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C-H bond functionalization reactions are powerful, efficient, and potentially step-
economic strategy for the construction of carbon—carbon and carbon—heteroatom bonds in organic
synthesis. In recent years, novel Ni-catalyzed C—H bond functionalization reactions using N,N
bidentate directing groups have been developed to selectively activate inert C—H bonds. However,
the reaction mechanisms and origins of reactivity and selectivity of many of these organic
transformations remain unclear. A detailed understanding of the molecular processes involved is
essential for understanding and developing more efficient and diverse C—H functionalization
reactions. Density functional theory (DFT) has emerged as a powerful tool to elucidate reaction
mechanisms and intricate details of the elementary steps involved, and divergent reaction pathways
in transition metal-catalyzed reactions. In this dissertation, the mechanisms of Ni-catalyzed C-H
oxidative annulation, arylation, alkylation, benzylation and sulfenylation with N,N-bidentate
directing groups are investigated using DFT calculations.

Ni-catalyzed C—-H functionalization reactions can be broadly divided into two distinct
mechanistic steps: (i) C-H metalation (ii) C-C or C-heteroatom bond formation steps.
Specifically, the C—H metalation may occur via either the concerted metalation-deprotonation
(CMD) or o-complex-assisted metathesis (6-CAM) mechanism. The subsequent C—C and C—
heteroatom bond formation steps may occur via closed-shell Ni(ll) or Ni(IV) intermediates.
Alternatively, radical pathways involving Ni(lll) complexes are also possible. Our studies

indicated that the reaction mechanism of Ni-catalyzed C—H functionalization is substrate-

iv



dependent. The mechanistic insights gained from the computational studies were employed to
investigate a number of experimental phenomena including substituent effects on reactivity,
chemo- and regioselectivity, ligand and directing group effects, and the effects of oxidants.
Furthermore, a novel C(sp®)—H functionalization methodology was developed to
synthesize biologically relevant vinyl sulfone-containing compounds of pharmacologically
prevalent picolyl amides with allenic sulfones. The reaction conditions are mild. The starting
materials can be prepared from readily available sources. The reaction has a broad functional group
tolerance. Mechanistic studies suggested that the reaction likely operates via a rare pyridine-
initiated and p-toluenesulfinate anion-mediated activation analogous to phosphine-triggered

reactions and Padwa’s allenic sulfone chemistry.
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1.0 Introduction

C—H bond functionalization reactions are an efficient and versatile strategy for the
construction of carbon—carbon and carbon—heteroatom bonds in organic synthesis.! The
transformation of C—H bonds precludes the need to prefunctionalize starting materials and thus
provide access to potentially shorter synthetic routes. Experimental challenges in C-H
functionalization chemistry involve both reactivity and selectivity issues such as transformation of
intrinsically inert C—H bonds into diverse set of functional groups such as C—C, C-S and
C—halogen bonds. As such, strategies to functionalize C—H bonds include implementing earth-
abundant first row transition metals e.g. Ni?> and metal-free conditions.® In this regard, novel Ni-
catalyzed synthetic transformations have been developed by Miura* and Itami® to functionalize
C—H bonds which are inherently more acidic in the substrates thus solving the site-selectivity
problem (Chapter 1.1). To functionalize unactivated C—H bonds and to achieve site-selectivity in
this regard, installation of a directing group in the substrate is exploited. The metal can bind in
proximity to the C—H bond to be functionalized. In this area, the N,N-bidentate directing® group
first developed by Daugulis et al. have become popular.” The directing group strategy have been
used successfully by many groups to develop excellent Ni-catalyzed C—H functionalization
reactions with different coupling partners.®%112 However, the reaction mechanism of these
complex catalytic reactions remain unclear and debatable with Ni(I\V) or Ni(lll) intermediates
being proposed to form by many experimental chemists. Furthermore, the origins of
regioselectivity (primary versus secondary C—H bonds), product selectivity and effects of ligands
and directing groups have not been explored in detail and many mechanistic questions in this area
remained unanswered. A thorough mechanistic understanding is desirable not only for theoretical
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reasons but can aid in expanding the substrate scope and developing new Ni-catalyzed
functionalization reactions. In this regard, we have performed density functional theory
calculations to study the reaction mechanism, analyze the key C—H metalation and subsequent
functionalization steps of Ni-catalyzed reactions (Chapters 2.0 and 3.0). The origins of
regioselectivity, ligand and directing group effects have been elucidated as well. Metal-free C—H
bond functionalizations have also emerged as an attractive method to build complex molecules
especially in pharmaceutical synthesis where disuse of toxic transition metal catalysts is highly
desired. * We have used our computational mechanistic insights to develop C—H bond
functionalization reactions with allenic sulfones as coupling partners. Although, initially our
synthetic plan was to use Ni to activate the C—H bond, we subsequently found that the unique
reactivity of allenic sulfones circumvents this problem of reactivity by itself. As such, we have
developed a synthetic transformation to prepare vinyl sulfone via C(sp®)—H functionalization of
picolyl amides (Chapter 4.0) The overall objective of this thesis is thus to (i) investigate the
reaction mechanisms and origins of reactivity and selectivity of diverse Ni-catalyzed C—H
functionalization reactions using N,N bidentate directing groups (ii) develop a synthetic
methodology for metal-free C—H functionalization of picolyl amides via a rare pyridine initiated

mechanism to access biologically interesting vinyl sulfone containing compounds.

1.1 Previous Experimental and Computational Studies on the Nickel-Catalyzed C—H

Functionalization Reactions Using N,N-Bidentate Directing Groups

Since most organic molecules possess many C—H bonds, early works in Ni-catalyzed

functionalization reactions involved transformations of C—H bonds which are inherently distinct.



For examples, in 2009 it was shown independently by Miura+ and Itamis that the acidic C—H bonds
of azoles, oxazoles and thiazoles react preferentially with Ni(ll) precatalyst to afford the aryl
substituted products in high yields (Figure 1-1). The scope of this strategy is restricted to relatively

acidic C—H bonds.

i 10 mol% NiBr,.diglyme
N/ 0 12 mol% 1,10-phenanthroline N O
4.0 equw LiOt-Bu ! o O
0.5 equiv Zn powder O
diglyme. 150°C, 4h
96%

(b) (i) 10 mol% Ni(OAc),
CN 10 mol% bipy

Me N 1.5 equiv LiOt-Bu
| \%H + o} dloxane 100°C, 40h
BuO s
(||) CF3CO,H, CHZCIZ
(0]

51%
Figure 1-1 Nickel-catalyzed acidic C—H bond arylation of heteroarenes.

A general strategy to access unactivated C—H bonds and widen the substrate scope is to
use N,N bidentate directing groups for site-selective functionalizations.c Some examples of
commonly used bidentate directing groups used in C—H functionalization chemistry are shown in

Figure 1-2.

Iz

43,

Figure 1-2 Amide-based bidentate directing groups commonly used in C—H functionalization chemistry.

These bidentate groups were first used in palladium-catalyzed C—H functionalizations. In
2005, Daugulis et al. reported seminal work on palladium-catalyzed arylation of a C(sp®)—H bond

using the 8-aminoquinoline (AQ) derivative and picolinamide as N,N-bidentate directing groups



for regioselective functionalization of C—H bond (Figure 1-3).” For example, when reacting amides
1.1 and 1.4 with 1.2 using palladium acetate and silver acetate as additive, arylated amide 1.3 and
1.4 were obtained in 92% and 76% vyields respectively and these reactions were completed in

minutes to a few hours.
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(b) N N
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Figure 1-3 Ni and Pd-catalyzed C—H functionalization using N,N-bidentate directing groups.

Following this, Chatani et al. reported for the first time a chelation-assisted Ni-catalyzed
ortho C—H oxidative cycloaddition reaction using the 2-pyridinylmethylamine moiety (Figure
1-3c).# The reaction uses Ni(cod). in 10 mol% and the most notable fact is that no base was needed
for this reaction with PPhs as ligand. Since then, there has been a significant interest in the
development of chelation-assisted Ni-catalyzed functionalization of C(sp?)—H and C(sp®)—H
bonds such as arylation,® alkylation,* benzylation," sulfenylation® selected examples of which are

shown in Figure 1-4.
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Figure 1-4 Ni-catalyzed C—H arylation, alkylation, benzylation and sulfenylation reactions.

Although chelation-assisted Ni-catalyzed C—H functionalization reactions have led access
to novel transformations of unactivated C—H bonds, several aspects of these class of reactions
remain unexplored. First of all, in Ni-catalyzed oxidative annulation reaction with alkynes in the
absence of carboxylate/carbonate bases, the C—H metalation step may proceed via a unique
mechanism other than the commonly accepted concerted metalation deprotonation (CMD)
pathway. Secondly, the mechanisms of the subsequent functionalization step with different
coupling partners in Ni-catalyzed C—H arylation, alkylation, benzylation, sulfenylation also
remained unclear and debatable. Experimental mechanistic studies such as radical trapping
experiments with TEMPO suggests in certain reactions, a closed-shell oxidative addition
mechanism and in other studies involvement of open-shell Ni(lll) systems with radical
formations.%P10a11a12ab The origins of reactivity and various selectivity such as site-selectivity,
product selectivity, and substituent effects were also not known. In addition, these mechanistic

insights are expected to aid the development of novel C—H functionalization reactions.



1.1.1 Concerted Metalation-Deprotonation (CMD) Mechanism

In C—H functionalization chemistry, the catalytic cycle usually starts via a C—H metalation
step. Several mechanisms are possible in this step: concerted-metalation deprotonation (CMD),
electrophilic aromatic substitution (SeAr), o-bond metathesis, oxidative addition, and radical
processes.# In reactions with weak carboxylate and carbonate bases, previous experimental results
(competition experiments,*3¢1s K|E, kinetics,»” entropy of activation) and DFT studies'3*1° on
palladium-catalyzed reactions support a CMD mechanism.

Yatsimirsky et al.'® and Macgregor et al.’*® separately studied the mechanism of ortho-
palladation of ring-substituted N,N-dimethylbenzylamines. A representative, early computational
study of the CMD mechanism with palladium acetate by Macgregor et al.'** is shown in Figure
1-5. After the N,N-dimethylbenzylamine system binds to the square-planar Pd center, in TS1.1 one
of the acetate ligands changes its coordination mode from bidentate to monodentate in order to
deprotonate the ortho C—H bond. The key process in TS1.1 is the agostic C—H interaction with the
electrophilic Pd center which makes the C—H more acidic so that it can be deprotonated by the
acetate base via a six-membered cyclic transition state (TS1.2) and form the carbon-palladium
bond. We have found similar agostic interaction of C—H bond with our study of Ni-catalyzed C—H
bond oxidative annulation reaction of aromatic amides with alkynes details of which will be
provided in Chapter 2.0. However, an agostic interaction with the nickel center was crucial to form
a o-complex that helped the C—H metalation step with alkynes both kinetically and

thermodynamically (vide infra).
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Figure 1-5 CMD mechanism of ortho palladation of N,N-dimethylbenzylamines by Macgregor et al.
Computational studies of the C(sp?)-H and C(sp®)-H metalation steps using CMD
mechanism with nickel has been studied in detail by Hui Chen et al.> (Figure 1-6). The substrate
first binds to the nickel center to form preactivated intermediates (1.10 and 1.13). This is followed
by deprotonation of # (ortho) hydrogen and formation of the carbon—nickel bond to give the five-
membered nickelacycle (1.11 and 1.14). Based on the computational results, the authors concluded

that both nitrogen in the directing group are required for favorable substrate binding with the metal

center and lower C—H activation barriers for increased reactivity of the substrates.
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Figure 1-6 DFT study of Ni-catalyzed C—H metalation using CMD mechanism by Hui Chen et al.

1.1.2 Computational Study of Ni-catalyzed lodine Atom Transfer Pathway

Yao Fu et al. has carried out DFT studies to reveal the mechanism of the oxidative
C(sp?)—H/C(sp*)—H coupling of benzamides and toluene derivatives experimentally disclosed by
Chatani et al.}*® (Figure 1-7). They proposed a mechanism involving iodine-atom transfer (IAT)
between the mild oxidant 'CsF7I and Ni(ll) acting as a reducing agent with an activation barrier of
3.9 kcal/mol only to form a transient intermediate which subsequently reacts with toluene to form
a benzyl radical and a Ni(lll) complex. Apart from this study, to the best of our knowledge no
other computational mechanistic studies existed at that time for the functionalization steps of other
ortho Ni-catalyzed chelation-assisted functionalization reactions with alkyl/aryl halides, disulfides

and peroxides.



(a) Ni-catalyzed Oxidative C(sp?)-H/C(sp®)-H Coupling of Benzamides and Toluene Derivatives by Chatani et al.

Ni(OTf),
PPh3 cl

Na,COs o
IC4Fl N
Ho
toluene, 140 °C, 24h X

(b) DFT Calculations of lodine Atom Transfer Pathway by Fu et al.
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Figure 1-7 (a) Ni-catalyzed oxidative C(sp?)—H/C(sp%)—H coupling of benzamides with toluene derivatives by

Chatani et al. (b) Mechanism of Ni-catalyzed oxidative C(sp?—H/C(sp®)—H oxidative coupling by Fu et al.

1.2 Preparation of Vinyl Sulfones with (Aryl sulfonyl)-1,2-propadiene

In understanding the reaction mechanism, reactivity and selectivity of diverse Ni-catalyzed
C—H functionalization reactions, we were interested to use these mechanistic insights to expand
the substrate scope and develop new coupling reactions with electron deficient allenes. Recent
reports by many groups have shown that allenes can be an excellent coupling partner in C—H
functionalization chemistry.2 Allenyl sulfones are particularly interesting as they are reactive,
could potentially participate in many of the elementary steps of a catalytic cycle e.g. migratory

insertion and afford both biologically interesting and synthetically useful vinyl sulfone containing
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compounds as products. Seminal works by Padwa et al. have shown that (phenylsulfonyl)-1,2-
propadiene is a highly reactive reagent that could be activated via nucleophilic addition with
benzene sulfinate, cyanide or nitrite anions.>s These activated electron-deficient allenyl sulfones
were exploited in a [3+2] cyclization-elimination sequence to afford cyclopentenyl sulfones
(Figure 1-8a). In 2004, Lu et al. expanded both the substrate scope and mechanistic complexities
of allenyl sulfone chemistry in their study with active methylene compounds. 2 In their
investigation of phosphine-catalyzed tandem reactions with electron-deficient allenes and p-keto
ester, unexpectedly rearranged product 1.21 where the sulfonyl group migrated was formed instead

of the umpolung addition product.

(a) Synthesis of Cyclopenteyl Sulfones (Padwa, 1988)

| SO,Ph
S . PhSO,Na (trace
_\ + )‘ 2 ( )
N S THF, rt
oo ’
73%
1.17 1.18 1.19
(b) Active Methylene Compounds (Lu, 2004)
O O
O O @\ J PPh3 (10 mol%) OEt
—_—
MOEt >S¢ toluene, rt, 5 h
+ ()¢}
1.20 1.18 1.21 SO,Ph
5 equiv 1 equiv 50%

(b) Synthesis of Enantiopure Cyclopentenes (Ruano, 2010)
o 0 Ts = tosyl
H

Me I PPhs (20 mol%) Ts
| o + J - - Ts o + ;/_
S, Ts

O benzene, 24 h
o 0

OMe H Ome
1.22 1.23 1.24 50% 1.25
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Figure 1-8 Synthesis of Vinyl Sulfones with (aryl sulfonyl)-1,2-propadiene.

More recently, Ruano et al. reported that cyclopentene and byproduct 1,2-
disulfonylpropene 1.25 were formed with phosphine-catalyzed reaction of 1-methyl-4-(propa-1,2-
dien-1-ylsulfonyl)benzene but with the sulfonyl group shift in the final product 1.24.2 These

unexpected but valuable products were proposed to form via a phosphine triggered in situ
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generation of benzene sulfinate anion reaction mechanism.?*?® The sulfinate anions formed could
then participate towards nucleophilic addition of (aryl sulfonyl)-1,2-propadiene analogous to
Padwa’s chemistry. Similar phenomenon were observed in our work with allenyl sulfones in C—H
functionalization reactions towards vinyl sulfone synthesis with a rare, pyridine rather than

phosphine activation of (aryl sulfonyl)-1,2-propadiene (Chapter 4.0).

1.3 Computational Methods

The computational projects in this dissertation were carried out using density functional
theory (DFT).2° DFT is an efficient, accurate and popular method to study complex transition
metal-catalyzed reactions involving many elementary steps, reaction intermediates and transition
states.?” As such we performed all our calculations using DFT with Gaussian 09.2 The geometry
optimizations and vibrational frequency calculations were performed in gas phase using the
B3LYP?° functional with the LANL2DZ effective core potential basis set for nickel, and the 6-
31G(d) basis set for other atoms.> It was reported in previous benchmark calculations that B3LYP
provide very accurate geometry optimized structures.>' These results were further validated by
carrying out benchmark calculations of B3LYP geometry optimization in gas phase in our Ni-
catalyzed C—H functionalizations with alkyl/aryl halides, sulfides and peroxides (Chapter 3.3).
The optimized structures in gas phase obtained using B3LYP functional were compared with
structures obtained from geometry optimization in gas phase and in DMF solvent with SMD
solvation model using M06 functional. It was found that optimized structures of key transition
states obtained using B3LYP slightly overestimates some Ni—I and Ni—C bond distances by an

average value of 0.11 A and 0.19 A respectively compared with structures obtained using M06
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(Figure 3-3). In the case of Ni(IV) and Ni(lll) reaction intermediates, the B3LYP obtained
optimized structures of Ni—I and Ni—C distances are even better and differ only by an average
value of 0.04 A and 0.01 A respectively in comparison with structures from M06 functional.
Furthermore, in these calculations the same method (M06/SMD) was applied to calculate the
single point energies after the geometry optimization with different methods. Thermal corrections
and zero-point energies were also calculated at the same level of theory as geometry optimization.
The MO6 single point energies of the transition states and intermediates using different levels of
theory for geometry optimization only differed by less than 1 kcal/mol in most cases (Figure 3-3).
This suggested using gas phase geometry optimization with B3LYP functional will not affect the
conclusions.

Single-point energy calculations were carried out using the M06% functional and the SDD
basis set for Ni and 6-311+G(d,p) for other atoms. M06 functional is the recommended method of
choice for studying organometallic reactions.®> Furthermore, we compared the performance of
MO06 with a few other popular density functionals (w-B97XD, B3LYP-D3, and B3LYP) and
UCCSD(T)-F12a for the reaction energies of two model systems (Chapter 3.3.2 ). The basis sets
used for w-B97XD, B3LYP-D3, and B3LYP calculations are SDD basis set for Ni and 6-
311+G(d,p) for other atoms. The basis sets used for UCCSD(T)-F12a calculations are aug-cc-
pVTZ, cc-pVDZ-PP-F12 and cc-pVDZ- F12 for Ni, Br and other atoms respectively. A mean
unsigned error of 4.4 kcal/mol was found in the reaction energy using MO06 functional relative to
UCCSD(T)-F12aresults (Table 3-1). The stability of the wavefunction is tested with the stable=opt
keyword in Gaussian. The SMD?*? solvation model was used in the single-point energy calculations
to incorporate solvent effects. Previous benchmark calculations of the SMD solvation model

predicted very accurate solvation energies of neutral solutes with mean unsigned errors of 0.6—1.0

12



kcal/mol only.®® Additionally, in the calculations of the base-promoted N—H/C—H metalation-
deprotonation steps (Chapter 3.0), explicit solvent molecules (DMF) were also added to solvate
the Na atoms in [Ni(NaCOz3).] and other compounds that contain Na. One or two explicit DMF
molecules were added to each Na atom to make the Na four-coordinated. Outer-shell solvent
molecules were treated using the implicit solvation model (SMD). This mixed cluster-continuum
model®* is expected to provide a more realistic treatment of solvation effects of compounds with

alkali metals.

1.4 Goals of the Present Computational and Experimental Studies

The objective of the current study is (i) to investigate reaction mechanisms and origins of
substituent effects, site and chemo-selectivities of diverse Ni-catalyzed C—H bond
functionalization reactions using N,N bidentate directing groups (ii) use mechanistic insights to
develop a metal-free C—H functionalization reaction of picolyl amides with 1-methyl-4-(propa-
1,2-dien-1-ylsulfonyl)benzene to access vinyl sulfone containing compounds. The thesis is
organized as follows:

e Chapter 2.0 describes a computational study on the C—H metalation mechanism of Ni-
catalyzed oxidative cycloaddition reaction with internal alkynes without any external base
or oxidants. In contrast to the usually occurring base-promoted CMD mechanism in Ni-
catalyzed C—H functionalization chemistry with bidentate directing groups, the C—H
metalation step with internal alkynes occurs in the absence of base and proceeds via a o-

complex assisted metathesis mechanism (c-CAM). The role of alkyne in promoting this

13



type of C—H metalation will be analyzed. Furthermore, the effects of phosphine ligand and
N,N bidentate directing groups on reactivity will be elucidated.

Chapter 3.0 elucidates the origins of substrate-dependent reaction mechanisms in the Ni-
catalyzed C—H bond functionalization reactions. Ni(ll)/Ni(IV) closed-shell oxidative
addition versus Ni(I1)/Ni(ll1) open-shell radical pathways were computationally
investigated for a series of Ni-catalyzed C—H bond functionalization reactions with
aryl/alkyl halides, disulfides and peroxides. The effects of coupling partners on reactivity
would be determined. Electronic effects of substrates, site-selectivity of primary versus
secondary C—H bonds, and product selectivities with different oxidants will be
investigated.

Chapter 4.0 presents the results of a new metal free C—H bond functionalization of picolyl
amides with allenyl sulfone, 1-methyl-4-(propa-1,2-dien-1-ylsulfonyl)benzene that has
been developed. The products are synthetically and biologically interesting vinyl sulfone
containing compounds. The substrate scope of the transformation with different aryl and
alkyl amides and carbamates will be given. Furthermore, the reaction mechanism which
operates via a rare pyridine initiated activation of allenyl sulfone will be investigated with

mechanistic studies.
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2.0 Computational Study of a 6-Complex Assisted Metathesis (6-CAM) Mechanism in the

Ni-Catalyzed Oxidative C—H Functionalization with Alkynes

A significant part of this chapter is taken with permission from Omer, H. M.; Liu, P. ACS
Omega, 2019, 4(3), 5209-5220 (https://pubs.acs.org/doi/10.1021/acsomega.9b00030). Further

permissions related to the material excerpted should be directed to the ACS.

2.1 Introduction

In 6-complex assisted metathesis (c-CAM) mechanism, a o-bond complex is formed prior
to the four-membered cyclic transition state (Figure 2-1, path b).ss It is mechanistically distinct
from oxidative addition/reductive elimination mechanism where a change in oxidation state of the
metal center takes place. c-CAM is a special class of o-bond metathesis mechanism which is often
associated with d® metal centers lacking c-bond complex. Previous notable computational works
in C—H functionalization reactions involving 6-CAM include Lan et al. in-depth study of Rh-
catalyzed C(sp®)—H oxygenation reaction.’ In that study, they have found that the C—H bond
cleavage in toluene could take place through a c-CAM transition state.”” In another computational
study of Ni-catalyzed hydrodesulfurization of aryl sulfide by Liu et al., 5-CAM is found to be the
rate-determining transition state for the formation of benzene.s

In Ni-catalyzed C—H functionalization using N,N-bidentate directing groups, two major
stages in the catalytic cycle are usually involved: (i) C—H metalation and (ii) functionalization of

the resulting nickelacycle (Figure 2-1). In the presence of base, the C—H metalation step using Ni
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and a variety of other transition metals including Pd, Ru, Rh, Co, and Cu catalysts is most
commonly proposed to proceed via the concerted metalation-deprotonation (CMD) mechanism®
and rarely o-CAM mechanism is invoked (Figure 2-1). Typically, the CMD mechanism for C—H
functionalization with N,N-bidentate directing groups proceed first via base promoted N—H
deprotonation and subsequent C—H metalation. Although other C—H bond metalation pathways,
such as oxidative addition (OA)3 and ligand- to-ligand hydrogen transfer+ are also well-
precedented in the literature, these alternative mechanisms have not been thoroughly investigated
in C—H functionalization reactions involving N,N-bidentate directing groups.# Because previous
computational mechanistic studies of this type of reactions all focused on the CMD
mechanism,?%?1:42.43 it is not clear what conditions would promote an alternative C—H bond
cleavage pathway. In addition, factors that control the reactivity of these alternative C—H cleavage

pathways have not been investigated computationally.
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Figure 2-1 Mechanisms of transition metal-catalyzed C—H functionalization of amides using N,N-bidentate
directing groups.

In this chapter, we investigate the reaction mechanism of Ni-catalyzed oxidative
cycloaddition of aromatic amides and alkynes via C(sp?)—H functionalization assisted by a 2-

pyridinylmethylamine directing group (Figure 2-2a).® In contrast to the C—H functionalization of
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similar aromatic and aliphatic amides with other coupling partners,®1%111244 this oxidative
cycloaddition is mechanistically distinct in several aspects. First, unlike the majority of Ni-
catalyzed C-H functionalization reactions, which often employs a Ni(ll) pre-catalyst and under
conditions with bases (e.g. acetates, carbonates, etc.), this reaction involves a Ni(0) catalyst in the
absence of base. Secondly, the N—H metalation mechanism found in this study occurs via a
different pathway involving oxidative addition of amide N—H bond unlike base-promoted
deprotonation (Figure 2-1, path (a)). Thirdly, Chatani et al. proposed a unique C—H metalation
mechanism via an alkenyl-Ni(Il) complex formed from insertion of an alkyne to a nickel(ll)-
hydride.s It is surmised the electron-deficient Ni(ll) center would coordinate to the ortho C—H
bond to form a o-complex, which then undergoes c-complex assisted metathesis (c-CAM) of the
ortho C—H bond with the Ni—alkenyl bond via a four-membered cyclic transition state (path b,
Figure 2-1). This oxidative cycloaddition forms the isoquinolone cycloadduct, while reactions of
similar substrates with alkynes under different reaction conditions (e.g. in presence of base or with
0> as oxidant) lead to acyclic alkenylation or alkynation products (Figure 2-2b and Figure 2-2c).+
These reactions are expected to involve similar Ni(Il) metalacycle intermediates regardless of the
C—H metalation mechanism (Figure 2-1). Factors that determine the chemoselectivity of cyclic
versus acyclic products are still not clear. Lastly, this oxidative cycloaddition uses alkyne as a mild
oxidant, # which is unusual in oxidative C—H functionalization reactions. In most C—H
functionalization reactions,+oses the oxidant is not directly involved in the C—H metalation step.
In contrast, it has been proposed that the alkyne promotes the reactivity of the C—H metalation step

of this reaction.® Therefore, the role of the alkyne oxidant warrants an in-depth investigation.
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Figure 2-2 Ni-catalyzed C—H functionalization of amides with alkynes using N,N-bidentate directing groups.

=
Nx

// I=z

TIPS

To address these mechanistic ambiguities, we performed density functional theory
calculations to investigate the reaction mechanisms of the Ni-catalyzed ortho C(sp?)—H oxidative
cycloaddition reaction with alkynes. A detailed analysis of the mechanisms of the C—H metalation
step and the role of alkyne in facilitating the C—H metalation is provided. The effects of phosphine
additives and 2-pyridinylmethylamine directing group on reactivity and chemoselectivity for the
isoquinolone cycloaddition products are carefully analyzed. In addition, the origins of the
experimentally observed regioselectivity with unsymmetrical internal aryl alkynes and the

formation of trans-alkene byproducts are also rationalized.

2.2 Computational Methods

All calculations were performed using Gaussian 09.2% Images of the 3D structures of
molecules were generated using CYLview.>> Geometry optimizations and vibrational frequency
calculations were performed in gas phase using the B3LYP?® functional with the LANL2DZ

effective core potential basis set for nickel, and the 6-31G(d) basis set for other atoms. The nature
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of all stationary points was confirmed by the number of imaginary frequencies. All minima have
zero imaginary frequency and all transition states have only one imaginary frequency. IRC
calculations were carried out for alkene and alkyne insertion transition states, and for c-CAM
transition states to confirm that the transition state structures connected to the appropriate
intermediates. Single-point energy calculations were carried out using the M06°% functional and
the SDD basis set for Ni and 6-311+G(d,p) for other atoms. The SMD?*® solvation model was used
in the single-point energy calculations to incorporate solvent effects with toluene as the solvent.
Thermal corrections to the Gibbs free energies and enthalpies were calculated using the harmonic

oscillator approximation at 298.15K.

2.3 Results and Discussion

2.3.1 Proposed Reaction Mechanisms

The proposed mechanisms of the Ni-catalyzed ortho C(sp?)—H oxidative cycloaddition of
aromatic amide 2.1 with model substrate 2-butyne 2.2 to afford the isoquinolone cycloaddition
product 2.3 are provided in Figure 2-3. With the low-valence Ni(0) precatalyst, coordination of the
N,N-bidentate directing group most likely occurs via an oxidative addition of the amide N—H bond
to form a Ni(ll)-hydride (2.10) rather than through a base-promoted N—H deprotonation.s: The
ortho C—H bond in 2.10 is expected to yield an agostic interaction with the Ni due to its proximity
with the electron-deficient metal center. From 2.10, two different C—H metalation pathways are
possible. The o-complex assisted metathesis (c-CAM) of the ortho C—H bond with the Ni—H bond

in 2.10 will afford the Hz-bound nickelacycle 2.11.5+ Alternatively, alkyne insertion into the Ni—H

19



bond in 2.10 will form an alkenyl-Ni(Il) complex 2.8,5 which then undergoes a c-CAM with the
Ni—alkenyl bond to give the alkene-bound nickelacycle 2.9. Ligand exchange of the Hz or alkene
in intermediate 2.11 or 2.9 with an alkyne yields complex 2.13. Subsequent alkyne migratory
insertion into the Ni—C(sp?) bond in 2.13 forms a seven-membered nickelacycle, which upon C—N
bond reductive elimination gives the isoquinolone product 2.3 and regenerates the Ni(0) catalyst.
As discussed in the Introduction (2.1), because such o-CAM pathways have not been investigated
computationally, a few important mechanistic questions still remain. These include: a) the
preference of the two competing 6-CAM pathways from either the nickel hydride 2.10 or the
alkenyl nickel complex 2.8; b) factors that promote the C—N bond reductive elimination to form
the cycloaddition product; c) factors that promote alkyne insertion into the nickelacycle 2.13 over
the direct alkene migratory insertion from 2.9; d) origins of regioselectivity with unsymmetrical
internal alkynes; and e) the mechanism to form the trans-alkene byproduct. These questions are

discussed in detail in the following sections.
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Figure 2-3 Proposed mechanisms of the Ni-catalyzed ortho C(sp?)—H oxidative cycloaddition reaction.
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2.3.2 Mechanisms of ortho C(sp?)—H Metalation Step and Role of Alkyne as Hydrogen

Acceptor

(a) Computed reaction energy profiles of Ni-catalyzed ortho C(sp?)-H metalation

substrate coordination and | c-CAM with Ni(ll)-hydride (disfavored)
amide N-H oxidative addition ——I‘i alkyne insertion into Ni-H bond ————}— o-CAM with alkenyl-Ni(ll) (favored)
AG(sol)
[AH son) 9 N,/qu o
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(b) Optimized structures of 6-C—H complexes and ¢-CAM transition states

Figure 2-4 Mechanisms of the C—H metalation steps in the reaction of amide 2.1 with 2-butyne. Bond

distances are shown in A. All energies are with respect to the separate reactants and Ni(cod)2.

The computed reaction energy profiles for steps leading to the C—H metalated nickelacycle
2.9 are shown in Figure 2-4a. Optimized geometries of select transition states and intermediate are
shown in Figure 2-4b. The catalytic cycle begins with ligand exchange to replace the cod ligands
in the Ni(cod). pre-catalyst with PPhs and amide 2.1 to form complex 2.4. Under the experimental
conditions of 10 mol% Ni(cod)2, 40 mol% PPhz ligand and 3 or more equivalents of internal
alkyne, either cod, PPhs, or the internal alkyne can potentially bind to the Ni center prior to the

amide N—H oxidative addition. The N—H oxidative addition pathways involving these ancillary
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ligands were considered computationally (Figure 2-5). Our calculations indicate that the most
favorable amide N—H oxidative addition pathway involves binding of two PPhs ligands (TS2.1).
Facilitated by the strong donor ligands (PPhs and pyridine), this N—H oxidative addition process
has an activation barrier of 28.0 kcal/mol with respect to 2.1 and Ni(cod).. In the absence of PPhs,
the N—H oxidative addition with cod (S1-TS2.1) or alkyne (S1-TS2.3) acting as ligands require a

barrier that is about 5 kcal/mol higher than that of TS2.1.
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Figure 2-5 Reaction energy profiles of amide N—H oxidative addition of 2.1 and Ni(cod). with (a) a cod ligand,
(b) a PPhs ligand, and (c) an alkyne ligand.

From the Ni(ll)-hydride intermediate 2.5, two different c-CAM pathways are possible
(Figure 2-4). Dissociation of the PPhs ligand forms o-complex 2.10, which has a strong agostic
interaction between the ortho C—H bond and the Ni.s¢ This agostic interaction slightly elongates
the ortho C—H bond to 1.11 A as compared to 1.09 A for the same bond in 2.5.

Formation of the 6-complex promotes the 6-bond metathesis of the ortho C—H bond with
the Ni—H bond via a four-membered cyclic 6-CAM transition state TS2.4. The four-membered

cycle in TS2.4 is completely planar, which makes the benzene ring co-planar with the 2-

23



pyridinylmethylamine directing group, resembling the planar geometry of the forming
nickelacycle intermediate 2.11. TS2.4 is only 9.2 kcal/mol higher in energy than the o-complex
2.10. However, because the formation of the Ni(ll)-hydride o-complex 2.10 is highly endergonic
(27.1 kcal/mol with respect to amide 2.1 and the Ni(cod). catalyst), the overall activation free
energy of this 6-CAM pathway is relatively high (AG+# = 36.3 kcal/mol). An alternative 6-CAM
pathway from complex 2.5 involves a ligand exchange to replace the PPhs ligand with an alkyne
to form m-alkyne complex 2.6, which then undergoes facile alkyne migratory insertion (TS2.2)
into the Ni—H bond and forms alkenyl-Ni(ll) complex 2.8. PPhs coordination to intermediate 2.8
was also considered computationally that forms an off-cycle phosphine-bound alkenyl-Ni(ll)
complex 2.7. Complex 2.7 is 11.2 kcal/mol more stable than 2.8 and upon PPhs decomplexation
forms the catalytically active species 2.8.

An agostic interaction with the ortho C—H bond was observed in 6-complex 2.8, although
the distance between the C—H bond and the Ni is slightly longer than that in 2.10 due to the larger
size of the alkenyl group as compared to the hydride ligand. From 2.8, the C—H metalation occurs
via 6-CAM transition state TS2.3, which requires a low activation barrier of 10.8 kcal/mol with
respect to 2.8 to form the alkene-bound five-membered nickelacycle 2.9. It should be noted that in
our calculations, we could not locate neither the transition state structure for the oxidative addition
of the ortho C(sp?—H bond from alkenyl-Ni(Il) complex 2.8 nor the resulting Ni(IV)-hydride
complex. All attempts to locate these structures resulted in TS2.3, 2.8, or 2.9. Intrinsic reaction
coordinate (IRC) calculations were carried out for TS2.3 to confirm that it connects to complexes
2.8 and 2.9.

Similar to the planar geometry of TS2.4, the four-membered cycle in TS2.3 is also co-

planar with the bidentate directing group. The alkenyl group is perpendicular to the plane.
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Therefore, no significant steric repulsions are observed between the alkenyl group and the
directing group in the 6-CAM transition state. Overall, TS2.3 is much more stable than TS2.4,
because of the greater stability of the alkenyl-Ni(ll) complex 2.8 as compared to the Ni(Il)-hydride
2.10. As such, the 6-CAM occurs via the alkenyl-Ni(Il) complex 2.8 rather than from the Ni(ll)-
hydride 2.10, consistent with the mechanism proposed by Chatani.2 Here, the alkyne plays an
important role in promoting the C—H metalation via -CAM. Although the initial N—H oxidative
addition to form the Ni(Il)-hydride is kinetically feasible, this process is thermodynamically uphill.
In the presence of alkyne, the Ni(ll)-hydride intermediate is converted to a thermodynamically
more stable alkenyl-Ni(Il) complex via alkyne migratory insertion. Due to the thermodynamic
stability of the alkenyl-Ni(ll) complex, this c-CAM pathway now requires a much lower overall
activation barrier. As the H» acceptor, the alkyne also provides thermodynamic driving force for
the C—H metalation. While formation of the cis-2-butene-bound nickelacycle 2.9 is exergonic, the
corresponding C—H metalation process in the absence of alkyne to form the Hz-bound nickelacycle
2.11 is endergonic by 24.8 kcal/mol with respect to the reactants (2.1, alkyne, and Ni(cod)2). Taken
together, the alkyne serves multiple roles in promoting the C—H metalation both kinetically and

thermodynamically.

2.3.3 Alternative Mechanisms of the Ni-Catalyzed ortho C(sp?)—H Metalation Step

Several different mechanisms of the Ni-catalyzed ortho C(sp?)—H metalation of 2.1 were
considered computationally besides o-CAM of alkenyl Ni(ll) complex 2.8 to determine how these
compare with the most favorable pathway. We considered the use of cis-2-butene rather than 2-
butyne as the Hz acceptor to promote the C—H metalation (Figure 2-6). In this alternatively

pathway, the barrier of o-bond metathesis is 34.8 kcal/mol with respect to the separate reactants
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and Ni(cod),. Thus, the o-bond metathesis pathway is less favorable than 6-CAM mechanism
using alkyne as H. acceptor where the barrier of 6-CAM mechanism is 21.7 kcal/mol only with
respect to the separate reactants and Ni(cod)..

I‘— amide N-H oxidative addition —-I-— alkene insertion into Ni-H bond —-I«— o-bond metathesis with alkyl-Ni(ll) complex—-l
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Figure 2-6 Reaction energy profile of Ni-catalyzed ortho C(sp?)—H metalation of amide 2.1 with cis-2-butene

acting as the hydrogen acceptor.

Another C—H metalation process that could occur to form intermediate 2.11 from
phosphine-bound Ni(ll)-hydride complex 2.5 via o-bond metathesis (Figure 2-7). This step
followed by PPhs decomplexation requires a much higher barrier (66.0 kcal/mol with respect to
amide 2.1 and Ni(cod), catalyst). This very high barrier is due to the absence of an agostic

interaction and unfavorable steric effects of the additional PPh3 ligand.
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Figure 2-7 Reaction energy profile of ortho C—H metalation mechanism of amide 2.1 with 2-butyne via o-

bond metathesis with phosphine-bound Ni(ll)-hydride complex 2.5.

An alternative pathway involving oxidative addition of ortho C(sp?)—H bond with the Ni(0)
catalyst was considered computationally (Figure 2-8). The barrier of the C—H oxidative addition
is 19.5 kcal/mol with respect to amide 2.1 and Ni(cod).. However, the subsequent steps in this
pathway were highly disfavored. Both alkyne insertion into Ni—H bond and N—H deprotonation to
form the five-membered Ni(Il) metallacycle 2.9 require very high activation barriers of 44.5 and
67.2 kcal/mol with respect to 2.1 and Ni(cod)., respectively. Based on these results, this oxidative

addition pathway was ruled out as well.
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Figure 2-8 Reaction energy profile of phenyl ortho C(sp)—H metalation mechanism of amide 2.1 with 2-

butyne via C—H bond oxidative addition.

Finally, the mechanism for C—H metalation that involves c-bond metathesis of the Ni—N
bond in intermediate 2.8 with the ortho C—H bond to form a five-membered alkenyl-nickelacycle
was considered computationally as well (Figure 2-9). This process requires an activation barrier

of 39 kcal/mol with respect to the separate reactants and Ni(cod)2, and thus can be ruled out.
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the ortho C(sp?)—H bond by the amide N.

2.3.4 Mechanisms of Ni—C Insertion and C—N Bond Formation Steps and the Effects of

Phosphine and 2-Pyridinylmethylamine Directing Group

After determining that the most favorable C—H metalation mechanism occurs via 6-CAM
of an alkenyl-Ni(Il) complex 2.8, we then investigated the subsequent steps in the catalytic cycle.
The mechanisms of the reaction of the nickelacycle intermediate 2.9 with alkyne to form the
experimentally observed isoquinolone product and a few competing pathways to the
experimentally unobserved products were analyzed (Figure 2-10). From the alkene-bound
nickelacycle 2.9, ligand exchange with another molecule of alkyne forms n-alkyne complex 2.13,
which is 7.8 kcal/mol more stable than 2.9. The alkyne migratory insertion to the Ni—C bond in
2.13 forms a seven-membered nickelacycle 2.14 via transition state TS2.5. This process is more
favorable than the alkene migratory insertion from 2.9 (via TS2.8). Here, TS2.5 is stabilized by
the backdonation of the Ni d electrons to the z* of the alkyne, which is not present in TS2.8.»
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From 2.14, the C—N bond reductive elimination is promoted by coordination of a PPh3 ligand to
form a four-coordinated Ni(ll) complex 2.15. From 2.15, the C—N bond reductive elimination
(TS2.6) requires only 13.7 kcal/mol to form the isoquinolone-bound Ni(0) complex 2.16. On the
other hand, reductive elimination from complex 2.14 without phosphine coordination requires a

much higher activation barrier of 24.2 kcal/mol (TS2.7) with respect to 2.14.

