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Abstract 

An Investigation on Interactions between Plant Physiological-Hydrological-Biogeochemical 

Processes and Acid Mine Drainage in Coal Refuse Piles using Optimality Principle Theory 

 

Hector William Clavijo Sanabria, PhD 

 

University of Pittsburgh, 2020 

 

 

 

 

Human civilization has changed the global biogeochemical cycles since last century. 

Carbon and nitrogen cycles have been affected by industrialization and by disturbance of natural 

vegetation distribution (i.e. deforestation, fires, agriculture and mining). As one of the pollution 

processes, Acid Mine Drainage (AMD) has played a special role on disturbances on water, carbon 

and nitrogen cycles. The study of this role is the main part of analysis in the present dissertation. 

More specifically, this work investigates the reciprocal action between hydrological and 

biogeochemical processes after coal mines disturbances by applying a comprehensive 

mathematical formulation to assess the effects of vegetation as passive phytoremediation on AMD 

in two coal refuse mines using an optimal plant physiological approach. 

The development of this dissertation has resulted in the following findings: 

1) The optimality formulation developed in this dissertation, based on minimum unit cost 

function, could be extended to integrate water-stress conditions in a more constrained manner than 

the majority of optimal formulations presented in literature. 2) The strategy of having as many as 

possible constraints to avoid parameter equifinality has been a point paramount significance in the 

formulation in this study. 3) The analysis and simulations show that the main interactions between 

the biogeochemical processes and pyrite oxidation as main AMD processes are driven primarily 

by the seasonally plant evapotranspiration through the soil moisture variation; the effect of mineral 

nitrogen processes and organic matter oxidation reducing the pH; and the solute plant uptake 
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reducing the amount of concentrations. 4) The long-term simulation of passive bioremediation 

with grass vegetation has shown to be environmentally efficient only in the amended layer. On the 

other hand, using tree vegetation suggests better performance to reduce solute concentrations and 

increase the pH. 5) The solute transport simulations make possible to establish an estimation of 

the autonomous time of pollution recovery at watershed scales. 6) Finally, the use of vegetation as 

passive bioremediation, such as grass or tree vegetation, is worth in terms of surface water quality. 
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1.0 Introduction 

1.1 Background and Motivation 

Human civilization has changed the global biogeochemical cycles since last century. 

Changes include carbon and nitrogen cycle alteration. Carbon cycle has been affected mainly by 

industrialization (CO2 emissions) and by disturbance of natural vegetation distribution (i.e. 

deforestation, fires and agriculture). Alterations in nitrogen cycle have been induced by intensive 

agriculture (excess of nutrients), and urbanization pollution (Vitousek et al. 1997). Pollution, 

which causes modifications in carbon and nitrogen cycles, have altered chemical equilibrium 

patterns in soil and streams at the watershed level, and in exports at ocean level (Hofmann 2009; 

Hofmann et al. 2008). As one of these pollution processes, Acid Mine Drainage (AMD) has played 

a special role in disturbances on water, carbon and nitrogen cycles, and thus, it is a main part of 

analysis in the present dissertation.  

Scientific literature shows that acidification of soils caused by Acid Mine Drainage (AMD) 

is an important contemporary ecological problem, which can cause long-term impairment to water 

resources and biodiversity (Bahrami and Doulati Ardejani 2016; Doulati Ardejani et al. 2013). 

Plants play a central role in carbon and nitrogen cycles, and in hydrology. Indeed, plant’s physics 

and physiology determine carbon assimilation, evapotranspiration and nutrient uptake at 

watershed level (Tague and Band 2004), which are key to explain and mitigate effects of 

disturbances on acidification of soils and streams. In coal refuse piles AMD is the result of pyrite 

oxidation when they are exposed to oxygen and moisture (Ash et al. 1951). One passive 

remediation technique uses plants as strategy to remove heavy metals and other hazardous 
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substances (Johnson and Hallberg 2005). However, to the best of our knowledge, assessing the 

environmental impacts of plants on AMD in coal refuse piles through the passive remediation 

approach is still unknown (Karaca et al. 2018; Liu et al. 2018). 

Majority of the AMD modeling studies have been focused on pyrite oxidation processes 

from an inorganic chemical perspective (Nordstrom 2011, 2019b; Plaza et al. 2018; Wunderly et 

al. 1996; Xu 2013). Pyrite oxidation kinetics, chemical equilibrium and transport are the processes 

typically considered in such type of the modeling studies (e.g. Gerke et al. 1998; Wunderly et al. 

1996) but not the biogeochemical interactions involved in the processes. Recent studies use 

algorithmic heuristics to forecast Pyrite oxidation variables under specific conditions (Bahrami 

and Doulati Ardejani 2016; Doulati Ardejani et al. 2013) with little effort in deep understanding 

of the physical-chemical interactions. In this study, impacts of vegetation the relevant 

biogeochemical processes included in AMD are investigated and analyzed.  

Integrating vegetation into a complete hydrology and pyrite oxidation computation as 

developed by  Xu (2013) implies including a coupled calculation of evapotranspiration and carbon 

assimilation. This provides an opportunity to apply the optimality principle to this environmental 

engineering problem to test and understand interaction between pyrite oxidation and other 

biogeochemical elements such as, organic soil matter, mineral nitrogen and carbon efflux. 

The optimality principle in eco-hydrology promotes a versatile modeling framework to 

study complex interactions between plants, water, metals, pollutants and atmosphere (Luo et al. 

2013; Porporato and Rodriguez-iturbe 2013). This type of framework is known to be parsimonious 

and therefore requires less calibration of the parameters (Luo et al. 2013). 

The inclusion of plant physiology computation in this study is based on Prentice et al. 

(2014) which uses the concept of Minimum Unit Cost Function. This Optimality Theory is 
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extended to represent the interactions within the plant-soil-atmosphere continuum (Bonan et al. 

2014; Clark et al. 2016; Dewar 2010), considering nutrient limitation and water-stress and 

atmospheric conditions. 

Interactions between biogeochemical and AMD processes are part of open questions to 

understand the effect of vegetation as remediation on coal refuse piles  (Plaza 2018; Xu 2013). The 

pH as a main indicator of chemical equilibrium among AMD sub-products, nitrification products 

and inorganic carbon species is a key point that is modeled in an integrated manner in this study.  

Acidification reduction and metal ions content in the soil in coal refuse piles mines has been 

studied through laboratory column experiments by Plaza (2018), Plaza et al. (2018), Xu (2013), 

Xu et al. (2020). Study conducted by Xu (2013) is used as a support for the present modeling 

analysis. 

The mathematical modeling tool and its computational implementation developed in this 

dissertation can be used to model different scales of environmental fluxes from spot scale to large 

scale in LSM. The model can be used to study broader questions about effects of mining, soil 

acidification, non-point sources pollutant and ecological services assessment. 
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Figure 1 Representation of Acid Mine Drainage AMD and pyrite oxidation processes linked to hydrological 

processes on coal refuse piles which is the main aim of this study. 

1.2 Research Problem and Scope 

During the past decade the US-Japan research community has discussed important research 

themes to develop a better understanding of hydrology and biogeochemistry processes (McDonnell 

and Tanaka 2001; Mcguire et al. 2014). Problems identified include the integration of 

biogeochemical processes to other environmental issues with special relevance on water transport 

(Mcguire et al. 2014). Following this general advice, this dissertation explores issues related to 

those open research questions. More specifically, this work investigates the convolution between 

hydrological and biogeochemical processes after coal mines disturbances by applying a 

comprehensive mathematical formulation to assess the effects of vegetation on AMD in a coal 

refuse mine. 
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To fulfill this research purpose, a modeling tool is developed. This tool is able of tackling 

the water-stress and nutrient limitation environment with an optimality function, which has less 

calibration parameters and not use of empirical biological equations. 

1.2.1  Research Questions 

Specifically, this work will answer the following research questions, further described in 

the three chapters that follow: 

I. How to develop a mathematical formulation that describes water-stress conditions and 

nutrient limitations in eco-hydrological land surface models (LSM) applied to coal refuse mine 

sites within an optimality principle framework? 

II. What are the effects of vegetation, as a remediation solution for AMD process, on the 

soil and stream acidification and metal ions transport, using plant optimality principle? 

III. What is the capacity of transport or retention of pollutants excess, under the concept of 

plant optimality at a coal refuse mine? 

1.3 Research Design 

The research questions above are addressed by constructing a physically-, chemically- and 

physiologically-based mathematical and computational model. This spatially distributed model 

quantifies the fluxes and the state variables of the water cycle, energy balance, carbon-nitrogen 

cycles, vegetation physiology, vegetation growth dynamics and solute transport. The model is 

developed in three stages: i) Optimality formulation in the hydro-biological model; ii) The hydro-
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biogeochemical model; iii) The hydro-solute transport model. The biological and biogeochemical 

phases are intrinsically coupled, because they share common inputs-outputs between them. The 

solute-transport model mainly depends on the biogeochemical phase, as its inputs are given by the 

biogeochemical part. The following section describes details of the three different stages. 

1.3.1  General Method 

The hydro-biological stage integrates vegetation leaf physiology dynamics of 

photosynthesis, transpiration and soil water balance into the Hydro-Thermal-Geo-Chemical Model 

(HTGCM-DHSVM) (Xu, 2013) based on the optimality principle computed internally as a static 

constraint for each time step. This change in HTGCM carries out the computation of 

evapotranspiration based on physiological characteristics of the plant, and it enables the 

computation of gross primary production (GPP), which is the main input of the biogeochemical 

model. 

The hydro-biological stage implementation can be done by two modeling framework 

approaches: (i) Empirical modeling framework used in VIC+ (Ivanov et al. 2008; Luo 2013; Luo 

et al. 2016; Luo et al. 2013) which is based on similar approaches as Daly et al. (2004) and Tuzet 

et al. (2003). (ii) The optimality principle modeling framework based on the components of the 

unit cost function of Prentice et al. (2014) with an integrated formulation derived from the whole 

equations coupled in a constraining manner. The difference between approaches (i) and (ii) is that 

the latter replaces the Tuzet et al. (2003) stomatal conductance empirical equation by the optimality 

principle in a more comprehensive and integrative way, while the other components used in the 

VIC+ (Luo et al. 2013) are kept unchanged. 
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In this work, the optimality principle modeling framework of Prentice et al. (2014) using a 

unit cost function is employed and extended. The modeling framework is referred to as extension 

of Prentice et al. (2014). Such framework includes two equations for physical diffusion, in carbon 

and in water; the complete biochemical model for carbon assimilation (i.e., Biochemical Farquhar 

Model for photosynthesis) and physical equation for actual evapotranspiration (i.e., Penman-

Monteith equation). These last four equations are from the modeling framework used in VIC+ for 

systems with water-limited conditions (Luo et al. 2016; Luo et al. 2013). This approach addresses 

the first research question described above. 

The hydro-biogeochemical model introduces vegetation growth dynamics and carbon-

nitrogen-phosphorus cycles into the hydro-biological model stage. This implementation is carried 

out in two steps: i) Integration of the Carnegie-Ames-Stanford-Approach Model CASA-CNP for 

carbon and nitrogen dynamics, developed by Fung et al. (1997), Potter and Randerson (1993), 

Wang et al. (2007), and Wang et al. (2010), into the photosynthesis-transpiration framework within 

HTGCM; and ii) Extension of biogeochemical processes modeling to include soil organic matter 

oxidation, nitrification and denitrification distributed soil solute transport based on Berlin et al. 

(2014), Hofmann et al. (2008), Jassal et al. (2004), and Wissmeier and Barry (2010), and linked to 

chemical equilibrium of AMD processes and pyrite oxidation (Plaza 2018; Xu 2013) using 

PHREEQC model (Wissmeier and Barry 2010). 

The hydro-solute transport includes linking the biogeochemical cycles to stream transport 

in the HTCGM (Xu 2013). This formulation is implemented through two components: 1) Solute 

transport computation in the subsurface layers using DHSVM flow 8-directions routing following 

the general concept by Czuba and Foufoula-Georgiou (2014), and Gangodagamage et al. (2014). 

2) Solute transport computation at surface level, similar to Mortensen et al. (2016) adopting the of 
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ADZ Model (Beer and Young 1984; Camacho and Gonzalez 2008; Mortensen et al. 2016) for 

stream solute transport into HTGCM-DHSVM. 

We will use two coal refuse mine sites for which necessary data is available at this time. 

We have also performed field measurements of soil-water variables (i.e., water potential, soil 

moisture, soil temperature) and collected samples of vegetation. Calibration and validation 

processes of the model will be performed along with consistency and sensitivity analysis. Model 

will be applied to sites of study in different time horizons (i.e., 5, 10 to 100 years and beyond for 

resilience-recovery purposes). Finally, we will present the computational framework for 

replication of the ensemble model to be applied in any watershed. 

 

 

Figure 2 General scheme of the research method used in this study based on the three stages of model 

computational development: a) Hydro-biological modeling, b) Hydro-biogeochemical model and c) Hydro-

solute-transport modeling. 
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1.3.2  Sites of Study 

We focus our model analysis of Acid Mine Drainage in two similar abandoned coal pile 

sites: Mather and Ernest. Both located in Pennsylvania, United States. However, we use data from 

Oensingen site located in Switzerland, for the optimality extension analysis as an alternative 

validation site due to data availability. 

1.3.2.1 Mather Site 

This site corresponds to a coal refuse mine disposal in Mather, PA. This site is instrumented 

with chemical and hydrological data and it has the vegetation coverage (i.e. grass) as an 

implementation of the remediation of the AMD processes (Plaza 2018; Xu 2013). This site also 

has a meteorological station close to the piles of coal refuse. As part of the research collaboration 

we have implemented a field-lab experiments to understand the pirate oxidation and the effect of 

vegetation on the AMD processes. 

The Mather site is a large vegetated pile of coal refuse from an abandoned mine that was 

in operation from 1917 to 1965, located nearby Mather Town, Greene County, Pennsylvania, USA 

bordering the Ten Mile Creek. In 2009, a reclamation program was implemented on the Mather 

pile with four plots, three portions with vegetated coverage with different subsurface specifications 

and one portion unaltered. 
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Figure 3. Location of Mather Site Mine [google maps]. 

 

The Mather site is under a temperate continental climate with warm summers, with a mean 

annual precipitation of 1148 mm (44.7 in), 85.2 precipitation days, mean annual temperature of 10 

oC, with portions of alfalfa, white clover, red clover and tall fescue grass vegetation planted as 

pilot remediation studies.    

 

1.3.2.2 Ernest Site 

This site also has coal refuse piles and is located in Pennsylvania. Water quality data is 

available for the main stream. The general conditions for Ernest site are similar to Mather’s. 
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Figure 4 Location of Ernest Site Mine [google maps]. 

 

1.3.2.3 Oensingen Site 

This site is located in Switzerland, at a crop plantation field where there is a Euro-Flux 

station to capture meteorological and plant physiological data. The site was taken from Molina-

herrera et al. (2016) as validation for optimality analysis and possible reference for complete 

validation of biogeochemical computations.  
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Figure 5 Location of Oensingen Site flux tower owned by ETH-Zurich [google maps]. 

 

1.3.3  Data Sets 

Geospatial data is provided by USGS National Map project, and by local and states 

environmental websites. (http://nationalmap.gov/), The main source of information for 

precipitation, solar radiation, air temperature is NOAA website and Satellite information 

[http://www.noaa.gov/]. The vegetation information from the Mather, Ernest and Oensingen sites 

are retrieved by the satellite information (MODIS-NASA) (http://modis.gsfc.nasa.gov/). For the 

analysis of AMD processes, we have data of chemicals at 4 plots in Mather with record of chemical 

substances over time (Plaza 2018; Xu 2013). Additionally, we have access to chemical data for 

the Ernest site. For the Mather site, Plaza (2018) implemented column-lab tests for different 

scenarios of disposal coal refuse that serve to validate the model at controlled conditions scale.  
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1.3.4  Dissertation Organization 

This dissertation is presented in four main chapters: Chapter 2 presents the methods and 

results of including plant physiological variables into the general model framework. This part is 

cited as the Hydro-biological stage and corresponds to the first research question. Chapter 3 

presents the methods and simulation results of validation of integrating pyrite oxidation and 

biogeochemical processes as a description of vegetation bioremediation scenarios. This chapter 

corresponds to the Hydro-biogeochemical stage of the model development and intends to explore 

the second research question. Chapter 4 contains an estimate of capacity of pollution on the 

watershed scale using solute transport simplified methods and the previous column integrated 

pyrox-biogeochemical results. This portion of the dissertation is the Hydro-Solute Transport stage 

and corresponds to the third research question. Finally, Chapter 5 includes a general overview of 

the dissertation contributions and further proposed work. 



 

 14 

2.0 Extending Unit Cost Function Optimal Theory to Include Interactions in Soil-Plant-

Atmosphere under Water-Limited Conditions 

2.1 Introduction 

Plants play a central role in hydrology as well as in carbon and nitrogen cycles. Indeed, 

plants’ physiology determine carbon assimilation, evapotranspiration and nutrient uptake at 

watershed level (Tague and Band 2004), which are key to explain and mitigate effects of 

acidification disturbances on soils and streams. 

There are two main approaches to compute carbon assimilation and evapotranspiration as 

main physiological plant processes: using empirical equations and using optimality theory 

concepts (Medlyn et al. 2011; Porporato and Rodriguez-iturbe 2013). Empirical equations are 

often derived by measured data into regressions using explicit stomata conductance (Collatz et al. 

1991; Medlyn et al. 2011). Use of the optimality approach is based on a general rationale of a 

fundamental physiology law followed by plants as an evolutionary mechanism (Eagleson 1982, 

2001; Medlyn et al. 2011; Prentice et al. 2014). 

Optimality theory has been widely used to explain plants physiology (Hatton et al. 1997; 

Kleidon 1997; Laio et al. 2001; Luo et al 2013; Manzoni et al. 2011, 2014; Zehe et al. 2011). 

According to the optimality principle theory the state of the system (i.e. plant-water) in a given 

time can be explained by maximizing or minimizing a system’s generalized function (Liu 2014). 

There are two approaches to define generalized optimality functions related to the plant-water 

system: i) conceptual-based functions that use ideas from optimal control theory (Farquhar 1973); 

or ideas from microeconomic theory (Cowan et al. 1977; Prentice et al. 2014; Wright et al. 2003); 
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and ii) thermodynamic-based functions founded upon the Second Law of Thermodynamics, first 

stated by (Schroedinger 1944) and recently studied by Dewar (2010), Jesus et al. (2012), Marsland 

and England (2015), Perunov et al. (2014), Schymanski et al. (2010a), Volk and Pauluis 2010, 

Wang and Bras (2011), and Zehe et al. (2011). In a detailed summary of studies Porporato and 

Rodriguez-iturbe (2013) provide the eco-hydrological perspectives on the thermodynamic 

formulation of optimality. 

 

Thermodynamic-based optimality functions use the Maximum Entropy Production 

principle (MEP), which has been shown to accurately represent the interaction within the plant-

soil-atmosphere system (Dewar 2010; Schymanski et al. 2010a), but does not consider nutrient 

limitation, water-stress and atmospheric conditions (Porporato and Rodriguez-iturbe 2013). This 

work applies concepts of theory of statistical mechanics to include nutrient limitation and water-

stress conditions in the optimality function to model the plant-water system. In 2010, in a special 

issue of The Philosophical Transactions of The Royal Society, the Maximum Entropy Production 

was postulated as the most appropriate alternative to model interaction between plant-soil-

atmosphere and geomorphology (Dewar 2010; Schymanski et al. 2010a). This new perspective 

has led to research on this topic during most recent years tackling the modelling problem from the 

thermodynamic perspective, but real-world applications are still in development (Brunsell et al. 

2011; Clark et al. 2016; Jesus et al. 2012; Kleidon et al. 2013). A thermodynamic perspective in 

conjunction with hydrology modeling has been developed by Dewar (2010), Eagleson (2001), 

Istanbulluoglu et al. (2012), Jesus et al. (2012), Martyushev (2010), Meysman and Bruers (2010), 

Porporato and Rodriguez-iturbe (2013), Schymanski et al. (2010a, 2010b), and Westhoff and Zehe 

(2013). However, this physical-based optimality theory requires some specific model 
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interpretations of the entropy function to include a complete hydrological, biogeochemical and 

geochemical interactions in our general mathematical implementation. These requirements enable 

more the use of conceptual perspective of the optimality approach. 

The optimality principle has been used extensively in plant physiology and in hydrology 

from the conceptual perspective (Dekker et al. 2012; Farquhar 1973; Farquhar et al. 2002; Manzoni 

et al. 2014; Schymanski et al. 2008; Wright et al. 2003) where a function invokes the physiological 

function over the intricate interrelations among the hydrology processes.  

The conceptual approach is founded on control theory, and is the most used by researchers 

(e.g. Cowan et al. 1977; Farquhar et al. 2002; Katul et al. 2010; Manzoni et al. 2011; Manzoni et 

al. 2014; Wright et al. 2003). Farquhar’s seminal work models the interaction between plant and 

environment as a linear dynamic system with a proportional control (Farquhar 1973).  

Since the first modeling work of stomata conductance, the scientific community working 

on eco-hydrology has been advancing the empirical and the optimal approaches. The empirical 

approach pursues a more simple and data-based formulation for the stomatal conductance, based 

on the works of Bally-Berry-Leuning (Collatz et al. 1991; Daly, Porporato, and Rodriguez-Iturbe 

2004; Laio et al. 2001; Leuning et al. 1995; Luo et al. 2016; Luo et al. 2013; Rodriguez-Iturbe and 

Porporato 2004; Tuzet et al. 2003; Wang et al. 2009). For example, Tuzet et al. (2003) promotes 

the use of the Leuning equation, which is capable of reproducing hysteresis cycles in stomata 

conductance. Similarly, Daly et al. (2004) use the Leuning equation to show the effect of soil 

moisture on the decline of carbon assimilation and evapotranspiration with time. These authors set 

the modelling framework of coupling vegetation physiology and hydrology processes for the next 

generation of models like those in Gilhespy et al. (2014), Ivanov et al. (2008), Luo et al. (2016), 
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Luo et al. (2013). Models that are based on Tuzet et al. (2003) and Daly et al. (2004)’s 

approximation are able to include the constraint of plants in water-limited environments.  

The optimal approach seeks different functions relating physiological variables to tackle 

the problem of uncertainty in the parameters of the empirical model (Farquhar et al. 2002;  

Farquhar and Sharkey 1982; Prentice et al. 2014; Wright et al. 2003). It represents plant physiology 

using the concept of production function, like that in microeconomic theory, with inputs being the 

stomatal conductance and the carbon concentration in-leaf difference and output being the carbon 

assimilation. The mathematical form of the carbon diffusion equation is similar to that of the Cobb-

Douglas equation in the theory of maximization production of a firm in microeconomics; the plant 

searches to maximize the carbon assimilation subject to a cost function of a) the use of stomatal 

conductance; and b) the use of carbon concentration in-leaf. The inclusion of the role of nitrogen 

limitation and temporal analyses was developed by Farquhar et al. (2002) using optimal control 

theory to derive an optimality condition for the evolution of stomatal conductance. In sum, this 

approach has been focused on determining the evolution or the optimal behavior of the stomatal 

conductance under different conditions. 

Overall, we can recognize in the conceptual optimality formulations, despite the objective 

functions based on minimizing evapotranspiration or maximizing carbon assimilation, that the 

mathematical decision variable can be stomatal conductance in the majority of the cases, as 

established by the seminal work (Cowan et al. 1977). Other authors use the stomatal conductance 

variable as the decision variable, including Bonan et al. (2014),  Duursma et al. (2019), Franks et 

al. (2018), Héroult et al. (2013), De Kauwe et al. (2015), Manzoni et al. (2014), and Sperry et al. 

(2017). The focus on stomatal conductance follows from of its importance in plant physiology. 

However, there are novel formulations based on CO2 in-leaf concentrations, such as those 
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developed by Eller et al. (2018) and Prentice et al. (2014) which consider the optimization to be 

addressed jointly with stomatal conductance. For example, Dewar et al. (2018) and Mencuccini 

and Christoffersen (2019) have developed a summary review of the main optimal functions using 

either stomatal conductance or CO2 in-leaf concentration. 

Another important development was made by Medlyn et al. (2011). In this work, they test 

an explicit formulation for an optimal stomatal conductance that allows for consistency among the 

different results presented in the literature. This simple optimal stomatal equation has been used 

in several Land Surface Models (LSMs) as a replacement for the empirical equation, for example 

the BBL stomatal conductance equation. This exchange of equations has been proposed as an 

optimality formulation when it is integrated within hydrology models in LSM, as in Bloomfield et 

al. (2019), Kauwe et al. (2015), and Zhou et al. (2018). This dissertation expands this type of 

modeling approach by integrating the physiology, hydrology and biogeochemical processes. 

Expanding this modeling approach is fundamental to develop the mathematical framework 

necessary for this study. 

In recent developments, the integration of plant hydraulics as a main conjunctive element 

of water-stress or drought-test conditions has been implemented in several conceptual optimal 

formulations, including Eller et al. (2018), Héroult et al. (2013), Kauwe et al. (2015), De Kauwe 

et al. (2015) and Manzoni et al. (2014). However, the only plant hydraulics development that 

includes dynamic formulation on water leaf potential is made by Manzoni et al. (2011), which 

does not include carbon and nitrogen cycling in its general formulation. 

In other modeling works, there is an increasing interest accounting for interactions between 

the plant and nutrients, metals, pH, atmospheric humidity, and carbon dioxide. The mathematical 

framework of optimality-based models offers flexibility enough to include these interactions. One 
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optimality-based model uses the concept of optimality including carbon availability and water 

stress but without explicit accounting of carboxylation capacity and nitrogen assimilation (Katul 

et al. 2010). A second optimality-based model framework has been developed by Dekker et al. 

(2012), Schymanski et al. (2007) and Schymanski et al. (2008) using optimality principle of the 

net carbon benefit to find a function, that is capable of modeling plant physiology and its dynamics. 

However, their work does not include any constraints to model water-controlled dynamics. 

Researchers in botany science (Prentice et al. 2014), have proposed an innovative 

formulation for plant optimality that considers the photosynthesis process to be similar to the 

production function defined by the microeconomic theory of a firm. The production function is 

the focus of the optimality principle, and two variables as inputs. These authors report an 

optimality function similar to that in Manzoni et al. (2011) and Schymanski et al. (2008), but they 

introduce the concept of the carboxylation unit cost of photosynthesis. This is probably the most 

innovative concept in recent years of searching for a functional optimality to describe the 

physiology of photosynthesis.  This dissertation employs the rationale of the optimality function 

stated in Prentice et al. (2014) and extends it to include water-stress conditions and nutrients 

limitations using additional constraints equations. This approach will allow us to study the impact 

of plants used to remediate acid mine drainage processes (AMD) in coal refuse pile sites. 

The optimal approaches of both Prentice et al. (2014) and Medlyn et al. (2011) were 

formulated under wet water conditions and with a lack of comprehensive interaction in terms of 

soil hydrology and atmospheric processes (Porporato and Rodriguez-iturbe 2013). An intrinsic and 

integrated formulation of optimality has not yet been developed (Prentice et al. 2014; H. Wang et 

al. 2014). An opportunity is taken by this dissertation to reformulate the Prentice Optimality 

approach to integrate it with soil hydrology equations and account for water-stress conditions. 
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This chapter presents the details of optimality extension development as a Hydro-

Biological model in three sections: a) The mathematical formulation comparing the empirical and 

the optimal approaches with the formalization of the modeling strategy used in this study b) the 

computational implementations for the solution of the system of equations; c) at proposed 

innovative geometrical and conceptual analysis of the integrated equations and approaches. d) a 

validation exercise of the model at the Mather and Oensingen sites; e) the simulation analyses of 

the model to explore its capabilities and limitations; and f) some features that show consistencies 

with original Prentice paper observations. 

2.2 Mathematical Model Formulation 

The interaction between plant photosynthesis processes and soil moisture dynamics is the 

focus of the model to be developed in this study as an extension of optimal theory under water 

limited conditions.  This section shows the general mathematical model implementation for 

including vegetation into the pyrite oxidation processes. In general, the mathematical model 

developed in this part of the study is a system of five equations that include five unknowns: carbon 

assimilation (An), evapotranspiration (E), stomatal conductance (gs), CO2 in-leaf concentration (ci) 

and water leaf potential (L). Currently used in other models are two main approaches: the 

empirical approach and the optimal approach. We add a third, coupling the optimal to the empirical 

approach using a modeling strategy based on constraining the parameters of the model. 

The first part of this section is devoted to the plant physiological processes and the 

corresponding equations. The second part provides information on the empirical approach for the 

computation of the physiological variables. Next, we present the formulation for plant processes 
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via the unit cost optimality approach. Finally, we develop the modeling strategy for constraining 

parameters and application of this strategy to the optimality approach coupled with the empirical 

approach. 

2.2.1  Processes Modeled 

The main photosynthesis process that has been modeled is carbon assimilation, as 

formulated by Cowan et al. (1977), Daly et al. (2004), Tuzet et al. (2003). Such assimilation is the 

biochemical demand carbon by plants; this process is constrained by the capacity transfer of the 

carbon diffusion and can be calculated using a Fickian formulation presented by Daly et al. (2004), 

Luo et al. (2013), and Tuzet et al. (2003). Other processes are related to soil moisture and 

evapotranspiration. The soil moisture dynamics is defined by the Richards equation linked with 

the evapotranspiration computation through the soil column (Bonan et al. 2014; Luo et al. 2013). 

This evapotranspiration process is also tightly integrated with carbon assimilation as part of the 

plant photosynthesis by the stomata conductance. The effect of water limited conditions is 

computed using the water leaf potential as main variable in the evapotranspiration and the 

reduction of the carbon assimilation capacity. 

The model for carbon assimilation An is based on the biochemical formulation by Farquhar 

and Sharkey (1982) and completed later by Collatz et al. (1991). The general equation for carbon 

assimilation is a bi-quadratic composite of three parts proposed by Collatz et al. (1991) each having 

different rates of assimilation: a) light-limited conditions, b) Rubisco carboxylation, and c) 

maximum capacity of carboxylation. The three different rates of carbon assimilation are computed 

according to Michaelis-Menten kinetics on the main variable of carbon in-leaf concentration, ci 

with maximum rates on irradiance and rubisco capacity that depend on net short radiation and leaf-
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air temperature respectively.  A function on water leaf potential L is used as a lowering factor to 

carbon assimilation to represent the effect of dry soil conditions into the photosynthesis process, 

as formulated by Daly et al. (2004), and Luo et al. (2013). 

The supply for carbon assimilation is the diffusion. This rate is the capacity of carbon 

transfer from the atmosphere into the leaf. The gradient between atmospheric carbon concentration 

and the CO2 in-leaf concentration is the main factor responsible for the capacity of transfer. 

However, the openness of the stomata is the ultimate factor determining the transfer capacity. The 

measure of the stomata behavior is the conductance gs. In the model for carbon diffusion, a series-

coupled of stomata conductance and boundary-layer conductance is used as a factor for the 

concentration gradient, as formulated by Daly et al. (2004) and Luo et al. (2013). 

The evapotranspiration, E, a mass-energy balance for water from the leaves to the 

atmosphere, is computed by the Penman-Monteith formulation (ASCE 2000; Daly et al. 2004; Luo 

et al. 2013). In this case, the potential capacity of evapotranspiration is reduced by a factor to 

convey the actual evapotranspiration, which depends directly on the stomata conductance, gs, and 

leaf area index, LAI. The main inputs for this formulation are air temperature, radiation and vapor 

pressure deficit, D, among other meteorological parameters. 

The transpiration process that drives water from soil to the leaves is also computed using 

an analog resistance-capacitance Ohm’s law model (Katerji et al. 1986; Luo et al. 2013). In such 

a model, the water flows from high to low water potentials, from soil potential, s, to leaf potential, 

L, through the equivalent plan resistance. Also, the effect of water storage, P, is computed using 

an equivalent capacitance of the plant based on water storage potential.  Both the water flow in the 

xylem and the water storage can be equated to the total evapotranspiration given by the Penman-

Monteith formulation. 
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So far in this section, there are four equations: one for carbon assimilation, one for carbon 

diffusion and two for actual evapotranspiration. However, we have five main variables for the 

coupled photosynthesis-evapotranspiration process: An, carbon assimilation; E, actual 

evapotranspiration; gs, stomata conductance; ci, CO2 in-leaf concentration and water leaf potential 

L. The equation needed for the solution of the five variables can be either an empirical 

formulation given by Daly et al. (2004), Medlyn et al. (2011), and Tuzet et al. (2003) as employed 

in the study by Luo et al. (2013) or an optimality formulation for the plant behavior. The use of an 

empirical equation is called hereafter the empirical approach and the use of an optimal 

mathematical formulation is named the optimal approach. Both approaches are explained below. 

2.2.2  Empirical Approach for Stomatal Conductance 

There are many empirical relationships between stomatal conductance and carbon 

assimilation that define the intrinsic physiological behavior of plants. The Ball-Berry-Leuning 

(BBL) model (Leuning 1995; Leuning et al. 1995) shows a linear relationship between stomatal 

conductance and carbon assimilation with an inverse effect of CO2 in-leaf concentration ci. In 

addition, the effect of water limited conditions can be incorporated via a factor function on carbon 

assimilation that depends on water leaf potential, L. The empirical equation is shown below, 

 

𝑔𝑠 = 𝑔𝑜 + 𝑎′ 𝐴𝑛(Ψ𝐿,𝑐𝑖)

𝑐𝑖−Γ
𝑓𝑣(Ψ𝐿)                                        [ 2.1 ] 

 

where, gs [mol/m2/s] is stomatal conductance;  go [mol/m2/s] minimum stomatal conductance;  a’ 

the empirical parameter;  An [mol/m2/s] is net carbon assimilation; L [MPa] water leaf potential; 
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ci [mol/mol] CO2 in-leaf concentration; fv (L) [-] function of stomata response to 

evapotranspiration and/or water stress;  [mol/mol] compensation point for CO2 concentration. 

The linear relation between stomatal conductance and carbon assimilation in Equation 2.1 

shows a certain response of the stomata to carbon assimilation needs under the condition of the 

concentration in-leaf. This equation is broadly used in literature as a main explanatory formulation 

for stomata conductance. Using this equation makes it possible to address the problem of solving 

the five unknows describe above. However, its foundations are merely empirical and do not take 

into account the mechanistic or theoretical perspectives (Bonan et al. 2014; Medlyn et al. 2011). 

The following alternative approach provides a more general and mechanistic formulation. 

2.2.3  Optimal Approach Using Unit Cost Function 

Prentice et al. (2014) proposed a formulation for plant optimality, comparing the 

photosynthesis-transpiration processes with the production function used in microeconomic theory 

of a firm as the optimality principle with two variables as inputs (Prentice et al. 2014; Wright et 

al. 2003). The main contribution of the Prentice optimality is the Unit Cost Function, which 

involves two opposing processes, transpiration and carboxylation. This function searches for a 

minimum cost based on ci variation rather than optimal stomata conductance. Also, this function 

includes an explicit physiological term for the carboxylation infrastructure Vcmax/An. 

