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Experimental solid state quantum simulation using 1D superlattice structures

Megan Briggeman, PhD

University of Pittsburgh, 2020

In this thesis we describe experiments which explore 1D transport at the LaAlO3/SrTiO3

interface. Complex oxide systems, specifically those based on SrTiO3, possess a wide range of

magnetic and electronic properties, including superconductivity, magnetism, ferroelectric-

ity, and ferroelasticity. Electron waveguide devices created at the LaAlO3/SrTiO3 interface ex-

hibit quantized ballistic transport of electrons, electron pairs, and Pascal liquid phases-bound

states of more than two electrons. Different types of periodic modulation are applied to the

electron waveguides to create one-dimensional superlattices. By creating superlattice de-

vices we are able to engineer new properties and enhance electron-electron interactions at the

LaAlO3/SrTiO3 interface. These devices represent a first step towards developing a solid-state

quantum simulation platform and will be used as building blocks for creating more complex

quantum systems.

Keywords: Complex-oxides, 1D transport, strongly correlated physics.

iii



Table of contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 QUANTUM COMPUTATION AND QUANTUM INFORMATION . . . . . . . . . . . . 1

1.1.1 Quantum simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1.1 Quantum simulation platforms . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 COMPLEX OXIDE HETEROSTRUCTURES . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 The LaAlO3/SrTiO3 heterointerface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1.1 Electronically tunable interface . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1.2 Emergent properties at the LaAlO3/SrTiO3 interface . . . . . . . . . 11

1.2.2 Nanostructures at the LaAlO3/SrTiO3 interface . . . . . . . . . . . . . . . . . . . 11

1.3 1D TRANSPORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Ballistic transport and quantized conductance . . . . . . . . . . . . . . . . . . . 12

1.3.1.1 Quantum point contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 CONTENT SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.0 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 LaAlO3/SrTiO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Sample growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Sample processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 CONDUCTIVE ATOMIC FORCE MICROSCOPE LITHOGRAPHY . . . . . . . . . . . 19

2.3.1 Protonation/water cycle mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 c-AFM details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2.1 Erasing and cleaning the surface . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.2.2 Device writing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.2.3 Monitoring device writing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 TRANSPORT MEASUREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

iv



3.0 Quantized ballistic transport of electrons and electron pairs in LaAlO3/SrTiO3

nanowires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 TRANSPORT IN 1D SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Electron waveguide devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 ELECTRON WAVEGUIDES AT THE LaAlO3/SrTiO3 INTERFACE . . . . . . . . . . . . 41

3.3.1 Device fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.2 Magnetotransport data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.3 Ballistic scattering length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 WAVEGUIDE MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Non-interacting waveguide model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.2 Interacting model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 ADDITIONAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6.1 Finite bias spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6.2 Temperature dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6.3 Impact of side gate location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6.4 Additional electron waveguide devices . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6.5 Zero-barrier, single-barrier, and double-barrier geometry . . . . . . . . . . . 59

4.0 Pascal conductance series in ballistic one-dimensional LaAlO3/SrTiO3 channels . 63

4.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Device fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.2 Pascal series conductance plateaus . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.3 Transconductance data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Single-particle model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.2 Experimental deviations from the single-particle model . . . . . . . . . . . . 70

4.3.3 DMRG analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 ANGLE-DEPENDENT MAGNETOTRANSPORT . . . . . . . . . . . . . . . . . . . . . . . . 75

v



4.5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.6 ADDITIONAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.6.1 Fits of transconductance data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.6.2 Fits of conductance data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.0 One-dimensional Kronig-Penney superlattices at the LaAlO3/SrTiO3 interface . . . 81

5.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 Magnetotransport data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.2 Fractional conductance features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.3 Finite-bias spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 ADDITIONAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4.1 Device writing and measurement parameters . . . . . . . . . . . . . . . . . . . . 92

5.4.2 Device V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.0 Engineered spin-orbit interactions in LaAlO3/SrTiO3-based 1D serpentine elec-

tron waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2.1 Magnetotransport data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2.2 High magnetic field fractional conductance feature . . . . . . . . . . . . . . . . 100

6.2.2.1 Temperature dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2.2.2 Finite-bias spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.0 Engineered chirality of one-dimensional LaAlO3/SrTiO3 nanowires . . . . . . . . . . . 107

7.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.2.1 Magnetotransport data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.2.2 Finite-bias spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2.3 1D superlattice device H2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.3 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

vi



8.0 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Appendix A. Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.1 ATOMIC FORCE MICROSCOPES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.2 LOW TEMPERATURE MEASUREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.2.1 Dilution refrigerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.2.1.1 Leiden MNK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A.2.2 Superconducting magnet and 2-axis rotator . . . . . . . . . . . . . . . . . . . . . 129

Appendix B. Sample information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

vii



List of tables

1 Measured scattering lengths for waveguide devices W1 and W2 . . . . . . . . . . . . . 47

2 Re-entrant pairing fitting parameters for electron waveguide devices W1 and W2. 54

3 Parameters for Pascal waveguide devices P1-P7 . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Sample growth and processing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5 List of devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

viii



List of figures

1 Quantum simulation schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Perovskite crystal structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 LaAlO3/SrTiO3 structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Polar catastrophe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Tunable metal-insulator transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6 1D channel and energy dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

7 Conductance of a quantum point contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

8 Atomically flat terraces on LaAlO3 surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

9 Sample processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

10 Wirebonded LaAlO3/SrTiO3 sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

11 Conductive atomic force microscopy lithography . . . . . . . . . . . . . . . . . . . . . . . 24

12 Water-cycle mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

13 Typical Inkscape pattern for device writing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

14 Measured AFM tip path during lateral 1D superlattice writing . . . . . . . . . . . . . . 29

15 Measured AFM tip path and voltage during chiral 1D superlattice writing . . . . . 30

16 Sample measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

17 2-terminal conductance during c-AFM writing test . . . . . . . . . . . . . . . . . . . . . . 32

18 4-terminal resistance during electron waveguide and 1D superlattice c-AFM

writing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

19 Nanowire width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

20 Device flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

21 Measurement hardware for the Leiden MNK system . . . . . . . . . . . . . . . . . . . . . 38

22 Electron waveguide device and energy diagrams . . . . . . . . . . . . . . . . . . . . . . . . 43

23 Electron waveguide magnetotransport data . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

24 Estimation of ballistic scattering length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

25 Single-particle waveguide model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

ix



26 Magnetotransport data for high pairing field electron waveguide device . . . . . . . 50

27 Electron-electron interactions in electron waveguides . . . . . . . . . . . . . . . . . . . . 54

28 Electron waveguide finite bias analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

29 Temperature dependence of conductance plateaus . . . . . . . . . . . . . . . . . . . . . . 59

30 Dependence of transport on gate location . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

31 Additional electron waveguide devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

32 Control devices with zero and one barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

33 Pascal electron waveguide device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

34 Transconductance data for Pascal electron waveguide devices . . . . . . . . . . . . . . 68

35 Single-particle model for a Pascal electron waveguide . . . . . . . . . . . . . . . . . . . . 71

36 Pascal liquid phase transconductance fits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

37 DMRG phase diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

38 Angle-dependence of waveguide transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

39 Model for transconductance fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

40 Schematic of c-AFM writing and 1D vertical superlattice device. . . . . . . . . . . . . 84

41 Magnetotransport characteristics of a 1D vertical superlattice. . . . . . . . . . . . . . . 87

42 Fractional conductance features for vertical superlattice Device V1. . . . . . . . . . . 88

43 Finite-bias spectroscopy for Device V1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

44 Magnetotransport data for vertical superlattice Device V2. . . . . . . . . . . . . . . . . 93

45 Conductive AFM writing and device schematic for lateral superlattice devices. . . 97

46 Magnetotransport for serpentine superlattice Device L1. . . . . . . . . . . . . . . . . . . 99

47 Temperature dependence of Device L1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

48 Finite-bias spectroscopy for Device L1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

49 Magnetotransport for serpentine superlattice Device L2. . . . . . . . . . . . . . . . . . . 105

50 Finite-bias spectroscopy for Devices L1 and L2 . . . . . . . . . . . . . . . . . . . . . . . . . 106

51 Chiral superlattice device schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

52 Magnetotransport data for a 1D chiral superlattice device. . . . . . . . . . . . . . . . . . 113

53 Line cuts showing oscillations in Device H1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

54 Finite bias spectroscopy for the chiral superlattice section of Device H1. . . . . . . 115

55 Magnetotransport data from helical superlattice Device H2. . . . . . . . . . . . . . . . 117

x



56 Enhanced superconductivity in zigzag nanowire devices . . . . . . . . . . . . . . . . . . 120

57 Schematic of atomic force microscope operation . . . . . . . . . . . . . . . . . . . . . . . 122

58 Asylum MFP-3D AFM design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

59 AFM tip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

60 3He-4He phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

61 Dilution refrigerator schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

62 Cryostat for Leiden MNK dilution refrigerator insert . . . . . . . . . . . . . . . . . . . . . 130

63 Leiden MNK dilution refrigerator insert. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

64 Leiden MNK system schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

65 Schematic of the rooms housing the cryostats and supporting equipment . . . . . 133

66 Diagram of Leiden MNK setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

67 2-axis rotator on Leiden MNK dilution insert . . . . . . . . . . . . . . . . . . . . . . . . . . 136

xi



Preface

The work presented here is the culmination of many years of graduate work and wouldn’t

have been possible without the support of my friends, family, and the many people who have

helped me during my time at Pitt.

I would like to thank my friends and family for their love and encouragement through-

out this process. My advisor Jeremy Levy and all of my LevyLab colleagues have been a con-

stant source of help and support during my graduate career. Thanks to our collaborators in

the group of Chang-Beom Eom at the University of Wisconsin-Madison for growing all of the

samples used in the research presented here. Many thanks also to my committee members

for their advice and feedback.

Financial support has been provided by a Vannevar Bush Faculty Fellowship (N00014-15-

1-2847), the AFOSR (FA9550-12-1-0057) and the National Science Foundation (PHY-1913034).

xii



1.0 Introduction

Quantum theory provides a unified framework for understanding the fundamental prop-

erties of matter. However, there are many quantum systems whose behavior is not well under-

stood because the relevant equations are too hard to solve using known approaches. For ex-

ample, high-temperature superconductivity, in copper-oxides or other materials, was neither

predicted nor is it currently understood in the same way that, for example, the band structure

of silicon is known. One avenue for exploring these systems of interest is quantum simula-

tion. The idea was first proposed by Feynman in 1982 [1], and involves the use of a config-

urable quantum system in which the Hamiltonian can be mapped onto a system of interest.

The simulator can be used to compute the properties of interest, in order to gain insight into

the quantum nature of matter. It has been shown that Feynman’s original idea, “that quan-

tum computers can be programmed to simulate any local quantum system”, is correct [2], and

that such a quantum simulator could be used to gain insight, for example, into the problem

of high-temperature superconductivity [3].

The motivation for the work described here is to develop the tools necessary to build a

solid-state quantum simulation platform. Complex oxide materials give access to important

phases of matter, such as superconductivity, where the model Hamiltonians (e.g., 2D Hub-

bard model) are challenging to understand theoretically, while their nanoscale reconfigura-

bility makes it possible to engineer new forms of quantum matter with extreme nanoscale

precision [4, 5].

1.1 QUANTUM COMPUTATION AND QUANTUM INFORMATION

The ability to understand and harness complex quantum systems is at the forefront of

much of today’s research. The majority of these quantum systems cannot be simulated using

classical computational techniques. Simulating the full time-evolution of an arbitrary quan-

tum system with a classical computer is intractable, requiring resources that scale exponen-
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tially with the size of the system [1]. For example, using classical bits to describe the state of

N spin- 1
2 particles requires 2N bits. Recording the state of a system of N = 50 particles would

require 250 ∼ 1×1015 bits, and doing calculations of this size with classical computers becomes

nearly impossible.

These problems (and many more) could, however, be efficiently solved using a quantum

computer. Analogous to the classical ‘bit’, quantum computation is built on the concept of a

‘qubit’ or a quantum bit. The power of the qubit comes from its quantum nature and its ability

to be in a superposition of states. Analogous to the bit, the qubit can be in the state |0〉 or |1〉,

but it can also be in a linear combination of these two states,

|ψ〉=α|0〉+β |1〉, (1.1)

where α and β are complex numbers. These numbers, or amplitudes, represent the proba-

bility of measuring the state |ψ〉 and finding it in either the state |0〉 or |1〉. A measurement of

|ψ〉 will yield the state |0〉 with a probability of |α|2 and |1〉 with a probability of |β |2. A more

complete discussion of this topic can be found in Ref [6].

The full set of problems that could benefit from a universal quantum computer is not

known, but there are many possible applications [7]. Being able to efficiently simulate nature

would provide insight into a variety of fields involving strongly correlated systems [8] includ-

ing: condensed-matter physics, quantum chemistry, high-energy physics, atomic physics,

and cosmology. Quantum computation also has implications for cryptography (with the abil-

ity to efficiently factor large numbers) [9], quantum sensing [10], communication, and many

other applications [11]. There are many physical implementations of a qubit and a quantum

computer. It is not yet clear what form the first universal quantum computer will take, and

building them is the focus of intense research. The full implementation of a gate-based uni-

versal quantum computer with fault tolerant logical qubits is still many years in the future

[11].

An alternative to a universal quantum computer may be the more specialized approach

of quantum simulation. While not as versatile as a universal quantum computer, quantum

simulations may be a mid-range goal that can give insight into some specific (but still very
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interesting) problems [12, 13]. In the the same way that analog classical computers preceded

digital classical computers.

1.1.1 Quantum simulation

Quantum simulation requires a quantum system that can be precisely controlled and

whose Hamiltonian can be mapped onto the system of interest. These systems can be studied

experimentally to gain insight into the quantum nature of matter. A schematic of this process

is shown in Fig. 1.

There are a variety of systems that have been developed for quantum simulation includ-

ing; ultracold atomic lattices [14, 15, 16], ion trap arrays [17, 18, 19] (which can simulate spin

systems readily), superconducting Josephson junction arrays [20, 21, 22], photonic systems

[23, 24, 25], and various solid-state approaches[26, 27, 28, 29]. Platforms capable of quan-

tum simulation of Fermi-Hubbard models would be of enormous value in condensed matter

physics and beyond.

Quantum simulators have reached the point where they are able to study the dynamics

of quantum systems that are beyond the reach of classical computation. Several groups have

simulated an Ising-type model of ∼ 50 spins using ultracold atoms [30] and trapped ions [31],

a problem that cannot currently be solved using classical computational methods.

1.1.1.1 Quantum simulation platforms Perhaps the most extensively studied platform

currently being used for quantum simulation are ultra cold atoms. A large number of atoms

can be trapped and controlled using standing waves of light and magnetic fields [15]. These

systems are well-described by the Hubbard model and have been used to simulate a wide

range of many-body Hamiltonians, including the Fermi-Hubbard model [32]. More details

can be found in Ref. [15], which details the “Cold atom Hubbard toolbox”. While the atoms

trapped in ultracold atoms are at nominally very low temperatures (nanokelvins), cooling to

low effective temperatures where correlated ground states occur is still a challenge in these

systems.

Solid-state platforms for quantum simulation have the advantage that they can naturally

3



Figure 1: Schematic of a quantum simulator simulating a quantum system of interest. There

is a mapping between the states of the simulator, which can be precisely controlled and mea-

sured, and the quantum system. Reproduced from Ref [13].
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support the quantum phases of interest, such as superconductivity. These platform have a

range of sizes and interactions and are in some cases real electronic devices that can be read-

ily integrated with other systems. The disadvantage is that the precise Hamiltonian of these

systems is often not well understood.

1.2 COMPLEX OXIDE HETEROSTRUCTURES

Complex oxide systems, specifically those based on SrTiO3, possess a wide range of mag-

netic and electronic properties including: superconductivity, magnetism, ferroelectricity, and

ferroelasticity [33]. Complex oxide materials offer new opportunities to create a platform for

quantum simulation in a solid-state environment. Their complexity gives access to impor-

tant quantum phases of matter, such as superconductivity, where the model Hamiltonians

(e.g., 2D Hubbard model) are challenging to understand theoretically.

1.2.1 The LaAlO3/SrTiO3 heterointerface

The work described here is based on the properties of the complex oxide heterostructure

LaAlO3/SrTiO3 [34] (Fig. 3). We will briefly describe some of the relevant properties here and

more details can be found in Ref. [33].

LaAlO3/SrTiO3 is composed of two wide-bandgap insulating oxide materials; LaAlO3, Eg ∼

5.6 eV and SrTiO3, Eg ∼ 3.2 eV. The two materials have a small lattice mismatch with a lat-

tice spacing of 3.789 Å and 3.905 Å, respectively. When a thin layer (> 4 unit cells (u.c.)) of

(001)-oriented LaAlO3 is grown on a TiO2-terminated [35] SrTiO3 substrate the interface be-

comes conductive with a carrier mobility exceeding 10, 000 cm2 V−1 s−1 [34]. The interface of

LaAlO3 grown on an SrO-terminated SrTiO3 substrate is expected to be a p -type interface but

is found to be insulating. The two dimensional electron system (2DES) at the TiO2 terminated

LaAlO3/SrTiO3 interface is very strongly confined, extending only∼ 10 nm into the SrTiO3 sub-

strate at both room temperature [36] and cryogenic temperatures T = 8 K [37].

The origin of the emergent conductivity at the LaAlO3/SrTiO3 interface, and its depen-
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Figure 2: Perovskite crystal structure of many of the complex oxide materials, including LaAlO3

and SrTiO3. Black and blue atoms are the cations, and the red atoms are the anions (usually

oxygen).

dence on a critical thickness of the LaAlO3 layer, is still not fully understood. Possible expla-

nations are: a polar catastrophe effect [38], Oxygen vacancies [39, 40, 41], atomic interdiffusion

[42], structural deformation [43], and some possible combination of these or other effects [44].

The most widely cited explanation for the origin of the conductivity at the interface and

the need for critical thickness of the LaAlO3 layer, is the polar catastrophe [38]. This is due

to the polarity of the different layers of LaAlO3/SrTiO3 . Both LaAlO3 and SrTiO3 have a per-

ovskite crystal structure (Fig. 2). The LaAlO3 is made up of alternating layers of LaO and AlO2,

and the SrTiO3 is made up of alternating layers of SrO and TiO2. Both of the layers in SrTiO3

are charge neutral. But the layers of LaAlO3 have alternating charges of+1 (LaO) and -1 (AlO2),

as shown in Fig. 4. For a TiO2-terminated SrTiO3 substrate the alternating charges of LaAlO3

lead to an electric field, and a diverging potential with increasing LaAlO3 thickness. In order to

prevent this diverging potential, the “polar catastrophe”, the system undergoes an electronic

reconstruction, transferring 1/2 an electron per 2D unit cell from the surface to the interface

(Fig. 4). This causes the electric field to oscillate around zero and the potential to no longer

diverge. Similarly, if the SrTiO3 is terminated with an SrO layer the polar layers of LaAlO3 cause

a negatively diverging potential which can be avoided by removing 1/2 an electron from the

last SrO layer. The polar catastrophe theory can also explain the existence of the critical thick-
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Figure 3: LaAlO3/SrTiO3 structure. SrTiO3 substrate with a few unit cells of LaAlO3 grown on

top. Both materials have perovskite crystal structure. Under the right conditions the interface

can host a high mobility 2D electron liquid (highlighted in green).

7



ness dependence of the conductivity. When the LaAlO3 layer reaches the critical thickness (4

u.c.) there is a crossover of the LaAlO3 valence band maximum and SrTiO3 conduction band

minimum [45, 46].

The polar catastrophe is however not the whole story. The polar catastrophe model pre-

dicts that the interface would have an electron density of n = 3× 1014 cm−2, but the interface

is found to have carrier concentrations an order of magnitude smaller [47, 48]. There are also

other types of interfaces such as (110)-oriented [49] and amorphous [50] LaAlO3 that can pro-

duce conductive interfaces but do not have layers with alternating charge.

Another possible explanation for the conductivity of the LaAlO3/SrTiO3 interface is the

presence of oxygen vacancies. Each oxygen vacancy would provide a charge of 2e . The num-

ber of oxygen vacancies in LaAlO3/SrTiO3 can be controlled with the oxygen partial pressure

and temperature during growth. Calculations suggest that the most likely source of conductiv-

ity is oxygen vacancies in the LaAlO3 surface layers which leads to in-gap states in the LaAlO3

that can transfer charge to the SrTiO3 conduction band [39, 40, 41]. This theory can also ex-

plain the critical thickness due to the fact that the formation of oxygen vacancies at the surface

becomes more favorable with increasing LaAlO3 thickness. The source of the emergent con-

ductivity at the interface is the subject of ongoing study.

Conduction at the LaAlO3/SrTiO3 interface occurs in the Ti t2g orbitals. Confinement from

the interface splits the dx y band from the dx z/d y z bands, making the dx y band the lowest

conducting band [51]. The band structure of LaAlO3/SrTiO3 has been measured using angle-

resolved photoemission spectroscopy (ARPES) [52, 53].

1.2.1.1 Electronically tunable interface The metal-insulator transition at the

LaAlO3/SrTiO3 interface can be tuned both by controlling the thickness of the LaAlO3

layer (Fig. 5A) and electronically (Fig. 5B) [54]. With three unit cells or less of LaAlO3 the

interface in insulating. At four unit cells, and above, the interface becomes conducting with

a typical electron density of 1013 per cm2.

When the LaAlO3/SrTiO3 is right below the critical thickness (3 u.c.), so that the interface

is naturally insulating, application of a positive gate voltage to the back of the SrTiO3 substrate

can drive the interface into a conducting state. This conducting state persists even when the
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Figure 4: Illustration of the polar catastrophe which is one possible mechanism for the inter-

face conductivity of LaAlO3/SrTiO3 . The layers that make up SrTiO3 are charge neutral, but

the layers of LaAlO3 have alternating charge which leads to a diverging potential. To prevent

this the system may undergo an electronic reconstructing and transfer charge to the inter-

face. (A) and (B) depict TiO2 terminated LaAlO3/SrTiO3 and (C) and (D) depict SrO terminated

LaAlO3/SrTiO3. (A and (C) show the diverging potential due to the alternating polarization in

the LaAlO3 layers. (B) and (D) show how this polar catastrophe is avoided by the charge trans-

fer to the interface. Adapted from Ref. [38].
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Figure 5: (A) Sheet conductance as a function of the number of LaAlO3 unit cells showing that

there is a critical thickness of 4 u.c. at which the interface will transition from insulating to

metallic. (B) Gate tunable metal to insulator transition at the critical thickness. Sheet resis-

tance as function of time changes with an applied gate voltage (C). Positive voltages drive the

interface to a conducting state and negative voltages restore the insulating state. States persist

even when the voltages are returned to zero. Adapted from Ref. [54].
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positive voltage is removed. A negative voltage restores the interface to the insulating state.

Applying a voltage to the bottom of the SrTiO3 substrate globally controls the conductivity

of the interface. The conductivity can also be controlled on a much smaller scale by applying

a voltage to the surface with a conductive atomic force microscope tip [4, 5]. This technique

will be discussed in more detail in Chapter 2.

1.2.1.2 Emergent properties at the LaAlO3/SrTiO3 interface The LaAlO3/SrTiO3 interface

also exhibits many other interesting properties. The interface becomes superconducting at

T ∼ 200 mK [55]. Tunable spin orbit coupling [47, 48], and magnetism [56, 57] have also been

observed.

