
Distributed Machine Learning Framework: New

Algorithms and Theoretical Foundation

by

Zhouyuan Huo

BS, Zhejiang University, 2014

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2020

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Zhouyuan Huo

It was defended on

April 1, 2020

and approved by

Heng Huang, PhD, John A. Jurenko Endowed Professor, Department of Electrical and

Computer Engineering

Liang Zhan, PhD, Assistant Professor, Department of Electrical and Computer Engineering

Zhi-Hong Mao, PhD, Professor, Department of Electrical and Computer Engineering

Wei Gao, PhD, Associate Professor, Department of Electrical and Computer Engineering

Wei Chen, PhD, Associate Professor, The School of Medicine, Department of Pediatrics

Dissertation Director: Heng Huang, PhD, John A. Jurenko Endowed Professor,

Department of Electrical and Computer Engineering

ii

Copyright c© by Zhouyuan Huo

2020

iii

Distributed Machine Learning Framework: New Algorithms and Theoretical

Foundation

Zhouyuan Huo, PhD

University of Pittsburgh, 2020

Machine learning is gaining fresh momentum, and has helped us to enhance not only

many industrial and professional processes but also our everyday living. The recent success

of machine learning relies heavily on the surge of big data, big models, and big computing.

However, inefficient algorithms restrict the applications of machine learning to big data min-

ing tasks. In terms of big data, serious concerns, such as communication overhead and data

privacy, should be rigorously addressed when we train models using large amounts of data

located on multiple devices. In terms of the big model, it is still an underexplored research

area if a model is too big to train on a single device. To address these challenging problems,

this thesis is focusing on designing new large-scale machine learning models, efficiently op-

timizing and training methods for big data mining, and studying new discoveries in both

theory and applications.

For the challenges raised by big data, we proposed several new asynchronous distributed

stochastic gradient descent or coordinate descent methods for efficiently solving convex and

non-convex problems. We also designed new large-batch training methods for deep learning

models to reduce the computation time significantly with better generalization performance.

For the challenges raised by the big model, We scaled up the deep learning models by

parallelizing the layer-wise computations with a theoretical guarantee, which is the first

algorithm breaking the lock of backpropagation such that the large model can be dramatically

accelerated.

iv

Table of Contents

Preface . xi

1.0 Introduction . 1

1.1 Background . 1

1.2 Contribution . 2

1.3 Notation . 3

1.4 Thesis Organization . 3

2.0 Asynchronous Mini-batch Gradient Descent with Variance Reduction

for Non-Convex Optimization . 5

2.1 Motivation . 5

2.2 Preliminaries . 7

2.3 Shared-Memory Architecture . 8

2.3.1 Algorithm Description . 8

2.3.2 Convergence Analysis . 9

2.4 Distributed-Memory Architecture . 16

2.4.1 Algorithm Description . 16

2.4.2 Convergence Analysis . 16

2.5 Experimental Results . 22

2.5.1 Shared-Memory Architecture . 23

2.5.2 Distributed-Memory Architecture . 27

3.0 Asynchronous Dual Free Stochastic Dual Coordinate Ascent for Dis-

tributed Data Mining . 29

3.1 Motivation . 29

3.2 Preliminaries . 31

3.2.1 Stochastic Dual Coordinate Ascent . 32

3.2.2 Dual Free Stochastic Dual Coordinate Ascent 32

3.3 Distributed Asynchronous Dual Free Stochastic Dual Coordinate Ascent . . 33

v

3.3.1 Update Global Variable on Server . 34

3.3.2 Update Local Variable on Worker . 35

3.4 Convergence Analysis . 37

3.4.1 Convex Case . 38

3.4.2 Non-convex Case . 41

3.5 Experimental Results . 43

3.5.1 Convex Case . 43

3.5.1.1 Convergence of Duality Gap 44

3.5.1.2 Speedup . 44

3.5.2 Non-convex Case . 46

4.0 Large Batch Training Does Not Need Warmup 48

4.1 Motivation . 48

4.2 Preliminaries . 49

4.3 Complete Layer-Wise Adaptive Rate Scaling 51

4.3.1 Complete Layer-Wise Adaptive Rate Scaling 51

4.3.2 Fine-Grained Micro-Steps and Assumptions 52

4.3.3 Convergence Guarantees of Two Gradient-Based Methods 54

4.3.4 Discussions About the Convergence of mNAG 69

4.4 Experimental Results . 70

4.4.1 Why LARS? . 71

4.4.2 Linear Learning Rate Scaling . 72

4.4.3 One Hypothesis About Warmup . 73

4.4.4 Warmup is Not Necessary . 75

5.0 Decoupled Parallel Backpropagation with Convergence Guarantee . . . 78

5.1 Motivation . 78

5.2 Preliminaries . 80

5.3 Decoupled Parallel Backpropagation . 82

5.3.1 Backpropagation Using Delayed Gradients 82

5.3.2 Speedup of Decoupled Parallel Backpropagation 83

5.3.3 Stochastic Methods Using Delayed Gradients 84

vi

5.4 Convergence Analysis . 85

5.4.1 Fixed Learning Rate . 90

5.4.2 Diminishing Learning Rate . 91

5.5 Experimental Results . 92

5.5.1 Comparison of BP, DNI and DDG . 94

5.5.2 Optimizing Deeper Neural Networks 97

5.5.3 Scaling the Number of GPUs . 99

6.0 Training Neural Networks Using Features Replay 101

6.1 Motivation . 101

6.2 Preliminaries . 102

6.3 Features Replay . 104

6.3.1 Problem Reformulation . 105

6.3.2 Breaking Dependencies by Replaying Features 105

6.4 Convergence Analysis . 107

6.5 Experimental Results . 111

6.5.1 Experimental Setting . 111

6.5.2 Sufficient Direction . 112

6.5.3 Performance Comparisons . 114

7.0 Conclusion . 117

Bibliography . 119

vii

List of Tables

1 Notations used in thesis. 4

2 Experimental datasets from LIBSVM. 44

3 Comparisons of computation time when the network is sequentially distributed

across K GPUs. 83

4 Neural networks architectural details in the experiments. 92

5 The best Top 1 classification accuracy for ResNet-56 and ResNet-110 on the

test data of CIFAR-10 and CIFAR-100. 100

6 Comparisons of memory consumption of the neural network with L layers,

which is divided into K modules. 114

7 Best testing error rates of the compared methods on CIFAR-10 and CIFAR-100

datasets. 115

viii

List of Figures

1 Comparison of three methods: SGD, SVRG, SGDSVRG on MNIST dataset. 23

2 Speedup of Shared-AsySVRG on a machine with different number of threads

from 1 to 32. 24

3 Comparison of three methods: SGD, SVRG, SGDSVRG on CIFAR-10. . . . 25

4 Speedup of Distributed-AsySVRG on multiple machines from 1 to 10. 26

5 Distributed asynchronous dual free stochastic dual coordinate ascent for pa-

rameter server framework. 31

6 Convergence of duality gap of compared methods in terms of time and epoch

for IJCNN1, COVTYPE, RCV1 respectively. 45

7 Time speedup in terms of the number of workers. Row 1 left: IJCNN1; Row 1

right: COVTYPE; Row 2: RCV1. 46

8 Suboptimum convergence of compared methods in terms of time. 47

9 Learning rate upper bound for 5-layer FCN, 5-layer CNN, and 8-layer ResNet. 70

10 Training loss and Top-1 testing accuracy of training ResNet56 and VGG11

(with batch normalization layer) on CIFAR-10. 71

11 Learning rate schedule. 72

12 Variation of variance for 10 epochs. We train 5-layer FCN and 5-layer CNN

with sigmoid activation on MNIST. 74

13 Comparison between LARS (with gradual warmup) and CLARS algorithm. . 75

14 Comparison between LARS and CLARS training ResNet50, DenseNet121, and

MobileNetv2 on ImageNet. 77

15 Procedure of the backpropagation algorithm. 79

16 Procedure of the decoupled parallel backpropagation algorithm. 80

17 Training and testing curves of loss function regarding epochs for ResNet-8 on

CIFAR-10. 93

ix

18 Training and testing curves of Top 1 classification accuracies regarding epochs

for ResNet-8 on CIFAR-10. 94

19 Training and testing curves regarding epochs for ResNet-8 on CIFAR-10. . . 95

20 Training and testing loss curves for ResNet-110 on CIFAR-10 using multiple

GPUs. 96

21 Computation time and the best Top 1 accuracy for ResNet-110 on the test

data of CIFAR-10. 97

22 Training and testing curves for ResNet-56 and ResNet-110 on CIFAR-10. . . 98

23 Training and testing curves for ResNet-56 and ResNet-110 on CIFAR-100. . 99

24 Illustrations of the backward pass of the backpropagation algorithm (BP) de-

coupled neural interface (DNI) and decoupled parallel backpropagation (DDG). 103

25 Backward pass of Features Replay Algorithm. 104

26 Sufficient direction constant for ResNet164 and ResNet101 on CIFAR-10. . . 111

27 Memory consumption for ResNet164, ResNet101 and ResNet152. 112

28 Training and testing curves for ResNet-164, ResNet101 and ResNet152 on

CIFAR-10. 113

x

Preface

First and foremost, I would like to thank my Ph.D. advisor, Professor Heng Huang.

Heng has been an exceptional advisor and I have been very fortunate to do research under

his supervision for the six years of Ph.D. journey. Heng is highly self-motivated and I am

deeply impressed by his tremendous passion for research. In the past six years, Heng has

been always ready to offer me extremely visionary advice and the most generous support. I

learned from Heng how to discover a problem, how to define this problem, and how to solve

this problem. I feel very lucky that I can start and pursue my research career under the

supervision of Professor Heng Huang.

I would also like to thank Professor Zhi-Hong Mao, Professor Wei Gao, Professor Liang

Zhan, and Professor Wei Chen for being on my Ph.D. committee. I really appreciate their

great advice and guidance for my research direction. I feel honored to get the inspiring

instructions from them and am grateful to the committee members for their valuable time

and help.

I want to thank every member in the Pitt Data Science Lab. Thanks Dr. Feiping Nie,

Dr. Bin Gu and Dr. Feihu Huang for their guidance, insightful discussions and collaboration

during my Ph.D. study. I would thank my friends and lab mates: An, De, Xin, Guodong,

Xiaoqian, Hongchang, Kamran, Yanfu, Runxue, Wenhan, Shangqian. I feel very lucky to be

a member of such a wonderful research group and it was my pleasure working together with

you all.

It has been an honor for me to work with many great collaborators in the academia or

when I was a summer intern in the industry lab. I would like to thank Zachary Garrett, Jakub

Konečný, Brendan McMahan, Peter Kairouz from Google Research and Hao Jiang, Lin

Liang, Quanzeng You from Microsoft Research for advising and helping me in the internship

projects. I also enjoyed hanging out and collaborations with other interns, Liang Yang and

Ziteng Sun.

Finally, I give special thanks to my families, especially parents, grandparents and Qian.

Thank you for raising me up and I can’t accomplish what I did without your love and

xi

support. Thanks for your understanding and love in the past years. Because of you, I can

get over obstacles in my way. Because of you, I never stray too far from the sidewalk.

xii

1.0 Introduction

1.1 Background

The phenomenal progress of machine learning and the explosive growth of big data have

been accelerating the trend of world development. While this vision is expected to generate

many disruptive business and social benefits, it presents many unprecedented challenges.

In terms of model, current deep learning models are not well designed or too small to

learn human knowledge. In terms of data, serious concerns such as data privacy should be

rigorously addressed when we train models using amounts of data generated on personal

devices. In terms of optimization, training giant neural networks or training models on the

device cause new difficulties for current optimization algorithms.

The scalability and efficiency have been the notorious bottlenecks of some machine learn-

ing models, constraining them from being applied to big data. Large amounts of data can

boost machine learning models to obtain remarkable predictive capabilities. When data

are distributed across devices, however, training models suffer from heavy computation,

slow communication, or lacking convergence guarantee. An efficient distributed optimiza-

tion method should make sure that models will converge to solutions in the end with fewer

computations and faster communication.

To reduce the communication overhead, asynchronous parallel algorithms for stochastic

optimization have received huge successes in theory and practice recently. Because there is

no need of synchronization between workers, asynchronous methods often have better perfor-

mance than synchronous methods. [80] proposed the first asynchronous parallel stochastic

gradient descent (SGD) algorithm known as Hogwild!. [39] proposed an asynchronous par-

allel SGD algorithm with the SVRG variance reduction technique.

The growth of neural network depth is one of the most critical factors contributing to

the success of deep learning. It has been verified both in practice and in theory that the

more significant number of parameters of a neural network can facilitate its learning abil-

ity. For example, the current state-of-the-art models in various applications are giant neural

1

networks: convolutional neural networks with over 1000 layers for image classification, or

Transformer networks with 1.6B parameters for natural language understanding. However,

such giant neural networks cannot fit in a single training device. Besides, current optimiza-

tion algorithms cannot make full use of computing resources, wasting much energy, and

affecting the environment. It remains a key problem in deep learning that the deep neural

networks with millions of or even billions of parameters cannot fit in a single training device,

e.g., GPU or TPU. In many applications such as image classification, object detection and

language models, If we allocate and train the parameters of a neural network on multiple

GPUs, backward locking in backpropagation algorithm becomes the bottleneck of making

full use of computing resources, leading to serious loss of money and energy. The backward

locking constrains us from updating models in parallel and fully leveraging the computing

resources.

The goal of this thesis is to propose new distributed optimization algorithms and provide

theoretical foundation to address the challenges in training distributed machine learning

problems using model parallelism and data parallelism.

1.2 Contribution

We summarize our contribution as follows:

• We provide the first theoretical analysis on the convergence rate of asynchronous mini-

batch gradient descent with variance reduction (AsySVRG) for non-convex optimization. We

prove that both methods can converge with a rate of O(1/T) for non-convex optimization,

and linear speedup is accessible when we increase the number of workers.

• We address two challenging issues in previous primal-dual distributed optimization meth-

ods: firstly, Dis-dfSDCA does not rely on the dual formulation, and can be used to solve

the non-convex problem; secondly, Dis-dfSDCA uses asynchronous communication and can

be applied on the complicated distributed system where there is straggler problem. We also

analyze the convergence rate of our method and prove the linear convergence rate even if

the individual functions in objective are non-convex.

2

• We propose a novel Complete Layer-wise Adaptive Rate Scaling (CLARS) algorithm for

large-batch training. We also analyze the convergence rate of the proposed method by

introducing a new fine-grained analysis of gradient-based methods. Based on our analysis,

we bridge the gap and illustrate the theoretical insights for three popular large-batch training

techniques, including linear learning rate scaling, gradual warmup, and layer-wise adaptive

rate scaling.

• We decouple the backpropagation algorithm using delayed gradients, and show that the

backward locking is removed when we split the networks into multiple modules. Then, we

utilize decoupled parallel backpropagation in two stochastic methods and prove that our

method guarantees convergence to critical points for the non-convex problem.

• We propose a novel parallel-objective formulation for the objective function of the neural

network. After that, we introduce features replay algorithm and prove that it is guaranteed

to converge to critical points for the non-convex problem under certain conditions. Finally,

we apply our method to training deep convolutional neural networks, and the experimental

results show that the proposed method achieves faster convergence, lower memory consump-

tion, and better generalization error than compared methods.

1.3 Notation

Unless specified otherwise, the notations used in this thesis are listed in Table 1.

1.4 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we introduce a new asyn-

chronous mini-batch gradient descent with variance reduction for non-convex optimization.

In Chapter 3, we design a new distributed dual-free SDCA algorithm to address two chal-

lenging issues in previous primal-dual distributed optimization methods. In Chapter 4, we

propose a novel Complete Layer-wise Adaptive Rate Scaling (CLARS) algorithm for large-

3

Table 1: Notations used in thesis.

f objective function

w model parameter

∇f gradient

n number of examples

d number of parameters

T number of iterations

batch training. In Chapter 5, we decouple the backpropagation algorithm using delayed

gradients and parallelize the neural network training if the model is too big. Next in Chap-

ter 6 we propose a features replay algorithm and show that it outperforms compared model

parallelism algorithms. Finally, we conclude the thesis in Chapter 7.

4

2.0 Asynchronous Mini-batch Gradient Descent with Variance Reduction for

Non-Convex Optimization

2.1 Motivation

With the boom of data, training machine learning model with large-scale datasets be-

comes a challenging problem. Basing on batch gradient descent (GD) method, researchers

propose stochastic gradient descent (SGD) method or mini-batch gradient descent method

to relieve the complexity of computation in each iteration and reduce the total time com-

plexity for optimization [73, 55, 24, 26, 9]. Due to efficiency, SGD method has been widely

used to solve different kinds of large-scale machine learning problems, including both convex

and non-convex. However, because we use stochastic gradient to approximate full gradient

in the process, a decreasing learning rate has to be applied to guarantee convergence, or it

is very easy to diverge from the optimal solution. Thus, it leads to a sub-linear convergence

rate of O(1/T) on strongly convex problem. Recently, stochastic variance reduced gradient

(SVRG) [46] and its variants, such as SAGA[17], m2SGD[51], have gained much attention

in stochastic optimization. Through reusing the previously computed first order gradient

information, these methods are able to reduce the variance of gradient approximation in the

optimization and are proved to have linear convergence rate on strongly convex problem.

After that, SVRG is then applied to solve non-convex problem [4, 81], and it is proved to

have a faster sub-linear convergence rate of O(1/T). Experiments are conducted on neural

networks and their results also validate that it outperforms SGD method for non-convex

optimization.

Serial algorithm is not able to make good use of computation resource. Therefore, parallel

algorithms are introduced to further speedup the computation task, including synchronous

optimization and asynchronous optimization. Because there is no need of synchronization

between workers, asynchronous methods often have better performance. Asynchronous par-

allelism has been successfully applied to speedup many state-of-the-art optimization algo-

rithms, such as SGD [80, 59], stochastic coordinate descent (SCD) [64], SVRG [109] and Du-

5

alFreeSDCA [40]. There are mainly two kinds of distributed architectures, one is distributed-

memory architecture on multiple machines [2, 59, 108, 16, 109] and the other one is shared-

memory architecture on a multi-core machine [80, 111, 112]. Deep learning is a typical

situation where asynchronous SGD and its variants have gained great success[56, 16, 59, 75].

It is known that deep neural network always has large set of parameters and trains with

large-scale datasets.

Recently, asynchronous SVRG method has been implemented and studied on distributed-

memory architecture [109] and shared-memory architecture [111]. It is proved that asyn-

chronous SVRG method has linear convergence rate on strongly convex problem. Mini-batch

gradient is implemented in the experiments, while it is missing in their proof. Further, there

is no theoretical analysis of convergence rate for asynchronous SVRG on non-convex problem

yet.

In this chapter, we provide the convergence analysis of asynchronous mini-batch gradi-

ent descent with variance reduction method (asySVRG) for non-convex optimization. Two

different algorithms and analysis are proposed on two different distributed architectures,

one is shared-memory architecture and the other is distributed-memory architecture. The

key difference between these two categories lies on that distributed-memory architecture can

ensure the atomicity of reading and writing the whole vector of x, while the shared-memory

architecture can usually just ensure atomic reading and writing on a single coordinate of x

[59]. We implement asySVRG on two different architectures and analyze their convergence

rate based on the mini-batch setting. We prove that asySVRG can get convergence rate of

O(1/T) on both architectures. Besides, we also prove that linear speedup is accessible when

we increase the number of workers until reaching an upper bound.

We list our main contributions as follows:

• We extend asynchronous shared-memory SVRG method to solve non-convex problem.

Our Shared-AsySVRG on shared-memory architecture has faster convergence rate than

AsySGD. We prove that Shared-AsySVRG has a convergence rate of O(1/T) for non-

convex optimization.

• We extend asynchronous distributed-memory SVRG method to solve non-convex prob-

lem. Our Distributed-AsySVRG on distributed-memory architecture has faster conver-

6

gence rate than AsySGD. We prove that Distributed-AsySVRG has a convergence rate

of O(1/T) for non-convex optimization.

• Both of Shared-AsySVRG and Distributed-AsySVRG have linear speedup when we in-

crease the number of threads in a shared-memory architecture or workers in a distributed-

memory architecture until reaching an upper bound.

2.2 Preliminaries

We consider the following empirical loss minimization problem:

min
x∈Rd

f(w) =
1

n

n∑
i=1

fi(w) , (2.1)

where f(w) and fi(w) are Lipschitz smooth, they are not necessarily convex. In this chapter,

we assume both of them are non-convex.

Following the proof in [59, 81, 4] for non-convex optimization, we use the weighted average

of the `2 norm of full gradient ||∇f(w)||2 as metric to analyze its convergence property. For

further analysis, throughout this chapter, we make the following assumptions for problem

(2.1). All of them are very common assumptions in the theoretical analysis for asynchronous

stochastic gradient descent method.

Assumption 2.2.1. Independence: All random samples i are selected randomly and in-

dependently to each other.

Assumption 2.2.2. Unbiased Gradient: The stochastic gradient ∇fi(w) is unbiased:

E [∇fi(w)] = ∇f(w). (2.2)

Assumption 2.2.3. Lipschitz Gradient: We say ∇f(w) is Lipschitz continuous, and it

holds:

||∇f(w)−∇f(v)||2 ≤ L||w − v||2. (2.3)

Throughout, we also assume that the function ∇fi(w) is also Lipschitz continuous, so that

||∇fi(w)−∇fi(v)||2 ≤ L||w − v||2.

7

Assumption 2.2.4. Maximum Time Delay: Time delay variable τ of parameters in

each worker is upper bounded, namely max τ ≤ ∆. In practice, ∆ is related with the number

of workers.

2.3 Shared-Memory Architecture

In this section, we propose AsySVRG method for shared-memory architecture, and prove

that it converges with rate O(1/T). It is proved that SVRG has a convergence rate of O(1/T)

on non-convex problem [81, 4]. In this section, we follow the convergence analysis in [81],

and extends it to asynchronous optimization on shared-memory architecture.

2.3.1 Algorithm Description

Following the setting in [59], we define one iteration as a modification on any single

component of x in the shared memory. We use xs+1
t to denote the value of parameter x in

the shared memory after (ms+ t) iterations, and Equation (2.4) represents the update rule

of parameter x in iteration t:

(ws+1
t+1)kt = (ws+1

t)kt − η(vs+1
t)kt , (2.4)

where kt ∈ {1, ..., d} is a random index of component in w ∈ Rd, and learning rate η is

constant. Descent direction vs+1
t is defined as follows:

vs+1
t =

1

|It|
∑
it∈It

(
∇fit(ŵs+1

t)−∇fit(w̃s) +∇f(w̃s)
)
, (2.5)

where w̃s denotes a snapshot of w after every m iterations. it denotes the index of a sample,

and It is index set of mini-batch samples, and mini-batch size is |It|. The definition of ŵs+1
t

follows the analysis in [59], where ŵs+1
t is assumed to be some earlier state of w in the shared

memory.

ŵs+1
t = ws+1

t −
∑
j∈J(t)

(ws+1
j+1 − ws+1

j), (2.6)

8

Algorithm 1 Shared-AsySVRG

Initialize w0 ∈ Rd.

for s = 0, 1, 2, , .., S − 1 do

w̃s ← ws;

Compute full gradient ∇f(w̃s)← 1
n

n∑
i=1

∇fi(w̃s);

Parallel Computation on Multiple Threads

for t = 0, 1, 2, ...,m− 1 do

Randomly select mini-batch It from {1,n};

Compute vs+1
t : vs+1

t ← 1
|It|
∑
it∈It

(
∇fit(ŵs+1

t)−∇fit(w̃s) +∇f(w̃s)
)
;

Randomly select kt from {1, ..., d};

Update (ws+1
t+1)kt : (ws+1

t+1)kt ← (ws+1
t)kt − η(vs+1

t)kt ;

end for

ws+1 ← ws+1
m ;

end for

where J(t) ∈ {t−1,, t−∆} is a subset of previous iterations, ∆ is the upper bound of time

delay. In Algorithm 1, we summarize the Shared-AsySVRG on shared-memory architecture.

2.3.2 Convergence Analysis

In this section, we prove that our proposed Shared-AsySVRG method has a sub-linear

convergence rate of O(1/T) on non-convex problem. Different from AsySGD method, we

are able to bound the variance of gradient update vs+1
t because of the variance reduction

technique. And it is crucial for our convergence analysis.

Lemma 2.3.1. As per the definition of the variance reduced gradient vs+1
t in Equation (2.5),

we define,

us+1
t =

1

|It|
∑
it∈It

(
∇fit(ws+1

t)−∇fit(w̃s) +∇f(w̃s)
)
. (2.7)

9

We have the following inequality:

m−1∑
t=0

E
[
||vs+1

t ||2
]
≤ 2d

d− 2L2∆2η2

m−1∑
t=0

E
[
||us+1

t ||2
]
. (2.8)

where E
[
||us+1

t ||2
]

is upper bounded following [82]:

E
[
||us+1

t ||2
]
≤ 2E

[
||∇f(ws+1

t)||2
]

+
2L2

b
E
[
||ws+1

t − w̃s||2
]
. (2.9)

Proof of Corollary 2.3.1: As per the definitions of vs+1
t (2.5) and us+1

t (2.7):

E
[
||vs+1

t ||2
]

= E
[
||vs+1

t − us+1
t + us+1

t ||2
]

≤ 2E
[
||vs+1

t − us+1
t ||2

]
+ 2E

[
||us+1

t ||2
]

= 2E

[
||1
b

∑
it∈It

∇fit(ŵs+1
t,it

)−∇fit(ws+1
t)||2

]
+ 2E

[
||us+1

t ||2
]

≤ 2L2

b

∑
it∈It

E
[
||ŵs+1

t,it
− ws+1

t ||2
]

+ 2E
[
||us+1

t ||2
]

≤ 2L2

b

∑
it∈It

E

|| ∑
j∈J(t,it)

(ws+1
j − ws+1

j+1)kj ||2
+ 2E

[
||us+1

t ||2
]

≤ 2L2∆η2

bd

∑
it∈It

∑
j∈J(t,it)

E
[
||vs+1

j ||2
]

+ 2E
[
||us+1

t ||2
]
, (2.10)

where the first, third and last inequality follows from ||a1 + ...+ an||2 ≤ n
n∑
i=1

||ai||2. Second

inequality follows from Lipschitz smoothness of f(w). Then sum over E
[
||vs+1

t ||2
]

in one

epoch, we get the following inequality,

m−1∑
t=0

E
[
||vs+1

t ||2
]
≤

m−1∑
t=0

2L2∆η2

bd

∑
it∈It

∑
j∈J(t,it)

E
[
||vs+1

j ||2
]

+ 2E
[
||us+1

t ||2
]

≤ 2L2∆2η2

d

m−1∑
t=0

E
[
||vs+1

t ||2
]

+ 2
m−1∑
t=0

E
[
||us+1

t ||2
]
. (2.11)

Thus, if d− 2L2∆2η2 > 0, then ||vs+1
t ||2 is upper bounded by ||us+1

t ||2,

m−1∑
t=0

E
[
||vs+1

t ||2
]
≤ 2d

d− 2L2∆2η2

m−1∑
t=0

E
[
||us+1

t ||2
]
. (2.12)

The result is different from the proof in [82], because our update step is different.

10

From Lemma 2.3.1, we know that the variance of vs+1
t goes to zero when we reach the

optimal solution if it exists. Thus, we can maintain learning rate as a constant in the

optimization. Therefore, our Shared-AsySVRG has a faster convergence rate as follows:

Theorem 2.3.1. Suppose all assumptions of f(w) satisfy. Let cm = 0, learning rate η > 0

is constant, βt = β > 0, b = |It| denotes the size of mini-batch samples in each iteration.

We define:

ct = ct+1(1 +
ηβt
d

+
4L2η2

(d− 2L2∆2η2)b
) +

4L2

(d− 2L2∆2η2)b
(
L2∆2η3

2d
+
η2L

2
), (2.13)

Γt =
η

2d
− 4

d− 2L2∆2η2
(
L2∆2η3

2d
+
η2L

2
+ ct+1η

2), (2.14)

such that Γt > 0 for 0 ≤ t ≤ m− 1. Define γ = mint Γt, and w∗ is the optimal solution for

non-convex problem. Then, Shared-AsySVRG algorithm has the following convergence rate

in iteration T :

1

T

S−1∑
s=0

m−1∑
t=0

E
[
||∇f(ws+1

t)||2
]
≤ E [f(w0)− f(w∗)]

Tγ
. (2.15)

Proof of Theorem 2.3.1: At first, we derive the upper bound of E
[
||ws+1

t+1 − w̃s||2
]
:

E
[
||ws+1

t+1 − w̃s||2
]

= E
[
||ws+1

t+1 − ws+1
t + ws+1

t − w̃s||2
]

= E
[
||ws+1

t+1 − ws+1
t ||2 + ||ws+1

t − w̃s||2 + 2
〈
ws+1
t+1 − ws+1

t , ws+1
t − w̃s

〉]
= E

[
η2

d
||vs+1

t ||2 + ||ws+1
t − w̃s||2 − 2η

d

〈
1

b

∑
it∈It

∇f(ŵs+1
t,it

), ws+1
t − w̃s

〉]

≤ η2

d
E
[
||vs+1

t ||2
]

+
2η

d
E

[
1

2βt
||1
b

∑
it∈It

∇f(ŵs+1
t,it

)||2 +
βt
2
||ws+1

t − w̃s||2
]

+ E
[
||ws+1

t − w̃s||2
]

=
η2

d
E
[
||vs+1

t ||2
]

+
η

dβt
E

[
||1
b

∑
it∈It

∇f(ŵs+1
t,it

)||2
]

+ (1 +
ηβt
d

)E
[
||ws+1

t − w̃s||2
]
, (2.16)

11

where the inequality follows from 〈a, b〉 ≤ 1
2
(a2 + b2). Then we know that E

[
f(ws+1

t+1)
]

is

also upper bounded:

E
[
f(ws+1

t+1)
]
≤ E

[
f(ws+1

t) +
〈
∇f(ws+1

t), ws+1
t+1 − ws+1

t

〉
+
L

2
||ws+1

t+1 − ws+1
t ||2

]
= E

[
f(ws+1

t)
]
− η

d
E

[〈
∇f(ws+1

t),
1

b

∑
it∈It

∇f(ŵs+1
t,it

)

〉]
+
η2L

2d
E
[
||vs+1

t ||2
]

= E
[
f(ws+1

t)
]
− η

2d
E
[
||∇f(ws+1

t)||2 + ||1
b

∑
it∈It

∇f(ŵs+1
t,it

)||2

− ||∇f(ws+1
t)− 1

b

∑
it∈It

∇f(ŵs+1
t,it

)||2
]

+
η2L

2d
E
[
||vs+1

t ||2
]
, (2.17)

where the first inequality follows from Lipschitz continuity of f(w).