(a) Computed reaction energy profiles of C-C and C-N bond formation mechanisms

alkene migratory |
insertion (disfavored)
l~—— ligand exchange and alkyne migratory insertion (favored) ———

<—— C-N reductive elimination without PPhy —————
C-N reductive elimination with PPh; (favored)
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(b) Optimized structures of select transition states
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Figure 2-10 Mechanisms of the C—C and C—N bond formation steps from the nickelacycle intermediate 2.9.

Select bond distances are shown in A. All energies are with respect to the separate reactants and Ni(cod)2.

Experimentally, the Ni-catalyzed ortho C(sp?)—H oxidative cycloaddition reaction is the

most effective with 2-pyridinylmethylamine directing group.® Although several different N,N-
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bidentate directing groups, such as 2-pyridinylmethylamine, 8-aminoquinoline, 2-(pyridin-2-
yDisopropyl amine have been used experimentally for related transformations, a thorough
understanding of potential directing group effects in these reactions is still lacking.?’ We surmised
the flexible directing group in 2.1 may facilitate the C—N bond reductive elimination to form the
cyclic isoquinolone product. We performed calculations with model substrate 2.19 containing a
more rigid 8-aminoquinoline moiety to explore the flexibility effect of the directing group. In
reaction with 2.19, the C—N bond reductive elimination (TS2.9) requires an activation barrier of
18.9 kcal/mol with respect to the seven-membered nickelacycle 2.20 (Figure 2-11), which is more
than 6 kcal/mol higher than the corresponding C—N bond reductive elimination using the 2-
pyridinylmethylamine directing group (TS2.6). In TS2.6, the five-membered N,N-chelate adapts
an envelope conformation in which the sp® carbon (C1) is puckered out-of-plane. This allows the
forming C—N bond to be co-planar with the pyridine N and the PPhs ligand, such that the Ni(ll)
center can adopt a less-distorted square planar geometry. On the other hand, the rigid 8-
aminoquinoline directing group leads to greater distortion of the fused rings in TS2.9 that makes
the C—N bond reductive elimination less effective. In addition, the N in 2-pyridinylmethylamine

is a better donor that electronically promotes the reductive elimination via TS2.6 as well.
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(a) C-N reductive elimination with 2-pyridinylmethylamine directing group
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(b) C—N reductive elimination with 8-aminoquinoline directing group

©¢< NI NE\]
o PPh3 = o
Ni(cod), }\‘ / N
N + \ _PPhy TS2.9 N — \
H N ‘ _— N|\ —— = MeN\
H X PPh3 AG* = 18.9 keal/mol Me “Pph,
Me
2.19

AG = 0.0 kcal/mol AG = 3.0 kcal/mol

(c) Optimized structures of C—N reductive elimination transition states

$(N1-C4-C2-N,) = 28.8° $(N4-C4-C2-Np) = 0.4°

Figure 2-11 Effects of directing group on the C—N bond reductive elimination. All energies are with respect to

the phosphine-bound seven-membered nickelacycles 2.15 and 2.20.

In summary, the most favorable mechanism in the Ni-catalyzed ortho C(sp?)—H oxidative
cycloaddition of aromatic amide 2.1 and internal alkyne 2.2 proceeds by oxidative addition into
the amide N—H bond to form Ni(II)-hydride 2.5 followed by alkyne insertion to form an alkenyl-
Ni(ll) complex 2.8. The agostic interaction with the ortho C—H bond in the o-complex 2.8
promotes C—H metalation via a 6-CAM mechanism to afford alkene-bound five-membered
nickelacycle. Insertion of another alkyne molecule and phosphine-promoted C—N reductive

elimination afford the isoquinolone product and regenerate the Ni(0) catalyst.
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2.3.5 Origin of Regioselectivity with Unsymmetrical Internal Aryl Alkynes

We next investigated the origin of the high levels of regioselectivity in reactions with
unsymmetrical internal alkynes. When phenylalkylacetylenes are used as coupling partners, this
oxidative cycloaddition reaction tolerates bulky alkyl substituents, such as tert-butyl, on the alkyne

(Figure 2-12).

(e]
Ph Ni(cod),
N
H toluene =

2.1

Ph 5g
R= Me

R= Et 16 : 1
R=Bu 28 : 1

Figure 2-12 Experimentally observed regioselectivity with internal aryl alkynes.

Interestingly, the major regioisomeric pathway involves formation of a new C—C bond with
the more sterically demanding alkyne terminus. In addition, a greater regioselectivity was observed
when the size of the alkyl group increased from methyl to tert-butyl. To investigate the origin of
this “counter-steric” regioselectivity, we calculated the regioselectivity-determining alkyne

insertion pathways with phenylalkylacetylenes 2.23 and 2.24 (Table 2-1).
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Table 2-1 Regioselectivity in reactions with unsymmetrical alkynes.

S :
NN
- Ni— N Ny 2
R (0] /E\é
Ni(0) cat N z | - 5 o
21+ \‘\ Ni(0) cat. e ,\;,i_N\ - TS2.A .
(0]
Ph R—==—Ph _
N
2 - Ni—Ny = 28
\7/6,
Ph R
- TS-2.B
- alkvne TS-2.A TS-2.B experimental selectivity
/ Y AG* [AHH]? AGH [AH#]? (2.A:2.B)
Me—=—Ph
1 *om 22.8[20.5] 24.4[22.0] 13:1
2 Bu—="Ph 22.1[19.4 27.7[25.2 28:1
2.24

2 Gibbs free energy and enthalpy of activation in the alkyne insertion step. All energies are in kcal/mol with respect to the alkyne-
bound nickelacycle 2.C.

In the reaction with 1-phenyl-1-propyne (2.23, R = Me), the alkyne insertion transition
state (TS-2.10A) leading to the major regioisomer 2.A is preferred by 1.6 kcal/mol, in good
agreement with experimental regioselectivity (entry 1). The origin of this preference is attributed
to the stabilization of the partial negative charge on the a-carbon of the forming Ni—C bond by the
terminal phenyl group in TS-2.10A.% In the reaction with phenyl-t-butylacetylene (2.24, R = t-
Bu), the major regioisomeric transition state TS-2.11A is stabilized by a similar electronic effect.
TS-2.11A and TS-2.10A have almost identical activation barriers with respect to corresponding
n-alkyne complexes. Therefore, the reactivity of this migratory insertion is not sensitive to the
steric bulk of the terminal alkyne substituent (R) adjacent to the forming C—C bond. The four-
membered cyclic alkyne migration transition states TS-2.11A and TS-2.10A are not planar; the
alkyl group (R) on the alkyne points out of the plane of the nickelacycle (Figure 2-13). As such,
the steric repulsions between R and the nickelacycle in both transition states are diminished. On

the other hand, in the minor regioisomeric transition state TS-2.11B, the bulky t-Bu substituent is
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placed co-planar with the nickelacycle to achieve a square planar geometry of Ni(ll). As such,
substantial steric repulsions between the t-Bu and the pyridine directing group are observed in TS-
2.11B. This steric effect makes the t-Bu substituted TS-2.11B 3.3 kcal/mol less stable than the
Me-substituted TS-2.11A, and thus leads to an increased regioselectivity (AAG* = 5.6 kcal/mol)

when phenyl-t-butylacetylene (2.24) was used as the coupling partner.

(a) Regioselectivity-determining insertion transition states with alkyne 2.23
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(b) Regioselectivity-determining insertion transition states with alkyne 2.24
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Figure 2-13 Optimized geometries of alkyne insertion transition states.

35



2.3.6 Mechanism of Cis-Trans Isomerization of the Alkene Byproduct

In the Ni-catalyzed C-H bond functionalization of amide 2.1 with diphenylacetylene,
trans-stilbene was produced in 81% yield.® The alkyne-promoted 6-CAM process discussed above
forms cis-alkenes rather than the trans isomers. As such, a cis-to-trans alkene isomerization must
be operational. Because nickel hydride complexes are known to catalyze alkene isomerization
reactions,>* we surmised Ni(ll)-hydride intermediate 2.5 in the main catalytic cycle may serve as
a catalyst to promote the cis-trans isomerization. The reaction energy profile of this pathway was
calculated (Figure 2-14). Ligand exchange of PPhz in Ni(ll)-hydride 2.5 with cis-2-butene forms
complex 2.25, which then undergoes alkene migratory insertion to form g-agostic alkyl-Ni(ll)
complex 2.27.%° From 2.27, p-hydride elimination with a different C—H bond forms the trans-2-
butene-bound Ni(ll)-hydride 2.28, which upon ligand exchange with PPhs extrudes the trans-2-
butene byproduct. The cis-trans isomerization process in this off-cycle pathway is kinetically
feasible and thermodynamically exergonic by 0.9 kcal/mol. The presence of PPhs ligand does not
significantly inhibit the reaction because the ligand exchange of PPhsz with alkene is only uphill by
about 11 kcal/mol. In addition, coordination to an additional PPhs ligand to form 26 does not
stabilize the alkyl-Ni(ll) intermediate 2.27.

These results further support the formation of Ni(ll)-hydride complex in the main catalytic

cycle, which catalyzes the isomerization of the cis-alkene to the trans-alkene byproduct.
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Figure 2-14 Reaction energy profile of the Ni(ll)-hydride-catalyzed isomerization of cis-2-butene to trans-2-

butene. All energies are with respect to the Ni(ll)-hydride complex 2.5 and cis-2-butene.

2.4 Conclusions

The reaction mechanism of Ni-catalyzed ortho C(sp?)—H oxidative cycloaddition of
aromatic amides with internal alkynes containing 2-pyridinylmethylamine directing group was
investigated using DFT calculations. The catalytic cycle begins by oxidative addition of the amide
N—H bond to form a Ni(II)-hydride complex. The subsequent C—H metalation process occurs via
a unique c-complex assisted metathesis (c-CAM) mechanism where the internal alkyne acts as a
hydrogen acceptor. This contrasts with the CMD mechanism that is usually involved in the Ni-
catalyzed C—H metalation in the presence of carboxylate or carbonate bases. The alkyne plays
significant roles in promoting the -CAM pathway both thermodynamically as a H» acceptor and

kinetically. Because the Ni(l1l)-hydride intermediate is thermodynamically unstable, c-CAM from
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the Ni(l1l)-hydride requires a high overall barrier. On the other hand, in the presence of the alkyne,
the Ni(Il)-hydride is converted to a more stable alkenyl-Ni(Il) species, which then undergoes more
facile 6-CAM. The subsequent reaction with the alkene-bound nickelacycle proceeds via an
exergonic ligand exchange with another molecule of alkyne followed by alkyne insertion to form
a seven-membered nickelacycle. The insertion of the alkene is less favorable. The alkyne
migratory insertion occurs via a non-planar four-membered cyclic transition state, in which the
steric repulsions about the forming C—C bond is diminished. As such, this reaction tolerates
alkynes with very bulky terminus and offers high regioselectivity to form the sterically more
encumbered C—C bond. The C—N bond reductive elimination of the seven-membered nickelacycle
is a key step to form the cyclic isoquinolone products. This C—N bond reductive elimination is
promoted by a PPhs ligand and the flexible 2-pyridinylmethylamine directing group, which
reduces the strain of the fused cyclic system in the reductive elimination transition state. The cis-
trans isomerism of the alkene byproduct was also explored computationally. This process is
catalyzed by a Ni(ll)-hydride intermediate in the main catalytic cycle.

We expect the mechanistic insights from this study, in particular, the unique roles of
alkynes to promote the o-CAM pathway, will aid the development of other transition metal

catalyzed C—H functionalization reactions with alkynes.
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3.0 Computational Study of Ni-Catalyzed C—H Functionalization: Factors that Control the

Competition of Oxidative Addition and Radical Pathways

Reprinted (adapted) with permission from Omer, H. M.; Liu, P. J. Am. Chem. Soc. 2017,
139 (29), 9909-9920 (https://doi.org/10.1021/jacs.7b03548). Copyright (2017) American

Chemical Society.

3.1 Introduction

Transition metal-catalyzed C—H bond functionalization reactions are an efficient and
versatile strategy for the construction of carbon—carbon and carbon—heteroatom bonds in organic
synthesis. In this regard, there has been significant interest in the development of Ni-catalyzed
C—H bond functionalization reactions.? Extensive efforts have been devoted to utilize the N,N
bidentate directing group strategy to many different types of C(sp?)~H and C(sp®)—H bond
functionalization reactions by the groups of Chatani %P10ab11a41c44,61 ghj 12a-b46d,62 g 10,63
Zhang, 1246264 | 1 8 and others®® (selected examples are shown in Figure 3-1). Compared to the
widely used Pd C—H functionalization catalysts, Ni-based catalysts are not only much more cost-
effective, but can also potentially provide unique reactivities, such as one-electron processes
involving open-shell Ni(1) or Ni(l11) species.?*67:689 |n addition, the notable differences between
the electronic properties of Ni and Pd, such as the barriers of oxidative addition™ and the M—C
bond strength,’* also offer opportunities to develop Ni-catalyzed C—C and C—X bond formation

processes that are complementary to existing C—H functionalization reactions with Pd catalysts.
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Figure 3-1 Ni-catalyzed C(sp?)—H and C(sp®)—H functionalization utilizing N,N-bidentate directing groups.
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A thorough mechanistic understanding is desirable to guide the development of a more
diverse set of Ni-catalyzed C—H bond functionalization reactions. However, the mechanisms of
many of the previously reported processes both in the C—H metalation step as demonstrated in
Chapter 2.0 and the subsequent functionalization of the nickelacycle are still not clear. Although
it is generally accepted that the initial C—H metalation occurs via concerted-metalation
deprotonation (CMD)!*% with weak carboxylate/carbonate bases to form a Ni(Il) metallacycle
3.A (Figure 3-2), there are many mechanistic possibilities in the subsequent steps. For example, in
the Ni-catalyzed C—H arylation and alkylation reactions with aryl or alkyl halides (R—X), the Ni(II)
metallacycle may promote the R—X bond cleavage via two distinct pathways (Figure 3-2): (i)
oxidative addition of R—X to form a Ni(IV) intermediate 3.B; and (ii) halogen atom transfer to
homolytically cleave the R—X bond and form a Ni(IIl) intermediate 3.C and Re. The following
C—C bond formation may occur via the reductive elimination from either the Ni(1V) intermediate
3.B or the Ni(lll) intermediate 3.D. In addition, single electron transfer (SET) pathways that
oxidize Ni(ll) to Ni(Ill) species have also been proposed.%®1285 Experimental mechanistic
studies, including deuterium labelling experiments,®?®10b.11a kinetic isotope effects (KIE)
studies,'® and trapping experiments with radical quenchers such as TEMPQ,%10a11a12a-b
suggested that either the oxidative addition mechanism or a radical mechanism could be operative
depending on the coupling partners and the reaction conditions. This mechanistic ambiguity is
rather unique for Ni, as the corresponding C—H arylation and alkylation reactions with Pd catalysts
often occur via the oxidative addition pathway.**"72 With Ni-catalysts, the initial C—H metalation
is often reversible,%b10ab.11a12a63a-b642 This jndicates the rate- and selectivity of the overall
reaction may be affected by the mechanism in the subsequent R—X cleavage and C—C/C—X bond

formation steps.
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Figure 3-2 Proposed mechanisms of Ni-catalyzed C—H bond functionalizations.

The objective of this chapter is to elucidate the underlying principles that determine the
relative rates of the competing oxidative addition and radical pathways in Ni-catalyzed C—H
functionalization reactions. We performed density functional theory (DFT) calculations to
investigate the mechanisms of a broad range of C(sp?)—H and C(sp®)—H functionalizations with
aryl halides, alkyl halides, disulfides, peroxides and the oxidative C—H/C—H coupling using
heptafluoroisopropyl iodide (i-CsF7—I) as oxidant (Figure 3-1). Through the investigations of the
competing pathways in these different types of reactions, we aim to elucidate whether factors such
as bond dissociation energies and steric properties of the coupling partners affect the mechanism
of the functionalization and influence the reactivity and selectivity of the overall catalytic

transformation.

3.2 Computational Methods

All calculations were performed using Gaussian 09.?6 Geometry optimizations and
vibrational frequency calculations were performed in gas phase using the B3LYP?° functional with

the LANL2DZ effective core potential basis set for nickel and iodine, and the 6-31G(d) basis set
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for other atoms. The nature of all stationary points was confirmed by the number of imaginary
frequencies. All minima have zero imaginary frequency and all transition states have only one
imaginary frequency. Single-point energy calculations were carried out using the M06°? functional
and the SDD basis set for Ni and I, and 6-311+G(d,p) for other atoms. The SMD?*3 solvation model
was used in the single-point energy calculations. Benchmark calculations were carried out to
examine the accuracy of B3LYP optimization geometries and the M06 reaction energies. Unless
otherwise noted, the experimental solvents shown in Figure 3-1 were used in the calculations:
DMF in the calculations of the C(sp®)—H arylation (Figure 3-1a), DMSO in the C(sp?-H
sulfenylation (Figure 3-1b), and t-butyl benzene in the C(sp?>)~H methylation with dicumyl
peroxide (Figure 3-1c), etc. In the calculations of the base-promoted N—H/C—H metalation-
deprotonation steps, explicit solvent molecules (DMF) were added to solvate the Na atoms in
[Ni(NaCOs).] and other compounds that contain Na. One or two explicit DMF molecules were
added to each Na atom to make the Na four-coordinated. Outer-shell solvent molecules were
treated using the implicit solvation model (SMD). This mixed cluster-continuum model** is

expected to provide a more realistic treatment of solvation effects of compounds with alkali metals.

3.3 Benchmark Calculations

3.3.1 B3LYP Optimization

In this manuscript, all geometry optimizations were performed in the gas phase with
B3LYP functional and single point calculations were performed with M06 and the SMD solvation

model. We performed test calculations to compare the reaction energy profiles of the Ni(ll)-
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Catalyzed C(sp®)—H arylation using different methods for geometry optimizations (Figure 3-3). In
these calculations, the same method (M06/SMD) was applied to calculate the single point energies.
Thermal corrections and zero-point energies were calculated at the same level of theory as
geometry optimization.

In these calculations, although B3LYP, as expected, slightly overestimates the Ni—I and
some Ni—C distances in the transition states, the M06 single point energies of the transition states
and intermediates using different levels of theory for geometry optimization only differ by less
than 1 kcal/mol in most cases. This suggests using gas phase geometry optimized structures using

B3LYP functional will not affect the conclusions.
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Figure 3-3 Reaction energy profiles of the oxidative addition (in black) and homolytic dissociation (in blue)

pathways in the reaction with 3.6 calculated at different levels of theory: (a) M06/SDD-6-
311+G(d,p)/SMD(DMF)//B3LYP/LANL2DZ-6-31G(d). (b) M06/SDD-6-311+G(d,p)/SMD(DMF)//M06/

LANL2DZ-6-31G(d). (c) M06/SDD-6-311+G(d,p)/SMD(DMF)//M06/LANL2DZ-6-31G(d)/SMD(DMF).

3.3.2 MO06 Functional

We performed test calculations to compare the performance of M06 and a few other
popular density functionals for the reaction energies of two model reactions shown in Table 3-1.
The DFT-computed reaction energies show reasonable agreement with the explicitly correlated

coupled-cluster theory UCCSD(T)-F12a benchmark calculations. M06 (entry 2) performs slightly
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better than w-B97XD, B3LYP-D3, and B3LYP in these test reactions in terms of the mean
unsigned error of the two reaction energies compared to the UCCSD(T)-F12a results. Using a
different basis set (def2-TZVP, entry 3) or different solvation models (SMD and CPCM, entries 4
and 5) has minor effects on the computed reaction energies. It should be noted that due to the size
of the system, the CCSD(T) calculations were performed with a relatively small basis set (aug-cc-

pVTZ for Ni and double zeta basis sets for other atoms). Thus, the CCSD(T) calculations may also

have relatively large errors.

Table 3-1 Calculated reaction energies of two model reactions using different levels of theory. Geometries

were optimized with B3LYP/LANL2DZ-6-31G(d) in gas phase. All energies are in kcal/mol.

o]
H
&'ﬁﬁ(
Ni—N,
/\_ H
& H3C Br
|fN
Br }&
\ \ m/ ++CHj3
. . AE
entry method solvation model basis set o ) fion () MUE?
reaction (i reaction (ii
aug-cc-pVTZ for Ni
1 | UCCSD(T)-F12a gas phase cc-pVDZ-PP-F12 for Br -7.4 28.9 -
cc-pVDZ-F12 for other atoms
SDD for Ni
2 MOo6 gas phase 6-311+G(d,p) for other atoms 0.9 28.4 44
3 MO06 gas phase def2-TZVP 1.6 30.9 55
SDD for Ni
4 MO06 SMD(toluene) 6-311+G(d.p) for other atoms 0.8 29.9 -
SDD for Ni
5 MO06 CPCM(toluene) 6-311+G(d,p) for other atoms 1.4 28.9 -
SDD for Ni
6 w-B97XD gas phase 6-311+G(d,p) for other atoms -0.1 21.9 7.2
SDD for Ni
7 B3LYP-D3 gas phase 6-311+G(d,p) for other atoms -7.4 191 4.9
SDD for Ni
8 B3LYP gas phase 6-311+G(d,p) for other atoms —4.0 165 79

aMean unsigned error of the reaction energies of (i) and (ii) compared to the UCCSD(T)-F12a results.
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3.4 Mechanism, Reactivity, and Selectivity in Ni-Catalyzed C(sp®)—H Arylation using Aryl

Halides

3.4.1 Mechanism of C—H Metalation

|
Ph
3.2 3.3

0 0
Ni(NaCO3),*4DMF cat.
%L” + iy eCOdk >ﬁj\” |
N DMF N
H
3.1

Figure 3-4 Model reaction used in the computational study of the mechanism of Ni-catalyzed C(sp®)—-H

arylation.

We first calculated the mechanism of the Ni-catalyzed C(sp®)—H arylation reported by the
Chatani group (Figure 3-1a).% This reaction is the first example of C(sp®)—H functionalization
employing Ni catalyst and an N,N-bidentate directing group. It is applicable to a wide variety of
aryl iodides with different electronic properties with high levels of site-selectivity for primary
C(sp®)—H bond. However, the mechanism, and origin of site-selectivity and reactivity of different
aryl iodides have not been investigated computationally. The reaction between model substrate 3.1
and phenyl iodide 3.2 to afford product 3.3 was used as the model reaction in the calculations
(Figure 3-4). Under the experimental conditions (Ni(OTf), precursor catalyst with 10 mol% 2-
mesitylenecarboxylic acid (MesCO2H) and 2 equiv Na2CO3), a number of anionic ligands (e.g.
MesCO. ", OTf, HCOs", and NaCOs") can potentially bind to the Ni(ll) catalyst and promote the
C—H metalation. These different mechanisms were considered computationally (Table 3-2) and

the optimized geometries shown in Figure 3-5.
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Table 3-2 Reaction energies of Ni(OTf)2 precatalyst with different bases to determine the active catalyst. All

energies are in kcal/mol. Method: M06/SDD-6-311+G(d,p)/SMD(DMF)//B3LYP/LANL2DZ-6-31G(d).

entry reaction AG AH
1 Ni(OTf2 + 2 NaxCOz+4DMF —| Ni(NaCO3)2+4DMF  +2 NaOTf-2DMF|-100.0 —102.2
Ni(NaCOs)(MesCO2) » \,o1f2DMF| -77.0 ~78.8

2 Ni(OTflz + NaCOz4DMF +MesCO:Na+2DMF — *2DMF

3 Ni(OTf)z+ NaCOs4DMF + Nal2DMF  —| Ni(NaCO3)[2DMF +2 NaOTf-2DMF|-60.0 —60.0

4 Ni(OTf)2 + 2 MesCOzNa*2DMF . Ni(MesCO2)2 +2 NaOTf2DMF|-50.6 —51.6
5 Ni(OTf)2 + 2 NaHCO3*2DMF - Ni(HCOs). +2 NaOTf-2DMF| -42.0 -43.3
»‘l‘ i _
3 a8 % L YR
‘.f()@:% E SRt D
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“ { ¢ =
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Figure 3-5 Optimized geometries of different Ni(ll) catalysts.

We also calculated the reaction Gibbs free energies of different numbers of DMF solvent
molecules binding to Ni(NaCO3)2 to identify the suitable number of explicit DMF molecules to
solvate sodium atoms (Figure 3-6). The reaction free energies in solution, AGsol, were calculated
using two different DMF concentrations, 1M and 12.9M. The latter represents the concentration
of DMF in pure liquid DMF computed from the density of DMF (0.944 g/ml) and molar mass of
DMF (73.09 g/mol). Under the reaction conditions, the DMF concentration is expected to be lower
than 12.9 M. The concentration corrections to Gibbs free energies of reaction were calculated using

AGin= AG°® + RTInQ (T = 298.15 K). Calculations indicate that adding 2 or 3 DMF molecules
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per sodium to make the sodium four- or five-coordinate, respectively, is the most favorable

thermodynamically.

AG,
[DMF]  [DMF]
=1M =129M

Ni(NaCO3),+2DMF ~ —— > Ni(NaCO5),#2DMF -3.0 -6.0

Ni(NaCO3),+ 4 DMF ~ — > Ni(NaCO5),e4DMF -5.0 ~11.1

Ni(NaCO3), + 6 DMF  — > Ni(NaCO;),e6DMF 2.5 ~11.6

Ni(NaCO3), + 8 DMF Ni(NaCO;),e8DMF 2.9 -9.3

Method: M06/SDD-6-311+G(d,p)/SMD(DMF)//B3LYP/LANL2DZ-6-31G(d). All energies are in kcal/mol.

Ni(NaCO5;),e2DMF Ni(NaCOy3),e6DMF Ni(NaCO,),e8DMF

Figure 3-6 Gibbs free energies of different numbers of DMF solvent molecules binding to Ni(NaCO3)2..

Based on these calculations, the most favorable C—H metalation pathway involves
Ni(NaCO3)2#4DMF as the active Ni(II) catalyst.”**?2%73 Thus, Ni(NaCO3)224DMF was used as
the active catalyst in the calculations.

The computed reaction energy profile for the Ni-promoted C—H metalation step is shown
in Figure 3-7. After coordination of the quinoline directing group to the Ni catalyst, the base-
assisted deprotonation of the amide N—H bond is fast with an activation barrier of 7.5 kcal/mol to

form complex 3.4. It should be noted that the dative complex of 3.1 with the Ni catalyst prior to
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TS3.1 is 8.3 kcal/mol less stable than the separate reactants (Ni(NaCOs)2#4DMF and 3.1). The
structure of this complex is not shown in Figure 3-7 for clarity. After formation of complex 3.4,
the subsequent concerted C—H metalation/deprotonation step with NaCOs™ as the base (TS3.2)
requires an activation free energy of 21.4 kcal/mol with respect to complex 3.4. The C-H
metalation/deprotonation step has been also considered computationally with other anionic bases
as well and the results of these are given in the following subsection. The resulting C—H
deprotonated metallacycle complex 3.5 is 1.4 kcal/mol less stable than 3.4. Ligand exchange with
phenyl iodide replacing the NaHCOs2DMF in 3.5 to form 3.6 is endothermic. The
thermodynamics of this Ni(ll)-mediated C—H metalation process is fundamentally different from
the corresponding CMD pathway with Pd(I1) catalysts.'*37 Using the Pd(NaCO3)224DMF catalyst
in place of Ni (Figure 3-7b), the C—H metalation of 3.1 requires a comparable barrier (TS3.4, AG*
= 20.0 kcal/mol with respect to 3.7). However, the resulting C—H deprotonated palladacycles 3.8
and 3.9 are both more stable than 3.7 while nickelacycle complexes 3.5 and 3.6 are less stable than
the corresponding reactant complex 3.4. These results indicate the C—H metalation is much less
favorable thermodynamically with Ni(ll) catalysts than with Pd(I1). The optimized transition state
geometries indicate a later transition state in the metalation with the nickel catalyst (TS3.2)

compared to that with palladium (TS3.4), which is consistent with the Hammond postulate.
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Figure 3-7 Reaction energy profiles of C—H metalation of 3.1 with (a) Ni(NaCOz)24DMF and (b)

Pd(NaCOz3)224DMF catalysts.

The dramatic difference in the reaction energy of the C—H metalation is attributed to the
difference in M—O and M—C bond energy between Pd and Ni. The forming Ni—C bond in 3.6 is
weaker than the Pd—C bond in 3.9.7%t Concurrently, the breaking Ni—O bond is stronger than
Pd—O bond in the reactant complexes (4 and 7).”* Due to the endergonicity of the formation of
nickelacycle, the Ni-mediated C—H metalation is more likely to be a reversible process, and thus
the subsequent functionalization of the nickelacycle is rate-determining in many Ni-catalyzed C—H
functionalization reactions (see later). This is consistent with previous experimental mechanistic

studies by Chatani, %210&b11a ghyj 122 gng Zhang.64
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3.4.2 C—H Metalation Assisted by Other Anionic Ligands

The computed reaction energy profile of the C—H metalation of 3.1 using NaCOs™ as the
base is shown in Figure 3-7. We also considered the CMD mechanism assisted by other anionic
ligands, including HCO3™, OTf ", and MesCOz . These alternative mechanisms involve the anionic
ligand exchange to replace the NaCOs™ ligand in complex 3.4, followed by CMD with different
anionic ligands as bases. The computed reaction energy profile of the C—H metalation of 3.1 using
these alternative bases are shown in Figure 3-8, Figure 3-9 and Figure 3-10. These processes all

require higher activation energies than the C—H metalation with NaCOz" as the base.
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Figure 3-8 Reaction energy profile of the C—H metalation of 3.1 with HCO3™ as the base.
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Figure 3-9 Reaction energy profile of the C—H metalation of 3.1 with OTf™ as the base.
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Figure 3-10 Reaction energy profile of the C—H metalation of 3.1 with MesCO3™ as the base.
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3.4.3 Mechanism of the Ph—I Bond Cleavage and the C—C Bond Formation Steps
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Figure 3-11 (a) Reaction energy profile of the Ph—I cleavage and C—C bond formation steps of the Ni-
catalyzed C—H arylation of 3.1 with Ph—I. (b) Computed structures of transition states and intermediate 3.10
with select bond distances shown in A. All energies are with respect to the separate reactant (3.1) and the

active catalyst [Ni(NaCOs)224DMF].

After the formation of nickelacycle 3.6, several pathways are possible in the subsequent

Ph—I bond cleavage and C—C bond formation steps (Figure 3-2). The reaction energy profiles of
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the different mechanisms in these steps were computed and are shown in Figure 3-11a. Select
transition states and intermediate structures are shown in Figure 3-11b. Starting from 3.6, the
homolytic cleavage of the Ph—1I bond via TS3.7 forms a Ni(l11) complex 3.12 and a phenyl radical.
This iodine atom transfer pathway?! requires an activation free energy of 29.6 kcal/mol with
respect to 3.6 and is highly endergonic due to the generation of the unstable phenyl radical.

The oxidative addition/reductive elimination mechanism (in black) is the most preferred
pathway for this reaction. The Ph—I oxidative addition transition state (TS3.5) requires a barrier
of 13.8 kcal/mol from complex 3.6. This suggests the high-valent Ni(IV) intermediate 3.10 is
kinetically accessible. Sanford et al. recently reported the synthesis and isolation of Ni(IV)
complexes via oxidative addition with Ni(ll).” Our calculations suggest that the formation of the
Ni(IV) intermediate 3.10 is facilitated by the strongly electron-donating 8-aminoquinoline
directing group. Natural Population Analysis (NPA) charge analysis indicates that the directing
group becomes less negatively charged in 3.10 and transfers 0.19 electron to the Ni during this
oxidative addition process from 3.6 to 3.10 (Figure 3-12). The Ni(IV) intermediate 3.10 then
undergoes facile C—C reductive elimination through TS3.6 with a low activation free energy of

3.7 kcal/mol with respect to intermediate 3.10 to give 3.11.

(0] (0]
>[ N N
\ i"—N | . ! AV |
Ni X~ oxidative /NI\ Nx
' PH

addition
“Ph
3.6 3.10

total atomic charges
on the directing group -042 -0.23
(highlighted in blue)

Figure 3-12 NPA charge analysis to rationalize the electronic stabilization of the Ni(IV) intermediate 3.10 by

the 8-Aminoquinonline directing group.
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Several alternative pathways were also considered computationally. Two possible
pathways involving open-shell Ni species are considered. The dissociative single electron transfer
(DSET) from the Ni(Il) metallacycle with Ph—I to form a Ni(III) radical cation, phenyl radical and
iodide anion, and the iodine atom transfer from Ph-I to a Ni(l) complex 3.14 to form Ni(ll) iodide
3.11 and a phenyl radical are both highly endergonic (62.0 and 34.9 kcal/mol, respectively with
respect to 3.1 and the catalyst resting state Ni(NaCO3)224DMF) and thus can be ruled out. Two
alternative pathways from complex 3.10 were also considered. Dissociation of the iodine atom to
form a Ni(l1l) complex 3.13 (in red) is highly endergonic. This indicates the reductive elimination
from this Ni(lll) intermediate via TS3.8 is not likely to occur. In addition, the C—I reductive
elimination from 3.10 via TS3.9 (in pink) requires an activation free energy that is 8.2 kcal/mol
higher than the preferred C—C reductive elimination pathway (TS3.6). This explains why the C—1
coupling product is not observed in experiment.

After formation of 3.11, the subsequent ligand exchange to form 3.15 and the protonation
of the Ni—N bond (TS3.10) to regenerate the active Ni catalyst and to liberate the final product 3.3

are both facile (Figure 3-13).
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Figure 3-13 Reaction energy profile of the Ni—N protonation step. All energies are with respect to the separate

reactant (3.1) and the active catalyst [Ni(NaCOz3)224DMF].

3.4.4 An Alternative Mechanism of the Reductive Elimination Step of the Ni(ll)-Catalyzed

C(sp®)—H Arylation with Ph—1

After the oxidative addition of Ph—I to form the Ni(IV) intermediate 3.10, reductive
elimination via TS3.6 to give complex 3.11 has a very low barrier of 3.7 kcal/mol only.
Alternatively, anionic ligand exchange that replaces the iodide anion in 3.10 with the carbonate
anion to form S17-3.1 is predicted to be exothermic, due to the stronger coordination of carbonate
with Ni than that of iodide (Figure 3-14). From S17-3.1, the reductive elimination (via S17-TS3.1)
form the same Ni(ll) intermediate 3.15 as the pathway that does not involve anionic ligand
exchange prior to reductive elimination. The detailed study of the mechanism and kinetics of the
ligand exchange from 3.10 to S17-3.1 is beyond the scope of the present study. Considering the
low barrier to reductive elimination (TS3.6), it is not likely a ligand exchange event from 3.10 can

be kinetically competing, although such process is thermodynamically favorable. Regardless of
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which reductive elimination pathway is operating, the oxidative addition remains the rate-
determining step of this reaction.
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Figure 3-14 The computed reaction energy profile of the C—C bond formation step in the reaction of the
nickelacycle 3.6 with Ph—1. Two different pathways are shown: (i) direct reductive elimination of 3.10
followed by ligand exchange to give 3.15 (in black); (ii) ligand exchange of 3.10 followed by reductive

elimination of S17-3.1 (in blue).

3.4.5 Overall Catalytic Cycle and the Rate-Determining Step

In summary, the Ni-catalyzed C(sp®)—H arylation of 3.1 with Ph—1I (3.2) initiates with N—H
deprotonation to bind the N,N-bidentate directing group to the Ni, followed by C—H bond cleavage
via the concerted metalation-deprotonation mechanism. The C—H cleavage requires a relatively
low barrier and is reversible, in agreement with the deuterium labeling experiments from Chatani.*
The formation of the nickelacycle intermediate is much less thermodynamically favorable than the

corresponding process with Pd(Il) catalysts, due to the formation of the weaker Ni—C bond
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compared to the Pd—C bond (Figure 3-7). In the subsequent Ph—I bond cleavage and C—C bond
formation steps, the most favorable mechanism is via oxidative addition of Ph—I to form a Ni(IV)
intermediate, which undergoes rapid C—C reductive elimination to yield the C—H arylation
product. The rate-determining step in the overall catalytic cycle is the oxidative addition to form
the Ni(IV) intermediate. It should be noted however that in the arylation of the sterically more
demanding secondary C(sp®)—H bond, reductive elimination becomes rate-determining details of
which are provided in the following sections. The oxidative addition mechanism is consistent with
the experimental observation that addition of TEMPO did not shut down the reaction.®

These theoretical insights about the mechanism and rate-determining step allowed us to
carry out further computational investigation to explain the origins of reactivity and site-selectivity

in the Ni-catalyzed C(sp®)—H arylation reactions (see below).

