase, function in G2 and M-phases, share independence from RAD51-dependent HDR, and 

universally adopt the specialized PCNA-RFC-Pol replisome. The predominant pathway, called 

G2-BIR, relies on RAD52-mediated restoration of stalled replication during G2 mentioned above 

since cells lacking any of RAD52 or the POLD3-POLD4 subunits of Pol  display attenuated DNA 

synthesis and extensive telomere shortening (64,94,98). RAD52 is also crucial for a spontaneous 

form of DNA synthesis during the early stages of mitosis, termed Mitotic DNA synthesis, or 

spontaneous mitotic DNA synthesis (MiDAS), which can occur at chromosome arms and at 

telomeres (109–111). The predominance of the RAD52-dependent pathway over its RAD51-

mediated counterpart has been attributed to each protein’s distinct binding kinetics (94,98). Also, 

the individual substrate requirements of RAD51 and RAD52, as well as the mechanisms of HR 

intermediate processing, will likely dictate commitment to either pathway. 

Stalled forks that escape or are incompatible with repair using the mechanisms outlined 

above must be salvaged before mitosis (Figure 2). These can be subjected to endonucleolytic 

resolution by a complex comprised of SLX1-SLX4, MUS81-EME1, XPF-ERCC1 (SMX). The 

SMX complex cleaves or resolves each junction of the intermediate structure (112). The SMX 

complex associates with telomeres, irrespective of whether telomerase or ALT is active (113,114). 

It acts as an all-purpose responder to detrimental telomere damage, where it dismantles complex 

HR entanglements. This generates large deletions of telomeric DNA at these intermediates. 



 

 14 

RAD52 also stimulates MiDAS at intermediates that are resolved by SMX (110). However, unlike 

RAD52-dependent DNA synthesis during G2, MiDAS that is stimulated by SLX4 appears to be 

abortive or non-productive. This is corroborated by SLX4-deficient cells that display a net loss in 

overall telomere length in ALT cells. 

In ALT cells, the SMX complex appears to fulfill a greater role in antagonizing the HJ 

dissolution of the BTR complex, which seems to be essential for telomere length homeostasis (81) 

(Figure 2). In the absence of functional BTR, the promiscuous resolvase activity of SMX becomes 

uncontrolled and promotes unwarranted recombination, yielding excessive t-SCEs and diminished 

DNA synthesis. In contrast, disrupting SMX-mediated resolution promotes unrestrained BLM- 

mediated dissolution and DNA synthesis at telomeres. Interestingly, an auxiliary constituent of the 

SMX complex, SLX4IP, was shown to directly bind and potentially antagonize BLM’s dissolution 

activity (112). ALT cells lacking both SLX4 and SLX4IP exhibit staggering increases in 

recombination, mitotic anomalies and a severe synthetic lethal phenotype that was fully rescued 

by depletion of BLM. Thus, the BTR dissolution and SMX resolvase activities are subject to 

exquisite molecular and temporal regulation that is vital in maintaining what has been termed 

productive ALT. 
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Figure 2. HDR mechanisms of ALT. Telomeres pose a challenge for the replication machinery, leading to 

replication fork stalling. There are various pathways to resolve this impediment in ALT, which are RAD51-

dependent HR, RAD52-dependent HDR, and RAD52/SLX4-dependent MiDAS. 

1.3 Chromatin Remodeling in ALT 

It is speculated that remodeling of telomere architecture plays a key role in the emergence 

and maintenance of ALT. Through a sequencing approach, it was recently discovered that variant 

repeats (TCAGGG, TGAGGG, and TTGGGG) are interspersed throughout the telomeres of ALT 

cells (115). The C-type (TCAGGG) variant repeat is predominantly enriched within the canonical 

repeat arrays and provides a high affinity binding site for the nuclear receptors COUP-TRF2 and 

TRF4 (116). The binding of nuclear receptors to telomeres leads to the engagement with ZNF827, 
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a zinc-finger protein that recruits the nucleosome modeling and histone deacetylation (NuRD) 

complex. The result is decreased shelterin binding, destabilization of the telomere architecture, 

and an elevated recombinogenic telomeric state.  This disequilibrium primes a positive feedback 

loop for further spreading of variant repeats from the proximal region of telomeres, which has 

profound implications for ALT telomere structure and function (115,117).    

Intriguingly, ATRX/DAXX-associated mutations functionally converge through their 

effects in reconfiguring chromatin structure. DAXX and ATRX form a multifunctional chromatin-

remodeling histone chaperone complex that is responsible for the replication independent 

deposition of histone H3.3 (118). In the absence of functional ATRX-DAXX, failure to assemble 

chromatin with histone H3.3 can have pleiotropic effects on transcription and single-stranded DNA 

(ssDNA) repair mechanisms such as nucleotide excision repair (NER), while also negatively 

impacting chromatin compaction and integrity (119). ATRX deficiency has also been implicated 

in alterations in sub-telomeric DNA methylation on the basis that it interacts with DNA 

methyltransferase 1 (DNMT1) (120). Remarkably, heterozygous mutations in histones H3.1 and 

H3.3 at or adjacent to key lysine residues, K27M and G34R/G34R, which are targeted by lysine 

methyltransferases complexes Enhancer of Zeste 2 (EZH2) and SET domain containing 2 

(SETD2), respectively, have also been identified in ALT-positive glioma (121,122). Thus, it 

appears that at singular or multiple distinct points during ALT cancer cell evolution, telomeric 

chromatin undergoes considerable modification and expansion, losing its DNA repair refractory 

state and becoming more accessible and permissive for HDR mechanisms that sustain telomere 

length in ALT cancers (26,117).  
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Figure 3. Distinct chromatin landscape of ALT facilitates HR. While TEL+ telomeres have a more closed 

chromatin structure, ALT+ telomeres are more accessible to facilitate a favorable environment for HDR. ALT 

telomeres exhibit stochastic DNA damage and replication stress, all of which contribute to a permissive telomeric 

state for ALT mechanisms. 

1.4 Poly(ADP-ribosyl)ation 

 Poly(ADP-ribose) Polymerase (PARP) Family  

ADP(ribosyl)ation is a reversible post-translational modification that covalently attaches 

ADP-ribose (ADPr) onto Glu, Lys, or Asp residues of acceptor proteins by using nicotinamide 

adenine dinucleotide (NAD+) as a substrate (123). While mono(ADP-ribosyl)ation (MARylation) 

adds a single ADPr unit, poly(ADP-ribosyl)ation (PARylation) can add up to 200 ADPr units via 
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linear and branched glycosidic linkages (124). This modification is catalyzed by diverse members 

of the poly(ADP-ribose) polymerase (PARP)/ADP(ribosyl)transferase (ADPRT) family (123). In 

humans, there are 17 members in the PARP family, which belong to five subfamilies based on 

functional domains in regions outside of the PARP domain. These include: 1) DNA-dependent 

PARPs, 2) tankyrases, 3) CCCH zinc finger PARPs, 4) macro PARPs, and 5) unclassified PARPs 

(123,125–127). The DNA-dependent PARPs (PARP1, PARP2, and PARP3) are the only members 

of the PARP family that are expressed in the nucleus (128–130). These PARPs, along with PARP4-

6, share a conserved His-Try-Glu (H-Y-E) triad in their catalytic domains (131). PARP1 

recognizes different lesions, including SSBs, DNA crosslinks, stalled replication forks, and DSBs 

(132). On the other hand, PARP2 binds less efficiently to SSBs and has been proposed to recognize 

gaps and flap structures that correspond to advanced repair intermediates (133,134). PARP3 has 

been shown to play a role in the cellular response to DSBs during classical non-homologous end-

joining (c-NHEJ) and mitotic progression (135,136). Tankyrase 1 (TNKS1) and Tankyrase 2 

(TNKS2) have redundant functions to regulate telomere maintenance via PARylation of TRF1, 

oncogenic pathways, as well as spindle pole formation in mitosis (137,138). The CCCH-type 

PARPs (PARP7, PARP12, and PARP13) and the macroPARPs (PARP9, PARP14, and PARP15) 

have been documented to regulate transcription and the viral response (123,139–143).  

 Poly(ADP-ribose) Polymerase 1 (PARP1) 

The focus of this dissertation is on PARP1, the most abundant and ubiquitous member of 

the PARP family (144). PARP1 is a 116-kDa protein that comprises of an N-terminal DNA-

binding domain, central automodification domain, and C-terminal catalytic domain (127). Amino 

acid acceptors of PARylation include Lys, Arg, Glu, Asp, Cys, Ser, and Thr (131). There are 
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several paradigms that propose the stoichiometry of PARP1 peptides involved in auto-PARylation 

(131). There is compelling evidence for the bimolecular model that argues asymmetric PARP1 

dimerization (145–147). Here, one DNA-bound PARP1 molecule functions as the catalyst while 

the second PARP1 molecule is inactive, but serves as the PAR acceptor.  In addition, it is proposed 

that both PARP1 molecules can act as catalysts and acceptors simultaneously if the PARP1 binding 

sites on DNA are closely adjacent to each other (145–147) Despite the convincing argument for 

the bimolecular model, it has been speculated that PARP1 functions as a monomer to modify itself 

intramolecularly in cis. The structural model of PARP1 bound to DNA nicks and 

hydrogen/deuterium exchange-mass spectrometry data suggest that the BRCT-WGR linker is 

flexible enough to reach the active site of PARP1 when the monomer is bound to DNA nicks. 

Thus, one PARP1 molecule is sufficient to serve as both the catalyst and acceptor of PAR 

(148,149). Using atomic force microscopy (AFM), PARP1 has been shown to bind nicks, ends, 

and abasic sites in DNA as a monomer. PARP1 changes from three-dimensional DNA damage 

searching to one-dimensional diffusion after auto-PARylation or in the presence of APE1 (150).  

PARP1 plays a prominent role in DNA repair, chromatin remodeling and transcription, 

which will be discussed in detail in the below sections (132,151,152). There are hundreds of 

proteins that directly or indirectly interact with PAR (153). This leads to a diverse array of 

biological outcomes that are involved in genotoxic, oxidative, oncogenic, and inflammatory stress 

responses (144). These proteins bind PAR through distinct PAR-binding modules, such as: basic 

PAR-binding motif (PBM), PAR-binding zinc finger (PBZ), Macrodomains, WWE domains, FHA 

and BRCT domains, RNA and DNA binding motifs, RNA recognition motif (RRM), SR repeats 

and KR-rich motifs, OB-fold, PIN domains, and RGG motifs (154). Due to the many facets of 

PAR in the DSB response, deficiencies in PARP1 and PARP2 have profound consequences for 
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genome stability (155). Studies have shown that there is a functional interaction between PARP1 

and PARP2 in regulating chromosomal stability and embryonic development in mice (155–157). 

Both can homo- and heterodimerize, and are involved in the base excision repair (BER) pathway. 

While Parp1-/- mice exhibit higher sensitivity to high-dose ionizing radiation and alkylating 

agents, Parp2-/-
 mice demonstrate hyper-radiosensitivity to low-dose radiation. Parp1-/- Parp2-/-

 

double mutant mice are not viable and die at the onset of gastrulation. These studies indicate that 

PARP1 and PARP2 have distinct roles in the DNA damage response, but play a redundant role 

with regard to cell survival.  

 Poly(ADP-Ribose) Glycohydrolase (PARG) 

Although extensive and rapid PARylation is necessary to elicit recruitment of the DNA 

damage machinery to DNA lesions, hyper-PARylation is detrimental to cells and is resolved by 

poly(ADP-ribose) glycohydrolase (PARG) (158). Excessive PARylation may trap DNA damage 

repair factors at the damaged site, blocking access to downstream processes. In addition, this leads 

to PARthanatos, a process in which PAR acts as a cell death effector (159). Excessive PAR 

migrates from the nuclei to cytosol, which leads to apoptosis inducing factor (AIF) translocation 

from the mitochondria to the nucleus (159–161). In addition, PARP1 overactivation may deplete 

cellular energy through NAD+ consumption, triggering the release of AIF and ultimately, cell 

death (159,162,163). Thus, the timely and orderly degradation of PAR is important to maintain 

efficient repair and cellular processes. 

 To date, PARG is the only enzyme that can hydrolyze the O-glycosidic linkages of PAR 

polymers, thereby generating free ADPr (164). PARG catalyzes PAR chain degradation through 

endo- and exoglycolytic activities, but still leaves a terminal ADPr moiety attached to the acceptor 
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amino acid residue from its substrate (165). There are five other dePARylation enzymes that have 

been identified, including ARH3 (ADP(ribosyl)hydrolase 3), TARG1 (Terminal ADP-ribose 

protein glycohydrolase), NUDT9 (Nudix Hydrolase 9), NUDT16 (Nudix Hydrolase 16) , and 

ENPP (Ectonucleotide pyrophosphatase/phosphodiesterase) (166). Although ARH3 contains exo-

glycohydrolysis activity to release free ADPr, its activity is much lower than that of PARG (167). 

TARG1 does not hydrolyze PAR to ADPr and can only remove whole PAR chains from glutamate 

residues of acceptor proteins (168). NUDT9 and NUDT16 only cleaves pyrophosphate bonds to 

release iso-ADP-ribose and AMP from PAR chains or MARylated proteins (169,170). 

There are five isoforms of PARG that have been described – the nuclear, full-length PARG 

protein (110 kDa), two splice variants that lack exon 1 (102 kDa) or exons 1 and 2 (99 kDa), and 

two mitochondrial isoforms (60 kDa and 55 kDa) (125,171–173).  Nuclear, full-length PARG 

comprises of an N-terminal regulatory region, PCNA binding motif, nuclear export signal, 

mitochondrial export sequence, a highly structured B-domain, and essential catalytic macrodomain 

(164). The crystal structure of PARG was resolved from the bacterium Thermomonospora curvata 

by Slade et al. (174). This revealed that the catalytic domain of PARG belongs to a distant member 

of the ubiquitous ADPr-binding macrodomain family (175,176). They proposed a model for PAR 

binding and catalysis by modelling the PARG complex with ADP-ribose and the PARG inhibitor 

ADP-HPD as well as complementing with biochemical studies.  The diphosphate-binding loop 

that flanks one side of the ADPr binding cavity is highly conserved between PARG and other 

macrodomain structures. However, the other side of the cavity is lined with the PARG-specific 

signature sequence (GGG-X6-8-QEE), which is inserted into the macrodomain fold to allow for the 

Glu115 side chain to protrude into the PARG active site. This PARG-specific loop differentiates 

PARG from the other macrodomain proteins and enables the ability for PAR hydrolysis (174). 
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 Nuclear PARG exhibits a dual recruitment mode to damaged lesions, which involves its 

dependency on PARP1, PAR, and PCNA binding. PARP1 and PAR provide access to the damaged 

lesions by relaxing the chromatin structure and serving as a docking site for PARG recruitment. 

PARG then interacts with PCNA through a non-canonical PIP box-domain located within the 

disordered regulatory region (177). Specifically, the acetylation site K409 permits stabilization of 

the PCNA-PARG interface via hydrophobic and electrostatic interactions. This interaction 

enhances PARG residency at damaged lesions. Since PCNA displays slow and constant 

accumulation at damaged lesions, PARG’s interaction with PCNA could potentially keep PAR 

levels at a lower, steady-state for later steps of repair (178). In fact, PARG is recruited to replication 

forks through PCNA where it hydrolyzes PAR that accumulates at unligated Okazaki fragments 

(179). 

As PARG is the primary enzyme to degrade PAR, it plays a fundamental role in embryonic 

development and maintenance of genome stability (180). Loss of the PARG gene results in early 

embryonic lethality at the gastrulation stage (embryonic day 6.5), which phenocopies Parp1-/- 

Parp2-/-
 double mutant mice (156). This deleterious consequence affirms that the regulation of 

PAR levels is essential for cell survival and that there is a lack of a compensatory mechanism for 

PARG. In addition, proper PAR catabolism is essential for the completion of efficient repair in 

response to genotoxic stress. Depletion of the nuclear isoform of PARG, PARG110, leads to 

compromised repair of DNA damage caused by various genotoxic agents (171,181). PARG110
-/- 

cells display elevated genome instability, as seen by high frequency of sister chromatid exchanges, 

micronuclei formation, and chromosomal aberrations. PARG activity is dispensable for DNA 

replication in unperturbed conditions and recovery from transiently stalled replication forks  

(171,181). However, PARG is crucial during prolonged replication stress to prevent massive PAR 
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production, which leads to replication fork collapse and DSBs. Another study showed that PARG 

depletion leads to perturbed fork progression and accumulation of abnormal DNA replication 

(182). PARG-defective cells also exhibit ataxia-telangiectasia-mutated (ATM) and ataxia-Rad3-

related (ATR) activation, as well as downstream DSB repair factors, such as p53-binding Protein 

1 (53BP1) and RAD51. Thus, PARG is essential to sustain cellular energy supplies and ensure the 

faithful stepwise transitions during DNA repair and replication. This collectively affirms that tight 

regulation of PAR metabolism is critical to maintain cellular homeostasis. 
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Figure 4. PARylation is an apical signal of DNA damage. A damaged DNA lesion, such as a DSB, recruits 

PARP1 to the site of damage to propagate the DNA damage signal for various cellular events. The completion of 

repair is marked by PARG-mediated PAR hydrolysis. 

 Role of PARylation in DSB Repair  

DSBs are repaired through HR or NHEJ depending on the cell cycle and chromatin state. 

PARP1 is required for a robust DSB response, as it is an apical sensor that is recruited to the 

damaged lesion within seconds of DSB formation (183). Initial DSB responders, such as ATM 
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and Mre11 contain PAR-binding domains and have been shown to interact with PAR in vitro. 

PARP1-stimulated recruitment of the MRN complex could favor pathway choice for repair of 

DSBs towards HR (184–186). PARP1 also regulates the early recruitment of other HR factors, 

including BRCA1. PARP1 may indirectly enhance BRCA1 localization through its interaction 

with BRCA1-associated RING domain protein 1 (BARD1), which facilitates BRCA1’s role in end 

resection and loading of RAD51 onto DNA (187). However, BRCA1 is only partially dependent 

on PARP1 since it can still be recruited to DSBs by ubiquitylation (188). This indicates that there 

are compensatory mechanisms for the initial DSB response because PARP1 depletion does not 

completely abolish the recruitment of these HR factors and only delays their recruitment. However, 

it is well-established that loss or inhibition of PARP1 leads to a hyper-recombinogenic phenotype 

(189,190). An explanation for this phenotype involves PARP1-mediated stabilization of BRCA1 

and receptor-associated protein 80 (RAP80), which restricts HR by blocking strand invasion. 

Another possibility is that PARP1 deficiency leads to processing of SSBs into DSBs, which would 

enhance reliance on HR. This is supported by the synthetic lethality that results from loss of 

BRCA1 and BRCA2 in combination with PARP inhibitors (191,192).  

PARP1 competes with Ku70/80 for pathway choice in G1 and S/G2-phase. PARP1 and the 

Ku70/80 complex are recruited to DSBs at similar kinetics (183). While the Ku70/80 complex 

occupies DSBs specifically in the G2-phase, PARP1 can PARylate the Ku70/80 complex and 

displace it during S/G2-phase. This prevents Ku70/80 complex-mediated c-NHEJ during S/G2-

phase, leading to PARP1 regulation of alt-NHEJ during this phase. Alt-NHEJ involves minimally 

resected ends that are joined through microhomology. The gap is then filled by Pol  and ligated 

by LIG3 (193). Alt-NHEJ is considered a backup pathway for c-NHEJ (194). Intriguingly, 

telomere-internal DSBs are also repaired by both HR and PARP1/LIG3-dependent end-joining 
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(195). The inability of the Shelterin complex to repress alt-NHEJ and HR at telomere internal 

DSBs poses a confounding question regarding the unique telomeric environment that is permissive 

to these repair mechanisms.  

 Role of PARylation in Replication  

 PARP1 plays a pivotal role in regulating replication fork progression during replication 

stress. Impediments to replication can generate unrepaired single-strand breaks at DNA replication 

forks, which cause fork stalling until the lesion is fully repaired. Persistent fork stalling leads to 

fork collapse, resulting in one-ended DSBs that become substrates for HR (196). It has been 

established that RecQ1 helicase interacts with PARylated PARP1, which restrains its fork 

restoration activity to prevent premature restart of regressed forks after camptothecin (CPT) 

treatment (197). Inhibition of PARP1 allows for untimely restart of reversed forks, which 

ultimately primes replication run-off and increased DSB formation. This affirms the importance 

of PARP1 as a mediator of the stabilization of replication forks through regulation of fork reversal.  

Interestingly, Maya-Mendoza et al. showed that inhibition of PARP1 accelerates fork 

progression, but does not increase fork stalling, which is in contrast with the previously described 

accepted model by Berti et al (197,198). DNA fiber analysis revealed aberrant acceleration of fork 

progression by 60% above the normal speed without affecting fork symmetry (198). The authors 

proposed that PARylation acts as a sensor for replication stress and can signal fork arrest. PARP1 

also induces p53-mediated accumulation of p21, which further prevents defective forks from 

progression. PARP1 inhibition exceeds the threshold for fork speed and triggers DDR in cells. 

Increased fork speed may lead to bypass of DNA lesions as well as reduced fidelity of DNA 

polymerases, which further contribute to genomic instability (198).  Overall, both viewpoints agree 
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that controlled regulation of fork progression via PARP1 is crucial for preservation of genome 

integrity.  

 Role of PARylation in Chromatin Remodeling 

Cells rely on reorganization of chromatin structure to increase the accessibility of the DNA 

repair machinery to damaged lesions. PARP1 modulates chromatin architecture through direct 

PARylation of histones and chromatin remodelers (128,199). Early studies showed that 

PARylation of nucleosomes leads to chromatin decondensation in vitro (200).  Later evidence 

proposed a more intricate interplay between PARylation and the histone core of nucleosomes 

(H2A, H2B, H3, and H4) as well as the linker histone H1 (201). Biochemical tools and mass 

spectrometry revealed that PARP1 covalently modifies the lysine residues of the core histone tails 

(K13 of H2A, K30 of H2B, K27 and K37 of H3, and K16 of H4). It is speculated that the 

accumulation of negatively charged PAR polymers neutralizes the positive charge from the amino 

acid side chain of the histone core and can act as a repellant to DNA. PARylation of the histone 

tails may also interfere with other post-translational modifications that rely on the same residue. 

Therefore, PARylation likely has a global impact on histone dynamics, histone degradation, and 

histone incorporation (201).  

Chromatin relaxation and nucleosome eviction from the DNA facilitates recruitment of 

chromatin remodelers for the unfolding and spatial expansion of chromatin regions. One of the 

well-characterized chromatin remodeling enzymes is Amplified in Liver Cancer 1 (ALC1), which 

becomes active upon release by PARP1’s product, PAR (202,203). The ALC1 macrodomain 

regulates auto-inhibition to ensure that chromatin relaxation is dependent on DNA damage. When 

DDR is activated, PAR serves as an allosteric activator and triggers ALC1-mediated chromatin 
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expansion. Furthermore, the chromatin remodeler chromodomain helicase DNA-binding protein 

2 (CHD2) is recruited to DSBs in a PARP1-dependent manner (204). PARP1 recruitment of CHD2 

permits chromatin expansion and deposition of histone variant H3.3 at sites of DNA damage, 

which function to promote NHEJ. In addition, the SWI/SNF-related matrix-associated actin-

dependent regulator of chromatin subfamily A member 5 (SMARCA5) likely binds to PAR chains 

on the E3 ubiquitin ligase RNF168 upon DNA damage (205). This PARP-mediated signaling 

cascade that links SMARCA5 to RNF168 also drives DSB repair by NHEJ.  

 PARP Inhibitors 

PARP inhibition exploits the vulnerabilities in cancers that have a deficiency in 

homologous recombination (HR). There has been dramatic advancement towards the development 

of PARP inhibitors for treatment of tumors with BRCA1/2 mutations. Germline BRCA1/2 

mutations are linked to inherited breast and ovarian cancers (206).  These tumors are selectively 

targeted due to synthetic lethality. PARP inhibitors lead to persistent SSBs that convert to DSBs 

upon fork collapse. Thus, tumors that harbor HR defects are particularly vulnerable to PARP 

inhibitors because they cannot repair these DSBs and eventually undergo cell death.  

PARP inhibitors drive cytotoxicity through differential inhibition of PARP catalytic 

activity and PARP trapping, in which trapped PARP1-DNA complexes interfere with DNA 

replication and repair (207). Four PARP inhibitors have FDA-approval for treatment in women 

with an inherited BRCA1/2 mutation who have ovarian cancer – Talazoparib (Talzenna), Olaparib 

(Lynparza), Rucaparib (Rubraca), and Niraparib (Zejula). The relative trapping capacity of these 

inhibitors is: Talazoparib > Niraparib > Olaparib > Rucaparib (208–210). This dissertation 
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specifically uses Olaparib (Kd~1 M), which was first approved in 2014 and is currently the first-

line maintenance therapy in BRCA-mutated advanced ovarian cancer.  

 PARG Inhibitors 

There is currently no PARG inhibitor that is approved by the FDA, which highlights the 

fact that PARG inhibitors are much more underdeveloped than PARP inhibitors. PARG inhibition 

is a promising approach to exploit vulnerabilities in cancers with an altered DDR pathway. There 

is no known close homolog of PARG, which limits the possibility of redundant pathways to arise 

upon PARG inhibition. PARG inhibitors have been grouped into three major categories: DNA 

intercalators, tannins, and ADPr analogues. DNA intercalators and tannins were not ideal 

candidates because they lack specificity and elicit severe toxicity (211). Adenosine diphosphate 

(hydroxymethyl)pyrrolidinediol (ADP-HPD), an analogue of ADPr, became a more promising 

PARG inhibitor due to its higher potency and selectivity (IC50 = 120 nM) (212,213).  In addition, 

rhodamine-based small molecules were developed and showed selectivity since they did not inhibit 

ARH3 or PARP1 (214). However, none of these inhibitors were cell-permeable and only 

biochemical assays were performed with them (214). Although Mono-galloyl glucose derivatives 

and modified salicylanilides were discovered as an attempt to overcome lack of cell permeability, 

they also inhibited PARP1 and had lower potency (215,216). Thus, the lack of selective, cell-

permeable PARG inhibitors have hampered the study of PARG inhibition in the biological context.  

James et al. discovered the first selective, potent PARG inhibitor from a high throughput 

screen (HTS) of 1.4M compounds in 2016 (217).  They were able to detect PAR accumulation in 

murine cells and a variety of human cancer cells in response to DNA damage and treatment with 

the PARG inhibitor. Only in the presence of DNA damage did the PARG inhibitor lead to dose-
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dependent increase in nuclear PAR chain signal.  Upon optimization of the lead compound, they 

managed to improve the EC50 to 0.040 M. Thus, their compound (PDD00017273) became 

commercially available on Tocris. PDD00017273, termed PARGi in this dissertation, is used for 

all experiments (218).  

Pharmacological inhibitors of PARP and PARG are used in this thesis dissertation to 

elucidate the role of PAR metabolism in ALT telomere maintenance. Olaparib is an FDA-approved 

inhibitor of PARP1. Its mechanism of action is two-fold (219). First, its structure is a nicotinamide 

moiety that competes with NAD+, which is the substrate to generate ADP-ribose. Second, Olaparib 

traps PARP onto the DNA and interferes with DNA repair. Many studies reveal that PARP1 

trapping drives the cytotoxicity of Olaparib in HR-deficient cancers (207,220,221). PARP1 

trapping leads to elevated collisions at the replication fork, which eventually generates DSBs that 

cannot be repaired. Thus, there is an important distinction between PARP1 inhibition and PARP1 

depletion. On the other hand, there are no PARG inhibitors in the clinic. However, the lab acquired 

a cell-permeable competitive PARG, as an well as an inactive analog (218). These inhibitors 

enabled the study of how telomere dynamics shift due to disrupted PAR metabolism.  
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Figure 5. Mechanism of PARP and PARG inhibitors. Olaparib inhibits PARP1 activity by competing with 

NAD+ as well as traps PARP1 onto the DNA, which interferes with DNA repair. PDD-00017273 (PARGi) 

 is the first cell-permeable competitive inhibitor of PARG. Adapted from Shen et al., ASPET, 2015 (219) 

(http://jpet.aspetjournals.org/content/353/3/446) and Tucker et al., Plos One, 2012 (222) 

(https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0050889). 

1.5 Major Hypotheses 

There are several outstanding questions in the field regarding the exact stimulus that 

activates ALT, as well how multiple DNA repair pathways are coordinated in ALT telomere 

maintenance. There are three hypotheses in this thesis dissertation.  1) If the tight regulation of 

PAR turnover is necessary to control the dynamic state of telomeres in ALT, then pharmacological 

inhibition of PARP1 and PARG will have consequences on ALT activity. 2) If we identify 

PARylated telomeric proteins in ALT, then this will give us a snapshot into the apical events that 

promote ALT activity. 3) If we determine the importance of PAR-regulation in the function of 

http://jpet.aspetjournals.org/content/353/3/446
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0050889
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early ALT regulators, then we can target these vulnerabilities to kill ALT cancers. Specifically, in 

ALT cancers that predominantly have loss of function mutations in ATRX/DAXX, PAR-mediated 

regulation of HIRA-mediated chromatin assembly is potentially a compensatory pathway at ALT 

telomeres. Each hypothesis is discussed in detail below with a summary of the pertinent 

background information that supports the hypothesis.  

 PAR metabolism is an important regulator of the recombinogenic potential of 

telomeres in ALT cancer cells 

To date, the implications of deregulated PAR turnover at ALT telomeres have not been 

described. PARylation likely holds an elevated importance in ALT cancers since they rely on 

maintaining the balance between DNA damage signaling and genomic stability. One evidently 

critical outcome of the reconfiguration of chromatin is that telomere integrity is challenged and 

subject to recurrent replicative stress and stochastic DNA double strand breaks (27,29). It is 

generally accepted that recurrent cycles of DNA damage provide the trigger and DNA substrates 

for ALT-associated HDR. However, prolonged DNA damage signaling and genomic instability 

may lead to anti-proliferative signaling that induces apoptosis or cell cycle arrest. ALT cellular 

phenotypes, such as APB formation, presence of ECTR DNA, and increased T-SCEs, highlight 

the recombinogenic potential of ALT telomeres (34,58,63,65). The enrichment and activity of 

SMARCAL1 and FANCM at ALT telomeres affirms the prevalence of replication stress and how 

resolution of this replication stress is crucial for ALT telomere maintenance (29,30,104). It was 

also recently proposed that FANCM unwinds telomeric R-loops formed by TERRA, which 

normally enhances replicative stress at ALT telomeres (30). Depletion of SMARCAL1 and 
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FANCM suppresses ALT activity, indicating the importance of reversing and remodeling stalled 

replication forks to overcome replication impediments (29,30,104).  

These lines of evidence suggest that ALT cells have adopted a dynamic interplay between 

telomeric damage and genomic stability. The role of PARylation is of particular interest in ALT 

because of its expansive function in regulation of DDR. As PARylation is an apical event in DDR, 

it can potentially be a driver for fine-tune control of telomeric damage to maintain a specific 

threshold for telomere elongation and cell viability. PARP inhibition leads to bypass of damaged 

lesions and fork acceleration, which triggers replication stress (198). Additionally, PARylated 

PARP1 directly limits the restart capacity of RecQ1 in order to stabilize forks in the regressed state 

until the damage is repaired (197). This leads to the hypothesis that perturbing PAR metabolism 

would alter replication stress levels at ALT telomeres and ultimately disrupt ALT telomere 

maintenance. PARP inhibition likely causes saturation of the DDR machinery, leading to 

unresolved intermediates that convert to DSBs. These DSBs would prime fragile telomeric regions 

for recombination. On the other hand, PARG inhibition likely results in unscheduled recruitment, 

retention and repulsion of DDR factors, which culminate in impaired HDR and ALT activity. The 

data supporting this hypothesis is presented in chapter 2.  

