DEVELOPMENT OF THE 2,2,6,6-TETRAMETHYLPIPERIDIN-1-YLOXYCARBONYL (TEMPOC) PROTECTING GROUP AND EFFORTS TOWARDS THE TOTAL SYNTHESIS OF α-CYCLOPIAZONIC ACID

by

Joseph R. Lizza

B.S. Chemistry and B.A. Physics, Rowan University, 2017

Submitted to the Graduate Faculty of the

Kenneth P. Dietrich School of Arts and Sciences in partial fulfillment

of the requirements for the degree of

Master of Science

University of Pittsburgh

2020

UNIVERSITY OF PITTSBURGH

DIETRICH SCHOOL OF ARTS AND SCIENCES

This thesis was presented

by

Joseph R. Lizza

It was defended on

February 25, 2020

and approved by

Dr. Dennis Curran, Distinguished Service Professor of Chemistry and Bayer Professor, Department of Chemistry

Dr. Kazunori Koide, Professor, Department of Chemistry

Thesis Advisor: Dr. Peter Wipf, Distinguished University Professor, Department of Chemistry

Copyright © by Joseph R. Lizza

2020

DEVELOPMENT OF THE 2,2,6,6-TETRAMETHYLPIPERIDIN-1-YLOXYCARBONYL (TEMPOC) PROTECTING GROUP AND EFFORTS TOWARDS THE TOTAL SYNTHESIS OF A-CYCLOPIAZONIC ACID

Joseph R. Lizza, MS

University of Pittsburgh, 2020

The 2,2,6,6-Tetramethylpiperidin-1-yloxycarbonyl (Tempoc) protecting group is a new carbamate protecting group for various types of amines. Installation can be accomplished using the new reagent 4-nitrophenyl (2,2,6,6-tetramethylpiperidin-1-yl) carbonate (NPTC) under mild conditions. Tempoc is stable under strongly acidic and basic conditions, and displays orthogonal deprotection properties when used in tandem with the tert-butyloxycarbonyl (Boc) and benzyloxycarbony (Cbz) protective groups. Deprotection can be accomplished under thermolytic conditions at 135 °C, or under reductive conditions with in situ generated catalytic Cu(I). Furthermore, Tempoc has also been shown to be a useful protecting group in peptide synthesis. Protecting a broad range of biologically relevant amino esters has been accomplished in the presence of 1-hydroxybenzotriazole (HOBt) as an NPTC activator. Demonstration of Tempoc utility has been realized through the synthesis of a tripeptide fragment of Gramicidin S, a cyclic decapeptide that possesses antimicrobial activity. Unrelated, efforts toward the total synthesis of α -Cyclopiazonic acid are also discussed. The ambitious 1,3-dipolar cycloaddition of a highly substituted aziridine with relatively unactivated dipolarophiles led to interesting results that may be useful for the synthesis of other complex biologicals and natural products.

TABLE OF CONTENTS

LIST OF TABLES viii
LIST OF FIGURES xi
LIST OF SCHEMES xii
LIST OF ABBREVIATIONS xv
PREFACExviii
1.0 2,2,6,6-TETRAMETHYLPIPERIDIN-1-YLOXYCARBONYL (TEMPOC): A
PROTECTING GROUP FOR PRIMARY, SECONDARY AND HETEROCYCLIC
AMINES ¹ 1
1.1 INTRODUCTION1
1.1.1 Protection of amines in organic synthesis1
1.1.2 First use of Tempoc as a protecting group
1.2 RESULTS AND DISCUSSION
1.2.1 Development of Tempoc transfer reagent 4-nitrophenyl (2,2,6,6-
tetramethylpiperidin-1-yl) carbonate (NPTC)4
1.2.2 The use of NPTC to protect amines
1.2.3 Deprotection of the Tempoc group12
1.2.3.1 Tempoc deprotection - copper13
1.2.3.2 Tempoc deprotection - thermolysis and mechanism
1.2.4 Orthogonality study of Tempoc deprotection
1.3 CONCLUSIONS

2.0 TEMPOC: A USEFUL PROTECTING GROUP IN PEPTIDE SYNTHESIS	23
2.1 INTRODUCTION	23
2.1.1 Protection group use in peptide synthesis	23
2.1.2 New carbamates in peptide synthesis	24
2.2 RESULTS AND DISCUSSION	26
2.2.1 Problems with initial Tempoc protection conditions	26
2.2.2 Discovery of new protection conditions and scope	27
2.2.3 Synthesis of Gramicidin S monomer	36
2.2.4 Optimization of Tempoc deprotection	39
2.2.5 Future directions	47
3.0 EFFORTS TOWARDS THE TOTAL SYNTHESIS OF α-CYCLOPIAZONIC	
ACID	49
3.1 INTRODUCTION	49
3.1.1 α-Cyclopiazonic acid structure and activity	49
3.1.2 Previous syntheses of cyclopiazonic acid	52
3.2 RESULTS AND DISCUSSION	57
3.2.1 Retrosynthetic analysis of cyclopiazonic acid	57
3.2.2 Progress towards the total synthesis of α -cyclopiazonic acid	59
3.2.3 Future directions	71
4.0 EXPERIMENTAL PART	73
4.1 EXPERIMENTAL – TEMPOC AMINES	73
4.1.1 General experimental protocols	73
4.1.2 General methods and workup protocols	74

4.1.3 Synthetic procedures and spectral characterization for Tempoc transfer
reagents
4.1.4 Synthetic procedures and spectral characterization for Tempoc protected
amines
4.1.5 Synthetic procedures and spectral characterization for Tempoc deprotections
and orthogonality studies101
4.1.6 Thermolysis of Tempoc protected indole 1-60108
4.2 EXPERIMENTAL – TEMPOC PEPTIDES 113
4.2.1 General experimental protocols113
4.2.2 Second generation synthesis of NPTC (1-34) 113
4.2.3 General methods and workup procedures115
4.2.4 Synthetic procedures and spectral characterization for Tempoc protected
amino esters 122
4.3 EXPERIMENTAL – CYCLOPIAZONIC ACID 145
4.3.1 General experimental protocols145
4.3.2 Synthetic procedures and spectral characterization145
APPENDIX A : DSC ANALYSIS OF NPTC (1-34) 166
APPENDIX B : MARFEY'S ANALYSIS OF 2-26 168
APPENDIX C : SELECTED NMR SPECTRA (CHAPTER 1) 173
APPENDIX D : SELECTED NMR SPECTRA (CHAPTER 2) 202
APPENDIX E : SELECTED NMR SPECTRA (CHAPTER 3) 229
APPENDIX F : X-RAY CRYSTALLOGRAPHY DATA 252
BIBLIOGRAPHY

LIST OF TABLES

Table 1 Optimization for the protection of phenethylamine with NPTC 9
Table 2 Optimization for the copper mediated deprotection of Tempoc indole
Table 3 The optimization of Tempoc thermolysis of piperidine 1-56 17
Table 4 The thermal deprotection products of Tempoc indole 1-60 19
Table 5 Tempoc stability studies under the standard reaction conditions 29
Table 6 NPTC stability studies under the standard reaction conditions 29
Table 7 Optimization of Tempoc protection of phenylalanine ethyl ester through NPTC activation
Table 8 Reaction screen for alternative reducing agents for Tempoc deprotection
Table 9 Screen of copper ligands to enable utilization of inorganic reducing agents
Table 10 Solvent screen for THF replacement in Tempoc deprotection 42
Table 11 Optimization towards minimization of byproduct formation in Tempoc deprotection. 43
Table 12 Optimization of copper and reductant loading for the Tempoc deprotection of epi-2-59
Table 13 Optimization of the chomatography-free Tempoc deprotection of tripeptide <i>epi-2-59</i> 46
Table 14 Condition screen for the Lewis acid promoted cycloaddition of glycine imine 3-124 71
Table 15 Complete optimization table for the Tempoc protection of 2-phenethylamine
Table 16 Complete optimization table for the Tempoc protection of phenylalaline 2-26
Table 17 Sample and crystal data for 3-73 254
Table 18 Data collection and structure refinement for 3-73

Table 19 Atomic coordinates and equivalent isotropic atomic displacement para	meters ($Å^2$) for 3-
73	
Table 20 Bond lengths (Å) for 3-73.	
Table 21 Bond angles (°) for 3-73	
Table 22 Anisotropic atomic displacement parameters (Å ²) for 3-73	
Table 23 Hydrogen atomic coordinates and isotropic atomic displacemnt parame	eters (\AA^2) for 3-73
Table 24 Sample and crystal data for 3-74	
Table 25 Data collection and structure refinement for 3-74	
Table 26 Atomic coordinates and equivalent isotropic atomic displacement para	meters ($Å^2$) for 3-
74	
Table 27 Bond lengths (Å) for 3-74.	
Table 28 Bond angles (°) for 3-74	
Table 29 Anisotropic atomic displacement parameters (Å ²) for 3-74	
Table 30 Hydrogen atomic coordinates and isotropic atomic displacemnt parame	eters (\AA^2) for 3-73
Table 31 Sample and crystal data for 3-116	
Table 32 Data collection and structure refinement for 3-116	
Table 33 Atomic coordinates and equivalent isotropic atomic displacement para	meters (Å ²) for 3-
116	
Table 34 Bond lengths (Å) for 3-116.	
Table 35 Bond angles (°) for 3-116	
Table 36 Anisotropic atomic displacement parameters (Å ²) for 3-116	

Table 37 Hydrogen	atomic coordinates	and isotropic	atomic displace	mnt parameters ($(Å^2)$ for 3-
116					271

LIST OF FIGURES

Figure 1 The structure of Tempoc transfer reagent NPTC
Figure 2 The scope of Tempoc protected primary, secondary, and heterocyclic amines 11
Figure 3 Copper deprotection of Tempoc piperidine 1-56 and cyclohexylamine <i>trans</i> - 1-44 15
Figure 4 Representative examples of amino acid bearing reactive sidechains (green)
Figure 5 More reactive Tempoc transfer species generated <i>in situ</i> by addition of an activator 30
Figure 6 The scope of Tempoc protected aminno esters
Figure 7 The structure of the cyclopeptide Gramicidin S
Figure 8 The structures of CPA and selected Speradines and Aspergillines
Figure 9 Competitive pathways of aziridine heterolysis based on N-protecting group 59
Figure 10 The X-ray structures of 3-73 and 3-74
Figure 11 ORTEP strucuture of 3-73
Figure 12 ORTEP structure of 3-74
Figure 13 ORTEP structure of 3-116

LIST OF SCHEMES

Scheme 1 An example of amine protection using the tert-butyloxycarbony (Boc) group from
Sheerer's 2011 synthesis of racemic acetylnorloline
Scheme 2 The first use of the Tempoc protecting group in the 2017 synthesis of (-)-cycloclavine
Scheme 3 The Curtius rearrangement used to form Tempoc in McCabe's 2017 synthesis of (-)-
cycloclavine
Scheme 4 The use of Boc anhydride and benzyl chloroformate for amine protection
Scheme 5 Planned synthesis of Tempoc anhydride and TMP chloroformate
Scheme 6 Synthes of Tempoc mixed carbonates and their reaction with phenethylamine 1-37 7
Scheme 7 The acid and basic deprotection mechanisms of Boc and Fmoc respectively
Scheme 8 Tempoc deprotection hypothesis
Scheme 9 Literature examples of N–O bond cleavage with copper(I) salts
Scheme 10 Tandem IMDAF cyclization and thermolysis of Tempoc in McCabe's synthesis of (-)-
cycloclavine
Scheme 11 Thermal deprotection of Tempoc indole 1-60 17
Scheme 12 The thermolysis of primary amines and their products
Scheme 13 The proposed ionic and radical pathways of thermal Tempoc deprotection 20
Scheme 14 The selective deprotection of Fmoc in the presence of 4 other protecting groups 20
Scheme 15 Orthogonality studies with Cbz/Tempoc and Boc/Tempoc protected piperazines 21
Scheme 16 The tetrazine labile vinyl ether benzyloxycarbonyl (VeZ) protecting group 24
Scheme 17 Mechanism for the deprotection of the VeZ protecting group

Scheme 18 Dmoac protection of lysine using CDI and <i>N</i> , <i>N</i> -dimethylhydroxylamine
Scheme 19 The unexpected yield from the Tempo protection of phenylalanine ester 2-25 as
compared to proline
Scheme 20 Reactions to determine cause of reduced Tempoc protection yields for amino esters
Scheme 21 Test reactions of various NPTC activating additives
Scheme 22 Control reaction to confirm the formation of Tempoc-HOBt adduct 2-38
Scheme 23 Retorsynthetic analysis for the synthesis of Gramicidin S monomer 2-57
Scheme 24 Original synthesis of Gramicidin fragment 2-59
Scheme 25 Revised synthesis of Tempoc tripeptide 2-59
Scheme 26 Proposed completion of Gramicidin monomer 2-57
Scheme 27 Biosynthesis of CPA
Scheme 28 Kozikowski and Greco's total synthesis of racemic CPA
Scheme 29 Natsume's 1985 total synthesis of 3-1
Scheme 30 Knight's 2005 synthesis of racemic 3-1
Scheme 31 Beyer's asymmetric total synthesis of 3-1
Scheme 32 Zhurakovski's asymmetric total synthesis of 3-1
Scheme 33 Retrosynthetic analysis of cyclopiazonic acid 3-1
Scheme 34 Synthesis of <i>N</i> -protected 3,3-unsubstituted aziridine carboxylates
Scheme 35 Results of the cycloaddition of aziridines 3-68 and 3-67 with cyclohexenone 3-70 . 61
Scheme 36 The literature synthesis of aziridine 3-82 from serine
Scheme 37 Attempted synthesis of aziridine 3-89 from acrylic acid 3-84
Scheme 38 Regioselective synthesis of azido alcohol 3-87 from acrylic ester 3-85

Scheme 39 Synthesis of 3-59 and 3-95 via iridium catalyzed aziridination of imines 3-92 and 3-94
Scheme 40 Mechanism for iridum catalyzed aziridination
Scheme 41 Cycloadditions of aziridines 3-95 and 3-59
Scheme 42 Proposed synthetic route to cyclopiazonic acid utilizing an intramolecular aziridine
cycloaddition67
Scheme 43 Synthesis of hydroxylmethyl cyclohexenone <i>rac</i> - 3-60
Scheme 44 Synthesis and intramolecular cyclization of tethered aziridine 3-115
Scheme 45 Synthesis and attemted cycloaddition of cyclohexenone tethered gem-dimethyl
aziridine 3-118
Scheme 46 Proposed mechanism of metal mediated dipolar cycloaddition of glycine imine 70
Scheme 47 Proposed route for synthesis of cyclopiazonic acid

LIST OF ABBREVIATIONS

ACP	Acyl carrier protein
Alloc	Allyloxycarbonyl
Asc	Ascorbic acid
Bn	Benzyl
Boc	<i>tert</i> -Butoxycarbonyl
Cbz	Benzyloxycarbonyl
CbzCl	Benzyl chloroformate
CoA	Coenzyme A
CPA	Cyclopiazonic acid
DABCO	1,4-Diazabicyclo[2.2.2]octane
DBN	1,5-Diazabicyclo[4.3.0]non-5-ene
DBU	1,8-Diazabicyclo[5.4.0]undec-7-ene
DHA	
DIBAL-H	Diisobutylaluminum hydride
DIPEA	N,N-Diisopropylethylamine
DMAP	4-Dimethylaminopyridine
DMAPP	Dimethylallyl pyrophosphate
DME	dimethoxyethane
DMF	Dimethyl formamide
Dpm	Diphenylmethyl
DPPA	Diphenylphosphoryl azide

DSC	
EDA	
Fmoc	Fluorenylmethoxycarbonyl
HBTU	2-(1H-Benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate
HFIP	
HMDS	Hexamethyldisilazane
HOBt	
HPLC-MS	
HRSV	Human respiratory syncytial virus
IMDAF	Intramolecular Diels-Alder reaction furan
KHMDS	
KOTMS	Potassium trimethylsilanolate
LAH	
LC-HRMS	Liquid chromatography-high resolution mass spectrometry
LC-MS	Liquid chromatography-mass spectrometry
LDA	Lithium diisoropylamide
MaoA	
<i>m</i> CPBA	
NaAsc	
NHS	
NMM	
NMO	
NMR	

NPTC	4-Nitrophenyl (2,2,6,6-tetramethylpiperidin-1-yl) carbonate
PG(s)	Protecting group(s)
РМВ	
PMP	
ру	Pyridine
SERCA	
TBDPS	<i>tert</i> -Butyldiphenylsilyl
TBDPSCI	
TEMPO	
Tempoc	
ТЕМРО-Н	
TFA	
THF	
TMP	
Z	Benzyloxycarbonyl

PREFACE

I would like to first and foremost thank my family for their loving support and encouragement throughout the long road it took to get to where I am today. Without them, none of this would be possible. I love you Mom and Dad!

Additionally, I would also like thank Dr. Peter Wipf for providing me with the opportunity for work in his lab. Thank you also to Dr. Dennis Curran and Dr. Kazunori Koide for serving on my committee.

Furthermore, thank you to Dr. Damodaran Achary and Rose Sheridan, Dr. Bhaskar Godugu, and Dr. Steve Geib for their assistance with NMR, MS, and x-ray analyses respectively.

Special thanks Lori Neu in the glass shop; Tom Gasmire, Jeff Tomaszewski, and Bill Strang in the machine shop; and all members of the electronic shop for their feedback, support, and friendship during my time at the University of Pittsburgh.

Thank you also to the members of the University of Pittsburgh graduate administration, especially Christie Hay, who provided help and answers to my relentless questions.

Finally, I would like to thank the members of the Wipf group, current and past, for their companionship and guidance during my time with the group.

xviii

1.0 2,2,6,6-TETRAMETHYLPIPERIDIN-1-YLOXYCARBONYL (TEMPOC): A PROTECTING GROUP FOR PRIMARY, SECONDARY AND HETEROCYCLIC AMINES¹

1.1 INTRODUCTION

1.1.1 Protection of amines in organic synthesis

The increasing complexity of synthetic approaches to functionally dense molecular scaffolds demands the use of protecting groups (PGs).² The use of PGs enables targeted transformations on a desired part of a molecule in the presence of other sensitive and reactive centers. As such, PGs play a critical role in carbohydrate,³ peptide,⁴ and small molecule synthesis.⁵ Synthetic chemists are continually designing functionally dense, more reactive molecules and embarking on expeditious total syntheses, requiring an adaptive and expansive library of orthogonal protecting groups.^{6,7} Orthogonality is defined as the ability to remove a PG selectively in the presence of sensitive functionalities, such as other PGs.⁸ Amines are among the most common functionalities found in pharmaceuticals, natural products, and their synthetic intermediates.^{9–11} Amine nucleophilicity, basicity, and tendency to coordinate to transition metals, demand the use of protecting groups in order for chemical transformations to achieve proper chemoselectivity, minimal side-products, or even proceed at all. An example of amine protection is in Sheerer's synthesis of (±)-acetylnorloline in 2011 (Scheme 1).¹²

Scheme 1 An example of amine protection using the *tert*-butyloxycarbony (Boc) group from Sheerer's 2011 synthesis of racemic acetylnorloline

The authors started with N-protected lactam **1-1** and the protecting group (red) was maintained until 2-steps before the final transformation. The amine protection was crucial, as the 18-step sequence contains numerous basic-amine-incompatible reagents and functional groups (blue) such as strong bases, electrophiles, transition metals, and undesired self-condensations. While trifluoroacetyl,¹³ tosyl,¹⁴ nosyl,^{15,16} phthaloyl,¹⁷ and trityl¹⁸ are frequently used for amine protection, carbamates with *tert*-butyloxycarbonyl (Boc),¹⁹ benzyloxycarbonyl (Cbz),¹⁹ 9-fluorenylmethoxycarbonyl (Fmoc),²⁰ and allyloxycarbonyl (Alloc)²¹ substituents are among the most common and versatile amine protecting groups used across all branches of chemistry. Importantly, carbamate derived PGs find widespread use in the protection of amines due to their

robustness, ease of deployment and removal, and orthogonal nature. Consequently, new chemical variants are continually being developed.^{22,23} Typical deprotection conditions involve acidic (Boc), basic (Fmoc) or hydrogenolytic (Cbz) conditions and numerous methods have been published, such as TFA,²⁴ HCl,²⁵ H₂/Pd,²⁶ Et₃SiH/Pd,²⁷ and Mg/MeOH.²⁸ Unfortunately, deprotection with these conditions can promote numerous side reactions (for example, over-reductions,²⁹ rearrangements,³⁰ and epimerizations³¹).

1.1.2 First use of Tempoc as a protecting group

In McCabe's recent total synthesis of (–)-cycloclavine, a base-stable amine protecting group that could be subjected to tin-lithium transmetallation followed by 1,2-addition on enone **1-14** was required, and it was strategized that the protecting group would ideally be cleaved during a subsequent intramolecular Diels-Alder furan (IMDAF) cycloaddition (Scheme 2).³² Following a survey of carbamate protecting groups identified 2,2,6,6-tetramethylpiperidin-1-yloxycarbonyl (Tempoc) group as a superior protecting group. Specifically, Tempoc derivative **1-16** resulted in the best yield and chemoselectivity in the transmetallation/addition step to furnish prerequisite amino alcohol **1-17**, and could be cleaved during the subsequent Diels-Alder reaction using milder conditions of 135 °C in toluene versus microwave irradiation at 180 °C required for Boc derivative **1-15**. With this utility in mind, we sought to develop the Tempoc group as a synthetically useful tool for the protection of primary, secondary, and heterocyclic amines.

Scheme 2 The first use of the Tempoc protecting group in the 2017 synthesis of (-)-cycloclavine

1.2 RESULTS AND DISCUSSION

1.2.1 Development of Tempoc transfer reagent 4-nitrophenyl (2,2,6,6tetramethylpiperidin-1-yl) carbonate (NPTC)

While in McCabe's synthesis of cycloclavine, Tempoc was installed through a diphenylphorhoryl azide (DPPA) mediated Curtius rearrangement of furan carboxylic acid **1-19** in the presence of TEMPO hydroxylamine **1-22** (TEMPO-H), this would not be practical for the general installation of Tempoc on a variety of amines (Scheme 3). Therefore, studies towards a new Tempoc transfer agent were conducted.

Scheme 3 The Curtius rearrangement used to form Tempoc in McCabe's 2017 synthesis of (-)-cycloclavine

Amines are typically protected through a carbamolyation reaction with an activated form of the target protecting group. For instance, the Boc protection of benzylamine **1-26** can be achieved through reaction with di-*tert*-butyl dicarbonate **1-25** (Boc anhydride or Boc₂O) (Scheme 4). Alternatively, Cbz protection is conveniently achieved upon treatment of the amine with benzyl chloroformate **1-27** (CbzCl).

Scheme 4 The use of Boc anhydride and benzyl chloroformate for amine protection

While these reagents are generally stable and convenient for synthetic use, we hypothesized that Tempoc equivalents would be too unstable to storage, thereby limiting their convenience and practicality (Scheme 5). Tempoc anhydride **1-29** was discarded as a feasible substrate due to expected energetic decomposition. Tetramethylpiperidine chloroformate **1-30** was appealing as chloroformates react readily across a variety of basic and weakly nucleophilic amines.³³ However, after reduction of stable free radical **1-28** (TEMPO) to hydroxylamine **1-22**, and treatment with phosgene or triphosgene, the chloroformate quickly decomposed, forming a dark, complex reaction mixture with no isolable traces of the chloroformate.

Scheme 5 Planned synthesis of Tempoc anhydride and TMP chloroformate

Next, attention was turned to activated mixed carbonates, which have a long history of use for peptide couplings and amine protections.^{34,35} Since mixed carbonates are easily prepared from alcohols and their respective chloroformates, we set out to synthesis a variety of mixed carbonates as potential Tempoc transfer reagents (Scheme 6). While keeping the impending workup in mind, we first sought to prepare the methyl and *iso*-butyl Tempoc carbonates **1-31** and **1-32**, expecting that the resulting alcohols could readily be removed during the reaction workup. Reduction of **1-28** in water or methanol with sodium ascorbate or ascorbic acid gave resulting hydroxylamine **1-22**, which after extraction was treated with corresponding chloroformates to give mixed carbonates **1-31** and **1-32** in good to excellent yield. These carbonates were exposed to phenethylamine **1-37** in DMF with triethylamine as base; however, no product was detected by LC-MS or NMR analysis.

Scheme 6 Synthes of Tempoc mixed carbonates and their reaction with phenethylamine 1-37

Next, we sought to increase the leaving group ability of the carbonate, thus, phenyl carbonate **1-33**, N-hydroxylsuccinimidyl (NHS) carbonate **1-36**, and 4-nitrophenyl carbonate **1-34** were synthesized. Phenyl analog **1-33** and NHS-carbonate **1-36** were unreactive towards phenethylamine, the latter being unstable and decomposing in solution without giving any detectable product. Nitrophenyl carbonate **1-34**, however, cleanly afforded Tempoc protected phenethylamine **1-38** in 84% isolated yield. Tempoc transfer reagent 4-nitrophenyl (2,2,6,6-tetramethylpiperidin-1-yl) carbonate (NPTC, Figure 1) is a bench stable crystalline solid that has been synthesized in 100 g quantities. While NPTC bears a nitro group and weak N–O bond, differential scanning calorimetry showed only a minor exotherm of 70 cal/g at an onset temperature of 135 °C, showing that NPTC is a relatively stable compound. In fact, at this time of this writing, NPTC, via licensing from the University of Pittsburgh, has been made commercially available for purchase by the chemical supplier Millipore Sigma.

Figure 1 The structure of Tempoc transfer reagent NPTC

1.2.2 The use of NPTC to protect amines

With transfer agent NPTC in hand, we sought to optimize a set of conditions for installment of the Tempoc group onto amines. Using 2-phenethylamine **1-37** as a test substrate, we first explored typical Boc protection conditions (Table 1, Entry 1–2). Further screening showed that polar solvents were critical for good conversions (Table 1, Entries 3–5) with DMF providing the highest isolated yield. Next, screening of bases (Table 1, Entries 6–9) indicated that triethylamine was more effective than pyridine and inorganic bases. Interestingly, while potassium carbonate (Table 1, Entry 8) showed comparable yields, trace amounts of *bis*-Tempoc amine were detected by LC-MS. In attempts to increase conversion by heating, we were surprised to see the yields of Tempoc phenethylamine **1-38** decrease (Experimental Part, Table 15). We hypothesize that these conditions are met with NPTC degradation. However, excellent yields of **1-38** were obtained with increased loading of NPTC with 1.2 equivalents being ideal (Table 1, Entry 11). Table 1 Optimization for the protection of phenethylamine with NPTC

entry	stoichiometry ^a	solvent ^b	base	yield ^c (%)
1	1:1:3	DCM	Et ₃ N	28
2	1:1:3	THF	Et ₃ N	60
3	1:1:3	MeCN	Et ₃ N	57
4	1:1:3	MeOH	Et ₃ N	64
5	1:1:3	DMF	Et ₃ N	77
6	1:1:3	DMF	ру	67
7	1:1:3	DMF	NaHCO ₃	64
8	1:1:3	DMF	K_2CO_3	79 ^d
9	1:1:3	DMF	Et ₃ N/DMAP ^e	76 ^e
10	1:1.1:3	DMF	Et ₃ N	84
11	1:1.2:3	DMF	Et ₃ N	91

^aamine:NPTC:base; ^b0.5 M in amine ^cisolated yields; ^dtrace *bis*-Tempoc amine detected by HPLC-MS; ^e0.25 equiv DMAP

With these optimized conditions, we sought to demonstrate PG utility by exploring a range of primary, secondary, and heterocyclic amines as potential substrates (Figure 2). Unhindered primary amines were protected smoothly in high yields. Unprotected hydroxyl groups were tolerated in the protection, **1-45** and **1-46** were isolated with no traces of *O*-acylation. Tryptamine **1-47** and amino benzylamine **1-48** gave complete selectivity towards the more basic amine. Primary amine **1-49**, bearing α -substitution, showed decreased reactivity towards NPTC, giving 75% yield respectively. Sterically encumbered *tert*-butyl amine only afforded 32% of the desired product **1-50**. Tempoc hydrazide **1-51** was isolated as a highly crystalline solid in 95% yield. Using sodium hydride as base, we were able to cleanly *bis*-protect phenethylamine **1-52** in 90% isolated yield. Arylamines such as naphthylamine **1-53** showed no reactivity towards NPTC under standard, or even under forcing conditions.

^aReaction conditions: amine (1 equiv), NPTC (1.2 equiv), and triethylamine (3 equiv), in DMF (0.5 M), rt, 12 h. ^bIsolated yields. ^cNPTC(1 equiv), hydrazine (2 equiv). ^dSodium hydride as base (2.6 equiv), NPTC (2.4 equiv). ^eUnreactive towards aryl amines under standard conditions. ^f4 equiv of triethylamine. ^gSodium hydride (1.3 equiv) as base. ^hSodium hydride, then NPTC.

Figure 2 The scope of Tempoc protected primary, secondary, and heterocyclic amines

Generally, cyclic secondary amines are excellent substrates for Tempoc protection. L-Proline methyl ester gave facile protection, albeit with slightly lower yield, likely do the steric interactions. Sodium hydride was needed for indole **1-60** as the there was no observed product formation under standard conditions. Importantly, we were able to selectively protect the indole-N on tryptamine **1-61** by treatment first with sodium hydride, followed by addition of NPTC as a solution in THF. Imidazole was a highly compatible substrate for acylation, giving Tempoc protected analog **1-62** in 91% yield. Acyclic amine **1-63** gave excellent yield, however bulkier dipropyl amine **1-64** suffered from a decreased reaction rate, only giving 56% of the desired Tempoc amine. Sulfoximine **1-65** was also protected in 82% yield under sodium hydride conditions.

Driven to extend the scope to aryl amines, we hoped to accelerate the reaction of NPTC and weakly nucleophilic arylamines by other means. Increasing reaction temperature only led to decomposition of the transfer reagent, even upon switching solvents. HFIP has been known to activate Boc₂O for protection of weakly nucleophilic or hindered amines. However, in the case of NPTC only slow decomposition was observed.³⁶ Stronger bases such as sodium hydride or *n*-butyllithium, again, only led to slow decomposition of the transfer reagent and no isolable products. Lewis acids^{37–39} such as MgBr₂ and various metal triflates have also been used for activation during the Boc protection, however, no desired product was observed after screening many Lewis acids (*i.e.*, MgCl₂, Sc(OTf)₂, TMSOTf). There are even reports in the literature of activation of transfer reagents using Brønsted acids.^{40,41} These attempts also failed, likely due to deactivation of the aniline through protonation rather than activation of the transfer reagent. Nucleophiles such as DBU,⁴² *N*-methylimidazole,⁴³ and DABCO⁴⁴ have been used for acyl-

transfer activation, as well as other nucleophilic reagents such as sodium azide⁴⁵ and sodium iodide.⁴⁶ However, when these reagents were tested, either no desired product was formed or decomposition of NPTC was observed.

1.2.3 Deprotection of the Tempoc group

Carbamate cleavage typically takes advantage of the unstable nature of the carbamic acids, thus, after cleavage of the O-substituent on the carbamate, the resulting carbamic acid will spontaneously release carbon dioxide to generate the free amine. The deprotections of Boc and Fmoc are typically conducted in the presence of a strong acid or base respectively. The former, follows a mechanism where protonation of the carbamate oxygen generates the stable *tert*-butyl cation **1-68** and carbamic acid **1-67** (Scheme 7, Eq. 1).⁴⁷ Cation **1-68** can either undergo elimination to the give isobutylene, a gas, or the *tert*-butyl cation can be trapped with solvent or the acid counter-ion. Carbamic acid **1-67** then undergoes spontaneous decomposition to evolve CO₂ and free amine **1-69**. Fmoc, on the other hand, undergoes decomposition *via* a E1_{cb} mechanism (Scheme 7, Eq. 2).⁴⁸ The nucleophilic amine base, typically used in high excess, deprotonates the 9-fluorenylmethyl ring giving intermediate anion **1-72**, which then collapses down on the carbamate to release carbon dioxide and free amine **1-73**. Dibenzofulvene **1-74** is a reactive electrophile and is typically trapped quickly by the base.

Scheme 7 The acid and basic deprotection mechanisms of Boc and Fmoc respectively

Exploitation of the entropic driving force of CO₂ extrusion in conjunction with a relatively stable by-product (*i.e., tert*-butyl cation or dibenzofulvene) allows some carbamate deprotections to be mild and facile. It is with this in mind that we envisioned the scission of the labile N–O bond in Tempoc to release carbon dioxide and generate hindered 2,2,6,6-tetramethylpiperidine **1-77** and deprotected amine **1-70**.

Scheme 8 Tempoc deprotection hypothesis

1.2.3.1 Tempoc deprotection - copper

With a broad scope of primary and secondary amines efficiently protected, many in gramscale or larger, we next sought to exact a mild set of conditions for the selective deprotection of Tempoc, and thereby significantly differentiate its deprotection conditions from that of other PGs. In order to develop an orthogonal deprotection strategy, we first thought to exploit the reductive lability of the N–O bond in the carbamate moiety. N–O bonds are known to undergo metalcatalyzed reduction in the presence of copper(I) (Scheme 9).^{49–51}

Scheme 9 Literature examples of N–O bond cleavage with copper(I) salts

With Tempoc indole **1-60** as test substrate, we found that copper(I) chloride effectively cleaved the Tempoc group (Table 2, Entry 1). However, while stoichiometric Cu(I) was effective, we sought to use copper catalytically, while also removing the need for air-sensitive copper(I) salts *via* the use of copper(II) chloride and the introduction of a reductant, such as ascorbic acid. Treatment of Tempoc indole with other sources of Cu(II) were effective. However, we chose copper(II) chloride as it exhibited the best solubility and cost effectiveness (Table 2, Entries 6–10). Using optimized conditions, we found that other Tempoc substrates were sparingly soluble in the DMF/H₂O mixture. After testing various binary solvent mixtures it was found that a ternary mixture of MeCN/THF/H₂O exhibited excellent solubilizing properties for all Tempoc substrates, while concomitantly allowing for lower copper and reductant loading, and shorter reaction times that we attributed to the stabilizing effects of acetonitrile on the reduced Cu(I) species (Table 2, Entry 11). Further reduction of copper and ascorbic acid, while effective, was met with increased reaction times (Table 2, Entry 12).

Table 2 Optimization for the copper mediated deprotection of Tempoc indole

^acontribution (MB); ^bHPLC yield; ^cisolated yield after 12 h; ^disolated yield after 24 h

Using these optimized reductive conditions, we explored the application for primary, secondary, and heterocyclic Tempoc amines (Figure 3). Tempoc piperidine **1-56** and cyclohexylamine *trans*-**1-44** deprotected cleanly at room temperature to afford free amines **1-83** and **1-84** in excellent yield. Primary amine *trans*-**1-44** required mild heating to achieve deprotection, presumably due to the less hindered carbamate coordinating to copper. Deprotections were scaled to >1 mmol with no decrease in yield.

Figure 3 Copper deprotection of Tempoc piperidine 1-56 and cyclohexylamine trans-1-44

1.2.3.2 Tempoc deprotection - thermolysis and mechanism

During McCabe's 2017 synthesis of (–)-cycloclavine,³² Tempoc was cleaved during thermal IMDAF reaction conditions. Interested in applying this property of thermal Tempoc deprotection more generally, we explored the possibility of a thermolysis of Tempoc as another method of deprotection. A survey of the literature shows precedents for the thermal deprotection of carbamates, namely Boc.^{52–54}

Scheme 10 Tandem IMDAF cyclization and thermolysis of Tempoc in McCabe's synthesis of (-)-cycloclavine

With Tempoc piperidine **1-56** as test substrate, we switched from Dr. McCabe's conditions of 135 °C in toluene under microwave irradiation to the higher boiling chlorobenzene (Table 3). Under microwave irradiation at 165 °C for 1 hour, only a trace amount of product **1-83** was observed (Table 3, Entry 1). Switching to more polar pyridine and increasing temperature to 175 °C again only produced trace amounts of detectable **1-83** by LC-MS (Table 3, Entry 2). Increasing solvent polarity further to proprionitrile showed a dramatic increase in the rate of deprotection, and after 2 h at 165 °C we isolated 48% of desired free piperidine **1-83** (Table 3, Entry 4). The highly polar solvent 1,1,3,3-hexafluroisopropanol (HFIP) has been shown to enhance the deprotection of carbamates.^{24,55,56} Thus, using a 9:1 mixture of PhCl/HFIP indeed increased the rate of deprotection, and in 2 h 42% of amine **1-83** was isolated (Table 3, Entry 5). Using neat HFIP enabled the temperature to be reduced to 135 °C and in 8 h 85% of the deprotected amine

was isolated (Table 3, Entry 7). Swapping HFIP to the less acidic TFE was met with a substantial reduction in yield (Table 3, Entry 8).

	1-1	N → Tempoc	1-83	NH
entry	solvent	temperature (°C)	time (h)	yield ^a (%)
1	PhCl	165	1	trace
2	pyridine	175	1	trace
3	NMP	165	1	decomp ^b
4	EtCN	165	2	48
5	PhCl-HFIP (9:1)	165	2	42
6	HFIP	135	6	73
7	HFIP	135	8	85
8	TFE	135	6	30

Table 3 The optimization of Tempoc thermolysis of piperidine 1-56

Tempoc

^aisolated; ^bno recovered starting material or desired products

These optimized deprotection conditions, 135 °C in HFIP for 8 h under microwave irradiation, were also applied to indole **1-60**, which only required 30 min for complete conversion, affording indole 1-82 in 88% yield (Scheme 11).

Scheme 11 Thermal deprotection of Tempoc indole 1-60

Surprisingly, extension of this method to Tempoc protected primary amines only gave the symmetrical urea. When Tempoc benzylamine 1-42 was heated in HFIP, after 30 min only urea 1-86 was isolated (Scheme 12). Numerous attempts to discourage this side-reaction were met with disappointing results. However, Maximilian Bremerich (MB) discovered that potassium trimethylsilanoate (KOTMS) inhibited the urea formation. Indeed, when Tempoc amine 1-42 was

heated in 1,4-dioxane for 30 min at 135 °C in the presence KOTMS the desired primary amine 1-87 was cleanly isolated in 93% yield after filtration through a pad of silica.

Scheme 12 The thermolysis of primary amines and their products

Curious about the reaction mechanism of the thermolytic deprotection, Dr. McCabe used NMR analysis.¹ Identification of the by-products of the thermal Tempoc cleavage (Table 4) showed the presence of tetramethylpiperidine **1-77**, dimethylpyrrolidine **1-88**, and enamine **1-90**.

Table 4 The thermal deprotection products of Tempoc indole 1-60

^abased on NMR analysis; ND = not detected

With these data a plausible mechanism was proposed, where the deprotection followed radical and ionic pathways (Scheme 13). Under thermal conditions, the ionic pathway begins with ring contraction of the piperidine ring, affording carbamic acid **1-91** and cationic pyrrolidine **1-92**. Loss of CO₂ affords indole **1-82**, and pyrrolidine **1-92** eliminates to afford enamine **1-90**, which is hydrolyzed to give acetone and dimethyl pyrrolidine **1-88**. In the ionic mechanism, we suspect homolysis of the N–O bond produces 2,2,6,6-tetramethylpiperidine radical and **1-91**. After hydrogen atom transfer from solvent and extrusion of CO₂ tetramethylpiperdine **1-77** and indole **1-82** are formed.

Scheme 13 The proposed ionic and radical pathways of thermal Tempoc deprotection

1.2.4 Orthogonality study of Tempoc deprotection

One of the key properties of a protecting group is orthogonality. Selective deprotection of one group in the presence of multiple other PGs is routinely carried out in a synthetic sequence. An example of such a selective deprotection is from Namba's 2015 synthesis of palau'amine **1-96** (Scheme 14).⁵⁷with

Scheme 14 The selective deprotection of Fmoc in the presence of 4 other protecting groups

The Fmoc protected pendant amine needed to be removed prior to conversion to pyrrolamide **1-95**. This was accomplished with standard conditions, 5% piperidine in acetonitrile, while leaving the Boc, trifluoroacetamide, silyl ether, and methyl ester groups intact.

With respect to assessing the orthogonality of Tempoc deprotection against the popular Boc and Cbz groups, we set out the explore conditions under which selective deprotection of Boc, Cbz, and Tempoc could be employed with strategic, synthetic compatibility (Scheme 15).

Scheme 15 Orthogonality studies with Cbz/Tempoc and Boc/Tempoc protected piperazines

Bis-protected piperazines **1-54** and **1-99** were synthesized for this demonstration. Tempoc amine **1-54** and **1-99** deprotected cleanly using the optimized copper(I) conditions at room temperature to afford free amines **1-98** and **1-101** in 95% and 92% yields, respectively. Standard TFA in methylene chloride conditions removed Boc in the presence of Tempoc in 94% yield, affording the monoprotected piperazine **1-97** as the trifluoroacetate salt. Cbz was removed using a modified literature protocol, Pd/C and H₂ (balloon) in the presence of 0.5 equivalents of ammonia, gave Tempoc piperazine **1-100** in quantitative yield. Attempts to run the reaction in the absence of ammonia led to partial cleavage of the Tempoc group.

1.3 CONCLUSIONS

In conclusion, these studies indicated that the 2,2,6,6-tetramethylpiperidin-1yloxycarbonyl (Tempoc) is an effective amino protecting group, with excellent orthogonality to Boc and Cbz protective groups. Treatment of amines with the crystalline Tempoc transfer reagent NPTC affords corresponding Tempoc protected derivatives in high yield with excellent chemoselectivity. Removal is mild, utilizing catalytic copper(I) generated *in situ* by the reduction of copper(II) chloride with ascorbic acid. Alternatively, thermolysis of Tempoc occurs in HFIP at 135 °C. Mechanistic studies have been explored, indicating a predominant ionic mechanism, however a radical pathway cannot be ruled out. Overall, the findings from the research described herein clearly demonstrate a highly useful role for the straightforward and synthetically amenable use of Tempoc as an amino protective group.

2.0 TEMPOC: A USEFUL PROTECTING GROUP IN PEPTIDE SYNTHESIS

2.1 INTRODUCTION

2.1.1 Protection group use in peptide synthesis

Peptides and proteins play an essential role to all biological processes, while also being an integral part in the design of new therapeutics.⁵⁸ While peptides may be isolated from natural sources or specifically expressed for isolation, they are typically produced synthetically.^{59–61} Furthermore, the chemical synthesis of peptides may be done without the use of protecting groups utilizing native chemical ligation. However, this method comes with many limitations.^{62–64} Therefore, peptides are typically constructed using protective group based solution-phase⁶⁵ or solid-phase⁶⁶ peptide synthesis. While the *N*- and *C*-terminus on amino acids require protection during synthesis, the multitude of reactive moieties (Figure 4) contained on amino acid sidechains also require protection during synthetic sequences to avoid unwanted side-reactions.⁶⁷ The most common functional groups needing protection in peptide synthesis are amines. Of the available amine PGs, carbamates such as tert-butoxycarbonyl (Boc), benzyloxycarbonyl (Cbz), and 9fluorenylmethoxycarbonyl (Fmoc) are the most common and the most synthetically useful. Carbamates offer excellent durability to standard peptide coupling conditions, while also being removed mildly and orthogonally to other protecting groups that may be present. Taken together, there is demand for the development of new orthogonal protective groups for successful construction of the complex molecules.

Figure 4 Representative examples of amino acid bearing reactive sidechains (green)

2.1.2 New carbamates in peptide synthesis

In recent years, new carbamate-based groups for N-terminus and amine side-chain protections have been developed. In 2018, Staderini introduced the tetrazine-labile aryl vinyl ether protecting group for use as lysine sidechain protecting group (Scheme 16).⁶⁸

Scheme 16 The tetrazine labile vinyl ether benzyloxycarbonyl (VeZ) protecting group

The vinyl ether benzyloxycarbonyl (Vez) protecting group is installed on Fmoc-protected lysine *via* 4-nitrophenyl mixed carbonate **2-14** after *in situ* protection of the free carboxyl with *N*-trimethylsilyl-*N*-methyl trifluoroacetamide (MSTFA). Deprotection of VeZ is performed by microwave heating in the presence of a tetrazine in an aqueous buffer-DMF mixture (Scheme 17). The mechanism proposed is that of and inverse demand Diels-Alder cyclization with subsequent extrusion of dinitrogen to form dihydropyridazine **2-19**. Aromative-elimination provides the phenoxide **2-20**, which readily undergoes 1,6-elimination to liberate carbon dioxide and free amine **2-18**. The authors further demonstrated the utility of the VeZ group in the synthesis of two cyclic peptides, melanotan II and a BAD BH3 peptide.^{69,70}

Scheme 17 Mechanism for the deprotection of the VeZ protecting group

In 2019, Okamoto showcased the polar *N*,*N*-dimethylaminoxy carbonyl (Dmaoc) protecting group.²² The Dmoac group, as was the aforementioned VeZ group, was designed for sidechain amino protection. Dmoac shares an interesting structural similarity to Tempoc in that also contains an N–O bond. Installation of the protecting group was accomplished *via*

carbamoylation by treatment of the amine with *N*,*N*'-carbonyldiimidazole (CDI) in the presence of *N*,*N*-dimethylhydroxylamine hydrochloride (Scheme 18).

Scheme 18 Dmoac protection of lysine using CDI and N,N-dimethylhydroxylamine

Deprotection was efficiently accomplished in a few hours by stirring in a pH 7.0 buffer containing dithiothreitol (DTT). The authors speculate that reduction of the N–O bond may be occurring as the deprotection does not proceed in the absence of reducing agents, however, DTT nucleophilicity seems to also be a major factor. Okamoto then displays Dmoac's utility through the synthesis of sunflower trypsin inhibitor SFTI.⁷¹ SFTI is a cyclic peptide bearing 14 amino acid residues, including lysine. After cyclization of the linear peptide, Dmoac was removed utilizing the author's DTT/buffer conditions.

2.2 RESULTS AND DISCUSSION

2.2.1 Problems with initial Tempoc protection conditions

During our exploration of Tempoc as a protecting group for primary, secondary, and heterocyclic amines,¹ we showed that the amino ester proline was an excellent substrate for protection, affording 87% of Tempoc proline **1-59** using the standard protection conditions (Scheme 19, Eq. 1). Interested in expanding the versatility of Tempoc's utility for peptide

synthesis, we first attempted to protect phenylalanine ethyl ester. However, we were surprised to isolate only 19% of the desired product **2-26** (Scheme 19, Eq. 2).

Scheme 19 The unexpected yield from the Tempo protection of phenylalanine ester 2-25 as compared to proline

2.2.2 Discovery of new protection conditions and scope

Curious about this result, we set out to elucidate the reason for the considerable drop in yield. First, we wanted to simplify our protection substrate to glycine ethyl ester, as an α -unsubstituted amino ester which should be protected in high yield. However, when glycine ethyl ester hydrochloride was subjected to the standard protection conditions, only 65% yield of **2-28** was isolated (Scheme 20, Eq. 1). Speculating that solubility of the hydrochloride in DMF could be leading to low conversion, we freebased ethyl glycinate by extraction from aqueous ammonia and subjected **2-29** to the same conditions. In spite of this, no change was observed, providing only 68% of **2-28** (Scheme 20, Eq. 2). Next, we wondered if ethyl glycinate was oligomerizing under the basic conditions of the reaction. Therefore, we switched to *tert*-butyl glycinate, which should exhibit no propensity of oligomerization, again, only 70% of glycinate **2-31** was isolated (Scheme 20, Eq. 3). Lastly, we speculated the proximity of the amine to electron withdrawing ester moiety had an inductive effect that impacted yield. As such, ethyl β -alanine **2-32** was then subjected to

the standard conditions, providing Tempoc amino ester **2-33** in 91% yield as expected (Scheme 20, Eq. 4).