3.4.6 Reactivity of Aryl Halides

To investigate the origin of reactivity of aryl halides in the C—H arylation, the computed
activation energies of the rate-determining oxidative addition step of various aryl halides in the
reactions with benzamide 3.1 are summarized in Table 3-3. The more electron-rich p-MeO phenyl
iodide 3.16 has slightly lower barrier than the electron-poor p-CF3 phenyl iodide 3.17 (entries 2
and 3). The reactions with phenyl bromide 3.18 (entry 4) and the sterically congested o-Me phenyl
iodide 3.19 (entry 5) are substantially less reactive. These electronic and steric effects on the rate
of the reaction are in good qualitative agreement with the experimentally observed reactivities of
different aryl halides.® These results provide further support to the oxidative addition/reductive

elimination mechanism and the rate-determining step revealed by the computations.
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Table 3-3 Reactivity of aryl halides in the C—H arylation of 3.1.

g AG*on) Yield®
Entry Ar—X [AH*om]?
t
1 @' 24.3 [24.0] no
32 reported
2 MeO < > : 24.0 [23.5] 83%
3.16
3 FaC < > ! 243[236] | 49%
3.17
4 @B“ 31.3[31.0] 0%
3.18
|
5 30.1 [29.6] 0%
3.19

2 Gibbs free energy [AG¥oa)] and enthalpy [AH(on)] of activation in the rate-determining oxidative addition step in the C—H
arylation of 3.1. All energies are in kcal/mol with respect to the separate reactants. ® Experimental yield was determined in the

o
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P H Na

3.4.7 Origin of Site-Selectivity

in place of 3.1. The reactions were carried out at 140°C for 24h with Ni(OTf)2 catalyst. See ref.
9a.

reactions of

The C(sp®)—H arylation reaction is highly selective for primary C—H bonds. In the reaction
of 3.20, no secondary C(sp®)—H arylation product (3.22) was observed in experiment (Figure
3-15).% To investigate the origin of the site-selectivity, we performed calculations on the
competing primary and secondary C(sp®)—H arylation pathways using 3.23 as the model substrate
(Figure 3-15b). Select key transition state structures are shown in Figure 3-15c. Our calculations
indicate that the C—H cleavage in both pathways are reversible, and thus, although the cleavage of

the primary C—H bond occurs faster than the cleavage of the secondary C—H bond (AG* = 17.4
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versus 20.4 kcal/mol), the site-selectivity of the product is determined in the subsequent oxidative
addition and reductive elimination steps. Although the barriers of oxidative addition are similar in
both pathways (TS3.12 and TS3.15), the highly unfavorable steric repulsions in the C—C reductive
elimination with the secondary carbon (TS3.16) prohibit the formation of the secondary C(sp®)—H
arylation product (3.29). This increased steric demand is evidenced by the elongated Ni—C bond
(2.23 A) in TS3.16. Taken together, these results indicate that the site-selectivity for primary C—H
bond is controlled by the steric effects in the C—C bond forming reductive elimination step, rather

than in the initial C—H bond metalation step.”
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(a) Experimentally observed site-selectivity in C(sp®)-H arylation

320

3 22
not observed
(b) Computationally predicted site-selectivity
AG(s01) C—H metalation | oxidative addition———]<~———
[AH sop)

reductive elimination —,I
(selectivity-determining)
kcal/mol /% o %
Et
30.1
Et N j)L _
ﬂA g 2] NS
25.8 2 :
o ;2
o’(o :

Me TS3.16
\ e (0]
DMF
N \
o] --Ni—Ng
Et W
Et%’?‘ | Ph \|
---Ni—N g TS3.13
Mo
‘0= 16.4
| O [16.4] o
i TS3.11 Et
DME NaHCO3+2DMF [1 . C ¢ £t ” I ‘
TS3.1 NaHCO4+-2DMF 3. pho Ni(NaCO3),-4DMF + S
o o 3.25 3.28 Nal2DMF 3.26
Et Me
N Et N ‘ NayCO3+4DMF +
3.23 + Ni(NaCO3),*4DMF Et Ni—N | l\‘lifN « NaHCO3+2DMF
‘ Me’
N
% ~pn 3.24 ph 3.27 o} —jgg
Me [-45.5]
N N ‘ 3.29
3.23 Et Ho Mo
c) Optimized structures of transition states

239 18312

223_ /%
=264

i E 238 18315

Figure 3-15 Selectivity of primary (in black) versus secondary (in blue) C—H arylation. Only key transition
states and intermediates are shown in the potential energy surfaces. All energies are with respect to the

separate reactant (3.23) and catalyst [Ni(NaCQz3)224DMF]
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3.5 Mechanism of the Ni(ll)-Catalyzed C(sp?)—H Sulfenylation with Diphenyl Disulfide

Although the above calculations indicated that the Ni(I1)/Ni(IVV) mechanism is strongly
favored in the Ni-catalyzed C—H arylation using aryl halides, radical pathways involving Ni(I) or
Ni(l11) species cannot be completely ruled out in other types of C—H functionalizations.%1126
We next investigated the mechanism of the Ni-catalyzed C(sp?)—H sulfenylation using diphenyl
disulfide (PhS—SPh, 3.31) (Figure 3-1b). Although the C—H metalation step is expected to occur
via a similar CMD mechanism as in the Ni-catalyzed C—H arylation reactions, in the subsequent
reaction of the nickelacycle with the disulfide, both oxidative addition and homolytic S—S bond
dissociation pathways have been proposed in previous experimental studies.!?*¢ The computed
reaction energy profile of the reaction of nickelacycle complex 3.33 is shown in Figure 3-16. In
the Ni(I1)/Ni(IV) oxidative addition/reductive elimination pathway (shown in black), the rate-
determining step is the oxidative addition (TS3.17) with a barrier of 17.1 kcal/mol with respect to
3.33. Interestingly, the homolytic S—S bond dissociation (TS3.19) to generate a PhSe radical and
an open-shell Ni(lll) sulfide complex 3.36 requires a comparable barrier of 18.7 kcal/mol with
respect to 3.33. The activation energy difference between the oxidative addition and the homolytic
S—S bond dissociation pathways is much smaller than in the C(sp*)—H arylation reaction. Although
the C—S reductive elimination of 3.36 (TS3.20) to form the Ni(l) complex 3.37 requires a
significantly higher barrier than the Ni(IV)/Ni(ll) reductive elimination (TS3.18), the Ni(lll)
complex 3.36 may react with the free PhSe radical generated in the homolysis of disulfide to form
the Ni(1V) intermediate 3.34, which then undergoes C—S reductive elimination via TS3.18 to form
the C—S coupling product. Compared to the radical pathways with phenyl iodide (Figure 3-11),
this homolytic dissociation pathway with diphenyl disulfide is much more favorable due to the

lower BDE of the S—S bond in diphenyl disulfide compared to the C—I bond in phenyl iodide.
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These results indicate that the Ni(Il)/Ni(IV) oxidative addition pathway and the open-shell
Ni(ID/Ni(111) pathway may be competing in this reaction. Indeed, experimental mechanistic
studies suggested that the oxidative addition and homolytic dissociation pathways may both be
possible depending on the experimental conditions. Radical trapping experiments from Shi and
Zhang suggested the oxidative addition mechanism,*?2¢ while mechanistic studies from Lu under
different experimental conditions suggested formation of PhSe radical in the C—H sulfenylation

in the presence of Ag2C03.%
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Figure 3-16 (a) Substrates used in the calculations of the C—H sulfenylation reaction. (b) Computed reaction
energy profile of the C—S bond formation step in the C—H sulfenylation of 3.30. All energies are with respect

to the nickelacycle 3.33.
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3.6 Mechanism of the Ni(ll)-Catalyzed C(sp?)—H Methylation with Dicumyl Peroxide

We next investigated the mechanism of the Ni-catalyzed C(sp?)—H methylation using the
sterically hindered dicumyl peroxide (DCP) (3.39) (Figure 3-1c).1% The computed reaction energy
profile of the reaction of nickelacycle complex 3.41 is shown in Figure 3-17. The Ni(I11)/Ni(IV)
oxidative addition has a barrier of AGa)* = 25.6 kcal/mol with respect to 3.41. Subsequent
reductive elimination of the Ni(I1V) intermediate 3.42 via TS3.22 gives the C—O coupling product
(3.43), which was not observed in experiment. The homolytic O—O bond dissociation pathway
(TS3.23) to generate the alkoxy radical (3.44) and an open-shell Ni(lll) alkoxide complex (3.45)
is much more favorable (AGgissoc)* = 11.6 kcal/mol with respect to 3.41). Alkoxy radical 3.44 then
undergoes facile fragmentation via TS3.24 to generate acetophenone 3.47 and a methyl radical,
which rapidly combines with the Ni(lll) complex 3.45 to form a Ni(IV) intermediate 3.46.7 S-
Methyl elimination from 3.45 via a concerted four-membered transition state requires an activation
free energy of 37.9 kcal/mol with respect to 3.45 and thus can be ruled out. Similar to the other
Ni(IV) complexes in the reactions discussed above, 3.46 undergoes very facile reductive
elimination via TS3.25 to form the methylated product, 3.48. Compared to the reactions with
phenyl iodide (Figure 3-11) and diphenyl disulfide (Figure 3-16), the oxidative addition with DCP
requires a much higher barrier because of the sterically congested transition state, TS3.21.
Simultaneously, the homolytic dissociation pathway with DCP is facilitated due to the weaker
O—O bond in DCP (the BDE of DCP and PhS—SPh are 32.9 and 40.3 kcal/mol, respectively). In
summary, the unfavorable steric hindrance in the oxidative addition transition state TS3.21 and
the tendency to form alkoxy radical 3.44 from cleavage of the weak DCP O—O bond promote the

homolytic dissociation over the oxidative addition pathway in the C—H methylation reaction.
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Figure 3-17 (a) Substrates used in the calculations of the C—H methylation reaction with dicumyl peroxide
(DCP). (b) Computed reaction energy profile of the C—C bond formation step in the reaction of the

nickelacycle 3.41. All energies are with respect to the nickelacycle 3.41.

3.7 Dissociative Single Electron Transfer (DSET) Processes

In addition to the oxidative addition and homolytic dissociation pathways discussed above,
the dissociative single electron transfer from Ni(Il) metallacycle to the coupling partners was also
computed for the reactions with phenyl iodide, diphenyl disulfide, and dicumyl peroxide with

DMF, DMSO, and t-butyl benzene as solvent, respectively (Table 3-4). Calculations show that the
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generation of radical species via DSET is highly disfavored thermodynamically and hence not
considered further in this computational study.

Table 3-4 Reaction energies of dissociative single electron transfer (DSET) mechanism for three different
reactions.

Entry Reaction AG AH

o o
>&N + Ph-I N >&N + P+ 455 549

Ni—N ] NN

o
N = | + PhS—SPh — + PhS- 47.6 59.0
Ni—N < N|+—N\

0
N + ph)%/°+P“ - N )( . PM% 793 918
l\‘li—N\ ‘ f\‘li'+—N\
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3.8 Mechanism of the Ni(ll)-Catalyzed C(sp?)—H Benzylation with i-CaF7—I
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Figure 3-18 (a) The model C—H benzylation reaction used in the calculations. (b) Computed reaction energy

profile of formation of benzyl radical via homolytic dissociation pathway with i-CsF7—I as external oxidant.

We next investigated the mechanism of the Ni-catalyzed C(sp?)—H benzylation using
toluene and heptafluoroisopropyl iodide as the oxidant (Figure 3-18). When heptafluoroisopropyl
iodide (i-CsF7—1) is used as an external oxidant with nickelacycle 3.53, the heptafluoroisopropyl
iodide undergoes homolytic bond dissociation via TS3.26 to generate heptafluoroisopropyl radical

i-CsF7+ and a Ni(lll) intermediate 3.58. The oxidative addition pathway via TS3.27 is kinetically
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disfavored due to the steric bulk of the i-CsF7 group. The heptafluoroisopropyl radical i-CsF7+ then
abstracts a hydrogen atom from toluene via S7-TS3.2 to form the benzyl radical.

The benzyl radical then adds to the nickelacycle 3.53 to form Ni(lll) intermediate S8-3.1
which can undergo reductive elimination via S8-TS3.1 to form the experimentally observed
benzylation product S8-3.2 (Figure 3-19). A possible competing mechanism involves the addition
of the heptafluoroisopropyl radical to nickelacycle 3.53 to form a Ni(lll) intermediate S8-3.3 that
could undergo reductive elimination via S8-TS3.2 to form the C—C alkylation product S8-3.4. The
barrier to the reductive elimination is AG* = 19.7 kcal/mol, which is 3.3 kcal/mol less favorable
than the benzylation pathway via S8-TS3.1. Thus, the formation of the benzylation product is
favored. The overall transformation leading to the benzylation product proceeds via a

Ni(ID/Ni(H1)/Ni(1) catalytic cycle.
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Figure 3-19 Reaction of Ni(ll) metallacycle 3.53 with benzyl radical to form C—C coupling product via

Ni(ID)/Ni(H/Ni(1) cycle with i-CsF7—1 as external oxidant.
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Figure 3-20 Reaction of Ni(11) metallacycle 3.53 with benzyl radical to form C—C coupling product via

Ni(I1)/Ni(1V) cycle with i-CsF7—I as external oxidant.

Another alternative mechanism to form the benzylation product involves addition of the
benzyl radical to the nickel(I11) intermediate 3.58 to form a nickel (IV) intermediate S9-3.1 which
undergoes reductive elimination via S9-TS3.1 to form the product S9-3.2 (Figure 3-20). The
addition of benzyl radical to Ni(lll) metallacycle 3.58 to form the five-coordinated Ni(IV)
intermediate S9-3.1 (AG = —5.3 kcal/mol) is less exergonic than the addition of benzyl radical to
Ni(Il) metallacycle 3.53 (AG = —12.7 kcal/mol). Thus, although the pathway in Figure 3-20 cannot
be completely ruled out due to a relatively low barrier for reductive elimination via S9-TS3.1, this
mechanism is less likely compared to the Ni(111)/Ni(l) reductive elimination (the black pathway in

Figure 3-19).
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3.9 Mechanism of the Ni(ll)-Catalyzed C(sp?)—H Benzylation with CF3CH2—I

Cl
@ o Ni cat.
N + ph—cH, CFsCHa—1 |
H N ‘ toluene
H NS

() 4 AGq)
[AH(0) H  HH
kcal/mol cl \;k”H” ’
H CF,
N |
N.—N\ Ni—N . 29.0
\ [19.0]
CHCF3 I . $10-TS3.1
T83.28 TS3.29 7 2773

18.8
[8.4]
TS3.29

cl
0

CF3CH3 @%L::iN \
. - NS

CFiCH,

$10-TS3.2

Figure 3-21 (a) The model C—H benzylation reaction used in the calculations. (b) Computed reaction energy

profile of formation of benzyl radical via homolytic dissociation pathway with CFsCH2—I as external oxidant.

We next investigated the mechanism of the Ni-catalyzed C(sp?)—H benzylation using

toluene and trifluoroethyl iodide as the oxidant (Figure 3-21). Unlike the reaction with

heptafluoroisopropyl iodide (i-CsF7-1), the reaction with trifluoroethyl iodide CFsCH.-I may occur

via ether oxidative addition via TS3.28 to form Ni(IV) intermediate 3.61 or homolytic dissociation

via TS3.29 to form Ni(lll) intermediate 3.58 and perfluoroalkyl radical CFsCHae. These two

competing pathways have very similar barriers. The experimentally observed alkylation side-

product S10-3.1 could be formed via a facile reductive elimination from 3.61 (the blue pathway in
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Figure 3-21). On the other hand, the CF3CHo.e radical form via the homolytic dissociation pathway
can abstract a hydrogen atom from toluene to form the benzyl radical in a similar process discussed
with i-CsF7-1 oxidant. The benzyl radical can eventually form the benzylation product via Ni(lll)
intermediate S11-3.1 or Ni(lIV) intermediate S9-3.1 as shown in Figure 3-22 and Figure 3-23

respectively.
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Figure 3-22 Reaction of Ni(Il) metallacycle 3.53 with benzyl radical to form benzylation product and the

reaction of 3.53 with CFzCH:® to form the alkylation side product.
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Figure 3-23 Reaction of Ni(ll) metallacycle 3.53 with CFsCH2—I to form benzylation product via Ni(IV)/Ni(ll)

reductive elimination.
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3.10 Mechanism of the Ni(Il)-Catalyzed C(sp?)—H Arylation with Ph—I

@) 2
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[AH sol)]

(
kcal/mol
Nn'N | S4-TS3.3

Figure 3-24 (a) The model C—H arylation reaction used in the calculations. (b) The computed reaction energy

profile of the C—C bond formation step in the reaction of the nickelacycle S4-3.2 with Ph—1.

We next investigated the mechanism of the Ni-catalyzed C(sp?)—H arylation using phenyl
iodide (Figure 3-24). The C—H metalation step is as expected to occur via the CMD mechanism as
in the Ni-catalyzed C(sp®—H arylation reactions. The computed reaction energy profile of the
reaction of nickelacycle complex S4-3.2 is shown in Figure 3-24. In the Ni(Il)/Ni(IV) oxidative
addition/reductive elimination pathway (shown in black), the rate-determining step is the oxidative
addition (S4-TS3.1) with a barrier of 14.5 kcal/mol with respect to S4-3.3. The homolytic C-I

bond dissociation (S4-TS3.3) to generate a Phe radical and an open-shell Ni(lll) iodide complex
75



S4-3.6 requires a very higher barrier of 32.1 kcal/mol with respect to S4-3.3. These results indicate
that the Ni(Il)/Ni(IV) oxidative addition pathway is the most favorable mechanism in the Ni-

catalyzed C(sp?)—H arylation with phenyl iodide.

3.11 Mechanism of the Ni(ll)-Catalyzed C(sp?)—H Alkylation with n-Bu—Br
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Figure 3-25 (a) The model C—H alkylation reaction used in the calculations. (b) The computed reaction

energy profile of the C—C bond formation step in the reaction of the nickelacycle S4-3.2 with n-Bu—Br.

We next investigated the mechanism of the Ni-catalyzed C(sp?)—H alkylation with n-butyl
bromide (Figure 3-25). The C—H metalation step is as expected to occur via the CMD mechanism

as in the Ni-catalyzed C(sp®)—H arylation reactions. The computed reaction energy profile of the
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reaction of nickelacycle complex S4-3.2 is shown in Figure 3-25. In the Ni(11)/Ni(IV) oxidative
addition/reductive elimination pathway (shown in black), the rate-determining step is the oxidative
addition (S5-TS3.1) with a barrier of 20.6 kcal/mol with respect to S5-3.2. The homolytic C—I
bond dissociation (S5-TS3.3) to generate a Bue radical and an open-shell Ni(I11) bromide complex
S5-3.5 requires a very higher barrier of 28.0 kcal/mol with respect to S5-3.2. These results indicate
that the Ni(Il)/Ni(IV) oxidative addition pathway is the most favorable mechanism in the Ni-

catalyzed C(sp?)—H alkylation with n-butyl bromide.
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3.12 Mechanism of the Ni(Il)-Catalyzed C(sp®)—H Sulfenylation with PhS—SPh
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Figure 3-26 (a) The model C—H sulfenylation reaction used in the calculations. (b) The computed reaction

energy profile of the C—S bond formation step in the reaction of the nickelacycle S6-3.3 with PhS—PhS.

We next investigated the mechanism of the Ni-catalyzed C(sp®)—H sulfenylation using
diphenyl disulfide (PhS—SPh, 3.31) (Figure 3-26). A similar analysis is carried out in the reaction
of the nickelacycle with the disulfide, i.e. both oxidative addition and homolytic S—S bond
dissociation pathways have been calculated. In the Ni(I1)/Ni(IV) oxidative addition/reductive
elimination pathway (shown in black), the rate-determining step is the oxidative addition (S6-

TS3.1) with a barrier of 20.2 kcal/mol with respect to S6-3.4. As in the case of Ni-catalyzed
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C(sp?>)—H sulfenylation, the homolytic S—S bond dissociation (S6-TS3.3) to generate a PhSe
radical and an open-shell Ni(l11) sulfide complex S6-3.7 requires a lower barrier of 16.9 kcal/mol
with respect to S6-3.4. Although the C—S reductive elimination of S6-3.7 (S6-TS3.4) to form the
Ni(l) complex S6-3.8 requires a significantly higher barrier than the Ni(IV)/Ni(ll) reductive
elimination (S6-TS3.2), the Ni(lll) complex S6-3.7 may react with the free PhSe radical generated
in the homolysis of disulfide to form the Ni(IV) intermediate S6-3.5, which then undergoes C—S
reductive elimination via S6-TS3.2 to form the C—S coupling product. Compared to the radical
pathways with phenyl iodide and n-butyl bromide, the homolytic dissociation pathway of Ni-
catalyzed C(sp®)—H functionalization with diphenyl disulfide is again much more favorable due to
the lower BDE of the S—S bond in diphenyl disulfide compared to the C—I bond in phenyl iodide
or n-butyl bromide cases. These results indicate that the open-shell Ni(I1)/Ni(l1ll) pathway is the

most favorable pathway in this reaction.

3.13 Substrate-Dependent Mechanisms in the Reactions with the C—H Metalated

Nickelacycle Intermediate

The seven different types of Ni-catalyzed C—H functionalization reactions discussed above
clearly indicated the significant role of coupling partner on the mechanisms in the C—C and C—X
bond formation steps. To reveal the factors that control the competing mechanisms and to develop
a predictable model for the reactivity of different types of coupling partners, we took into account
the activation barriers of oxidative addition, radical pathways, electronic properties such as bond
dissociation energies, secondary orbital interactions and steric properties of the coupling partners.

To have a consistent solvation model, calculations were repeated with toluene as the solvent for
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the Ni-catalyzed C(sp®)—H arylation (Figure 3-27), C(sp?)—H sulfenylation (Figure 3-28) and

C(sp?)—H methylation (Figure 3-29).

(a) o 0
H S Ph >
®) 3.1 3.2 3.3
AG(s0))
‘ [AH(Sol)] o

kcal/mol N [11.8]

Figure 3-27 Mechanism of the Ni(l1)-Catalyzed C(sp®)—H Arylation with Ph—I with toluene as solvent. (a) The
model C—H arylation reaction used in the calculations. (b) The computed reaction energy profile of the C—C

bond formation step in the reaction of the nickelacycle S13-3.1 with Ph-1L.
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Figure 3-28 Mechanism of the Ni(l1)-Catalyzed C(sp?)—H Sulfenylation with PhS—SPh and toluene as solvent.
(a) The model C—H sulfenylation reaction used in the calculations. (b) The computed reaction energy profile

of the C—S bond formation step in the reaction of the nickelacycle S14-3.1 with PhS—PhS.
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Figure 3-29 Mechanism of the Ni(l11)-Catalyzed C(sp?)—H Methylation with Dicumyl Peroxide and toluene as
solvent. (a) The model C—H methylation reaction used in the calculations. (b) The computed reaction energy

profile of the C—C bond formation step in the reaction of the nickelacycle S4-3.2 with DCP.

For the seven Ni-catalyzed C—H functionalization reactions, the computed activation free
energies of the rate-determining steps in the oxidative addition/reductive elimination and the
homolytic dissociation competing pathways are summarized Table 3-5. In all reactions studied,
the reductive elimination from the Ni(IV) intermediate requires slightly lower barrier than the
oxidative addition (TS-3.B) unless in the case of a secondary sp® carbon as demonstrated in the

C—H arylation of 3.23 (Figure 3-15) that requires 5.0 kcal/mol higher activation energy than the
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oxidative addition. In the homolytic dissociation pathway, the X—Y bond cleavage to form the
Ni(Il) intermediate (TS-3.C) is rate-determining.

The examples in Table 3-5 demonstrated that the mechanism of the reaction with the
nickelacycle is strongly dependent on the coupling partner. Although the Ni(Il)/(1V) oxidative
addition pathway is generally favored in the C(sp®)—H and C(sp?)—H alkylation and arylation
reactions (entries 1, 5, and 6), the homolytic dissociation mechanism has a comparable barrier in
the sulfenylation reaction (entry 2) and the reaction with CFsCHz—1 (entry 8). The homolytic
dissociation pathway is strongly preferred in the reactions with DCP and i-CsF7—I (entries 3 and
7). A number of factors influence the competition of oxidative addition and homolytic dissociation
pathways. First of all, sterically congested substrates, such as DCP and i-CsF7—1, require much
higher barrier to oxidative addition, and thus these processes are generally disfavored. In addition,
the oxidative addition barrier is affected by the strength of the cleaving bond, as evidenced by the
higher barrier of activation in the reaction with Ph—Br than with Ph—1I (see entries 1 and 4 in Table
3-3). Interestingly, the oxidative addition of Ph—I requires a lower barrier than the reaction of
CF3CH2—1, although the Ph—I bond is stronger. The Ph—1 bond oxidative addition is promoted by
the orbital interactions between the n* of the Ph group and the filled d orbitals of the Ni center.”
These results indicate the reactivity of the oxidative addition pathway is controlled by a
combination of steric effects, the strength of the cleaving bond, and substrate-metal orbital

interactions.
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Table 3-5 Activation free energies in the (a) oxidative addition (AG'oa)) and (b) homolytic dissociation

(AG'uissoc.)) pathways in reactions of nickelacycles with different coupling partners.

0 o)
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1 N ! : |
NN NN - -
X Q 0
"y ]: -‘N J_L
' ®) YON
3.A 3.A ORI B —~ N T
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2 The activation free energy of the oxidative addition pathway. ® The activation free energy of the homolytic dissociation
pathway. All energies are in kcal/mol and with respect to the complex 3.4°.

+

In contrast, the reactivity of the homolytic dissociation pathway is mainly determined by

the strength of the cleaving bond. The barriers of the homolytic dissociation pathway with coupling
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partners involving a weak bond, such as DCP, diphenyl disulfide, and i-C3F7—I, are more than 10
kcal/mol lower than those with phenyl iodide and n-butyl bromide. To evaluate factors that control
the reactivity of the halogen atom transfer/nomolytic dissociation pathway, bond dissociation
energies (BDE) of the forming Ni—X bond in the Ni(III) intermediates and the cleaving R—X bond
are calculated (Table 3-6). The BDE of Y—H was also calculated to evaluate the stability of radical
Ye. The BDEs were computed at the MO06/SDD-6-

311+G(d,p)/SMD(toluene)//B3LYP/LANL2DZ-6-31G(d) level of theory from AHsol(0K).

Table 3-6 Calculated bond dissociation energies.

entry [Ni] Y X BDE (kcal/mol)
[Ni]-X X-Y Y-H

(@]
1 >[ iN Ph | 53.7 68.4 108.0
l\‘liiN\ ‘
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2 &N% PhS PhS 39.1 40.3 75.6
Ni—N«
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4 P'“%N PhS PhS 43.7 40.3 75.6
n-Bu I |
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Ni—N ]
o Cl
7 N i-CsF7 [ 46.6 55.7 100.8
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Ni—N

A good correlation between the activation free energy of the homolytic dissociation

pathway and the BDE of the cleaving bond is observed (Figure 3-30). The only outliner is the
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reaction with i-CsF7—1, in which the C—I bond dissociation is further promoted by the steric bulk
of the i-CsF7 group.” An excellent correlation (R? = 0.939) between AG*(dissoc.) and BDE was
obtained after removing this outlier (the reaction with i-CsF7—1) from the plot shown in Figure
3-30. The steric repulsion with the i-CsF7 group destabilizes the four-coordinated nickelacycle
complex 3.A”, and thus reduces the barrier of the homolytic dissociation pathway. These results
indicate the strength of the cleaving bond is the most important factor that controls the reactivity

of the homolytic dissociation pathway.
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Figure 3-30 Correlation of the activation free energy of homolytic dissociation pathway [AG*uissoc)] with the
bond dissociation energy (BDE) of the cleaving bond.

Other factors, such as steric effects, the strength of the forming Ni—X bond, and the stability
of the forming Y radical, are also expected to affect the barriers of the homolytic dissociation.
The correlation plots shown below indicated poor correlation between AG*issoc.) and Ni—X (Figure
3-31) or Y—H (Figure 3-32) BDEs. These results indicate that these factors have a less significant

effect on the activation energy of the homolytic dissociation pathway.
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Figure 3-31 Correlation of the activation free energy of homolytic dissociation pathway [AG¥uissoc)] with the
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Figure 3-32 Correlation of the activation free energy of homolytic dissociation pathway [AG*wissoc)] With the

bond dissociation energy (BDE) of the Y—H forming bond.

In contrast, there is no clear correlation between the activation energy of the oxidative

addition pathway and the R—X or RX—XR BDEs (Figure 3-33). This further confirmed the
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reactivity of the oxidative addition is controlled by a combination of factors, and is more sensitive

to steric effects than the strength of the cleaving bond.
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Figure 3-33 Correlation of the activation free energy of oxidative addition pathway [AG*oa)] with the bond
dissociation energy (BDE) of the cleaving bond.

In addition to the steric and electronic properties of the electrophiles, the strongly electron-
donating N,N-bidentate directing group is also expected to affect the preference of the oxidative
addition versus homolytic dissociation pathways. As shown in Figure 3-12, the 8-aminoquinonline
directing group stabilizes the Ni(IV) intermediate in the oxidative addition pathway. Thus, the
nickelacycle compounds shown in Table 3-5 are expected to be more reactive in the oxidative
addition than the reaction of other Ni(ll) species with the same electrophile. For example, in
previous studies of Ni-catalyzed cross-coupling reactions alkyl halides, a step-wise radical
pathway had been generally proposed,®” while the present DFT calculations suggested the

reactions of most alkyl halides with nickelacycles in Table 3-5 occur via the closed-shell oxidative

addition pathway.
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3.14 Effects of External Oxidants on the Mechanisms and Product Selectivity of Ni-

Catalyzed C—H/C—H Oxidative Coupling
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Figure 3-34 (a) Experimentally observed product distribution of Ni-catalyzed oxidative C—H/C—H coupling
with toluene using i-CsF7—1 and CF3CH2—1 as external oxidants. (b) Computed reaction energy profiles of the
C—C bond formation step in the reaction of the nickelacycle 3.53 with external oxidants i-CsF—I and
CFsCH2-1.

The substrate-dependent mechanisms can explain and potentially predict reactivity and

selectivity in a broad range of Ni-catalyzed C—H functionalization reactions. We then explored
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whether these theoretical insights can be used to explain the chemoselectivity in the Ni-catalyzed
oxidative C—H/C—H coupling reaction of amide 3.49 and toluene (Figure 3-1g).1'? The choice of
alkyl iodide oxidant is essential for this novel transformation (Figure 3-34). When i-CzF7—1 was
used as the oxidant, the reaction yielded the C—H/C—H coupling product 50 exclusively with
excellent yield. In contrast, when CF3CH2—1 was used, a significant amount of C—H alkylation side
product 3.51 was observed. The oxidative C—H/C—H coupling of 3.52 is expected to proceed via
concerted C—H metalation/deprotonation to form nickelacycle 3.53. Nickelacycle 3.53 was used
as the model substrate in the calculations because experimentally, a Cl substitution at the 5 position
of the quinolone directing group leads to greater yield.!2 Our computational results (entries 7 and
8 in Table 3-5) indicated that the reactions of nickelacycle 3.53 with the two different
perfluoroalkyl halides occur via completely different mechanisms. When i-CsF7—I is used as the
oxidant, the reaction occurs via iodine atom transfer to generate the i-CsF7* radical which then
abstracts the benzylic C—H bond in toluene to form the thermodynamically more stable benzyl
radical and eventually the C—H/C—H coupling product 3.54. In contrast, the oxidative addition and
iodine atom transfer pathways require similar barriers in the reaction with CFsCH2—1. While the
iodine atom transfer pathway forms the oxidative C—H/C—H coupling product 3.54, the competing
oxidative addition pathway promotes the coupling with the alkyl iodide oxidant to form the
alkylation side product 3.56. These results indicate it is critical to use a sterically hindered oxidant,
such as i-CsF7—1, to prevent the formation of the alkylation side product formed via the oxidative

addition pathway.
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3.15 Conclusion

The reaction mechanisms of Ni-catalyzed C(sp®)—H and C(sp?)—H arylation, alkylation,
sulfenylation, and oxidative C—H/C—H coupling of benzamides containing N,N-bidentate directing
groups were investigated using DFT calculations. The C—H bond cleavage to form the nickelacycle
intermediate occurs via the concerted metalation-deprotonation (CMD) mechanism. The formation
of the metalacycle is thermodynamically much less favorable than the corresponding C—H
metalation process with Pd(II) catalyst. Due to this difference, the C—H metalation step with Ni
catalyst is often reversible and the subsequent functionalization of the nickelacycle is more likely
to be rate- and selectivity-determining compared to Pd-catalyzed C—H functionalization reactions.

The subsequent functionalization step of the nickelacycle intermediate with the coupling
partner (X—Y) involves an X—Y bond cleavage and a C—C or C—X bond formation step. The exact
mechanisms in these steps are dependent upon the nature of the coupling partner. The X—Y bond
homolytic dissociation to form a Ni(lll) complex and a radical species is favored if the bond
dissociation energy of X—Y is relatively low or the substrate is too sterically congested for the
alternative oxidative addition pathway (e.g. DCP and i-CzF7—1). In contrast, substrates featuring a
relatively strong and less hindered X—Y bond (e.g. most aryl halides and alkyl halides) prefer the
oxidative addition/reductive elimination pathway via a Ni(IV) intermediate. These theoretical
insights into the substrate-dependent mechanisms in the functionalization of the nickelacycle
intermediate were applied to predict the effects of substituents and oxidants on the reactivity,
chemo- and site-selectivity in various types of C—H functionalization reactions. We expect the
mechanistic insights revealed by the computations in the current study will guide the development
of a more diverse set of Ni-catalyzed C—H bond functionalization reactions utilizing N,N-bidentate

directing groups.
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4.0 Metal Free C—C Coupling of Picolyl Amides with 1-Methyl-4-(propa-1,2-dien-1-

ylsulfonyl)benzene to Access Vinyl Sulfones

4.1 Introduction

Vinyl sulfones occur in a number of compounds and are privileged structures widely
known for their therapeutic value functioning as cysteine ” and lysine-targeting covalent
inhibitors, * neuroprotective agents for potential treatment of Parkinson’s disease, ' HIV-1
integrase inhibitors,s2 and mores: (Figure 4-1). For example, Brinen et al. reported vinyl sulfone
K11017 as a potent inhibitor of papain family cysteine proteases specifically cruzain, rhodesain
and falcipain-3 in potential treatment of sleeping sickness, malaria and Chagas disease.”®* Related
vinyl sulfone K11777 has also advanced to human clinical trial for the treatment of Chagas disease.
Similarly, NU6300 is the first example of an irreversible, lysine-targeting covalent CDK2 inhibitor
for antitumor activity reported by Griffin et al.2% In another study by Park et al., 56 vinyl sulfone
compounds were prepared and studied.22 Many of these compounds showed significant activity
and weakened Parkinson’s disease-related motor deficits in a mouse model with compound 4.4
exhibiting the highest activity. Another therapeutic potential include geminal disulfones such as
4.5 studied by Gervay-Hague et al. that demonstrated vinyl sulfones to be HIV-1 integrase
inhibitor.8%2 The vinyl sulfone moiety also has great synthetic utility as a Michael acceptor, a

building block for cycloaddition reactions,s and various other organic transformations.s

92



2
o 3.0
o) o \/E\@\ N/l N\>
NH
} N)\\N N
H H

/~—\ HN 5
X N —R!
/ o)
12 -
K11017, R" = j-Pr, X =0, 4.1 NU6300, 4.3
K11777, R' = Ph, X = NMe, 4.2
Cysteine-targeting antiparasitic agent Lysine-targeting CDK2 Inhibitor

J. Biol. Chem. 2009, 284, 25697-25703 Chem. Biol. 2015, 22, 1159-1164

OMe 9 Cl 9 9
SHACHEFSROOaE
o R O O R
4.4 4.5
Parkinson's disease therapy HIV-1 integrase inhibitor

J. Med. Chem. 2014, 57, 1473-1487 J. Med. Chem. 2005, 48, 4526-4534

Figure 4-1 Compounds equipped with and biological properties of vinyl sulfones.

In recent years, a number of novel transition metal-catalyzed C—H functionalization
reactions with allenes have been developed.?? Inspired by our detailed computational mechanistic
studies of Ni-catalyzed C—H functionalization reactions with N,N-bidentate directing groups, we
aimed to expand the substrate scope of such reactions with allenyl sulfones as coupling partners.
Specifically, we were interested in reacting an allenyl sulfones with aromatic amides to afford
vinyl sulfone containing compounds resulting from an oxidative annulation reaction; thereby

expanding the seminal work of Chatani (Chapter 4.4).8

4.2 Select Classical Methods to Synthesize Vinyl Sulfones

There are many excellent and efficient methods to synthesize vinyl sulfones such as

olefination of carbonyl compounds, addition of sulfonyl radicals to alkenes and alkynes, use of
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palladium, copper or zirconium reagents and oxidation of sulfides selected examples of which are
given below.s” Notably, the sulfonyl group is used as a versatile retron (radical, cation or anion) to

prepare vinyl sulfones (Figure 4-2).

? Q ?
Ar—ﬁ : Ar—ﬁ * Ar—ﬁ—

(0] @) (0]
Sulfonyl Sulfonyl  Sulfonyl
radical cation anion

Figure 4-2 Sulfonyl group as a sulfonyl radical, cation and anion retron.

Early work include vinyl sulfone synthesis using the Horner—Wadsworth—Emmons
reaction by Popoff, Dever and Leader in 1969 (Figure 4-3).87° Stirring benzaldehyde (4.6) with
diethyl ethylsulfonylmethylphosphonate (4.7) and sodium hydride as base in 1,2-dimethoxyethane

afford ethyl styryl sulfone (trans isomer) (4.8) in an excellent 84% yield.

lo Q ?Et NaH Q Ph
\ \
. i /\S\\/\ﬁ/OEt . Et/\s\\/\/
L) 5 1,2-dimethoxyethane e}

4.6 4.7 4.8 84%

Figure 4-3 Vinyl sulfone synthesis using Wittig reaction by Leader et al.

Back and Collins have used sulfonyl radical retron to afford vinyl sulfones (Figure 4-4).87
In their thermal addition conditions, benzeneselenosulfonate (4.10) adds onto the olefin,
(allyloxy)benzene (4.9) in a free radical process to afford vinyl sulfone (E)-((3-phenoxyprop-1-
en-1-yl)sulfonyl)benzene (4.12) in an excellent 87% yield. The reaction mechanism is shown in
Figure 4-4b. Under thermal conditions, benzeneselenosulfonate (4.10) fragments into sulfonyl
radical. In the subsequent propagation step, the sulfonyl radical adds onto 4.9 to form carbon

centered radical IM4.1. IM4.1 react with another molecule of 4.10 to generate S-phenylseleno

sulfones (4.11). The resulting f-phenylseleno sulfones (4.11) are oxidized with meta-
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chloroperoxybenzoic acid (m-CPBA) to form selenoxides which fragments into the corresponding

vinyl sulfones 4.12.

(a) Synthesis of Vinyl Sulfones by Back and Collins

SePh ) SO,Ph
F,h/O\/\ + PhSeSO,Ph—2 o m-CPBA —
benzene ppo SO,Ph DCM ppo—/
4.9 4.10 411 72% 4.12,87%
(b) Mechanism
() PhSesO,Ph —2 .+ phse + SO,Ph
4.10
iy ¢ 0 _u
(i) SOPh + PO N — pig SO,Ph
4.9 IM4.1
. SePh .
(iif) Pho—/_\sozph+ PhSeSO,Ph — > - o P; SO,Ph
IM4.1 4.10 4.11°°2
SePh 0"\ SO,Ph
m-CPBA | ph—Se _H /"

(iv) 4)—\ mreg Se - —
PhO SO,Ph PhO—/_ 412
+

PhO SO,Ph

PhSeHOH
4.1 IM4.2

Figure 4-4 Selenosulfonation followed by oxidation-elimination strategy to afford vinyl sulfones via sulfonyl

radical by Back and Collins.

Organometallic reagents such as Schwartz's reagent, zirconocene hydrochloride
(Cp2Zr(H)CI) have also been previously used to afford (E)-disubstituted vinyl sulfones in excellent
yields via sulfonyl cation retron (Figure 4-5). In 1999, Duan and Huang reported novel synthetic
procedure to convert ethynylbenzene (4.13) to its corresponding vinyl sulfone 4.15 via

hydrozirconation 4.14 followed by sulfonylation with sulfonyl chloride.®™
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o
1l \
MeOS—CI = 0
CppZr(H)Cl  Ph o S

7 N\ — \—, ‘o
— THF, rt ZGC2C| 40 °C

413 4.14 Me 4.15,74%

Figure 4-5 Hydrozirconation of alkynes followed by sulfonylation to prepare vinyl sulfones by Duan and

Huang.

Bernini et al. have synthesized vinyl aryl sulfones in excellent yields via the Pd-catalyzed
reaction of sodium p-toluenesulfinate with vinyl triflate e.g. 4.16 and Xantphos as ligand.®’® In this
reaction, a sulfonyl anion retron strategy is used for the synthesis of vinyl sulfones. The proposed
reaction mechanism is shown in Figure 4-6. Pd(0) undergoes oxidative addition by the vinyl triflate
to form a Pd(11) complex IM4.3. Nucleophilic displacement of the triflate anion occur by the sulfur
atom in p-toluenesulfinate to form IM4.4 followed by reductive elimination to afford the

corresponding vinyl aryl sulfones.

(a) Synthesis of Vinyl Aryl Sulfones by Bernini et al.

sz(dba)3
Xantphos
. Cs,CO; Q
Ph OTf + Na 0,5 Me ——— Ph S Me
toluene (')'
416 4.34a 60°C 417, 75%

(b) Proposed Reaction Mechanism

0]
1l
R_(Iss_Ar >/Pd(0) \QR_OH

RPJSO,Ar RPOTf
IM4.4 IM4.3
ArSOzNa
NaOTf

Figure 4-6 Synthesis of vinyl aryl sulfones using Pd-catalyzed reaction by Bernini et al.
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4.3 Previous Preparation of Vinyl Sulfones with Allenyl Sulfones

(a) Synthesis of Cyclopentenyl Sulfones (Padwa, 1988)

I SO,Ph
— . PhSO,Na (trace
o QL) o
oN S THF, rt
oo ' NC
4.18 4.29d 4.19,73%
(b) Reaction Mechanism
| ~ SO,Ph _
S)I + PhSO, ——— :‘Q; * CN
oSS \—S0,Ph
oo 2
4.29d 4.34b 4.33b 418
SO,Ph SO,Ph
_— ~ R + PhSO
(~%250,Ph 2
NC NC
IM4.5 419 4.34b

Figure 4-7 Synthesis of cyclopentenyl sulfones by Padwa et al.

Preparation of vinyl sulfones using allenyl sulfones such as phenylsulfonyl-1,2-propadiene
(4.29d) were carried out in seminal works by Padwa et al in 1988 (Figure 4-7).2 Stirring
acrylonitrile (4.18) with (phenylsulfonyl)allene (4.29d) and trace amount of sodium
benzenesulfinate in THF afford cyclopentenyl sulfones (4.19) in excellent yields. The reaction
mechanism is postulated to occur by nucleophilic attack of benzenesulfinate anion to the electron-
deficient allenic central carbon atom to form 1,2-disulfonylpropene carbanion 4.33b. The
carbanion reacts with acrylonitrile (4.18) in a cyclization-elimination sequence to form

cyclopentenyl sulfone 4.19 and regenerate the benzenesulfinate anion 4.34b.
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(a) Active Methylene Compounds (Lu, 2004)

O O
O O . PPhs (10 mol%) R OEt
i Qg e
R OEt Se toluene, rt,
+ O 0
SO,Ph
4.20, R = Me, 5 equiv . 4.22 R = Me, 50%
421 R=OEt 5 equiv 229 1equiv 4.23, R=OFEt, 43%
(0}
o) @\ PPh3 (10 mol%) NC OEt
NC\)J\OEt ,/ O toluene rt
+
SO,Ph
4.24, 5 equiv 4.29d, 1 equiv 4.25,42%
(b) Reaction Mechanism
(i) Formation of sulfinate anion
. PPh ~ O O
=\ 3 Y\sozph .
SO,Ph b, )J\/U\OEt
4.29d IM4.6 4.20
OEt -
— —,.\‘OEt — + SO,Ph
IM4.7 @2 IM4.8 4.34b
SO,Ph PPh,
+PPhy
(ii) Formation of vinyl sulfone
oz\so o N éOZPh Y_\Sozph + )?\/l?\
2 SO,Ph OEt
4.33b 4.20
O O
M 0
—,\OEt — + SO,Ph
M7 g
Y\SOZPh \§02Ph 4.22 4.34b
SOzPh  4.32pb IM4.9 SO,Ph SOzPh

Figure 4-8 Synthesis of vinyl sulfones via phosphine triggered conditions by Lu et al.