 PAR-regulated telomere-associated proteins coordinate the early steps of ALT 

telomere maintenance 

PARylation is a critical sensor that detects damaged lesions generated by endogenous and 

exogenous toxic stresses. PARylation is involved in an array of DDR pathways, yet only recently 

were the molecular targets of PARylation characterized. Jungmichel et al. identified a differential 

impact of various types of genotoxic stress on protein PARylation by using a sensitive proteomics 
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approach based on high-accuracy quantitative mass spectrometry (223). Analysis of the genotoxic-

stress PARylome revealed proteins enriched in DNA repair, DNA replication, chromosome 

organization, transcription, RNA processing, and RNA splicing. Interestingly, more than 60% of 

their diverse protein network contained nucleic-acid binding activity. This proteomics approach 

was adapted in this dissertation to characterize the PARylome at ALT telomeres. The identification 

of a PAR-regulated protein network at ALT telomeres would be beneficial to pinpoint the key 

factors that are essential in ALT initiation and maintenance.  

The first wave of proteins that respond to telomeric DNA damage may rely on PARylation 

to aggregate at ALT telomeres. Jungmichel et al. identified that the enrichment of RNA-binding 

proteins, such as the FET proteins (FUS, EWS1, TAF15), was 2-fold greater than the total number 

of RNA binding proteins in the entire genome (223). RNA-binding proteins typically harbor low-

complexity domains (LCDs) and have been shown to undergo PAR-seeded liquid demixing to 

orchestrate the earliest cellular response to DNA damage (224). In addition, it is thought that APB 

assembly is mediated by liquid phase separation, via SUMO-SIM interactions, to coalesce DNA 

repair factors for ALT telomere synthesis (225). The proteomics approach employed in this 

dissertation allows for the capture of these early ALT mediators, which would otherwise be 

transient as they undergo PAR hydrolysis. Chapter 3 of this dissertation provides support for the 

hypothesis that sustained PAR at telomeres, through PARG inhibition, would dramatically 

reconfigure the telomeric proteome and abrogate ALT activity. 
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 HIRA adopts elevated importance in ALT due to loss of a functional ATRX-DAXX 

complex 

Chapter 3 of the dissertation identifies the HIRA chaperone complex and all of its 

components, Histone Regulator A (HIRA), Calcineurin Binding Protein 1 (CABIN1) and 

Ubinuclein 1 (UBN1), to be PAR-regulated and associate at ALT telomeres. The HIRA complex 

plays a key role in the repair of UV-C lesions (226,227). HIRA depletion was reported to disrupt 

transcription recovery after DNA repair. HIRA also collaborates with histone binding protein 

ASF1a to deposit histone H3.3 onto chromatin in a DNA replication-independent manner 

(226,227). This is an important feature, since loss of function mutations in ATRX/DAXX, which 

deposits H3.3 during replication, are pervasive in ALT cancers. In fact, re-expressing ATRX in an 

ALT-cell line reverses the ALT phenotype (228). ATRX mitigates aberrant secondary structures, 

such as G-quadruplexes, that arise during telomeric replication. ATRX can also sequester MRN, 

which prevents HR from being initiated at telomeres. Thus, the lack of ATRX activity in ALT 

cancers leads to unresolved replicative impediments and enhanced HR.  

It is plausible that due to lack of ATRX activity, HIRA is potentially the sole functional 

H3.3 histone chaperone in many ALT+ cancers. HIRA’s elevated importance in ALT is supported 

by data from Project Achilles, which identified ALT cell lines, such as U2OS, SAOS2, and 

CAL72, to have greater gene dependency on HIRA. With this line of reasoning, it is hypothesized 

that HIRA does not fully compensate for ATRX’s ability to alleviate replication stress at ALT 

telomeres. These secondary structures become unresolved or directly cleaved by MRN, which 

results in fork collapse that generates DSBs. This ultimately triggers HDR and potentiates the ALT 

phenotype. PARylation of HIRA is the early signal that recruits it to sites of telomeric damage to 

deposit H3.3 for chromatin remodeling during DNA synthesis in G2-BIR. Thus, HIRA enables the 
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basal level of stochastic DNA damage and replication stress that promotes ALT.  Upon PARG 

inhibition, HIRA is retained at telomeres, which abrogates ALT telomere maintenance by 

impairing chromatin remodeling and uncoupling it from efficient repair by G2-BIR. This is the 

focus of chapter 4 in this dissertation.  
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2.0 Disrupted PAR metabolism alters recombinogenic activity at ALT telomeres  

2.1 Introduction 

There are several lines of evidence that strongly supports ALT as an HR-mediated DNA 

synthesis mechanism that arises from inherent replication stress and stochastic DNA damage at 

ALT telomeres. Double-stranded breaks (DSBs) at internal telomeric regions and telomeric 

replication forks act as substrates for homology-directed repair (HDR) in ALT (195). In S-phase, 

telomeres pose a challenge for the replication machinery, leading to replication fork stalling. The 

stalled replication fork can undergo fork reversal and restart by the FANCM-BTR complex (104). 

Replication stress is relieved at telomeres and ALT activity is restrained. However, unresolved 

replication stress leads to fork collapse, which provides direct DSB substrates for ALT-mediated 

telomere synthesis and recombination by RAD51-dependent mechanisms (96,98). The SMX 

complex (SLX1-SLX4, MUS81-EME1, and XPF-ERCC1) and BTR complex (BLM-TOP3A-

RMI) maintains the balance between telomeric recombination and extension (81). The SMX 

complex promotes resolution of telomeric recombination intermediates in the absence of telomere 

extension. This is counteracted by the BTR complex, which initiates telomere dissolution for long-

tract ALT-mediated telomere synthesis. Intra-telomeric strand invasion and persistence of 

collapsed forks in G2 activates PCNA-RFC-POLD3-mediated DNA synthesis. However, SLX4IP 

can antagonize the BTR complex to favor SMX-dependent resolution (112).  

Although the molecular events involved in ALT are well-studied, the stimulus of HDR 

pathway choice and the regulation of such events to maintain the equilibrium between DNA 

damage and cell viability still remains elusive. PARylation is a promising candidate because it is 
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an apical molecular response to DNA breaks and replicative stress. Published data in the 

O’Sullivan lab characterized the telomeric proteome in the ALT+ U2OS cell line using proximity-

dependent biotinylation (BioID) (87). This work revealed a greater enrichment of PARP1 at ALT+ 

telomeres compared to TEL+ telomeres. The exposed termini of chromosomes represent natural 

triggers of PARP activity (229). Indeed, PARPs including PARP1, PARP2 and Tankyrase, reside 

at telomeres in human cell lines (230). TRF1 and TRF2 are core constituents of the Shelterin 

complex that shield telomeres from DNA damage sensors, including any unwarranted PARP 

activity (231). However, upon telomere dysfunction through loss or genetic disruption of Shelterin 

and the canonical Ligase IV dependent non-homologous end joining mechanism (cNHEJ), 

PARP1-XRCC1-Ligase III can promote telomere fusions by alternative non-homologous end 

joining (alt-NHEJ) (232). In contrast, internal telomeric DSBs appear to be preferentially repaired 

by similar PARP1-dependent alt-NHEJ, which resembles HDR (195). Recent findings have 

identified a role for PARylation in response to replication fork destabilization when the Regulator 

of Telomere Elongation (RTEL) helicase is non-functional (233). Thus, PARylation or the 

synthesis of PAR by PARPs is a crucial factor in the management of damaged telomeres. 

The breakdown of PAR chains occurs via enzymatic hydrolysis by the essential enzyme 

PARG (174). PARG-mediated hydrolysis of PAR salvages NAD+ that is recycled and transferred 

to mitochondria to eventually generate essential metabolites, including adenosine triphosphate 

(ATP). Unhydrolyzed PAR sequesters cellular NAD+ that cannot be replenished without PARG, 

leading to catastrophic energy failure (180). Another consequence of PARG depletion is that 

failure to hydrolyze PAR chains compromises DNA repair, leading to the accumulation of 

unrepaired DNA lesions and DSBs (182,234). In fact, PARG is recruited to replication forks 

through PCNA where it hydrolyzes PAR that accumulates at unligated Okazaki fragments (179). 
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Therefore, PARG is essential to sustain cellular energy supplies and ensure the faithful stepwise 

transitions during DNA repair and replication.   

Here, we show that pharmacological interference of PAR metabolism disrupts the HDR 

mechanisms that mediate ALT. PARP and PARG inhibition have opposing effects on ALT 

activity. While PARP inhibition (PARPi) exacerbates ALT features, such as APBs, T-SCEs, and 

C-Circles, PARG inhibition (PARGi) diminishes these ALT phenotypes. Intriguingly, prolonged 

PARG treatment leads to dramatic telomere shortening in ALT+ cells. To further understand how 

alterations in PAR turnover affects ALT activity, we used an established system where an 

inducible U2OS cell line expresses the FokI endonuclease fused to TRF1. This introduces DSBs 

specifically at telomeres, which serve as substrates for HDR mechanisms in ALT. PARG inhibition 

leads to decrease in telomere clustering, mobility, and replication, which indicates that both HR 

and G2-BIR are impaired as a consequence of PAR accumulation. Together, our work establishes 

the importance of PAR catabolism for mediating efficient HDR in ALT. 

2.2 Results 

 Effectiveness of the PARP inhibitor (Olaparib) and PARG inhibitor (PDD00017273) 

The availability of highly specific and effective compounds (e.g. Olaparib) enabled the 

phenotypic assessment of PARP inhibition in a wide range of cellular contexts, including the 

synthetic lethal elimination of BRCA1/2 deficient breast and ovarian cancer cells (191,192). 

Following the resolution of the crystal structure of PARG, specific small molecules that block the 

active site of PARG have been developed (214). We verified the effectiveness of one of these, 
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PDD00017273 (PARGi), by monitoring the accumulation of PAR in hydroxyurea treated U2OS 

cells by western blot using a specific anti-PAR (10H) antibody (Figure 6A). PARylation is a 

reversible, transient modification, which means that the suppression of PARG is necessary to 

prevent PAR degradation. In addition, other studies have also used exposure to DNA-damaging 

agents to enhance DNA damage-dependent PARylation (166). Thus, PAR accumulation is only 

observed in cells treated with the combination of HU and PARGi, which confirms the effectiveness 

of the inhibitor. We also examined PARGi’s specificity by treating cells with an inactive analog 

(PARGiMe), which contains an additional methyl group that blocks the inhibitor’s catalytic activity. 

Indeed, damaged cells treated with PARGiMe did not retain PAR. In addition, the same pattern was 

seen in cells where PARP1 and PARG were depleted using shRNA knockdown (Figure 6B). The 

effectiveness of PARPi was confirmed through the abolishment of PAR accumulation in cells with 

PARG shrRNA knockdown. After proven effectiveness and specificity, we decided to utilize these 

inhibitors for our subsequent studies.   
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Figure 6. Western blot analysis of PAR induction. A) Western blot analysis of PARP1, PARG, and PAR 

expression in U2OS cells treated with DMSO, PARPi, PARGi or inactive PARGiMe (all 5M). Cells were untreated 

or treated with 2mM hydroxyurea (HU) for 4hrs to control for PARylation induction. B) Western blot validation of 

PARP1 and PARG knockdown and PAR accumulation in U2OS cells expressing non-targeting scrambled 

shControl, shPARP1 or shPARG. Cells were untreated or treated with hydroxyurea (HU) to control for PAR 

induction. 

 PARP and PARG inhibition have opposing effects on ALT activity 

We next assessed the effect of PARP and PARG inhibition on telomeres that are 

maintained by the ALT pathway. ALT-positive (ALT+) cancer cell lines are typified by the 

presence of a low but consistent percentage of cells containing telomeres that localize to PML 

bodies forming unique sub-nuclear structures known as ALT-associated PML bodies (APBs). 

These are thought to represent centers of telomeric HR. Quantification of their numbers by 

immunofluorescence combined with fluorescence in situ hybridization (IF-FISH) is routinely used 

as a first line measurement of ALT activity. We found that a 72hr treatment using standard 5M 

doses of Olaparib (PARPi) or PARGi elicited the opposite effect on APB levels in several 

independent ALT cell lines including U2OS and Saos2 (Figure 7A and 7B). Whereas PARPi 
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increased their frequency, PARGi significantly decreased the percentage of APB positive (APB+) 

U2OS and Saos2 cells.  Interestingly, we found that PARP inhibition led to de novo formation of 

APBs in a HeLa LT cell line that maintains its hyper-extended telomere length through telomerase 

mediated TTAGGG repeat addition (Figure 7B). This is consistent with previous findings that 

PARP inhibition can provoke ALT-like features at telomeres. To control for possible off-target 

effects, we treated cells with an inactive PARGi analog, PDD00031704, (PARGi-Me) which cannot 

engage PARGs active site (Figure 7B). Treatment with this small molecule had no effect on APB 

levels. Experiments using lower doses of 100nM-1M of PARGi for prolonged periods (Figure 

7C), as well as shRNA depletion of PARP1 and PARG in U2OS, Saos2 and HeLa LT (Figure 7D 

and Figure 42), produced results similar to inhibitor treatments. Notably, the reduction of APBs 

was reversed to normal levels when PARPi was added to PARG depleted U2OS cells. These data 

showed that the observed responses were truly due to diminished PARP1 and PARG activity. 
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Figure 7. PARP and PARG inhibition have opposing effects on APBs. A) Representative images of APBs 

(PML-TTAGGG colocalization) in U2OS cells treated with indicated inhibitors. B) Quantification of APBs (%) in 

U2OS, Saos2, and Hela LT after the indicated treatments. C) APBs (%) in U2OS cells treated with lower doses of 

PARPi or PARGi (100nM and 1mM) over 3, 6, 9 and 12 days. D) Quantification of APBs (% positive cells) in 

U2OS, Saos2 and HeLa LT cells expressing shControl, shPARP1 or shPARG. All graphed data in the figure are 

mean ± SEM, n=1200 cells. Statistical significance was determined using one-way ANOVA. *P≤ 0.05, **P≤ 0.001, 

***P≤ 0.001, ****P< 0.001. 

 

We next assessed whether PARP and PARG inhibition impacted the frequency of telomere 

sister chromatid exchanges (T-SCEs), that are commonly studied as a surrogate of telomere 

recombination, using the chromosome orientation FISH (COFISH) assay. Metaphase spread 

chromosomes were prepared from DMSO, PARPi and PARGi-treated U2OS, Saos2 and HeLa LT 
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cells (Figure 8A). This revealed that PARPi significantly increased T-SCEs in the ALT+ U2OS 

and Saos2 cells, but also in HeLa LT cells where this recombination associated activity is normally 

restrained. As seen previously with the inhibitor data, the same trend was evident in cells where 

PARP1 or PARG were depleted by shRNA knockdown (Figure 8B). 

 

Figure 8. PARP and PARG impact frequency of T-SCEs. A) Telomere sister chromatid exchanges (T-SCEs) in 

U2OS,  12 days after PARPi (1M) or PARGi (1M) treatment. B) Quantification of T-SCEs (% per metaphase) in 

U2OS, Saos2 and HeLa LT cells expressing shControl, shPARP1 or shPARG. All graphed data in the figure are 

mean ± SEM, n=45 metaphases. Statistical significance was determined using one-way ANOVA. *P≤ 0.05, **P≤ 

0.001, ***P≤ 0.001, ****P< 0.001. 

 

The robust opposing effects observed in inhibitor-treated cells raised the question of 

whether telomere length might be altered in ALT+ cells that are chronically deprived of PARP or 

PARG activity. We subjected ALT+ U2OS and TEL+ HeLa LT cells to prolonged treatments with 

lower doses of PARPi (1 M) and PARGi (1 M) for ~30PDs and assessed telomere length by 

pulsed field gel electrophoresis (PFGE) (Figure 9). This showed that PARPi in U2OS cells greatly 

reduced the overall signal of telomeric DNA while not overtly affecting the mean telomere length. 

In contrast, PARG inhibition profoundly reduced telomere length in U2OS cells and another 
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independent ALT+ cell line, VA13, with lengths now ranging from 2kb-25kb and a mean length 

of ~10kb (Figure 9 and Figure 43). Parallel treatment of HeLa LT with PARPi and PARGi did not 

change telomere length (Figure 9). We also found that PARPi inhibition significantly enhanced 

the levels of extra-chromosomal C-circles in U2OS cells and provoked their de novo formation in 

HeLa LT cells. In contrast, PARG inhibition had no effect on C-circle levels in ALT cells. These 

results suggest that the changes in telomere length were due to telomere shortening and not the 

accumulation of extra-chromosomal telomeric DNA species. Overall, this comprehensive analysis 

demonstrates that the equilibrium between the anabolism and catabolism of PAR is a determinant 

of the recombinogenic potential of telomeres that sustains telomere length in ALT cancer cells. 

 

Figure 9. PARGi leads to telomere shortening in ALT+ cells. PFGE of DMSO, PARPi (1M) or PARGi (1M) 

treated U2OS cells. The mean telomere length (kb) was calculated using TeloTool and is indicated by the red dot. 
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 ALT cancer cells exhibit modest sensitivity to PARG inhibition 

To assess whether ALT cells display greater susceptibility to PARP and PARG inhibition, 

we conducted clonogenic survival assays of ALT+ (U2OS, Saos2, LM216J) and TEL+ (HOS, 

SJSA1, LM216T) cells that were exposed to the same doses (1 M) that elicited alterations in ALT 

recombination and telomere length maintenance (Figure 10). It should be noted that LM216J and 

LM216T cells are isogenic cell lines Whereas the ALT+ and TEL+ cell lines were all sensitive to 

d PARP inhibition, ALT+ cell lines were indeed more sensitive to PARGi. However, the 

differential sensitivity of ALT+ cells compared to TEL+ cells was modest for PARGi treatment. 
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Figure 10. ALT+ cells display modest sensitivity to PARGi. Representative images and quantification from 

clonogenic survival assays with ALT+ and TEL+ cells treated with DMSO, PARPi (1M) or PARGi (1M) for 7 

days. All graphed data in the figure are mean ± SEM, n=3. Statistical significance was determined using student t-

test. *P≤ 0.05, **P≤ 0.001, ***P≤ 0.001, ****P< 0.001. 

 

  PAR metabolism is required to sustain the key steps of the ALT mechanism 

To understand how disrupting PAR metabolism affects ALT telomere maintenance, we 

took advantage of U2OS cells that express the Doxycycline/4-OHT/Shield inducible (WT) or 
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catalytically inactive (DA) c-terminal of FokI endonuclease fused to TRF1. FokI is a type IIS 

restriction endonuclease that recognizes the non-palindromic recognition site (5’GGATG) and 

cleaves 9 to 13 nucleotides downstream of it (235). In solution, FokI exists as a monomer with two 

domains: N-terminal DNA-binding domain that associates with the entire recognition site and C-

terminal catalytic domain with one active site (236). FokI must dimerize to cleave both strands of 

DNA or it can nick DNA and block replication fork progression (237). Our TRF1-FokI system 

induces the DSB cleavage of telomeric DNA to trigger HR and G2-BIR (Figure 11). This results 

in larger telomeric foci that can be visualized and quantified by immunofluorescence (IF). This 

accentuates the presence of these ALT-associated processes that are otherwise relatively difficult 

to study in unperturbed ALT cells. 
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Figure 11. TRF1-FokI schematic. Targeted introduction of DNA nicks and DSBs at telomeres through FokI 

endonuclease fused to TRF1 activate HDR responses. Long-range homology search is performed through a RAD51-

dependent mechanism that involves the RAD51-HOP2-MND1 complex. DNA synthesis in ALT cancer cells is 

RAD51-independent and largely restricted to G2 and M-phases. In G2-BIR, RAD52-PCNA-RFC-mediated loading 

of Pol is essential for conservative synthesis of both leading and lagging DNA strand.  

 

 We first asked whether TRF1-FokI-induced DSBs provoked the accumulation of PAR 

directly at telomeres (Figure 12). Immediately following induction of wildtype (WT) or inactive 

(DA) TRF1-FokI, DMSO, PARPi, PARGi, or the inactive PARGi-Me analog, was added to induced 

U2OS cell cultures. PAR accumulation was only detected by western blot using the 10H anti-PAR 

antibody in extracts from WT TRF1-FokI cells that were treated with PARGi (Figure 12). As 

previously shown, U2OS cells expressing WT TRF1-FokI exhibited elevated levels of Histone 

H2AX Serine 139 (H2AX) and CHK2-Threonine 68 (CHK2-T68) phosphorylation. Acute 

treatment with PARPi enhanced these markers of DNA damage in WT TRF1-FokI cells and was 

sufficient to generate DNA damage response signaling in DA TRF1-FokI. In contrast, acute 
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PARGi treatment did not alter the initial or downstream TRF1-FokI-induced DNA damage 

response signaling.  

 

Figure 12. WT TRF1-FokI induces telomeric DNA damage. Comparison of PAR levels and DSB responses in 

WT TRF1-FokI and DA TRF1-FokI cells with DMSO, PARPi (5M) or PARGi (5M) TRF1-FokI expression is 

similar across all samples, as indicated by FLAG western. 

 

IF revealed a focal enrichment of PAR specifically at telomeres only in WT TRF1-FokI 

cells treated with PARGi, and not DA TRF1-FokI cells, indicative of the DNA damage 

dependency of this response (Figure 13A-B). TRF1-FokI-induced DSBs are mostly processed by 

HDR-based mechanisms, though perhaps not entirely, with alt-NHEJ also fulfilling a role at repair 

of internal telomeric DSBs (195). During HDR, loading of the HR presynaptic filaments with 

RAD51 stimulates the search for homologous DNA sequences with which to pair and recombine. 

In the context of TRF1-FokI, this can be optically visualized as the clustering of telomeres into 

large foci (96,98). This has the effect of increasing the size and reducing the overall number of 

telomeric or TRF1-FokI foci as detectable by IF (Figure 13C). This dynamic was readily observed 
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following quantification of telomere size and number in DMSO treated WT TRF1-FokI-induced 

cells Although PARPi did not enhance clustering events in WT TRF1-FokI cells, such events were 

observed in DA TRF1-FokI cells. This is consistent with earlier observations that PARPi is 

sufficient to induce ALT like phenotypes in non-ALT cells. Strikingly, when PARGi was added 

to WT TRF1-FokI cells, the number and size of individual telomeres remained close to levels 

observed in DA TRF1-FokI cells. The same outcome was observed in PARGi-treated VA13 ALT+ 

cells, but not in TEL+ HeLa LT cells, reflecting a specific perturbation of ALT-associated telomere 

dynamics when PAR turnover is blocked (Figure 44).  
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Figure 13. PARGi abolishes TRF1-FokI -telomere clustering. A) Representative IF-FISH images showing PAR 

localization at telomeric foci in WT TRF1-FokI cells. B) Quantification of PAR foci colocalization with TRF1-FokI 

telomeric foci. C) TRF1-FokI telomeric foci number and size in WT and DA cells for each experimental condition. 

All graphed data in the figure are mean ± SEM, n=75 cells. All graphed data in the figure are mean ± SEM, n=45 

metaphases. Statistical significance was determined using one-way ANOVA. *P≤ 0.05, **P≤ 0.001, ***P≤ 0.001, 

****P< 0.001. All scale bars, 5m. 
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This PAR accumulation was abolished upon co-treatment with both PARGi and PARPi, 

but not with XAV939, an inhibitor of the specialized PARP, Tankyrase (Figure 14A). We also 

determined that PARG localizes directly to WT TRF1-FokI DSBs. This was dependent on its 

PCNA interaction peptides (PIPs) and PARP1 activity (Figure 14B). Therefore, PARP1-mediated 

PARylation, and its hydrolysis by PARG, represent direct mediators of the response to DSB 

formation at telomeres. 
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Figure 14. PARylation is an early and direct mediator of TRF1-FokI DSB formation. A) Representative IF 

images and graph displaying PAR localization to TRF1-FokI telomeres in response to PARPi (5M) and TANKi 

(XAV939) (10M). B) Representative IF images and graph showing PARG localization in WT TRF1-FokI cells 

transfected with GFP-PARG-FL and GFP-PARG Q76A-K409A. All graphed data in the figure are mean ± SEM, 

n=25 cells. All graphed data in the figure are mean ± SEM, n= 50 cells. Statistical significance was determined 

using one-way ANOVA. *P≤ 0.05, **P≤ 0.001, ***P≤ 0.001, ****P< 0.001. 

 

We also tested whether PARylation affects telomere mobility independently of TRF1-

FokI-induced DSBs, in typical ALT+ cells. Optical visualization and tracking of telomeres can be 

achieved using fluorescently tagged TRF1 fusion protein. The mobility of individual or groups of 

eGFP-TRF1 molecules, representing telomeres, is empirically calculated as a function of mean 
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squared displacement (MSD). Undamaged telomeres in normal and TEL+ cancer cells exhibit 

patterns of nuclear mobility that are consistent with random diffusion. In contrast, ALT+ telomeres 

display trajectories that are consistent with directed motion as part of homology search and pairing 

of telomeres during HR (96). Using U2OS cells that stably express eGFP-tagged TRF1 (eGFP-

TRF1), we captured the three-dimensional telomere motion in x, y and z planes at 2-minute 

intervals for 2hrs following acute treatment with DMSO, PARPi and PARGi (Figure 15). 

Uninterrupted telomere motion was tracked, analyzed and quantified as a function of MSD. While 

PARP inhibition significantly increased the cumulative MSD from ~8m/hr to ~12.45 m/hr, 

PARG inhibited U2OS cells were clearly constrained, having an MSD of ~6.9 m/hr. 

Cumulatively, these data independently show that PARylation influences the long-range, 

directional motion of telomere. Ultimately, this impacts telomere contacts that are an intrinsic and 

essential aspect of telomeric HR. 
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Figure 15. PARylation perturbs long-range telomere movement in ALT cells. Representative movie stills of 

tracked telomere (eGFP-TRF1) movement in U2OS cells treated with DMSO, PARPi (5M) or PARGi (5M). 

Graph displays the cumulative Mean Squared Displacement (MSD) of telomeres imaged and analyzed, n=100 

telomeres. Statistical significance was determined using student t-test. *P≤ 0.05, **P≤ 0.001, ***P≤ 0.001, ****P< 

0.001. 

 PARG inhibition impairs G2-Break Induced Replication (G2-BIR) 

During G2-BIR, nascent DNA synthesized at the break can be labeled with BrdU, 

immunoprecipitated with anti-BrdU antibodies, and then quantified by telomere southern blot. The 

addition of PARPi to WT TRF1-FokI-induced cells did not enhance overall nascent telomere 

synthesis (Figure 16A). Notably, cells treated with PARGi showed a 50% decrease in BrdU 

incorporation, indicating a perturbation in break-induced telomere DNA synthesis. One possibility 

is that the localization of key mediators of DNA synthesis to telomeres is altered. In agreement 
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with this hypothesis, the accumulation of essential G2-BIR replisome constituents, PCNA and 

POLD3, following TRF1-FokI induction was diminished when PARGi was present (Figure 16B). 

 

Figure 16. PARGi impairs G2-BIR. A) TRF1-FokI-mediated break-induced synthesis assay to measure nascent 

DNA synthesis during G2-phase. B) Representative images and graph displaying PCNA or POLD3 localization at 

WT TRF1-FokI and DA TRF1-FokI telomeres. All graphed data in the figure are mean ± SEM. A) n=3 and B) n=75 

cells. Statistical significance was determined using one-way ANOVA. *P≤ 0.05, **P≤ 0.001, ***P≤ 0.001, ****P< 

0.001. 

 

We next employed a modified DNA combing technique in combination with telomere 

FISH to investigate individual telomeric replication events following deregulation of PAR 

metabolism. After 3hrs of induction, WT TRF1-FokI U2OS cells were sequentially pulsed for 20 

minutes with nucleotide analogs, Chlorodeoxyuridine (CldU) and Iododeoxyuridine (IdU). PARP 

and PARG inhibitors were added at induction.  DNA fibers that contained CldU, IdU and telomeric 

FISH signals were then imaged and analyzed (Figure 17A). In agreement with previous studies, in 
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control DMSO-treated cells, we observed nascent telomere DNA fibers averaging 9.224 m in 

length, from which we calculated a mean DNA synthesis rate of 0.9kb per minute (Figure 17B). 

Fibers from PARPi and PARGi-treated cells averaged 11.13m and 7.228m, respectively. We 

then calculated the average rates of DNA synthesis of 1.1kb/min and 0.7kb/min, respectively. The 

former is consistent with evidence that PARP inhibition accelerates replisome velocity (198). We 

then plotted the individual IdU and CldU tract lengths to determine progression of DNA synthesis 

between pulses. Whereas IdU-CldU tracts from DMSO treated cells were approximately equal, 

having a high degree of linearity (Pearson coefficient r2=0.9524), those from both PARPi and 

PARGi-treated cells differed significantly – irrespective of the large differences in track length 

(Figure 17C). This reflects the perturbation of replication fork restart and elongation upon 

deregulation of PAR metabolism.  
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Figure 17. Disrupted PAR metabolism interferes with telomeric replication. A) Schematic of DNA combing in 

WT TRF1-FokI cells treated with DMSO, PARPi or PARGi, as above. Representative images of telomeres (green) 

with CldU (red) and IdU (blue) for indicated conditions. B) Quantification of telomeric fiber length of combined 

pulses. Left: Length of telomere fibers was measured by NIS-element software. Right: Violin plot analysis of fork 

velocity calculated based on the conversion of 0.26 micron to 1kb DNA over the combined 40 min CldU/IdU pulse. 

C) Graph of telomeric tract length distribution in each experimental condition by plotting CldU telomeric tract 

length with IdU telomeric tract length for 100 telomeric fibers. Statistical significance was determined using one-

way ANOVA. *P≤ 0.05, **P≤ 0.001, ***P≤ 0.001, ****P< 0.001. 

 

Overall, these results demonstrate that PARG inhibition prevents the localization of 

constituents of the G2-BIR replisome to ALT telomeres, providing a rationale for the observed 

deficiency in telomeric DNA synthesis. Overall, the data suggest that the fine-tuned control of 

PAR catabolism by PARG maintains efficient HDR at ALT telomeres. This implicates PAR-

dependent processes in regulating telomere recombination and G2-BIR. This also indicates a 
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biphasic activation of PARP and PARG at early stages of these processes in S and G2 cell cycle 

phases, with the inhibition of PARG presumably having major ramifications on the progression of 

HDR. 

2.3 Discussion 

In this chapter, we report that the equilibrium of PAR synthesis by PARP and hydrolysis 

by PARG are critical aspects of telomere maintenance by the ALT pathway. Whereas inhibition 

of PARP1 stimulates telomere recombination, we found that inhibition of PARG and subsequent 

retention of PAR perturbs HDR mechanisms that mediate ALT. PARP inhibitors are the first 

cancer therapy designed to exploit synthetic lethality (238). PARP inhibitors trap PARP on the 

DNA, which can impede replication fork progression (207). In ovarian and breast cancers with 

BRCA1/2 mutations, persistence of SSBs from fork collapse leads to DSBs that cannot be repaired 

due a defect in HR (192). In addition, PARP inhibition allows untimely RECQ1-catalyzed fork 

restart upon DNA damage, which leads to replication run-off and increased DSBs (197). However, 

in ALT cancers whose telomeres are predisposed to initiate HDR, PARPi-generated DSBs become 

substrates to further prime HDR mechanisms. This model explains how PARPi promotes ALT 

hallmarks, such as increased T-SCEs, c-circles, and APBs. Notably, PARPi is sufficient to induce 

ALT-like phenotypes in the TEL+ Hela LT cell line. A possible explanation for this is that Hela 

LT cells have long telomeres with disrupted telomere homeostasis that predispose them for ALT 

upon a DDR stimulus. This is corroborated by previous studies showing that telomere extension 

beyond normal levels provokes telomere-trimming, leading to generation of ECTRs and T-SCEs 

(74,239).  
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Our data shows that PARPi enhances HR and G2-BIR in U2OS DA TRF1-FokI cells. This 

is seen by the increase in T-SCEs and APBs, as well as telomere clustering in DA TRF1-FokI 

cells. A reasonable interpretation for the telomere clustering results is that the number of DSBs 

generated by the TRF1-FokI system already saturates the HR machinery. In this case, PARPi 

would not further potentiate the maximum threshold for ALT reliance on HDR mechanisms. 

