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In this dissertation, iterative learning control methods for a hybrid exoskeleton to produce

sitting-to-standing and walking in people with paraplegia are investigated. The hybrid

exoskeleton combines a lower limb powered exoskeleton and functional electrical stimulation

(FES). Limited research has been done to design control methods that provide shared

modulation of FES and the powered exoskeleton. A major technical challenge to the

implementation of control algorithms is their need to identify a user’s musculoskeletal dynamics.

Further, currently, setting desired regulation points or desired limb trajectories during sitting-

to-standing and walking movements is a daunting task as it requires separate and coordinated

design for each lower-limb. An inaccurate regulation of set-points or desired trajectories can

possibly cause uncoordinated standing-up movements, potentially destabilizing the user.

Goal: The goal of this research is to design robust and adaptive control algorithms for

hybrid exoskeletons that overcome the difficulty in model identification, can dynamically

allocate the shared use of FES and the powered exoskeleton, and produce coordinated joint

movements.

Objectives: The primary objective of this research is to develop robust control methods

that iteratively learn modeling uncertainties in the hybrid exoskeleton (i.e., addressing model

identification), while facilitating allocation of FES and motor input (i.e., resolving actuator

redundancy) in the hybrid exoskeleton. The proposed control methods are experimentally

validated for a sitting to standing task with the hybrid exoskeleton. The experiments are

performed on human participants with no disabilities and a participant with spinal cord

injury. The tasks that are accomplished to achieve the objectives are listed as:

1- Design and implement time-invariant desired joint trajectories by using virtual constraints

for sitting-to-standing and walking motion

2- Derive and experimentally validate a robust control method that uses an arbitrarily

switched allocation strategy to coordinate motor and FES.
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3- Derive a control method that iteratively learns the system nonlinear dynamics and

control gains.

4- Using an optimal and cooperative model predictive control method, instead of switched

control, to allocate between motors and FES.
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1.0 Introduction

1.1 Background and Motivation

Across the United States, approximately 3,400 people are diagnosed with complete

paraplegia each year due to injuries to the spinal cord[66]. People with paraplegia have

lower limb impairments that impede standing and walking activities. Functional electrical

stimulation (FES) and powered exoskeleton are two potential technologies that can be used

to restore standing and walking functions. FES was used for the first time in the 1960s by

Kantrowitz et al. [41] and Liberson et al. [53] to correct drop foot. Since then FES has been

shown to restore walking [31, 49, 37] and sitting to standing [17, 24, 70, 25, 1]. Despite the

progress, the rapid onset of muscle fatigue during FES remains a huge challenge because it

limits duration of standing and walking activities. A powered exoskeleton is an alternative

rehabilitation technology for enabling people with paraplegia to regain lower-limb function.

However, in the case of a complete paraplegia, the powered exoskeleton only passively moves

limbs, unlike FES, which actively contracts the muscle. Active muscle contractions are

preferred due to the fact that they increase metabolic energy consumption, and thus may

help achieve recommended exercise targets for people with paraplegia[23]. Additionally,

exoskeleton training may improve level of physical activity after spinal cord injury (SCI)

[28].

Hybrid exoskeletons that constitute a powered exoskeleton and an FES system have

recently been proposed to use the potential benefits and overcome the aforementioned

shortcomings of FES and a powered exoskeleton, when used solely [23, 22, 45]. Powered

exoskeleton and FES can work cooperatively to offset FES-induced fatigue effects. Further,

the use of FES can potentially reduce actuator size and power consumption in the powered

exoskeleton [36, 48, 44, 23, 22]. Moreover, the use of FES can provide therapeutic benefits

such as preventing muscle atrophy, and increasing bone density [21]. Despite these benefits,

very limited researches have been done for developing control methods for this type of devices

which makes controlling the devices very challenging.
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1.2 Existing Methods

One of the challenges in the control of the hybrid exoskeleton is to coordinate both

FES and the powered exoskeleton during a lower limb activity. Recently, several different

control approaches have been developed to coordinate FES and the powered exoskeleton.

In [69], an adaptive control method allocated a portion of control to the FES and the

rest was provided by electric motors for weighted leg lifts. In [10], the control strategy

combined a PID controller for an active lower limb exoskeleton actuation with an event-

based FES stimulation trigger. The hybrid movement was sub divided into pre-extension and

extension sub-phases. The quadriceps muscles were activated by FES during the extension

sub-phase because large assistive torque is required during this phase. The sub-phase is

detected by using the ground reaction forces. In [73], an algorithm was developed that

automatically adjusts the intensity of FES and the current delivered to an electric motor

in a cycling scenario. Based on the mismatch between the desired and actual cadence, the

algorithm switches automatically between resistive, uncontrolled, and assistive modes to

accommodate for differences in functional impairment. In [45] a nonlinear model predictive

control-based dynamic control allocation method was used to control seated knee extensions

with a hybrid exoskeleton. FES and the electric motor were shown to work cooperatively

and their respective control allocation were changed based on an FES-induced muscle fatigue

model. In [5, 4], the coordination problem was addressed by deriving a controller that is

inspired from the muscle synergy principle in the human motor control. In their subsequent

works [8, 9], a dynamic surface control method with electromechanical delay compensation

[7] was used in conjunction with the muscle synergy-inspired control scheme to overcome

the allocation problem. The controllers in [9, 4, 5, 8, 64], require a fewer number of control

signals to actuate multiple effectors in a hybrid exoskeleton.

While these techniques do solve the allocation problems in the hybrid exoskeleton, their

implementation may depend on the identification of the musculoskeletal model of people with

paraplegia. Due to day-to-day variations and inter-person variations in the musculoskeletal

models, and the tedious process needed to identify the model [83, 45], it is difficult to

implement these controllers in clinics. While numerous papers in FES control exist that use

2



high-gain controllers [77, 79] to provide robustness to modeling uncertainties or even adapt

and learn the model using neural networks (NNs) [2, 3, 72, 78, 12], their implementation

may need extensive tuning or offline training of neural networks. Iterative learning control

(ILC) is a class of controllers that can help address this issue through online learning of

unknown dynamics while improving the performance in consecutive multiple iterations or

task cycles. An ILC was developed for a solo FES system for upper limb stroke rehabilitation

in [51]. FES was applied to shoulder and elbow muscles of an able bodied participant for

showing the learning capabilities of the controller. Authors in [56] developed an iterative

learning method with input-dependent muscle fatigue model for a sole FES system, and it

was used for the rehabilitation of upper limb. In [27], in a passivity based framework, an

iterative learning control method was used to control a motorized cycle-rider rehabilitation

system with FES. Their controller uses the concepts of passivity and adaptation so that it

compensates for the time varying dynamics of the system. In another paper, [26], a feed

forward repetitive learning control with autonomous state-dependent switching is developed

for an uncertain, nonlinear cycle-rider system which yielded to lower cadence tracking error.

However, the method does not address a way to learn the uncertain terms that are not linearly

parameterizable. The uncertainties arise due to the use of FES in the hybrid exoskeleton

because musculoskeletal dynamic will be involved.

1.3 Research Description

The goal of this research is to design control algorithms for hybrid exoskeletons that

address the device control challenges including difficulty in model identification, resolving

actuator redundancy due to the combined use of FES and the exoskeleton, and design of

desired joint trajectories that coordinate limbs during standing and walking movements.

The primary objective of this research is to develop robust control methods that can learn

modeling uncertainties in the hybrid exoskeleton (i.e., addressing model identification), while

facilitating allocation of FES and motor input (i.e., resolving actuator redundancy) in the

hybrid exoskeleton.
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For achieving the objective, in this dissertation, initially, a novel switching super twisting

sliding mode is developed. This sliding mode control method development is the foundational

controller used for the subsequent development of the set of robust iterative learning control

methods in this thesis. In this control method, for avoiding joint miscoordination, we utilize

a time independent profile, known as a virtual constraint, as a desired reference for joint

angles. The virtual constraints is designed by utilizing the combination of a genetic-particle

swarm optimization algorithm and a sequential quadratic programming (SQP) method. The

genetic-particle swarm optimization algorithm (GAPSO) finds an acceptable semi-optimal

virtual constraint for the system. This algorithm’s results are used as a starting point for

the SQP algorithm to find an optimal solution without a higher sampling rate and evolution

cycles, which are required for GAPSO.

The switching strategy for control allocation between an electric motor and FES is based

on the reduced or recovered control effectiveness (due to muscle fatigue and recovery) of

user’s muscle force output. The controller allows the user’s muscles to recover when motors

are mainly responsible for moving the limb joints and then when muscles have recovered,

the FES can be used to generate walking. Because we used feedback linearization method

for controlling the switched control system it has the downside of requiring exact model

knowledge (EMK) during its implementation.

Therefore, in the next step, to remove its dependency on EMK, an iterative learning term

is used to estimate system linearly parameterizable part of the dynamics. The stability of

this new switching+learning controller is proved using the Lyapunov-based stability analysis.

The overall stability, to account for impacts at the end of swing phase during walking, was

shown numerically by using the Poincare maps. This new switching controller switches

between an electric motor and FES based on muscle fatigue and recovery levels as well.

This preliminary version of the developed iterative learning controller could identify only

the linearly parameterizable terms. Therefore, my next aim was to design a control method

that iteratively learns both linearly parameterizable part of the dynamics and the other parts

of the dynamics that can’t be linearly parameterized in the human user’s musculoskeletal

model, thus improving sitting-to-standing tracking performance with minimal tuning. Addressing

this problem is significant for clinical implementation, where inter-person and inter-day
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variations can negatively affect control performance. The use of NNs is motivated for its

ability to compensate or estimate unknown dynamics, including not linearly parameterizable

and highly nonlinear terms, by choosing a suitable number of neurons and NN layers [52,

76, 75, 78]. A recurrent NN (RNN) was used due to its capability to capture the system

behavior dynamically [76, 74, 11].

Therefore, in chapter 4, I developed an ILC method that uses two NNs. One NN is used

to compensate for not linearly parameterizable terms that occur in the state dynamics. The

other NN is used to compensate the unknown input gain function due to the use of FES.

The NN update laws are developed through a discrete energy-based stability analysis in an

iterative fashion.

Specifically, the second NN update law is designed to avoid singularity during its inverse,

which is used to cancel the unknown input gain function. The control design is proven to

be uniformly stable despite arbitrary switched FES and exoskeleton allocation. For avoiding

joints miscoordination, instead of tracking the time-dependent trajectories for joints angles,

the proposed ILC tracks time-invariant desired trajectories computed through the virtual

constraints.

In the final step, a novel dynamic shared control of a powered exoskeleton and functional

electrical stimulation (FES) that can adjust to the rapid onset of FES-induced muscle fatigue

and deal with uncertain nonlinear relationships between FES inputs and joint torques is

designed. The shared control design is achieved by using a bi-level hierarchical control. A

neural network-based iterative learning controller (NNILC) is used as a top-level controller

to learn and overcome uncertain nonlinear dynamics. The top level controller gives the total

input demand to the bottom-level controller.

Then, a model predictive control (MPC)-based allocation strategy is used as the bottom-

level controller to optimally distribute control contributions between FES and the knee motor

of the exoskeleton. The MPC strategy uses the muscle fatigue and recovery characteristics of

a participant’s quadriceps muscles to modulate the shared control. A Lyapunov-like stability

analysis is used to prove global asymptotic tracking of self-generated desired joint trajectories.

The experimental results show robustness and optimality of the controller despite high model

uncertainties.
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1.4 Contribution

Chapter 2: I use a more rigorous non-smooth analysis framework described in [18, 20] to

prove exponential tracking of the switching control design in [43] under arbitrary switching.

Additionally the controller in [43] is extended to a multi-DOF walking plant, and instead of

tracking time-based joint angle trajectories, movements of the lower-limb joints follow a self-

generated limit cycle in a time-invariant controller that uses virtual constraints [32, 87, 34].

Virtual constraints were designed and implemented for hybrid exoskeletons for the first time

in this novel controller. Virtual constraints were designed using a hierarchical hybrid Genetic

algorithm-Particle swarm optimization (GAPSO), and sequential quadratic programming

(SQP) optimization algorithm for the first time. The control issues a switching second order

sliding mode controller to arbitrarily switch between different cases that depend on fatigue

and choice of agonist and antagonist muscles. The simulation of the hybrid exoskeleton for a

walking scenario showed the stability of the controller despite switching and ground effects.

The results were published in [59].

Chapter 3: A new iterative learning switching controller that uses optimal virtual constraint

is designed for a hybrid walking exoskeleton in this chapter. The novel synthesis of iterative

learning control with sliding-mode control improves tracking performance and accuracy.

A generalized switching control method is obtained to switch based on the stimulated

muscle fatigue state. The effectiveness of the new iterative learning control for output

tracking is tested in a walking model. According to the results, this technique helps the

switching controller to decrease the RMS in each iteration. The results exhibit the excellent

performance of the proposed technique to track the designed virtual constraints. The results

were published in [60].

Chapter 4: A novel robust neural network (NN) based iterative learning controller is

derived for a general model of a hybrid neuroprosthesis in the chapter. The controller

is designed to track time-invariant profiles. The NN control strategy learns, in multiple

iterations, the parametric uncertainties, unknown nonlinear dynamics and unknown input

gains during the control of hybrid exoskeletons. The effectiveness of the new control is

validated for a sitting to standing scenario. The experimental results are obtained from
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human participants including a person with spinal cord injury. In few iterations, the

synthesized controller improves root mean square error between desired positions and actual

positions of the knee and hip joints by 51.18% and 57.31%, respectively. The sitting-to-

standing control remains stable even when FES and electric motor allocation levels are

switched. The results are under review as a journal paper in [63].

Chapter 5: A state of the art, hierarchical neural network based iterative learning control

method, augmented with an MPC-based allocation strategy is developed. The experimental

results for a siting to standing task on three participants including a person with spinal

cord injury validate the effectiveness of the proposed controller. The experimental results

demonstrates an optimal dynamic shared control between FES and the powered exoskeleton,

despite FES-induced muscle fatigue, modeling uncertainties, and high nonlinearity of the

hybrid exoskeleton. Additionally, the proposed controller can help people with SCI to stand

and walk with a hybrid neuroprosthesis without extensive tuning of control parameters. The

results are published in [61] and under review in [62].
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2.0 A Switching Super Twisting Sliding Control

2.1 Introduction

The objective of this chapter is to validate a novel switching super twisting sliding mode

control method that is used to robustly do switching control allocating between electric

motors and FESs and to elicit a walking motion. This allocation is done based on the amount

that muscles are fatigued. This chapter would investigate, problem formulation, optimization

for having optimal time invariant manifold known as virtual constraints, algorithm designing

and simulation results. This sliding mode control method development is the foundational

controller used for the subsequent development of the set of results in this thesis. The

controller will be improved and extended to some other versions in the next chapters to deal

with different problems and scenarios.

