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Abstract

Complex survival outcomes, such as multivariate and interval-censored endpoints, are

becoming more commonly used in clinical trials. The revolutionary development of genetics

technologies allows the generation of large-scale genetic data. This dissertation proposes new

statistical methods for complex survival outcomes with high-dimensional covariates.

In the first part, to deal with bivariate interval-censored data, we propose a flexible

two-parameter copula-based model with semiparametric transformation margins. We esti-

mate the model parameters by the sieve likelihood approach and establish the asymptotic

properties of the sieve estimators. We demonstrate satisfactory estimation and inference per-

formance in simulation studies. Lastly, we apply our method to the Age-Related Macular

Degeneration Study (AREDS) data and successfully identify novel genetic variants asso-

ciated with the progression of Age-related Macular Degeneration (AMD). An R package

CopulaCenR is published for analyzing bivariate censored data in a regression setting.

In the second part, we develop a novel information-ratio-based test statistic to evaluate

the goodness-of-fit of copula survival models. We establish the asymptotic properties of our

test statistic. The simulation studies demonstrate that our method performs well under

interval and right censoring. Lastly, we evaluate our results in multiple real data sets. To

the best of our knowledge, our method is the first approach that can test any parametric

copula model under both interval and right censoring.

In the third part, motivated by recent demanding needs for developing accurate survival

prediction models utilizing rich genetic data, we develop a novel framework for constructing

and evaluating a deep neural network (DNN) based survival model. Our simulation results

clearly demonstrate the high predictive power of the DNN survival model, especially in the
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presence of complex data structures. We also build an accurate and interpretable DNN

survival prediction model for AMD progression using AREDS data.

Public health significance: This dissertation provides a comprehensive set of novel sta-

tistical and computational tools for analyzing bivariate survival outcomes with large-scale

genetic data, which have the potential to fundamentally improve the current practice in an-

alyzing such clinical studies, and thus to enhance the understanding of disease progression

and to increase the success of individualized risk management and precision medicine.
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1.0 Introduction

1.1 Overview

Complex survival outcomes such as multivariate and/or interval-censored endpoints are

becoming more commonly used in clinical trials, for example, to study bilateral diseases or

diseases with multiple comorbidities. The revolutionary development of genetics technologies

allows the generation of large-scale genetic data in modern clinical trials. Motivated by two

large clinical trials for studying a bilateral eye disease, Age-related Macular Degeneration

(AMD), this dissertation proposes new statistical methods for analyzing complex survival

outcomes with high-dimensional covariates: (1) to efficiently test and identify risk factors

associated with disease progression in a regression setting, (2) to perform rigorous model

diagnosis through a novel goodness-of-fit test and (3) to accurately predict disease progression

profiles using a deep learning survival prediction model.

In the rest of this Chapter, I will start by introducing the basic concepts, such as survival

data and interval-censored data, in Sections 1.2 and 1.5. In the following, I will talk about

some popular regression models for survival data, particularly multivariate and/or interval-

censored data, in Section 1.3, 1.4, and 1.6. Then, I will discuss about the existing goodness-

of-fit tests for copula specification in Section 1.7. Lastly, I am going to introduce several

popular survival prediction models in Section 1.8.

1.2 Failure time data

Failure time data usually represent times to specific event of interest, including death,

the onset of a disease, outbreak of an epidemic, and malfunction of a machine. The situation

is called “failure” when such an event occurs. The term “failure time data” is equivalent

to “survival data”, and the random variable of time to failure is also denoted by “survival

time”. Such data primarily arise from medical and biological studies and also widely exist in
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epidemiological, sociological, economic, and financial studies. More concepts and examples

can be found in Kalbfleisch and Prentice [2011].

In the analysis of survival data, also referred to as survival analysis, the common interest

is to study the survival function, which is the probability that failure time is greater than

a certain time point. There are three associated problems: estimation of survival functions,

comparison of survival functions, and regression between survival function and covariates.

The survival analysis distinguishes itself from other statistical fields by the existence of

censoring in the data. In practice, the exact failure time may not always be observed. Some-

times, we could only know the failure time is greater or smaller than the observation time,

corresponding to right- or left-censored survival data, respectively. The censoring mecha-

nism may depend on failure times so that it further complicates the analysis. Truncation

is another source of complexity, where subjects are recruited to a study only if they satisfy

certain pre-specified conditions.

1.3 Models for failure time data

We define the survival function of failure time, represented by a non-negative random

variable T , as the probability that T is greater than a value t, expressed as:

S(t) = P (T > t), 0 < t <∞.

When T is absolutely continuous, we have a one-to-one relationship between the survival

function S(t), density function f(t) and the hazard function λ(t) as defined below:

S(t) = e−Λ(t),

where

Λ(t) =

∫ t

0

λ(s)ds, λ(t) = f(t)/S(t).

In survival analysis, the survival and hazard functions are usually easier to use for modeling

the failure time T than the density function.

2



As mentioned before, regression between the survival function and covariate effect is an

important aspect of survival analysis. Here we introduce some common regression models

for survival time.

1.3.1 Proportional hazards model

The proportional hazards (PH) or Cox model [Cox, 1972] is built on the hazard function:

λ(t;Z) = λ0(t) exp(ZTβ),

where λ0(t) is an unspecified baseline hazard function, Z is a vector of covariates, and β is

a vector of covariate coefficient parameters. The model is interpreted as the ratio of hazard

functions is a constant (independent of time t) between two subjects with different Z. In a

special case where Z = 0 or 1, we have

λ(t;Z = 1)

λ(t;Z = 0)
= exp(β).

Define h(t) = log[Λ0(t)], which is a strictly non-decreasing function of t. Then we can

re-write the PH model as

h(T ) = −ZTβ + ε,

where the random variable ε follows a extreme value distribution with distribution function

F (s) = 1− exp[−es].

Under the PH model, the survival and cumulative hazard functions of T are given by:

S(t;Z) = e−Λ0(t) exp(ZT β) = {S0(t)}exp(ZT β), Λ(t;Z) = Λ0(t) exp(ZTβ),

where

Λ0(t) =

∫ t

0

λ0(s)ds and S0(t) = e−Λ0(t)

are the baseline cumulative hazard and baseline survival functions.

The PH model is the most popular regression model in survival analysis due to the partial

likelihood approach for right-censored failure time data [Cox, 1972]. The approach is simple

and efficient because the partial likelihood only involves the finite-dimensional β parameter

without the nuisance infinite-dimensional λ0(t). The resulting β estimate is asymptotically

equivalent to that obtained from the full likelihood.
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1.3.2 Proportional odds model

The proportional odds (PO) model is also commonly used in survival analysis [Bennett,

1983]. It assumes a constant odds ratio in survival functions between two subjects with

different covariate effects. The model is given by:

1− S(t;Z)

S(t;Z)
=

1− S0(t;Z)

S0(t;Z)
eZ

T β,

or

logit{S(t;Z)} = logit{S0(t;Z)} − ZTβ,

where S0(t) denotes baseline survival function.

In the special case that Z = 0 or 1, we have the ratio of hazard functions as

λ(t;Z = 1)

λ(t;Z = 0)
=

1

1 + (e−β − 1)S0(t)
.

Unlike in the PH model, the ratio of hazard functions under the PO model is a monotonically

increasing function of t and reaches a maximum of 1 when t→∞.

Let h(t) = −logit{S0(t)}, which is a strictly non-decreasing function of t. Then the PO

model can also be written as

h(T ) = −ZTβ + ε,

where the random variable ε follows a standard logistic distribution.

1.3.3 Additive hazards model

The additive hazard model [Holford, 1976] is also built upon the hazard function. How-

ever, its formula has an additive form:

λ(t;Z) = λ0(t) + ZTβ,

where λ0(t) is an unknown baseline hazard function, and the coefficient β is interpreted as

the hazard difference. Again, when Z = 0 or 1, we get

λ(t;Z = 1) = λ(t;Z = 0) + β.
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One nice feature of the additive hazards model is its model simplicity and ease of interpreta-

tion. Especially, it is the case for the additive frailty model under which the marginal model

still follows the additive hazards assumption, and the coefficient β has the same interpreta-

tions under both conditional and marginal settings.

1.3.4 Accelerated failure time model

The accelerated failure time (AFT) model [Wei, 1992] directly defines the relationship

between survival time T and covariates Z as follows

log T = ZTβ + ε,

where β is a vector of coefficients, and ε follows an unspecific distribution.

It is interesting to notice that the covariate effect is multiplicative in both PH and AFT

models, but on hazard function and (log) survival time, respectively. Next, we will show

that the covariate effect on hazard function is different between AFT and PH models.

Let λε?(t) be the hazard function of random variable ε? = exp(ε). Then the AFT model

can be re-written as T = exp(ZTβ)ε?, which has the following hazard and survival functions

λ(t;Z) = λε?(te
−ZT β)e−Z

T β

and

S(t;Z) = exp{−Λε?(te
−ZT β)},

where Λε?(t) =
∫ t

0
λε?(s)ds.

If Z ∈ {0, 1}, we have

S(t;Z = 1) = S(γt;Z = 0)

and

λ(t;Z = 1) = γλ(γt;Z = 0),

where γ = e−Z
T β.
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1.3.5 Linear transformation model

Here we introduce a collection of regression models, known as the linear transformation

model [Chen et al., 2002, Fine et al., 1998] defined as

h(T ) = ZTβ + ε,

where h(t) is an unknown strictly increasing function of t, Z is the covariate vector, and

ε is a random variable with a known distribution function F . The linear transformation

model includes PH and PO models as special cases, where the random variable ε follows the

extreme value distribution or the standard logistic distribution, respectively.

An equivalent format of linear transformation model is defined as

g{S(t;Z)} = h(t)− ZTβ,

where g−1(s) = 1 − F (s). We can see that it is a semiparametric model for S(t;Z), as the

nuisance part h(t) is unknown with infinite dimension, and the finite-dimensional β is the

primary goal for estimation and inference. A major advantage of the model is its generality

and flexibility, as F can be any specific distribution function. In Chapter 2, we will introduce

a copula-based semiparametric transformation model for bivariate interval-censored data.

1.4 Models for multivariate failure time data

The previous section introduces some general regression models for univariate survival

data, as only one survival time T is defined in each model. When several correlated survival

times are modeled together, their dependence structure needs to be properly modeled. Many

papers have addressed the analysis of multivariate failure time data, mostly in the presence

of right-censored data. Klein and Moeschberger [2006] and Hougaard [2012] are excellent

reference books on this topic. The emphasis of this dissertation is bivariate survival data

that includes two survival times T1 and T2. There are three general categories of methods for

bivariate failure time data: marginal method, frailty models, and copula-based approaches.
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1.4.1 Marginal models

The marginal models assume each of the correlated survival times follows a marginal

distribution and build the likelihood function without considering the correlation between

the margins. As a result, the naive variance estimator of regression coefficients β is un-

derestimated. Instead, one needs to obtain a robust variance estimator to account for the

correlation. Among the extensive literature, Wei et al. [1989] and Guo and Lin [1994] devel-

oped the marginal proportional hazards models for continuous and discrete right-censored

data, respectively. Goggins and Finkelstein [2000] and Kim and Xue [2002] applied the same

marginal proportional hazards models to continuous and discrete interval-censored data.

1.4.2 Frailty models

The frailty models assume there exists an unobserved frailty random variable that ac-

counts for the dependence structure of correlated survival times [Clayton and Cuzick, 1985].

Given the frailty term, the survival times are conditionally independent. The frailty model

has become a popular approach for bivariate survival data [Oakes, 1989]. It is also used to

model survival time and informative censoring time together.

Under the frailty model with a proportional hazard assumption, we first define the con-

ditional cumulative hazard function

Λj(t|u) = uΛj,m(t), j = 1, 2,

where j denotes the jth margin, u is the frailty random variable with the density function

fη(u), Λj,m(t) is the cumulative hazard function at time t when u = 1. The corresponding

marginal survival function can be derived through the Laplace transformation:

Sj,m(t) =

∫
Sj(t|u)fη(u)du =

∫
e−uΛj,m(t)fη(u)du = Lη(Λj,m(t)),

where Lη(.) is the Laplace transformation function with respect to the frailty density func-

tion. Thus, we can obtain the following formula by the inverse Laplace transformation:

Λj,m(t) = L −1
η (Sj,m(t)).
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By assuming conditional independence of two margins given u, we can write the conditional

joint survival function as

S(t1, t2|u) = S1(t1|u)S2(t2|u).

Finally, the marginal joint survival function [Oakes, 1989] is expressed by:

Sm(t1, t2) =

∫
S1(t1|u)S2(t2|u)fη(u)du

=

∫
e−u{Λ1,m(t)+Λ2,m(t)}fη(u)du

= Lη[L
−1
η {S1,m(t)}+ L −1

η {S2,m(t)}].

In spite of the frailty model’s advantage in modeling the correlation between survival

times, it has several limitations: (1) the frailty term accounts for correlation, but its inter-

pretation is not straightforward; (2) the coefficient β typically can only be interpreted upon

conditioning on the frailty term.

1.4.3 Copula models

In this dissertation, we will use the copula model for multivariate survival data. The cop-

ula model is another commonly used method for bivariate survival data. There are several

advantages to applying this model. First, the copula has a property of “scale-invariance”

nature of the dependence between two survival times. That is, if α and β are almost surely

increasing functions of T1 and T2 respectively, then the copula of α(T1) and β(T2) is the

same as the copula of T1 and T2. Hence it is the copula that captures the “distribution-free”

nature of the dependence between T1 and T2 [Nelsen, 2006]. Second, the copula’s depen-

dence parameter can be expressed by nonparametric dependence measures such as Kendall’s

τ . This connection is particularly useful in survival models as multivariate survival times do

not always follow a normal distribution. Third, there are many types of copula models, and

each could account for a distinct tail dependence. This property renders great flexibility for

modeling various correlation patterns. Lastly, marginal survival distributions are indepen-

dent of the choice of the dependence parameter in the copula model. Thus, one can model

the margins and dependence parameter separately. This property stems from the Sklar’s the-

orem [Sklar, 1959], which states that any multi-dimensional joint distribution function may
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be decomposed into marginal distributions and a copula function that completely describes

the dependence structure.

Clayton [1978] first applied the copula model to bivariate survival data. Shih and Louis

[1995] proposed a two-stage estimation procedure for the dependence parameter in copula

models for bivariate right-censored data. Wang and Ding [2000] and Sun et al. [2006] ex-

tended the two-stage estimation of dependence parameter to the bivariate case I and II

interval-censored data, respectively.

Concept of copula

Let T1 and T2 be two continuous random variables with marginal cumulative distribution

functions F1(t1) = P (T1 ≤ t1) and F2(t2) = P (T2 ≤ t2). Define random variables U1 =

F1(T1) and U2 = F2(T2) and both follow the uniform distribution on I (I = [0, 1]). Thus the

joint cumulative distribution of (U1, U2) is:

C(u1, u2) = P (U1 ≤ u1, U2 ≤ u2).

Then, the mapping from (u1, u2) ∈ I2 to C(u1, u2) ∈ I is a copula. Since F (t) is a monoton-

ically increasing function, the above expression could be rewritten to the joint distribution

of (T1, T2) :

C(u1, u2) = P (T1 ≤ F−1
1 (u1), T2 ≤ F−1

2 (u2)).

An informal definition of a two-dimensional copula

Suppose the previously defined (T1, T2) has the joint distribution function:

F (t1, t2) = P (T1 ≤ t1, T2 ≤ t2).

Then for every (t1, t2) in [−∞,+∞]2, we consider the points in I3 with coordinates

(F1(t1), F2(t2), C(t1, t2)). Then, the mapping from I2 to I is a copula.

A formal definition of a two-dimensional copula

A two dimensional copula is a function C: I2 → I such that

(1) C(u1, u2) is grounded, i.e., C(0, u2) = C(u1, 0) = 0 for every (u1, u2) ∈ I2.

(2) C(1, u2) = u2, C(u1, 1) = u1 for every (u1, u2) ∈ I2.

(3) C(u1, u2) is two-increasing, i.e., for u1, u
′
1, u2, u

′
2 ∈ I with u1 ≤ u′1 and u2 ≤ u′2,

VC([u1, u
′
1]× [u2, u

′
2]) = C(u′1, u

′
2)− C(u1, u

′
2)− C(u′1, u2) + C(u1, u2) ≥ 0,
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where VC is called the C-volume of the rectangle [u1, u
′
1] × [u2, u

′
2]. Note that VC([0, u1] ×

[0, u2]) = C(u1, u2).

In brief words, a copula is a function that maps any point in the unit square to a value on

[0, 1]. From a probabilistic perspective, a copula is a joint cumulative distribution function

whose marginal distributions are uniform, i.e, VC([0, u1] × [0, u2]) = C(u1, u2). A special

copula is the product copula, defined as Π(u1, u2) = u1u2.

The informal and formal definitions are connected by the following Sklar theorem.

Sklar’s Theorem [Sklar, 1959]

Let F (t1, t2) be a two-dimensional distribution function with marginal distributions F1(t1)

and F2(t2). Then, there exists a copula C such that

F (t1, t2) = C{F1(t1), F2(t2)}.

Furthermore, when F1(t1) and F2(t2) are continuous, then C is unique. Conversely, for

any distribution functions F1 and F2 and any copula C, the F (·, ·) function defined above is

a two-dimensional distribution function with margins F1(t1) and F2(t2).

Based on the Sklar’s theorem, the joint distribution function of (t1, t2) could be param-

eterized by two marginal distributions and a copula, indexed by a parameter η:

F (t1, t2; η) = Cη(F1(t1), F2(t2)),

where η is the dependence parameter of the copula.

Tail dependence

Joe [1997] defined the tail-dependence coefficient (TDC) in copula. Let T1 and T2 be two

continuous random variables with marginal distribution S1(t1) and S2(t2) that are coupled

with a copula Cη to form a joint survival function. Then the upper and lower tail dependence

coefficients of (T1, T2) are defined as:

λL = lim
v→1−

P (S2(T2) ≥ v|S1(T1) ≥ v) = lim
v→1−

Cη(1− v, 1− v)

1− v

and

λU = lim
v→0+

P (S2(T2) ≤ v|S1(T1) ≤ v) = lim
v→0+

1− 2v + Cη(1− v, 1− v)

v

provided that λU and λL exist.
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When λL(λU) ∈ (0, 1], T1 and T2 are asymptotically dependent in the lower (upper) tail.

If λL(λU) = 0, T1 and T2 are asymptotically independent in the lower (top) tail.

Archimedean copula family

One popular copula group is the Archimedean copula family, and it is widely used in areas

such as finance, insurance, and health. It has explicit expressions [Nelsen, 2006, Schweizer

and Sklar, 2011]:

Cη(u, v) = Hη{H−1
η (u) +H−1

η (v)}, 0 ≤ u, v ≤ 1,

where Hη : [0,∞) → [0, 1] is a generator function. The generator function is a strictly

decreasing function, as illustrated in the copula definition. That is, it is a continuous strictly

decreasing and convex function from [0,+∞] to I, with Hη(0) = 1.

If Hη is a Laplace transformation of some distribution, the Archimedean copula family

will reduce to proportional frailty models [Marshall and Olkin, 1988, Oakes, 1989]. For

example, when Hη(u) = (1 + u)−1/η, which is the Laplace transformation of a Gamma

distribution, it becomes the Clayton copula [Clayton, 1978]:

Cη(u, v) = (u−η + v−η − 1)−1/η, η ∈ (0,∞),

where T1 and T2 are positively associated and become independent when η → 0, and

λ(t2|T1 = t1)/λ(t2|T1 ≥ t1) = η − 1. When Hη(u) = exp(−u1/η), the Laplace transformation

of a positive stable distribution, it becomes the Gumbel copula [Gumbel, 1960, Hougaard,

1986]:

Cη(u, v) = exp[−{(− log u)η + (− log v)η}1/η], η ∈ (1,∞),

where T1 and T2 are positively associated and become independent when η → 1.

The Clayton copula models lower tail correlation between u and v, with Kendall’s τ =

η
η+2

, while the Gumbel copula models upper tail dependence, with Kendall’s τ = 1− 1
η
.

Two-parameter Archimedean copula

To model both upper and lower tail dependence, one can apply the two-parameter copula

[Joe, 1997], derived from a more sophisticated generator function and inverse generator

function:

Hα,κ(s) = (
1

1 + sα
)κ, s ∈ [0,+∞),

11



and

H−1
α,κ(u) = (u−1/κ − 1)

1
α , u ∈ [0, 1),

where α models the upper tail dependence and κ models the lower tail dependence. The

joint survival function is defined by the two-parameter copula:

S(t1, t2;α, κ) = Cα,κ(S1(t1), S2(t2))

= Hα,κ[H
−1
α,κ{S1(t1)}+H−1

α,κ{S2(t2)}]

= [1 + {(u−1/κ − 1)1/α + (v−1/κ − 1)1/α}α]−κ, α ∈ (0, 1], κ ∈ (0,∞),

where u, v ∈ [0, 1].

Both Clayton and Gumbel copulas are special cases of the two-parameter copula model,

in which Kendall’s τ = 1− 2ακ
2κ+1

. When α→ 1, the two-parameter copula becomes Clayton

copula, with Kendall’s τ = κ−1

κ−1+2
. When κ → ∞, we get Gumbel copula, with Kendall’s

τ = 1− α. In Chapter 2, we will introduce the first two-parameter copula survival model in

bivariate interval-censored data.

1.4.4 Relationship between frailty and copula

Both frailty and Archimedean copula models could model the bivariate dependence struc-

ture between two survival times. The form of frailty is determined by choice of Laplace

transformation function Lη(.), whereas the form of copula depends on the specification of

the generator function Hη(.). Oakes [1989] suggested that the two models are intimately

connected. To establish the relationship between copula and frailty, we define Hη(.) in the

Copula model to be the Laplace transformation Lη(.) in the frailty model. Then, the joint

survival function under the copula model becomes

Sc(t1, t2) = Lη[L
−1
η {S1,c(t)}+ L −1

η {S2,c(t)}].

Note that previously we have defined the joint survival function in the frailty model as

Sm(t1, t2) = Lη[L
−1
η {S1,m(t)}+ L −1

η {S2,m(t)}].
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When the frailty variable u follows a Gamma distribution Gamma(1/η, 1/η) with unit mean

and variance η (η > 0), the Laplace transformation becomes:

Lη(s) = (1 + ηs)−1/η, L −1
η (s) = (s−η − 1)/η.

Then the joint survival functions of the two models are re-written as:

Sc(t1, t2) =

[
{S1,c(t1)}−η + {S2,c(t2)}−η − 1

]−1/η

,

Sm(t1, t2) =

[
{S1,m(t1)}−η + {S2,m(t2)}−η − 1

]−1/η

,

where

Sj,m(t) = Lη{Λj,m(t)} =

∫
e−uΛj,m(t)fη(u)du = {1 + ηΛj,m(t)}−1/η, j = 1, 2.

We notice that the copula formula has become the popular Clayton copula, and more

interestingly, the Gamma frailty and Clayton models share the same mathematical expres-

sion. However, Sj,m(t) contains the frailty parameter η, while Sj,c(t), which is the marginal

function under copula models, is free of η by its definition. Thus, it leads to different joint

survival functions [Goethals et al., 2008]. In fact, only when η → 0, which indicates T1 and

T2 are independent, the two models are equivalent with

lim
η→0

Sj,m(t) = e−Λj,m(t),

which is free of η. In this special case, Sj,m(t) = Sj,c(t) and Sm(t1, t2) = Sc(t1, t2).
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1.5 Interval-censored failure time data

Interval-censored data are common in many medical studies, in which the exact failure

time is only known to lie within a time interval. The exact or right/left-censored failure

times can be considered as special cases of interval-censoring, when the interval reduces to

a single point or the right/left endpoint of the interval approaches infinity. The analysis of

interval-censored data is more challenging and less developed than that of the right-censored

data. Many popular methods for right-censored data, such as Cox partial likelihood and

Kaplan-Meier estimator, do not apply under interval censoring. More discussions about

interval-censored data can be found in Sun [2007]. In Chapters 2 and 3, I will introduce

novel statistical methods for modeling bivariate interval-censored data and examining the

goodness-of-fit of the fitted models.

1.5.1 Case I interval-censoring

The case I interval censoring is a special and simple case of interval-censoring. Each

subject is observed only once during the entire study. As a result, the event of interest is

only known to occur before or after the observation time. In this case, the case I data only

contain left- or right-censored data, and such data are also referred to as current status data.

The case I censoring is usually due to cross-sectional or nature of the experiment.

1.5.2 Case II interval-censoring

Case II interval-censored data are also known as general interval-censored data. Any

interval-censored data that is not case I is considered as case II. In other words, case II

interval-censored data are interval-censored data that include some finite intervals away

from zero. For example, each subject is observed twice, where U and V are two random

variables satisfying U ≤ V . For another example, there exists a set of K (K is random)

observation time points (case K or mixed case interval-censored data), which includes the

first example as a special case and is a natural representation of interval-censored data arising

from longitudinal studies with periodic follow-ups.
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1.5.3 Panel count data

Previous examples treat the event of interest as an absorbing event and deal with time

to the event or between two events. In practice, the event of interest could repeatedly

appear over time, known as the recurrent event. If the recurrent process is monitored at

discrete observation times, it leads to interval-censored recurrent event data, in which only

the numbers of occurrences of the event are known at each observed time. This type of data

is also referred to as panel count data. The counting process technique is commonly used

for the analysis of panel count data.

1.6 Models for interval-censored data

1.6.1 Case I data

Unlike the right-censored data, there exists no comparable approach with the partial like-

lihood for the interval-censored case (including case I data). Thus, one needs to deal with

a full likelihood that includes both finite-dimensional regression coefficients and infinite-

dimensional nuisance parameters (e.g., the baseline cumulative hazard or the survival func-

tion). Among the semiparametric models for the case I data, Huang et al. [1996] and Rossini

and Tsiatis [1996] proposed maximum likelihood-based approaches under the proportional

hazards and proportional odds assumptions, respectively, and obtained inference of β through

sieve maximum likelihood methods. Lin et al. [1998] developed an additive hazards model

and made inferences based on estimating equations. Sun and Sun [2005] investigated linear

transformation models for the case I interval-censored data.

1.6.2 Case II data

The case II interval-censored data includes more than one observation times for each

survival time, so it contains more information than the case I data. However, the analysis

of case II interval-censored data is more difficult than the case I data in terms of computa-
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tion and inference. Finkelstein [1986] proposed a proportional hazards model and applied

the Newtown-Raphson algorithm to determine the maximum likelihood estimator of coeffi-

cients and finite-dimensional baseline hazards together. Huang and Rossini [1997] and Shen

[1998] applied sieve-based approaches in a proportional odds model by estimating the base-

line log odds function through piecewise linear and monotonic spline functions, respectively.

However, it is hard to choose the number of knots. Rabinowitz et al. [2000] developed an

approximate conditional likelihood for the proportional odds model without estimating the

baseline log odds function, but the method does not perform well in small samples. For

the additive hazards model, Zeng et al. [2006], Chen and Sun [2009] and Zhu et al. [2008]

investigated the maximum likelihood, multiple imputation, and transformation approaches,

respectively. Wang et al. [2010] and Chen et al. [2007] fitted an additive hazards or propor-

tional odds model, respectively, and established asymptotic properties of β by estimating

equation methods. Rabinowitz et al. [1995], Li and Pu [2003] and Betensky et al. [2001] de-

veloped accelerated failure time models for case II interval-censored data using score statistics

and estimating equation methods. Gu et al. [2005], Zhang et al. [2005] and Zhang and Zhao

[2013] employed linear transformation models to obtain rank-based estimators, but they are

computationally and statistically inefficient. Zeng et al. [2016] proposed a maximum like-

lihood estimation algorithm for a frailty-induced transformation model of interval-censored

data with time-dependent covariates. The resulted coefficient estimates are consistent and

asymptotically efficient. Zeng et al. [2017] further extended the semiparametric transforma-

tion models with random effect to multivariate interval-censored data.

Most of the papers mentioned above use the observed Fisher information matrix to

estimate the variance-covariance matrix of the maximum likelihood estimators of regression

coefficients. One alternative method is the profile likelihood approach, proposed by Huang

and Wellner [1997], in which the variance-covariance matrix is estimated by the inverse of the

curvature of the profile likelihood. It is feasible when the number of regression parameters

β is small, and the profile likelihood is a smooth function of β.
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1.6.3 Multivariate interval-censored data

Finkelstein et al. [2002], Chen et al. [2007], Tong et al. [2008] and Chen et al. [2013]

fitted marginal models for multivariate interval-censored data under proportional hazards,

proportional odds, additive hazards and linear transformation models, respectively. Those

marginal approaches ignore the correlation structure within the multivariate data and may

lose efficiency. They also assumed a common set of examination time points for all subjects.

To account for the underlying dependency, Cook et al. [2008] developed a multistate model

approach. Chen et al. [2009] proposed a frailty proportional hazards model for case I data

and estimated baseline hazard functions by piece-wise constants. Chen et al. [2014] built

a frailty proportional hazards model to case II data and applied an EM algorithm for pa-

rameter estimation. Wen and Chen [2013] developed a semiparametric maximum likelihood

estimation approach for the gamma-frailty proportional hazards model under mixed-case in-

terval censoring. Wang et al. [2015] employed an EM algorithm for bivariate current status

data and estimated the baseline function by splines. More recently, Zhou et al. [2017] im-

plemented a gamma frailty-based linear transformation model for bivariate interval-censored

data and estimated regression parameters by a sieve maximum likelihood estimation ap-

proach. Besides the multistate and random effect models, Wang et al. [2008] took account

of the correlation by implementing a copula model with proportional hazards margins for

current status data in which the examination time is parameterized by a Cox model. Cook

and Tolusso [2009] and Kor et al. [2013] developed copula models with proportional hazards

margins and piece-wise baseline functions for the case I and II interval-censored data, respec-

tively. In Chapter 2, I will introduce a novel two-parameter-copula-based semiparametric

transformation model for bivariate data under general interval censoring.

1.7 Goodness-of-fit tests for copula models

Copula models are widely used to account for dependency between correlated distribu-

tions, and there are many different types of copula models. Therefore, a goodness-of-fit

17



(GOF) test for copula specification is highly desired. In the next sections, we will introduce

the existing GOF tests for copula models.

1.7.1 Complete data

Wang and Wells [2000] proposed a non-parametric selection procedure for checking

whether an Archimedean copula model properly models a random sample of bivariate right-

censored data based on the L2 norm of a truncated Kendall process introduced by Genest

and Rivest [1993], which measures the distance between the empirical and model-based

estimates of Kendall distribution. They also established the asymptotic behavior of the

Kendall process. Later, Genest et al. [2006] extended Wang and Wells [2000] by develop-

ing a test statistic for complete data based on the probability integral transformation and

the asymptotic behavior of a non-truncated Kendall process. Chen and Fan [2005] intro-

duced pseudo-likelihood ratio tests for selecting semiparametric multivariate copula models

in which the marginal distributions are unspecified, but the copula function is parameterized

and can be misspecified. The tests compare between two or more candidate copula models,

which can be either generalized non-nested or generalized nested. Huang and Prokhorov

[2014] proposed an in-sample test statistic based on the subtraction of the expected Hessian

matrix of log-likelihood and the expected outer product of the corresponding score function.

More recently, Zhang et al. [2016] applied a pseudo-in-and-out-of sample (PIOS) likelihood

ratio test statistic to check the goodness-of-fit for semiparametric copula models in identi-

cally independent distributed data and time series data. The essential idea of PIOS is to

measure how sensitive the assumed copula-based likelihood is to the data change through

a jackknife procedure. In particular, the asymptotic behavior of the PIOS test statistic is

developed based on the Information Ratio (IR) test statistic, which was applied to check

the covariance structure of the generalized estimating equation (GEE) model in Zhou et al.

[2012]. One big advantage of the PIOS and IR tests is that they can apply to all parametric

copula models with explicit functional forms. Moreover, their calculations are simple and

straightforward.

18



1.7.2 Censored data

Shih [1998] first proposed a goodness-of-fit test for the Clayton family fitted in bivariate

right-censored data. Specifically, their test compares unweighted and weighted concordance

estimators of the dependence parameter η derived under the same class of estimation equa-

tions with different weight functions. The difference should be close to zero if the assumed

Clayton model is the true copula model. Emura et al. [2010] further extended this idea to

the general Archimedean copula family, and Fine and Jiang [2000] extended a similar idea

to testing the Clayton copula with AFT margins in the presence of covariates. Overall, this

type of method deletes non-orderable pairs of the bivariate event times from the estimat-

ing equation, which is difficult to adapt to bivariate interval-censored data where no exact

event times are observed. Andersen et al. [2005] developed three types of bootstrap-based

goodness-of-fit test statistics applicable to any pre-specified form of the copula in bivariate

right-censored data. Its core idea is to compare the parametric estimate of the assumed

copula and a non-parametric estimate via the chi-square type statistic, the Kolmogorov-like

statistic, and the weighted difference based statistic. Due to the non-parametric estima-

tion procedure in constructing the test statistics, this method does not have the power as

the test of Shih [1998]. Lakhal-Chaieb [2010] extended Wang and Wells [2000] to testing

Archimedean copulas under right censoring by developing a non-parametric inverse proba-

bility of censoring weighted estimator for Kendall’s distribution. Chen et al. [2010] extended

the pseudo-likelihood ratio tests of Chen and Fan [2005] to multivariate survival data under

the general right censorship. Specifically, the event times are allowed to have different censor-

ing mechanisms, for example, one random and the other fixed or one censored and the other

uncensored. Its test hypothesis is to examine whether the assumed copula fits data better

than a group of other copula models. Wang [2010] proposed a Fisher Z test statistic for bi-

variate right-censored data using Archimedean copulas based on multiply imputed complete

data. Its statistic is derived from the correlation coefficient between two random variables

following the Kendall distribution, which are shown to be independent under the correct

Archimedean copula specification, as shown by Genest and Rivest [1993]. More recently,

Mei [2016] proposed a likelihood-based PIOS test under right censoring based on the PIOS
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test for complete data from Zhang et al. [2016]. Lin and Wu [2020] developed a smooth test

for copula specification in the right-censored data, which usually requires the selection of a

suitable set of moment functions in constructing the test statistic. In addition, Yilmaz and

Lawless [2011] developed a procedure for testing η = η0 under the correct copula setting in

bivariate right-censored data, which is completely different from testing copula specification

as in the rest papers.