E

[
||∇f(ws+1

t)− 1

b

∑
it∈It

∇f(ŵs+1
t,it

)||2
]
≤ L2

b

∑
it∈It

E
[
||ws+1

t − ŵs+1
t,it
||2
]

=
L2

b

∑
it∈It

E

|| ∑
j∈J(t,it)

(ws+1
j − ws+1

j+1)||2


≤ L2∆

b

∑
it∈It

∑
j∈J(t,it)

E
[
||ws+1

j − ws+1
j+1||2

]
≤ L2∆η2

bd

∑
it∈It

∑
j∈J(t,it)

E
[
||vs+1

j ||2
]
, (2.18)

where the first inequality follows from Lipschitz continuity of f(w). ∆ denotes the upper

bound of time delay. From (2.17) and (2.18), it is to derive the following inequality:

E
[
f(ws+1

t+1)
]
≤ E

[
f(ws+1

t)
]
− η

2d
E
[
||∇f(ws+1

t)||2
]
− η

2d
E

[
||1
b

∑
it∈It

∇f(ŵs+1
t,it

)||2
]

+
η2L

2d
E
[
||vs+1

t ||2
]

+
L2∆η3

2bd2

∑
it∈It

∑
j∈J(t,it)

E
[
||vs+1

j ||2
]
. (2.19)

12

Following the proof in [81], we define Lyapunov function (this nice proof approach was

first introduced in [81]): Rs+1
t = E

[
f(ws+1

t) + ct||ws+1
t − w̃s||2

]
. From the definition of Lya-

punov function, and inequalities in (2.16) and (2.19):

Rs+1
t+1 ≤ E

[
f(ws+1

t)
]
− η

2d
E
[
||∇f(ws+1

t)||2
]
− η

2d
E

[
||1
b

∑
it∈It

∇f(ŵs+1
t,it

)||2
]

+
η2L

2d
E
[
||vs+1

t ||2
]

+
L2∆η3

2bd2

∑
it∈It

∑
j∈J(t,it)

E
[
||vs+1

j ||2
]

+ ct+1

[
η2

d
E
[
||vs+1

t ||2
]

+ (1 +
ηβt
d

)E
[
||ws+1

t − w̃s||2
]

+
η

dβt
E

[
||1
b

∑
it∈It

∇f(ŵs+1
t,it

)||2
]]

≤ E
[
f(ws+1

t)
]
− η

2d
E
[
||∇f(ws+1

t)||2
]

+
L2∆η3

2bd2

∑
it∈It

∑
j∈J(t,it)

E
[
||vs+1

j ||2
]

+ (
η2L

2d
+
ct+1η

2

d
)E
[
||vs+1

t ||2
]

+ ct+1(1 +
ηβt
d

)E
[
||ws+1

t − w̃s||2
]
, (2.20)

where we assume 1
2
≥ ct+1

βt
. As per Corollary 2.3.1, we sum up Rs+1

t+1 from t = 0 to m− 1,

m−1∑
t=0

Rs+1
t+1 ≤

m−1∑
t=0

[
E
[
f(ws+1

t)
]
− η

2d
E
[
||∇f(ws+1

t)||2
]

+
L2∆η3

2bd2

∑
it∈It

∑
j∈J(t,it)

E
[
||vs+1

j ||2
]

+ (
η2L

2d
+
ct+1η

2

d
)E
[
||vs+1

t ||2
]

+ ct+1(1 +
ηβt
d

)E
[
||ws+1

t − w̃s||2
]]

≤
m−1∑
t=0

[
E
[
f(ws+1

t)
]
− η

2d
E
[
||∇f(ws+1

t)||2
]

+ ct+1(1 +
ηβt
d

)E
[
||ws+1

t − w̃s||2
]

+ (
L2∆2η3

2d2
+
η2L

2d
+
ct+1η

2

d
)E
[
||vs+1

t ||2
]]

≤
m−1∑
t=0

[
E
[
f(ws+1

t)
]
− η

2d
E
[
||∇f(ws+1

t)||2
]

+ ct+1(1 +
ηβt
d

)E
[
||ws+1

t − w̃s||2
]

+
2d

d− 2L2∆2η2
(
L2∆2η3

2d2
+
η2L

2d
+
ct+1η

2

d
)E
[
||us+1

t ||2
]]

≤
m−1∑
t=0

Rs+1
t −

m−1∑
t=0

[
ΓtE

[
||∇f(ws+1

t)||2
]]
, (2.21)

where

ct = ct+1(1 +
ηβt
d

) +
4L2

(d− 2L2∆2η2)b
(
L2∆2η3

2d
+
η2L

2
+ ct+1η

2), (2.22)

Γt =
η

2d
− 4

d− 2L2∆2η2
(
L2∆2η3

2d
+
η2L

2
+ ct+1η

2). (2.23)

13

Setting cm = 0, w̃s+1 = ws+1
m , and γ = min Γt, then Rs+1

m = E [f(ws+1
m)] = E [f(w̃s+1)]

and Rs+1
0 = E

[
f(ws+1

0)
]

= E [f(w̃s)]. Thus we can get,

m−1∑
t=0

E
[
||∇f(ws+1

t)||2
]
≤ E [f(w̃s)− f(w̃s+1)]

γ
. (2.24)

Summing up all epochs, and define w0 as initial point and w∗ as optimal solution, we

have the final inequality:

1

T

S−1∑
s=0

m−1∑
t=0

E
[
||∇f(ws+1

t)||2
]
≤ E [f(w0)− f(w∗)]

Tγ
. (2.25)

Now, we prove that our method has a convergence rate of O(1/T) if problem is non-

convex. If we represent γ with known parameters, we have the following theorem.

Theorem 2.3.2. Suppose all assumptions of f(w) satisfy. Let η = u0b
Lnα

, where 0 < u0 < 1

and 0 < α ≤ 1, β = 2L, m = b dnα
6u0b
c and T is the number of total iterations. If the maximum

time delay ∆ satisfies the following condition:

∆2 < min{ d

2u0b
,
3d− 28u0bd

28u2
0b

2
}, (2.26)

there exists universal constant u0 and σ, such that it holds γ ≥ σb
dLnα

and

1

T

S−1∑
s=0

m−1∑
t=0

E
[
||∇f(ws+1

t)||2
]
≤ dLnαE [f(w0)− f(w∗)]

bTσ
. (2.27)

Proof of Theorem 2.3.2: Following the proof in [81], we set cm = 0, η = u0b
Lnα

, βt = β = 2L,

0 < u0 < 1, and 0 < α < 1.

θ =
ηβ

d
+

4L2η2

(d− 2L2∆2η2)b

=
2u0b

dnα
+

4u2
0b

dn2α − 2∆2u2
0b

2

≤ 6u0b

dnα
. (2.28)

14

In the final inequality, we constrain that dnα ≤ dn2α − 2∆2u2
0b

2, and it is easy to satisfy

when n is large. We set m = b dnα
6u0b
c, and from the recurrence formula of ct, we have:

c0 =
2L2

(d− 2L2∆2η2)b

(
L2∆2η3

d
+ η2L

)
(1 + θ)m − 1

θ

=
2L
(
u30∆2b3

n3α +
u20b

2d

n2α

)
(d− 2L2∆2η2)

(
2u0b2

dnα
+

4u20b
2

dn2α−2∆2u20b
2

)
d

((1 + θ)m − 1)

≤ L(u0b∆
2 + d)

3d
((1 + θ)m − 1)

≤ L(u0b∆
2 + d)

3d
(e− 1). (2.29)

where the final inequality follows from that (1+ 1
l
)l is increasing for l > 0, and lim

l→∞
(1+ 1

l
)l = e.

From the proof in Theorem 2.3.1, we know that c0 ≤ β
2

= L,thus ∆2 ≤ d
2u0b

. ct is decreasing

with respect to t, and c0 is also upper bounded.

γ = min
t

Γt

≥ η

2d
− 4

d− 2L2∆2η2
(
L2∆2η3

2d
+
η2L

2
+ c0η

2)

≥ η

2d
− 4nα

d
(
L2∆2η3

2d
+
η2L

2
+ c0η

2)

≥
(

1

2
− 14u2

0b
2∆2 + 14u0bd

3d

)
η

d

≥ σb

dLnα
. (2.30)

There exists a small value σ, an it is independent of n. The final inequality holds if

1
2
>

14u20b
2∆2+14u0bd

3d
. Above all, if ∆2 < min{ d

2u0b
, 3d−28u0bd

28u20b
2 }, we have the conclusion that,

1

T

S−1∑
s=0

m−1∑
t=0

E
[
||∇f(ws+1

t)||2
]
≤ dLnαE [f(w̃0)− f(w̃∗)]

Tσb
. (2.31)

In (2.27), we can find out that the convergence rate has nothing to do with maximum

time delay ∆, if it is upper bounded. Thus in a specific domain, the negative effect of

using stale information of parameter w for approximating gradient evaluation vanishes, and

a linear speedup is accessible when we increase the number of threads.

15

2.4 Distributed-Memory Architecture

In this section, we propose Distributed-AsySVRG algorithm for distributed-memory ar-

chitecture, and prove that it converges with rate O(1/T) on non-convex problem.

2.4.1 Algorithm Description

In each iteration, parameter w is updated through the following update rule,

ws+1
t+1 = ws+1

t − ηvs+1
t , (2.32)

where learning rate η is constant, vs+1
t represents variance reduced gradient, and it is defined

as follows:

vs+1
t =

1

|It|
∑
it∈It

(
∇fit(ws+1

t−τ)−∇fit(w̃s) +∇f(w̃s)
)
, (2.33)

where w̃s means a snapshot of w after every m iterations, and ws+1
t−τ denotes the current

parameter used to compute gradient in the worker. it denotes the index of a sample, τ

denotes time delay of parameter in the worker, and mini-batch size is |It|. Suppose there

are K workers in total, and the number of dataset in worker k is nk. We summarize the

Distributed-AsySVRG on distributed-memory architecture in the Algorithm 2 and Algorithm

3, Algorithm 2 shows operations in server node, and Algorithm 3 shows operations in worker

node.

2.4.2 Convergence Analysis

Similar to the convergence analysis in Shared-AsySVRG, we analyze the convergence

rate for our proposed Distributed-AsySVRG in this section. It has been proved in [82] that

the variance of vs+1
t is upper bounded, and it goes to zero when w is close to the optimal

solution.

16

Algorithm 2 Distributed-AsySVRG Server Node

Initialize w0 ∈ Rd.

for s = 0, 1, 2, , .., S − 1 do

w̃s ← ws;

Broadcast w̃s to all workers;

Receive and compute: ∇f(w̃s)← 1
n

K∑
k=1

∇kf(w̃s);

Broadcast ∇f(w̃s) to all workers;

for t = 0, 1, 2, ...,m− 1 do

Receive variance reduced gradient vs+1
t from worker;

Update ws+1
t+1 ← ws+1

t − ηvs+1
t ;

end for

ws+1 ← ws+1
m ;

end for

Theorem 2.4.1. Suppose all assumptions of f(w) satisfy. Let cm = 0, learning rate η > 0

is constant, βt = β > 0, b denotes the size of mini-batch. We define the following equations

regarding ct as follows:

ct = ct+1

(
1 + ηβt +

4L2η2

(1− 2L2∆2η2)b

)
+

4L2

(1− 2L2∆2η2)b

(
L2∆2η3

2
+
η2L

2

)
, (2.34)

and Γt as follows:

Γt =
η

2
− 4

(1− 2L2∆2η2)
(
L2∆2η3

2
+
η2L

2
+ ct+1η

2), (2.35)

where the requirements are satisfied that Γt > 0 for 0 ≤ t ≤ m− 1. Define γ = mint Γt,

w∗ is the optimal solution for non-convex problem. Then, we have the following convergence

rate in iteration T :

1

T

S−1∑
s=0

m−1∑
t=0

E
[
||∇f(ws+1

t)||2
]
≤ E [f(w0)− f(w∗)]

Tγ
. (2.36)

17

Algorithm 3 Distributed-AsySVRG Worker Node k

if flag is True then

Receive parameter w̃s from server;

Compute and send full gradient ∇kf(w̃s):

∇kf(w̃s) =
nk∑
i=1

∇if(w̃s) ;

Receive full gradient ∇f(w̃s) from server;

else

Receive parameter ws+1
t−τ from server;

Randomly select mini-batch It from {1, ..., nk};

Compute vs+1
t and send it to server:

vs+1
t ← 1

|It|
∑
it∈It

(
∇fit(ws+1

t−τ)−∇fit(w̃s) +∇f(w̃s)
)
;

end if

Proof of Theorem 2.4.1:

E
[
||ws+1

t+1 − w̃s||2
]

= E
[
||ws+1

t+1 − ws+1
t + ws+1

t − w̃s||2
]

= E
[
||ws+1

t+1 − ws+1
t ||2 + ||ws+1

t − w̃s||2 + 2
〈
ws+1
t+1 − ws+1

t , ws+1
t − w̃s

〉]
= E

[
η2||vs+1

t ||2 + ||ws+1
t − w̃s||2 − 2η

〈
1

b

∑
it∈It

∇f(ws+1
t−τi), w

s+1
t − w̃s

〉]

≤ η2E
[
||vs+1

t ||2
]

+ 2ηE

[
1

2βt
||1
b

∑
it∈It

∇f(ws+1
t−τi)||

2 +
βt
2
||ws+1

t − w̃s||2
]

+ E
[
||ws+1

t − w̃s||2
]

= η2E
[
||vs+1

t ||2
]

+ (1 + ηβt)E
[
||ws+1

t − w̃s||2
]

+
η

βt
E

[
||1
b

∑
it∈It

∇f(ws+1
t−τi)||

2

]
, (2.37)

where the first inequality follows 2 〈a, b〉 ≤ ||a||2 + ||b||2.

E
[
f(ws+1

t+1)
]
≤ E

[
f(ws+1

t) +
〈
∇f(ws+1

t), ws+1
t+1 − ws+1

t

〉
+
L

2
||ws+1

t+1 − ws+1
t ||2

]
= −η

2
E

[
||∇f(ws+1

t)||2 + ||1
b

∑
it∈It

∇f(ws+1
t−τi)||

2 − ||∇f(ws+1
t)− 1

b

∑
it∈It

∇f(ws+1
t−τi)||

2

]

+ E
[
f(ws+1

t)
]

+
η2L

2
E
[
||vs+1

t ||2
]
, (2.38)

18

where the first inequality follows from Lipschitz continuity of f(w). Then we know the upper

bound of ||∇f(ws+1
t)− 1

b

∑
it∈It
∇f(ws+1

t−τi)||
2 as follows:

||∇f(ws+1
t)− 1

b

∑
it∈It

∇f(ws+1
t−τi)||

2 ≤ 1

b

∑
it∈It

||∇f(ws+1
t)−∇f(ws+1

t−τi)||
2

≤ L2

b

∑
it∈It

||ws+1
t − ws+1

t−τi||
2

≤ L2∆

b

∑
it∈It

t−1∑
j=t−τi

||ws+1
j − ws+1

j+1||2

=
L2∆η2

b

∑
it∈It

t−1∑
j=t−τi

||vs+1
j ||2, (2.39)

where the second inequality follows from Lipschitz continuity of f(w). ∆ denotes the upper

bound of time delay. τ ≤ ∆. Above all, we have the following inequality,

E
[
f(ws+1

t+1)
]
≤ E

[
f(ws+1

t)
]
− η

2
E
[
||∇f(ws+1

t)||2
]
− η

2
E

[
||1
b

∑
i∈It

∇f(ws+1
t−τi)||

2

]

+
η2L

2
E
[
||vs+1

t ||2
]

+
L2∆η3

2b

∑
i∈It

t−1∑
j=t−τi

E
[
||vs+1

j ||2
]
. (2.40)

Following the definition of Rs+1
t+1 ,

Rs+1
t+1 = E

[
f(ws+1

t+1) + ct+1||ws+1
t+1 − w̃s||2

]
≤ E

[
f(ws+1

t)
]
− η

2
E
[
||∇f(ws+1

t)||2
]
− η

2
E

[
||1
b

∑
i∈It

∇f(ws+1
t−τi)||

2

]

+
η2L

2
E
[
||vs+1

t ||2
]

+
L2∆η3

2b

∑
i∈It

t−1∑
j=t−τi

E
[
||vs+1

j ||2
]

+ ct+1

[
η2E

[
||vs+1

t ||2
]

+ (1 + ηβt)E
[
||ws+1

t − w̃s||2
]

+
η

βt
E

[
||1
b

∑
i∈It

∇f(ws+1
t−τi)||

2

]]

≤ E
[
f(ws+1

t)
]
− η

2
E
[
||∇f(ws+1

t)||2
]

+
L2∆η3

2b

∑
i∈It

t−1∑
j=t−τi

E
[
||vs+1

j ||2
]

+ (
η2L

2
+ ct+1η

2)E
[
||vs+1

t ||2
]

+ ct+1(1 + ηβt)E
[
||ws+1

t − w̃s||2
]
. (2.41)

19

In the final inequality, we make (η
2
− ct+1η

βt
) > 0. Then we sum over Rs+1

t+1 , the following

inequality holds that:

m−1∑
t=0

Rs+1
t+1 ≤

m−1∑
t=0

[
E
[
f(ws+1

t)
]
− η

2
E
[
||∇f(ws+1

t)||2
]

+
L2∆η3

2b

∑
i∈It

t−1∑
j=t−τi

E
[
||vs+1

j ||2
]

+ (
η2L

2
+ ct+1η

2)E
[
||vs+1

t ||2
]

+ ct+1(1 + ηβt)E
[
||ws+1

t − w̃s||2
]]

≤
m−1∑
t=0

[
E
[
f(ws+1

t)
]
− η

2
E
[
||∇f(ws+1

t)||2
]

+ ct+1(1 + ηβt)E
[
||ws+1

t − w̃s||2
]

+ (
L2∆2η3

2
+
η2L

2
+ ct+1η

2)E
[
||vs+1

t ||2
]]

≤
m−1∑
t=0

[
E
[
f(ws+1

t)
]
− η

2
E
[
||∇f(ws+1

t)||2
]

+ ct+1(1 + ηβt)E
[
||ws+1

t − w̃s||2
]

+
2

1− 2L2∆2η2
(
L2∆2η3

2
+
η2L

2
+ ct+1η

2)E
[
||us+1

t ||2
]]

=
m−1∑
t=0

Rs+1
t −

m−1∑
t=0

[
ΓtE

[
||∇f(ws+1

t)||2
]]
, (2.42)

where the last inequality follows the upper bound of vs+1
t in [82], and we define:

ct = ct+1

(
1 + ηβt +

4L2η2

(1− 2L2∆2η2)b

)
+

4L2

(1− 2L2∆2η2)b

(
L2∆2η3

2
+
η2L

2

)
(2.43)

Γt =
η

2
− 4

(1− 2L2∆2η2)
(
L2∆2η3

2
+
η2L

2
+ ct+1η

2). (2.44)

We set cm = 0, and w̃s+1 = ws+1
m , and γ = min

t
Γt, thus Rs+1

m = E [f(ws+1
m)] = E [f(w̃s+1)],

and Rs+1
0 = E

[
f(ws+1

0)
]

= E [f(w̃s)]. Summing up all epochs, the following inequality holds,

1

T

S−1∑
s=0

m−1∑
t=0

E
[
||∇f(ws+1

t)||2
]
≤ E [f(w0)− f(w∗)]

Tγ
. (2.45)

20

Theorem 2.4.2. Suppose all assumptions of f(w) satisfy. Let ηt = η = u0b
Lnα

, where 0 <

u0 < 1 and 0 < α ≤ 1, β = 2L, m = b nα
6u0b
c and T is total iteration. If the maximum time

delay ∆ is upper bounded by:

∆2 < min{ 1

2u0b
,
3− 28u0b

28u2
0b

2
}, (2.46)

there exists universal constant u0, σ, such that if it holds γ ≥ σb
Lnα

, we have the following

inequality:

1

T

S−1∑
s=0

m−1∑
t=0

E
[
||∇f(ws+1

t)||2
]
≤ LnαE [f(w0)− f(w∗)]

bTσ
. (2.47)

Proof of Theorem 2.4.2. Following the proof of Theorem 2.4.1, we let cm = 0, ηt = η = u0b
Lnα

,

βt = β = 2L, 0 < u0 < 1, and 0 < α < 1. We define θ, and get its upper bound,

θ = ηβ +
4L2η2

(1− 2L2∆2η2)b

=
2u0b

nα
+

4u2
0b

n2α − 2∆2u2
0b

2

≤ 6u0b

nα
, (2.48)

where we assume n2α − 2∆2u2
0b

2 ≥ nα. We set m = b nα
6u0b
c, from the recurrence formula

between ct and ct+1, c0 is upper bounded,

c0 =
2L2

(1− 2L2∆2η2)b

(
L2∆2η3 + η2L

) (1 + θ)m − 1

θ

≤
2L
(
u30∆2b3

n3α +
u20b

2

n2α

)
(1− 2L2∆2η2)

(
2u0b2

nα
+

4u20b
2

n2α−2∆2u20b
2

) ((1 + θ)m − 1)

≤ L(u0b∆
2 + 1)

3
((1 + θ)m − 1)

≤ L(u0b∆
2 + 1)

3
(e− 1). (2.49)

where the final inequality follows from that (1+ 1
l
)l is increasing for l > 0, and lim

l→∞
(1+ 1

l
)l = e.

From Theorem 2.4.1, we know that c0 <
β
2

= L, then u0b∆
2 < 1

2
. ct is decreasing with respect

to t, and c0 is also upper bounded. Now, we can get a lower bound of γ,

21

γ = min
t

Γt

≥ η

2
− 4

(1− 2L2∆2η2)
(
L2∆2η3

2
+
η2L

2
+ c0η

2)

≥ η

2
− 4nα(

L2∆2η3

2
+
η2L

2
+ c0η

2)

≥ (
1

2
− 14∆2u2

0b
2 + 14u0b

3
)η

≥ σb

Lnα
. (2.50)

There exists a small value σ that the final inequality holds if 1
2
>

14∆2u20b
2+14u0b

3
. So, if ∆2

has an upper bound ∆2 < min{ 1
2u0b

, 3−28u0b
28u20b

2 } , we can prove the final conclusion,

1

T

S−1∑
s=0

m−1∑
t=0

E
[
||∇f(xs+1

t)||2
]
≤ LnαE [f(x̃0)− f(x̃∗)]

bTσ
. (2.51)

Therefore, it is obvious that our proposed Distributed-AsySVRG method has sub-linear

convergence rate of O(1/T), and is much faster than the AsySGD with convergence rate of

O(1/
√
T) [59]. From inequality (2.47), we know that the convergence rate has nothing to do

with ∆ if it is upper bounded, linear speedup is also accessible when we increase the number

of workers in a cluster.

2.5 Experimental Results

In this section, we perform experiments on shared-memory architecture and distributed-

memory architecture respectively. One of the main purposes of our experiments is to validate

the faster convergence rate of asySVRG method, and the other purpose is to demonstrate its

linear speedup property. The speedup we consider in this chapter is running time speedup

when they reach similar performance, e.g. similar training loss function value. Given K

workers, running time speedup is defined as,

Time speedup =
Running time for the serial computation

Running time of using K workers
. (2.52)

22

Number of data pass

0 20 40 60 80 100 120 140

T
ra

in
in

g
 l
o

s
s

0.1

0.15

0.2

0.25

0.3

0.35
SGD

SVRG

SGD_SVRG

(a)

Number of data pass

0 20 40 60 80 100 120 140

T
ra

in
in

g
 e

rr
o
r

0.05

0.1

0.15

0.2

0.25

SGD

SVRG

SGD_SVRG

(b)

Number of data pass

0 20 40 60 80 100 120 140

T
e

s
ti
n

g
 e

rr
o

r

0.1

0.15

0.2

0.25

0.3 SGD

SVRG

SGD_SVRG

(c)

Figure 1: Comparison of three methods: SGD, SVRG, SGDSVRG on MNIST dataset.

2.5.1 Shared-Memory Architecture

We conduct experiments on a machine which has 2 sockets, and each socket has 18

cores. OpenMP library 1 is used to handle shared-memory parallelism. We consider the

multi-class classification task on MNIST dataset [57], and use 10, 000 training samples and

2, 000 testing samples in the experiment. Each image sample is a vector of 784 pixels.

We construct a toy three-layer neural network (784 × 100 × 10), where ReLU activation

function is used in the hidden layer. We train this neural network with softmax loss function,

and `2 regularization with weight C = 10−3. We set mini-batch size |It| = 10, and inner

iteration length m = 1, 000. Updating only one component of w in each iteration is too time

consuming, therefore we randomly select and update 1, 000 components.

We compare following three methods in the experiment:

• SGD: We implement stochastic gradient descent (SGD) algorithm and train with the

best tuned learning rate. In our experiment, we use polynomial learning rate η = α
(1+s)β

,

where α is tuned from {1e−2, 5e−2, 1e−3, 5e−3, 1e−4, 5e−4, 1e−5, 5e−5}, β is tuned from in

{0, 0.1, 0.2, ..., 1} and s denotes the epoch number.

• SVRG: We implement our Shared-AsySVRG method and train with the best tuned

constant learning rate α.

1https://openmp.org

23

Time (seconds) ×10 4

0 2 4 6 8 10 12 14

T
ra

in
in

g
 l
o
s
s

0

0.2

0.4

0.6

0.8

1

1 thread

4 threads

8 threads

16 threads

24 threads

32 threads

(a)

Time (seconds) ×10 4

0 2 4 6 8 10 12 14

T
e
s
ti
n
g
 e

rr
o
r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 thread

4 threads

8 threads

16 threads

24 threads

32 threads

(b)

 Number of Threads

1 4 8 16 24 32

S
p
e
e
d
u
p

0

5

10

15

20

25

30

35

Ideal

Ours

(c)

Figure 2: Speedup of Shared-AsySVRG on a machine with different number of threads from

1 to 32.

24

Number of data pass

0 5 10 15 20 25

T
ra

in
in

g
 l
o

s
s

0.2

0.3

0.4

0.5

0.6

0.7
SGD

SVRG

SGD_SVRG

(a)

Number of data pass

0 5 10 15 20 25

T
ra

in
in

g
 e

rr
o

r

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
SGD

SVRG

SGD_SVRG

(b)

Number of data pass

0 5 10 15 20 25

T
e

s
ti
n

g
 e

rr
o

r

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55 SGD

SVRG

SGD_SVRG

(c)

Figure 3: Comparison of three methods: SGD, SVRG, SGDSVRG on CIFAR-10.

• SGD SVRG: SVRG method is sensitive to initial point, and it is slower than SGD at

first few iterations. Thus, we apply Shared-AsySVRG on a pre-trained model learned

by SGD. In the experiment, we use a pre-trained model after running 10 epochs of SGD

method.

We evaluate three compared methods on MNIST dataset, and each method trains with

the best tuned learning rate. Figure 1 shows the convergence of each method with respect to

different criterion: loss function value on training dataset, training error, and testing error.

Figure 1a shows the curves of training loss function value, it is clear that SGD method

converges faster than SVRG method in the first 20 iterations, and after that, SVRG method

outperforms SGD. SGD SVRG method initializes with a pre-trained model, and it has the

best performance. Figure 1b and Figure 1c present the performance of each method on

training error and testing error respectively. We can conclude that SVRG and SGD SVRG

method have better performance on the long run, and SGD SVRG method has the fastest

convergence.

To demonstrate that our proposed Shared-AsySVRG method has linear speedup when

we increase the number of workers, we also evaluate Shared-AsySVRG with different number

of threads, and Figure 2 presents the result of our experiment. In Figure 2a, all curves are

reaching the similar training loss value. As we can see, the more threads we use in the

25

Time (seconds)

0 2000 4000 6000 8000 10000 12000

T
ra

in
in

g
 l
o
s
s

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1 workers

2 workers

4 workers

6 workers

8 workers

10 workers

(a)

Time (seconds)

0 2000 4000 6000 8000 10000 12000

T
e
s
ti
n
g
 e

rr
o
r

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 workers

2 workers

4 workers

6 workers

8 workers

10 workers

(b)

 Number of workers

1 2 4 6 8 10

S
p
e
e
d
u
p

1

2

3

4

5

6

7

8

9

10

Ideal

Ours

(c)

Figure 4: Speedup of Distributed-AsySVRG on multiple machines from 1 to 10.

26

computation, the less time we need to achieve a similar accuracy. This result is reasonable,

because when we distribute the whole work to multiple workers, each worker focuses on its

own subset independently and parallelly. The ideal result of parallel computation is linear

speedup, namely if we use K threads, its running time should be 1
K

of the time when we

just use a single thread. Figure 2c shows the ideal speedup and actual speedup in our

experiment. We can find out that a nearly linear speedup is accessible when we increase the

thread number. When the number of threads exceeds a threshold, performance will degrade.

These findings in the experiment are compatible with our theoretical analysis.

2.5.2 Distributed-Memory Architecture

We conduct distributed-memory architecture experiment on AWS platform2, and each

node is a t2.micro instance with one virtual CPU. Each server and worker takes a single

node. The point to point communication between server and workers are handled by MPICH

library3. We use CIFAR-10 dataset [53] in the experiment, and this dataset has 10 classes of

color image of size 32× 32× 3. We use 20, 000 samples as training data and 4, 000 samples

as testing data. We use a pre-trained CNN model in TensorFlow tutorial [1], and extract

features from second fully connected layer. Thus, each sample is a vector of size 384. We

construct a three-layer fully connected neural network (384×50×10). In the hidden layer, we

use ReLU activation function. We train this model with softmax loss, and `2 regularization

with weight C = 1e−4. In this experiment, mini-batch size |It| = 10, and the inner loop

length m = 2, 000. We use the same compared methods as in the last section, except that

SGD SVRG method is initialized with parameters learned after 1 epoch of SGD.