2.2 General Walking Model Equation with Impact Effects

The schematic of the dynamic system is demonstrated in Fig. 1. In this figure m is the

mass of linkages and MT is the mass of torso and MH is the hip mass. O1, O2, Oh and OT

show the centers of mass positions. The complete walking model, N -DOF, including impulse

effects of ground impact, can be expressed in the state space form as

ẋ = f(x) + g(x)T x−(t) /∈ S

x+ = 4 (x−) x−(t) ∈ S
(2.1)

where x =[q, q̇]T , q ∈ RN is defined as q = [θ1θ2 · · · θN ]. θi and ωi are the i-th linkage

deflection angle and angular velocity, respectively. S =
{

(θ, ω) ∈ χ | θi = θdi
}
, θdi is the final

value of θi in each step, which is used as a criterion for showing that a step is completed, f(x)

is the compact form of
[ [

/ON×N IN×N

]T
· · · · · · [D(q)−1(−C(q, .q̇).q̇ −G(q) + τp)]

T
]T
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and g(x) is the compact form of
[

0 0 · · · · · · [D(q)−1(B(q)T )]
]T

, where D ∈ RN×N

is an inertia matrix, C ∈ RN×N is a Centripetal-Coriolis matrix, G ∈ RN is a gravity vector,

B ∈ RN×N−1 is a control gain matrix, andτp(q, q̇) ∈ RN is the passive joint moment. The

moment at the i-th link is defined as

τpi = d1i(ϑi − ϑ0i) + d2iϑ̇i + d3ie
d4i

ϑi − d5ie
d6i

ϑi , (2.2)

where ϑi is the anatomical joint angle, the angle between a segment’s anatomical position

and the position of the interest, of the i-th linkage, andϑ0iand dji are positive known

constants. During the double support phase, the impact model of [38] is implemented under

the assumption that the end of stance leg is in contact with the ground surface and is not

slipping [86]. Using the law of conservation of angular momentum, the state values after

impact, x+ = (q+, ω+) can be evaluated by a function 4 ∈ R2N×1 with the state values

before impact, x− = (q−, ω−).

2.2.1 Joint Actuation

Each linkage actuates with an electric motor, an electrical stimulation for the flexor

muscles, and an electrical stimulation for the extensor muscles. The joint torque, Ti (i =

1, 2, N), can be expressed as

Ti = Tagi − Tanti + Tmi (2.3)

where Tagi and Tanti is the torque produced by the electrical stimulation of the agonist muscles

and antagonist muscles, respectively and Tmotor is the torque produced by motor. The motor

torque at the i-th link is given as

Tmi = kmiumi , (2.4)

The torque produced stimulation of agonist or antagonist muscles is given by

Tag/ant = ψli(ϑi)ψυi(ϑ̇i)µiui, (2.5)
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In (2.5), ui ∈ R is the normalized muscle stimulation, µi ∈ R is the normalized fatigue

variable, and ψνi(ϑ̇) ∈ R+ and ψli(ϑ) ∈ R+are the torque-velocity relationships and torque-

length of the flexor/extensor muscles, respectively. As in [70], torque-length and torque-

velocity equations can be defined for i-th link as

ψli(ϑi) = c1ie

−(ϑi−c2i)
2

2c3i (2.6)

ψvi(ϑ̇i) = c4i

[
1 + tanh

(
c5iϑi +

1

c4i

)]
(2.7)

For guaranteeing that ψli(ϑ)ψvi(ϑ̇) > 0, the parameters c1i ; c3i ; c4i ; c5i should be positive

and c2i > 0. The constraints on these parameters is due to the fact that the muscles can

only ever produce a positive (contractile) force. In (2.4) umi ∈ R is the current amplitude

to the electric motor and kmi ∈ R is the torque constant of electric motor.

The normalized muscle fatigue, µi, in (2.5) can be calculated with the following differential

equation [71]

µ̇i =
1

tfi
(µmini − µi)uhi +

1

tri
(1− µi) (1− uhi) , (2.8)

where, tri , tfi∈ R+are time constants for fatigue recovery and fatigue in the muscle, respectively

and µmini ∈ (0, 1] is the fatigue constant.

2.2.2 Switched System

The switched system can be written as

D(q)q̈ + C(q, q̇).q̇ +G(q) + τp

= B(q) (anιnT − (1− an)ιnT + ςnT ) ,
(2.9)

where anιnT − (IN−1×N−1 − an)ιnT + ςnT = T, anιnT = Tag, −(IN−1×N−1 − an)ιnT = Tant,

ςnT = Tm, and ιn, ςn ∈ R+N−1×N−1 are inside the finite set switch family, Ω, defined as

Ω =

{(ι1, ς1, a1), (ι2, ς2, a2), . . . , (ιNΩ , ςNΩ , aNΩ
) · · ·

· · ·
∣∣∣an = diag( an1 an2 · · · anN−1

) , · · ·

· · · ι+ ςn = IN−1×N−1, ani ∈ {0, 1}, n = 1, 2, . . . , NΩ}

(2.10)
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with NΩ number of combinations. Note that the choice of (ιn, ςn) is determined by muscle

fatigue variable µ.

Remark. Note that ani can be either 0 or 1 depending on the type of muscle being

recruited (i.e., flexor or extensor). The above switched family shows the finite set of ratios

in which the torque is distributed between FES and the motor.

2.3 Virtual Constraint and Controller Design

2.3.1 Virtual Constraint Design

The output, y ∈ RN−1, is defined as follows [87]:

y = h0(q)−hd(θ(q)) (2.11)

The size of y is N−1 because the system has one degree of freedom underactuation for torso.

In (2.11), h0(q) is a function of the independent joint angles is forced to follow hd(θ(q)), which

is a desired virtual constraint function that is defined based on the Bezier polynomials as

follows

hdoθ(q) =


b1ow(q)

b2ow(q)
...

bN−1ow(q)

 , (2.12)

where

bi(w) =
M∑
k=0

αik
M !

k!(M − k)!
wk(1− w)M−k. (2.13)

In (2.13) αikis the optimization parameter, M is an integer, specifying number of terms in

Bezier polynomial, and w is defined as follows

w(q) =
θ(q)− θ+

θ− − θ+
. (2.14)

In (2.14), θ(q) is a function of hybrid exoskeleton configuration variables and is defined as

θ(q) = e1θ1 + e2θ2 + ... + enθN . ei ∈ Ris chosen such that θ(q) is monotonically increasing.

θ−and θ+are minimum and maximum value of the θ(q) respectively.
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2.3.2 Controller Design

The goal of the controller is to make the output zero or in other words, it forces h0(q) of

the system, to follow the hd(q). For this purpose, initially, the output is rewritten as (2.15).

y = h(q) (2.15)

Hence:
d2y

dt2
= L2

fh(q, q̇) + LgLfh(q)T (2.16)

The invertibility of the decoupling matrix, LgLfh, at a specific point guarantees the zero

dynamics existence and uniqueness in that point neighborhood [39]. Considering the output

vector y ∈ RN−1 of the n-link walking model, for each single output yi, (i = 1...N − 1), if

ȳ1,i, ȳ2,i ∈ R are chosen as ȳ1,i = yi and ȳ2,i = ẏi, (2.16) can be rewritten as the follows

˙̄y1,i = ȳ2,i

˙̄y2,i = vi + vd,i, (2.17)

where vi is the ith row from the N − 1 dimensional virtual input vector, v(q) = L2
f̂
h(q, q̇) +

LĝLf̂h(q)T , related to the actual signal contributed from both FES and the motor, where f̂

and ĝ are nominal models of the dynamics in (2.1),vd,i is a corresponding input disturbance

term vi due to model uncertainty. In order to stabilize the system in (2.17), a controller

will be designed based on the virtual input, vi = ϕi(ȳ1,i, ȳ2,i, t), (i = 1...N − 1), so that the

allocation coefficient pair (ιn,ςn) can be arbitrarily changed or switched, without affecting

the stability property of the system. In the remaining part of this section, a Variable-

Gain Super-Twisting Sliding Mode Control (VGSTSMC) is implemented and the robust

exponential stability under the theoretical framework of non-smooth analysis and control

theory [18, 20] is described.

For i = 1...N − 1, let the sliding surface si∈R be defined as si = ηiȳ1,i + ȳ2,i, such that

the system in (2.17) will equivalently become

˙̄y1,i = −ηiȳ1,i + si

ṡi = ηi ˙̄y1,i + ˙̄y2,i = ηiȳ2,i + vi + vd,i (2.18)
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Using a Variable-Gain Super-Twisting Algorithm (VGSTA) [82],

vi = −ηiȳ2,i − k1,iφ1,i(si)−
tw

0

k2,iφ2,i(si)dt (2.19)

where i = 1...N − 1, φ1,i(si) = |si|
1
2 sign(si) + k3,isi, φ2,i(si) = 1

2
sign(si) + 3

2
k3,i|si|

1
2 sign(si) +

k2
3,isi, and k1,i(ȳ1,i, ȳ2,i, t) and k2,i(ȳ1,i, ȳ2,i, t) are variable gains. k3,i is a non-negative constant

gain. As in [82], the ith disturbance is assumed to be modeled as, vd,i = vd,i1 +vd,i2 satisfying

|vd,i1| ≤ %1,i(ȳ1,i, ȳ2,i, t)|φ1,i(si)| and |v̇d,i2| ≤ %2,i(ȳ1,i, ȳ2,i, t)|φ2,i(si)|, (%1,i, %2,i > 0), , and

therefore, without loss of generality, can be written as follows

vd,i1 = ρ1,i(ȳ1,i, ȳ2,i, t)φ1,i(si) (2.20)

v̇d,i2 = ρ2,i(ȳ1,i, ȳ2,i, t)φ2,i(si), (2.21)

where |ρ1,i(ȳ1,i, ȳ2,i, t)| ≤ %1,i(ȳ1,i, ȳ2,i, t) and |ρ2,i(ȳ1,i, ȳ2,i, t)| ≤ %2,i(ȳ1,i, ȳ2,i, t). Finally,

system in (2.18) yields an exponential stability that is robust to input disturbance from

model uncertainty, as long as the sliding surface si = 0 can be reached in finite time.

Therefore, the following stability analysis is equivalent to prove finite time convergence of

the subsystem [ṡi, ė0,i]
T = zi(si, e0,i, t), i = 1...N − 1:

ṡi = −(k1,i − ρ1,i)φ1,i + e0,i

ė0,i = −(k2,i − ρ2,i)φ2,i (2.22)

Definition of proximal sub-differential is firstly reviewed as the following:

Definition: [20] For a lower semi-continuous function V : R2 → R, ξ ∈ R2 is a proximal-

sub gradient of V at $1 ∈ R2, if ∃σ, ε ∈ (0,+∞) such that, ∀$2 ∈ B($1, ε),

V ($1) ≥ V ($2) + ξ($1 −$2)− σ2||$1 −$2||22 (2.23)

The set ∂PV of all proximal sub-gradients of V at $1 is the proximal sub-differential of V

at $1.

Theorem. [82] ∀i=1...N-1, Subsystem in (2.22) can reach the equilibrium point (si, e0,i) =

(0, 0) in finite time, if the control gains in VGSTA are selected as k1,i = δi + 1
βi

(
1

4εi
(2εi%1,i +
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%2,i)
2 + 2εi%2,i + εi + (2εi + %1,i)(βi + 4ε2i )

)
, k2,i = βi + 4ε2i + 2εik1,i, k3,i ≥ 0, where βi, εi, δi

are positive constants.

Proof: (i) Existence and uniqueness of the solution. According to [20] (Proposition 3)

the solution to (2.22) exists in the sense of Filippov, that is, an absolutely continuous map,

[si(t), e0,i(t)]
T : [0,+∞) → D ⊆ R2 satisfying the differential inclusion Ki[zi]([si, e0,i]

T , t),

i = 1...N − 1, almost everywhere, ṡi

ė0,i

 ∈ Ki[zi]([si, e0,i]
T , t) : (2.24)



= zi(si, e0,i, t),

[si, e0,i]
T ∈ D ∩

{
[si, e0,i]

T
∣∣ s, i 6= 0

}
= co


 e0,i

−1
2
(k2,i − ρ2,i)

 ,
 e0,i

1
2
(k2,i − ρ2,i)


 ,

[si, e0,i]
T ∈ D ∩

{
[si, e0,i]

T
∣∣ si = 0

}
Furthermore, by [20] (Proposition 5), (2.22) has a unique solution, due to the fact that the

piece-wise continuous vector fields, near the manifold where discontinuity occurs, are driving

the solution trajectories (except for e0,i = 0, where trajectories slide along the manifold)

transversally cross the manifold. Note that [0, 0]T ∈ Ki[zi].

(ii) Lyapunov stability analysis. As explained in (i), (2.22) has a unique solution.

Therefore, weak and strong stability coincide, and it will be sufficient to find a Lyapunov

function Vi(si, e0,i), for ith subsystem (2.22), satisfying the following conditions [20], for ∀t ∈

[0,+∞), : Condition (A) Vi(si, e0,i) continuous on D; Condition (B) Vi(0, 0) = 0, Vi(si, e0,i) >

0,∀[si, e0,i]
T ∈ D\{[0, 0]T}; Condition (C) supLKi[zi]Vi(si, e0,i) ≤ 0,∀[si, e0,i]

T ∈ D; Condition

(D) supLKi[zi]Vi(si, e0,i) < 0,∀[si, e0,i]
T ∈ D\{[0, 0]T}, such that the system (2.22) is asymptotically

stable. For simplicity purpose, index i (i = 1...N) referring to ith output will be dropped

hereafter in all the corresponding notations. First of all, (A) and (B) can be satisfied by

choosing the Lyapunov function [82],

V = ζTPV ζ (2.25)
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where, ζ =
[
|s| 12 sign(s) + k3s e0

]T
, positive definite matrix PV =

 p11 p12

p21 p22

 which is

equal to

 β + 4ε2 −2ε

−2ε 1

. Explicitly, V = (β + 4ε2)|s|+ 2(β + 4ε2)k3|s|
3
2 + (β + 4ε2)k2

3s
2 +

e2
0−4εe0|s|

1
2 sign(s)−4εk3se0. It should be noted that V is smooth (C∞) everywhere, except

s 6= 0, continuous but not locally Lipschitz at s = 0. Therefore, proximal sub-differential

needs to be employed to compute the lower set-valued lie derivative LK[z]V (s, e0) , {a ∈

R : ∃ξ ∈ ∂PV (s, e0), such that a = min{ξT r : r ∈ K[z]}}, where proximal sub-differential is

defined in Definition 1. Condition (C) and (D), describing a weak monotonic behavior of

V , can then be satisfied by showing the following.

∂PV (s, e0) :



= ∇V (s, e0),

[s, e0]T ∈ D ∩
{

[s, e0]T
∣∣ s 6= 0

}
= ∂P

(
(β + 4ε2)|s|

+(β + 4ε2)k2
3s

2

+2(β + 4ε2)k3|s|
3
2 − 4εk3se0

+e2
0)− 4εe0|s|

1
2 sign(s)

)
⊇ Ω,

[s, e0]T ∈ D ∩
{

[s, e0]T
∣∣ s = 0

}

(2.26)

where, ∇ is an usual gradient due to the fact that V is smooth at that place, while

Ω =
[

(β + 4ε2)[−1, 1]− 4εk3e0 − 4εe0(+∞) 2e0

]T
is obtained using the sum rule and

geometric interpretation of V around s = 0. Therefore, lower set-valued lie derivative is

computed as

LK[z]V (s, e0) :



= ∇TV z,

[s, e0]T ∈ D ∩
{

[s, e0]T
∣∣ s 6= 0

}
= min

ξ∈∂P ,r∈K[z]
{ξT r},

[s, e0]T ∈ D ∩
{

[s, e0]T
∣∣ s = 0

}
(2.27)

When s = 0, e0 6= 0, {ξT r} ⊇ (β+4ε2)e0[−1, 1]−4εk3e
2
0−4εe2

0(+∞)+e0[−(k2−ρ2), (k2−ρ2)].

Apparently, min
ξ∈∂P ,r∈K[z]

{ξT r} = −∞ < 0. When s = 0, e0 = 0, since−4ε02(+∞) is an element
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of {ξT r}, min ξT r will be non-positive. When s 6= 0, as shown in [82], with ζ̇ = φ′1Aζ,

A =

 −(k − ρ1) 1

−(k2 − ρ2) 0

, φ′1 = ∂φ1

∂s
= 1

2|s|
1
2

+ k3, ∇TV z = d
dt

(V (s(t), e0(t))) = −φ′1ζT (ATP +

PA)ζ ≤ −2ε

(
1

2|s|
1
2

+ k3

)
ζT ζ < 0, if control gains are selected according to Theorem 2.