To the best of our knowledge, there is no formal statistical test for copula specification

under interval censoring. In Chapter 3, I will introduce a novel information ratio (IR)-based

goodness-of-fit test for diagnosing copula in multivariate survival data under complete, right-

and interval-censored settings.

1.8 Survival prediction models

1.8.1 Survival prediction models for precision medicine in the big data era

Accurate ‘time-to-event’ data based survival prediction is fundamental to effective clin-

ical management and precision medicine of human diseases [Chin et al., 2011, Compton,

2018]. It relies on a survival model to predict the dynamic risk profile of a future event over

time (e.g., disease onset, recurrence, progression, or death) based on the individual’s current

status, such as clinical characteristics, genetic information, and medical images. Most impor-

tantly, such a prediction addresses the patient’s key concern regarding the disease progression

pattern in the future and shapes the physician’s decision making for the treatment or clinical

management strategy. It is to be noted that the survival prediction is fundamentally differ-

ent from typical prediction models that predict a future event (whether occurs or not) by

fixing the time of interest through a binary classification [Castro-Rodŕıguez et al., 2000, Chi

et al., 2007]. Despite its essential role in precision medicine, the survival prediction remains

a challenging task [Abrams et al., 2014, Barillot et al., 2012, Schumacher et al., 2012], largely

due to the complex nature of diseases and the heterogeneity between patients. Therefore,

there is an urgent need for developing accurate and personalized survival prediction models
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with improved capacity in learning the complex structures and interplays among predictors.

Recent advances in high-throughput technologies have generated large volumes of molecular

profiling data for each patient, which provides unprecedented opportunities in identifying po-

tential biomarkers and further establishing accurate survival prediction models [Chen et al.,

2019, Collins and Varmus, 2015, Sarnowski et al., 2018]. In particular, several national-wide

large-scale longitudinal studies, such as the Trans-Omics for Precision Medicine (TOPMed)

and All of Us, are underway using whole-genome sequencing and other omics technologies,

with the ultimate goal of accelerating precision medicine. However, how to effectively utilize

the wealthy amount of data is challenging. The first challenge comes from how to connect

high-dimensional predictors with the outcome of interest. This problem is particularly dif-

ficult in survival prediction because the events of interest are often censored due to either

a short study period or loss of follow-up during the study. The second challenge is how

to model the complex structure among numerous biomarkers, where the specific structure

is largely unknown. The third challenge is that given the heterogeneity of patients, how

to interpret the importance of each predictor for each patient and further how to identify

patient subgroups to provide personalized prevention or treatment strategy.

The recent advances in multi-layer deep neural network models have made extraordinary

achievements in providing new effective risk prediction models from complex and high di-

mensional biomedical data, such as omics and biomedical imaging [Grassmann et al., 2018,

Min et al., 2016, Miotto et al., 2017, Poplin et al., 2018]. However, the application of deep

learning in survival prediction is still limited.

1.8.2 Cox proportional hazards model

The Cox proportional hazards model is the most popular regression model for right-

censored survival data. It assumes that the hazard function of survival time T takes the

form [Klein and Moeschberger, 2006]

h(t|Zi) = h0(t) exp(ZT
i θ), (1.8.1)

where h0(t) is the unspecified baseline hazard function at time t, and θ is a vector of covariate

effects. The term ZT
i θ is called the linear predictor or prognostic index.
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The estimator θ̂ can be obtained by maximizing the log partial likelihood [Cox, 1972]

− 1

ND

∑
j∈D

{
ZT
j θ − log

∑
i∈Rj

eZ
T
i θ

}
, (1.8.2)

where D is the set of all events with size ND; {tj} is the set of unique event times; Rj is the

risk set satisfying Yi ≥ tj. The standard optimization algorithm, such as Newton-Raphson,

can be used to maximize the log partial likelihood.

To obtain the estimated survival probabilities for each subject i, we have

Ŝ(t|Zi) = exp{−Ĥ0(t)eZ
T
i θ̂}, (1.8.3)

where Ĥ0(t) =
∫ t

0
ĥ0(u)du is the estimated baseline cumulative hazard function [Klein and

Moeschberger, 2006].

The Cox model is a flexible semiparametric model that does not assume a parametric

distribution for the baseline hazard function h0(t). However, it suffers from the limitation

in the dimension of covariates Zi. It does not work in the presence of high-dimensional

predictors, such as in the genome-wide association study (GWAS). Moreover, it assumes

a linear relationship in the prognostic index (i.e., ZT
i θ), which may not hold in practice.

Therefore, more sophisticated survival models are needed to handle both high-dimensional

predictors and non-linear structure among predictors.

1.8.3 Cox LASSO model

One approach to handle high-dimensional covariates is the Cox LASSO method. Tibshi-

rani [1996] proposed to shrink regression coefficients by L1 penalization and later extended

the method to the regular Cox proportional hazards model [Tibshirani, 1996]. The loss func-

tion for LASSO is the negative log partial likelihood function (formula (1.8.2)) plus the L1

penalty:

− 1

ND

∑
j∈D

{
ZT
j θ − log

∑
i∈Rj

eZ
T
i θ

}
+λ||θ||1, (1.8.4)

where λ is the L1 penalty parameter that enables LASSO to deal with high-dimensional

covariates. The optimization of this penalized log partial likelihood function is implemented

in the R package glmnet [Simon et al., 2011]. However, based on the formula (1.8.4), we can
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see that LASSO also assumes that the prognostic index is a linear combination of covariates.

Therefore, it is still not flexible enough to account for non-linear covariate structures (such

as non-linear and interaction effects).

1.8.4 Random survival forest (RSF) model

The random survival forest model [Ishwaran et al., 2008] is a tree-ensemble nonparametric

method for survival outcomes. It grows every single tree by randomly drawing bootstrap

samples from original data and further randomly selecting a subset of predictors as candidates

for splitting at each node. At each node, the best split is found among all binary splits

defined by the selected predictors according to a splitting rule, such as the log-rank test.

Finally, the model aggregates terminal nodes across all survival trees and obtain a survival

prediction ensemble. RSF has become a popular survival prediction method, and it does not

assume linearity among predictors. We implement the RSF model through the R package

RandomForestSRC [Ishwaran and Kogalur, 2007].

1.8.5 Deep neural network (DNN) survival model

Unlike regular Cox or LASSO, the deep neural network model is well known for its

capacity in learning complex covariate structures (i.e., non-linearity, interactions) [LeCun

et al., 2015]. By the Universal Approximation Theorem [Cybenko, 1989, Hornik et al.,

1989], for any continuous function g(Z; θ), there is guaranteed to be a neural network that

approximates this function. Moreover, this theorem holds even if we restrict the neural

networks to have just one single hidden layer. Therefore, even a very simple neural network

architecture can be extremely powerful. The synergy of the powerful DNN and the popular

Cox model leads us to build a DNN survival model and evaluate it together with other

already discussed machine learning survival models. More details can be found in Chapter

4.
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2.0 Copula-based Semiparametric Regression Model in Bivariate Data under

General Interval Censoring

2.1 Introduction

Bivariate time-to-event endpoints are frequently used as co-primary outcomes in biomed-

ical and epidemiological fields. For example, two time-to-event endpoints are often seen in

clinical trials studying the progression (or recurrence) of bilateral diseases (e.g., eye diseases)

or complex diseases (e.g., cancer and psychiatric disorders). The two endpoints are corre-

lated as they come from the same individual. Bivariate interval-censored data arise when

both events are not precisely observed due to intermittent assessment times. Therefore, the

event times are only known to belong to an interval (i.e., case II interval-censored). A further

complication is that the event status can be indeterminate (i.e., right-censored) for individu-

als who are event-free at their last assessment time. The special case when there exists only

one assessment time, leading to the bivariate current status data (events are either left- or

right-censored), can also happen for some individuals. Therefore, the bivariate data we are

interested in modeling are under general interval censoring, which may include a mixture of

left-, right- and interval-censored data.

Our motivating example of such bivariate general interval-censored data came from a

large clinical trial [AREDS Group, 1999] studying the progression of a bilateral eye disease,

Age-related Macular Degeneration (AMD), of which the two-eyes from the same patient

were periodically examined for late-AMD. The study aims to discover genetic variants that

are significantly associated with AMD progression, as well as to characterize both the joint

and conditional risks of AMD progression. For example, the joint 5-year progression-free

probability for both eyes is a clinically significant measure to group patients into different

risk categories. Similarly, for patients who have one eye already progressed, the conditional

5-year progression-free probability for the non-progressed eye (given its fellow eye already

progressed) is vital to both clinicians and patients. Therefore, a desired statistical method

needs to characterize and predict both joint and conditional risk profiles.
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There are several approaches to modeling bivariate interval-censored data. For example,

Goggins and Finkelstein [2000], Kim and Xue [2002], Chen et al. [2007], Tong et al. [2008]

and Chen et al. [2013] fitted various marginal models for multivariate interval-censored data.

All these approaches model the marginal distributions based on the working independence

assumption, and thus cannot produce joint or conditional distributions. Another popular

method is based on frailty models (for example, Oakes, 1982), which are mixed effects mod-

els with a latent frailty variable applied to the conditional hazard functions. For example,

Chen et al. [2009] and Chen et al. [2014] built frailty proportional hazards (PH) models

with piecewise constant baseline hazards for multivariate current status data and interval-

censored data, respectively. Wen and Chen [2013] and Wang et al. [2015] developed Gamma-

frailty PH models for bivariate interval-censored data through a nonparametric maximum

likelihood estimation approach and bivariate current status data through a sieve estima-

tion approach, respectively. Recently, Zhou et al. [2017] and Zeng et al. [2017] proposed

frailty-based transformation models for bivariate or multivariate interval-censored data, and

obtained parameter estimates through the sieve maximum likelihood estimation and non-

parametric maximum likelihood estimation, respectively. For frailty models, the covariate

effects are typically interpreted on the conditional level by conditioning on the random frailty

term.

The third popular approach is based on copula models [Clayton, 1978, for example].

Unlike the marginal or frailty approaches, the copula-based methods directly connect the two

marginal distributions through a copula function to construct the joint distribution, of which

the copula parameter determines the dependence. This unique feature makes the modeling of

the margins separable from the copula function, which is attractive from both the modeling

perspective and the interpretation purpose. Both joint and conditional distributions can be

obtained from copula models. Several copula models have been proposed in the literature.

Wang et al. [2008] used sieve estimation in a copula model with proportional hazards margins

for bivariate current status data. Cook and Tolusso [2009] and Kor et al. [2013] developed

estimating equations for copula models with piecewise constant baseline marginal hazards for

clustered current status and interval-censored data, respectively. Hu et al. [2017] developed a

semiparametric sieve approach for bivariate current status data using copula framework with
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proportional hazards margins. To date, most copula-based regression models only handle a

specific interval censoring type (e.g., case I current status or case II interval censoring) and

are often limited to the PH assumption. Also, the most frequently used copula models, such

as Clayton, Gumbel, and Frank, all use only one dependence parameter, which can result in

a lack of flexibility.

Goethals et al. [2008] and Wienke [2010] have discussed the connection and distinction

between copula and frailty models. For example, the Clayton copula has the same mathe-

matical expression as the Gamma frailty model in terms of the joint survival distribution.

However, their marginal survival functions are modeled differently. Specifically, the marginal

function under the Clayton model only involves the time and covariate effects, whereas the

marginal function under the Gamma frailty model includes not only the time and covariate

effects but also the frailty parameter. As a result, the joint distribution functions of the

Clayton copula and Gamma frailty models are not equivalent, except when the two margins

are independent. More details are discussed in Appendix A.3. In this chapter, the objec-

tives of our real study lead us to choose copula-based models, which offer a straightforward

interpretation of covariate effects and dependence strength, as well as an easy generation of

joint and conditional survival distributions.

We propose a class of copula-based semiparametric transformation model for bivari-

ate data subject to general interval censoring. Specifically, we build a two-parameter copula

model framework, which can handle more flexible dependence structures than one-parameter

copulas. Our method incorporates a broad class of semiparametric regression models that

includes both PH and PO models. We approximate the infinite-dimensional nuisance pa-

rameters using sieves with Bernstein polynomials and propose a novel maximum likelihood

estimation procedure which is computationally stable and efficient. We establish the asymp-

totic normality and efficiency for the sieve estimators of finite-dimensional model parameters.

Moreover, we develop a generalized score test with numerical approximations of the score

function and observed Fisher information for testing covariate effects.

The chapter is organized as follows. Section 2.2 introduces the model and the joint

likelihood function. Section 2.3 presents the sieve maximum likelihood estimation procedure,

the asymptotic properties, and the generalized score test. Section 2.4 illustrates extensive
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simulation studies for the estimation and testing performances of our proposed methods.

We analyze the Age-related Eye Disease Study (AREDS) data and present the findings

in Section 2.5. Finally, we discuss and conclude in Section 2.6. Additional simulation and

analysis results, the regularity conditions, proofs and additional technical details are provided

in Appendix A.

2.2 Notation and likelihood

2.2.1 Copula model for bivariate censored data

Assume there are n independent subjects in a study. For subject i, we observe Di =

{(Lij, Rij, Zij), j = 1, 2}, where (Lij, Rij] is the time interval that the true event time Tij

lies in and Zij is the covariate vector. When Rij = ∞, Tij is right-censored, and when

Lij = 0, Tij is left-censored. We define the marginal survival function for subject i mar-

gin j as Sj(tij|Zij) = pr(Tij > tij|Zij) and the joint survival function for subject i as

S(ti1, ti2|Zi1, Zi2) = pr(Ti1 > ti1, Ti2 > ti2|Zi1, Zi2).

By the Sklar’s theorem (Sklar, 1959), so long as marginal survival functions Sj are

continuous, there exists a unique function Cη that connects two marginal survival functions

into the joint survival function: S(t1, t2|Z1, Z2) = Cη(S1(t1|Z1), S2(t2|Z2)), t1, t2 ≥ 0. Here,

the function Cη is called a copula, which maps [0, 1]2 onto [0, 1] and its parameter η measures

the dependence between the two margins. A signature feature of the copula is that it allows

the dependence to be modeled separately from the marginal distributions [Nelsen, 2006].

One favorite copula family for bivariate censored data is the Archimedean copula family,

which usually has an explicit formula. Two frequently used Archimedean copulas are the

Clayton (Clayton, 1978) and Gumbel (Gumbel, 1960) copula models, which account for the

lower or upper tail dependence between two margins using a single parameter.

Here, we consider a more flexible two-parameter Archimedean copula model [Joe, 1997],

which is formulated as

Cα,κ(u, v) = [1 + {(u−1/κ − 1)1/α + (v−1/κ − 1)1/α}α]−κ, α ∈ (0, 1], κ ∈ (0,∞), (2.2.1)
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where u and v are two uniformly distributed margins. The two dependence parameters

(α and κ) account for the correlation between u and v at both upper and lower tails, and

they explicitly connect to the Kendall’s τ with τ = 1 − 2ακ/(2κ + 1). In particular, when

α = 1, the two-parameter copula (2.2.1) becomes the Clayton copula, and when κ→∞, it

becomes the Gumbel copula. Thus, the two-parameter copula model provides more flexibility

in characterizing the dependence than the Clayton or Gumbel copula.

2.2.2 Joint likelihood for bivariate data under general interval censoring

The joint likelihood function using the two-parameter copula model can be written as

Ln(S1, S2, α, κ | D) =
n∏
i=1

pr(Li1 < Ti1 ≤ Ri1, Li2 < Ti2 ≤ Ri2 | Zi1, Zi2)

=
n∏
i=1

{
pr(Ti1 > Li1, Ti2 > Li2 | Zi1, Zi2)− pr(Ti1 > Li1, Ti2 > Ri2 | Zi1, Zi2)

−pr(Ti1 > Ri1, Ti2 > Li2 | Zi1, Zi2) + pr(Ti1 > Ri1, Ti2 > Ri2 | Zi1, Zi2)

}
=

n∏
i=1

[
Cα,κ{S1(Li1 | Zi1), S2(Li2 | Zi2)} − Cα,κ{S1(Li1 | Zi1), S2(Ri2 | Zi2)}

−Cα,κ{S1(Ri1 | Zi1), S2(Li2 | Zi2)}+ Cα,κ{S1(Ri1 | Zi1), S2(Ri2 | Zi2)}
]
.(2.2.2)

For a given subject i, if Tij is right-censored, then any term involving Rij becomes 0 (since

Rij is set to be ∞). Then the joint survival function for subject i reduces to either only

one term (if both Ti1 and Ti2 are right-censored) or two terms (if one Tij is right-censored).

The particular case of current status data can also fit into this model frame, where either

Lij is 0 (if the event has already occurred before the examination time, which is Rij in this

case) or Rij is ∞ (if the event has not happened upon the examination time, which is Lij in

this case). Therefore, the likelihood function (2.2.2) can handle the general form of bivariate

interval-censored data.

Next, we will estimate both the dependence parameters (α, κ) and two marginal survival

functions (S1, S2) together.
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2.2.3 Semiparametric linear transformation model for marginal functions

We consider the semiparametric transformation models for marginal survival functions:

Sj(t | Zj) = exp[−Gj{exp(ZT
j βj)Λj(t)}], j = 1, 2, (2.2.3)

where Gj(·) is a pre-specified strictly increasing function, βj is a vector of unknown regres-

sion coefficients, and Λj(·) is an unknown non-decreasing function of t. In model (2.2.3),

the transformation function Gj(·), the regression parameter βj and the infinite-dimensional

parameter Λj(·) are all denoted as margin-specific (indexed by j) for generality. In practice,

some or all of them can be the same for the two margins, and in that case, the corresponding

index j can be dropped.

This model (2.2.3) contains a class of survival models. For example, when G(x) = x, the

marginal survival function follows a proportional hazards model. When G(x) = log(1 + x),

the marginal function becomes a proportional odds model. In practice, the transformation

function can also be “estimated” by the data. For example, the commonly used Box-Cox

transformation G(x) = {(1 + x)r − 1}/r, r > 0, or the logarithmic transformation G(x) =

log(1 + rx)/r, r > 0, can be assumed. The proportional hazards and proportional odds

models are special cases in both transformation classes. Then the parameter r in G(·) can

be estimated together with other parameters in the likelihood, as we will demonstrate in our

simulation studies.

2.3 Estimation and inference

2.3.1 Sieve likelihood with Bernstein polynomials

In our likelihood function, we are interested in estimating the unknown parameter θ ∈ Θ:

Θ = {θ = (βT1 , β
T
2 , α, κ,Λ1,Λ2)T ∈ B ⊗M⊗M}.

Here B = {(β = (βT1 , β
T
2 )T , α, κ) ∈ Rp × R(0,1] × R+, ‖β‖ + ‖α‖ + ‖κ‖ ≤ M} with p being

the dimension of β and M being a positive constant. We denote by M the collection of all
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bounded, continuous and nondecreasing, nonnegative functions over [c, u], where 0 ≤ c <

u <∞. In practice, [c, u] can be chosen as the maximum range of all Lij and Rij.

In our log-likelihood function

ln(θ;D) = logLn(θ;D) =
n∑
i=1

logL(θ;Di) =
n∑
i=1

l(θ;Di),

there are finite-dimensional parameters of interest (β, α, κ) and two infinite-dimensional nui-

sance parameters (Λ1,Λ2), which need to be estimated simultaneously. Unlike the right-

censored data, tools like partial likelihood and martingale can not be applied to the interval-

censored data due to the absence of exact event times. Instead, following Huang and Rossini

[1997], we employ the sieve approach and form a sieve likelihood. Specifically, similar

to Zhou et al. [2017], we use Bernstein polynomials to build a sieve space Θn = {θn =

(βT , α, κ,Λ1n,Λ2n)T ∈ B⊗Mn⊗Mn}. Here,Mn is the space defined by Bernstein polyno-

mials for both j = 1 and 2:

Mn =

{
Λjn(t) =

mn∑
k=0

φjkBk(t,mn, c, u) :
mn∑
k=0

|φjk| ≤Mn; 0 ≤ φj0 ≤ · · · ≤ φjmn ; j = 1, 2

}
,

where t denotes time, Bk(t,mn, c, u) represents the Bernstein basis polynomial defined as:

Bk(t,mn, c, u) =

(
mn

k

)
(
t− c
u− c

)k(1− t− c
u− c

)mn−k; k = 0, ...,mn, (2.3.1)

with degree mn = o(nν) for some ν ∈ (0, 1), φjk are coefficients, and Mn = O(na) with

a being a positive constant. We assume the basis polynomials Bk(t,mn, c, u) are the same

between the two margins, while the coefficients φjk can be margin-specific. In practice, one

may choose mn based on model AIC values. With a pre-specified mn, we solve φjk together

with other parameters (β, α, κ). One big advantage of Bernstein polynomials is that they can

achieve the non-negativity and monotonicity properties of Λj(t) through re-parameterization

[Zhou et al., 2017]. Another advantage of Bernstein polynomials is that they do not require

the specification of interior knots, as seen from (2.3.1), making them flexible for use.

With the sieve space defined above, Λj(t) will be approximated by Λjn(t) ∈Mn. In the

next section, we propose an estimation procedure to maximize ln(θ;D) over the sieve space

Θn to obtain the sieve maximum likelihood estimators θ̂n = (β̂Tn , α̂n, κ̂n, Λ̂1n, Λ̂2n)T .
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2.3.2 Estimation procedure for sieve maximum likelihood estimators θ̂n

We develop a novel sieve maximum likelihood estimation procedure that is generally

applicable to any choice of Archimedean copulas and marginal models. In principle, we

can obtain the sieve maximum likelihood estimators by maximizing the joint likelihood

function (2.2.2) in one step. Due to the complex structure of the joint likelihood function,

we recommend using a separate step to obtain appropriate initial values for all the unknown

parameters. In essence, (βj,Λjn) are first estimated marginally in step 1(a). Then their

estimators are plugged into the joint likelihood to form a pseudo-likelihood. In step 1(b),

the dependence parameters (α, κ) are estimated through maximizing the pseudo-likelihood

function. Finally, using initial values from step 1(a) and 1(b), we update all the unknown

parameters simultaneously under the joint log-likelihood function in step 2. The estimation

procedure is described below:

1. Obtain initial estimates of θn:

a. (β̂
(1)
jn , Λ̂

(1)
jn ) = arg max(βj ,Λjn) ljn(βj,Λjn), where ljn denotes the sieve log-likelihood

for the marginal model, j = 1, 2;

b. (α̂
(1)
n , κ̂

(1)
n ) = arg max(α,κ) ln(β̂

(1)
n = (β̂

(1)
1n , β̂

(1)
2n ), α, κ, Λ̂

(1)
1n , Λ̂

(1)
2n ), where β̂

(1)
jn and Λ̂

(1)
jn

are the initial estimates from (a), and ln is the joint sieve log-likelihood.

2. Simultaneously maximize the joint sieve log-likelihood to get final estimates:

θ̂n = (β̂n, α̂n, κ̂n, Λ̂1n, Λ̂2n) = arg max(β,α,κ,Λ1n,Λ2n) ln(β, α, κ,Λ1n,Λ2n) with initial values

(β̂
(1)
n , α̂

(1)
n , κ̂

(1)
n , Λ̂

(1)
1n , Λ̂

(1)
2n ) obtained from step 1(a) and 1(b).

For the variance-covariance of finite-dimensional parameter estimates (β̂n, α̂n, κ̂n), we

invert the observed information matrix of all parameters including the nuisance parameters

(φjk) from the last iteration of step 2 and then take the corresponding block. In section

2.3.3, we establish the asymptotic normality and semiparametric efficiency for the finite-

dimensional parameters. However, since the asymptotic variance form is intractable, we

adopt this heuristic approach, which has been shown to work well in practice [Ding and

Nan, 2011].

Some standard optimization algorithms such as the Newton-Raphson algorithm or the

conjugate gradient algorithm can be employed to obtain the maximizers and observed in-

31



formation matrix. Due to the complex structure of the joint sieve log-likelihood, instead of

analytically deriving the first and second order derivatives, we propose to use the Richard-

son’s extrapolation (Lindfield and Penny, 1989) to approximate the score function and ob-

served information matrix numerically. As shown in our simulations, the proposed procedure

guarantees almost 100% convergence and the computing speed is notably improved by using

initial values from step 1.

2.3.3 Asymptotic properties of sieve estimators

This section presents asymptotic properties of the sieve maximum likelihood estima-

tors θ̂n with regularity conditions and proofs being supplied in Appendix A.4. Denote

P as the true probability measure and Pn as the empirical measure for n independent

subjects. Let |v| be the Euclidean norm for a vector v. Define the supremum norm

‖f‖∞ = supt|f(t)| for a function f(t). Also define ‖f‖L2(P ) = (
∫
|f |2dP )1/2 for a func-

tion f under the probability measure P . In particular, the L2(P ) norm for Λj is defined as

‖Λj‖2
2 =

∫
[{Λj(l)}2 + {Λj(r)}2]dFj(l, r), where Fj(l, r) denotes the joint cumulative distri-

bution function of Lij and Rij (i = 1, ..., n; j = 1, 2). Finally, we define the distance between

θ1 = (βT1 , α1, κ1,Λ11,Λ21)T ∈ Θ and θ2 = (βT2 , α2, κ2,Λ12,Λ22)T ∈ Θ as

d(θ1, θ2) = (|β1 − β2|2 + |α1 − α2|2 + |κ1 − κ2|2 + ‖Λ11 − Λ12‖2
2 + ‖Λ21 − Λ22‖2

2)1/2.

Let θ0 = (βT0 , α0, κ0,Λ10,Λ20)T denote the true value of θ ∈ Θ. The following theorems

present the convergence rate, asymptotic normality, and efficiency of the sieve estimators.

Theorem 2.3.1. (Convergence rate) Assume that Conditions 1-2 and 4-5 in Appendix A.4

hold. Let mn = o(nν), where ν ∈ (0, 1) and q be the smoothness parameter of Λj as defined

in Condition 4, then we have

d(θ̂n, θ0) = Op

(
n−min{qν/2,(1−ν)/2}).

Theorem 2.3.1 states that the sieve estimator θ̂n has a polynomial convergence rate.

Although this overall convergence rate is lower than n−1/2, the following normality theo-

rem states that the proposed estimators of the finite-dimensional parameters (β, α, κ) are

asymptotically normal and semiparametrically efficient.
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Theorem 2.3.2. (Asymptotic normality and efficiency) Suppose Conditions 1-5 in Appendix

A.4 hold. Define b̂n = (β̂Tn , α̂n, κ̂n)T and b0 = (βT0 , α0, κ0)T . If 1/(2 + q) < ν < 1/2, then

n1/2(b̂n − b0) = I−1(b0)n1/2Pnl∗(b0,Λ10,Λ20;D) + op(1)→d N{0, I−1(b0)},

where I(b0) = Pl∗(b0,Λ10,Λ20;D)⊗2 and l∗(b0,Λ10,Λ20;D) is the efficient score function

defined in the proof. Therefore, b̂n is asymptotically normal and efficient.

2.3.4 Generalized score test

We now separate β into two parts: βg and βng, where βg is the parameter set of interest

for hypothesis testing and βng denotes the rest of the regression coefficients. The likelihood-

based tests such as the Wald, score, and likelihood-ratio tests can be constructed to test

βg, and they are asymptotically equivalent. In our motivating study, we aim to perform a

GWAS on AMD progression, which contains testing millions of SNPs one-by-one. Therefore,

computing speed is critical. We propose to use the generalized score test. One big advantage

of the score test in a GWAS setting is, one only needs to estimate the unknown parameters

once under the null model without any SNP (i.e., βg = 0), since the non-genetic risk factors

are the same no matter which SNP is being tested. Therefore, the score test is faster as

compared to the Wald and likelihood ratio tests. Moreover, the Wald or likelihood ratio test

needs to estimate parameters under each alternative hypothesis (a total of 6 millions in our

real data application), which may fail when the estimation procedure fails to converge.

With the sieve joint likelihood, we can obtain the restricted sieve maximum likelihood

estimators under H0 (βg = 0 and the rest parameters are arbitrary), and then calculate the

generalized score test statistic as defined in Cox and Hinkley [1979]. Similar to our estimation

procedure, we also propose to use Richardson’s extrapolation to numerically approximate

the first and second order derivatives when calculating the score test statistic.
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2.4 Simulation study

We first evaluated the parameter estimation of our proposed two-parameter copula sieve

model for bivariate data under general interval censoring. Then we assessed the type-I error

control, and power performance of the proposed generalized score test. We also evaluated

the accuracy in estimating the joint survival probability using our proposed method. Finally,

we evaluated the computing speed and convergence rate of our proposed method.

2.4.1 Generating bivariate interval-censored times

The data were generated from various Archimedean copula models (i.e., Clayton, Frank,

Ali–Mikhail–Hap (AMH) and Joe) with Loglogistic margins. We first generated bivariate

true event times Tij using the conditioning approach described in Sun et al. [2019]. To obtain

interval-censored data, we followed the censoring procedure in Kiani and Arasan [2012], which

fits the study design of AREDS data. Explicitly, we assumed each subject was assessed for

K times with the length between two adjacent assessment times following an Exponential

distribution. In the end, for each subject i, Lij was defined as the last assessment time

before Tij and Rij was the first assessment time after Tij. The overall right-censoring rate

is set to be 25%. For the dependence strength between margins, we set Kendall’s τ at 0.2

or 0.6, indicating weak or strong dependence. We assumed that the two event times share

a common baseline distribution, for example, PO model with Loglogistic baseline hazards

function (scale λ = 1 and shape k = 2) or PH model with Weibull baseline hazards function

(scale λ = 0.1 and shape k = 2).

We included both genetic and non-genetic covariates in the simulations. Specifically, each

SNP, coded as 0 or 1 or 2, was generated from a multinomial distribution with probabilities

{(1 − p)2, 2p(1 − p), p2}, where p = 40% or 5% is the minor allele frequency (MAF). We

also included a margin-specific continuous variable, generated from N(6, 22), and a subject-

specific binary variable, generated from Bernoulli (p = 0.5).

Under all scenarios, the sample size was set as N = 500. For simplicity, we assumed the

same covariate effects for two margins, denoted as (βng1, βng2, βg), where βng1 and βng2 are
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marginal- and subject-specific non-genetic effects, respectively, and βg is the SNP effect. We

set βng1 = βng2 = 0.1. For estimation performance evaluation, we let βg = 0 and replicated

1,000 times. For type-I error control evaluation of testing βg = 0, we replicated 100,000

times and evaluated at various tail levels: 0.05, 0.01, 0.001 and 0.0001, respectively. For

power evaluation, we replicated 1,000 times under each SNP effect size, where a range of

βg’s were selected to represent weak to strong SNP effects.

2.4.2 Simulation-I: parameter estimation

In this section, we evaluated the estimation performance of our proposed method un-

der both correct and misspecified settings. For the sieve margins, we used the true linear

transformation function. We assumed the same Bernstein coefficients φ1k = φ2k with degree

mn = 3 (k = 0, 1, 2, 3) for Λj, j = 1, 2. For the event time range [c, u], we chose c = 0 and

set u as the largest value of all {Lij, Rij} plus a constant.

In Table 2.4.1, the true model is Clayton copula with Loglogistic (proportional odds) or

Weibull (proportional hazards) margins, with Kendall’s τ = 0.6. We fitted three models: the

true parametric copula model (i.e., Clayton copula with Loglogistic or Weibull margins), a

two-parameter copula model with sieve margins (“Copula2-S”) and a marginal sieve model

with the robust variance-covariance estimate (“Marginal-S”) (a model also used in Zhou

et al., 2017). We obtained estimation biases and 95% coverage probabilities for regression

coefficients and dependence parameters. Under the two-parameter copula model, the sieve

maximum likelihood estimators are all virtually unbiased, and all empirical coverage proba-

bilities are close to the nominal level. Moreover, their standard errors are virtually the same

as the standard errors under the true parametric model, indicating our proposed method

works well. For the robust marginal sieve model, the regression coefficient estimates are also

unbiased with correct coverage probabilities, but their standard errors are apparently larger.

In the real setting, the value of the transformation function parameter r is often unknown.

