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The explosive growth of next-generation sequencing data enhances our ability to under-

stand biological process at an unprecedented resolution. Meanwhile organizing and utilizing

this tremendous amount of data becomes a big challenge. High-throughput technology pro-

vides us a snapshot of all underlying biological activities, but this kind of extremely high-

dimensional data is hard to interpret. Due to the curse of dimensionality, the measurement is

sparse and far from enough to shape the actual manifold in the high-dimensional space. On

the other hand, the measurements may contain structured noise such as technical or nuisance

biological variation which can interfere downstream interpretation. Generative modeling is a

powerful tool to make sense of the data and generate compact representations summarizing

the embedded biological information. This thesis introduces three generative models that

help amplifying biological signals buried in the noisy bulk and single-cell RNA-seq data.

In Chapter 2, we propose a semi-supervised deconvolution framework called PLIER which

can identify regulations in cell-type proportions and specific pathways that control gene

expression. PLIER has inspired the development of MultiPLIER [154] and has been used to

infer context-specific genotype effects in the brain [121].

In Chapter 3, we construct a supervised transformation named DataRemix to normalize

bulk gene expression profiles in order to maximize the biological findings with respect to a

variety of downstream tasks. By reweighing the contribution of hidden factors, we are able

to reveal the hidden biological signals without any external dataset-specific knowledge. We

apply DataRemix to the ROSMAP dataset and report the first replicable trans-eQTL effect

in human brain.

In Chapter 4, we focus on scRNA-seq and introduce NIFA which is an unsupervised

decomposition framework that combines the desired properties of PCA, ICA and NMF. It

simultaneously models uni- and multi-modal factors isolating discrete cell-type identity and

continuous pathway-level variations into separate components.
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The work presented in Chapter 2 has been published as a journal article [109]. The work

in Chapter 3 and Chapter 4 are under submission and they are available as preprints on

bioRxiv [107, 108].
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1.0 Introduction

1.1 Introduction to RNA-seq

There have been comprehensive reviews on the pipelines of generating and analyzing

bulk RNA-seq data [38, 32, 130, 79]. The overall generative model for the final quantified

gene expression is visualized in Fig. 1, which mainly contains three components.

Biological Process This part corresponds to the exact underlying biological mecha-

nisms that control the quantity of RNAs in the sample. The RNAs produced by a single

cell are governed by its epigenetically programmed cell type and its response to external

stimuli, or cell state. For bulk RNA-seq, the final RNA pool is made up of RNAs from all

cells contained in the sample as a snapshot of different cell types and cell states.

Experiment Design This refers to all the necessary experimental steps to turn the

original RNA pool into sequencing reads. This includes RNA extraction&enrichment, library

preparation and sequencing itself. Each of these steps introduces variations from different

sources.

Computational Analysis The computational analysis includes the process of convert-

ing raw sequencing output into RNA quantities. Meanwhile it is possible to detect tran-

scripts, alternative splicing events or gene fusions. However the most common output is a

gene-level quantification matrix with respect to a predefined transcriptome.

As shown in Fig. 1, noise and nuisance variations are introduced to the RNA-seq readouts

at various steps. For example, GC content, gene body coverage evenness, base error rate and

nucleotide composition are factors leading to the bias of aligned reads in the alignment step

[96]. Variations that are introduced by experiment setup and computational analysis are

undesirable because these technical biases imply that the final RNA quantification doesn’t

accurately reflect the real RNA quantities in the RNA pool.

We consider data normalization to be the data manipulations aimed at removing all

unwanted variation which may be technical or biological. This is crucial for all downstream

analysis relying on precise RNA quantities. In the following section 1.2, we present a review

of strategies that are actively utilized to estimate and remove unwanted variations.
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Figure 1: An end-to-end pipeline for RNA-seq. It contains three modules which are Biological Process,
Experiment Design and Computational Analysis.
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1.2 Variation Modeling

A series of reviews [125, 36, 95, 41, 24, 158] have been published focusing on the develop-

ment of normalization methods. Some of the normalization methods are naturally adapted

from microarray analysis, e.g., voom [82] while others focus on methods that are RNA-seq

specific, e.g., RUVseq[126]. We can consider all of these available approaches from a univer-

sal perspective of variation modeling. The variation in each dataset is influenced by various

factors such as batch effects, experimental variables, various sources of biological variation,

some of which are desirable while others are not. The hierarchy of variation modeling is

depicted in Fig. 2.

Measurement = Sequencing bias+Known tech varia�ons + Unknown varia�ons Cell Composi�on+ Signaling Pathways+

Biological varia�ons

Real mRNA quan�ty

Gene expression

Figure 2: Different variations are additive. The annotations in this figure are consistent with Fig. 4, 5, 6
and 7.

There are two categories of variation modeling in general which are generative modeling

approach and heuristic approach. In Fig. 3, we classify different modeling approaches along

two dimensions: the formulation, and the type of variations they try to model. Heuristic

approach is to remove the unwanted variations one at a time, in a stepwise manner (Section

1.2.1), while the generative modeling approach is to model variations with generative models

(Section 1.2.2). There are two subcategories of generative modeling: explicit modeling,

and implicit modeling. Explicit models attempt to extract factors that are individually

interpretable. For example Cibersort estimates the abundance of specific cell types. Implicit

models attempt to only capture a subspace that corresponds to a type of variations without

individual sources. For that reason variables extracted by explicit methods can be both

analyzed directly and regressed out for data normalization while implicit methods are used

for the normalization only. The orthogonal dimension in Fig. 3 represents the type of

variations that are of interest and there are mainly two groups: biological variations, and

technical variations.
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CIBERSORT, NNLS

Explicit Implicit Heuris�c

Genera�ve Modeling

Biological 
Varia�ons

Technical 
Varia�ons

Cell Composi�on

FPKM
EDASeq, CQN

Combat

RUV, SVA
PEER, HCP
DataRemix

NCA, NBS
GSEA, ssGSEA

Matrix factoriza�on with constraints

PLIER, NIFA

xCell

Figure 3: Classification of variation modeling approaches. Generally there are two approaches: generative
modeling and heuristic approach. Within the category of generative modeling, there are explicit methods and
implicit methods. On the orthogonal dimension, we categories modeling methods by the type of variations
they are trying to model: biological variations and technical variations. We also highlight cell composition
estimation as a special subcategory. For each subcategory, we only list one or two representative methods
and detailed discussions can be found in Sec. 1.2.1.1, 1.2.1.2, 1.2.1.3, 1.2.1.4 and 1.2.2.

1.2.1 Model (and remove) unwanted variations in a heuristic manner

1.2.1.1 Correct sequencing bias Sequencing bias is contributed by various factors,

such as gene length, GC-content effects, sequencing depth, etc., and it has to be corrected

in order to get more accurate estimation of RNA quantities (Fig. 4).

Measurement Gene expression Sequencing bias= +

Remove sequencing bias

Figure 4: Correct sequencing bias from RNA-seq measurements. The annotations are consistent with those
of Fig. 2.

Table. 1 lists normalization metrics that corrects length bias and other experimental

noise in order to retrieve gene expression abundance from noisy measurements. EDASeq

[135] and CQN [58] are two other methods that are capable to correct GC-content effects.
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Methods Abbreviation Initially Proposed for

Total count TC/RC (raw count) RNA-seq

Upper Quartile UQ [24] RNA-seq

Median Med RNA-seq

DESeq DESeq [7] RNA-seq

Trimmed Mean of M-values TMM [136] RNA-seq

Quantile Q [143] Microarray

Reads Per Kilobase per Million mapped reads RPKM [114] RNA-seq

Effective Reads Per Kilobase per Million mapped reads ERPKM [132, 95] RNA-seq

Transcripts Per Million TPM [92] RNA-seq

Fragments Per Kilobase per Million mapped reads FPKM [157] RNA-seq

transformed log2(FPKM) zFPKM [59] RNA-seq

Table 1: Normalization methods correcting sequencing bias.

1.2.1.2 Regress out known technical covariates Besides sequencing bias, there are

other unwanted variations because of experimental design (Fig. 5). The most prominent fac-

tors is the batch effect [83, 51], which can dramatically affect the conclusions of downstream

analysis. Leek et al. [87] presents a comprehensive review of batch effects and emphasize

how crucial to adjust for batch effects. It is shown that ComBat [69] outperforms other

correction methods generally [28].

Gene expression = Known tech varia�ons Real mRNA quan�ty+

Remove known tech varia�ons

Figure 5: Regress out known technical covariates. The annotations are consistent with those of Fig. 2.

1.2.1.3 Estimate or eliminate unknown variations Other implicit variations are all

included into a complement category of ”unknown variations”. Depending on the source and

the goals of the study, unknown variations are not unwanted all the time. But in most
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cases, these implicit variations are contributed by noise or artifacts that are indeed unwanted.

We would like to estimate these nuisance variations and regress them out subsequently.

The general strategy is to estimate hidden covariate without removing significant biolog-

ical variations. As reference spike-in may not work, a series of work have been formulated

based on the idea using negative control genes to estimate unwanted variations. It includes

RUV-2 [48], RUV-4 [47], RUV [133], RUVseq [126] and RUVnormalize [67]. Similarly sva

[86, 88] and svaseq [85] first identify genes that are affected by unknown variations and

then perform decomposition to estimate the unknown artifacts. Other methods directly uti-

lize matrix factorization models to accomplish this task. For example [128] uses Principal

Component Analysis (PCA) to estimate the unwanted variation and use the estimation as

covariates.

1.2.1.4 Estimate cell abundance and pathway activities One source of biological

variation that is often of interest is cell-type abundance. There have been continuous efforts

to estimate cell proportions from transcriptomics data based on heterogeneous samples [152].

Cell-type variation can be both either a nuisance factor or a factor of interest depending on

the question asked. For example in the case of tumor profiling where we may wish to

study a pure tumor sample, cell composition is actually considered a nuisance variable.

However, with a different scientific question, such variation can be of biological interest.

Tumor impurity is in part driven by immune infiltration which is highly predictive of the

outcome [155]. Table. 2 provides a brief list of available methods designed specifically for

different heterogeneous tissues. These methods provide estimates of the cell-type composition

of the sample and these estimates can be analyzed directly, regressed out or both. A key

feature that of all of these methods is that they rely on prior knowledge of the gene expression

state of the pure cell types in the mixture, either a set of cell-type specific gene expression

basis or simply a list of marker genes.

The other source of biological variation is pathway activity (Fig. 6). It’s not trivial

to estimate pathway effects directly from RNA-seq and it is more common to test whether

any a priori defined gene sets show statistically significant difference between sample groups.

GSEA [153] first introduced this problem to the field and a series of methods have been
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Real mRNA quan�ty / Biological varia�ons Cell composi�on Signaling pathways= +

Deconvolute

Es�mate/GSEA

Cell composi�on Signaling pathways= +Real mRNA quan�ty / Biological varia�ons

Figure 6: Estimate cell abundance and pathway activities. The annotations are consistent with those of Fig.
2.

developed subsequently[65, 140]. Other related attempts are about how to incorporate the

pathway information as constraints into matrix factorization frameworks in order to get more

useful representations. NCA [97] incorporates the bipartite structure between transcription

factors and regulated genes to capture the dynamics of transcription factor regulations during

cell cycle. NBS [62] encodes the global gene-gene interaction network structure as additional

constraints into the non-negative matrix decomposition framework in order to get more

consistent assignment of tumor subtypes.

Tools Tissue

DeconRNASeq [53, 54] Blood

NNLS [1] Blood

CelLCODE [30] Blood

xCell [9] Blood

CIBERSORT [119] Blood

CIBERSORT-X [120] Blood

ESTIMATE [168] Tumor

TIMER [93] Tumor

MCP-counter [17] Tumor

Table 2: Normalization Methods estimating cell type proportions.
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1.2.2 Model different variations simultaneously

Compared with the stepwise strategy, the other attempt is to model all possible variations

at the same time with the help of generative modeling (Fig. 7). Generative modeling is not

a well-defined concept and the terminology is not consistent across literatures. Generally in

the context of unsupervised learning, the objective of generative modeling is to model the

probability distribution of the data and thus make it possible to generate new samples from

the distribution. Factor analysis is a special case of generative modeling [145] which assumes

the observed data X is generated from a set of unobserved latent factors S through the

transformationX = AS+noise. A is denoted as the coefficient matrix which defines the linear

transformation. I will use the term factor analysis and matrix factorization/decomposition

interchangeably through the thesis.

Matrix factorization has been proved as a powerful tool to model the variations [150],

and it can summarize the variations embedded in the high-dimensional RNA-seq readouts

as compact representations. Matrix factorization also makes it possible to extract variations

with certain patterns by including corresponding regularization. The very first application of

matrix decomposition can be traced back to [5] using Singular Value Decomposition (SVD)

to analyze microarray data. Other general matrix decomposition frameworks include Non-

negative Matrix Factorization (NMF) [21], Independent Component Analysis (ICA) [76, 40],

Penalized Matrix Decomposition (PMD) [165] and tensor decomposition [63]. More recent

efforts include GPseq [146], PEER [149] and HCP [116].

Gene expression Known tech varia�ons Unknown varia�ons+ + Biological varia�ons=

Figure 7: Model different variations simultaneously. The annotations are consistent with those of Fig. 2.

1.2.3 Quality of variation modeling

The final output from normalization is either a high-dimensional matrix with the same

dimension of the original RNA-seq count matrix or a compact representation summarizing

the input data. There are multiple perspectives to evaluate the representation as listed in

Table. 3.
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Computationally Biologically

• A good representation can make it easier

to build a classifier or predictor, in which

the subsequent learning, hypothesis testing

or causality inference task becomes easy to

accomplish.

• The biological utility of the data should

be optimized with respect to the represen-

tations.

• A good representation is able to maintain

the majority of the embedded variations and

capture the hidden structures.

• A good representation can make the

downstream analysis not affected by tech-

nical noise and other unwanted variations.

• A good representation should be repro-

ducible and can be generalized across related

tasks.

• The representation should be consistent

and reproducible across related cohorts.

• A good representation should be inter-

pretable.

• We can annotate the representations

with domain knowledge.

Table 3: Different perspectives to assess quality of normalized representations.

1.3 Single Cell RNA-seq

Compared with bulk RNA-seq technology, single-cell RNA-seq makes it possible to query

the complexity of transcription at single cell level. The most different step in the pipeline

is to isolate each cell from the others before extracting RNAs from the cell. Some of the

popular protocols for cell isolation are SMARTer, Smart-seq2, inDrop and 10x genomics

drop-seq.

The analysis pipeline dealing with scRNA-seq is mostly adapted from that of bulk RNA-

seq. A comprehensive review of current best practice in scRNA-seq analysis is included

in [105]. Enormous number of tools have been developed to leverage biological insight at

single-cell level. An extensive list [170] of all available tools can be viewed via the following
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link https://www.scrna-tools.org/tools. Specifically for normalization step [160], some of the

popular choices are ZIFA [127], ZINB-WaVE [134], sclvm [22], fsclvm [23], scVI [104] and

pagoda [42].

1.4 Main Contributions

In this dissertation, we propose three different generative models to amplify biological

signals in bulk and single-cell RNA-seq data. PLER and NIFA are two different matrix

decomposition methods and DataRemix is built upon SVD which is one of the most popular

matrix factorization methods.

• PLIER Pathway-level Information Extractor (PLIER) is a semi-supervised framework

that identifies active pathways regulating gene expression and estimates surrogates for

cell-type proportions. PLIER has inspired the development of MultiPLIER [154] and

has been used to infer context-specific genotype effects in the Brain [121].

• DataRemix DataRemix is a supervised model that reweighs contributions of latent

factors to reveal the hidden biological signals. We apply DataRemix to the ROSMAP

dataset and we are able to report the first replicable trans-eQTL effect in human brain.

• NIFA (Non-negative Independent Factor Analysis) NIFA, an unsupervised framework,

combines the desired properties of PCA, ICA and NMF. It models uni- and multi-modal

factors corresponding to cell-type identity and other pathway-level variations simultane-

ously.
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2.0 PLIER - Pathway-Level Information Extractor for gene expression data

2.1 Introduction

One salient feature of high dimensional molecular data structure is the presence of groups

of correlated measurements. Gene expression measurements are highly correlated and this

correlation structure often reflects coordinated transcriptional regulation or, in studies of

heterogeneous tissues, variation in cell-type proportion. This data structure is exploited

implicitly any time a clustering is performed, as is often done with cancer datasets in order to

define molecularly distinct subtypes [118, 137]. Importantly, correlated expression patterns

may also be the result of various technical factors, often referred to as “batch effects” (see [87]

for review). It is crucial to identify the mechanisms underlying coordinated gene expression

changes while reducing any negative effects of technical noise.

Likewise it is possible to analyze the structure explicitly by projecting the thousands

of gene-specific measurements into a smaller dimensional space that captures much of the

observed variation. Principal Component Analysis (PCA), which utilizes singular value

decomposition(SVD) to project the data onto orthogonal principal components (PCs) of

maximal variance, is commonly applied to gene expression datasets. PCA and its higher

dimensional analogs have been successfully applied to gain biological insight from complex

datasets [5, 63]. However SVD decompositions have several limitations. By construction

PCA/SVD produces components that are orthogonal and are dense combinations of the

original variables. The orthogonality implies that the components will not always correspond

to specific biological variables (which are often not-orthogonal) and the loading density makes

interpretation difficult.

Various alternative decomposition methods that seek to improve the interpretability

by imposing additional constraints have been proposed. For example, non-negative matrix

factorization (NMF) has been applied to cancer gene expression decomposition yielding more

intuitive results [21]. Likewise, methods to introduce sparsity into the matrix decomposition

have been proposed [173, 165]. However they do not make use of known biological information
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in their mathematically driven decompositions. We reasoned that the efficient extraction of

biological insight contained in the correlated structure of the data requires using the vast

information contained in biological genesets during the decomposition. To solve this problem,

we have developed Pathway-Level Information ExtractoR (PLIER). PLIER performs a

semi-supervised data structure deconvolution and mapping to external knowledge, reducing

noise and identifying regulation in cell-type proportions or pathways.

2.2 Methods and Materials

Given a gene expression profile Y ∈ Rn×p, where n is the number of genes and p is the

number of samples, we state the original PCA as a matrix approximation problem. Suppose

n > k, p > k. We wish to find Z and B minimizing

||Y − ZB||2F (2.1)

subject to rank(Z) = k, rank(B) = k.

Since gene expression measurements are highly correlated, it is reasonable to expect that

the data Y can be efficiently represented in this low dimensional space. Without imposing

additional constraints on Z and B, an optimal solution can be obtained from the singular

value decomposition (SVD) of Y . In a SVD-based decomposition, rows of B are referred to

as principal components (PCs). Since PCs are necessarily orthogonal, which our method do

not require, we will use a more general term latent variables (LVs).

In order to improve the interpretability of the low dimensional representation in the

context of known biology, we impose additional constraints on the matrix Z. Our aim is

to encourage the loadings (columns of Z) to align as much as possible with existing prior

knowledge. In the most general case such prior knowledge can be expressed as a series of

genesets representing biological pathways, sets of tissue- or cell-type specific markers, and

coordinated transcriptional responses observed in genome-wide experiments.

Given n genes and m genesets, we represent the prior knowledge as a matrix C ∈

{0, 1}n×m, so that Cij = 1 indicates that gene i is part of the jth geneset. Using the
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same notation as above, we define the revised decomposition problem based on the original

formulation. We wish to find U,Z,B minimizing

||Y − ZB||2F + λ1||Z − CU ||2F + λ2||B||2F + λ3||U ||L1 (2.2)

subject to U > 0, Z > 0.

The first term of the optimization is the same as equation (1) and minimizes the overall

reconstruction error. The second term specifies that Z should be “close to” sparse combina-

tions of genesets represented by C. The third term introduces an L2 penalty on B, while the

fourth term is an L1 penalty on U (applied column-wise), which ensures that only a small

number of genesets represent each LV.

The parameter λ1 keeps a balance between the proportion of prior knowledge we include

and the degree to which we reconstruct the gene expression profile. We also restrict U and Z

to be positive, which enforces that genes belonging to a single geneset are positively correlated

with each other and the loadings are positively correlated with the prior information.

We solve the optimization problem by using block coordinate minimization, which iter-

atively minimizes the error on Z, U , and B. The complete method starts by initializing Z

and B from the SVD decomposition and repeats the following steps until B converges.

while stopping criterion has not been reached

Z(l+1) ← (Y B(l)T + λ1CU
(l+1))(B(l)B(l)T + λ1I)−1

Set the negative part of Z(l+1) to be zero
Solve the convex problem

U (l+1) ← argminU ||Z(l) − CU ||2F + λ3||U ||L1

Subject to U > 0

B(l+1) ← (Z(l)TZ(l) + λ2I)−1Z(l)TY

The stopping criterion is defined as a relative change in B < 5 × 10−6, or a leveling off

in the decrease of the relative change in B. While there are no convergence guarantees, in

practice this algorithm converges in under a few hundred iterations.
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2.2.1 Optimization constants

The optimization has 4 free parameters λ1, λ2, λ3, and k and internal cross validation

cannot be used to optimize them as the reconstruction error ||Y −ZB||2F is always minimized

when λ1 = 0. However, based on extensive testing with simulations and real data, we have

set default parameters that perform well in a range of situations. For example, we find

that a reasonable starting value for k can be inferred from the the number of statistically

significant PCs which can be determined via permutation by the approach proposed in [88]

or the simple “elbow” approach (num.pc in our package implements both). However, it is

logical that the number of constrained latent variables needed to explain the data is higher,

and we suggest increasing the initial k by a factor of 2. Importantly, the method is not

sensitive to the exact value of k. LVs found at lower k’s persist when k is increased. It is

also possible to optimze k with respect to the number of LVs with prior information above

some AUC and FDR threshold, but this requires multiple runs.

A good choice for λ1 and λ2 can be derived from the observation that if we consider

the SVD decomposition of Y as UDV T we should have that Z ≈ UD1/2 and B ≈ D1/2V T .

Therefore the diagonal elements of ZTZ and BBT are well approximated by D which thus

gives the correct range for the relevant constants. By default we set λ2 = dk and λ1 = dk/2

with the factor of 2 coming from the positivity thresholding on Z. We find that our method

is robust to these choices (Fig. 14). It is also possible to optimize λ1 along with λ2 around

its default value relative to some external validation source. For example, we can check how

well the LVs recovered in B correlate with an independent dataset such as clinical variables,

genotype, or another set of molecular measurements.

The correct value of constant λ3 that controls the sparsity of U is highly dataset depen-

dent as it ultimately depends on how well the available prior information explains the data

structure. We have devised an adaptive approach that works well for datasets of diverse

characteristics. Specifically, we can specify the fraction of latent variables that we wish to

be associated with prior information, 0.7 by default. The λ3 constant is then periodically

adjusted by binary search to meet this goal. Even though this adaptive procedure keeps

the number of positive entries in U constant regardless of prior information relevance, the
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significance of pathway association for each LV is ultimately tested by gene-holdout cross-

validation (see below).

For our dataset with matched CyTOF proportions we used default PLIER parameters.

For the DGN dataset we used all default parameters except that k was optimized to maximize

the number of LVs with significant pathway association.

2.2.2 Gene-holdout Cross Validation

It is natural to ask to what extent the non-zero coefficients of U represent non-random

associations between loadings (columns of Z) and prior information. In order to quantify this

we design a cross-validation procedure that proceeds as follows. For each pathway included

in the entire prior-information compendium a random 1/5th of the positive genes are set

to 0 and this new prior information matrix is used to run PLIER. Afterwards, we can test

how well the gene loadings in the PLIER output matrix Z are able to recover these held-out

genes. Specifically, for each LV-pathway correspondence represented as a positive value in

U we compute the AUC and p-value for the recovery of that pathway in the loadings of Z

using the held-out set of genes as positive labels and genes not annotated to this pathway as

negative labels. We find that the cross-validation procedure produces correct AUC estimates

as p-values computed from a gene-level permuted prior information geneset (which preserves

dependencies among pathways) are uniformly distributed (Fig. 13).

While this procedure necessarily discards some data and may adversely affect the ability

to detect small pathways, we find that the benefit of having accurate statistical estimates

outweighs these concerns. PLIER will run in cross-validation mode by default but we allow

for cross-validation to be turned off in which case all genes belonging to each geneset are

used.

2.2.3 Details of methods comparisons

For validation we compare the Spearman rank correlation of CyTOF-based proportion

measurements with estimates obtained from different methods. P-values thresholds indicated

on the plot are for the single tailed test. We compare performance on the validation dataset
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against 4 alternative approaches. Two of the approaches are matrix decomposition methods

that are commonly applied to gene expression data: Sparse Principal Component Analy-

sis (SPC) and Non-negative Matrix Factorization (MNF). The other two approaches are

reference-based methods that are specifically designed to estimate human blood cell-type

proportions. The methods are Non-negative Least-squale regressionm, NNLS (originally

applied to cell-type deconvolutioni [1]) and Cibersort [119]. We found that quantile normal-

ization improved the deconvolution performance of matrix decomposition methods (SPC,

NMF, and PLIER) but as previously noted reference-based methods (NNLS and Cibersort)

performed best with raw (not log transformed) FPKMs.

For NMF we used the default algorithm and matrix norm as implemented in the NMF

R package [21]. Since NMF requires a positive matrix we used quantile-normalized log

counts which achieved best performance. SPC has no restrictions on the input and in our

experiments performed best on z-scored data (z-scored data are also used for PLIER). We

used the SPC implementation provided in the PMA package [165]. We used the positivity

constraint on the loadings matrix, which improved the results. The sparsity hyperparameters

for SPC were set with cross-validation separately for each component as described in the

original paper [165]. Since SPC and NMF do not assign a biological cause to the inferred

latent variables, for the purpose of evaluation we report the maximum correlation for each

cell type. The number of components for SPC and NMF was set to 30 which is the same

number that was used for PLIER.