In 2004, a novel synthetic method was reported by Lu et al. that involved the unexpected
result where phenylsulfonyl-1,2-propadiene (4.29d) reacted with methylene compounds to form

rearranged adducts using triphenyl phosphine (PPhs) (Figure 4-8).24ss For example, stirring ethyl
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acetoacetate (4.20) with phenylsulfonyl-1,2-propadiene (4.29d) and 10 mol% PPhs in toluene at
room temperature affords vinyl sulfone (4.22) in 50% vyield. The authors proposed a mechanism
where the reaction is triggered by PPh3z and mediated by sulfinate anion related to Padwa’s allenic
sulfone chemistry. Nucleophilic attack of triphenyl phosphine on to the central carbon of allenic
sulfone forms a zwitterionic complex IM4.6 which deprotonates active methylene compounds
such as ethyl acetoacetate (4.20) to form carbanion IM4.7. Reaction of 1M4.7 via conjugate
addition and elimination affords IM4.8 and the sulfinate anion 4.34b. Similar to Padwa’s allenic
sulfone chemistry, sulfinate anion reacts with allenyl sulfone, phenylsulfonyl-1,2-propadiene to
form 1,2-disulfonylpropene anion which subsequently deprotonates another molecule of ethyl
acetoacetate to form IM4.7. Carbanion 1M4.7 then adds via a conjugate addition to 4.32b to afford
IM4.9 that undergoes an elimination of sulfinate anion to form the rearranged vinyl sulfone

product 4.22.

(a) Synthe5|s of Cyclopentenes (Ruano, 2010)
o Ts = tosyl

- PPh3 (20 mol%) Ts
Ts :(7

benzene, 24 h
H OMe
4.26 4.29a, 2.5 equiv 4.27, 50% 4.32a

(b) Probable route to generate toluenesulfinate anion

Me ” Ts Tsvy
* PPh + : -
\©\le MRILLNG —KH/PPhS — > t‘_\ E)Ph3_> |>—PPh3 +TolSO,
oo
IM4.10 IM4.11 IM4.12

Figure 4-9 Synthesis of cyclopentenes by Ruano et al.

Subsequently, several other workers have reported similar activation of phenylsulfonyl-1,2-
propadiene with in situ generated sulfinate anion.?® For example, Ruano et al. in their synthesis of

cyclopentene 4.27 observed that PPhs activates allenyl sulfone, 1-methyl-4-(propa-1,2-dien-1-
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ylsulfonyl)benzene (4.29a) and forms toluenesulfinate anion in situ. A reviewer of that paper
suggested a possible explanation of formation of sulfinate anion via IM4.11 which forms
cyclopropene ion IM4.12 as shown in Figure 4-9. However upon investigation of such a

mechanism, the authors could not isolate the phosphonium salts that supported that hypothesis.
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4.4 Proposed Synthesis of Vinyl Sulfone via Ni-Catalyzed C—H Functionalization Reaction

(a) Postulated synthetic methodology for the synthesis of vinyl sulfones

Ni cat.

Me Ligand

m Base ﬁ
solvent
4.29a 4.28a 435 Ts
Ts = tosyl
(b) Proposed reaction mechanism
o (e}
N = N =

4 283

/X

Ts 3 /_\ 4.29a
[ o
‘.
o
IM4.16 ) \_/ " CHa
' Ts

Ts H

IH IM4.15

Figure 4-10 Proposed synthetic protocol to access vinyl sulfones via Ni-catalyzed C—H

H3C

functionalization/cyclization reaction.

Because of the importance of vinyl sulfones, new ways to access this motif continue to be
highly desired.® With the computational mechanistic insights of Ni-catalyzed reactions (see thesis
Chapters 2.0-3.0), we sought to develop Ni-catalyzed C(sp?)-H functionalization of
pharmacologically prevalent picolyl amides (Figure 4-11).> Inspired by need for new ways to

prepare vinyl sulfones, and Chatani’s oxidative annulation reactions of alkynes and aromatic
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amides,® the feasibility of allenyl sulfones as coupling partners was investigated. The proposed
reaction and mechanism are shown in Figure 4-10. We envisioned that under the appropriate
reaction conditions picolyl amide 4.28a will react with allenyl sulfone 4.29a to afford N-H/C—H
cyclization product, vinyl sulfone 4.35. Since, both picolyl amides and vinyl sulfones exhibit an
array of biological activities, the products obtained would be both biologically and synthetically
invaluable. In order to test the feasibility of this proposed transformation, nickel precatalyst,
ligand, base, solvent and reaction temperature would be screened.

We postulated that the reaction mechanism would operate via the following elementary
steps. Oxidative addition of Ni(0) into amide N—H bond of picolyl amide 4.28a would form Ni-
hydride intermediate 1M4.13.2 Allenyl sulfone, 4.29a insertion into Ni—H bond would form
alkeny! Ni(Il)-complex IM4.14. Based on our computational studies of alkyne insertion into Ni—H
bond (chapter 2.0), we hypothesized that allenes could exhibit similar reactivity and that allenic
sulfone insertion would occur to the more sterically accessible albeit electron-rich terminal double
bond. C—H metalation would then occur with feasible reaction activation barrier assisted by the
agostic interaction between the C—H bond and the Ni center and proceed via the c-CAM
mechanism forming the five-membered nickelacycle IM4.16. This step would also be entropically
favored with extrusion of one equivalent of alkene byproduct 1M4.15. Another equivalent of
allenyl sulfone 4.29a would undergo migratory insertion into C—Ni bond to form the seven
membered nickelacycle 1M4.17 that likely would undergo reductive elimination to form the C—N
bond and the resulting oxidative annulation vinyl sulfone product. It should be noted that in the
oxidative annulation reaction of aromatic amides with alkynes by Chatani et al. 3 equivalents of
alkyne was used.® We also expected that more than one equivalent of allenyl sulfone, 4.29a might

be required to afford the best yield.
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(a) DPP-4 inhibitor (Type 2 diabetes) (b) As Zn2+ ion sensor
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(c) Potential antitumor agents (cytotoxic) (d) Capsid-targeting HIV inhibitor Gilead's GS-CA1

S~ ~M 4.40
2 "Me
0%
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Figure 4-11 Pharmocologically prevalent picolyl amides.

However, we observed reactivity of allenyl sulfone 4.29a (1-methyl-4-(propa-1,2-dien-1-
ylsulfonyl)benzene) with picolyl amide similar to the work of Padwa and Lu’s chemistry that

afforded a vinyl sulfone even in the absence of triphenyl phosphine or Ni catalysis (Figure 4-12).
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Figure 4-12 Synthesis of vinyl sulfone with picolyl amide and allenyl sulfone.

In this chapter, results of these novel metal free selective C—H functionalization of picolyl
amides with allenyl sulfones is presented. The new synthetic method is an efficient and mild
method to install vinyl sulfone groups with an objective to rapidly access covalent inhibitors.*' The
reaction mechanism of this transformation operates via a rare pyridine initiated and p-

toluenesulfinate anion mediated process.

4.5 Preparation of Starting Materials

4.5.1 Synthesis of Aryl/Alkyl 2-Picolyl Amides

1. DMF (5 mol%)

Q oxalyl chloride (1.1 equiv)
©)LOH DCM, 0°C —>rt O)L ﬂj
2. 2-Picolylamine (1.1 equiv)

4.46 DCM, 0°C —rt 4.28a
94%

Figure 4-13 Synthesis of 2-picolyl amide, 4.28a.

Two different literature procedures were used to prepare the picolyl amides. Firstly,
aryl/alkyl amides were synthesized with an established literature procedure.® Benzoic acid (4.46)
was converted to its corresponding acid chloride (benzoyl chloride) by reacting it with oxalyl
chloride and a catalytic amount of DMF. After complete conversion of benzoic acid as evidenced

by the disappearance of the *H NMR signals of the benzoic acid, the benzoyl chloride is reacted
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with 2-picolylamine to afford the desired N-(pyridin-2-ylmethyl)benzamide (4.28a) in an excellent
94% vyield. This method was used to synthesize a number of aryl/alkyl carboxamides with
substituents having varying electronic and steric properties in moderate to high yield with one
exception 4.28l as shown in Figure 4-14. 4.281 was afforded in low yield presumably due to the
carbamate N—H either reacting with the Vilsmeier reagent or the acid chloride formed in situ (see

below).

Me O F O OMe O O o)
N X N X N X N AN
Ho Ho Ho H
N NN NN~ N~

4.28b 4.28¢ 4.28d 4.28¢
71% 84% 80% 77%
) 0 0 0
Ph
| X H | X S, H | N Me)J\H | N \)J\H | X
_N N~ \ N~ N~ N~
4.28f 4.28g 4.28h 4.28i
68% 65% 67% 83%
) 4 O 0 o)
\)LN ~ thOTN\)LN N >‘)LN ~ NS
I
HoN o) HooN HooN Me N~
4.28] 4.281 4.28m 4.28n
65% 25% 87% 77%

Figure 4-14 Synthesis of aryl/alkyl picolyl amides.

The mechanism for the formation of picolyl amides from carboxylic acids proceed in two
steps: (i) formation of the acid chloride using DMF as the catalyst via the Vilsmeier reagent (ii)
conversion of the acid chloride to the amide (Figure 4-15).%2 The first step in the reaction
mechanism is formation of the Vilsmeier reagent 1M4.18 with generation of carbon dioxide,
carbon monoxide and chloride anion. Carboxylic acid then reacts with the Vilsmeier reagent
generated in situ to form 1M4.19. Intermediate 1M4.19 reacts with chloride anion to form the

corresponding acid chloride (benzoyl chloride, 4.47). The acid chloride formed in situ is trapped
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by the 2-picolyl amine 4.48. Benzoyl chloride reacts with 2-picolyl amine with chloride anion

expulsion to form the desired picolyl amide 4.28a.

(a) Formation of Acid Chloride

0 (0]
NN
\N)J\H * ¢l c— ’]‘ Cl 4l +Co,+CO
I
o IM4.18, Vilsmeier reagent
+/ O
SNTTC L —_— o—/< CI +Hcl
| HO™ “Ph N
IM4.19
0
o)
 — )J\ + \N)J\H + HCI
ClI” "Ph |
4.47
(b) Formation of Picolylamide
o) o} o)
H,N X -H* /F o
Cl)J\Ph+ N T o TNy e NS
ph H H
N2 N~
4.47 4.48 IM4.20 4.28a

Figure 4-15 Mechanism of formation of picolyl amide with oxalyl chloride-dimethylformamide.

4.5.2 Synthesis of Carbamate

15 min, 80 °C H N

o}
2-picolylamine (1 equiv) >L
S E K oS
49

4.

Figure 4-16 Synthesis of carbamate.

In order to expand the substrate scope of the synthetic methodology, Boc-protected amine
(4.28k) was synthesized in one step in high yield using a modified literature procedure.’ di-tert-
butyl dicarbonate (4.49) was stirred with 2-picolyl amine 4.48 neat at 80 °C to afford the desired

carbamate 4.28k in 96% yield. We were particularly interested in 4.28k since subsequent removal
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of the Boc group after C—H functionalization chemistry would enable access vinyl sulfone

derivatives with amines (vide infra).

_ _ 1
SR ke w07 o, | 3
_ —co, >L
o~ >0~ o *HNT YT T o o/f\ﬁ Y T OJ\N S
N~ o N~ Ho N
4.49 4.48 IM4.21 4.28k

Figure 4-17 Mechanism of formation of carbamate.

The proposed reaction mechanism is shown in Figure 4-17. 2-Picolyl amine reacts with
boc-anhydride 4.49 to form an intermediate anion IM4.21 which undergoes elimination of tert-

butanol and carbon dioxide gas to afford the desired boc-protected amide 4.28Kk.

4.5.3 Synthesis of (R)-4-benzyl-3-(pyridin-2-ylmethyl)oxazolidin-2-one

—
¥ 1. n-BuLi (2 equiv) <
_7g0 N
©/\[ >—;O THF, -78 °C N
: Save
X
2. Br I «HBr (0]
4.50 N~ 4.280

-78°C—>rt 98%

Figure 4-18 Synthesis of oxazolidinone derived picolyl amide.

We synthesized substrate 4.280 to test whether any diastereoselectivity could be obtained
in the C—H functionalization chemistry developed in this work (Figure 4-18). Oxazolidinone
derived chiral auxiliaries are used to effect a rich class of diastereoselective reactions.* With this
in mind, benzyloxazolidin-2-one based amide derivative 4.280 was synthesized in 98% vyield by
deprotonating benzyloxazolidin-2-one (4.50) with n-butyllithium using a modified literature
procedure.>s After deprotonation of benzyloxazolidin-2-one (4.50), nucleophilic displacement of

2-(bromomethyl)pyridine affords the desired compound 4.280 in 98% yield. It should be noted
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that 2 equivalents of n-butyllithium was required in this reaction so that one equivalent of base is

used to neutralize 2-(bromomethyl)pyridine hydrobromide salt.

4.5.4 Synthesis of Allenyl Sulfones

(a) Preparation of 1-methyl-4-(propa-1,2-dien-1-ylsulfonyl)benzene

EtsN (1.1 equiv)
Me Me
\@\ OH PPh3 (1.0 equiv \©\ P AgSbFg (2 mol%) Me |J
.0 + _0 =
s? / DCM, 10-15 °C 5O Do J

O O’/ \\o
4.51 4.52 77% 4.53 4.29a
94%

(b) Preparation of 1,2 and 1,1 disubstituted Allenyl Sulfones

Me
Me IJ/ Me Jlt:\
JI >S_Me
Sy o’ o
O O
4.29b 4.29¢c
86% 80%

Figure 4-19 Synthesis of allenic sulfones.

The synthesis of allenyl sulfones was carried out using a modified Organic Syntheses
procedure developed by Harmata et al. shown in Figure 4-19.° Propargylic sulfinate ester 4.53 was
synthesized by reacting p-toluene sulfonyl chloride (4.51) with propargyl alcohol (4.52) in the
presence of triethylamine and triphenyl phosphine in dichloromethane (DCM). Reaction of 4.53
with silver hexafluoroantimonate in DCM at rt catalyzed a [2,3]-sigmatropic rearrangement
affording the allenyl sulfone 4.29a in 94% yield after column chromatography. Inductively
coupled plasma mass spectrometry (ICP-MS) analysis of 4.29a showed it has very low amount of

Ag concentration present, 4.5 +/— 0.4 ug/L of Ag in 10 mg of sample tested which is ~4.5ppb of
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Ag. A similar protocol was used to synthesize 1,3-and 1,1-methyl substituted allenyl sulfones
4.29b and 4.29c, respectively.

(a) Mechanism of Formation of Propargylic Sulfinate

(i) Me PPh Me
\I:::l\ N \[:::1\ 0 i:l \I:::l\ cl
S/

|| ~Cl 1
o =PPh, ¢
4.54 IM4.22 4.55
(ii) Me\©\
S ,.\
(')' — EtsNH*CI”
4.55 HO
4.53

(b) Mechanism of Formation of Allenyl Sulfone

Me\©\ /—; [2,3]-sigmatropic  Me

/O\// |
rearrangement

S’ \ . g s \J

7 N\

Ag 0o
4.29a

Figure 4-20 Proposed mechanism of formation of allenic sulfones.

The proposed reaction mechanism for formation of propargylic sulfinate (4.53) and allenyl
sulfone 4.29a is shown in Figure 4-20. Sulfonyl chloride (4.54) reacts with triphenyl phosphine to
form a zwitterionic complex 1M4.22 which subsequently yield triphenyl phosphine oxide and
sulfinyl chloride 4.55.27 Propargylic alcohol then reacts with the sulfinyl chloride formed in situ to
afford the desired propargylic sulfinate 4.53.

The mechanism of the formation of the allenyl sulfone 4.29a from propargylic sulfinate is
well studied in the literature.>s The [2,3]-sigmatropic rearrangement of propargylic sulfinate to

afford allenyl sulfone proceeds via a concerted, intramolecular and irreversible process.
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4.6 Results and Discussion

4.6.1 Initial Studies Investigating the Oxidative Annulation Reaction with Nickel and

Structural Confirmation of Vinyl Sulfone, Allyl Sulfone and 1,2-Disulfonylpropene

Our initial studies commenced to investigate whether allenyl sulfones could be inserted
selectively into the ortho C(sp?)-H bond of aromatic amides with nickel catalysis and pyridine
directing group as outlined in our proposed synthetic plan (Chapter 4.4). In order to test this
hypothesis, 2-picolyl amide 4.28a (0.19 mmol) was reacted with 3 equiv of allenyl sulfone, 4.29a
(1-methyl-4-(propa-1,2-dien-1-ylsulfonyl)benzene) using 10 mol% Ni(OTf)., which afforded two

products in a 75:25 ratio in a combined yield of 64% yield (Figure 4-21).

Ts Ts
O H, H
Ps VA || Ni(OTf), 10 mol% j\ )Oj\ Ts
Ph N X | + + =<_
H N' T ) toluene Ph” "N Xy Ph N X Ts
~ " 120°C, 1 h H NI H NI
, 5z Pz
4.28a 4.29a 4.30a 4.31a 4.32a
3 equiv \ ~ J Ts = tosyl
64%
75:25

Figure 4-21 Intial screening of picolyl amide and allenyl sulfone with nickel.

Interestingly, structural confirmation revealed sulfones 4.30a and 4.31a, products arising
from functionalization of the sp3-hybridized C—H bond instead of the anticipated sp?, C—H bond
of the aryl ring (oxidative cyclization product) as proposed in our synthetic plan (Chapter 4.4). To
confirm the structure of 4.30a, both one and two dimensional *H NMR were taken (Figure 4-22).
It should be noted, however, that structural confirmation of 4.30a was carried out as a 75:25
mixture of 4.30a and 4.31a. Firstly, the *H NMR signal at 4.76 ppm (d, J = 5.0 Hz, 2 H) for Ha of

starting material amide 4.28a is missing.

110



Two diastereotopic *H NMR signals were observed at 2.79 and 3.00 ppm with a doublet of
a doublet splitting pattern as expected because of the presence of a chiral center in 4.30a (Figure
4-22). The J? coupling constant between the diastereotopic protons is 15.2 Hz in agreement with
literature values.» These diastereotopic protons also couple with proton H2 as confirmed by COSY
analysis. The splitting pattern of H2 is an apparent quartet with a J® coupling constant value of 7.4
Hz. H?® also correlates with the amide N—H proton (7.68 ppm, d, 7.4 Hz) as confirmed by J?
coupling constant and COSY analysis. In principle, H® should show a splitting pattern of a doublet
of a doublet of a doublet. However, due to the coupling constants between H3 and diastereotopic
protons (J* = 7.7 and 6.4 Hz) and H® and amide N—H protons (J° = 7.4 Hz) are similar,
experimentally H® splitting pattern appears to be a quartet. The vinyl protons H* and H? are well
distinguished in the *H NMR spectra. H* is further downfield since it is cis to the electron
withdrawing tosyl group and appears as a singlet at 6.34 ppm. On the other hand, H? appears as a
singlet at 5.64 ppm. Although the two vinyl protons (H* and H?) appear as a singlet in *H NMR,
COSY analysis does show they are correlated. *C NMR assignments are based on HSQC analysis.
Among the three alkyl carbons, C3 (next to the electron withdrawing pyridine) shows the highest
chemical shift of 53.9 ppm. The alkyl sp® hybridized carbon bearing the diastereomeric protons
has a chemical shift of 35.6 pm. The alkenyl carbon bearing the H* and H? protons has a chemical
shift of 126.7 ppm. Other notable signals in the **C NMR are the carbonyl carbon (166.9 ppm),

carbon adjacent to pyridine N, C4 (149.5 ppm) and tetrasubstituted carbon, C5 (158.7 ppm).

111



13C: 35.6 ppm

2.79 ppm, dd, J=15.2,6.4 Hz
3.00 ppm, dd, J=15.2, 7.7 Hz /4
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Figure 4-22 Structural confirmation of vinyl sulfone 4.30a using *H and *C NMR.

An x-ray crystal structure of 4.30a was obtained and the ortep drawing is depicted in Figure
4-23. From the crystal structure, it could be further confirmed that the sp® hybridized carbon next
to the pyridine ring is functionalized. Also, the tosyl group migrated from the terminal carbon of
the allenyl sulfone starting material to the internal carbon of the vinyl sulfone motif suggesting a

mechanistically similar process as that of Padwa and Lu’s chemistry (see section 4.3 above).
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Figure 4-23 ORTEP drawing of the crystal structure of vinyl sulfone 4.30a.

To confirm the structure of allyl sulfone 4.31a, reactions were performed using acetonitrile

and ethanol as these solvents afforded the highest ratio of 4.31a (Table 4-1). Structural
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confirmation of 4.31a was carried out as a 63:37 mixture of 4.30a and 4.31a in the reaction with
ethanol as solvent. Two diastereotopic *H NMR signals were observed at 4.08 and 3.75 ppm with
a doublet splitting pattern as expected because of the presence of a chiral center in 4.31a. The J?
coupling constant between the diastereotopic protons is 14.2 Hz. Based on the splitting pattern
(doublet), it appears that these diastereotopic protons do not couple with any other protons,
specifically H® (proton next to pyridine ring) unlike in vinyl sulfone product 4.30a. The
diastereotopic protons in allyl sulfone product, 4.31a are four bonds away from H® and it is
reasonable that they do not couple and split each other in *H NMR spectrum. The splitting pattern
of H® appears as a doublet with a J* coupling constant value of 7.1 Hz. H® only correlate with the
amide N—H proton (8.23 ppm, d, J = 7.1 Hz). In principle, H3 should show only a doublet in allyl
sulfone 4.31a since only the amide N—H bond is three bonds away from it and not the
diastereotopic protons unlike in vinyl sulfone product 4.30a. The alkenyl protons H* and H? are
well distinguished in the *H NMR spectra. H! and H? appear at 5.38 and 5.17 ppm as singlets.
However, the distinction of H! and H? was not possible based on the current data. Other
distinguishable protons of allyl sulfone 4.31a appear at 8.57 ppm (H4, proton adjacent to pyridine
N atom) and the methyl protons of the tosyl group (2.39 ppm).

4.08 ppm, d, J=14.2 Hz
and
3.75 ppm,d, J=14.2 Hz

\ Ts H \5.38 ppm, s and 5.17 ppm, s
0]

H2
Ph N 3
H H3
_— NNgZ
8.23 ppm, d, J=7.1 Hz \ e 8.57 ppm, d, J=4.3 Hz

6.03 ppm,d, J=7.1 Hz
4.31a

Figure 4-24 Structural confirmation of Allyl Sulfone 4.31a using 'H NMR.
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Additionally, 1,2-disulfonylpropene, 4.32a was also isolated in 10% yield, which was
calculated based upon the equivalents of the allenyl sulfone 4.29a used in the reaction. 1,2-
Disulfonylpropene, 4.32a is a known compound, previously synthesized and both *H and *3C NMR
matched the literature spectra.!®® 2 The vinyl protons appear as doublets at 6.64 and 6.50 ppm
with the methylene protons appearing at 4.03 ppm.

6.64 ppm, d, J = 0.8 Hz
H'  Ts

H? Ts
6.50 ppm, d, J = 1.0 Hz A
4.03 ppm, d, J=0.7 Hz
Figure 4-25 Structural confirmation of 1,2-disulfonylpropene 4.32a using *H and *C NMR.
Furthermore, a crystal structure of 1,2-disulfonylpropene 4.32a was obtained for further
structural confirmation (Figure 4-26). 4.32a crystallized with two crystallographically independent

molecules. Based on the crystal structure, it could also be observed that 4.32a has © stacking

interactions between the adjacent aromatic rings in the tosyl group.
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Figure 4-26 ORTEP drawing of the crystal structure of 1,2-disulfonylpropene 4.32a.
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Lowering the reaction temperature from 120 °C to 50 °C considerably increased the
reaction time from 1 h to 24 h. The reaction was monitored by *H NMR because the reactions are
carried out in a 8-mL screw-top tube and so are more convenient to take aliquots and also *H NMR
can provide a more quantitative assessment of consumption of starting materials (Figure 4-27).
The reaction was judged complete based on the disappearance of the starting material 2-picolyl
amide, 4.28a *H NMR signals at 4.76 ppm. The allenyl sulfone, 4.29a loading was also lowered
from 3 to 2 equiv to make the synthetic procedure more atom economical. On lowering the
equivalent of 4.29a, an identical yield was obtained. However, to our delight the product selectivity
improved considerably to 92:8 with the vinyl sulfone 4.30a afforded as the major product. The
selectivity towards vinyl sulfone 4.30a improved because direct nucleophilic addition of carbanion
formed in situ to 4.29a is less favored when the concentration of the allenyl sulfone 4.29a is

lowered in the solution (see later in Figure 4-40).

Ts Ts
(0]
P | Ni©Th, 10mol% o o Ts
Ph N Xt | + + =<_
H ! T ) toluene Ph)J\N ~ Ph)J\N N Ts
N~ Ts H | H |
50°C,24h N~ N~
4.28a 4.29a 4.30a 4.31a 4.32a
2 equiv N J =
~ Ts = tosyl
64%
92:8

Figure 4-27 Reaction of picolyl amide and allenyl sulfone at 50 °C.

4.6.2 Reaction Optimization: Metal-Free C—H Functionalization

Performing the reaction with 3 equivalent of allenyl sulfone 4.29a at T = 120 °C but
excluding the Ni(Il) catalyst as control experiment gave the same products 4.30a and 4.31a in an

identical ratio of 75: 25 but a slightly higher yield (Table 4-1, entry 1). These conditions provide
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evidence for 4.30a and 4.31a resulting from a metal-free mechanism and possibly operating via
Padwa, Lu and Ruano’s chemistry.?>?4?° Furthermore, as mentioned previously inductively
coupled plasma mass spectrometry (ICP-MS) analysis of 4.29a showed it has very low amount of
Ag concentration present, 4.5 +/— 0.4 ug/L of Ag in 10 mg of sample tested which is ~4.5ppb of

Ag. These low concentrations of Ag additionally suggest that the reaction is not catalyzed by trace

solvent
/\/\j Ts) 50°C,24h =<—Ts

4.28a 4.29a 4.30a 4.31a 4.32a

Ag metal. o

Ts = tosyl

Table 4-1 Reaction of 2-Picolyl amide 4.28a with allenyl sulfone, 4.29a.?

4.29a s.olvent. yield selectivity
entry (equiv) (dielectric %) (4.30a:4.31a)
constant, €)

1b 3.0 toluene (2) 67 75:25
2 2.0 toluene (2) 64 94:6
3 2.0 DMSO (47) 15¢ -

4 2.0 ACN (36) 68 67:33
5 2.0 EtOH (25) 53¢ 63:37
6 2.0 THF (8) 67 98:2
7 15 THF (8) 56° 98:2

3aReaction conditions: 0.19 mmol of 4.28a (1.0 equiv), 4.29a (2.0 equiv) in solvent (1 mL, 0.19 M) at 50 °C. °T= 120 °C stirred for
1 h. °NMR yield. 99% recovered amide (SM). ¢17% recovered amide.

In order to improve the yield and selectivity of vinyl sulfone 4.30a, the reaction
temperature, allenyl sulfone equivalents, and solvents with different dielectric constants! o were
varied. On reducing the reaction temperature from 120 to 50 °C with 2 equivalents of allenyl
sulfone 4.29a, the yield was unaffected but the 4.30a:4.31a ratio was further improved to 94:6
(entry 2,Table 4-1). However, performing this reaction at lower temperature required a longer
reaction time (24 h) as before based on evidence by the slower disappearance of the resonance of

the sp® hybridized C—H bond in the *H NMR of 2-picolyl amide 4.28a (compare entries 1 and 2).
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We next screened solvents to improve the yield and selectivity further. Switching to a very polar
DMSO (e = 47) solvent resulted in only a 15% yield (NMR) of vinyl sulfone 4.30a with complete
consumption of the allenyl sulfone 4.29a (entry 3). We postulate that DMSO works as a non-
innocent solvent based upon decomposition of the allenyl sulfone presumably via a nucleophilic
attack on the electron deficient allenic central carbon atom.!> Acetonitrile resulted in a slightly
improved yield of the products but gave poorer selectivity for the vinyl sulfone (4.30a:4.31a,
67:33, entry 4). Ethanol, a protic solvent, gave a 53% product yield with the lowest selectivity
(63:37 ratio of 4.30a:4.31a) along with 9% unreacted amide after stirring for 24 h (entry 5). Finally,
switching to THF as solvent gave a 67% yield and a 98:2 ratio of 4.30a:4.31a (entry 6). Lowering
the equivalents of allenyl sulfone 4.29a (1.5 equivalent) recovered unreacted amide 4.28a (17%)
after column chromatography (entry 7); and an isolated yield of 56% product that correlated with
the *'H NMR vyield of the crude reaction mixture with dibromomethane as an external standard. In
the optimized reactions conditions, we selected THF as the solvent with 2 equivalents of allenyl

sulfone, 4.29a with a reaction temperature of 50 °C

4.6.3 Experiments with Sodium p-toluenesulfinate

)Oj\ “ NaTs »
Ph N X + ———>—> Decomposition
H N~ Ts THF
50°C, 24 h
4.28a 4.29a

Table 4-2 Effect of sodium p-toluenesulfinate.?

cfiing 4.29a NaTs yield selecFivity
(equiv) (equiv) (%) (1b:1c)
1 2.0 2 0 -
28 2.0 1 0 -
3¢ 2.0 0.1 0 -
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aReaction conditions: 0.19 mmol of 4.28a (1.0 equiv), 4.29a (2.0 equiv) in THF (1 mL, 0.19 M) at 50 °C. "Stirred for 2 h. € 0.07
mmol of 4.28a (1.0 equiv), 4.29a, 10 mol% NaTs, in THF (0.37 mL, 0.19 M) at 50 °C.

Sodium p-toluenesulfinate anion was included as an additive in an effort to improve the
yield since it is expected to be generated in situ and activate the allenyl sulfone 4.29a based on
previous studies by Padwa, Lu and Ruano.?>242% However, when 2 equivalents of NaTs is used, it
resulted in complete decomposition of the allenyl sulfone 4.29a (Table 4-2, entry 1) and unreacted
starting material 2-picolyl amide was recovered based on crude *H NMR. On lowering the NaTs
loading to 1 equivalent and then 0.1 equivalent (entries 2 and 3) did not give any product, only
complete decomposition of 4.29a along with unreacted 2-picolyl amide 4.28a. These results
suggest that p-toluenesulfinate anion is produced only in trace amounts for the reaction to occur

similar to Padwa’s allenic sulfone chemistry.?3

4.6.4 Experiment to Probe the Possible Conversion of Allyl Sulfone 4.31a to Vinyl Sulfone

4.30a Under the Reaction Conditions

)OL | NMR tube
Ph H | Nt Ts)l toluene-d8
N~ 50 °C,
4.28a 42%9a 255h 4. 30a 4 31a

Figure 4-28 NMR experiment to investigate possible isomerization of vinyl and allyl sulfones.

Experiments were carried out to investigate the possibility of the minor product allyl
sulfone, 4.31a is formed first and converts to the vinyl sulfone, 4.30a during the course of the
reaction (Figure 4-28). 4.28a (0.02 mmol) and 4.29a (0.05 mmol) were reacted at 50 °C in toluene-
d8 in an NMR tube (0.5 mL) and the progress of the reaction was monitored by 600 MHz NMR
for 25.5 h. The tube containing the reaction mixture was maintained at 50 °C in the NMR probe

for 25.5 h and 24 NMR spectra were acquired. Analysis of these spectra revealed no signals build
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up for allyl sulfone 4.31a. Rather, a steady increase of *H NMR signals were observed for vinyl
sulfone product 4.30a with gradual consumption of 4.28a. This experiment provides indirect
evidence to support our hypothesis that 4.30a and 4.31a are formed via two independent reaction

pathways and not by the conversion of one to the other.

4.6.5 Experiments With Pyridine As An Additive

With the discovery that the reaction of 2-picolyl amide 4.28a and allenyl sulfone 4.29a to
afford vinyl sulfones does not require nickel catalysis, efforts were taken to make the reaction
more general by including simple amides instead of picolyl amides only. Specifically, since the
Ni-coordinated N,N-bidentate is no longer required for the directed sp? C—H functionalization, N-

benzylbenzamide 4.56 was considered as a substrate, which does not have a pyridinyl group.

0]
)J\ ” pyridine
Ph™ "N + )| ————x——»  Entry 1 & :no reaction
H Ts toluene Entry 3 &4 :decomposition
0,
4.56 4.20a °0°C 24N

Table 4-3 Effect of pyridine.2

ridine i
entry (gdzug:\all) Zi:ol %) y(loe}:)d selectivity
1 2.0 0 0 -
2b 2.0 5 0 -
3 2.0 20 0 -
4 2.0 100 0 -

aReaction conditions: 0.02 mmol of 4.56 (1.0 equiv), 4.29a (2.0 equiv) in toluene (0.10 M) at 50 °C. °0.09 mmol of 4.56 (1.0
equiv), 4.29a (2.0 equiv) in toluene (0.79 mL) at 50 °C.

When N-benzylbenzamide 4.56 is reacted with allenyl sulfone 4.29a at 50 °C in toluene
using reaction conditions identical to 2-picolyl amide 4.28a, no reaction was observed (Table 4-3,
entry 1). 'H NMR of the crude residue shows unreacted starting material N-benzylbenzamide and

unreacted allenyl sulfone 4.29a. 1,2-Disulfonylpropene 4.32a byproduct was not formed in the
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reaction. These results led us to hypothesize that the pyridine moiety is required to activate the
allenyl sulfone 4.29a and initiate the reaction similar to that of triphenylphosphine.?#? Adding 5
mol% pyridine as an external additive but under identical reaction conditions gave no reaction
(entry 2). *H NMR of the crude residue showed unreacted N-benzylbenzamide 4.56 and allenyl
sulfone 4.29a and no signals indicating the formation of 1,2-disulfonylpropene, 4.32a. Increasing
the pyridine loading to 20 mol% showed no vinyl or allyl sulfone by *H NMR of the crude residue,
only unreacted N-benzylbenzamide. However, in this case nearly complete consumption of allenyl
sulfone 4.29a (~82%) was observed along with some 1,2-disulfonylpropene 4.32a (~17% yield
based on 2 equivalent of allenyl sulfone). Finally, 1 equivalent of pyridine resulted in complete
decomposition of allenyl sulfone 4.29a, unreacted starting material N-benzylbenzamide and no
1,2-disulfonylpropene formation 4.32a (entry 4). These experiments suggest that the equivalents
of pyridine is critical to the success of the reaction. If too much pyridine is added into the reaction
mixture, the allenyl sulfone is unstable to these conditions evidenced by its decomposition.
However, equally important is the fact that no benzylic C(sp*)—H functionalization products (either
vinyl or allyl sulfones) were observed in the reaction with N-benzylbenzamide even when 1,2-
disulfonylpropene byproduct was formed with 20 mol% pyridine (Table 4-3, entry 3). These
experiments suggest that the pyridine group of the picolyl amide plays a role in the formation of
the 4.30a and 4.31a. We propose that it may play a dual role by: (i) activating the allenyl sulfone
4.29a a via conjugate addition reaction similar to triphenylphosphine as reported by Lu and

Ruano,?*?® and (ii) increasing the acidity of the C(sp%)—H bond.
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4.6.6 Substrate Scope of Picolyl Amides

Ts Ts
9 | THF
I . ) — > 0 . o}
R N X o
H | Ts 50°C, RJ\N X R)J\N X
N~ 48 h | |
HoN HoN
4.28b-m 4.29a 4.30b-m'" ~F 431b-m " ~F
Ts Ts Ts
Me O F O OMe O
H N~ H N~ H N~

4.30b 4.30c 4.30d
64% 64% 54%
96:4 96:4 97:3
Ts Ts Ts
9P i i
s
A N A N A
X
Cr ) I vy
N — = =
4.30e 4.30f 4.30g
60% 64% 57%
95:5 99:1 94:6
Ts Ts Ts
0 0 0
Ph
N N~ N
4.30h 4.30i 4.30j
59% 61% 70%
94:6 92:8 93:7
Ts Ts Ts
S i i
Ph N
Oo” N A \/O\n/ \)J\” | X *L” | X
N~ O N~ N~
4.30k 4301 4.30
57% 60% 59%
96:4 95:5 91:9

Reaction conditions: 0.2 mmol of 4.28b-m (1.0 equiv), 4.29a (2.0 equiv) in THF (1 mL, 0.2 M) at 50 °C. PAverage results from
two identical runs on 0.2 mmol scale of 2-picolyl amide. °Yield based on recovered starting material is 66%. 9Second run was
stirred for 72 h. eStirred for 24 h; experiment was carried out four times and in one run product selectivity was 85:15 (see
Appendix A.5 for details); yield is average of four runs and selectivity is average of three runs excluding the run with 85:15
product ratio.

Figure 4-29 Substrate Scope of 2-Picolyl amide with allenyl sulfone 4.29a &b
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We next investigated the substrate scope of the reaction for a number of 2-picolyl amides,
4.28b-0, by reacting each with allenyl sulfone, 4.29a (1-methyl-4-(propa-1,2-dien-1-
ylsulfonyl)benzene) under the optimized reaction conditions (Figure 4-29). Both aryl and alkyl
picolyl amides were tested by varying the R group to examine the functional group tolerance. The
ortho-substituted aryl amides 4.28b and 4.28c gave similar yields. The o-substituted aryl amide
4.28d gave a lower yield of 54%. However, unreacted amide was recovered and the yield based
upon recovered starting material (BRSM) was 66%. It should be noted that substrate 4.28d and
4.28k (R = Boc) are oils and could potentially hasten the initiation step of the mechanism leading
to faster decomposition of allenyl sulfone. This evidence is based on crude *H NMR which showed
complete consumption of 2 equivalent of allenyl sulfone after stirring for 48 h with 50% of picolyl
amide still unreacted (vide infra). To minimize allene decomposition and improve the reaction
yield, a slightly different experimental procedure was employed for 2-picolyl amides isolated as
oils (see Appendix A.1.4 for details). The reaction was also effective with sterically bulky
naphthamide 4.28e (R = naphthyl) affording 4.30e in 60% yield. Pyridinyl- and thiophenyl-based
picolyl amides, 4.28f and 4.28g, respectively, afford similar yields and excellent product
selectivity showcasing the applicability of this method to heteroarenyl amides. Feasibility studies
of the alkyl picolyl amides were carried out. Both picolyl amides, 4.28h (R = Me) and 4.28i (R =
benzyl), with a-enolizable protons were tolerated well, with the reaction still being selective
towards the sp3-hybridized C—H bond adjacent to the pyridine ring affording 4.30h and 4.30i in
good yield. The vinyl amide, 4.28j, reacted cleanly to form the vinyl sulfone 4.30j as the major
product. Picolyl amides functionalized with a number of commonly used protecting groups were

then examined. Protected amides 4.28k (R = Boc), 4.28l (R = Cbz), and 4.28m (R = C(Me)3) gave
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the vinyl sulfone products 4.30k-m in good yields with almost no compromise in yield or

selectivity.

4.6.7 Unreactive Substrates

Ph)J\ I}l |\
Me N~
4.28n 4.280 4.28p
Ts\_ Ts
_|:\ pr—
Me Me
4.29b 4.29c

Figure 4-30 Unreactive substrates: picolyl Amides and allenyl Sulfones.

Tertiary picolyl amide 4.28n and carbamate 4.280 were subjected to the optimized
reactions conditions with allenyl sulfone, 4.29a (2 equiv) at 50 °C. However, no reaction was
observed and unreacted picolyl amides (4.28n, 4.280) and allenyl sulfone 4.29a were recovered
after 24 h based on crude *H NMR. NMR signals of 1,2-disulfonylpropene 4.32a were observed
but with small peak areas relative to the peak areas of picolyl amide 4.28n or 4.280. 4-Picolyl
amide, 4.28p decomposed under the optimized reaction conditions and afforded only 1,2-
disulfonylpropene 4.32a. Lowering the temperature from 50 °C to rt but otherwise under standard
reaction conditions still resulted in decomposition of 4.28p with formation of 1,2-
disulfonylpropene 4.32a. These results suggest that although the allenyl sulfone 4.29a is activated
with picolyl amides 4.28n, 4.280 and 4.28p to generate p-toluenesulfinate anion and form 1,2-

disulfonylpropene 4.32a, the subsequent C—H functionalization step does not occur.
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To determine the reaction scope of the allenyl sulfone, 1,3- and 1,1-disubstituted allenyl
sulfones 4.29b and 4.29c were reacted with 2-picolyl amide, 4.28a (1 equiv) at 50 °C. The reaction
of 4.29b showed unreacted picolyl amide 4.28a and disappearance of signals corresponding to
allenyl sulfone 4.29b with no evidence of formation of 1,2-disulfonylpropene intermediate by *H
NMR of the crude reaction mixture. The reaction of 4.29c with 4.28a at 50 °C afforded unreacted
picolyl amide, allenyl sulfone and there was no evidence of 1,2-disulfonylpropene intermediate

based on 'H NMR of the crude reaction mixture.
4.6.8 Experimental Mechanistic Studies

4.6.8.1 Experiment To Account For Mass Balance

F O
UTHF(0.2M
Ny =<
@LHD TS) 50 °C, 48 h Ts

4.28c 4.29a 4.30c 4.31c 4.32a
0.2 mmol 0.4 mmol Ts = tosyl
=46.1 mg =78 mg

Figure 4-31 Reaction of picolyl amide 4.28c with allenyl sulfone 4.29a to account for mass balance.

