
TOWARDS PRACTICAL ACCESS CONTROL AND

USAGE CONTROL ON THE CLOUD USING

TRUSTED HARDWARE

by

Judicael Briand Djoko

M.S. Computer Engineering, University of Pittsburgh, USA, 2015

B.S. Computer Engineering, The University of Akron, USA, 2013

Submitted to the Graduate Faculty of

School of Computing and Information Sciences Department of

Computer Science in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2019

UNIVERSITY OF PITTSBURGH

DEPARTMENT OF COMPUTER SCIENCE

This dissertation was presented

by

Judicael Briand Djoko

It was defended on

Nov 15th 2019

and approved by

Adam J. Lee, Associate Professor, University of Pittsburgh

Jack Lange, Associate Professor, University of Pittsburgh

Panos K. Chrysanthis, Professor, University of Pittsburgh

Balaji Palanisamy, Associate Professor, University of Pittsburgh

Dissertation Advisors: Adam J. Lee, Associate Professor, University of Pittsburgh,

Jack Lange, Associate Professor, University of Pittsburgh

ii

TOWARDS PRACTICAL ACCESS CONTROL AND USAGE CONTROL ON

THE CLOUD USING TRUSTED HARDWARE

Judicael Briand Djoko, PhD

University of Pittsburgh, 2019

Cloud-based platforms have become the principle way to store, share, and synchronize files

online. For individuals and organizations alike, cloud storage not only provides resource

scalability and on-demand access at a low cost, but also eliminates the necessity of provisioning

and maintaining complex hardware installations.

Unfortunately, because cloud-based platforms are frequent victims of data breaches and

unauthorized disclosures, data protection obliges both access control and usage control to

manage user authorization and regulate future data use. Encryption can ensure data security

against unauthorized parties, but complicates file sharing which now requires distributing

keys to authorized users, and a mechanism that prevents revoked users from accessing or

modifying sensitive content. Further, as user data is stored and processed on remote machines,

usage control in a distributed setting requires incorporating the local environmental context

at policy evaluation, as well as tamper-proof and non-bypassable enforcement. Existing

cryptographic solutions either require server-side coordination, offer limited flexibility in data

sharing, or incur significant re-encryption overheads on user revocation. This combination

of issues are ill-suited within large-scale distributed environments where there are a large

number of users, dynamic changes in user membership and access privileges, and resources

are shared across organizational domains. Thus, developing a robust security and privacy

solution for the cloud requires: fine-grained access control to associate the largest set of users

and resources with variable granularity, scalable administration costs when managing policies

and access rights, and cross-domain policy enforcement.

iii

To address the above challenges, this dissertation proposes a practical security solution

that relies solely on commodity trusted hardware to ensure confidentiality and integrity

throughout the data lifecycle. The aim is to maintain complete user ownership against

external hackers and malicious service providers, without losing the scalability or availability

benefits of cloud storage. Furthermore, we develop a principled approach that is: (i) portable

across storage platforms without requiring any server-side support or modifications, (ii)

flexible in allowing users to selectively share their data using fine-grained access control, and

(iii) performant by imposing modest overheads on standard user workloads. Essentially, our

system must be client-side, provide end-to-end data protection and secure sharing, without

significant degradation in performance or user experience.

We introduce NeXUS, a privacy-preserving filesystem that enables cryptographic pro-

tection and secure file sharing on existing network-based storage services. NeXUS protects

the confidentiality and integrity of file content, as well as file and directory names, while

mitigating against rollback attacks of the filesystem hierarchy. We also introduce Joplin, a

secure access control and usage control system that provides practical attribute-based sharing

with decentralized policy administration, including efficient revocation, multi-domain policies,

secure user delegation, and mandatory audit logging. Both systems leverage trusted hardware

to prevent the leakage of sensitive material such as encryption keys and access control policies;

they are completely client-side, easy to install and use, and can be readily deployed across

remote storage platforms without requiring any server-side changes or trusted intermediary.

We developed prototypes for NeXUS and Joplin, and evaluated their respective overheads in

isolation and within a real-world environment. Results show that both prototypes introduce

modest overheads on interactive workloads, and achieve portability across storage platforms,

including Dropbox and AFS. Together, NeXUS and Joplin demonstrate that a client-side

solution employing trusted hardware such as Intel SGX can effectively protect remotely stored

data on existing file sharing services.

iv

TABLE OF CONTENTS

1.0 INTRODUCTION . 1

1.1 Current Approaches . 3

1.2 Challenges . 5

1.3 Approach and Contributions . 6

1.4 Roadmap . 9

2.0 BACKGROUND . 10

2.1 Cryptographic Preliminaries . 10

2.1.1 Encryption and Hashing . 11

2.1.2 Symmetric and Asymmetric Encryption 11

2.1.3 Cryptographic Notation . 12

2.2 Trusted Execution Environments . 13

2.3 Intel Software Guard Extensions . 14

2.3.1 Isolated Execution . 15

2.3.2 Sealed Storage . 16

2.3.3 Remote Attestation . 17

2.3.4 SGX Limitations . 18

2.4 Access and Usage Control . 19

2.4.1 Traditional Access Control . 20

2.4.2 Attribute-Based Access Control . 21

2.4.3 Usage Control . 24

3.0 SYSTEM AND THREAT MODEL . 25

4.0 NEXUS . 27

v

4.1 Introduction . 28

4.2 Background and Protection Model . 31

4.2.1 SGX Design Space . 31

4.2.2 Cryptographic Filesystem Design . 32

4.2.2.1 Strawman Construction . 33

4.2.2.2 Practical Implications . 33

4.2.3 Our Approach . 34

4.3 System Design . 34

4.3.1 Design Goals . 34

4.3.2 High-Level Architecture . 36

4.3.3 Filesystem Interface . 37

4.3.3.1 Metadata Structures . 38

4.3.3.2 Metadata Encryption . 40

4.3.3.3 Metadata Traversal . 41

4.3.3.4 Virtual Filesystem Operations 41

4.3.4 Authentication and User Sharing . 43

4.3.4.1 User Sharing . 44

4.3.5 Access Control . 47

4.3.6 Rollback Protection . 48

4.3.6.1 Verifying Metadata . 49

4.3.6.2 Updating Metadata . 49

4.4 Implementation . 50

4.4.1 AFS Implementation . 51

4.4.2 FUSE Filesystem . 51

4.4.3 Consistency Considerations . 52

4.4.4 Optimizations . 53

4.5 Evaluation . 54

4.5.1 Microbenchmarks . 54

4.5.2 Macrobenchmarks . 56

4.5.3 Rollback Protection Overhead . 57

vi

4.5.4 Bulk Metadata Operations . 57

4.5.5 Revocation Estimates . 58

4.5.6 Comparing FUSE Overhead . 59

4.5.7 Takeaway Discussion . 60

4.6 Related Work . 61

4.6.1 SGX-Enabled Storage . 61

4.6.2 Cryptographic Filesystems . 61

4.7 Conclusions . 62

5.0 JOPLIN . 64

5.1 Introduction . 64

5.2 Background and Related Work . 68

5.2.1 Attribute-Based Access Control . 68

5.2.2 Usage Control . 69

5.2.3 Decentralized Policy Management . 70

5.2.4 Hardware-Assisted Access Control . 71

5.3 System Design . 71

5.3.1 Design goals . 71

5.3.2 Client-side Approach . 72

5.3.3 ABAC Model . 73

5.3.4 Policy Language . 75

5.3.5 Support for Obligations . 78

5.3.6 High-Level Architecture . 79

5.4 Implementation . 81

5.4.1 Metadata . 81

5.4.2 System Initialization . 83

5.4.3 Enforcing Access Policies . 84

5.4.3.1 Preprocessing . 85

5.4.3.2 Evaluation . 86

5.4.4 Implementation Details . 87

5.4.4.1 Cache management . 87

vii

5.5 Evaluation . 88

5.5.1 Use cases . 88

5.5.1.1 Case study 1 . 88

5.5.1.2 Case study 2 . 89

5.5.2 Performance . 89

5.5.2.1 Microbenchmarks . 91

5.5.2.2 End-to-end Latency . 91

5.5.3 Takeaway Discussion . 92

5.6 Conclusions . 93

6.0 SECURITY ANALYSIS . 94

6.1 Confidentiality and Integrity . 95

6.2 Authorization: Access to keys . 95

6.3 Attacking the Filesystem Structure . 96

6.4 Forward and Backward Secrecy . 97

7.0 SUMMARY AND FUTURE WORK . 98

7.1 Summary . 99

7.2 Future work . 103

BIBLIOGRAPHY . 106

viii

LIST OF TABLES

1 Cryptographic primitives and their respective key sizes 13

2 NeXUS Filesystem API. The arguments typically include the directory path(s),

and file name(s). 38

3 Latency(s) for copying PDFs and videos. 56

4 Database benchmark results on AFS. 59

5 Joplin Administrative ABAC commands . 74

6 Predicates in Joplin’s predicate language . 75

ix

LIST OF FIGURES

1 Encrypted file synchronization setting model 2

2 Client requesting straff.txt file from the server 4

3 Isolated Execution. The enclave (grey) has a separate stack, heap, and code

sections that are independent of the untrusted portion. 15

4 SGX Remote Attestation example for simple ECDH key exchange. The enclave

quote contains the client-generated nonce and both public ECDH keys. In the

end, both the client and enclave generate the shared key K. 17

5 ABACα . 22

6 Reference monitor Architecture . 24

7 Different architectures for enabling SGX security in a client-server environment.

Each architecture shows a different combination of enclave location and enclave

provenance. 31

8 Architecture of a typical cryptographic filesystem. Encrypted file data are

protected by a lockbox, which are in turn cryptographically restricted to

authorized users. 32

9 NeXUS architecture. 37

10 Authenticated user view. Directory traversal by NeXUS to present the

plain contents of the user’s data files. 38

11 Metadata Layout. The encryption key is protected with the volume rootkey,

which is only accessible within the enclave. 40

12 User Authentication with NeXUS enclave . 43

x

13 Key Exchange protocol diagram for Owen sharing his NeXUS volume rootkey

with Alice. 45

14 Metadata update after writing to bar/cake.c (right). After propagating the

MAC values to the root dirnode, the root MAC and version are then stashed

locally. 48

15 Microbenchmarks comparing file and directory operations. 55

16 Copying 150 MP3s at different directory depths. 57

17 Git cloning of Redis and Julia. 58

18 Taxonomy of Obligations from prior work focusing on Applicability and Imple-

mentation [132]. Black circles can be readily supported by Joplin. 77

19 Joplin High-Level Design . 80

20 Joplin Metadata Structures. 82

21 Joplin Microbenchmarks. 90

22 Latency on top of Dropbox . 92

xi

DEDICATION

To my parents, Thérese and Alphonse.

To those who believed in me.

xii

ACKNOWLEDGEMENTS

My deepest gratitude goes to Adam Lee. I still remember attending his security seminar

class as a first year graduate student with little background in Computer Security. Adam

exposed me to various aspects of security research, and his dedication inspired me to pursue

the work that eventually led to this dissertation. This thesis will not be possible without

his constant feedback and great patience. Overall, his love for teaching and work ethic are

habits that I hope to replicate in my career and personal life.

I am also very thankful for my co-advisor Jack Lange. His high standard for clearness and

simplicity in writing and presentation are amongst my most cherished lessons from graduate

school. In our interactions, Jack’s relentless feedback significantly improved the quality of

this dissertation and my other publications.

I want to thank my committee members Panos Chrysanthis and Balaji Palanisamy in

agreeing to an inconvenient time, and great feedback on my proposal and dissertation.

My time at the University of Pittsburgh will not have been possible without my friends

at the security and database groups. I want to thank Nick, Daniel, Cory, Anatoli, Pranut,

Injung for many engaging discussions and a few beers. I also thank Keena Walker for always

being helpful and sorting through administrative hurdles.

I am especially thankful to my dearest friends for being there when it mattered: Jeff,

David, Edem, Sheriff, Paterne, Bodie, Carey, Patrick, and Mike. I am also grateful for all my

soccer friends — it was essential to my well-being. I am very indebted to Isaac Gamwo for

inspiring and fostering my interest in advanced studies.

Above all, I owe everything to my family. My parents always believed me and made great

sacrifices in order that I pursue my path in life. I also thank Hermann, Stephanelle, and

Cyntiche for being a constant source of encouragement and consolation.

xiii

1.0 INTRODUCTION

Today, cloud-based file sharing platforms are amongst the most popular services on the

Internet. For instance, mainstream file sharing services already boast hundreds of millions in

daily users and host millions of gigabytes in stored files [1, 2, 3, 4]. Through these services,

users gain access to large amounts of highly available storage and can collaborate with other

users globally. Furthermore, by outsourcing data to the cloud, organizations can eliminate the

cost and expertise required for provisioning and maintaining complex hardware installations,

while only paying for what they use. Given other benefits like data backup and recovery,

and the fact that these come at a low cost, it becomes clear why both individuals and

organizations increasingly store private information on the cloud [5].

However, relying on cloud storage poses serious threats to data ownership. File sharing

services are often built on top of third-party object storage platforms (e.g., Amazon S3,

Google Cloud), which distribute user private information across a global network of servers

and authorized client machines. Due to limited operational transparency, users have no clear

control on where their data is stored, who has access, or whether certain operations are

allowed. Unfortunately, even with the provider’s best intentions, cloud-based platforms are

frequent victims of external hackers, malicious cloud insiders, and unexpected disclosures [6, 7,

8, 9, 10, 11, 12]. These high profile incidents indicate that the very concentration of sensitive

information on these platforms not only creates an attack target, but also engenders a

situation whereby a vulnerability affecting a few providers can have a substantial user impact.

For example, in 2015, a vulnerability on Dropbox, Box, and Google Drive allowed third-

party access to shared files after the URL was indexed on search engines [13]. Furthermore,

users have to be wary of unscrupulous service providers, who are legally permitted by

their terms of service to mine and distribute private information without requiring user

1

owner user

Figure 1: Encrypted file synchronization setting model

consent [14, 15, 16, 11]. Thus, as individuals and organizations store more personal and

private information on cloud-based storage platforms, this dissertation develops a real-world

data security solution that is independent of the service provider or any trusted intermediary,

while maintaining the ability to store, share, and synchronize files across user machines.

Existing cryptographic solutions to data security provide confidentiality and integrity by

distributing encryption keys to authorized users, but do not address the practical issues of

user revocation or dynamic access control updates over data stored on the cloud. To prevent

a revoked user from accessing and making future updates, a naive revocation mechanism

involves: (i) downloading the file from the server, (ii) re-encrypting the file with a new key,

(iii) uploading the file to the server, and (iv) distributing the new key to users who are still

authorized. When considering a large-scale environment with thousands of users and files

that change frequently, revoking users through bulk file re-encryption and key distribution

will incur significant computational and network penalties [17]. Thus, scalable access control

on the cloud requires sophisticated key management enabling users to manage vast amounts

of resources across administrative domains.

This dissertation focuses on data security in the file synchronization setting, whereby

users employ a client application to manage and share files that are stored on a remote

server (Figure 1). There is no direct user-to-user communication, users have no control

over the server infrastructure, and the server is responsible for synchronizing file changes

across individual client machines. Examples include mainstream file sharing services such as

Dropbox and Google Drive, as well as traditional network filesystems like AFS and NFS. We

2

argue that users can still benefit from these services without compromising on data ownership.

Our goal is to ensure data protection against other users of the service, external hackers,

malicious cloud administrators, and unscrupulous service providers, such that confidentiality

and integrity is guaranteed even in the event of a data breach or unauthorized disclosure.

Furthermore, for mass user adoption, a practical security solution must fulfill the following

high-level requirements: (i) Portability, for deployment across storage providers without

requiring any server-side modifications or trusted intermediaries; (ii) Flexibility, whereby

users can selectively dictate the conditions for data access using fine-grained policies; and

(iii) Performance, in that typical user workloads run with modest overheads. Esseentially,

given the key role of user sharing in the growth of cloud services, dynamic policy changes

must be efficient, and should not significantly degrade system performance.

1.1 CURRENT APPROACHES

Consider an organization outsourcing internal documents to the cloud for shared access with

employees and other external organizations. Notwithstanding the scalability and availability

of cloud storage, the organization still wishes to keep their data as private as if it were stored

on-premise. Access control is the ability to prevent unauthorized operations over sensitive

information, while ensuring data confidentiality, integrity, and availability. In a client-server

model, enforcement could be provided by: (i) deploying a server-side monitor that mediates

every access request against a centralized policy database, or (ii) applying privacy-preserving

techniques over sensitive data without any changes to the existing infrastructure.

Using a server-side reference monitor, Figure 2a depicts a user requesting read access

to the “straff.txt” file. To prevent unauthorized access, every file is protected using an

Access Control List (ACL) that contains the list of authorized users and their corresponding

permissions (e.g., read, write, delete). In this example, the ACL shows that Alice can read

the file. Upon receiving the request, the monitor checks the user’s identity and permission

within the ACL before returning the requested file to the user. However, this approach

requires implicit trust on the server to: (i) enforce the access control policy faithfully, and (ii)

3

Alice: read
Carey: write

straff.txt • ACL Check

Read “straff.txt”
ACL straff.txt

Alice Server

(a) Server-side mechanism

straff.txt (encrypted)

Request “straff.txt”

Alice Server

Recover key

Decrypt file

Alice public
keypair

(b) Client-side mechanism

Figure 2: Client requesting straff.txt file from the server

protect the file contents at rest and in transit. Unfortunately, the threats surrounding cloud

infrastructure makes such trustworthy assumptions non-trivial on the part of the organization.

Alternatively, data protection could be performed before uploading documents unto the

server. A natural protection mechanism is to encrypt the file using a symmetric key, and

distributing the key to authorized users. By protecting the file encryption key, symmetric

encryption provides both data confidentiality and integrity to prevent attackers (who do not

possess the key) from recovering or (undetectably) tampering with the file contents. Figure 2b

shows the client-side mechanism for requesting the “straff.txt” file, which the server simply

returns as an encrypted file without performing any extra permission checks. Once on their

local machine, an authorized user in possession of the symmetric key can then proceed to

decrypt the file and recover its contents. Since possession of the encryption key grants access

to the contents, revoking a user essentially consists in re-encrypting the file with a new key,

and re-distributing the new symmetric key to users who are still authorized. However, a

naive implementation could incur significant computational and network penalties, especially

as the number of users and resources explodes.

4

1.2 CHALLENGES

Authorization represents the set of permitted actions a user can exercise over objects [18].

Although authorization has been extensively researched within static scenarios where the

set of users and resources is known, the unique characteristics of the cloud imposes several

challenges. (i) First, user private data is stored and processed on remote machines that lie

outside the owner’s control. Consequently, in addition to protecting data at rest and during

use, the security framework must support the inclusion of the user’s environmental context

(e.g., time) when evaluating authorization requests. (ii) Second, large-scale cloud deployments

have thousands of users accessing an unlimited number of files across organizational domains.

Thus, policy specification should provide administrators and data owners enough flexibility

in associating users and resources with arbitrary granularity, without requiring a priori

knowledge of specific entities. (iii) Third, permissions and policies change dynamically as

users and resources are added, removed, and modified; therefore, policy administration costs

must be scalable when updating access permissions and revoking users.

Addressing the above challenges requires a careful combination of privacy-preserving

techniques and distributed usage control. The former transforms data in a manner that

preserves confidentiality and integrity, whereas the latter extends access control notions

to prevent data misuse even after authorization is granted. Essentially, usage control not

only empowers users to selectively share data with arbitrary granularity, but also ensures

continuous policy enforcement as the access context changes throughout the data lifecycle.

For example, the usage control policy “delete the file after 10 writes” could abort an ongoing

access request under satisfying conditions.

Privacy-preserving computation can be achieved using cryptography or isolated execution

that relies on software and hardware mechanisms to prevent untrusted access. Much research

has been done on cryptographic access control to protect sensitive data [19, 20, 21, 22, 23, 24,

25, 26]. However, when employed in a distributed setting, encryption turns user authorization

into a key management problem; existing solutions either require server-side coordination,

impose burdensome key management on users, or incur severe bulk re-encryption overheads on

access revocation. Furthermore, incorporating environmental factors during policy evaluation

5

is not achievable using cryptography alone, but requires a tamper-proof and non-bypassable

mechanism to enforce context-aware policies on remote machines.

Recently, Trusted Execution Environments (TEEs) such as Intel SGX and ARM Trust-

zone that provide isolated execution, sealed storage, and remote attestation have become

standard security features in commodity machines and mobile devices; with a small TCB

and minimal performance overheads, they provide a tamper-proof environment to securely

manage sensitive applications secrets [27, 28, 29, 30, 31]. Existing work employing TEEs

to secure untrusted storage require trusted hardware support on the server, which may not

possible for users of typical file sharing platforms [32, 33, 34, 35, 36, 37]. In this dissertation,

it is our hypothesis that the widespread availability of hardware-enabled trusted execution

environments on consumer devices can provide data confidentiality and integrity, as well as

scalable access and usage control within an untrusted cloud environment, while improving

portability, flexibility, and performance over unmodified remote storage platforms.

1.3 APPROACH AND CONTRIBUTIONS

The high-level approach consists in combining the benefits of hardware-enabled TEEs and

cryptographic protection to ensure confidentiality and integrity throughout the data lifecycle.

TEEs perform arbitrary computations in a manner that cannot be subverted by any (trusted

or untrusted) party, whereas cryptography relies on mathematical theory to protect persistent

data. We employ TEEs to encrypt sensitive user information inside metadata objects without

leaking key material. This prevents an attacker from recovering any sensitive information

as encrypted content is only decryptable within the TEE, which can leverage its isolated

runtime to enforce access control. Also, because the TEE controls key material, the user is

not subject to the data retention policies of the service provider, since deleting the encryption

key essentially makes the file content irrecoverable.