For NNLS and Cibersort we used raw FPKM values which is the preferred data transfor-

mation for Cibersort and also performed best in our evaluations. Since NNLS and Ciberosrt

are both reference-based methods and can be used with any reference/basis matrix we tried

both approaches with two different references, one from [1] and LM22 from the original

Cibersort publication. We found that each method performed best with its own original

reference. To account for the fact that our cell-type classes are slightly different from those

encoded in LM22 or the [1] reference we allowed various combinations of the estimates, for

example we created an ”all-Bcell” estimate by adding naive and memory B cells and picked

the best correlated estimate out of the three. A similar approach was taken for other cell

types.
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2.2.4 trans-eQTLs

For the purpose of all our analysis we define valid trans associations as gene-SNP pairs

where the gene and all of its homologs (as defined by Ensembl database, [171]) are on a

different chromosome from that of the SNP.

2.2.4.1 Gene-centric eQTLs

• Compute p-value for all valid trans associations using rank correlation.

• Compute Benjamini-Hochberg false discovery rate on the total number of valid trans

association test.

2.2.4.2 Pathway-centric eQTLs Since pathway LVs are composed of multiple genes

from different chromosomes, all LV-SNP associations are potentially valid trans associations.

The steps for computing pathway-centric eQTLs are bellow

• Step 1: Perform rank correlation tests on all LV-SNP pairs.

• Step 2: Compute Benjamini-Hochberg FDR on the entire set of pathway-level test (num.

of LVs)x(num. of SNPs). Association with FDR>0.05 are not considered further.

• Step 3: Compute gene-level support for pathway-level eQTLs. Perform all valid trans

association test on the subset of SNPs that passed FDR<0.05 for at least on LV in Step

2.

• Step 4: Compute Benjamini-Hochberg FDR for tests in Step 3 correcting for the total

number of tests performed overall (number of tests in Step 1 plus number of tests in

Step 3). We note that the p-value threshold for FDR=.2 in the PLIER-centric analysis

is higher than the gene-centric analysis (4.1e-07 versus 7.7e-08). It is possible that these

PLIER-centric FDRs are overly permissive due to the hierarchical nature of the tests in

Step1 and Step 3, however we emphasize that we do not rely on these values for any

conclusions in our analysis. They are only used to define the upper limit for associations

that are checked for replication.

• Step 5: Filter pathway-level effects with low gene-level support. We defined low gene-level

support as 0 genes-SNP associations that pass a gene-centric FDR of <0.2. That is any
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pathway-level association has to be supported by at least one gene in gene-centric analysis

at a permissive FDR. This step is designed to get rid of any spurious trans associations

discovered in Step 1 that could arise due to cis genes or cis homologs contributing to

the pathway-level estimate.

2.2.5 Validation Data

2.2.5.1 Sample Processing We used anonymized discard samples that the have the

determination of non-human research. Blood was drawn into Tempus tubes (AB scientific)

for RNA and into EDTA tubes for Cyto analysis respectively. RNA was extracted using the

MagMAXTM for Stabilized Blood Tubes RNA Isolation Kit (Fisher) following the manufac-

turer’s protocol. Libraries were constructed using the TruSeq Stranded mRNA kit (Illumina)

at the Epigenetic core at the Weil Cornell medical college.

2.2.5.2 CyTOF Sample Processing CyTOF antibodies were either purchased pre-

conjugated from Fluidigm (formerly DVS Sciences) or purchased purified and conjugated

in-house using MaxPar X8 Polymer Kits (Fluidigm) according to the manufacturer’s in-

structions. Whole blood samples were processed within 4hrs of collection and stained by

additional of a titrated panel of antibodies (table X) directly to 400uL of whole blood. After

20 minutes of incubation at room temperature, the samples were treated with 4mL of BD

FACSLyse and incubated for a further 10mins. The samples were then washed and incu-

bated in 0.125nM Ir intercalator (Fluidigm) diluted in PBS containing 2% formaldehyde,

and stored at 4oC until acquisition.

Immediately prior to acquisition, samples were washed once with PBS, once with de-

ionized water and then resuspended at a concentration of 1 million cells/ml in deionized

water containing a 1/20 dilution of EQ 4 Element Beads (Fluidigm). The samples were

acquired on a CyTOF2 (Fluidigm) at an event rate of <500 events/second.

2.2.5.3 CyTOF Data Analysis After acquisition, the data were normalized using a

bead-based normalization in the CyTOF software and uploaded to Cytobank for initial
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data processing. The data were gated to exclude residual normalization beads, debris, and

doublets, and exported for subsequent clustering and high dimensional analyses.

Individual samples were first clustered using Phenograph [90], an agnostic clustering

method that utilizes the graph-based Louvain algorithm for community detection and iden-

tifies a hierarchical structure of distinct phenotypic communities. The communities were

then meta-clustered using Phenograph to group analogous populations across patients. These

meta-clustered populations were then manually annotated based on similar canonical marker

expression patterns consistent with known immune cell populations. These annotations are

also used to generate a consistent cluster hierarchy and structure across all samples in the

dataset.

2.2.5.4 RNA-seq methods The samples were sequenced SE100 to an average depth of

48.8 million reads. Quality assessment was done with FastQC [19]. Alignment to GenCode

hg38 was done using STAR [37]. Transcript counts are assigned using the FeatureCounts

tool (subread package [98]). The final counts were filtered for genes that had 0 counts in all

samples. The data was transformed to RPKM. We also created a quantile normalized count

dataset by filtering all genes that had <3 counts in any samples and quantile normalizing the

log transformed counts. This more stringent filtering was performed to avoid data artifacts

caused by quantile normalization of low count genes. As RNA samples were processed in

two separate batched both final datasets were corrected for batch difference.

2.2.6 Public Data

2.2.6.1 DGN dataset The Depression Gene Networks (DGN) dataset is not available

for public release but can be requested from National Institute of Mental Health (NIMH)

following instructions in the original publication [115]. The NIMH database contains several

normalized versions of this data and for our study we used “trans” normalized data as

described in [16]. This data is already normalized for genotype principal components and

all known technical factors and no further normalizations were performed.
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2.2.6.2 NESDA dataset The NESDA (Netherlands Study of Depression and Anxiety)

dataset [166] was obtained from dbGAP (phs000486.v1). Following suggestions from study

authors the NESDA dataset was normalized for known technical factors and the first 3

genotype PCs using linear regression.

2.2.6.3 Prior information genesets The generic blood cell-type marker dataset was

derived from the IRIS (Immune Response In Silico) [1] and DMAP (Differentiation Map)

datasets [122] datasets. Many canonical marker genes (such as CD19, CD3E, CD8A) have

a multimodal distribution with on high expressor group and one or more low/medium ex-

pressor ones. The highest expression group typically does not overlap with lower expression

distributions and we base our marker selection metric on this observation. Genes were con-

sidered to be markers if they could be partitioned into high and medium/low expression so

that the difference between minimum and maximum values respectively (the gap between

these distributions) exceeds a threshold (we used 2 for IRIS and 0.7 for DMAP). This proce-

dure results in highly overlapping sets of markers for related cell types however our method

is flexible and can easily handle redundancy. The marker sets derived from the IRIS and

DMAP datasets are included in the PLIER R package. For the purpose of analyzing DGN

we also included cell-type markers from a recent publication [119] which covers fewer cell

types but with highly optimized marker sets. The complete prior information dataset used

for DGN analysis includes cell-type markers, “canonical pathways” and “chemical and ge-

netic perturbation” genesets from mSigDB, and a set of transcriptional signatures relevant

to immune signaling described in [43].

2.2.6.4 Replication To assess replication in the NESDA dataset SNPs were matched

based on LD using the LDlink tool with CEU population [106]. Specifically, if the exact

SNP was not present in the NESDA dataset we selected the SNP with the highest LD, and

if multiple SNPs had the same LD, we took the one closest in genomic coordinates. We

only considered a match if the best LD was above 0.5. We asses the relationship between

the NESDA replication π1 and the p-value obtained in DGN in two different ways. One

uses a consistent cutoff of λ = 0.05 so that the π1 estimate is simply computed as 1 minus
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the fraction of p-values above 0.05 divided by 0.95. We also evaluate π1 using the method

implemented in the “qvalue” Bioconductor package [34]. This methods selects the optimal

λ for each π1 estimate. We find that the typical value is around 0.8 though a different value

may be selected at each threshold resulting in more noise in the π1 curve.

2.2.6.5 Platelet phenotypes The sentinel SNPs and their relevant phenotypes (MPV,

PLT, or both) are supplied as the supplementary table in [52]. Proxy SNPs were defined as

above.

2.2.7 Data Availability

Processed gene expression and cell proportion measurements generated for this study are

available through the PLIER package. The raw data can be accessed through Gene Expres-

sion Ominibus (GSE130824). The Depression Susceptibility Genes and Networks (DGN)

dataset can be obtained from NIHM following instructions provided in the original publica-

tion [115]. The NESDA dataset can be obtained from dbGAP (identifier: phs000486.v1).

2.3 Results

PLIER approximates the expression pattern of every gene as a linear combination of

eigengene-like latent variables (LVs). In constructing LVs, PLIER surveys a large com-

pendium of prior knowledge (genesets) and produces a dataset deconvolution that optimizes

alignment of LVs to a relevant subset of the available genesets. The method automatically

finds these relevant genesets among the hundreds to thousands considered (see Fig. 8A).

Technical noise reduction is also achieved during the deconvolution as technical factors are

preferentially segregated into LVs that do not associate with prior information (see Fig. 9

and 10).
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Figure 8: PLIER overview. PLIER is a matrix factorization approach that decomposes gene
expression data into a product of a small number of latent variables and their corresponding gene
associations or loadings, while constraining the loadings to align with the most relevant automati-
cally selected subset of prior knowledge. A. Given two inputs, the gene expression matrix Y and
the prior knowledge (represented as binary geneset membership in matrix C), the method returns
the latent variables (B), their loadings (Z), and an additional sparse matrix (U) that specifies
which (if any) prior information genesets and pathways are used for each latent variable. The light
gray area of U indicates the large number of zero elements of the matrix. We apply our method to
a whole blood human gene expression dataset. B. The positive entries of the resulting U matrix
are visualized as a heatmap, facilitating the identification of the correspondence between specific
latent variables and prior biological knowledge. Since the absolute scale of the U matrix is arbitrary
each column is normalized to a maximum of 1. C. We validate the latent variables mapped to spe-
cific leukocyte cell types by comparing PLIER estimated relative cell-type proportions with direct
measurements by Mass Cytometry. Dashed lines represent 0.05, 0.01, and 0.001 significance levels
for Spearman rank correlation (single-tailed test). We find that the PLIER estimates are highly
accurate, outperforming other matrix decomposition methods. Moreover, PLIER estimates are
competitive and in 4 cases outperform both of the dedicated blood mixture deconvolution method
NNLS [1] and Cibersort [119].
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Figure 9: PLIER decompositions are robust to normalization procedure. We compare the PLIER decompo-
sitions obtained from two different versions of the DGN dataset: one normalized with all known technical
factors and the other normalized only by quantile normalization. (Main panel) Heatmap of the Spearman
rank correlations (computed across 922 samples) between LVs from the two decompositions. All pairwise
correlations for the top best matched LVs (correlation >0.9) are shown. LVs are named with their corre-
sponding top prior-information geneset (if any). Note that the prior information used is almost identical
across the two decompositions. (Inset) The distribution of Spearman rank correlation values across all best
reciprocal match pairs of LVs. LVs that use prior information (LVs with any non-zero U coefficients) are
more robust to normalization procedure as they are more likely to have a high-correlation match across the
two datasets. Boxplot displays the 25th, 50th and 75th percentiles, with whiskers extending to 1.5x the
interquartile range or the range of the data whichever is smallest.
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Figure 10: PLIER decompositions isolate technical and biological variation in different components. Using a
PLIER decomposition obtained from the qunatile normalized DGN dataset, which has not been corrected for
known technical factors, we plot the distribution of absolute values of Pearson correlation (across 922 sam-
ples) between technical factors and LVs. Since technical factors are correlated, we select a non-redundant set
for our evaluation (PF ALIGNED BASES, MEDIAN 3PRIME BIAS, PCT MRNA BASES, %heme, dupli-
cate%, yield, set aside globin, length corr, GC corr) where the last two are per-sample correlations between
quantified gene expression vectors and transcript GC content and length respectively. LVs associated with
prior information (LVs with non-zero U coefficients) and LVs without prior information (LVs with zero U
coefficients) are contrasted using two-sided Wilcoxon rank-sum test. The correlation for LVs with prior
information is significantly lower for all but one technical factor (PF ALIGNED BASES). Boxplots display
the 25th, 50th and 75th percentile, with whiskers extending to 1.5x the interquartile range or the range of
the data whichever is smallest.

2.3.1 Simulation

Since in a real dataset the true data-generating model is unknown and is likely more

complex than what can be captured with a dimensionality-reducing matrix decomposition,

we use a simulation to evaluate the operating characteristics of our method. We hypothesize
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that our method is able to more accurately recover the “correct” LVs by rotating the matrix

decomposition to align with prior knowledge.
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Figure 11: Boxplot of the correlation between simulated LVs and those recovered by various decomposition
methods. We compare PLIER against two other methods, NMF [21] and SPC [165], as well as PLIER run
without using any prior information. In this simulation we provide PLIER with 1000 pathways of which only
30 are correct and vary the size of the prior-information pathways provided to PLIER. We find that the best
performance is achieved by PLIER specifically when prior information is used with a notable improvement
when prior-information pathways are larger. Statistics were computed using Pearson correlation across
300 samples. Boxplot displays the 25th, 50th and 75th percentiles, with whiskers extending to 1.5x the
interquartile range or the range of the data whichever is smallest.

We simulate data with 5000 genes, 300 samples, and 30 latent variable according to the

NMF model.

Y = ZB + E. (2.3)

With both Z and B > 0. Each row of B is drawn from Beta distribution with a mean drawn

uniformly at random and a variance of 0.1. Each column of B is normalized to sum to one.

The columns of Z are drawn from Gamma distribution Γ(5, 1). The matrix E ∈ N (0, 1)

represents random noise. We also generate a prior knowledge matrix C. For each column

of Z, we randomly pick up a threshold value on the percentage of genes which belong to a

hypothetical prior knowledge geneset. The threshold value varies from 0.01 to 0.1 with a
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step size 0.01, which is in consistent with that of real biological genesets. With the threshold

value, we select the corresponding fraction of genes which come with top values in the column

of Z to construct the prior knowledge geneset. Also we generate additional uninformative

genesets by randomly picking genes. For the purpose of applying PLIER and SPC, the final

data is z-scored.
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Figure 12: Data is simulated as in Fig. 11 except that the number of genes per pathway is kept at 300 and
the number of uninformative pathways is varied. As the prior information gets noisy, PLIER’s performance
approaches those of others. Statistics were computed using Pearson correlation across 300 samples. Boxplot
displays the 25th, 50th and 75th percentiles, with whiskers extending to 1.5x the interquartile range or the
range of the data whichever is smallest.

Our basic evaluation strategy is based on computing the maximal correlations between

simulated and recovered latent variables, and for the purpose of comparing with other meth-

ods, we use the absolute value so as to allow factors with reversed sign. Fig. 11 depicts

the results of multiple simulation runs processed with four decomposition methods: PLIER,

PLIER with no prior information (which can be accomplished by setting λ3 to a high value),

NMF [21] and SPC [165]. NMF is a popular decomposition method that is free of hyper-

parameters (though different matrix norms can be used), however it requires positive data
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as input. SPC is another popular method that can enforce sparsity and positivity, and it

has one hyperparameter that we set by cross-validation for each component as described

in the original paper [165]. Among these methods only PLIER is able to reliably produce

high correlations with the simulated latent variables and only when using prior information.

Importantly, we emphasize that the simulation is not based on a PLIER model where we

assume that loadings of genes in the pathway and outside the pathway differ by a constant

factor but is rather based on the NMF model. Nevertheless the PLIER approach is effective

even in the case where the model design differs from the underlying assumptions.

We also investigate how adding noise to the prior information affects performance, hy-

pothesizing that as more irrelevant geneset are included in our prior knowledge matrix C,

the advantage of using prior information will be reduced. Repeating the experiment above

with varying sets of non-informative pathways we find that the performance indeed drops

off as the total number of pathways is increased to 10,000. Though even at that level of

prior-information noise, PLIER outperforms other methods (Fig. 12).

2.3.2 Pathway recovery significance

We estimate the significance of LV-pathway association by removing a random 1/5 of

the genes annotated to each pathway prior to running PLIER. For each LV-pathway corre-

spondence represented as a positive value in U , we compute the AUC and p-value (Wilcoxon

rank-sum test) for the recovery of that pathway in the loadings of Z using the held-out set

of genes as positive labels and genes not annotated to this pathway as negative labels. We

verify that this procedure produces correct estimates by running PLIER with the geneset

collection used for the DGN dataset but randomly permuted gene labels. Gene-level per-

mutation preserves the pathway size distribution and dependency structure but should not

have any non-random associations with the structure of the gene expression dataset. We find

that in the permuted setting our cross-validation procedure produces uniformly distributed

p-values (Fig. 13).
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gle run with gene-label permuted genesets. Statistics were calculated the held-out set of genes and genes
which are not annotated to the pathway. P -values are calculated with a two-sided Wilcoxon rank-sum test.
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2.3.3 Parameter robustness

The PLIER framework contains 4 free parameters. While we have a procedure for se-

lecting these parameters automatically, it is natural to ask to what extent these affect the

results. Using our becnhmarking dataset we systematically evaluate the robustness of LVs

recovered at different parameter settings. Our evaluations is two fold: Firstly, we evaluate

how well we recover the known cell-type proportions (LV vs. ground truth) for the LVs

that are associated with proportion variables. Secondly we evaluate the stability of the LVs

themselves with different parameter settings. The results are depicted in Fig. 14(a).

We find that many LVs are recovered with near-perfect correlation across a wide range

of parameters. However, even in cases where the LVs themselves are variable (as is the case

with the Dendritic cell LV), the actual correlation with known proportions is quite stable.

While the results are stable across a parameter range around the default values, we find that

increasing the L1 and L2 parameters beyond the stable range drastically alters the result

(Fig. 14(a), left panel, bottom rows) and produces non-informative LVs (Fig. 14(a), right

panel, bottom rows).
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Figure 14: A. Robustness of LVs with respect to different parameter choices. Row labels indicate the
parameter settings and the number of significant pathway associations. The L1 and L2 parameters are
reported relative to the default. (Left panel) Maximum rank correlation of LVs with the ground truth
cell-proportion measurements at different parameter settings. Statistics were computed across 35 subjects.
(Right panel) Each column corresponds to one of the 30 LVs recovered at the default setting. The heatmap
colors indicate the best correlation between the default LVs and those extracted from other parameter
settings. First eight columns correspond to LVs that are related to cell type based on correlation with the
ground truth. Statistics were computed across 35 subjects. B. Robustness of LVs with respect to random
initialization. Statistics were computed using Spearman rank correlation across 35 subjects.

The PLIER problem is not convex and thus different initializations will produce different

results. While the default initialization is to use SVD, we investigate to what extent the

same LV structure can be robustly recovered using random intializations (Fig. 14(b)).
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Figure 15: Robustness of LVs with respect to pathway randomization compared to robustness of LVs with re-
spect to random initialization. Statistics were computed using Spearman rank correlation across 35 subjects.

Overall we find that almost all LVs with credible prior information association (FDR<0.05,

red boxes) were recovered consistently. In particular LVs correlated with the known cell-

type measurements (indicated by *) are highly consistent. LVs that are not linked with prior

information (LVs with zero U coefficients) are less likely to be consistently recovered.

We can also test how much the final LVs depend on the pathway input by randomizing

gene-pathway assignments. The results of this randomization are plotted in Fig. 15. We

find that as expected randomizing pathways indeed has a greater effect on the results than

randomizing the starting point, indicating that the prior information provides a considerable

constraint.

2.3.4 Technical variation invariance

A key motivation for PLIER is to tease apart technical and biological variation. Specifi-

cally, the hypothesis is that LVs that use prior information are indeed of biological origin. If
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that is the case, we expect that PLIER results are relatively insensitive to normalization for

technical factors and we test this hypothesis by applying PLIER to differently normalized

versions of data. The DGN datasets [16] used in this study has been normalized for techni-

cal variables which reflected information about data collection and RNAseq quality control.

We can also apply PLIER to the “naive-normalized” version of the same data represented

by log-transformed counts normalized by quantile normalization. Obtaining two different

decompositions, we find that many LVs can be matched in one-to-one correspondence based

on rank correlations of the loadings. Correlations for top matched pairs are show in Fig.

9. Moreover, the matching LVs use prior information genesets that are either the same or

closely related (see row/column names in Fig. 9).

Furthermore, when we compare the entire distribution of best matched correlations for

LVs with- and without- prior information, as expected, LVs with prior information (LVs

with non-zero U coefficients) produce best matches with higher correlations supporting the

hypothesis that these captured biological variations are therefore relatively normalization

invariant (Fig. 9, Inset).

2.3.5 Distributions of PLIER loadings

We plot loading statistics from our analysis of the DGN dataset in Fig. 16. The PLIER

model doesn’t assume pathway-level sparsity but rather that the loading values for pathway-

associated genes are higher than those of others. Consequently, PLIER doesn’t produce strict

pathway-level sparsity but rather loadings with many values close to 0 and a long tail (panel

B). We found that for this already regularized model including additional group-level of

gene-level sparsity was not helpful when validated against known ground truth. Thus, genes

not associated with the pathways can still get non-zero loadings, however we view this as a

feature because it can provide useful “pathway-completion” information. We exploit this fact

to compute properly calibrated p-values for LV-pathway associations using cross-validation

(see Sec. 2.3.2)
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Figure 16: A. The distribution of number of LV-associated pathways per LV. B. The boxplot of loading
value corresponding to 20 random LVs. Boxplot displays the 25th, 50th and 75th percentiles, with whiskers
extending to 1.5x the interquartile range or the range of the data whichever is smallest. C. The distribution
of number of genes with loading values above 0.1.

2.3.5.1 LV interpretation and naming The top genes contributing to each genotype-

associated LV are depicted in Fig. 17. In many cases the identity of the genes and the

corresponding PLIER pathway utilization (see U matrix visualized in Fig. 22) points to

a clear cell-type effect (LV44, LV133, LV56) or a canonical pathway (LV21, LV40, LV97,

LV120). In these cases the LVs can be interpreted as estimating the specific cell-type pro-

portion or pathway-level effect and are named accordingly.

In some cases the pathway utilization did not allow for unambiguous interpretations.

For example, the top pathway for LV16 is ”NKA1”, which is a NK-cell marker gene list.

However the top genes in the LV loadings do not correspond to ”canonical” NK-cell markers.

This pattern is instead observed for LV30 which also makes use of NK pathways. Thus,

LV16 cannot be interpreted as NK cell proportion though its pathway utilization suggests

some relationship to NK cell biology. We also note that two of the LVs that have some of

the strongest genotype associations do not use any pathway information. We hypothesize

that collectively these LVs most likely represent transcription pathways that are not well

annotated in our prior information though they may correlate with some prior information

genesets.

Nevertheless, these transcriptional pathway potentially have some cell-type origin and

we investigate this by checking the bias in cell-type expression in a large independent dataset

32



inPathway
notInPathway

16,NKA1
17,CREIGHTON_ENDOCRINE_THERAPY
21,GSE19182_Ifng
40,GILMORE_CORE_NFKB_PATHWAY
44,MEGA2
LV 42

−6−4−20246

120,REACTOME_RNA_POL_I_PROMOTE
133,RAGHAVACHARI_PLATELET_SPEC
56,Neutrophil−Resting
67,MARTINELLI_IMMATURE_NEUTROP
97,REACTOME_GENERIC_TRANSCRIPT
LV 55

TMEM92
C19orf59
DUSP13
HPSE
PI3
TNFRSF9
PVR
CORO1B
ZBTB47
WDFY4
KIAA0319L
CACNB4
AOC3
AOC2
REL
CD274
PARP14
SERPING1
PSME2
GBP2
GBP5
TAP1
IRF1
BATF2
UBE2L6
GBP1
STAT1
APOL1
APOL6
GBP4
NFKB1
NFKBIA
TNFAIP3
GHRL
ICAM1
SCARF1
TRAF3
NBN
NFKBIE
RELB
NFKB2
ZC3H12A
ST3GAL2
TNIP1
SQSTM1
ALOX12
GNG11
GNAZ
NRGN
CMTM5
GP9
PF4
PPBP
ITGB5
TSPAN9
SPARC
ITGA2B
ITGB3
TREML1
CLU
MTX1
TPPP3
CRIP1
SLC31A2
DNAJB5
CPSF7
LOC284454
MYADM
RAB11FIP1
ARHGEF40
CCDC19
RFX2
TAGLN2
TSPAN2
FAR2
TCF7L2
CSF1R
KLF4
CUX1
RRAS
MS4A7
RHOC
LOC152225
DUSP5
LYNX1
CKB
CDKN1C
NEURL
NR4A1
LOC200772

MS4A3
ABCA13
CAMP
CRISP3
MMP8
CEACAM8
LCN2
LTF
BPI
MPO
CTSG
ELANE
AZU1
DEFA4
CEACAM6
IDI1
RGL4
UNC119
RAB37
IQCE
AMPD2
ZNF710
C19orf38
PRAM1
PAQR5
MAPKAPK3
PAQR7
PLAGL1
HM13
GPX3
PPDPF
C10orf10
MEIS1
MFAP3L
ENKUR
ACRBP
TSC22D1
MMD
C21orf7
CDKN1A
BMP6
MYLK
TUBB1
PDGFA
TNFSF4
HIST1H2BN
HIST1H2BH
HIST1H2BG
HIST1H2BO
HIST1H2BJ
HIST1H3H
HIST2H2BE
HIST1H2AC
HIST1H2BF
HIST1H4E
HIST1H4H
HIST1H2BK
HIST1H4D
HIST1H2AD
HIST1H4I
HIST2H2AC
ZNF577
LOC100128252
ZNF285
ZNF154
ZNF551
TRAPPC2P1
ZNF547
ZNF329
ZNF256
ZNF304
ZSCAN18
ZNF418
ZNF671
ZNF211
ZIK1
HBG1
PTP4A3
HEY1
NOL3
C6orf27
ITGB4
GALNT14
CAPN13
TDP2
KIAA0319
DOCK4
ASPH
ACOT13
CLIP1

Figure 17: Top genes for all genotype-associated LVs. We plot the top 15 genes for all LVs that had a
significant genotype association. Data is plotted as z-scores across 922 subjects.

of immune cell types, ImmGen [60]. The results are visualized in Fig. 17. We find that the

top genes for LV16 are biased towards higher expression in myeloid and ILC cells which is

consistent with being related to NK-type expression signature. LVs 17, 42 and 56 are likewise

biased towards myeloid cell types. This is highly consistent with the effects of the putative

cis drivers (NEK6, PLAGL1 and IKZF1 respectively, see Table. 4 ) on proportions of various
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myeloid cell types as determined in a large GWAS study of blood cell-type composition [14].