The application of this optimal approach to the complete system of equations is formulated 

as a mathematical optimization. The objective function is the Unit Cost as defined by Prentice et 

al. (2014), Cost = aE’/An + bVcmax/An, with a measure of transpiration E’, potential carbon 

assimilation Vcmax and actual carbon assimilation An. The equations for carbon assimilation and 

carbon diffusion can be considered as constraints. According to Prentice optimal theory, the CO2 
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in-leaf concentration ci is adopted as the main decision variable. However, the water leaf potential 

L is needed as a variable for the system of equations, to make carbon assimilation and carbon 

diffusion variables equal through the stomata conductance gs. The complete derivation of the 

integrated components of the optimality equation is presented in Appendix A (Equation 2.2 and 

Equation A34). The optimality condition equation for this formulation is obtained by taking the 

first derivative with respect to ci as follows, 

 

𝑎 [
𝜕𝐸′

𝜕𝑐𝑖

1

𝐴𝑛
−

𝐸′

𝐴𝑛
2

𝜕𝐴𝑛

𝜕𝑐𝑖
] − 𝑏 [

𝑉𝑐𝑚𝑎𝑥

𝐴𝑛
2

𝜕𝐴𝑛

𝜕𝑐𝑖
] = 0                                       [ 2.2 ] 

 

where, E’ = 1.6 Gs D [mol/m2/s] is the  maximum evapotranspiration; Gs [mol/m2/s] is an 

equivalent total aerodynamic-boundary layer-stomatal conductance; D [Pa/Pa] is the vapor 

pressure deficit; a transpiration cost parameter; b carboxylation cost parameter; An [mol/m2/s] net 

carbon assimilation; L [MPa] water leaf potential; ci [mol/mol] CO2 in-leaf concentration; and 

Vcmax [mol/m2/s] carboxylation maximum capacity.  

From a purely mathematical perspective, the use of Equation 2.2 allows the complete 

solution of the system of equations for the five variables An, E, gs, L and ci. Equation 2.2 plays 

the same role in the system of equations as the empirical Barry-Belly-Leuning (BBL) equation for 

stomatal conductance. To solve the equations in a more direct way, the optimization problem can 

be reduced to a compact formulation with three elements: a) an objective function using the Unit 

Cost, b) a constraint of equilibrium between carbon assimilation and carbon diffusion, and c) only 

one decision variable, ci. The final formulation used in this dissertation is the reduction of the 

original optimization problem of five variables to a system of two variables, ci and L, with two 

equations: a) the optimality condition Equation 2.2 or Equation A44-Appendix A, and b) the 
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equilibrium constraint equation for carbon assimilation and carbon diffusion Equation A27-

Appendix A. The compact formulation can then be expressed by the following system of 

equations: 

 

𝒈𝒔 =
𝒂

𝒃

[𝒈𝒂𝒃+𝒈𝒔]

𝒈𝒂𝒃[𝒄𝒂−𝒄𝒊]
[
𝝏𝑬′

𝝏𝒄𝒊
−

𝑬′

𝑨

𝝏𝑨𝒏

𝝏𝒄𝒊
]

𝑨𝒏

𝑽𝒄𝒎𝒂𝒙

𝑨𝒏

𝝏𝑨𝒏 𝝏𝒄𝒊⁄
                                 [ 2.3 ] 

𝑓(𝜓𝐿)𝐴𝐹(𝑐𝑖) = 𝐺𝑠(𝜓𝐿)[𝑐𝑎 − 𝑐𝑖]                                           [ 2.4 ] 

 

where, gab [mol/m2/s] represents aerodynamic-boundary layer conductance.  

The above formulation enables a comparison between the optimal and empirical 

approaches. In the latter, the equations are the Ball-Barry-Leuning (BBL) equation for stomatal 

conductance and the equilibrium equation for carbon assimilation and carbon diffusion. The 

variables are the same as those used in the optimal method. Thus, the empirical approach can be 

formulated using Equation 2.1 and the same Equation 2.4. The details of the system of equations’ 

formulation and the derivation are in Appendix A. 

 

2.2.4  Strategy for Constraining Model Parameters 

The strategy presented by Luo et al. (2013) for achieving use of representations from 

different perspectives or models to illustrate the same process, searching for reduction of a model’s 

degree of freedom (Luo et al. 2013), is also employed here. We can establish the general 

formulation as a mathematical multi-generalized system of equations. In general, mathematical 

models are composed of non-linear algebraic equations linked to partial differential equations. 
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This implies the solution of instant variables based on the optimal or empirical approaches as 

dynamic variables to fit with better observed data. The problem arises when the number of 

processes and the corresponding number of parameters increases (Hernández 2019). Normally, the 

solution to fit parameters is solved by sophisticated heuristics or optimization methods which fit 

any combination of parameters to match observed and computed data (Beven and Binley 1992).  

However, this kind of solutions results in problems of equifinality among the parameters (Beven 

2006; Beven and Binley 1992; Vrugt and Beven 2018). Such problems, which implies fitting 

observed data with different groups of parameters (Fatichi et al. 2016), are easily revealed by 

looking at strictly statistical criteria like the AIC index or Pareto curves among the parameters.  

We formulate a strategy that can deal with this issue using the following statements. Let Xi 

and Yj, be modeled variables (which can be computed in space and time). There are at least two 

different approaches to model Yj based on Xi: Model A and Model B. Let Model A be represented 

by a generalized function Yj=MA(Xi, 
A

k,Fext) of non-linear algebraic and ordinary-partial 

differential equations based on Xi to get Yj as an output. Let Model B be another system of equations 

Yj=MB(Xi, B
p,Fext) that could be similar to Model A, but with different parameters. Let A

k be the 

fitting parameters of Model A and B
p be the ones of Model B. Let Fext be the forcing data or 

boundary conditions as fixed values in time and space for every model approach and constraints 

in the total system. Finally let Xiobs and Yjobs be the observed data on the variables Xi and Yj 

respectively as an additional element for the ideal formulation. 

The problem is to find a solution for Xi, Yj, A
k and B

p using the different model 

approaches (Model A and Model B), to match as closely as possible the observed data Xiobs and 

Yjobs. Therefore, the solution has to use as many constraints as possible to represent physically or 

conceptually based relationships between Xi and Yj through the observed data Xiobs and Yjobs. 
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As a brief demonstration of the existence and uniqueness of the solution, we can address 

the following system of equations. Let Xi, Yj, 
A

k and B
p be a group of vector variables. Then we 

need a system of four groups of equations. However, we have only Model A and Model B as 

different approaches to same solutions. In Figure 6, we can see a geometric representation of an 

ideal case of the problem. In plane Xi, Yj the shaded area is the feasible solutions for Model A with 

variation of the parameter A
k. We have to find a constraint Ec(Xi,Yj)=0 that relates to observed 

data Xiobs, Yjobs. The constraint intersects within the area of feasible solutions a line that contains 

the observed point Xiobs, Yjobs.  In the plane A
k and B

p of the parameters space, it is possible to 

build a pareto curve of equifinality with the parameters using the Model A and Model B equations 

as A
k =M -1

A(Xi,MB(Xi, 
B

p ,Fext),Fext). The used constraint equation Ec(Xi,Yj)=0 can be 

represented in the A
k , B

p space using the observed data. This constraint equation then 

determines a curve of validity in parameter space for the equifinality values of the observed data 

Xiobs, Yjobs. The intersection between the constraint equation Ec(Xiobs,Yjobs, 
A

k, 
B

p)=0 and A
k = 

M -1A(Xi,MB(Xi, 
B

p, Fext),Fext) is the solution to the general system of equations for Xi,Yj, 
A

k  and 

B
p. Finally, the solution can be traced in the Xi,Yj plane as the intersection between Model A and 

Model B with parameters A
k  and B

p and the constraint equation Ec(Xiobs, Yjobs)=0. 
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Figure 6 Geometrical representation of an ideal case of the general formulation of the modeling strategy of 

constraining parameters. a) Plane of Xi,Yj variables with two model curves approaches: Model A in red 

dashed and continuous line and shaded blue area of feasible values, Model B in continuous blue. The green 

curve is the constraining equation for variables Xi and Yj. b) Plane of k, p parameters of Model A and 

Model B, respectively. The red brown curve is the equifinality curve among the parameters and the green 

curve is the constraint equation in the parameters plane. 
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Lastly, the general strategy can be stated as finding constraining equations 

Ec(Xiobs,Yjobs, 
A

k, 
B

p)=0 that intersect A
k  =M -1

A(Xi,MB(Xi, 
B

p ,Fext),Fext) which represents 

the relationship between differing models’ parameters. 

The model strategy formulation explains in general terms the solution for the problem of 

adding more processes to a modeled system with more equation parameters. In the next few 

paragraphs the application to soil-plant integrated modeling is addressed, again using two model 

approaches: the empirical and the optimal.  

One procedure for the strategy for constraining parameters is to fit the results from one 

approach to the other via constant parameters in simulation time. For example, the results from the 

optimal approach computation can be fitted to the results from the empirical approach and vice 

versa. For this process, first, the empirical approach is computed using a constant a’ parameter 

according to Equation 2.1; then the optimal approach results are computed searching for the a/b 

parameter into the Equation 2.2 to fit empirical results. The opposite would be now to search for 

the a’ parameter to fit optimal results. As a first attempt, the use of literature reported values for 

the parameters a’ and a/b are used to get the main differences between both methods. Further 

exploration is tested searching best parameters either in the optimal and empirical approach. 

Another procedure that can be performed when using this strategy is to match the empirical 

and optimal results by varying the parameters for each time step. One option is to compute the 

empirical approach results using an a’ constant-in time parameter while computing the a/b 

parameter from the optimal approach for each time step to get empirical results. Another option is 

to get optimal results using an a/b constant-in time parameter and get a’ varying in time to match 

the optimal values. The computation of each of the time steps for the a’ and a/b parameters is 

based on Equation 2.5 and Equation 6 respectively as indicated below, 
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𝑎′ =
[𝑐𝑖−Γ][𝑔𝑠−𝑔𝑜]

𝐴𝑛(Ψ𝐿,𝑐𝑖)𝑓𝑣(Ψ𝐿)
                                                         [ 2.5 ] 

𝑎

𝑏
=

𝑉𝑐𝑚𝑎𝑥
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𝐴
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𝜕𝑐𝑖
]
−1 𝜕𝐴𝑛

𝜕𝑐𝑖
                                              [ 2.6 ] 

 

As stated by the general formulation of the strategy, Equation 2.5 and Equation 2.6 

correspond to the A
k and B

p inverse model equations in the case of parameters a’ and a/b.  The 

relationship between the a’ and a/b parameters is explored by comparing results from both 

approaches while simultaneously varying these parameters. This exercise is an extension of the 

first fitting procedure. The first procedure of fitting searches for the fittest parameters; however, 

the second procedure compares the model results with fixed parameters. The next section provides 

more detailed information on the computational implementations used to solve the system of 

equations shown in this section. 

2.3 Computational Implementations 

In this section, the computational implementation of the system of equations of Section 2.2 

is presented. The system of equations for both approaches, the empirical and the optimal, are linked 

to the soil moisture balance equation and to meteorological input variables. To ensure this general 

condition for the study, the algorithmic formulation developed is based on the use of a known Land 

Surface Model (LSM): The Distributed Hydrological Soil Vegetation Model (DHSVM) enhanced 

by Xu (2013) to include geothermal and geochemical processes of pyrite oxidation, which Xu 

(2013) called the Hydro Thermal Geochemical Model (HTGCM). LSM models are capable of 
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executing all the computations for soil moisture and meteorological conditions while providing 

the capability of linking plant physiological variables to soil and hydrological processes in an 

integrated manner (Wigmosta et al. 2002; Wigmosta et al. 1994). 

The computational implementation of the system of equations requires modifications to the 

original DHSVM-HTGCM code. Such modifications include: a) Links between new and old 

variables and b) new sub-modules in the original codes of the DHSVM-HTGCM. For instance, in 

the DHSVM-HTGCM code the algorithms for the empirical and optimal approaches need to be 

implemented within the sub-module of evapotranspiration. This means, for example, that it is 

necessary to transform the soil moisture variable computed inside DHSVM-HTGCM into water 

soil potential using Clapp and Hornberger (1978) equations. Further explanation of DHSVM-

HTGCM coding modifications is provided in Subsection 2.3.4. 

Section 2.3 contains four parts: First, the empirical approach algorithm implementation is 

presented. This algorithm is based on Luo et al. (2013), where carbon assimilation and 

evapotranspiration are computed as the empirical equation for stomata conductance constrains the 

variables.  

Second, the optimal algorithm is shown as a numerical solution of the system of equations 

2.3 and 2.4, the equilibrium equation and the optimality condition equation for the water leaf 

potential L and CO2 in-leaf concentration ci.  The third part contains the modeling strategy for 

constraining parameters and the fourth part, the adjustments and modifications of the DHSVM-

HTGCM model are explained. 
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2.3.1  Empirical Approach Algorithm 

According to Luo et al. (2013), the numerical solution for the system of equations 

(Equation 2.1 and Equation 2.4) uses the bisection method to find the water leaf potential L that 

makes carbon assimilation and carbon diffusion equal. The water leaf potential defines 

simultaneously stomatal conductance on carbon diffusion and a factor function on carbon 

assimilation represented by the equilibrium equation (Equation 2.4). 

The algorithm code has a main loop containing four steps: 1) computation of 

evapotranspiration following the plant hydraulics-water transport model through a trial value for 

water leaf potential; 2) calculation of stomata conductance using the inverse and adjusted Penman-

Monteith model with the evapotranspiration value computed in step 1; 3) use of a coupled equation 

linking the Ball-Barry-Luening BBL model and carbon diffusion to get the carbon concentration 

in-leaf ci; and 4) use of the Farquhar-Collatz complete model to determine carbon diffusion and 

carbon assimilation. The loop is considered completed once carbon diffusion and carbon 

assimilation are equal. 

The condition for carbon diffusion to be equal to assimilation has a percentage tolerance 

of 1% but it could be as low as computationally possible. In this study the difference between the 

carbon assimilation and carbon diffusion values is reduced by conducting a finite number of 

iterations using the bisection method. 
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2.3.2  Optimal Unit Cost Function Algorithm 

The numerical search of the minimum cost function using ci and water leaf potential L 

uses the solution of the system of equations (Equation 2.3 and Equation 2.4), which constrains the 

equilibrium-constraint equation and the optimal condition equation. 

The system of equations (Equation 2.3 and Equation 2.4) is solved by a main, or outer, 

loop and a second, or inner, loop within the main loop, as shown in Figure 7. The purpose of the 

main loop is to determine the ci variable by computing the optimal Equation 2.3 through its 

derivates to get the minimum cost function value. The inner loop calculates the water leaf potential 

L using the ci value from the main loop. The calculations are based on the equilibrium equation 

(Equation 2.4), which is a similar procedure to that used in the empirical algorithm. 

As with the empirical algorithm, the water leaf potential is found when the carbon 

assimilation and carbon diffusion are equal. Unlike the empirical algorithm, however, the BBL 

equation is not used in the optimal approach. The main loop is completed by computation of the 

detailed components of the derivates for the optimality equation and finally the condition for the 

minimum cost. 

As a condition for the minimum cost for each tested ci value, the bias for the optimality 

equation is computed and the minimum value for this deviation defines the optimal point for all 

variables. Another way to get the optimal point is direct computation of the unit cost using the 

variables from the equilibrium equation-water leaf potential loop and choosing the minimum cost 

along the ci values tested. It is worth mentioning that there is an important constraint along the 

searching for the optimal values: the maximum feasible ci. The equilibrium equation (Equation 

2.4) is the main condition used along the testing of ci values in searching for the minimum unit 
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cost. However, if there is a point where it is not possible to find a stomata conductance (and its 

correspondent water leaf potential) that makes carbon assimilation and carbon diffusion equal, 

then this limit ci value is the maximum feasible point to preserve the equilibrium equation.   

 

 

Figure 7 Scheme of optimal approach algorithm for the solution of the system of equations of section 2.2.3. 

The algorithm stars with initial values for ci and L in the upper portion of the scheme. The workflow moves 

downward solving for E, gs, carbon assimilation and carbon diffusion as the equilibrium equation (Equation 

2.4) and finally solving the optimality equation (Equation 2.2 or Equation 2.3) in the outer iteration loop on ci. 
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2.3.3  Constrained Optimal Algorithm 

The modeling strategy to constrain the parameters involves computing the optimal 

approach under a constant a/b parameter to match empirical values varying the a’ parameter in 

BBL equation. In addition, two conditions are imposed within the algorithm of optimal approach: 

1) on the physical limitation of stomata conductance values and 2) on the reported valid values for 

the a’ parameter of the BBL equation. 

The algorithm has three phases (Figure 8): i) the optimal computation as it is described 

above in subsection 2.3.2, with a double condition on the minimum cost that verifies the limit 

value for the computed stomata conductance in the outer ci loop. This means that the minimum 

cost also has also stomata conductance values below the physical limit; ii) the computation of the 

equivalent a’ parameter according to Equation 2.5 and the condition of the verification of this 

value under the reported literature limit. If a’ parameter value is valid, the computed optimal results 

are used. If a’ parameter is not valid, the computation of the ci loop is carried out up to the point 

at what the a’ parameter is verified as valid; and iii) the computation of the empirical approach 

algorithm using the computed a’ from the second phase in order to match the optimal and empirical 

results. 
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Figure 8 Scheme of the algorithm of the modeling strategy for constraining parameters applied to the 

optimality and empirical approaches. The workflow begins in the phase I with the optimality algorithm, 

moves with phase II of computing a’ and finally phase III with use of the empirical algorithm.  

 

2.3.4  Coding Adjustments in DHSVM-HTGCM for the Evapotranspiration Module 

In this subsection, the required adjustments for more comprehensive physiological 

computations in the DHSVM-HTGCM are presented. The need for this comprehensive 

computation within DHSVM is mainly justified in the calculation of the Leaf Area Index (LAI) 

and the Gross Primary Productivity (GPP). The original DHSVM accounts for LAI as an input in 

the configuration file. However, LAI is not computed inside DHSVM. The GPP is not computed 

at all in the original DHSVM, but it is a main input for the carbon and nitrogen biochemical cycles 

model. 
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All the arrangements in the code are focused on the evapotranspiration module of the 

DHSVM model. In general, we had to include all the new physiological variables inside the 

evapotranspiration module although the original DHSVM could compute stomatal conductance 

using an empirical approach other than the BBL used in this study. The inputs included in the 

arranged evapotranspiration module are the resistance parameters Rp, and Cp of the plant to be used 

in the capacitance-water transport model and the soil water potential, s, based on hourly soil 

moisture and derived from (Clapp and Hornberger 1978)’s equations. Other conventional inputs 

in the optimality algorithm, such as solar radiation, shortwave radiation, vapor pressure deficit and 

air temperature, are already inputs in DHSVM, so we use these within the code without changes. 

The evapotranspiration module first estimates the potential evapotranspiration; then it goes 

through the vegetation layers assigning transpiration values. We modify this structure to compute 

the overall evapotranspiration using the optimality algorithm and distribute the values over the 

layers. Finally, we add a daily accumulative variable for evapotranspiration and a spatial 

redistribution that later follows the biogeochemical model configuration, shown in Chapter 3.0. 

On the main module, we added the required variables to enable printing of the results and 

a code line for a daily accumulation of GPP as the hourly carbon assimilation is computed.  

2.4 Geometrical and Conceptual Analysis of the Models 

We can analyze the solutions of the systems of equations (Equation 2.1 and Equation 2.4) 

and (Equation 2.3 and Equation 2.4) and the effects of the multiple constraints, including of water 

limited conditions, and atmospheric and soil hydrology interactions on the physiology plant 

variables, through the geometry of the curves of the equations and its conceptual implications. The 
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process of analysis goes from simple to complex curves interactions among the equations. All the 

curves and intersection points correspond to an instant or one-time step under the external soil or 

meteorological conditions. First, we build the evapotranspiration model curves, combining the 

Penman-Monteith equation with the plan hydraulics model (capacitance-resistance water transport 

model). Then we analyze the equilibrium equation using carbon diffusion and carbon assimilation 

using the respective model curves. We next analyze the integrated empirical approach with the 

evapotranspiration and equilibrium constraints. The optimal approach is studied under the same 

linking of evapotranspiration and equilibrium constraints. Finally, we add more complexity to the 

analysis involving the variation in climate conditions to each approach and how they operate 

together under the modeling strategy explained in Section 2.2.4. 

2.4.1  Constraining and Linking Evapotranspiration Models 

This section explains how the Penman-Monteith equation and the capacitance-resistance 

equation (ASCE 2000; Daly et al. 2004; Luo et al. 2013) of plant hydraulics are combined in terms 

of the water leaf potential L and stomata conductance gs. The details of the equations are 

explained in Appendix A. This part is the first step in the complete analysis of the empirical and 

optimal approaches models. The first geometry curves analyzed are the Penman-Monteith equation 

for evapotranspiration E with stomatal conductance gs, shown in Figure 9.  

Figure 9 shows how evapotranspiration increases as stomatal conductance increases up to 

a limiting potential evapotranspiration value Epot. The shape of the model curve is a hyperbola with 

a half value out of potential evapotranspiration linked to a constant stomatal conductance of gso,1 

= C2/C3. The values for C1, C2 and C3 are given by the Penman-Monteith Equation as shown in 

Appendix A (Equation A2): C1 = [S R + a Cp ga D] LAI; C2 = w w w ga; and C3 = w w [S + w] 
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LAI. with Epot = C1/C3. Based on these parameters, we can say that an increase of vapor pressure 

deficit D implies an increase of potential evapotranspiration and therefore all the possible values 

of actual transpiration for any stomatal conductance value. The plane [D x E] in the left part of the 

Figure 9 shows a type of linear relationship between vapor pressure deficit D and the potential 

evapotranspiration Epot-1 and Epot-0, according to the C1 coefficient in Penman-Monteith Equation, 

but not the actual non-linear relationship. Similarly, as radiation increases, the model curves move 

upward, representing an increase in actual transpiration for any stomatal conductance value.  

 

 

Figure 9 Penman-Monteith Model Curve and its variations under changing parameters. Left side: linear 

relationship between vapor pressure deficit D and potential evapotranspiration Epot. Right side: the different 

evapotranspiration curves. 

 

One special feature derived from the geometric shape of the model curve is that for any 

fraction k = E/Epot of the potential evapotranspiration kEpot-1 or kEpot-0, we can get the 

corresponding stomatal conductance in terms of the fraction as gsk=C2/C3 (k/(1-k)). The derivation 

of this relationship between stomatal conductance and the potential evapotranspiration fraction is 
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based on the Penman-Monteith Equation in terms of the fraction k.  This formulation is an 

important result that we can use to extrapolate any stomatal conductance value based on the 

fraction k of the potential evapotranspiration. 

 

 

Figure 10 Plant Hydraulics or capacitance-resistance water transport model curves. Right plane [L x E] 

shows the numerical model and its feasible area in shaded blue. Left planes [Cp x B] and [Cp x M] are the 

curve of the parameters of the numerical model in the right side plane. 

 

We can also analyze the geometry of water-transport plant hydraulics model curves. The 

graphical representation of the model is derived from the linear relationship in Equation A7 in 

Appendix A. In Figure 10, we are showing three planes: a) Plane [L x E] for the relationship 
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between water leaf potential and transpiration E; b) Plane [Cp x B] for the relationship between Cp 

and B as the intercept parameter of the plant hydraulics model; and c) Plane [Cp x M] for the 

relationship between Cp and M as the slope parameter of the plant hydraulics model. The intercept 

B =1/R s + 1/Rp {(CpRp/t/(1+CpRp/t))p}, and slope M = {-1/R+1/Rp [1/(CpRp/t)-1]} are 

derived from Equation A7 in Appendix A. 

The final equation from the numerical method to get E in time (see Appendix A, Section 

A.1 and Section A.2) is a linear relationship between water leaf potential L and transpiration E. 

The slope M of this line is an inverse function of the total plant resistance and the capacitance 

resistance, as shown in plane [Cp x M] as a hyperbola curve relationship. The intercept B is also an 

inverse function of the resistances and direct function of the soil potential and storage potential. A 

simple analysis of variation of capacitance resistances and/or soil potential shows the feasible set 

of solutions (feasible area), shown in blue in Figure 10. Looking at the feasible area we can see 

that as soil moisture increases, the soil water potential increases and so the intercept B, which 

promotes a shift of the line E, L to higher values of E. 

The next analysis consists of integrating the Penman-Monteith curve and the plan 

hydraulics curve to get the relationship between water leaf potential L and stomatal conductance 

gs. The first step is to turn the plane [gs x E] and to turn the plane [L x E] left to be in the same E 

axis as shown in Figure 11. If we preserve all the features from Figure 9 and Figure 10 in the 

curves and bring them into the Figure 11, we can extrapolate the evapotranspiration line through 

the curves to the corresponding stomatal conductance gs and water leaf potential L values to build 

the Plane [L x gs] curve. Hence, the L x gs curve shows that as water leaf potential increases the 

stomatal conductance decreases to zero. Also, as the water leaf potential approaches the minimum 

value, the stomatal conductance goes to an unbounded value. This particular feature of the stomatal 
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conductance explains much of its behavior within the optimal computations, as is shown in 

subsequent sections.  Based on the situation when the Penman-Monteith curve is coordinated with 

the plant hydraulics line, we can infer that stomatal conductance has the tendency to be much 

higher as the solution’s points approach to potential evapotranspiration values. 

 

Figure 11 Integration of Plant Hydraulics and Penman-Monteith models curves. Plane [E x gs] shows the 

Penman-Monteith curve. Plane [E x L] shows the capacitance-resistance water transport or plant hydraulic 

model. Plane [L x gs] shows the resulting relationship between L and gs. 
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The next analyses are focused on the carbon assimilation models and how they are 

combined with the evapotranspiration curves to generate the equilibrium equation condition. 

2.4.2  The Equilibrium Equation – Constraining Carbon Assimilation Models 

The first step in the construction of the equilibrium equation (Equation 2.4) is analysis of 

the carbon assimilation model (G. D. Farquhar et al. 1980)-(Farquhar-Collatz model) using its 

curves interacting with the function factor f(L) to incorporate the effect of water stress on the 

biogeochemical rate of carbon assimilation An. In Figure 12, we combine the Rubisco-limited 

Farquhar curve model with the water stress function factor. In plane [ci x An] the carbon 

assimilation model is shown with its hyperbola curve. The maximum value of the curve is given 

by the maximum carbon assimilation capacity Vcmax. At half of the maximum rate Vcmax/2, the 

corresponding CO2 in-leaf concentration is ci = K* + 2, which corresponds to the level of CO2 

saturation concentration within the leaf. The value of ci at this point is dependent on the 

temperature and this point explains how carbon assimilation curves moves right along the ci values 

as temperature increases. The effect of the water stress function on carbon assimilation is shown 

in plane [ci x L] where one can see how the decrease of water leaf potential impacts linearly the 

maximum carbon assimilation. The final result of this combined effect is the spectrum of carbon 

assimilation curves on the plane [ci x An] from zero to Vcmax.  



 

 45 

 

Figure 12 Carbon Assimilation Farquhar (Rubisco-Limited) Model Curve constrained by water limited 

condition factor. 

 

The next analysis focuses on the carbon diffusion equation model. Carbon diffusion 

represents the availability of carbon uptake by plants. The linear equation that explains the supply 

of carbon to the plant is shown in Figure 13. The negative slope of the line is the total equivalent 

stomatal conductance Gs = gs gab /(gs + gab). Based on the equation and its graphical representation 

in Figure 13, we can establish the maximum capacity of carbon assimilation as gab(ca-). This 

capacity links the atmospheric conditions to the physiological processes in plants. Furthermore, 

this curve allows us to understand the possible effect of temperature and atmospheric carbon 
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changes on the carbon assimilation supply to plants. With higher temperatures the carbon 

compensation point  moves to the right, subtracting from the maximum capacity of carbon 

assimilation. Higher atmospheric carbon concentration is able to increase the maximum carbon 

availability while the conductance maintains its value. 

 

Figure 13 Carbon Diffusion Model curve constrained by atmospheric-boundary-layer conductance gab. The 

shaded area shows the feasible area of values where it is possible to have equilibrium conditions points. 

 

The equilibrium condition (the supply-demand constraint according to Leuning (1995) is 

that in which carbon assimilation (demand) meets carbon diffusion (supply). In terms of our 

graphical analysis, an instant or one-time step equilibrium is the point where the carbon 

assimilation curve intersects the carbon diffusion line in the plane [ci x An], as it is shown in Figure 

14. 
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The equilibrium point marked in green, is considerably low in comparison to the maximum 

capacity of carbon availability gab (ca-). In figure 14, the shaded area shows the set of points 

where it is actually possible to have equilibrium points given conditions of temperature and 

radiation. This type of area is shown in Figure 18-d) as the cloud of points that correspond to 

equilibrium points in a simulation of a typical year.  

 

 

Figure 14 Equilibrium condition with constraining carbon diffusion as supply and carbon assimilation as 

demand for carbon by plants. Blue shaded area represents the set of points where the equilibrium points are 

possible for a range of temperature and radiation conditions. 

 

Finally, we develop an integrated analysis of the equilibrium condition and its interaction 

with evapotranspiration models as discussed in subsection 2.4.1. Figure 15 shows the results of 
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integrated analysis into one group of plots and the resulting equilibrium condition curve in the 

plane [ci x L]. Bringing in the two planes [E x L] and, [E x gs] from Figure 11 and arranging 

them on the plane [ci x An] from Figure 14, we build the equilibrium condition curve from the 

carbon assimilation and carbon diffusion intersections points. For low values of CO2 in-leaf 

concentration ci-1/2, the carbon assimilation curve marks a low value An-1/2 (plane [ci x An] in Figure 

15). The carbon diffusion line in red closest to axis ci (plane [ci x An] in Figure 15) that intersects 

the carbon assimilation curve, has the smallest slope Gs1/2. This point of intersection at ci-1/2, An-1/2 

corresponds to lowest value of stomatal conductance gs-1/2 because of lowest slope Gs1/2. The 

lowest stomatal conductance tracks the Penman-Monteith curve at 0.5Emax evapotranspiration 

value (plane [E x gs] in Figure 15). The 0.5Emax transpiration value defines the green point of water 

leaf potential in the plant hydraulics line (plane [E x L] in Figure 15). Finally, the intersection of 

the water leaf potential described before and the initial ci-1/2 indicates the green point of equilibrium 

in the plane [ci x L].  The exercise of tracking all the points of intersection of carbon assimilation 

and carbon diffusion in the plane [ci x An] through the planes [E x gs] and, [E x L] to [ci x L] 

builds the equilibrium curve in the plane [ci x L].  One of the conclusions we draw from this final 

curve is that it has a limit value at point red ci-max where it is the highest CO2 in-leaf concentration 

that makes possible the equilibrium. The maximum equilibrium is due to the maximum slope Gsmax 

of the carbon diffusion dashed red line in plane [ci x An]. The maximum slope Gsmax is defined by 

the atmospheric-boundary layer conductance gab. This limitation is already implemented as a 

constraint in the computational implementation of both the empirical and the optimal approaches. 

Another conclusion to be made from Figure 15 is that under the equilibrium condition the ci 

increases as L decreases close to a limit value, which corresponds to higher values of stomatal 

conductance. 
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Figure 15 Equilibrium condition curve in plane [ci x L] in green and the corresponding points in the 

evapotranspiration-water transport curves. Plane [E x gs] shows the Penman-Monteith curve. Plane [E x L] 

shows the water transport-plant hydraulics line. Plane [ci x An] shows the equilibrium condition from the 

intersection between carbon assimilation and carbon diffusion curves. Stomatal conductance gs and carbon 

assimilation An are actually on different axes though sharing one here for graphical purposes. 
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2.4.3  Empirical Approach Integrated Model 

Figure 16 represents the integration of the equilibrium condition and the empirical 

approach. In this particular case the plane [ci x An] is replaced by the plane [ci x gs] to build the 

empirical equation curve.  Equation 2.1 can be simplified by assuming water-stress factor functions 

f(L) and fv(L) close to 1. Also, we can use the Rubisco-limited version of the Farquhar 

biogeochemical model for carbon assimilation in terms of Vcmax to get a simpler representation of 

the empirical equation. Then the empirical equation for stomatal conductance can be expressed as 

gs = a’ Vcmax / (ci + K*).  This equation describes a decreasing curve with ci in the plane [ci x gs] 

(this plane has gs axis increasing downward). The projection of different points from this curve 

through the Penman-Monteith curve and plant hydraulics curve to the plane [ci x L] builds an 

increasing curve indicating that for the empirical approach as ci increases, L increases. Therefore, 

the intersection point P between the equilibrium condition curve in green and the empirical curve 

in white-red (plane [ci x L] in Figure 16) is the solution of the system of equations described in 

Section 2.2. This solution shows that if a’ parameter increases the empirical stomatal conductance 

curve in plane [ci x gs] increases (the curve moves downward in the plane) and as a consequence 

the point of solution P moves right in the plane [ci x L]. The increase of a’ implies that the 

empirical method’s solutions approach to higher values of stomatal conductance, 

evapotranspiration and CO2 in-leaf concentrations follow the equilibrium curve shown in green.  
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Figure 16 Integrated curves of evapotranspiration, plant hydraulics, carbon assimilation, carbon diffusion 

and equilibrium curve to empirical approach curve. The point P represents the solution of the two variable ci, 

L system of equations described in Section 2.2. The curve in the ci – gs plane is a BBL equation (Equation 

2.1) representation where carbon assimilation An changes. 

 

The following analysis seeks to answer the question of how the empirical solution changes 

under two climate conditions (Figure 17): hot and cold. The system of planes and curves is similar 

to that in Figure 15 for the equilibrium condition, but in this case, we are adding the plane [ci x gs] 
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of Figure 16 in the bottom right of the planes to represent the climate changes in the empirical 

equation for stomatal conductance. Following the analysis explained in Figure 16, we add two 

types of curves in Figure 17: cold climate curves and hot climate curves. The higher curves in 

plane [E x gs] Penman-Monteith evapotranspiration and in plane [ci x An] carbon assimilation 

correspond to hot climate, because the curve parameters depend positively on the temperature and 

radiation. The lower curves represent the cold climate conditions. The equilibrium condition curve 

in plane [ci x L] for higher temperatures (hot climates) is the lower one. The cold equilibrium 

condition curve is the higher one in the plane [ci x L]. With higher temperatures the Vcmax is higher 

and the empirical curves are higher. According to the empirical curve analysis in Figure 17, the 

corresponding curve in plane [ci x L] for hot climates is the lower one. Then, the intersection 

points PL (for low temperatures-cold conditions) and PH (for high temperatures-hot conditions) 

between low and high empirical and equilibrium curves show the differences between cold and 

hot climate conditions for the empirical approach results. For cold climates carbon assimilation, 

evapotranspiration and stomatal conductance are lower than those for hot climates. However, the 

CO2 in-leaf concentration ci-empirical-low is higher for cold conditions than that for hot climates, ci-

empirical-high. This is due to the shape of the equilibrium conditions curve in plane [ci x L] and the 

overlap in the empirical curves when changing from cold to hot climates when the values of 

stomatal conductance are the same. The general behavior predicted by the graphical analysis in 

Figure 17 can be seen in the numerical simulations for the Mather site in Figure 18. The cloud of 

points in Figure 18 for each plane similar to that in Figure 17 represents equilibrium points 

computed from a transient simulation over a year with real input forcing data for temperature, 

radiation and vapor pressure deficit.  The red points correspond to temperatures below 15 oC and 
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the blue points to temperatures over 15 oC. The multiple lines shown in Figure 18-a), are result of 

the variations in soil moisture computed by the simulation.  

 

 

Figure 17 Variation of the empirical approach solutions under cold and hot climate conditions.  Planes [ci x 

L] , [E x gs] , [E x L]  and [ci x An] are similar to those in Figure 15. Plane [ci x gs] right bottom is similar to 

that in Figure 16.   
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Finally, Figure 18, serves as a consistency verification of the analysis used in this section 

to understand the behavior of the empirical approach’s solutions for different climate conditions. 

The cloud of points in each plot represents points of solutions under a simulation of a year at the 

Mather site. The similarity between the simulation points and the graphical analysis shows the 

coherence of the analysis developed.  The next analysis focuses on the integrated optimal approach 

model. 