Scheme 20 Reactions to determine cause of reduced Tempoc protection yields for amino esters

Not yet convinced the electronic induction of the ester was the primary culprit for lower yields, we theorized that the Tempoc protected amino ester may be undergoing degradation in solution. Therefore, we subjected Tempoc glycinate **2-28** to the protection conditions and monitored for the expected degradations products, TEMPO **1-28** and glycine **2-29**. Stirring of the protected amine in DMF for 12 h in the presence of 4-nitrophenol and triethylamine did not produce any observable degradation products (Table 5).

Table 5 Tempoc stability studies under the standard reaction conditions

Tempoc HN OEt 2-28	4-NO ₂ C ₆ H₄OH Et ₃ N (3 equiv) DMF (0.5 M), rt, 12 h	2-28	+	0' N + 1-28	0 H ₂ N 0Et 2-29
				observed product	s
entry	4-NO ₂ C ₆ H ₄ OH		2-28	1-28	2-29
1	1 equiv		Х	ND	ND
2	_		Х	ND	ND

X = observed by TLC and LC-MS; ND = not detected by TLC and/or LC-MS

With Tempoc stability no longer in question, this provided stronger evidence that the inductive effect was slowing the reaction. However, with the longer reaction times, we hypothesized that NPTC degradation may also be contributing the decreased conversion rates. The stability of NPTC under the reaction conditions in the absence of an amine was then tested for expected degradation products TEMPO **1-28** and symmetrical carbonate **2-34** which could arise from attack of 4-nitrophenoxide onto NPTC. Exposure of NPTC in DMF or methylene chloride in the presence of triethylamine and 4-nitrophenol did not produce any detectable degradation products as well (Table 6).

Table 6 NPTC stability studies under the standard reaction conditions

				obs	erved produ	icts
entry	solvent (conc.)	temp	4-NO ₂ C ₆ H ₄ OH	NPTC	1-28	2-34
1	DMF (0.5 M)	ambient	1 equiv	Х	ND	ND
2	DMF (0.5 M)	ambient	_	Х	ND	ND
3	CH ₂ Cl ₂ (1.0 M)	40 °C	1 equiv	Х	ND	ND
4	CH ₂ Cl ₂ (1.0 M)	40 °C	_	Х	ND	ND

X = observed by TLC and/or LC-HRMS; ND = not detected by TLC or LC-HRMS

With enough evidence suggesting that inductive influences were the cause of the lower yields observed, we concluded that a more reactive Tempoc transfer reagent should be explored. Avoiding the redesign of crystalline, stable, and easily prepared NPTC, we sought to activate the reagent by means of an external activator. A survey of the literature revealed that highly polar solvents such as HFIP³⁶ or additives such as sodium cyanide,⁷² sodium azide,⁷³ and HOBt⁷⁴ have been used for amine protection enhancement through reagent activation. Given the success of these activators, we set out to apply these conditions to amine protection with NPTC. We hypothesized that addition of these activators should generate a more reactive Tempoc transfer reagent *in situ* either through hydrogen bonding, or through displacement of the 4-nitrophenolate to generate a more reactive species (Figure 5).

Figure 5 More reactive Tempoc transfer species generated in situ by addition of an activator

First, with the recent developments in HFIP reaction rate enhancements,⁷⁵ we proposed that switching to this highly polar solvent would activate the carbonyl of NPTC, thus making it

more susceptible to nucleophilic attack. However, when we tested this hypothesis, we only isolated decomposition products of NPTC (Scheme 21, Eq. 1). Next, sodium cyanide can act as a catalytic nucleophile to attack NPTC, thus forming Tempoc cyanoformate **2-36**, which would react readily with nucleophiles, however when phenylalanine ester **2-40** was exposed to NPTC in the presence of sodium cyanide, once again, only decomposition products of NPTC were isolated (Scheme 21, Eq. 2). Thirdly, azidoformates have a long history of being acyl transfer reagents,⁷⁶ and with this in mind, we thought the addition of catalytic amounts of sodium azide would form Tempoc azidoformate **2-37** *in situ*, and while the mass for this compound was observed by LC-MS, no reaction rate enhancement was observed, and only starting materials and decomposition products were formed (Scheme 21, Eq. 3). Finally, the use of HOBt in acylation Scheme 21 reactions is well known,⁷⁷ and when phenylalanine ester **2-41**, was treated with NPTC in DMF in the presence of 1.2 equivalents of HOBt, we were excited to isolate 82% of desired Tempoc amino ester **2-26** after 24 h (Scheme 21, Eq. 4).

Scheme 21 Test reactions of various NPTC activating additives

We hypothesized that the attack of HOBt onto NPTC forms small quantities of HOBtadduct **2-38** which is a more reactive Tempoc transfer reagent that reacts readily with an incoming amine. While proof of this intermediate has not been proven spectroscopically, it's corresponding mass has been observed by LC-HRMS from the reaction of NPTC with HOBt in THF in the presence of triethylamine as base (Scheme 22).

Scheme 22 Control reaction to confirm the formation of Tempoc-HOBt adduct 2-38

With HOBt proving to be a potent NPTC activating agent, we set out to optimize the protection conditions of phenylalanine ethyl ester. As previously stated, in the absence of any

activator, protection of phenylalanine 2-25 in dry DMF with 3.0 equivalents of triethylamine, afforded only 19% of Tempoc amino ester 2-26 (Table 7, Entry 1). In the presence of 1.2 equivalents of HOBt, 3.0 equivalents of triethylamine, and molecular sieves in dry DMF, protection of 2-41 increased to 82% (Table 7, Entry 2). Interested in utilizing the commercially available and more stable hydrochloride salts, exposure of phenylalanine ester hydrochloride 2-25 to the same conditions, albeit with an extra equivalent of amine base, showed no decrease in yield, isolating Tempoc amine 2-26 in 84% (Table 7, Entry 3). Furthermore, reduction of HOBt loading to 1.0 equivalents in the presence and absence of molecular sieves led to comparable yields (Table 7, Entries 4 and 5). ACS grade solvents or also compatible with the reaction, even without molecular sieves (Table 7, Entries 6-7). Notwithstanding, we continued to use dry DMF throughout the project as we have found considerable variances in ACS grade DMF quality from different vendors. We were driven to further reduce the loading of HOBt to catalytic amounts while also reducing the equivalents of base to preclude any racemization propensity (Table 7, Entries 8–11). With 0.5 equivalents of HOBt, and 2.5 equivalents of triethylamine, Tempoc ester 2-26 was isolated in an acceptable 83% yield (Table 7, Entry 10).

HOBt hydrate water content is not precisely given on reagent bottles; therefore, to be accurate and reproducible with our reactions, we used the anhydrous reagent. However, HOBt hydrate is known to exhibit greater stability and is more readily available. Consequently, we set out to test it as an alternative to the anhydrous version. As expected, HOBt hydrate in the presence and absence of molecular sieves provided clean conversion to Tempoc phenylalanine **2-26** in 80% and 82% yields, respectively (Table 7, Entries 12 and 13). Alternative bases, solvents, HOBt substitutes, and further decreasing the loading of the activator led to diminished yields (Experimental Part, Table 16)

	O O O D Et NH ₂ O Et 2-25 = hydrochloride 2-41 = freebase	NPTC HOB Et ₃ N DMF (0.5	(1.2 equiv) tt (<i>equiv</i>) I (<i>equiv</i>) 5 M), rt, 24 h	C NH1 2-20	OEt Tempoc
entry	activator (equiv)	Et ₃ N (equiv)	4 Å MS ^a	solvent	isolated yield (%)
1	-	Et ₃ N (3.0)	Y	dry DMF	19
2 ^b	HOBt (1.2)	Et ₃ N (3.0)	Y	dry DMF	82
3	HOBt (1.2)	Et ₃ N (4.0)	Y	dry DMF	84
4	HOBt (1.0)	Et ₃ N (4.0)	Y	dry DMF	88
5	HOBt (1.0)	Et ₃ N (4.0)	Ν	dry DMF	88
6	HOBt (1.0)	Et ₃ N (4.0)	Y	wet DMF	88
7	HOBt (1.0)	Et ₃ N (4.0)	Ν	wet DMF	87
8	HOBt (0.5)	Et ₃ N (4.0)	Y	dry DMF	83
9	HOBt (0.5)	Et ₃ N (3.0)	Ν	dry DMF	80
10	HOBt (0.5)	Et ₃ N (2.5)	Ν	dry DMF	83
11	HOBt (0.5)	Et ₃ N (2.0)	Ν	dry DMF	77
12	HOBt hydrate (0.5) ^c	Et ₃ N (2.5)	Ν	dry DMF	80
13	HOBt hydrate (0.5) ^c	Et ₃ N (2.5)	Y	dry DMF	82

Table 7 Optimization of Tempoc protection of phenylalanine ethyl ester through NPTC activation

^a100 mg/mmol amine; ^bamine **2-41** was used; ^cHOBt (97%) contained \geq 20% wt. water

Importantly, with our optimized conditions, Marfey's analysis was conducted on Tempoc phenylalanine **2-26**, which showed no detectable racemization under these protection conditions.^{78,79} Additionally, a large scale synthesis of Tempoc transfer reagent NPTC and subsequent protection of phenylalanine ethyl ester using these optimized conditions has been detailed (Experimental Part).

With optimized conditions (*i.e.*, NPTC (1.0 equiv), HOBt (0.5 equiv), and triethylamine (2.5 equiv), in DMF (0.5 M, rt, 24 h), we set out to explore a variety of amino-esters for Tempoc protection. First, we sought to show that the reaction conditions are compatible with the range of ester protective groups used in peptide synthesis (Figure 6). Methyl, ethyl, *tert*-butyl, and benzyl glycinates were all protected in good to excellent yield. Moreover, unprotected glycine was also protected to afford Tempoc glycine amino acid **2-42** in 46% yield. Next, we tested the effect of *N*-

substitution on the amino ester; *N*-methyl ethyl glycinate was converted to its Tempoc derivative in 92% yield, whereas the *N*-benzyl analog suffered from reduced yields, only providing *N*benzylated Tempoc amino ester **2-46** in 67% yield. Furthermore, Tempoc protection was extended to a variety of bulky substituted amino esters that all converted to their Tempoc derivatives **2-49** – **2-51** in good yields, except for α -cyclopropyl substituted amino ester **2-52**, which was isolated in only 30% yield. As in our previous work, NPTC chemoselectivity was maintained toward amines in the presence of hydroxyl groups and arylamines, even under these activated conditions. Interestingly, we were able to leverage the slow reactivity of the α -amino moiety toward NPTC in the absence of HOBt to selectively protect the side-chain of lysine ethyl ester in 90% yield.

Figure 6 The scope of Tempoc protected aminno esters

2.2.3 Synthesis of Gramicidin S monomer

Finally, we were interested in demonstrating the utility of Tempoc as a useful protecting group for peptide synthesis be synthesizing a pentapeptide monomer of Gramicidin S (GS) (Figure 7). GS is a C₂-symmetric cyclic decapeptide that exhibits potent antibacterial effects against grampositive and gram-negative bacteria.⁸⁰ GS, and its analogs have also been a compound of interest in our group, and we thought it appropriate to demonstrate our Tempoc methodology toward its synthesis.^{81,82}

Gramicidin S (2-56)

Figure 7 The structure of the cyclopeptide Gramicidin S

Our retrosynthetic analysis of Gramicidin S monomer 2-57 utilizes a 3+2 approach (Scheme 23). First, construction of Tempoc-protected tripeptide 2-59 would be carried out using typical HATU mediated coupling conditions starting with Tempoc valine 2-51. Then, Tempoc dipeptide 2-58 would be synthesized in the same fashion staring with phenylalanine 2-47. Final coupling of the tri- and dipeptide fragments would afford the pentapeptide monomer of Gramicidin S. Final Tempoc deprotection of 2-57 would afford the free amine, which may be further elaborated to Gramicidin S.

Scheme 23 Retorsynthetic analysis for the synthesis of Gramicidin S monomer 2-57

With this plan, the first objective was to synthesize tripeptide **2-59**. Our initial plan was to construct the peptide using standard solution phase methods building from the N- to the C-terminus. And indeed, the coupling steps went as expected affording tripeptide **2-59** in 94% overall yield. However, upon analysis of the NMR of tripeptide **2-59**, it was determined that epimerization had occurred, most likely at the ornithine α -carbon during the final coupling step affording tripetide *epi-2-59* as a 1.2:1 mixture of epimers (Scheme 24, Eq. 1).

Scheme 24 Original synthesis of Gramicidin fragment 2-59

To confirm that this was not due to the nature of the Tempoc group, the Boc protected analog was synthesized and analyzed by NMR, which similarly produced tripepetide *epi-2-65* as a 1.2:1 mixture of epimers (Scheme 24, Eq. 2). In order to counteract the epimerization in the final coupling step, we switched our synthetic approach and starting from C-terminal leucine. Initially, we attempted our new synthetic approach on the Boc analog to confirm that our synthetic strategy would provide Boc-tripeptide **2-65** without any detectable racemization (Scheme 25, Eq. 1). Utilizing Boc, Cbz, *bis*-protected ornithine **2-66**, HATU mediated coupling with leucine methyl ester provided the Boc protected dipeptide intermediate which was directly deprotected with standard TFA conditions and subsequently treated once again with HATU in the presence of Bocvaline which provided tripeptide **2-65** in 89% overall yield. Tripeptide **2-65** was successfully synthesized without any detectible epimerization through NMR analysis. Our decision to use Boc-

ornithine **2-66** instead of its Tempoc equivalent was to avoid the well-known propensity of dipeptide cyclization under the mildly basic conditions required for Tempoc deprotection.^{83,84} With our new synthetic route validated, we continued to construct Tempoc tripeptide **2-59** in the same manner in 83% yield over 3 steps (Scheme 25, Eq. 2).

Scheme 25 Revised synthesis of Tempoc tripeptide 2-59

2.2.4 Optimization of Tempoc deprotection

With a successful route towards tripeptide **2-59** in hand, we turned our attention to the Tempoc deprotection step. In our original publication we utilized *in situ* generated copper(I) to reductively cleave Tempoc. Our optimized conditions were copper(II) chloride (0.10 equiv) and ascorbic acid (3.0 equiv) in a ternary mixture of MeCN/THF/H₂O (0.12 M, 12 h, 40 °C). Initial reactions with Tempoc phenylalanine ethyl ester **2-26** led to a new peak in the LC-MS trace which accounted for approximately 40% of the total peak area on the UV trace at 220 nm. After careful analysis of the byproduct mass, and a thorough literature search of the known ascorbic acid byproducts, we deduced that the unidentified peak was that of the condensation product of deprotected phenylalanine **2-25** and xylosone. Xylosone is a known degradation product of

dehydroascorbic acid, which is produced stoichiometrically from the reduction of copper(II) chloride during the course of the deprotection.^{85,86} We hypothesized that this imine underwent acid-mediated solvolysis during our tosic acid resin workup-isolation protocol, thus, this byproduct was never observed. Using this result as an opportunity to modify the original conditions to preclude formation of this byproduct we explored alternative reducing agents such as Zn, Mn, Fe, In, Mg, NaHSO₃, Na₂SO₃, and Na₂S₂O₃ in the presence of copper(II) chloride (0.10 equiv). However, either no product was observed or only a small amount of deprotected amino ester **2-25** was detected by HPLC-MS (Table 8). We believed that the reducing metals over-reduced copper(II) to copper(0) before the intermediate copper(I) species could enter the catalytic cycle. Moreover, the sulfur reducing agents either produced copper(0) as well, or precipitated the copper as a reddish-brown insoluble sulfite adduct believed to be Chevreul's salt (Cu(I,II) sulfite dihydrate).

 O
 CuCl₂ (0.1 equiv)

 OEt
 CuCl₂ (0.1 equiv)

 MeCN, 40 °C, 18 h
 OEt

 2-26
 2-25

Table 8 Reaction screen for alternative reducing agents for Tempoc dep	protection
---	------------

entry	reductant	conversion (HPLC-MS)	observations
1	Zn	trace	copper(0) ppt
2	Mg	trace	copper(0) ppt
3	Fe	ND	copper(0) ppt
4	In	trace	copper(0) ppt
5	Mn	ND	copper(0) ppt
6	1.5 M aq. NaHSO3	< 10%	Chevreul's salt ppt
7	1.5 M aq. Na ₂ SO ₃	< 10%	Chevreul's salt ppt
8	1.5 M aq. Na ₂ S ₂ O ₃	trace	copper(0) ppt

ND = not detected; ppt = precipitate; HPLC-MS = conversion determined by AUC @ 220 nm; Chevreul's salt = copper(I,II) sulfite dihydrate

Still interested in utilizing an inorganic reductant to facilitate workup and preclude formation of the xylosone byproduct, we attempted to add a ligand to stabilize the copper in solution and reduce formation of the insoluble Chevreul's salt. With sodium bisulfite as the reductant in the presence of 0.1 equivalents of copper(II) chloride, we screened 4 common ligands, tetramethylethylenediamine (TMEDA), bipyridine (bpy), ethylenediamine (en), and dimethoxyethane (DME) (Table 9). In all cases the reaction stalled with no more than 10% conversion to desired free amine **2-25**, even with increased heating (60 °C) and longer reaction time (48 h). We also utilized the commercially available copper(I) thiophenecarboxylate complex, which also stalled after no more than 10% conversion. In all cases we observed the formation of Chevreul's salt, which precipitated as a red-brown solid, indicating that the complexation of copper with sulfite is quite facile.

Table 9 Screen of copper ligands to enable utilization of inorganic reducing agents

OEt	CuX (0.1 equiv) NaHSO ₃ (3 equiv)	O
HN. Tempoc	ligand (0.2 equiv)	NH ₂
2.26	MeCN/THF/H ₂ O (4:1:1)	2.25
2-20	40 °C, 18 h	2-25

AS)
•

HPLC-MS = conversion determined by AUC @ 220 nm

Since other reducing agents proved to be inferior, we resumed the use of ascorbic acid. We questioned the possibility of precipitating the DHA during the reaction by performing the reaction under anhydrous conditions. A qualitative test showed that in DME, DMF, and MeCN ascorbic acid exhibited enough solubility to reduce copper(II) to colorless copper(I). With this in mind, we ran a screen of solvent mixtures (Table 10). In all cases, the reaction developed a deep red color and HPLC-MS showed the presence of the xylosone adduct, plus several additional unidentifiable

peaks. Moreover, the reaction rate seemed to be slowed by either the absence of water, or the formation of other deleterious byproducts. Therefore, we concluded that the presence of water in the reaction was reducing the propensity of DHA to decompose into other compounds. Interestingly, we did notice that the reaction in 5:1 DME/H₂O (Table 10, Entry 3) was complete in under 12 h, while also displaying the cleanest reaction profile. This was a serendipitous discovery, which led us to swap DME for THF *and* MeCN in future optimizations. Importantly, we hypothesized that DME would fill two roles, 1) as a ligand to stabilize copper(I), and 2) as a solubilizing agent to replace THF. Additionally, DME is commonly sold inhibitor-free, thereby reducing yet another possible contaminant in the deprotection reactions.

Table 10 Solvent screen for THF replacement in Tempoc deprotection

entry	solvent	conversion after 12 h (HPLC-MS)
1	MeCN	incomplete
2	MeCN:DME (10:1)	incomplete
3	MeCN:DME (5:1)	complete
4	MeCN:DMF (3:1)	incomplete
5	MeCN:DMF:DME (6:2:1)	complete
6	MeCN:DMF:DME (3:1:1)	complete

HPLC-MS = conversion determined by AUC @ 220 nm

With our new goal of using ascorbic acid as the reductant, and replacing acetonitrile and THF with DME, we further screened a number of deprotection modifications and monitored the formation of byproduct **2-67** by HPLC-MS analyzed at 220 nm (Table 11). To further understand the kinetics of the formation of this condensation product, we monitored the reaction over time by sampling the reaction mixture at 90-minute intervals to see if the formation of the DHA-byproduct happens immediately or slowly during the reaction. We hypothesized that increasing the

concentration of water in the reaction would help to hydrolyze imine **2-67**, thus precluding its accumulation during the reaction. Indeed, as water concentration increased, decreased amounts of imine **2-67** were observed by HPLC-MS (Table 11, Entries 1–3). Next, we hoped that lowering the pH of the reaction mixture would preclude formation of the imine by sequestering the nitrogen lone-pair *via* protonation, or by aiding the hydrolysis of **2-67** by acidic activation. Unfortunately, while lowering the pH of the mixture and increasing the water concentration did lead to a reduction of the impurity from 40% to 30% (Table 11, Entries 4–6), complete removal of the impurity was not achieved.

Table 11 Optimization towards minimization of byproduct formation in Tempoc deprotection

NC = reaction stalled after 1.5 h; AUC % = determined by HPLC-MS AUC @ 220 nm

Furthermore, increasing the amount of acetic acid actually increased the amount of observed imine **2-67** (Table 11, Entry 7), leading us to believe that the imine is quite stable, and acid may be catalyzing the condensation rather than the hydrolysis. However, we were excited to

discover that when the ascorbic acid was replaced by its sodium form (sodium ascorbate, NaAsc) we observed no detectable quantities of imine **2-67** (Table 11, Entry 8). Possibly, nearly neutral pH conditions reduced the rate for the formation of xylosone to lower than the rate of Tempoc deprotection. Another interesting observation made during the optimization was that all reactions were complete within 90 min. We hypothesize that with the introduction of DME as solvent and ligand, the stability of the *in situ* generated copper(I) species was greatly increased, leading to faster catalyst turnover. Finally, we retested the inorganic reductants sodium bisulfite, zinc, and magnesium once more to see if their reactivity was also enhanced by the introduction of DME as solvent. However, we observed that the reactions once again stalled after only a minimal amount of conversion (Table 11, Entries 9–11).

With these enhanced conditions (*i.e.*, sodium ascorbate in 1:1 DME/H₂O), we anticipated the ability to reduce the copper loading and equivalents of reductant needed beyond what was capable using ascorbic acid in the ternary solvent mixture. As such, we proceeded to switch to Tempoc tripeptide *epi-2-59* and continue our optimization utilizing this highly functionalized compound (Table 12). As expected, this functionalized tripeptide deprotected at a slower rate than Tempoc phenylalanine **2-26**, probably due to increased molecular weight and greater bulk around the target amine. The deprotection with 10 mol % copper(II) chloride, and 3.0 equivalents of sodium ascorbate was complete in under 2.5 h, as opposed to 1.5 h as was observed by HPLC-MS (Table 12, Entry 1). We were able to reduce the copper(II) loading to 3.5 mol % with only a moderate increase in reaction time to 7 h (Table 12, Entries 2–4). Further reduction in copper loading was met with poor reproducibility in conversion times (Table 12, Entries 5 and 6). Next, with 3.5 mol % copper(II) in 1:1 DME/H₂O, we were able to decrease the equivalents of sodium ascorbate down to 1.2 before reaction instability was observed (Table 12, Entries 7–11).

Tempoc		<u>CuCl₂, NaAsc</u> DME/H₂O (1:1; 0.15 M) 40 °C, <i>time</i>	H ₂ N H O N OMe O CbzHN
e	pi- 2-59		2-68
entry	CuCl ₂ (mol %)	NaAsc (equiv)	conversion time (h)
1	10.0	3.0	< 2.5
2	7.5	3.0	< 2.5
3	5.0	3.0	5
4	3.5	3.0	7
5	2.5	3.0	6–9
6	1.0	3.0	> 12
7	3.5	2.5	7
8	3.5	2.0	7
9	3.5	1.5	7
10	3.5	1.2	7
11	3.5	1.0	7.5–8

Table 12 Optimization of copper and reductant loading for the Tempoc deprotection of epi-2-59

Conversion time was determined by consumption of starting material as observed by LC-MS

With the deprotection conditions fully optimized (i.e. 3.5 mol % CuCl₂, 1.2 equiv NaAsc, in 1:1 DME/H₂O (0.15 M, 40 °C, 7 h)) we set out to reevaluate the reaction workup in order to preclude the need for chromatography. In our original publication, we utilized a catch-and-release method to purify the resultant amines.¹ While the tosic acid functionalized resin (SiliCycle Si-TsOH) was convenient and effective for our previous scope, we envisioned the use of this resin in the context of peptide synthesis to be problematic. Common protective groups used in peptide synthesis, such as trityl, Boc, and *tert*-butyl esters and ethers, could potentially be unstable to the strongly acidic resin.⁸⁷ Therefore, we wanted to devise a milder alternative method for chromatography-free amine isolation. With our target impurities being copper salts in various oxidation states and ascorbate (and its possible degradation products), we devised a plan to isolate the peptide amine in pure form (Table 13).

Tempoc 、 ト	H H CbzHN epi-2-59	CuCl ₂ (3.5 mol %) Asc (1.2 equiv) DME/H ₂ O (1:1; 0.15 M) 40 °C, 7 h <i>workup</i>	$H_2N \xrightarrow{H} N \xrightarrow{N} H \xrightarrow{O} OMe$ CbzHN 2-68
entry	workup/isolation	phase	result
1	catch and release	IRC-86	amine not retained
2	catch and release	MAC-3	amine not retained
3	catch and release	CG-50	amine not retained
4	extraction	1 M NH4OH	emulsion
5	extraction	1 M (NH ₄) ₂ SO ₄	emulsion
6	extraction	0.5 M Na ₃ -citrate	emulsion
7	extraction then chromatography	sat. NaCl then SiO ₂	phase split

sat. NH4Cl-NH4OH (pH=10)

phase split and copper removal

8

extraction

Table 13 Optimization of the chomatography-free Tempoc deprotection of tripeptide epi-2-59

First, to amend our original catch-and-release method of purification, we attempted to switch the resin from the strong sulfonic acid to a weaker carboxylic acid functionalized resin. We envisioned the weaker acid being compatible with the sensitive protective groups used in peptide synthesis while maintaining the ability to 'catch' the liberated free amine. However, when the reaction mixture was passed through a 1.5" plug of carboxylic acid functionalized resins IRC-78, MAC-3, and CG-50, we observed no retention of the basic amine (Table 13, Entries 1–3). We then tried stirring of the crude reaction mixture for 60 min in the presence of the resin, followed by filtration, and once again, we observed no retention of the amine. It is worth noting that copper was effectively removed by stirring in all three of the resins. Next, we thought that a creative extractive workup could provide deprotected peptide **2-68** in pure form. Initial aqueous workups

on 2-68 typically resulted in the formation of persistent emulsions that resulted in low mass recovery. In an attempt to simultaneously remove the residual copper salts, and also remove the ascorbate byproducts, we targeted three high-ionic strength aqueous phases, and directly washed our crude reaction mixtures with them after dilution with ethyl acetate (Table 13, Entries 4–6). High-ionic strength solutions should preclude emulsion formation while also ensuring excellent recovery of the possibly water-soluble peptide 2-68.88 While the 1 M ammonium hydroxide, 1 M ammonium sulfate, and 0.5 M trisodium citrate aqueous phases did remove the copper salts and ascorbate byproducts, unfortunately, persistent emulsions or complex rag-layers also formed, resulting in low recovery of peptide 2-68. Granted that when we then tested a saturated sodium chloride extraction a clean phase-split of the aqueous/organic layers was observed, copper salts also partitioned into the organic layer with varying amounts of ascorbate byproducts, and the resulting extract required subsequent chromatography (Table 13, Entry 7). Finally, utilizing the promising results from ammonia solutions, we sought to create a buffered ammonia solution of considerable ionic strength while also maintaining ease of work-up by using standard laboratory resources. Thus, we adjusted the pH of a saturated ammonium chloride solution to pH = 10 by the addition of concentrated ammonium hydroxide. After dilution of the reaction mixture with ethyl acetate, and treatment of the organic layer with this solution, we observed a clean phase-split, which after separation resulted in complete removal of the copper and ascorbate impurities, resulting in clean recovery of deprotected tripetide 2-68 (Table 13, Entry 8).

2.2.5 Future directions

With optimized deprotection conditions in hand, and synthesis of Tempoc protected Gramicidin fragment **2-59** completed, we propose the completion of the synthetic sequence to **2**-

(Scheme 26). Dipeptide **2-58** should be easily accessible using standard HATU mediated coupling, which after saponification with lithium hydroxide would afford the carboxylic acid. Subsequently, this intermediate would be coupled with the free amine of **2-59** after Tempoc deprotection. Finally, an orthogonal deprotection of pentapeptide **2-57** would selectively afford Tempoc deprotected **2-69**, or alternatively, Cbz deprotected **2-70**.

Scheme 26 Proposed completion of Gramicidin monomer 2-57

3.0 EFFORTS TOWARDS THE TOTAL SYNTHESIS OF a-CYCLOPIAZONIC ACID

3.1 INTRODUCTION

3.1.1 α-Cyclopiazonic acid structure and activity

α-Cyclopiazonic acid (CPA) is a mycotoxin produced by the fungi *Aspergillus* and *Penicillium*.⁸⁹ The first isolation and structure elucidation was by Holzapfel in 1968, who isolated the compound from cereal grains that were infected by *Penicillium cyclopium Westling*.⁹⁰ This small indole-tetramic acid molecules possesses activity against sarcoplasmic reticulum Ca²⁺ ATPases (SERCA), which has been linked to heart failure, carcinogenesis, diabetes, and cardiac hypertension.^{91,92} SERCA is a calcium pump that is essential for calcium transportation to the muscles, and cyclopiazonic acid has been shown to be one of a very limited number of specific inhibitors of this biological target.⁹³ More recently, CPA has been shown to have antiviral activity against the human respiratory syncytial virus (HRSV).⁹⁴

 α -cyclopiazonic acid (3-1)

ergoline (3-2)

(-)-cycloclavine (1-18)

(+)-lysergic acid (3-3)

Figure 8 The structures of CPA and selected Speradines and Aspergillines

The pentacyclic structure of CPA closely resembles the ergoline family of alkaloids, including cycloclavine and lysergic acid (Figure 8). Furthermore, highly oxygenated congeners of cyclopiazonic acid, such as Speradines B-F^{95–97} and Apergillines A-E,⁹⁸ have been isolated and have been receiving much attention in the synthetic community.^{99–101}

Scheme 27 Biosynthesis of CPA

Cyclopiazonic acid is synthesized biologically from *L*-tryptophan.^{102,103} Pyrrolidinedione **3-14**, *cyclo*-acetoacetyl-L-tryptophan (*c*AATrp), is the first stable intermediate in the biosynthetic pathway. This is derived from the Dieckmann cyclization of acetoacetamide **3-13**, which is formed through an acylation of tryptophan with an acetoacetyl-tethered ACP (acyl carrier protein). Next, C(4) alkylation of the indole ring with DMAPP, **3-15** (dimethylallyl pyrophosphate) gives β cyclopiazonic acid **3-16**, and subsequent reductive ring closure of the pyrrolidinedione onto the prenyl moiety affords α -cyclopiazonic acid **3-1**. This final annulation is catalyzed by the FADdependent enzyme monoamine oxidase A (MaoA).

3.1.2 Previous syntheses of cyclopiazonic acid

The unique biological properties of CPA have aroused the interest of synthetic chemists for decades. However, since its discovery in 1968 there have only been three syntheses of racemic CPA, and two enantioselective syntheses of (–)-CPA. The first total synthesis of racemic cyclopiazonic acid were reported in 1984 by Kozikowski and Greco (Scheme 28).¹⁰⁴

Scheme 28 Kozikowski and Greco's total synthesis of racemic CPA

Indole 3-17 was prepared in 4 steps from 1-tosyl-indole-4-carboxyaldehyde with an overall yield of 82%. Vilsmeier-Haack formylation and subsequent condensation with acetamidomalonic acid ester 3-18 gave intermediate acetal 3-19. Protection of the indole nitrogen and deacetalization liberated ketone 3-20. Pyrrolidine 3-24 was elaborated through trimethylsilyl iodide mediated thermodynamic enolization, and treatment of the enolate with phenylsulfenylchloride provided sulfide 3-21 in 55% yield. Under basic conditions, intramolecular Michael addition afforded tricycle 3-22 in good yield. Desulfurization with Raney nickel provided pyrrolidine 3-23 with cis configuration. Magnesium triflate-catalyzed condensation of the acetamide onto the ketone in the presence of thiophenol produces the pyrrolidine sulfide adduct **3-24**. Treatment of the sulfide with dimethyl zinc in chloroform finalized construction of the gem-dimethyl substitution. Exposure of acetamide 3-25 to Meerwein's reagent deprotected the amine, which reacted smoothly with diketene to afford the penultimate cyclopiazonic acid precursor 3-26. Sodium methoxide promoted the intramolecular Dieckmann condensation onto the ethyl ester, providing *iso-\alpha-cyclopiazonic* acid 3-27, which was epimerized to desired isomer 3-1 with heating in the presence of triethylamine. Ultimately, the epimerization provided a 2.5:1 mixture of desired isomer 3-1 to isocompound 3-27.

A year later, in 1985, Natsume published a variant of the total synthesis of racemic cyclopiazonic acid (Scheme 29).¹⁰⁵ In a similar fashion to Kozikowski, he utilized an intramolecular Micheal addition to construct the C-ring, which led to a mixture of stereoisomers **3-29**, **3-30**, and **3-31** in a ratio of 8.7:4.5:1 with an overall yield of 84%. Isomer **3-29** was exposed to hydrogen chloride in a mixture of ethanol and water, which produced cyclic imine **3-32** in good yield. Installation of the *gem*-dimethyl proved difficult using organometallic reagents, and after treatment of the imine with boron trifluoride diethyl etherate, methyl lithium was added to produce

dimethyl product **3-33** in 4% yield. Deprotection of indole **3-33** was accomplished using basic hydrolysis with KOH, and the resulting acid was re-esterified with ethyl tosylate **3-34** to afford amino ester **3-35**. Dieckmann cyclization with diketene furnished α -cyclopiazonic acid **3-1** in 89% over two steps.

Scheme 29 Natsume's 1985 total synthesis of 3-1

Another synthesis of racemic cyclopiazonic acid was published in 2005 by Haskins and Knight.¹⁰⁶ In their synthesis, they utilized a creative cationic cascade reaction to construct the Cand D-rings (Scheme 30). Beginning with 4-hydroxylmethyl indole **3-36**, protection of the free hydroxyl as the silyl ether followed by Vilsmeier-Haack formylation and tosylation of the indole nitrogen gave intermediate **3-37** in 66% yield over 3 steps. Horner-Wadswroth-Emmons homologation of the aldehyde afforded unsaturated ester **3-38** in good yield. Phenylthiocuprate
mediated conjugate addition of proprenylmagnesium bromide onto ester **3-38**, followed by enolization and nucleophilic azidolysis provided azidoester **3-39**. Staudinger reduction and protection of the free amine gave nosylate **3-40** in reasonable yield over 2 steps. Triflic acid promoted cationic cascade cyclization provided the C- and D-rings of intermediate **3-42** in 74% yield. Finally, deprotection of the nosylate, and tetramic acid formation utilizing treatment of the free amine with diketene and subsequent base-mediated condensation cleanly afforded racemic cyclopiazonic acid.

Scheme 30 Knight's 2005 synthesis of racemic 3-1

An improvement of Knight's synthesis was published by the Sherkenbeck group a few years later in 2012.¹⁰⁷ The use of a chiral auxiliary on indolyl acrylate **3-43** gave complete stereofacial control during the isoproprenylcuprate conjugate addition (Scheme 31). This marks the first asymmetric total synthesis of α -cyclopiazonic acid.

Scheme 31 Beyer's asymmetric total synthesis of 3-1

More recently, in 2018 Zhurakovskyi published an asymmetric synthesis of the cyclopiazonic acid family of natural products utilizing their sulfur ylide aziridination chemistry (Scheme 32).¹⁰⁸ Prenylated indole imine **3-45** was prepared in 67% yield over 4 steps from 4bromo-indole-3-carbaldehyde. Camphor derived sulfonium 3-46 was synthesized in 4 steps from propargyl alcohol in 43% overall yield. Sulfur ylide formation and subsequent symmetric aziridination to furnish intermediate was carried out at -20 °C and afforded the desired aziridine in a 9:1 *trans:cis* ratio in favor of desired *trans*-diastereomer **3-47** with high enantiospecificity (er = 98:2). The authors report that *trans*-aziridine **3-47** was prone to epimerization and was telescoped into the cycloaddition step without further purification. Upon exposure of the crude aziridine to triflic acid, the 3+2 cycloaddition proceeded smoothly to give pyrrolidine **3-48** in 50% yield with complete enantiomeric retention and a diastereomeric ratio of 3.5:1. Potassium thiolate promoted nosylate deprotection gave the free amine, at which point the diastereomers were separated to give pyrrolidine 3-49. A cascade palladium-catalyzed carbonylation of the bromo-isoxazole and subsequent acylation, followed by reductive cleavage of the N-O bond afforded penultimate Ntosyl cyclopiazonic acid imine 3-51 in good yield. Tosyl deprotection and hydrolysis of the imine gave cyclopiazonic acid **3-1** and *iso*-cyclopiazonic acid **3-27** as a 2.5:1 mixture of stereoisomers, which were separated by HPLC to provide enantiopure CPA. The authors also note that when the

detosylation was carried out under anhydrous conditions, cyclopiazonic acid imine **3-52** can be isolated in 80% yield.

Scheme 32 Zhurakovski's asymmetric total synthesis of 3-1

3.2 RESULTS AND DISCUSSION

3.2.1 Retrosynthetic analysis of cyclopiazonic acid

Since five total syntheses, two of which as asymmetric variants, have already been reported, we were compelled to improve on the synthetic sequence while taking on more ambitious

transformations. All five syntheses start with the A- and B-rings in place as functionalized indoles. We set out to showcase our advancements in the intramolecular Diels-Alder furan (IMDAF) cyclizations by constructing the indole moiety at a later stage in the synthetic sequence (Scheme 33).^{32,109–111}

Scheme 33 Retrosynthetic analysis of cyclopiazonic acid 3-1

We envisioned installation of C- and D-rings early in the synthetic route with a diastereoselective 1,3-dipolar cycloaddition of 3,3-dimethyl aziridine carboxylate **3-59** and chiral cyclohexanone **3-60**. With this approach, all stereogenic carbon centers would be set early, along with the *gem*-dimethyl, which was proven to be difficult in Kozikowski and Natsume's total syntheses, which suffered from either low yields or requiring multiple synthetic steps. Cycloadditions of 3,3-dialkyl aziridines are unprecedented in the literature, and we thought to explore this as a viable option for facile construction of highly substituted pyrrolidines. After formation of the C- and D-rings we envisioned a Seagusa-Ito type oxidation to form enone **3-56**. Luche reduction of the carbonyl and acylation affords the allylic acetate, which undergoes further

transformation *via* mesylation and displacement with protected furylamine **3-57** to furnish the IMDAF precursor **3-55**. Palladium catalyzed intramolecular Diels-Alder furan cyclization would form the indolinic A- and B-rings. Finally, deprotection of the pyrrolidine nitrogen tetramic acid formation through treatment with diketene, base, and heat would finish the synthesis of cyclopiazonic acid.

3.2.2 Progress towards the total synthesis of α-cyclopiazonic acid

The retrosynthetic design allows a key step to be very early, if not the first step, in the synthesis. This allows for an expeditious assessment of feasibility and troubleshooting. With this in mind, we set out to develop a model system before exploring this aziridine cycloaddition. In the mid to late 1960s, Hüisgen showed that aziridine dicarboxylates undergo thermal ring openings to form azomethine ylides.^{112–114} These ylides have since been extensively shown to undergo facile cycloaddition reactions with various dipolarophiles to generate substituted pyrrolidines and pyrroles; however, cycloadditions from 3,3-dialkyl aziridines have not been reported.^{115–122} As such, we set out to design a model system for the testing of this cycloaddition strategy.

Figure 9 Competitive pathways of aziridine heterolysis based on N-protecting group

With the expectation that electron donating groups on the *N*-protecting group would facilitate the heterolysis of the C–C bond in the aziridine as opposed to competitive C–N cleavage (Figure 9), a series of *N*-protected 3,3-unsubstituted aziridine carboxylates were synthesized readily on large scale from various amines and dibromopropionate **3-65** (Scheme 34). Aziridine carboxylate **3-66** was prepared from 4-methoxybenzylamine in 84% yield in gram-quantities. Benzyl (Bn) and benzhydryl (Dpm) protected aziridines **3-68** and **3-67** were prepared from benzylamine and benzhydrylamine, respectively, in 77% and 86% yields. Finally, *para*-methoxyphenyl (PMP) protected aziridine **3-69** was prepared in the same fashion from *p*-anisidine in 53% yield.

Scheme 34 Synthesis of N-protected 3,3-unsubstituted aziridine carboxylates

With these aziridines in hand, we next sought to explore thermal cycloaddition with cyclohexenone **3-70** as a model dipolarophile. After minimal optimization we discovered that benzyl protected aziridine **3-68** reacted smoothly with enone **3-70** with heating to 200 °C in a sealed tube to afford cycloadduct **3-71** in 45% yield, which after purification, was condensed with 4-nitrophenylhydrazine **3-72** gave hydrazone **3-73** as a single diastereomer whose structure was confirmed by x-ray crystallography (Figure 11). Furthermore, when benzhydryl aziridine **3-67** was heated in the presence of **3-70**, cycloadduct **3-74** were isolated as a crystalline solid in 48% yield (Scheme 35, Eq. 2). The structure of this analog was also confirmed by x-ray crystallography (Figure 11).

Scheme 35 Results of the cycloaddition of aziridines 3-68 and 3-67 with cyclohexenone 3-70

To our surprise, however, the adducts **3-71** and **3-74** were found to display a different regioselectivity than expected. The adducts were formed by head-to-head coupling of the dipole and the dipolarophile rather than the expected head-to-tail adduct as based on the frontier molecular orbitals of the azomethine ylide.¹²³ The PMP and PMB protected aziridines **3-66** and **3-**

69 also produced cycloaddition products by crude NMR and LC-MS analysis, but the reaction mixtures were more complex than their benzyl and benzhydryl counterparts.

Figure 10 The X-ray structures of 3-73 and 3-74

Since it was not clear if this regioselectivity also applied to the cycloaddition with the *gem*dimethyl aziridine carboxylate **3-59**, we began the exploration of a viable route to synthesize the target 3,3-dimethyl aziridine carboxylate **3-59**. A survey of the literature showed two predominant methods for this target molecule. A first route begins from the amino acid serine, and after 8chemical steps would afford *N*-Boc aziridine **3-82** (Scheme 36).^{124,125} This aziridine would have to undergo Boc deprotection and subsequent benzylation or benzhydrylation to afford aziridine. This route, while primarily amendable to large scale, was discarded due to its overall length.

Scheme 36 The literature synthesis of aziridine 3-82 from serine

The next prevalent example used azido alcohol **3-87** and subsequent reduction and cyclization after treatment with triphenylphosphine (PPh₃) (Scheme 37).¹²⁶ Starting with acrylic acid **3-84**, Fisher esterification in ethanol with catalytic sulfuric acid afforded acrylic ester **3-85** in 63% yield, which was lower than expected, most likely due to its volatility. The acrylate was then treated with *meta*-chloroperoxybenzoic acid in methylene chloride at reflux which gave 69% of desired epoxide **3-86**. Azidolysis with sodium azide in refluxing acetone with ammonium chloride gave a 2:3 mixture of regioisomeric azido alcohols **3-87** and **3-88**. After chromatography, the mixture of low molecular weight azido alcohols was used immediately in the reduction/cyclization step. However, no desired aziridine was observed by NMR.

Scheme 37 Attempted synthesis of aziridine 3-89 from acrylic acid 3-84

In parallel to the epoxide route, a regioselective route to azido alcohol **3-87** was being explored. This was accomplished using the Sharpless cyclic sulfate method for regioselective azidolysis (Scheme 38).¹²⁷ Upjohn dihydroxylation with potassium osmate and *N*-methylmorpholine oxide as the stochiometric oxidant gave vicinal diol **3-90** in excellent yield. Exposure of the diol to thionyl chloride gave the cyclic sulfite, which was oxidized to sulfate **3-91** with sodium periodate and catalytic ruthenium chloride. Azidolysis of the cyclic sulfate occurs regioselectively with sodium azide in a 2:1 mixture of acetone/water. Hydrolysis of the sulfate to the alcohol typically uses acidic conditions, which gave the azido alcohol in 29% yield, however,

this route was abandoned due to the potentially explosive hydrazoic acid generation from the excess sodium azide used in the sulfate opening step. Sharpless' method for aziridination was followed by lithium aluminum hydride reduction and hydrolysis of the sulfate with potassium hydroxide, but since both steps would not be amendable to the sensitive ethyl ester this route was abandoned.

Scheme 38 Regioselective synthesis of azido alcohol 3-87 from acrylic ester 3-85

At this point, a method for the iridium catalyzed aziridination of imines and ethyl diazoacetate was used.¹²⁸ While the majority of Kubo's work was on the aziridination of imines derived from aldehydes, an example existed for the aziridination of nonan-5-one. First, we needed to synthesize the imine from acetone, which has limited precedence in the literature, however, after some modification of literature protocols, we were able to isolate imine **3-92** and **3-94** quantitatively in excellent purity after filtration and concentration (Scheme 39). The former, being a crystalline solid, could be stored in the freezer for months without degradation. The later, an oil, was more sensitive and was used immediately after being prepared. Upon treatment with ethyl diazoacetate (EDA), imines **3-93** and **3-94** were converted to their aziridine products in 68% and 72% yield respectively. Aziridine **3-95** was a crystalline and was isolated without chromatography by recrystallization from ethanol.

Scheme 39 Synthesis of 3-59 and 3-95 via iridium catalyzed aziridination of imines 3-92 and 3-94

The authors proposed a stepwise mechanism for the aziridination (Scheme 40). First, coordination of the imine to the iridium forms complex **3-98** which is followed by nucleophilic addition of the diazoacetate to the imine forms intermediate **3-99**. Subsequent cyclization of this intermediate with the loss of dinitrogen gives aziridine **3-95**. This method for construction of 3,3-dialkyl aziridines should be further explored.

Scheme 40 Mechanism for iridum catalyzed aziridination

With the aziridine in hand, and the ability to produce multiple grams at a time, we set out to test the optimized cycloadditions with cyclohexenone (Scheme 41). Heating of aziridines **3-95** and **3-59** in the presence of cyclohexenone **3-70** did not afford any isolable products, only decomposition of the starting materials was observed. Curious if the cycloaddition would work in the presence of a more reactive dipolarophile would result in product formation, we heated aziridines **3-95** and **3-59** in toluene with *N*-methylmaleimide **3-102** and acrylonitrile **3-105**. While the benzhydryl analog did not produce product, we were excited to see that the benzyl derivative reacted with the dipolarophiles to produce bicycle **3-104** and pyrrolidine **3-107** in 68% and 20%

yield respectively as single diastereomers. The relative configurations of the of the stereocenters were assigned by comparison with literature examples and through 2-D NMR analysis.