We propose two systems: NeXUS, a stackable filesystem that provides cryptographic

protections to shared files, and Joplin, an access and usage control system for dynamic

and fine-grained data sharing. NeXUS ensures confidentiality and integrity of file content,

6

alongside the names of files and directories. On the other hand, Joplin protects access control

information, including user privileges and policies. Both systems are completely client-side,

do not require any server-side changes, and leverage trusted hardware to enable transparent

security protections over unmodified storage. Unlike prior solutions that require server-side

hardware support or rely on a service provider enclave, our approach is novel in that a

user-controlled TEE protects private information on individual client machines. As such,

NeXUS and Joplin provide a solid foundation for developing user-centric and decentralized

policy enforcement using trusted hardware. Our contributions are as follows:

Implementation and Evaluation. Building a scalable system requires taking into account

TEE runtime limitations, as well as the I/O characteristics of the underlying storage platform.

For example, current real-world TEEs have limited memory and restricted network access,

whereas cloud storage imposes significant network latency. We developed prototypes for

both NeXUS and Joplin using Intel SGX as the TEE. Notably, NeXUS manages a virtual

filesystem, whereas Joplin hosts a policy engine that evaluates user-specified policies. We

ported NeXUS to run atop FUSE to allow unmodified applications access to protected

files on any storage platform. This allows users to maintain their typical workflow, without

requiring any modifications to the OS or underlying filesystem. The Joplin prototype builds

upon this for expressive access control and usage control over shared files. To demonstrate

the effectiveness of our approach, we evaluated both prototypes over unmodified network

storage such as Dropbox and AFS. Specifically, we measured the network latency under

different scenarios using a variety of microbenchmarks and end-to-end tests. Results show that

both prototypes are applicable to a wide range of user workloads, and provide scalable data

protection when processing filesystem data and access control information. Therefore, users

can manage protected data on existing storage platforms without significant performance

degradation in their typical workflow.

Expressiveness and Obligations. Developing a robust access control and usage control

solution for a large-scale cloud environment requires a fine-grained model for formulating

policies, while also accommodating the local user context. Attribute-Based Access Control

(ABAC) has been proposed as an expressive and dynamic model for open collaborative

environments; ABAC determines access requests by evaluating a set of policies against user

7

attributes, object attributes, and relevant environmental conditions. Obligations pertain

to usage control, and are mandatory actions or requirements that are fulfilled as part of

a request (e.g., delete the file after 20 reads). Joplin provides continuous enforcement

using cryptographically-protected metadata and a policy interpreter, while addressing other

the practical challenges of decentralized policy enforcement, such as efficient revocation,

multi-domain policies, secure user delegation, and mandatory audit logging. Access control

information is completely managed and protected by the TEE, which enforces authorization

requests using an ABAC model and performs obligations. As a result, data owners can

manage sensitive content on the cloud using fine-grained authorization and obligation policies

independently of the service provider or any trusted intermediary.

Portability and Performance. For maximum user adoption, it is essential that our system

does not lock users into any particular service provider in order to achieve scalable access

control. Therefore, we minimize our storage assumptions and treat the cloud storage as another

generic layer providing a filesystem interface, while enabling efficient user revocation and

access right updates. Specifically, both access control information and sensitive key material

are stored inside cryptographically-protected metadata files that are only decryptable within

the TEE. This approach requires no server-side changes, and allows seamless key distribution

as the server synchronizes the encrypted metadata files across client machines. Furthermore,

because key material remains under TEE control, revocation only requires updating and

re-encrypting relatively small metadata, thereby obviating the bulk re-encryption and key

redistribution overheads typically associated with purely cryptographic solutions. Overall,

our approach allows for arbitrary deployment scenarios as it is seamlessly portable across

remote storage platforms, while introducing minimal policy management costs.

Rollback protection. NeXUS prevents rollback attacks against protected files and directo-

ries. Because sensitive information is stored as a collection of files on the server, a malicious

service provider may perform a rollback attack whereby older versions of the metadata

are returned to the user. Although the returned metadata is cryptographically valid, this

attack not only violates metadata freshness, but also the consistency of the entire protected

state. To provide stronger integrity guarantees, we maintain a hash tree alongside filesystem

information within the metadata files. A hash tree is an efficient method for authenticating a

8

collection of items using a cryptographic digest. When decrypting metadata at access time,

the TEE can validate that the metadata is fresh with respect to a known local version and

other metadata in the filesystem hierarchy. With these defenses, users can ensure that every

filesystem state results from a valid sequence of changes, while limiting the server’s ability to

move/rename files and hide file updates.

1.4 ROADMAP

The remainder of this thesis follows a chronological organization. In Chapter 2 we cover the

necessary background for cryptography, trusted hardware, and access control. Chapter 3

outlines our system and threat model. We discuss the design of NeXUS in chapter 4, and

elaborate on how we enable cryptographic file sharing on existing cloud-based platforms.

After giving some background and problem description, we proceed with a system design

of its overall architecture, and implementation using Intel SGX. This chapter closes with

a performance evaluation, related work, and conclusions. Chapter 5 introduces Joplin, a

secure access and usage control system. We begin with some background and related work in

decentralized policy enforcement. Then, we describe its design and implementation showing

how its client-side approach can provide secure and scalable enforcement. We evaluate our

SGX-based prototype via use cases and performance benchmarks. Chapter 6 demonstrates

how NeXUS and Joplin meet their security guarantees in protecting filesystem information

and enforcing access control. We conclude this dissertation in 7 with a summary of our

contributions and some discussion of future work.

9

2.0 BACKGROUND

This chapter covers the necessary background in privacy-preserving computation and decen-

tralized access enforcement. The former can be achieved either with cryptography (Section 2.1)

or isolated execution. On the cloud, virtualization provides isolated resource management

(i.e., CPU, memory, storage), but requires including the hypervisor and other untrusted

software components as part of the trusted computing base. We explore how novel trusted

hardware extensions can alleviate these security concerns (Section 2.2), and focus on Intel

SGX (Section 2.3) as our target real-world instantiation. We close the chapter with an

exploration of access and usage control (Section 2.4).

2.1 CRYPTOGRAPHIC PRELIMINARIES

This dissertation employs encryption and hashing primitives as building blocks in providing

confidentiality, integrity, and freshness within a scalable system. Confidentiality prevents an

attacker from recovering the plaintext, whereas integrity detects any improper or unauthorized

modification of the ciphertext. Unlike confidentiality, integrity cannot prevent the attacker

from tampering the file, but only provides detection. Integrity can be extended with a

monotonic counter or random nonce to provide freshness. In exchanges involving multiple

rounds (e.g., key exchange), freshness ensures that a given message is not a replay from a

stale version. Consider that Carey stores tax return documents in an encrypted filesystem

hosted on the server. Upon encrypting each file: (i) Confidentiality ensures that an attacker

cannot see how much Carey made that year, (ii) Integrity guarantees that the contents are

authentic and tamper-evident, and (iii) Freshness detects if the server is returning an older

10

version of the tax documents by comparing it with a known version. Moreover, we assume

these cryptographic primitives are theoretically secure, and treat them as blackboxes.

2.1.1 Encryption and Hashing

At a high level, a encryption algorithm takes a sensitive plaintext (P) and an encryption

key (K) as inputs, and outputs a random stream of bytes as ciphertext (C), such that

C = E(K,P). Conversely, a decryption algorithm uses the decryption key (K−1) to recover

the original plaintext as follows: P = D(K−1, C). Encryption mainly provides confidentiality,

and the ciphertext length is a function of the encryption algorithm and the plaintext.

On the other hand, a hashing algorithm is a one-way function takes an input message

(M) to return cryptographically secure hash of a given length: H(M) → {0, 1}l. Hashing

provides integrity, and can be combined with a key to produce Message Authentication Code

(MAC) or tag, such that MAC(K,M)→ {0, 1}l. The MAC or tag output is small and fixed

(e.g., usually 32 bytes), and cannot be reverted to the original message.

2.1.2 Symmetric and Asymmetric Encryption

Cryptographic protection relies on the secrecy of encryption keys, which must be large,

unique, and unpredictable. As such, key generation relies on a good source of randomness

(e.g., CPU temperature) to ensure that the cryptographic operation is semantically secure,

and the attacker cannot feasibly guess the encryption key.

Symmetric encryption uses the same key for both encryption and decryption. There

exists 2 types: block ciphers that split messages into blocks, and stream ciphers that consume

messages as a bitstream. The Advanced Encryption Standard (AES) is the state of the art

symmetric key algorithm, and enjoys hardware acceleration support on various instruction

sets [38, 39]. Further, symmetric primitives can be combined with a hashing function to

provide both confidentiality and integrity. AES-GCM is an Authenticated Encryption with

Associated Data (AEAD) cipher that combines the AES cipher and the GHASH hashing

function [40, 41]. Although fast at encrypting large amounts of data, symmetric encryption

requires establishing a common secret between the parties.

11

Asymmetric encryption uses different keys for encryption and decryption. The process

relies on a (public, private) keypair, such that any plaintext encrypted with the public key

is only decryptable using the corresponding private key, and vice versa. Although there

exist a mathematical relation between the keys, the public key that can be released without

compromising the private key, which must remain in the possession of the owner. A notable

application of public key encryption is unforgeable signatures, which are the created using a

signing algorithm with the hash of a message and a user’s private key as inputs. RSA is an

example of a signing algorithm [42]. Signatures are only verifiable using the corresponding

public key, and provide origin authenticity (i.e., integrity) as the private key is only accessible

to its owner. Although they use larger keys and are significantly slower than symmetric

encryption, public key algorithms are mostly used to encrypt small pieces of data (e.g.,

encryption keys). Another example is hybrid encryption over untrusted storage, whereby a

copy of the file encryption key is encrypted with the user’s public key. At access time, the

authorized user employs their private key to recover the file encryption key, before decrypting

the file. RSA is also an encryption algorithm. As such, asymmetric encryption perfectly

suitable to establish a secure communication channel in open environments where there is no

preexisting shared secret. Elliptic-curve cryptography [43] can be used in a key exchange

protocol to generate a common secret over an insecure channel. Elliptic-curve Diffie-Hellman

(ECDH) is an example of a key exchange protocol [44]; it is usually coupled with nonces and

a signature algorithm to ensure freshness and origin authenticity, respectively.

2.1.3 Cryptographic Notation

Table 1 lists the cryptographic primitives employed in this dissertation. Each primitive is

used with their recommended key size, along with necessary additional information (e.g.,

using initialization vectors). We denote a (public, private) keypair as {pk, sk}, and use

PKGEN() to indicate public keypair generation. SIGN(sk,m) represents a signature over

m using sk, and VERIFY(pk, s) indicates the verification of a signature s using pk. Lastly,

ENC/DEC(k,m) denotes symmetric encryption/decryption. Note that by using AES-GCM

AEAD symmetric encryption, we gain confidentiality alongside integrity.

12

Algorithm Key size (bits) Guarantees

AES-GCM 128 Confidentiality, Integrity (Tag), Freshness

RSA 2048 Integrity (signatures)

ECDH 256 Freshness (Key exchange)

Table 1: Cryptographic primitives and their respective key sizes

2.2 TRUSTED EXECUTION ENVIRONMENTS

A Trusted Execution Environment (TEE) is a secure, integrity-protected environment, con-

sisting of processing, memory, and storage capabilities [45]. TEEs facilitate the instantiation

of trusted applications that are isolated within a hardware-protected context. Specifically,

by placing the trusted application binary within a hardware-protected memory region, the

CPU ensures confidentiality and integrity of both code and data against all untrusted system

components, including other system processes, OS or hypervisor, and even external hardware

devices. The TEE runs at the highest privilege level within the CPU context, and updates

its state dynamically as the trusted application updates registers and memory locations. For

cloud-based applications, TEEs can be remotely attested to prove the authenticity of the

trusted application and the underlying platform.

Although early instantiations of trusted hardware were provided via secure co-processors

like the TPM, they only provided a fixed set functions and a limited interface for processing

cryptographic material [46]. However, recent years have witnessed several TEEs providing

general purpose secure computation such as Intel SGX on x86 machines, and ARM Trustzone

on mobile and IoT devices (e.g., Samsung KNOX) [27, 28, 29, 30, 31]. ARM Trustzone splits

the processor into two logical modes: a secure world containing the TEE, and a normal world

containing the normal OS runtime [27]. Each world has separate registers and memory, such

that the normal world cannot observe the memory accesses of the secure world. Trustzone

ensures that only the secure world can be executing at any time on a given chip, thereby

13

preventing potential side-channel attacks from untrusted software. This is unlike Intel SGX,

which multiplexes hardware resources between trusted and untrusted software [28]. Sanctum

and Keystone are open source TEE design that target the RISC-V hardware; their main

improvement over SGX is the prevention of a class of side-channel attacks [30].

These features has inspired extensive work on TEE-enabled secure remote computation,

including blockchains, machine learning, databases, IoT, and remote data storage [47, 32,

48, 49, 34, 35, 37, 50, 51, 52]. However, extending trusted hardware protections beyond the

isolated runtime environment unto persistent storage poses several challenges. Although

the main idea behind TEEs is encompassing security-critical functionality within a small

container that exposes a minimal interface (e.g., cryptography), a full fledged application

requires integration with the rich execution environment provided by the OS and other

untrusted applications. Specifically, data protection must persist across TEE restarts and

data migrations, while accommodating runtime restrictions such as limited memory (e.g.,

SGX provides about 96MB) and no direct access to system software functionality (e.g.,

networking, time). Therefore, the trusted application must perform proper sanity-checks and

apply cryptographic protections when copying sensitive data across the TEE boundary.

2.3 INTEL SOFTWARE GUARD EXTENSIONS

Intel SGX [28, 53] is a set of x86-based processor extensions that provide secure execution

environments called enclaves. These extensions enable clients to both measure and verify the

code running within an enclave, while also providing very strong isolation guarantees. The

measurement is a hash of the initial enclave code and data to denote the enclave identity,

which is verified by the CPU to detect any tampering at launch time. Further, the enclave

measurement is also used to generate reports during enclave attestation. When activated,

enclaves execute in user space and are protected from inspection or modification by other

processes, the OS and hypervisor, BIOS, or even hardware peripherals. At the hardware level,

enclaves exist as a special CPU context that ensures data privacy by blocking access from

other hardware devices and encrypting the contents of enclave-managed memory as it leaves

14

stack

heap

code

Enclave

Process

process stack

process heap

process code

CPU prevents any
non-enclave access

enclave has complete
access to process’

memory but, cannot
call untrusted code

applications invoke
enclave by using
gated instruction that
jumps into a predefined
location in the enclave
code

…

…

=

Figure 3: Isolated Execution. The enclave (grey) has a separate stack, heap, and code sections

that are independent of the untrusted portion.

the CPU boundary. Secure execution is achieved by placing both the code and data contents

needed for a given computation inside the protected memory region, thus ensuring both

confidentiality as well as integrity of the execution. With such guarantees, the SGX platform

effectively limits an application’s Trusted Computing Base (TCB) to the CPU package and

the enclave code. We now describe the SGX features relevant to this dissertation: Isolated

Execution, Sealed Storage, and Remote Attestation. For a more in-depth discussion of SGX,

we refer the reader to the following publications [29, 54, 28, 53, 55].

2.3.1 Isolated Execution

An SGX application is comprised of an untrusted portion and an enclave. The untrusted

portion coordinates the enclave lifecycle by invoking both system calls (e.g., enclave creation

and destruction) and userspace SGX instructions (e.g., entering the enclave). Note that

the untrusted portion does not have access to any application secrets (e.g., encryption keys,

passwords), but simply serves as a proxy for enclave communication (e.g., network access)

and integration (e.g., file interface). On the other hand, the enclave exposes a set of entry

functions, which are invoked by the untrusted portion to perform specific operations.

15

Depicted in Figure 3, an enclave is set to be an isolated region within a userspace

application. When creating the enclave, the CPU performs a secure hash measurement of its

contents as they are copied into a protected region of physical memory called the Enclave

Page Cache (EPC). The EPC is encrypted and inaccessible from untrusted code, including

OS/hypervisor, and hardware devices. Because SGX assumes a multiprocess environment,

it allows privileged software to control the assignment of EPC pages unto multiple enclave

instances. The CPU prevents unauthorized cross-enclave access by tagging each EPC page

with their assigned enclave instance and checking this at runtime. On termination, the

enclave’s EPC pages are cleared to prevent any leakage of sensitive information.

The application enters the enclave by invoking an SGX ecall that switches the CPU

context and jumps to a predefined entrypoint of the enclave code. While executing, the

enclave code performs arbitrary computations, accesses enclave memory, and can read and

write to untrusted memory. By allowing access to untrusted buffer pointers, an enclave can

efficiently exchange data with the host application. However, the enclave code is not allowed

to directly call untrusted functions, but must invoke an SGX ocall that explicitly switches

from enclave mode before calling the untrusted function. The enclave memory is defined as a

linear range within the virtual space the host application. Per virtual memory semantics,

the OS is responsible for translating enclave virtual addresses into their corresponding EPC

page, but the CPU ensures that enclave memory can only be accessed from enclave code.

The enclave code exits once execution is completed, and can be re-entered on subsequent

invocations. The enclave memory state is preserved across invocations, but is lost once the

enclave is terminated.

2.3.2 Sealed Storage

From the description above, the enclave loses all data on termination. To securely persist

sensitive data across executions, SGX allows enclaves to derive a sealing key from platform

keys burned in the CPU fuses. The sealing key is symmetric, and can then be used to encrypt

and seal sensitive data before copying it to untrusted memory. On restart, the enclave

regenerates the sealing key to decrypt the sealed information. The sealing key can only be

16

{a, g^a} {b, g^b}

g^a | nonce

g^b | QUOTE(g^a | g^b | nonce)QUOTE

Verification result

K=g^ab

ENC(K, secret)

Intel Attestation
Service Client Remote

Enclave

Figure 4: SGX Remote Attestation example for simple ECDH key exchange. The enclave

quote contains the client-generated nonce and both public ECDH keys. In the end, both the

client and enclave generate the shared key K.

generated within enclave memory, and is unique to the enclave identity and the particular

CPU within which the enclave is executing. More specifically, this sealing key cannot be

derived in any other SGX machine or by a different enclave on this particular SGX machine.

As a result, SGX sealing is especially useful to protect long-term secrets on the local machine

in a manner that prevents access outside of an enclave context as offline migration to other

SGX platforms. For example, the enclave could generate a public-private keypair and seal

the private key to local disk. At runtime, the enclave private key is unsealed within trusted

space, and then used as cryptographic material to establish secure communication channels.

2.3.3 Remote Attestation

Remote attestation allows a challenger to validate the identity of a remote enclave, and

its underlying platform. Specifically, attestation confirms that the trusted hardware is still

considered valid (e.g., CPU model is not blacklisted), and the secure software runtime

17

is initialized correctly. In SGX, this process relies on two Intel-provisioned enclaves: a

Provisioning Enclave that verifies the platform with Intel’s attestation service to fetch a

unique asymmetric attestation key, and a Quoting Enclave that uses the attestation key

to generate quotes. A quote is a signature of the target enclave’s measurement along with

enclave-generated data (e.g., nonce, ECD public key), which is used to ensure freshness.

This allows the challenger to verify the quote using an Intel-provided public certificate, and

ascertain the enclave identity by checking its measurement and the additional data. Figure 4

depicts a simple ECDH key exchange, where the client generates a nonce and the remote

enclave generates a quote. A critical step in the exchange is to verify the quote via the Intel

attestation service, which ensures that the quote is from a valid enclave running on SGX

hardware. Once the quote is validated, the client then uses the contained enclave public

ECDH key to derive a common secret that is only derivable within the enclave. As such,

remote attestation is essential in bootstrapping secure communication channels with a remote

enclave, before provisioning any secrets (e.g., sending a password).

2.3.4 SGX Limitations

The Intel SGX SDK provides a complete toolchain for building and distributing enclaves. Its

programming model relies on the programmer to carefully split the application into trusted

and untrusted portions, as well as define an interface for exchanging data across the enclave

boundary. This is specified as a set of ecalls and ocalls within an EDL file. The enclave

runtime is managed by system software, which shares hardware resources between other

applications and device drivers. Therefore, beyond resource contention, understanding the

limitations of SGX hardware is critical to design a practical and secure enclave.

• The EPC memory has a current maximum size of 128MB, which leaves about 96MB for

application enclaves (some is used for SGX metadata). For larger enclave workloads or

in situations of high memory pressure, the OS can swap EPC pages with main memory

using SGX privileged instructions. Before copying EPC pages into main memory, the

CPU encrypts and applies freshness protections to prevent replay attacks from privileged

software. This paging mechanism incurs significant performance overheads of up to 40K

18

cycles, especially when the enclave working set exceeds 128MB [56, 57].

• Because the enclave cannot directly invoke untrusted functions, access to system services

(e.g., file I/O, time) requires exiting the enclave, executing the system call, copying the

results into enclave memory, and re-entering the enclave. These enclave transitions are

expensive as they require flushing and restoring the CPU context to prevent data leaks.

Although library OSes can facilitate enclave communication with system software, such

an approach not only explodes the enclave TCB, but may also conversely affect overall

application performance [58, 59, 60]. Conversely, we argue that enclave applications can be

tailored to operate within a dynamic cloud environment, without requiring any server-side

support for trusted hardware.

• The enclave runtime can be interrupted at any time (e.g., page fault, exception), which

triggers an Asynchronous Enclave Exit (AEX). SGX handles this by safeguarding the

enclave state for resumption once the fault is handled. Each AEX overhead is minor but

repeated exits could seriously slow down the enclave execution.

• SGX sealing does not offer any rollback protection to prevent sensitive state replay in

between enclave restarts. Therefore in practice, applications desiring strong freshness

guarantees have either resorted to slow and write-limited hardware monotonic counters, or

relied on a distributed quorum of enclaves [47, 61, 62].

• Several side-channel attacks have been identified on SGX, including cache attacks, page-fault

attacks, branch prediction attacks, and speculative execution. These attacks exploit the

fact that the SGX architecture collocates enclave execution on the same hardware as other

system resources. In this dissertation, SGX side-channel attacks are considered out-of-scope.

However, work on defense measures is currently the subject of active research [63, 64, 65,

66, 67, 68, 69], and can be applied orthogonally to our work.

2.4 ACCESS AND USAGE CONTROL

Access control is employed to enforce security requirements such as confidentiality and integrity

of data resources (e.g., files, database tables) to prevent unauthorized use of resources (e.g.,

19

programs, processor time, expensive devices), or to prevent denial of service to legitimate

users [18]. The decision to authorize or deny a given operation is guided by a security policy.

