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Abstract 

System Frequency Dynamic Response of a Novel, Self-Synchronizing Inverter in a  

High Renewable Penetration Grid 

 

Christian Perenyi, M.S. 

 

University of Pittsburgh, 2020 

 

 

 

 

In this thesis, a controller achieving current tracking objective without knowledge of the 

grid parameters is developed. An estimated rotating reference frame (γδ -frame) is utilized. Within 

the control scheme, adaptive compensation terms facilitate the current tracking objective and, 

simultaneously, accounts for the unavailable grid voltage magnitude, grid frequency, and grid 

phase, hence eliminating the need for an additional measurement and feedback system for 

synchronization, such as a Phase-Locked Loop (PLL). 

System frequency behavior using the controller in a high-renewable (low-inertia) grid 

indicates that the monitored performance metrics are significantly improved when compared to 

PLL-controlled, inverter-dominated grids.  
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1.0 Introduction 

In today’s economy, energy transition is one of Europe’s top priorities. A main component 

of this challenge is to install a cleaner portfolio of renewable energy resources such as photovoltaic 

(PV) systems and wind turbines. That is why, the penetration ratio, Pr, of the renewable energy 

over the total energy generation (fossil + renewable) is significantly increasing; based on the 

German Energiewende, Germany will have a Pr of 80% by 2050 compared to 31.6% in 2016 [1].  

To optimally integrate these renewable resources, it is necessary to rethink the electric 

power grid itself by adjusting the centralized generation model and progressively transitioning to 

a distributed generation (DG) based power grid architecture through power electronics and their 

control. Droop control, [2] a widely adopted method to integrate variable renewable sources 

(VRSs), is a decentralized and communication-less control, contributing to the overall frequency 

(and voltage) control by emulating virtual inertia (and a virtual impedance) [3].  However, the 

expansion of renewable energy inevitably drops the mechanical inertia of the whole power system 

because these generation resources cannot store kinetic energy as they do not have a rotating mass 

[4]. Hence, a mismatch between generation and consumption cannot always be mechanically 

compensated for which can cause large frequency swings.  For system operation, loads and 

renewable sources should not be tripped [5].   

To perform a DG interconnection, the inverter will convert the DC voltage and current to 

AC that matches the exact phase, frequency and magnitude of the grid voltage. If not, the inverter-

based source may trip. The phase and frequency need to be determined by a phase-lock loop (PLL). 

Synchronous reference frame PLLs are widely applied in three-phase distributed generation 

systems.  This synchronization method is the most widely proposed solution because the technique 
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provides excellent results for balanced grid conditions but becomes quite sensitive to unbalances 

and harmonic disturbances in grid voltage [6], [7].  One reason for this drawback is that modern 

power converters require fast detection and accurate knowledge of the grid angle [6].  For faster 

angle detection, increasing the bandwidth of a PLL has been considered, [8], but is limited by the 

presence of other converters operating nearby [9], weaker grid conditions tied to short circuit ratios 

[9], [7], and large penetration levels of DG units which can correspond to low-frequency power 

oscillations and system instabilities [7]. Many of the attempts to design a better PLL to handle 

such conditions have not considered the coupling effects and interactions between the PLL and 

system impedance network, which impacts PLL tuning [8].  This coupling has the potential to lead 

to instability issues when multiple inverters are connected together [7].  Other grid stability issues 

resulting from PLL schemes under various grid conditions, like islanding, are reported in [7]. 

Additional hardware like voltage sensors required for PLL-type systems are expensive and 

introduce electrical noise and dc offsets which require compensation.  A PLL system is a self-

contained feedback loop that is outside the primary current control scheme, hence creating a 

cascaded control architecture [10].  For optimal stability and accuracy, the current control scheme 

should be knowledgeable of the error dynamics of the PLL system. 

Most commercial PV inverters operate as grid-following (GFL) sources that regulate their 

output power by measuring the angle of the grid voltage using a PLL.  These units simply follow 

the grid frequency and do not actively control their frequency output.  In contrast, a grid-forming 

source (GFM) controls its frequency and voltage output.  However, as GFM sources retire and are 

replaced with renewable based generation, GFLs begin to dominate the electric grids leading to 

the common problems initiated by the PLL unit.  For one cause for concern with increased GFLs, 

consider the state of California in the United States. In one reported event, California had 



 3 

experienced significant loss of generation, ~700MW, because the inverter PLL detected 

frequencies less than 57 Hz and initiated an instantaneous trip.  However, the lowest measured 

frequency only dropped to 59.87 Hz. As [11] points out, engineers need to develop solutions for 

the reliable operation of inverter-dominated power systems.  GFM will play a constructive role in 

improving frequency dynamics and stability of inverter-dominated power systems.  A key 

conclusion from [11] is that GFL inverters result in reduced damping and higher frequency 

excursions with increases in inverter penetration.  GFM inverters, on the contrary, will result in 

increased damping and lower peak frequency excursions with increases in inverter penetration. 

Given these considerations, a grid synchronizing control technique that requires an inverter 

to behave like a grid forming source with no PLL is an essential requirement in grid power 

electronic systems.  In this article, a unique approach is provided for self-synchronizing, GFL 

inverters requiring no PLL, one three-phase current measurement, and can be modified to behave 

as a GFM inverter.  The contribution of this work is to present results, in a highly-renewable and 

low-inertia grid, indicating that the discussed self-synchronizing control scheme can improve DG 

grid stability compared to traditional PQ reference PLL (PQ-PLL) controlled inverters. 
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2.0 Grid Model 

2.1 Two-Sourced Reduced Model  

In order to model the entire power-grid, a two-source, reduced-order (Figure 1) modelling 

approach is used in this work.  The inverter voltage source (Figure 1) aims to represent the inverter-

based renewable sources where the source itself is modeled as a constant DC source. This strong 

assumption, which implies that the dynamics linked to the source are ignored, can be justified since 

emphasis is put on inverter dynamics. The inverter model and dynamics will be studied in the next 

part. 

 

Figure 1 - Two-Sourced Reduced Model 

2.2 Generator Model  

The machine is a synchronous steam generator often used to represent fossil-based 

generators. The machine model accounts for the turbine, a governor and an exciter. An IEEE Type 
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1 DC1A model, without the saturation function, is used to model the synchronous machine and 

the automatic voltage regulator (AVR). Based on [12], the governor, the non-reheat steam turbine, 

and the machine inertia are modeled as first order systems. Both per unit machine blocks (Figure 

2) are first order approximations (e.g. stator transients are neglected) of the full steam turbine 

model.  

 

Figure 2 - Generator Dynamics 
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2.2.1 Governor-Turbine Detailed Model 

 
Figure 3 - Servo-Assisted Speed Governor [12]  

 

A servo-assisted speed governor is presented in Figure 3. We define ∆𝑥𝐴, ∆𝑥𝐵, ∆𝑥𝐶 , ∆𝑥𝐷 , ∆𝑥𝐸 as 

small change in position from nodes A, B, C, D and E respectively. For a linearized model of the 

speed-governor around the operating point, node A, B and C are on the same line so that C depends 

from  ∆𝑥𝐴, ∆𝑥𝐵: 

 ∆𝑥𝐶 = 𝑘𝐵∆𝑥𝐵 − 𝑘𝐴∆𝑥𝐴 = 𝑘1∆𝜔 − 𝑘2𝑃𝑐 (2.1) 

 

where 𝑘1, 𝑘2 are constants depending on length of different arms of the mechanism. In the same 

way, in the linearized system, nodes C, D and E are int the same line so: 

 ∆𝑥𝐷 = 𝑘3∆𝑥𝐶 − 𝑘4∆𝑥𝐸 (2.2) 
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where 𝑘3, 𝑘4 are constants depending on length of different arms of the mechanism. Concerning 

the servomotors dynamics, we assume that the high-pressure oil flow rates is proportional to ∆𝑥𝐷, 

so: 

 𝑑∆𝑥𝐸
𝑑𝑡

= −𝑘5∆𝑥𝐷 (2.3) 

 

where 𝑘5 is based on the oil pressure and the geometry of the servomotor. Taking the Laplace 

transform of (2.3) and replacing (2.1) and (2.2) into (2.3) we can derive: 

 
∆𝑥̂𝐸 =

𝑘2𝑘3𝑘5
𝑠 + 𝑘4𝑘5

(∆𝑃̂𝑐 −
𝑘1
𝑘2
∆𝜔̂) =

𝐾𝐺
1 + 𝑇𝐺𝑠

(∆𝑃̂𝑐 −
1

𝑅
∆𝜔̂) (2.4) 

 

where 𝐾𝐺 =
𝑘2𝑘3

𝑘4
, 𝑇𝐺 =

1

𝑘4𝑘5
 and 𝑅 =

𝑘2

𝑘1
. For our model,  

1

𝑅
∆𝜔̂ = 𝑃𝑜𝑢𝑡_𝑖𝑛𝑣 because of the droop 

control which is on the inverter side. 