Scheme 41 Cycloadditions of aziridines 3-95 and 3-59

While the model system using cyclohexenone **3-70** did react with the *gem*-dimethyl aziridines, we thought that the ester on the aziridine and hydroxylmethyl cyclohexenone **3-60** detailed in our retrosynthetic hypothesis would allow for the possibility of in intramolecular cycloaddition utilizing tethered enone-ester **3-108** (Scheme 42). Solvolysis of lactone **3-109** would provide the free hydroxyl group for the mesylation and displacement by Boc-furanamine **3-57**. While this would give us all-*cis* configuration on the pyrrolidine, we hypothesized that a late-stage epimerization could be performed on *epi-***3-54**, providing the more favorable *trans*-isomer **3-54**.

Scheme 42 Proposed synthetic route to cyclopiazonic acid utilizing an intramolecular aziridine cycloaddition

Intramolecular cycloadditions are known to be more facile than their intermolecular counterparts.¹¹⁸ Before this could be explored, however, hydroxymethyl cyclohexenone **3-60** would need to be synthesized. This was accomplished utilizing chemistry published by Rawal in 1997 (Scheme 43).^{129,130} Starting with Danishefsky's diene, we first converted the vinylogous ester to amide **3-112** by condensation with dimethylamine in THF. Upon treatment of amide **3-112** with potassium hexamethylsilazide (KHMDS), subsequent trapping of the enolate with *tert*-butyldimethylsilyl chloride (TBDMSCI) gave the corresponding siloxy diene. Exposure of this diene to methyl acrylate gave clean conversion to the Diels-Alder adduct **3-113**, which after reduction with lithium aluminum hydride, provided intermediate hydroxymethyl silylenol. The TBDMS group was deprotected with HF in acetonitrile and *in situ* elimination of dimethylamine gave racemic cyclohexenone *rac*-**3-60**, which was isolated in good yield, only requiring one chromatographic step. An asymmetric variant towards **3-60** has also been published.¹³¹

Scheme 43 Synthesis of hydroxylmethyl cyclohexenone rac-3-60

Our intramolecular hypothesis was first tested with 3,3-unsubstituted aziridine **3-67** (Scheme 44). Saponification of aziridine **3-67** in a mixture of ethanol/THF and a few drops of water to solubilize the lithium hydroxide, and after acidification and extraction, gave aziridine acid **3-114**, which was used directly in the esterification step due to stability concerns. HBTU mediated coupling of alcohol *rac*-**3-60** and acid **3-114** proceeded smoothly to provide tethered aziridine **3-115** in 61% isolated yield. Heating of this compound in toluene in a sealed tube 150 °C for 16 h and then to 200 °C for 12 h provided the expected tricyclic cycloadduct **3-116** as a single diastereomer in 40% yield. The structure of **3-116** was confirmed by x-ray crystallography.

Scheme 44 Synthesis and intramolecular cyclization of tethered aziridine 3-115

Encouraged by this result, we synthesized the *gem*-dimethyl aziridine variant (Scheme 45). Following the same saponification-esterification procedure, we were able to synthesize tethered aziridine **3-116** in 72% yield. However, when this aziridine was heated in toluene to 135 °C, only decomposition of the starting material was observed. Attempts to synthesize the benzyl protected analog failed at the saponification step, as this aziridine may be more prone to decomposition under the basic conditions required.

Scheme 45 Synthesis and attemted cycloaddition of cyclohexenone tethered gem-dimethyl aziridine 3-118

While the direct cycloaddition onto a cyclohexenone of an azomethine ylide formed from thermolysis of an aziridine was unsuccessful, an alternative approach is the generation of an azomethine ylide from the condensation of a glycinate onto an aldehyde or ketone in the presence of base and a Lewis acid, such as a silver or lithium salt, or even under metal-free thermal conditions.^{132–134} While to the best of our knowledge, no examples of ylides generated from dialkyl ketones have been reported utilizing this method, we thought to explore this as a possible route to fused-bicyclic intermediate **3-58** (Scheme 46).

Scheme 46 Proposed mechanism of metal mediated dipolar cycloaddition of glycine imine

Generation of the glycine-acetone imine **3-120** from ethyl glycinate hydrochloride was accomplished by extraction of the freebase from aqueous ammonia and concentration of the rich organic extract. The amine freebase was then subjected to the optimized conditions (*vida supra*) affording glycine imine **3-120** in good yield and excellent purity after extraction. Imine **3-120** was relatively unstable upon exposure to moisture at ambient temperatures and was used immediately in subsequent reactions. However, storage of the imine as a solution in toluene at -20 °C was accomplished for up to 5 days without significant decomposition or hydrolysis as detectable by NMR.

With a route to glycine imine **3-124** accessible, we screened an array of Lewis acid promoted cycloadditions that are typically found in the literature.^{135–137} Lithium bromide, and various silver and copper salts have been used previously, typically on imines derived from benzaldehydes. However, when we exposed imine **3-124** to these conditions, in the presence of various ligands and bases, we observed no detectable traces of cycloadduct **3-125** (Table 14).

rac-BINAP

(S)-tBu-Box

_

_

dppe

rac-BINAP

(S)-tBu-Box

DIPEA (0.15)

AgOAc (0.05)

AgOAc (0.05)

AgSbF₆ (0.05)

Cu(CN)₄PF₆(0.05)

Cu(CN)₄PF₆ (0.05)

Cu(CN)₄PF₆ (0.05)

Cu(CN)₄PF₆ (0.05)

Table 14 Condition screen for the Lewis acid promoted cycloaddition of glycine imine 3-124

3.2.3 Future directions

7

8

9

10

11

12

13

To complete the synthesis of cyclopiazonic acid using the aziridine cycloaddition/IMDAF approach, we propose utilizing a cyclopropane to install the *gem*-dimethyl group in a late-stage reductive cleavage (Scheme 47). The prerequisite cyclopropyl 1,3-dipole **3-129** could be generated *in situ* through ring opening of spirocyclic aziridine **3-126**, or through the *in situ* condensation of *N*-benzyl ethyl glycinate **3-128** and cyclopropanone in the presence of base. This dipole should be

less sterically encumbered and substantially more reactive due to the reactive nature of methylene cyclopropyl compounds. Aziridine **3-126** can be prepared from methyl 2-chloro-2-cyclopropylidineacetate.^{138–141} The synthesis and utility of cyclopropanone **3-127** is also well known.^{142–144} Cycloadduct **3-131** could be further elaborated to spirocyclic intermediate **3-132**, which could then be reductively cleaved and converted to its *gem*-dimethyl analog with samarium diiodide or with catalytic hydrogenolysis with platinum dioxide.^{145,146}

Scheme 47 Proposed route for synthesis of cyclopiazonic acid

4.0 EXPERIMENTAL PART

4.1 EXPERIMENTAL – TEMPOC AMINES

4.1.1 General experimental protocols

Reactions were performed without inert atmosphere with ACS grade solvents unless otherwise stated. Inert reactions were performed under a N2 or argon atmosphere and glassware was flame dried prior to use. Deionized water, CH₂Cl₂, diethyl ether, and Et₃N for NPTC synthesis were sonicated for 1 h under a steady stream of nitrogen prior to use. DMF, THF, and Et₃N used for alkyl amine protections were not dried prior to use, although DMF was stirred vigorously under vacuum (2 Torr) at ambient temperature for 5 min to remove any volatile contaminants. THF used for aryl amine protections was distilled over sodium/benzophenone ketyl, or dried using an alumina column filtration system. Commercial grade reagents were used as-is unless otherwise noted. Reactions were monitored by TLC analysis (pre-coated silica gel 60 F₂₅₄) and spots were visualized by UV (254 nm), iodine, ninhydrin (1.5 g of ninhydrin in 100 mL of absolute ethanol, then 3.0 mL of glacial acetic acid), p-anisaldehyde (5 mL of conc. H₂SO₄ and 1.5 mL of glacial AcOH in 135 mL of absolute ethanol, then 3.7 mL of p-anisaldehyde), 2,4-DNP (12 g of 2,4dinitrophenylhydrazine, 60 mL of conc. H₂SO₄, 80 mL of water, in 200 mL of 95% ethanol) or a KMnO₄ solution (1.5 g of KMnO₄, 10 g of K₂CO₃, and 1.25 mL of 10% NaOH in 200 mL of water). It is worth noting that iodine was an excellent general visualization method for all Tempoc protected amines, but KMnO₄ may also be used with heating. DMF was removed on a rotary evaporator connected to a doubly-trapped high-vac pump (4.5 Torr) in a 35 °C water-bath.

Purifications by chromatography were performed using SiO₂ (40-60 μ m). ¹H/¹³C NMR spectra were recorded on Bruker Avance 300/75 MHz, Bruker Avance 400/100 MHz, Bruker Avance 500/125 MHz instrument, or Bruker Avance 600/150 MHz instrument. Chemical shifts were reported in parts per million (ppm) with the residual solvent peak or tetramethylsilane (TMS) used as the internal standard. Chemical shifts were tabulated as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublet, dt = doublet of triplet, m = multiplet, b = broad, app = apparent), coupling constants, and integration. IR spectra were obtained on a Perkin-Elmer 100 IR-ATR spectrometer. Microwave reactions were performed using a Biotage Initiator or an Anton Paar Monowave 300 reactor in glass microwave vials (cap sealed) with continuous magnetic stirring and internal ruby thermometer and/or external infrared surface temperature sensor. LC-HRMS and ELS data were obtained on a Thermo Scientific Exactive Orbitrap LC-HRMS (ESI positive ion mode) coupled to an Agilent Technologies 385-ELSD and a Thermo Scientific Accela HPLC system using a 3.5 µm Waters XTerra C18 column (2.1 x 50 mm; 10 min gradient elution with MeCN/H₂O/MeOH containing 0.1% formic acid at a flow rate of 500 µL/min from 3:92:5 at 0-0.5 min to 93:2:5 at 4.0 min, back to 3:92:5 from 6.0 to 7.5 min). Melting points (uncorrected) were obtained using a Mel-Temp instrument. DSC exotherms were obtained on a Perkin-Elmer Pyris 6 differential scanning calorimeter with a scan rate of 10 °C/min and a scan range of 80–200 °C (2 sweeps).

4.1.2 General methods and workup protocols

General Method 1-A: Tempoc Protection of Alkyl Amines. A round bottom flask containing a stirbar was charged with amine (1.00 mmol, 1 equiv) and triethylamine (3.00 mmol, 3.00 equiv) in DMF (2.0 mL) and the 0.5 M solution was cooled to 0 °C on an ice-bath before

treatment with NPTC (1.20 mmol, 1.20 equiv) as a solid in two portions. The reaction mixture turned yellow upon addition of the reagent. The heterogeneous solution was stirred for 5 min before being removed from the ice-bath (NPTC undergoes dissolution upon warming) and allowed to stir at ambient temperature for 12 h with monitoring by TLC and LC-MS. If necessary, for solubility, THF or CH₂Cl₂ may be added. For example, addition of a co-solvent in small quantities was necessary for the N-Boc and 4-phenylpiperidine substrates; however, if used in larger quantities, reaction rate decreased vs DMF. For some optimization studies varying solvents and bases, see Table 1. Upon completion of the reaction, the mixture was diluted with CH₂Cl₂ (5 mL) and poured into a separatory funnel containing ice-cold 1 M aqueous NaOH (20 mL) [sat. Na₂CO₃ may also be used] and CH₂Cl₂ (10 mL). The organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (2 x 10 mL). The combined organic layers were successively washed with water (15 mL), brine (15 mL), then dried (MgSO₄), filtered, and concentrated under reduced pressure to afford a residue which was subjected to further purification on SiO₂.

General Method 1-B: Procedure for Tempoc Protection of Heterocyclic Amines. A flame dried round bottom flask containing a stirbar was charged with 90% sodium hydride (1.30 mmol, 1.30 equiv) and dry THF (6 mL), and the solution was cooled to 0 °C on an ice-bath before dropwise addition of heterocyclic amine (1.00 mmol, 1 equiv) by syringe as a solution in dry THF (2 mL). This mixture was stirred for 30 min (or until effervescence was no longer observed) at ambient temperature before being cooled to 0 °C. NPTC (1.20 mmol, 1.20 equiv) was added dropwise by syringe as a solution in dry THF (2.0 mL). The reaction mixture was stirred at ambient temperature for 3 h with monitoring by TLC and LC-MS, and a bright orange sodium 4-nitrophenoxide precipitated. Crushed ice (3 g ice per gram of amine) was added and the mixture was concentrated to half the volume under reduced pressure before addition of CH₂Cl₂ (10 mL).

The biphasic mixture was poured into a separatory funnel containing ice-cold 1 M aqueous NaOH (20 mL) [sat. Na₂CO₃ may also be used] and CH₂Cl₂ (10 mL). The organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (2 x 10 mL). The combined organic layers were successively washed with water (15 mL) and brine (15 mL), dried (MgSO₄), filtered, and concentrated under reduced pressure. The residue was further purified by chromatography on SiO₂.

Work-up Procedure 1-1 for Tempoc Protection. Upon completion of the reaction, the mixture was poured onto a sintered vacuum funnel containing a 1" pad (for reaction scale of <1 g) or a 1.5" pad (for reaction scale of \geq 1 g) of pre-wetted (CH₂Cl₂) basic alumina (Brockmann Grade I) to remove *p*-nitrophenol. The product was then eluted with 3-4 column volumes of CH₂Cl₂ (or for more polar substrates, until yellow color approaches frit), and the filtrate was concentrated to afford a residue which was further purified by chromatography on SiO₂.

General Method 1-C: Procedure for Copper-Catalyzed Deprotection of Tempoc Amines. A sealable vessel containing a stirbar was charged with Tempoc amine (1.00 mmol, 1 equiv), ascorbic acid (3.00 mmol, 3.00 equiv), and anhydrous copper(II) chloride (0.100 mmol, 0.100 equiv). A 4:1:1 mixture of MeCN/THF/H₂O (556 μ L:139 μ L:139 μ L) was added, and the 0.12 M reaction mixture was sparged with nitrogen under sonication for 1 min before being sealed and allowed to stir at ambient temperature (40 °C for Tempoc protected primary amines) with monitoring by TLC and LC-MS.

Work-up Procedure 1-2 for Tempoc Deprotection. Upon completion of the reaction (\approx 12 h), the volatiles were removed under reduced pressure to afford a green solution that was partitioned between CH₂Cl₂ (10 mL) and 2 M aqueous NH₄OH (10 mL). During the extraction, a blue color was observed to migrate to the organic layer; this is believed to be a result of a disproportionation of Cu(I), and the colored impurity was removed upon filtration. The organic

layer was separated and the aqueous phase was extracted with CH_2Cl_2 (2 x 10 mL). The combined organic layers were washed with 2 M aqueous NH₄OH (5 mL), deionized water (5 mL), and brine (5 mL), dried (MgSO₄), filtered through a pad of Celite, and concentrated to afford a mixture of amine product and 2,2,6,6-tetramethylpiperidine (TMP). TMP was removed at 1.5 Torr at 35 °C to afford the pure amine product. Purification by chromatography, if necessary, may performed using triethylamine deactivated SiO₂ (CH₂Cl₂/MeOH/Et₃N). Traces of copper salts were removed, by stirring the concentrated residue with a 0.5 M of if necessary. solution ethylenediaminetetraacetic acid tetrasodium salt (Na₄-EDTA) [5 equiv with respect to the initial loading of copper] in MeOH for 30 min at ambient temperature. The mixture was concentrated and the aqueous residue was extracted with CH₂Cl₂ (3 x 10 mL). The combined organic layers were washed with water (3 mL) and brine (3 mL), dried (MgSO₄), filtered and concentrated to afford pure amine.

Work-up Procedure 1-3 for Tempoc Deprotection. Upon completion of the reaction (\approx 12 h), the mixture was kept sealed to prevent further oxidation of the copper and consumption of the reducing agent and purified by chromatography on Si-Tosic Acid (SiliCycle, R60530B) [5 g / mmol starting material] with MeOH. Elution with 3 column volumes of MeOH followed by 3 column volumes of MeCN ensured that all non-basic byproducts, and some of the copper was washed off the column. A ca. 2 M ammonia-methanol solution (prepared by bubbling ammonia gas through a gas dispersion tube submerged into chilled (ice-bath) MeOH for 30 min; the gas was generated by dropwise addition of conc. NH₄OH directly onto KOH flakes and directing the gas thus produced through an empty bubbler (backflow preventer) to the gas dispersion tube. This solution was used to elute the amine with 4 column volumes. During elution, a blue color appeared on the column, but did not completely elute (this was presumed to be, again, disproportionation of

Cu(I) on the column to Cu(II) and colloidal Cu(0) which was trapped by the stationary phase). The eluent was concentrated to afford the amine product. Residual trace metal was removed by adding a 0.5 M solution of Na₄-EDTA (5 equiv with respect to initial copper loading) to a solution of the residue in MeOH. This solution was stirred at ambient temperature for 30 min, concentrated, and extracted with an organic solvent (Et₂O, CH₂Cl₂, or CHCl₃). The organic layers were combined, dried (MgSO₄), filtered, and concentrated to afford the desired amine in high purity.

General Method 1-D: Thermal Deprotection of Tempoc Secondary and Aryl Amines. A microwave tube was charged with Tempoc amine (1.00 mmol, 1 equiv) in 1,1,1,3,3,3hexafluoroisopropanol (HFIP, 10 mL) and the 0.1 M mixture was sonicated under a steady stream of nitrogen for 1 min before the tube was sealed and heated in a microwave reactor (conventional heating afforded comparable results) at 135 °C for 8 h for secondary alkylamines, or for 30 min for heterocyclic amines. Upon consumption of the starting material, the reaction mixture was concentrated under reduced pressure and the residue purified by chromatography on SiO₂

(hexanes/EtOAc or CH₂Cl₂/MeOH). For more polar substrates, the SiO₂ catch-and-release method mentioned below may also be utilized.

General Method 1-E: Procedure for Thermal Deprotection of Tempoc Primary Amine. A pressure tube or microwave vial was charged with a solution of Tempoc amine (1.00 mmol, 1 equiv) in 1,4-dioxane (6.7 mL, 0.15 M) and treated with technical grade potassium trimethylsilanolate (3.00 mmol, 3.00 equiv). The tube was sealed and heated to 135 °C for 30 min, during which time the reaction mixture formed a heavy white precipitate and turned pink. Upon consumption of the starting material as observed by TLC, the mixture was cooled in a room temperature water bath, treated with SiO₂ (1 g/mmol Tempoc amine) and stirred for 10 min to hydrolyze the silanoate ester. The reaction mixture was poured directly onto a 1"-pad of SiO₂ and eluted with EtOAc. Once TLC indicated that TEMPO and TEMPO-H were eluted, the amine was eluted with 3% Et₃N in EtOAc. The filtrate was concentrated to afford the desired amine.

NH ₂	NPTC, 12 h	N Tempoc
1-37		1-38

Table 15 Complete optimization table for the Tempoc protection of 2-phenethylamine

entry	stoichiometry ^a	solvent ^b	temp (°C)	base	yield ^c (%)
1	1:1:3	DCM	23	Et₃N	28
2	1:1:3	THF	23	Et₃N	60
3	1:1:3	MeCN	23	Et₃N	57
4	1:1:3	MeOH	23	Et₃N	64
5	1:1:3	DMF	23	Et₃N	77
6	1:1:3	DMF	23	ру	67
7	1:1:3	DMF	23	NaHCO ₃	64
8	1:1:3	DMF	23	K ₂ CO ₃	79 ^d
9	1:1:3	DMF	23	Et₃N/DMAP ^e	76 ^e
10	1:1:3	DMF	40	Et₃N	41 ^f
11	1:1:3	DMF	60	Et₃N	38 ^f
12	1:1:3	DMF	80	Et₃N	14 ^f
13	1:1.1:3	DMF	23	Et₃N	84
14	1:1.2:3	DMF	23	Et₃N	91
15	1:1.3:3	DMF	23	Et₃N	92

^aamine:NPTC:base; ^b0.5 M in amine ^cisolated yields; ^dtrace *bis*-Tempoc amine detected by HPLC-MS; ^c0.25 equiv DMAP; ^fslow NPTC decomposition is suspected to occur at higher temperatures

4.1.3 Synthetic procedures and spectral characterization for Tempoc transfer reagents

Methyl (2,2,6,6-tetramethylpiperidin-1-yl)carbonate (1-31). A vigorously stirred solution of sodium ascorbate (5.02 g, 25.1 mmol, 2 equiv) in deionized water (50 mL) was treated

with TEMPO (2.00 g, 12.5 mmol, 1 equiv). After ca. 30 min, decolorization was observed and a white precipitate formed. The heterogeneous mixture was extracted with diethyl ether (3 x 25 mL), and the combined organic layers were washed with deionized water and brine, dried (MgSO₄), and concentrated to afford TEMPO-H (1.59 g, 80%) as a pale-red oil which was dissolved in dry CH₂Cl₂ (10 mL). The mixture was cooled to 0 °C and treated with pyridine (1.19 g, 1.24 mL, 15.1 mmol) and dropwise over 1 min with ethyl chloroformate (1.47 g, 1.20 mL, 15.1 mL). The reaction was warmed to ambient temperature, stirred for 14 h, and quenched by addition of water (10 mL). The aqueous layer was extracted with CH₂Cl₂ (2 x 20 mL), and the combined organic layers were washed with water and brine, dried (MgSO₄), and concentrated to afford **1-31** (1.73 g, 80%) as a colorless oil: $R_f = 0.46$ (1:4, EtOAc/hexanes); ATR-IR (neat) 2978, 2936, 1776, 1221, 940, 784 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 3.80 (s, 3 H), 1.74–1.48 (m, 5 H), 1.42–1.35 (m, 1 H), 1.16 (s, 6 H), 1.11 (s, 6 H); ¹³C NMR (76 MHz, CDCl₃) δ 157.3, 60.5, 54.9, 39.2, 31.5, 20.3, 16.9; HRMS (ESI) *m/z* calcd for C₁₁H₂₂NO₃ (M+H) 216.1594, found 216.1592.

iso-Butyl (2,2,6,6-tetramethylpiperidin-1-yl)carbonate (1-32). A solution of TEMPO (0.500 g, 3.14 mmol, 1 equiv) in deoxygenated MeOH (26 mL) was treated with ascorbic acid (663 mg, 3.76 mmol, 1.2 equiv) as a solid in one portion. The clear-pink, to orange, to clear yellow reaction mixture was stirred for 30 min, concentrated, and the residue was partitioned between deoxygenated diethyl ether (15 mL) and deionized water (15 mL). The organic layer was separated and the aqueous layer was extracted with deoxygenated diethyl ether (4 x 10 mL). The combined

organic layers were dried (MgSO₄) and concentrated to afford TEMPO-H (204 mg, 41%) as a colorless oil that was dissolved in dry deoxygenated CH₂Cl₂ (7.78 mL), cooled to 0 °C and treated with pyridine (113 mg, 117 µL, 1.43 mmol), and dropwise over 1 min with *iso*-butyl chloroformate (325 mg, 311 µL, 1.43 mmol). The reaction mixture was warmed to ambient temperature, stirred for 2 h, quenched with 1 M HCl (5 mL), and transferred to separatory funnel. The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (3 x 10 mL). The combined organic layers were washed with water and brine, dried (MgSO₄), and concentrated to afford **1-32** (692 mg, 53%) as a colorless oil: $R_f = 0.59$ (1:4, EtOAc/hexanes); ATR-IR (neat) 2966, 2937, 1776, 1217, 782 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.94 (d, *J* = 6.8 Hz, 2 H), 2.00 (nonet, *J* = 6.8 Hz, 1 H), 1.73–1.51 (m, 5 H), 1.44–1.36 (m, 1 H), 1.17 (s, 6 H), 1.12 (s, 6 H), 0.95 (d, *J* = 6.8 Hz, 6 H); ¹³C NMR (101 MHz, CDCl₃) δ 157.0, 74.0, 60.4, 39.2, 31.5, 27.9, 20.4, 18.9, 16.9; HRMS (ESI) *m/z* calcd for C₁₄H₂₈NO₃ (M+H) 258.2064, found 258.2062.

Phenyl (2,2,6,6-tetramethylpiperidin-1-yl)carbonate (1-33). A solution of sodium ascorbate (2.08 g, 10.4 mmol, 1.66 equiv) and TEMPO (1.00 g, 6.27 mmol, 1 equiv) in water (18.0 mL) was vigorously stirred for 30 min while decolorization was observed and a white precipitate formed. The heterogeneous mixture was extracted with diethyl ether (3 x 25 mL). The combined organic layers were washed with water and brine, dried (MgSO₄), and concentrated to afford TEMPO-H (955 mg, 97%). A solution of TEMPO-H (100 mg, 0.636 mmol) in dry CH₂Cl₂ (0.636 mL) was cooled to 0 °C and treated dropwise with pyridine (63.5 mg, 65.0 μ L, 0.801 mmol) and

phenyl chloroformate (132 mg, 106 µL, 0.827 mmol). The reaction was warmed to room temperature and stirred for 3 h, diluted with CH₂Cl₂ (5 mL), and organic layer was washed with 1 M NaOH (5 mL), 1 M HCl (5 mL), and brine (5 mL), dried (MgSO₄), and concentrated to afford a residue which was purified by chromatography on SiO₂ (1:19, EtOAc/hexanes) to afford **1-33** (112 mg, 63%) as a colorless oil: $R_f = 0.57$ (1:4, EtOAc/hexanes); ATR-IR (neat) 2979, 2935, 1791, 1198, 1177, 696 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.33 (m, 2 H), 7.25–7.14 (m, 3 H), 1.73–1.50 (m, 5 H), 1.46–1.34 (m, 1 H), 1.21 (s, 12 H); ¹³C NMR (126 MHz, CDCl₃) δ 155.0, 151.4, 129.4, 125.7, 120.9, 60.8, 39.3, 31.6, 20.5, 16.9; HRMS (ESI) *m/z* calcd for C₁₆H₂₄NO₃ (M+H) 278.1751, found 278.1749.

4-Nitrophenyl (2,2,6,6-tetramethylpiperidin-1-yl)carbonate (1-34, "NPTC"). A threeneck 3-L round bottom flask was fitted with an internal temperature probe and charged with a 0.35 M solution of sodium ascorbate (145 g, 724 mmol, 2.00 equiv) in deoxygenated deionized water (1.03 L). The pale translucent-yellow solution was treated with TEMPO (57.2 g, 362 mmol, 1 equiv) as a solid under vigorous mechanical stirring at ambient temperature. After ca. 30 min, decolorization was observed and a white precipitate formed, accompanied by a slight, yet rapid increase in internal temperature of ca. 5 °C. Deoxygenated diethyl ether (800 mL) was added and the reaction mixture was stirred for 5 min, and poured into a separatory funnel. The organic layer was separated and the aqueous layer was extracted with deoxygenated diethyl ether (1 x 500 mL). The combined organic layers were poured directly through a funnel containing anhydrous Na₂SO₄ and the filtrate was concentrated to afford TEMPO-H as a pale-red oil which was dissolved in

deoxygenated CH₂Cl₂ (950 mL), transferred to a three-neck 3-L round bottom flask, and cooled to -15 °C. The flask was then fitted with an addition funnel and an internal temperature probe before addition of deoxygenated triethylamine (73.2 g, 102 mL, 724 mmol, 2.00 equiv) in one portion, and p-nitrophenyl chloroformate (82.7 g, 434 mmol, 1.10 equiv) as a solution in deoxygenated CH₂Cl₂ (256 mL) by addition funnel at a rate that maintained an internal temperature of <10 °C (≈ 60 min). The solution was allowed to slowly warm to ambient temperature for 1 h, quenched with 1 L of ice-cold 2 M NaOH, and vigorously stirred. The organic layer was separated, dried (MgSO₄), and concentrated to afford a solid orange residue which was dissolved in hot acetone (1.0 L) and allowed to slowly cool to ambient temperature, and kept at -20 °C for 12 h. The precipitated crystals were removed by vacuum filtration, and the filter cake was washed with icecold acetone (500 mL). The mother liquor was concentrated to 400 mL and allowed to stand in a freezer (-20 °C) overnight to yield another crop of crystals which were filtered and washed with ice-cold acetone (200 mL). This procedure was again repeated to yield a third crop. The combined solids were washed with water (250 mL) and ice-cold acetone (100 mL) to remove any residual triethylamine hydrochloride, and dried under vacuum in a desiccator over CaSO₄ to afford 1-34 (97.4 g, 302 mmol, 84%) as off-white crystals: $R_f = 0.53$ (4:1, hexanes/EtOAc); Mp 137-140 °C; ATR-IR (neat) 2985, 1781, 1519, 1345, 1175, 914, 861 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 8.8 Hz, 2 H), 7.37 (d, J = 8.8 Hz, 2 H), 1.75–1.54 (m, 5 H), 1.45–1.39 (m, 1 H), 1.22 (s, 6 H), 1.20 (s, 6 H); ¹³C NMR (101 MHz, CDCl₃) δ 155.8, 153.9, 145.2, 125.2, 121.6, 61.0, 39.2, 31.5, 20.4, 16.7; HRMS (ESI) m/z calcd for C₁₆H₂₃N₂O₅ (M+H) 323.1601, found 323.1602.

2,5-Dioxopyrrolidin-1-vl (2,2,6,6-tetramethylpiperidin-1-vl)carbonate (1-36). А solution of sodium ascorbate (2.51 g, 12.5 mmol, 2 equiv) and TEMPO (1.00 g, 6.27 mmol, 1 equiv) in water (25 mL) was vigorously stirred for 30 min while decolorization was observed and a white precipitate formed. The reaction mixture was extracted with ether (100 mL) and the aqueous layer was discarded. The organic layer was filtered (MgSO₄) and concentrated to afford TEMPO-H (886 mg, 90%). A solution of bis(2,5-dioxopyrrolidin-1-yl)carbonate (2.17 g, 8.45 mmol) in deoxygenated MeCN (20.0 mL) was cooled to 0 °C and treated with triethylamine (1.15 g, 1.60 mL, 11.3 mmol) and dropwise with a solution of crude TEMPO-H (886 mg, 5.63 mmol) in deoxygenated MeCN (8 mL). The reaction mixture was warmed to room temperature, stirred for 12 h, and concentrated to afford a residue that was purified by chromatography on SiO_2 (1:19) to 1:4, EtOAc/hexanes) to afford 1-36 (724 mg, 43%) as a viscous pale-yellow oil: $R_f = 0.53$ (1:1, EtOAc/hexanes); ATR-IR (neat) 2978, 2938, 1827, 1794, 1741, 1194, 1171, 900, 672 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.82 (s, 4 H), 1.70–1.54 (m, 5 H), 1.43–1.37 (m, 1 H), 1.21 (s, 6 H), 1.19 (s, 6 H); ¹³C NMR (126 MHz, CDCl₃) δ 168.6, 153.0, 61.6, 39.4, 31.3, 25.5, 20.3, 16.7; HRMS (ESI) *m*/*z* calcd for C₁₄H₂₃N₂O₅ (M+H) 299.1601, found 299.1601.

4.1.4 Synthetic procedures and spectral characterization for Tempoc protected amines

2,2,6,6-Tetramethylpiperidin-1-yl phenethylcarbamate (1-38). According to General Method 1-A, 2-phenethylamine (27.0 mg, 0.223 mmol), triethylamine (68.3 mg, 94.9 μ L, 0.668 mmol), NPTC (86.2 mg, 0.267 mmol), DMF (0.5 mL), and chromatography on SiO₂ (1:19 to 1:4, EtOAc/hexanes) afforded **1-38** (63.6 mg, 94%) as a colorless solid: $R_f = 0.60$ (1:1, EtOAc/hexanes); Mp 95-98 °C; ATR-IR (neat) 3292, 3025, 2977, 2932, 1698, 1475, 949, 747, 701 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.36–7.28 (m, 2 H), 7.29–7.17 (m, 3 H), 6.77 (bs, 1 H), 3.50 (td, J = 6.9, 5.6 Hz, 2 H), 2.85 (t, J = 7.0 Hz, 2 H), 1.65–1.48 (m, 3 H), 1.42–1.29 (m, 3 H), 1.16 (s, 6 H), 0.93 (s, 6H); ¹³C NMR (76 MHz, CDCl₃) δ 158.5, 138.7, 128.7, 128.6, 126.5, 60.6, 41.7, 39.6, 35.5, 31.5, 20.5, 16.7; HRMS (ESI) *m/z* calcd for C₁₈H₂₉N₂O₂ (M+H) 305.2224, found 305.2223.

2,2,6,6-Tetramethylpiperidin-1-yl ((**5-methylfuran-2-yl)methyl)carbamate** (**1-39**). According to General Method 1-A, 5-methylfurfurylamine (55.0 mg, 0.485 mmol), triethylamine (149 mg, 207 μ L, 1.46 mmol), NPTC (188 mg, 0.582 mmol), DMF (1.0 mL) and chromatography on SiO₂ (1:19 to 1:9, EtOAc/hexanes) afforded **1-39** (131 mg, 92%) as a colorless solid: $R_f = 0.70$ (1:1, EtOAc/hexanes); Mp 88-89 °C; ATR-IR (neat) 3370, 2977, 2929, 1709, 1497, 1184, 781 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.03 (bs, 1 H), 6.08 (d, *J* = 3.0 Hz, 1 H), 5.86 (bd, *J* = 3.0, 1 H), 4.33 (d, J = 5.9 Hz, 2 H), 2.23 (s, 3 H), 1.73–1.34 (m, 6 H), 1.20 (s, 6 H), 1.05 (s, 6 H); ¹³C NMR (76 MHz, CDCl₃) δ 158.4, 151.7, 149.5, 107.9, 106.1, 60.7, 39.7, 37.9, 31.5, 20.5, 16.7, 13.4; HRMS (ESI) *m*/*z* calcd for C₁₆H₂₇N₂O₃ (M+H) 295.2016, found 295.2015.

2,2,6,6-Tetramethylpiperidin-1-yl (2-bromobenzyl)carbamate (1-40). According to General Method 1-A, 2-bromobenzylamine (63.0 mg, 0.332 mmol), triethylamine (102 mg, 141 μ L, 0.996 mmol), NPTC (128 mg, 0.398 mmol), DMF (0.7 mL) and chromatography on SiO₂ (1:19 to 1:9, EtOAc/hexanes) afforded **1-40** (111 mg, 90%) as a fluffy colorless solid: R_f = 0.74 (1:1, EtOAc/hexanes); Mp 165-167 °C; ATR-IR (neat) 3310, 2939, 1698, 1473, 1187, 929, 741 cm⁻¹; ¹H NMR (300 MHz CDCl₃) δ 7.54 (dd, *J* = 7.9, 1.3 Hz, 1 H), 7.41 (dd, *J* = 7.6, 1.8 Hz, 1 H), 7.35 (bs, 1 H), 7.27 (td, *J* = 7.5, 1.2 Hz, 1 H), 7.13 (td, *J* = 7.7, 1.8 Hz, 1 H), 4.48 (d, *J* = 6.4 Hz, 2 H), 1.72–1.44 (m, 5 H), 1.44–1.35 (m, 1 H), 1.20 (s, 6 H), 1.04 (s, 6 H); ¹³C NMR (76 MHz, CDCl₃) δ 158.5, 137.4, 132.7, 130.3, 129.1, 127.7, 123.5, 60.7, 45.1, 39.7, 31.6, 20.6, 16.7; HRMS (ESI) *m*/*z* calcd for C₁₇H₂₆BrN₂O₂ (M+H) 369.1172, found 369.1173.

2,2,6,6-Tetramethylpiperidin-1-yl (4-methoxybenzyl)carbamate (1-41). According to General Method 1-A, 4-methoxybenzylamine (50.0 mg, 0.354 mmol), triethylamine (108 mg, 151 μ L, 1.06 mmol), NPTC (137 mg, 0.424 mmol), DMF (0.7 mL) and chromatography on SiO₂ (1:19 to 1:4, EtOAc/hexanes) afforded 1-41 (106 mg, 93%) as a colorless solid: $R_f = 0.62$ (1:1, EtOAc/hexanes); Mp 95-98 °C; ATR-IR (neat) 3321, 2930, 1697, 1510, 1249, 929, 706 cm⁻¹; ¹H

NMR (500 MHz, CDCl₃) δ 7.17 (d, *J* = 8.8 Hz, 2 H), 6.95 (bs, 1 H), 6.81 (d, *J* = 8.6 Hz, 2 H), 4.32 (d, *J* = 5.9 Hz, 2 H), 3.75 (s, 3 H), 1.65–1.30 (m, 6 H), 1.17 (s, 6 H), 1.03 (s, 6 H); ¹³C NMR (126 MHz, CDCl₃) δ 158.9, 158.5, 130.3, 128.9, 113.9, 60.6, 55.2, 44.3, 39.5, 31.7, 20.5, 16.6; HRMS (ESI) *m*/*z* calcd for C₁₈H₂₉N₂O₃ (M+H) 321.2173, found 321.2173.

2,2,6,6-Tetramethylpiperidin-1-yl ([**1,1'-biphenyl**]-**4-ylmethyl**)**carbamate** (**1-42**). According to General Method 1-A, 4-phenylbenzylamine (1.50 g, 7.94 mmol), triethylamine (2.44 g, 3.38 mL, 23.8 mmol), NPTC (3.07 g, 9.53 mmol), DMF (16 mL) and chromatography on SiO₂ (1:19 to 3:7, EtOAc/hexanes) afforded **1-42** (2.60 g, 89%) as a fluffy colorless solid: $R_f = 0.61$ (1:1, EtOAc/hexanes); Mp 134-137 °C; ATR-IR (neat) 3252, 2971, 2930, 1694, 1484, 1254, 933, 732 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.60–7.55 (m, 4 H), 7.44 (t, *J* = 7.9 Hz, 2 H), 7.39–7.33 (m, 3 H), 7.09 (bs, 1 H), 4.48 (d, *J* = 6.1 Hz, 2 H), 1.71–1.44 (m, 5 H), 1.42–1.35 (m, 1 H), 1.24 (s, 6 H), 1.11 (s, 6 H); ¹³C NMR (101 MHz, CDCl₃) δ 158.6, 140.5, 140.2, 137.3, 128.6, 127.9, 127.2, 127.2, 126.9, 60.7, 44.5, 39.5, 31.7, 20.5, 16.6; HRMS (ESI) *m/z* calcd for C₂₃H₃₁N₂O₂ (M+H) 367.2380, found 367.2377.

2,2,6,6-Tetramethylpiperidin-1-yl ((tetrahydrofuran-2-yl)methyl)carbamate (1-43). According to General Method 1-A, tetrahydrofurfurylamine (50.0 mg, 0.480 mmol), triethylamine (147 mg, 204 μ L, 1.44 mmol), NPTC (186 mg, 0.575 mmol), DMF (1 mL) and chromatography on SiO₂ (1:19 to 3:7, EtOAc/hexanes) afforded **1-43** (126 mg, 93%) as a colorless solid: $R_f = 0.41$ (1:1, EtOAc/hexanes); Mp 74-76 °C; ATR-IR (neat) 3328, 2933, 1712, 1501, 1250, 1084, 953 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.03 (bs, 1 H), 3.97–3.88 (m, 1 H), 3.83 (A of ABX₂, *J* = 8.4, 6.6 Hz, 1 H), 3.75 (B of ABX₂, *J* = 8.1, 6.7 Hz, 1 H), 3.47 (A of ABMX, *J* = 13.9, 6.9, 3.6 Hz, 1 H), 3.17 (B of ABMX, *J* = 13.9, 6.6, 5.3 Hz, 1 H), 2.01–1.82 (m, 3 H), 1.70–1.45 (m, 6 H), 1.44–1.35 (m, 1 H), 1.20 (s, 6 H), 1.10 (2s, 6 H); ¹³C NMR (76 MHz, CDCl₃) δ 158.9, 78.0, 68.0, 60.7, 60.6, 44.3, 39.7, 39.6, 31.7, 31.5, 28.3, 25.8, 20.5, 16.7; HRMS (ESI) *m*/*z* calcd for C₁₅H₂₉N₂O₃ (M+H) 285.2173, found 285.2169.

2,2,6,6-Tetramethylpiperidin-1-yl (4-phenylcyclohexyl)carbamate (1-44). According to General Method 1-A and Workup Procedure 1-1, 4-phenylcyclohexylamine (455 mg, 2.60 mmol), triethylamine (796 mg, 1.11 mL, 7.79 mmol), NPTC (1.00 g, 3.12 mmol), DMF (5 mL) and chromatography on SiO₂ (1:19 to 3:17, EtOAc/hexanes) afforded **1-44** (811 mg, 87%) as a fluffy colorless solid in a 1:5 *cis/trans*-diastereomeric mixture: $R_f = 0.56$ (1:1, EtOAc/hexanes); Mp 114-126 °C; ATR-IR (neat) 3357, 2976, 2930, 1708, 1492, 1131, 989, 755, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.35–7.27 (m, 2 H), 7.22–7.17 (m, 3 H), 6.72 (bd, *J* = 8.5 Hz, 1 H), 3.67 (tdt, *J* = 12.3, 8.8, 4.1 Hz, 1 H), 2.50 (tt, *J* = 12.2, 3.5 Hz, 1 H), 2.21–2.09 (m, 2 H), 2.02–1.91 (m, 2 H), 1.70–1.20 (m, 10 H), 1.23 (s, 6 H), 1.12 (s, 6 H); ¹³C NMR (101 MHz, CDCl₃) δ 157.8, 146.5, 128.4, 126.7, 126.1, 60.7, 49.6, 43.5, 39.8, 33.6, 32.9, 31.8, 20.6, 16.7; HRMS (ESI) *m/z* calcd for C₂₂H₃₅N₂O₂ (M+H) 359.2693, found 359.2692. A sample of *trans*-2,2,6,6-tetramethylpiperidin-1-yl (4-phenylcyclohexyl)carbamate (*trans*-1-44) was isolated for characterization: $R_f = 0.60$ (:1, EtOAc/hexanes); Mp 150-152 °C; ATR-IR (neat) 3327, 2976, 2930, 1703, 1492, 1132, 989, 733, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.27 (m, 2 H), 7.22–7.16 (m, 3 H), 6.72 (bd, *J* = 8.8

Hz, 1 H), 3.67 (tdt, J = 12.3, 8.8, 4.1 Hz, 1 H), 2.50 (tt, J = 12.2, 3.4 Hz, 1 H), 2.18–2.08 (m, 2 H), 1.98–1.90 (m, 2 H), 1.70–1.50 (m, 7 H), 1.50-1.20 (m, 3 H), 1.23 (s, 6 H), 1.12 (s, 6 H); ¹³C NMR (101 MHz, CDCl₃) δ 157.8, 146.5, 128.4, 126.7, 126.1, 60.7, 49.6, 43.5, 39.8, 33.6, 32.9, 31.8, 20.5, 16.7; HRMS (ESI) *m*/*z* calcd for C₂₂H₃₅N₂O₂ (M+H) 359.2693, found 359.2693.

1-45

2,2,6,6-Tetramethylpiperidin-1-yl (2-hydroxyethyl)carbamate (1-45). According to General Method 1-A, ethanolamine (61.1 mg, 0.648 mmol), triethylamine (199 mg, 276 μ L, 1.95 mmol), NPTC (251 mg, 0.778 mmol), DMF (1.3 mL) and chromatography on SiO₂ (1:19 to 1:1, EtOAc/hexanes) afforded **1-45** (148 mg, 94%) as a colorless, crystalline solid: R_f = 0.29 (4:1, EtOAc/hexanes); Mp 102-105 °C; ATR-IR (neat) 3316, 2936, 1697, 1501, 1525, 955, 734 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.14 (bs, 1 H), 3.69 (q, *J* = 5.0 Hz, 2 H), 3.36 (q, *J* = 5.2 Hz, 2 H), 2.75 (t, *J* = 4.9 Hz, 1 H), 1.71–1.45 (m, 5 H), 1.43–1.34 (m, 1 H), 1.19 (s, 6 H), 1.09 (s, 6 H); ¹³C NMR (76 MHz, CDCl₃) δ 159.5, 62.1, 60.7, 43.1, 39.6, 31.5, 20.5, 16.7; HMRS (ESI) *m/z* calcd for C₁₂H₂₅N₂O₃ (M+H) 245.1860, found 245.1849.

2,2,6,6-Tetramethylpiperidin-1-yl (*S*)-(**1-hydroxy-3-phenylpropan-2-yl**)**carbamate** (**1-46**). According to General Method 1-A, L-phenylalaninol (0.150 g, 0.972 mmol), triethylamine (298 mg, 414 μ L, 2.92 mmol), NPTC (376 mg, 1.17 mmol), DMF (1.9 mL), and chromatography on SiO₂ (1:19 to 1:1, EtOAc/hexanes) afforded **1-46** (234 mg, 72%) as a fluffy colorless solid: R_f = 0.47 (1:1, EtOAc/hexanes); Mp 108-111 °C; ATR-IR (neat) 3370, 2976, 2933, 1698, 1494, 1030, 701 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.35–7.16 (m, 5 H), 7.01 (bs, 1 H), 4.06–3.90 (m, 1 H), 3.75–3.58 (m, 2 H), 3.09 (bs, 1 H), 2.95 (A of ABX, *J* = 13.9, 6.6 Hz, 1 H), 2.82 (B of ABX, *J* = 13.9, 8.2 Hz, 1 H), 1.69–1.26 (m, 6 H), 1.16 (s, 3 H), 1.12 (s, 3 H), 1.03 (s, 3 H), 0.76 (s, 3 H); ¹³C NMR (76 MHz, CDCl₃) δ 159.0, 137.4, 129.2, 128.7, 126.7, 64.6, 60.7, 60.6, 54.2, 54.1, 39.6, 39.4, 37.0, 31.6, 31.0, 20.5, 20.4, 16.6; HRMS (ESI) *m/z* calcd for C₁₉H₃₁N₂O₃ (M+H) 335.2329, found 335.2328.

2,2,6,6-Tetramethylpiperidin-1-yl (2-(1*H***-indol-3-yl)ethyl)carbamate (1-47)**. According to General Method 1-A, tryptamine (1.00 g, 6.12 mmol), triethylamine (1.88 g, 2.61 mL, 18.4 mmol), NPTC (2.37 g, 7.34 mmol), DMF (12.2 mL), and chromatography on SiO₂ (1:19 to 1:4, EtOAc/hexanes) afforded **1-47** (1.92 g, 92%) as an off-white solid: $R_f = 0.47$ (1:1, EtOAc/hexanes); Mp 150-152 °C; ATR-IR (neat) 3310, 2976, 2935, 1706, 1501, 739 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.20 (bs, 1 H), 7.64 (d, *J* = 7.7 Hz, 1 H), 7.39 (d, *J* = 8.0 Hz, 1 H), 7.21 (t, *J* = 7.5 Hz, 1 H), 7.13 (t, *J* = 7.4 Hz, 1 H), 7.05 (bs, 1 H), 6.83 (bs, 1 H), 3.59 (q, *J* = 6.5 Hz, 2 H), 3.02 (t, *J* = 6.9 Hz, 2 H), 1.67–1.43 (m, 3 H), 1.37–1.22 (m, 3 H), 1.15 (s, 6 H), 0.91 (s, 6 H); ¹³C NMR (76 MHz, CDCl₃) δ 158.7, 136.4, 127.3, 122.1, 119.5, 118.7, 112.9, 111.2, 60.6, 41.1, 39.5, 31.4, 25.2, 20.5, 16.7; HRMS (ESI) *m*/z calcd for C₂₀H₃₀N₃O₂ (M+H) 344.2333, found 344.2329.