 

 

Figure 18 Empirical approach simulation data for carbon assimilation, evapotranspiration, stomatal 

conductance, CO2 in-leaf concentration and water leaf potential at the Mather site, following the same axis 

arrangement as the graphical analysis in Figure 17.  
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2.4.4  Optimal Prentice Approach Integrated Model 

The analysis of this approach begins with the unit cost function and how it operates to 

search for the optimal results. Figure 19 illustrates the total unit cost function and the minimum 

cost point P at ci-optimal where the two-component cost derivatives are equal dCosta/dci =- 

dCostb/dci. The search for the minimum cost tests at each ci value involves identifying what 

stomatal conductance value gs makes the carboxylation derivative curve equal to the transpiration 

derivative curve. The resulting curve is an optimal condition relationship between ci and gs.  As 

the gs becomes higher, the carboxylation derivative curve goes lower and the intercept to the 

transpiration derivative becomes lower, as shown in plane [ci x dCost/dci]. This is possible because 

the transpiration derivative curve is fixed, not depending on gs. In normal conditions, transpiration 

unit cost component is expected to increase with ci or the transpiration derivative is expected to be 

positive. In our numerical exploration of this component, the use of coordinated Penman-Monteith 

with plant hydraulics evapotranspiration produces decreasing transpiration unit cost in some cases, 

as explained in Subsection 2.6.2. 

In Figure 20, the optimal condition curve can be projected from the plane [ci x dCost/dci] 

to the plane [ci x L] through the evapotranspiration curves. The resulting curve shows that as ci 

increases the stomatal conductance gs decreases and the water leaf potential L increases.  In this 

integrated system of curves similar to the one for the empirical approach in Figure 16, the 

intersection point P between the equilibrium curve in green and the optimal condition curve in 

magenta represents the solution for the system of equation of the optimal approach. The 

intersection point P moves upward if we increase the optimal parameter a/b, because the 

transpiration derivative curve increases as the a parameter increases making the intersection point 
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moves to the left. An increase in the b parameter works in the opposite direction moving the 

intersection point P to the right.  

 

 

Figure 19 Total unit cost function with the two components: transpiration unit cost and the carboxylation 

unit cost. The Plane [ci x dCost/dci] shows the derivatives for the unit cost components and the condition for 

minimum cost at intersection point P. The corresponding stomatal conductance is shown on external axis.  
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Figure 20 Integrated curves of evapotranspiration, plant hydraulics, carbon assimilation, carbon diffusion 

and equilibrium curve to the optimal approach curve. The point P represents the solution of the two variable 

ci, L system of equations described in Section 2.2. 
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Figure 21 Variation in the empirical approach solutions under cold and hot climate conditions.  Planes [ci x 

L], [E x gs], [E x L] and [ci x An] are similar to those in Figure 15. Plane [ci x dCost/dci] right bottom is 

similar to the one in Figure 20.   
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To sum up the optimal approach analysis, we can build an integrated system of curves with 

the two climate conditions in a similar fashion to that presented earlier for the empirical approach. 

In this case, the behavior of the solutions PL and PH (intersection points for cold and hot climates 

respectively) is similar to that in the empirical approach. Figure 22 portrays the coherence between 

the system of curve analyses and the numerical simulation. The cloud of points illustrates the 

shapes of the geometrical curves to be as the analysis predicted. 

 

Figure 22 Optimal approach simulation data for carbon assimilation, evapotranspiration, stomatal 

conductance, CO2 in-leaf concentration and water leaf potential a the Mather site, following the same axis 

arrangement the graphical analysis in Figure 21.  
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2.4.5  Empirical and Optimal Approaches Correspondences as Modeling Strategy 

As a main part of the implementation in this study of the vegetation into the pyrite 

oxidation, the modeling strategy of constraining parameters is analyzed in this subsection using 

the general formulation in section 2.2.4. Figure 23 shows the intersection points PL and PH (cold 

and hot climates) for the optimal approach constrained by the empirical approach. Following the 

general formulation of the strategy, both methods intersect at the same points with a common 

constraint of the equilibrium curve. In this case, the empirical parameter a’ is raised to move the 

empirical curves to the right to match the optimal curves. The movement of the empirical curves 

to intersect the optimal points explains the increase of a’ in the hot climates.  

A conceptual explanation of how the coupled optimal-empirical works according to 

Modeling Strategy is shown in Figure 24. Along the ci, L equilibrium curve, it is possible that 

empirical a’, or upper boundary, limits the Optimal point. There are three conditions that constrain 

optimal approach by the empirical equation or by stomatal conductance: 1) Optimal ci is lower 

than the corresponding empirical a’ and gs limiting ones; 2) when the gs upper value is lower than 

the optimal and empirical parameter a’ corresponding values then the gs upper value determines 

the optimal-empirical results; 3) if the a’ upper valid value point in the ci, L curve is lower than 

gs and optimal, then the final result is given by the empirical equivalent a’ value. 
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Figure 23 Correspondence between the optimal and empirical approach solutions under different climate 

conditions. Plane [ci x gs] shows the empirical approach curve. Plane [ci x dCost/dci] shows the derivative 

conditions for the optimal approach.  
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Figure 24 Geometrical and conceptual explanation of the three possibilities for optimal coupled with 

empirical approach: a) optimal by minimum cost point; b) constrained by gs and a’; c) constrained by 

condition limit carbon diffusion = carbon assimilation. Plane [E x gs] shows the Penman-Monteith curve. 

Plane [E x L] shows the water transport-plant hydraulics line. Plane [ci x An] show the equilibrium condition 

from the intersection between carbon assimilation and carbon diffusion curves. Plane [ci x Cost] corresponds 

to unit cost function. 
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In summary, the geometrical analysis of the integrated empirical and optimal approaches 

leads us to the following main conclusions: a) both approaches have similar behavior in terms of 

the variation in carbon assimilation, evapotranspiration and CO2 in-leaf concentration. However, 

the stomatal conductance computed by the optimal approach tends to be higher than that computed 

by the empirical approach; b) the CO2 in-leaf concentration has the tendency to be lower in warmer 

climate conditions due to the shape and the slope of the equilibrium condition curve; and c) the 

use of the modeling strategy of constraining the optimal approach to be equal to the empirical 

approach makes that the empirical parameter a’ has to be higher in hot conditions than in colder 

conditions. The variation in the empirical parameter a’ is explained by the movement of the 

empirical curve to get the solution points given by the optimal approach from the left to right, 

thereby raising a’ values. 

The next section explains the validation exercise of both the empirical and the optimal 

approaches to observed data. 

2.5 Model Calibrations 

After the conceptual analysis presented in section 2.4, the comparison of simulations to 

observed data is necessary to calibrate the empirical and optimal models for the specific sites in 

this study. 
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2.5.1  Model Parameters 

The models used in this study have a variety of parameters that depend on the type of plant, 

type of ecosystem, atmospheric conditions and soil properties. The range used in the validation of 

the parameters is given by the literature for each specific process model (Table 1). There are 

parameters for the empirical approach in the BBL equation (Leuning 1995; Medlyn et al. 2011; 

Miner et al. 2017), parameters for the unit cost function according to Prentice et al. (2014) and 

Wang et al. (2017), parameters for the physiological process of transpiration (Daly et al. 2004; 

Katerji et al, 1986; Luo et al. 2013; Tuzet et al. 2003) and parameters for soil properties from the 

soil moisture dynamics equation (Clapp and Hornberger 1978). 

The parameters in empirical Equation 2.1 are obtained from regressions analysis over 

different species and environmental conditions (Leuning 1995); we develop a methodology in 

(outlined in Appendix B) to use the maximum empirical parameter a’ as a bounded value for the 

optimal-empirical coupled approach. Values for the residual stomata conductance go, are 

0.01mol/m2/s to 0.03 mol/m2/s (Daly et al. 2004; Leuning 1995; Luo et al. 2013; Tuzet et al. 

2003). The factor function of water leaf potential L in Equation 2.1 has two shape parameters, 

f and Sf, for the sigmoidal function. These parameters serve to determine the maximum and 

minimum water soil potential, with values of 3.2 MPa and 1.9 MPa, respectively. The empirical 

parameter a’ in the Equation 2.1 has a valid accepted range from 2 to maximum 250, depending 

on the plant species or ecosystem conditions (Leuning 1995; Medlyn et al. 2011; Miner et al. 

2017). For our analysis with the empirical approach we use a’=2, and for the optimal-empirical 

coupled approach we adopt a’=17 for the Mather site and a’=24 for the Oensingen site, according 

to the analysis presented in Appendix B and, based on literature species values. 
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The main unit cost function parameters a and b are related to the cost of respiration for 

each component (Prentice et al. 2014). The parameter a is the unit cost related to transpiration. 

Prentice et al. (2014) propose a useful equation and Wang et al. (2017) demonstrate an explicit 

dependence of a on water viscosity and temperature in. The parameter b, related to carboxylation 

cost, is suggested by Prentice et al. (2014) and Wang et al. (2017) to be considered constant. The 

relation a/b (or as defined by Wang et al. (2017) b/a) is considered constant and equals 1/240 at 

25oC under standard conditions. 

Among the plant-transpiration process parameters are whole-plant resistance; plan 

capacitance, Cp with an original value 0.0000026 MPa/m; and Root-Leaf Resistance, R=1/50 m 

(Katerji et al. 1986). The plant-atmosphere conductance is ga = 1/ Ra with Ra = 221 s/m (Luo et al. 

2016). The Farquhar biochemical model for carbon assimilation (Farquhar 1980) has parameters 

maximum carboxylation with an initial value of Vcmax = 50 mol/m2/s and KO2 = 0.256 mol/mol 

and Jmax = 75 mmol/m2/s used in this study. The soil properties used in the soil moisture balance 

equation are encapsulated in the potential and hydraulic conductance equations parameters 

according to Clapp and Hornberger (1978). 
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Table 1 Parameters used in validation for Empirical and Optimal Constrained Approaches 
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2.5.2  Calibration at the Mather Site using DHSVM 

We applied the empirical and optimal-empirical coupled (optimal constrained) approach 

to the Mather site within the DHSVM-HTGCM model, for a period of Jan-2010 to Dec-2010, 

using observed GPP and ET from MODIS-NASA data (Figure 25). 

It is valuable to note that the modeling strategy used in this study makes the calibration 

process more rigid in terms of tuning parameters to fit observed data. This rigidity means that the 

more sensitive parameters are constrained, at least in terms of range, and it is not possible to use 

them easily to match computed results to observed data. In consequence, this conditionality of 

constrained parameters shows the strength of the model in representing observed data, because 

just from the initial simulations is possible to get very close results to observed ones. Hence, the 

final refinement to fit the model to observations is to find other parameters with low sensitivity in 

the final results. 

In this particular calibration with the optimal approach constrained by the empirical model 

to observations at the Mather site, the only parameters used for the final fit were the capacitance 

of water storage parameter and the upper water leaf potential in the water-limited function on 

carbon assimilation. The first parameter adjustment, Cp, indicates that water plant storage is greater 

than for the original parameter and implies less flux of storage in summer seasons. The second 

parameter adjustment L max shows that the model has a tendency to avoid the effect of water stress 

conditions under optimal searching. 
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Figure 25 Comparison of modeled results with the observations at Mather site for the year 2010 using the 

empirical and optimal constrained approaches. a) Gross primary productivity (GPP) using the empirical 

approach; b) Evapotranspiration using the empirical approach; c) Gross primary productivity (GPP) using 

the optimal constrained approach; d) Evapotranspiration using the optimal constrained approach. e) 

Comparison of gross primary productivity of the empirical and optimal constrained approaches. f) 

Comparison of evapotranspiration of the empirical and optimal constrained approaches. 
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2.5.3  Calibration at Oensingen-Switzerland Site using DHSVM 

Oensingen observed data were also used to compare the empirical and optimal-empirical 

coupled (optimal constrained) approaches, for a period of Jan-2004 to Dec-2004, in which the 

observed GPP and ET from MODIS-NASA data were also used. The results are shown in Figure 

26. Both models also show fit with observed data. 

The adjustments of the model for the Oensingen site were performed using the carbon 

assimilation parameters and the capacity of water storage parameter. The carbon assimilation 

parameters were the carboxylation capacity Vcmax and the maximum light irradiance capacity Jmax. 

The final adjusted values of these two parameters indicate that the fertilization of the type of crop 

species in the field can explain the high capacity of carbon assimilation. These adjusted carbon 

assimilation parameters make possible to fit the observed GPP data. The final adjusted value for 

the water storage parameter indicates highly productivity of the species at the site with a value of 

Vcmax =3* Vcmaxo and Jmax = 3* Jmaxo, three times the original parameter values. 

Once we calibrate the models for each site, we can work on them to compare the empirical 

and the optimal simulation results. The next section shows these comparisons of the empirical and 

optimal approaches with the implications of the optimal constrained approach. 
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Figure 26 Comparison of modeled results with the observations at the Oensingen site for the year 2010 using 

the empirical and optimal constrained approaches. a) Gross primary productivity (GPP) using the empirical 

approach; b) Evapotranspiration using the empirical approach; c) Gross primary productivity (GPP) using 

the optimal constrained approach; d) Evapotranspiration using the optimal constrained approach. e) 

Comparison of gross primary productivity of the empirical and optimal constrained approaches. f) 

Comparison of evapotranspiration of the empirical and optimal constrained approaches. 
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2.6 Simulations and Analyses 

Comparative simulations of the empirical and optimal approaches were developed using 

the same site conditions, including input on meteorological data, soil types and vegetation 

parameters. The parameter reduction of computability strategy was used as a basis for the 

comparative simulations. One purpose of these comparative numerical exercises is to verify the 

order of magnitude and range of validity of the parameters under the strategy. The comparative 

simulations aim to establish a general relationship between the empirical and optimal approaches 

under water-limited conditions using validated soil-plant-atmosphere land surface models. The 

integration of soil-plant-atmosphere processes implies the modeling extension and adaptation of 

the optimal theory to the Mather and Oensingen specific conditions. This explorative numerical 

exercise with different comparisons and the implications which can be made regarding the plant 

physiological and hydrological processes was done to illustrate elements of applicability and 

limitations of each the empirical and the optimal theory. 

Applying the optimal theory to water-limited conditions was also useful for investigating 

its consistency with respect to observed relationships between environmental variables, 

physiological traits and concentration in leaf expressed as the ratio ci/ca (Prentice et al. 2014; Wang 

et al. 2017). In this study, these relations were tested in local and detailed modeling configurations 

as a contribution to previous works in validating the optimal theory (Wang et al. 2017). 
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In this section, the first part is devoted to describe the comparison between the empirical 

and optimal unit cost functions using the a/b parameter in the analysis. The second part shows the 

examination of the a/b parameter as a strategy for matching the empirical and optimal approaches. 

The third part treats the comparison between the empirical and optimal approaches using fixed 

parameters. The fourth part shows the use of a’ parameter in the strategy of matching both 

approaches. The remaining parts present the results of constraining gs and a’ in the matching 

strategy with a’ parameter. 

 

 

2.6.1  Empirical and Optimal Unit Cost Functions 

In applying and adapting optimal theory to water-limited conditions, unit cost parameters 

values must be determined properly. For the transpiration component parameter, (Prentice et al. 

2014) propose the unit cost a as a cost of respiration related to water flow formulation through the 

xylem or as a function of the viscosity of fluid and height of the plant. For the unit cost of 

carboxylation, parameter b, the authors suggest a constant value that is driven by the effect of 

temperature on the kinetics of the biochemical reactions of the photosynthesis processes. In De 

Kauwe et al. (2015) and Wang et al. (2014), the formulation of the optimal ci /ca, requires the 

definition of the ratio a/b parameter under water-no limited conditions. Wang et al. (2014) 

proposes a simplified formulation for a/b parameter which cannot be directly applied to this study. 

Based on these formulations (Prentice et al. 2014; Wang et al. 2014), a parameter value exploration 

was made to establish the order of magnitude related to cited papers (Prentice et al. 2014; Wang 

et al. 2014) and to explore the effect of the parameter being put into the total unit cost function in 
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comparison to the empirical approach one. At this level of exploration, the actual 

evapotranspiration was used in the evapotranspiration part of the unit cost function, represented as 

aE’/Vcmax. 

For a/b=1 the average value of the unit cost function computed using the optimal theory 

approach [8.2 mol/mol] is lower than that computed using empirical approach [9.3 mol/mol] in 

12%. Carbon assimilation, evapotranspiration and stomata conductance computed using optimal 

approach are, in most cases of time step simulations points, lower than the corresponding values 

computed using the empirical approach when conventional parameters are used. The difference 

between mean values of carbon assimilation computed using [2.68 mmol/m2/s] optimal and 

empirical [2.36 mmol/m2/s] empirical approaches is 13%, for evapotranspiration the difference is 

21%, at [3.3 mm/d] optimal and [2.75 mm/d] empirical. The highest difference found is between 

the values for stomata conductance, [275.14 mm/s] for optimal and [1.05 mm/s] for empirical. The 

average values for water leaf potential are [-1.28 MPa] for optimal and [-0.538 MPa] for empirical, 

with the corresponding concentration in-leaf at [289 ppm] for optimal and [269 ppm] for empirical 

showing consistency in terms of the general difference between optimal and empirical results. The 

values for stomata conductance given by optimal theory, out of maximum capacity reported by the 

literature of [20 mm/s or 0.02 m/s] show some limitation for using a/b = 1 as a ratio parameter in 

the optimal theory. 

In the cases a/b<1, the average unit cost function decreases to a limit value of [7.6 mol/mol] 

with a/b values lower than 1. In general, the increment of carbon assimilation values computed 

using the optimal approach is low with lower values of a/b < 1, while the average value for 

evapotranspiration computed using the optimal approach is almost constant with the variation of 

a/b <1. The average value of stomata conductance is high, up to [414.3 mm/s] with a/b = 0.1; 
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however, for lower values of a/b <1, the increment value stays stable, with average values of [191 

mm/s]. In general, when using the optimal approach, with lower values of a/b < 1, more time step 

points present a total unit cost with lower values than those found using the empirical approach. 

This condition of a/b < 1 shows a tendency of the general results using the optimal approach to 

get close to a limit value as a/b becomes smaller. 

For a/b >1, the average unit cost using the optimal approach increases [12.3 mol/mol] in 

relation with the previous conditions of the ratio a/b as expected. However, the increment value 

does not change its relationship to the empirical unit cost value; it is still lower in comparison to 

the new empirical unit cost with new a/b ratio. The average values for carbon assimilation [2.6 

mmol/m2/s], evapotranspiration [3.0 m/s] and stomata conductance [210 mm/s] using the 

empirical approach decrease, consistent with the effect of a/b in the optimal computation, with a 

noticeable proportionality as a/b>1 with higher orders of magnitude. 

Overall, as the ratio a/b increases, the optimal results show a sustained decrease for carbon 

assimilation, evapotranspiration and stomata conductance, according to the mathematical 

condition for optimal computation. However, for most of the cases the values of stomata 

conductance computed by optimal theory are higher than the corresponding empirical ones. This 

fact provided motivation to explore not only the details of what specific conditions explain higher 

values for stomata conductance using optimal theory compared to empirical values and even for 

the physical limitations, but also explore how to adjust the optimal computation to get more 

feasible results. 

In a first attempt to adjust the optimal computation, a limitation on the minimum 

computable water leaf potential was set to limit the relation between evapotranspiration and 

stomata conductance and consequently get lower values of stomata conductance. This limitation 
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could be on the percentage of potential evapotranspiration that the algorithm uses to compute the 

minimum water leaf potential. In consequence, the effect of lowering the maximum computable 

evapotranspiration is the decrease of the minimum water leaf potential for the computation to limit 

greater values of stomata conductance in the Penman-Monteith equation. 

The effect of lowering a/b < 1 shows that stomata conductance gets high values as 

evapotranspiration still increases in concordance to optimal computation. In this case, the 

adjustment generates low values for stomata conductance that are feasible but still a little higher 

than empirical values. For instance, the average value for stomata conductance computed using 

the optimal approach is 1.55 mm/s at a/b=0.1, or 1.65 mm/s at 0.01 mm/s, with an empirical value 

of 1.05 mm/s.  As a/b > 1, it is to possible to get optimal values for stomata conductance closer to 

the empirical ones but with some important difference in carbon assimilation. This adjustment 

produces a relatively equality between optimal and empirical unit cost functions. 

2.6.2  Strategy for a/b Optimal Parameter to Constrain Optimal 

The parameter strategy for matching empirical and optimal theory models is conducted by 

means of an analytical framework using the empirical and optimal equations. Once these analytical 

equations are established, the empirical model is run and the results so obtained are plugged into 

the equation for the a/b parameter. The direct computation of the a/b parameter is based on 

Equation 6. The equation for the a’ parameter using the empirical approach is Equation 2.5. 
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Figure 27 Stomatal conductance and a/b behavior in time using the modeling strategy on a/b optimal 

parameter. 

Figure 27 shows the annual variation of a/b parameter values with temperature, VPD and 

radiation. This graph depicts two main findings. First, in most cases, the a/b parameter values are 

higher during the warm seasons (late spring, summer and early fall) than in the cold seasons. A 

second finding is that some negative values do still occur during the warm season. 

The first finding above can be explained in terms of low and high values of meteorological 

conditions. Empirical and equilibrium equations intersect at high concentration in-leaf and water 

leaf potential values. This empirical result gives a high value for stomata conductance because the 

matching equilibrium equation at high concentration in-leaf values, despite low carbon 

assimilation. For this type of empirical result, it is possible to get the same values using the 

optimality approach by decreasing the a/b parameter. Meanwhile, under high values of 
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meteorological conditions, the empirical intersection with equilibrium equation (Equation 2.4) 

gives low concentration in-leaf values and higher water leaf potential than the case above. Hence, 

the a/b parameter that allows matching of the optimal approach to the empirical approach is higher 

than one at low meteorological conditions.  

Negative values of a/b are the result of applying the inverse optimal equation (Equation 6) 

for matching to empirical values. These negative values are due to the negative derivate of 

transpiration unit cost component. It has been found that for low carbon assimilation values, the 

transpiration unit cost component increases with concentration in-leaf, while for average carbon 

assimilation values transpiration unit cost component has a minimum value. For high values of 

carbon assimilation, the transpiration unit cost part decreases, which implies that the minimum 

cost is always at maximum concentration in-leaf, indicating no effect of a/b on the total unit cost. 

This special case computes negative a/b with a derivate of transpiration lower than the derivate for 

carbon assimilation. 

These negative a/b values indicate that actual evapotranspiration, as a variable in the total 

unit cost, does not increase with ci on the aE’/A component as the theory expects. Therefore, the 

estimate of transpiration E’=1.6GsD is used instead of actual evapotranspiration E in examining 

the total unit cost in the following development of the optimal approach. 
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2.6.3  Comparison of Empirical and Optimal Approaches Results 

Fixed, literature-reported parameter values were used to compute the simulations under the 

empirical and optimal approaches separately. Simulations were performed in equal conditions of 

forcing inputs for both methods. Note that the optimal approach applied in this section, with fixed 

a/b and maximum evapotranspiration in the unit cost function as used in Prentice et al. (2014) is 

called the unconstrained optimal approach. 

Figure 28 shows that the carbon assimilation and evapotranspiration computed by both 

empirical and optimal (unconstrained version) approaches are similar. However, the stomatal 

conductance gs computed using the optimal approach is much higher than the stomatal 

conductance computed using the empirical approach. For both the Mather site and the Oensingen 

site, the carbon assimilation computed using the optimal approach is higher than that computed 

using the empirical approach. The average difference between the optimal and the empirical 

approach carbon assimilation series is 0.2 mol/m2/s, for the Mather site, which represents a 2% 

difference; at the Oensingen site the average difference is 0.3 mol/m2/s, or 3%. For the Mather 

site, the difference in the actual evapotranspiration average of the optimal and empirical 

approaches is 0.5 mol/m2/s, equivalent to a 1% difference.  For the Oensingen site, the difference 

is 2.5 mol/m2/s, or 1.8%. 
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Figure 28 Comparisons of empirical (red points) and unconstrained optimal (blue points) approach 

simulations over the course of a year. a) and b) Carbon assimilation; c) and d) Evapotranspiration; e) and f) 

Stomatal conductance: g) and h) Equivalent empirical parameter a’. Mather site (Left-side panels) and 

Oensingen site (Right-side panels). 

 

The stomatal conductance computed using the optimal approach is higher than that 

computed using the empirical approach for warm seasons. The average difference is 0.3 mol/m2/s, 

or 570%, for the Mather site, and 0.2 mol/m2/s, or 270%, for the Oensingen site in warm seasons 

(April through August) whereas cold seasons (January to March, September to December) the 

average difference is only 0.1 mol/m2/s, or 1%, for the Mather site, 0.5 mol/m2/s, or 2%, for the 

Oensingen site. 
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Figure 28-g) and Figure 28-h) show that equivalent empirical parameter a’, computed by 

Equation 2.5 based on optimal approach results, follows stomata conductance. In cold seasons the 

average a’ value is 10 for the Mather site. In warm seasons, the average a’ is 32 for the Mather 

site, which is greater than the limit value of 17. 

Figure 28-h) also shows that equivalent parameter a’ for the Oensingen site, in contrast to 

that for the Mather site, has a uniform distribution of a’ along the year of simulation, with no 

seasonal pattern easily recognizable.   

The higher values computed using the optimal approach in comparison with the empirical 

approach is due to Optimality solutions’ search for higher ci, values. One reason explaining these 

higher values is that the a/b parameter used is a low value, less than 1, which makes the 

transpiration cost component lower in comparison to the carboxylation cost component. This 

means that the total unit cost is mostly explained by the carboxylation cost component. As the 

carboxylation unit cost is monotonically decreasing with ci, the minimum total unit cost is at higher 

ci values. 

The similarity of carbon assimilation and evapotranspiration values obtained by these 

approaches is due to relative similarity of Gs in the equilibrium equation (Equation 2.4) under both 

approaches. The Gs similarity is directly related to the L similarity, because both variables are 

mapped one-to-one through an inverse Penman-Monteith (PM hereinafter) equation and 

equivalent stomatal-atmospheric conductance equation. As L is lower using the optimal approach 

than when using the empirical approach, Gs is a little higher when using optimal approach than 

empirical approach. Another reason for this similarity is that at higher ci values for both the optimal 

and empirical approaches, dA/dci decreases and hence the difference in optimal and empirical ci 

values is not substantial for carbon assimilation. 
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However, a low increment in Gs implies a higher increment in gs as an effect of the 

equivalent stomatal-atmospheric conductance equation and the inverse PM equation. Even with 

the higher gs computed using the optimal approach, evapotranspiration tends to be close to 

Potential evapotranspiration. The PM equation means a much higher optimal gs, so optimal 

evapotranspiration is higher than empirical evapotranspiration but constrained to be much closer 

to Potential evapotranspiration. 

These results mean that under Optimal theory plants open stomata at higher values than the 

empirical theory would predict. The optimal stomatal conductance is higher because plants look 

for higher ci values that allow to minimize total unit cost. The atmospheric limitation of CO2 

transfer to inside the leaf, given by the supply of CO2 in the diffusion equation, forces a 

correspondence between higher ci with much higher gs and higher evapotranspiration closer to 

Potential evapotranspiration.  

Although the BBL equation in Leuning (1995) is, similar to Equation 2.1, constrained by 

the equilibrium equation (Equation 2.4), it was not formulated for water-limited conditions, and it 

does not use the PM equation as an additional constraint for evapotranspiration and water leaf 

potential L. In Medlyn et al. (2011), the USO (Eq. 11, page 2735) Equation proposed is valid for 

wet conditions and is constrained neither by the evapotranspiration equation nor water leaf 

potential. Other studies such as De Kauwe et al. 2015 and Zhou et al. 2018 use only the BBL 

empirical equation for the USO Equation or the basic Prentice et al. (2014) Equation, however 

they do not reformulate the equations as we do in this study. 

Optimal theory, as formulated by Prentice et al. (2014) under dry conditions and the PM 

equation, shows large values of stomatal conductance, sometimes even values out of feasible 

physical range. Also, a computation of an equivalent empirical parameter a’ shows large values 
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out of an upper bound value of 17 for the Mather site and 24 for the Oensingen site. The maximum 

a’ values are explained in Appendix B. 

To overcome these two issues, the parameter strategy is used to match (or couple) both 

optimal and empirical results under a reduction of degree of freedom for the equivalent parameter 

a’ and constraining gs under valid ranges. This is the so-called optimal coupled to empirical 

approach, to our best knowledge, not used before in previous optimality formulations such as 

Mencuccini and Christoffersen (2019), which is a revision of different optimality versions. Results 

under this modified (coupled with empirical) Prentice optimal approach in comparison to an 

unconstrained optimal approach is shown next in subsection 2.6.4. 

2.6.4  Strategy for a’ Empirical Parameter Constraining gs and a’ in Optimal Approach 

Figure 29 shows a strong similarity of carbon assimilation and evapotranspiration in the 

optimal coupled with empirical and optimal unconstrained approaches, with a difference of only 

about 1% between them for the Mather site and 2% for the Oensingen site. The overall difference 

in ci and L is 1% for the Mather and Oensingen sites, which it shows that both results are virtually 

equal.  

However, the reduction in gs under the constrained condition in 39% at the Mather site and 

48% at the Oensingen site, which implies that the optimal unconstrained approach could double 

the gs value in comparison to an optimal computation coupled with empirical. Also, the equivalent 

parameter a’ is reduced by the optimal-empirical approach; for Mather to 27% and for Oesningen 

28%. 
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Figure 29 Comparisons of unconstrained optimal (blue points) and optimal coupled with empirical (green 

points) approaches simulations over the course of a year. a), b) Carbon assimilation; c), d) 

Evapotranspiration; e), f) Stomatal conductance: g), h) Equivalent empirical parameter a’. Mather site (Left-

side panels) and Oensingen site (Right-side panels). 

 

The last three possibilities show in Section 2.4.5 that under certain environmental 

conditions, plants do not behave optimally, but instead open their stomas up to the maximum 

physical value or follow a behavior described by empirical conditions. The next section explores 

possible hypotheses on the optimal unconstrained and empirical applicability. 
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2.6.5  Exploring Hypotheses about the Implications of Optimal Approaches 

This section is intended to establish hypotheses on the limitations of both the empirical and 

optimal approaches with respect to explaining feasible results. These hypotheses rise as a first 

meaning of the implications of the overestimated results of gs and equivalent a’ computed by the 

optimal unconstrained approach. In this context, an exploration of the hypotheses, based on the 

main causes of the overestimated results, is carried out through interpretation of the computed data 

and conceptual analyses of the optimality approach equations. 

 

 

Figure 30 Comparisons of constrained optimal using gs only (yellow points) and constrained optimal using gs 

and a’ (green points) approaches simulations in a year at the Mather site. a) Carbon assimilation; b) 

Evapotranspiration; c) Stomatal conductance; d) Water leaf potential; e) Carbon concentration in-leaf; f) 

Equivalent empirical parameter a’.  
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Figure 30 shows that even when gs is constrained, there are still equivalent a’s above the 

maximum value. The effect of constraining only gs does not change carbon assimilation, 

evapotranspiration, CO2 in-leaf concentration or water leaf potential substantially. The evidence 

shows that stomata conductance changed from its initial large values computed by using 

unconstrained optimal approach to feasible lower values. These new stomata conductance values 

limit an important amount of a’ values below the limit of 24. However, some other a’ values re-

computed with the new stomatal conductance are higher than the maximum 24 value. Indeed, there 

are cases of original high a’ values with low gs values. 

 

Figure 31 Geometrical and conceptual explanation of stomatal conductance variation with ci under hot and 

cold climate conditions. Plane [ci x An] shows the equilibrium condition from the intersection between carbon 

assimilation and carbon diffusion curves at high and low temperature conditions. Plane [ci x gs] corresponds 

to stomatal conductance curves. 
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As a consequence, this constrained-gs only optimal approach reveals that the equivalent a’ 

parameter is affected strongly by CO2 in-leaf concentration ci and, carbon assimilation An, not only 

by stomata conductance gs.  

A graphical-conceptual analysis of stomatal conductance is presented in Figure 31. Figure 

31 shows that as ci increases gs increases, following the equilibrium equation. But the range of ci 

goes up to a maximum value that corresponds to maximum total equivalent conductance Gs, which 

is determined by the atmospheric-boundary layer conductance gab. Likewise, Figure 31 also 

illustrates that the stomata conductance curve is higher for warmer and hot climates than for cold 

conditions. Consequently, this implies that for any ci value stomata conductance is higher in 

warmer-hot climates (or when meteorological condition values are higher) than for cold climates 

(or when meteorological conditions values are lower). 

As presented in the Section 2.4.4 of this dissertation, the optimal approach searches for the 

minimum unit cost condition for high ci values in cold-low meteorological conditions and lesser ci 

values for hot-high meteorological conditions. Therefore, stomata conductance has the tendency 

to be lower in cold conditions than in warmer conditions (Figure 31). This difference in stomatal 

conductance gs values can be observed in Figure 32-a) and Figure 32-b). For instance, stomatal 

conductance at hot-humid conditions are higher than those at cold conditions because the 

corresponding evapotranspiration values depend on high temperatures and radiation. 

These relationships between gs and ci lead to the conclusion that the unconstrained optimal 

approach tries to overestimate stomatal conductance at warmer-hot climates (or higher 

meteorological condition values) especially where actual evapotranspiration ET is close to 

potential evapotranspiration PET, which means water-stress for the plants (Bonan et al. 2014; 

Dewar 2010; Manzoni et al. 2014). 
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Figure 32 Conditions that explain high Equivalent Parameters a’ values at the Mather and Oensingen sites in 

red and blue points. All the points shown are simulation results from optimality unconstrained without any 

bounding on gs or a’. 
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An analysis of the variation of equivalent a’ is detailed through Figure 32-c), Figure 32-d) 

and the empirical equation. First of all, the empirical equation (Equation 2.1 or Equation 2.5) 

describes clearly what the main factors of a’ variation. We can consider that they are: Stomata 

conductance gs, CO2 in-leaf concentration ci, carbon assimilation and water-stress functions f(L), 

fv(L).  Figure 32-c) and Figure 32-d) present that, in general, a’ increases as ci increases, what is 

easily interpreted from the empirical equation. This relationship between a’ and ci is also presented 

in the same manner in Franks et al. (2018) for different conditions. 

Nevertheless, there are two distinguishable peaks in Figure 32-c) and Figure 32-d) that 

correspond to the extreme cold and hot temperature conditions. The middle peak in both Figure 

32-c), and Figure 32-d), represents the effect of the highest gs values, in warmer conditions, on the 

higher a’ values. At the same time, this same effect is jointly caused by the maximum ci values, 

that are in turn determined by the equilibrium equation (Equation 2.4) at warmer conditions. 

At these warm and hot climate conditions, the highest gs values correspond to the highest 

actual evapotranspiration values. In addition, these evapotranspiration values are close to the 

potential evapotranspiration values which indicates some state of water-stress conditions. The 

correspondence between the highest a’ values and highest ratio ET/PET are shown in Figure 32-

e) and Figure 32-f). 

Moreover, close to the highest ET/PET values, there is an additional effect of rising a’ 

value due to lower values of factor functions f(L) and fv(L) on carbon assimilation. The lower 

values of the factor functions correspond to the lower values of water leaf potential which are the 

result of optimal points where the evapotranspiration is close to the highest values indicating 

water-stress conditions. In some cases where ET/PET is low, the a’ value is high because the effect 

of low carbon assimilation increases the a’ value, according to the Equation 2.5. 



 

 89 

On the other hand, carbon assimilation has an opposite effect on a’. For higher An values 

at warmer conditions a’ has a tendency to decline, while at very low carbon assimilation values in 

cold conditions, a’ increases substantially, as present at the Oensingen site in Figure 32-d). 

At this point, it can be concluded that high values of equivalent a’ are present in both warm 

and cold seasons at high and low ET/PET ratios respectively, as shown in Figure 32-e) and Figure 

32-f). These high a’ values are above the boundaries reported in the literature for these sites and 

species application. This means that the empirical approach cannot replicate the results obtained 

by the optimal unconstrained approach. 