However, PARPi still perturbs replication at these telomeres and enhances the progression past 

damaged lesions, which is consistent with a previous study (198). Thus, PARPi still contributes to 

the chronic replication stress and spontaneous DNA damage that is already observed at ALT 

telomeres. It is already known that the G-rich, repetitive regions of telomeres impinge on 

replication efficiency and are considered common fragile sites (240,241). This can be heightened 

in ALT due to non-canonical variant sequences that can disrupt binding of TRF1 and TRF2 (115). 

Nucleosome assembly defects and decondensation of chromatin at ALT telomeres also contribute 

to a permissive landscape for HDR-mediated DNA synthesis (41,242). In addition, loss of ASF1, 

which mediates H3.3 histone eviction and deposition, leads to the induction of ALT (243). In this 

context, PARPi simply tips the balance in favor of an environment that is conducive to 

recombination.  

PARGi has opposing consequence on ALT telomere maintenance and cell viability. At a 

fundamental level, negatively charged PAR imposes a biophysical reconfiguration of chromatin 

known as PAR-seeded liquid phase separation that sets the stage for DNA repair (224). This is 

consistent with evidence that PAR-regulated phase separators have key functions in sensing DSBs, 

including those at telomeres (224). Liquid phase transitions can promote RAD52 assembly and 

BITS during G2-phase (244). This involves BLM-dependent DNA resection and synergistic 

interactions between SUMOylated peptides and SUMO-interaction motifs (SIMs). However, 
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emerging evidence indicates PARP activity can stimulate SUMOylation of HDR factors (245). 

Thus, a parsimonious model to explain the observed effects of PARG inhibition on ALT-

associated HDR could be that while PAR is initially synthesized at the DSBs or ssDNA gaps by 

PARP, PARG inhibition prevents the hydrolysis of PAR, recycling of NAD+ cofactor and 

downstream target modification. This would block PAR-regulated phase separation – in essence 

paralyzing the repair process at its early or intermediate stages, providing a means to tune repair 

with the cellular metabolism. 

2.4 Methods 

 Statistics 

GraphPad Prism was used to calculate statistical significance for one-way ANOVA or 

student t-test. Statistical tests, number of cells scored, and biological replicates are indicated in the 

figure legends. *P≤ 0.05, **P≤ 0.001, ***P≤ 0.001, ****P< 0.001. 

 Cell Culture 

U2OS, Saos2, Hela LT, HOS, SJSA1 cell lines were obtained from ATCC. VA13, 

LM216T/J and WT/DA TRF1-FokI U2OS cell lines were obtained from Roger Greenberg 

(University of Pennsylvania). Each cell line was cultured in DMEM +Glutamax (Life 

Technologies) supplemented with 10% bovine growth serum or 10% fetal bovine serum. Cells 
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were cultured at 20% O2 and 7.5% CO2. U2OS, HeLa LT and 293FT cell lines were validated by 

STR profiling and confirmed mycoplasma free by ATCC cell line authentication services. 

 PARP and PARG Inhibitors 

The active (PDD00017272) PARG inhibitor and its inactive analogue (PDD00031704) 

used in this study were developed and generously provided by the Drug Discovery Unit at Cancer 

Research UK (Manchester). The pharmacokinetics and selectively of these molecules towards 

PARG have been described. Olaparib (KU-0059436, AZD2281) used to inhibit PARP1 and 

PARP2 was purchased from Selleck Chem. 5  of PARPi and PARGi were used in short term 

experiments (less than 3 days). 100 nM and 1 M of PARPi and PARGi were used in long term 

experiments, (greater than 4 days). 

 

 Western Blotting  

Cells were harvested with trypsin, quickly washed in PBS, counted with Cellometer Auto 

T4 (Nexcelom Bioscience) and directly lysed in 4X LDS sample buffer at 104 cells per l. Proteins 

were gently homogenized using universal nuclease (Pierce/ThermoFisher), denatured for 10mins 

at 68°C and resolved by SDS-Page electrophoresis, transferred to nitrocellulose membranes, 

blocked in 5% milk or BSA and 0.1 % Tween for 30mins and probed with primary antibodies. For 

secondary antibodies, HRP-linked anti-rabbit or mouse (Amersham) was used, and the HPR signal 

was visualized with SuperSignal ECL substrate (Pierce) as per the manufacturer's instructions. 
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 Direct Immunofluorescence (IF) 

Cells on glass coverslips were washed twice in PBS and fixed with 2% PFA for 10mins. 

Cells were permeabilized with 0.1% (w/v) sodium citrate and 0.1 % (v/v) Triton X-100 for 5mins 

and incubated with fresh blocking solution (1 mg/mL BSA, 10% normal goat serum, 0.1% Tween) 

for at least 30mins. Primary antibodies were diluted in blocking solution and added to cells for 1hr 

at RT or overnight at 4°C. Next, cells were washed in 3 times with PBS for 5mins and incubated 

with Alexa coupled secondary antibodies (488nm, 568nm, 647nm) (Life Technologies) for 1hr at 

RT. Then, cells were washed 3 times with PBS and mounted on slides with Prolong Gold Anti-

fade reagent with DAPI (Life Technologies). Once the Prolong Anti-fade has polymerized and 

cured for ~24hrs cells were visualized by conventional florescence with 40X and/or 63X Plan λ 

objective (1.4 oil) using a Nikon 90i or Nikon A1R Spectral confocal microscope.  

 IF-FISH 

After secondary antibody incubation, cells were washed as above but then the IF staining 

was fixed with 2% paraformaldehyde (PFA) for 10mins. PFA was washed off with PBS and 

coverslips dehydrated with successive washes in 70%, 95% and 100% EtOH for 3mins were 

allowed to air dry completely. Next, the coverslips were mounted on glass slides with 15l per 

coverslip of hybridization mix (70 % deionized Formamide, 1mg/ml of Blocking Reagent [Roche], 

10mM Tris-HCl pH 7.4) containing Alexa 488-(CCCTAA)4 PNA probe (PNA Bio). DNA was 

denatured by setting the slides on a heating block set to 72°C for 10mins and then incubating for 

at least 4hrs or overnight at RT in the dark. The coverslips were then washed twice for 15mins 

with Wash Solution A (70% deionized formamide and 10mM Tris-HCl pH7.2) and three times 
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with Solution B (0.1M Tris-HCl pH7.2, 0.15M NaCl and 0.08% Tween) for 5mins at RT. EtOH 

dehydration was repeated as above and finally the samples were mounted and analyzed as 

mentioned above. 

 ALT-Associated PML Bodies (APBs) Quantification 

Anti-PML antibody was used in conjunction with telomere-FISH to identify APBs. Cells 

were visualized by conventional florescence with 40X objective (1.4 oil) using a Nikon 90i 

microscope. Large image scans of 3x3 fields were taken. Colocalization of PML and telomeres 

were analyzed using a macro in the NIS Elements software. APB+ cells were scored if there was 

one colocalization event per cell.  

 Chromatin Orientation Fluorescent In Situ Hybridization (CO-FISH) 

CO-FISH was performed as described with the variation that cells were incubated with 

BrdU and BrdC simultaneously for ~12hrs, and hybridization was performed with Alexa 488-

(CCCTAA)4 and Alexa 568-(TTAGGG)4 PNA probes. In brief, cell cultures were incubated with 

7.5mM BrdU and 2.5mM BrdC for ~12hrs. After removal of nucleotide analogs, colcemid (Gibco) 

was added for ~2hrs, cells were harvested by trypsinization, swelled in 75mM KCl and fixed in 

70% Methanol: 30% Acetic Acid. Samples are stored at -20°C for days. Metaphase chromosomes 

were spread by dropping onto washed slides, then RNase A (0.5 mg/ml) and pepsin treated. Slides 

were incubated in 2×SSC containing 0.5 mg/ml Hoechst 33258 for 15mins in the dark and 

irradiated for 40mins (5.4 x 105 J/m2, energy 5400) at in a UV Stratalinker 2400 (Stratagene). The 

nicked BrdU/C substituted DNA strands are degraded by Exonuclease III digestion. The slides 
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were then washed in PBS, dehydrated by EtOH washes and allowed to air dry completely. The 

remaining strands were hybridized with fluorescence labeled DNA probes of different colors, 

specific either for the positive telomere strand (TTAGGG)4 (polymerized by lagging strand 

synthesis) (Alexa-488, green color), or the negative telomere strand (CCCTAA)4, (polymerized by 

leading strand synthesis) (Alexa-568, red color).  Prior to hybridization of the first PNA, DNA is 

denatured by heating at 72°C for 10mins, as in IF-FISH, and then incubated for 2hrs at RT. Slides 

were washed for 15mins with Wash Solution A (see IF-FISH), dried and then incubated with the 

second PNA for 2hrs at RT. The slides were then washed again twice for 15mins with Wash 

Solution A and 3 times with Wash Solution B (see IF-FISH) for 5mins at RT. The second wash 

contained DAPI (0.5g/mL). Finally, cells were dehydrated in EtOH as above and mounted 

(Vectashield). The resulting chromosomes show dual staining and allow distinction between 

leading and lagging strands. Metaphase chromosomes were visualized by conventional florescence 

microscope with a 63X Plan λ objective (1.4 oil) on a Nikon 90i microscope.  

 C-Circle Assay 

CC assay was performed as described previously. Genomic DNA was purified, digested 

with AluI and MboI and cleaned up by phenol-chloroform extraction and precipitation. DNA was 

diluted in ultraclean water and concentrations were exhaustively measured to the indicated 

quantity (30, 15, 7.5ng) using a Nanodrop (ThermoFisher). Samples (10μl) were combined with 

10μl BSA (NEB; 0.2 mg/ml), 0.1 % Tween, 0.2mM each dATP, dGTP, dTTP and 1× Φ29 Buffer 

(NEB) in the presence or absence of 7.5U ΦDNA polymerase (NEB). Samples were incubated at 

30°C for 8hrs and then at 65°C for 20mins. Reaction products were diluted to 100μl with 2×SSC 

and dot-blotted onto a 2×SSC-soaked nylon membrane. DNA was UV cross-linked onto the 
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membrane and hybridized with a P32 end-labeled (CCCTAA)4 oligo probe to detect C-circle 

amplification products. All blots were washed, exposed to PhosphoImager screens, scanned using 

a Typhoon 9400 PhosphoImager (GE Healthcare) and quantified with Image J. In all reactions, 

when Φ29 was omitted as a negative control, DNA was used.  

 

 Pulse Field Gel Electrophoresis 

Telomere gels were performed using telomere restriction fragment (TRF) analysis. 

Genomic DNA was digested using AluI and MboI (NEB). 4–10 μg of DNA was run on a 1% PFGE 

agarose gel (Bio-Rad) in 0.5×TBE buffer using the CHEF-DRII system (Bio-Rad) at 6V cm−1; 

initial switch time 1 second, final switch time 6 seconds, for 17hrs at 14°C. The gel was then dried 

for 2hrs at 60°C, denatured in a 0.5M NaOH/1.5M NaCl solution, and neutralized. Gel was 

hybridized with 32P-labelled (TTAGGG)4 oligonucleotides in Church buffer overnight at 55°C. 

The next day, the membrane was washed three times in 2×SSC buffer and once in 2x SSC 0.5% 

SDS, exposed onto a storage phosphor screen and scanned using Typhoon 9400 PhosphoImager 

(GE Healthcare). Telomere length was determined using TeloTool software 

 Clonogenic Assay 

1000 cells were seeded in 6 well plates in duplicate and cultured for 7 days before fixation 

and staining in a 1% crystal violet solution. Plates were scanned and analyzed with ImageJ, which 

was used to count positive stained colonies and calculate total cell coverage per well. 1 mM of 

PARPi and PARGi were diluted in media and replaced every 3 days.  
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 Live Cell Imaging 

As a surrogate for telomeres eGFP-TRF1 foci were tracked in a 3-dimensional volume 

after imaging with a Nikon A1RS point scanning confocal microscope.  Fields were imaged with 

a 60x 1.40 NA objective using 405nm and 488nm excitation laser lines at 500nm steps in Z. 

Nuclear volumes were corrected for gross displacement in X & Y due to cell migration using NIS 

Elements software.  Images were deconvolved again using NIS Elements to account warping due 

to spherical aberration.  The nuclear volumes and relative foci positions were then corrected for 

nuclear rotation by defining the medial axis of a z-projected nucleus, and determining its angular 

displacement relative to the field.  The volumetric data was rotated to correct for angular 

displacement relative to the previous time point.  Telomere (eGFP-TRF1) foci positioning and 

tracks were defined with Imaris analysis software.  Fine X, Y, and Z-axial displacement were 

corrected by defining a centroid point for each nuclear volume and correcting individual foci 

positions.  Each telomere focus position was corrected relative to the centroid displacement from 

the previous time point in the X, Y and Z-axis.  This fine correction accounts for slight nuclear 

drift concentrated in the Z-axis, as slight upward and downward motion of the nucleus can 

drastically skew the displacement of individual telomere foci.  Telomere movement from a 

minimum of 30 cells per condition was captured. The complete motion of >100 telomeres over 60 

mins analyzed using the methods previously described, with the adjustments for motion in z. 

Telomeres whose motion could not be tracked for a complete hour were omitted from analysis.  

A Euclidian model was used to calculate the vector displacement for the nuclear centroid 

and telomere foci over time. 

𝒅𝒕𝒏
= √(𝒙𝒕𝒏

− 𝒙𝒕𝒏−𝟏
)𝟐 +  (𝒚𝒕𝒏

− 𝒚𝒕𝒏−𝟏
)𝟐 + (𝒛𝒕𝒏

− 𝒛𝒕𝒏−𝟏
)𝟐 .   
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The same vector displacement model was used in determining the mean squared 

displacement for foci over time 

 TRF1-FokI Telomere Clustering 

mCherry-DD-ER-WT/DA TRF1-FokI cells were induced by adding 40ng/mL 

Doxycycline for ~24hrs followed by 4-OHT (1M) and Shield1 ligand (1M). Inhibitors were 

added at the start of induction. Cells were processed for immunofluorescence and telomere number 

and size were quantified using NIS-Elements Advanced Research software (Nikon). 

 BrdU Pulldown Dot Blot 

BrdU-IP was performed as described with minor modifications. Briefly, TRF1-FokI-

inducible cells were induced by adding 40ng/mL Doxycycline for ~24hrs followed by 4-OHT 

(1 M) and Shield1 ligand (1M). Cells were pulsed with 100μM BrdU (Sigma) for 2hrs before 

collection. Extracted genomic DNA was sheared by sonication into 100–300 bp fragments. 

Sheared gDNA was denatured for 10mins at 95°C and cooled in an ice-water bath. Denatured 

gDNA was incubated with 2μg anti-IgG (Sigma) or anti-BrdU antibody (BD) diluted in 

immunoprecipitation buffer (0.0625 % (v/v) Triton X-100 in PBS) rotating overnight at 4°C. The 

next day, samples were incubated with 30μl Protein A/G agarose beads (Santa Cruz) pre-bound to 

a bridging antibody (Active Motif) for 1h rotating at 4°C. Beads were then washed three times 

with immunoprecipitation buffer and once with TE buffer. Beads were then incubated twice in 

elution buffer (1% (w/v) SDS in TE) for 15mins at 65°C. Pooled eluates were purified with ChIP 

DNA Clean & Concentrator kit (Zymo). Samples were diluted into 2×SSC buffer, treated at 95°C 
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for 5mins, and dot-blotted onto an Amersham Hybond-N+ nylon membrane (GE). The membrane 

was then denatured in a 0.5N NaOH/1.5M NaCl solution, neutralized, and ultraviolet crosslinked. 

The membrane was hybridized with 32P-labelled (TTAGGG)4 oligonucleotides in Church Buffer 

overnight at 55°C. The next day, the membrane was washed four times in 2X SSC buffer and once 

in 2X SSC/0.5% SDS, exposed onto a storage phosphor screen (GE Healthcare), scanned and 

analyzed with ImageJ.  

 DNA Fiber Combing Combined with Telomere FISH 

350,000 WT TRF1-FokI cells were seeded in a 60mm dish and were induced by adding 

40ng/mL Doxycycline for ~24hrs followed by 4-OHT (1M) and Shield1 ligand (1M) for 3hrs. 

PARPi (5M) or PARGi (5M) were added to the media upon induction. Cells were subsequently 

labelled by incubating with 25M CldU for 20mins followed by 250M IdU for 20mins.  Cells 

were harvested with trypsin and resuspended in ice-cold PBS at 1.2 x 106 cells/ml. 2L of the cell 

suspension was pipetted onto a slide. 10L of lysis solution (1M Tris-Cl (pH 7.4), 500mM EDTA 

(pH 8), and 10% SDS) was gently added to the cell suspension and slides were incubated for 5mins. 

Slides were tilted at a 15º angle to allow the drop to travel the length of the slide. Slides were then 

dried for 7-8mins and fixed with MeOH and Acetic Acid (3:1) for 7-8mins. Slides were kept in 

70% EtOH until denaturation for a maximum of 7 days. For denaturation, slides were initially 

incubated in MeOH/0.1% ME for 5 min and then incubated in denaturation buffer (0.1M NaOH, 

70% EtOH, and 0.1% ME) for either 12mins. Subsequently, slides were incubated in fixation 

buffer (0.5% Glutaraldehyde in denaturation buffer) for 5mins. Slides were rinsed sequentially 

with 70%, 95%, and 100% EtOH and left to dry for 30mins-1hr. DNA fibers were hybridized 
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overnight with biotin-OO-(CCCTAA)4 locked nucleic acid (LNA) probe (Exiqon)  at 37ºC. The 

LNA probe was visualized using the Alexa Fluor 488-conjugated streptavidin antibody (Life 

Technologies) followed by incubation with the biotinylated anti-avidin antibody (Vector) and 

sequential addition of the Alexa Fluor 488-conjugated streptavidin antibody (Life Technologies). 

IdU and CldU were detected using mouse anti-IdU (BD) and rat anti-CldU (Abcam) monoclonal 

antibodies followed by Alexa Fluor 647-goat anti-mouse (Life Technologies) and Alexa Fluor 

555-goat anti-rat (Life Technologies) secondary antibodies. Images were acquired using the Nikon 

90i microscope equipped with a 63X Plan λ objective (1.4 oil). The line measurement tool on the 

NIS-element software (Nikon) was used to calculate the length of replication tracts and telomeres. 

For conversion of microns to kilobases, 0.26 micron corresponded to 1kb of DNA.   
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3.0 Proteomic interrogation of the ALT-associated PARylome 

3.1 Introduction 

ALT telomeres exist in a dynamic state to facilitate HR events that drives telomere 

elongation. This behavior was initially described in a study that artificially inserted a tag sequence 

near the telomeric repeats to probe for telomere length (95,246). ALT+ telomeres demonstrate 

rapid elongation and shortening during cell division, which is not seen in TEL+ telomeres. In fact, 

this tag sequence can be duplicated from one chromosome to other chromosome ends in ALT+ 

cells. Time-lapse imaging also reveals that a subfraction of telomeres associate with and 

disassociate from telomere clusters at relatively immobile PML bodies (247). These telomere 

clusters are not stable structures, but are transient in nature to promote spatial movement for 

recombination. In addition, the telomeric DSB response at ALT telomeres triggers inter-telomere 

associations that are mediated by the RAD51-HOP2-MND1 machinery (96). This implicates a 

specialized homology search mechanism that requires surveillance of nuclear space to enable 

telomere synapsis and recombination.  

Although it is established that the molecular events in ALT are intimately connected to 

telomere dynamics, the intricate interplay between these diverse factors are not fully characterized. 

The exact stimulus that drives these processes have yet to be determined. Our previous results link 

PARylation to ALT telomere maintenance. PARylation is considered a reversible, dynamic post-

translational modification that is an early sensor of diverse processes, including HR (223). It is 

possible that PARylation modulates early processes in ALT, which can be a determinant for cell 

fate.  Therefore, characterization of the PAR-regulated ALT proteome would be useful to fully 
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explore the exquisite control of PARylation during HR and G2-BIR. To date, there has been studies 

that identify the ALT-associated proteome as well as the PARylated proteome in response to 

genotoxic agents (87,223). However, the PARylome in ALT has not been characterized and will 

be discussed in further detail in this chapter. 

The ALT proteome has already been established by published work from the O’Sullivan 

lab. Garcia-Exposito et al. isolated and compared the telomeric protein composition of ALT+ and 

TEL+ cells using BioID (87). Mutant BirA is fused to TRF1, which binds exclusively and 

constitutively at telomeres. Upon addition of biotin, BirA promiscuously biotinylates proximal 

proteins to the telomeres, which can either be through direct or indirect interactions. They 

identified a total of 454 proteins, of which 139 are exclusively associated at ALT telomeres. As a 

proof of concept, all six components of the Shelterin complex are recovered in the pulldown for 

ALT+ and TEL+ telomeres. Several Shelterin accessory factors, such as MRE11a, APOLLO, 

FEN1, PARP1, BLM, and Tankyrase 1, are also retrieved in both cell lines. Known factors that 

are unique to ALT are only captured at ALT+ telomeres. These factors include: PML, SLX4, 

ERCC1, NR2C1, NR2C2, and ZNF827. Proteins that only associate at ALT+ telomeres are 

involved in DDR, including those responsible for chromatin remodeling, DNA replication, HR, 

mismatch repair, single-strand annealing, and translesion DNA synthesis. Although these factors 

have defined roles in DDR, their convergence at ALT telomeres still remains elusive. This study 

was able to use proteomics as a starting point to identify a non-canonical role of Pol to ameliorate 

replicative stress and sustain HDR mechanisms at ALT telomeres (87). Thus, this distinct 

telomeric landscape lends the opportunity to explore non-canonical, distinctive regulators of ALT-

associated proteins.  
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Mass spectrometry-based studies have established that the PAR-regulated proteome is 

extensive and that diverse protein groups are modified depending on the particular lesion or 

genotoxic stress. These strategies have involved immunoprecipitation of PARylated proteins using 

a PAR specific antibody (10H) and/or a PAR-binding module, often in combination with metabolic 

or chemical labeling (248). A well characterized ADP-Ribose binding module used for proteomic 

studies is the Archeoglobus fulgidus macrodomain, Af152. Af1521 is a wide-spread and conserved 

190-residue domain that is found in approximately 300 proteins (249). A high degree of sequence 

conservation is seen at the Af1521 ligand binding pocket (176). Specifically, hydrophobic residues 

that line the adenine and ribose binding pockets are generally conserved to retain the correct fold. 

spectrometry (BioID) using BirA fused to TRF1 (BirA-TRF1) (87). This provided a broad 

annotation of proteins that constitutively Thus, Af1521 selectivity towards ADPr relies on its 

recognition of this distal ribose. Af1521 recognizes both mono ADP-Ribose and the terminal ADP-

Ribose of PAR chains with high affinity (Kd=0.13M) as well as selectivity for covalently 

modified proteins. The latter property of Af1521 is important as it confers specificity for proteins 

that are PARylated over proteins that contain motifs such as PBZ (PAR binding Zinc finger) or 

WWE domains that bind PAR in cis (250). Additional specificity in determining true PARylated 

proteins is provided by the use of a mutant Af1521 (G42E) that is defective in PAR binding. These 

studies reveal a myriad of proteins involved in RNA and DNA metabolism that provides an 

additional layer of crosstalk between different machineries in DDR (176,223,251). Overall, it is 

plausible that there are also functional intersections between PAR and ALT-associated factors due 

to the basal levels of replication stress and stochastic DNA damage at ALT telomeres.  

This chapter highlights our employed proteomics strategy to isolate and assess the 

PARylated proteome at ALT telomeres. This technique allows for the capture of early regulators 
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of ALT that are transient and dynamic at steady-state conditions. Sustained PARylation 

dramatically reconfigures the ALT proteome. Specifically, PAR-regulated mediators of the ALT 

pathway belong to diverse functional groups, such as DNA repair, RNA-binding, chromatin 

remodeling, chromatin assembly, and F-Actin nucleation. These PAR-regulated factors only 

localize to ALT telomeres upon PARG inhibition, which validate their dependency on PAR. Our 

mass spectrometry hits also display a functional relevance in ALT cancers since their depletion 

leads to diminished ALT activity. Collectively, these results reveal the importance of PARylation 

in the fine-tune control of ALT telomere maintenance.  

3.2 Results 

 Identification of the telomeric protein targets of PARG inhibition 

We hypothesized that the phenotypes observed with PARGi are due to the inability of 

PARG to hydrolyze PAR on its target proteins, whose dynamics and functions are likely to be 

altered as a consequence. We chose to employ wildtype (wt) and mutant (mut) Af1521 

macrodomain PAR binding modules to determine the ALT telomere-associated PARylome that is 

induced by WT TRF1-FokI in U2OS cells. We also performed Af1521 pulldowns from DA TRF1-

FokI expressing cells to discriminate proteins that are PARylated due to endonucleolytic cleavage 

of telomeric DNA (Figure 18A). WT/DA TRF1-FokI were induced for 4hrs before cells were 

harvested. A mainstay in previous PARylation studies has been the requirement to deplete cells of 

PARG by RNAi to prevent PAR hydrolysis. In this case, PARGi was added to preserve cellular 

PAR following the induction of WT/DA TRF1-FokI. PARG and PARP1 activity that can be 
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stimulated by DNA shearing and oxidation were inhibited in solution by the addition of PARGi 

and PARPi in lysis and dilution buffers during sample processing.  

After initial processing, each sample was split into two for subsequent pulldown with wt 

and mut-Af1521 macrodomains and western blot for PAR detection using the validated 10H anti-

PAR antibody, as well as some known PARylated proteins (Figure 18B). The expected 

accumulation of PAR chains was observed in pulldowns using wt-Af1521 from WT TRF1-FokI-

induced cells that harbor telomere specific DSBs. Most of the accumulation of PAR represents 

auto-PARylation of PARP1 protein that was also enriched in wt-Af1521 pulldowns from WT 

TRF1-FokI-induced cells. We also probed for PARylation of known DNA damage-induced 

PARP-targeted proteins such as ALC1 (also known as CHD1L) and RECQ1 (202,223). Both were 

readily detected using specific antibodies. We also confirmed PARylation of TRF1 and TRF2, 

which has been previously reported (229). We did not detect PARylation of the p65 subunit of 

NFB, a negative control previously used in similar studies (223). Following this successful initial 

optimization, we were confident that the approach would allow for proteomic identification of the 

telomere-associated PARylome induced by TRF1-FokI DSBs. 
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Figure 18. Proteomics approach to characterize the ALT PARylome. A) Schematic representation of TRF1-

FokI-Af1521 proteomic strategy to identify ALT PAR-modulated telomeric proteins. B) PAR-modulated proteins 

from WT TRF1-FokI and DA TRF1-FokI U2OS cells were pulled down with GST-Af1521_wt and GST-

Af1521_mut beads. Western blotting was performed with the indicated antibodies to detect PAR and enriched 

PARylated proteins. NF-B antibody was used as a negative control. 
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 Characterization of the ALT telomeric PARylome 

In total, six samples prepared from wt/mut-Af1521 experiments using WT TRF1-FokI 

U2OS cells were subjected to protein identification by LC/MS mass spectrometry. Two negative 

control wt/mut-Af1521 samples prepared from DA TRF1-FokI U2OS cells were also analyzed. 

The final dataset was parsed using SAINT and CRAPOME proteomic databases (see Methods) 

producing a list of 117 proteins reliably detected in Af1521 pulldowns (Figure 19). We previously 

conducted an assessment of telomere composition in ALT+ U2OS cells by proximity dependent 

protein biotinylation mass spectrometry (BioID) using BirA fused to TRF1 (BirA-TRF1) (87). 

This provided a broad annotation of proteins that constitutively reside at, and transiently associate 

with, ALT telomeres. . A possible explanation is that the distinct telomeric landscape allows for 

certain DSB repair pathways to be more preferable 

We re-analyzed this BirA-TRF1 dataset in tandem with the Af1521 data by using the same 

statistical and protein annotation software (19). This produced a list of 280 protein constituents of 

U2OS telomeres. Strikingly, when we assessed the overlap between the two datasets, a mere 13 

proteins were present in both datasets (Figure 19). This reflects how fundamentally reconfigured 

ALT telomeres become following PARG inhibition. Given the evidence that PARylation is among 

the earliest modifications at sites of DNA damage, yet must be rapidly hydrolyzed by PARG, 

PARG inhibition likely facilitates the detection of PAR-regulated DSB associated proteins that are 

difficult to detect under steady-state conditions (252). In other words, these proteins likely 

represent the first responders to DSBs and early initiators of repair by HDR – providing a window 

into the apical events that promote ALT telomere maintenance. 
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Figure 19. Distinct reconfiguration of ALT landscape upon PARGi. Comparison between telomere composition 

of ALT+ U2OS cells to factors identified by Af1521-PAR proteomics. 

 PAR-regulated mediators of the ALT phenotype 

Functional annotation revealed an equal number of nuclear (59/117) and cytoplasmic 

proteins (58/117) (Figure 20A). The cohort included protein binding (88/117), DNA binding 

(25/117), poly-A RNA binding (22/117) and an unexpected number of actin binding (13/117) 

proteins (Figure 20A). Parsing the data for gene ontology (GO) classification determined that the 

protein hits most associated with chromatin structure modification, lagging strand replication, 

DNA and RNA metabolism and DNA Repair. For the latter, PARP1’s obligate partners XRCC1 

and LIGIII were identified by wt-Af1521 mass spectrometry confirming a role for alternative end 

joining in repair of TRF1-FokI-induced DSBs (Figure 20B).  

Among the chromatin regulators ALC1, Scaffold Attachment Factor B1 (SAFB1) and 

Vasolin-containing Protein (VCP/p97) were found to localize to DSBs to mediate the relaxation 
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and remobilization of DSB vicinal chromatin (202,253–255) (Figure 20 and Figure 45A) Several 

RNA binding proteins present in this dataset included heterogeneous nuclear RNA binding 

proteins; heterogenous nuclear ribonucleoprotein A1 (hnRNPA1), heterogenous nuclear 

ribonucleoprotein U-like 1 (hnRNPUL1) and RNA-Binding Motif Protein X-Linked (RBMX) that 

have also been linked with maintaining telomere integrity and DNA repair by HDR (Figure 21B) 

(256–258). Other RNA binding proteins present included the FET (FUS; fused in 

liposarcoma/EWS; Ewing sarcoma/TAF15; TATA-box binding protein associated factor 15) 

proteins that have been implicated in initiating the PARP-mediated DNA damage response by 

promoting DNA repair complex assembly via liquid phase de-mixing (224) (Figure 20 and Figure 

45A). Interestingly, several factors involved in actin nucleation, such as Actin-related proteins 2 

and 3 (ARP2-3), ARP2/3 complex subunits 2 and 3 (ARPC2-3), were enriched in the wt-Af1521 

mass spectrometry (Figure 20 and Figure 45A). The ARP2/3 complex promotes nuclear actin-

dependent clustering of DSBs during homology directed repair (106). We confirmed that the 

ARP2/3 complex is responsible for telomere clustering since its inhibition impaired telomere 

clustering (Figure 47A-B). Inhibition of ARP2/3 also led to constrained telomere motion, similar 

to levels seen with PARG initiation (Figure 47C). 
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Figure 20. Distinct functional groups of PAR-regulated ALT telomeric proteins. A) Left: Functional annotation 

of the cellular distribution and ribonucleoprotein associations of enriched proteins identified by Af1521-PAR 

proteomics. Right: GO term annotation and ranking of enriched proteins by biological processes and molecular 

functions. Ranking was determined by statistical significance using DAVID (https://david.ncifcrf.gov/). B) 

Clustering of distinct functional protein groups identified by Af1521-PAR proteomics. 