1-48

2,2,6,6-Tetramethylpiperidin-1-yl (**4-aminobenzyl)carbamate** (**1-48**). According to General Method 1-A, 4-aminobenzylamine (1.18 g, 9.47 mmol), triethylamine (2.90 g, 4.03 mL, 28.4 mmol), NPTC (3.66 g, 11.4 mmol), DMF (19 mL) and chromatography on SiO₂ (1:19 to 1:1, EtOAc/hexanes) afforded **1-48** (2.81 g, 93%) as a yellow solid: $R_f = 0.32$ (1:1, EtOAc/hexanes); Mp 118-120 °C; ATR-IR (neat) 3450, 3362, 2977, 2933, 1688, 1493, 1255, 928, 830, 657 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.07 (d, *J* = 8.3 Hz, 2 H), 6.88 (bs, 1 H), 6.62 (d, *J* = 8.3 Hz, 2 H), 4.29 (d, *J* = 5.8 Hz, 2 H), 3.67 (s, 2 H), 1.65–1.39 (m, 5 H), 1.41–1.29 (m, 1 H), 1.20 (s, 6 H), 1.05 (s, 6 H); ¹³C NMR (101 MHz, CDCl₃) δ 158.5, 145.8, 128.9, 128.1, 115.1, 60.7, 44.5, 39.6, 31.7, 20.5, 16.7; HRMS (ESI) *m/z* calcd for C₁₇H₂₈N₃O₂ (M+H) 306.2176, found 306.2176.

2,2,6,6-Tetramethylpiperidin-1-yl (*S*)-(**1-phenylethyl**)**carbamate** (**1-49**). According to General Method 1-A, (*S*)-(-)-1-phenethylamine (50.0 mg, 0.404 mmol), triethylamine (124 mg, 172 μ L, 1.21 mmol), NPTC (156 mg, 0.485 mmol), DMF (0.8 mL) and chromatography on SiO₂ (1:19 to 1:4, EtOAc/hexanes) afforded **1-49** (92 mg, 75%) as a fluffy colorless solid: $R_f = 0.71$ (1:1, EtOAc/hexanes); Mp 127 °C; ATR-IR (neat) 3289, 2973, 2929, 1696, 1493, 1187, 986, 698 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.39–7.20 (m, 5 H), 7.03 (bd, *J* = 8.6 Hz, 1 H), 4.97 (p, *J* = 7.2 Hz, 1 H), 1.72–1.34 (m, 6 H), 1.51 (d, *J* = 6.9 Hz, 1 H), 1.23 (s, 3 H), 1.19 (s, 3 H), 1.15 (s, 3 H), 1.00 (s, 3 H); ¹³C NMR (76 MHz, CDCl₃) δ 157.6, 143.0, 128.5, 127.3, 126.1, 60.9, 60.6, 50.2,

39.8, 39.7, 31.9, 31.8, 21.8, 20.6, 20.5, 16.7; HRMS (ESI) *m/z* calcd for C₁₈H₂₉N₂O₂ (M+H) 305.2224, found 305.2221.

2,2,6,6-Tetramethylpiperidin-1-yl *tert*-butylcarbamate (1-50). According to General Method 1-A, *tert*-butylamine (35.0 mg, 0.469 mmol), triethylamine (144 mg, 0.200 mL, 1.41 mmol), NPTC (181 mg, 0.563 mmol), DMF (1 mL) and chromatography on SiO₂ (0:1 to 1:19, EtOAc/hexanes) afforded **1-50** (38 mg, 32%) as a colorless solid: $R_f = 0.51$ (1:4, EtOAc/hexanes); Mp 108-109 °C; ATR-IR (neat) 3290, 2976, 2923, 1704, 1494, 1263, 1021, 693 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.79 (bs, 1 H), 1.67–1.46 (m, 5 H), 1.45–1.34 (m, 1 H), 1.31 (s, 9 H), 1.18 (s, 6 H), 1.08 (s, 6 H); ¹³C NMR (76 MHz, CDCl₃) δ 156.6, 60.6, 50.1, 39.8, 31.8, 28.7, 20.5, 16.7; HRMS (ESI) *m/z* calcd for C₁₄H₂₉N₂O₂ (M+H) 257.2224, found 257.2223.

2,2,6,6-Tetramethylpiperidin-1-yl hydrazinecarboxylate (1-51). A solution of anhydrous hydrazine (60.3 mg, 18.6 mmol) and triethylamine (2.85 g, 3.96 mL, 28.0 mmol) in DMF (37 mL) was treated at 0 °C with NPTC (3.00 g, 9.31 mmol) in 2 portions over 2 min. The cooling bath was removed and the reaction mixture was stirred for 2 h at room temperature, diluted with CH₂Cl₂ (20 mL), and partitioned between ice-cold 1 M NaOH (20 mL) and CH₂Cl₂ (20 mL). The organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (2 x 20 mL). The combined organic layers were washed with water and brine, dried (MgSO₄), and concentrated to afford a residue which was purified by chromatography on SiO₂ (1:19 to 1:0, EtOAc/hexanes) to afford **1-51** (1.90 g, 95%) as transparent crystals: $R_f = 0.39$ (EtOAc); Mp 146-149 °C (dec.);

ATR-IR (neat) 3285, 2980, 2932, 1716, 1618, 1451, 1040, 718 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (bs, 1 H), 3.75 (s, 2 H), 1.64–1.40 (m, 5 H), 1.39–1.31 (m, 1 H), 1.14 (s, 6 H), 1.05 (s, 6 H); ¹³C NMR (101 MHz, CDCl₃) δ 160.3, 60.8, 39.5, 31.4, 20.3, 16.6; HRMS (ESI) *m/z* calcd for C₁₀H₂₂N₃O₂ (M+H) 216.1707, found 216.1705.

1-52

2,2,6,6-Tetramethylpiperidin-1-yl

N-(2-phenylethyl)-N-{[(2,2,6,6-

tetramethylpiperidin-1-yl)oxy]carbonyl]carbamate (1-52). A suspension of 90% sodium hydride (57.2 mg, 2.15 mmol) in dry THF (6 mL) was cooled to 0 °C and treated dropwise with a solution of 2-phenethylamine (0.100 g, 0.825 mmol) in dry THF (1 mL). The reaction mixture was stirred at 0 °C for 30 min, treated dropwise with a solution of NPTC (638 mg, 1.98 mmol) in dry THF (1.3 mL), and stirred at room temperature for 1 h while the color turned from yellow to bright orange. After addition of diethyl ether (50 mL) and crushed ice (20 g), the organic layer was washed with sat. Na₂CO₃ (2 x 25 mL), water, and brine, dried (MgSO₄), and concentrated to give a residue which was purified by chromatography on SiO₂ (1:19 to 1:9, EtOAc/hexanes) to afford **1-52** (363 mg, 90%) as an off-white solid: $R_f = 0.55$ (1:1, EtOAc/hexanes); Mp 125-126 °C; ATR-IR (neat) 2935, 1779, 1751, 1262, 1148, 1043, 698 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.32–7.28 (m, 2 H), 7.28–7.19 (m, 2 H), 3.92 (AA' of AA'XX', $J_{AA'} = -10$ Hz, $J_{AX} = 10$ Hz, $J_{AX'} = 5.2$ Hz, 2 H), 2.99 (XX' of AA'XX', $J_{XX'} = -11$ Hz, $J_{AX} = 10$ Hz, $J_{AX'} = 5.2$ Hz, 2 H), 1.77–1.60 (m, 7 H), 1.58–1.53 (m, 4 H), 1.44–1.39 (m, 2 H), 1.23 (s, 12 H), 1.14 (s, 12 H); ¹³C NMR (126 MHz, CDCl₃) § 154.5, 138.2, 128.9, 128.6, 126.5, 60.6, 48.3, 39.1, 35.7, 31.7, 21.1, 16.9; HRMS (ESI) m/z calcd for C₂₈H₄₆N₃O₄ (M+H) 488.3483, found 488.3481.

1-(*tert*-**Butyl**) **4-**(**2**,**2**,**6**,**6**-*tetramethylpiperidin-1-yl*) **piperazine-1**,**4**-*dicarboxylate* (1-**54**). According to General Method 1-A and Workup Procedure 1-1, *tert*-butyl 1piperazinecarboxylate (1.00 g, 5.37 mmol), triethylamine (1.65 g, 2.29 mL, 16.1 mmol), NPTC (2.08 g, 6.44 mmol), DMF (11 mL) and chromatography on SiO₂ (1:19 to 1:4, EtOAc/hexanes) afforded **1-54** (1.82 g, 91%) as a colorless solid: $R_f = 0.55$ (1:1, EtOAc/hexanes); Mp 146-147 °C; ATR-IR (neat) 2974, 2931, 1733, 1698, 1410, 1218, 1170, 1001, 758 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 3.52–3.46 (m, 4 H), 3.45–3.40 (m, 4 H), 1.75–1.48 (m, 5 H), 1.46 (s, 9 H), 1.44–1.36 (m, 1 H), 1.14 (s, 6 H), 1.09 (s, 6 H); ¹³C NMR (76 MHz, CDCl₃) δ 156.3, 154.6, 80.1, 60.2, 44.0, 39.0, 31.8, 28.4, 21.0, 17.0; HRMS (ESI) *m*/*z* calcd for C₁₉H₃₆N₃O₄ (M+H) 370.2700, found 370.2699.

2,2,6,6-Tetramethylpiperidin-1-yl 4-hydroxypiperidine-1-carboxylate (1-55). According to General Method 1-A, 4-hydroxypiperidine (51.0 mg, 0.494 mmol), triethylamine (152 mg, 0.210 mL, 1.48 mmol), NPTC (191 mg, 0.593 mmol), DMF (1 mL) and chromatography on SiO₂ (1:19 to 1:1, EtOAc/hexanes) afforded **1-55** (122 mg, 87%) as a colorless solid: $R_f = 0.29$ (1:4, EtOAc/hexanes); Mp 156-157 °C; ATR-IR (neat) 3422, 2937, 1708, 1420, 1214, 757 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 4.01–3.79 (m, 3 H), 3.11 (ddd, J = 13.3, 9.7, 3.3 Hz, 2 H), 2.25 (s, 1 H), 1.93–1.82 (m, 2 H), 1.76–1.42 (m, 7 H), 1.41–1.32 (m, 1 H), 1.12 (s, 6 H), 1.06 (s, 6 H); ¹³C NMR (76 MHz, CDCl₃) δ 156.4, 67.3, 60.0, 41.7, 39.0, 34.3, 31.7, 20.9, 16.9; HRMS (ESI) *m/z* calcd for C₁₅H₂₉N₂O₃ (M+H) 285.2173, found 285.2171.

2,2,6,6-Tetramethylpiperidin-1-yl 4-phenylpiperidine-1-carboxylate (1-56). According to General Method 1-A and Workup Procedure 1-1, 4-phenylpiperidine (1.00 g, 6.08 mmol), triethylamine (1.86 g, 2.59 mL, 18.2 mmol), NPTC (2.35 g, 7.29 mmol), DMF (12 mL) and chromatography on SiO₂ (1:19 to 1:4, EtOAc/hexanes) afforded **1-56** (2.05 g, 98%) as a colorless solid: $R_f = 0.56$ (1:1, EtOAc/hexanes); Mp 143-145 °C; ATR-IR (neat) 3002, 2972, 2933, 1727, 1209, 1010, 700 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.27 (m, 2 H), 7.26–7.17 (m, 3 H), 4.38–4.26 (m, 2 H), 2.95-2.85 (m, 2 H), 2.69 (tt, *J* = 12.2, 3.7 Hz, 1 H), 1.90–1.86 (m, 2 H), 1.85-1.62 (m, 5 H), 1.57-1.52 (m, 2 H), 1.46–1.35 (m, 1 H), 1.17 (s, 6 H), 1.14 (s, 6 H); ¹³C NMR (101 MHz, CDCl₃) δ 156.3, 145.5, 128.5, 126.7, 126.3, 60.1, 44.9, 42.6, 38.9, 33.3, 31.8, 21.0, 17.0; HRMS (ESI) *m/z* calcd for C₂₁H₃₃N₂O₂ (M+H) 345.2537, found 345.2535.

2,2,6,6-Tetramethylpiperidin-1-yl morpholine-4-carboxylate (1-57). According to General Method 1-A, morpholine (50.0 mg, 0.568 mmol), triethylamine (174 mg, 242 μ L, 1.71 mmol), NPTC (0.220 g, 0.682 mmol), DMF (1.1 mL) and chromatography on SiO₂ (1:19 to 1:4, EtOAc/hexanes) afforded 1-57 (151 mg, 98%) as a clear viscous oil: $R_f = 0.42$ (1:1, EtOAc/hexanes); ATR-IR (neat) 2970, 2929, 1726, 1227, 1116, 858, 757 cm⁻¹; ¹H NMR (300

MHz, CDCl₃) δ 3.67 (2AA' of AA'XX', $J_{AA'} = -12$ Hz, $J_{AX} = 7$ Hz, $J_{AX'} = 4$ Hz, 4 H), 3.50 (2XX' of AA'XX', $J_{XX'} = -12$ Hz, $J_{AX} = 7$ Hz, $J_{AX'} = 4$ Hz, 4 H), 1.78–1.46 (m, 5 H), 1.44–1.35 (m, 1 H), 1.13 (s, 6 H), 1.09 (s, 6 H); ¹³C NMR (76 MHz, CDCl₃) δ 156.4, 66.7, 60.1, 44.4, 39.0, 31.8, 21.0, 16.9; HRMS (ESI) *m*/*z* calcd for C₁₄H₂₇N₂O₃ (M+H) 271.2016, found 271.2019.

2,2,6,6-Tetramethylpiperidin-1-yl pyrrolidine-1-carboxylate (1-58). According to General Method 1-A, pyrrolidine (50.0 mg, 0.696 mmol), triethylamine (213 mg, 296 μ L, 2.09 mmol), NPTC (269 mg, 0.835 mmol), DMF (1.4 mL) and chromatography on SiO₂ (0:1 to 1:1, EtOAc/hexanes) afforded **1-58** (161 mg, 91%) as a white solid: R_f = 0.44 (1:1, EtOAc/hexanes); Mp 74-76 °C; ATR-IR (neat) 2972, 2932, 1726, 1388, 1060, 759 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 3.40 (t, *J* = 6.7 Hz, 4 H), 1.95–1.77 (m, 4 H), 1.77–1.44 (m, 5 H), 1.42–1.33 (m, 1 H), 1.13 (s, 6 H), 1.09 (s, 6 H); ¹³C NMR (76 MHz, CDCl₃) δ 156.0, 59.9, 46.5 (b), 45.4 (b), 38.9, 31.9, 25.9 (b), 24.7 (b), 20.8, 17.0; HRMS (ESI) *m/z* calcd for C₁₄H₂₇N₂O₂ (M+H) 255.2067, found 255.2065.

2-Methyl 1-(2,2,6,6-tetramethylpiperidin-1-yl) (*R*)-pyrrolidine-1,2-dicarboxylate (1-59). According to General Method 1-A and Workup Procedure 1-1, L-proline methyl ester hydrochloride (1.00 g, 5.98 mmol), triethylamine (2.44 g, 3.39 mL, 23.9 mmol), NPTC (2.31 g, 7.17 mmol), DMF (12 mL) and chromatography on SiO₂ (1:19 to 1:1, EtOAc/hexanes) afforded 1-59 (1.62 g, 87%) as an off-white solid: $R_f = 0.56$ (1:1, EtOAc/hexanes); Mp 91-93 °C; ATR-IR (neat) 2977, 2935, 1740, 1721, 1386, 1363, 1201, 1185, 1065, 759 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6 , 100 °C) δ 4.30 (dd, J = 8.8, 3.1 Hz, 1 H), 3.66 (s, 3 H), 3.47 (t, J = 6.7 Hz, 2 H), 2.35–2.20 (m, 1 H), 1.99–1.85 (m, 3 H), 1.52 (s, 6 H), 1.09 (s, 6 H), 1.06 (s, 6 H); ¹³C NMR (101 MHz, CDCl₃, 2:3 mixture of rotamers) δ 173.3, 173.0, 155.8, 155.0, 60.0, 59.9, 59.8, 59.4, 58.4, 52.0, 51.9, 47.3, 45.9, 39.1, 39.0, 38.9, 31.9, 31.7, 31.5, 31.4, 31.3, 29.5, 24.4, 23.2, 20.9, 20.8, 20.7, 20.3, 16.9; HRMS (ESI) *m/z* calcd for C₁₆H₂₉N₂O₄ (M+H) 313.2122, found 313.2125.

2,2,6,6-Tetramethylpiperidin-1-yl 1H-indole-1-carboxylate (**1-60**). According to General Method 1-B, indole (50.0 mg, 0.423 mmol), sodium hydride 90% (14.7 mg, 0.549 mmol), NPTC (164 mg, 0.507 mmol), THF (0.25 mL) and chromatography on SiO₂ (1:49 to 1:19, EtOAc/hexanes) afforded **1-60** (119 mg, 94%) as a crystalline white solid: $R_f = 0.63$ (1:4, EtOAc/hexanes); Mp 103-105 °C; ATR-IR (neat) 2973, 2935, 1761, 1452, 1321, 1227, 1114, 988, 756 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.16 (d, *J* = 8.3 Hz, 1 H), 7.57 (d, *J* = 3.8 Hz, 1 H), 7.49 (d, *J* = 7.6 Hz, 1 H), 7.26 (dt, *J* = 8.1, 1.5 Hz, 1 H), 7.16 (dt, *J* = 7.8, 1.5 Hz, 1 H), 6.54 (d, *J* = 3.7 Hz, 1 H), 1.78–1.45 (m, 5 H), 1.42–1.33 (m, 1 H), 1.22 (s, 6 H), 1.10 (s, 6 H); ¹³C NMR (76 MHz, CDCl₃) δ 151.8, 135.4, 130.3, 125.2, 124.5, 122.9, 120.9, 115.3, 108.1, 60.8, 39.3, 31.7, 21.3, 16.9; HRMS (ESI) *m*/z calcd for C₁₈H₂₅N₂O₂ (M+H) 301.1911, found 301.1907.

2,2,6,6-Tetramethylpiperidin-1-yl 3-(2-aminoethyl)-1*H*-indole-1-carboxylate (1-61). A suspension of sodium hydride (90% in mineral oil, 74.2 mg, 2.78 mmol) in freshly distilled THF (10 mL) was stirred vigorously under nitrogen at 0 °C on an ice-bath for 10 min, and treated dropwise with a solution of tryptamine (0.350 g, 2.14 mmol) in distilled THF (5.0 mL) over 1 min. The cooling bath was removed and the reaction mixture was stirred at ambient temperature. After 4 h, the mixture was cooled to 0 °C and a solution of NPTC (828 mg, 2.60 mmol) in distilled THF (6.0 mL) was added over 1 h by syringe pump. During the addition, the reaction mixture turned yellow, then deep orange. The solution was stirred at 0 °C for an additional 1 h, quenched with sat. ammonium chloride (2 mL), concentrated, and diluted with CH₂Cl₂ (50 mL) and sat. sodium carbonate (25 mL). The organic layer was washed with sat. sodium carbonate until the aqueous layer remained colorless (complete removal of 4-nitrophenol, typically 2-3 washes), dried $(MgSO_4)$ and concentrated to give a residue that was purified by chromatography on SiO₂ (0 to 1:4, MeOH:CH₂Cl₂) to afford **1-60** (523 mg, 71%) as a pale yellow oil: $R_f = 0.35$ (1:4, MeOH:CH₂Cl₂); ATR-IR (neat) 2974, 2934, 2871, 1754, 1364, 1453, 1364, 1221, 988, 754 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.22 (d, J = 8.2 Hz, 1 H), 7.57 (dd, J = 7.8, 1.0 Hz, 1 H), 7.50 (s, 1 H), 7.36 (dt, J = 7.9, 1.2 Hz, 1 H), 7.27 (dt, J = 7.9, 1.2 Hz, 1 H), 3.09 (bs, 2 H), 2.89 (t, J = 6.6Hz, 2 H), 1.88–1.57 (m, 7 H), 1.50–1.43 (m, 1 H), 1.32 (s, 6 H), 1.19 (s, 6 H); ¹³C NMR (76 MHz, CDCl₃) & 151.7, 135.7, 130.4, 124.7, 122.6, 122.4, 119.1, 119.0, 115.4, 60.7, 41.4, 39.2, 31.7, 29.0, 21.4, 16.9; HRMS (ESI) m/z calcd for C₂₀H₃₀N₃O₂ (M+H) 344.2333, found 344.2330.

2,2,6,6-Tetramethylpiperidin-1-yl 1*H***-imidazole-1-carboxylate (1-62).** According to General Method 1-A, imidazole (0.250 g, 3.66 mmol), triethylamine (1.12 g, 1.56 mL, 11.0 mmol), NPTC (1.42 g, 4.39 mmol), DMF (7.3 mL) and chromatography on SiO₂ (1:19 to 1:4, EtOAc/hexanes) afforded **1-62** (838 mg, 91%) as a fluffy colorless solid: $R_f = 0.48$ (1:1, EtOAc/hexanes); Mp 133-135 °C; ATR-IR (neat) 3133, 3109, 2937, 2937, 1771, 1376, 1245, 986, 762 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1 H), 7.46 (t, *J* = 1.5 Hz, 1 H), 7.11 (dd, *J* = 1.5, 0.9 Hz, 1 H), 1.81–1.56 (m, 5 H), 1.50–1.42 (m, 1 H), 1.25 (s, 6 H), 1.16 (s, 6 H); ¹³C NMR (101 MHz, CDCl₃) δ 149.4, 136.9, 130.7, 117.0, 61.2, 39.2, 31.7, 20.8, 16.8; HRMS (ESI) *m/z* calcd for C₁₃H₂₂N₃O₂ (M+H) 252.1707, found 252.1712.

2,2,6,6-Tetramethylpiperidin-1-yl benzyl(methyl)carbamate (1-63). According to General Method 1-A, *N*-methylbenzylamine (1.00 g, 8.01 mmol), triethylamine (2.46 g, 3.41 mL, 24.0 mmol), NPTC (3.10 g, 9.61 mmol), DMF (1 mL) and chromatography on SiO₂ (0:1 to 1:19, EtOAc/hexanes) afforded **1-63** (2.36 g, 97%) as an off-white solid: $R_f = 0.58$ (1:1, EtOAc/hexanes); Mp 56-58 °C; ATR-IR (neat) 2973, 2932, 1723, 1378, 1117, 925, 697 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.45–7.25 (m, 5 H), 4.52 (bs, 2 H), 2.90 (b, 3 H), 1.80–1.45 (m, 5 H), 1.45–1.30 (m, 1 H), 1.13 (b, 12 H); ¹³C NMR (76 MHz, CDCl₃) δ 137.8, 128.5, 127.3, 60.1, 52.8 (b), 39.0, 35.5 (b), 31.8, 20.9, 17.0; HRMS (ESI) *m/z* calcd for C₁₈H₂₉N₂O₂ (M+H) 305.2224, found 305.2222.

1-64

2,2,6,6-Tetramethylpiperidin-1-yl dipropylcarbamate (1-64). According to General Method 1-A, di-*n*-propylamine (0.200 g, 1.96 mmol), triethylamine (0.600 g, 0.833 mL, 5.87 mmol), NPTC (757 mg, 2.35 mmol), DMF (3.9 mL) and chromatography on SiO₂ (1:19 to 1:4, EtOAc/hexanes) afforded **1-64** (310 mg, 56%) as a clear oil: $R_f = 0.67$ (1:1, EtOAc/hexanes); ATR-IR (neat) 2966, 2933, 1729, 1232, 1147, 759 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 3.20 (2AA' of AA'XX', $J_{AA'} = -8$ Hz, $J_{AX} = 9$ Hz, $J_{AX'} = 5$ Hz, 4 H), 1.76–1.45 (m, 9 H), 1.42–1.33 (m, 1 H), 1.13 (s, 6 H), 1.08 (s, 6 H), 0.88 (t, J = 6.6 Hz, 3 H), 0.84 (t, J = 6.6 Hz, 3 H); ¹³C NMR (76 MHz, CDCl₃, 1:1 mixture of rotamers) δ 157.2, 59.9, 49.4, 48.6, 39.1, 31.7, 22.2, 21.2, 21.0, 17.0, 11.4, 11.1; HRMS (ESI) *m/z* calcd for C₁₆H₃₃N₂O₂ (M+H) 285.2537, found 285.2534.

2,2,6,6-Tetramethylpiperidin-1-yl (methyl(oxo)(phenyl)- λ^6 -sulfanylidene)carbamate (1-65). A suspension of sodium hydride (60% dispersion in mineral oil, 28.4 mg, 0.709 mmol) in dry DMF (6.5 mL) was treated dropwise at 0 °C under nitrogen with a solution of methyl sulfoximine (0.100 g, 0.664 mmol) in dry DMF (0.5 mL). The reaction mixture was stirred at 0 °C for 1 h before a solution of NPTC (265 mg, 0.821 mmol) in dry DMF (0.5 mL) was added. The cooling bath was removed, and the solution was stirred at room temperature for 12 h, quenched with crushed ice (5 g), and partitioned between 1 M NaOH (20 mL) and CH₂Cl₂ (20 mL). The organic layer was separated and the aqueous slayer was extracted with CH₂Cl₂ (2 x 15 mL). The combined organic layers were washed with deionized water and brine, dried (MgSO₄), filtered, and concentrated to give a residue which was purified by chromatography on SiO₂ (1:49 to 1:19, CH₂Cl₂:MeOH) to afford **1-65** (178 mg, 82%) as a fluffy white solid: $R_f = 0.36$ (4:1, EtOAc/hexanes); Mp 196-198 °C (dec.); ATR-IR (neat) 3015, 2930, 1726, 1682, 1220, 978, 743, 518 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.02–7.95 (m, 2 H), 7.67–7.54 (m, 3 H), 3.23 (s, 3 H), 1.65–1.23 (m, 6 H), 1.08 (s, 3 H), 1.05 (s, 3 H), 0.91 (s, 3 H), 0.64 (s, 3 H); ¹³C NMR (76 MHz, CDCl₃) δ 158.1, 139.4, 133.7, 129.6, 127.3, 60.1, 59.7, 45.2, 39.0, 31.5, 31.4, 20.6, 20.2, 16.8; HRMS (ESI) *m/z* calcd for C₁₇H₂₇N₂O₃S (M+H) 339.1737, found 339.1732.

4.1.5 Synthetic procedures and spectral characterization for Tempoc deprotections and orthogonality studies

1*H***-Indole (1-82).** According to General Method 1-C and Workup Procedure 1-3, **1-60** (475 mg, 1.58 mmol), ascorbic acid (844 mg, 4.74 mmol), and copper(II) chloride (21.5 mg, 0.158 mmol) in MeCN/THF/H₂O (8.8 mL/2.2 mL/2.2 mL) afforded **1-82** as an off-white crystalline solid (179 mg, 91%) that spectrally matched a commercial sample.

4-Phenylpiperidine (1-83). According to General Method 1-C and Workup Procedure 1-3, **1-56** (1.02 g, 2.95 mmol), ascorbic acid (1.57 g, 8.84 mmol), copper(II) chloride (40.0 mg, 0.295

mmol), and MeCN/THF/H₂O (16.4 mL/4.1 mL/4.1 mL) afforded **1-83** as an off-white solid (435 mg, 91%) which spectrally matched a commercial sample.

trans-Phenylcyclohexan-1-amine (1-84).¹⁴⁷ According to General Method 1-C and Workup Procedure 1-3, *trans*-1-44 (132 mg, 0.368 mmol), ascorbic acid (196 mg, 1.11 mmol), and copper(II) chloride (5.00 mg, 0.0368 mmol) in MeCN/THF/H₂O (2.0 mL/0.5 mL/0.5 mL) afforded 1-84 as an off-white solid (59.0 mg, 91%) which matched literature spectra: ¹H NMR (400 MHz, CDCl₃) δ 7.33–7.27 (m, 2 H), 7.23–7.15 (m, 3 H), 2.74 (tt, *J* = 11.1, 3.9 Hz, 1 H), 2.48 (tt, *J* = 12.2, 3.6 Hz, 1 H), 2.03–1.86 (m, 4 H), 1.60–1.46 (m, 4 H), 1.27 (dq, *J* = 12.4, 3.2 Hz, 2 H); ¹³C NMR (101 MHz, CDCl₃) δ 147.0, 128.3, 126.8, 125.9, 50.4, 43.7, 37.0, 33.1; HRMS (ESI) *m*/*z* calcd for C₁₂H₁₈N ([M+H]⁺) 176.1434, found 176.1434.

4-Phenylpiperidine (**1-83**). According to General Method 1-D, **1-56** (0.200 g, 0.581 mmol), HFIP (5.8 mL) and chromatography on SiO₂ (0:1 to 3:7, MeOH:CH₂Cl₂) afforded **1-83** (86 mg, 85%) as a colorless solid which spectrally matched a commercial sample: ¹H NMR (300 MHz, CDCl₃) δ 7.41–7.28 (m, 2 H), 7.27–7.17 (m, 3 H), 3.30–3.13 (m, 2 H), 2.76 (td, *J* = 12.2, 2.6 Hz, 2 H), 2.62 (tt, *J* = 12.0, 3.8 Hz, 1 H), 2.02 (bs, 1H), 1.92–1.78 (m, 2 H), 1.63 (dq, *J* = 12.0, 3.6 Hz, 2 H); HRMS (ESI) *m/z* calcd for C₁₁H₁₇N (M+H) 162.1277, found 162.1277.

1*H***-Indole (1-82).** According to General Method 1-D, **1-60** (0.200 g, 0.666 mmol), HFIP (6.7 mL) and chromatography on SiO₂ (1:19 to 1:9, EtOAc/hexanes) afforded **1-82** (68.3 mg, 88%) as an off-white solid that spectrally matched a commercial sample: ¹H NMR (300 MHz, CDCl₃) δ 8.07 (bs, 1 H), 7.70 (dd, *J* = 7.8, 1.2 Hz, 1 H), 7.41 (dd, *J* = 8.0, 1.1 Hz, 1 H), 7.31–7.11 (m, 3 H), 6.63–6.57 (m, 1 H).

1,3-Bis([1,1'-biphenyl]-4-ylmethyl)urea (1-86). According to General Method 1-D, **1-42** (0.100 g, 0.273 mmol), HFIP (2.7 mL), a 2 h reaction time, and trituration with hexanes/diethyl ether (1:1) afforded **1-86** (39.4 mg, 74%) as an off-white solid: $R_f = 0.82$ (1:4, MeOH/CH₂Cl₂); Mp >250 °C; ATR-IR (neat) 3355, 3326, 3034, 1628, 1576, 1486, 1254, 753 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆, 90 °C) δ 7.69–7.55 (m, 8 H), 7.49–7.42 (m, 4 H), 7.41–7.27 (m, 6 H), 6.30 (t, *J* = 6.0 Hz, 2 H), 4.32 (d, *J* = 6.0 Hz, 4 H); ¹³C NMR (101 MHz, DMSO, 90 °C) δ 157.7, 139.7, 139.6, 138.2, 128.2, 127.1, 126.6, 126.0, 42.5; HRMS (ESI) *m/z* calcd for C₂₇H₂₅N₂O (M+H) 393.1961, found 393.1959.

[1,1'-Biphenyl]-4-ylmethanamine (1-87).¹ According to General Method 1-E, 1-42 (0.550 g, 1.50 mmol), potassium trimethylsilanolate (642 mg, 4.50 mmol), 1,4-dioxane (10 mL)

and chromatography on SiO₂ (0:1 to 3:97, Et₃N:EtOAc) afforded **1-87** (255 mg, 93%) as a colorless solid which matched literature spectra: $R_f = 0.47$ (15:4:1, CH₂Cl₂/MeOH/Et₃N); ¹H NMR (300 MHz, CDCl₃) δ 7.75–7.54 (m, 4 H), 7.52–7.30 (m, 5 H), 3.93 (s, 2 H), 1.52 (s, 2 H); ¹³C NMR (76 MHz, CDCl₃) δ 142.4, 140.9, 139.8, 128.7, 127.5, 127.3, 127.1, 127.0, 46.2.

2,2,6,6-Tetramethylpiperidin-1-yl piperazine-1-carboxylate trifluoroacetic acid salt (1-97). A solution of piperazine 1-54 (0.250 g, 0.677 mmol) in CH₂Cl₂ (5.6 mL) was treated at 0 °C dropwise with trifluoroacetic acid (1.13 mL), and stirred at room temperature for 70 min until starting material disappeared by TLC and LC-MS analysis. The reaction mixture was concentrated under reduced pressure and the oily residue was dissolved in diethyl ether (10 mL). A colorless precipitate formed and was filtered, washed with ice-cold diethyl ether (10 mL), and dried under vacuum to afford 1-97 (243 mg, 94%) as crystalline solid: $R_f = 0.36$ (1:9, MeOH/CH₂Cl₂); Mp 164-167 °C (dec.); ATR-IR (neat) 2972, 2946, 1733, 1686, 1172, 1125, 719 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 9.92 (bs, 2 H), 3.85-3.82 (m, 4 H), 3.21-3.18 (m, 4 H), 1.75–1.52 (m, 5 H), 1.45–1.39 (m, 1 H), 1.15 (s, 6 H), 1.09 (s, 6 H); ¹³C NMR (101 MHz, CDCl₃) δ 161.8 (q, *J* = 37.4 Hz, COCF₃), 155.9, 115.9 (q, *J* = 289.7 Hz, COCF₃), 60.7, 43.4, 41.0, 39.0, 31.6, 21.0, 16.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -75.9; HRMS (ESI) *m*/*z* calcd for C₁₄H₂₈N₃O₂ (M+H) 270.2176, found 270.2175.

tert-Butyl piperazine-1-carboxylate (1-98). According to General Method 1-C and Workup Procedure 1-2, 1-54 (408 mg, 1.11 mmol), ascorbic acid (0.590 g, 3.31 mmol), and copper(II) chloride (15.0 mg, 0.111 mmol) in MeCN/THF/H₂O (6.2 mL/1.5 mL/1.5 mL) afforded 1-98 as a white semi-solid (196 mg, 95%) which spectrally matched a commercial sample: ¹H NMR (300 MHz, CDCl₃) δ 3.28 (2AA' of AA'XX', $J_{AA'}$ = -12 Hz, J_{AX} = 6.2 Hz, $J_{AX'}$ = 4.2 Hz, 4 H), 2.70 (2XX' of AA'XX', $J_{XX'}$ = -12 Hz, J_{AX} = 6.2 Hz, 4 H), 1.98 (bs, 1 H), 1.36 (s, 9 H).

1-Benzyl 4-(2,2,6,6-tetramethylpiperidin-1-yl) piperazine-1,4-dicarboxylate (1-99). A

solution of **1-54** (1.50 g, 4.06 mmol) in CH₂Cl₂ (33.8 mL) was treated at 0 °C dropwise with trifluoroacetic acid (6.77 mL). The reaction stirred at room temperature for 70 min until consumption of the starting material was observed by TLC and LC-MS analysis, concentrated in vacuo, and the oily residue was dissolved in diethyl ether (20 mL). A colorless precipitate formed and was filtered, washed with ice-cold diethyl ether (10 mL), and dried in vacuo. The residue was suspended in dry CH₂Cl₂ (41 mL), and treated dropwise at 0 °C under nitrogen with pyridine (1.61 g, 1.66 mL, 20.3 mmol) and benzyl chloroformate (762 mg, 0.635 mL, 4.47 mmol). The reaction mixture was stirred at room temperature for 12 h, quenched with water (30 mL) extracted with a

mixture of saturated NaHCO₃ (100 mL) and CH₂Cl₂ (100 mL). The organic layer was separated and the aqueous layer extracted with CH₂Cl₂ (2 x 50 mL). The combined organic layers were washed with water and brine, dried (MgSO₄), and concentrated, and chromatographed on SiO₂ (1:19 to 1:1, EtOAc/hexanes) to afford **1-99** (1.52 g, 93%) as a viscous oil which solidified to a colorless solid on standing: $R_f = 0.50$ (1:1, EtOAc/hexanes); Mp 103-105 °C; ATR-IR (neat) 2973, 2932, 1731, 1703, 1215, 1075, 756 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.39–7.27 (m, 5 H), 5.13 (s, 2 H), 3.50 (app s, 8 H), 1.76–1.47 (m, 5 H), 1.45–1.38 (m, 1 H), 1.13 (s, 6 H), 1.08 (s, 6 H); ¹³C NMR (101 MHz, CDCl₃) δ 156.2, 155.1, 136.3, 128.4, 128.0, 127.9, 67.3, 60.1, 43.8, 38.9, 31.7, 20.9, 16.9; HRMS (ESI) *m/z* calcd for C₂₂H₃₄N₃O₄ (M+H) 404.2544, found 404.2538.

2,2,6,6-Tetramethylpiperidin-1-yl piperazine-1-carboxylate (**1-100**).⁴ A Schlenk flask containing **1-99** (0.200 g, 0.496 mmol) was purged and back-filled 3 times with hydrogen gas, and 10% Pd/C (5.0 mg, [10 mg/mmol]) was added, followed by dry MeOH (1 mL) and 2 M methanolic ammonia (0.124 mL, 0.5 equiv). The flask was fitted with a H₂ balloon and stirred at room temperature for 16 h. The reaction mixture was diluted with methanol (10 mL) and filtered through a pad of Celite pre-wetted with methanol. The filtrate was concentrated to afford **1-100** (135 mg, quant) as an off-white solid: R_f = 0.31 (1:9, MeOH/CH₂Cl₂); Mp 126-128 °C; ATR-IR (neat) 3304, 2933, 1715, 1416, 1227, 1046, 756 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.49 (2AA' of AA'XX', $J_{AA'}$ = -12 Hz, J_{AX} = 6 Hz, $J_{AX'}$ = 4 Hz, 4 H), 2.85 (2XX' of AA'XX', $J_{XX'}$ = -9 Hz, J_{AX} = 6 Hz, $J_{AX'}$ = 4 Hz, 4 H), 2.00 (bs, 1 H), 1.77–1.46 (m, 5 H), 1.44–1.35 (m, 1 H), 1.14 (s, 6 H), 1.10 (s, 6 H);

¹³C NMR (101 MHz, CDCl₃) δ 156.4, 60.1, 46.0, 45.2, 39.0, 31.8, 21.0, 17.0; HRMS (ESI) *m/z* calcd for C₁₄H₂₈N₃O₂ (M+H) 270.2176, found 270.2177.

Benzyl piperazine-1-carboxylate (1-101).¹⁴⁸ According to General Method 1-C and Workup Procedure 1-3, 1-99 (297 mg, 0.736 mmol), ascorbic acid (393 mg, 2.21 mmol), and copper(II)chloride (10.0 mg, 0.0736 mmol) in MeCN/THF/H₂O (4.1 mL/1.0 mL/1.0 mL) afforded 1-101 as a colorless oil (165 mg, 92%) which matched literature reported spectra: ¹H NMR (300 MHz, CDCl₃) δ 7.40–7.28 (m, 5 H), 5.12 (s, 2 H), 3.46 (2AA' of AA'XX', $J_{AA'}$ = -12 Hz, J_{AX} = 6.2 Hz, $J_{AX'}$ = 4.2 Hz, 4 H), 2.88–2.76 (m, 4 H), 1.82 (bs, 1 H); HRMS (ESI) *m*/*z* calcd for C₁₂H₁₇N₂O₂ (M+H) 221.1285, found 221.1284.

4.1.6 Thermolysis of Tempoc protected indole 1-60

Experiment 1. A microwave vial containing a solution of Tempoc protected indole **1-60** (0.150 g, 0.499 mmol) in toluene-d₈ was heated at 150 °C in an oil bath. After 20 h, the brown reaction mixture was cooled to room temperature. ¹H NMR analysis of the solution showed a 3.6:1 ratio of pyrrolidine **1-88** (δ 0.99 ppm) to tetramethylpiperidine **1-77** (δ 1.03 ppm).

Experiment 2. A microwave vial containing a solution of Tempoc protected indole **1-60** (0.150 g, 0.499 mmol) in toluene-d₈ (0.5 mL) was degassed (4 cycles of freeze-pump-thaw) and on the last cycle purged with nitrogen, sealed, and heated in an oil bath maintaining an external temperature of 150 °C for 9 h. The reaction mixture turned from clear and colorless to dark brown. ¹H NMR analysis of the solution showed a 2.3:1.0:1.0 ratio of pyrrolidine **1-88** (\Box 1.01 ppm) to tetramethylpiperidine **1-77** (δ 1.03 ppm) to enamine **1-90** (δ 4.00 ppm).

Experiment 3. A microwave vial containing a solution of Tempoc protected indole **1-60** (0.100 g, 0.332 mmol) and HPLC-grade water (0.024 mL, 1.33 mmol) in toluene-d₈ (0.33 mL) was heated in an oil bath at an external temperature of 150 °C for 21.5 h. The brown solution was cooled to room temperature and ¹H NMR analysis showed conversion to indole **1-82** and a 3.4:1 ratio of pyrrolidine **1-88** (δ 1.01 ppm) to tetramethylpiperidine **1-77** (δ 1.03 ppm). The reaction was concentrated and the resulting brown residue was purified by chromatography on SiO₂ (0:1 to 1:9, EtOAc/hexanes) to afford indole **1-82** (0.034 g, 87%) as a tan solid.

Experiment 4. A microwave vial containing a solution of Tempoc protected indole **1-60** (0.100 g, 0.332 mmol) in toluene-d₈ (0.33 mL) was heated in an oil bath at an external temperature of 135-140 °C for 32.5 h. The reaction mixture turned from clear and colorless to dark brown. The solution was cooled to room temperature and ¹H NMR analysis showed a 1.8:1 ratio of pyrrolidine **1-88** (δ 1.02 ppm) to tetramethylpiperidine **1-77** (δ 1.04 ppm).

2,2-Dimethylpyrrolidine (1-88). A solution of 2,2-dimethylpyrrolidine•HCl (0.050 g, 0.35 mmol) in 12 N NaOH (1.25 mL) was stirred vigorously at room temperature for 1.5 h, treated with toluene-d₈ (1 mL), and stirred vigorously. The organic layer was dried (Na₂SO₄) to give a sample of **1-88**: ¹H NMR (400 MHz, C₆D₅CD₃) δ 2.77 (t, *J* = 7.0 Hz, 2 H), 1.57 (p, *J* = 7.3 Hz, 2 H), 1.30 (t, *J* = 7.6 Hz, 2 H), 1.01 (s, 6 H); ¹³C NMR (100 MHz, C₆D₅CD₃) δ 58.8, 46.3, 39.9, 28.9, 26.4.

4.2 EXPERIMENTAL – TEMPOC PEPTIDES

4.2.1 General experimental protocols

Reactions were performed without inert atmosphere unless otherwise stated. DMF was dried over 4 Å molecular sieves which were activate in a muffle furnace at 350 °C for 16 h prior to use. Basic alumina (Brockmann Grade I) was purchased from Acros Organics and was stored in an oven (140 °C) before use. Anhydrous HOBt was purchased from Amatek Chemical. Anhydrous HOBt was used for reactions for uniformity (different lots of HOBt hydrate contain varying amounts of water). Amberlite IRC-748 resin was purchased from Sigma-Aldrich and was washed sequentially with water, methanol, then methylene chloride, and dried before use. All other reagents and solvents are commercially available and were used as received. HPLC analyses were conducted on a Shimadzu Prominence HPLC system utilizing a Phenomenex 4.6 mm x 250 mm C18 column with a 5-micron particle size. Elution with water/acetonitrile (both containing 0.1% (v/v) trifluoroacetic acid) was conducted at a constant a flow rate of 1.0 mL/min. A linear gradient of 10-60% acetonitrile over 60 min and a 100-minute acquisition time.

4.2.2 Second generation synthesis of NPTC (1-34)

A 500-mL Erlenmeyer containing a magnetic stirbar and a temperature probe was charged with sodium ascorbate (25.4 g, 127 mmol, 2.0 equiv) and deionized water (180 mL), affording a

pale-yellow solution. The stirring is increased slowly until a stable vortex is established. An initial temperature reading is taken and the probe is removed before freshly ground TEMPO (10.0 g, 63.4 mmol, 1.0 equiv) is added in one portion. The probe is reinserted and the red suspension is stirred vigorously at ambient temperature. Once the red solids are fully converted to a white precipitate, and internal temperature no longer increases (ca. 15 min), CH₂Cl₂ (100 mL) is added and stirring is continued for an additional 10 min. The stirbar is removed, and the biphasic mixture is transferred to a 500-mL separatory funnel. The organic layer is separated and the aqueous layer extracted with methylene chloride (100 mL). The aqueous phase is re-extracted with an additional aliquot of CH₂Cl₂ (50 mL). The combined organics are dried (Na₂SO₄) and decanted into a 500mL 3-neck flask containing a stirbar. An additional aliquot of methylene chloride (25 mL) is used to wash the drying agent and the flask. The 3-neck flask is clamped inside a large crystallization dish. One of the flask necks was fitted with a 125-mL pressure-equalizing addition funnel. A dryice/brine bath is prepared around the flask and the solution is stirred until a stable internal temperature $(-11 \pm 2 \text{ °C})$ is achieved. The addition funnel is charged with 4-nitrophenyl chloroformate (14.6 g, 69.7 mmol, 1.1 equiv) as a solution in methylene chloride (55 mL). Triethylamine (18.0 mL, 127 mmol, 2.0 equiv) is added via syringe and the addition of the chloroformate solution commenced. The addition rate is continually adjusted to maintain an internal temperature of -11 ± 2 °C (ca. 30 min). Once addition of the reagent is complete, the addition funnel is washed with CH₂Cl₂ and the cooling bath is removed. The reaction is stirred for an additional 90 min. The reaction is transferred to a 1-L separatory funnel with methylene chloride (50 mL). Saturated sodium carbonate (250 mL) is then added, and the contents shaken vigorously. The organic layer is separated and the orange aqueous layer extracted with methylene chloride (1 x 100 mL). The combined organic layers are washed sequentially with saturated sodium carbonate

(2 x 250 mL), water (150 mL), and brine (200 mL). Drying (Na₂SO₄) and filtration through a course fritted vacuum funnel affords a red-orange solution, which is concentrated on a rotary evaporator produce a solid orange residue. The solid is dried under high-vacuum for 30 min. The yellow-orange residue is dissolved in acetone (250 mL) with swirling to give a reddish solution before being sealed and placed in a freezer ($-20 \,^{\circ}$ C) for 16 h. The crystals thus formed are collected by suction filtration on a 5 cm Büchner funnel. The filter-cake is compressed and then washed with cold acetone ($-20 \,^{\circ}$ C, 2 x 25 mL). The crystallization is repeated two more times with the mother liquor and the crops combined to give **1-36 "NPTC"** (14.4 g, 71%) as an off-white crystalline solid. Characterization data *vida supra*.

4.2.3 General methods and workup procedures

Caution! 1-hydroxybenzotriazole (HOBt) is potentially explosive, especially in its anhydrous form, however, anhydrous HOBt was used without incident.