A simplified approach will be presented for the steam turbine modelling. Let’s imagine a 

small positive step increase in 𝑥𝐸. In steady state, ∆𝑃𝑚 (output of the steam turbine) will also be a 

positive constant but there is a delay since the increased flow does not penetrate instantaneously 

into all the blades of the turbine. This approach is highly simplified because the real behavior is 

complex and is not a focus of this work. This way, we can approximate the non-reheat turbine by 

a first order transfer function. The time constant and the gain can be taken in data-sheets or be set 

based on experimental data. 
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Figure 4 - Governor-Turbine Block Diagram 

 

2.2.2 Generator Inertia Modelling 

The change of the grid load directly impacts the electrical power output which is 

proportional to the output torque 𝑇𝑒 of the generator causing a mismatch between the output torque 

𝑇𝑒 and the mechanical torque𝑇𝑚. This phenomenon is described by the swing equation: 

 
𝐽
𝑑∆𝜔𝑟
𝑑𝑡

= 𝑇𝑚 − 𝑇𝑒 (2.5) 

 

where J is the total moment of inertia of the rotor mass and 𝜔𝑟 the rotor speed. Knowing that: 

 𝑃𝑚 − 𝑃𝑒 = 𝜔𝑟(𝑇𝑚 − 𝑇𝑒) (2.6) 

 

and replacing (2.6) into (2.5), we get: 

 
𝑃𝑚 − 𝑃𝑒 = 𝑀

𝑑∆𝜔𝑟
𝑑𝑡

 (2.7) 
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where M = 𝐽𝜔𝑟 and is the inertia constant of the machine. In order to normalize this equation, we 

introduce: 

 
𝐻 =

𝐽𝜔𝑠
2

2𝑆𝑟𝑎𝑡𝑒𝑑
 (2.8) 

 

where 𝑆𝑟𝑎𝑡𝑒𝑑 is the three phase rating of the machine and 𝜔𝑠 the synchronous speed. Since in 

steady state 𝜔𝑟 = 𝜔𝑠, we can write: 

 2𝐻

𝜔𝑠

𝑑2𝛿

𝑑𝑡2
= 𝑃𝑚 − 𝑃𝑒 (2.9) 

 

where: 

 𝛿 = 𝜃𝑟 −𝜔𝑠𝑡 (2.10) 

 

where: 

 𝑑𝜃𝑟
𝑑𝑡

= 𝜔𝑟 (2.11) 

 

The electrical grid is composed of both frequency-dependent loads like motors and non-frequency 

dependent loads like for example restrictive loads. That is why, the overall delta of the electrical 

power depends on both types of loads such as: 

 ∆𝑃𝑒 = ∆𝑃𝑙 + ∆𝑃𝐿 = ∆𝑃𝑙 + 𝐷∆𝜔𝑟 (2.12) 
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where 𝐷 =
∆𝑃𝐿

∆𝜔𝑟
 is the load damping constant expressed in percentage, ∆𝑃𝑙 is the non-depend 

frequency load change and ∆𝑃𝐿 is the depend frequency load change. The damping effect needs to 

be taken in account. 

The overall generator frequency dynamics are presented in Figure 5. 

 

Figure 5 - Overall Generator Frequency Dynamics 

 

2.2.3 Excitation System Model 

 

Figure 6 - IEEE Type 1 DC1A Model [13] 
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The excitation model is extracted from IEEE standards [13]. In this standard (“IEEE 

Recommended Practice for Excitation System Models for Power System Stability Studies”) 

different detailed exciter systems models are presented: direct current commutator exciters, 

alternator-supplied rectifier excitation systems and static excitation systems. A direct current 

commutator exciter has been selected for this work because its wide use and its simplicity; 

specifically we will be using the - IEEE Type 1 DC1A model. For our study, we decided to remove 

the saturation model to avoid complexity since the saturation had not a considerable effect on the 

system for this application.  

2.3 Load Model 

The three phase load is composed of an inductor and resistor in series (Figure 7). Line 

impedance is negligible compared to the load impedance. 

 

 

Figure 7 – Load Model 
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3.0 Inverter System Model 

3.1 General Model Background 

3.1.1 Inverter Model and Average Model 

 

Figure 8 – One Phase Inverter Circuit 

 

Let’s start studying a single phase converter model (Figure 8). The dynamic equation of the output 

current is represented by (3.1). 

 
𝐿
𝑑𝑖(𝑡)

𝑑𝑡
+  Ri(t)  =  V𝑡(t) – V𝑠(t)  (3.1) 

 

where 𝑉𝑠 (𝑡) = 𝑉𝑠cos(𝜔𝑡) corresponds to the voltage of the grid in Figure 8. This voltage is 

considered as constant during a switching interval Ts. 

Based on the superposition principle (3.4), the output current can be considered as the 

summation of a DC component (3.2) - steady state component, and an AC component (3.3) used 

for small signal analysis. 

 
𝐿
𝑑𝑖(𝑡)̅̅ ̅̅ ̅

𝑑𝑡
+  Ri(t)̅̅ ̅̅̅  =  

V𝐷𝐶
2
(2d(t) − 1) − V𝑠(t) (3.2) 
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𝐿
𝑑𝑖(𝑡)̃

𝑑𝑡
+  Ri(t)̃  =  ∑ aℎ cos(ℎ𝜔𝑠𝑡) + bℎsin (ℎ𝜔𝑠𝑡)

ℎ=+∞

ℎ=1

 (3.3) 

 i(t) = i(t)̅̅ ̅̅̅ + i(t)̃ (3.4) 

 

 d(t) being the duty cycle at time during the switching period Ts. However, for our study we can 

neglect the impact of i(t)̃ over i(t). 

In order to extend this method for cases where average variables are themselves function 

of time, the averaging operator is defined as: 

 
𝑥(𝑡)̅̅ ̅̅ ̅̅ =

1

𝑇𝑠
∫ 𝑥(𝜏)𝑑𝜏,
𝑡

𝑡−𝑇𝑠

 (3.5) 

 

where 𝑥(𝑡)̅̅ ̅̅ ̅̅  is the average value of 𝑥(𝑡) over the period 𝑇𝑠. This operator can be applied on both 

side of (3.2) if the frequency of the carrier signal ωs is at least 10 times higher than the modulating 

signal which gives: 

 
𝐿
𝑑𝑖(𝑡)̅̅ ̅̅ ̅

𝑑𝑡
+  Ri(t)̅̅ ̅̅̅  =  m(t)

V𝐷𝐶
2
− V𝑠(t) (3.6) 

 

where m(t)=Mcos(ωt) and M=(2d̅ − 1), that way the modulation index describes the relationship 

between the magnitude of the modulating signal and the duty ratio. For this study, the module of 

m should not exceed 1 to avoid saturation. Other strategies such as space vector modulation, where 

m can eventually go beyond 1. In this case the maximum voltage output value is 
V𝐷𝐶

2
. 
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Similarly, for a three phase inverter dynamic equations remain the same for phase a and 

have a ±
2𝜋

3
 phase shift for phase b and c. 

 

{
  
 

  
 𝐿

𝑑𝑖𝑎(𝑡)̅̅ ̅̅ ̅̅

𝑑𝑡
+  Ri𝑎(t)̅̅ ̅̅ ̅̅  =  M𝑎

V𝐷𝐶
2
cos (ωt) − V𝑠cos (ωt) 

𝐿
𝑑𝑖𝑏(𝑡)̅̅ ̅̅ ̅̅

𝑑𝑡
+  Ri𝑏(t)̅̅ ̅̅ ̅̅  =  M𝑏

V𝐷𝐶
2
cos (ωt −

2𝜋

3
) − V𝑠cos (ωt −

2𝜋

3
)

𝐿
𝑑𝑖𝑐(𝑡)̅̅ ̅̅ ̅̅

𝑑𝑡
+  Ri𝑐(t)̅̅ ̅̅ ̅̅  =  M𝑐

V𝐷𝐶
2
cos (ωt +

2𝜋

3
) − V𝑠cos (ωt +

2𝜋

3
)

 

(3.7) 

 (3.8) 

 (3.9) 

 

To achieve the desired output value a control needs to be implemented since all parameters can 

change in time especially the grid voltage Vs or in another configuration the load and so the 

required output current. That way, a sinusoidal command tracking needs to be designed which 

implicate really elaborate compensators and a really wide bandwidth. We also need a fast dynamic 

behavior and a small steady-state error.  