(iii) Finite time convergence. It was shown in [65] that V (s(t), e0(t)) is absolutely

continuous. Therefore, with the results obtained in (ii) discussing the monotonicity behavior

of V , Theorem 2 in [67] can be applied to ensure the finite time convergence. Estimation of

the convergence time is given by [82].

To sum up, a second order VGSTSMC is designed to control system (2.17). Equivalently,

for ∀i = 1...N − 1, output yi can be stabilized, robust to input disturbance, with proved

exponential stability, allowing arbitrary switching. V (s, e0) given by (2.25) can be regarded

as a common Lyapunov function of the switched system (2.9), so that the stability result is

consistent with switching system theory [55].

2.3.3 Optimization Process

αik in the Bezier polynomials in (2.13) should be defined in such a way that the walking

be with minimum effort. A combination of GAPSO and SQP method is used. The GAPSO

finds the global optimal convex region that satisfies the constraints and the SQP method

finds the absolute optimal solution in that region, which is found by GAPSO. The cost

function is defined as the follows

JEff =
1

2ph2(q−0 )

Ts∫
0

m∑
i=1

(ui(t))
2dt, (2.28)

where ui(t) is the control input, m is the number of control inputs, ph2 is the step length and

Ts is the step duration time. The block diagram of the optimization process is depicted in

Fig. 2. In Fig. 2, JCon is the constraint cost, used in order that the system can satisfy its

constraints.
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2.4 Simulation Results

The walking simulation was run for 90 seconds for N = 3. The results are shown in Fig.

3- 5, which show a robust, optimal, and stable walking despite switching between FES and

the motor as the muscle fatigues or recovers.

The motor control inputs and FES control inputs are displayed in Fig. 3 for first 20

seconds of the simulation run. The fatigue behavior which is the main criteria for switching

is shown in Fig. (4). Fig. (5) shows the link angles and link angular velocities. In Fig. (5)

the abrupt change in angular velocities is due to the impact with walking surface at each step.

As it is clear from this figure, the states are renominated after the double support phase.

For checking the stability of closed-loop system, controlled by (2.19), the function λ, which

maps the system variables to the next step variables, is computed for v−H , in the boundary of

[0.5, 1.5]. v−H is the hip horizontal velocity just before impact. The function λ is displayed in

Fig. 6. This graph establishes the existence and the limit of the stability for walking motion.

From Fig. 6, it can be concluded that λ is undefined for v−H less than 0.9180 m/s (In fact,

with speeds less than 0.9180 m/s the resulting kinetic energy is less than required energy for

making a step). It is also undefined for the speeds more than 1.36 m/s since for the outputs,

the walking movement is too fast to converge in a single stride. A fixed point appears at

v−H = 1.037m/s , and corresponds to the walking cycle that system is convergent to that.

Fig. 7 represents the limit cycle over several steps with the simulating whenv−H = 1.1m/s.

The resulted trajectory is convergent to a limit cycle as shown in Fig. 7which according

to the Poincare map also supporting the stability in both the swing phase and the impact

phase. The “flat” portion of the curve in the figure is an instantaneous transition due to the

swing leg ground impact, where the star is the initial point of the trajectory.

2.4.1 Conclusion

A two-step optimization method and control design is presented in this chapter in

order to design an optimal gait for a hybrid exoskeleton. The exoskeleton controlled based

on the zero dynamic concept by using feedback linearization controller cascaded with a
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switching second order sliding mode controller. By comparing the obtained results and the

results of previous papers, it was observed that not only because of no need for trial and

error in optimization phase, the implementation of this method has advantages, but also

the recommended response with this method requires less control effort. The exoskeleton

which uses this solution, enables people with paraplegia to use that for a longer time.

For determining sufficient conditions for asymptotic tracking of the switched system the

Lyapunov stability and the Poincare sections methods were used. Further, the obtained

results from the hybrid zero dynamic control and the control allocation, based on the

fatigue percentage, show that the exoskeleton is capable of walking more than it is possible

with other exoskeleton. Finally, results showed that due to the use of virtual constraints,

the exoskeleton is much more robust than other exoskeletons which traditionally use time

dependent trajectory for guidance.
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Figure 1: Schematic of the system
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Figure 2: optimization process block diagram

Figure 3: FES and Motor control inputs versus time
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Figure 4: Muscle fatigue behavior versus time

Figure 5: Angle and angular velocities of the linkages versus time
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Figure 6: Identity function and function λ for various v−H

Figure 7: 3-D diagram, showing attractive limit cycle of the system
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3.0 A Switching Iterative Learning Control for following Virtual Constraints

3.1 Introduction

This chapter extends the switching control design in the previous chapter, by adding an

iteratively learning procedure. The lower-limb joints movement is self-generated via a time-

invariant manifold, which is based on virtual constraints concept [87, 34, 33]. Therefore, a

unified (virtual constraint + switching + iterative leaning) optimal, and robust controller is

designed to achieve walking with the hybrid exoskeleton.

In the previous chapter, we used feedback linearization method for controlling the system,

which has a considerable downside due to the requirement of exact model knowledge (EMK).

Therefore, in this chapter, an iterative learning term is used to estimate system dynamics.

The stability proof of the controller is provided using Lyapunov-like method. A more

generalized switched cases family are considered in the design that do switching based on

the normalized muscle fatigue variable. By utilizing the combination of sequential quadratic

programming (SQP) method and genetic-particle swarm optimization algorithm (GAPSO),

the virtual constraints are obtained.

GAPSO is used for achieving an acceptable semi-optimal manifold for system virtual

constraints. Then, the results are utilized as a starting point for the SQP in order to find an

optimal solution without needing to a high sampling rate and evolution cycles for GAPSO.

Therefore, with this procedure, the optimal solution that satisfies all the constraints

can be obtained, and meanwhile, the virtual constraints can be re-planned in semi-real-

time, which lets the system to redesign the virtual constraints after few steps if required.

Additionally, the solution can get very close to the global optimal solution.

Achieving global optimal solution can have a hug power consumption benefit. This

benefit lets the user to use the device for a longer time. In other words, it helps the patient

to have his recovered abilities for a longer time. Having recovered abilities for a longer time

can improve the patient’s hope and enthusiasm for life.
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3.2 General Walking Model Equation with Impact Effects

The complete model of walking, N -DOF which includes impulse effects of ground impact,

in the state space form, can be written as,

ẋ = f(x) + g(x)T x−(t) /∈ S

x+ = 4 (x−) x−(t) ∈ S
(3.1)

where x =[q, q̇]T , q ∈ RN is defined as q = [θ1θ2 · · · θN ]. ωi and θi are the i-th linkage

angular velocity and deflection angle, respectively. S =
{

(θ, ω) ∈ χ | θi = θdi
}
, θdi is the final

value of θi in a step, which is a criterion which shows that a step is completed, f(x) is

the compact form of
[
IN×N [D(q)−1(−C(q, .q̇)q̇ −G(q) + τp)]

]T
and g(x) is the compact

form of
[

0 0 · · · 0 [D(q)−1(B(q)T )]
T
]T

, where B ∈ RN×N−1 is a control gain matrix,

C ∈ RN×N is a Centripetal-Coriolis matrix, D ∈ RN×N is an inertia matrix, G ∈ RN is a

gravity vector, T ∈ RN−1is the input torque and τp(q, q̇) ∈ RN is the passive joint moment

in the musculoskeletal dynamics. The i-th link moment is defined as

τpi = d1i(ϑi − ϑ0i) + d2iϑ̇i + d3ie
d4i

ϑi − d5ie
d6i

ϑi (3.2)

where ϑi is the joint anatomical angle which is the angle between the position of the interest

and a segment’s anatomical position, of the i-th linkage, and ϑ0iand dji are positive constants.

The double support phase is assumed as instantaneous moment that includes impulsive effect

of ground impact, the impact model of [38] is implemented under the assumption that the

stance leg end is not slipping and it is in contact with the ground surface [86]. Using the

angular momentum conservation law, the post impact state values, x+ = (q+, ω+) can be

obtained by a function 4 ∈ R2N×1 with the values of state before impact, x− = (q−, ω−).
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3.2.1 Joint Actuation

An electrical stimulation for the extensor muscles, an electrical stimulation for the flexor

muscles, and an electric motor, actuate each linkage. The joint torque, Ti (i = 1, 2, N), can

be defined as

Ti = Tagi − Tanti + Tmi (3.3)

where Tantiand Tagi are the torques produced by antagonist muscles and the electrical

stimulation of the agonist muscles and, respectively and Tmotor is the electrical motor torque.

The torque of the motor at the i-th link is given as

Tmi = kmiumi . (3.4)

In (3.4) umi ∈ R is the current amplitude to the electric motor and kmi ∈ R is the torque

constant of electric motor. The torque produced by electrical stimulation of antagonist and

agonist muscles is obtained by

Tag/ant = ψli(ϑi)ψυi(ωi)µiui. (3.5)

In (3.5), µi ∈ R is the normalized fatigue variable, ui ∈ R is the normalized muscle

stimulation, and ψli(ϑ) ∈ R+and ψνi(ϑ̇) ∈ R+are the torque-length and torque-velocity

relationships of the flexor/extensor muscles, respectively. As in [70], the equations of torque-

length and torque-velocity, for i-th link, can be defined as

ψli(ϑi) = c1ie

−(ϑi−c2i)
2

2c3i (3.6)

ψvi(ωi) = c4i

[
1 + tanh

(
c5iωi +

1

c4i

)]
. (3.7)

The parameters c1i , c3i , c4i and c5i should be positive for guaranteeing that ψli(ϑ)ψvi(ωi) > 0

and c2i > 0. The reason for constraining these parameters is that the muscles can only

produce a positive contractile force. Based on [71], the following differential equation is used

for deriving the normalized muscle fatigue, µi, in (3.5)

µ̇i =
1

tfi
(µmini − µi)uhi +

1

tri
(1− µi) (1− uhi) (3.8)
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where, µmini ∈ (0, 1] is the fatigue constant and tfi , tri ∈ R+ are time constants for fatigue

and fatigue recovery in the muscle, respectively.

3.2.2 Switched System

The system with switching can be expresses as

D(q)q̈ + C(q, q̇).q̇ +G(q) + τp

= B(q) (anιnT − (IN−1×N−1 − an)ιnT + ςnT )
(3.9)

where T = anιnT − (IN−1×N−1−an)ιnT + ςnT =, Tant = anιnT = Tag, −(IN−1×N−1−an)ιnT ,

Tm = ςnT , and ιn, ςn ∈ R+N−1×N−1 belongs to the finite set of switch family,

Ω =

{(ι1, ς1, a1), (ι2, ς2, a2), . . . , (ιNΩ , ςNΩ , aNΩ
) · · ·

· · ·
∣∣∣an = diag( an1 an2 · · · anN−1

) , · · ·

· · · ι+ ςn = IN−1×N−1, ani ∈ {0, 1}, n = 1, 2, . . . , NΩ}

(3.10)

where NΩ is the number of combinations. (ιn, ςn) are chosen based on the variable of muscle

fatigue, µ.

Remark: Note that based on the type of muscle being recruited (i.e., flexor or extensor),

ani can be either 0 or 1.

3.3 Virtual Constraint and Controller Design

3.3.1 Virtual Constraint Design

Based on [87], the output, y ∈ RN−1, can be defined as

y = h0(q)−hd(θ(q)). (3.11)

The system has one degree of underactuation for torso. Therefore, the size of y is N − 1.

In (3.11), h0(q) is a function of the independent joint angles which based on the current
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arrangement of the output is obliged to follow hd(θ(q)), which is a desired virtual constraint

function that can be expressed with the Bezier polynomials as

hd (θ(q)) =


b1 (w(q))

b2 (w(q))
...

bN−1 (w(q))

 (3.12)

where

bi(w) =
M∑
k=0

%ik
M !

k!(M − k)!
wk(1− w)M−k. (3.13)

In (3.13) M is an integer that shows the number of Bezier polynomial terms, %ik is the

optimization parameter, and w is obtained according to the following equation.

w(q) =
θ(q)− θ+

θ− − θ+
. (3.14)

In (3.14), θ−and θ+are minimum and maximum value of the θ(q) respectively. θ(q) is a

function of joints angles and is defined as θ(q) = ζ1θ1 + ζ2θ2 + ... + ζnθN . ζi ∈ R are chosen

such that θ(q) is increasing monotonically.

3.3.2 Controller Design

The the controller goal is to make the output zero or in other words, force h0(q) to follow

hd(q). Therefore, the output should be expressed as follow (3.15).

y = h(q) (3.15)

and thus
d2y

dt2
= L2

fh(q, q̇) + LgLfh(q)T (3.16)

where LgLfh is the decoupling matrix. The invertibility of this matrix at a point guarantees

the zero dynamics uniqueness and existence in the neighborhood of that point [39]. For each
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output yi, (i = 1...N − 1), if it is considered that ȳ1,i = yi and ȳ2,i = ẏi, (3.16) can be

rewritten as

˙̄y1,i = ȳ2,i

˙̄y2,i = σTi vf,i + vf2,i + vg,iTi + vd,i (3.17)

where σTi vf,i + vf2,i and vg,i are the i th row from L2
f̂
h(q, q̇) and LĝLf̂h(q) respectively, where

f̂ and ĝ are the dynamics nominal models in (3.1), σTi vf,i is linearly parameterizable terms

part of the system, vf2,i is not linearly parameterizable terms and σTi is unknown time variant

function which is learned by iterative learning method and vd,i is the system and input

disturbance term due to model uncertainty. For the system stabilization in (3.17), based on

the virtual input, Ti, a controller is designed, so that the pair of allocation coefficient (ιn,ςn)

can be switched arbitrarily without affecting the stability property of the system. In the

next part, an iterative learning continuous integral sliding mode (ILCISM) control technique

is implemented and the robust stability is proved.

For i = 1...N − 1, let the sliding surface si∈R be defined as si = λ1e (t) + λ2ė (t), where

e = (ȳi,d− ȳi), λi ∈ R is a constant number, ȳi,d and ȳi are the desired and the system output

respectively such that the system in (3.17) would equivalently become

ṡk,i =
2∑
j=1

λj ȳj,d − λ1ȳ1,i − σTk,ivf,i − vg,iTi − vf2,i − vd,i. (3.18)

Using the subsequent stability analysis and ILCISM [82],

Tk,i = v−1
g,i

(
2∑
j=1

λj ȳj,d − λ1ȳ1,i − σ̂Tk,ivf,i − vk,i − vf2,i

+α1,i |sk,i|
2
3 sgn(sk,i) + 4

3
α2,isgn(sk,i) + α3,isk,i

) (3.19)

where i = 1...N−1, k is the number of iterations, and α1,i, α1,i and α3,i are positive constants.

σ̂k,i is the recursive part of the control. It is used for learning the unknown term σk,i, and

based on the next section stability analysis, it can be derived using the following update law,

σ̂k,i = σ̂k−1,i − qξ
(

4η

3
|sk,i|

1
3 sgn (sk,i) + γsk,i

)
(3.20)
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where q, η and γ are constants belonged to R+. The variable vk,i in (3.12) is an integral

term that is defined as below,

v̇k,i = −β1sk,i − β2 |sk,i|
1
3 sgn (sk,i) (3.21)

where both β1 and β2 are positive constants. By using the ILC law (3.19), the sliding surface

dynamic equation can be rewritten as follow,

ṡk,i = −α3,isk,i + ΨT
k,ivf,i + vk,i − vd,k,i

−α1,i |sk,i|
2
3 sgn(sk,i)− 4

3
α2,isgn(sk,i)

(3.22)

where Ψk,i = σ̂k,i − σk,i.

