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I INTRODUCTION

The early attempts to calculate thermodynamic prop-
erties of crystalline solids by classical statistical mechanics
led to results which agreed with the observations of Dulong
and Petlt at high temperatures. Thus, the total energy of a
crystal was found to be 3NkT, and the specific heat, 3Nk. Later,
more refined measurements showed that the specific heat actually
decreased with decreasing temperature, and the classical theory
was entirely unable to account for this behaviour. Since the
specific heat could be readily measured, it then became a cri-
terion for the success or failure of any theory of solids.

It was on this basis that Planck's theory of quanta
first gained attention by its successful application to a prob-
lem different from the theory of radiation for which it was
designed. By using Planck's hypothesis of the quantized energy

levels of atomic oscillators, Einsteinl obtained the expression,

Ly
Cv- = 3Nk

=
for the specific heat, which agreed qualitatively with the ob-

KT
(c&%?—-gfp

served results at low temperatures, and which approached the
classical results at high temperatures.

The failure of Einstein's treatment to give quantita-
tive agreement at low temperatures was later attributed to his
assumption that the oscillators vibrated independently of each
other and with the same frequency about their equilibrium
positions. Debyelo assumed that the oscillators were coupled,
with a distribution of frequencies among the normal modes. By
assuming that the frequencies were densely distributed, Debye
treated the crystal as a continuum with a continuous distribu-

tion of frequencies, which can be arbitrarily set equal to zero



above the maximum or characteristic frequency of the crystal.
His expression for the specific heat wa%

3
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where 2/ is the maximum frequency of the crystal. This for-
mula gave quantitative agreement for the data of the time, and
because of its mathematical simplicity, its early success gave
Debye's treatment great popularity, to the extent that any
discrepencies that were later found tended to be attributed

to anomalies of the crystal structure without any reference

to the possible limitations of the Debye treatment.

At this same time, Born and Von Karman! obtained re-
sults for a discreet model, which, while offering a more satis-
factory physical picture, introduced mathematical difficulties
which caused the theory to be understandably neglected. According
to tTheir theory, the crystal was pictured as a periodic lattice
structure with atoms vibrating about their equilibrium positions
in the lattice with simple harmonic motion. They assumed eyclic
boundary conditions in the coordinates and momenta at the surface
of the crystal, thus treating the crystal as a four dimensional
torus. The analysis of this motion led to a discreet set of
frequencies distributed among the normal modes of vibration and
obtained as the secular roots of the dynamical equations. Since
the set is nearly dense for a large crystal, it can be represen-
ted by a continuous distribution function, which was found how-
ever to have several infinities which corresponded to peaks in
the frequency spectrum. The result was an immediate generaliza-

tion of Einstein's formula h /e

h V. \- .
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The major difficulty of the method is the problem of determining
the large number of determinantal roots, or a distribution of
them. Except for highly idealized lattices this has never beén
done, and a complete solution has only been obtained for the
one-dimensional analogue of a crystal.

The next advance was Blackman!s52’54’68 work in exten-
ding the methods of Born and Von Karman. For the highly symmetric
cases that he studied, Blackman demonstrated that the secular
determinant was factorable into three or four ordered determinants,
so that the roots were obtainable as solutions of a large number
of cublc or quartic equations. To approximate a distribution
function, Blackman obtained the roots of a large number of random
samples of these eguations, and computed the distribution of the
samples. To obtain much accuracy, a large number of samples was
required, and the work was long and tedious. Moreover, no esti-
mate of error has been obtalned. It is also necessary to repeat
the work for any change in the lattice parameters, so that it is
not easy to evaluate the influence of changes in the parameters
on the physical properties of the crystal.

In order to improve thils situation, Montroll%’gé’ll7
suggested an alternative approach to the problem of approximating
the distribution function, namely, to represent it by a Fourier
expansion. Since this would not require immediste detailed com-
putation, it would be possible to incorporate the lattice para-
meters. Any orthogonal set of functions, normalized in the range
from the lowest to the largest frequency, would of course be
sultable, but for the purpose of the proposed technique, a set
of polynomials, such as Legendre polynomlals, is most convenlient.
The coefficients of the expansion are then the average values

of the polynomials with respect to the required distribution



function, or a set of moments of the function. But by well
known matrix theorems, the trace of a polynomial in a matrix
is the sum of those polynomials in the secular roots, so that.
an average 1s obtained by dividing by the order of the matrix.
Thus 1t 1s possible to obtain the required average directly
from the matrix of the dynamical eguations and evaluating from
them the expression for the distribution function to the desired
accuracy.

Throughout this development various secondary conside-
rations have been brought to attention. 1In particular, the ef-
fect of the assumption of cyclic coordinates has caused a great

l, Ledermanngo and others.

deal of discussion by Bornsésllé, Raman>
The problem of obtaining dynamical results independent of the
assumption of central forces has been given some attention by
EisenschitzngzLSome general treatment has also been given to
the anharmonic vibrations in the lattice by Born®l and Peierls38.
The problem that we wish to consider in this paper has,
however, been quite generally postponed. This is, to calculate
the magnitude of the effect of anharmonic vibration at high tem-
peratures, or to put it the other way, to evaluate the tempera-
ture at which dlscrepancies due to anharmonicity become evident.
While crystal forces are extremely large and thus restrict the
vibrations to harmonic form over the greater part of the tempe-
rature range of the crystal, it 1s apparent that at some tempe-
rature short of the melting point the vibrations will not remain
small and should lead to discrepancies in the specific heat.
It is also possible that considerable variation in this range
may exist among different crystals.
In order to retain a falirly simple treatment and still

expose the general trend of the results, we shall consider here

only a one-dimensional lattice. While this will have no direct
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relationship with any real crystal, we may expect that it will
give a fair indication of the method of attack desirable for
the three-dimensional problem and also some idea of the resulfs
to be expected.