Therefore, we examined our methods in estimating the transformation function parameter r

together with the other parameters in our proposed model. The results are presented in the

Table A.1.1 of Appendix A.1, which shows satisfactory estimation performance.
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Table 2.4.1: Estimation results for bivariate interval-censored data.

True Copula2-S Marginal-S

Param Bias SE SEE (CP) Bias SE SEE (CP) Bias SE SEE (CP)

proportional odds

βng1 0.0013 0.0171 0.0163 (0.942) 0.0003 0.0176 0.0165 (0.938) 0.0024 0.0293 0.0300 (0.930)

βng2 0.0120 0.1300 0.1300 (0.945) 0.0006 0.1330 0.1310 (0.939) 0.0110 0.1510 0.1500 (0.944)

βg -0.0007 0.0927 0.0942 (0.953) -0.0110 0.0951 0.0947 (0.950) 0.0012 0.1050 0.1090 (0.955)

τ -0.0005 0.0210 0.0208 (0.944) -0.0045 0.0223 0.0221 (0.950) NA NA NA

proportional hazards

βng1 0.0012 0.0097 0.0103 (0.958) 0.0013 0.0099 0.0105 (0.957) 0.0009 0.0182 0.0187 (0.957)

βng2 -0.0043 0.0780 0.0789 (0.952) -0.0040 0.0782 0.0788 (0.951) -0.0043 0.0960 0.0969 (0.957)

βg 0.0005 0.0606 0.0569 (0.935) 0.0002 0.0608 0.0569 (0.938) 0.0003 0.0722 0.0701 (0.945)

τ -0.0003 0.0220 0.0219 (0.952) -0.0012 0.0224 0.0221 (0.951) NA NA NA
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Table 2.4.2: Estimation results using the proposed model when copula is misspecification.

Frank AMH Joe

Param Bias SE SEE (CP) Bias SE SEE (CP) Bias SE SEE (CP)

βng1 0.0002 0.0177 0.0176 (0.950) -0.0011 0.0262 0.0267 (0.953) 0.0016 0.0160 0.0166 (0.962)

βng2 0.0018 0.1480 0.1470 (0.944) 0.0013 0.1250 0.1250 (0.951) -0.0027 0.1388 0.1438 (0.954)

βg 0.0001 0.1050 0.1060 (0.952) -0.0001 0.0885 0.0901 (0.959) 0.0037 0.0984 0.1043 (0.962)

τ -0.0036 0.0219 0.0198 (0.937) -0.0056 0.0318 0.0304 (0.934) 0.0168 0.0195 0.0185 (0.830)

We also examined how the proposed method works in the special case of bivariate current

status data (by setting K = 1), which is shown in the Table A.1.2 of Appendix A.1. Our

proposed method works as well as the true model in this setting too. The larger standard

errors are due to less information in current status data as compared to the standard interval

censoring case.

We further evaluated the estimation performance of the proposed model on bivariate

interval-censored data generated from copula models that do not belong to the two-parameter

copula family, such as Frank copula with τ = 0.6, AMH copula with τ = 0.2 (τ is always

< 1/3 for AMH copula) and Joe copula with τ = 0.6. In Table 2.4.2, the regression coefficient

estimates from the two-parameter copula are all unbiased with coverage probabilities close

to 95%. The biases for the τ estimates are also minimal with good coverage probabilities

except in the scenario when data were generated from a Joe copula (coverage probability

= 83%). Overall, the two-parameter copula model family demonstrates good robustness to

misspecification in copula functions.

2.4.3 Simulation-II, generalized score test performance

We evaluated the type-I error control of our proposed generalized score test under

Copula2-S. Specifically, we tested the SNP effect βg under different dependence strengths
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(Kendall’s τ = 0.6, 0.2) and two different MAFs (40%, 5%). The true model is Clayton cop-

ula with Loglogistic margins. We included score tests of two misspecified copula models, one

with misspecified margins but correct copula (i.e., Clayton copula with Weibull margins) and

the other with misspecified copula but correct margins (i.e., Gumbel copula with Loglogistic

margins). We also included the score test under the correct parametric copula model (i.e.,

Clayton copula with Loglogistic margins), which served as the benchmark model. Besides,

we examined Wald tests from the marginal Loglogistic model with variance-covariance either

from the independence estimate or the robust sandwich estimate.

Table 2.4.3 shows type I errors under different tail levels. In the top part where Kendall’s

τ = 0.6, our proposed score test controls type-I errors as well as the correct parametric model

at all tail levels and MAFs. However, type-I errors in the two misspecified copula models

are inflated at all scenarios, especially when margins are wrong at MAF = 40%. It is

not surprising to observe the greatest inflation occurs with the marginal approach under

the independence assumption. After applying the robust variance-covariance estimate, the

type-I errors seem to be controlled at MAF = 40% but are still slightly inflated at MAF =

5%. When Kendall’s τ = 0.2, the proposed two-parameter model still performs as well as

the correct parametric model and outperforms the other models, although the type-I error

inflations from other models were smaller due to the weaker dependence.

We also compared the power performance between the score test under our Copula2-S

model and score tests from two other models: the true parametric copula model and the

Marginal-S model. Figure 2.4.1 presents the power curves of these three tests over a range

of SNP effect sizes. Our proposed model yields the similar power performance as the true

parametric model and is considerably more potent than the robust marginal sieve model.

2.4.4 Simulation-III: joint survival probability estimation performance

In addition, we evaluated the accuracy for estimating joint survival probabilities under

our proposed Copula2-S model. We generated data from the Clayton copula with Weibull

margins, and fitted the Clayton-Weibull (“Clayton-WB”) and Copula2-S models and ob-

tained the average estimated joint survival probabilities Pr(T1 > t, T2 > t|Z1, Z2) on a
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Table 2.4.3: Type-I error for the genetic effect βg at various tail levels.

MAF Tail Indep-LL Robust-LL Clayton-W Gumbel-LL Copula2-S Clayton-LL

Kendall’s τ = 0.6

40%

0.05 0.141 0.051 0.131 0.065 0.052 0.050

0.01 0.053 0.010 0.041 0.015 0.010 0.010

0.001 0.0131 0.0012 0.0074 0.0022 0.0013 0.0012

0.0001 0.0037 0.0002 0.0012 0.0003 0.0001 0.0001

5%

0.05 0.141 0.056 0.059 0.066 0.053 0.051

0.01 0.053 0.014 0.012 0.016 0.012 0.011

0.001 0.0136 0.0018 0.0013 0.0020 0.0013 0.0012

0.0001 0.0034 0.0003 0.0002 0.0003 0.0002 0.0002

Kendall’s τ = 0.2

40%

0.05 0.083 0.051 0.103 0.061 0.051 0.050

0.01 0.022 0.010 0.029 0.013 0.010 0.010

0.001 0.0036 0.0012 0.0045 0.0017 0.0011 0.0010

0.0001 0.0006 0.0002 0.0006 0.0003 0.0002 0.0002

5%

0.05 0.083 0.056 0.054 0.060 0.053 0.052

0.01 0.023 0.013 0.011 0.014 0.012 0.011

0.001 0.0036 0.0017 0.0013 0.0018 0.0014 0.0013

0.0001 0.0007 0.0003 0.0001 0.0002 0.0002 0.0001
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sequence of pre-specified time points given covariate values. The number of replications is

1, 000. Figure 2.4.2 illustrates that Copula2-S produced an almost identical joint survival

profile as “Clayton-WB”. In addition, we quantified the estimation error between the esti-

mated and true joint survival probabilities by the mean square errors (MSE) averaged over

all time points and replications, which are 0.0004 (sd = 0.0012) and 0.0003 (sd = 0.0005)

for Copula2-S and Clayton-WB, respectively.

2.4.5 Simulation-IV, convergence and computing speed

We examined the computational advantages of our proposed sieve estimation procedure

as compared to the one-step estimation (directly maximizing the joint likelihood with arbi-

trary initial values). Data were simulated from a Clayton copula with Loglogistic margins.

For 1, 000 replications, the one-step procedure took 1, 260 seconds while our proposed pro-

cedure took 925 seconds, saving about 27% computing time. For convergence rate, the

proposed procedure failed in 0.1% out of 1, 000 replications, whereas the one-step procedure

failed in 1.6%, which is 16 times of the proposed procedure.

We also compared the computing speed (using a 2.4GHz Intel Core i5 processor with

4GB memory) of three likelihood-based tests on testing 1, 000 SNPs under three models:

the true Clayton model with Loglogistic margins, our proposed Copula2-S model and the

Marginal-S model. The 1,000 genetic variants were simulated from MAF = 40%. The results

are shown in Table 2.4.4. We found that the score test is about 3-5 times faster than the

Wald test or the likelihood ratio test on average. Within the three score tests, although the

score test under our Copula2-S model is the slowest due to model complexity, it is still faster

than the Wald test under the Marginal-S model. Given its advantages in robustness, type-I

error control, and power performance, we recommend the proposed Copula2-S model with

the score test for large-scale testings of bivariate data subject to general censoring.
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Figure 2.4.1: Simulation results for power performance of the score test.

Figure 2.4.2: Estimated joint survival probabilities.
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Table 2.4.4: Computing speed for testing 1,000 SNPs by score test.

Time (seconds) Score Wald LRT

Marginal-S 148 693 NA

Clayton-LL 286 1254 1146

Copula2-S 475 1679 1570

2.5 Real data analysis

We implemented our proposed method to analyze the AREDS data. AREDS was de-

signed to assess the clinical course of, and risk factors for the development and progression

of AMD. DNA samples were collected from the consenting participants and genotyped by

the International AMD Genomics Consortium [Fritsche et al., 2016]. In this study, each par-

ticipant was examined every six months in the first six years and then once a year after year

six. To measure disease progression, a severity score, scaled from one to twelve (with a larger

value indicating more severe AMD), was determined for each eye of each participant at every

examination. The outcome of interest is the bivariate progression time-to-late-AMD, where

late-AMD is defined as the stage with severity score ≥ 9. Both phenotype and genotype data

of AREDS are available from the online repository dbGap (accession: phs000001.v3.p1, and

phs001039.v1.p1, respectively). By far, all the studies that have analyzed AREDS data for

AMD progression treated the outcome as right-censored (e.g., Ding et al. [2017], Yan et al.

[2018], and Sun et al. [2019]), and some only used data from the worst eye in each subject

(e.g., Seddon et al. [2014]).

We analyzed 2718 Caucasian participants, including 2295 subjects who were free of late-

AMD in both eyes at the enrollment, i.e., time 0 (bivariate data indicated as group A), and

423 subjects who had one eye already progressed to late-AMD by enrollment (univariate
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data indicated as group B). For the jth eye (free of late-AMD at time 0) of subject i, we

observe Lij, the last assessment time when the jth eye was still free of late-AMD and Rij,

the first assessment time when the jth eye was already diagnosed as late-AMD. For the eye

that did not progress to late-AMD by the end of the study follow-up, we assigned a large

number to Rij. Since there are two groups of subjects (group A and B), we implemented

a two-part model. Specifically, we created a covariate for each eye to indicate whether its

fellow eye had already progressed or not at time 0 (i.e., 0 for both eyes of group A subjects

and 1 for group B subjects). Then the joint likelihood is the product of the copula sieve

model for group A subjects and the marginal sieve model for group B subjects. In addition,

we performed a secondary sensitivity analysis using only group A subjects (i.e., subjects who

were free of late-AMD in both eyes at time 0) and obtained similar top SNPs as from the

two-part model. The secondary analysis results are presented in Table A.2.1 of Appendix

A.2.

We included four risk factors as non-genetic covariates, including the baseline age, sever-

ity score, smoking status, and fellow-eye progression status. We checked various transfor-

mation functions and Bernstein polynomial degrees mn, and chose the model that produced

the smallest aic, which is the proportional odds model with mn = 4 for both margins.

We performed GWAS on 6 million SNPs (either from exome chip or imputed) with MAF

> 5% across the 22 autosomal chromosomes and plotted their − log(p) in Figure 2.5.1. As

highlighted in the figure, the PLEKHA1–ARMS2–HTRA1 region on chromosome 10 and

the CFH region on chromosome 1 have variants reaching the “genome-wide” significance

level (p < 5× 10−8). Previously, these two regions were found being significantly associated

with AMD onset from multiple case-control studies [Fritsche et al., 2016]. Moreover, we

identified SNPs in another region ATF7IP2 on chromosome 16, showing moderate to strong

association with AMD progression (5 × 10−8 < p < 1 × 10−5). As a comparison, we also

fitted the robust marginal sieve model (Marginal-S) and the Gamma frailty sieve model

(Frailty-S) [Zhou et al., 2017], and performed the corresponding score tests for each SNP.

Overall, their results are consistent with our Copula2-S model, but the p-values are generally

larger (as shown in Table 2.5.1). Note that the CFH region did not reach the “genome-wide”

significance level under the Marginal-S model.

43



Table 2.5.1 presents the top significant variants of the three regions denoted in Figure

2.5.1. Besides Copula2-S, we also present score test p-values from Frailty-S and Marginal-

S. The odds ratio of an SNP was calculated by fitting a Copula2-S model including this

SNP and those non-genetic factors. For example, rs2284665, a known AMD risk variant

from HTRA1 region, has an estimated odds ratio of 1.66 (95% CI = [1.46, 1.89]), which

implies its minor allele has a “harmful” effect on AMD progression. Under this model, the

estimated dependence parameters are α̂ = 0.90 and κ̂ = 1.00, corresponding to τ̂ = 0.40,

which indicates moderate dependence in AMD progression between two eyes.

For variant rs2284665, we obtained both estimated joint and conditional survival func-

tions from the fitted Copula2-S model. The left panel of Figure 2.5.2 plots the joint

progression-free probability contours for subjects who are smokers with the same age (=

68.6) and AMD severity score (= 3.0 for both eyes) but different genotypes of rs2284665.

The right panel of Figure 2.5.2 plots the corresponding conditional progression-free probabil-

ity of remaining years (after year 5) for one eye, given its fellow eye has progressed by year 5.

It is clearly seen that in both plots, the three genotype groups look well separated, with the

GG group having the largest progression-free probabilities. These estimated progression-free

probabilities provide valuable information to characterize or predict the progression profiles

for AMD patients with different characteristics.

2.6 Conclusion and discussion

We proposed a flexible copula-based semiparametric transformation model for analyzing

and testing bivariate (general) interval-censored data. Unlike the approach proposed by Hu

et al. [2017], which approximated the copula function by sieves, our approach kept the copula

function in its parametric form but flexibly modeled the margins through semiparametric

transformation models. In this way, our method guaranteed to produce consistent estimates

for both regression and copula parameters, which then led to reliable joint distribution

estimates. On the other hand, Hu et al. [2017] focused on estimating regression parameters

only but with possible biased estimates for the copula function. Our proposed method
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Figure 2.5.1: Manhattan plot for GWAS results of AMD progression.

Table 2.5.1: The top SNPs identified to be associated with AMD progression.

SNP Chr Gene MAF OR p (Copula2-S) p (Frailty-S) p (Marginal-S)

rs2284665 10 HTRA1 0.33 1.66 1.5× 10−14 2.7× 10−12 1.6× 10−10

rs2293870 10 ARMS2-HTRA1 0.33 1.65 2.5× 10−14 2.5× 10−12 2.4× 10−10

rs3750846 10 ARMS2-HTRA1 0.34 1.62 1.6× 10−13 8.5× 10−12 8.7× 10−10

rs58649964 10 PLEKHA1 0.24 1.63 3.0× 10−11 1.0× 10−9 2.0× 10−8

rs10922109 1 CFH 0.28 0.64 4.0× 10−9 7.4× 10−9 7.4× 10−8

rs1329427 1 CFH 0.28 0.64 4.4× 10−9 8.3× 10−9 8.1× 10−8

rs10801559 1 CFH 0.28 0.64 4.8× 10−9 9.3× 10−9 8.8× 10−8

rs1410996 1 CFH 0.28 0.64 5.3× 10−9 1.1× 10−8 1.0× 10−7

rs12708701 16 ATF7IP2 0.13 1.62 1.1× 10−7 2.5× 10−7 7.0× 10−7

rs28368872 16 ATF7IP2 0.13 1.62 1.3× 10−7 4.3× 10−7 8.7× 10−7
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has the great advantage in computation and it is applicable to analyze large data sets and

to perform a large number of tests. All the methods have been built into an R package

{CopulaCenR} [Sun and Ding, 2020a,b], which includes a variety of copula functions (e.g.,

Copula2, Clayton, Gumbel, Frank, Joe, AMH) and is available on CRAN at https://cran.r-

project.org/package=CopulaCenR.

Several model selection procedures have been proposed for copula-based methods. For

example, the AIC is widely used for model selection purpose in copula models. Wang and

Wells [2000] proposed a model selection procedure based on the nonparametric estimation

of the bivariate joint survival function within Archimedean copulas. For model diagnostics,

Chen et al. [2010] proposed a penalized pseudo-likelihood ratio test for copula models in

complete data. Recently, Zhang et al. [2016] developed a goodness-of-fit test for copula

models using the pseudo in-and-out-of-sample method.

To the best of our knowledge, there is no existing goodness-of-fit test for copula models of

bivariate interval-censored data. In our real data analysis, we used AIC to guide the model

selection for simplicity. However, a formal test for goodness-of-fit is desirable, especially for

bivariate interval-censored data under the regression setting. It is worthwhile to investigate

it as a future research direction.

We applied our method to a GWAS of AMD progression and successfully identified vari-

ants from two known AMD risk regions (CFH on chromosome 1 and PLEKHA1–ARMS2–

HTRA1 on chromosome 10) being significantly associated with AMD progression. Moreover,

we also discovered variants from a region (ATF7IP2 on chromosome 16), which has not been

reported before, showing moderate to strong association with AMD progression. On the

contrary, we found that some known AMD risk loci (e.g., rs12357257 from ARHGAP21 on

chromosome 10, p = 0.12) are not associated with AMD progression. Therefore, the variants

associated with risks of having AMD may not be necessarily associated with the disease pro-

gression; while some variants may be only associated with AMD progression but not with

the disease onset. Our work is the first research on AMD progression which adopts a solid

statistical model that appropriately handles bivariate interval-censored data. Our findings

provided new insights into the genetic causes on AMD progression, which are critical for

establishing novel and reliable predictive models of AMD progression to identify high-risk
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patients at an early stage accurately. Our proposed method applies to general bilateral

diseases and complex diseases with co-primary endpoints.

2.7 Software development

2.7.1 Existing R packages implementing copula-based models

To the best of our knowledge, there exists no R package for fitting copula-based re-

gression models for both bivariate right-censored and interval-censored data. The existing

copula packages for bivariate data handle either the non-censoring (i.e., complete data) or the

right-censoring situation. In the non-censoring situation, the package copula [Hofert et al.,

2018] by Yan [2007] and Kojadinovic and Yan [2010] implements multivariate copula models

without covariates for complete data and obtains the maximum likelihood estimator for the

copula dependence parameter. It gives useful codes for implementing regression models in

bivariate complete data in the appendix of Yan [2007]. It also provides copula goodness-

of-fit tests for model selection purpose. The package VineCopula [Schepsmeier et al., 2018]

can also model bivariate or multivariate complete data without covariates through the vine

copula models [Aas et al., 2009]. Packages such as CopulaRegression [Nicole Kraemer, 2014]

and gcmr [Masarotto and Varin, 2017] can provide copula-based regression models with para-

metric margins for bivariate or multivariate complete data and provide maximum likelihood

estimators for model parameters. The package gamCopula [Nagler and Vatter, 2020] imple-

ments a generalized additive model that can take into account the effect of the predictors on

the dependence structure of bivariate and vine copula models [Vatter and Chavez-Demoulin,

2015]. For the right-censoring situation, the Copula.surv package [Emura, 2018] can estimate

the Clayton copula dependence parameter in bivariate right-censored data without covari-

ates and also perform a goodness-of-fit test for a fitted Clayton model [Emura et al., 2010].

The Sunclarco package [Prenen et al., 2017b] provides Clayton or Gumbel copula-based re-

gression models with parametric (Weibull and piecewise constant) or Cox semiparametric

margins for multivariate right-censored data [Prenen et al., 2017a]. The package GJRM
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[Marra and Radice, 2020] can fit both marginal and copula regression models in complete

and right-censored data [Marra and Radice, 2017, 2019, Marra et al., 2017]. By far, there is

no copula-based R package for bivariate interval-censored data.

2.7.2 CopulaCenR package

We develop the CopulaCenR package [Sun and Ding, 2020a,b], which fits copula-based

regression models for both bivariate right-censored and interval-censored data. The pack-

age is available from the Comprehensive R Archive Network (CRAN) at https://CRAN.

R-project.org/package=CopulaCenR.

The main advantage of CopulaCenR relies on the diverse choice of copula and marginal

models for both bivariate right-censored and interval-censored data. Specifically, it provides

a class of Archimedean copulas that correspond to a variety of dependence structures, as

illustrated in Table 2.7.1. In particular, in addition to these frequently used one-parameter

Archimedean copulas, a two-parameter copula function (Copula2) is also included. Further-

more, CopulaCenR implements a list of parametric and semiparametric marginal regression

models, as illustrated in Table 2.7.2. For parameter estimation, the package utilizes a novel

two-step procedure that is computationally stable and efficient. For the inference of regres-

sion parameters, three likelihood-based tests such as Wald, generalized score and likelihood

ratio tests are provided.

To fit a copula-based regression model, one also needs to choose a regression model for the

margins. Table 2.7.2 lists the available marginal models in CopulaCenR. For bivariate right-

censored data, users can fit either a parametric marginal model via the function rc par copula

or a semiparametric Cox PH model via the function rc spCox copula [Sun et al., 2019].

Specifically, the parametric models incorporate both the PH (e.g., Weibull, Gompertz) and

the PO (e.g., Loglogistic) models. For bivariate interval-censored data, one can choose to

fit a parametric marginal model via the function ic par copula. Moreover, the package can

also fit a semiparametric transformation model via the function ic spTran copula [Sun and

Ding, 2019].
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Figure 2.5.2: Estimated progression-free probabilities for subjects with different genotypes

of rs2284665.

Table 2.7.1: Summary of implemented Archimedean copula families.

Family Parameter Space Generator φη(t), t ∈ [0,∞) Generator Inverse φ−1
η (s), s ∈ (0, 1] τL τU Kendall’s τ

Clayton η > 0 (1 + t)−1/η s−η − 1 2−1/η 0 η/(2 + η)

Gumbel η ≥ 1 exp(−t1/η) (− log s)η 0 2− 21/η 1− 1/η

Frank η ≥ 0 −η−1 log{1 + e−t(e−η − 1)} − log{(e−ηs − 1)/(e−η − 1)} 0 0 1 + 4{D1(η)− 1}/η

AMH η ∈ [0, 1) (1− η)/(et − η) log[{1 + η(s− 1)}/s] 0 0 1− 2{(1− η)2 log(1− η) + η}/(3η2)

Joe η ≥ 1 1− (1− e−t)1/η − log{1− (1− s)η} 0 2− 21/η 1− 4
∑∞

k=1 1/{k(ηk + 2)[η(k − 1) + 2]}

Copula2 α ∈ (0, 1], κ > 0 {1/(1 + tα)}κ (s−1/κ − 1)1/α 2−ακ 2− 2α 1− 2ακ/(2κ+ 1)

τL and τU are the lower and upper tail dependence measures.

D1(·) is the Debye function written as D1(η) = 1
η

∫ η
0

t
et−1

dt.
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Table 2.7.2: Summary of implemented marginal models.

Type Models Survival Distributions S(t) Corresponding R Functions

Parametric

Weibull exp{−(t/λ)keZ
>β}

rc par copula, ic par copulaGompertz exp{− b
a
(eat − 1)eZ

>β}

Loglogistic {1 + (t/λ)keZ
>β}−1

Semiparametric
Cox exp{−Λ(t)eZ

>β} rc spCox copula

Transformation exp[−G{Λ(t)eZ
>β}] ic spTran copula

 After a copula model  has  been fitted, fitted values  (i.e., linear predictors, survival prob-

abilities) can be extracted by the general S3 function fitted. For new observations, the linear

predictors and survival probabilities can be obtained using the function predict. Moreover, the

user can plot three types of distributions (joint, conditional and marginal) using the general

functions plot and lines. In particular, an interactive 3D contour will be plotted to visualize

the joint distribution. Besides, the package provides a bivariate event time gener-ating

function data sim copula, which can generate random bivariate event times based on a

specified copula function, a marginal distribution, and covariate values. More illustration

examples can be found in our paper [Sun and Ding, 2020b].

50



3.0 An Information Ratio based Goodness-of-fit Test for Copula Models on

Censored Data

3.1 Motivation

Although our proposed two-parameter copula semiparametric model can flexibly account

for dependency at two tails, a formal goodness-of-fit test for copula-based survival models is

still highly desired.

As summarized in Section 1.7, there are different approaches for testing copula-based sur-

vival models under right-censoring. Shih [1998] and Emura et al. [2010] developed tests for

one-parameter Archimedean copulas based on the discrepancy between the unweighted and

weighted copula dependence estimators. Their tests depend on modeling orderable pairs of

the bivariate event times, which is difficult for multivariate interval-censored data where no

exact event times are observed. Wang and Wells [2000] proposed a model selection method

in Archimedean copulas based on a truncated Kendall process introduced by Genest and

Rivest [1993]. Lakhal-Chaieb [2010] further extended Wang and Wells [2000] by developing

an inverse probability censoring weighted estimator for Kendall’s distribution. The Andersen

test statistic [Andersen et al., 2005] was built on comparing the parametrically estimated

bivariate joint distribution with the non-parametric bivariate empirical copula. Chen et al.

[2010] proposed a penalized pseudo-likelihood ratio statistic for examining whether the as-

sumed copula fits data better than a group of other copula models. Wang [2010] proposed

a Fisher’s Z test statistic based on the correlation between two random quantities that are

shown to be independent under Archimedean copulas by [Genest and Rivest, 1993]. More

recently, Mei [2016] proposed a likelihood-based pseudo-in-and-out-of-sample (PIOS) test,

similar to Zhang et al. [2016] for the complete data. Very recently, Lin and Wu [2020]

developed a smooth test for copula specification in modeling right-censored data.

To the best of our knowledge, there is no formal statistical test for copula specification

under interval censoring. In this chapter, we develop a novel information ratio (IR)-based

goodness-of-fit test for diagnosing copula-based survival models under interval- or right-
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censoring. The test procedure applies to any copula function with a parametric form, in-

cluding Archimedean (i.e., Clayton, Gumbel, Frank) and non-Archimedean (e.g., Gaussian,

Plackett) copula families. For ease of notations, we will illustrate our method in the bivariate

data case, and the generalization to multivariate cases is relatively straightforward.

3.2 Methods

3.2.1 Copula model for bivariate censored data

Let (Ti1, Ti2) be the true bivariate event times for subject i, with marginal survival

functions Sj(tij) = Pr(Tij > tij), j = 1, 2, and joint survival function S(ti1, ti2) = Pr(Ti1 >

ti1, Ti2 > ti2). Assume there are n independent subjects in a study. When (Ti1, Ti2) are under

interval-censoring, we observe Di = {(Lij, Rij), j = 1, 2} for subject i, where (Lij, Rij] is the

time interval that Tij lies in. When Rij = ∞, Tij is under right-censoring. When (Ti1, Ti2)

are subject to right-censoring, for subject i = 1 · · · n, we observe Di = {(Yij,∆ij) : Yij =

min(Tij, Cij),∆ij = I(Tij ≤ Cij), j = 1, 2}, where Cij is the censoring time of Tij, ∆ij is the

censoring indicator.

By the Sklar’s theorem (Sklar, 1959), so long as the marginal survival functions Sj are

continuous, there exists a unique function Cη that connects two marginal survival functions

into the joint survival function: S(t1, t2) = Cη{S1(t1), S2(t2)}, t1, t2 ≥ 0. Here, the function

Cη is called a copula, and its parameter η measures the dependence between the two margins.

A signature feature of the copula is that it allows the dependence to be modeled separately

from the marginal distributions.

3.2.2 Joint likelihood functions for bivariate censored data

In this section, we present the joint likelihood functions for bivariate interval-censored

data and bivariate right-censored data under the copula framework by using the notations

introduced in Section 3.2.1, respectively.
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When data are bivariate interval-censored, denote {S1(Li1), S1(Ri1)} by Si1 and simi-

larly denote {S2(Li2), S2(Ri2)} by Si2. Then the joint likelihood function for n independent

subjects can be written as

Ln(S1, S2; η) =
n∏
i=1

Pr(Li1 < Ti1 ≤ Ri1, Li2 < Ti2 ≤ Ri2)

=
n∏
i=1

[
Pr(Ti1 > Li1, Ti2 > Li2)− Pr(Ti1 > Li1, Ti2 > Ri2)

−Pr(Ti1 > Ri1, Ti2 > Li2) + Pr(Ti1 > Ri1, Ti2 > Ri2)

]
=

n∏
i=1

[
Cη{S1(Li1), S2(Li2)} − Cη{S1(Li1), S2(Ri2)}

−Cη{S1(Ri1), S2(Li2)}+ Cη{S1(Ri1), S2(Ri2)}
]
. (3.2.1)

The right interval Rij can take values in (0,∞]. For a subject i, if Rij = ∞ (i.e., Tij is

right-censored), then any term involving Rij becomes 0, and the joint survival function for

subject i reduces to only one (if both Ri1 and Ri2 are∞) or two (if one Rij is∞) terms. The

special case of bivariate current status data (i.e., only one assessment time for each subject)

can also fit into this framework, where for each Tij, either Lij = 0 (Tij is smaller than the

assessment time, which is Rij in this case) or Rij = ∞ (Tij is greater than the assessment

time, which is Lij in this case). Therefore, the likelihood function (3.2.1) can handle the

bivariate data under general interval-censoring.

For bivariate right-censored data, denote {S1(Yi1), S2(Yi2)} by (Si1, Si2). Let the density

function for copula Cη(u, v) be cη(u, v) = ∂2Cη(u, v)/∂u∂v. Then, the joint likelihood under

right censoring can be written as

Ln(S1, S2; η) =
n∏
i=1

cη(Si1, Si2)δi1δi2
[
∂ Cη(Si1, Si2)

∂Si1

]δi1(1−δi2)

×
[
∂ Cη(Si1, Si2)

∂Si2

](1−δi1)δi2

Cη(Si1, Si2)(1−δi1)(1−δi2),

(3.2.2)

where (δi1, δi2) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.
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3.2.3 Test hypothesis and Information Ratio (IR) statistic

Suppose C0 is the true and unknown copula model, and we fit a copula model Cη(·). We

are interested in testing H0: C0 ∈ C = {Cη(·) : η ∈ Θ} versus HA: C0 /∈ C, where Θ is the

parameter space of the copula parameter η with p = dim(Θ).

Let l(S1, S2; η) = logL(S1, S2; η) be the copula-based survival model log-likelihood, where

S1 and S2 are the two marginal survival functions. Under the null hypothesis, we define two

types of Fisher information matrices [Song and Song, 2007]: the negative sensitivity matrix

as

S(η) = −P0{l̈ηη(S1, S2; η)},

and the variability matrix as

V (η) = P0{l̇η(S1, S2; η)l̇Tη (S1, S2; η)},

where l̇η(S1, S2; η) = ∂
∂η
l(S1, S2; η), l̈ηη(S1, S2; η) = ∂2

∂η∂ηT
l(S1, S2; η), and P0(·) represents the

probability measure under the true copula C0.

Then, we define the Information Ratio (IR) statistic as follows

IR =: P0{l̇Tη (S1, S2; η∗)S−1(η∗)l̇η(S1, S2; η∗)}

= tr{S−1(η∗)V (η∗)}

= p,

where η∗ ∈ Θ is the true η under the null hypothesis, and tr(A) denotes the trace of a

matrix A. The last equation holds because S(η∗) = V (η∗) under the null hypothesis that

copula is correctly specified [White, 1982], and p is the trace of the p-dimensional identity

matrix. The key idea behind the information ratio-based goodness-of-fit test is that the ratio

between the two types of Fisher information equals the dimension of the copula parameter

if the null hypothesis is true.

54



3.2.4 IR statistic estimation

We propose an IR statistic estimator denoted as ÎRn under the null hypothesis of the

assumed copula model being the correct model, which can be written as

ÎRn =:
1

n

n∑
i=1

l̇Tη (S̃i1, S̃i2; η̂)S̃−1(η̂)l̇η(S̃i1, S̃i2; η̂)

= tr{S̃−1(η̂)Ṽ (η̂)},

where S̃(η̂) = − 1
n

∑n
i=1 l̈ηη(S̃i1, S̃i2; η̂) and Ṽ (η̂) = 1

n

∑n
i=1 l̇η(S̃i1, S̃i2; η̂)l̇Tη (S̃i1, S̃i2; η̂) are con-

sistent estimators for S(η) and V (η). l̇η and l̈ηη are the first- and second-order derivatives of

the log-likelihood function. This IR statistic is similar to the information ratio test statistic

proposed by Zhou et al. [2012] for cross-sectional and longitudinal data, which was later

extended to test copula specification in uncensored complete data in Zhang et al. [2016].