In order to show the stability of the hybrid system that includes the ground impact

phase, the system Poincare map is shown in Fig. 8. As, it can bee seen from the figure the

gait cycle converges to the limit cycle which was designed by the optimization method in the

previous step. According to the figure, the error of the system is reducing after each single

ground impact in the compare of previous ground impact. For proving the stability of the

learning controller, the following energy function is defined.

Vk,i = V
(1)
k,i + V

(2)
k,i + V

(3)
k,i + V

(4)
k,i (3.23)

where V (1)
k,i =

vk,ivk,i
2

, V
(2)
k,i = η |sk,i|

4
3 , V

(3)
k,i = γ

sk,isk,i
2

, and V (4)
k,i = 1

2q

t∫
t0,k

ΨT
k,i (τ) Ψk,i (τ) dτ. t0,k

is the start time of k-th iteration. The convergence of the tracking error will be evaluated

based on the difference between energy function between two iterations in a row according

to the follow,

∆V
(1)
k,i = V

(1)
k,i − V

(1)
k−1,i (3.24)

Therefore, using (3.16),

∆V
(1)
k,i = −vk−1,ivk−1,i

2
− β1

t∫
t0,k

vk,isk,idτ

−β2

t∫
t0,k

vk,i |sk,i|
1
3 sgn (sk,i) dτ + C1.

(3.25)
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Figure 8: 3-D diagram, showing attractive limit cycle of the system
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In a similar way, the difference of k-th and (k-1)-th iteration of the second energy function

is obtained,

∆V
(2)
k,i = η |sk,i|

4
3 − η |sk−1,i|

4
3 , (3.26)

Using the derivative of |sk,i|
4
3 , the above equation can be written in the following alternative

way,

∆V
(2)
k,i =

4

3
η

t∫
t0,k

|sk,i|
1
3 sgn (sk,i) ṡk,idτ + C2 − η |sk−1,i|

4
3 . (3.27)

By substituting (3.22) into (3.27), new form of (3.27) is obtained as,

∆V
(2)
k,i = +4η

3

t∫
t0,k

|sk,i|
1
3 sgn (sk,i) vk,idτ

−4α3η
3

t∫
t0,k

|sk,i|
4
3 dτ + 4η

3

t∫
t0,k

|sk,i|
1
3 sgn (sk,i) ΨT

k,ivf,idτ

−4η
3

t∫
t0,k

|sk,i|
1
3 sgn (sk,i) vd,idτ − 4α1η

3

t∫
t0,k

|sk,i| dτ

−η |sk−1,i|
4
3 − 16

9
ηα2,i

t∫
t0,k

|sk,i|
1
3 dτ + C2

(3.28)

If we consider |vd,i| ≤ bd, wherebd is the upper bound of disturbance of the system, (3.28)

can be rewritten as

∆V
(2)
k,i ≤

−4α3η
3

t∫
t0,k

|sk,i|
4
3 dτ − 16

9
ηα2,i

t∫
t0,k

|sk,i|
1
3 dτ

+4η
3

t∫
t0,k

|sk,i|
1
3 sgn (sk,i) ΨT

k,ivf,idτ −
4α1η

3

t∫
t0,k

|sk,i| dτ

−η |sk−1,i|
4
3 + 4bdη

3

t∫
t0,k

|sk,i|
1
3 dτ

+4η
3

t∫
t0,k

|sk,i|
1
3 sgn (sk,i) vk,idτ + C2.

(3.29)

The difference of k-th and (k-1)-th iteration of the third energy function is obtained as,

∆V
(3)
k,i = γ

sk,isk,i
2
− γ sk−1,isk−1,i

2

= γ
t∫
t0,k

sk,iṡk,idτ + C3 − γ sk−1,isk−1,i

2

(3.30)
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By substituting (3.22) into (3.30) and considering the upper bound, bd for the uncertainties,

the following is achieved.

∆V
(3)
k,i = −γ sk−1,isk−1,i

2
− γα3

t∫
t0,k

sk,isk,idτ

+γ
t∫
t0,k

sk,iΨ
T
k,ivf,idτ − 4

3
α2,iγ

t∫
t0,k

|sk,i| dτ + C3

+γ
t∫
t0,k

sk,ivk,idτ + bdγ
t∫
t0,k

|sk,i| dτ − γα1

t∫
t0,k

|sk,i|
5
3 dτ.

(3.31)

Difference of the last energy function between two iteration in a row can be written as,

∆V
(4)
k,i = 1

2bq

t∫
t0,k

ΨT
k,iΨk,idτ − 1

2bq

t∫
t0,k

ΨT
k−1,iΨk−1,idτ (3.32)

where bq ∈ R+. Based on (3.20) and [15], the following equation can be derived.

1
2bq

(
ΨT
k,iΨk,i −ΨT

k−1,iΨk−1,i

)
= 1

bq
(σ̂k,i − σi)T (σ̂k,i − σ̂k−1,i)

− 1
2bq

(σ̂k,i − σ̂k−1)T (σ̂k,i − σ̂k−1,i) .

(3.33)

Based on (3.20), (3.33) can be rearranged as,

1
2bq

(
ΨT
k,iΦk,i −ΨT

k−1,iΨk−1,i

)
=

−4η
3
|sk,i|

1
3 sgn(sk,i)Ψk,ivf,i − γsk,iΨT

k,ivf,i

− 1
2bq

(σ̂k,i − σ̂k−1)T (σ̂k,i − σ̂k−1,i)

(3.34)

(3.32) can be related to the sliding mode surface as follow,

∆V
(4)
k,i = − 1

2bq

t∫
t0,k

(σ̂k,i − σ̂k−1)T (σ̂k,i − σ̂k−1,i) dτ

−γ
t∫
t0,k

(
sk,iΨ

T
k,ivf,i

)
dτ −4η

3
|sk,i|

1
3 sgn (sk,i) Ψk,ivf,idτ.

(3.35)
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For proving the convergence of both the output tracking error and sliding surface dynamics,

we now combine the difference of energy terms for two iterations as below, based on considering

β1 = γ, β2 = 4η
3
, α2,i = α1η

γ
, γ = 4α1η

3bd
and C4 = C3 + C2 + C1

∆Vk,i = ∆V 1
k + ∆V 2

k + ∆V 3
k + ∆V 4

k

≤ −vk−1vk−1

2
− η |sk−1,i|

4
3 − 4α3η

3

t∫
t0,k

|sk,i|
4
3 dτ

−α3γ
t∫
t0,k

sk,isk,idτ − 4
3
α1η

t∫
t0,k

|sk,i| dτ

−γα1

t∫
t0,k

|sk−1,i|
5
3 dτ − γ sk−1,isk−1,i

2
+ C4

(3.36)

Based on the Poincare map conclusion about ground impact error, C4 ∈ R−. Therefore, 3.36

can be simplified as,

4Vk ≤ −4α3η
3

t∫
t0,k

|sk,i|
4
3 dτ

−α3γ
t∫
t0,k

sk,isk,idτ − 4
3
α1η

t∫
t0,k

|sk,i| dτ,
(3.37)

(3.37) is negative definite whenever sk,i 6= 0 at least in one of the moments, t ∈ [t0,k, T ] .

Therefore, it can be concluded that Vk is convergent. Because Vk(t) ∈ R+, This convergence

ensures Vk converges to zero. Therefore, it ensures that the sliding surface and Ψwhich

shows the estimation error of the system dynamics converge to zero. On the other hand,

the dynamics of the sliding surface is Hurwitz. Hence, after this convergence, the output

error is exponentially convergent to zero. To sum up, a second order ILCISM is designed

to control system (3.17). In other word output yi can be stabilized for ∀i = 1...N − 1. It

is robust with asymptotic stability to the system disturbance, allowing the system switches

arbitrarily. V (s, e0) given by (3.23) can be regarded as a common switched system Lyapunov

function (3.9), hence, the stability result is consistent with the switching system theory [55].

3.3.3 Optimization Process

In the optimization process, the value of αik in the Bezier polynomials in (3.13) should

be chosen optimally in order to have a minimum effort movement. GAPSO and SQP
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combination method is used for the optimization. The global optimal convex region is

found by GAPSO that satisfies the constraints and the absolute optimal solution is found by

the SQP method in that region, which is found by GAPSO. For achieving minimum control

effort, the following cost function is defined

JEff =
1

2ph2(q−0 )

Ts∫
0

m∑
i=1

(ui(t))
2dt, (3.38)

where ui(t) is the control input, Ts is the step time, ph2 is the length of a step, and m is the

number of control inputs.

3.4 Simulation Results

The walking simulation is done for 100 seconds for N = 3. Fig. 9- 11 show the results,

where a robust, optimal, and stable walking can be seen despite switching between the motor

and FES as the muscle recovers or fatigues.

In Fig. 9, the root mean square (RMS) of the output tracking error is displayed during

iterations of learning. As it can be seen it is reducing during different iterations. It shows

that the learning term, σi is making system more robust in each iteration. The behavior of

muscles fatigue is shown in Fig. (10) which is the switching main criterion. In the figure,

S1-F and S1-S points show the stimulator 1 first and second switching respectively. S2-F and

S2-S show the stimulator 2 first and second switching respectively. The angles and angular

velocities of linkages are shown in Fig. (11). The abrupt angular velocities change, in Fig.

(11), is because of the ground stride in each step. Note that the states are renominated after

the double support phase which can be clearly seen in the figure.

3.5 Conclusion

A switching controller that combines iterative learning and sliding mode control has been

developed to coordinate FES and the powered exoskeleton. The sliding mode-based iterative
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Figure 9: Root mean square versus iterations

Figure 10: Muscle fatigue behavior versus time
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learning control is used to learn the unknown functions in system dynamics. According to the

simulated results, this technique helps the switching controller to decrease the RMS in each

iteration. The controller stability was proven for using the Lyapunov-based stability analysis.

The overall stability to account for impacts was shown numerically by using Poincare maps.

The results exhibited the excellent performance of the proposed technique by-tracking the

designed virtual constraints .
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Figure 11: Angle and angular velocities of the linkages versus time
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4.0 A Robust Neural-Network Based Iterative Learning Controller for a

Hybrid Exoskeleton

4.1 Introduction

The implementation of the controller introduced in the previous chapter, depends on the

identification of parameterizable part of the dynamics including the musculoskeletal model.

Due to day-to-day variations and inter-person variations in the musculoskeletal dynamics,

and the tedious process needed to identify the model [83, 45], it is difficult to implement

these controllers in clinics. While numerous papers in FES control exist that use high-gain

controllers [77, 79] to provide robustness to modeling uncertainties or even adapt and learn

the model using neural networks (NNs) [2, 3, 72, 78, 12], their implementation may need

extensive tuning or offline training of neural networks.

Iterative learning control methods are proposed to help address this issue through learning

unknown dynamics while improving the performance in consecutive multiple iterations or

task cycles. An ILC was developed for a solo FES system for upper limb stroke rehabilitation

in [51]. FES was applied to shoulder and elbow muscles of an able bodied participant for

showing the learning capabilities of the controller. Authors in [56] developed an iterative

learning method with input-dependent muscle fatigue model for a sole FES system, and it

was used for the rehabilitation of upper limb. In [27], in a passivity based framework, an

iterative learning control method was used to control a cycle-rider system with FES. Their

controller uses the concepts of passivity and adaptation so that it compensates for the time

varying dynamics of the system.

In another paper [26], a feed forward repetitive learning control with autonomous state-

dependent switching is developed for an uncertain cycle-rider system which yielded to lower

cadence tracking error. In our recent previous chapter control method that published in

[58], an iterative learning term was used to estimate a linearly parameterizable part of the

system dynamics. However, the control implementation does not address a way to learn the

uncertain terms that are not linearly parameterizable like musculoskeletal dynamic.
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The aim of this chapter is to design a control method that enables sitting-to-standing

function with a hybrid exoskeleton. The controller must iteratively learn a human user’s

musculoskeletal model and improve sitting-to-standing tracking performance with minimal

tuning. Addressing this problem is significant for clinical implementation, where inter-person

and inter-day variations can negatively affect control performance. The contribution of this

chapter is that a robust NN-based controller for a nonlinear hybrid exoskeleton model is

proposed that iteratively learns parametric uncertainties.

The use of NNs is motivated for its ability to compensate or estimate unknown dynamics,

including not linearly parameterizable and highly nonlinear terms by choosing a suitable

number of neurons and NN layers [52, 76, 75, 78]. A recurrent NN (RNN) was used due

to its capability to capture the system behavior dynamically [76, 74, 11]. Specifically two

NNs are used. One NN is used to compensate for not linearly parameterizable terms that

occur in the state dynamics. The other NN is used to compensate the unknown input gain

function due to the use of FES. The NN update laws are developed through a discrete

energy-based stability analysis in an iterative fashion. Specifically, the second NN update

law is designed to avoid singularity during its inverse, which is used to cancel the unknown

input gain function. The control design is proven to be uniformly stable despite arbitrary

switched FES and exoskeleton allocation.

Desired time-dependent joint trajectories may be designed independently for both legs,

and if there is a miscoordination during trajectory tracking it may cause joint misalignment,

which can be potentially unsafe for the transition and, consequently, the desired lower-limb

task may not be achieved. Using state dependent profiles allows the joints trajectories to self-

generate via a time-invariant manifold known as virtual constraints. The concept presented

in details in [87, 33, 34].

Therefore, in this study, instead of tracking the time-based trajectories for different

joints, the proposed ILC tracks time-invariant desired trajectories computed through the

virtual constraints. Walking simulation and extensive experiments are performed with a

hybrid exoskeleton for a sitting to standing scenario. The results were obtained from human

participants including a person with complete SCI. The results shows the ability of the

controller for tracking the virtual constraints and keeping the system stable.
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4.2 General hybrid exoskeleton Lower Limb Model

A general N degrees of freedom (N -DOF) of a hybrid exoskeleton can be written as

M(q)q̈ + C(q, q̇)q̇ +G(q) + τp = τinput (4.1)

where q ∈ RN is defined as q = [θ1, θ2, ..., θN ]. θi (i = 1, 2, ..., N) is the angular position

of the ith linkage. C(q̇, q) ∈ RN×N is the Centripetal-Coriolis matrix, M(q) ∈ RN×N is the

inertia matrix, G(q) ∈ RN is the gravitational vector, and

τinput = BE(q, q̇)uE +BMuM

where BE(q, q̇) ∈ RN×N is the FES input matrix and BM ∈ RN×N is the powered motor input

matrix, uE ∈ RN is the normalized muscle stimulation, uM ∈ RN is the current amplitude of

motor. In (4.1), τp ∈ RN is the passive moment of the targeted joint, which can be defined

as

τp , d1(ϑ− ϑ0) + d2ϑ̇+ d3e
d4ϑ − d5e

d6ϑ (4.2)

where ϑ is the anatomical joint angle that is the angle between the position of interest and

a segment’s anatomical position of the linkage, and ϑ0 and dj (j = 1, 2, ..., 6) are positive

constants. The dynamics in (4.1) can be rewritten in the state space form as

ẋ = f(x) + gE(x)uE + gM(x)uM (4.3)

where x =[q, q̇]T , f(x) is the compact form of
[
IN×N q̇

T

, [M−1(τp −G− Cq̇)]
]T

, gE(x) and

gM(x) are
[
/ON×N , [M(q)−1(BE(q, q̇))]

T
]T

and
[
/ON×N , [M(q)−1(BM)]

T
]
T , respectively.
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4.2.1 Controller

A time-invariant sitting to standing movement profile called virtual constraint is designed

offline through an optimization process. The desired profile is used later during the controller

implementation. In the optimization process a hybrid exoskeleton movement is simulated

in a closed control loop with various candidate virtual constraints [87]. The details of the

optimization process are provided hereafter.