DC tracking problems have widely been studied due to their simplicity. All the 

requirements mentioned above can be completed with a simple PI compensator. That is why, we 

are willing to transform our rotating values to DC values. The Park’s transform can do that; moving 

from a rotating abc-frame to a DC dq-frame. 

3.1.2 dq-Transform 

This part is purely theoretical. It can be applied to any time varying function of a balanced 

system. It is important to understand how the dq-frame is built and what does it geometrically 

represents. 
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So, let’s consider a time varying function f(t) in a three phase balanced system with a 

constant amplitude f. 

 

{
 
 

 
 

 f𝑎(t) =  f cos (ωt + 𝜃0) 

 f𝑏(t) =  f cos (ωt −
2𝜋

3
+ 𝜃0)

f𝑏(t) =  f cos (ωt +
2𝜋

3
+ 𝜃0)

 

(3.10) 

 (3.11) 

 (3.12) 

 

The space vector representation of this system is: 

 
𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =

2

3
(f𝑎(t) + f𝑏(t)𝑒

𝑗
2𝜋
3 + f𝑐(t)𝑒

𝑗
4𝜋
3 ) = (𝑓𝑒𝑗𝜃0)𝑒𝑗𝜔𝑡 = 𝑓𝑒𝑗𝜔𝑡 (3.13) 

 

This space vector 𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is represented by a magnitude and an angle. Another representation 

would be to characterize its real and imaginary part:  

 𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑓𝛼(𝑡) + 𝑗𝑓𝛽(𝑡) (3.14) 

 

Clark’s transform gives us the transfer matrix from abc-domain to αβ-domain is: 

 

[
𝑓𝛼(𝑡)

𝑓𝛽(𝑡)
] =

2

3
𝐶 [

𝑓𝑎(𝑡)

𝑓𝑏(𝑡)

𝑓𝑐(𝑡)
] =

2

3
 

[
 
 
 1 −

1

2
−
1

2

0
√3

2
−
√3

2 ]
 
 
 

[

𝑓𝑎(𝑡)

𝑓𝑏(𝑡)

𝑓𝑐(𝑡)
] (3.15) 

 

Identically, you can go from 𝛼𝛽-frame to the abc-frame by applying Clark’s transpose matrix: 

 

[

𝑓𝑎(𝑡)

𝑓𝑏(𝑡)

𝑓𝑐(𝑡)
] =

[
 
 
 
 
1 0

−
1

2

√3

2

−
1

2
−
√3

2 ]
 
 
 
 

[
𝑓𝛼(𝑡)

𝑓𝛽(𝑡)
] (3.16) 
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So now we have a new 𝛼𝛽-frame with only two components. However, this frame is still rotating. 

We are going to introduce a rotating dq-frame from which the rotating values will look constant. 

It is defined the following way: 

 𝑓𝑑(𝑡) + 𝑗𝑓𝑞(𝑡) = (𝑓𝛼(𝑡) + 𝑗𝑓𝛽(𝑡))𝑒
−𝑗𝜖(𝑡) (3.17) 

 

We introduce a time-dependent phase shift −ε(𝑡)  on the space-vector 𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . Based on Euler’s 

identities: 

 
[
𝑓𝑑(𝑡)

𝑓𝑞(𝑡)
] =  [

𝑐𝑜𝑠 ε(𝑡) sin  ε(𝑡)
− sin  ε(𝑡) 𝑐𝑜𝑠 ε(𝑡)

] [
𝑓𝛼(𝑡)

𝑓𝛽(𝑡)
] (3.18) 

 

Now to go directly from the abc-frame to the dq-frame we use the Park’s transformation: 

 

[
𝑓𝑑(𝑡)

𝑓𝑞(𝑡)
] =

2

3
[
cos ε(𝑡) sin  ε(𝑡)

− sin  ε(𝑡) cos ε(𝑡)
] 

[
 
 
 1 −

1

2
−
1

2

0
√3

2
−
√3

2 ]
 
 
 

[

𝑓𝑎(𝑡)

𝑓𝑏(𝑡)

𝑓𝑐(𝑡)
] (3.19) 

 

[
𝑓𝑑(𝑡)

𝑓𝑞(𝑡)
] =

2

3
 [
cos 𝜖(𝑡) cos (ε(𝑡) −

2𝜋

3
) cos (ε(𝑡) −

4𝜋

3
)

sin  𝜖(𝑡) sin  (ε(𝑡) −
2𝜋

3
) sin  (ε(𝑡) −

4𝜋

3
)

] [

𝑓𝑎(𝑡)

𝑓𝑏(𝑡)

𝑓𝑐(𝑡)
] (3.20) 

 

It is essential to choose the correct value of ε(𝑡) so the phasor and the frame rotate at the same 

speed.  
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3.1.3 Dynamic Model of the VSC – dq-Frame 

It is useful to represent the three phase dynamic equation with phasors under the 

assumption that the system is balanced. 

 
𝐿
𝑑𝑖(𝑡)⃗⃗⃗⃗⃗⃗  ⃗

𝑑𝑡
+  Ri(t)⃗⃗⃗⃗ ⃗⃗  =  

𝑉𝐷𝐶
2
 𝑚(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ −  V𝑠⃗⃗  ⃗  (3.21) 

 

Applying Park’s transformation (3.19), we can these equations into a rotating frame:  

 

{
𝐿
𝑑𝑖𝑑
𝑑𝑡

− L
𝑑ε(𝑡)

𝑑𝑡
I𝑞 +  Ri𝑑  =  𝑚𝑑

𝑉𝐷𝐶
2
 – V𝑠𝑑  

𝐿
𝑑𝑖𝑞

𝑑𝑡
+ L

𝑑ε(𝑡)

𝑑𝑡
I𝑑 +  Ri𝑞  =  𝑚𝑞

𝑉𝐷𝐶
2
 – V𝑠𝑞

      

(3.22) 

 (3.23) 

 

By setting ε(𝑡) = 𝜔𝑡 + 𝜃0, we can simplify the equations (3.22) and (3.23) 

 

{
𝐿
𝑑𝑖𝑑
𝑑𝑡

− L𝜔I𝑞 +  Ri𝑑  =  𝑚𝑑

𝑉𝐷𝐶
2
 – V𝑠𝑑  

𝐿
𝑑𝑖𝑞

𝑑𝑡
+ LωI𝑑 +  Ri𝑞  =  𝑚𝑞

𝑉𝐷𝐶
2
 – V𝑠𝑞

 

(3.24) 

 (3.25) 

 

As seen in the previous part, the objective of using Park’s transform is that the signal values 

(current, voltage, modulation index) are constant values in a synchronous rotating frame. That is 

why, at steady state we have: 

 

{
L𝜔I𝑞 +  Ri𝑑  =  𝑚𝑑

𝑉𝐷𝐶
2
 – V𝑠𝑑  

LωI𝑑 +  Ri𝑞  =  𝑚𝑞

𝑉𝐷𝐶
2
 – V𝑠𝑞

 

(3.26) 

 (3.27) 
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3.2 Benchmark #1 – PQ Inverter Control with a PLL (PQ-PLL) 

PQ-PLL control (Figure 9) is a widely used control routine, which tracks real and reactive 

power references. The power references are then altered and used as current references in the dq-

frame. Here, the PLL output phase angle serves a critical role in obtaining these time-independent 

references. The detailed control is developed in [14] and per unitized for the present application. 

Both d and q-axis compensators set the system dynamics while the feed forward filters prevent a 

peak current at startup.  

 

 

Figure 9 – Schematic Diagram of Current Controlled PQ-PLL Inverter 
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3.2.1 Current Control in the dq-Frame of the PLL-Based Inverter 

The objective of this part is to design a PQ reference PLL based controller. This control 

Figure 9 is widely studied in literature. A PQ-reference controller has real and reactive power 

references. That is why a current reference signal generator in the dq-frame is used in where the 

inputs are 𝑉𝑑_𝑝𝑢, 𝑉𝑞_𝑝𝑢, 𝑃𝑟𝑒𝑓_𝑝𝑢
∗ , 𝑄𝑟𝑒𝑓_𝑝𝑢

∗ . 