Examples of practical violations that can be prevented are students seeing the grade files or an

employee tampering documents. Thus, an access control system is comprised of: (i) policies

that dictate the authorization conditions, (ii) a formal model that defines core access control

elements and their relations (e.g., users, attributes), and (iii) an enforcement mechanism that

provides low-level functions and implements system policies according to the model. Because

policy expressiveness is ultimately dictated by the access control model, selecting one that is

suitable for the target use-case is critical. On the other hand, a reference monitor unifies

policy enforcement by mediating all object accesses, but its implementation is typically a

function of system constraints and environmental factors. We go over existing access control

models and reference architectures to explore how they can be practically implemented within

a dynamic cloud environment.

2.4.1 Traditional Access Control

Discretionary Access Control (DAC) is a model whereby data owners can grant or revoke

access to their objects, such that authorization consists in validating the user’s identity

within an access structure [70]. DAC is popular within OS and database system as ACLs

or user capability lists, where each file/row has an owner who can share access with other

users or groups in the system using predefined permissions. For example, Alice might create

a shared folder within her home directory on a shared server, and specify that the “work”

group has both read and write access. This form of decentralized management alleviates the

administrative burden, as users can discretely delegate their assigned privileges to others.

However, because the data owner cannot prevent leakage of assigned privileges, DAC is more

suitable for environments where the set of users and their possible operations are known.

Mandatory Access Control (MAC) eliminates user discretion and restricts information flow

using security classifications and system-wide policies [71]. For example, in the Bell-LaPadula

confidentiality model, the administrator assigns a clearance level to each user and a sensitivity

level to each object, such that users cannot read objects at a higher classification nor write

20

to objects at inferior classifications. To inhibit data modifications, the Biba Integrity model

allows a users to read objects at a higher classification, but can only write to lower classified

objects. However, MAC models are best suited for rigid environments such as military and

government agencies, where there is no concept of user ownership, and data confidentiality

and integrity are of primary concern. Unfortunately, this cannot be feasibly applied to open

environments where user membership and access rights are dynamic.

Role-Based Access Control (RBAC) is an approach whereby administrators define roles;

grant permissions to roles according to tasks; and assign users to roles based on their duties [72].

Users can activate a subset of their assigned roles for a given session, and then access the

objects permitted by the activated roles. RBAC improves permission management over

MAC and DAC, as roles group users by responsibility and users can control how roles access

objects they own. For additional flexibility, roles can be organized in a hierarchy to inherit

permissions between junior and senior roles, and extended with constraints to provide rich

semantics (e.g., separation of duty). However, RBAC is more suited for organizations where

the role definitions are static, and user responsibilities do not change frequently. Because

permission management only depends on role assignment and requires knowledge of the user

or object entity, RBAC does not readily support multi-domain policies where entities are not

known in advance, and environmental context is required for multi-modal access control.

2.4.2 Attribute-Based Access Control

Attribute-Based Access Control (ABAC) is an emergent model that determines authorization

requests using user attributes, object attributes, environment attributes, and policies expressed

as logical sentences over those attributes [73, 74, 75, 76, 77, 73, 78, 79]. Attributes are traits

that are either statically assigned by the administrator (e.g., role, clearance), or dynamically

set by the runtime (e.g., time, IP). For example, after assigning the necessary atttributes,

an organization can specify the given policy to protect internal documents: “Insiders can

write Feedback documents before 1PM ”. As a result, attributes can group users and objects

with arbitrary granularity and without the explicit identification of pairwise relationships

between entities. Policies then combine attributes to provide fine-grained access control,

21

U OAuth

UA OA

P

Policies

Figure 5: ABACα

such that expressiveness is only limited by the policy language and the richness of attributes.

With such flexibility, administrators can formulate a concise set of policies to regulate user

authorization, without a priori knowledge of individual user or object entities. Attributes

and their values are captured as users and objects are provisioned unto the system, while

keeping the pairwise relationships encoded within the existing policies. As a result, ABAC

provides dynamic access control as changes in attributes may result in a different evaluation

result between requests.

Many ABAC variants exist, but in this dissertation we focus on ABACα [75], a foundational

model with minimal assumptions on system attributes and administrative control. The state

of an ABAC system consists of users (U), objects (O), user attributes (UA), object attributes

(OA), permissions (P), and authorization policies. Users are authenticated individuals

requesting access, and objects are protected resources. Attribute are key-value pairs, and

operate as functions that takes a user or object entity to return an atomic value or a set

of values. Each user is associated with a set of user attributes that are assigned by the

system administrator (e.g., name, occupation). Objects are created by users, and likewise

have a corresponding set of object attributes (e.g., type, format). Permissions are simply the

possible actions that users can perform on objects (e.g., read, write, delete). Policies govern

access to system resources, and are expressed as a boolean combination of attributes. Each

authorization policy takes the permission, user, and object as inputs; returns a true or false

depending on their attributes. A user is permitted access on an object if there exist a policy

22

that satisfies a subset of the user and object attributes.

Despite its simplicity, ABACα still provides enough expressive power to configure MAC,

DAC, and even RBAC. For instance, ACLs could be represented by associating each object

with as many attributes as there are permissions; each attribute maps to a set of authorized

users. Likewise, capabilities are user attributes that map permissions to a set of objects.

MAC security labels can be handled by atomic-valued user (e.g., clearance) and object (e.g.,

sensitivity) attributes. To support RBAC, each user has an associated user attribute function

that returns a set of roles, while objects are assigned attributes that map each permission

to a list of roles. This has resulted in several works proposing enhancements of traditional

access control models with attributes [80, 81].

Traditionally encompassed within a trusted reference monitor, the enforcement mechanism

must be integrated with other security components such as authentication, administration,

cryptographic protection, and audit logging, while also distributing access control information

via the storage infrastructure. In Figure 6, a minimal reference monitor consists of the

Policy Decision Point (PDP), Policy Information Point (PIP), and Policy Enforcement Point

(PEP). The PIP is responsible for fetching and updating access control information such as

attributes and policies. On each access request from the PEP, the PDP communicates with

the PIP to fetch the necessary access control information before updating its internal state

and evaluating system policies. The PEP enforces the PDP result, and only releases the

object if the user is authorized.

However, access control is restricted to one-time request-response authorization, such

that once a user is granted access, there’s no further action that regulates future data usage.

As usage spans over a longer time period, a policy such as “do not read consumer report

after 30 days,” could invalidate future data access. Unlike traditional closed-world settings

in which users are known beforehand and enforcement occurs within a trusted subsystem,

this may be problematic in an open setting whereby data storage and processing occurs on

remote machines. Thus, in a distributed cloud environment, the security framework should

allow data owners to specify what factors to continuously re-evaluate while access is ongoing.

23

Policy Enforcement Point (PEP)

Policy Decision Point (PDP)

Policy Information Point (PIP)

Attributes Policies

User Object

Reference Monitor

Secure storage

Figure 6: Reference monitor Architecture

2.4.3 Usage Control

Usage control (UCON) extends traditional access control notions with attribute mutability

and continuous enforcement [82, 83, 84, 85]. Mutability refers to the fact that the user’s access

may change while access is in progress. This may be the result of the usage or a static update

from the administrator. Continuous enforcement ensures that usage policies are re-evaluated

throughout the usage period, and may result in a termination if considered invalid. With

attribute-based authorization model, UCON also introduces obligations and conditions as

part of a usage policy. Obligations denote mandatory action or requirements that have to be

fulfilled before, during, and after usage, whereas conditions define the necessary environment

context before and during usage. Usage control can be enforced using the same architecture

as access control. However usage control in distributed cloud environments present two

principal challenges: (1) integrating environmental factors beyond user and object attributes,

and (2) tamper-proof and verifiable enforcement mechanism [86, 87, 88, 89, 90, 91, 92]. In

this dissertation, we leverage the isolation and attestation features of commodity trusted

hardware to enable distributed usage control.

24

3.0 SYSTEM AND THREAT MODEL

We consider a typical cloud storage service, in which the service’s users download and run a

client-side program to access the remote storage platform. Data is stored on remote cloud-

based systems that are under the control of the service provider. In addition to ensuring data

persistence and availability, the cloud service typically provides authentication and access

control, but in a way that requires the user to trust the service implicitly. Users interact

with their data via their local file system API, thus allowing arbitrary applications on their

systems to access and operate on remotely-stored data. Beyond regular file system access,

many services also provide auxiliary sharing capabilities with other users of the service.

We follow prior work in cryptographic storage by considering an owner who sets up a

secure volume inside a synchronized directory, and shares this with multiple users [93]. System

actions are a combination of key-management operations and cryptographic protections,

which are observed as encrypted reads and writes on the server. Within this context, we

aim to provide users with additional security guarantees against unauthorized disclosure

or modification of their files without hindering their ability to share these files with other

authorized users.

Security Objective. Unless granted explicit access by the owner, file contents along with

access control information must be inaccessible to unauthorized entities and tamper-evident.

In this case, unauthorized entities may include other users of the storage service, entities

monitoring communication between the user and the storage service, and the storage service

provider itself. We are concerned solely with the protection of user-created content: i.e.,

the confidentiality and integrity of the contents of files, file names, and directory names, as

well as the integrity of the directory structure. Additionally, we aim to provide: (i) Forward

secrecy to prevent revoked users from accessing future access control updates even when they

25

are in possession of older files, and (ii) Backward secrecy to prevent newly added users from

accessing older data versions.

Threat Model. We consider an attacker who has complete control of the server (including

the OS or hypervisor) and can thus access or alter any files stored on the server. The attacker

may also tamper with, delete, reorder, or replay all network packets exchanged between the

server and the client. We do not consider availability attacks (e.g., denial-of-service), as

our primary concern is protecting the confidentiality and integrity of file system contents.

We do not protect against access pattern attacks, which can be addressed using orthogonal

techniques [33, 94, 36]. Users can read/write data they are allowed to, and may attempt to

read and modify files to which they do not have access. Since authorized users ultimately gain

access to decrypted file contents, we do not consider client-side malware that may maliciously

leak files that have been decrypted by authorized users.

We assume that each user has access to an SGX-enabled CPU running a commodity

OS. Our enclave is assumed to be correctly implemented and free of any security-relevant

vulnerabilities. Also, we assume the enclave attestation and memory protection features

of the SGX hardware function properly: i.e., once the enclave’s identity is established,

enclave-provisioned secrets are not accessible from untrusted code. However, SGX does not

explicitly defend against software and hardware side-channels, and existing defenses against

are orthogonal to our work. We assume side-channel attacks are considered out-of-scope and

would apply solutions from the literature. Overall, these assumptions are in line with the

standard SGX threat and widely adopted by prior work [60].

26

4.0 NEXUS

We present NeXUS, a stackable filesystem that leverages trusted hardware to provide

confidentiality and integrity for user files stored on untrusted platforms. NeXUS is explicitly

designed to balance security, portability, and performance: it supports dynamic sharing of

protected volumes on any platform exposing a file access API without requiring server-side

support, enables the use of fine-grained access control policies to allow for selective sharing, and

avoids the key revocation and file re-encryption overheads associated with other cryptographic

approaches to access control. This combination of features is made possible by the use of a

client-side Intel SGX enclave that is used to protect and share NeXUS volumes, ensuring

that cryptographic keys never leave enclave memory and obviating the need to re-encrypt files

upon revocation of access rights. We implemented two client-side NeXUS prototypes: AFS

and FUSE that allow unmodified user applications to access protected volumes as directories.

Although our AFS-based prototype required minimal changes to the AFS client for efficient

cache management, porting to FUSE demonstrates the generality of our design as well as

facilitate the migration of volumes across arbitrary filesystems. We provide stronger freshness

guarantees by maintaining a hash tree alongside the filesystem hierarchy to mitigate against

rollback attacks, without requiring direct communication between users. Our evaluation

reveals a ×2 overhead for a variety of interactive user workloads and improved portability

over AFS and Dropbox filesystems, while offering reasonable performance overheads when

comparing our FUSE prototype to the AFS implementation.

27

4.1 INTRODUCTION

File-sharing services such as Dropbox and Google Drive have received widespread adoption

in recent years [95, 4]. Through these services, users gain access to large amounts storage,

and can collaborate with sharing capabilities enforced by the service provider. However, the

recurrence of data breaches and unplanned disclosures has raised concerns about user privacy

on these platforms (e.g., [6, 8, 9]). Another source of concern is the fact that service providers

are legally permitted to modify and distribute sensitive data without requiring user discretion

(e.g., [14, 15, 16, 11]). Consequently, it is evermore critical to provide a security solution that

addresses these risks [96] as more users store sensitive information on these services.

Much research has been done to provide cryptographic access control over untrusted

storage. The canonical approach is to encrypt the file end-to-end, and distribute the encryption

key to authorized users. However, purely cryptographic access control solutions either require

server-side coordination, impose burdensome key management on users, or incur severe

bulk re-encryption overheads on access revocation [19, 20, 21, 22, 23, 24, 25, 26]. Recently,

other works have used trusted hardware to provide strong security primitives over untrusted

storage [32, 33, 34, 35, 36, 37]. However, these typically require trusted hardware on the server

or do not consider user sharing. This limits their applicability, especially when users cannot

readily modify the server-side components and consider dynamic sharing as an essential part

of their workflow.

We propose a practical security solution that: (1) allows for user deployment without

requiring any server-side coordination or trusted intermediary, (2) supports user sharing

with custom access controls, and (3) performs with comparable overheads on typical user

workloads. Our goal is to protect the confidentiality and integrity of a user’s files against

all untrusted parties, including unauthorized users, external attackers, and even the service

provider.

To address this need, we present NeXUS, a privacy-preserving filesystem that provides

cryptographically secure data storage and sharing on top of existing network-based storage

services. NeXUS is novel in that it leverages the Intel SGX extensions to provide efficient

access control and policy management, in a manner that is not possible using a software-based

28

cryptographic approach. NeXUS allows users to add strong access controls to existing

unmodified and untrusted distributed data storage services to protect the confidentiality

and integrity of their data from both unauthorized users and the storage service itself, while

enabling sharing with authorized users. Data is protected through client-side cryptographic

operations implemented inside an SGX enclave. NeXUS embeds user-specified access

control policies into the files’ cryptographically protected metadata, which are decrypted by

the enclave for enforcement at access time. Therefore, unlike existing purely cryptographic

approaches to access control, revocations are efficient and do not require the bulk re-encryption

of file contents. Instead, the policies embedded in the smaller attached metadata are simply

updated and re-uploaded to the server.

NeXUS is user-centric, transparent, and requires no server-side changes. The aim is to

maintain the user workflow, as well as the functionality and benefits of the underlying storage

platform. NeXUS is implemented as a protection layer between users/applications and an

underlying filesystem, and leverages hardware security features (SGX) in order to securely

intercept and transform filesystem operations. Its two primary components are: (1) a secure

enclave that provides cryptographic and policy protections, and (2) a filesystem interface

layer that maps the generic filesystem API exported by the enclave to the actual underlying

storage platform. This approach allows NeXUS to present a standard hierarchical filesystem

view while supporting a broad range of underlying storage services such as remote filesystems

and distributed object stores.

This chapter makes the following contributions:

• We propose a novel client-side architecture that allows users to securely share files hosted

on untrusted cloud infrastructure. This architecture allows for efficient volume sharing

and access control policy changes. By performing all access controls and cryptographic

operations inside of a client-side enclave, NeXUS allows for seamless and secure key

distribution, minimal user key management, and efficient user revocation.

• NeXUS instantiates a distributed access control platform using trusted hardware. An SGX

enclave serves as a trusted reference monitor that executes independently on each client

machine rather than centrally on the (untrusted) server. This enables efficient cryptographic

access control without requiring server-side support.

29

• We propose a cryptographic protocol that uses SGX remote attestation to enable secure

file sharing between users on different machines. Communication is completely in-band

and asynchronous, as it uses files on the underlying shared filesystem to exchange data and

does not require both users to be simultaneously online.

• We propose an optional rollback protection mechanism that prevents the server from

returning stale metadata. Our construction provides stronger freshness guarantees by

leveraging the filesystem hierarchy to maintain a hash tree within encrypted metadata

objects. Without requiring any direct user-to-user communication, our defenses ensure fork

consistency by limiting server equivocation attacks to a single occurrence.

• We implemented a NeXUS prototype that runs as a userspace daemon on top of the AFS,

a network filesystem popular with research and educational institutions. Without requiring

any server-side coordination or trusted intermediary, We modified the AFS client to allow

unmodified applications the ability to access protected volumes as AFS directories, whilst

cryptographically enforcing AFS ACLs at the directory level.

• We implemented another NeXUS prototype that runs as a standalone FUSE userspace

filesystem, and allows unmodified applications to access protected volumes from a mounted

directory. Compared to the AFS-based implementation, our FUSE prototype improves

portability by: (1) requiring no changes to the OS or underlying filesystem, and (2) enabling

the migration of volumes by simply copying its directory contents across filesystems.

• We evaluate NeXUS over two popular remote data stores, Dropbox and AFS. Using

microbenchmarks and other end-to-end latency tests, results show that NeXUS incurs

modest overheads on standard user workloads, supports a wide-range of Linux applications,

and obviates bulk re-encryption overheads typically associated with cryptographic solu-

tions. When compared to the AFS-based prototype, our FUSE implementation improves

portability and offers comparable performance characteristics.

The chapter is organized as follows: Section 4.2 provides an account of our protection

model and the limitations of existing cryptographic solutions. In Section 4.3, we describe

the design of NeXUS, and Section 4.4 provides a prototype implementation. Respectively,

Section 4.5 describes the performance evaluations of the NeXUS prototype. We review

related work in Section 4.6, and Section 4.7 concludes the chapter.

30

Esrv

client server

remote
storage

data

(a) service-enclave-on-server

client server

remote
storage

data Esrv

(b) service-enclave-on-client

server

Ecli remote
storage

serverclient

data

(c) client-enclave-on-server

Ecli

client server

remote
storage

data

(d) client-enclave-on-client

Figure 7: Different architectures for enabling SGX security in a client-server environment.

Each architecture shows a different combination of enclave location and enclave provenance.

4.2 BACKGROUND AND PROTECTION MODEL

4.2.1 SGX Design Space

With its robust security primitives, SGX presents a wide range of options on deploying enclaves

within a cloud setting. Depending upon the security needs of the distributed application,

different considerations must be taken into account. Thus, we define the design space of

enclave deployment along the following dimensions: (1) Enclave provenance — whether the

enclave is owned by the client or the service provider and; (2) Enclave location — whether

the enclave is running on the client or the server.

Figure 7 shows all the possibilities within this design space. The service-enclave-on-server

(e.g., PESOS [34]) and service-enclave-on-client (e.g., EndBox [97]) collectively describe

Digital Rights Management (DRM) scenarios: access to data is controlled by the service

provider’s enclave. On the other hand, the client-enclave-on-server (e.g., Troxy [51]) denotes

31

a scenario in which the client provisions enclaves on the server to achieve secure remote

computation. However, running the client enclave on the server has drawbacks. First, the

server must be equipped with SGX hardware which, at the time of this writing was only

offered by one major cloud provider (Microsoft Azure [98]). Second, a substantial amount

of server-side software may need to be retrofitted for SGX support. Depending upon the

system’s complexity, this may be a challenging task as changes could range from modifying

the client – server communication protocol, to including untrusted software components inside

the enclave [33, 99, 47, 34, 48]. On the other hand, the client-enclave-on-client scenario only

requires that the user trusts their local machine, and does not impose any server-side support

for its deployment. Moreover, this architecture enables a user-centric approach, such that the

enclave protects sensitive user information using a user-specified policy.

4.2.2 Cryptographic Filesystem Design

administrator

lockbox files data files
Server

user

user

E(•)

E(•)

Figure 8: Architecture of a typical cryptographic filesystem. Encrypted file data are protected

by a lockbox, which are in turn cryptographically restricted to authorized users.

Cryptographic Filesystems employ encryption techniques to enforce access control on

untrusted storage. In this section, we construct a strawman filesystem and then discuss its

practical implications within a real-world environment.

32

4.2.2.1 Strawman Construction Figure 8 depicts a closed-world model typical of

existing cryptographic filesystems in which the system consists of administrators, users, and

a storage provider [22, 17]. Administrators are responsible for managing users and group

membership operations. Users can read and write files, which are centrally stored by the

storage provider. Each user is assigned a public keypair, and must digitally sign every

operation. Although encryption provides confidentiality and integrity, it cannot prevent an

unauthorized user from overwriting data. Thus, we rely on a minimal server-side reference

monitor that serializes system writes and ensures data updates are from authorized users by

checking digital signatures. The aim is to ensure that file data and access control information

are only accessible to authorized users.

This construction realizes a simplified file sharing scenario in which read access to an

encrypted file is protected using lockbox (e.g., [21, 100]). File data is stored in an encrypted

form on the server, and the lockbox contains the file’s encryption key and the list of authorized

users. The lockbox is cryptographically protected, and access to the file encryption key could

be protected using Identity-Based Encryption (IBE), or Attribute-Based Encryption (ABE).

Thus, file access consists of recovering the file encryption key inside the lockbox with the

user’s private key, before decrypting the file contents.

4.2.2.2 Practical Implications Despite the simplicity of our strawman construction,

the revocation process requires: (i) re-encrypting the file with a new key, (ii) removing the

revoked user’s access from the filekey, and (iii) updating the other user entries to grant access

to the new file encryption key. This method is unsuitable for large files or updates impacting

multiple files. Moreover, given a large number of users in the filekey, the resulting overhead

could be prohibitive. These operations result from the fact that file decryption allows for

key-scraping attacks [101], whereby a user caches the file encryption key in anticipation of

future revocation. Although alternative approaches support re-encryption on the cloud, their

deployment model requires placing some trust on the server, have complex key management,

and exhibit asymptotic re-encryption costs.