Performances of all three methods are presented in Figure 3. Curves in Figure 3a show

that SGD is the fastest method in the first few iterations, after that, SVRG-based method

will outperform it. It is obvious that SGD SVRG has better convergence rate than SVRG

method. We can also draw a similar conclusion from Figure 3b. In Figure 3c, it shows that

the test error performance of three compared methods are comparable. We also test our

Distributed-AsySVRG method with different number of workers, and Figure 4 illustrates

2https://aws.amazon.com/
3http://www.mpich.org/

27

the results of our experiment. It is easy to know that when the number of workers increases,

our method has a near linear speedup.

28

3.0 Asynchronous Dual Free Stochastic Dual Coordinate Ascent for

Distributed Data Mining

3.1 Motivation

In this chapter, we consider solving the `2-norm regularized empirical loss minimiza-

tion problem which is arising ubiquitously in supervised machine learning and data mining

problems:

min
w∈Rd

P (w) := min
w∈Rd

1

n

n∑
i=1

φi(w) +
λ

2
‖w‖2

2. (3.1)

We let f(w) = 1
n

∑n
i=1 φi(w) and w ∈ Rd be the linear predictor to be optimized. There

are many applications falling into this formulation, such as classification, regression, and

principal component analysis (PCA). In classification, given features xi ∈ Rd and labels yi ∈

{1,−1}, we obtain Support Vector Machine (SVM) when we let φi(w) = max{0, 1−yixTi w}.

In regression, given features xi ∈ Rd and response yi ∈ R, we have Ridge Regression problem

if φi(w) = (yi − xTi w)2. Recently, [23, 5] showed that the problem of PCA can be solved

through convex optimization. Supposing C = 1
n

∑n
i=1 xix

T
i be normalized covariance matrix,

[23] showed that approximating the principle component of A is equivalent to minimizing

f(w) = 1
2
wT (µI − C)w − bTw given µ > 0 and b ∈ Rd. Defining φi(w) = 1

2
wT ((µ − λ

2
)I −

xix
T
i)w− bTw and µ > σ1(C)+ λ

2
where σ1(C) denotes the largest singular value of C, it also

falls into problem (3.1). In this case, f(w) is convex while each φi(w) is probably non-convex.

Distributed machine learning and data mining methods are required to solve the problem

(3.1) when the data are distributed over multiple machines. In [43], the authors proposed

communication-efficient distributed dual coordinate ascent (CoCoA) for primal-dual dis-

tributed optimization. In each iteration, the CoCoA framework allows workers to optimize

subproblems independently at first. After that, it calls “Reduce” operation to collect local

solution from all workers, and updates global variable and broadcasts the up-to-date global

variable to workers in the end. It uses stochastic dual coordinate ascent (SDCA) as the local

solver which is one of the most successful methods proposed for solving the problem (3.1)

29

[36, 91]. In [92], the authors proved that SDCA has linear convergence if the convex func-

tion φi(w) is smooth, which is much faster than stochastic gradient descent (SGD). [102, 97]

also proposed distributed SDCA and analyzed the tradeoff between computation and com-

munication. [66, 65] accelerated the CoCoA by allowing for more aggressive updates, and

proved that CoCoA has linear primal-dual convergence for the smooth convex problem and

sublinear convergence for the non-smooth convex problem. However, there are two issues for

these primal-dual distributed methods. Firstly, all of them use SDCA as the local solver.

SDCA is not applicable when the dual problem is unknown, e.g. φi is non-convex. There-

fore, the applications of these primal-dual distributed methods are limited. Secondly, all of

these methods assume that the workers have similar computing speed, which is not true in

practice. Straggler problem is an unavoidable practical issue in the distributed data mining.

Thus, the computing time of CoCoA and distributed SDCA is dependent on the slowest

worker. Even if there is only one bad worker, they will work far slower than expectation.

In [89, 90], the authors proposed dual free stochastic dual coordinate ascent (dfSDCA).

It was proved to admit similar convergence rate to SDCA while it did not rely on duality

at all. However there is no distributed machine learning method using dfSDCA, and its

convergence analysis is still unknown yet.

In this chapter, we solve the above two challenging issues in previous primal-dual dis-

tributed machine learning methods by proposing novel Distributed Dual Free Stochastic

Dual Coordinate Ascent (Dis-dfSDCA). We use dfSDCA as the local solver such that Dis-

dfSDCA can be applied to the non-convex problem easily. We alleviate the effect of straggler

problem by allowing asynchronous communication between server and workers. As shown

in Figure 5, the server does not wait and workers may store the stale global variable in the

local. In iteration t, the server receives gradient message vk from worker k, and sends the

up-to-date wt back to the worker k. Global variables in other workers are stale. For example

worker 1 and K store stale global variables wt−2 and wt−5 respectively. We also analyze the

convergence rate of our method and prove that it admits linear convergence rate even if the

individual losses (φi) are non-convex, as long as the sum of losses f is convex. Finally, we

conduct simulation on the distributed system with straggler problem. Experimental results

verify our theoretical conclusions and show that our method works well in practice.

30

Figure 5: Distributed asynchronous dual free stochastic dual coordinate ascent for parameter

server framework.

3.2 Preliminaries

To optimize the primal problem (3.1), we often derive and optimize its dual problem

alternatively:

max
α∈Rn

D(α) := max
α∈Rn

1

n

n∑
i=1

−φ∗i (−αi)−
λ

2
‖ 1

λn
Aα‖2

2 , (3.2)

where φ∗i is the convex conjugate function to φi, A = [x1, x2, ...xn] ∈ Rd×n denotes data

matrix and α ∈ Rn denotes dual variable. We can use stochastic gradient descent (SGD)

to optimize primal problem (3.1), however, there are always two issues: (1) SGD is too

aggressive at the beginning of the optimization; (2) it does not have a clear stopping criterion.

One of the biggest advantages of optimizing the dual problem is that we can keep tracking

the duality gap G(α) to monitor the progress of optimization. Duality gap is defined as:

G(α) = P (w(α))−D(α), where P (w(α)) and D(α) denote objective values of primal problem

and dual problem respectively. If w∗ is the optimal solution of primal problem (3.1) and α∗

is the optimal solution of dual problem (3.2), the primal-dual relation always holds that:

w∗ = w(α∗) =
1

λn
Aα∗ . (3.3)

31

Algorithm 4 SDCA

1: Initialize α0 and w0 = w(α0);

2: for t = 0, 1, 2, . . . , T − 1 do

3: Randomly sample i from {1, 2, ..., n};

4: Find ∆αi to maximize the subproblem (3.4);

5: Update dual variable α through:

αt+1 ← αt + ∆αiei;

6: Update primal variable w through:

wt+1 ← wt + 1
λn

∆αixi;

7: end for

3.2.1 Stochastic Dual Coordinate Ascent

In [92], the authors proposed stochastic dual coordinate ascent (SDCA) to optimize the

dual problem (3.2). The pseudocode of SDCA is presented in Algorithm 4. In iteration t,

given sample i and other dual variables αj 6=i fixed, we maximize the following subproblem:

max
∆αi∈R

− 1

n
φ∗i (−(αti + ∆αi))−

λ

2
‖wt +

1

λn
∆αixi‖2

2, (3.4)

ei denotes coordinate vector of size n, where element i is 1 and other elements are 0. In

their chapter, the authors proved that SDCA admits linear convergence rate for smooth loss,

which is much faster than stochastic gradient descent (SGD). An accelerated SDCA was also

proposed in [91]. However, SDCA is not applicable when it is difficult to derive the dual

problem, e.g. φi are non-convex.

3.2.2 Dual Free Stochastic Dual Coordinate Ascent

To address the limitation of SDCA, [89] proposes Dual Free Stochastic Coordinate Ascent

(dfSDCA) which has similar convergence property to SDCA. The pseudocode of dfSDCA

is presented in Algorithm 5. Although we keep vector α ∈ Rn in the optimization, the

derivation of dual problem is not necessary for dfSDCA. According to the update rule of α

and w in the algorithm, the primal-dual relation (3.3) also holds for dfSDCA. The drawback

32

Algorithm 5 Dual Free SDCA

1: Initialize dual variable α0 = (α0
0, ..., α

0
n) where ∀i, α0

i ∈ Rd, primal variable w0 = w(α0);

2: for t = 0, 1, 2, . . . , T − 1 do

3: Randomly sample i from {1, 2, ..., n};

4: Compute dual residue κ through:

κ← ∇φi(wt) + αti;

5: Update dual variable αi through:

αt+1
i ← αti − ηλnκ;

6: Update primal variable w through:

wt+1 ← wt − ηκ;

7: end for

of dfSDCA is that it is space-consuming to store α, whose space complexity O(nd). We can

reduce it to O(n) if ∇φi(w) can be written as ∇φi(xTi w)xi. In [31], the authors accelerated

dfSDCA by using non-uniform sampling strategy in each iteration and proved that it admits

faster convergence.

3.3 Distributed Asynchronous Dual Free Stochastic Dual Coordinate Ascent

In this section, we propose Distributed Asynchronous Dual Free Stochastic Coordinate

Ascent (Dis-dfSDCA) for distributed optimization. Dis-dfSDCA fits for any parameter server

framework, where the star-shape network is used. We assume that there are n samples in the

dataset, and they are evenly distributed over K workers. In worker k, there are nk samples.

It is satisfied that n =
∑K

k=1 nk. Different from sequential dfSDCA, we split the update of

dual variable and primal variable into different nodes. The pseudocodes of Dis-dfSDCA for

server node and worker nodes are presented in Algorithm 10 and Algorithm 7 respectively.

33

Algorithm 6 Dis-dfSDCA (Server)

Initialize w ∈ Rd, η

for s = 0, 1, ..., S − 1 do

for t = 0, 1, ..., T − 1 do

Receive gradient message vs,t = vk from worker k;

Update global variable ws+1,t+1 through:

ws,t+1 ← ws,t − ηvs,t;

Send ws,t+1 back to worker k ;

end for

ws+1,0 = ws,T

Broadcast the up-to-date global variable ws+1,0 to all workers.

end for

3.3.1 Update Global Variable on Server

The up-to-date global variable w ∈ Rd is stored and updated on the server. Initially,

w is set to be vector zero. At the beginning of each iteration, the server receives gradient

message vk from arbitrary worker k and let vt = vk. Then it updates the global variable

through:

ws,t+1 = ws,t − ηvt. (3.5)

Finally, it sends the up-to-date global variable back to the worker k for further computation.

Asynchronous method is robust to straggler problem because it allows for updating the global

variable when receiving from only one worker. However, if the w in the worker is too stale, it

may lead the algorithm to diverge. Therefore, we induce two loops in our algorithm. Server

broadcasts the latest global variable w to all workers after every T iterations. In this way, we

prevent the problem of divergence and keep the advantage of asynchronous communication

at the same time. Algorithm 6 summarizes the pseudocode on the server.

In Algorithm 6, we use the update of vanilla dfSDCA in the server. [90] proposed acceler-

ated dfSDCA by using “Catalyst” algorithm of [62]. It is proved to admit faster convergence

34

Algorithm 7 Dis-dfSDCA (Worker k)

Initialize α[k] ∈ Rd×nk , η, H

repeat

Receive global variable ws,d(t) from server;

Initialize gradient message: vk ← 0;

Randomly select samples It from {1, · · · , nk} where |It| = H;

for sample i in It do

Compute dual residue κ through:

κ← ∇φi(ws,d(t)) + αi;

Update local dual variable αi through:

αi ← αi − ηλnκ;

Update gradient message vk through:

vk ← vk + κ;

end for

Send gradient message vk to server;

until Termination

rate by a constant factor. Our Algorithm 6 can also be extended to the accelerated version

easily. In this chapter, we only consider the vanilla version and analyze the convergence rate

of our algorithm.

3.3.2 Update Local Variable on Worker

In the distributed optimization, workers are responsible for the gradient computation

which is the main workload during the optimization. We take arbitrary worker k as an

example. Dual variable α[k] ∈ Rnk is only stored and updated in the worker k, each αi is

corresponding to sample i. Initially, local variable α[k] is set to be vector zero. After receiving

stale global variable ws,d(t) ∈ Rd from the server, worker k computes the dual residue κ and

updates local variable αi and gradient message vk for H iterations. Samples It are randomly

selected in the local dataset, and we set |It| = H. In each iteration, worker k selects a sample

35

i randomly and computes the dual residue κ for coordinate i of the dual variable through

the following function:

κ = ∇φi(ws,d(t)) + αi. (3.6)

Dual residue can also be viewed as the gradient in Stochastic Gradient Descent. When we

obtain optimal dual variable α∗ and primal variable w∗, κ should be 0. Therefore, it is

satisfied that α∗i = −∇φi(w∗). Then worker k updates local dual variable αi and gradient

message vk separately through:

αi = αi − ηλnκ, i ∈ It (3.7)

vk = vk + κ. (3.8)

Because there is only one αi in the cluster, it is always up-to-date. After H iterations, the

worker k sends gradient message vk to the server. From the update rule in our algorithm,

it is easy to know that the well-known primal-dual relation in the equation (3.3) is always

satisfied. The pseudocode of Dis-dfSDCA in worker node k is described in Algorithm 7.

In Algorithm 7, we use vanilla dfSDCA in the worker which samples with uniform distri-

bution. There are also other sampling techniques proposed to accelerate dfSDCA. As per the

sampling strategy in [89, 31, 90, 14], there are three options: uniform sampling, importance

sampling, and adaptive sampling. In importance sampling strategy [90], it first computes

the fixed probability distribution pi using smoothness parameter of each function φi, then

selects samples following this probability. In adaptive sampling strategy [31], it computes

the adaptive probability distribution pi using dual residue κ for each sample every iteration,

then selects samples following this probability. Both of them are proved to admit faster

convergence than vanilla dfSDCA with uniform sampling. We only consider the uniform

sampling strategy, and analyze its corresponding convergence rate in this chapter. However,

other sampling techniques are straightforward to be applied to our distributed method.

36

3.4 Convergence Analysis

In this section, we provide the theoretical convergence analysis of Dis-dfSDCA. For the

case of convex losses φi, we prove that Dis-dfSDCA admits linear convergence rate. If losses

φi are non-convex, we also prove linear convergence rate as long as the sum-of-non-convex

objectives f is convex.

We make the following assumptions for the primal problem (3.1) for further analysis. All

of them are common assumptions in the theoretical analysis for the asynchronous stochastic

methods.

Assumption 3.4.1 (Lipschitz Constant). We assume ∇φi is Lipschitz continuous, and there

is Lipschitz constant L such that ∀x, y ∈ Rd:

‖∇φi(x)−∇φi(y)‖2 ≤ L‖x− y‖2. (3.9)

We can also know that P is (L+ λ)-smooth:

‖∇P (x)−∇P (y)‖2 ≤ (L+ λ)‖x− y‖2. (3.10)

Assumption 3.4.2 (Maximum Time Delay). We assume that the maximum time delay of

the global variable in each worker is upper bounded by τ , such that:

d(t) ≥ t− τ. (3.11)

τ is relevant to the number of workers K in the system. We can also control τ through inner

iteration T in our algorithm.

37

3.4.1 Convex Case

In this section, we assume that the losses φi are convex, and prove that our method

admits linear convergence.

Assumption 3.4.3 (Convexity). We assume losses φi are convex, such that ∀x, y ∈ Rd:

φi(x) ≥ φi(y) +∇φi(y)T (x− y) . (3.12)

In our algorithm, dual variables α[1], ..., α[K] are stored in local workers. For worker k,

there is no update of α[k] from d(t) to t. Therefore, it is always true that αs,t[k] = α
s,d(t)
[k] . For

brevity, we write vs,t, ws,t and αs,t as vt, wt and αt. According to our algorithm, we know

that:

vt =
∑
i∈It

(
∇φi(wd(t)) + α

d(t)
i

)
=
∑
i∈It

vti . (3.13)

where |It| = H and E[vti] = ∇P (wd(t)). In our analysis, we also assume that there are no

duplicate samples in It. To analyze the convergence rate of our method, we need to prove

the following Lemma 3.4.1 at first.

Lemma 3.4.1. Let w∗ be the global solution of P (w), and α∗i = −∇φi(w∗). Following the

proof in [89], we define At and Bt as follows:

At = E‖αti − α∗i ‖2, (3.14)

Bt = E‖wt − w∗‖2. (3.15)

According to our algorithm, we can prove that At+1 and Bt+1 are upper bounded:

E[At+1 − At] ≤ −ηλHE‖αti − α∗i ‖2 − 2ηHLλ2E‖wt − w∗‖2

+4ηλHL
(
P (xt)− P (w∗)

)
− ηλ(1− ηλn)E‖vt‖2

+2λτHL2η3

t−1∑
j=d(t)

E‖vj‖2, (3.16)

E[Bt+1 −Bt] ≤ −2η
(
P (wd(t))− P (w∗)

)
+ η2E‖vt‖2

−2η
〈
wt − wd(t),∇P (xd(t))

〉
. (3.17)

38

Theorem 3.4.1. Suppose losses φi are convex and ∇φi are Lipschitz continuous. Let w∗ be

the optimal solution to P (w), and α∗i = −∇φi(w∗). Define Ct = 1
2λL

At + Bt. We can prove

that as long as:

η ≤ 1

4HLτ 2 + λn+ 2L
, (3.18)

the following inequality holds:

E[CT] ≤ (1− ηλH)E[C0]. (3.19)

Proof of Theorem 3.4.1: Substituting At+1 and Bt+1 according to Lemma 3.4.1, the follow-

ing inequality holds that:

E[Ct+1] =
1

2λL
At+1 +Bt+1

≤ (1− ηλH)E[Ct] + 2τHLη3

t−1∑
j=d(t)

E‖vj‖2

+

(
η2λn

2L
+ η2 − η

2L

)
E‖vt‖2. (3.20)

Adding the above inequality from t = 0 to t = T − 1, we have:

T−1∑
t=0

E[Ct+1] ≤
T−1∑
t=0

(1− ηλH)E[Ct] +

(
2Hτ 2η2 +

η2λn

2L
+ η2 − η

2L

) T−1∑
t=0

E‖vt‖2, (3.21)

where the inequality follows from Assumption 3.4.2 and ηL ≤ 1. If 2Hη2τ 2 + η2λn
2L

+η2− η
2L
≤

0, such that:

η ≤ 1

4HLτ 2 + λn+ 2L
, (3.22)

we have the following inequality:

T−1∑
t=0

E[Ct+1] ≤
T−1∑
t=0

(1− ηλH)E[Ct]

≤
T−1∑
t=1

E[Ct] + (1− ηλH)C0. (3.23)

Because Ct ≥ 0, then we complete the proof.

39

According that ∇P (w) is Lipschitz continuous, the sub-optimalality P (wt) − P (w∗) is

upper bounded that:

P (wt)− P (w∗) ≤ L+ λ

2
‖wt − w∗‖2

≤ L+ λ

2
Ct. (3.24)

Theorem 3.4.2. We consider the outer iteration s, and write Ct as Cs,t. According to

Algorithm 6, we know Cs+1,0 = Cs,T . Following Theorem 3.4.1 and applying (3.19) for S

iterations, it is satisfied that:

E[CS,0] ≤ (1− ηλH)SE[C0,0]. (3.25)

In particular, to achieve E[P (wS,0)− P (w∗)] ≤ ε, it suffices to set:

η =
1

4HLτ 2 + λn+ 2L
, (3.26)

and we have the following result:

S ≥ O

((
L

λ

(
τ 2 +

1

H

)
+
n

H

)
log

(
1

ε

))
. (3.27)

From Theorem 3.4.1 and 3.4.2, we know that our Dis-dfSDCA admits linear convergence

if losses φi are convex. According to Theorem 3.4.2, we observe that τ affects the speed of

our convergence, if τ →∞, it may lead our algorithm to diverge. Therefore, it is important

to keep τ within a reasonable bound. In our algorithm, τ is relevant to the number of workers

and less than T . When we let H = 1 and τ = 0, S is relevant to O(L
λ

+ n). It is compatible

with the convergence analysis of sequential dfSDCA in [89].

40

3.4.2 Non-convex Case

In this section, we assume that the losses φi are non-convex, while the sum-of-non-convex

objectives f is convex. We also prove that Dis-dfSDCA admits linear convergence rate for

this case. Firstly, we get the following Lemma 3.4.2.

Lemma 3.4.2. Let w∗ be optimal solution to P (w), and α∗i = −∇φi(w∗). Following the

definition of At and Bt in Lemma 3.4.1, we prove that At+1 and Bt+1 are upper bounded:

E[At+1 − At] ≤ −ηλHE‖αti − α∗i ‖2 + 2ηλHL2E‖wt − w∗‖2

−ηλ(1− ηλn)E‖vt‖2 + 2λτHL2η3

t−1∑
j=d(t)

E‖vj‖2, (3.28)

E[Bt+1 −Bt] ≤ −3ηλH

4
E‖wt − w∗‖2 + η2E‖vt‖2

+
2HτH2(L+ λ)2η3

λ

t−1∑
j=d(t)

E‖vj‖2. (3.29)

Theorem 3.4.3. Suppose f is convex and ∇φi is Lipschitz continuous. Let w∗ be the optimal

solution to P (w), and α∗i = −∇φi(w∗). Define Ct = 1
4L2At +Bt. We can prove that as long

as:

η ≤ λ2

2HLτ 2λ2 + 8HLτ 2(L+ λ)2 + 4λL2 + nλ3
, (3.30)

the following inequality holds:

E[CT] ≤ (1− ηλH)E[C0], (3.31)

Proof of Theorem 3.4.3: Substituting At+1 and Bt+1 according to Lemma 3.4.2, the follow-

ing inequality holds that:

E[Ct+1] =
1

4L2
At+1 +Bt+1

≤ (1− ηλH)E[Ct] +

(
λHτη3

2
+

2Hτ(L+ λ)2η3

λ

) t−1∑
j=d(t)

E‖vj‖2

+

(
η2 +

nη2λ2

4L2
− ηλ

4L2

)
E‖vt‖2. (3.32)

41

Adding the above inequality from t = 0 to t = T − 1, we have:

T−1∑
t=0

E[Ct+1] ≤
T−1∑
t=0

(1− ηλH)E[Ct] +

(
η2 +

nη2λ2

4L2
+
λHτ 2η2

2L

+
2Hτ 2(L+ λ)2η2

λL
− ηλ

4L2

) T−1∑
t=0

E‖vt‖2, (3.33)

where the inequality follows from Assumption 3.4.2 and ηL ≤ 1. If η2 + nη2λ2

4L2 + λHτ2η2

2L
+

2Hτ2(L+λ)2η2

λL
− ηλ

4L2 ≤ 0, such that:

η ≤ λ2

2HLτ 2λ2 + 8HLτ 2(L+ λ)2 + 4λL2 + nλ3
, (3.34)

we have the following inequality:

T−1∑
t=0

E[Ct+1] ≤
T−1∑
t=0

(1− ηλH)E[Ct]

≤
T−1∑
t=1

E[Ct] + (1− ηλH)C0. (3.35)

Because Ct ≥ 0, then we complete the proof that E[CT] ≤ (1− ηλH)E[C0].

Theorem 3.4.4. We consider the outer iteration s, and write Ct as Cs,t. According to

Algorithm 6, we know Cs+1,0 = Cs,T . Following Theorem 3.4.3 and applying (3.31) for S

iterations, it is satisfied that:

E[CS,0] ≤ (1− ηλH)SE[C0,0]. (3.36)

To achieve E[P (wS,0)− P (w∗)] ≤ ε, it suffices to set η = λ2

2HLτ2λ2+8HLτ2(L+λ)2+4λL2+nλ3
and

S ≥ O

((
(τ 2 + 1/H)L2

λ2
+
τ 2L3

λ3
+
n

H

)
log

(
1

ε

))
. (3.37)

From Theorems 3.4.3 and 3.4.4, we know that our Dis-dfSDCA admits linear convergence

even if losses φi are non-convex, as long as the sum-of-non-convex objectives is convex.

Comparing Theorems 3.4.2 with 3.4.4, we can observe that our method needs more iterations

to converge to the similar accuracy when φi are non-convex. It is reasonable because non-

convex problem is known to be harder to be optimized than convex problem. When we let

H = 1 and τ = 0, S is relevant to O(L
2

λ2
+ n). It is also compatible with the convergence

analysis of sequential dfSDCA in [89].

42

3.5 Experimental Results

In this section, we conduct two simulated experiments on the distributed system with

straggler problem. There are mainly three goals, firstly, we want to verify that our Dis-

dfSDCA has linear convergence rate for the convex and smooth problem; secondly, we would

like to make sure that our method has better speedup property than other primal-dual

methods; thirdly, we would like to show that our method is also fit for non-convex losses.

Our algorithm is implemented using C++, and the point-to-point communication be-

tween worker and server is handled by openMPI [22]. We use Armadillo library [86] for

efficient matrix computation. Experiments are performed on Amazon Web Services, and

each node is a t2.medium instance which has two virtual CPUs. In our distributed system,

we simulate the straggler problem by forcing one selected worker node to the delaying state

for m times as long as the normal computing time of other normal workers with probability

p. In our experiments, we set p = 0.2 and m is selected from [0, 10] randomly. In practice,

all nodes have a tiny possibility of being delayed. The setting in our experiments is to verify

that our algorithm is robust to straggler problem, even in the extreme situation.

3.5.1 Convex Case

In our experiment, we optimize quadratic loss with `2 regularization term to solve binary

classification problem:

min
w∈Rd

1

n

n∑
i=1

1

2
(xTi w − yi)2 +

λ

2
‖w‖2, (3.38)

where λ = 0.1. Datasets in our experiments are from LIBSVM [12]. Table 2 shows brief

details of each dataset. In this problem, because ∇φi(w) can be written as ∇φi(xTi w), we

just need to store α̂ ∈ Rn, and recover α ∈ Rd×n through ai = xiα̂i. Therefore the space

complexity is O(n).

We compare our method with CoCoA+ [66], which is the state-of-the-art distributed

primal-dual optimization framework. We reimplement CoCoA+ framework using C++,

and use SDCA as the local solver. Learning rate η in our method is selected from η =

{1, 0.1, 0.001, 0.0001}.

43

Table 2: Experimental datasets from LIBSVM.

Dataset # of samples Dimension Sparsity

IJCNN1 49,990 22 41 %

COVTYPE 581,012 54 22 %

RCV1 677,399 47,236 0.16%

3.5.1.1 Convergence of Duality Gap We compare the duality gap convergence of

compared methods in terms of time and epoch number respectively, where duality gap is

well defined in [92]. Experimental results are presented in Figure 6. We distribute IJCNN1

dataset over 4 workers. Figures 6 show the duality gap convergence in terms of time and

epoch on IJCNN1 dataset. From the second figure, it is easy to know that Dis-dfSDCA

and CoCoA+ have similar convergence rate. Since CoCoA+ has linear convergence if the

problem is convex and smooth, it is verified that Dis-dfSDCA has linear convergence rate

as well. In the experiment, we evaluate Dis-dfSDCA when we set different amount of local

computations, H = 102 and H = 103. Results show that our method is faster than CoCoA+

method in both two cases. The reason is that CoCoA+ is affected by the straggler problem

in the distributed system. We also optimize problem (3.38) with COVTYPE dataset using

8 workers, and RCV1 dataset using 16 workers. We can draw the similar conclusion from

the results of other two datasets.

3.5.1.2 Speedup In this section, we evaluate the scaling up ability of compared meth-

ods. The first row of Figure 7 presents the speedup of compared methods on IJCNN1 and

COVTYPE datasets. Speedup is defined as follows:

Time speedup =
Running time for serial computation

Running time of using K workers
. (3.39)

Figure in the second row shows the convergence of duality gap on RCV1 on multiple ma-

chines. It is obvious that Dis-dfSDCA always converges faster than CoCoA+ when they

44

0 0.5 1 1.5
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0 1 2 3 4 5 6
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0 2 4 6 8 10 12
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0 2 4 6 8 10 12 14 16
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0 100 200 300 400 500 600 700 800 900 1000
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0 1 2 3 4 5 6 7 8 9
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Figure 6: Convergence of duality gap of compared methods in terms of time and epoch for

IJCNN1, COVTYPE, RCV1 respectively.

45

Number of Workers
1 2 4 6 8

S
p
ee
d
u
p

1

2

3

4

5

6

7

8

Ideal

CoCoA+

Dis-dfSDCA

Number of Workers
0 2 4 6 8 10 12 14 16

S
p
ee
d
u
p

0

2

4

6

8

10

12

14

16

Ideal

CoCoA+

Dis-dfSDCA

Time (s)
0 1000 2000 3000 4000 5000 6000 7000

D
u
a
li
ty

G
ap

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

CoCoA+ Worker=2
CoCoA+ Worker=4
CoCoA+ Worker=8
CoCoA+ Worker=16
Dis-dfSDCA Worker=2
Dis-dfSDCA Worker=4
Dis-dfSDCA Worker=8
Dis-dfSDCA Worker=16

Figure 7: Time speedup in terms of the number of workers. Row 1 left: IJCNN1; Row 1

right: COVTYPE; Row 2: RCV1.

have the same number of workers. Experimental results verify that Dis-dfSDCA has better

speedup property than CoCoA+ when there is straggler problem.

3.5.2 Non-convex Case

In this experiment, we optimize the following convex objective, which is an essential step

for principal component analysis in [23]:

min
w∈Rd

1

n

n∑
i=1

1

2
wT
(
(µ− λ)− xixTi

)
w − bTw +

λ

2
‖w‖2. (3.40)

46

0 10 20 30 40 50 60 70
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

Figure 8: Suboptimum convergence of compared methods in terms of time.