In part II we begin with the dynamical analysis based
on the Born-Karman model assuming harmonic vibrations. The
normal coordinates are first obtained, and then the quantum
mechanical solution and the energy eigenvalues, which will be
necessary to begin the general treatment in the following sec-
tion, are found. Since we are primarily interested in the system
at hlgh energy, it might be asked why it is necessary to express
the solution in quantum mechanical languasge. But, aside from
the fact that we do obtain more valid general results in this
way, the purpose here is mainly to simplify the problem, that
is, in particular, to allow the use of perturbation methods in
the treatment of the next section. While the results in this
section are not new, the use of matric methods throughout is not
usual in this problem and yet has appeal as being a very natural
way to express these transformations. ‘

In part III, we begin by carrying out the transforma-
tion to the normal coordinates (with respect to harmonic vibra-
tlon) on the kinetic energy and on the general series for the
potential energy. We take one higher term from this series and
form 1ts first order perturbation expression as a first correc-
tion for anharmonicity to the previously obtained total energy
term. This perturbation term is then shown to be reducible at
high temperature to a fairly simple expression which can be com-
pared easily with the unperturbed energy term. We next obtain
an expression for the unperturbed energy in terms of the tempe-

rature by classical statistical methods so that the final effect

of anharmoniclty can be measured in terms of the temperature.



II DYNAMICS OF A ONE-DIMENSIONAL LATTICE OF
HARMONIC OSCILLATORS

The atoms of the lattice are assumed to vibrate with
Ssimple harmonic motion about equilibrium points in the lattice
which are equally spaced. The atoms are all assumed to be
identical. The reference system can be constructed with vec-
tors, where we shall indicate the lattice of zero energy,
that is, the lattice with all the atoms in their equilibrium
posltions, by the diagram,

—_— Pt =a

In the more general situation the atoms are displaced from

thelir equilibrium positions by an amount designated by s
A

that 1s, the equilibrium position and the instantaneous position

of each atom are designated by,

Rz = ,ﬁzi# 6;?_

Voo = Ei; + AY:

so that the displacement of the atom from its equilibrium

position is, o

A7 = vz =K
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We wish to use the Born—KarmanT’g model for the crystal so that
we must assume, that for a large number of atoms, the nature

of the vibrations 1s independent of the conditions imposed on
the boundaries. Following Born we assume, for convenience, that
the boundary conditions are cyclic, that is,

RC-&- v S ﬁ,‘

—

—
3

Vesm
It then follows that the displacements are also cyclic,

= B o = Figme R
1) A )1','{-// }'E_'_ f{*w (4 Rl.
A

If m is the mass of each atom and=</? ), etc. are the force
constants for the displacement of the atoms from their equi-
librium positions, then the kinetic and potential energies for

the lattice are

Ve 2
—T- = J%?_‘EE: c

-

(=
2 Vid iy = LA (- il . —
'V = 5 S0t + s s VS )

Here Y represents,ié%; « The first two terms of the potential
series are missing in accordance with the assumption that the
force and potential energy are zero for an atom in its equilib-
rium position. If now we introduce coordinates to represent the
displacements,

Us; = 4515‘

(] B —_—

C({zﬁ:A){'

c

and restrict V to its quadratic term so that we then treat the

atoms as harmonic oscillators, the energy expressions become,

3)



In order to obtain a dynamical solution it is necessary to find
a transformation of coordinates which converts T and V simul-
taneously to canonical form. We shall do this by means of
matrix methods, so that we must consider the coordinates, uj,
as components of the position vector, u, in the space of (ui).

For convenlence we now introduce the auxilliary matrix,

4) £;:: [éifhj ]

where we imply the following § convention,

St {1 B OBk (el ()

L 4

Sc =0, § LE] rddlo (N)

L

We now observe the following properties of S,
- N
S M [§L+r,j ][W‘J]
i [Wﬂr,j]
Applying this result successively,
n
= | M. .
%) E; M { ‘*“nJ]
from waich we obtain the result, N
N N % ]
S = [5,;,,”,3] [Cs‘-j

applying 5) to this result we obtaln the inverse,
= -l ~N N=1(
5 =55 =5

and applying 5) to ST, we show that S is orthogonal,

g N N N
55 S[gLJj-f]]- [SL-H_,j-‘P;]

T a el

S S

we can now use S and u to bulld up the energy terms in 3),



U= Lez) 9
j"’\ = [6{;4.,]
(Bru= L -u:d

applying this result to 3) we obtain,
Al B R

To= S5 A
D= s )eTIu = i (F- 355y
Substituting 6) into Lagrange's equation,
2 -2 (DU + @) =
%—K—: o<(I- -é\#d)bl-f-“ccr- Ei'ah—‘r-“f)rq= 3.«:((_1"- ‘;—;ﬁﬂ)m

the differential equation of motion becomes,

7) W + 2= (-8 Yy =

In order to solve this equation we procede to diagona-
lize the coefficients. However, since the coefficients are
polynomials in S, it is only necessary to diagonalize S itself
in order to accomplish this, because, when a matrix is diagona-=-
lized, any polynomial in that matrix will also be diagonalized,
that is, 1if,

