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Abstract 

Controlling Bacterial Super-infection During Influenza 

Helen Eva Adams Rich, PhD 
 

University of Pittsburgh, 2019 
 
 
 
 

Bacterial super-infection during influenza increases morbidity and mortality from the viral 

infection. Current therapies for influenza and bacterial super-infection are limited and inadequate, 

and rising multi-drug resistance in bacteria underscores the need for new therapies. Administration 

of an engineered antimicrobial peptide, WLBU2, reduced methicillin-resistant Staphylococcus 

aureus burden during pulmonary bacterial infection, but failed to reduce S. aureus burden during 

influenza super-infection. Immunopathology is a strong driver of mortality in bacterial super-

infection during influenza, so I investigated the underlying dysfunction in antibacterial immunity 

caused by preceding influenza. Type I interferon induced in response to influenza infection had 

been previously shown to be a broad suppressor of antibacterial immunity. Type III interferons 

had been described much more recently, and were shown to be produced in response to influenza 

at even higher levels than type I interferon. Thus, I interrogated the role of type III interferon in 

the pathogenesis of bacterial super-infection during influenza. To do this, I compared super-

infection outcomes between wild-type mice and mice lacking IFNλ3, one of the two murine type 

III interferons. However, total IFNλ was not markedly reduced in these mice, so I instead decided 

to test the effect of IFNλ treatment during influenza on outcomes of bacterial super-infection, as it 

had been recently published that IFNλ treatment ameliorated morbidity and mortality from 

influenza. It had also been recently shown that mice lacking the type III interferon receptor had 

increased burden in S. aureus super-infection during influenza, which mimicked data from mice 

lacking the type I interferon receptor. Adenoviral overexpression of IFNλ3 one day prior to 
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bacterial super-infection induced neutrophil dysregulation, with lower binding and uptake of both 

S. aureus and Streptococcus pneumoniae in the lungs of mice during influenza super-infection 

with each of these bacteria. These results suggest that, while new therapeutics for bacterial super-

infection during influenza need to be discovered, neither IFNλ nor WLBU2 should be considered. 

WLBU2 may be effective for bacterial pneumonia alone, but IFNλ should not be used as a 

treatment for influenza due to the high risk of mortality and morbidity from bacterial super-

infection. 
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1.0 Introduction 

1.1 Interferons 

While type I interferons have been known since 1957 as cell-secreted antiviral factors (1), 

and were in fact the first cytokines discovered, type III interferons (IFNλ, IL-28/29) were only first 

described in 2003. Their simultaneous discovery by two different groups led to their many names, 

with Paul Sheppard’s paper calling them interleukins (IL)-29 and IL-28A/B (2), while Sergei 

Kotenko’s paper named them interferon lambda (IFNλ1/2/3, respectively) (3). While IFNλ1 is 

only found in humans, both mice and humans express IFNλ2 and IFNλ3. On the other hand, IFNλ4 

is polymorphically expressed in humans and is more strongly associated with hepatitis C virus 

clearance in populations of African descent (4). It is likely that all IFNλ genes share a common 

evolutionary ancestor (5). While IFNλ is functionally an interferon, it shares little structural 

similarity with type I interferon. Rather, IFNλ structurally parallels members of the IL-10 family, 

and is most similar in structure to the type 17 cytokine IL-22, which protects mucosal tissues 

against bacterial infection (6). 
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Figure 1: Type I and III interferon signaling. 

 

Type I and III interferons, though structurally dissimilar, converge at the beginning of their 

signal cascades to induce the transcription of a highly overlapping complement of interferon-

stimulated genes (ISGs). Type I interferons (thirteen human and fourteen murine IFNα subtypes, 

and a single IFNβ in both mouse and human) bind to the ubiquitously expressed heterodimeric 

receptor of IFNαR1 and IFNαR2. Type III interferon binds to the specific IFNλR1 and the broadly 

expressed IL-10R2, which is shared with many IL-10 family members including both IL-10 and 

IL-22. Binding of these interferons to their receptors causes phosphorylation of Janus kinase 1 

(JAK1) and tyrosine kinase 2 (TYK2), resulting in phosphorylation of signal transducer and 

activator of transcription (STAT) proteins STAT1 and STAT2. These proteins bind to form a 

STAT1/STAT2 heterodimer, which then binds IRF9 to become the interferon-stimulated gene 

factor 3 (ISGF3) transcription factor complex. ISGF3 translocates to the nucleus, where it binds 
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the interferon-stimulated response element (ISRE) to activate the transcription of interferon 

stimulated genes (ISGs).  

 

1.2 Influenza 

While influenza is often thought to be a seasonal nuisance, estimates extrapolating from 

data collected between 2010 and 2013 demonstrate its lethality: approximately 4,915-27,174 

deaths each year in the United States were attributable to influenza, along with 18,491-95,390 ICU 

admissions and 113,192-624,435 hospitalizations (7). The estimated annual direct costs of 

influenza are $4.6 billion, with an additional $7 billion from employees’ sick days and lost 

productivity (8). The impact of influenza infection skyrockets during pandemics. The infamous 

1918 “Spanish Flu” was estimated to have killed 50 million people worldwide (9), while the most 

recent influenza pandemic in 2009 was estimated to have infected 60.8 million people in the U.S. 

and hospitalized approximately 275,000 (10). 

The seasonality of influenza has been the subject of much debate, and virus survival and 

transmission are now thought to be mainly influenced by temperature and relative humidity (11). 

The influenza virus is thought to spread from person to person via droplet, either by coughing, 

sneezing, or physical contact. Once inhaled, the influenza virus preferentially infects the first cells 

it comes in contact with: epithelial cells of the respiratory tract. Using these epithelial cells as 

factories, the influenza virus replicates rapidly using the host cell machinery to produce more 

virions. 
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There are four categories of influenza viruses: influenza A, B, C and D. Influenza D was 

first isolated from pigs in 2011 and is thought to only infect livestock (12). It is unable to reassort 

with its closest relative, influenza C, which is a seven-segmented virus that causes only mild 

respiratory disease in children. Only two of the four, influenza A and B, cause significant illness 

in humans. These are both viruses with eight segments of negative-sense, single-stranded RNA 

(ssRNA), which encode the machinery needed to infect host cells and replicate their genetic 

material to generate more virus. This genetic material is packaged inside a protein capsid (Figure 

1.1, shown in purple) and enveloped by a lipid bilayer (Figure 1.1, shown in brown), which is 

acquired from the host cell membrane during budding. 
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Figure 2: Influenza A virion structure. 

CDC/Doug Jordan, M.A. Public Health Image Library. 
Reproduced here under public domain licensing. 

 
 

The influenza virus attaches to the host cell by recognizing sialic acids on the cell surface, 

binding them with the hemagglutinin (HA) protein expressed on the surface of the viral capsid 

(Figure 1.1, shown in blue), which triggers endocytosis. Once inside the endosome, the lowered 

pH induces a conformational change in HA that exposes a portion at its N-terminus termed the 

“fusion peptide”. The viral envelope then fuses with the endosomal membrane, while the M2 ion 

channel pumps protons into the interior of the virion, allowing complexes of viral RNA 

polymerase, nucleoprotein, and RNA termed ribonucleoproteins (RNPs, shown in Figure 1.1 in 

green) to be released from the M1 matrix protein and escape into the cytoplasm of the host cell 
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(13). These RNPs display a nuclear localization signal, which directs host cell proteins in the 

cytoplasm to traffic the RNPs to the nucleus. Once inside, the viral RNA segments are disguised 

by “stealing” of 5’ capped primers from host pre-mRNA, allowing for replication of viral RNA by 

host cell machinery inside the nucleus. Once its eight segments of single-stranded RNA have been 

translated into protein and packaged into the viral capsid, the fully-fledged virus buds off from the 

host cell. HA viral proteins continue to bind sialic acids, tethering the virus to the host cell 

membrane, until viral neuraminidase (NA, shown in Figure 1.1 in maroon) cleaves the sialic acid 

residues from host cell-surface glycoproteins and the mature virus is released, retaining the host 

cell lipid bilayer as its envelope (14). 

The pandemic potential of influenza comes from its ability to reassort. Reassortment is the 

process by which different influenza strains exchange segments of genetic material, and is made 

possible when a single host cell is infected by more than one different influenza virus. This process 

has been co-opted to make the seasonal influenza vaccine: chicken eggs are dually infected with 

the high-growth laboratory strain influenza H1N1 A/PR/8/34 (PR8) and a “donor” strain that is 

predicted to be most widely circulating during the next influenza season. Reassortment of genome 

segments between the two influenza strains takes place in ovo, and antiserum against the H1 and 

N1 antigens of PR8 is added to select for the surface HA and NA antigens of the donor strain. The 

reassorted virus retains the high-growth internal machinery of PR8 while expressing the surface 

antigens of the donor strain (15). This new virus, termed a candidate vaccine virus (CVV), is then 

inactivated or attenuated, purified, and administered along with adjuvant either by intramuscular 

injection (of inactivated virus) or by intranasal spray (of live attenuated virus).  

Historically, CVV production has occurred in fertilized chicken eggs, but in 2016 the use 

of vaccines using CVVs made in Madin-Darby canine kidney (MDCK) cells was approved by the 
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Food and Drug Administration (FDA). MDCK cells are considered safe cell substrates and are 

useful for large-scale, rapid replication of CVVs (16), which allows more time for researchers at 

the World Health Organization (WHO) and the FDA to choose donor strains for the upcoming 

influenza season’s vaccines (17). Both trivalent and quadrivalent inactivated influenza vaccines 

are currently available, made from two influenza A CVVs and either one or two influenza B CVVs, 

respectively (18). While significant effort was put into developing a live attenuated influenza 

vaccine (LAIV), which more naturally mimics influenza infection route and immune response, the 

LAIV has shown no correlate of protection (19). Use of LAIV was discontinued during the 2016-

2017 influenza season, but was reinstated in the 2017-2018 season and continues to be available. 

However, the American Academy of Pediatrics still recommends use of the inactivated influenza 

vaccine for its target population (2-17 years of age) (20). Vaccine coverage and protection is 

woefully inadequate as demonstrated each year by the prevalence and spread of influenza, 

however, treatment options are equally ineffective. While neuraminidase inhibitors such as 

oseltamivir (Tamiflu) have shown efficacy in reducing the duration of influenza symptoms, 

oseltamivir must be taken within 48 hours of symptom onset to be effective. There is some 

suggestion that oseltamivir may also reduce hospital admissions, duration of hospitalization, and 

risk of lower respiratory tract complications (21), however there are significant disparities between 

the conclusions drawn from meta-analyses (22, 23). 

1.2.1  Pulmonary immune response to influenza 

The lung has many defenses against viral infection. The first is a physical defense termed 

the mucociliary elevator: ciliated cells rhythmically beat their hair-like appendages to clear 

pathogens and debris from airspaces by moving the particle-entrapping mucus that coats the 
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airway, protecting the epithelium from pathogen attachment. Alveolar macrophages (AMs) 

comprise its second defense, patrolling the airspaces and protecting the alveoli where the crucial 

gas exchange of oxygen for carbon dioxide occurs. When these AMs encounter foreign particles 

above 0.5 µM in diameter, they engulf them via the process of phagocytosis, digesting and 

presenting any protein antigens to passing immune cells. AMs can also be considered the first 

immunological line of defense against infection. Upon sensing bacterial and viral pathogens via 

pattern recognition receptors (PRRs), AMs execute an immunological signaling cascade specific 

to the offending pathogen. The epithelium expresses an overlapping complement of PRRs and is 

also involved in pathogen sensing. PRRs are divided into four families: Toll-like receptors (TLRs) 

and C-type lectin receptors (CLRs) extend from the cell surface and into endosomes and recognize 

extracellular pathogens, while RIG-1 like receptors (RLRs) and nucleotide-binding 

oligomerization domain-like receptors (NLRs) are located in the cytoplasm and recognize 

intracellular pathogens. 

Once alerted to invading pathogens, AMs and airway epithelial cells become activated and 

produce chemokines and other cytokines to mount an effective, pathogen-specific immune 

response. During influenza infection, viral double-stranded RNA (dsRNA) and single-stranded 

RNA are sensed in endosomes of epithelial cells, plasmacytoid dendritic cells, and AMs by TLR3 

and TLR7. Viral RNA with its “stolen” 5’ cap is recognized by the RLRs MDA5 and RIG-1. Both 

these pathways converge on the ISGF3 complex, which includes the phosphorylated interferon 

regulatory factors (IRFs) IRF3 and IRF7, which induce the transcription of type I and III 

interferons (IFNs). TLR signaling also activates NF-κB signaling, leading to the production of IL-

1β and other pro-inflammatory cytokines (24). 
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1.2.2  Interferon signaling in response to influenza 

When viral dsRNA is sensed by RIG-1 and MDA5, these RLRs associate with the 

mitochondrial antiviral signaling protein (MAVS) found on the membranes of mitochondria, 

peroxisomes, and the endoplasmic reticulum, inducing an antiviral response dependent on the 

location of MAVS inside the cell. When localized to mitochondria, MAVS engagement induces 

the expression of type I IFNs and their ISGs. However, peroxisome-attached MAVS instead drives 

type III IFN production without inducing type I IFNs, and IFNλ expression is amplified upon 

peroxisome proliferation (25). Unlike type I interferons, IFNλ has been shown to activate JAK2 

signaling (25, 26), and its antiviral effects can be blocked by MAP kinase inhibitors (27). And 

unlike IFNλ, IFNα has been shown to activate STAT3 (28), which is also known to negatively 

regulate the type I interferon response (29). The kinetics of these interferon responses differ as 

well, with IFN III inducing most IFN I ISGs with increasing similarity as with increased dose, 

suggesting that IFN I is more potent while IFN III is more sustained (30). Additionally, IFNλ has 

been shown to induce some ISGs more highly than type I IFN, including CXCL10 and CXCL11 

(31). While differences in IFN I and III signaling were originally thought to be due to differential 

receptor expression between cell types, as IFNλR1 expression was thought to be confined to 

mucosal barrier surfaces (32), more recent work shows that these differences may be independent 

of receptor abundance and instead intrinsic to their signaling pathways (33). 

Both type I and III interferons are important for antiviral defense in the lung. Treatment 

with either IFN I or IFN III restricts viral replication in respiratory epithelial cells and mice (34), 

and there appears to be significant redundancy between type I and III interferons in the respiratory 

tract (35). Mice lacking either IFNαR1 or IFNλR1 are more susceptible to influenza infection, but 

both are important for limiting mortality during influenza (36). Importantly, type III interferon is 
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even more highly produced in response to influenza A infection than type I interferon in mice (37). 