In order to probe the reaction mechanism, a number of mechanistic experiments were
carried out. Firstly, to account for the mass balance, the reaction with 2-picolyl amide 4.28c with
allenyl sulfone, 4.29a was analyzed in detail (Figure 4-31). After stirring for 48 h at 50 °C to ensure
complete consumption of 4.28c, the reaction mixture was diluted with DCM and concentrated
under reduced pressure. The crude residue was loaded onto a column and eluted with 20-60% ethyl
acetate/hexane. All the fractions were collected and concentrated under high vacuum for several
hours. Fractions 1-4 were isolated as a white solid (12.5 mg). *H NMR of these fractions revealed

these to be 1,2-disulfonylpropene 4.32a. Fractions 5-14 were isolated as a red-brown residue (5.6
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mg). *H NMR of these fractions revealed small signals for 1,2-disulfonylpropene 4.32a but mostly
large, uncharacterizable signals in the aromatic region were evident. Fractions 15-22 were isolated
as a green residue (5 mg). *H NMR of these fractions showed some vinyl sulfone product signals
but mostly uncharacterizable aromatic signals. Fractions 23-34 were isolated as pale yellow solid
and *H NMR of these fractions corresponded to the vinyl sulfone 4.30c and allyl sulfone 4.31c
products in an overall mass of 54.1 mg. The column was flushed several times with ethyl acetate
and a red-brown residue was collected (27 mg). *H NMR of this residue showed some product and
starting material picolyl amide 4.28c signals but mostly large, uncharacterizable signals in the
aromatic region of the NMR spectrum. Finally, the column was flushed with methanol/acetone
eluent and a red-brown residue was isolated (20 mg) showing uncharacterizable signals in the *H
NMR. It should be noted that some brown baseline material still remained in the column. The mass
of all the isolated fractions were summed to be 124.2 mg accounting for the initial total mass (124.1

mg) of picolyl amide 4.28c and allenyl sulfone 4.29a.
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4.6.8.2 Studies with BHT and AIBN

(a) Under Optimized Reaction Conditions

Ts Ts
| THF (0.19 M) 5
)' 50 °C,24 h *
/\/\D )J\ | AN Ph)J\H | AN
N~ N~
4.28a 4.29a 4.30a 4.31a
0.19 mmol
67%
98:2
(b) Radical Inhibitor Experiment
BHT (5 equiv) Ts Ts
j\ || THF (.19 M) o
Ph” "N | 5000, 2 50 °C, 24 h +
H ) )J\ A Ph)J\N =
N = | H |
= N~
4.28a 4.29a 4.30a 4.31a
0.19 |
mmo 67%
96:4

(c) Radical Initiator Experiment

AIBN (1 equiv)

Ts Ts
THF (O 19 M)
(0]
)l 50 °C, 24 h +
/@ )J\ AN Ph)J\N AN
N Ho
4.28a 4.29a 4.30a Z 4.31a Z

0%

85:15

0.19 mmol

Figure 4-32 Mechanistic studies with BHT and AIBN.

In order to test whether the reaction proceeds through a ionic or radical mechanism

involving the sulfonyl anion or sulfonyl cation (Chapter 4.2), several experiments were carried

out. Reaction of 4.28a and 4.29a under the optimized reaction conditions but with the radical

scavenger, butylated hydroxytoluene (BHT, 5 equiv), afforded the vinyl sulfone product 4.30a and

4.31a in 67% yield and a 96:4 product ratio; a yield and ratio identical to the experimental results

without BHT (Figure 4-32b). Similarly, when this same reaction was performed in presence of a

radical initiator, azobisisobutyronitrile (AIBN, 1 equiv), the yield and product ratio of 4.30a and
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4.31a were affected only slightly (60% yield, 85:15 product ratio). These experiments provide
support for an anionic pathway rather than a radical mechanism similar to the studies reported by

Lu and Ruano in their phosphine activation of allenyl sulfones.?#2°

4.6.8.3 Crossover Experiments

(a) Experiment to Investigate 1,2-disulfonylpropene as Reaction
Intermediate by Ruano et al.

0 K,CO3 (5 equiv)
SO2Ph AcN (2 mL)
| o + PhO,S o]
Ts
rt, 3.5 h
OMe 35 OMe
4.57, 1 equiv 4.32c, 1 equiv 4.58, 53%

(b) Preparation of 1,2-disulfonylpropene 4.32c

Me |

J 1. PhSH, Et;N, MeOH SO2Ph
o”S\\o 2. mCPBA, DCM Ts
71%
4.29a 4.32¢

(b) Experiment to Investigate 1,2-disulfonylpropene as Reaction
Intermediate in This Work

o) K,CO5 (1 or 2 equiv)
SO,Ph ACN (0.5 mL)
Ph N | X t —X—> Decomposition
H Ts 0,
N~ 50 °C, 24 h
4.28a 4.32c
1 equiv 1 equiv

Figure 4-33 Experiment with picolyl amide, 1,2-disulfonylpropene and potassium carbonate.

In order to test that whether the 1,2-disulfonylpropene byproduct 4.32a is involved in the
C—H functionalization reaction, several experiments were carried out. We were guided by the work
of Ruano et al., who have shown that 1,2-disulfonylpropene 4.32c serves as an intermediate by
reacting furanone 4.57 (1 equiv) with 1,2-disulfonylpropene 4.32c (1 equiv) and potassium

carbonate (5 equiv) in acetonitrile (Figure 4-33).%> A similar approach was taken in our studies
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(Figure 4-33). 1,2-disulfonylpropene 4.32c was synthesized in one pot using a modified literature
procedure.?® Allenyl sulfone, 4.29a was stirred with thiophenol, triethylamine in methanol at rt
followed by reacting with meta-chloroperoxybenzoic acid in dichloromethane to yield 1,2-
disulfonylpropene 4.32c in 71% vyield. Picolyl amide 4.28a was then reacted with 1,2-
disulfonylpropene 4.32¢ and K.COs (2 equiv) at 50 °C in acetonitrile for 24 h. *H NMR of the
crude residue showed unreacted 4.28a and complete disappearance of 1,2-disulfonylpropene 4.32c
based on absence of *H NMR signals at 6.68, 6.52 and 4.04 ppm of the crude residue. These results
suggested that 4.32c likely decomposed under the reaction conditions. The experiment was
repeated with 1 equivalent of K.CO3 but otherwise under identical reaction conditions. *H NMR
of the crude residue showed unreacted 4.28a and almost complete disappearance of 4.32¢ *H NMR
signals (~10% based on integration ratio of signals at 6.68, 6.52 and 4.04 ppm). These results

suggested that 4.32c decomposed under the reaction conditions.
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= H | H |
N~ N~
4.28a (1 equiv) 4.29a (1 equiv) 4.32c (2 equiv) 4.30q 4.31a
41%
93:7

Figure 4-34 Crossover experiment with picolyl amide, allenyl sulfone and 1,2-disulfonylpropene.

We reasoned that K>COz was causing decomposition of 1,2-disulfonylpropene, and
redesigned the crossover experiment to include allenyl sulfone 4.29a. Specifically, picolyl amide
4.28a (1 equiv) was reacted with allenyl sulfone 4.29a (1 equiv) and disulfone 4.32c (2 equiv) to
afford a 41% yield of the crossover product 4.30q in a 93:7 ratio (Figure 4-34). It should be noted
that in this experiment, the allyl sulfone isomer was not observed in the *H NMR of the purified

product fractions but only the vinyl sulfone products were obtained. The product selectivity ratio
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4.300:4.30a was measured from the *H NMR of the purified product fractions at chemical shift
values of 6.37 ppm (4.30q) and 6.33 ppm (4.30a).

To confirm the structure of 4.30q, both one and two dimensional *H NMR were taken
(Figure 4-35). It should be noted, however, that structural confirmation of 4.30q was carried out
as a mixture of 4.30q and 4.30a. Crossover product, 4.30q shows nearly identical *H NMR
chemical shift values when compared to 4.30a for the two diastereotopic protons (2.80 and 3.00
ppm) and the H® proton (5.53 ppm) adjacent to the pyridine group. However, differences in
chemical shift values between 4.30q and 4.30a are observed for the vinyl protons H* and H2. For
crossover product 4.30q, H* and H? appear at 6.37 and 5.68 ppm, respectively. Whereas, for the
vinyl sulfone product, 4.30a these alkenyl protons appear slightly upfield at 6.33 and 5.64 ppm.
Another key feature of 4.30q is that it does not possess an aryl methyl group unlike in 4.30a.
Indeed, the spectrum of the mixture of 4.30q and 4.30a contains the methyl signal (belonging to
the tosyl group of 4.30a) at 2.42 ppm with an integration value of 0.3 only relative to alkenyl
proton at 6.37 ppm reflecting the fact that 4.30q is the major product. Further structural
confirmation for 4.30q is provided by HRMS analysis, which shows a mass of 393.1260 a.u.
corresponding to the mass of 4.30q with a ppm error of 1.93. 3C NMR assignments are based on
HSQC analysis. Among the three alkyl carbons, C3 (next to the electron withdrawing pyridine)
again showed the highest chemical shift of 53.8 ppm. The alkyl sp® hybridized carbon bearing the
diastereotopic proton has a chemical shift of 35.6 pm identical to 4.30a. The vinyl carbon in 4.30q
is slightly more downfield at 127.2 ppm compared to 4.30a where this signal appears at 126.7
ppm. Most notably in the *3C NMR spectrum of mixture of 4.30q and 4.30a is the fact that the
methyl carbon signal 21.8 ppm (methyl in the tosyl group in 4.30a) has a very low intensity and

barely distinguishable from the noise. This further corroborates the fact that crossover product,
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4.30q is formed and is the major product in the experiment because otherwise if 4.30a was the
major product the methyl carbon signal at 21.8 ppm would be clearly visible with a good signal to
noise ratio.

3C: 35.6 ppm
2.80 ppm, dd, J=15.2,6.4 Hz
3.00 ppm, dd, J=15.2,7.7 Hz

AN L SOZPQ

1 <—— 6.37 ppm, s
A 13C: 127.2 ppm

o) H
5 H? \
N X
H3 Il 5.68

@H N~ bpm. 8

/ \ 4
7.67-7.61 ppm, m 5.53 ppm, q, J=7.4 Hz
13C: 53.8 ppm

4.30q

Figure 4-35 Structural confirmation using *H and **C NMR for viny! sulfone 4.30q.

4.6.8.4 Deuterium Labelling Experiment

Deuterium labelling experiments were carried out where allenyl sulfone-d» 4.29a-d2 was
subjected to the reaction conditions with 4.28a (Figure 4-36). The vinyl sulfone product 4.30a-d
shows deuterium incorporation predominantly at the allylic position suggesting that the picolyl
amide 4.28a adds to the terminal carbon of the allenyl sulfone 4.29a-d2 primarily. However,
deuterium incorporation is also observed at both the alkenyl- and sp®-hybridized carbon next to
the pyridine group of 4.30a-d. The deuterium incorporation is calculated from *H NMR and the
13C signals are assigned based on HSQC analysis. The *H NMR signals at 8.54 (4.30a-d) ppm is
integrated to be 1. The product selectivity ratio of 4.30a-d and 4.31a-d is calculated to be 96:4
based on the integration values of the amide N—H signals at 8.23 ppm and 7.70 ppm in the two
products. These peaks were selected since these two *H NMR signals of vinyl sulfone 4.30a-d and

allyl sulfone 4.31a-d are well separated from each other. Now the d-content of the vinyl protons
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in 4.30a-d is calculated first. Interestingly, two singlet signals are observed for alkenic proton H?,
6.33 ppm (integration value ~ 0.4199) and 6.31 ppm (integration value ~ 0.1864) with an overall
integration value of ~0.6063. Therefore, the total d-content for H! is calculated to be
1—(0.6063/0.96) ~ 37%. It should be noted also that the two signals of H* likely correspond to two
different compounds in a ratio of 0.4199/0.1864 ~ 2.3:1. The H? signal also has two singlets at
5.63 ppm (integration ratio ~ 0.4191) and 5.62 ppm (integration ratio ~ 0.1976). Total d-content
at H? is 1-(0.6167/0.96) ~ 36%. HSQC analysis shows as expected the H! and H? are attached to
the same carbon at 126.7 ppm. The proton adjacent to the pyridine ring, H? is also deuterated. In
the reaction of picolyl amide 4.28a with allenyl sulfone 4.29a containing no deuterium, the proton
H? in vinyl sulfone product 4.30a appeared as a quartet with a J value of 7.4 Hz (Figure 4-22).
However, this splitting pattern is lost in 4.30a-d and H® shows as a multiplet between 5.53-5.51
ppm in compound 4.30a-d. The d-content at H3 is 1—(0.7523/0.96) ~ 22%. Two signals are
observed at 53.9 ppm and 53.8 ppm in **C NMR which correlate to H® in HSQC. Finally, the d-
content of the sp® hybridized alkyl protons are calculated. The alkyl protons in non-deuterated
compound 4.30a are diastereotopic and appears as a doublet of a doublet at 3.00 ppm (J = 15.2,
7.7 Hz) and 2.79 ppm (15.2, 6.4 Hz) (Figure 4-22). In deuterated vinyl sulfone product 4.30a-d
the doublet of doublet splitting pattern at 2.97 ppm and 2.77 ppm is greatly reduced and nearly
disappeared. Instead, a doublet splitting with J = 6.9 Hz at 2.97 ppm and J = 6.6 Hz at 2.77 ppm
is apparent. We hypothesized based on these results that a mono deuterated compound at the alkyl
carbon also formed. The 13C signal at 35.3-34.9 ppm has a very small intensity which means that
this carbon is mostly deuterated. Interestingly, the signal also shows a multiplet splitting pattern
(very low intensity) which is expected. The d content at 2.97 ppm is calculated to be

1—(0.3000/0.96) ~ 69% and at 2.77 ppm to be 1—(0.3047/0.96) ~ 68%.
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(a) Deuterium Labelling Experiment
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Figure 4-36 Deuterium labelling experiment.

Based on the above analysis, four compounds are postulated to form in the reaction of
picolyl amide 4.28a with deuterated allenyl sulfone 4.29a-d2 (Figure 4-37). Out of the 96:4 product
ratio of the vinyl sulfone, 4.30a-d and the allyl sulfone 4.31a-d, ~44% of the compound is
deuterated vinyl sulfone A-4.30a-d where two deuterium are in the sp* hybridized alkyl carbon.
The vinyl protons in A-4.30a-d have chemical shifts at 6.33 ppm and 5.63 ppm. The signals at
6.31 ppm and 5.62 ppm belong to the compound B-4.30a-d which accounts for 20% of the
deuterated vinyl sulfone product. Compound B-4.30a-d also has deuteration (~22%) of the proton
next to the pyridine ring which explains the d-content of the H3 proton. The next compound is C-

4.30a-d that is postulated to form. It is mono deuterated in the alkyl carbon based on doublet
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splitting pattern showing primarily in the 2.97 ppm and 2.77 ppm chemical shift values in the H
NMR and the low intensity multiplet splitting pattern in the *C NMR signal at 35.3-34.9 ppm. It
is ~27% of the deuterated vinyl sulfone product based on the integration ratio in the *H NMR.
Finally, compound D-4.30a-d is proposed to be form ~5% based on the integration ratio of the

doublet of a doublet splitting pattern at 2.97 ppm and 2.77 ppm.

slightly overestimates d-content of alkyl protons ~ 77%
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Figure 4-37 Proposed vinyl sulfone compounds formed in reaction with deuterated allenyl sulfone 4.29a-d>.

The molecular weight of the four proposed deuterated vinyl sulfone products along with
their ESI [M+1]* masses are also shown in Figure 4-37. Based on the mass spectrometric analysis
of the purified product, ESI masses of 409.15 and 410.16 m/z are found (Figure 4-38). This provide
support that multiple deuterated products such as B-4.30a-d and C-4.30a-d likely formed in the

reaction of picolyl amide 4.28a with allenyl sulfone 4.29a-d>.
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Figure 4-38 ESI mass spectrum of deuterated vinyl and allyl sulfone products.

Interestingly, ESI mass spectrum also shows m/z values of 407.14 and 408.15 which
corresponds to molecular weight of 406.14 and 407.15 respectively in relatively low intensity
(Figure 4-38). The masses of 406.14 and 407.15 m/z values correspond to no deuterium and only

one deuterium incorporated products only. These signals suggest that products 4.30a and E-4.30a-

d are other possible vinyl sulfone products that might formed in the reaction (Figure 4-39).
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Figure 4-39 Other postulated vinyl sulfone products that are formed.

ESI mass = 408.15
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4.6.9 Proposed Reaction Mechanism

Based on the experiments above, the following reaction mechanism is proposed (Figure
4-40). Nucleophilic attack of the pyridinyl nitrogen of 4.28a to the central carbon of allene 4.29a
affords zwitterion 1M4.23, which serves as a source of p-toluenesulfinate anion 4.34a via several
possible reaction pathways. One mechanism (path (i)) involves protonation of the newly generated
alpha-sulfonyl carbanion of 1M4.23 followed by deprotonation of the C(sp®)—H bond to form
IM4.24 that undergoes an addition-elimination reaction to give the p-toluenesulfinate anion (Ts—)
and an unstable five-membered pyridinium species 1M4.27. Geometry optimization of 1M4.24
with density functional theory (DFT) calculations predicted formation of ion pair IM4.27 for three
different initial conformers of 1M4.24 providing evidence that such a mechanism could be
operative. The formation of ion pair IM4.27 from 1M4.24 is exergonic by 8.5 kcal/mol. On the
other hand, pathway (ii) involves protonation of the newly generated alpha-sulfonyl carbanion of
IM4.23 followed by deprotonation of the amide N—H to form 1M4.25 that undergoes an addition-
elimination reaction to give the sulfinate anion and an unstable pyridinium species 1M4.28.
Finally, pathway (iii) involves the alpha-sulfonyl carbanion of IM4.23 adds intramolecularly to
the alkenyl pyridinium motif to form the cyclopropane 1M4.26 that undergoes an elimination
reaction to give p-toluenesulfinate anion and a cyclopentene species (Figure 4-40a).%

The formation of vinyl sulfones 4.30a-d is proposed to occur via the 1,4-addition of the p-
toluenesulfinate anion 4.34a to the allenyl sulfone 4.29a-d> to give bis-sulfone carbanion 4.33a-
d2. DFT calculations suggest that the abstraction of sp® hybridized C-H bond of a coordinated
pyridinium complex 1M4.29 is the most favored (vide infra). The reaction of IM4.30 with 4.32a-
d2 in a Sn2' reaction afford vinyl sulfone 4.30a-d in agreement with deuterium labelling

experiment where the sp® hybridized carbon contains the majority of the d-content. On the other
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hand, a Sn2 type reaction is likely to be operative as well between IM4.30 and 4.32a-d: since
deuterium incorporation is observed in the alkenyl C—H protons as well (Figure 4-36). Since, the
protons/deuteriums in the sp® hybridized carbon are exchangeable, it can lead to formation of
deuterated vinyl sulfone products A-4.30a-d to E-4.30a-d and non-deuterated 4.30a as well via
multiple deprotonation followed by protonation mechanisms. At elevated temperatures and higher
equivalents of allenyl sulfone, 4.29a (Table 4-1, entry 1), the allyl sulfone product 4.31a is formed
in higher ratio via the direct nucleophilic addition of anion 1M4.30 with the allenyl sulfone 4.29a.
Most likely the direct nucleophilic addition of IM4.30 to allenyl sulfone 4.29a-d2 is promoted with

higher allenyl sulfone concentrations.
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(a) Proposed Reaction Pathways to Generate Sulfination Anion
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Figure 4-40 Proposed reaction mechanism for formation of vinyl and allyl sulfone.
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4.6.10 Relative Energy Calculations

(a) Relative acidity of amide N-H and C(sp®)-H bond
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Figure 4-41 Relative energy calculations of different compounds.

Based on the above proposed mechanism, select DFT calculations were performed on some

key intermediates. As expected, deprotonation of amide N—H bond to form IM4.32 is
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thermodynamically more stable by AG=—11.1 kcal/mol than 1M4.31 where alkyl C(sp®)—H bond
is abstracted (Figure 4-41a). Although, formation of IM4.31 is disfavored but is not
thermodynamically too uphill so that IM4.31 could form in small concentrations in the reaction
conditions which subsequently can lead to the experimentally observed vinyl and allyl sulfone
products.

However as mentioned in previous section (Chapter 4.6.9 the acidity of the alkyl C(sp®)—H
bond could be dramatically increased when the N in pyridine group is coordinated (Figure 4-41b).
Calculations reveal that the acidity of alkyl C(sp®)—H bond of 4.28a is increased when the N in the
pyridine directing group is coordinated e.g. with an allenyl sulfone. In this case, the C(sp®)—H is
even more acidic than the amide N—H bond. Furthermore, since the reaction of 4.28a and disulfone
4.32c with K>CO3 as base in the absence of allenyl sulfone (4.29a) did not afford the C—H
functionalization product, coordination of the pyridine N atom might be necessary for C—H
deprotonation to occur. Relative acidity of N-benzylbenzamide is also calculated. From the
calculations, it can be seen that alkyl C(sp®)—H bond of 4.28a (AG = 17.5 kcal/mol) containing the
pyridine group is much more acidic than N-benzylbenzamide (AG = 26.0 kcal/mol). This is one
factor that can explain why no reaction was observed between N-benzylbenzamide and allenyl
sulfone 4.29a even in the presence of pyridine as an external additive.

Finally, calculations reveal that allyl sulfone product 4.31a is thermodynamically more
stable by AG=—1.2 kcal/mol than vinyl sulfone 4.30a (Figure 4-41c). This further supports our
conclusion that the formation of vinyl sulfone and allyl sulfone products are afforded via two

independent reaction pathways and not by isomerization of each other (Chapter 4.6.4 .
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4.7 Conclusion

In summary, we have developed a mild, metal-free with no additives required protocol to
form vinyl sulfone-containing compounds via selective C(sp®)—H functionalization of
pharmacologically  prevalent  picolyl amides  with  1-methyl-4-(propa-1,2-dien-1-
ylsulfonyl)benzene. The synthetic procedure has a broad functional group tolerance. The reaction
is compatible with both alkyl and aryl picolyl amides having different electronic substituents and
sterically bulky groups such as naphthalene. Furthermore, the C(sp®)—H bond functionalization
reaction is selective towards the sp® hybridized C—H bond next to the pyridine ring even in the
presence of a-enolizable protons or vinyl groups. A number of picolyl amides with commonly
used protecting groups such as boc, Cbz and pivaloyl are also reactive. We expect the mild
procedure would be used to easily and efficiently install the vinyl sulfone warhead on picolyl
amides rich in functional groups and molecular complexity for medicinal chemistry studies such
as in the field of covalent inhibitors. Furthermore, mechanistic studies suggested that the reaction
mechanism operates via a rare pyridine initiated activation of allenyl sulfones to form p-

toluenesulfinate anion in situ that functions catalytically to afford vinyl sulfone products.
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Appendix A: Supporting Information

Appendix A.1 General Methods

Unless otherwise indicated, all reactions were performed in flame-dried glassware under
an inert atmosphere of dry nitrogen and stirred with Teflon-coated magnetic stir bars. All
commercially available compounds were purchased and used as received unless otherwise
specified. The solvents tetrahydrofuran (THF) and dichloromethane (DCM) were purified by
passing through alumina using the Sol-Tek ST-002 solvent purification system. Toluene and
acetonitrile (CHsCN) were distilled from calcium hydride prior to use. Deuterated chloroform
(CDCls) was dried over 3 A molecular sieves. N2 gas was purchased from Matheson Tri Gas.
Purification of compounds by flash column chromatography was performed using silica gel (40-
63 pum particle size, 60 A pore size). TLC analyses were performed on silica gel F254 glass-backed
plates (250 pum thickness). *H NMR and *C NMR spectra were recorded on Bruker Avance 400,
500 or 600 MHz spectrometers. Spectra were referenced to residual chloroform (7.26 ppm, H;
77.16 ppm, *C). Chemical shifts (5) are reported in ppm and multiplicities are indicated by s
(singlet), d (doublet), t (triplet), q (quartet), quint (quintet), m (multiplet) and br (broad). Coupling
constants, J, are reported in hertz (Hz). All NMR spectra were obtained at room temperature. IR
spectra were obtained using PerkinElmer Spectrum Two FT-IR spectrometer. Atmospheric Solids
Analysis Probe (ASAP) mass spectroscopy was performed on a Micromass Q-TOF API-US high
resolution mass spectrometer, while Electrospray ionization (ESI) mass spectroscopy was
performed on a Thermo Scientific Q Exactive high resolution mass spectrometer. All melting

points are uncorrected. The melting points were taken as a mixture of vinyl and allyl sulfone
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products. Product metal concentrations were measured on a Perkin/Elmer NEXION 300x
Inductively Coupled Mass Spectrometer after digestion in sub-boil distilled concentrated nitric

acid.

Appendix A.1.1 General Procedure A: Conversion of Aryl Carboxylic Acids to Aryl

Carboxamides

The synthesis of aryl carboxamide was performed using a modified literature procedure.t
A flame-dried, 2-neck round-bottom flask equipped with a stir bar, rubber septum, and nitrogen
inlet adaptor is charged with carboxylic acid (1.0 equiv), dichloromethane (0.5 M), and N,N-
dimethylformamide (0.05 equiv). The flask was placed in an ice/water bath. Oxalyl chloride (1.1
equiv) was added dropwise via syringe over 5 min. After 5 min, the reaction mixture was allowed
to warm to rt by removal of ice/water bath and maintained for 2-4 h. The reaction progress was
monitored by TLC and 1H NMR and judged complete upon disappearance of the aryl carboxylic
acid. The flask was placed in an ice/water bath. 2-Picolylamine (1.1 equiv) was added dropwise
via syringe, the reaction mixture was allowed to warm to rt and vigorously stirred overnight. Sat’d
aq sodium bicarbonate was added, the reaction mixture was transferred to a separatory funnel and
diluted with dichloromethane. The aqueous layer was separated and organic layer was washed

with water, dried over magnesium sulfate, vacuum filtered with water aspirator, and concentrated

(1) Shiota, H.; Ano, Y.; Aihara, Y.; Fukumoto, Y.; Chatani, N. Nickel-Catalyzed Chelation-Assisted
Transformations Involving Ortho C—H Bond Activation: Regioselective Oxidative Cycloaddition of Aromatic Amides

to Alkynes. J. Am. Chem. Soc. 2011, 133, 14952-14955.
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under reduced pressure. The crude product was purified by silica gel flash column

chromatography.

Appendix A.1.2 General Procedure B: Conversion of Alkyl Carboxylic Acids to Alkyl

Carboxamides

The synthesis of alkyl carboxamide was performed using a modified literature procedure.?
A flame-dried, 2-neck round-bottom flask equipped with a stir bar, rubber septum, and nitrogen
inlet adaptor is charged with carboxylic acid (1.0 equiv), dichloromethane (0.5 M), and N,N-
dimethylformamide (0.05 equiv). The flask was placed in an ice/water bath. Oxalyl chloride (1.1
equiv) was added dropwise via syringe over 5 min. After 5 min, the reaction mixture was allowed
to warm to rt by removal of ice/water bath and maintained for 2-4 h. The reaction was monitored
by TLC and *H NMR and judged complete upon disappearance of the alkyl carboxylic acid. The
flask was placed in an ice/water bath. 2-Picolylamine (1.1 equiv) was added dropwise via syringe,
the reaction mixture was allowed to warm to rt and vigorously stirred overnight. Sat’d aq sodium
hydroxide was added, the reaction mixture was transferred to a separatory funnel and diluted with
dichloromethane. The aqueous layer was extracted with dichloromethane (2X) and the combined
organic layer was dried over magnesium sulfate, vacuum filtered with water aspirator, and
concentrated under reduced pressure. The crude product was purified by silica gel flash column

chromatography.

(2) Shiota, H.; Ano, Y.; Aihara, Y.; Fukumoto, Y.; Chatani, N. Nickel-Catalyzed Chelation-Assisted
Transformations Involving Ortho C—H Bond Activation: Regioselective Oxidative Cycloaddition of Aromatic Amides

to Alkynes. J. Am. Chem. Soc. 2011, 133, 14952-14955.
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Appendix A.1.3 General Procedure C: Reaction of Amide (Solid) with 1-methyl-4-(propa-

1,2-dien-1-ylsulfonyl)benzene

An oven-dried, 8-mL screw-top tube equipped with a magnetic stir bar is charged with 2-
picolyl amide (solid) and 1-methyl-4-(propa-1,2-dien-1-ylsulfonyl)benzene in air. The tube is
sealed with a Teflon cap (ChemGlass, CG-4910-15, TFE septum). The cap of the tube is pierced
with a needle connected to a Schlenk line and the tube evacuated and filled (3x) with nitrogen.
THF is added via syringe to the reaction tube. The cap is wrapped with parafilm and the tube is
lowered into a preheated oil bath (50 °C). The reaction progress is monitored by *H NMR and
judged complete upon disappearance of the picolyl amide. During the course of the reaction, the
reaction mixture changed color from pale-yellow to red to red-brown. This is accomplished by
removal an aliquot via syringe, transfer to an NMR tube, and diluting with CDClz. Upon
completion, the reaction mixture was diluted with dichloromethane, transferred into a 20-mL
scintillation vial and concentrated under reduced pressure using rotary evaporation. The crude

residue was purified by silica gel flash column chromatography.

Appendix A.1.4 General Procedure D: Reaction of Amide (Liquid) with 1-methyl-4-(propa-

1,2-dien-1-ylsulfonyl)benzene

An oven-dried, 8-mL screw-top tube equipped with a magnetic stir bar is charged with
amide (liquid) and THF in air. 1-methyl-4-(propa-1,2-dien-1-ylsulfonyl)benzene is added in air.
The tube is sealed with a Teflon cap (ChemGlass, CG-4910-15, TFE septum). The cap of the tube
is pierced with a needle connected to a Schlenk line and the tube evacuated and filled (3x) with

nitrogen quickly. The cap is wrapped with parafilm and the tube is lowered into a preheated oil
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bath (50 °C). The reaction progress is monitored by *H NMR and stirred for 48-72 h. During the
course of the reaction, the reaction mixture changed color from pale-yellow to red to red-brown.
The reaction mixture was diluted with dichloromethane, transferred into a 20-mL scintillation vial
and concentrated under reduced pressure using rotary evaporation. The crude residue was purified

by silica gel flash column chromatography.
Appendix A.2 Synthesis of Amides

O (0}

1. DMF, oxalyl chloride, DCM, 0 °C —rt, 2 h
OH - - o~ H ‘ N
2. 2-picolylamine, 0 °C rt, 18 h N

N-(pyridin-2-ylmethyl)benzamide (4.28a). Follows General Procedure A. Benzoic acid
(1.0 g, 8.2 mmol), DCM (16 mL), N,N-dimethylformamide (0.03 mL, 0.4 mmol), oxalyl chloride
(0.77 mL, 9.0 mmol), 2-picolylamine (0.92 mL, 9.0 mmol). The crude product was purified by
silica gel flash chromatography (40-100% ethyl acetate/hexane) to yield the title compound as a

white solid (1.6 g, 94%). The compound was previously characterized.®

(3) Kamal, A.; Ramakrishna, G.; Raju, P.; Rao, A. V. S.; Viswanath, A.; Nayak, V. L.; Ramakrishna, S.
Synthesis and anticancer activity of oxindole derived imidazo[1,5-a]pyrazines. Eur. J. Med. Chem. 2011, 46,

2427-2435.
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HO-02-157

(0]

N ‘\
HN/

4.28a
IH NMR (400 MHz, CDCls)

8.56 (d, J = 4.8 Hz, 1 H), 7.87 (dd, J = 7.7, 1.5 Hz, 2 H), 7.70-7.65 (m, 2 H), 7.50 (ddd, J

=7.4,7.1,1.2 Hz, 1 H), 7.44 (dd, J = 7.8, 7.3 Hz, 2 H), 7.33 (d, J = 7.8 Hz, 1 H), 7.21 (dd, J = 7.1,

5.0 Hz, 1 H), 4.76 (d, J = 5.0, Hz, 2 H) ppm

13C NMR (100 MHz, CDCls)
167.5, 156.3, 149.1, 137.0, 134.5, 131.6, 128.7 (2 C), 127.2 (2 C), 122.6, 122.3, 44.9 ppm
HRMS (FTMS + p ESI) [M+H]" calcd for C13H13N20, 213.1022; found 213.1020

TLC Rf = 0.23 (100% ethyl acetate) [silica gel, UV]

Me O

Me O
1. DMF, oxalyl chloride, DCM, 0 °C—>rt, 2 h
OH . H I N
2. 2-picolylamine, 0 °C —>rt, 18 h N.

4.28b

2-methyl-N-(pyridin-2-ylmethyl)benzamide (4.28b). Follows General Procedure A. 2-

methylbenzoic acid (300 mg, 2.2 mmol), DCM (4 mL), N,N-dimethylformamide (0.01 mL, 0.1

mmol), oxalyl chloride (0.21 mL, 2.5 mmol), 2-picolylamine (0.25 mL, 2.5 mmol). The crude

product was purified by silica gel flash chromatography (10-100% ethyl acetate/hexane) to yield

the title compound as a orange solid (353 mg, 71%). The compound was previously characterized.*

(4) Fu, L.-Y.; Ying, J.; Wu, X.-F. Cobalt-Catalyzed Carbonylative Synthesis of Phthalimides from N-

(Pyridin-2-yImethyl)benzamides with TFBen as the CO Source. J. Org. Chem. 2019, 84, 12648-12655.
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HO-02-206

Me O
N ‘\
H N~

4.28b

'H NMR (400 MHz, CDCls)
8.53 (d, J = 4.7 Hz, 1 H), 7.71 (dt, J = 7.7, 1.8 Hz, 1 H), 7.47 (d, J = 7.7 Hz, 1 H), 7.36 (d,

J=79Hz,1H),731(dd,J=7.1, 1.3 Hz, 1 H), 7.24-7.20 (m, 3 H), 7.14 (br, 1 H), 4.76 (d, J =
4.9 Hz, 2 H), 2.48 (s, 3 H) ppm. Spectrum contains small amounts of ethyl acetate.

3C NMR (100 MHz, CDCls)
170.2, 156.3, 149.0, 137.2, 136.4, 136.3, 131.2, 130.1, 127.2, 125.9, 122.6, 122.4, 44.7,

HRMS  (FTMS + p ESI) [M+H]* calcd for C1aH1sN20, 227.1179 ; found 227.1181

TLC Rt = 0.31 (100% ethyl acetate) [silica gel, UV]

F O F O
1. DMF, oxalyl chloride, DCM, 0 °C—>rt, 2 h
OH N I N
2. 2-picolylamine, 0 °C —>rt, 20 h H No

4.28¢c
N-(pyridin-2-yImethyl)acrylamide (4.28c). Follows General Procedure A. 2-fluorobenzoic
acid (350 mg, 2.5 mmol), DCM (5 mL), N,N-dimethylformamide (0.01 mL, 0.1 mmol), oxalyl

chloride (0.24 mL, 2.8 mmol), 2-picolylamine (0.29 mL, 2.8 mmol). The crude product was
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purified by silica gel flash chromatography (20-100% ethyl acetate/hexane) to yield the title
compound as a white solid (481 mg, 84%). The compound was previously characterized.®
HO-03-08
F O
4.28c
'H NMR (400 MHz, CDCl5)
8.58 (d, J = 4.6 Hz, 1 H), 8.13 (dt, J = 7.8, 1.8 Hz, 1 H), 7.98 (s, 1 H), 7.68 (dt, J = 7.7, 1.7
Hz, 1 H), 7.50-7.45 (m, 1 H), 7.34 (d, J = 7.8 Hz, 1 H), 7.28-7.24 (m, 1 H), 7.21 (dd, J = 7.0, 5.0
Hz, 1 H), 7.14 (dd, J = 11.3, 8.4 Hz, 1 H), 4.81 (d, J = 4.7 Hz, 2 H) ppm
13C NMR (100 MHz, CDCls)
163.5 (d, J = 2.9 Hz), 161.0 (d, J = 248.2 Hz), 156.4, 149.3, 136.9, 133.4 (d, J = 9.2 Hz),
132.2 (d, J = 2.1 Hz), 124.8 (d, J = 3.4 Hz), 122.5, 122.1, 121.2 (d, J = 11.5 Hz), 116.2 (d, J = 24.6
Hz), 45.3 ppm
HRMS  (FTMS + p ESI) [M+H]* calcd for C13H12N,OF, 231.09282 ; found 231.09279

TLC Rt = 0.41 (100% ethyl acetate) [silica gel, UV]

(5) Kamal, A.; Ramakrishna, G.; Raju, P.; Rao, A. V. S.; Viswanath, A.; Nayak, V. L.; Ramakrishna, S.
Synthesis and anticancer activity of oxindole derived imidazo[1,5-a]pyrazines. Eur. J. Med. Chem. 2011, 46,

2427-2435.
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OMe O OMe O

1. DMF, oxalyl chloride, DCM, 0 °C—rt, 2 h
OH - - o~ H ‘ N
2. 2-picolylamine, 0 °C rt, 20 h N.

4.28d

2-methoxy-N-(pyridin-2-ylmethyl)benzamide (4.28d). Follows General Procedure A. 2-
methoxybenzoic acid (350 mg, 2.3 mmol), DCM (4.6 mL), N,N-dimethylformamide (0.01 mL,
0.1 mmol), oxalyl chloride (0.22 mL, 2.6 mmol), 2-picolylamine (0.27 mL, 2.6 mmol). The crude
product was purified by silica gel flash chromatography (20-100% ethyl acetate/hexane) to yield
the title compound as a pale green oil (445 mg, 80%).

HO-03-13

OMe O

4.28d
'H NMR (400 MHz, CDCls)
8.94 (s, 1 H), 8.58 (d, J = 4.5 Hz, 1 H), 8.25 (dd, J = 7.8, 1.8 Hz, 1 H), 7.66 (dt, J = 7.7,
1.7 Hz, 1 H), 7.45 (dt, J = 8.1, 1.8 Hz, 1 H), 7.36 (d, J = 7.8 Hz, 1 H), 7.19 (dd, J = 6.9, 5.1 Hz, 1
H), 7.08 (t, J = 7.4 Hz, 1 H), 6.99 (d, J = 8.3 Hz, 1 H), 4.81 (d, J = 5.2 Hz, 2 H), 4.00 (s, 3 H) ppm
13C NMR (100 MHz, CDCls)
165.5, 157.9, 157.6, 149.3, 136.8, 132.9, 132.5, 122.3, 122.2, 121.6, 121.4, 111.5, 56.1,

45.4 ppm

RMS  (FTMS + p ESI) [M+H]* calcd for C1aH1sN2O5, 243.1128 ; found 243.1124

I

—

LC Rf = 0.28 (100% ethyl acetate) [silica gel, UV]
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(0} (e}
O 1. DMF, oxalyl chloride, DCM, 0 °C—>rt,4 h O
OH N ‘ A
2. 2-picolylamine, 0 °C —>rt, 20 h H N

4.28e
N-(pyridin-2-ylmethyl)-1-naphthamide (4.28e). Follows General Procedure A. 1-
naphthoic acid (300 mg, 1.7 mmol), DCM (4 mL), N,N-dimethylformamide (0.01 mL, 0.1 mmol),
oxalyl chloride (0.17 mL, 2.0 mmol), 2-picolylamine (0.20 mL, 2.0 mmol). The crude product was
purified by silica gel flash chromatography (20-100% ethyl acetate/hexane) to yield the title
compound as a pale yellow solid (353 mg, 77%). The compound was previously characterized.®
HO-02-199
S5 BN
ORRS
4.28e
'H NMR (400 MHz, CDCly)
8.53 (d, J = 4.7 Hz, 1 H), 8.40 (dd, J = 8.6, 1.4 Hz, 1 H), 7.93 (d, J = 8.3 Hz, 1 H), 7.87
(dd, J = 8.4, 2.0 Hz, 1 H), 7.73-7.69 (m, 2 H), 7.48 (dd, J = 8.2, 7.1 Hz, 1 H), 7.57-7.51 (m, 2 H),
7.38 (d, J = 7.8 Hz, 1 H), 7.36 (br, 1 H), 7.22 (dd, J = 7.0, 5.3 Hz, 1 H), 4.87 (d, J = 4.8 Hz, 2 H)
pPpm
13C NMR (100 MHz, CDCls)
169.7, 156.2, 149.2, 137.0, 134.5, 133.9, 130.8, 130.4, 128.4, 127.2, 126.5, 125.7, 125.4,
124.9, 122.6, 122.3, 45.0 ppm
HRMS  (FTMS + p ESI) [M+H]* calcd for C17H1sN20, 263.1179 ; found 263.1176

TLC Rf = 0.30 (100% ethyl acetate) [silica gel, UV]

(6) Roman, D. S.; Poiret, V.; Pelletier, G.; Charette, A. B. Eur. J. Org. Chem. 2015, 67-71.
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O (e}
1. DMF, oxalyl chloride, DCM, 0 °C—>rt, 2 h
. . o
_N 2. 2-picolylamine, 0 °C —rt, 20 h _N H N

4.28f
N-(pyridin-2-yImethyl)picolinamide (4.28f). Follows General Procedure A. Picolinic acid
(300 mg, 2.4 mmol), DCM (5 mL), N,N-dimethylformamide (0.01 mL, 0.12 mmol), oxalyl
chloride (0.24 mL, 2.8 mmol), 2-picolylamine (0.28 mL, 2.8 mmol). The crude product was
purified by silica gel flash chromatography (20-100% ethyl acetate/hexane) to yield the title
compound as a pale yellow solid (355 mg, 68%). The compound was previously characterized.’