The superconductivity at the LaAlO3/SrTiO3 interface is inherited from the SrTiO3 sub-

strate. Superconductivity in SrTiO3 was first observed in 1964 [58] in oxygen-reduced SrTiO3

with a Tc = 250 mK. SrTiO3 is a superconducting semiconductor with a carrier concentration

of only 1015 cm−3 [59]. It also exhibits a dome shape characteristic of high Tc superconductors

where the critical temperature depends on the carrier concentration [60]. The nature of the

superconductivity and the pairing mechanism in SrTiO3 are open questions.

Transport and other properties at the LaAlO3/SrTiO3 interface are found to be highly inho-

mogeneous. Low temperature scanning probe measurements have revealed that ferroelastic

domains greatly affect the transport at the interface [61, 62]. Ferroelastic domains can form at

low temperatures along the crystallographic axes of the material. These domains form due to

the cubic-to-tetragonal antiferrodistortive transition that occurs in SrTiO3 at T = 100−110 K

[63]. The nanometer scale domain walls that form between the ferroelastic domains are highly

conductive [61]. It has been found that superconductivity exists only at the boundaries of con-

ductive regions at the interface, which correspond to ferroelastic domain boundaries [64].

1.2.2 Nanostructures at the LaAlO3/SrTiO3 interface

There are several methods for creating mesoscopic devices at the LaAlO3/SrTiO3 interface.

It is possible to take advantage of the critical thickness dependence of the metal-insulator

transition of the interface to pattern devices at the interface. E-beam lithography can be used
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to create conducting channels with widths of several hundred nanometers [65, 66]. Features

as small as 50 nm can be created using low energy beam ion radiation [67]. Field effect gating

using split gates can be used to define a constriction at the interface [68, 69]; these will be

discussed in more detail later in this chapter. One-dimensional structures can also be created

using conductive atomic force microscope lithography (c-AFM) or surface charge writing [4,

5, 70, 71]which will be discussed in detail in Chapter 2.

1.3 1D TRANSPORT

One-dimensional quantum transport is fascinating in its own right, but it can also be re-

garded as a building-block for a variety of quantum devices. Arrays of quantum wires can be

used to construct topological states of matter, including fractional quantum hall states [72, 73].

Many of the experiments described in this thesis will involve transport through 1D or quasi

1D systems.

1.3.1 Ballistic transport and quantized conductance

Transport is considered to be ballistic when the elastic mean free path is much larger than

the length and width of the device. This occurs in systems with increased confinement in the

direction transverse to the transport which results in an increase in the spacing between the

subbands. A schematic of a 1D channel is shown in Fig. 6A. The 1D channel is connected

to reservoirs with chemical potentials µL and µR. Transverse modes travel in the x direction

along the channel. The parabolic energy dispersion is given by,

En (kx ) = En +
ħh 2k 2

x

2m ∗
, (1.2)

where En are energies due to the transverse modes in the channel. The energy dispersion is

plotted in Fig. 6B. Positive kx values represent states travelling from left to right and negative

kx values represent states travelling from right to left.
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Figure 6: (A) Schematic of 1D channel connected to reservoirs at chemical potentials µL and

µR. Transverse modes are depicted in the channel and propagate in the x direction. (B) 1D

channel dispersion relation. The parabolic dispersion relation is given in Eq. 1.2. Positive kx

values denote states travelling from left to right, and negative kx states propagate from right

to left. The voltage applied between the reservoirs gives the bias window and is denoted by

the grey shaded bar. Adapted from Ref. [74].
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To determine the contribution to the current through the channel from each individual

subband we can write

I =
−e

L

∫ µL

µR

D OS (E )v ·d E , (1.3)

where v = 1
ħh
∂ E
∂ k is the group velocity and the density of states is: D OS (E ) = L

2π
∂ k
∂ E . This gives,

I =
−e

L

∫ µL

µR

ħh L

2π
·d E =

e

h
(µR−µL), (1.4)

the difference in chemical potential is: µR−µL= e VSD, which gives the conductance from each

individual subband as:

G0 =
e 2

h
. (1.5)

For a more complete derivation of the conductance quanta see Ref. [74].

Transport through a coherent quantum conductor can be described by Landauer’s for-

mula, G = (e 2/h )
∑

i Ti (µ), where each energy subband available at chemical potential µ con-

tributes one quantum of conductance e 2/h with transmission probability Ti (µ). The trans-

mission probability is given by Ti (µ) = T̄ FT(µ−Ei )where T̄ encompasses any tunneling reso-

nances, cavity interference effects, or backscattering processes, FT(E ) is a thermal broadening

from the Fermi distribution function of the leads at a finite temperature, and Ei represents the

energy minimum of the ith electron subband [75]. For simplicity, we assume that T̄ is inde-

pendent of energy. Within this framework, the conductance increases in steps of e 2/h every

time the chemical potential crosses a subband energy minimum. Transport through the chan-

nel is ballistic and dissipationless, however, the measured resistance is given by R = h/(N e 2),

where N is the number of occupied subbands. The apparent contradiction between dissi-

pationless transport within the waveguide and finite resistance was understood by Landauer

and put on rigorous footing by Maslov and Stone, who developed a Luttinger liquid model of

energy dissipation within the leads [76]. However, in experiments, even the cleanest nonchi-

ral systems do not have infinite scattering lengths, each subband can backscatter electrons,

leading to a suppression which can be modeled as T̄ = exp(−L/L i ) [77], where L is the chan-

nel length and L i is the mode-dependent scattering length. When L i ∼ L , the system is in the
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ballistic or quasi-ballistic regime, and when L i >> L , the system enters a quantized ballistic

regime.

1.3.1.1 Quantum point contacts Conductance quantization was first observed in quan-

tum point contacts (QPC) created in GaAs/AlGaAs heterostructures [78, 79]. The point con-

tacts are defined using metallic split gates that deplete the two dimensional electron gas

(2DEG) when a negative voltage is applied. A schematic of the QPC device is shown in the

inset in Fig. 7. As the voltage applied to the gates is made more negative the width of the

point contact decreases. The conductance steps can be explained by assuming quantized

transverse momentum in the point contact. As the channel width increases more transverse

channels become available and the total conductance is given by Landauer’s formula. When

each new channel becomes available the conductance increases by 2e 2/h as can be seen in

Fig. 7. The factor of two comes from the spin degeneracy of the system in zero magnetic field.

Quantized conductance has been observed in several complex oxide systems. Quantum

point contacts have been created created in MnZnO/ZnO heterostructures [80]. Using a split-

gate geometry a 1D quantum wire device was created at the interface which exhibited quan-

tized conductance steps in units of 2e 2/h at zero magnetic field. An interesting feature seen

in the transport of these devices was the presence of the “0.7 anomaly”, an indication of strong

electron-electron interactions in the system.

Superconducting quantum point contacts have been created at the 12 u.c. LaAlO3/SrTiO3

interface using a similar split gate geometry [68]. Well-quantized conductance steps were ob-

served in a constriction at the LaAlO3/SrTiO3 interface, which could provide a platform for

studying topological superconductivity in oxide 2DEGs [69]. Quantized conductance has been

observed at the SrTiO3 surface using a gate-tunable superconducting weak link [81].

Quantized conductance has also been observed in several 1D nanowire devices at the

LaAlO3/SrTiO3 interface, including in edge defined LaAlO3/SrTiO3 nanowires created by al-

ternating regions of 1 and 3 u.c. LaAlO3 [82], and 1D electron waveguides created using con-

ductive atomic force microscope lithography [83] which will be discussed in more detail in

Chapter 3.
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Figure 7: Conductance measured through a quantum point contact device in a GaAs/AlGaAs

heterostructure at zero magnetic field. Conductance increases in steps of 2e 2/h when the

voltage applied to the gates is reduced, increasing the width of the point contact. Inset shows

a schematic of the device. T = 0.6 K. Adapted from Ref. [78].
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1.4 CONTENT SUMMARY

In this thesis we describe experiments which explore 1D transport at the LaAlO3/SrTiO3

interface with the goal of developing a solid state quantum simulation platform. In Chapter 2

we will first discuss the experimental methods used. In Chapter 3 we will discuss a series of ex-

periments to create and explore electron waveguides at the LaAlO3/SrTiO3 interface. Chapter

4 will discuss new Pascal phases with bound states of n > 2 electrons observed in the waveg-

uide devices. And finally, in Chapters 5, 6, and 7, experiments are presented where 1D super-

lattice devices were created by adding periodic perturbation to electron waveguide devices.

These devices exhibit dispersive features not present in control waveguides and are a first step

towards developing a solid state quantum simulation platform.
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2.0 Experimental methods

2.1 INTRODUCTION

This chapter will describe the experimental methods involved with creating the samples

and devices used in the experiments discussed below. It will describe the fabrication and

processing of the LaAlO3/SrTiO3 samples as well as the conductive atomic force microscope

lithography used to create the devices at the LaAlO3/SrTiO3 interface. It will also briefly de-

scribe some of the methods used for characterizing and measuring these devices.

2.2 LaAlO3/SrTiO3

The devices used in the experiments described here are based on the complex oxide het-

erostructure LaAlO3/SrTiO3 which is discussed in Chapter 1. Below we will discuss more de-

tails about the sample and device fabrication specific to these experiments.

2.2.1 Sample growth

The LaAlO3/SrTiO3 samples used in the experiments described here were grown, by the

Chang-Beom Eom group at the University of Wisconsin-Madison, using pulsed laser depo-

sition (PLD) [84]. Pulsed laser deposition involves focusing a high intensity laser pulse on a

target (single-crystal LaAlO3) in a vacuum chamber. The target is vaporized by the laser pulse

and forms a plume that settles onto the substrate (single-crystal SrTiO3). The SrTiO3 substrate

is prepared by etching so that the surface is TiO2-terminated with atomically flat terraces [35].

Samples are grown at T = 550 ◦C and oxygen pressure PO2
= 10−3 mbar. The thickness of the

LaAlO3 film is monitored during growth using high pressure reflection high-energy electron

diffraction (RHEED) [85], the intensity of the RHEED signal oscillates as each unit cell is grown

on the substrate. The samples used here are grown with 3.4 unit cells (u.c.), about 1.2 nm, of
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LaAlO3 on a TiO2 terminated SrTiO3 substrate. This thickness is right below the critical thick-

ness (4 u.c.) at which the interface will transition from an insulating state to a conducting

state. 3.4 u.c., the thickness that was empirically found to produce the best results, indicates

that some parts of the LaAlO3 are 4 u.c. thick and some are 3 u.c. thick. Atomic force mi-

croscope (AFM) images of the LaAlO3 surface after growth show atomically flat terraces (Fig.

8).

2.2.2 Sample processing

In order to measure the conductivity of the LaAlO3/SrTiO3 interface the samples are pat-

terned with a “canvas” that is a 30 µm by 30 µm area surrounded by electrodes that make

electrical contact to the interface [86]. Standard photolithography techniques are used to cre-

ate this canvas; the steps are illustrated in Fig. 9. First photoresist is spun onto the surface and

exposed using a mask. The photoresist is developed and the sample ion milled to etch down

to the interface. Next Ti /Au electrodes are deposited and liftoff of the photoresist leaves elec-

trodes in contact with the LaAlO3/SrTiO3 interface. Gold is then deposited on the surface of

the LaAlO3 to trace the interface electrodes back to larger bonding pads which can be wire

bonded to a chip carrier holding the sample (Fig. 10).

2.3 CONDUCTIVE ATOMIC FORCE MICROSCOPE LITHOGRAPHY

For all of the experiments described here we use a conductive atomic force microscopy

(c-AFM) lithography technique to create conducting channels at the LaAlO3/SrTiO3 interface

[4, 5]. A positively-biased atomic force microscope tip in contact with the LaAlO3 surface lo-

cally switches the interface to a conducting state (“writes”), while a negative voltage restores

the insulating state (“erases”). This writing (erasing) mechanism is attributed to the local

protonation (deprotonation) of the LaAlO3 surface [87, 88]. The protons create an attractive

confining potential which defines a nanowire at the interface and can create structures with

widths as small as 2 nm [4]. A schematic of the c-AFM writing/erasing process is shown in Fig.
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Figure 8: Atomic force microscope image of LaAlO3 surface showing the atomically flat steps

and terraces.
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Figure 9: Schematic of the sample processing procedure. (A) shows the photolithography

steps. Step 1 deposit photoresist, Step 2 apply mask and expose photoresist, Step 3 develop

photoresist, Step 4 ion mill the sample, Step 5 deposit Ti/Au, Step 6 liftoff of photoresist, Step 7

pattern surface with Ti/Au, Step 8 oxygen plasma clean surface. (B) Processed LaAlO3/SrTiO3

sample mounted on a chip carrier, bonding pads leading to a canvas with interface contacts

are wire bonded to the chip carrier. (C) LaAlO3/SrTiO3 surface showing gold traces from bond-

ing pads to the interface electrodes of a canvas. (D) Canvas surrounded by 16 interface elec-

trodes. Adapted from Ref. [86].
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Figure 10: Image of an LaAlO3/SrTiO3 sample mounted on a chip carrier. Bonding pads which

were patterned onto the LaAlO3/SrTiO3 sample are connected to the chip carrier with wire-

bonds.
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11. This technique is analogous to “modulation doping” used in semiconductor heterostruc-

tures: here the protons are physically separated from the conducting interface by the highly

insulating LaAlO3 layer which has a thickness of only 1.2 nm. The separation minimizes scat-

tering from impurities, but the relative proximity allows for truly nanoscale control over the

interface.

2.3.1 Protonation/water cycle mechanism

The “water cycle” is thought to be the mechanism behind the c-AFM lithography process

[87]. Water from the air naturally adsorbs to the LaAlO3 surface and subsequently dissociates

into H+ and OH− ions. The positively-biased AFM tip will remove the negatively charged OH−

ions. This leaves only H+ ions in the path of the AFM tip, which will attract electrons to the

interface beneath the protonated surface and driving the interface from an insulating to a con-

ducting state. The success of the writing process depends on control of the relative humidity

of the AFM environment, typically a relative humidity of 30-40% is sufficient. After the c-AFM

lithography is completed, the conductance of the devices naturally begins to decay if left in

an ambient environment due to the continued adsorption of water onto the LaAlO3 surface.

Higher relative humidity levels tend to increase the rate of decay of the devices. The c-AFM

lithography writing process is unsuccessful if performed in vacuum, dry air, nitrogen, or he-

lium environments. Placing the sample in a dry environment or under vacuum after writing

can significantly increase the lifetime of the device.

2.3.2 c-AFM details

An Asylum MFP-3D AFM was used for most of the c-AFM writing detailed here. The AFM

tips used in a majority of the experiments are conductive doped silicon tips with a tip radius

of curvature of 8 nm, and a force constant of 3 N/m (Aspire CFMR). Deflection setpoint of the

AFM for writing in the MFP3D is about 0.1 V, corresponding to a force of ∼ 80 nN. There is a

1 GΩ resistor in series with the voltage being applied to the tip to limit the current applied to

the sample. Too large of a current will cause the metal interface electrodes to melt or deform

and potentially contaminate the LaAlO3 surface.
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Figure 11: Schematic illustrating the c-AFM lithography technique [4, 5]. A positively-biased

conductive AFM probe in contact with the LaAlO3/SrTiO3 surface will deposit a path of pro-

tons locally controlling the conductivity of the interface and switching it from an insulating

to a conducting state. A negatively-biased tip will erase the conducting path removing the

protons. This can be done selectively to create tunnel barriers in nanowires. The width of the

nanowires varies depending on the writing parameters but can be as small as 2 nm.
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H2O adsorbs, dissociates
on LaAlO3 surface

Positive tip removes OH-,
leaving H+ on surface and 

producing conducting interface

Negative tip removes H+

restoring insulating state

Vtip > 0 Vtip < 0

Figure 12: The water cycle mechanism is thought to be the method behind the c-AFM lithog-

raphy writing process [87]. Here water from the air is adsorbed onto the LaAlO3 surface and

dissociates into OH− and H+ ions. The application of an AFM tip with a positive bias Vtip > 0 V

will remove the negatively charged OH−, leaving the H+ on the surface and driving the inter-

face from an insulating to a conducting state. An AFM tip with a negative bias Vtip < 0 V will

remove the positively charged H+ and restore the interface to an insulating state.
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2.3.2.1 Erasing and cleaning the surface We have found that a crucial step in the writing

process is carefully erasing the area where the device will be written with the c-AFM tip. Suc-

cessful erasing relies on (1) having a well-defined electrical potential between the tip and the

interface and (2) having a spacing between passes of the tip smaller than the tip radius. It is

important to attempt to maintain an electrical connection between the tip and the interface

electrode because what matters is the relative electric potential between them. If the interface

is not connected to a defined electrical potential it will float up to the value of the tip voltage,

resulting in no (de)protonation of the surface. This requirement can be achieved by either (1)

writing a conducting area that is connected to the interface electrodes before erasing, or (2)

by using previously written structures to maintain an electrical connection between the area

being erased and the interface electrodes, which are grounded during the erasing process.

For example, following method (2) for erasing (suitable if there is any existing conducting

regions), first Vtip ∼−15 V is applied to the AFM tip. The deflection set point for erasing can be

slightly larger than the setpoint for writing, applying slightly more force to the sample, 0.2 V. In

the region surrounding the most crucial part of the device, the c-AFM tip is raster-scanned in

a rectangular area with a line spacing of 2.5 nm in both the horizontal and vertical directions

with a tip speed of 5− 10 µm/s. Next, a larger area is scanned with a line spacing of ∼ 10 nm

and similar tip speeds. Finally, an area extending to the interface electrodes is scanned with

a larger spacing of around 25− 50 nm. Note that during this procedure electrical contact is

always maintained with the interface electrodes by the previously written device.

After erasing the conductance between all of the interface electrodes should be zero. Once

the erasing procedure is complete the AFM tip is typically replaced with a new tip to ensure

that the tip is as small and uniform as possible. Some of the LaAlO3/SrTiO3 samples are light

sensitive. After the sample has been erased it is only exposed to red light in order to prevent

conductance in unwanted areas. Sometimes it is necessary to erase in other areas, between

interface electrodes to eliminate any unwanted conductance. A negative voltage can also be

applied to the bottom for the sample in order to eliminate unwanted conductance.

2.3.2.2 Device writing The design for a device is created using a vector graphics software,

typically Inkscape. The device design is loaded into a LabVIEW program developed in the
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LevyLab that communicates with the AFM controller and controls the parameters for moving

the tip according to the desired pattern and applying tip voltages.

A typical canvas and device are shown in Fig. 13. A device consist of several components:

virtual electrodes, voltage and current leads, a main channel, and a side gate. Virtual elec-

trodes are funnel-shaped conducting regions written at the interface electrodes to improve

the connection of the device to the interface electrodes. These are typically written with a

voltage Vtip ∼ 15 − 20 V at a tip speed of 2 µm/s. These structures are essential for ensuring

that good contact is made between the device and the interface electrodes. Voltage and cur-

rent leads for the device are typically written with Vtip ∼ 10 − 15 V at a tip speed of 400 nm/s.

The writing parameters for the main channel of the device vary depending on the type of de-

vice being written. Most of the devices discussed here are written using Vtip ∼ 10 V at speeds

of 5−10 nm/s. Highly transparent tunnel barriers for electron waveguide devices (Chapter 3)

can be created in the main channel by retracing the same path and applying negative voltage

pulses to the tip, Vtip ∼ −10 V, at a speed of 5 - 10 nm/s. A local side gate can also be created

using c-AFM lithography. It is typically written using similar parameters to the voltage and

current leads. Cutting around the side gate using a negative tip voltage helps to reduce leak-

age between the gate and the device at low temperatures. The side gate is usually written in

a rounded or loop shape, this may also help eliminate leakage between the side gate and the

device by eliminating strong electric field lines due to sharp structures.

Writing 1D superlattice devices involves changing the pattern used to write electron

waveguide device and also the voltage applied to the tip. For a vertical superlattice device

(Chapter 5) a function generator is used to create a sine wave pattern for the tip voltage. When

monitoring the resistance while writing, which will be discussed in more detail in the next sec-

tion, it is possible to observe the change in resistance due to the applied sinusoidal tip voltage

(Fig. 18B). Vertical superlattices writing is similar to electron waveguide devices. The path is

first written with a constant voltage Vtip ∼ 10 V and then traced a second time while apply-

ing the sinusoidal tip voltage, amplitudes of the sinewave voltage are generally less than the

original tip voltage, typically ±5 V, and written with a tip speed of 5−10 nm.

When writing a lateral superlattice device (Chapter 6) the vector graphics pattern for the

device is changed so that the tip will trace a sine wave pattern on the LaAlO3 surface and a
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voltage/current leads
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Figure 13: AFM image of a typical canvas and the Inkscape pattern used for c-AFM lithography.

The pattern in green defines where the AFM tip moves to create the desired device. Funnel

shaped virtual electrodes are created on the interface electrodes to ensure good electrical con-

tact. The red lines are areas that were erased in order to help prevent leakage between the side

gate and the device, and between the voltage leads before the main channel was written.
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Figure 14: Measured AFM tip path during lateral 1D superlattice writing. A constant voltage

is applied to the tip and the tip is moved in a sinusoidal path on the LaAlO3 surface.

constant tip voltage is applied. The tip position is monitored during c-AFM writing (Fig. 14).

Tip speeds of 5-10 nm are generally used. Writing chiral 1D superlattices (Chapter 7) combines

these two techniques in quadrature. The measured tip position and voltage while writing a

chiral 1D superlattice device is shown in Fig. 15. The tip voltage represented by the color of

the curve varies sinusoidally 90◦ out of phase with the lateral tip motion. Chiral superlattices

were written using two methods: with only one pass of the tip applying the sinusoidal voltage,

or with a two pass method similar to the electron waveguide devices.

2.3.2.3 Monitoring device writing The 2-terminal and 4-terminal conductance of the de-

vice is monitored during the writing process. Electrical contact is made to the sample by wire-

bonding the interface electrodes to a chip carrier (Fig. 9B and Fig. 16) which is mounted in

the AFM chamber.

While writing a device all of the interface electrodes are either grounded or being used to

measure or source the current through the device, ensuring that the difference between the

tip voltage and the interface is well defined and that the electrodes are not able to float up to
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Figure 15: Measured AFM tip path and voltage during chiral 1D superlattice writing. The tip

voltage is varied sinusoidally in quadrature (90◦ out of phase) with the tip position.
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Apply Back gateMeasure interface transport
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Figure 16: Schematic of an LaAlO3/SrTiO3 sample on a chip carrier to measure interface trans-

port. The sample is attached to the chip carrier using silver paint, which also makes electrical

contact between the SrTiO3 substrate and the chip carrier. Gold bonding pads deposited on

the LaAlO3 surface are wire bonded to the chip carrier.
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the value of the tip. The bottom of the SrTiO3 substrate is typically grounded during writing.

Conductance between interface electrodes is monitored while writing using standard

lock-in techniques. A 100 mV AC oscillation amplitude is applied to the sample at a frequency

of ∼ 25 Hz. A conductance jump can be observed when the c-AFM lithography completes

a path between the interface electrodes being monitored (Fig. 17). Typical 2-terminal con-

ductance values of a nanowire of ∼ 10 µm are between 500 nS and 1 µS. Typical 4-terminal

resistance measurements are ∼ 100 kΩ per 1 µm channel length.