It is commonly thought that type III IFN is less inflammatory than type I IFN. Mice lacking either 

IFNλR1 or both IFNαR1 and IFNλR1 had increased immunopathology as shown by both histology 

and BAL cellularity during influenza infection, but IFNαR1 deletion alone did not increase 

immunopathology (36). Epithelial cells (EPCAM+) produce IFNλ in the first days after influenza 

infection, with parenchymal CD45+CD11c+MHCII+Siglec F- dendritic cells (DCs) producing a 

small amount by day three. Epithelial cells express high basal IFNλR1 which was downregulated 

upon influenza infection, while neutrophils express the second highest basal IFNλR1 but 

upregulate it upon influenza infection to become the highest IFNλR1 expressers (36). Importantly, 

IFNα but not IFNλ induces inflammatory cytokines in neutrophils (36), which are a driver of 

immunopathology during influenza.  Moreover, IFNλ induced by enteric virus infection reduces 

reactive oxygen species (ROS) generation and suppresses degranulation in neutrophils, suggesting 

this mechanism is not exclusive to the lung (38). Overall, type I IFN induces a higher inflammatory 

response that is important for influenza control, but control of immunopathology seems to be the 

task of IFNλ. 

1.3 Bacterial Super-infection 

In 1918—before the advent of antibiotics ten years later—over 95% of tissue specimens 

from pandemic victims later tested positive for bacterial infection. Even as recently as the 2009 

pandemic, bacterial super-infection was found in 25-50% of severe cases (39). This phenomenon 

is not specific to pandemic influenza; the Center for Disease Control tracks all pediatric deaths 

from influenza and consistently reports that almost half of children who die from influenza have a 
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bacterial co-infection. On average during the last three influenza seasons (2016-2019), 47.8% of 

pediatric deaths were associated with bacterial co-infection. 25.4% of these bacterial co-infections 

were identified as S. pneumoniae, while 41.4% of bacterial co-infections were S. aureus, of which 

20% were methicillin-resistant S. aureus (MRSA) (40). The prevalence of MRSA increases during 

pandemic years, with 71% of S. aureus co-infections typed as methicillin-resistant in 2009 (41), 

underscoring the need for an in-depth understanding of the phenomenon of bacterial super-

infection. Many groups have shown that this susceptibility to secondary bacterial infection during 

influenza is due to immune dysregulation, and understanding of this underlying pathology is 

necessary for a more comprehensive view of this phenomenon. 

Approximately one week into influenza infection, the inflammatory response is maximal 

and interferon response peaks around this time in both humans and mice. IFNλ and IFNα 

expression in the lung are highest 5-7 days after infection with 10 PFU influenza, and IFNβ is also 

highest at day 7. During high-dose infection with 100 PFU influenza, IFNα and IFNβ expression 

peak on day 5 while IFNλ expression peaks from days 3-5 (36). The epithelial barrier has eroded 

by this time, leading to disrupted gas exchange and poor blood oxygenation. Both Gram positive 

and Gram negative extracellular bacteria now take advantage of exposed adherence sites (42) and 

begin secondary infection in a nutrient-rich environment (43). When these pathogens enter the 

influenza-infected lung, antibacterial immune responses are blunted. The lung is now “primed” by 

influenza for a secondary bacterial infection. 
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1.3.1  Bacterial infection of the lung 

While most respiratory tract infections are caused by viruses, many of these are mild to 

moderate upper respiratory tract infections including “the common cold”. Lower respiratory tract 

infections, bronchitis/bronchiolitis and pneumonia, are much more severe and a higher percentage 

are fatal. The most common bacteria that cause pneumonia are Gram positive, namely 

Staphylococcus aureus and Streptococcus pneumoniae, with Gram negative bacteria also common 

including Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli, and Enterobacter 

species (44). Immune responses differ in specific ways between bacterial strains, although many 

commonalities exist (45). 

1.3.2  Pulmonary immune response to bacteria 

The lung has robust immunity to pathogenic bacteria, which are introduced by every breath 

into the lungs. The first layer of defense against infection is barrier function: mucus and cilia work 

together to clear the airway of debris and pathogens, and surfactant proteins bind bacteria to 

improve clearance. AMs patrol alveoli, eliminating extracellular bacteria and displaying antigen 

to T cells. When pathogenic bacteria enter the lung, recognition by pattern recognition receptors 

occurs in and on cells at barrier sites. Epithelial cells produce antimicrobial peptides (AMPs), 

which can directly lyse bacteria. Both epithelial cells and AMs make interferons and inflammatory 

cytokines, resulting in neutrophil and monocyte activation and homing to the lung. When 

unimpaired, this influx of phagocytes provides bacterial phagocytosis and killing to control the 

infection, including generation of reactive oxygen species. Bacteria induce variable chemokine 

responses, but overall cytokine responses are often conserved. The influx of cells into the lung 
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brings fluid through the damaged epithelial/endothelial barrier, which can lead to acute respiratory 

distress syndrome (ARDS) and significant mortality if unresolved. 

Influenza infection leads to the production of inflammatory chemokines by lung-resident 

cells (epithelial cells and AMs), which recruit granulocytes as well as other immune cells to the 

lung. Neutrophils recruited to fight pulmonary bacteria during influenza have reduced bactericidal 

capacity, yet retain their inflammatory functions, leading to increased immunopathology. It has 

been shown that neutrophils from influenza-infected mouse lungs display reduced bacterial 

phagocytosis and intracellular ROS production upon bacterial challenge (46). Macrophages also 

display decreased bacterial phagocytosis when infected with influenza virus (47). This suppression 

of neutrophils is recapitulated in humans, where influenza infection lead to a defect in lysozyme 

secretion by sputum neutrophils (48). However, the presence of these neutrophils in the lung is 

still required, as antibody depletion of Ly6G+ cells resulted in increased bacterial burden during 

MRSA challenge seven days post-influenza (49). In fact, increased neutrophil numbers can aid 

bacterial clearance, when combined with an increase in function (50). 

Not only cellular responses but molecular responses are also blunted by preceding 

influenza. Antimicrobial peptides (AMPs) are made by epithelial cells and neutrophils, as well as 

alveolar macrophages, as direct killing mechanisms against bacteria (51). These peptides can also 

recruit neutrophils and act as chemokines (52). Prior influenza infection suppresses this 

antimicrobial peptide response, especially through inhibiting production of neutrophil gelatinase-

associated lipocalin (NGAL, also termed lipocalin 2). Restoration of antibacterial immunity can 

be achieved when NGAL is given exogenously (53). Cytokine and chemokine production is also 

altered by prior influenza infection. 
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Type 17 cytokines are crucial to antibacterial defense. Type 17 cytokines are 

predominantly produced during bacterial super-infection by gamma delta T cells (54), which are 

present in or quickly recruited to tissue, in contrast to conventional CD4+ T helper (Th)17 cells. 

Mice lacking receptors for the type 17 cytokines IL-17 and IL-22, respectively IL-17RA and IL-

22R1, had significantly increased lung bacterial burden during primary S. aureus infection. In mice 

that received influenza six days prior to S. aureus challenge, type I IFNs inhibited the induction of 

IL-17, IL-22, and IL-23, a potent inducer of type 17 cytokines. Exogenous IL-23 rescued the 

production of both IL-17 and IL-22 and increased bacterial clearance during S. aureus super-

infection (55). Many other cytokines have been implicated in this immune dysregulation from 

preceding influenza, including both type 1 cytokines (interferon gamma (56) and tumor necrosis 

factor alpha (57)) and type 2 cytokines (IL-27 (58), IL-33 (50), IL-10 (59), and IL-13 (60)). Type 

I interferon seems to be a broad dysregulator of antibacterial immunity, as mice lacking the IFN I 

receptor IFNαR1 do not display an influenza-induced increase in bacterial burden during bacterial 

challenge. 

1.3.3  Interferon signaling in response to bacterial infection and super-infection 

Macrophages and dendritic cells (DCs) in the lung produce type I IFNs in response to 

infection with certain bacteria (61, 62). S. aureus infection leads to IFNβ production via stimulator 

of interferon genes (STING) protein and the cytosolic DNA sensor cyclic GMP-AMP synthase 

(cGAS). Importantly, this production of IFNβ is pathogenic to the host, as mice lacking STING 

effectively clear cutaneous S. aureus infection (63). Influenza induces production of type I and 

significantly more type III IFN (37, 64), with expression peaking three to five days after infection 

(36). While wild-type mice show an increase in bacterial burden when influenza precedes 
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pulmonary S. aureus infection, mice lacking the type I IFN receptor (IFNαR1-/- mice) show no 

such increase (55). This effect is not specific to S. aureus,  and has been shown for S. pneumoniae 

(65) as well as Gram-negative bacteria including Escherichia coli and Pseudomonas aeruginosa 

(66). Mice lacking the IFN induced transcription factors STAT1 or STAT2 (67) also exhibit 

reduced susceptibility to secondary bacterial infection (68). These findings were recapitulated in 

mice lacking the type III IFN receptor, suggesting that both type I and III IFNs increase bacterial 

burden during influenza super-infection (69).  

Interestingly, wild-type mice are surprisingly less susceptible than IFNαR1-/- mice to 

bacterial super-infection early during influenza infection. This resistance to bacterial super-

infection tracks with an increase in the type I IFN family member IFNβ, whereas later 

susceptibility correlates with increased IFNα. Importantly, antibody inhibition of IFNβ one day 

post-viral infection increased bacterial burden in the lung, while antibody inhibition of IFNα five 

days post-viral infection reduced lung bacterial burden. Mice treated with recombinant IFNα one 

day before lung infection with MRSA increased bacterial burden in the lung, suggesting that 

increased IFNα is critical to enhancing susceptibility to super-infection (49).  

1.3.4  Treating bacterial super-infection during influenza 

As lung function is critical to life, development of new antimicrobial therapies to fight 

bacterial pneumonias is necessary. Pneumococcal vaccination has drastically reduced 

streptococcal pneumonia since the initial licensing of the vaccine in 1977 (70). Vaccines against 

S. aureus have not yet cleared phase III clinical trials, but many are currently being developed 

(71). Neutralizing antibodies against staphylococcal toxins, namely alpha-toxin, have been 

successful in a variety of trials (72, 73). Many other therapeutic strategies against bacterial pore-
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forming toxins have been developed over the past few decades including pore-forming toxin 

receptor blockade, pore blocking agents, toxoid vaccines, liposomes to capture pore-forming 

toxins, and small molecules that bind pore-forming toxins to prevent their oligomerization (74). 

One path towards creating effective therapies is examining factors that affect patient 

survival. Many therapeutics that show promise in mice do not ameliorate disease in humans. 

Importantly, mice and humans differ significantly in their immunity to S. aureus infection, as 

demonstrated by the fact that humanized mice show increased susceptibility to S. aureus skin 

infection (75) as well as lung infection (76). Children displayed increased antibody titer to the 

bicomponent pore-forming toxin LukAB upon seroconversion from acute-phase to convalescent-

phase during invasive S. aureus infection, and sera containing anti-LukAB antibodies was able to 

neutralize the cytotoxicity of S. aureus isolates (77). Thomsen et al. were able to generate three 

hybridomas from a pediatric patient with S. aureus osteomyelitis that produce monoclonal 

antibodies with anti-LukAB activity, which were effective against cytotoxicity and together were 

able to reduce colony counts in a murine model of S. aureus sepsis (78). LukAB has now been 

shown to kill not only neutrophils and macrophages but also human dendritic cells (79), suggesting 

this toxin is a prime candidate for therapeutic targeting. The possibility remains that neutralizing 

only one toxin may not be not effective as others become more highly expressed to take its place 

in the phenomenon of “counter inhibition” (80). To address this, a single human monoclonal 

antibody has been developed with the ability to neutralize alpha-hemolysin as well as four other 

bicomponent leukocidins, and more recently a combination therapy of two human monoclonal 

antibodies which together can neutralize six S. aureus cytotoxins (81, 82). Many new antibacterial 

therapies are currently being developed, which are absolutely crucial to the treatment of bacterial 
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super-infection as current measures against influenza are limited and bacterial resistance to 

antibiotics is ever-increasing. 
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2.0 The Engineered Antimicrobial Peptide WLBU2 Does Not Reduce Bacterial Burden 

During Influenza Super-infection 

2.1 Summary 

With the current increase in antibiotic resistance, development of new therapeutics against 

multi-drug resistant bacteria is necessary. WLBU2 is a novel engineered antimicrobial peptide, 

built on the scaffold of the endogenous cathelicidin LL-37. LL-37 is a short, α-helical protein 

formed from the cleavage of hCAP18, which is effective at killing a wide range of pathogens. LL-

37 also binds host cellular receptors and modulates the immune response, increasing pro-

inflammatory cytokines such as IL-1β along with neutrophil and macrophage/monocyte 

chemokines. Overactivation of the immune system can lead to significant immunopathology 

during bacterial lung infection, as immune cell recruitment to the lung can result in pulmonary 

edema. Excess fluid in the lung disrupts the crucial gas exchange in the alveoli that allows blood 

to be oxygenated, and can lead to acute respiratory distress syndrome. Thus, treatments for 

pulmonary bacterial infection must balance bacterial killing while limiting immunopathology.  

While the engineered WLBU2 retains the short helical structure of LL-37, it is composed 

only of three amino acids: valine, arginine, and tryptophan. I show that WLBU2 does not have the 

same immunomodulatory properties as LL-37, but retains the ability to kill bacteria in an in vivo 

model of methicillin-resistant Staphylococcus aureus (MRSA) lung infection. However, WLBU2 

is unable to reduce pulmonary bacterial burden in a model of MRSA super-infection during 

influenza. While WLBU2 may not be effective against bacterial super-infection during influenza, 

it has been shown to be effective in models of bacterial sepsis, biofilm formation, and pulmonary 
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bacterial infection, and may become an important tool in the fight against bacterial infection in an 

era of rapidly increasing multi-drug resistance. 

2.2 Introduction 

Current treatments for bacterial super-infection are limited to treatment of the underlying 

influenza infection, with the addition of antibiotics against the super-infecting pathogen. With the 

rise of multi-drug resistance, especially in methicillin-resistant S. aureus strains, it is crucial that 

new antibacterial compounds be developed. One such avenue of discovery is the engineering of 

antimicrobial peptides: small (12-50 amino acid) proteins which directly kill a wide range of 

invading pathogens, including viruses, bacteria, and fungi. Antimicrobial peptides are naturally 

produced by the innate immune system and have myriad mechanisms by which they kill microbes, 

but commonly display an amphipathic tertiary structure which allows their passage through the 

microbial phospholipid membrane, allowing for membrane disruption as well as binding of 

intracellular molecules.  