 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/subcellular-localization
https://david.ncifcrf.gov/
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We examined whether any factors from these groups localize to TRF1-FokI-induced DSBs 

by transient expression in WT and DA cells (Figure 21A-B, Figure 45B, and Figure 46). None of 

the transiently expressed eGFP-tagged versions of SAFB1, RBMX, hnRNPUL1, FUS, VCP/p97 

or ARP3 localized to WT TRF1-FokI-induced U2OS cells. (Figure 21B). However, when induced 

cells were also treated with PARGi, the specific accumulation of these proteins within TRF1-FokI 

foci was readily observed and quantified. In each case, this localization pattern was abolished upon 

addition of PARPi, highlighting the PAR-dependent nature of their association with ALT telomere 

DSBs. We confirmed that RBMX, FUS and ARP3 are directly PARylated by in vivo PARylation 

assay in response to WT TRF1-FokI DSBs (Figure 21C).   
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Figure 21. PAR-regulated factors associate with ALT telomeres. A) Representative IF images showing the 

localization of one of the PAR-regulated hits, GFP-SAFB1, in WT TRF1-FokI U2OS cells following treatment with 

DMSO, PARPi (5M) and combined PARGi/PARPi (both 5M). B) Validation of telomere association of GFP-

fusion proteins from Figure 20. WT TRF1-FokI cells were transfected with the indicated GFP-tagged proteins. C) 

In vivo PARylation assay with GFP-tagged FUS, RBMX and ARP3. * indicates the band corresponding to the 

PARylated GFP-tagged target protein.  All graphed data in the figure are mean ± SEM, n=75 cells. Statistical 

significance was determined using one-way ANOVA. *P≤ 0.05, **P≤ 0.001, ***P≤ 0.001, ****P< 0.001. All scale 

bars, 5m. 
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We next asked if these factors (SAFB1, RBMX, hnRNPUL1, FUS, VCP/p97, and ARP3), 

are required to sustain ALT activity. Using siRNA knockdown, we depleted U2OS and VA13 

ALT+ cell lines of these factors and examined effects on APB levels after 72hrs (Figure 22A-B). 

In each case, the number of APB+ cells within the observed population was reduced by ≥50%. We 

also assessed the effects of depleting these factors on WT TRF1-FokI-induced telomere clustering, 

as before. As was the case with PARG inhibition, the depletion of SAFB1, RBMX, hnRNPUL1, 

VCP/p97, FUS and ARP2-3 strongly reduced telomere clustering when compared to cells 

transfected with control non-targeting siRNAs. Based on this analysis, we find that targeting PAR-

regulated factors for knockdown impairs telomere dynamics in multiple and diverse ways; possibly 

by limiting PAR-seeded liquid phase separation, repair-associated RNA remobilization, chromatin 

remodeling and even by perturbing actin nucleation. The net result is that critical aspects of the 

ALT mechanism and response to DSBs are systematically perturbed. In addition, these data 

provide strong validation of the proteomic approach taken here, in that we have several identified 

early regulators of ALT telomere maintenance whose activity relies on the timely and efficient 

metabolism of PAR. 
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Figure 22. siRNA knockdown of PAR-regulated factors impairs ALT actiivity. A) Western blotting performed 

with antibodies to validate siRNA knockdown of protein hits from Af1521-PAR proteomics in U2OS cells. All scale 

bars, 5m. B) Left: Quantification of APBs (%) and right: TRF1-FokI-mediated telomere clustering in U2OS cells 

transfected with indicated siRNA. All graphed data in the figure are mean ± SEM, n=75 cells. Statistical 

significance was determined using one-way ANOVA. *P≤ 0.05, **P≤ 0.001, ***P≤ 0.001, ****P< 0.001. 

3.3 Discussion 

By combining telomere specific proteomics and PARG inhibition, we uncovered factors 

that we propose to constitute the first wave of proteins that respond to telomeric DNA damage in 

ALT. The enrichment of chromatin remodelers, such as ACL1, SAFB1, and VCP/p9, corroborate 

that chromatin plasticity promotes ALT (202,253,254). PAR has been shown to recruit ALC1 to 

damaged lesions and enhance its enzymatic activity (202). Additionally, there is modular allostery 
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of ALC1 via its ATPase domain and macrodomain (203). PARP1 activation releases ALC1 from 

autoinhibition and ensures that it only promotes chromatin relaxation in response to DNA 

acetylation to promote efficient H2AX spreading. The AAA-ATPase VCP/p97 is recruited to 

DSBs in an RNF8- and ubiquitin-dependent manner (253). VCP/p97 displaces L3MBTL1, a 

Polycomb-group protein that binds the same H4K20Me2 modification as 53BP1. Therefore, 

exposed H4K20Me2 enhances spreading of 53BP1 at DSBs. This example reveals how 

ubiquitylation orchestrates the recognition of methylated histones to promote chromatin 

accessibility; it particularly emphasizes the importance of the exquisite crosstalk between various 

post-translational modifications to maintain genome integrity. 

Chromatin reorganization in response to DNA damage must be robust and tightly 

coordinated to maintain efficient DNA repair. There is an intricate molecular network of chromatin 

modifications with significant crosstalk and redundancies (259). Signal propagation across large, 

specialized chromatin domains provides accessibility for DDR factors. Signal amplification not 

only exists within one pathway, but can occur through the interplay between multiple pathways. 

Notably, there is a functional crosstalk between PARylation and SUMOylation. SUMOylation 

conjugates small ubiquitin-like modifiers (SUMO) onto target proteins. PARylation cooperates 

with SUMOylation to stabilize trapped topoisomerase I (TOP1) cleavage complexes at DNA 

damage sites (260). Together, they also recruit SLX4 nuclease scaffold complex to damaged 

lesions (245).  Other studies reinforce how PARylation positively feeds into the ubiquitylation 

pathway (261). SUMO E3 ligases PIAS1 and PIAS4 mediate chromatin ubiquitylation at DSBs, 

which leads to accrual of BRCA1, 53BP1, and E3 Ligase RNF4 (262–264). On the other hand, 

PARylation recruits the repressive Polycomb and NuRD complexes to sites of damage. This 

stimulates RNF8/RNF168-mediated histone ubiquitylation and the ubiquitin-dependent 
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accumulation of RNF168 and BRCA1 (265,266). Ultimately, this promotes DSB repair and 

checkpoint activation in response to genotoxic stress.  

However, there are physiological barriers imposed by the chromatin architecture that 

safeguards against unwarranted and excessive DNA damage signaling. PTMS such as PARylation 

and SUMOylation are extremely transient to ensure faithful termination upon completion of repair 

(261). This is critical to prevent saturation of repair factors, which would be counterproductive 

and lead to uncoupling of downstream events. It was proposed that an abundance of rate-limiting 

chromatin modifiers could dictate pathway choice and chromatin spatial and temporal dynamics 

(259). For example, the absence of TRIP12 and UBR4, which are regulators of the RNF168 nuclear 

pool, leads to supraphysiological levels of RNF168 and excessive spreading of chromatin 

ubiquitylation. This is followed by deregulated accumulation of ubiquitin-regulated genome 

caretakers involved in NHEJ and HR, such as 53BP1 and BRCA1 (267).  

In the ALT context, the interplay between PTMs and regulators of chromatin assembly 

become more pertinent since chronic replication stress at telomeres generates high levels of DSBs. 

In ALT, disrupted regulation of chromatin modifications would permit continuous hyperactivation 

of chromatin remodeling at the precise threshold for HDR that does not trigger cell death. An 

outstanding question is whether there is an ALT-specific chromatin barcode that would 

differentiate the ALT telomeric landscape from other genomic regions. More specifically, is there 

differential regulation of PAR-dependent chromatin remodelers at ALT telomeres? If PARylation 

is the initial signal that sets chromatin modeling in motion, when are these events disengaged to 

prevent non-productive, sequestered cellular pools of genome caretakers? To resolve this 

conundrum, it is necessary to further understand the intricate role that PARylation plays in the 

hierarchy of signaling at ALT telomeres.  
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RNA-binding proteins are another group of PAR-mediated factors that associate at ALT 

telomeres. These include proteins such as FET proteins (FUS-EWS1-TAF15) and multiple 

hnRNPs, whose low-complexity domains (LCD) sense and compartmentalize damaged DNA 

within phase separated liquid condensates (224). The capacity to detect these factors likely reflects 

their prolonged retention, as the dissolution of these LCD aggregates is usually very rapid and 

requires that they undergo PAR hydrolysis (268).  The FET proteins are linked to pathological 

protein aggregation, exhibit frequent gene translocations in cancers, and are prototype intrinsically 

disordered proteins (IDPs) that contain prion-like SYQG-rich amino-terminal LCD and an 

extended RGG-rich carboxyl-terminal LCD-containing 18-22 RGG repeats (224,269). 

hnRNPUL1 is implicated in PARP1-dependent stimulation of DNA end resection in response to 

DSB repair (257,270). Steady-state PARG and the transient nature of DNA damage allows for the 

reversibility and dissolution of these compartments. Although liquid-liquid demixing events prime 

the initial recruitment of DNA repair factors to damaged sites, these proteins can independently 

form higher-order structures that become irreversible aggregates. The additional mechanisms to 

resolve such irreversible events are not known.  

Liquid phase separation is particularly relevant to the assembly of APBs, which are thought 

to be centers of recombination in ALT. Zhang et al. stimulated de novo formation of APBs in live 

cells and showed that APB assembly relies on liquid demixing that is driven by SUMO-SIM 

interactions (225). They confirmed that APB condensates contain PML as the scaffold component 

while DNA repair factors, such as 53BP1, PCNA, and POLD3, were recruited in a manner that is 

independent of condensation. Based on these studies and dissertation work, it is plausible that APB 

nucleation via phase separation events is mediated by a crosstalk between SUMOylation and 

PARylation. This PAR-SUMO switch would accommodate the rapid perturbations in ALT 
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telomere dynamics, in which rapid APB assembly and disassembly is critical for extensively short 

and long telomeres. However, the exact molecular details of this interplay and how it functions in 

the spatial and temporal regulation of APB nucleation still needs to be elucidated.   

Both HR (RAD50 and PCNA) and alt-NHEJ (LIG3 and XRCC1) factors were captured in 

the mass spectrometry results. It has already been established that RAD51 and the HR machinery 

mediates directional ALT telomere movement and clustering. It is not surprising that RAD50, 

which is part of the MRN complex (MRE11-RAD50-NBS1), is found at ALT telomeres to 

facilitate end-resection in HR (96).  In addition, PCNA is part of the G2-BIR replisome (RFC-

PCNA-POLD3), which underlies nascent telomeric synthesis during G2 in ALT (98). 

Interestingly, alt-NHEJ has been implicated in the repair of telomere-internal DSBs and is 

dependent on PARP1 and LIG3. Alt-NHEJ is considered a mutagenic DSB repair pathway that 

utilizes 1-16 nucleotides of homology flanking the DSB for end joining (271). It is often associated 

with deletions, insertions, and chromosome translocations. Generally, alt-NHEJ is a backup 

pathway for abrogated HR and c-NHEJ. However, alt-NHEJ may occur at telomeres because 

telomeric short tandem repeats are conducive for minimal resection and end joining. Overall, this 

represents how ALT telomeres elicit multifaceted repair pathways to preserve the balance between 

telomere dysfunction and telomere maintenance.  

The depletion of select PAR-regulated factors from our proteomics study leads to impaired 

APB formation and DSB-induced telomere clustering. This underscores the importance of 

PARylation in varying stages of ALT telomere maintenance. PARG inhibition allows for the 

retention and capture of factors that dynamically associate at ALT telomeres. Those involved in 

chromatin remodeling and liquid phase separation represent first-wave responders in the ALT 
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pathway. Thus, perturbing PAR regulation will have huge ramifications for the maintenance of 

repair mechanisms at tolerable levels in ALT cancers.   

3.4 Methods 

 Statistics 

GraphPad Prism was used to calculate statistical significance for one-way ANOVA or 

student t-test. Statistical tests, number of cells scored, and biological replicates are indicated in the 

figure legends. *P≤ 0.05, **P≤ 0.001, ***P≤ 0.001, ****P< 0.001. 

 Cell Culture 

U2OS cell line was obtained from ATCC. VA13 and WT/DA TRF1-FokI U2OS cell lines 

were obtained from Roger Greenberg (University of Pennsylvania). Each cell line was cultured in 

DMEM +Glutamax (Life Technologies) supplemented with 10% bovine growth serum. Cells were 

cultured at 20% O2 and 7.5% CO2. U2OS cell line was validated by STR profiling and confirmed 

mycoplasma free by ATCC cell line authentication services. 

 Af1521 Pulldown 

The Af1521 pulldown protocol was adapted from Jungmichel et al. Briefly, 4 x107 WT 

TRF1-FokI and DA TRF1-FokI cells were induced as usual. PARGi (5M) was added during the 
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4-hour induction period. Cells were lysed using ice-cold modified RIPA buffer (50mM Tris-HCl 

(pH 7.5), 400mM NaCl, 1mM EDTA, 1% NP-40, and 0.1% Na-deoxycholate). PARPi and PARGi 

were added to lysis buffers to block in vitro PARP and PARG activity. Equal protein amounts 

were incubated with wt or mut GST-Af1521 (Tulip Biolabs, PA) in modified RIPA buffer (without 

NaCl) for 2hrs at 4ºC. Beads were washed with modified RIPA buffer (150mM NaCl). Bound 

complexes were eluted in 4X LDS buffer. 

 Mass Spectrometry  

Mass spectrometry was conducted at MS Bioworks (Ann Arbor, MI.). Immuno-

precipitated samples stored in 4X LDS buffer were separated ~1.5cm on a 10% Bis-Tris Novex 

mini-gel (Invitrogen) using the MES buffer system. The gel was stained with coomassie and each 

lane was excised into ten equally sized segments. Gel pieces were processed using a robot 

(ProGest, DigiLab) as follow: First washes were with 25mM ammonium bicarbonate followed by 

acetonitrile. Then, reduced with 10mM dithiothreitol at 60°C followed by alkylation with 50mM 

iodoacetamide at RT. Samples were digested with trypsin (Promega) at 37°C for 4hrs, and then 

quenched with formic acid. Samples supernatants were analyzed directly without further 

processing using a nano LC/MS/MS with a Waters NanoAcquity HPLC system interfaced to a 

ThermoFisher Q Exactive. Peptides were loaded on a trapping column and eluted over a 75m 

analytical column at 350nL/min; both columns were packed with Jupiter Proteo resin 

(Phenomenex). The mass spectrometer was operated in data-dependent mode, with MS and 

MS/MS performed in the Orbitrap at 70,000 FWHM resolution and 17,500 FWHM resolution, 

respectively. The fifteen most abundant ions were selected for MS/MS.  
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 Proteomic Analysis 

Raw mass spectrometry files were converted into open mzML format using msconvert 

utility of Proteowizard software suite. MS/MS spectra were searched using the MSFragger 

database search tool (version 20180316) against a UniProt/SwissProt Homo sapiens protein 

sequence database downloaded in May 21, 2019, appended with TRF1_FokI and Y1521_ARCFU 

fusion proteins and its respective mutated versions. MS/MS spectra were searched using a 

precursor-ion mass tolerance of 20 p.p.m., fragment mass tolerance of 20 p.p.m., and allowing 

C12/C13 isotope errors (-1/0/1/2/3). Cysteine carbamylation (+57.0215) was specified as fixed 

modifications, and Methionine oxidation (+15.9949), N-terminal protein acetylation (+42.0106) 

were specified as variable modifications. The search was restricted to fully tryptic peptides, 

allowing up to two missed cleavage sites. The search results were further processed using the 

Philosopher toolkit (https://philosopher.nesvilab.org/) as follows. MSFragger output files (in 

pepXML format) were processed using PeptideProphet (with the high–mass accuracy binning and 

semi-parametric mixture modeling options) to compute the posterior probability of correct 

identification for each peptide to spectrum match (PSM). ProteinProphet was executed on all 

resulting pepXML files from PeptideProphet resulting in a list of proteins groups (in protXML 

format). This combined protXML file, as well as the pepXML for each individual experiment, 

were then processed using Philosopher’s filter and abacus functions to generate a combined 

spectral count matrix. The combined protXML file was filtered using the Philosopher filter 

function to 1% protein-level False Discovery Rate (FDR) using the target-decoy strategy. The 

PSM lists in each experiment were filtered using a sequential FDR strategy, keeping only PSMs 

passing 1% PSM-level FDR and mapped to proteins that also passed the global 1% protein-level 

FDR filter. Each peptide was assigned either as a unique peptide to a particular protein or (if 

https://philosopher.nesvilab.org/
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shared) assigned as a razor peptide to a single protein that had the most peptide evidence. The 

combined filtered protein list, as well as the filtered PSM lists for each individual experiment, were 

then processed using Philosopher's abacus function to generate a combined spectral count 

matrix.  Each row in the resulting table represented a protein (with a single accession number 

selected among indistinguishable protein entries) and its abundance (unique plus razor PSM 

counts) across all experiments. The resulting quantification matrix was loaded into reprint-

apms.org online resource to calculate abundance Fold Change (FC) scores comparing WT vs MUT 

experiment. A final cut-off of FC≥2 was arbitrarily set. This produced a final listing of 117 proteins 

that was used for in silico functional annotation in DAVID (Database for Annotation, 

Visualization, and Integrated Discovery) (https://david.ncifcrf.gov/) and downstream functional 

validation by experimentation. 

 Transient Transfection 

U2OS and WT TRF1-FokI U2OS cell lines were seeded to obtain 70-80% cell density on 

day of transfection. Transfection mixture contained a 3:1 ratio of Lipofectamine 2000 to GFP 

construct. Specifically, for transfection of WT TRF1-FokI U2OS cells, 40 ng/mL of Doxycycline 

was added 2 hours prior to transfection for WT TRF1-FokI U2OS cells. Inhibitors and 

Doxycycline was added to media when media was changed 6 hours after the transfection. 4-OHT 

and Shield was added 24 hours later for 4hrs and cells were harvested for collection. 

http://reprint-apms.org/
http://reprint-apms.org/
https://david.ncifcrf.gov/
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 In Vivo PARylation Assay 

GFP-immunoprecipitation was performed with GFP-TRAP®_A agarose beads 

(Chromotek). Briefly, 1 x 106 WT TRF1-FokI cells were seeded in a 10cm dish. ~24hrs later, cells 

were transfected with GFP-constructs using Lipofectamine 2000 (Invitrogen) as per 

manufacturer’s instructions and 40ng/mL Doxycycline was added to the media as before. Cells 

were later induced with 4-OHT (1M) and Shield1 ligand (1M) for 4hrs with the addition of 

PARGi (5M). Cells were harvested using ice-cold PBS, scraped from the dish and transferred to 

pre-cooled tubes. Cell pellets were resuspended in 200L ice-cold RIPA buffer (10mM Tris-HCl 

(pH 7.5), 150mM NaCl, 0.5mM EDTA, 0.5% NP-40, 0.09% Na-Azide) with 1mM PMSF, 2.5mM 

MgCl2, 1mg/ml DNase (Pierce) and protease inhibitor cocktail (Sigma). To extract HIRA proteins, 

modified RIPA buffer (500mM NaCl) was used as before. Tubes were placed on ice for 30mins 

with extensive pipetting every 10mins. Tubes were centrifuged at 20,000x g for 10 min at 4ºC and 

lysates were transferred to pre-cooled tubes. 300L ice-cold dilution/wash buffer (10mM Tris-

HCl (pH 7.5), 150mM NaCl, 0.5mM EDTA, 0.018% Na-Azide) with 1mM PMSF, 2.5mM MgCl2, 

and protease inhibitor cocktail (Sigma) was added to tubes. 50L of lysate was resuspended in 

50L 4X LDS buffer to save as 10% input samples. GFP-TRAP®_MA magnetic beads were 

equilibrated in dilution/wash buffer. 25L of the bead slurry was added to each tube and rotated 

for 1hr at 4ºC. Beads were magnetically separated and washed twice with wash/dilution buffer. 

Beads were resuspended in 100L 4X LDS buffer and boiled for 10mins at 95ºC. Beads were 

magnetically separated and SDS-PAGE was performed with the supernatant. PARylated proteins 

were detected using specific anti-PAR (10H) antibody.  
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 siRNA Knockdown 

 For siRNA knockdown the On-Target Plus (OTP) siRNA SMARTpools from Dharmacon 

(GE) were used. 400,000 cells were seeded per well of a 6-well plate containing growth medium 

without antibiotics. 4hrs later cells were transfected. siRNAs and Dharmafect were diluted in 

OptiMEM (Life Technologies). A working siRNA concentration of 20nM was used. We used 2.5 

L Dharmafect transfection reagent per well. The transfection reagent mixture was added 

dropwise to one well in 1.8 mL of media without antibiotics. The next day, cells were transferred 

to 10-cm plates with coverslips. Transfection medium was replaced with complete culture media. 

Cells were harvested at 72hrs post-transfection. Inhibitors were added 24 hours prior to collection.   

 APBs Quantification 

After 72 hours of siRNA knockdown, coverslips from 10-cm plates were collected for APB 

analysis. Anti-PML antibody was used in conjunction with telomere-FISH to identify APBs. Cells 

were visualized by conventional florescence with 40X objective (1.4 oil) using a Nikon 90i 

microscope. Large image scans of 3x3 fields were taken. Colocalization of PML and telomeres 

were analyzed using a macro in the NIS Elements software. APB+ cells were scored if there was 

one colocalization event per cell.  

 TRF1-FokI Telomere Clustering 

After 48 hours of siRNA knockdown, WT TRF1-FokI U2OS cells were induced by adding 

40ng/mL Doxycycline. After an additional 24 hours, 4-OHT (1M) and Shield1 ligand (1M) 
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were added to the media for 4 hours. Inhibitors were added at the start of induction. Cells were 

processed for immunofluorescence and telomere number and size were quantified using NIS-

Elements Advanced Research software (Nikon). 
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4.0 Regulation of HIRA-mediated chromatin assembly at ALT telomeres by PARylation 

4.1 Introduction 

A salient feature of ALT cancers are inactivating mutations in ATRX/DAXX/H3.3. ATRX 

belongs to the Snf2-family of ATP-dependent chromatin remodelers. Snf2 proteins are DNA 

translocases that remodel nucleosomes by placing an ATP-dependent torsional strain on DNA 

(272). Several studies have implicated mammalian ATRX in the deposition of histone variant 

H3.3, which differs from the core H3 (H3.1/H3.2) by 4-5 amino acids (273,274). While core H3 

is only incorporated during S-phase, variant H3.3 is expressed throughout the cell cycle and acts 

in a replication-independent manner. CHIP-Seq analyses reveal that H3.3 is enriched in 

transcriptionally active chromatin at transcription start sites, enhancers, and promoters (275–277). 

Interestingly, the ATRX/DAXX complex is critical for H3.3 incorporation at pericentric 

heterochromatin and at telomeres (278–280). ATRX/DAXX binds to G-rich tandem repeats that 

are prevalent in telomeres. Telomeric regions have predisposition to form G-quadruplex (G4) 

structures, which destabilize the genome. Thus, ATRX/DAXX resolves G4 structures at telomeres 

by remodeling and incorporation of H3.3 (120).   

This is particularly relevant for ALT tumors since loss of chromatinization may potentiate 

HDR processes. Re-introduction of ectopic ATRX in U2OS cells reverses the ALT phenotype 

(228).  ATRX expression reduces replication fork stalling by cooperating with DAXX to decrease 

the presence of telomeric G4. Thus, ATRX prevents fork collapse and subsequent restart by HDR 

in ALT. In addition, ATRX sequesters the MRN complex away from telomeric DNA and APBs, 

which halts end resection of DSBs and subsequent strand invasion. Notably, G4 structures are 
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favorable substrates for the MRN complex (281). It is likely that MRN cleaves G4 structures at 

ALT telomeres during DNA replication, which generates persistent DSBs followed by HDR-

mediated DNA synthesis. This model supports the mounting evidence that HR-mediated repair of 

collapsed forks is a key determinant of ALT telomere maintenance.  

Despite the importance of ATRX/DAXX at telomeres, transient depletion or disruption of 

ATRX is not sufficient to induce ALT (42). This implies that there are either additional alterations 

that trigger ALT or there are mitigating factors in TEL+ cancers that suppress the ALT pathway. 

It was recently reported that ATRX promotes HR at genomic regions in TEL+ cells. ATRX/DAXX 

incorporates H3.3 at sites of extended DNA synthesis to overcome any topological constraints at 

the moving D-loop (282). These findings are surprising since loss of ATRX/DAXX is frequently 

seen in ALT tumors that rely on HDR mechanisms. A possible explanation is that the distinct 

telomeric landscape allows for certain DSB repair pathways to be more preferable. In ALT, loss 

of ATRX/DAXX elevates the frequency of secondary structures at telomeric repeats, such as G4s 

and RNA/DNA hybrids, which may be driving events for the ALT pathway. ATRX has been 

shown to bind to G4 structures and ATRX deficiency leads to increased levels of G4s (120,283). 

ALT cells need to adapt a mechanism that allows for the tolerance of chronic replication 

stress and coordination of timely chromatin deposition to provide topological stability during 

HDR. The HIRA histone chaperone complex is a promising candidate that could potentially 

compensate for loss of ATRX/DAXX function in ALT tumors. The HIRA chaperone complex 

comprises of HIRA, UBN1, CABIN1, and it collaborates with Anti-Silencing Function 1A Histone 

Chaperone (ASF1a) to deposit H3.3 in a replication-independent manner (88,284). HIRA is the 

central scaffold for the assembly of the complex subunits. The stability of the complex is dependent 

on the presence of all three components, since knockdown or removal results in reduction of 
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protein expression. The N-terminal WD40 repeat domain in HIRA associates with a weakly 

conserved domain slightly N-terminal to the Hpc2-related domain (HRD) in UBN1 (285). UBN1 

is critical for H3.3 incorporation onto chromatin (88). HIRA interacts with CABIN1 through 

residues 736-963 of the C-terminal domain. While CABIN1 is dispensable for H3.3 incorporation, 

it contributes to maintaining the structural integrity of the complex (284).  The HIRA B-domain, 

which spans residues 439-475, makes contact with the ASF1a N-terminal core (286). ASF1a 

contacts HIRA to deliver H3.3 histones to the HIRA complex for deposition onto chromatin. It is 

proposed that UBN1 can reject the ASF1a/H3.1 complex because it has greater binding affinity to 

H3.3. This ensures that only H3.3 is deposited by the HIRA complex (287,288). 

Homotrimerization of HIRA is crucial for its 3:2 interaction with CABIN1 as well as enrichment 

and activity at UV damaged sites (227,287).  

HIRA-mediated H3.3 deposition underpins diverse biological functions. HIRA plays a role 

in DNA repair, cell senescence, sperm nucleus decondensation after fertilization, embryo 

development, and anti-viral immunity (226,275,289–298). It has been reported that HIRA 

promotes transcription restart after UVC irradiation (226). HIRA enhances de novo deposition of 

H3.3 at the damaged chromatin. This is critical for the bookmarking of damaged chromatin and 

subsequent priming for later transcription once the damage lesion is repaired. In addition, the 

HIRA complex can bind to regions of naked DNA without any sequence specificity to incorporate 

H3.3 by a nucleosome gap filling mechanism (291). This occurs at regions with transient naked 

DNA, such as sperm reprogramming or post-replication. RNA Pol II also associates with HIRA 

for additional targeting to promoters, coding regions, and a subset of cis-regulatory elements. This 

salvage pathway ensures that there are no nucleosome-free regions that would lead to chromatin 

defects. ChIP-seq and gene expression analyses demonstrate that most HIRA-binding sites 
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colocalize with UBN1, ASF1a, and H3.3 at the three main regulatory elements: promoters of active 

genes, active, and weak/poised enhancers (290). Overall, HIRA is involved in an intricate network 

of biological processes that could converge at ALT telomeres.  

In this chapter, we show that the HIRA histone chaperone complex associates at ALT 

telomeres. HIRA is likely the sole histone chaperone for H3.3 deposition during HDR. HIRA-

mediated chromatinization permits restrained replication stress that results in productive ALT 

telomere maintenance. PARylation targets HIRA to damaged ALT telomeres for rapid and faithful 

restoration of DSBs. However, PARG inhibition keeps HIRA at these lesions and perturbs 

incorporation of H3.3. Thus, HIRA retention at ALT telomeres has deleterious consequences on 

downstream HDR-mediated DNA synthesis and ultimately, cell survival.  

4.2 Results 

 Enrichment of HIRA-UBN1-CABIN1 complex at ALT telomeres 

Of the many potentially PAR-regulated factors identified by wt-Af1521 mass 

spectrometry, it was striking that peptides corresponding to constituents of the HIRA histone H3.3 

chaperone complex (HIRA-UBN1-CABIN1) were highly enriched. This was in contrast with the 

histone H3.1/H3.2 chaperone complex Chromatin Assembly Factor (CAF1) complex consisting 

of three subunits CAF1a (p150), CAF1b (p60) and Retinoblastoma binding protein 4 (RBBP4) 

(Figure 23). The CAF1 complex differs from the HIRA complex because it only deposits newly 

synthesized H3/H4 in a replication-dependent manner (299). Meanwhile, H3.3/H4 can be 

incorporated during and outside of S-phase. In fact, the ATRX/DAXX complex deposits H3.3/H4 
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at pericentric heterochromatin and telomeres (279). Missense mutations in ATRX and DAXX are 

pervasive in ALT+ cancers, with one or both proteins not expressed in most ALT+ tumors or 

cancer cell lines (41,42). Consequently, HIRA may be the sole functional H3.3 histone chaperone 

complex for nucleosome assembly during G2/M in many ALT+ cancer cells. Therefore, it seemed 

plausible that HIRA, and its PARylation, could contribute to HDR repair associated activities at 

ALT telomeres, neither of which has previously been determined. 

 

Figure 23. The HIRA complex is enriched at ALT telomeres. Spectral counts of the HIRA (HIRA-UBN1-

CABIN1) and CAF1 (CAF1A-CAF1B-RBBP4) complexes Af1521-PAR proteomics. The CAF1 complex (green) is 

not enriched at ALT telomeres.  

 Depletion of HIRA complex abrogates HDR in ALT  

HIRA is the molecular scaffold in the HIRA-CABIN-UBN1 chromatin assembly complex, 

in which knockdown of HIRA also co-depletes CABIN1 and UBN1, as was previously shown 

(291) (Figure 24A) Depletion of each protein abrogated APB levels and TRF1-FokI-induced 
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telomere clustering in U2OS and VA13 cells. HIRA depletion elicited the strongest effects (Figure 

24B). By BrdU-IP we found that HIRA depletion strongly impaired G2-BIR (Figure 24C).  

 

Figure 24. Depletion of HIRA impairs ALT telomere maintenance. A) Western blot validation of HIRA, 

CABIN1 and UBN1 knockdown. B) Left: Quantification of APBs and right: TRF1-FokI-induced clustering in 

U2OS cells following transfection with the indicated siRNAs. C) TRF1-FokI-mediated break-induced synthesis 

assay following transfection with non-targeting (NT) and HIRA siRNAs. B) left: n=1200 cells, right:150 cells and 

C) n=3. Statistical significance was determined using one-way ANOVA. *P≤ 0.05, **P≤ 0.001, ***P≤ 0.001, 

****P< 0.001. 



 

 103 

 HIRA is responsible for H3.3 deposition at ALT telomeres 

We reasoned that the phenotype observed with HIRA depletion is linked with deficiencies 

in histone H3.3 deposition at sites of G2-BIR. We confirmed this by combining transient ectopic 

expression of GFP-tagged histone H3.3 and HIRA depletion in G2-synchronized U2OS cells and 

WT TRF1-FokI cells, both of which allow for G2-BIR to occur. Here, we observed punctate foci 

corresponding to GFP-H3.3 that co-localized with telomeres in U2OS cells that were arrested in 

G2 with the cyclin-dependent kinase (CDK) inhibitor, RO-3306, and WT TRF1-FokI-induced 

U2OS cells (Figure 25A-B). However, these GFP-H3.3 foci were completely abolished upon 

depletion of HIRA.  