When creating electron waveguide devices the change in the 4-terminal resistance of the

main channel is monitored to determine the success of the highly transparent tunnel barriers

(Fig. 18A). While writing the barriers the resistance of the device will increase temporarily to

several MΩs then quickly decay back down to several hundred kΩs. After both barriers have

been written the resistance of the main channel will typically have increased by several hun-

dred kΩs.

The width of the nanowires depends on several parameters, including the voltage applied

to the AFM tip (a larger voltage will produce a wider wire), and also on things such as the width

of the AFM tip and the humidity of the AFM environment. The width of the wire is determined

by cutting it with a small negative voltage (Fig. 19). Given the speed of the AFM tip and the

profile of the conductance of the wire as a function of time during the cutting we can estimate

the width of the nanowire.

It is also possible to non-destructively image the wires by using piezoforce microscopy

(PFM) [89] and microwave impedance microscopy (MIM) [90]. Conductive regions are found

to be elongated in the z direction, out of plane, and PFM imaging of the nanowires deter-

mines a wire width of less than 30 nm. Wire widths measured by MIM are found to be on the

order of 150-250 nm, however it should be noted that measurements are limited by the spacial

resolution of the technique.

After the devices were written they begin to decay if left in ambient conditions. This can

be seen as a reduction of the conductance over time of the devices. There are several ways to

maintain the device after writing. It can be placed in a dry environment such as in vacuum, dry

air, helium, or dry nitrogen [87]. Cooling the device will also preserve the conductance. After

devices are written they are placed under vacuum and cooled down as quickly as possible. The
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Figure 17: 2-terminal conductance during c-AFM writing test. As the nanowire is completed,

at around 820 s, the conductance increases from 0 to ∼ 900 nS. The wire decays slightly until

it is cut at around 1160 s. After the wire is cut the conductance is again 0 S. The cutting profile

can be used to determine the width of the wire. The wire was cut at a speed of 10 nm/s, and

is about 13 nm wide.
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Figure 18: 4-terminal resistance during c-AFM writing. (A) Change in resistance when writing

highly transparent tunnel barriers for an electron waveguide device. Two negative voltage

pulses are applied to the AFM tip which causes the increase in the resistance. (B) 4-terminal

resistance while writing a chiral 1D superlattice device. The voltage applied to the tip is varied

sinusoidally while writing.
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Figure 19: Nanowire width is determined by cutting the nanowire with a negatively-biased

AFM tip. The profile of the drop in the current and the speed of the tip as the wire was cut,

gives a measure of the width of the wire. (A) Nanowire written with a tip bias of Vtip = 10 V has

a with of 12 nm. (B) Nanowire written with a tip bias of Vtip = 3 V has width of 2.1 nm.

lifetime of a device is generally 30 minutes to an hour if left in ambient conditions. The device

has a higher chance of surviving at low temperature if it is cooled or pumped on as quickly as

possible. Loading devices into dilutions refrigerators can take up to 30 minutes

2.4 TRANSPORT MEASUREMENTS

After devices are created at room temperature using c-AFM lithography they are trans-

ferred to cryostats to perform low temperature transport measurements at temperatures of

T = 25−50 mK. More information about the cryostats used in these experiments can be found

in Appendix A.

4-terminal zero bias transport measurements were performed using standard lockin am-

plifier techniques. A software-based Multichannel Lockin program [91] developed in-house

was used to apply and measure the signals from the device. An AC voltage waveform was ap-
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Figure 20: Flow chart showing the process for creating and measuring a typical device. Devices

are created at room temperature using c-AFM lithography, then transferred to a cryostat where

magnetotransport measurements are made. After analysis of the data a new design is created

and the process can be repeated.
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plied to the sample with a typical amplitude of 100 µV at frequencies of around 13 Hz. The

software performs the lockin demodulation of all measured signals (current and voltage) at

the applied source frequency. By measuring the current and the differential voltage across

the device, we are able to determine the 4-terminal differential zero bias conductance of the

experimental devices. More details about the hardware used in the experiments can be found

in Appendix A.

Zero-bias measurements were generally made while sweeping the side gate voltage and

the magnetic field. Typically the side gate was swept repeatedly and as rapidly as possible

while the magnetic field was slowly varied. Side gate sweeps take on the order of several min-

utes while the magnetic field sweep takes several hours.

Direct current (dc) measurements, also measured using the Multichannel Lockin, were

used to determine the finite-bias characteristics of the devices. Here a larger bias, typically

1-5 mV, was applied to the sample at a very low frequency, 0.2-1 Hz. This was used to measure

the current-voltage (I -V ) characteristics of the devices. This is a slower type of measurement

than the zero-bias lockin measurements and was usually taken at a fixed magnetic field value

while the side gate voltage was varied for each I -V curve.

Typical measurement hardware used is shown in Fig. 21. Pictured from top to bottom

is the matrix breakout box, differential amplifiers, and a chassis with data acquisition cards

(DAQ). The matrix breakout box connects each electrode of the sample to the measurement

hardware through a 1 GHz low pass filter. Next are Krohn-Hite model 7008 differential am-

plifiers. The amplifiers have an input impedance of 1 GΩ and 400 Hz low pass filters. Each

sample electrode is connected to the positive side of a differential amplifier. The negative side

of the amplifier is connected to the analog output of a DAQ card. For voltage measurements

the negative side of the amplifier is grounded. Differential measurements are made by mathe-

matically subtracting the voltages measured at each electrode. For current measurements the

negative side of the amplifier is connected to the positive side through a shunt resistor, usually

50 kΩ. The outputs of the differential amplifiers are connected to the inputs of the DAQ cards.

The Multichannel Lockin controls voltages to each of the analog outputs and measures signals

at the analog inputs. Any side gates are connected to analog outputs through a large resistor

(10 MΩ) to limit the amount of current going to the sample. Typical side gate voltages are hun-
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dreds of mV. The back of the sample is also connected to an analog voltage source through a

1 GΩ resistor. The backgate voltage is used to globally gate the sample, and is typically tens of

V.
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Figure 21: Picture of the measurement hardware for the Leiden MNK system. Top: matrix

breakout box which connects the sample to the measurement hardware. Next: Krohn-Hite

model 7008 differential amplifiers. Each sample electrode is connected to the positive side

of a differential amplifier. For voltage measurements the negative side of the amplifier is

grounded. For current measurements the negative side of the amplifier is connected to the

positive side of the amplifier through a 50 kΩ shunt resistor. Current is sourced by applying

a voltage to the negative side of the amplifier. Next: PXI chassis with 24-bit DAQ cards. The

output of the differential amplifiers are connected to the inputs of the DAQ cards. The DAQ

cards are controlled by the Multichannel Lockin software.
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3.0 Quantized ballistic transport of electrons and electron pairs in LaAlO3/SrTiO3

nanowires

This chapter will discuss experiments which study the magnetotransport of electron

waveguide devices created at the LaAlO3/SrTiO3 interface using c-AFM lithography. These

electron waveguides provide new insight into the electronic structure of the LaAlO3/SrTiO3

interface and, more fundamentally, provide a platform for studying strongly interacting sys-

tems in one-dimension.1

3.1 INTRODUCTION

SrTiO3-based heterointerfaces support quasi-two-dimensional (2D) electron systems that

are analogous to III-IV semiconductor heterostructures, but also possess superconducting,

magnetic, spintronic, ferroelectric, and ferroelastic degrees of freedom. Despite these rich

properties, the relatively low mobilities of 2D complex-oxide interfaces appear to preclude

ballistic transport in one-dimension (1D). We show that the 2D LaAlO3/SrTiO3 interface can

support quantized ballistic transport of electrons and (nonsuperconducting) electron pairs

within quasi-1D structures that are created using a conductive atomic-force microscope (c-

AFM) lithography technique. The nature of transport ranges from single-mode (1D) to three-

dimensional (3D), depending on the applied magnetic field and gate voltage. Quantization

of the lowest e 2/h plateau indicates a ballistic mean-free path of lMF ∼ 20 µm, more than 2

orders of magnitude larger than for 2D LaAlO3/SrTiO3 heterostructures. Nonsuperconducting

electron pairs are found to be stable in magnetic fields as high as B = 11 T and propagate

ballistically with conductance quantized at 2e 2/h . Theories of 1D transport of interacting

electron systems depend crucially on the sign of the electron-electron interaction, which may

help explain the highly ballistic transport behavior. The 1D geometry yields new insights into

the electronic structure of the LaAlO3/SrTiO3 system and offers a new platform for the study

1This chapter is published in a different form in Ref. [83].
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of strongly interacting 1D electronic systems.

3.2 TRANSPORT IN 1D SYSTEMS

Dimensionality has a profound effect on electron transport. When electrons are confined

in two dimensions (2D), new phases such as the integer [92] and fractional [93] quantum Hall

effect emerge. Electrons confined in one dimension (1D) lose nearly all of their recognizable

features [94, 95]. For example, the electron spin and charge can separate and move indepen-

dently of one another [96], and the charge itself can fractionalize [97]. However, in 1D the

conductance remains quantized in units of e 2/h [98]. The edges of 2D quantum Hall systems

form nearly ideal 1D channels, where magnetic confinement gaps out the 2D bulk and pro-

tects electrons from backscattering. The chiral edge transport of the quantum Hall phase is

fundamentally different from transport in 1D nanostructures where electrons are electrostat-

ically confined to a narrow channel. Quasi-1D transport was first reported in narrow con-

strictions, also known as “quantum point contacts” [78, 79]. The conductance through these

narrow channels is given by the number of allowed transverse modes, which is tunable by an

external gate. The confined regions are generally short, of the order 100-200 nm, with a chan-

nel length set by the distance between the top gate electrodes and the buried high-mobility

layer. There have been various attempts to engineer more extended 1D quantum wires using

other growth techniques and different materials. For example, cleaved-edge overgrown III-V

quantum wires exhibit quantized transport [99]. Other 1D systems include carbon nanotubes

[100], graphene nanoribbons [101], and compound semiconductor nanowires [99, 102]. In all

of these systems, electron transport is sensitive to minute amounts of disorder. For exam-

ple, when 2D semiconductor heterostructures are patterned into 1D channels, the mobility

drops significantly [103]. Theoretically, this sensitivity to disorder can be understood within

the framework of Tomonaga-Luttinger liquid theory, which predicts that repulsive interac-

tions promote full backscattering from even a single weak impurity [104, 105]. Conversely,

attractive interactions are predicted to strongly suppress impurity scattering [105, 106].

Oxide heterostructures have added new richness to the field of quantum transport in
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the past decade. For example ZnO/(Mn,Zn)O heterostructures have achieved sufficiently

high mobility to reveal fractional quantum Hall states [107], which has revealed new even-

denominator states not visible in III-V hosts [108]. LaAlO3/SrTiO3 heterostructures [34] exhibit

a wide range of behavior including gate-tunable conducting [54], superconducting [55], fer-

romagnetic [109], and spin-orbit coupled [47, 48] phases. As interesting and rich as its palette

of rich phases may be, the 2D electron mobility is still low (µH ∼ 103 cm2/(V s)) compared

with high-mobility GaAs/AlGaAs heterointerfaces (µH ∼ 107 cm2/(V s)). However, despite the

modest mobility of the LaAlO3/SrTiO3 2D interface, there is an increasing body of evidence

suggesting that 1D geometries are able to support ballistic transport [110, 111, 82, 112].

3.2.1 Electron waveguide devices

The expected properties of an ideal few-mode (few subband) electron waveguide are il-

lustrated in Fig. 22. The conductance of the waveguide depends on the number of acces-

sible quantum channels (shown in Fig. 22D,E as energy shifted parabolic bands), which is

controlled by the applied side-gate voltage Vsg. Fig. 22B,D depicts a state in which a single

spin-resolved subband is occupied. As the chemical potential µ is increased, more subbands

in the waveguide become occupied. Fig. 22C,E depicts a state in which N = 3 subbands con-

tribute to transport. Each spin-resolved subband contributes e 2/h to the total conductance

(Fig. 22F). The energy at which µ crosses a new subband (at kx = 0) can generally shift in an

applied magnetic field due to Zeeman and orbital effects. When lateral and vertical confine-

ment energies are comparable, a more complex subband structure can emerge, as illustrated

in Fig. 22G.

3.3 ELECTRON WAVEGUIDES AT THE LaAlO3/SrTiO3 INTERFACE

LaAlO3/SrTiO3 samples are grown by pulsed laser deposition (PLD) under conditions that

are described in detail in Ref. [113] and in Chapter 2. The electron waveguides are created

using a c-AFM lithography technique [4, 86]. Positive voltages applied between the c-AFM
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tip and the LaAlO3/SrTiO3 interface locally produce conductive regions at the LaAlO3/SrTiO3

interface (illustrated in Fig. 22), while negative voltages locally restore the insulating phase.

The mechanism for writing (erasing) is attributed to LaAlO3 surface protonation (deprotona-

tion) [87, 88]. The protonated LaAlO3 surface in critical-thickness (3.4 u.c.) LaAlO3/SrTiO3

heterostructures creates an attractive confining potential that defines the nanowire. Because

the protons are physically separated from the conducting region by a highly insulating LaAlO3

barrier, this nanofabrication method can be viewed as analogous to the “modulation doping”

technique [114] commonly used in III-V semiconductor heterostructures. The separation of

dopants from the conducting region minimizes scattering from imperfections. A key differ-

ence from III-V nanostructures is the relative proximity between the dopant layer and con-

ducting channel, here only 1.2 nm. Typical nanowire widths at room temperature are w ∼ 10

nm, as measured by local erasure experiments [4].

3.3.1 Device fabrication

We fabricate LaAlO3/SrTiO3 electron waveguides using c-AFM lithography [4, 86], as

shown in Fig. 22 (also see Chapter 2). The wires are written at a tip voltage Vtip = 15 V, except

the waveguide, which is created by a two-step voltage sequence. First, we move the AFM tip

with Vtip = 8 V across the LaAlO3 surface to create the main channel. Next, we repeat the same

tip path with a small base voltage (Vtip = 1 V) and apply two negative voltage pulses (Vtip = 7.5

V) to create the barriers. The barrier height is determined by the amplitude and duration of

the negative pulses. The waveguide geometry consists of a nanowire channel of total length

LC , surrounded by two narrow, highly transparent barriers (width LB ∼ 5− 20 nm) separated

by a distance LS ∼ 10−1000 nm.

3.3.2 Magnetotransport data

The experimentally measured conductance of LaAlO3/SrTiO3 waveguides is shown in Fig.

23A-D. We focus on two distinct devices, device W1 (LC = 500 nm, LS = 50 nm, LB = 20 nm)

and device W2 (LC = 1.8 µm,LS = 1 µm, LB = 20 nm). Fig. 23A,C shows the zero-bias con-

ductance G = d I /d V as a function of side-gate voltage Vsg (or chemical potential µ) for a
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Figure 22: Electron waveguide device schematic and energy diagrams. (A) Schematic of an

electron waveguide device at the LaAlO3/SrTiO3 interface. The green lines indicate where

the positively biased c-AFM tip is moved on the LaAlO3 surface to control the conductivity

of the interface. Two barriers LB are formed by applying negative voltage pulses to the AFM

tip which retracing the device. (B,C) Energy diagrams of the waveguide for two different val-

ues of chemical potential, which is controlled by the side gate voltage Vsg. For (B) only a single

subband is occupied, whereas for (C) three subbands are occupied. (D,E) Energy subbands

corresponding to (B,C), colored bands indicate occupied states. (F) Zero-bias conductance as

a function of energy (chemical potential) showing quantization at integer multiples of e 2/h

for each occupied subband. (G) Waveguide subband structure (with both lateral and vertical

confinement) as a function of out of plane magnetic field (which couples to the electrons via

both Zeeman and orbital effects) and chemical potential.
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sequence of magnetic fields between B = 0 and 9 T. Analysis of the nonequilibrium conduc-

tance, described later in this chapter, enables the lever-arm ratio α ≡ dµ/d Vsg and g -factor

g ≡ µ−1
B dµ/d B , where µB is the Bohr magneton for the two devices W1 (W2), to be deter-

mined: αW1 (W2) = 4.5±0.2 (9.9±1.7)µeV/mV and gW1 (W2) = 0.62±0.03 (0.61±0.04). For Device

W1 (Fig. 23A), clear conductance steps of G = 2e 2/h are visible for magnetic fields above ∼ 1

T. These steps split into e 2/h steps up to N = 6 at fields above ∼ 3 T. These electron waveg-

uides exhibit no valley degeneracies and can be tuned to the lowest spin-polarized conduc-

tion plateau (G = e 2/h) with no signatures of substructure or “0.7 anomalies” [115]. When

only a single barrier is present, no conduction quantization is observed (see discussion later

in this chapter and Fig. 32B). When no barriers are present the overall conductance is very

large and cannot be tuned to an insulating phase while maintaining the conductance of the

voltage leads (Fig. 32A).

We attribute the observed conduction plateaus to Landauer quantization [98] for which

the total conductance depends on the number of available quantum channels (subbands).

The subband structure of these LaAlO3/SrTiO3 electron waveguides is clearly revealed by ex-

amining the transconductance d G /dµ as a function of µ and external magnetic field B (Fig.

23B,D). The transconductance peaks (bright areas) mark the boundaries where new subbands

become available (as illustrated in Fig. 22G). The subbands are separated by regions (dark ar-

eas) where the conductance is highly quantized (d G /dµ → 0). At low magnetic fields (and

low µ), the subbands scale roughly as B 2 and become more linear at larger magnetic fields. A

pattern of subbands repeats at least twice, spaced by approximately 500 µeV. The transcon-

ductance of the two devices W1 (LS = 50 nm) and W2 (LS = 1 µm) are remarkably similar,

despite the large difference in channel length and the fact that the lever arm for the two de-

vices differs by a factor of 2.

3.3.3 Ballistic scattering length

Whereas the lowest N = 1 state remains highly quantized for both devices (see Fig. 23),

the plateaus do not fully reach the integer values for higher N for device W2. The relation-

ship between two length scales, the length scale of the device and the elastic scattering length
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Figure 23: Magnetotransport data for devices W1, W2, and single-particle model. (A,C) Zero-

bias conductance for device W1 (LB = 20 nm, LC = 500 nm, LS = 50 nm) and device W2

(LB = 20 nm, LC = 1800 nm, LS = 1000 nm) as a function of chemical potentialµ and magnetic

field B in the range 0−9 T at T = 50 mK. (B,D) Transconductance d G /dµ shown as a function

ofµ and B for device W1 (panel B) and device W2 (panel D). Each bright band marks the cross-

ing of a subband, dark regions indicate plateaus in the conductance. The subband structure

between the two devices is remarkably similar. (E). Theoretical zero-bias conductance curves

modeling device W1, for a non-interacting channel. (F). Corresponding transconductance for

theoretical curves in panel E. Transitions have been broadened by a 65 µeV wide Lorentzian.
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Device W1
LS = 50 nm

Device W2
LS = 1000 nm

A B

Figure 24: Estimation of ballistic scattering length and quantization of the 1 e 2/h plateau.

First conductance plateau (red squares) and transconductance (black line) for device W1 (A)

and device W2 (B). Fits of the conductance at the transconductance minimum are used to

calculate scattering lengths.

(which is typically much shorter than the inelastic scattering length in quantum devices), de-

termines whether transport is ballistic. The conductance of these modes are not exactly e 2/h ,

however, in part because they are not topologically protected edge modes, nor are they quan-

tum Hall edge states [116]. In electron waveguides at the LaAlO3/SrTiO3 interface, the elas-

tic scattering length can be estimated by assuming an exponential decay of the conductance

G =G0exp(L/L0), where L0 is the scattering length and L is the length of the device. The loca-

tion of the minimum in the transconductance is used to find the value of the plateaus, as seen

in Fig. 24. The scattering lengths greatly exceed the length of the devices (Table 1), implying

that the transport is fully ballistic. The error estimate for Device W1 is limited by the short

length of the channel. For Device W2, the channel length is long enough to yield (with 10%

accuracy) a measure of the scattering length L0 = 22 µm which is surprising given how low

the 2D mobility is for LaAlO3/SrTiO3. We also note that systematic errors (e.g., reflections of

incident electrons at one or both of the barriers) are only expected to increase these estimates.
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Table 1: Measured scattering lengths and standard errors for waveguide devices W1 and W2,

based on deviations from precise quantization N e 2/h of conductance.

Device Plateau N L (nm) ∆L (nm) G (e 2/h) ∆G (e 2/h) L0 (µm) δL0 (µm)

A 1 50 10 0.995 0.004 10 8

A 2 50 10 0.964 0.12 2 14

B 1 1000 10 0.955 0.003 21.7 1.4

B 2 1000 10 0.899 0.076 7.8 4.6

3.4 WAVEGUIDE MODELS

3.4.1 Non-interacting waveguide model

A waveguide model of noninteracting electrons in a 3D waveguide captures many of the

features in the transconductance spectra shown in Fig. 23A-D. The waveguide’s confining po-

tential is translationally invariant along the propagation direction (x ) and convex along the

two transverse directions (lateral y and vertical z ). The measured carrier density in conduc-

tive nanostructures created by c-AFM lithography is typically 0.5− 1.0× 1013 cm−2 [117]. At

these carrier densities only the titanium dx y band, which is lower in energy than the dx z and

d y z bands at the LaAlO3/SrTiO3 interface, is expected to by occupied. We describe the poten-

tial of the lateral confinement as Uy =
1
2 m ∗

yω
2
y y 2, where m ∗

x =m ∗
y is the effective mass in the

x − y plane and ωy = ħh/m ∗
y l 2

y is the confinement frequency with l y being the characteristic

width of the waveguide. In the vertical direction, the confinement at the interface is modeled

by a half-parabolic potential, Uz =
1
2 m ∗

zω
2
z z 2 for z > 0 and Uz =∞ for z ≤ 0, where m ∗

z is the

effective mass of the dx y band in the z direction,ωz = ħh/m ∗
z l 2

z is the confinement frequency,

and lz is the penetration depth into the SrTiO3. Within this single-particle picture, the full

Hamiltonian can be written in the Landau gauge as

H =
(px − e B y )2

2m ∗
x

+
p 2

y

2m ∗
y

+
p 2

z

2m ∗
z

+
m ∗

yω
2
y

2
y 2+

m ∗
zω

2
z

2
z 2− g

µB

2
Bσz , (3.1)
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where σz is the Pauli matrix. This Hamiltonian is solved to yield energy eigenstates

|ny , nz , s 〉
⊗

|kx 〉with corresponding energy

Em ,n ,s ,kx
= ħhΩ

�

ny +
1

2

�

+ħhωz

�

(2nz +1) +
1

2

�

− gµB B s +
ħh 2k 2

x

2m ∗
x

�

1−
ω2

c

Ω2

�

, (3.2)

where pi , i = x , y , z are momentum operators, ωc = e B/m ∗
y is the cyclotron frequency,

Ω =
Æ

ω2
y +ω2

c is the effective frequency of the waveguide and the magnetic field, ny (nz )

enumerates the lateral (vertical) states, and s = ±1/2 is the spin quantum number. Distinct

spin-resolved subbands [118] are associated with the discrete quantum numbers |ny , nz , s 〉.