HO-02-196
(0]
N N | N
| N H N~
4.28f
IH NMR (400 MHz, CDCls)
8.93 (s, 1 H), 8.61-8.58 (m, 2 H), 8.22 (d, J = 7.8 Hz, 1 H), 7.85 (dt, J = 7.7, 1.7 Hz, 1 H),
7.66 (dt, J=7.7, 1.8 Hz, 1 H), 7.43 (ddd, J = 7.6, 4.8, 1.2 Hz, 1 H), 7.34 (d, J = 7.8 Hz, 1 H), 7.20
(dd, J=7.0,4.9 Hz, 1 H), 4.80 (d, J = 5.7 Hz, 2 H) ppm
13C NMR (100 MHz, CDCl5)
164.6, 157.1, 150.0, 149.5, 148.4, 137.4, 136.9, 126.3, 122.5, 122.4, 122.0, 44.9 ppm

HRMS (FTMS + p ESI) [M+H]* calcd for C12H12N30, 214.0975 ; found 214.0973

TLC Rf = 0.30 (100% ethyl acetate) [silica gel, UV]

(7) Rowland, J. M.; Olmstead, M. M.; Mascharak, P. K. Unusual Reactivity of Methylene Group Adjacent

to Pyridine-2-Carboxamido Moiety in Iron(l11) and Cobalt(I11) Complexes. Inorg. Chem. 2002, 41, 2754—2760.
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e}
s 1. DMF, oxalyl chloride, DCM, 0 °C —>rt, 2 h

o
OH S N™ NS
\ | 2. 2-picolylamine, 0 °C —>t, 18 h ) H P

4.28g

N-(pyridin-2-ylmethyl)thiophene-2-carboxamide (4.28g). Follows General Procedure A.
Thiophene-2-carboxylic acid (300 mg, 2.3 mmol), DCM (5 mL), N,N-dimethylformamide (0.01
mL, 0.1 mmol), oxalyl chloride (0.23 mL, 2.6 mmol), 2-picolylamine (0.27 mL, 2.6 mmol). The
crude product was purified by silica gel flash chromatography (0-100% ethyl acetate/hexane) to
yield the title compound as a white solid (331 mg, 65%). The compound was previously
characterized.®

HO-02-207

0}
4.28g

'H NMR (400 MHz, CDCly)

8.57 (d, J = 4.8 Hz, 1 H), 7.69 (dt, J = 7.7, 1.8 Hz, 1 H), 7.60 (dd, J = 3.7, 1.0 Hz, 1 H),
7.48 (dd, J =5.0, 1.0 Hz, 1 H), 7.42 (br, 1 H), 7.32 (d, = 7.8 Hz, 1 H), 7.22 (dd, J = 7.7, 5.0 Hz,
1 H), 7.09 (dd, J = 5.0, 3.8 Hz, 1 H), 4.74 (d, J = 4.8 Hz, 2 H) ppm

13C NMR (100 MHz, CDCls)

162.0, 156.2, 149.2, 139.1, 137.0, 130.1, 128.3, 127.7, 122.6, 122.4, 44.8 ppm

HRMS (FTMS + p ESI) [M+H]" calcd for C11H11N20S, 219.0587 ; found 219.0588

TLC Rf = 0.28 (100% ethyl acetate) [silica gel, UV]

(8) Fu, L.-Y.; Ying, J.; Wu, X.-F. Cobalt-Catalyzed Carbonylative Synthesis of Phthalimides from N-

(Pyridin-2-yImethyl)benzamides with TFBen as the CO Source. J. Org. Chem. 2019, 84, 12648—12655.
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0] 0]

)k 1. DMF, oxalyl chloride, DCM, 0 °C —>rt, 2 h )k
Me~ "OH Me” "N ‘ N
2. 2-picolylamine, 0 °C —>rt, 20 h H N.
4.28h

N-(pyridin-2-yImethyl)acetamide (4.28h). Follows General Procedure B. Acetic acid (250
mg, 4.2 mmol), DCM (8 mL), N,N-dimethylformamide (0.02 mL, 0.2 mmol), oxaly! chloride (0.40
mL, 4.7 mmol), 2-picolylamine (0.48 mL, 4.7 mmol). The crude product was purified by silica gel
flash chromatography (0-100% acetone/ethyl acetate) to yield the title compound as a pale-yellow
oil which turned to a brown solid in the freezer (420 mg, 67%). The compound was previously

characterized.®

HO-02-201
(0]
Me)kN N
H \
=
4.28h

IH NMR (500 MHz, CDCls)

8.54 (d, J = 4.6 Hz, 1 H), 7.66 (dt, J = 7.7, 1.7 Hz, 1 H), 7.26-7.25 (m, 1 H), 7.20 (dd, J =
7.1,5.1 Hz, 1 H), 6.73 (br, 1 H), 4.56 (d, J = 4.8 Hz, 2 H), 2.08 (s, 3 H) ppm

13C NMR (125 MHz, CDCly)

170.3, 156.4, 149.1, 136.9, 122.5, 122.3, 44.7, 23.3 ppm

HRMS (FTMS + p ESI) [M+H]" calcd for CgH11N20, 151.0866 ; found 151.0863

TLC R =0.29 (100% acetone) [silica gel, UV]

(9) Mondal, A.; Li, Y.; Khan, M. A.; Ross Jr., J. H.; Houser, R. P. Supramolecular Copper Hydroxide Tennis
Balls: Self-Assembly, Structures, and Magnetic Properties of Octanuclear [Cu8L8(OH)4]4+ Clusters (HL ) N-(2-

Pyridylmethyl)acetamide). Inorg. Chem., 2004, 43, 7075—7082.

153



0} O
1. DMF, oxalyl chloride, DCM, 0°C—>rt, 2 h
Ph\)kOH y Ph\/mN N

. ] o \
2. 2-picolylamine, 0 °C —>rt, 18 h H N.

4.28i
2-phenyl-N-(pyridin-2-ylmethyl)acetamide (4.28i). Follows General Procedure A. 2-
phenylacetic acid (350 mg, 2.6 mmol), DCM (5 mL), N,N-dimethylformamide (0.01 mL, 0.13
mmol), oxalyl chloride (0.25 mL, 2.9 mmol), 2-picolylamine (0.30 mL, 2.9 mmol). The crude
product was purified by silica gel flash chromatography (0-100% ethyl acetate/hexane) to yield

the title compound as a white solid (484 mg, 83%). The compound was previously characterized.

HO-03-05
o
Ph \)kN/H/\j
H \
N~
4.28i

'H NMR (400 MHz, CDCls)

8.46 (d, J = 4.7 Hz, 1 H), 7.63 (dt, J = 7.7, 1.7 Hz, 1 H), 7.37-7.29 (m, 5 H), 7.20 (d, J =
7.8 Hz, 1 H), 7.16 (dd, J = 7.2, 5.0 Hz, 1 H), 6.66 (s, 1 H), 4.53 (d, J = 5.1 Hz, 2 H), 3.65 (s, 2 H)
ppm

13C NMR (100 MHz, CDCls)

171.1, 156.5, 149.1, 136.8, 135.0, 129.6 (2 C), 129.1 (2 C), 127.4, 122.4, 122.1, 44.7, 43.9

ppm
HRMS (FTMS + p ESI) [M+H]* calcd for C14H1sN,0, 227.1179 ; found 227.1174

(10) (a) Deb, A.; Hazra, A.; Peng, Q.; Paton, R. S.; Maiti, D. Detailed Mechanistic Studies on Palladium
Catalyzed Selective C—H Olefination with Aliphatic Alkenes: A Significant Influence of Proton Shuttling. J. Am.
Chem. Soc. 2017, 139, 763—775. (b) Chaudhuri, U. P.; Whiteaker, L. R.; Yang, L.; Houser, R. P. Multinuclear copper

complexes of pyridylmethylamide ligands. Dalton Trans. 2006, 1902—1908.
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TLC Rf = 0.17 (100% ethyl acetate) [silica gel, UV]

o} o}

\)kOH 1. DMF, oxalyl chloride, DCM, 0 °C—>rt, 2 h \)kN N
2. 2-picolylamine, 0 °C —>rt, 18 h H N
4.28j

N-(pyridin-2-ylmethyl)acrylamide (4.28j). Follows General Procedure B. Acrylic acid
(315 mg, 4.4 mmol), DCM (9 mL), N,N-dimethylformamide (0.02 mL, 0.2 mmol), oxalyl chloride
(0.42 mL, 4.9 mmol), 2-picolylamine (0.51 mL, 4.9 mmol). The crude product was purified by
silica gel flash chromatography (0-100% acetone/ethyl acetate) to yield the title compound as a
white solid (460 mg, 65%). The compound was previously characterized.!

HO-02-203

\)’kN AN

\
H N~

4.28j

'H NMR (400 MHz, CDCls)

8.55 (d, J = 4.7 Hz, 1 H), 7.67 (dt, = 7.7, 1.8 Hz, 1 H), 7.29 (d, J = 7.8 Hz, 1 H), 7.21 (dd,
J=7.0,5.0Hz, 1 H), 6.9 (s, 1 H), 6.34 (dd, J = 17.0, 1.6 Hz, 1 H), 6.22 (dd, J = 17.0, 10.1 Hz, 1
H), 5.68 (dd, J = 10.1, 1.6 Hz, 1 H), 4.65 (d, J = 4.9 Hz, 2 H) ppm

13C NMR (100 MHz, CDCls)

165.7, 156.2, 149.1, 137.0, 130.9, 126.7, 122.6, 122.3, 44.5 ppm

HRMS (FTMS + p ESI) [M+H]* calcd for CoH11N20, 163.0871 ; found 163.0874

(11) Qiao, Y.; Wei, Z.; Feng, J.; Chen, Y.; Li, P.; Wang, W.; Ma, Y.; Yuan, Z. Rapid and efficient screening
of adsorbent for oligopeptide using molecular docking and isothermal titration calorimetry. J. Sep. Sci. 2009, 32,

2462-2468.
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TLC Rt = 0.54 (100% acetone) [silica gel, UV]

0
o o HoN XNy 80°C, Np, 15 min >L

SR e Ty et S s

o~ 0" Mo N~ H N\/

4.28k

tert-butyl (pyridin-2-ylmethyl)carbamate (4.28K). tert-butyl (pyridin-2-
ylmethyl)carbamate was synthesized using a modified literature procedure.!? To a 50 mL, 2-neck
flame-dried round-bottom flask equipped with stir bar, rubber septum, and nitrogen inlet, di-tert-
butyl dicarbonate (250 mg, 1.15 mmol) and 2-picolylamine (0.12 mL, 1.15 mmol) were added.
The reaction mixture was stirred at 80 °C for 15 min. The crude product was purified by silica gel
flash chromatography (20-100% diethyl ether /hexane) to yield the title compound as a clear oil
(230 mg, 96%). The compound was previously characterized.!?

HO-02-194

>L (0]

o*HD
4.28k

'H NMR (400 MHz, CDCls)

8.53(d, J=4.5Hz, 1 H), 7.65 (dt, J= 7.7, 1.7 Hz, 1 H), 7.26 (d, J = 7.8 Hz, 1 H), 7.17 (dd,
J=7.0,5.0Hz, 1 H),557 (s, 1 H), 4.44 (d, J = 5.3 Hz, 2 H), 1.46 (s, 9 H) ppm

13C NMR (100 MHz, CDCls)

157.6, 156.1, 149.2, 136.8, 123.3, 121.8, 79.6, 45.9, 28.5 (3 C) ppm

HRMS (FTMS + p ESI) [M+H]* calcd for C11H17N202, 209.1285 ; found 209.1283

(12) Viswanadham, B.; Mahomed, A. S.; Friedrich, H. B.; Singh, S. Efficient and expeditious chemoselective

BOC protection of amines in catalyst and solvent-free media. Res. Chem. Intermed. 2017, 43, 1355-1363.
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TLC Rf = 0.61 (100% ethyl acetate) [silica gel, UV]

(0} (0}
H . N H
1. DMF, oxalyl chloride, DCM, 0 °C—>rt, 2 h
) 2. 2-picolylamine, 0 °C —>rt, 18 h o H N.
4.281

benzyl (2-oxo-2-((pyridin-2-ylmethyl)amino)ethyl)carbamate (4.281). Follows General
Procedure B. ((benzyloxy)carbonyl)glycine (350 mg, 1.7 mmol), DCM (3 mL), N,N-
dimethylformamide (0.01 mL, 0.1 mmol), oxalyl chloride (0.16 mL, 1.9 mmol), 2-picolylamine
(0.19 mL, 1.9 mmol). The crude product was purified by silica gel flash chromatography (50-100%
ethyl acetate/hexane followed by 20-70% acetone/ethyl acetate) to yield the title compound as a
white solid (127 mg, 25%). The compound was previously characterized.*®
HO-03-06
H (0]
RESES
4.28l1
'H NMR (400 MHz, CDCls)
8.52 (d, J = 4.6 Hz, 1 H), 7.66 (dt, J = 7.6, 1.4 Hz, 1 H), 7.41-7.29 (m, 5 H), 7.26-7.19 (m,
3 H), 5.47 (br, 1 H), 5.14 (s, 2 H), 4.58 (d, J = 4.8 Hz, 2 H), 3.98 (d, J = 5.5 Hz, 2 H) ppm
13C NMR (100 MHz, CDCl3)
169.0, 156.7, 156.0, 149.2, 137.0, 136.3, 128.7 (2 C), 128.3, 128.2 (2 C), 122.6, 122.2,
67.3,44.6, 44.4 ppm

HRMS (FTMS + p ESI) [M+H]* calcd for C16H1sNsOs, 300.1343 : found 300.1358

(13) Nadimpally, K. C.; Thalluri, K.; Palakurthy, N. B.; Saha, A.; Mandal, B. Catalyst and solvent-free

amidation of inactive esters of N-protected amino acids. Tetrahedron Lett. 2011, 52, 2579-2582.
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TLC Rf = 0.31 (50% acetone/ethyl acetate) [silica gel, UV]

0} (0]
1. DMF, oxalyl chloride, DCM, 0 °C —>rt, 2 h
OH - ] o H ‘ N
2. 2-picolylamine, 0 °C rt, 18 h N.

4.28m

N-(pyridin-2-ylmethyl)pivalamide (4.28m). Follows General Procedure B. Pivalic acid
(300 mg, 2.9 mmol), DCM (6 mL), N,N-dimethylformamide (0.01 mL, 0.1 mmol), oxalyl chloride
(0.28 mL, 3.3 mmol), 2-picolylamine (0.34 mL, 3.3 mmol). The crude product was purified by
silica gel flash chromatography (0-100% ethyl acetate/hexane) to yield the title compound as a
white solid (491 mg, 87%). The compound was previously characterized.'*

HO-02-208

O
Y
4.28m

'H NMR (400 MHz, CDCls)

8.54 (d, J=4.7 Hz, 1 H), 7.66 (dt, J = 7.7, 1.8 Hz, 1 H), 7.24 (d, J = 7.9 Hz, 1 H), 7.19 (dd,
J=7.1,5.0Hz, 1 H), 7.01 (brs, 1 H), 4.54 (d, J = 4.7 Hz, 2 H), 1.26 (s, 9 H) ppm

13C NMR (100 MHz, CDCls)

178.7,156.8, 149.2, 136.8, 122.4, 122.2, 44.6, 38.9, 27.8 (3 C) ppm

HRMS (FTMS + p ESI) [M+H]" calcd for C11H17N20, 193.1335 ; found 193.1327

TLC R =0.21 (100% ethyl acetate) [silica gel, UV]

(14) Hasegawa, N.; Charra, V.; Inoue, S.; Fukumoto, Y.; Chatani, N. Highly Regioselective Carbonylation

of Unactivated C(sp®)-H Bonds by Ruthenium Carbonyl. J. Am. Chem. Soc. 2011, 133, 8070-8073.
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0 0
)k 1. DMF, oxalyl chloride, DCM, 0 °C—>rt, 2.5 h )k

Ph OH - . Ph N ‘ N
2.amine, 0 °C—>rt, 24 h Me N. -

4.28n

N-methyl-N-(pyridin-2-ylmethyl)benzamide (4.28n). Follows General Procedure A.
Benzoic acid (400 mg, 23.3 mmol), DCM (6 mL), N,N-dimethylformamide (0.013 mL, 0.16
mmol), oxalyl chloride (0.31 mL, 3.6 mmol), 2-[(Methylamino)methyl]pyridine (0.44 mL, 3.6
mmol). The crude product was purified by silica gel flash chromatography (30-100% ethyl
acetate/hexane) to yield the title compound as a slightly pale yellow oil (573 mg, 77%). The
compound was previously characterized.®®

HO-02-163

O

Ph)J\l}l I\
Me N~

4.28n

IH NMR (500 MHz, CDCls)

8.57 (d,J=4.5Hz, 1 H),7.70 (dt, J = 7.7, 1.8 Hz, 1 H), 7.48-7.47 (m, 2 H), 7.42-7.34 (m,
4 H), 7.21(dd, J = 7.0, 5.0 Hz, 1 H), 4.88 (s, 1 H), 4.61 (s, 1 H), 3.09 (s, 1.5 H), 3.00* (s, 1.5 H)
ppm

3C NMR (100 MHz, CDCls)

172.6, 171.7*, 157.3, 156.8*, 149.9, 149.4* 137.0, 136.1, 129.7, 128.5, 127.2, 126.9,
122.5,122.3, 121.0, 57.0, 53.1*, 38.0, 33.7* ppm

*where second isomer was distinguishable

(15) Inoue, S.; Shiota, H.; Fukumoto, Y.; Chatani, N. Ruthenium-Catalyzed Carbonylation at the ortho C-H
Bonds in Aromatic Amides Leading to Phthalimides: C-H Bond Activation Utilizing a Bidentate System. J. Am. Chem.

Soc. 2009, 131, 6898—6899.

159



HRMS  (FTMS + p ESI) [M+H]* calcd for C1aH1sN20, 227.1179; found 227.1177

TLC Rt = 0.41 (100% ethyl acetate) [silica gel, UV]

-
H 1. n-BuLi (2 equiv) //Q
©/\[ S—0 THF -78°C g
o save
2. BI'/@ eHBr o
N~ 4.280

~78°C —> rt

(R)-4-benzyl-3-(pyridin-2-ylmethyl)oxazolidin-2-one (4.280): The synthesis of (R)-4-
benzyl-3-(pyridin-2-ylmethyl)oxazolidin-2-one was performed using a modified literature
procedure.16 A flame-dried, 3-neck 50 mL round-bottom flask equipped with a stir bar, rubber
septum, and nitrogen inlet adaptor is charged with (R)-4-benzyloxazolidin-2-one (425 mg, 2.4
mmol) and THF (8 mL). The flask was placed in a dry ice/acetone bath at —78 °C. n-BuL.i (1.5
mL, 2.4 mmol) was added dropwise via syringe over 5 min. The reaction was maintained for 15
min. 2-(bromomethyl)pyridine hydrobromide (300 mg, 1.2 mmol) was added by temporary
removal of the septum and stirred for 3 h at =78 °C. The dry ice/acetone bath was removed and
stirred at rt for 22 h. The reaction mixture was diluted with dichloromethane and washed with 10%
sodium hydroxide solution. The aqueous layer was extracted with dichloromethane and the organic
layer was combined, dried over magnesium sulfate, vacuum filtered with water aspirator, and
concentrated under reduced pressure. The crude product was purified by silica gel flash column
chromatography (30-100% ethyl acetate/hexane) to yield the title compound as a colorless oil (313

mg, 98%).

(16) May, A. E.; Willoughby, P. H.; Hoye, T. R. Decarboxylative Isomerization of N-Acyl-2-oxazolidinones

to 2-Oxazolines. J. Org. Chem. 2008, 73, 3292—-3294.
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HO-02-197
e
N
N
Save
(0]
4.280
'H NMR (400 MHz, CDCls)
8.58 (d,J=4.8Hz, 1 H), 7.69 (dt, J = 7.7, 1.8 Hz, 1 H), 7.33 (d, J = 7.8 Hz, 1 H), 7.30-
7.21 (m, 4 H), 7.08 (d, J = 6.8 Hz, 2 H), 4.84 (d, J = 15.6 Hz, 1 H), 4.41 (d, J = 15.6 Hz, 1 H),
4.20-4.13 (m, 1 H), 4.06-3.99 (m, 2 H), 3.23 (dd, J = 13.4, 3.8 Hz, 1 H), 2.66-2.60 (m, 1 H) ppm
13C NMR (100 MHz, CDCls)
158.6, 156.3, 149.6, 137.1, 135.7,129.2 (2 C), 129.0 (2 C), 127.3, 122.9, 122.7, 67.3, 56.5,
48.2, 38.4 ppm
HRMS (FTMS + p ESI) [M+H]" calcd for C16H17N202, 269.1285; found 269.1282

TLC Rt = 0.41 (100% ethyl acetate) [silica gel, UV]

0 0
)k 1. DMF, oxalyl chloride, DCM, 0 °C—>rt, 5 h )k

Ph” “OH Ph” N N
2. amine, EtN0°C  —> rt, 24 h HooL

4.28p

N-(pyridin-4-ylmethyl)benzamide  (4.28p):  The synthesis of  N-(pyridin-4-
ylmethyl)benzamide was performed using a modified literature procedure.17 A flame-dried, 2-
neck 25 mL round-bottom flask equipped with a stir bar, rubber septum, and nitrogen inlet adaptor

is charged with benzoic acid (300 mg, 2.5 mmol), dichloromethane (5 mL), and N,N-

(17) Aihara, Y.; Tobisu, M.; Fukumoto, Y.; Chatani, N. Ni(ll)-Catalyzed Oxidative Coupling between

C(sp?)-H in Benzamides and C(sp®)-H in Toluene Derivatives. J. Am. Chem. Soc. 2014, 136, 15509-15512.
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dimethylformamide (0.01 mL, 0.12 mmol). The flask was placed in an ice/water bath. Oxalyl
chloride (0.42 mL, 4.9 mmol) was added dropwise via syringe. After 30 min, the reaction mixture
was allowed to warm to rt by removal of ice/water bath and maintained for 5 h. The reaction
progress was monitored by TLC and judged complete upon disappearance of the benzoic acid.
Excess oxalyl chloride was removed using high vacuum. The flask was placed in an ice/water bath.
Pyridin-4-ylmethanamine (0.50 mL, 4.9 mmol) and Et3N (0.68 mL, 4.9 mmol) in dichloromethane
was added dropwise via syringe, the reaction mixture was allowed to warm to rt and vigorously
stirred for 24 h. Sat’d aq sodium bicarbonate was added, the reaction mixture was transferred to a
separatory funnel and diluted with dichloromethane. The aqueous layer was separated and organic
layer was washed with water, dried over magnesium sulfate, vacuum filtered with water aspirator,
and concentrated under reduced pressure. The crude product was purified by silica gel flash
column chromatography (20-100% ethyl acetate/hexane and then 5% methanol/ethyl acetate) to
yield the title compound as a pale yellow solid (300 mg, 58%). The compound was previously

characterized.8

(18) (a) Joshi, M. S.; Pigge, F. C. Construction of 1,2,4-Triazole Derivatives via Cyclocondensation of
Alkylidene Dihydropyridines and Aryldiazonium Salts. Org. Lett. 2016, 18, 5916—5919. (b) Zheng, Y.-L.; Newman,
S. G. Methyl Esters as Cross-Coupling Electrophiles: Direct Synthesis of Amide Bonds. ACS Catal. 2019, 9,

4426-4433.
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HO-02-123

o]
Ph)J\N | N
H =N
4.28p

'H NMR (400 MHz, CDCls)

8.54-8.52 (m, 2 H), 7.82 (dd, J = 7.1, 1.4 Hz, 2 H), 7.53 (dt, J = 7.4, 1.9 Hz, 1 H), 7.44 (t,
J=7.8Hz,2H),7.23(d, J=5.9Hz, 2 H), 6.86 (brs, 1 H), 4.64 (d, J = 6.1 Hz, 2 H) ppm.

13C NMR (100 MHz, CDCls)

167.8, 150.2 (2 C), 147.6, 134.0, 132.0, 128.8 (2 C), 127.2 (2 C), 122.4 (2 C), 42.9 ppm

HRMS  (FTMS + p ESI) [M+H]" calcd for C13H13N20, 213.1022; found 213.1021

TLC Rf = 0.16 (100% ethyl acetate) [silica gel, UV]

0 0
)k 1. DMF, oxalyl chloride, DCM, 0 °C—rt, 8 h )L

Ph OH Ph N
2. benzylamine, EtzN0°C —>  rt, 24 h H

N-benzylbenzamide: The synthesis of N-benzylbenzamide was performed using a

modified literature procedure.19 A flame-dried, 2-neck 15 mL round-bottom flask equipped with
a stir bar, rubber septum, and nitrogen inlet adaptor is charged with benzoic acid (300 mg, 2.5
mmol), dichloromethane (5 mL), and N,N-dimethylformamide (0.01 mL, 0.12 mmol). The flask
was placed in an ice/water bath. Oxalyl chloride (0.42 mL, 4.9 mmol) was added dropwise via
syringe. After 30 min, the reaction mixture was allowed to warm to rt by removal of ice/water bath

and maintained for 8 h. The reaction progress was monitored by TLC and judged complete upon

(19) Aihara, Y.; Tobisu, M.; Fukumoto, Y.; Chatani, N. Ni(ll)-Catalyzed Oxidative Coupling between

C(sp2)-H in Benzamides and C(sp3)-H in Toluene Derivatives. J. Am. Chem. Soc. 2014, 136, 15509-15512.
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disappearance of the benzoic acid. Excess oxalyl chloride was removed using high vacuum. The
flask was placed in an ice/water bath. Benzyl amine (0.54 mL, 4.9 mmol) and Et3N (0.68 mL, 4.9
mmol) in dichloromethane was added dropwise via syringe, the reaction mixture was allowed to
warm to rt and vigorously stirred for 24 h. Sat’d aq sodium bicarbonate was added, the reaction
mixture was transferred to a separatory funnel and diluted with dichloromethane. The aqueous
layer was separated and organic layer was washed with water, dried over magnesium sulfate,
vacuum filtered with water aspirator, and concentrated under reduced pressure. The crude product
was purified by silica gel flash column chromatography (10-40% ethyl acetate/hexane) to yield the
title compound as a white solid (429 mg, 83%). The compound was previously characterized.?

HO-02-63

X

Ph u/\©

IH NMR (500 MHz, CDCl5)

7.71-7.69 (m, 2 H), 7.42-7.16 (m, 8 H), 6.38 (br, 1 H), 4.56-4.54 (m, 2 H) ppm

13C NMR (125 MHz, CDCls)

167.5, 138.4, 134.6, 131.7, 128.9 (2 C), 128.7 (2 C), 128.1 (2 C), 127.8, 127.1 (2 C), 44.3
pPpm

HRMS (FTMS + p ESI) [M+H]* calcd for C14H1sNO, 212.1070; found 212.1059

TLC Rt = 0.30 (30% ethyl acetate/hexane) [silica gel, UV]

(20) Nordstrgm, L. U.; Vogt, H.; Madsen, R. Amide Synthesis from Alcohols and Amines by the Extrusion

of Dihydrogen. J. Am. Chem. Soc. 2008, 130, 17672-17673.
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Appendix A.3 Synthesis of Allenyl Sulfones

— DCM, 10-15 °C, N,

Me\©\ Me
Et;N, PPh
oH EtsN. PPhs \©\ ~
.0 + / 7
S/o = §/O\/
0

Prop-2-yn-1-yl  4-methylbenzenesulfinate: The synthesis of prop-2-yn-1-yl 4-
methylbenzenesulfinate was performed using a modified literature procedure.?* A flame-dried
250-mL, 3-neck round-bottom flask equipped with stir bar, rubber septum, nitrogen inlet adaptor
and addition funnel is charged with tosyl chloride (3.00 g, 15.7 mmol) and dichloromethane (39
mL). Triethyl amine (2.4 mL, 17.3 mmol) was added via syringe. The flask was placed in an
ice/water bath (10-15 °C). An oven-dried beaker is charged with triphenyl phosphine (4.12 g, 15.7
mmol), dichloromethane (39 mL) and propargyl alcohol (0.91 mL, 15.7 mmol) and the beaker was
swirled to form a uniform solution and the contents transferred to the addition funnel. The solution
of triphenyl phosphine, dichloromethane and propargyl alcohol was added dropwise via the
addition funnel over 10 min maintaining the temperature of the ice/water bath at 10-15 °C. The
reaction was monitored by TLC for 3 h. The reaction mixture was transferred to a 600 mL beaker
and 20% Et,O/hexane solution was added to produce a white precipitate. The reaction mixture was
vacuum filtered with water aspirator on a pad of silica gel to remove the white precipitate and the
residue rinsed with Et2O. The filtrate was collected and concentrated under reduced pressure. The

crude product was purified by silica gel flash column chromatography (0-15% ethyl

(21) Harmata, M.; Cai, Z.; Huang, C. Silver-catalyzed rearrangement of propargylic sulfinates: synthesis of

allenic sulfones. Org. Synth., 2011, 88, 309-316
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acetate/hexane) to yield the title compound as a clear oil (2.35 g, 77%). The compound was
previously characterized.??

HO-03-15
Me
oz
6

'H NMR (400 MHz, CDCls)

7.63(d,J=8.2 Hz, 2 H), 7.35 (d, J = 7.9 Hz, 2 H), 4.60 (dd, J = 15.5, 2.4 Hz, 1 H), 4.28
(dd, J=15.5, 2.4 Hz, 1 H), 2.49 (t, J = 2.4 Hz, 1 H), 2.43 (s, 3 H) ppm

13C NMR (100 MHz, CDCls)

143.4,141.2,130.0 (2 C), 125.5 (2 C), 77.8, 76.2, 51.6, 21.7 ppm

TLC Rf = 0.30 (10% ethyl acetate/hexane) [silica gel, UV]

Me 0 Me H
AgSbFg (2 mol%) .
yz

\©\s/o\// DCM, rt, Ny, 2 h sJ

S 0o

4.29a
1-methyl-4-(propa-1,2-dien-1-ylsulfonyl)benzene (4.29a): The synthesis of 1-methyl-4-
(propa-1,2-dien-1-ylsulfonyl)benzene was performed using a modified literature procedure.?* A
flame-dried 100 mL, 3-neck round-bottom flask equipped with stir bar, rubber septum, nitrogen

inlet adaptor and addition funnel is charged with silver hexafluoroantimonate(V) (83 mg, 0.24

mmol) in glovebox. The round-bottom flask equipped with stir bar, rubber septum, nitrogen inlet

(22) Pogaku, N.; Krishna, P. R.; Prapurna, Y. L. Substrate and temperature controlled divergence in reactions
of alcohols with TosMIC catalyzed by BF3.Et20: facile access to sulfinates and sulfones. Synthetic Communications,

2017, 47, 1239-1249.
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and addition funnel with silver hexafluoroantimonate(V) is taken out of the glovebox and a
solution of prop-2-yn-1-yl 4-methylbenzenesulfinate (2.35 g, 12.1 mmol) in dichloromethane (24
mL) is added into the addition funnel via syringe. The solution of prop-2-yn-1-yl 4-
methylbenzenesulfinate in dichloromethane is added dropwise via the addition funnel into the
reaction flask over 10 min. The reaction is monitored by TLC and stirred for 2 h. The reaction
mixture is vacuum filtered with water aspirator on a pad of silica gel with Et,O. The filtrate is
collected and concentrated under reduced pressure. The crude product is purified by silica gel flash
column chromatography (0-30% ethy| acetate/hexane) to yield the title compound as white crystals
(2.22 g, 94%). The compound was previously characterized.?

HO-03-16

Me I
SJ

o o
4.29a

'H NMR (400 MHz, CDCl5)

7.80 (d, J = 8.3 Hz, 2 H), 7.34 (d, J = 8.0 Hz, 2 H), 6.23 (t, J = 6.4 Hz, 1 H), 5.43 (d, J =
6.4 Hz, 2 H), 2.45 (s, 3 H) ppm

13C NMR (100 MHz, CDCls)

209.4, 144.7, 138.5, 130.0 (2 C), 127.8 (2 C), 101.4, 84.2, 21.8 ppm

HRMS (FTMS + p ASAP) [M+H]* calcd for C1oH110,S, 195.0480; found 195.0491

TLC Rf = 0.25 (20% ethyl acetate/hexane) [silica gel, UV]

ICP-MS analysis: 4.5 +/- 0.4 ug/L of Ag found in 10 mg of sample

(23) Hu, C.; Chen, Y. Chemoselective and fast decarboxylative allylation by photoredox catalysis under mild

conditions. Org. Chem. Front. 2015, 2, 1352—-1355.
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\—o LiAID, OH
J— = D
Et,0, —70 °C to —45 °C, N, D

0

prop-2-yn-1,1-d2-1-ol: The synthesis of prop-2-yn-1,1-d2-1-ol was performed using a
modified literature procedure.?* A flame-dried 100-mL, 2-neck round-bottom flask equipped with
stir bar and rubber septum is charged with lithium aluminium deuteride, LiAID4 (642 mg, 15.3
mmol). The reaction flask was sealed with a rubber septum, placed under N2, and Et2O (26 mL)
was added via syringe. The reaction flask was placed in an ethanol bath (=70 °C) using cryo cool.
Ethyl propiolate (2.07 mL, 20.4 mmol) dissolved in EtoO (13 mL) was added into the reaction
flask via syringe pump (25 mL/h) over a period of 30 min. During addition the reaction temperature
varied between —70 °C to —60 °C. The temperature of the reaction mixture was increased to. —45
°C The reaction was monitored by TLC. TLC taken after 2 h showed near complete consumption
of starting material. The reaction mixture was stirred for overnight after which TLC showed
complete consumption of ethyl propiolate. Water (0.7 mL), sodium hydroxide solution (0.7 g,
15%) and water (2 mL) was added to obtain a cream-white precipitate. The reaction mixture was
filtered under gravity to remove the precipitate and precipitate rinsed with Et,O, dried over
magnesium sulfate and filtered under gravity. The filtrate was distilled at room temperature to
remove Et>O and the title compound was collected in two separate vials as a slightly pale-yellow
oil. Vial 1 (445 mg, contains title compound, Et.O and EtOH in a ratio of 1:0.84:0.2 with title

compound ~ 200 mg); vial 2 (114 mg, contains title compound, Et2O and EtOH in a ratio of

(24) Minsek, D. W.; Chen, P. The 1 + 1 and 2 + 2 resonant multiphoton ionization of allyl and allyl-dn (CsHs,

CsHsD, CsHDg4, and CsDs) radicals. J. Phys. Chem. 1993, 97, 13375—-13379.
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1:0.11:0.08 with title compound ~ 95 mg) in an overall yield of 25%. The compound was
previously characterized.?®

HO-03-54

={D

D

'H NMR (400 MHz, CDCls)

2.46 (s, 1 H), 2.11 (br s, 1 H) ppm. Sample contains diethyl ether and ethanol *H NMR
resonances.

13C NMR (100 MHz, CDCls)

82.1, 73.9, 50.4 (quint, J = 22.6 Hz) ppm. Diethyl ether resonances at 66.0, 15.3 ppm;
ethanol resonances at 58.6, 18.4 ppm.

HRMS (FTMS + p ESI) [M+H]" calcd for CsHsD20, 59.04604; found 59.04601

TLC Rf = 0.32 (30% ethyl acetate/hexane) [silica gel, KMnOa4]
Me\©\ Me
. on EtaN. PPhy \©\ _
§fgl :‘%D DCM, 10-20 °C, N, ‘S‘«/oﬁ(
D

Prop-2-yn-1-yl-1,1-d2 4-methylbenzenesulfinate: The synthesis of prop-2-yn-1-yl-1,1-d2

4-methylbenzenesulfinate was performed using a modified literature procedure.?® A flame-dried

(25) Nag, S.; Lehmann, L.; Kettschau, G.; Toth, M.; Heinrich, T.; Thiele, A.; Varrone, A.; Halldin, C.
Development of a novel fluorine-18 labeled deuterated fluororasagiline ([18F]fluororasagiline-D2) radioligand for
PET studies of monoamino oxidase B (MAO-B). Bioorg. Med. Chem. 2013, 21, 6634—6641.

(26) Harmata, M.; Cai, Z.; Huang, C. Silver-catalyzed rearrangement of propargylic sulfinates: synthesis of

allenic sulfones. Org. Synth. 2011, 88, 309-316.
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50-mL, 2-neck round-bottom flask equipped with stir bar, rubber septum and nitrogen inlet adaptor
is charged with tosyl chloride (985 mg, 5.2 mmol) and dichloromethane (13 mL). Triethyl amine
(0.82 mL, 5.9 mmol) was added via syringe. The reaction flask was placed in an ice/water bath
(10-20 °C). An oven-dried conical flask is charged with triphenyl phosphine (1355 mg, 5.2 mmol),
dichloromethane (9 mL) and prop-2-yn-1,1-d2-1-ol containing diethyl ether and ethanol from
previous experiment (~200 mg, 3.44 mmol). The solution of triphenyl phosphine, dichloromethane
and prop-2-yn-1,1-d2-1-ol containing diethyl ether and ethanol was added dropwise via syringe
maintaining the temperature of the ice/water bath at 10-20 °C. The reaction was monitored by TLC
and *H NMR for 2.5 h. After 2.5 h, *H NMR showed complete consumption of prop-2-yn-1,1-d2-
1-ol. The reaction mixture was transferred to a beaker and 20% Et,O/hexane solution was added
to produce a white precipitate. The reaction mixture was vacuum filtered with water aspirator on
a pad of silica gel to remove the white precipitate and the residue rinsed with Et2O. The filtrate
was collected and concentrated under reduced pressure. The crude product was purified by silica
gel flash column chromatography (0-20% ethyl acetate/hexane) to yield the title compound as a
slightly pale-yellow oil (701 mg) which also contains side-product ethyl 4-methylbenzenesulfinate
in a ratio of title compound: side-product of 85:15. Both the title compound and the side-product
were characterized as a mixture.
HO-03-55

Me
[ 13/0%
D

(@] D
'H NMR (400 MHz, CDCls)

7.63(d, J=8.2 Hz, 2 H), 7.35 (d, J = 7.9 Hz, 2 H), 2.48 (5, 1 H), 2.44 (s, 3 H) ppm
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13C NMR (125 MHz, CDCls)
143.3,141.1,129.9 (2 C), 125.4 (2 C), 77.6, 76.2, 51.0 (quint, J = 23.2 Hz, 1 C), 21.6 ppm
HRMS (FTMS + p ESI) [M+H]" calcd for C1o0HsD20,S, 197.05998; found 197.05955

TLC Rf = 0.19 (15% ethyl acetate/hexane) [silica gel, UV]

“CL
5O

0]

ethyl 4-methylbenzenesulfinate

'H NMR (400 MHz, CDCl5)

7.60 (d, J = 8.2 Hz, 2 H), 7.33 (d, 2 H), 4.10 (dg, J = 15.5, 9.8 Hz, 1 H), 3.72 (dq, J = 15.5,
10.0 Hz 1 H), 2.42, 1.27 (t, J = 7.1 Hz, 3 H) ppm

13C NMR (125 MHz, CDCly)

142.7,141.9, 129.7 (2 C), 125.3 (2 C), 60.8, 21.6, 15.6 ppm

HRMS (FTMS + p ESI) [M+H]" calcd for CoH130,S, 185.0631; found 185.0627

TLC Rf = 0.19 (15% ethyl acetate/hexane) [silica gel, UV]

D D
Me\@\ __ AgSDF¢ (2 mol%) Me\@\ T
3/07/ DCM, 1t, Ny 3 h /S\J
o bb o "o
2d
1-methyl-4-((propa-1,2-dien-1-yl-3,3-d2)sulfonyl)benzene (2d): The synthesis of 1-
methyl-4-((propa-1,2-dien-1-yl-3,3-d2)sulfonyl)benzene was performed using a modified
literature procedure.?* A flame-dried 10 mL, 1-neck round-bottom flask equipped with stir bar and

rubber septum is charged with silver hexafluoroantimonate(V) (3.5 mg, 0.01 mmol) in glovebox.