General Method 2-A: Tempoc Protection of Amino Esters. A round bottom flask containing a stirbar was charged with target amino ester freebase or hydrochloride (1.00 mmol, 1.0 equiv), NPTC (1.20 mmol, 1.2 equiv), and anhydrous HOBt (0.500 mmol, 0.5 equiv). Dry DMF (2.0 mL, 0.5 M) was added ensuring that all solids are washed down the walls of the vessel. The mixture was stirred for 3 min before addition of triethylamine (1.50 mmol, 1.5 equiv for amine freebases *or* 2.50 mmol, 2.5 equiv for amine hydrochlorides) in one portion. Upon addition of the base the reaction forms a heavy precipitate which undergoes partial dissolution within a couple minutes and is accompanied by formation of a yellow color (4-nitrophenoxide). The reaction is stirred at ambient temperature for 24 h during which time the reaction turned yellow or yellow-orange in color.

Workup Procedure 2-1. At this point the reaction was diluted with methylene chloride or ethyl acetate (4 mL) and the reaction mixture was filtered through a 2.5 cm pad of pre-wetted (CH₂Cl₂ or EtOAc) basic alumina (Brockmann Grade I) in a 4.5 cm diameter coarse-fritted funnel. The crude product was washed through with methylene chloride or ethyl acetate (75 mL). HOBt and 4-nitrophenol are effectively retained by the alumina. If desired, DMF may be removed at this stage by washing the organic filtrate with water. The filtrate is concentrated on a rotary evaporator and the residue dissolved in a minimal amount of toluene and purified by chromatography on SiO₂ using the specified solvent systems.

Workup Procedure 2-2. At this point the reaction is poured into a separatory funnel containing ethyl acetate (100 mL) and water is added (30 mL). The aqueous layer is separated and organic is washed with saturated sodium carbonate (2 x 30 mL) and then brine (20 mL). Concentration of the organic layer afforded a residue which was purified by chromatography on SiO₂ using the specified solvent systems.

General Method 2-B: Tempoc Deprotection of Peptides. A vial containing a stirbar was charged with Tempoc protected peptide (1.00 mmol, 1.0 equiv) and sodium ascorbate (1.20 mmol, 1.2 equiv) before a 1:1 mixture of DME/H₂O (6.7 mL, 0.15 M) was then added resulting in a colorless turbid mixture. To this suspension was added a 0.50 M aqueous CuCl₂ solution (70.0 μ L, 35.0 μ mol, 0.035 equiv) [Various concentrations of the aqueous metal were used depending on the scale of the reaction (e.g. 0.50, 0.25, 0.10 M) with identical results. Additionally, CuCl₂ can be added as a solid for larger scale reactions]. The reaction vessel headspace was flushed with nitrogen for 15 seconds and placed in a pre-heated aluminum block (38–41 °C). [The reaction can be run in a sealed vessel or under an inert atmosphere (balloon) to preclude oxygen.] After stirring for a few minutes, the reaction became a yellow-green color. After 3 h of heating the reaction

became orange-tan and a precipitate began to collect on the glass at the solvent-headspace interface, this precipitate is believed to be a dehydroascorbate by-product and need not be mechanically removed from the vessel walls. The reaction is typically complete in 7 h as determined by HPLC-MS and/or TLC, at this point the reaction was cooled before being diluted with ethyl acetate (20 mL).

Workup Procedure 2-3. After dilution, the biphasic mixture saturated with solid NaCl to increase the ionic strength of the aqueous layer and induce good partitioning of the layers. The mixture is then transferred to a separatory funnel and the aqueous layer is removed and discarded. The organic layer is dried (MgSO₄), concentrated, and the residue purified by catch and release on a 1" pad of SiO₂ (the pad was first washed with 2 column volumes of ethyl acetate, then with 15% methanol in ethyl acetate or 5% triethylamine in ethyl acetate for more polar substrates). During the elution with the more polar eluent, the copper can be seen oxidizing on the silica as made apparent by the appearance of a slight blue color. Concentration of the second filtrate gave the pure peptide freebase as a yellow oil which formed a collapsible foam under high vacuum.

NOTE: Depending on the nature of the peptide, copper may also elute through the plug and contaminate the product. The presence of copper was made apparent by line broadening in the NMR. Residual copper is expeditiously removed with Amberlite IRC-748 resin (iminodiacetic acid resin, Na-form) using the following protocol: The peptide freebase is made 0.3 M in chloroform of methylene chloride and to it is added Amberlite IRC-748 resin 50 mass %. Stirring for 1 hour at ambient temperature in an open vessel and subsequent filtration removed all traces of copper.

Workup Procedure 2-4. After dilution, the mixture is transferred to a separatory funnel. Additional ethyl acetate is added (30 mL) and the mixture is washed with a pH 10 ammonium chloride buffer of high ionic strength (to preclude the formation of an emulsion.) This buffer was easily prepared from 100 mL of saturated ammonium chloride and enough concentrated ammonium hydroxide to achieve a pH = 10 (typically 15–20 mL). The organics were washed with this buffer (2 x 15 mL) with swirling, which removes dehydroascorbate (and byproducts) and copper salts from the organic phase. The organic layer is then dried (MgSO₄), filtered, and concentrated to give the crude tripeptide freebase in sufficient purity for subsequent couplings.

General Method 2-C: Saponification and Peptide Coupling Procedure for N- to C-**Terminus.** A round bottom flask containing a stirbar was charged with protected amino ester (1.00 mmol, 1.0 equiv) in a 2:1 THF/H₂O mixture (2.9 mL, 0.35 M). This turbid mixture is cooled to 0°C on an ice-bath before additions of lithium hydroxide monohydrate (1.50 mmol, 1.5 equiv) as a solid in one portion. The cooling bath is removed and the reaction is stirred at ambient temperature until disappearance of the starting material is observed by TLC or LC-MS (typically 2.5-3 h). The reaction mixture is transferred to a separatory funnel containing ethyl acetate (25 mL). The mixture is then acidified to pH = 2 with 2 M aqueous KHSO₄. The aqueous layer is discarded and the organic layer is washed with brine (10 mL), then dried (NaSO₄), filtered, and concentrated to afford the protected amino acid which was directly dissolved in dry DMF (4.0 mL, 0.25 M) and cooled to 0°C on an ice-bath before sequential addition of HATU (1.05 mmol, 1.05 equiv), and DIPEA base. The clear mixture becomes yellow after addition of the base. This mixture is stirred for 5 min before addition of the target amino ester (1.05 mmol, 1.05 equiv) as a solid in two portions. The cooling bath is removed and the reaction stirred at ambient temperature for 2 h. At this point, the reaction is poured into a separatory funnel containing ice-cold water (15 mL). Ethyl acetate is then added (50 mL) and the contents shaken vigorously. The aqueous layer is discarded and the organic is washed with an additional 15 mL aliquot of water which is also

discarded. The organic layer is then washed sequentially with 2 M aqueous KHSO₄ (10 mL), sat. sodium carbonate (10 mL), then brine (10 mL). The organic layer is then dried (MgSO₄), filtered, and concentrated to give a crude oil which was dissolved in toluene and loaded onto a 1.5" pad of silica gel (pre-wetted with 5% EtOAc/hexanes.) The compound is then washed with two volumes of 5% EtOAc-hexanes, then the peptide is washed through with the appropriate solvent given below. Concentration of the filtrate affords the desired peptide in excellent purity. Alternatively, the peptide may be purified by chromatography on SiO₂ using the detailed solvent systems.

General Method for Marfey's Analysis. Tempoc amino ester (0.05 mmol) was heated (105–110 °C) in 6 M aqueous HCl (10 mL) on an aluminum block in a sealed vessel for 24 h. After cooling of the solution to ambient temperature, the bulk of the HCl gas was removed by sparging with nitrogen for 10 min. 0.600 mL of the mixture was transferred to a 1-dram vial and concentrated with heating (40 °C) under high-vacuum (5 mbar) for 60 min. The white solid residue was taken up in 0.060 mL of deionized water and transferred to an auto-sampler vial before being treated with 118 µL of a 36 mM solution of Marfey's reagent in freshly distilled acetone. The solution was made alkaline by addition of 48 µL of 1.0 mM aqueous NaHCO₃. The vial was sealed and placed in an aluminum block at 40 °C for 1 hour with exclusion of ambient light. During this time the bright-yellow solution becomes fluorescent orange. Once cooled, 24 µL of 2.0 M aqueous HCl was added and the sample was shaken before being passed through a micron-filter into an amber auto-sampler vial and kept refrigerated in the dark until analysis (not more than 24 h) by HPLC. HPLC analysis was conducted on a Shimadzu Prominence HPLC system utilizing a Phenomenex 4.6 mm x 250 mm C18 column with a 5-micron particle size. Elution with water/acetonitrile (both containing 0.1% (v/v) trifluoroacetic acid) was conducted at a constant a flow rate of 1.0 mL/min. A linear gradient of 10-60% acetonitrile over 60 min and a 100-minute

acquisition time. Injection volume should be no larger than 2 µL as larger volumes resulted in saturation of the detector. Under these conditions the excess FDAA reagent eluted first (tR ca. 45 min) followed by the L-isomer (tR ca. 63 min), an unidentified peak (tR ca. 67 min), and finally the D-isomer (tR ca. 69 min). Standards were prepared using the aforementioned conditions of: Tempoc protected DL-PheOEt (synthesized correspondingly (*vida supra*) from the commercial DL-phenylalanine ethyl ester hydrochloride) and from commercial DL-PheOH and L-PheOEt ·HCl.

	O NH ₂ 2-25 = hydrochloride 2-41 = freebase	NPTC (1.2 equiv) HOBt (<i>equiv</i>) Et ₃ N (<i>equiv</i>) DMF (0.5 M), rt, 24 h		O NHTempoc 2-26	
entry	additive (equiv)	base (equiv)	4 Å MS ^b	solvent	isolated yield (%)
1	-	Et ₃ N (3.0)	Y	dry DMF	19
2ª	HOBt (1.2)	Et ₃ N (3.0)	Y	dry DMF	82
3	HOBt (1.2)	Et ₃ N (4.0)	Y	dry DMF	84
4	Oxyma (1.2)	Et ₃ N (4.0)	Y	dry DMF	59
5	K-Oxyma (1.2)	Et ₃ N (4.0)	Y	dry DMF	55
6	HOBt (1.0)	Et ₃ N (4.0)	Y	dry DMF	88
7	HOBt (1.0)	Et ₃ N (4.0)	Ν	dry DMF	88
8	HOBt (1.0)	Et ₃ N (4.0)	Y	wet DMF	88
9	HOBt (1.0)	Et ₃ N (4.0)	Ν	wet DMF	87
10	HOBt (0.1)	Et ₃ N (3.0)	Y	dry DMF	60
11	HOBt (0.15)	Et ₃ N (3.0)	Y	dry DMF	62
12	HOBt (0.25)	Et ₃ N (3.0)	Y	dry DMF	68
13	HOBt (0.5)	Et ₃ N (4.0)	Y	dry DMF	83
14	HOBt (0.5)	Et ₃ N (3.0)	Ν	dry DMF	80
15	HOBt (0.5)	Et ₃ N (2.5)	Ν	dry DMF	83
16	HOBt (0.5)	Et ₃ N (2.0)	Ν	dry DMF	77
17	HOBt (0.5)	Na ₂ CO ₃ (2.5)	Ν	dry DMF	71
18	HOBt (0.5)	pyridine (2.5)	Ν	dry DMF	_c
19	HOBt hydrate (0.5) ^d	Et ₃ N (2.5)	Ν	dry DMF	80
20	HOBt hydrate (0.5) ^d	Et ₃ N (2.5)	Y	dry DMF	82
21	HOBt (0.5)	Et ₃ N (2.5)	Ν	dry CH ₂ Cl ₂	19
22	HOBt (0.5)	Et ₃ N (2.5)	Ν	dry THF	40

Table 16 Complete optimization table for the Tempoc protection of phenylalaline 2-26

^aamine **2-41** was used; ^b100 mg/mmol amine; ^conly recovered starting materials were isolated; ^dHOBt (97%) contained \geq 20% wt. water

Ν

dry MeCN

32

Et₃N (2.5)

HOBt (0.5)

23

4.2.4 Synthetic procedures and spectral characterization for Tempoc protected amino

esters

(((2,2,6,6-tetramethylpiperidin-1-yl)oxy)carbonyl)-L-phenylalaninate(2-26). Ethvl Following General Method 2-A and Workup Procedure 2-1, A two-neck 250-mL round-bottom flask containing a stirbar was charged with NPTC (12.6 g, 38.8 mmol), L-phenylalanine ethyl ester hydrochloride (7.50 g, 32.3 mmol), and HOBt (2.25g, 16.2 mmol). DMF (65 mL) was then added and the heterogeneous solution is stirred for 5 min. At this point, triethylamine (11.5 mL, 80.8 mmol) is added in two portions over 2 min via syringe. This mixture is stirred at ambient temperature for 24 h, during which time the mixture turns an orange-yellow color. The reaction is diluted with 100 mL of toluene and transferred to a vacuum-funnel containing basic alumina which has been pre-wetted with toluene. Filtration through basic alumina gives a transparent light-tan filtrate that is concentrated on a rotary evaporator to afford a heavy liquid that begins to crystallize. At this point the residue is statically dried on the high-vac for an additional 10 h to afford a colorless solid. The solid is purified by chromatography on silica gel to afford **2-26**, (9.96 g, 80%) as a colorless solid. Unreacted NPTC (3.35 g) is also recovered from the purification and recycled in subsequent protections. $[\alpha]_D^{23}$ -8.8 (c 0.12, CH₂Cl₂); R_f = 0.27 (4:1 hexanes/EtOAc, UV active); Mp 80–82 °C; ATR-IR (neat) 3353, 2979, 2936, 1726, 1492, 1183, 1030, 743, 700 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.30–7.22 (m, 3 H), 7.18–7.14 (m, 2 H), 4.64 (dt, *J* = 7.7, 6.3 Hz, 1 H), 4.17 (q, J = 7.1 Hz, 2 H), 3.21–3.11 (m, 2 H), 1.67–1.49 (m, 3 H), 1.48–1.34 (m, 3 H), 1.23 (t, J = 7.1

Hz, 3 H), 1.16 (s, 3 H), 1.15 (s, 3H), 1.03 (s, 3 H), 0.86 (s, 3 H); 13 C NMR (126 MHz, CDCl₃) δ 171.5, 157.8, 135.9, 129.3, 128.6, 127.1, 61.4, 60.8, 60.6, 54.6, 39.6, 39.6, 38.0, 31.6, 31.5, 20.6, 20.5, 16.7, 14.1; HRMS (ESI) *m/z* calcd for C₂₁H₃₃N₂O₄ (M+H) 377.2435, found 377.2430.

(((2,2,6,6-Tetramethylpiperidin-1-yl)oxy)carbonyl)glycine (2-42). According to General Method 2-A, glycine (80.0 mg, 1.07 mmol), NPTC (412 mg, 1.28 mmol), HOBt (74.2 mg, 0.533 mmol), triethylamine (272 mg, 378 µL, 2.66 mmol), DMF (2.1 mL), after 24 h was diluted with diethyl ether (30 mL) and transferred to a separatory funnel. The mixture was acidified with 1 N KHSO₄ (10 mL). The aqueous layer was separated and the organic layer washed with 1 N KHSO₄ (10 mL). The combined aqueous layers were back-extracted once with diethyl ether (30 mL). The combined ethereal layers were dried (Na₂SO₄), filtered, and concentrated to afford an oily solid which was reslurried in toluene (30 mL). The white precipitate was filtered off under vacuum and the filtrate was concentrated in vacuo to afford a residue which was purified by chromatography on silica gel (isocratic, 99:1 EtOAc/AcOH) to afford 2-42 (132 mg, 46%) as an oil that foamed to a beige solid under high vacuum which contained 3.5% HOBt by mass (factored into yield): $R_f = 0.52$ (EtOAc, bromocresol green active); Mp 122.5 °C (dec.); ATR-IR (neat) 3359, 2978, 2936, 1709, 1505, 1185, 1048, 945 cm⁻¹; ¹H NMR (400 MHz, DMSO) δ 12.57 (bs, 1 H), 7.62 (bs, 1 H), 3.71 (d, J = 6.0 Hz, 2 H), 1.63–1.44 (m, 5 H), 1.40–1.32 (m, 1 H), 1.11 (s, 6 H), 1.06 (s, 6 H); ¹³C NMR (101 MHz, DMSO) δ 171.2, 158.0, 59.8, 42.2, 38.8, 31.1, 20.3, 16.4; ; HRMS (ESI) *m/z* calcd for C₁₂H₂₃N₂O₄ (M+H) 259.1652, found 259.1648.

Methyl (((2,2,6,6-tetramethylpiperidin-1-yl)oxy)carbonyl)glycinate (2-43). Following General Method 2-A and Workup Procedure 2-1, glycine methyl ester hydrochloride (0.150 g, 1.17 mmol), NPTC (453 mg, 1.41 mmol), HOBt (81.6 mg, 0.585 mmol), triethylamine (299 mg, 416 μL, 2.93 mmol), DMF (2.4 mL), and chromatography on SiO₂ (19:1 to 1:1 hexanes/Et₂O) afforded **2-43** (279 mg, 88%) as a colorless solid: $R_f = 0.23$ (1:1 Hexanes/Et₂O, I₂ active); Mp 110.5–112 °C; ATR-IR (neat) 3298, 2979, 3943, 1763, 1702, 1505, 1171, 940, 728 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.24 (bs, 1 H), 4.04 (d, *J* = 5.6 Hz, 2 H), 3.74 (s, 3 H), 1.68–1.53 (m, 5 H), 1.45–1.35 (m, 1 H), 1.21 (s, 6 H), 1.14 (s, 6 H); ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 158.4, 60.9, 52.2, 42.4, 39.7, 31.6, 20.6, 16.7; HRMS (ESI) *m/z* calcd for C₁₃H₂₅N₂O₄ (M+H) 273.1809, found 237.1807.

Ethyl (((2,2,6,6-tetramethylpiperidin-1-yl)oxy)carbonyl)glycinate (2-28). Following General Method 2-A and Workup Procedure 2-1, glycine ethyl ester hydrochloride (0.150 g, 1.06 mmol), NPTC (412 mg, 1.28 mmol), HOBt (74.1 mg, 0.532 mmol), triethylamine (272 mg, 378 µL, 2.66 mmol), DMF (2.1 mL), and chromatography on SiO₂ (19:1 to 1:1 hexanes/Et₂O) afforded 2-28 (283 mg, 93%) as a colorless solid: $R_f = 0.38$ (1:1 hexanes/Et₂O, I₂ active); Mp 109–110.5 °C; ATR-IR (neat) 3275, 2976, 2942, 1757, 1698, 1497, 1178, 1040, 945, 723 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.23 (bs, 1 H), 4.18 (q, *J* = 7.1 Hz, 2 H), 4.01 (d, *J* = 5.6 Hz, 2 H), 1.68–1.48 (m, 5 H), 1.43–1.35 (m, 1 H), 1.25 (t, *J* = 7.1 Hz, 3 H), 1.20 (s, 6 H), 1.13 (s, 6 H); ¹³C NMR (101 MHz, CDCl3) δ 169.8, 158.3, 61.3, 60.8, 42.5, 39.6, 31.6, 20.5, 16.7, 14.1; HRMS (ESI) *m/z* calcd for C₁₄H₂₇N₂O₄ (M+H) 287.1965, found 287.1962.

2-31

tert-Butyl (((2,2,6,6-tetramethylpiperidin-1-yl)oxy)carbonyl)glycinate (2-31). Following General Method 2-A and Workup Procedure 2-1, glycine *tert*-butyl ester hydrochloride (175 mg, 1.02 mmol), NPTC (396 mg, 1.23 mmol), HOBt (71.3 mg, 0.512 mmol), triethylamine (261 mg, 363 μ L, 2.56 mmol), DMF (2.0 mL), and chromatography on SiO₂ (19:1 to 3:1 hexanes/Et₂O) afforded **2-31** (303 mg, 94%) as a colorless solid: $R_f = 0.50$ (1:1 hexanes/Et₂O, I₂ active); Mp 152-154 °C; ATR-IR (neat) 3340, 2978, 2938, 2871, 1702, 1491, 1455, 1367, 1158, 1133, 1041, 933, 706 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.18 (s, 1 H), 3.92 (d, J = 5.4 Hz, 2 H), 1.68–1.56 (m, 5 H), 1.46 (s, 9 H), 1.44–1.38 (m, 1 H), 1.21 (s, 6 H), 1.14 (s, 6 H); ¹³C NMR (126 MHz, CDCl₃) δ 168.8, 158.3, 82.1, 60.8, 43.3, 39.7, 31.7, 28.1, 20.6, 16.8; HRMS (ESI) *m/z* calcd for C₁₆H₃₁N₂O4 (M+H) 315.2278, found 315.2274.

Benzyl (((2,2,6,6-tetramethylpiperidin-1-yl)oxy)carbonyl)glycinate (2-44). Following General Method 2-A and Workup Procedure 2-1, glycine benzyl ester hydrochloride (225 mg, 1.11 mmol), NPTC (0.430 g, 1.33 mmol), HOBt (77.3 mg, 0.555 mmol), triethylamine (284 mg, 394 μ L, 2.78 mmol), DMF (2.2 mL), and chromatography on SiO₂ (19:1 to 1:1 hexanes/Et₂O) afforded 2-44 (351 mg, 91%) as a heavy oil which turned to a colorless solid on standing: $R_f = 0.35$ (1:1 hexanes/Et₂O, I₂ active); Mp 93–94.5 °C; ATR-IR (neat) 3336, 2977, 2936, 2874, 1707, 1498, 1171, 940, 739, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.31 (m, 5 H), 7.26 (bs, 1 H), 5.17 (s, 2 H), 4.09 (d, *J* = 5.6 Hz, 2 H), 1.68–1.48 (m, 5 H), 1.45–1.37 (m, 1 H), 1.21 (s, 6 H), 1.12 (s, 6 H); ¹³C NMR (101 MHz, CDCl₃) δ 169.6, 158.3, 128.6, 128.5, 128.4, 67.1, 60.8, 42.6, 39.6, 31.6, 20.5, 16.7; HRMS (ESI) *m*/*z* calcd for C₁₉H₂₉N₂O₄ (M+H) 349.2122, found 349.2123.

Ethyl N-methyl-*N*-(((2,2,6,6-tetramethylpiperidin-1-yl)oxy)carbonyl)glycinate (2-45). Following General Method 2-A and Workup Procedure 2-1, sarcosine ethyl ester hydrochloride (175 mg, 1.11 mmol), NPTC (432 mg, 1.33 mmol), HOBt (77.0 mg, 0.553 mmol), triethylamine (282 mg, 392 μL, 2.76 mmol), DMF (2.2 mL), and chromatography on SiO₂ (19:1 to 1:1 hexanes/Et₂O) afforded **2-45** (306 mg, 92%) as a heavy clear oil: $R_f = 0.25$ (1:1 hexanes/Et₂O, I₂ active); ATR-IR (neat) 2975, 2935, 1729, 1378, 1199, 1125, 1037, 928, 763 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.20 (dq, *J* = 14.7, 7.1 Hz, 2 H), 4.01 (d, *J* = 11.5 Hz, 2 H), 3.03 (s, 3 H), 1.74– 1.34 (m, 6 H), 1.32–1.21 (m, 3 H), 1.17 (s, 3 H), 1.12 (s, 3 H), 1.09 (s, 3 H), 1.08 (s, 3 H); ¹³C NMR (101 MHz, CDCl₃, mixture of rotamers) δ 169.6, 157.7, 156.8, 61.2, 61.0, 60.1, 51.2, 50.6, 39.0, 36.7, 35.2, 31.7, 31.6, 20.9, 20.8, 17.0, 16.9, 14.2, 14.2; HRMS (ESI) *m*/*z* calcd for C₁₅H₂₉N₂O₄ (M+H) 301.2122, found 301.2119.

Ethyl N-benzyl-N- (((2,2,6,6-tetramethylpiperidin-1-yl)oxy)carbonyl) glycinate (2-46). Following General Method 2-A and Workup Procedure 2-1, N-benzyl glycine ethyl ester
hydrochloride (0.250 g, 1.07 mmol), **NPTC** (417 mg, 1.28 mmol), HOBt (74.3 mg, 0.533 mmol), triethylamine (273 mg, 379 µL, 2.67 mmol), DMF (2.1 mL), and chromatography on SiO₂ (19:1 to 1:1 hexanes/Et₂O) afforded **2-46** (303 mg, 94%) as a heavy clear oil: $R_f = 0.39$ (1:1 hexanes/Et₂O, I₂ active); ATR-IR (neat) 2974, 2936, 1732, 1453, 1364, 1183, 1091, 1028, 928, 760, 700 cm⁻¹; ¹H (400 MHz, CDCl₃) δ 7.41–7.23 (m, 5 H), 4.62 (d, J = 2.6 Hz, 2 H), 4.18 (q, J = 7.2 Hz, 2 H), 3.99 (s, 1 H), 3.87 (s, 1 H), 1.77–1.35 (m, 6 H), 1.25 (td, J = 7.2, 3.4 Hz, 3 H), 1.14 (s, 6 H), 1.09 (s, 3 H), 1.04 (s, 3 H); ¹³C NMR (101 MHz, CDCl₃, mixture of rotamers) δ 169.7, 157.5, 157.1, 137.3, 137.3, 128.7, 128.6, 128.2, 127.6, 127.5, 127.1, 61.2, 61.1, 60.2, 60.2, 52.0, 51.5, 49.0, 47.5, 39.1, 31.7, 31.6, 20.9, 17.0, 14.2, 14.1; HRMS (ESI) *m*/*z* calcd for C₂₁H₃₃N₂O4 (M+H) 377.2435, found 377.2429.

Methyl (((2,2,6,6-tetramethylpiperidin-1-yl)oxy)carbonyl)-D-phenylalaninate (2-47). Following General Method 2-A and Workup Procedure 2-1, D-phenylalanine methyl ester hydrochloride (785 mg, 3.64 mmol), NPTC (1.41 mg, 4.37 mmol), HOBt (254 mg, 1.82 mmol), triethylamine (0.930 g, 1.29 mL, 9.10 mmol), DMF (19 mL), and chromatography on SiO₂ (19:1 to 1:1 hexanes/Et₂O) afforded 2-47 (1.07 g, 81%) as a colorless solid: $[\alpha]_D^{23}$ +17.4 (*c* 0.16, CH₂Cl₂); $R_f = 0.33$ (1:1 hexanes/Et₂O, I₂ active); Mp 84–85.5 °C; ATR-IR (neat) 3346, 2935, 1721, 1491, 1181, 988, 700 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.32–7.21 (m, 3 H), 7.21–7.10 (m, 3 H), 4.66 (dt, *J* = 7.6, 6.2 Hz, 1H), 3.73 (s, 3H), 3.21–3.10 (m, 2H), 1.66–1.50 (m, 3 H), 1.47–1.34 (m, 3 H), 1.16 (s, 3 H), 1.15 (s, 3 H), 1.02 (s, 3 H), 0.86 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 172.0, 157.9, 135.8, 129.2, 128.6, 127.1, 60.8, 60.6, 54.5, 52.2, 39.6, 39.6, 37.9, 31.5, 20.6, 20.5, 16.7; HRMS (ESI) *m*/*z* calcd for C₂₀H₃₁N₂O₄ (M+H) 363.2278, found 363.2279.

2-48

(((2,2,6,6-tetramethylpiperidin-1-yl)oxy)carbonyl)-L-tryptophanate Ethyl (##). Following General Method 2-A and Workup Procedure 2-1, L-tryptophan ethyl ester hydrochloride (0.300 g, 1.08 mmol), NPTC (423 mg, 1.30 mmol), HOBt (75.4 mg, 0.541 mmol), triethylamine (277 mg, 384 µL, 2.71 mmol), DMF (2.2 mL), and chromatography on SiO₂ (19:1 to 2:1 hexanes/Et₂O) afforded 2-48 (371 mg, 83%) as a colorless foam which collapsed to a clear oil on standing: $[\alpha]_{D}^{23}$ +4.9 (*c* 0.292, CH₂Cl₂); $R_f = 0.48$ (1:1 hexanes/Et₂O, UV active); ATR-IR (neat) 3340, 2978, 2936, 2244, 1708, 1491, 1250, 986, 912, 735 cm⁻¹; ¹H NMR (601 MHz, CDCl₃) δ 8.19 (s, 1 H), 7.60 (d, J = 7.9 Hz, 1 H), 7.36 (d, J = 8.1 Hz, 1 H), 7.19 (t, J = 7.6 Hz, 1 H), 7.2 (overlapped, 1 H), 7.13 (t, J = 7.5 Hz, 1 H), 7.05 (d, J = 2.3 Hz, 1 H), 4.66 (q, J = 6.7 Hz, 1 H), 4.20–4.09 (m, 2 H), 3.33 (qd, J = 15.0, 6.4 Hz, 2 H), 1.59–1.39 (m, 3 H), 1.32–1.21 (m, 3 H), 1.19 $(t, J = 7.2 \text{ Hz}, 3 \text{ H}), 1.13 (s, 3 \text{ H}), 1.10 (s, 3 \text{ H}), 0.99 (s, 3 \text{ H}), 0.73 (s, 3 \text{ H}); {}^{13}C (151 \text{ MHz}, \text{CDCl}_3)$ δ 172.0, 158.1, 136.0, 127.6, 122.6, 122.2, 119.7, 118.5, 111.2, 110.2, 61.3, 60.6, 60.5, 54.5, 39.5, 39.3, 31.6, 31.1, 27.5, 20.5, 20.5, 16.6, 14.0; HRMS (ESI) m/z calcd for C₂₃H₃₄N₃O₄ (M+H) 416.2544, found 416.2553.

Methyl (((2,2,6,6-tetramethylpiperidin-1-yl)oxy)carbonyl)-L-alaninate (2-49). Following General Method 2-A and Workup Procedure 2-1, L-alanine methyl ester hydrochloride (0.200 g, 1.18 mmol), NPTC (462 mg, 1.42 mmol), HOBt (82.3 mg, 0.591 mmol), triethylamine (302 mg, 419 μL, 2.95 mmol), DMF (2.4 mL), and chromatography on SiO₂ (19:1 to 2:1 hexanes/Et₂O) afforded **2-49** (310 mg, 92%) as a colorless solid: $[\alpha]_D^{24}$ +10.2 (*c* 0.248, CH₂Cl₂); $R_f = 0.30$ (1:1 hexanes/Et₂O, I₂ active); Mp 66–67.5 °C; ATR-IR (neat) 3367, 2979, 2937, 1716, 1495, 1454, 1167, 1023, 758 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.33 (bd, *J* = 8.0 Hz, 1 H), 4.55– 4.39 (m, 1 H), 3.74 (s, 3 H), 1.67–1.52 (m, 5 H), 1.41 (d, *J* = 7.2 Hz, 3 H), 1.41 (overlapped, 1 H), 1.21 (s, 6 H), 1.14 (s, 3 H), 1.10 (s, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ 173.3, 157.6, 60.8, 60.8, 52.3, 49.3, 39.7, 39.6, 31.6, 31.5, 20.5, 20.5, 18.8, 16.7; HRMS (ESI) *m*/*z* calcd for C₁₄H₂₇N₂O4 (M+H) 287.1965, found 287.1990.

Methyl (((2,2,6,6-tetramethylpiperidin-1-yl)oxy)carbonyl)-L-leucinate (2-50). Following General Method 2-A and Workup Procedure 2-1, L-leucine methyl ester hydrochloride (225 mg, 1.21 mmol), NPTC (474 mg, 1.46 mmol), HOBt (84.5 mg, 0.607 mmol), triethylamine (0.310 mg, 431 μ L, 3.04 mmol), DMF (2.4 mL), and chromatography on SiO₂ (19:1 to 17:3 hexanes/Et₂O) afforded 2-50 (355 mg, 89%) as a colorless solid: $[\alpha]_D^{25}$ -7.0 (*c* 0.141, CH₂Cl₂); R_f = 0.53 (1:1 hexanes/Et₂O, I₂ active); Mp 90–91.5 °C; ATR-IR (neat) 3281, 2951, 1757, 1697, 1504, 1187, 991, 922, 736 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.15 (bs, 1 H), 4.48 (td, *J* = 9.0, 4.5 Hz, 1 H), 3.72 (s, 3 H), 1.71–1.52 (m, 8 H), 1.46–1.39 (m, 1 H), 1.22 (s, 6 H), 1.16 (s, 3 H), 1.11 (s, 3 H), 0.95 (d, *J* = 5.9 Hz, 3 H), 0.93 (d, *J* = 6.5 Hz, 3H); ¹³C NMR (101 MHz, CDCl3) δ 173.4, 157.9, 60.9, 60.8, 52.2, 52.1, 42.1, 39.8, 39.7, 31.8, 31.6, 24.8, 22.9, 21.8, 20.6, 20.6, 16.8; HRMS (ESI) *m*/*z* calcd for C₁₇H₃₃N₂O₄ (M+H) 329.2435, found 329.2434.

Methyl (((2,2,6,6-tetramethylpiperidin-1-yl)oxy)carbonyl)-L-valinate (2-51). Following General Method 2-A and Workup Procedure 2-1, L-valine methyl ester hydrochloride (3.24 g, 19.1 mmol), NPTC (7.48 g, 23.0 mmol), HOBt (1.33 g, 9.57 mmol), triethylamine (6.79 mL, 4.89 g, 47.9 mmol), DMF (38 mL), and chromatography on SiO₂ (19:1 to 1:1 hexanes/Et₂O) afforded **2-51** (5.18 g, 86%) as a heavy clear oil which solidified on standing to a colorless solid: $[\alpha]_D^{24}$ -6.5 (*c* 0.318, CH₂Cl₂); R_f = 0.40 (1:1 hexanes/Et₂O, I₂ active); Mp 78–79.5 °C; ATR-IR (neat) 3371, 2967, 2935, 1729, 1492, 1211, 1148, 991, 764 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.30 (s, 1 H), 4.38 (dd, *J* = 9.2, 4.6 Hz, 1 H), 3.73 (s, 3 H), 2.20 (heptd, *J* = 6.9, 4.8 Hz, 1 H), 1.71– 1.54 (m, 5 H), 1.46–1.38 (m, 1 H), 1.23 (s, 3 H), 1.22 (s, 3 H), 1.17 (s, 3 H), 1.15 (s, 3 H), 0.97 (d, *J* = 6.9 Hz, 3 H), 0.90 (d, *J* = 6.9 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 172.3, 158.2, 77.3, 76.7, 60.9, 60.7, 58.8, 52.0, 39.8, 39.7, 32.3, 31.5, 20.6, 20.6, 19.1, 17.7, 16.8; HRMS (ESI) *m*/z calcd for C₁₆H₃₁N₂O₄ (M+H) 315.2278, found 315.2296.

Ethyl 1-((((2,2,6,6-tetramethylpiperidin-1-yl)oxy)carbonyl)amino)cyclopropane-1carboxylate (2-52). Following General Method 2-A and Workup Procedure 2-1, ethyl-1aminocyclopropanecarboxylate hydrochloride (135 mg, 1.02 mmol), NPTC (0.400 g, 1.23 mmol), HOBt (71.3 mg, 0.512 mmol), triethylamine (262 mg, 364 μ L, 2.56 mmol), DMF (2.0 mL), and chromatography on SiO₂ (19:1 to 1:1 hexanes/Et₂O) afforded 2-52 (97 mg, 30%) as a fluffy colorless solid: $R_f = 0.35$ (1:1 hexanes/Et₂O, I₂ active); Mp 125–128 °C; ATR-IR (neat) 3272, 2981, 2941, 1725, 1709, 1472, 1175, 1030, 954, 753 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.33 (bs, 1 H), 4.13 (q, *J* = 7.1 Hz, 2 H), 1.70–1.48 (m, 7 H), 1.45–1.38 (m, 1 H), 1.25–1.16 (m, 11 H), 1.13 (s, 6 H); ¹³C NMR (101 MHz, CDCl₃) δ 172.4, 158.1, 61.4, 60.9, 39.7, 33.9, 31.7, 20.6, 18.1, 16.7, 14.1; HRMS (ESI) *m*/z calcd for C1₆H₂₉N₂O4 (M+H) 313.2122, found 313.2118.

2-53

Methyl (((2,2,6,6-tetramethylpiperidin-1-yl)oxy)carbonyl)-L-serinate (2-53). Following General Method 2-A and Workup Procedure 2-2, L-serine methyl ester hydrochloride (0.200 g, 1.26 mmol), NPTC (492 mg, 1.51 mmol), HOBt (87.8 mg, 0.630 mmol), triethylamine (322 mg, 447 μ L, 3.15 mmol), DMF (2.5 mL), and chromatography on SiO₂ (19:1 to 1:1 hexanes/Et₂O) afforded 2-53 (311 mg, 82%) as a heavy oil which solidified to colorless solid on standing: [α]_D²⁵ +16.8 (*c* 0.268, CH₂Cl₂); R_f = 0.54 (EtOAc, KMnO₄ active); Mp 93.5–95.5 °C; ATR-IR (neat) 3377, 2978, 2934, 1705, 1500, 1211, 1035, 752 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.65 (s, 1 H), 4.50 (dt, *J* = 7.6, 3.6 Hz, 1 H), 4.01 (ddd, *J* = 11.1, 5.7, 3.7 Hz, 1 H), 3.90 (ddd, *J* = 11.1, 5.9, 3.5 Hz, 1 H), 3.78 (s, 3 H), 2.42 (td, *J* = 5.9, 1.7 Hz, 1 H), 1.67–1.55 (m, 5 H), 1.45–1.38 (m, 1 H), 1.21 (s, 6 H), 1.16 (s, 3 H), 1.14 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 170.8, 158.4, 63.4, 60.9, 55.8, 52.6, 39.6, 39.6, 31.6, 31.5, 20.5, 20.5, 16.7; HRMS (ESI) *m/z* calcd for C_{14H27N2O5} (M+H) 303.1914, found 303.1937.

(Aminooxy)diphenylphosphine oxide (S-1).¹⁴⁹ Hydroxylamine hydrochloride (1.98 g, 28.2 mmol) was charged into a round bottom flask and dissolved in water (4.25 mL). This solution was vigorously stirred and treated with NaOH (0.970 g NaOH, 24.3 mmol) in water (3.5 mL). This mixture was then immediately transferred into a NaCl/ice bath (1:3) and to it was added 1,4dioxane (15 mL). The solution was allowed to cool for 5 min before diphenylphosphinyl chloride (2.50 g, 2.02 mL, 10.5 mmol) which was diluted to 12.5 mL in 1,4-dioxane, was ran in by syringe. A white precipitate was immediately formed. This precipitate thickened over the next 5 min to the point where the reaction seized. After 5 min, ice-cold water (15 mL) was added and the solids were removed by vacuum filtration and the filter cake washed with ice-cold water (15 mL). The filter cake was then transferred to a vacuum desiccator and dried over calcium sulfate under reduced pressure overnight. The tacky solids were then slurried in ice-cold 0.25 M aq. NaOH (25 mL) for 30 min in an ice-bath before being filtered one more time and washed with ice cold water (15 mL). This filter cake was dried in a vacuum desiccator for 24 h to afford S-1 (1.20 g, 49%) as a colorless solid which matched literature reported spectra: ¹H NMR (400 MHz, CDCl₃) δ 7.89–7.81 (m, 4H), 7.59–7.53 (m, 2H), 7.52–7.44 (m, 4H); ³¹P NMR (162 MHz, CDCl₃) δ 37.6.

tert-Butyl aziridine-2-carboxylate (S-2).¹⁴⁹ A flame dried flask was charged with (aminooxy)diphenylphosphine oxide (1.14 g, 4.87 mmol) in dry MeCN (77 mL, 0.06 M). This solution was then treated with NMM (55 μ L, 502 mg, 4.87 mmol) dropwise over 3 min. The white mixture stirred for 30 min before sequential addition of NaOH (371 mg, 9.27 mmol) and *tert*-butyl acrylate (68 μ L, 0.600 g, 4.64 mmol). After stirring for an additional 16 h at ambient temperature, the reaction was quenched with sat. NH4Cl. Extraction with diethyl ether, and concentration gave a residue which was purified by chromatography on silica gel (gradient,1:19 to 1:0 Et₂O/hexanes) to afford **S-2** as a slightly volatile yellow liquid which matched literature reported spectra: ¹H NMR (400 MHz, CDCl₃) δ 2.42 (dd, J = 5.5, 3.0 Hz, 1 H), 1.92 (dd, J = 3.0, 1.6 Hz, 1 H), 1.79 (d, J = 5.4 Hz, 1 H), 1.48 (s, 9 H), 1.45 (d, J = 6.2 Hz, 1 H).

2-54

(±) 2-(tert-Butyl) 1-(2,2,6,6-tetramethylpiperidin-1-yl) aziridine-1,2-dicarboxylate (2-24). Following General Method 2-A and Workup Procedure 2-1, *tert*-butyl aziridine-2-carboxylate (269 mg, 1.79 mmol), NPTC (697 mg, 2.14 mmol), HOBt (124 mg, 0.892 mmol), triethylamine (274 mg, 363 μ L, 2.56 mmol), DMF (3.6 mL), and chromatography on SiO₂ (19:1 to 17:3 hexanes/Et₂O) afforded 2-54 (475 mg, 82%) as a heavy clear oil: R_f = 0.26 (3:1 hexanes/Et₂O); ATR-IR (neat) 2977, 2935, 1761, 1733, 1367, 1319, 1146, 992, 846, 745 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 3.01 (dd, *J* = 5.5, 3.2 Hz, 1 H), 2.55 (dd, *J* = 3.3, 1.4 Hz, 1 H), 2.43 (dd, *J* = 5.5, 1.4 Hz, 1 H), 1.74–1.59 (m, 5 H), 1.49 (s, 9 H), 1.42–1.36 (m, 1 H), 1.18 (s, 3 H), 1.15 (s, 3 H), 1.13 (s, 3 H), 1.11 (s, 3 H);¹³C NMR (75 MHz, CDCl₃, 1:1 mixture of rotamers) δ 167.2, 161.9, 82.6, 60.5, 39.2, 35.3, 31.6, 31.6, 31.0, 28.0, 20.4, 16.9; HRMS (ESI) *m/z* calcd for C₁₇H₃₁N₂O₄ (M+H) 327.2278, found 327.2276.

Methyl N_e-(((2,2,6,6-tetramethylpiperidin-1-yl)oxy)carbonyl)-L-lysinate (2-55). Following General Method 2-A and Workup Procedure 2-1, L-valine methyl ester hydrochloride (3.24 g, 19.1 mmol), NPTC (7.48 g, 23.0 mmol), HOBt (1.33 g, 9.57 mmol), triethylamine (6.79 mL, 4.89 g, 47.9 mmol), DMF (38 mL), and chromatography on SiO₂ (19:1 to 1:1 hexanes/Et₂O) afforded **2-55** (5.18 g, 86%) as a heavy clear oil which solidified on standing to a colorless solid (conversion to the hydrochloride salt by means of HCl-ether gave a white precipitate which deliquesced rapidly on the filter paper): $[\alpha]_D^{24}$ +3.7 (*c* 0.297, CH₂Cl₂); R_f = 0.52 (4:1 EtOAc:MeOH, ninhydrin active); ATR-IR (neat) 3367, 2935, 3871, 1706, 1603, 1499, 1251, 1186, 956, 734 cm⁻¹; ¹H NMR (601 MHz, CDCl₃) δ 6.81 (bs, 1 H), 3.72 (s, 3 H), 3.44 (dd, *J* = 7.5, 5.4 Hz, 1 H), 3.23 (q, *J* = 6.8 Hz, 2 H), 1.78–1.72 (m, 1 H), 1.67–1.49 (m, 10 H), 1.41 (ddq, *J* = 12.6, 6.3, 2.9 Hz, 3 H), 1.21 (s, 6 H), 1.09 (s, 6 H); ¹³C NMR (151 MHz, CDCl₃) δ 176.4, 158.6, 60.7, 54.3, 52.0, 40.5, 39.7, 34.4, 31.7, 29.7, 22.9, 20.5, 16.7; HRMS (ESI) *m/z* calcd for C₁₇H₃₃N₃O₄ (M+H) 343.2471, found 343.2543.

(S)-2-amino-5-(((benzyloxy)carbonyl)amino)pentanoic acid hydrochloride (H-**Orn(Z)-OH)** (S-3). An Erlenmeyer flask was charged with L-ornithine hydrochloride (10.0 g, 58.7 mmol, 1.0 equiv) in water (47 mL) and to it was added solid sodium hydroxide (4.70 g, 117 mmol, 2.0 equiv). Upon complete dissolution a mixture of copper(II) sulfate pentahydrate (7.33 g, 29.4 mmol, 0.5 equiv) was added as a solution in water (24 mL) resulting in a deep blue solution. The blue mixture was stirred for 15 min before being cooled to 0° C on an ice-bath and receiving benzyl chloroformate (11.2 mL, 13.4 g, 76.3 mmol, 1.3 equiv) dropwise over 10 min. After addition was complete the reaction was slowly allowed to warm to ambient temperature and stir for 12 h. The blue copper complex that precipitated was collected by suction filtration and the filter cake was washed with water (2 x 100 mL) and acetone (2 x 100 mL) then air dried to give the copper complex as a light blue powder which was used directly without purification. In a large Erlenmeyer flask, a suspension of EDTA dihydrate (21.6 g, 64.6 mmol, 1.1 equiv) in water (235 mL) was brought to reflux and the pH was adjusted to 7 by addition of solid sodium hydroxide. To this refluxing solution was added the powdered complex (the complex should be free of large chunks) portion-wise with vigorous stirring (polygon stirbar necessary). The complex tends to float on top of the vortex so periodically a scoopula was inverted and inserted down the wall of the flask into the vortex to act as a baffle. Once the blue powder has been converted into a white precipitate (typically 2 h), the pH is checked and adjusted to 7 if necessary. The slurry is cooled to ambient temperature and the white precipitate is collected by filtration. The filter-cake washed with liberally with water and then with methanol (200 mL). The cake was then dried under vacuum to afford the neutral amino acid S-3 (13.4 g, 86%) as a white solid. The neutral Cbz amino acid is

insoluble in DMSO, CHCl₃, and methanol and therefore a sample was converted to the hydrochloride salt for NMR analysis: a small amount of the above product is dissolved in a minimal amount of 4 M aqueous HCl and dried to a colorless solid under vacuum before being dissolved in DMSO-d₆ which spectrally matched commercial material: ¹H NMR (400 MHz, DMSO) δ 13.80 (bs, 1 H), 8.29 (bs, 3 H), 7.41–7.29 (m, 5 H), 5.01 (s, 2 H), 3.90 (s, 1 H), 3.01 (q, J = 6.5 Hz, 2 H), 1.85–1.68 (m, 2 H), 1.63–1.39 (m, 2 H).

methyl (*S*)-2-amino-5-(((benzyloxy)carbonyl)amino)pentanoate hydrochloride (H-Orn(Z)-OMe) (2-61).¹⁵⁰ A suspension of S-3 (10.0 g, 37.2 mmol, 1.0 equiv) in dry methanol (148 mL, 0.25 M) was cooled to 0 °C on an ice-bath before dropwise addition of thionyl chloride (16.6 mL, 22.1 g, 186 mmol, 5.0 equiv) by addition funnel over 10 min (the suspension underwent dissolution on addition). The reaction mixture was stirred at this temperature for 1 hour and before the cooling bath was removed and stirring continued for an addition 24 h. The reaction was concentrated and the residue chased with methanol twice then once with toluene. The waxy solid was reslurried in diethyl ether (500 mL) under vigorous stirring for 1 hour (any large chunks were granulated manually with a teflon stirbar retriever). Collection of the liberated solids on a vacuum funnel gave a cake which was washed with ether (150 mL) and dried under vacuum to give **2-61** (10.5 g, quant) as a fluffy colorless solid that matched literature reported spectra: $[α]_D^{20} +17.0$ (*c* 4.018, CH₂Cl₂) ¹H NMR (500 MHz, DMSO) δ 8.58 (bs, 3 H), 7.40–7.31 (m, 5 H), 4.02 (t, *J* = 6.4 Hz, 1 H), 3.73 (s, 3 H), 3.00 (q, *J* = 6.5 Hz, 2 H), 1.78 (dtd, *J* = 9.3, 6.3, 2.8 Hz, 2 H), 1.59–1.38

(m, 2 H); ¹³C NMR (126 MHz, DMSO) δ 169.9, 156.1, 137.2, 128.3, 127.7, 127.7, 65.2, 52.7, 51.6, 27.4, 24.9.