Fig. 25A plots the eigenenergies for parameters that have been adjusted to resemble the ex-

perimentally measured transconductance (Fig. 23D). These values are also used to compute

the expected conductance and transconductance versus chemical potential (Fig. 23E,F). The

corresponding wavefunctions Φny ,nz ,k ,s (y , z ) (Fig. 25C) are,

Φny ,nz ,k ,s (y , z )≡ 〈y , z , s ; k |ny , nz , s 〉⊗ |kx 〉

=Nny ,nz ,k e −(m
∗
yΩ/2ħh )(y−(ħhωc /m

∗
yΩ)k )

2

×Hn

 √

√m ∗
yΩ

ħh

�

y −
ħhω2

c

m ∗
yΩ

k

�

!

e −(m
∗
zωz /2ħh )z 2

H2m+1

�√

√m ∗
zωz

ħh
z

�

,

(3.3)

where Hn (x ) are the Hermite polynomials. The wave functions are displaced laterally by the

magnetic field by an amount that depends quadratically on the kinetic energy (Fig. 25B). The

set of parameters for device W1 (W2), l y = 26 (27)nm, lz = 8.1 (7.9)nm, m ∗
x =m ∗

y = 1.9 (1.8)me ,

and m ∗
z = 6.5 (6.4)me is obtained by maximizing agreement with a tight-binding model that

includes spin-orbit interactions (see Supplemental information of published paper [83]). At

low magnetic fields, the energy scales quadratically with magnetic field, as it is dominated by

the geometrical confinement contribution; at higher magnetic fields, the confinement from

the cyclotron orbits dominates, producing a linear scaling. The crossover occurs near ωB =
e B
m∗

y
∼ωy .

The single-particle model captures the overall subband structure but there are several de-

viations in the experimental results. For example the lowest two subband minima for device

W1 and W2 merge not at zero magnetic field, but at a critical field BP ≈ 1 T. In other devices,
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Figure 25: Single-particle model energy diagrams and wavefunctions. (A) Eigenenergies for a

quantum wire for the Hamiltonian described in Eq. 3.1 are plotted as a function of magnetic

field B . Selected spin-up states are highlighted in color. (B) Magnetically induced displace-

ment of these states along the y-direction as a function of eigenstate energy for B = 4 T. (C)

Six corresponding wave functions, labeled by |ny , nz ,S 〉, at kx = 0 and B = 4 T. Red and blue

colors indicate opposite sign of the wave function.
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Figure 26: Magnetotransport data for high pairing field device W3. (A) Conductance of device

W3 (LB = 5 nm, LC = 350 nm, LS = 10 nm) versus chemical potential for magnetic fields

ranging from 0 to 15 T at T = 50 mK. This device shows strong electron pairing and associated

2e 2/h conductance steps. (B) Transconductance plot shows three strongly pairing states and

a superimposed state with higher curvature associated with a conductance of e 2/h . The value

of the later state can be seen at B = 3 T in the conductance curve in panel (A) (highlighted in

green) where it combines with the second strongly paired subband into a plateau near 5e 2/h .

(C) Linecuts of transconductance plotted at magnetic fields from 0 to 15 T in 1 T steps. The

2e 2/h peaks split above a pairing field BP ≈ 11 T, as indicated by the dashed lines.
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this phenomena is even more pronounced. Device W3, written on a different sample, exhibits

highly quantized conduction but with a subband structure that differs qualitatively from de-

vices W1 and W2. There are three pairs of subbands that generate 2e 2/h steps (Fig. 26A).

These states separate at a critical field BP ≈ 11 T (Fig. 26C, dashed lines). Superimposed over

these pairs is a separate subband (with higher curvature) that contributes e 2/h to the con-

ductance (Fig. 26B). At B ≈ 3 T, two paired subbands are superimposed with the unpaired

subband, leading to a plateau near 5e 2/h (highlighted in green).

3.4.2 Interacting model

We investigated other single-particle models (e.g. band anisotropy, spin-orbit interac-

tions), but none were able to reproduce this observed locking phenomena. This locking be-

havior can be accounted for by introducing attractive electron-electron interactions within

the waveguide. Within this framework, locking of subbands is associated with a phase in

which electrons are paired but not superconducting [119]. The effects of these interactions be-

come apparent in the transconductance data in the vicinity of subband crossing points (both

at zero magnetic field and at finite field). We also observe extended regions of 2 e 2/h conduc-

tance steps which we associate with a transition from a vacuum phase directly into a paired

phase. That is, when a pair of subbands with opposite spin (|1, 0,↑〉, |0, 1,↓〉) intersect at a fi-

nite magnetic field they are found to pair reentrantly before separating again (Fig. 27). This

observation is consistent with previous studies of one-dimensional fermions with attractive

interactions using both the Bethe ansatz approach [120] (for the case of equal masses) and

numerical approaches [121, 122] (for the case of unequal masses). Here, we present a simple

self-consistent Hartree-Bogoliubov model of crossing subbands that is both consistent with

the more refined approaches and highlights the relevant physics without adding complica-

tion. We start with the two-band, one-dimensional Hubbard model

H =−
∑

i ,α

ta (c
†
α,i cα,i+1+h .c .) +

∑

i ,α

Vα(Vsg, B )nα,i +U
∑

i

n1,i n2,i (3.4)

where i is the site index, α is the subband index, Vα(Vsg, B ) describes the electrochemical po-

tential as a function of the side gate voltage and the magnetic field, and U < 0 models the
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electron-electron attraction. At the mean-field level, this model is described by the single-

particle Hamiltonian















ξ1,k +Σ1 0 0 ∆rp

0 −(ξ1,k +Σ1) ∆rp 0

0 ∆rp ξ2,k +Σ2 0

∆rp 0 0 −(ξ2,k +Σ2)















Ψβ ,k = Eβ ,kΨβ ,k (3.5)

where we use the c1,k , c †
1,k , c2,−k , c †

2,−k basis, 1, 2 are the subband labels, Ψβ ,k and Eβ ,k are the

quasi-particle wave functions and eigenenergies,ξα,k (µ, B ) corresponds to the noninteracting

energy of an electron in the transverse subband α with momentum k along the wire, in a

magnetic field B , and a chemical potential µ (that is tuned by Vsg). Σ1, Σ2, and ∆rp are the

mean fields that must be found self-consistently. Σα represents the Hartree shifts due to the

electrons in the opposite subband ᾱ

Σα =UH

∫

dk

2π
〈c †
ᾱ,k cᾱ,k 〉 (3.6)

and∆rp represents the re-entrant pairing field

∆rp =UB

∫

dk

2π
〈c2,−k c1,k 〉. (3.7)

For correctness, we have made the minimal assumption that the interactions are

momentum-independent (i.e., local in real space) when writing the mean fields. We caution

that a nonzero value of ∆ should not be interpreted as a signature of superconductivity but

only as a signature of pair formation as we are working in one-dimension. Finally, when com-

puting the matrix elements, we must keep in mind that the basis we are using is twice as big as

the physical basis and consequently, quasi-particle wave functions come in conjugate pairs.

Only one member of the pair should be used (e.g., the one that has the positive eigenvalue

and thus corresponds to the quasi-particle creation operator).

We solve the Hartree-Bogoliubov model self-consistently to obtain a phase diagram near

the crossing point of the |0, 1,↓〉 and |1, 0,↑〉 subbands (Fig. 27C. The locations of the non-

interacting subbands are plotted with dashed lines. By turning on the attractive intersubband

interaction, the Hartree shift tends to pull down the upper subband away from the crossing
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point, and pairing prevails closer to the crossing point which results int eh merger of the two

subbands into a single paired subband. Following the Maslov and Stone theorem, the conduc-

tance in the paired (spin-gapped) phase must be 2 e 2/h (ref [123]). We expect that these qual-

itative predictions are generic for systems with attractive interband interactions and not par-

ticularly sensitive to the assumptions that we have made, that is, using the Hartree-Bogoliubov

model with local interactions.

Using the phase diagram in Fig. 27C, we use a phenomenological model containing

the phase boundaries to describe interband re-entrant pairing. The basic scenario is when

two subbands E1 = (k1B + b1) and E2 = (k2B + b2) with opposite spins are tuned closely in

energy, they combine as an electron pair, which breaks when the energies are tuned further

away. These two subbands would simply cross (orange dashed lines) if there were no electron-

electron interaction. In the presence of the attractive pairing interaction, the higher energy

subband undergoes an energy shift of −2δ1(2) so that it can be written as E ′1(2) = k1(2)B + b1(2)−

2δ1(2). A middle section representing the paired phase emerges. The re-entrant pairing energy

∆rp can then be extracted: ∆rp = δ1 +δ2. We are now able to use this model to extract these

parameters from the experimental data using the fittings shown in Fig. 27C. This process then

gives a pairing field range 3.3 T < B < 3.5 T and a pairing energy ∆rp = 13 µeV for subbands

|1, 0,↑〉 and |0, 1,↓〉 in device W1 (see Table 2 for the full fitting parameters). More details about

the model can be found in the supporting information of the published manuscript [83].

3.5 CONCLUSION

The observed conductance plateaus are not consistent with a quantum Hall state. The

integer quantum Hall effect is defined by an insulating 2D bulk with chiral edge states that

are responsible for the quantized conductance. By contrast, LaAlO3/SrTiO3-based electron

waveguides lack the insulating bulk region that prevents backscattering. That is to say, the

magnetic length (lB ∼ 15 nm for B = 3 T) and the confinement length (l y = 26 (27) nm for

device W1 (W2)) are comparable and no well-defined bulk region is present.

The 3D structure of the electron waveguides is also inconsistent with quantum Hall
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Figure 27: Electron-electron interactions in electron waveguides. (A) Electron pairing (blue 

lines), avoided crossing (white lines), and re-entrant pairing (black lines) fittings of transcon-

ductance for device W1. (B) Detailed view of re-entrant pairing data in (A). Here the black lines

show the fitting of re-entrant pairing between subband |0, 1,↓〉 and |1, 0,↑〉 with ∆ rp = 13 µeV. 

The white lines are the fitting to the avoided crossing between subband |0, 1,↓〉 and |1, 0,↓〉 with

∆1,2 = 16 µeV. (C) Phase diagram of the Hartree-Bogoliubov model in the µ−B plane and near 

the crossing point of |0, 1,↓〉 and |1, 0,↑〉. We used the band parameters for device W1 and set

the attractive interaction constants to be UH =UB = 100 µeV to produce this diagram.

Table 2: Re-entrant pairing fitting parameters for electron waveguide devices W1 and W2.

device subbands k (µeV/T) b (µeV) ∆rp (µeV)

device W1 |1, 0,↑〉 133 168 13

|0, 1,↓〉 15 566

device W2 |1, 0,↑〉 130 120 10

|0, 1,↓〉 14 585
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physics. The cross-section of our waveguides is ellipsoidal with an aspect ratio of 0.5 (ver-

tical/lateral, see Fig. 25C, which is well within the 3D regime). This regime is not expected to

support stable quantum Hall bilayer states as multiple vertical subbands are occupied. For

example in Fig. 27A the |0, 0,↑〉 and |0, 1,↓〉 subbands would be unstable and therefore not

quantized in a quantum Hall regime, according to Ref. [124]. The fact that quantized trans-

port is observed provides further proof that this form of transport is not described by quantum

Hall effects.

Finally, the lack of observable quantization at low fields is a consequence of the close spac-

ing of lateral subband modes. The single-particle theory, illustrated in Fig. 23E,F, shows that

broadening of the subband transitions prevents the individual subbands from becoming re-

solvable at low magnetic fields; however, they become visible as soon as the magnetic disper-

sion can clearly separate them in energy. In other waveguides with larger subband spacing,

conductance quantization is observable at small magnetic fields (Fig. 31).

The observation of quantized conduction in the paired regime (G = 2e 2/h and |B | < BP )

signifies that these (non single-particle) states propagate ballistically, forming an extended

state in which electron pairs are bound together while the center-of-mass coordinate remains

delocalized. Conduction quantization with steps of 2e 2/h , rather than (2e )2/h , is consistent

with the notion that dissipation takes place not within the channel itself but in the leads, and

that electron pairs unbind before they dissipate energy [125, 126]. This interpretation is also

consistent with the theorem of Maslov and Stone, who argued that the conductance of a Lut-

tinger liquid is determined by the properties of the leads [123]. Specifically, the charge conduc-

tance of the channel remains 2e 2/h when a spin (i.e., pairing) gap is opened in the channel.

Previous reports of electron pairing in confined 1D structures [119] revealed a range of

pairing fields that is consistent with the variation observed in these electron waveguides. For

devices W1 and W2, BP ∼ 1 T is relatively low compared to BP ∼ 11 T in device W3. Fig. 31

shows additional variation of BP in two other devices. No specific dependence of BP on device

length can be inferred. Clearly, there are hidden variables that regulate the strength of electron

pairing that have yet to be revealed experimentally.

The experiments described here show that electron wave-guides provide remarkably de-

tailed insight into the local electronic structure of these oxide interfaces. The level of repro-
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ducibility and reconfigurability illustrated by these experiments represents a significant ad-

vance in control over electronic transport in a solid-state environment. Correlated electron

waveguides offer unique opportunities to investigate the rich physics that is predicted for 1D

quantum systems [95]. For example, the number of quantum channels can be tuned to the

lowest spin-polarized state (with G = e 2/h), forming an ideal spin-polarized Luttinger liquid.

The ballistic nature of the transport in 1D is highly surprising, but may be related to the ex-

istence of strong electron-electron interactions, which are known to suppress impurity scat-

tering [105, 106]. These 1D channels form a convenient and reproducible starting point for

emulating a wider class of 1D quantum systems or for creating quantum channels that can be

utilized in a quantum computing or quantum simulation platform.

3.6 ADDITIONAL INFORMATION

3.6.1 Finite bias spectroscopy

Finite-bias spectroscopy is performed through current-voltage (I-V ) measurements as a

function of Vsg and B to gain more information about the electron waveguides. As shown in

Fig. 28A, a large finite bias (Vs d ≥ V ∗
s d ) can unevenly populate subbands occupied by oppo-

sitely travelling electrons, which gives rise to the so-called half plateaus [127, 128]. Fig. 28B

is the finite-bias transconductance plot of device W1 at B = 7 T. The dark regions marked by

the numbers are conductance plateaus, where conductance is quantized. The 0.5 e 2/h and

1.5 e 2/h plateaus can be clearly seen in the conductance plot at Vs d =V ∗
s d = 200 µV (Fig. 28C).

The observation of these half plateaus in indicative of very clean transport of the electron

waveguide devices, since back scattering is more likely to occur when unoccupied subbands

become available at finite biases.

Finite-bias spectroscopy is used to extract the lever-arm α, which converts gate voltage

Vsg to chemical potential µ. As illustrated in Fig. 28B, the bright crossing at V ∗
s d = 200 µV

and Vsg = 80 mV marks the transition from one subband to another due to the bias. At this

condition, the energy gain induced by the bias V ∗
s d should be equal to the subband spacing
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Figure 28: Electron waveguide finite bias analysis. (A) Illustration of electron occupation sub-

bands |0, 0,↓〉 and |0, 0,↑〉 at a finite bias Vsd in a magnetic field B = 7 T. The application of Vsd

alters the chemical potentials of the source µs and drain µd to EF ± e Vsd/2. The energy dif-

ference µd −µs = e V ∗
sd (as indicated by the two red lines) equals the spacing between the two

subbands. When Vsd < V ∗
sd, electrons travelling in opposite directions occupy the same sub-

band, |0, 0,↓〉 with conductance quantized at e 2/h . When Vsd reaches |V ∗
sd| (-|V ∗

sd|), subband

|0, 0,↑〉 becomes available for electrons transmitting from the drain (source) and gives rise a

half plateau conductance 1.5e 2/h . (B) Transconductance map of device W1 as a function of

Vsd and Vsg at B = 7 T. Each light band marks the transition between conductance plateaus, the

values of which are labeled in white. According to (A), the conversion factorα can be extracted

through the relation Vsd =α∆Vsg. (C) Conductance G vs Vsg curves for zero bias (Vsd = 0 V) and

finite bais (Vsd = V ∗
sd = 200 µV) at B = 7 T. Half plateaus are visible at finite bias (blue curve).

(D). Vsd vs∆Vsg at magnetic fields from 3 T to 9 T in 1 T steps. The linear relationship and negli-

gible intercept establishes V ∗
sd =α∆Vsg with α= 4.5 µeV/mV. (E) Vsd vs B for Device W1 shows

the Zeeman splitting between subbands |0, 0,↓〉 and |0, 0,↑〉. The g factor can be extracted, and

is found to be g = 0.6. This plot also illustrates the pairing field, that the subbands only split

above a critical magnetic field BP = 1.1 T, the intercept on the B axis.
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marked by α∆Vsg at zero bias, namely e Vs d = α∆Vs g . Then, α = e V ∗
s d /∆Vsg can be precisely

extracted by the slope of the V ∗
s d - Vsg plot at different magnetic fields (Fig. 28D). For device

W1,αW1 is found to be 4.5µeV/mV, and the fitted linear curve passes across zero as supposed.

Similarly, αW2 = 9.9 µeV/mV can be extracted for device W2, suggesting a stronger coupling

of side age to the waveguide due to the larger size.

The Zeeman splitting between two spin-resolved subbands |0, 0,↑〉 and |0, 0,↓〉 can be used

to extract the electron g factor. Fig. 28D shows the energy splitting (e V ∗
s d ) between these two

subbands at various magnetic fields, where spin degeneracy is moved. The g factor is given

by g = e V ∗s d

µB B ′ , whereµB is the Bohr magneton. The extracted g factors for device W1 and W2 are

the same (within measurement error): gW 1 (W 2) = 0.6.

3.6.2 Temperature dependence

The temperature dependence of the conductance plateaus at B = 9 T is shown in Fig.

29. Temperatures were varied from T = 100 mK to 500 mK. As the temperature increases the

plateaus become less distinct because of thermal averaging.

3.6.3 Impact of side gate location

The physical location of the side gates for LaAlO3/SrTiO3 nanostructures affect the overall

lever arm (α) but, somewhat surprisingly, impacts the electronic structure within the con-

ducting regions only negligibly. To illustrate, we show transport results for a single-electron

transistor device with multiple side gates (Fig. 30A). The differential conductance is shown

as a function of four-terminal source-drain voltage Vsd and either of the side gates located

near the barriers Vsg1 or Vsg2. The results for both gates are nearly identical (Fig. 30C,D), which

shows that the electric fields are effectively screened and the main result of gating is to change

the chemical potential uniformly within the conducting wire segment. The near equivalence

of both gates is also shown by plotting the conductance at zero bias versus the two gates (Fig.

30B). Differences between the two gates are negligibly small, apart from the factor-of-two dif-

ference in lever arms. This insensitivity is likely related to the very large dielectric constant of

SrTiO3 at low temperatures.
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A B

Device W1 Device W2

Figure 29: Temperature dependence of conductance plateaus. Conductance as a function of

side gate voltage at different temperatures for Device W1 (A) and Device W2 (B) in an applied

magnetic field of 9 T.

3.6.4 Additional electron waveguide devices

Transport for several additional electron waveguide devices W4 and W5 is shown in Fig.

31. Device W4 has a pairing field of BP ∼ 2.5 T and device W5 has a pairing field larger than

BP > 9 T, the largest applied field.

3.6.5 Zero-barrier, single-barrier, and double-barrier geometry

In GaAs-based heterostructure devices, the number of transverse channels that are trans-

mitted through a quantum point contact (QPC) is typically controlled by a spit top gate. Vary-

ing the potential on the split gate controls the effective width of the conducting region. In the

case of LaAlO3/SrTiO3 similar behavior may be expected in the case where the side gate is used

to control a QPC created by a single weak barrier. In Fig. 32B, we show the results of varying

the side gate Vsg for a device with a single barrier in the channel. At all values of magnetic field,

there is no clear quantization of the conductance. This is consistent with the single particle
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Figure 30: Dependence of transport on gate location. (A) Device schematic for a three gate

device. (B) Conductance as a function of Vsg1 and Vsg2 (with Vsg3 floating). While the lever arm

of the gates differ, the conductance features are similar for both gates. (C),(D) Conductance

as a function of source-drain bias across the device Vsd, and Vsg1 (C) and Vsg2 (D) with the other

gates fixed at 0 V. The transport through the device does not depend on the location of the

gate.
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Figure 31: Data for additional electron waveguide devices showing different pairing fields. (A

and C) Zero bias conductance G as a function of side gate Vsg and B for device W4 (LB = 20

nm, LC = 1500 nm, and LS = 700 nm) and device W5 (LB = 20 nm, LC = 500 nm, and LS = 250

nm) fabricated on different canvases. Curves are offset for clarity. (B and D) Corresponding

transconductance d G /d Vsg plots to reveal the pairing field BP at which subbands |0, 0,↓〉 and

|0, 0,↑〉 start to split. BP values are high for device W4 (∼ 2.5 T) and device W5 (> 9 T) compared

to device W1 and W2.
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Figure 32: Conductance data for devices with different numbers of barriers. Conductance at

0 T and 9 T for devices with zero (A), one (B), and two (C) barriers. Devices with zero barriers

and one barrier do not exhibit well quantized conductance plateaus. Devices with no barriers

are not able to be effectively tuned with the side gate because they are not isolated from the

leads, and are not able to be tuned to an insulating state with the side gate.

theory shown in Fig. 23 and 25 which holds the width of the conducting channel, l y , fixed as

Vsg is varied. Thus we conclude that, as in the case for the quantum dot geometries used in Ref

[118], varying Vsg controls the chemical potential of the region between the two barriers, as il-

lustrated in Fig. 22. When no barriers are present (Fig. 32A) there is no observed quantization

and the conductance in the nanowire is very large and cannot be tuned to an insulating state

using the side gate.
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4.0 Pascal conductance series in ballistic one-dimensional LaAlO3/SrTiO3 channels

In a subset of the electron waveguide devices, discussed in Chapter 3, we observed a new

series of conductance plateaus, G = (1, 3, 6, 10, ...)e 2/h , reminiscent of the third diagonal of

Pascal’s triangle. This series of conductance steps arises from the locking together of the 1D

subbands in increasing number, and the formation of bound states of n = 2, 3, 4, ... electrons

in what we call a Pascal liquid phase.1

4.1 INTRODUCTION

The ability to create and investigate composite fermionic phases opens new avenues for

the investigation of strongly correlated quantum matter. We report the experimental obser-

vation of a series of quantized conductance steps within strongly interacting electron waveg-

uides formed at the LaAlO3/SrTiO3 interface. The waveguide conductance follows a charac-

teristic sequence within Pascal’s triangle: (1, 3, 6, 10, 15, ...) ·e 2h , where e is the electron charge

and h is the Planck constant. The robustness of these steps with respect to magnetic field and

gate voltage indicate the formation of a new family of degenerate quantum liquids formed

from bound states of n = 2, 3, 4, ... electrons. These experiments could provide solid-state

analogues for a wide range of composite fermionic phases ranging from neutron stars to solid-

state materials to quark-gluon plasmas.

This investigation of strongly fermionic systems and their resulting phases benefits from

focusing on one-dimensional (1D) systems [130, 94, 95, 131]. By restricting the phase space

for transport, correlations are significantly enhanced. A variety of techniques have been de-

veloped for understanding strongly-correlated 1D systems, ranging from the Bethe ansatz to

density matrix renormalization group (DMRG) approaches [132]. Experimental investigations

of degenerate, 1D gases of paired fermions have been explored in ultracold atom systems with

attractive interactions [133]. In the solid state, attractive interactions have been engineered

1This chapter is published in a different form in Ref. [129].
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in carbon nanotubes using a proximal excitonic pairing mechanism [134]. Electron pairing

without superconductivity, indicating strong attractive interactions, has been reported in low-

dimensional SrTiO3 nanostructures [119, 83]. However, color superfluids [135] - bound states

of three or more particles - have only been observed in few-body bosonic systems [136].