33

4.2.3 Our Approach

NeXUS combines the client-side encryption model used by existing cryptographic filesystems

with SGX security guarantees. Shown in Figure 7d, NeXUS adopts the client-enclave-

on-client architecture to encrypt data on the local machine before uploading the resulting

ciphertext onto the server. The idea is to have every client run NeXUS locally and then

leverage the aforementioned SGX features to form a secure key distribution system. On the

local machine, all cryptographic data protection is performed within an enclave (Isolated

Execution), and keys are persisted to disk using SGX facilities (Sealed Storage). Then, before

sharing keys with authorized users, we ensure the exchange occurs between valid NeXUS

enclaves running on genuine SGX processors (Remote Attestation). As a result, encryption

keys are never leaked to untrusted memory, and as such, kept under the complete control of

the NeXUS enclave.

We explore a deployment model that targets applications generating sensitive data

exclusively at the client and rely on a remote server as a storage provider. In the case of

distributed filesystems, the user’s file contents are opaque to the server, which we assume

can access, modify, and disseminate any file that it stores [14, 15, 16]. To protect each

file, we encrypt its contents and attach cryptographically-protected metadata containing

access control policy along with key material that can only be accessed using a valid NeXUS

enclave. The benefits are two-fold: (i) our solution can be easily deployed without any

out-of-band setup, file synchronization service implicitly provides key distribution, and (ii)

users maintain control over their data and decide on who is authorized to access its contents.

As SGX-enabled machines come to reach more end-users, we expect this client-side approach

to user-centric access control to become increasingly mainstream.

4.3 SYSTEM DESIGN

4.3.1 Design Goals

In designing NeXUS, we balanced security and ease of use with the following aims:

34

1. Practicality. After the initial setup, the user should be able to access their data using

their typical workflow. NeXUS should be simple and impose minimal key management

on the user. Also, throughout its execution, the overheads imposed by NeXUS should not

significantly degrade the system’s performance.

2. Portability. All changes required to run NeXUS must occur on the client. NeXUS

should allow users to either store data locally or on a remote storage platform. This

implies no server-side coordination and the use of the underlying filesystem as the NeXUS

metadata store.

This approach closely follows the direction taken by existing cryptographic filesystems

(e.g., [24, 26, 21]). Our goal is to offer similar protections with superior key management,

efficient revocation, and no server-side participation. It is important to note that NeXUS is

not a full-blown standalone filesystem, but is designed as a security layer over an existing

host filesystem. To minimize our TCB, it is essential for the trusted portion of NeXUS to

be small, and its interface minimal. Our solution must be transparent and adaptable, such

that users can access their protected files without having to update their applications, and

integrating with various filesystems should be possible with moderate effort. Moreover, the

distribution of generated metadata should not require the deployment of additional services.

Instead, our solution should allow the user to use their available storage for both file data

and metadata.

Access Control. NeXUS should adopt a standard discretionary approach to access

control in which object owners can specify custom access control policies to dictate file

access permissions selectively. NeXUS must support standard file access rights such as read

and write. Administrative control over a file’s access permission should remain with the

owner, and enforcement must occur without the cooperation of the (untrusted) storage service

provider. To achieve this, NeXUS must internalize access control information as part of

the filesystem state, and enforce access control policies inside the NeXUS TCB. Finally,

NeXUS must ensure that the unencrypted data contents never leave the TCB unless the

access control policy allows it.

35

4.3.2 High-Level Architecture

In order to meet the objectives outlined in Section 4.3.1, we have designed NeXUS to allow

users transparent security protections on existing file storage services. NeXUS presents

to the user a regular filesytem directory based on a protected volume. In order to ensure

that the structure and contents of each volume are only visible to authorized users, NeXUS

internally manages the volume layout in addition to the user’s data. The entirety of the

volume state is stored as a collection of data and metadata objects that are managed by

NeXUS, and tracked using universally unique identifiers (UUIDs). Each object is stored as a

regular data file on the underlying storage service using its UUID as the filename. In effect,

NeXUS implements a virtual filesystem on top of the underlying target filesystem. Figure 9

shows a high-level NeXUS configuration.

Accessing data from a NeXUS volume consists of the user issuing filesystem requests

that are intercepted by NeXUS and translated into a series of metadata and data operations

that are dispatched to the underlying storage service as file operations from the NeXUS

enclave. The data retrieved from the underlying storage service is then routed to the enclave

where it is decrypted and either returned as part of the original request (data) or used

to drive further enclave operations (metadata). Because NeXUS internally implements a

standard hierarchical filesystem in its metadata structures, this allows NeXUS to be portable

across a wide range of storage service architectures. Both data and metadata are stored

as self-contained objects in NeXUS, thus allowing them to be stored on a wide variety of

storage services (including object-based storage services).

The linchpin of data confidentiality and integrity in NeXUS is an enclave-generated

symmetric encryption key called the volume rootkey. This rootkey allows a NeXUS enclave

to decrypt the volume state and all other encryption keys used to encrypt volume objects

individually. Since the enclave creates it, NeXUS can to access the rootkey only when running

inside a restricted enclave environment. When the NeXUS enclave is not running, the rootkey

is sealed using SGX (Section 2.3.2) and stored on the local filesystem in an encrypted state

that can only be decrypted from inside the NeXUS enclave running on the same machine

that sealed it. This approach requires that all decryption operations be performed within the

36

Host filesystem (AFS)

Kernel VFS

Application NEXUS
Filesystem

API

metadata
backing

store

St
or

ag
e

AP
I

enclave

shimlayer

ocalls

ecalls

2

3

1

45

Figure 9: NeXUS architecture.

NeXUS enclave, which is also able to apply the file’s access control policy before exposing

the data to the user (Section 4.3.5). In this way, even should a user obtain a copy of the

enclave and a valid rootkey for a volume, they would still be unable to access the protected

data unless they also possessed a valid identity that had been granted access permissions.

With this approach, NeXUS can to provide sharing capabilities (Section 4.3.5) using SGX

remote attestation (Section 2.3.3), where the rootkey may be accessible to multiple users

while still maintaining per-file access controls that limit access to a subset of those users.

4.3.3 Filesystem Interface

Users access data in NeXUS using standard filesystem interfaces, which are translated into a

set of generic API calls implemented by the NeXUS enclave. This API is shown in Table 2,

and consists of 9 operations: 7 directory operations and 2 file operations. Each operation takes

as a target a file or directory stored inside the NeXUS volume. Each target is represented as

a metadata object stored by NeXUS, as well as a potential data object in the case of file

operations. As part of each operation, NeXUS traverses the volume’s directory hierarchy

37

Filesystem Call Description
Directory Operations
nexus_fs_create() Creates a new file/directory
nexus_fs_remove() Deletes file/directory
nexus_fs_lookup() Finds a file by name
nexus_fs_stat() Returns stat information
nexus_fs_symlink() Creates a symlink
nexus_fs_hardlink() Creates a hardlink
nexus_fs_rename() Moves a file

File Operations
nexus_fs_encrypt() Encrypts a file contents
nexus_fs_decrypt() Decrypts a file contents

Table 2: NeXUS Filesystem API. The arguments typically include the directory path(s),

and file name(s).

decrypting and performing access control checks at each layer. This method has the side

effect of turning single operations in multiple potential operations on the underlying storage

service. While this does introduce additional overheads, we show that these are acceptable

for most use cases. Moreover, NeXUS contains several performance optimizations to limit

the impact of these overheads (Section 4.4).

4.3.3.1 Metadata Structures Figure 10 gives a high-level overview of the structure of

a NeXUS volume. NeXUS stores the file system structure internally using a set of encrypted

chunk 3 key
chunk 2 key
chunk 1 key

Nexus supernode
root_dir fd21sdw

docs

name
p021a21cake.c
eQme23a

uuid

mk89ceo
k2la32w

uuid

bar
a.txt

name bar/

cake.c

a.txt

docs/

$(NEXUS_ROOT)

chunk 3
chunk 2
chunk 1

fd21sdw
(dirnode)

mk89ce0
(dirnode)

po21a21
(filenode)

data chunks…

Figure 10: Authenticated user view. Directory traversal by NeXUS to present the plain

contents of the user’s data files.

38

metadata files alongside the encrypted data files using obfuscated names. These obfuscated

names consist of a globally unique 16-byte ID (UUID), that is tracked by the metadata

structures. The UUIDs are randomly generated within the enclave at metadata creation and

are universally unique across all machines. The unencrypted view of the filesystem (seen on

the right side of Figure 10) is only accessible by decrypting the metadata inside the NeXUS

enclave. The metadata not only store the filesystem layout, but also the cryptographic keys

and access control policies needed to ensure that the filesystem data is confidential and

tamper-evident.

The metadata structures implement a standard hierarchical filesystem namespace. Each

NeXUS filesystem is specified by a supernode (corresponding to a superblock in a normal

filesystem). The filesystem hierarchy is then implemented using a set of dirnodes (correspond-

ing to dentries) and filenodes (corresponding to inodes).

• Supernode: A supernode defines the context of a single NeXUS volume. The supernode

structure stores the UUID of the filesystem’s root directory along with the identity (public

key) of the filesystem’s owner. It also contains a list of other user identities that have

been granted access to the filesystem by the owner. These identities consist of a user

name along with an associated public key that is used for authentication. The owner of a

filesystem is immutable. However, the owner can add and remove authorized users at any

time. Moreover, the supernode also stores a hardlink table that maintains the UUID of files

with multiple links. The hardlink table consists of (UUID, link count) entries.

• Dirnode: Dirnodes represent directories in a NeXUS file system. Each dirnode contains

a list of directory contents consisting of a mapping between file/directory names and their

UUIDs. It is important to note that each UUID in a dirnode only references other metadata

files, and never directly references an actual data file. In NeXUS, because access control

is maintained at the directory level, the dirnode also stores the directory’s access control

policy.

• Filenode: Filenodes store the metadata that is necessary to access the data files stored in

NeXUS. Also, each filenode stores the cryptographic keys needed to encrypt/decrypt the

file contents. To support efficient random file access, NeXUS divides each data file into a

set of fixed-sized chunks, each of which is encrypted with an independent cryptographic

39

{Authenticated:

(A) Preamble

(B) Cryptographic
 Context

(C) Encrypted:

version
UUID
size{

{Metadata payload

Encryption key*
IV
MAC{

Figure 11: Metadata Layout. The encryption key is protected with the volume rootkey, which

is only accessible within the enclave.

context. These contexts are stored as an array in the filenode structure with the UUID

corresponding to the actual data file.

4.3.3.2 Metadata Encryption Figure 11 depicts the general layout of a metadata

structure consists of three components, each of which has a different degree of cryptographic

protection.

(1) A preamble that stores non-sensitive information (e.g., UUID, size). This section is

integrity-protected.

(2) A cryptographic context containing the information used to secure metadata contents. It

has a 128-bit encryption key, an initialization vector, and an authentication tag. This

section is integrity-protected, and the encryption key is stored in keywrapped form for

confidentiality.

(3) A section where the metadata’s sensitive information is stored. This section is encrypted

and integrity-protected using the unique metadata key stored in (2).

Encryption of the metadata file occurs on every update, and is performed within the

enclave in two stages. After generating a fresh encryption key and IV inside the cryptographic

40

context from (2), the first stage of encryption is performed using the AES-GCM cipher

with metadata section (3) as input, and the other two sections as additional authenticated

material. This operation outputs an authentication tag, which is copied into (2). The second

stage involves a keywrapping scheme that uses the volume’s rootkey to encrypt the freshly

generated key. We use the GCM-SIV [102] AEAD construction, and refer the reader for a

more in-depth discussion on keywrapping.

The metadata is protected using its cryptographic context which, in turn, is protected

using the rootkey. This approach simplifies key management,as it embeds every encryption

key within its corresponding metadata. Therefore, to access a volume, an user only needs to

store the volume’s sealed rootkey, which can only be unsealed within the NeXUS enclave

running on the particular platform.

4.3.3.3 Metadata Traversal Because a NeXUS volume is just a normal directory, if

directly accessed by the user, the files will be encrypted and bear obfuscated names. Therefore,

to expose this protected state — i.e., plain content and human-readable filenames — NeXUS

has to translate each local filesystem request into the corresponding metadata. Figure 10

shows the metadata traversal to access bar/cake.c. We abstracted all metadata operations

into a simple primary-key only interface that provides access to metadata using a UUID.

Initially, the root dirnode is loaded using the root directory’s UUID stored in the supernode.

Then, for each path component, the current dirnode’s directory list is used to lookup the

UUID of the next dirnode. As each metadata object is read into trusted memory, the enclave

uses the volume rootkey to decrypt and verify its contents. Before performing the lookup,

the enclave also checks the UUID field of the loaded dirnode matches the value in its parent.

By ensuring we load the correct metadata, we guard against file swapping attacks [26] that

threaten the integrity of the filesystem structure (Section 6). If the verification or lookup

operation fails, the metadata traversal terminates. Otherwise, the final metadata object is

returned.

4.3.3.4 Virtual Filesystem Operations We now describe how the NeXUS enclave

orchestrates the metadata structures to implement the Filesystem API in Table 2. Each API

41

call takes a target path, which is traversed in order to fetch metadata. The enclave then

invokes a handler with the metadata to perform the filesystem operation. On completion, all

modified metadata are committed to network storage, and the enclave output is returned to

the untrusted caller. We assume that the enclave virtual filesystem is single-threaded, and does

not support concurrent requests from multiple threads (left for future work). For simplicity,

we omit details on basic filesystem checks (e.g., checking if the directory is non-empty before

deleting its metadata).

• create(): This operation creates a file/directory. For example, consider creating foo.txt

in the root directory (Figure 9). We first check that file name is not present inside the root

dirnode. After generating a UUID, the enclave inserts a new (name, UUID) pair into the

root dirnode, and creates the child (filenode) metadata.

• remove(): This operation removes a file/directory by name inside the parent dirnode and

also deletes the corresponding filenode/dirnode metadata. If the entry is a file, we check

for other links using the hardlink table before deleting the filenode metadata. If multiple

links exist, we decrement its link count within the hardlink table and keep the filenode

metadata.

• lookup()/stat(): Common filesystem calls used for checking if a file/directory exists.

• symlink(): A symlink is a shortcut to a target file. This creates a (name, symlink target)

entry in the dirnode.

• hardlink(): Hardlinks associate a name with a file. This increments the file’s link count

inside the hardlink table.

• rename(): Renaming takes four arguments: the source directory, the target directory, the

old name, and the new name. The old name is removed from the source dirnode, and the

new name is added to the target dirnode. Note that the renamed entry still points to the

same metadata.

• encrypt()/decrypt(): Encrypt and decrypt are used to write and read files, respectively.

The required arguments include the file path, offset, and a buffer to hold the file data.

After fetching the filenode metadata, the offset is used to find the chunk entry that contains

cryptographic material. The file contents are then encrypted/decrypted inside the enclave,

and copied into the untrusted buffer.

42

user enclave

pku, SGXSEAL(rootkey)

nonce

m = SIGN(sku, nonce|supernode) - decrypt supernode
- Get pku in supernode
- VERIFY(pku, m)

Unseal rootkey and
generate nonce

nonce <- {0, 1}*

Read encrypted
supernode

user keypair:
{ pku, sku }

Figure 12: User Authentication with NeXUS enclave

These provide the minimum set of operations for interfacing with a fully functional

filesystem API such as FUSE (Section 4.4.2). Note that to operate as a secure filesystem,

NeXUS performs necessary access control checks prior to executing any of these functions

(Section 4.3.5).

4.3.4 Authentication and User Sharing

To access a NeXUS volume, a user must first be authenticated to a NeXUS enclave in order

to be granted access to the filesystem’s rootkey. While the rootkey allows a user to launch a

NeXUS instance for a particular volume, it does not automatically grant access to the data

stored in that volume. For that, the NeXUS enclave performs a second step ensuring that

the identity used to authenticate into the volume is authorized by the access control policies

stored in the file’s metadata.

In NeXUS, identity is established using public-private keypairs, where each authorized

user’s public key is stored inside the supernode metadata file. Each identity has an associated

user ID that is used in the access control policies maintained by the dirnodes. With this,

authenticating into a volume involves the following challenge-response protocol (Figure 12):

1. The user requests to authenticate by making a call into the NeXUS enclave with their

public key (pku) and the sealed volume rootkey as arguments.

2. Inside the enclave, the rootkey is unsealed. Then, a random 128-bit nonce is generated,

43

and returned to the calling user.

3. The user then uses their private key to create a signature over the encrypted supernode

structure of the volume and the enclave nonce. This signature and the encrypted supernode

are then passed to the enclave.

4. Inside the enclave, the volume rootkey is used to decrypt and verify the supernode. After

finding the user’s entry inside the supernode, the enclave then validates the signature with

the user’s public key.

5. On success, the user’s ID is cached inside the enclave.

This protocol establishes that (i) the user as the owner of the public key stored (via

signature verification), (ii) the user has been granted access to the volume (via the presence

of their public key in the supernode), and (iii) the supernode itself has not been modified

(via metadata protection). Once authorized, the volume is mounted and becomes available.

4.3.4.1 User Sharing Sharing data with NeXUS is complicated by the fact that SGX

generates a unique sealing key on each machine. This means that a sealed rootkey cannot

simply be passed between enclaves when a new user is granted permission to access a volume,

or when an authorized user accesses a volume using a new machine. At the same time, the

rootkey cannot be encrypted with a key available outside of the enclave context (e.g., a user’s

public key) without compromising the volume’s security. To overcome this challenge, we

incorporated a key exchange protocol that allows a volume’s rootkey to be distributed to

remote NeXUS instances, while ensuring that it will only be accessible from within a NeXUS

enclave. This protocol relies on an Elliptical Curve Diffie-Hellmann (ECDH) key exchange

combined with enclave attestation features available in SGX. All messages are communicated

in-band using the underlying storage service to exchange data between endpoints.

Consider the case where a NeXUS volume owner, Owen, wishes to grant access to his

volume to Alice. The end result of the protocol will be that Alice has a locally sealed version

of the rootkey for Owen’s NeXUS volume, and Alice’s public key will be present in list of

users stored inside the volume’s supernode. We assume that Alice’s public key is available

to Owen via some external mechanism (e.g., as in SSH). The endpoints of the protocol are

actual NeXUS enclaves, and the execution is as follows (Figure 13):

44

Owen

Owen’s keypair:
{pk_o, sk_o}

Alice

{pk_eo, sk_eo} <- PKGEN()

Q1 = QUOTE(pk_eo)

m1 = SIGN(sk_o, Q1) | pk_eo

{pk_ea, sk_ea} <- PKGEN()

Q1 = QUOTE(pk_ea)

m1 = SIGN(sk_a, Q1) | pk_ea

Server

VERIFY_QUOTE(Q1’)

{pk_eph, sk_eph} <- PKGEN()

k <- ECDH_SECRET(sk_eph, pk_ea)

h = ENC(k, rootkey)

m2 = SIGN(sk_o, h) | pk_eph

m2 m2

m1 m1’

VERIFY(pk_o, m2)

k’ <- ECDH_SECRET(sk_ea, pk_eph)

rootkey <- DEC(k’, h)

Alice’s keypair:
{pk_a, sk_a}

SETUP

EXCHANGE

EXTRACTION

Figure 13: Key Exchange protocol diagram for Owen sharing his NeXUS volume rootkey

with Alice.

45

1. Setup: As part of the initialization process of a NeXUS volume, an ECDH keypair (pke, ske)

is generated inside the NeXUS enclave. The private key is only ever accessible inside the

enclave, and is encrypted with the enclave sealing key before being stored persistently. To

export the public key, the user generates an enclave quote supplying the public key as

authenticated data. This quote identifies the user’s enclave and cryptographically binds

the ECDH public to the enclave. The quote is signed with the owner’s private key, and

then stored on the underlying storage service in a location that is accessible to the other

users in the system.

Q = QUOTE(pke)

m1 = SIGN(sku, Q) | pke

Where {pku, sku} is the volume owner’s public keypair and Q is the enclave quote with

the enclave ECDH public key, pke, as authentication data.

2. Exchange: Whenever Owen wishes to grant Alice access to his file system, he must

transfer a copy of his volume rootkey to Alice. To do this, Owen first validates the quote

generated from Alice’s enclave (by checking that the signature matches Alice’s public key

and verifying the quote with Intel), before extracting the enclosed enclave public key, pkea.

Then, within the enclave, Owen generates an ephemeral ECDH keypair (pkeph, skeph), and

combines it with pkea to derive a common secret that encrypts his volume rootkey. The

encrypted rootkey and the ephemeral ECDH public key (the private portion is discarded)

are signed using Owen’s private key and stored on the underlying storage service in a

location that is accessible to Alice.

k ← ECDH_SECRET(skeph, pkea)

h = ENC(k, rootkey)

m2 = SIGN(sko, h) | pkeph

3. Extraction: Alice first validates Owen’s signature and then, using the enclave private key,

she derives the ECDH secret and decrypts the rootkey.

k ← ECDH_SECRET(skea, pkeph)

rootkey = DEC(k, h)

46

Since the ECDH secret can only be derived within the enclave, our protocol ensures the

rootkey is only accessible within valid NeXUS enclaves. The rootkey can then be sealed and

stored to Alice’s local disk. Later, once Alice authenticates, she can decide to mount Owen’s

volume using the corresponding rootkey.

4.3.5 Access Control

Even after a user has been granted access to a volume’s rootkey, access to files within the

volume is further restricted via access control policies enforced by the NeXUS enclave. Access

control is based on: (i) the user’s identity as specified by the private key they authenticated

with, (ii) the permissions stored in the respective metadata. With this, access control

enforcement is independent of the server, and because the metadata is encrypted and sealed,

the access policies cannot be viewed nor undetectably tampered.

We implemented a typical Access Control List (ACL) scheme in which users have unique

IDs mapped to (username, public key) pairs, and permissions apply to all files (and subdirec-

tories) within a directory. We leveraged the user list in the supernode to bind every user to a

unique ID, and store the directory ACLs comprising of (user ID, permission) tuples in the

encrypted portion of the dirnode. Hence, to enforce access control within a given directory:

• The dirnode metadata is decrypted inside the enclave.

• If the current user is the owner of the volume, permission is granted to the user and the

enclave exits.

• Otherwise, the user’s ID is used to find the corresponding ACL entry inside the dirnode.

Authorization is granted if the user’s ACL matches the requested permission.

NeXUS denies access by default and automatically grants administrative rights to the volume

owner, who maintains complete control over their volume. Revoking a user is performed

either by removing them from the user list, or removing their ACL entry from the dirnode. In

either case, the process is relatively inexpensive as it only requires updating and re-encrypting

the affected metadata.