LV55 has no identifiable signature in ImmGen data, however it is biased for genes expressed

in the erythroid lineage based on DMAP (Differentiation Map) dataset [122]. Top genes

include HGB1 (rank 5) and HGB2 (rank 16) – fetal hemoglobins that are expressed but not

made into protein. Moreover the putative cis driver for LV55 eQTL is NFE2 which is a

transcription factor known to be involved in erythrocyte and megakaryocyte development.

2.3.6 Cell-type proportion inference

We validate the method using cell-type proportion inference because it is an important

objective. Other methods are available for comparative benchmarking, and predictions can

be tested against a direct measurement as gold standard. For this purpose, we generated a

validation dataset comprising 35 human whole-blood samples assayed both by RNA-seq and

direct CyTOF measurement of cell type proportion. We applied PLIER to the validation

dataset using 605 pathways which included 60 cell-type markers and 545 canonical pathways

from MSigDB [153]. We produced a decomposition with 14 latent variables annotated with

high confidence (AUC >0.7, FDR < 0.05, see Methods for cross-validation procedure) to

one or more genesets, of which 8 represented cell types also measured by the CyTOF panel.

The correlation between the cell-type PLIER LVs and CyTOF measurements in these 35

samples had a mean of 0.71 (range 0.58-0.78) (Fig. 8).

We compared PLIER against the current established methods for mixture decomposi-

tion inference. These methods either rely on low-rank matrix decomposition or reference-

based approaches that fit gene expression values to cell-type specific signatures. We include

the most widely used constrained matrix decomposition approaches: Non-negative Matrix

Factorization (NMF), and Sparse Principal Component Analysis (SPC) (see Methods for

details). For a reference-based approach, we tested Cibersort [119] and NNLS [1]. Both of

these approaches combine a regression algorithm with a dedicated cell-type specific refernce

matrix that is explicitly optimized for human blood deconvolution.

PLIER performed considerably better than other constrained matrix decomposition

methods and surprisingly outperformed the refernece-based supervised approaches on 4 out
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of the 8 cell-types. The excellent performance of the essentially unsupervised and general

PLIER method is in part due to the capacity of PLIER to sort through many candidate

genesets and find the ones most informative for the specific dataset. PLIER can be supplied

with multiple and even discordant markers sets for the same cell-type and will automatically

pick the one that models the data.

2.3.7 Genotype-quantitative trait association

While PLIER shows excellent performance when benchmarked for cell type deconvolu-

tion, it is not specifically designed for this task. Instead, it is a general method for estimating

pathway activity that it is applicable to a wide variety of gene expression interpretation prob-

lems.

As an example, we evaluated the usefulness of PLIER for the difficult task of genotype-

quantitative trait association. Two groups of eQTLs are typically distinguished: locally

acting cis-eQTLs that affect a nearby gene, and trans-eQTLs that are commonly mediated

at the pathway level [16]. Many trans-eQTLs exert their effect by altering the activity of

a regulatory protein, which in turn affects the expression of many downstream genes [163].

Trans-eQTLs, which provide important insight into gene regulatory networks, are difficult

to detect and are less commonly identified than cis-eQTLs due to the multiple hypothesis

burden of testing millions of variants by tens of thousands of genes.

We analyze the recently published DGN dataset [16], which contains whole blood RNA-

seq and genotype measurements from 922 individuals, to demonstrate how the PLIER frame-

work extracts a broad spectrum of pathway effects and enables network-level eQTL discovery

and interpretation. For the candidate prior information, we used a comprehensive collection

of 4,445 genesets comprising biochemical and transcriptional pathways (”canonical path-

ways” and ”chemical and genetic perturbations” from MSigDB [153]), cell-type markers

from multiple sources [119, 1, 122] and cytokine signatures [43]. The PLIER decomposition

produced 86 LVs that have at least one matched pathway with an FDR < 0.05, and were

associated overall with 318 of the 4,444 pathway genesets evaluated. The decomposition

captured cell-type variation with a high degree of specificity, differentiating naive and mem-
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ory B-cells, plasmacytoid and myeloid dendritic cells, and multiple subtypes of CD8 T-cells.

PLIER also captured variation in non-leukocyte cell types such as megakaryocytes and ery-

throcytes, and transcriptional pathways such as Type I and Type II interferon signaling,

and NKFB pathway. Overall, we find that 29 LVs were unambiguously related to cell type,

canonical pathways or cytokine signaling (see Fig. 18 for U matrix visualization and Table.

10 for a complete list of LV-geneset associations).
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Figure 18: Pathway associations for the DGN dataset. We plot the U matrix for the complete set of LVs
that are associated with at least one prior information pathways with and FDR <0.05. LVs correspond
to columns and pathways correspond to rows. For ease of visualization, only the top pathway (largest U
coefficient) for each LV is retained and U matrix is split into two columns. We note that pathways for
abundant cell types such as neutrophils and erythrocytes are top hits for multiple LVs.

In order to perform eQTL analysis, we treated the PLIER LVs as quantitative traits (see

Methods for details), and identified 12 LVs showing significant associations with genotypes

(Table 4, see Methods for details). In contrast to gene level trans-eQTLs, the PLIER eQTLs

are pathway-level effects that capture the concerted behavior of multiple genes (Fig. 22A).

The gold-standard for eQTL discovery is reproducibility in an independent dataset. As

each pathway-level eQTL effect is supported by a number of gene-level effects we can di-

rectly compare the gene-level replication rates of standard (gene-centric) trans-eQTLs and

pathway-centric analysis which only considers gene-level eQTLs if they also correspond to

pathway-level eQTLs (see Methods for details). Using an independent dataset of human

blood expression data assayed with Affymetrix microarray [166] we compared the true-
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positive rate, π1, (see Methods) for gene-centric and pathway-centric eQTLs and find that

the pathway-centric eQTLs are more reproducible at every p-value threshold. For example,

at a cutoff that corresponds to gene-level FDR of 0.2 the gene-centric π1 is ≈ 0.2 while for

pathway-centric eQTLs it is ≈ 0.6 (see Fig. 19 for replication across a range of cutoffs).
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Figure 19: Pathway-centric PLIER eQTLs have a higher replication rate. We compare trans-eQTL discov-
ered with the standard gene-centric approach to those discovered by PLIER with respect to independent
replication in the NESDA dataset. While gene-centric approach considers all possible SNP-gene associations
that satisfy valid trans-eQTL criteria (see Methods), the pathway-centric approach only considers those
gene-level effects that are associated with pathway-level eQTLs. We find that at the same raw p-value
threshold, pathway-centric eQTLs have a notably higher replication rate. Since pathway-centric associations
are by construction linked to a pathway-level effect, they are more likely to represent real and replicable
indirect associations. Statistics were computed using Spearman rank correlation across 922 subjects with a
two-sided test. P -values indicated on the x-axis are uncorrected.

Besides improving the accuracy of trans-eQTL discovery, the PLIER decomposition

identifies the pathway(s) associated with the LV-eQTL, which can provide precise biologi-

cal interpretation of the genetically regulated processes. For example, PLIER shows that

SNP rs1354034 (located within gene ARHGEF3) is associated with two LVs, LV44 and

LV133, that are related to megakaryocyte/platelet lineage based on their pathway associ-

ation (Fig. 22A, B). In the published gene level analysis of the DGN dataset, this SNP

yields the largest number of significant trans-eQTLs, however no biological interpretation

was inferred [16]. Using PLIER, we find two of the associated LVs are annotated to platelet

pathway processes, which is consistent with a known effect of this SNP on platelet number

(PLT) and platelet volume (MPV) [52]. However, our analysis further shows that the two
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LV id LV name snps cis-Gene(s) Benjamini-Hochberg FDR

44 Mega/platelet 1 rs1354034 ARHGEF3 1.707e-41

133 Mega/platelet 2 rs1354034 ARHGEF3 0.03095

120 Histones rs1354034 ARHGEF3 0.0336191

97 Zinc fingers, pseudogenes rs1471738 SENP7 4.011e-13

56 PLAGL1 associated, myeloid rs9321957 PLAGL1 0.0001421

42* IKZF1 associated, myeloid rs10251980 IKZF1 3.39e5-61

17 NEK6 associated, myeloid rs16927294 NEK6 0.008223

67 Neutrophils rs13289095 PKN3,SET,ZDHHC12 0.03361

55* NFE2 associated, erythrocyte rs35979828 NFE2 3.538e-10

21 Interferon-gamma rs3184504 SH2B3 0.0002198

40 NFKB/TNF rs12100841 PPP2R3C 0.005094

16 Myeloid/ILC rs1138358 BCL2A1,MTHFS,ST20 0.0008103

Table 4: Summary table of all pathway-level effects found in the DGN dataset. Statistics were computed using
Spearman rank correlation across 922 subjects with a two-sided test. False discovery rates are computed using
the Benjamini-Hochberg procedure on the total number of tests (number of LVs × number of SNPs). SNP-
LV associations that passed FDR<0.05 were further filtered to account for potential cis genes or mismapped
cis homologs contributing to the LV estimtate (see Methods for details). In most cases pathways were
named based on their geneset association captured in the U matrix. Some pathways are named based on
further analysis of the expression patterns of top gene in an independent dataset of mouse immune cells,
ImmGen [60] (see Fig. 20) and/or a the presence of a putative cis eQTL transcriptional mediator. The
complete pathway utilization for these LVs can be seen in Fig. 22. The expression patterns for top 15 genes
driving each latent variable are plotted in Fig. 17. Latent variables with no pathway association in PLIER
decomposition (that is no positive entries in U) are starred.

LVs linked to this SNP are supported by different genes that show distinct expression pat-

terns (Fig. 22B). These results suggest that the two LV-eQTLS may distinguish two different

processes of platelet/megakaryocyte biology. A recent hematopoetic lineage report supports

this formulation. This single cell study shows that genes associated with the two LVs ex-

press at different developmental time points [124]. Specifically, mouse orthologs of MEIS1

and TSC22D1 (from LV133) are expressed in all megakaryocyte precursors, while ITGA2B

(from LV44) is megakaryocyte specific, suggesting that these two LVs capture processes that

are active at different times in megakaryocyte development.

LV133 and LV44 are positively correlated with each other in the DGN dataset. Notably,

the effects of the rs1354034 alleles on LV133 and on LV44 go in opposite directions (Fig.
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Figure 20: Top scoring Immgen cell types for genotype-associated LVs with no or ambiguous PLIER pathway
annotations. In order to add further interpretation to the pathway-level eQTLs that had either no or
ambiguous pathway associations, we investigate the gene expression of top loading genes in a comprehensive
database of mouse immune cells, Immgen [60]. This database was not used in the PLIER decomposition, so
it provides an independent source of immune gene expression patterns. Z-scores were computed across top
20 loading genes.

22C). Furthermore, we find that using partial correlation analysis, whereby the LVs are

corrected for each other, dramatically improved the eQTL statistics (Fig. 21). These results

strongly argue that the LV44 and LV133 effects are independent.

phenotype reported SNP Close gene LV44 p-value LV 133 p-value proxy SNP

MPV rs10876550 COPZ1 1.1847e-05 0.69933 rs10876550

PLT rs2911132 ERAP2 0.13817361 2.4417e-05 rs2549803

Table 5: Summary table of the associations between the two mega/platelet LVs and SNPs known to affect
only one platelet phenotype. Statistics were computed using Spearman rank correlation across 922 subjects
with a two-sided test. Raw p-values are reported. A total of 80 SNPs with known platelet phenotypes
were tested [52]. While no SNPs outside the ARGHEF3 locus achieved genome-wide significance, some
associations were significant at FDR<0.05 when we consider only the 160 (80 SNPs × 2 LVs) hypotheses
that are tested (significant p-values are in bold). We find that the associations of the two mega/platelet
LVs with other loci known to affect platelet biology are distinct. Our analysis suggests that the early
mega/platelet LV (LV133) is more closely related to the process controlling platelet number (PLT) while the
late mega/platelet LV (LV44) is related to the process controlling platelet volume (MPV).

We speculate that the independent regulation of the two LV-eQTLs by the same lo-

cus results from an effect on different regulators that are modulated at different periods of

megakaryocyte development. The rs1354034 SNP is known to be pleiotropic as it is linked

to both MPV and PLT phenotypes, which are affected independently by other genetic vari-
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Figure 21: The effects of rs1354034 of LVs 44 and 133 are independent. We plot the relationship between
two platelet/megakaryocyte LVs and minor allele counts of rs1354034 using raw LV estimates (first row) or
corrected estimates – residuals from the linear regression fit on the other LV (second row). We find that while
the estimates for these two LVs are positively correlated, the eQTL effects are substantially improved when
regressing one LV on the other and using the residuals for eQTL testing. Statistics were computed using
Spearman rank correlation across 922 subjects with a two-sided test and uncorrected p-values are reported.
Boxplots display the 25th, 50th and 75th percentiles, with whiskers extending to 1.5x the interquartile range
or the range of the data whichever is smallest.

ation [52]. We hypothesize that the effects of rs1354034 on multiple LVs is reflective of its

pleiotropic function. Indeed, correlation of the two LVs with SNPs known to be specifi-

cally linked to MPV or PLT alone shows divergent patterns. In addition to the association

with rs1354034, the developmentally early LV133 is most strongly associated with a SNP

linked to platelet number, whereas the later LV44 is most strongly associated with a SNP

linked to platelet volume (Table 5). This analysis supports a model where ARGHEF3 exerts

its pleiotropic affects on platelet volume and number at different developmental time points.

These results demonstrate how PLIER can leverage dataset structure and external knowledge

to resolve fine-grained mechanistic insight underlying complex biological processes. Addi-

tional demonstrations of how PLIER can be applied to single-cell RNA-seq or cross-study

concordance analysis are presented in Sec. 2.3.9 and 2.3.10.
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Figure 22: A. A heatmap of a subset of the U matrix corresponding to LVs with a genotype effect (LV-
eQTLs). Only pathways with a cross-validation FDR of < 0.05 are shown. We find that two latent variables
(LV44 and LV133) share pathway annotations (albeit with different coefficient) that suggest a relationship
with megakaryocyte and platelet biology. B. Heatmap of the top genes in the loading for LV44 and LV133.
Genes that are annotated to the pathways shown in panel A are in bold. C. Boxplots of the association of
LV44 and LV133 with SNP rs1354034 (n=344, 429, 149 for 0, 1, 2 respectively) While the LV estimates are
positively correlated, the effects of rs1354034 are opposite. These results indicate that the pathways captured
by the expression patterns of LV44 and LV133 are independently regulated by the rs1354034 locus. Boxplot
displays the 25th, 50th and 75th percentiles, with whiskers extending to 1.5x the interquartile range or the
range of the data whichever is smallest. P-values indicate unocrrected two-tailed Spearman rank correlation
test.

2.3.8 Comparison of methods for pathway-level eQTL discovery

We compared PLIER to other methods in its ability to recover pathway-level eQTLs.

PLIER pathway-level eQTLs are deemed significant at Benjamini-Hochberg FDR < 0.05

(correcting for the total number of tests). The same raw p-value threshold is used for all

other methods (even though the FDR at this threshold for alternative methods is higher).

We consider only the best SNP for each latent variable and display the results of all eQTLs
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discovered as well as those filtered for gene-level support (see Methods). We find that

PLIER indeed is able to find more associations while PLIER (no prior) and SPC perform

comparably. NMF performed worse than SVD on this datasets and is thus omitted (Fig.

23). For this analysis, rather than using cross validation the SPC sparsity parameter was

explicitly optimized to maximize the eQTL discovery objective.
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Figure 23: Comparison of eQTL discovery results from different decomposition methods.

2.3.9 Analysis of single-cell RNA sequencing dataset

While our approach doesn’t specifically address the unique features of scRNA-seq data,

it can already be applied out-of-the-box to single-cell data. We have applied PLIER to

scRNA-seq data from mouse sensory neurons [159]. Despite the fact that the prior informa-

tion database does not contain any genesets derived from sensory neuron sub-types, we find

several latent variables that are associated with prior genesets with high confidence. Consis-

tent with expectation, the pathways involved are related to neurological tissues and cell-type

identity (Fig. 24A). Moreover, our approach also finds pathways that are independent of

the major cell types (such as LV10). Because cell type is the dominant signal in the dataset,

this pathway-level effect is not easily observed in raw gene expression data (Fig. 24B) but

stands out clearly when correcting for other sources of variation (Fig. 24C). Thus, PLIER

is able to both reveal additional heterogeneity in this complex dataset and associate it with

prior information in a single computational step.
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Figure 24: A. The subset of the U matrix with the highest-confidence (AUC>0.75, FDR<0.01) pathway
associations. Spearman rank correlations with cell types (139, 169, 81 and 233 for NF, NP, PEP, and TH
respectively) defined in the original paper are displayed above. While many of the LVs are correlated with
cell-type identity, we find some pathways that are not strongly associated with cell types, such as LV10
(highlighted in grey). B. Gene-expression z-scores for the top 40 genes in LV10 across all cells are displayed
in a heatmap with red indicating high expression. Pathway membership of individual genes is indicated
with row annotations (black indicated annotation to the pathway) and cell types are indicated with column
annotations. We find that when viewed in raw data space the top genes associated with LV10 show several
patterns of expression and cluster according to cell type. C. Same data as in B corrected for all LVs except
for LV10. The genes now show a single consistent pattern and no longer cluster by cell types.
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2.3.10 PLIER models are transferable across datasets and can be used to im-

prove concordance

One key feature of PLIER is that it extracts latent variables that correlate with prior

information (LVs with non-zero U coefficients). PLIER LVs are thus less likely to depend on

individual gene measurement and are more likely to reflect effects that are common across

different studies. To illustrate this property, we have compared PLIER decompositions of the

DGN dataset with that of the NESDA dataset. The NESDA dataset is also whole-blood but

uses the Affymetrix platform and has considerably lower signal to noise ratio. Nevertheless,

we find that applying PLIER decomposition to the two datasets yields surprisingly consistent

results. In particular, many LVs can be matched across datasets based on gene-loading

correlation and this matching is often one-to-one (Fig. 25A and B). Moreover, the matched

LVs often use either the same or highly related prior information (Fig. 25B). Considering

LVs that are best reciprocal hits as matched pathway-level estimates, we find that differential

expression with respect to three demographic variables is more concordant in LV space than

gene space (Fig. 25C).

2.4 Discussion

2.4.1 On the use of PLIER for mixture proportion estimation

We show that PLIER is competitive with the best available reference-based method

(Cibersort) on mixture proportion estimation. Cibersort relies on known quantitative cell-

type signatures. While SVM-based framework is robust to outliers and discrepancies, it is

likely that the hard-coded Cibersort signature is not a good fit for our dataset. Even though

the cell-type marker genesets used by PLIER are in part produced from the same source

data [1, 122], there are two important distinctions. PLIER is considerably more tolerant of

errors in marker genes since the model simply stipulates that we wish to find latent variables

such that the loading values corresponding to the marker genes are higher on-average than

the background, without specifying a target value. Moreover, since PLIER automatically
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Figure 25: LV-based meta-analysis increases cross-dataset concordance Two whole blood datasets
DGN (RNAseq) and NESDA (array) were independently decomposed using PLIER. We assessed the cor-
respondence between the resulting LVs by comparing their loadings on the common set of genes. A. All
pairwise loading correlations (across 10,550 common genes) among LVs that have at least one cross-dataset
match with a correlation >0.5. We observe a strong “sparse” pattern with few LV pairs achieving a high
correlation. Statistics were computed using Spearman rank correlation. B. Pairs of LVs that have a corre-
lation of >0.3 are depicted as a bipartite graph. Each LV is automatically named by the top pathway that
supports it. The LV order corresponds to panel A (top to bottom for DGN and left to right for NESDA).
We note that many LVs are in one-to-one correspondence though some LVs that are distinct in one dataset
collapse to a single related LV in the other. For example, naive and memory B cells are resolved in DGN
but correspond to a single B cell LV in NESDA. This is also the case with the two platelet-related path-
ways (MEGA2 and RAGHAVACHARI PLATELET SPECIFIC GENES). Overall, while the two datasets
are decomposed independently, the resulting decompositions align well and the aligned LVs often have either
identical or highly related top pathways. C. We define a one-to-one LV mapping by only using pairs in B
that are best reciprocal hits. This allows us to align the two datasets in LV space analogously to alignment
by gene identity. Given aligned representations we investigate the differential expression concordance with
respect to three demographic variables. Each sub-panel depicts a scatter-plot of gene or LV T-statistics (922
and 1,848 indidividuals for DGN and NESDA respectively) for the variable of interest. We find that the
concordance of differential expression (as measured by Pearson correlation of the T-statistic) is dramatically
increased in LV space.

selects a few relevant pathways out of hundreds or thousands of available ones, it can be

supplied with multiple and possibly discordant marker sets for the same cell type.

It is important to note that the purpose of PLIER is general pathway-activity estimation.
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We do not expect that PLIER will substitute reference-based methods for the explicit task

of mixture component inference where reference-based methods have several conceptual ad-

vantages. For example, PLIER operates best on z-scored data and thus by default discards

valuable information about total transcript abundance. Moreover, PLIER is only applicable

to relatively large datasets. In particular the number of major variance components, that can

not be greater than the number of samples (and is typically much less), must be at least the

number of mixture components we would like to estimate. Thus, PLIER cannot be applied

for mixture component estimation in datasets with just a few samples, where reference-

based methods should have a clear advantage. Importantly, performance of reference-based

methods is highly dependent on the basis signatures (pure cell expression states) which may

vary according to assay platform and processing pipeline. A basis signature optimized for a

particular data acquisition framework will provide the optimal performance.

2.4.2 Alternative approaches

There are several methods that can take prior information about genesets into account

in order to learn a biologically meaningful low-dimensional representation, for example,

Bayesian Factor Analysis [25] that extracts pathway-level latent variables and our previ-

ously proposed method CellCODE [30] that estimates cell-proportion variation from cell-type

marker genesets. However, these methods require that the genesets are specified a priori and

that genes can be partitioned into these sets (though some overlap is allowed). In contrast, in

our method the pathways themselves are subject to optimization and our method is designed

to effectively choose just a few relevant genesets from thousands of available ones.

As our goal is to force gene loading to be represented by biologically coherent genesets, it

is natural to seek a solution based on group lasso regularization, which can perform variable

selection at the group level. However, given that the biological genesets are highly redundant

and overlapping, group lasso, which requires non-overlapping groups, is unsuitable. While

it is possible to define more complex norms that accommodate group overlaps, there are

some drawbacks. For example, a related method termed structured sparse PCA [68] has

been developed for image analysis. This method implements a direct optimization of the
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column support, but can only constrain the support to be the complement of a union of

predefined groups, which corresponds to rectangle-bounded regions for images, but is not in-

terpretable for genesets. Another related method that considers biological genesets explicitly

is the Overlap Group Lasso which employs an alternative norm that enforces the biologically

desirable union-of-groups support [123]. However, the implementation is computationally

expensive on large numbers of groups and its native form does not explicitly deal with the

issue of geneset/pathway incompleteness.

2.4.3 Future developments

Despite the promising results there are a number of areas for potential improvement and

our future work will center on improving the recovery of LVs with only a few supporting

genes as well as improving performance on very large geneset collections. For example, even

on simulated data we find that increasing the amount of irrelevant prior information degrades

the method’s performance. On the other hand, the available prior information represented

in geneset databases such as mSigDB is constantly increasing which makes robustness to

large prior information collections a top development priority.
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3.0 DataRemix - a universal data transformation for optimal inference from

gene expression datasets

3.1 Introduction

Genome-wide gene expression studies have become a staple of large-scale systems biology

and clinical projects. However, while gene expression is the most prevalent high-throughput

technology, technical challenges remain. Raw gene expression values must be normalized

for any technical and nuisance biological variation and the normalization strategy can have

dramatic effects on the results of downstream analysis. This is especially true in cases

where the sought-after gene expression effects are likely to be small in magnitude, such as

expression quantitative trait loci (eQTLs). Increasingly sophisticated normalization methods

have been proposed and many are computational intensive and/or can have multiple free

parameters that must be optimized [88, 148, 101, 70, 116]. Moreover, it is not uncommon for

one dataset to yield multiple normalized versions that maximize performance in a particular

setting (such as the discovery of cis- and trans-eQTLs [16]), highlighting the complexity of

the normalization problem.

Singular value decomposition (SVD) is one of the most widely used gene expression anal-

ysis tools [5, 6] that can also be used for data normalization. Using the SVD we can simply

remove the first few principal components that are presumed to represent technical factors

such as batch effects or other nuisance variation. In some cases this dramatically improves

downstream performance, for example in the case of eQTL analysis [116]. The drawback

of this method is that the exact number of components to remove must be determined

empirically and some meaningful biological signals may be lost in the process.