The most abundant antimicrobial peptides in the lung are alpha-defensins, beta-defensins, 

and cathelicidins. These peptides are expressed by cells of the innate immune system, including 

epithelial cells, neutrophils, and alveolar macrophages. While these classes of peptides differ 

structurally, all are amphipathic with both hydrophobic and positively charged surfaces. α- and β-

defensins have a triple-stranded β-sheet structure formed by three intramolecular disulfide bridges, 

while cathelicidins have an α-helical structure (83). The single human cathelicidin, LL-37, is a 37 

amino acid peptide formed by proteolytic cleavage of the C-terminus from the human cathelicidin 

antimicrobial protein 18 (hCAP18). LL-37 has a broad spectrum of direct antimicrobial activity, 
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but also binds host cellular receptors (formyl peptide receptor 2 (FPR2) (84, 85), P2X7 (86), and 

epidermal growth factor receptor (EGFR) (87)) and stimulates immune pathways. 

The simpler α-helical structure of cathelicidins constitutes a prime scaffold for designing 

novel antimicrobial peptides. Deslouches et al. began by optimizing this structure, creating a 12-

residue amphipathic helix consisting only of hydrophobic valine residues on one face and cationic 

arginine residues on the other, termed the “lytic base unit” (LBU). Many variations on length of 

this peptide were tested, with the 24-residue LBU2 peptide producing optimal killing of both 

Pseudomonas aeruginosa and Staphylococcus aureus. A second series included the addition of 

tryptophan residues, often found in membrane-disrupting peptides, termed the WLBU series. 

Again, the 24-residue peptide proved most potent, with the WLBU2 peptide displaying the lowest 

minimal bactericidal concentration (88). Importantly, WLBU2 retained its bacterial-killing 

properties in the presence of human serum, unlike the endogenous cathelicidin LL-37, and was 

able to rescue mice from fatality in a model of P. aeruginosa sepsis. The maximum tolerable dose 

for intravenous injection was determined to be 12 mg/kg by Kaplan-Meier survival curve, with 

LD50 estimated to be between 12-16 mg/kg. Mice treated with 3 mg/kg WLBU2 intravenously 30 

minutes after intraperitoneal infection with P. aeruginosa survived sepsis and were rescued from 

bacteremia, while all PBS-treated mice perished within 36 hours (89). 

Many groups have since published that WLBU2 has broad efficacy against many 

pathogens, both in vitro and in vivo. Most recently, WLBU2 has been shown to prevent biofilm 

formation by commonly multidrug-resistant respiratory pathogens K. pneumoniae, P. aeruginosa, 

and S. aureus (90). Moreover, WLBU2 has also been shown to have simultaneous antiviral and 

antibacterial activity, in a model of P. aeruginosa biofilm growth on bronchial epithelial cells 

infected with respiratory syncytial virus (RSV) (91). Due to its tolerability, high potency, and wide 
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range of antimicrobial activity, I hypothesized that WLBU2 might be a useful therapeutic for 

bacterial super-infection during influenza. 

2.3 Materials and Methods 

2.3.1  Antimicrobial peptides 

LL-37 (LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES) and the engineered 

antimicrobial peptide WLBU2 (RRWVRRVRRWVRRVVRVVRRWVRR) were generous gifts 

of Berthony Deslouches (88).  

2.3.2  Mice 

Six- to eight-week old male C57BL/6J mice were purchased from Taconic Biosciences 

(Hudson, NY) and maintained under pathogen-free conditions. All studies were performed on age- 

and sex-matched mice. All animal studies were conducted with approval from the University of 

Pittsburgh Institutional Animal Care and Use Committee. 

2.3.3  Murine infections 

All mouse infections were administered by oropharyngeal aspiration (OPA) after inhaled 

isoflurane anesthesia. Methicillin-resistant Staphylococcus aureus (MRSA) USA300 was grown 

to stationary phase overnight shaking at 37°C in S. aureus-specific media (appendix section A.5), 

using a second tube of uninoculated broth to ensure broth sterility. The next morning, the optical 
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density of the culture was measured at 660 nm, and colony-forming units (CFU) were estimated 

by multiplying the OD660 by the previously calculated extinction coefficient of 1.48×109. The 

culture was centrifuged at 10,000×g for five minutes, broth was aspirated, and the bacterial pellet 

was resuspended in enough PBS to deliver 5×107 CFU in 50 µl per mouse. Influenza H1N1 

A/PR/8/34 was prepared by diluting frozen virus stock between 1:15,000 and 1:150,000 with PBS, 

to deliver enough virus in 50 µl per mouse to cause 10-15% weight loss by sacrifice on day 7.  

2.3.4  Animal harvest 

At harvest, mouse lungs were lavaged with 1 ml sterile PBS. This bronchoalveolar lavage 

(BAL) fluid was centrifuged at 10,000×g for 5 min to pellet cells, and the supernatant was aspirated 

and frozen at −80°C for later protein and cellular damage analysis. Cell pellets from lavage fluid 

were resuspended in 500 µl sterile PBS and counted on a hemocytometer to enumerate infiltrating 

cells. The right upper lobe of each lung was mechanically homogenized and plated for bacterial 

CFU counting, with the excess frozen at −80°C for later analysis.  

2.3.5  Analysis of lung inflammation 

Cytokine levels in bronchoalveolar lavage fluid and lung homogenate were analyzed with 

the Bio-Plex Pro mouse cytokine 23-plex array (Bio-Rad, Hercules, CA). Total protein in 

bronchoalveolar lavage was measured by Bradford assay (Thermo Scientific Pierce Coomassie 

Protein Assay kit; ThermoFisher, Waltham, MA). 
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2.3.6  Statistical analysis 

Data were analyzed using GraphPad Prism 7 (GraphPad, La Jolla, CA). Analyses 

comparing two groups were performed by an unpaired t test with Welch’s correction, unless data 

were not parametrically distributed, in which case Mann-Whitney analysis was used. Mortality 

data were analyzed by a log-rank (Mantel-Cox) test. All figures show combined data from multiple 

replicate studies as means ± standard errors of the means (SEM). The indicated n values are 

numbers of animals per group in each independent experiment. Statistical significance is reported 

as follows: * p < 0.05, ** p < 0.01, *** p < 0.001. P-values between 0.05 and 0.1 are displayed 

numerically. 

2.4 Results 

To establish a therapeutic dose of WLBU2 for pulmonary bacterial infection, I tested two 

doses of WLBU2 peptide by intravenously injecting mice two hours after bacterial infection with 

either 5 or 50 µg WLBU2 (approximately 0.2-0.25 mg/kg and 2-2.5 mg/kg, respectively). 

Respiratory distress upon oropharyngeal installation of 3.5-7 µg WLBU2 was previously observed 

by others in the laboratory, while IV treatment with 3 mg/kg was well-tolerated as previously 

published (89). Mice were sacrificed four hours following treatment, at six hours post-bacterial 

infection. This four-hour window was chosen to assess the killing of bacteria in the lung without 

inordinate influence of bacterial replication post-WLBU2 treatment. Deslouches et al. showed that 

WLBU2 required only 20 minutes in human serum to achieve complete killing of P. aeruginosa 

in vitro (89). I compared the effect of WLBU2 treatment on pulmonary bacterial burden with that 
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of the endogenous cathelicidin LL-37, which has been previously shown to ameliorate MRSA 

pneumonia when perfused intratracheally (92). 

Intravenous injection of 50 µg WLBU2 two hours after pulmonary MRSA infection 

reduced bacterial burden in the lung, while a dose of 5 µg WLBU2 failed to show any reduction 

in lung bacterial burden (Figure 2.1B). The effect of 50 µg WLBU2 was comparable to that of 50 

µg LL-37 (Figure 2.1C), suggesting that the engineered WLBU2 reduced lung bacterial burden as 

effectively as LL-37. LL-37 is known to activate many pathways of the immune system, including 

stimulating inflammasomes to cleave IL-1β to its active form (86), as well as binding FPR2 to 

induce neutrophil chemotaxis (84). LL-37 has been shown to induce production of the neutrophil 

chemoattractant IL-8 in human keratinocytes (93) and the macrophage/monocyte chemoattractant 

MCP-1 from a murine macrophage cell line (94). While phagocyte chemotaxis to the site of 

infection is necessary for bacterial killing and to limit bacterial spread, overabundant immune cell 

recruitment to the lung can cause immunopathology and acute respiratory distress syndrome 

(ARDS) (95, 96). ARDS is characterized by pulmonary edema, which limits gas exchange in the 

lungs and has high mortality rates ranging from 35-46% depending on ARDS severity (97). 

Limiting immunopathology during treatment of bacterial pneumonia may be an effective strategy 

to reduce mortality. I hypothesized that due to its dissimilar amino acid sequence, WLBU2 

treatment would not activate immune signaling, and reduce mortality from pulmonary MRSA 

infection as compared to LL-37. 
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Figure 3: Treatment with the engineered antimicrobial peptide WLBU2 reduces MRSA pulmonary burden. 

S. aureus pneumonia was modeled by infecting six- to eight-week old male C57BL/6J mice with 5×107 CFU USA300 

MRSA by oropharyngeal aspiration. Two hours later, mice were injected intravenously in the tail vein with either 

WLBU2, LL-37, or PBS vehicle as control, and sacrificed four hours following antimicrobial peptide or vehicle 

treatment. (A) Timeline of infection, treatment, and sacrifice. (B) Comparison of bacterial burden between treatment 

with PBS, 5 µg WLBU2, and 50 µg WLBU2. n = 4, two independent experiments. (C) Comparison of bacterial burden 

between treatment with PBS, 50 µg WLBU2, and 50 µg LL-37. n = 2-4, seven independent experiments. Statistics 

were calculated by one-way ANOVA and graphical summary statistics are displayed as mean ± SEM. 

 

The number of BAL-infiltrating cells and BAL protein as a measure of lung leakage were 

unchanged (Figure 2.2A-B), suggesting that overall lung inflammation was not significantly 

altered. Mortality was also unchanged (Figure 2.2D). However, LL-37 did significantly increase 

levels of the pro-inflammatory cytokine IL-1β, as well as neutrophil and macrophage/monocyte 

chemokines G-CSF, CXCL1, and CCL2. WLBU2 altered none of these except KC, which it 

significantly reduced (Figure 2.2C). This suggests that WLBU2 does not provoke immune 

activation, unlike LL-37, and may not contribute to immunopathology. Immunopathology is made 
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even worse with preceding influenza infection due to cytokine storm, so I tested if WLBU2 would 

similarly limit immunopathology while decreasing bacterial burden during influenza super-

infection. 
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Figure 4: Unlike LL-37, WLBU2 does not alter inflammation in the lung during MRSA infection. 

Mice were infected and treated as described in Figure 2.1. (A) Total cells in bronchoalveolar lavage fluid were 

quantified by counting on a hemocytometer. n = 3-4, four independent experiments. (B) Total protein in 
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bronchoalveolar lavage was determined by Bradford assay. n = 3-4, four independent experiments. (C) Homogenized 

lung tissue was assayed by cytokine multiplex for pro-inflammatory cytokines and chemokines. n = 4, five 

independent experiments. (D) Mice were challenged with 2.5×108 CFU MRSA.  n = 6, one experiment. Statistics were 

calculated by (A-B) one-way ANOVA, (C) two-way ANOVA, or (D) Mantel-Cox log-rank test. Graphical summary 

statistics are displayed as (A-B) mean ± SEM, (C) box-and-whisker plot with median, 25%, and 75% percentile values 

marked, or (D) Kaplan-Meier survival curve. 

 

WLBU2 treatment did not reduce bacterial burden in MRSA super-infection during 

influenza or change levels of pro-inflammatory cytokines (Figure 2.3D-E). Total infiltrating cells 

and lung leak as measured by total protein in BAL were also unchanged (Figure 2.3B-C). Together, 

these results suggest that while WLBU2 may be an effective treatment for MRSA lung infection 

alone, it is not effective in the situation of MRSA super-infection during influenza. 
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Figure 5: WLBU2 does not reduce disease in MRSA super-infection during influenza. 

Bacterial super-infection during influenza was modeled by infecting six- to eight-week old male C57BL/6 mice with 

influenza H1N1 A/PR/8/34 to cause 10-15% weight loss by sacrifice. Six days post-influenza, mice were challenged 

with 5×107 CFU USA300 MRSA by oropharyngeal aspiration. Two hours later, mice were injected intravenously in 

the tail vein with either WLBU2 or PBS vehicle as control, and sacrificed four hours following treatment.  (A) 

Timeline of infection, treatment, and sacrifice. (B-C) n = 4, one representative experiment. (B) Total cells in 
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bronchoalveolar lavage fluid were quantified by counting on a hemocytometer. (C) Total protein in bronchoalveolar 

lavage was determined by Bradford assay. (D) Comparison of bacterial burden between treatment with PBS and 50 

µg WLBU2. n = 4, three independent experiments. (E) Homogenized lung tissue was assayed by cytokine multiplex 

for pro-inflammatory cytokines and chemokines. n = 4, one experiment. Statistics were calculated by (B-D) t test with 

Welch’s correction or (E) two-way ANOVA and graphical summary statistics are displayed as (B-D) mean ± SEM or 

(E) box-and-whisker plot with median, 25%, and 75% percentile values marked. 