 

{
 
 

 
 𝐼𝑑_𝑟𝑒𝑓 =

2

3

𝑉𝑑_𝑝𝑢 × 𝑃𝑟𝑒𝑓_𝑝𝑢
∗ + 𝑉𝑞_𝑝𝑢 × 𝑄𝑟𝑒𝑓_𝑝𝑢

∗

𝑉𝑑_𝑝𝑢
2 + 𝑉𝑞_𝑝𝑢2

𝐼𝑞_𝑟𝑒𝑓 =
2

3

𝑉𝑞_𝑝𝑢 × 𝑃𝑟𝑒𝑓_𝑝𝑢
∗ − 𝑉𝑑_𝑝𝑢 × 𝑄𝑟𝑒𝑓_𝑝𝑢

∗

𝑉𝑑_𝑝𝑢
2 + 𝑉𝑞_𝑝𝑢2

 

(3.28) 

 
(3.29) 

 

In order to design the current controller, equations derived in the last part are used.  

 

{
 
 

 
  𝑚𝑑 =

2

𝑉𝐷𝐶
(L
𝑑𝑖𝑑
𝑑𝑡

+ Ri𝑑 − L𝜔I𝑞 + V𝑠𝑑) 

𝑚𝑞 =
2

𝑉𝐷𝐶
(L
𝑑𝑖𝑞

𝑑𝑡
+ Ri𝑞 + L𝜔I𝑑 + V𝑠𝑞)

 

(3.30) 

 
(3.31) 

 

Let’s now introduce two control inputs ud and uq defined as 

 

{
𝑢𝑑 = L

𝑑𝑖𝑑
𝑑𝑡

+ Ri𝑑

𝑢𝑞 = L
𝑑𝑖𝑞

𝑑𝑡
+ Ri𝑞

 

(3.32) 

 (3.33) 

 

Injecting (3.30), (3.31) into (3.32), (3.33) we get: 

 

{
 

  𝑚𝑑 =
2

𝑉𝐷𝐶
(𝑢𝑑 − L𝜔I𝑞 + V𝑠𝑑) 

𝑚𝑞 =
2

𝑉𝐷𝐶
(𝑢𝑞 + L𝜔I𝑑 + V𝑠𝑞)

 

(3.34) 

 
(3.35) 
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Now, let’s introduce a compensator kd(s) that processes 𝑒𝑑 = 𝑖𝑑𝑟𝑒𝑓 − 𝑖𝑑 and provides 𝑢𝑑. The 

same compensator kq(s) processing 𝑒𝑞 = 𝑖𝑞𝑟𝑒𝑓 − 𝑖𝑞 and providing 𝑢𝑞 will be designed. A simple 

proportional-integral (PI) compensator can easily track ad DC reference command.  

 
𝑘𝑑(𝑠) = 𝑘𝑞(𝑠) =

𝑘𝑝𝑠 + 𝑘𝑖

𝑠
  (3.36) 

 

where: 

 

{
 

 𝑘𝑝 =
𝐿

𝜏𝑖

𝑘𝑖 =
𝑅

𝜏𝑖

   

(3.37) 

 
(3.38) 

 

where 𝜏𝑖  is the desired time constant. 

Finally, a feed-forward filter is added in order to anticipate and compensate pick currents 

during the connection to the grid which is a low pass filter: 

 
𝐺𝑓𝑓(𝑠) =

1

𝜏𝑠 + 1
  (3.39) 

   

where 𝜏 is the filter time-constant which needs to be really small (microsecond order) to 

compensate efficiently. The current control diagram is presented in Figure 10. It is interesting to 

notice that the output voltage is limited by 
𝑉𝐷𝐶

2
. 
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Figure 10 – Current Control Block Diagram 

 

3.2.2 Phase Lock Loop (PLL) 

As mentioned, theatrically ε(𝑡) needs to be equal to 𝜔𝑡 + 𝜃0To achieve that performance, 

the phase-lock-loop (PLL) extracts the frequency from the grid. That frequency will be directly 

injected into the dq-transform block in order to make the frame rotate at the same speed as the 

signal. 

The frequency measurement is based on the fact that for a balanced system the q-

component of the voltage Vsq must be equal to 0. That way, 𝜀(𝑡) has to be set in such way that 

Vsq=0; meaning that the frame is rotating at the same speed as the signal. However, the expression 
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of 𝑉sq is a sinusoidal function 𝑉sq =Vs sin(𝜔𝑡 + 𝜃0 – 𝜀(𝑡)),  and can’t be used directly as a feedback 

signal to regulate 𝜀(𝑡). If (𝑡) is initially close enough to 𝜔𝑡 + 𝜃0 then it is possible to state that 𝑉𝑠𝑞 

≈ 𝑉(𝜔𝑡 + 𝜃0 – 𝜀(𝑡)). A possible way to do that is to set 
𝑑𝜀

𝑑𝑡
(0) = 𝜔𝜀(0) = 𝜔0,  𝜔0 being the grid’s 

nominal frequency and always keeping 𝜔𝜀 close enough to 𝜔0 by putting some boundaries such 

as 

 𝜔𝜀𝑚𝑖𝑛 ≤ 𝜔𝜀 ≤ 𝜔𝜀𝑚𝑎𝑥 (3.40) 

 

The phase and frequency are both estimated within a single loop (Figure 11). The studied PLL 

control loop is composed of a simple PI compensator which has to bring the error 𝑉𝑠𝑞0 − 𝑉𝑠𝑞 which 

is equal to – 𝑉𝑠𝑞 to 0. The output of the PI compensator is the frequency adjustment. A Voltage-

controlled oscillator (VCO) is used as a resettable integrator every time the result of the integration 

reaches 2𝜋. 

 

Figure 11 – PLL Structure 
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3.3 Benchmark #2 – Self-Synchronizing Inverter Control 

The self-synchronizing controller has been developed by Joseph Latham, Moath 

Alqatamin, and Dr. Mcintyre from the University of Louisville with the assistance of Dr. Brandon 

Grainger and Zachary Smith both from the University of Pittsburgh and is presented in the article 

“Self-Synchronizing Current Control of a Three-Phase Grid Connected Inverter in the Presence of 

Unknown Grid Parameters” – IEEE APEC 2020.  

3.3.1 General Presentation 

A suitable dynamic system model of a three-phase grid connected inverter, as seen in 

Figure 12, can be modeled in the natural abc-frame as shown in (3.41) where Ia(t), Ib(t), Ic(t) are 

the three phase currents, Vdc, L, and R are the DC-link voltage, filter inductance and resistance, 

respectively. The control signals are the three-phase duty cycles Da(t), Db(t), Dc(t), and the grid 

parameters are voltage magnitude Vg(t) and grid phase θ(t).  The grid frequency is naturally related 

to the phase by the following formula:  𝜔 = 𝜃̇(𝑡). In this paper, the grid phase is unknown so the 

standard dq-transformation cannot be utilized for (3.41). Instead an estimated γδ-frame is utilized 

by performing the dq-transformation using 𝜃(𝑡) in place of θ (t), where 𝜃(𝑡) is an observed grid-

phase [15] to be designed subsequently. After transformation about 𝜃(𝑡), (3.41) it can be written 

in the γδ -frame as shown in (3.42) where the currents and the control signals have been 

transformed to the γδ -frame, and the grid-phase estimation error is defined and given in (3.44). 

Equations (3.45), (3.46) and (3.47), describe the full self-synchronizing controller model. The 

validity of the current tracking performance is provided in Figure 12.  The stability of the controller 

can be proved by Lyapunov theory. 
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 𝐿 [

𝐼𝑎̇
𝐼𝑏̇
𝐼𝑐̇

] = 𝑉𝑑𝑐 [
𝐷𝑎
𝐷𝑏
𝐷𝑐

] − 𝑅 [
𝐼𝑎
𝐼𝑏
𝐼𝑐

] − 𝑉𝑔

[
 
 
 
 

𝑐𝑜𝑠(𝜃)

𝑐𝑜𝑠 (𝜃 −
2𝜋

3
)

𝑐𝑜𝑠 (𝜃 +
2𝜋

3
)]
 
 
 
 

 (3.41) 

 
𝐿 [
𝐼𝛾̇

𝐼𝛿̇
] = 𝑉𝑑𝑐 [

𝐷𝛾
𝐷𝛿
] − [ 𝑅 −𝜃̇𝐿

𝜃̇𝐿 𝑅
] [
𝐼𝛾
𝐼𝛿
] − 𝑉𝑔 [

𝑐𝑜𝑠 𝜃̃
𝑠𝑖𝑛 𝜃̃

] (3.42) 

 
[
𝐷𝛾
𝐷𝛿
] ≜

1

𝑉𝑑𝑐
([ 𝑅 −𝜃̇𝐿

𝜃̇𝐿 𝑅
] [
𝐼𝛾
𝐼𝛿
] + [

𝑉̂𝑔
0
] + 𝑘1 [

𝐼𝛾

𝐼𝛿
]) (3.43) 

 θ̃ ≜ θ − θ̂ (3.44) 

 
θ̂ ≜ LĨδ +∫ [ω̂ + (k1 + 1)Ĩδ]

t

t0

 (3.45) 

 
ω̂ ≜ kω (LĨδ + k1∫ Ĩδ

t

t0

) (3.46) 

 V̇̂g ≜ kv Ĩγ (3.47) 

 

 

Figure 12 – General Schematic Diagram of the Current Controlled Self-Synchronizing Inverter 
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3.3.2 Detailed Model 

 

Figure 13 – Three-Phase Inverter Circuit 

 

The first assumption is that we have a three phase balanced system with a single frequency. 