We conduct the experiment on synthetic data and generate n = 500, 000 random vectors

{x1, ..., x500,000} ∈ R500 which are mean subtracted and normalized to have Euclidean norm

1. C = 1
n

∑n
i=1 xix

T
i denotes covariance matrix, b ∈ Rd denotes a random vector and we let

µ = 100, λ = 10−4 in the experiment. Because each φi is probably non-convex, CoCoA is not

able to solve this problem. In this experiment, we compare with Distributed asynchronous

SVRG [39].

Figure 8 shows the suboptimum convergence P (w)−P (w∗)) regarding time. w∗ denotes

the optimal solution to problem (3.40) , and it is obtained by running Dis-dfSDCA until

convergence. In Figure 8, it is obvious that Dis-dfSDCA runs faster than Distributed SVRG

when there are 4 workers. We can observe the similar phenomenon when there are 8 workers.

This observation is reasonable because Distributed SVRG needs to compute two gradients in

each inner iteration and full gradient in each outer iteration. Dis-dfSDCA is faster because

it only needs to compute one gradient in each iteration. However, Dis-dfSDCA needs O(nd)

space for storing α , because ∇φi(w) cannot be written as ∇φi(xTi w)xi in this problem.

47

4.0 Large Batch Training Does Not Need Warmup

4.1 Motivation

Deep learning has made significant breakthroughs in many fields, such as computer vision

[30, 29, 54, 83], nature language processing [19, 34, 100], and reinforcement learning [70, 94].

Recent studies show that better performance can usually be achieved by training a larger

neural network with a bigger dataset [67, 79]. Nonetheless, it is time-consuming to train

deep neural networks, which limits the efficiency of deep learning research. For example,

training ResNet50 on ImageNet with batch size 256 needs to take about 29 hours to obtain

75.3% Top-1 accuracy on 8 Tesla P100 GPUs [30]. Thus, it is a critical topic to reduce the

training time for the development of deep learning. Data parallelism is the most popular

method to speed up the training process, where the large-batch data is split across multiple

devices [16, 52, 101]. However, the large-batch neural network training using conventional

optimization techniques usually leads to bad generalization errors [35, 48].

Many empirical training techniques have been proposed for large-batch deep learning

optimization. [28] proposed to adjust the learning rate through linear learning rate scaling

and gradual warmup. By using these two techniques, they successfully trained ResNet50

with a batch size of 8192 on 256 GPUs in one hour with no loss of accuracy. Most of the

theoretical analysis about linear learning rate scaling consider stochastic gradient descent

only [59, 60]. However, the theoretical analysis for the momentum method or Nesterov’s

Accelerated Gradient [74] is still unknown. Finding that the ratios of weight’s `2-norm to

gradient’s `2-norm vary greatly among layers, [106] proposed the state-of-the-art large-batch

optimizer Layer-wise Adaptive Rate Scaling (LARS) and scaled the batch size to 16384 for

training ResNet50 on ImageNet. However, LARS still requires warmup in early epochs of

training and may diverge if it is not tuned properly.

Above three techniques (linear learning rate scaling, gradual warmup, and LARS) are

demonstrated to be very effective and have been applied in many related works reducing

the training time of deep neural networks [3, 44, 68, 105, 107]. In spite of the effectiveness

48

of above training techniques, theoretical motivations behind these techniques are still open

problems: (I) Why we need to increase the learning rate linearly as batch size scales up? (II)

Why we use gradual warm at early epochs, does there exist an optimal warmup technique

with no need to tune hyper-parameters? (III) Why we need to adjust the learning rate

layer-wisely?

In this chapter, we target to remove the warmup technique for large-batch training and

bridge the gap between large-batch deep learning optimization heuristics and theoretical

underpins. We summarize our main contributions as follows:

1. We propose a novel Complete Layer-wise Adaptive Rate Scaling (CLARS) algorithm for

large-batch deep learning optimization. Then, we introduce a new fine-grained analy-

sis for gradient-based methods and prove that the proposed method is guaranteed to

converge for non-convex problems.

2. We bridge the gap between heuristics and theoretical analysis for three large-batch

deep learning optimization techniques, including layer-wise adaptive rate scaling, linear

learning rate scaling, and gradual warmup.

3. Extensive experimental results demonstrate that CLARS outperforms gradual warmup

by a large margin and defeats the convergence of the state-of-the-art large-batch op-

timizer in training advanced deep neural networks (ResNet, DenseNet, MobileNet) on

ImageNet dataset.

4.2 Preliminaries

Gradient-Based Methods: The loss function of a neural network is minimizing the average

loss over a dataset of n samples:

min
w∈Rd

{f(w) :=
1

n

n∑
i=1

fi(w)}, (4.1)

where d denotes the dimension of the neural network. Normally, first-order gradient methods

are used to optimizer deep learning models. Momentum-based methods have been widely

used in deep learning optimization, especially computer vision, and obtain state-of-the-art

49

results [30, 37]. According to [74], mini-batch Nesterov Accelerated Gradient (mNAG) opti-

mizes the problem (4.1) as follows:

vt+1 = wt − γ
1

B

∑
i∈It

∇fi(wt),

wt+1 = vt+1 + β(vt+1 − vt), (4.2)

where It is the mini-batch samples with |It| = B, γ is the learning rate, β ∈ [0, 1) is the

momentum constant and v is the momentum vector. When β = 0, Eq. (4.2) represents the

procedures of mini-batch Gradient Descent (mGD). Learning rate γ is scaled up linearly

when batch size B is large [28]. However, using a learning rate γ for all layers may lead to

performance degradation.

Layer-Wise Learning Rate Scaling: To train neural networks with large batch size,

[106] proposed Layer-Wise Adaptive Rate Scaling (LARS). Suppose a neural network has

K layers, we can rewrite w = [(w)1, (w)2, ..., (w)K] with (w)k ∈ Rdk and d =
∑K

k=1 dk. The

learning rate at layer k is updated as follows:

γk = γscale × η ×
‖(wt)k‖2∥∥ 1

B

∑
i∈It ∇kfi(wt)

∥∥
2

, (4.3)

where γscale = γbase × B
Bbase

and η = 0.001 in [106]. γbase and Bbase depends on model and

dataset. For example, we set γbase = 0.1 and Bbase = 128 to train ResNet on CIFAR10.

Although LARS works well in practice, there is little theoretical understanding about it and

it converges slowly or even diverges in the beginning of training if warmup [28] is not used .

Conventional Analysis: [10, 25, 103] proved the convergence of mGD or mNAG for non-

convex problems through following two Assumptions:

Assumption 4.2.1. (Lipschitz Continuous Gradient) The gradient of f is Lipschitz

continuous with constant Lg. For any w, v ∈ Rd, it is satisfied that:

‖∇f(w)−∇f(w + v)‖2 ≤ Lg‖v‖2. (4.4)

Assumption 4.2.2. (Bounded Variance) There exist constants Mg > 0 and MC > 0, for

any w ∈ Rd, it is satisfied that:

E ‖∇fi(w)−∇f(w)‖2
2 ≤MgE‖∇f(w)‖2

2 +MC . (4.5)

50

Theorem 4.2.1 ([103]). Under Assumptions 4.2.1 and 4.2.2, let finf denote the minimum

value of problem f(w) and Mg = 0. As long as γ ≤ 1−β
2L

, min
t=0,1,...,T−1

‖∇f(wt)‖2
2 is guaranteed

to converge at the rate of O
(

1
Tγ

+ LgγMC

)
.

From Theorem 4.2.1, it is natural to know that the value of γ should be lowered because

of the term O(LgγMC), which is consistent with the learning rate decay practically. However,

there are two weaknesses of the current convergence result: (I) It cannot explain why layer-

wise learning rate in [106] is useful when there is one γ for all layers. (II) Theoretical result

doesnot show that warmup is required in the early stage of training.

4.3 Complete Layer-Wise Adaptive Rate Scaling

In this section, we propose a novel Complete Layer-wise Adaptive Rate Scaling (CLARS)

algorithm for large-batch deep learning optimization and a new fine-grained convergence

analysis of gradient-based methods for non-convex problems.

4.3.1 Complete Layer-Wise Adaptive Rate Scaling

Define U ∈ Rd×d as a permutation matrix where every row and column contains precisely

a single 1 with 0s everywhere else. Let U = [U1, U2, ..., UK] and Uk corresponds to the

parameters of layer k, the relation between w and wk is w =
∑K

k=1 Ukwk. Let ∇kfi(wt)

denote the stochastic gradient with respect to the parameters at layer k and γk denote its

learning rate. Thus, Eq. (4.2) of mNAG with batch It can be rewritten as:
vt+1 = wt −

K∑
k=1

γkUk

(
1
B

∑
i∈It
∇kfi(wt)

)
wt+1 = vt+1 + β(vt+1 − vt)

. (4.6)

At each iteration, the learning rate γk at layer k is updated using Complete Layer-wise

Adaptive Rate Scaling (CLARS) as follows:

γk = γscale × η ×
‖(wt)k‖2

1
B

∑
i∈It ‖∇kfi(wt)‖2

, (4.7)

51

Algorithm 8 Complete Layer-Wise Adaptive Rate Scaling

Require: γscale: Maximum learning rate

Require: β: Momentum parameter

Require: η = 0.01

1: for t = 0, 1, 2, · · · , T − 1 do

2: Sample large-batch It randomly with batch size B;

3: Compute large-batch gradient 1
B

∑
i∈It ∇fi(wt);

4: Compute the average of gradient norm for K layers 1
B

∑
i∈It ‖∇k∇fi(wt)‖2

2;

5: Update layer-wise learning rate γk following Eq. (4.7);

6: Update the model wt and momentum term vt following Eq. (4.6);

7: end for

8: Output wT as the final result.

where γscale = γbase × B
Bbase

and η is constant. To obtain a clear understanding of Eq. (4.7),

we rewrite it as:

γk = γscale × η ×
‖(wt)k‖2∥∥ 1

B

∑
i∈It ∇kfi(wt)

∥∥
2

×
∥∥ 1
B

∑
i∈It ∇kfi(wt)

∥∥
2

1
B

∑
i∈It ‖∇kfi(wt)‖2

. (4.8)

It is equal to multiplying the LARS in Eq. (4.3) with a new term
‖ 1
B

∑
i∈It
∇kfi(wt)‖

2
1
B

∑
i∈It
‖∇kfi(wt)‖2

,

which plays a critical role in removing the warmup. The proposed CLARS method is briefly

summarized in Algorithm 8.

In the following section, we will show that CLARS is supported theoretically and the

learning rate at layer k is normalized with respect to its corresponding Lipschitz constant and

gradient variance. In the experiments, we will also demonstrate that the proposed method

can complete large-batch ImageNet training with no warmup for the first time and accelerate

the convergence.

4.3.2 Fine-Grained Micro-Steps and Assumptions

In this section, we propose a new fine-grained method for the convergence analysis of

gradient-based methods. Based on the fine-grained analysis, we prove the convergence rate

52

of mini-batch Gradient Descent (mGD) and mini-batch Nesterov’s Accelerated Gradient

(mNAG) for deep learning problems. More insights are obtained by analyzing their conver-

gence properties.

Each step of mNAG in Eq. (4.6) can be regarded as the result of updating v, w for K

micro-steps, where the gradient at each micro-step is 1
B

∑
i∈It ∇kfi(wt). At micro-step t:s,

we have layer index k(s) = s (mod K) + 1. For example, when s = 0, we are updating the

parameters of layer k(0) = 1. Defining wt:0 = wt, wt:K = wt+1, we can obtain Eq. (4.6) after

applying following equations from s = 0 to s = K − 1:


vt:s+1 = wt:s − γk

B

∑
i∈It

Uk∇kfi(wt)

wt:s+1 = vt:s+1 + β(vt:s+1 − vt:s)
. (4.9)

Following the idea of block-wise Lipschitz continuous assumption in [7] and regarding

layers as blocks, we suppose that two layer-wise assumptions are satisfied for any K-layer

neural network throughout this chapter, .

Assumption 4.3.1 (Layer-Wise Lipschitz Continuous Gradient). Assume that the gradient

of f is layer-wise Lipschitz continuous and the Lipschitz constant corresponding to layer k is

Lk for any layer k ∈ {1, 2, ..., K}. For any w ∈ Rd and v = [v1, v2, ..., vK] ∈ Rd, the following

inequality is satisfied that for any k ∈ {1, 2, ..., K}:

‖∇kf(w)−∇kf(w + Ukvk)‖2 ≤ Lk‖vk‖2. (4.10)

Lipschitz constants Lk of different layers are not equal and can be affected by multiple

factors, for example, position (top or bottom) or layer type (CNN or FCN). [113] estimated

Lipschitz constants empirically and verified that Lipschitz constants of gradients at different

layers vary a lot. Lk represents the property at layer k and plays an essential role in tuning

learning rates. In addition, we also think the “global” Lipschitz continuous assumption in

Assumption 4.2.1 is satisfied and Lg ≥ Lk.

53

Assumption 4.3.2 (Layer-Wise Bounded Variance). Assume that the variance of stochastic

gradient with respect to the parameters of layer k is upper bounded. For any k ∈ {1, 2, ..., K}

and w ∈ Rd, there exists Mk > 0 and M > 0 so that:

E ‖∇kfi(w)−∇kf(w)‖2
2 ≤MkE‖∇kf(w)‖2

2 +M. (4.11)

Let Mk ≤ Mg for any k, it is straightforward to get the upper bound of the variance of

gradient ∇fi(w) as E ‖∇fi(w)−∇f(w)‖2
2 ≤ MgE‖∇f(w)‖2

2 + KM . It is obvious that the

value of MC = KM in Assumption 4.2.2 is dependent on the neural networks depth.

Difficulties of Convergence Analysis: There are two major difficulties in proving the

convergence rate using the proposed fine-grained micro-steps. (I) Micro-step induces stale

gradient in the analysis. At each micro-step t:s in Eq. (4.9), gradient is computed using the

stale model wt, rather than the latest model wt:s. (II) K Lipschitz constants for K layers

are considered separately and simultaneously, which is much more complicated than just

considering Lg for the whole model.

4.3.3 Convergence Guarantees of Two Gradient-Based Methods

Based on the proposed fine-grained analysis, we prove that both of mini-batch Gradient

Descent (mGD) and mini-batch Nesterov’s Accelerated Gradient (mNAG) admit sub-linear

convergence guarantee O
(

1√
T

)
for non-convex problems. Finally, we obtain some new in-

sights about the gradient-based methods by taking mNAG as an example. At first, we let

β = 0 in Eq. (4.6) and Eq. (4.9), and analyze the convergence of mGD method.

Lemma 4.3.1. Under Assumptions 4.3.1 and 4.3.2, after applying Eq. (4.9) with β = 0

for K micro-steps from s = 0 to s = K − 1, we have the upper bound of loss E[f(wt+1)] as

follows:

E [f(wt+1)] ≤ E [f(wt)]−
K∑
k=1

γk
2

(
1− Lkγk −

LkγkMk

B
−
L2
gγkMk

K∑
k=1

γk

KB

−
L2
gγk

K∑
k=1

γk

K

)
E ‖∇kf(wt)‖2

2 +
K∑
k=1

Lkγ
2
kM

2B
+

K∑
k=1

γkL
2
gM

2KB

K∑
k=1

γ2
k.(4.12)

54

Proof of Lemma 4.3.1: Suppose K layers are updated sequentially from s = 0 to K − 1,

and we have wt = wt:0 and wt+1 = wt:K . At micro-step t:s, we set k(s) = s (mod K) + 1.

According to Assumption 4.3.1, we have:

E [f(wt:s+1)] ≤ E [f(wt:s)]− E
〈
∇k(s)f(wt:s), γk(s)∇k(s)f(wt)

〉
+
Lk(s)γ

2
k(s)

2
E

∥∥∥∥∥ 1

B

∑
i∈It

∇k(s)fi(wt)

∥∥∥∥∥
2

2

= E [f(wt:s)] +
Lk(s)γ

2
k(s)

2
E

∥∥∥∥∥ 1

B

∑
i∈It

∇k(s)fi(wt)

∥∥∥∥∥
2

2︸ ︷︷ ︸
C1

−
γk(s)

2

(
E
∥∥∇k(s)f(wt:s)

∥∥2

2

+E
∥∥∇k(s)f(wt)

∥∥2

2
− E

∥∥∇k(s)f(wt:s)−∇k(s)f(wt)
∥∥2

2︸ ︷︷ ︸
C2

)
. (4.13)

In the following context, we will prove that C1 and C2 are upper bounded. At first, we can

get the upper bound of C1 as follows:

C1 = E

∥∥∥∥∥ 1

B

∑
i∈It

(
∇k(s)fi(wt)−∇k(s)f(wt) +∇k(s)f(wt)

)∥∥∥∥∥
2

2

=
1

B2
E

∥∥∥∥∥∑
i∈It

(
∇k(s)fi(wt)−∇k(s)f(wt)

)∥∥∥∥∥
2

2

+ E
∥∥∇k(s)f(wt)

∥∥2

2

≤ 1

B2

∑
i∈It

E
∥∥∇k(s)fi(wt)−∇k(s)f(wt)

∥∥2

2
+ E

∥∥∇k(s)f(wt)
∥∥2

2

≤
(

1 +
Mk(s)

B

)
E
∥∥∇k(s)f(wt)

∥∥2

2
+
M

B
, (4.14)

where the second equality follows from E
〈
∇k(s)fi(wt)−∇k(s)f(wt),∇k(s)f(wt)

〉
= 0 and the

first inequality follows from E
∥∥∥∥ n∑
i=1

ξi

∥∥∥∥2

2

≤
n∑
i=1

E ‖ξi‖2
2 if E[ξi] = 0 and the second inequality

55

follows from Assumption 4.3.2. Following “global” Lipschitz continuous in Assumption 4.2.1,

we can bound C2 as follows:

C2 ≤
L2
g

K
E ‖wt:s − wt‖2

2

=
L2
g

K
E

∥∥∥∥∥
s−1∑
j=0

γk(j)

B

∑
i∈It

∇k(j)fi(wt)

∥∥∥∥∥
2

2

=
L2
g

KB2

s−1∑
j=0

γ2
k(j)E

∥∥∥∥∥∑
i∈It

(
∇k(j)fi(wt)−∇k(j)f(wt)

)
+B∇k(j)f(wt)

∥∥∥∥∥
2

2

≤
L2
g

KB2

s−1∑
j=0

γ2
k(j)

∑
i∈It

E
∥∥∇k(j)fi(wt)−∇k(j)f(wt)

∥∥2

2
+
L2
g

K

s−1∑
j=0

γ2
k(j)E

∥∥∇k(j)f(wt)
∥∥2

2

≤
L2
g

KB

s−1∑
j=0

γ2
k(j)

(
Mk(j)E

∥∥∇k(j)f(wt)
∥∥2

2
+M

)
+
L2
g

K

s−1∑
j=0

γ2
k(j)E

∥∥∇k(j)f(wt)
∥∥2

2

≤
L2
g

KB

K∑
k=1

γ2
k

(
MkE ‖∇kf(wt)‖2

2 +M
)

+
L2
g

K

K∑
k=1

γ2
kE ‖∇kf(wt)‖2

2 , (4.15)

where the first inequality follows from Assumption 4.3.1, the second inequality follows from

E
∥∥∥∥ n∑
i=1

ξi

∥∥∥∥2

2

≤
n∑
i=1

E ‖ξi‖2
2 if E[ξi] = 0, the third inequality follows from Assumption 4.3.2 and

the last inequality is because s ≤ K − 1. Combing inequalities (4.13), (4.14) and (4.15), we

have:

E [f(wt:s+1)] ≤ E [f(wt:s)]−
(
γk(s)

2
−
Lk(s)γ

2
k(s)

2
−
Lk(s)γ

2
k(s)Mk(s)

2B

)
E
∥∥∇k(s)f(wt)

∥∥2

2

+
γk(s)L

2
g

2KB

K∑
k=1

γ2
kMkE‖∇kf(wt)‖2

2 +
γk(s)L

2
g

2K

K∑
k=1

γ2
kE‖∇kf(wt)‖2

2

+
Lk(s)γ

2
k(s)M

2B
+
γk(s)L

2
gM

2KB

K∑
k=1

γ2
k. (4.16)

By summing from s = 0 to K− 1, because wt = wt:0 and wt+1 = wt:K , we can obtain the

upper bound of E [f(wt+1)] as follows:

56

E [f(wt+1)]

≤ E [f(wt)]−
K∑
k=1

(
γk
2
− Lkγ

2
k

2
− Lkγ

2
kMk

2B

)
E ‖∇kf(wt)‖2

2

+

K∑
k=1

γkL
2
g

2KB

K∑
k=1

γ2
kMkE‖∇kf(wt)‖2

2 +

K∑
k=1

γkL
2
g

2K

K∑
k=1

γ2
kE‖∇kf(wt)‖2

2

+
K∑
k=1

Lkγ
2
kM

2B
+

K∑
k=1

γkL
2
gM

2KB

K∑
k=1

γ2
k

≤ E [f(wt)]−
K∑
k=1

γk
2

(
1− Lkγk −

LkγkMk

B
−
L2
gγkMk

K∑
k=1

γk

KB

−
L2
gγk

K∑
k=1

γk

K

)
E ‖∇kf(wt)‖2

2 +
K∑
k=1

Lkγ
2
kM

2B
+

K∑
k=1

γkL
2
gM

2KB

K∑
k=1

γ2
k. (4.17)

Theorem 4.3.1 (Convergence of mGD). Under Assumptions 4.3.1 and 4.3.2, let finf denote

the minimum value of problem f(w), κk = Lg
Lk
≤ κ, γk = γ

Lk
, and

∑K
k=1 qkE ‖∇kf(wt)‖2

2

represents the expectation of E ‖∇kf(wt)‖2
2 with probability qk = 1/Lk∑K

k=1(1/Lk)
for any k. As

long as γk ≤ min
{

1
8Lk

, B
8LkMk

}
and 1

K

K∑
k=1

γk ≤ min
{

1
2Lg

, 1
2Lg

√
B
Mg

}
, it is guaranteed that:

1

T

T−1∑
t=0

K∑
k=1

qkE ‖∇kf(wt)‖2
2 ≤

8(f(w0)− finf)

Tγ
K∑
k=1

1
Lk

+
(4 + 2κ)Mγ

B
. (4.18)

57

Proof of Theorem 4.3.1: Following Lemma 4.3.1 and defining κk = Lg
Lk
≤ κ, if γk satisfies

following inequalities:

Lkγk ≤
1

8
, (4.19)

LkγkMk

B
≤ 1

8
, (4.20)

L2
gγkMk

K∑
k=1

γk

KB
≤ 1

4
, (4.21)

L2
gγk

K∑
k=1

γk

K
≤ 1

4
, (4.22)

which are equivalent to γk ≤ min
{

1
8Lk

, B
8LkMk

}
and 1

K

K∑
k=1

γk ≤ min
{

1
2Lg

, 1
2Lg

√
B
Mg

}
. There-

fore, it holds that:

E [f(wt+1)] ≤ E [f(wt)]−
K∑
k=1

γk
8
E ‖∇kf(wt)‖2

2 +
K∑
k=1

(2 + κ)MLkγ
2
k

4B
. (4.23)

Rearranging the above inequality and summing it from t = 0 to T − 1, we have:

1

8

T−1∑
t=0

K∑
k=1

γkE ‖∇kf(wt)‖2
2 ≤ f(w0)− E [f(wT)] +

(2 + κ)MT

4B

K∑
k=1

Lkγ
2
k. (4.24)

Because f(wT) ≥ finf , let γk = γ
Lk

and dividing both sides by T
8

K∑
k=1

γk, we have:

1

T

T−1∑
t=0

K∑
k=1

qkE ‖∇kf(wt)‖2
2 ≤

8(f(w0)− finf)

Tγ
K∑
k=1

1
Lk

+
(4 + 2κ)Mγ

B
, (4.25)

where qk =
1
Lk

K∑
k=1

1
Lk

. We complete the proof.

Different from Theorem 4.2.1, we use
K∑
k=1

qkE ‖∇kf(wt)‖2
2 to measure convergence in the

chapter. Specially, if Lk = Lg for all k, it is easy to know that qk = 1
K

for all k and
K∑
k=1

qkE ‖∇kf(wt)‖2
2 = 1

K
E ‖∇f(wt)‖2

2. From Theorem 4.3.1, we prove that mGD admits

sub-linear convergence rate O
(

1√
T

)
for non-convex problems.

58

Corollary 4.3.1 (Sub-Linear Convergence Rate of mGD). Theorem 6.4.2 is satisfied and

follow its notations. Suppose 1
8Lk

dominates the upper bound of γk, and let learning rate

γ = min

1
8
,
√

B(f(w0)−finf)

TM
K∑
k=1

1
Lk

, mGD is guaranteed to converge that:

1

T

T−1∑
t=0

K∑
k=1

qkE ‖∇kf(wt)‖2
2 ≤

64(f(w0)− finf)

T
K∑
k=1

1
Lk

+ (12 + 2κ)

√√√√√M(f(w0)− finf)

TB
K∑
k=1

1
Lk

. (4.26)

Proof of Corollary 4.3.1: Suppose 1
8Lk

dominates the upper bound of γk and:

γ = min


1

8
,

√√√√√B(f(w0)− finf)

TM
K∑
k=1

1
Lk

 . (4.27)

Because min
t∈{0,...,T−1}

K∑
k=1

qkE ‖∇kf(wt)‖2
2 ≤

1
T

T−1∑
t=0

K∑
k=1

qkE ‖∇kf(wt)‖2
2, we have:

1

T

T−1∑
t=0

K∑
k=1

qkE ‖∇kf(wt)‖2
2 ≤

8(f(w0)− finf)

T
K∑
k=1

1
Lk

max

8,

√√√√√ TM
K∑
k=1

1
Lk

B(f(w0)− finf)


+

(4 + 2κ)M

B

√√√√√B(f(w0)− finf)

TM
K∑
k=1

1
Lk

≤ 64(f(w0)− finf)

T
K∑
k=1

1
Lk

+ (12 + 2κ)

√√√√√M(f(w0)− finf)

TB
K∑
k=1

1
Lk

.(4.28)

So far, we have proved the convergence of mGD method for non-convex problems. When

β 6= 0, we can also prove the convergence of mNAG.

Following [103], we define pt = β
1−β (wt − wt−1 + gt−1), where w−1 = w0, g−1 = 0, and

gt =
∑K

k=1 γkUk
(

1
B

∑
i∈It ∇kfi(wt)

)
. Let zt = wt + pt, we prove that E[f(zt+1)] is upper

bounded at each step in the following Lemma.

59

Lemma 4.3.2. Under Assumptions 4.3.1 and 4.3.2, after applying Eq. (4.9) for K micro-

steps from s = 0 to s = K − 1, we have the upper bound of loss E[f(zt+1)] as follows:

E[f(zt+1)] ≤ E[f(zt)]−
K∑
k=1

γk
2(1− β)

(
1− Lkγk

1− β
− LkγkMk

(1− β)B
−

2L2
gγkMk

(1− β)2KB

K∑
k=1

γk

−
2L2

gγk

(1− β)2K

K∑
k=1

γk

)
E ‖∇kf(wt)‖2

2 +
ML2

g

(1− β)3KB

K∑
k=1

γk

K∑
k=1

γ2
k

+
K∑
k=1

Lkγ
2
kM

2(1− β)2B
+

K∑
k=1

L2
gγk

(1− β)K
E ‖pt‖2

2 . (4.29)

Proof of Lemma 4.3.2: We define wt:0 = wt, and at step t:s, we have layer index k(s) = s+1.