More sophisticated approaches attempt to partition data structure into true biological

and nuisance variation and remove only the latter [88, 148, 101, 70, 116]. These can im-

prove on the naive SVD-based normalization but require additional input such as technical

covariates, or the study design. The success of these methods ultimately depends on the

availability and quality of such meta data and some methods still rely on parameter opti-
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mization to maximize performance. These widely used normalization approaches all have

a common theme that they rely in part on the intrinsic data structure. One key property

that contributes to the success of these approaches is that for many biological questions of

interest, nuisance variation (of technical or biological origin) is larger in magnitude than

true biological variation. Our proposed method, DataRemix, explicitly formalizes this view

of the data normalization problem.

In this work we demonstrate that biological utility of gene expression datasets can be dra-

matically improved with a simple three-parameter transformation, DataRemix. Our method

does not require any dataset-specific knowledge but rather optimizes the transformation

with respect to some independent objective of data quality, such as the quality of the gene-

correlation network or the number of trans-eQTL discoveries. Because our method requires

only the gene expression data and biological validity objective, it can be applied to any pub-

licly available dataset. We focus our study on gene expression data for which methods for

quantifying biological validity are well established, but our approach can be readily applied

to any high-throughput molecular data for which similar quality metrics can be defined. We

show that this strategy can outperform methods that make explicit use of dataset-specific

factors, and can further improve datasets that have been extensively normalized via an opti-

mized, parameter-rich model. We also show how the optimal parameters of DataRemix can

be found efficiently by Thompson Sampling with a dual learning setup, making the approach

feasible for computationally expensive objectives such as eQTL analysis.

3.2 Methods and Materials

3.2.1 The DataRemix framework

We formulate DataRemix as a simple parametrized version of SVD which can be directly

optimized to improve the biological utility of gene expression data. Given a gene-by-sample

matrix X, SVD decomposition can be thought of as a solution to the low-rank matrix

approximations problem defined as:

min
Uk,Σk,Vk

‖X − UkΣkV
T
k ‖2

F (3.1)
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where U and V are unitary matrices. With the SVD decomposition UΣV T , the product

of k-truncated matricies UkΣkV
T
k gives the rank-k reconstruction of X. We introduce two

additional parameters p and µ to define a new reconstruction:

DataRemix{k,p,µ}(X) = UkΣ
p
kV

T
k + µ(X − UkΣkV

T
k ) (3.2)

Here, k is the number of principal components of SVD and p ∈ [−1, 1] is a real number

which alters the scaling of each singular value. For p = 1, this approach reduces to the

original SVD-based reconstruction . For p = 0, the transformation gives the frequently used

whitening operation [45]. As depicted in Fig. 26, generally, different choices of p reweigh

the contribution of each variance component, possibly making some low-variance biological

signals visible while down-weighting technical and other systematic noise. The parameter µ

is a non-negative weight that adds the residual back to the reconstruction in order to make

the transformation lossless.

Raw data DataRemix, p=0.5 DataRemix, p=−0.1
Useful
variation

Nuisance
variation

Figure 26: Visual representation of DataRemix transformation. We simulate a 2-dimensional dataset where
the nuisance variation contributes more variance than true biological variation. Different power parameters
p reweigh the contributions of the two variance axes, making the true biological variation more “visible”.

Intuitively, we expect this approach to succeed because sophisticated normalization meth-

ods that use both data structure and some external variables, such as technical covariates,

can be thought of as implicit regularizations on the naive SVD-based normalization (which

simply removes the first k components), and this formulation simply makes this explicit.

The general workflow of DataRemix is shown in Fig. 27. The downstream biologi-

cal objective depends on your study. For example, if you focus on trans-eQTL analysis,
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A new set of parameters λt = (kt, pt, µt)

Get the new reconstruction: DataRemix{kt,pt,µt}(X)

Evaluate the downstream biological

objective and get the metric yt

Determine the next most promising point

λt+1 to improve y based on
⋃t
i=1(λi, yi)

Figure 27: The workflow of DataRemix.

the biological objective will be to increase the number of trans-eQTLs detected from the

DataRemix-normalized gene expression profile and the metric y will be the number of trans-

eQTLs deemed significant. The parameter optimization step which determines the next

point to check is detailed in the Methods section.

3.2.2 Parameter Optimization

The parameters λ = (k, p, µ) need to be optimized with respect to a particular biological

objective. Grid search and random search [18] are among the most popular strategies, but

these methods have low efficiency. Most of the search steps are wasted and the optimality of

parameters is highly constrained by the step size and available computing power. In order

to utilize the search history and keep a good balance between exploration and exploitation,

we can formulate parameter search as a dual learning task.

We define a general performance measure y = L(λ,D), with λ representing the parameter

tuple (k, p, µ), D as the data, L as the evaluating process and y as the biological objective.

Ideally we can determine the optimal point argmaxλ L easily by gradient descent based
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method, but usually L is derivative-free and it is also time intensive. Thus we introduce

a surrogate model f(λ) which can directly predict L(λ,D) only given λ, and there are two

conditions on f : argmaxλ f should be easy to solve and f should have enough capacity.

With these two properties, we can sequentially update f with (λt, yt) and propose to

evaluate L at λt+1 = argmaxλ f in the next step. By gradually updating f with newly

evaluated samples (λ, y), argmaxλ f approaches the true underlying optimal argmaxλ L as

f can gradually fit to the underlying mapping function L. This provides a more efficient

approach to explore the parameter space by exploiting the search history. In this work,

we model f as a sample from a Gaussian Process with mean 0 and kernel k(λ, λ′), where

λ = (k, p, µ)T . It is well known that the form of the kernel has considerable effect on

performance. After experimentation we settled on the exponential kernel as the most suited

for our application. The exponential kernel is defined as below (note the difference from the

squared-exponential or RBF kernel).

k(λ, λ′) = exp

(
−‖λ− λ

′‖2

2

)
(3.3)

We observe yt = f(λt) + εt, where εt ∼ N(0, σ2). For Bayesian optimization, one ap-

proach for picking the next point to sample is to utilize acquisition functions [144] which

are defined such that high acquisitions correspond to potentially improved performance. An

alternative approach is the Thompson Sampling approach [15, 3, 61]. After we update the

posterior distribution P (f |λ1:t, y1:t), we draw one sample f from this posterior distribution

as the optimization target to infer λt+1. Theoretically it is guaranteed that λt converges

to the optimal point gradually [2]. With this theoretical guarantee, we focus on Thompson

Sampling approach to optimize parameters for DataRemix.

3.2.2.1 Estimation of Hyperparameters First we rely on the maximum likelihood

estimation (MLE) to infer the variance of noise σ2 [131]. Given the marginal likelihood

defined by (3.4), it is easy to use any gradient descent method to determine the optimal σ2

log p(~y|~λ) =− 1

2
~yT (K + σ2I)−1~y − 1

2
log|K + σ2I|

− t

2
log 2π

(3.4)
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where ~y = y1:t = (y1, . . . , yt)
T ,~λ = λ1:t = (λ1, . . . , λt)

T and K is the covariance matrix with

each entry Kij = k(λi, λj).

3.2.2.2 Sampling from the Posterior Distribution Since Gaussian Process can be

viewed as Bayesian linear regression with infinitely many basis functions φ0(λ), φ1(λ), . . .

given a certain kernel [131], in order to construct an analytic formulation for the sample f ,

first we need to construct a certain set of basis functions Φ(λ) = (φ0(λ), φ1(λ), . . .), which is

also defined as feature map of the given kernel. Then we can write the kernel k(λ, λ′) as the

inner product Φ(λ)TΦ(λ′).

Mercer’s theorem guarantees that we can express the kernels in terms of eigenvalues and

eigenfunctions, but unfortunately there is no analytic solution given the exponential kernel

we used. Instead we make use of the random Fourier features to construct an approximate

feature map [129]. First we compute the Fourier transform p of the kernel (see Sec. B.2 for

derivation).

p(~ω) =
1

(2π)3

∫
exp(−i~ωT ~∆) exp(−‖

~∆‖2

2
)d~∆ (3.5)

=
8

π2(4‖~ω‖2
2 + 1)2

where ~ω = (ω1, ω2, ω3)T and ~∆ = λ− λ′. Then we draw mt iid samples ω1, . . . , ωmt ∈ R3

by rejection sampling with p(ω) as the probability distribution. Also we draw mt iid samples

b1, . . . , bmt ∈ R from the uniform distribution on [0, 2π]. Then the feature map is defined by

the following equation.

Φ(λ) =

√
2

mt

[cos(ωT1 λ+ b1), . . . , cos(ωTmt
λ+ bmt)]

T (3.6)

where the dimension mt can be chosen to achieve the desired level of accuracy with respect

to the difference between true kernel values k(λ, λ′) and the approximation Φ(λ)TΦ(λ′).
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3.2.2.3 Thompson Sampling Any sample f from the Gaussian Process can be defined

by f(λ) = Φ(λ)T θ, where θ ∼ N(0, I) and Φ(λ)T is defined by (3.6). In order to draw a

posterior sample f , we just need to draw a random sample θ from the posterior distribution

P (θ|~λ, ~y).

P (θ|~λ, ~y) ∝ P (~y|~λ, θ)P (θ) (3.7)

∝ N(A−1Φ(~λ)~y, σ2A−1)

where A = Φ(~λ)Φ(~λ)T + σ2I and Φ(~λ) = (Φ(λ1) · · ·Φ(λt)). (see Sec. B.2 for more details).

The overall algorithm is summarized as the following pseudo code.

Algorithm 1 Thompson Sampling for Searching λ

Extra Parameters

tmax: the maximum number of iteration steps

ξ: a pre-defined probability which ensures the search doesn’t get stuck in a local optimum

1. Get a short sequence D1 = (λ, y) as seeds by random search.

2. Draw mt iid samples ω1, . . . , ωmt ∈ R3 and mt iid samples b1, . . . , bmt ∈ R according to

(3.5)

3. Iterate from t = 1 until λ converges or it reaches tmax

(1) At step t, estimate the hyperparameter σ2 given Dt according to (3.4)

(2) Draw a sample f given Dt according to (3.7) with feature map determined by (3.6)

(3) λt+1 =

argmaxλf(λ) w.p. 1− ξ

random search w.p. ξ

(4) Evaluate yt+1 given λt+1

(5) Dt+1 = Dt
⋃

(λt+1, yt+1)

3.2.3 Correlation network evaluation

We evaluated the quality of the correlation network derived from a particular dataset

using guilt-by-association pathway prediction. Specifically, the genes were ranked by their
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average Pearson correlations to other genes in the pathway (excluding the gene when the

gene itself is a pathway member). The resulting ranking was evaluated for performance

using AUC or AUPR metric. For pathway ground-truth, we used the “canonical” pathways

dataset from MSigDB, comprising 1,330 pathways [153].

3.2.4 eQTL mapping

eQTL association mapping was quantified with Spearman rank correlation. For cis-

eQTLs, testing was limited to SNPs which locate within 50kb of any of the gene’s tran-

scription start sites (Ensembl, version 90). cis-eQTl is deemed significant at 10% FDR with

Benjamini-Hochberg correction for the total number of tests. For trans-eQTLs, the signifi-

cance cutoff is 20% FDR with Benjamini-Hochberg correction for the total number of tests.

Since the Benjamini-Hochberg FDR is a function of the entire p-value distribution in order

to ensure consistency comparisons, the rejection level was set once based on the p-value that

corresponded to 10% or 20% FDR in the original cis-optimized DHCP−cis and trans-optimized

DHCP−trans dataset respectively. To reduce the computational cost of grid evaluations, all

the optimization computations were performed on a set of 100,000 subsampled SNPs.

3.2.5 Public Data

3.2.5.1 GTEx Dataset We downloaded the complete gene-level TPM data (RNASe-

QCv1.1.8) from the GTEx consortium [103]. These data were quantile normalized to create

the raw dataset. We subsequently subjected the dataset to several different normalization

approaches (Table. 6) that account for hidden and known technical factors.

The technical covariates selected were those with the median values of the variance they

explained across genes that were above 0.01. The 8 variables that met this threshold were:

SMTS (Tissue type, area from which the tissue sample was taken), SMTSD (Tissue type,

more specific detail of tissue type), SMUBRID (Uberon ID), SMNABTCHT (Type of nucleic

acid isolation batch), SMEXNCRT (Exonic Rate: the fraction of reads that map within ex-

ons), SMGNSDTC (Genes detected), SMTRSCPT (Transcripts detected) and SMNTRNRT

(Intronic Rate: the fraction of reads that map within introns).
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DataSet Description

Remove PC We keep removing first several (up to 300) principal

components (PCs) until the network quality metrics

(mean AUC and mean AUPR) no longer improve.

Remove tech We remove the technical covariates by ridge regression

with cross validation.

Remove tech +

PC

We remove the technical covariates as above and subse-

quently remove residual PCs until the network perfor-

mance metrics no longer improve.

DataRemix DataRemix normalization is performed with k ranging

from 1 to 100. p ∈ [−1, 1] and µ ∈ [0, 1]

HCP HCP normalization is performed with following param-

eter settings. k ∈ [1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80

, 90, 100], λ ∈ [1, 5, 10, 20], σ1 ∈ [1, 5, 10, 20] and σ2 ∈

[10, 20]. We run grid search to pick up the best combi-

nation of parameters.

Table 6: Different normalizations of the GTEx dataset.

3.2.5.2 DGN Dataset Depression Gene Networks (DGN) dataset contains whole-blood

RNA-seq and genotype data from 922 individuals. The genotype data was filtered for

MAF>0.05. The genomic coordinate of each SNP was taken from the Ensembl Variation

database (version 90, hg19/GRCh37). SNP identifiers that were not present in that release

were excluded. After filtering, there were 649,875 autosomal single nucleotide polymor-

phisms (SNPs). Data is available upon application through NIMH Center for Collaborative

Genomic Studies on Mental Disorders. For gene expression we used the gene-level quantified

dataset. The dataset came already filtered for expressed genes and was further filtered for

gene symbols that were not present in Ensembl 90 leaving 13,708 genes. The dataset comes

in two covariate normalized versions with normalization parameters optimized for cis- and
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trans-eQTL discovery separately. To create the naive-normalized dataset, we applied a log

transformation, log(x+ 1), to the raw counts and quantile normalized the results.

3.2.5.3 ROSMAP dataset The raw data was obtained from Synpase (syn3219045).

The data was optimized for the network quality objective using the canonical pathway gene-

sets from MSigDB [153]. The data was corrected for sex, age and 10 genotype principal

components. In order to quantify exon-level effects we used the Synapse BAM files to quan-

tify exon-level FPKMs using featureCounts [99].

3.2.5.4 NESDA The NESDA (Netherlands Study of Depression and Anxiety) dataset

was obtained from dbGAP (phs000486.v1). Following suggestions from study authors, the

NESDA dataset was normalized for sex,age, and the first 10 genotype PCs using linear regres-

sion. Genotypes were imputed using Michigan Imputation Server [35] using 1000 Genome

Phase 3 (Version 5) as the reference panel. We assesed the replication of DGN eQTLs based

on exact gene and SNP matches.

3.3 Results

3.3.1 Simulation Study

In order to evaluate the performance of DataRemix when different variance components

align with the true biological signals, we performed a simulation study focusing on three

representative cases. The cases are: 1) only high-variance components encode biological

signals (high-variance Fig. 28), 2) only low-variance components encode biological signals

(low-variance) and 3) both high- and low-variance components correspond to useful variations

(general case). We simulated gene expression profile along with ground-truth pathways and

evaluated whether DataRemix could improve the recovery of the simulated pathways (AUC

and AUPR) using guilt-by-association.
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We simulated gene expression profile with 5000 genes, 300 samples and 50 latent factors

based on the following linear model.

X = WH + E

We set W and H to be positive. Each column of W and each row of H was drawn from a

Normal distribution with mean equal to zero, and the variance parameters were drawn from

Exponential distribution with 1e-3 as rate. In this way, the singular values can decrease

gradually as the rank increases and each latent factor can have a non-negligible effect when

recovering simulated pathways. The matrix E ∈ N (0, 2) represents random noise.
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Figure 28: We simulate gene expression data with a low rank approximation so that the component variance
distribution approximates that which is typically seen in gene expression data (top row). According to our
assumptions only some of the low rank components represent useful biological variation. The left, middle and
right panel depict the general, high-variance and low-variance case with the pink points denoting the factors
with biological variations. These factors are used to construct the ground-truth pathway membership matrix.
In the second row, we compare the AUC and AUPR for recovering the pathway co-membership via guilt-
by-association analysis on the correlation network. DataRemix is able to improve this metric by reweighing
the contribution of different variance components.

The gene expression profile is consistent across three cases and a different pathway matrix

is generated separately according to each assumption. In the high-variance case, we select
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the top 25 latent factors. In the low-variance case we pick up the last 25 latent factors and

randomly sample 25 latent factors for the general case. Then for corresponding columns in

W , we randomly select a threshold between 0.01 and 0.1 with 0.01 as the step size. With

the threshold value, we pick up the corresponding highest quantile of genes to construct the

pseudo geneset as ground truth. The simulated data is used to construct a gene-correlation

network which is evaluated according to guilt-by-association recovery of the ground-truth

pathways, a commonly accepted network quality metric. We evaluate both the raw data and

the optimized Remixed result. In all 3 cases DataRemix was able to substantially improve

network quality metrics.

3.3.2 Quality of the correlation network derived from the GTEx gene expression

study

The GTEx datasets [103] is comprised of human samples from diverse tissues, many of

which were obtained post-mortem and there are many technical factors which have consid-

erable effects on the gene expression measurements. On the other hand this rich dataset

provides an unprecedented multi-tissue map of gene regulatory networks and has been ex-

tensively analyzed in this context. It is natural to assume that a dataset that is better at

recovering known pathways is likely to yield more credible novel predictions. Thus, we use

DataRemix to optimize the known pathway recovery task as a function of the correlation

network computed on a Remixed dataset.

We formally define the objective as the average AUC across “canonical” mSigDB path-

ways (which include KEGG, Reactome and PID) [153] using guilt-by-association. Specif-

ically, the genes are ranked by their average Pearson correlations to other genes in the

pathway (excluding the gene when the gene itself is a pathway member). Fig. 29A depicts

the results of grid search for the parameters k and p (with µ fixed at 0.01) and the contour

plot shows a clear region of increased performance. Using the optimal transformation found

by grid search, we plot per-pathway AUC improvement in Fig. 29B and find that the AUC

is substantially increased for almost every pathway.

In Fig. 30 we systematically evaluate the performance of DataRemix against alternative
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Figure 29: A. The improvement in performance of DataRemix transform of the pathway prediction task
visualized as a function of k and p parameters (µ is fixed at 0.01). Performance is measured as the mean
AUC across all pathways in the “canonical” mSigDB dataset and the red contours indicate improvement
over the performance on untransformed data. B. Per-pathway performance improvement for the DataRemix
transformation corresponding to the optimal point in A.

methods. For the purpose of evaluation we include the naive method of simply removing

known and hidden factors from the data. We consider removing principal components (Re-

move PC), removing known technical variables (Remove tech), and a combination of the two

(Remove tech and PC). Since the number of hidden factors is not known, we optimize the

number of PCs removed to the specific network quality objective (see Methods for further

details). We also include a penalized mixed linear model method “Hidden Covariates with

Prior” (HCP) which takes known covariates as input. In addition to the number of hidden

components, this method has 3 hyperparameters that were optimized to maximize the net-

work quality objective via grid search. HCP has been extensively benchmarked perviously

and has been shown to outperform both naive methods and the widely used PEER approach

(see [148] for PEER and [116] for HCP including performance comparison). Moreover, HCP

is considerably faster than PEER making an extensive hyperparameter search feasible.

We find that on this dataset DataRemix is able to outperform all naive methods including

ones that make use of known technical covariates, achieving performance that is comparable

to that of HCP. In summary, our DataRemix framework is able to match the performance of
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Figure 30: We compare our DataRemix approach to other common normalization strategies with respect to
correlation network quality. Here, we consider different normalizations of the GTEx dataset and the details
are described in Table. 6. We compute several “naive” normalizations which simply remove known factors
(tech), top k principal components where k is optimized for the task (PC) or both (tech+PC). We also
consider “Hidden Covariates with Prior” (HCP) which is a mixed linear model that takes known factors
into account and has been shown to outperform other methods in various normalization tasks [116] . The
four hyperparameters in HCP are optimized by grid search. Each box plot shows the distribution in AUCs
or AUPRs across the “canonical” mSigDB pathways. P -values compare the results achieved by DataRemix
against others using the Wilcoxon ranksum test. DataRemix’s performance surpasses all naive methods and
is comparable to HCP while using no technical covariates and considerably less computation ( see text for
details) .

the best competing method, HCP, while using no technical covariates. It is worth pointing

out that once a truncated SVD decomposition is computed, a single DataRemix evaluation

requires only two matrix multiplications while HCP is an optimization problem which needs

to be solved iteratively with two matrix inversions at each step.

3.3.3 eQTL discovery in the DGN dataset.

We also consider the task of discovering cis- and trans-eQTLs on the Depression Gene

Networks (DGN) dataset [16]. In the original analysis this dataset was normalized using the

Hidden Covariates with Prior (HCP) [116] with four free parameters that were separately

optimized for cis- and trans-eQTLs. The rationale behind separate cis and trans optimized

normalization can be understood in terms of which variance components represent true
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biological vs. nuisance variation in the two contexts. Specifically, cis-eQTLs represent direct

effects of genetic variation on the expression of a single gene. On the other hand, trans-eQTLs

represent network level, indirect effects that are mediated by a regulator. Thus, trans-eQTLs

are reflected in systematic variation in the data which becomes a nuisance factor when only

direct effects are of interest. It thus follows that the data should be more aggressively

normalized for cis-eQTL discovery. The original analysis of this dataset optimized the HCP

parameters separately for the cis and trans tasks yielding two different datasets that we

refer to as DHCP−cis and DHCP−trans.

The HCP model takes various technical covariates as input, and 20 of the covariates used

in the original study cannot be inferred from the gene-level counts. In order to investigate

how much improvement can be achieved via DataRemix in the absence of access to these

covariates, we also consider a “naively” normalized dataset, quantile normalization of log-

transformed counts, or DQN.
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Figure 31: Final results from DataRemix parameter search using a cross-validation framework. cis-eQTL
statistic is defined to be number of SNP-gene interaction deemed significant at 10% FDR (Benjamini-
Hochberg correction for the total number of tests), where the SNP is located within 50kb of the gene’s
transcription start site. Optimal parameters are determined using the odd chromosome SNPs only and then
tested on the even chromosome SNPs. While the raw dataset is considerably worse than HCP, both are
improved to a similar level with DataRemix. We find that the DataRemix transform does not overfit the
objective as the degree of improvement is similar across the test and train SNP sets. (Note, the starting value
of the raw or HCP dataset differ between the test and train SNP set). Moreover, we find that Thompson
Sampling is able to match grid search results using only 100 evaluations.
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3.3.3.1 cis-eQTLs In this task we focus on optimizing the discovery of cis-eQTLs. We

define cis-eQTLs as a SNP-gene interaction where the SNP is located within 50kb of the

gene’s transcription start site. The interaction is quantified with Spearman rank correlation

and deemed significant at 10% FDR (Benjamini-Hochberg correction for the total number

of tests).

We perform our analysis in a cross-validation framework, whereby we optimize DataRemix

parameters (using grid search or Thompson Sampling) using SNPs on the odd chromosomes

and then evaluate the parameters on the, held-out, even chromosome set. Since there are no

hyperparameters to optimize the even chromosome validation is performed exactly once.

The final results for both the train and test set are depicted in Fig. 31. As expected,

the quantile-normalized dataset DQN performs considerably worse than DHCP−cis, which is

specifically optimized for cis-eQTL detection. However, the two datasets achieve comparable

performance after applying DataRemix. Moreover, the final performance of the Remixed

DQN dataset is an improvement on DHCP−cis demonstrating the near optimal normalization

is possible without access to technical covariates. Importantly, we find that the optimal

parameters are indeed generalizable as we achieve a similar level of improvement on the

train and test chromosomes.

3.3.3.2 trans-eQTLs In our second task, we optimize the discovery of trans-eQTLs

in the same DGN dataset. Ideally, trans-eQTLs represent network-level effects and thus

give some insight about the regulatory structure of gene expression. However, in practice

trans-eQTLs are simply defined as SNP-gene associations where the SNP and the gene are

located on different chromosomes. While this is a useful heuristic definition, it doesn’t

guarantee that the association is mediated at the network level. One possible source of

bias is mis-mapped RNAseq reads which contaminate the quantification of the apparently

trans-associated gene with reads from a homologous locus that has cis association. Even in

the absence of technical artifacts, direct interchromsomal interactions have been observed

(see [164] for a comprehensive review). In order to focus on potential indirect effects, we

apply an additional filter to trans-eQTL discovery. Specifically we require SNPs involved

in a trans effect to be associated with more than one gene at a FDR of 20% (Benjamini-
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Hochberg correction for the total number of tests (approximately 8 × 109). We term these

SNPs trans-SNPs+. In comparison with same chromosome cis-eQTLs, inter-chromosome

trans-eQTLs are rare and trans-SNPs+ (as defined above) are more rare still. In fact, using

the odd chromosome SNPs subsampled at 20%, we find only 88 such SNPs using DHCP−trans

dataset and this is the default value we wish to improve.

Here again we find that the dataset specifically optimized for the task of trans-eQTL

detection, DHCP−trans, considerably outperforms the raw data DQN, however DataRemix is

able to improve both to a similar performance. As is the case with the cis-eQTL objective,

the cross-validation procedure gives consistent results and no overfitting is observed for either

grid search or Thompson Sampling (Fig. 32). We note that Thompson Sampling is able to

achieve a better performance than grid search, though the improvement is small in absolute

magnitude due to the scarcity of trans-eQTLs. In this case, the optimal region for the

DataRemix transformation is relatively small (Fig. 33) and thus Thompson Sampling has

an advantage since it can search off the grid.