 

[

𝑒𝑎
𝑒𝑏
𝑒𝑐
] = 𝑉𝑔

[
 
 
 
 

cos(𝜃)

cos (𝜃 −
2𝜋

3
)

cos (𝜃 +
2𝜋

3
)]
 
 
 
 

 (3.48) 

 

where 𝑉𝑔 is the amplitude of the grid voltage. 

We can generalize the inverter dynamic equation (3.1) to a three phase system: 

 

[

𝑣𝑎
𝑣𝑏
𝑣𝑐
] = 𝐿 [

𝐼𝑎̇
𝐼𝑏̇
𝐼𝑐̇

] + 𝑅 [
𝐼𝑎
𝐼𝑏
𝐼𝑐

] + [

𝑒𝑎
𝑒𝑏
𝑒𝑐
] (3.49) 

 

Assuming a switching average model where the output voltage is directly proportional to the input 

DC voltage through the duty cycle, we have: 

 

[

𝑣𝑎
𝑣𝑏
𝑣𝑐
] = 𝑉𝑑𝑐 [

𝐷𝑎
𝐷𝑏
𝐷𝑐

] (3.50) 
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where 𝐷𝑎 , 𝐷𝑏 , 𝐷𝑐 ∈ [0,1]. Making these substitutions and rewriting, we can obtain the following 

three-phase grid current dynamics: 

 

𝐿 [

𝐼𝑎̇
𝐼𝑏̇
𝐼𝑐̇

] = 𝑉𝑑𝑐 [
𝐷𝑎
𝐷𝑏
𝐷𝑐

] − 𝑅 [
𝐼𝑎
𝐼𝑏
𝐼𝑐

] − 𝑉𝑔

[
 
 
 
 

cos(𝜃)

cos (𝜃 −
2𝜋

3
)

cos (𝜃 +
2𝜋

3
)]
 
 
 
 

 (3.51) 

 

Using the Clarke’s transform presented in 3.1.2, we can transfer this model from an abc-frame into 

a 𝛼𝛽-frame: 

 
𝐿 [
𝐼𝛼̇
𝐼𝛽̇
] = 𝑉𝑑𝑐 [

𝐷𝛼
𝐷𝛽
] − 𝑅 [

𝐼𝛼
𝐼𝛽
] − 𝑉𝑔 [

cos 𝜃
sin 𝜃

] (3.52) 

 

Similarly, transforming this dynamic model into the 𝑑𝑞-frame we obtain: 

 
 𝐿 [
𝐼𝑑̇
𝐼𝑞̇
] = 𝑉𝑑𝑐 [

𝐷𝑑
𝐷𝑞
] − [

𝑅 −𝜔𝐿
𝜔𝐿 𝑅

] [
𝐼𝑑
𝐼𝑞
] − 𝑉𝑔 [

1
0
] (3.53) 

 

where 𝜔 ≜ 𝜃̇. 

3.3.3 Estimated Reference Frame Model 

Since the angle 𝜃 is unknown, the dq transformation will be executed using an observer 𝜃 

that will be presented subsequently.  This new transformation is denoted as 𝛾𝛿. For this purpose 

the following modified dq transformation is defined: 

 
 [
𝑓𝛾
𝑓𝛿
] = 𝐾̂𝑃 [

𝑓𝛼
𝑓𝛽
] (3.54) 
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where: 

 
𝐾̂𝑃 ≜ [ cos 𝜃 sin 𝜃  

−sin 𝜃 cos 𝜃
] (3.55) 

 

and for future reference the following inverse transformation: 

 
[
𝑓𝛼
𝑓𝛽
] = 𝐾̂𝑃

−1 [
𝑓𝛾
𝑓𝛿
] (3.56) 

 

where: 

 
 𝐾̂𝑃
−1 = [cos 𝜃 − sin 𝜃  

sin 𝜃 cos 𝜃
] (3.57) 

 

An error for the angle observer can be defined as: 

 𝜃̃ ≜ 𝜃 − 𝜃 (3.58) 

 

Using the inverse of this transformation we can substitute the 𝛼𝛽 vectors in the 𝛼𝛽-frame model 

for 𝛾𝛿 vectors such as: 

 
𝐿
𝑑

𝑑𝑡
(𝐾̂𝑃

−1 [
𝐼𝛾
𝐼𝛿
]) = 𝑉𝑑𝑐𝐾̂𝑃

−1 [
𝐷𝛾
𝐷𝛿
] − 𝑅𝐾̂𝑃

−1 [
𝐼𝛾
𝐼𝛿
] − 𝑉𝑔 [

cos 𝜃
sin 𝜃

] (3.59) 

 

Multiplying both sides by 𝐾̂𝑃, we obtain: 

 
𝐿𝐾̂𝑃

𝑑

𝑑𝑡
(𝐾̂𝑃

−1 [
𝐼𝛾
𝐼𝛿
]) = 𝑉𝑑𝑐𝐾̂𝑃𝐾̂𝑃

−1 [
𝐷𝛾
𝐷𝛿
] − 𝑅𝐾̂𝑃𝐾̂𝑃

−1 [
𝐼𝛾
𝐼𝛿
] − 𝑉𝑔𝐾̂𝑃 [

cos 𝜃
sin 𝜃

] (3.60) 

 

following simplifications will help to clarify the model: 
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𝐾̂𝑃𝐾̂𝑃
−1
= 𝐼2 (3.61) 

𝐾̂𝑃 [
cos 𝜃
sin 𝜃

] = [cos 𝜃̃
sin 𝜃̃

] 
(3.62) 

𝑑

𝑑𝑡
(𝐾̂𝑃

−1 [
𝐼𝛾
𝐼𝛿
]) = 𝐾̂𝑃

−1 [
𝐼𝛾̇

𝐼𝛿̇
] + 𝐾̇̂𝑃

−1 [
𝐼𝛾
𝐼𝛿
] 

(3.63) 

 

where: 

 
𝐾̇̂𝑃
−1 = 𝜃̇ [− sin 𝜃 − cos 𝜃

cos 𝜃 − sin 𝜃
] (3.64) 

 

Making these substitutions into the model we obtain: 

 
𝐿 [
𝐼𝛾̇

𝐼𝛿̇
] + 𝐿𝐾̂𝑃𝐾̇̂𝑃

−1 [
𝐼𝛾
𝐼𝛿
] = 𝑉𝑑𝑐 [

𝐷𝛾
𝐷𝛿
] − 𝑅 [

𝐼𝛾
𝐼𝛿
] − 𝑉𝑔 [

cos 𝜃̃
sin 𝜃̃

] (3.65) 

 

We can further calculate 

 𝐾̂𝑃𝐾̇̂𝑃
−1 = 𝜃̇ [

0 −1
1 0

] (3.66) 

 

Substituting this into the above and combining terms we obtain the following 𝛾𝛿-frame current 

dynamics: 

 
𝐿 [
𝐼𝛾̇

𝐼𝛿̇
] = 𝑉𝑑𝑐 [

𝐷𝛾
𝐷𝛿
] − [ 𝑅 −𝜃̇𝐿

𝜃̇𝐿 𝑅
] [
𝐼𝛾
𝐼𝛿
] − 𝑉𝑔 [

cos 𝜃̃
sin 𝜃̃

] (3.67) 
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3.3.4 Controller Development 

3.3.4.1 Assumptions 

1. Alpha-beta frame currents  𝐼𝛼 , 𝐼𝛽 are known 

2. Parameters 𝑅, 𝐿, 𝑉𝑑𝑐 are known a priori and are constants with respect to time. 

3. The grid frequency 𝜔 and amplitude 𝑉𝑔 are unknown but are assumed to be positive 

constants. Grid phase 𝜃 is also unknown. 