 

Figure 25. HIRA mediates H3.3 localization at ALT telomeres. A) Representative IF images of GFP-Histone 

H3.3 localization to telomeres in G2-synchronized and WT TRF1-FokI-induced U2OS cells. B) Quantification of 

colocalization between GFP-Histone H3.3 and telomeres in the conditions shown in A. All graphed data in the 

figure are mean ± SEM, n=75 cells. Statistical significance was determined using one-way ANOVA. *P≤ 0.05, **P≤ 

0.001, ***P≤ 0.001, ****P< 0.001. All scale bars, 5m. 
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The localization of transiently expressed YFP-HIRA to telomeres was not readily apparent 

in asynchronous U2OS cells, even though some vicinal associations were observed (Figure 26A). 

However, the telomeric accumulation of YFP-HIRA was readily evident and was accentuated by 

PARGi (Figure 26A-B). A small number of YFP-HIRA telomere associations were observed in 

cells expressing WT TRF1-FokI. PARGi markedly changed this with YFP-HIRA forming clear 

foci at telomeres harboring WT TRF1-FokI-induced DSBs. Telomeric YFP-HIRA foci were 

reduced in the presence of PARPi, indicative of a PARP1 dependency. In agreement with previous 

findings, we found that YFP-HIRA readily formed foci shortly after irradiation of U2OS cells with 

UV-C (Figure 48A-B). Although YFP-HIRA foci were also observed after exposure to ionizing 

radiation (IR), their frequency was substantially lower. In these instances of DNA damage, the 

dependency on PARG inhibition was not as clear as what was observed in the context of YFP-

HIRA accumulation at ALT telomeres. These set of experiments indicate that PAR-mediated 

HIRA assembly at ALT telomeres is responsible for H3.3 deposition during and outside of S-phase 

in ALT+ cancer cells. 
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Figure 26. PAR-dependent localization of HIRA to ALT telomeres. A) Representative IF images of YFP-HIRA 

localization to telomeres in asynchronous, G2-synchronized and WT TRF1-FokI-induced U2OS cells treated with 

DMSO, PARGi or co-treated with PARGi and PARPi (all 5M). B) Quantification of colocalization between YFP-

HIRA and telomeres in the conditions shown in a. All graphed data in the figure are mean ± SEM, n=75 cells. 

Statistical significance was determined using one-way ANOVA. *P≤ 0.05, **P≤ 0.001, ***P≤ 0.001, ****P< 0.001. 

All scale bars, 5m. 
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 Identification of a PAR-modulated HIRA region 

The requirement for PAR in recruitment of HIRA to ALT telomeres prompted us to 

determine whether HIRA was itself directly modified by in vivo PARylation assay. Indeed, the 

signature PAR smear corresponding to YFP-HIRA protein was detected only in WT TRF1-FokI 

cells, confirming that HIRA is PAR-modulated following telomeric DSB formation (Figure 27A). 

To determine the requirements for PAR modulation of HIRA, we used a series of mutants that 

disrupt HIRA complex formation via homotrimerization (W799A-D800A), HIRA binding to 

ASF1a (I461D), as well as Δ427-472 (also termed ΔB-domain) (227,286). By in vivo PARylation 

assay, we found that loss of the B-domain, and preventing homotrimerization, abolished YFP-

HIRA PAR-modulation (Figure 27B).  
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Figure 27. HIRA exhibits direct PAR-modulation. A) In vivo PARylation assay. YFP alone (Vec) or YFP tagged 

HIRA were transfected into WT/DA TRF1-FokI U2OS cells containing PARGi, or a combination of PARGi and 

PARPi to test for PARP1 dependency. Captured GFP proteins were subjected to western analysis and blotted with 

anti-GFP and anti-PAR (10H) antibodies. (B) Top: Schematic of HIRA domain structure. Mutated regions are 

shown in red and blue stars. Below: In vivo PARylation assay of WT, homo-trimerization (W799A-D800A) I461D 

mutants and ∆B domain truncated YFP-HIRA in WT TRF1-FokI U2OS cells. 
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 PAR modulation of HIRA is critical for its role in ALT 

We next determined whether loss of PARylation at these mutants is critical for the 

localization of HIRA to ALT telomeres (Figure 28A-B). The homotrimerization and B-domain 

mutants abrogated YFP-HIRA localization to TRF1-FokI DSBs (Figure 28B). Interestingly, the 

ASF1a interaction point mutant I461D could be PAR-modulated and retained the ability to localize 

to telomeric DSBs. However, deletion of the complete B-domain, which also encompasses the 

ASF1a binding I461 residue, abolished both PAR modulation and localization of YFP-HIRA to 

TRF1-FokI-induced DSBs. 
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Figure 28. PAR-modulation of HIRA B-domain recruits HIRA to ALT telomeres. A) Representative IF images. 

B) Quantification of WT, W799A-D800A, I461D, and ∆B domain truncated mutants YFP-HIRA localization to WT 

TRF1-FokI telomeres. All graphed data in the figure are mean ± SEM, n=75 cells. Statistical significance was 

determined using one-way ANOVA. *P≤ 0.05, **P≤ 0.001, ***P≤ 0.001, ****P< 0.001. All scale bars, 5m. 

 

To determine if PAR modulation of HIRA might affect ALT, we examined whether ectopic 

expression of wildtype or mutants of HIRA could rescue the phenotypes of HIRA knockdown 

(Figure 29A). We found that PAR-modulated WT and ASF1a I461D mutants, but not non-PAR-

modulated homotrimerization or ΔB-domain mutants, fully restored APBs and telomere clustering 

(Figure 29B). These observations indicated that the HIRA complex and PAR-regulation of the B-
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domain in HIRA are critical for its recruitment and residency at telomeric breaks that are repaired 

by HDR during G2-phase. Taken together, this analysis reveals that HIRA is directly recruited to 

telomeric chromatin by PAR-dependent mechanisms during G2-phase. PAR-modulated HIRA 

mediates deposition of histone H3.3 at telomeric DSBs undergoing HDR in order to compensate 

for the loss of ATRX-DAXX. 

 

Figure 29. PAR-modulation of HIRA is essential for its function in ALT. A) Western blot showing depletion of 

endogenous HIRA and complementation with the indicated HIRA constructs in U2OS cells. B) Left: Quantification 

of APBs (%) in U2OS cells and right: TRF1-FokI-induced clustering in U2OS cells. All graphed data in the figure 

are mean ± SEM. B) left: n=1200 cells and right: n=150 cells. Statistical significance was determined using one-way 

ANOVA. *P≤ 0.05, **P≤ 0.001, ***P≤ 0.001, ****P< 0.001. 
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 HIRA compensates for loss of ATRX/DAXX function in ALT cells  

Due to the absence of functional ATRX-DAXX complex in ALT cells, HIRA is likely to 

be solely responsible for histone H3.3 deposition at ALT telomeres. To assess whether it usurps 

ATRX’s role at telomeres, we reconstituted ATRX in U2OS cells using a previously characterized 

U2OS cell line, U2OSATRX, where ATRX expression can be induced with Doxycycline. Indeed, 

following induction of ATRX in these cells, transiently transfected YFP-HIRA was largely absent 

from WT TRF1-FokI DSBs after PARGi. Instead, a clear focal accumulation of ATRX was 

observed at telomeric DSBs (Figure 30A-B). This implied that HIRA fulfills an elevated role in 

ALT cancer cells and its prolonged depletion could be cytotoxic.  

 

Figure 30. HIRA localization to ALT telomeres relies on loss of ATRX. A) Representative IF images of YFP-

HIRA localization in U2OS cells expressing WT-ATRX following addition of Doxycycline (40ng/ml). B) 

Quantification of ATRX-TTAGGG and (YFP-HIRA)-TTAGGG foci in U2OSATRX cells ± (40g/l) for 5 days. All 

graphed data in the figure are mean ± SEM, n=150 cells. Statistical significance was determined using one-way 

ANOVA. *P≤ 0.05, **P≤ 0.001, ***P≤ 0.001, ****P< 0.001. 
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Notably, we found that stable depletion of HIRA using independent lentiviral expressed 

short hairpin RNAs elicited a more potent cytotoxic effect in ALT+ U2OS, Saos2, LM216J cells 

than in TEL+ HOS, SJSA1, LM216T counterparts (Figure 31 and Figure 49). Thus, HIRA gains 

an elevated importance in ALT+ cancer cells – perhaps as an adaptation to the loss of functional 

ATRX and DAXX. This implicates HIRA as a target for a novel epigenetic synthetic lethal 

interaction with ATRX deficiency that could specifically target ALT+ cancers. 

 

Figure 31. Loss of HIRA induces greater cytotoxicity in ALT cancers. Representative images and quantification 

of proliferation assays by crystal violet staining with the indicated ALT+ and TEL+ cell lines stably expressing 

scrambled non-targeting (NT) and HIRA shRNAs (#1 and #2) for 5 days. All graphed data in the figure are mean ± 

SEM, n=3. Statistical significance was determined using student t-test. *P≤ 0.05, **P≤ 0.001, ***P≤ 0.001, ****P< 

0.001. 
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4.3 Discussion 

Chromatin reorganization is necessary to coordinate the accessibility of damaged ALT 

telomeres for repair factors that mediate HDR processes. As described in chapter 2, one facet of 

disrupted PAR metabolism is the alteration of protein dynamics during complex assembly and 

compartmentalization of damaged telomeres. In addition, the perturbation of HDR observed upon 

PARG inhibition can also arise from aberrations in DNA synthesis and resulting ssDNA gaps. It 

has been established that PAR accumulates at replication intermediates to prevent untimely 

processing (179). This is also consistent with studies demonstrating a role for PARP1 and PARG 

in replication fork stabilization (197,198). However, ssDNA gaps can also accumulate due to 

defects in chromatin assembly and provoke replicative stress, which are recurrent factors in 

initiating and sustaining the mechanisms of the ALT pathway (300). When present, ATRX and 

DAXX form a multifunctional complex that not only functions as the default telomeric histone 

H3.3 chaperone complex, but also fulfills additional roles to alleviate replicative stress and DNA 

damage at telomeres (228). For instance, due to the intrinsic inefficiency of repair-coupled DNA 

synthesis during G2-phase, it was proposed that ATRX physically associates with PCNA and Pol 

to maximize the efficiency of DNA synthesis coupled histone H3.3 deposition by resolving 

replicative barriers like G4-structures (282). It thus seems logical that the restoration of chromatin 

at ALT telomeres takes on greater urgency due to the loss of functional ATRX and DAXX.  

Our data indicates that the HIRA complex plays a critical role at ALT telomeres since 

depletion of HIRA and the complex subunits abrogates HDR processes that mediate ALT. As seen 

in previous studies, depletion of HIRA severely decreases protein expression for CABIN1 and 

UBN1, which confirms that HIRA serves as the molecular scaffold for the stable assembly of the 

complex (284,285). Depletion of UBN1 and CABIN1 also results in decreased HIRA expression, 
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showing that each subunit contributes to the stability of the HIRA complex. Decreased levels of 

UBN1 leads to diminished incorporation of H3.3 onto chromatin. On the other hand, depletion of 

CABIN1 was shown to be dispensable for H3.3 deposition (88,284,287).  

We propose that HIRA recruitment represents a fail-safe to prevent inadequate 

chromatinization of ALT telomeres and that PARylation plays a major role in enabling this 

adaptation. This is in line with a role for HIRA to preserve chromatin integrity that would be 

modulated by PARylation. Previous studies have shown that HIRA associates transiently to UV-

C damaged chromatin prior to repair (226). As above, the greater detection of HIRA at telomeres 

upon PARG inhibition likely reflect its impaired dissociation from initial binding sites at telomeric 

DSBs. Due to the immobilization of HIRA, chromatin restoration could be uncoupled from G2-

BIR since chromatin imposed topological barriers can block replisome progression. 

Immobilization of HIRA could also impinge on chromatin expansion from the DSB site by altering 

localized histone modification patterns, histone H4 lysine 16 acetylation for example, that 

contribute to chromatin expansion at break sites (296).  

However, in G2 and TRF1-FokI cells, few HIRA foci still persist at ALT telomeres without 

PARG inhibition, suggesting that HIRA can be partially recruited by other PAR-independent 

mechanisms. In fact, Zhang et al. showed that RPA1 directly recruits HIRA to regulatory elements 

and regulates H3.3 deposition in the G1 phase of the cell cycle (301). RNA transcripts at promoters 

and enhancers may generate R-loop structures, which contain a DNA-RNA hybrid and displaced 

ssDNA, to which RPA can bind to. Similarly, ALT cancers contain telomeric repeat-containing 

RNA (TERRA), which are a class of long noncoding RNAs transcribed at telomeres. These can 

also form R-loops and render ALT telomeres recombinogenic. It is possible that HIRA can localize 

to RPA-bound R-loops to alleviate replication stress in ALT. However, this likely does not occur 
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in parallel with PARylation since our unpublished data and data from Illuzzi et al. show that PAR 

accumulation displaces RPA from telomeric DNA and chromatin, respectively (302). In addition, 

UBN1 harbors a lysine-rich middle domain that binds to DNA without sequence specificity (288). 

It also binds to free H3.3, but not nucleosomes or tetrasomes. It is speculated that UBN1 can target 

HIRA to chromatin or stretches of nucleosome-free DNA. UBN1-mediated targeting has been 

reported on HIRA’s role in a gap-filling mechanism. Further studies need to be completed to 

further elucidate the interplay between different factors that mediate HIRA localization to ALT 

telomeres. 

Blocking PARylation of HIRA interferes with its recruitment to ALT telomeres, with 

ensuing defects in HDR that largely phenocopied HIRA depletion. Thus, we sought to determine 

the region of HIRA that was PARylated in order to observe whether this could result in the 

uncoupling of chromatin restoration from DNA synthesis. The homotrimerization (W799A-

D800A) mutant does not form a HIRA complex and is not enriched at damaged sites upon UV 

irradiation (227). Similarly, the absence of complex formation could hinder its ability to become 

PARylated and localize to damaged lesions in ALT.  The ASF1a binding mutant (I461D) localizes 

to ALT telomeres and rescues the suppression of ALT that is seen with HIRA depletion. The I461D 

mutant is sufficient to abolish HIRA binding to ASF1a  (227). On the other hand, the B-domain 

mutant (Δ427-472), which contains the I461 residue, cannot be recruited to ALT telomeres and 

does not restore HIRA function. This suggests that PARylation of HIRA proceeds ASF1a binding 

and is key for HIRA enrichment at ALT telomeres.  

It seems significant that the PARylation of HIRA occurs within its B-domain. Its location 

within the disordered region of HIRA is consistent with the preferential targeting of PARylation 

to low complexity (LC) or disordered protein regions that are important conduits of adaptive 
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protein interactions (224). Though the precise functional contribution of the B-domain to HIRA 

function remains to be fully elucidated, this region makes contacts with ASF1a, suggestive of a 

pivotal role in histone H3.3 transfer and deposition (286). In addition to ASF1a, histone deposition 

at DSBs was shown to involve PARylation of constituents of the Nucleosome 

Remodeling/Deacetylase (NuRD) complex, some of which have previously been implicated in 

telomeric HDR (116,204). It would be of interest to determine whether PARylation of HIRA 

influences the recruitment of other PAR-regulated histone deposition factors. This could provide 

insights as to how the sequestration of HIRA to ALT telomeres and telomeric DSBs is distinct 

from mechanisms that recruit it to transcriptional units and sites of UV-C damage. 

Finally, it should be noted that even though HIRA efficiently reconstitutes chromatin with 

histone H3.3, it does not fulfill ATRXs other roles in mitigating replicative stress 

(228,279,282,303). Aberrant secondary structures (e.g. G4s, ssDNA loops) that would otherwise 

be dealt with could remain and impair chromatin assembly. Shelterin would also not bind such 

structures. In this way, HIRA’s inability to fully compensate for ATRX-DAXX would contribute 

to basal replicative stress and stochastic DNA damage that is observed in ALT cells lacking ATRX 

and DAXX. However, it also provides a rationale for the greater dependency on HIRA that was 

exhibited by the subset of ALT cells used in this study. Investigations into the outcomes of HIRA 

deficiency on ALT cancer cell viability and the mechanisms by which cells succumb to this 

vulnerability could be expanded in precise detail. If proven that HIRA expression and function at 

telomeres is a determinant of ALT cancer cell survival, inhibitors of HIRA expression or HIRA 

protein regulation could provide an attractive opportunity for anti-ALT therapy development. This 

strategy will capitalize on the nearly ubiquitous absence of ATRX and/or DAXX in ALT+ cancer 

cells. 
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4.4 Methods 

 Statistics 

GraphPad Prism was used to calculate statistical significance for one-way ANOVA or 

student t-test. Statistical tests, number of cells scored, and biological replicates are indicated in the 

figure legends. *P≤ 0.05, **P≤ 0.001, ***P≤ 0.001, ****P< 0.001. 

 Cell Culture 

U2OS, Saos2, Hela LT, HOS, SJSA1 cell lines were obtained from ATCC. VA13, 

LM216T/J and WT/DA TRF1-FokI U2OS cell lines were obtained from Roger Greenberg 

(University of Pennsylvania). U2OSATRX cell line was acquired from David Clynes (University of 

Oxford). Each cell line was cultured in DMEM +Glutamax (Life Technologies) supplemented with 

10% bovine growth serum or 10% fetal bovine serum. U2OSATRX cells were specifically grown in 

tetracycline-free FBS (Takara). Cells were cultured at 20% O2 and 7.5% CO2. U2OS, HeLa LT 

and 293FT cell lines were validated by STR profiling and confirmed mycoplasma free by ATCC 

cell line authentication services.  

 siRNA knockdown 

For siRNA knockdown the On-Target Plus (OTP) siRNA SMARTpools from Dharmacon 

(GE) were used. To deplete endogenous HIRA for rescue experiments siRNA targeting the 3’UTR 

of HIRA mRNA (see Supplementary Table S1) synthesized and purchased from Dharmacon (GE). 
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400,000 cells were seeded per well of a 6-well plate containing growth medium without antibiotics. 

4hrs later cells were transfected. siRNAs and Dharmafect were diluted in OptiMEM (Life 

Technologies). A working siRNA concentration of 20nM was used. We used 2.5 L Dharmafect 

transfection reagent per well. The transfection reagent mixture was added dropwise to one well in 

1.8 mL of media without antibiotics. The next day, cells were transferred to 10-cm plates with 

coverslips. Transfection medium was replaced with complete culture media. Cells were harvested 

at 72hrs post transfection. Inhibitors were added 24 hours prior to collection.   

 Lentiviral production and infection 

pLKO-based lentivirus was produced in 293FT cells by co-transfecting pLKO constructs 

containing either control or shRNAs against HIRA together with psPAX2 (#12260) and pMD2.G 

(#12259) packing plasmids (Addgene) to produce lentivirus. 48hrs after transfection, filtered 

supernatants were used to infect cell lines. Cells were selected with puromycin for 2 days and 

protein knockdown was analyzed by western blot. 

 APB Quantification 

After 72 hours of siRNA knockdown, coverslips from 10-cm plates were collected for APB 

analysis. Anti-PML antibody was used in conjunction with telomere-FISH to identify APBs. Cells 

were visualized by conventional florescence with 40X objective (1.4 oil) using a Nikon 90i 

microscope. Large image scans of 3x3 fields were taken. Colocalization of PML and telomeres 

were analyzed using a macro in the NIS Elements software (Nikon). APB+ cells were scored if 

there was at least one colocalization event per cell.  
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 TRF1-FokI Telomere Clustering 

After 48 hours of siRNA knockdown, mcherry-DD-ER-WT TRF1-FokI U2OS cells were 

induced by adding 40ng/mL Doxycycline. After additional 24 hours, 4-OHT (1M) and Shield1 

ligand (1M) were added to the media for 4 hours. Inhibitors were added at the start of induction. 

Cells were processed for immunofluorescence and telomere number and size were quantified using 

NIS-Elements software (Nikon). 

 BrdU Pulldown Dot Blot 

The BrdU pulldown was performed after 72 hours of siRNA knockdown of HIRA in WT 

TRF-FokI U2OS cells. 48 hours post siRNA transfection, 40ng/mL Doxycycline was added to the 

media. 24 hours later, 4-OH (1M) and Shield1 ligand (1M) were added for a total of 4 hrs. The 

last 2 hrs, cells were pulsed with 100μM BrdU (Sigma) before collection. Extracted genomic DNA 

was sheared by sonication into 100–300 bp fragments. Sheared gDNA was denatured for 10mins 

at 95°C and cooled in an ice-water bath. Denatured gDNA was incubated with 2μg anti-IgG 

(Sigma) or anti-BrdU antibody (BD) diluted in immunoprecipitation buffer (0.0625 % (v/v) Triton 

X-100 in PBS) rotating overnight at 4°C. The next day, samples were incubated with 30μl Protein 

A/G agarose beads (Santa Cruz) pre-bound to a bridging antibody (Active Motif) for 1h rotating 

at 4°C. Beads were then washed three times with immunoprecipitation buffer and once with TE 

buffer. Beads were then incubated twice in elution buffer (1% (w/v) SDS in TE) for 15mins at 

65°C. Pooled eluates were purified with ChIP DNA Clean & Concentrator kit (Zymo). Samples 

were diluted into 2×SSC buffer, treated at 95°C for 5mins, and dot-blotted onto an Amersham 

Hybond-N+ nylon membrane (GE). The membrane was then denatured in a 0.5N NaOH/1.5M 
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NaCl solution, neutralized, and ultraviolet crosslinked. The membrane was hybridized with 32P-

labelled (TTAGGG)4 oligonucleotides in Church Buffer overnight at 55°C. The next day, the 

membrane was washed four times in 2×SSC buffer and once in 2xSSC/0.5% SDS, exposed onto 

a storage phosphor screen (GE Healthcare), scanned and analyzed with ImageJ.  

 H3.3 and HIRA IF 

GFP-H3.3 and HIRA-YFP were transiently transfected into U2OS or WT TRF1-FokI 

U2OS cell lines. U2OS cells were arrested in G2 by adding 1  of RO-3306 at 24 hours post 

transfection. 40 ng/mL of Doxycycline was added to WT TRF1-FokI U2OS cells. Inhibitors were 

also added at this time point.  24 hours later, WT TRF1-FokI U2OS cells were induced with 4-

OHT and Shield Ligand. Cells were pre-extracted for 5 minutes at RT using pre-extraction buffer 

(0.06M EGTA, 0.5 PIPES, 0.5M MGSO4, 3M KCl, and 0.5% Triton-X). Cells were then fixed in 

4% PFA at 4oC. IF proceeded normally after this step.  

 In Vivo PARylation Assay 

GFP-immunoprecipitation was performed with GFP-TRAP®_A agarose beads 

(Chromotek). Briefly, 1 x 106 WT TRF1-FokI cells were seeded in a 10cm dish. ~24hrs later, cells 

were transfected with GFP-constructs using Lipofectamine 2000 (Invitrogen) as per 

manufacturer’s instructions and 40ng/mL Doxycycline was added to the media as before. Cells 

were later induced with 4-OHT (1M) and Shield1 ligand (1M) for 4hrs with the addition of 

PARGi (5M). Cells were harvested using ice-cold PBS, scraped from the dish and transferred to 

pre-cooled tubes. Cell pellets were resuspended in 200L ice-cold RIPA buffer (10mM Tris-HCl 
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(pH 7.5), 150mM NaCl, 0.5mM EDTA, 0.5% NP-40, 0.09% Na-Azide) with 1mM PMSF, 2.5mM 

MgCl2, 1mg/ml DNase (Pierce) and protease inhibitor cocktail (Sigma). To extract HIRA proteins, 

modified RIPA buffer (500mM NaCl) was used as before. Tubes were placed on ice for 30mins 

with extensive pipetting every 10mins. Tubes were centrifuged at 20,000x g for 10 min at 4ºC and 

lysates were transferred to pre-cooled tubes. 300L ice-cold dilution/wash buffer (10mM Tris-

HCl (pH 7.5), 150mM NaCl, 0.5mM EDTA, 0.018% Na-Azide) with 1mM PMSF, 2.5mM MgCl2, 

and protease inhibitor cocktail (Sigma) was added to tubes. 50L of lysate was resuspended in 

50L 4X LDS buffer to save as 10% input samples. GFP-TRAP®_MA magnetic beads were 

equilibrated in dilution/wash buffer. 25L of the bead slurry was added to each tube and rotated 

for 1hr at 4ºC. Beads were magnetically separated and washed twice with wash/dilution buffer. 

Beads were resuspended in 100L 4X LDS buffer and boiled for 10mins at 95ºC. Beads were 

magnetically separated and SDS-PAGE was performed with the supernatant. PARylated proteins 

were detected using specific anti-PAR (10H) antibody.  

 ATRX re-expression 

ATRX cDNA was cloned into the Tet-on 3G Inducible Expression System 

(Clontech) and transfected into using Xfect transfection reagent (Clontech), to generate the 

U2OSATRX stable cell line. This was acquired from David Clynes (University of Oxford). 

100 ng/mL of Doxycycline was added onto cells for 5 days. WB analysis was performed 

to ensure re-expression of ATRX in U2OS cell lines that were treated with Doxycycline. 

All experiments were performed after U2OSATRX   cells have been treated with Doxycycline 

for 5 days.  
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 Clonogenic Assay 

Clonogenic assays were started after cells were infected with lentivirus carrying control or 

shRNAs against HIRA. 2 days post infection, 2000 cells were seeded in 6 well plates in duplicate 

and cultured for 7 days with 1g/mL of puromycin selection. Plates were then fixed and stained 

in a 1% crystal violet solution. Plates were scanned and analyzed with ImageJ, which was used to 

count positive stained colonies and calculate total cell coverage per well.  
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5.0 Future Directions 

This thesis highlights the importance of controlled ALT activity to limit the toxicity of 

rampant DNA damage. Disrupted PAR metabolism tips the delicate balance between pro- and anti-

recombinogenic signals for productive ALT activity. Our data shows that PAR-regulated HIRA 

fulfills a protective function at ALT telomeres. HIRA exhibits elevated importance in ALT+ 

cancers to compensate for the loss of ATRX/DAXX. This body of work has given rise to several 

future directions that would provide greater insight into the molecular events that drive ALT 

telomere maintenance. Taken together, these proposed experiments provide a stepping stone to the 

development of anti-ALT therapeutic agents.  

5.1 Does Disrupted PAR Metabolism Have Direct Effects on ALT Telomere Maintenance? 

Perturbations in PAR metabolism alter ALT activity. While PARPi substantiates ALT 

phenotypes and HDR processes, PARGi holds the opposing effect and leads to substantial loss of 

telomere length. Additionally, ALT cancers exhibit modest sensitivity to prolonged exposure to 

PARGi.  Although it is undisputed that PARGi elicits a negative impact on ALT activity, it will 

be important to test if the effects are due to direct effects of PARGi on ALT-mediated mechanisms 

or indirect effects due to PARP1 and PAR accumulation at damaged sites. PARP1 overactivation 

leads to massive consumption of NAD+ and consequential depletion of cellular ATP pools (304). 

Prolonged PARP1 activation decreases the half-life of NAD+ in a dose-dependent manner. In fact, 

mammalian cells exposed to a high dosage of genotoxic stress display 20% reduction in NAD+ 
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within 5-15 minutes. This depletion of cellular NAD+ pools also affects other metabolic processes 

that rely on NAD+ as a cofactor to generate ATP, such as glycolysis and tricarboxylic acid cycle 

(TCA cycle) (305–307). Additionally, accumulation of PAR polymers is detrimental to cells and 

leads to a cellular process known as PARthanatos, which harnesses cytological and morphological 

features of apoptosis and necrosis (159,160). Cellular toxicity is dependent on the length and 

complexity of PAR polymers. Direct delivery of PAR polymers that consisted of greater than 60 

ADPr units are toxic to neurons and Hela cells (159,161). Toxicity is observed at 20 nM of PAR 

and cell death induced at 80 nM of PAR. 

NAD+ and ATP measurements can be performed to test the indirect effects of cellular 

energy consumption. There are several NAD/NADH and ATP/ADP quantification kits that are 

commercially available (308). The NAD/NADH kit is based on an enzymatic cycling reaction that 

reduces NAD+ to NADH. NADH then reacts with a colorimetric probe that can be measured at 

450 nm. The ATP/ADP assay works through the reaction of released cellular ATP with the 

substrate (D-luciferin) to produce light. ADP is also converted to ATP, which then reacts with D-

luciferin as in the first step. As a result, this measures the total ADP and ATP levels as well as 

ATP concentration in cells. We can measure NAD+ and ATP levels in TEL+ and ALT+ cells that 

are subjected to acute or prolonged exposure to PARGi, as reported in chapter 2.  

These experiments would likely show that NAD+ and ATP levels drop in both ALT+ and 

TEL+ cell lines because PARGi prevents PAR metabolism, which leads to excessive consumption 

of NAD+ as a substrate to generate PAR. This is probably more evident during extended PARGi 

treatment due to gradual depletion of a limited NAD+ pool. Thus, we can determine the appropriate 

dosage and timing of PARGi that elicits direct effects as oppose to toxicity from PAR 

accumulation. In particular, ALT+ cells may either exhibit greater energy depletion or higher 



 

 125 

sensitivity due to the burden of telomeric damage. To further elaborate on this, we can rescue 

energy depletion by administering dihydronicotinamide riboside (NRH), which is a potent NAD+ 

concentration enhancer both in vitro and in vivo (309). NRH structurally resembles NAD+ 

precursors and can be converted by cellular ATP-dependent kinase activity. NRH-treated cells are 

resistant to cell death induced by hydrogen peroxide and methylmethane sulfonate. Likewise, the 

phenotypes observed with PARGi in ALT+ cells may be attenuated. However, if ALT+ cells are 

not fully restored upon addition of NRH, then this would imply a specific and direct mechanism 

of PARGi at ALT telomeres.  

5.2 How does PAR Modulation Contribute to HDR Pathway Choice?  

One of the outstanding questions in the field is what determines telomere synthesis via 

RAD51-dependent or RAD51-independent mechanisms at ALT telomeres. Several studies have 

identified the unique molecular machinery involved in each HDR pathway. First, telomeric DSBs 

undergo resection that is mediated by the MRN complex, BLM-EXO1-DNA2, or WRN-DNA2 

(54,244). Subsequently, ATR activation leads to RPA/RAD51/HOP2-MND1-mediated homology 

searches and inter-telomeric recombination that occur primarily in S-phase (60,96). There are two 

RAD51-independent pathways that have been reported: spontaneous mitotic DNA synthesis 

(MiDAS) and G2-BIR in G2/M (93,98). These processes are optimal during the narrow window 

of late G2 and mitosis when there is not sufficient time for RAD51-driven homology searches. 

MiDAS is RAD52-dependent and engages in MMBIR (less than 1-6 nucleotide required 

homology) for template switching (109–111). Min et al. proposed that ALT cells exhibit more 

telomeric replication defects that lead to engagement of MiDAS (93). However, MiDAS is 
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restricted to prometaphase and occurs at a low frequency, which likely means that it is not the 

primary mode of DNA synthesis in ALT cancers (94). On the other hand, G2-BIR can persist in 

mitosis (interphase, prometaphase, and metaphase) and does not rely on RAD52 and SLX4-

MUS81. Ultimately, these RAD51-independent pathways converge on a noncanonical replisome 

that comprises of PCNA-RFC-POLD3 for DNA synthesis (94,98).  