Thus, we can rewrite Eq. (4.9) for any s ∈ {0, 1, ..., K − 1} as follows:

wt:s+1 = wt:s −
γk(s)

B

∑
i∈It

Uk(s)∇k(s)fi(wt) + β

(
wt:s −

γk(s)

B

∑
i∈It

Uk(s)∇k(s)fi(wt)

−wt:s−1 +
γk(s−1)

B

∑
i∈It

Uk(s−1)∇k(s−1)fi(wt)

)
, (4.30)

where we let wt:0 = wt:−1 and ∇k(−1)fi(−1)(wt) = 0. We also define pt:s as follows:

pt:s =
β

1− β

(
wt:s − wt:s−1 +

γk(s−1)

B

∑
i∈It

Uk(s−1)∇k(s−1)fi(wt)

)
. (4.31)

Combining (4.30) and (4.31), we have:

wt:s+1 + pt:s+1 = wt:s + pt:s −
γk(s)

(1− β)B

∑
i∈It

Uk(s)∇k(s)fi(wt). (4.32)

60

Let zt:s = wt:s + pt:s, according to Assumption 4.3.1, we have the upper bound of

E[f(zt:s+1)] as follows:

E[f(zt:s+1)] ≤ E[f(zt:s)]−
γk(s)

(1− β)
E
〈
∇k(s)f(zt:s),∇k(s)f(wt)

〉
+
Lk(s)γ

2
k(s)

2(1− β)2
E

∥∥∥∥∥ 1

B

∑
i∈It

∇k(s)fi(wt)

∥∥∥∥∥
2

2

= E[f(zt:s)] +
Lk(s)γ

2
k(s)

2(1− β)2
E

∥∥∥∥∥ 1

B

∑
i∈It

∇k(s)fi(wt)

∥∥∥∥∥
2

2︸ ︷︷ ︸
C3

−
γk(s)

2(1− β)

(
E
∥∥∇k(s)f(zt:s)

∥∥2

2
+ E

∥∥∇k(s)f(wt)
∥∥2

2

−E
∥∥∇k(s)f(zt:s)−∇k(s)f(wt)

∥∥2

2︸ ︷︷ ︸
C4

)
. (4.33)

From (4.14), it is easy to know that the upper bound of C3 as follows:

C3 ≤
(

1 +
Mk(s)

B

)
E
∥∥∇k(s)f(wt)

∥∥2

2
+
M

B
. (4.34)

We then obtain the upper bound of C4:

C4 ≤
L2
g

K
E ‖zt:s − wt:0‖2

2

=
L2
g

K
E ‖zt:s − zt:0 + zt:0 − wt:0‖2

2

≤
2L2

g

(1− β)2KB2
E

∥∥∥∥∥
s−1∑
j=0

γk(j)

∑
i∈It

∇k(j)fi(wt)

∥∥∥∥∥
2

2

+
2L2

g

K
E ‖pt:0‖2

2

≤
2L2

g

(1− β)2KB

K∑
k=1

γ2
k

(
MkE ‖∇kf(wt)‖2

2 +M
)

+
2L2

g

(1− β)2K

K∑
k=1

γ2
kE ‖∇kf(wt)‖2

2 +
2L2

g

K
E ‖pt:0‖2

2 , (4.35)

61

where the first inequality follows from ‖a + b‖2
2 ≤ 2‖a‖2

2 + 2‖b‖2
2 and the second inequality

follows from inequality (4.15). After combining (4.33), (4.34) and (4.35), we have:

E[f(zt:s+1)] ≤ E[f(zt:s)]−
(

γk(s)

2(1− β)
−
Lk(s)γ

2
k(s)

2(1− β)2
−
Lk(s)γ

2
k(s)Mk(s)

2(1− β)2B

)
E
∥∥∇k(s)f(wt)

∥∥2

2

+
L2
gγk(s)

(1− β)3KB

K∑
k=1

γ2
kMkE ‖∇kf(wt)‖2

2 +
L2
gγk(s)

(1− β)3K

K∑
k=1

γ2
kE ‖∇kf(wt)‖2

2

+
ML2

gγk(s)

(1− β)3KB

K∑
k=1

γ2
k +

Lk(s)γ
2
k(s)M

2(1− β)2B
+

L2
gγk(s)

(1− β)K
E ‖pt‖2

2 . (4.36)

Summing (4.36) from s = 0 to K − 1, because zt:0 = zt and zt:K = zt+1, we have:

E[f(zt+1)] ≤ E[f(zt)]−
K∑
k=1

γk
2(1− β)

(
1− Lkγk

1− β
− LkγkMk

(1− β)B

−
2L2

gγkMk

(1− β)2KB

K∑
k=1

γk −
2L2

gγk

(1− β)2K

K∑
k=1

γk

)
E ‖∇kf(wt)‖2

2

+
ML2

g

(1− β)3KB

K∑
k=1

γk

K∑
k=1

γ2
k +

K∑
k=1

Lkγ
2
kM

2(1− β)2B

+
K∑
k=1

L2
gγk

(1− β)K
E ‖pt‖2

2 . (4.37)

Lemma 4.3.3. Under Assumptions 4.3.1 and 4.3.2, after applying Eq. (4.2) from t = 0 to

T − 1, the following inequality is satisfied that:

T−1∑
t=0

E ‖pt‖2
2 ≤

K∑
k=1

β4γ2
kMT

(1− β)4B
+

K∑
k=1

(
1 +

Mk

B

)
β4γ2

k

(1− β)4

T−1∑
t=0

E ‖∇kf(wt)‖2
2 . (4.38)

62

Proof of Lemma 4.3.3: Let w−1 = w0, gt =
K∑
k=1

γk
B

∑
i∈It
∇kfi(wt) and g−1 = 0, we define pt as

follows:

pt =
β

1− β
(wt − wt−1 + gt−1) . (4.39)

According to the update of mini-batch NAG in Eq. (4.2), it holds that:

wt+1 = wt − gt + β (wt − gt − wt−1 + gt−1) . (4.40)

According to the definition of pt, we have:

pt+1 = βpt −
β2

1− β
gt. (4.41)

According to Eq. (4.41) and p0 = 0, we know that:

pt = βpt−1 −
β2

1− β
gt−1

= − β2

1− β

t−1∑
j=0

βt−1−jgj

= − β2

1− β

t−1∑
j=0

βjgt−1−j. (4.42)

Let Γt−1 =
t−1∑
j=0

βj, we have:

E‖pt‖2
2 =

β4

(1− β)2
E

∥∥∥∥∥
t−1∑
j=0

βjgt−1−j

∥∥∥∥∥
2

2

=
β4Γ2

t−1

(1− β)2
E

∥∥∥∥∥
t−1∑
j=0

βj

Γt−1

gt−1−j

∥∥∥∥∥
2

2

≤
β4Γ2

t−1

(1− β)2

t−1∑
j=0

βj

Γt−1

E ‖gt−1−j‖2
2

=
β4Γt−1

(1− β)2

t−1∑
j=0

βjE ‖gt−1−j‖2
2 , (4.43)

63

where the inequality is from the convexity of ‖‖2
2. We can get the upper bound of E ‖gt‖2

2 as

follows:

E ‖gt‖2
2 = E

∥∥∥∥∥
K∑
k=1

γk
B

∑
i∈It

∇kfi(wt)

∥∥∥∥∥
2

2

=
K∑
k=1

γ2
kE

∥∥∥∥∥ 1

B

∑
i∈It

∇kfi(wt)−∇kf(wt) +∇kf(wt)

∥∥∥∥∥
2

2

=
K∑
k=1

γ2
kE

∥∥∥∥∥ 1

B

∑
i∈It

∇kfi(wt)−∇kf(wt)

∥∥∥∥∥
2

2

+
K∑
k=1

γ2
kE ‖∇kf(wt)‖2

2

≤
K∑
k=1

Mγ2
k

B
+

K∑
k=1

(
γ2
k +

Mkγ
2
k

B

)
E ‖∇kf(wt)‖2

2 , (4.44)

where the third equality follows from E

〈
1
B

∑
i∈|It|
∇kfi(wt)−∇kf(wt),∇kf(wt)

〉
= 0 and the

last inequality follows from Assumption 4.3.2. Combining inequalities (4.43) and (4.44), we

have the upper bound of E ‖(pt)k‖2
2 as follows:

E ‖pt‖2
2 ≤

K∑
k=1

β4γ2
kΓt−1

(1− β)2

(
M

B

t−1∑
j=0

βj +

(
1 +

Mk

B

) t−1∑
j=0

βjE ‖∇kf(wt−1−j)‖2
2

)

≤
K∑
k=1

β4γ2
kM

(1− β)4B
+

K∑
k=1

(
1 +

Mk

B

)
β4γ2

k

(1− β)3

t−1∑
j=0

βjE ‖∇kf(wt−1−j)‖2
2 , (4.45)

where the last inequality follows from Γt−1 =
t−1∑
j=0

βj = 1−βt
1−β ≤

1
1−β . Summing inequality

(4.45) from t = 0 to T − 1, we have:

T−1∑
t=0

E ‖pt‖2
2 ≤

K∑
k=1

β4γ2
kMT

(1− β)4B
+

K∑
k=1

(
1 +

Mk

B

)
β4γ2

k

(1− β)3

T−1∑
t=0

t−1∑
j=0

βjE ‖∇kf(wt−1−j)‖2
2

=
K∑
k=1

β4γ2
kMT

(1− β)4B
+

K∑
k=1

(
1 +

Mk

B

)
β4γ2

k

(1− β)3

T−1∑
t=0

E ‖∇kf(wt)‖2
2

T−1∑
j=t

βT−1−j

≤
K∑
k=1

β4γ2
kMT

(1− β)4B
+

K∑
k=1

(
1 +

Mk

B

)
β4γ2

k

(1− β)4

T−1∑
t=0

E ‖∇kf(wt)‖2
2 , (4.46)

where the last inequality follows from
T−1∑
j=t

βT−1−j ≤ 1
1−β for any t ∈ {0, 1, ..., T − 1}.

64

Theorem 4.3.2 (Convergence of mNAG). Under Assumptions 4.3.1 and 4.3.2, let finf de-

note the minimum value of problem f(w), κk = Lg
Lk
≤ κ, γk = γ

Lk
, and

∑K
k=1 qkE ‖∇kf(wt)‖2

2

represents the expectation of E ‖∇kf(wt)‖2
2 with probability qk = 1/Lk∑K

k=1(1/LK)
for any k.

Therefore, as long as:

γk ≤ min

{
(1− β)

8Lk
,
(1− β)B

8LkMk

}
, (4.47)

1

K

K∑
k=1

γk ≤ min

{
(1− β)2

4β2Lg
,
(1− β)2

√
B

4β2Lg
√
Mg

,
(1− β)

√
B

4Lg
√
Mg

,
(1− β)

4Lg

}
, (4.48)

it is satisfied that:

1

T

T−1∑
t=0

K∑
k=1

qkE ‖∇kf(wt)‖22 ≤
8(1− β)(f(w0)− finf)

Tγ
K∑
k=1

1
Lk

+
Mγ

(1− β)B

(
4 + 2κ+

2κ

(1− β)

)
. (4.49)

Proof of Theorem 4.3.2: Following Lemma 4.3.2 and summing inequality (4.37) from t = 0

to T − 1, we have:

finf ≤ f(w0)−
K∑
k=1

γk
2(1− β)

(
1− Lkγk

1− β
− LkγkMk

(1− β)B
−

2L2
gγkMk

(1− β)2KB

K∑
k=1

γk

−
2L2

gγk

(1− β)2K

K∑
k=1

γk

) T−1∑
t=0

E ‖∇kf(wt)‖2
2 +

ML2
gT

(1− β)3KB

K∑
k=1

γk

K∑
k=1

γ2
k

+
K∑
k=1

Lkγ
2
kMT

2(1− β)2B
+

K∑
k=1

L2
gγk

(1− β)K

T−1∑
t=0

E ‖pt‖2
2 . (4.50)

where we have zt = w0 and f(zT) ≥ finf . According to Lemma 4.3.3 and inputting (4.46) in

inequality (4.50), the following inequality is satisfied that:

finf ≤ f(w0)−
K∑
k=1

γk
2(1− β)

(
1− Lkγk

1− β
− LkγkMk

(1− β)B
−

2L2
gβ

4γk
K∑
k=1

γk

(1− β)4K

−
2L2

gβ
4γk

K∑
k=1

γkMk

(1− β)4KB
−

2L2
gγkMk

(1− β)2KB

K∑
k=1

γk −
2L2

gγk

(1− β)2K

K∑
k=1

γk

) T−1∑
t=0

E ‖∇kf(wt)‖2
2

+
ML2

gT

(1− β)3KB

K∑
k=1

γk

K∑
k=1

γ2
k +

K∑
k=1

Lkγ
2
kMT

2(1− β)2B
+

K∑
k=1

L2
gγkβ

4MT

(1− β)5KB

K∑
k=1

γ2
k. (4.51)

65

Defining κk = Lg
Lk
≤ κ, if γk satisfies following inequalities:

Lkγk
1− β

≤ 1

8
, (4.52)

LkγkMk

(1− β)B
≤ 1

8
, (4.53)

2L2
gβ

4γk
K∑
k=1

γk

(1− β)4K
≤ 1

8
, (4.54)

2L2
gβ

4γk
K∑
k=1

Mkγk

(1− β)4KB
≤ 1

8
, (4.55)

2L2
gγkMk

(1− β)2KB

K∑
k=1

γk ≤
1

8
, (4.56)

2L2
gγk

(1− β)2K

K∑
k=1

γk ≤
1

8
, (4.57)

which are equivalent to:

γk ≤ min

{
(1− β)

8Lk
,
(1− β)B

8LkMk

}
, (4.58)

1

K

K∑
k=1

γk ≤ min

{
(1− β)2

4β2Lg
,
(1− β)2

√
B

4β2Lg
√
Mg

,
(1− β)

√
B

4Lg
√
Mg

,
(1− β)

4Lg

}
. (4.59)

It holds that:

T−1∑
t=0

K∑
k=1

γk
8(1− β)

E ‖∇kf(wt)‖2
2

≤ f(w0)− finf +
MT

(1− β)2B

(
1

2

K∑
k=1

Lkγ
2
k +

L2
g

(1− β)K

K∑
k=1

γk

K∑
k=1

γ2
k

+
β4L2

g

(1− β)3K

K∑
k=1

γk

K∑
k=1

γ2
k

)

≤ f(w0)− finf +
MT

(1− β)2B

(
1

2

K∑
k=1

Lkγ
2
k +

1

4

K∑
k=1

Lgγ
2
k +

1

4(1− β)

K∑
k=1

Lgγ
2
k

)
.(4.60)

66

Let γk = γ
Lk

and dividing both sides by
K∑
k=1

T
8(1−β)

γk, it holds that:

1

T

T−1∑
t=0

K∑
k=1

qkE ‖∇kf(wt)‖2
2 ≤

8(1− β)(f(w0)− finf)

Tγ
K∑
k=1

1
Lk

+
Mγ

(1− β)B

(
4 + 2κ+

2κ

(1− β)

)
. (4.61)

where qk =
1
Lk

K∑
k=1

1
Lk

.

Similarly, we can easily prove that mNAG is guaranteed to converge for non-convex

problems with a sub-linear rate O
(

1√
T

)
as follows:

Corollary 4.3.2 (Sub-Linear Convergence of mNAG). Theorem 4.3.2 is satisfied and fol-

low its notations, Suppose 1−β
8Lk

dominates γk, if γ = min

1−β
8
,
√

B(f(w0)−finf)

TM
K∑
k=1

1
Lk

, mNAG is

guaranteed to converge that:

min
t∈{0,...,T−1}

K∑
k=1

qkE ‖∇kf(wt)‖22

≤ 64(f(w0)− finf)

(1− β)T
K∑
k=1

1
Lk

+

(
8 +

1

(1− β)

(
4 + 2κ+

2κ

(1− β)

))√√√√√M(f(w0)− finf)

TB
K∑
k=1

1
Lk

. (4.62)

Proof of Corollary 4.3.2: suppose 1−β
8Lk

dominates the upper bound of γk, if:

γ = min


1− β

8
,

√√√√√B(f(w0)− finf)

TM
K∑
k=1

1
Lk

 , (4.63)

67

we can demonstrate that the upper bound of min
t∈{0,...,T−1}

K∑
k=1

qkE ‖∇kf(wt)‖2
2 is guaranteed as

follows:

min
t∈{0,...,T−1}

K∑
k=1

qkE ‖∇kf(wt)‖2
2

≤ 8(f(w0)− finf)

T
K∑
k=1

1
Lk

max


8

1− β
,

√√√√√ TM
K∑
k=1

1
Lk

B(f(w0)− finf)


+

M

(1− β)B

(
4 + 2κ+

2κ

(1− β)

)√√√√√B(f(w0)− finf)

TM
K∑
k=1

1
Lk

≤ 64(f(w0)− finf)

(1− β)T
K∑
k=1

1
Lk

+

(
8 +

1

(1− β)

(
4 + 2κ+

2κ

(1− β)

))√√√√√M(f(w0)− finf)

TB
K∑
k=1

1
Lk

.(4.64)

where the left side follows from min
t∈{0,...,T−1}

K∑
k=1

qkE ‖∇kf(wt)‖2
2 ≤

1
T

T−1∑
t=0

K∑
k=1

qkE ‖∇kf(wt)‖2
2.

we complete the proof.

According to Theorem 4.3.2, we know that the result of Theorem 4.2.1 is a special case

of Theorem 4.3.2 when Lk = Lg and Mk = Mg.

Corollary 4.3.3 (Convergence when Lk = Lg and Mk = Mg). Suppose Theorem 4.3.2 is

satisfied and follow its notations. If Lk = Lg, and Mk = Mg, MC = KM , we have κk = 1,

γg = γk. As long as the learning rate γg ≤ min

{
1−β
8Lg

, B(1−β)
8LgMg

, (1−β)
√
B

4Lg
√
Mg
, (1−β)2

√
B

4β2Lg
√
Mg
, (1−β)

4β2Lg

}
, it

is guaranteed that:

1

T

T−1∑
t=0

E ‖∇f(wt)‖2
2 ≤

8(1− η)(f(w0)− finf)

Tγg
+
MCLgγg
(1− β)

(
6 +

2

1− β

)
. (4.65)

In Corollary 4.3.1 and 4.3.2, we ignore the upper bound of 1
K

K∑
k=1

γk for simplicity. It can

be easily satisfied by making some γk small.

68

4.3.4 Discussions About the Convergence of mNAG

According our fine-grained convergence analysis of gradient-based methods, we take

mNAG as an example and gain more insights about the convergence of mNAG for neu-

ral networks.

Data Parallelism. Data parallelism is widely used in the training of deep learning mod-

els, and linear speedup can be obtained if learning rate and communication can be properly

handled. Suppose that min
t∈{0,...,Tε−1}

K∑
k=1

qkE ‖∇kf(wt)‖2
2 ≤ ε is satisfied after optimizing prob-

lem f(w) using batch size B after Tε iterations. Linear speedup means that when batch size

scales up by c ≥ 1 times (B → cB), we can obtain the same convergence guarantee ε after

only Tε
c

iterations (Tε → Tε
c

). From Corollary 4.3.2, if γ is dominated by
√

B2(f(w0)−finf)

TBM
K∑
k=1

1
Lk

, the

left term in Eq. (4.62) converges with a rate of O(
√

1
TB

). It is guaranteed to converge to

the same error as long as TB is fixed. Therefore, we know that when B is scaled up by c

times to cB, the problem can converge to the same error after T
c

iterations, as long as γ is

also scaled up by B times.

Lipschitz Constant Scaled Learning Rate. From Theorem 4.3.2, the learning rate

at layer k is computed through γk = γ
Lk

. It offers us a method to tune K learning rates γk

for a K-layer neural network simultaneously using just one parameter γ.

Layer-Wise Model Scaling Factor κk. Define κk = Lg
Lk
≥ 1 as the scaling factor at

layer k. Because of the upper bound of γk ≤ min
{

(1−β)
8Lk

, (1−β)B
8LkMk

}
in Theorem 4.3.1, we know

that designing a layer with larger κk can increase the upper bound of learning rate at layer

k. In [88], authors show that batch normalization can help to increase κk.

Layer-Wise Gradient Variance Factor Mk. Define Mk as the gradient variance

factor at layer k, which is dependent on the data and the model, and varies in the process

of training. Because of the upper bound of γk ≤ min
{

(1−β)
8Lk

, (1−β)B
8LkMk

}
in Theorem 4.3.1, it

shows that batch size B can be scaled up as long as B ≤ Mk. Therefore, a larger Mk helps

the algorithm obtain faster speedup. In the following section, we will show that warmup is

closely related to Mk.

69

10
-1 1 10

1
10

2
10

3
10

4
10

5

Learning rate value

0

20

40

60

80

100

120
E

p
c
o

h
s

5-layer FCN

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Divergence

10
-2

10
-1 1 10

1
10

2
10

3
10

4
10

5

Learning rate value

0

10

20

30

40

50

60

70

80

90

E
p

c
o

h
s

5-layer CNN

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Divergence

10
-2

10
-1 1 10

1
10

2
10

3
10

4

Learning rate value

0

50

100

150

200

E
p

c
o

h
s

ResNet8

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

Layer 8

Divergence

Figure 9: Learning rate upper bound for 5-layer FCN, 5-layer CNN, and 8-layer ResNet.

4.4 Experimental Results

In this section, we conduct experiments to validate our convergence results empirically

and demonstrate the superior performance of CLARS method over LARS method. Firstly,

we evaluate the necessity of using LARS on training neural networks. Secondly, we verify

linear learning rate scaling theoretically and empirically. Thirdly, we propose one hypothesis

about the reason of warmup and visualize it. Finally, extensive experiments are conducted

to show that CLARS can replace warmup trick completely and converges faster than LARS

with fine-tuned warmup steps. All experiments are implemented in PyTorch 1.0 [77] with

Cuda v10.0 and performed on a machine with Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz

and 4 Tesla P40 GPUs. We test the performance of CLARS algorithm on fully connected

networks, convolutional networks and ResNet.

70

0 20 40 60 80 100 120 140 160 180 200

Epoch

0

10

20

30

40

50

60

70

80

90

100

T
o

p
-1

 T
e

s
ti

n
g

 A
c

c
u

ra
c

y

ResNet56 on CIFAR-10

LARS B=128

LARS B=512

LARS B=2048

LARS B=8192

mNAG B=8192

0 20 40 60 80 100 120 140 160 180 200

Epoch

0

10

20

30

40

50

60

70

80

90

T
o

p
-1

 T
e

s
ti

n
g

 A
c

c
u

ra
c

y

VGG11 on CIFAR-10

LARS B=128

LARS B=512

LARS B=2048

LARS B=8192

mNAG B=8192

Figure 10: Training loss and Top-1 testing accuracy of training ResNet56 and VGG11 (with

batch normalization layer) on CIFAR-10.

4.4.1 Why LARS?

We test the upper bound of learning rate γk at each layer on three models: 5-layer FCN,

5-layer CNN (layer details in the Appendix) and ResNet8 (no batch normalization layer)

[30]. In the experiments, learning rates are fixed γk = 0.01 for all layers except one which

is selected from {10−2, 10−1, 1, 10, 102, 103, 104, 105}. We optimize models using mNAG with

B = 128 and compare epochs required to achieve the same training loss. Results in Figure

We train 5-layer FCN and 5-layer CNN with sigmoid activation on MNIST and count the

epochs required reaching training loss 0.03 and 0.02 respectively. We train ResNet8 (no

batch normalization layer) on CIFAR-10 and count the epochs required reaching training

loss 1.0. * denotes that loss diverges using the corresponding learning rate. 9 demonstrate

that the upper bounds of learning rates can vary greatly at different layers. Therefore, it is

necessary that each layer has its own learning rate.

From Theorem 4.3.2, we know that the upper bound of learning rate γk at each layer is

dependent on 1
Lk

. LARS [106] scales the learning rate of each layer adaptively at step t by

multiplying ‖(wt)k‖2
‖ 1
B

∑
i∈It
∇kfi(wt)‖2

in Eq. (4.3). From Assumption 4.3.1, we can think of LARS

as scaling the learning rate at layer k by multiplying the approximation of 1
Lk
≈ ‖(wt)k‖2
‖∇kf(wt)‖2

,

71

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Steps

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

L
e

a
rn

in
g

 R
a

te
 V

a
lu

e

s
c

a
le

Learning Rate

Warmup + Polynomial decay

Figure 11: Learning rate schedule.

where we make vk = 0 and wt + Ukvk = 0. Therefore, the procedure of LARS is consistent

with our theoretical analysis in Theorem 4.3.2 that learning rate of layer k is dependent

on the Lipschitz constant at this layer γk = γ
Lk

. We compare LARS with mNAG using a

large batch size. Results in Figure 10 demonstrate that LARS converges much faster than

mNAG when B = 8192. mNAG even diverges in training VGG11 using CIFAR-10. In the

experiments, γbase = 0.1, Bbase = 128, and η = 0.001 for LARS algorithm.

4.4.2 Linear Learning Rate Scaling

Linear learning rate scaling has been very popular since [28, 52, 58]. However, there

is little theoretical understanding of this technique for momentum methods. Based on our

analysis in Section 4.3.1, we know that the linear learning rate scaling is from following two

reasons:

(I) According to the discussion about Data Parallelism in Section 4.3.4, we know that

when B is scaled up by c times to cB, the problem can converge to the same error after T
c

iterations, as long as γ is also scaled up by B times.

(II) According to Theorem 4.3.2, as long as (1−β)B
8LkMk

dominates the upper bound of the

learning rate γk at layer k, its upper bound scales linearly with the batch size B.

72

The second case requires that B
Mk

to be very small. The layer-wise gradient variance

factor Mk is closely related to both model and data. In [93], authors find that different

models usually have different maximum useful batch size. The variance factor Mk is highly

dependent on the dataset and close to the gradient diversity in [104]. We can draw the same

conclusion as [104] that mNAG admits better speedup on problems with higher gradient

diversity.

In Figure 10, we train ResNet56 [30] and VGG11 with batch normalization layer [41, 95]

on CIFAR-10 [53] for 200 epochs. We use LARS optimizer with gradual warmup (20 epochs)

and polynomial learning rate decay as [106], which is also visualized in Figure 11. We scale

up the batch size from 128 to 8192 and employ the linear learning rate scaling. Results

in Figure 10 show that the convergence rates of LARS with batch size from 128 to 8192

are similar and the linear speedup is guaranteed when the computations are parallelized on

multiple devices. Because the learning rate schedule is tuned for large-batch training, we

may observe accuracy improvements when the batch size scales up.

4.4.3 One Hypothesis About Warmup

The gradual warmup was essential for large-batch deep learning optimization because

linearly scaled γscale can be so large that the loss cannot converge in early epochs [28]. In the

gradual warmup, γscale is replaced with a small value at the beginning and increased back

gradually after a few epochs.

According to our analysis in Theorem 4.3.2, we guess that the gradual warmup is to

simulate the function of 1
Mk

in the upper bound of learning rate. We train 5-layer FCN, 5-

layer CNN on MNIST [57] and ResNet8 on CIFAR-10 using mNAG for 50 epochs. Constant

learning rate 0.001 is used for all layers and batch size B = 128. After each epoch, we

approximate the gradient variance factor Mk by computing the ratio of 1
n

∑n
i=1 ‖∇kfi(wt)‖2

2

to ‖ 1
n

∑n
i=1∇kfi(wt)‖2

2 on training data. Figure 12 presents the variation ofMk at each layers.

It is obvious that Mk of top layers are larger than other layers. Thus, smaller learning rates

should be used on top layers at early epochs. Our observation matches [27] that freezing

fully connected layers at early epochs allows for comparable performance with warmup.

73

5-layer FCN

fc
1.

w
ei

ght

fc
1.

bia
s

fc
2.

w
ei

ght

fc
2.

bia
s

fc
3.

w
ei

ght

fc
3.

bia
s

fc
4.

w
ei

ght

fc
4.

bia
s

fc
5.

w
ei

ght

fc
5.

bia
s

1

2

3

4

5

6

7

8

9

10

E
p

o
c

h

 0

 2

 4

 6

 8

5-layer CNN

co
nv1

.w
ei

ght

co
nv1

.b
ia

s

co
nv2

.w
ei

ght

co
nv2

.b
ia

s

co
nv3

.w
ei

ght

co
nv3

.b
ia

s

co
nv4

.w
ei

ght

co
nv4

.b
ia

s

co
nv5

.w
ei

ght

co
nv5

.b
ia

s

1

2

3

4

5

6

7

8

9

10

E
p

o
c
h

 0

 20

 40

 60

 80

Figure 12: Variation of variance for 10 epochs. We train 5-layer FCN and 5-layer CNN with

sigmoid activation on MNIST.

74

0 2 4 6 8 10 12 14 16 18 20

Epoch

0

2

4

6

8

10

12

14

16

T
ra

in
in

g
 L

o
s

s

ResNet56 on CIFAR-10

LARS WP=5

LARS WP=10

LARS WP=20

CLARS

0 2 4 6 8 10 12 14 16 18 20

Epoch

5

10

15

20

25

30

35

40

45

50

T
o

p
-1

 T
e

s
ti

n
g

 A
c

c
u

ra
c

y

ResNet56 on CIFAR-10

LARS WP=5

LARS WP=10

LARS WP=20

CLARS

0 2 4 6 8 10 12 14 16 18 20

Epoch

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

T
ra

in
in

g
 L

o
s

s

VGG11 on CIFAR-10

LARS WP=5

LARS WP=10

LARS WP=20

CLARS

0 2 4 6 8 10 12 14 16 18 20

Epoch

10

20

30

40

50

60

70

T
o

p
-1

 T
e

s
ti

n
g

 A
c

c
u

ra
c

y

VGG11 on CIFAR-10

LARS WP=5

LARS WP=10

LARS WP=20

CLARS

Figure 13: Comparison between LARS (with gradual warmup) and CLARS algorithm.

4.4.4 Warmup is Not Necessary

We evaluate the proposed Algorithm 8 by conducting extensive experiments. To reduce

the time consumption in computing Mk, we approximate it using Mk ≈
‖ 1
B

∑
i∈It
∇kfi(wt)‖2

2
1
|Jt|

∑
j∈Jt
‖∇kfj(wt)‖22

,

where |Jt| = 512. The numerator is known after the gradient computation, and the denom-

inator is obtained in a small size. Since |Jt| � B, the computational time of approximating

Mk can be ignored when the computation is amortized on multiple devices. In Figure 13,

we make a comparison between LARS (with gradual warmup) and the proposed CLARS

algorithm. We train ResNet56 and VGG11 (with batch normalization layer) on CIFAR-10

with batch size B = 8192 for 20 epochs. Standard data preprocessing techniques are used as

75

in [30]. For LARS with the gradual warmup, we test three warmup epochs {5, 10, 20} and

keep γscale = 6.4 after the warmup. For CLARS, we keep γscale = 6.4 for 20 epochs. η is

tuned from {10−4, 10−3, 10−2, 10−1} for both methods Visualization in Figure 13 shows that

CLARS always outperforms LARS by a large margin. Results demonstrate that warmup

is not necessary in large-batch deep learning training and CLARS is a better option for

practical implementation.

We evaluate CLARS algorithm by training ResNet50, DenseNet121, and MobileNetv2

on ImageNet [18]. Because there are not enough GPUs to compute 16384 gradients at one

time, we set batch size B = 512 and accumulate the gradients for 32 steps before updating

the model as [106]. Following the official implementation1, we set η = 10−3 for LARS and

adjust the learning rate using 5-epoch warmup and polynomial decay. For CLARS, there is

no warmup and we set η = 10−2 (LARS always diverges with this value). We train ResNet50,

DenseNet121 for 90 epochs with batch size B = 16384 and γscale = 25.0. MobileNetv2 is

trained for 150 epochs with batch size B = 16384 and γscale = 6.0.

Experimental results in Figure 14 present that CLARS algorithm always converges much

faster than the state-of-the-art large-batch optimizer LARS on advanced neural networks.

Besides, CLARS can obtain better test error than LARS.