2.5 Discussion 

Since these data were generated, more research from other groups into the antimicrobial 

activities of WLBU2 has been published. WLBU2 has now been shown to be more effective than 

LL-37 at preventing biofilm formation of multidrug-resistant pathogens including both P. 

aeruginosa and S. aureus (90). This study and others in vitro have shown great promise for 

WLBU2 in preventing biofilms, suggesting that its best use may not be direct delivery to an 

infected patient but instead being used in a coating on implants before procedures such as joint 

replacement. However, it was shown in 2018 that oropharyngeal installation of WLBU2 at a much 

lower dose of 1 µg (0.05 mg/kg) was well-tolerated by mice (98). This was welcome but surprising, 

as we had previously observed respiratory distress when mice were administered doses of 3.5 µg 

and 7 µg administered by the same route. Chen et al. published that oropharyngeal installation of 

WLBU2 reduced P. aeruginosa burden and bacterial-driven inflammation in the lung 24 hours 

post-treatment, while installation of LL-37 increased bacterial burden as well as inflammatory 

cytokines (98). It appears that oropharyngeal installation of 1 µg WLBU2 is below the threshold 

required to cause respiratory distress in mice, which may be due to the strong cationic charge of 

the peptide. However, that hypothesis has not been experimentally interrogated, and it is possible 
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that the murine lung may react differently to delivery of antimicrobial peptide during S. aureus 

versus P. aeruginosa lung infection. These bacteria differ in many ways: foremost, the Gram 

positive S. aureus lacks an outer cell membrane and has an exposed cell wall high in peptidoglycan, 

whereas the Gram negative P. aeruginosa shields its cell wall with an outer membrane. Moreover, 

current guidelines for antibiotic treatment differ between these two bacteria, with pneumonias 

caused by P. aeruginosa requiring antipseudomonal cephalosporins or β lactam antibiotics, while 

pneumonias without pseudomonal risk factors can be instead treated with fluoroquinolones (99).  

From these data, it seems that oropharyngeal installation of much lower therapeutic doses 

of WLBU2 directly to the site of infection is much more effective than intravenous treatment. This 

reasoning also supports the strong findings from Deslouches et al. that WLBU2 was able to save 

mice from lethal P. aeruginosa sepsis, as in that model the AMP was directly encountering 

pathogen in the blood. This underscores the fact that antibiotic treatment requires correct drug 

delivery and effective killing of bacteria. However, at its core the phenomenon of bacterial super-

infection during influenza happens due to immune dysregulation, and mortality is thought to also 

be highly influenced by immunopathology, suggesting that the host response is the most crucial 

factor in outcomes during bacterial super-infection. Thus, I decided to look into the underlying 

immunopathology of this disease by understanding the role of individual cytokines. As discussed 

previously, type I interferon seemed to be a strong suppressor of immunity to bacteria commonly 

found during influenza super-infection. Although much was known about type I IFNs, type III 

IFNs were only just beginning to be explored. 
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3.0 IFNλ3 Knockout Does Not Reduce Total IFNλ In Bacterial Super-infection During 

Influenza 

3.1 Introduction 

Type I IFNs were the first cytokines to be described, and have been known as antiviral 

signaling molecules since their discovery in 1957. While type I IFNs have potent antiviral 

properties, they are also strong promoters of inflammation and have ceased to be used in first-line 

treatment for most viral infections. Conversely, type III IFNs were only first described in 2003, 

and share antiviral properties of type I IFNs while being less inflammatory overall (100). 

Moreover, type III IFN was shown to be even more highly produced in response to flu than type I 

interferon (37). The lung expresses high levels of the specific IFNλ receptor IFNλR1, which is not 

ubiquitously expressed, unlike the type I IFN receptor IFNαR1. As type I IFN treatment has many 

off-target effects, type III IFN treatment appeared promising due to the receptor restriction to 

mucosal barriers (and later neutrophils). Moreover, while corticosteroids do not reduce morbidity 

or mortality during pulmonary bacterial infection, immunopathology drives ARDS and negative 

patient outcomes, and thus dampening overall inflammation is still promising in treatment of 

bacterial super-infection during influenza.  

Due to the novelty of type III IFN, there have been few reagents available for its 

investigation in vivo murine models. Only recently have the first knockout mice, which lack one 

of the two murine type III IFNs, become commercially available. Thus, I decided to test the 

hypothesis that IFNλ3-/- mice would display reduced bacterial burden and immunopathology in 

bacterial super-infection during influenza. Herein, the use of IFNλ3-/- mice to investigate the role 
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of type III interferon in bacterial super-infection during influenza is described. Surprisingly, 

IFNλ3-/- mice do not display reduced IFNλ when measured by ELISA, possibly due to upregulation 

of IFNλ2, which shares 96% amino acid similarity with IFNλ3 (5). These findings demonstrate 

that IFNλ3-/- mice are a poor model for the in vivo investigation of IFNλ. 

3.2 Materials and Methods 

3.2.1  Mice 

IFNλ3tm1.1(KOMP)Vlcg mice were a generous gift from Dr. Jieru Wang, and wild-type 

C57BL/6NJ controls were purchased from The Jackson Laboratory. IFNλ3tm1.1(KOMP)Vlcg mice were 

bred in a homozygous fashion with wild-type C57BL/6NJ mice purchased as controls, and co-

housed for one to two weeks before experimental use. To cohouse mice in order to limit variability 

from differences in intestinal microbiota, female mice were placed in cages containing at least one 

mouse of the opposing genotype, while male mice had their bedding swapped daily between cages 

due to risk of injury from fighting. To generate littermate controls, male wild-type C57BL/6NJ 

mice were bred with IFNλ3tm1.1(KOMP)Vlcg females and the resulting F1 offspring were used 

experimentally at six to eight weeks old. All studies were performed on age- and sex-matched 

mice. All animal studies were conducted with approval from the University of Pittsburgh 

Institutional Animal Care and Use Committee. 
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3.2.2  Murine infections 

All mouse infections were administered by oropharyngeal aspiration (OPA) after inhaled 

isoflurane anesthesia. Methicillin-resistant Staphylococcus aureus (MRSA) USA300 and 

influenza H1N1 A/PR/8/34 were grown and administered as described in section 2.3.3. 

3.2.3  Analysis of lung inflammation 

At harvest, mouse lungs were lavaged with 1 ml sterile PBS. This lavage fluid was 

centrifuged at 10,000×g for 5 min to pellet cells, and the supernatant was frozen for cytokine 

measurement by an enzyme-linked immunosorbent assay (ELISA) for IFNλ (IFNλ2/3 DuoSet; 

R&D Systems, Minneapolis, MN). Cell pellets from lavage fluid were resuspended in 500 μl sterile 

PBS and counted on a hemocytometer to enumerate infiltrating cells. These cells were then either 

processed by cytospin and stained for differential counting or centrifuged again at 10,000×g for 5 

min and then immediately frozen at −80°C for RNA extraction. 

 

The right upper lobe of each lung was mechanically homogenized and plated for bacterial 

CFU counting. The right middle and lower lobes of each lung were snap-frozen in liquid nitrogen 

for RNA extraction. 

3.2.3.1 Real-time PCR 

RNA was isolated from whole lung lobes snap-frozen in liquid nitrogen using the 

Absolutely RNA miniprep kit (Agilent Technologies, Santa Clara, CA), and its concentration was 

analyzed by spectrophotometry (NanoDrop ND-1000; Thermo Fisher Scientific). RNA was 
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reverse transcribed into cDNA using the iScript cDNA synthesis kit (Bio-Rad, Hercules, CA), 

which was assayed by real-time PCR for gene expression with Assay on Demand TaqMan primer 

and probe sets (Life Technologies, Grand Island, NY). 

3.2.4  Statistical analysis 

Data were analyzed using GraphPad Prism 7 (GraphPad, La Jolla, CA). Analyses 

comparing two groups were performed by an unpaired t test with Welch’s correction, unless data 

were not parametrically distributed, in which case Mann-Whitney analysis was used. Mortality 

data were analyzed by a log-rank (Mantel-Cox) test. All figures show combined data from multiple 

replicate studies as means ± standard errors of the means (SEM). The indicated n values are 

numbers of animals per group in each independent experiment. Statistical significance is reported 

as follows: * p < 0.05, ** p < 0.01, *** p < 0.001. P-values between 0.05 and 0.2 are displayed 

numerically. 

 

3.3 Results 

I interrogated the role of IFNλ in bacterial super-infection during influenza by using the 

only commercially available mouse strain at the time, IFNλ3tm1.1(KOMP)Vlcg mice, hereafter referred 

to as IFNλ3-/- mice. These animals lack the IFNλ3 gene, but not the other murine type III interferon 

IFNλ2. Thus, these IFNλ3-/- mice were expected to display reduced total IFNλ. Surprisingly, total 

BAL IFNλ was not significantly reduced in IFNλ3-/- mice compared to wild-type mice (Figure 
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3.1A). Both BAL IFNλ (Figure 3.1A) and bacterial burden (Figure 3.2B) trended to decrease in 

IFNλ3-/- mice, which supported the hypothesis that type III IFN acted similarly to type I IFN and 

promoted increased bacterial burden during influenza super-infection. Paradoxically, weight loss 

was significantly decreased in IFNλ3-/- mice as compared to WT mice (Figure 3.2D), and 

importantly on days 5 and 6 post-influenza, before mice received the bacterial challenge. This 

suggested that IFNλ3-/- mice had decreased morbidity from viral infection. However, these mice 

did not display reduced viral burden (Figure 3.4A). Additionally, bronchoalveolar lavage (BAL) 

cellularity was unchanged (Figure 3.1C), suggesting that there was no difference in 

immunopathology. However, there was significant variability in each of these measures, and both 

male and female mice were used in experiments (which were sex-matched and age-matched) as 

the IFNλ3-/- mice were propagated in-house. Thus, I asked if sex was a variable in these data.  
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Figure 6: IFNλ3-/- mice lose less weight during bacterial super-infection than WT mice. 

IFNλ3tm1.1(KOMP)Vlcg mice (IFNλ3-/- mice) and wild-type C57BL/6NJ controls were co-housed for one to two weeks 

before influenza infection. Bacterial super-infection during influenza was modeled by infecting six- to eight-week old 

mice with influenza H1N1 A/PR/8/34 to cause 10-15% weight loss by sacrifice on day 7. On day 6, one day prior to 

sacrifice, mice were challenged with 5×107 CFU USA300 MRSA by oropharyngeal aspiration. n = 3-5, nine 

independent experiments. (A) Protein levels of IFNλ in bronchoalveolar lavage (BAL) were measured by ELISA. (B) 

MRSA burden was quantified by bacterial plating. (C) BAL cells were quantified by counting on a hemocytometer. 

(D) Mice were weighed at the time of influenza infection (day 0), day 5, day 6 directly prior to MRSA challenge, and 

day 7 directly prior to sacrifice. Statistics were calculated by (A,C) t test with Welch’s correction, (B) Mann-Whitney 

test due to non-Gaussian distribution of data, or (D) two-way ANOVA. Graphical summary statistics are displayed as 

mean ± SEM. 

 

Inflammation, and specifically the antiviral response to influenza, differ between the sexes. 

Importantly, the sex hormone estradiol is pro-inflammatory while testosterone is 
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immunosuppressive. Females mount both a higher innate and adaptive immune response to viral 

infection, and males are more likely to get gastrointestinal and respiratory infections, while females 

are more likely to have autoimmune disorders including asthma. In influenza, progesterone 

treatment in female mice is protective against immunopathology during influenza by increasing 

type 17 immunity and upregulating the epidermal growth factor amphiregulin (101). Treatment of 

female mice with the oral contraceptive hormone levonorgestrel paradoxically protects against 

influenza mortality while decreasing serum antibodies (102). In male mice, testosterone treatment 

protects against influenza mortality but viral titer, antibody production, and immunopathology 

were unchanged (103). As both influenza and pulmonary infection differ between sexes, I 

interrogated the effect of sex on the pathogenesis of bacterial super-infection during influenza. 

In total, nine experiments were performed: three using only female mice (n = 4-5), three 

using only male mice (n = 3-5), and three directly comparing sex as a variable within each 

experiment. Bacterial burden was significantly higher in female IFNλ3-/- mice than in male IFNλ3-

/- mice (p = 0.0322), but only trended higher in female WT mice as compared to male WT mice 

(Figure 3.2B). Cell counts also trended to be lower in female WT mice than male WT mice (Figure 

3.2C). While IFNλ3-/- mice trended to lose less weight than WT mice overall, there was no 

statistically significant difference in weight loss when sex was considered as a factor (Figure 

3.2D). Again, no decrease in BAL IFNλ in IFNλ3-/- mice was seen as compared to WT (Figure 

3.2A). 

Very few disease endpoints were significantly changed by IFNλ3 knockout, even when sex 

was considered as a variable. There was wide variance in the difference in BAL IFNλ when 

comparing IFNλ3-/- to WT mice in individual experiments; some experiments even showed 

statistically significant higher BAL IFNλ in IFNλ3-/- mice. Some experiments showed a 
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statistically significant difference in weight loss while others did not, same with bacterial burden. 

Penetrance of each of these phenotypes (BAL cellularity, weight loss, bacterial burden) was widely 

varied with three or fewer individual experiments showing either statistically higher or lower 

outcomes. Moreover, phenotype penetrance was not segregated by sex, and no one phenotype 

correlated with any other between experiments. As there was such a range in phenotype 

penetrance, I decided to ask whether individual experiments that had shown statistically lower 

BAL IFNλ in IFNλ3-/- mice than WT mice, i.e. experiments which truly modeled a decrease in 

BAL IFNλ, had differences in disease outcome that were otherwise camouflaged. 
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Figure 7: IFNλ3-/- mice exhibit small sex differences in bacterial burden during influenza super-infection. 

Mice were treated as described in Figure 3.1. n = 3-5, nine independent experiments. (A) Protein levels of IFNλ in 

BAL were measured by ELISA. (B) MRSA burden was quantified by bacterial plating. (C) BAL cells were quantified 

by counting on a hemocytometer. (D) Mice were weighed on days 0, 5, 6 and 7. Statistics were calculated by (A,C) 

one-way ANOVA, (B) Kruskal-Wallis test due to non-Gaussian distribution of data, or (D) two-way ANOVA. 

Graphical summary statistics are displayed as mean ± SEM. 

 

BAL IFNλ was only significantly reduced in IFNλ3-/- mice as compared with WT mice in 

3 of 9 experiments, two of which were performed in male mice and one performed in female mice. 

Even though IFNλ3-/- mice had significantly lower BAL IFNλ in these experiments (Figure 3.3A), 

bacterial burden and BAL cellularity were unchanged (Figure 3.3B-C). Surprisingly, IFNλ3-/- mice 

again lost less weight than WT mice during influenza infection and bacterial super-infection 

(Figure 3.3D). As weight loss is commonly used as a proxy for influenza morbidity, these data 
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suggested that IFNλ3-/- mice would have lower influenza virus burden than WT mice. This 

contradicted my earlier hypothesis that IFNλ3-/- mice would have higher viral burden than WT 

mice, due to the reduction in antiviral cytokine. Thus, I investigated whether this decreased weight 

loss in IFNλ3-/- mice was due to decreased influenza burden. 
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Figure 8: Reduced BAL IFNλ3 does not alter bacterial super-infection. 