The round-bottom flask equipped with stir bar and rubber septum with silver
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hexafluoroantimonate(V) is taken out of the glovebox and placed under N». A solution of prop-2-
yn-1-yl-1,1-d2 4-methylbenzenesulfinate (100.9 mg, 0.51 mmol) in dichloromethane (1 mL) is
added dropwise via syringe into the reaction flask over 5 min. The reaction is stirred for 3 h. The
reaction mixture is vacuum filtered (water aspirator) through a pad of silica gel in a fritted funnel
using diethyl ether as an eluent. The filtrate is collected and concentrated under reduced pressure.
The crude product is purified by silica gel flash column chromatography (5-30% ethyl
acetate/hexane) to yield the title compound as white solid (71 mg, 70%).

HO-03-57

D D
Me\©\ T
%
[ONe]
2d
IH NMR (600 MHz, CDCls)
7.79(d, J =8.2 Hz, 2 H), 7.34 (d, J = 8.0 Hz, 2 H), 6.24 (s, 1 H), 2.44 (s, 3 H) ppm
13C NMR (150 MHz, CDCls)
209.4, 144.8, 138.4, 130.0 (2 C), 127.8 (2 C), 101.5, 83.9 (quint, J = 26.2 Hz, 1 C), 21.8
ppm
HRMS (FTMS + p ESI) [M+H]" calcd for C1o0HsD20,S, 197.05998; found 197.05939

TLC Rf = 0.28 (20% ethyl acetate/hexane) [silica gel, UV]

Me Me
Et;N, PPh
LGRS L §
§\CI = DCM, 10-15 °C, N, S

0 Me O Me
But-3-yn-2-yl  4-methylbenzenesulfinate: The synthesis of but-3-yn-2-yl 4-
methylbenzenesulfinate was performed using a modified literature procedure.21 A flame-dried 50

mL, 3-neck round-bottom flask equipped with stir bar, rubber septum and nitrogen inlet adaptor is
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charged with tosyl chloride (1.00 g, 5.3 mmol) and dichloromethane (13 mL) were added. Triethyl
amine (0.8 mL, 5.8 mmol) was added via syringe. The flask was placed in an ice/water bath (10-
15 °C). An oven-dried beaker is charged with triphenyl phosphine (1.38 g, 5.3 mmol),
dichloromethane (13 mL) and 3-butyn-2-ol (0.4 mL, 5.3 mmol) and the beaker was swirled to form
a uniform solution. The solution of triphenyl phosphine, dichloromethane and 3-butyn-2-ol was
added dropwise via syringe over 15 min maintaining the temperature of the ice/water bath at 10-
15 °C. The reaction was monitored by TLC for 3 h. The reaction mixture was transferred to a
beaker and 20% Et20/hexane solution was added to produce a white precipitate. The suspension
was vacuum filtered with water aspirator on a pad of silica gel to remove the white precipitate and
the residue rinsed with Et20. The filtrate was collected and concentrated under reduced pressure.
The crude product was purified by silica gel flash column chromatography (0-20% ethyl
acetate/hexane) to yield the title compound in a 1:1 mixture of diastereoisomers as a clear, slightly
pale yellow oil (0.94 g, 86%). The diastereocisomeric compounds were not separated and also
previously characterized.?*

HO-02-119

Me\@\
/
/
S/O/

O Me

'H NMR (400 MHz, CDCls); characterized as 1:1 mixture of diastereoisomers

7.64 (d, J=7.9 Hz, 2 H), 7.34 (d, J = 8.0 Hz, 1 H), 7.32* (d, J = 8.0 Hz, 1 H), 5.05-4.96
(m, 1 H), 2.64* (d, J = 1.8 Hz, 0.5 H), 2.42 (s, 3 H), 2.39 (d, J = 1.9 Hz, 0.5 H), 1.59 (d, J = 6.7
Hz, 1.5 H), 1.53* (d, J = 6.7 Hz, 1.5 H) ppm

* where second diastereoisomer was distinguishable
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13C NMR (100 MHz, CDCl3)

143.1, 141.8, 142.4*, 129.84, 129.76, 125.6, 125.2, 82.4, 82.1*, 75.2*, 74.6, 64.0*, 62.1,
23.9, 23.1*, 21.7 ppm.

* where second diastereoisomer was distinguishable

TLC Rf = 0.25 (10% ethyl acetate/hexane) [silica gel, UV]

Me
Me Me ‘T
AgSbFg (2 mol%) V
o Z ]
S DCM, rt, Ny 4 h S

0O Me oo
4.29p

1-(buta-1,2-dien-1-ylsulfonyl)-4-methylbenzene (4.29b): The synthesis of 1-(buta-1,2-
dien-1-ylsulfonyl)-4-methylbenzene was performed using a modified literature procedure.?* A
flame-dried 15 mL, 1-neck round-bottom flask equipped with stir bar and rubber septum is charged
with silver hexafluoroantimonate(V) (31 mg, 0.09 mmol) in glovebox. The round-bottom flask
equipped with stir bar and rubber septum with silver hexafluoroantimonate(V) was taken out of
the glovebox and a solution of but-3-yn-2-yl 4-methylbenzenesulfinate (0.93 g, 4.5 mmol) in
dichloromethane (9 mL) was added dropwise via the syringe into the reaction flask over 5 min.
The reaction was monitored by TLC and stirred for 4 h. The reaction mixture was vacuum filtered
with water aspirator on a pad of silica gel with Et2O. The filtrate was collected and concentrated
under reduced pressure. The crude product was purified by silica gel flash column chromatography
(0-30% ethyl acetate/hexane) to yield the title compound as clear oil which crystallizes slowly over

time in the freezer (0.80 g, 86%). The compound was previously characterized.?*
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HO-02-120

Me

Me ‘r

5

(O]

4.29b
'H NMR (400 MHz, CDCls)
7.78 (d,J =8.2 Hz, 2 H), 7.33 (d, J = 8.2 Hz, 2 H), 6.14 (dg, J = 7.5, 3.0 Hz, 1 H), 5.80

(quin, J=7.4 Hz, 1 H), 2.44 (s, 3 H), 1.78 (dd, J = 7.4, 3.0 Hz, 3 H) ppm

13C NMR (100 MHz, CDCls)
206.2, 144.5, 138.6, 129.9 (2 C), 127.7 (2 C), 100.8, 96.1, 21.8, 13.1 ppm
HRMS (FTMS + p ESI) [M+H]" calcd for C11H1302S, 209.0631; found 209.0627

TLC Rf = 0.29 (20% ethyl acetate/hexane) [silica gel, UV]

DCM, 10-15 °C, N, S
0

o

But-2-yn-1-yl  4-methylbenzenesulfinate: The synthesis of but-2-yn-1-yl 4-
methylbenzenesulfinate was performed using a modified literature procedure.?* A flame-dried 50
mL, 3-neck round-bottom flask equipped with stir bar, rubber septum and nitrogen inlet adaptor is
charged with tosyl chloride (1.00 g, 5.3 mmol) and dichloromethane (13 mL). Triethyl amine (0.8
mL, 5.8 mmol) was added via syringe. The flask was placed in an ice/water bath (10-15 °C). An
oven-dried beaker is charged with triphenyl phosphine (1.38 g, 5.3 mmol), dichloromethane (13
mL) and but-2-yn-1-ol (0.39 mL, 5.3 mmol) and the beaker was swirled to form a uniform solution.
The solution of triphenyl phosphine, dichloromethane and but-2-yn-1-ol was added dropwise via
syringe over 20 min maintaining the temperature of the ice/water bath at 10-15 °C. The reaction

was monitored by TLC for 5.5 h. The reaction mixture was transferred to a beaker and 20%
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Et20/hexane solution was added to produce a white precipitate. The suspension was vacuum
filtered with water aspirator on a pad of silica gel to remove the white precipitate and the residue
rinsed with Et20. The filtrate was collected and concentrated under reduced pressure. The crude
product was purified by silica gel flash column chromatography (0-20% ethyl acetate/hexane) to
yield the title compound as a pale yellow oil (0.80 g, 73%). The compound was previously
characterized.?’

HO-02-136

Me Me
O\S/o\/

(o]

'H NMR (400 MHz, CDCls)

7.62 (d, J =8.2 Hz, 2 H), 7.34 (d, J = 7.9 Hz, 2 H), 4.58 (qd, J = 15.0, 2.4 Hz, 1 H), 4.27
(qd, J=14.9, 2.4 Hz, 1 H), 2.43 (s, 3 H), 1.82 (t, J = 2.4 Hz, 3 H) ppm

Spectrum contains impurities at 7.46, 7.23, 7.22, 7.20, 7.14, 2.38, 1.58-1.57 ppm.

13C NMR (100 MHz, CDCls)

143.1, 141.6, 129.9 (2 C), 125.5 (2 C), 84.9, 73.3, 52.8, 21.7, 3.8 ppm.

TLC Rf = 0.34 (10% ethyl acetate/hexane) [silica gel, UV]

1l DCM, rt, N2Y 4 h ,/S\\ 1
O (2]

4.29¢c

Me Me
\©\ Me agsbFs 2 mol%) H /©/
> 6 b
S/o\/ J /@/O\s
Me
Me

(27) Harmata, M.; Huang, C. Silver-Catalyzed Rearrangement of Propargylic Sulfinates to Allenic Sulfones.

Adv. Synth. Catal. 2008, 350, 972-974.
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1-(buta-2,3-dien-2-ylsulfonyl)-4-methylbenzene (4.29c): The synthesis of 1-(buta-2,3-
dien-2-ylsulfonyl)-4-methylbenzene was performed using a modified literature procedure.21 A
flame-dried 15 mL, 1-neck round-bottom flask equipped with stir bar and rubber septum is charged
with silver hexafluoroantimonate(V) (26 mg, 0.08 mmol) in glovebox. The round-bottom flask
equipped with stir bar and rubber septum with silver hexafluoroantimonate(V) was taken out of
the glovebox and a solution of but-2-yn-1-yl 4-methylbenzenesulfinate (0.79 g, 3.8 mmol) in
dichloromethane (8 mL) was added dropwise via the syringe into the reaction flask over 5 min.
The reaction was monitored by TLC for 4 h. The reaction mixture was vacuum filtered with water
aspirator on a pad of silica gel with Et20. The filtrate was collected and concentrated under
reduced pressure. The crude product was purified by silica gel flash column chromatography (0-
30% ethyl acetate/hexane) to yield the title compound as white crystals (0.63 g, 80%). The
compound was previously characterized.?” Chromatographic separation also isolated p-tolyl 4-
methylbenzenesulfinate (white crystals) as a side product of the reaction (64 mg, 7%) which is
also a known compound.?

HO-02-137

Me |

o e
'H NMR (400 MHz, CDCl5)
7.77 (d, J = 8.2 Hz, 2 H), 7.33 (d, J = 8.0 Hz, 2 H), 5.29 (q, J = 3.1 Hz, 2 H), 2.44 (s, 3 H),

1.93 (t, J=3.1 Hz, 3 H) ppm

(28) Huang, M.; Hu, L.; Shen, H.; Liu, Q.; Hussain, M. I.; Pan, J.; Xiong, Y. Sulfination of alcohols with

sodium sulfinates promoted by BF;@OEt,: an unexpected access. Green Chem. 2016, 18, 1874—1879.
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13C NMR (100 MHz, CDCl3)

208.0, 144.6, 137.0, 129.8 (2 C), 128.3 (2 C), 108.5, 82.9, 21.8, 13.7 ppm

HRMS  (FTMS + p ESI) [M+H]" calcd for C11H130,S, 209.0631; found 209.0628
TLC Rf = 0.30 (20% ethyl acetate/hexane) [silica gel, UV]

HO-02-137-Side-Product

Me
O. /©/
fog
Me ©

IH NMR (400 MHz, CDCls)

7.52 (d, J = 8.3 Hz, 2 H), 7.32-7.28 (m, 4 H), 7.20 (d, J = 8.0 Hz, 2 H), 2.48 (s, 3 H), 2.44

(s, 3 H) ppm

ppm

3C NMR (100 MHz, CDCls)

144.7, 142.2, 140.7, 136.6 (2 C), 130.3 (2 C), 129.5 (2 C), 127.8 (2 C), 124.8, 21.8, 21.6

HRMS (FTMS + p ESI) [M+H]* calcd for C14H1502S, 247.0787; found 247.0785

TLC Rf = 0.55 (20% ethyl acetate/hexane) [silica gel, UV]
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Appendix A.4 Characterization of Disulfone

Ts

Ts
4.32a

4,4'-(prop-2-ene-1,2-diyldisulfonyl)bis(methylbenzene) (5a): The byproduct disulfone,
4,4'-(prop-2-ene-1,2-diyldisulfonyl)bis(methylbenzene) (5a) obtained in the reaction of picolyl
amide and allenyl sulfone was previously characterized.?

HO-02-81

Ts

p

4.32a

'H NMR (400 MHz, CDCl5)

7.63-7.59 (m, 4 H), 7.28 (dd, J = 8.3, 2.3 Hz, 4 H), 6.64 (d, J = 0.8 Hz, 1 H), 6.50 (d, J =
1.0 Hz, 1 H), 4.03 (d, J = 0.7 Hz, 2 H), 2.44 (d, J = 1.9 Hz, 6 H) ppm

13C NMR (100 MHz, CDCls)

145.5, 145.3, 139.9, 135.0, 134.9, 130.6, 130.1 (2 C), 130.0 (2 C), 128.7 (2 C), 128.6 (2
C), 54.3, 21.88, 21.85 ppm

HRMS (FTMS + p ESI) [M+H]" calcd for C17H1904S>, 351.0719; found 351.0717

(29) (a) Chang, M.-Y.; Wu, M.-H. Reactions of Propargylic Bromides with Sodium Sulfinates. Synlett, 2014,
25, 411-416. (b) Ndfez Jr., A.; Martin, M. R.; Fraile, A.; Ruano, J. L. G. Abnormal Behaviour of Allenylsulfones
under Lu’s Reaction Conditions: Synthesis of Enantiopure Polyfunctionalised Cyclopentenes. Chem. Eur. J. 2010, 16,

5443-5453.
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TLC Rr = 0.58 (50% ethyl acetate/hexane) [silica gel, UV]

Me |
\©\ J 1. PhSH, Et;N, MeOH :§f2ph
S

N Ts
o’ Yo 2 mCPBA,DCM
4.32c

1-methyl-4-((2-(phenylsulfonyl)allyl)sulfonyl)benzene (4.32c): The synthesis of 1-
methyl-4-((2-(phenylsulfonyl)allyl)sulfonyl)benzene was performed using a modified literature
procedure.30 A flame-dried 15 mL, 1-neck round-bottom flask equipped with stir bar and rubber
septum is charged with allenyl sulfone, 1-methyl-4-(propa-1,2-dien-1-ylsulfonyl)benzene (100
mg, 0.52 mmol), thiophenol (0.06 mL, 0.6 mmol), Et3N (0.01 mL, 0.05 mmol) and methanol (2
mL) at room temperature. The reaction mixture was stirred for 30 min. The solvent was removed
under reduced pressure. The residue was dissolved in dichloromethane (5 mL) and meta-
Chloroperoxybenzoic acid (300 mg, 1.6 mmol) was added into the reaction flask. The reaction
mixture was stirred for 1 h at room temperature and monitored by TLC. The reaction did not go to
completion. The crude reaction mixture was diluted with dichloromethane, washed with NaHSO3
solution, then saturated NaHCO3 solution, dried over magnesium sulfate, vacuum filtered with

water aspirator, and concentrated under reduced pressure. The crude product was purified by silica

(30) Nafiez Jr., A.; Martin, M. R.; Fraile, A.; Ruano, J. L. G. Abnormal Behaviour of Allenylsulfones under
Lu’s Reaction Conditions: Synthesis of Enantiopure Polyfunctionalised Cyclopentenes. Chem. Eur. J. 2010, 16, 5443—

5453.
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gel flash column chromatography (0-50% ethyl acetate/hexane) to yield the title compound as a
white solid (124 mg, 71%). The compound was previously characterized.*

HO-02-158
SO,Ph
4.3:56
H NMR (300 MHz, CDCls)
7.74 (dd, J = 7.2, 1.4 Hz, 2 H), 7.66-7.60 (m, 3 H), 7.50 (t, J = 7.9 Hz, 2 H), 7.28 (d, J =
8.1 Hz, 2 H), 6.68 (d, J = 1.0 Hz, 1 H), 6.52 (d, J = 1.1 Hz, 1 H), 4.04 (d, J = 0.9 Hz, 2 H), 2.44 (s,
3 H) ppm
3C NMR (75 MHz, CDCly)
145.5, 139.8, 138.0, 135.0, 134.1, 131.2, 130.1 (2 C), 129.5 (2 C), 128.7 (2 C), 128.6 (2
C), 54.3, 21.9 ppm

HRMS (FTMS + p ESI) [M+H]* calcd for C16H1704S2, 337.0563; found 337.0560

TLC Rf = 0.52 (50% ethyl acetate/hexane) [silica gel, UV]

Appendix A.5 Synthesis of Vinyl Sulfones

Ts Ts
0 Me I o o
Yy L +
H ‘ S - = N X N X
N~ " \ \
0" 0 50°C,N, H H
N~ N~

4.28a 4.29a 4.30a 4.31a
N-(1-(pyridin-2-yl)-3-tosylbut-3-en-1-yl)benzamide (4.30a). Follows general procedure C.
4.28a (40 mg, 0.19 mmol), 1-methyl-4-(propa-1,2-dien-1-ylsulfonyl)benzene (74 mg, 0.38 mmol),

THF (1 mL). The crude product was purified by silica gel flash chromatography (20-100% ethyl
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acetate/hexane) to yield the title compound as a red-brown solid (51.7 mg, 67%, 98:2). The product
selectivity was measured from the *H NMR integration ratios of the purified fractions. The title
compound 4.30a was characterized as a mixture of 4.30a:4.31a (Table 4-1, entry 6).

HO-02-173

Ts
0}
N ‘ N
H N~

4.30a

'H NMR (400 MHz, CDCls)

8.54 (d,J = 4.7 Hz, 1 H), 7.86 (d, J = 8.1 Hz, 2 H), 7.80 (d, J = 8.1 Hz, 2 H), 7.52-7.42 (m,
3H),7.68 (brd,J=7.4Hz, 1 H), 7.64 (dt, J= 7.7, 1.6 Hz, 1 H), 7.33 (d, J = 8.1 Hz, 2 H), 7.28 (d,
J=8.0Hz, 1 H), 7.21-7.17 (m, 1 H), 6.34 (s, 1 H), 5.64 (s, 1 H), 5.53 (g, J = 7.4 Hz, 1 H), 3.00
(dd, J=15.2, 7.7 Hz, 1 H), 2.79 (dd, J = 15.2, 6.4 Hz, 1 H), 2.43 (s, 3 H) ppm

Spectrum contains ethyl acetate resonances at 4.2, 2.1 and 1.3 ppm.

13C NMR (100 MHz, CDCls)

166.9, 158.7, 149.5, 146.7, 144.9, 136.9, 135.3, 134.2, 131.8, 130.1 (2 C), 128.74 (2 C),
128.69 (2 C), 127.3 (2 C), 126.7, 122.9, 122.5, 53.9, 35.6, 21.8 ppm

IR 3346, 2923, 1644, 1522, 1485, 1435, 1288, 1132, 1080, 712 cm™*

HRMS (FTMS + p ESI) [M+H]" calcd for C23H23N203S, 407.1424; found 407.1408

TLC Rf=0.19 (50% EtOAc/Hex) [silica gel, UV]

MP =56-60 °C
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o
N N J EOH
H |
N~ o 50 c N,
4.28a 4.20a

430a 431a

N-(1-(pyridin-2-yl)-2-(tosylmethyl)allyl)benzamide (4.30a): Follows general procedure C.
4.28a (40 mg, 0.19 mmol), 1-methyl-4-(propa-1,2-dien-1-ylsulfonyl)benzene (74 mg, 0.38 mmol),
THF (1 mL). The crude product was purified by silica gel flash chromatography (20-100% ethy!
acetate/hexane) to yield the title compound (minor product) red-brown solid (46.2 mg, 53%,
63:37). The product selectivity was measured from the *H NMR integration ratios of the purified
fractions. The title compound 4.31a resonances were observed as a mixture of 4.30a:4.31a (Table
4-1, entry 5).

HO-02-185

Ts

0
©)‘\N | AN
H
N
4312 7

IH NMR (600 MHz, CDCl5)

8.56 (d, J = 4.6 Hz, 1 H), 8.24 (d, J= 7.1 Hz, 1 H), 7.91 (d, J = 7.4 Hz, 2 H), 7.69 (t, J =
7.7 Hz, 1 H), 7.23-7.21 (m, 1 H), 6.03 (d, J = 7.3 Hz, 1 H), 5.37 (s, 1 H), 5.16 (s, 1 H), 4.07 (d, J
=14.1 Hz, 1 H), 3.75(d, J = 14.1 Hz, 1 H), 2.38 (3 H) ppm. Note: Some *H NMR resonances are
not reported as these signals are overlapping with the major vinyl sulfone isomer.

13C NMR (150 MHz, CDCls)

166.7, 157.4, 149.2, 144.9, 137.1, 136.2, 135.2, 134.0, 131.7, 129.8 (2 C), 128.6 (4 C),
127.3 (2 C), 124.2,123.1, 123.0, 59.8, 58.3, 21.7 ppm

IR3362, 2926, 1653, 1594, 1518, 1480, 1294, 1142, 1081, 909, 724 cm™

HRMS  (FTMS + p ESI) [M+H]" calcd for CasHasN20sS, 407.1424; found 407.1400

183



TLC Rf = 0.63 (100% EtOAc/Hex) [silica gel, UV]

Shp O = x st

4.28b 4.30b
2-methyl-N-(1-(pyridin-2-yl)-3-tosylbut-3-en-1-yl)benzamide (4.30b). Follows general
procedure C. 4.28b (45.3 mg, 0.2 mmol), 1-methyl-4-(propa-1,2-dien-1-ylsulfonyl)benzene (78
mg, 0.4 mmol), THF (1 mL). The crude product was purified by silica gel flash chromatography
(20-70% ethyl acetate/hexane) to yield the title compound as a light-orange solid. The product
selectivity was measured from the *H NMR integration ratios of the purified fractions. Run 1 (55
mg, 65%, 96:4); Run 2 (52.6 mg, 63%, 96:4).

HO-03-24

Ts

Me O
N ‘\
HN/

4.30b

'H NMR (400 MHz, CDCls)

8.51 (d, J = 4.6 Hz, 1 H), 7.81 (d, J = 8.3 Hz, 2 H), 7.65 (dt, J = 7.7, 1.8 Hz, 1 H), 7.36 (d,
J=7.7Hz, 1H),7.33-7.28 (m, 4 H), 7.21-7.17 (m, 3 H), 7.03 (d, J = 7.9 Hz, 1 H), 6.36 (br s, 1
H), 5.68 (s, 1 H), 5.56 (g, J = 7.5 Hz, 1 H), 2.97 (ddd, J = 15.4, 7.6, 0.9 Hz, 1 H), 2.77 (dd, J =
15.2,6.9 Hz, 1 H), 2.42 (s, 3 H), 2.39 (s, 3 H) ppm

2-methyl-N-(1-(pyridin-2-yl)-2-(tosylmethyl)allyl)benzamide (4.31b) resonances at: 6.07,

5.34,5.16, 3.76 ppm
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13C NMR (100 MHz, CDCls)

169.5, 158.4, 149.6, 146.8, 144.9, 136.9, 136.4, 136.0, 135.3, 131.2, 130.1, 130.1 (2 C),
128.8 (2 C), 127.0, 126.2, 125.9, 123.0, 122.8, 53.2, 36.0, 21.8, 20.1 ppm

IR 3338, 2982, 1647, 1592, 1506, 1436, 1289, 1133, 1081, 733 cm:

HRMS  (FTMS - p ESI) [M-H]" calcd for C2sH23N203S, 421.1424; found 421.1412

TLC Rf = 0.24 (50% EtOAc/Hex) [silica gel, UV]

MP =76-82 °C
Ts Ts
. F O F O
N N 4 JI THF +
H l S - X X
NP2 Z N | N |
00 50°C, H H

N~ N~

4.28¢ 4202 480N 4.30c 431c

2-fluoro-N-(1-(pyridin-2-yl)-3-tosylbut-3-en-1-yl)benzamide (4.30c). Follows general
procedure C. 4.28c (46.1 mg, 0.2 mmol), 1-methyl-4-(propa-1,2-dien-1-ylsulfonyl)benzene (78
mg, 0.4 mmol), THF (1 mL). The crude product was purified by silica gel flash chromatography
(20-60% ethyl acetate/hexane) to yield the title compound as a pale-yellow solid. The product
selectivity was measured from the *H NMR integration ratios of the purified fractions. Run 1 (54.5
mg, 64%, 95:5); Run 2 (54.1 mg, 64%, 97:3).

HO-03-30

Ts
F O
N ‘ N
H N~

4.30c

'H NMR (400 MHz, CDCls)
8.55 (d, J = 4.7 Hz, 1 H), 8.03 (dt, J = 7.9, 1.5 Hz, 1 H), 7.86-7.84 (m, 1 H), 7.81 (d, J =

8.2 Hz, 2 H), 7.63 (dt, J = 7.6, 1.4 Hz, 1 H), 7.48-7.42 (m, 1 H), 7.31 (d, J = 8.2 Hz, 2 H), 7.27-
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7.24 (m, 2 H), 7.22-7.17 (m, 1 H), 7.11 (dd, J = 11.8, 8.3 Hz, 1 H), 6.33 (s, 1 H), 5.61 (s, 1 H),
5.63-5.57 (M, 1 H), 2.99 (dd, J = 15.1, 7.2 Hz, 1 H), 2.80 (dd, J = 15.2, 7.4 Hz, 1 H), 2.41 (s, 3 H)
ppm

2-fluoro-N-(1-(pyridin-2-yl)-2-(tosylmethyl)allyl)benzamide (4.31c) resonances at: 8.58,
6.09, 5.41, 5.23, 4.04, 3.73 ppm

13C NMR (100 MHz, CDCls)

162.9 (d, J = 3.1 Hz), 160.8 (d, J = 248.4 Hz), 158.2, 149.6, 146.6, 144.8, 136.8, 135.4,
133.4 (d, J = 9.3 Hz), 132.0 (d, J = 1.9 Hz), 130.1 (2 C), 128.7 (2 C), 126.5, 124.8 (d, J = 3.1 Hz),
122.9 (2 C), 121.2 (d, J = 11.5 Hz), 116.2 (d, J = 24.4 Hz), 53.5, 36.1, 21.8 ppm

IR 3344, 2926, 1634, 1591, 1522, 1480, 1313, 1291, 1133, 731 cm™

HRMS  (FTMS + p ESI) [M+H]* calcd for C23H22N203SF, 425.1330; found 425.1338

TLC Rf=0.29 (50% EtOAc/Hex) [silica gel, UV]

MP = 85-92 °C
Ts Ts
OMe O Me I
: OMe O OMe O
N N+ \©\ P ¢ soqe
H Nl N > N X N X
Z o0 s50°C, H Ho
N~ N~
4.28d 4202 48NN 4.30d 431d

2-methoxy-N-(1-(pyridin-2-yl)-3-tosylbut-3-en-1-yl)benzamide (4.30d). Follows general
procedure D. 4.28d (49 mg, 0.2 mmol), 1-methyl-4-(propa-1,2-dien-1-ylsulfonyl)benzene (78 mg,
0.4 mmol), THF (1 mL). The crude product was purified by silica gel flash chromatography (20-
70% ethyl acetate/hexane) to yield the title compound as a red-brown solid. The product selectivity
was measured from the *H NMR integration ratios of the purified fractions. Run 1 (49.6 mg, 56%,

96:4; starting material 2-picolyl amide 4.28d recovered 7.3 mg; yield based on recovered starting
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material 66%); Run 2 (45.9 mg, 52%, 97:3; starting material 2-picolyl amide 4.28d recovered 10.1
mg; yield based on recovered starting material 65%).
HO-03-40

Ts

OMe O
N ‘ N
H N~

4.30d

'H NMR (400 MHz, CDCls)

8.84 (d, J = 7.5 Hz, 1 H), 8.55 (dd, J = 4.8, 0.8 Hz, 1 H), 8.14 (dd, J = 7.8, 1.8 Hz, 1 H),
7.79 (d, J = 8.3 Hz, 2 H), 7.61 (dt, J = 7.7, 1.8 Hz, 1 H), 7.44 (dt, J = 7.8, 1.8 Hz, 1 H), 7.31-7.26
(m, 3 H), 7.17 (ddd, J = 7.5, 4.9, 1 Hz, 1 H), 7.05 (dt, J = 7.7, 0.9 Hz, 1 H), 6.96 (d, J = 8.2 Hz, 1
H), 6.34 (s, 1 H), 5.70 (s, 1 H), 5.57 (g, J = 7.4 Hz, 1 H), 3.96 (s, 3 H), 3.02 (dd, J = 15.5, 7.7 Hz,
1 H), 2.81(dd, J=15.5, 6.9 Hz, 1 H), 2.41 (s, 3 H) ppm

2-methoxy-N-(1-(pyridin-2-yl)-2-(tosylmethyl)allyl)benzamide (4.31d) resonances at:
6.10, 5.41 ppm

13C NMR (100 MHz, CDCls)

164.9, 159.1, 157.9, 149.6, 147.0, 144.6, 136.8, 135.7, 133.0, 132.3, 130.0 (2 C), 128.7 (2
C), 125.9,122.8,122.7,121.5, 121.3, 111.5, 56.1, 53.5, 35.6, 21.8 ppm

IR 3370, 2925, 1647, 1596, 1517, 1482, 1290, 1134, 1081, 731 cm™

HRMS (FTMS + p ESI) [M+H]" calcd for C24H25N204S, 437.1530; found 437.1517

TLC R =0.27 (100% ethyl acetate) [silica gel, UV]

MP =49-56 °C
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4.29a

N-(1-(pyridin-2-yl)-3-tosylbut-3-en-1-yl)-1-naphthamide  (4.30e).  Follows general
procedure C. 4.28e (52.5 mg, 0.2 mmol), 1-methyl-4-(propa-1,2-dien-1-ylsulfonyl)benzene (78
mg, 0.4 mmol), THF (1 mL). The crude product was purified by silica gel flash chromatography
(20-70% ethyl acetate/hexane) to yield the title compound as a light-brown solid. The product
selectivity was measured from the *H NMR integration ratios of the purified fractions. Run 1 (52.8
mg, 58%, 94:6); Run 2 (56.7 mg, 62%, 95:5).

HO-03-22

S

4.30e
'H NMR (400 MHz, CDCls)
8.52 (d, J = 4.1 Hz, 1 H), 8.29-8.26 (m, 1 H), 7.92 (d, J = 8.2 Hz, 1 H), 7.87-7.82 (m, 3 H),
7.67 (dt, J=7.7,1.7 Hz, 1 H), 7.62 (dd, J = 7.0, 1.0 Hz, 1 H), 7.54-7.49 (m, 2 H), 7.45 (dd, J =
7.2,8.2 Hz, 1 H), 7.34 (d, J = 7.8 Hz, 1 H), 7.31-7.29 (m, 3 H), 7.21 (ddd, J = 7.8, 4.8, 0.9 Hz, 1
H), 6.39 (s, 1 H), 5.72 (s, 1 H), 5.69 (q, J = 7.6 Hz, 1 H), 3.04 (dd, J = 15.2, 7.6 Hz, 1 H), 2.83 (dd,
J=15.3,6.8 Hz, 1 H), 2.40 (s, 3 H) ppm
N-(1-(pyridin-2-yl)-2-(tosylmethyl)allyl)-1-naphthamide (4.31e) resonances at: 6.20, 5.38,

5.19, 4.16, 3.81 ppm
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13C NMR (100 MHz, CDCl3)

169.0, 158.4, 149.6, 146.8, 144.9, 136.9, 135.3, 134.1, 133.9, 131.0, 130.4, 130.1 (2 C),
128.8 (2 C), 128.4, 127.2, 126.5, 126.4, 125.6, 125.3, 124.9, 123.0, 122.9, 53.4, 36.2, 21.8 ppm

IR 3330, 2927, 1651, 1592, 1515, 1291, 1134, 1082, 782, 732 cm™*

HRMS  (FTMS + p ESI) [M+H]* calcd for C27H25N203S, 457.1580; found 457.1602

TLC Rf = 0.26 (50% EtOAc/Hex) [silica gel, UV]

MP =105-114 °C

G)LTO O iZZCN G)L % O*fj

4.30f 4.31f

N-(1-(pyridin-2-yl)-3-tosylbut-3-en-1-yl)picolinamide (4.30f). Follows general procedure
C. 4.28f (42.6 mg, 0.2 mmol), 1-methyl-4-(propa-1,2-dien-1-ylsulfonyl)benzene (78 mg, 0.4
mmol), THF (1 mL). The crude product was purified by silica gel flash chromatography (20-70%
ethyl acetate/hexane) to yield the title compound as an orange solid. The product selectivity was
measured from the *H NMR integration ratios of the purified fractions. Run 1 (54 mg, 66%, 99:1);
Run 2 (49.7 mg, 61%, 98:2).

HO-03-27

Ts
(o]
S N A
\ Ho
_N N~
4.30f

IH NMR (400 MHz, CDCls)
8.88 (d, J = 8.5 Hz, 1 H), 8.57-8.56 (m, 2 H), 8.15 (d, J = 7.8 Hz, 1 H), 7.85-7.79 (m, 3 H),

7.61(dt, J=7.6, 1.8 Hz, 1 H), 7.41 (ddd, J = 7.7, 4.8, 1.1 Hz, 1 H), 7.31 (d, J = 8.0 Hz, 2 H), 7.26-
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7.24 (m, 1 H), 7.18 (ddd, J = 7.7, 4.8, 0.9 Hz, 1 H), 6.32 (s, 1 H), 5.66 (s, 1 H), 5.54 (q, J = 7.4 Hz,
1 H), 2.99 (dd, J = 15.4, 7.5 Hz, 1 H), 2.88 (dd, J = 15.4, 7.2 Hz, 1 H), 2.42 (s, 3 H) ppm

N-(1-(pyridin-2-yl)-2-(tosylmethyl)allyl)picolinamide (4.31f) resonances at: 6.08, 5.37,
5.20, 4.04, 3.75 ppm

13C NMR (100 MHz, CDCls)

163.9, 158.6, 149.8, 148.4, 146.7, 144.7, 137.4, 136.8, 135.6, 130.0 (2 C), 128.7 (2 C),
126.4,126.2, 122.9 (2 C), 122.4,52.8, 35.9, 21.8 ppm

IR 3366, 2923, 1669, 1591, 1506, 1432, 1289, 1132, 1081, 731 cm™

HRMS (FTMS + p ESI) [M+H]* calcd for C22H22NsO3S, 408.1376; found 408.1390

TLC Rf = 0.66 (100% EtOAC) [silica gel, UV]

MP =64-75 °C

4.28¢g 4292 48N N 4309 4. 31g
N-(1-(pyridin-2-yl)-3-tosylbut-3-en-1-ythiophene-2-carboxamide  (4.30g).  Follows
general procedure C. 4.28g (43.7 mg, 0.2 mmol), 1-methyl-4-(propa-1,2-dien-1-
ylsulfonyl)benzene (78 mg, 0.4 mmol), THF (1 mL). The crude product was purified by silica gel
flash chromatography (20-70% ethyl acetate/hexane) to yield the title compound as a light-brown
solid. The product selectivity was measured from the *H NMR integration ratios of the purified

fractions. Run 1 (47.7 mg, 58%, 94:6); Run 2 (46.1 mg, 56%, 94:6).
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HO-03-29

ey

4.30g

'H NMR (400 MHz, CDCls)

8.54 (d, J = 4.7 Hz, 1 H), 7.80 (d, J = 8.2 Hz, 2 H), 7.66-7.62 (m, 3 H), 7.48 (dd, J = 5.0,
0.9 Hz, 1 H), 7.34 (d, J = 8.2 Hz, 2 H), 7.29 (d, J = 7.8 Hz, 1 H), 7.19 (dd, J = 7.5, 5.3 Hz, 1 H),
7.08 (dd, J = 4.9, 3.8 Hz, 1 H), 6.33 (5, 1 H), 5.62 (s, 1 H), 5.46 (q, J = 7.4 Hz, 1 H), 2.98 (dd, J =
15.1, 7.8 Hz, 1 H), 2.77 (dd, J = 15.2, 6.3 Hz, 1 H), 2.43 (s, 3 H) ppm

N-(1-(pyridin-2-yl)-2-(tosylmethyl)allyl)thiophene-2-carboxamide (4.31g) resonances at:
8.58, 8.15, 5.98, 5.38, 4.09, 3.75 ppm

13C NMR (100 MHz, CDCls)

161.6, 158.6, 149.5, 146.5, 145.0, 139.0, 137.0, 135.2, 130.5, 130.2 (2 C), 128.7 (2 C),
128.4,127.8, 127.0, 122.9, 122.5,54.1, 35.4, 21.8 ppm

IR 3344, 2923, 1635, 1592, 1533, 1508, 1438, 1289, 1136, 1081, 730 cm™

HRMS (FTMS + p ESI) [M+H]" calcd for C21H21N203S>, 413.0988; found 413.1008

TLC Rf=0.19 (50% EtOAc/Hex) [silica gel, UV]

MP =90-98 °C
ﬁ/\) \©\ J THE
50 °c
4.28h 429a 48h,N; 4. 30h 4. 31h

N-(1-(pyridin-2-yl)-3-tosylbut-3-en-1-yl)acetamide (4.30h). Follows general procedure C.

4.28h (30.0 mg, 0.2 mmol), 1-methyl-4-(propa-1,2-dien-1-ylsulfonyl)benzene (78 mg, 0.4 mmol),
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THF (1 mL). The crude product was purified by silica gel flash chromatography (50-100% ethyl
acetate/hexane then 10-40% acetone/ethyl acetate) to yield the title compound as a red-brown
solid. The product selectivity was measured from the NMR integration ratios of the purified
fractions. Run 1 (41.4 mg, 60%, 94:6); Run 2 (39.1 mg, 57%, 94:6).

HO-03-23

(0]
Me)L N ‘ N
H N~

4.30h

'H NMR (400 MHz, CDCly)

8.50 (d, J = 4.6 Hz, 1 H), 7.78 (d, J = 8.2 Hz, 2 H), 7.61 (dt, J = 7.7, 1.6 Hz, 1 H), 7.34 (d,
J=8.2Hz, 2 H), 7.21-7.16 (m, 2 H), 6.80 (d, J = 7.0 Hz, 1 H), 6.30 (s, 1 H), 5.55 (s, 1 H), 5.31 (q,
J=7.4Hz 1H),2.85(dd,J =151, 7.4 Hz, 1 H), 2.65 (dd, J = 15.1, 6.9 Hz, 1 H), 2.43 (s, 3 H),
1.98 (s, 3 H) ppm

N-(1-(pyridin-2-yl)-2-(tosylmethyl)allyl)acetamide (4.31h) resonances at: 8.53, 7.67, 5.22,
5.06, 5.83, 4.00, 3.67 ppm

13C NMR (100 MHz, CDCls)

169.8, 158.5, 149.5, 146.7, 144.9, 136.8, 135.3, 130.1 (2 C), 128.7 (2 C), 126.4, 122.9,
122.8,53.2, 35.7, 23.4, 21.8 ppm

IR 3283, 3056, 1655, 1593, 1531, 1435, 1289, 1135, 1081, 728 cm™*

HRMS (FTMS + p ESI) [M+H]" calcd for C1sH21N203S, 345.1267; found 345.1290

TLC Rf=0.17 (100% EtOAC) [silica gel, UV]

MP =117-122 °C
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Ts Ts
m Ay Y @ J w8 meﬁ
oo TN LT T
4.28i 4.29a 48 h, N, 4.30i 4.31i
2-phenyl-N-(1-(pyridin-2-yl)-3-tosylbut-3-en-1-yl)acetamide (4.30i). Follows general
procedure C. 4.28i (45.3 mg, 0.2 mmol), 1-methyl-4-(propa-1,2-dien-1-ylsulfonyl)benzene (78
mg, 0.4 mmol), THF (1 mL). The crude product was purified by silica gel flash chromatography
(20-70% ethyl acetate/hexane) to yield the title compound as a light-brown solid. The product
selectivity was measured from the *H NMR integration ratios of the purified fractions. Run 1 (52.5
mg, 62%, 92:8); Run 2 (50 mg, 59%, 92:8).