(S)-5-(((benzyloxy)carbonyl)amino)-2-((S)-3-methyl-2-((((2,2,6,6-Methyl tetramethylpiperidin-1-yl)oxy)carbonyl)amino)butanamido)pentanoate (Tempoc-Val-Orn(Cbz)-OMe) (2-63). Following General Method 2-C. 2-51 (1.53 g, 4.87 mmol, 1.0 equiv), lithium hydroxide monohydrate (313 mg, 7.30 mmol, 1.5 equiv), in a 2:1 mixture of THF/H₂O (15 mL, 0.35 M), gave the acid after which was used immediately in the next step. 2-61 (1.70 g, 5.35 mmol, 1.1), HATU (2.08 g, 5.35 mmol, 1.1 equiv) in dry DMF (8.2 mL, 0.25 M) afforded an oil which was purified by chromatography on SiO_2 (gradient, 19:1 to 1:1, hexanes/EtOAc) to give 2-**63** (2.63 g, 95%) as a colorless foam: $[\alpha]_{D}^{24}$ +5.0 (*c* 0.274, CH₂Cl₂); $R_f = 0.63$ (1:4 hexanes/EtOAc, I₂ active); ATR-IR (neat) 3320, 2965, 2935, 2874, 1711, 1666, 1497, 1250, 1132, 1021, 733 cm⁻¹; ¹H NMR (601 MHz, CDCl₃) δ 7.39–7.29 (m, 5 H), 6.46 (d, J = 7.9 Hz, 1 H), 5.09 (s, 2 H), 4.91 (t, J = 6.2 Hz, 1 H), 4.57 (td, J = 7.9, 5.0 Hz, 1 H), 4.01 (dd, J = 9.0, 6.8 Hz, 1 H), 3.74 (s, 3 H), 3.21 (qd, J = 6.8, 3.1 Hz, 2 H), 2.11 (h, J = 6.8 Hz, 1 H), 1.87 (tt, J = 10.1, 4.9 Hz, 1 H), 1.70-1.45 (m, J = 10.1, 4.9 Hz, 1 H), 1.70-1.45 (m, J = 10.1, 4.9 Hz, 1 H), 1.70-1.45 (m, J = 10.1, 4.9 Hz, 1 H), 1.70-1.45 (m, J = 10.1, 4.9 Hz, 1 H), 1.70-1.45 (m, J = 10.1, 4.9 Hz, 1 H), 1.70-1.45 (m, J = 10.1, 4.9 Hz, 1 H), 1.70-1.45 (m, J = 10.1, 4.9 Hz, 1 H), 1.87 (tt, J = 10.1, 4.9 Hz, 1 H), 1.70-1.45 (m, J = 10.1, 4.9 Hz, 1 H), 1.87 (tt, J = 10.1, 4.9 Hz, 1 H), 1.70-1.45 (m, J = 10.1, 4.9 Hz, 1 H), 1.87 (tt, J = 10.1, 4.9 Hz, 1 H), 1.70-1.45 (m, J = 10.1, 4.9 Hz, 1 H), 1.87 (tt, J = 10.1, 4.9 Hz, 1 H), 1.70-1.45 (m, J = 10.1, 4.9 Hz, 1 H), 1.87 (tt, J = 10.1, 4.9 Hz, 1 H), 1.70-1.45 (m, J = 10.1, 4.9 Hz, 1 H), 1.87 (tt, J = 10.1, 4.9 Hz, 1 H), 1.70-1.45 (m, J = 10.1, 4.9 Hz, 1 H), 1.87 (tt, J = 10.1, 4.9 Hz, 1 H), 1.87 (tt, J = 10.1, 4.9 Hz, 1 H), 1.87 (tt, J = 10.1, 4.9 Hz, 1 H), 1.87 (tt, J = 10.1, 4.9 Hz, 1 H), 1.87 (tt, J = 10.1, 4.9 Hz, 1 H), 1.87 (tt, J = 10.1, 4.9 Hz, 1 H), 1.87 (tt, J = 10.1, 4.9 Hz, 1 H), 1.70-1.45 (m, J = 10.1, 4.9 Hz, 1 H), 1.87 (tt, J = 10.1, 4.9 Hz, 1 H9 H), 1.44–1.38 (m, 1 H), 1.22 (s, 3 H), 1.19 (s, 3 H), 1.16 (s, 3 H), 1.08 (s, 3 H), 1.00–0.95 (m, 6 H); ¹³C NMR (151 MHz, CDCl₃) δ 172.2, 170.9, 158.5, 156.5, 136.5, 128.5, 128.1, 128.0, 66.6, 60.9, 60.7, 60.4, 52.4, 51.8, 40.2, 39.7, 39.4, 32.1, 31.4, 31.3, 29.1, 25.9, 20.6, 19.2, 18.2, 16.7; HRMS (ESI) *m/z* calcd for C₂₉H₄₇N₄O₇ (M+H) 563.3439, found 563.3432.

(5-(((benzyloxy)carbonyl)amino)-2-((S)-3-methyl-2-((((2,2,6,6-Methyl tetramethylpiperidin-1-yl)oxy)carbonyl)amino)butanamido)pentanoyl)-L-leucinate (epi-2-59). Following General Method 2-C, 2-63 (6.90 g, 12.3 mmol), lithium hydroxide monohydrate (788 mg, 18.4 mmol), in a 2:1 mixture of THF/H₂O (35 mL) gave the acid after extraction which was used immediately in the coupling step. 2-62-HCl (2.50 g, 13.5 mmol), HATU (5.18 g, 13.5 mmol), and DIPEA (7.16 mL, 5.60 g, 42.9 mmol) in dry DMF (49 mL) afforded an oil which was purified by chromatography on SiO₂ (gradient, 19:1 to 1:1, hexanes/EtOAc) to give epi-2-59 (8.29) g, 99%) as a colorless foam in a 1.2:1 mixture of epimers: $[\alpha]_{D}^{23}$ +5.9 (c 0.576, CH₂Cl₂); R_f = 0.55 (1:4 hexanes/EtOAc, I₂ active); ATR-IR (neat) 3304, 2960, 1706, 1645, 1497, 1248, 1156, 1132, 1022, 848, 696 cm⁻¹; ¹H (601 MHz, DMSO, mixture of epimers) δ 8.43–8.13 (m, 2 H), 7.46–7.20 (m, 7 H), 5.08–4.95 (m, 2 H), 4.38–4.22 (m, 2 H), 4.15–3.99 (m, 1 H), 3.60 (s, 3 H), 3.07–2.87 (m, 2 H), 2.02–1.90 (m, 1 H), 1.65–1.34 (m, 12 H), 1.31–1.21 (m, 1 H), 1.14–1.07 (m, 9 H), 0.98–0.96 (m, 3 H), 0.91–0.73 (m, 12 H),¹³C NMR (126 MHz, DMSO, mixture of epimers) δ 173.2, 172.0, 171.8, 170.9, 170.7, 157.8, 157.6, 156.6, 156.5, 137.7, 128.8, 128.2, 128.2, 128.1, 65.6, 65.6, 60.5, 60.3, 60.3, 59.3, 59.0, 52.4, 52.3, 52.3, 52.3, 50.6, 50.6, 40.0, 32.2, 32.2, 32.2, 32.0, 31.5, 31.4, 30.3, 29.7, 26.4, 24.7, 24.6, 23.3, 21.6, 20.8, 20.7, 19.8, 19.6, 18.0, 17.9, 16.8; HRMS (ESI) m/z calcd for C₃₅H₅₈N₅O₈ (M+H) 676.4280, found 676.4283.

Methyl (5-(((benzyloxy)carbonyl)amino)-2-((S)-2-((tert-butoxycarbonyl)amino)-3methylbutanamido)pentanoyl)-L-leucinate (epi-2-65). Following General Method 2-C, 2-64 (0.600 g, 2.76 mmol), lithium hydroxide monohydrate (174 mg, 4.14 mmol), in a 2:1 mixture of THF/H₂O (7.9 mL) gave the acid after extraction which was used immediately in the coupling step. 2-61 (928 mg, 2.90 mmol), HATU (1.10 g, 2.90 mmol), and DIPEA (1.60 mL, 9.67 mmol) in dry DMF (11 mL) and filtration through a 1.5" plug of SiO₂ afforded the dipeptide as a hygroscopic colorless foam which was used in the next step without further purification. Following General Method 2-C, (0.600 g, 2.76 mmol), lithium hydroxide monohydrate (174 mg, 4.14 mmol), in a 2:1 mixture of THF/H₂O (7.9 mL) gave the acid after extraction which was used immediately in the coupling step. 2-62-HCl (538 mg, 2.90 mmol), HATU (1.10 g, 2.90 mmol), and DIPEA (1.60 mL, 9.67 mmol) in dry DMF (11 mL) and purification by chromatography on SiO₂ (gradient, 19:1 to 1:1, hexanes/EtOAc) to give epi-2-65 (1.44 g, 88%) as a colorless foam in a 1.2:1 mixture of epimers: ATR-IR (neat) 3298, 2960, 2871, 1692, 1641, 1524, 1247, 1160, 1019, 698 cm⁻¹; ¹H NMR (601 MHz, DMSO, mixture of epimers) δ 8.33–8.17 (m, 1 H), 8.01–7.77 (m, 1 H), 7.43– 7.21 (m, 6 H), 6.79–6.66 (m, 1 H), 5.07–4.92 (m, 2 H), 4.36–4.22 (m, 2 H), 3.85–3.74 (m, 1 H), 3.67-3.53 (m, 3 H), 3.04-2.91 (m, 2 H), 1.98-1.86 (m, 1 H), 1.66-1.32 (m, 16 H), 0.90-0.76 (m, 12 H); ¹³C NMR (151 MHz, DMSO, mixture of epimers) δ 173.2, 172.0, 171.9, 171.7, 171.5, 156.6, 156.5, 156.0, 155.9, 137.7, 128.8, 128.2, 128.2, 78.5, 78.5, 65.6, 65.6, 60.3, 60.2, 52.3, 52.3, 52.2, 50.6, 50.6, 40.0, 34.7, 31.5, 30.8, 30.8, 30.2, 28.7, 28.6, 26.3, 25.3, 24.7, 24.6, 23.3, 23.2, 22.6, 21.8, 21.6, 19.7, 18.6, 18.6.

(S)-5-(((Benzyloxy)carbonyl)amino)-2-((tert-butoxycarbonyl)amino)pentanoic acid

(2-66). To a suspension of S-3 (4.20 g, 15.8 mmol) in water (48 mL) and 1,4-dioxane (18 mL) was cooled on an ice-bath before addition potassium carbonate (2.41 g, 17.4 mmol) followed by dropwise addition of Boc anhydride (3.65 g, 16.6 mmol) as a solution in 1,4-dioxane (40 mL) over 30 min *via* addition funnel. After the addition was complete the cooling bath was removed and the reaction (still heterogeneous) was stirred at ambient temperature for 14 h. During this time the solid underwent dissolution. The bulk of the dioxane was removed by rotary evaporation and the aqueous mixture poured into a separatory funnel containing ice. 2 M KHSO₄ was then added to pH = 2, resulting in a milky precipitate which was dissolved in ethyl acetate (200 mL). The aqueous layer was separated and the organic was washed with saturated ammonium chloride (100 mL). The rich extract was then dried (MgSO₄), filtered, and concentrated to afford **2-66** (4.88 g, 84%) as a hygroscopic amorphous solid. This crude material was used in subsequent couplings without further purification: ¹H NMR (400 MHz, DMSO) δ 12.45 (bs, 1 H), 7.39–7.28 (m, 5 H), 7.25 (t, *J* = 5.6 Hz, 1 H), 7.07 (d, *J* = 8.0 Hz, 1 H), 5.00 (s, 2 H), 3.94–3.73 (m, 1 H), 3.12–2.86 (m, 2 H), 1.72–1.59 (m, 1 H), 1.58–1.41 (m, 3 H), 1.38 (s, 9 H).

Methyl ((S)-5-(((benzyloxy)carbonyl)amino)-2-((S)-2-((tert-butoxycarbonyl)amino)-3-methylbutanamido)pentanoyl)-L-leucinate (2-65). A flask was charged with 2-66 (484 mg, 1.32 mmol), in dry DMF (5.3 mL). This clear solution was cooled to 0 °C on an ice-bath before sequential addition of HATU (533 mg, 1.39 mmol) and DIPEA base (604 mg, 772 µL, 1.39 mmol). This pale-yellow solution was stirred for a few minutes before addition of **2-62**•HCl (245 mg, 1.32 mmol) as a solid in 1 portion. The reaction turned yellow and the cooling bath was removed. The reaction was stirred for 2 h before being diluted with ethyl acetate (30 mL) and transferred to a separatory funnel. The organic was washed with water (2 x 15 mL), 2 M KHSO₄ (10 mL), sat. Na₂CO₃ (10 mL), then brine (10 mL). The organic layer was then dried (MgSO₄), filtered and concentrated to give a foam which was taken up in ether and passed through a 1.5" pad of silica. 3 plug-volumes was used to washed the product through. Concentration of the filtrate gave the dipeptide methyl ((*S*)-5-(((benzyloxy)carbonyl)amino)-2-((*tert*-butoxycarbonyl)amino) pentanoyl)-L-leucinate (S-4) as a colorless foam which was used in the next step without further purification. A sample gave the following data: ¹H NMR (500 MHz, CDCl₃) δ 7.35–7.22 (m, 5 H), 7.08 (bd, J = 8.0 Hz, 1 H), 5.44–5.30 (m, 2 H), 5.04 (AB, J = 12.3 Hz, 2 H), 4.61–4.42 (m, 1 H), 4.38-4.19 (m, 1 H), 3.64 (s, 3 H), 3.41-3.24 (m, 1 H), 3.18-3.02 (m, 1 H), 1.89-1.45 (m, 7 H), 1.39 (s, 9 H), 0.87 (t, J = 6.2 Hz, 6 H); ¹³C NMR (126 MHz, CDCl₃) δ 173.1, 172.2, 156.9, 155.6, 136.4, 128.3, 127.9, 79.6, 66.4, 52.8, 52.0, 50.6, 40.8, 39.6, 29.8, 28.1, 25.9, 24.5, 22.7, 21.5. S-4 was taken up in methylene chloride (2.7 mL) and the solution was cooled to 0 °C on an ice-bath before addition of TFA (2.7 mL) dropwise by syringe. The cooling bath was removed and the

reaction stirred at ambient temperature until consumption of the starting material was observed (HPLC-MS, about 1.5 h). At this point the reaction was concentrated and the oily residue taken up in fresh methylene chloride and washed with sat. Na₂CO₃. The free amine was dried (MgSO₄) and concentrated to give the amine methyl ((S)-2-amino-5-(((benzyloxy)carbonyl)amino)pentanoyl)-L-leucinate (S-5) as a pale-yellow oil which was used immediately in the next step. A vial was charged with Boc-Val-OH (287 mg, 1.32 mmol) in dry DMF (3.0 mL). This clear solution was cooled to 0 °C on an ice-bath before sequential addition of HATU (533 mg, 1.39 mmol) and DIPEA base (604 mg, 772 µL, 1.39 mmol). This pale-yellow solution was stirred for a few minutes before addition of S-4 as a solution in dry DMF (2.3 mL). The reaction turned bright-yellow and the cooling bath was removed. The reaction was stirred for 2 h before being diluted with ethyl acetate (30 mL) and transferred to a separatory funnel. The organic was washed with water (2 x 15 mL), 2 M KHSO₄ (10 mL), sat. Na₂CO₃ (10 mL), then brine (10 mL). The organic layer was then dried (MgSO₄), filtered and concentrated to give a foam which was purified by reslurrying in Et₂O to give **2-65** (699 g, 89%) as a colorless solid after filtration: $[\alpha]_D^{24}$ -16.4 (*c* 0.061, CH₂Cl₂); $R_f = 0.65$ (1:4 hexanes/EtOAc; UV active); Mp 154–156 °C; ATR-IR (neat) 3291, 3079, 2958, 1690, 1636, 1525, 1245, 1167, 1026, 695 cm⁻¹; ¹H NMR (601 MHz, DMSO) δ 8.29 (d, J = 7.7 Hz, 1 H), 7.81 (d, J = 8.1 Hz, 1 H), 7.44–7.21 (m, 6 H, ArH overlapping TempocNH), 6.75 (d, J = 9.0 Hz, 1 H), 5.00 (s, 2 H), 4.40–4.19 (m, 2 H), 3.78 (dd, J = 9.0, 6.7 Hz, 1 H), 3.59 (s, 3 H), 2.98 (q, J = 6.5 Hz, 2 H), 1.91 (h, *J* = 6.8 Hz, 1 H), 1.65–1.39 (m, 7 H), 1.37 (s, 9 H), 0.87 (d, *J* = 6.6 Hz, 3 H), 0.83–0.77 (m, 9 H); ¹³C NMR (151 MHz, DMSO) δ 173.2, 172.0, 171.5, 156.6, 155.9, 137.7, 128.8, 128.2, 78.5, 65.6, 60.2, 52.3, 52.2, 50.6, 30.8, 30.2, 28.6, 26.3, 24.6, 23.3, 21.6, 19.7, 18.6; HRMS (ESI) m/z calcd for C₃₀H₄₉N₄O₈ (M+H) 593.3545, found 593.3555.

Methyl ((S)-5-(((benzyloxy)carbonyl)amino)-2-((S)-3-methyl-2-((((2,2,6,6tetramethylpiperidin-1-yl)oxy)carbonyl)amino)butanamido)pentanoyl)-L-leucinate (2-59). A flask was charged with 2-66 (484 mg, 1.32 mmol), in dry DMF (5.3 mL). This clear solution was cooled to 0 °C on an ice-bath before sequential addition of HATU (533 mg, 1.39 mmol) and DIPEA base (604 mg, 772 µL, 1.39 mmol). This pale-yellow solution was stirred for a few minutes before addition of 2-62-HCl (245 mg, 1.32 mmol) as a solid in 1 portion. The reaction turned yellow and the cooling bath was removed. The reaction was stirred for 2 h before being diluted with ethyl acetate (30 mL) and transferred to a separatory funnel. The organic was washed with water (2 x 15 mL), 2 M KHSO₄ (10 mL), sat. Na₂CO₃ (10 mL), then brine (10 mL). The organic layer was then dried (MgSO₄), filtered and concentrated to give a foam which was taken up in ether and passed through a 1.5" pad of silica. 3 plug-volumes was used to washed the product through. Concentration of the filtrate gave the dipeptide methyl S-4 as a colorless foam which was used in the next step without further purification. S-4 was taken up in methylene chloride (2.7 mL) and the solution was cooled to 0 °C on an ice-bath before addition of TFA (2.7 mL) dropwise by syringe. The cooling bath was removed and the reaction stirred at ambient temperature until consumption of the starting material was observed (HPLC-MS, about 1.5 h). At this point the reaction was concentrated and the oily residue taken up in fresh methylene chloride and washed with sat. Na₂CO₃. The free amine was dried (MgSO₄) and concentrated to give the amine S-5 as a pale-yellow oil which was used immediately in the coupling step. Following General Method 2-C, 2-51 (416 mg, 1.32 mmol), lithium hydroxide monohydrate (84.9 mg, 1.98 mmol), in a 2:1

mixture of THF/H₂O (3.6 mL) gave the acid Tempoc-Val-OH after extraction which was used immediately in the coupling step. Tempoc-Val-OH was combined with **S-5**, HATU (1.10 g, 2.90 mmol), and DIPEA (1.60 mL, 9.67 mmol) in dry DMF (5.3 mL) gave the crude tripeptide after extraction which was purified by reslurrying in Et₂O to give **2-59** (743 mg, 83%) as a colorless amorphous solid after filtration: $[\alpha]_D^{24}$ -6.5 (*c* 0.185, CH₂Cl₂); \mathbf{R}_f = 0.63 (100% EtOAc; UV active); ATR-IR (neat) 3293, 2958, 2873, 1707, 1640, 1497, 1250, 1017, 910, 729 cm⁻¹; ¹H NMR ¹H NMR (601 MHz, CDCl₃) δ 7.38–7.27 (m, 6 H; Ar*H* overlapping TempocN*H*), 6.98 (d, *J* = 8.0 Hz, 1 H), 6.68 (d, *J* = 8.3 Hz, 1 H), 5.14–5.03 (m, 3 H), 4.70 (td, *J* = 8.5, 4.3 Hz, 1 H), 4.52 (ddd, *J* = 9.4, 8.0, 5.1 Hz, 1 H), 4.04 (dd, *J* = 8.9, 6.8 Hz, 1 H), 3.68 (s, 3 H), 3.47 (dq, *J* = 14.0, 7.3 Hz, 1 H), 3.11–3.04 (m, 1 H), 2.07 (h, *J* = 6.8 Hz, 1 H), 1.93–1.84 (m, 1 H), 1.72–1.45 (m, 11 H), 1.43–1.38 (m, 1 H), 1.20 (s, 3 H), 1.18 (s, 3 H), 1.15 (s, 3 H), 1.06 (s, 3 H), 0.96–0.88 (m, 12 H); ¹³C NMR (151 MHz, CDCl₃) δ 173.2, 171.5, 171.0, 158.4, 157.3, 136.4, 128.5, 128.1, 128.0, 66.7, 60.9, 60.6, 60.4, 52.2, 51.2, 50.8, 40.9, 39.7, 39.5, 39.2, 32.1, 31.4, 31.4, 29.8, 26.1, 24.7, 22.8, 21.7, 20.5, 19.3, 18.2, 16.7; HRMS (ESI) *m*/z calcd for C₃₅H₅₈N₅O₈ (M+H) 676.4280, found 676.4283.

4.3 EXPERIMENTAL – CYCLOPIAZONIC ACID

4.3.1 General experimental protocols

Reactions were performed without inert atmosphere with ACS grade solvents unless otherwise stated. Inert reactions were performed under a N₂ or argon atmosphere and glassware was flame dried prior to use. Absolute ethanol was stored over 4 Å molecular sieves. Diethyl ether and THF were distilled over sodium/benzophenone ketyl. Dry toluene was distilled from CaH₂ or dried by passage through an alumina filtration system. Acetone for imine formations was pre-dried with MgSO₄, decanted, then distilled under an inert atmosphere. DMF was dried over 4 Å molecular sieves which were activate in a muffle furnace at 350 °C for 16 h prior to use. Commercial reagents were used as-is unless otherwise noted.

4.3.2 Synthetic procedures and spectral characterization

Ethyl 1-(4-methoxybenzyl)aziridine-2-carboxylatecarbonate (3-66).¹⁵¹ A flame dried sealable flask was charged with ethyl 2,3-dibromopropanoate (3.79 g, 2.12 mL, 14.1 mmol) in absolute ethanol (70.7 mL) and the mixture cooled to 0 °C on an ice-bath under nitrogen. The cooled solution then received sequentially 4-MeO-benzylamine (1.00 g, .952 mL, 7.07 mmol) and triethylamine (2.17 g, 3.01 mL, 21.2 mmol) drop-wise by syringe. The flask was removed from the bath and the reaction was allowed to warm to ambient temperature, and then was sealed and

heated to 50 °C for 3 h. Upon completion of the reaction, the solvent was removed under reduced pressure and the residue thus obtained was purified by chromatography on SiO₂ (gradient, 19:1 to 4:1 hexanes/EtOAc) to afford **3-66** (1.48 g, 84%) as a yellow liquid that matched literature reported spectra: $R_f = 0.49$ (1:1 hexanes/EtOAc, UV active); ¹H NMR (300 MHz, CDCl₃) δ 7.36–7.17 (m, 2 H), 6.94–6.75 (m, 2 H), 4.30–4.06 (m, 2 H), 3.80 (s, 3 H), 3.49 (s, 2 H), 2.23 (dd, J = 3.2, 1.2 Hz, 1 H), 2.17 (dd, J = 6.5, 3.2 Hz, 1 H), 1.72 (dd, J = 6.5, 1.2 Hz, 1 H), 1.26 (t, J = 7.1 Hz, 3 H); ¹³C NMR (76 MHz, CDCl₃) δ 170.8, 158.9, 129.9, 129.3, 113.8, 63.3, 61.1, 55.3, 37.4, 34.3, 14.2.

Ethyl 1-benzylaziridine-2-carboxylate (3-68).¹⁵¹ A flame dried flask was charged with ethyl 2,3-dibromopropanoate (3.68 g, 2.06 mL, 13.7 mmol) in absolute ethanol (125 mL, 0.11 M) and the mixture was cooled to 0 °C under nitrogen and stirring before sequential addition of benzylamine (1.50 g, 1.53 mL, 13.7 mmol) and triethylamine (2.81 g, 3.90 mL, 27.4 mmol) by syringe. The reaction mixture was then heated to 60 °C in a sealed flask (septum secured with wire) and stirred for 16 h. The resulting yellow solution was concentrated in vacuo to give an oily solid. The solid was suspended in ether and stirred for 30 min. The solids were then removed by filtration and washed with ether. The filtrate was concentrated to afford a residue which was purified by chromatography on SiO₂ (gradient, 19:1 to 17:3 hexanes/EtOAc) to afford **3-68** (2.15 g, 77%) as a yellow liquid which matched literature reported spectra: $R_f = 0.49$ (1:1 hexanes/EtOAc, UV-active); ¹H NMR (300 MHz, CDCl₃) δ 7.74–6.56 (m, 5 H), 4.82–3.79 (m, 2 H), 3.70–3.45 (m, 2 H), 2.26 (dd, J = 3.2, 1.2 Hz, 1 H), 2.19 (dd, J = 6.4, 3.1 Hz, 1 H), 1.74 (dd, J = 6.5, 1.1 Hz, 1 H), 1.27 (t, *J* = 7.1 Hz, 3 H); ¹³C (76 MHz, CDCl₃) δ 170.7, 137.8, 128.4, 128.0, 127.3, 63.9, 61.1, 37.5, 34.4, 14.2.

Ethyl 1-benzhydrylaziridine-2-carboxylate (3-67). A flame dried flask was charged with ethyl 2,3-dibromopropanoate (2.84 g, 1.59 mL, 10.6 mmol) in absolute ethanol (96 mL, 0.11 M) and the mixture was cooled to 0 $^{\circ}$ C under nitrogen and stirring before sequential addition of benzhydrylamine (2.00 g, 1.88 mL, 10.6 mmol) and triethylamine (2.16 g, 3.01 mL, 21.2 mmol) by syringe. The reaction mixture was then slowly heated to 60 °C in a sealed flask (septum secured with wire) and stirred for 16 h. The resulting yellow solution was concentrated in vacuo to give an oily solid. The solid was suspended in ether and stirred for 30 min. The solids were then removed by filtration and washed with ether. The filtrate was concentrated to afford a residue which was purified by chromatography on SiO₂ (gradient, 19:1 to 17:3 hexanes/EtOAc) to afford the **3-67** (2.57 g, 86%) as off-white crystals: $R_f = 0.54$ (1:1 hexanes/Et₂O, UV-active); ATR-IR (neat) 3062, 2983, 1740, 1493, 1453, 1189, 1075, 1031, 862 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.47–7.40 (m, 4 H), 7.37–7.20 (m, 6 H), 4.19 (qd, J = 7.1, 1.6 Hz, 2 H), 3.63 (s, 1 H), 2.32 (dd, J = 3.2, 1.0 Hz, 1 H), 2.25 (dd, J = 6.4, 3.2 Hz, 1 H), 1.84 (dd, J = 6.4, 1.0 Hz, 1 H), 1.26 (t, J = 7.1 Hz, 3 H); ¹³C NMR (76 MHz, CDCl₃) δ 170.5, 142.5, 142.5, 128.4, 127.6, 127.4, 127.2, 127.1, 77.8, 61.0, 38.3, 34.7, 14.1; HRMS (ESI) *m/z* calcd for C₁₈H₂₀NO₂ (M+H) 282.1489, found 282.1495.

Ethyl 1-(4-methoxyphenyl)aziridine-2-carboxylate (3-69).¹⁵¹ A flame dried flask was charged with ethyl 2,3-dibromopropanoate (3.00 g, 1.68 mL, 11.2 mmol) in absolute ethanol (102 mL, 0.11 M) and the mixture was cooled to 0 °C under nitrogen and stirring before sequential addition of p-anisidine (1.39 g, 11.2 mmol) and triethylamine (2.29 g, 3.18 mL, 22.4 mmol) by syringe. The reaction mixture was then slowly heated to 60 °C in a sealed flask (septum secured with wire) and stirred for 16 h. The resulting yellow solution was concentrated in vacuo to give an oily solid. The solid was suspended in ether and stirred for 30 min. The solid was partitioned between ethyl acetate (100 mL) and water (100 mL). The aqueous layer was removed and the organic layer was washed with water (100 mL), then brine. The organic was dried (MgSO₄), filtered, and the filtrate was concentrated to afford a residue which was purified by chromatography on SiO₂ (gradient, 19:1 to 3:1 hexanes/EtOAc) to afford **3-69** (1.32 g, 53%) as a yellow oil which freezes at -20 °C and matched literature reported spectra: $R_f = 0.32$ (1:1 hexanes/Et₂O, UV active); ¹H NMR (500 MHz, CDCl₃) δ 6.94 (d, J = 8.9 Hz, 2 H), 6.79 (d, J = 8.9 Hz, 2 H), 4.33–4.20 (m, 2 H), 3.76 (s, 3 H), 2.71 (dd, J = 6.4, 3.1 Hz, 1 H), 2.62 (dd, J = 3.2, 1.7 Hz, 1 H), 2.25 (dd, J = 6.4, 1.8 Hz, 1 H), 1.32 (t, J = 7.2 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 170.2, 155.7, 145.8, 121.4, 114.3, 61.4, 55.5, 37.9, 34.0, 14.2; HRMS (ESI) m/z calcd for C₁₂H₁₆NO₃ (M+H) 221.1125, found 222.1123.

(±)-Ethyl (1S,3aS,7aR)-2-benzyl-7-oxooctahydro-1H-isoindole-1-carboxylate (3-71).

A flame dried microwave tube was charged with **3-70** (1.08 g, 1.08 mL, 11.0 mmol) and **4** as a 2.6 M solution in dry toluene (0.750 g, 1.41 mL, 3.65 mmol), in dry toluene (10.8 mL). The mixture was sparged with argon under sonication for 2 min before being sealed under argon and heated to 195 °C on an aluminum block for 6 h then the heat was turned off and the reaction was allowed to cool to ambient temperature in the block slowly. The reaction mixture was concentrated and placed on the high vacuum for an hour before being purified by chromatography on SiO₂ (gradient, 19:1 to 3:1 PhMe/Et₂O) gave **3-71** (0.500 g, 45%) as a pale yellow oil: $R_f = 0.33$ (1:1 hexanes/Et₂O, UV active); ATR-IR (neat) 3028, 2936, 2805, 1722, 1701, 1183, 1029, 744, 699 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.34–7.28 (m, 4 H), 7.26–7.22 (m, 1 H), 4.13 (qd, *J* = 7.1, 2.9 Hz, 2 H), 3.79 (d, *J* = 9.0 Hz, 1 H), 3.76 (d, *J* = 13.1 Hz, 1 H), 3.64 (d, *J* = 13.2 Hz, 1 H), 3.17 (t, *J* = 9.3 Hz, 1 H), 2.81–2.74 (m, 2 H), 2.66–2.57 (m, 1 H), 2.39–2.26 (m, 2 H), 2.00–1.93 (m, 1 H), 1.85–1.79 (m, 1 H), 1.74–1.66 (m, 2 H), 1.25 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 211.6, 171.7, 138.4, 128.7, 128.1, 127.0, 67.6, 60.5, 57.5, 56.9, 53.5, 39.9, 38.5, 27.1, 22.0, 14.2; HRMS (ESI) m/z calcd for C₁₈H₂₄NO₃ (M+H) 302.1751, found 302.1747.

(1S,3aS,7aR,E)-2-benzyl-7-(2-(4-nitrophenyl)hydrazono)octahydro-1H-(±)-Ethvl isoindole-1-carboxylate (3-73). A flame dried 2 mL microwave tube was charged with 3-71 (50.0 mg, 0.158 mmol) in abs. EtOH (790 μ L, 0.2 M) and to it was added 4-nitrophenylhydrazine (25.9 mg, 0.166 mmol) in one portion and the tube was sealed under nitrogen and heated to 80 °C until consumption of the starting material was visualized (TLC, ≈ 18 h). The reaction mixture was concentrated and purified by chromatography on SiO₂ (isocratic, CH₂Cl₂) to afford 3-73 (22 mg, 32%) as a yellow solid. Single crystals were grown by liquid-liquid diffusion (hexanes/CH₂Cl₂) which were isolated as prisms and submitted for x-ray analysis: $R_f = 0.61$ (1:1 hexanes/EtOAc, I₂ active); Mp 154-158 °C; ATR-IR (neat) 3328, 2933, 1724, 1592, 1315, 1261, 1107, 844, 731 cm⁻ ¹; ¹H NMR (500 MHz, CDCl₃) δ 8.11 (d, J = 9.3 Hz, 1 H), 7.63 (s, 1 H), 7.37–7.27 (m, 4 H), 7.25 (d, J = 4.9 Hz, 1 H), 7.01 (d, J = 9.2 Hz, 2 H), 3.98–3.82 (m, 2 H), 3.76 (dd, J = 13.3, 11.3 Hz, 2 H), 3.57 (d, J = 13.0 Hz, 1 H), 3.51 (td, J = 9.6, 1.6 Hz, 1 H), 2.81 (dd, J = 9.1, 3.5 Hz, 1 H), 2.74 (dd, J = 9.1, 6.8 Hz, 1 H), 2.51–2.40 (m, 2 H), 2.17 (dddd, J = 16.4, 9.4, 6.6, 1.7 Hz, 1 H), 2.10– 1.99 (m, 1 H), 1.77–1.61 (m, 3 H), 1.48 (dtdd, J = 13.2, 9.7, 5.9, 3.2 Hz, 1 H), 1.07 (t, J = 7.1 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 172.3, 151.8, 150.2, 140.0, 138.4, 128.9, 128.2, 128.1, 127.1, 126.0, 111.7, 70.4, 60.2, 58.8, 57.6, 46.7, 37.4, 27.7, 24.7, 20.7, 14.2.; HRMS (ESI) m/z calcd for C₂₄H₂₉N₄O₄ (M+H) 437.2183, found 437.2182.

(±)-Ethyl (1R,3aR,7aS)-2-benzhydryl-7-oxooctahydro-1H-isoindole-1-carboxylate (3-75). A flame dried microwave tube was charged with 3-70 (209 mg, 211 µL, 2.13 mmol) and 3-67 (0.200 g, 0.711 mmol) in dry PhMe (2.4 mL). The mixture was sparged with argon under sonication for 2 min before being sealed under argon and placed in a preheated (200 °C) aluminum block for 9 h then heat was turned off and the reaction was allowed to cool to ambient temperature in block slowly. The reaction was concentrated and by chromatography on SiO_2 (gradient, 5-30%) Et₂O/hexanes) gave a small forerun of unreacted aziridine (40 mg) and 3-74 (130 mg, 48%) as offwhite crystals. A single crystal was grown from absolute ethanol and submitted for X-ray analysis: $R_f = 0.36$ (1:1 hexanes/Et₂O, UV active); ATR-IR (neat) 3062, 2938, 1724, 1702, 1453, 1453, 1186, 1029, 707 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.41 (ddd, J = 8.1, 2.7, 1.3 Hz, 4 H), 7.25 (ddd, J = 14.9, 8.1, 6.8 Hz, 4 H), 7.21–7.14 (m, 2 H), 4.60 (s, 1 H), 3.99 (d, J = 9.4 Hz, 1 H), 3.98– 3.88 (m, 2 H), 3.21 (t, J = 9.8 Hz, 1 H), 2.90 (dd, J = 9.6, 7.3 Hz, 1 H), 2.83 (dd, J = 9.5, 6.1 Hz, 1 H)1 H), 2.61 (td, J = 10.4, 6.5 Hz, 1 H), 2.36 (ddd, J = 17.6, 5.1, 3.7 Hz, 1 H), 2.22 (ddd, J = 17.7, 11.2, 6.3 Hz, 1 H), 2.01–1.93 (m, 1 H), 1.87–1.61 (m, 3 H), 1.11 (t, *J* = 7.2 Hz, 3 H).; ¹³C NMR R (76 MHz, CDCl3) δ 212.1, 172.3, 142.8, 142.2, 128.4, 128.3, 127.9, 127.6, 127.1, 71.4, 65.8, 60.2, 57.2, 53.5, 39.8, 38.3, 27.2, 22.3, 14.0; HRMS (ESI) *m/z* calcd for C₂₄H₂₈NO₃ (M+H) 378.2064, found 378.2062.

Ethyl 3-methylbut-2-enoate (3-85). A flask was charged with 3,3-dimethyacrylic acid (10.0 g, 96.9 mmol) in absolute EtOH (48.5 mL, 2.0 M) and the mixture was stirred until complete dissolution took place. The flask then received H₂SO₄ (0.950 g, 516 µL, 9.69 mmol) dropwise by syringe. The mixture was then heated to reflux for 18 h, after which point the solution was allowed to cool to ambient temperature and was poured into a separatory funnel containing CH₂Cl₂ (100 mL) and ice-water (100 mL). The phases were separated and the aqueous phase extracted with CH₂Cl₂ (2 x 100 mL). The pooled organics were successively washed with sat NaHCO₃, water, brine, then dried (MgSO₄), filtered, and concentrated to afford a pale green liquid which was purified by chromatography on SiO₂ (gradient, 1:0 to 19:1 hexanes/EtOAc) to afford **3-85** (8.56 g, 65%) as a light green liquid which spectrally matched commercial material: $R_f = 0.48$ (4:1 hexanes/EtOAc, KMnO₄ & UV active); ¹H NMR (300 MHz, CDCl₃) δ 5.83–5.42 (m, 1 H), 4.07 (q, *J* = 7.1 Hz, 2 H), 2.10 (d, *J* = 1.4 Hz, 3 H), 1.82 (d, *J* = 1.5 Hz, 3 H), 1.20 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (76 MHz, CDCl₃) δ 166.5, 156.0, 116.0, 59.2, 27.1, 19.9, 14.1.

$$\begin{array}{c|c} & & & & \\ & & & \\ \hline & & \\ & & \\ 3-85 \end{array} \xrightarrow{O} \\ \hline DCM, reflux, 12 h \end{array} \xrightarrow{O} \\ \hline & & \\ & & \\ 3-86 \end{array} \xrightarrow{O} \\ OEt$$

Ethyl 3,3-dimethyloxirane-2-carboxylate (3-86).¹⁵² A flame dried flask was charged with 3-85 (1.00 g, 1.09 mL, 7.41 mmol) in dry CH_2Cl_2 (29.6 mL, 0.2 M) and the solution was cooled to 0 °C on an ice-bath. The cooled solution was then treated with *m*-CPBA (2.05 g, 8.90 mmol) as a solid, portion-wise over 5 min. The cooling bath was removed and the reaction stirred at ambient temperature overnight. Conversion was slow so after 12 h the reaction was fitted with an oil bath and heated at reflux for an additional 12 h. After 12 h of heating the acrylate was almost

consumed (TLC). Reaction was cooled, diluted with CH₂Cl₂ (20 mL) and quenched with sat. sodium bisulfite and washed with sat. sodium bicarbonate (2 x 20 mL). The organics were dried (MgSO₄) and concentrated to afford a clear liquid that was purified by chromatography on SiO₂ (gradient, 19:1 to 9:1 hexanes/EtOAc) to afford **3-86** (737 mg, 69%) as a clear liquid which matched literature reported spectra: ¹H NMR (300 MHz, CDCl₃) δ 4.25 (qd, *J* = 7.1, 4.5 Hz, 2 H), 3.33 (s, 1 H), 1.42 (s, 3 H), 1.38 (s, 3 H), 1.31 (t, *J* = 7.2 Hz, 3 H).

Ethyl 2,3-dihydroxy-3-methylbutanoate (3-90). A flask was charged with 3-85 (3.00 g, 3.26 mL, 22.2 mmol) in *tert*-butanol (67 mL) and to it was added water (22 mL) and 4-methylmorpholine N-oxide (3.49 g, 28.9 mmol), citric acid (4.67 g, 22.2 mmol), and potassium osmate (82.8 mg, 0.222 mmol). The reaction was stirred at ambient temperature for 12 h during which time the reaction color changed from translucent green to tan. The reaction was then diluted with water (20 mL) and *tert*-butanol was removed under reduced pressure. The residue was extracted with ethyl acetate (3 x 50 mL). The combined organics were washed with brine, dried (MgSO₄), filtered, and concentrated to afford a residue which was purified by chromatography on SiO₂ (gradient, 19:1 to 1:1 hexanes/EtOAc) to afford **3-90** (3.50 g, 97%) as a colorless oil: $R_f = 0.45$ (1:4 hexanes/EtOAc, KMnO₄ active); ATR-IR (neat) 3450, 2980, 2939, 1729, 1201, 1090, 744 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 4.39–4.21 (m, 2 H), 3.96 (d, *J* = 6.6 Hz, 1 H), 3.15 (d, *J* = 6.7 Hz, 1 H), 2.59 (s, 1 H), 1.33 (t, *J* = 7.1 Hz, 3 H), 1.30 (s, 3 H), 1.22 (s, 3 H).; ¹³C NMR (76 MHz, CDCl₃) δ 173.2, 77.1, 72.0, 62.0, 25.6, 24.9, 14.2; HRMS (ESI) *m/z* calcd for C₇H₁₅O₄ (M+H) 163.0965, found 163.0963.

Ethyl 5,5-dimethyl-1,3,2-dioxathiolane-4-carboxylate 2,2-dioxide (3-91). To a stirred solution of **3-90** (0.650 g, 4.01 mmol) in CH₂Cl₂ (13.4 mL) at 0 °C was added SOCl₂ (722 mg, 443 µL, 6.01 mmol) and Et₃N (1.02 g, 1.42 mL, 10.0 mmol). After 30 min, a saturated solution of NaHCO₃ (15 mL) was added. After separation of the layers, the organic layer was dried (Na₂SO₄) and concentrated to dryness. The residue was dissolved in the mixture of MeCN (13.4 mL) and H₂O (6.68 mL). To the stirred mixture at room temperature, NaIO₄ (874 mg 4.09 mmol) and RuCl₃·H₂O (8.31 mg, 0.0401 mmol) was added. H₂O was added to the reaction after 30 min and the mixture was extracted with EtOAc (2 x 25 mL). The combined organic layers were dried (Na₂SO₄) and concentrated to dryness under reduced pressure. The residue was purified by chromatography on SiO₂ (gradient, 19:1 to 4:1 hexanes/EtOAc) to afford **3-91** (676 mg, 75%) as a clear oil: R_f = 0.55 (1:1 hexanes/EtOAc, KMnO₄ active); ATR-IR (neat) 2989, 1764, 1742, 1375, 1209, 1054, 827 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 4.36 (q, *J* = 7.2 Hz, 2 H), 1.79 (s, 3 H), 1.58 (s, 3 H), 1.36 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (76 MHz, CDCl₃) δ 163.5, 91.8, 83.8, 63.1, 26.1, 22.1, 14.1; HRMS (ESI) *m/z* calcd for C₇H₁₃O₆ (M+H) 225.0427, found 225.0431.

Ethyl 2-azido-3-hydroxy-3-methylbutanoate (3-88). A flask was charged with **3-91** (0.670 g, 2.99 mmol) in 9:1 acetone/water (18 mL/ 2.0 mL) and to it was added sodium azide (294 mg, 4.48 mmol) in one portion and the mixture was stirred at 50 °C for 5 h or until consumption

of the SM as visualized by TLC. Acetone was removed under reduced pressure and diethyl ether (58 mL) and water (1.7 mL) was added and then the solution was chilled on an ice bath before dropwise addition of 20% H₂SO₄ (1.6 mL/mmol, 4.8 mL) and the mixture stirred vigorously overnight. Separation of the organics and washing with saturated sodium carbonate, followed by drying with MgSO₄, and concentration afforded **3-88** (164 mg, 29%) as a clear oil which was used immediately in the next step as it is a low molecular weight azide: ¹H NMR (300 MHz, CDCl₃) δ 4.32 (qd, *J* = 7.1, 0.7 Hz, 2 H), 3.79 (s, 1 H), 2.81 (bs, 1 H), 1.35 (t, *J* = 7.1 Hz, 3 H), 1.30 (s, 3 H).

$$Bn^{-}NH_{2} \xrightarrow[rt, 18 h]{} Bn^{-}N_{1} \xrightarrow[rt, 18 h]{} Bn^{-}N_{1} \xrightarrow[rt, 18 h]{} Bn^{-}N_{1} \xrightarrow[rt, 18 h]{} Bn^{-}N_{1} \xrightarrow[rt, 18 h]{} 3-92$$

N-benzylpropan-2-imine (3-92). A flame-dried flask was charged with a 1:2 mixture of dry ether and distilled acetone (12.2 mL:6.1 mL) and anhydrous calcium sulfate (2.75 g, about 0.3 g/mmol). This mixture was then treated with benzylamine (1.00 g, 1.02 mL, 9.15 mmol). The reaction was stirred vigorously at ambient temperature for 18 h after which point it was filtered through a pad of dried HyFlo Celite. The Celite was washed with dry ether and the filtrate concentrated to afford **3-92** (1.40 g, quant) as a clear oil which was used immediately in the next step without further purification: ¹H NMR (500 MHz, CDCl₃) δ 7.34–7.30 (m, 4 H), 7.25–7.21 (m, 1 H), 4.46 (s, 2 H), 2.09 (t, *J* = 1.3 Hz, 3 H), 1.94 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 168.1, 140.4, 128.4, 127.8, 126.5, 77.3, 77.0, 76.7, 55.4, 29.4, 29.2, 18.7.