SrTiO3-based electron waveguides can provide insight into strongly interacting fermionic

systems. The total conductance through an electron waveguide is determined by the num-

ber of extended subbands (indexed by orbital, spin, and valley degrees of freedom) available

at a given chemical potential µ [98, 76]. Each subband contributes one quantum of conduc-

tance e 2/h with transmission probability T (µ) to the total conductance G = (e 2/h )
∑

i T (µ)

[75]. Quantized transport was first observed in III-V quantum point contacts [78, 79] and

subsequently in 1D systems [99, 100, 102]. Quantized conduction within 1D electron waveg-

uides was recently demonstrated within LaAlO3/SrTiO3 heterostructures [83], see Chapter 3.

A unique aspect of this SrTiO3-based system is the existence of tunable electron-electron in-

teractions [137] that lead to pairing [119] and superconductivity [58].

4.2 RESULTS

4.2.1 Device fabrication

Here we investigate LaAlO3/SrTiO3-based 1D electron waveguides that are known to ex-

hibit quantized ballistic transport as well as signatures of strong attractive electron-electron

interactions and superconductivity. A thin film of LaAlO3/SrTiO3 (3.4 unit cells) is grown on

TiO2-terminated SrTiO3 using pulsed laser deposition using growth conditions described in

detail in Ref. [113], and in Chapter 2. Electrical contact is made to the interface in several lo-

cations that surround a given “canvas”, typically a 30µm by 30µm area. An electron waveguide

(Fig 33A) is created by first scanning a positively-biased (Vtip ∼ 10 V) conductive atomic force

microscope (c-AFM) tip in contact with the LaAlO3 surface [4, 5]. This process locally pro-

tonates [87, 88] the top LaAlO3 surface and accumulates conducting electrons in the SrTiO3

region near the LaAlO3/SrTiO3 interface. To restore an insulating state, negative voltages are
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applied to the tip, which locally de-protonates the LaAlO3 surface. During a second pass of

the tip along the channel, following the same path, two negative voltage pulses (Vtip ∼−15 V)

are used to create two weakly insulating, LB ∼ 20−30 nm-long barriers, separated by a length

LS ∼ 50− 1000 nm. A side gate is written ∼ 1 µm away from the electron waveguide. These

devices are qualitatively the same as the electron waveguide devices discussed in Chapter 3.

However, in over a dozen specific devices we observed different signatures of transport which

will be discussed below. Parameters and properties for seven representative devices P1-P7 are

given in Table 3.

4.2.2 Pascal series conductance plateaus

The conductance of these electron waveguides depends principally on the chemical po-

tential µ and the applied magnetic field ~B . The chemical potential is adjusted with a local

side gate Vsg, and for most experiments described here the external magnetic field is oriented

perpendicular to the LaAlO3/SrTiO3 interface: ~B = Bz ẑ . Quantum-point contacts formed

in semiconductor heterostructures [78, 79] exhibit conductance steps which typically fol-

low a linear sequence: 2 × (1, 2, 3, 4, ...) · e 2/h , where the factor of 2 reflects the spin de-

generacy. In an applied magnetic field, the electronic states are Zeeman-split, and resolve

into steps of (1, 2, 3, 4, ...) · e 2/h . By contrast, here we find that for certain values of mag-

netic field, the conductance steps for LaAlO3/SrTiO3 electron waveguides follow the sequence

(1, 3, 6, 10, ...) ·e 2/h , or Gn = n (n+1)/2 ·e 2/h . As shown in Fig. 33B, this sequence of numbers

is proportional to the third diagonal of Pascal’s triangle (Fig. 33C, highlighted in red).

4.2.3 Transconductance data

In order to better understand the origin of this sequence, it is helpful to examine the

transconductance d G /dµ and plot it as an intensity map as a function of B and µ. Transcon-

ductance maps for Devices P1-P6 are plotted in Fig. 34. A peak in the transconductance de-

marcates the chemical potential at which a new subband emerges; these chemical potentials

occur at the minima of each subband, and as such we refer to them as subband bottoms (SBB).

The peaks generally shift upward as the magnitude of the magnetic field is increased, some-
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Figure 33: Pascal series of conductance steps in an electron waveguide. (A) Electron waveg-

uide device schematic. Green lines indicate paths taken by AFM tip with a positive voltage ap-

plied, to create nanowires at the LaAlO3/SrTiO3 interface. The device consists of a main chan-

nel length LC with highly transparent tunnel barriers, with width LB, and separated by length

LS. Nanowire width w measured at room temperature is typically ∼ 10 nm. (B) Conductance

as a function of chemical potential for Device P1 at T = 50 mK and B = 6.5 B. Plateaus in con-

ductance are observed at values of G = (1, 3, 6, 10) · e 2/h . (C) Pascal triangle representation

of observed conductance steps, represented in units of e 2/h . Highlighted row represents the

sequence for an electron waveguide with two transverse degrees of freedom.
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times bunching up and then again spreading apart. We observe many of the same features that

were previously reported in 1D electron waveguides in LaAlO3/SrTiO3 [83] such as electron

pairing and re-entrant pairing, which indicate the existence of electron-electron interactions.

Near a special value of the magnetic field, locking of multiple subbands contribute to the total

conductance as a function of chemical potential (see the labeled conductance plateaus in Fig

34A), which follows a Pascal series that is quantized in units of e 2/h .

4.3 DISCUSSION

Our approach to understanding the transport results described above begins with a single-

particle description and incorporates interactions when the original description breaks down.

Outside of the locked regions, the system is well described by a set of non-interacting chan-

nels, which places strong constraints on the theory of the locked regions. Any theory of the

locked phases would need to both explain the locking of the transconductance peaks as well

as quantized conductance steps away from the locked regime. Before settling on an attractive

interaction interpretation of the locking phenomenon we considered a number of alternative

mechanisms: spin-orbit, anharmonic confining potential, and impurity scattering but found

that none of these resulted in the observed locking behavior. Within the single-particle de-

scription, we find that by fine-tuning the magnetic field and a single geometrical parameter

of the waveguide, the ratio of vertical to lateral confinement strength, we can obtain the Pascal

series of conductance plateaus. Next, we explore the addition of attractive electron-electron

interactions to the model. The resulting calculations produce phases that are stable over a

finite range of magnetic fields and geometrical parameters, thus lifting the requirement for

fine-tuning that was imposed by the single-particle picture. In transconductance maps, the

phases manifest themselves as the locking of peaks over a finite range of magnetic fields.

4.3.1 Single-particle model

The single-particle model used here is the same one discussed in Chapter 3, but is included

here again for completeness. Our single-particle description excludes interactions but takes
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Figure 34: Transconductance maps of Pascal electron waveguide devices. Transconductance
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plot with vertical offsets given by the chemical potential at which the curve was acquired.
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into account the geometry of the electron waveguide that produces the underlying subband

structure. The four ingredients of the single-particle model are electrons confined in the (i)

vertical and (ii) lateral directions by the waveguide and an external magnetic field that affects

the electrons via the (iii) Zeeman and the (iv) orbital effect. The intersection of more than two

SBBs requires a special condition to be satisfied in the single particle model. The degeneracy

requirement for obtaining the Pascal series (i.e. the crossing of 1, 2, 3, 4, ... SBBs) is satisfied by

a pair of ladders of equispaced levels. Indeed, a pair of ladders of equispaced levels is naturally

produced by a waveguide with harmonic confinement in both vertical and lateral directions.

In the presence of Zeeman interactions, the waveguide Hamiltonian can be written [83]

H =
(px − e Bz y )2

2m ∗
x

+
p 2

y

2m ∗
y

+
p 2

z

2m ∗
z

+
m ∗

yω
2
y

2
y 2+

m ∗
zω

2
z

2
z 2− gµBBz s , (4.1)

where m ∗
x , m ∗

y , and m ∗
z are the effective masses in the x , y , and z directions; ωy and ωz are

frequencies associated with parabolic transverse confinement in the lateral (y ) direction and

half-parabolic confinement in the vertical (z > 0) direction, respectively; g is the Landé factor;

µB is the Bohr magneton; and s = ±1/2 is the spin quantum number. Eigenenergies corre-

sponding to the SBBs are given by

Enz ,ny ,s = ħhΩ
�

ny +
1

2

�

+ħhωz

�

(2nz +1) +
1

2

�

− gµBBz s , (4.2)

where the electron eigenstates |nz , ny , s 〉 are indexed by the orbital quantum numbers nz and

ny and spin quantum number s , Ω =
Æ

ω2
y +ω2

c is the magnetic field-dependent frequency

associated with parabolic confinement of the electron in the lateral direction (being made of

the bare frequencyωy and the cyclotron frequencyωc = e Bz/
Æ

m ∗
x m ∗

y ). To obtain two equi-

spaced ladders of states we use the states associated with Ω for the first ladder and the states

associated with ωz , split by the Zeeman splitting, for the second ladder. The Pascal series

is produced by the “Pascal condition”: Ω = 4ωz = 2gµBBz/ħh . This condition requires fine-

tuning of the magnetic field Bz and the geometry of the waveguide (ωy /ωz ). Meeting this

condition results in crossings of increasing numbers of SBBs at a unique Pascal field BPa. By

fitting the SBB energies given by Eq. 4.2 to experimental data, we are able to generate a peak

structure (shown in Fig. 35A) that is in general agreement with and has the same sequence of
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peak crossings as the experimentally observed transconductance. (Estimates for the single-

particle model parameters are listed in Table 3.) By intentionally detuning the parameters

away from the Pascal condition (e.g. Fig. 35B), the SBBs no longer intersect at a well-defined

magnetic field. Fits of the single-particle model to experimental data for devices P1-P7 (Fig.

35C) show the expected correlation between ωz and Ω(BPa), but we do observe small devia-

tions from the Pascal condition for all samples.

4.3.2 Experimental deviations from the single-particle model

The experimental data deviates from the single-particle model in several important ways.

At low magnetic fields, the predicted linear Zeeman splitting of subbands is not obeyed; in-

stead, the two lowest subbands (|0, 0,±1/2〉) are paired below a critical magnetic field, BP [83].

At higher magnetic fields, re-entrant pairing is observed as subbands intersect and lock to-

gether over a range of magnetic field values, near the Pascal field BPa. In our non-interacting

model (Eq. 4.1), there is a unique Pascal field BPa; however, experimentally we find that the

value of the Pascal field depends on the degeneracy n : B (n+1)
Pa < B (n )Pa . This shift in BPa with the

degeneracy may be due to an anharmonic component to the confinement. Adding an anhar-

monic term to the single-particle model produces similar shifts of BPa (see [129] SM for more

details). The pairing field BP and the Pascal field B 2
Pa for devices P1-P7 are shown in Table 3.

Devices with similar geometries display a variety of pairing fields and Pascal fields. This is

not unexpected based on previous work [119] where the pairing field was found to vary sig-

nificantly from device to device and can be as large as BP = 11 T. The cause for the differing

strength of the pairing field is unknown but likely plays a role in the differing strengths of the

locking (re-entrant pairing) for the Pascal degeneracies in this work. Fits of the transconduc-

tance data were made (shown in white on Fig. 36A) for the n = 2 and n = 3 Pascal phases

to determine if the states are, in fact, locking together over a finite range of magnetic fields.

Details about the fitting procedure are described later in this chapter. As shown in Fig. 36B,

the standard deviation for the fitted locations for the SBBs versus magnetic field for the first

Pascal-liquid phase, n = 2, indicates a locking over a magnetic field range of 0.54± 0.08 T.

This re-entrant pairing also occurs for the case of n = 3 intersecting modes (Fig. 36C) where
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Figure 35: Subband energies for non-interacting electron waveguide model. (A) Energy E vs

B calculated from the single-particle model, with parameters tuned to give Pascal degenera-

cies: l y = 33 nm, lz = 10 nm, my = 1 me , mz = 5 me , g = 1.0. States are colored to highlight
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a fit of the transconductance data indicates that the states are locked together over a range

of 1.14± 0.15 T. Re-entrant locking of as many as n = 6 (G = 21 e 2/h ) distinct intersections

are observed (Fig. 34, Device P2). Pascal-liquid behavior is observed for a variety of devices

written with both short (50 nm) and long (1000 nm) electron waveguides, and at different an-

gles,φ, with respect to the crystallographic axis of the sample. These angles are listed in Table

3 and represent the angle of the waveguide device with respect to the (100) crystallographic

direction. Devices with wires written at angles of 0◦, 45◦, or 90◦ show no significant difference.

4.3.3 DMRG analysis

A theoretical analysis more sophisticated than the single particle model discussed pre-

viously is required to capture the effects of electron-electron interactions. In the absence of

interactions, the single-particle model described by Eq. 4.1 has band crossings but cannot pre-

dict any locking behavior. Prior work has demonstrated the existence of attractive electron-

electron interactions in LaAlO3/SrTiO3 nanostructures [119, 137]. We therefore construct an

effective lattice model for the waveguide by extending the non-interacting model to include

phenomenological, local, two-body interactions between electrons in different modes. This

effective model is investigated using the density matrix renormalization group (DMRG), a nu-

merical method which produces highly-accurate results for strongly interacting systems in

one dimension [132, 138, 139, 140, 141, 142, 143]. The DMRG phase diagrams in the vicinity

of the n = 2 and n = 3 plateaus are shown in Fig. 37. The first set of calculations reveal a

phase boundary line between a vacuum phase and an electron pair phase that is character-

ized by a gap to single-electron excitations. We associate this line to the n = 2 conductance

step (G = 3e 2/h , Fig. 34B). Extending this calculation to three electron modes with attractive

interactions (n = 3 plateau) reveals a transition line from the vacuum phase to a “trion” phase”

which we associate with the n = 3 conductance step (G = 6e 2/h , Fig. 34B). The trion phase; is

a 1D degenerate quantum liquid of composite fermions, each made up of three electrons, in

which all one- and two-particle excitations are gapped out, but three-particle excitations are

gapless. More details about our theoretical model and DMRG calculations can be found the

supplementary materials of Ref. [129].
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Figure 36: Pascal liquid phase transconductance fits. (A) Transconductance data for Device

P6. White lines are fits of the peak locations for the n = 2 and n = 3 Pascal states calculated

using a nine parameter non-linear least squares fit. (B) Standard deviation between states

|0, 0,↑〉 and |0, 1,↓〉, forming the n = 2 Pascal state, from a fit of the experimental transcon-

ductance data in panel (A) showing the re-entrant pairing as the states come together and are

locked for a range of magnetic field values, indicated by∆B . (C) Fits for the trion state (n = 3)

also produce a standard deviation that shows the three states converge and lock together for

a range of magnetic field values,∆B . A description of the fitting method can be found later in

the chapter
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interactions in one dimension. Abbreviations for various phases: mF: m distinct Fermi sur-

faces, P: paired phase, T: trion phase, V: vacuum, A+B: phase composed of A and B. Solid while

lines correspond to the fits highlighted in Fig. 36A. The white numbers on the plots indicate

the strength of the locking for thee pair (A) and trion (B) phases. Similar to what is observed

in fits of the experimental data, the trion phase is locked over a larger range of magnetic field

values.
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Here we discuss other theoretical explanations that we have considered. The addition of

spin-orbit coupling to the non-interacting model modifies the subband structure, producing

avoided crossings of the transconductance peaks. Anharmonicity of the confining potential,

in the absence of interactions, bends the subband structure but also does not produce locking.

We rule out impurity scattering effects due to the ballistic nature of the transport. Moreover,

without inter-electron interactions (e.g. negative U center [144]), an impurity cannot produce

locking phenomena. We are not aware of other mechanisms for locking, but cannot rule them

out. Finally, we remark, that any theory of the locking phenomenon would need to have a

non-interacting limit that matches with experiments, e.g. predict conductance quantization.

4.4 ANGLE-DEPENDENT MAGNETOTRANSPORT

The Pascal Condition assumes that the magnetic field is oriented out-of-plane. To inves-

tigate the effect of in-plane magnetic field components on the Pascal conductance series, we

measure angle-dependent magnetotransport, with the magnetic field oriented at an angle θ

with respect to the sample normal, within the y -z plane, ~B = B (sinθ ŷ + cosθ ẑ ) (Fig. 38A).

In the out-of-plane orientation (θ = 0◦), characteristic Pascal behavior is observed, with sub-

band locking taking place near 6 T (Fig. 38D,θ = 0◦). Asθ increases, the trion phase associated

with the n = 3 plateau destabilizes, while another (non-Pascal series) trion phase forms in a

different region of parameter space (Fig. 38D, θ = 20◦, indicated by white lines). At larger an-

gles (Fig. 38D, θ = 50◦), a dense network of reentrant pairing, disbanding, and re-pairing is

observed. (See SOM for a video showing the evolution of the transconductance spectra from

θ = 0◦ to θ = 90◦.) The strength of the re-entrant pairing of the |0, 0,↓〉 and |0, 1,↑〉 subbands

is strongly-dependent on the angle θ of the applied magnetic field (Fig. 38C). The lower (B−R )

and upper (B+R ) magnetic fields over which these SBBs are locked together is indicated in Fig.

38D with red and blue circles. The magnetic field range (∆BR = B+R − B−R ) is shown as a func-

tion of angle (Fig. 38C). The strength of the re-entrant pairing, ∆BR , initially increases with

angle, jumps discontinuously at θ = 30◦, as the SBBs (which have been shifting closer) snap

together, and then decreases again. At θ = 0◦ there is a non-Pascal series crossing (no locking)
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of like-spin states (|0, 0,↓〉,|0, 1,↓〉), highlighted by crossed lines, which evolves into an avoided

crossing at θ = 10◦. This feature is explored in Fig. 38B where we plot conductance curves at

B = 3 T for different angles.
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Figure 38: Angle-dependence of transport for Device P7. (A) Schematic of the sample with

respect to the applied magnetic field ~B , n̂ is the vector normal to the sample and θ = 0◦ is the

out-of-plane magnetic field angle. The magnetic field is in the YZ plane (perpendicular to the

waveguide). (B) Conductance curves as a function of angle at |B |= 3 T. At θ = 10◦ an avoided

crossing opens up, a plateau begins to form near 3e 2/h . Evidence of reentrant pairing is seen

when θ > 30◦ with conductance steps of 2e 2/h . (C) Reentrant pairing strength as a function

of θ . (D) Transconductance d G /dµ as a function of magnetic field strength B and chemical

potential µ, at angle θ . The reentrant pairing strength is indicated where the states first lock

together (red circles) and break apart (blue circles). T = 30 mK.
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4.5 CONCLUSION

The “Pascal-liquid” phases reported here may constitute a new class of quantum de-

generate electronic matter. Pascal composite particles would have a charge ne , where n =

2, 3, 4, ..., and as-yet-undetermined spin quantum numbers. As with fractional fermionic

states, it seems likely that the expected charge could be verified from a shot-noise experiment

[145]. The particular Pascal sequence observed here experimentally is a consequence of the

number of spatial dimensions in which they exist. Hypothetically, a material with four di-

mensions (three transverse to a conducting channel) could exhibit a conductance sequence

(1, 4, 10, 20, ...) · e 2/h , the next diagonal in the Pascal triangle. The Pascal sequence of bound

fermions is reminiscent of the “quantum dot periodic table” used to categorize multi-electron

states in semiconductor nanostructures [146]; the difference here is that the Pascal liquids

are comprised of composite particles that are free to move in one spatial dimension, held

together by mutual attraction rather than by an external potential profile. Pascal composite

particles with n > 2 can be regarded as a generalization of Cooper pair formation, analogous

to the manner in which quarks combine to form baryonic and other forms of strongly in-

teracting, degenerate quantum matter. Interactions among Pascal particles are in principle

possible—for example, trions could in principle “pair” to form bosonic hexamers. Coupled

arrays of 1D waveguides can be used to build 2D structures. This type of structure is predicted

to show a wide variety of properties ranging from sliding phases [147, 148, 149] to non-abelian

excitations [73]. This highly flexible oxide nanoelectronics platform is poised to synthesize

and investigate these new forms of quantum matter.

4.6 ADDITIONAL INFORMATION

4.6.1 Fits of transconductance data

To find the strength of the locking for the pair and trion phases we performed a nine pa-

rameter non-linear least squares fit of the transconductance data, where one of the param-
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Table 3: Parameters for Pascal waveguide devices P1-P7. LB is the width of the barriers in

the waveguide, LS is the separation between the barriers, LC is the total length of the channel

between the voltage sensing leads, φ is the angle between the nanowire and the (100) crys-

tallographic direction. BP indicates the pairing field, B 2
P a indicates the field at the center of

the n = 2 Pascal phase. Single-particle model fits of experimental data determine the Landé

factor g , the effective mass in the y direction my , frequencies associated with parabolic con-

finement in the lateral (y ) direction and half-parabolic confinement in the vertical (z > 0)

directionωy andωz , and the effective trapping frequency in the y -direction Ω(B 2
P a ).

Device LB LS LC φ BP B (2)Pa g my ωy ωz Ω(B (2)Pa )

(nm) (nm) (nm) (◦) (T) (T) (me ) (GHz) (GHz) (GHz)

P1 20 50 500 0 0.89 7.23 0.53 2.34 81 148 550

P2 20 50 500 0 3.01 6.66 1.11 1.68 94 178 704

P3 20 500 1500 0 1.66 4.79 0.95 1.45 131 131 596

P4 20 50 500 45 1.12 7.37 0.56 2.32 103 154 568

P5 20 50 500 45 1.42 6.69 0.55 2.81 97 127 429

P6 20 50 500 90 1.68 5.93 0.89 1.25 34 166 835

P7 30 1000 1800 0 0.22 7.68 0.58 1.94 99 190 703
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Figure 39: Model for transconductance fitting. Profile created from the nine parameter model

to fit the transconductance data for the trion state. The results of the fit show a finite magni-

tude for the locked region.

eters in the model is the magnitude of the locked region. The nine parameters are used to

create a profile of the phase, where two (pair) or three (trion) states come together and are

locked over a range of magnetic field values. The nine parameters include the critical point at

the center of the locked region, (Bc ,µc ), the magnitude and orientation of the locked region,

the locations of each state at B = 0 T, and the magnitude and width of a sec( x )2 function, which

is how the transconductance data is modeled. The profile used for fitting a trion state can be

seen in Fig. 39. The fit was performed by minimizing the error function, which is the sum of

the square of the difference between the transconductance data and the profile. To calculate

the uncertainty of the results of the fit we calculated the Hessian of the error function.

4.6.2 Fits of conductance data

We also fit experimental data using a second method. The second method was used to fit

the angle dependent data shown in Fig. 38, and find the strength of the reentrant pairing for

the |0, 0,↓〉 and |0, 1,↑〉 subbands. The second fitting method involves a line by line nonlinear
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least squares fit of the conductance data where each step in the conductance is modeled as a

tanh(x ) function, so that the total conductance is given as

G =
A1

2

�

1+ tanh
�

x −ν1

w1

��

+
A2

2

�

1+ tanh
�

x −ν2

w2

��

+ ..., (4.3)

where Ai is the amplitude of the i th step,νi is the position of the step, and wi is the width of the

step. The step amplitude is restricted to be within 0.9 and 1.1 e 2/h . To determine how many

steps are needed for each curve, the fit is performed with a range of possible steps, based

on the maximum conductance of the curve, and the fit with the smallest residue (weighted

mean square error between the best fit and the data) is chosen. The conductance curve at

each magnetic field value was fit independently and by taking the difference between the step

position of the second and third steps (the subbands that form the first paired state) we are

able to determine the magnetic field value where the states pair (where the step positions are

the same) and where the states break apart again, shown as red and blue circles in Fig. 38D.
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5.0 One-dimensional Kronig-Penney superlattices at the LaAlO3/SrTiO3 interface

This chapter discusses 1D vertical superlattice devices created at the LaAlO3/SrTiO3 inter-

face. The devices are created by adding a periodic vertical modulation to an electron waveg-

uide device. The devices exhibit dispersive features not found in control devices and represent

a first step towards developing a solid state quantum simulation platform.1

5.1 INTRODUCTION

The paradigm of electrons interacting with a periodic lattice potential is central to solid-

state physics [150]. Semiconductor heterostructures [26, 27, 28] and ultracold neutral atomic

lattices [14, 15, 16] capture many of the essential properties of 1D electronic systems. However,

fully one-dimensional superlattices are highly challenging to fabricate in the solid state due

to the inherently small length scales involved. Conductive atomic force microscope (c-AFM)

lithography has recently been demonstrated to create ballistic few-mode electron waveguides

with highly quantized conductance and strongly attractive electron-electron interactions [83].