Due to complex structures of the log-likelihood function, obtaining the analytical forms

for l̇η and l̈ηη for various types of copula models is tedious. We propose to use the Richardson’s

extrapolation method [Lindfield and Penny, 1989] to approximate these first- and second-

order derivatives for all copula models. S̃i1 and S̃i2 are the consistent estimators for the

marginal survival probability of subject i, which can be obtained from the non-parametric

distribution estimators in the absence of covariates (e.g., Kaplan-Meier estimator [Kaplan

and Meier, 1958] under right censoring or Turnbull estimator [Turnbull, 1976] under interval

censoring) or fitting a marginal regression model in the presence of covariates. For this work,

we use non-parametric estimators. In addition to S̃i1 and S̃i2, η̂ is a consistent estimator

of η under the null hypothesis such that η̂ →p η
∗, and it can be obtained by following the

two-stage pseudo-likelihood estimation procedures in Shih and Louis [1995] and Sun et al.

[2006] under the right- and interval-censoring, respectively. The asymptotic consistency of

the resulting η̂ has been proved by Shih and Louis [1995] and Sun et al. [2006] when the

null hypothesis copula function is correctly specified. One big advantage of our proposed

IR estimator is its computational simplicity and flexibility in handling any copula with a

parametric form under various types of censoring.
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3.2.5 Asymptotic properties

Under the regularity conditions presented in Appendix B, we have the following asymp-

totic properties for ÎRn.

Theorem 3.2.1. (Consistency) Under Conditions 1 and 2, we have

ÎRn
p−→ tr{S−1(η∗)V (η∗)} = p,

where η∗ is the limiting value of η̂, p is the dimension of the assumed copula function pa-

rameter.

Theorem 3.2.2. (Normality under null) Under the null hypothesis and Conditions 2-4, we

have

n1/2(ÎRn − p)
d−→ N(0, σ2

IR),

where σ2
IR is the asymptotic variance of n1/2(ÎRn − p).

Remark. These theorems are the theoretical bases for our proposed goodness-of-fit test pro-

cedures. To implement our test, σ2
IR needs to be estimated. Since the analytical form of σ2

IR

is intractable, we propose a parametric bootstrap procedure to estimate σ2
IR.

3.2.6 IR-based goodness-of-fit test procedures

We construct the IR-based goodness-of-fit procedure for copula specification based on

the asymptotic properties of ÎRn. Due to the absence of the analytical form of σ2
IR, we

propose a novel parametric bootstrap procedure for estimating σ2
IR. In brief, we first fit

the null hypothesis copula model, calculate ÎRn from the original data, then perform para-

metric bootstrap sampling based on the fitted model, and finally calculate the asymptotic

or empirical p-value of the IR-based goodness-of-fit test. We also implement parallel com-

puting into our bootstrap procedures, which significantly enhances computational efficiency,

as illustrated in our simulations. We propose two separate bootstrap procedures to handle

bivariate interval- or right-censored data, respectively.

Scenario I: bivariate interval-censored data

Step 1: Obtain the non-parametric Turnbull estimators S̃i1, S̃i2;
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Step 2: Obtain the pseudo maximum likelihood estimator η̂ based on the estimation proce-

dure in Sun et al. [2006], and calculate ÎRn based on η̂, S̃i1, S̃i2;

Step 3: First, generate the bth bootstrap bivariate true event times {tbi1, tbi2, i = 1, . . . , n}

via parametric bootstraps by following the similar bivariate data generation procedure as in

Sun et al. [2019]. Specifically, we obtain ubi and wbi from two independent U [0, 1] uniform

distributions. Let wbi = hη̂(u
b
i , v

b
i ) = ∂Cη̂(u

b
i , v

b
i )/∂u

b
i and solve for vbi from the inverse of hη̂

function h−1
η̂ . We further obtain {tbi1, tbi2} by applying tbi1 = S̃−1

1 (ubi) = min{t : S̃1(t) ≤ ubi}

and tbi2 = S̃−1
2 (vbi ) = min{t : S̃2(t) ≤ vbi}. Next, we estimate the length between intermit-

tent assessment times using the average interval length of the original data, and adjust the

number of assessments Kb so that the right censoring rate in the bth bootstrap is closest

to the right censoring rate in the original data. Eventually, the observed times for the bth

bootstrap are {Lbi1, Rb
i1, L

b
i2, R

b
i2, i = 1, . . . , n}, where (Lbij, R

b
ij] is the smallest interval that

bounds tbij, j = 1, 2;

Step 5: Repeat Steps 3-4 for B = 200 times and obtain a set of test statistics {ÎR
b

n, b =

1, . . . , B};

Step 6: Compute the empirical p-value as pe = 1
B

∑B
b=1 I(|ÎR

b

n| ≥ |ÎRn|) or the asymptotic

p-value as pa = 2{1 − φ( |ÎRn−p|
σ̂IR

)}, where σ̂IR is calculated using the bootstrap IR statistics

{ÎR
b

n}.

Scenario II: bivariate right-censored data

Step 1: Calculate the Kaplan-Meier estimators S̃i1, S̃i2.

Step 2: Obtain the pseudo maximum likelihood estimator η̂ based on the estimation proce-

dure in Shih and Louis [1995], and calculate ÎRn based on η̂, S̃i1, S̃i2;

Step 3: Use the same procedure as the Step 3 in Scenario I to generate the bth bootstrap

true event times {tbi1, tbi2, i = 1, . . . , n} based on the η̂, S̃i1, S̃i2. Next, we obtain the censoring

times cbi1 and cbi2 by sampling from the non-parametrically estimated censoring distribu-

tions. Finally, we calculate the observed times and censoring status for the bth bootstrap

{ybi1, ybi2, δbi1, δbi2, i = 1, . . . , n}, where ybij = min(tbij, c
b
ij) and δbij = I(tbij ≤ cbij), j = 1, 2;

Step 4: Based on {ybi1, ybi2, δbi1, δbi2, i = 1, . . . , n} from Step 3, obtain the copula parameter

estimator ηb under the null hypothesis and calculate the bth bootstrap IR test statistic ÎR
b

n;

Steps 4-6 are the same as in Scenario I.
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In practice, we find the empirical and asymptotic p-values are similar in most cases, and

we will report the results from empirical p-values in the following simulation studies and real

applications.

3.3 Simulations

In this section, we assess the type-I error control and power performance of the proposed

IR goodness-of-fit test for copula specification. We also evaluate the computing speed of our

proposed test.

3.3.1 Data generation

The data are generated from various Archimedean copula models (i.e., Clayton, Gumbel,

Frank) with the marginal survival times following Weibull distributions (scale λ = 0.1 and

shape k = 2 for both margins). The sample size is 300, and the number of replications is

1, 000. Data are also generated under different dependent strengths between two margins,

as measured by Kendall’s τ (0.3 or 0.6), as well as under different right censoring rates (0%,

25%, or 50%). The following paragraphs explicitly explain the data generation processes

under interval and right censoring, respectively.

Scenario I: Bivariate interval-censored data: Recall that the bivariate joint survival

function under a copula model is S(t1, t2) = Cη{S1(t1), S2(t2)}, where U = S1(T1), V =

S2(T2) each follows a uniform distribution U [0, 1]. Define Wu(v) = h(u, v) = P (V ≤ v|U =

u), which equals to ∂Cη(u, v)/∂u. To generate bivariate survival data (ti1, ti2), i = 1, .., n,

by following the data generation procedures in Sun et al. [2019], we first generate ui and wi

from two independent U [0, 1] distributions. Then let wi = h(ui, vi)(= Cη(ui, vi)/∂ui) and

solve for vi from the inverse of h function h−1. Finally, we obtain t1i and t2i from S−1
1 (ui)

and S−1
2 (vi), respectively. To obtain bivariate interval-censored data, we follow the similar

censoring procedure as in Sun and Ding [2019]. Specifically, we assume each subject was

assessed for K times with the length between two adjacent assessment times following an
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Exponential distribution. The value of K controls the size of the right censoring rate. In

the end, for each subject i, Lij is defined as the last assessment time before Tij, and Rij is

the first assessment time after Tij. When Rij =∞, Tij is right-censored.

Scenario II: Bivariate right-censored data: We first generate bivariate true event

times Tij using the conditioning approach described as in the interval censoring case above.

Then, we generate the censoring times Cij from an Exponential distribution. In the end, the

observed data are Yij = min(Tij, Cij) and ∆ij = I(Tij ≤ Cij).

3.3.2 Test performance in bivariate interval-censored data

We first evaluate the type-I error control and power performance of our proposed IR test

under interval censoring. Specifically, we assess the test under different copula dependence

strengths (Kendall’s τ = 0.3, 0.6) and various right censoring rates (0%, 25%, 50%). True

data are generated from Clayton, Gumbel, and Frank copulas. We examine the goodness

of a series of copulas under each scenario, including a flexible Archimedean two-parameter

copula model denoted as “copula2” [Sun and Ding, 2019] that incorporates Clayton and

Gumbel as special cases. Results are summarized in Table 3.3.1, which shows good type-I

error control in all scenarios. Our test also presents good power performance in general, and

the power increases as the dependence strength increases. In general, the power decreases

as the right censoring rate increases, especially when fitting Gumbel copula to Clayton data

or fitting Clayton to Frank data.

3.3.3 Test performance in bivariate right-censored data

We further evaluate the type-I error control and power performance of our proposed

IR test under right censoring. The settings are similar to the settings in Table 3.3.1. We

illustrate the results in Table 3.3.2, which suggests good type-I error control in all scenarios.

We also compare with an existing method [Emura et al., 2010], which can test Archimedean

copula specification (such as Clayton, Gumbel, Frank) under right-censoring. However,

its associated R package [Emura, 2018] on CRAN can only test for the Clayton copula.

Therefore, we only include its results for testing Clayton copula (denoted as “Emura”). Due
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Table 3.3.1: Type-I errors and powers of IR tests under interval censoring (IC).

True Copula: Clayton Gumbel Frank

RC rate τ Clayton Copula2 Gumbel Gumbel Copula2 Clayton Frank Copula2 Clayton

0%
0.3 0.045 0.032 0.857 0.049 0.043 0.602 0.056 0.520 0.665

0.6 0.045 0.053 1.000 0.047 0.038 0.983 0.046 0.878 0.999

25%
0.3 0.052 0.049 0.803 0.061 0.026 0.614 0.045 0.414 0.296

0.6 0.052 0.049 0.861 0.055 0.024 0.910 0.060 0.793 0.737

50%
0.3 0.060 0.060 0.337 0.059 0.026 0.683 0.051 0.267 0.241

0.6 0.057 0.058 0.492 0.061 0.032 0.830 0.041 0.415 0.339

to the slow computing speed of the Emura method, we only perform 100 replications, which

was also used in the original paper [Emura et al., 2010]. We find that the Emura test is

more powerful than ours when the dependence (as measured by Kendall’s τ) is relatively

small; when Kendall’s τ becomes larger, both tests exhibit satisfactory and comparable

power performance.

Table 3.3.2: Type-I error rates and power of IR tests under right censoring (RC).

True Copula: Clayton Gumbel Frank

RC rate τ Clayton Copula2 Gumbel Emura Gumbel Copula2 Clayton Emura Frank Copula2 Clayton Emura

0%
0.3 0.028 0.022 0.722 0.09 0.047 0.021 0.423 1.00 0.051 0.225 0.395 0.99

0.6 0.023 0.020 1.000 0.05 0.059 0.012 0.969 1.00 0.048 0.675 0.997 1.00

25%
0.3 0.052 0.053 0.610 0.04 0.055 0.039 0.451 1.00 0.042 0.230 0.358 0.95

0.6 0.047 0.033 0.978 0.05 0.044 0.022 0.946 1.00 0.038 0.642 0.975 1.00

50%
0.3 0.051 0.051 0.401 0.02 0.047 0.028 0.469 0.98 0.044 0.213 0.282 0.80

0.6 0.041 0.040 0.806 0.06 0.042 0.017 0.882 1.00 0.050 0.558 0.870 0.97
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Table 3.3.3: Computing time (in minutes) of IR tests when sample size ranges from 100 to

1,000 under the right (RC) or interval censoring (IC).

Censoring type Time (mins) n = 100 n = 300 n = 500 n = 1,000

RC

Emura 4 142 1,385 10,237

IR, 1 core 5 16 23 46

IR, 10 cores 1 2 4 7

IR, 20 cores 0.5 1 2 3

IC

IR, 1 core 13 31 51 103

IR, 10 cores 2 4 9 16

IR, 20 cores 1 2 4 8

3.3.4 Test computing time

We compare the computing speed of our proposed IR test and the Emura test. Data are

generated from the Clayton model with Weibull margins, with Kendall’s τ = 0.6 and the

right censoring rate = 25%. Sample sizes are set as n = 100, 300, 500, 1000. The fitted copula

model is Clayton. The number of replication is set at ten since in practice, one typically

only needs to test multiple copula models for one real dataset. For our proposed method,

we illustrate the computing efficacy by computing the tests in parallel across multiple cores

(e.g., 1, 10, 20). As shown in Table 3.3.3, we find that under right censoring with one core,

our IR test is about ten times faster than the Emura test when sample size is 300, and

the speed difference becomes more dramatic when n becomes larger. In fact, the computing

time using our method increases linearly with the sample size, whereas the relationship seems

to be exponential for the Emura test. The performance of IR test is further enhanced by

parallel computing, which can complete ten tests within minutes. Similarly, under interval

censoring, our IR test can also complete within a reasonable amount of minutes.
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3.4 Real data analysis

We present the IR test results in multiple real data examples under various censoring

types. We evaluate several copula functions such as Archimedean (i.e., Copula2, Clayton,

Gumbel, Frank), Gaussian and Plackett copulas. The results are summarized in Table 3.4.1.

Besides, the Emura test p-value and an estimated Kendall’s τ for fitting Clayton copula are

included under right censoring.

The first dataset, denoted as “AREDS-sub” contain 629 (moderate to severe) from a

clinical trial study called Age-Related Eye Disease Study (AREDS) [AREDS Group, 1999],

which examines the time to the late-stage Age-related Macular Degeneration (AMD) in left

and right eyes of the AMD patients. Due to the intermittent assessment design, the exact

time to late AMD for each eye was interval-censored. As shown in Table 3.4.1, the IR test

rejects almost all the tested copulas (Clayton, Gumbel, Frank, Gaussian) except Copula2

and Plackett. The corresponding estimated Kendall’s τ is 0.52 under Copula2. Interestingly,

we observe that although Clayton has a very close AIC value (4364.51) to Copula2 (4363.87),

Clayton is still rejected by our method. It suggests that AIC might not be an ideal criterion

in selecting a proper copula model in the real data analysis.

The next dataset, named as “Tandmob”, comes from a longitudinal prospective dental

study called the Signal-Tandmobiel project [Vanobbergen et al., 2000], which was performed

in Flanders (North of Belgium) in 1996-2001. The cohort of 4, 468 randomly sampled children

who attended the first year of the basic school at the beginning of the study was annually

dental examined by one of the 16 trained dentists. Among these 4, 468 children, 38 children

did not come to any of the designed dental examinations, resulting in n = 4, 430 in the

final dataset for analysis. The dataset contains the information on the emergence times of

teeth, which are interval-censored due to the intermittent assessments. Bogaerts and Lesaffre

[2008] extracted the bivariate emergence times of the maxillar first premolars (contralateral

teeth 14 and 24), and fitted the data with three different copula models (i.e., Clayton,

Gaussian, Plackett). The paper shows that the Plackett copula has the smallest AIC value,

and concludes that Plackett is the best choice. We also notice that Bogaerts and Lesaffre

[2008] models the copula dependence parameter using a covariate.
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For right censoring case, the dataset “LOSS-ALAE” is a well-known insurance dataset on

losses and allocated loss adjusted expenses (ALAE), which are collected by the US Insurance

Service Office. It consists of 1, 500 general liability claims, and each claim includes an

indemnity payment (i.e., LOSS) and an allocated loss adjusted expense (e.g., ALAE). For

the LOSS data, 34 observations are right-censored due to late settlement lags. For the ALAE

data, all claims are uncensored. Zhang et al. [2016] tests copula specification using the 1, 466

complete observations and finds that the Gumbel copula is the most suitable model, whereas

Clayton and Gaussian are rejected. Lin and Wu [2020] also fails to reject the Gumbel copula

and rejects Gaussian by examining the entire 1, 500 observations. To be consistent with

Zhang et al. [2016] and Lin and Wu [2020], we use the estimated cumulative distribution

functions for the two margins, instead of the estimated survival functions (with censoring

taken into account). In Table 3.4.1, we find that Copula2 and Gumbel appear to be the

most suitable models with the highest p-values, while Clayton and Gaussian are rejected.

The Kendall’s τ estimates are 0.31 under both Copula2 and Gumbel. Both Copula2 and

Gumbel also have the smallest AIC values. Our conclusions are consistent with the findings

from Zhang et al. [2016] and Lin and Wu [2020]. The Emura method cannot be performed

since the extensive computing time makes it infeasible to test such a large data.

The second dataset, which is a subset of the Diabetic Retinopathy Study (DRS), includes

83 patients, who have both onset times for diabetes and diabetic retinopathy. The study

examines whether laser photocoagulation is effective in delaying the onset of blindness in

diabetic retinopathy patients. Among these 83 patients, four experienced failure only in the

right eye, 36 experienced failure in the left eye, and 14 experienced failure in both eyes. This

dataset has been used for examining copula goodness-of-fit in several previous works. For

example, Manatunga and Oakes [1999] suggests that the Clayton model fits this dataset well

using the diagnostic plot from Oakes [1989]. Later, Wang [2010] shows that the Clayton and

Frank copula models are not rejected with p-values > 0.05. As shown in Table 3.4.1, both

Frank and Clayton copulas are not rejected using our method, with estimated Kendall’s

τ = 0.28 and 0.35, respectively. In addition, the Emura method does not reject the Clayton

model either, and reports a similar estimated Kendall’s τ .
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   The third dataset, the Kidney study, records the recurrence times to infection at the point of 

insertion of the catheter in 38 kidney patients using portable dialysis equipment [McGilchrist 

and Aisbett, 1991]. The catheter may be removed for reasons other than in-fection leading to 

right-censored observations. Each patient has exactly two observations. Among the 38 

patients, 9 have exact event times for the first infection only, 3 have exact event times for the 

second infection, 23 have exact event times for both infections, and the rest 3 are right-

censored for both infections. This dataset is also used in Emura et al. [2010], in which the 

method does not reject Gumbel, Clayton, and Frank copulas. Table 3.4.1 con-veys the similar 

message. Note that the Emura test using the public R package [Emura, 2018] gives a p−value 

= 0.473, whereas the original paper reports 0.189.

The fourth dataset “Ovarian” contains 1, 192 advanced ovarian cancer patients from four 

randomized multi-center clinical trials. Each patient has two endpoints: the progression-free 

survival time and the overall survival time. After a minimum follow-up of 10 years in all four 

trials, either one of the two events has occurred for most patients (80%). Burzykowski et al. 

[2001] proposed to use the copula model (i.e., Clayton and Gumbel) to account for the 

dependence between the two events, and reported strong dependence strength (Kendall’s τ at 

about 0.8). Our IR test suggests that Clayton and Copula2 are likely the proper models. We 

do not report the Emura method due to the large sample size.

The last dataset “Gastadv” contains individual data (overall and progression-free sur-

vival) of 4, 069 patients with advanced or recurrent gastric cancer from 20 randomized trials 

of chemotherapy. Rotolo et al. [2018] used this dataset to illustrate the method proposed in 

Burzykowski et al. [2001] by fitting three types of copula models (i.e., Clayton, Gumbel, and 

Plackett). It reported similar Kendall’s τ estimates under Clayton and Plackett, and a lower τ 

estimate under Gumbel. Our IR test rejects Clayton, and indicates Copula2 and Plackett are 

suitable for this dataset. We do not report the Emura method due to the large sample size.
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Table 3.4.1: Performance of IR tests in real datasets under interval censoring (IC) or right

censoring (RC).

IR Emura

Type Datasets Copula2 Clayton Gumbel Frank Gaussian Plackett Clayton

IC

AREDS-sub

p-value 0.225 < 0.005 0.020 0.010 < 0.005 0.300

NA
τ̂ 0.52 0.52 0.40 0.45 0.45 0.45

AIC 4363.87 4364.51 4406.16 4368.93 4385.18 4366.55

loglik -2179.93 -2181.25 -2202.08 -2183.47 -2191.59 -2182.28

Tandmob

p-value < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005

NA
τ̂ 0.64 0.63 0.57 0.64 0.58 0.66

AIC 19693.41 19842.20 20116.81 19727.00 20041.38 19441.68

loglik -9844.70 -9920.10 -10057.41 -9862.50 -10019.69 -9719.84

RC

LOSS-ALAE

p-value 0.940 < 0.005 0.875 0.710 < 0.005 0.940 -

τ̂ 0.31 0.21 0.31 0.31 0.31 0.31 -

AIC -360.62 -171.19 -362.62 -309.30 -323.78 -310.71 -

loglik 182.31 86.59 182.31 155.65 162.89 156.35 -

DRS

p-value 0.080 0.170 0.160 0.405 0.230 0.970 0.325

τ̂ 0.30 0.35 0.24 0.28 0.28 0.28 0.34

AIC 90.77 89.68 88.96 89.22 89.35 89.10 -

loglik -43.39 -43.84 -43.48 -43.61 -43.68 -43.55 -

Kidney

p-value 0.530 0.105 0.270 0.355 0.160 0.240 0.473

τ̂ 0.27 0.19 0.28 0.24 0.25 0.25 0.14

AIC 13.50 13.93 11.50 12.67 12.79 12.51 -

loglik -4.75 -5.96 -4.75 -5.33 -5.40 -5.25 -

Ovarian

p-value 0.800 0.900 < 0.005 < 0.005 < 0.005 0.070 -

τ̂ 0.82 0.80 0.77 0.80 0.79 0.78 -

AIC -1277.31 -1100.29 -982.67 -1042.49 -980.25 -1156.15 -

loglik 640.66 551.15 492.33 522.24 491.12 579.08 -

Gastadv

p-value 1.00 < 0.005 0.15 0.14 < 0.005 0.600 -

τ̂ 0.59 0.51 0.57 0.57 0.59 0.55 -

AIC -1668.48 -774.44 -1453.71 -998.50 -1419.14 -1130.75 -

loglik 836.24 388.22 727.85 500.25 710.57 566.38 -
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3.5 Conclusion

We have proposed a novel IR-based goodness-of-fit copula specification test for mul-

tivariate uncensored, interval-censored, and right-censored data. We have established the

asymptotic consistency and normality of our proposed IR statistic estimator, which is fur-

ther used to construct the goodness-of-fit test procedures. To the best of our knowledge,

this is the first method that can be flexibly used for testing copula specifications under both

interval and right censoring. The method can test any copula model with an analytical

form (including Archimedean, Gaussian and Plackett copula families). Our method applies

to copula models with more than one dependence parameters (i.e., p ≥ 2, like Copula2).

Our test statistic is simple to calculate and straightforward to implement. The test proce-

dure enjoys high computational efficiency through parallel computing, as comparedto the

Emura method. The simulations show that our method can control type-I errors well under

both interval and right censoring. Our method also achieves satisfactory power performance

when Kendall’s τ is moderately high. We demonstrate the strong differentiating power of

the proposed IR test when applied to two interval-censored real datasets. Its applications

to several right-censored real datasets also reveal consistent findings as compared with the

existing methods for right-censored data.
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4.0 GWAS-based deep learning for survival prediction

4.1 Introduction

Accurate ‘time-to-event’ data based survival prediction is fundamental to effective clin-

ical management and precision medicine of human diseases [Chin et al., 2011, Compton,

2018]. It relies on a survival model to predict the dynamic risk profile of a future event

over time (e.g., disease onset, recurrence, progression, or death) based on the individual’s

current status, such as clinical characteristics, genetic information and medical images. Most

importantly, such a prediction addresses the patient’s key concern regarding the disease pro-

gression pattern in the future and shapes the physician’s decision making for the treatment

or clinical management strategy. It is to be noted that survival prediction is fundamentally

different from typical prediction models that predict a future event (whether occurs or not)

by fixing the time of interest through a binary classification [Castro-Rodŕıguez et al., 2000,

Chi et al., 2007]. Despite its essential role in precision medicine, survival prediction remains

a challenging task [Abrams et al., 2014, Barillot et al., 2012, Schumacher et al., 2012], largely

due to the complex nature of diseases and heterogeneity between patients. Therefore, there is

an urgent need for developing accurate and personalized survival prediction models with im-

proved capacity in learning the complex structures and interplays among predictors. Recent

advances in high-throughput technologies have generated large volumes of molecular profiling

data for each patient, which provides unprecedented opportunities in identifying potential

biomarkers and further establishing accurate survival prediction models [Chen et al., 2019,

Collins and Varmus, 2015, Sarnowski et al., 2018]. In particular, several national-wide large-

scale longitudinal studies, such as the Trans-Omics for Precision Medicine (TOPMed) and

All of Us, are underway using whole-genome sequencing and other omics technologies, with

the ultimate goal of accelerating precision medicine. However, how to effectively utilize the

wealthy amount of data is challenging. The first challenge comes from how to connect high-

dimensional predictors with the outcome of interest. This problem is particularly difficult

in survival prediction because the events of interest are often censored due to either a short
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study period or loss of follow-up during the study. The second challenge is how to model

the complex structure among numerous biomarkers, where the specific structure is largely

unknown. The third challenge is given the heterogeneity of patients how to interpret the

importance of each predictor for each patient and further how to identify patient subgroups

to provide personalized prevention or treatment strategies.

The recent advances in multi-layer deep neural network models have made extraordinary

achievements in providing new effective risk prediction models from complex and high di-

mensional biomedical data, such as omics and biomedical imaging [Grassmann et al., 2018,

Min et al., 2016, Miotto et al., 2017, Poplin et al., 2018]. However, the application of deep

learning in survival prediction is still limited. Faraggi and Simon [1995] proposed a single-

layer neural network based on the Cox proportional hazards (PH) model. However, its

performance did not exceed the regular Cox model in a prostate cancer survival data set

with 475 patents and only 4 clinical predictors. More recently, multiple efforts have been

devoted to evaluating Cox-based neural network survival models using larger data sets with

omic biomarkers. For example, Katzman et al. [2018] demonstrated that a single hidden

layer neural network survival model performed marginally better than the Cox model and

random survival forest (RSF) model in a breast cancer survival data set with 1, 980 patients

and 9 predictors. In another study, Ching et al. [2018] applied a single hidden layer neural

network survival model to 10 TCGA cancer survival data sets (sample sizes range from 302

to 1, 077) with high-throughput gene expression biomarkers, from which the neural network

survival models resulted in comparable or better performance than the Cox model, the pe-

nalized Cox models such as Cox-LASSO and the RSF model. In another study [Yousefi

et al., 2017] that also used TCGA cancer survival data sets (sample sizes range from 194 to

1, 092 with up to 17, 000 gene expression biomarkers), the neural network survival models

yielded comparable performance to the penalized Cox model and better performance than

the RSF model. Hao et al. [2018] developed a pathway-based neural network survival model

and applied it to a TCGA cancer data set (sample size 522 with 860 pathways and 5, 567

genes). However, all these studies have limited sample sizes, particular in the presence of

tens of thousands of predictors, and thus may lead to severe model overfitting problems.

Moreover, patient-specific predictor importance was not considered in those studies. They
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also did not carefully account for the scenario of tied events, which is commonly seen in

practice, especially when the sample size is large.

In this chapter, we propose and evaluate a multi-hidden-layer Cox-based deep neural

network (DNN) survival model to predict the progression of a progressive eye disease, namely,

age-related macular degeneration (AMD). The genome-wide association study (GWAS) of

AMD is the first and most successful GWAS research, where the massive GWAS data provide

unprecedented opportunities to study disease risk and progression. Although some attempts

have been tried to predict AMD progression risks using genetic information such as SNPs,

most statistical models focus on the structured regression framework, which typically only

accounts for (generalized) linear effects of the SNPs and thus have considerable limitations.

To the best of our knowledge, there has no existing work on survival prediction using deep

learning to effectively extract features from the GWAS data. Therefore, we build an accurate

and interpretable DNN survival prediction model for AMD progression.

The rest of the paper is organized as follows. Section 4.2 describes the deep learning

survival methods and prediction evaluation procedures. We assess the performance of three

machine/deep learning survival prediction models (DNN, Cox-LASSO, RSF) through exten-

sive simulation studies in Section 4.3 and apply them to the GWAS data from two large-scale

clinical studies of AMD in Section 4.4. The discussions are presented in Section 4.5.

4.2 Methods

For each subject i ∈ {1, ..., n}, the observations are {Yi, δi, Zi}, where Yi = min(Ti, Ci) is

the minimum of survival time Ti and censoring time Ci; δi = I(Ti ≤ Ci) is the right-censoring

indicator; Zi is the covariate vector.

4.2.1 Cox-based DNN survival model

The Cox PH model is the most popular regression model for censored survival data. It

assumes that the hazard function of survival time T takes the form h(t|Zi) = h0(t) exp(ZT
i θ),
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where h0(t) is the unspecified baseline hazard function at time t and θ is a vector of covariate

effects. The term ZT
i θ is called the linear predictor or prognostic index. On the other hand,

the deep neural network model is well known for its capacity in learning complex covariate

structures (i.e., non-linearity, interactions) [LeCun et al., 2015]. By the Universal Approxi-

mation Theorem [Cybenko, 1989, Hornik et al., 1989], for any continuous function g(Z; θ),

it is guaranteed to exist a neural network that approximates this function. Moreover, this

theorem holds even if we restrict the neural networks to have just one single hidden layer.

Therefore, even very simple neural network architecture can be extremely powerful. The

synergy of the powerful DNN and the popular Cox model leads us to build our Cox-based

DNN survival model and apply it to AMD progression prediction.

Assumption and loss function of DNN survival model

The DNN survival model we consider here can be written as h(t|Zi) = h0(t)eg(Zi;θ). The

major difference between this DNN model and the regular Cox model is that DNN takes the

prognostic index g(Zi; θ) as an unknown function with parameters θ, instead of assuming a

simple linear relationship. In this way, the DNN model can approximate various non-linear

covariate structures by estimating g(Zi; θ). We will employ a feedforward DNN with multiple

hidden layers to estimate the unspecified g(Z; θ). In fact, one can regard the regular Cox

model as a special case of DNN when g(Zi; θ) = ZT
i θ.

In large-scale studies, it is quite common that more than one observations develop events

at the same time. Such events are called tied events. To handle this scenario, we approximate

the partial likelihood via Efron’s approach [Efron, 1977]. Moreover, to deal with high-

dimensional covariates, we introduce the L1 penalty to the DNN loss function −l(θ;Z) +

λ||θ||1, where l(θ;Z) is the Efron approximation of log partial likelihood:

l(θ;Z) =
1

ND

∑
j∈D

{∑
i∈Hj

g(Zi; θ)−
mj−1∑
l=0

log

(∑
i∈Rj

eg(Zi;θ) − l

mj

∑
i∈Hj

eg(Zi;θ)
)}

, (4.2.1)

where D is the set of all events with size ND and {tj} is the set of unique event times; Hj is

the set of subjects {i} such that Yi = tj and δi = 1 and mj is the size of Hj; and Rj is the

risk set satisfying Yi ≥ tj.
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DNN architecture

First, we introduce the general form of an L-hidden-layer feedforward DNN, which is com-

posed of one input layer, L hidden layers and one output layer (with one node in our case).

For each subject, DNN inputs the vector of covariates Z into its input layer and output

a scalar prognostic index g(Z; θ). For each hidden layer l ∈ {1, ..., L} with nl number

of nodes, it takes the input nl−1−dimensional a(l−1) from the (l − 1)th layer and outputs

nl−dimensional a(l) through a nl−dimensional activation function f l. Mathematically, the

lth hidden layer model can be written as a(l) = f (l)(W0
(l) + W(l)a(l−1)), where W0

(l) is the

bias vector with length nl; W(l) is an nl×nl−1 weight matrix. f (l)(·) is a vector of activation

functions f (l)(·). Often a common f (l)(·) function is assumed for all the nodes in the lth

hidden layer and it is usually a non-linear function, such as the sigmoid [Hornik et al., 1989]

f(x) = 1
1+e−x

, the tangent f(x) = ex−e−x
ex+e−x

, the rectified linear unit (ReLU) [Sutskever et al.,

2013] f(x) = max(0, x), and the scaled exponential linear units (SeLU) [Klambauer et al.,

2017] f(x) = λ×ReLU(x) + λI(x < 0)α(ex− 1), where λ and α are constants. The final or

output layer also has weights and an output function f out, which is an identity function.

Take a simple one-hidden layer neural network for example. We have p-dimensional input

covariates zi from the ith subject, n1 number of hidden nodes with k = 1, ..., n1 and one single

output node. For the kth hidden node, we have a
(1)
k = f

(1)
k (w

(1)
k0 +

∑p
j=1 w

(1)
kj zij). Similarly,

the output node is oi = f out(w
(2)
0 +

∑n1

k=1 w
(2)
k a

(1)
k ) = w

(2)
0 +

∑n1

k=1w
(2)
k a

(1)
k by assuming f out is

an identity function. Typically we have oi = g(zi; θ). The full parameter set θ is composed

of {w(1)
k0 , k = 1, ..., n1}, {w(1)

kj , k = 1, ..., n1, j = 1, ..., p}, w(2)
0 and {w(2)

k , k = 1, ..., n1}.