Mice were treated as described in Figure 3.1. (A) Protein levels of IFNλ in BAL were measured by ELISA. n = 3-5, 

three independent experiments. (B) MRSA burden was quantified by bacterial plating. n = 3-5, two independent 

experiments. (C) BAL cells were quantified by counting on a hemocytometer. n = 3-5, two independent experiments.  

(D) Mice were weighed on days 0, 5, 6 and 7. n = 3-5, three independent experiments. Statistics were calculated by 

(A,C) t test with Welch’s correction, (B) Mann-Whitney test due to non-Gaussian distribution of data, or (D) two-way 

ANOVA. Graphical summary statistics are displayed as mean ± SEM. 

 

IFNλ is well-known as an antiviral molecule, so I hypothesized that IFNλ3-/- mice would 

have higher viral burden than WT mice. As measured by real-time PCR for influenza M protein 

expression, viral burden in whole lung tissue was not significantly different in IFNλ3-/- mice than 
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in the WT mice (Figure 3.4A). Surprisingly, viral burden positively correlated with total IFNΛ 

protein in BAL in both IFNλ3-/- and WT mice (Figure 3.4B), regardless of genotype (Figure 3.4C). 

BAL IFNλ also positively correlated with BAL cellularity (Figure 3.4F) and bacterial burden 

(Figure 3.4E) in all mice, but not with weight loss from the time of influenza infection to sacrifice 

(Figure 3.4D).  

I hypothesized that the wide variability in phenotypic penetrance was due to the variation 

introduced by ordering and co-housing wild-type controls instead of breeding littermate controls. 

To address this, I ordered male wild-type C57BL/6NJ mice and bred them in-house with female 

IFNλ3tm1.1(KOMP)Vlcg mice, using the entire F1 generation of offspring to assess the effect of both 

homozygous and heterozygous knockout of the IFNλ3 gene on bacterial super-infection in 

littermates.  
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Figure 9: Total BAL IFNλ correlates positively with influenza severity. 

Mice were treated as described in Figure 3.1. n = 3-5, three independent experiments. (A) Influenza M protein 

expression was quantified by real-time PCR. (B) Linear regression of BAL IFNλ and influenza M protein expression, 

segregated by mouse genotype. (C) Linear regression of BAL IFNλ and influenza M protein expression including all 

mice, regardless of genotype. (D) Linear regression of BAL IFNλ and mouse weight seven days after influenza 

infection, displayed as percentage of starting weight. (E) Linear regression of BAL IFNλ and pulmonary MRSA 

burden. (F) Linear regression of BAL IFNλ and BAL cellularity. Statistics were calculated by (A) t test with Welch’s 

correction or (B-F) linear regression, in which p-values are displayed numerically. (A) Graphical summary statistics 

are displayed as mean ± SEM. 

 

Littermates showed no difference in weight loss at any timepoint, total number of BAL 

cells, or bacterial burden in the lung during influenza super-infection (Figure 3.5B-D). Levels of 

total IFNλ in BAL were significantly different when assessed by Welch’s t test with p = 0.0461 

(Figure 3.5A), but when analyzed by one-way ANOVA with multiple comparisons including the 

group of IFNλ3+/- mice, were not statistically significant. While this difference is technically 
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statistically significant, these IFNλ3-/- mice show a mild reduction in total IFNλ at best. Moreover, 

bacterial burden and BAL cellularity, which were both significantly correlated with BAL IFNλ 

regardless of genotype (Figure 3.4E-F), were unchanged between genotype in littermates. 
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Figure 10: IFNλ3-/- mice do not display a different response to bacterial super-infection than WT littermates. 

Female IFNλ3tm1.1(KOMP)Vlcg mice were bred with male wild-type C57BL/6NJ mice to produce F1 offspring, which 

were used experimentally at six to eight weeks old. Bacterial super-infection during influenza was modeled by 

infecting six- to eight-week old mice with influenza H1N1 A/PR/8/34 to cause 10-15% weight loss by sacrifice on 

day 7. On day 6, one day prior to sacrifice, mice were challenged with 5×107 CFU USA300 MRSA by oropharyngeal 

aspiration. n = 4-13, two independent experiments. (A) Protein levels of IFNλ in BAL were measured by ELISA. (B) 

MRSA burden was quantified by bacterial plating. (C) BAL cells were quantified by counting on a hemocytometer. 

(D) Mice were weighed at influenza infection (day 0) and daily thereafter until sacrifice on day 7. Statistics were 

calculated by (A-C) t test between WT and IL-28B-/- groups with Welch’s correction or (D) two-way ANOVA. 

Graphical summary statistics are displayed as mean ± SEM. 
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3.4 Discussion 

IFNλ3-/- mice are a poor in vivo model for assessing the role of IFNλ in bacterial super-

infection during influenza. ELISA detection of IFNλ in BAL measured both IFNλ2 and IFNλ3, as 

the proteins have 96% amino acid similarity and are both detected by the assay antibody. Levels 

of BAL IFNλ were strikingly similar between IFNλ3-/- mice and their wild-type littermates. 

Moreover, variability between experiments was quite high, and when the individual experiments 

were analyzed separately this difference became insignificant. Together, this suggests that IFNλ2 

may be upregulated in response to IFNλ3 knockout in IFNλ3-/- mice, resulting in a minimal if at 

all present decrease in IFNλ3 in IFNλ3-/- mice. However, these experiments only assessed levels 

of IFNλ3 in bacterial super-infection during influenza, and these mice may show a larger reduction 

in total IFNλ in other disease settings.  

Although IFNλ3-/- mice and co-housed C57BL/6NJ mice displayed differences in weight 

loss during influenza infection as well as bacterial super-infection, this phenotype was not 

observed in littermates, underscoring the necessity for littermate controls in experiments. These 

results also suggest that this paradoxical decrease in weight loss in mice that lack the antiviral 

cytokine IFNλ3 may be due to other possible underlying genetic differences between IFNλ3-/- mice 

and the background C57BL/6NJ strain. Alternatively, IFNλ2 may be upregulated in these IFNλ3-

/- mice and may even protect them from influenza morbidity, however viral burden was unchanged 

so this hypothesis appears to hold little merit. Importantly, these data demonstrate that while 

weight loss is commonly used as a proxy for influenza morbidity, weight loss does not imply 

increased viral burden. The intestinal microbiome has been shown to influence the pulmonary 

immune response (104), so 16S sequencing on fecal samples was performed to assess the ability 

of co-housing to equalize intestinal microbiota. While the microbiota of non-littermate but co-
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housed WT and IFNλ3-/- mice did not overlap perfectly in a principal component analysis, co-

housing worked to shift the microbiome closer between the two groups (appendix Figure 5.2). 

Importantly, while these co-housed non-littermates showed sex differences in bacterial burden 

during influenza super-infection, littermates did not recapitulate this phenotype (appendix Figure 

5.1). The method of co-housing is a likely culprit for this: female mice that were not weaned 

together can be housed together without issue, but male mice will often fight, occasionally to the 

point of death but generally inducing wounds which require immune processes to heal. To co-

house male mice, I switched bedding between cages each day, which should be effective at altering 

the microbiome as mice are coprophagic. However, it is plausible that this difference in co-housing 

method for male mice was less able to equalize their intestinal microbiota, and that this 

differentially influenced pulmonary immunity. 

The positive correlation between influenza viral burden in the lung and BAL IFNλ 

suggested that pulmonary IFNλ production increases with higher viral load. This interpretation 

was bolstered by the positive correlation shown between BAL IFNλ and BAL cellularity, as more 

severe influenza infection can lead to cytokine storm and overexuberant immune cell recruitment 

to the lung. Similarly, the positive correlation between BAL IFNλ and bacterial burden suggested 

that more severe influenza increases the susceptibility of the lung to bacterial super-infection. 

However, these correlations are unable to imply causation, so it became necessary to 

experimentally manipulate IFNλ. At the same time, IFNλR1-/- mice were first published. As the 

type III IFN receptor IFNλR1 knocks out both IFNλ2 and IFNλ3 signaling, the use of these IFNλ3-

/- mice was rendered unnecessary. Planet et al. showed that IFNλR1-/- mice have reduced 

Staphylococcus aureus burden during influenza super-infection (69), suggesting that my 

hypothesis was correct that IFNλ inhibited antibacterial immunity during influenza infection. A 
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few months later, Galani et al. suggested that IFNλ be used as treatment for flu, as experimental 

treatment with exogenous IFNλ reduced viral burden along with morbidity and mortality from 

influenza infection (36). However, both the work by Planet et al. on type III IFN and the work by 

Kudva et al. on type I IFN suggested that additional IFNλ would make bacterial super-infection 

worse. Thus, I tested the hypothesis that “treating” super-infection with IFNλ would increase 

bacterial burden during influenza super-infection, which also let me experimentally test the role of 

IFNλ in this system to get answers on causation and not simply correlation. 
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4.0 IFNλ Inhibits Bacterial Clearance During Influenza Super-infection 

4.1 Summary 

Several groups have recently proposed the use of the antiviral cytokine interferon lambda 

(IFNλ) as a therapeutic for influenza, as administration of pegylated IFNλ improves lung function 

and survival during influenza by reducing the overabundance of neutrophils in the lung. However, 

our data suggest that therapeutic IFNλ impairs bacterial clearance during influenza super-infection. 

Specifically, mice treated with an adenoviral vector to overexpress IFNλ during influenza infection 

exhibited increased bacterial burdens upon super-infection with either MRSA or Streptococcus 

pneumoniae. Surprisingly, adhesion molecule expression, antimicrobial peptide production, and 

reactive oxygen species activity were not altered by IFNλ treatment. However, neutrophil uptake 

of both MRSA and S. pneumoniae were significantly reduced upon IFNλ treatment during 

influenza super-infection in vivo. Together, these data support the theory that IFNλ decreases 

neutrophil motility and function in the influenza-infected lung, thereby increasing bacterial burden 

during super-infection. Thus, we believe that caution should be exercised in the possible future use 

of IFNλ as therapy for influenza. 

4.2 Introduction 

Galani et al. treated mice with pegylated IFNλ2 two days after influenza infection, which 

resulted in a striking reduction in morbidity and mortality. Neutrophilia in the lung was decreased, 
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alleviating immunopathology, and IFNλ treatment was also able to increase lung function during 

the influenza infection. These findings corroborated other data from models of IFNλ treatment 

during inflammation in models of collagen-induced arthritis (105) and dextrate sulfate sodium-

induced colitis (38). Together, these data point to a neutrophil-mediated alleviation of 

immunopathology, through in vivo data that fewer neutrophils arrive at sites of inflammation when 

mice are treated with IFNλ, and in vitro that IFNλ decreases neutrophil chemotaxis. Supported by 

the findings of Planet et al.  that IFNλR1-/- mice had lower bacterial burden during influenza super-

infection, I hypothesized that IFNλ treatment would increase bacterial burden during influenza 

super-infection. I also hypothesized that this would be due to lower neutrophil infiltration into the 

airspaces, which causes immunopathology during influenza but is also necessary for bacterial 

clearance.  

The following study was published April 23, 2019 in Infection & Immunity. “Interferon 

Lambda Inhibits Bacterial Uptake during Influenza Superinfection” by Helen E. Rich, Collin C. 

McCourt, Wen Quan Zheng, Kevin J. McHugh, Keven M. Robinson, Jieru Wang, and John F. 

Alcorn. Copyright  2019 American Society for Microbiology. Reproduced here under the terms 

of the Creative Commons CC BY license. 
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4.3 Materials and Methods 

4.3.1  Mice 

Six- to eight-week old male wild-type C57BL/6J mice were purchased from Taconic 

Biosciences (Hudson, NY) and maintained under pathogen-free conditions. All studies were 

performed on age- and sex-matched mice. All animal studies were conducted with approval from 

the University of Pittsburgh Institutional Animal Care and Use Committee.  

 

4.3.2  Murine infections 

All murine treatments (influenza virus, adenovirus, S. aureus, and S. pneumoniae) were 

administered by oropharyngeal aspiration. Mice were infected with 25 PFU of influenza H1N1 

A/PR/8/34 (106) or phosphate-buffered saline (PBS). Five days later, mice were treated with 

1×1010 viral particles (VP) of an adenoviral vector overexpressing mIFNλ3/IL-28B (Vector 

BioLabs, Malvern, PA) or the enhanced GFP (eGFP) control in 50 μl of PBS (Genome Editing, 

Transgenic, and Virus Core, University of Pittsburgh). One day later, mice were challenged with 

5×107 CFU MRSA USA300 in 50 μl of PBS and harvested an additional 24 hours later, or mice 

were challenged with 1 ×103 CFU Streptococcus pneumoniae serotype 3 (ATCC 6303) in 50 μl of 

PBS and harvested 48 hours later. 
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4.3.3  FITC labeling of bacteria 

4.3.3.1 Staphylococcus aureus 

S. aureus was grown overnight to stationary phase with shaking at 37°C in S. aureus media 

(appendix section A.5). After measurement of the optical density at 660 nm (OD660), 10 μl of 

10 mg/ml FITC in dimethylformamide (DMFO) was added to 1 ml of bacteria and incubated with 

shaking at room temperature for 1 hour. Following incubation, bacteria were centrifuged at 

10,000×g for 5 min and washed with PBS twice. FITC-labeled bacteria were resuspended in PBS 

to bring the concentration to 5×107 CFU per 50 μl. 

4.3.3.2 Streptococcus pneumoniae 

S. pneumoniae was grown for 6 hours with shaking at 37°C in Todd-Hewitt broth (BD 

Biosciences, Franklin Lakes, NJ). Next, 100 μl of this culture was used to inoculate a 100-ml flask 

of Todd-Hewitt broth and grown for an additional 12 hours with continued shaking at 37°C. After 

measurement of the culture at OD600, 10 μl of 10 mg/ml FITC in DMFO was added to 1 ml of 

bacteria, and the mixture was incubated with shaking at room temperature for 1h. Following 

incubation, bacteria were centrifuged at 10,000×g for 5 min and washed with PBS twice. FITC-

labeled bacteria were resuspended in PBS to bring the concentration to 1000 CFU per 50 μl.  

4.3.4  Analysis of lung inflammation 

At harvest, mouse lungs were lavaged with 1 ml sterile PBS. This lavage fluid was 

centrifuged at 10,000×g for 5 min to pellet cells, and the supernatant was frozen for cytokine 

measurement by an enzyme-linked immunosorbent assay (ELISA) for IFNβ and IFNλ (mouse 
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IFNβ or IFNλ2/3 DuoSet; R&D Systems, Minneapolis, MN). Cell pellets from lavage fluid were 

resuspended in 500 μl sterile PBS and counted on a hemocytometer to enumerate infiltrating cells. 