HO-03-33

Ts

'H NMR (400 MHz, CDCl5)

8.44 (d, J = 4.2 Hz, 1 H), 7.75 (d, J = 8.2 Hz, 2 H), 7.57 (dt, J = 7.7, 1.8 Hz, 1 H), 7.35-
7.24 (m, 7 H), 7.16-7.11 (m, 2 H), 6.77 (d, J = 7.6 Hz, 1 H), 6.23 (s, 1 H), 5.46 (s, 1 H), 5.30 (q, J
= 7.4 Hz, 1 H), 3.57-3.54 (m, 2 H), 2.79 (dd, J = 15.2, 7.5 Hz, 1 H), 2.62 (dd, J = 15.1, 6.8 Hz, 1
H), 2.44 (s, 3 H) ppm

2-phenyl-N-(1-(pyridin-2-yl)-2-(tosylmethyl)allyl)acetamide (4.31i) resonances at: 8.46,

7.64,5.82, 5.15, 5.00, 3.93 ppm
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13C NMR (100 MHz, CDCls)

170.6, 158.4, 149.4, 146.5, 144.8, 136.8, 135.4, 135.0, 130.1 (2 C), 129.4 (2 C), 129.0 (2
C), 128.7 (2 C), 127.3, 126.4, 122.8, 122.6, 53.1, 44.0, 35.6, 21.8 ppm

IR 3294, 2924, 1639, 1594, 1537, 1433, 1302, 1134, 1082, 735 cm™*

HRMS  (FTMS + p ESI) [M+H]* calcd for C24H25N203S, 421.1580; found 421.1571

TLC Rf = 0.33 (70% EtOAc/Hex) [silica gel, UV]

MP =109-114 °C

Ts Ts

0
| @
Hﬁ@ JL \)k N \)k N
N A 0”0 50°C, N, ‘ \

N
4.28) 4.29a 4. 301 = 4 3

N-(1-(pyridin-2-yl)-3-tosylbut-3-en-1-yl)acrylamide (4.30j). Follows general procedure C.
4.28j (32.5 mg, 0.2 mmol), 1-methyl-4-(propa-1,2-dien-1-ylsulfonyl)benzene (78 mg, 0.4 mmol),
THF (1 mL). The crude product was purified by silica gel flash chromatography (20-100% ethyl
acetate/hexane) to yield the title compound as a red brown solid. The product selectivity was
measured from the *H NMR integration ratios of the purified fractions. Run 1 (49.9 mg, 70%,
94:6); Run 2 (49.3 mg, 69%, 92:8).

HO-03-48

Ts
0
\)kN A
H
N
430f 7

'H NMR (500 MHz, CDCls)
8.51(d, J=4.6 Hz, 1 H), 7.78 (dd, J = 8.0, 0.9 Hz, 2 H), 7.62 (t, J = 7.6 Hz, 1 H), 7.34 (d,

J=7.8Hz, 2 H),7.22 (d, J = 7.8 Hz, 1 H), 7.19-7.16 (m, 1 H), 7.00 (br s, 1 H), 6.31-6.26 (m, 2
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H), 6.13 (dd, J = 17.0, 10.2 Hz, 1 H), 5.64 (d, J = 10.2 Hz, 1 H), 5.58 (s, 1 H), 5.39 (9, J = 7.4 Hz,
1 H), 2.90 (dd, J = 15.2, 7.6 Hz, 1 H), 2.70 (dd, J = 15.2, 6.8 Hz, 1 H), 2.43 (s, 3 H) ppm

N-(1-(pyridin-2-yl)-2-(tosylmethylallyl)acrylamide (4.31j) resonances at: 5.91, 5.27,
4.04, 3.70 ppm

13C NMR (100 MHz, CDCls)

165.1, 158.4, 149.5, 146.6, 144.9, 136.9, 135.3, 130.9, 130.1 (2 C), 128.7 (2 C), 126.8,
126.6, 122.9, 122.7, 53.3, 35.5, 21.8 ppm

IR 3284, 2925, 1660, 1593, 1527, 1436, 1291, 1134, 1081, 729 cm™*

HRMS  (FTMS + p ESI) [M+H]* calcd for C19H21N203S, 357.1267; found 357.1249

TLC Rf = 0.31 (100% ethyl acetate) [silica gel, UV]

MP =43-49 °C
Ts Ts
i Me | o o
o N X+ | THF +
X H/m/\D ,/S\\) > O)LN X O)LN AN
Z 0”0 50°C, N, X Ho I X Hol
N~ N~
4.28k 4.29a 4.30k 4.31k

tert-butyl (1-(pyridin-2-yl)-3-tosylbut-3-en-1-yl)carbamate (4.30k). Follows general
procedure D. 4.28k (41.7 mg, 0.2 mmol), 1-methyl-4-(propa-1,2-dien-1-ylsulfonyl)benzene (78
mg, 0.4 mmol), THF (1 mL). The crude product was purified by silica gel flash chromatography
(20-70% diethyl ether/hexane) to yield the title compound as a pale-yellow solid contaminated
with starting material amide. Yield of title compound is reported from the mole ratio of the NMR
spectra of the isolated fractions. The product selectivity was measured from the H NMR
integration ratios of the purified fractions. For characterization purposes, a second purification by
silica gel flash chromatography (20-70% ethyl acetate/hexane) was carried out. Run 1 (44.3 mg,

55%, 96:4, 2 days reaction time); Run 2 (47.5 mg, 59%, 96:4, 3 days reaction time).

195



HO-03-38

e

4.30k

'H NMR (400 MHz, CDCls)

8.49 (d, J=4.4Hz, 1 H),7.77 (d, J=8.0 Hz, 2 H), 7.61 (dt, J = 7.7, 1.6 Hz, 1 H), 7.32 (d,
J=8.0Hz,2H),7.19(d,J=7.8 Hz, 1 H), 7.16 (dd, J = 7.5, 5.5 Hz, 1 H), 6.30 (s, 1 H), 5.67-5.59
(m, 2 H),5.03(q,J=7.6 Hz, 1 H), 2.80-2.67 (m, 2 H) 2.44 (s, 3 H), 1.41 (s, 9 H) ppm

tert-butyl (1-(pyridin-2-yl)-2-(tosylmethyl)allyl)carbamate (4.31k) resonances at: 6.70,

5.98 ppm
3C NMR (100 MHz, CDCls)

159.2, 155.3, 149.5, 146.9, 144.7, 136.8, 135.5, 130.0 (2 C), 128.7 (2 C), 125.9, 122.7,

122.4,79.7,54.3, 36.1, 28.5 (3 C), 21.8 ppm
IR 3374, 2978, 1706, 1594, 1572, 1494, 1437, 1366, 1313, 1302, 1164, 1144, 731 cm":

HRMS (FTMS + p ESI) [M+H]* calcd for Ca1H27N204S, 403.1686; found 403.1678

—

LC Rf = 0.37 (50% EtOAc/Hex) [silica gel, UV]

MP =106-110 °C

do ] Me UTHF o
b MO e
5 Ho ) S{ s0°C, N
© =
292 4.301

4.311

Ts

IZ

Runl & Run 2
Benzyl (2-oxo-2-((1-(pyridin-2-yl)-3-tosylbut-3-en-1-yl)amino)ethyl)carbamate (4.30l).
Follows general procedure C. 4.281 (44.9 mg, 0.15 mmol), 1-methyl-4-(propa-1,2-dien-1-

ylsulfonyl)benzene (58.3 mg, 0.30 mmol), THF (0.8 mL). The crude product was purified by silica
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gel flash chromatography (20-100% ethyl acetate/hexane) to yield the title compound as a light-
brown solid. The product selectivity was measured from the *H NMR integration ratios of the
purified fractions. Run 1 (44.2 mg, 60%, 85:15); Run 2 (41.4 mg, 56%, 94:6).

Run3

Benzyl (2-oxo0-2-((1-(pyridin-2-yl)-3-tosylbut-3-en-1-yl)amino)ethyl)carbamate (4.301).
Follows general procedure C. 4.281 (10 mg, 0.033 mmol), 1-methyl-4-(propa-1,2-dien-1-
ylsulfonyl)benzene (13 mg, 0.067 mmol), THF (0.18 mL). The crude product was purified by silica
gel flash chromatography (50-100% ethyl acetate/hexane) to yield the title compound as a light-
brown solid (10.6 mg, 64%, 95:5). The product selectivity was measured from the 'H NMR
integration ratios of the purified fractions.

Run4

Benzyl (2-oxo-2-((1-(pyridin-2-yl)-3-tosylbut-3-en-1-yl)amino)ethyl)carbamate (4.301).
Follows general procedure C. 4.281 (7 mg, 0.024 mmol), 1-methyl-4-(propa-1,2-dien-1-
ylsulfonyl)benzene (9 mg, 0.047 mmol), THF (0.15 mL). The crude product was purified by silica
gel flash chromatography (20-100% ethyl acetate/hexane) to yield the title compound as a light-
brown solid (7.0 mg, 58%, 96:4). The product selectivity was measured from the *H NMR

integration ratios of the purified fractions.
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Ts

HO-03-36

'H NMR (400 MHz, CDCl3)

8.48 (d, J = 4.6 Hz, 1 H), 7.77 (d, J = 8.0 Hz, 2 H), 7.61 (t, J = 7.1 Hz, 1 H), 7.33-7.26 (m,
8 H), 7.21-7.15 (m, 2 H), 6.26 (s, 1 H), 5.52-5.50 (m, 2 H), 5.34 (q, J = 7.2 Hz, 1 H), 5.12 (s, 2 H),
3.89 (s, 2 H), 2.82 (dd, J = 15.0, 7.4 Hz, 1 H), 2.70 (dd, J = 14.5, 6.3 Hz, 1 H), 2.43 (s, 3 H) ppm

benzyl (2-oxo-2-((1-(pyridin-2-yl)-2-(tosylmethyl)allyl)amino)ethyl)carbamate (4.31l)
resonances at: 8.52, 7.68, 5.83, 5.00, 3.65 ppm

13C NMR (100 MHz, CDCls)

168.6, 158.1, 156.6, 149.4, 146.4, 144.9, 136.9, 136.4, 135.2, 130.1 (2 C), 128.7 (2 C),
128.6 (3C), 128.3, 128.2, 126.8, 122.9, 122.6, 67.2, 53.3, 44.6, 35.6, 21.8 ppm

IR 3319, 3059, 2927, 1719, 1667, 1594, 1512, 1438, 1290, 1135, 1081, 729 cm*

HRMS  (FTMS + p ESI) [M+H]" calcd for C26H2sN3OsS, 494.1744; found 494.1734.

TLC R = 0.56 (100% EtOAC) [silica gel, UV]

MP = 66-72 °C.
Ts Ts
0 Me |
: o
N S \©\ - THE +
H N‘ S > N X N X
Z 00 50°C o P A

4.28m 429a  48h,N, 4.30m 4.31m

N-(1-(pyridin-2-yl)-3-tosylbut-3-en-1-yl)pivalamide (4.30m). Follows general procedure
C. 4.28m (38.5 mg, 0.2 mmol), 1-methyl-4-(propa-1,2-dien-1-ylsulfonyl)benzene (78 mg, 0.4
mmol), THF (1 mL). The crude product was purified by silica gel flash chromatography (20-100%

ethyl acetate/hexane) to yield the title compound as a pale-yellow solid. The product selectivity
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was measured from the NMR integration ratios of the purified fractions. Run 1 (46.3 mg, 60%,
92:8); Run 2 (44.8 mg, 58%, 90:10).

HO-03-19

Ts
(0]
S
H N =~
4.30m

'H NMR (400 MHz, CDCl5)

8.50 (d, J = 4.0 Hz, 1 H), 7.76 (d, J = 8.0 Hz, 2 H), 7.60 (t, J = 7.0 Hz, 1 H), 7.33 (d, J =
7.8 Hz, 2 H), 7.18-7.15 (m, 2 H), 7.04 (d, J = 6.9 Hz, 1 H), 6.32 (s, 1 H), 5.63 (s, 1 H), 5.32-5.25
(m, 1 H), 2.85 (dd, J = 15.2, 7.9 Hz, 1 H), 2.67 (dd, J = 15.2, 6.3 Hz, 1 H), 2.43 (s, 3 H), 1.20 (s,
9 H) ppm

N-(1-(pyridin-2-yl)-2-(tosylmethylallyl)pivalamide (4.31m) resonances at: 5.79, 5.08,
4.00, 3.69, 1.25 ppm

13C NMR (100 MHz, CDCls)

178.4, 159.1, 149.5, 146.9, 144.8, 136.8, 135.5, 130.1 (2 C), 128.6 (2 C), 126.3, 122.7,
122.3,53.3, 38.9, 35.4, 27.6 (3 C), 21.7 ppm

IR 3388, 2963, 1658, 1593, 1571, 1497, 1399, 1312, 1301, 1290, 1134, 1082, 731 cm™

HRMS  (FTMS + p ESI) [M+H]* calcd for C21H27N203S, 387.1737; found 387.1759

TLC Rf = 0.26 (50% EtOAc/Hex) [silica gel, UV]

MP = 41-47 °C
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Appendix A.6 Radical Inhibitor Experiment (HO-03-43)

BHT (5 equiv) Ts Ts
0 | THE
by Jee 3 O 8
Ph N 50 °C
H ol Ts : X X
D anN, TN T PR N T
4.28a 4.29a 4300 ~F 431a

67%
96:4

An oven-dried, 8-mL screw-top tube equipped with a magnetic stir bar is charged with N-
(pyridin-2-ylmethyl)benzamide (40 mg, 0.19 mmol), 1-methyl-4-(propa-1,2-dien-1-
ylsulfonyl)benzene (74 mg, 0.38 mmol) and butylated hydroxytoluene (BHT, 208 mg, 0.94 mmol)
in air. The tube is sealed with a Teflon cap (ChemGlass, CG-4910-15, TFE septum). The cap of
the tube is pierced with a needle connected to a Schlenk line and the tube evacuated and filled (3x)
with nitrogen. THF (1 mL) is added via syringe to the reaction tube. The cap is wrapped with
parafilm and the tube is lowered into a preheated oil bath (50 °C). The reaction mixture was stirred
for 24 h. It was diluted with dichloromethane, transferred into a 20-mL scintillation vial and
concentrated under reduced pressure using rotary evaporation. The crude residue was purified by
silica gel flash column chromatography (20-70% ethyl acetate/hexane) to yield N-(1-(pyridin-2-
yl)-3-tosylbut-3-en-1-yl)benzamide (4.30a) and N-(1-(pyridin-2-yl)-2-
(tosylmethylallyl)benzamide (4.31a) as a red brown solid (51.6 mg, 67%, 96:4). The product

selectivity was measured from the *H NMR integration ratios of the purified fractions.
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Appendix A.7 Radical Initiator Experiment (HO-03-44)

AIBN (1 equiv)

o) | THF
Ph)ku e )\ 50°C,
S
N~ 24 h, N2
4.28a 4.29a 4. 30a 4. 31a

8‘*2?’5

An oven-dried, 8-mL screw-top tube equipped with a magnetic stir bar is charged with N-
(pyridin-2-ylmethyl)benzamide (40 mg, 0.19 mmol) and 1-methyl-4-(propa-1,2-dien-1-
ylsulfonyl)benzene (74 mg, 0.38 mmol). The screw-top tube is transferred into glovebox and
azobisisobutyronitrile (AIBN, 31 mg, 0.19 mmol) added inside glovebox. The tube is sealed with
a Teflon cap (ChemGlass, CG-4910-15, TFE septum). The screw-top tube is taken out of the
glovebox. The cap of the tube is pierced with a needle connected to a Schlenk line and THF (1
mL) is added via syringe into the reaction tube. The cap is wrapped with parafilm and the tube is
lowered into a preheated oil bath (50 °C). The reaction mixture was stirred for 24 h. It was diluted
with dichloromethane, transferred into a 20-mL scintillation vial and concentrated under reduced
pressure using rotary evaporation. The crude residue was purified by silica gel flash column
chromatography (20-70% ethyl acetate/hexane) to yield N-(1-(pyridin-2-yl)-3-tosylbut-3-en-1-
yl)benzamide (4.30a) and N-(1-(pyridin-2-yl)-2-(tosylmethyl)allyl)benzamide (4.31a) as a red
brown solid (45.8 mg, 60%, 85:15). Starting material N-(pyridin-2-ylmethyl)benzamide was also

recovered (7.1 mg, 18% recovered). The product selectivity was measured from the *H NMR

integration ratios of the purified fractions.
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Appendix A.8 Crossover Experiment

SO,Ph Ts

o}
| SO,Ph  THF To
oSy ‘\*J*:& —’)OL i —
HoNn S = Ts  50°C,  pp N7 PRTONTTS Ts
24 h, N
4.28a 4.29a 4.32c 2 4.30q NF 431a N\~F 4.32a
1 equiv 1 equiv 2 equiv
q q q N Y
Y

41%
93:7

An oven-dried, 8-mL screw-top tube equipped with a magnetic stir bar is charged with N-
(pyridin-2-ylmethyl)benzamide (4.28a) (15 mg, 0.07 mmol), 1-methyl-4-(propa-1,2-dien-1-
ylsulfonyl)benzene (4.29a) (13.7 mg, 0.07 mmol) and 1-methyl-4-((2-
(phenylsulfonyl)allyl)sulfonyl)benzene (4.32c) (47.6 mg, 0.14 mmol). The cap of the tube is
pierced with a needle connected to a Schlenk line and THF (0.37 mL) is added via syringe into the
reaction tube. The cap is wrapped with parafilm and the tube is lowered into a preheated oil bath
(50 °C). The reaction mixture was stirred for 24 h. 1t was diluted with dichloromethane, transferred
into a 20-mL scintillation vial and concentrated under reduced pressure using rotary evaporation.
The crude residue was purified by silica gel flash column chromatography (20-80% ethyl
acetate/hexane) to yield mixed fractions of N-(3-(phenylsulfonyl)-1-(pyridin-2-yl)but-3-en-1-
yl)benzamide (4.30g) and N-(1-(pyridin-2-yl)-3-tosylbut-3-en-1-yl)benzamide (4.31a) as light
brown solid (11.3 mg, 41%, 93:7). The product selectivity was measured from the *H NMR
integration ratios of the purified fractions.

Byproduct disulfone 4,4'-(prop-2-ene-1,2-diyldisulfonyl)bis(methylbenzene) (4.32a) was
formed in the reaction and was isolated in one pure fraction (fraction: 12; 4.9 mg) and in one mixed
fraction (fraction: 13; ~ 9.3 mg) with 1-methyl-4-((2-(phenylsulfonyl)allyl)sulfonyl)benzene
(4.32c¢) in an yield of ~57% calculated based on the allenyl sulfone, 1-methyl-4-(propa-1,2-dien-

1-ylsulfonyl)benzene 4.29a (0.07 mmol) used.
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1-methyl-4-((2-(phenylsulfonyl)allyl)sulfonyl)benzene (4.32c) was recovered again in two
fractions: pure fraction (fraction: 14-15; 20 mg) and mixed fraction (fraction: 13; ~ 8.9 mg) with
a recovery of ~61% based on the initial 4.32c used (47.6 mg, 0.14 mmol). Starting material N-
(pyridin-2-ylmethyl)benzamide was also recovered (7.2 mg, 48% recovered based on starting
material amide).

HO-03-45

SO,Ph

AL

IH NMR (400 MHz, CDCls)

8.54 (d, J = 4.2 Hz, 1 H), 7.93 (dd, J = 7.3, 1.4 Hz, 2 H), 7.85 (dd, J = 7.1, 1.5 Hz, 2 H),
7.67-7.61 (m, 3 H), 7.56-7.48 (m, 3 H), 7.43 (dt, J = 7.0, 1.2 Hz, 2 H), 7.27 (m, 1 H), 7.19 (ddd, J
=75,4.9,0.9Hz, 1 H), 6.37 (s, 1 H), 5.68 (s, 1 H), 5.53 (g, J = 7.4 Hz, 1 H), 3.00 (dd, J = 15.2,
7.7 Hz, 1 H), 2.80 (dd, J = 15.2, 6.4 Hz, 1 H) ppm

N-(1-(pyridin-2-yl)-3-tosylbut-3-en-1-yl)benzamide (4.31a) resonances at: 7.80, 7.32,
6.33, 5.64, 2.42 ppm

13C NMR (100 MHz, CDCls)

166.9, 158.6, 149.5, 146.4, 138.3, 137.0, 134.1, 133.9, 131.8, 129.5 (2 C), 128.7 (4 C),
127.3 (2 C), 127.2, 123.0, 122.6, 53.8, 35.6 ppm

HRMS (FTMS + p ESI) [M+H]" calcd for C22H21N203S, 393.1267; found 393.1260

TLC Rf = 0.33 (70% ethyl acetate/hexane) [silica gel, UV]
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Appendix A.9 Deuterium Labelling Experiment

Experiment 1

d-content d-content
69% and 68% 37%
H/D
T THF H/D H
m )‘ 50 °C, N wo t
24 h, N2 H N/ \
d- content — d content
4.28a 4.29a-d, o, 360
4.30a-d 4.31a-d

61%
96:4

An oven-dried, 8-mL screw-top tube equipped with a magnetic stir bar is charged with N-
(pyridin-2-ylmethyl)benzamide (4.28a) (30 mg, 0.14 mmol) and 1-methyl-4-((propa-1,2-dien-1-
yl-3,3-d2)sulfonyl)benzene (4.29a-d2) (55.5 mg, 0.28 mmol) in air. The tube is sealed with a
Teflon cap (ChemGlass, CG-4910-15, TFE septum). The cap of the tube is pierced with a needle
connected to a Schlenk line and the tube evacuated and filled (3x) with nitrogen. THF (0.74 mL)
is added via syringe to the reaction tube. The cap is wrapped with parafilm and the tube is lowered
into a preheated oil bath (50 °C). The reaction mixture was stirred for 24 h. It was diluted with
dichloromethane, transferred into a 20-mL scintillation vial and concentrated under reduced
pressure using rotary evaporation. The crude residue was purified by silica gel flash column
chromatography (20-90% ethyl acetate/hexane) to yield N-(1-(pyridin-2-yl)-3-tosylbut-3-en-1-yl-
2,2-d2)benzamide (3a-D) and N-(1-(pyridin-2-yl)-2-(tosylmethyl)allyl-3,3-d2)benzamide (4a-D)
as a red brown solid (35.2 mg, 61%, 96:4). The product selectivity was measured from the 'H

NMR integration ratios of the purified fractions.
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HO-03-58

DDTs DDTs DHTs 5 HHTs o

(0] (0] (0] X (0] X
PN P P D P D
Ph ” I\ Ph HD|\ Ph H I\ Ph ” I\
\NgZ N~ N~ N~

H NMR (600 MHz, CDCls)
8.54 (d, J = 4.4 Hz, 1 H), 7.86 (d, J = 7.7 Hz, 2 H), 7.80 (d, J = 8.2 Hz, 2 H), 7.70 (br d,
J=6.9 Hz, 1 H), 7.63 (dt, J = 7.6, 1.4 Hz, 1 H), 7.51-7.48 (m, 1 H), 7.45-7.42 (m, 2 H),
7.32(d, J=8.1Hz, 2 H), 7.28 (d, J = 7.7 Hz, 1 H), 7.18 (dd, J = 7.3, 5.2 Hz, 1 H), 6.33
(s, 0.42 H), 6.31 (s, 0.19 H), 5.63 (s, 0.42 H), 5.62 (s, 0.20 H), 5.53-5.51 (m, 0.75 H),
2.99 (dd, J = 18.0, 6.9 Hz, 0.04 H), 2.97 (d, J = 7.1 Hz, 0.26 H), 2.78 (dd, J = 16.7, 6.6
Hz, 0.05 H), 2.77 (d, J = 6.6 Hz, 0.26 H), 2.42 (s, 3 H) ppm
2D NMR (600 MHz, CHCl3): 6.37 (0.29 D), 5.68-5.51 (0.48 D), 2.98-2.78 (1.40 D) ppm
13C NMR (150 MHz, CDCls)
166.9, 158.7, 149.5, 146.6-146.5 (m, 1 C), 144.9, 136.9, 135.3, 134.1, 131.7, 130.1 (2
C), 128.70 (2 C), 128.67 (2 C), 127.3 (2 C), 126.7, 122.8, 122.5, 53.8 (d, J = 5.6 Hz, 1
C), 35.3-34.9 (m, 1 C), 21.8 ppm
HRMS (FTMS + p ESI) [M+H]" calcd for C23H21D2N203S, 409.1549; found 409.1531

TLC Rf = 0.31 (70% ethyl acetate/hexane) [silica gel, UV]
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C\Xcaliburdata\Brummond\83674ESIPN1 02/10720 11:10:13 HO-03-58-fr-52-62
DCM

BI6T4ESIPNT #4248 RT: 0.43-0.46 AV: 3 ML: 4.38E9
T: FTMS + p ESI Full ms [67.0000-1000.0000]

100 409.15313
90:
807
w 70
g
'ié 60~ 41015764
-
£ 50
2
£ 40
o
= 30
20 408.14757
411.16224
104
c_ 372,34629 386.36133 391.14252 40037808 40714153 412.15402 42316858 43113400 437.18487  446,34672 45213570
— et A i R TR L LR e
a70 380 380 400 410 420 430 440 450 460
miz
3674ESTPN1#44-48 RT: 0.43-0.46 AV: 3
11 ms [67.0000-1000.0000]
Tnten'alw Relative Theo. Mass | Delta Composition
(ppm)
4383037440.0 100.00 409.15494 -4.42|C33H21 *H203N2 §

|
N~ 'H NMR resonances at 8.23, 7.92, 6.03, 3.75 ppm.

Experiment 2

d-content d-content

71% and 68% 35%

T THE _ HD ool
m J 50 °C, N mo *
24 h, N2 H N/ \

d- content — d content

4.28a 4.29a-d, 20% 35%

4.30a-d 65% 4.31a-d

95:5

An oven-dried, 8-mL screw-top tube equipped with a magnetic stir bar is charged with N-
(pyridin-2-ylmethyl)benzamide (4.28a) (15 mg, 0.07 mmol) and 1-methyl-4-((propa-1,2-dien-1-
yl-3,3-d2)sulfonyl)benzene (4.29a-d2) (28 mg, 0.14 mmol) in air. The tube is sealed with a Teflon
cap (ChemGlass, CG-4910-15, TFE septum). The cap of the tube is pierced with a needle
connected to a Schlenk line and the tube evacuated and filled (3x) with nitrogen. THF (0.37 mL)

is added via syringe to the reaction tube. The cap is wrapped with parafilm and the tube is lowered
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into a preheated oil bath (50 °C). The reaction mixture was stirred for 24 h. It was diluted with
dichloromethane, transferred into a 20-mL scintillation vial and concentrated under reduced
pressure using rotary evaporation. The crude residue was purified by silica gel flash column
chromatography (20-100% ethyl acetate/hexane) to yield N-(1-(pyridin-2-yl)-3-tosylbut-3-en-1-
yl-2,2-d2)benzamide (3a-D) and N-(1-(pyridin-2-yl)-2-(tosylmethyl)allyl-3,3-d2)benzamide (4a-
D) as a red brown solid (18.7 mg, 65%, 95:5). The product selectivity was measured from the 1H

NMR integration ratios of the purified fractions.

D Ts D Ts H Ts H Ts
D D D D H D
(0] (0] (0] X (0] N
D D
Ph)J\N A Ph)J\N A Ph)J\N A Ph)J\N N
Ho HD | Ho |l Ho
N~ N~ N~ N~

IH NMR (400 MHz, CDCls)

HO-03-46

8.54 (d, J = 4.4 Hz, 1 H), 7.86 (d, J = 7.4 Hz, 2 H), 7.80 (d, J = 8.2 Hz, 2 H), 7.72 (d, J =
7.1 Hz, 1 H), 7.64 (dt, J = 7.8, 1.4 Hz, 1 H), 7.52-7.41 (m, 3 H), 7.33-7.28 (m, 3 H), 7.19 (dd, J =
7.0,5.2 Hz, 1 H), 6.33 (s, 0.40 H), 6.32 (s, 0.21 H), 5.64 (s, 0.40 H), 5.63 (s, 0.22 H), 5.54-5.51
(m, 0.75 H), 2.99 (dd, J = 15.1, 7.8 Hz, 0.02 H), 2.98 (d, J = 7.3 Hz, 0.25 H ), 2.80 (dd, J = 13.8,
6.4 Hz, 0.04 H), 2.78 (d, J = 6.2 Hz, 0.26 H ), 2.42 (s, 3 H) ppm

13C NMR (100 MHz, CDCls)

166.9, 158.7, 149.4, 146.5, 144.9, 137.1, 135.3, 134.1, 131.7, 130.1 (2 C), 128.71 (2 C),
128.67 (2 C), 127.3 (2 C), 126.8, 122.9, 122.6, 53.9, 53.8, 35.2 (t, d, J = 18.9 Hz, 1 C), 21.8 ppm

HRMS  (FTMS + p ESI) [M+H]* calcd for CasH21D2N203S, 409.1549; found 409.1529

TLC Rf = 0.33 (70% ethyl acetate/hexane) [silica gel, UV]
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Ts D
(e} Z "D
Ph N | N

N~ 'H NMR resonances at 8.23, 6.03, 5.37, 5.16, 4.08, 3.75 ppm.

Appendix A.10 Experiments with Pyridine as an Additive

Experiment 1 (HO-03-50)

o
ph)LHAQ : Ts)l' ;;TH No Reacion
4.56 4292 24h N,

An oven-dried, 8-mL screw-top tube equipped with a magnetic stir bar is charged with N-
benzylbenzamide 4.56 (5 mg, 0.02 mmol) and 1-methyl-4-(propa-1,2-dien-1-ylsulfonyl)benzene
(4.29a) (9.2 mg, 0.05 mmol) in air. The tube is sealed with a Teflon cap (ChemGlass, CG-4910-
15, TFE septum). The cap of the tube is pierced with a needle connected to a Schlenk line and the
tube evacuated and filled (3x) with nitrogen. Toluene (0.2 mL) is added via syringe to the reaction
tube. The cap is wrapped with parafilm and the tube is lowered into a preheated oil bath (50 °C).
The reaction mixture was stirred for 24 h. It was diluted with dichloromethane, transferred into a
20-mL scintillation vial and concentrated under reduced pressure using rotary evaporation. *H
NMR of the crude residue shows unreacted N-benzylbenzamide starting material and unreacted 1-
methyl-4-(propa-1,2-dien-1-ylsulfonyl)benzene (4.29a). No disulfone, 4,4'-(prop-2-ene-1,2-

diyldisulfonyl)bis(methylbenzene) (4.32a) byproduct was also formed in the reaction.
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Experiment 2 (HO-02-148)

(0] H pyridine (1 equiv)
P . ‘ toluene
Ph N ——>*—> decomposition
H/\© Ts/[ 50 °C,
4.56 4.29a 24h,N,

An oven-dried, 8-mL screw-top tube equipped with a magnetic stir bar is charged with N-
benzylbenzamide 4.56 (5 mg, 0.02 mmol) and 1-methyl-4-(propa-1,2-dien-1-ylsulfonyl)benzene
(4.29a) (9.2 mg, 0.05 mmol) in air. The tube is sealed with a Teflon cap (ChemGlass, CG-4910-
15, TFE septum). The cap of the tube is pierced with a needle connected to a Schlenk line and the
tube evacuated and filled (3x) with nitrogen. Pyridine (2 uL, 0.02 mmol) is added via syringe.
Toluene (0.2 mL) is added via syringe to the reaction tube. The cap is wrapped with parafilm and
the tube is lowered into a preheated oil bath (50 °C). The reaction mixture was stirred for 24 h. It
was diluted with dichloromethane, transferred into a 20-mL scintillation vial and concentrated
under reduced pressure using rotary evaporation. *H NMR of the crude residue shows unreacted
N-benzylbenzamide  starting  material, absence  of  1-methyl-4-(propa-1,2-dien-1-
ylsulfonyl)benzene 4.29a 'H NMR signals at 6.23 ppm and 5.43 ppm and no *H NMR signals of
formation of disulfone, 4,4'-(prop-2-ene-1,2-diyldisulfonyl)bis(methylbenzene) (4.32a)
byproduct. These results suggest that the allenyl sulfone, 1-methyl-4-(propa-1,2-dien-1-
ylsulfonyl)benzene 4.29a likely decomposed under the reaction conditions.

Experiment 3 (HO-03-51)

(0] H pyridine (20 mol%)
)L . .‘ toluene
Ph N ——>—> decomposition
H@ Ts,/l 50 °C,
4.56 4.29a 24 h,N,

An oven-dried, 8-mL screw-top tube equipped with a magnetic stir bar is charged with N-
benzylbenzamide 4.56 (5 mg, 0.02 mmol) and 1-methyl-4-(propa-1,2-dien-1-ylsulfonyl)benzene

(4.29a) (9.2 mg, 0.05 mmol) in air. The tube is sealed with a Teflon cap (ChemGlass, CG-4910-

209



15, TFE septum). The cap of the tube is pierced with a needle connected to a Schlenk line and the
tube evacuated and filled (3x) with nitrogen. In a separate 100 mL 1-neck, flame dried round
bottom flask, 20 mL distilled toluene added. 0.05 mL of pyridine is added into the round bottom
flask. 0.15 mL of this solution (pyridine in toluene) is added via syringe into the 8-mL screw-top
tube resulting effectively of (0.381 uL, 0.005 mmol) of pyridine added into the reaction. Toluene
(0.05 mL) is further added via syringe to the reaction tube to make the total reaction volume to 0.2
mL. The cap is wrapped with parafilm and the tube is lowered into a preheated oil bath (50 °C).
The reaction mixture was stirred for 24 h. It was diluted with dichloromethane, transferred into a
20-mL scintillation vial and concentrated under reduced pressure using rotary evaporation. *H
NMR of the crude residue shows unreacted N-benzylbenzamide, near complete consumption of 1-
methyl-4-(propa-1,2-dien-1-ylsulfonyl)benzene 4.29a (~82% allenyl sulfone consumed) and some
formation of disulfone, 4,4'-(prop-2-ene-1,2-diyldisulfonyl)bis(methylbenzene) 4.32a byproduct
NMR signals (~17% of disulfone formation based on 2 equivalent of allenyl sulfone 4.29a used).

Experiment 4 (HO-02-155)

(0] pyridine (5 mol%)
toluene

L0
An oven-dried, 8-mL screw-top tube equipped with a magnetic stir bar is charged with N-
benzylbenzamide (20 mg, 0.09 mmol) and 1-methyl-4-(propa-1,2-dien-1-ylsulfonyl)benzene
4.29a (37 mg, 0.19 mmol) in air. The tube is sealed with a Teflon cap (ChemGlass, CG-4910-15,
TFE septum). The cap of the tube is pierced with a needle connected to a Schlenk line and the tube
evacuated and filled (3x) with nitrogen. In a separate 100 mL 1-neck, flame dried round bottom

flask, 20 mL distilled toluene added. 0.02 mL of pyridine is added into the round bottom flask.

0.38 mL of this solution (pyridine in toluene) is added via syringe into the 8-mL screw-top tube
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resulting effectively of (0.382 uL, 0.005 mmol) of pyridine added into the reaction. Toluene (0.41
mL) is further added via syringe to the reaction tube to make the total reaction volume to 0.79 mL.
The cap is wrapped with parafilm and the tube is lowered into a preheated oil bath (50 °C). The
reaction mixture was stirred for 24 h. It was diluted with dichloromethane, transferred into a 20-
mL scintillation vial and concentrated under reduced pressure using rotary evaporation. *H NMR
of the crude residue shows unreacted N-benzylbenzamide, unreacted 1-methyl-4-(propa-1,2-dien-
1-ylsulfonyl)benzene 4.29a and no *H NMR signals of formation of disulfone, 4,4'-(prop-2-ene-

1,2-diyldisulfonyl)bis(methylbenzene) 4.32a byproduct.

Appendix A.11 Experiment to Probe Possible Interconversion of Vinyl and Allyl Sulfones

(HO-02-132)
Ts Ts
o] | NMR tube
IS =S S ORI
H | Ts toluene-d8 Ph N XN Ph N XN
N~ 50 °C, Hol Ho
4.28a 4292 p55n N, 4.30a N~ 4312 N~

A flame-dried, 20-mL scintillation via is charged with N-(pyridin-2-ylmethyl)benzamide
4.28a (5 mg, 0.02 mmol) and 1-methyl-4-(propa-1,2-dien-1-ylsulfonyl)benzene 4.29a (9.2 mg,
0.05 mmol) in air. Toluene-d8 (0.5 mL) is added via syringe. The reaction solution is transferred
into an oven-dried NMR tube. The tube is sealed with a NMR septum. The septum of the tube is
pierced with a needle connected to a Schlenk line and the tube evacuated and filled (3x) with
nitrogen. The cap is wrapped with parafilm and the tube is inserted in a 600 MHz NMR instrument
preheated to 50 °C. The reaction mixture was kept in the NMR instrument for 25.5 h and 24 NMR

spectra were taken and analyzed. At no point during the course of the reaction was the minor
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product, allyl sulfone 4.31a signal observed. 24 NMR spectra were taken in total and each
spectrum showed only starting material, N-(pyridin-2-ylmethyl)benzamide 4.28a being consuming

and vinyl sulfone 4.30a product formation.

Appendix A.12 Experiment with Picolyl Amide and Disulfone

Experiment 1 (HO-02-168)

K,COj3 (2 equiv)

)L SO,Ph ACN
Ph N ‘ X t —>—> decomposition
HoN Ts 50 °C,
4.28a 4.32c 24 h, N,

An oven-dried, 8-mL screw-top tube equipped with a magnetic stir bar is charged with N-
(pyridin-2-ylmethyl)benzamide  4.28a (10 mg, 0.05 mmol), 1-methyl-4-((2-
(phenylsulfonyl)allyl)sulfonyl)benzene 4.32c (16 mg, 0.05 mmol) and potassium carbonate (13
mg, 0.09 mmol) in air. The tube is sealed with a Teflon cap (ChemGlass, CG-4910-15, TFE
septum). The cap of the tube is pierced with a needle connected to a Schlenk line and the tube
evacuated and filled (3x) with nitrogen. ACN (0.5 mL) is added via syringe to the reaction tube.
The cap is wrapped with parafilm and the tube is lowered into a preheated oil bath (50 °C). The
reaction mixture was stirred for 24 h. It was diluted with dichloromethane, transferred into a 20-
mL scintillation vial and concentrated under reduced pressure using rotary evaporation. *H NMR
of the crude residue shows unreacted N-(pyridin-2-ylmethyl)benzamide 4.28a and disappearance

of disulfone, 1-methyl-4-((2-(phenylsulfonyl)allyl)sulfonyl)benzene 4.32c based on absence of H

212



NMR signals at 6.68, 6.52 and 4.04 ppm. These results suggest that disulfone, 1-methyl-4-((2-
(phenylsulfonyl)allyl)sulfonyl)benzene 4.32c likely decomposed under the reaction conditions.

Experiment 2 (HO-02-169)

K2CO3 (1 equiv)

)L SO,Ph ACN
Ph N ‘ X t —>—> decomposition
HoN Ts 50 °C,
4.28a 4.32c 24 h, N,

An oven-dried, 8-mL screw-top tube equipped with a magnetic stir bar is charged with N-
(pyridin-2-ylmethyl)benzamide  4.28a (10 mg, 0.05 mmol), 1-methyl-4-((2-
(phenylsulfonyl)allyl)sulfonyl)benzene 4.32c (16 mg, 0.05 mmol) and potassium carbonate (6.5
mg, 0.05 mmol) in air. The tube is sealed with a Teflon cap (ChemGlass, CG-4910-15, TFE
septum). The cap of the tube is pierced with a needle connected to a Schlenk line and the tube
evacuated and filled (3x) with nitrogen. ACN (0.5 mL) is added via syringe to the reaction tube.
The cap is wrapped with parafilm and the tube is lowered into a preheated oil bath (50 °C). The
reaction mixture was stirred for 24 h. It was diluted with dichloromethane, transferred into a 20-
mL scintillation vial and concentrated under reduced pressure using rotary evaporation. *H NMR
of the crude residue shows unreacted N-(pyridin-2-ylmethyl)benzamide 4.28a and almost
complete disappearance of disulfone, 1-methyl-4-((2-(phenylsulfonyl)allyl)sulfonyl)benzene

4.32¢ *H NMR signals (~10% left based on integration ratio of signals at 6.68, 6.52 and 4.04 ppm).
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These results suggest that disulfone, 1-methyl-4-((2-(phenylsulfonyl)allyl)sulfonyl)benzene 4.32¢c

likely decomposed under the reaction conditions.

Appendix A.13 Spectra
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cDC13,
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HO-02-197
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600 MHz)

cDCl3,

(1H NMR,

HO-02-185
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400 MHz)

CDC13,

(1H NMR,

HO-03-30
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