DNN optimization and survival prediction

To solve for θ̂, we use the mini-batch stochastic gradient descent algorithm [Hinton et al.,

2012] to minimize the loss function in equation (4.2.1). Comparing with the standard stochas-

tic gradient descent that uses all samples for each iteration, the mini-batch algorithm is much

faster. Specifically, we randomly divide all observations into mini-batches with size NB and

update θ̂ by adding the gradient contributed by each mini-batch. In particular, the loss

71



function for the rth batch is

−lr(θ;Z) + λ||θ||1 =− 1

N r
D

∑
j∈Dr

{∑
i∈Hr

j

g(Zi; θ)−
mrj−1∑
l=0

log

(∑
i∈Rrj

eg(Zi;θ) − l

mr
j

∑
i∈Hr

j

eg(Zi;θ)
)}

+ λ||θ||1,

where N r
D, Dr, Hr

j , mr
j and Rr

j are the corresponding terms for the rth batch similar to those

defined in equation (4.2.1). Then we update θ by adding the gradient contributed by the rth

batch through:

∆r = −5θ l
r(θ;Z) + λ5θ ||θ||1

θ ← θ − γ∆r,

where γ is the learning rate (also called step size). This process will be repeated for NE times

(also called epochs) before convergence. We employ the Glorot uniform initializer [Glorot

and Bengio, 2010] to randomly select initial values. Once we get ĝ(Zi; θ̂), we can obtain the

predicted survival probability for subject i at time t through Ŝ(t|Zi) = exp{−Ĥ0(t)eĝ(Zi;θ̂)}.

DNN hyperparameters

To perform the survival prediction based on the DNN survival model, we need to select the

DNN hyperparameters. The main hyperparameters include the number of hidden layers,

number of nodes per hidden layer, choice of activation function, the L1 penalty parameter,

batch size, epoch size, and learning rate. In this work, we perform cross-validations in the

training data and select the combination of hyperparameters that lead to the most opti-

mal prediction performance based on the validation results. Specifically, in all simulations

we use the following hyperparameter setting: 2 hidden layers, 30 nodes per hidden layer,

activation function SeLU (parameters α = 1.6732 and λ = 1.0507 by default), L1 penalty

= 0.1, batch size NB = 50, epoch size NE = 1, 000 and learning rate γ = 0.01 (for sparse

signals) or γ = 0.0001 (for weak signals). For the real data analysis, we select the following

hyperparameters: includes 2 hidden layers, 300 nodes per hidden layer, activation function

SeLU (α and λ by default), L1 penalty = 0.01, batch size NB = 50, epoch size NE = 1, 000

and learning rate γ = 0.00001.
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DNN interpretation

It is important to understand and interpret the fitted neural network prediction model. One

way is to export feature (i.e., predictor) importance measures that decide the top impor-

tant features in a prediction model. The Local Interpretable Model-Agnostic Explanation

(LIME) method [Ribeiro et al., 2016] provides prediction importance of each predictor for

each subject in the model by perturbing the feature values and evaluating how the predic-

tion results change. Specifically, for one feature in a specific subject, the method trains an

interpretable model (e.g., linear regression) on new data sets based on small perturbations

(e.g., adding noises) of the particular feature in this subject. LIME has been widely applied

to neural network models with continuous or categorical outcomes, but not with censored

survival outcomes yet. In this paper, we apply the LIME method to the neural network

survival model and produce subject-specific predictor importance measures with meaningful

interpretations.

4.2.2 Evaluation metrics for survival prediction performance

We calculate the Harrell’s concordance index (c-index) [Harrell et al., 1996] to measure

the proportion of concordant pairs (i.e., the predicted and observed outcomes are concor-

dant) among all comparable pairs (i.e., the true progression statuses can be ordered for two

observations within one pair). Pairs are not comparable if both are censored, or one is cen-

sored at time c1 and the other event occurs at time t2 with t2 > c1. The c-index is between

0 and 1 with a larger value indicating a better prediction model, which can be estimated by

Ĉ =

n∑
i=1

n∑
j=1

δiI(Yi<Yj)I(ĝ(Zi;θ̂)>ĝ(Zj ;θ̂))+0.5∗I(ĝ(Zi;θ̂)=ĝ(Zj ;θ̂))

n∑
i=1

n∑
j=1

δiI(Yi<Yj)+I(ĝ(Zi;θ̂)=ĝ(Zj ;θ̂))
.

We also obtain the time-dependent Brier score [Gerds and Schumacher, 2006, Graf et al.,

1999]. At a specific time point t, the Brier score measures the mean squared error between

the observed progression status at time t (i.e., Yi(t) = I(Yi ≥ t)) and the predicted survival

probability (i.e., Ŝ(t|Zi)). A lower Brier score indicates a better prediction model. A Brier

score of 33% corresponds to predicting the risk by a random number drawn from Uniform

[0, 1] and 25% corresponds to predicting 50% risk for every observation. The estimated Brier
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score is expressed as B̂S(t, Ŝ) = 1
M

∑
i∈DM Ŵi(t){Yi(t)−Ŝ(t|Zi)}2, where DM is the test data

set with size M , Ŝ(t|Zi) is estimated using the training data, and Ŵi(t) = (1−Yi(t))δi
Ĝ(Yi−)

+ Yi(t)

Ĝ(t)
is

the inverse probability of censoring weights with Ĝ(t) = P̂ (C > t) [Gerds and Schumacher,

2006].

We also obtain the time-dependent ROC curve and the associated area under the curve

(AUC) [Heagerty et al., 2000]. The AUC measures the discrimination capability of ĝ(Z; θ̂).

It ranges between 0 and 1, with higher AUC indicating better discrimination ability. Specif-

ically, we first derive the time-dependent sensitivity and specificity

sensitivity(c, t) = P{ĝ(Z; θ̂) > c|T ≤ t},

specificity(c, t) = P{ĝ(Z; θ̂) ≤ c|T > t},

where c is some arbitrary cut-off. For a given t, sensitivity(c, t) and specificity(c, t) determine

the ROC curve profile and the associated AUC at time t.

4.2.3 K-fold cross-validations

Over-fitting is a common issue for all machine learning models. One way to alleviate

the issue is to perform K-fold cross-validation. Specifically, the original data DN are split

into K subsets Dk, k = 1, ..., K, accounting for the censoring proportions. For the kth cross-

validation, models are trained in the samples DN\Dk (original data without kth subset) and

then validated in the test samples Dk. Finally, the K-fold cross-validation estimates (i.e.,

c-index and Brier score) are calculated by averaging over the test data results, as shown

below

ĈvBS(t, Ŝ) =
1

K

K∑
k=1

1

Mk

∑
i∈Dk

Ŵi(t){Yi(t)− Ŝk(t|Zi)}2,

ĈvC =

1

K

K∑
k=1

1

MK

∑
i∈Dk

∑
j∈Dk

δiI(Yi < Yj)I(ĝb(Zi; θ̂k) > ĝk(Zj; θ̂k)) + 0.5 ∗ I(ĝk(Zi; θ̂k) = ĝk(Zj; θ̂k))∑
i∈Dk

∑
j∈Dk

δiI(Yi < Yj) + I(ĝk(Zi; θ̂k) = ĝb(Zj; θ̂k))
,

where Mk is the sample size of the kth subset.
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4.2.4 Implementation

Our DNN survival model is built with Keras [Chollet et al., 2015] and Tensorflow [Abadi

et al., 2016] to ensure computational stability and efficiency. Keras is a deep learning frame-

work that provides a convenient way to define and train deep learning models. It provides

high-level building blocks for deep learning models [Chollet and Allaire, 2018]. For example,

one can define a neural network model with a few lines of codes in Keras. We use Tensor-

flow for low-level operations such as differentiation, which serves as the backend engine of

Keras. Via Keras and Tensorflow, our DNN survival model is compatible with both GPUs

and CPUs.

4.3 Simulation studies

We use simulations to evaluate the prediction performance of DNN and compare it with

Cox-LASSO (abbreviated as LASSO) [Tibshirani, 1996] and RSF [Ishwaran and Kogalur,

2007, Ishwaran et al., 2008]. Two main simulation settings are considered. In the first

setting, data are generated with sparse signals (i.e., only a few predictors with non-zero

effects on the survival outcome). In the second setting, all predictors have non-zero but

weak signals, which is common in settings with genetics or genomics predictors. Within

each simulation setting, we generate multiple scenarios with different structures in predictors’

effects. For each scenario, we train the models in a training data set, and then test them in

an independent test data set and summarize the results across 200 replications. The sample

sizes for both training and test data sets are 1, 000.

All three models involve the selection of tuning parameters. For LASSO, we use 5-

fold cross-validation to select the tuning parameter in the L1 penalty using the training

data. After the tuning parameter is determined, we then train the LASSO model using the

entire training data and finally validate the model in the test data. For RSF, we train the

model by utilizing the default setting of 1, 000 trees and
√
p number of randomly selected

predictors at each split. In the case of DNN, it is widely known for its exhaustive process
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in selecting optimal tuning parameters since there are many tuning parameters to consider.

The tuning process is even more time consuming given that we have multiple simulation

scenarios. Therefore, for all simulation scenarios, we fix one set of tuning parameters for

DNNs. More details about the tuning parameters are discussed in Section 4.2.

4.3.1 Simulation I: survival data with sparse signals

We consider five scenarios of predictor effects following Mi et al. [2019], which includes

linear effects only (scenario 1) and linear effects together with non-linear effects (scenario

2) or with interactions (scenario 3) or with both non-linear and interaction effects (scenario

4) or with non-linear, interaction and threshold effects (scenario 5). The total number of

predictors is set at p = 10, 50, 100, 500, respectively. The true models for these five scenarios

are illustrated as follows:

Scenario 1 : h(t|Zi) = h0(t) exp(
5∑
j=1

Zij),

Scenario 2 : h(t|Zi) = h0(t) exp(
5∑
j=1

Zij + Z2
i6 + Z2

i7),

Scenario 3 : h(t|Zi) = h0(t) exp(
5∑
j=1

Zij + Zi6 + Zi7 + 5Zi6Zi7),

Scenario 4 : h(t|Zi) = h0(t) exp(
5∑
j=1

Zij + Zi6 + Zi7 + 5Zi6Zi7 + Z2
i8 + Z2

i9),

Scenario 5 : h(t|Zi) = h0(t) exp(
5∑
j=1

Zij+Zi6+Zi7+5Zi6Zi7+I(Zi8 < −0.5∪Zi9 < −0.5)−

I(Zi8 ≥ −0.5 ∩ Zi9 ≥ −0.5)), where h0(t) = kλktk−1 is the baseline Weibull hazard function

with λ = 0.1, k = 2. For Zi = (Zi1, ..., Zip), we first generate Zi from MVN(0,Σ) with

Σ = {σjj′ = e−|j−j
′|, 1 ≤ j, j′ ≤ p} and then transform Zi4 into a binary predictor through

I(Zi4 > 0) and Zi5 into a multinomial predictor through I(Zi5 > −0.5) + I(Zi5 > 0.5).

In Table 4.3.1, we compare the prediction accuracy of the DNN, RSF, LASSO and true

models under the five simulation scenarios by summarizing the c-index, which is a predictive

metric measuring the concordance between observed and predicted values. LASSO performs

the best in scenario 1 where all predictor effects are linear, but its performance declines in

the other 4 scenarios. RSF generally has higher c-index than LASSO in non-linear scenarios.

For our proposed method, its performance is lower than LASSO as expected in scenario 1 but
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is better than RSF, while it outperforms both LASSO and RSF in all non-linear scenarios.

The last column gives the c-index values that are obtained from fitting the true underlying

model. It can be seen that when p is small, DNN produces c-index values that are very close

to the truth for all five scenarios.

4.3.2 Simulation II: survival data with weak signals

In genetics and genomics data, we often observe that many predictors have (non-zero)

weak effects due to correlations among SNPs or genes. Moreover, there are various types

of omics predictors, such as gene expressions (i.e., continuous), mutations (i.e., binary) and

SNPs (i.e., multinomial). Therefore, we generate data that include various types of predictors

with weak effects. The total number of predictors is set as p = 20, 50, 100, 500 and we consider

the following five scenarios:

Scenario 1 : h(t|Zi) = h0(t) exp(
p∑
j=1

βjZij),

Scenario 2 : h(t|Zi) = h0(t) exp(
p∑
j=1

βjZij + Z2
i1 + Z2

i2),

Scenario 3 : h(t|Zi) = h0(t) exp(
p∑
j=1

βjZij + Zi3Zi4),

Scenario 4 : h(t|Zi) = h0(t) exp(
p∑
j=1

βjZij + Z2
i1 + Z2

i2 + Zi3Zi4),

Scenario 5 : h(t|Zi) = h0(t) exp(
p∑
j=1

βjZij + I(Zi1 < −0.5 ∪ Zi2 < −0.5) − I(Zi1 ≥

−0.5 ∩ Zi2 ≥ −0.5) + Zi3Zi4),

where h0(t) is the baseline Weibull hazard function with λ = 0.01, k = 10. Similarly to

the first simulation setting, we first generate Zi from a multivariate normal distribution

MVN(0,Σ) with Σ = {σjj′ = e−|j−j
′|, 1 ≤ j, j′ ≤ p}. Then the first 20% Zij remain

continuous, the second 20% Zij are transformed into binary predictors through I(Zij > 0)

and the rest 60% Zij are transformed into multinomial predictors through I(Zij > −0.5) +

I(Zij > 0.5). For predictor effects, we set βj = 0.2 for continuous and binary predictors. For

multinomial predictors, we mimic the linkage disequilibrium effect in SNP data by generating

βj from MVN(0.2, 0.01× Σ) with the same Σ.
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Table 4.3.1: The C-index values (range from 0 to 100) over 200 replications for DNN, RSF,

LASSO and true models using sparse signals.

p DNN RSF LASSO True

scenario 1

10 88.0 (0.7) 82.9 (1.0) 88.2 (0.6)

87.4 (0.6)
50 85.7 (1.0) 82.8 (1.0) 88.2 (0.6)

100 83.2 (1.0) 82.4 (1.2) 88.2 (0.6)

500 82.2 (1.0) 81.1 (1.1) 88.0 (0.7)

scenario 2

10 88.7 (0.9) 80.9 (1.2) 80.0 (1.0)

89.8 (0.5)
50 84.2 (1.6) 80.2 (1.1) 80.0 (1.0)

100 80.6 (2.0) 79.5 (1.1) 79.9 (0.9)

500 74.3 (3.1) 77.9 (1.0) 79.9 (1.0)

scenario 3

10 93.1 (0.6) 79.7 (1.8) 74.0 (1.4)

94.0 (0.4)
50 91.4 (0.7) 75.6 (1.5) 73.9 (1.5)

100 89.8 (0.8) 74.4 (1.6) 73.9 (1.4)

500 81.6 (1.8) 72.0 (1.5) 73.7 (1.4)

scenario 4

10 92.1 (0.8) 80.1 (1.8) 71.4 (1.3)

94.4 (0.4)
50 88.9 (1.5) 75.6 (1.5) 71.3 (1.4)

100 84.5 (2.0) 74.2 (1.6) 71.4 (1.3)

500 76.3 (1.8) 71.4 (1.4) 71.1 (1.4)

scenario 5

10 92.4 (0.6) 79.4 (1.7) 73.3 (1.3)

94.0 (0.4)
50 90.4 (0.8) 75.2 (1.6) 73.1 (1.4)

100 88.6 (0.8) 74.0 (1.4) 73.0 (1.4)

500 80.4 (2.0) 71.4 (1.5) 72.7 (1.3)
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Table 4.3.2 summarizes the prediction performance results under the five simulation

scenarios. As the size of p increases, our proposed method improves in all scenarios. In

particular, when p is large (e.g., p = 500), our proposed method outperforms the other two

models significantly in all simulation settings. The c-index of LASSO also increases as p gets

larger, but remains unchanged or even slightly decreases when p goes up from 100 to 500.

RSF also improves with larger p but its performance is generally lower than the other two

methods.

4.3.3 Simulation III: sample size effect on prediction performance

We also evaluate the effect of sample sizes on the prediction performance of the DNN

survival model in the presence of large-dimensional predictors. We choose the scenarios 4 and

5 with p = 100, 500 under the sparse signal setting from Section 4.3.1. Table 4.3.3 presents

the c-index values for each scenario. Overall, for both scenarios, the c-index increases as

the sample size increases, and the increment is more dramatic between smaller sample sizes

such as from n = 200 to 500 or n = 500 to 1, 000. This demonstrates that the DNN survival

model requires a moderately large sample size (i.e., n = 1, 000 at least) to achieve satisfactory

prediction performance when p ≥ 100.

4.4 Application to AREDS data

4.4.1 Study population

We apply the three machine learning models for predicting AMD progression using ge-

netic and clinical variables. Data are from the Age-Related Eye Disease Studies (AREDS),

which is composed of the first study AREDS [AREDS Group, 1999] and the subsequent

study AREDS2 [Chew et al., 2012] (with independent participants), designed to assess risk
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Table 4.3.2: The C-index values (range from 0 to 100) over 200 replicates for DNN, RSF

and LASSO using weak signals.

p DNN RSF LASSO

scenario 1

20 66.8 (1.3) 55.5 (5.8) 67.0 (1.4)

50 73.7 (1.3) 58.2 (7.6) 74.0 (1.2)

100 78.2 (1.2) 60.8 (7.6) 78.6 (1.1)

500 82.1 (1.4) 62.9 (4.8) 75.9 (1.5)

scenario 2

20 64.6 (1.6) 53.7 (4.9) 63.2 (1.4)

50 71.3 (1.3) 57.1 (7.3) 71.8 (1.2)

100 76.6 (1.2) 60.1 (7.3) 76.9 (1.1)

500 81.5 (1.3) 62.5 (5.0) 75.9 (1.5)

scenario 3

20 67.4 (1.3) 55.2 (5.9) 67.5 (1.3)

50 73.2 (1.2) 56.6 (7.7) 73.6 (1.2)

100 77.7 (1.2) 60.0 (7.8) 78.2 (1.1)

500 81.8 (1.4) 62.7 (5.0) 75.6 (1.5)

scenario 4

20 65.5 (1.5) 53.5 (5.1) 63.9 (1.4)

50 71.0 (1.3) 56.3 (7.5) 71.4 (1.2)

100 76.0 (1.2) 59.3 (8.0) 76.5 (1.2)

500 81.3 (1.4) 62.4 (5.1) 75.6 (1.5)

scenario 5

20 64.8 (1.3) 54.3 (4.8) 64.8 (1.4)

50 72.0 (1.2) 56.5 (7.6) 72.4 (1.2)

100 77.1 (1.2) 59.6 (7.9) 77.6 (1.2)

500 81.8 (1.4) 62.7 (5.1) 75.1 (1.5)
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Table 4.3.3: Effect of sample sizes n on DNN c-index performance in presence of high-

dimensional predictors. Both scenarios 4 and 5 are from the sparse signal setting. The

predictor sizes are set at p = 100 or 500.

sample size n

p 200 500 1,000 1,500 2,000

scenario 4 100 65.4 (4.3) 78.9 (2.0) 84.5 (2.0) 87.8 (1.7) 89.0 (1.6)

500 57.2 (3.2) 62.3 (3.0) 76.3 (1.8) 79.9 (1.7) 82.4 (1.1)

scenario 5 100 66.7 (4.7) 82.8 (1.8) 88.6 (0.8) 89.6 (0.6) 90.5 (0.5)

500 58.2 (3.3) 63.2 (3.4) 80.4 (2.0) 86.0 (2.4) 87.8 (1.0)

factors and effects of various supplements for AMD development and progression. Both

studies collected DNA samples of consenting participants [Fritsche et al., 2016]. The two

studies are combined for the following model development and analysis.

4.4.2 Survival outcome and baseline predictors

To measure the disease progression, a severity score, scaled from 1 to 12 (with a larger

value indicating more severe AMD), (with a larger value indicating more severe AMD), is

determined for each eye at every examination during study follow-up. In this chapter, our

outcome of interest is time-to-late-AMD from the baseline visit, where “late-AMD” is defined

as the stage with severity score≥ 9. There are 30% of subjects progressed to late-AMD before

the study ends. We develop prediction models on the individual eye level. There are a total

of 7, 803 eyes free of late-AMD at baseline. We include a list of potentail predictors, including

age at baseline, smoking status (never, former or current smoker), education status (≤ or >

high school) and top SNPs that have been reported to be associated with AMD progression

(identified in Yan et al. [2018] with various p− value cut-offs and MAF > 5%). Table

4.4.1 summarizes the baseline characteristics of the study samples. We also pre-process the
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continuous predictors, for example, dividing age by 100 to scale it within (0, 1) and dividing

SNP data (originally coded between [0, 2]) by 2 to make them within [0, 1], as we find such a

scaling procedure enhances the prediction performance in survival machine learning models.

4.4.3 Model development and evaluation

We perform 10-fold cross-validation in the combined AREDS and AREDS2 data. The

splitting is stratified based on the censoring status and study source. For LASSO and RSF,

we use the same tuning procedure as in the simulations. For DNN, we first perform a grid

search for tuning parameters and select the set of hyperparameters that gives the best average

prediction performance (i.e., c-index) across the 10 test validations. The final choice of DNN

hyperparameters is described in Section 4.2. We also include a benchmark Genetic Risk

Score (GRS) model, which is a regular Cox PH model using age, smoking status, education

status and an AMD genetic risk score from Ding et al. [2017].

We first examine the prediction performance, measured by c-index (×100), employ-

ing various numbers of top genetic variants across different models. We choose various

p−value cut-offs from the first AMD progression GWAS paper [Yan et al., 2018] (i.e.,

p < 10−7, 10−6, 10−5, 10−4) to obtain different numbers of top variants, as shown in Ta-

ble 4.4.2. In general, the averaged c-index increases with the number of predictors, and

becomes relatively stable when p < 10−5, which corresponds to 663 SNPs (plus 3 clinical

predictors). We also include in the last column of Table 4.4.2 the DNN model computing

time for fitting the complete data once. It can be seen that the computing time does not

increase much when the total number of predictors increases. On average, it takes about one

hour in the presence of 8, 000 observations and 1, 000 predictors.

Then, we report in Table 4.4.3 c-index, 10-year AUC, and 10-year Brier score (a predictive

error measurement) at the cutoff p < 10−5. DNN achieves higher c-index (76.1) and AUC

(81.8) as well as lower Brier score (0.136) than all the other models.
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Table 4.4.1: Baseline features of study samples (eye level) in AREDS and AREDS2.

N=7803 n Mean (SD) or %

Age 69.5 (6.2)

Gender

Female 4466 57%

Male 3337 43%

Education

<= high 2369 30%

>high 5434 70%

Smoke

never 3623 46%

former 3752 48%

current 428 6%

Baseline severity score 4.2 (2.5)

Table 4.4.2: The 10-fold cross-validation c-index (×100) from five survival models (GRS,

LASSO, Ridge, RSF, DNN) using different p−value cutoffs in the AREDS data. The last

column shows the DNN computing time by running on the complete dataset.

Number of predictors GRS* LASSO Ridge RSF DNN Time (minutes)

p < 10−7 92 73.2 (1.6) 72.4 (1.7) 72.3 (1.7) 68.5 (1.4) 72.2 (1.8) 49

p < 10−6 165 73.2 (1.6) 72.6 (1.5) 72.6 (1.5) 68.2 (1.3) 72.6 (1.6) 47

p < 10−5 666 73.2 (1.6) 74.4 (1.3) 74.3 (1.3) 70.1 (1.8) 76.1 (1.2) 62

p < 10−4 1500 73.2 (1.6) 75.2 (1.1) 74.8 (1.0) 71.1 (1.7) 76.5 (1.4) 77

*GRS is invariant to the choices of p−value cutoffs.
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Table 4.4.3: The 10-fold cross-validation c-index (×100), 10-year AUC (×100) and 10-year

Brier score from five survival models (GRS, LASSO, Ridge, RSF, DNN) in the AREDS data.

GRS LASSO Ridge RSF DNN

c-index (SD) 73.2 (1.6) 74.4 (1.3) 74.3 (1.9) 70.1 (1.8) 76.1 (1.2)

10year-AUC (SD) 78.2 (2.1) 79.5 (1.6) 78.7 (1.5) 74.3 (2.1) 81.8 (2.1)

10year-BrS (SD) 0.151 (0.005) 0.146 (0.006) 0.147 (0.005) 0.170 (0.008) 0.136 (0.011)

Figure 4.4.1 presents the time-dependent Brier scores for the test data under each predic-

tion model. The Brier score profile from our DNN survival model is consistently lower than

all the other models across most time points, demonstrating its better performance than the

other models. Figure 4.4.2 presents the time-dependent AUC for the test data under each

model, as an additional matric to evaluate the model prediction performance. Similar to the

time-dependent Brier scores, the AUC profile from our DNN survival model is consistently

higher than AUCs of the other models across all time points.

4.4.4 DNN interpretation and subgroup identification

To interpret the DNN-based prediction, we obtain the prediction importance measure

for the test data subjects using the LIME method under our DNN survival model. We use

9-folds data to train a DNN model and then interpret the model in the rest 1-fold test data.

One big advantage of the LIME method is that it provides a subject-specific interpretation of

predictor importance. Figure 4.4.3 illustrates the top clinical and genetic predictors (named

by their corresponding gene names). Among the top predictors, (older) age and smoking

are harmful (colored in red) to AMD progression, whereas genetic variants (carrying minor

alleles) can be either harmful (red) or protective (green). For example, the minor allele of
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Figure 4.4.1: The time-dependent Brier scores (predictive errors) in the test data from four

survival prediction models (GRS, LASSO, Ridge, RSF, DNN).
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Figure 4.4.2: The time-dependent AUC values in the test data from four survival models

(GRS, LASSO, Ridge, RSF, DNN).
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rs10922098 in the CFH gene region shows a protective effect for AMD progression; while

the minor allele of rs12987936 in the CROCC2 gene region shows a harmful effect for AMD

progression. Moreover, we notice that one predictor could be important for some subjects

but may not be crucial for others (visualized by different vertical color bands within each

predictor), which suggests there are possible heterogeneous subgroups in this population.

Motivated by the heterogeneity across subjects shown in Figure 4.4.3, we further identify

two distinct subgroups of AMD patients by performing the Gaussian Mixture Model on the

predicted risk function ĝ (output from the DNN model), as illustrated in the histogram

of Figure 4.4.4. The corresponding Kaplan-Meier plot on progression probability indicates

significantly different progression profiles between the two subgroups (namely, the low-risk

and high-risk subgroups), with a very significant log-rank test result (p = 4.1 × 10−166).

Further, we find significant differences between the two subgroups in terms of age, smoking

status, education level and most top genetic variants in Figure 4.4.3. The comparison results

are summarized in Table 4.4.4. On average, the high-risk patients are older, with more

smokers and lower education level compared to the low-risk patients. The high-risk patients

also carry more AMD progression risk alleles compared to the low-risk patients (e.g., GRS

is 1.07 vs 0.94). Moreover, as shown in Figure 4.4.5, the separate LIME plots for the two

subgroups also demonstrate that the individual predictors’ importance measures are different

between the two subgroups. In particular, the harmful predictors generally have stronger

influence (darker in red) in the high-risk subgroup than in the low-risk subgroup; whereas

the protective predictors show stronger impacts (darker in green) in the low-risk subgroup

than the high-risk subgroup. These results provide potentially useful insights for the early

prevention and tailored clinical management for the AMD patients.

4.4.5 Data availability

Both phenotype and genotype data of AREDS and AREDS2 are available from the online

repository dbGap (accession: phs000001.v3.p1, and phs001039.v1.p1, respectively).
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Figure 4.4.3: The representation of importance measures for the top predictors in the test

data.
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Figure 4.4.4: The Kaplan-Meier (KM) estimated survival profiles for the two identified

subgroups in the AREDS and AREDS2 test data.

4.5 Discussion and conclusion

In this work, we implement a multi-layer DNN survival model and successfully apply it

on a real data set with both large n and large p to examine and evaluate its effectiveness in

making accurate dynamic survival predictions and detecting clinically meaningful subgroups.

To open up the “black-box” of DNN, a novel LIME algorithm is implemented to calculate

an importance measure of each predictor for each observation. Moreover, our work demon-

strates the power of DNN in the presence of various types of complex non-linear structures in

the predictors through extensive simulation studies. As we did not perform hyperparameter

tuning separately for each scenario, further enhanced performance of DNN would be ex-

pected if separate tuning was performed. Our work presents the first deep learning survival

prediction model for AMD progression prediction and the model framework can be readily

applied to other progressive disorders where large GWAS or omics data are collected.

We evaluate survival models based on the pooled data set of AREDS and AREDS2,
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Table 4.4.4: Comparison between the low-risk (n = 2, 516) and high-risk (n = 5, 287) sub-

groups identified by DNN in AREDS and AREDS2 data.

Low-risk subgroup

Mean (sd) or n (%) or

risk allele frequency

High-risk subgroup

Mean (sd) or n (%) or

risk allele frequency

p-values

Predictors:

Age 66.1 (5.4) 71.1 (5.9) < 2.2× 10−16

Smoke < 2.2× 10−16

never 1343 (53%) 2280 (43%)

former 1088 (43%) 2664 (50%)

current 85 (3%) 343 (6%)

Education

<=high school 625 (25%) 1744 (33%) 3.2× 10−13

>high school 1891 (75%) 3543 (67%)

rs10922098 (CFH ) 0.34 0.61 < 2.2× 10−16

rs11200638 (HTRA1 ) 0.17 0.39 < 2.2× 10−16

rs12987936 (CROCC2 ) 0.18 0.18 0.35

rs147518956 (ADAMTS12 ) 0.27 0.32 1.8× 10−13

rs200880300 (SV2C ) 0.04 0.06 1.0× 10−3

rs2186849 (LOC105371956 ) 0.47 0.50 1.0× 10−3

rs3750847 (ARMS2 ) 0.17 0.40 < 2.2× 10−16

rs4044578 (CFHR4 ) 0.33 0.62 < 2.2× 10−16

Other characteristics:

GRS 0.94 (0.13) 1.07 (0.13) < 2.2× 10−16

Gender

Female 1439 (57) 3027 (57) 0.98

Male 1077 (43) 2260 (43)

Baseline severity 3.0 (2.3) 4.7 (2.4) < 2.2× 10−16
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Figure 4.4.5: The representation of importance measures for the top predictors in the low-risk

(A) and high-risk (B) subgroups, respectively.

whereas Ding et al. [2017] used AREDS as the training data and AREDS2 as the test data.

However, as noted by Ding et al. [2017], AREDS and AREDS2 populations are different

in multiple aspects such as disease severity and age (at enrollment). As a result, the top

significant SNPs identified by GWAS are largely non-overlapping between the two studies

[Yan et al., 2018]. As expected, in Ding et al. [2017], the GRS-based Cox model trained in

AREDS achieves a c-index of 0.75 in AREDS but drops to 0.63 in AREDS2. To establish

a prediction model that is generalizable to a broader AMD population, we pooled them

together. Unsurprisingly, the benchmark GRS model performance improves to 0.73 in terms

of c-index, as shown in Table 4.4.3.

We predict disease progression on the eye level by assuming that the two eyes are inde-

pendent of each other in one individual. Potential future extensions include using a copula

model to take the dependence between the two eyes from the same subject into account for

the deep learning survival model and predicting the joint progression profiles of the two eyes

[Sun and Ding, 2019, Sun et al., 2019].

One potential limitation of the DNN survival model is that it involves tuning of multiple

hyperparameters, which is usually computationally expensive. According to our real data
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analysis and simulations, we could heuristically start from a two-hidden-layer DNN and per-

form a grid search for the other tuning parameters such as the optimal node size. In general,

the DNN model size should be moderate to avoid overfitting. Moreover, the utilization of

GPUs could significantly boost the computing speed of our DNN survival model. To further

improve the DNN survival model, there are multiple future directions. For example, one

may first obtain low-dimensional signals by performing unsupervised feature extraction such

as autoencoder [Vincent et al., 2010] and then use the extracted signals as predictors. In

this way, the noises in the original data can be greatly reduced. Another possible extension

is to build a DNN survival model based on the Bayesian approach [Liang et al., 2018], which

could perform variable selection to identify relevant predictors under the high-dimensional

non-linear setting.
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5.0 Summary and Future Direction

In Chapter 2, I have developed a flexible copula-based semiparametric transformation

model for bivariate interval-censored data. In many applications, there are more than two

correlated events. I am interested in extending my current work to modeling multivariate

interval-censored data using copula models. I am also interested in developing methods for

modeling covariate-varying dependence parameters in copula. For example, the dependence

strength between two events can vary by age. More excitingly, I am interested in developing

a fully semiparametric copula framework with unspecified dependence structure, instead of

a specific parametric copula function. For the IR-based goodness-of-fit test proposed in

Chapter 3, I plan to extend it from bivariate to multivariate censored data.