In addition to the above analysis, a set of scatter plots representing the meteorological 

conditions for high gs and a’ is presented in Figure 33. These representations help to demonstrate 

the coherence between the above described relationships and environmental conditions for higher 

gs and a’ values out of valid ranges. All of these points are computed using the unconstrained 

optimal approach. The points that represent gs values higher than feasible ones, are located in the 

region of high temperatures (more than 10oC) independent of other meteorological variables. 

The points corresponding to a’ higher values than reported limits are superimposed on 

several points with high gs values, showing that some of these points are related each other. 

However, this relationship is not one-to-one; as is demonstrated in Figure 32, there are a’ high 

values points which implies low gs values and vice versa. 
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Figure 33 Scatter Plots of forcing meteorological data showing relationships with unconstrained optimal 

approach (grey points), with constrained by gs (green points) and with constrained by a’ (red points). a) and 

b) temperature vs radiation; c) and d) temperature vs shortwave; e) and f) temperature vs vapor pressure 

deficit. Left plots a), c) and e) are for Mather site. Right plots b), d) and e) for Oensingen site. 
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The scatter plots of these high a’ value points reveal that they spread to include a wide 

broader range of temperatures than the gs points do. The plots also describe that the majority of 

high a’ points correspond to middle and lower values of Shortwave radiation (below 500 W/m2), 

and middle to lower values of vapor pressure deficit, or VPD (below 1 kPa). For example, at the 

Oensingen site, the a’ points are located at very low values of VPD than those at the Mather site. 

Hence, the very low values of carbon assimilation at the Oensingen site can explain the higher 

values in the peak of a’ vs ci /ca or a’ vs ET/PET in cold conditions in comparison to the Mather 

site peak in the same cold season. 

In addition, high radiation explains more a’ points than gs points, despite the fact these both 

types of points are located in the same high radiation region. 

The above explanations led us to formulate the following hypotheses about the 

physiological implications of the application of the optimal approach and the limitations of the 

empirical approach explaining plant behavior in extreme conditions: 

One hypothesis is that under the optimality approach, the stomatal conductance values are 

unbounded, implying some of lack of capacity of plants to reach the minimum unit cost (or behave 

completely optimal) under high temperatures and water-stress conditions. Another hypothesis is 

that some of the empirical a’ values are higher than the specie-related limit implying that the 

empirical BBL Equation approach cannot explain optimal results at certain extreme conditions of 

lowest temperatures, lowest radiation values and highest temperatures and highest water-stress 

values. 

The next section describes how the results from the unconstrained optimal and optimal 

approaches coupled with the empirical approach agree with tendencies of observed plant variables. 
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2.6.6  Review of ci/ca Relationships under Optimal Theory 

In this section, examinations of certain relationships between the ratio ci /ca and other 

variables are presented. Most of the relationships show some agreement with observed data. We 

first examine how the optimal approach (both unconstrained optimal and optimal coupled with 

empirical) conveys the unit cost function theory as a hyperbola-like curve. We then examine how 

ci /ca evolves over time. Then we look at the relationship between ci /ca and temperature. Finally, 

we present the relationships between ci /ca, vapor pressure deficit, VPD and carboxylation capacity, 

Vcmax. 

2.6.6.1 Hyperbola Curve in Unit Cost Trade-off 

Figure 34 shows the trade-off between carboxylation capacity, denoted as V=Vcmax/An, and 

transpiration, expressed as G = gs/An, as predicted by the unit cost concept formulated by Prentice 

et al. (2014), in the shape of a hyperbola curve. This relationship, between essential variables 

representing unit cost components, is similar to that presented in Prentice et al. (2014) in Figure 

3-page 88, which is a representation of how observed data of carboxylation and transpiration 

substitute for each other.  
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Figure 34 Comparison among hyperbola curves for empirical. Optimal unconstrained and optimal 

constrained (optimal coupled with empirical in the figure) approaches where V=Vcmax/An and G= gs/An. a) 

Hyperbola curves for the Mather site; b) Hyperbola curves for the Oensingen site. 

 

In the optimal approach results developed in this study, the trade-off between carboxylation 

and transpiration (represented by gs value) is more widespread in the G variable than in the Prentice 

et al. (2014) curve. These higher values of G are due to the higher values of gs computed by the 

unconstrained optimal and optimal coupled with empirical approaches. Although the optimal 

coupled with empirical approach has constrained gs values, its stomatal conductances are higher 

than those computed using the empirical approach and reported in Prentice et al. (2014). The 

results reported by Prentice et al. (2014) show the hyperbolic shape trade-off based on average 

data for four types of climates. 

On the other hand, the empirical approach does not show a similar trade-off between 

carboxylation and transpiration variables. The reason for this might be the lower values of gs 

computed using the empirical approach and the thin range of computation of all variables with 

only one specified a’ parameter. 
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2.6.6.2 Time variation of ci/ca 

 

Figure 35 Ci/Ca Relationship with Time. a) Ratio Ci/Ca vs time comparing optimal unconstrained and 

optimal constrained (optimal coupled with empirical in the figure)  approaches for the Mather site; b) 

Frequency distribution of ratio Ci/Ca over time at the Mather site; c) Ratio Ci/Ca vs time comparing optimal 

unconstrained and optimal constrained (optimal coupled with empirical in the figure) approaches for the 

Oensingen site; d) Frequency distribution of ratio Ci/Ca over time at the Oensingen site. 

 

Figure 35 exhibits that ci /ca is lower in warm seasons than in cold ones. The evolution over 

time is smoother in the summer-fall transition than in the winter-spring one. The reduction of ci /ca 

in warm climates is also reported by Prentice et al. (2014) as observed data. The results computed 

using the optimal approaches confirm this relationship of ci /ca with cold and warm-hot climates. 

However, Prentice et al. (2014) report, based on data, how ci /ca increases from cold-dry 

sites to hot-wet sites. This variation on ci /ca is not predicted completely by original unit cost 

formulation in terms of X=ci /ca (Equation 2.2 in Prentice et al. (2014)). Section 2.6.6.3 explores 

this possibility under the developed optimal formulation in this study, based on Equation 2.2 and 

considering ci and L as main variables. 
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Both optimal approaches, unconstrained and coupled with empirical, present almost equal 

ci /ca values throughout the year. The frequency distributions in Figure 35-b) and Figure 35-d) 

indicate a concentration of ci /ca values around 0.8 and 0.9 at the Mather site and Oensingen site 

respectively. According to Prentice et al. (2014) the ratio ci /ca has little tendency to vary. This 

trend is supported by the high concentration of ci /ca values shown in Figure 35-b) and Figure 35-

d). 

2.6.6.3 Relationships Between ci /ca and Temperature 

 

 

Figure 36 Ci/Ca Relationship with Temperature. 

 

Figure 36, displays how ci /ca is usually constant with temperature until one specific value, 

where it begins decreasing as temperature increases, shown by the in grey dots. This behavior is 

consistent with Prentice et al. (2014) observations for general cases. The decrease in ci /ca moving 

from lower to higher temperatures is due to the increase in absolute value of the slope of the 

transpiration unit cost component, which makes the minimum cost seeks lower values of ci. 
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However, Prentice et al. (2014) also report special conditions where the there is an increase in ci/ca 

from cold-dry sites to hot-wet sites. The optimality extension model developed in this study, shows 

that is able to replicate the special conditions of increasing ci /ca from cold-dry to hot-wet climates, 

as shown by the blue (cold-dry) and red (hot-wet) dots in Figure 36. These particular conditions 

computed in the simulations are explained by the effect of the increase of the slope of the 

carboxylation cost component on the increase in the optimal ci. The increase of the slope of the 

carboxylation unit cost component is due mainly to the increase of Vcmax with temperature. The 

change in the carboxylation curve slope seeks a minimum cost in higher ci values.  

2.6.6.4 Relationships Between ci /ca with Vapor Pressure Deficit and Carboxylation 

Capacity 

Figure 37 describes how ci /ca decreases as Vcmax and VPD increase. The decline of ci /ca 

with Vcmax has a tendency to be asymptotic to a middle below 0.5. The ci /ca behavior with respect 

to Vcmax is similar to its behavior with respect to temperature, which is consistent with the direct 

effect of temperature on Vcmax. 

On the other hand, the decrease in of ci /ca as VPD decreases is more evident at the 

Oensingen site than the Mather site, despite both sites presenting similar linear regression 

coefficients. This type of relationship is in agreement with observed data as reported by Prentice 

et al. (2014), and is also consistent with Leuning (1995) and Medlyn et al. (2011) formulations 

between ci /ca and VPD. The main explanation of the effect of VPD on ci /ca, is the direct incidence 

of VPD on maximum transpiration E’ as used in unit cost function. As VPD increases, the 

maximum transpiration increases in linear proportion. These higher values of maximum 

transpiration imply that the minimum cost searches for lower ci values and in consequence lower 

ci /ca. 
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Figure 37 Ci/Ca relationships with carboxylation capacity Vcmax and Vapor Pressure Deficit VPD. a) Ratio 

Ci/Ca vs Vcmax comparing optimal unconstrained and optimal constrained approaches for the Mather site; b) 

Ratio Ci/Ca vs Vcmax comparing optimal unconstrained and optimal constrained approaches for the 

Oensingen site; c) Ratio Ci/Ca vs VPD comparing optimal unconstrained and optimal constrained for the 

Mather site; d) Ratio Ci/Ca vs VPD comparing optimal unconstrained and optimal constrained approaches 

for the Oensingen site. Optimal constrained is labeled optimal coupled with empirical in the figure. 
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2.7 Conclusions 

The Prentice et al. (2014) optimality formulation developed in this dissertation based on 

minimum unit cost function can be integrated with Penman-Monteith and plant hydraulics 

evapotranspiration, including water-limited conditions (by using the water leaf potential as explicit 

variable). This integration of the Prentice et al. (2014) modeling is tied to soil-plant-atmosphere 

processes in a more constrained manner than the majority of optimal formulations presented in the 

literature. The formulation developed in this dissertation was able to represent properly the unit 

cost concept of trade-off between carboxylation capacity and transpiration, unlike the empirical 

approach, which has some limitations when address this feature. This trade-off representation by 

the optimal approach simulation results was possible by substituting the transpiration formulation 

used by Prentice et al. (2014) in the unit cost function instead of using the actual evapotranspiration 

given by the Penman-Monteith equation. That trade-off is possible because the slope of the 

transpiration unit cost component d(aE’/A)/dci is always positive for all meteorological conditions. 

This characteristic of the transpiration cost component makes carboxylation capacity unit cost 

Vcmax/A and transpiration E’/A unit cost substitutable for each other as predicted by the theory and 

observed by data. 

The strategy presented in Luo et al. (2013) to have as many possible constraints to reduce 

parameter equifinality as possible has been applied in the formulation of this study. Also, it has 

been proven effective in producing more reliable and reasonable model simulation results in terms 

of the uniqueness of the results through matching or coupling together the same processes from 

two perspectives: the empirical and the optimal perspective. In this manner, the parameters values 

(e.g., gs and a’) are automatically bounded in valid ranges resulting in more physically meaningful 

values. 
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The modeling work in this study, is able to represent accurately the Prentice et al. (2014) 

observed ci /ca relationships with time, temperature, vapor pressure deficit and carboxylation 

capacity. This feature promotes the optimal coupled with empirical approach model, formulated 

in this dissertation, as another valid tool to predict general plant responses to the environment. 

The application of the unconstrained optimality model showed overestimated results that 

convey the following concluding hypotheses: i) The results of stomatal conductance out of 

bounding values under the optimality theory could be interpreted as a lack of capacity of plants to 

reach the minimum unit cost (or behave optimally) under high temperature and water-stress 

conditions. ii) Some empirical a’ parameter values, as a constraining of the optimality approach, 

were computed out of valid ranges, implying certain limitation of the empirical approach to explain 

optimal results at lowest and highest extreme climates conditions. 

Finally, the use of this developed optimality formulation shows a need to investigate some 

theoretical background from a purely biological perspective to explain the limitations at extreme 

conditions. 
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3.0 Development of a Pyrox+Hydro-Biogeochemical Model linked to AMD Processes 

Modeling 

3.1 Introduction 

Acid Mine Drainage is still a significant environmental issue resulting from the mine 

industry in almost all countries (Nordstrom 2011). A sustainable solution is passive remediation 

using vegetation planted over the coal piles of abandoned mines (Johnson and Hallberg 2005; Liu 

et al. 2018; Rodríguez et al. 2019). The main technologies offered by phytoremediation as 

categorized in Karaca et al. (2018) are: a) phytoextraction of metals to be allocated into different 

part of the plants; b) phyto-stabilization to modify the ability of pollutants to react and stabilize 

them within the rhizosphere (Karaca et al. 2018; Yao et al. 2012); and c) phytovolatilization to 

transport soil solutes into the air using plant xylem systems (Karaca et al. 2018). Other mechanisms 

related to rhizosphere processes are suitable when using vegetation to degrade organic or inorganic 

contaminants in the presence of bacteria-plant-soil interactions.  

In general, phytoremediation relies on the interaction of biogeochemical processes 

triggered by the plants or by the microbes in the soil (Skousen et al. 2017). In particular, the use 

of wetlands has been proven effective in remediating AMD through the use of biological 

interactions with metal (Crafton et al. 2019). In other studies, the use of special sludges offers 

biochemical passive treatment under AMD (Escobar et al. 2016). For example, the mechanisms of 

ferric oxidation are related to the microbial activity of Terris Ferrooxidans (Skousen et al. 2017). 

All of the above passive remediation techniques imply that biochemical mechanisms are involved. 
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However, the underlying interactions processes of phytoremediation are not well 

understood (Karaca et a. 2018; Liu et al. 2018; Nordstrom 2019b). At the same time, an appropriate 

assessment is crucial to develop feasible engineering applications on economic efficiency 

(Nordstrom 2019b). Therefore, the modeling of more detail-based processes is needed to not only 

enable the understanding of many processes but also enable an assessment of remediation 

techniques for engineering purposes (Nordstrom 2011, 2019c). In general, the modeling work has 

been focused on assessment based on particular sites and on pilot experimental remedial works 

(Nordstrom 2011, 2019a). Four approaches to this modeling have been enacted (Nordstrom, 2018): 

a) geochemical acid-base speciation modeling, b) reactive transport solutes modeling, c) dynamic 

oxygen and shrinking core modeling, and d) dynamic acidification modeling. 

Most of the modeling work on AMD pollution is built on acid-base speciation or chemical 

equilibrium models (Cosby et al. 2001). This is a basic platform performing conventional 

computations related to ion exchange and pH determination (Cosby et al. 2001). Reactive-transport 

modeling receives more use in AMD research, with special emphasis on hydrodynamic modeling 

and water quality analysis, such as in Myers (2016). The shrinking core approach is a specific 

modeling description of pyrite oxidation through the internal oxygen diffusion mechanism and 

coal coat formation of the pyrite as proposed by Wunderly et al. (1996). Under this modeling 

approach Gerke et al. (1998) developed long term simulations and added a reactive-transport 

description. Following the Gerke et al. (1998) formulation, Wright et al. (2006) perform a study 

of biochemical integration with pyrite oxidation to explain acidification reinforcement. Doulati 

Ardejani et al. (2013) carry out the incorporating of biological solid-liquid interaction to explore 

microbial ferric oxidations. Based on this work, Jodeiri et al. (2016) developed a geochemical 

model that incorporate acid-base speciation and shrinking core. Subsequent work was performed 
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by Bahrami and Doulati Ardejani (2016) in which an analytical formulation for oxygen was 

integrated with bacterial activity. Overall, the shrinking core approach has been developed more 

from geochemical perspective than a biochemical inclusion perspective. 

Including the biochemical process as a main factor of the modeling is accomplished mainly 

with the dynamic soil acidification approach. In Cosby et al. (2001) the integration of nitrogen 

dynamics into acidic description equations is developed in a more comprehensive manner than 

other previous studies but without a hydrological-physiological inclusion of plants. In a following 

study Posch and Jan (2009) introduces the Very Simple Dynamic (VSD) concept for soil acid 

modeling and expresses the need for a better inclusion of vegetation into the dynamic acidification 

models. In response, Holmberg et al. (2018) formulates a vegetation growth with organic matter 

turnover and acid-base dynamics, but still describing the plant growth simply. It is only in Bonten 

et al. (2016) where a more detailed description of nutrient uptakes, carbon and nitrogen dynamics 

are used still using a simple growth model. Guided by inclusion of the main biogeochemical 

processes, subsequent modeling works focus on long term and climate change analysis of soil 

acidification (Holmberg et al. 2018). However, Gustafsson et al. (2018) have remarked the 

limitations of VSD modeling that  a more complex model might be able to overcome, especially 

in terms of a aluminum long term analysis. In summary, dynamic acidification modeling is the 

only approach to include biogeochemical processes, but it still uses simple physiological plant 

formulations, and simple descriptions of interaction with hydrology and lacks a description of the 

shrinking core concept. 

From the biogeochemical modeling perspective, on the other hand, biogeochemical cycles 

have been included as part of the theoretical, field and experimental research in eco-hydrology in 

the last decade. The most recognized model for carbon, nitrogen and phosphorus is the DNDC 
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model, developed by Li et al. (1992).  DNDC has been proved to be well calibrated and has also 

been improved to include a module for photosynthesis, developed by Aber et al. (1992;) and Li et 

al. (2000). However, the equations of the DNDC are not completely physically based. The 

processes of nitrification, denitrification and organic matter oxidation are modeled using 

conceptual equations and not chemical kinetics or chemical equilibrium. The SWAT model, 

developed by Neitsch et al. (2011), includes chemical kinetics and chemical equilibrium equations; 

however, biogeochemical processes are not tied to the gross primary production. 

Recently, other simulation codes have been developed for different environmental issues 

and with different capabilities. VELMA, by Abdelnour et al. (2013), is a complete environmental 

code model for carbon, nitrogen and hydrology cycles in the soil matrix, but it does not have an 

optimality principle for modeling, especially modeling plant physiology in photosynthesis and 

carbon allocation. DayCENT is another code model by Hartman (2009). It includes elements to 

those in VELMA, but it does not include photosynthesis modeling. Finally, the tRIBS+VEGGIE 

model by Ivanov et al. (2008) offers an innovative formulation for topography and flow at the 

watershed level. The formulation of the entire system of watershed processes is similar to that in 

DHSVM, but it improves on DHSVM’s formulation by adding triangle modeling of the spatially 

distributed processes in the watershed, computing carbon allocations explicitly, and being coupled 

to the carbon assimilation Farquhar model. However, tRIBS+VEGGIE does not account for the 

nitrogen process or carbon diffusion and does not use any optimality formulation. Other models, 

such as Johnson et al. (2014) and Quijano et al. (2012), use an empirical approach to estimate 

stomatal conductance and do not couple chemical equilibrium in the dynamical equations for 

organic matter oxidation, nitrification-denitrification and dissolved carbon dioxide efflux. 

Nevertheless, these models do not use an optimality framework; instead they use an empirical 
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approach to represent stomata conductance, and the effect of pH on the biochemical cycles is not 

completely modeled as proposed by Hofmann (2009) and Hofmann et al. (2008). Therefore, this 

work plans to bring together the optimality principle and carbon and nitrogen cycles modeling, to 

describe vegetation growth dynamics and to have it coupled to chemical equilibrium for pH and 

pyrite oxidation, in an integrated mathematical framework. 

Because a more comprehensive biogeochemical-pyrite oxidation modeling is needed to 

gain more insight on interacting phytoremediation processes and to act as a tool to assess 

bioremediation, the work of this part of the dissertation develops and explores the modeling details 

of vegetation cover as one part of a remediation tool on coal piles of abandoned mines. We focus 

our modeling work on two main questions: a) how do the interactions between biogeochemical 

and pyrite oxidation processes operate within AMD; and b) what are the remediation effects on of 

using grass or higher types of vegetation species as trees on reducing AMD pollution. 

This chapter presents the formulation, an analysis and the results of the  Hydro-

Biogeochemical model stage of the dissertation in three sections: a) The mathematical components 

and formulation of the interactions between biogeochemical and pyrite oxidation processes; b) the 

description of the codes used and the components of the computational implementations for the 

general mathematical model; c) a qualitative system dynamics analysis of the main processes 

derived from the mathematical components equations; d) a validation of the model using a 

combination of laboratory experiments data and Mather site data; e) simulations analyses of each 

interaction separately and f) scenarios of remediation with grass vegetation and tree vegetation as 

an overall assessment of the combined biogeochemical and pyrite interactions. 
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3.2 Mathematical Model Formulation 

The aim at this second stage of the model development is a more physical and chemical 

based representation of integrated hydrological and biogeochemical processes interacting with 

pyrite oxidation. In general, the model implementation is intended to make comprehensible the 

effect of vegetation as a passive remediation on coal piles refuse through the internal feedbacks 

among said processes (Johnson and Hallberg 2005; Plaza et al. 2017;  Plaza 2018; Xu 2013; Xu et 

al. 2020). The main modeling task is to extend the Hydro-Thermal-Geochemical HTGCM model 

developed by Xu (2013) and Xu et al. (2020) to involve biogeochemical processes as 

representation of the vegetation phytoremediation. We introduced a general description of plant 

physiology including the soil moisture dynamics coordinated with carbon assimilation and 

evapotranspiration variables. The plant growth as allocation of carbon and nitrogen is represented 

and is closely linked to soil pools of carbon and nitrogen cycles. In the soil matrix, we developed 

a representation of biogeochemical processes such as organic matter oxidation, nitrification and 

solute plant uptake considering more comprehensive interactions with pyrite oxidation, acidic ions 

formations and metals chemical equilibrium. Figure 38 is a schematic representation of all 

interactions among the hydrology, plant-biogeochemical processes (shown in the upper part of the 

figure) and the pyrite oxidation and contaminant transport processes (shown in the lower part of 

the figure). 
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Figure 38  Schematic representation of the main interactions between Acid Mine Drainage with pyrite 

oxidation (Xu 2013; Xu et al. 2019) and biogeochemical processes (included in this study as a contribution) 

using vegetation as passive bioremediation. The violet arrows represents the fluxes between pyrox processes 

and biogeochemical processes. Dashed violet arrows show the effect of pH chemical equilibrium over metals 

and biogeochemical species. The mathematical model aims to describe the above processes. 
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The complete mathematical model at this stage could be summarized as a system of 

ordinary-partial differential and algebraic equations linked to describe such hydrological, 

biogeochemical and chemical variables as they evolve. The first component of the model is the 

non-linear algebraic system of equations described in Chapter 2, used for the description of soil 

moisture dynamics integrated with plant physiological variables. The second component is 

devoted to the plant growth and biochemical cycles, using linear differential equations that 

represent lumped carbon and nitrogen pools in both plant allocations and soil matrix. The third 

component of the model is formed by a system of partial non-linear differential equations to 

represent in a more detailed manner the transport and reaction dynamics of the biogeochemical 

processes of organic matter oxidation, nitrification and plant uptake within the soil matrix. The 

fourth and last component is integrated system of non-linear partial and algebraic equations as 

described in Gerke et al. (1998),  Wunderly et al. (1996), Xu et al. (2019) and Xu (2013) to compute 

the pyrite oxidation and chemical equilibrium. 

The following subsections detail the components described in the above paragraph: a) each 

process modeled, b) the system of equations and c) the connections used to represent the 

interactions among the processes. 

3.2.1  Plant Physiology Processes and Soil Moisture Dynamics 

This first component of the general model represents an interaction between plant 

physiology processes (carbon assimilation and evapotranspiration) and soil moisture conditions. 

The effect of evapotranspiration on soil moisture is the key to such interaction and is the basis for 

further interactions later in the model. The main soil hydrology process modeled is the unsaturated 

zone flow which follows the Darcy Law and considers two main components: soil moisture 
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conditions and water soil potential as the driving force for the flux movement. The Richards 

Equation allows the unsaturated flow, representation based on balance mass, using soil moisture 

and water leaf potential as main variables. We also use Clapp and Hornberger (1978) equations to 

define relationships between soil moisture  and water soil potential s. In the mass balance 

equation, we include evapotranspiration as computed by the optimal-empirical approach 

developed in Chapter 2. The equations used for soil moisture and water soil potential are described 

as follows, 

 

𝜕𝜃

𝜕𝑡
=

𝜕

𝜕𝑧
[𝐾𝑠 (

𝜕Ψ𝑠

𝜕𝑧
− 1)] − 𝐸𝑧                                                 [ 3.1 ] 

𝐾(𝜃) = 𝐾𝑠 [
𝜃

𝜃𝑠
]
2𝑏+3

                                                      [ 3.2 ] 

Ψ𝑠(𝜃) = Ψ𝑠
∗ [

𝜃

𝜃𝑠
]
−𝑏

                                                         [ 3.3 ] 

 

where  [m3/m3] is soil moisture content; s [m
3/m3] porosity; K [m/s] actual vertical conductivity; 

Ks [m/s] vertical conductivity at saturation; S [MPa] soil water potential;  S [MPa] soil water 

potential at saturation, a and b are soil parameters. Ez [m/s/m] is the actual evapotranspiration 

distributed along the soil depth. 

In addition to soil moisture and water soil potential, we include plant physiology processes 

to complete the first component of the model. Carbon assimilation, evapotranspiration, stomatal 

conductance, water leaf potential and CO2 in-leaf concentration are the main plant processes 

introduced in the equations as explained in Chapter 2. The optimal-empirical approach is the 

method by which the equations are solved. Carbon assimilation is a measure of the photosynthesis 

of plants and is represented by the Collatz-Farquhar biochemical model (Farquhar et al. 1980). 
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Carbon diffusion is the limiting supply for carbon assimilation and is described by a Fickian law 

equation using stomatal conductance and driving force based on the difference between 

atmospheric CO2 concentration and CO2 in-leaf concentration (Daly et al. 2004; Leuning 1995; 

Luo et al. 2013; Medlyn et al. 2011; Prentice et al. 2014; Tuzet et al. 2003). Evapotranspiration is 

related to the stomatal conductance Leaf Area Index and main meteorological forcing data using 

the Penman Monteith equation (ASCE 2000; Wigmosta et al. 2002). Evapotranspiration is also 

computed using a capacitance-resistance equation of the plant hydraulics that relates water soil 

potential and water leaf potential (Katerji et al. 1986; Luo et al. 2013). The Prentice Optimal 

Theory (Prentice et al. 2014) is adapted to use the above equations and constrained by the empirical 

equation for stomatal conductance. The above described equations lead to a compact form of a 

system of equations with Equation 2.2 (or Equation 2.3), Equation 2.4 and Equation 2.5 as shown 

in chapter 2. 

Therefore, the system of equations of the first component of the model is composed of a 

partial differential equation on soil moisture (Equation 3.1) and two non-linear algebraic equations 

on water leaf potential and CO2 in-leaf concentration (Equation 2.2 and Equation 2.4). The other 

equations (Equation 3.2 and Equation 3.3) are auxiliary constraints of the system, as explained in 

Chapter 2. 

Lastly, there are four interactions with other components of the model: a) the Gross Primary 

Productivity GPP, an output from this part of the model, is the main input for the plant growth 

biochemical component, explained in the next subsection, 3.2.2; b) the soil moisture computed in 

this component is used in the third and fourth parts of the model for the chemical and 

biogeochemical vertical transport-reactive equations; c) the evapotranspiration computed in soil 

layers is used for metal and biochemical solutes plant uptakes; d) this component of the model 
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uses the Leaf Area Index LAI computed in the second component in the Penman-Monteith equation 

for evapotranspiration and in the GPP computation. The general equation for GPP is shown as 

follows, 

 

𝐺𝑃𝑃 = 𝐿𝐴𝐼 ∫ 𝐴𝑛 𝑑𝑡
𝑑𝑎𝑦

                                                       [3.4] 

 

where GPP [grC/m2/day] is gross primary production; LAI [m2/m2] leaf area index; and An 

[mol/m2/s] net carbon assimilation. 

3.2.2  Carbon and Nitrogen Biochemical Cycles Processes 

The second component of the model computes plant carbon storage pools, carbon fluxes, 

plant nitrogen storage pools, nitrogen fluxes, surface litter and soil organic components following 

Potter and Randerson (1993), Schaefer et al. (2008), Wang et al. (2010) and Wang et al. (2007), 

which model is known as the CASACNP (Carnegie-Ames-Stanford-Approach – Carbon-

Nitrogen-Phosphorus) model. This portion of the entire model represents the gross carbon 

assimilation by plants and the subsequent carbon allocation into the three plant components: a) 

carbon leaf, b) carbon wood and c) carbon root. Moreover, this component of the model describes 

the nitrogen plant uptake and its allocation within the nitrogen plant components: a) nitrogen leaf, 

b) nitrogen wood and c) nitrogen root. Both plant carbon and plant nitrogen pools can be 

considered as a description of plant growth. Plant carbon pool is affected by plant nitrogen leaf 

pool through a limitation of the GPP in the Net Primary Productivity NPP as representation of 

plant respiration. On the other hand, plant nitrogen pools are affected indirectly by plant carbon 
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leaf pool via Leaf Area Index LAI through evapotranspiration. This component of the model also 

computes the carbon and nitrogen pools of surface litter from the plants.  Consequently, this part 

of the model describes the organic carbon and nitrogen soil storage which come from the respective 

litter pools. 

In this study, we used a system of multi-connected linear ordinary differential equations 

for the pools described in the last paragraph, similar to that in the CASACNP model (Wang et al. 

2010).  Furthermore, we added two constraints equations to the system of differential equations 

computing two pools variables (carbon soil microbial and mineral nitrogen) in the following 

component of the model (the biogeochemical transport-reactive part in subsection 3.2.3). The main 

input forcing data for the system of equations is the GPP computed by the first component, as 

shown in subsection 3.2.1. The carbon storage pools for plants are represented by linear differential 

equations with GPP as an external source and a decay term. The computation of LAI, used in the 

later component of the model (subsection 3.2.1), is computed at this point based on the carbon leaf 

pool Equation 3.7. The nitrogen plant pools have the mineral nitrogen uptake term (computed in 

the third component of the model, subsection 3.2.3) as a main external source and also decay terms 

to describe plant turnover. Each external source term has a fraction factor which corresponds to 

the allocation portion of each part of the plant. The differential equations (Equations 3.5 and 3.6) 

for plant carbon and nitrogen pools are similar to those described in the CASACNP model and are 

shown as follows. 

 

𝑑𝐶𝑃𝑙𝑎𝑛𝑡 𝑖

𝑑𝑡
= 𝐹𝐴𝑙𝑙𝑜𝐶 𝑖 𝐺𝑃𝑃 − 𝑘𝑃𝑙𝑎𝑛𝑡 𝑖 𝐶𝑃𝑙𝑎𝑛𝑡 𝑖                                          [3.5] 

𝑑𝑁𝑃𝑙𝑎𝑛𝑡 𝑖

𝑑𝑡
= 𝐹𝐴𝑙𝑙𝑜𝑁 𝑖 𝐹𝑈𝑝𝑡𝑎𝑘𝑒 − 𝑘𝑃𝑙𝑎𝑛𝑡 𝑖 𝑁𝑃𝑙𝑎𝑛𝑡 𝑖 𝐹𝑁𝑃−𝐿 𝑖                              [3.6] 

𝐿𝐴𝐼 = 𝑆𝐿𝐴𝐼 𝐶𝑃𝑙𝑎𝑛𝑡−𝐿𝑒𝑎𝑓                                                        [3.7] 
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where CPlant i [grC/m2] is carbon plant pools with i = Leaf, Wood and Root; FAlloC i [%] fraction of 

carbon allocation to i pool; kPlant i [day-1] decay coefficient or turnover rate for plant pool i; NPlant i 

[grN/m2] nitrogen plant pools; FUptake [grN/m2/d] mineral nitrogen plant uptake; FAlloN i [%] fraction 

of nitrogen allocation to i pool;  kPlant i [day-1] decay coefficient or turnover rate; FNP-L i [%] fraction 

transfer from nitrogen plant i to nitrogen litter pools; SLAI [m
2/m2] specific leaf area index; CPlant-

Leaf [grC/m2] carbon leaf pool. 

The litter storage pools for carbon and nitrogen are: a) metabolic, b) structural and c) coarse 

woody debris (CWD). The differential equations for the litter pools have the decay terms of the 

plant pools equations as external sources. The litter pools equations also have decay terms which 

represent mass transfer to soil organic pools. The following equations correspond to the carbon 

and nitrogen litter pools: 

 

𝑑𝐶𝐿𝑖𝑡𝑡𝑒𝑟 𝑗

𝑑𝑡
= 𝐹𝐹𝑙𝑢𝑥𝐶𝑗 − 𝑘𝐿𝑖𝑡𝑡𝑒𝑟 𝑗 𝐶𝐿𝑖𝑡𝑡𝑒𝑟 𝑗                                          [3.8] 

𝑑𝑁𝐿𝑖𝑡𝑡𝑒𝑟 𝑗

𝑑𝑡
= 𝐹𝐹𝑙𝑢𝑥𝑁 𝑗  − 𝑘𝐿𝑖𝑡𝑡𝑒𝑟 𝑗 𝑁𝐿𝑖𝑡𝑡𝑒𝑟 𝑗                                        [3.9] 

 

where CLitter j [grC/m2] is carbon litter pools where j = Metabolic, Structural and CWD; FFluxC j 

[grC/m2/day] flux of carbon to litter pool j; kLitter j [day-1] decay coefficient or turnover rate for 

litter pool j; NLitter j [grN/m2] nitrogen litter pools; and FFluxN j [grN/m2/day] flux of nitrogen to litter 

pool j. 

As the final part of this second component of the model, the carbon and nitrogen organic 

soil differential equations have three pools: a) microbial, b) slow and c) passive. The source terms 

of each of the soil organic differential equations are composed of litter decay terms. Similar, to the 

equations presented in the above paragraphs, these soil organic pools equations have decay terms 
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which represent carbon and nitrogen oxidation. As special cases, the carbon soil microbial and 

mineral nitrogen pools are computed in the third component of the model (explained in subsection 

3.2.3) such that we can assume these two variables as inputs for this second component of the 

model. The special computation of these two variables (mineral nitrogen and organic carbon 

matter) is an improvement over the original formulation of the CASA model (Wang et al. 2010). 

The differential equations (Equations 3.10 and 3.11) for carbon and nitrogen soil pools are 

presented below, 

 

𝑑𝐶𝑆𝑜𝑖𝑙 𝑘

𝑑𝑡
= 𝐹𝐹𝑙𝑢𝑥𝐶 𝑘 − 𝑘𝑆𝑜𝑖𝑙 𝑘 𝐶𝑆𝑜𝑖𝑙 𝑘                                                    [3.10] 

𝑑𝑁𝑆𝑜𝑖𝑙 𝑘

𝑑𝑡
= 𝐹𝐹𝑙𝑢𝑥𝑁 𝑘  − 𝑘𝑆𝑜𝑖𝑙 𝑘 𝑁𝑆𝑜𝑖𝑙 𝑘                                                  [3.11] 

𝐶𝑆𝑜𝑖𝑙−𝑚𝑖𝑐 = 𝐴𝑐𝑒𝑙𝑙  ∫ 𝐶𝑂𝑀(𝑧) 𝜃(𝑧)  𝑑𝑧
𝑧=𝑅𝑜𝑜𝑡𝐷𝑒𝑝𝑡𝐻

𝑧=0
                                 [3.12] 

𝑁𝑚𝑖𝑛 = 𝐴𝑐𝑒𝑙𝑙  ∫ [𝐶𝑁𝑂3(𝑧) + 𝐶𝑁𝐻4(𝑧)] 𝜃(𝑧)  𝑑𝑧
𝑧=𝑅𝑜𝑜𝑡𝐷𝑒𝑝𝑡𝐻

𝑧=0
                         [3.13] 

 

where CSoil k [grC/m2] is carbon soil pools with k = Microbial, Slow and Passive; FFluxC k 

[grC/m2/day] flux of carbon to soil k pool; kSoil k [day-1] decay coefficient or turnover rate for soil 

pool k; NSoil k [grN/m2] nitrogen soil pools; FFluxN k [grN/m2/day] flux of nitrogen to soil k pool; 

CSoil-mic [grC/m2] carbon soil microbial pool representing the soil organic matter; COM [mg/L] 

organic matter concentration; NMin [grN/m2] mineral nitrogen pools; CNO3 [mg/L] nitrates 

concentration; and CNH4 [mg/L] ammonium concentration. 