Firstly, the output error term e ∈ RN is defined as

e = h(q) = h0(q)−hd(θ(q)) (4.4)

where h0(q) ∈ RN is an independent joint angle function that is obliged to follow hd(θ(q)) ∈

RN [87]. hd(θ(q)) is a desired virtual constraint function and can be represented with the

Bezier polynomials as

hd(θ(q)) =


b1(w(q))

b2(w(q))
...

bN(w(q))

 (4.5)

where

b(w) =
M∑
k=0

%k
M !

k!(M − k)!
wk(1− w)M−k. (4.6)

In (4.6)M is an integer, showing the number of Bezier polynomial terms, %k is the parameter

that is going to be optimized, and w is calculated according to the following equation

w(q) =
θ(q)− θ+

θ− − θ+
(4.7)

where θ+ and θ− are maximum value and minimum value of the θ(q), respectively, and

θ(q) = ζ1θ1 + ζ2θ2 + ...+ ζnθN . ζi ∈ R is chosen such that θ(q) is monotonically increasing.

To obtain an optimal movement, the value of %k in the Bezier polynomials in (4.6) should

be chosen optimally by an optimization process. The following cost function is defined based

on the minimum control effort criteria

min
%k

J = 1
2Ls

∫ tf
0

[
τTinputτinput + 1

2
h
(
qdf
)T
Ph
(
qdf
)]
dt

s.t. M(q)q̈ + C(q, q̇)q̇ +G(q) + τp = τinput

(4.8)
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where tf is the standing duration time, Ls is a normalizing constant, P is a weight matrix,

qdf is the desired final condition, and qtf is the final standing angular positions.

4.2.2 Controller Design

In this subsection a robust NN based iterative learning switching control (RNNILSC)

is designed. The control objective is to force h0(q) to follow hd(θ(q)) or in other words to

drive the error e in (4.4) to zero in multiple iterations. After taking the second order time

derivative of (4.4), the following differential equation can be obtained

d2e

dt2
= L2

fh(θ) + LgELfh(θ)uE + LgMLfh(θ)uM (4.9)

where L2
fh(θ) is the second order Lie derivative of h(θ), and LgMLfh and LgELfh are the

decoupling matrices.

To facilitate the design of an ILC, ē(i)
1 ∈ R, ē(i)

2 ∈ R, u(i)
1 ∈ R, and u(i)

2 ∈ R are defined

as ē(i)
1 = ei, ē

(i)
2 = ėi, u

(i)
1 = uEi , and u

(i)
2 = uMi

, where subscript of i shows ith element of a

vector. Using (4.9), these errors due to the ILC in kth iteration can be rewritten as

˙̄e
(i)
1,k = ē

(i)
2,k

˙̄e
(i)
2,k = σT

(i)

v
(i)
f1,k

+ v
(i)
f2,k

+ Ω
(i)
k u

(i)
1,k (4.10)

+v(i)
g u

(i)
2,k + v

(i)
d,k

where the subscription of k denotes that a variable is at kth iteration, v(i)
f2,k

+σT
(i)
v

(i)
f1,k

is equal

to ith element of L2
fh(θ), v(i)

g and Ω
(i)
k are equal to ith element of LgMLfh(θ) and LgELfh(θ),

respectively, for ith input. f , gM , and gE were implied in (4.3). σT
(i)
v

(i)
f1,k

is the linearly

parameterizable part of L2
fh(θ) and v(i)

f2,k
is the not linearly parameterizable part of L2

fh(θ).

In (4.10), v(i)
d,k is the system disturbance term due to modeling uncertainty and is bounded

by ∣∣∣v(i)
d,k

∣∣∣ ≤ v̄d ∈ R+. (4.11)

Without loss of generality, the superscript i (i = 1, 2, ..., N) will be dropped hereafter in all

the corresponding notations. σT is an unknown state independent function which is going
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to be learned by an iterative learning method, vf2,k
and Ωk are going to be learned by NNs.

vf2,k
and Ωk are represented by two NNs as

vf2,k
= W TΘk(VkXk) + ε1,k (Xk) (4.12)

Ωk = RTφk(Xk) + ε2,k (Xk) (4.13)

where Xk ∈ R2N+1 is the augmented input vector for two NNs and is defined as Xk =[
1 xk

]T
. The two NNs ideal weight matrices are W ∈ RN2+1 and R ∈ RNΩ . The input

layer is made of 2N + 1 neurons, N2 and NΩ are the number of neurons in the hidden layer

of the NNs, and N is the number of the output layer neurons. The NN activation function

in (4.12) that maps the input layer to the hidden layer is denoted as Θk : R2N+1 → RN2+1.

The activation function in (4.13) that maps the input layer to the output layer is denoted

as φk : R2N+1 → RNΩ . The unknown functional reconstruction errors for the two NNs are

denoted as ε1,k ∈ R and ε2,k ∈ R and are bounded which can be written as |ε1,k| ≤ ε̄1 and

|ε2,k| ≤ ε̄2, where ε̄1, ε̄2 ∈ R+. The estimates of the ideal NNs that approximate vf2,k
and

Ωk are learned in an iterative fashion. The kth iteration of their estimates, denoted as v̂f2,k

and Ω̂k, are represented as

v̂f2,k
= Ŵ T

k Θk(V̂kXk) (4.14)

Ω̂k = R̂T
k φk (Xk) (4.15)

where Ŵk ∈ RN2+1 and R̂k ∈ RNΩ are the estimates of ideal weights in kth iteration.

A closed loop feedback component, Uk that is going to be used subsequently is defined

as

Uk = −F1,k − v̂f2,k
− σ̂kvf1,k

(4.16)

where σ̂k is an estimate for σ and F1,k is described as

F1,k = 1
λ2

(
λ1ē2,k + λ2

(
α3sk + 4

3
α2sgn(sk)

)
− λ2vk

)
(4.17)
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where α2 ∈ R+, sk ∈ R is evaluated as sk = λ1e1,k (t) +λ2e2,k (t), where λi ∈ R+ is a positive

constant, and vk ∈ R is an integral term that is defined as

v̇k = −β1sk − β2vk, (4.18)

where β1 and β2 are positive constants.

Consider FES input u1 at the kth iteration

u1,k = −ιnψ−1
k Uk (4.19)

where ιn is FES allocation coefficient and ψk is defined as

ψk = Ω̂k +
(
%
(

Ω̂k

)
+ β

)
(4.20)

ψk is designed such that to avoid a singularity in ψ−1
k when Ω̂k is equal to zero. The spectral

radius of Ω̂k, %k
(

Ω̂k

)
∈ R+, and a control gain, β ∈ R+ are added to ψk [14, 6].

u2,k is electric motors feedback component and is defined as

u2,k = −ςnv−1
g Uk (4.21)

Where ςn is allocation coefficient for the electric motors. The pair of allocation coefficients

(ιn, ςn) are introduced to deal with the input redundancy and can be switched arbitrarily as

long as the following conditions are satisfied

ιn + ςn = 1 (4.22)

|u1,k| ≤ 1. (4.23)

Due to the use of NN, iterative learning, and arbitrary allocation switching between

feedback components of FES and electric motor, we call the overall robust control strategy

as RNNILSC. Using (4.16), (4.17), (4.19), (4.21), (4.22), and adding and subtracting ψku1,k

to (4.10) would result in

˙̄e2,k = Es,k + Ψkvf1,k
+ Ω̃ku1,k

−α3sk − 4
3
α2sgn(sk) + vk − λ1

λ2
ē2,k + vd,k

(4.24)
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where Es,k = vf2,k
− v̂f2,k

is the not linearly parameterizable estimation error for the NN.

Besides, Ω̃k = Ωk − ψk and Ψk = σ − σ̂k. Based on (4.13) and (4.20), Ω̃k can be expressed

as

Ω̃k = R̃T
k φ (Xk) + βε,k (4.25)

where R̃k = Rk − R̂k, βε,k = ε2,k −
(
%k

(
Ω̂k

)
+ β

)
and βε,k is bounded by

|βε,k| ≤ β̄ε ∈ R+. (4.26)

Therefore, (4.24) can be written as

˙̄e2,k = Es,k + Ψkvf1,k
+ (R̃T

k φ (Xk) + βε,k)u1,k

−α3sk − 4
3
α2sgn(sk) + vk − λ1

λ2
ē2,k + vd,k.

(4.27)

By taking the time derivative of sk, the ṡk dynamics is given as

ṡk = λ2

(
−α3sk − 4

3
α2sgn(sk) + vk + vd,k

+Ψkvf1,k
+ βεu1,k + R̃T

k φk (Xk)u1,k + Es,k

)
.

(4.28)

Based on the subsequent stability analysis, weight matrices for NNs are calculated using

the following method

Ŵkj = Ŵ(k−1)j − κ1
∂Eb

∂Ŵ(k−1)j

(4.29)

V̂kj = V̂(k−1)j − κ2
∂Eb

∂V̂(k−1)j

(4.30)

where κ1 ∈ R+ and κ2 ∈ R+ are user defined positive constants and Eb is defined as

Eb = 1
2

(
v̂f2,k
− v̂f2,k−1

+ ξγsk
)2 (4.31)

v̂f2,k
= 0, when k = −1 (4.32)

where ξ ∈ R+ and γ ∈ R+ are positive constants. Additionally, based on subsequent stability

analysis, the following update laws are designed for the rest of estimation functions.

˙̂
Rk = φk (Xk)u1,ksk (4.33)
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σ̂k = σ̂k−1 − bqvf1,k
(γsk) (4.34)

σ̂k = 0, when k = −1 (4.35)

where bq ∈ R+ is a positive constant.

4.2.3 Stability Analysis and Finite Time Convergence

Let Vk(x, t) : RN ×R→ R be an energy function where t ∈ [t0, t] , t0 is the start time of

iterations and t is the elapsed time after the start of an iteration. Vk is defined as

Vk = V
(1)
k + V

(2)
k + V

(3)
k + V

(4)
k + V

(5)
k (4.36)

where V (1)
k =

v2
k

2
, V

(2)
k = γ

λ2

s2k
2
, V

(3)
k = 1

2bq

t∫
t0

Ψ2
kdτ , V

(4)
k = 1

2ξ

t∫
t0

Es,k
2dτ, and V

(5)
k =

1
2
tr
{
R̃T
k R̃k

}
. γ, bq, ξ ∈ R+ are constants where bq and ξ are chosen by the user and γ is

subsequently defined. The difference between the first energy function in two successive

iterations is computed as

∆V
(1)
k = V

(1)
k − V (1)

k−1. (4.37)

Therefore, the following expression is obtained as

∆V
(1)
k =

v2
k

2
− v2

k−1

2
=

t∫
t0

vkv̇kdτ +
v2
k(t0)

2
− v2

k−1

2

. (4.38)

By substituting (4.18) in equation (4.38), the following equation is derived as

∆V
(1)
k = −β1

t∫
t0

vkskdτ − β2

t∫
t0

v2
kdτ

+
v2
k(t0)

2
− v2

k−1

2

. (4.39)

The difference of successive iterations for the second energy function is obtained as

∆V
(2)
k = γ

λ2

s2k
2
− γ

λ2

s2k−1

2

= γ
λ2

t∫
t0

skṡkdτ − γ
λ2

s2k−1

2
+ γ

λ2

s2k(t0)

2

. (4.40)
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By substituting (4.28) into (4.40), we have

∆V
(2)
k = − γ

λ2

s2k−1

2
− γα3

t∫
t0

s2
kdτ + γ

λ2

s2k(t0)

2

+γ
t∫
t0

skΨkvf1,k
dτ − 4

3
α2γ

t∫
t0

sksgn(sk)dτ

+γ
t∫
t0

skvd,kdτ + γ
t∫
t0

skR̃
T
k φk (Xk)u1,kdτ

+γ
t∫
t0

skEs,kdτ + γ
t∫
t0

skβε,ku1,kdτ + γ
t∫
t0

skvkdτ

. (4.41)

Using the upper bound of vd and βε in (4.11) and (4.26) respectively and 4.23, the following

inequality is achieved

∆V
(2)
k ≤ − γ

λ2

s2k−1

2
− γα3

t∫
t0

s2
kdτ + γ

λ2

s2k(t0)

2

+v̄dγ
t∫
t0

|sk| dτ + γ
t∫
t0

skvkdτ + γβ̄ε
t∫
t0

|sk| dτ

+γ
t∫
t0

skΨkvf1,k
dτ + 4

3
α2γ

t∫
t0

|sk| dτ

+γ
t∫
t0

skEs,kdτ + γ
t∫
t0

skR̃
T
k φk (Xk)u1,kdτ

. (4.42)

The difference of the third energy function between two iterations in a row can be written

as

∆V
(3)
k = 1

2bq

t∫
t0

Ψ2
kdτ − 1

2bq

t∫
t0

Ψ2
k−1dτ . (4.43)

Based on (4.34) and [16], the following equation can be derived

1
2bq

(
Ψ2
k −Ψ2

k−1

)
= 1

2bq
(σ̂k − σ̂k−1) (σ̂k + σ̂k−1 − 2σ)

= 1
bq

(σ̂k − σ) (σ̂k − σ̂k−1)

− 1
2bq

(σ̂k − σ̂k−1) (σ̂k − σ̂k−1)

. (4.44)

Considering (4.34), (4.44) can be rearranged as

1
2bq

(
Ψ2
k −Ψ2

k−1

)
= −γΨkskvf1,k

− 1
2bq

(σ̂k − σ̂k−1)2
. (4.45)
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Therefore, ∆V
(3)
k in (4.43) can be simplified as

∆V
(3)
k = − 1

2bq

t∫
t0

(σ̂k − σ̂k−1)2 dτ

−γ
t∫
t0

(
Ψkskvf1,k

)
dτ

. (4.46)

The difference of the fourth energy function between two iterations is

∆V
(4)
k =

1

2ξ

t∫
t0

E2
s,kdτ −

1

2ξ

t∫
t0

E2
s,k−1dτ. (4.47)

Similarly, we can rewrite ∆V
(4)
k as

1
2ξ

(
E2
s,k − E2

s,k−1

)
= − 1

2ξ

(
v̂f2,k
− v̂f2,k−1

)2

+1
ξ

(
v̂f2,k
− vf2,k

) (
v̂f2,k
− v̂f2,k−1

) . (4.48)

Based on (4.29), (4.30), and (4.31), we have

1
2ξ

(
E2
s,k − E2

s,k−1

)
= −γEs,ksk

− 1
2ξ

(
v̂f2,k
− v̂f2,k−1

)2
. (4.49)

Hence,

∆V
(4)
k = − 1

2ξ

t∫
t0

(
v̂f2,k
− v̂f2,k−1

)2
dτ

−γ
t∫
t0

(Es,ksk) dτ

. (4.50)

Considering R̃k(t0) = 0, the difference of the fifth energy function between two iterations in

a row can be written as

∆V
(5)
k = 1

2
tr
{
R̃T
k R̃k

}
− 1

2
tr
{
R̃T
k−1R̃k−1

}
(4.51)

which can also be rewritten as

∆V
(5)
k = −tr

{
t∫
t0

R̃T
k

˙̂
Rkdτ

}
− 1

2
tr
{
R̃T
k−1R̃k−1

}
. (4.52)
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By substituting (4.33) to (4.51), ∆V
(5)
k can be obtained as

∆V
(5)
k = −1

2
tr
{
R̃T
k−1R̃k−1

}
−tr

{
t∫
t0

R̃T
k (φk (Xk)u1,ksk) dτ

}
. (4.53)

For proving the convergence of both the tracking error and sk by considering the known values

of v̄d and β̄ε, we now combine the difference of energy terms for two successive iterations, and

by defining γ = β1 and α2 = −3(v̄d+β̄ε)
4

, then it results to the following ultimate inequality

∆Vk = ∆V
(1)
k + ∆V

(2)
k + ∆V

(3)
k + ∆V

(4)
k + ∆V

(5)
k

≤ −v2
k−1

2
− γ

λ2

s2k−1

2
− γα3

t∫
t0

s2
kdτ − β2

t∫
t0

v2
kdτ

− 1
2bq

t∫
t0

(σ̂k − σ̂k−1)2 dτ − 1
2ξ

t∫
t0

(
v̂f2,k
− v̂f2,k−1

)2
dτ

+
v2
k(t0)

2
+ γ

λ2

s2k(t0)

2
− 1

2
tr
{
R̃T
k−1R̃k−1

}
. (4.54)

(4.54) can be more simplified as below by choosing the gains, β2 > 2 and α3 >
2
λ2
.