Kut' — o

(a diagonal matrix)
and, f('u) = w¢
then, /rf‘((,() K K<.Za¢‘ kf‘/’,-l = 5,1‘_ frt,(fk-l

= Z e Kukfw k™ — fru i
= e d = Fol)

but, any polynomial in a diagonal matrix is itself a dlagonal
matrix, which proves the assertion. The diagonal terms of d are,
moreover, the characteristic roots of u, and the characteristic

roots of P(d) are the characteristic roots of P(u).
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In order to diagonalize S, we must first find its
characteristic roots. Construct the N-order determinants, 42-(N),

¢ (N) and LP (N) as follows:

o=l . 0 Quu==y0 Q
Plo A lsooidii== =5 Oiye 0
4 »n Oy aiite Rue =Li === O (O
5 i T
. Oy Attt A= =210t 0
B 0 0 0——4% =i
eholle D —Ola=——p "3R-(,,
A2 =1l B D===06 0
¢{) G A =1L O===0 0|
PT 0O 0 A -1--—0 0
0 0 0 A---0 0
O 4wy i@ n =43 =1
O 0 0 0—-—-0 &
V(%
0 <f @ ©0+~+«——80 0
0O 2 -1 0----0 O©
0 0 A «f == O
W =
0O 0 0 A-—=0 0
O 0 0 0 ---R -1
SR Bl 0 e e D
A Y

Expanding the determinants by cofactors of the first

rows,

wy= 3@ (a1 + Pv-n)
¢y = 20w ="
Yy = Lw-1) =-1
Solving simultaneously we obtain for {2 (N),
ARy =X~}
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so that the secular equation 1is,

v
8) [ s sf=@i=thi= 0
The characteristic roots are,
< :f?%% V=i
9) o

where of course n is reduced modulo N. According to the program
for dlagonalizing a matrix, we now seek the adjoint of (A I - S).
Since the characteristic roots are distinct, the adjoint should
be of unit rank. Expressing the inverse in terms of the adjoint,
<z mﬁi(ﬂ.fﬁ S) ady’ CRIHS)
(R«I'WS) = = e /
(& I+ 5 A

we now solve for the adjoint,

adj.(AI-s). AT - I Y
i e as ie

If we carry out the division formally we obtain,

aaj. AI-5)= ZZN R T‘}% A" y[‘gf.-ﬂ"-/,‘)]
[Z S T ]

L+V—1, )

= [RN'{-E-J-; ]

For a particular root, RK_ » We can obtailn a factored form of

the adjoint, in tems of vectors, because of its unit rank.

N4 =) =)
say (A I-8) = [2a)* 7]
= L LA
We now obtaln the modal columns for the required transformation,

Kn = ERL']
= [RK('-“JJ

By arranging the modal columns conveniently we obtain the follow-

ing modal matrix and its inverse,

K=[a]
K =4[]

10)
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In order that the transformation does not change the
unit of length in the new coordinates, it is necessary to nor-
malize the matrix K. This means that we require that the de-

terminant of the modal matrix have an absolute value of unity.
.
o= v ]

I = mNT

/KIG/: A/lﬂ

We thus choose the normalized modal matrix and its inverse,
K=y ["]

=7 T 27

The transformation will involve the following transformations

of S and S'l,

Observe that,

and also,

1X)

koSt L 4T
F =] S )

The normal coordinates of the lattice are obtained from the

12)

transformation, K. Let g be the vector of the normal coordi-

nates, then,
13) u= Kg

By means of 13%), 7) can now be expressed in normal coordinates,
kg +22(x- 5 ) kg =o

multiplying by X~1 we obtain,

1) § o+ X (T[S i) g 20

14) is the differential equation for simple harmonic vibration,

with the frequency,

w:’ = (Zl‘rrd);)‘-z % (|._a,,__:.';r-‘{-;—) =—§ A

15) ke
N = Lo $o5 1
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The equation and its solution become,

%_+A%.=o

16) .
8—:(',04,/\—,{- A+teno ANt B

A and B are arbitrary constant vectors. We observe that the

transformation K 1s complex, whereas the vector u is real. There

must then be some relationship among the elements of q. Thus,

from 13), N N -
U S A pew e T (R A X 2 L)
U, = YN = %.} 2N TS %J J
a sufficient condition that u is real is readily seen to be,
= 7k
17) Br = §nvr

where, q#%* 1s the complex conjugate of g. A transformation of g

to real coordinates, which satisfies 17), 1s seen to be,

riﬁ-r: Pr 1 Py, Y<%
18) = P
)TZ%Y = ¢%¢fi P, V=

o= 2

A and B in 16) are multiplied by diagonal matrices, and thus

N
o,

their terms differ from those of q only by real multipliers, so
that they are subject to conditions similar to 17),
Ay = A
¥ N-Yy
= *
By = By-y
and must be transformed to real constants by transformations

similar to 18),

V—;ﬂv:a.r—*L&N_y}Yc% Vo B\,:];;Y+L1:>N_YJV¢-5‘
A% =, B%__‘-‘*Ll\_;:
19) z
Vs ﬁY :a'N—Y"L&YaY'?‘i V3 B‘r = IDN—Y EYJ r =N
H‘N:. aN BN —, EN