These cells were then either processed by cytospin and stained for differential counting or 

centrifuged again at 10,000×g for 5 min and then immediately frozen at −80°C for RNA extraction. 

The right upper lobe of each lung was mechanically homogenized and plated for bacterial 

CFU counting, and cytokines in lung homogenates were analyzed with the Bio-Plex Pro mouse 

cytokine 23-plex array (Bio-Rad, Hercules, CA). The right middle and lower lobes of each lung 

were snap-frozen in liquid nitrogen for RNA extraction. 

4.3.4.1 Real-time PCR 

RNA was isolated from whole lung lobes snap-frozen in liquid nitrogen using the 

Absolutely RNA miniprep kit (Agilent Technologies, Santa Clara, CA), and its concentration was 

analyzed by spectrophotometry (NanoDrop ND-1000; Thermo Fisher Scientific) or isolated from 

−80°C frozen bronchoalveolar lavage cell pellets using the MagMax-96 total RNA isolation kit 

(Invitrogen, Carlsbad, CA). RNA was reverse transcribed into cDNA using the iScript cDNA 

synthesis kit (Bio-Rad, Hercules, CA), which was assayed by real-time PCR for gene expression 

with Assay on Demand TaqMan primer and probe sets (Life Technologies, Grand Island, NY). 

4.3.4.2 Flow cytometry 

To obtain a single-cell suspension, lungs were mechanically dissected and then incubated 

at 37°C with shaking for 30 min in Dulbecco’s modified Eagle’s medium (DMEM) containing 

10% fetal bovine serum (FBS) and 1 mg/ml collagenase. After collagenase treatment, tissue was 

forced through a 70 μm filter and treated with ACK buffer to lyse erythrocytes. The resulting 

single-cell suspension was pretreated with anti-CD16/32 for 5 min to block Fc receptor binding 
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before incubation with fixable viability dye and fluorochrome-conjugated anti-surface marker 

monoclonal antibodies for 30 min at 4°C. The following antibodies were used: anti-CD45, anti-

CD11b, anti-CD11c, anti-Ly6G). Live/Dead fixable aqua stain (Life Technologies, Carlsbad, CA) 

was used to determine cell viability. Samples were collected using an LSRFortessa flow cytometer 

(BD Biosciences, San Jose, CA) and analyzed using FlowJo software (vX.0.7; TreeStar, Ashland, 

OR). Flow gating began with doublet exclusion by comparing forward light-scatter area versus 

height and then debris exclusion by comparing forward versus side light scatter. Dead cells were 

excluded based on viability dye staining. Neutrophils were identified as CD45+ Ly6G+ cells. 

4.3.4.3 Blood cell quantification 

Blood was taken from the heart via cardiac puncture at harvest, placed into K2-EDTA 

tubes, and assayed within 30 min of recovery using a Hemavet 950FS hematology system (Drew 

Scientific, Miami Lakes, FL). 

4.3.4.4 Myeloperoxidase assay 

For assessment of myeloperoxidase (MPO) activity, the left lobe of each lung was perfused 

with PBS until white, snap-frozen in liquid nitrogen, and then mechanically homogenized for MPO 

activity assessment (MPO activity assay kit [colorimetric]; Abcam, Cambridge, UK). 

4.3.5  Statistical analysis 

Data were analyzed using GraphPad Prism 7 (GraphPad, La Jolla, CA). Analyses 

comparing two groups were performed by an unpaired t test with Welch’s correction, unless data 

were not parametrically distributed, in which case Mann-Whitney analysis was used. S. 
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pneumoniae CFU data were log transformed before statistical analysis due to their distribution. 

Two-way analysis of variance (ANOVA) was used to compare repeated measures over time. All 

figures show combined data from multiple replicate studies as means ± standard errors of the 

means (SEM). The indicated n values are numbers of animals per independent experiment. 

Statistical significance is reported as follows: * p < 0.05, ** p < 0.01, *** p < 0.001.  P values of 

between 0.05 and 0.1 are displayed numerically. 

4.4 Results 

To test the effect of IFNλ therapy on bacterial super-infection during influenza, we treated 

mice with an adenoviral vector to overexpress IFNλ (Ad-IFNλ) or control green fluorescent protein 

(GFP) (Ad-GFP) in the lung. Twenty-four hours following adenoviral treatment, mice were 

challenged with 5×107 CFU MRSA USA300 and harvested 24 hours later or challenged with 

1×103 CFU Streptococcus pneumoniae and harvested 48 hours later (Fig. 4.1A). While mice 

quickly clear S. aureus from the lung and will survive this inoculum of MRSA, S. pneumoniae 

will replicate in the murine lung, eventually causing death. Moreover, both bacteria have been 

important causes of secondary bacterial infection during influenza throughout history and are still 

relevant today. Thus, we assessed the effect of Ad-IFNλ treatment on both influenza/MRSA and 

influenza/S. pneumoniae super-infection. In mice given either bacterial challenge, Ad-IFNλ 

treatment significantly increased the bacterial burden in the lung 24 hours after bacterial infection 

(Fig. 4.1B). The influenza viral burden was unchanged (appendix Figure 5.3). Together, these data 

suggest that IFNλ therapy has negative consequences for bacterial super-infection due to 

modulation of the immune response to influenza. 
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Figure 11: IFNλ treatment increases bacterial burden during influenza super-infection. 

Mice were infected with 25 PFU influenza A/PR/8/34 H1N1 or PBS as a control and 5 days later given 1×1010 VP of 

an adenoviral vector to overexpress IFNλ (Ad-IFNλ) or GFP (Ad-GFP). Twenty-four hours following adenoviral 

treatment, mice were challenged with 5×107 CFU methicillin-resistant Staphylococcus aureus USA300 (n = 4; four 

independent experiments) and harvested 1 day later or challenged with 1×103 CFU Streptococcus pneumoniae. *, P < 

0.05. (A) Diagram showing the experimental design. (B) Lung bacterial burden of S. aureus 24 hours after S. aureus 

challenge and lung bacterial burden of S. pneumoniae 48 hours after S. pneumoniae challenge. 

 

Type I IFN signaling has many positive feedback mechanisms (107) as well as negative 

feedback mechanisms to shut down the interferon response, which is thought to protect against 

immunopathology and other issues from sustained interferon signaling (108). In HLLR1-1.4 cells, 

both type I and III IFNs induce USP18 which negatively regulates IFNα (109). Type III IFNs 

induce SOCS proteins that work on type I IFN during influenza (64), and type I IFN has been 
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shown to be a significant controller of susceptibility to bacterial super-infection (55). Thus, I 

hypothesized that altering IFNL would alter type I interferon in bacterial super-infection during 

influenza. Ad-IFNλ treatment 5 days following influenza A/PR/8/34 H1N1 infection resulted in a 

4-fold increase in the level of IFNλ protein in bronchoalveolar lavage fluid (BALF), from a mean 

of 740.9 ± 56.81 to 3,114 ± 583.8 pg/ml (Figure 4.2A). Surprisingly, levels of type I and II IFNs 

were unchanged by IFNλ treatment (Figure 4.2B). 

 

 

Figure 12: IFNλ overexpression does not alter other interferons. 

Mice were infected with influenza (FS) or PBS vehicle (SA), five days later given adenovirus to overexpress IFNλ 

(Ad-IFNλ) or GFP (Ad-GFP), and twenty-four hours later challenged with 5×107 CFU MRSA as described in Figure 

1. (A) ELISA for IFNλ or IFNβ in BAL (n = 4, three to eight independent experiments). (B) Real-time PCR for 

interferon genes in lung RNA (n = 4, three independent experiments *p < 0.05, **p < 0.01, *** p < 0.005, ns = not 

significant. 
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Little is known about the role of IFNλ in super-infection. It was previously reported that 

mice lacking the receptor for IFNλ have decreased bacterial burdens during both pulmonary 

MRSA infection and influenza/MRSA super-infection. This decrease in bacteria correlated with 

increased expression of IL-22 and its associated antimicrobial peptide NGAL (neutrophil 

gelatinase-associated lipocalin) (69). The release of antimicrobial peptides is a key bacterial 

defense mechanism for both myeloid cells and the lung epithelium during S. aureus infection (53, 

110). Moreover, we have previously shown that administration of exogenous NGAL decreases the 

bacterial burden in influenza/MRSA super-infection (53). Thus, we tested the effect of IFNλ 

treatment on antimicrobial peptide expression during influenza/MRSA super-infection. IFNλ 

treatment did not alter the expression of NGAL in BALF cells or whole lung (Fig. 4.3) or the 

associated type 17 cytokine IL-17 (appendix Table 2) or IL-22 (Fig. 4.3). Expression levels of 

other lung antimicrobial peptides (regenerating islet-derived protein 3 gamma and cathelicidin 

antimicrobial peptide) and calprotectin (s100a8:s100a9 dimer), a neutrophil antimicrobial peptide 

which suppresses S. aureus growth (111), were also unchanged in both BALF cells and whole lung 

(Fig. 4.3). These results suggest that IFNλ does not increase the bacterial burden by inhibiting 

antimicrobial peptide expression. 
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Figure 13: IFNλ treatment does not affect antimicrobial peptide expression in the lung. 

Mice were infected with 25 PFU influenza virus A/PR/8/34 H1N1 or PBS as a control and 5 days later given 1×1010 

VP of Ad-IFNλ or Ad-GFP. Twenty-four hours following adenoviral treatment, mice were challenged with 5×107 

CFU MRSA and harvested 1 day later. (A) Whole lung lobes were snap-frozen in liquid nitrogen, and RNA was 

extracted and assayed by real-time PCR for expression of IL-22 and the antimicrobial peptides ngal, reg3g, s100a8, 

s100a9, and camp (n = 4, two to three independent experiments). (B) Bronchoalveolar lavage fluid was centrifuged to 

pellet cells. The supernatant was removed, and the cell pellet was frozen at −80°C for RNA extraction and subsequent 

real-time PCR. FS, MRSA infection preceded by influenza virus infection for 6 days. ns, not significant. 
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No other reported data were available for how IFNλ affects infection with bacteria that 

commonly complicate influenza. Thus, we examined the known role of IFNλ in influenza infection 

alone as well as in other immunopathological diseases to hypothesize how it may affect 

influenza/bacterial super-infection. IFNλ has been shown to be a potent suppressor of neutrophil 

trafficking and function in murine models of collagen-induced arthritis, colitis, and, most 

importantly, influenza infection (36, 38, 105). To our knowledge, the role of IFNλ in neutrophil 

recruitment toward sites of bacterial infection is unknown. To assess the effect of IFNλ on 

neutrophils responding to pulmonary MRSA infection (with and without preceding influenza 

infection), we characterized infiltrating cells in the BALF by differential counting. Although the 

total number of cells in BALF was not significantly changed by IFNλ treatment, a trend of reduced 

cell numbers was apparent (Fig. 4.4A). Specifically, neutrophil recruitment to the airway was 

significantly reduced (Fig. 4.4B). During MRSA pneumonia alone, IFNλ treatment did not alter 

the bacterial burden or BALF cell numbers (appendix Figures 5.4 and 5.5). These data suggest that 

IFNλ increases the bacterial burden during influenza/MRSA super-infection by suppressing 

neutrophil recruitment to the airway. 
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Figure 14: IFNλ treatment decreases neutrophils in BAL fluid during influenza/MRSA super-infection. 

Mice were infected with influenza, given Ad-IFNλ or Ad-GFP 5 days later, and challenged with 5×107 CFU MRSA 

24 h later, as described in the legend of Fig. 4.1. (A) Total cell counts from bronchoalveolar lavage fluid (n = 4; four 

independent experiments). (B) Differential counting of BALF cells (n = 4; two independent experiments). **, P < 

0.01; ns, not significant. 

 

We sought to determine the mechanism by which IFNλ treatment suppresses airway 

neutrophil recruitment. First, we measured levels of inflammatory cytokines in the lung. IFNλ 

treatment significantly increased the levels of only 3 of the 23 assayed cytokines, 

CXCL1/keratinocyte chemoattractant (KC), granulocyte colony-stimulating factor (G-CSF), and 

IL-1α (Fig. 4.5A and appendix Table 2). All three are neutrophil chemokines, suggesting a 

“frustrated” granulocyte chemokine release by the lung in response to a defect in neutrophil 
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production or trafficking. Neutropenia is a common side effect of type I IFN administration (112, 

113), which led us to think that IFNλ might decrease numbers of circulating neutrophils as well. 

To test for a defect in neutrophil production, we assayed blood from mice with an automated 

hematology instrument. IFNλ treatment did not result in decreases in total leukocyte or neutrophil 

counts in whole blood (Fig. 4.4B), confirming that the reduction of neutrophils in BALF upon 

IFNλ treatment is not due to leukopenia or neutropenia. 

To test if IFNλ treatment alters neutrophil trafficking to the lung, we assessed the 

expression of adhesion molecules in the BALF cell pellet, which is mainly composed of 

neutrophils (80 to 90%) (Fig. 4.4B). For successful emigration from capillaries into the lung, 

neutrophils must first tether to the lung endothelium by binding integrin α4β1 to endothelial 

vascular cell adhesion molecule 1 (VCAM-1) (114). Firm binding and adhesion are established by 

CD11/CD18 binding to endothelial intracellular adhesion molecule 1 (ICAM-1). Importantly, 

CD18 blockade reduces neutrophil migration to pulmonary S. aureus infection, as the dependence 

on CD18 for neutrophil emigration to the lung is highly stimulus specific (115). IFNλ treatment 

did not alter the expression of the genes encoding the neutrophil trafficking receptor VLA-4 

(heterodimer of igta4:itgb1) (Fig. 4.5C) or the expression of CD11b/c on the surface of Ly6G+ 

lung neutrophils (Fig. 4.5D), suggesting that IFNλ likely does not alter integrin/CD11-mediated 

neutrophil adhesion to the lung endothelium. 

These data suggest that IFNλ therapy does not suppress neutrophil production in the bone 

marrow and does not inhibit neutrophil recruitment to the airway by altering adhesion molecule 

expression. Interestingly, neutrophils from IFNλ-treated mice exhibit reduced chemotaxis in both 

TAXIscan and Transwell assays toward leukotriene B4 (LTB4) (38, 105), suggesting a general 

defect in neutrophil movement. Patients with reduced neutrophil chemotaxis or oxidative burst 
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exhibit increased susceptibility to S. aureus infection (116). Moreover, to evade the immune 

system, S. aureus produces factors to inhibit both neutrophil chemotaxis and phagocytosis (117-

119). As IFNλ has been shown to inhibit neutrophil chemotaxis both in vivo and in vitro, we asked 

if neutrophil phagocytosis of S. aureus was also reduced by IFNλ treatment. 