ALT telomeres engage in these distinct HDR pathways depending on the initial telomere 

lesion and cell cycle phase. However, the differential contribution of cellular factors and initial 

stimulus of each pathway in ALT still remains poorly understood. Chapter 2 demonstrated that 

PARGi disrupted both canonical and non-canonical HDR, resulting in negative consequences for 

ALT telomere maintenance. Chapter 3 revealed that the molecular machineries involved in these 

diverse repair pathways are regulated by PARylation. A reasonable explanation could be that 

PARylation perturbs cell-cycle distribution and increases the probability of specific HDR 

processes to occur during a particular cell cycle phase. PARGi-treated ALT cells display modest 

perturbations in cell cycle progression, with some cells accumulating in S-phase. (Hoang et al. 

unpublished data). In addition, a similar cell cycle is observed in shControl and shPARG Hela LT 

cells in unstressed conditions and after short HU treatment (302). PARG-deficient cells haven been 

shown to exhibit impaired S-phase progression upon prolong exposure of HU. This suggests that 

the basal level of replication stress in ALT cells mimics that of short HU exposure as ALT 

telomeres undergo recurrent cycles of stochastic DNA damage.  

Another avenue to explore is whether PARGi favors canonical or non-canonical HDR. A 

simple approach would be to parse our Af1521 mass spectrometry data, as discussed in chapter 3, 

to see whether PARylated factors at telomeric DSBs belong to either RAD51-dependent or -

independent pathways. We could perform the Af1521 pulldown in isogenic cell lines LM216J 
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(ALT+) and LM216T (TEL+) WT TRF1-FokI cell lines that are synchronized at specific cell cycle 

phases. This experiment is under the premise that these are competing HDR mechanisms and do 

not occur in parallel with each other. The expectation would be that the PARylome changes 

depending on cell-cycle progression since distinct HDR pathways are employed at either S and 

G2-phases or early and late mitosis. The resulting PARylomes of ALT+ and TEL+ cancers will 

likely be fundamentally different since ALT+ cells have characteristic features that prime them for 

increased recombination. This is supported by the distinct telomeric composition of unperturbed 

U2OS and Hela LT cells, in which 139 proteins were specific to ALT+ cancers (87). Additionally, 

we could expand our in vivo PARylation assay to include known factors of RAD51-dependent and 

-independent factors using the same conditions described above. Together, this would yield useful 

insights into the diverse contributions of PARylation at different time points in the regulation of 

ALT activity.  

Proteomics has its limitations though and cell-based studies need to be performed to 

validate the fine-tune control of HDR mechanisms by PARylation. In our proteomics strategy, it 

is likely that some key mediators will not be accounted for in the mass spectrometry data due to 

their low abundance, poor sequence coverage, or loss during the Af1521 pulldown. Alternatively, 

the mode of replication can be indicative of HDR pathway choice. RAD51-dependent mechanisms 

will undergo semi-conservative replication while RAD51-independent mechanisms engage in 

conservative replication that is mediated by break-induced replication processes. We can utilize a 

triple-FISH method to differentiate between telomeric semi-conservative and conservative 

replication (Figure 32). Previous studies have used Cyclin E overexpression to induce DNA 

replication stress at U2OS cells to trigger repair by BIR. Cyclin E-potentiated fork collapse leads 

to elevated conservative synthesis (97).  
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Thus, we would use U2OS WT TRF1-FokI that are treated with PARGi to see if this alters 

the preference in an HDR mechanism. Metaphase chromosomes that are treated with BrdU and 

BrdC for one cell-cycle will be subjected to three consecutive strand-specific FISH staining steps 

(97) (Figure 32). First, metaphases are stained using telomere strand-specific dual color FISH 

under denaturing conditions. This marks both telomeric strands for reference in subsequent 

staining steps. Second, after destaining, metaphases are labelled by non-denaturing, telomere 

strand-specific, dual color CO-FISH. Newly synthesized DNA strands are degraded and only 

parental strands that have been replicated in a semi-conservative manner can hybridize with the 

telomeric probes. Conservatively replicated telomeres would result in one sister chromatid with 

both nascent strands degraded while the other sister chromatid would comprise of parental strands 

that cannot hybridize with the probe. Both outcomes lead to no signal at chromosome ends. The 

final step is destaining, followed by telomere strand-specific, dual color FISH under denaturing 

conditions. At semi-conservatively replicated telomeres, the labelling pattern will remain the same. 

In contrast, conservatively replicated telomeres have two annealed parental strands that will 

hybridize with the telomeric probes. This third step further confirms that the absence of a signal in 

conservatively replicated telomeres during the second step was not due to technical errors. 

Additionally, triple-FISH can provide valuable information on partial semi-conservatively and 

conservatively replicated telomeres, which can occur at telomeric replication fork collapse that is 

repaired by BIR or if these HDR processes are occurring simultaneously in ALT. Overall, this 

would be highly informative as to whether PARGi is sufficient to shift the balance in HDR 

processes that regulate ALT.  
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Figure 32. Triple-FISH schematic to quantify BIR. Semiconservative replication results in non-overlapping 

signals at both strands. B) Conservative replication leads to an overlapping yellow signal on one strand. C) Partial 

conservative and semi-conservative replication lead to staining patterns that incorporate A and B. Adapted from 

Roumelioti FM et al., EMBO Rep, 2016  (97) (https://www.embopress.org/doi/full/10.15252/embr.201643169). 

 

Our current Af1521 data in chapter 3 provides valuable insight into PAR-regulated early 

responders of ALT, which could be key to determining what is the initial stimulus of HDR pathway  

choice. Interestingly, we found ARP2/3, a component of the actin polymerization machinery, to 

be enriched at ALT telomeres. Schrank et al. showed that ARP2/3 binds to DSBs and mediates 

HDR instead of NHEJ. ARP2/3 enhances the movement of sites of DSBs resection. This actin-

https://www.embopress.org/doi/full/10.15252/embr.201643169
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driven clustering also promotes processing and resolution of DSBs that are undergoing HDR. 

These two results show that there is a positive feedback loop between DSB mobility and end 

resection, resulting in propagation of repair factors at the site of damage (106). We show that 

ARP2/3 is directly PARylated. Additionally, we determined that inhibition of ARP2/3 using CK-

666 (ARP2/3i) hinders telomere clustering and telomeric mobility to levels seen with PARGi 

(Figure 47). This implicates ARP2/3 in orchestrating the early decision for long-range HDR in the 

hierarchy of signaling. The link between PARylation and the organization of the cytoskeleton in 

mammalian cells have been enigmatic. However, there are studies in other organisms that reveal 

the importance of ADP-ribosylation in modulating actin polymerization. For example, 

overexpression of PARP in the Drosophila developing eye causes disorganization of cytoskeletal 

filamentous actin (F-actin) and disrupts tissue polarity (310). The authors posited that excessive 

MAR or PAR interacts with actin and prevents F-actin formation. In addition, the bacterium 

Photorhabdus luminescens utilizes TccC3 and TccC5, adenosine diphosphate 

ADP(ribosyl)transferases, to ADP(ribosyl)ate actin to initiate actin polymerization (311). These 

studies suggest a possibly conserved mechanism of ADP(ribosyl)ation in modulating biological 

processes that rely on actin organization.  

Therefore, it is promising to understand the function of PAR-mediated ARP2/3 actin 

nucleation in the homology search mechanism at ALT telomeres. To determine whether 

PARylation disrupts ARP2/3 function, we could transfect nuclear-actin-chromobody-tag-GFP in 

U2OS eRFP-TRF1 cells and U2OS mCherry-WT TRF1-FokI cells treated with PARGi or 

ARP2/3i (106). We would measure the colocalization of actin structures resembling foci (actin-cb 

foci) with eRFP-TRF1 or mCherry-TRF1-FokI. WT TRF1-FokI cells will exhibit more and larger 

actin-cb foci at ALT telomeres since it is known that telomeric damage initiates long-range 
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homology search through the RAD51-dependent pathway (96). It has already been proven that 

adding ARP2/3i abolishes these actin-cb-foci, confirming that these structures are sites of ARP2/3-

dependent nucleation. It is likely that PARGi will elicit similar effects if it inhibits the downstream 

activity of ARP2/3. It would also be informative to arrest cells in G2/M phase, where long-range 

homology is dispensable for BIR-related processes. It is likely that ARP2/3i may not play a large 

role in G2/M.  The observed phenotype would be smaller actin-cb-foci or the absence of actin-cb-

foci. Moreover, Schrank B.R et al. only shows the enrichment of ARP2/3 at damaged chromatin, 

but does not look at whether ARP2/3 directly binds to DNA (106). It would be valuable to 

determine whether ARP2/3 binds to telomeric DNA and if that association is disrupted upon PAR 

accumulation. Biotinylated telomeric ssDNA oligos can be preincubated with purified ARP2/3. 

Then, increasing concentrations of PAR polymers can be added to assess displacement of ARP2/3 

from telomeric DNA. Additionally, we can identify potential PAR-binding or PARylatable regions 

in ARP2/3 and test mutants using the in vitro and in vivo PAR-binding and PARylation assays. 

Together, these experiments would directly implicate PARylation or PAR-binding of ARP2/3 as 

a driver of HDR in S-phase.  

Another interesting notion to follow is the role of PARylation in the repression of alt-

NHEJ, which also uses DSBs as substrates for repair. Normally, alt-NHEJ is a backup for defective 

HR and c-NHEJ (194) . PARP1 is a key component of alt-NHEJ and is in direct competition for 

binding of DSBs with Ku70/80, which is a determinant of c-NHEJ pathway selection (312). Alt-

NHEJ is also implicated in the repair of telomere-internal DSBs (195). In the context of ALT, 

PARP1 loading onto resected DNA would initiate alt-NHEJ. However, ALT cells favor other HDR 

mechanisms because alt-NHEJ is mutagenic and pushes genome instability beyond tolerable 

levels. It is possible that ALT cells activate alt-NHEJ to counteract abrogation of HDR processes 
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and c-NHEJ due to PARGi. Indeed, we found several alt-NHEJ factors, such as LIG3 and XRCC1, 

enriched at ALT telomeres upon PARGi.  

This raises the question of whether the PARylation of several alt-NHEJ factors contributes 

to the inhibitory effects of ALT. We can deplete alt-NHEJ factors in conjunction with HR factors 

in U2OS cells, followed by quantification of ALT phenotypes, such as APBs, T-SCEs, and c-

circles. Depletion of alt-NHEJ factors in ALT+ cells likely would not repress ALT because the 

preferred HDR mechanisms are still present. However, depletion of alt-NHEJ with HR factors, 

such as RAD51 or POLD3, might lead to greater ALT suppression compared to depletion of the 

HR factors by themselves. This would help determine if alt-NHEJ arises as the ultimate backup in 

ALT cells. To tackle the role of PARylation, we can observe the recruitment of endogenous and 

GFP-tagged alt-NHEJ factors, such as LIG3 and XRCC1, at ALT telomeres in U2OS WT TRF1-

FokI cells treated with PARGi. We expect alt-NHEJ factors to localize to ALT telomeres in the 

presence of PARGi since important HR factors, such as PCNA, POLD3, and RPA2 are displaced. 

In fact, loss of RPA has been shown to stabilize annealed intermediates that promote alt-NHEJ 

(271). These experiments would provide a convincing argument that the tight regulation of PAR 

metabolism is imperative in maintaining the competition for DSB repair at ALT telomeres (Figure 

33).    
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Figure 33. PARGi uncouples HDR proccesses at ALT telomeres. PARGi leads to retention of PARylated and 

PAR-binding DDR factors, as well as negatively charged PAR polymers at telomeres. This abrogates the efficiency 

of ALT-mediated pathways and impairs ALT activity.   

5.3 What is the Prospect of PARG Inhibitor Use in the Clinic?  

There have not been many studies that have elucidated the efficacy of PARG inhibitors in 

the clinic. Loss of PARG is a major resistance mechanism to PARPi in HR-deficient cancers, such 

as ovarian and triple-negative breast cancers. Gogola et al. show that PARG inhibition rescues 

PARP1 signaling and reduces toxic accumulation of PARP1-DNA complexes (313). Although 

PARG inhibition deters PARPi treatment, it exposes therapeutic vulnerabilities that could be used 

to target resistant tumors. This is supported by a study that demonstrates radiosensitization of 

BRCA1/2-deficient cancers upon treatment with PARGi (314). Additionally, PARG inhibition in 

ovarian cancers renders them sensitive to persistent replication stress and replication catastrophe 

(315). PARGi is synthetic lethal with inactivation of several DNA replication factors, such as 

TIMELESS, HUS1, and RFC2. Pharmacological induction of replication stress through CHK1 

inhibition sensitizes cancer cells to PARGi. Notably, PARGi toxicity is enhanced by WEE1 kinase 
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inhibition and forces arrested cells into mitotic catastrophe. This sensitization to replication stress 

provides merit for potential combination therapies with PARGi.  

ALT is more reliant on replication stress for telomere maintenance, which creates the 

opportunity to exploit the vulnerabilities in disrupted DDR for therapy (Figure 34). In our survival 

assays, ALT cells appear to have a modest decrease in growth upon PARGi treatment. It is possible 

that PARGi leads to cell death in ALT+ cells because the replication stress levels surpass the 

normal levels required to maintain telomeric integrity. There have been several instances, where 

inhibition or depletion of HDR factors disrupts the ALT mechanism and provokes death of ALT 

cancer cells. Indeed, ALT cell lines were reported to exhibit acute sensitivity to inhibition of ATR 

kinase, an apical sensor of replicative stress and mediator of the repair response (316,317). 

Similarly, depletion of FANCM and TOP3A induces a potent acute apoptotic phenotype in ALT 

cancer cell lines (30). In addition, chemical stabilization of G4 quadruplexes that require 

dissolution by BLM could also be harnessed to elicit a cytotoxic response (318). Thus, targeting 

the FANCM-BTR complex represents a potentially viable option for therapy development. The 

key may lie in determining combinations that induce ALT-specific synthetic lethality through 

either restricting HDR pathway switches or inducing catastrophic recombination, as implied by 

the systemic death of cells lacking SLXIP and SLX4 (112). 

It is not unreasonable to assume, based on the striking correlation with ALT, that the 

absence of functional ATRX-DAXX complex affords the opportunity to determine synthetic lethal 

interactions that eliminate ALT cancer cells. Identifying and targeting factors that functionally 

compensate for ATRX loss in remediation of replicative stress might yield some benefits for 

exploitation of ALT-specific vulnerabilities. CRISPR-based or small compound library screens to 

identify synthetic lethal partners of ATRX deficiency are yet to be reported. Mitigating factors 
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might be the heterogeneity of available standard ALT cells lines in terms of tissue of origin, ploidy 

and somatic mutation burden. However, one interesting example of synthetic lethality with ATRX 

inactivation was reported in which the specific killing of ALT cancer cells was induced following 

infection with mutant Herpes Simplex Virus-1 (HSV-1) (319). This was directly attributed to 

repression and proteasomal degradation of PML protein isoforms upon loss of ATRX and 

demonstrated the potential utility of viral-based therapy to kill ATRX-deficient ALT cancer cells.  

Like ATRX inactivation, PML proteins hold unique importance in the biology of ALT 

cells. Shuttling of telomeres to PML bodies by SUMOylation driven liquid phase separation is a 

signature event in ALT (55,225). Conventionally, this is linked with productive DNA synthesis at 

telomeres. However, it was recently shown that the sequestration of telomeres within APBs could 

be a poison pill.  POT1 – an ssDNA binding constituent of Shelterin that is essential for 

chromosome end protection and telomere replication is targeted for Ubiquitin specific protease-7 

(USP7)-dependent proteolysis (320). Yet, this detrimental event that could unleash ATR-

dependent DNA damage signaling is prevented by a newly identified ALT specific factor, Testis-

Specific Y-encoded Like Protein (TSPYL5). TSPYL5 counteracts the destabilizing activity of 

USP7. In doing so, TSPYL5 fulfills a key role in sustaining ALT cell viability since its depletion 

elicits rampant apoptosis due to compromised telomere function. This remarkable finding shows 

that disrupting APBs, or more specifically, APB-resident factors that confer protection against 

PML-USP7-dependent proteolysis could be a silver bullet for ALT-based cancers.  

Interfering with the processing of DNA intermediates of telomere recombination has 

typically provoked acute cytotoxicity and apoptotic cell death. In those contexts, telomere 

shortening is often not observed. Rather, there seems to be a complete systems failure. This 

contrasts with chronic, progressive telomere shortening and DNA damage accumulation due to 
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disruption of key mediators of HDR like RAD52 that culminate in a senescence-like growth arrest 

(55,64). However, in one surprising case, the perturbation of telomere maintenance in ALT cells 

lacking RAD51AP1, a co-regulator of RAD51, provoked a cytoprotective autophagic phenotype 

(28). As with autophagy during crisis, telomere dysfunction and Cyclin GMP-AMP Synthase 

(cGAS)-dependent sensing of telomeric DNA fragments appears to mediate autophagy in ALT 

cells (321,322). However, in contrast to autophagy during cellular crisis, this autophagic pathway 

conferred cell survival (28). Only when autophagy was inactivated did the ALT cells succumb by 

apoptosis. The absence of Stimulator of Interferon Genes (STING) seems to be a prime culprit for 

this distinction since it is required for telomere dysfunction-induced autophagy during crisis and 

repressed in ALT cells (321). Other factors are likely to dictate outcomes such as the particular 

burden of telomere damage. For instance, autophagy in crisis responds to overwhelming and 

catastrophic telomere deprotection during mitosis. In contrast, the RAD51AP1 KO ALT cells 

displayed a relatively modest chronic telomere damage phenotype (28). If ALT cancer cells rely 

on autophagy for survival, this could represent a new vulnerability in ALT cells that presents an 

opportunity for therapeutic evaluation. These implicate novel and somewhat unexpected means by 

which ALT cancers could be targeted. 

This rationale aligns with the potential for exploiting elevated replication stress at ALT 

telomeres. We can interrogate the gene expression of proteins involved in resolution of replication 

stress to see if this drives vulnerability in ALT cancers (323). A comparison of the gene profile in 

ALT+ and TEL+ cancers would allow us to determine differential upregulation and 

downregulation of replication stress-related genes that are specifically involved in ALT+ cancers. 

We could also cross reference this to a previous BioID analysis that identified a unique network 

of 139 proteins that converge at ALT telomeres (87). We can then select genes that are upregulated 
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specifically in ALT+ cancers and conduct synthetic lethal screens with PARGi in a wide array of 

ALT+ cells, using TEL+ cell lines as controls. ALT telomeres exist in an atypical chromatin and 

genomic configuration that act in concert to manage genomic instability. Thus, deregulation of 

factors involved in relieving replicative stress in conjunction with PARGi may tip this delicate 

balance towards cell death. This screen could be invaluable in identifying replication stress 

enrichment biomarkers that would be informative to develop effective combinatorial therapies that 

exploit the vulnerabilities of ALT cancers (Figure 34).  
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Figure 34. The fate of ALT-inhibited cancer cells. ALT cancers exist in an equilibrium between beneficial HDR 

and telomere dysfunction. A shift from this equilibrium poses a therapeutic vulnerability that can be exploited for 

selective killing of ALT cancers. Synthetic lethality with ATRX/DAXX is a promising target since ATRX/DAXX 

loss of function mutations are prevalent in ALT cancers. Similarly, ALT-associated PML bodies (APBs) is an 

attractive target for therapy since APBs are unique to ALT cancers and are implicated in telomere metabolism of 

ALT cells. Disruption of APBs with infection of Herpes Simplex Virus-1 (HSV-1) or depletion of TSPYL5 have 

been shown to elicit cytotoxicity. In addition, several lines of evidence report that inhibition of HDR factors perturbs 

ALT activity and provokes to cell death. Intriguingly, the absence of STING in ALT cancers enables activation of 

the pro-survival autophagic pathway. This reliance on autophagy may present a unique opportunity in ALT cancers 

to tip the balance in favor of apoptotic cell death. 

5.4 Is HIRA Directly PAR-modulated?  

In chapter 4, we demonstrate that HIRA is directly PARylated through our mass 

spectrometry analysis and in vivo PARylation assay. Jungmichel et al. have confirmed that these 
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methodologies yield covalent modification of target proteins through validation in both in vivo and 

in vitro PARylation approaches (223). However, protein activity and subcellular localization can 

be influenced by either direct covalent modifications by PARP1 or free PAR that can bind to 

proteins in a non-covalent manner (166). Thus, it would be instrumental to confirm that HIRA 

activity is modulated by direct PARylation of the protein. It would be useful to initially inspect the 

HIRA protein sequence for potential PAR-binding modules. These can include PAR-binding 

consensus motifs (PBMs), PAR-binding zinc finger motifs (PBZs), macrodomain folds, WWE 

domains, and RGG repeats (154). PBMs have been identified in over 800 proteins and comprise 

of approximately 20 amino acids with a cluster of hydrophobic amino acids spaced by basic 

residues. PBZs contain a consensus sequence of less than 30 amino acids. Only two proteins in the 

human proteome contain high-affinity PBZ motifs (Kd ~ 10-3M). 11 human proteins have 

macrodomains, which are large regions containing 130-190 amino acids. The WWE domain is 

found in 12 human proteins and contains the conserved amino acids tryptophan (W) and glutamate 

(E). The RGG motif are regions that are rich in arginine (R) and glycine (G). Over 1000 diverse 

human proteins comprise of RGG motifs.  

We can analyze the amino acid sequence of HIRA through protein domain databases to 

predict potential PAR-binding modules. Several protein domain and alignment databases can be 

used, such as SMART (Simple Modular Architecture Research Tool), NCBI CDD (Conserved 

Domain Database), UniProt (Universal Protein Resource), MUSCLE (Multiple Sequence 

Alignment), and LALIGN (FASTA Package of Sequence Analysis Program). This reveals that 

HIRA does not contain the previously described PAR-binding modules. To further support this, 

HIRA is not found in a study that characterized the PAR-binding interactome through large-scale 

mass spectrometry-based proteome analysis (153). In fact, using Peptide 2.0, the HIRA amino acid 
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composition is found to be 41.6% hydrophobic, 13.37% basic, 10.52% acidic, and 34.41% neutral. 

As mentioned in chapter 4, HIRA’s hydrophobic cleft is important for its association with ASF1a. 

There are also clusters of salt bridges that form between the basic residues of HIRA and the acidic 

residues of ASF1a. Intriguingly, these basic residues lie within the B-domain of HIRA and are 

interspersed throughout small patches of hydrophobic residues. We can envision that this can act 

similar to PBMs and can potentially facilitate PAR binding to HIRA. However, these basic 

residues can also serve as sites for covalent conjugation of PAR onto HIRA. Taken together, 

further experimental studies need to be performed to eliminate the potential for indirect PAR 

accumulation to prevent HIRA localization and function.    

Interestingly, our results indicate that the mutant HIRA construct that lacked the B-domain 

cannot localize to ALT telomeres and be PAR-modulated. The 36 amino acids that span the B-

domain are within a highly disordered region of HIRA. Regions of structural low complexity are 

preferentially targeted for PAR-seeded liquid de-mixing (224). Additionally, the B-domain 

contains the critical I461 residue for ASF1a binding (286). The interface between HIRA’s B-

Domain and ASF1a is mediated through B-sheet, salt bridge and van der Waals interactions. 

Downstream of I461 are three arginine residues (458-460), which can be acceptors of PAR and 

are required for ASF1a binding. A potential explanation is that negatively charged PAR at these 

basic residues can disrupt the B-sheet and repel ASF1a through electrostatic forces. Thus, the B-

domain in HIRA could be PAR-regulated to prevent histone exchange from ASF1a. The next step 

to confirm the importance of these arginine residues would be to generate HIRA mutant constructs 

that contained individual point mutations of residues 458-460 or a HIRA mutant construct with all 

three residues mutated to alanine. These constructs would be tested in the same experiments as 
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reported in chapter 4. It is expected that the RRR mutant constructs would generate similar results 

to that of the B-domain if it is the region that directly engages with PAR.  

To further confirm that HIRA is covalently PARylated, we can perform an in vitro 

PARylation assay with purified, recombinant human HIRA, full length human His-PARP1, [32P]-

NAD+, and double-stranded DNA oligomer. HIRA can be separated using an SDS-gel and detected 

using autoradiography. The caveat of this assay is that HIRA is the same size as automodified 

PARP1, which would not allow for differentiation on the SDS-gel. To overcome this, we would 

need to optimize a method to remove PARP1 from the end reaction. Unfortunately, automodified 

PARP1 is abundant and likely to be challenging for a full cleanup of the reaction. We would need 

to purify His-PARP1 with a mutated BRCT domain to prevent automodification. Although it has 

been shown that the binding of PAR to the BRCT domain recruits other DDR factors to sites of 

damage, perhaps it would not be necessary for an in vitro PARylation assay where HIRA and 

PARP1 are in the same vicinity. Alternatively, we can attempt to IP HIRA after these reactions. In 

addition, HIRA may not be stable without the presence of the other complex subunits. Ray-Gallet 

et al. determined that the HIRA subunit forms a homotrimer and binds two CABIN1 subunits in 

vitro (227). It is possible that we need to complement the in vitro PARylation assay with 

recombinant CABIN1 and UBN1 to maintain the complex stability required for its PARylation. If 

these practical limitations are overcome, then this approach will confirm that PARP1 can 

covalently target HIRA for PARylation. 

 In addition, we can carry out an in vitro PAR binding assay where we immunoprecipitate 

YFP-HIRA or YFP-HIRA mutant constructs and then detect the binding or not of biotinylated 

PAR. YFP-PARP1 would be used as a positive control. YFP constructs will be separated on an 

SDS-PAGE denaturing gel and transferred to a nitrocellulose membrane. The membrane will be 
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incubated with biotinylated PAR polymers. The membrane can then be probed for streptavidin-

HRP and re-probed for YFP to detect the HIRA constructs as well as PARP1. If HIRA contains 

PAR-binding modules, then we should only detect PAR-binding in the YFP-HIRA and YFP-

I461D constructs. These constructs have been previously shown to localize to ALT telomeres, be 

PARylated in our in vivo PARylation assay, and are able to rescue the phenotypes seen with 

depletion of HIRA. Collectively, these anticipated results would provide compelling evidence for 

the direct role of PAR modulation on HIRA localization and activity. 

5.5 What is the Interplay between Factors that Mediate HIRA Recruitment to ALT 

Telomeres?  

HIRA localization to ALT telomeres is not completely dependent on PAR modulation, 

which suggests that there might be other unknown modes of recruitment. Ray-Gallet et al. 

confirmed that the HIRA complex showed direct binding to DNA without any sequence specificity 

(291). In addition, UBN1 and CABIN1 could bind directly to DNA, unlike ASF1a. They argued 

that the lack of sequence specificity for DNA binding targets HIRA to destabilized nucleosomal 

DNA regions, where it could alter nucleosome organization as part of a gap-filling mechanism. It 

has been determined that the lysine residues within the 176-295 region of UBN1 contribute to its 

ability to non-specifically bind DNA (288). Whereas the UBN1 middle domain interacts 

specifically with H3.3/H4 over H2A/H2B. However, it is not involved in nucleosome binding and 

cannot associate with H3.3/H4 after it has been deposited onto DNA. Interestingly, DNA 

fragments of over 24 bp can compete with H3.3/H4 for UBN1 binding. This infers that UBN1 

disassociates from DNA immediately after incorporation of H3.3/H4. We can acquire a mutant 
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construct of YFP-UBN1 that lacks the DNA-binding region to test whether UBN1 facilitates 

intermittent binding of the HIRA complex to ALT telomeres. If UBN1 can bind to ALT telomeres 

through its lysine-rich region, then we would expect the YFP-UBN1 DNA binding mutant to lack 

the ability to colocalize at ALT telomeres in the absence of PARGi. Furthermore, we can deplete 

these cells of UBN1, transiently transfect in YFP-UBN1 or the YFP-UBN1 DNA binding mutant, 

and then perform IF on endogenous HIRA localization at telomeres. The HIRA complex should 

still assemble with the YFP-UBN1 DNA binding mutant. However, due to lack of DNA binding, 

it should not localize to ALT telomeres for subsequent H3.3 deposition. It would also be interesting 

to test whether UBN1 DNA binding becomes dispensable with PARGi. If the same experiment is 

performed with PARGi, depletion of UBN1 should not affect endogenous HIRA localization to 

ALT telomeres. In addition, a rescue with YFP-UBN1 would not enhance HIRA recruitment to 

telomeres, unless PARylated UBN1 has additional roles. These set of experiments would elucidate 

whether UBN1 ensures that the HIRA complex is in close proximity to ALT telomeres. 

Another hypothesis is that HIRA can be partially recruited to ALT telomeres by interacting 

with RPA. Zhang et al. showed that HIRA may bind to RPA-coated R-loops that form at gene 

regulatory units in the G1 phase (301). RPA is also involved during ALT, where it may coat 

resected telomeric ends for the RAD51-dependent pathway or bind to the ssDNA loop of TERRA-

generated R-loops. Similar to the UBN1 experiments, we can knock down RPA and look at HIRA 

localization to ALT telomeres in the absence of PARGi. Likewise, if RPA is required, we would 

expect a decrease in HIRA localization to these telomeres. Our unpublished work shows that 

accumulation of PAR displaces RPA from telomeric oligos and abolishes RPA recruitment to 

U2OS TRF1-FokI telomeres. This is supported by data from Illuzzi et al. showing that excessive 

PAR prevents binding of RPA onto chromatin in HU-treated cells (302). This implicates an early 
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role of RPA in keeping the HIRA complex proximal to ALT telomeres. However, once the 

complex is recruited, RPA quickly disassociates to allow H3.3 deposition by HIRA. 

It would be valuable to expound on the intricacy of PAR modulation in regulating the 

outcome of HIRA complex assembly at ALT telomeres. A simple scenario would be that PAR 

modulation of HIRA recruits the entire complex to incorporate H3.3 at ALT telomeres undergoing 

HDR-mediated DNA synthesis. A more intricate model would suggest that UBN1 and CABIN1 

are not solely part of the complex for stability and H3.3 deposition. As suggested by our Af1521 

PAR proteomics, both subunits could be PARylated or bind to PAR to propagate a positive 

feedback loop that generates a permissive chromatin environment for recombination. Thus, to 

confirm their regulation by PAR, we can perform in vitro PARylation, in vitro PAR-binding, and 

in vivo PARylation assays. 

 If UBN1 and CABIN1 are indeed modulated by PAR, it begs the question of whether their 

PAR regulation is necessary for HIRA complex recruitment or function. An approach we can take 

is to generate non-PARylatable constructs of UBN1 and CABIN1 and test their capacity for PAR-

binding or PARylation. Initially, we would create truncated mutants to determine what region of 

the subunits are PAR-binding or PARylated. After we acquire our non-PAR-binding or non-

PARylatable UBN1 and CABIN1 constructs, we could test their ability for complex assembly, 

recruitment at ALT telomeres, and efficiency of H3.3 deposition in the context of UBN1, CABIN1, 

or HIRA depletion. The data regarding these mutant UBN1 and CABIN1 constructs would be 

compared to our data with the YFP-HIRA B-domain mutant, as well as repeated with the YFP-

HIRA RRR (458-460) mutant construct that was previously described in 5.4. In an ideal situation, 

we would find non-PAR-binding or non-PARylatable UBN1 and CABIN1 constructs, together 

with the previous YFP-HIRA RRR (458-460) mutants, that could still form a stable HIRA 
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complex, but has disrupted recruitment and/or activity at ALT telomeres. This would provide 

greater insight into whether PAR regulation signals the assembly of the complex or its recruitment 

to ALT telomeres.  

5.6 What is the Role of PAR-mediated HIRA Chromatin Assembly at ALT Telomeres? 

 Does PAR modulation of HIRA disrupt de novo H3.3 synthesis at ALT telomeres? 

Although the role of HIRA has been characterized in the context of transcription recovery 

and nucleosome gap-filling, its function and dependency on PAR at ALT telomeres has only been 

explored in this thesis dissertation (226,291). We demonstrated that HIRA and its PAR modulation 

is necessary to facilitate the HDR mechanisms that direct ALT telomere maintenance. The HIRA 

complex deposits the variant H3.3, which is constitutively expressed throughout the cell-cycle 

(277). Interestingly, Kraushaar et al. showed that there is differential H3.3 deposition kinetics in 

mouse embryonic fibroblasts (MEFs) (324). H3.3 incorporation is rapid and robust at promoters, 

enhancers, and gene bodies. The slowest incorporation of H3.3 occurs at heterochromatic regions, 

such as telomeres while no turnover is observed at pericentromeric regions. Slow H3.3 turnover at 

telomeres represents a continuous exchange of nucleosomes that is required for telomere 

maintenance.  This implies that there are distinct mechanisms of nucleosome assembly, stability, 

and eviction at different regions of the genome to mediate transcription and chromatin integrity 

(324). Indeed, the ATRX/DAXX complex deposits H3.3 at telomeres and pericentric 

heterochromatin while HIRA incorporates H3.3 at actively transcribed regions (275). 