We must now normalize the matrix of transformations 18) and 19).
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Thls matrix 1s, explicitly,

_._|_ o8 ) ey « "= — .
1/;,—00 0 205 gnae 0 & G o b
- " L B LAy e
2(0 % O 0 0 0 0 7% 0 0
?oo—f_;———o—-o-—on—-?ié_oo 0

= SNt ;
Yo o o -~ -0 --% --—-0 0 0 O
| e B o s TR e BT L e RS (S N = —_—
F 6 @ Plocre0 5 1 - G —er® G0 O
/ ey il et it e DT AW S nn ) e ap B g e — e a—
---L' _.L'
LR s e B )
¥-3(0 o= S S9tsdo——0——== 0 0 0
- (i R N ey p AT =ic_
N-2 |0 & O© 0 0 0 0 7= 0 0O
N-1|® 0 0 —— 0-- 0 -~ 0 —-— 0 O O
N\OOO_ﬁ-—O—-O—-O—~-O oo 1]
If we add the (N- Y’)th row to the ¥ th row, the matrix becomes,
A~ O g o ©
k™
0 = o @ o
oLy, LA 10 B g
/ —%
0 &= = B 6
= O G == B
0 0 g O .1

The matrix 1s now trilangularized so that its determinant is equal
to the product of the dlagonal elements, which has the absolute
value of unity, so that we see that the transformations 18) and
19) are already normalized. We can now obtain a real solution

of the dynamical problem by combining 13), 16)and 13). In ex-

plicit form the solution is, .
v g L
20) c(c.- e _L—— g { [q/m zv%/_ ‘q‘v_/r'h 2-77-.::9 ]@I%—- (("'CO: 277‘,'_,‘ )t—

-/—Zé, G::Z‘n'-%‘,'—’ = Sn.:ur ]Il 2= (1- cp.r.w-,—.;)(}
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20) can be simplified by shifting terms and employilng trigono-

metrlc substitution. 20) then becomes

% < .
e (a, s O ¢ + b, L @7'{')&%2-7!'-% +35)
21) é} o

We now wish to obtain the energy expressions 6) in terms of the

new coordinates. To do this we note the results,
fr=tr7
Ka:[a;'r’.;]
FSh= IZJJ;.’ =7
lr"r-%’ ;[’? 3 1'4’3‘1
Then applying 22) and 13) to 6) we get the result,
. . ~
= A = e L i
iE .1.;' [Jt;‘, I? 2 yzw?v%p-r
v "
23)) V=«g Llreormm )8 T = < (Feas a5 ) g, fuy

= S W Gy

Y =

Applying the transformation 18) to 23),
LR
—_ I
T=% &
=
V=g ot

The energy expressions, 24), are now in normal coordinates, so

22)

24 )

that we can immediately express the state of the system in quan-
tum mechanical language. From 24) we now get the quantum mecha-
nical Hamiltonian,

N o i 8o
25) }’: i ég:ﬁ:;gT + ﬂ%%'éé:‘&k qz

r=¢

using 25), the Schroedinger equation for the system is,

Jid L M - 5
26) 2h > il dC) + —"'i—% w, @, Y@) = Eww)

L/ Y:-( —a@fl—
We see at once that the variables are separable on the assumption,
T X (4)
21y (@) = 1 K (¢

r=/
4

£ F = &

Y=,



16

Substituting 27) into 28), we can then separate variables and

obtain N equations of the form,
dtzr(@) 2t mas, @ \*
0 g ¢ () @ -

We can simplify 28) by the following substitution,
A = A £y
29) g

o Wl
and obtain the solution for the Y th normal mode,

@) =C e A (p)
30) A = @i +1) e,
O =[50 [mfd™y

We obtain from 30) the energy eigenvalues,
31) £, = (v DAY = (mo+5)h 4
Combining the solutions 30) according to 27), the solution for

the lattice becomes,

W) = 7 ()t e Ty mR)
fngwy#(w,+%)

Here, H

32)

n(x) is the nth Hermite polynomial in x.
Equations 32) will be useful in the next section when we wish

to obtalin a perturbation of E, corresponding to the addition of
a higher term of 2) to the Hamiltonian, 25). We shall also need
a more explicit form for the transformation to normal coordinates.

Writing 13) out, we have,

o = e 2 T

v
= 5\/_.;_/"_-23—(%517_:&'—’ Ry 3:«)-7?'—}3-’)(@:' +ﬁ@y,y)

Y=y

'f“((éf 27;',_‘_'.'—%—7 Six 2 — )(pr /~r Cp/i/, )
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Vol
= —‘,-—. i Ho
U: = 7o v"Se [ CosaTyt + Sim o L 1,
By using a trigonometric identity, we obtain from this result,

N
= o ;% -

If we now designate the transforming matrix by,

s, Lan = [ﬁ‘l—;— Sin(@m 5t + I)]

the transformation which reduces the energy terms to simple

quadratic forms 1is,

35) toegh iy Cp
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IIT EVALUATION OF THE ANHARMONIC ENERGY TERMS

In part II the normal coordinates of the lattice were
obtained. That means that a coordinate system was chosen such
that, in 1t, the kinetic and potential energy expressions were
found to be linear combinations of the squares of the momenta
and coordinates in that system. If we apply this transformation
to the higher degree terms of the potential energy they will not,
in general, be similarly reduced to simple powers, so that a
complete solution of the dynamical equations is not generally
feasible. We must instead treat the additional terms as pertur-
bations of the Hamiltonian of the system.