47

0x12ed…
cake.c … 0x6ef2…

name

….docs

macuuid

bar/
(dirnode)

0x3542…
cake.c … 0x6ef2…

name

…bar

macuuid

/
(dirnode)

cake.c
(filenode)

…
chunk 1 key

bar/

cake.c

a.txt

docs/

$(NEXUS_ROOT)

cake.c M
AC

 value
is updated in parent

bar/ updates M
AC

in root dirnode

Figure 14: Metadata update after writing to bar/cake.c (right). After propagating the

MAC values to the root dirnode, the root MAC and version are then stashed locally.

4.3.6 Rollback Protection

NeXUS provides data confidentiality and integrity by enclosing the filesystem state within

encrypted metadata. However, this does not prevent Rollback Attacks in which the server

or attacker returns older metadata versions to the user. Since these metadata are still

cryptographically valid, the enclave will successfully decrypt and integrity-check their contents.

Thus, without strong freshness guarantees, an attacker could trick the enclave into using a

stale or inconsistent filesystem state.

NeXUS prevents rollback attacks by maintaining a hash tree alongside the filesystem

hierarchy. A typical hash tree implementation involves hashing the sibling nodes (i.e., contents

of a directory) together to create a super hash, which is then stored in the parent node (i.e.,

dirnode). The digest of the entire tree results in a root hash, which is stored to a secure

location (e.g., local client machine). This way, data integrity only requires verifying the root

hash and each hash down to a leaf node. We employ a similar strategy by using the NeXUS

filesystem hierarchy as a tree. The hierarchy is made of dirnode and filenode metadata, which

48

store directory and file content respectively. Also, the root dirnode sits at the top of the

hierarchy, dirnodes can have other dirnodes and filenodes as children, and filenodes have no

children. Our scheme consists in ensuring that the integrity of each metadata is a function of

its content and that of its children. Thus, we extend dirnode’s directory entries with a MAC

field that is managed as follows:

4.3.6.1 Verifying Metadata Every client maintains a local copy of the root hash and

its version, which correspond to the MAC and version of the volume’s root dirnode. After

successfully decrypting any metadata, we verify its MAC as follows:

• For the root dirnode, we first check its MAC against the local root hash value. On failure,

we then compare the fetched metadata’s version against the local stashed value. If newer,

the local root dirnode version and MAC are updated, otherwise the process is aborted.

• For other metadata, their MAC value is checked against their directory entry inside their

parent metadata.

4.3.6.2 Updating Metadata We update the MAC value of the directory entry whenever

its corresponding metadata is re-encrypted (e.g., file creation/deletion). For example, consider

the series of metadata updates when a user writes to bar/cake.c (Figure 14). First, the

cake.c filenode is re-encrypted and its new MAC is updated inside its corresponding directory

entry in bar/. Then, the process is repeated for bar/, which updates its directory entry

inside the root dirnode. Finally, after re-encrypting the root dirnode, its MAC and version

are stashed into a local file as the root hash.

In addition to ensuring the freshness of individual dirnode or filenode metadata, the

above process also protects the hierarchy from root dirnode to leaf dirnode/filenode. In

NeXUS, the filesystem structure stores an ordered list of entries in the dirnodes and restricts

every file/directory to a single parent metadata. For directories and files with a single link,

this is simply the parent dirnode. However, because hardlink files are allowed in different

directories, they can be updated through multiple paths and cause a potential mismatch at

verification. Thus, we extended the hardlink table with a MAC field for each entry, such that

when updating or verifying a file with multiple links, the hardlink table is used as the parent

49

metadata. As a result, the path to any metadata is unique, thereby allowing the formation

of a tree alongside the filesystem hierarchy.

4.4 IMPLEMENTATION

We developed NeXUS as a userspace application that leverages the SGX SDK to securely

access protected volumes. We first explain the overall architecture and provide details on the

enclave implementation. Then, after describing how NeXUS was ported to run atop FUSE,

we complete the section with our data consistency measures and some runtime optimizations.

Our prototypes act as a stackable layer interposed between user applications and the host

filesystem. NeXUS is split into an untrusted portion (11200 SLOC) that runs in normal

userspace, and a trusted portion that runs inside the enclave (9161 SLOC). The untrusted

portion mainly implements the NeXUS filesystem API and facilitates enclave access to

metadata via the storage API. The trusted portion performs secure operations, including key

management, metadata encryption, and access enforcement.

The NeXUS enclave is designed to be minimalistic; its small codebase amounts to a 912

KB binary size, which allows for verification by modern model checkers. Additionally, this

small size ensures the NeXUS enclave can easily fit into the limited 96 MB enclave-reserved

memory and leaving enough memory for runtime allocations. For cryptographic support, we

included a subset of MbedTLS Library (216 KB binary), and a C-based implementation of

GCM-SIV key-wrapping construction [102]. The enclave interface comprises of 29 enclave

calls (ecalls) and 10 outside calls (ocalls). Ecalls invoke specific entry points within the

enclave, and are responsible for marshaling data into the enclave. Ocalls manage untrusted

memory and access data/metadata objects. To prevent inadvertent data leakage, we sanity-

check our inputs, ensure enclave pointer access is within trusted memory, and employ secure

data serializers on sensitive outputs. Specifically, every sensitive file or metadata content is

automatically encrypted and sealed using enclave-bound keys, before copying the resulting

ciphertext to untrusted memory.

50

4.4.1 AFS Implementation

AFS is a distributed filesystem that relies on a set of trusted servers to provide transparent

access to user files over the network. We implemented NeXUS as a userspace Linux service

that extends OpenAFS [103] (the de facto open source AFS implementation) to manage

protected volumes on the network, without any modifications on the server-side or changes

in the user’s typical file management workflow. Our interface does not make any internal

modifications to OpenAFS, it simply calls the NeXUS filesystem API via a shimlayer. To

summarize our changes: (i) Because OpenAFS resides in kernel space, we added a device

driver that routes the AFS filesystem requests to the NeXUS userspace daemon; (ii) we

adapted the OpenAFS file chunking system to use the same chunk size as for seamless

interoperability during I/O operations; (iii) we set up a shared memory map region, directly

accessible from both kernel and userspace to enable the encryption of large files without any

extra copying; and (iv) we modified the AFS “fs setacl” utility in setting the access rights

of protected directories with AFS ACLs. Excluding third party libraries, our implementation

comprises about 22618 SLOC. Integrating with OpenAFS (90K SLOC) required about 3200

SLOC.

4.4.2 FUSE Filesystem

We ported NeXUS to run atop FUSE in about 2353 SLOC. FUSE is a cross-platform userspace

library that facilitates the development of filesystems via a simple API [104]. Its high-level

architecture consists of: (i) a kernel module that manages the FUSE filesystem, and (ii) the

libfuse user space library which communicates with the kernel module on each filesystem

request. FUSE allows NeXUS to expose a POSIX-like interface to client applications and

provide access to NeXUS volumes on a variety of local and remote filesystems without

requiring any server-side changes. As shown in our evaluation, NeXUS supports both AFS

and Dropbox with no modifications to their client applications, while allowing volumes to

be copied as directories across network filesystems. Our prototype intercepts filesystem

requests within a mounted directory and then invokes the corresponding NeXUS filesystem

API function for processing. To synchronize the FUSE filesystem view with the enclave, we

51

maintain a directory structure of the filesystem state in untrusted memory. This structure is

updated on every lookup or stat. Moreover, NeXUS follows open-to-close I/O semantics by

performing all file writes on the local machine, and only committing changes on close().

Initially, we extended the OpenAFS client to develop a NeXUS prototype that manages

protected volumes on an AFS filesystem by simply routed network API calls from kernel space

to our NeXUS userspace application. Although relatively less portable, this approach allows

our prototype to benefit from the cache management and other kernel-level optimizations

provided by the AFS client. Overall, both AFS and FUSE prototypes require kernel to

userspace transitions as part of their data flow, but the AFS implementation only performs

that action when interacting with the network as it heavily caches data in kernel space.

Moreover, it is crucial to note that both implementations are largely unoptimized (maximum

local performance was not our principal aim), and were mainly developed to demonstrate the

adaptability of the NeXUS filesystem API.

4.4.3 Consistency Considerations

Because NeXUS manages metadata internally, every filesystem request triggers several I/O

requests to the underlying storage service. As a result, in the situation whereby multiple

users simultaneously access a file, a user’s NeXUS enclave might fetch an older version of

the metadata. To prevent this possible mismatch, on every filesystem request that updates

metadata (e.g., create, delete, rename), NeXUS locks metadata structures via the facilities

provided by the storage service. This locking is accomplished by invoking flock() on the

metadata file. Once the metadata is flushed to network storage, the lock is released, allowing

users to access the file. Note that locking is not required on read operations.

Moreover, enabling rollback protection in NeXUS requires maintaining hash-tree consis-

tency encoded across multiple metadata objects. Thus, on stateful filesystem operations, we

prevent write-write conflicts by locking metadata from root-to-leaf as part of the metadata

traversal. This lock order ensures that accessing and verifying metadata only occurs after its

ancestors are locked, but also locks the root dirnode. When the VFS operation is completed,

the metadata are flushed and released from leaf-to-root to ensure that parent metadata are

52

updated after their children. Once the root dirnode is flushed, the lock is released to make it

available for other users. This mechanism has a tradeoff between security and sharing; the

user acquires strong integrity guarantees at the cost of concurrent volume modifications. We

explore the performance implications for maintaining this hash-tree in our evaluation.

4.4.4 Optimizations

For every filesystem request, the NeXUS enclave fetches one or more metadata objects from

the backing store to complete the operation. Because of the network latency, this makes

metadata-intensive operations cost prohibitive. To address this, we introduced several caches

to speedup data access, including a VFS-like directory cache structure (dentry tree) inside

the enclave, and caching the metadata locally (unencrypted in enclave memory, or encrypted

in untrusted memory). This way, unless a file is modified on the remote server, locally cached

information can be used to fulfill filesystem requests.

To improve performance on larger directories, we split dirnodes into independently-

encrypted buckets. Each bucket contains a user-configurable number of directory entries and

is stored as separate metadata objects. The main bucket stores the directory’s access control

and the MAC of each bucket to prevent rollback attacks at the bucket level. When writing

the dirnode to the underlying storage service, only the main bucket and other dirty buckets

are flushed.

By default, NeXUS commits all metadata changes to the network-backed storage. Al-

though essential for consistency, the network cost is unnecessary for non-interactive workloads

in which several operations are required to achieve the desired state. Examples include

extracting compressed archives and cloning a git repository. Thus, we developed a variant

of NeXUS that performs metadata I/O operations on a local directory, and not on the

underlying network filesystem. This batching mode of operation can be activated at runtime

by the user, who can readily commit the resultant filesystem state unto the server. This

runtime setting is geared towards metadata-intensive workloads during which user interaction

with the NeXUS volume is absent.

53

4.5 EVALUATION

This section presents various performance benchmarks and real-world, end-to-end evaluation

of NeXUS. To achieve the design goals stated in Section 4.3.1, we chose the following criteria:

• Portability. Does the NeXUS prototype support various network filesystems? What of

user applications?

• Performance. Are the overheads incurred by NeXUS reasonable? How does it perform

on normal user workloads? What of bulk metadata workloads? How is rollback protection

affected by directory depth?

• Efficient Revocation. How cheap are user revocations when compared to purely crypto-

graphic implementations?

Experimental Setup. We evaluate NeXUS on an i7 @3.4GHz with 8GB RAM and 128MB

EPC, running SGX SDK 2.2 and Ubuntu 18.04 LTS. The experiments compare the overhead

of NeXUS (and its variants) against unmodified network-based filesystems, namely AFS

and Dropbox. Whereas AFS behaves like a full-fledged network filesystem by synchronously

committing local changes to the server (on the same LAN), Dropbox monitors changes in

a mounted folder and asynchronously uploads them to the cloud. In particular, although

Dropbox tries to minimize network latency (e.g., batching, chunking, compression), it is

sometimes affected by spurious delays and synchronization time takes longer than needed

(e.g., during frequent file updates [105, 106]). For the NeXUS prototype, we used 1MB file

chunks and 128-entry dirnode buckets. Moreover, our measurements are averaged over 10

runs.

4.5.1 Microbenchmarks

We ran two microbenchmarks to isolate the overheads imposed by NeXUS. We began with

measuring the latency of basic file I/O operations using a python program that reads and

writes a file at different sizes. Compared to AFS (Figure 15a) and Dropbox (Figure 15b),

results show that NeXUS incurs a negligible overhead across all file sizes. This is because

the runtime is dominated by file I/O, which is the same amount on each prototype. Although

54

1MB 4MB 16MB 64MB
File size

0

2

4

6

La
te

nc
y

(s
) AFS

NEXUS

(a) AFS File I/O.

1MB 4MB 16MB 64MB
File size

0

5

10

15

La
te

nc
y

(s
) Dropbox

NEXUS

(b) Dropbox File I/O.

128 256 512 1024
File count

0

5

10

15

La
te

nc
y

(s
)

x7.8
x11.2

x12.2

x13.3
AFS
NEXUS

(c) AFS directory operations.

128 256 512 1024
File count

0

10

20

30

40

La
te

nc
y

(s
) Dropbox

NEXUS

(d) Dropbox directory operations.

Figure 15: Microbenchmarks comparing file and directory operations.

55

Workload Total Size Native NeXUS Overhead

AFS
140 MP3s 150MB 2.91s 5.35s ×1.84
1 movie 650MB 9.35s 14.79s ×1.58
211 PDFs 315MB 7.61s 13.92s ×1.83
30 videos 1.6GB 24.78s 41.25s ×1.66

Dropbox
20 MP3 20MB 10.33s 21.59s ×2.09
1 movie 650MB 86.45s 94.82s ×1.09
211 PDFs 315MB 96.92s 71.83s ×0.74
30 videos 1.6GB 180.19s 216.90s ×1.20

Table 3: Latency(s) for copying PDFs and videos.

the metadata I/O by NeXUS increases as the filenode grows to accommodate additional file

chunks, this is still small compared to the file size (about 80B of filenode data for every 1MB

file chunk).

Next, we analyzed the performance of directory operations using another python program

that creates and deletes files within a flat directory. Compared to AFS (Figure 15c), the

overhead incurred by NeXUS increases with file count, meanwhile the overhead on Dropbox

(Figure 15d) remains less than ×2. This is because every file created increases the size of the

directory’s dirnode, which becomes considerably bigger than individual directory entries. For

large directories, this could result in significant performance overheads as the size discrepancy

between the directory entry and the dirnode becomes more pronounced.

4.5.2 Macrobenchmarks

We evaluate the end-to-end impact of NeXUS on copying various workloads, including MP3s,

PDFs and videos. To cover a wide range of user storage workloads, we vary the file count and

size to generate a unique mix of directory and file operations. The results in Table 3 show

that NeXUS incurs about a ×2 overhead on most workloads. In AFS, the 140 MP3s and 211

PDFs workloads incurred the highest overhead due to their larger directories. However, the

56

lvl-0 lvl-1 lvl-2 lvl-3
Level

0

10
La

te
nc

y
(s

)
x2.1 x2.3 x2.5 x2.6

AFS
NEXUS

-htree

lvl-0 lvl-1 lvl-2 lvl-3
Level

0

20

La
te

nc
y

(s
) x2.0 x2.3 x2.3 x2.4

Dropbox
NEXUS

-htree

Figure 16: Copying 150 MP3s at different directory depths.

single 650MB movie and the 1.6GB video collection had the lowest overhead on both AFS and

Dropbox. Because their runtime is dominated by file I/O, NeXUS processes them efficiently.

Surprisingly, NeXUS is 25% faster than Dropbox in synchronizing PDFs. We reran this

experiment multiple times, but it seems the workload’s I/O patterns benefit NeXUS.

4.5.3 Rollback Protection Overhead

In this test, we measure performance impact of providing rollback protection. First, we

extract the source code of the Julia programming language to initialize the directory hierarchy.

Then, we measure the latency of copying a music collection of 140 files (155MB) at different

directory depths. Figure 16 shows that on both AFS and Dropbox, the overhead incurred

by rollback protection (i.e., �-htree) increases slightly with directory depth, whereas that of

plain NeXUS remains constant. This additional overhead is because �-htree must lock and

update multiple metadata objects on each filesystem operation. Moreover, the results show

that this increase is relatively minimal.

4.5.4 Bulk Metadata Operations

We evaluate the performance of NeXUS on bulk metadata operations by cloning the git

repositories of Redis (618 files) and Julia (1096 files). Git cloning requires a series of filesystem

operations (e.g., create, write, and even hardlink) to download pack objects, and extract

57

redis julia
0

25

50
La

te
nc

y
(s

)

x4.0

x3.3

x1.5

x1.8

AFS
NEXUS

-htree
-batch

redis julia
0

200

400

La
te

nc
y

(s
)

x1.4

x1.4

Dropbox
NEXUS

-htree
-batch

Figure 17: Git cloning of Redis and Julia.

them into constituent files and directories. Figure 17 shows the latency measurements. For

both Redis and Julia, the NeXUS overheads on AFS and Dropbox are ×2.9 and ×1.2,

respectively. Meanwhile, the �-htree prototype incurs slightly higher overheads as it requires

additional metadata I/O to provide data freshness. However, when combined with batch

mode (i.e., ?-batch), the overhead drops on both AFS and Dropbox. The is due to the fact

that fewer filesystem operations are propagated to network, thereby reducing overall latency.

4.5.5 Revocation Estimates

NeXUS supports two types of revocation: (1) removing a user from the volume, and (2)

removing a user’s rights from a directory. In a typical cryptographic filesystem, revoking user

access involves the following steps: re-encrypting the affected file(s), uploading the ciphertext

to the server, and then distributing the new keys to authorized users. Because NeXUS

ensures encryption keys never escape the enclave boundary, revocation becomes as simple

as re-encrypting the metadata with a new key. For instance, consider the scenario in which

a user is revoked from the directory containing the 211 PDFs workload mentioned above

(Figure 16). For 315MB of file data, the NeXUS will have to re-encrypt and update about

653KB of metadata (recall access control is stored in the dirnode). Whereas, in the 30 videos

workload, the metadata payload drops to 210KB for 1.6GB of file data.

58

Operation AFS NeXUS-AFS NeXUS-FUSE

LevelDB
Fillseq 10.5 MB/s 8.1 MB/s 8.5 MB/s

Fillsync 2.2 µs/op 4.5 µs/op 10 µs/op
Fillrandom 5.9 MB/s 3.7 MB/s 4.6 MB/s

Overwrite 4.0 MB/s 2.6 MB/s 3.4 MB/s

Readseq 664.6 MB/s 718.1 MB/s 673.9 MB/s

Readreverse 425.0 MB/s 425.7 MB/s 429.8 MB/s

Readrandom 2.27 µs/op 3.7 µs/op 2.3 µs/op
Fill100K 11.0 MB/s 7.2 MB/s 10.7 MB/s

SQLITE
Fillseq 6.5 MB/s 6.4 MB/s 3.1 MB/s

Fillseqsync 14.4 µs/op 31.4 µs/op 37.3 µs/op
Fillseqbatch 70.2 MB/s 69.7 MB/s 49.5 MB/s

Fillrandom 4.2 MB/s 4.2 MB/s 2.2 MB/s

Fillrandsync 13.4 µs/op 31.2 µs/op 45.3 µs/op
Fillrandbatch 7.6 MB/s 7.7 MB/s 4.1 MB/s

Overwrite 3.4 MB/s 3.4 MB/s 1.8 MB/s

Table 4: Database benchmark results on AFS.

4.5.6 Comparing FUSE Overhead

We compare the performance of our FUSE-based prototype with another NeXUS imple-

mentation that required modifying the AFS client [107]. FUSE provides better portability

and does not require any changes to the underlying filesystem. However on every filesystem

request, FUSE incur overheads from transitioning and copying data between the kernel

and userspace. Whereas, the AFS-based prototype only transitions from the kernel to our

userspace NeXUS daemon on network API calls, but manages caching and other low level

operations inside the kernel.

For this test, we ran the database benchmarks of LevelDB and SQLite, two embeddable

database engines commonly used to provide a data layer. Using 4 MB of cache memory, each

benchmark generates several database files to emulate a key-value store of 16-byte keys and

100-byte values. The latency of various database operations was measured and displayed in

Table 4. Results show that both NeXUS variants performed similar to vanilla AFS on most

59

asynchronous operations. Because the database utility does not wait for the operation to

complete, the effect of each filesystem call is amortized. However, synchronous operations

incurred significant overhead on both prototypes, with NeXUS-AFS being significantly faster

due to less transitioning and copying compared to FUSE. However, as shown by the previous

tests, FUSE allows more general filesystem support, and does not require any changes to the

OS or any other system components.

4.5.7 Takeaway Discussion

The results of our evaluation demonstrate the ability of NeXUS to meet the demands of

standard user workloads. While our approach does necessarily introduce additional overheads,

these are predominately encountered during metadata modifying operations that generally do

not fall on the critical path for most personal data workloads. In general, interactive programs

exhibit less than ×2 performance degradation on writes, which we believe is acceptable in

practice for the majority of users. We envision that users of typical file sharing platforms will

mostly perform reads, and manage relatively small workloads such as text documents and

photos [108]. Alternatively, NeXUS supports a batch mode that allows users to speed up

the execution of bulk metadata workloads.

Moreover, NeXUS is designed to operate within a multi-user environment that offers

standard file sharing capabilities. Although our evaluation occurs within a single machine, we

document the costs of providing sharing as follows: (i) The asynchronous rootkey exchange

(Section 4.3.4) requires a single file write. (ii) Adding/removing users (Section 4.3.5) is not

unlike revocation, which has been shown to require a single metadata update. (iii) Although

policy enforcement (Section 4.3.5) scales with the number of ACL entries, its cost is dominated

by the initial metadata fetch.

60

4.6 RELATED WORK

4.6.1 SGX-Enabled Storage

Since its release, SGX has generated considerable research aimed at achieving secure remote

storage [34, 33, 36, 48, 109, 35]. LibSEAL [48] detects cloud provider integrity violations by

creating a non-repudiable log of the service requests and responses. BesFS [110] provides

a formally-verified filesystem API that protects enclave applications against Iago attacks.