ATRX/DAXX loss of function mutations are prevalent in ALT cancers (325,326). This means that 
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H3.3 deposition in ALT is solely dependent on the HIRA complex, as we show for the first time 

in this thesis. Thus, it is possible that HIRA’s function in H3.3 incorporation can extend beyond 

its known role to support telomere maintenance in ALT. Based on this speculation, the next 

question to ask is whether PAR modulation of HIRA alters H3.3 deposition at ALT telomeres and 

whether this uncouples ALT HDR-coupled nucleosome assembly.   

Histone management shapes the chromatin landscape and orchestrates the fate of DNA 

repair. It has been shown that parental H3.3 recycling is independent of new H3.3 deposition at 

UVC-damaged sites (327). Adam et al. demonstrated that parental H3.3 redistribution precedes 

incorporation of newly synthesized H3.3. While parental H3.3 rapidly distributes within minutes 

of UVC irradiation, new H3.3 accumulation is detected starting at 30 minutes after damage. HIRA 

does not function to facilitate parental H3.3 dynamics in response to UV irradiation. Rather, HIRA 

mediates H3.3 de novo deposition throughout the cell cycle, but is excluded from replication sites 

in S-phase. However, H3.3 can be incorporated at replication sites when H3.1 incorporation is 

impaired due to CAF1 depletion, which only interacts with the replisome to deposit H3.1/H4 onto 

newly synthesized DNA in S-phase (291,328). This highlights the notion that HIRA can be a 

compensatory mechanism to manage chromatin assembly defects. Notably, Orsi et al. showed that 

HU treatment and ASF1a depletion impairs the recycling of parental H3.1 and H3.3 histones and 

their nuclear distribution (329). ASF1 depletion leads to recycling of parental H3.3 at sites distant 

from their initial location during mid/late S-phase. They hypothesized that parental histones that 

are not properly secured during replication fork progression are recognized as new histones and 

deposited to distant regions by HIRA or ATRX/DAXX. It has also been shown that the added 

stress caused by ASF1 depletion could compound on the replicative challenges at telomeres to 

trigger the ALT pathway (243). Taken together, these studies emphasize the importance of histone 
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management at homeostatic levels. Thus, a parsimonious model to explain the relevance of HIRA 

at ALT telomeres is that HIRA-mediated H3.3 deposition is coupled to DNA synthesis in ALT 

during G2-BIR, where CAF1 does not deposit H3.1/H4 and ATRX/DAXX is not available to 

incorporate H3.3/H4. HIRA simply acts as a safeguard mechanism to ensure that replication stress 

levels at ALT telomeres does not surpass a threshold that would be detrimental to survival.   

An important future direction to pursue is characterization of HIRA-mediated newly 

synthesized H3.3 during HDR-mediated DNA synthesis at ALT telomeres. We can visualize 

newly synthesized H3.3 and parental H3.3 at replication sites in U2OS cells that stably express the 

SNAP-tag labelling system with depletion of HIRA (329) (Figure 35). The SNAP-tag technology 

allows the distinction between old and newly deposited histones. The SNAP-tag is an engineered 

version of the DNA repair protein O6-alkylguanine-DNA alkyl transferase. It covalently and 

irreversibly binds to O6-benzylguanine (BG) that is coupled to the fluorophore 

tetramethylrhodamine (TMR). The SNAP-tag also reacts with the optically inert group 

bromothenylpteridine (BTP), which is referred to as the “Block”. Our methodology would involve 

the “quench-chase-pulse” labelling of G2 arrested H3.3-SNAP U2OS cells that are depleted of 

HIRA or expressing the various HIRA mutants.  During the “Quench” step, all pre-existing 

histones are bound to the “Block”. The “Chase” step enables new H3.3 to be deposited at telomeric 

DNA. During this step, we would also add EdU to mark sites of replication. The “Pulse” phase 

includes the addition of TMR to label all SNAP-H3.3. Using IF, we can stain for TRF2 and 

quantify the colocalization between SNAP-H3.3, EdU, and TRF2. This would represent 

incorporation of newly synthesized H3.3 at replicating telomeres in G2-phase, allowing us to 

validate that HIRA is responsible for H3.3 deposition at ALT telomeres.  
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Figure 35. H3.3 SNAP-TAG system to observe histone dynamics. H3.3 is fused to SNAP-TAG, which reacts 

covalently with benzylguanine derivatives that are labelled with fluorescent TMR.  B) Schematic for labelling new 

histones. The Quench step involves the addition of the “Block”, an optically inert molecule, that binds to old H3.3. 

At the Chase phase, newly synthesized H3.3-SNAP is not bound by the Block. During the Pulse step, addition of 

TMR leads to a covalent, non-reversible interaction with H3.3-SNAP. Newly synthesized H3.3 bound to fluorescent 

TMR can be visualized after Triton-X extraction to remove soluble histone pools. Adapted from Torne J. et al., 

Histone Variants, 2018 (329) (https://link.springer.com/protocol/10.1007%2F978-1-4939-8663-7_11). 

 

Based on the proposed model, we would expect that depletion of HIRA will impede H3.3 

incorporation at telomeres during G2-BIR because there is no other histone chaperone to 

compensate for its activity. This is supported by Ray-Gallet et al. who showed that H3.3 can 

substitute for impairment in H3.1 deposition at replication sites, but H3.1 cannot replace the loss 

of H3.3 incorporation outside of S-phase (291). To confirm this in our system, we could also 

perform the same experimental scheme, but with depletion of CAF1, to which we should not see 

an effect on newly synthesized H3.3 at ALT telomeres. It would also be informative to generate 

WT TRF1-FokI cells with the SNAP-H3.3 tag, especially since we observe decreased nascent 

telomere synthesis with the absence of HIRA in WT TRF1-FokI cells. Taken together, it is 

https://link.springer.com/protocol/10.1007%2F978-1-4939-8663-7_11
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tempting to envisage a model where replication stress can subject ALT telomeres to HDR-coupled 

DNA synthesis that would require HIRA-mediated H3.3 deposition to maintain chromatin 

integrity at the moving D-loop.  

PAR modulation poses an additional layer to control HIRA recruitment and activity at ALT 

telomeres that are primed for HDR-mediated DNA synthesis. To tease out the role of PAR 

regulation in HIRA-dependent H3.3 incorporation in ALT, we can deplete endogenous HIRA in 

the U2OS SNAP-tag cells and reintroduce WT-HIRA, as well as the varying HIRA mutant 

constructs mentioned previously (homotrimerization, I461D ASF1 binding, ΔB-domain, and 

RRR). If HIRA’s PAR modulation is essential for its sequestration at ALT telomeres, then we 

would not expect the defective PAR-modulated HIRA mutants to rescue H3.3 incorporation at 

ALT telomeres. Both the ΔB-domain and RRR mutants contain the regions necessary for 

interaction with ASF1a. A viable model would be that PAR regulation precedes ASF1a binding 

by recruiting HIRA to ALT telomeres. Since PAR turnover is rapid, removal of PAR likely allows 

for ASF1a binding to HIRA. Retention of PAR at HIRA within the B-domain would actually block 

the HIRA-ASF1a contact and subsequent deposition of H3.3 at ALT telomeres. Thus, we should 

see impaired H3.3 incorporation if we simply treat the U2OS SNAP-tag cells with PARGi. This 

means that PAR regulation of HIRA can provide immediate and localized restoration of chromatin 

at HDR intermediates in ALT.  

 How does HIRA-mediated H3.3 deposition couple with HDR mechanisms in ALT? 

It is possible that PAR modulation facilitates ASF1a’s regulation of H3.3 biogenesis and 

usage during HDR in ALT. Perhaps ALT cells employ a similar mechanism observed during the 

tight coordination of histone buffering during S-phase. Groth et al. proposed that inhibition of 
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DNA replication triggers the shuttling of ASF1a from a histone-free form to an active 

multichaperone complex in order to counteract low histone biogenesis (330). These S-phase 

histones become readily available to enable CAF1-mediated histone loading for recovery and 

repair. We can speculate the importance of a parallel mechanism in G2-BIR to relieve the 

replicative burden that naturally occurs at ALT telomeres. In ALT, ASF1a shuttling of H3.3 for 

the HIRA complex during G2 could play an important role because of the lack of redundancy in 

histone chaperones during this phase. CAF1 only acts in S-phase and H3.1 cannot replace H3.3 

incorporation throughout the cell-cycle. ATRX/DAXX is not present in most ALT cancers to 

compensate for loss of H3.3 incorporation. To address this idea, we can follow the pool of soluble 

H3.3 throughout the cell-cycle in ALT cells. This will be done using stable expression of C-

terminal FLAG-and HA-epitope tagged H3.1 and H3.3 by retroviral transduction (273). Cells will 

be collected in S-phase or G2-phase after a double thymidine block. In control samples, we should 

see the increased pool of soluble H3.1 in S-phase, but not H3.3 since H3.3 supports chromatin 

assembly uncoupled from DNA replication. The opposite results should be seen in G2-phase, 

which would promote G2-BIR in ALT cells. Immunoprecipitation of these extracts should show 

higher proportion of endogenous ASF1a and HIRA bound to H3.3 if HIRA and ASF1 are required 

for H3.3 coupled G2-BIR.   

The presence of mutant H3.3 has been shown to alter epigenetic marks near genes involved 

in cancer processes and brain function (331). Frey et al. observed that a mutation of H3.3K27, a 

residue whose trimethylation is associated with polycomb target gene silencing, also exhibits 

similar sensitivity to the knockout of H3.3 (332,333). The histone H3.3K27 mutation has been 

reported in 60% of pediatric brain cancers (121). To add on, H3.3 G34R/V mutations also 

contribute to gliomagenesis and is hypothesized to activate the oncogene MYCN in pediatric 
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gliomas (334). This is of particular importance because ALT has a high prevalence in pediatric 

high-grade gliomas, with 44% of pediatric glioblastoma (GBM) demonstrating ALT activity (335). 

In fact, it was recently shown that the presence of H3.3-ATRX/DAXX- P53 mutations is a strong 

driver of ALT (336,337). The prevalence of H3.3 mutations in the pediatric cancer setting clearly 

raises the importance of chaperones, histone-modifying enzymes and factors that feed into H3.3 

function.  Given the importance of H3.3 mutations in ALT, it would be worthwhile to test if this 

correlates to elevated levels of HIRA protein expression or transcription of mRNA in ALT+ and 

TEL+ cancers. A cycloheximide (CHX) chase experiment, through pulse labelling of newly 

synthesized proteins with 35S-methionine and cysteine, would further address HIRA protein 

stability (28). This will shed light on the tight regulation of HIRA, either through post-

transcriptional or post-translational mechanisms, that is necessary to mediate H3.3 incorporation 

in ALT.  

ALT cancer cells must maintain a balance between pro- and anti-recombinogenic signals. 

A shift from this equilibrium poses rampant replicative stress that leads to unproductive ALT 

activity. It is plausible to assume a mode of G2-BIR coupled nucleosome assembly to protect the 

integrity of advancing forks. Several studies have reported the impact of histone dynamics on 

replication fork progression and stability (338–342). Nucleosomes are a physical barrier for the 

replication machinery. During S-phase, histones are evicted ahead of the fork while de novo 

histones are synthesized behind the fork (343). CAF1 is the most well-characterized replication-

coupled chromatin assembly factor (299). CAF1 associates with the replication fork through its 

interaction with PCNA and collaborates with ASF1, which has the capacity to bind to RFC as seen 

in budding yeast (344,345). The obligate coupling of chromatin remodeling and DNA synthesis is 

underscored by the fact that depletion of CAF1 or ASF1 evokes stalled replication forks and 
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inhibits S-phase progression (299,346,347). Intriguingly, MCM2, a component of the replicative 

helicase, can bind to either a H3-H4 tetramer or dimer (348,349). The latter involves initial capture 

of parental H3-H4 by MCM2 at the proximity of the fork, which is disrupted by ASF1 to mediate 

redeposition of H3-H4 dimers and free the MCM complex so it can progress with the fork (350).  

In budding yeast, BIR has been documented to require all essential DNA replication factors, 

including the MCM complex (351).  

It would be incredibly valuable to assess whether the HIRA complex is part of the G2-BIR 

replisome to facilitate ALT telomere maintenance. In situ analysis of protein interactions at DNA 

replication forks (SIRF) can be employed to quantify protein associations with nascent DNA at 

active and stalled replication forks (Figure 36). SIRF is a robust and sensitive combination of the 

isolation of proteins on nascent DNA (iPOND) and proximity ligation (PLA) assay (352,353). In 

WT TRF1-FokI U2OS cells that are arrested in G2, newly synthesized DNA is labeled with EdU 

and then biotinylated by click chemistry. Primary antibodies are added against biotin and HIRA 

or ASF1a. Cells are then incubated with secondary antibodies conjugated with oligonucleotides 

that serve as proximity probes. Secondary antibodies that are within 40 nm in proximity will allow 

for the oligomers to anneal and form a nicked circular DNA molecule, which become a template 

for rolling circle amplification. A telomere sequence-specific fluorescence DNA probe is annealed 

to these amplified DNA circles and the signal intensity is then quantified. This is a powerful tool 

that has the potential to capture the HIRA-mediated replisome specifically in ALT cells during 

G2.  
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Figure 36. Schematic of SIRF method. A) Cells are pulsed with EdU. B) EdU is biotinylated by click chemistry. 

C) Primary antibody against protein of interest and biotin are added to slides. Slides are then incubated with 

secondary PLA antibodies containing DNA-oligomers. D) Upon association, DNA oligomers ligate and enable 

rolling circle amplifcation. E) Fluoresent DNA probe anneals to the sequence. Adapted from Roy S et al., JCB, 2018 

(https://rupress.org/jcb/article-lookup/doi/10.1083/jcb.201709121). 

 

DNA synthesis and histone deposition also partner during DNA repair and oncogenesis. 

CAF1 is known to promote Recombination-Dependent-Replication (RDR) in fission yeast. It was 

observed that RDR-coupled histone deposition stabilizes D-loop intermediates and counteracts the 

activity of Rqh1, the fission yeast orthologue of human RecQ1. Thus, histone deposition ensures 

continuous chromatin assembly upon damaged lesions induced by Hydroxyurea and Camptothecin 

(354). In chicken DT40 cells, loss of H3.3 leads to defective fork progression on UV-damaged 

DNA (333). Intriguingly, replication stress has been shown to perturb H3.3 epigenetic stability by 

interfering with pre-deposition marking and histone recycling. Jasencakova et al. observed that 

replication stress traps new and old H3.3 at ASF1, both of which can be incorporated at 

unscheduled sites upon fork restart (355). In particular, there was mainly the accumulation of 

https://rupress.org/jcb/article-lookup/doi/10.1083/jcb.201709121
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H3K9me1 at ASF1 complexes. H3K9me1 can be a precursor of H3K9me3, which poses a hazard 

for unscheduled silencing and challenges the integrity of the epigenome (355–357). ALT cancers 

likely use the previously mentioned mechanisms to manage recurrent cycles of replication stress 

to generate DSBs for HDR mechanisms. Loss of the HIRA complex simply unleashes unwarranted 

telomeric defects that are not resolved by DNA repair and eventually become hazardous to cells. 

As a consequence, either absence of HIRA or loss of its activity will lead to replication defects, 

such as telomere fragility, inefficient replication, or delay into mitosis. These examples illustrate 

how distinct chromatin reorganization could mediate the intricate balance between genome 

instability and survival.  

 Why is H3.3 incorporation necessary at ALT telomeres? 

If the above speculations are true, then it raises the question of why the histone variant 

H3.3 is particularly important in ALT. There are seven human H3 variants in the H3 family: two 

canonical H3.1 and H3.2, replication-independent H3.3, centromere protein A (CENP-A), testis-

specific histone H3t and the primate specific H3.X and H3.Y (358). Although H3.3 only differs 

from its canonical counterparts by 4-5 amino acids, this confers distinct epigenetic patterns and 

chromatin regulation that lead to diverse biological outcomes (359). Canonical H3.1 and H3.2 do 

not contain introns, are organized in multi-clusters, and the mRNA is not polyadenylated. On the 

other hand, H3.3 is redundantly encoded from two intron-containing H3F3A and H3F3B genes 

(359,360). Nucleosomes that contain H3.3 are intrinsically unstable and are even less stable with 

the combination of H3.3 and H2A.Z, a noncanonical H2A histone (361). These unstable histone 

variants could possibly be more easily displaced by transcription factors at active gene bodies. 

They can also serve as temporary placeholders to prevent the binding of stable, canonical histones 
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or leave the region vacant for non-specific association of chromatin-binding factors.  This implies 

a dynamic cycling of histone occupancy at different regions in the genome (362). Therefore, 

narrow windows exist where chromatin is bound or free during these exchanges.  

The high level of amino acid homology between H3 variants means that the same PTMs 

can decorate shared residues. However, each histone variant carries a characteristic histone 

signature and occupies different regions of the genome, which confers distinct function (324). H3.3 

is enriched with post-translational modifications (PTMs) associated with active chromatin (362–

364). Tvardovskiy et al. employed a quantitative middle-down proteomics approach to determine 

the dynamic changes in the H3.3 PTM landscape across the lifespan of mice from 3-24 months 

(365). They report that H3.3 accumulates in somatic issues with increasing age. Unexpectedly, 

they found that individual and combinatorial H3 methyl PTMs exhibit stable enrichment on H3.3. 

These PTM signatures may allow cells to rapidly turn on or off specific genes in response to 

specific stimuli. Despite H3.3 being correlated with gene activation, a study showed its 

underappreciated role in the establishment of the bivalent chromatin landscape at developmental 

genes that exhibit low expression in embryonic stem cells (ESCs) (289). Thus, HIRA-dependent 

H3.3 deposition is essential to maintain accurate gene expression upon differentiation. This is an 

important feature because some cancers, including gliomas, are speculated to arise from regression 

to a less differentiated state or initial failure to establish differentiation (366–368). Thus, the unique 

properties of H3.3 might be beneficial to accommodate the dynamic chromatin landscape of ALT.  

Given the importance of H3.3 and its PTMs, we need to conduct experiments to validate 

that the specific loss of H3.3 perturbs telomeric chromatin in a manner that impairs HDR at ALT. 

Depletion of H3.3 should mimic the phenotypes seen with loss of HIRA, if HIRA-mediated H3.3 

incorporation is indeed important for ALT activity. Furthermore, depletion of HIRA or H3.3 
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possibly leads to a more permanent, open chromatin environment that is permissive to cleavage 

by the SLX-MUS endonuclease to generate more DSBs. We can use the micrococcal nuclease 

(MNase) digestion to determine chromatin accessibility in response to absence of HIRA or H3.3 

(369). Cell lysates are incubated in MNase, which cleaves at nucleosome linker regions. The DNA 

can be fractionated by agarose gel electrophoresis and subjected to southern blotting with a 

radioactive telomeric probe. The blot will reveal a ladder of bands that correspond to the size of 

the nucleosome core and linker (~200 base pairs). Greater distance between the bands represents 

nucleosome-free regions. With loss of H3.3 or HIRA, we expect de-condensation of the chromatin, 

which will be represented by the increased distance in the ladder of bands in the MNase digestion. 

We reason that tight regulation of H3.3 incorporation is necessary to maintain the proper 

chromatin dynamics that facilitates ALT. H3.3 PTMs at ALT telomeres could serve as an 

additional layer for fine-tune control. Similar to the approach taken by Tvardovskiy et al., we could 

utilize a MS-based middle-down proteomics approach to measure H3.3 proteoforms in ALT+ and 

TEL+ isogenic cell lines, ALT+ cancers in each cell cycle, and WT TRF1-FokI U2OS cells (365). 

We expect the H3.3 PTM profiles to be distinct between ALT+ and TEL+ cancers as well as 

throughout the cell cycle. WT TRF1-FokI U2OS cells will likely have a similar pattern to that of 

U2OS cells arrested in G2-phase, which supports the notion that TRF1-FokI telomeric DSBs 

induces DNA synthesis in G2/M. It would be reaffirming to observe specific PTMs at H3.3K27 

and H3.3 G34R/V across all ALT+ cancers, especially since these H3.3 mutants are common in 

pediatric brain tumors. This strategy has the potential to uncover novel H3.3 PTMs that could be 

driver mutations or biomarkers of ALT.  
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 Is there a crosstalk between PAR and H3.3 post-translational modifications? 

The crosstalk between these epigenetic marks at H3.3 and PARylation merits further 

exploration because it potentially orchestrates localized action at ALT telomeres. As discussed in 

prior chapters, PARylation has broad effects on chromatin configuration to enable the plasticity 

for DNA repair. PARylation has been shown to restrain the enzymatic activity of SIRT1, a NAD+-

dependent deacetylase (370). Thus, PARylation cooperates with histone acetylation to maintain 

accessible chromatin and transcription. While acetylation is attributed to active transcription at any 

modified residue, the outcome of methylation varies depending on the degree of methylation 

(mono-, di-, or tri-) and the modified lysine residue. PARylation of EZH2 histone 

methyltransferase, a member of the polycomb repressive complex 2 (PRC2) leads to decreased 

levels of H3K27me3. It was also reported that PARP1 can PARylate H3 and disrupt the affinity 

of EZH2 to its substrate (371). These factors work in concert to enhance chromatin decondensation 

and prevent EZH2 from repressing genes involved in DNA repair. Interestingly, chromatin 

remodeler CHD2 is recruited to DSBs in a PARP1-dependent manner to incorporate H3.3 at these 

sites and promote repair by cNHEJ (204). NHEJ and HR compete for DSBs as a substrate so it 

would be interesting to uncover whether PTMs at H3.3 could alter pathway choice outside of S-

phase (372). This is certainly relevant in the context of G2-BIR processes that occur in ALT 

cancers. It is plausible that the interplay between PAR and PTMs at H3.3 create a unique barcode 

in ALT that shunts NHEJ repair to productive HDR mechanisms.   

This opens a vast area of exploration into how PAR and different PTMs modulate the 

optimal balance of genome stability at ALT telomeres. If the previously described MS-approach 

to analyze H3.3 PTMs works, then we can add PARGi to the same conditions to determine if 

retention of PAR alters the profile of H3.3 PTMs. This is informative because it further elucidates 
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the exact outcomes of PARylation on ALT chromatin. We can envision a possibility where 

PARylation will abolish H3.3 PTMs that promote chromatin decondensation or DNA repair 

factors at ALT telomeres. In an ideal situation, it would be useful to see if PARylation directly 

disrupts the enzymes that catalyze H3.3 PTMs, such as Histone acetyltransferases (HATs) and 

DNA methyltransferases (DMNTs). However, these enzymes have broad, genome-wide roles so 

it would be challenging to tease out whether the observed effects are due to PARGi.  

 Does HIRA contribute to TERRA function at ALT telomeres? 

Another avenue to pursue is whether the RPA-HIRA-H3.3 axis that regulates transcription 

could have a non-canonical role at RNA-DNA hybrids in ALT. RNA-DNA hybrid structures (R-

loops) are frequently detected at gene regulatory elements (373). These structures comprise of a 

displaced ssDNA filament that is likely coated by RPA. R-loops are required for H3.3 deposition 

at promoters and enhancers since overexpression of RNase1 H1, which cleaves the RNA region, 

lowers the levels of H3.3 incorporation. This RPA and R-loop association promotes the 

recruitment of HIRA to these regions to regulate the directionality of transcription (301) (Figure 

37). There is mounting evidence that confirms the upregulation of recombinogenic long noncoding 

telomeric RNA TERRA at ALT telomeres, which forms RNA-DNA hybrids with the telomeric C-

rich strand (105,240,374,375). We can envision the resemblance of this structure to R-loops 

formed at active gene bodies. Thus, HIRA can be recruited to RPA-bound telomeric R-loops.  
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Figure 37. RPA-HIRA-H3.3 complex at R-loops. RPA co-localizes with HIRA and H3.3 at R-loops within gene 

regulatory elements. This regulates transcriptional directionality at promoters. Adapted from Zhang et al., Mol Cell, 

2017 (301) (https://www.sciencedirect.com/science/article/pii/S1097276516307754?via%3Dihub). 

 

An attractive possibility would be that HIRA functions to relieve telomere instability 

related to TERRA-telomeric hybrids. Long stretches of ssDNA in telomeric R-loops are prone to 

breakage, which can be DSB substrates for HR and subsequently promote ALT activity. Nguyen 

DT et al. proposed that ATRX normally plays a role in processing R-loops or preventing their 

formation at G-rich regions (303). It is speculated that ATRX could recruit other enzymes that 

degrade R-loops to sustain genome stability. In ALT cells that lack functional ATRX/DAXX, 

HIRA is likely present at telomeric R-loops to re-establish a normal chromatin structure during 

telomere synthesis. However, it remains unknown whether HIRA’s recruitment to telomeric R-

loops is sufficient to signal other factors to resolve these structural impediments. This could 

include RNaseH1, which has been shown to inhibit hybrid formation and the recombinogenic 

https://www.sciencedirect.com/science/article/pii/S1097276516307754?via%3Dihub
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potential of ALT telomeres (105). Thus, HIRA can either fully or partially restrain unwarranted 

R-loop formation to maintain HR without compromising telomere integrity too severely.  

TERRA is also implicated in telomeric heterochromatin assembly through H3 

trimethylation marks, which was previously attributed to downregulation by PARylation. It was 

reported that TERRA directly associates with the PRC2 complex components EZH2 and SUZ12, 

which establishes H3K9me3, H4K20me3, H327me3, and HP1 at telomeres (376). A genome-wide 

analysis revealed that the targeting and function of PRC2 is dependent on ATRX at Xist RNA and 

polycomb targets (377). ALT cancers that lack ATRX must then rely on elevated TERRA levels 

to compensate for PRC2 recruitment. It was also reported that SET Domain Bifurcated 1 

(SETDB1) histone methyltransferase governs H3K9me3 deposition, a signature mark for 

heterochromatin, at ALT telomeres (378). Thus, ALT cells exhibit atypical heterochromatinization 

that can drive TERRA transcription at telomeres and other ALT features. This heterochromatin 

mark is necessary for ATRX localization to telomeres and suppression of ALT activity. Taken 

together, there appears to be a complex epigenetic landscape that is conducive for HIRA activity 

during TERRA transcription.  

Based on these speculations, we could envision that loss of HIRA permits excessive levels 

of TERRA-telomeric loops that would unleash telomere instability and lead to unproductive ALT. 

Initially, we can perform a TERRA RNA-pulldown in ALT+ cancer cells to determine whether 

HIRA interacts with TERRA. Biotinylated RNA oligonucleotides containing UUAGGG repeats 

are incubated with nuclear abstracts from ALT+ cells (240). Streptavidin pulldown of TERRA can 

be performed and HIRA interaction can be detected using gel electrophoresis. We then need to 

investigate whether HIRA can promote telomere RNA-DNA hybrids. RT-PCR and Northern 

blotting can quantify the amount of detectable TERRA transcript in HIRA KD cells (240,379). 



 

 161 

Both techniques use primers that amplify the subtelomeric portions of TERRA, which originate 

from chromosomes 1 and 21, or chromosomes 2, 10, and 13. RNA-FISH would show TERRA 

localization to APBs in ALT cells (105). We would measure the formation between TERRA and 

the telomeric C-strand through co-immunocytochemistry with antibodies to TRF1 and purified 

S9.6 monoclonal antibodies, which specifically detects RNA-DNA hybrids in a sequence-

dependent manner. If HIRA antagonizes TERRA formation in ALT cells, then we would expect 

its loss to contribute to downstream telomeric replication defects that eventually become 

unmanageable for ALT telomere maintenance.   

 What is the role of HIRA in ALT cell survival by autophagy? 

HIRA’s implicated role in innate immune defense could aid the autophagic pathway that 

confers ALT cell survival. In Hela cells, HIRA-mediated H3.3 incorporation at the host’s 

chromatin facilitates transcription of Herpes simplex virus type 1 (HSV-1) upon the early lytic 

stage of infection (380). It appears that HSV-1 manipulates the distinct features of H3.3 to increase 

viral transcription. H3.3 at actively transcribed genes can allow them to be accessible and primed 

for transcription. H3.3 is enriched at active chromatin marks, which could accommodate the rapid 

recruitment of cellular and viral transcription factors. In contrast to these findings, Rai TS et al. 

reported that HIRA recognizes naked viral DNA and suppresses viral gene expression, virus 

replication and lytic infection in an array of primary cell lines (298). In primary cells, HIRA 

responds to anti-viral interferons (IFNs) and localizes to PML nuclear bodies (PML-NBs), which 

are thought to be sites of anti-viral activity. Ultimately, this induces heterochromatinization and 

silencing of foreign viral DNA (298,381). This is an important anti-viral response because many 

viruses have evolved antagonizing strategies, such as expression of ICP0 (RING-finger ubiquitin 
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ligase with SUMO-Targeting Ubiquitin Ligase (STUbL) properties), to disrupt HIRA targeting to 

infecting viral genomes and PML-NBs (382,383). They reconciled these observed differences by 

suggesting that the anti-viral function of HIRA may be cell-type dependent since some cancer cell 

have evolved distinct mechanisms to counteract this response. To confirm this hypothesis, they 

showed that Hela cells and other transformed human cell lines do not display HIRA localization 

to PML-NBs upon IFN treatment.  

Although there have been several studies that implicate HIRA in anti-viral intrinsic 

immunity, there has been no evidence that link this to ALT oncogenesis. Given the propensity for 

HIRA to deposit H3.3 at naked DNA through its gap-filling function, it is possible that HIRA 

could recognize extrachromosomal telomere repeat DNA within APBs or freely in the nucleus. In 

human fibroblasts with a STING-cGAS axis, ECTRs that are detected in the cytoplasm activate 

IFN and cytokine signaling, resulting in proliferation defects (321). ATRX/DAXX have been 

shown to restrict viral infection through epigenetic silencing or entrapment mechanisms (381,384). 

Simultaneous re-expression of STING and ATRX in ALT cancers restores the STING-mediated 

cytosolic DNA-sensing pathway (321). Taking these findings into consideration, HIRA could be 

an additional safeguard mechanism to sequester and resolve high levels of ECTRs in ALT cells.  

Nassour et al. showed that activation of autophagy is an integral tumor suppression 

mechanism (322). Telomere dysfunction in epithelial and fibroblast cells during crisis generates 

cytosolic telomeric DNA fragments that activate the cGAS-STING pathway.  It was also reported 

that inhibition of ALT telomere maintenance in ALT cancers lead to the release of cytosolic 

telomeric fragments that are recognized by cGAS and removed through AMPK-ULK1 (AMP-

Activated Protein Kinas-Unc-51 Like Autophagy Activating Kinase)- and ATG7 (Autophagy 

Related 7)-mediated autophagosome biogenesis (28,321). ALT cancers do not exhibit an 



 

 163 

alternative autophagy pathway that involves the cGAS-STING axis because STING expression is 

barely detectable in these cancers (28). Studies have shown that cells with impaired autophagy 

exhibit reduction in DNA damage repair capacity, such as HR and NHEJ (385). The synthetic 

lethal relationship between autophagy and HDR holds promise to exploit the vulnerabilities of 

ALT cancers. Indeed, Barroso-Gonzalez et al. showed that RAD51AP1 knockout ALT cells were 

more sensitive to autophagic inhibition (28). We can envisage a scenario where HIRA’s regulatory 

role in innate immunity could converge with this pathway to remove cytosolic telomeric DNA and 

manage genome stability in ALT cancers. 