The general expression in normal coordinates is ob-
tained by applying the transformation 35) to 2). Thus, 35)

written explicitly ylelds,
U =R & G SmlamiF «F)

36) l(t-ﬂ"'(.( r_, Z [Sm@_ H-c)w _IL‘) Stn (111— _,_-_7;_{:)3(@‘,
;z}%; @y SeTF G5 (zvr_c‘."‘r‘—_)" T

The summations will now be understood to run from one to N. e

can simplify 36) by making the substitution,

ik
) Gy =YE ST goler S o)

Applying these to equations 2), we obtain,

g T=Z@f :
- V=22 = 0 R 4—5[/"(3303(2) 4_}/(20"4),) o]

Oar purpose now 1s to apply the cublc terms of the potential
energy series as perturbation on the result 32). The change in

the Hamiltonian is,
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g AH=av=B= (= &)

and the first order perturbation of the energy 1s then,

BE:S--S A (EwmPr Y (#)4T

o =-—§ j/—‘*z(zrqoy)sff(,rjl/nuf’ ™" (rq%)of;ﬁ,

We observe that on expanding 40) the integrand becomes odd in
each (P; , and since the integrals converge, they must all be
zero, thus causing D E, to vanish. We can see, moreover, that
no odd powered term of 38) will contribute to the first order
perturbation of the energy. We now consider the fourth powered
terms to be the first contributing to the perturbation and ob-
serve that the only terms of Pfég,(ﬁg 75, P+ )7 wnich contrib-

ute are,
4l ¢ % r g* 2

41) AH—YZL_[E:(I} P, M'_Z?Sf;,fggéj_g&s]
Applying 41) as a perturbation on 32) we now obtain,

-~ - ¥ Lo 2 2 e
oy fEsSuS v SE gl ez T B T

(ol 2w X e AL (VA Pe) d P

We now separate the varlables in 42), 2 )J

) A, ~ye [ty s ] § @l e™ P (R4
(I VB (el 25 e %4 ( vorz PP

W;P,.
sy YE T [BE(MI M H ) e mjﬁ* b
(77 @) dpe $ g e~ W2 (s iy T T 50 (e

These integrals will be put in a more usual form if we make the
substitution,
44) 7:--: Voot W"

4%) then becomes,
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45) quryg[(w-o“m, £ s Sy Jf % // (5 )d3,
XW‘( /’f/.l’”f/ ’j“c-?“'r A(f(g{)a/_;;
T
‘IZC//%[(W«;%M),(%QHA_’:Q;!@;L] }fldq ';’k(ﬁjd-;

XI55y Xy T (i (2%) " Ter (22,
t#;s

We are now ready to insert the values of the moments of the
Hermite polynomials in place of these integrals. These moments

are computed in Appendix I where we find for the zero th moment,

46) §<“—’ Cf)d = fr 7 L2

Applying 46) to 45) we note that the extended products reduce to
unitys If we-now insert the values for the second and fourth

moments, x ='

47) &f//(f)ef“/f /’F/”“'/j‘i W N

48) S‘}' . (f)f—’ ’d}" = 2T Z cr(u)r(,g,.t)f

45) now reduces to, v  Lm. X
3o F% sl
49)415_(_“ = o é‘ R-Olm-2)1
t M, W,

g My (27,1 2 -

J/ :—
T Lt
rE &, e < g=e Oy-c)!me-;)!

2

There now remains the summation of 7 to be deter-
¢
mined. We first obtain 0-,-: by applying appropriate trigono-

metric transformations to 37),

50) ﬁ.',',('{-‘- ij%f Irn“!w—?i Els +Gu ) Lo LA + G -‘)_Tm + Feosl 25t ¢ GF *‘%L')Iz’}

With the aid of Appendix II we now sum O’- to obtain,

51) J:O_‘t = i%im T §J+ Cos (&7 f-*"r—/B.pcS' ]

2
The same process applied to ;'—rdg:. ylelds, flI‘St,
= s g -5)¢
0’; e = 7 jmrlmﬂ—_gcﬁz E—+_r) . ( Eis W %)]a—nw cos(.%,_‘]z'ri}

or,



21
‘.%F Sutm 5 Sul T {.2; o5 [55< + (2 4 F) Jamreacd 3o for

52) 7,
, + Coj i%%gﬁ1LG%Fzﬁf%ﬁﬂ“*gﬁféégigﬁuT‘F.

Summing, this becomes,
53) Z v —.‘fj‘“a‘v 7 TS Z[z+3_cgr("”+-$)a;rf + A Cos (128 pf)am £
‘a-So
raiiEn gy £ 2

2ns)o 52
Before using these results we need to consider a method of sim-

plification. We observe that if N is odd, all of the J terms
vanish. On physical grounds we can see that this should have
negligible effect on the energy for large N, and in fact, we can
see that inasmuch as the J:SIeduce these to very occaslonal
terms, it is reasonable to suppose that the effect would be
slight for large N. We can consider that the energy correction
due to these terms would actually be an approximate measure of
the change in energy of a 1atﬁice in passing from an even to an
odd number of atoms. We shall neglect this energy by considering
here only an odd number of atoms. For N odd we obtain, by apply-

ing 15) and 29) and 50) =-53) to 49),
35 Y 2 L R S
54) A&, :#ﬁzf“fﬁgm
+2£3‘rarrp5mm,— f”‘:—' S, I m, !