∆Vk ≤ −α4

t∫
t0

s2
kdτ − α5

t∫
t0

v2
kdτ

−1
2
tr
{
R̃T
k−1R̃k−1

}
− v2

k−1

2
− γ

λ2

s2k−1

2

− 1
2bq

t∫
t0

(σ̂k − σ̂k−1)2 dτ − 1
2ξ

t∫
t0

(
v̂f2,k
− v̂f2,k−1

)2
dτ

(4.55)

where α4 ∈ R+ and α5 ∈ R+. ∆Vk is negative semi definite which results to

Vk ≤ Vk−1, k = 1, 2, 3, .... (4.56)

It results to the fact that Vk is a non increasing sequence. In order to prove boundedness of

Vk, using (4.18), (4.28) and (4.33) time derivative of V0 is derived as below

V̇0 = −γα3s
2
0 − β2v

2
0 + 1

bq
Ψ2

0

+γs0Ψ0vf1,0 + γs0Es,0 + 1
ξ
E2
s,0

. (4.57)

Based on (4.32) and (4.35), V̇0 can be further simplified as

V̇0 = −γα3s
2
k − β2v

2
k + 1

bq
σ2 + 1

ξ
v2
f2
. (4.58)
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Therefore, V̇0 is bounded in the interval of [t0, t], V0 is also bounded in [t0, t] because V0(t) =

V0(t0)+
t∫
t0

V̇0(s)ds. It follows from (4.55) that Vk is bounded. Accordingly, vk, R̃k, σ̂k,

Ψk, Es,k, and sk are also bounded. Furthermore, based on the (4.55), it can be written that

t∫
t0

s2
kdτ ≤

1

α4

(Vk−1 − Vk). (4.59)

Because Vk is monotonically decreasing but it is lower bounded by zero which leads to the

following conclusion

lim
k→∞

t∫
t0

s2
kdτ = 0. (4.60)

Based on the (4.28) and considering (4.23) and the boundedness of vk, R̃k, σ̂k, Ψk, Es,k,

and sk, ṡk is also bounded. Accordingly, by Barbalat-like lemma presented in [88, 84],

limk→∞sk = 0 uniformly on [t0, t].

To sum up, a second order RNNILSC is designed to control the system in (4.3). It

is robust to the system disturbance, allowing the system switches the allocation between

motors and FES arbitrarily. Because Vk(x, t) in (4.36) can be regarded as a common energy

function in (4.27), it will be stable to arbitrary allocation switching [54].

4.3 Experimental Procedure and Results

The experimental study was approved by the Institutional Review Board (IRB) at

the University of Pittsburgh (IRB approval number: PRO 14040419). All participants

signed informed consent form to participant. Three participants without any neuromuscular

disorders were involved in this study. Participant 1: Age 25, male. Participant 2: Age 25,

male. Participant 3: Age 23, male. Additionally, one participant with complete SCI was

also involved in this study. Participant 4: Age 51, male injury: T11.

As shown in Fig. 12, the experimental setup and control algorithm are illustrated. The

testbed consists of two DC brushless servo motors (Harmonic Drive Company, USA) for both

hips, two DC motors (Maxon Motor Inc., Switzerland) for both knees, and two sets of FES
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Figure 12: The hybrid exoskeleton testbed used for the experiments and the diagram of the

control algorithm.

electrode pads for the quadriceps muscles. An incremental optical encoder with 4000 pulses

per revolution (PPR) resolution were used to measure the hip joints angles and an inductive

encoder with 4096 PPR resolution were used to measure the knee joints angles. A biphasic

stimulation train was applied to the surface electrodes via a RehaStim 8-channel stimulator

(Hasomed Inc., DE), where the pulse trains had a frequency of 35 Hz and the stimulation

pulse width was chosen as 400 µs. The controller was programmed in Simulink (MathWorks

Inc., USA) and implemented using a real-time target machine (Speedgoat Inc., Liebefeld

Switzerland) with frequency of 350 Hz, which modulated the stimulation current amplitude

and the current amplitudes of the exoskeleton motors during the experiments. Through the

entire experimental procedure, the participants were instructed to be relaxed and avoid any

voluntary interference with the exoskeleton. Also, the participants were not allowed to view

the performance or the desired virtual constraints in real time. Four sets of experiments on

each participant were conducted to evaluate the newly proposed ILC. Each experimental set

included 4 iterations. Each iteration of the siting to standing procedure was run for a time
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Figure 13: Snapshots of the standing up experiment performed on participant 1.

duration 20 s. This time duration is designed as per participants convenience to use the

exoskeleton. The desired movement profile allows a participant to achieve siting to standing

in about 10 seconds. The rest of the 20 seconds are allocated to check control performance

in the standing mode. Between two successive iterations, a one minute resting time period

was given for the participants. The resting time period was provided to allow the muscles to

recover in case of FES-induced fatigue. Fig. 13 demonstrates the snapshots of the sitting-to-

standing movement on participant 1, wearing the hybrid exoskeleton. In initial experiments,

allocation coefficients of ι = 0.2 and ς = 0.8 were chosen. In Fig. 14, knee angle profiles„

knee angle tracking errors, and knee control inputs are shown for Participant 1 for the 1st and

4th iterations. In Fig. 15, hip angle profiles, hip angle tracking errors, and hip control inputs

are shown for participant 1 for the 1st and 4th iteration. . According to these two figures,

in the fourth iteration, the system can track the desired movement profile more accurately.

Despite a high model uncertainty, i.e., due to differences between the dynamic model and the

real system, and having different participants in the device, the controller could still limit

the error and provide a smooth siting to standing movement for the participant after only 4

iterations. The resulting knee and hip control inputs of the motors and FES of the hybrid

exoskeleton are shown in Fig. 14 and Fig. 15 respectively as well. The results of control

inputs show that the ILC in the fourth iteration increases the torque to reduce the errors

that occur in the first iteration. The control framework was also tested in a participant with

SCI. The results in Fig. 16 show the proposed framework could work successfully for the
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Figure 14: Knee joints angular profiles, tracking errors and the control inputs of Participant

1 for the 1st iteration and the 4th iteration, where ι = 0.2 and ς = 0.8.

Figure 15: Hip joints angular profiles, tracking errors and the control inputs of Participant

1 for the 1st iteration and the 4th iteration, where ι = 0.2 and ς = 0.8.
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Figure 16: The snapshot sequences of participant 4 with complete SCI for a siting to

standing scenario.

participant with SCI. Fig. 16 shows the snapshots that illustrate the movement produced

during the experiments for Participant 4 (the subject with complete SCI). The results in Fig.

17 and 18 illustrate knee joint performance and control inputs and hip joint performance

and control inputs, respectively in the 1st and 4th iterations for the participant 4. As it can

be seen in the figures, the controller could successfully force the system to track the desired

movement profile. The controller used a higher gain to let Participant 4 experience an easier

siting to standing movement. A different movement profile was used for Participant 4 so that

it can be matched with his hip joint limitations. These joints angular limitations are due to

his spinal cord injury and the long term use of wheelchair. Fig. 19 provides estimation from

the linearly parameterizable part, σ̂vf1 , and estimation of not linearly parameterizable part,

v̂f2 , of the system model using neural networks for Participant 4. The root mean square error

(RMSE) between the desired angular position and actual trajectory on each joint is listed in

Tables 1 and 2 for all four participants, as well as the tracking performance improvement by

comparing the 1st iteration and 4th iteration with the allocation ratios ι = 0.1 and ς = 0.9.

Means of the RMSE improvement on each joint across the four participants are plotted in

Fig. 20. According to this figure, on average, after four iterations,RMSE of the knee joint and

hip joint are improved by 51.18% and 57.31%, respectively. For determining the robustness

of the developed control method to the switching allocation between FES and exoskeleton,
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Figure 17: Knee joints angular profiles, tracking errors, and the control inputs of Participant

4 in the 1st and 4th iteration

Figure 18: Hip joints angular profiles, tracking errors and the control inputs of Participant

4 in the 1st and 4th iteration
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Figure 19: The linearly parameterizable part estimation, σ̂vf1 and the not linearly

parameterizable part estimation, v̂f2 of the system dynamic for Participant 4 with complete

SCI

Table 1: RMSE of joints angular position tracking results on Participants 1 and 2 in different

iterations where ι = 0.1 and ς = 0.9 (RK: right knee, LK: left knee, RH: right hip, LH: left

hip)

RMSE [deg]
Participant 1 Participant 2

RK LK RH LH RK LK RH LH

1st iteration 10.09 14.35 13.01 14.87 6.72 8.81 11.93 11.43

2nd iteration 7.90 9.57 9.14 10.36 4.87 5.59 7.74 6.35

3rd iteration 7.29 8.99 8.85 9.00 3.91 4.75 5.99 5.43

4th iteration 4.71 5.88 5.24 5.59 3.78 4.70 4.74 4.37

Improvement [%] 53.32 59.02 59.72 62.41 43.75 46.65 60.27 61.77
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Table 2: RMSE of joints angular position tracking results on Participants 3 and 4 in different

iterations where ι = 0.1 and ς = 0.9 (RK: right knee, LK: left knee, RH: right hip, LH: left

hip)

RMSE [deg]
Participant 3 Participant 4

RK LK RH LH RK LK RH LH

1st iteration 9.88 12.31 15.82 15.01 11.84 3.43 1.70 3.13

2nd iteration 7.61 8.39 10.98 9.72 9.07 3.16 1.49 2.16

3rd iteration 6.64 7.21 8.19 7.56 5.01 2.21 1.46 1.22

4th iteration 5.90 6.59 7.43 7.39 4.33 1.91 1.20 1.13

Improvement [%] 40.28 46.47 53.03 50.77 63.43 44.31 41.67 63.90

Figure 20: Means of RMSE improvement percentage on both knee and hip joints in different

iterations across all participants, where ι = 0.1 and ς = 0.9.
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the allocation ratio was switched twice during the experiments. We changed the exoskeleton

and FES ratio from ς = 0.7, ι = 0.3 in the first set of iterations to ς = 0.8, ι = 0.2 in the

second set of iterations, and then ς = 0.9, ι = 0.1 in the final set of iterations. The results

of this switching on participant 1 can be seen in Fig. 21. In this figure, RMSE of joint

angular positions for different iterations and for the two switching scenarios are shown. It

can be observed that after the switching, the system remains stable and the RMSE remains

decreasing under the same allocation ratio. Although the errors are increased initially, but

the system starts to learn and reduces the error again.

4.4 Walking Simulation Results

The walking simulation was run for 10 steps for N = 5. The model has two shanks, two

thighs and a trunk and the simulation is done in Matlab Environment. The results are shown

in Fig. 22- 23, which show a robust, optimal, and stable walking despite ground effects. The

control inputs are displayed in Fig. 22 for first 8 steps of the simulation run. The Fig. (23)

shows the link angles. In Fig. (23) the abrupt change in angles is due to the impact with

walking surface at each step. As it is clear from this figure, the states are renominated after

the ground contact. Fig. 24 represents the limit cycle over 10 steps with the simulating.

The resulted trajectory is convergent to a limit cycle as shown in Fig. 24which according

to the Poincare map also supporting the stability in both the swing phase and the impact

phase. The “flat” portion of the curve in the figure is an instantaneous transition due to the

swing leg ground impact, where the star is the initial point of the trajectory.

4.5 Discussion

A hybrid exoskeleton that uses a combination of FES and a powered exoskeleton can

potentially enable people with paraplegia to stand and walk again. We were motivated

to design its controller that iteratively learns a participant’s musculoskeletal model and
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Figure 21: RMSE of participant 1 angular positions tracking for 2 impulse switching to

allocation ratios.

Figure 22: Control inputs versus time
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Figure 23: Angle of the linkages versus time

Figure 24: 3-D diagram, showing attractive limit cycle of the system
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thus, potentially, ease its implementation in clinics with minimal tuning. Further, we were

interested in guaranteeing that task stability and performance are not compromised when

FES and the exoskeleton motors allocation levels are switched or changed by a clinician/therapist.

To achieve these objectives, a robust NN based ILC was derived and validated through

experiments. Due to day-to-day and inter-person variations in the musculoskeletal models,

and the tedious process needed to identify the model [83, 45], it is difficult to implement

existing controllers for hybrid exoskeletons in clinics. While numerous papers in FES control

exist that use high-gain controllers [77, 79] to provide robustness to modeling uncertainties or

even adapt and learn the model using neural networks [2, 3, 72, 78] but their implementation

may need extensive tuning or offline training of neural networks. This makes the job of

a clinician/physical therapist difficult because they may not have a control engineering

experience. This problem arises when there are several parameters that they can tune but

the parameters may have a coupled performance effects. This control method targeted this

problem by tuning some of the control through an iterative learning method. Furthermore,

using real time NN estimations as a feed forward component can helps the system work

adaptively and robustly without requiring the control system to use high gains. Additionally,

it allows the physical therapist to change the allocation of the torque between the electric

motors and FES arbitrarily, without being afraid of causing instability.

4.6 Conclusion

A robust NN based ILC was designed in this chapter for a hybrid exoskeleton. The

controller tracks time-invariant joint trajectories that are determined by virtual constraints.

Walking simulation and sitting to standing experiments were performed on four human

subjects including one patient with complete SCI. The experimental results showed that

RMSE of the angular position tracking on both knee and hip joints in each iteration was

reduced, which validated the controller’s effectiveness and robustness. The results also

showed that the hybrid exoskeleton system followed time-invariant joint trajectories with

high accuracy, as well as the robustness when switching allocation ratio between FES and
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powered exoskeleton. The proposed controller can help people with SCI to stand and walk

with a hybrid exoskeleton without extensive tuning of control parameters. It can also enable

changing of FES and the exoskeleton motor allocation levels while a patient is performing

standing and walking tasks.
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5.0 Shared Control of a Powered Exoskeleton and Functional Electrical

Stimulation using Iterative Learning and Fatigue Optimization

5.1 Introduction

Dynamic shared control of FES and the powered exoskeleton is an open research topic.

Actuation redundancy due to the simultaneous use of FES and electrical motors and a

modulation of the shared effort in view of FES-induced dynamics are challenging control

problems. Recent research efforts in this direction certainly inform ways to implement shared

control in a hybrid exoskeleton but these control designs do not explicitly account for FES-

induced fatigue dynamics. In [69], authors used an adaptive control method for the allocation

between motors and FES. In both [22] and [35], a combination of feed forward learning control

and proportional-integral-derivative (PID) feedback control were used for controlling electric

motors and FES. In [45], a hybrid leg extension machine with one degree of freedom (DOF)

was controlled by a nonlinear model predictive control (NMPC) method. The allocation

between an electric motor and FES was adjusted by the NMPC method using a gradient

projection algorithm. In [80], a switched control approach was derived and simulated based

on fixed control allocation ratios that distributed control between FES and the exoskeleton.