Odd Chrom. (train set) Even Chrom. (test set)

snps.plus

HCP Raw HCP Raw
0

40

80

120

normalization type

nu
m

be
r 

of
 S

N
P

s

Dataset
Raw
Raw+DataRemix (Grid)
Raw+DataRemix (Thompson)
HCP
HCP+DataRemix (Grid)
HCP+DataRemix (Thompson)

Improvement in trans eQTL statistics

Figure 32: Final values for the eQTL statistics obtained from two versions of datasets. trans-eQTL statistic
is defined to be number of SNPs involved in a trans effect and associated with more than on gene at a
FDR of 20% (Benjamini-Hochberg correction for the total number of tests). Here we make a comparison
between quantile normalized DQN and HCP normalized DHCP−trans with parameters optimized for trans-
eQTL discovery. We find DataRemix is able to improve upon either of starting datasets and the improvements
on both the train and test dataset are comparable which indicates that overfitting is not a problem

3.3.3.3 DataRemix performance transfers across different network objectives

It is well know that for statistical analyses of genomic datasets, more significant associa-
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Figure 33: Contour plot representing the effects of the k and p parameters on the performance of DataRemix
regarding trans-eQTLs discovery on training set. The µ parameter is fixed at 0.01. Red contours represent
parameter combinations that increase the number of trans-eQTLs beyond what can be achieved using the
DHCP−trans dataset. Panel A shows the results starting with DHCP−trans while DQN is used for panel B.
Improvement can be achieved starting with either dataset. We find that the region of improved performance
is smaller than that for cis-eQTLs and is particularly concentrated when starting with the DQN (panel B)
dataset.

tions do not necessarily mean improved biological findings. However, it is generally agreed

that improvement in cis-eQTL detection cannot be achieved through artificial means but

indeed represents improved correction for confounding factors [148, 116]. There is no such

consensus for trans-eQTLs which are rare, and subject to many artifacts. Consequently,

it is important to further corroborate the biological validity of the trans-optimized dataset

through independent means.

Since trans-eQTLs are likely to reflect pathway-level effects, we expect that a dataset

that is optimally transformed for trans-eQTL discovery should also produce better correla-

tion networks. We thus investigate if optimal DataRemix transform is transferable across

these tasks by verifying whether the Remixed dataset optimized with respect to trans-eQTL

discovery also improves the network quality criterion. Similar to our analysis of the GTEx

datasets, we use the correlation network to perform guilt-by-association pathway predictions
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Figure 34: DataRemix-transformed datasets improve the pathway prediction objective which is not explicitly
optimized. Each plot is a per-pathway AUPR (area under precision-recall curve) from various datasets (y-
axis) contrasted with the results from the optimal covariate-normalized dataset DHCP−trans, which serves
as the baseline (x-axis). Panel A shows the contrast between DHCP−trans and DQN. The performance of
DHCP−trans is considerably better. Panel B shows the results of the Remixed DQN datasets (optimized for
trans-eQTL discovery with Thompson Sampling). Even though DQN starts out as considerably worse, the
Remixed version is able to outperform DHCP−trans. Panel C shows the results of Remixed DHCP−trans. We
choose to show AUPR instead of AUC because we find that Remixed version matches but doesn’t further
improve the AUC performance of DHCP−trans

and evaluate the results over 1,330 MSigDB canonical pathways. Fig. 34 shows scatter

plots of per-pathway AUPR (area under precision-recall curve) for several comparisons with

respect to the baseline DHCP−trans dataset. In the first panel we contrast the performance to

DQN and observe that, as expected, DHCP−trans brings a considerable improvement over the

quantile normalized dataset. In the second panel we contrast DHCP−trans with the Remixed

version of DQN (optimized for trans-eQTL discovery with Thompson Sampling). We find

that the pattern becomes opposite and the Remixed DQN dataset performs consistently bet-

ter that DHCP−trans. The final panel shows the results of Remixing DHCP−trans itself which

also improves the performance. Overall, we find that DataRemix improves multiple criteria

of biological validity as optimizing for the trans-eQTL objective also results in improved

correlation networks.

A major finding of our study is that for the eQTL and pathway prediction tasks, the

starting point of normalizing DGN datasets appears to matter relatively little. Even though

the quantile-normalized dataset performs considerably worse in the beginning, after Remix-
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ing its performance matches that of the optimal covariate-normalized datasets. Of course, if

covariates are available, it is preferable to use them and in the case of DGN, slightly further

improvement can be achieved. However, our results indicate that in some cases datasets

can be effectively normalized even in the absence of meta-data about quality control or

batch variables. This is an important consideration for many legacy datasets where such

information is not available.

3.3.4 Novel Biological Findings

3.3.4.1 New trans-eQTLs effects in the DGN dataset At the optimal DateRemix

parameters for DQN, we find 3,000 gene-SNP trans associations at a Benjamini-Hochberg

FDR of 0.2 where in contrast to 1,691 for DHCP−trans. We verified the replication of these

associations in an independent dataset, NESDA and find that 1,013 (33%) of the DataRemix

associations had a replication FDR of < 0.2 while for the default DHCP−trans dataset the

same number was 707 (41%). The replication rate was somewhat smaller on the Remixed

dataset, which is expected as the replication was performed on raw NESDA data. However,

the total number of replicated effects was greater.

We highlight an example of new regulatory module recovered via DataRemix that appears

to be biologically credible based on independent replication and the known functions of the

genes involved. We find that SNP rs11145917 located near CARD9 gene is associated with

three genes in the alpha interferon response (Table. 7). The locus has been associated with

Crohn’s disease [44] and Ulcerative colitis [8] though to our knowledge no mechanism has

been proposed. We find that rs11145917 has a cis effect on CARD9 and the trans effects are

partially mediated by CARD9 expression. In summary, our analysis suggests that CARD9

may affect baseline activity of the alpha interferon pathway, which is a testable prediction

with potential clinical importance.

3.3.4.2 Analysis of the Religious Orders Study and Memory and Aging Project

(ROSMAP) Study We sought to apply our method to the Religious Orders Study and

Memory and Aging Project (ROSMAP) Study dataset which consists of 370 human samples
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SNP Gene Method Spearman rho p-value FDR(B.H.)

DataRemix -0.1782 5.1052E-08 0.0889

SIGLEC1 Raw -0.1510 4.1326E-06 >0.2

NESDA replication -0.0414 8.1499E-02 0.2148

DataRemix -0.1783 5.0403E-08 0.0881

rs11145917 IEIT1 Raw -0.1627 6.7749E-07 >0.2

NESDA -0.07919 8.6260E-04 0.0050

DataRemix -0.1830 2.1867E-08 0.0451

ISG15 Raw -0.1541 2.5755E-06 >0.2

NESDA replication -0.07451 1.7229E-03 0.0088

Table 7: The association of rs11145917 with genes in the alpha interferon pathway is replicated in an
independent dataset. We note that the FDRs for the NESDA dataset represent a correction for the total
number of replication test performed, that is only gene-SNP pairs which passed a FDR < 0.2 in the DGN
dataset. Since the fraction of true positives in the replication scenario is higher, the FDRs are lower than
the genome-wide FDRs at the same p-value.

with paired gene expression and genotype information. To our knowledge no trans-eQTLs

have been reported for human brain and indeed we could not detect any genome-wide signif-

icant trans effects in the ROSMAP dataset. Since no trans-eQTLs can be detected, there is

no variance in this objective and thus our method cannot be applied directly. However, using

the DGN dataset we have shown that optimizing for trans-eQTLs discovery also optimizes

the network quality objective demonstrating that these two objectives are related. Thus,

for the ROSMAP dataset we can optimize network quality (which is quantitative and thus

always has some variance across different DataRemix parameter combinations) and hope to

implicitly optimize trans-eQTLs discovery. Fig. 35A shows the change in mean AUC and

mean AUPR for the network objective after applying DataRemix (see Methods for details).

We find that while the mean AUC changes modestly the mean AUPR is nearly doubled.

Applying trans-eQTLs analysis to the Remixed ROSMAP dataset we detect a single sig-

nificant effect between CYP2C8 (chr10) and rs10821352 (chr9). This effect was replicated

in the CommonMind Consortium dataset [46] with a p-value of 3.1382e-16 (Spearman rank
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correlation). The interaction passed all quality checks. Specifically, all CYP2C8 30-mers

mapped back to CYP2C8 indicating that artifacts from mismapped reads were unlikely and

furthermore the eQTL effect was consistent across all 8 exons (Fig. 36). To our knowledge

this is the first replicated trans-eQTLs reported in human brain data.

After DataRemix Before DataRemix

A
U

P
R

C

A
U

C

A:Bar plot of AUC and AUPRC after and before DataRemix

rs10821352

2.5

5.0

7.5
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P
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B:Manhattan plot of CYP2C8 assciation after DataRemix on all snps

Figure 35: A. Improvement in the network quality objective after running DataRemix with Thompson
sampling. B. Manhattan plot of associations with CYP2C8 expression. The CYP2C8 gene is located on
chromosome 10. A single SNP on chromosome 9 shows a strong trans effect with a p-value that is notably
smaller than the group of cis-effect SNPs on chromosome 10.

The gene, CYP2C8, is a member of the cytochrome P450 and is thought to be involve

in the metabolism of polyunsaturated fatty acid and lipophilic xeonbiotics. The xenobiotic

metabolism function is supported by the correlation network around CYP2C8. Among its

top neighbors are GSTA4 (rank 1, Spearman ρ =0.68), CES4A (rank 4, Spearman ρ =0.66)
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Figure 36: The effect of rs10821352 on CYP2C8 expression is consistent across exons. We used raw FPKM
data to quantify the exon-level trans-eQTL effects. The effect is consistent across exons further confirming
that it is unlikely to be due to homolog mismapping and other technical artifacts.

–two other genes implicated in xenobiotic metabolism. The precise mechanistic nature of

how genotype in the rs10821352 locus affects CYP2C8 expression is unclear. No cis-eQTLs

for rs10821352 could be detected in ROSMAP and none are reported in the GTEx brain

data.
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3.3.5 Thompson Sampling Performance

We find that Thompson Sampling matches the best grid-search performance within 100

steps giving a 40-fold reduction in the number of evaluations (Fig. 37). We also note that it

is possible for the Thompson sampling to surpass the grid-search results since the parameter

combinations are not constrained by the choice of grid.
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Figure 37: Objective evaluations as a function of iteration number for the trans-eQTL and cis-eQTL objec-
tives using the quantile normalized DQN dataset. Red lines indicate the maximum value that was obtained
by grid search and blue lines indicate the cumulative maximum of Thompson Sampling.

3.4 Discussion

We have proposed DataRemix, a new optimizable transformation for gene expression

data. The transformation is able to improve the biological validity of gene expression rep-

resentations and can be used for effective normalization in the absence of any knowledge of

technical covariates. One limitation of the DataRemix approach is that it works best on data

that is well approximated by a single Gaussian. However, it is relatively straightforward to
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adapt the approach to matrix decompositions different from SVD that are more suitable for

non-Gaussian data, such as ICA (Independent Component Analysis). We also note that it

is possible to introduce additional parameters that specify more complex weighting schemes.

However, as the number of parameters is increased, there is a potential for over-optimization

of a specific objective above others. We emphasize that in our simple parametrization, we

observe that multiple metrics of biological validity improve when only one is explicitly op-

timized. Specifically we find that optimizing for trans-eQTL discovery also improves the

correlation network as measured by guilt-by-association pathway prediction. This property

is less likely to be preserved as the number of parameters is increased.
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4.0 NIFA - Non-negative Independent Factor Analysis for single cell RNA-seq

4.1 Introduction

Single-cell RNA sequencing (scRNA-seq) techniques have allowed researchers to query

the complexity of transcription regulation at an unprecedented level of detail. scRNA-seq

technologies have the power to reveal both distinct cell types and transcriptional hetero-

geneity within a defined cell population. However, as individual transcript measurements

are noisy and often difficult to interpret in isolation, scRNA-seq analysis methods rely heavily

on multivariate techniques.

As the number and size of single-cell datasets increases, it becomes important to develop

methods that can quickly summarize the biological information embedded in a scRNA-seq

dataset as a set of interpretable variables which can be used for downstream analysis. One

kind of summary measures is the identity and number of cell types present in a datasets.

In recent years there has been a proliferation of clustering methods designed to address this

problem [73, 26]. Clustering approaches assume that the data is well described by a discrete

set of cell types, but in many cases, questions about continuous biological variation, such as

developmental trajectories or levels of pathway activation are also of interest.

Such continuous variables do not conform to the assumptions of clustering algorithms

but can be effectively modeled as latent factors. For example, cell-cycle variation has been

repeatedly discovered in single-cell data, both using sophisticated latent variable models [22]

and simple Principal Component Analysis (PCA) [77].

Of course, cell-type identity can also be thought of as a latent factor and this observation

underlies the popularity of Independent Component Analysis (ICA) in single-cell pipelines.

Unlike PCA which seeks directions that maximize variance, ICA finds maximally indepen-

dent or maximally non-Gaussian directions [66].This property is well suited for the analysis

of single-cell datasets as directions that maximally separate cell types are multi-modal and

thus highly non-Gaussian. For this reason ICA is used as a dimensionality reduction pre-
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processing step [26]. However, the ICA formulation is not a proper likelihood framework as

it has no reconstruction error. A side effect of this is that it requires a loading orthogonal-

ization step to prevent latent variables from collapsing. This rigid formulation restricts the

interpretability of individual components a criticism is also valid for PCA/SVD. For the case

of PCA/SVD, there are a number of alternative factor analysis methods that produce more

interpretable components by relaxing orthogonality and introducing additional constraints,

for example, NMF [84] and SPC [165]. It is natural to ask if analogous approaches can be

applied to find interpretable multi-modal factors.

Figure 38: Illustration of the NIFA. Left: We assume there are three hypothetical cell clusters and there
are two latent components which point to arbitrary directions. Middle+Right: By imposing multi-modal
prior, we force the latent factors to rotate and align with the directions that can best separate the cell-type
identity.

We propose Non-negative Independent Factor Analysis (NIFA) that combines properties

of ICA, PCA and NMF. As illustrated in Fig. 38, our approach simultaneously models uni-

and multi-modal factors thus isolating discrete cell-type identity and continuous pathway-

level variations into separate components. Furthermore, our model constrains the factor

loading to be non-negative providing greater biological interpretability.
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4.2 Methods and Materials

4.2.1 The statistical model

X represents a scRNA-seq matrix with dimension P -by-N , where P is the number

of genes and N is the number of cells (Fig. 39 and 40). Given X, we want to infer

A which denotes loading matrix with dimension P -by-K and S which stands for sources

or latent variables with dimension K-by-N . We denote the nth column of X as Xn =

(X1n, X2n, . . . , XPn)T , the jth row of A as ATj = (Aj1, Aj2, . . . , AjK) and the nth column of S

as Sn = (S1n, S2n, . . . , SKn)T (see Fig. 39). We assume the noise model to be Gaussian with

a single precision parameter β.

Xn|A, Sn, β ∼ N(0,Σ),Σ−1 = diag(β)P×P (4.1)

Figure 39: A schematic representation of the NIFA model. The gene × cells matrix X is decomposed as a
non-negative loading matrix A and a factor matrix S. We impose multi-modal priors on the rows of S, but
the exact number of modes is automatically determined and thus can be one.

4.2.1.1 The prior distribution Each latent variable is associated with M component

distributions which we assume follows a Gaussian distribution with µim as the mean and σim
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as the inverse of the variance. εimn is a set of binary latent variables, and
∑M

m=1 εimn = 1. If

Sin is generated from component j, then εimn = 1 if m = j and εimn = 0 if m 6= j.

P (Sn|ε, µ, σ) =
K∏
i=1

M∏
m=1

N(Sin|µim, σim)εimn (4.2)

N

A

ρ

aβ

bσ

ε

β

bβ

µ

Snη

φ

Xn

aσπ

σ

λ

Figure 40: Parameters of the NIFA model are summarized in a directed acyclic graph.

The loading matrix A is modelled with a truncated normal prior where a = 0 and b =∞

indicating each entry Aji falls within the interval [0,∞). η and λ denotes the mean and the

inverse of the variance. Φ(·) is the cumulative distribution function of the standard normal

distribution.

P (Aji|ηji, λi)

=(2π)−
1
2 (λi)

1
2 exp(−1

2
λi(Aji − ηji)2) · 1(Aji ≥ 0)

1− Φ(−ηjiλ
1
2
i )

(4.3)

The dependency structure of the NIFA model is summarized in Fig. 40. We assume the

noise parameter β comes with a Gamma prior with parameter aβ and bβ. The membership

indicator εimn comes with a Bernoulli prior with mixing proportion πim. The µim is assumed

to follow a Gaussian distribution with parameters ρim and φim and the inverse of the variance

σ comes with a Gamma distribution with parameters aσim and bσim .
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4.2.1.2 Parameter Inference The joint likelihood P (X,A, S, ε, µ, σ, β) is as follows

(Eq. 4.4).

P (X,A, S, ε, µ, σ, β) =
N∏
n=1

P (Xn|A, Sn, β)P (Sn|ε, µ, σ)

P∏
j=1

K∏
i=1

P (Aji|ηji, λi)
∏
i,m,n

P (εimn)
∏
i,m

P (µim)P (σim)P (β)

(4.4)

In order to efficiently infer the parameters, we apply variational inference technique,

more specifically, mean-field approximation [20]. By assuming each variational parameter

is independent of each other, we formulate the joint posterior distribution Q(S,A, ε, µ, σ, β)

(see Eq. 4.5) for the model and minimize the KL-divergence between Eq.4.4 and Eq.4.5

to derive the expression q(·) for each variational parameter as an approximation of single

posterior distribution.

Q(S,A, ε, µ, σ, β) =
N∏
n=1

q(Sn) ·
∏
j,i

q(Aji) ·
∏
i,m,n

q(εimn)

·
∏
i,m

q(µim)q(σim) · q(β)

(4.5)

The derivations of variational updates for our model are detailed in Sec. B.3.

4.2.1.3 Hyperparameters Our model has a number of hyperparameters, however, most

of them are Bayesian priors and have relatively little impact on the results. One of the

main hyperparameters of considerable relevance is the number of latent factors K. For the

independent factor analysis model, the typical approach is to calculate the likelihood or

ELBO (variation lower bound), comparing values directly or with BIC criterion [78] and

selecting K corresponding to the optimal values. Since scRNA-seq data often has thousands

of cells, the computation for likelihood-based or ELBO-based tuning method is time-intensive

and impractical. Instead we can rely on variance-based method SVD with BIC criterion [4]

to figure out a conservative estimate of the number of latent factors. Importantly we use this

only as a reference value, we perform all our evaluations across a range of K parameters.

We have one more discrete hyperparameter which is the number of Gaussian mixtures

M for each latent factor. However, this parameter needs to be just the maximum number
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of components one can expect to find. Since our model fits the Gaussian mixtures by

variational inference, it has the desirable property that the number of mixture components

is determined automatically as some of the mixing coefficients go to 0. In experiment we

set this hyperparameter to be be 4 and find that for non-developmental datasets, where

we expect to find discrete cell types, the final number of modes is usually either one or

two. This conforms to the biological intuition that cell types differ from each other by a

set of (not necessarily unique) ”marker” genes. Such marker genes typically have a bimodal

distribution corresponding to high and low expression. While the distributions may overlap

due to technical noise we typically do not observe intermediate expression modes.

4.2.1.4 NIFA initialization NIFA updates are relatively expensive and thus a good

initialization can significantly affect running time. We initialize NIFA with a simple matrix

decomposition with non-negativity constraints on the loadings. Specifically, we initialize

NIFA with a solution to a simpler optimization problem.

minA,S||X − AS||F + λ1||A||F + λ2||S||F subject to A ≥ 0 (4.6)

This problem can be solved quickly by alternating least squares.

4.2.2 Preprocessing Pipeline

The data preprocessing pipeline is illustrated in Fig. 41. Some pre-processing steps

were only applied to certain methods. For example, we employed SVD smoothing (that

is reconstructing the input as a truncated SVD with rank=50) because it makes the NIFA

constant-variance Gaussian error assumption more valid. However, we found that empirically

this had little effect on the results. For NMF we used KL divergence (or equivalently a

Poisson error model) which is most appropriate for unsmoothed data. For NIFA we chose

to z-score the input by row (gene). The z-scoring operation theoretically makes it easier to

pick up on small variance but highly deferentially expressed genes and it produced modest

improvement in most (though not all) benchmark datasets. Row z-scoring was not applied to

NMF as it produces negative numbers. It was also not applied to ICA as the ICA objective
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function references only the shape of the factor distribution and thus is invariant under row

scaling.

Raw counts or normalized raw counts

log2 transform and normalize the total gene expression

of each cell to be the median value across all cells

Filter out genes with low-expression

levels (missing in > 5 % of cells)

Perform SVD smoothing

(except NMF, see text)

Perform row z-scoring (ex-

cept NMF and ICA, see text)

Run factor analysis,

NIFA, ICA, NFM, SVD

Figure 41: Preprocessing workflow.

4.2.3 Simulation Details

The dimension of the simulated matrix X is set to be 2000-by-500 (gene-by-sample).

There are 6 latent factors, each of which contains 2 Gaussian mixtures. The dimension

of loading matrix A is 2000-by-6 with each column corresponding to a single loading and

the matrix S is 6-by-500 with each row corresponding to a single latent factor. We draw

the first loading vector from Gamma distribution Γ(5, 1). Then the subsequent loadings
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are simulated by adding noise following Gaussian distribution N(0, 2) to the first simulated

loading. We take the absolute values of noise to make sure loadings are kept positive.

In this way, we can control the collinearity to simulate correlated loadings. Each latent

factor is generated hierarchically. First we draw mean and variance parameters for the first

Gaussian mixture associated with each latent factor from Gaussian distribution N(2, 10)

and Gamma distribution Γ(10, 1) correspondingly. Regarding each latent factor the rest

of mixtures are generated by adding noise drawn from a uniform distribution U(2, 4) to

the mean of the first mixture. Then each entry in the latent factor is assigned to any of

the mixtures with probability and the exact value is drawn based on the distribution of

assigned mixture. Finally X is generated as the sum of AS and noise drawn from Gaussian

distribution N(0, 0.1). In order to generate non-negative NMF input we offset the matrix

by a minimum constant c = min(C) which makes the result X + c non-negative.

4.2.4 Evaluation

We compare NIFA with NMF [49] and ICA (fastICA implementation, [110]). For NMF

we used KL loss which we found dramatically outperformed the square loss alternative.

Cell-Type Correspondence We compute the absolute Pearson correlations between

each cell type and decomposed factors and we annotate the factor by the corresponding cell

type with maximum absolute correlation.

Pathway Enrichment We perform a hypergeometric test on each of the loadings with

the top 500 genes as foreground and the rest as background. For SVD and ICA, we use the

absolute values of loadings to perform the test. The p values are adjusted with Benjamini-

Hochberg procedure and we denote pathways with adjusted p-val < 0.05 as significant en-

riched pathways. The pathway enrichment is summarized as average fold enrichment across

the significant loading-pathway associations.

4.2.5 Datasets included

We test NIFA on several gold or silver standard scRNA-seq dataset [55]. The gold

standard dataset contains relatively homogeneous cell lines or the experimental conditions
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are well controlled. The silver standard dataset defines cell types based on expert knowledge.

The data is mostly downloaded through (https://github.com/hemberg-lab/scRNA.seq.datasets)

or corresponding GEO repositories. We also include simulated datasets generated by Splatter

[169] using Kumar [80] and Zheng [172] as simulation input. The complete sets of datasets

are described in Table 8.

Abbreviation Protocol Evidence Type Tissue Cells Cell Types

Camp [27] SMARTer Homogeneous cell line Gold Human: Liver 777 7

ImmuTherapy [138] Smart-Seq2 k-means clustering Silver Human: Metastatic melanoma 16,291 11

Klein [74] inDrop Principal genes identified by PCA Silver Mouse: Embryonic Stem Cells 2,717 4

Kolodziejczyk [75] SMARTer Homogeneous cell line Gold Mouse: Embryonic Stem Cells 704 3

Li [94] SMARTer Homogeneous cell line Gold Human: Colorectal Tumors 561 9

Liu [102] 10x drop-seq k-means clustering & specific markers Silver Mouse: Spleens or Tumors 1,607 13

Nestorowa [117] Smart-Seq2 hierachical clustering & specific markers Silver Mouse: Hematopoietic Stem Cells 1,656 9

Olsson [124] SMARTer Flow cytometry & cell sorting Gold Mouse: Hematopoietic Stem Cells 382 4

SimKumar4easy [39] NA Simulated Gold NA 500 4

SimKumar4hard [39] NA Simulated Gold NA 499 4

SimKumar8hard [39] NA Simulated Gold NA 499 8

Zhengmix4eq [39] NA Simulated Gold NA 3,555 4

Zhengmix4uneq [39] NA Simulated Gold NA 6,414 4

Zhengmix8eq [39] NA Simulated Gold NA 3,971 8

Table 8: The complete list of datasets evaluated in this study. Gold datasets are those where cell types are
determined due to the experimental design (for example by sorting cells). Silver datasets are those where
cell types were assigned from the data using biological prior knowledge.

4.3 Results

4.3.1 Simulation Studies

We simulate data with P = 2000, N = 500, K = 6 (number of factors) and M = 2 (num-

ber of mixtures associated with each factor). We simulate the latent factor independently

but the columns of the loading matrix A are correlated. Simulation details are described in

section 4.2.3. For the decomposition, we set K = 8 (all methods) and M = 3 to see if NIFA

can robustly recover the right latent factors given larger K and M , which is often the case

in practice. As shown in Fig. 42, none of the methods can recover all latent factors since
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the loadings are highly correlated. But NIFA is able to accurately recover most of latent

factors compared with alternative decomposition methods. NIFA also correctly recovers the

number of mixture components as one of the mixing coefficients goes to 0 (not shown).
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Figure 42: Evaluation on a simulated dataset. Boxplot of the correlation between simulated S and those
recovered by SVD, ICA (parallel), ICA (deflation), NMF and NIFA. We find that the best performance is
achieved by NIFA compared with all the other common methods.