4 =0 (m.-¢ M’...“
If we make- the addlitional assumption that no eigenvalue, n, is

less than two (which is unimportant at high energy), 54) reduces

to,
:r% 2t AmEram,+1)
> WET™ ot 1!3 J
55) 4_4‘% SwT L S5 (7, M 42 4fr+2/ﬂ_,+l)]

We are now interested in comparing this with the energy for the

harmonic potential from 32),

56) £, /= k%% SeaT X (M+))
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In order to complete the comparison we need to deter-
'mine some distribution of the eigenvalues among the modes of
vibration. For a first comparison we can make the assumption
that all the modes of vibration are equally likely and thus
take all the elgenvalues to be equal. 55) and 55) can then be
summed with the aid of Appendix IT and we obtain,
57 dEn = ﬁ;—?,% (B3> Qa2 min) +/6 (m*+ Sur)p T

Another useful comparison is that for a distribution
of eigenvalues which makes 55) a maximum with 56) as a restraint.
Using the method of Lagrange multipliers, we set the total dif-
ferentials of 55) and 56) equal to zero,

59)3 Z I nreldn, + S SmmB s (1Yo, + G191 =0

Combining terms with like differentials this becomes,

-

= {3 5wl fomg 1) A ST LT 3o+ 1) Ao,

N el |
P12 S S Bohmd Qo )dmg= o0
=t =i

In the second term we can interchange the order of summation

% TR

according to, us YZ’ )
=30 T
)%:Sw I=r V=3

thus isolating the coefficients of the differentials, so that

we obtain,

60) 23} Sy (2, +1) + ?ig._rw‘rr§ S @) fdm, =o

Now differentiating 56) we obtain a second equation corresponding
to the restraining condition,

61)¢EZZJwVH7¥:0L”y =0

An a;;itrary linear combination of 60) and 61) is,

62) = {35l F @A) Y S5 S 5 (2) = Q3m T | ohae, =0
The ngferentials are, however, arbitrary so that we can set

each coefficient equal to zero and solve for R
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63) A =3 S T (2t + /) + 6(%&44 T3 (2 +1)

= S ST F @My * 1) (455

Since A 1is independent of S, we subtract equations for S = S
and 8 = t,
= dm Gt (4-8c)- @m+ ) (-6} =0
or,
g.nm'n- % (amy+1)( e~ 3rs) =0
Sepafﬁfing the terms, the summation reduces to two terms,
Sun 7 F (g 1) = w3 @, + 1)

Choosing, t = 1
-l (R
64 ) ..S‘m]rrw‘: (aMm; +1)= Sim T4 (am, +f>
and solving for ni, e
e Lo B -J-J—) &
65) = > ™ (" S

We now apply the restraint, 56). Substituting for ni from 65),

) BE = WU T (am,21) S FF

Carrying out the summation and then solving for uj,

67y M,= — = + QT‘;%T;/}Z—}}"“

we can now evaluate _»7. completely by substituting 67) in 65),

6B8) M, =-% +'iiE§§%EEF§7

which 1s the required distribution which produces a maximum
AE. due to its quadratic form with leading coefficients

positive. It is now convenient to make the simplification,

9) T= gy
then 68) becomes,

R LA . Ll
70) M:' re L +T§m??‘-;.‘;’—;

and applying this distribution to 55),

)AL = '%};)l— {Z[v‘ Swrr i + 11
+g '_S_DT';*(?»»"?T,V Simmrs —!)"‘/wﬂj}

Y
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Carrying out the summations we obtain,

T AET LIS AusapR it e Flanry Ao WY

5 § T

and from 70) and 56) we have for E,

73) E = LAN T

We can now regard 7 as a generalized eigenvalue which takes on
values determined by the integers Ay according to 56) and 69).
We are interested in the ratLoAézf , and, for high energy and
high N, we can neglect the lower powers of 7‘ and N. Thus 57)
with 58) and 72) with 73) yield,

DE _dQdAm B
AE :flq‘k)/

Br—F ¥ P
which is to say that the distribution of eigenvalues which gives

a maximum perturbation at high energy is the same as that for
which all eigenvalues are the same.

We need finally to express the energy in terms of the
temperature in order to evaluate the effect of the anharmonic
potential terms as a function of the temperature. For this we
must find the partition function9!83,

Zher _h%r
76) log Z(7) = —/V{g(’V) JOJ(I—G ) d#
such that, J grnd® =¢
where Ngfv)d:7 1s the number of normal modes of vibration in the
frequency interval ¥ toﬂ#ﬁ@{ From 15) we have an expression
for the frequency of the (Th mode of vibration,
TP By
thus,
8)  Home™ Tl
and if we defipe,
W){%:Vﬁ' _

g
'ﬁ-.—- ey ‘?;—
77) becomes,
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ol el
The number of frequencies less than #=+4/ 1is given by the
sum fﬁ..""o&- jf:”'r
’ 8= )| =28 de = suif
81) /7/(9(4{.)—"47(:6 5" e

and the fraction of frequencies less than -V is,
82) v oLLE%) = i Self

Vi
Where 77 1ls the length of the interval, treating the

points as being dense. We obtain the desired distribution func-
tion by differentiating 82) with respect to %