3.3.4.2 Observer Objectives and Description 

• Sensorlessly identify the phase angle 𝜃 of the grid, i.e. ensure that 𝜃 → 𝜃, 𝜃̃ → 0. 

Controller Objectives 

• Achieve the reference current values 𝐼𝛾
∗, 𝐼𝛿

∗.  When 𝜃̃ = 0, 𝐼𝛾 = 𝐼𝑑   and 𝐼𝛿 = 𝐼𝑞, meaning 

reactive and real power can be achieved through equations (3.28) and (3.29) control error 

is defined as: 

 
[
𝐼𝛾

𝐼𝛿
] ≜ [

𝐼𝛾
∗

𝐼𝛿
∗] − [

𝐼𝛾
𝐼𝛿
] (3.68) 

 

Taking the derivative of these error equations and substituting in the 𝛾𝛿 current dynamics we 

obtain the following open loop error dynamics (assuming a fix current reference): 

 
𝐿 [
𝐼̇𝛾

𝐼̇𝛿
] = [ 𝑅 −𝜃̇𝐿

𝜃̇𝐿 𝑅
] [
𝐼𝛾
𝐼𝛿
] + 𝑉𝑔 [

cos 𝜃̃
sin 𝜃̃

] − 𝑉𝑑𝑐 [
𝐷𝛾
𝐷𝛿
] (3.69) 
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To facilitate the analysis, we make that the error 𝜃̃ is small and centered about 0. Therefore: 

 
𝐿 [
𝐼̇𝛾

𝐼̇𝛿
] = [ 𝑅 −𝜃̇𝐿

𝜃̇𝐿 𝑅
] [
𝐼𝛾
𝐼𝛿
] + 𝑉𝑔 [

1
sin 𝜃̃

] − 𝑉𝑑𝑐 [
𝐷𝛾
𝐷𝛿
] (3.70) 

 

Based on this equation and the estimation of the grid voltage magnitude 𝑉̂𝑔, we can define the 

following duty cycle control inputs:  

 
[
𝐷𝛾
𝐷𝛿
] ≜

1

𝑉𝑑𝑐
([ 𝑅 −𝜃̇𝐿

𝜃̇𝐿 𝑅
] [
𝐼𝛾
𝐼𝛿
] + [

𝑉̂𝑔
0
] + 𝑘1 [

𝐼𝛾

𝐼𝛿
]) (3.71) 

 

where 𝑉̂𝑔 is an estimate of the grid voltage amplitude.  

The angle observer and frequency estimate will be designed in the stability analysis 

(Appendix B). 
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4.0 Droop Control Purpose and Implementation 

In order to have a consistent comparison, a PQ reference (Figure 14) has been set on the 

self-synchronizing inverter control. In order to calculate Id_ref (3.28) and Iq_ref (3.29), the PLL 

controlled inverter will operate with the measured grid voltage while the self-synchronizing 

inverter control scheme will make use of the estimated-voltage; thus, the self- synchronizing 

inverter requires less sensing hardware (i.e. no voltage sensors). Furthermore, droop control has 

been added to ensure time-variant references for the real and reactive power so the inverter is 

responsible for adjusting its generation in accordance with the main grid consumption. The 

frequency is linked to the real power through the droop coefficient Rp Figure 14 and the voltage is 

correlated to the reactive power through Rq.   

 

 

Figure 14 – Droop Control Implementation 
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5.0 Simulations Results and Analysis 

5.1 Inverter Validation Simulations 

5.1.1 PQ Inverter Control with a PLL (PQ-PLL) 

The following circuit, Figure 15, has been used in PLECS in order to validate the PQ-PLL 

inverter’s control. A particular emphasis will be given to the current control. At time t0 the 

reference power will experience a 10% drop. 

 

 

Figure 15 – PQ Inverter with a PLL PLECS Model 
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Table 1 – PQ Inverter with a PLL Simulation Parameters 

𝑅𝑓𝑖𝑙𝑡𝑒𝑟 1.63x10-3 Ω 𝑘𝑝𝑃𝐿𝐿 2 

𝐿𝑓𝑖𝑙𝑡𝑒𝑟 100x10-6 H 𝑘𝑖𝑃𝐿𝐿 10 

𝑉𝑔𝑟𝑖𝑔_𝑝𝑝 3.3 kV 𝑘𝑝𝑘𝑑 0.05 

𝑓
𝑔𝑟𝑖𝑑

 60 Hz 𝑘𝑖𝑘𝑑 0.815 

𝑉𝐷𝐶 5 kV 𝑘𝑝𝑘𝑞 0.05 

𝑓
𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔

 25x103 Hz 𝑘𝑖𝑘𝑞  0.815 

𝜏𝐺𝑓𝑓 8.10-7 s   

 

 

Figure 16 – PQ Inverter with a PLL Current Controller 
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Figure 17 – PQ Inverter with a PLL Current Tracking Performances with the d (up) and q (down) Current 

Reference in Red and the Mesured Current in Green 

 

 

Figure 18 – PQ Inverter with a PLL - abc Modulation Indexes 
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We can see on Figure 17 that the current follows the reference current and the modulation index 

(Figure 18) is sinusoidal and its magnitude is inferior to 1. 

In conclusion, the simulations validate the presented PQ-PLL inverter control. 

5.1.2 PQ Self-Synchronizing Inverter Control 

The following circuit, Figure 19, has been used in PLECS in order to validate the self-

synchronizing inverter’s control. A particular emphasis will be given to the current control. At 

time t0 the reference power will experience a 10% drop. 

 

 

Figure 19 – PQ Self-Synchronizing Inverter PLECS Model 
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Table 2 – PQ Self-Synchronizing Inverter  Simulation Parameters 

𝑅𝑓𝑖𝑙𝑡𝑒𝑟 0.1 Ω 𝐾1 2x10-5 

𝐿𝑓𝑖𝑙𝑡𝑒𝑟 0.01 H 𝐾 20 

𝑉𝑔𝑟𝑖𝑔_𝑝𝑝 3.3 kV 𝐾𝑉 1000 

𝑓
𝑔𝑟𝑖𝑑

 60 Hz 𝐾𝑤 100 

𝑓
𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔

 25x103 Hz 𝑉𝐷𝐶 5 kV 

 

 

Figure 20 – PQ Self-Synchronizing Inverter Current Controller 

 

 

Figure 21 – PQ Self-Synchronizing Inverter Angle Observer 
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Figure 22 – PQ Self-Synchronizing Inverter Current Tracking Performances with the d (up) and q (down) 

Current Reference in Red and the Mesured Current in Green 

 

 

Figure 23 – PQ Self-Synchronizing Inverter Voltage Estimation 
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We can see that the current follows the reference current (Figure 22) and that the estimate voltage 

is equal, after initialization, to the grid voltage (Figure 23). 

In conclusion, the simulations validate the presented self-synchronizing inverter control. 

5.2 System Frequency Dynamic Response in a High Renewable Penetration Grid 

Simulation Parameters 

In order to study the system frequency dynamic response for each inverter case (PQ-PLL 

and self-synchronizing inverter) a high renewable penetration grid has been built on PLECS 

(Figure 24) based on chapter 2.0. The penetration ratio (Pr) and the inertia (H) are two parameters 

that are tuned in order to study the frequency behavior for those cases. 

Simulations, which consist in dropping the load by 10% at time t0 in order to study the 

grid’s frequency dynamic behavior, has been carried out in PLECS (time step of 50μs) and 

normalized by (5.1) for interpretation. Equation (5.1) is the frequency normalization that was 

applied in this work, where fo is 60Hz and fsteady-state is frequency after load change. 