4.3.2 Evaluation

There is a number of ways to evaluate factor analysis models. One natural evaluation

is the reconstruction error (see [91] for example). However, for any decomposition there are

infinitely many alternatives with exactly the same reconstruction error, yet these may differ

greatly with respect to the individual factors and loadings. Instead of reconstruction error

we focus on evaluating the biological utility in several different ways.

4.3.2.1 Cell type identification One of the desirable properties of an interpretable

factor analysis is that there is an one-to-one correspondence between the factors and a

known data generating variable. In the case of scRNA-seq data the gold or silver standard

of cell-type identity is one such variable. In the ideal case each cell type corresponds to a
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unique factor in the model. In order to evaluate this property we compute maximum one-

to-one correlations between factors and cell-type assignments (Fig. 43). We find that on

average our NIFA model performs better than NMF and ICA at this cell-type detection task.

Importantly, while there can be large differences between NMF and ICA, the performance

of NIFA (which combines features of both) always tracks with the best method.
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Figure 43: Evaluation of one-to-one correspondence between factors and cell types. Given a set of factors
and a set of cell-type labels we evaluate the maximum correlation between each cell type and a factor. For
clarity, we plot the mean correlation value across all cell types. In order to account for the possibility that
different models may need different number of factors (K), we report the results at varying K. We compare
NIFA with ICA, NMF (KL-loss), and SVD as a baseline. We find that on average our NIFA model performs
better than NMF and ICA and importantly while there can be large differences between NMF and ICA the
performance of NIFA (which combines features of both) always tracks with the best method.

4.3.2.2 Pathway enrichment Of course, one important feature of factor analysis mod-

els is that the factors should be interpretable even in the absence of any ground truth knowl-

edge. In such cases the factors are interpreted by inspecting the genes in their loading. The

expectation is that for a factor that captures a unique biological variable (which could be bi-

nary cell type or continuous pathway activation) the top loading genes are enriched for a few

known functional modules. We evaluate this property by computing pathway enrichment for

each factor as a hypergeometric test with the top 500 genes as foreground. This evaluation
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strategy allows us to evaluate the general biological validity of the model, independently of

cell-type annotation. In this way the model can be credited for finding factors which capture

pathway or cell-type signals even if these do not correspond to an annotated cell type. The

pathway databases we use are ”canonical pathways” from MsigDB [100] and a comprehensive

set of cell-type markers from xCell [9]. For canonical pathways we excluded pathways that

had greater than 20% overlap with ribosomal or mitochondria genesets (defined as ”KEGG

RIBOSOME” and ”KEGG OXIDATIVE PHOSPHORYLATION” respectively). We found

that these were consistently enriched but provided little biological insight as variations of

these pathways were often technical.
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Average fold enrichment for mSigDB canonical pathways

Figure 44: Pathway enrichment of ”canonical pathways” from mSigDB [100]. Enrichment is quantified as av-
erage fold enrichment among all factor-pathways pairs where the pathway is significantly over-represented in
the top 500 loading genes (hypergeometric test, FDR<0.05). The first two rows are biological datasets. The
last row (Zhengmix4eq, Zhengmix4uneq and Zhenmix8eq) are simulated datasets. All SimKumar datasets
are excluded from this evaluation as they were not supplied with real gene names.

We then quantify the overall biological enrichment of a single loading vector as the mean

fold enrichment for pathways that are significant at FDR<0.05. Pathway enrichment metrics

summarized across all factors are plotted in Fig. 44 and Fig. 45 for canonical pathways and

xCell respectively. We find that not surprisingly the performance of all methods is much

better for real biological datasets than simulated ones (Zhengmix4eq, Zhengmix4uneq and
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Zhenmix8eq). We also find that among the biological datasets NIFA is a consistently top

performer in both ”canonical pathway” and xCell evaluations, though the effect is more

dramatic for xCell.
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Figure 45: Pathway enrichment for xCell cell-type signatures. This figure is generated identically to Fig. 44
but using the xCell genesets.

4.3.3 In-depth evaluation of the Sade-Feldman et al. immunotherapy dataset

Antibodies that block immune checkpoint proteins, including CTLA4, PD-1, and PD-L1

are increasingly used to treat a variety of cancers. While checkpoint inhibitor (CI) therapy

can be remarkable effective, not all patients respond [81]. Determining the biological factors

that facilitate or impede response to CIs remains an important and unresolved problem

In order to demonstrate how NIFA can be used to gain biological insight we performed

several in-depth analyses of the Sade-Feldman et al. immunotherapy dataset. This dataset

consists of 16,291 individual immune cells from 48 tumor samples of melanoma patients

treated with checkpoint inhibitors. The dataset contains both pre-treatment and post-

treatment samples and the patients are classified into responders and non-responders.
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We applied our NIFA model to the entire single-cell dataset using K=25 which corre-

sponds to the k with maximal correlation with known cell-type annotations (see Fig. 43).

The distributions of the inferred factors and the corresponding inferred Gaussian mixture

fits are plotted in Fig. 46. Each NIFA factor that has the best correspondence to human

annotations is given the same name. NIFA finds both uni- and multi-modal factors and as

expected the multi-modal factors are more likely to correspond to cell types.
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Figure 46: Factor histograms and mixture model fits for the Sade-Feldman et al. immunotherapy dataset.
Factors that best correspond to cell types identified in the original study are labeled accordingly. NIFA finds
both multi-modal and unimodal factors and as expected the multimodal factors are more likely to represent
cell types

In order to investigate which variables are associated with immunotherapy response the

resulting factors were mean aggregated to a single value for each unique patient sample. We

also summarized the human annotated cell-type indicators as their mean values, correspond-
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ing to fraction of cells in sample. The resulting summary statistics were tested for association

with response using Wilcoxon ranksum and Benjamini-Hochberg FDR adjusted (separately

for NIFA factors or human annotations). Pre- and post-treatment samples were analyzed

separately and the resulting variables that were significant in either the pre-treatment or

post-treatment comparison at FDR<0.2 are plotted in Fig. 47A. Top loading genes corre-

sponding to each significant NIFA factor are show in Table 9.

Each NIFA factor that has the best correspondence to human annotations is given the

same name and the results are grouped with grey ovals in Fig. 47. We find that for these

matched variables there is an overall good correspondence between the results of NIFA

factors and human cell-type annotations. Specifically, both methods discover B-cells as

the variable most positively predictive of response and a CD8 T-cell/exhaustion/cell-cycle

signature (termed ”Lymphocytes exhausted/cell-cycle” in the original study) as the most

negatively predictive.

For some subtle pattern the results of NIFA and human annotations can diverge. Human

annotations such as ”Lymphocytes” and ”Cytotoxicity” were not well reproduced by NIFA

(correlation of 0.46 and 0.46 respectively) and the corresponding NIFA variables are not

significant. On the other hand, NIFA found three different T-cell signatures (8, 19 and

20) which were all associated with the ”memory T-cell” human annotation and all were

significantly predictive of response. One of these signatures has TCF7 as a top loading gene

and thus NIFA was able to independently discover one of the key findings of the original

study – that the fraction of TCF7 positive T-cells is highly associated with response.

Aside from generally reproducing the main findings of the original study NIFA was able to

uncover additional patterns. For example, we find that presence of Tregs is negatively asso-

ciated with response in the post-treatment samples. The corresponding human annotation is

however not significant despite the fact that the two variables are highly correlated (Pearson

correlation = 0.71). Human regulatory T-cells are difficult to identify from a transcriptional

profiles. There are no genes that are unique to this cell-type. The canonical transcription

factor (FOXP3) and surface marker (CD25/IL2RA) can also be transiently expressed by

non-Treg CD4 cells [29]; on the other hand, because of noise in scRNA-seq data the absence

of these markers doesn’t exclude Treg status. Upon closer inspection, we find that NIFA
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is more conservative in designating Tregs than the human annotation counterpart. Using

the NIFA mixture components we can perform a hard cell-type assignment based on the

probability of being in the high-expression component being>0.5. Using this cutoff, NIFA

finds out 1,418 Tregs, in contrast to 1,740 of human annotated ones. We find that these

discrepancy is highly non-random and that the NIFA Tregs are more likely to express both

FOXP3 and IL2RA (Fig. 47C) indicating that the NIFA Treg signature is more specific.

ID name genes

5 Myeloid signature FCN1, LYZ, TIMP1, S100A9, S100A8, SERPINA1, VCAN, IL1B, IFI30, PLAUR

7 Regulatory T-cells CTLA4, TNFRSF18, RGS1, TIGIT, CD4, BATF, PIM2, PRDM1, FOXP3, ARID5B

8 TCF7 T-cell signature DGKA, DDX17, SMG1P1, DENND2D, ARHGEF1, DOCK8, NPIPB5, NLRC5, TCF7, N4BP2L2

9 Dendritic cells GZMB, IGJ, PLAC8, NAPSB, ALOX5AP, GPR183, AC096579.7, IRF7, BCL11A, CLIC3

11 Lymphocytes exhausted/cell-cycle STMN1, RRM2, TUBA1B, TYMS, KIAA0101, TUBB, HIST1H4C, HMGB2, NUSAP1, CDK1

13 B-cells CD74, IGHM, MS4A1, CD79A, IGKC, IRF8, CD79B, CD37, BCL11A, CD52

14 HSPD1, FLNA, BIRC3, REL, HSPE1, COTL1, WARS, PSME2, HSPB1, SLC25A3

15 Monocytes/Macrophages CD74, FTL, CTSB, B2M, FTH1, PSAP, S100A11, IFI30, VIM, ALDOA

16 Interferon ISG15, IFI44L, MX1, IFI6, XAF1, STAT1, ISG20, IFITM1, TRIM22, IFI44

17 Exhausted CD8 T-cells GZMA, RAC2, CLIC1, NKG7, CORO1A, IL32, ARPC1B, CNN2, LCK, PSMB9

19 NFKB/AP1 T-cell signature VIM, NFKBIA, FOS, TNFAIP3, ANXA1, SLC2A3, CD52, B2M, JUNB, S100A4

20 Memory T-cells EEF1B2, GAS5, TOMM7, LDHB, SELL, IL7R, EIF3E, COX7C, EIF3L, FAIM3

24 Myeloid signature MT1X, MT1F, CD14, MT1E, FN1, FBP1, MT2A, S100A4, S100A9, AGTRAP

25 C1QBP, NME1, HSP90AB1, GTF3A, NHP2, PPA1, CCT7, CNBP, CCT2, SNHG1

Table 9: Top loading genes for each factor found to be associated with immunotherapy response. To facilitate
biological interpretability ribosomal genes and genes that were not provided with HGNC symbols were not
considered. Factors that best match the known human annotations were named accordingly and are in bold.
Other factors could be clearly identified as coherent biological pathways based on the loadings. Factors 14
and 25 did not have a clear correspondence to any pathways or cell-type signatures and are left unnamed.

Overall, within this dataset a large number of the human-annotated cell types and NIFA

factors are associated with response but some general patterns emerge. Specifically, the pres-

ence of myeloid cells is negatively associated with response while presence of lymphocytes,

exclusive of those with an exhaustion-like phenotype (for example B-cells, CD4 memory

cells), is positively associated with response (see Fig. 47A). The general trend that a high

myeloid to lymphocyte ratio is associated with worse outcome is observed across a variety of

cancers [155]. Our NIFA-based analysis however finds a myeloid signature (NIFA latent fac-

tor 24) that correspond to a subset of annotated ”Monocytes/Macrophages” cells is positively

associated with response, with an effect size that is similar to the lymphocyte populations
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Figure 47: NIFA analysis of signatures associated with immunotherapy response. A. NIFA-derived signatures
of human-annotated cell-types are mean aggregated per patient sample and the resulting summary statistics
are tested for association with immunotherapy response. Variables that are significant at FDR<0.2 are
shown with their respective normalized and centered ranksum statistics (ranksum/(number-of-positives ×
number-of-negatives)-0.5, equivalent to binary classification AUC-0.5). Pre-treatment effects are on the x-
axis and post-treatment effects are on the y-axis. NIFA variables most closely matched to a human annotation
are grouped with grey ellipses. B. Differences in Treg (Regulatory T-cells) identification between NIFA and
human annotations. Heatmap of canonical Treg marker genes (FOXP3 and IL2RA) across all cells annotated
as Tregs by either method and 1,000 randomly sampled other T cells. Overall, NIFA identifies fewer Treg cells
and has a higher correlation with FOXP3 and IL2RA expression. While the NIFA Treg factor is significantly
negatively associated with response in post-treatment samples, the corresponding human annotation is not
(panel A). C. A new myeloid signature positively associated with response. Heatmap of top loading genes
along with the factor values for NIFA factor 24 across all cells identified as ”Monocytes/Macrophages” and
1,500 randomly sampled cells. NIFA identifies a subset of the Monocytes/Macrophages calls with unique
gene expression. While general myeloid signatures (that is Monocytes/Macrophages and Dendritic cells)
were negatively associate with response, the NIFA-24 signature has the opposite pattern (see panel A).

(Fig. 47 A). This myeloid subset is identified by high levels of metallothionein genes (MT1X,

MT1F, MT1E and MT2A) and some metabolic genes (see Fig. 47C). Metallothioneins are

a family of small proteins that play important roles in metal homeostasis and protection

against heavy metal toxicity, DNA damage and oxidative stress [141]. Their induction in

tumor-associated macrophages (TAMs) has been noted [50] but to our knowledge this is the

first report of an association with clinical outcome.
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4.4 Discussion

We propose a factor analysis model designed specifically for single-cell data. The model

combines features of PCA, ICA and NMF. Specifically, our model optimizes the PCA-like

matrix reconstruction objective with mixture of Gaussians priors on the factors which en-

courages decomposition along multi-modal directions. We also adopt truncated Gaussian

priors on the loadings thus imposing an NMF-like strict non-negativity constraint. Using

a variational Bayes framework allows us to automatically fit hyperparameters such as the

number of Gaussian mixtures. We evaluate our model using both known cell identity and

pathway information and demonstrate that NIFA generates biologically coherent factors that

align well with prior knowledge.

One additional feature of our model is that the fully Bayesian framework is readily

extensible. For example, it easily supports gene-specific priors for the loadings. This makes

it possible to use known biological pathways as additional constraints. We plan on developing

this extension in our future work.
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5.0 Conclusions & Future Directions

Normalization is a key step in order to reveal biological variations from RNA-seq data.

Generative modelling is one category of normalization techniques which not only tackle the

problem of representing overall variation structure but also annotate each single variation

with different criteria correspondingly.

In chapter 2, we present PLIER which estimate pathway-level regulations by aligning LVs

as much as possible with known gene sets. A key observation is that PLIER greatly improves

the interstudy concordance which indicates a great reproduciablity in biological findings. A

further and more challenging question is whether we could model the pathway-level effects at

a finer resolution. PLIER models continuous pathway effects as an aggregation over all cell

types and isolates cell-type proportions and pathway effects into separate factors. It is more

informative if it is possible to estimate the interactions of these two which represents the

celltype-specific pathway effects. Another opportunity is to take the structure of subjects

into consideration. For example, if RNA-seq samples come from different tissues, including

group-level constraint make it possible to infer tissue-specific pathway effects.

In chapter 3, we illustrate the power of reweighing the contribution of structured factors

decomposed by SVD to maximize biological findings without any explicit knowledge about

the dataset. If there is no significant signal at all, in which case we can’t apply DataRemix

directly, we can first apply DataRemix on a related but easier task and the optimized pa-

rameters can be transferable to the initial task. This significantly enhances DataRemix’s

capability to improve biological utility of a broader range of legacy datasets. DataRemix

is a flexible parameterization method and it is easy to apply on top of more complicated

decomposition frameworks, e.g., HCP by introducing additional parameters other than k, p

and µ. One caveat is to be careful about possible overfittings. Another opportunity is to use

DataRemix as a measure to quantify how informative a dataset is given different biological

objectives. Thus dataset can be assessed quantitatively by its performance with respect to

all available tasks.

In chapter 4, we propose a universal framework-NIFA that combines the features of PCA,
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ICA and NMF for scRNA-seq data. It projects scRNA-seq into uni- and multi-modal factors

isolating discrete and continuous variations into separate latent variables. A straightforward

extension is to incorporate more structured priors as constraint on the loading part. For

example we can align the loadings with known gene sets with spike and slab priors. Another

challenging question is how to apply NIFA on large-scale scRNA-seq dataset. With the

advancement of scRNA-seq technology, now it is practical to sequence millions of cells in one

cohort. One possible strategy is to subsample the large-scale dataset in a systematic manner

, apply NIFA and project the resulting factors back into the original high-dimensional space.

5.1 Discussions & Future Directions

5.1.1 The Limitation of Factor Analysis

As a special case of generative modeling, matrix decomposition cannot help generate

any new data samples directly from learned parameters. If only loadings and latent factors

are learned from a specified optimization setting, you cannot directly generate new samples

out of them since you don’t explicitly model the noise which provides the variations. Even

within a probabilistic framework, e.g. NIFA, it’s not valid to generate new samples from

the learned posterior distribution. Firstly, the prior distributions are only used to extracted

certain patterns and it’s hard to verify their validity. Secondly even if the RNA-seq profile

can be recovered perfectly from the posterior distribution with respect to likelihood, there

is still no guarantee that the posterior distribution is biologically meaningful.

Two state-of-the-art choices to generate new samples in the general field of machine

learning are Generative Adversarial Network (GAN) [56] and Variational Autoencoder (VAE)

[71]. Meanwhile some generators have been developed specifically for the RNA-seq data.

Flux [57] is one of the computational sequencers that simulate the RNA-seq following the

shotgun sequencing process. It simulates all intermediate steps and outputs as those from

the wet lab experiment based on a limited set of parameters. Meanwhile there are statistical

computational sequencers, such as Splatter [169]. Based on the statistical characteristics of

the gene expression profiles, the final gene expression values are simulated in a hierarchical

way.
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The overall objectives of such generative models vary and it highly depends on the goals

of study. In some studies, generating new samples from given data works as a transformation

which maintains all structural information without leaking any privacy-related information.

Other studies attempt to generate new samples which overcome the limitations of wet-lab

experiment in order to evaluate computational frameworks in a more controlled setting.

In conclusion factor analysis is helpful to extract specific patterns with respect to certain

valid assumptions on the hidden structure of the data. Factor analysis cannot contribute

directly to generating new samples, but it’s very helpful as a tool for validation.

5.1.2 Incorporate a Richer Set of Biological Knowledge into Factor Analysis

In the PLIER framework, we constrain the loadings to align with most relevant auto-

matically selected subset of pathways in order to identify specific genesets that regulate

gene expression. In order to extract specific patterns in the data, we need to formulate

corresponding regularization and challenges at the optimization side may arise. Limited bi-

ological structures have been incorporated into generative models so far [33]. Some of the

promising ideas are limited by the feasibility of efficiently solving the optimization problem.

For example, celltype-specific pathway effects are of great interest, but in order to extract

certain patterns we need to add an extra hierarchy to the formulation of PLIER which leads

to additional difficulties in optimization.

Encoder

Decoder

Figure 48: Reformulation of PLIER framework as an autoencoder in the language of neural network.
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||Y T − Y TZZT ||2F + λ1||Z − CU ||2F + λ2||Y TZ||2F + λ3||U ||L1 (5.1)

subject to U ≥ 0, Z ≥ 0.

One of the potential solutions is to formulate the optimization problem in the language of

automatic differentiation (AD). As shown in Fig. 48, we reformulate the PLIER framework

as a standard autoencoder with regularizations. Loadings Z serves as the weights which

connects layers in the network and latent factors B correspond to the compressed layers

while the constraints still hold (see Eq. 5.1).

In the PLIER framework, the constraint we impose is ||Z−CU ||2F and in a more general

form it can be rewritten as a function f(Z,C, U). As long as f is differentiable, the overall

optimization problem can be solved with the help of the automatic differentiation system.

Thus we can impose more biologically-meaningful structures into the matrix decomposition

framework.

5.1.3 Define Cell Identity and Cell State in the Age of Single-cell Multi-omics

Figuring out the actual cell identity is the most asked question when people run scRNA-

seq experiment. People have made substantial progress but the challenges remain [72]. Cell

type is a long-standing concept which keeps evolving as we have a better understanding of the

underlying molecular mechanism. It has been defined from the perspectives of morphology,

cell location, neighbors, transceiptome, proteome and cell functions [113, 167]. Some of the

modern views of cell types are listed below.

• Core regulatory complexes (CoRCs) From an evolutionary point of view, cell type

is defined by evolutionary change of core regulatory complexes (CoRCs) of transcription

factors [10].

• Cell dynamic Same types of cells should have same functionality if the surrounding

environment is similar. If cells are treated as black boxes, with the same inputs, cells

which produce similar outputs belong to the same category. Such functional profiles

records how cells interact with their environment and provides a dynamic definition of

cell types[31]. Instead of a static snapshot, this dynamic profile provides a more precise

description of the cell based on its functionality.
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• Cell Lineage Cell types can be annotated based on its lineage history. A unique differ-

ential path distinguishes a certain cell type from the others.

Cell state is another concept convoluted with cell type [156]. Cell type can be thought

as a collection of corresponding cell states. Wadding landscape [162] has become the classic

illustration to show how gene activity affects transition between cell state or how cell fate is

triggered [112]. Classic examples include different cell phases in the cell cycle and different

cell conditions of CD8+ T cells [161].

Single-cell sequencing technique makes it possible to generate a molecular profile at

single-cell resolution for the first time. Along with scRNA-seq and CITE-seq [151], single-

cell ChIp-seq, single-cell DNase-seq and single-cell Hi-C have been developed to decipher

the heterogeneity of chromatin accessibilities in a cell population. Besides these developed

techniques, single-cell proteomics [142] is promising to measure the activities of proteins

as the basic functional element in the cell. The other emerging technique called spatial

transcriptomics [147] enables us to measure gene activities in a morphological context.