R e e - gt et b
83) J(V) = 7 o9 S = 7 vy IW5E = whpe

8%) is normalized in the interval CP-:- (0,7): or, £ = [0,2)+(1,0)
whereas T4) uses only half that interval, @=(0,Z), or, £ = (0,1),
so that in this interval, the normalized distribution function

is, g

84) 9(?) = Tz~

The total energy of the lattice is given in terms of the partition
-I'unction by,

-.\_'-b )Oj
85) ﬁ?{ﬁf) =WAT qo-r-a

4,
= A,/ygfv) d»
i /V‘E,S\eh KT ..../

Applying 84), this now yields{L

(3 )T
06) £ = G- SRt —d¥

we note that, q]}irg x(ek—r) =1 so that, for large T, we can
h 2
replace(e_%hlq ) with kj%}-. Then 86) becomes, with f as

the variable of integ?ation, , -

g7y £ = 2LET  ChF (VDD 5 ff
m ’0 h?, $41

2 WET o f b I

T gy‘:_f_ﬁ?’ /éT

Now substituting 87) in 69), which applies for large T and 7-,

a—

we obtailn,
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By =
so that 75) finally becomes,
AE‘ . BLhT
B =
or, replacing E with 85),

90) AE_-}J’/VA 7—

This is now an expression which can be used to give us correctlon

terms to thermodynamic quantities. Thus the total energy and

the specific heat have the values,

91) EW=WéT+—%{l%}T4

92) C, = WM& +5”’/‘/£’7—

|
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IV CONCLUSION

By carrying out a perturbation procedure corresponding
to a deviation from harmonic vibration of the lattice, 1t has
been found that to the first order perturbation, the third de-
gree potential terms do not contribute,mor in fact, that any
terms containing a normal mode variable to an odd power contri-
bute to the energy of the lattice. With thilis conclusion we then
considered those members of the fourth degree term which con-
tained only even powered variables. We should, however, con-
sider the effect of this choice. There always arises a question,
when considering second order effects, due to competing effects.
For example, in considering anharmonlicity as a second order ef-
fect, we might also conslider second or third-neighboring atoms
as well as first in constructing the potential energy expression.
In this problem, however, we were concerned mainly with the
deviation with increase in temperature, and we could then assume
that anharmonicity was the first effect to be considered. 1In
choosing to examine the fourth powered potential terms, when
the third degree term was seen to vanish for the first order
perturbation, however, it would also be significant to examine
the second order perturbation due to the third degree tern,
which presumably would not be zero and which might even have
an effect comparable to the perturbation that was considered.

The next decision that arose was to simplify the ex-
pressions 51) and 53) by assuming an odd number of lattice
points. Again, the effect of this cholce might well be inves-
tigated, although, on superficlial examination of the terms
themselves, as well as on physical or intultive grounds, we

can concede that for a large number of atoms, oddness or
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evenness should not make a significant difference in the total
energy of the lattice. We were then able to arrive at 55) as

a falrly general first approximation to the energy due to an-
harmoniclty. We observe,however, that this does not give us a
unique result, since, according to the statistical mechanical
hypothesis of equipartition of energy, all values of the eigen~
values, and thus a wide variety of values for AE, are allowed
which are consohant wlth a given value for the total energy, E,
at a given temperature. Here also we have alternative approaches.
We could elther investigate the range of possible values of

A E, or else find the distribution function for the proportion
of systems (considered statistically) which has a given distri-
bution of elgenvalues from (E 4+ AE) and then compute the average
value of the total energy. We chose the first alternative as
being the simpler and computed A E on the basis that all modes
of vibration are esqually likely, thus arriving at 57). Then
using the Lagrange method of undetermined multipliers, we found
the distribution of eigenvalues which made A E a maximum, given
by 72). We then observed that at high temperatures the two re-
sults become equal, and so we concluded that the maximum value

1s approached asymptotically at high temperatures. Next we found
the frequency distribution for the unperturbed energy and from

1t the value of the energy in terms of the temperature. In doing
this i1t was necessary to make the assumption, at 86), that,

kK;f 2 h{?ﬁ. 2.8 |
or, in terms of an actual crystal, using the Debye temperature,

O
——i%r——c:4 /

From values of @p for several crystals*, it is seen that the

#C. F. Fowler and Guggenheim, "Statistlcal Thermo-
dynamics," p. 145, table 3.
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values are generally less than half the melting point, so that
there 1s some range in which the assumption is valid. With the
energy terms expressed in terms of T, we then obtain the ex-
pression 89) for the ratio,

A, g #EYET o,

E X *
From the data for various elements we find from 92) that o, 1is
of about the same order as k. Assuming that ) is of about the

same order of magnitude as we conclude that the ratio might

) s
be of the order of unity. Thus, while our purpose has not been
to obtain physical conclusions, but only to carry through the
necessary mathematics, we see that the anharmonic energy term
is of a magnitude which requires that it should be examined in

each case to determine at what temperature it becomes effective.
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APPENDIX I