To kill MRSA, neutrophils must first sense the bacteria through Toll-like receptor 2 

(TLR2) recognition of peptidoglycan. Treatment with a TLR2 agonist reduces bacterial burden 

and mortality during MRSA pneumonia in mice (120), and mice lacking TLR2 have altered 

neutrophil recruitment and bacterial phagocytosis in various infection models (121). Additionally, 

neutrophil killing of S. aureus relies upon the intracellular generation of reactive oxygen species 

(ROS), and patients defective in ROS generation are more susceptible to S. aureus infection (116). 

Neither TLR2 expression (Fig. 4.5C) nor antimicrobial peroxidase activity (Fig. 4.5B) was 

affected by IFNλ overexpression. These data suggest that IFNλ treatment may not alter the killing 

of S. aureus by neutrophils. However, data from other models suggest that IFNλ treatment 

specifically impairs neutrophil movement (38, 105), demonstrating that IFNλ directly impairs 

neutrophil chemotaxis both in vitro and ex vivo. 
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Figure 15: IFNλ treatment increases levels of granulocyte chemokines in the lung but does not affect 

neutrophil production, trafficking, or ROS generation. 

Mice were infected with influenza, given Ad-IFNλ or Ad-GFP 5 days later, and challenged with 5×107 CFU MRSA 

24 h later, as described in the legend of Fig. 4.1. (A) Cytokine production in lung homogenates (n = 4, three 

independent experiments). (B) Total white blood cell (WBC) counts and differential counting of blood neutrophils 

(n = 4; two independent experiments). The left lobe of the lung was perfused with PBS, homogenized, and assayed for 

myeloperoxidase (MPO) activity as a measure of reactive oxygen species generation (n = 4; three independent 

experiments). PMN, polymorphonuclear leukocytes. (C) Real-time PCR of the bronchoalveolar lavage cell pellet for 

neutrophil adhesion molecules and bacterial receptors (n = 4; three independent experiments). (D) Expression of 

CD11b on live CD45+ Ly6G+ lung neutrophils (n = 4; two independent experiments). Ad-IFNλ-treated samples are 

displayed in pink, and Ad-GFP-treated samples are in blue. *, P < 0.05; **, P < 0.01. 

 

To assess the ability of neutrophils to phagocytose bacteria in vivo, we challenged 

influenza-infected mice with fluorescein isothiocyanate (FITC)-labeled MRSA or S. pneumoniae 

and analyzed lungs by flow cytometry 24 or 48 hours later, respectively. The percentage of FITC-
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positive (FITC+) neutrophils (defined as FITC+ live CD45+ CD11b+ Ly6G+ cells, for gating 

strategy see appendix Figure 5.6) in the lung decreased over 4-fold from 1.3% to 0.2% (Fig. 4.6A), 

implying that IFNλ decreases neutrophil phagocytosis of MRSA during super-infection. 

Moreover, when mice were challenged with FITC-labeled S. pneumoniae, neutrophil phagocytosis 

was also markedly decreased (Fig. 4.6B). While IFNλ overexpression impaired neutrophil 

infiltration into BALF (Fig. 4.4B), the percentage of neutrophils in lung tissue was not altered (Fig. 

4.6A-B). However, flow cytometry analysis showed a striking decrease in neutrophil phagocytosis 

in vivo in IFNλ-treated mice (Fig. 4.6C). Together with data reported for models of sterile 

inflammation and influenza infection alone (36, 38, 105), these data suggest that IFNλ generally 

reduces neutrophil movement, preventing chemotaxis to and phagocytosis of bacteria during 

influenza/bacterial super-infection. 
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Figure 16: IFNλ inhibits bacterial phagocytosis during super-infection. 

 (A-B) Mice were infected with influenza and 5 days later given Ad-IFNλ or Ad-GFP as described in the legend of 

Fig. 1. Twenty-four hours later, mice were challenged with (A) 5×107 CFU FITC-labeled MRSA or (B) 1×103 CFU 

FITC-labeled S. pneumoniae and sacrificed 1 day later. The left lobe of the lung was digested to a single-cell 

suspension and stained for flow cytometry. The percentage of FITC+ neutrophils as analyzed by flow cytometry  is 

reported (percentage of live CD45+ Ly6G+ CD11b+ cells that were FITC+) as well as the percentage of total immune 

cells in the lung that are neutrophils (percentage of live CD45+ cells that were Ly6G+ CD11b+) (n = 4; two 

independent experiments). (C) Representative flow cytometry plot showing the gating strategy for determining FITC 

positivity in neutrophils from mice treated with Ad-GFP or Ad-IFNλ during influenza/MRSA super-infection. *, P < 

0.05; **, P < 0.01. FSC, forward scatter. 

4.5 Discussion 

IFNλ has recently been proposed as a potentially attractive therapy for influenza (36, 122). 

There is a dire need for more influenza therapeutics, as a broadly effective vaccine has not yet 

been developed, and current therapies are both time restricted and limited in effect (123). With the 

continual mismatch of influenza vaccines to circulating viral strains (124) and the ever-present 

threat of another influenza pandemic, more broadly effective treatments for influenza are certainly 

necessary. Galani et al. have shown that pegylated IFNλ (PEG-IFNλ) therapy during influenza 

reduces immunopathology and mortality by reducing cytokine storm and neutrophil infiltration 

(36). However, bacterial super-infection commonly complicates influenza, increasing morbidity 

and mortality. While reducing neutrophil recruitment to the lung ameliorates disease during 

influenza alone, these neutrophils are crucial for survival during S. aureus lung infection (125). 

Moreover, mice lacking the IFNλ receptor exhibit decreased bacterial burden during pulmonary 

MRSA infection as well as influenza/MRSA super-infection, suggesting that IFNλ contributes to 
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disease during bacterial infection of the lung (69). Especially with the rise of drug-resistant 

pathogens such as MRSA as secondary bacterial pathogens, considering the risk for super-

infection when evaluating a therapeutic for influenza is critical. 

I report that overexpression of IFNλ during influenza results in an increased lung bacterial 

burden upon super-infection with either MRSA or Streptococcus pneumoniae. These data support 

findings by Planet et al. showing that mice lacking the IFNλ receptor have lower bacterial burdens 

during pulmonary MRSA infection as well as influenza/MRSA super-infection (69). Specifically, 

Planet et al. found increases in the expression of IL-22 and its associated antimicrobial peptide 

NGAL in IFNλ receptor knockout mice. It has previously been shown that exogenous NGAL 

decreases the bacterial burden during influenza/MRSA super-infection (53). However, there was 

no change in IL-22 or NGAL expression upon IFNλ overexpression. However, IFNλ 

overexpression does not exactly recapitulate the phenotype of the total receptor knockout, as there 

is no difference in bacterial burdens during single S. aureus infection (appendix Figure 5.5), while 

in the IFNαR1-/- mice, the S. aureus burden is decreased. It is also likely that there is a differential 

requirement for IL-22 and the associated antimicrobial peptide expression during transient IFNλ 

overexpression versus constitutive IFNλ receptor knockout. Thus, I investigated what else might 

be responsible for the acute IFNλ-induced increase in the bacterial burden. 

I demonstrate that IFNλ decreases BALF neutrophil accumulation during influenza/MRSA 

super-infection. Galani et al. also showed a decrease in BALF neutrophils as well as total BALF 

cells, along with reduced peribronchial and parenchymal cell infiltration, upon PEG-IFNλ 

administration during influenza infection alone. Notably, Galani et al. administered PEG-IFNλ at 

two days following viral infection, while I treated mice 5 days after viral infection, leading to a 

significant overexpression of IFNλ at harvest 2 days later. While weight loss from influenza virus 
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infection mimicked the weight loss reported by Galani et al. with similar inocula (36, 106), 

treatment with IFNλ 5 days after viral infection did not reproduce their reported reduction in viral 

burden. As current therapies for influenza decrease in effectiveness the later they are given during 

infection (123), the delay in treatment until 5 days after viral infection is likely responsible for this 

discrepancy. I did not observe a decrease in BALF neutrophil accumulation either 24 or 48 hours 

following influenza/S. pneumoniae super-infection (appendix Figure 5.5), which suggests that the 

decrease in BALF neutrophils during influenza/MRSA super-infection is not the cause of the 

increased bacterial burden. 

Aside from differences in the timing of therapeutic intervention, bacterial super-infection 

drastically changes the immunological landscape of the lung. Interestingly, there was no increase 

in bacterial burden upon IFNλ treatment during MRSA pneumonia without preceding influenza 

(appendix Figure 5.4). This suggests that influenza-induced cytokines work in concert with IFNλ 

during bacterial super-infection to reduce antibacterial immunity. Type I IFN is also broadly 

produced in response to influenza and strongly contributes to super-infection susceptibility (55). 

It is likely that the high levels of type I IFN in the influenza-infected mouse may synergize with 

the administered IFNλ to produce this increase in bacterial burden during super-infection but not 

bacterial infection alone. Many other cytokines are induced by influenza and play significant roles 

in its pathogenesis, including type 17 cytokines (53) and IL-1 family members (50). There is likely 

an interactive role for these players in the complex cytokine environment of the influenza-infected 

lung. 

During bacterial super-infection, IFNλ therapy produced no significant decrease in type I 

IFN expression or protein levels. There was also no decrease in tumor necrosis factor alpha (TNF-

α), IFN-γ, CCL3, or CCL4 levels, which were reported by Galani et al. to be reduced by PEG-
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IFNλ administration. Instead, IFNλ treatment during bacterial super-infection specifically 

increased neutrophil chemokines in the lung, while BALF neutrophils were decreased. This is 

consistent with previous findings that neutrophil depletion during S. aureus pulmonary infection 

increases lung KC and G-CSF levels (53), suggesting a “frustrated” chemokine production by the 

lung in response to a lack of neutrophils. 

The reduction in BALF neutrophils implies that IFNλ induces a defect in neutrophil 

production or migration. However, upon assessment of circulating blood cells, there was no 

difference in neutrophils or total leukocytes. IFNλ has been shown to suppress neutrophil 

migration in vitro by Transwell and EZ-TAXIscan assays (38, 105), suggesting a defect in the 

migration of neutrophils into airspaces where MRSA aggregates reside (126). Surprisingly, while 

IFNλ treatment decreased BALF neutrophils, lung neutrophils were not altered, as measured by 

flow cytometry. It must be noted that this flow cytometry was performed on lavaged lungs, which 

may explain the disparity between these two measurements. Importantly, bronchoalveolar lavage 

samples only the epithelial surface of the respiratory tract (127), whereas flow cytometry was 

performed on a single-cell suspension digested from whole lung. Together, these data suggest that 

IFNλ may specifically impair neutrophil migration across the lung epithelium. 

Although IFNλ treatment does not alter the number of neutrophils in the lung, it results in 

a marked decrease in neutrophil phagocytosis of MRSA in vivo. This effect of IFNλ appears to be 

specific, as it alters phagocytosis but not myeloperoxidase activity or the expression of adhesion 

molecules. As the cytoskeletal changes of a cell that allow for in vivo migration mimic those 

necessary for phagocytosis, including actin remodeling and microtubule assembly, these data 

suggest that IFNλ may be exerting a broader effect on neutrophil cellular motility and cytoskeletal 

rearrangement. 
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Together, these data strongly suggest that the use of IFNλ as a therapeutic for influenza 

may result in adverse outcomes for patients who contract a secondary bacterial infection. 

Neutrophils, which are essential for the control of superinfecting pathogens (54), were reduced in 

BALF following IFNλ treatment. Moreover, neutrophil binding and uptake of MRSA are reduced 

with IFNλ treatment, which correlates with an increase in the MRSA burden in the lung. 

Importantly, IFNλ administration also decreases binding and uptake of S. pneumoniae during 

influenza super-infection, which also correlates with an increase in the lung bacterial burden. 

Although IFNλ may reduce influenza severity, both our data and the findings of other groups show 

that it worsens bacterial super-infection (69). While new therapeutics targeting influenza are sorely 

needed, it is crucial that the risk of bacterial super-infection is considered when evaluating new 

treatments. 
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5.0 Conclusions and Future Directions 

New therapeutics for super-infection need to be developed, but neither IFNλ nor WLBU2 

should be considered for further development as therapies against bacterial super-infection during 

influenza. While WLBU2 was able to reduce bacterial burden during single lung infection with S. 

aureus, it was ineffective at reducing bacterial burden during influenza super-infection. While it 

may be that bacterial persistence due to preceding influenza overwhelmed the amount of WLBU2 

delivered with high bacterial numbers, mice received up to 2.5 mg/kg of WLBU2 intravenously, 

whose LD50 is estimated to be between 12-16 mg/kg when administered intravenously (89). Highly 

reduced (0.01 mg/kg) dosing via oropharyngeal administration worked significantly better in a 

model of P. aeruginosa pneumonia, although influenza super-infection was not tested (98). It is 

likely that low-dose oropharyngeal instillation of WLBU2 would be effective against influenza/P. 

aeruginosa pneumonia, but it is still unclear whether its lack of efficacy in influenza/S. aureus 

pneumonia is due to delivery method, presence of influenza, or a special synergy between 

influenza and S. aureus. 

Preceding influenza does alter lung factors other than antibacterial immunity. It is possible 

that the higher lung leak in the more damaged doubly-infected lung is interfering with the delivery 

of the drug to the airspaces, as edema blocks gas exchange in the alveoli and influenza is known 

to interfere with physical clearance of bacteria in the lung by altering mucus flow. Penetrance into 

the lung is a known issue with antibiotics, especially those effective against S. aureus. Specifically, 

vancomycin has worse lung penetrance than linezolid, contributing to its lack of efficacy against 

S. aureus (118). To test this, the WLBU2 peptide would have to be radiolabeled during synthesis 

to allow for imaging of the peptide inside the lung (128), as it is much too small of a molecule to 
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attach a fluorophore. However, radiolabeling the peptide would be extremely useful, as there is 

currently very little data on its mechanism of action, although it is assumed to blanket and disrupt 

bacterial membranes like other cathelicidins.   