1https://github.com/tensorflow/models/blob/master/official/resnet/resnet_run_loop.py

76

https://github.com/tensorflow/models/blob/master/official/resnet/resnet_run_loop.py

0 10 20 30 40 50 60 70 80 90

Epoch

0

1

2

3

4

5

6

7

T
ra

in
in

g
 L

o
s

s

ResNet50 on ImageNet

LARS B=16384,
scale

=25.0

CLARS B=16384,
scale

=25.0

0 10 20 30 40 50 60 70 80 90

Epoch

1

2

3

4

5

6

7

T
ra

in
in

g
 L

o
s

s

DenseNet121 on ImageNet

LARS B=16384,
scale

=25.0

CLARS B=16384,
scale

=25.0

0 50 100 150

Epoch

1

2

3

4

5

6

7

T
ra

in
in

g
 L

o
s

s

MobileNetv2 on ImageNet

LARS B=16384,
scale

=6.0

CLARS B=16384,
scale

=6.0

0 10 20 30 40 50 60 70 80 90

Epoch

0

10

20

30

40

50

60

70

80

T
o

p
-1

 T
e

s
ti

n
g

 A
c

c
u

ra
c

y

ResNet50 on ImageNet

LARS B=16384,
scale

=25.0

CLARS B=16384,
scale

=25.0

0 10 20 30 40 50 60 70 80 90

Epoch

0

10

20

30

40

50

60

70

80

T
o

p
-1

 T
e

s
ti

n
g

 A
c

c
u

ra
c

y

DenseNet121 on ImageNet

LARS B=16384,
scale

=25.0

CLARS B=16384,
scale

=25.0

0 50 100 150

Epoch

0

10

20

30

40

50

60

70

80

T
o

p
-1

 T
e

s
ti

n
g

 A
c

c
u

ra
c

y

MobileNetv2 on ImageNet

LARS B=16384,
scale

=6.0

CLARS B=16384,
scale

=6.0

Figure 14: Comparison between LARS and CLARS training ResNet50, DenseNet121, and

MobileNetv2 on ImageNet.

77

5.0 Decoupled Parallel Backpropagation with Convergence Guarantee

5.1 Motivation

We have witnessed a series of breakthroughs in computer vision using deep convolutional

neural networks [56]. Most neural networks are trained using stochastic gradient descent

(SGD) or its variants in which the gradients of the networks are computed by backpropaga-

tion algorithm [85]. As shown in Figure 24, the backpropagation algorithm consists of two

processes, the forward pass to compute prediction and the backward pass to compute gradi-

ent and update the model. After computing prediction in the forward pass, backpropagation

algorithm requires propagating error gradients from the top (output layer) all the way back

to the bottom (input layer). Therefore, in the backward pass, all layers, or more generally,

modules, of the network are locked until their dependencies have executed.

The backward locking constrains us from updating models in parallel and fully leveraging

the computing resources. It has been shown in practice [54, 95, 96, 30, 37] and in theory

[21, 99, 8] that depth is one of the most critical factors contributing to the success of deep

learning. From AlexNet with 8 layers [54] to ResNet-101 with more than one hundred

layers [30], the forward and backward time grow from (4.31ms and 9.58ms) to (53.38ms and

103.06ms) when we train the networks on Titan X with the input size of 16× 3× 224× 224

[45]. Therefore, parallelizing the backward pass can greatly reduce the training time when

the backward time is about twice of the forward time. We can easily split a deep neural

network into modules like Figure 15 and distribute them across multiple GPUs. Each module

is a stack of layers. Backpropagation algorithm requires running forward pass (from 1 to 3)

and backward pass (from 4 to 6) in sequential order. For example, module A cannot perform

step 6 before receiving δtA which is an output of step 5 in module B. However, because of the

backward locking, all GPUs are idle before receiving error gradients from dependent modules

in the backward pass.

There have been several algorithms proposed for breaking the backward locking. For

example, [42, 15] proposed to remove the lockings in backpropagation by employing addi-

78

Figure 15: Procedure of the backpropagation algorithm.

tional neural networks to approximate error gradients. In the backward pass, all modules use

the synthetic gradients to update weights of the model without incurring any delay. [76, 6]

broke the local dependencies between successive layers and made all hidden layers receive

error information from the output layer directly. In [11, 98], the authors loosened the exact

connections between layers by introducing auxiliary variables. In each layer, they imposed

equality constraint between the auxiliary variable and activation, and optimized the new

problem using Alternating Direction Method which is easy to parallel. However, for the

convolutional neural network, the performances of all above methods are much worse than

backpropagation algorithm when the network is deep.

We focus on breaking the backward locking in backpropagtion algorithm for training

feedforward neural networks, such that we can update models in parallel without loss of

accuracy. The main contributions of our work are as follows:

• Firstly, we decouple the backpropagation using delayed gradients in Section 6.3 such that

all modules of the network can be updated in parallel without backward locking.

79

Figure 16: Procedure of the decoupled parallel backpropagation algorithm.

• Then, we propose two stochastic algorithms using decoupled parallel backpropagation in

Section 6.3 for deep learning optimization.

• We also provide convergence analysis for the proposed method in Section 6.4 and prove

that it guarantees convergence to critical points for the non-convex problem.

• Finally, we perform experiments for training deep convolutional neural networks in Sec-

tion 6.5, experimental results verifying that the proposed method can significantly speed

up the training without loss of accuracy.

5.2 Preliminaries

We begin with a brief overview of the backpropagation algorithm for the optimization of

neural networks. Suppose that we want to train a feedforward neural network with L layers,

each layer taking an input hl−1 and producing an activation hl = Fl(hl−1;wl) with weight

wl. Letting d be the dimension of weights in the network, we have w = [w1, w2, ..., wL] ∈ Rd.

Thus, the output of the network can be represented as hL = F (h0;w), where h0 denotes the

input data x. Taking a loss function f , model parameter w and data pair (x, y), the training

80

problem in this section can be represented as follows and we use f(w) for simplicity in the

following context:

min
w=[w1,...,wL]

f(F (x;w), y). (5.1)

Gradients based methods are widely used for deep learning optimization [84, 78, 33, 50].

In iteration t, we put a data sample xi(t) into the network, where i(t) denotes the index of

the sample. According to stochastic gradient descent (SGD), we update the weights of the

network through:

wt+1
l = wtl − γt

[
∇fl,xi(t)(w

t)
]
l
, ∀l ∈ {1, 2, ..., L}. (5.2)

where γt is the learning rate and ∇fl,xi(t)(wt) ∈ Rd is the gradient of the loss function (5.1)

with respect to the weights at layer l and data sample xi(t), all the coordinates in other than

layer l are 0. We always utilize backpropagation algorithm to compute the gradients [85].

The backpropagation algorithm consists of two passes of the network: in the forward pass,

the activations of all layers are calculated from l = 1 to L as follows:

htl = Fl(h
t
l−1;wl); (5.3)

in the backward pass, we apply chain rule for gradients and repeatedly propagate error

gradients through the network from the output layer l = L to the input layer l = 1:

∂f(wt)

∂wtl
=

∂htl
∂wtl

∂f(wt)

∂htl
, (5.4)

∂f(wt)

∂htl−1

=
∂htl
∂htl−1

∂f(wt)

∂htl
, (5.5)

where we let ∇fl,xi(t)(wt) = ∂f(wt)
∂wtl

. From equations (5.4) and (5.5), it is obvious that the

computation in layer l is dependent on the error gradient ∂f(wt)
∂htl

from layer l+ 1. Therefore,

the backward locking constrains all layers from updating before receiving error gradients

from the dependent layers. When the network is very deep or distributed across multiple

resources, the backward locking is the main bottleneck in the training process.

81

5.3 Decoupled Parallel Backpropagation

In this section, we propose to decouple the backpropagation algorithm using delayed

gradients (DDG). Suppose we split a L-layer feedforward neural network to K modules,

such that the weights of the network are divided into K groups. Therefore, we have w =

[wG(1), wG(2), ..., wG(K)] where G(k) denotes layer indices in the group k.

5.3.1 Backpropagation Using Delayed Gradients

In iteration t, data sample xi(t) is input to the network. We run the forward pass from

module k = 1 to k = K. In each module, we compute the activations in sequential order

as equation (5.3). In the backward pass, all modules except the last one have delayed error

gradients in store such that they can execute the backward computation without locking.

The last module updates with the up-to-date gradients. In particular, module k keeps the

stale error gradient ∂f(wt−K+k)

∂ht−K+k
Lk

, where Lk denotes the last layer in module k. Therefore, the

backward computation in module k is as follows:

∂f(wt−K+k)

∂wt−K+k
l

=
∂ht−K+k

l

∂wt−K+k
l

∂f(wt−K+k)

∂ht−K+k
l

, (5.6)

∂f(wt−K+k)

∂ht−K+k
l−1

=
∂ht−K+k

l

∂ht−K+k
l−1

∂f(wt−K+k)

∂ht−K+k
l

. (5.7)

where ` ∈ G(k). Meanwhile, each module also receives error gradient from the dependent

module for further computation. From (5.6) and (5.7), we can know that the stale error

gradients in all modules are of different time delay. From module k = 1 to k = K, their

corresponding time delays are from K − 1 to 0. Delay 0 indicates that the gradients are

up-to-date. In this way, we break the backward locking and achieve parallel update in the

backward pass. Figure 16 shows an example of the decoupled backpropagation, where error

gradients δ := ∂f(w)
∂h

. We split a multi-layer feedforward neural network into three modules

(A, B and C), where each module is a stack of layers. After executing the forward pass (from

1 to 3) to predict, our proposed method allows all modules to run backward pass (4) using

delayed gradients without locking. Particularly, module A can perform the backward pass

82

Table 3: Comparisons of computation time when the network is sequentially distributed

across K GPUs.

Method Computation Time

Backpropagation TF + TB
DDG TF + TB

K

using the stale error gradient δt−2
A . Meanwhile, It also receives δt−1

A from module B for the

update of the next iteration.

5.3.2 Speedup of Decoupled Parallel Backpropagation

When K = 1, there is no time delay and the proposed method is equivalent to the

backpropagation algorithm. When K 6= 1, we can distribute the network across multiple

GPUs and fully leverage the computing resources. Table 3 lists the computation time when

we sequentially allocate the network across K GPUs. TF and TB denote the forward and

backward time for backpropagation algorithm. When TF is necessary to compute accurate

predictions, we can accelerate the training by reducing the backward time. Because TB is

much large than TF , we can achieve huge speedup even K is small.

Relation to model parallelism: Model parallelism usually refers to filter-wise par-

allelism [101]. For example, we split a convolutional layer with N filters into two GPUs,

each part containing N
2

filters. Although the filter-wise parallelism accelerates the training

when we distribute the workloads across multiple GPUs, it still suffers from the backward

locking. We can think of DDG algorithm as layer-wise parallelism. It is also easy to combine

filter-wise parallelism with layer-wise parallelism for further speedup.

83

Algorithm 9 SGD-DDG

Require:

Initial weights w0 = [w0
G(1), ..., w

0
G(K)] ∈ Rd;

learning rate sequence {γt};

1: for t = 0, 1, 2, . . . , T − 1 do

2: for k = 1, . . . , K in parallel do

3: Compute delayed gradient:

gtk ←
[
∇fG(k),xi(t−K+k)

(
wt−K+k

)]
G(k)

;

4: Update weights:

wt+1
G(k) ← wtG(k) − γt · gtk;

5: end for

6: end for

5.3.3 Stochastic Methods Using Delayed Gradients

After computing the gradients of the loss function with respect to the weights of the

model, we update the model using delayed gradients. Letting ∇fG(k),xi(t−K+k)

(
wt−K+k

)
:=

∑
l∈G(k)

∂f(wt−K+k)

∂wt−K+k
l

if t−K + k ≥ 0

0 otherwise

, (5.8)

for any k ∈ {1, 2, ..., K}, we update the weights in module k following SGD:

wt+1
G(k) = wtG(k) − γt[∇fG(k),xi(t−K+k)

(
wt−K+k

)
]G(k). (5.9)

where γt denotes learning rate. Different from SGD, we update the weights with delayed

gradients. Besides, the delayed iteration (t −K + k) for group k is also deterministic. We

summarize the proposed method in Algorithm 11.

Moreover, we can also apply the delayed gradients to other variants of SGD, for example

Adam in Algorithm 10. In each iteration, we update the weights and moment vectors with

delayed gradients. We analyze the convergence for Algorithm 9 in Section 6.4, which is the

basis of analysis for other methods.

84

Algorithm 10 Adam-DDG

Require:

Initial weights: w0 = [w0
G(1), ..., w

0
G(K)] ∈ Rd;

learning rate: γ; Constant ε = 10−8;

Exponential decay rates: β1 = 0.9 and β2 = 0.999 ;

First moment vector: m0
G(k) ← 0, ∀k ∈ {1, 2, ..., K};

Second moment vector: v0
G(k) ← 0,∀k ∈ {1, 2, ..., K};

1: for t = 0, 1, 2, . . . , T − 1 do

2: for k = 1, . . . , K in parallel do

3: Compute delayed gradient:

gtk ←
[
∇fG(k),xi(t−K+k)

(
wt−K+k

)]
G(k)

;

4: Update biased first moment estimate:

mt+1
G(k) ← β1 ·mt

G(k) + (1− β1) · gtk;

5: Update biased second moment estimate:

vt+1
G(k) ← β2 · vtG(k) + (1− β2) · (gtk)2;

6: Compute bias-correct first moment estimate:

m̂t+1
G(k) ← mt+1

G(k)/(1− β
t+1
1);

7: Compute bias-correct second moment estimate:

v̂t+1
G(k) ← vt+1

G(k)/(1− β
t+1
2);

8: Update weights:

wt+1
G(k) ← wtG(k) − γ · m̂

t+1
G(k)/

(√
v̂t+1
G(k) + ε

)
;

9: end for

10: end for

5.4 Convergence Analysis

In this section, we establish the convergence guarantees to critical points for Algorithm 9

when the problem is non-convex. Analysis shows that our method admits similar convergence

rate to vanilla stochastic gradient descent [10]. Throughout this chapter, we make the

following commonly used assumptions:

85

Assumption 5.4.1. (Lipschitz-continuous gradient) The gradient of f(w) is Lipschitz

continuous with Lipschitz constant L > 0, such that ∀w, v ∈ Rd:

‖∇f(w)−∇f(v)‖2 ≤ L‖w − v‖2. (5.10)

Assumption 5.4.2. (Bounded variance) To bound the variance of the stochastic gra-

dient, we assume the second moment of the stochastic gradient is upper bounded, such that

there exists constant M ≥ 0, for any sample xi and ∀w ∈ Rd:

‖∇fxi(w)‖2
2 ≤ M. (5.11)

Because of the unnoised stochastic gradient E [∇fxi(w)] = ∇f(w) and the equation regarding

variance E ‖∇fxi(w)−∇f(w)‖2
2 = E‖∇fxi(w)‖2

2 − ‖∇f(w)‖2
2, the variance of the stochastic

gradient is guaranteed to be less than M .

Under Assumption 5.4.1 and 5.4.2, we obtain the following lemma about the sequence

of objective functions.

Lemma 5.4.1. Assume Assumption 5.4.1 and 5.4.2 hold. We let σ := maxt
γmax{0,t−K+1}

γt
and

MK = KM + σK4M . The iterations in Algorithm 9 satisfy the following inequality, for all

t ∈ N:

E
[
f(wt+1)

]
− f(wt) ≤ −γt

2

∥∥∇f(wt)
∥∥2

2
+ γ2

tLMK . (5.12)

Proof of Lemma 5.4.1: Because the gradient of f(w) is Lipschitz continuous in Assumption

5.4.1, the following inequality holds that:

f(wt+1) ≤ f(wt) +∇f(wt)T
(
wt+1 − wt

)
+
L

2

∥∥wt+1 − wt
∥∥2

2
. (5.13)

From the update rule in Algorithm 9, we take expectation on both sides and obtain the

upper bound for E [f(wt+1)]:

86

E
[
f(wt+1)

]
≤ f(wt)− γtE

[
∇f(wt)T

(
K∑
k=1

∇fG(k),xi(t−K+k)

(
wt−K+k

))]

+
Lγ2

t

2
E

∥∥∥∥∥
K∑
k=1

∇fG(k),xi(t−K+k)
(wt−K+k)

∥∥∥∥∥
2

2

≤ f(wt)− γt
K∑
k=1

∇f(wt)T
(
∇fG(k)

(
wt−K+k

)
+∇fG(k)

(
wt
)
−∇fG(k)

(
wt
))

+
Lγ2

t

2
E

∥∥∥∥∥
K∑
k=1

∇fG(k),xi(t−K+k)
(wt−K+k)−∇f(wt) +∇f(wt)

∥∥∥∥∥
2

2

= f(wt)− γt
∥∥∇f(wt)

∥∥2

2
− γt

K∑
k=1

∇f(wt)T
(
∇fG(k)

(
wt−K+k

)
−∇fG(k)

(
wt
))

+
Lγ2

t

2

∥∥∇f(wt)
∥∥2

2
+
Lγ2

t

2
E

∥∥∥∥∥
K∑
k=1

∇fG(k),xi(t−K+k)
(wt−K+k)−∇f(wt)

∥∥∥∥∥
2

2

+Lγ2
t

K∑
k=1

∇f(wt)T
(
∇fG(k)

(
wt−K+k

)
−∇fG(k)

(
wt
))

= f(wt)−
(
γt −

Lγ2
t

2

)∥∥∇f(wt)
∥∥2

2

+
Lγ2

t

2
E

∥∥∥∥∥
K∑
k=1

∇fG(k),xi(t−K+k)
(wt−K+k)−∇f(wt)

∥∥∥∥∥
2

︸ ︷︷ ︸
Q1

−(γt − Lγ2
t)

K∑
k=1

∇f(wt)T
(
∇fG(k)

(
wt−K+k

)
−∇fG(k)

(
wt
))

︸ ︷︷ ︸
Q2

, (5.14)

where the second inequality follows from the unbiased gradient E [∇fxi(w)] = ∇f(w). Be-

cause of ‖x+ y‖2
2 ≤ 2‖x‖2

2 + 2‖y‖2
2 and xy ≤ 1

2
‖x‖2

2 + 1
2
‖y‖2

2, we have the upper bound of Q1

as follows:

87

Q1 =
Lγ2

t

2
E
∥∥∥∥ K∑
k=1

∇fG(k),xi(t−K+k)
(wt−K+k)−∇f(wt)−

K∑
k=1

∇fG(k)(w
t−K+k)

+
K∑
k=1

∇fG(k)(w
t−K+k)

∥∥∥∥2

2

≤ Lγ2
t E

∥∥∥∥∥
K∑
k=1

∇fG(k),xi(t−K+k)
(wt−K+k)−

K∑
k=1

∇fG(k)(w
t−K+k)

∥∥∥∥∥
2

2︸ ︷︷ ︸
Q3

+Lγ2
t

∥∥∥∥∥
K∑
k=1

∇fG(k)(w
t−K+k)−∇f(wt)

∥∥∥∥∥
2

2︸ ︷︷ ︸
Q4

. (5.15)

We also have the upper bound of Q2 as follows:

Q2 = −(γt − Lγ2
t)

K∑
k=1

∇f(wt)T
(
∇fG(k)

(
wt−K+k

)
−∇fG(k)

(
wt
))

≤ γt − Lγ2
t

2

∥∥∇f(wt)
∥∥2

2
+
γt − Lγ2

t

2

∥∥∥∥∥
K∑
k=1

∇fG(k)(w
t−K+k)−∇f(wt)

∥∥∥∥∥
2

2

. (5.16)

As per the equation regarding variance E‖ξ − E[ξ]‖2
2 = E‖ξ‖2

2 − ‖E[ξ]‖2
2, we can bound Q3

as follows:

Q3 = E

∥∥∥∥∥
K∑
k=1

∇fG(k),xi(t−K+k)
(wt−K+k)−

K∑
k=1

∇fG(k)(w
t−K+k)

∥∥∥∥∥
2

2

=
K∑
k=1

E
∥∥∥∇fG(k),xi(t−K+k)

(wt−K+k)−∇fG(k)(w
t−K+k)

∥∥∥2

2

≤
K∑
k=1

E
∥∥∥∇fG(k),xi(t−K+k)

(wt−K+k)
∥∥∥2

2

≤ KM, (5.17)

88

where the equality follows from the definition of ∇fG(k)(w) such that [∇fG(k)(w)]j = 0, ∀j /∈

G(k) and the last inequality is from Assumption 5.4.2. We can also get the upper bound of

Q4:

Q4 =

∥∥∥∥∥
K∑
k=1

∇fG(k)(w
t−K+k)−∇f(wt)

∥∥∥∥∥
2

2

=
K∑
k=1

∥∥∇fG(k)(w
t−K+k)−∇fG(k)(w

t)
∥∥2

2

≤
K∑
k=1

∥∥∇f(wt−K+k)−∇f(wt)
∥∥2

2

≤ L2

K∑
k=1

∥∥∥∥∥∥
t−1∑

j=max{0,t−K+k}

(
wj+1 − wj

)∥∥∥∥∥∥
2

≤ L2γ2
max{0,t−K+1}K

K∑
k=1

t−1∑
j=max{0,t−K+k}

∥∥∥∥∥
K∑
k=1

∇fG(k),x(j)

(
wj−K+k

)∥∥∥∥∥
2

2

≤ KLγt
γmax{0,t−K+1}

γt

K∑
k=1

t−1∑
j=max{0,t−K+k}

∥∥∥∥∥
K∑
k=1

∇fG(k),x(j)

(
wj−K+k

)∥∥∥∥∥
2

2

≤ LγtσK
4M, (5.18)

where the second inequality is from Assumption 5.4.1, the fourth inequality follows from

that Lγt ≤ 1 and the last inequality follows from ‖z1 + ... + zr‖2
2 ≤ r(‖z1‖2

2 + ... + ‖zr‖2
2),

Assumption 5.4.2 and σ := maxt
γmax{0,t−K+1}

γt
. Integrating the upper bound of Q1, Q2, Q3

and Q4 in (5.14), we have:

E
[
f(wt+1)

]
− f(wt) ≤ −γt

2

∥∥∇f(wt)
∥∥2

2
+ γ2

tL

K∑
k=1

E
∥∥∥∇fG(k),xi(t−K+k)

(wt−K+k)
∥∥∥2

+
γt + Lγ2

t

2

∥∥∥∥∥
K∑
k=1

∇fG(k)(w
t−K+k)−∇f(wt)

∥∥∥∥∥
2

2

.

≤ −γt
2

∥∥∇f(wt)
∥∥2

+ γ2
tLMK , (5.19)

where we let MK = KM + σK4M .

89

From Lemma 5.4.1, we can observe that the expected decrease of the objective function

is controlled by the learning rate γt and MK . Therefore, we can guarantee that the values

of objective functions are decreasing as long as the learning rates γt are small enough such

that the right-hand side of (5.12) is less than zero. Using the lemma above, we can analyze

the convergence property for Algorithm 9.

5.4.1 Fixed Learning Rate

Firstly, we analyze the convergence for Algorithm 9 when γt is fixed and prove that the

learned model will converge sub-linearly to the neighborhood of the critical points.

Theorem 5.4.1. Assume Assumption 5.4.1 and 5.4.2 hold and the fixed learning rate se-

quence {γt} satisfies γt = γ and γL ≤ 1,∀t ∈ {0, 1, ..., T − 1}. In addition, we assume w∗

to be the optimal solution to f(w) and let σ = 1 such that MK = KM + K4M . Then, the

output of Algorithm 9 satisfies that:

1

T

T−1∑
t=0

E
∥∥∇f(wt)

∥∥2

2
≤ 2 (f(w0)− f(w∗))

γT
+ 2γLMK (5.20)

Proof of Theorem 5.4.1: When γt is constant and γt = γ, taking total expectation of (5.12)

in Lemma 5.4.1, we obtain:

E
[
f(wt+1)

]
− E

[
f(wt)

]
≤ −γ

2
E
∥∥∇f(wt)

∥∥2

2
+ γ2LMK , (5.21)

where σ = 1 and MK = KM +K4M . Summing (5.21) from t = 0 to T − 1, we have:

E
[
f(wT)

]
− f(w0) ≤ −γ

2

T−1∑
t=0

E
∥∥∇f(wt)

∥∥2

2
+ Tγ2LMK . (5.22)

Suppose w∗ is the optimal solution for f(w), therefore f(w∗)− f(w0) ≤ E
[
f(wT)

]
− f(w0).

Above all, the following inequality is guaranteed that:

1

T

T−1∑
t=0

E
∥∥∇f(wt)

∥∥2

2
≤ 2 (f(w0)− f(w∗))

γT
+ 2γLMK . (5.23)

90

In Theorem 5.4.1, we can observe that when T →∞, the average norm of the gradients

is upper bounded by 2γLMK . The number of modules K affects the value of the upper

bound. Selecting a small learning rate γ allows us to get better neighborhood to the critical

points, however it also seriously decreases the speed of convergence.

5.4.2 Diminishing Learning Rate

In this section, we prove that Algorithm 9 with diminishing learning rates can guarantee

the convergence to critical points for the non-convex problem.

Theorem 5.4.2. Assume Assumption 5.4.1 and 5.4.2 hold and the diminishing learning rate

sequence {γt} satisfies γt = γ0
1+t

and γtL ≤ 1, ∀t ∈ {0, 1, ..., T − 1}. In addition, we assume

w∗ to be the optimal solution to f(w) and let σ = K such that MK = KM +K5M . Setting

ΓT =
T−1∑
t=0

γt, then the output of Algorithm 9 satisfies that:

1

ΓT

T−1∑
t=0

γtE
∥∥∇f(wt)

∥∥2

2
≤ 2 (f(w0)− f(w∗))

ΓT
+

2
T−1∑
t=0

γ2
tLMK

ΓT
. (5.24)

Proof of Theorem 5.4.2: {γt} is a diminishing sequence and γt = γ0
1+t

, such that σ ≤ K and

MK = KM + K5M . Taking total expectation of (5.12) in Lemma 5.4.1 and summing it

from t = 0 to T − 1, we obtain:

E
[
f(wT)

]
− f(w0) ≤ −1

2

T−1∑
t=0

γtE
∥∥∇f(wt)

∥∥2

2
+

T−1∑
t=0

γ2
tLMK . (5.25)

Suppose w∗ is the optimal solution for f(w), therefore f(w∗)− f(w0) ≤ E
[
f(wT)

]
− f(w0).

Letting ΓT =
T−1∑
t=0

γt, we have:

1

ΓT

T−1∑
t=0

γtE
∥∥∇f(wt)

∥∥2

2
≤ 2 (f(w0)− f(w∗))

ΓT
+

2
T−1∑
t=0

γ2
tLMK

ΓT
. (5.26)

We complete the proof.

91

Table 4: Neural networks architectural details in the experiments.

Architecture Units Channels

ResNet-8 1-1-1 16-16-32-64

ResNet-56 9-9-9 16-16-32-64

ResNet-110 18-18-18 16-16-32-64

Corollary 5.4.1. Since γt = γ0
t+1

, the learning rate requirements in [84] are satisfied that:

lim
T→∞

T−1∑
t=0

γt =∞ and lim
T→∞

T−1∑
t=0

γ2
t <∞. (5.27)

Therefore, according to Theorem 5.4.2, when T →∞, the right-hand side of (5.24) converges

to 0.

Corollary 5.4.2. Suppose ws is chosen randomly from {wt}T−1
t=0 with probabilities propor-

tional to {γt}T−1
t=0 . According to Theorem 5.4.2, we can prove that Algorithm 9 guarantees

convergence to critical points for the non-convex problem:

lim
s→∞

E‖∇f(ws)‖2
2 = 0. (5.28)

5.5 Experimental Results

In this section, we experiment with ResNet [30] on image classification benchmark

datasets: CIFAR-10 and CIFAR-100 [53]. In section 5.5.1, we evaluate our method by

varying the positions and the number of the split points in the network; In section 5.5.2

we use our method to optimize deeper neural networks and show that its performance is as

good as the performance of backpropagation; finally, we split and distribute the ResNet-110

92

0 50 100 150 200 250 300

Epoch

0.4

0.6

0.8

1

1.2

1.4

1.6

L
o

s
s

Split point at layer 1

BP Train

DNI Train

DDG Train

BP Test

DNI Test

DDG Test

0 50 100 150 200 250 300

Epoch

0.4

0.6

0.8

1

1.2

1.4

1.6

L
o

s
s

Split point at layer 3

BP Train

DNI Train

DDG Train

BP Test

DNI Test

DDG Test

0 50 100 150 200 250 300

Epoch

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

L
o

s
s

Split point at layer 5

BP Train

DNI Train

DDG Train

BP Test

DNI Test

DDG Test

0 50 100 150 200 250 300

Epoch

10
0

L
o

s
s

Split point at layer 7

BP Train

DNI Train

DDG Train

BP Test

DNI Test

DDG Test

Figure 17: Training and testing curves of loss function regarding epochs for ResNet-8 on

CIFAR-10.

across GPUs in Section 5.5.3, results showing that the proposed method achieves a speedup

of two times without loss of accuracy.

Implementation Details: We implement DDG algorithm using PyTorch library [77].

The trained network is split into K modules where each module is running on a subprocess.

The subprocesses are spawned using multiprocessing package 1 such that we can fully leverage

multiple processors on a given machine. Running modules on different subprocesses make

the communication very difficult. To make the communication fast, we utilize the shared

memory objects in the multiprocessing package.

1https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing

93

0 50 100 150 200 250 300

Epoch

40

45

50

55

60

65

70

75

80

85

90

T
o

p
1

 A
c

c
u

ra
c

y
 %

Split point at layer 1

BP Train

DNI Train

DDG Train

BP Test

DNI Test

DDG Test

0 50 100 150 200 250 300

Epoch

40

50

60

70

80

90

T
o

p
1

 A
c

c
u

ra
c

y
 %

Split point at layer 3

BP Train

DNI Train

DDG Train

BP Test

DNI Test

DDG Test

0 50 100 150 200 250 300

Epoch

40

50

60

70

80

90

T
o

p
1

 A
c

c
u

ra
c

y
 %

Split point at layer 5

BP Train

DNI Train

DDG Train

BP Test

DNI Test

DDG Test

0 50 100 150 200 250 300

Epoch

20

30

40

50

60

70

80

90

T
o

p
1

 A
c

c
u

ra
c

y
 %

Split point at layer 7

BP Train

DNI Train

DDG Train

BP Test

DNI Test

DDG Test

Figure 18: Training and testing curves of Top 1 classification accuracies regarding epochs

for ResNet-8 on CIFAR-10.

5.5.1 Comparison of BP, DNI and DDG

In this section, we train ResNet-8 on CIFAR-10 on a single Titan X GPU. The architec-

ture of the ResNet-8 is in Table 4. All experiments are run for 300 epochs and optimized

using Adam optimizer [50] with a batch size of 128. The learning rate is initialized at 1×10−3.