Here we show that artificial Kronig-Penney-like superlattice potentials can be imposed on

such waveguides, introducing a new superlattice spacing that can be made comparable to

the mean separation between electrons. The imposed superlattice potential “fractures” the

electronic subbands into a manifold of new subbands with magnetically-tunable fractional

conductance (in units of e 2/h). The lowest G = 2e 2/h plateau, associated with ballistic trans-

port of spin-singlet electron pairs [83], is stable against de-pairing up to the highest magnetic

fields explored (|B |=16 T). These findings represent an important advance in the ability to de-

sign new families of quantum materials with emergent properties, and they mark a milestone

in the development of a solid-state 1D quantum simulation platform.

Quantum theory provides a unified framework for understanding the fundamental prop-

erties of matter. However, there are many quantum systems whose behavior is not well

1This chapter is in preparation in another form for submission to Nature Physics.
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understood because the relevant equations are are not able to be solved using known ap-

proaches. The idea of “quantum simulation”, first articulated by Feynman [1], aims to exploit

the quantum-mechanical properties of materials to compute the properties of interest and

gain insight into the quantum nature of matter. There are two main “flavors” of quantum sim-

ulation: one based upon the known efficiency of circuit-based quantum computers to solve

the Schrödinger equation, and the other based on control over open quantum systems to em-

ulate a given Hamiltonian. The former approach is limited by the capabilities of present-day

quantum computers. The latter approach has shown great promise using a variety of methods

including ultracold atomic lattices [14, 15, 16], ion trap arrays [17, 18, 19] (which can simulate

spin systems readily), superconducting Josephson junction arrays [20, 21, 22], photonic sys-

tems [23, 24, 25], and various solid-state approaches [26, 27, 28, 29, 151]. Platforms capable

of quantum simulation of Fermi-Hubbard models would be of enormous value in condensed

matter physics and beyond.

Complex oxides offer new opportunities to create a platform for quantum simulation in

a solid-state environment. Their complexity gives access to important quantum phases of

matter, such as superconductivity, where the model Hamiltonians (e.g., 2D Hubbard model)

are challenging to understand theoretically, while their nanoscale reconfigurability makes it

possible to engineer new forms of quantum matter with extreme nanoscale precision [4, 5].

Here we present experiments which constitute a first step towards developing a solid-state

quantum simulation platform based on a reconfigurable complex-oxide material system. Us-

ing conducting atomic force microscope (c-AFM) lithography, we create Kronig-Penney-like

[152] 1D superlattice structures by spatially modulating the potential of a 1D electron waveg-

uide device at the LaAlO3/SrTiO3 interface. Two main effects are found. The superlattice mod-

ulation introduces new fractional conductance features that are believed to be the combined

result of enhanced electron-electron interactions and the new periodic structure. The poten-

tial modulation also significantly enhances the stability of spin-singlet pair transport. The

unique combination of strongly attractive electron-electron interactions, combined with the

engineered properties demonstrated here, hold promise for the development of new families

of quantum materials with programmable characteristics.

C-AFM lithography has been used to create a variety of devices at the LaAlO3/SrTiO3 in-
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terface [33]. A conductive AFM tip, moving in contact with the LaAlO3 surface and positively-

biased with respect to the LaAlO3/SrTiO3 interface, locally creates (“writes”) conducting re-

gions at the interface (Fig. 40(A)), while a negatively biased tip locally restores (“erases”)

the interface to an insulating state. The mechanism behind the writing (erasing) is the local

(de)protonation of the LaAlO3 surface [87, 88]. The protons on the surface create a confin-

ing potential which defines the conducting regions at the interface. This technique achieves

nanoscale control, with precision as high as 2 nm, over the conductivity of the LaAlO3/SrTiO3

interface and most of its properties.

The work described here concerns LaAlO3/SrTiO3 electron waveguide devices [83] that

have been perturbed by a spatially periodic potential, similar to the one first envisioned by

Kronig and Penney [152]. Unperturbed waveguides exhibit highly quantized ballistic trans-

port with conductance steps at or near integer values of the conductance quantum e 2/h . The

subband structure of LaAlO3/SrTiO3 electron waveguides can be described by a waveguide

model which takes into account vertical, lateral, and spin degrees of freedom [83]. Repre-

sentative orbitals for electron waveguides, subject to parabolic lateral confinement and half-

parabolic vertical confinement, are shown in Fig. 40(B), where |m , n , s 〉 is a state specified

by quantum numbers m , n , and s that correspond to the number of lateral (m) and vertical

(n) nodes of the wavefunction, and the spin s . The complete set of states form a basis for

describing extended states along the waveguide direction x . The periodic modulation of the

waveguide may couple different vertical modes (for example those highlighted in black in Fig.

40) with the ground state |0, 0,↑〉. Due to attractive electron-electron interactions, subband

energy minima can “lock" together to form electron pairs [83] that also propagate ballistically.

Pairing in electron waveguides arises from the same electron-electron interactions that give

rise to superconductivity [119]. In some cases, more exotic locking of subbands can occur, e.g.,

the Pascal conductance plateaus which indicate the pairing of n ≥ 2 electron states [129]. The

presence of strong, tunable electron-electron interactions makes these electron waveguide

devices an interesting starting point for engineering 1D quantum systems.
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Figure 40: Schematic of c-AFM writing and 1D vertical superlattice device. (A) C-AFM writ-

ing schematic. A positive bias on the AFM tip protonates the LaAlO3 surface, locally creat-

ing a conducting channel at the LaAlO3/SrTiO3 interface. Modulation of the tip voltage, Vtip,

while writing adds a Kronig-Penny like periodic structure to the electron waveguide device.

(B) Chart showing different representative wavefunctions calculated using a single particle

model for electron waveguide devices [83]. The imposed vertical superlattice structure may

cause mixing of vertical modes of an electron waveguide device, possibly mixing the ground

state with modes highlighted in black. (C) 1D vertical superlattice device schematic. The su-

perlattice is created by first writing the main channel with a positive tip voltage. The same

path is then traced while applying a sinusoidal tip voltage to periodically modulate the con-

fining potential of the device. The superlattice in created in series with two highly transparent

tunnel barriers.
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5.2 RESULTS

1D superlattice devices are created by first writing a conductive nanowire with a constant

positive voltage applied to the AFM tip (Vtip ∼ 10 V). The same path is re-traced along the same

direction while applying a sinusoidally varying tip voltage Vtip(x ) =V0+Vk sin(k x ), to produce

a spatially periodic potential modulation. A short unpatterned waveguide is written in series

next to the superlattice, which helps to control the chemical potential in the device structure

[83]. Four-terminal magnetotransport measurements are carried out in a dilution refrigerator

at or near its base temperature T = 25 mK.

5.2.1 Magnetotransport data

Fig. 41A shows the transconductance d G /d Vsg as a function of out-of-plane mag-

netic field B and side-gate voltage Vsg for 1D vertical superlattice device V1. The transcon-

ductance map provides a visual indication of the subband structure. Purple regions,

where the transconductance is nearly zero, represent conductance plateaus. Bright colored

(red/yellow/green/blue) regions signify increases in conductance that generally correspond

to the emergence of new subbands. White regions indicate negative transconductance, result-

ing from an overshoot in conductance. The transconductance is generally found to be highly

symmetric with respect to the applied magnetic field. By comparison, Fig. 41B shows a calcu-

lated transconductance map for a single-particle model of a straight, unmodulated electron

waveguide. The non-interacting waveguide model includes the geometry of a typical electron

waveguide device as well as vertical, lateral, and spin degrees of freedom, and is described in

more detail elsewhere [83]. The experimental data for the superlattice shows an overall re-

semblance to the waveguide model, except that the subbands are “fractured” into a manifold

of new states with fractional conductances. Fig. 41C shows a series of conductance curves

versus Vsg for a sequence of out-of-plane magnetic fields B , ranging between 0 T (leftmost) to

16 T (rightmost). Curves are offset by ∆Vs g ∼ 7.5 mV/T for clarity and curves at 1 T intervals

are highlighted in black. At low magnetic fields (|B | ≈ 2 T), a plateau at around 1.8 e 2/h devel-

ops before bifurcating into two distinct plateaus, one of which decreases in value, while the
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other increases towards a nearly quantized value of 1.99 e 2/h . The onset of the two plateaus

can be seen clearly in the transconductance (Fig. 41A) as a minigap that appears in the lowest

subband.

5.2.2 Fractional conductance features

In addition to the plateau at 2 e 2/h , many other subband features are readily seen at higher

conductance values. Some of the subbands that make up this additional manifold of states are

shown in more detail in Fig. 42. Conductance curves at several parameter values are shown in

Fig. 42C-E. Corresponding colored boxed, as a guide to the eye, indicate where these curves

exist within the transconductance map (Fig. 42A) and the full range of conductance curves

(Fig. 42B). In Fig. 42B and C there are several conductance plateaus visible. The conductance

increases between these plateaus correspond new subbands, the so-called “fractured” states,

becoming available in the transconductance map. These appear to be fractional subbands as

the increase in conductance between the plateaus are fractions of the conductance quanta

e 2/h . Fig. 42E shows the fractional conductance feature occurring below the 2 e 2/h plateau

in more detail. The feature first appears in the form of a conductance peak then bifurcates

forming the ∼ 2 e 2/h plateau, and a lower fractional conductance feature that evolves down-

ward in conductance with magnetic field.

Data for a second superlattice device (device V2), shown in (Fig. 44), yields qualitatively

similar behavior. The overall subband structure resembles the subband structure of an elec-

tron waveguide device with no superlattice patterning, but the subbands are, like with Device

V1, “fractured” into additional manifolds with fractional conductance plateaus. Device V2

also shares the prominent highly quantized conductance plateau at 2 e 2/h .

5.2.3 Finite-bias spectroscopy

Finite-bias spectroscopy for 1D superlattice device V1 (Fig. 43) reveals a characteristic di-

amond structure in the transconductance. This feature is associated with clean ballistic trans-

port [127, 128] and is due to unevenly populated subbands at large finite biases which give rise

to half-plateaus. The diamond visible in the transconductance corresponds to a fractional
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Figure 41: Magnetotransport characteristics of a 1D vertical superlattice. (A) Transconduc-

tance d G /d Vsg as a function of magnetic field B and side gate voltage Vsg for vertical super-

lattice Device V1. Purple regions indicate zero transconductance, or conductance plateaus.

Bright regions indicate increasing conductance when new 1D subbands become available.

Negative transconductance is indicated in white, mainly in two lobes above the 2 e 2/h plateau

around 5 T. (B) Transconductance spectra for non-interacting single-particle electron waveg-

uide model. (C) Conductance G vs side gate voltage Vsg at magnetic fields from B = 0 T to 16

T for Device V1. Curves are offset by ∆Vs g ∼ 7.5 mV/T for clarity. Curves at 1 T intervals are

highlighted in black.
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Figure 42: Fractional conductance features for vertical superlattice Device V1. (A) Transcon-

ductance map with regions highlighted in colored boxes as a guide to the eye to indicate the

location of the conductance curves. (B) Full conductance curves with colored boxes indicat-

ing corresponding locations in the transconductance map and other conductance panels. (C)

and (D) Conductance curves showing conductance plateaus which correspond to the “frac-

tured” states in the transconductance map. The conductance jump between the plateaus are

fractions of the conductance quanta e 2/h . (E) Conductance curves highlighting the fractional

conductance feature occurring below the 2 e 2/h plateau.
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conductance feature below the 2 e 2/h plateau at around 0.5 e 2/h (circled in pink curve) at

zero-bias and about half that value at finite-bias (circled in blue curve). The presence of this

characteristic diamond structure rules out the likelihood that the fractional features are due

to reduced transmission in the channel.

Control devices, straight unmodulated waveguides (discussed in more detail in Ref. [83,

129] and Chapter 3 and 4), do not show fractional conductances. Although not shown here, the

behavior of such “control” devices consists mainly of conductance plateaus that are quantized

in integer values of e 2/h , i.e., lacking in the fractionalized subbands observed here.

5.3 DISCUSSION

The existence of fractional conductance states in 1D transport is generically an indication

of strong electron-electron interactions. The fractional quantum Hall state [153] is perhaps

the best known and investigated example, although fractional conductances have been ob-

served in 1D quantum point contacts [78, 79] (so-called “0.7 anomaly”). The origin of the

“0.7 anomaly” has been under debate since it was first reported [154], but it has recently been

found that electron-electron interactions play an important role in the formation of the fea-

ture observed at 0.7×(2e 2/h ) [155]. The “0.7 anomaly” has also been observed in 1D quantum

point contacts in MgZnO/ZnO oxide heterostructures [80], where they observe features that

resemble the “N .7 anomaly” below 1D subbands, up to the N = 5 subband. The observation

of the “0.7” shoulder in higher subbands is uncommon in GaAs-based systems and is possibly

due to the strong interactions in this oxide system.

There have been several theoretical predictions of fractional conductance features in few

channel 1D systems with strong electron-electron interactions [156, 157]. Shavit et al. [157]

consider a 1D system with multiple channels and strong (repulsive) electron-electron in-

teractions. The strong electron-electron interactions enable momentum-conserving back-

scattering processes in the nanowires which leads to fractional conductance states. Fractional

conductance features have recently been observed experimentally in several systems includ-

ing strained Ge-based hole quantum wires [158] and GaAs-based quantum wires [159]. The
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Figure 43: Finite-bias spectroscopy for Device V1. (A) Conductance (G ) intensity map as a

function of four-terminal voltage V4t and side gate voltage Vsg, pink and blue dashed lines in-

dicate the locations for the vertical linecuts shown in (C). (B) Transconductance (d G /d Vsg) in-

tensity map as a function of four-terminal voltage V4t and side gate voltage Vsg. The transcon-

ductance map shows the diamond features indicating ballistic transport in the superlattice

devices. (C) Vertical conductance linecuts at V4t = 0 and 90 µV. Circles indicate fractional

conductance values below the ∼ 2 e 2/h plateau (corresponding to the lowest diamond fea-

tures visible in the transconductance map in panel (B)) that become half of their value at a

finite bias. Curves are offset for clarity. Data taken at B = 13 T.
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fractional conductance features were observed at low carrier concentrations when the con-

finement of the wire was relaxed to increase the role of interactions. The presence of strong

(repulsive) electron-electron interactions were essential to the formation of the fractional con-

ductance features.

Unlike the experimental systems discussed above, which have repulsive electron-electron

interactions, a defining characteristic of the LaAlO3/SrTiO3 system is the prevalence of strong

attractive electron-electron interactions [119, 137, 83, 129]. However, attractive interactions

alone do not produce fractional conductance plateaus.

Devices at the LaAlO3/SrTiO3 interface exhibit electron pairing without superconductivity

[119, 83]. In electron waveguides, this interaction causes electron subband energy minima to

lock together, either near zero magnetic field or at re-entrant values, resulting in conductance

steps of 2 e 2/h . The superlattice modulation of the electron waveguides is empirically linked

to enhanced electron pairing fields. The effect is significant: superlattice devices have pairing

fields of BP > 16 T. Control devices written in the same area of the sample (electron waveguide

device W3) show smaller pairing fields BP ∼ 11 T [83]. The enhanced pairing strength appears

to be a consequence of the potential modulation, although the physical mechanism is un-

clear. Superlattices formed by lateral modulation do not always show an enhanced pairing

field [160].

Another effect that is correlated with the vertical modulation is a spin-orbit like effect in

the device. The lowest subband in device V1 (seen in the transconductance map in Fig. 41B)

bends upward at zero magnetic field, so that the minima of the lowest subband are at a finite

magnetic field. This may be due to the engineering of a spin-orbit field, and is not usually

observed in quasi-1D electron waveguide devices at the LaAlO3/SrTiO3 interface. This effect

is more pronounced in lateral 1D superlattice devices [160] (discussed in Chapter 6).

The ability to create new superlattice structures, and modulate interactions in 1D systems,

opens new frontiers in the development of quantum matter. The systems created here focus

on low-dimensional confined structures, which are challenging to create using other meth-

ods. The regular superlattice structure can be replaced with quasiperiodic order, artificially

imposed disorder, topological defects, or combined with lateral perturbations, to name just a

few possibilities. Unlike the Kronig-Penney description, electron-electron interactions play a
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defining role in the resulting quantum phases, and future discoveries of emergent phases in

this family of 1D systems are highly likely.

5.4 ADDITIONAL INFORMATION

5.4.1 Device writing and measurement parameters

Devices V1, V2 and W3 were written in the same location on the LaAlO3/SrTiO3 sample

during different cooldowns. 1D vertical superlattice devices V1 and V2 were written with the

same c-AFM writing parameters. The first pass of the main channel was written with a tip

voltage Vtip = 12 V at a speed of 50 nm/s. The barriers for the electron waveguide had a width

of LB = 5 nm and were separated by LS = 10 nm and created by applying negative voltage

pulses of -9 V at a speed of 5 nm/s. The superlattice was created by applying a tip voltage

Vtip(x ) = 5 V · sin((π/5 nm)x )with 18 periods.

Data was taken at base temperature of a dilution refrigerator T ∼ 30 mK. Transport data

for 1D superlattice devices was taken using standard lockin techniques with an oscillation

amplitude of 1 mV (250µV) at a reference frequency of 11 (13.46) Hz for Devices V1 (V2). More

examples of typical electron waveguide devices can be found in Ref. [83, 129] and Chapters 3

and 4.

5.4.2 Device V2

The transport in Device V2 is not as clean as Device V1. There was also an issue with the

side gate leaking at low side-gate and magnetic field values, causing the data to be distorted.
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Figure 44: Magnetotransport data for vertical superlattice device V2. (A) Transconductance

map d G /d Vsg as a function of side gate voltage Vsg and magnetic field B . Purple regions indi-

cate conductance plateaus, zero transconductance. Red/yellow/green/blue regions indicate

increases in conductance when new subbands become available. White regions indicate neg-

ative transconductance. Colored boxes are guides to the eye indicating the location of high-

lighted conductance curves. (B) Plot showing full conductance data. Conductance curves at

1T intervals are highlighted in black and are offset clarity. (C)-(E) Conductance G as a function

of side gate voltage Vsg curves at different out-of-plane magnetic field B values highlighting

some fractional conductance features..
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6.0 Engineered spin-orbit interactions in LaAlO3/SrTiO3-based 1D serpentine electron

waveguides

This chapter describes experiments studying 1D lateral superlattice devices at the

LaAlO3/SrTiO3 interface. The devices were created by adding a periodic lateral or “serpen-

tine” modulation to electron waveguide devices. Transport measurements reveal fractional

conductance plateaus and evidence of an engineered spin-orbit interaction in the devices.1.

6.1 INTRODUCTION

The quest to understand, design, and synthesize new forms of quantum matter guides

much of contemporary research in condensed matter physics. One-dimensional (1D) elec-

tronic systems form the basis for some of the most interesting and exotic phases of quan-

tum matter [95]. The variety of experimentally-accessible ballistic 1D electronic systems

is highly restricted, and furthermore these systems typically have few tuning parameters

other than electric and magnetic fields. However, electron waveguides [83] formed from

two-dimensional (2D) LaAlO3/SrTiO3 heterointerfaces exhibit remarkable 1D properties, in-

cluding ballistic multi-mode transport and strong attractive electron-electron interaction

[119, 137], but these systems conspicuously lack strong or tunable spin-orbit interactions.

Here we describe a new class of quasi-1D nanostructures, based on LaAlO3/SrTiO3 electron

waveguides, in which a sinusoidal transverse spatial modulation is imposed. Nanowires cre-

ated with this “serpentine” modulation display unique dispersive features in the subband

spectra, namely (1) a significant shift (∼ 7 tesla) in the spin-dependent subband minima, and

(2) fractional conductance plateaus, some of which are continuously tunable with a magnetic

field. The first property can be understood as an engineered spin-orbit interaction associated

with the periodic acceleration of electrons as they undulate through the nanowire (ballisti-

cally), while the second property signifies the presence of enhanced electron-electron scat-

1This chapter is in preparation in another form for submission to Nature Physics.
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tering in this system due to the imposed periodic structure. The ability to engineer these in-

teractions in quantum wires contributes to the tool set of a 1D solid-state quantum simulation

platform.

One approach to the grand challenge of understanding new states of quantum matter is

through “quantum simulation”, the creation of a highly configurable many-body quantum

system is developed in which its Hamiltonian description can be related to relevant physi-

cal models [1, 12, 13]. Quantum simulation necessarily requires a physical platform that can

be configured to match or approximate the system of interest. Among the many quantum

systems being developed for this purpose, ultracold atoms trapped within standing waves of

light [15] have been particularly successful, in large part because the model Hamiltonians are

well characterized and based upon a fundamental understanding of the constituent atomic

systems. For example, hyperfine states of trapped ions have been greatly successful in simu-

lating classes of spin chains [18, 19]. Superconducting networks can also be used to simulate a

wide range of Hamiltonians [20], while atom-scale manipulation (e.g., donor atoms in silicon

[161] or arrangements of CO molecules [162]) has successfully emulated band structure and

topological phases.

The type of quantum systems that can be explored in a quantum simulator is often limited

by the available interactions of the host material. To increase the available physical interac-

tions, a variety of pseudo-magnetic fields [163, 164], gauge fields [165], and spin-orbit inter-

actions [166], can be added. Inter-particle interactions can be controlled in a variety of ways,

e.g., via Feshbach resonance in atomic systems, or by coupling to a polarizable medium [134].

The complex-oxide SrTiO3 possesses a wide range of gate-tunable properties that include

superconductivity, magnetism, ferroelectricity, and ferroelasticity [33]. Using a conductive

atomic-force microscope (c-AFM) lithography technique, the LaAlO3/SrTiO3 interfacial con-

ductivity (and related properties) can be programmed with a precision of two nanometers

[4, 5], comparable to the mean separation between electrons. The combination of a rich

palette of intrinsic properties and the ability to form complex nanostructures provides a suit-

able foundation for the creation of a 1D quantum simulation platform.

A useful starting point for developing programmable 1D quantum systems is the

LaAlO3/SrTiO3 electron waveguide [83]. These devices exhibit highly-quantized ballistic
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transport, in which the conductance is quantized in units of e 2/h , where e is the electron

charge and h is the Planck constant. Each of the N occupied 1D subbands (arising due to ver-

tical, lateral, and spin degrees of freedom) contributes one quantum of conductance to the

total conductance G =N e 2/h . A variety of correlated electronic phases have been identified,

including a paired liquid phase [119, 83], re-entrant pairing [83], and a family of emergent

composite electron liquids comprised of bound states formed from 2,3,4,... electrons [129].