However, dynamic shared control has not been attempted and also it’s not implemented in

functionally relevant and multi-DOF lower-limb movements. As a step towards this direction,

a model predictive strategy is chosen in this chapter to dynamically optimize allocation

between exoskeleton motors and FES.

The objective of this chapter is to improve the performance of the hybrid exoskeleton

despite modeling uncertainties in the musculoskeletal dynamics. Nonlinear robust control

methods, e.g., sliding mode control [40, 13] and robust integral of sign of the error[79],

have been designed specifically to address uncertainties in the nonlinear musculoskeletal

model. These approaches, however, inherently rely on high frequency or high gain control to

dominate the modeling uncertainties, and thus may cause over-stimulation. A feedforward

control strategy is usually recommended along with feedback control to reduce overall control
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effort. Neural networks (NN) have been used as feedforward controllers for FES in [50, 68,

42, 3, 57]. The advantage of the NN-based control approach is its universal approximation

property that helps to capture unstructured uncertainties in the musculoskeletal dynamics

[78]. NN-based control, however, requires training to obtain desired performance. Both

offline [50, 68, 42] and online [78] NN training methods have been used for FES control.

Motivated by an iterative learning control (ILC) approach that improves a system’s transient

performance in multiple iterations, an NN-based ILC method is derived in this chapter. This

method also addresses implementation issues in chapter two and three that needed the system

model to be known exactly.

In this chapter, a time-invariant manifold, known as virtual constraint [87, 34] is utilized

to self-generate desired joint trajectories. In most exoskeleton control results, the desired

joint trajectories are time-dependent [36, 19, 9]. These type of trajectories may cause

miscoordination due to asymmetric disturbances at limb joints. On the other hand, virtual

constraints are desired joint trajectories that are self-generated with state flow. Thus,

they may provide a better coordination between the joints, and can be implemented in

the controller as a state dependent desired manifold.

To sum up, a unified control framework (MPC based allocation + robust NN-based ILC

+ Self-generated trajectories computed via virtual constraints) is designed and implemented

on a generalized hybrid exoskeleton. The stability of this controller is proven by using a

Lyapunov-like stability method. The experimental results on three participants for a sitting

to standing task validate the performance of the proposed control framework.

5.2 A Generalized Hybrid Exoskeleton Model

A generalN -DOF hybrid exoskeleton that is comprised of FES and a powered exoskeleton

is modeled as

Jθ̈ + Cθ̇ +G+ τp = BFuF̄ +BMuM̄ + d, (5.1)

where θ ∈ RN , θ̇ ∈ RN , and θ̈ ∈ RNare the vectors that represent the links’ angular

position, angular velocity, and angular acceleration, respectively, J(θ) ∈ RN×N is the inertia
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matrix, C(θ̇, θ) ∈ RN×N is the Centripetal-Coriolis matrix, G(θ) ∈ RN is the gravitational

vector, τp ∈ RN is the passive viscoelastic moment, BF ∈ RN×2N and BM ∈ RN×N are the

FES control gain matrix and the motor control gain matrix, respectively, uF̄ ∈ RN is the

normalized muscle stimulation input vector, uM̄ ∈ RN is the current amplitude vector of

powered motors, and d ∈ RN is the system disturbance.

For subsequent control development, the model in (5.1) is rewritten as

ẋ = f(x) + gF (x)uF̄ + gMuM̄ +D (5.2)

where x ∈ R2N is
[
θT , θ̇T

]T
, f(x) ∈ R2N is equal to

[
IN×N θ̇

T ,
[
J−1(τp −G− Cθ̇)

]T]T
,

gF is defined as
[
/ON×2N , [J−1BF ]

T
]T
gM is defined as

[
/ON×N , [J−1BM ]

T
]T

and D ∈ R2N is

defined as
[
/O1×N , [J

−1d]
T
]T

5.3 Control Development

A joint angle function is chosen as h0(θ) = θ, where θ is the actual joint angle vector in

(5.1). The control objective is to ensure that the independent joint angle function, h0(θ) ∈

RN , follows a desired virtual constraint function [87], hd(Θ(θ)) ∈ RN , where Θ(θ) is a

polynomial function of the joint angle vector, θ. Note that the virtual constraint function is

a function of system state instead of an explicit function of time. The method to design the

desired virtual constraint function is given in the previous chapter. The control objective

can be expressed as an output, y ∈ RN , that must be driven to zero. Thus, the output, y, is

defined as

y , h(θ) = h0−hd. (5.3)

Using (5.3), the following output differential equation is derived

d2y

dt2
= L2

fh+ LgMLfhuM + LgFLfhuF +Db, (5.4)

where L2
fh(θ) is the 2nd-order Lie derivative of h(θ), LgMLfh(θ) and LgFLfh(θ) are the

decoupling matrices, and Db ∈ RN is the disturbance of the system output.
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We consider that ȳ(i)
1 = yi, ȳ

(i)
2 = ẏi, u

(i)
F = uF i , and u

(i)
M = uM i

, where subscript i shows

ith element of a vector. As the main motivation is to develop an ILC, (5.4) is expressed for

a kth iteration as

˙̄y
(i)
1,k = ȳ

(i)
2,k

˙̄y
(i)
2,k = σ(i)f

(i)
1,k + f

(i)
2,k + Ω

(i)
k u

(i)
F,k + b

(i)
Mu

(i)
M,k + b

(i)
d,k (5.5)

where σ(i)f
(i)
1,k + f

(i)
2,k is equal to i

th element of L2
fh(θ) and is expressed as a sum of structured

and unstructured uncertain nonlinear terms. Specifically, σ(i)f
(i)
1,k is the linearly parameterizable

(structured uncertainty) part of ith element of L2
fh(θ), where σ(i) is an unknown parameter

function and f
(i)
1,k is a known regressor function, and f

(i)
2,k is the remaining not linearly

parameterizable (unstructured uncertainty) part of ith element of L2
fh(θ). In (5.5), b(i)

M and

Ω
(i)
k are equal to ith element of LgMLfh(θ) and LgFLfh(θ), respectively, for ith input. Here,

b
(i)
M is the motor control constant gain and is assumed to be known. Ω

(i)
k is an unknown

control gain (unstructured uncertainty) associated with control inputs due to FES. In (5.5),

b
(i)
d,k is the system disturbance term, corresponding to the disturbance vector Db in (5.4). For

simplicity purposes, the superscript i (i = 1, 2, ..., N) will be dropped hereafter in all the

corresponding notations.

It is clear that (5.5) contains different types of unknown functions that must be approximated

for control implementation. In the next steps, we provide update laws to estimate these

unknown functions. These update laws were designed using the subsequent stability analysis.

Let σ̂k is an estimate of σ, which is the structured uncertain term. Its update law is expressed

as

σ̂k = σ̂k−1 − bqf1,k (γsk) (5.6)

σ̂k = 0 when k = −1, (5.7)

where γ is a positive constant and the sliding surface sk ∈ R is designed as

sk = λ1e1,k + λ2e2,k (5.8)

where λ1 and λ2 are positive constants and e1,k = ȳ1,d,k − ȳ1,k, e2,k = ȳ2,d,k − ȳ2,k, ȳ1,d,k and

ȳ2,d,k are the desired system outputs, and ȳ1,k and ȳ2,k are actual system outputs.
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Both f2,k and Ωk are unstructured uncertain nonlinear terms, therefore, these terms are

represented using NNs as follows

f2,k = W TΛk(P
TXk) + ε1,k (Xk) (5.9)

Ωk = QTφk(Xk) + ε2,k (Xk) (5.10)

where Xk ∈ R2N+1 is the augmented input vector for the aforementioned two NNs and is

defined as Xk =
[

1 xTk

]T
. W ∈ RN2+1 is the ideal weight vector for term f2,k and Q ∈ RNΩ

is the ideal weight vector for Ωk. The input layer is made of 2N+1 neurons. N is the output

layer neurons number, and the hidden layer numbers of neurons in the two NNs are Nin and

NΩ. Λk : RNin → RN2+1 is the first NN activation function in (5.9) that maps the input

layer to the hidden layer, where P ∈ R(2N+1)×Nin is the weight matrix corresponding to

the augmented input. φk : R2N+1 → RNΩ is the activation function in (5.10) that maps

the input layer to the output layer. ε1,k ∈ R and ε2,k ∈ R are the unknown functional

reconstruction errors for the two NNs, which are bounded with |ε1,k| ≤ ε̄1 and |ε2,k| ≤ ε̄2,

respectively, where ε̄1, ε̄2 ∈ R+. Let f̂2,k and Ω̂k be the approximations of the ideal NNs,

f2,k and Ωk, in (5.9) and (5.10), respectively. These approximations are represented as

f̂2,k = Ŵ T
k Λk(P̂

T
k Xk) (5.11)

Ω̂k = Q̂T
k φk (Xk) (5.12)

where Ŵk ∈ RN2+1, P̂k ∈ R(2N+1)×Nin and Q̂k ∈ RNΩ are the ideal weight estimates in the

kth iteration.
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5.3.1 Top-level Controller

The estimated terms in (5.6), (5.11), and (5.12) can be combined together to design the

top-level controller, U . Because this controller is based on NNs and updates itself every

iteration, we call it: NN-based ILC. The controller is given as

Uk = −f̂2,k − σ̂kf1,k − Fk (5.13)

where Fk ∈ R is an additional feedback input

Fk = 1
λ2

(−λ1ȳ1,d,k − λ2ȳ2,d,k + λ1ȳ2,k

−λ2

(
α3sk + 4

3
α2sgn(sk)

)
+ λ2vk

)
. (5.14)

In (5.14) α2 ∈ R+ and α3 ∈ R+ are control gains, λ1, λ2 ∈ R+ are constant values, ȳ2,k

is defined in (5.5), ȳj,d,k is the desired output, and vk is an integral term that is designed as

v̇k = −β1sk − β2vk (5.15)

where β1 and β2 are positive constants.

5.3.2 Control distribution between FES and Motor

To distribute control effort between FES and the powered motor, we introduce ιk(t), ςk(t) ∈

[0, 1] as a pair of control allocation coefficients. Based on the subsequent stability analysis,

kth iteration of the normalized FES virtual input, uF,k, is

uF,k = ιkψ
−1
k Uk (5.16)

where U is defined in (5.13) and ψk is given by

ψk = Ω̂k + %
(

Ω̂k

)
+ β (5.17)

where the spectral radius of Ω̂k, %
(

Ω̂k

)
∈ R+, and a control gain, β ∈ R+, are added to ψk

in order to avoid a singularity, when Ω̂k is equal to zero [14]. Similarly, based on the stability

analysis in the previous chapter, the motor virtual input uM,k is given as

uM,k = ςkb
−1
M Uk. (5.18)
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5.3.3 Predictive Allocation Strategy

In subsection 5.3.2, controllers (5.16) and (5.18) are designed to track the desired trajectories

at the top-level. In this subsection, the lower-level controller is formulated that determines

the control allocation coefficients, ιn and ςn, in (5.16) and (5.18). An MPC allocation strategy

based on dynamic optimization is used. These constraints should be chosen in a way that

always satisfy the following constraints

ιk(t) + ςk(t) = 1, |uF,k| ≤ 1. (5.19)

The constraints in (5.19) are enforced using MPC. The strategy is also designed to consider

the muscle fatigue level by including a fatigue variable as a weighting variable in the cost

function. The optimization determines optimal allocation of the coefficients, ιk and ςk. The

optimization objective is to determine ιk and ςk by minimizing a cost functional Jmpc(tk) ∈ R

min
τ̄M,k,τ̄F,k

Jmpc(tk) =
∫ tk+Tp
tk

{
τ̄ 2
M,k + w

µ̄+ε
τ̄ 2
F,k

}
dt (5.20)

s.t. J(θ̄k)
¨̄θk + C(θ̄k,

˙̄
kθ)

˙̄θk +G(θ̄k) + τ̄p,k = τ̄M,k + τ̄F,k

τ̄M,k + τ̄F,k = Ūk (5.21)

ūF,k ∈ U (5.22)

where the terms with a bar, e.g., x̄, represents the nominal variable that is evaluated in

the prediction horizon, ε > 0 is a constant, and w > 0 is a predefined weight. U ∈ [0, 1]

is the input constraint[45, 85]. In (5.20) the motor torque τ̄M,k in the prediction horizon is

evaluated using (5.23).

τ̄M,k = bM ūM,k (5.23)

where bM is the known constant defined in (5.5), and ūM,k is the kth iteration of ūM in (5.18).

τ̄F in (5.20) is defined as [47]

τ̄F,k = ϕ (x̄k) µ̄kūF,k. (5.24)

where τ̄F,k is the torque input of FES in the prediction horizon and ūF,k is the kth iteration

of ūF in (5.16). ϕ (x̄k) =
(
c2θ̄

2
1,k + c1θ̄1,k + c0

) (
1− c3

˙̄θ1,k

)
, θ̄1,k is the nominal value of the
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knee joint angle, and c0 ∈ R+, c1 ∈ R+, c2 ∈ R+, and c3 ∈ R+ are muscle parameters. µ̄k is

evaluated using Φµ ( ˙̄
kµ, µ̄k, ūF,k) = 0, which is a differential equation, used for estimation of

the current fatigue level. Φµ can be represented as [71, 47]

Φµ : ˙̄µk =
(µmin − µ̄k) ūF,k

Tf
+

(1− µ̄k) (1− ūF,k)
Tr

(5.25)

where µmin ∈ [0, 1) is the minimum fatigue level of the targeted muscle, Tf ∈ R+ is the

fatigue time constant, and Tr ∈ R+ is the recovery time constant.

The objective index Jmpc(tk) ∈ R+∪{0} in (5.20) depends on control allocation between

τ̄M,k and τ̄F,k along the time horizon [tk, tk + Tp], where Tp is the time horizon length and tk is

the current time. When the optimal solution, u∗F,k (t| : t ∈ [tk, tk + Tp]) = argmin{Jmpc(tk)},

is found, uF,k = u∗F,k (t| : t = tk → tk + ε) is applied to the system, where ε is an infinitesimal

time constant that makes tk+1 = tk + ε [30]. The deatails of steps of the model predictive

allocation algorithm can be found in Tables 3 and 4.

5.4 Simulation Results

After implementing the controller on the system for siting to standing and standing to

sitting scenarios, the MPC algorithm allocates the knee FES torque according to the Fig. 25.

This allocation causes a normalized fatigue trend which is shown in the Fig. 26. The desired

and actual trajectories of hip and knee joints are demonstrated in Fig. 27. In this figure,

θ1 is the knee joint angle and θ2 is the hip joint angle. According to Fig. 28, compared to

the first iteration, the 10th iteration of the algorithm could reduce 86% of root mean square

(RMS) error of the knee joint angle tracking performance and 57% of RMS error of the hip

joint angle tracking performance.
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Table 3: Steps of model predictive allocation strategy

1 Initialization: j = 0

(1a) The convergence tolerance is set to εj.

(1b) θ(tk), θ̇(tk) are measured.

(1c) Feedback controller and virtual constraint are used to get

hd(τ), h̄(τ), and total torque demand, where τ ∈ [tk, tk + Tp].

(1d) An initial control trajectory is chosen ūF (τ) ∈ U[tk,tk+Tp],

where τ ∈ [tk, tk + Tp].