We augment the dataset with random cropping, random horizontal flipping and normalize

the image using mean and standard deviation. There are three compared methods in this

experiment:

• BP: Adam in Pytorch uses backpropagation algorithm [85] to compute gradients.

94

0 50 100 150 200 250 300

Epoch

10
0

L
o

s
s

Split points at layers {1,3}

BP Train

DNI Train

DDG Train

BP Test

DNI Test

DDG Test

0 50 100 150 200 250 300

Epoch

10
0

L
o

s
s

Split points at layers {1,3,5}

BP Train

DNI Train

DDG Train

BP Test

DNI Test

DDG Test

0 50 100 150 200 250 300

Epoch

10
0

L
o

s
s

Split points at layers {1,3,5,7}

BP Train

DNI Train

DDG Train

BP Test

DNI Test

DDG Test

0 50 100 150 200 250 300

Epoch

30

40

50

60

70

80

90

T
o

p
1

 A
c

c
u

ra
c

y
 %

Split points at layers {1,3}

BP Train

DNI Train

DDG Train

BP Test

DNI Test

DDG Test

0 50 100 150 200 250 300

Epoch

20

30

40

50

60

70

80

90

T
o

p
1

 A
c

c
u

ra
c

y
 %

Split points at layers {1,3,5}

BP Train

DNI Train

DDG Train

BP Test

DNI Test

DDG Test

0 50 100 150 200 250 300

Epoch

20

30

40

50

60

70

80

90

T
o

p
1

 A
c

c
u

ra
c

y
 %

Split points at layers {1,3,5,7}

BP Train

DNI Train

DDG Train

BP Test

DNI Test

DDG Test

Figure 19: Training and testing curves regarding epochs for ResNet-8 on CIFAR-10.

95

0 50 100 150 200 250 300

Epoch

10
-3

10
-2

10
-1

10
0

10
1

L
o

s
s

Convergence on CIFAR-10

DDG Train 1GPUs

DDG Train 2GPUs

DDG Train 3GPUs

DDG Train 4GPUs

DDG Test 1GPUs

DDG Test 2GPUs

DDG Train 3GPUs

DDG Train 4GPUs

(a) (b)

Figure 20: Training and testing loss curves for ResNet-110 on CIFAR-10 using multiple

GPUs.

• DNI: Decoupled neural interface (DNI) in [42]. Following [42], the synthetic network

is a stack of three convolutional layers with L 5 × 5 filters with resolution preserving

padding. The filter depth L is determined by the position of DNI. We also input label

information into the synthetic network to increase final accuracy.

• DDG: Adam optimizer using delayed gradients in Algorithm 10.

Impact of split position (depth). The position (depth) of the split points determines

the number of layers using delayed gradients. Stale or synthetic gradients will induce noises

in the training process, affecting the convergence of the objective. Figure2 17 and 18 exhibit

the experimental results when there is only one split point with varying positions. In the

first column, we know that all compared methods have similar performances when the split

point is at layer 1. DDG performs consistently well when we place the split point at deeper

positions 3, 5 or 7. On the contrary, the performance of DNI degrades as we vary the positions

and it cannot even converge when the split point is at layer 7.

Impact of the number of split points. From equation (5.7), we know that the

maximum time delay is determined by the number of modules K. Theorem 5.4.2 also shows

96

BP #GPUs=1 DDG #GPUs=1 DDG #GPUs=2 DDG #GPUs=3 DDG #GPUs=4

Optimization Setup

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

m
p

u
ta

ti
o

n
 T

im
e

90

90.5

91

91.5

92

92.5

93

93.5

94

94.5

95

T
o

p
1

 A
c

c
u

ra
c

y
 %

Computation time and accuracy on CIFAR-10

93.53%
93.41% 93.38% 93.39% 93.38%

Backward

Forward

Figure 21: Computation time and the best Top 1 accuracy for ResNet-110 on the test data

of CIFAR-10.

that K affects the convergence rate. In this experiment, we vary the number of split points

in the network from 2 to 4 and plot the results in Figure 19. It is easy to observe that DDG

performs as well as BP, regardless of the number of split points in the network. However,

DNI is very unstable when we place more split points, and cannot even converge sometimes.

5.5.2 Optimizing Deeper Neural Networks

In this section, we employ DDG to optimize two very deep neural networks (ResNet-56

and ResNet-110) on CIFAR-10 and CIFAR-100. Each network is split into two modules at

the center. We use SGD with the momentum of 0.9 and the learning rate is initialized to

0.01. Each model is trained for 300 epochs and the learning rate is divided by a factor of 10

at 150 and 225 epochs. The weight decay constant is set to 5× 10−4. We perform the same

97

0 50 100 150 200 250 300

Epoch

10
-3

10
-2

10
-1

10
0

10
1

L
o

s
s

ResNet-56 on CIFAR-10

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time (s)

78

80

82

84

86

88

90

92

94

96

98

T
o

p
1

 A
c

c
u

ra
c

y
 %

ResNet-56 on CIFAR-10

BP Train

DDG Train

BP Test

DDG Test

0 50 100 150 200 250 300

Epoch

10
-3

10
-2

10
-1

10
0

10
1

L
o

s
s

ResNet-110 on CIFAR-10

0 2000 4000 6000 8000 10000 12000 14000 16000

Time (s)

78

80

82

84

86

88

90

92

94

96

98

T
o

p
1

 A
c

c
u

ra
c

y
 %

ResNet-110 on CIFAR-10

BP Train

DDG Train

BP Test

DDG Test

Figure 22: Training and testing curves for ResNet-56 and ResNet-110 on CIFAR-10.

data augmentation as in section 5.5.1. Experiments in this section are run on a single Titan

X GPU.

Figures 22 and 23 presents the experimental results of BP and DDG. We do not compare

DNI because its performance is far worse when models are deep. Figures in the first column

present the convergence of loss regarding epochs, showing that DDG and BP admit similar

convergence rates. We can also observe that DDG converges faster when we compare the

accuarcy regarding computation time in Figures 22 and 23. In the experiment, the “Volatile

GPU Utility” is about 70% when we train the models with BP. Our method runs on two

subprocesses such that it fully leverages the computing capacity of the GPU. In Table 5, we

list the best Top 1 accuracy on the test data of CIFAR-10 and CIFAR-100. We can observe

98

0 50 100 150 200 250 300

Epoch

10
-2

10
-1

10
0

10
1

L
o

s
s

ResNet-56 on CIFAR-100

BP Train

DDG Train

BP Test

DDG Test

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time (s)

40

50

60

70

80

90

T
o

p
1

 A
c

c
u

ra
c

y
 %

ResNet-56 on CIFAR-100

BP Train

DDG Train

BP Test

DDG Test

0 50 100 150 200 250 300

Epoch

10
-2

10
-1

10
0

10
1

L
o

s
s

ResNet-110 on CIFAR-100

BP Train

DDG Train

BP Test

DDG Test

0 2000 4000 6000 8000 10000 12000 14000 16000

Time (s)

45

50

55

60

65

70

75

80

85

90

95

T
o

p
1

 A
c

c
u

ra
c

y
 %

ResNet-110 on CIFAR-100

BP Train

DDG Train

BP Test

DDG Test

Figure 23: Training and testing curves for ResNet-56 and ResNet-110 on CIFAR-100.

that the prorposed DDG algorithm can obtain comparable or better accuracy even when the

network is deep.

5.5.3 Scaling the Number of GPUs

In this section, we split ResNet-110 into K modules and allocate them across K Titan

X GPUs sequentially. We do not consider filter-wise model parallelism in this experiment.

The selections of the parameters in the experiment are similar to Section 5.5.2. From Figure

20, we know that training networks in multiple GPUs does not affect the convergence rate.

For comparison, we also count the computation time of backpropagation algorithm on a

99

Table 5: The best Top 1 classification accuracy for ResNet-56 and ResNet-110 on the test

data of CIFAR-10 and CIFAR-100.

Architecture
CIFAR-10 CIFAR-100

BP DDG BP DDG

ResNet-56 93.12 93.11 69.79 70.17

ResNet-110 93.53 93.41 71.90 71.39

single GPU. The computation time is worse when we run backpropagation algorithm on

multiple GPUs because of the communication overhead. In Figure 21, we can observe that

forward time only accounts for about 32% of the total computation time for backpropagation

algorithm. Therefore, backward locking is the main bottleneck. In Figure 21, it is obvious

that when we increase the number of GPUs from 2 to 4, our method reduces about 30% to

50% of the total computation time. In other words, DDG achieves a speedup of about 2

times without loss of accuracy when we train the networks across 4 GPUs.

100

6.0 Training Neural Networks Using Features Replay

6.1 Motivation

In recent years, the deep convolutional neural networks have made great breakthroughs

in computer vision [30, 37, 54, 56, 95, 96], natural language processing [47, 49, 87, 110], and

reinforcement learning [61, 69, 70, 71]. The growth of the depths of the neural networks is

one of the most critical factors contributing to the success of deep learning, which has been

verified both in practice [30, 37] and in theory [8, 21, 99]. Gradient-based methods are the

major methods to train deep neural networks, such as stochastic gradient descent (SGD)

[84], ADAGRAD [20], RMSPROP [32] and ADAM [50]. As long as the loss functions are

differentiable, we can compute the gradients of the networks using backpropagation algorithm

[85]. The backpropagation algorithm requires two passes of the neural network, the forward

pass to compute activations and the backward pass to compute gradients. As shown in

Figure 24 (BP), error gradients are repeatedly propagated from the top (output layer) all

the way back to the bottom (input layer) in the backward pass. The sequential propagation

of the error gradients is called backward locking because all layers of the network are locked

until their dependencies have executed. According to the benchmark report in [45], the

computational time of the backward pass is about twice of the computational time of the

forward pass. When networks are quite deep, backward locking becomes the bottleneck of

making good use of computing resources, preventing us from updating layers in parallel.

There are several works trying to break the backward locking in the backpropagation

algorithm. [11] and [98] avoid the backward locking by removing the backpropagation algo-

rithm completely. In [11], the authors proposed the method of auxiliary coordinates (MAC)

and simplified the nested functions by imposing quadratic penalties. Similarly, [98] used

Lagrange multipliers to enforce equality constraints between auxiliary variables and activa-

tions. Both of the reformulated problems do not require backpropagation algorithm at all

and are easy to be parallelized. However, neither of them have been applied to training

convolutional neural networks yet. There are also several works breaking the dependencies

101

between groups of layers or modules in the backpropagation algorithm. In [42], the authors

proposed to remove the backward locking by employing the decoupled neural interface to

approximate error gradients (Figure 24 DNI). [6, 76] broke the local dependencies between

successive layers and made all hidden layers receive error information from the output layer

directly. In the backward pass, we can use the synthetic gradients or the direct feedbacks to

update the weights of all modules without incurring any delay. However, these methods work

poorly when the neural networks use very deep architecture. In [38], the authors proposed

decoupled parallel backpropagation by using stale gradients, where modules are updated

with the gradients from different timestamps (Figure 24 DDG). However, it requires large

amounts of memory to store the stale gradients and suffers from the loss of accuracy.

In this chapter, we propose feature replay algorithm which is free of the above three

issues: backward locking, memory explosion and accuracy loss. The main contributions of

our work are summarized as follows:

• Firstly, we propose a novel parallel-objective formulation for the objective function of

the neural networks in Section 5.3. Using this new formulation, we break the backward

locking by introducing features replay algorithm, which is easy to be parallelized.

• Secondly, we provide the theoretical analysis in Section 5.4 and prove that the proposed

method is guaranteed to converge to critical points for the non-convex problem under

certain conditions.

• Finally, we validate our method with experiments on training deep convolutional neural

networks in Section 5.5. Experimental results demonstrate that the proposed method

achieves faster convergence, lower memory consumption, and better generalization error

than compared methods.

6.2 Preliminaries

We assume a feedforward neural network with L layers, where w = [w1, w2, ..., wL] ∈ Rd

denotes the weights of all layers. The computation in each layer can be represented as taking

102

layer 1

layer 2

layer 3
h

δt Activation

Error gradient

ht0

layer 4

loss

layer 1

layer 2

layer 3

layer 4

loss

layer s

ht1

ht2

ht3

ht4

ht0

ht1

ht2

ht3

ht4

δt−1

layer 1

layer 2

layer 3

layer 4

loss

ht−10

ht−11

ht−12

ht3

ht4

ht0

ht1

ht2

Forward pass

Backward pass

δ

layer

Network layer

Method BP DNI DDG

Backward locking Yes No No

LS

δ̂ t

LS = | | δt − δ̂ t | | 22

Figure 24: Illustrations of the backward pass of the backpropagation algorithm (BP) decou-

pled neural interface (DNI) and decoupled parallel backpropagation (DDG).

an input hl−1 and producing an activation hl = Fl(hl−1;wl) using weight wl. Given a loss

function f and target y, we can formulate the objective function of the neural network f(w)

as follows:

min
w

f(hL, y)

s.t. hl = Fl(hl−1;wl) for all l ∈ {1, 2, ..., L}. (6.1)

where h0 denotes the input data x. By using stochastic gradient descent, the weights of the

network are updated in the direction of their negative gradients of the loss function following:

wt+1
l = wtl − γt · gtl for all l ∈ {1, 2, ..., L}. (6.2)

where γt denotes the learning rate and gtl :=
∂fxt (w

t)

∂wtl
denotes the gradient of the loss function

(6.1) regarding wtl with input samples xt. The backpropagation algorithm [85] is utilized to

compute the gradients for the neural networks. At iteration t, it requires two passes over

the network: in the forward pass, the activations of all layers are computed from the bottom

layer l = 1 to the top layer l = L following: htl = Fl(h
t
l−1;wtl); in the backward pass, it

103

la
ye

r 1

la
ye

r 2

la
ye

r 3

δt1

Module 1

Forward pass
Backward pass

h Activation

Error gradient

ht−30

ht−20

ht−10

la
ye

r 4

la
ye

r 5

la
ye

r 6

δt2

Module 2

ht−23

ht−13

ht3

h̃
t
1 h̃

t
2 h̃

t
3

ht0

h̃
t
4 h̃

t
6h̃

t
5

la
ye

r 7

la
ye

r 8

la
ye

r 9

δt3

Module 3

ht−16

ht6

h̃
t
7 h̃

t
9h̃

t
8

la
ye

r 1
0

la
ye

r 1
1

la
ye

r 1
2

Module 4

ht9 ht10 ht12ht11

loss

δ

Figure 25: Backward pass of Features Replay Algorithm.

applies the chain rule and propagates error gradients through the network from the top layer

l = L to the bottom layer l = 1 following:

∂fxt(w
t)

∂wtl
=

∂htl
∂wtl
× ∂fxt(w

t)

∂htl
(6.3)

∂fxt(w
t)

∂htl−1

=
∂htl
∂htl−1

× ∂fxt(w
t)

∂htl
. (6.4)

According to (6.4), computing gradients for the weights wl of the layer l is dependent on the

error gradient
∂fxt (w

t)

∂htl
from the layer l + 1, which is known as backward locking. Therefore,

the backward locking prevents all layers from updating before receiving error gradients from

dependent layers. When the networks are deep, the backward locking becomes the bottleneck

in the training process.

6.3 Features Replay

In this section, we propose a novel parallel-objective formulation for the objective func-

tion of the neural networks. Using our new formulation, we break the backward locking in

the backpropagation algorithm by using features replay algorithm.

104

6.3.1 Problem Reformulation

As shown in Figure 25, we assume to divide an L-layer feedforward neural network into

K modules where K � L, such that w = [wG(1), wG(2), ..., wG(K)] ∈ Rd and G(k) denotes the

layers in the module k. Let Lk represent the last layer of the module k, the output of this

module can be written as hLk . The error gradient variable is denoted as δtk , which is used

for the gradient computation of the module k. We divide a 12-layer neural network into four

modules, where each module stores its input history and a stale error gradient from the upper

module. At each iteration, all modules compute the activations by inputting features from

the history and compute the gradients by applying the chain rule. After that, they receive

the error gradients from the upper modules for the next iteration. We can split the problem

(6.1) into K subproblems. The task of the module k (except k = K) is minimizing the least

square error between the error gradient variable δtk and
∂f
ht
Lk

(wt)

∂htLk
which is the gradient of the

loss function regarding htLk with input htLk into the module k+1, and the task of the module

K is minimizing the loss between the prediction htLK and the real label yt. From this point

of view, we propose a novel parallel-objective loss function at iteration t as follows:

min
w,δ

K−1∑
k=1

∥∥∥∥∥δtk − ∂fhtLk
(wt)

∂htLk

∥∥∥∥∥
2

2

+ f
(
htLK , y

t
)

s.t. htLk = FG(k)(h
t
Lk−1

;wtG(k)) for all k ∈ {1, ..., K}, (6.5)

where htL0
denotes the input data xt. It is obvious that the optimal solution for the left

term of the problem (6.5) is δtk =
∂f
ht
Lk

(wt)

∂htLk
, for all k ∈ {1, ..., K − 1}. In other words,

the optimal solution of the module k is dependent on the output of the upper modules.

Therefore, minimizing the problem (6.1) with the backpropagation algorithm is equivalent

to minimizing the problem (6.5) with the first K−1 subproblems obtaining optimal solutions.

6.3.2 Breaking Dependencies by Replaying Features

Features replay algorithm is introduced in Algorithm 11. In the forward pass, immediate

features are generated and passed through the network, and the module k keeps a history of

its input with size K − k + 1. To break the dependencies between modules in the backward

105

Algorithm 11 Features Replay Algorithm

1: Initialize: weights w0 = [w0
G(1), ..., w

0
G(K)] ∈ Rd and learning rate sequence {γt};

2: for t = 0, 1, 2, . . . , T − 1 do

3: Sample mini-batch (xt, yt) from the dataset and let htL0
= xt;

4: for k = 1, . . . , K do

5: Store htLk−1
in the memory;

6: Compute htLk following htLk = FG(k)

(
htLk−1

;wtG(k)

)
; ← Play



Forward

pass
7: Send htLk to the module k + 1 if k < K;

8: end for

9: Compute loss f(wt) = f
(
htLK , y

t
)
;

10: for k = 1, . . . , K in parallel do

11: Compute h̃tLk following h̃tLk = FG(k)(h
t+k−K
Lk−1

;wtG(k)); ← Replay

12: Compute gradient gtG(k) following (6.9);



Backward

pass
13: Update weights: wt+1

G(k) = wtG(k) − γt · gtG(k);

14: Send
∂f
ht+k−K
Lk−1

(wt)

∂ht+k−KLk−1

to the module k − 1 if k > 1;

15: end for

16: end for

pass, we propose to compute the gradients of the modules using immediate features from

different timestamps. Features replay denotes that immediate feature ht+k−KLk−1
is input into

the module k for the first time in the forward pass at iteration t + k − K, and it is input

into the module k for the second time in the backward pass at iteration t. If t+ k−K < 0,

we set ht+k−KLk−1
= 0 . Therefore, the new problem can be written as:

min
w,δ

K−1∑
k=1

∥∥∥∥∥δtk − ∂fh̃tLk
(wt)

∂h̃tLk

∥∥∥∥∥
2

2

+ f(h̃tLK , y
t)

s.t. h̃tLk = FG(k)(h
t+k−K
Lk−1

;wtG(k)) for all k ∈ {1, ..., K}. (6.6)

where
∂f
h̃t
Lk

(wt)

∂h̃tLk

denotes the gradient of the loss f(wt) regarding h̃tLk with input h̃tLk into the

module k + 1. It is important to note that it is not necessary to get the optimal solutions

for the first K − 1 subproblems while we do not compute the optimal solution for the last

106

subproblem. To avoid the tedious computation, we make a trade-off between the error of

the left term in (6.6) and the computational time by making:

δtk =
∂fht+k−KLk

(wt−1)

∂ht+k−KLk

for all k ∈ {1, ..., K − 1}, (6.7)

where
∂f
ht+k−K
Lk

(wt−1)

∂ht+k−KLk

denotes the gradient of the loss f(wt−1) regarding ht+k−KLk
with in-

put ht+k−KLk
into the module k + 1 at the previous iteration. Assuming the algorithm

has converged as t → ∞, we have wt ≈ wt−1 ≈ wt+k−K such that h̃tLk ≈ ht+k−KLk
and∥∥∥∥∥∂fht+k−KLk

(wt−1)

∂ht+k−KLk

−
∂f
h̃t
Lk

(wt)

∂h̃tLk

∥∥∥∥∥
2

2

≈ 0 for all k ∈ {1, ..., K − 1}. Therefore, (6.7) is a reasonable

approximation of the optimal solutions to the first K − 1 subproblems in (6.6). In this way,

we break the backward locking in the backpropagation algorithm because the error gradient

variable δtk can be determined at the previous iteration t − 1 such that all modules are in-

dependent of each other at iteration t. Additionally, we compute the gradients inside each

module following:

∂fht+k−KLk−1

(wt)

∂wtl
=
∂h̃tLk
∂wtl

× δtk (6.8)

∂fht+k−KLk−1

(wt)

∂h̃tl
=
∂h̃tLk
∂h̃tl

× δtk, (6.9)

where l ∈ G(k). At the end of each iteration, the module k sends
∂f
ht+k−K
Lk−1

(wt)

∂ht+k−KLk−1

to module

k − 1 for the computation of the next iteration.

6.4 Convergence Analysis

In this section, we provide theoretical analysis for Algorithm 11. Analyzing the con-

vergence of the problem (6.6) directly is difficult, as it involves the variables of different

timestamps. Instead, we solve this problem by building a connection between the gradients

of Algorithm 11 and stochastic gradient descent in Assumption 6.4.1, and prove that the

proposed method is guaranteed to converge to critical points for the non-convex problem

(6.1).

107

Assumption 6.4.1. (Sufficient direction) We assume that the expectation of the descent

direction E
[
K∑
k=1

gtG(k)

]
in Algorithm 11 is a sufficient descent direction of the loss f(wt)

regarding wt. Let ∇f(wt) denote the full gradient of the loss, there exists a constant σ > 0

such that,

〈
∇f(wt),E

[
K∑
k=1

gtG(k)

]〉
≥ σ‖∇f(wt)‖2

2. (6.10)

Sufficient direction assumption guarantees that the model is moving towards the de-

scending direction of the loss function.

Assumption 6.4.2. Throughout this chapter, we make two assumptions following [10]:

• (Lipschitz-continuous gradient) The gradient of f is Lipschitz continuous with a

constant L > 0, such that for any w1, w2 ∈ Rd, it is satisfied that ‖∇f(w1)−∇f(w2)‖2 ≤

L‖w1 − w2‖2.

• (Bounded variance) We assume that the second moment of the descent direction in

Algorithm 11 is upper bounded. There exists a constant M ≥ 0 such that E
∥∥∥∥ K∑
k=1

gtG(k)

∥∥∥∥2

2

≤M.

According to the equation regarding variance E ‖ξ − E [ξ]‖2
2 = E ‖ξ‖2

2 − ‖E [ξ]‖2
2 , the

variance of the descent direction E
∥∥∥∥ K∑
k=1

gtG(k) − E
[
K∑
k=1

gtG(k)

]∥∥∥∥2

2

is guaranteed to be less than

M . According to the above assumptions, we prove the convergence rate for the proposed

method under two circumstances of γt. Firstly, we analyze the convergence for Algorithm

11 when γt is fixed and prove that the learned model will converge sub-linearly to the

neighborhood of the critical points for the non-convex problem.

Lemma 6.4.1. Assume that Assumptions 6.4.1 and 6.4.2 hold. The iterations in Algorithm

11 satisfy the following inequality, for all t ∈ N:

E[f(wt+1)]− f(wt) ≤ −σγt
∥∥∇f(wt)

∥∥2

2
+
γ2
tLM

2
. (6.11)

108

Proof of Lemma 6.4.1. Because the gradient of f(w) is Lipschitz continuous in Assumption

6.4.2, the following inequality holds that:

f(wt+1) ≤ f(wt) +
〈
∇f(wt), wt+1 − wt

〉
+
L

2

∥∥wt+1 − wt
∥∥2

2
. (6.12)

From the update rule in the Algorithm, we take expectation on both sides and obtain:

E
[
f(wt+1)

]
≤ f(wt)− γt

K∑
k=1

E
〈
∇f(wt), gtG(k)

〉
+
Lγ2

t

2
E

∥∥∥∥∥
K∑
k=1

gtG(k)

∥∥∥∥∥
2

2

≤ f(wt)− σγt
∥∥∇f(wt)

∥∥2

2
+
γ2
tLM

2
(6.13)

where the second inequality follows from Assumptions 6.4.1 and 6.4.2.

Theorem 6.4.1. Assume that Assumptions 6.4.1 and 6.4.2 hold, and the fixed learning rate
sequence {γt} satisfies γt = γ for all t ∈ {0, 1, ..., T − 1}. In addition, we assume w∗ to be
the optimal solution to f(w). Then, the output of Algorithm 11 satisfies that:

1

T

T−1∑
t=0

E
∥∥∇f(wt)∥∥2

2
≤ f(w0)− f(w∗)

σγT
+
γLM

2σ
. (6.14)

Proof of Theorem 6.4.1: When γt is constant and γt = γ, taking expectation of (6.11) in

Lemma 6.4.1, we obtain:

E
[
f(wt+1)

]
− E

[
f(wt)

]
≤ −σγE

∥∥∇f(wt)
∥∥2

2
+
γ2LM

2
, (6.15)

Summing (6.15) from t = 0 to T − 1, we have:

E
[
f(wT)

]
− f(w0) ≤ −σγ

T−1∑
t=0

E
∥∥∇f(wt)

∥∥2

2
+
γ2LMT

2
. (6.16)

Suppose w∗ is the optimal solution for f(w), therefore f(w∗)− f(w0) ≤ E
[
f(wT)

]
− f(w0).

Above all, the following inequality is guaranteed that:

1

T

T−1∑
t=0

E
∥∥∇f(wt)

∥∥2

2
≤ f(w0)− f(w∗)

σγT
+
γLM

2σ
. (6.17)

109

Therefore, the best solution we can obtain is controlled by γLM
2σ

. We also prove that

Algorithm 11 can guarantee the convergence to critical points for the non-convex problem,

as long as the diminishing learning rates satisfy the requirements in [84] such that:

lim
T→∞

T−1∑
t=0

γt =∞ and lim
T→∞

T−1∑
t=0

γ2
t <∞. (6.18)

Theorem 6.4.2. Assume that Assumptions 6.4.1 and 6.4.2 hold and the diminishing learn-

ing rate sequence {γt} satisfies (6.18). In addition, we assume w∗ to be the optimal solution

to f(w). Setting ΓT =
T−1∑
t=0

γt, then the output of Algorithm 11 satisfies that:

1

ΓT

T−1∑
t=0

γtE
∥∥∇f(wt)

∥∥2

2
≤ f(w0)− f(w∗)

σΓT
+
LM

2σ

T−1∑
t=0

γ2
t

ΓT
. (6.19)

Proof of Theorem 6.4.2: Taking total expectation of (6.11) in Lemma 5.4.1 and summing

it from t = 0 to T − 1, we obtain:

E
[
f(wT)

]
− f(w0) ≤ −σ

T−1∑
t=0

γtE
∥∥∇f(wt)

∥∥2

2
+
LM

2

T−1∑
t=0

γ2
t . (6.20)

Suppose w∗ is the optimal solution for f(w), therefore f(w∗)− f(w0) ≤ E
[
f(wT)

]
− f(w0).

Letting ΓT =
T−1∑
t=0

γt, we have:

1

ΓT

T−1∑
t=0

γtE
∥∥∇f(wt)

∥∥2

2
≤ f(w0)− f(w∗)

σΓT
+
LM

2σ

T−1∑
t=0

γ2
t

ΓT
. (6.21)

We complete the proof.

Remark 6.4.1. Suppose ws is chosen randomly from {wt}T−1
t=0 with probabilities propor-

tional to {γt}T−1
t=0 . According to Theorem 6.4.2, we can prove that Algorithm 11 guarantees

convergence to critical points for the non-convex problem:

lim
s→∞

E‖∇f(ws)‖2
2 = 0 . (6.22)

110

Sufficient Direction Constant

Module 1

Module 2

Module 3

Module 4

R
e

s
N

e
t1

6
4

0.85

 0.9

0.95

 1

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

2
4
0

2
5
0

2
6
0

2
7
0

2
8
0

2
9
0

Epoch

Module 1

Module 2

Module 3

Module 4

R
e

s
N

e
t1

0
1

0.85

 0.9

0.95

 1

Figure 26: Sufficient direction constant for ResNet164 and ResNet101 on CIFAR-10.

6.5 Experimental Results

We validate our method with experiments training deep convolutional neural networks.

Experimental results show that the proposed method achieves faster convergence, lower

memory consumption and better generalization error than compared methods.

6.5.1 Experimental Setting

Implementations: We implement our method in PyTorch [77], and evaluate it with

ResNet models [30] on two image classification benchmark datasets: CIFAR-10 and CIFAR-

100 [53]. We adopt the standard data augmentation techniques in [30, 37, 63] for training

these two datasets: random cropping, random horizontal flipping and normalizing. We use

SGD with the momentum of 0.9, and the learning rate is initialized to 0.01. Each model is

trained using batch size 128 for 300 epochs and the learning rate is divided by a factor of 10

at 150 and 225 epochs. The weight decay constant is set to 5× 10−4. In the experiment, a

neural network with K modules is sequentially distributed across K GPUs. All experiments

are performed on a server with four Titan X GPUs.

Compared Methods: We compare the performance of four methods in the experi-

ments, including:

111

K=2 K=3 K=4 K=2 K=3 K=4 K=2 K=3 K=4
0

0.5

1

1.5

2

M
e
m

o
ry

 (
M

iB
)

10
4 Memory Consumption

BP

DDG

FR

ResNet164 ResNet101 ResNet152

Figure 27: Memory consumption for ResNet164, ResNet101 and ResNet152.

• BP: we use the backpropagation algorithm [85] in PyTorch Library.

• DNI: we implement the decoupled neural interface in [42]. Following [42], the synthetic

network has two hidden convolutional layers with 5 × 5 filters, padding of size 2, batch-

normalization [41] and ReLU [72]. The output layer is a convolutional layer with 5×5 filters

and padding size of 2.