In Chapter 4, we have developed and implemented a deep-learning-based prediction

model for survival outcomes using genetic data. In the future, I am planning to incorporate

different types of high-dimensional features (including genetic, genomic, and imaging data)

into the current deep learning framework. I am also interested in predicting various pro-

gressive diseases (e.g., cancer, Alzheimers disease) by utilizing wealthy public repositories

(e.g., UK Biobank, dbGap, GEO, ADNI, TopMed, All of Us). I also want to extend deep

learning methodology to predict other commonly seen settings, such as interval censoring,

correlated survival outcomes, and competing risk events. Moreover, I am also interested in

developing deep-learning-based methods for identifying novel predictive biomarkers, which

interact with treatments. All these new methods have the high potential to facilitate early

prevention and precision medicine.
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Appendix A

Supplementary materials for Chapter 2

A.1 Additional simulation studies

In the real setting, the value of the transformation function parameter r is often unknown.

Therefore, we examined our methods in estimating the transformation function parameter r

together with the other parameters in our proposed model. We used the logarithmic transfor-

mation function for the Clayton Loglogistic data and the Box-Cox transformation function

for the Clayton Weibull data. Table A.1.1 shows satisfactory estimation performance for

all parameters including the transformation parameter in both proportional hazards and

proportional odds settings.

We also simulated bivariate current status data by setting K = 1 to examine how the

proposed method works in the particular case of case 1 interval censoring. As shown in Table

A.1.2, Copula2-S works as well as the true model in this setting too. The larger standard

errors are due to less information in current status data as compared to the standard case 2

interval censoring case in Table 2.4.1 of the main text.

A.2 Secondary real data analysis

We performed the secondary real data analysis that models the Group A subjects (i.e.

subjects who were free of late-AMD at time 0) by a two-parameter copula sieve model

with the same settings (m = 4, r = 3) as the two-part model from the main text. The

covariates are the baseline age, severity score and smoking status. We performed genome-

wide association tests and summarized the top identified SNPs in the Table A.2.1. The

top identified gene regions are consistent with the ones identified from the two-part model.
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Table A.1.1: Estimation results using the proposed model when the transformation function

parameter r is unspecified.

proportional odds proportional hazards

Param Bias SE SEE (CP) Bias SE SEE (CP)

βng1 -0.0011 0.0169 0.0159 (0.934) -0.0004 0.0109 0.0104 (0.942)

βng2 0.0111 0.1289 0.1278 (0.938) 0.0032 0.0816 0.0806 (0.945)

βg -0.0030 0.0902 0.0923 (0.961) 0.0035 0.0584 0.0582 (0.952)

r -0.0384 0.1294 0.1274 (0.919) 0.0463 0.1532 0.1574 (0.952)

τ -0.0008 0.0224 0.0216 (0.944) -0.0006 0.0225 0.0227 (0.946)

Table A.1.2: Estimation results for bivariate current status data.

True Copula2-S Robust-S

Param Bias SE SEE (CP) Bias SE SEE (CP) Bias SE SEE (CP)

proportional odds

βng1 0.0031 0.0399 0.0394 (0.956) 0.0033 0.0400 0.0393 (0.958) 0.0002 0.0536 0.0538 (0.942)

βng2 -0.0203 0.2563 0.2516 (0.948) -0.0219 0.2563 0.2527 (0.946) -0.0249 0.2646 0.2608 (0.946)

βg 0.0002 0.1819 0.1816 (0.947) -0.0001 0.1808 0.1822 (0.944) -0.0008 0.1855 0.1938 (0.948)

τ -0.0038 0.0587 0.0575 (0.947) 0.0025 0.0680 0.0660 (0.939) NA NA NA

proportional hazards

βng1 -0.0008 0.0330 0.0321 (0.947) -0.0005 0.0333 0.0322 (0.946) 0.0003 0.0397 0.0420 (0.944)

βng2 0.0001 0.1785 0.1813 (0.949) 0.0025 0.1831 0.1830 (0.945) 0.0030 0.1857 0.1958 (0.956)

βg -0.0043 0.1298 0.1312 (0.959) -0.0052 0.1319 0.1324 (0.959) -0.0038 0.1346 0.1406 (0.956)

τ -0.0013 0.0637 0.0628 (0.943) 0.0029 0.0682 0.0665 (0.931) NA NA NA
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Table A.2.1: The top identified SNPs from the secondary real data analysis.

SNP Chr Gene MAF OR p (Copula2-S) p (Frailty-S) p (Robust-S)

rs10922109 1 CFH 0.28 0.61 7.6× 10−9 5.6× 10−8 3.6× 10−7

rs1329427 1 CFH 0.28 0.61 8.4× 10−9 6.3× 10−8 4.0× 10−7

rs10801559 1 CFH 0.28 0.61 9.4× 10−9 6.9× 10−8 4.4× 10−7

rs1410996 1 CFH 0.28 0.62 1.1× 10−8 7.6× 10−8 5.0× 10−7

rs2284665 10 HTRA1 0.33 1.54 1.6× 10−8 5.3× 10−7 4.3× 10−6

rs2293870 10 ARMS2-HTRA1 0.33 1.53 1.6× 10−8 4.3× 10−7 7.5× 10−6

rs61871744 10 ARMS2-HTRA1 0.33 1.54 1.6× 10−8 1.7× 10−7 3.4× 10−6

rs3763764 10 ARMS2-HTRA1 0.34 1.53 1.7× 10−8 4.0× 10−7 8.5× 10−6

rs28368872 16 ATF7IP2 0.13 1.70 1.2× 10−7 1.4× 10−5 1.9× 10−5

rs12708701 16 ATF7IP2 0.13 1.71 1.5× 10−7 1.2× 10−5 1.5× 10−6

Although the p-values are all larger compared to the primary analysis result through the

two-part model (due to smaller sample size), our Copula2-S method still yielded smaller

p-values compared to the other two methods.

A.3 Similarities and differences between copula and frailty models

Both copula and frailty methods are popular for modeling bivariate survival data. The

two models sometimes share similarities in their mathematical expressions. For example,

the joint survival function under the Clayton copula is written as Sc(t1, t2) = [{S1,c(t1)}−η +

{S2,c(t2)}−η − 1]−1/η, where Sj,c(tj) is the marginal survival function for margin j. On the

other hand, the Gamma frailty joint survival function has a similar form:

Sf (t1, t2) = Lρ[L−1
ρ {S1,f (t1)) + L−1

ρ (S1,f (t2)}] = [{S1,f (t)}−ρ + {S2,f (t)}−ρ − 1]−1/ρ,

where Lρ(s) = (1 + ρs)−1/ρ is the Laplace function on density function of the random frailty

term, which follows an exponential distribution with unit mean and variance ρ; Sj,f (tj) is
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the marginal survival function under the Gamma frailty setting. Assuming a Weibull margin

as an example, then the marginal survival function under Clayton copula model is

Sj,c(t) = exp{−(t/λj)
kjezjβj},

while the marginal survival function under Gamma frailty model becomes

Sj,f (t) = Lρ((t/λ̃j)k̃jezj β̃j) = {1 + ρ(t/λ̃j)
k̃jezj β̃j}−1/ρ.

It can be seen that Sc(t1, t2) = Sf (t1, t2) only when both η and ρ → 0. Therefore, the

joint survival functions of Clayton-Weibull and Gamma-frailty-Weibull models are actually

different due to their distinct marginal survival functions.

For another example, the Gumbel copula has the joint survival function as Sc(t1, t2) =

exp{−[(− log{S1,c(t1)})η +(− log{S2,c(t2)})η]1/η}, whereas the Positive Stable frailty has the

joint survival function as

Sf (t1, t2) = Lρ[L−1
ρ {S1,f (t1)) + L−1

ρ (S1,f (t2)}]

= exp(−[{− logS1,f (t1)}ρ + {− logS2,f (t2)}ρ]1/ρ),

where Lρ(s) = exp(−s1/ρ) is the corresponding Laplace function when the random frailty

term follows a Positive Stable distribution. If assume Weibull for its conditional hazard

function, then the marginal survival function becomes

Sj,f (t) = Lρ((t/λ̃j)k̃jezj β̃j) = exp{−(t/λ̃j)
k̃j/ρezj β̃j/ρ},

which follows a new Weibull distribution. The marginal survival function under the Gumbel

copula is still Sj,c(t) = exp{−(t/λj)
kjezjβj}. It is easy to observe that the Gumbel-Weibull

and Positive-Stable-Weibull models are equivalent given λj = λ̃j, kj = k̃j/ρ, βj = β̃j/ρ, η = ρ.

More discussions about the similarities and differences between the copula and frailty models

can be found in Goethals et al. [2008] and Wienke [2010].
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A.4 Asymptotic properties

This section presents the regularity conditions and the proofs of Theorems 2.3.1 and

2.3.2 being shown in the main paper. The proofs make use of six lemmas and one general

theorem, which are stated and proved in Appendix A.5 and A.6, respectively.

First, we state the regularity conditions needed for Theorems 2.3.1 and 2.3.2.

Condition 1. (i) There exists τj > 0 such that pr(Rj − Lj ≥ τj) = 1, j = 1, 2; (ii) The

union of the supports for distributions of L′ijs and R′ijs is an interval [c, u] with 0 < c < u <

∞.

Condition 2. The distribution of covariate Zj has a bounded support and is not concen-

trated on any proper subspace of Rpj , j = 1, 2, pj is dimension of Zj.

Condition 3. Let L(β, α, κ, y1, y2) be the likelihood function with Λj being substituted

by yj. Define

vT L̇(β, α, κ, y1, y2) = vT1
∂L

∂β
+ v2

∂L

∂α
+ v3

∂L

∂κ
+ v4

∂L

∂y1

+ v5
∂L

∂y2

,

with v = (vT1 , v2, v3, v4, v5)T . There exist l∗j , r
∗
j ∈ [c, u] for which there are p + 4 different

sets of (z1, z2) such that if vT L̇(β0, α0, κ0,Λ10,Λ20;D∗) = 0 with D∗ = {l∗j , r∗j , zj} for each of

these p+ 4 sets of values, then v = 0(p+4)×1.

Condition 4. (i) The function Λj0 is continuously differentiable up to order q with q ≥ 3

in [c, u] and satisfies ξ−1 < Λj0(c) < Λj0(u) < ξ for some positive constant ξ, j = 1, 2. Also

(βT0 , α0, κ0)T is an interior point of B ⊆ Rp × R(0,1] × R+. (ii) The transformation Gj is a

strictly increasing function with Gj(0) = 0 and is three-times continuously differentiable in

[0, u], j = 1, 2.

Condition 5. For every θ in a neighborhood of θ0, P{l(θ;D) − l(θ0;D)} . −d2(θ, θ0),

where l(θ;D) being the log-likelihood function given in Section 2.3 and . means that “the

left-hand side is bounded above by a constant times the right-hand side”.

Remark. Conditions 1, 2, 4(i) and 5 are commonly used in the studies of interval-censored

data (e.g., Huang and Rossini, 1997, Wen and Chen, 2013, Zhou et al., 2017). Condition

4(ii) comes from the definition of the linear transformation model (Cheng et al., 1995).
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Condition 3 ensures both the identifiability of the parameters and the positivity of the efficient

Fisher information matrix (Chang et al., 2007, Wen and Chen, 2013, Zhou et al., 2017).

Remark. Before the proofs, we need to remark that although our Theorems 2.3.1 and 2.3.2

may look familiar among existing literature, we have to deal with challenges from the com-

plicated data structure and likelihood function. For instance, unlike the right-censored data,

the modeling of interval-censored data is more difficult due to no exact observed times and

thus common theoretical tools, like the counting process theory, cannot be applied. As a re-

sult, we turn to the modern empirical process theory (such as van der Vaart and Wellner

[1996]) for proving the theorems. In our case, our likelihood involves both the complicated

copula dependence structure and two unknown infinite dimensional nuisance parameters. For

the convergence rate, we prove it by verifying the conditions in Theorem 1 from Shen and

Wong [1994]. To establish the asymptotic normality, we first prove a general theorem on the

asymptotic normality of semiparametric M-estimators with two nuisance parameters, which

is completely novel as shown in Appendix A.6. Then we prove the asymptotic normality of

our sieve estimators through verifying the conditions of the general theorem. This general

theorem can be readily extended to the case with more than two nuisance parameters. Fur-

thermore, our proof procedure for convergence rate and asymptotic normality applies to any

Archimedean family copula, not limited to the two-parameter copula model as we consider in

this work.

Proof of Theorem 2.3.1. We will derive the convergence rate by verifying the Conditions

C1–C3 of Theorem 1 from Shen and Wong [1994]. Define Θq = B ⊗Mq ⊗Mq, where Mq

is the collection of Λj, j = 1, 2 with smoothness q as defined in our Condition 4. Similarly,

Θq
n is the corresponding sieve space containing Mq

n. Then the Condition C1 automatically

holds due to our Condition 5, which states for any θ ∈ Θq
n, P{l(θ0;D)− l(θ;D)} & d2(θ, θ0).

Next we verify the Condition C2 of Shen and Wong [1994]. Similar to the arguments in the

proof of Lemma A3 (using our Conditions 1, 2, 4), we can show that for any θ ∈ Θq
n,

|l(θ;D)− l(θ0;D)| . |b− b0|+ |Λ1(L1)− Λ10(L1)|+ |Λ1(R1)− Λ10(R1)|

+ |Λ2(L2)− Λ20(L2)|+ |Λ2(R2)− Λ20(R2)|,
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where D = (Lj, Rj, Zj), j = 1, 2. Then, it follows that for any θ ∈ Θq
n

P{l(θ;D)− l(θ0;D)}2 .|b− b0|2 + P
[
{Λ1(l1)− Λ10(l1)}2 + {Λ1(r1)− Λ10(r1)}2

]
+ P

[
{Λ2(l2)− Λ20(l2)}2 + {Λ2(r2)− Λ20(r2)}2

]
= d2(θ, θ0).

It implies that

sup
{d(θ,θ0)≤ε,θ∈Θqn}

var{l(θ0;D)− l(θ;D)} ≤ sup
{d(θ,θ0)≤ε,θ∈Θqn}

P{l(θ0;D)− l(θ;D)}2 . ε2.

Thus, Condition C2 from Shen and Wong [1994] holds (with β = 1 in their notation).

Finally, we verify the Condition C3 in Shen and Wong [1994]. By Lemma A3, for Fn =

{l(θ;D)− l(θ0,n;D) : θ ∈ Θq
n}, we have N[ ](ε,Fn, ‖ · ‖∞) . (1/ε)cmn+d, with d = p+ 2 being

the dimensionality for b = (βT , α, κ)T . Using the fact that the covering number is bounded

by the bracketing number, it follows that

H(ε,Fn, ‖ · ‖∞) = logN[ ](ε,Fn, ‖ · ‖∞) . (cmn + d) log(1/ε) . nν log(1/ε).

Hence, the Condition C3 of Shen and Wong [1994] in page 583 holds when the constants

2r0 = ν and r = 0+ in their notations.

Therefore, the constant τ in Theorem 1 of Shen and Wong [1994] on page 584 is (1 −

ν)/2 − {log(log n)}(2 log n)−1. Since {log(log n)}(2 log n)−1 → 0 as n → 0, we can pick

a ν̃ slightly larger than ν such that (1 − ν̃)/2 ≤ (1 − ν)/2 − {log(log n)}(2 log n)−1 for

large n. We still denote ν̃ as ν so that τ = (1 − ν)/2. Since θ̂n maximizes Pnl(θ;D)

over Θq
n, so θ̂n satisfies the inequality (1.1) in Shen and Wong [1994] when ηn = 0 in their

notation. By Lemma A2, there exists a Λj0,n ∈ Mq
n such that ‖Λj0,n − Λj0‖∞ = O(n−qν/2).

Thus, the sieve approximation error ρ(πnθ0, θ0) in Shen and Wong [1994] is O(n−qν/2) . In

addition, since Pl(θ;D) is maximized at θ0, its first derivative at θ0 is equal to 0. Then,

applying the Taylor expansion for P{l(θ0;D)− l(θ;D)} around θ0 and plugging in θ = θ0n =
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(βT0 , α0, κ0,Λ10n,Λ20n)T , the Kullback-Leilber pseudodistance of θ0 = (βT0 , α0, κ0,Λ10,Λ20)T

and θ0,n = (βT0 , α0, κ0,Λ10,n,Λ20,n)T follows

K(θ0, θ0,n) = −P{l(θ0,n;D)− l(θ0;D)}

=− 1

2
P
{
l̈Λ1Λ1(θ0;D)[Λ10,n − Λ10,Λ10,n − Λ10] + l̈Λ2Λ2(θ0;D)[Λ20,n − Λ20,Λ20,n − Λ20]

+ 2l̈Λ1Λ2(θ0;D)[Λ10,n − Λ10,Λ20,n − Λ20]
}

+ o(d2(θ0,n, θ0))

.‖Λ10,n − Λ10‖2
2 + ‖Λ20,n − Λ20‖2

2 + o(‖Λ10,n − Λ10‖2
2 + ‖Λ20,n − Λ20‖2

2) . O(n−qν).

The second last inequality holds due to boundness of all second order derivatives of log-

likelihood in Lemma A1 as well as derivations similar to Lemma A3. The last inequality

holds since ‖Λj0,n − Λj0‖2 ≤ ‖Λj0,n − Λj0‖∞ = O(n−qν/2), j = 1, 2.

Therefore, K1/2(θ0, θ0n) = O(n−qν/2). Hence, by Theorem 1 of Shen and Wong [1994], we

obtain the convergence rate for θ̂n as

d(θ̂n, θ0) = Op

{
max(n−(1−ν)/2, n−qν/2, n−qν/2)

}
= Op

(
n−min{qν/2,(1−ν)/2}).

This completes the proof of our Theorem 2.3.1.

Proof of Theorem 2.3.2. We will prove the theorem by checking assumptions A1-A6 of the

general theorem in the Appendix A.6. We can verify the assumption A1 by applying our

Theorem 2.3.1 with γ = min{qν/2, (1−ν)/2} and the L2 norm. A2 also automatically holds

under the model assumption. For the assumption A3, we need to verify both existence of h∗j

and nonsingularity of the matrix A. Following similar arguments as in Wen and Chen [2013]

(page 402-405), the existence of h∗j can be verified, which satisfies that for all hj ∈Mq−1,

P{l̈bΛ1(b0,Λ10,Λ20)[h1] + l̈bΛ2(b0,Λ10,Λ20)[h2]− l̈Λ1Λ1(b0,Λ10,Λ20)[h∗1, h1]

− l̈Λ1Λ2(b0,Λ10,Λ20)[h∗1, h2]− l̈Λ2Λ2(b0,Λ10,Λ20)[h∗2, h2]− l̈Λ2Λ1(b0,Λ10,Λ20)[h∗2, h1]} = 0.

For any hj, h̃j ∈Mq−1, we have the following results:

P l̈bb(b,Λ1,Λ2;D) = −P{l̇b(b,Λ1,Λ2;D)l̇Tb (b,Λ1,Λ2;D)},

P l̈bΛj(b,Λ1,Λ2;D)[hj] = P l̈Λjb(b,Λ1,Λ2;D)[hj] = −P{l̇b(b,Λ1,Λ2;D)l̇Λj(b,Λ1,Λ2;D)[hj]},

P l̈ΛjΛj(b,Λ1,Λ2;D)[hj, h̃j] = −P{l̇Λj(b,Λ1,Λ2;D)[hj]l̇Λj(b,Λ1,Λ2;D)[h̃j]},

P l̈ΛjΛj′ (b,Λ1,Λ2;D)[hj, hj′ ] = −P{l̇Λj(b,Λ1,Λ2;D)[hj]l̇Λj′ (b,Λ1,Λ2;D)[hj′ ]},
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where j, j′ ∈ {1, 2}, and all first and second order derivatives are defined in the Lemma A1.

Then, together with assumption A3 and the above equations, the matrix A follows

A = −P{l̈bb(b0,Λ10,Λ20;D)− l̈Λ1b(b0,Λ10,Λ20;D)[h∗1]− l̈Λ2b(b0,Λ10,Λ20;D)[h∗2]}

= P{l̇b(b0,Λ10,Λ20;D)− l̇Λ1(b0,Λ10,Λ20;D)[h∗1]− l̇Λ2(b0,Λ10,Λ20;D)[h∗2]}⊗2

= Pl∗(b0,Λ10,Λ20;D)⊗2,

where l∗(b0,Λ10,Λ20;D) = l̇b(b0,Λ10,Λ20;D)− l̇Λ1(b0,Λ10,Λ20;D)[h∗1]− l̇Λ2(b0,Λ10,Λ20;D)[h∗2].

Therefore, the matrix A is the same as the matrix B in the general theorem stated in

the Appendix A.6. Now, we will show A is non-singular, which is equivalent to show if

vTAv = vTPl∗(b0,Λ10,Λ20;D)⊗2v = 0 for some v = (vT1 , v2, v3)T ∈ Rd then v = 0. Further,

it is sufficient to showing if vT l∗(b0,Λ10,Λ20;D) = 0, then v = 0. It follows that

0 =vT
{
l̇b(b0,Λ10,Λ20;D)− l̇Λ1(b0,Λ10,Λ20;D)[h∗1]− l̇Λ2(b0,Λ10,Λ20;D)[h∗2]

}
=
{
vT1 L̇β(b0,Λ10,Λ20;D) + v2L̇α(b0,Λ10,Λ20;D) + v3L̇κ(b0,Λ10,Λ20;D)

+ L̇Λ1(b0,Λ10,Λ20;D)[−vTh∗1] + L̇Λ2(b0,Λ10,Λ20;D)[−vTh∗2]
} 1

L(b0,Λ10,Λ20;D)
.

By our Condition 3, we get v = 0. Therefore, the matrix A is non-singular. This completes

the verification of assumption A3.

To verify A4, we first note that Ṗnl̇b(b̂n, Λ̂1,n, Λ̂2,n) = op(n
−1/2) automatically holds since

(b̂n, Λ̂1,n, Λ̂2,n) are the sieve maximum likelihood estimators and satisfy

Pnl̇b(b̂n, Λ̂1,n, Λ̂2,n) = 0. Now we need to show Pnl̇Λj(b̂n, Λ̂1,n, Λ̂2,n)[h∗jl] = op(n
−1/2), where h∗jl

is an element in h∗j , l = 1, · · · , d. According to Lemma A4, there exists an h∗jl,n ∈ M2
n such

that ‖h∗jl − h∗jl,n‖∞ = O(n−ν) and Pnl̇Λj(b̂n, Λ̂1,n, Λ̂2,n)[h∗jl,n] = 0. Thus, we want to show

Ij,n = Pnl̇Λj(b̂n, Λ̂1,n, Λ̂2,n;D)[h∗jl − h∗jl,n] = op(n
−1/2).

Further, Ij,n can be decomposed into summation of two parts Ij1,n and Ij2,n, where

Ij1,n = (Pn − P )l̇Λj(b̂n, Λ̂1,n, Λ̂2,n;D)[h∗jl − h∗jl,n],

Ij2,n = P
{
l̇Λj(b̂n, Λ̂1,n, Λ̂2,n;D)[h∗jl − h∗jl,n]− l̇Λj(b0,Λ10,Λ20;D)[h∗jl − h∗jl,n]

}
.
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The decomposition holds since P
{
l̇Λj(b0,Λ10,Λ20;D)[h∗jl − h∗jl,n]

}
= 0. Next, we will show

that Ij1,n and Ij2,n are both op(n
−1/2).

By Lemma A5, the ε-bracketing number associated with ‖ · ‖∞ norm for the class Fn,jl(η),

defined as Fn,jl(η) =
{
l̇Λj(θ;D)[h∗jl − h] : θ ∈ Θq

n, h ∈M2
n and ‖h∗jl − h‖∞ ≤ η

}
, is bounded

by (η/ε)cmn+d. The lemma implies that

J[ ]{η,Fn,jl(η), L2(P )} =

∫ η

0

[1 + logN[ ]{ε,Fn,jl(η), L2(P )}]
1
2dε ≤

∫ η

0

{1 +mn log(η/ε)}
1
2dε

.
∫ η

0

{mn(η/ε)}
1
2dε = m

1
2
nη.

Pick η = ηn = O(n−min{ν,(1−ν)/2}) and apply Lemma A4, then ‖h∗jl − h∗jl,n‖∞ = O(n−ν) ≤

O(n−min{ν,(1−ν)/2}) = ηn. And since q ≥ 3, we have d(θ̂n, θ0) = Op(n
−min{qν/2,(1−ν)/2}) ≤

O(n−min{ν,(1−ν)/2}) = ηn. Therefore, we have l̇Λj(b̂n, Λ̂1,n, Λ̂2,n;D)[h∗jl − h∗jl,n] ∈ Fn,jl(ηn).

According to Lemma A1, ‖l̇Λj(θ;D)[h∗jl − h]‖∞ is bounded by some constant M > 0 and

P{l̇Λj(θ;D)[h∗jl− h]}2 . ‖h∗jl− h‖2
∞ ≤ η2

n. Applying the maximal inequality of Lemma 3.4.2

of van der Vaart and Wellner [1996], we have

Ep‖Gn‖Fn,jl(ηn) . J[ ]{ηn,Fn,jl(ηn), L2(P )}
[
1 +

J[ ]{ηn,Fn,jl(ηn), L2(P )}
η2
nn

1/2
M
]

. m
1
2
nηn +mnn

− 1
2 = O

{
n−min( 1−ν

2
,1−2ν)

}
= o(1),

where Gn = n1/2(Pn − P ) and the equality holds due to ν < 1/2. Therefore, we have

Ij1,n = (Pn − P )l̇Λj(θ̂n;D)[h∗jl − h∗jl,n] = n−1/2Gnl̇Λj(θ̂n;D)[h∗jl − h∗jl,n] = op(n
− 1

2 ).

Then, for Ij2,n = op(n
−1/2), applying Taylor expansion for l̇Λj(θ̂n;D)[h∗jl − h∗jl,n] at θ0 gives

l̇Λj(θ̂n;D)[h∗jl − h∗jl,n]− l̇Λj(θ0;D)[h∗jl − h∗jl,n] = (b̂n − b0)T l̈Λjb(θ̃n;D)[h∗jl − h∗jl,n]

+ l̈ΛjΛj(θ̃n;D)[h∗jl − h∗jl,n, Λ̂j,n − Λj0] + l̈ΛjΛj′ (θ̃n;D)[h∗jl − h∗jl,n, Λ̂j′,n − Λj′0],

where j, j′ ∈ {1, 2} and θ̃n lies between θ0 and θ̂n. Using similar procedures and applying

Lemma A1 and A4, we get
∣∣l̈Λjb(θ̃n;D)[h∗jl − h∗jl,n]

∣∣ . ‖h∗jl − h∗jl,n‖∞ = O(n−ν). Thus,

(b̂n − b0)T l̈Λjb(θ̃n;D)[h∗jl − h∗jl,n] . Op

{
n−min( qν

2
, 1−ν

2
)
}
O(n−ν) = Op

{
n−min(

(q+2)ν
2

, 1+ν
2

)
}
,

l̈ΛjΛj(θ̃n;D)[h∗jl − h∗jl,n, Λ̂j,n − Λj0] . O(n−ν)Op{n−min( qν
2
, 1−ν

2
)} = Op

{
n−min(

(q+2)ν
2

, 1+ν
2

)
}
,
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and similarly l̈ΛjΛj′ (θ̃n;D)[h∗jl − h∗jl,n, Λ̂j′,n − Λj′0] = Op

{
n−min(

(q+2)ν
2

, 1+ν
2

)
}

.

Finally, since ν > (2 + q)−1 we have Ij2,n = Op

{
n−min(

(q+2)ν
2

, 1+ν
2

)
}

= o(n−1/2). Therefore,

Ij,n = Ij1,n + Ij2,n = op(n
−1/2) for j = 1, 2 and assumption A4 holds.

Now we verify assumption A5. According to Lemma A6, the ε-bracketing number asso-

ciated with ‖ · ‖∞ norm for the following classes of functions

F bn,l(η) =
{
l̇bl(θ;D)− l̇bl(θ0;D) : θ ∈ Θq

n, d(θ, θ0) ≤ η, j = 1, 2
}
,

FΛj
n,jl(η) =

{
l̇Λj(θ;D)[h∗jl]− l̇Λj(θ0;D)[h∗jl] : θ ∈ Θq

n, d(θ, θ0) ≤ η
}
,

are both bounded by (η/ε)cmn+d. The lemma implies that the corresponding ε-bracketing

integrals are both bounded by m
1/2
n η, that is

J[ ]{η,F bn,l(η), L2(P )} . m
1
2
nη and J[ ]{η,F

Λj
n,jl(η), L2(P )} . m

1
2
nη.

Then, for l̇bl(θ;D)− l̇bl(θ0;D) ∈ F bn,l(η), applying Taylor expansion and Lemma A1 gives

P{l̇bl(θ;D)− l̇bl(θ0;D)}2

.P{|b− b0|22 l̈Tblb(θ̃;D) l̈blb(θ̃;D)}+ P{l̈blΛ1(θ̃;D)[Λ1 − Λ10]}2 + P{l̈blΛ2(θ̃;D)[Λ2 − Λ20]}2

.|b− b0|2 + ‖Λ1 − Λ10‖2
2 + ‖Λ2 − Λ20‖2

2 = d2(θ, θ0) = η2.

Similarly, we can also obtain P{l̇Λj(θ;D)[h∗jl]− l̇Λj(θ0;D)[h∗jl]}2 . η2 for any l̇Λj(θ;D)[h∗jl]−

l̇Λj(θ0;D)[h∗jl] ∈ F
Λj
n,jl(η). From Lemma A1, we know that ‖l̇bl(θ;D) − l̇bl(θ0;D)‖∞ and

‖l̇Λj(θ;D)[h∗jl] − l̇Λj(θ0;D)[h∗jl]‖∞ are both bounded. Now pick η = ηn = O{n−min( qν
2
, 1−ν

2
)}.

Similar to the verification of assumption A4, we have

Ep‖Gn‖Fbn,l(η) . m
1
2
nηn +mnn

− 1
2 = O

{
n−min(

(q−1)ν
2

, 1
2
−ν)
}

+O(nν−
1
2 ) = o(1),

where the last equality holds due to 0 < ν < 1/2 and q ≥ 3. Similarly, Ep‖Gn‖FΛj
n,jl(η)

.

m
1/2
n ηn+mnn

−1/2 = o(1). Thus, for γ = min{qν/2, (1−ν)/2} and Cn−γ = Cn−min( qν
2
, 1−ν

2
) =

ηn, by the Markov’s inequality, we get

sup
d(θ,θ0)≤Cn−γ

Gn{l̇bl(b,Λ1,Λ2;D)− l̇bl(b,Λ10,Λ20;D)} = op(1),

sup
d(θ,θ0)≤Cn−γ

Gn{l̇Λj(b,Λ1,Λ2;D)[h∗jl]− l̇Λj(b,Λ10,Λ20;D)[h∗jl]} = op(1).
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This completes the verification of assumption A5.

Finally, for the two equations in assumption A6, we will verify the second one and

the proof of the other equation follows similar steps. In a neighborhood of (b0,Λ10,Λ20) :

{(b,Λ1,Λ2) : |b− b0| + ‖Λ1 − Λ10‖2 + ‖Λ2 − Λ20‖2 ≤ Cn−γ} with γ = min(qν/2, (1− ν)/2),

applying the Taylor expansion for l̇Λj(b,Λ1,Λ2;D)[h∗j ] yields

P
{
l̇Λj(b,Λ1,Λ2;D)[h∗j ]− l̇Λj(b0,Λ10,Λ20;D)[h∗j ]− l̈Λjb(b0,Λ10,Λ20;D)[h∗j ](b− b0)

− l̈ΛjΛj(b0,Λ10,Λ20;D)[h∗j ,Λj − Λj0]− l̈ΛjΛj′ (b0,Λ10,Λ20;D)[h∗j ,Λj′ − Λj′0]
}

=P
{
l̈Λjb(b̃, Λ̃1, Λ̃2;D)[h∗j ]− l̈Λjb(b0,Λ10,Λ20;D)[h∗j ]

}
(b− b0)

+ P
{
l̈ΛjΛj(b̃, Λ̃1, Λ̃2;D)[h∗j ,Λj − Λj0]− l̈ΛjΛj(b0,Λ10,Λ20;D)[h∗j ,Λj − Λj0]

}
+ P

{
l̈ΛjΛj′ (b̃, Λ̃1, Λ̃2;D)[h∗j ,Λj′ − Λj′0]− l̈ΛjΛj′ (b0,Λ10,Λ20;D)[h∗j ,Λj′ − Λj′0]

}
,

where (b̃, Λ̃1, Λ̃2) are intermediate values between (b0,Λ10,Λ20) and (b,Λ1,Λ2). By applying

similar arguments that we used for other assumptions, we have

P
∣∣l̈ΛjΛj′ (b̃, Λ̃1, Λ̃2;D)[h∗jl,Λj′ − Λj′0]− l̈ΛjΛj′ (b0,Λ10,Λ20;D)[h∗jl,Λj′ − Λj′0]

∣∣
.
(
|b̃− b0|+ ‖Λ̃1 − Λ10‖2 + ‖Λ̃2 − Λ20‖2

)(
‖Λj′ − Λj′0‖2

)
=O
{(
|b̃− b0|+ ‖Λ̃1 − Λ10‖2 + ‖Λ̃2 − Λ20‖2

)α}
= O(n−αγ),

where the inequality holds due to the Hölder’s inequality and Cauchy-Schwarz inequality;

the two equalities hold for some α > 1 and γ > 0 as defined in assumption A6. Further,

O(n−αγ) =
(
|b̃− b0|+ ‖Λ̃1 − Λ10‖2 + ‖Λ̃2 − Λ20‖2

)(
‖Λj′ − Λj′0‖2

)
= O(n−min( qν

2
, 1−ν

2
))O(n−min( qν

2
, 1−ν

2
)) = O(n−min(qν,1−ν)) = o(n−1/2) due to (2 + q)−1 < ν <

1/2. Hence, we get αγ > 1/2. Similarly, for some α > 1 satisfying αγ > 1/2, we can have

P
∣∣l̈ΛjΛj(b̃, Λ̃1, Λ̃2;D)[h∗jl,Λj − Λj0]− l̈ΛjΛj(b0,Λ10,Λ20;D)[h∗jl,Λj − Λj0]

∣∣ = O(n−αγ),

P
∣∣l̈Λjb(b̃, Λ̃1, Λ̃2;D)[h∗jl]− l̈Λjb(b0,Λ10,Λ20;D)[h∗jl]

∣∣(b− b0) = O(n−αγ).