Determination of the Moments of the Hermite Polynomials.,

We wish to_gvaluate the following integral,

P’ =8 F D h(F)e T AT

A
First set up the generating function Hp

Han LT e Cr~r)
Sz, 5).= Z___Qr_)‘; S

r]_'(f"f) = E__H:__(__Q_ {M: e}'l_(f‘f)\..
)

Nov&foim, 4 ,..., H (3’)/‘){ {}-) o :
ST tur 2z S T Lt A5

i
=
= - SY€ A Fretr - F
) d
:e-—l:{-\g; F e" (]'-.r-c—) d}-

In order to replace (¥ =s =~t) with p in the last integral,

form the Taylor 8 expansion for :F

I L
f gjcr (F-5-¢)* = 22-:—,- el BT
=0 L= o
making this substltution we ootam,
[l
e Dol Z—?— (re) "‘f (5-5-¢)' e~ (F 5oL (5-s5:¢)

s (aa] S
e M
In terms of, p= fm_r—f this becomes,

g™ ¥ v r—c re e ¢ o N
= £ ,3::3;%— (s+€) e Fetdp

{
anm anlm] =

The integrand of X 'btf—_:'t"aﬁ,is odd, so that, since the integral

always converges, 1t vanishes unléss i1 is even. Now form the
generating integral, o ;
- Lo ogmd e—déL = I)F gt
Je bop = viledqp
Differentiate 1/2 times with respsct to }/ g
- L)% -
(1) AL ety =i ()R =
Setting ¥ = 1 and observing the above remarks, this becomes,

¢-/) %_éi}"f"bld& =/ £ %t‘/lr'j:-;_
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, Inserting this in the series, changing 1.t0 231,

B &y
BT o S G e g e

Al fAwm (2:/“

We can now write the form of the result at once in the usual

manner for obtaining the coefficients in a Taylor's series.

4
- " rc'_r - A
v _ y & ‘E..J) 0 Potts (_r+ (—) -
P 0" T ey
AN = (a c)_} 3 f=t=e

It will be convenient to expand the terms to be differentiated

in a power series, thus,

(:f--t) 7%1.1‘-(' - Z (V--z.r.) é eli-k 2 (2 Sf)
£=o Z!

-2 oo = rﬁ-:f
o e
k:o L=0 ‘

Differentiating the series, we obtain the required derivatives,

b-2c

v o (2¢) 2 s 1L
o (@] = Z & 502 ) i)

X5 bt L~ fV+f-1£—é—M/
$=¢=0

The series reduces to the terms which become constant after the

differentlation, so that the non-vanishing of terms requires

the condition, hal-rmn =0
Vil-2¢- p-m =0

which have the simultaneous solutions,

= Ou-mey -

>
N = mtm-v 4

Since k and 1 are integers, these give rise to the additional

restrictions, Mt m = v med (2D
m-m =y mod ()

Which we can see are both satisfied or not satisfied simultaneously

so that the non-vanishing term of the series is,
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And now the limits of the series impose still further conditions

- O, r
o= ¢ = ¥Yv-2c¢

L =8 T L Y

on k and 1, {O‘ - F v
= 5 +~c

which we can arrange so as to indicate these as conditions on i,

Ymtm) o . o X amoa
o = L e &

C &£ V=t
2

or more simply,

= (""‘*—""“) 2 ;= Y- ’4\1—/“'
G ers e

The resulting value for PV is now,
e [=p2r-T 4 foser iy

Y A E »? N - ") (-/) A
= Vi Lot -
‘}:‘_M Vi - é;m_m — h(/ww G )!{4., —m ¥ < ),(m,,;.,,,..? c)’

Some simpllficabion is possisle,
$v.2 T [""‘"‘ I |

P i) o
il = (ﬂ//".r‘_ Lt 3iim = o R 2L
= ¥ (a0t
A =

Ged! | _ fui IPVsat &

Ealy © eHleE
Thus P

) _.L.,:!_';‘_"___] (,.,,_‘:_,‘_H,* C.Jl.(du::.-v)

v -3 4
= f=ml ! E -
f.,,,,, " S ' @) Iampe> _ o )l (g, o))

(3'0 V-(m»u}
L

We can finally write this result in the form,

SEH DM@ FAF = fm tan) ™5 "
v--fms_..} r
X Z [2. ¢ l(«. Y _ )‘Q‘—“‘*—Z{ )’Q‘Md*‘)']

:o { ¥- {m*m)
=
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.A case of special interest 1s the expression for the diagonal
terms, for which we record only the non-zero moments,
O T o s B e v ‘. . "
S5 HOGXE dr = m?> @il = [25c1 (n)! (nr+i)1]
£330 Fom
7

We can write this in a better form following the change of index,

L

L '=r—|

The result now is,
)

& + . s G f N - g
S5 Uy =l e E e

As a special case thlis yilelds the norm for the Hermite poly-

nomials, o,

S eay — gt
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APPENDIX II

Some trigonometric Summation Formulas and their Asymptotic

Values. 4
& Su. L =4
F das it AN V)
e s [-CoC T M—¥s T

A
BJZNIM.-\_(_Af_;__b)j_Tr: VSa 217 d c[;’o /é,; 2 !k?‘ejc/

4)505 é%,\ L)rrr /VCOSLTF.,LJ’ \ kis 3x ('ﬂ’“Qje./

SJZ.z:f»n-%:J”,_ﬁ:j/L_ oy thih fi%
/-ClTp paes 1T

n Y-
= x s = A (- . Ty =2l Ty *
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