All these perspectives add up to a holistic view of cell identity and this leads to a broad

new field of single-cell multi-omics [12, 64]. Several computational models have been devel-

oped to leverage single-cell multi-omics data, such as MOFA [13] and MOFA+ [11]. Also

some of general-purpose frameworks have been adopted to single-cell multi-omics, such as

iCluster [139, 111] and GFA [89]. These experimental and computational advancements en-

able us to retrieve a more comprehensive and quantitative description of molecular activities

at single-cell resolution which makes it possible to provide a quantitative definition of cell

types and cell states.
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Appendix B

Supplementary Notes

B.1 PLIER

pathway LV.index AUC p.value FDR

1 KEGG SPLICEOSOME 2 0.69 0.000230 0.000754

2 MILI PSEUDOPODIA CHEMOTAXIS UP 2 0.69 0.005779 0.012480

3 MIPS ANTI HDAC2 COMPLEX 3 0.83 0.016842 0.031018

4 MIPS ALL 1 SUPERCOMPLEX 3 0.78 0.011502 0.022561

5 MIPS RC COMPLEX DURING S PHASE OF CELL CY-

CLE

3 0.99 0.005541 0.012083

6 KEGG VALINE LEUCINE AND ISOLEUCINE BIOSYN-

THESIS

3 0.95 0.009092 0.018548

7 MIPS INTEGRATOR RNAPII COMPLEX 3 0.98 0.005849 0.012566

8 MIPS TFTC TYPE HISTONE ACETYL TRANSFERASE

COMPLEX

3 0.97 0.007403 0.015533

9 MIPS P2X7 RECEPTOR SIGNALLING COMPLEX 3 0.93 0.011882 0.023219

10 WELCSH BRCA1 TARGETS DN 3 0.63 0.005763 0.012480

11 FAELT B CLL WITH VH3 21 UP 3 0.69 0.021097 0.037702

12 DEBIASI APOPTOSIS BY REOVIRUS INFECTION DN 3 0.74 7.56e-11 1.29e-09

13 KLEIN PRIMARY EFFUSION LYMPHOMA UP 3 0.69 0.016030 0.029704

14 REACTOME GENERIC TRANSCRIPTION PATHWAY 4 0.61 0.000456 0.001412

15 REACTOME DEADENYLATION OF MRNA 5 0.89 0.007313 0.015392

16 KEGG PROTEASOME 5 0.85 0.000148 0.000490

17 MIPS PA700 COMPLEX 5 0.92 0.001106 0.002933

18 MIPS INO80 CHROMATIN REMODELING COMPLEX 5 0.90 0.019300 0.034867

19 MIPS MLL1 WDR5 COMPLEX 5 0.86 0.001653 0.004168

20 REACTOME CYTOSOLIC TRNA AMINOACYLATION 5 0.79 0.015640 0.029210

21 MOOTHA TCA 5 0.97 0.001387 0.003604

22 CASORELLI ACUTE PROMYELOCYTIC LEUKEMIA DN 5 0.68 4.68e-14 1.29e-12

23 MIPS HES1 PROMOTER NOTCH ENHANCER COMPLEX 7 0.99 0.005060 0.011182

24 DAZARD RESPONSE TO UV NHEK DN 7 0.64 5.18e-05 0.000199

25 MARTINEZ RESPONSE TO TRABECTEDIN 7 0.71 0.009547 0.019097

26 KEGG RIBOSOME 8 0.65 0.012098 0.023454

27 PUIFFE INVASION INHIBITED BY ASCITES DN 8 0.66 0.001007 0.002693

28 REACTOME EGFR DOWNREGULATION 9 0.77 0.023705 0.041468

29 LIN APC TARGETS 9 0.66 0.013443 0.025465

30 JOHNSTONE PARVB TARGETS 2 UP 9 0.60 0.024368 0.042404

31 WOOD EBV EBNA1 TARGETS UP 9 0.69 0.000942 0.002548

32 DASU IL6 SIGNALING UP 9 0.70 0.010567 0.020913

33 HOWLIN CITED1 TARGETS 1 DN 10 0.85 0.000682 0.001956

34 GRANDVAUX IRF3 TARGETS DN 10 0.88 0.024748 0.042840

35 LEE RECENT THYMIC EMIGRANT 10 0.61 0.005036 0.011166

36 HAHTOLA SEZARY SYNDROM DN 13 0.80 0.001391 0.003604

37 CHEN LVAD SUPPORT OF FAILING HEART UP 13 0.66 0.006483 0.013820

38 FLOTHO PEDIATRIC ALL THERAPY RESPONSE UP 14 0.70 0.010979 0.021629

39 MemoryTcell-RO-unactivated 15 0.79 0.002048 0.005047

40 TCELLA7 15 0.97 1.82e-07 1.33e-06

41 TCELLA8 15 0.96 9.21e-08 7.36e-07

42 SVM T cells CD4 memory resting 15 0.91 4.06e-08 3.67e-07

43 SVM T cells regulatory (Tregs) 15 0.91 4.33e-07 2.93e-06

44 NKA1 16 0.84 6.24e-06 3.02e-05

45 PID PRLSIGNALINGEVENTSPATHWAY 16 0.85 0.003277 0.007760

46 NAKAYAMA SOFT TISSUE TUMORS PCA1 UP 16 0.72 0.001528 0.003913

47 EBAUER MYOGENIC TARGETS OF PAX3 FOXO1 FU-

SION

16 0.73 0.010111 0.020131

48 ABE VEGFA TARGETS 30MIN 16 0.75 0.027548 0.047316

49 CREIGHTON ENDOCRINE THERAPY RESISTANCE 2 17 0.68 2.50e-09 2.90e-08

50 Neutrophil-Resting 19 0.63 0.000130 0.000437

51 CHUNG BLISTER CYTOTOXICITY DN 19 0.87 4.49e-05 0.000180

52 Neutrophil-Resting 20 0.70 9.96e-10 1.27e-08

53 KEGG NOD LIKE RECEPTOR SIGNALING PATHWAY 20 0.75 0.000741 0.002073
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54 GSE59184 Il10 6H 20 0.64 8.49e-05 0.000303

55 ALTEMEIER RESPONSE TO LPS WITH MECHANICAL

VENTILATION

20 0.77 9.94e-07 6.05e-06

56 PID IL27PATHWAY 21 0.86 0.003031 0.007256

57 REACTOME CROSS PRESENTATION OF SOLUBLE

EXOGENOUS ANTIGENS ENDOSOMES

21 0.81 0.000231 0.000754

58 REACTOME INTERFERON GAMMA SIGNALING 21 0.91 1.32e-07 1.03e-06

59 GSE33057 Ifng 21 0.72 5.99e-09 6.51e-08

60 GSE19182 Ifng 21 0.92 < 2e-16 6.52e-15

61 GSE36287 Ifng 21 0.77 2.22e-14 7.00e-13

62 JISON SICKLE CELL DISEASE UP 21 0.73 4.12e-08 3.67e-07

63 UROSEVIC RESPONSE TO IMIQUIMOD 21 0.98 0.000118 0.000407

64 WIELAND UP BY HBV INFECTION 21 0.76 8.68e-06 4.00e-05

65 SANA RESPONSE TO IFNG UP 21 0.96 1.14e-10 1.80e-09

66 BOSCO INTERFERON INDUCED ANTIVIRAL MODULE 21 0.83 4.26e-07 2.91e-06

67 Neutrophil-Resting 22 0.89 < 2e-16 < 2e-16

68 GRAN2 22 0.78 1.25e-06 7.35e-06

69 SVM Neutrophils 22 0.98 3.13e-10 4.51e-09

70 BROWN MYELOID CELL DEVELOPMENT UP 22 0.68 0.000123 0.000424

71 SENGUPTA EBNA1 ANTICORRELATED 23 0.69 5.24e-05 0.000199

72 REACTOME MRNA SPLICING MINOR PATHWAY 24 0.69 0.022348 0.039617

73 REACTOME RESPIRATORY ELECTRON TRANSPORT 24 0.87 8.54e-07 5.39e-06

74 MIPS 39S RIBOSOMAL SUBUNIT MITOCHONDRIAL 24 0.84 7.12e-05 0.000258

75 MIPS 55S RIBOSOME MITOCHONDRIAL 24 0.92 7.64e-10 9.93e-09

76 LI DCP2 BOUND MRNA 24 0.81 1.69e-06 9.74e-06

77 YAO TEMPORAL RESPONSE TO PROGESTERONE

CLUSTER 17

24 0.72 6.60e-07 4.25e-06

78 YAO TEMPORAL RESPONSE TO PROGESTERONE

CLUSTER 13

24 0.83 1.16e-12 2.47e-11

79 MOREAUX B LYMPHOCYTE MATURATION BY TACI

DN

24 0.74 0.000426 0.001338

80 LU EZH2 TARGETS UP 24 0.78 3.78e-14 1.09e-12

81 CHICAS RB1 TARGETS LOW SERUM 24 0.72 0.000530 0.001584

82 STARK PREFRONTAL CORTEX 22Q11 DELETION DN 24 0.67 5.77e-10 7.66e-09

83 KEGG DNA REPLICATION 26 0.93 1.01e-05 4.60e-05

84 MIPS CENP A NAC CAD COMPLEX 26 0.87 0.026876 0.046282

85 REACTOME EXTENSION OF TELOMERES 26 0.97 4.99e-05 0.000194

86 DUTERTRE ESTRADIOL RESPONSE 24HR UP 26 0.81 < 2e-16 < 2e-16

87 WHITFIELD CELL CYCLE G1 S 26 0.67 0.000468 0.001444

88 EGUCHI CELL CYCLE RB1 TARGETS 26 0.96 0.000336 0.001076

89 FRASOR RESPONSE TO SERM OR FULVESTRANT DN 26 0.77 0.001589 0.004038

90 ZHOU CELL CYCLE GENES IN IR RESPONSE 24HR 26 0.76 1.79e-06 1.02e-05

91 HAHTOLA MYCOSIS FUNGOIDES CD4 UP 27 0.83 1.40e-05 6.17e-05

92 ZWANG CLASS 3 TRANSIENTLY INDUCED BY EGF 27 0.66 9.52e-05 0.000336

93 PICCALUGA ANGIOIMMUNOBLASTIC LYMPHOMA DN 27 0.87 1.03e-12 2.29e-11

94 BURTON ADIPOGENESIS PEAK AT 2HR 27 0.78 0.000937 0.002547

95 TIAN TNF SIGNALING NOT VIA NFKB 27 0.93 0.000736 0.002068

96 BURTON ADIPOGENESIS 1 27 0.93 5.26e-05 0.000199

97 ZHENG FOXP3 TARGETS IN T LYMPHOCYTE DN 28 0.75 0.006550 0.013919

98 DAZARD RESPONSE TO UV NHEK DN 28 0.66 1.83e-06 1.03e-05

99 NKcell-control 30 0.90 7.00e-07 4.46e-06

100 NKA2 30 0.99 4.01e-12 8.05e-11

101 NKA3 30 0.84 4.64e-05 0.000183

102 KEGG NATURAL KILLER CELL MEDIATED CYTOTOX-

ICITY

30 0.71 0.000125 0.000424

103 SVM NK cells resting 30 0.90 1.35e-07 1.03e-06

104 SVM NK cells activated 30 0.86 5.08e-07 3.36e-06

105 HAHTOLA SEZARY SYNDROM DN 30 0.94 2.97e-06 1.58e-05

106 CHAN INTERFERON PRODUCING DENDRITIC CELL 30 0.89 0.016039 0.029704

107 NKcell-control 31 0.66 0.026138 0.045129

108 NKA2 31 0.87 2.91e-07 2.03e-06

109 TCELLA1 31 0.86 1.94e-05 8.39e-05

110 Monocyte-Day0 34 0.84 6.53e-15 2.28e-13

111 MONO2 34 0.86 1.45e-10 2.24e-09

112 SVM Monocytes 34 0.94 6.72e-08 5.57e-07

113 ROSS AML WITH CBFB MYH11 FUSION 34 0.77 0.000808 0.002242

114 YAGI AML RELAPSE PROGNOSIS 34 0.72 0.012359 0.023820

115 KAMIKUBO MYELOID CEBPA NETWORK 34 0.96 6.15e-05 0.000229

116 VALK AML CLUSTER 5 34 0.94 2.68e-05 0.000111

117 Bcell-näıve 35 0.90 1.18e-09 1.45e-08

118 BASO1 35 0.99 0.000524 0.001573

119 BCELLA1 35 0.92 3.21e-11 5.75e-10

120 KEGG B CELL RECEPTOR SIGNALING PATHWAY 35 0.77 5.69e-05 0.000214

121 SVM B cells naive 35 0.93 1.70e-08 1.66e-07

122 MORI PLASMA CELL DN 35 0.97 4.22e-06 2.15e-05

123 ZHAN MULTIPLE MYELOMA CD1 VS CD2 DN 35 0.74 0.002417 0.005913

124 SHIN B CELL LYMPHOMA CLUSTER 9 35 0.83 0.012998 0.024763

125 HADDAD B LYMPHOCYTE PROGENITOR 35 0.65 2.21e-05 9.40e-05

126 KLEIN PRIMARY EFFUSION LYMPHOMA DN 35 0.85 3.42e-06 1.76e-05

127 BROWNE INTERFERON RESPONSIVE GENES 37 0.89 8.34e-08 6.75e-07
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128 BOSCO INTERFERON INDUCED ANTIVIRAL MODULE 37 0.84 5.11e-07 3.36e-06

129 DAUER STAT3 TARGETS DN 37 0.75 0.001773 0.004420

130 TIAN TNF SIGNALING VIA NFKB 40 0.99 2.08e-05 8.96e-05

131 LINDSTEDT DENDRITIC CELL MATURATION B 40 0.78 0.000509 0.001541

132 GILMORE CORE NFKB PATHWAY 40 0.99 0.004679 0.010480

133 SEKI INFLAMMATORY RESPONSE LPS UP 40 0.82 7.65e-06 3.60e-05

134 ERY3 43 0.61 0.000124 0.000424

135 REACTOME SYNTHESIS AND INTERCONVERSION OF

NUCLEOTIDE DI AND TRIPHOSPHATES

43 0.87 0.007622 0.015891

136 VALK AML CLUSTER 7 43 0.83 0.002589 0.006286

137 MEGA2 44 0.80 6.35e-05 0.000234

138 RAGHAVACHARI PLATELET SPECIFIC GENES 44 0.95 9.00e-12 1.71e-10

139 WIERENGA STAT5A TARGETS DN 44 0.70 1.79e-07 1.32e-06

140 GNATENKO PLATELET SIGNATURE 44 0.95 2.08e-07 1.49e-06

141 TAVOR CEBPA TARGETS DN 44 0.78 0.005430 0.011882

142 PlasmaCell-FromBoneMarrow 47 0.83 4.28e-10 5.92e-09

143 PlasmaCell-FromPBMC 47 0.93 1.54e-13 3.92e-12

144 REACTOME UNFOLDED PROTEIN RESPONSE 47 0.76 0.000132 0.000441

145 REACTOME ASPARAGINE N LINKED GLYCOSYLATION 47 0.92 2.93e-10 4.32e-09

146 SVM Plasma cells 47 0.79 0.000923 0.002517

147 PELLICCIOTTA HDAC IN ANTIGEN PRESENTATION

UP

47 0.90 9.34e-08 7.37e-07

148 MORI PLASMA CELL UP 47 0.97 6.21e-08 5.35e-07

149 PASQUALUCCI LYMPHOMA BY GC STAGE UP 47 0.65 4.54e-05 0.000181

150 TARTE PLASMA CELL VS B LYMPHOCYTE UP 47 0.94 1.04e-10 1.69e-09

151 SHAFFER IRF4 TARGETS IN ACTIVATED DENDRITIC

CELL

47 0.83 6.72e-06 3.22e-05

152 LANDIS ERBB2 BREAST TUMORS 65 UP 47 0.77 0.022800 0.040310

153 SHAFFER IRF4 TARGETS IN PLASMA CELL VS MA-

TURE B LYMPHOCYTE

47 0.82 6.75e-06 3.22e-05

154 SVM Eosinophils 48 0.87 4.29e-06 2.17e-05

155 TAKEDA TARGETS OF NUP98 HOXA9 FUSION 8D DN 48 0.59 0.022915 0.040405

156 NAKAJIMA EOSINOPHIL 48 0.93 2.42e-05 0.000102

157 WANG NEOPLASTIC TRANSFORMATION BY CCND1

MYC

49 0.90 0.015334 0.028720

158 REACTOME 3 UTR MEDIATED TRANSLATIONAL

REGULATION

50 0.79 1.49e-06 8.68e-06

159 MIPS EIF3 COMPLEX 50 1.00 0.005006 0.011137

160 MIPS 60S RIBOSOMAL SUBUNIT CYTOPLASMIC 50 0.87 2.18e-05 9.31e-05

161 REACTOME TRANSLATION 50 0.82 1.68e-10 2.52e-09

162 BILANGES SERUM AND RAPAMYCIN SENSITIVE

GENES

50 0.75 0.000507 0.001541

163 HOLLEMAN ASPARAGINASE RESISTANCE B ALL UP 50 0.91 0.000387 0.001233

164 IRITANI MAD1 TARGETS DN 50 0.74 0.003536 0.008313

165 BILANGES RAPAMYCIN SENSITIVE VIA TSC1 AND

TSC2

50 0.82 1.09e-05 4.90e-05

166 CD8Tcell-N0 52 0.91 2.64e-05 0.000111

167 TCELLA2 52 0.88 2.73e-07 1.93e-06

168 CD4Tcell-Th1-restimulated48hour 54 0.90 4.96e-06 2.45e-05

169 REACTOME KINESINS 54 0.80 0.009502 0.019097

170 REACTOME G1 S SPECIFIC TRANSCRIPTION 54 1.00 0.000417 0.001318

171 REACTOME CYCLIN A B1 ASSOCIATED EVENTS DUR-

ING G2 M TRANSITION

54 0.96 0.000893 0.002457

172 DUTERTRE ESTRADIOL RESPONSE 24HR UP 54 0.81 < 2e-16 < 2e-16

173 CHANG CYCLING GENES 54 0.89 6.31e-16 2.32e-14

174 NAKAYAMA SOFT TISSUE TUMORS PCA2 UP 54 0.84 2.28e-06 1.24e-05

175 MOLENAAR TARGETS OF CCND1 AND CDK4 DN 54 0.90 3.94e-07 2.72e-06

176 MORI PRE BI LYMPHOCYTE UP 54 0.82 9.64e-07 5.97e-06

177 LEE EARLY T LYMPHOCYTE UP 54 0.90 7.42e-12 1.45e-10

178 KUMAMOTO RESPONSE TO NUTLIN 3A DN 54 1.00 0.003259 0.007744

179 MORI IMMATURE B LYMPHOCYTE DN 54 0.87 1.03e-09 1.29e-08

180 ISHIDA E2F TARGETS 54 0.97 4.46e-09 5.02e-08

181 ZHAN MULTIPLE MYELOMA PR UP 54 0.99 3.10e-08 2.97e-07

182 ZHOU CELL CYCLE GENES IN IR RESPONSE 6HR 54 0.85 3.24e-08 3.07e-07

183 GAVIN FOXP3 TARGETS CLUSTER P6 54 0.76 8.17e-06 3.79e-05

184 SHEPARD BMYB TARGETS 54 0.82 1.79e-05 7.81e-05

185 GENTLES LEUKEMIC STEM CELL DN 54 0.86 0.007927 0.016423

186 Neutrophil-Resting 56 0.66 1.89e-06 1.06e-05

187 BOSCO ALLERGEN INDUCED TH2 ASSOCIATED MOD-

ULE

58 0.72 5.98e-06 2.94e-05

188 Bcell-Memory IgG IgA 59 0.94 5.64e-10 7.63e-09

189 Bcell-Memory IgM 59 0.93 1.34e-09 1.62e-08

190 BCELLA2 59 0.93 5.30e-09 5.86e-08

191 SVM B cells memory 59 0.92 4.15e-08 3.67e-07

192 ZHAN MULTIPLE MYELOMA CD1 VS CD2 DN 59 0.78 0.000765 0.002131

193 ZHAN MULTIPLE MYELOMA CD1 DN 59 0.81 0.000403 0.001279

194 ERY4 61 0.80 < 2e-16 < 2e-16

195 ERY5 61 0.84 < 2e-16 < 2e-16

196 BIOCARTA AHSP PATHWAY 61 0.99 0.004183 0.009564

197 STEINER ERYTHROCYTE MEMBRANE GENES 61 0.99 0.000589 0.001727
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198 LIN NPAS4 TARGETS DN 61 0.70 0.008358 0.017156

199 VALK AML CLUSTER 8 61 0.99 1.26e-05 5.63e-05

200 JAATINEN HEMATOPOIETIC STEM CELL DN 61 0.68 3.21e-06 1.67e-05

201 VALK AML CLUSTER 7 61 0.99 1.34e-05 5.92e-05

202 Neutrophil-Resting 62 0.63 6.40e-05 0.000234

203 MARTENS BOUND BY PML RARA FUSION 64 0.63 1.98e-06 1.11e-05

204 PARK TRETINOIN RESPONSE 64 0.93 0.012289 0.023754

205 PARK TRETINOIN RESPONSE AND PML RARA FU-

SION

64 0.83 0.001350 0.003524

206 PHONG TNF TARGETS UP 65 0.67 0.018848 0.034154

207 NKcell-control 67 0.77 0.000703 0.001991

208 ERY2 67 0.80 4.70e-05 0.000184

209 MONO1 67 0.70 0.000945 0.002548

210 SVM NK cells resting 67 0.81 5.20e-05 0.000199

211 SVM Mast cells resting 67 0.71 0.016494 0.030461

212 LIAN NEUTROPHIL GRANULE CONSTITUENTS 67 0.84 0.004349 0.009875

213 KAMIKUBO MYELOID CEBPA NETWORK 67 0.78 0.008010 0.016493

214 VALK AML WITH CEBPA 67 0.80 0.001112 0.002937

215 MARTINELLI IMMATURE NEUTROPHIL UP 67 1.00 0.003628 0.008499

216 Neutrophil-Resting 68 0.58 0.012507 0.024036

217 MIPS 12S U11 SNRNP 69 0.82 0.018854 0.034154

218 KEGG SPLICEOSOME 69 0.65 0.002186 0.005368

219 LI DCP2 BOUND MRNA 69 0.70 0.000953 0.002558

220 DENDA1 70 0.88 1.03e-06 6.24e-06

221 RICKMAN METASTASIS DN 71 0.66 3.44e-05 0.000141

222 SENGUPTA EBNA1 ANTICORRELATED 71 0.64 0.003105 0.007405

223 LU EZH2 TARGETS UP 71 0.65 4.60e-05 0.000183

224 KEGG CHRONIC MYELOID LEUKEMIA 74 0.72 0.001646 0.004164

225 GSE19182 Ifng 76 0.77 1.63e-07 1.21e-06

226 MOSERLE IFNA RESPONSE 76 1.00 2.43e-06 1.31e-05

227 STAMBOLSKY TARGETS OF MUTATED TP53 DN 76 0.74 0.003465 0.008175

228 ZHAN MULTIPLE MYELOMA LB DN 76 0.80 0.001590 0.004038

229 GRANDVAUX IFN RESPONSE NOT VIA IRF3 76 1.00 0.004046 0.009314

230 ROETH TERT TARGETS UP 76 0.93 0.011907 0.023219

231 HECKER IFNB1 TARGETS 76 0.83 5.00e-08 4.36e-07

232 BENNETT SYSTEMIC LUPUS ERYTHEMATOSUS 76 0.95 6.76e-05 0.000246

233 BOSCO INTERFERON INDUCED ANTIVIRAL MODULE 76 0.86 6.72e-08 5.57e-07

234 DAUER STAT3 TARGETS DN 76 0.84 2.69e-05 0.000111

235 TAKEDA TARGETS OF NUP98 HOXA9 FUSION 3D UP 76 0.75 7.29e-08 5.97e-07

236 NIELSEN SYNOVIAL SARCOMA DN 76 0.87 0.007593 0.015881

237 Neutrophil-Resting 77 0.81 < 2e-16 < 2e-16

238 GARGALOVIC RESPONSE TO OXIDIZED PHOSPHO-

LIPIDS MAGENTA UP

77 0.82 0.003661 0.008545

239 THEILGAARD NEUTROPHIL AT SKIN WOUND DN 77 0.71 6.56e-08 5.57e-07

240 REACTOME VIF MEDIATED DEGRADATION OF

APOBEC3G

78 0.76 0.001936 0.004789

241 MIPS 26S PROTEASOME 78 0.77 0.021513 0.038342

242 MIPS 39S RIBOSOMAL SUBUNIT MITOCHONDRIAL 78 0.70 0.010317 0.020479

243 CD4Tcell-Th1-restimulated12hour 80 0.72 0.023316 0.040920

244 TCELLA4 80 0.90 1.05e-05 4.74e-05

245 BIOCARTA NO2IL12 PATHWAY 80 0.99 0.000710 0.002004

246 BIOCARTA IL12 PATHWAY 80 0.78 0.017357 0.031878

247 SVM T cells CD8 80 0.93 4.31e-09 4.93e-08

248 SVM T cells follicular helper 80 0.73 0.001821 0.004522

249 SVM T cells gamma delta 80 0.97 1.80e-09 2.13e-08

250 SVM NK cells resting 80 0.93 4.07e-08 3.67e-07

251 ONO AML1 TARGETS UP 80 0.81 0.010994 0.021629

252 PlasmaCell-FromPBMC 81 0.63 0.012751 0.024362

253 HSC1 82 0.91 8.10e-11 1.34e-09

254 HSC3 82 0.79 9.72e-07 5.97e-06

255 MEGA1 82 0.99 0.000600 0.001753

256 JAATINEN HEMATOPOIETIC STEM CELL UP 82 0.82 < 2e-16 < 2e-16

257 Neutrophil-Resting 83 0.69 1.63e-08 1.61e-07

258 CHUNG BLISTER CYTOTOXICITY DN 83 0.81 0.000514 0.001550

259 EOS2 85 0.77 0.011951 0.023236

260 KEGG ARRHYTHMOGENIC RIGHT VENTRICULAR

CARDIOMYOPATHY ARVC

85 0.67 0.014054 0.026546

261 SVM Mast cells resting 85 0.74 0.008669 0.017740

262 SVM Mast cells activated 85 0.81 0.001769 0.004420

263 NAKAJIMA MAST CELL 85 0.76 0.002983 0.007165

264 VANDESLUIS COMMD1 TARGETS GROUP 4 UP 87 0.95 0.005857 0.012566

265 CHIBA RESPONSE TO TSA DN 87 0.77 0.017507 0.032020

266 KORKOLA CORRELATED WITH POU5F1 87 0.95 3.46e-05 0.000141

267 LI WILMS TUMOR 87 0.98 0.003963 0.009187

268 KORKOLA EMBRYONIC CARCINOMA VS SEMINOMA

UP

87 0.98 0.000503 0.001538

269 BHATTACHARYA EMBRYONIC STEM CELL 87 0.87 8.83e-09 9.15e-08

270 BENPORATH ES 1 87 0.82 < 2e-16 < 2e-16

271 REACTOME CHOLESTEROL BIOSYNTHESIS 88 0.81 0.009440 0.019097

272 KEGG STEROID BIOSYNTHESIS 88 1.00 0.000624 0.001814
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273 SHAFFER IRF4 TARGETS IN ACTIVATED B LYMPHO-