 

There are four other interactions between this component of the model and the other three. 

The first and second interactions are the use of the nitrogen plant uptake and nitrogen leaching 

rates, computed in the inorganic biogeochemical component of the model (Subsection 3.2.3), as 
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part of internal fluxes for nitrogen pools in this component. The third interaction is the use of flux 

of carbon from litter to soil, computed at this point as an upper boundary condition for the organic 

matter concentration equation in the third component of the model (Subsection 3.2.4).  The fourth 

interaction is transferring the mineral nitrogen fluxes such as deposition and mineralization to be 

used as spatially distributed sources for the subsequent partial differential equations (third 

component of the model, Subsection 3.2.3). 

3.2.3  Soil Inorganic Biogeochemical Dynamics and Chemical Equilibrium of pH 

In this third component of the model, the computation of the spatially distributed and 

dynamic biogeochemical processes is presented linked to carbon and nitrogen cycles and to soil 

moisture dynamics. The computation of microbial soil carbon and mineral nitrogen in this 

component replaces the original CASACNP estimation (the use of partial differential equations in 

our study instead of the lumped ordinary differential equation used in CASA) as an improvement 

over the CASA model. This improvement of the original formulation of the CASA model is needed 

due to the lack of explicit modeling of nitrification and denitrification processes (Wang et al. 

2010). In addition, we are including the interactions between the biogeochemical processes and 

the pH using the chemical equilibrium equations among inorganic carbon and nitrogen species as 

well as representing the plant uptake of solutes (nutrients and metal pollutants) in an integrated 

manner along with the reactive and transport dynamics. 

At this point in the model, the general form of the equations to describe the details of 

transport, organic matter oxidation, nitrification and denitrification is based on a partial differential 

equation that includes soil moisture, vertical discharge, external sources and reactions terms. The 

general concept we used to build this configuration of the equations is specifically based on 
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Hofmann (2009) and Hofmann et al. (2008) to capture the effect of biogeochemical reactions on 

the pH and based on Berlin et al. (2015) and Berlin et al. (2014) to describe nitrogen solute 

transport with nitrification and denitrification. We can arrange the partial differential equations in 

three groups: a) The oxidation-nitrification processes equations, b) the ammonia equations and c) 

the inorganic carbon equations. The pH chemical equilibrium equations are the final portion of 

this third component of the model. The numerical solution of the biogeochemical reactive-

transport model is explained in Appendix C. 

The first group of partial differential equations (Equations 3.14, 3.15 and 3.16) is devoted 

to model soil organic matter concentration (spatially distributed variable equivalent to carbon soil 

microbial pool), nitrates and generation of hydrogen ions by nitrification. The computation of soil 

organic matter replaces the microbial soil carbon in CASACNP; the summation of nitrates and 

ammonium replaces the mineral nitrogen computation in CASACNP. All these computations are 

coordinated within the CASACNP model to compute internally other soil carbon and nitrogen 

pools and fluxes. The equations include soil unsaturated vertical transport of the solutes, reaction 

terms and external sources. The description of the equations, the special terms, and the initial and 

boundary conditions are shown below, 

 

𝜕(𝜃𝐶𝑂𝑀)

𝑑𝑡
= −

𝜕(𝑞𝐶𝑂𝑀)

𝜕𝑧
− 𝑅𝑜𝑥 + 𝐹𝑂𝑀                                               [3.14] 

𝜕(𝜃𝐶𝑁𝑂3)

𝑑𝑡
= −

𝜕(𝑞 𝐶𝑁𝑂3)

𝜕𝑧
+ 𝑅𝑛𝑖𝑡 − 𝑅𝑑𝑒𝑛𝑖𝑡 + 𝐹𝑁𝑂3                                   [3.15] 

𝑑𝐻𝑛𝑖𝑡
+

𝑑𝑡
= 2𝑅𝑛𝑖𝑡                                                             [3.16] 

 

where COM [mg/L] is organic matter concentration; CNO3 [mg/L] nitrates concentration. Rox, Rnit 

and Rdenit [mg/L/d] are organic oxidation, nitrification and denitrification rates, respectively; FOM 
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[mg/L/d] source of organic matter; FNO3 [mg/L/d] source of nitrates; and H+   Hydrogen Ion 

concentration [mg/L]. 

          Among the parameters, Rox = - rox COM [CO2/(CO2+KMO)]  obtained with initial conditions 

COM (t=0, z) = CSoil-mic (t=0) Acell /(Acell dZ ) Fraccz, and  boundary conditions FOM (t, z=0) = 

FCASA
CSoil, mic Acell; FOM (t, z>0) = - Ez Acell COM . Also,  Rnit =  rnit CNH4 [COX/(COX+KO)]; Rdenit = - 

rdnit COM [CNO3/(CNO3+KOM)] having  initial conditions CNO3 (t=0, z) = 0.5 Nmin (t=0) Acell /(Acell dZ 

) Fraccz; and boundary conditions FNO3 (t, z=0) = 0.5 FCASA
Ndep Acel.. Finally, FNO3 (t, z>0) =0.5 

(FCASA
Nfix + FCASA

Nnet + FCASA
Nloss) Acell Fraccz - Ez Acell CNO3 ; FNO3 (t, z=Depthbio) = - q(z=Depthbio) 

Acell CNO3(z=Depthbio). 

The second group of equations (Equations 3.17 and 3.18) correspond to ammonia nitrogen 

species (ammonia and ammonium ion). The equations represent the vertical transport and the 

effect of oxidation and nitrification interaction with organic matter and nitrates. The computation 

of ammonia nitrogen species is key to represent nutrient plant uptake and the soil chemical 

equilibrium pH linked to pyrite oxidation. This computation is coordinated with the effect of 

nitrification on the pyrite oxidation by the Hydrogen Ion production.  The equations with special 

terms, initial values and boundary conditions are cited as follows, 

 

𝜕(𝜃𝐶𝑁𝐻3)

𝑑𝑡
= −

𝜕(𝑞 𝐶𝑁𝐻3)

𝜕𝑧
+ 𝑅𝑜𝑥 + 𝐹𝑁𝑂3                                         [3.17] 

𝜕(𝜃𝐶𝑁𝐻4)

𝑑𝑡
= −

𝜕(𝑞 𝐶𝑁𝐻4)

𝜕𝑧
− 𝑅𝑛𝑖𝑡 + 𝐹𝑁𝐻4                                        [3.18] 

 

where CNH3 [mg/L] is ammonia concentration; CNH4 [mg/L] ammonium concentration. CNH3 has 

initial conditions CNH3 (t=0, z) = 0 and boundary conditions FNH3 (t, z>0) = - Ez Acell CNH3 ;  CNH4 

has initial conditions CNH4 (t=0, z) = 0.5 Nmin (t=0) Acell /(Acell dZ ) Fraccz, and boundary 
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conditions FNH4 (t, z=0) = 0.5 FCASA
Ndep Acell;  FNH4 (t, z>0) =0.5 (FCASA

Nfix + FCASA
Nnet + FCASA

Nloss) 

Acell Fraccz - Ez Acell CNH4 ; FNH4 (t, z=Depthbio) = - q(z=Depthbio) Acell CNH4(z=Depthbio). 

The third group of partial differential equations (Equations 3.19, 3.20 and 3.21) represent 

the inorganic carbon species (carbon dioxide, bicarbonate and carbonic acid). The equations below 

describe the transport and the oxidation effect on carbon sub products:  

 

𝜕(𝜃𝐶𝐶𝑂2)

𝑑𝑡
= −

𝜕(𝑞 𝐶𝐶𝑂2)

𝜕𝑧
+ 𝛾 𝑅𝑜𝑥 + 𝐹𝐶𝑂2                                         [3.19] 

𝜕(𝜃𝐶𝐻𝐶𝑂3)

𝑑𝑡
= −

𝜕(𝑞 𝐶𝐻𝐶03)

𝜕𝑧
+ 𝐹𝐻𝐶𝑂3                                             [3.20] 

𝜕(𝜃𝐶𝐶𝑂3)

𝑑𝑡
= −

𝜕(𝑞 𝐶𝐶03)

𝜕𝑧
+ 𝐹𝐶𝑂3                                                 [3.21] 

 

where CCO2 [mg/L] is carbon dioxide concentration; CHCO3 [mg/L] bicarbonate concentration; CCO3 

[mg/L] acidic carbon concentration; FCO2 [mg/L/d] source of carbon dioxide; FHCO3 [mg/L/d] 

source of bicarbonate; FCO3 [mg/L/d] source of acidic carbon; and  stochiometric relation between 

nitrates and carbon dioxide. These equations have the  initial conditions, CCO2 (t=0, z) = CHCO3 

(t=0, z) = CCO3 (t=0, z) = 0; and  boundary conditions FCO2 (t, z>0) = - Ez Acell CCO2 ;  FHCO3 (t, z>0) 

= - Ez Acell CHCO3 ;  and FCO3 (t, z>0) = - Ez Acell CCO3. 

The final part of this system of equations (Equations 3.22, 3.23, 3.24, 3.25 and 3.26) is 

intended to show the effect of the pH (produced by the pyrite oxidation and metals chemical 

equilibrium as explained in subsection 3.2.4) on the inorganic carbon and nitrogen species 

chemical equilibrium. Mass action equations (Equations 3.22, 3.23, 3.24) and total balance of 

species equations (Equations 3.25 and 3.26) are used at this portion of the component and are 

shown below, 
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[𝐶𝑁𝐻4] −
[𝐶𝑁𝐻3][𝐻+]

𝐾𝑁𝐻4
= 0                                                         [3.22] 

 [𝐶𝐻𝐶𝑂3] −
[𝐶𝐶𝑂3][𝐻+]

𝐾𝐻𝐶𝑂3
= 0                                                         [3.23] 

 [𝐶𝐶𝑂2] −
[𝐶𝐻𝐶𝑂3][𝐻+]

𝐾𝐶𝑂2
= 0                                                        [3.24] 

[𝐶𝑇𝑁] = [𝐶𝑁𝐻3] + [𝐶𝑁𝐻4]                                                        [3.25] 

[𝐶𝑇𝐶] = [𝐶𝐶𝑂2] + [𝐶𝐻𝐶𝑂3] + [𝐶𝐶𝑂3]                                              [3.26] 

 

where CTC [mg/L] is total carbon mass concentration; CTN [mg/L] total nitrogen mass 

concentration; KNH4 [mg/L] ammonium equilibrium constant. KHCO3 [mg/L] bicarbonate 

equilibrium constant; and KCO2 [mg/L] carbon dioxide equilibrium constant. 

In summary, this component of the entire model constrains the computation of the second 

component (the carbon and nitrogen biogeochemical cycles component) via the microbial soil 

carbon pool and mineral nitrogen. This interaction includes the input flux of carbon soil from the 

carbon-nitrogen cycles model and the deposition-fixation-mineralization input flux of mineral 

carbon, which also form the second component. Finally, nitrification and organic matter oxidation 

is computed to be transferred to the pyrite oxidation process.       

3.2.4  Pyrite Oxidation and Transport Metals Processes 

This fourth and last component of the whole model is devoted describing pyrite oxidation 

(as the main chemical reaction part of Acid Mine Drainage AMD) alongside transport of metals 

and the chemical equilibrium as formulated in Gerke et al. (1998), Wunderly et al. (1996) and Xu 

(2013). In this context, the oxidation of pyrite (sulphide mineral) and its sub products can be 
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described using the next chemical equations, where Equation 3.28 summarizes the two step 

reaction equations Equation 3.27 and Equation 3.28 as follows, 

 

FeS2 + H2O + 7/2 O2  →  Fe2+ + 2SO2-
4 + 2H+                               [3.27] 

Fe2+ + 1/4 O2 + H+  →  Fe3+ + 1/2 H2O                                     [3.28] 

FeS2 + 1/2 H2O + 15/4 O2  →  Fe3+ + 2SO2-
4 + 2H+                          [3.29] 

 

The process of oxidation of pyrite, i.e. the formation of Ferric sub products, Sulfate ions 

and hydrogen ions, can be explained by the depletion of dissolved oxygen in the soil matrix (the 

coal refuse tailings) and the internal oxygen diffusion into the quasi-spherical particles of pyrite 

(Wunderly et al. 1996; Xu 2013). As the oxygen can get into the pyrite particles, an oxidized coat 

is formed around the unreacted inner core of the particle. Therefore, a reduction of the inner core 

particle is expected as the oxidation progress. Based on this description, Xu (2013) developed the 

equations for pyrite oxidation using a partial differential equation (Equation 3.30) for the dissolved 

oxygen and an ordinary differential equation (Equation 3.31) for the shrinking core of the 

unreacted particle through. We added some terms to include interactions with biogeochemical 

processes.  The equations for the pyrite process are shown below, 

 

𝜕(𝜃𝑎 [𝑂2])

𝜕𝑡
=

𝜕

𝜕𝑧
[𝜃𝑎𝐷𝑎  

𝜕[𝑂2]

𝜕𝑧
] − 𝐷𝑤

3 (1−𝜃)

𝑅2 [
𝑟𝑐

𝑅−𝑟𝑐
]

[𝑂2]

𝐻
− 𝑅𝑜𝑥                       [3.30] 

𝑑𝑟𝑐

𝑑𝑡
= −𝐷𝑤

 (1−𝜃)

𝜀 𝜌𝑠

𝑅

𝑟𝑐 (𝑅−𝑟𝑐)

[𝑂2]

𝐻
                                                    [3.31] 

 

where [O2] [mg/L] is dissolved oxygen concentration; a [m
3/m3] void space ratio;  [m3/m3] soil 

moisture ratio; Da [m/s] oxygen dispersion in gas phase; Dw [m/s] oxygen dispersion in liquid 
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phase into the pyrite particle; rc [m] shrinking core particle radius; R [m] initial pyrite particle 

radius; H [-] Henry equilibrium constant;  chemical proportion; and s [Kg/m3] soil density. 

 

Once the dissolved oxygen and the equivalent radius of the shrinking core are computed, 

it is possible to quantify the formation of sulfate ions, the ferric ions and the Hydrogen ion as 

follows: 

 

Δ𝑆𝑂4 =
𝜌𝑠]𝑚 ((𝑟𝑐]𝑚

𝑡+Δ𝑡)
3
−(𝑟𝑐]𝑚

𝑡 )
3
)

(𝑅]𝑚)3
                                                [3.32] 

Δ𝐹𝑒 =
𝑊𝐹𝑒 ΔSO4 

2.0 𝑊𝑠
                                                              [3.33] 

Δ𝐻𝑝𝑦𝑟𝑜𝑥
+ = 2.0 

ΔFe 

 𝑊𝐹𝑒
 𝑟𝑎𝑡𝑖𝑜 +

ΔFe 

 𝑊𝐹𝑒
 (1 − 𝑟𝑎𝑡𝑖𝑜)                             [3.34] 

𝐸𝑞[[𝑆𝑂4], [𝐹𝑒], [𝐶𝑎], [𝑁𝑎], [𝑀𝑔], [𝐾], [𝑆𝑖], [𝑃], [𝐴𝑙], [𝐶𝑙], [𝑀𝑛], [𝐻+]] = 0         [3.35] 

 

where SO4 [mg/L/d] is sulfate production by pyrite oxidation in a time step; Fe [mg/L/d] ferric 

ions production by pyrite oxidation in a time step; H+
pyrox [mg/L/d] hydrogen ions production by 

pyrite oxidation in a time step; WFe [gr/mol] Ferric ion molecular weight; WS [gr/mol] Sulfate ion 

molecular weight. [SO4] [mg/L] sulfate ion concentration; [Fe] [mg/L] ferric ion concentration; 

[Ca] [mg/L] Calcium concentration; [Na] [mg/L] Sodium concentration; [Mg] [mg/L] Magnesium 

ion concentration; [K] [mg/L] Potassium concentration; [Si] [mg/L] Silica ion concentration; [P] 

[mg/L] Phosphorus concentration; [Al] [mg/L] Aluminum concentration; [Cl] Chlorine 

concentration; [Cl] [mg/L] Manganese concentration; and [H+] [mg/L] Hydrogen ion 

concentration. 
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After the formation of Hydrogen ions, sulfates and ferric ions, the other metals are 

transported vertically along the unsaturated soil matrix according to the next partial differential 

equations of transport used in Xu (2013): 

 

𝜕(θ [𝐶𝑖])

𝜕𝑡
+

 𝜕𝜌𝑠

𝜕𝑡
=

𝜕

𝜕𝑧
[𝜃 𝐷𝑤  

𝜕[𝐶𝑖]

𝜕𝑧
] −

 𝜕𝑞[𝐶𝑖]

𝜕𝑧
− 𝑆𝑖                                    [3.36] 

𝑆𝐻 =
𝑑𝐻𝑝𝑦𝑟𝑜𝑥

+

𝑑𝑡
+

𝑑𝐻𝑛𝑖𝑡
+

𝑑𝑡
                                                            [3.37] 

𝑆𝑖 = −𝐸𝑧 𝐶𝑖                                                                  [3.38] 

 

where [Ci] [mg/L] is solute concentration i;  [m3/m3] soil moisture ratio; Dw [m/s] dispersion 

coefficient in liquid phase within soil matrix; SH [mg/L/d] source of hydrogen ions in pyrite 

oxidation time step – daily; Si [mg/L/d] source-sink of solute i concentration in pyrite oxidation 

time step – daily; Ez [m/s] plant evapotranspiration distributed in the root depth; H [-] Henry 

equilibrium constant;  chemical proportion;  s [Kg/m3] soil density; q vertical unsaturated 

discharge; H+
pyrox and H+

nit hydrogen ions production over time from pyrite oxidation and 

nitrification,  respectively. 

Finally, we incorporate explicit modeling interactions between pyrite oxidation processes 

and the biogeochemical processes to quantify some of the effect of vegetation as a passive 

remediation to the AMD process within coal refuse piles. In Equation 3.30, we added the organic 

matter oxidation into the original pyrite oxidation equation (Xu 2013; Xu et al. 2020) as the explicit 

sink term Rox. Moreover, the hydrogen ions production by nitrification is added to pyrite hydrogen 

ions production in the source term of transport in Equation 3.37 and the metals uptake is also 

computed using daily evapotranspiration from the physiological component of the model and 



 

 122 

added to the source term of transport in Equation 3.38. The Appendix D contains the numerical 

solution of all the components of the model. 

3.3 Computational Implementations 

This section shows the main algorithm code implementations and uses of predefined codes 

for the mathematical model solution. The first part outlines the carbon assimilation-

evapotranspiration module with the optimal-constrained algorithm as explained in Section 2.3.3 in 

Chapter 2. The second portion contains the code for biochemical cycles Carnegie-Ames-Stanford-

Approach (CASA-CNP). The third discusses is the biogeochemical reactive-transport coding 

implementation model. The fourth part of this section provides information about the pyrox-

Phreeqc and transport component in the DHSVM-HTGCM. The Appendix D shows the 

mathematical formulation of the numerical solution of the complete system of equations that is 

implemented in this study using the DHSVM-HTGCM code. 

We implement most of the four parts of the mathematical model using DHSVM-HTGCM 

(Plaza 2018; Xu 2013) as the basic platform code. The original DHSVM model is a computer code 

for computing hydrology in a spatially distributed watershed (Wigmosta et al. 2002), and it is used 

in our study to compute the soil moisture dynamics. An improvement to the DHSVM model was 

developed by Xu (2013) to incorporate pyrite oxidation, transport and chemical equilibrium of 

pollutant metals, and the effect of soil heat into the reactions. In our improvement of the original 

DHSVM-HTCGM model (Xu et al. 2019; Xu 2013), we include basic plant physiological, 

biochemical cycles and soil biogeochemical processes tightly linked to AMD processes. These 

added processes required modifications in the evapotranspiration module, in the 
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massEnergybalance module, in the unsaturatedflow module and in the general requirements on 

the main part. 

Finally, we present the general workflow scheme of coding interactions for the entire 

system developed in a single column 1D computation. 

3.3.1  Carbon Assimilation-Evapotranspiration Module in DHSVM-HTGCM 

The implementation of the optimal-empirical approach formulation derived in Chapter 2 

within DHSVM-HTGCM is carried out with some input-output interactions added to the pyrox-

Phreeqc code. Specifically, the original evapotranspiration module is modified including the 

algorithm explained in Section 2.3.3. The module modification produces as main outputs: a) Gross 

Primary Production GPP to be used in the carbon biochemical cycle in the code component CASA-

CN in the massEnergybalance module; and b) computation of daily and distributed 

evapotranspiration to compute the solute plant uptake for the Pyrox-Phreeqc-Transport model in 

the initial part of the unsaturatedflow module. The first output GPP is the main input in the code 

development of the CASA-CN model. The evapotranspiration output is the key result for the soil 

moisture, transport and plant uptake computations moving forward within the unsaturatedflow 

module. 
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Figure 39 Schematic workflow of computational implementation of carbon assimilation-evapotranspiration 

module using the optimal-empirical algorithm within the DHSVM-HTGCM model interacting with the 

unsaturated flow computation part (unsaturatedFlow module) and carbon biochemical cycle computation 

module (CASA-CN) Section 3.3.2. 

3.3.2  CASA-CN Model implementation within DHSVM-HTGCM 

We implement the CASA-CN code in a comprehensive manner to compute the 

biochemical carbon and nitrogen cycling within the massenergybalance module in DHSVM-

HTGCM. We follow the complete equations proposed in Wang et al. (2010) with the following 

interactions to the others parts of the DHSVM-HTGCM code: a) GPP is computed by the 

evapotranspiration module with the optimal constrained algorithm is used as main input and b) 

CASA-CN variables carbon soil microbial pool and mineral nitrogen pool are taken from the 

biogeochemical reactive-transport computation as an input each time-step. The parameters 

defining the CASA-CN pools behavior are taken from the DHSVM-HTGCM model as soil 

temperature and soil moisture. 
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Figure 40 Schematic workflow of computational implementation of biochemical cycles processes in the 

CASA-CNP model (Wang, 2010) within the DHSVM-HTGCM model interacting with the carbon 

assimilation-evapotranspiration module Section 3.3.1, unsaturated flow computation part (unsaturatedFlow 

module) and biogeochemical inorganic transport model, Section 3.3.3. 

3.3.3  Biogeochemical Transport-Reaction Module 

The biogeochemical reactive transport module, one the special features originally 

developed in this dissertation, is built inside the unsaturatedflow module. The general dynamic 

relationships between soil organic matter, nitrates, ammonia species and inorganic carbon species 

are computed using a numerical scheme explained in Appendix C. There are three main groups of 

inputs for the operation of this code: a) The soil hydrology conditions, soil moisture, vertical 
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discharge, and the distributed plant evapotranspiration as computed from the evapotranspiration 

module; b) the carbon soil and mineral nitrogen fluxes from CASA-CN as external distributed 

sources in the partial differential equations for organic matter and nitrogen species; and c) the pH 

and the Oxygen concentration from the pyrox computation. Additionally, the code delivers the 

following computations to other modules within DHSVM-HTGCM: a) carbon soil microbial pool 

and total mineral nitrogen as the summation of nitrates and ammonium as a replacement of the soil 

carbon and mineral nitrogen originally computed in CASA-CN. b) the rate of plant uptake for 

carbon and nitrogen species to be used in CASA-CN; c) the nitrogen leaching rate also to be used 

in CASA-CN; d) the rate of Hydrogen Ion production produced by the nitrification process into 

the pyrite oxidation; and e) the rate of organic matter oxidation also affecting the pyrite oxidation 

process. 
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Figure 41  Schematic workflow of computational implementation of biogeochemical inorganic transport 

model within the DHSVM-HTGCM model interacting with carbon-nitrogen cycles processes (CASA-CN) 

model, Section 3.3.2, and pyrox module, Section 3.3.4. 
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3.3.4  Pyrox Module and Phreeqc Model (iPhreeqc version) 

The code for the pyrite oxidation and transport processes is built into the unsaturatedflow 

module and includes three other submodule codes: the oxidation module, the soiltransport module 

and Call_prheeqc module. We initialize and coordinate interaction variables at the beginning of 

the module using an estimation of biogeochemical nitrification, oxidation and plant uptake before 

inputting into the oxidation module and the soiltransport module. 

 

Figure 42 Schematic workflow of computational implementation of pyrite oxidation and metals transport 

model within the DHSVM-HTGCM (Xu, 2013) model interacting with plant physiology processes module 

Section 3.3.1, and biogeochemical transport model, Section 3.3.3.  
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3.3.5  Complete Model Framework Workflow 

 

Figure 43  Complete schematic workflow of computational implementation of inclusion of vegetation as 

bioremediation into DHSVM-HTGCM (Xu 2013) model. The boxes show the general module structures of 

DHSVM-HTGCM. The blue boxes are the main modifications developed in this study. The arrows represent 

the flow of variables and data inside the general computational development. 

 

We can explain the sequence of information for the computation as follows. First the 

DHSVM-HTGCM initializes all the variables in the initmodelstate module. The carbon 
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assimilation and evapotranspiration rates are computed in the evapotranspiration module. These 

rates are used to computed the GPP to be transferred to CASA-CN in the massenergybalance 

module and to be transferred into the unsaturatedflow module, which will be used by the pyrox-

Phreeqc-transport code. The biogeochemical variables are computed inside the unsaturatedflow 

module and in the biogeotransportF module to be passed to CASA-CN. At the end of the 

unsaturatedflow module, the chemical equilibrium is computed for the biogeochemical solutes and 

for the metals by the Call_prheeqc module. At this stage, the computations are updated for the 

time step and the cycle is repeated again. 

3.4 Qualitative Mathematical Analysis of the Dynamics of the Model 

As done in Section 2.4 in Chapter 2.0, we can make an approximation to the behavior of 

the solution of the model by performing a graphical and qualitative analysis of the main equations 

(Strogatz S H 1995). The interactions among the processes modeled can be visualized in the same 

manner using graphical representation of the equations (Strogatz S H 1995). In this section, we 

extract the relevant portions from the equations that explains the dynamics of each process to build 

simple equations and their graphical representations. By examining these simple equations and 

their dynamics using portrait curves we can address the main interactions between biogeochemical 

process and pyrite oxidation.  

We present an analysis for three groups of processes: a) the dynamics of plant growth using 

leaf carbon and leaf nitrogen pools; b) the dynamics of the interaction between soil organic matter 

oxidation and pyrite oxidation; c) the dynamics of pyrite oxidation and interactions with 

biogeochemical processes.   
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3.4.1  Dynamics of Plant Growth   

The dynamics of plant growth can be represented by Equations 3.10 for plant carbon pools 

and by Equation 3.11 for nitrogen pools. We can focus our analysis on the leaf carbon and nitrogen 

pools equations because they represent the core of the vegetation growth and because the main 

interactions with pyrite oxidation depends on leaf vegetation growth according to Plaza et al. 

(2018). Based on Equation 3.10 and 3.11, we can represent the dynamics of the leaf carbon and 

leaf nitrogen jointly with GPP as the main input for carbon allocation. This dynamical system 

helps to represent the effects of the carbon pool on the nitrogen pool via the LAI through the 

mineral nitrogen plant uptake, which is determined by the evapotranspiration.  

Using Equation 3.10 with i =Leaf for carbon leaf pool and Equation 3.11 with i =Leaf for 

nitrogen leaf pool we can build the phase portrait of both variables [CPlant x NPlant], as shown in 

Figure 44. The steady curve for leaf nitrogen pool follows the evapotranspiration and LAI 

relationship defined by the Penman-Monteith equation. Hence, the carbon leaf pool has an effect 

on the nitrogen leaf pool dynamics through the evapotranspiration and LAI. However, Equation 

3.10 implies that the carbon leaf pool depends only on GPP. Based on the intersection of the 

nitrogen and carbon steady curves, we found four regions on the dynamics plane [CPlant x NPlant]: 

a) region A, which has positive rates of growth in the carbon leaf pool but negative rates for 

nitrogen pool with flows toward the steady point; b) region B, which shows negative rates for both 

variables, also with flows to the steady point; c) region C, the only region with positive rates for 

carbon and nitrogen pools; and d) region D, with positive nitrogen pool rates and negative carbon 

pool rates. The flows in the regions configure a fixed point (attractor) at the intersection of the 

nitrogen and carbon steady curves. The phase portrait has as parameters mineral nitrogen Nmin for 

nutrient plant uptake and gross primary production GPP, which together change over time and 
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move the fixed point. The moving fixed point represents the non-equilibrium condition for 

vegetation growth.  

The remaining consideration for plant leaf dynamics is the two effects of vegetation on 

pyrite oxidation: a) the solute plant uptake and soil moisture changes produce lower values of 

solute concentrations. Both processes are determined by carbon leaf pool in terms of Leaf Area 

Index as a factor of evapotranspiration and b) soil organic matter, through the ulterior fluxes of 

litter and soil organic pools, that reduces the dissolved oxygen availability slowing the pyrite 

oxidation. The next subsection, 3.4.2, illustrates the dynamics of the interaction between organic 

matter and pyrite oxidation. 

 

 

Figure 44 Phase portrait of carbon CPlant and nitrogen NPlant leaf pools dynamics. The green line and red 

brown curve correspond their respective to steady-dynamics points. The arrows represent the direction of 

flows of the variables dynamics. Point Cp-Steady,Np-Steady is the equilibrium point, which is an attractor.  
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3.4.2  Dynamics of Organic Matter and Dissolved Oxygen 

The simplified version of the equations for the interaction between organic matter 

oxidation and the dissolved oxygen resulting from the pyrite process can be established as follows: 

 

𝑑𝑂𝑀

𝑑𝑡
= 𝑂𝑀𝑒𝑥𝑡 − 𝑞 𝑂𝑀 − 𝑟𝑜𝑥 𝑂𝑀 𝑓(𝑂2) − 𝐸(𝐶𝑝, 𝑔𝑠)𝑂𝑀                              [3.39] 

𝑑𝑂2

𝑑𝑡
= 𝐷[𝑂2

𝑒𝑥𝑡 − 𝑂2] − 𝐷𝑤
3 (1−𝜃)

𝑅2 [
𝑟𝑐

𝑅−𝑟𝑐
]

𝑂2

𝐻
− 𝑟𝑜𝑥 𝑂𝑀 𝑓(𝑂2)                           [3.40] 

 

This organic matter equation formulation (Equation 3.39) is a simplification of the partial 

differential equation (Equation 3.14) into an ordinary differential equation. In Equation 3.39, the 

transport component is represented by the q OM term, the boundary conditions by an external 

source OMext, the organic matter oxidation by a linear reaction term rox OM f(O2), and the plant 

uptake organic matter by the effect of root flux transpiration in the E(Cp, gs) OM term. 

The first term OMext in Equation 3.39 stands for the external source of organic matter, 

which depends on the ulterior dynamics of the carbon plant, litter and carbon soil pools of 

Equations 3.5, 3.8 and 3.10 in the biochemical cycles’ formulations. The second term in Equation 

3.39 describes the transport process, the third term is the oxidation of organic matter and the final 

term is the organic matter plant uptake, which has the plant evapotranspiration computed in the 

first component based on the physiological variables carbon assimilation An, and stomatal 

conductance gs coupled with Carbon Leaf Plant Pool Cp through the Leaf Area Index LAI. Equation 

3.39 shows that the only source of organic matter is the vegetation growth development; the other 

components reduce the availability of organic matter. 
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Equation 3.40 is also an adaptation of the partial differential equation (Equation 3.30) into 

an ordinary differential equation with an explicit diffusion term D [Oext – O2] and the sink term for 

organic matter oxidation. 

The interaction between organic matter and oxygen dynamics can be analyzed using the 

curves derived by Equations 3.39 and 3.40 when the derivatives are zero. Then, the curve for 

organic matter steady state is given by the following equation, 

 

𝑂𝑀 =
𝑂𝑀𝑒𝑥𝑡

𝑞 𝑂𝑀+𝑟𝑜𝑥 𝑂𝑀 𝑓(𝑂2)+𝐸(𝐶𝑝,𝑔𝑠)𝑂𝑀
                                                [3.41] 

 

The oxygen steady state curve can be shown as follows, 

 

𝑂𝑀 =
𝐷 𝑂2

𝑒𝑥𝑡

𝑟𝑜𝑥 𝑓(𝑂2)
−

[ 𝐷+𝐷𝑤 3 (1−𝜃)/𝑅(𝑟𝑐/(𝑅−𝑟𝑐))/𝐻 ]𝑂2

𝑟𝑜𝑥 𝑓(𝑂2)
                                   [3.42] 

 

The phase portrait in Figure 45 of both curves determine the non-linear dynamics of the 

organic matter and the dissolved oxygen using main transport, pyrite oxidation, organic matter 

oxidation and organic matter plant uptake. In the plane the intersection of the steady state curves 

generates four regions: a) region A, which has a positive derivative for oxygen and negative rates 

for organic matter pool with flows toward the steady point; b) region B, which shows negative 

derivatives for both variables, also with flows to the steady point; c) region C, which is the only 

region with positive derivatives for both organic matter and dissolved oxygen; and d) region D, 

which has a positive derivative for organic matter and nitrogen rates and a negative one for oxygen. 

The flows in the regions configure a fixed point (attractor) at the intersection of the organic matter 

and oxygen steady state curves. 
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Figure 45 Phase portrait of Organic Matter pool OM and Dissolved Oxygen pool O2 dynamics as a 

representation of Equation 3.39 and Equation 3.40. Green and blue curves correspond to their respective 

steady-dynamics points. Arrows represent the direction of flows of the variables’ dynamics. Point OM-

Steady,O2-Steady is the equilibrium point, which is an attractor.  

 

According to the coupled dynamics of organic matter and oxygen, the steady oxygen is 

reduced by the organic matter oxidation lowering the rate of shrinking of the core, which delays 

the pyrite process cessation, thereby increasing the particle radius over time and ultimately 

increasing the production of sulphates, ferric ions and hydrogen ions. 

The next subsection presents details regarding pyrite oxidation dynamics and interactions 

with direct biogeochemical processes. 
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3.4.3  Dynamics of Pyrite Oxidation and Interactions with Biogeochemical Processes 

The first pyrite process dynamics to explore is sulphate ions SO4 production determined 

by the shrinking core radius rc. SO4 behavior is primary determined by Equation 3.32, which is 

formulated in the explicit time version using a third power exponent. If we try an expansion of the 

quadratic exponent, we can get an approximation for a discrete version of Equation 3.32 as follows,  

 

𝑑𝑆𝑂4

𝑑𝑡
=

𝜌𝑠

𝑅
[ 𝐴 − 𝐵 𝑟𝑐 + 𝐶 𝑟𝑐

2 ]                                                     [3.43] 

 

The time integration of Equation 3.43 can be approximated assuming a constant rate of 

declining of the shrinking core radius rc=(R-kt). The result of the time integration can then be 

reported in the following form: 

 

𝑆𝑂𝑠𝑡𝑒𝑎𝑑𝑦 − 𝑆𝑂𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =
𝜌𝑠

𝑅
𝐶 ∫ [𝑅 − 𝑘𝑡2 ]𝑑𝑡

𝑇

𝑡𝑜
                                 [3.44] 

 

This type of integral is easy to solve in terms of time. In our case, more important than the 

final solution is the general shape of the SO4 curves in a phase portrait shown in Figure 46, with 

rc as crossed variable. The main deduction derived from Equation 3.44 is that SO4, Fe and H+ 

production is high at the beginning of the pyrite oxidation process and will decline monotonically 

according to a quadratic function. The second important inference from Figure 46 and Equation 

3.44 is that the evolution of SO4 is strongly dependent on the initial condition as it increases the 

steady state as increases and vice versa. This simple approximation to only a pyrite formation 

equation, excluding transport, organic matter oxidation and plant uptake, helps to illustrate pyrite 
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oxidation SO4 production and is consistent with the concept of potential system dynamics 

described by Bahrami and Doulati Ardejani (2016). 