(1e) ūF (τ) and h̄(τ) are used for obtaining τ̄F (τ) and J (j)
mpc(tk),

where τ ∈ [tk, tk + Tp].
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Table 4: Steps of model predictive allocation strategy

2 Optimal Solution Searching:

(2a) For solving the costates,

integration backward in time is done for l(j)(τ)

H = J
(j)
mpc + l(j)TΦµ, so the optimal solution is given

l̇(j)(τ) = −∂H(z,l(j),ūF )
∂z

, where z = [x̄, µ̄].

(2b) The search direction, a(j)(τ), is computed from the Hamiltonian

a(j)(τ) = −∂H(z,l(j),ūF )
∂ūF

.

(2c) The optimal step size, σ(j), is computed with

the adaptive setting in [29].

(2d) The control trajectory is updated.

ū
(j+1)
F (τ) = ψ(ū

(j)
F + σ(j)a(j)) ,

where the constraints are denoted by ψ.

(2e) ū
(j+1)
F is used to get J (j+1)

mpc (tk).

(2f) Quit conditions are checked

(i) if
∣∣∣J (j+1)
mpc (tk)− J (j)

mpc(tk)
∣∣∣ ≤ εj, quit.

(ii) if j has exceeded the max iteration limit, Nt, quit.

(iii) otherwise j = j + 1 and reiterate gradient step from (1a).
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Figure 25: FES torque allocation on the knee joint by using MPC

Figure 26: Normalized fatigue over time
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Figure 27: Joint angles over time

Figure 28: Root mean square of the joint angles error vs iterations
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5.5 Experimental Results

The Institutional Review Board (IRB) at the University of Pittsburgh approved the

experimental study (IRB approval number: PRO 14040419). Before each experiment, every

participant signed an informed consent form. Four participants were recruited in the study,

including three without any neuromuscular disorders and one participant with paraplegia

from a SCI. Participant 1: Age 23, male. Participant 2: Age 25, male. Participant 3:

Age 23, male. Participant 4: Age 51, male, injury: T11, paraplegia from a SCI. Participants

wore the lower-limb exoskeleton, developed in our lab [9], during the entire sitting to standing

tasks. The exoskeleton is shown in Fig. 29. The hip joints of the powered exoskeleton were

actuated by two LPA-17-100-SP electric motors (Harmonic Drive, US). These two motors

have a maximum speed of 30 revolutions per minute (RPM) and a peak torque of 54 Nm.

Two 90-watt EC Flat Maxon motors (Maxon Motor, Sachseln, Switzerland) were used to

actuate the knee joints of the exoskeleton. During the sitting to standing task, a walker was

used to assist the participant’s balance. Four force sensors were installed on the walker’s

handles. Sensor 1 and sensor 2 were located at the front and back end of the right handle,

while sensor 3 and sensor 4 were located at the front and back end of the left handle. The

sensors were used to measure the forces that a participant applied on the walker in the

vertical direction. A pair of FES electrodes (Chattanooga Medical Supply, Inc, US) were

placed on the participants thighs to stimulate the quadriceps muscles. A biphasic pulse

train was delivered to the electrodes by an FES stimulator (RehaStim 8-channel stimulator,

Hasomed Inc., DE). A current modulating protocol was chosen at a stimulation frequency

of 35 Hz and pulse width of 400 µs. A real-time target machine (Speedgoat Inc., Liebefeld,

Switzerland) running at a control frequency of 350 Hz was used to control the exoskeleton

and FES. The control implementation was programmed in Simulink (MathWorks Inc., USA).

For the execution of the MPC allocator, fatigue and recovery constants: Tf and Tr given

in equation 5.25 were identified through a set of experiments, prior to the main sitting-

to-standing experiments. In addition, each participant’s muscle model parameters were

identified. The procedures for model parameters identification are reported in our previous

work [46]. The fatigue and recovery constants for the first 3 participants on both legs are
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Figure 29: The controller structure and the experimental testbed employed in this study

given in Table 5. S1, S2, and S3 represent the first, second, and third participant. The

constants for the Participant 4 are not provided in Table 5 because his quadriceps muscles

did not respond to the electrical stimulation. In the main experiment, the developed control

framework was validated in a sitting to standing task. A common desired virtual constraint

function for the joints of both legs was used. The function was designed such that the sitting

to standing task is achieved in 5-6 seconds. After the transition, the standing position

was held up to 15 seconds to further validate the controller stability. The controllers were

implemented separately for each leg but the controllers used the same virtual constraint

function to maintain coordination between the two legs. The control schematic is depicted

in Fig. 29. As can be seen in this figure, the top-level ILC controller block uses three inputs:

NN estimates f̂2,k and Ω̂k, linearly parameterizable adaptive component σ̂k, and a feedback

component Fk. The total torque demand at the knee joint is allocated optimally using the

low-level MPC method.
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Table 5: The fatigue and recovery time constants Tf and Tr for Participants 1, 2, and 3 on

both legs

S1 Left S1 Right S2 Left S2 Right S3 Left S3 Right

Tf [sec] 24.6 23.0 20.2 17.9 25.2 21.6

Tr [sec] 38.6 47.0 50.8 42.0 43.3 49.1

Successful sitting to standing experiments on the four participants were performed using

the developed control framework. Fig. 30 demonstrates the snapshots of the sitting to

standing experiment from one of the successful trials for Participant 4, who is the participant

with paraplegia from a SCI. The trajectory tracking results on both knee and hip joints for

Participant 4 are illustrated in Fig. 31. The figure includes the desired trajectories that

are based on the virtual constraint function, and the actual trajectories on both legs in the

1st and 4th iterations. The joint angle tracking errors of Participant 4 in the 1st iteration

and 4th iteration are shown in Fig. 32. The improvement percentage of the root mean

square error (RMSE) of the joints trajectories tracking performance for four participants

are plotted in Fig. 33. The results show that from the 1st iteration to the 4th iteration,

for each participant, the RMSE values for both knee and hip joints are decreasing. These

results indicate that the ILC method improves the joint trajectory tracking performance in

successive iterations. In Fig. 34, components of the top level controller, Uk, in (5.13) for

Figure 30: The snapshots of one successful sitting to standings trial for Participant 4 with

paraplegia from a SCI
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Figure 31: Knee and hip joints angular position tracking results of Participant 4 in the 1st

and 4th iterations

Figure 32: Angular position tracking errors on both knee and hip joints of Participant 4 in

the 1st and 4th iterations
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Figure 33: RMSE improvement percentage of both knee and hip joints from the 1st to the

4th iterations for each participant

Participant 4 in four iterations are shown. The components include Fk, f̂2,k, and σ̂kf1,k.

In this figure, Fk represents the additional feedback input and f̂2,k and σ̂kf1,k represent the

not linearly parameterizable and linearly parameterizable elements in the system dynamics

learned through iterative fashion. As depicted in this figure, the magnitude of Fk decreases

while the magnitudes of f̂2,k and σ̂kf1,k increase along with the iterations. Those changes

indicate that the contribution of the feedback term Fk in the top level controller is reduced

and the contribution of the learning terms is increased. The bottom-level control inputs for

1st and 4th iterations for Participant 2 are shown in Fig. 35. In this figure, ιk shows the

allocation ratio for FES in the kth iteration. At t = 10 s, knee motor torque magnitude is 0

and ι = 1,which shows that the constraint on the sum of the allocation ratios is satisfied; i.e.,

if motor contribution is 0 then FES allocation ratio is 1. Fig. 36 shows the forces applied

on the walker handles by Participant 4 in the 1st iteration and the 4th iteration. The results

show that the main support forces in the vertical direction were applied on sensor 2 and

sensor 4, respectively. The average value of the total forces applied on sensor 2 and sensor 4

in the 1st iteration is 134.18 N, and in the 4th iteration 113.92 N. It is interesting to note that,
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Figure 34: Changes of Fk, f̂2, and σ̂f1 in the top level controller for Participant 4 in 4

iterations

80



Figure 35: Bottom-level control inputs for Participant 2 allocated by MPC in the 1st and

4th iterations

for Participant 4, through iterative learning, the total force applied on the handles’ back ends

in the 4th iteration is 15% lower compared to the 1st iteration. Detailed experimental results

for all 4 participants are provided in Tables 6 and 7, where ů1stIt
M and ů4thIt

M show absolute

mean values of motors control effort in the 1st and 4th iterations, respectively, ůF shows

mean value of the normalized FES control effort and “Improv” stands for improvement.

5.6 Discussion

A hybrid exoskeleton is a promising rehabilitation intervention that has the potential to

assist people with paraplegia during standing and walking activities. A NN-based controller

was developed in this chapter to enable a sitting-to-standing task with the hybrid exoskeleton.

The results show that the controller improves the tracking performance through an iterative

learning process. These results are potentially significant because the clinical implementation
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Figure 36: Forces applied on both walker handles in the 1st iteration and 4th iteration

during sitting to standing experiments for Participant 4

of existing FES controllers is non-trivial due to inter-person and day-to-day variations in the

musculoskeletal models. Most nonlinear control techniques for FES use high-gain controllers

[77, 79], while optimal control approaches often involve a tedious process of identifying the

model [83, 45]. Alternatively, NNs [2, 3, 72, 78] can be used to learn the model but their

implementation needs offline training, which again may be a tedious process in clinics. The

proposed NNILC in this chapter learns a participant’s musculoskeletal model in successive

iterations. This capability eases its implementation in clinics by reducing gain tuning effort.

Additionally, the optimal MPC-based allocator automates the need to specify an allocation

ratio between the motor and FES. The proposed control framework eases the parameter

tuning process for a clinician/physical therapist. The tuning process can be a daunting

task, especially when the tuning process has coupled performance effects and given that a

clinician/physical therapist may lack control engineering experience. To validate the control

schematic proposed in this chapter, the experiments were performed on three participants

without a disability and a participant with SCI.
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Table 6: RMSE of trajectory tracking on each participant in the 1st and 4th iterations

Joints RMSE [deg] RMSE 1st It RMSE 4th It RMSE Improv %

Participant 1 Right knee 23.11 4.42 80.86

Participant 1 Left knee 3.32 1.41 57.52

Participant 1 Right hip 1.74 0.72 58.14

Participant 1 Left hip 4.14 0.73 82.34

Participant 2 Right knee 9.66 1.94 79.91

Participant 2 Left knee 3.13 0.56 82.01

Participant 2 Right hip 2.04 0.38 81.09

Participant 2 Left hip 2.56 0.44 82.68

Participant 3 Right knee 23.31 4.39 81.17

Participant 3 Left knee 3.33 1.62 51.5

Participant 3 Right hip 2.48 0.71 71.45

Participant 3 Left hip 4.36 0.87 80.15

Participant 4 Right knee 7.44 1.45 80.51

Participant 4 Left knee 1.65 0.46 71.89

Participant 4 Right hip 2.10 0.60 71.29

Participant 4 Left hip 2.21 0.40 66.95
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Table 7: RMSE of inputs from motors and FES on each participant in the 1st and 4th

iterations

Joints RMSE [deg] ů1st

M ů4th

M ů1st

F ů4th

F

Participant 1 Right knee 56.43 52.59 0.44 0.41

Participant 1 Left knee 27.96 26.01 0.26 0.21

Participant 1 Right hip 6.48 6.64 – –

Participant 1 Left hip 7.73 8.89 – –

Participant 2 Right knee 36.22 52.43 0.38 0.42

Participant 2 Left knee 22.22 29.72 0.27 0.29

Participant 2 Right hip 6.41 5.90 – –

Participant 2 Left hip 10.93 6.38 – –

Participant 3 Right knee 49.45 56.67 0.28 0.35

Participant 3 Left knee 24.67 26.58 0.51 0.25

Participant 3 Right hip 10.85 5.88 – –

Participant 3 Left hip 8.20 7.66 – –

Participant 4 Right knee 57.13 94.66 0.43 0.66

Participant 4 Left knee 38.83 26.02 0.36 0.14

Participant 4 Right hip 3.35 5.86 – –

Participant 4 Left hip 8.15 9.09 – –
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5.7 Conclusion

A novel NNILC augmented with an MPC-based allocation strategy was developed to

control a hybrid exoskeleton in this work. A Lyapunov-like based stability analysis was

used to prove that the unified control framework yielded asymptotic tracking performance

despite of uncertain dynamics and disturbances. Time-invariant trajectories, instead of

time-dependent trajectories, were used as desired joint trajectories. The experiments on

participants without a disability and a participant with SCI demonstrated that the controller

enabled sitting-to-standing task, where the tracking performance was shown to improve in

each iteration. The results also showed that the optimal allocation between FES and powered

exoskeleton can be achieved by the MPC strategy.
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6.0 Summary and Future Works

In this dissertation, switched and iterative control methods to control a hybrid exoskeleton

were investigated. A hybrid exoskeleton (HES) is one of the rehabilitation technologies that

has the potential of restoring a person’s lost standing and walking ability after paraplegia. It

provides benefits of both functional electrical stimulation (FES) and a powered exoskeleton.

For example, additional therapeutic benefits of FES such as muscle growth and increased

bone density can be gained through the use of an HES. Additionally, the size and weight of

bulky motors and batteries that are deployed in sole powered exoskeletons can be reduced.

The powered exoskeleton can also be used to compensate for the effects of FES-induced

muscle fatigue. However controlling this type of devices faces several challenges. Firstly,

to control the HES, an allocation strategy is needed to coordinate FES and the powered

exoskeleton based on the onset of FES-induced muscle fatigue. Nonlinearity and uncertainty

in the dynamic model of HES are another set of challenges that may impede its day-to-day

implementation in a clinical setting.

In this dissertation, for addressing the actuation coordination and redundancy problems,

novel switching controls that let the system to arbitrary switch the allocation and a model

predictive control (MPC) strategy for optimal shared control inputs from motor and FES

were used. In this dissertation, a new approach of designing time-invariant desired joint

angle trajectories using virtual constraints were used for addressing the problem of joint

miscoordination, when time dependent trajectories are utilized. To implement the virtual

constraint design, firstly, a novel switching controller that uses a super twisting sliding mode

control is developed. However exact model knowledge is required for implementing the

method. For addressing this problem, in the next step, a sole switching ILC method was

used to learn a linearly parameterizable part of the system dynamics. However it was not able

to estimate not-linearly parameterizable part of the dynamics. Therefore, in the next study,

we developed a novel NN based ILC method that can learn the HES nonlinear dynamics

during its operation for overcoming the problem of uncertain HES dynamics. The method

was tested in experiments for a siting to standing task for human participants with no
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disabilities and a human participant with SCI. The results showed the effectiveness and

ability of the controller for learning the system dynamics and keeping the system stable

during the operation. For having a more energy efficient device, next step was to keep the

main structure of NN based ILC and do the allocation based on a MPC strategy. Therefore,

in the next developed method, a unified (virtual constraint + robust NN based ILC + MPC

based allocation) was designed. The control method implemented in several experiments for

a siting to standing task. The experiments on both able bodied and SCI subjects proved

that the optimal allocation between FES and powered exoskeleton can be achieved by the

MPC strategy.

In the future experiments should validate the ILC _switching framework for producing

walking with the hybrid exoskeleton. This may require augmenting the control method with

an intent estimation algorithm based the human arm force while using the device. This

intention estimation can also be combined with a dynamic movement primitive method so

that the desired movement of a task can be dynamically defined by the user. Future work

also can focus on using a more rigorous estimation of fatigue using ultrasound imaging-

derived fatigue signals [81] so that the controller can switch or change allocation with more

precision. A contribution of this thesis, is the use of time-invariant (virtual constraints)

desired trajectories. This technique can be extended to our research group’s previous work

on synergy-inspired control of multiple FES-driven muscles and multiple electric motors

of the powered exoskeleton. The muscle synergy-inspired control is especially useful for

achieving walking with the hybrid exoskeleton.
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