Other antibacterial agents are currently being developed that may be effective against 

bacterial super-infection during influenza. The current development of antibodies against S. aureus 

toxins is promising, especially since influenza and S. aureus toxins may specifically synergize to 

increase inflammation and promote cytotoxicity (129). Moreover, more research is being 

published each day on the immunological underpinnings of this disease. It was published in April 

2019 that neutrophils express a new repertoire of chemokine receptors during influenza as 

compared with steady state (130). Rudd et al. show that while circulating blood neutrophils from 

healthy mice mostly express CXCR2, a broad set of both C-C and CXC chemokine receptors is 

expressed by neutrophils recruited to the lung during influenza infection, suggesting that all these 

receptors are possible targets for therapeutic intervention to limit neutrophilia during influenza 

infection. They remark on the possibility of bacterial super-infection, and suggest that these 

receptors may also be potential targets for modulation of neutrophil function during bacterial 

super-infection, as my data imply and others show that neutrophils are less bactericidal during 

influenza infection.  

It is clear that IFNλ has become known as a neutrophil modulator as well as an antiviral 

cytokine (131). A new host of literature is also being published on type III interferon, and 

specifically how it influences neutrophils. It is beneficial to both the understanding of type III 

interferon biology and the pathogenesis of bacterial super-infection during influenza that 

neutrophils are in the spotlight, as neutrophilia is a main driver of immunopathology during 

influenza but neutrophils are crucial for bacterial clearance upon super-infection, and neutrophils 
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seem to be specifically targeted by type III interferon. In February 2019, Britto et al. published 

that neutrophil recruitment to the lung during acute inflammation is regulated by the airway-

protective immunomodulatory host protein BPI-fold containing group A member 1 (BPIFA1). 

BPIFA1 was also shown by the authors to regulate type III interferon signaling, and interestingly 

type II interferon, as both IFNγ and IFNλ but not type I interferon expression were downregulated 

in Bpifa1-/- mice in an intranasal LPS model of acute lung inflammation. The neutrophil 

chemokines CXCL9 and CXCL10 were decreased, as well as their receptor CXCR3 (132), which 

was one of the neutrophil chemokine receptors shown to be upregulated in influenza-recruited lung 

neutrophils by Rudd et al., suggesting that a CXCL9/10-CXCR3-IFNλ axis may also be involved 

in pulmonary regulation of neutrophilia during influenza.  

Recent work also suggests that adaptive immunity may also be influenced by IFNλ. Ye et 

al. published in May 2019 that IFNλ stimulates production of thymic stromal lymphopoietin 

(TSLP) from upper airway M cells during influenza infection, stimulating CD103+ DC migration 

to draining lymph nodes and promoting germinal center B cell numbers (133). Even though human 

B cells express IFNλR1 while mouse B cells do not, perhaps IFNλ may influence mouse B cells 

after all. From the earlier literature focusing on the role of IFNλ in chronic viral infection that 

plasmacytoid dendritic cells (pDCs) express high levels of IFNλR1 (134), and when stimulated 

with IFNλ produce high amounts of CXCL10 (135). Together, these papers hint at a possible role 

for the putative CXCL9/10-CXCR3-IFNλ axis in adaptive immunity as well. 

It is also important to contemplate the role of IFNλ in pulmonary inflammation in general 

when considering the immunology of bacterial super-infection during influenza. Insights from a 

neonatal mouse model of RSV bronchiolitis, a major risk factor in children for later development 

of asthma, have identified a new role for IFNλ. Blockade of the inflammatory prostaglandin D2 



 

 76 

receptor DP2  increased IFNλ in the supernatant of airway epithelial cell cultures and in the BAL 

of neonatal mice given RSV bronchiolitis, which accelerated viral clearance (136). Taken together 

with the importance of lipids in influenza (137), these results suggest a role for lipids in mediating 

IFNλ as well. Won et al. show in a manuscript that will be published in July 2019 that IFNλ 

restricts type 2 inflammation in a murine model of allergic airway disease. Intranasal 

administration of a 1:1 ratio of recombinant IFNλ2/3 protein suppressed TSLP and IL-33 protein 

levels in BAL in an ovalbumin sensitization and challenge model in C57BL/6J mice (138). The 

Alcorn laboratory has previously showed that recombinant IL-33 treatment of S. aureus super-

infection during influenza lowers bacterial burden and mortality, as well as pulmonary neutrophilia 

(50). Together, these studies suggest that IFNλ may have a role in this IL-33/neutrophil axis as 

well. 

In conclusion, we are in the infancy of our knowledge about the role of IFNλ in the lung 

and in disease. New projects are being undertaken every day to understand the role of this novel 

interferon family during inflammation, and pegylated IFNλ is already being developed as a 

therapeutic for chronic viral infections, including phase II trials to become the first approved 

therapy for the most severe form of viral hepatitis in humans, hepatitis D. Our knowledge of the 

role of IFNλ in bacterial infection and allergic inflammation is much younger than its role in viral 

disease, and I expect that exciting and nuanced papers will continue to be published over the next 

decade, illuminating the function and therapeutic potential of IFNλ in these pulmonary diseases. 
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Appendix A -- Supplementary Figures 

A.1 The Engineered Antimicrobial Peptide WLBU2 Does Not Reduce Bacterial 

Burden During Influenza Super-infection 

Table 1: WLBU2 treatment does not alter other inflammatory chemokines. 

Cytokine PBS WLBU2 p-value LL-37 p-value 

IL-1a 590.3 ± 62.4 461.7 ± 30.4 0.9872 700.9 ± 56.8 0.9910 

IL-5 26.6 ± 4.7 14.5 ± 3.9 0.9999 40.2 ± 4.4 0.9999 

IL-6 3325.2 ± 335.8 2570.9 ± 374.9 0.6425 4224.4 ± 318.0 0.5519 

IL-10 21.9 ± 2.3 20.7 ± 2.9 >0.9999 38.1 ± 3.0 0.9998 

IL-12p40 68.8± 9.6 42.1 ± 8.4 0.9994 112.1 ± 4.6 0.9986 

IL-12p70 368.6 ± 29.1 289.9 ± 19.4 0.9952 463.6 ± 17.1 0.9934 

IL-13 123.3 ± 16.6 119.1 ± 21.8 >0.9999 232 ± 17.1 0.9913 

IL-17A 70 ± 12.4 54.3 ± 11.2 0.9998 125.3 ± 26.6 0.9977 

Eotaxin 1803.0 ± 100.7 1512.7 ± 142.4 0.9365 2370.5 ± 158.4 0.7888 

GM-CSF 661.6 ± 100.6 318.1 ± 81.2 0.9122 948.4 ± 87.9 0.9412 

IFNg 131.5 ± 14.3 94.8 ± 17.9 0.9989 205 ± 7.9 0.9960 

MIP-1a  2634.2 ± 315.5 1972.3 ± 257.7 0.7112 4421.8 ± 233 0.0973 

MIP-1B 408.7 ± 51.6 306.4 ± 53.5 0.9919 657.6 ± 31.7 0.9553 

RANTES 207.8 ± 33.3 98.4 ± 22.7 0.9907 333 ± 21.1 0.9885 

TNFa 416.5 ± 78 308.1 ± 81.2 0.9818 785.8 ± 43.9 0.9254 

Mice were infected with 5×107 CFU MRSA by oropharyngeal aspiration. Two hours later, mice were injected 

intravenously in the tail vein with either WLBU2, LL-37, or PBS vehicle as control, and sacrificed four hours later as 

described in Figure 2.1. Homogenized lung tissue was assayed by cytokine multiplex for pro-inflammatory cytokines 

and chemokines. n = 4, five independent experiments. Statistics were calculated by two-way ANOVA. 
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A.2 IFNλ3 Knockout Does Not Reduce Total IFNλ in Bacterial Super-infection 

During Influenza 

 

Figure 17: IFNλ3-/- littermates do not display sex differences in bacterial burden during influenza super-

infection. 

Mice were infected as described in Figure 3.5. Data were analyzed by student’s t test with Welch’s correction. n = 2-

8, two independent experiments. 
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Figure 18: IFNλ3-/- mice co-housed with non-littermate WT mice have more similar intestinal microbiota. 

Mice were infected as described in Figure 3.1. High-throughput sequencing of bacterial 16S rRNA gene amplicons 

encoding the V4 region40 (150 bp read length, paired-end protocol) was performed using a MiSeq Illumina Sequencer. 

The 16S rRNA gene sequences were analysed using the Quantitative Insights into Microbial Ecology (QIIME) 

pipeline for analysis of microbiome data and a principal component analysis based on rareified weighted UniFrac 

distance was performed using the software package R.  
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A.3 IFNλ Inhibits Bacterial Clearance During Influenza Super-infection 

 

Figure 19: IFNλ overexpression does not alter influenza viral burden. 

Mice were infected with influenza, five days later given adenovirus to overexpress IFNλ (Ad-IFNλ) or GFP (Ad-

GFP), and twenty-four hours later challenged with 5×107 CFU MRSA as described in Figure 1. (A) RT-PCR for 

influenza A/PR/8/34 H1N1 M protein in lung RNA (n = 4, two independent experiments).  
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Figure 20: IFNλ overexpression does not alter bacterial burden during MRSA lung infection alone. 

Mice were infected with influenza, five days later given adenovirus to overexpress IFNλ (Ad-IFNλ) or GFP (Ad-

GFP), and twenty-four hours later challenged with 5×107 CFU MRSA. Bacterial burden was determined by counting 

CFU from plated lung homogenate. BALF cell number was determined by lavaging mouse lungs at time of sacrifice 

with 1 mL sterile PBS, performing red blood cell lysis, and resuspending in PBS and counting total cells on a 

hemocytometer.  

 

Figure 21: IFNλ overexpression does not alter bronchoalveolar lavage cells during influenza/S. pneumoniae 

super-infection. 

Mice were infected with influenza, five days later given adenovirus to overexpress IFNλ (Ad-IFNλ) or GFP (Ad-

GFP), and twenty-four hours later challenged with 1000 CFU S. pneumoniae. Mice were sacrificed either 24 or 48 

hours later as indicated in the figure titles. Lungs were lavaged with 1 mL sterile PBS and the resulting bronchoalveolar 

lavage fluid (BALF) was processed by cytospin and BALF cells were differentially counted after staining (Diff-Quik).  
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Table 2: IFNλ overexpression does not alter other inflammatory chemokines. 

Cytokine FS eGFP FS IFNL significance p-value 

Eotaxin 2192 ± 602.9 2722 ± 780.4  0.5969 

G-CSF 1734 ± 233.7 3172 ± 350.7 ** 0.0032 

GM-CSF 51.8 ± 4.484 54.31 ± 5.076  0.7153 

IFNg 89.82 ± 15.33 87.61 ± 13.11  0.9139 

IL-10 155.3 ± 36.67 100.6 ± 15.61  0.192 

IL-12p40 129.2 ± 13.27 147 ± 21.05  0.4838 

IL-12p70 186.4 ± 16.18 203.4 ± 16.14  0.4649 

IL-13 52.41 ± 12.1 62.58 ± 13.65  0.5836 

IL-17A 82.27 ± 15.97 82.54 ± 15.18  0.9901 

IL-1a 176.3 ± 24.06 248.4 ± 21.25 * 0.0363 

IL-1B 57.88 ± 4.573 74.5 ± 8.911  0.1181 

IL-2 69.99 ± 13.24 76.65 ± 13.72  0.7305 

IL-3 30 ± 6.312 29.3 ± 5.856  0.9367 

IL-5 36.02 ± 6.619 32.38 ± 5.341  0.6733 

IL-6 248.9 ± 30.36 285.5 ± 44.74  0.5069 

IL-9  105.9 ± 17.06 111.5 ± 16.8  0.8198 

KC 380.9 ± 31.37 625.4 ± 53.82 ** 0.0012 

MCP-1 4184 ± 893.5 3072 ± 563.6  0.3074 

MIP-1a 2039 ± 277.9 2108 ± 338.6  0.8753 

MIP-1B 1242 ± 146 1138 ± 158.6  0.6332 

RANTES 2879 ± 423.5 2385 ± 517.1  0.4685 

TNFa 207.1 ± 25.77 276.9 ± 36.97  0.1389 

Mice were infected with influenza, five days later given adenovirus to overexpress IFNλ (Ad-IFNλ) or GFP (Ad-

GFP), and twenty-four hours later challenged with 5×107 CFU MRSA as described in Figure 4.1. Lungs were snap-

frozen, homogenized, and the supernatant assayed for inflammatory cytokines by multiplex (n=12, three independent 

experiments). Data are reported as mean +/- SEM, with significance and p-value calculated by Welch’s t-test. 
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Figure 22: Gating strategy for identifying FITC+ neutrophils. 

Mice were infected and flow cytometry was performed as described in Figure 5.6. Gating strategy for two 

representative mice is shown. 
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Appendix B -- Supplementary Materials and Methods 

B.1 Real-Time PCR Primers 

Mouse real-time PCR primers are listed below. They are proprietary primer and probe sets 

purchased from Life Technologies entitled TaqMan “Assay on Demand”. 

Table 3: List of mouse real-time PCR primers. 

Gene Name Assay ID 

il22 Mm0044421_m1 

ngal Mm01324470_m1 

reg3g Mm00441127_m1 

s100a8 Mm00496696_g1 

s100a9 Mm00656925_m1 

camp Mm00438285_m1 

itga4 Mm00439770_m1 

itgb1 Mm01253230_m1 

tlr2 Mm00442346_m1 

ifna1 Mm03030145_gH 

ifnb Mm00439546_s1 

ifng Mm01168134_m1 
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B.2 Staphylococcus aureus Media Recipe 

1) Mix the following in a 1L Erlenmeyer flask: 
 

7.5 g agar 
15 g  yeast extract 
10 g casamino acids 
1.24 g Na2HPO4 
0.205 g KH2PO4 
10 mg MgSO4 ⋅ 7H2O 
3.75 mg MnSO4 ⋅ H2O 
3.2 mg FeSO4 ⋅ 7H2O 
3.2 mg citric acid 
450 ml distilled water 

 
 
2) pH to 7.3. 

 
3) Autoclave. 

 
4) Meanwhile, mix: 

11.6 g  sodium pyruvate 
50 ml  distilled water 

 
 
5) Filter-sterilize sodium pyruvate mixture and add to autoclaved portion once it has 

cooled slightly. 
 

6) Distribute 10 ml of media to sterile plates under cell culture hood, swirling to spread 
evenly and popping any bubbles with a sterile glass pipet tip. 

 

To make broth, follow all above steps and exclude the addition of agar. 
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