 

 

Figure 46 Phase portrait of Sulfate SO4 ions production driven by the Pyrite Particle Radius rc. The violet 

curve in plane [SO4 x rc] shows a transient trajectory of the variables. The violet curve in plane [dSO4/dt x rc] 

represents the production rate of SO4 and H+ ions depending on rc.  

 

The pyrite oxidation process as indicated in the system of Equations 3.30 and 3.31, can be 

explored in a simple manner using Equation 3.40 for oxygen and Equation 3.31 for rc. Similarly, 

for organic matter oxidation analysis, the steady state curve for oxygen can be described as follows,  
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𝑟𝑐 = 𝑅
[ 𝐷 𝑂2

𝑒𝑥𝑡+𝐷 𝑂2−𝑟𝑜𝑥 𝑓(𝑂2)𝑂𝑀) ]

𝐷𝑤
∗  𝑂2+[ 𝐷 𝑂2

𝑒𝑥𝑡+𝐷 𝑂2−𝑟𝑜𝑥 𝑓(𝑂2)𝑂𝑀) ]
                                           [3.45] 

 

Specifically, the steady state condition for rc is only the first horizontal axis because the 

derivative is zero at rc = 0. This explains why the pyrite process is slow and only ceases at the total 

consumption of the entire coal particle, or rc = 0. 

The phase portrait in Figure 47 shows two regions of dynamics: region A, where the oxygen 

tends to increase toward the fixed point; and region B, where the oxygen decreases to follow the 

steady state curve. In both regions, the shrinking core radius declines to ultimately vanish. The 

pyrite oxidation dynamics described by Figure 47, shows that the rate at which the shrinking core 

decreases is enlarge by oxygen availability. In other words, contrary to intuition about the effect 

of oxygen in the process, the more oxygen that is present, the faster oxidation is carried out, and 

the shrinking core is lowered producing less by-products or finishing the pyrite oxidation earlier. 
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Figure 47 Phase portraits of pyrite oxidation dynamics with dissolved oxygen O2 and pyrite particle radius rc 

as described by Equation 3.40 and Equation 3.47. Blue and red curves correspond to respective steady-

dynamics points. Arrows represent the direction of flows of the variables' dynamics. The point at rc=0 and 

O2= O2 Steady, is the equilibrium point which is an attractor. 

 

To complete the pyrite oxidation analysis, we can use Equation 3.43 to incorporate the 

sulfate production component plus the dispersion, transport and plant uptake effect on SO4 

dynamics. The simplified ordinary differential system of equations for the analysis can be 

represented as follows, 

 

𝑑𝑆𝑂4

𝑑𝑡
= 𝐷𝑤[𝑆𝑂4 𝑒𝑥𝑡 − 𝑆𝑂4 ] +

𝜌𝑠

𝑅
[𝐶 𝑟𝑐

2 ] − 𝑞𝑆𝑂4 − 𝐸(𝐶𝑝, 𝑔𝑠) 𝑆𝑂4                [3.46] 

𝑑𝑟𝑐

𝑑𝑡
= −𝜥 

𝑅

𝑟𝑐(𝑅−𝑟𝑐)
                                                            [3.47] 
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Equation 3.46 is a composite of the dynamics of SO4 using elements of diffusion through 

the Dw [SO4 ext – SO4] term, the pyrite oxidation SO4 production from Equation 3.43, and solute 

plant uptake using root transpiration as represented by the E(Cp, gs) SO4 term. Equation 3.47 is a 

version of Equation 3.31 where the K term condenses the parameters independent of the rc variable. 

The phase portrait in Figure 48 shows the dynamics of SO4 without the biogeochemical 

interaction in plot a) and with biogeochemical interaction in plot b). In both planes there are two 

regions: a) region A, with decreasing sulfate and b) region B, with increasing SO4. Both regions 

have flows toward the steady point determined by an external source of SO4, the dispersion 

transport coefficient Dw and the vertical discharge q( ) directly dependent on soil moisture   The 

effect of biogeochemical interaction implies a decrease in the long-term steady state point from 

Sext Dw/(Dw+ q( )) to Sext Dw/(Dw + q(E)+E). Therefore, the system dynamics analysis 

demonstrates that solute plant uptakes effectively reduce pollution concentrations. 

The final equations to explore are those related to hydrogen ions H+. These are similar to 

Equation 3.46 but with inclusion of hydrogen ion production through nitrification. The ordinary 

differential equation for H+ in this case is presented below, 

 

𝑑𝐻

𝑑𝑡
= 𝐷𝑤[𝐻𝑒𝑥𝑡

+ − 𝐻+ ] + 𝐾𝐻+
𝜌𝑠

𝑅
[𝐶 𝑟𝑐

2 ] − 𝑞𝐻+                                  [3.48] 
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Figure 48 Phase portraits of Sulfates SO4 with Pyrite Particle Radius rc as dynamics using the unsaturated 

soil transport described by Equation 3.46 and Equation 3.47 without a) and with b) biogeochemical 

interactions. Violet and red curves correspond to respective steady-dynamics points. Arrows represent the 

direction of flows of the variables’ dynamics. The point at rc=0 and SO4= SO4 Steady, is the equilibrium point, 

which is an attractor. 



 

 142 

 

Figure 49 Phase portraits of Hydrogen Ions H+ with Pyrite Particle Radius rc as dynamics using the 

unsaturated soil transport described by Equation 3.47 and Equation 3.48 without a) and with b) 

biogeochemical interactions. Blue and red curves correspond to respective steady-dynamics points. Arrows 

represent the direction of flows of the variables’ dynamics. The point at rc=0 and H+ = H+
 Steady, is the 

equilibrium point, which is also an attractor. 
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The phase portrait of the H+ equation in Figure 49 shows similar behavior to those for SO4 

(or generic solutes under AMD). The main difference between the Hydrogen ions and sulfates is 

the effect of biogeochemical processes on the long-term steady point. An increase in Hydrogen 

ion concentration is expected in the long term (implying low pH), which can be explained by the 

effect of the Hydrogen ions produced by nitrification. 

In summary, we can see by the qualitative system dynamic analysis that the interaction 

between biogeochemical processes and pyrite oxidation are: a) the effect of the vertical discharge 

and soil moisture on the accumulation of metals produced by acid mine drainage. b) The effect of 

organic matter oxidation on the oxygen concentration of stabilization by pyrite oxidation. c) The 

effect of the nitrification on the increase of hydrogen ion production during the pyrite oxidation 

process. and d) The effect of metals solute plant uptake on steady concentrations of sulfates and 

pH in the long term. 

3.5 Model Calibrations 

This section shows the results of the calibration of the model under two conditions: a) 

laboratory experiments of the pyrite oxidation process using grass as phytoremediation under 

controlled conditions columns developed by Plaza (2018) and Plaza et al. (2018). b) using the 

Mather site observed data in the period June 2009 to December 2014. Table 2 shows the main 

features and conditions for the components of the model for the four calibration situations. Table 

3 shows the change in parameters used for laboratory data and field data. 
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Table 2   Modeling setup for calibration of lab experiments and Mather site observations  

Site-Lab Experiment  Model Configuration Initial Conditions Forcing Data 
Simulation 

Time 

Lab Column Experiment A1  

(90%CR+10%AC) 

Amended Plot 2 Mix  

No-Vegetation 

[Plazas, 2018] 

6-Soil Layers 

Amended Plot 2 soil 

properties 

Total Depth: 0.15 m 

Soil Moisture o: 0.26 Observed 

SO4: 2800 mg/L 

pH: 4.2 

Other metals: According to experiment 

Lab internal Data 

Radiation: 150 W/m2 

Temperature: 20 oC 

Humidity: 70 % 

Precipitation: 100 

mL/week 

1400 days 

Lab Column Experiment A2  

(90%CR+10%AC) 

Amended Plot 2 Mix  

Grass-Vegetation 

[Plazas, 2018] 

6-Soil Layers 

6-Root Layers 

Amended Plot 2 soil 

properties 

Total Depth: 0.15 m 

Soil Moisture o: 0.26 Observed 

SO4: 5200 mg/L 

pH: 5.5 

Other metals: According to experiment 

Lab internal Data 

Radiation: 150 W/m2 

Temperature: 20 oC 

Humidity: 70 % 

Precipitation: 100 

mL/week 

800 days 

Lab Column Experiment B1  

(90%CR+10%AC) 

Non-Amended Plot 1 Mix  

No-Vegetation 

[Plazas, 2018] 

6-Soil Layers 

Non-Amended Plot 1 soil 

properties 

Total Depth: 0.15 m 

Soil Moisture o: 0.26 Observed 

SO4: 12800 mg/L 

pH: 2.2 

Other metals: According to experiment 

Lab internal Data 

Radiation: 150 W/m2 

Temperature: 20 oC 

Humidity: 70 % 

Precipitation: 100 

mL/week 

800 days 

Mather site 

(90%CR+10%AC) 

Amended Plot 2 Layer 

Grass Vegetation 

[Plazas, 2018] [Xu, 2013] 

6-Soil Layers 

3 Soil Layers-Amended 

Plot 2 (61 cm) 

3 Soil Layers Non-

Amended Plot 1 (>61 cm) 

Total Depth: 10.3 m 

Root Depth: 1 m 

Soil Moisture o: 0.22 Observed 

SO4: 2000 mg/L (Amended) 8000 mg/L (Non-

amended) 

Fe: 20 mg/L (Amended) 10000 mg/L (Non-

amended) 

pH: 4.5 

Other metals: According to Observed data 

Jefferson Weather 

Station Data  

[Jun 2009 - Dec 2014] 

Radiation (Average): 

300 W/m2 

Temperature (Average): 

12 oC 

Humidity (Average): 90 

% 

Precipitation (Average): 

1400 mm/yr 

2000 days 

 

The next sections show the results of calibration for the two conditions describe above. 

 

Table 3 Parameters for lab experiments and Mather site calibration 
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3.5.1  Calibration of Biogeochemical-Pyrox Processes using Experimental Column Lab 

Data 

The model is first tested under controlled laboratory conditions that mimic, coal refuse 

conditions, amended conditions and bioremediation (90%CR+10%AC+Grass) conditions. Plaza 

(2018) implemented column-lab tests of disposal coal refuse in different scenarios. They measured 

the decay over time of levels of ion metals and pH after simulation of rain is passed through the 

system using a column-lab test. Figures 50, 51 and 52 present a comparison of the modeled and 

lab experimental data. 

 

 

Figure 50 Comparison between observed and simulated data for SO4 and pH at Lab Column Experiment A1 

amended 90%CR+10%AC no bioremediation. Simulation time: 1400 days. 
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Figure 51 Comparison between observed and simulated data for SO4 and pH at Lab Column Experiment A2 

amended 90%CR+10%AC with grass as bioremediation. Simulation time: 800 days. 

 

For lab column experiment A1 and A2 the implementation of solute plant uptake made 

possible the reduction of SO4 in the simulation model to replicate the lab measured data. However, 

it was necessary to adjust the dispersion coefficient and the soil vertical conductivity to establish 

higher values of steady state concentrations in A2 and control the decay shape of the SO4 

simulation curve.  
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Figure 52 Comparison between observed and simulated data for SO4 and pH at Lab Column Experiment B1 

non-amended 100%CR no bioremediation. Simulation time: 800 days. 

 

The parameters adjustments indicate that the potential of sulfate production is already 

consumed as indicated by the initial condition for the grain radius. The increase in pH values can 

be explained by the neutralization effect of the alkalinity potential on the hydrogen ions produced 

by the pyrite oxidation. In addition, the simulation shows with the high dispersion coefficients that 

the redistribution of solutes due to dispersion transport increase the final steady state of the final 

concentration on sulfates and hydrogen ions, as it was shown in the qualitative mathematical 

analysis in Section 3.4.3. 
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3.5.2  Calibration Biogeochemical-Pyrite Oxidation Processes at Mather Site 

The validation of the model using Mather site data shows good agreement with the 

observed data, especially in the non-amended layer (see Figure 53). In the amended layer, the 

underestimation of SO4 concentrations by the model might be caused by the effect of the capacity 

of acid neutralization of CaCO2 ions, which can generate bias that forces variations in the final ion 

exchange. However, the model can still partially describe the high variation in ferric ions and the 

sustained increase of pH along the five years of the observed and simulated data. One important 

feature in the simulations is the seasonal pattern determined by the plant uptake over the ferric and 

pH dynamics presented in plots c) and e) for the amended layer. This shows the capacity of the 

model to mimic the biochemical processes. 

In the non-amended bottom layers, the model can replicate with a better fit the decline of 

both sulfate and ferric ions due to the acidic neutralization of the alkaline clay mixture in part of 

the transport of the solutes and the capture some of ions by the plants. Indeed, we consider that 

even though the alkalinity effect of the mixture is greatly responsible of the elevation of pH in the 

amended zone, the plants can contribute by capturing enough solute metals to force additional 

increments on pH or at least by generating acid-base disbalances that change the bottom-layer 

conditions on the non-amended layers. 

The non-amended layers simulation results are similar to those presented in Plaza (2018), 

with decay for SO4 and Fe. The simulations of pH increase captured by our simulations are also 

similar to those in Plaza (2018), with more oscillations due to our including vegetation-

biogeochemical processes effects. The amended layer simulation results for SO4 are different from 

those in Plaza (2018) in their tendency to decrease. In the Fe simulations our simulations tend to 

capture more variations than present in Plaza (2018), which shows some steady values. While both 
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Plaza (2018)’s and ours show increases in pH in the amended layer, our results can better describe 

the changes in tendencies. 

 

 

Figure 53 Comparison between observed and simulated data for SO4, Fe and pH at amended and non-

amended layers at the Mather site as validation process of the mathematical model. Dates of simulation: Jun 

2009 to Dec 2014, equal to 2000 days. 

 



 

 150 

3.6 Simulation Analysis of Interactions 

This section is devoted to interpret the results of the main interaction between 

biogeochemical processes and AMD processes such as pyrite oxidation using the scenario 

simulations of implementation of passive remediation with grass vegetation. We focused on five 

main interactions, which are driven by the explicit formulations in equations 3.35, 3.36, and 3.37 

and by the effect of evapotranspiration on soil moisture and vertical discharge.  The five 

interactions are: a) the interaction between soil hydrology and pyrox solutes concentrations; b) the 

effect of pyrite oxidation pH on nitrogen pool; c) the effect of organic matter oxidation on the 

pyrite process; d) The effect of nitrification on the pyrox process and e) the effect of metals plant 

uptake on pyrite oxidation. The following sections illustrate in more detail each of the above 

interactions.  

3.6.1  Interactions Between Soil Hydrology and Pyrite Oxidation  

The first interaction driven by the soil hydrology over the solute concentrations levels is 

caused by the mass balance of the absolute quantity of solutes within the water content in the soil. 

As the total of mass of a solute could be constant for a certain period, the soil moisture explains 

the final concentration rise in inverse proportion to soil moisture. The effect of plant transpiration 

on the soil moisture causes significant changes in concentration levels. Figure 54 shows how the 

variation in soil moisture contributes to substantial changes in the solute concentration levels; as 

the soil moisture declines, the number of sulfate ions SO4 increases from 1500 [mg/L] to 9000 

[mg/L]. Consequently, the plant evapotranspiration interacts with the pH levels only in terms of 

mass balance, which induces changes in the overall chemical equilibrium of the other metals and 
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inorganic carbon and nitrogen species. However, the potential pollution of pyrite hydrogen, sulfate 

and Ferric ions production is only dependent on the level of the shrinking core, given by the pyrite 

grain radius. 

 

 

Figure 54 Relationship between soil moisture and sulfate concentration SO4 as product of pyrite oxidation 

under the effect of plant evapotranspiration. The points are a 10-year simulation at 61 cm of the amended 

layer with 10%AC+90%CR. 

 

The radius of the unoxidized core grain can be considered an indicator of remnant pyrite 

oxidation and it is strongly dependent on the oxygen availability within the soil matrix and its 

diffusion through the shrinking core (Plaza et al. 2018; Wunderly et al. 1996). 

Figure 55 exhibits the increase of solutes concentration as an effect of plant transpiration 

either in the amended or non-amended layers. Also, there is a variation effect, since without the 

plant evapotranspiration the oscillations over time are less than those with plant 

evapotranspiration. Plots in Figure 55 are arranged using the same axis system as in Figure 48 and 
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49 of the qualitative analysis in Section 3.4.3. The purpose of the plot arrangement is to display 

the dynamic behavior on the planes [rc x SO4] and [rc x H+]. The dynamic behavior in both plot 

planes portrays the slow process of pyrite oxidation if one considers that the shrinking core radius 

is not zero yet after 10 years, according to the simulation. Also, the plotted planes highlight the 

tendency for both SO4 and H+ to be approaching a limiting value, as indicated by the analysis in 

Section 3.4.3. 

Another important feature of the simulations emphasized in this subsection, is the 

difference in concentration levels between the amended and non-amended layers for the same soil 

column. In the amended layer with 90%CR+10%AC, the concentrations of SO4 and H+ are lower 

than those in the non-amended layers (100% CR). In general, one might think that, as the non-

amended layers receive the flux of solutes from the upper layers (in this case, the amended ones), 

the transport process between both layers supports the increase of solutes concentration in the 

bottom layers. However, the actual main reason for the difference is the level of production of 

sulfate SO4 and hydrogen H+ ions within each layer. The rate of decline of the shrinking core radius 

on the amended layers is considerably higher than in the non-amended layers. As the leftovers of 

pyrite oxidation are given by the grain radius, bigger pyrite particles imply more sulfate, ferric and 

hydrogen ions production and higher sulfate concentrations SO4 and low pH values. 
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Figure 55 Plots of pyrite grain radius with sulfate SO4 and H+ ions following the dynamical analysis phase 

portrait plots of the qualitative analysis in Section 3.4.3. The points are a 10-year simulation at 61 cm of the 

amended layer with 10%AC+90%CR and at 91 cm of the non-amended layer with 100%CR composition. 
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Figure 56 confirms the tendency of the sulfates SO4 and pH to be reduced as a result of the 

transport process, as leaching and dispersion among the soil layers.    

 

 

Figure 56 Comparison of sulfates SO4 and pH time series under the effect of plant evapotranspiration 

through the change of soil moisture levels. The simulation series represent a 10-year simulation at 61 cm of 

the amended layer with 10%AC+90%CR. 

3.6.2  Effect of pyrite oxidation induced pH on Nitrogen Pools 

As the pyrite oxidation generates hydrogen ions H+, the resulting values in pH drives the 

chemical equilibrium over all solutes within the soil matrix, including the inorganic nitrogen 

species: ammonium HH4 and ammonia NH3. This acidic environment changes the internal 

composition of mineral nitrogen as a pool that interacts with the biochemical nitrogen cycle. Low 

pH values convert ammonia NH3 into ammonium ions, NH4, and vice versa. Thus, mineral 
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nitrogen composed primarily of nitrates, NO3, change to be mostly composed of ammonium, NH4, 

after the effect of chemical equilibrium is reached.  As the mineral nitrogen increases with low pH 

values, the nutrients plant uptake enhances the nitrogen plant pools because plants are the main 

input.  

 

 

Figure 57 Comparison of annual simulated behavior of ammonia NH3 and ammonium ions NH4 through the 

effect of pH chemical equilibrium under pyrite oxidation. 

 

Figure 57 depicts how the pyrite oxidation’s dominant low pH forces the reduction of 

ammonia into ammonium ions, not only reducing the availability of total mass of inorganic 

nitrogen but also changing the annual behavior of the mineral nitrogen composed mostly of 

ammonium. 
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3.6.3  Effect of Organic Matter Oxidation on Pyrite Oxidation Process 

Under biogeochemical environment processes, the dissolved oxygen is taken by pyrite and 

by the soil organic matter. When taken by pyrite, the original oxygen availability is reduced by the 

organic matter oxidation. As pyrite oxidation is strongly dependent on oxygen diffusion, the rate 

of the shrinking core declines, leading to higher values for pyrite grain radius. In Figure 58 phase 

portrait a) shows that the dynamics of interaction between organic matter and oxygen gradually 

diminish the availability of dissolved oxygen in the soil. Phase portrait b) illustrates how lower 

oxygen amount imply higher values for pyrite radius as the declining rate lessens. 

 

 

Figure 58  Phase portraits of dynamics of interaction among organic matter, oxygen and shrinking core 

radius, following the dynamical system phase portrait plots of the qualitative analysis in Section 3.4.2 and 

Sections 3.4.3. 

 

In Figure 59, the 10-year simulation of the interaction between organic matter and pyrite 

oxidation depicts the annual variation in the total oxygen pool induced by the organic matter decay, 

which contrast with the asymptotical behavior of oxygen under only the pyrite process. Figure 59-
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a) also illustrates the tendency of lower values for oxygen with the organic matter interaction than 

without the biogeochemical interaction. Figure 59-b) and Figure 59-c) illustrate the main 

implication of higher values of the grain radius on pyrite oxidation. The effect is a slow increase 

of sulfates, ferric and hydrogen ions production over time. Hence, pyrite oxidation could continue 

more time with the potential for more acidic production in the long term. 

 

 

Figure 59 Comparison of dissolved oxygen, sulfates SO4 and pH production and pyrite grain radius time 

series under the effect of organic matter oxidation. Simulation series represent a 10-year simulation at 61 cm 

of the amended layer with 10%AC+90%CR. 
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3.6.4  Effect of Nitrification on Pyrite Oxidation Process 

The nitrification process generates hydrogen ions at a modeled rate that depends on 

ammonium and dissolved oxygen concentrations (Berlin et al. 2014; Hofmann et al. 2008); 

therefore, including biogeochemical processes implies additional hydrogen ions production in the 

soil matrix. The additional hydrogen ions can increase the acidic potential decreasing the pH.  The 

effect of nitrification on decreasing the pH has been reported by literature when nitrogen fertilizers 

have been used (Cardoso et al. 2019; Zeng et al. 2017). 

The simulation of the production of hydrogen ions only by nitrification shows that 

production is weak in comparison to that when pyrite oxidation is also present. Figure 60 illustrates 

the minor effect of nitrification on the hydrogen ions production compared with that of pyrite 

oxidation. There are few conditions where hydrogen ions concentrations are higher with 

nitrification than with pyrite oxidation.  

 

 

Figure 60 Hydrogen ions dynamic behavior under only nitrification effect. a) Plot of phase portrait of H+ ions 

and pyrite radius dynamics, b) Comparison of H+ content between condition with nitrification and without 

nitrification.  The points are a 10-year simulation at 61 cm of the amended layer with 10%AC+90%CR. 
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Similarly, Figure 61, describes the small difference in pH as a result of nitrification 

compared to that in a condition of only pyrite oxidation. The nitrification causes a moderate fall in 

pH along the year of simulation. The explanation for the small difference is the scant surplus 

production of hydrogen ions by the nitrification of each layer.  

 

 

Figure 61 Comparison of pH time series between nitrification environment and without nitrification. 

Simulation series represent a 10-year simulation at 61 cm of the amended layer with 10%AC+90%CR. 

3.6.5  Effect of Metal Plant Uptake on Pyrite Oxidation Process 

According to Plaza et al. (2018), one of the tested effects in column-lab experiments 

comparing vegetation and pyrite oxidation is the capture of metals by the plants through the root-

soil interaction. For example, Sas et al. (2001) describes how the plant uptake ions can trigger 

excretion of hydrogen ions promoting acidification in the soils. 

The interaction can be modeled with mass transfer of metal solutes using the daily 

evapotranspiration of plants, as shown in Equation 3.38. The conceptual analysis in Section 3.4.3, 

through Figure 48 and Figure 49, illustrates that solute plant uptake reduces transient and steady 

state concentration by a factor of 1/(q(E) + E). The decrease in solutes concentration given by 
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plant uptake is also moderated by the pH chemical equilibrium in a second stage. Figure 62, depicts 

the first stage of the decline of solutes concentration (SO4 in this case) by metal plant uptake. In 

particular, the reduction is intensive within the amended layer where the root zone has its major 

influence. However, Figure 62-b) presents the transport effect of abatement of concentrations as a 

result of a consequent fall of solutes in the non-amended layer, which is out of the influence of 

root plant uptake. Figure 63 highlights the effect to the annual peaks and valleys of the warmer-

colder seasons of physiological evapotranspiration of plant uptake on the solute concentrations. 

Warmer seasons imply higher values of evapotranspiration with low values of concentrations 

before pH chemical equilibrium. The peaks correspond to drops in evapotranspiration in colder 

seasons, also before pH equilibrium. The dissipation of the effect of metal plant uptake is due to 

the reduction of pyro by-products over time, as indicated by the pyrite particle radius. 

 

 

Figure 62 Phase portraits of pyrite grain radius with sulfate SO4 and H+ ions following the dynamical 

analysis phase plots of the qualitative analysis in Section 3.4.3 under metals plant uptake only effect. The 

points are a 10-year simulation at 61 cm of the amended layer with 10%AC+90%CR and at 91 cm of non-

amended layer with 100%CR composition. 
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Figure 63 Comparison of sulfates SO4 time series under the effect of only metals plant uptake before chemical 

equilibrium given by pH. Simulation series represent a 10-year simulation at 61 cm of the amended layer with 

10%AC+90%CR. 

 

In a second stage, the chemical equilibrium impacts all the solutes within the soil matrix 

layers causing a redistribution of the final concentrations of all species, especially the metals. 

Figure 64, confirms a decline in almost all concentrations of metals over the simulation time after 

the chemical equilibrium effect. However, the shape of these time series is different from those 

before the chemical equilibrium. After chemical equilibrium is reached, the annual oscillations of 

metals concentrations are more stable because there is a feedback effect between the amount of 

species available after the plant uptake and the final concentration after the chemical equilibrium. 

Figure 64-b) marks a similar behavior of simulated time series on pH and SO4 solutes, with stable 

annual oscillations and lesser values of Hydrogen ions concentrations with plant uptake than those 

without the interaction. 
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Figure 64 Comparison of sulfates SO4 and pH time series under the effect of only metals plant uptake after 

chemical equilibrium by pH. Simulation series represent a 10-year simulation at 61 cm of the amended layer 

with 10%AC+90%CR. 

 

In brief summary, we can distinguish among the five effects of the entangled interactions 

between biogeochemical processes and pyrite oxidation, the annual oscillations of solutes 

concentrations due to biophysiological evapotranspiration, nitrification and oxidation. We also, 

can recognize lower values of solutes concentration in the presence of biogeochemical processes 

mainly due to plant uptake.  

Based on the findings on this section, we can proceed to analyze the combined effects of 

passive bioremediation of vegetation on the general Acid Mine Drainage Processes in the 

following sections. 
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3.7 Simulation Scenarios of Bioremediation 

In this section, we present the simulation scenarios of passive bioremediation for two main 

types of vegetation: a) grass over the amended layer with 90% Coal Refuse (CR) and 10% Alkaline 

Clay (AC) b) tree vegetation (represented by forest vegetation species) also over the amended layer 

with 90%CR+10%AC, with a deeper root zone influence down to non-amended layer of 100%CR 

as recommended by Plaza (2018) and Xu (2013). The simulations were performed for a long term 

of 100 years for both vegetation scenarios. The five interactions described in Section 3.6 are 

combined to describe the final effect of vegetation on the acid mine drainage processes. As a 

benchmark scenario we include the simulation condition without vegetation as no bioremediation.  

3.7.1  Remediation Scenario with Grass, Alkaline Clay and Coal Refuse 

Figure 65 displays a lower SO4 concentration when grass vegetation is present passive 

bioremediation only in the realm of the amended layer as a combined result of the biogeochemical 

processes interacting with pyrite oxidation as explained in Section 3.4.3. The reduction of the main 

trigger pollutant, SO4, is directly related to pyrite particle radius through the computation of sulfate 

production. The relationship between SO4 ions production and pyrite radius is the main reason for 

reduction of SO4 concentration during the first 14-16 years (5000-6000 days). With grass 

bioremediation, organic matter oxidation promotes higher values of pyrite particle radius, making 

the reduction of SO4 under bioremediation last longer.  The reduction of SO4 concentration in the 

91 cm non-amended layer is driven also by the pyrite particle radius Figure 65-b). SO4 

concentrations in the bottom layer show an initial increase, up to a maximum value of 30000 mg/L 

around 25 years after the initiation of the pyrite oxidation processes, and a sustained and slow 
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decline over the rest of the years of the simulation. However, higher values of SO4 concentrations 

are computed with grass bioremediation in the non-amended layers (including the bottom layer) 

below the influence of the root zone, shown in Figure 65-b) and Figure 65-c). The explanation of 

those higher SO4 concentrations values is the transport of more SO4 and H+ ions from the upper 

amended layer to the deeper ones. The higher amount of SO4 produced in the amended layer is 

consistent with the organic matter effect through the pyrite particle radius. Also, higher amounts 

of Hydrogen ions are related to the nitrification interaction that also takes place in the amended 

layer.  

Figure 66, shows consistency of pH values with SO4 concentrations under the effect of 

grass bioremediation. In the amended layer, the pH is higher with grass remediation for almost the 

entire the simulation time. However, there are annual periods of similar pH values with grass and 

no remediation, especially in colder seasons when the plant evapotranspiration effect is low. Lesser 

values of pH in the non-amended and bottom layers are the result of higher values of SO4 and other 

acidic ions being transported down to the lower layers (see Figure 65).  The more significant 

increases in pH over the simulation time are related to times when the core ceases shrinking, 

meaning the pyrite radius is finally zero. The times when the pyrite radius become zero are longer 

with the depth of the layer as closer to the surface more oxygen is available and the shrinking core 

more rapidly decreases the radius. The last pyrite radius having a pollution effect is expected to 

finish at the 55th year after initiating the whole acid mine process.  At that time, the SO4, Fe and 

H+ ion production ceases and the chemical equilibrium substantially changes the distribution of all 

solutes.  
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Figure 65 Comparison of sulfates SO4 time series with and without grass bioremediation scenarios at three 

different amended conditions layers: a) at 61 cm of the amended layer with 10%AC+90%CR. b) at 91 cm of 

the non-amended layer with 100% and c) at the bottom layer of the non-amended layer with 100%CR. Also, 

Pyrite Particle Radius is shown as a measure of potential pollution. Time series represent a 100-year 

simulation. 
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Figure 66 Comparison of pH (as logarithm of Hydrogen ions concentration activity) time series with and 

without grass bioremediation scenarios at three different amended conditions layers: a) at 61 cm of the 

amended layer with 10%AC+90%CR. b) at 91 cm of the non-amended layer with 100% and c) at the bottom 

layer of the non-amended layer with 100%CR. Time series represent a 100-year simulation. 
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Figure 67 displays the low effect of grass bioremediation on SO4 concentration and pH at 

deeper layer along the simulation time. For the first year, the depth distributions of SO4 and pH 

with and without bioremediation are similar. The depth distributions in posterior years describe a 

major effect of grass bioremediation in the amended layers (from 0 to 61 cm depth). For deeper 

layers the opposite effect is shown. The reason for the general behavior at different times of depth 

distributions is the transport of SO4, Fe and H+ ions from the upper to the lower layers, which is 

only interfered with the basic chemical condition of the Alkaline Clay. 

 

 

 

Figure 67 Comparison of Sulfates pH and SO4 depth distributions with and without grass bioremediation at 

four different simulation times: 1st Year, 20th Year, 50th Year and 100th Year.  
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Figure 68 and Figure 69 reveal a similarity of behavior over time among the majority of 

solutes involved in the acid mine drainage process. With a few exceptions, the majority of solute 

ion decrease over time in all layers. The effect of grass vegetation is high within the amended 

layer, with solutes showing lesser concentrations in amended layers with grass vegetation 

remediation in comparison to those ones with no bioremediation. Strong acidic ions such as Fe, P 

and Cl trigger higher concentration values at the bottom layer. Base ions with high acid 

neutralization potential such as Ca, K, Si and Al have different behaviors. Over the long term, the 

reduction in Hydrogen ions, as the shrinking core vanishes, allows higher levels of acidic 

neutralization, such as with CaCO3, with a consequent increase in solute concentrations over time 

and more stable concentration values in comparison to the case without bioremediation.  

According to our simulations, the use of grass vegetation as a form of passive 

bioremediation promotes beneficial reduction of acidic conditions only the amended layer. The 

biogeochemical effect is not completely clear for deeper layers and we can assume that the general 

behavior within the non-amended layers is a result of the alkaline chemical interactions being 

transported vertically by the unsaturated flow. 
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Figure 68 Comparison of Ferric Fe, Calcium Ca, Sodium Na, Magnesium Mg and Potassium K 

concentrations time series with and without grass bioremediation scenarios at three different amended 

conditions layers: a) at 61 cm of the amended layer with 10%AC+90%CR. b) at 91 cm of the non-amended 

layer with 100% and c) at the bottom layer of the non-amended layer with 100%CR. Time series represent a 

100-year simulation. 
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Figure 69 Comparison of Silicon Si, Phosphorus P, Aluminum Al, Chlorine Cl, and Manganese Mn 

concentrations time series with and without grass bioremediation scenarios at three different amended 

conditions layers: a) at 61 cm of the amended layer with 10%AC+90%CR. b) at 91 cm of the non-amended 

layer with 100% and c) at the bottom layer of the non-amended layer with 100%CR. Time series represent a 

100-year simulation. 
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3.7.2  Remediation Scenario with Tree Vegetation Types and AC-CR. 

The environmental effect of planting of tree vegetation as a forest species on coal refuse 

piles is examined in this section. In this particular case, there are two changes expected in the 

interactions between acid mine and biogeochemical processes: a) an increase in the rate of carbon 

assimilation potential for the proposed type of vegetation which, according to Smith et al. (2019), 

has an indirect effect on the organic soil processes and b) a deeper root zone than that in the grass 

scenario, which implies a stronger influence of plant evapotranspiration along the soil column and 

a stronger plant uptake effect, even in the non-amended layers. 

Figure 70 describes a remarkable effect of tree vegetation as bioremediation over time in 

both the amended and non-amended layers. Lesser SO4 concentrations are computed by the long 

term 100-year simulation in comparison to those show for grass in Figure 65, showing 

improvement with the use of trees as a form of phytoremediation. Even in the bottom layer, the 

SO4 concentrations are lower than the benchmark condition of no bioremediation. The main 

explanation for the decrease in concentrations at all chemicals with tree vegetation is the deeper 

influence of metal plant uptake, including in the non-amended 100% CR layer.  Also, as with the 

SO4 concentrations shown for grass in Figure 65, there is a progressive reduction of the solute over 

time, defined by the shrinking core radius. The annual oscillation patterns are the same as those 

computed with only grass vegetation. 
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Figure 70 Comparison of sulfates SO4 time series with and without tree vegetation bioremediation scenarios 

at three different amended conditions layers: a) at 61 cm of the amended layer with 10%AC+90%CR. b) at 

91 cm of the non-amended layer with 100% and c) at the bottom layer of the non-amended layer with 

100%CR. Also, Pyrite Particle Radius is shown as a measure of potential pollution. Time series represent a 

100-year simulation. 
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Figure 71 Comparison of pH (as logarithm of Hydrogen ions concentration activity) time series with and 

without tree vegetation bioremediation scenarios at three different amended conditions layers: a) at 61 cm of 

the amended layer with 10%AC+90%CR. b) at 91 cm of the non-amended layer with 100% and c) at the 

bottom layer of the non-amended layer with 100%CR. Time series represent a 100-year simulation. 
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Figure 71 features coherent results for SO4 concentrations with tree vegetation, with higher 

values of pH over time and in all layers. The greater effect of acidic solutes reduction as a result 

of more plant uptake promotes a greater potential for neutralization of Ca, Si and Al as well as 

other basic solutes. Despite the production of hydrogen ions by nitrification, the vertical transport 

is not appreciable enough to be captured by the effect of chemical equilibrium among the solutes. 