PESOS [34] enforces custom server-side access control on top of untrusted storage, but

its prototype requires a LibOS [58] that severely impacts the TCB. SPEICHER [37] and

eLSM [109] provide secure key-value stores. ZeroTrace [36] and OBLIVIATE [33] use an

ORAM protocol to protect file contents and access patterns from the server, but do not

consider file sharing. Moreover, because these solutions require server-side SGX support,

they have limited applicability in the personal cloud storage setting. We circumvent this by

running the NeXUS enclave on the client, while taking into account the practicalities of

dynamic user sharing and seamless integration with existing storage services. SGX-FS [35] is

an enclave-protected userspace filesystem, but does not provide any sharing capabilities.

IBBE-SGX [32] and A-SKY [111] propose a computationally efficient schemes for achieving

scalable access control an enclave. However, unlike NeXUS, their access control models

restrict all group membership operations to the administrator.

4.6.2 Cryptographic Filesystems

Starting with CFS [112], TCFS [113], NCryptfs [114], a long line of work has been dedicated

to employing client-side encryption to secure remote untrusted storage [115, 116]. Most of

them either assume a trusted server, or require deploying semi-trusted intermediaries. Latter

systems such as [24, 26, 21] took a closer regard to file sharing, and proposed schemes that

rely on clients to manage the encryption keys. Unfortunately, pure encryption techniques

are plagued by issues of non-trivial key management and bulk file re-encryption on user

revocation. These overheads could be considerable, even with modest policy updates [17].

Although mitigating schemes such as lazy encryption (delay file re-encryption until the next

61

write [117]) and proxy re-encryption (use a trusted server for key distribution [19]) have been

proposed, concerns remain on how practical they perform under real world environments. By

having the NeXUS enclave mediate access to all encryption keys, we offer superior user key

management and obviate the necessity of bulk file re-encryption on policy updates.

Another line of research has focused on providing stronger integrity protections to remotely

hosted data [116, 118]. In a rollback attack, the server returns stale versions of the data to

the user. Fork consistency [116] is the strongest form of consistency achievable without direct

client communication; it ensures that the filesystem state observed by the user is derived

from a valid sequence of changes. Specifically, if the server equivocated and presented each

client with a different view of their data, they can never see each other’s further changes. If

the clients were to communicate with each other offline, they will detect the equivocation.

This requires the use of authenticated data structures (e.g., Merkle trees or hash chains) that

provide efficient integrity-protection over a collection of items [100]. However, because of the

network and concurrency costs involved in maintaining these structures, existing solutions

either rely on server-side participation, use a byzantine fault-tolerance protocol, or restrict

themselves to a single-user setting [115, 119, 120]. Verena relies on a trusted server to enable

efficient integrity verification of webpages by clients.

4.7 CONCLUSIONS

The protection of user data on cloud storage remains an active research area; however, existing

works either require substantial changes to server/client or impose severe data management

burdens on the user. As a solution, we presented NeXUS, a stackable filesystem that protects

files on untrusted storage while providing secure file sharing under fine-grained access control.

NeXUS is a performant and practical solution: it requires no server-side changes and imposes

minimal key management on users. NeXUS uses an SGX enclave to encrypt sensitive data on

the client and then attaches cryptographically-protected metadata that ensures the encryption

keys are enclave-bound. Furthermore, NeXUS provides confidentiality and integrity of file

data, as well as file and directory names. NeXUS also provides optional rollback protection

62

to detect when the server returns stale metadata while also enforcing access control at each

user’s local machine enabling file sharing through SGX remote attestation. Finally, we

implemented a FUSE-based prototype that runs on top of AFS and Dropbox. Our evaluation

shows that NeXUS achieves good performance in file I/O operations and incurs modest

overheads on workloads that involved bulk metadata.

However, our current access control implementation only supports simple ACLs, which

are evaluated using simple checks, and does not take into account the environmental context.

Futhermore, traditional access control schemes do not take into account changes in the access

context, especially as usage occurs on remote client machines and extend over large time

periods. In the next chapter, we extend the NeXUS design to implement fine-grained access

and usage control within a large-scale cloud environment.

63

5.0 JOPLIN

We present Joplin, a secure access and usage control system that provides confidentiality

and integrity on top of existing cloud storage systems. Joplin leverages trusted hardware to

address the practical challenges of attribute-based access control, including efficient revocation,

multi-domain policies, and secure user delegation. This is enabled by a client-side enclave that

hosts a policy interpreter, and applies cryptographic protections without leaking encryption

keys. Joplin embeds user-specified policies within encrypted metadata, which are decrypted

within the enclave for continuous enforcement at access time. We implemented a prototype

by extending our stackable filesystem, NeXUS, to enable fine-grained sharing of protected

volumes without requiring any server-side changes. Our prototype imposes minimal key

management on users, supports a declarative policy language, mandatory access logging, and

ensures both forward and backward secrecy. Using microbenchmarks and example cases,

we demonstrate that our prototype can enforce a wide range of user policies, and provides

scalable policy management for up to 25,000 policies over Dropbox.

5.1 INTRODUCTION

Today, mainstream file sharing services boast hundreds of millions of daily users, and store

billions of gigabytes in files [2]. Built on top of low-cost and globally available cloud storage,

these services provide a convenient interface to store, share, and synchronize files online.

However, the sale and unauthorized sharing of private data by service providers, as well as

frequent data breaches and unplanned disclosures on the cloud, have raised user privacy

concerns [9, 10, 11]. As individuals and organizations store larger amounts of personal and

64

private information on these platforms, it is evermore critical to provide a data security

solution that does not rely on the service provider.

Beyond providing data confidentiality and integrity, users may also wish to selectively

share information with other users within or across organizations. Furthermore, users typically

share information under a given context or towards a particular purpose. Thus, addressing

these security and privacy concerns requires: (i) access control [121, 74] to determine the

conditions for user authorization, and (ii) usage control [122, 82, 84] to restrict how data may

be handled post authorization. Usage control extends traditional notions of data access control

with continuous enforcement, and obligations such as: “delete this file in 15 days”. However,

developing a robust enforcement mechanism for the cloud poses several challenges: (i) a large

number of users accessing an unbounded number of resources with varying granularity; (ii)

dynamic access changes as users and files are continuously added, removed and updated; and

(iii) information sharing across administrative domains such that user identity is not known

in advance.

This chapter explores the subtleties of distributed policy enforcement by focusing on

Attribute-Based Access Control (ABAC), a flexible and dynamic access control model that

can be extended to also support usage control (UCON) [74, 123, 84]. ABAC generalizes

previous identity-based schemes, and evaluates access requests using attributes that are

assigned to users, objects, and the environment. For example, an educational institution may

have “Professors can access Faculty directories”, as a policy to restrict access to department

files. Attributes simplify policy management, especially when user or object entities are

not known a priori (e.g., multi-domain scenarios), and contextual information (e.g., time,

location) is required for multi-factor access evaluation. This also reduces the administrative

burden, as users and objects can be continuously provisioned without requiring any updates

to existing policies.

We propose a practical security solution that: (i) allows for user deployment without

requiring any server-side coordination or reliance on trusted intermediaries, (ii) supports

user sharing with fine-grained and dynamic access control policies, and (iii) incurs modest

performance overheads on typical user workloads. In addition, our solution must provide

a foundation for rich sharing semantics such as multi-authority attributes, delegation, and

65

usage control. Our goal is to protect the confidentiality and integrity of a user’s data against

all untrusted parties, including unauthorized users, external attackers, and even the service

provider.

Existing approaches to secure access and usage control, however, fall short of satisfying

these requirements. Much work on usage control has focused on obligation languages, formal

specifications, and reference architectures, but often make simplified assumptions about the

client-server architecture [86, 87, 88]. Several cryptographic schemes such as Attribute-Based

Encryption (ABE) have been proposed to achieve fine-grained access control, while protecting

sensitive data from untrusted parties [124, 125, 126]. However, pure cryptographic solutions

exhibit significant overheads on user revocation, and oftentimes rely on server-side support

for dynamic access changes. Alternatively, Trusted Execution Environments (TEEs) such

as Intel SGX or ARM Trustzone can be used to enable strong security primitives within an

untrusted environment. However, existing approaches either restrict themselves to centralized

administration on a single machine or require server-side support for trusted hardware, which

in effect hinders adoption by users of cloud-based services [32, 111, 34].

We present Joplin, a privacy-preserving ABAC enforcement system that guarantees

confidentiality and integrity over unmodified third-party storage platforms. Joplin enables

users to manage attributes and specify declarative access policies separately from the un-

derlying storage. By adopting a declarative syntax, policies can unambiguously express the

conditions under which a user has authorized access, without requiring a priori knowledge

of particular user/object entities nor details about the enforcement mechanism. To accom-

plish this, Joplin leverages a client-side SGX enclave that stores access control information

within cryptographically-protected metadata for enforcement at decryption time. Because

the enclave performs cryptographic operations without leaking the encryption key, updating

attributes and policies only requires re-encrypting relatively small metadata objects. This

leads to efficient revocation even in large-scale dynamic environments.

Joplin is based on the NeXUS stackable filesystem, is completely client-side, and does

not require any server-side changes or trusted intermediaries. Policy enforcement exclusively

occurs on each client machine, which collectively realize user-centric and decentralized access

control. Further, placing our reference monitor at the client provides direct access to the

66

client’s environment when enforcing usage policies. To demonstrate the practicality of Joplin,

we extended NeXUS, a stackable filesystem that allows mutually trusting users to securely

share files on top of unmodified storage. Joplin’s modular architecture is split into (i) an

enclave that applies cryptographic protections and hosts a virtual filesystem alongside a

Joplin Controller, and (ii) an untrusted portion that maps filesystem and ABAC operations

from the enclave unto the underlying storage platform. This approach enables independent

policy enforcement, while transparently supporting a wide range of storage services such as

remote filesystems and object-based storage platforms.

Our contributions are summarized as follows:

• We propose a client-side architecture for enforcing fine-grained ABAC and usage control

over remote untrusted storage. Joplin provides a unified interface to manage attributes

and policies, while ensuring data confidentiality and integrity by performing cryptographic

operations and access control enforcement inside the enclave without leaking sensitive key

material. With Joplin, policy management on existing storage platforms is independent of

the service provider or any trusted intermediary.

• We develop a prototype that addresses the practical challenges of decentralized policy

management on the cloud without requiring any server-side modifications or additional

infrastructure. This includes attribute sharing across domains, user delegation, and

mandatory access logging. Additionally, Joplin provides efficient revocation with forward

and backward secrecy, while maintaining complete ownership throughout the data lifecycle.

• We evaluate our prototype using several case studies and filesystem workloads. Results show

that our implementation enforces declarative policies efficiently, operates over unmodified

Dropbox, and has policy maintenance overheads that scale with the number of users and

policies. Joplin allows both individuals and organizations to manage and protect their data

without significant degradation on typical user workloads.

The chapter is organized as follows. Section 5.2 covers background and related work on

access and usage control. In Section 5.3, we describe the high-level design of our ABAC

system, and Section 5.4 realizes a prototype from this design. In Section 5.5, we evaluate the

expressiveness and performance of our prototype. Section 5.6 concludes the chapter.

67

5.2 BACKGROUND AND RELATED WORK

This section presents a brief description of ABAC, usage control, decentralized policy man-

agement, and trusted hardware.

5.2.1 Attribute-Based Access Control

In ABAC [74, 123], policies are expressed as boolean combinations of attributes, and access

decisions are determined by evaluating policies against user attributes, object attributes,

and relevant environment conditions. Attributes denote traits that either statically assigned

by an administrator (e.g., user role) or dynamically set by the runtime (e.g., file path).

This simplifies policy management as attributes can arbitrarily group entities with flexible

granularity, without requiring the apriori identification of individual users or objects. Dynamic

access control is provided by simply updating attribute values, which may change the access

decision between requests. This has allowed ABAC to supplant prior identity-based access

models, including DAC, MAC, and even RBAC [75].

The related work on ABAC can be broadly grouped into: (i) Formal models that

define the basic ABAC elements (i.e., users, objects, attributes etc.) along with their

relations and constraints [75]; (ii) Policy Languages to express authorization rules [77]; and

(iii) Attribute-Based Encryption (ABE) for fine-grained cryptographic access control using

a many-to-one public encryption scheme [125, 126]. In ABE, an administrator generates

keys in a tree-like structure and assigns them to users, such that decryption is only possible

if the user has the necessary attributes (KP-ABE) or satisfies the ciphertext access policy

(CP-ABE).

Although ABAC offers a promising solution for protecting cloud applications, practical

instantiations either consider static scenarios, or oftentimes rely on a semi-trusted server

for dynamic access control [124, 125, 126]. Whereas extensive research has focused on data

security with ABE, implementations offer limited expressiveness in supporting environment

attributes, and incur severe computational overheads on user revocation. By requiring bulk

file re-encryption and key redistribution, the revocation cost is proportional to the number of

68

affected user files and their degree of sharing. Given that we target a dynamic environment

where access policies and user memberships may change frequently and unpredictably, we

address these shortcomings without any server-side coordination, while providing efficient

user revocation, as well as fine-grained and context-aware access control.

5.2.2 Usage Control

Usage control (UCON) is a generalization of access control that considers not only who can

access data, but also how this data may be used or distributed in the future [82, 83, 84]. UCON

is an attribute-based model centered on two aspects: mutable attributes and continuous

enforcement. Mutability recognizes that user, objects, or environment attributes may change

while access is in progress. Continuous enforcement ensures that policies are evaluated before,

during, and after the usage period, and may terminate usage in the event of a violation.

Besides attribute-based authorization, a UCON policy also includes obligations and conditions.

Obligations are actions or requirements (e.g., “delete file after 20 reads”) that must be fulfilled

throughout the usage, whereas conditions are environment restrictions (e.g., time) validated

before and during usage. UCON can encompass traditional access control models, trust

management, and even DRM [82].

Prior research on usage control has mostly focused on obligations and reference enforcement

architectures [86, 87, 90]. Distributed usage control is the ability of a data owner to restrict

remote remote usage by requiring enforcement on every machine that stores, processes, and

distributes sensitive data [91]. Depending on the application, enforcement may occur either

on the server, the client, or a combination of both. Whichever the case, the monitoring on

the client must be tamper-proof, impossible to circumvent, and verifiable in enforcing access

and usage policies. However, in addition to privacy issues, centralized scenarios also incur

significant client–server communication overhead, and require the server to be always online.

Other works make trustworthiness assumptions of client-side components to ensure data

confidentiality and integrity [86]. Hardware-based approaches have been proposed, but they

either rely on expensive hardware or do not provide isolated execution [92]. We address these

data security issues by leveraging commodity trusted hardware to provide scalable access

69

and usage control within a distributed file sharing environment.

5.2.3 Decentralized Policy Management

In large scale systems with many users and files, requiring centralized administration for every

access right may be unbearable and even obstruct user collaboration. Due to the flexible

and dynamic nature of ABAC, we identify two important features that could serve as key

enablers for upcoming generations of decentralized access control systems: multi-domain

policies and delegation.

Multi-domain policies. Typically, administrators in ABAC define the set of attributes

within a given domain. Attributes can only be assigned to users/objects within that domain,

and presumably, system policies are only expressible in terms of those attributes. However,

there exist situations where policy specification could include attributes from other domains.

For instance, consider a group of researchers who want to share resources, but their respective

organizations have no common trusted root authority. Each organization maintains complete

control their attribute definition and policy specification, but want to selectively share a

subset of their resources, while ensuring safety from inappropriate access. Trust Management

and Trust Negotiation are techniques for establishing trust within an open environment

using attributes [127, 128]. We offer similar attribute-based access control with multi-domain

support using commodity trusted hardware and distributed reference monitors, as opposed

to prior implementations that require special infrastructure to distribute credentials.

Delegation. This is the ability of a delegator to selectively their transfer rights unto a

delegatee [129]. The delegatee is granted temporary access on behalf of the delegator, who

can revoke the transferred privileges at anytime. For example, a professor could delegate

“maintainer” privileges for their teaching assistant to manage a submission directory, before

revoking them at the end of the semester. However, user delegation within a distributed

environment poses several challenges, including timely revocation and using fresh attributes at

evaluation time. In addressing these issues, secure delegation offers a flexible mechanism for

discretionary access control between trusting parties, without leakage of private credentials.

70

5.2.4 Hardware-Assisted Access Control

Several works have proposed using TEEs to enable secure access control. IBBE-SGX [32] pro-

poses a computationally efficient IBBE scheme and A-SKY [111] addresses the impracticality

of anonymous broadcast encryption. However, both restrict all group membership operations

to an administrator that hosts the enclave. PESOS allows users to specify per-object access

policies, which are enforced by policy-based engine within the enclave [34]. Like Joplin, the

policies are written using a declarative syntax. However, it requires server-side support for

trusted hardware as well as specialized Kinetic storage drives, which at the time of writing

are not readily available on cloud services. In this paper, our approach requires no server-side

modifications, while providing a decentralized enforcement and rich user sharing.

5.3 SYSTEM DESIGN

We now present Joplin, a secure access and usage control enforcement system for untrusted

storage platforms. After outlining our design goals, we describe the client-side approach,

ABAC model, policy language, obligations support, and high-level architecture. Altogether,

this provides a solid foundation for developing fine-grained and scalable attribute-based user

sharing within existing cloud-based environments.

5.3.1 Design goals

Similar to NeXUS, our design provides a balance between practicality and portability with

the following requirements:

• Practicality: The number of keys managed by users should not increase with group

membership or permitted objects.

• Portability: The system must not require any server-side modifications or trusted inter-

mediaries, and should be compatible with commodity cloud storage platforms. We rely on

the underlying filesystem interface for metadata storage and distribution.

71

• Scalability: Access control enforcement must scale up to thousands of users and policies.

Likewise, revoking users and updating access control information should be efficient without

inducing a cascade of metadata updates.

• Rich semantics. Beyond providing fine-grained access and usage control, the system must

provide a secure foundation for decentralized policy enforcement, including user delegation,

usage control, and cross-domain attribute sharing.

We opt for a small TCB and minimal interface so that library applications and secure

filesystems (e.g., NeXUS [107]) can easily incorporate our solution for secure ABAC enforce-

ment. Furthermore, the distribution of generated metadata should not require the deployment

of additional services; instead our solution should allow users to employ their existing storage

platform. Hence, we minimize storage assumptions and adopt a lightweight solution that

stores metadata as files, such that integration with various storage systems is possible with

moderate effort.

5.3.2 Client-side Approach

Reference monitors are the standard mechanism for continuous enforcement of access and

usage control policies in traditional systems [130]. As part of the TCB, a reference monitor

observes all accesses to sensitive objects, evaluates requests against security policies, and

undertakes corrective action in the event of a violation. A straightforward solution would

be to develop a server-side monitor that mediates all user requests against a centralized

repository. This could provide fast and granular data access and provide a global scope

for enforcing policies. Because our threat model considers the server as untrusted, one

could employ trusted hardware to prevent malicious providers from subverting the monitor’s

operation. However, this requires trusted hardware support on the server, which at the

time of writing still is not widely available amongst cloud providers. Alternatively, we can

treat the cloud as an opaque storage layer with a client-side approach that intercepts and

enforces access requests at the consumer end. To prevent unauthorized users from accessing

or tampering sensitive information, this approach requires data distribution in encrypted

form. Although purely cryptographic techniques like ABE provide data security, they do not

72

readily support environment attributes, which are necessary for multi-factor authorization

and obligations enforcement.

In this work, our approach is to execute the reference monitor on individual client

machines and utilize TEE primitives (Section 5.2.4) for decentralized access control. Isolated

execution enables tamper-proof access enforcement and cryptographic protections, whereas

Sealed storage and Remote attestation allow the persistence of cryptographic material across

valid trusted hardware platforms. We ensure confidentiality and integrity by storing user-

provided access policies within encrypted metadata files, and enable seamless key distribution

by securely attaching key material that is only accessible inside the enclave. As a result,

cryptographic material remains under the control of the enclave, which in turn independently

enforces access and usage control. Given the widespread availability of trusted hardware on

commodity machines, our user-centric solution can be easily deployed by individuals and

organizations of existing remote storage services, without relying on a centralized server or

additional infrastructure.

Although trusted hardware may alleviate the computational and network overheads

associated with pure cryptographic schemes, building a practical access control system

presents several challenges. Because continuous enforcement relies on multiple components,

performance depends on their complexity and degree of inter-communication. Therefore,

beyond providing an access control model and a policy language, the enforcement architecture

must also support efficient user revocation, manageable administrative costs, as well as

interoperability across domains.

5.3.3 ABAC Model

This work focuses on ABAC, a flexible and dynamic model which uses attributes to separate

privilege assignment from policy specification; user, object, and environment attributes can

be provisioned and managed in a decentralized fashion, whereas policies arbitrarily combine

attributes in a fine-grained manner. This makes ABAC particularly well-suited for providing

access and usage control within an open environment. We build on ABACα, a foundational

model with minimal assumptions on administrative control or system attributes [75]. Formally,

73

Command Meaning

add_user/remove_user Add or remove user
add_object/remove_object Add or remove object
add_attribute/remove_attribute Add or remove user/object attribute
grant_attribute/revoke_attribute Grant or revoke user/object attribute
add_policy/remove_policy Add or remove policy rule

Table 5: Joplin Administrative ABAC commands

our ABAC model is described by the tuple 〈U, O, UA, OA, UAA, OAA, PERM, Po, Auth〉

as follows:

• The set U contains identities for all users in the system, whereas O refers to all the protected

objects.

• User attributes (UA) and object attributes (OA) are the sets of all attributes that can be

assigned to users and objects, respectively. The relations UAA (U × UA) and OAA

(O × OA) are user-assigned and object-assigned attributes, respectively. Assigned attributes

have an optional integer or string value.

• Permissions (PERM) are possible system actions or privileges, which include read, write,

create, delete, and audit. At runtime, the audit permission is enforced as an obligation

that records the current access request unto a log file.

• Policies (Po) are the set of policy rules representing the conditions under which an access

is authorized. The syntax is described by our policy language in Section 5.3.4, whereby

each rule maps a given permission to combination of user and object attributes.