Ethyl 1-benzyl-3,3-dimethylaziridine-2-carboxylate (3-59). A flame dried flask was charged with [Ir(cod)Cl]₂ catalyst in the glovebox (322 g, 0.476 mmol) and the flask was placed in a -10 °C bath (15 wt % aq. NaCl/dry-ice, bath temp remains -11 °C as long as a slush is maintained by slow addition of dry-ice) and to it was added freshly distilled THF (6.0 mL) under and argon atmosphere. The mixture was stirred for 5 min before the red solution received 3-92 (1.40 g, 9.51 mmol) as a solution in distilled THF (3.5 mL) in one portion which turned the solution bright yellow. This mixture was stirred for an additional 10 min before ethyl diazoacetate (2.49 g, 2.27 mL, 19.0 mmol) was added dropwise by syringe over 1 minute. The reaction was stirred at this temperature for 60 min, then the reaction was allowed to warm slowly to ambient temperature and stir for an additional 12 h during which time the mixture turned from yellow to brown. Wet diethyl ether was then added and the reaction was poured through a 1" pad of SiO₂ and the silica was washed with diethyl ether (3 x column volumes). Concentration under reduced pressure and 1 hour on the high vacuum gave a residue which was purified by chromatography on SiO₂ (gradient, 19:1 to 3:1 hexanes/Et₂O) to afford **3-59** (1.51 g, 68%) as a yellow liquid: $R_f = 0.44$ (1:1 hexanes/Et₂O, KMnO₄ & I₂ active); ATR-IR (neat) 3063, 2982, 2930, 1741, 1302, 1175, 1037, 732, 697 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.38 (d, J = 7.2 Hz, 2 H), 7.31 (dd, J = 8.4, 6.8 Hz, 2 H), 7.25–7.21 (m, 1 H), 4.20 (qd, J = 7.1, 5.1 Hz, 2 H), 3.83–3.74 (m, 2 H), 2.12 (s, 1 H), 1.35 (s, 3 H), 1.33 (s, 3 H), 1.27 (t, J = 7.1 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 170.2, 139.2, 128.3, 127.3, 126.7, 60.7, 56.0, 49.3, 44.6, 21.8, 17.9, 14.3; HMRS (ESI) *m/z* calcd for C₁₄H₂₀NO₂ (M+H) 234.1489, found 234.1487.

N-benzhydrylpropan-2-imine (3-94). A flame dried flask was charged with a 1:2 mixture of dry ether and distilled acetone (13 mL:40 mL) and anhydrous calcium sulfate (8.00 g, about 0.3 g/ mmol). This mixture was then treated with benzhydrylamine (5.00 g, 4.72 mL, 26.5 mmol). The reaction was stirred vigorously at ambient temperature for 18 h after which point it was filtered through a pad of dried HyFlo Celite. The Celite was washed with dry ether and the filtrate concentrated to afford **3-94** (4.55 g, 77%) as an off-white solid that can be recrystallized from dry hexanes but was >95% pure by ¹H NMR and was used directly in the next step: ¹H NMR (500 MHz, CDCl₃) δ 7.39–7.36 (m, 4 H), 7.34–7.30 (m, 4 H), 7.26–7.19 (m, 2 H), 5.66 (s, 1 H), 2.16 (s, 3 H), 1.94 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 167.2, 144.5, 128.3, 127.6, 126.6, 68.0, 29.7, 19.1.

Ethyl 1-benzhydryl-3,3-dimethylaziridine-2-carboxylate (3-95). A flame dried flask was charged with [Ir(cod)Cl]₂ catalyst in the glovebox (.250 g, 0.369 mmol) and the flask was placed in a -10 °C bath (15 wt % aq. NaCl/dry-ice) and to it was added freshly distilled THF (2.94 mL, 1.0 M) under and argon atmosphere. The mixture was stirred for 5 min before the red solution received **3-94** (1.65 g, 7.37 mmol) as a solid in one portion which turned the solution yellow. This mixture was stirred for an additional 10 min before ethyl diazoacetate (1.93 g, 1.76 mL, 14.7 mmol) by syringe over 1 minute. The reaction was stirred at this temperature for 30 min then the reaction was allowed to warm slowly for 30 min to about 0 °C during which time the mixture

turned from yellow to brown. Wet diethyl ether was then added and the reaction was poured through a 1" pad of silica gel and eluted with diethyl ether. Concentration under reduced pressure and 1 hour on the high vacuum gave dark brown solid which was dissolved in 95% ethanol (25 mL) at 60 °C and allow to slowly cool to ambient temperature, then was placed in the freezer (–20 °C) for 12 h. The crystals thus formed were collected by filtration and the filter cake was washed with water and ice-cold 95% ethanol. Drying of the solids afforded **3-95** (1.65 g, 72%) as tan crystals in >95% purity: $R_f = 0.23$ (9:1 hexanes/Et₂O, UV active); Mp = 120-122 °C; ATR-IR (neat) 3061, 3027, 2983, 1742, 1454, 1180, 1032, 746, 703 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.54–7.50 (m, 4 H), 7.31–7.25 (m, 4 H), 7.22–7.17 (m, 2 H), 4.34 (s, 1 H), 4.15 (qq, *J* = 10.8, 7.1 Hz, 2 H), 2.17 (s, 1 H), 1.34 (s, 3 H), 1.29 (s, 3 H), 1.23 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 170.0, 144.0, 143.4, 128.3, 128.3, 127.3, 126.9, 126.9, 126.8, 70.1, 60.5, 48.3, 45.8, 21.9, 18.0, 14.3; HRMS (ESI) *m*/*z* calcd for C₂₀H₂₄NO₂ (M+H) 310.1802, found 310.1809.

(±)-Ethyl (18,3a*R*,6a*S*)-2-benzyl-3,3,5-trimethyl-4,6-dioxooctahydropyrrolo[3,4-

c]pyrrole-1-carboxylate (3-103). A flame dried microwave tube was charged with *N*-methylmaleimide (146 mg, 1.29 mmol) and 3-59 (0.100 g, 0.429 mmol) in dry PhMe (1.4 mL). The mixture was sparged with argon under sonication for 2 min before being sealed under argon and placed in a preheated (135 °C) aluminum block for 18 h. The heat was then turned off and the reaction was allowed to warm to ambient temperature in block slowly. The reaction was then concentrated and the residue purified by chromatography on SiO₂ (gradient, 19:1 to 1:1

hexanes/EtOAc) to afford **3-103** (101 mg, 68%) as a colorless solid: $R_f = 0.41$ (1:1 hexanes/EtOAc, UV active); Mp 122-124 °C; ATR-IR (neat) 2969, 1694, 1433, 1379, 1284, 1129, 1021, 729 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.31–7.26 (m, 2 H), 7.25–7.15 (m, 3 H), 3.79 (d, J = 13.6 Hz, 1 H), 3.90–3.69 (m, 3 H), 3.46 (d, J = 14.6 Hz, 1 H), 3.44 (d, J = 17.3 Hz, 1 H), 2.96 (s, 3 H), 2.88 (d, J = 8.2 Hz, 1 H), 1.27 (s, 3 H), 1.14 (s, 3 H), 1.08 (t, J = 7.2 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 176.0, 175.9, 170.3, 139.1, 128.6, 127.8, 126.9, 66.9, 63.9, 60.9, 54.3, 51.1, 45.6, 24.9, 24.6, 21.2, 13.7; HRMS (ESI) *m/z* calcd for C₁₉H₂₅N₂O₄ (M+H) 245.1809, found 345.1806.

(±)-Ethyl (2R,4S)-1-benzyl-4-cyano-5,5-dimethylpyrrolidine-2-carboxylate (3-106). A

flame dried microwave tube was charged with **3-59** (0.100 g, 0.429 mmol) in dry PhMe (1.4 mL). The mixture was sparged with nitrogen under sonication for 2 min before addition of acrylonitrile [MEHQ removed by Brockmann 1 basic alumina and degassed with N₂ sparging (69.6 mg, 87 μ L, 1.29 mmol)] The mixture was sealed under argon and placed in a preheated (135 °C) aluminum block for 18 h. The heat was then turned off and the reaction was allowed to warm to ambient temperature in block slowly. The reaction was then concentrated and the residue purified by chromatography on SiO₂ (gradient, 19:1 to 1:1 hexanes/EtOAc) to afford **3-106** (25.1 mg, 20%) as a clear oil: $R_f = 0.61$ (1:1 hexanes/EtOAc, UV active); ATR-IR (neat) 2975, 2238, 1728, 1452, 1368, 1187, 1150, 1027, 749, 697 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.30–7.24 (m, 4 H), 7.22–7.17 (m, 1 H), 3.92 (d, J = 14.2 Hz, 1 H), 3.84 (q, J = 7.2 Hz, 2 H), 3.69 (d, J = 14.3 Hz, 1 H), 3.55 (dd, J = 9.2, 6.1 Hz, 1 H), 2.80 (dd, J = 8.4, 6.7 Hz, 1 H), 2.51 (dt, J = 13.5, 8.8 Hz, 1 H), 2.23 (dt,

J = 13.2, 6.4 Hz, 1 H), 1.38 (s, 3 H), 1.22 (s, 3 H), 1.09 (t, J = 7.2 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 173.00, 138.98, 128.32, 128.06, 126.97, 119.86, 63.69, 62.54, 60.70, 49.98, 40.23, 31.02, 23.37, 23.18, 13.85; HRMS (ESI) *m*/*z* calcd for C₁₇H₂₃N₂O₂ (M+H) 287.1754, found 287.1751.

4-(Hvdroxymethyl)cyclohex-2-en-1-one (rac-3-60).¹⁵³ A flame dried flask was charged with solid KHMDS (1.95 g, 9.28 mmol) in the glove box. The solid was then dissolved in distilled THF (35 mL, 0.25 M) and the solution cooled to -78°C on a dry-ice/acetone bath. This cooled mixture was treated with *trans*-4-(dimethylamino)-3-buten-2-one (1.00 g, 8.84 mmol) as a solution in distilled THF (8.9 mL, 1.0 M) over a period of 30 min (syringe pump). The mixture was then allowed to warm to -30 °C over 30 min before being cooled back down to -78 °C and treated with TBDMSCl (1.48 g, 7.72) as a solution in THF (7.7mL, 1.0 M). The reaction was warmed to ambient temperature before being diluted with diethyl ether and passed through a pad of celite and concentrated to afford the aminosiloxydiene in good purify for the next step. A flame dried flask was charged with this siloxydiene (2.00 g, 8.79 mmol) in distilled Et₂O (11 mL, 0.8 M) and the yellow solution was cooled to 0 °C on an ice-bath before being treated with deinhibited (Brockann 1 basic alumina) methyl acrylate (1.53 g, 1.60 mL, 17.6 mmol) dropwise by syringe under nitrogen. The reaction was warmed slowly to ambient temperature and stirred for 24 h. The reaction was then concentrated and re-dissolved in ether and polish filtered through a 1" pad of silica. Concentration of the eluent afforded the crude cycloadduct (2.32 g) as a 1.3:1 mixture of exo:endo products containing 10 mass % TBDMSCl. This crude material was dissolved in distilled THF (17

mL). The mixture was cooled to 0 °C on an ice-bath before dropwise addition of LAH 1M in Et₂O (10.9 mL, 10.9 mmol) over 30 min. The reaction stirred for an additional 30 min at this temperature before being diluted with ether (30 mL) and quenched by addition of water (3.3 mL; 0.3 mL/mmol LAH) dropwise by syringe with good ventilation. This turbid mixture was then warmed to ambient temperature before addition of anhydrous Na₂SO₄. The inorganics were removed by filtration and the ethereal portion was concentrated to afford the desired alcohol as a colorless oil which was used in the next step without further purification. This material (1.67 g, 5.38 mmol) was taken up in MeCN (5.4 mL, 1 M) and cooled to 0 °C on an ice-bath. To this cooled mixture was added 10% HF in MeCN (2.5 mL, 2.2 mL/mmol) dropwise by syringe over 3 min. Upon addition of HF, the reaction mixture turned colorless to yellow. The reaction was warmed to ambient temperature and stirred for 1.5 h with monitoring by TLC. Upon completion of the reaction, the reaction mixture was loaded directly on to a column layered with sodium sulfate for purification by chromatography on SiO2 (isocratic, diethyl ether) to rac-3-60 (645 mg, 59% over 4 steps) as a viscous clear oil which matched literature spectra: ¹H NMR (500 MHz, CDCl₃) δ 6.10–6.04 (m, 1 H), 3.78–3.64 (m, 2 H), 2.69–2.59 (m, 1 H), 2.55 (dt, J = 16.8, 4.7 Hz, 1 H), 2.40 (ddd, J = 16.9, 12.6, 5.1 Hz, 1 H), 2.14 (dqd, J = 13.4, 4.9, 1.4 Hz, 1 H), 1.82 (tdd, J = 12.9, 9.7, 4.5 Hz, 1 H), 1.69 (d, J = 5.0 Hz, 1 H). ¹³C NMR (126 MHz, CDCl₃) δ 199.5, 151.1, 130.4, 77.3, 76.7, 65.3, 39.0, 36.6, 25.4.

(4-Oxocyclohex-2-en-1-yl)methyl 1-benzhydrylaziridine-2-carboxylate (3-115). Ethyl 1-benzhydrylaziridine-2-carboxylate (0.350 g, 1.24 mmol) was suspended in EtOH (1.24 mL) and cooled to 0 °C on an ice-bath. Bench grade THF was added until dissolution of the starting material

was visualized (about 300 µL). Lithium hydroxide monohydrate (79.9 mg, 1.87 mmol) was added in one portion followed by a drop of water. The reaction was stirred while warming to ambient temperature. After about 3 h the reaction mixture had seized and the white solid was slurried in ether and collected by filtration. The solids were washed with ether, dried on the filter, then dissolved in 6 mL of water and to it was added and equal volume of half-saturated aqueous citric acid resulting in a formation of a white precipitate. Methylene chloride was added, and the two layers were transferred to a separatory funnel. The organic layer was separated, and the aqueous layer extracted with methylene chloride (2 x 25 mL). The organic extracts were combined, dried (Na₂SO₄), filtered and concentrated to afford an oil which foamed to a light colorless solid under high vacuum. This material was charged into a flame-dried vial with HBTU (383 mg, 0.999 mmol), and DIPEA (258 mg, 330 µL, 2.00 mmol) in dry DMF (2.5 mL, 0.4 M). The mixture was stirred for 30 min at ambient temperature before rac-3-60 (139 mg, 1.10 mmol) was added as a solution in dry DMF (1 mL). Stirring was continued for 16 h at which point the reaction was diluted with diethyl ether 100 mL and washed with water (2 x 25 mL), brine (25 mL), dried (MgSO4), filtered, and concentrated to afford a yellow oil which was purified by chromatography on SiO₂ (gradient, 1:1 to 0:1 hexanes/Et₂O) to afford **1** (275 mg, 61%) as a colorless solid: $R_f = 0.41$ (1:1 hexanes/EtOAc, UV active); Mp 91.5-93 °C; ATR-IR (neat) 3062, 3028, 2953, 1742, 1677, 1177, 749, 703 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.44–7.39 (m, 4 H), 7.34–7.21 (m, 6 H), 6.79–6.74 (m, 1 H), 6.05 (dt, J = 10.2, 3.0 Hz, 1 H), 4.29-4.05 (m, 2 H), 3.62 (s, 1 H), 2.80-2.73 (m, 1 H),2.53 (ddt, J = 17.2, 8.8, 4.7 Hz, 1 H), 2.42–2.32 (m, 2 H), 2.28 (ddd, J = 6.4, 3.2, 1.1 Hz, 1 H), 2.11–2.02 (m, 1 H), 1.88 (d, J = 6.4 Hz, 1 H), 1.75 (qdd, J = 12.9, 9.7, 4.5 Hz, 1 H); ¹³C NMR (126 MHz, CDCl₃, 1:1 diastereomers) δ 198.8, 198.8, 170.4, 170.4, 149.5, 149.4, 142.5, 142.2,
130.7, 128.5, 128.5, 127.5, 127.4, 127.2, 127.1, 77.9, 77.9, 66.3, 66.3, 37.9, 37.9, 36.5, 35.9, 35.9, 35.1, 35.1, 25.6, 25.5; HRMS (ESI) *m*/*z* calcd for C₂₃H₂₄NO₃ (M+H) 362.1751, found 362.1760.

(±)-(2aS,2a1R,5aR,8aS)-1-Benzhydryloctahydro-3H-pyrano[3,4,5-cd] isoindole-3,8

(1*H*)-dione (3-116). A flame dried 30 mL microwave vial was charged with 3-115 (0.100 g, 0.277 mmol) in distilled PhMe (9.2 mL, 0.03 M), and the mixture was sparged with nitrogen under sonication for 2 min before the vial was sealed and placed in a preheated aluminum block (150 °C) for 34 h. At this point the reaction was directly purified by chromatography on SiO₂ (gradient, 0:1 to 1:9 acetone/CH₂Cl₂) to afford **3-116** (40 mg, 40%) as an off-white solid: $R_f = 0.75$ (9:1 CH₂Cl₂/acetone, UV active); Mp 195–196 °C; ATR-IR (neat) 3058, 3025, 2900, 1737, 1709, 1493, 1453, 1125, 1072, 750, 708 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.37–7.27 (m, 9 H), 7.24–7.18 (m, 1 H), 5.52 (s, 1 H), 4.39 (dd, *J* = 11.0, 6.7 Hz, 1 H), 4.20 (dd, *J* = 11.0, 2.7 Hz, 1 H), 3.46 (dd, *J* = 9.8, 3.7 Hz, 1 H), 3.43 (d, *J* = 10.0 Hz, 1 H), 3.19 (td, *J* = 10.1, 7.9 Hz, 1 H), 2.76 (ddd, *J* = 14.3, 8.3, 5.8 Hz, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ 209.3, 171.4, 141.7, 137.7, 130.2, 128.1, 128.1, 127.6, 127.5, 126.8, 69.3, 66.1, 60.7, 48.3, 47.3, 40.5, 36.6, 32.6, 22.9; HRMS (ESI) *m/z* calcd for C₂₃H₂₄NO₃ (M+H) 362.1751.

(4-Oxocyclohex-2-en-1-yl)methyl 1-benzhydryl-3,3-dimethylaziridine-2-carboxylate (3-118). 3-95 (0.400 g, 1.29 mmol) was dissolved in 3:1 EtOH/THF (2.0 mL:0.60 mL) and cooled to 0 °C on an ice-bath. Lithium hydroxide monohydrate (83.0 mg, 1.94 mmol) was added in one portion followed by a 12 drops of water from a glass pipette (about 3 drops/20 mg LiOH). The reaction was stirred while warming to ambient temperature and stirred for 12 h during which time the reaction seized. The solid was transferred to a separatory funnel and half-saturated aqueous citric acid (20 mL) was then added which resulted in a white precipitate. 30 mL of methylene chloride was added to the funnel and the contents was shaken vigorously. The organics were separated, and aqueous layer extracted with methylene chloride (2 x 30 mL) ensuring the aqueous layer remained acidic (pH < 2). The cloudy combined organics were washed with brine (20 mL) resulting in a transparent pale-yellow solution which was dried (Na₂SO₄), filtered, and concentrated to produce an oil which foamed to a solid on the high vacuum. Diethyl ether (10 mL) was added to this foam and swirled under the high vacuum. One more chasing of ether gave the aziridine carboxylic acid as a white solid which was used immediately due to instability. This crude acid (363 mg, 1.29 mmol) was charged into a flame dried vial with HBTU (494 mg, 1.29 mmol) in dry DMF (5.0 mL). The mixture was cooled to 0 °C on an ice-bath before addition of and DIPEA (258 mg, 330 µL, 2.00 mmol). The bath was removed and the mixture was stirred for 30 min at ambient temperature before rac-3-60 (171 mg, 1.36 mmol) was added as a solution in dry DMF (2 mL). Stirring was continued for 16 h at which point the reaction was diluted with ethyl acetate (120 mL) and washed with water (2 x 30 mL), brine (25 mL), dried (MgSO₄), filtered,

and concentrated to afford a yellow oil which was purified by chromatography on SiO₂ (gradient, 1:0 to 1:1 hexanes/Et₂O) to afford **3-118** (361 mg, 72%) as an off-white solid: $R_f = 0.68$ (Et₂O, UV active); Mp 95–96 °C; ATR-IR (neat) 3062, 3027, 2956, 2870, 1743, 1678, 1453, 1169, 1134, 748, 704 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.51–7.46 (m, 4 H), 7.32–7.16 (m, 6 H), 6.78–6.71 (m, 1 H), 6.03 (ddd, J = 10.3, 7.8, 2.5 Hz, 1 H), 4.32 (s, 1 H), 4.18 (dt, J = 11.1, 6.1 Hz, 1 H), 4.07 (ddd, J = 11.0, 6.5, 2.2 Hz, 1 H), 2.78–2.67 (m, 1 H), 2.52 (ddt, J = 12.3, 8.3, 4.4 Hz, 1 H), 2.41–2.31 (m, 1 H), 2.18 (d, J = 1.4 Hz, 1 H), 2.10–1.98 (m, 1 H), 1.81–1.62 (m, 1 H), 1.35 (s, 3 H), 1.29 (s, 3 H); ¹³C NMR 126 MHz, CDCl₃, 1:1 diastereomers) δ 198.9, 198.9, 170.1, 170.1, 149.7, 149.7, 143.7, 143.3, 130.6, 128.4, 127.4, 127.4, 127.1, 127.0, 126.8, 70.3, 66.0, 66.0, 48.0, 48.0, 46.5, 46.5, 36.5, 36.5, 36.0, 35.9, 25.6, 25.6, 22.1, 18.0, 18.0; HRMS (ESI) *m*/*z* calcd for C₂₅H₂₈NO₃ (M+H) 390.2064, found 390.2056.

APPENDIX A : DSC ANALYSIS OF NPTC (1-34)

APPENDIX B : MARFEY'S ANALYSIS OF 2-26

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 Retention Time (min)

No.	Name	tR	Peak Area (Y units*ms)	Area Percent
1	L-isomer	62.57	43076165632.0	49.61
2	D-isomer	68.62	43761025024.0	50.39

APPENDIX C : SELECTED NMR SPECTRA (CHAPTER 1)

APPENDIX D : SELECTED NMR SPECTRA (CHAPTER 2)

226

APPENDIX E : SELECTED NMR SPECTRA (CHAPTER 3)

APPENDIX F : X-RAY CRYSTALLOGRAPHY DATA

Figure 11 ORTEP strucuture of 3-73

Table 17 Sample and crystal data for 3-73

Chemical formula	$C_{24}H_{28}N_4O_4$			
Formula weight	436.50 g/mol			
Temperature	150(2) K			
Wavelength	1.54178 Å			
Crystal size	0.030 x 0.050 x 0.130 mm			
Crystal system	triclinic			
Space group	P -1			
Unit cell dimensions	a = 10.5702(3) Å	$\alpha = 105.875(2)^{\circ}$		
	b = 11.2776(3) Å	$\beta = 109.9772(16)^{\circ}$		
	c = 11.4692(4) Å	$\gamma = 108.8025(18)^{\circ}$		
Volume	1097.46(6) Å ³			
Z	2			
Density (calculated)	1.321 g/cm ³			
Absorption coefficient	0.744 mm ⁻¹			
F(000)	464			

Table 18 Data collection and structure refinement for 3-73

Theta range for data collection	4.55 to 70.20°			
Index ranges	-12<=h<=12, -13<=k	x<=13, -13<=l<=13		
Reflections collected	17806			
Independent reflections	4046 [R(int) = 0.037	7]		
Coverage of independent reflections	96.7%			
Absorption correction	Multi-Scan			
Max. and min. transmission	0.9800 and 0.9100			
Refinement method	Full-matrix least-squares on F ²			
Refinement program	SHELXL-2017/1 (Sheldrick, 2017)			
Function minimized	$\Sigma \mathrm{w}(\mathrm{F_o}^2 - \mathrm{F_c}^2)^2$			
Data / restraints / parameters	4046 / 0 / 294			
Goodness-of-fit on F ²	1.486			
Final R indices	3499 data; I>2σ(I)	R1 = 0.0448, wR2 = 0.1350		
	all data	R1 = 0.0515, wR2 = 0.1398		
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.068 where P=(F_o^2+2F_c^2)/2	0P) ²] 3		
Largest diff. peak and hole	0.716 and -0.344 eÅ ⁻³			
R.M.S. deviation from mean	0.051 eÅ ⁻³			

Table 19 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for 3-73

 $U(\mbox{eq})$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

-	x/a	y/b	z/c	U(eq)
C1	0.78797(17)	0.97374(16)	0.17860(16)	0.0242(3)
C2	0.81594(17)	0.11089(16)	0.28163(16)	0.0237(3)
C3	0.91762(17)	0.14674(18)	0.43175(17)	0.0285(4)
C4	0.83191(17)	0.06555(17)	0.48986(16)	0.0267(4)

U(eq) is defined as one	third of the trace of the	he orthogonalized	U _{ij} tensor.
-------------------------	---------------------------	-------------------	-------------------------

	x/a	y/b	z/c	U(eq)
C5	0.71509(17)	0.11316(16)	0.50222(15)	0.0224(3)
C6	0.62968(16)	0.12938(15)	0.37760(15)	0.0198(3)
C7	0.65267(16)	0.08993(15)	0.25225(15)	0.0199(3)
C8	0.54854(16)	0.93279(15)	0.14755(14)	0.0187(3)
C9	0.41926(16)	0.86776(15)	0.17510(15)	0.0194(3)
C10	0.17339(19)	0.8409(2)	0.1322(2)	0.0377(5)
C11	0.0584(2)	0.8703(3)	0.0467(3)	0.0549(6)
C12	0.58104(17)	0.73626(16)	0.04117(15)	0.0217(3)
C13	0.68046(16)	0.66468(15)	0.05237(15)	0.0200(3)
C14	0.67829(17)	0.58448(16)	0.93426(15)	0.0233(3)
C15	0.76474(18)	0.51427(17)	0.94152(17)	0.0278(4)
C16	0.85419(18)	0.52203(17)	0.06644(18)	0.0281(4)
C17	0.85807(18)	0.60198(18)	0.18503(17)	0.0285(4)
C18	0.77227(18)	0.67300(17)	0.17758(16)	0.0253(4)
C19	0.41386(16)	0.28079(15)	0.46918(15)	0.0202(3)
C20	0.34159(19)	0.29732(18)	0.35164(16)	0.0274(4)
C21	0.26156(19)	0.37261(18)	0.35309(17)	0.0291(4)
C22	0.25286(16)	0.43149(16)	0.47117(17)	0.0230(3)
C23	0.31943(17)	0.41280(16)	0.58699(16)	0.0241(3)
C24	0.39784(17)	0.33618(16)	0.58555(15)	0.0229(3)
N1	0.64880(13)	0.86821(13)	0.16146(12)	0.0187(3)
N2	0.53280(14)	0.17675(13)	0.36587(13)	0.0205(3)
N3	0.50115(15)	0.21226(14)	0.47349(13)	0.0227(3)
N4	0.17446(15)	0.51620(14)	0.47441(16)	0.0292(3)
01	0.42443(12)	0.82028(11)	0.25803(11)	0.0245(3)
O2	0.29844(12)	0.87724(12)	0.09908(12)	0.0272(3)
03	0.11929(15)	0.53415(15)	0.37100(14)	0.0427(4)
O4	0.16770(13)	0.56784(12)	0.57998(13)	0.0354(3)

Table 20 Bond lengths (Å) for 3-73

C1-N1	1.4714(19)	C1-C2	1.531(2)
C1-H1A	0.99	C1-H1B	0.99
C2-C3	1.535(2)	C2-C7	1.563(2)
C2-H2A	1.0	C3-C4	1.522(2)
C3-H3A	0.99	C3-H3B	0.99
C4-C5	1.529(2)	C4-H4A	0.99
C4-H4B	0.99	C5-C6	1.503(2)
C5-H5A	0.99	C5-H5B	0.99
C6-N2	1.2846(19)	C6-C7	1.511(2)
C7-C8	1.571(2)	C7-H7A	1.0
C8-N1	1.4576(17)	C8-C9	1.510(2)
C8-H8A	1.0	C9-O1	1.2067(18)
C9-O2	1.3345(17)	C10-O2	1.4623(19)
C10-C11	1.473(3)	C10-H10A	0.99

C10-H10B	0.99	C11-H11A	0.98
C11-H11B	0.98	C11-H11C	0.98
C12-N1	1.4647(19)	C12-C13	1.511(2)
C12-H12A	0.99	C12-H12B	0.99
C13-C18	1.389(2)	C13-C14	1.396(2)
C14-C15	1.385(2)	C14-H14A	0.95
C15-C16	1.381(2)	C15-H15A	0.95
C16-C17	1.390(2)	C16-H16A	0.95
C17-C18	1.387(2)	C17-H17A	0.95
C18-H18A	0.95	C19-N3	1.3785(19)
C19-C20	1.400(2)	C19-C24	1.402(2)
C20-C21	1.379(2)	C20-H20A	0.95
C21-C22	1.384(2)	C21-H21A	0.95
C22-C23	1.384(2)	C22-N4	1.4536(19)
C23-C24	1.377(2)	C23-H23A	0.95
C24-H24A	0.95	N2-N3	1.3762(17)
N3-H3N	0.88(2)	N4-O4	1.2290(19)
N4-O3	1.2340(19)		

Table 21 Bond angles (°) for 3-73

N1-C1-C2	104.91(12)	N1-C1-H1A	110.8
C2-C1-H1A	110.8	N1-C1-H1B	110.8
C2-C1-H1B	110.8	H1A-C1-H1B	108.8
C1-C2-C3	113.48(13)	C1-C2-C7	103.50(12)
C3-C2-C7	112.96(13)	C1-C2-H2A	108.9
С3-С2-Н2А	108.9	С7-С2-Н2А	108.9
C4-C3-C2	112.25(13)	C4-C3-H3A	109.2
C2-C3-H3A	109.2	C4-C3-H3B	109.2
C2-C3-H3B	109.2	НЗА-СЗ-НЗВ	107.9
C3-C4-C5	109.49(13)	C3-C4-H4A	109.8
C5-C4-H4A	109.8	C3-C4-H4B	109.8
C5-C4-H4B	109.8	H4A-C4-H4B	108.2
C6-C5-C4	112.59(12)	C6-C5-H5A	109.1
C4-C5-H5A	109.1	C6-C5-H5B	109.1
C4-C5-H5B	109.1	H5A-C5-H5B	107.8
N2-C6-C5	124.89(13)	N2-C6-C7	113.70(12)
C5-C6-C7	121.41(12)	C6-C7-C2	115.39(12)
C6-C7-C8	113.44(12)	C2-C7-C8	103.60(11)
С6-С7-Н7А	108.0	С2-С7-Н7А	108.0
С8-С7-Н7А	108.0	N1-C8-C9	113.53(12)
N1-C8-C7	105.51(11)	C9-C8-C7	111.09(11)
N1-C8-H8A	108.9	C9-C8-H8A	108.9
C7-C8-H8A	108.9	01-C9-O2	124.10(14)
01-C9-C8	125.99(13)	O2-C9-C8	109.81(12)
O2-C10-C11	107.56(15)	O2-C10-H10A	110.2
C11-C10-H10A	110.2	O2-C10-H10B	110.2

C11-C10-H10B	110.2	H10A-C10-H10B	108.5
C10-C11-H11A	109.5	C10-C11-H11B	109.5
H11A-C11-H11B	109.5	C10-C11-H11C	109.5
H11A-C11-H11C	109.5	H11B-C11-H11C	109.5
N1-C12-C13	112.96(11)	N1-C12-H12A	109.0
C13-C12-H12A	109.0	N1-C12-H12B	109.0
C13-C12-H12B	109.0	H12A-C12-H12B	107.8
C18-C13-C14	118.29(14)	C18-C13-C12	121.77(13)
C14-C13-C12	119.93(13)	C15-C14-C13	120.92(14)
C15-C14-H14A	119.5	C13-C14-H14A	119.5
C16-C15-C14	120.25(14)	C16-C15-H15A	119.9
C14-C15-H15A	119.9	C15-C16-C17	119.50(14)
C15-C16-H16A	120.2	C17-C16-H16A	120.2
C18-C17-C16	120.12(15)	C18-C17-H17A	119.9
C16-C17-H17A	119.9	C17-C18-C13	120.92(14)
C17-C18-H18A	119.5	C13-C18-H18A	119.5
N3-C19-C20	121.58(14)	N3-C19-C24	119.27(13)
C20-C19-C24	119.15(14)	C21-C20-C19	120.11(14)
C21-C20-H20A	119.9	C19-C20-H20A	119.9
C20-C21-C22	119.66(15)	C20-C21-H21A	120.2
C22-C21-H21A	120.2	C23-C22-C21	121.15(14)
C23-C22-N4	119.35(14)	C21-C22-N4	119.49(14)
C24-C23-C22	119.43(14)	C24-C23-H23A	120.3
С22-С23-Н23А	120.3	C23-C24-C19	120.38(14)
C23-C24-H24A	119.8	C19-C24-H24A	119.8
C8-N1-C12	111.24(11)	C8-N1-C1	103.44(11)
C12-N1-C1	113.08(12)	C6-N2-N3	118.04(12)
N2-N3-C19	117.89(13)	N2-N3-H3N	122.7(13)
C19-N3-H3N	118.9(13)	O4-N4-O3	123.10(14)
O4-N4-C22	118.76(14)	O3-N4-C22	118.13(14)
C9-O2-C10	115.93(13)		

Table 22 Anisotropic atomic displacement parameters $({\rm \AA}^2)$ for 3-73

The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [$h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

	U11	U22	U33	U23	U13	U12
C1	0.0208(7)	0.0274(8)	0.0294(8)	0.0118(7)	0.0157(6)	0.0130(6)
C2	0.0213(7)	0.0234(8)	0.0314(8)	0.0133(7)	0.0161(7)	0.0107(6)
C3	0.0187(7)	0.0309(9)	0.0294(8)	0.0063(7)	0.0093(6)	0.0117(7)
C4	0.0263(8)	0.0304(9)	0.0229(8)	0.0104(7)	0.0075(6)	0.0180(7)
C5	0.0247(7)	0.0237(8)	0.0209(7)	0.0102(7)	0.0105(6)	0.0132(6)
C6	0.0203(7)	0.0175(7)	0.0226(7)	0.0096(6)	0.0105(6)	0.0085(6)
C7	0.0218(7)	0.0229(8)	0.0230(7)	0.0136(7)	0.0130(6)	0.0134(6)
C8	0.0203(7)	0.0243(8)	0.0187(7)	0.0126(6)	0.0106(6)	0.0140(6)
C9	0.0198(7)	0.0213(7)	0.0190(7)	0.0085(6)	0.0090(6)	0.0119(6)
C10	0.0263(9)	0.0504(11)	0.0557(11)	0.0349(10)	0.0265(8)	0.0213(8)
C11	0.0323(10)	0.0821(17)	0.0733(15)	0.0493(14)	0.0306(10)	0.0324(11)

	U11	U22	U33	U23	U13	U12
C12	0.0201(7)	0.0254(8)	0.0180(7)	0.0073(6)	0.0076(6)	0.0119(6)
C13	0.0172(7)	0.0204(7)	0.0223(7)	0.0089(6)	0.0102(6)	0.0077(6)
C14	0.0234(7)	0.0249(8)	0.0196(7)	0.0081(7)	0.0097(6)	0.0107(6)
C15	0.0313(8)	0.0256(8)	0.0290(8)	0.0082(7)	0.0182(7)	0.0146(7)
C16	0.0251(8)	0.0275(8)	0.0367(9)	0.0134(8)	0.0165(7)	0.0159(7)
C17	0.0277(8)	0.0332(9)	0.0258(8)	0.0133(7)	0.0095(7)	0.0183(7)
C18	0.0287(8)	0.0301(8)	0.0204(7)	0.0094(7)	0.0125(7)	0.0173(7)
C19	0.0173(7)	0.0202(7)	0.0242(7)	0.0103(6)	0.0096(6)	0.0093(6)
C20	0.0315(8)	0.0373(9)	0.0244(8)	0.0169(7)	0.0166(7)	0.0215(7)
C21	0.0290(8)	0.0415(10)	0.0315(9)	0.0247(8)	0.0166(7)	0.0225(7)
C22	0.0185(7)	0.0221(7)	0.0338(8)	0.0149(7)	0.0138(6)	0.0114(6)
C23	0.0225(7)	0.0246(8)	0.0264(8)	0.0092(7)	0.0130(6)	0.0123(6)
C24	0.0243(7)	0.0269(8)	0.0211(7)	0.0120(7)	0.0103(6)	0.0149(6)
N1	0.0171(6)	0.0220(6)	0.0200(6)	0.0086(5)	0.0094(5)	0.0118(5)
N2	0.0224(6)	0.0224(6)	0.0215(6)	0.0109(6)	0.0129(5)	0.0118(5)
N3	0.0271(7)	0.0308(7)	0.0199(6)	0.0136(6)	0.0133(6)	0.0195(6)
N4	0.0225(7)	0.0261(7)	0.0451(9)	0.0197(7)	0.0168(6)	0.0134(6)
01	0.0277(6)	0.0293(6)	0.0262(6)	0.0164(5)	0.0163(5)	0.0161(5)
O2	0.0195(5)	0.0384(6)	0.0363(6)	0.0243(6)	0.0152(5)	0.0180(5)
03	0.0429(7)	0.0530(8)	0.0566(8)	0.0375(7)	0.0248(7)	0.0360(7)
O4	0.0324(6)	0.0311(7)	0.0496(8)	0.0146(6)	0.0238(6)	0.0198(5)

Table 23 Hydrogen atomic coordinates and isotropic atomic displacemnt parameters (Å²) for 3-73

	x/a	y/b	z/c	U(eq)
H1A	0.7740	-0.0229	0.0899	0.029
H1B	0.8741	-0.0465	0.2147	0.029
H2A	0.8640	0.1875	0.2591	0.028
H3A	1.0033	0.1263	0.4374	0.034
H3B	0.9601	0.2474	0.4884	0.034
H4A	0.9038	0.0811	0.5815	0.032
H4B	0.7801	-0.0350	0.4285	0.032
H5A	0.6422	0.0446	0.5158	0.027
H5B	0.7675	0.2031	0.5842	0.027
H7A	0.6284	0.1474	0.2039	0.024
H8A	0.5059	-0.0739	0.0522	0.022
H10A	0.2102	-0.1034	0.2309	0.045
H10B	0.1293	-0.2586	0.1125	0.045
H11A	-0.0284	-0.1556	0.0647	0.082
H11B	0.0248	-0.1835	-0.0506	0.082
H11C	0.1024	-0.0304	0.0692	0.082
H12A	0.5612	-0.2464	-0.0418	0.026
H12B	0.4825	-0.3262	0.0296	0.026
H14A	0.6167	-0.4220	-0.1523	0.028
H15A	0.7625	-0.5394	-0.1397	0.033
H16A	0.9126	-0.5269	0.0713	0.034

	x/a	y/b	z/c	U(eq)
H17A	0.9196	-0.3920	0.2713	0.034
H18A	0.7764	-0.2719	0.2593	0.03
H20A	0.3477	0.2566	0.2708	0.033
H21A	0.2126	0.3840	0.2735	0.035
H23A	0.3111	0.4525	0.6668	0.029
H24A	0.4413	0.3208	0.6638	0.027
H3N	0.544(2)	0.204(2)	0.549(2)	0.036(5)

Table 24 Sample and crystal data for 3-74

Chemical formula	C24H27NO3		
Formula weight	377.46 g/mol		
Temperature	150(2) K		
Wavelength	1.54178 Å		
Crystal size	0.030 x 0.130 x 0.220 mm		
Crystal system	monoclinic		
Space group	P 1 21/c 1		
Unit cell dimensions	a = 15.8756(4) Å	$\alpha = 90^{\circ}$	
	b = 5.98440(10) Å	$\beta = 106.6901(12)^{\circ}$	
	c = 21.9116(5) Å	$\gamma=90^\circ$	
Volume	1994.03(8) Å ³		
Z	4		
Density (calculated)	1.257 g/cm ³		
Absorption coefficient	0.654 mm ⁻¹		
F(000)	808		

Table 25 Data collection and structure refinement for 3-74

Theta range for data collection	4.21 to 68.31°			
Index ranges	-18<=h<=19, -7<=k<=	=7, -23<=l<=26		
Reflections collected	22788			
Independent reflections	3617 [R(int) = 0.0670]			
Max. and min. transmission	0.9800 and 0.8700			
Refinement method	Full-matrix least-squares on F ²			
Refinement program	SHELXL-2017/1 (Sheldrick, 2017)			
Function minimized	$\Sigma \mathrm{w}(\mathrm{F_o}^2 - \mathrm{F_c}^2)^2$			
Data / restraints / parameters	3617 / 0 / 253			
Goodness-of-fit on F ²	1.338			
Final R indices	3236 data; I>2σ(I)	R1 = 0.0405, wR2 = 0.1145		
	all data	R1 = 0.0445, wR2 = 0.1181		
Weighting scheme	$w=1/[\sigma^2(F_o^2)+(0.0680P)^2]$ where $P=(F_o^2+2F_c^2)/3$			
Largest diff. peak and hole	0.312 and -0.239 eÅ ⁻³			
R.M.S. deviation from mean	0.050 eÅ ⁻³			

Table 26 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for 3-74

U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
N1	0.26000(6)	0.55685(16)	0.19506(4)	0.0184(2)
01	0.26618(6)	0.77519(17)	0.01334(4)	0.0322(2)
C1	0.23340(7)	0.63400(19)	0.12813(5)	0.0178(2)
O2	0.14264(5)	0.41125(15)	0.04707(4)	0.0237(2)
C2	0.30819(7)	0.79540(19)	0.12639(5)	0.0192(3)

	x/a	y/b	z/c	U(eq)
O3	0.28658(5)	0.32382(15)	0.07769(4)	0.0244(2)
C3	0.32459(8)	0.8133(2)	0.06162(6)	0.0231(3)
C4	0.41455(9)	0.8896(3)	0.05915(7)	0.0341(3)
C5	0.48501(8)	0.8911(2)	0.12363(7)	0.0323(3)
C6	0.47175(8)	0.6913(2)	0.16315(6)	0.0280(3)
C7	0.38854(7)	0.7272(2)	0.18326(5)	0.0216(3)
C8	0.35591(7)	0.5248(2)	0.21239(5)	0.0217(3)
C9	0.22560(7)	0.44100(19)	0.08096(5)	0.0182(2)
C10	0.12420(8)	0.2307(2)	0.00074(6)	0.0286(3)
C11	0.02705(8)	0.2411(2)	0.96772(6)	0.0287(3)
C12	0.21124(7)	0.36181(19)	0.20820(5)	0.0180(2)
C13	0.07974(8)	0.6111(2)	0.20511(5)	0.0215(3)
C14	0.98957(8)	0.6445(2)	0.19164(6)	0.0254(3)
C15	0.93141(8)	0.4774(2)	0.16212(6)	0.0281(3)
C16	0.96362(8)	0.2769(2)	0.14647(6)	0.0275(3)
C17	0.05379(8)	0.2425(2)	0.16075(5)	0.0227(3)
C18	0.11279(7)	0.4087(2)	0.19032(5)	0.0191(3)
C19	0.28169(7)	0.0821(2)	0.29476(6)	0.0222(3)
C20	0.31269(8)	0.0183(2)	0.35848(6)	0.0272(3)
C21	0.30767(8)	0.1655(2)	0.40644(6)	0.0284(3)
C22	0.27259(8)	0.3768(2)	0.39035(6)	0.0266(3)
C23	0.24230(8)	0.4407(2)	0.32682(6)	0.0228(3)
C24	0.24614(7)	0.2936(2)	0.27822(5)	0.0193(3)

Table 27 Bond lengths (Å) for 3-74

N1-C8	1.4722(14)	N1-C12	1.4739(15)
N1-C1	1.4786(14)	O1-C3	1.2114(16)
C1-C9	1.5310(15)	C1-C2	1.5396(16)
C1-H1A	1.0	O2-C9	1.3252(14)
O2-C10	1.4538(14)	C2-C3	1.5185(16)
C2-C7	1.5598(15)	C2-H2A	1.0
O3-C9	1.2140(15)	C3-C4	1.5152(18)
C4-C5	1.530(2)	C4-H4A	0.99
C4-H4B	0.99	C5-C6	1.5257(19)
C5-H5A	0.99	C5-H5B	0.99
C6-C7	1.5232(16)	C6-H6A	0.99
C6-H6B	0.99	C7-C8	1.5278(16)
C7-H7A	1.0	C8-H8A	0.99
C8-H8B	0.99	C10-C11	1.5050(17)
C10-H10A	0.99	C10-H10B	0.99
C11-H11A	0.98	C11-H11B	0.98
C11-H11C	0.98	C12-C18	1.5243(15)
C12-C24	1.5295(15)	C12-H12A	1.0
C13-C14	1.3906(17)	C13-C18	1.3943(17)
C13-H13A	0.95	C14-C15	1.388(2)

C14-H14A	0.95	C15-C16	1.385(2)
C15-H15A	0.95	C16-C17	1.3901(18)
C16-H16A	0.95	C17-C18	1.3924(17)
C17-H17A	0.95	C19-C24	1.3911(17)
C19-C20	1.3937(18)	C19-H19A	0.95
C20-C21	1.391(2)	C20-H20A	0.95
C21-C22	1.386(2)	C21-H21A	0.95
C22-C23	1.3896(18)	C22-H22A	0.95
C23-C24	1.3963(16)	C23-H23A	0.95

Table 28 Bond angles (°) for 3-74

C8-N1-C12	114.11(9)	C8-N1-C1	106.03(8)
C12-N1-C1	115.13(8)	N1-C1-C9	112.25(9)
N1-C1-C2	102.58(8)	C9-C1-C2	111.72(9)
N1-C1-H1A	110.0	C9-C1-H1A	110.0
C2-C1-H1A	110.0	C9-O2-C10	117.36(9)
C3-C2-C1	114.06(9)	C3-C2-C7	116.40(9)
C1-C2-C7	106.01(9)	C3-C2-H2A	106.6
C1-C2-H2A	106.6	С7-С2-Н2А	106.6
O1-C3-C4	121.23(11)	O1-C3-C2	120.61(11)
C4-C3-C2	118.10(10)	C3-C4-C5	114.54(11)
C3-C4-H4A	108.6	C5-C4-H4A	108.6
C3-C4-H4B	108.6	C5-C4-H4B	108.6
H4A-C4-H4B	107.6	C6-C5-C4	109.66(11)
C6-C5-H5A	109.7	C4-C5-H5A	109.7
C6-C5-H5B	109.7	C4-C5-H5B	109.7
H5A-C5-H5B	108.2	C7-C6-C5	109.03(11)
С7-С6-Н6А	109.9	С5-С6-Н6А	109.9
C7-C6-H6B	109.9	C5-C6-H6B	109.9
H6A-C6-H6B	108.3	C6-C7-C8	115.80(10)
C6-C7-C2	112.58(10)	C8-C7-C2	104.10(9)
С6-С7-Н7А	108.0	C8-C7-H7A	108.0
С2-С7-Н7А	108.0	N1-C8-C7	103.79(9)
N1-C8-H8A	111.0	C7-C8-H8A	111.0
N1-C8-H8B	111.0	C7-C8-H8B	111.0
H8A-C8-H8B	109.0	O3-C9-O2	124.78(11)
O3-C9-C1	124.35(10)	O2-C9-C1	110.75(9)
O2-C10-C11	106.13(10)	O2-C10-H10A	110.5
C11-C10-H10A	110.5	O2-C10-H10B	110.5
C11-C10-H10B	110.5	H10A-C10-H10B	108.7
C10-C11-H11A	109.5	C10-C11-H11B	109.5
H11A-C11-H11B	109.5	C10-C11-H11C	109.5
H11A-C11-H11C	109.5	H11B-C11-H11C	109.5
N1-C12-C18	111.17(9)	N1-C12-C24	110.36(9)
C18-C12-C24	110.87(9)	N1-C12-H12A	108.1
C18-C12-H12A	108.1	C24-C12-H12A	108.1