 

 

Figure 72 Comparison of Sulfates pH and SO4 depth distributions with and without tree vegetation 

bioremediation at four different simulation times: 1st Year, 20th Year, 50th Year and 100th Year.  
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Figure 73 Comparison of Ferric Fe, Calcium Ca, Sodium Na, Magnesium Mg and Potassium K 

concentrations time series with and without tree vegetation bioremediation scenarios at three different 

amended conditions layers: a) at 61 cm of the amended layer with 10%AC+90%CR. b) at 91 cm of the non-

amended layer with 100% and c) at the bottom layer of the non-amended layer with 100%CR. Time series 

represent a 100-year simulation. 
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Figure 74 Comparison of Silicon Si, Phosphorus P, Aluminum Al, Chlorine Cl, and Manganese Mn 

concentrations time series with and without tree vegetation bioremediation scenarios at three different 

amended conditions layers: a) at 61 cm of the amended layer with 10%AC+90%CR. b) at 91 cm of the non-

amended layer with 100% and c) at the bottom layer of the non-amended layer with 100%CR. Time series 

represent a 100-year simulation. 
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Figure 72 depicts more appreciable differences between the bioremediation and no 

remediation conditions in terms of depth distribution of SO4 concentration and pH. All the 

snapshots show considerable reduction of pollution, especially over the SO4 concentrations. 

In contrast to the grass vegetation scenario, Figures 73 and 74 show lower concentrations 

for all solutes at the bottom layer also, again as a consequence of deeper metals plant uptake.  Even 

for basic acidic-neutralizers solutes such as Ca, K, Si and Al the concentrations are lower in both 

the amended and non-amended layers, with almost similar values at the bottom layers.  

In partial conclusion, we can observe based on the long-term simulations that use of tree 

vegetation as passive remediation has a more relevant environmental impact on the reduction of 

pollution due to potential plant uptake. Moreover, the capacity of bioaccumulation of metals can 

be increased using plants a more resilient than grass species. For both cases with grass vegetation 

and tree vegetation, the expected reduction in SO4 solutes in the amended layer is around 15 years. 

According to Plaza (2018) this time can serve as a guide for when to cut off the vegetation to 

restore the capacity of bioaccumulation.  
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3.8 Conclusions 

The simulations and analyses show that the main interactions between the biogeochemical 

processes and pyrite oxidation as a main AMD process are driven primarily by the seasonal plant 

evapotranspiration as a result of the soil moisture variation, where mineral nitrogen processes and 

organic matter oxidation reduce the pH and the solute plant uptake reduces the level of solute 

concentrations. Despite the increase in hydrogen ions production caused by nitrification and 

organic matter oxidation, the final resulting effect scenario with bioremediation decreases the 

solute concentration values and increases the pH.   

The long-term simulation of passive bioremediation with grass vegetation shows this to be 

environmentally efficient only in the amended layer, where the biogeochemical processes operate. 

For the deeper non-amended layers, the simulations reveal that solutes concentrations are higher 

even with bioremediation except for neutralization species such as Ca and Si. 

On the other hand, the simulation with tree vegetation shows better performance at 

reducing solute concentrations and increasing the soil pH. With a larger root zone, the solute 

capture by trees promotes lower solute concentrations along the depth of soil column. Therefore, 

the final result of the biogeochemical interactions using tree vegetation with acid mine drainage is 

more prevalent than in the grass vegetation scenario, which has only influence on the amended 

layer. 

Using the pyrite oxidation equations and the qualitative system dynamics analysis, we can 

explain the sequence of the AMD process, starting by examining the availability of oxygen 

throughout the soil matrix, then looking at the shrinking core radius reduction and finally, 

examining the sulfate, ferric ion and hydrogen ion production. The sequence of the process allows 

us to clarify the importance of oxygenation of the soil. Whereas it seems that initially it might 
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worsen the general pollution conditions, oxygenation actually seems to accelerate the pyrox 

process, making it available to be used as a remediation method. This means that we can create 

and implement devices to increase the oxygenation mechanisms in the soil to prompt the cessation 

of the pyrite oxidation. 

Finally, we can assume the time for the cutoff of planting to be after the cessation of the 

first layer pyrite oxidation process, when the production of SO4 solutes has completely declined. 

In both phytoremediation scenarios this time is around 10 years. 
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4.0 Acid Mine Drainage Pollutant Storage Capacity and Transport on the Watershed Scale 

4.1 Introduction 

Solute pollution on the watershed scale is still one of the main concerns in engineering and 

environmental science (Beer and Young 1984; Mortensen et al. 2016). One open research question  

in watershed contaminant analysis is how we can evaluate the ability of environmental systems to 

recover from adverse or deteriorated conditions to return to their original or natural cycling states 

before the pollution disturbance (Li and Lence 2007; Mcintyre et al. 2003). Restoration capacity 

is often studied using risk-resilience analysis, which can inform best remediation management 

practices and allow prediction of long term effects of disturbances (Mcintyre et al. 2003; Park et 

al. 2015). On the other hand, water quality of the streams in the watershed is one of the main 

indicators of environmental health of natural systems (Beer and Young 1984; Mortensen et al. 

2016). Both environmental issues can be addressed by the usage of transport modeling on the 

watershed scale. Indeed, both pollution risk-resilience analysis and water quality modeling are 

intrinsically intertwined when explaining watershed pollution transport behavior due to the 

anthropogenic impacts.  

Resilience analysis of water systems can be determined by focusing on three main features 

(Wang and Blackmore 2009): a) the threshold values for determining system operativity; b) the 

recovery potential of a natural system; c) the ulterior consequences of disturbances on both 

ecological and human systems. A probabilistic or uncertainty approach to measure risk and 

resilience is generally used to operationalize threshold behavior (Mcintyre et al. 2003; Wang and 

Blackmore 2009). Other approaches based on system response or adaptative capacity have been 
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added in a minor integrated manner in probabilistic resilience analysis. In our transport watershed 

modeling of AMD effects, we develop a simple conceptual approach to a resilience formulation 

based on target load and mass storage pollution. Using on this conceptual approach, we explore a 

measure of the watershed system recovery capacity to overcome AMD pollution, with or without 

phytoremediation. 

On the water quality side of this watershed transport modeling, while most studies have 

been carried out using geochemical AMD analysis only, we include phytoremediation analysis 

scenarios. Traditionally, watershed transport modeling in the realm of AMD conditions have 

focused on 2D or 3D hydrodynamic groundwater coupled with contaminant transport models as 

shown in Mayer (2019). Other modeling works, such as Galván et al. (2016) may be hydrologically 

based, using SWAT code to asses AMD areas. One previous transport model, developed by Plaza 

(2018) is based on using a shrinking core and geochemical model to account for the effects of 

amended passive remediation of 10% alkaline clay at the watershed outlet at the Mather and Ernest 

sites, similar to this study. However, there is a tendency to use recent data driven modeling of 

water and transport quality as Artificial Neural Networks ANN (Ardejani et al. 2013; Bahrami and 

Doulati Ardejani 2016).  

As indicated above, the interrelation between surface water quality and the pollution 

capacity-resilience analysis is supported by watershed transport computation (Czuba and 

Foufoula-Georgiou 2014; Gangodagamage et al. 2014). In our approach, we follow the general 

concept of long-term transport capacity based on cell-links over the watershed as defined in 

Gangodagamage et al. (2014). These authors establish sediment transport on the watershed scale 

based on an Incremental Area Function IAF Gangodagamage et al. (2014). Based on the IAF 
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concept, we use the fundamental mass balance idea to estimate the solute transport from each cell 

to the outlet.  

Specifically, we integrate in a novel manner the ADZ modeling (Camacho and Gonzalez 

2008) within the DHSVM-HTGCM with the surface solute results computed by the Hydro-

Biogeochemical model presented in Chapter 3. We use the cell-link long term solute transport 

Gangodagamage et al. (2014) to compute the pollution resilience-capacity at the Mather and Ernest 

watersheds.  

In this chapter, we present the results of the Hydro-solute transport model stage of this 

dissertation. Chapter sections include a description of the model implementation and presentation 

of a simulation of pollution capacity-resilience analysis and the effects of our two precedent 

scenarios of phytoremediation on the water quality results. 

4.2 Model Implementation 

The computation of solute transport developed in this dissertation is an approximation of 

conventional equations of transport used in this type of analysis. Whereas Advection-Dispersion 

partial differential equations are commonly used, we use the Advective Dispersive Zone ADZ 

model (Camacho and Gonzalez 2008). The final implementation of the transport computation uses 

the original resources of DHSVM developed by Xu (2013) for the computation of concentrations 

at the watershed outlet, including the 8-direction method for stream network computation. We 

adapted the representation of the biochemical processes in the vertical column realm to be linked 

to the watershed stream network in terms of surface and subsurface flows. The next sections 
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explain in detail the implementation of the integration of biogeochemical processes with the solute 

transport computation in the DHSVM-HTGCM model. 

4.2.1  From Column Process to Watershed Scale Modeling 

The link between the biogeochemical-pyrox processes and the transport across a watershed 

is made using surface and subsurface flows. Figure 75 shows how the flows computed by 

DHSVM-HTGCM are to compute the column mass balance of the main pyrite solutes SO4, Fe and 

H+. Then a solute mass balance is computed in the subsurface zone and the transport of solutes is 

given by the flows computed previously by the unsaturated module inside DHSVM-HTGCM. The 

surface transport is computed with a simplified ADZ model using previous flow routing 

discharges.  

The main inputs in this study’s configuration are computed using the Hydro-

Biogeochemical Model and include: a) the bottom vertical discharge layer from unsaturated 

module qvert-in, in the Hydro-biogeochemical model and b) the bottom solute concentration Cin as 

computed by the solute transport equation in the Hydro-biogeochemical model. 
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Figure 75  Scheme linking column pyrite-biogeochemical computation to watershed stream network 

transport computation. a) The 8-direction flow direction method is used to transport solutes through the 

watershed. b) The soil unsaturated-saturated column mass balance represents the pollution storage at each 

cell. 
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Once the solute mass balance within the column is computed, the 8-direction method is 

used to compute the transport through the stream network of the watershed. Then, the mass is 

transported along the stream network to the outlet of the watershed, as shown in Figure 76.  

 

 

 

Figure 76  Schematic formulation of stream network based on 8-direction Digital Elevation Model DEM 

information. This system information for stream network is used to develop the connection between the soil 

column model in Chapter 3.0 and the subsurface and surface transport models. 

 

Figure 77 presents the DEM configuration for the Mather and Ernest sites and the stream 

network determined by the 8-direction method suitable for the application of the transport models. 
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Figure 77  Digital Elevation Models for Mather and Ernest sites watersheds used for column to watershed 

transport computations. 



 

 187 

4.2.2  Subsurface Acid Mine Drainage Solute Transport on the Watershed Scale 

The subsurface solute transport from each column cell to the outlet of the watershed is 

carried out through a mass balance over all the cells within the watershed, as shown in Equation 

4.1 below.  The 8-direction method is used to determine the cell balance and the vertical solute 

mass from the bottom layer of the soil column. Figure 78 illustrates the subsurface mass balance 

used to estimate the pollution capacity over the watershed. 

 

 

Figure 78  Scheme of subsurface solute balance for each cell according to Equation 4.1, extension of scheme in 

Figure 75. 

 

𝐴𝑐𝑒𝑙𝑙𝐷
𝑑𝐶𝑥𝑦

𝑑𝑡
= [∑ 𝑞𝑐𝑒𝑙𝑙

𝑠𝑢𝑏𝐶𝑐𝑒𝑙𝑙
8−𝑑𝑖𝑟
𝑐𝑒𝑙𝑙 − 𝑞𝑥𝑦

𝑠𝑢𝑏𝐶𝑥𝑦 ] + 𝑞𝑖𝑛
𝑣𝑒𝑟𝑡𝐶𝑖𝑛                               [4.1] 
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where Cxy [mg/L] is cell xy solute pollutant concentration; Acell [m
2] cell xy horizontal area; D [m] 

cell xy water table depth; Ccell [mg/L] 8-direction adjacent cells solute pollutant concentration; 

qsub
cell [m3/s] 8-direction adjacent cells subsurface discharge; qsub

xy [m3/s] cell xy subsurface 

discharge; qvert
in [m

3/s] cell xy vertical leaching discharge; and Cin [mg/L] cell xy leaching solute 

pollutant concentration. 

4.2.3  Surface Acid Mine Drainage Solute Transport on the Watershed Scale 

The subsurface transport implementation is similar to that of subsurface. In the subsurface 

model implementation, each cell input concentration is given by the surface concentration at the 

surface layer from the hydro-biogeochemical column model. The tracks for the solute routings 

follow the stream network structure. The discharges used in the model are computed using the 

routing incorporated within DHSVM-HTGCM by Xu (2013). The ADZ model is used for the 

solute transport as follows: 

 

𝑑𝐶𝑙𝑖𝑛𝑘

𝑑𝑡
=

1

𝑇𝑟𝑒𝑠
[∑ 𝑞𝑙𝑖𝑛𝑘−𝑠𝑛𝐶𝑙𝑖𝑛𝑘−𝑠𝑛 + 𝑞𝑟𝑢𝑛𝑜𝑓𝑓  [𝐶𝑠𝑢𝑟𝑓]𝑙𝑖𝑛𝑘−𝑠𝑛 − 𝑞𝑙𝑖𝑛𝑘 𝐶𝑙𝑖𝑛𝑘 ]                    [4.2] 

 

where Clink [mg/L] is solute pollutant concentration at the end of the link; Tres [day] residence-

travel time in link; Clink-sn [mg/L] solute pollutant concentration at the end of the link of the inflow 

stream network; qlink-sn [m
3/s] link-stream network discharge; qlink [m

3/s] link discharge; [Csurf ] 

[mg/L] surface pollutant concentration at cell-link; and qrunoff [m
3/s] cell-link runoff discharge. 
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4.2.4  Conceptual Acid Mine Drainage Capacity and Resilience on the Watershed Scale 

We can define Acid Mine Drainage Capacity (AMDC) as the maximum level of pollutant 

storage mass that the watershed has reached in a long-term dynamic simulation. Based on this 

simple concept, we can associate the resilience of the watershed to overcome pollution with the 

ability to transport out as much as pollution as possible. Consequently, the better the resilience, 

the greater and faster the transport out of AMDC quantity of pollution from the watershed. We use 

the subsurface transport to estimate the AMDC throughout the long term 100-year simulation 

because pyrite oxidation has ceased and so the low solutes concentrations cannot be used as a main 

input of pollution to the watershed. Therefore, as a resilience indicator we can take the time 

required by the watershed to export as much of the pollution quantity AMDC as possible. Based 

on the proposed AMDC concept, the following equation can be taken as its representation:  

 

𝐴𝑀𝐷𝐶 = 𝑚𝑎𝑥[𝑀𝑝𝑜𝑙 = ∑ ∑ 𝐴𝑐𝑒𝑙𝑙𝐷𝐶𝑥𝑦
𝑁𝑥
𝑥

𝑁𝑦
𝑦  ]                                    [4.3] 

 

where AMDC [Ton] is Acid Mine Drainage Capacity as the maximum total mass of pollutant 

storage in the watershed in the extent of simulation time; Cxy [mg/L] cell xy solute pollutant 

concentration computed by subsurface transport model; Acell [m
2] cell xy horizontal area; D [m] 

cell xy water table depth; and Mpol [Ton] Total mass of pollutant within the subsurface realm in the 

watershed. 

The next section explores the capacity and resilience concepts using simulations on the 

watersheds at both the Mather and the Ernest sites. 



 

 190 

4.3 Application Simulations and Analyses 

This section presents the application of solute transport of AMD processes on the 

watershed scale to answer the question about pollution capacity using the following three concepts: 

a) the AMDC for the Mather and Ernest sites and the interpretation of the subsurface Sulfate SO4 

transport results to understand spatial and temporal distribution of the AMD pollution; b) the 

autonomous recovery capacity of export Sulfates SO4 based on the AMDC for the Mather and 

Ernest sites as a resilience concept in both watersheds; and finally, c) a comparison of main solute 

pyrox concentrations under the Chapter 3.0 vegetation scenarios. 

4.3.1  Capacity and Resilience of AMD Pollutants on the Watershed Scale 

Figure 79 depicts how the capacity of pollutant Sulfate SO4 mass storage reaches a 

maximum value around the 70th year after of the beginning the pyrite oxidation pollution for 

Mather site. The AMDC can be estimated to be 485 tons of SO4. The maximum value of AMDC 

for SO4 is reached because the level of inflow of pollution has a maximum value around at 25 

years. After these 25 years a sustained decline to lower values explains the maximum AMDC 

value. The outlet subsurface concentration follows the same behavior as AMDC but with a high 

dilution value (from average concentration of 15000 mg/L to 600 mg/L) in comparison to the 

values at bottom layers of non-amended layers.   

 

Figure 80 corroborates the substantial order of magnitude difference between the input and 

the export of Sulfate SO4 pollution at the Mather site, presenting this information as a detailed plot 

of Figure 79. This difference explains the initial increase in AMDC and the maximum value as the 
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input of pollution is almost dissipated at the end of the simulation time. The increase of the total 

watershed discharge can explain lower value concentrations at the Ernest site than those in Mather, 

where the area of corresponding total discharge is less. The simulations show behavior of the target 

load similar to that in Reinds et al. (2009) in terms of the yearly changes. 

 

Figure 81 and Figure 82 present results of the AMDC at the Ernest site and the Mather site, 

showing their similarity. At the Ernest site, the maximum mass SO4 storage is encountered at the 

end of the simulation time. As at the Mather site, the input of sulfates pollution is maximized about 

20 years after the initial conditions and falls to almost zero at the end of the simulated 100 years. 

The computed export is 10 times less in comparison to the order of magnitude at the Mather site.  
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Figure 79 Time series of Acid Mine Capacity as pollution mass storage and fluxes in Mather site portion of 

coal pile. The outlet pH and SO4 concentrations are also shown in plot c). 
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Figure 80 Time series at first and last 10 years of Acid Mine Capacity as pollution mass storage and fluxes in 

Mather site portion of coal pile. The plots show the details of simulation of mass storage, import and export of 

SO4 from data in Figure 79. 

 

The pH outlet subsurface values decay to 4 at the Ernest site, which is higher than at the 

Mather site in accordance with the export of less SO4. Figure 80 shows constant annual behavior 

of mass storage at the end of the year in the first 10 years of simulation, with a variation in mass 

SO4 storage over the last 10 years. 
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Figure 81 Time series of Acid Mine Capacity as pollution mass storage and fluxes at the Ernest site watershed 

with coal pile. The outlet pH and SO4 concentrations are also shown in plot c). 
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Figure 82 Time series at first and last 10 years of Acid Mine Capacity as pollution mass storage and fluxes at 

the Ernest site watershed with coal pile. The plots show the details of simulation of mass storage, import and 

export of SO4 from data in Figure 81. 

 

One of the important aspects of AMDC is the spatial distribution of mass pollution storage 

along the simulation time. Figure 83, is intended to show the plots of both sites, Mather and Ernest, 

on the watershed scale with the internal mass at first year, 25th year, 75th year and 100th year. The 

plots show increasing AMDC at both sites. At the end of the first year at the Mather site the 

simulation presents high storage at the outlet and along the main stream. In Ernest, the 1st year plot 

describes low storage at the outlet and in the stream network with the exception of two boundary 

branches. At the 25th year the spatial simulations show high storage in the main stream network at 

both sites. At the 75th year at the Mather site, a higher storage accumulation is computed at the 

right main branches and lower accumulation at the left main course.  
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Figure 83 Spatial distribution of SO4 mass storage or Acid Mine Drainage Capacity at the end of 1st, 25th, 75th 

and 100th year at the Mather site a), b), c), d) and the Ernest site e), f), g), h).  
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At the Ernest site, the major extension of the area has high storage and low storage in the 

head water main branches. Finally, for both sites, the 100th year of the simulation shows the 

maximum storage accumulation in a majority of areas, with low values at main stream network 

branches. 

Once the AMDC is computed for the watersheds at both the Mather and the Ernest sites, 

we can proceed to make an estimation of the autonomous pollution recovery using the export of 

the entire mass storage of Sulfate SO4 without any input of pollution. Following this simple idea 

of a simulation, we account the required time to release the majority of the AMDC as an index of 

the watershed-scale pollution resilience.  

Figure 84 helps us to estimate that it would take about 1500 years for the Mather site to 

recover in a 95% of the Sulphate SO4 mass storage of AMDC computed from a simulation of over 

100 years of pyrite oxidation as a main subsurface input pollution. Both the subsurface SO4 

concentration at the outlet and the total SO4 mass export decline slowly with time following a kind 

of exponential decay, which is determined by the system of transport, Equation 4.1, over the stream 

network. The shape of the decay of the SO4 export serves to determine some uniformity of the 

flow among the cells all over the stream network. It means that the transport of the watershed at 

the Mather site could be simplified more in terms of modeling complexity. Our simulations show 

consistency with a previous analysis developed by Blodau (2006), where it is mentioned that the 

initial release of pollution can be from 10 to 40 first years, with an acidity lasting for centuries. 

On the other hand, Figure 85 presents a different behavior for the possible recovery on the 

subsurface SO4 mass at the Ernest site. Though the simulation conditions are equivalent to those 

at the Mather site, longer simulation time is needed to get higher values of pollution recovery. For 

the Ernest site, at 2500 years of simulation (computed on daily basis), it was only possible to get 
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a 23% removal of pollution. Moreover, the computation of outflow of SO4 shows an important 

decline of 50% at around 200 years after initiating the hydrological removal process. After this 

drop event, the export becomes almost constant over time. The difference in order of magnitude 

of SO4 exported in comparison to that at the Mather site and the slow decay after 300 years of 

recovery explain the low capacity of the watershed at the Ernest site to get a significant level of 

pollution removal. The behavior of the SO4 exported in the first 300 years serves to infer that the 

flow structure among the cells or within the stream network is non-homogenous and therefore the 

model complexity can be preserved. 

 

Figure 84 Time series of Total Mass of SO4, export of SO4 out of portion of watershed coal pile, and SO4 

concentration at outlet in Mather site coal pile as measurement of pollution recovery capacity or resilience. 
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In addition, the SO4 mass exported and hydrological pollution removal computation 

developed in this study serve not only to discriminate a certain level of resilience of the watershed 

but also demonstrate the modeling complexity of flows in long term simulations. In our particular 

cases, the Mather and Ernest sites, we can interpret the results as a measure of possible restauration 

of the non-polluted natural conditions on abandoned coal mines. 

 

 

Figure 85 Time series of Total Mass of SO4, export of SO4 out of watershed coal pile, and SO4 concentration 

at outlet in Ernest site coal pile as measurement of pollution recovery capacity or resilience. 

 

In sum, the AMDC is reached after pyrite oxidation long-term processes are finished. The 

capacity depends on the stream network flow structure and drainage area. Another factor in AMDC 

is the large areas that generate more dilution transport then low export capacity. The pollution 
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removal or recovery resilience depends on the complexity of the stream network flow and the 

dilution effect of natural areas in proportion to coal pile areas.  

4.3.2  Transport Scenario with Grass, Alkaline Clay and Coal Refuse 

This section explores the general watershed scale transport results under the first 

bioremediation scenario with grass vegetation for the coal refuse abandoned mine sites at Mather 

and Ernest. The general idea is to simulate a condition of covering all the coal pile area with grass 

vegetation and with a subsurface having an amended layer of 90%CR and 10%AC. In this case, 

we can simulate conditions of AMDC and surface water quality at the outlet for SO4, Fe, pH and 

Ca as main AMD indicators with the passive remediation condition. We can establish as a 

benchmark scenario a no bioremediation condition similar to that in Chapter 3, Section 3.7.1 and 

Section 3.7.2. 

Figure 86 and Figure 87 illustrate that at the Mather and Ernest sites, grass as vegetation 

passive remediation does not reduce acidic ion SO4, Fe and H+ export and mass storage AMDC. 

Moreover, the Ca mass storage does not change with bioremediation. For example, the simulations 

report an increased AMDC of 5% with grass at the Mather site and 30% at the Ernest site. The 

dilution effect explains the difference in the grass case AMDC values between Mather and Ernest, 

demonstrating that in general cases, more concentrated coal pile locations are more suitable for 

remediation treatments. In terms of surface water quality, the grass implementation generates a 

substantial reduction in pollution due to the immobilization effect of vegetation on surface pyrite 

solutes, which decline monotonically in time.  
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Figure 86 General transport results for SO4, Fe, Ca and pH with grass bioremediation at the Mather site. 
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Figure 87 General transport results for SO4, Fe, Ca and pH with grass bioremediation at the Ernest site. 

 

The water quality computations show that the reduction in Mather is higher than in Ernest, 

which is mostly explained by more drainage area dilution in Ernest, which produces lesser 
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concentration values at the outlet. In general, based on these simulations results we observe that 

lower concentrations are related with lower mitigation effects. 

We can conclude that bioremediation with grass vegetation is worth it in terms of surface 

water quality but in terms of AMDC it is expected to have little or no effect. 

4.3.3  Transport Scenario with Tree Vegetation and AC-CR 

This section is intended to present the general transport results under the use of tree 

vegetation similar the situation in Section 3.7.2 of the Chapter 3.  As with the grass remediation 

scenario, we use the no bioremediation condition as a benchmark scenario for comparison analysis 

purposes. The setup of the modeling has values from the soil column simulation computed for the 

tree vegetation scenario presented in Section 3.7.2. 

Figure 88 and Figure 89 depict that tree vegetation offers a substantial reduction in AMDC, 

between 20% and 25% in the no bioremediation condition. The surface water quality is also 

improved. However, the reduction in transported solutes is relatively less than that which occurs 

in the grass remediation scenario. This is due to the redistribution of evapotranspiration values 

over the larger root zone in the tree vegetation, despite the fact that transpiration rates are higher 

for tree vegetation. 

Finally, we can argue that bioremediation improves surface water quality, whether grass or 

tree vegetation is used.  However, the AMDC is reduced significantly with tree vegetation usage. 
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Figure 88 General transport results for SO4, Fe, Ca and pH with tree vegetation bioremediation at the 

Mather site. 
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Figure 89 General transport results for SO4, Fe, Ca and pH with tree vegetation bioremediation at the Ernest 

site. 
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4.4 Conclusions 

The solute transport simulations allow an approximation to estimate the maximum mass 

storage of pollution as a measure of Acid Mine Drainage Capacity (AMDC). Using this concept, 

we can also estimate the autonomous time for pollution recovery on the watershed scales at the 

Mather and Ernest sites.  

The AMDC at both sites in terms of sulfates SO4 pollution was identified using a maximum 

value of mass storage within the 100-year simulation and after the pyrite oxidation processes have 

finished according to the shrinking core radius. The adopted concept as a resilience measure 

depends on the stream network, the hydrologic regime, and on the ratio of coal pile mine area to 

undisturbed area because of the dilution effect of discharge of the main stream.  

Lastly, the use of vegetation such as grass or trees as passive bioremediation is valuable in 

terms of improving surface water quality. The impact of using tress as phytoremediation on the 

adopted concept of AMDC is significant in terms of magnitude and potential recovery in 

comparison to a condition with no bioremediation. On the other hand, the grass vegetation scenario 

showed little effect or in some cases the opposite effect on mass storage SO4 pollution. 
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5.0 Contributions and Future Work 

After the comprehensive exploration of the modeling work of the integrated processes 

between Acid Mine Drainage and Biogeochemical processes, we have learned that there are 

feedbacks between both processes which have effects on other related processes. For example, 

plant physiology can impact the pH chemical equilibrium condition. In addition, the 

biogeochemical and Acid Mine Drainage processes determine pollution capacity and recovery. 

The next section presents the concluding remarks on our contributions, and the final section 

proposes some aspects of the research that can be explored in further work. 

5.1 Contributions 

5.1.1  From the Hydro-Biological Model Study 

We consider the main contribution of the hydro-biological component of our study to be 

its further support for the hypothesis of needing as many equations as possible to constrain 

parameters as presented in Luo et al. (2013) and applying a wide variety of approaches on the plant 

physiology modeling. Therefore, the modeling strategy formulated in this study showed to be 

useful in reducing parameter calibration issues and a sort of uniqueness modeling description of 

the soil-plant-atmosphere processes.  

The plant physiology approach developed in this dissertation could be considered a more 

integrated formulation with its body of equations of soil hydrology and atmosphere interactions 
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than other similar plant modeling approaches based on land surface models. In our approach, we 

derived a general Prentice optimal formulation based on whole equations with minor 

simplifications. Also, we were able to reduce the apparent mathematical complexity of the 

optimization problem to a two-variable system of equations, which is comparable to the 

complexity when using the empirical approach. Based on these developments, we could perform 

some geometrical and conceptual analyses which allowed us more insights into how the 

physiology variables work together. 

Finally, we found some limitations of the Prentice optimal concept when a more 

constrained and integrated formulation is used. The increase in stomatal conductance out of the 

upper bound limits is a result of the integration of plant hydraulics and Penman-Monteith, which 

enables higher stomatal conductance values when the actual evapotranspiration approaches the 

potential evapotranspiration.  

5.1.2  From the Hydro-Biogeochemical-Pyrox Model Study 

The development and simulations of the Hydro-Biogeochemical-Pyrox Model could be 

considered our main contribution to the understanding of the interactions between biogeochemical 

and acid mine processes from a holistic perspective, including plant physiology. As a result, we 

could contribute to make an environmental assessment of the passive remediation of vegetation 

use on abandoned coal pile mines. 

The mathematical model and its methodological implementation are a useful tool that can 

be replicated at other mine sites. The methodology can also be adjusted to model other types of 

mining or pollution disturbances. 
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5.1.3  From the Hydro-Transport Model Application 

The implementation of a watershed scale transport modeling extension of the 

biogeochemical-pyrite oxidation interactions allow us to contribute in two main directions: a) the 

exploration of a conceptual measure of pollution capacity and resilience on the watershed scale; 

b) and a detailed discrimination of passive bioremediation effects on water quality when using two 

different generic types of vegetation. 

The first contribution is the long term (100 year) simulations of SO4 storage mass in the 

watershed as a measure of pollution capacity linked to a longer-term simulation of hydrologically 

pollution recovery including the washout capacity of the watersheds.  

The second contribution is the assessment of water quality under passive bioremediation 

scenarios as an engineering solution to the environmental impairment of surface water at the 

outlets of the watersheds. 

5.2 Future Work 

The development of this dissertation served to allow more detailed modeling to emerge as 

well as questions regarding biogeochemical interaction processes. One further research is 

modeling management features (the use of different soil mixtures, fertilization schedules and 

species trials) for revegetation and conditions for better plant growth at initial stages when there is 

some issue regarding the success of phytoremediation. For phytoremediation management 

analysis, it is necessary to perform field studies on the effects of the different remediation measures 

to confirm the modeling scenario results. Additionally, the next step in modeling is to involve 
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explicitly the microbial activity within soil organic matter (by using specialized oxidizing bacterial 

growth models). However, this microbial modeling addition needs a laboratory microbial 

characterization for the growth rates of the cultures and the kinetic interactions on ferric oxidations. 

Finally, we foresee the need to develop a modeled assessment of interactions and bioremediation 

effects under climate change scenarios with special efforts on the carbon soil efflux process linked 

to root transpiration, for which it is necessary to obtain better biogeochemical characterization of 

the soil under AMD conditions. 
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Appendix A Derivation of Equations for the Optimization Problem for Plant Physiology 

using Prentice Optimality Theory and Complete water-controlled conditions 

A compact formulation for the optimization problem for the plant physiology using the 

Prentice unit cost and the complete water limited conditions is developed. The analytical solution 

for the optimization is derived using all the required derivates for all the complete equations. As a 

result, the system of equations for the optimization problem is compared to the system of equations 

for the empirical approach. 

Prior to develop the derivation for the optimality approach, we can show each of the 

equations which are part of the constraints of the general mathematical formulation. First, we 

explain the equations for evapotranspiration: a) Penman-Monteith Equations and b) Capacitance-

Resistance water transport (Plant Hydraulics). Second, we show the equations for carbon 

assimilation and carbon diffusion. 

After the explanation of the basic equations for evapotranspiration and carbon assimilation, 

the general and compact formulations of the optimization problem are presented. Then, the 

derivation of the optimality condition equation is presented. 
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A.1 Penman-Monteith Equation 

The Penman-Monteith Equation (ASCE 2000; Daly et al. 2004; Luo et al. 2013) is an 

energy balance for the surface. In the adjusted version it has a relationship between actual 

evapotranspiration and stomatal conductance and Leaf Area Index LAI jointly. The equation is as 

follows: 

 

𝐸 =
[𝑆 𝑅+𝜌𝑎 𝐶𝑝 𝐷 𝑔𝑎 ] 𝑔𝑠 𝐿𝐴𝐼

𝜌𝑤 𝜆𝑤 [𝑔𝑠 𝐿𝐴𝐼 𝑆+𝛾𝑤 [𝑔𝑠 𝐿𝐴𝐼+𝑔𝑎]]
                                                [A1] 

 

where E [m/s] is the actual evapotranspiration; S [Pa/oC] slope of vapor pressure-temperature 

curve; R [W/m2] solar radiation; a [Kg/m3] air density; Cp [Pa] pressure constant; D [Pa] vapor 

pressure deficit; ga [m/s] aerodynamic conductance; gs [m/s] stomatal conductance; LAI [m2/m2] 

Leaf Area Index; w [Kg/m3] water density; w [Wm3/Kg] Latent heat of vaporation; w [MJ 

Kg−1 °C−1] psychrometric constant. 

 

The equation A1 can be presented in terms of forcing data constants as follows, 

 

𝐸 =
𝐶1 𝑔𝑠

𝐶2+𝐶3 𝑔𝑠
                                                                 [A2] 

 

where C1 = [S R + a Cp ga D] LAI; C2 = w w w ga; and C3 = w w [S + w] LAI. 
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A.2 Water storage and transport model (capacitance model) 

A plant hydraulics model representing dynamic water storage and water transpiration from 

roots to leaves is the Katerji model (Katerji et al. 1986; Luo et al. 2013). The water storage is 

explained by a capacitance component and the following equations, 

 

𝐸 = 𝐶𝑝
𝑑Ψ𝑝

𝑑𝑡
+

[ Ψ𝑠 −Ψ𝐿  ]

𝑅
                                                        [A3] 

𝐶𝑝
𝑑Ψ𝑝

𝑑𝑡
= −

[ Ψ𝑝 −Ψ𝐿  ]

𝑅𝑝
                                                           [A4] 

 

where E [m/s] is the actual evapotranspiration; Cp [Pa/oC] water leaf storage capacity; p [MPa] 

water leaf storage potential; L [MPa] water leaf potential; S [MPa] water soil potential;  R [Pa] 

pressure constant; RP [m/s] aerodynamic conductance. 

In discrete formulation, the water transport hydraulics can be represented below. 

First, a discrete aproximation of Katerji model, 

 

𝐸 =
[ Ψ𝑝 −Ψ𝐿]

𝑅𝑃
+

[ Ψ𝑠 −Ψ𝐿  ]

𝑅
                                                          [A5] 

 

Second, the water storage potential via Katerji model, 

 

𝜓𝑝 = [Ψ𝑝
𝑡−1 [

𝐶𝑝𝑅𝑝

∆𝑡
] + Ψ𝐿] [

1

1+[𝐶𝑝𝑅𝑝 ∆𝑡⁄ ]
]                                                [A6] 

 

And, third, by plugging [A6] into [A5], 
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𝐸 =
1

𝑅
[𝜓𝑠 − 𝜓𝐿] +

1

𝑅𝑝
[[𝜓𝑝

𝑡−1 [
𝐶𝑝𝑅𝑝

∆𝑡
] + 𝜓𝐿] [

1

1+[𝐶𝑝𝑅𝑝 ∆𝑡⁄ ]
] − 𝜓𝐿]                     [A7] 

 

The water leaf boundaries are given by the following equations on the discrete formulation 

of Equation A7. 