Putting all together, we obtain that for some α > 1 satisfying αγ > 1/2,

∣∣P{l̇Λj(b,Λ1,Λ2;D)[h∗j ]− l̇Λj(b0,Λ10,Λ20;D)[h∗j ]− l̈Λjb(b0,Λ10,Λ20;D)[h∗j ](b− b0)

− l̈ΛjΛj(b0,Λ10,Λ20;D)[h∗j ,Λj − Λj0]− l̈ΛjΛj′ (b0,Λ10,Λ20;D)[h∗j ,Λj′ − Λj′0]
}∣∣ = O(n−αγ).
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Therefore, we have verified all assumptions A1–A6 of the general theorem in the Appendix

A.6 and thus we get

n1/2(b̂n − b0) = A−1n1/2Pnl∗(b0,Λ10,Λ20;D) + op(1)→d N{0, A−1B(A−1)T},

where l∗(b0,Λ10,Λ20;D) = l̇b(b0,Λ10,Λ20;D)− l̇Λ1(b0,Λ10,Λ20;D)[h∗1]− l̇Λ2(b0,Λ10,Λ20;D)[h∗2].

Since A = B = P{l∗(b0,Λ10,Λ20;D)}⊗2, as shown in the verification of assumption A3,

therefore A−1B(A−1)T = A−1 := I−1(b0), thus n1/2(b̂n−b0)→d N{0, I−1(b0)}, where I(b0) =

P{l∗(b0,Λ10,Λ20;D)}⊗2 with l∗(b0,Λ10,Λ20;D) being the efficient score function of b0. Now

we complete the proof of Theorem 2.3.2.

A.5 Technical lemmas

Lemma A1. Under Conditions 1, 2 and 4 (in Appendix A.4), the log-likelihood function

l(θ;D) = logL(θ;D) = log[S(L1, L2 | z) − S(L1, R2 | z) − S(R1, L2 | z) + S(R1, R2 |

z)] has bounded and continuous first and second order derivatives with respect to θ =

(βT , α, κ,Λ1,Λ2)T ∈ B ⊗Mq ⊗Mq.

Proof. Since L(θ;D) is bounded away from 0 according to Condition 1, it is equivalent to

show the boundedness and continuity for the first and second order derivatives of S(t1, t2 | z).

We first define some notation. Define ll(θ; t1, t2, z) as

ll(θ; t1, t2, z) = log S(t1, t2 | z)

= −κ log{1 + [(exp(
1

κ
G(ez

T βΛ1(t1)))− 1)1/α + (exp(
1

κ
G(ez

T βΛ2(t2)))− 1)1/α]α}.

Denote A = 1 + [(exp( 1
κ
G(ez

T βΛ1(t1))) − 1)1/α + (exp( 1
κ
G(ez

T βΛ2(t2))) − 1)1/α]α. For any

fixed Λj ∈ Mq, let {Λjη: η in a neighborhood of 0 ∈ R} be a smooth parametric path

in Mq running through Λj at η = 0 (i.e. Λjη ∈ Mq,Λjη |η=0= Λj). Let hj(tj) ∈
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Hj = {hj : hj =
∂Λjη
∂η
|η=0,Λjη ∈ Mq}, with hj(tj) satisfying the Fréchet derivative

limη→0
Λj(tj+η)−Λj(tj)−hj(tj)η

η
= 0. Then the first order derivatives of ll(θ; t1, t2, z) are:

l̇lβ(θ; t1, t2, z) =

−1

A

{[
1 +

(
exp( 1

κ
G(ez

T βΛ2(t2)))− 1

exp( 1
κ
G(ezT βΛ1(t1)))− 1

)1/α]α−1

exp(
1

κ
G(ez

T βΛ1(t1)))Ġ(ez
T βΛ1(t1))Λ1(t1)

+

[
1 +

(
exp( 1

κ
G(ez

T βΛ1(t1)))− 1

exp( 1
κ
G(ezT βΛ2(t2)))− 1

)1/α]α−1

exp(
1

κ
G(ez

T βΛ2(t2)))Ġ(ez
T βΛ2(t2))Λ2(t2)

}
ez
T βz,

l̇lα(θ; t1, t2, z) = log

{
(exp(

1

κ
G(ez

T βΛ1(t1)))− 1)1/α + (exp(
1

κ
G(ez

T βΛ2(t2)))− 1)1/α

}
×
[(

exp(
1

κ
G(ez

T βΛ1(t1)))− 1
)1/α

log(exp(
1

κ
G(ez

T βΛ1(t1)))− 1)

+
(

exp(
1

κ
G(ez

T βΛ2(t2)))− 1
)1/α

log(exp(
1

κ
G(ez

T βΛ2(t2)))− 1)

]
κ

α2
(1− 1

A
),

l̇lκ(θ; t1, t2, z) = −log(A)

+
1

κA

{[
1 +

(
exp( 1

κ
G(ez

T βΛ2(t2)))− 1

exp( 1
κ
G(ezT βΛ1(t1)))− 1

)1/α]α−1

exp(
1

κ
G(ez

T βΛ1(t1)))G(ez
T βΛ1(t1))

+

[
1 +

(
exp( 1

κ
G(ez

T βΛ1(t1)))− 1

exp( 1
κ
G(ezT βΛ2(t2)))− 1

)1/α]α−1

exp(
1

κ
G(ez

T βΛ2(t2)))G(ez
T βΛ2(t2))

}
,

l̇lΛj(θ; t1, t2, z)[hj] =

−1

A

[
1 +

(
exp( 1

κ
G(ez

T βΛj′(tj′)))− 1

exp( 1
κ
G(ezT βΛj(tj)))− 1

)1/α]α−1

exp(
1

κ
G(ez

T βΛj(tj)))Ġ(ez
T βΛj(tj))e

zT βhj(tj),
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with j = 1, 2, Λj ∈Mq, and hj(tj) ∈Mq−1.

The second order derivatives of ll(θ; t1, t2, z) can be written as

l̈lΛ1Λ1(θ; t1, t2, z)[h1, h̃1] ={
−1

A

[
1 +

(
exp( 1

κ
G(ez

T βΛ2(t2)))− 1

exp( 1
κ
G(ezT βΛ1(t1)))− 1

)1/α]α−1

exp(
1

κ
G(ez

T βΛ1(t1)))G̈(ez
T βΛ1(t1))e2zT β

+
−1

A

[
1 +

(
exp( 1

κ
G(ez

T βΛ2(t2)))− 1

exp( 1
κ
G(ezT βΛ1(t1)))− 1

)1/α]α−1

exp(
1

κ
G(ez

T βΛ1(t1)))
(
Ġ(ez

T βΛ1(t1))
)2
e2zT β 1

κ

+
1

A

[
1 +

(
exp( 1

κ
G(ez

T βΛ2(t2)))− 1

exp( 1
κ
G(ezT βΛ1(t1)))− 1

)1/α]α−2

exp(
2

κ
G(ez

T βΛ1(t1)))
(
Ġ(ez

T βΛ1(t1))
)2
e2zT β 1

κ

× (1− 1

α
)
(

exp(
1

κ
G(ez

T βΛ2(t2)))− 1
)1/α(

exp(
1

κ
G(ez

T βΛ1(t1)))− 1
)−1−1/α

+
1

A2

[
1 +

(
exp( 1

κ
G(ez

T βΛ2(t2)))− 1

exp( 1
κ
G(ezT βΛ1(t1)))− 1

)1/α]2α−2

exp(
2

κ
G(ez

T βΛ1(t1)))
(
Ġ(ez

T βΛ1(t1))
)2
e2zT β

}
×h1(t1)h̃1(t1),

l̈lΛ1Λ2(θ; t1, t2, z)[h1, h2] = l̈lΛ2Λ1(θ; t1, t2, z)[h2, h1]

=

{
−1

A

[
1 +

(
exp( 1

κ
G(ez

T βΛ2(t2)))− 1

exp( 1
κ
G(ezT βΛ1(t1)))− 1

)1/α]α−2

exp(
1

κ
G(ez

T βΛ2(t2)))Ġ(ez
T βΛ2(t2))ez

T β 1

κ

×
(

exp( 1
κ
G(ez

T βΛ2(t2)))− 1

exp( 1
κ
G(ezT βΛ1(t1)))− 1

)−1+1/α
1

exp( 1
κ
G(ezT βΛ1(t1)))− 1

(1− 1

α
)

+
1

A2

[
1 +

(
exp( 1

κ
G(ez

T βΛ1(t1)))− 1

exp( 1
κ
G(ezT βΛ2(t2)))− 1

)1/α]α−1

exp(
1

κ
G(ez

T βΛ2(t2)))Ġ(ez
T βΛ2(t2))ez

T β

}
× h1(t1)h2(t2).

Similarly, we can derive l̈lΛ2Λ2(θ; t1, t2, z)[h2, h̃2], l̈lbb(θ; t1, t2, z) and l̈lbΛj(θ; t1, t2, z)[hj]. Un-

der Conditions 1, 2 and 4, t1, t2 reside in a closed, bounded and positive interval; covariate

z is bounded in Rp; Λj0 has the order of smoothness q ≥ 3 and it is positive; Gj(·) has an

order of smoothness of 3 and it is strictly increasing with G(0) = 0. These conditions assure

that all the derivatives are continuous and bounded. Therefore, the first and second order

derivatives for the log-likelihood function l(θ;D) are all continuous and bounded.
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Lemma A2. For Λj0 ∈Mq, j = 1, 2, there exists a Λj0,n ∈Mq
n such that

‖Λj0,n − Λj0‖∞ = O(n−qv/2).

Proof. This is a direct result according to Theorem 1.6.1 of Lorentz [1986], which indicates

there exists a Bernstein polynomial Λj0,n such that ‖Λj0,n−Λj0‖∞ = O(m
−q/2
n ) = O(n−qv/2).

Lemma A3. Let θ0,n = (bT0 ,Λ10,n,Λ20,n)T = (βT0 , α0, κ0,Λ10,n,Λ20,n)T with b0 ∈ B and

Λ10,n,Λ20,n ∈ Mq
n, j = 1, 2. Denote Fn = {l(θ;D) − l(θ0,n;D) : θ ∈ Θq

n = B ×Mq
n ×Mq

n}.

Assume Conditions 1, 2 and 4 hold, then the ε-bracketing number associated with ‖ · ‖∞
norm for Fn is bounded by (1/ε)cmn+d, where d = p + 2. That is, for some constant c > 0,

N[ ](ε,Fn, ‖ · ‖∞) . (1/ε)cmn+d.

Proof. We first define some notation:

B =(exp(
1

κ
G(ez

T βΛ1(t1)))− 1)1/α + (exp(
1

κ
G(ez

T βΛ2(t2)))− 1)1/α,

Cj = exp(
1

κ
G(ez

T βΛj(tj)))− 1, j = 1, 2.

According to Shen and Wong [1994] on page 597, ∀ε > 0, ∃ a set of brackets {[ΛL
ji,Λ

U
ji] :

i = 1, 2, · · ·, d(1/ε)c1mne, j = 1, 2} such that for any Λj ∈ Mq
n, ΛL

ji(tj) ≤ Λj(tj) ≤ ΛU
ji(tj) for

some 1 ≤ i ≤ d(1/ε)c1mne and all tj ∈ [c, u], and ‖ΛL
ji − ΛU

ji‖∞ ≤ ε. In other words, we have

N[ ](ε,Mq
n, ‖.‖∞) ≤ c(1/ε)c1mn .

Define B as a compact set, then B can be covered by dc2(1/ε)de balls with radius ε.

Thus, for any b ∈ B, there exists 1 ≤ s ≤ dc2(1/ε)de such that |β − βs| ≤ ε, |α− αs| ≤ ε and

|κ−κs| ≤ ε. Equivalently, we have β ∈ [βs−ε, βs+ε], α ∈ [αs−ε, αs+ε] and κ ∈ [κs−ε, κs+ε].

Hence, we can construct a set of brackets {[mL
i,s(D),mU

i,s(D)], i = {1, · · ·, d(1/ε)c1mne}, s =

{1, ..., dc2(1/ε)de, }} so that for any m(θ;D) ∈ Fn, there exists a set (i, s) such that for any

sample point D, we have m(θ;D) ∈ [mL
i,s(D),mU

i,s(D)], where

mL
i,s(D) = log

[
SLi,s(L1, L2|z)− SUi,s(L1, R2|z)− SUi,s(R1, L2|z) + SLi,s(R1, R2|z)

]
− l(θ0,n;D),

mU
i,s(D) = log

[
SUi,s(L1, L2|z)− SLi,s(L1, R2|z)− SLi,s(R1, L2|z) + SUi,s(R1, R2|z)

]
− l(θ0,n;D),
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with L and U representing lower and upper bound of each term. To prove this Lemma, we

will need to show ‖mU
i,s −mL

i,s‖∞ ≤ ε. By the Mean Value Theorem,

|mU
i,s(D)−mL

i,s(D)| ≤ |SUi,s(L1, L2|z)− SLi,s(L1, L2|z)|+ |SUi,s(L1, R2|z)− SLi,s(L1, R2|z)|

+ |SUi,s(R1, L2|z)− SLi,s(R1, L2|z)|+ |SUi,s(R1, R2|z)− SLi,s(R1, R2|z)|.

Since Lj, Rj ∈ [c, u], it suffices to prove that for any t1, t2 ∈ [c, u] and z as defined in

Condition 2, |SUi,s(t1, t2 | z)− SLi,s(t1, t2 | z)| ≤ ε. Applying the Mean Value theorem again,

|SUi,s(t1, t2 | z)− SLi,s(t1, t2 | z)| = |elog(SUi,s(t1,t2|z)) − elog(SLi,s(t1,t2|z))|

≤ | log(SUi,s(t1, t2 | z))− log(SLi,s(t1, t2 | z))| := |mU
i,s(t1, t2, z)−mL

i,s(t1, t2, z)|,

where

mL
i,s(t1, t2, z) =− (κs + ε) log

{
1 +

[
(exp(

1

κs + ε
G(ez

T (βs+ε)ΛU
1i(t1)))− 1)

1
αs−ε

+ (exp(
1

κs + ε
G(ez

T (βs+ε)ΛU
2i(t2)))− 1)

1
αs−ε

]αs−ε}
:= −(κs + ε) logA1

and

mU
i,s(t1, t2, z) =− (κs − ε) log

{
1 +

[
(exp(

1

κs − ε
G(ez

T (βs−ε)ΛU
1i(t1)))− 1)

1
αs+ε

+ (exp(
1

κs − ε
G(ez

T (βs−ε)ΛU
2i(t2)))− 1)

1
αs+ε

]αs+ε}
:= −(κs − ε) logA2,

in which A1 and A2 represent the corresponding A term (previously defined in Lemma A1)

in mU
i,s(t1, t2, z) and mL

i,s(t1, t2, z), respectively. Similarly, we denote B1, B2 corresponding to

B as well as Cj1, Cj2 corresponding to Cj in mU
i,s(t1, t2, z) and mL

i,s(t1, t2, z), respectively. It

then follows that

|mU
i,s(t1, t2, z)−mL

i,s(t1, t2, z)| = | − (κs − ε) logA1 + (κs + ε) logA2|

≤ |κs + ε| × | logA1 − logA2|+ 2ε logA1 . |A1 − A2|+ ε.

The last inequality holds due to the Mean Value Theorem and Lemma A1.
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For |A1 − A2|, applying the Mean Value Theorem and Lemma A1 again, we have

|A1 − A2| = |Bαs+ε
1 −Bα−ε

2 | = | exp(logBαs+ε
1 )− exp(logBαs−ε

2 )|

≤ | logBαs+ε
1 − logBαs−ε

2 | = |(αs + ε) logB1 − (αs − ε) logB2|

. |B1 −B2|+ ε ≤ |C
1

αs+ε

11 − C
1

αs−ε
12 |+ |C

1
αs+ε

21 − C
1

αs−ε
22 |+ ε,

where

|C
1

αs+ε

11 − C
1

αs−ε
12 | = |elogC

1
αs+ε
11 − elogC

1
αs−ε
12 | ≤ | logC

1
αs+ε

11 − logC
1

αs−ε
12 |

≤ | logC11| × |
1

αs + ε
− 1

αs − ε
|+ | 1

αs − ε
| × | logC11 − logC12| . ε+ |C11 − C12|.

Further, applying the Mean Value Theorem, Lemma A1 and Condition 4(ii), we have

|C11 − C12| = | exp(
1

κs − ε
G(ez

T (βs−ε)ΛL
1i(t1)))− exp(

1

κs + ε
G(ez

T (βs+ε)ΛU
1i(t1)))|

≤ | 1

κs − ε
G(ez

T (βs−ε)ΛL
1i(t1))− 1

κs + ε
G(ez

T (βs+ε)ΛU
1i(t1))|

≤ G(ez
T (βs−ε)ΛL

1i(t1))| 1

κs − ε
− 1

κs + ε
|

+ | 1

κs + ε
| × |G(ez

T (βs−ε)ΛL
1i(t1))−G(ez

T (βs+ε)ΛU
1i(t1))|

. ε+ |ezT (βs−ε)ΛL
1i(t1)− ezT (βs+ε)ΛU

1i(t1)|

≤ ε+ ΛL
1i(t1)|ezT (βs−ε) − ezT (βs+ε)|+ ez

T (βs+ε)|ΛU
1i(t1)− ΛL

1i(t1)| . ε.

The last inequality holds due to ‖ΛU
1i − ΛL

1i‖∞ = ε.

Similarly, we can obtain |C
1

αs+ε

21 − C
1

αs−ε
22 | . ε. Therefore, ‖mU

i,s − mL
i,s‖∞ ≤ ε and the

ε-bracketing number associated with ‖ · ‖∞ norm for the class Fn follows

N[ ](ε,Fn, ‖ · ‖∞) ≤ (1/ε)c1mn(1/ε)c1mnc2(1/ε)d . (1/ε)cmn+d.

Lemma A4. Let h∗jl, j = 1, 2, l = 1, .., d, be an element of h∗j defined in the proof of Theorem

2.3.2. This is the least favorable direction for the score function of Λj. Assume Conditions

1, 2, 4 hold, then there exists an h∗jl,n ∈M2
n such that ‖h∗jl,n − h∗jl‖∞ = O(n−ν).
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Proof. We will first show that h∗jl ∈M2, and then apply Theorem 1.6.1 of Lorentz [1986] to

complete the proof. By definition of h∗j , j = 1, 2, and the fact that −P (l̇θ(θ0;D)l̇Tθ (θ0;D)) =

P (l̈θθT (θ0;D)), for any hj ∈Mq−1, we have

P
{
− l̇b(b0,Λ10,Λ20;D)l̇Λ1(b0,Λ10,Λ20;D)[h1]− l̇b(b0,Λ10,Λ20;D)l̇Λ2(b0,Λ10,Λ20;D)[h2]

+l̇Λ1(b0,Λ10,Λ20;D)[h∗1]l̇Λ1(b0,Λ10,Λ20;D)[h1] + l̇Λ1(b0,Λ10,Λ20;D)[h∗1]l̇Λ2(b0,Λ10,Λ20;D)[h2]

+l̇Λ2(b0,Λ10,Λ20;D)[h∗2]l̇Λ2(b0,Λ10,Λ20;D)[h2] + l̇Λ2(b0,Λ10,Λ20;D)[h∗2]l̇Λ1(b0,Λ10,Λ20;D)[h1]}
= 0.

Based on Lemma A1, we can see that l̇β(b0,Λ10,Λ20;D) has bounded derivatives upto order

2, which is the order of Ġj in Condition 4. Also, l̇α(b0,Λ10,Λ20;D) and l̇κ(b0,Λ10,Λ20;D)

have bounded derivatives upto order min{q, 3}, which is the minimum order of Λj and Gj(·).

Similarly, l̇Λj(b0,Λ10,Λ20;D)[h], j = 1, 2 have bounded derivatives upto order of min{order of

hj, order of G(·)− 1} = min{q− 1, 2}. Since q ≥ 3 based on Condition 4, min{q− 1, 2} = 2.

Hence, h∗jl ∈M2. Then, applying Theorem 1.6.1 of Lorentz [1986], there exists an h∗jl,n ∈M2
n

such that ‖h∗jl,n − h∗jl‖∞ = O(m
−2/2
n ) = O(n−ν), where j = 1, 2.

Lemma A5. Let h∗jl be the function defined in Lemma A4, and denote the class of functions

Fn,jl(η) =
{
l̇Λj(θ;D)[h∗jl − h] : θ ∈ Θq

n, h ∈M2
n, ‖h∗jl − h‖∞ ≤ η

}
. Assume Conditions 1, 2, 4

hold, then N[ ](ε,Fn,jl(η), ‖ · ‖∞) . (η/ε)cmn+d for some constant c > 0.

Proof. First define three classes of functions: Mq
n,j(η) =

{
Λj ∈ Mq

n, ‖Λj − Λj0‖2 ≤ η
}

,

M2
n,jl(η) =

{
h ∈M2

n, ‖h−h∗jl‖∞ ≤ η
}

and B(η) =
{
b ∈ B ⊆ Rd, |β−β0|+|α−α0|+|κ−κ0| ≤

η
}

, where j = 1, 2, l = 1, ..., d. Then, following Shen and Wong [1994] (page 597) gives

N[ ](ε,Mq
n,j(η), ‖·‖∞) ≤ (η/ε)c1mn and N[ ](ε,M2

n,jl(η), ‖·‖∞) ≤ (η/ε)c2mn for some constants

c1, c2 > 0. In addition, since B ⊆ Rd is compact, the covering number of B(η) follows

N(ε,B(η), ‖ · ‖∞) ≤ c3(η/ε)d.

Similar to the proof of Lemma A3, ΛL
ji and ΛU

ji are functions that bracket Λj, with

‖ΛU
ji − ΛL

ji‖∞ ≤ ε, i ∈ {1, · · ·, d(η/ε)c1mne}; hLk and hUk are functions that bracket h, with

‖hUk − hLk ‖∞ ≤ ε, k ∈ {1, · · ·, d(η/ε)c2mne}; β ∈ [βs − ε, βs + ε], α ∈ [αs − ε, αs + ε] and
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κ ∈ [κs − ε, κs + ε], s ∈ {1, · · ·, dc3(η/ε)de}. Then we construct a set of brackets for Fn,jl(η)

(let j = 1 without loss of generality)

{
[dL,1i,k,s(D), dU,1i,k,s(D)] : 1 ≤ i ≤ d(η/ε)c1mne; 1 ≤ k ≤ d(η/ε)c2mne; 1 ≤ s ≤ dc3(η/ε)de

}
so that for any l̇Λ1(θ;D)[h∗1l − h] ∈ Fn,1l(η), there exists a triplet (i, k, s) such that

l̇Λ1(θ;D)[h∗1l − h] ∈ [dL,1i,k,s(D), dU,1i,k,s(D)] for any sample point D. Following similar reasoning

in Lemma A1 and Lemma A3, it suffices to show that for any t1, t2 ∈ [c, u] and z as defined

in Condition 2,

|l̇lU,1Λ1,i,k,s
(θ; t1, t2, z)− l̇l

L,1

Λ1,i,k,s
(θ; t1, t2, z)| := |dU,1i,k,s(t1, t2, z)− d

L,1
i,k,s(t1, t2, z)| ≤ ε,

where l̇lΛ1(θ; t1, t2, z)[h
∗
1l − h] ∈ [dL,1i,k,s(t1, t2, z), d

U,1
i,k,s(t1, t2, z)], with

dL,1i,k,s(t1, t2, z) =
−1

ALi,k,s

[
1 +

(
exp( 1

κs+ε
G(ez

T (βs−ε)ΛL
2i(t2)))− 1

exp( 1
κs−εG(ezT (βs+ε)ΛU

1i(t1)))− 1

)1/(αs+ε)]αs+ε−1

× exp
( 1

κs − ε
G(ez

T (βs+ε)ΛU
1i(t1))) Ġ(ez

T (βs+ε)ΛU
1i(t1))

)
ez
T (βs+ε) (h∗1l(t1)− hLk (t1)),

dU,1i,k,s(t1, t2, z) =
−1

ALi,k,s

[
1 +

(
exp( 1

κs+ε
G(ez

T (βs−ε)ΛL
2i(t2)))− 1

exp( 1
κs−εG(ezT (βs+ε)ΛU

1i(t1)))− 1

)1/(αs+ε)]αs+ε−1

× exp
( 1

κs − ε
G(ez

T (βs+ε)ΛU
1i(t1))) Ġ(ez

T (βs+ε)ΛU
1i(t1))

)
ez
T (βs+ε) (h∗1l(t1)− hUk (t1)).

The term ALi,k,s presents the lower bound of A, which is previously defined in Lemma A1.

We notice that dL,1i,k,s(t1, t2, z) and dU,1i,k,s(t1, t2, z) are only different in the last term because

dL,1i,k,s(t1, t2, z) < 0 whereas dU,1i,k,s(t1, t2, z) > 0. Thus, due to the boundedness of the first order

derivatives, it follows that |dU,1i,k,s(t1, t2, z) − d
L,1
i,k,s(t1, t2, z)| . ‖hUk − hLk ‖∞ ≤ ε. Similarly, we

can show |dU,2i,k,s(t1, t2, z)−d
L,2
i,k,s(t1, t2, z)| . ε. Therefore, the ε-bracketing number for the class

Fn,jl(η), j = 1, 2, is bounded by (η/ε)c1mn (η/ε)c2mn c3(η/ε)d, that is N[ ](ε,Fn,jl(η), ‖ · ‖∞) .

(η/ε)c1mn+c2mn+d = (η/ε)cmn+d.
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Lemma A6. For l = 1, · · ·, d, define two classes of functions as

F bn,l(η) =
{
l̇bl(θ;D)− l̇bl(θ0;D) : θ ∈ Θq

n, d(θ, θ0) ≤ η, j = 1, 2
}
, and

FΛj
n,jl(η) =

{
l̇Λj(θ;D)[h∗jl]− l̇Λj(θ0;D)[h∗jl] : θ ∈ Θq

n, d(θ, θ0) ≤ η
}
,

where l̇bl(θ;D) is the lth element of l̇bl(θ;D) = (l̇Tβ (θ;D), l̇α(θ;D), l̇κ(θ;D))T and h∗jl is the

lth element of h∗j in Lemma A4. Assume Conditions 1-5 hold, then N[ ](ε,F bn,l(η), ‖ · ‖∞) .

(η/ε)cmn+d and N[ ](ε,F
Λj
n,jl(η), ‖ · ‖∞) . (η/ε)cmn+d for some constant c > 0.

Proof. First define several classes of functionsMq
n,j(η) =

{
Λj ∈Mq

n, ‖Λj −Λj0‖2 ≤ η
}

and

B(η) =
{
b = (βT , α, κ)T ∈ B ⊆ Rd, |β − β0| + |α − α0| + |κ − κ0| ≤ η

}
, where j = 1, 2.

By the same arguments as in Lemma A5, we have N[ ](ε,Mq
n,j(η), ‖ · ‖∞) ≤ (η/ε)c1mn and

N(ε,B(η), ‖ ·‖∞) ≤ c2(η/ε)d for some constants c1, c2 > 0. Similar to Lemma A5, let ΛL
ji and

ΛU
ji be the functions that bracket Λj ∈ Mq

n,j, with ‖ΛU
ji − ΛL

ji‖∞ ≤ ε, i ∈ {1...d(η/ε)c1mne};

also for any b ∈ B, we have β ∈ [βs− ε, βs + ε], α ∈ [αs− ε, αs + ε] and κ ∈ [κs− ε, κs + ε], s ∈

{1...dc2(η/ε)de}.

For F bn,l(η) we can construct a set of brackets

{
[uLbl,i,s(D), uUbl,i,s(D)] : 1 ≤ i ≤ d(η/ε)c1mne; 1 ≤ s ≤ dc2(η/ε)de

}
,

so that for any element in F bn,l(η), there exists a set (i, s) such that l̇bl(θ;D) − l̇bl(θ0;D) ∈

[uLbl,i,s(D), uUbl,i,s(D)] for any sample point D. Similar to Lemma A3 and Lemma A5, it suffices

to prove that for any t1, t2 ∈ [c, u] and z as defined in Condition 2,

|l̇lUbl,i,s(θ; t1, t2, z)− l̇l
L

bl,i,s
(θ; t1, t2, z)| := |uUbl,i,s(t1, t2, z)− u

L
bl,i,s

(t1, t2, z)| ≤ ε,

where l̇lbl(θ; t1, t2, z)− l̇lbl(θ0; t1, t2, z) ∈ [uLbl,i,s(t1, t2, z), u
U
bl,i,s

(t1, t2, z)].

When bl = α, we need to show |uUα,i,s(t1, t2, z) − uLα,i,s(t1, t2, z)| ≤ ε. Due to similar

structures of uLα,i,s(t1, t2, z) and uUα,i,s(t1, t2, z), we will present the explicit form for the first

114



term only. Also we assume exp( 1
κ
G(ez

T βΛj(tj))) > 2 without loss of generality. Following

similar steps and notations as in Lemma 5, we have

uLα,i,s(t1, t2, z) = l̇l
L

α(θ; t1, t2, z)− l̇lα(θ0; t1, t2, z) =
κs − ε

(αs + ε)2
(1− 1

ALi,s
)×

log

{[
exp(

1

κs + ε
G(ez

T (βs−ε)ΛL
1i(t1)))− 1

] 1
αs+ε +

[
exp(

1

κs + ε
G(ez

T (βs−ε)Λ2i(t2)))− 1
] 1
αs+ε

}

×

{[
exp(

1

κs + ε
G(ez

T (βs−ε)ΛL
1i(t1)))− 1

] 1
αs+ε log

[
exp(

1

κs + ε
G(ez

T (βs−ε)ΛL
1i(t1)))− 1

]
+
[

exp[
1

κs + ε
G(ez

T (βs−ε)ΛL
2i(t2)))− 1

] 1
αs+ε log

[
exp(

1

κs + ε
G(ez

T (βs−ε)ΛL
2i(t2)))− 1

]}
− l̇lα(θ0; t1, t2, z).

Applying similar arguments in Lemma A3 and A5 gives ‖uUα,i,s − uLα,i,s‖∞ . ε. Likewise, we

have ‖uUκ,i,s − uLκ,i,s‖∞ . ε and ‖uUβ,i,s − uLβ,i,s‖∞ . ε. Therefore, the ε-bracketing number

associated with ‖ · ‖∞ for the class F bn,l(η) is N[ ](ε,F bn,l(η), ‖ · ‖∞) . (η/ε)cmn+d.

Next, following similar steps we can find a set of brackets for the class FΛ1
n,1l(η) as{

[vL,1i,s (D), vU,1i,s (D)] : 1 ≤ i ≤ d(η/ε)c1mne; 1 ≤ s ≤ dc2(η/ε)de
}

so that for any element in

FΛ1
1l (η), there exists a set (i, s) such that l̇Λ1(θ;D)[h∗1l] − l̇Λ1(θ0;D)[h∗1l] ∈ [vL,1i,s (D), vU,1i,s (D)]

for any sample point D. Applying the same arguments again, it suffices to prove that for any

t1, t2 ∈ [c, u] and z defined in Condition 2,
∣∣l̇lUΛ1,i,s

(θ; t1, t2, z)[h
∗
1l]− l̇l

L

Λ1,i,s
(θ; t1, t2, z)[h

∗
1l]
∣∣ :=

|vU,1i,s (t1, t2, z)− vL,1i,s (t1, t2, z)| ≤ ε, where l̇lΛ1(θ; t1, t2, z)[h
∗
1l]− l̇lΛ1(θ0; t1, t2, z)[h

∗
1l] ∈

[vL,1i,s (t1, t2, z), v
U,1
i,s (t1, t2, z)], with

vL,1i,s (t1, t2, z) =
−1

ALi,s

[
1 +

(
exp( 1

κs+ε
G(ez

T (βs−ε)ΛL
2i(t2)))− 1

exp( 1
κs−εG(ezT (βs+ε)ΛU

1i(t1)))− 1

)1/(αs+ε)
]αs+ε−1

× exp
( 1

κs − ε
G(ez

T (βs+ε)ΛU
1i(t1))

)
Ġ(ez

T (βs+ε)ΛU
1i(t1))) ez

T (βs+ε) h∗1l(t1)

− l̇lΛ1(θ0; t1, t2, z)[h
∗
1l],

vU,1i,s (t1, t2, z) =
−1

AUi,s

[
1 +

(
exp( 1

κs−εG(ez
T (βs+ε)ΛU

2i(t2)))− 1

exp( 1
κs+ε

G(ezT (βs−ε)ΛL
1i(t1)))− 1

)1/(αs−ε)
]αs−ε−1

× exp
( 1

κs + ε
G(ez

T (βs−ε)ΛL
1i(t1))

)
Ġ(ez

T (βs−ε)ΛL
1i(t1))) ez

T (βs−ε) h∗1l(t1)

− l̇lΛ1(θ0; t1, t2, z)[h
∗
1l].
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Applying the similar arguments as before gives ‖vU,1i,s − vL,1i,s ‖∞ . ε. Likewise, ‖vU,2i,s −

vL,2i,s ‖∞ . ε. Hence, the ε-bracketing number associated with ‖ · ‖∞ for the class FΛj
n,jl(η)

is N[ ](ε,F
Λj
n,jl(η), ‖ · ‖∞) . (η/ε)cmn+d.