• The authorization function (Auth) that takes a request (perm, u, o) and the current access

state 〈UAA, OAA, Po〉 as inputs, and returns true if the user/object attributes satisfy a

system policy with the matching permission.

Administrative model. With regards to our system model, the volume owner is in

charge of administering access control information within a given domain, but is not required

to mediate access requests. Listed in Table 5, administrative commands include attribute

74

Predicate Meaning

Dynamic Predicates
@uname(U, x) Check user name
@upubkey(U, x) Check user public key
@oname(O, x) Check object name
@opath(O, x) Check object full path
@oversion(O, x) Check object version
@ocreator(O, U) Check for the object creator

Boolean Predicates
_eq(x, y) x=y
_ne(x, y) x6=y
_gt(x, y) x>y
_ge(x, y) x≥y
_lt(x, y) x<y
_le(x, y) x≤y

x and y are constants (i.e., a string or number)

Table 6: Predicates in Joplin’s predicate language

management, user membership, and policy specification. Each command takes the current

system state 〈U, O, UA, OA, UAA, OAA, Po〉 with arguments, and transition unto a new

state 〈U′, O′, UA′, OA′, UAA′, OAA′, Po′〉. In our implementation, we extend this model to

provide flexible administrative and sharing paradigms.

5.3.4 Policy Language

Joplin provides a declarative policy language for protecting confidentiality and integrity

with an ABAC environment. The language is based on Datalog, a logic-based programming

language with a simple syntax, concise semantics, and efficient computation over large

datasets [131]. A Datalog program consists of facts that assert relevant traits, rules that

deduce facts from other facts, and queries that verify the existence of facts. Rules are

expressed as Horn clauses with the form ‘L0 :- L1, ..., Ln’, where L0 is the head and each Li

is a literal with the shape ‘predicate(term,...)’. Adopting a declarative approach not only

75

provides fine-grained and context-aware expressiveness, but also ensures that policies have

a precise meaning that is independent of the enforcement mechanism or the identities of

existing user or object entities [34].

Essentially, Joplin policy rules are authorization functions that grant specific permissions

by evaluating user (U) and object (O) attributes with predicates. For example, to authorize

“read if the user is a student and the object is the CS449 book”:

read :- isStudent(U), book(O, “CS449”)

Our policy language also supports predicates that encode dynamic elements of a system.

Shown in Table 6, Joplin provides 3 types of predicates: (i) static predicates that capture

assigned attributes; (ii) dynamic predicates that capture runtime information; and (iii)

boolean predicates that can compare attribute values. Predicates take two terms, but static

predicates can omit the second argument to check for attribute existence. Both static and

dynamic predicates are tied to user or object entities, but the latter checks for information

that is not explicitly set by the owner (e.g., user location, object version). For example,

“write if the user’s role attribute is faculty and file name is foo.md” translates to:

write :- role(U, “faculty”), @oname(O, “foo.md”)

Another example, “write if the user is a student and object’s version is below 30” becomes:

write :- isStudent(U), @oversion(O, X), _lt(X, 30)

Lastly, our language also allows policies to capture attributes that belong to other

domains. These are similar to static predicates, but their identifier is prefixed with the

domain’s namespace. Assuming a user wishes to capture attributes from a domain named

‘mint’ and restrict read access to ‘mint’ employees:

read :- _mint_employee(U), @oname(O, “secret_docs”)

At runtime, user and object attributes are copied as facts into the Datalog reasoner,

which evaluates each authorization request against the system’s access and usage policies.

76

Applicability

Implementation

Time
Cardinality
Events
Environment
Purpose
Inhibit
Finite delay
Modify
Execute

Conditions

Enforcement type

One-time
RecurringDistribution model

Logging

Process
Render
Execute

White box

Manage
DistributeBlack box

Usage Class

Figure 18: Taxonomy of Obligations from prior work focusing on Applicability and Imple-

mentation [132]. Black circles can be readily supported by Joplin.

77

5.3.5 Support for Obligations

Obligations are mandatory actions or requirements that have to be satisfied as part of

an object’s usage [82, 133, 134]. Depending on the specific scenario, distinct obligations

policies can dictate how data may be used or distributed beyond authorization. However,

our client-side architecture and use of trusted hardware restricts the scope of enforceable

obligations. For example, SGX does not allow direct access to system facilities such as time,

system calls, or library functions. Therefore, we survey how obligations enforcement has been

employed in prior work, and explore how different aspects apply to our design [132, 135, 85].

Shown in Figure 18, we focus on Applicability and Implementation, leaving out criteria such

as License and other non-functional properties (e.g., cost).

Applicability deals with what is expressible within a policy, including the usage class and

conditions. There are two usage classes: black box usage where data is simply managed and

distributed as bytes, and white box usage that involves further data processing, rendering, or

execution. Conditions define the environmental context: (i) Time denotes when to fulfill the

obligation; (ii) Cardinality is to how many times an action occurs; (iii) Events result from

specific system operations; (iv) Environment refers to organizational, technical, and physical

requirements; and (v) Purpose are human-specified rules. Conditions are evaluated before

and during usage, and can be combined to form expressive policies; e.g., “delete file by 20

days or after 20 reads” uses both time and cardinality.

On the other hand, Implementation is concerned with the types of enforcement, distribu-

tion model, and logging capabilities. Enforcement types include: (i) inhibiting the attempted

usage, (ii) introducing a finite delay (e.g., waiting for a server response), (iii) modifying usage

data (e.g., down-sampling images on mobile), or (iv) executing actions (e.g., deleting an

attribute). Lastly, the distribution model is whether the usage can be enforced recurrently or

just once, whereas logging is the ability to securely record system operations.

As described in the literature, obligations enforcement can be expressed in terms of

controllability or observability [133]. Controllable obligations are executed either as part

of internal system actions (e.g., deleting a file), or require communication with an external

component that guarantees fulfillment. As such, our architecture supports black box usage

78

fully, while providing partial support for white box usage via in-enclave processing (e.g., image

compression). For conditions: (i) time can be incorporated by validating the responses from

a trusted time service with a public key pinned inside the enclave [28, 136], (ii) cardinality

such “homework file can only be read twice” could be enforced by counting the number of

read entries in a log file, and (iii) events could be detected from internal system operations.

For different enforcement types: inhibition, finite delay, modifications, and execution of

actions can be supported if performed within the enclave, although finite delay will require a

fine-grained time source [136].

Observable obligations provide a weaker notion in that fulfillment is only verifiable because

they either require human intervention, or interact with an external component that does

not provide strong enforcement guarantees. For example, although we could readily support

the detection of platform specifications (e.g., CPUID), integrating physical aspects such as

location or external technologies (e.g., firewall presence) requires trustworthiness assumptions.

This also applies to white-box usages such as rendering to a screen and executing another

program. Purpose restrictions (e.g., for private use only) and license agreements cannot be

readily enforced by our system.

Non-observable obligations are neither executable nor verifiable. This usually involves

obligations whose enforcement occurs in the future (e.g., notify the user in 2 days). However,

non-observable obligations can be made observable through logging capabilities that could

later be examined to discover any potential violations [133]. To this purpose, we implemented

an audit mechanism that leverages the enclave runtime to record access authorizations inside

an encrypted log file (Section 5.4.3).

5.3.6 High-Level Architecture

The central component of Joplin is a Controller that runs inside an enclave. Joplin unifies

policy enforcement and data security by mapping user/object identities to attributes, while

internally managing access control information within metadata. To provide confidentiality

and integrity, the enclave encrypts metadata using enclave-resident keys, before sending the

ciphertext to the server. This ensures that metadata is only decryptable within a valid Joplin

79

Enclave

Joplin Controller

Logic Engine
Storage API

Policy
Manager

Attribute
Manager

Obligations
Module

Access
Broker

Po
lic

y
En

fo
rc

em
en

t P
oi

nt
 (P

EP
)

server
Policy Information

Point (PIP)
Policy Decision

Point (PDP)

Figure 19: Joplin High-Level Design

enclave, which utilizes trusted hardware protections to independently enforce the embedded

access and usage control policies.

Depicted in Figure 19, Joplin exposes an interface for administering access control and

providing continuous enforcement. To accomplish this, Joplin coordinates the following

subcomponents: (i) an Attribute manager that handles user, object, and environment

attributes; (ii) a Policy manager that manages access and usage control policies; (iii) an

Access broker that determines user authorization; (iv) an Obligations module that performs

usage requirements; (v) a logic engine that evaluates access requests using system policies

and relevant attributes. The Attribute and Policy managers collectively serve as the Policy

Information Point (PIP), whereas the Access broker and Obligations module refer to the

Policy Decision Point (PDP). The PIP provides an interface for retrieving, subscribing, and

updating attributes, as well as policies. This includes user attributes from other domains and

delegated attributes from other users. The Policy Enforcement Point (PEP) mainly intercepts

and forwards access requests from the user, and enforces the PDP’s authorization/obligation

decision.

On every access request, the Controller first invokes the PIP to fetch the necessary

attributes and policies. This involves interacting with the Storage API to fetch the necessary

metadata, which are then decrypted and verified inside the enclave before use. After updating

80

the internal access control state (i.e., attributes, policies, and partial results), the Controller

invokes the PDP to evaluate the request. The Access broker communicates with the logic

engine to determine if the user has the requested permission over a given object. Likewise,

the obligations module evaluates usage policies and performs obligation actions, which may

include updating attributes via the PIP or aborting the request. Finally, after re-encrypting

and committing every updated metadata object to the storage API, the Controller returns

the PDP decision to the PEP for enforcement. Thus, by managing access control information

inside encrypted metadata, Joplin essentially acts like a transparent security layer over

unmodified storage.

5.4 IMPLEMENTATION

We now describe the implementation of a Joplin prototype that enforces fine-grained access

and usage control within a secure filesystem environment. We extend NeXUS filesystem

interface with an access broker that uses attributes and policies to evaluate authorization

requests. While taking into account the architectural limitations of trusted hardware, Joplin

provides, efficient revocation, and decentralized policy administration with multi-domain

support and user delegation.

5.4.1 Metadata

ABAC enforcement within a filesystem requires storing user attributes for each volume user,

object attributes for each file and directory, as well as policy rules for the volume. In addition,

access control data must be confidential, integrity-protected, and consistent with filesystem

information. Depicted in Figure 20, Joplin manages a flat namespace comprising of three

metadata types: attribute space, policy store, and assignment table.

• Attribute space: Defines the set of all user and object attributes in a volume. It contains

a list of (name, type, UUID) triplets called schemas, where type is either user or object.

The volume owner can add or remove attributes at any time. To prevent name aliasing,

81

attribute_space
version_t last_policy_store
LIST schema

+ uuid
+ type
+ name

policy_store
version_t last_attribute_space
LIST rule

+ rule_uuid
+ permission
+ encoded_policy

assignment_table
version_t last_attribute_space
version_t last_policy_store

assignment

+ attribute_uuid
+ value

LIST

Figure 20: Joplin Metadata Structures.

each attribute is assigned a randomly generated UUID at creation time. The attribute space

also tracks the last known metadata version of the policy store.

• Policy store: Lists all the policy rules in the volume. Each policy rule maps a permission

to an encoded string representation. Rules can be added and removed by the volume owner.

The policy store also stores the last known version of the attribute space.

• Assignment table: Contains the list of assigned attributes for a particular user or

object (file/directory). Each entry consists of an (attribute_uuid, value) tuple, where

attribute_uuid points to the schema inside the attribute space. The volume owner can

grant, revoke, and update assigned attributes at any time. In a similar fashion, the

assignment table tracks the last known versions of the attribute space and the policy store

metadata.

The attribute space contains the set of user and object attributes (UA ∪ OA), the

policy store contains the set of all policies (Po), and the assignment table handles individual

user-assigned (∈ UAA) and object-assigned (∈ OAA) attributes. We integrate access control

information with the NeXUS VFS by: (i) extending the supernode with the UUIDs of the

attribute space and policy store to load them at system startup, (ii) inlining assignment

tables within individual filenodes and dirnodes to store object-assigned attributes, and (iii)

creating an assignment table for every user entry in the supernode to store user-assigned

attributes. This ensures that file/directory access control information is provided alongside

with filesystem information during access requests, and that attribute/policy changes require

only a fixed number of metadata updates. For example, attribute revocation only requires

82

deleting the entry from the corresponding user or object assignment table. Likewise, removing

a user from the volume consists in deleting their entry inside the supernode, along with their

user assignment table metadata.

5.4.2 System Initialization

In a typical workflow, a user first mounts their volume on a local directory and begins

accessing its contents. However, the enclave must first authenticate and load the user’s

credentials. This includes directly assigned attributes within the local volume, attributes

from other domains, as well as delegated attributes. Assuming that the volume rootkey has

already been exchanged amongst the parties (Section 4.3.4.1), we now describe how Alice

mounts a volume owned by Owen.

User authentication. The supernode stores the identities of the volume owner and

other authorized users as (name, public key, UUID) entries. For user authentication, the

enclave: (i) decrypts/verifies the supernode metadata to ensure it has not been tampered

with, (ii) confirms Alice has been granted to the volume by checking her public key inside

the supernode, and (iii) establishes that Alice owns the matching private key through a

signature verification on a nonce [107]. On success, the enclave uses the metadata UUIDs

inside the supernode to fetch the attribute space, policy store, and Alice’s user assignment

table. After each metadata is decrypted and verified, the Attribute and Policy managers load

the attributes and system policies inside enclave memory.

Cross-volume attributes. To support user attributes from multiple domains, we

provide an interface to attach and detach volumes at runtime. We extended the supernode

with a list of foreign volumes, such that each (supernode_uuid, namespace) tuple maps

a foreign volume unto a unique namespace. Let us assume Owen adds the MintCorp

volume with “mint” as the namespace, and Alice is a MintCorp user that wishes to load her

foreign attributes. Similar to user authentication, attaching the foreign volume involves: (i)

decrypting and verifying the MintCorp supernode, (ii) validating the MintCorp supernode

UUID is a foreign volume within Owen’s supernode, and (iii) confirming the presence of Alice’s

public key in the MintCorp supernode. To complete the process, the MintCorp attribute

83

space and Alice’s foreign user assignment table are loaded into the enclave. The Attribute

Manager maintains a map of volume namespace and the corresponding user attributes.

Delegated attributes. We provide an interface for delegators to select attributes from

their user assignment table, and transfer them unto a delegatee. This enabled by a delegate

file, a metadata object that contains the public keys of the delegator and delegatee, as well

as the UUIDs of the delegated attributes. To track the delegate files issued by each user,

we also extended the user assignment table with a list of delegate file UUIDs. Assume that

another user, Carey has delegated the “maintainer” attribute to Alice. Specifically, Alice

is in possession of a delegate file, and Carey’s user assignment table contains the delegate

file UUID. With this, the enclave loads Alice’s delegated attributes by: (i) decrypting and

verifying the delegate file metadata, (ii) fetching Carey’s assignment table, and (iii) checking

the presence of the delegate file inside Carey’s assignment table. To complete the process,

the Attribute Manager adds the delegated attributes and Carey’s assignment table to a list.

With initialization complete, the logic engine can begin pre-computing intermediary

results using the loaded system policies and user attributes. This pre-caching of results

enables efficient query evaluation at access time. However, although user attributes are

expected to change rarely, dynamic enforcement requires refreshing the enclave state to

ensure correct access and usage decisions at evaluation time. Therefore, we measure the

query evaluation latency and the refreshing cost in our evaluation.

5.4.3 Enforcing Access Policies

Once mounted, users can employ their applications to issue filesystem requests within the

volume. To ensure that only authorized users can access particular files and directories, this

section describes how the Joplin Controller orchestrates metadata and various components

on every filesystem request. The core functionality enabling continuous enforcement is a logic

engine that reasons over a knowledge base inside trusted memory.

The knowledge base represents an abstract datalog program, containing a subset of the

access control state with up-to-date facts and rules. Each fact is a 〈UUID, predicate, value〉

triple, which asserts that a user/object entity has a given predicate and an associated

84

optional value. Facts are of two types: assigned facts that are extracted from the user/object

assignment table, and contextual facts that are derived from system runtime information (e.g.,

file size, user name). More specifically, assigned facts comport local, foreign, and delegated

attributes. On the other hand, rules are extracted from the volume’s policy store. To detect

stale facts and rules, the knowledge base also tracks the metadata version for each cached

user/object entity, as well as the policy store.

5.4.3.1 Preprocessing From the previous subsection, consider Alice, who after mounting

Owen’s volume, has attached the MintCorp volume and loaded the delegate file from Carey.

Assume that Alice now requests to read the ‘bar/cake.c’ file. This is intercepted by the

NeXUS VFS, which traverses the path to retrieve the filenode metadata. The Joplin

Controller is then invoked with the read permission and the filenode containing the object

assignment table.

• First, the Attribute and Policy managers retrieve metadata to refresh Alice’s attributes

and polices, including the metadata of every mounted and attached attribute space, Alice’s

local and foreign assignment table, Carey’s assignment table (for the delegated attributes),

and the policy store. For each metadata, we check the knowledge base for staleness and

retract the corresponding facts/rules if the metadata is considered newer.

• We use the Attribute Manager to generate assigned facts from the user and object assignment

tables. For each 〈attribute_uuid, value〉 entry of the assignment table, the attribute_uuid

is used to lookup its corresponding name inside the attribute space (see Figure 20). The

attribute name is then conjoined with the user/object metadata UUID and attribute_value

to form an assigned fact. For example, Alice’s attribute table may return 〈role, student〉,

〈city, pittsburgh〉 as assigned facts. The process is repeated for the foreign and delegated

user attributes as follows:

– For each foreign assignment table, we prefix each attribute name with the names-

pace of the corresponding volume. For example, if Alice has 〈role, employee〉 at-

tribute assignment in the Mint Corp volume, the corresponding assigned fact will be

〈_mint_role, employee〉. By prefixing attributes with their respective namespace, the

85

logic engine can differentiate between attribute domains without requiring any changes

to the existing reasoning algorithm.

– For each delegate file, (i) we check its UUID is still present in the delegator’s assignment

table, and (ii) use its delegated attribute UUIDs as a mask over the delegator’s assignment

table. This ensures that the delegate file has not been revoked, and the reasoning

process uses up-to-date attributes.

• For contextual facts, we enumerate the metadata using a fixed set of runtime functions (see

dynamic predicates in Table 6). Examples of Alice’s contextual facts are 〈@uname, alice〉

and 〈@upubkey, ab29e8〉, as her name and public key, respectively.

• Finally, we use the Policy manager to load the policy rules into the knowledge base.

5.4.3.2 Evaluation This stage serves as the central point for policy evaluation (i.e.,

authorization and obligations), before returning execution to the NeXUS VFS, which then

enforces the evaluation result. For authorization, the access broker queries the logic engine

with the permission, user, and object. The Datalog engine reasons over the knowledge base

to generate inferences that match the query. Meanwhile, the Obligations module monitors

system events, evaluates the usage policies, and performs the required actions.

We implemented an obligations mechanism that records the read and write operations

on a given file or directory. After authorization is granted, the logic engine is queried with

the ‘audit’ permission to determine whether the current operation has to be recorded. As an

example, to record filesystem operations on ‘bar/cake.c’:

audit :- @opath(O, “bar/cake.c”)

To accomplish this, every object (i.e., filenode and dirnode metadata) is associated with a

log whose entries contain: the operation (read or write), the user’s identity, and the object’s

version. The log is maintained as a metadata object, and is thus cryptographically-protected

by the enclave runtime. Upon successful evaluation of the audit policy, an entry is simply

appended to the log before proceeding with the operation. This lightweight approach only

indicates that the access request was permitted, and does not imply the operation was

successful (e.g., the application may crash).

86

5.4.4 Implementation Details

We developed a userspace program that uses SGX for transparent and secure access to

protected volumes residing on remote untrusted storage. Per our design goals, our prototype

does not require any server-side changes. Using the SGX SDK, we split our application into

an untrusted portion that runs in normal userspace and a trusted portion that runs inside

the enclave. The untrusted portion (14.2K SLOC) mainly (i) implements the filesystem

and ABAC interfaces, and (ii) provides metadata access via the storage API. Whereas, the

trusted portion encloses sensitive operations, including cryptographic protection and policy

enforcement.

The enclave design is small and minimalistic. With a total binary size of 1.8MB, the

enclave easily fits within the limited enclave-reserved memory (SGX provides about 96MB),

while leaving ample memory for runtime allocations. Excluding external libraries, our TCB

primarily comprised of the Joplin Controller (5K SLOC) and the NeXUS VFS (15K SLOC).

For cryptographic support, we included a subset of the MbedTLS library and a C-based

implementation of GCM-SIV key-wrapping primitive. Our logic engine comprised of a small

datalog reasoner (1K SLOC) written in Lua, a lightweight embeddable scripting language

with a small virtual machine (<20K SLOC) [137, 138]. The enclave interface comprised of

44 ecalls and 10 ocalls. Ecalls marshal data from the filesystem and ABAC interfaces into

the enclave, whereas ocalls facilitate enclave access to data/metadata objects. To prevent

inadvertent leakage, we sanity check our inputs and explicitly copy untrusted buffers into

trusted memory before passing it to sensitive enclave code.

5.4.4.1 Cache management Joplin employs several caches in order to improve the

efficiency of various ABAC operations, including in-enclave caches for recently accessed

metadata and the knowledge base, and untrusted memory buffers storing encrypted metadata.

On every request, the enclave checks for metadata freshness via the storage API and updates

the caches on change. The Lua reasoner represents the knowledge base as a Lua hash table,

and also provides an interface for asserting/revoking facts and rules. To prevent the enclave

from running out of memory, the user can set a maximum for the number facts and policies

87

in the knowledge base.

5.5 EVALUATION

5.5.1 Use cases

In this section, we evaluate the expressiveness of the Joplin policy language by demonstrating

its applicability across several use cases.

5.5.1.1 Case study 1 For a semester’s course, a professor creates a volume to store

student homework submissions within a flat directory. There are two user types: students

and a Teaching Assistant (TA).

• The professor creates the isStudent and isTA user attributes, and assigns them to students

and the TA, respectively.