The calculated wavefunctions of a representative electron waveguide device are shown in Fig.

45C, where the state |m , n , s 〉 is indentified by its quantum numbers m , n , and s that char-

acterize the transverse orbital and spin degrees of freedom. Much of the unusual transport

characteristics come from interactions between these various electronic subbands.

One property that appears to be lacking (or weak) in LaAlO3/SrTiO3 electron waveg-

uides is spin-orbit coupling. Gate-tunable spin-orbit coupling has been reported at the 2D

LaAlO3/SrTiO3 interface [47, 48]; however, detailed modeling of the subband spectra have

ruled out such interactions for the most part in 1D quantum wires [83]. Strong spin-orbit in-

teractions are believed to be the “missing ingredient” in efforts to create Majorana zero modes

[167, 168] in these 1D quantum wires. A reasonable goal is therefore to engineer spin-orbit in-

teractions in quantum wires, using the nanoscale control enabled by c-AFM lithography.

Here we present transport experiments on ballistic electron waveguides that are perturbed

by a periodic transverse (“serpentine") spatial modulation (Fig. 45). Conductive nanostruc-

tures are created at the LaAlO3/SrTiO3 interface using a positively-biased c-AFM tip placed in

contact with the LaAlO3 surface, locally switching the interface to a conducting state because

of local protonation of the LaAlO3 surface [87, 88]. We perturb the electron waveguide struc-

ture by superimposing a periodic transverse modulation to the device (Fig. 45). The path for

a sinusoidal waveguide oriented along the x direction is given by y (x ) = y0+ yk sin(k x ), where

y0, yk and k are parameters that can be programmed. The impact of this modulation on the

transverse mode, expressed using the basis of unperturbed states (|m , n , s 〉), is expected to be

dominated by the |1, 0, s 〉 state, with a higher correction from the |2, 0, s 〉 state (Fig. 45B).
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Figure 45: Conductive AFM writing and device schematic for lateral superlattice devices. (A)

Nanowires created at the LaAlO3/SrTiO3 interface using c-AFM lithography. A positively-

biased AFM tip protonates the surface, causing electrons to accumulate at the interface. 1D

serpentine superlattice devices are created by laterally modulating the tip position on the

LaAlO3 surface. (B) Representative wavefunctions calculated for an electron waveguide de-

vice with vertical, lateral, and spin degrees of freedom [83]. The serpentine motion of the

superlattice couples the ground state of the waveguide with different lateral modes of the

waveguide (modes circled in black). (C) Schematic for the 1D serpentine superlattice devices.

C-AFM written paths (green lines) represent the device and are connected to interface elec-

trodes (yellow). The serpentine lateral modulation is bracketed by highly transparent tunnel

barriers similar to those used to create electron waveguide devices [83]. The voltage/current

leads are used to take a 4-terminal measurement of the device. A local side gate is also created

using c-AFM lithography. A voltage applied to the gate (Vsg) changes the chemical potential of

the device.
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6.2 RESULTS

6.2.1 Magnetotransport data

Four-terminal magnetotransport data for a serpentine superlattice (Device L1) is shown

in Fig. 46. Measurements are taken at or near the base temperature of a dilution refrigerator

(T = 25 mK), as a function of out-of-plane magnetic field |B | ≤ 18 T and chemical potential

µ, which is controlled by the voltage on a local side gate. Device design parameters are sum-

marized in Table 5. The four-terminal conductance G as a function of µ and B (Fig. 46A)

shows quantized plateaus that result from Landauer quantization, similar to what is observed

for unperturbed (straight) electron waveguides. In addition, the device shows a number of

fractional conductance plateaus. Two features are highlighted in red, and shown in expanded

detail in Fig. 46C. The conductance value of the fractional feature at high B field evolves down

from the∼ 1 e 2/h plateau, reaching a value of∼ 0.4 e 2/h at B = 18 T. A smaller fractional con-

ductance feature, ∼ 0.2 e 2/h near zero magnetic field, remains stable until about B = 1 T, and

then decreases in magnitude with increasing B field before disappearing at B ≈ 5 T. Several

fractional conductance states are observable at higher overall conductances, which are also

tunable with a magnetic field, e.g., a feature between 1.5 e 2/h and 1.8 e 2/h . In many instances,

there is significant overshoot (resulting in parameter regimes for which d G /dµ < 0) before a

plateau is reached.

Transconductance maps d G /dµ, when plotted versus B and µ (Fig. 46B) provide ad-

ditional insight into the transport characteristics of these serpentine superlattices. In the

color scheme, bright green/yellow/red regions (d G /dµ > 0) represent increases in conduc-

tance that generally correspond to introduction of new 1D subbands. Dark blue regions

(d G /dµ ≈ 0) represent flat conductance plateaus, while purple regions (d G /dµ < 0) cor-

respond to regions of negative transconductance. One standout feature of the transconduc-

tance is a shifting of the lowest subband minima to a non-zero value of the magnetic field

(B = −7.4 T and B = 7.1 T). In this range of magnetic fields, a large overshoot in the con-

ductance is also observed, followed by a region of decreasing conductance. A second feature,

observed in two ranges of magnetic field, is the existence of magnetic-field-tunable plateaus,
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Figure 46: Magnetotransport for serpentine superlattice Device L1. (A) Conductance, G , plot-

ted as a function of chemical potentialµ and applied magnetic field B from 0 T (leftmost) to 18

T (rightmost). Curves are offset for clarity. Fractional conductance features below the 1 e 2/h

plateau are highlighted in red. (B) Transconductance d G /dµ as a function of magnetic field B

and chemical potential µ. Light (red/yellow/green) regions indicate increasing conductance,

i.e. when new subbands become available. Dark blue regions indicate zero transconductance

or conductance plateaus. Purple regions are regions of negative transconductance and indi-

cate decreasing conductance. The minima of the lowest subband occurs at finite B field val-

ues, highlighted with pink arrows. (C) Zoom in of the fractional conductance features below

the 1 e 2/h plateau. Curves at 1 T intervals are highlighted in black.
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seen near zero magnetic field and in the range 12−18 T as gaps in the lowest subband.

Qualitatively similar behavior is also observed for Device L2 (Fig. 49), which is created in

a similar manner. Unlike Device L1, Device L2 shows excess conductance characteristic of

superconductivity near zero magnetic field rather than a fractional conductance plateau (Fig.

50). The transconductance map (Fig. 49B) also shows some asymmetries in field which are

due to slow temporal drifting of the chemical potential.

6.2.2 High magnetic field fractional conductance feature

6.2.2.1 Temperature dependence Next the high magnetic field fractional conductance

feature in Device L1 is examined as a function of temperature T and µ at B = 18 T (Fig. 47).

At the lowest temperature (T = 25 mK) the fractional feature appears as a dip in the conduc-

tance at around 0.4 e 2/h . The dip flattens out with increasing temperature until it disappears

at ∼ 200 mK. The 1 e 2/h plateau however is smeared out at higher temperatures but persists

up to 750 mK, the highest temperature that was measured. Fig. 47B shows the transconduc-

tance map d G /dµ as a function of µ and T . All temperatures reported were measured at the

mixing chamber stage of the dilution refrigerator.

6.2.2.2 Finite-bias spectroscopy We also studied the finite-bias spectroscopy of the frac-

tional conductance feature B = −18 T. The conductance and transconductance maps as a

function of four-terminal voltage V4t and side gate voltage Vsg are shown in Fig. 48A and B,

respectively. Linecuts of the conductance at zero bias and at a finite bias of V4t = 75 µV are

shown in Fig. 48C. The transconductance map shows a diamond structure characteristic of

transport for ballistic systems [127, 128]. Large finite biases give rise to half-plateaus due to

unevenly populated subbands. The diamond structure implies that the conductance features

are not the result of energy-dependent transmission through the device. The value of the fea-

ture at zero bias is around 0.3 e 2/h and is reduced to approximately half that value at finite

bias, 0.15 e 2/h .
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B = 18 T

A B

Figure 47: Temperature dependence of Device L1. (A) Conductance G as a function of chem-

ical potential µ at B = 18 T for temperatures from T = 745 mK to 25 mK. Temperatures are

measured at the mixing chamber of the dilution refrigerator. (B) Transconductance d G /dµ

vs temperature T and chemical potential µ. The fractional conductance feature disappears

at around 200 mK, while the 1 e 2/h conductance plateau is still visible at 745 mK, the highest

measured temperature.
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Figure 48: Finite-bias spectroscopy for Device L1. (A) Conductance map for Device L1 at

B =−18 T as a function of 4-terminal voltage V4t and side gate voltage Vsg. Conductance line-

cuts at V4t = 0 V and 75 µV are shown in (C). (B) Transconductance map corresponding to

panel (A). Red and blue arrows indicate locations of line cuts in (C). The transconductance

maps shows the diamond feature characteristic of ballistic transport. Conductance linecuts

show fractional conductance features below the 1 e 2/h plateau. At zero-bias the conductance

feature appears at ∼ 0.3 e 2/h and at finite-bias at around half that value ∼ 0.15 e 2/h . Curves

are offset for clarity. All data taken at T = 25 mK.
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6.3 DISCUSSION

By perturbing the path of a ballistic electron waveguide, we find that it is possible to modify

the spin-dependent subband structure in a manner that is consistent with an engineered spin-

orbit interaction and results in the creation of new fractional conductance states. The origin

of the spin-orbit interactions can be understood in a few different ways. The most naive ex-

planation recognizes that the serpentine path of the electrons exposes propagating electrons,

with momentum ~k = k x̂ , to a spatially periodic alternating electric field, ~Eeff(x ) = E0sin(k x ) ŷ ,

which, in the moving reference frame of the electrons, corresponds to an alternating effective

magnetic field field ~BSO∝ ~k × ~Eeff that is aligned with the ẑ axis. The resulting spin-orbit field

is expected to cause a spin-dependent energy shift of the subband minima by ±| ~BSO|, consis-

tent with our experimental findings (Fig. 46B). A more sophisticated approach would take into

account the fact that, in the basis of the unperturbed (straight) nanowire, the matrix elements

that lead to hybridization with other lateral modes (highlighted in Fig. 45B) are significantly

enhanced in the serpentine waveguide, and hence the magnitude of the Rashba spin-orbit

interaction is correspondingly enhanced. Details of such a calculation are beyond the scope

of this thesis, but are nevertheless important for describing numerically-accurate models of

the engineered spin-orbit interactions.

The second main experimental observation concerns the fractional conductance plateaus

which exist both in zero magnetic field as well as higher magnetic fields. In some cases the

plateaus are preceded by conductance peaks. Fractional conductance states are typically an

indication of strong electron-electron interactions. Well known examples are the fractional

quantum hall effect [153], and the “0.7” anomaly which is commonly observed in quantum

point contact devices [154] and which is attributed to strong interactions [155]. There have

been theoretical predictions of fractional conductance states in clean 1D systems with few

channels and strong (repulsive) electron-electron interactions [156, 157]. Oreg et al. [156]

studied 1D wires with spin-orbit coupling and found that in wires with strong interactions and

low densities, fractional quantized conductances were predicted. These fractional states arise

due to correlated scattering processes from different channels that can lead to fractional con-

ductance plateaus at various rational fractions. The underlying scattering process relies on
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two ingredients: (1) multiple channels from which to scatter in the forward and reverse direc-

tions, and (2) strong electron-electron interactions that support these correlated exchange of

momenta. The Shavit-Oreg theory [157]was recently compared to experiments from Kumar et

al. [159], in which fractional conductance plateaus were observed in 1D GaAs-based quantum

wires at similar fractional values to those observed here. While both the GaAs-based 1D wire

and the LaAlO3/SrTiO3 nanowires are ballistic, the nature of the electron-electron interactions

is fundamentally different for these two materials. That is to say, in GaAs it is repulsive, while

in LaAlO3/SrTiO3 it is strongly attractive [119, 137, 83, 129]. The fact that such similar phenom-

ena are identified in both systems is interesting and raises the question: to what extent can

the LaAlO3/SrTiO3 system be modeled as a system with effectively repulsive interactions? It is

known theoretically that there is a mapping between the repulsive-U and attractive-U Hub-

bard models [169]. Perhaps this mapping can be used to understand the attractive side of the

phase diagram.

Quasi-1D superlattice devices with engineered properties may provide a building block

for more complex quantum systems, for example, topological phases in coupled arrays of

quantum wires [72, 170, 73]. It may also be possible to observe Majorana fermions in this

system [171]. There are four ingredients needed to observe Majorana zero modes in nanowire

systems: one-dimensional quantum wires, superconductivity, spin-orbit interactions, and a

magnetic field [167, 168]. With the engineering of a spin-orbit interaction we may have the

missing ingredient in LaAlO3/SrTiO3 nanowire devices. It is also worth emphasizing that these

are real electronic materials and not just simulations, with engineerable properties that can

be integrated with other materials or incorporated into real electronic devices.
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Figure 49: Magnetotransport for serpentine superlattice Device L2. (A). Conductance G as a

function of chemical potential µ for device L2. Curves are at different applied out-of-plane

magnetic field values from 0 T to 18 T. A fractional conductance feature is observed below the

1 e 2/h plateau at high magnetic fields (highlighted in red). (B) Transconductance map as a

function of magnetic field B and chemical potentialµ. An overall drift while gating effects the

subband structure of this device. (C) Zoom in of the high field fractional conductance feature.

Curves at 1 T intervals are highlighted in black. All data taken at T = 25 mK.
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Figure 50: Finite-bias spectroscopy for Devices L1 and L2 (A) Conductance d I /d V as a func-

tion of four-terminal voltage V4t and side gate voltage Vsg for Device L1 at B = 0 T. (B) Zero

bias (V4t = 0 V) conductance line cut of Device L1. (C) Transconductance map d G /d Vsg as a

function of four-terminal voltage and side gate voltage. (D) Conductance d I /d V for Device

L2. This device shows signatures of superconductivity near zero bias. (E) Conductance line-

cut for Device L2. (F) Transconductance d G /d Vsg for Device L2. All data taken at B = 0 T and

T = 25 mK.
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7.0 Engineered chirality of one-dimensional LaAlO3/SrTiO3 nanowires

This chapter describes experiments studying 1D chiral superlattice devices at the

LaAlO3/SrTiO3 interface. The devices were created by adding both vertical and lateral peri-

odic modulation to electron waveguide devices. Transport measurements reveal oscillations

in the conductance from an engineered axial spin-orbit coupling due to the 1D chiral super-

lattice structure.1

7.1 INTRODUCTION

Quantum transport in 1D geometries is fascinating in its own right, but it can also be

regarded as a building-block for a variety of quantum devices. We have developed a flexi-

ble platform for creating 1D nanostructures at the LaAlO3/SrTiO3 interface using a conduc-

tive atomic force microscope lithography technique. Straight nanowire segments behave as

electron waveguides with subband occupation that can be tuned with a gate and an external

magnetic field. We can periodically perturb this waveguide, with 10 nm periodicity, in two

ways. “Kronig-Penney” type modulation results in periodic vertical displacement of the elec-

tron waveguide, and sinusoidal lateral displacement of the nanowire can also be achieved.

Combining the two perturbations in quadrature yields a chiral nanowire which exhibits strik-

ing oscillatory transmission as a function of both magnetic field and chemical potential. We

discuss these results in terms of an engineered axial in-plane spin-orbit interaction within the

spiral electron waveguide.

One of the most vexing mysteries in biology is the pervasiveness of chirality or handed-

ness at the molecular level. The relationship between chirality and spin-polarized electron

transport has been investigated for two decades, following pioneering work by Namaan and

Waldeck [172] showing that chiral proteins and molecules exhibit the chiral-induced spin se-

lectivity (CISS) effect. It has been postulated that molecular chirality produces an axial spin-

1This chapter is in preparation for submission to Nature Physics.
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orbit interaction that locks the electron spin and momentum, inhibiting back scattering, and

providing a rationale for the prevalence of chirality in life forms [173]. There have been nu-

merous reports linking spin-polarized transport to molecular chirality. However, there are no

measurements that directly probe the quantum nature of transmission through a single chiral

molecule or nanostructure.

One approach to understanding electron transport in chiral quasi-one-dimensional

(quasi-1D) structures is via experimental “quantum simulation" [1]. With this approach, a

quantum system of interested is mapped onto a configurable quantum system whose param-

eters can be adjusted to match the system of interest. Ultracold atoms in optical lattices have

been used to simulate a wide range of many-body Hamiltonians in two spatial dimensions

[14, 174, 175, 27]. They have also been used to engineer gauge fields and spin-orbit interac-

tions [163, 165], and have been used to create quantum point contacts and exhibit quantized

transport [176]. Other solid-state approaches to 1D quantum simulation include transport

studies in periodic superlattices, created using split gates in a GaAs/AlGaAs heterostructure

[177, 178].

Here we describe experiments in which chiral quasi-1D nanostructures are “simulated"

within LaAlO3/SrTiO3 heterostructures using conductive atomic force microscope (c-AFM)

lithography [4, 5] (Fig. 51A). A positively biased AFM tip in contact with the LaAlO3 locally

switches the LaAlO3/SrTiO3 interface to a conductive state (“writes"), while a negatively biased

AFM tip locally restores the insulating phase (“erases"). The writing (erasing) mechanism is

attributed to local (de)protonation of the LaAlO3 surface [87, 88]. The adsorbed protons create

a potential landscape that defines conducting regions at the interface. The high spatial resolu-

tion of this technique (2 nm), combined with strong intrinsically attractive electron-electron

interactions [119, 137, 129]make this system interesting as a platform for quantum simulation

of a wide range of 1D and 2D nanostructures.

The chiral nanowires described below are derived from a well-characterized method for

producing highly ballistic electron waveguides [83]which also exhibit strong electron pairing

in the absence of superconductivity [119, 83], under applied magnetic fields that fall below

a critical “pairing" field BP . The conductance of these devices is quantized in units of e 2/h ,

where e is the electron charge and h is the Planck constant. The total conductance G =N e 2/h
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represents ballistic transport from N occupied subbands (with distinct vertical, lateral, and

spin degrees of freedom). For much of the phase diagram (parameterized by external plane-

perpendicular magnetic field B and side-gate voltage Vsg or chemical potential µ = αVsg), a

single-particle description [83] qualitatively captures the observed transport behavior. But

there are several parameter regimes where the single-particle model fails to capture the ob-

served transport behavior. In particular, it is found that below a “pairing field" |B | < BP , the

ground state consists of electron pairs with corresponding conductance 2e 2/h . Above this

field, the electron pairs Zeeman split (and occasionally form re-entrant pairs and more com-

plex structures [129].

Chiral nanowires are created through a combination of two different types of perturbation

of the “straight" quantum wire. The first perturbation involves replacing a straight section of

the nanowire with a shape that varies in space sinusoidally. The path for a horizontal sinu-

soidal waveguide is given by y (x ) = y0 + yk sin(k x ), where y0, yk and k are parameters that

can be programmed. The second perturbation involves performing c-AFM lithography with a

sinusoidally varying tip voltage: Vtip(x ) = V0+Vk sin(k x +φ). Combining these two perturba-

tions withφ =±90◦ (Fig. 51B) yields a chiral device structure. The expected impact of the two

perturbations on the local electron density are: lateral disturbances of the wavefunction due

to the horizontal motion of the first perturbation, while voltage modulations are expected to

displace the wavefunction in the z direction. Together, a chiral shaped path of the electron

is expected to result from these perturbations, with the helicity being controlled by the phase

shiftφ.

A schematic of device H1 is shown in Fig. 51C. The helical superlattice section of the device

(right) is written with a sinusoidal modulation of the tip voltage (V0 = 10 V, Vk = 5 V, φ = 90◦),

and a lateral modulation amplitude (yk =5 nm, 2π/k =10 nm), with 34 total periods. The su-

perlattice is surrounded by two straight segments written with Vtip = 12 V, in which highly

transparent tunnel barriers [83] are created by applying negative voltage pulses Vtip =−10 V to

the tip while writing. The left side of the device contains a “control" waveguide section that

is straight and written with a constant tip voltage of Vtip = 12 V and bracketed by two highly

transparent tunnel barriers, created with negative voltage pulses Vtip = −10 V. A side gate is

also created using c-AFM lithography, (Vsg) which enables the chemical potential of both the
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“chiral" and “control” device to be varied. The control and chiral waveguides can be inde-

pendently characterized using four-terminal transport measurements, sharing only the small

section between leads 3 and 4. The tip position and voltage while writing a helical superlattice

device are shown in Fig. 15.

7.2 RESULTS

7.2.1 Magnetotransport data

The 4-terminal conductance of 1D superlattice Device H1 as a function of the chemical

potential µ, for magnetic fields ranging between 0 T and -18 T is shown in Fig. 52A. Chemical

potential values are calculated by finding the lever arm to convert applied side gate voltage to

chemical potential [83]. Positive and negative magnetic field sweeps show similar transport.

Each curve is taken at a different applied magnetic field B from B = 0 T on the left to B =−18 T

on the right, with curves at 1 T intervals highlighted in black. The curves are offset for clar-

ity. Conductance curves show plateaus at values close to quantized values G = 2 e 2/h and

G = 4 e 2/h up to B = −18 T. At low values of magnetic field the 2 e 2/h plateau is not visible,

but there is a feature close to 4 e 2/h . Fig. 52B shows the transconductance d G /dµ for the su-

perlattice device. The transconductance is calculated by numerical differentiation of the con-

ductance curves in Fig. 52A. The bright red/yellow regions correspond to increases in conduc-

tance, when new subbands become occupied. The blue regions correspond to conductance

plateaus. The purple regions correspond to decreases in conductance. This transconductance

map reveals oscillations/interference patterns in the conductance, purple bands in the region

above the lowest subband. These oscillations are at an angle, indicating that they depend both

on the strength of the magnetic field and on the chemical potential (energy of electrons in the

device). Line cuts of the transconductance and conductance highlighting these oscillations

are shown in Fig. 53B and Fig. 53C. Vertical conductance line cuts show that the conductance

initially rises above G = 2 e 2/h then falls back down to ∼ 2 e 2/h . The number of oscillations

increase as the magnetic field is increased. Fig. 53C at B = 5 T shows one oscillation which
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Figure 51: Chiral superlattice device schematic. (A) Conductive atomic force microscope (c-

AFM) lithography is used to create conducting channels at the LaAlO3/SrTiO3 interface. (B)

Schematic of a chiral nanowire at the LaAlO3/SrTiO3 interface. Vertical and lateral modula-

tions of the tip voltage and tip position respectively creates a helical nanowire at the interface.

(C) Schematic of Device H1. The device has two sections: a control waveguide (left) and he-

lical superlattice (right). Each section of the device can be probed independently with a 4-

terminal measurement, sourcing current through only the section of interest and measuring

the voltage drop across that section. Both sections are bracketed by two highly transparent

tunnel barriers
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increases to 2 oscillations at B = 6 T. The magnitude of the oscillations become suppressed at

high magnetic field values, but they are still faintly visible, and even at B =−18 T the conduc-

tance still overshoots then decreases back down to 2 e 2/h . The number of oscillations also

increases with increasing values of µ shown in the horizontal line cuts of the transconduc-

tance map in Fig. 53B.

Fig. 52C,D shows the conductance and transconductance data from the adjacent con-

trol electron waveguide section of Device H1. There are a number of differences between the

superlattice and the control waveguide sections of Device H1. There are no oscillations ob-

served in the control device, there is no overshoot and then suppression of the conductance,

it is always rising with increasing gate and B field values. It also shows a pairing field, where

the lowest subband spin splits, and goes from a conductance step of G = 2 e 2/h to steps of

1 e 2/h , at around B = 8 T. At low magnetic field values there are steps/features visible at 2

and 4 e 2/h (different than the superlattice which initially shows features only at 4 e 2/h).