CYTE

88 0.76 0.000108 0.000378

274 HORTON SREBF TARGETS 88 0.99 0.000125 0.000424

275 SCHMIDT POR TARGETS IN LIMB BUD UP 88 1.00 9.57e-05 0.000336

276 ERY3 89 0.67 8.73e-09 9.15e-08

277 VALK AML CLUSTER 7 89 0.78 0.009563 0.019097

278 MIPS SNF2H COHESIN NURD COMPLEX 90 0.85 0.013406 0.025465

279 CHEN HOXA5 TARGETS 9HR UP 90 0.60 0.006872 0.014511

280 HAMAI APOPTOSIS VIA TRAIL UP 90 0.77 < 2e-16 < 2e-16

281 ZHANG TLX TARGETS 36HR DN 90 0.71 3.07e-06 1.61e-05

282 DACOSTA UV RESPONSE VIA ERCC3 DN 90 0.64 5.58e-11 9.74e-10

283 Neutrophil-Resting 92 0.61 0.001435 0.003687

284 MIZUSHIMA AUTOPHAGOSOME FORMATION 92 0.82 0.019573 0.035263

285 MIPS 28S RIBOSOMAL SUBUNIT MITOCHONDRIAL 93 0.93 6.36e-05 0.000234

286 KEGG AMINOACYL TRNA BIOSYNTHESIS 93 0.82 0.000429 0.001340

287 MIPS 55S RIBOSOME MITOCHONDRIAL 93 0.94 3.97e-10 5.60e-09

288 YAO TEMPORAL RESPONSE TO PROGESTERONE

CLUSTER 11

93 0.77 8.10e-06 3.78e-05

289 KRIGE RESPONSE TO TOSEDOSTAT 24HR DN 93 0.71 < 2e-16 < 2e-16

290 MANALO HYPOXIA DN 93 0.81 < 2e-16 2.11e-15

291 SCHLOSSER MYC TARGETS AND SERUM RESPONSE

UP

93 0.94 6.06e-07 3.94e-06

292 ERY3 94 0.89 < 2e-16 < 2e-16

293 ERY4 94 0.93 < 2e-16 < 2e-16

294 ERY5 94 0.90 < 2e-16 < 2e-16

295 IVANOVA HEMATOPOIESIS MATURE CELL 94 0.68 2.05e-07 1.48e-06

296 KEGG T CELL RECEPTOR SIGNALING PATHWAY 96 0.70 0.000479 0.001471

297 SVM T cells regulatory (Tregs) 96 0.82 8.17e-05 0.000293

298 SVM T cells gamma delta 96 0.74 0.001402 0.003617

299 REACTOME GENERIC TRANSCRIPTION PATHWAY 97 0.75 6.87e-14 1.82e-12

300 KEGG OXIDATIVE PHOSPHORYLATION 102 0.67 0.002565 0.006251

301 MIPS SPLICEOSOME 102 0.61 0.017531 0.032020

302 MIPS 28S RIBOSOMAL SUBUNIT MITOCHONDRIAL 104 0.71 0.024479 0.042486

303 REACTOME FORMATION OF ATP BY CHEMIOS-

MOTIC COUPLING

104 0.98 0.005241 0.011544

304 REACTOME TCA CYCLE AND RESPIRATORY ELEC-

TRON TRANSPORT

104 0.75 6.12e-06 2.98e-05

305 REACTOME RESPIRATORY ELECTRON TRANSPORT

ATP SYNTHESIS BY CHEMIOSMOTIC COUPLING AND

HEAT PRODUCTION BY UNCOUPLING PROTEINS

104 0.67 0.007717 0.016040

306 MIPS 55S RIBOSOME MITOCHONDRIAL 104 0.68 0.004315 0.009830

307 KEGG AMINOACYL TRNA BIOSYNTHESIS 105 0.69 0.022285 0.039612

308 BIOCARTA PROTEASOME PATHWAY 105 0.89 0.000701 0.001991

309 REACTOME FORMATION OF TUBULIN FOLDING

INTERMEDIATES BY CCT TRIC

105 0.87 0.009529 0.019097

310 MIPS SPLICEOSOME 105 0.70 3.81e-05 0.000154

311 KEGG LYSOSOME 108 0.79 1.35e-07 1.03e-06

312 KEGG OTHER GLYCAN DEGRADATION 108 1.00 0.004558 0.010278

313 REACTOME N GLYCAN TRIMMING IN THE ER AND

CALNEXIN CALRETICULIN CYCLE

108 0.89 0.020439 0.036624

314 REACTOME POST TRANSLATIONAL PROTEIN MODI-

FICATION

108 0.78 1.15e-08 1.15e-07

315 KEGG N GLYCAN BIOSYNTHESIS 108 0.77 0.001674 0.004204

316 SVM Neutrophils 108 0.80 6.02e-05 0.000225

317 ZHAN V1 LATE DIFFERENTIATION GENES UP 108 0.83 0.001330 0.003484

318 MILI PSEUDOPODIA HAPTOTAXIS DN 108 0.75 < 2e-16 < 2e-16

319 APPEL IMATINIB RESPONSE 108 0.99 4.67e-06 2.34e-05

320 VALK AML CLUSTER 5 108 0.73 0.020406 0.036624

321 BILANGES RAPAMYCIN SENSITIVE VIA TSC1 AND

TSC2

112 0.76 0.000270 0.000876

322 DEN INTERACT WITH LCA5 112 0.74 0.023330 0.040920

323 GUTIERREZ CHRONIC LYMPHOCYTIC LEUKEMIA DN 113 0.86 7.16e-06 3.39e-05

324 BILBAN B CLL LPL UP 113 0.73 0.001128 0.002967

325 KLEIN PRIMARY EFFUSION LYMPHOMA DN 113 0.86 3.28e-06 1.70e-05

326 DendriticCell-Control 119 0.65 7.20e-05 0.000260

327 DENDA2 119 0.72 0.006058 0.012956

328 KEGG INTESTINAL IMMUNE NETWORK FOR IGA

PRODUCTION

119 0.76 0.002786 0.006717

329 KEGG ASTHMA 119 0.78 0.015870 0.029555

330 SVM Dendritic cells resting 119 0.97 1.16e-06 6.93e-06

331 REACTOME AMYLOIDS 120 0.73 0.007973 0.016468

332 REACTOME MEIOTIC RECOMBINATION 120 0.80 0.000297 0.000955

333 REACTOME RNA POL I PROMOTER OPENING 120 0.98 4.76e-06 2.37e-05

334 REACTOME RNA POL I RNA POL III AND MITOCHON-

DRIAL TRANSCRIPTION

120 0.66 0.004675 0.010480

335 KEGG SYSTEMIC LUPUS ERYTHEMATOSUS 120 0.81 9.17e-07 5.74e-06

336 MIPS BAF COMPLEX 121 0.98 0.006587 0.013952

337 MAYBURD RESPONSE TO L663536 DN 121 0.70 0.009148 0.018604

338 DISTECHE ESCAPED FROM X INACTIVATION 122 1.00 0.004092 0.009388

339 BURTON ADIPOGENESIS 11 123 0.73 0.003896 0.009062
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340 MILI PSEUDOPODIA HAPTOTAXIS UP 123 0.65 4.15e-08 3.67e-07

341 HAMAI APOPTOSIS VIA TRAIL UP 123 0.74 < 2e-16 < 2e-16

342 PUIFFE INVASION INHIBITED BY ASCITES DN 123 0.64 0.003988 0.009213

343 CD4Tcell-N0 126 0.96 2.45e-06 1.31e-05

344 MemoryTcell-RO-unactivated 126 0.93 9.60e-06 4.39e-05

345 TCELLA6 126 0.91 1.49e-07 1.12e-06

346 SVM T cells CD4 naive 126 0.72 0.004427 0.010018

347 SVM T cells CD4 memory resting 126 0.88 4.88e-07 3.27e-06

348 SVM T cells regulatory (Tregs) 126 0.90 1.22e-06 7.19e-06

349 ZHENG FOXP3 TARGETS IN T LYMPHOCYTE DN 126 0.83 0.000581 0.001711

350 LEE EARLY T LYMPHOCYTE DN 126 0.75 0.000823 0.002275

351 LEE NAIVE T LYMPHOCYTE 126 0.98 0.000900 0.002465

352 JAATINEN HEMATOPOIETIC STEM CELL DN 126 0.64 0.000189 0.000625

353 Neutrophil-Resting 130 0.70 7.88e-09 8.43e-08

354 PID IL8CXCR2 PATHWAY 130 0.85 0.000631 0.001826

355 BIOCARTA SALMONELLA PATHWAY 130 0.88 0.023951 0.041788

356 PID P38ALPHABETAPATHWAY 130 0.89 0.000634 0.001828

357 BIOCARTA RAB PATHWAY 130 0.94 0.009527 0.019097

358 BIOCARTA CDC42RAC PATHWAY 130 0.99 0.000700 0.001991

359 CHUNG BLISTER CYTOTOXICITY DN 130 0.82 0.000439 0.001366

360 GAZDA DIAMOND BLACKFAN ANEMIA PROGENITOR

UP

130 0.76 0.005349 0.011742

361 THEILGAARD NEUTROPHIL AT SKIN WOUND DN 130 0.78 1.59e-12 3.29e-11

362 REACTOME ACTIVATED AMPK STIMULATES FATTY

ACID OXIDATION IN MUSCLE

131 0.84 0.014514 0.027338

363 MEGA2 133 0.79 0.000292 0.000943

364 RAGHAVACHARI PLATELET SPECIFIC GENES 133 0.76 0.000114 0.000394

365 WIERENGA STAT5A TARGETS DN 133 0.63 0.001028 0.002736

366 REACTOME GENERIC TRANSCRIPTION PATHWAY 134 0.60 0.002727 0.006599

367 PYEON HPV POSITIVE TUMORS UP 136 0.71 0.000548 0.001630

368 HOEBEKE LYMPHOID STEM CELL UP 136 0.64 0.012576 0.024099

369 REACTOME PEPTIDE CHAIN ELONGATION 137 0.99 2.00e-14 6.63e-13

370 KEGG RIBOSOME 137 1.00 3.08e-14 9.29e-13

371 MIPS 40S RIBOSOMAL SUBUNIT CYTOPLASMIC 137 1.00 2.26e-06 1.24e-05

372 MIPS TRBP CONTAINING COMPLEX 1 137 1.00 9.17e-05 0.000325

373 MIPS NOP56P ASSOCIATED PRE RRNA COMPLEX 137 0.73 4.79e-05 0.000187

374 MIPS RIBOSOME CYTOPLASMIC 137 1.00 1.67e-13 4.10e-12

375 MIPS 60S RIBOSOMAL SUBUNIT CYTOPLASMIC 137 1.00 9.61e-09 9.80e-08

376 REACTOME INFLUENZA VIRAL RNA TRANSCRIP-

TION AND REPLICATION

137 0.93 3.88e-13 9.18e-12

377 BILANGES SERUM AND RAPAMYCIN SENSITIVE

GENES

137 0.98 2.33e-11 4.29e-10

378 HOLLEMAN ASPARAGINASE RESISTANCE B ALL UP 137 0.93 0.000131 0.000440

379 PECE MAMMARY STEM CELL UP 137 0.88 6.57e-13 1.50e-11

380 BILANGES SERUM RESPONSE TRANSLATION 137 0.93 3.21e-05 0.000132

381 CHNG MULTIPLE MYELOMA HYPERPLOID UP 137 0.89 2.23e-06 1.23e-05

382 BURTON ADIPOGENESIS 12 138 0.74 0.015020 0.028210

383 ZHANG TLX TARGETS 36HR DN 138 0.65 0.000563 0.001667

384 REACTOME FORMATION OF TUBULIN FOLDING

INTERMEDIATES BY CCT TRIC

140 0.83 0.017619 0.032092

385 VISALA RESPONSE TO HEAT SHOCK AND AGING DN 140 1.00 0.004787 0.010686

386 FU INTERACT WITH ALKBH8 140 0.99 0.005614 0.012203

Table 10: A complete list of LV-geneset associations.
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B.2 DataRemix

B.2.1 Fourier transform of the exponential kernel: equation 3.5

The original paper which proposed to use Fourier features to construct an approximate

feature map [129] lists analytic formulations for three popular kernels, which are Gaussian

kernel, Laplacian kernel and Cauchy kernel. Here we provide the detailed derivation for the

Fourier transform of the exponential kernel in the three-dimensional space.

p(ω) =
1

(2π)3

∫
exp(−i~ωT ~∆) exp(−‖

~∆‖2

2
)d~∆

First, we take the substitution w = ‖~ω‖2 and r = ‖~∆‖2. We assume that ~ω is parallel to the

polar direction.

p(ω) =
1

(2π)3

∫
exp(−i~ωT ~∆) exp(−‖

~∆‖2

2
)d~∆

=
1

(2π)3

∫ ∞
0

∫ 2π

0

∫ π

0

exp(−iwr cos θ) exp(−r
2

) · r2 sin θdrdθdφ

=
1

(2π)3

∫ ∞
0

r2 exp(−r
2

)dr

∫ 2π

0

dφ

∫ π

0

exp(−iwr cos θ) · sin θdθ

=
1

(2π)2

∫ ∞
0

r2 exp(−r
2

)dr

∫ π

0

exp(−iwr cos θ) · sin θdθ

Here we make the substitution z = cos θ. Thus sin θdθ = −dz.

p(ω) =
1

(2π)2

∫ ∞
0

r2 exp(−r
2

)dr

∫ −1

1

− exp(−iwrz)dz

Make another substitution t = −iwrz, where dz = − 1
iwr
dt

p(ω) =
1

(2π)2

∫ ∞
0

r2 exp(−r
2

)dr

∫ −1

1

− exp(−iwrz)dz

=
1

(2π)2

∫ ∞
0

r2 exp(−r
2

)dr

∫ iwr

−iwr
exp(t) · 1

iwr
dt

=
1

(2π)2

∫ ∞
0

r exp(−r
2

)dr

∫ iwr

−iwr
exp(t) · 1

iw
dt
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=
1

(2π)2 · iw

∫ ∞
0

r exp(−r
2

)dr

∫ iwr

−iwr
exp(t)dt

=
2

(2π)2 · iw

∫ ∞
0

r exp(−r
2

)dr · i sin(wr)

=
2

(2π)2w

∫ ∞
0

r exp(−r
2

) sin(wr)dr

=
2

(2π)2w
·
−4w exp(− r

2
)(4w2r + r + 4) cos(wr)

(4w2 + 1)2

∣∣∣∣∞
0

=
2

(2π)2w
· 16w

(4w2 + 1)2

=
8

π2(4w2 + 1)2

=
8

π2(4‖~ω‖2
2 + 1)2

B.2.2 Posterior sampling: equation 3.7

The formula for sampling from the posterior can be intuitively understood in terms

of the parallels with linear regression. Since in the feature space, any sample f(λ) from

Gaussian Process can be approximated by Φ(λ)T θ, we can think of this as a simple linear

regression: substitute f(λ) = y − ε, ε ∼ N(0, σ2) and wish to solve y = Φ(λ)T θ + ε, ε ∼

N(0, σ2) for θ. If θ comes with a Gaussian prior N(0, I), then the posterior distribution

of θ is N(A−1Φ(~λ)~y, σ2A−1), where A = Φ(~λ)Φ(~λ)T + σ2I. The mean value (Φ(~λ)Φ(~λ)T +

σ2I)−1Φ(~λ)~y is the same as the ridge regression estimator or MAP (Maximum a posteriori

estimation) estimator of θ. For a full formal derivation see bellow:

P (θ|~λ, ~y) ∝ P (~y|~λ, θ)P (θ)
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where P (~y|~λ, θ) ∼ N(Φ(~λ)T θ, σ2I), P (~θ) ∼ N(0, I)

P (θ|~λ, ~y) ∝ 1√
(2π)tσt

exp

(
−1

2
(~y − Φ(λ)T θ)T · σ−2I · (~y − φ(λ)T θ)

)
· 1√

(2π)t
exp

(
−1

2
θT θ

)
∝ exp

(
−1

2
(~y − Φ(λ)T θ)T · σ−2I · (~y − Φ(λ)T θ)

)
· exp

(
−1

2
θT θ

)
= exp

(
− 1

2σ2

[
~yT~y − 2~yTΦ(λ)T θ + θTΦ(λ)Φ(λ)T θ

]
− 1

2
θT θ

)
∝ exp

(
− 1

2σ2

[
~yT~y − 2~yTΦ(λ)T θ + θTΦ(λ)Φ(λ)T θ

]
− 1

2
θT θ

)
· constant

= exp

(
− 1

2σ2

[
~yT~y − 2~yTΦ(λ)T θ + θTΦ(λ)Φ(λ)T θ

]
− 1

2
θT θ

)
· exp

(
− 1

2σ2
~yT
[

1

σ2
Φ(λ)T (

1

σ2
Φ(λ)Φ(λ)T − I)−1Φ(λ)− I

]
~y

)
= exp

(
−1

2
(θ − θ̂)T (

1

σ2
Φ(λ)Φ(λ)T + I)(θ − θ̂)

)
where θ̂ = 1

σ2 ( 1
σ2 Φ(λ)Φ(λ)T + I)−1Φ(λ)~y. Thus,

P (θ|~λ, ~y) ∝ exp

(
−1

2
(θ − θ̂)TB(θ − θ̂)

)
∝ N(

1

σ2
B−1Φ(~λ)~y,B−1)

where B = 1
σ2 Φ(~λ)Φ(~λ)T + I. Here, B is a simple transformation of the previously defined

quantity A = Φ(~λ)Φ(~λ)T + σ2I with B = 1
σ2A. Equivalently, we get,

P (θ|~λ, ~y) ∝ N(A−1Φ(~λ)~y, σ2A−1)

where A = Φ(~λ)Φ(~λ)T + σ2I.
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B.3 NIFA

Figure 52: A schematic representation of the NIFA model.

Each latent variable (each row of S) is associated with M component distribution. And

we assume a Gaussian noise model.

X = AS + noise (B.1)

The noise model is set to be simple Gaussian N(0,Σ−1) where Σ−1 =


β

β
. . .

β

.

B.3.1 Joint likelihood

P =
N∏
n=1

P (Xn|A, Sn, β)P (Sn|ε, µ, σ) ·
P∏
j=1

K∏
i=1

P (Aji|ηji, λi)
∏
i,m,n

P (εimn) ·
∏
i,m

P (µim)P (σim) · P (β)

P (Xn|A, Sn, β)

=| det(2πΣ)|−
1
2 exp

(
−1

2
(Xn − ASn)TΣ−1(Xn − ASn)

)
=(2π)−

P
2 β

P
2 exp

(
−β

2

P∑
j=1

(Xjn − ATj Sn)2

) (B.2)
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X represents the RNA-seq matrix with dimension P -by-N , A denotes loading matrix with

dimension P -by-K, S stands for latent variables with dimension K-by-N and β is defined

by the noise model.

P (Sn|ε, µ, σ) =
K∏
i=1

M∏
m=1

N(Sin|µim, σim)εimn (B.3)

Each latent variable is associated with M component distributions (Gaussian distribution).

Each component distribution comes with µim as the mean and σim as the inverse of the

variance. εimn is a set of binary latent variables, and
∑M

m=1 εimn = 1. If Sin is generated

from component j, then εimn = 1 if m = j and εimn = 1 if m 6= j.

P (Aji|ηji, λi)

=(2π)−
1
2 (λi)

1
2 exp(−1

2
λi(Aji − ηji)2) · 1

1− Φ(−ηjiλ
1
2
i )

(B.4)

The loading matrix A is modelled with a truncated normal prior with a = 0 and b = ∞.

Φ(·) is the cumulative distribution function of the standard normal distribution.

P (εimn) = πεimn
im (B.5)

The latent variables εimn are governed by the mixing proportion πim.

P (µim) = N(µim|ρim, φim) (B.6)

µim comes with a Gaussian distribution as prior with ρim as the mean and φim as the inverse

of the variance.

P (σim) = Gamma(σim|aσim , bσim) (B.7)

σim comes with a Gamma distribution as prior with aσim and bσim as hyper parameters.

P (β) = Gamma(β|aβ, bβ) (B.8)

β comes with a Gamma distribution as prior with aβ and bβ as hyper parameters.
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B.3.2 Variational update functions

Q =
N∏
n=1

q(Sn) ·
∏
j,i

q(Aji) ·
∏
i,m,n

q(εimn) ·
∏
i,m

q(µim)q(σim) · q(β)

The derivations are detailed in the appendix. Thus,

q(Sn) = N(Sn|µ∗m,Σ∗m) (B.9)

where µ
∗
m = Σ∗m

[∑M
m=1 B

−1
m µm+ < β >

∑P
j=1 Xjn < Aj >

]
Σ∗m =

[∑M
m=1 B

−1
m + < β >

∑P
j=1 < AjA

T
j >

]−1

µm =


< µ1m >

< µ2m >
...

< µKm >

 , B−1
m =


< ε1mn >< σ1m >

. . .

< εKmn >< σKm >



q(Aji) = f(Aji|η∗ji, λ∗i , 0,∞) (B.10)

which is the truncated normal distribution with a = 0 and b =∞. whereλ
∗
i = λi+ < β >

∑N
n=1 < S2

in >

η∗ji =
λiηji−<β>[

∑N
n=1<Sin>(

∑
m 6=i<Ajm><Smn>−Xjn)]

λi+<β>
∑N

n=1<S
2
in>

q(εimn) = λ̃imn
εimn

(B.11)

where

λ̃imn =
eλimn∑M
m=1 e

λimn

λimn = −1

2
log(2π) +

1

2
< log σim > + log πim −

1

2
< σim >

[
< S2

in > −2 < Sin >< µim > + < µ2
im >

]
q(µim) = N(µim|ρ∗im, φ∗im) (B.12)
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whereρ
∗
im = (φ∗im < σim >)−1

[
< σim >

∑N
n=1 < εimn >< Sin > +φimρim < σim >

]
φ∗im = φim +

∑N
n=1 < εimn >

q(σim) = Gamma(σim|a∗σim , b
∗
σim

) (B.13)

where 

a∗σim = aσim + 1
2

∑N
n=1 < εimn > +1

2

b∗σim =bσim +
1

2

N∑
n=1

< εimn > (< S2
in > −2 < Sin >< µim > + < µ2

im >)

+
1

2
< φim > (< µ2

im > −2 < µim > ρim + ρ2
im)

q(β) = Gamma(β|a∗β, b∗β) (B.14)

wherea
∗
β = aβ + NP

2

b∗β = bβ + 1
2

∑N
n=1

∑P
j=1[X2

in − 2Xin < ATj >< Sn > +Tr(< AjA
T
j >< SnS

T
n >)]

πim =
1

N

N∑
n=1

λ̃imn (B.15)

B.3.2.1 Update functions of µj and Σj

δi =
√

(λ∗i )
−1

Zji = 1− Φ(−
η∗ji
δi

)

µj ⇐ µji = η∗ji +
φ(−η∗ji

δi
)

Zji
δi (B.16)

Σj ⇐ Σii
j = δ2

1 +
−η∗ji

δi
φ(−η∗ji

δi
)

Z
−

φ(−η∗ji
δi

)

Z

2 (B.17)

where Σj is a diagonal matrix and Σii
j stands for the ith diagonal values of Σj.
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B.3.2.2 Update functions of expectations

< Sn >= µ∗m (B.18)

< SnS
T
n >= µ∗mµ

∗
m
T + Σ∗m (B.19)

< εimn >= λ̃imn (B.20)

< σim >=
a∗σim
b∗σim

(B.21)

< Aj >= µj (B.22)

< AjA
T
j >= µjµ

T
j + Σj (B.23)

< log σim >= ψ(a∗σim)− ln(b∗σim) (B.24)

< µim >= ρ∗im (B.25)

< µ2
im >= (φ∗imσ

∗
im)−1 + (ρ∗im)2 (B.26)

< β >=
a∗β
b∗β

(B.27)
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B.3.2.3 Derivation for eq B.10 The loading matrix A is modelled with a truncated

normal prior with a = 0 and b = ∞. Φ(·) is the cumulative distribution function of the

standard normal distribution.

logP (Aji|ηji, λi)

=− 1

2
log(2π) +

1

2
log λi −

1

2
λi(Aji − ηji)2 − log(1− Φ(−ηjiλ

1
2
i ))

remove constant
=========⇒− 1

2
λi(A

2
ji − 2Ajiηji)

N∏
n=1

(2π)−
P
2 β

P
2 exp

(
−β

2

P∑
j=1

(Xjn − ATj Sn)2

)
· P (Aji|ηji, λi)

=
N∏
n=1

(2π)−
P
2 β

P
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(
−β

2

P∑
j=1
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∑
m6=i

AjmSmn −Xjn)2

)
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N∑
n=1
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−P

2
log(2π) +

P

2
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remove constant
=========⇒

N∑
n=1

[
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2
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[87] Jeffrey T Leek, Robert B Scharpf, Héctor Corrada Bravo, David Simcha, Benjamin
Langmead, W Evan Johnson, Donald Geman, Keith Baggerly, and Rafael A Irizarry.
Tackling the widespread and critical impact of batch effects in high-throughput data.
Nature Reviews Genetics, 11(10):733–739, 2010.

[88] Jeffrey T Leek and John D Storey. Capturing heterogeneity in gene expression studies
by surrogate variable analysis. PLoS genetics, 3(9), 2007.
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single-cell resolution map of mouse hematopoietic stem and progenitor cell differen-
tiation. Blood, The Journal of the American Society of Hematology, 128(8):e20–e31,
2016.

[118] Cancer Genome Atlas Research Network et al. Integrated genomic characterization
of endometrial carcinoma. Nature, 497(7447):67–73, May 2013.

[119] Aaron M Newman, Chih Long Liu, Michael R Green, Andrew J Gentles, Weiguo
Feng, Yue Xu, Chuong D Hoang, Maximilian Diehn, and Ash A Alizadeh. Robust
enumeration of cell subsets from tissue expression profiles. Nature methods, 12(5):453–
457, 2015.
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[155] Vésteinn Thorsson, David L Gibbs, Scott D Brown, Denise Wolf, Dante S Bor-
tone, Tai-Hsien Ou Yang, Eduard Porta-Pardo, Galen F Gao, Christopher L Plaisier,
James A Eddy, et al. The immune landscape of cancer. Immunity, 48(4):812–830,
2018.

[156] Cole Trapnell. Defining cell types and states with single-cell genomics. Genome
research, 25(10):1491–1498, 2015.

[157] Cole Trapnell, Brian A Williams, Geo Pertea, Ali Mortazavi, Gordon Kwan, Marijke J
Van Baren, Steven L Salzberg, Barbara J Wold, and Lior Pachter. Transcript assembly
and quantification by rna-seq reveals unannotated transcripts and isoform switching
during cell differentiation. Nature biotechnology, 28(5):511, 2010.

[158] Severin Uebbing. Evaluation of rna-seq normalization methods using challenging
datasets. bioRxiv, page 401679, 2018.

[159] Dmitry Usoskin, Alessandro Furlan, Saiful Islam, Hind Abdo, Peter Lönnerberg,
Daohua Lou, Jens Hjerling-Leffler, Jesper Haeggström, Olga Kharchenko, Peter V
Kharchenko, et al. Unbiased classification of sensory neuron types by large-scale
single-cell rna sequencing. Nature neuroscience, 18(1):145, 2015.

127



[160] Catalina A Vallejos, Davide Risso, Antonio Scialdone, Sandrine Dudoit, and John C
Marioni. Normalizing single-cell rna sequencing data: challenges and opportunities.
Nature methods, 14(6):565, 2017.

[161] Anne M Van der Leun, Daniela S Thommen, and Ton N Schumacher. Cd8+ t cell
states in human cancer: insights from single-cell analysis. Nature Reviews Cancer,
pages 1–15, 2020.

[162] CH Waddington. The strategy of the genes: a discussion of some aspects of theoretical
biology. 1957.

[163] Harm-Jan Westra, Marjolein J Peters, Tõnu Esko, Hanieh Yaghootkar, Claudia Schur-
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