1-For p<L 

 

𝜓𝑠
∗ = [𝐸∗ −

1

𝑅
𝜓𝑠] / [−

1

𝑅
]                                                       [A8] 

 

2- For p>L 

 

 𝜓𝑠
∗ = [𝐸∗ − [

1

𝑅
𝜓𝑠 +

1

𝑅𝑝
[

[𝐶𝑝𝑅𝑝 ∆𝑡⁄ ]

1+[𝐶𝑝𝑅𝑝 ∆𝑡⁄ ]
] 𝜓𝑝

𝑡−1]] / [ −
1

𝑅
+

1

𝑅𝑝
[[

1

1+[𝐶𝑝𝑅𝑝 ∆𝑡⁄ ]
] − 1]  ]      [A9] 

 

A.3 Carbon assimilation (Biochemical Farquhar model) 

The carbon assimilation equation describes the kinetic rate of photosynthesis reaction at 

mesophyll cells (Farquhar, 1980). This biochemical model has three components: a) A Rubisco-

limited rate. b) A light-limited rate, c) A half-Rubisco component. Collatz, 1996, developed a 

biquadratic formulation of the three components to avoid the discontinuity of the minimal function 

among the rates. The components and the biquadratic equation are as follows: 
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𝐴𝑛 = 𝐴𝐹(𝑐𝑖)𝑓(Ψ𝐿)                                                          [A10] 

 

where An [mol/m2/s] is net carbon assimilation; AF [mol/m2/s] is the Farquhar model of 

biochemical carbon assimilation; ci [mol/mol] CO2 in-leaf concentration; L [MPa] water leaf 

potential; f(L) [-] water stress factor function on carbon assimilation. 

The biquadratic system of equations solves AF in terms of the carboxylation, ligth-limited 

and saturation components of biogeochemical Farquhar-Collatz model of carbon assimilation. The 

biquadratic equations (Equations A11 and A12) and its components (Equations A13, A14 and 

A15) are show below: 

 

𝛽2𝐴𝐹
2 − (𝐴𝑝 + 𝐴𝑠)𝐴𝐹 + 𝐴𝑝𝐴𝑠 = 0                                        [A11] 

𝛽1𝐴𝑝
2 − (𝐴𝑐 + 𝐴𝑞)𝐴𝑝 + 𝐴𝑐𝐴𝑞 = 0                                        [A12] 

𝐴𝑐 = 𝑉𝑐𝑚𝑎𝑥 [
𝑐𝑖−Γ

𝑐𝑖+𝐾𝑐(1+𝑜𝑖 𝐾𝑜⁄ )
]                                             [A13] 

𝐴𝑞 =
𝐽

4
[

𝑐𝑖−𝛤

𝑐𝑖+2𝛤
]                                                         [A14] 

𝐴𝑠 =
𝑉𝑐𝑚𝑎𝑥

2
                                                            [A15] 

𝑓(Ψ𝐿) =
[Ψ𝐿−Ψ𝑜]

[Ψ𝑀−Ψ𝑜]
    𝑓𝑜𝑟 Ψ𝑀 < Ψ𝐿 < Ψ𝑜;   0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                [A16] 
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A.4 Carbon diffusion 

Carbon diffusion equation (Equation A17) represents the availability of carbon from the 

atmosphere to be captured by plants. It is mediated by an equivalent stomatal conductance 

(Equation A18) that includes the aerodynamic and boundary layer conductance gab. The equation 

is as follows: 

 

𝐴𝑛 = 𝐺𝑠(Ψ𝐿)[𝑐𝑎 − 𝑐𝑖]                                                    [A17] 

𝐺𝑠(Ψ𝐿) =
1

1/𝑔𝑠+1/𝑔𝑎𝑏
                                                    [A18] 

 

where An [mol/m2/s] is net carbon diffusion; Gs [mol/m2/s] is an equivalent total conductance; ca 

[mol/mol] CO2 atmospheric concentration; ci [mol/mol] CO2 in-leaf concentration; gs [mol/m2/s] 

stomatal conductance; gab [mol/m2/s] aerodynamic-boundary layer conductance. The stomatal 

conductance is a function of L through the inverse Penman-Monteith equation coordinated to 

water transport plant hydraulics equation gs=E-1(L).  

A.5 General Mathematical Formulation for the Optimization Problem-Prentice and Luo et 

al (2013) Equations 

The optimization problem in this case is composed by the objective function given by the 

unit physiological unit cost, the equations for evapotranspiration in Penman-Monteith model and 

Katerji model with a E’=1.6GsD in the unit cost function, the equation for carbon diffusion and 

the equation for carbon assimilation with a factor for water limited conditions. The optimization 
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problem is to minimize the two components of the unit cost function; the water use efficiency 

component and the carboxylation component. The system of equations for the general formulation 

is therefore: 

 

Min     𝐶𝑜𝑠𝑡 = 𝑎
𝐸′

𝐴
+ 𝑏

𝑉𝑐𝑚𝑎𝑥

𝐴
       Objective Function Unit Cost   [A19] 

 

Subject to 

𝐸′ = 1.6 𝐺𝑠 𝐷                                      Evapotranspiration used by Prentice (2014)   [A20] 

𝐸 = 𝑔𝑠
𝐶1

𝐶2−𝐶3𝑔𝑠
                 Actual Evapotranspiration - Penman-Monteith Equation   [A21] 

𝐸 =
1

𝑅
[𝜓𝑠 − 𝜓𝐿] +

1

𝑅𝑝
[𝜓𝑝 − 𝜓𝐿] Actual Evapotranspiration - Ohm’s law analogy   [A22] 

𝐴(𝜓𝐿 , 𝑐𝑖) = 𝐺𝑠(𝜓𝐿)[𝑐𝑎 − 𝑐𝑖]  Carbon Diffusion Equation used by Luo et al. (2013) [A23] 

𝐴(𝜓𝐿 , 𝑐𝑖) = 𝑓(𝜓𝐿) 𝐴𝐹(𝑐𝑖)              Carbon Assimilation - Farquhar-Collatz-Water   [A24] 

𝐺𝑠(𝜓𝐿) =
𝑔𝑠(𝜓𝐿)𝑔𝑎𝑏

𝑔𝑠(𝜓𝐿)+𝑔𝑎𝑏
             Equivalent stomatal conductance and boundary layer   [A25] 

 

A.6 Compact Mathematical Formulation of the Optimization Problem- Prentice and Luo et 

al (2013) Equations. 

One way to solve the optimization problem is using the Lagrange method for the objective 

function, the equations as constraints and two variables ci and L. Another way is to use a compact 

formulation where there is an objective function and one decision variable that is coupled to the 

second variable by the constraint. In this case, one can simplify the problem of optimization 
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problem for five variables, A, E, gs, ci and L, to a problem of one variable ci and one constraint 

which relates ci and L. The compact formulation now is given by the following equations. 

 

Min     𝐶𝑜𝑠𝑡 = 𝑎
𝐸′(𝜓𝐿)

𝐴(𝜓𝐿,𝑐𝑖)
+ 𝑏

𝑉𝑐𝑚𝑎𝑥

𝐴(𝜓𝐿,𝑐𝑖)
        Objective function unit cost   [A26] 

𝑓(𝜓𝐿)𝐴𝐹(𝑐𝑖) = 𝐺𝑠(𝜓𝐿)[𝑐𝑎 − 𝑐𝑖]  Equilibrium Constraint Equation (Equation 2.3)   [A27] 

 

where Gs is an aggregate function for the total equivalent stomata conductance in terms of 

gs and gab, and the relationship between gs and E using the inverse Penman-Monteith equation. 

The decision variables are ci and L, but using the constraint we can solve it using just ci. Among 

the equations below,  

 

𝑔𝑠(𝜓𝐿) =
𝑘1𝐸(𝜓𝐿)

𝑘1−𝑘3𝐸(𝜓𝐿)
        Inverse Penman-Monteith-Ohm’s Law equation   [A28] 

𝐸′ = 1.6 𝑔𝑠(𝜓𝐿) 𝐷    Potential Evapotranspiration - Prentice (2014)   [A29] 

𝐺𝑠(𝜓𝐿) =
𝑔𝑠(𝜓𝐿)𝑔𝑎𝑏

𝑔𝑠(𝜓𝐿)−𝑔𝑎𝑏
   Equivalent Stomata conductance in carbon diffusion Eq.   [A30] 

 

A.7 Optimality Condition for the Optimization Problem 

To solve the problem given by [A26] and [A27], we can derivate respect to ci, taking in 

account the constrain [A27] and the complete equations. The first order condition as optimality 

conditions is developed as follows, 
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𝜕𝐶𝑜𝑠𝑡

𝜕𝑐𝑖
=

𝜕

𝜕𝑐𝑖
[𝑎

𝐸′

𝐴
] +

𝜕

𝜕𝑐𝑖
[𝑏

𝑉𝑐𝑚𝑎𝑥

𝐴
]                                                First order condition   [A31] 

𝜕

𝜕𝑐𝑖
[𝑎

𝐸′

𝐴
] = 𝑎 [

𝜕𝐸′

𝜕𝑐𝑖

1

𝐴
−

𝐸′

𝐴2

𝜕𝐴

𝜕𝑐𝑖
]   First order condition in water efficiency component   [A32] 

𝜕

𝜕𝑐𝑖
[𝑏

𝑉𝑐𝑚𝑎𝑥

𝐴
] = −𝑏 [

𝑉𝑐𝑚𝑎𝑥

𝐴2

𝜕𝐴

𝜕𝑐𝑖
]      First order condition in carboxylation component   [A33] 

Hence, the optimality condition for the problem is an equation for ci and L variables. 

𝑎 [
𝜕𝐸′

𝜕𝑐𝑖

1

𝐴
−

𝐸′

𝐴2

𝜕𝐴

𝜕𝑐𝑖
] − 𝑏 [

𝑉𝑐𝑚𝑎𝑥

𝐴2

𝜕𝐴

𝜕𝑐𝑖
] = 0  General Optimality Condition Equation-Eq.2   [A34] 

 

A.8 Components of the Optimality Condition Equation 

The development of the components of the optimality equation are shown below. The first 

one is the derivate dE’/dci, which needs the development of the slope of the constraint. The second 

component is the derivate dA/dci where needs the implicit derivate for the carbon assimilation 

Farquhar model. 

1-Potential transpiration derivate 

 

𝜕𝐸′

𝜕𝑐𝑖
=

𝜕𝐸′

𝜕𝐺𝑠
 
𝜕𝐺𝑠

𝜕𝑔𝑠

𝜕𝑔𝑠

𝜕𝐸

𝜕𝐸

𝜕𝜓𝐿

𝜕𝜓𝐿

𝜕𝑐𝑖
                                   Total Derivate Potential transpiration to ci.   [A35]  

𝜕𝐸′

𝜕𝐺𝑠
= 1.6 𝐷                       Derivate Potential transpiration to gs – Prentice (2014)   [A36] 

𝜕𝑔𝑠

𝜕𝐸
=

𝑘1𝑘2

[𝑘2+𝑘3𝐸]2
               Derivate Inverse Penman-Monteith-Ohm’s law Equation   [A37] 

𝜕𝐸

𝜕𝜓𝐿
= −

1

𝑅
+

1

𝑅𝑝
[

1

[1+𝐶𝑝𝑅𝑝/Δ𝑡]
− 1]                        Evapotranspiration derivate to L   [A38] 
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𝜕𝜓𝐿

𝜕𝑐𝑖
=

𝑓(𝜓𝐿)
𝜕𝐴𝐹

𝜕𝑐𝑖
+ 𝐺𝑠(𝜓𝐿)

𝜕𝐺𝑠

𝜕𝑔𝑠

𝜕𝑔𝑠

𝜕𝐸
𝜕𝐸
𝜕𝜓𝐿

[𝑐𝑎 − 𝑐𝑖] −
𝜕𝑓
𝜕𝜓𝐿

𝐴𝐹(𝑐𝑖)
   

   Derivate of Slope Equilibrium equation   [A39] 

𝜕𝐺𝑠

𝜕𝑔𝑠
=

𝑔𝑎𝑏
2

[𝑔𝑎𝑏 + 𝑔𝑠]2
 

   Derivate of Equivalent Complete Stomata conductance   [A40] 

𝜕𝑓

𝜕𝜓𝐿
=

1

[𝜓𝑀−𝜓𝑜]
    𝑓𝑜𝑟 𝜓𝑀 < 𝜓𝐿 < 𝜓𝑜;   0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      

    Derivate of factor for water-controlled condition in carbon assimilation   [A41] 

 

2-Derivate for Farquhar-Collatz-Water Controlled Condition Carbon Assimilation 

Equation 

 

 

Total Derivate of Farquhar-water controlled condition carbon assimilation   [A42] 

 

3-Derivate for Complete Carbon Diffusion Equation 

 

𝜕𝐴

𝜕𝑐𝑖
=

𝜕𝐺𝑠

𝜕𝑔𝑠

𝜕𝑔𝑠

𝜕𝐸

𝜕𝐸

𝜕𝜓𝐿

𝜕𝜓𝐿

𝜕𝑐𝑖

[𝑐𝑎 − 𝑐𝑖] − 𝐺𝑠(𝜓𝐿)     

 Total Derivate of complete carbon diffusion   [A43] 

 

𝜕𝐴

𝜕𝑐𝑖
=

𝜕𝑓

𝜕𝜓𝐿

𝜕𝜓𝐿

𝜕𝑐𝑖
𝐴𝐹(𝑐𝑖) + 𝑓(𝜓𝐿)

𝜕𝐴𝐹

𝜕𝑐𝑖
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A.9 System of Equations for Optimality Approach 

Therefore, with all the derivation we can arrange the final system of equations as follows. 

 

𝑔𝑠 =
𝑎

𝑏

[𝑔𝑎𝑏 + 𝑔𝑠]

𝑔𝑎𝑏[𝑐𝑎 − 𝑐𝑖]
[
𝜕𝐸′

𝜕𝑐𝑖
−

𝐸′

𝐴

𝜕𝐴

𝜕𝑐𝑖
]

𝐴

𝑉𝑐𝑚𝑎𝑥

𝐴

𝜕𝐴 𝜕𝑐𝑖⁄
 

   Optimality condition equation-Equation 2.3   [A44] 

𝑓(𝜓𝐿)𝐴𝐹(𝑐𝑖) = 𝐺𝑠(𝜓𝐿)[𝑐𝑎 − 𝑐𝑖] 

    Equilibrium constraint equation-Equation 2.4   [A45] 
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Appendix B Vegetation species and Empirical Parameter Adjustment and Estimation 

According to the optimality formulation in this study, the maximum empirical parameter 

a’ is used to constrain the model simulations. This Appendix develops the exercise to compute the 

maximum a’ value based on different empirical values reported on literature (Leuning 1995; 

Medlyn et al. 2011; Miner et al. 2017). The first step is to recognize the vegetation species used in 

the pilot plots: alfalfa, white clover, red clover and tall fescue grass.  

Then according to the database presented in Miner et al. (2017) Table 1, we realized that 

the maximum possible value for grass vegetation can be assumed as a’=23.8 under the grassland, 

Forb steppe species.  

However, the a’ parameter values correspond to BB initial formulation equation which is 

different to BBL equation. Then, we need a first transfer function from a’ (BB) to a’(BBL). We 

used the table data from Leuning (1995) and Medlyn et al. (2011) to compute the first transfer 

function. 
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Table 4 Empirical Values Reported by Literature for different species 

 

From the table species values for a’ in BB and BBL equations we derived average values 

that can allow us to compute a proportion relationship between the two version of equation 

parameters. 

The fist transfer function for the two equations parameters is: 

 

a‘(BBL) = 1.53 a’(BB)                                                        [B1] 

 

The second transfer function enable us to convert a’ parameter from original BBL to BBL 

(Luo 2013; Tuzet et al. 2003) formulation in the use of fv(L) the function that connects 

evapotranspiration to water leaf potential similar to f(D) but in this case dependent on vapor 

pressure deficit. To get the equivalent proportion between BBL parameters values and Tuzet-Luo 
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parameter formulation we use a linear regression between both simulated values to get the slope 

that relates both similar equations. 

 

With this relationship we can compute the maximum values for a’ for Mather and 

Oensingen sites to be used in the optimal-empirical coupled approach. It is assumed Do = 1000 

for the similarity of species to low size species in Leuning (1995). In Figure 90, shows the a’ (BBL 

original) and a’(BBL-Luo) linear regression which is used to get the second transfer function as 

follows, 

a‘ (Xiangyu) = a’(BBL)/2.21                                              [B2] 

 

 

Figure 90 Comparison empirical a’ (BBL) and a’(BBL-Luo) parameters to get second transfer Function in 

Mather site. 

In the case of Oensingen site, the results show the following transfer function based on the 

comparative linear regression in Figure 91, 

a‘ (Xiangyu ) = a’ (BBL)/1.52                                               [B3] 
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Figure 91 Comparison empirical a’ (BBL) and a’(BBL-Luo) parameters to get second transfer Function in 

Ernest site. 

 

Finally, we can get the final maximum a’ parameter suitable for the BBL-Luo equation by 

using the two sequential transfer functions. The final results are shown as follows. 

 

Table 5 Final Averaging of Empirical Values according to Literature and species 

 

Maximum a’ - Mather site: a’(Xiangyu) = 17 

Maximum a’ - Oensingen site: a’(Xiangyu) = 24 
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Appendix C Solution of Biogeochemical Transport-Reactive Partial Differential Equations 

 

The general partial differential equation for the biogeochemical transport model is given 

in Equation A1. The system of partial equations of organic matter OM, nitrates NO3, ammonium 

ions NH4, ammonia NH3, carbon dioxide CO2, bicarbonate HCO3 and acidic carbon CO3 uses the 

Equation C1 in which reaction terms convolutes all the variables: 

 

𝜕[𝜃𝐶𝑖]

𝑑𝑡
=

𝜕

𝜕𝑧
[𝐷

𝜕𝐶𝑖

𝜕𝑧
+ 𝑞𝐴𝐶𝑖] + ∑ 𝑅𝑖𝑗

𝑛𝑗
𝑗=1 + 𝐹𝑖                                   [C1] 

 

Figure 92, illustrates the depth distribution of the discrete method for the computation of 

the Equation C1. For each cell the solute mass balance is computed with influx and outflux based 

on vertical discharge transport, dispersion and biochemical reaction among the organic-inorganic 

species. 



 

 227 

 

Figure 92  Scheme of the numerical discrete mass balance for the equation C1.  

 

The time derivate component of Equation C1, can be approximated by the discrete explicit 

difference formulation as follows, 

 

𝜕[𝜃𝐶𝑖]

𝑑𝑡
 ∆𝑡 ≈ [𝜃𝑘

𝑇+∆𝑇 𝐴𝑐𝑒𝑙𝑙 Δ𝑧𝑘 𝐶𝑖,𝑘
𝑇+∆𝑇 − 𝜃𝑘

𝑡  𝐴𝑐𝑒𝑙𝑙  Δ𝑧𝑘 𝐶𝑖,𝑘
𝑇 ]                                  [C2] 

 

The advective and dispersion components of the Equation C1, are represented by the 

following explicit discrete difference equations: 

𝜕

𝜕𝑧
[𝑞𝐴𝐶𝑖] ∆𝑡 ≈ [𝑞𝑘−1

𝑇  𝐴𝑐𝑒𝑙𝑙 𝐶𝑖,𝑘−1
𝑇 − 𝑞𝑘

𝑇 𝐴𝑐𝑒𝑙𝑙 𝐶𝑖,𝑘
𝑇 ]                                    [C3] 
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𝜕

𝜕𝑧
[𝐷

𝜕𝐶𝑖

𝜕𝑧
] ∆𝑡 ≈ 𝐷𝐴𝑐𝑒𝑙𝑙 [

𝐶𝑖,𝑘−1
𝑇 −𝐶𝑖,𝑘

𝑇

Δ𝑧𝑘
] − 𝐷𝐴𝑐𝑒𝑙𝑙 [

𝐶𝑖,𝑘
𝑇 −𝐶𝑖,𝑘+1

𝑇

Δ𝑧𝑘
]                           [C4] 

 

The source and external boundary conditions can be expressed by the following equation, 

 

[∑ 𝑅𝑖𝑗
𝑛𝑗
𝑗=1 + 𝐹𝑖]∆𝑡 ≈ [∑ 𝑅𝑖𝑗  𝜃𝑘

𝑇 𝐴𝑐𝑒𝑙𝑙 Δ𝑧𝑘
𝑛𝑗
𝑗=1 + 𝐹𝑖 𝐴𝑐𝑒𝑙𝑙 Δ𝑧𝑘]∆𝑡                    [C5] 

 

Finally, the complete numerical equation for the concentration of any substance i at any 

time t and dept k, Ci,k,T is given by the following equation: 

 

 

𝐶𝑖,𝑘
𝑇+∆𝑇 = [𝜃𝑘

𝑇 𝐴𝑐𝑒𝑙𝑙 Δ𝑧𝑘 𝐶𝑖,𝑘
𝑇 + {[𝑞𝑘−1

𝑇  𝐴𝑐𝑒𝑙𝑙 𝐶𝑖,𝑘−1
𝑇 − 𝑞𝑘

𝑇 𝐴𝑐𝑒𝑙𝑙 𝐶𝑖,𝑘
𝑇 ] + (𝐷𝐴𝑐𝑒𝑙𝑙 [

𝐶𝑖,𝑘−1
𝑇 −𝐶𝑖,𝑘

𝑇

Δ𝑧𝑘
] −

𝐷𝐴𝑐𝑒𝑙𝑙 [
𝐶𝑖,𝑘

𝑇 −𝐶𝑖,𝑘+1
𝑇

Δ𝑧𝑘
] + ∑ 𝑅𝑖𝑗  𝜃𝑘

𝑇 𝐴𝑐𝑒𝑙𝑙 Δ𝑧𝑘
𝑛𝑗
𝑗=1 + 𝐹𝑖 𝐴𝑐𝑒𝑙𝑙 Δ𝑧𝑘)} ∆𝑡] /  𝜃𝑘

𝑇+∆𝑇 𝐴𝑐𝑒𝑙𝑙 Δ𝑧𝑘   

            [C6] 
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Figure 93 Numerical scheme of the system of partial differential equations based on the interaction between 

concentration Ci and concentration Cj through the jointed reactions Rij. 

 

Equation C6 is a difference equation that uses an explicit numerical scheme forward to 

compute the concentrations. The numerical stability criterion is given by the following constraint 

for the time step: 

 

∆𝑇 ≤  
Δ𝑧𝑘

𝑞𝑘−1
𝑇 +𝑅𝑖,𝑗,𝑘

𝑇  Δ𝑧𝑘
                                                        [C7] 

 

The system of equations for the species of organic-inorganic in the soil uses the Equation 

C6 for each concentration specie which is linked to any other concentration specie as is shown in 

Figure 91. 
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Appendix D Solution of The Multiple System of Ordinary and Partial Differential 

Equations 

 

The solution of the multiple system of equations is carried out in two time-steps: a) an 

hourly time step for hydrology and plant physiology variables and b) a daily time step for 

biogeochemical and pyrite oxidation variables. At the end of each day, 24 hourly time steps 

simulations are done and the hydrology and plant rate variables are accumulated to be used in the 

daily basis variables. 

The hourly time step (dt) part is composed of a difference explicit equation for soil moisture 

 t, z, with initial condition  (t=0, z) =   and boundary conditions ddz(t,z=0) = I the 

infiltration rate and ddz(t,z=Dmax) = 0, at the maximum depth. The difference equation used is 

based on the original DHSVM code: 

 

𝑑𝑧 ( 𝜃𝑧
𝑡+𝑑𝑡 − 𝜃𝑧

𝑡) = 𝑄𝑣(𝜃𝑧−1
𝑡 ) − 𝑄𝑣(𝜃𝑧

𝑡) − ∑ 𝑓𝑗𝑧𝐸𝑧𝑗                                   [D1] 

 

After soil moisture is computed, the Clapp and Hornberger, (1963) equations are used to 

estimate water soil potential s. Then, water soil potential is part of the plant physiology system 

of equations: Equation 2.2 and Equation 2.3 (in Chapter 2) for water leaf potential L and CO2 in-

leaf concentration ci.   
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Based on L and ci, hourly carbon assimilation An, hourly total evapotranspiration E, 

spatially daily evapotranspiration Ez and GPP are computed to be part of the second part of the 

multiple system of equations at the end of 24-hourly time steps.  

 

The multiple system of differential equations has three components: 1) carbon and nitrogen 

cycles component, 2) biogeochemical-transport, and 3) pyrite oxidation component. The 

numerical solution of the carbon-nitrogen cycles component is based on an explicit simple scheme 

with a daily time step (T). The following matrix representations of the numerical solution 

correspond to plant pools, litter pools and soil pool, respectively: 

 

[
𝐶𝑃𝑙𝑎𝑛𝑡 𝑖

𝑇+∆𝑇

𝑁𝑃𝑙𝑎𝑛𝑡 𝑖
𝑇+∆𝑇 ] = [

1 − 𝑘𝑃𝑙𝑎𝑛𝑡𝑖  ∆𝑇 0
0 1 − 𝑘𝑃𝑙𝑎𝑛𝑡𝑖  ∆𝑇 𝐹𝑁𝑃−𝐿 𝑖

] [
𝐶𝑃𝑙𝑎𝑛𝑡 𝑖

𝑇

𝑁𝑃𝑙𝑎𝑛𝑡 𝑖
𝑇 ] + [

𝐹𝐴𝑙𝑙𝑜𝐶 𝑖 𝐺𝑃𝑃 ∆𝑇
𝐹𝐴𝑙𝑙𝑜𝑁 𝑖 𝐸 𝑁𝑚𝑖𝑛∆𝑇

]   

[D2] 

 

where CT+T
Planti and NT+T

Planti are the plant carbon and plant nitrogen variables for time step 

T+T. The initial condition for plant carbon leaf pool is derived from the observed LAI values. 

The other initial conditions are defined by calibration: 

 

[
𝐶𝐿𝑖𝑡𝑡𝑒𝑟 𝑗

𝑇+∆𝑇

𝑁𝐿𝑖𝑡𝑡𝑒𝑟 𝑗
𝑇+∆𝑇 ] = [

1 − 𝑘𝐿𝑖𝑡𝑡𝑒𝑟 𝑗  ∆𝑇 0

0 1 − 𝑘𝐿𝑖𝑡𝑡𝑒𝑟 𝑗 ∆𝑇 
] [

𝐶𝐿𝑖𝑡𝑡𝑒𝑟 𝑗
𝑇

𝑁𝐿𝑖𝑡𝑡𝑒𝑟 𝑗
𝑇 ] +

[
𝐹𝑙𝑢𝑥𝐶𝑃𝑡𝑜𝐿 𝑗 𝑘𝑃𝑙𝑎𝑛𝑡𝑖  𝐶𝑃𝑙𝑎𝑛𝑡 𝑖

𝑇 ∆𝑇

𝐹𝑙𝑢𝑥𝐶𝑃𝑡𝑜𝐿 𝑗 𝑘𝑃𝑙𝑎𝑛𝑡𝑖  𝐶𝑃𝑙𝑎𝑛𝑡 𝑖
𝑇 ∆𝑇 + 𝐹𝑙𝑢𝑥𝑁𝑃𝑡𝑜𝐿 𝑗 𝑘𝑃𝑙𝑎𝑛𝑡𝑖  𝑁𝑃𝑙𝑎𝑛𝑡 𝑖

𝑇 ∆𝑇
]                                                      [D3] 
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where CT+T
Litter j and NT+T

Litter j are the litter carbon and litter nitrogen pool variables for time step 

T+T. The initial condition for the litter variables is also defined by calibration: 

 

[
𝐶𝑆𝑜𝑖𝑙 𝑘

𝑇+∆𝑇

𝑁𝑆𝑜𝑖𝑙 𝑘
𝑇+∆𝑇] = [

1 − 𝑘𝑆𝑜𝑖𝑙 𝑘 ∆𝑇 + 𝐹𝑙𝑢𝑥𝑘𝑘𝑘𝑠𝑜𝑖𝑙 𝑘∆𝑇 0
𝐹𝑙𝑢𝑥𝑘𝑘𝑘𝑠𝑜𝑖𝑙 𝑘 𝑅𝑎𝑡𝑖𝑜𝑁𝐶𝑘 ∆𝑇 1 − 𝑘𝑆𝑜𝑖𝑙 𝑘 ∆𝑇 

] [
𝐶𝑆𝑜𝑖𝑙 𝑘

𝑇

𝑁𝑆𝑜𝑖𝑙 𝑘
𝑇 ] +

[
𝐹𝑙𝑢𝑥𝐿𝑡𝑜𝑆 𝑗 𝑘𝐿𝑖𝑡𝑡𝑒𝑟 𝑗 𝐶𝐿𝑖𝑡𝑡𝑒𝑟 𝑗

𝑇 ∆𝑇

𝐹𝑙𝑢𝑥𝐿𝑡𝑜𝑆 𝑗 𝑘𝐿𝑖𝑡𝑡𝑒𝑟 𝑗 𝐶𝐿𝑖𝑡𝑡𝑒𝑟 𝑗
𝑇 𝑅𝑎𝑡𝑖𝑜𝑁𝐶𝑘∆𝑇

]                                                                                                                [D4] 

 

where CT+T
Soil k and NT+T

Soil k are the soil carbon and soil nitrogen pool variables for time step 

T+T. The soil carbon microbial pool is computed directly from the biogeochemical-transport 

component as explained in Chapter 3. The initial condition for the soil variables also is defined by 

calibration. 

 

The matrix representation of the numerical solution explained in Appendix C is shown as 

follows, 

 

[
 
 
 
 
𝐶𝑖 1

𝑇+∆𝑇

⋮
𝐶𝑖 𝑘

𝑇+∆𝑇

⋮
𝐶𝑖 𝑁

𝑇+∆𝑇]
 
 
 
 

=

[
 
 
 
 

𝐴1 … 0 … 0

⋮ ⋱ 0 0 ⋮
0 𝐴𝑘−1 𝐴𝑘 𝐴𝑘+1 0

⋮ 0 0 ⋱ ⋮

0 0 0 𝐴𝑁−1 𝐴𝑁 ]
 
 
 
 

[
 
 
 
 
𝐶𝑖 1

𝑇

⋮
𝐶𝑖 𝑘

𝑇

⋮
𝐶𝑖 𝑁

𝑇 ]
 
 
 
 

+

[
 
 
 
 
Φ1

⋮
Φ𝑘

⋮
Φ𝑁]

 
 
 
 

                         [D5] 

 

where CT+T
i k are the concentration of the biogeochemical variables i = {COM, CNO3, CNH3, CNH4, 

CCO2, CHCO3, CCO3}, for each space distribution k = {1, 2, ..., N} at time step time step T+T. The 

initial conditions are given by calibration and the boundary conditions are defined in the [] vector 
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in equation D5, according to definitions in Chapter 3 and the terms A1 and AN. A1 = [ T1 / T+T
1 

– qT
1 T/ T+T

1 z1 -D T/ T+T
1 z2

1], Ak-1 = [qT
k-1 T/ T+T

k zk - D T/ T+T
k z2

k], Ak = 

[[ Tk / T+T
k - q

T
k T/ T+T

k zk – 2 D T/ T+T
k z2

k], Ak+1 = [D T/ T+T
k z2

k], and k = [[ Tk 

/ T+T
k Rij T +Fk / T+T

k ]. 

 

The soil carbon microbial pool is computed directly from the biogeochemical-transport 

component as explained in Chapter 3. The initial condition for the soil variables also is defined by 

calibration. 

 

According to the numerical representations above described, we can integrate all the 

variables into one matrix equation of the numerical solution as follows:  

 

[
 
 
 
 
 
 
 
 
 
 
𝐶𝑃𝑙𝑎𝑛𝑡 𝑖

𝑇+∆𝑇

𝑁𝑃𝑙𝑎𝑛𝑡 𝑖
𝑇+∆𝑇

𝐶𝐿𝑖𝑡𝑡𝑒𝑟 𝑗
𝑇+∆𝑇

𝑁𝐿𝑖𝑡𝑡𝑒𝑟 𝑗
𝑇+∆𝑇

𝐶𝑆𝑜𝑖𝑙 𝑘
𝑇+∆𝑇

𝑁𝑆𝑜𝑖𝑙 𝑘
𝑇+∆𝑇

𝐶𝑖 𝑘−1
𝑇+∆𝑇

𝐶𝑖 𝑘
𝑇+∆𝑇

𝐶𝑖 𝑘+1
𝑇+∆𝑇]

 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
𝐴11 0 0 0 0 0 0 0 0
0 𝐴22 0 0 0 0 0 0 0
𝐴31 0 𝐴33 0 0 0 0 0 0
𝐴41 𝐴42 0 𝐴44 0 0 0 0 0
0 0 𝐴53 0 𝐴55 0 0 0 0
0 0 𝐴63 0 𝐴65 𝐴66 0 0 0
0 0 0 0 0 𝐴76 𝐴77 𝐴78 0
0 0 0 0 0 0 𝐴87 𝐴88 𝐴89

0 0 0 0 0 0 0 𝐴98 𝐴99 ]
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
𝐶𝑃𝑙𝑎𝑛𝑡 𝑖

𝑇+∆𝑇

𝑁𝑃𝑙𝑎𝑛𝑡 𝑖
𝑇+∆𝑇

𝐶𝐿𝑖𝑡𝑡𝑒𝑟 𝑗
𝑇+∆𝑇

𝑁𝐿𝑖𝑡𝑡𝑒𝑟 𝑗
𝑇+∆𝑇

𝐶𝑆𝑜𝑖𝑙 𝑘
𝑇+∆𝑇

𝑁𝑆𝑜𝑖𝑙 𝑘
𝑇+∆𝑇

𝐶𝑖 𝑘−1
𝑇+∆𝑇

𝐶𝑖 𝑘
𝑇+∆𝑇

𝐶𝑖 𝑘+1
𝑇+∆𝑇]

 
 
 
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
 

𝐹1

𝐹2

0
0
0
0

Φ𝑘−1

Φ𝑘

Φ𝑘+1]
 
 
 
 
 
 
 
 

              

 

[𝐶𝑇+∆𝑇] = [𝐴][𝐶𝑇] + [Φ] 

[D6] 

where [CT+T] is the vector of all biogeochemical variables at time step, [A] the discrete transition 

matrix, [CT] the vector of biogeochemical variables at time T, and [] the vector of external, non-
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linear terms and boundary conditions. The entries for matrix [A] are: A11 = 1-kPlanti ∆T, A22  = 1-

kPlanti ∆T FNP-Li, A33 = A44 = 1-kLitter j ∆T, A55 = 1-kSoil k ∆T+Fluxkk ksoil k T, A66 = 1-kSoil k ∆T, A77 = 

A88 = A99 = Ak, A31 = A41= A42 = FluxPLj kPlant i T, A53= FluxLSkj kLitter i T, A63= FluxLSkj kLitter i T 

RatioNCk T, A65= FluxSSkk kSoil k T RatioNCk, A76=A87=A87=Ak-1, A78=A89=Ak+1. The entries for 

vector [] are: F1=FAlloCi GPP T, F2=FAlloNi E Nmin T, and k as defined in equation D5. 

 

The numerical solution of the pyrite oxidation computations and the other solutes transport 

calculations are given by the adaptation of the original numerical schemes by Xu, (2013) to include 

the interaction with biogeochemical processes. 
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