7.2.2 Finite-bias spectroscopy

Finite bias spectroscopy for the superlattice section of Device H1 is shown in Fig. 54. Fig.

54A shows the conductance map as a function of V4T and side gate Vsg at B = 0 T and the

corresponding superconducting peak in the conductance. Fig. 54B shows an I -V curve for

the helical superlattice section with a superconducting critical current of around 10 nA. I -

V curves for the control device do not show a similar superconducting feature. Fig. 54D,F

show the conductance and transconductance of the helical superlattice section at B = 8 T.

The transconductance map reveals characteristic diamonds [127, 128]which indicate that the

transport in the device is ballistic. The finite bias spectroscopy is used to find the lever arm of

both sections of the device and calculate the chemical potential.

7.2.3 1D superlattice device H2

Data from Device H2 is shown in Fig. 55. This device was written with the same lateral

modulation parameters, but the vertical modulation was first written with a constant tip volt-

age Vtip = 10 V, then the same path was written modulating the voltage Vtip = ±2.5 V. This
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Figure 52: Device H1 transport data. (A) Conductance data for the helical superlattice sec-

tion of Device H1. Conductance G vs chemical potential µ, each curve is at a different ap-

plied magnetic field from B = 0 T to B = −18 T. Curves at 1 T intervals are highlighted in

black. Curves are offset for clarity. (B) Transconductance d G /dµ as a function of magnetic

field B and chemical potential µ. Bright (red/yellow/green) regions indicate increases in the

conductance when new subbands become occupied. Light blue regions are zero transcon-

ductance and indicate conductance plateaus. Dark regions (purple/dark blue) are negative

transconductance and indicate decreases in conductance. (C) Conductance data for the con-

trol waveguide section of the device. (D) Transconductance map of the control section of the

waveguide. Data taken at T = 25 mK.
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Figure 53: Line cuts showing oscillations in Device H1. (A) Transconductance d G /dµ show-

ing oscillations in the region of the 2 e 2/h plateau, the region between the lowest subband and

the next subband (bright red and yellow regions). (B) Horizontal line cuts of the transconduc-

tance data as a function of magnetic field B . Each curve is taken at increasing values of chem-

ical potential µ, curves are offset for clarity. (C) Vertical line cuts showing conductance values

as a function of µ at different magnetic field values. (D) Schematic of how the helical super-

lattice device effects the electrons in the device. The applied external field and engineered

spin orbit field from the superlattice create a new effective field inside the superlattice. When

spins, polarized in the z direction, enter the superlattice portion of the device they precess

around the new effective field. If they don’t make a full precession by the time they exit the

superlattice the conductance will be suppressed giving rise to the oscillations.
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Figure 54: Finite bias spectroscopy for the chiral superlattice section of Device H1. (A) IV curve

spectroscopy for Device H1 at B = 0 T. (B) 4-terminal voltage as a function of current for the

helical superlattice section at B = 0 T and Vsg = 70 mV showing the superconducting state

with a critical current of around 10 nA. (C) Horizontal linecut of the conductance map in (A)

at Vsg = 70 mV showing the peak in conductance corresponding to the superconducting state.

(D) IV curve spectroscopy at B = 8 T. (E) Vertical line cut at zero bias showing the conductance

steps. (F) Transconductance showing characteristic diamond structure of ballistic transport

through the superlattice device.
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writing process is similar to how the electron waveguide devices are created. This device also

shows oscillations in conductance above the G = 2 e 2/h plateau (Fig. 55D). Additionally there

are some periodic features in the lowest subband which are visible in Fig. 55C. In the conduc-

tance these features are due to a periodic change in the slope of the conductance jump from

an insulating state to the 2 e 2/h plateau. The features in device H2 are qualitatively similar;

the amplitude of the oscillations decreases and the number of oscillations increases at higher

magnetic fields. There is also a high conductance feature at low B fields.

We have observed qualitatively similar oscillations in conductance in several helical de-

vices, though not all helical superlattice devices show these types of oscillations. Devices with

only lateral or vertical modulations or unmodulated control electron waveguide devices do

not show the oscillations, over 50 superlattice devices were studied.

7.3 DISCUSSION

The helical motion of electrons in chiral materials (like DNA) is predicted to produce an ax-

ial magnetic field BSO [173]. Fig. 53D shows a schematic of how this engineered axial spin-orbit

magnetic field can produce oscillations in the transport through a helical superlattice device.

The engineered axial magnetic field in the x direction and the applied external magnetic field

in the z direction will produce an effective magnetic field in the superlattice. Electrons in the

straight portion of the device will be spin polarized in the direction of the applied magnetic

field. As they enter the superlattice they will begin to precess around the new quantization

axis of the effective B field. If they do not make a complete number of precessions by the time

they exit the superlattice the conductance will be suppressed, leading to the observed oscil-

lations. The precession will depend on the orientation of the effective field, which changes

with the strength of the applied B field, and also the energy of the electrons (how quickly they

move through the superlattice), which changes with the chemical potential. The oscillations

appear on top of a base conductance of G = 2 e 2/h , these paired electrons are a spin singlet,

and won’t be effected by this spin-orbit field. Observation of 4 e 2/h feature at low B fields in

the superlattice devices is another possible indication of an engineered spin-orbit interaction.
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Figure 55: Magnetotransport data from helical superlattice Device H2. (A) Conductance data

as a function of µ, curves are at different magnetic field values from B = 0 T to B = −18 T,

curves are offset for clarity. The value of the first conductance plateau is at G = 2 e 2/h up to

high magnetic field values, although there is a feature that appears at around B = 15 T. (B)

Transconductance d G /dµ as a function of magnetic field B and chemical potential µ. Data

is symmetrized. (C) Conductance line cuts at three magnetic field values showing the oscil-

lations with a base conductance values of G = 2 e 2/h . The number of oscillations increases

with increasing B field. (D) Zoom in of the transconductance showing the oscillations and the

lowest subband. Oscillations also appear in the lowest subband, where the conductance is

increasing (bright regions) as well as on the plateau (dark regions).
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The superlattice section of the device also exhibits a stronger pairing field than the control

electron waveguide section. The pairing field in the superlattice is enhanced to B = 18 T,

the highest applied magnetic field, while the adjacent control section has a pairing field of

B ∼ 8 T. The mechanism for the pairing seen in electron waveguide devices is unknown but

several of the periodic modulations discussed here have shown an enhanced pairing effect in

superlattice devices.

We have demonstrated the use c-AFM lithography to create chiral 1D superlattices at the

LaAlO3/SrTiO3 interface by adding a periodic modulation to an electron waveguide device.

This 1D superlattice appears to engineer an axial spin-orbit interaction in the nanowire which

causes oscillations in the conductance that are dependent on both the external applied mag-

netic field and the applied side gate voltage, or energy, of the device. This is a first step towards

developing a quantum simulation platform using this oxide heterostructure system which is

configurable on the nanoscale and has exhibited strongly correlated phases. The advantage of

this system a quantum simulation platform is that these are real electronic devices that can be

incorporated (along with their engineered properties) into other systems. They also naturally

support some of the interesting many body physics being studied using quantum simulation.

The challenges are that the Hamiltonian of the system is not precisely understood (as it is with

cold atoms in optical lattices). But it is the hope that the results of these experiments can be

compared with effective 1D model Hamiltonians to bridge experiment and theory and enable

quantum simulation of more complex systems.
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8.0 Conclusions

The experiments presented in this thesis represent the first steps toward developing a solid

state quantum simulation platform using the complex oxide heterostructure LaAlO3/SrTiO3.

This material is configurable on the nanoscale and hosts both superconductivity and strong,

tunable electron-electron interactions, making it a very promising platform for both engineer-

ing and simulating quantum systems. Future work will involve expanding on the 1D superlat-

tice devices presented here. For example, the flexibility of the c-AFM lithography technique

will enable the creation of 1D superlattices geometries that are different than the lateral, ver-

tical, and chiral devices presented here. By engineering spin-orbit coupling in one dimension

it may be possible to observe Majorana fermions in LaAlO3/SrTiO3 nanowire devices. Further

study of 1D superlattices in rotated magnetic fields and using low temperature scanning probe

microscopy will help shed light on the engineered properties of these devices. 2-dimensional

(2D) devices, composed of 2D lattices or arrays of 1D nanowires, could also be created.

The straight waveguide devices discussed in Chapters 3 and 4 are highly reproducible. The

superlattice devices presented in Chapters 5-7, however, show many qualitatively similar fea-

tures but it has been difficult to create the same features from device to device. Reproducibil-

ity will need to be improved in order to develop the tools needed to engineer properties on

demand. One approach to device reproducibility is to better understand the role ferroelas-

tic domain walls play in the transport properties. The effect of ferroelastic domains on 1D

devices at the LaAlO3/SrTiO3 interface is an area of current research that may have a large im-

pact on 1D superlattice reproducibility. Thermal cycling of LaAlO3/SrTiO3 samples has shown

that the ferroelastic domain formation can vary greatly [61]. It has become increasing appar-

ent that the formation of ferroelastic domains plays a large role in the 1D transport at the

LaAlO3/SrTiO3 interface [64, 179].

Patterning conducting nanowires using c-AFM lithography may offer a method to seed

the formation of the ferroelastic domains along defined directions [89]. The geometry of the

1D nanostructures may also help to pin the ferroelastic domains, as shown in nanoscale Hall

crosses [179]. Further evidence of domain wall seeding and pinning is shown in “zigzag”
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Figure 56: Enhanced superconductivity in zigzag nanowire devices. (A) d I /d V for a zigzag

shaped nanowire showing a zero resistance superconducting state. (B) d I /d V for a straight

nanowire section showing a weaker superconducting state with a finite resistance. T = 50 mK

and B = 0 T for both curves.

shaped nanowire devices, which have been found to have enhanced superconductivity when

compared to straight nanowires. As shown in Fig. 56A, the superconducting state in a zigzag

wire has a lower resistance and a larger critical current than the superconducting state in a

straight nanowire (Fig. 56B). Superconductivity was found to exist at the domain boundaries

(which form along crystallographic axes) [64], and zigzag shaped nanowire devices could fa-

cilitate the formation of more well-defined domain walls. The ability to reliably control the lo-

cation of domain boundaries, using c-AFM lithography or other methods, could have a great

impact on the reproducibility of transport in 1D devices at the interface.

120



Appendix A Instrumentation

A.1 ATOMIC FORCE MICROSCOPES

Atomic force microscopes are an integral part of the experiments discussed in this thesis.

They are used extensively to image prepare and image the LaAlO3/SrTiO3 surface and to write

nanostructures at the interface.

The atomic force microscope (AFM) is used to image surfaces with atomic resolution by

detecting the tip-sample forces. The AFM was first invented by Binnig et. al. in 1986 [180]. The

basic principle is to detect the deformation of a spring to measure the atomic forces between

the spring and a sample. In most cases the spring is in the form of a cantilever which has a

diving board geometry. Attached to the cantilever is an atomically sharp tip which can have a

radius of curvature< 10 nm. As the tip approaches the surface of a sample forces between the

tip and the surface cause the cantilever to bend. Attractive force between the tip and surface

causes the cantilever to bend towards the surface, then as it gets closer repulsive forces cause

it to bend away from surface. The deflection of the cantilever is typically measured by shining

laser light onto the top surface of the cantilever which is reflected into a position sensitive pho-

todiode (Fig. 57). To monitor the topography of a sample a Z axis piezo is moved to maintain

a constant deflection of the cantilever, or a constant distance between the tip and the sample.

The tip is raster scanned across the surface with X and Y axis piezos. The movement of the

Z piezo to maintain a constant distance gives the topography information about the sample.

A schematic of the AFM used in these experiments, an Asylum MFP-3D, is shown in Fig. 58.

The precise movement of the sample in the X-Y direction and the cantilever assembly in the

Z direction are monitored by three linear variable differential transformers (LVDT) which are

position sensing devices. They are necessary because distances cannot be directly calculated

using the voltage applied to the piezos due to hysteresis and non-linearity [181].

The operation of the AFM described above is referred to as “contact mode”, the tip is kept

in contact with the sample. There is another mode of operation called ac mode. Here the

cantilever is oscillated close to it’s resonant frequency, as it approaches a sample the van der
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Figure 57: Schematic of atomic force microscope (AFM) operation. The cantilever acts as a

spring to measure the atomic forces between the sample and the tip on the end of the can-

tilever. As the cantilever approaches the sample it will deflect due to these forces. A light

source is bounced off a cantilever into a position sensitive photodiode to monitor the deflec-

tion of the cantilever. The Z-PZT is a piezo that moves the cantilever in the Z direction. By

moving the cantilever to keep the deflection constant and scanning over the sample using the

XY piezo stage, the topography of the sample can be imaged.
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MFP-3D AFM

Figure 58: Schematic of the Asylum MFP-3D AFM used in these experiments. A light source is

bounced off a cantilever into a position sensitive photodiode which measures the deflection

of the cantilever due to the atomic forces between the tip and the sample. The Z piezo moves

the cantilever assembly to maintain a constant deflection, or distance, between the tip and

the sample. This distance is measured using the Z LVDT (linear variable differential trans-

former). The X-Y piezo stage moves the sample to scan the tip over the sample and measures

the topography, or other properties of the sample. Adapted from Ref. [181].
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Figure 59: Typical AFM tip used in these experiments. Aspire CFM AFM tip made from highly

doped, n-type, single crystal silicon. Tips have a typical radius of curvature of 8 nm, and a

force constant of 3 N/m [182].

Waals forces will change the oscillation of the cantilever. By monitoring the oscillations and

keeping them at a constant value the tip is kept at a constant distance from the sample and the

topography can be determined. AC mode is ideal for soft samples when the tip may damage

the sample.

Typical AFM tips used in these experiments are shown in Fig. 59. The tips are made of

doped Si and have a radius of curvature of 8 nm and force constant of∼ 3 N/m. Some devices

were written with PtSi tips which have a larger radius of curvature (∼ 25 nm), but are more

wear resistant, so that the same tip could be used to write several samples. No significant

differences were noted between devices written with different tips.
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A.2 LOW TEMPERATURE MEASUREMENTS

A.2.1 Dilution refrigerators

Dilution refrigerators use a mixture of 3He and 4He isotopes to cool to temperatures on

the order of several mK [183]. Cooling is achieved by using the enthalphy of mixing of the two

helium isotopes. At low enough temperatures the 3He-4He mixture will separate into 3He-rich

(concentrated) and a 4He-rich (dilute) phases. The phase diagram of liquid 3He-4He mixtures

as a function of 3He concentration and temperature is shown in Fig. 60. The shaded region

shows where the mixture will separate into 3He-rich and 4He-rich phases. The less-dense 3He-

rich phase will float on top of the 4He-rich phase. The enthalpy of 3He in the dilute phase is

larger than the enthalpy of 3He in the concentrated phase so the migration of 3He atoms from

the concentrated to the dilute phase results in cooling.

As the temperature approaches zero, the 3He-rich phase becomes pure 3He, but the 4He-

rich phase reaches a constant concentration of 6.6% 3He at T = 0 K. The reason for this finite

concentration has to do with the binding energy of the 3He atom in each of the phases.

The binding energy of a single 3He atom in liquid 4He is larger than that of one in liquid

3He. Both isotopes have the same van der Waals forces, but the 3He atom has a larger zero-

point motion than the 4He atom (due to its smaller mass). So in a 4He liquid the atoms are

closer together, than in a 3He liquid phase, and a 3He atom will have a larger binding energy

in liquid 4He because of the smaller distance between the atoms. This means that a 3He atom

at the phase boundary will migrate into the 4He-rich phase.

When more 3He atoms are added, increasing the concentration in the dilute phase, there

are two competing forces that effect the binding energy. First, there is an attraction between

the 3He atoms due to their larger zero-point motion. Because there is more space around

them the liquid is more dilute which will attract another 3He atom which prefers more space

around it than the 4He atoms have due to their smaller zero-point motion. So as the con-

centration increases so does the binding energy. This is countered by the face that 3He is a

Fermi liquid and must obey the Pauli exclusion principle, additional 3He atoms must go into

increasingly higher energy states and this decreases the binding energy with increasing con-
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Figure 60: Phase diagram of liquid 3He-4He mixtures. Inside the two-phase region the mixture

will separate into 3He rich and 3He poor phases. Adapted from Ref. [183].
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centration. These two effects reach an equilibrium in the dilute phase at a concentration of

6.6% 3He.

The dilution refrigerator cools by continuously removing 3He from the dilute phase which

will cause 3He from the concentrated phase to migrate across the phase boundary to maintain

the concentration at 6.6%. The migration across the phase boundary results in cooling.

A schematic of the dilution unit is shown in Fig. 61. The 3He-4He mixture is continuously

circulated in a closed loop. It enters the dilution unit after having been cooled to ∼ 1.5 K. It

goes through an impedance, which will reduce the pressure of the mixture and ensure that

it condenses at 1.5 K and remains in a liquid state. The mixture then passes through a heat

exchanger which is in contact with the still at ∼ 0.7 K. It passes through a secondary flow

impedance to again reduce the pressure and ensure the mixture remains in a liquid state. Next

are a series of heat exchangers that are thermally connected to 3He leaving the mixing cham-

ber. It will then enter the concentrated phase of the mixing chamber. 3He migrates across the

phase boundary into the dilute phase providing cooling to the mixing chamber, then leaves

through a larger tube at the bottom due to the osmotic pressure created by pumping on the

still and removing 3He. It flows through the heat exchangers providing cooling to the incom-

ing mixture, and enters the still. The still is kept at a temperature of ∼ 0.7 K, where the vapor

pressure of 3He is much larger than 4He, so that pumping on the still will remove mostly 3He.

The removed 3He is then circulated back into the dilution unit, ideally only 3He is circulated.

If a portion of the circulating gas is 4He it will reduce the cooling power of the cryostat.

Circulating 4He means that there is a reduced flow of the 3He, due to the finite flow rate of

the pumps in the system, which reduces cooling. It also increases the heat load on the heat

exchangers since the specific heat of a 3He-4He mixture is higher than that of pure 3He.

The dilution refrigerator is composed of stages with decreasing temperature. Each stage is

used to progressively cool the incoming 3He-4He mixture and the wiring and electronics that

are used to do experiments. The 4 K stage is cooled by contact with a liquid 4He bath in the

case of a wet fridge, or by a pulse tube compressor in a ‘dry’ fridge. A pulsed tube compressor

uses a closed-loop helium expansion cycle where adiabatic expansion of compressed helium

is used to cool to cryogenic temperatures. The next stage in a wet system is the 1 K pot. The

1 K pot uses helium from the bath which is sipped into the 1 K pot through an impedance,

127



Dilute phase

Concentrated phase

Mixing Chamber
0.01 K

Heat Exchangers

Still
0.7 K

Flow Impedance

Still Heat 
Exchanger

Secondary 
Flow Impedance

Dilute phase

Vapor

To pump

6.6% 3He

100% 3He

<1% 3He

>90% 3He

Still Heater

Phase boundary

From 1K pot

Figure 61: Schematic of the dilution unit. Percentages indicate the percent of 3He composing

the 3He-4He mixture. Adapted from Ref. [183].
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which helps to reduce its pressure and lower the temperature of the liquid to ∼ 1.5 K. The 1

K pot is continuously pumped to keep the pressure low reduce the temperature of the liquid

helium from 4 K to ∼ 1 K. The next stage is the Still which is at a temperature of 700 mK. The

next stage is the 50 mK stage which is thermally connected to the Still through continuous

heat exchangers. Additional heat exchangers connect the 50 mK stage to the mixing chamber

plate and the mixing chamber where the cooling occurs.

A.2.1.1 Leiden MNK The dilution refrigerator used in most of the experiments discussed

here is a Leiden MNK 700. It is what’s known as a ‘wet’ dilution refrigerator as it uses liquid 4He

to precool the mixture to 4.2 K, and 1.5 K. The Leiden MNK system used for these experiments

can reach a base temperature of < 10 mK. While sweeping a magnetic field and if the rotator

was installed the typical base temperature of the samples during experiments was T ∼ 25 mK.

The 4He cryostat for the Leiden MNK system is shown in Fig. 62 and the dilution insert it shown

in Fig. 63. A detailed schematic of the system showing the cryostat, insert, and supporting

infrastructure is shown in Fig. 64.

The rooms housing the dilution refrigerators were designed to isolate the system and re-

duce interference from vibrations and external fields. A schematic for the room configuration

is shown in Fig. 65. The cryostat sits on a large floating platform to decouple it from the vibra-

tions in the building. The room is sound and RF field isolated. All of the vacuum lines that go

to the cryostat pass through the concrete floor and are connected to the floating platform with

flexible vacuum hoses. The vacuum lines pass through the floor and into an adjacent room

where they connect to the gas handling system (GHS) which holds all of the values and pumps

for circulating mixture and operating the cryostat. This has the advantage of separating all of

the noisy components of the system from the experiments. A more detailed diagram of the

mixture and auxiliary pumping circuits for the Leiden MNK system can be found in Fig. 66.

A.2.2 Superconducting magnet and 2-axis rotator

The Leiden MNK system includes a 18/20 T superconducting magnet and a 2-axis rotator.

The sample can be rotated in any direction using a 2-axis rotator (Fig. 67), in order to apply

129



Figure 62: 4He cryostat with 18/20 T superconducting magnet for the Leiden MNK dilution

refrigerator insert.
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Figure 63: Leiden MNK dilution refrigerator insert. The sample is mounted to the bottom

of the cold finger attached to the mixing chamber plate. The insert is lowered into the 4He

cryostat which cools it to 4 K. Circulation of the helium mixture cools the system to 10 mK.
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Figure 64: Schematic of Leiden MNK cryostat system. Lines travel from the SPM room to an

adjacent pump room shown in 65.
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Figure 65: Schematic of the rooms housing the cryostats and supporting equipment. This lay-

out helps to isolate the measurement equipment from the noise and vibration of mechanical

pumps.
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gas handling system is located in an adjacent pump room.
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magnetic fields up to 20 T in any direction relative to the sample. The 2-axis rotator uses

slip-stick motion to rotate both axes and a resistive encoder to determine the position of the

rotator. Monitoring the position of the resistive encoder requires applying 1 V to the encoders

which heats up the sample to above 50 mK. When not rotating the voltage can be reduced

so as not to cause heating of the sample. Rotating also produces significant heating of the

sample. Care must be taken not to rotate to much otherwise the mixing chamber will heat

up enough to blow out the mixture and cause an automatic collection of the mixture to take

place. Rotating should be limited to 10◦. Allow for about 30 minutes of cooling after rotating

before taking measurements. The wiring for the rotator includes a cable from the controller

to a room temperature vacuum breakout box. Wires from the breakout box down to the 4K

stage of the fridge are made of copper. Wires from the 4K stage down to the mixing chamber

stage are made of a superconducting material and are thermalized at each temperature stage.

From the mixing chamber down to the rotator are copper wires.
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Figure 67: 2-axis rotator on Leiden MNK dilution insert. The 2-axis rotation allows the mag-

netic field of up to 20 T to be applied in any orientation relative to the sample.
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Appendix B Sample information

This chapter provides information about the growth and processing parameters of the

LaAlO3/SrTiO3 samples used in these experiments (Table 4). It also details the c-AFM writ-

ing parameters used for the devices discussed in Chapters 3-7 (Table 5).
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