To shed light on this, we can examine HIRA’s role in autophagy as a chronic survival 

mechanism to offset telomere instability in ALT. First of all, we should confirm whether HIRA 

depletion leads to increased frequency of micronuclei, which are fragments of damaged DNA 

expelled into the cytoplasm, or elevated c-circle levels (72,386). We would expect that HIRA 

depletion can potentiate the presence of these extrachromosomal DNA species. However, HIRA 

KD cells likely fail to mitigate these detrimental events and telomere dysfunction ensues, leading 

to apoptotic death instead of pro-survival autophagy. We would expect that HIRA KD cells would 

be committed to apoptosis, which can be quantified through the cleavage of Caspase-3 or detection 

of Annexin V by flow cytometry (387).  

Thus, absence of HIRA may impair ALT cell viability by autophagy survival mechanisms 

and activate apoptotic cell death to eliminate cells with aberrant DNA species. We can measure 

the levels of autophagic markers in siRNA knockdown of HIRA in ALT+ cells through western 

blotting. Light chain 3 protein A (LC3A) and its lipidated B-form (LC3B) are required for 

autophagosome biogenesis. An increase in lysosomal-associated membrane protein 1(LAMP1) 

and degradation of the autophagy receptor protein p62 (SQSTM1) correlates with autophagic 
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maturation and autophagic flux (388). To monitor autophagic flux, we can employ a tandem 

mCherry-GFP-tagged LC3B pH-based autophagy reporter strategy, which labels autophagosomes 

in yellow (mCherry and GFP) and acidic autolysosomes in red (mCherry) (389). When the double 

positive mCherry and GFP LC3 become acidified in mature autolysosomes, this quenches the GFP 

signal and leaves an mCherry positive autolysosome. We can also observe whether HIRA also 

contributes to the AMPK-ULK1 autophagy pathway (390). This will involve measuring 

phosphorylation of AMPK, ULK1, and Beclin1. We would expect a decrease in all these 

autophagic markers if HIRA does govern nuclear events leading to autophagy-mediated survival 

in ALT+ cancers. 

5.7 How does ATRX Deficiency Contribute to Dependency on HIRA in ALT Cancers? 

Drug-driven synthetic lethality is a promising strategy to take advantage of the distinct 

survival mechanisms employed by ALT. Synthetic lethality occurs when the combinatorial loss of 

two genes results in cell death, but the deficiency in one alone does not. A recent study conducted 

a genome-wide CRISPR-Cas9 screen to select for sensitivities in ATRX-generated knockout 

hepatocellular carcinoma cell lines, which are wild-type for the gene (391). Under stringent 

analysis, they identified 58 genes to be potential synthetic partners for ATRX. These genes were 

involved in mRNA processing, mitosis, chromatin organization, and cell cycle regulation. They 

pursued the G2/M checkpoint regulator Wee1 since it is the only target with a small molecule 

inhibitor designed and tested in clinical trials (392,393). ATRX KO cells are selectively killed by 

the Wee1 inhibitor due to DSBs generated by replication fork collapse and S-phase arrest. Wee1 

inhibition also impairs growth of ATRX-deficient cell lines from glioma patients. Aside from 
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Wee1, they also found two components of the HIRA complex: ASF1a and CABIN1, which they 

speculated to compensate for H3.3 deposition pathways in certain contexts (391). However, they 

did not provide further detail about the mechanism or importance in ATRX KO cell lines or 

ATRX-deficient ALT cancers.  

This finding corroborates the entire premise of chapter 4 in this thesis dissertation. We have 

essentially shown the first epigenetic synthetic lethality that is exclusive to ALT cancers. To 

current knowledge, the HIRA complex is the only histone chaperone that could function in place 

of ATRX throughout the cell cycle. H3K9me3 acts as a docking site for ATRX at telomeres to 

maintain heterochromatic assembly (394). ATRX can also be recruited by G4 DNA at telomeres 

and it can resolve these structures (283,395). It is speculated that ATRX recruitment loads H3.3 at 

nucleosomal free telomeric regions that arise during stalled replication or disrupted transcription. 

In agreement with this, the Drosophila ATRX homolog, Xnp, guides H3.3 loading to nucleosome-

depleted chromatin gaps at active transcription sites (396).  

HIRA and ATRX appear to share similar stimuli, epigenetic marks, and role in mitigating 

DNA damage. As discussed in previous chapters, the H3K9me3 mark is associated with ASF1 and 

TERRA, and HIRA carries a nucleosome-gap filling function (291,376). The ATRX-DAXX-H3.3 

complex has been shown to promote HR at genomic DSBs (282). ATRX provides topological 

stability to the moving D-loop through the coordination of histone disassembly ahead and 

reassembly behind it. It seems counterintuitive that HR is upregulated at telomeres in ALT+ 

cancers with an ATRX deficiency. This alludes to a fundamental difference between non-telomeric 

and telomeric DSBs, in which telomeric DSBs engage in a distinct HIRA-mediated HDR pathway 

choice that is more prone to replication stress. However, HIRA is not completely redundant for 

ATRX since it has not been shown to resolve G4 structures. This is an important feature because 
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it allows HIRA to moderate replication stress, but still provides the chromatin environment that is 

conducive to ALT telomere maintenance. 

Another key question relates to whether HIRA’s elevated role in ALT is solely dependent 

upon the lack of ATRX/DAXX in ALT+ cancers.  Our cell survival assays demonstrate that ALT+ 

cells are more sensitive to loss of HIRA in comparison to TEL+ cancers, which have 

ATRX/DAXXX activity. So far, we have not validated that the phenotypes seen are due to direct 

loss of HIRA. Conventional CRISPR-Cas9 knockout of HIRA is virtually impossible to conduct 

since ALT+ U2OS cells are completely inviable after prolonged loss of HIRA (unpublished data). 

To circumvent this issue, we can employ the CRISPR-FLIP strategy to create bi-allelic conditional 

knockouts of HIRA in ALT+ cells (397) (Figure 38). This involves fusing an invertible intronic 

cassette (FLIP) to Cas9-assisted gene editing. The non-mutagenic orientation of the FLIP cassette 

enables the selection of the correct nuclease-assisted targeting into the exon of one allele and the 

simultaneous accumulation of cells that inactivate the second allele by nuclease-mediated NHEJ. 

With the addition of Cre recombinase, the FLIP cassette becomes inverted and triggers a cryptic 

splice acceptor and polyadenylation signal (pA), which is mutagenic because it terminates 

transcription and results in the complete loss of gene function. This approach will allow us 

temporarily deplete HIRA and then rescue the phenotype with re-expression of HIRA upon release 

of Cre recombinase.  
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Figure 38. CRISPR-FLIP strategy for bi-allelic conditional gene modification. Schematic for the CRISPR-FLIP 

approach. B) Design of the FLIP cassette. SD: Splice donor, SA1 and SA2: Splice acceptor, purple triangles: LoxP1 

sites, pink triangles: Lox5171 sites, blue circles: BP1 and BP2, branching point, and pA: polyadenylation signal. 

Adapted from Andersson-Rolf A et al., Nat Methods, 2017 (397) (https://www.nature.com/articles/nmeth.4156). 

 

Studies have already documented that the depletion of ATRX is not sufficient to induce 

ALT, which implies that several factors work in conjunction to create the pro-ALT environment 

(42). Additionally, our clonogenic assays fail to address whether loss of ATRX directly attributes 

to the sensitivity of ALT+ cancers to HIRA depletion. We could still attempt to simultaneously 

deplete TEL+ cells of ATRX and HIRA using shRNA knockdown. If this combinatorial depletion 

impedes cell survival in TEL+ cells, then it would further affirm the importance of H3.3 deposition 

via ATRX or HIRA in cancer cells. This would support the effectiveness of targeting the synthetic 

https://www.nature.com/articles/nmeth.4156
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lethality of ATRX and HIRA in ALT+ cancers that already have a deficiency in ATRX. As we’ve 

shown in chapter 4, reconstitution of ATRX in U2OS cells prevents HIRA localization to ALT 

telomeres. This suggests that ATRX seems to be the preferred histone chaperone at telomeres and 

directly competes with HIRA in ALT. To explore the functional consequence of this, we could 

determine whether re-expression of ATRX in HIRA-depleted U2OS cells would rescue 

proliferation. Additionally, we can examine whether depletion of HIRA inhibits growth in patient-

derived primary cell lines from ALT+ tumors, such as gliomas and osteosarcomas. This would 

raise the significance of our findings because it validates that this reliance on HIRA can be 

exploited to treat aggressive ALT+ tumors. Collectively, these studies will confirm the unique role 

of HIRA at ALT telomeres for compensation of ATRX deficiency (Figure 39). 
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Figure 39. Proposed model of PAR-modulated HIRA at ALT telomeres. Tel+ cancers rely on ATRX/DAXX to 

resolve G4 structures during replication. ATRX/DAXX also sequesters the MRN complex and inhibits HDR at 

replication forks, allowing for normal replication to ensue. ALT+ cancers, which lack functional ATRX/DAXX, 

have an elevated reliance on the HIRA complex for H3.3 deposition during HDR-coupled replication. The HIRA 

complex is regulated by PAR to ensure localization to damaged telomeric lesions. However, persistence of PAR 

interferes with chromatin expansion associated with HR and G2-BIR, leading to ALT inhibition. 

5.8 Can HIRA be Therapeutically Targeted to Specifically Kill ALT Cancer Cells?  

We still need to decipher the HIRA protein interactions at ALT telomeres in order to fully 

understand the outcomes of HIRA inhibition. There are no current studies that have characterized 

the HIRA interactome or even explored the role of HIRA in ALT. ATRX-deficiency in ALT 

cancers may have driven an adaptation for HIRA-mediated H3.3 incorporation, which should 

extensively reshape the telomeric landscape in ALT. Using proximity-dependent biotinylation 
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(BioID), we can fuse HIRA to promiscuous BirA and trace transient and temporal proteins that are 

proximal to HIRA in ALT+ U2OS cells (398). This will be compared to a pre-existing dataset that 

characterized the ALT+ U2OS telomere-associated and proximal proteins (87). By looking at the 

overlap between the two datasets, we can identify ALT+ telomeric proteins that interact with 

HIRA. This will lead to greater insight into a complex HIRA-telomere network, where we can 

begin to dissect for the development of more selective and impactful therapies against ALT, as 

previously discussed. 

Therapeutic strategies that target HIRA will tip the delicate balance between replication 

stress and ALT cancer survival. There are no known drugs that are designed against HIRA, 

especially since there are not many studies that directly implicate HIRA in cancer progression. A 

recent study connected the dynamics of histone variants to tumor progression and metastasis 

formation (399). Gomes et al. reported that suppression of CAF1 is required for metastatic 

colonization in breast cancers. Low levels of H3.1/H3.2 essentially leaves the space for 

nucleosome gap-filling by HIRA-dependent H3.3 deposition at the promoter of EMT (epithelial 

to mesenchymal transition) and pro-metastasis transcription factors. This is the first study to 

directly implicate HIRA with acquisition of aggressive traits in tumorigenesis. This is relevant to 

the field of ALT because ALT+ cancers are known to be highly aggressive and lead to poor patient 

outcomes (31,400). Cumulatively, these findings and our results support the notion for 

development of a small-molecule inhibitor of HIRA to target ALT tumors. This will make a huge 

impact since it has the potential to impair the initiation and progression of ALT cancers through 

deregulation of ALT telomere maintenance and restraint of metastasis.  

Specific small-molecule inhibitors can be designed against HIRA to target its complex 

assembly or protein-protein interactions. Based on our findings and structural studies, the B-
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domain is an appealing region to perturb because it would disrupt ASF1a binding and subsequent 

H3.3 deposition at ALT telomeres. As discussed in chapter 4, the B-domain is key to the HIRA-

ASF1a interface, where it forms a β-hairpin that associates with the β-sandwich structure of the 

ASF1a N-terminal core domain through β-sheet, salt bridge and van der Waals interactions (Figure 

40A-B) (286). The minimum HIRA fragment that binds to ASF1a spans residues 421–729. The 

binding site forms a shallow hydrophobic pocket that is lined by the residues Val60, Val62, Val65, 

Pro66, Phe72, and Phe74 from the β5–β6 region and residue Phe28 and Leu38 from the β3 and β4 

strands of ASF1 to residues Ile461, Pro463 and Leu464 of the HIRA B-domain (Figure 40A). A 

cluster of salt bridges is seen between the acidic residues Asp37, Glu39, and Asp58 and of ASF1a 

and the basic residues Arg458, Arg459 and Arg460 of HIRA (Figure 40B).  
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Figure 40. HIRA and ASF1a interface. A) HIRA is represented as a green ribbon. ASF1a is shown as a gold 

ribbon with a semi-transparent surface representation. Residues involved with hydrophobic interactions, hydrogen 

bonds, and salt bridge formation, are represented as sticks with CPK coloring. Hydrogen bonds: dashed lines, 

yellow: intra-molecular, and red: inter-molecular. B) Surface electrostatic representation of ASF1a and HIRA 

association. Left: HIRA surface shown in an open-book format. Critical residues that mediate salt-bridge formation 

is revealed on the surface. Right: HIRA fragment shown as sticks with CPK coloring within the complex. Adapted 

from Tang Y. et al., Nat Struct Mol Biol, 2006 (286) (https://www.nature.com/articles/nsmb1147). 

https://www.nature.com/articles/nsmb1147
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Most of these residues are conserved in both ASF1 and HIRA, which emphasizes the 

importance of this interaction. Thus, we could envision peptide-like inhibitors with primary 

epitopes that could mimic short linear peptides, such as ASF1’s acidic residues or secondary 

structural epitopes that could disrupt the β-sheet interface. To date, the B-domain has not been 

widely reported outside of the HIRA family, with the exception of some shared homology with 

the p60 subunit of CAF1 (286,401). Although the HIRA B-domain and the B-domain-like motifs 

of CAF1 p60 bind to ASF1a in similar manner, a striking difference is CAF1’s lack of conservation 

of the three arginine residues 458-460 in HIRA. This brings forth the possibility for targeting this 

region to selectively uncouple HIRA-ASF1a activity.  

Another attractive option is to disrupt HIRA homotrimerization, which is a prerequisite for 

CABIN1 binding and efficient H3.3 deposition at UV-enriched sites (227). The crystal structure 

of the HIRA C-domain reveals that the β-strand region is essential for homotrimerization and β-

loop region mediates direct interaction with CABIN1 (Figure 41A-D). The residues Tryp799 

and/or Asp800, which are located within the β2 strand, are critical for HIRA homooligomerization 

(Figure 41B). Asp800 does not associate with an adjacent HIRA subunit, but Trp799 forms a 

hydrophobic patch with Ile771 and Val806, which then interacts with Leu 851 and Thr853 of an 

adjacent HIRA subunit (Figure 41C). Mutations of Asp800 and Trp799 are sufficient to abolish 

HIRA complex assembly and function. We can imagine a small molecule inhibitor that could 

wedge within this hydrophobic pocket and block the association between adjacent HIRA subunits. 

Collectively, inhibition of HIRA represents a suitable therapeutic target against ALT+ cancers.  
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Figure 41. HIRA crystal structure reveals homotrimerization. Structure of homotrimeric HIRA (644-1017). 

Subunits A, B, and C are represented in light green, emerald green, and blue, respectively. Loop regions (860-907) 

shown in red. B) Structure of the HIRA monomer. The β1 and β2 motifs are represented as pink and yellow, 

respectively. The α-helical domain and the loop region are represented as white and red, respectively. The black 

triangles indicate critical residues of HIRA for homotrimerization. C) Trp799 is located at the interface between 

HIRA subunits A and B (yellow and emerald green). D) HIRA homotrimerization is required for CABIN1 binding 

to HIRA. The CABIN-binding loop is shown in red, highlighting residues Phe870 and Arg871. The α-helical 

domain of HIRA is shown in white. Adapted from Ray-Gallet et al., Nat Comm, 2018 (227) 

(https://www.nature.com/articles/s41467-018-05581-y). 

https://www.nature.com/articles/s41467-018-05581-y
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5.9 Concluding Remarks 

This thesis establishes a fundamental role of PARylation in the tight regulation of early 

factors that mediate ALT telomere maintenance. We have identified the first epigenetic synthetic 

lethality between ATRX and HIRA in ALT+ cancers. We envision a model where PAR-

modulation of HIRA relieves chronic replication stress at ALT telomeres. The absence of HIRA 

leads to irreversibly stalled forks at telomeric DNA, which collapse into DSBs that remain 

unresolved. The saturation of DNA damage overwhelms the repair machinery and uncouples 

productive ALT activity. There are still plenty of questions regarding the mechanistic details that 

govern the initiation and progression of ALT. It is our hope that the findings and models in this 

dissertation shed light into one critical aspect of the ALT pathway that could be targeted to treat 

ALT+ tumors.  
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A.1 Chapter 2 Supplemental Material 

 

Figure 42. PARP and PARG depletion induces opposing effects on frequency of APBs. Representative 

immunofluorescence images of APBs (PML-TTAGGG) in U2OS cells expressing shControl, shPARP1 or shPARG. 
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Figure 43. PARGi decreases telomere length in VA13 cells. PFGE of DMSO, PARPi (100nM) or PARGi (1M) 

treated VA13 cells. The mean telomere length (kb) was calculating using TeloTool and is indicated by the red dot. 
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Figure 44. PARGi diminishes telomere clustering in ALT+ VA13 cells and not TEL+ Hela LT cells. Left: 

Representative IF images of VA13 and Hela LT cells transfected with WT TRF1-FokI.  Right: TRF1-FokI foci size 

observed in each condition, including DA TRF1-FokI cells (images not shown).  All graphed data in the figure are 

mean ± SEM, n=150 cells. Statistical significance was determined using one-way ANOVA. *P≤ 0.05, **P≤ 0.001, 

***P≤ 0.001, ****P< 0.001. 
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B.1 Chapter 3 Supplemental Material 

 

Figure 45. PAR-dependent recruitment of factors to ALT telomeric DSBs. A) Spectral counts for the indicated 

proteins that were identified by Af1521-PAR proteomics. B) Western blot analysis illustrating the expression of 

GFP fusion proteins in U2OS cells. GFP antibody was used to blot for protein expression in each treatment. 
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Figure 46. PAR-regulated factors localize to ALT telomeres. Representative IF images showing the localization 

of the indicated GFP fusion proteins in WT TRF1-FokI U2OS cells following treatment with DMSO, PARPi (5M) 

and combined PARGi/PARPi (both 5M). 
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Figure 47. Inhibition of ARP2/3 impairs HDR in ALT. Quantification of TRF1-FokI telomeric foci A) number 

and B) size in WT cells treated with ARP2/3 inhibitor (ARP2/3) and ARP2/3 inactive inhibitor (ARP2/3ix). C) 

Tracked telomere (eGFP-TRF1) movement in U2OS cells treated with ARP2/3i. Graph displays the cumulative 

Mean Squared Displacement (MSD) of telomeres imaged and analyzed, n=100 telomeres. Inhibitors used at 1M. 

All graphed data in the figure are mean ± SEM. A) and B) n=150 cells and C) n=10 cells. Statistical significance 

was determined using one-way ANOVA. *P≤ 0.05, **P≤ 0.001, ***P≤ 0.001, ****P< 0.001. 
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C.1 Chapter 4 Supplemental Material 

 

Figure 48. Selectivity of HIRA localization for UV-C damage. Representative IF images of YFP-HIRA 

localization in U2OS cells after exposure to 150 J/m2 ultra-violet C (UV-C) and 10Gy ionizing irradiation (IR). B) 

Quantification of YFP-HIRA foci in U2OS cells treated as indicated above. All graphed data in the figure are mean 

± SEM, n=50 cells. Statistical significance was determined using one-way ANOVA. *P≤ 0.05, **P≤ 0.001, ***P≤ 

0.001, ****P< 0.001. 
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Figure 49. WB of HIRA KD using shRNA. Western blot validation of HIRA knockdown using two independent 

shRNAs (HIRA#1 and HIRA #2). TUB images were cropped from the original.  
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D.1 Af1521 PAR proteomics 

Table 1. Af1521 Mass Spectrometry Hits 

Protein ID 

Fold 

Change 

Average 

Av. Spectral 

Counts 

CHD1L 20.57 23.6 

CABIN1 13.36 20.2 

HIRA 8.69 12 

CHD7 8.64 93.8 

UBN1 8.52 15 

XRCC1 7.58 24.2 

PCNA 7.39 6.2 

HUWE1 7.26 16.4 

MLL2 7.24 21.8 

UBN2 6.44 10 

VCP 5.8 6.8 

WDR1 5.68 11.4 

AKAP2 4.74 7.4 

SIPA1 4.53 10.2 
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Table 1 continued. 

KIAA1671 4.05 11.2 

SPECC1 4.03 6.6 

SPTAN1 4.02 273 

CASC3 3.93 6.4 

UNC45A 3.92 12.2 

TGM2 3.86 4.4 

CORO1C 3.77 114.8 

SALL1 3.75 4.4 

TFAM 3.67 5 

UACA 3.65 31.4 

CFL2 3.59 6.2 

PPP1CB 3.57 10.4 

SPTBN1 3.56 298.4 

SYNPO 3.4 28.4 

AMOTL1 3.35 3.4 

NFATC1 3.32 4 

LIG3 3.27 59.8 

MYLK 3.13 4 

BAZ2B 3.08 14 

NEXN 3.04 30.4 

ARPC2 3.04 9.6 

ZNF185 3.04 5 
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Table 1 continued. 

CASZ1 3.04 2.6 

GNB2 3.02 8.4 

SATB2 2.98 5 

NFAT5 2.93 6.2 

TWF1 2.92 8.8 

CORO1B 2.91 3 

LIMA1 2.85 92.6 

FN1 2.79 48 

YES1 2.78 7.6 

ITPR3 2.73 3.6 

HNRNPA2B1 2.71 74.8 

ZFHX4 2.71 38 

PARP2 2.71 13.6 

PARP1 2.68 288.2 

TNKS 2.63 2 

CBFB 2.6 3.2 

MYO18A 2.59 87.6 

RAD50 2.58 2.6 

LMO7 2.57 142 

GLDC 2.57 1.4 

TMOD3 2.56 9.6 

LZTS2 2.56 2.8 
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Table 1 continued. 

CTTN 2.55 16.8 

UTRN 2.55 3.2 

TRPS1 2.52 11 

SSH1 2.52 3.6 

GAPDHS 2.51 3.8 

POTE2B 2.48 3.4 

HNRNPH3 2.47 3.6 

H2BFS 2.46 2 

HNRNPA1 2.44 45.6 

DBN1 2.41 82.8 

PABPC4 2.4 7.8 

MGA 2.39 6.6 

COL1A1 2.37 2.2 

HNRNPD 2.36 10 

YLPM1 2.34 40.2 

ACTR3 2.33 12.6 

DAPK3 2.28 2.8 

CALD1 2.26 5.4 

SPRR3 2.24 1.8 

AMOTL2 2.2 1.6 

PPP1R12A 2.19 98.2 

LRRC59 2.18 2.6 



 

 188 

Table 1 continued.  

PAWR 2.17 2.4 

CHAF1A 2.16 4.6 

CAV1 2.15 10.8 

ILF2 2.15 2.8 

ACTR2 2.14 9.2 

RPL9 2.13 12.2 

KPNA2 2.13 6 

DST 2.11 322.2 

CD59 2.11 9.4 

ARPC3 2.11 7.8 

LRRFIP2 2.11 4.2 
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E.1 Plasmids, siRNAs, shRNAs, and Antibodies 

Table 2. Plasmids 

Name Source 

GFP-PARG-FL Dr. Dea Slade (Max Perutz Lab, Vienna) 

GFP-PARG-Q76A-

K409A 
Dr. Dea Slade (Max Perutz Lab, Vienna) 

GFP-SAFB1 Dr. Steffi Oesterreich (University of Pittsburgh) 

GFP-RBMX Dr. Kyle Miller (University of Texas at Austin) 

GFP-hnRNPUL1 Dr. Sophie Polo (Université Paris Diderot) 

GFP-FUS1 Dr. Matthias Altmeyer (University of Zurich) 

GFP-EWS1 Dr. Matthias Altmeyer (University of Zurich) 

GFP-TAF15 Dr. Matthias Altmeyer (University of Zurich) 

GFP-VCP/p97 Dr. Nico Dantuma (Addgene, #23971) 

GFP-ARP3 Dr. Matthew Welch (Addgene, #8462) 

YFP-HIRA Dr. Geneviève Almouzni (Institut Curie) 

YFP-HIRA-799-

800 
Dr. Geneviève Almouzni (Institut Curie) 

YFP-HIRA-I461D Dr. Geneviève Almouzni (Institut Curie) 

YFP-HIRA-∆B This study 



 

 190 

Table 2 continued. 

GFP-Histone H3.3 Dr. Geneviève Almouzni (Institut Curie) 

 

Table 3. siRNAs 

Name Description/Cat# 

HIRA 5’-GAUGACGACAGUGUUAUCCUU-3’ 

HIRA 3’UTR 5’-UUUACAUAGGUCUUAGGUCUU-3’ 

CABIN1 Dharmacon SMARTpool, #J-012454-09 

UBN1 Dharmacon SMARTpool, #J-014195-05 

SAFB1 5’-UCAAUUUCGUCAGGAUUACUU-3’ 

RBMX Dharmacon SMARTpool, #J-011691-09 

hnRNPUL1 Dharmacon SMARTpool, #J-004132005 

FUS Dharmacon SMARTpool, #J-009497-07 

VCP/p97 Dharmacon SMARTpool, #J-008727-09 

ARP2 Dharmacon SMARTpool, #L-012076-02 

ARP3 Dharmacon SMARTpool, #L-012076-02 
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Table 4. shRNAs 

Name Description/Cat# 

HIRA #1 
Sigma/ TRCN0000020515 

Target Sequence: CGTGGATAACACTGTCGTCAT 

HIRA #2 
Sigma/TRCN0000020517 

Target Sequence: GCTTGGTCAAAGGGTTGACAT 

PARG Dr. Robert W. Sobol (University of South Alabama) 

PARP1 Dr. Robert W. Sobol (University of South Alabama) 

 

Table 5. IF antibodies 

Target Source/Cat# Dilution 

PCNA Cell Signaling, #2586 1:2500 

Poly (ADP-ribose) Millipore, #MABC547, clone [10H] 1:400 

POLD3 Abnova, #H00010714-M01 1:500 

PML Santa Cruz, #sc-377390 1:200 

FLAG Cell Signaling, #14793 1:1000 

 

  



 

 192 

Table 6. WB antibodies 

Target Source/Cat# Dilution 

PCNA Cell Signaling, #2586 1:2000 

RPA2 Abcam, #ab2175 1:1000 

Poly (ADP-ribose) Millipore, #MABC547 1:400 

PARP1 Active Motif, #39559 1:5000 

PARG Cell Signaling, #66564 1:1000 

ALC1 (CHD1L) Bethyl, #A303-342A 1:2000 

TRF1 Dr. Jan Karlseder (Salk Institute, CA) 1:1000 

TRF2 Novus, #NB110-57130 1:1000 

POLD3 Abnova, #H00010714-M01 1:1000 

RECQ1 Bethyl, #A300-447A 1:1000 

NFB/p65 Santa-Cruz c-20 1:250 

Histone H2AX S139 Millipore, #05-635 1:1000 

CHK2 T68 Cell Signaling, #2197 1:1000 

SAFB1 Bethyl, #A300-812A 1:1000 

FUS Bethyl, #A300-292A 1:200 

hnRNPUL1 Bethyl, #A300-862A 1:1000 

HIRA Active Motif, #39557 1:200 

CABIN1 Abcam, #ab3349 1:1000 

UBN1 Abcam, #ab101282 1:2000 
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F.1 List of Abbreviations 

ADPr: ADP-ribose 

ALC1: Amplified in Liver Cancer 1  

alt-NHEJ: Alternative Non-Homologous End-Joining 

APBs: ALT-associated PML bodies 

ARP 2/3: Actin-Related Proteins 2 and 3  

ASF1a: Anti-Silencing Function 1A Histone Chaperone  

ATM: Ataxia-Telangiectasia-Mutated  

ATR: Ataxia-Rad3-related 

ATRX: Alpha-thalassemia/Mental Retardation Syndrome, X-linked 

BARD1: BRCA1-Associated RING Domain Protein 1  

BIR: Break-Induced Replication  

BLM: Bloom Helicase 

BRCA1: Breast Cancer Gene 1 

BRCA2: Breast Cancer Gene 2 

BTR Complex: BLM-TOP3A-RMI1-2  complex  

CABIN1: Calcineurin Binding Protein 1 

CAF1: Chromatin Assembly Factor  

cGAS: Cyclin GMP-AMP Synthase  

CHD2: Chromatin Remodeler Chromodomain Helicase DNA-binding Protein 2 
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c-NHEJ: Classical Non-Homologous End-Joining 

CO-FISH: Chromosome-orientation Fluorescent in situ Hybridization 

DAXX: Death Domain Associated Protein 

DNMT: DNA methyltransferase 1 

DSB: Double-stranded Break 

ECTR: Extrachromosomal Telomeric Repeat 

EWS: Ewing Sarcoma 

EZH2: Enhancer of Zeste 2 

FANCM: Fanconi Anemia Complementation Goup M 

FUS: Fused in Liposarcoma 

G2-BIR: G2-Break Induced Repair  

gH2AX: Gamma-H2A Histone Family Member X 

HDR: Homology-Directed Repair 

HIRA: Histone Regulator A 

hnRNPUL1: heterogenous nuclear ribonucleoprotein U-like 1 

HOP2: Homologous Pairing Protein 2 

HSV-1: Herpes simplex virus type 1 

IDH1: Isocitrate Dehydrogenase 

IF-FISH: Immunofluorescence-Fluorescence in situ Hybridization 

IFN: Interferon 

MARylation: Mono(ADP-ribosyl)ation  

MiDAS: Spontaneous Mitotic DNA synthesis 

MND1: Meiotic Nuclear Division Protein 1 
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Mre11: Meiotic Recombination 11 Homolog 1 

NBS1: Nijmegen Breakage Syndrome Protein 1 

NER: Nucleotide Excision Repair 

NuRD Complex: Nucleosome Modeling and Histone Deacetylation  

PanNET: Pancreatic Neuroendocrine Tumor 

PARG: Poly(ADP-ribose) Glycohydrolase 

PARP1: Poly(ADP-ribose) Polymerase 1 

PARylation: Poly(ADP-ribosyl)ation  

PBM: PAR-Binding Motif  

PBZ: PAR-Binding Zinc Finger  

PCNA: Proliferating Cellular Nuclear Antigen 

POT1: Protection of Telomere 1 

Rad50: ATP-binding Cassette-ATPase 

RAP1: Repressor/Activator Protein 1 

RBMX: RNA-Binding Motif Protein X-Linked 

RFC: Replication Factor C 

RPA: Replication Protein A 

RRM: RNA Recognition Motif  

SAFB1: Scaffold Attachment Factor B1  

SETD2: SET domain containing 2  

SIM: SUMO-interacting motif 

SMARCAL1: SWI/SNF-related, Matrix-associated, Actin-dependent Regulator of Chromatin, 

Subfamily A-like 1 
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SMC4/6: Structural Maintenance of Chromosomes Protein 5/6 

SMX Complex: SLX1-SLX4, MUS81-EME1, and XPF-ERCC1 

SSA: Single-strand Annealing  

SSB: Single-stranded Break 

STING: Stimulator of Interferon Genes  

SUMO: Small Ubiquitin-like Modifiers (SUMO) 

TAF15: TATA-box Binding Protein Associated Factor 15 

TIN2: TRF1-and TRF2-Interacting Nuclear Protein 2 

TNKS: Tankyrase 

TPP1: Adrenocortical Dysplasia Homolog (ACD) 

TRF1: Telomere Repeat Binding Factor 1 

TRF2: Telomere Repeat Binding Factor 2 

T-SCE: Telomere Sister Chromatid Exchange 

UBN1: Ubinuclein 1  

VCP/p97: Vasolin-Containing Protein  

53BP1: p53-Binding Protein 1 
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