C14-C13-C18	120.58(11)	C14-C13-H13A	119.7
C18-C13-H13A	119.7	C15-C14-C13	120.10(12)
C15-C14-H14A	119.9	C13-C14-H14A	119.9
C16-C15-C14	119.72(11)	C16-C15-H15A	120.1
C14-C15-H15A	120.1	C15-C16-C17	120.15(11)
C15-C16-H16A	119.9	C17-C16-H16A	119.9
C16-C17-C18	120.69(12)	C16-C17-H17A	119.7
C18-C17-H17A	119.7	C17-C18-C13	118.75(11)
C17-C18-C12	119.41(10)	C13-C18-C12	121.79(10)
C24-C19-C20	120.69(11)	C24-C19-H19A	119.7
C20-C19-H19A	119.7	C21-C20-C19	120.20(12)
C21-C20-H20A	119.9	C19-C20-H20A	119.9
C22-C21-C20	119.45(11)	C22-C21-H21A	120.3
C20-C21-H21A	120.3	C21-C22-C23	120.28(12)
C21-C22-H22A	119.9	C23-C22-H22A	119.9
C22-C23-C24	120.81(12)	C22-C23-H23A	119.6
C24-C23-H23A	119.6	C19-C24-C23	118.56(11)
C19-C24-C12	120.48(10)	C23-C24-C12	120.95(10)

Table 29 Anisotropic atomic displacement parameters $({\rm \AA}^2)$ for 3-74

The anisotropic atomic displacement factor exponent takes the form: -2 π^2 [$h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

	U11	U22	U33	U23	U13	U12
N1	0.0159(5)	0.0226(5)	0.0165(5)	0.0001(4)	0.0045(3)	-0.0008(4)
01	0.0371(5)	0.0372(5)	0.0210(5)	0.0038(3)	0.0064(4)	-0.0071(4)
C1	0.0163(5)	0.0207(6)	0.0165(5)	0.0005(4)	0.0050(4)	0.0015(4)
O2	0.0192(4)	0.0303(5)	0.0209(4)	-0.0072(3)	0.0047(3)	-0.0021(3)
C2	0.0181(5)	0.0192(6)	0.0210(6)	-0.0003(4)	0.0065(4)	0.0008(4)
O3	0.0239(4)	0.0244(5)	0.0251(4)	-0.0022(3)	0.0072(3)	0.0043(3)
C3	0.0265(6)	0.0201(6)	0.0241(6)	0.0031(4)	0.0095(5)	0.0009(5)
C4	0.0312(7)	0.0437(8)	0.0321(7)	0.0067(5)	0.0167(5)	-0.0022(6)
C5	0.0213(6)	0.0384(8)	0.0399(8)	0.0052(6)	0.0130(5)	-0.0031(5)
C6	0.0182(6)	0.0340(7)	0.0326(7)	0.0041(5)	0.0083(5)	0.0003(5)
C7	0.0174(5)	0.0252(6)	0.0216(6)	-0.0010(4)	0.0046(4)	-0.0013(4)
C8	0.0165(5)	0.0287(6)	0.0186(6)	0.0017(4)	0.0032(4)	0.0004(4)
C9	0.0189(5)	0.0204(6)	0.0157(5)	0.0021(4)	0.0058(4)	-0.0001(4)
C10	0.0288(7)	0.0313(7)	0.0243(6)	-0.0111(5)	0.0055(5)	-0.0030(5)
C11	0.0295(7)	0.0319(7)	0.0219(6)	-0.0057(5)	0.0029(5)	-0.0054(5)
C12	0.0197(6)	0.0189(6)	0.0169(6)	-0.0022(4)	0.0074(4)	-0.0003(4)
C13	0.0228(6)	0.0241(6)	0.0184(6)	-0.0003(4)	0.0072(4)	0.0004(4)
C14	0.0248(6)	0.0309(7)	0.0229(6)	0.0037(5)	0.0106(5)	0.0065(5)
C15	0.0171(5)	0.0428(8)	0.0253(6)	0.0071(5)	0.0077(4)	0.0022(5)
C16	0.0217(6)	0.0338(7)	0.0255(6)	0.0017(5)	0.0043(5)	-0.0076(5)
C17	0.0240(6)	0.0250(6)	0.0195(6)	-0.0003(4)	0.0070(4)	-0.0026(5)
C18	0.0193(6)	0.0239(6)	0.0150(5)	0.0016(4)	0.0064(4)	-0.0004(4)
C19	0.0194(6)	0.0230(6)	0.0247(6)	-0.0009(4)	0.0070(4)	0.0000(4)
C20	0.0227(6)	0.0261(6)	0.0301(7)	0.0056(5)	0.0033(5)	0.0000(5)

	U11	U22	U33	U23	U13	U12
C21	0.0240(6)	0.0389(7)	0.0202(6)	0.0059(5)	0.0032(4)	-0.0060(5)
C22	0.0242(6)	0.0358(7)	0.0203(6)	-0.0037(5)	0.0071(4)	-0.0039(5)
C23	0.0226(6)	0.0244(6)	0.0217(6)	-0.0017(4)	0.0069(4)	0.0000(4)
C24	0.0154(5)	0.0242(6)	0.0190(6)	0.0004(4)	0.0062(4)	-0.0015(4)

Table 30 Hydrogen atomic coordinates and isotropic atomic displacemnt parameters (Å²) for 3-73

	x/a	y/b	z/c	U(eq)
H1A	0.1764	0.7169	0.1188	0.021
H2A	0.2896	0.9472	0.1366	0.023
H4A	0.4092	1.0424	0.0411	0.041
H4B	0.4343	0.7904	0.0298	0.041
H5A	0.5441	0.8836	0.1171	0.039
H5B	0.4811	1.0314	0.1466	0.039
H6A	0.4664	0.5527	0.1377	0.034
H6B	0.5230	0.6756	0.2013	0.034
H7A	0.4000	0.8509	0.2153	0.026
H8A	0.3709	0.3838	0.1943	0.026
H8B	0.3817	0.5219	0.2592	0.026
H10A	0.1400	0.0847	0.0223	0.034
H10B	0.1582	0.2506	-0.0303	0.034
H11A	0.0110	0.1221	-0.0642	0.043
H11B	-0.0056	0.2216	-0.0009	0.043
H11C	0.0125	0.3866	-0.0532	0.043
H12A	0.2211	0.2344	0.1815	0.022
H13A	0.1192	0.7271	0.2246	0.026
H14A	-0.0323	0.7819	0.2027	0.03
H15A	-0.1302	0.5004	0.1527	0.034
H16A	-0.0760	0.1628	0.1259	0.033
H17A	0.0754	0.1040	0.1502	0.027
H19A	0.2849	-0.0200	0.2623	0.027
H20A	0.3373	-0.1262	0.3692	0.033
H21A	0.3281	0.1215	0.4499	0.034
H22A	0.2692	0.4783	0.4229	0.032
H23A	0.2187	0.5862	0.3163	0.027

Figure 13 ORTEP structure of 3-116

Table 31 Sample and crystal data for 3-116

Chemical formula	C23H23NO3			
Formula weight	361.42 g/mol			
Temperature	150(2) K			
Wavelength	1.54178 Å			
Crystal size	0.080 x 0.150 x 0.210 mm			
Crystal system	monoclinic			
Space group	C 1 c 1			
Unit cell dimensions	a = 16.9789(3) Å	$\alpha = 90^{\circ}$		
	b = 7.49480(10) Å	$\beta = 102.6470(10)^{\circ}$		
	c = 14.4748(2) Å	$\gamma=90^\circ$		
Volume	1797.28(5) Å ³			
Z	4			
Density (calculated)	1.336 g/cm ³			
Absorption coefficient	0.705 mm ⁻¹			
F(000)	768			

Table 32 Data collection and structure refinement for 3-116

Theta range for data collection	5.34 to 70.09°			
Index ranges	-20<=h<=20, -8<=k<=8, -17<=l<=17			
Reflections collected	15918			
Independent reflections	3286 [R(int) = 0.0233]]		
Max. and min. transmission	0.9800 and 0.9200			
Structure solution technique	direct methods			
Structure solution program	SHELXT 2014/4 (She	ldrick, 2014)		
Refinement method	Full-matrix least-squares on F ²			
Refinement program	SHELXL-2017/1 (Sheldrick, 2017)			
Function minimized	$\Sigma \mathrm{w}(\mathrm{F_o}^2 - \mathrm{F_c}^2)^2$			
Data / restraints / parameters	3286 / 2 / 336			
Goodness-of-fit on F ²	1.052			
Final R indices	3270 data; I>2σ(I)	R1 = 0.0264, wR2 = 0.0736		
	all data	R1 = 0.0265, wR2 = 0.0737		
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0680) where P=(F_o^2 +2 F_c^2)/3	P) ²]		
Absolute structure parameter	0.04(4)			
Largest diff. peak and hole	0.155 and -0.197 eÅ ⁻³			
R.M.S. deviation from mean	0.041 eÅ ⁻³			

Table 33 Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for 3-116

 $U(\mbox{eq})$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
C1	0.49574(9)	0.6434(2)	0.60916(12)	0.0180(3)
N1	0.53575(7)	0.52915(17)	0.55088(9)	0.0160(3)
01	0.71761(7)	0.26829(15)	0.64600(9)	0.0232(3)

	x/a	y/b	z/c	U(eq)
C2	0.56008(9)	0.6625(2)	0.69918(11)	0.0179(3)
O2	0.60627(8)	0.92868(17)	0.63604(10)	0.0321(3)
C3	0.62186(10)	0.8077(2)	0.69232(12)	0.0205(3)
O3	0.66139(7)	0.33364(18)	0.49869(9)	0.0277(3)
C4	0.70152(10)	0.7895(2)	0.76199(14)	0.0266(4)
C5	0.73799(9)	0.6060(2)	0.75028(13)	0.0228(3)
C6	0.68296(9)	0.4559(2)	0.76940(12)	0.0189(3)
C7	0.71317(10)	0.2758(2)	0.74528(13)	0.0234(4)
C8	0.65567(9)	0.3316(2)	0.58003(12)	0.0196(3)
C9	0.58024(9)	0.3907(2)	0.61310(11)	0.0159(3)
C10	0.59540(9)	0.47245(19)	0.71434(11)	0.0163(3)
C11	0.48540(8)	0.4682(2)	0.46004(11)	0.0173(3)
C12	0.39897(11)	0.1998(2)	0.47684(12)	0.0231(3)
C13	0.32754(12)	0.1213(2)	0.49027(12)	0.0267(4)
C14	0.26233(11)	0.2273(3)	0.49723(12)	0.0263(4)
C15	0.26747(10)	0.4118(2)	0.49035(13)	0.0249(4)
C16	0.33850(10)	0.4891(2)	0.47569(11)	0.0206(3)
C17	0.40560(9)	0.3841(2)	0.46975(11)	0.0186(3)
C18	0.42014(9)	0.5989(2)	0.30078(12)	0.0213(3)
C19	0.41244(10)	0.7284(2)	0.23051(13)	0.0257(4)
C20	0.45889(12)	0.8833(2)	0.24695(14)	0.0267(4)
C21	0.51328(12)	0.9050(2)	0.33289(14)	0.0270(4)
C22	0.52163(10)	0.7736(2)	0.40297(12)	0.0221(3)
C23	0.47435(9)	0.6193(2)	0.38726(12)	0.0191(3)

Table 34 Bond lengths (Å) for 3-116

C1-N1	1.4686(19)	C1-C2	1.513(2)
C1-H1A	0.93(2)	C1-H1B	1.04(2)
N1-C9	1.4699(19)	N1-C11	1.4753(18)
O1-C8	1.343(2)	O1-C7	1.457(2)
C2-C3	1.530(2)	C2-C10	1.542(2)
C2-H2	0.96(2)	O2-C3	1.209(2)
C3-C4	1.506(2)	O3-C8	1.202(2)
C4-C5	1.533(2)	C4-H4A	0.95(2)
C4-H4B	0.99(3)	C5-C6	1.526(2)
C5-H5A	0.95(2)	C5-H5B	0.99(3)
C6-C7	1.512(2)	C6-C10	1.5304(19)
C6-H6	0.96(3)	C7-H7A	0.98(2)
C7-H7B	0.95(3)	C8-C9	1.5276(19)
C9-C10	1.557(2)	C9-H9A	0.97(2)
C10-H10	0.95(2)	C11-C17	1.528(2)
C11-C23	1.530(2)	C11-H11	0.99(2)
C12-C17	1.392(2)	C12-C13	1.399(2)
C12-H12	0.97(3)	C13-C14	1.384(3)
C13-H13	0.99(3)	C14-C15	1.390(3)

C14-H14	0.97(2)	C15-C16	1.395(2)
C15-H15	0.97(3)	C16-C17	1.402(2)
C16-H16	1.00(2)	C18-C23	1.390(2)
C18-C19	1.391(2)	C18-H18	0.99(2)
C19-C20	1.394(3)	C19-H19	0.95(3)
C20-C21	1.387(3)	C20-H2-0	0.98(3)
C21-C22	1.398(2)	C21-H21	1.01(3)
C22-C23	1.398(2)	C22-H22	0.98(3)

Table 35 Bond angles (°) for 3-116

N1-C1-C2	102.26(12)	N1-C1-H1A	112.0(12)
C2-C1-H1A	111.2(13)	N1-C1-H1B	110.3(13)
C2-C1-H1B	115.2(13)	H1A-C1-H1B	106.1(17)
C1-N1-C9	107.45(13)	C1-N1-C11	116.22(12)
C9-N1-C11	116.55(12)	C8-O1-C7	119.10(12)
C1-C2-C3	112.80(13)	C1-C2-C10	102.71(12)
C3-C2-C10	114.55(12)	С1-С2-Н2	113.3(14)
С3-С2-Н2	105.5(14)	С10-С2-Н2	108.1(13)
O2-C3-C4	123.48(15)	O2-C3-C2	121.68(15)
C4-C3-C2	114.83(14)	C3-C4-C5	109.44(13)
C3-C4-H4A	110.8(15)	C5-C4-H4A	110.6(14)
C3-C4-H4B	110.4(15)	C5-C4-H4B	107.6(15)
H4A-C4-H4B	108.(2)	C6-C5-C4	111.29(14)
C6-C5-H5A	107.5(13)	C4-C5-H5A	112.5(14)
C6-C5-H5B	110.2(13)	C4-C5-H5B	109.1(13)
H5A-C5-H5B	106.1(19)	C7-C6-C5	111.36(14)
C7-C6-C10	106.98(13)	C5-C6-C10	114.18(13)
С7-С6-Н6	105.6(17)	С5-С6-Н6	110.1(17)
С10-С6-Н6	108.2(16)	O1-C7-C6	110.83(13)
O1-C7-H7A	109.4(14)	C6-C7-H7A	109.9(14)
O1-C7-H7B	105.7(16)	C6-C7-H7B	113.2(16)
H7A-C7-H7B	108.(2)	O3-C8-O1	118.82(14)
O3-C8-C9	123.79(14)	01-C8-C9	117.34(14)
N1-C9-C8	111.48(13)	N1-C9-C10	104.81(12)
C8-C9-C10	115.58(12)	N1-C9-H9A	112.4(14)
C8-C9-H9A	106.8(13)	С10-С9-Н9А	105.7(13)
C6-C10-C2	116.87(12)	C6-C10-C9	113.57(12)
C2-C10-C9	104.51(12)	C6-C10-H10	106.8(11)
C2-C10-H10	107.5(11)	С9-С10-Н10	107.1(11)
N1-C11-C17	113.47(12)	N1-C11-C23	110.12(12)
C17-C11-C23	113.00(12)	N1-C11-H11	104.8(14)
C17-C11-H11	108.3(13)	C23-C11-H11	106.6(14)
C17-C12-C13	120.92(16)	C17-C12-H12	116.1(14)
C13-C12-H12	122.9(14)	C14-C13-C12	120.03(17)
C14-C13-H13	121.1(14)	С12-С13-Н13	118.8(14)
C13-C14-C15	120.12(16)	C13-C14-H14	120.6(14)

C15-C14-H14	119.3(14)	C14-C15-C16	119.57(17)
C14-C15-H15	118.9(18)	C16-C15-H15	121.6(18)
C15-C16-C17	121.14(15)	C15-C16-H16	118.9(14)
C17-C16-H16	119.9(14)	C12-C17-C16	118.19(15)
C12-C17-C11	120.23(14)	C16-C17-C11	121.53(14)
C23-C18-C19	121.30(16)	C23-C18-H18	120.6(13)
C19-C18-H18	117.9(13)	C18-C19-C20	119.79(17)
C18-C19-H19	120.3(16)	C20-C19-H19	119.8(16)
C21-C20-C19	119.43(16)	С21-С20-Н2-0	120.7(14)
С19-С20-Н2-0	119.9(14)	C20-C21-C22	120.66(17)
C20-C21-H21	121.0(15)	C22-C21-H21	118.3(15)
C23-C22-C21	120.08(17)	С23-С22-Н22	121.1(13)
С21-С22-Н22	118.8(13)	C18-C23-C22	118.74(16)
C18-C23-C11	119.72(15)	C22-C23-C11	121.40(15)

Table 36 Anisotropic atomic displacement parameters (\AA^2) for 3-116

The anisotropic aton	nic displacement facto	r exponent takes the f	form: $-2\pi^2$ [h ² a ^{*2} U ₁₁ +
$+2 h k a^* b^* U_{12}$]			

	U11	U22	U33	U23	U13	U12
C1	0.0170(7)	0.0182(7)	0.0194(8)	-0.0023(5)	0.0052(6)	-0.0003(5)
N1	0.0163(6)	0.0157(6)	0.0158(6)	-0.0009(4)	0.0031(5)	0.0010(4)
01	0.0190(5)	0.0223(6)	0.0271(7)	-0.0020(4)	0.0027(4)	0.0045(4)
C2	0.0169(7)	0.0195(8)	0.0181(8)	-0.0033(6)	0.0058(6)	-0.0010(5)
02	0.0361(7)	0.0201(6)	0.0372(8)	0.0023(5)	0.0020(5)	-0.0050(5)
C3	0.0224(7)	0.0148(7)	0.0248(8)	-0.0053(6)	0.0062(6)	-0.0022(6)
03	0.0263(6)	0.0334(7)	0.0259(7)	-0.0016(5)	0.0112(5)	0.0052(5)
C4	0.0216(8)	0.0207(9)	0.0351(11)	-0.0056(6)	0.0011(7)	-0.0059(6)
C5	0.0164(7)	0.0225(8)	0.0280(9)	-0.0008(6)	0.0019(6)	-0.0035(6)
C6	0.0169(7)	0.0208(8)	0.0177(7)	0.0016(5)	0.0009(6)	-0.0010(5)
C7	0.0219(8)	0.0230(9)	0.0231(9)	0.0027(6)	0.0000(7)	0.0013(6)
C8	0.0184(7)	0.0162(8)	0.0247(9)	-0.0018(5)	0.0061(6)	-0.0003(5)
C9	0.0155(7)	0.0154(7)	0.0172(8)	0.0010(5)	0.0041(5)	-0.0012(5)
C10	0.0159(7)	0.0180(8)	0.0156(7)	-0.0007(5)	0.0049(6)	-0.0036(5)
C11	0.0173(7)	0.0195(8)	0.0148(7)	-0.0012(6)	0.0028(6)	0.0006(5)
C12	0.0269(8)	0.0229(8)	0.0183(8)	-0.0015(6)	0.0027(6)	-0.0014(6)
C13	0.0352(9)	0.0236(9)	0.0191(8)	-0.0012(6)	0.0009(7)	-0.0114(6)
C14	0.0248(8)	0.0355(10)	0.0177(8)	-0.0010(6)	0.0028(6)	-0.0116(6)
C15	0.0203(8)	0.0321(9)	0.0215(8)	-0.0009(6)	0.0031(6)	-0.0023(6)
C16	0.0207(7)	0.0228(9)	0.0172(7)	-0.0006(6)	0.0020(5)	-0.0028(6)
C17	0.0215(8)	0.0205(8)	0.0129(7)	-0.0015(5)	0.0018(6)	-0.0027(5)
C18	0.0154(7)	0.0301(9)	0.0192(9)	0.0020(6)	0.0059(6)	0.0039(6)
C19	0.0201(8)	0.0383(9)	0.0197(9)	0.0050(7)	0.0065(6)	0.0107(7)
C20	0.0301(8)	0.0283(9)	0.0249(9)	0.0103(7)	0.0132(7)	0.0120(6)
C21	0.0322(9)	0.0242(9)	0.0282(9)	0.0035(7)	0.0143(7)	0.0025(6)
C22	0.0234(8)	0.0238(8)	0.0202(8)	0.0018(6)	0.0075(6)	0.0012(6)
C23	0.0186(7)	0.0226(7)	0.0178(8)	0.0010(5)	0.0078(6)	0.0037(5)
Table 37 Hydrogen	atomic coordinates and	isotropic atomic di	splacemnt p	parameters (Å ²) for 3-116		
-------------------	------------------------	---------------------	-------------	---		

	x/a	y/b	z/c	U(eq)
H2	0.5389(14)	0.693(3)	0.7531(17)	0.019(5)
H4A	0.7375(14)	0.882(3)	0.7533(18)	0.025(5)
H4B	0.6937(15)	0.797(3)	0.828(2)	0.029(6)
H5A	0.7894(14)	0.589(3)	0.7919(16)	0.019(5)
H5B	0.7472(14)	0.596(3)	0.6855(18)	0.022(5)
H6	0.6830(16)	0.451(4)	0.836(2)	0.036(7)
H9A	0.5480(14)	0.285(3)	0.6153(16)	0.019(5)
H10	0.5634(11)	0.407(2)	0.7486(14)	0.006(4)
H11	0.5182(14)	0.375(3)	0.4373(17)	0.021(5)
H12	0.4460(15)	0.131(3)	0.4711(18)	0.027(6)
H13	0.3245(14)	-0.011(4)	0.4939(18)	0.032(6)
H15	0.2213(19)	0.484(4)	0.496(2)	0.039(6)
H16	0.3416(15)	0.621(3)	0.4711(17)	0.022(5)
H18	0.3889(14)	0.488(3)	0.2857(17)	0.023(5)
H19	0.3785(16)	0.708(3)	0.170(2)	0.031(6)
H2-0	0.4543(15)	0.973(4)	0.1971(19)	0.031(6)
H21	0.5492(15)	1.014(4)	0.3456(18)	0.032(6)
H22	0.5609(15)	0.793(3)	0.4630(17)	0.018(5)
H1A	0.4495(12)	0.590(3)	0.6210(14)	0.012(4)
H1B	0.4771(13)	0.762(3)	0.5738(17)	0.019(5)
H7A	0.6771(14)	0.181(3)	0.7584(17)	0.026(6)
H7B	0.7660(17)	0.249(4)	0.780(2)	0.029(6)
H14	0.2121(15)	0.174(3)	0.5056(17)	0.028(6)

BIBLIOGRAPHY

- (1) Lizza, J. R.; Bremerich, M.; McCabe, S. R.; Wipf, P. Org. Lett. 2018, 20 (21), 6760–6764.
- (2) Crossley, S. W. M.; Shenvi, R. A. Chem. Rev. 2015, 115 (17), 9465–9531.
- (3) Pétursson, S. J. Chem. Educ. **1997**, 74 (11), 1297.
- (4) Orain, D.; Ellard, J.; Bradley, M. J. Comb. Chem. 2002, 4 (1), 1–16.
- (5) Thompson, L. A.; Ellman, J. A. Chem. Rev. **1996**, 96 (1), 555–600.
- (6) Jarowicki, K.; Kocienski, P. J. Chem. Soc. Perkin Trans. 1 2001, No. 18, 2109–2135.
- (7) Isidro-Llobet, A.; Álvarez, M.; Albericio, F. Chem. Rev. 2009, 109 (6), 2455–2504.
- (8) Schelhaas, M.; Waldmann, H. Angew. Chemie Int. Ed. English 1996, 35 (18), 2056–2083.
- (9) Kroutil, W.; Fischereder, E. M.; Fuchs, C. S.; Lechner, H.; Mutti, F. G.; Pressnitz, D.; Rajagopalan, A.; Sattler, J. H.; Simon, R. C.; Siirola, E. Org. Process Res. Dev. 2013, 17 (5), 751–759.
- (10) Chen, Y.; Garcia De Lomana, M.; Friedrich, N. O.; Kirchmair, J. J. Chem. Inf. Model. 2018, 58 (8), 1518–1532.
- (11) Breuer, M.; Ditrich, K.; Habicher, T.; Hauer, B.; Keßeler, M.; Stürmer, R.; Zelinski, T. *Angew. Chemie Int. Ed.* **2004**, *43* (7), 788–824.
- (12) Hovey, M. T.; Eklund, E. J.; Pike, R. D.; Mainkar, A. A.; Scheerer, J. R. Org. Lett. **2011**, *13* (5), 1246–1249.
- (13) Goulaouic-Dubois, C.; Guggisberg, A.; Hesse, M. Tetrahedron 1995, 51 (46), 12573–12582.
- (14) Walczak, M. A. A.; Wipf, P. J. Am. Chem. Soc. 2008, 130 (22), 6924–6925.
- (15) Kan, T.; Fukuyama, T. Chem. Commun. 2004, No. 4, 353.
- (16) Wipf, P.; Henninger, T. C. J. Org. Chem. 1997, 62 (6), 1586–1587.
- (17) Easton, C. J.; Hutton, C. A. Synlett **1998**, No. 5, 457–466.
- (18) Tae Bo Sim; Rapoport, H. J. Org. Chem. 1999, 64 (7), 2532–2536.
- (19) Wipf, P. Chem. Rev. 1995, 95 (6), 2115–2134.

- (20) Carpino, L. A. Acc. Chem. Res. 1987, 20 (11), 401–407.
- (21) Lemaire-Audoire, S.; Savignac, M.; Blart, E.; Bernard, J. M.; Genêt, J. P. *Tetrahedron Lett.* **1997**, *38* (17), 2955–2958.
- (22) Okamoto, R.; Ono, E.; Izumi, M.; Kajihara, Y. Front. Chem. 2019, 7 (MAR), 1-6.
- (23) Shahsavari, S.; McNamara, C.; Sylvester, M.; Bromley, E.; Joslin, S.; Lu, B.-Y.; Fang, S. Beilstein J. Org. Chem. 2018, 14, 1750–1757.
- (24) Lee, Y.; Silverman, R. B. J. Am. Chem. Soc. 1999, 121 (36), 8407–8408.
- (25) Cavelier, F.; Enjalbal, C. Tetrahedron Lett. 1996, 37 (29), 5131–5134.
- (26) Vanier, G. S. Synlett 2007, No. 1, 131–135.
- (27) Mandal, P. K.; McMurray, J. S. J. Org. Chem. 2007, 72 (17), 6599–6601.
- (28) Yokoyama, Y.; Matsumoto, T.; Murakami, Y. J. Org. Chem. 1995, 60 (6), 1486–1487.
- (29) Watkins, B. E.; Kiely, J. S.; Rapoport, H. J. Am. Chem. Soc. 1982, 104 (21), 5702–5708.
- (30) Yokosaka, T.; Nemoto, T.; Hamada, Y. Chem. Commun. 2012, 48 (44), 5431–5433.
- (31) Brieke, C.; Cryle, M. J. Org. Lett. 2014, 16 (9), 2454–2457.
- (32) McCabe, S. R.; Wipf, P. Angew. Chemie Int. Ed. 2017, 56 (1), 324–327.
- (33) Matzner, M.; Kurkjy, R. P.; Cotter, R. J. Chem. Rev. 1964, 64 (6), 645–687.
- (34) Montalbetti, C. A. G. N.; Falque, V. *Tetrahedron* **2005**, *61* (46), 10827–10852.
- (35) Jad, Y. E. S.; Khattab, S. N.; El-Faham, A.; Albericio, F. *Molecules* 2012, *17* (12), 14361– 14376.
- (36) Heydari, A.; Khaksar, S.; Tajbakhsh, M. Synthesis (Stuttg). 2008, No. 19, 3126–3130.
- (37) Pandey, R. K.; Dagade, S. P.; Upadhyay, R. K.; Dongare, M. K.; Kumar, P. Arkivoc 2002, 2002 (7), 28–33.
- (38) Schechter, A.; Goldrich, D.; Chapman, J. R.; Uberheide, B. M.; Lim, D. *Synth. Commun.* **2015**, *45* (5), 653–660.
- (39) Sharma, G. V. M.; Janardhan Reddy, J.; Sree Lakshmi, P.; Radha Krishna, P. *Tetrahedron Lett.* **2004**, *45* (37), 6963–6965.
- (40) Sunitha, S.; Kanjilal, S.; Reddy, P. S.; Prasad, R. B. N. *Tetrahedron Lett.* **2008**, *49* (16), 2527–2532.

- (41) Das, B.; Venkateswarlu, K.; Krishnaiah, M.; Holla, H. Tetrahedron Lett. 2006, 47 (43), 7551–7556.
- (42) Carafa, M.; Mesto, E.; Quaranta, E. European J. Org. Chem. 2011, No. 13, 2458–2465.
- (43) Liu, J.; Wang, Z.; Levin, A.; Emge, T. J.; Rablen, P. R.; Floyd, D. M.; Knapp, S. J. Org. *Chem.* **2014**, 79 (16), 7593–7599.
- (44) Chauvin, C.; Plusquellec, D. *Tetrahedron Lett.* **1991**, *32* (29), 3495–3498.
- (45) Chorev, M.; MacDona, S. A.; Goodman, M. J. Org. Chem. 1984, 49 (5), 821-827.
- (46) Periyasamy, S.; Subbiah, S. J. Chem. Pharm. Res. 2016, 8 (1), 510–518.
- (47) Ashworth, I. W.; Cox, B. G.; Meyrick, B. J. Org. Chem. 2010, 75 (23), 8117–8125.
- (48) Ralhan, K.; KrishnaKumar, V. G.; Gupta, S. RSC Adv. 2015, 5 (126), 104417–104425.
- (49) Too, P. C.; Chua, S. H.; Wong, S. H.; Chiba, S. J. Org. Chem. 2011, 76 (15), 6159–6168.
- (50) Wei, Y.; Yoshikai, N. J. Am. Chem. Soc. 2013, 135 (10), 3756–3759.
- (51) Yang, B.; Miller, M. J. Org. Lett. 2010, 12 (2), 392–395.
- (52) Krakowiak, K. E.; Bradshaw, J. S. Synth. Commun. 1996, 26 (21), 3999–4004.
- (53) Bogdan, A. R.; Charaschanya, M.; Dombrowski, A. W.; Wang, Y.; Djuric, S. W. Org. Lett. 2016, 18 (8), 1732–1735.
- (54) Wang, J.; Liang, Y. L.; Qu, J. Chem. Commun. 2009, No. 34, 5144–5146.
- (55) Choy, J.; Jaime-Figueroa, S.; Jiang, L.; Wagner, P. Synth. Commun. **2008**, *38* (21), 3840–3853.
- (56) Palladino, P.; Stetsenko, D. A. Org. Lett. 2012, 14 (24), 6346–6349.
- (57) Namba, K.; Takeuchi, K.; Kaihara, Y.; Oda, M.; Nakayama, A.; Nakayama, A.; Yoshida, M.; Tanino, K. *Nat. Commun.* **2015**, *6* (1), 8731.
- (58) Buchanan, A.; Revell, J. D. In Novel Approaches and Strategies for Biologics, Vaccines and Cancer Therapies; Elsevier, 2015; pp 171–197.
- (59) Janson, J.-C., Ed.; Methods of Biochemical Analysis; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011.
- (60) Li, J.; Zhng, J.; Shen, F.; Fang, G.; Guo, Q.; Liu, L. Prog. Chem. 2007, 19 (12), 1866–1882.
- (61) Gräslund, S.; Nordlund, P.; Weigelt, J.; Hallberg, B. M.; Bray, J.; Gileadi, O.; Knapp, S.; Oppermann, U.; Arrowsmith, C.; Hui, R.; et al. *Nat. Methods* **2008**, *5* (2), 135–146.

- (62) Agouridas, V.; El Mahdi, O.; Diemer, V.; Cargoët, M.; Monbaliu, J. C. M.; Melnyk, O. *Chem. Rev.* **2019**, *119* (12).
- (63) Jin, K.; Li, X. Chem. A Eur. J. 2018, 24 (66), 17397–17404.
- (64) Liu, H.; Li, X. Acc. Chem. Res. 2018, 51 (7), 1643–1655.
- (65) Carpino, L. A.; Ghassemi, S.; Ionescu, D.; Ismail, M.; Sadat-Aalaee, D.; Truran, G. A.; Mansour, E. M. E.; Siwruk, G. A.; Eynon, J. S.; Morgan, B. Org. Process Res. Dev. 2003, 7 (1), 28–37.
- (66) Jaradat, D. M. M. Amino Acids 2018, 50 (1), 39-68.
- (67) Isidro-Llobet, A.; Álvarez, M.; Albericio, F. Chem. Rev. 2009, 109 (6), 2455–2504.
- (68) Staderini, M.; Gambardella, A.; Lilienkampf, A.; Bradley, M. Org. Lett. 2018, 20 (11), 3170–3173.
- (69) Shepherd, N. E.; Harrison, R. S.; Ruiz-Gomez, G.; Abbenante, G.; Mason, J. M.; Fairlie, D. P. Org. Biomol. Chem. 2016, 14 (46), 10939–10945.
- (70) Grieco, P.; Balse-Srinivasan, P.; Han, G.; Weinberg, D.; MacNeil, T.; Van Der Ploeg, L. H. T.; Hruby, V. J. J. Pept. Res. 2003, 62 (5), 199–206.
- (71) Luckett, S.; Garcia, R. S.; Barker, J. J.; Konarev, A. V.; Shewry, P. R.; Clarke, A. R.; Brady, R. L. J. Mol. Biol. 1999, 290 (2), 525–533.
- (72) Hoegberg, T.; Stroem, P.; Ebner, M.; Raemsby, S. J. Org. Chem. 1987, 52 (10), 2033–2036.
- (73) Lofthouse, G. J.; Suschitzky, H.; Wakefield, B. J.; Whittaker, R. A.; Tuck, B. J. Chem. Soc. *Perkin Trans. 1* **1979**, *2* (1634), 1634.
- (74) Warnecke, A.; Kratz, F. J. Org. Chem. 2008, 73 (4), 1546–1552.
- (75) Colomer, I.; Chamberlain, A. E. R.; Haughey, M. B.; Donohoe, T. J. *Nat. Rev. Chem.* **2017**, *1* (11), 0088.
- (76) Lebel, H.; Leogane, O. Org. Lett. 2005, 7 (19), 4107–4110.
- (77) Tsakos, M.; Schaffert, E. S.; Clement, L. L.; Villadsen, N. L.; Poulsen, T. B. Nat. Prod. Rep. 2015, 32 (4), 605–632.
- (78) Marfey, P. Carlsberg Res. Commun. 1984, 49 (6), 591–596.
- (79) Bhushan, R.; Brückner, H. Amino Acids 2004, 27 (3–4), 231–247.
- (80) Kondejewski, L. H.; Farmer, S. W.; Wishart, D. S.; Kay, C. M.; Hancock, R. E. W.; Hodges, R. S. J. Biol. Chem. 1996, 271 (41), 25261–25268.

- (81) Xiao, J.; Weisblum, B.; Wipf, P. Org. Lett. 2006, 8 (21), 4731–4734.
- (82) Xiao, J.; Weisblum, B.; Wipf, P. J. Am. Chem. Soc. 2005, 127 (16), 5742–5743.
- (83) Besser, D.; Greiner, G.; Reissmann, S. Int. J. Pept. Res. Ther. 1998, 5 (4), 299–303.
- (84) Ágoston, K. Synth. Commun. 2019, 49 (3), 404–409.
- (85) Bum Shin, D.; Feather, M. S. *Carbohydr. Res.* **1990**, *208* (11), 246–250.
- (86) WHITING, G. C.; COGGINS, R. A. Nature 1960, 185 (4716), 843-844.
- (87) Pal, R. Arch. Org. Chem. 2015, 2012 (July 2012), 570–609.
- (88) Hyde, A. M.; Zultanski, S. L.; Waldman, J. H.; Zhong, Y. L.; Shevlin, M.; Peng, F. Org. *Process Res. Dev.* **2017**, *21* (9), 1355–1370.
- (89) Uka, V.; Moore, G. G.; Arroyo-Manzanares, N.; Nebija, D.; De Saeger, S.; Di Mavungu, J. D. *Toxins (Basel)*. 2017, 9 (1), 1–21.
- (90) Holzapfel, C. W. Tetrahedron 1968, 24 (5), 2101–2119.
- (91) Seidler, N. W.; Jona, I.; Vegh, M.; Martonosi, A. J. Biol. Chem. 1989, 264 (30), 17816– 17823.
- (92) Carafoli, M. B.; Introduction, I.; Ii, S.; Properties, S. S.; Autoregulation, S. A.; Iii, B. A.; Introductory, G.; The, C. A.; Spca, T.; Pmca, T.; et al. *Physiol. Rev.* 2009, No. 79, 1341– 1378.
- (93) Moncoq, K.; Trieber, C. A.; Young, H. S. J. Biol. Chem. 2007, 282 (13), 9748–9757.
- (94) Cui, R.; Wang, Y.; Wang, L.; Li, G.; Lan, K.; Altmeyer, R.; Zou, G. Antiviral Res. 2016, 132, 38–45.
- (95) Hu, X.; Xia, Q. W.; Zhao, Y. Y.; Zheng, Q. H.; Liu, Q. Y.; Chen, L.; Zhang, Q. Q. *Heterocycles* 2014, 89 (7), 1662–1669.
- (96) Ma, X.; Peng, J.; Wu, G.; Zhu, T.; Li, G.; Gu, Q.; Li, D. *Tetrahedron* **2015**, *71* (21), 3522–3527.
- (97) Hu, X.; Xia, Q.-W.; Zhao, Y.-Y. Y.-Y.; Zheng, Q.-H. Q.-H.; Liu, Q.-Y. Q.-Y.; Chen, L.; Zhang, Q.-Q. *Chem. Pharm. Bull. (Tokyo).* **2014**, *62* (9), 942–946.
- (98) Zhou, M.; Miao, M. M.; Du, G.; Li, X. N.; Shang, S. Z.; Zhao, W.; Liu, Z. H.; Yang, G. Y.; Che, C. T.; Hu, Q. F.; et al. Org. Lett. 2014, 16 (19), 5016–5019.
- (99) Nakhla, M. C.; Weeks, K. N.; Navarro Villalobos, M.; Wood, J. L. Tetrahedron 2018, 74 (38), 5085–5088.

- (100) Nakhla, M. C.; Wood, J. L. J. Am. Chem. Soc. 2017, 139 (51), 18504–18507.
- (101) Jia, Y.; Liu, H.; Chen, L.; Yuan, K. Angew. Chemie Int. Ed. 2019, 55 (48), 15035–15039.
- (102) Chang, P. K.; Ehrlich, K. C.; Fujii, I. Toxins (Basel). 2009, 1 (2), 74–99.
- (103) Holzapfel, C. W.; Wilkins, D. C. Phytochemistry 1971, 10 (2), 351-358.
- (104) Kozikowski, A. P.; Greco, M. N.; Springer, J. P. J. Am. Chem. Soc. **1984**, 106 (22), 6873–6874.
- (105) Natsume, M.; Muratake, H. Heterocycles 1985, 23 (5), 1111.
- (106) Haskins, C. M.; Knight, D. W. Chem. Commun. 2005, 67 (25), 3162.
- (107) Beyer, W. R. C.; Woithe, K.; Lüke, B.; Schindler, M.; Antonicek, H.; Scherkenbeck, J. *Tetrahedron* **2011**, 67 (17), 3062–3070.
- (108) Zhurakovskyi, O.; Türkmen, Y. E.; Löffler, L. E.; Moorthie, V. A.; Chen, C. C.; Shaw, M. A.; Crimmin, M. R.; Ferrara, M.; Ahmad, M.; Ostovar, M.; et al. *Angew. Chemie Int. Ed.* **2018**, 1346–1350.
- (109) LaPorte, M.; Hong, K. B.; Xu, J.; Wipf, P. J. Org. Chem. 2013, 78 (1), 167–174.
- (110) Petronijevic, F.; Timmons, C.; Cuzzupe, A.; Wipf, P. Chem. Commun. (Camb). 2009, No. 1, 104–106.
- (111) Xu, J.; Wipf, P. Org. Biomol. Chem. 2017, 15 (34), 7093–7096.
- (112) Huisgen, R.; Scheer, W.; Szeimies, G.; Huber, H. Tetrahedron Lett. 1966, 7 (4), 397-404.
- (113) Huisgen, R.; Scheer, W.; Huber, H. J. Am. Chem. Soc. 1967, 89 (7), 1753-1755.
- (114) Huisgen, R.; Scheer, W.; Mäder, H. Angew. Chemie Int. Ed. English 1969, 8 (8), 602–604.
- (115) DeShong, P.; Kell, D. A.; Sidler, D. R. J. Org. Chem. 1985, 50 (13), 2309–2315.
- (116) Victoria Martin-Ramos, M.; Fariña, F.; Romañach, M. Heterocycles 1995, 40 (1), 379.
- (117) Garner, P.; Dogan, Ö.; Youngs, W. J.; Kennedy, V. O.; Protasiewicz, J.; Zaniewski, R. *Tetrahedron* **2001**, *57* (1), 71–85.
- (118) Coldham, I.; Hufton, R. Chem. Rev. 2005, 105 (7), 2765–2810.
- (119) Danielsson, J.; Toom, L.; Somfai, P. European J. Org. Chem. 2011, No. 3, 607–613.
- (120) Cardoso, A. L.; Pinho E Melo, T. M. V. D. *European J. Org. Chem.* **2012**, No. 33, 6479–6501.

- (121) Meyer, A. G.; Ryan, J. H. *Molecules* **2016**, *21* (8).
- (122) Naesborg, L.; Tur, F.; Meazza, M.; Blom, J.; Halskov, K. S.; Jørgensen, K. A. Chem. A Eur. J. 2017, 23 (2), 268–272.
- (123) Ess, D. H.; Houk, K. N. J. Am. Chem. Soc. 2008, 130 (31), 10187–10198.
- (124) Braun, C. E.; Cook, C. D.; Charles, Merritt, J.; Rousseau, J. E. Org. Synth. 1992, 70 (September), 18.
- (125) Wakimoto, T.; Asakawa, T.; Akahoshi, S.; Suzuki, T.; Nagai, K.; Kawagishi, H.; Kan, T. *Angew. Chemie Int. Ed.* **2011**, *50* (5), 1168–1170.
- (126) Legters, J.; Thijs, L.; Zwanenburg, B. *Recl. des Trav. Chim. des Pays-Bas* **2010**, *111* (1), 1–15.
- (127) Lohray, B. B.; Gao, Y.; Sharpless, K. B. Tetrahedron Lett. 1989, 30 (20), 2623–2626.
- (128) Kubo, T.; Sakaguchi, S.; Ishii, Y. Chem. Commun. 2000, No. 7, 625-626.
- (129) Org. Synth. 2002, 78 (September), 160.
- (130) Kozmin, S. A.; Rawal, V. H. J. Org. Chem. 1997, 62 (16), 5252–5253.
- (131) Kozmin, S. A.; Rawal, V. H. J. Am. Chem. Soc. 1999, 121 (41), 9562–9573.
- (132) Chang, X.; Sun, X.-S.; Che, C.; Hu, Y.-Z.; Tao, H.-Y.; Wang, C.-J. Org. Lett. **2019**, No. I, acs.orglett.9b00136.
- (133) Bdiri, B.; Zhao, B. J.; Zhou, Z. M. Tetrahedron Asymmetry 2017, 28 (7), 876-899.
- (134) Selva, V.; Selva, E.; Merino, P.; Nájera, C.; Sansano, J. M. Org. Lett. 2018, 20 (12), 3522– 3526.
- (135) Nájera, C.; Sansano, J. M. Angew. Chemie Int. Ed. 2005, 44 (39), 6272–6276.
- (136) Narayan, R.; Potowski, M.; Jia, Z. J.; Antonchick, A. P.; Waldmann, H. Acc. Chem. Res. 2014, 47 (4), 1296–1310.
- (137) Stanley, L. M.; Sibi, M. P. Chem. Rev. 2008, 108 (8), 2887–2902.
- (138) Tamm, M.; Thutewohl, M.; Ricker, C. B.; Bes, M. T.; de Meijere, A. *European J. Org. Chem.* **1999**, *1999* (9), 2017–2024.
- (139) Limbach, M.; Dalai, S.; de Meijere, A. Adv. Synth. Catal. 2004, 346 (7), 760–766.
- (140) Liese, T.; Seyed-Mahdavi, F.; de Meijere, A. Org. Synth. 2003, 69, 148–148.
- (141) Liese, T.; Jaekel, F.; de Meijere, A. Org. Synth. 2003, 69, 144-144.

- (142) Turro, N. J. Acc. Chem. Res. 1969, 2 (1), 25–32.
- (143) Schaafsma, S. E.; Steinberg, H.; de Boer, T. J. Recl. des Trav. Chim. des Pays-Bas 1966, 85 (11), 1170–1172.
- (144) Tilborg, W. J. M.; Steinberg, H.; de Boer, T. J. Synth. Commun. 1973, 3 (3), 189–196.
- (145) Nicolaou, K. C.; Ellery, S. P.; Chen, J. S. Angew. Chemie Int. Ed. 2009, 48 (39), 7140–7165.
- (146) Schultz, A. L. J. Org. Chem. 1971, 36 (3), 383-386.
- (147) Gawaskar, S.; Schepmann, D.; Bonifazi, A.; Wünsch, B. *Bioorganic Med. Chem.* 2014, 22 (23), 6638–6646.
- (148) Speckmeier, E.; Klimkait, M.; Zeitler, K. J. Org. Chem. 2018, 83 (7), 3738–3745.
- (149) Armstrong, A.; Baxter, C. A.; Lamont, S. G.; Pape, A. R.; Wincewicz, R. Org. Lett. 2007, 9 (2), 351–353.
- (150) Sultane, P. R.; Mete, T. B.; Bhat, R. G. Org. Biomol. Chem. 2014, 12 (2), 261–264.
- (151) Rivero, A. R.; Fernández, I.; Sierra, M. A. Chem. A Eur. J. 2014, 20 (5), 1359–1366.
- (152) Aho, J. E.; Piisola, A.; Syam Krishnan, K.; Pihko, P. M. *European J. Org. Chem.* **2011**, No. 9, 1682–1694.
- (153) Kozmin, S. A.; Rawal, V. H. J. Org. Chem. 1997, 62 (16), 5252–5253.