• DDG: we implement the decoupled parallel backpropagation in [38].

• FR: features replay algorithm in Algorithm 11.

6.5.2 Sufficient Direction

We demonstrate that the proposed method satisfies Assumption 6.4.1 empirically. In the

experiment, we divide ResNet164 and ResNet 101 into 4 modules and visualize the variations

of the sufficient direction constant σ during the training period in Figure 26. Firstly, it is

obvious that the values of σ of these modules are larger than 0 all the time. Therefore,

112

0 50 100 150 200 250 300

Epoch

10
-3

10
-2

10
-1

10
0

10
1

L
o

s
s

CIFAR-10 (ResNet164)

BP Train

DDG Train K=4

FR Train K=2

FR Train K=3

FR Train K=4

DNI Train K=4

BP Test

DDG Test K=4

FR Test K=2

FR Test K=3

FR Test K=4

DNI Test K=4

0 50 100 150 200 250 300

Epoch

10
-3

10
-2

10
-1

10
0

10
1

L
o

s
s

CIFAR-10 (ResNet101)

BP Train

DDG Train K=4

FR Train K=2

FR Train K=3

FR Train K=4

BP Test

DDG Test K=4

FR Test K=2

FR Test K=3

FR Test K=4

0 50 100 150 200 250 300

Epoch

10
-3

10
-2

10
-1

10
0

10
1

L
o

s
s

CIFAR-10 (ResNet152)

BP Train

DDG Train K=4

FR Train K=2

FR Train K=3

FR Train K=4

BP Test

DDG Test K=4

FR Test K=2

FR Test K=3

FR Test K=4

Figure 28: Training and testing curves for ResNet-164, ResNet101 and ResNet152 on CIFAR-

10.

113

Table 6: Comparisons of memory consumption of the neural network with L layers, which

is divided into K modules.

Algorithm
Backward Memory

Locking (Activations)

BP [85] yes O(L)

DNI [42] no O(L+KLs)

DDG [38] no O(LK +K2)

FR no O(L+K2)

Assumption 6.4.1 is satisfied such that Algorithm 11 is guaranteed to converge to the critical

points for the non-convex problem. Secondly, we can observe that the values of σ of the lower

modules are relatively small at the first half epochs, and become close to 1 afterwards. The

variation of σ indicates the difference between the descent direction of FR and the steepest

descent direction. Small σ at early epochs can help the method escape from saddle points

and find better local minimum; large σ at the final epochs can prevent the method from

diverging. In the following context, we will show that our method has better generation

error than compared methods.

6.5.3 Performance Comparisons

To evaluate the performance of the compared methods, we utilize three criterion in the

experiment including convergence speed, memory consumption, and generalization error.

Faster Convergence: In the experiments, we evaluate the compared methods with

three ResNet models: ResNet164 with the basic building block, ResNet101 and ResNet152

with the bottleneck building block [30]. The performances of the compared methods on

CIFAR-10 are shown in Figure 28. There are several nontrivial observations as follows:

Firstly, DNI cannot converge for all models. The synthesizer network in [42] is so small that

it cannot learn an accurate approximation of the error gradient when the network is deep.

114

Table 7: Best testing error rates of the compared methods on CIFAR-10 and CIFAR-100

datasets.

Model CIFAR [53] BP [85] DDG [38] FR

ResNet164
C-10 6.40 6.45 6.03

C-100 28.53 28.51 27.34

ResNet101
C-10 5.25 5.35 4.97

C-100 23.48 24.25 23.10

ResNet152
C-10 5.26 5.72 4.91

C-100 25.20 26.39 23.61

Secondly, DDG cannot converge for the model ResNet152 when we set K = 4. The stale

gradients can impose noise in the optimization and lead to divergence. Thirdly, our method

converges much faster than BP when we increase the number of modules. In the experiment,

the proposed method FR can achieve a speedup of up to 2 times compared to BP. We do

not consider data parallelism for BP in this section. In the supplementary material, we show

that our method also converges faster than BP with data parallelism.

Lower Memory Consumption: In Figure 27, we present the memory consumption

of the compared methods for three models when we vary the number of modules K. We

do not consider DNI because it does not converge for all models. It is evident that the

memory consumptions of FR and BP are very close. On the contrary, when K = 4, the

memory consumption of DDG is more than two times of the memory consumption of BP.

The observations in the experiment are also consistent with the analysis in Table 6. For DNI,

since a three-layer synthesizer network cannot converge, it is reasonable to assume that Ls

should be large if the network is very deep. We do not explore it because it is out of the

scope of this chapter. We always set K very small such that K � L and K � Ls. FR

algorithm can still obtain a good speedup when K is very small according to the second row

in Figure 28.

115

Better Generalization Error: Table 7 shows the best testing error rates for the

compared methods. We do not report the result of DNI because it does not converge.

We can observe that FR always obtains better testing error rates than other two methods

BP and DDG by a large margin. We think it is related to the variation of the sufficient

descent constant σ. Small σ at the early epochs help FR escape saddle points and find

better local minimum, large σ at the final epochs prevent FR from diverging. DDG usually

performs worse than BP because the stale gradients impose noise in the optimization, which

is commonly observed in asynchronous algorithms with stale gradients [13].

116

7.0 Conclusion

In this thesis, we propose several novel distributed algorithms to address the challenges in

big models and big data. Firstly, we propose and analyze asynchronous mini-batch gradient

descent method with variance reduction for non-convex optimization on two distributed ar-

chitectures: shared-memory architecture and distributed-memory architecture. We analyze

their convergence rate and prove that both of them can get a convergence rate of O(1/T)

for non-convex optimization. Linear speedup is accessible when we increase the number of

workers K, if K is upper bounded. Experiment results on real dataset also demonstrate our

analysis.

Then, we proposed Distributed Asynchronous Dual Free Coordinate Ascent (Dis- dfS-

DCA) method for distributed machine learning. We addressed two challenging issues in pre-

vious primal-dual distributed optimization methods: firstly, Dis-dfSDCA does not rely on the

dual formulation, and can be used to solve the non-convex problem; secondly, Dis-dfSDCA

uses asynchronous communication and can be applied on the complicated distributed sys-

tem where there is straggler problem. We also analyze the convergence rate of Dis-dfSDCA

and prove linear convergence even if the loss functions are non-convex, as long as the sum

of non-convex objectives is convex. We conduct experiments on the simulated distributed

system with straggler problem, and results consistently verify our theoretical analysis.

We also propose a novel Complete Layer-wise Adaptive Rate Scaling (CLARS) algo-

rithm to remove warmup in the large-batch deep learning training. Then, we introduce

fine-grained analysis and prove the convergence of the proposed algorithm for non-convex

problems. Based on our analysis, we bridge the gap between several large-batch deep learn-

ing optimization heuristics and theoretical underpins. Extensive experiments demonstrate

that the proposed algorithm outperforms gradual warmup by a large margin and defeats the

convergence of the state-of-the-art large-batch optimizer (LARS) in training advanced deep

neural networks on ImageNet dataset.

If the model is too big to train on a single device, we propose decoupled parallel backprop-

agation algorithm, which breaks the backward locking in backpropagation algorithm using

117

delayed gradients. We then apply the decoupled parallel backpropagation to two stochastic

methods for deep learning optimization. In the theoretical section, we also provide conver-

gence analysis and prove that the proposed method guarantees convergence to critical points

for the non-convex problem. Finally, we perform experiments on deep convolutional neural

networks, results verifying that our method can accelerate the training significantly without

loss of accuracy.

To reduce the memory consumption and improve generalization error, we proposed a

novel parallel-objective formulation for the objective function of the neural network and broke

the backward locking using a new features replay algorithm. Besides the new algorithms, our

theoretical contributions include analyzing the convergence property of the proposed method

and proving that our new algorithm is guaranteed to converge to critical points for the non-

convex problem under certain conditions. We conducted experiments with deep convolutional

neural networks on two image classification datasets, and all experimental results verify that

the proposed method can achieve faster convergence, lower memory consumption, and better

generalization error than compared methods.

118

Bibliography

[1] Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow:
Large-scale machine learning on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

[2] Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization. In
Advances in Neural Information Processing Systems, pages 873–881, 2011.

[3] Takuya Akiba, Shuji Suzuki, and Keisuke Fukuda. Extremely large minibatch sgd:
training resnet-50 on imagenet in 15 minutes. arXiv preprint arXiv:1711.04325, 2017.

[4] Zeyuan Allen-Zhu and Elad Hazan. Variance reduction for faster non-convex opti-
mization. In International conference on machine learning, pages 699–707, 2016.

[5] Zeyuan Allen-Zhu and Yang Yuan. Improved svrg for non-strongly-convex or sum-
of-non-convex objectives. In International conference on machine learning, pages
1080–1089, 2016.

[6] David Balduzzi, Hastagiri Vanchinathan, and Joachim M Buhmann. Kickback cuts
backprop’s red-tape: Biologically plausible credit assignment in neural networks. In
AAAI, pages 485–491, 2015.

[7] Amir Beck and Luba Tetruashvili. On the convergence of block coordinate descent
type methods. SIAM journal on Optimization, 23(4):2037–2060, 2013.

[8] Yoshua Bengio et al. Learning deep architectures for ai. Foundations and trends R© in
Machine Learning, 2(1):1–127, 2009.

[9] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Pro-
ceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[10] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-
scale machine learning. Siam Review, 60(2):223–311, 2018.

119

[11] Miguel Carreira-Perpinan and Weiran Wang. Distributed optimization of deeply
nested systems. In Artificial Intelligence and Statistics, pages 10–19, 2014.

[12] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector ma-
chines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[13] Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. Re-
visiting distributed synchronous sgd. arXiv preprint arXiv:1604.00981, 2016.

[14] Dominik Csiba, Zheng Qu, and Peter Richtárik. Stochastic dual coordinate ascent
with adaptive probabilities. In International Conference on Machine Learning, pages
674–683, 2015.

[15] Wojciech Marian Czarnecki, Grzegorz Świrszcz, Max Jaderberg, Simon Osindero,
Oriol Vinyals, and Koray Kavukcuoglu. Understanding synthetic gradients and de-
coupled neural interfaces. arXiv preprint arXiv:1703.00522, 2017.

[16] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed deep
networks. In Advances in Neural Information Processing Systems, pages 1223–1231,
2012.

[17] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gra-
dient method with support for non-strongly convex composite objectives. In Advances
in Neural Information Processing Systems, pages 1646–1654, 2014.

[18] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 248–255. Ieee, 2009.

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), pages 4171–4186, 2019.

[20] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for on-
line learning and stochastic optimization. Journal of Machine Learning Research,
12(Jul):2121–2159, 2011.

120

http://www.csie.ntu.edu.tw/~cjlin/libsvm

[21] Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks.
In Conference on Learning Theory, pages 907–940, 2016.

[22] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra,
Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew
Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and Timothy S.
Woodall. Open MPI: Goals, concept, and design of a next generation MPI imple-
mentation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting, pages
97–104, Budapest, Hungary, September 2004.

[23] Dan Garber and Elad Hazan. Fast and simple pca via convex optimization. arXiv
preprint arXiv:1509.05647, 2015.

[24] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for
nonconvex stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368,
2013.

[25] Saeed Ghadimi and Guanghui Lan. Accelerated gradient methods for nonconvex
nonlinear and stochastic programming. Mathematical Programming, 156(1-2):59–99,
2016.

[26] Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang. Mini-batch stochastic ap-
proximation methods for nonconvex stochastic composite optimization. Mathematical
Programming, 155(1-2):267–305, 2016.

[27] Akhilesh Gotmare, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. A
closer look at deep learning heuristics: Learning rate restarts, warmup and distillation.
International Conference on Learning Representations, 2018.

[28] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo
Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch
sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[29] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In
Proceedings of the IEEE international conference on computer vision, pages 2961–
2969, 2017.

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

121

[31] Xi He, Rachael Tappenden, and Martin Takáč. Dual free adaptive minibatch sdca for
empirical risk minimization. Frontiers in Applied Mathematics and Statistics, 4:33,
2018.

[32] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Lecture 6a overview
of mini–batch gradient descent. Coursera Lecture slides https://class. coursera.
org/neuralnets-2012-001/lecture,[Online, 2012.

[33] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine
learning lecture 6a overview of mini-batch gradient descent. Cited on, page 14, 2012.

[34] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

[35] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing
the generalization gap in large batch training of neural networks. In Advances in
Neural Information Processing Systems, pages 1731–1741, 2017.

[36] Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S Sathiya Keerthi, and Sellamanickam
Sundararajan. A dual coordinate descent method for large-scale linear svm. In Pro-
ceedings of the 25th international conference on Machine learning, pages 408–415.
ACM, 2008.

[37] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely
connected convolutional networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017.

[38] Zhouyuan Huo, Bin Gu, Qian Yang, and Heng Huang. Decoupled parallel backprop-
agation with convergence guarantee. arXiv preprint arXiv:1804.10574, 2018.

[39] Zhouyuan Huo and Heng Huang. Asynchronous mini-batch gradient descent with
variance reduction for non-convex optimization. In AAAI, pages 2043–2049, 2017.

[40] Zhouyuan Huo, Xue Jiang, and Heng Huang. Asynchronous dual free stochastic dual
coordinate ascent for distributed data mining. In 2018 IEEE International Conference
on Data Mining (ICDM), pages 167–176. IEEE, 2018.

[41] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International Conference on Machine
Learning, pages 448–456, 2015.

122

[42] Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex
Graves, David Silver, and Koray Kavukcuoglu. Decoupled neural interfaces using
synthetic gradients. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1627–1635. JMLR. org, 2017.

[43] Martin Jaggi, Virginia Smith, Martin Takác, Jonathan Terhorst, Sanjay Krishnan,
Thomas Hofmann, and Michael I Jordan. Communication-efficient distributed dual
coordinate ascent. In Advances in Neural Information Processing Systems, pages
3068–3076, 2014.

[44] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong, Feihu Zhou,
Liqiang Xie, Zhenyu Guo, Yuanzhou Yang, Liwei Yu, et al. Highly scalable deep
learning training system with mixed-precision: Training imagenet in four minutes.
arXiv preprint arXiv:1807.11205, 2018.

[45] Justin Johnson. Benchmarks for popular cnn models. https://github.com/

jcjohnson/cnn-benchmarks, 2017.

[46] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predic-
tive variance reduction. In Advances in Neural Information Processing Systems, pages
315–323, 2013.

[47] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural
network for modelling sentences. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 655–665,
2014.

[48] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and
Ping Tak Peter Tang. On large-batch training for deep learning: Generalization gap
and sharp minima. arXiv preprint arXiv:1609.04836, 2016.

[49] Yoon Kim. Convolutional neural networks for sentence classification. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 1746–1751, 2014.

[50] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

123

https://github.com/jcjohnson/cnn-benchmarks
https://github.com/jcjohnson/cnn-benchmarks

[51] Jakub Konečnỳ, Jie Liu, Peter Richtárik, and Martin Takáč. Mini-batch semi-
stochastic gradient descent in the proximal setting. IEEE Journal of Selected Topics
in Signal Processing, 10(2):242–255, 2015.

[52] Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks.
arXiv preprint arXiv:1404.5997, 2014.

[53] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny
images, 2009.

[54] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[55] Guanghui Lan. An optimal method for stochastic composite optimization. Mathe-
matical Programming, 133(1-2):365–397, 2012.

[56] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[57] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[58] Mu Li. Scaling Distributed Machine Learning with System and Algorithm Co-design.
PhD thesis, PhD thesis, Intel, 2017.

[59] Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic
gradient for nonconvex optimization. In Advances in Neural Information Processing
Systems, pages 2719–2727, 2015.

[60] Xiangru Lian, Huan Zhang, Cho-Jui Hsieh, Yijun Huang, and Ji Liu. A comprehensive
linear speedup analysis for asynchronous stochastic parallel optimization from zeroth-
order to first-order. In Advances in Neural Information Processing Systems, pages
3054–3062, 2016.

[61] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-
forcement learning. arXiv preprint arXiv:1509.02971, 2015.

124

[62] Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. A universal catalyst for first-
order optimization. In Advances in Neural Information Processing Systems, pages
3384–3392, 2015.

[63] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint
arXiv:1312.4400, 2013.

[64] Ji Liu, Stephen J Wright, and Srikrishna Sridhar. An asynchronous parallel random-
ized kaczmarz algorithm. arXiv preprint arXiv:1401.4780, 2014.

[65] Chenxin Ma, Jakub Konečnỳ, Martin Jaggi, Virginia Smith, Michael I Jordan, Peter
Richtárik, and Martin Takáč. Distributed optimization with arbitrary local solvers.
Optimization Methods and Software, pages 1–36, 2017.

[66] Chenxin Ma, Virginia Smith, Martin Jaggi, Michael I Jordan, Peter Richtárik, and
Martin Takáč. Adding vs. averaging in distributed primal-dual optimization. In Pro-
ceedings of the 32nd International Conference on International Conference on Ma-
chine Learning-Volume 37, pages 1973–1982, 2015.

[67] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri,
Yixuan Li, Ashwin Bharambe, and Laurens van der Maaten. Exploring the limits of
weakly supervised pretraining. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 181–196, 2018.

[68] Hiroaki Mikami, Hisahiro Suganuma, Yoshiki Tanaka, Yuichi Kageyama, et al.
Imagenet/resnet-50 training in 224 seconds. arXiv preprint arXiv:1811.05233, 2018.

[69] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods
for deep reinforcement learning. In International Conference on Machine Learning,
pages 1928–1937, 2016.

[70] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

[71] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

125

Ostrovski, et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529, 2015.

[72] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th international conference on machine learning
(ICML-10), pages 807–814, 2010.

[73] Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust
stochastic approximation approach to stochastic programming. SIAM Journal on
optimization, 19(4):1574–1609, 2009.

[74] Yurii E Nesterov. A method for solving the convex programming problem with con-
vergence rate o (1/kˆ 2). In Dokl. akad. nauk Sssr, volume 269, pages 543–547, 1983.

[75] Jiquan Ngiam, Adam Coates, Ahbik Lahiri, Bobby Prochnow, Quoc V Le, and An-
drew Y Ng. On optimization methods for deep learning. In Proceedings of the 28th
International Conference on Machine Learning (ICML-11), pages 265–272, 2011.

[76] Arild Nøkland. Direct feedback alignment provides learning in deep neural networks.
In Advances in Neural Information Processing Systems, pages 1037–1045, 2016.

[77] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Au-
tomatic differentiation in pytorch. In NIPS-W, 2017.

[78] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural
networks, 12(1):145–151, 1999.

[79] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. OpenAI Blog, 1:8,
2019.

[80] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-
free approach to parallelizing stochastic gradient descent. In Advances in Neural
Information Processing Systems, pages 693–701, 2011.

[81] Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabás Póczos, and Alex Smola.
Stochastic variance reduction for nonconvex optimization. In International confer-
ence on machine learning, pages 314–323, 2016.

126

[82] Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabás Póczos, and Alex J Smola. On
variance reduction in stochastic gradient descent and its asynchronous variants. In
Advances in Neural Information Processing Systems, pages 2629–2637, 2015.

[83] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In Advances in neural in-
formation processing systems, pages 91–99, 2015.

[84] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals
of mathematical statistics, pages 400–407, 1951.

[85] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning represen-
tations by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[86] Conrad Sanderson and Ryan Curtin. Armadillo: a template-based c++ library for
linear algebra. Journal of Open Source Software, 2016.

[87] Cicero D Santos and Bianca Zadrozny. Learning character-level representations for
part-of-speech tagging. In Proceedings of the 31st International Conference on Ma-
chine Learning (ICML-14), pages 1818–1826, 2014.

[88] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does
batch normalization help optimization? In Advances in Neural Information Processing
Systems, pages 2483–2493, 2018.

[89] Shai Shalev-Shwartz. Sdca without duality, regularization, and individual convexity.
In International Conference on Machine Learning, pages 747–754, 2016.

[90] Shai Shalev-Shwartz. Sdca without duality, regularization, and individual convexity.
In International Conference on Machine Learning, pages 747–754, 2016.

[91] Shai Shalev-Shwartz and Tong Zhang. Accelerated mini-batch stochastic dual coordi-
nate ascent. In Advances in Neural Information Processing Systems, pages 378–385,
2013.

[92] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for
regularized loss. The Journal of Machine Learning Research, 14(1):567–599, 2013.

127

[93] Christopher J Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy
Frostig, and George E Dahl. Measuring the effects of data parallelism on neural
network training. Journal of Machine Learning Research, 20:1–49, 2019.

[94] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al.
Mastering the game of go without human knowledge. Nature, 550(7676):354, 2017.

[95] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[96] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 1–9, 2015.

[97] Martin Takáč, Peter Richtárik, and Nathan Srebro. Distributed mini-batch sdca.
arXiv preprint arXiv:1507.08322, 2015.

[98] Gavin Taylor, Ryan Burmeister, Zheng Xu, Bharat Singh, Ankit Patel, and Tom
Goldstein. Training neural networks without gradients: A scalable admm approach.
In International Conference on Machine Learning, pages 2722–2731, 2016.

[99] Matus Jan Telgarsky. Benefits of depth in neural networks. Journal of Machine
Learning Research, 49(June):1517–1539, 2016.

[100] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in neural information processing systems, pages 5998–6008, 2017.

[101] Omry Yadan, Keith Adams, Yaniv Taigman, and Marc’Aurelio Ranzato. Multi-gpu
training of convnets. arXiv preprint arXiv:1312.5853, 2013.

[102] Tianbao Yang. Trading computation for communication: Distributed stochastic dual
coordinate ascent. In Advances in Neural Information Processing Systems, pages 629–
637, 2013.

[103] Tianbao Yang, Qihang Lin, and Zhe Li. Unified convergence analysis of stochas-
tic momentum methods for convex and non-convex optimization. arXiv preprint
arXiv:1604.03257, 2016.

128

[104] Dong Yin, Ashwin Pananjady, Max Lam, Dimitris Papailiopoulos, Kannan Ramchan-
dran, and Peter Bartlett. Gradient diversity: a key ingredient for scalable distributed
learning. In International Conference on Artificial Intelligence and Statistics, pages
1998–2007, 2018.

[105] Chris Ying, Sameer Kumar, Dehao Chen, Tao Wang, and Youlong Cheng. Image
classification at supercomputer scale. arXiv preprint arXiv:1811.06992, 2018.

[106] Yang You, Igor Gitman, and Boris Ginsburg. Scaling sgd batch size to 32k for imagenet
training. arXiv preprint arXiv:1708.03888, 6, 2017.

[107] Yang You, Jonathan Hseu, Chris Ying, James Demmel, Kurt Keutzer, and Cho-Jui
Hsieh. Large-batch training for lstm and beyond. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage and Analy-
sis, pages 1–16, 2019.

[108] Ruiliang Zhang and James Kwok. Asynchronous distributed admm for consensus op-
timization. In Proceedings of the 31st International Conference on Machine Learning
(ICML-14), pages 1701–1709, 2014.

[109] Ruiliang Zhang, Shuai Zheng, and James T Kwok. Asynchronous distributed semi-
stochastic gradient optimization. In Thirtieth AAAI Conference on Artificial Intelli-
gence, 2016.

[110] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks
for text classification. In Advances in neural information processing systems, pages
649–657, 2015.

[111] Shen-Yi Zhao and Wu-Jun Li. Fast asynchronous parallel stochastic gradient descent:
A lock-free approach with convergence guarantee. In Thirtieth AAAI conference on
artificial intelligence, 2016.

[112] Martin Zinkevich, John Langford, and Alex J Smola. Slow learners are fast. In
Advances in neural information processing systems, pages 2331–2339, 2009.

[113] Dongmian Zou, Radu Balan, and Maneesh Singh. On lipschitz bounds of general
convolutional neural networks. IEEE Transactions on Information Theory, 2019.

129

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1. Notations used in thesis.
	2. Experimental datasets from LIBSVM.
	3. Comparisons of computation time when the network is sequentially distributed across K GPUs.
	4. Neural networks architectural details in the experiments.
	5. The best Top 1 classification accuracy for ResNet-56 and ResNet-110 on the test data of CIFAR-10 and CIFAR-100.
	6. Comparisons of memory consumption of the neural network with L layers, which is divided into K modules.
	7. Best testing error rates of the compared methods on CIFAR-10 and CIFAR-100 datasets.

	List of Figures
	1. Comparison of three methods: SGD, SVRG, SGDSVRG on MNIST dataset.
	2. Speedup of Shared-AsySVRG on a machine with different number of threads from 1 to 32.
	3. Comparison of three methods: SGD, SVRG, SGDSVRG on CIFAR-10.
	4. Speedup of Distributed-AsySVRG on multiple machines from 1 to 10.
	5. Distributed asynchronous dual free stochastic dual coordinate ascent for parameter server framework.
	6. Convergence of duality gap of compared methods in terms of time and epoch for IJCNN1, COVTYPE, RCV1 respectively.
	7. Time speedup in terms of the number of workers. Row 1 left: IJCNN1; Row 1 right: COVTYPE; Row 2: RCV1.
	8. Suboptimum convergence of compared methods in terms of time.
	9. Learning rate upper bound for 5-layer FCN, 5-layer CNN, and 8-layer ResNet.
	10. Training loss and Top-1 testing accuracy of training ResNet56 and VGG11 (with batch normalization layer) on CIFAR-10.
	11. Learning rate schedule.
	12. Variation of variance for 10 epochs. We train 5-layer FCN and 5-layer CNN with sigmoid activation on MNIST.
	13. Comparison between LARS (with gradual warmup) and CLARS algorithm.
	14. Comparison between LARS and CLARS training ResNet50, DenseNet121, and MobileNetv2 on ImageNet.
	15. Procedure of the backpropagation algorithm.
	16. Procedure of the decoupled parallel backpropagation algorithm.
	17. Training and testing curves of loss function regarding epochs for ResNet-8 on CIFAR-10.
	18. Training and testing curves of Top 1 classification accuracies regarding epochs for ResNet-8 on CIFAR-10.
	19. Training and testing curves regarding epochs for ResNet-8 on CIFAR-10.
	20. Training and testing loss curves for ResNet-110 on CIFAR-10 using multiple GPUs.
	21. Computation time and the best Top 1 accuracy for ResNet-110 on the test data of CIFAR-10.
	22. Training and testing curves for ResNet-56 and ResNet-110 on CIFAR-10.
	23. Training and testing curves for ResNet-56 and ResNet-110 on CIFAR-100.
	24. Illustrations of the backward pass of the backpropagation algorithm (BP) decoupled neural interface (DNI) and decoupled parallel backpropagation (DDG).
	25. Backward pass of Features Replay Algorithm.
	26. Sufficient direction constant for ResNet164 and ResNet101 on CIFAR-10.
	27. Memory consumption for ResNet164, ResNet101 and ResNet152.
	28. Training and testing curves for ResNet-164, ResNet101 and ResNet152 on CIFAR-10.

	Preface
	1.0 Introduction
	1.1 Background
	1.2 Contribution
	1.3 Notation
	1.4 Thesis Organization

	2.0 Asynchronous Mini-batch Gradient Descent with Variance Reduction for Non-Convex Optimization
	2.1 Motivation
	2.2 Preliminaries
	2.3 Shared-Memory Architecture
	2.3.1 Algorithm Description
	2.3.2 Convergence Analysis

	2.4 Distributed-Memory Architecture
	2.4.1 Algorithm Description
	2.4.2 Convergence Analysis

	2.5 Experimental Results
	2.5.1 Shared-Memory Architecture
	2.5.2 Distributed-Memory Architecture

	3.0 Asynchronous Dual Free Stochastic Dual Coordinate Ascent for Distributed Data Mining
	3.1 Motivation
	3.2 Preliminaries
	3.2.1 Stochastic Dual Coordinate Ascent
	3.2.2 Dual Free Stochastic Dual Coordinate Ascent

	3.3 Distributed Asynchronous Dual Free Stochastic Dual Coordinate Ascent
	3.3.1 Update Global Variable on Server
	3.3.2 Update Local Variable on Worker

	3.4 Convergence Analysis
	3.4.1 Convex Case
	3.4.2 Non-convex Case

	3.5 Experimental Results
	3.5.1 Convex Case
	3.5.1.1 Convergence of Duality Gap
	3.5.1.2 Speedup

	3.5.2 Non-convex Case

	4.0 Large Batch Training Does Not Need Warmup
	4.1 Motivation
	4.2 Preliminaries
	4.3 Complete Layer-Wise Adaptive Rate Scaling
	4.3.1 Complete Layer-Wise Adaptive Rate Scaling
	4.3.2 Fine-Grained Micro-Steps and Assumptions
	4.3.3 Convergence Guarantees of Two Gradient-Based Methods
	4.3.4 Discussions About the Convergence of mNAG

	4.4 Experimental Results
	4.4.1 Why LARS?
	4.4.2 Linear Learning Rate Scaling
	4.4.3 One Hypothesis About Warmup
	4.4.4 Warmup is Not Necessary

	5.0 Decoupled Parallel Backpropagation with Convergence Guarantee
	5.1 Motivation
	5.2 Preliminaries
	5.3 Decoupled Parallel Backpropagation
	5.3.1 Backpropagation Using Delayed Gradients
	5.3.2 Speedup of Decoupled Parallel Backpropagation
	5.3.3 Stochastic Methods Using Delayed Gradients

	5.4 Convergence Analysis
	5.4.1 Fixed Learning Rate
	5.4.2 Diminishing Learning Rate

	5.5 Experimental Results
	5.5.1 Comparison of BP, DNI and DDG
	5.5.2 Optimizing Deeper Neural Networks
	5.5.3 Scaling the Number of GPUs

	6.0 Training Neural Networks Using Features Replay
	6.1 Motivation
	6.2 Preliminaries
	6.3 Features Replay
	6.3.1 Problem Reformulation
	6.3.2 Breaking Dependencies by Replaying Features

	6.4 Convergence Analysis
	6.5 Experimental Results
	6.5.1 Experimental Setting
	6.5.2 Sufficient Direction
	6.5.3 Performance Comparisons

	7.0 Conclusion
	Bibliography