A.6 A general theorem on the asymptotic normality of semiparametric

M-estimators with two nuisance parameters

To prove the asymptotic normality for the M -estimator b̂n, we first need to prove a

general theorem that is similar to Theorem 6 in Wellner and Zhang [2007] and Theorem 2.1

in Ding and Nan [2011]. Our log-likelihood function is more complicated and involves two

(infinite-dimensional) nuisance parameters Λj, j = 1, 2. We first denote

Ṡb(b,Λ1,Λ2) = P l̇b(b,Λ1,Λ2;D), Ṡb,n(b,Λ1,Λ2) = Pl̇b(b,Λ1,Λ2;D),

ṠΛj(b,Λ1,Λ2)[hj] = P l̇Λj(b,Λ1,Λ2;D)[hj], ṠΛj ,n(b,Λ1,Λ2)[hj] = Pl̇Λj(b,Λ1,Λ2;D)[hj],

S̈bb(b,Λ1,Λ2) = P l̈bb(b,Λ1,Λ2;D),

S̈bΛj(b,Λ1,Λ2)[hj] = S̈TΛjb(b,Λ1,Λ2)[hj] = P l̈bΛj(b,Λ1,Λ2;D)[hj],

S̈ΛjΛj(b,Λ1,Λ2)[hj, h̃j] = P l̈ΛjΛj(b,Λ1,Λ2;D)[hj, h̃j],

S̈ΛjΛj′
(b,Λ1,Λ2)[hj, hj′ ] = P l̈ΛjΛj′ (b,Λ1,Λ2;D)[hj, hj′ ].

We list the following assumptions:

A1. (Rate of convergence) |b̂n − b0|+ ‖Λ̂1n − Λ10‖+ ‖Λ̂2n − Λ20‖ = Op(n
−γ) for some γ > 0

and some norm ‖ · ‖.

A2. Ṡb(b0,Λ10,Λ20) = 0, ṠΛj(b0,Λ10,Λ20)[hj] = 0, for all hj ∈ Hj, j = 1, 2.

A3. There exists h∗j = (h∗j1, ·, ·, ·, h∗jd)T , where h∗jl ∈ Hj, j = 1, 2, l = 1, · · ·, d, so that

S̈bΛ1(b0,Λ10,Λ20)[h1] + S̈bΛ2(b0,Λ10,Λ20)[h2]− S̈Λ1Λ1(b0,Λ10,Λ20)[h∗1, h1]

− S̈Λ1Λ2(b0,Λ10,Λ20)[h∗1, h2]− S̈Λ2Λ2(b0,Λ10,Λ20)[h∗2, h2]− S̈Λ2Λ1(b0,Λ10,Λ20)[h∗2, h1] = 0
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for all hj ∈ Hj, j = 1, 2. Moreover, the matrix A is nonsingular with

A =− S̈bb(b0,Λ10,Λ20) + S̈Λ1b(b0,Λ10,Λ20)[h∗1] + S̈Λ2b(b0,Λ10,Λ20)[h∗2]

=− P{l̈bb(b0,Λ10,Λ20;D)− l̈Λ1b(b0,Λ10,Λ20;D)[h∗1]− l̈Λ2b(b0,Λ10,Λ20;D)[h∗2]}.

A4. The estimator (b̂n, Λ̂1,n, Λ̂2,n) satisfies

Ṡb,n(b̂n, Λ̂1,n, Λ̂2,n) = op(n
−1/2), and ṠΛj ,n(b̂n, Λ̂1,n, Λ̂2,n)[h∗j ] = op(n

−1/2), j = 1, 2.

A5. (Stochastic equicontinuity) For any C > 0 and j = 1, 2,

sup
d(θ,θ0)≤Cn−γ

∣∣n1/2(Ṡb,n − Ṡb)(b,Λ1,Λ2)− n1/2(Ṡb,n − Ṡb)(b0,Λ10,Λ20)
∣∣ = op(1),

sup
d(θ,θ0)≤Cn−γ

∣∣n1/2(ṠΛj ,n − ṠΛj)(b,Λ1,Λ2)[h∗j ]− n1/2(ṠΛj ,n − ṠΛj)(b0,Λ10,Λ20)[h∗j ]
∣∣ = op(1),

where d(θ, θ0) = |b − b0| + ‖Λ1 − Λ10‖ + ‖Λ2 − Λ20‖ is the distance between θ = (b,Λ1,Λ2)

and θ0 = (b0,Λ10,Λ20) under some well-defined norm ‖ · ‖.

A6. (Smoothness of model) For some α > 1 satisfying αγ > 1
2
, and for (b,Λ1,Λ2) in a

neighborhood of (b0,Λ10,Λ20) : |b− b0|+ ‖Λ1 − Λ10‖+ ‖Λ2 − Λ20‖ ≤ Cn−γ,

∣∣Sb(b,Λ1,Λ2)− Sb(b0,Λ10,Λ20)

− S̈bb(b0,Λ10,Λ20)(b− b0)− S̈bΛ1(b0,Λ10,Λ20)[Λ1 − Λ10]− S̈bΛ2(b0,Λ10,Λ20)[Λ2 − Λ20]
∣∣

= O
{

(|b− b0|+ ‖Λ1 − Λ10‖+ ‖Λ2 − Λ20‖)α
}
,∣∣SΛj(b,Λ1,Λ2)[h∗j ]− SΛj(b0,Λ10,Λ20)[h∗j ]− S̈Λjb(b0,Λ10,Λ20)[h∗j ](b− b0)

− S̈ΛjΛj(b0,Λ10,Λ20)[h∗j ,Λj − Λj0]− S̈ΛjΛj′
(b0,Λ10,Λ20)[h∗j ,Λj′ − Λj′0]

∣∣
= O

{
(|b− b0|+ ‖Λ1 − Λ10‖+ ‖Λ2 − Λ20‖)α

}
, where j, j′ ∈ {1, 2}.

Theorem. Suppose that assumptions A1-A6 hold, then

n1/2(b̂n − b0) = A−1n1/2Pnl∗(b0,Λ10,Λ20;D) + op(1)→d N{0, A−1B(A−1)T},

where l∗(b0,Λ10,Λ20;D) = l̇b(b0,Λ10,Λ20;D)− l̇Λ1(b0,Λ10,Λ20;D)[h∗1]− l̇Λ2(b0,Λ10,Λ20;D)[h∗2],

B = Pl∗(b0,Λ10,Λ20;D)⊗2 = P
{
l∗(b0,Λ10,Λ20;D)l∗(b0,Λ10,Λ20;D)T

}
and A is defined in

assumption A3.
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Proof. We follow the proof for Theorem 2.1 of Ding and Nan [2011]. Using assumptions A1

and A5, we have n1/2(Ṡb,n − Ṡb)(b̂n, Λ̂1,n, Λ̂2,n)− n1/2(Ṡb,n − Ṡb)(b0,Λ10,Λ20) = op(1). Due to

Ṡb,n(b̂n, Λ̂1,n, Λ̂2,n) = op(n
−1/2) by assumption A4 and Ṡb(b0,Λ10,Λ20) = 0 by assumption A2,

we get n1/2Ṡb(b̂n, Λ̂1,n, Λ̂2,n)+n1/2Ṡb,n(b0,Λ10,Λ20) = op(1). Similarly, n1/2ṠΛj(b̂n, Λ̂1,n, Λ̂2,n)+

n1/2ṠΛj ,n(b0,Λ10,Λ20) = op(1). Combining these equations and assumption A6, we obtain

S̈bb(b0,Λ10,Λ20)(b̂n − b0) + S̈bΛ1(b0,Λ10,Λ20)[Λ̂1,n − Λ10] + S̈bΛ2(b0,Λ10,Λ20)[Λ̂2,n − Λ20]

+ Ṡb,n(b0,Λ10,Λ20) +O
{(
|b̂n − b0|+ ‖Λ̂1,n − Λ10‖+ ‖Λ̂2,n − Λ20‖

)α}
= op(n

−1/2),

S̈Λ1b(b0,Λ10,Λ20)[h∗j ](b̂n − b0) + S̈ΛjΛj(b0,Λ10,Λ20)[h∗j , Λ̂j,n − Λj0]

+ S̈ΛjΛj′
(b0,Λ10,Λ20)[h∗j , Λ̂j′,n − Λj′0] + ṠΛj ,n(b0,Λ10,Λ20)[h∗j ]

+O
{(
|b̂n − b0|+ ‖Λ̂1,n − Λ10‖+ ‖Λ̂2,n − Λ20‖

)α}
= op(n

−1/2),

where j, j′ ∈ {1, 2}. Since α > 1 and αγ > 1/2, the convergence rate in assumption A1

implies that n1/2O
{(
|b̂n− b0|+ ‖Λ̂1,n−Λ10‖+ ‖Λ̂2,n−Λ20‖

)α}
= Op(n

1
2
−αγ) = op(1). Then,

two equations above together with assumption A3 leads to

(
S̈bb(b0,Λ10,Λ20)− S̈Λ1b(b0,Λ10,Λ20)[h∗1]− S̈Λ2b(b0,Λ10,Λ20)[h∗2]

)
(b̂n − b0)

=−
(
Ṡb,n(b0,Λ10,Λ20)− ṠΛ1,n(b0,Λ10,Λ20)[h∗1]− ṠΛ2,n(b0,Λ10,Λ20)[h∗2]

)
+ op(n

−1/2),

that is, −A(b̂n − b0) = −Pnl∗(b0,Λ10,Λ20;D) + op(n
−1/2). This yields n1/2(b̂n − b0) =

A−1n1/2Pnl∗(b0,Λ10,Λ20;D) + op(1)→d N{0, A−1B(A−1)T}.
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Appendix B

Supplementary materials for Chapter 3

B.1 Regularity conditions

Denote ‖x‖ as the Euclidean norm of a d-dimensional vector x = (x1, ..., xd)
T ∈ Rd,

namely ‖x‖ =
√
x2

1 + ...+ x2
d. For any d × d matrix A, define ‖A‖ =

√∑d
i,j=1Aij

2,

where Aij is the (i, j)th element of matrix A. Let N(η∗) be an open neighbourhood of

η∗. For simplicity of notation, under right censoring, we denote l̈η,j(S1, S2; η) = ∂l̇η(S1,S2;η)

∂Sj
,

...
l ηη,j(S1, S2; η) = ∂l̈ηη(S1,S2;η)

∂Sj
, j = 1, 2. Similarly, under interval censoring, we first denote

{S1(L1), S1(R1), S2(L2), S2(R2)} as {y11, y12, y21, y22}, and write l̈η,j(S1, S2; η) =

∂l̇η(y11,y12,y21,y22;η)

∂yj·
,

...
l ηη,j(S1, S2; η) = ∂l̈ηη(y11,y12,y21,y22;η)

∂yj·
, j = 1, 2. In the following paragraphs,

we state the regularity conditions needed for proving the Theorems.

Condition 1. Matrix S(η∗) = −P0{l̈ηη(S1, S2; η∗)} is finite and non-singular.

Condition 2. Denote Ji(S1, S2) = const × {S1(1 − S1)}−εi1 × {S2(1 − S2)}−εi2 , where

εi1, εi2 ≥ 0, i = 1, 2, εi1, εi2 are some constants. Suppose that for all η ∈ N(η∗), we have

‖l̇η(S1, S2; η)l̇Tη (S1, S2; η)‖ ≤ J1(S1, S2), ‖l̈ηη(S1, S2; η)‖ ≤ J2(S1, S2), and P0{J2
i (S1, S2)} <

∞.

Condition 3. Suppose that both l̈η,j(S1, S2; η) and
...
l ηη,j(S1, S2; η), j = 1, 2 exist and are

continuous. Denote J̃1
i (S1, S2) = const × {S1(1 − S1)}−ε̃i1 × {S2(1 − S2)}−εi2 , J̃2

i (S1, S2) =

const×{S1(1−S1)}−εi1×{S2(1−S2)}−ε̃i2 , where ε̃i1 > εi1 and ε̃i2 > εi2 are some constants,

such that for η ∈ N(η∗), ‖l̈η,j(S1, S2; η)‖ ≤ J̃ j1(S1, S2) and ‖
...
l ηη,j(S1, S2; η)‖ ≤ J̃ j2(S1, S2),

and furthermore, P0{J̃ ji (S1, S2)} <∞, i = 1, 2, and j = 1, 2.

Condition 4. Suppose ∂l̈ηη(S1,S2;η)

∂ηk
, k = 1, 2, ..., p exist and are continuous with η ∈ N(η∗),

and there exists an integrable function G3(S1, S2) such that ‖∂l̈ηη(S1,S2;η)

∂ηk
‖ ≤ G3(S1, S2) for

all η ∈ N(η∗), k = 1, ..., p.

Remark. Condition 1 indicates that the sensitivity matrix S(η∗) is invertible so that the IR
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statistic is well-defined. Conditions 2 and 3 are similar to the conditions in Chen and Fan

[2005], Chen and Fan [2006] and Zhang et al. [2016]. Condition 4 is a common assumption

to establish the uniform law of large numbers theorem as in Zhang et al. [2016].

B.2 Verification of conditions

By following Chen and Fan [2006] Section 5, we verify Conditions 2-4 under specific

copula functions. Specifically, under interval censoring, we will show that our log-likelihood

function’s derivatives can satisfy Conditions 2-4. Under right censoring, due to the presence

of a copula density function, the corresponding log-likelihood function is more complicated.

In the following section, we will use the Clayton copula as an example to verify that it sat-

isfies Conditions 2-4 under both interval and right censoring.

Scenario I interval censoring: Under interval censoring, the log-likelihood function is

denoted as

l(S1, S2; η) = logL(S1, S2; η)

= log[Cη{S1(L1), S2(L2)} − Cη{S1(L1), S2(R2)}

− Cη{S1(R1), S2(L2)}+ Cη{S1(R1), S2(R2)}].

Assume that there exists τ > 0 such that pr(R− L ≥ τ) = 1, so L(S1, S2; η) is bounded

away from 0. It is equivalent to show the boundedness for the derivatives of Cη(u, v), u, v ∈

(0, 1), η ∈ N(η∗), with η∗ ∈ A = [A−1, A] for a large A > 1. Define ll(u, v; η) as

ll(u, v; η) = logCη(u, v) = −1

η
log(u−η + v−η − 1).
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Then, the derivatives of ll(u, v; η) are:

l̇lη(u, v; η) =
log(u−η + v−η − 1)

η2
+
u−η log u+ v−η log v

η(u−η + v−η − 1)
,

l̈lηη(u, v; η) =
−2 log(u−η + v−η − 1)

η3
− 2(u−η log u+ v−η log v)

η2(u−η + v−η − 1)

− u−η(log u)2 + v−η(log v)2

η(u−η + v−η − 1)
+

(u−η log u+ v−η log v)2

η(u−η + v−η − 1)2
,

l̈lη,1(u, v; η) =
−u−(η+1) log u

u−η + v−η − 1
+
u−(η+1)(u−η log u+ v−η log v)

(u−η + v−η − 1)2
,

l̈lη,2(u, v; η) =
−v−(η+1) log v

u−η + v−η − 1
+
v−(η+1)(u−η log u+ v−η log v)

(u−η + v−η − 1)2
,

...
ll ηη,1(u, v; η) =−

2
η
(u−η log u+ v−η log v)− (log u)2

(u−η + v−η − 1)uη+1
− u−η(log u)2 + v−η(log v)2

(u−η + v−η − 1)2uη+1

+
2(u−η log u+ v−η log v)(− log u+ 1

η
)

(u−η + v−η − 1)2uη+1
+

2(u−η log u+ v−η log v)2

(u−η + v−η − 1)3uη+1

...
ll ηη,2(u, v; η) =−

2
η
(u−η log u+ v−η log v)− (log v)2

(u−η + v−η − 1)vη+1
− u−η(log u)2 + v−η(log v)2

(u−η + v−η − 1)2vη+1

+
2(u−η log u+ v−η log v)(− log v + 1

η
)

(u−η + v−η − 1)2vη+1
+

2(u−η log u+ v−η log v)2

(u−η + v−η − 1)3vη+1
,

∂l̈lηη(u, v; η)

∂η
=

6 log(u−η + v−η − 1)

η4
+

6(u−η log u+ v−η log v)

η3(u−η + v−η − 1)

− 3(u−η log u+ v−η log v)2

η2(u−η + v−η − 1)2
+
u−η(log u)2 + v−η(log v)2

η2(u−η + v−η − 1)

− 3[u−η(log u)2 + v−η(log v)2](u−η log u+ v−η log v)

η(u−η + v−η − 1)2

+
u−η(log u)3 + v−η(log v)3

η(u−η + v−η − 1)
+

2(u−η log u+ v−η log v)3

η(u−η + v−η − 1)3
,

where η = ηk, since the Clayton copula only has one parameter (k = 1). By following similar

arguments as in Chen and Fan [2006] that there are constants k1, k2 > 0 and ε1, ε2 > 0 such

that the following inequalities hold for all u, v ∈ (0, 1) and all η ∈ A:

| log u| ≤ k1u
−ε1 , | log v| ≤ k1v

−ε2 , 0 ≤ log(u−η + v−η − 1) ≤ k2(u−ε1 + v−ε2)

0 ≤ u−η

u−η + v−η − 1
≤ 1, 0 ≤ v−η

u−η + v−η − 1
≤ 1.
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Then, we can verify Condition 2 by showing that there are constants ε1, ε2 such that

sup
η∈A
‖l̇lη(u, v; η)‖ ≤const× (u−ε1 + v−ε2) ≤ const× u−ε1 × v−ε2

≤const× {u(1− u)}−ε1 × {v(1− v)}−ε2 ,

where the last inequality holds due to (1− u)−ε1 > 1 and (1− v)−ε2 > 1. Likewise, we have

sup
η∈A
‖l̈lηη(u, v; η)‖ ≤const× (u−ε1 + v−ε2 + u−2ε1 + v−2ε2 + u−ε1 × v−ε2)

≤const× {u(1− u)}−ε1 × {v(1− v)}−ε2 ,

which completes the verification of Condition 2. To verify Condition 3, we have

sup
η∈A
‖l̈lη,1(u, v; η)‖ ≤const× (u−1u−ε1 + v−ε2)

≤const× {u(1− u)}−ε̃1 × {v(1− v)}−ε2 ,

sup
η∈A
‖l̈lη,2(u, v; η)‖ ≤const× (u−ε1 + v−1v−ε2)

≤const× {u(1− u)}ε1 × {v(1− v)}−ε̃2 ,

where ε̃1 = ε1 + 1 > ε1, ε̃2 = ε2 + 1 > ε2. Similarly,

sup
η∈A
‖
...
ll ηη,1(u, v; η)‖ ≤const× (u−1u−ε1 + v−ε2 + u−1 × u−ε1 × v−ε2)

≤const× {u(1− u)}−ε̃1 × {v(1− v)}−ε2 ,

sup
η∈A
‖
...
ll ηη,2(u, v; η)‖ ≤const× (u−ε1 + v−1v−ε2 + v−1 × u−ε1 × v−ε2)

≤const× {u(1− u)}−ε1 × {v(1− v)}−ε̃2 ,

where ε̃1 = ε1 + 1 > ε1, ε̃2 = ε2 + 1 > ε2. That completes the verification of Condition 3. To

verify Condition 4, given that η ∈ N(η∗) with η∗ ∈ [A−1, A], u, v ∈ (0, 1), we can see that

∂l̈lηη(u,v;η)

∂η
can be bounded, which completes the verification of Condition 4.
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Scenario II right censoring: Similar to interval censoring, the log-likelihood function

under right censoring is denoted as

l(S1, S2; η) = logL(S1, S2; η)

=δ1δ2 log{cη(S1, S2)}+ δ1(1− δ2) log

{
∂ Cη(S1, S2)

∂S1

}
+ (1− δ1)δ2

{
∂ Cη(S1, S2)

∂S2

}
+ (1− δ1)(1− δ2)Cη(S1, S2),

where cη(S1, S2) is the density function of the copula model. Among the four components in

the log-likelihood function, the term log{cη(S1, S2)} is the most complicated one because it

involves the second-order derivative of the copula function whereas the other terms involve

at most only the first-order derivative. Therefore, in order to verify the boundedness of the

log-likelihood function, it is equivalent to the boundedness of log{cη(u, v)}, u, v ∈ (0, 1), η ∈

N(η∗), with η∗ ∈ A = [A−1, A] for a large A > 1. Define ll(u, v; η) as

ll(u, v; η) = log cη(u, v)

= log(1 + η)− (η + 1) log u− (η + 1) log v

− (η−1 + 2) log(u−η + v−η − 1).

Then, the derivatives of ll(u, v; η) are:

l̇lη(u, v; η) =
1

1 + η
− log(uv) +

log(u−η + v−η − 1)

η2

+ (η−1 + 2)
u−η log u+ v−η log v

u−η + v−η − 1
,

l̈lηη(u, v; η) =− 1

(1 + η)2
− 2

η3
log(u−η + v−η − 1)− 2(u−η log u+ v−η log v)

η2(u−η + v−η − 1)

+ (η−1 + 2)

{
(u−η log u+ v−η log v)2

(u−η + v−η − 1)2
− u−η(log u)2 + v−η(log v)2

(u−η + v−η − 1)

}
l̈lη,1(u, v; η) =

−1

u
+

(1 + 2η){v−η(log v − log u) + log u}+ 2(u−η + v−η − 1)

(u−η + v−η − 1)2uη+1
,

l̈lη,2(u, v; η) =
−1

v
+

(1 + 2η){u−η(log u− log v) + log v}+ 2(u−η + v−η − 1)

(u−η + v−η − 1)2vη+1
,
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...
ll ηη,1(u, v; η) =− 2v−η(log v − log u) + 2 log u

η(u−η + v−η − 1)2uη+1
+ (η−1 + 2)

[
2η(u−η log u+ v−η log v)2

(u−η + v−η − 1)3uη+1

+
2(u−η log u+ v−η log v)(−η log u+ 1)− η{u−η(log u)2 + v−η(log v)2}

(u−η + v−η − 1)2uη+1

− −η(log u)2 + 2 log u

(u−η + v−η − 1)uη+1

]
...
ll ηη,2(u, v; η) =− 2u−η(log u− log v) + 2 log v

η(u−η + v−η − 1)2vη+1
+ (η−1 + 2)

[
2η(u−η log u+ v−η log v)2

(u−η + v−η − 1)3vη+1

+
2(u−η log u+ v−η log v)(−η log v + 1)− η{u−η(log u)2 + v−η(log v)2}

(u−η + v−η − 1)2vη+1

− −η(log v)2 + 2 log v

(u−η + v−η − 1)vη+1

]
∂l̈lηη(u, v; η)

∂η
=

2(u−η log u+ v−η log v)

η3(u−η + v−η − 1)
− 2(u−η log u+ v−η log v)2

η2(u−η + v−η − 1)2

+ (η−1 + 2)

[
2(u−η log u+ v−η log v)3

(u−η + v−η − 1)3

− 3(u−η log u+ v−η log v){u−η(log u)2 + v−η(log v)2}
(u−η + v−η − 1)2

+
u−η(log u)3 + v−η(log v)3

(u−η + v−η − 1)

]
The verification procedures follow similar steps as the verification under interval censoring.

We will omit the details.

B.3 Proof for Theorem 3.2.1

Proof for Theorem 3.2.1. Define the rescaled empirical copula of (S̃i1, S̃i2), i = 1, ..., n by

C̃(s1, s2) =
1

n+ 1

n∑
i=1

I{S̃i1 ≤ s1, S̃i2 ≤ s2}.

For any η ∈ Θ, we can rewrite S(η), S̃(η), V (η), Ṽ (η) as follows:

S(η) = −
∫
s1,s2∈[0,1]

l̈ηη(s1, s2; η)dC0(s1, s2);

S̃(η) = −n+ 1

n

∫
s1,s2∈[0,1]

l̈ηη(s1, s2; η)dC̃(s1, s2),
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and

V (η) =

∫
s1,s2∈[0,1]

l̇η(s1, s2; η)l̇Tη (s1, s2; η)dC0(s1, s2);

Ṽ (η) =
n+ 1

n

∫
s1,s2∈[0,1]

l̇η(s1, s2; η)l̇Tη (s1, s2; η)dC̃(s1, s2),

where C0(·) and C̃(·) are the true copula and the rescaled empirical copula.

By Condition 2, applying Lemma 1(c) in Chen and Fan [2005], we have

sup
η∈N(η∗)

‖S̃(η)− S(η)‖

= sup
η∈N(η∗)

‖
∫
s1,s2∈[0,1]

l̈ηη(s1, s2; η)d{n+ 1

n
C̃(s1, s2)− C0(s1, s2)}‖ p−→ 0,

as n→∞.

Therefore, using the two facts ‖S̃(η̂) − S(η∗)‖ ≤ ‖S̃(η̂) − S(η̂)‖ + ‖S(η̂) − S(η∗)‖, and

η̂
p−→ η∗, we obtain S̃(η̂)

p−→ S(η∗). Applying the same arguments above, we can also show

that Ṽ (η̂)
p−→ V (η∗). Furthermore, by Condition 1 and Slutsky’s theorem, we have

ÎRn = tr{S̃−1(η̂)Ṽ (η̂)} p−→ tr{S−1(η∗)V (η∗)} = p.

B.4 Proof for Theorem 3.2.2

Proof for Theorem 3.2.2. First note that, η̂ is the solution to
∑n

i=1 l̇η(S̃i1, S̃i2; η̂) = 0. Ap-

plying the Mean Value Theorem, we have

0 =
n∑
i=1

l̇η(S̃i1, S̃i2; η∗) +
n∑
i=1

l̈ηη(S̃i1, S̃i2; η̃)(η̂ − η∗),

where η̃ lies between η∗ and η̂. Therefore,

η̂ − η∗ = −
[

1

n

n∑
i=1

l̈ηη(S̃i1, S̃i2; η̃)

]−1
1

n

n∑
i=1

l̇η(S̃i1, S̃i2; η∗).
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For any 1 ≤ k, l ≤ p, expanding l̈ηη(S̃i1, S̃i2; η̂)kl, which is an element in the p× p matrix

l̈ηη(S̃i1, S̃i2; η̂), around η∗ leads to

S̃(η̂)kl =
1

n

n∑
i=1

l̈ηη(S̃i1, S̃i2; η̂)kl

=
1

n

n∑
i=1

l̈ηη(S̃i1, S̃i2; η∗)kl +
1

n

n∑
i=1

∂l̈ηη(S̃i1, S̃i2; η̆)kl
∂ηT

(η̂ − η∗)

=
1

n

n∑
i=1

l̈ηη(S̃i1, S̃i2; η∗)kl −
1

n

n∑
i=1

∂l̈ηη(S̃i1, S̃i2; η̆)kl
∂ηT

×
[

1

n

n∑
i=1

l̈ηη(S̃i1, S̃i2; η̃)

]−1
1

n

n∑
i=1

l̇η(S̃i1, S̃i2; η∗),

where η̆ lies between η∗ and η̂.

By Condition 4, applying again Lemma 1(c) in Chen and Fan [2005], we obtain

1

n

n∑
i=1

∂l̈ηη(S̃i1, S̃i2; η̆)kl
∂ηT

→pr P0{
∂l̈ηη(S1, S2; η∗)kl

∂ηT
}.

Also, we know − 1
n

∑n
i=1 l̈ηη(S̃i1, S̃i2; η̃)→pr S(η∗) as n→∞. Therefore

S̃(η̂)kl =
1

n

n∑
i=1

{l̈ηη(S̃i1, S̃i2; η∗)kl +Mkl
1 S
−1(η∗)l̇η(S̃i1, S̃i2; η∗)}+ op(1)

,
1

n

n∑
i=1

hS(S̃i1, S̃i2; η∗)kl + op(1),

where Mkl
1 , P0{∂l̈ηη(S1,S2;η∗)kl

∂ηT
} is a 1 × p vector, hS is a p × p matrix with element

hS(S̃i1, S̃i2; η∗)kl.

Employing the same arguments above, we have

Ṽ (η̂)kl =
1

n

n∑
i=1

{l̇η(S̃i1, S̃i2; η∗)k l̇η(S̃i1, S̃i2; η∗)l

+Mkl
2 S
−1(η∗)l̇η(S̃i1, S̃i2; η∗)}+ op(1)

,
1

n

n∑
i=1

hV (S̃i1, S̃i2; η∗)kl + op(1),

where Mkl
2 = P0{∂l̇η(S1,S2;η∗)k

∂ηT
l̇η(S1, S2; η∗)l + ∂l̇η(S1,S2;η∗)l

∂ηT
l̇η(S1, S2; η∗)k}, hV is a p× p matrix

with element hV (S̃i1, S̃i2; η∗)kl.
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Under the null hypothesis of the copula model being correctly specified, by the Bartlett

identity, we have S(η∗) = V (η∗). Moreover, the IR test statistic estimator ÎRn can be

represented as follows:

√
n(ÎRn − p) =

√
ntr{S̃−1(η̂)Ṽ (η̂)− Ip}

=
√
ntr{S̃−1(η̂)Ṽ (η̂)− S−1(η∗)V (η∗)}

=tr

[
S−1(η∗)

√
n{Ṽ (η̂)− V (η∗)}

]
+ tr

[
S−1(η∗)Ṽ (η̂)S−1(η∗)

√
n{S(η∗)− S̃(η̂)}

]
+ tr

[
S̃−1(η̂)Ṽ (η̂)S−2(η∗)

√
n{S(η∗)− S̃(η̂)}2

]
.

Utilizing the asymptotic expansions above, we have

√
n{S̃(η̂)− S(η∗)}

=
1√
n

n∑
i=1

{hS(S̃i1, S̃i2; η∗)− S(η∗)}+ op(1)

=
√
n

∫
s1,s2∈(0,1)

hS(s1, s2; η∗)d{n+ 1

n
C̃(s1, s2)− C0(s1, s2)}+ op(1),

and

√
n{Ṽ (η̂)− V (η∗)}

=
1√
n

n∑
i=1

{hV (S̃i1, S̃i2; η∗)− V (η∗)}+ op(1)

=
√
n

∫
s1,s2∈(0,1)

hV (s1, s2; η∗)d{n+ 1

n
C̃(s1, s2)− C0(s1, s2)}+ op(1).

By Conditions 2 and 3, employing Lemma 2 in Chen and Fan [2005]. we have ‖S̃(η̂ −

S(η∗))‖ = Op(n
−1/2) and ‖Ṽ (η̂ − V (η∗))‖ = Op(n

−1/2). In addition, given these facts:
√
n‖S̃(η̂) − S(η∗)‖2 = op(1), S̃(η̂) →pr S(η∗) and Ṽ (η̂) →pr V (η∗), we reach the following

expression:

√
n(ÎRn − p) =

√
n

∫
s1,s2∈[0,1]

hR(s1, s2; η∗)d{n+ 1

n
C̃(s1, s2)− C0(s1, s2)}+ op(1),

where hR(s1, s2; η∗) =
∑p

k,l=1 S
−1(η∗)kl{hS(s1, s2; η∗)lk + hV (s1, s2; η∗)lk}.
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Again, applying Lemma 2 in Chen and Fan [2005], we have

√
n(ÎRn − p)→d N(0, σ2

R),

where σ2
R = var0{hR(s1, s2; η∗) +D(S1, S2; η∗)}, and

D(S1, S2; η∗) =
2∑
j=1

∫
s1,s2∈[0,1]

∂hR(s1, s2; η∗)

∂sj
I(Sj ≤ sj)dC0(s1, s2).

Note that the additional term D(S1, S2; η∗) comes from the uncertainty of the estimator

for the marginal distributions S1(·) and S2(·). It vanishes when the distributions are known.

The asymptotic variance of σ2
R may be consistently estimated by

σ̂2
R =

1

n

n∑
i=1

[
hR(S̃i1, S̃i2; η̂)−

p∑
k,l=1

S̃(η̂)−1
kl Ṽ (η̂)lk +D(S̃i1, S̃i2; η̂)

]2

.
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