 
𝑓(𝑖)𝑛𝑜𝑟𝑚 =

𝑓(𝑖) − 𝑓0
𝑓𝑠𝑡𝑒𝑎𝑑𝑦−𝑠𝑡𝑎𝑡𝑒 − 𝑓0

 (5.1) 
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Figure 24 – Grid Model PLECS 

 

For both inverter’s simulations the grid, and particularly the synchronous generator, parameters, 

excluding the inverter itself, are the same. The following table shows all the main parameters. 
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Table 3 – Full Grid Model Parameters 

General Grid parameters 

𝑽𝒈𝒓𝒊𝒈−𝒑𝒑 3.3 kV 𝑹𝑳𝒊𝒏𝒆 ≈ 0 

𝒇
𝒈𝒓𝒊𝒅

 60 Hz 𝑳𝑳𝒊𝒏𝒆 ≈ 0 

𝑹𝒅𝒓𝒐𝒐𝒑𝑷 5% 𝑳𝒐𝒂𝒅 𝒄𝒉𝒂𝒏𝒈𝒆 10% 

𝑹𝒅𝒓𝒐𝒐𝒑𝑸 5%   

Machine parameters 

𝑻𝒈 0.1s 𝑯 2 – 6 s 

𝑲𝑪𝑯, 𝑲𝑮 1 𝑫 0.01 

𝑻𝒄𝒉 1s 𝑲𝒂 1 

𝑽𝒓𝒆𝒇_𝒑𝒖 1 𝝉𝒌𝒍 0.02 s 

𝝎𝒓𝒆𝒇 2π60 rad.s-1 𝑲𝑬 0.05 

𝑲𝒇 0 𝑻𝑬 0.46 

PQ-PLL Inverter parameters 

𝑹𝒇𝒊𝒍𝒕𝒆𝒓 1.63x10-3 Ω 𝝉𝑮𝒇𝒇 8.10-7 s 

𝑳𝒇𝒊𝒍𝒕𝒆𝒓 100x10-6 H 𝒌𝒑𝒌𝒅  0.05 

𝒇
𝒔𝒘𝒊𝒕𝒄𝒉𝒊𝒏𝒈

 25x103 Hz 𝒌𝒊𝒌𝒅 0.815 

𝒌𝒑𝑷𝑳𝑳 2 𝒌𝒑𝒌𝒒  0.05 

𝒌𝒊𝑷𝑳𝑳 10 𝒌𝒊𝒌𝒒  0.815 

𝑽𝑫𝑪 5 kV   

Self-synchronizing Inverter parameters 

𝑹𝒇𝒊𝒍𝒕𝒆𝒓 0.1 Ω 𝑲𝑽 1000 

𝑳𝒇𝒊𝒍𝒕𝒆𝒓 0.01 H 𝑲𝒘 100 

𝒇
𝒔𝒘𝒊𝒕𝒄𝒉𝒊𝒏𝒈

 25x103 Hz 𝑲𝟏 20 

𝑲 2x10-5 𝑽𝑫𝑪 10 kV 
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5.3 Results and Analysis 

Results are presented for the 4 extreme cases:  

• Case (a): Pr=20%, H=2 

• Case (a): Pr=20%, H=2 

• Case (a): Pr=20%, H=2 

• Case (a): Pr=20%, H=2 

Additional results are presented in the Appendix A. All results have been taken in consideration 

for the analysis. 

 

Table 4 - PLL (Classic) and Self-Synchronizing (Adaptive) Frequency Response for Pr=20% and 80% and 

H=2 and 6. 

 Pr = 20% Pr = 80% 

H = 2 

 

  
 (a) (b) 

H = 6 

 

  
 (c) (d) 
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Table 5 - Overshoot, Undershoot and Steady-State Ripple for PLL (Classic - Blue) and Self-Synchronizing 

(Adaptive - Red) Controls for Pr=20% and 80% and H=2 and 6 Extremities 

5.3.1 Impact of Mechanical Inertia 

Mechanical inertia has a similar impact on both the PQ-PLL and self-synchronizing 

controlled inverter grid’s frequency overshoot. Increasing the inertia lowers the overshoot. For 

example, as seen in Table 4 and Table 5, for the Pr=20% case, a 41.1% overshoot for the self-

synchronized inverter with H=2 (Table 4 - a) is observed and only 10.1% with H=6 (Table 4 - c).  

Another interesting observation is the hunting effect that is observed for the lower inertia, high 

penetration PLL case (Table 4 - b) compared to the self-synchronizing routine. In addition, despite 

a higher overshoot in Fig. 5a, the self-synchronized inverter has a second undershoot swing 30% 

lower (7.3% against 10.1%) compared to the PQ-PLL inverter. In line with these results, it can be 

concluded that both inverters’ overshoot is directly linked to inertia. However, the self-

synchronizing controlled inverter has significantly faster dynamics and a steady-state that is 

always reached in less than a second while the PLL controlled inverters cannot reach steady-state 

within 3 seconds for low inertia, high penetration grids (Table 4 - b).   

 
Max overshoot (%) Max undershoot (%) Steady-state ripple p-p (%) 

PLL Self-Synch PLL Self-Synch PLL Self-Synch 

Case (a): Pr=20%, H=2 
38.0 41.1 

 

10.1 7.3 
 

1.2 <0.1 
 

Case (b): Pr=80%, H=2 
40.1 36.2 

 

10.6 4.5 
 

4.2 <0.1 
 

Case (c): Pr=20%, H=6 
14.3 10.1 

 

2.5 1.5 
 

<0.1 <0.1 
 

Case (d): Pr=80%, H=6 
14.5 6.3 

 

4.5 2.1 
 

1.5 <0.1 
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5.3.2 Impact of Renewable Source Penetration Ratio 

The renewable source penetration ratio has a direct impact on the grid’s frequency behavior 

for each of the inverter scenarios evaluated. Increasing the penetration ratio for the PLL based 

control inverter increases the overshoot.  For example, for H=2, a +2.1% overall overshoot is 

observed when increasing Pr from 20% (Table 4 - a) to 80% (Table 4 - b). This result was already 

observed in [5]. On the other hand, for the self-synchronizing inverter, increasing Pr tends to 

reduce the overshoot.  For example, for H=6 (Table 4 - b), a -8.2% overall overshoot is observed 

by increasing Pr from 20% (Table 4 - c) to 80% (Table 4 - d); the overshoot of Table 4 – d is 

reduced by half compared to Table 4 - c. This key result can be explained by the self-synchronizing 

control itself. Elevating the penetration ratio, Pr, strengthens the role of the inverter control; hence, 

the inverter’s adaptive control depends only the current error signals and works to minimize these 

current errors. In contrast, the classic PQ-PLL controlled inverter depends on the transient response 

of its PLL reaching a new steady-state value in the face of frequency disturbances.  Then the 

current control scheme within the classic scheme adjusts achieve its control objective.  The new 

approach removes the slow-response time of the classic cascaded control scheme and achieves 

current control in the presence of uncertain grid parameters.  
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6.0 Conclusion 

A self-synchronizing inverter control has been introduced in this article. After describing 

the grid-model, the grid dynamic frequency response to a 10% load change was examined for a 

system including PQ-PLL inverters and a new self-synchronizing inverter. First, increasing the 

mechanical inertia lowers the frequency overshoot. The self-synchronizing inverter reaches 

steady-state significantly faster due to the internal dynamics of the adaptive control by disrupting 

the need for a cascaded control scheme.  Secondly, increasing the renewable source penetration 

ratio tends to increase the overshoot for PLL based inverters while considerably lowering the 

overshoot for the self- synchronizing inverters because the adaptive control only depends on the 

current control errors signals and not a separate system response.  Based upon this study, the self-

synchronizing inverter can improve the performance of traditional inverter topologies in high 

renewable penetration (low inertia) environments.  
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7.0 Future Work 

Future studies can be done on a larger scale grid with a significant number of synchronous 

machines and inverter-based sources for a more detailed transient analysis and an improved 

frequency dynamic studies.  

Another important factor to be studied is the interaction between the PLL based inverter 

and the self-synchronizing one. In this study we only modeled inverter 100% PQ-PLL controlled 

or self-synchronized. It would be interesting to integrate both inverters into the model at the same 

time and mathematically describe their interaction. This analysis is crucial since PQ-PLL inverters 

are already installed and those controls won’t be changed. That’s why introducing the self-

synchronizing inverter would be progressive and the “cohabitation” with the PQ-PLL inverters 

will be necessary. Predicting this interaction can definitely avoid issues caused by both inverter 

types interactions. 

Finally, unbalanced conditions need to be taken in account in future works. Faults are an 

important component of power system studies. In that case Vq component will be different of 0 so 

some adjustments need to be done both in the PLL and self-synchronizing controls. Then a stability 

study needs to be done to confirm the self-synchronizing inverter design in fault conditions. 
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Appendix A Detailed Results 

Additional results are presented in this section. The model and the parameters are the same 

that in section 5.2 System Frequency Dynamic Response in a High Renewable Penetration Grid 

Simulation Parameters. 

The penetration ration (Pr) is equal to 20%, 50%, 80%. For each case, Inertia (H) is equal 

to 2,4,6. These results have been taken in account for previous analysis. 

Appendix A.1 Results for Pr=20% 

 

Appendix Figure 1 - Normalized Frequency Response to a 10% Load Change Pr=20% & H=6 
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Appendix Figure 2 - Normalized Frequency Response to a 10% Load Change Pr=20% & H=4 

 

 

Appendix Figure 3 - Normalized Frequency Response to a 10% Load Change Pr=20% & H=2 
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Appendix A.2 Results for Pr=50% 

 

Appendix Figure 4 - Normalized Frequency Response to a 10% Load Change Pr=50% & H=4 

 

 

Appendix Figure 5 - Normalized Frequency Response to a 10% Load Change Pr=50% & H=4 
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Appendix Figure 6 - Normalized Frequency Response to a 10% Load Change Pr=50% & H=2 
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Appendix A.3 Results for Pr=80% 

 

Appendix Figure 7 - Normalized Frequency Response to a 10% Load Change Pr=80% & H=6 

 

 

 

Appendix Figure 8 - Normalized Frequency Response to a 10% Load Change Pr=80% & H=4  
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Appendix Figure 9 - Normalized Frequency Response to a 10% Load Change Pr=80% & H=2 
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Appendix B Stability Analysis of the Self-Synchronizing Controller 

Based on the article [16] we can study the self-synchronizing controller stability.  

Substituting (3.71) into (3.67) we obtain the following closed loop current error dynamics 

 
𝐿 [
𝐼̇𝛾

𝐼̇𝛿
] = −𝑘1 [

𝐼𝛾

𝐼𝛿
] + [

𝑉̃𝑔

𝑉𝑔 sin 𝜃̃
] ( 1 ) 

 

where 𝑉̃𝑔 is the estimate error defined as 𝑉̃𝑔 ≜ 𝑉𝑔 − 𝑉̂𝑔, which has the following error dynamic 

based on Assumption 3 in 3.3.4.1: 

 𝑉̇̃𝑔 = −𝑉̇̂𝑔. ( 2 ) 

 

We can rewrite the 𝛿-axis equation above to obtain the following useful relationship: 

 𝑉𝑔 sin 𝜃̃ = 𝑘1𝐼𝛿 + 𝐿𝐼
̇
𝛿 ( 3 ) 

 

Taking the derivative of 𝜃̃ we have: 

 𝜃̇̃ = 𝜔 − 𝜃̇ ( 4 ) 

 

We also define a speed estimate 𝜔̂, with corresponding error 𝜔̃ ≜ 𝜔 − 𝜔̂, which has the following 

error dynamic based on Assumption 3 in 3.3.4.1: 

 𝜔̇̃ = −𝜔̇̂ ( 5 ) 
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To design the angle and frequency observer let’s define a Lyapunov function: 

 
𝑉 =

1

2
𝐿𝐼𝛾

2
+
1

2
𝐿𝐼𝛿

2
+ 𝑉𝑔(1 − cos 𝜃̃ ) +

1

2𝑘𝜔
𝜔̃2 +

1

2𝑘𝑉
𝑉̃𝑔
2 ( 6 ) 

 

We can see from Assumption 3 (3.3.4.1) that this equation is positive definite in the local region 

𝜃̃ ∈ (−2𝜋, 2𝜋).  Assuming that 𝜃̃  is wrapped such that its effective domain is 𝜃̃  ∈ [−𝜋, 𝜋) we 

can see that the function is effectively globally positive definite.  Taking the derivative of this 

function we find: 

 
𝑉̇ = 𝐿𝐼𝛾𝐼

̇
𝛾 + 𝐿𝐼𝛿𝐼

̇
𝛿 + 𝑉𝑔𝜃̇̃ sin 𝜃̃ +

1

𝑘𝜔
𝜔̃𝜔̇̃ +

1

𝑘𝑉
𝑉̃𝑔𝑉̇̃𝑔 ( 7 ) 

 

Then substituting into this the dynamics for each error signal: 

𝑉𝑉̇ = 𝐼𝛾(−𝑘1𝐼𝛾 + 𝑉̃𝑔) + 𝐼𝛿(−𝑘1𝐼𝛿 + 𝑉𝑔 sin 𝜃̃) + 𝑉𝑔 sin 𝜃̃ (𝜔 − 𝜃̇) −
1

𝑘𝜔
𝜔̃𝜔̇̂ −

1

𝑘𝑉
𝑉̃𝑔𝑉̇̂𝑔 ( 8 ) 

 

This form motivates the following design for the angle observer update law: 

 𝜃̇ ≜ 𝜔̂ + 𝐼𝛿 + 𝑉𝑔 sin 𝜃̃𝑒 ( 9 ) 

 

We can see that this design is unrealizable due to the unknown signals comprising the 3rd term on 

the RHS. To make this observer realizable we can make a substitution for the last term based on 

the CLED for 𝐼𝛿 to obtain: 

 𝜃̇ ≜ 𝜔̂ + (𝑘1 + 1)𝐼𝛿 + 𝐿𝐼
̇
𝛿 ( 10 ) 
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and then integrate both sides yielding the following realizable form: 

 
𝜃 = 𝐿𝐼𝛿 +∫[𝜔̂ + (𝑘1 + 1)𝐼𝛿] ( 11 ) 

 

where 𝜔̂ is still to be designed. Note that we do not have a realizable form of 𝜃̇, which is necessary 

for our 𝐷𝛾, 𝐷𝛿  duty cycle control inputs.  For this reason, we are compelled to use the subsequently 

designed 𝜔̂ in its place. Given the relationship between these variables, this substitution is easily 

justified. 

Substituting the unrealizable form of 𝜃̇ into the earlier 𝑉̇ equation and simplifying we 

obtain: 

 
𝑉̇ = −𝑘1𝐼𝛾

2 + 𝐼𝛾𝑉̃𝑔 − 𝑘1𝐼𝛿
2 − 𝑉𝑔

2 sin2 𝜃̃ + 𝜔̃𝑉𝑔 sin 𝜃̃ −
1

𝑘𝜔
𝜔̃𝜔̇̂ −

1

𝑘𝑉
𝑉̃𝑔𝑉̇̂𝑔 ( 12 ) 

 

This then motivates the following unrealizable design for the speed estimator: 

 𝜔̇̂ = 𝑘𝜔𝑉𝑔 sin 𝜃̃ ( 13 ) 

 

To obtain a realizable form of this estimator we can use the same substitution as before along with 

integration of both sides to obtain: 

 
𝜔̂ = 𝑘𝜔 (𝐿𝐼𝛿 + 𝑘1∫𝐼𝛿) ( 14 ) 

 

Substituting the unrealizable form into the 𝑉̇ equation and simplifying we have: 

 
𝑉̇ = −𝑘1𝐼𝛾

2 + 𝐼𝛾𝑉̃𝑔 − 𝑘1𝐼𝛿
2 − 𝑉𝑔

2 sin2 𝜃̃ −
1

𝑘𝑉
𝑉̃𝑔𝑉̇̂𝑔 ( 15 ) 
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Finally, we can design the adaptive voltage amplitude as: 

 𝑉̇̂𝑔 ≜ 𝑘𝑉𝐼𝛾 ( 16 ) 

 

which results in the following 𝑉̇: 

 𝑉̇ = −𝑘1𝐼𝛾
2 − 𝑘1𝐼𝛿

2 − 𝑉𝑔
2 sin2 𝜃̃ ( 17 ) 

 

We can see that 𝑉̇(𝑡) is a negative semi-definite function. 

From the form of 𝑉(𝑡), 𝑉̇(𝑡) we can conclude that 𝐼𝛾, 𝐼𝛿 , sin
2 𝜃̃ , 𝜔̃𝑒 ∈ ℒ∞.  

• Since 𝐼𝑑
′ , 𝜃̃𝑒 ∈ ℒ∞ we can see from CLED for 𝐼𝑑

′  that 𝐼̇𝑑
′ ∈ ℒ∞. 

• Since 𝜔̃𝑒 ∈ ℒ∞ and from Assumption 3 𝜔𝑒 ∈ ℒ∞ we can see that 𝜔̂𝑒 ∈ ℒ∞ 

• Since 𝐼𝑑
′ , 𝜃̃𝑒 , 𝜔̂𝑒 ∈ ℒ∞ we can see from definition of 𝜃̇𝑒 that 𝜃̇𝑒 ∈ ℒ∞ 

• Since 𝜔𝑒 , 𝜃̇𝑒 ∈ ℒ∞ we can see from definition of 𝜃̇̃𝑒 that 𝜃̇̃𝑒 ∈ ℒ∞ 

• Since 𝐼̇𝑑
′ , 𝜃̇̃𝑒 ∈ ℒ∞ we can see that 𝑉̈ ∈ ℒ∞, thus we can use Barbalat’s Lemma to show 

that 𝑉̇(𝑡) → 0 as 𝑡 → ∞ and thus that 𝐼𝑑
′ , 𝜃̃𝑒 → 0 as 𝑡 → ∞  as well. 
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