• Students can submit a single file, but can overwrite up to 5 times.

• Students can read their own submission.

• The TA can read all submissions.

create :- isStudent(U)

write :- @oversion(O, X), _lt(X, 5), @ocreator(O, U)

read :- isStudent(U), @ocreator(O, U)

read :- isTA(U)

In this use case, the data producers are the invited users and the administrator just

formulates rules to control who can read/write. Note that the enclave automatically increments

every object’s version during metadata encryption. Although the policies do not prevent the

students from creating multiple submissions (creating a file with a different name), the TA

could use the oldest created file and ignore the extras.

88

5.5.1.2 Case study 2 Jessie wants to share her pictures with her friend Mallory, and

two groups of people: friends and family. This scenario is one in which a data producer

intends to share files with data consumers, who can only access a portion of the data.

• Jessie creates two user attributes: isFriend and isFamily, and 3 object attributes: isFavorite,

isVacation, and isSensitive.

• Friends can access favorite pictures.

• Family can access vacation pictures.

• Mallory can access sensitive pictures.

read :- isFriend(U), isFavorite(O)

read :- isFamily(U), isVacation(O)

read :- @uname(U, “mallory”), isSensitive(O)

5.5.2 Performance

To demonstrate that Joplin can provide scalable access control, we evaluated our prototype

through a series of microbenchmarks and end-to-end tests. Based on the design goals in

Section 5.3.1, we measure the enforcement and administrative overheads to answer the

following:

1. Can the system support a large set of users and policies?

2. Can policies be added/removed efficiently?

3. What are the overheads on standard user workloads?

We performed our experiments on an i7 @3.4GHz with 8GB RAM and 128MB of EPC

memory, running SGX SDK 2.2 and Ubuntu 18.04 LTS. The tests consist in measuring the

latency of various access control and filesystem operations within Joplin. For timing enclave

operations, we use an untrusted script that updates a memory location with a time value,

which is then copied into the enclave. We stored the volume in a Dropbox shared folder, such

that all changes are asynchronously uploaded by the daemon unto the cloud. To measure I/O

latency, we used a python script that pauses execution until the Dropbox daemon completes

synchronization. Moreover, our experimental results are averaged over 10 runs.

89

25 250 2500 25000
Number of Policies

(log scale)

0

25

50

M
em

or
y

(M
b)

1.33 2.21
9.64

58.83
Total Memory
Lua Memory

(a) Enclave memory usage

25 250 2500 25000
Number of Policies

(log scale)

0

50

La
te

nc
y

(m
s)

0.06 0.36 4.01

73.31

(b) Evaluation latency

25 250 2500 25000
Number of Policies

(log scale)

0

100

200

La
te

nc
y

(m
s)

0.2 1.96 19.2

201.9

(c) Latency to load policies

25 250 2500 25000
Number of Policies

(log scale)

0

5

10

La
te

nc
y

(s
)

3.0 3.37 3.57
4.56

Total time
Local time

(d) Latency for policy deletion

Figure 21: Joplin Microbenchmarks.

90

5.5.2.1 Microbenchmarks In this test, we isolate the performance overhead incurred

by Joplin by evaluating various aspects of the access control system. For our workloads, we

developed a policy generator that uses a dictionary of 10000 user and object attribute names

to create synthetic policies with 7–10 predicates in length.

Enclave memory usage. We measure the amount of memory required for loading a

given set of policies inside the enclave. Specifically, we record the memory usage of the Lua

runtime (stores knowledge base and logic engine), as well as the overall enclave runtime.

Results in Figure 21a show that although memory use increases proportionally with the

number of policies, the enclave can support up to 25,000 policies with less than 60MB of

memory. Given that SGX provides about 96MB, this leaves enough space to cache other

objects such as file and directory metadata.

Access evaluation. We measure the latency for the logic engine to generate access

decisions. First, we load the knowledge base with a number of policies, and then assign

attributes that will satisfy the access request. We then query the knowledge base and

record the response latency in Figure 21b. Results show that even with 25,000 policies, the

evaluation latency is about 73.31ms, which is well below the 100ms threshold for noticeable

user delay [139].

Knowledge base refresh. We measure the time for refreshing the knowledge base with

a new set of policies. Results in Figure 21c show that for a small number of policies, the

evaluation latency is as small as 0.2ms, and go up to 200ms for 25,000 policies. However, this

number represents a worse case scenario whereby all the policies are loaded into the enclave,

which could be optimized by selecting the policies that match the requested permission.

Policy store update. We measure the latency for deleting a policy from a volume

hosted on Dropbox. Recall that every in operation in Joplin requires updating and re-

encrypting metadata within the enclave, before committing to the backing store. The results

in Figure 21d show that a policy store of 25,000 rules can be updated in 5s. The overall

latency is mostly dominated by the network cost to synchronize the 3.7MB policy store file.

5.5.2.2 End-to-end Latency In this test, we measure the latency of copying the follow-

ing datasets inside a synchronized Dropbox folder: an MP3 collection (155MB), a large movie

91

141 MP3s
(155MB)

1 Movie
(643MB)

211 PDFs
(315MB)

0

25

50

75

La
te

nc
y

(s
)

dropbox
nexus vanilla
abac + audit

Figure 22: Latency on top of Dropbox

(643MB), and several PDFs documents (315MB). We used 3 prototypes: plain Dropbox,

unmodified NeXUS, and Joplin. For our Joplin prototype, we added an audit policy that

records all directory operations (e.g., when a file is created). Figure 22 shows that compared

to Dropbox, both NeXUS and Joplin have less than a ×2 overhead across workloads. Often-

times, the computational and network processing (i.e., batching, compressing etc.) by the

Dropbox daemon introduced spurious latencies. We recall that the reported value is the total

time required to synchronize data to Dropbox, not the latency experienced by the user. In

both NeXUS and Joplin, the time for copying files to the local folder was well under 5s.

5.5.3 Takeaway Discussion

Our experimental results show that Joplin effectively provides a scalable ABAC system, with

applicability ranging from single user environments to large scale organizations. The mi-

crobenchmarks show support for large working sets, while providing efficient query evaluation

and low administrative overheads. On standard user workloads, Joplin incurs less than a ×2

overhead when synchronizing files inside a shared Dropbox folder.

Joplin is designed to operate within a multi-user environment. Although much of our

92

microbenchmarks focused on policies, we extrapolate other costs as follows: granting/revoking

attributes requires a single write operation, and adding/removing users involves updating

2 metadata objects. Unlike pure cryptographic solutions such as ABE that require bulk

data re-encryption and cascading key updates, Joplin only requires updating small metadata

objects to efficiently provide both user and attribute revocation. Additionally, given that

attribute assignments are relatively small (compared to policies), loading them into the

enclave should be fast and use less memory. Therefore, updating the runtime access control

state can be likewise performed efficiently, as it only requires dropping stale attributes from

the knowledge base.

5.6 CONCLUSIONS

We proposed Joplin, a secure ABAC system that leverages trusted hardware to enabled

fine-grained access and usage control on existing storage, without requiring any server-side

coordination. Joplin addresses the technical challenges of decentralized access control by

providing efficient revocation, dynamic policy changes, and multi-domain policy enforcement.

This is enabled by a client-side enclave that provides a tamper-proof, unavoidable, and

verifiable reference monitor. It applies cryptographic protections to user-provided access

control policies and stores it within metadata, which is in turn decrypted for continuous

enforcement at runtime. We describe how different obligations can be supported by our

design. We implemented a prototype by extending NeXUS, a stackable filesystem to enable

fine-grained sharing of protected volumes. Our prototype hosts a Lua-based logic engine

to evaluate access requests, while enabling efficient revocation with forward and backward

secrecy, multi-domain policy enforcement, user delegation, and mandatory access logging.

Using example scenarios and microbenchmarks, our evaluation shows that our prototype can

express a wide range of policies and impose minimal runtime overheads.

93

6.0 SECURITY ANALYSIS

By combining encryption and access control within the enclave, NeXUS and Joplin achieve

self-protection [140]: the ability to protect sensitive data from all entities (trusted or untrusted)

using the data’s attached policy. Against the backdrop of threats in Chapter 3, we now

discuss how NeXUS and Joplin meets their security objectives. We consider an attacker who

has complete control over the server, including full access to exchanges with the client, and

a history of the user’s encrypted files. Since we are principally concerned with protecting

user-created content (i.e., file data, file and directory names, access control information), we

foresee the following attacks:

(1) Accessing file data

(2) Modifying file data

(3) Listing directory contents

(4) Moving file/directory to a different location

(5) Reverting file/directory to a previous version

The first four violations affect the confidentiality and integrity of individual files and

directories, while the rest targets the integrity of the filesystem structure and the access

control state. We now demonstrate how our design prevents an attacker from recovering or

tampering protected content. For attack (5), we also assume that the attacker was removed

from a given volume, i.e., the attacker has a copy of the sealed volume rootkey, but does not

have their identity stored inside the supernode.

94

6.1 CONFIDENTIALITY AND INTEGRITY

NeXUS is mainly concerned with the protection of file content, as well as file and directory

names. The user’s files are encrypted in fixed-sized chunks, which are re-encrypted using

fresh keys on every update. These per-chunk encryption keys are stored in the encrypted

portion of the filenode metadata associated with the file. To protect directory entries, we

store the correspondence between the file/directory name and its UUID in the encrypted

portion of the dirnode associated with the directory. Likewise, Joplin stores sensitive volume

information within encrypted metadata, and only performs decryption after proper access

control checks inside the enclave. The attribute space lists all user and object attributes,

the policy store contains all policies, and the assignment table stores both user-assigned

and object-assigned attributes. All metadata are in turn re-encrypted on every update, and

their metadata encryption key is key-wrapped with the volume rootkey. Moreover, because

all enclave cryptography is performed using AEAD symmetric encryption, data integrity

is provided alongside confidentiality. Hence, any illegal modifications of the metadata’s

ciphertext will be detected by the NeXUS enclave. Therefore, to read or modify file contents

and file/directory names, one needs to obtain the volume rootkey.

6.2 AUTHORIZATION: ACCESS TO KEYS

Our security guarantees hinge on the secrecy of the rootkey, which must only be accessible

within the enclave and require validation of the user’s identity before use. The enclave

generates the rootkey at volume creation, before sealing it to local disk to ensure that it

cannot be accessed outside of a valid NeXUS enclave running on this particular processor.

Before permitting the use of a volume rootkey, the NeXUS enclave validates the user’s

identity (Section 4.3.4). To accomplish this, the user must demonstrate proof of knowledge

of the private key associated with a public key stored in the volume’s supernode via a

challenge/response protocol initiated within the enclave. Therefore, even with a sealed copy

of the rootkey, unless the attacker’s public key is stored within the volume’s supernode, they

95

will be denied by the enclave.

As shown in Section 4.3.4, we enable secure file sharing by leveraging SGX Remote

Attestation to exchange rootkeys between valid NeXUS enclaves running on genuine SGX

processors. Our construction involves an asynchronous ECDH key exchange in which the

recipient’s NeXUS enclave is remotely attested before securely transmitting the rootkey

encrypted with the ECDH secret. The ECDH keypairs are generated within the enclave, and

their public keys are used to create SGX quotes. Since the ECDH private keys never leave

enclave memory, the ECDH secret can only be derived within the enclave, thereby ensuring

that the rootkey is not leaked unto untrusted storage. However, because we keep long-term

ECDH keypairs fixed and exposed on the remote server, our key exchange protocol fails to

provide perfect forward secrecy. In the event an attacker reconstructs the matching enclave

ECDH private key, they could derive every rootkey exchanged with the user. To mitigate

this, we propose an alternative synchronous solution where both parties generate ephemeral

ECDH keys on every exchange and mutually attest their enclaves. This approach introduces

an additional delay as it involves multiple rounds to attest the enclaves. Please note that in

practice, the security and convenience trade-offs of either approach will be left to the volume

owner.

6.3 ATTACKING THE FILESYSTEM STRUCTURE

Because NeXUS spreads the filesystem state across all metadata files, an attacker may

attempt to modify the filesystem structure in two ways: file-swap attacks and rollback

attacks.

• File-swap attacks: This consist in renaming or moving metadata files to other volume

locations, such that the incorrect metadata file is returned to the enclave. We prevent this

potential mismatch by the use of UUID pointers within our metadata structures, and the

authenticated encryption used to protect these structures: the content of metadata cannot

be altered without detection, and swapping of equivalently named objects will cause the

UUID pointer validation (Section 4.3.3) to fail.

96

• Rollback attacks: The server returns older versions of the metadata files to the user.

NeXUS prevents rollback attacks by maintaining a hash-tree within encrypted metadata

(Section 4.3.6). This ensures that: (i) every metadata is fresh with respect to the remote

root hash value, and (ii) the remote root hash is not older than the local root hash value.

In the event (i) is not satisfied (e.g., on first time access), the server still must return a

valid filesystem state. Thus, in effect, our rollback protection raises the attacker’s burden

by requiring the storage of entire volume snapshots, rather than just individual files.

Although our rollback protections provide fork-consistency by ensuring that users always

observe valid volume states, the server could still equivocate about the order of operations and

present different filesystem views to each user. Consider Carey and Alice are collaborating

on a common file; upon request by Alice, the server may equivocate by hiding the changes

performed by Carey and returning an older file to Alice. However, fork consistency limits

equivocation to a single occurrence (diverging user views) and does not require users to

communicate with one another directly [116]. For future work, we plan to explore mitigations

against equivocation attacks with the aid of distributed monotonic counters that provide

global state consistency [62].

6.4 FORWARD AND BACKWARD SECRECY

Joplin prevents arbitrary rollback attacks by ensuring forward and backward secrecy against

revoked and new users, respectively. Revoking an attribute consists in removing the entry

inside the assignment table, updating the last known versions of the volume attribute space

and policy store, and re-encrypting the metadata with a new key. This ensures that: (i)

the revoked user is no longer assigned the attribute, and (ii) older policies cannot be used

with newer assignment tables. Joplin also ensures consistency between filesystem data and

access control information by inlining the object assignment table within filenode and dirnode

metadata. We provide backward secrecy by preventing new assignment tables from being used

with older policies. Please note that Joplin can leverage the rollback protection implemented

in NeXUS (Section 4.3.6).

97

7.0 SUMMARY AND FUTURE WORK

Today, the proliferation of consumer devices has led to an explosion in user-generated data,

including pictures, documents, and videos. Cloud-based filesharing platforms provide a

convenient and low-cost solution to meet the burgeoning storage needs of individuals and

organizations alike. Users can access their files on any device and collaborate with one another

on a global scale, while only paying for what they use. However, frequent data breaches

and unplanned disclosures on this platforms have raised serious user privacy concerns. This

dissertation is concerned with developing a practical security solution that ensures data

confidentiality and integrity, without placing any implicit trust in the service provider.

Access control has been extensively studied within traditional closed-world scenarios,

where users and resources are known and rarely change. A simple approach involves a

reference monitor that validates every authorization request against a centralized database.

However, the unique characteristics of the cloud environment pose several challenges that

warrant a reconsideration of trust assumptions and usage scenarios. This includes: (i) data

storage and processing on machines that lie outside the user’s control, (ii) large number of

users accessing a limitless amount of resources provisioned across organizational domains,

and (iii) dynamic changes in access rights as users are added, removed, and modified. As

such, a robust security solution for the cloud must provide scalable policy administration

costs, fine-grained access control to associate users and resources with arbitrary granularity,

while taking into account the local user context when evaluating authorization requests.

To address the above challenges, this dissertation adopts a two-pronged approach by

combining the benefits of cryptography and trusted hardware to protect data both at rest and

during use. Cryptographic protection ensures that sensitive information cannot be feasibly

recovered by the service provider, or leaked as a result of a data breach. On the other

98

hand, hardware-enabled Trusted Execution Environments (TEEs) provide a tamper-proof,

non-bypassable, and verifiable reference monitor. As a result, access control enforcement

cannot be subverted by any external party or even authenticated users. We give a summary

of our contributions, as we develop a client-side solution that requires no server-side changes,

and solely relies on trusted hardware readily available on commodity user machines. We close

the chapter with a survey of possible future work.

7.1 SUMMARY

This dissertation’s overall hypothesis is that: the widespread availability of trusted hardware

extensions on consumer devices can provide data confidentiality and integrity, as well as

scalable access and usage control within an untrusted cloud environment, while improving

portability, flexibility, and performance over unmodified storage platforms. Usage control

extends traditional notions of access control in preventing data misuse even beyond user

authorization. Specifically, our aim is to develop a practical solution that is portable across

file sharing platforms without requiring any server-side coordination or trusted intermediary,

flexible in allowing users to share files using fine-grained access control policies, and performant

in imposing modest overheads on typical user workloads and dynamic policy changes. To

this end, we developed NeXUS (Chapter 4) and Joplin (Chapter 5), two client-side solutions

that leverage the Intel SGX trusted hardware to enable scalable data sharing of protected

volumes. We target a deployment model that minimizes the cloud storage interface by storing

metadata as files. This leads to the first research question:

RQ1: How can we adapt cryptographic protection unto cloud-based filesharing platforms?

Existing cryptographic solutions to this problem typically require server-side support,

involve non-trivial key management on the part of users, and suffer from severe re-encryption

penalties upon access revocations. This combination of performance overheads and man-

agement burdens makes this class of solutions undesirable in situations where performant,

platform-agnostic, and dynamic sharing of user content is required. We introduced NeXUS

99

(Chapter 4), a privacy-preserving filesystem that provides confidentiality and integrity to user

files on untrusted platforms. Specifically, NeXUS protects file content, as well as file and

directory names. When developing NeXUS, we made the following contributions:

(A1) We propose a client-side architecture to protect sensitive information within a client-

server setting (Section 4.2.1). NeXUS instantiates a distributed access control platform

using trusted hardware, such that the SGX enclave serves as a trusted reference monitor

that executing independently on each client machine rather than centrally on the

(untrusted) server. Compared to alternative architectures, this client-side approach

ensures portable data protection without requiring server-side support for trusted

hardware, nor relying on an enclave controlled by the service provider.

(A2) We present the design of NeXUS to share files hosted on untrusted cloud infrastructure,

while ensuring the confidentiality and integrity of file content as well as file/directory

names (Section 4.3.1). NeXUS performs cryptographic protection and access con-

trol inside a client-side enclave, while ensuring sensitive key material does not leak

to untrusted memory. As a practical system, NeXUS enables seamless and secure

key distribution using metadata files (Section 4.3.3), minimal user key management

(Section 4.3.4), and efficient user revocation (Section 4.3.5).

(A3) We propose a cryptographic protocol that uses SGX remote attestation to enable secure

file sharing across client machines (Section 4.3.4.1). The protocol employs files to

exchange messages on the underlying shared filesystem, and does not require the parties

to be simultaneously online.

(A4) We propose a rollback protection mechanism that prevents the server from returning

stale metadata (Section 4.3.6). Our construction provides stronger freshness guarantees

by leveraging the NeXUS virtual filesystem hierarchy to maintain a hash tree within

encrypted metadata objects. This ensures the volume’s filesystem state results from a

valid sequence of changes without requiring any user-to-user communication.

(A5) We implement NeXUS as a userspace filesystem that allows unmodified applications to

access protected volumes from a mounted directory (Section 4.4). As a practical system,

our minimal enclave takes into account trusted hardware limitations (e.g., limited SGX

memory), as well as the network latency of filesystem operations. We also ported to run

100

atop AFS and FUSE; both prototypes are completely client-side and do not require any

server-side modifications. Furthermore, our FUSE prototype improves portability by: (i)

requiring no changes to the OS or underlying filesystem, and (ii) enabling the migration

of volumes by simply copying its directory contents across filesystems. This allows

NeXUS to be readily deployable across storage platforms using any client machine

equipped with SGX hardware.

(A6) We evaluate our FUSE-based NeXUS prototype over two popular remote storage

platforms: Dropbox and AFS (Section 4.5). Specifically, we measured the latency using

microbenchmarks that isolate the overhead of file and directory operations, database

benchmarks, and popular Linux applications. We also measure the performance of

user revocation relative to cryptographic solutions, as well as the overheads of rollback

protection. Results show that NeXUS incurs modest penalties on standard user

workloads, supports a diverse set of applications workflows and storage platforms, and

offers efficient access revocation.

Our work with NeXUS shows that trusted hardware can address the practical challenges of

cryptographic protection over remote untrusted platforms. However, ACLs are coarse-grained

and do not incorporate the environmental context (Section 2.4.1). Attribute-Based Access

Control (ABAC) uses attributes as a level of indirection to separate privilege assignment from

policy specification within an open environment. Thus, we shift our focus to more expressive

access control and usage control enforcement; the former is concerned with fine-grained user

authorization, whereas the latter uses Obligations to prevent future data misuse. Obligations

are mandatory actions that must be fulfilled as part of an authorization request (e.g., record

authorized accesses to a log). This leads to the following research question:

RQ2: How can we provide scalable distributed usage control in a cloud environment?

We present Joplin (Chapter 5), a secure access control and usage control system that

ensures continuous policy enforcement within a protected volume. Joplin addresses the

practical challenges of ABAC, including efficient revocation with forward and backward

secrecy, cross-domain policies, mandatory audit logging, and user delegation. The enclave

unifies policy enforcement by mapping users and resources to access control information stored

101

within encrypted metadata objects. At access time, the enclave hosts a policy interpreter

that continuously evaluates system attributes and policies before authorizing access and

performing obligations. To that end, we made the following contributions:

(B1) We propose a client-side architecture that ensures access control information (i.e.,

attributes, policies etc.) is secure and reliable source, while continuously enforcing

user-specified policies and obligations on each authorization request (Section 5.3). We

describe our ABAC model (Section 5.3.3) and policy language (Section 5.3.4), before

performing a taxonomy of obligations that could be readily supported by our client-side

approach (Section 5.3.5). With this, our client-side reference monitor (Section 5.3.6)

can enforce declarative policies in a tamper-proof environment without requiring any

server-side support or trusted intermediary.

(B2) We address the practical challenges of ABAC by instantiating a Joplin prototype that

provides decentralized policy enforcement within a secure filesystem (Section 5.4). The

Joplin enclave uses encrypted metadata to manage volume attributes and policies, such

that access changes require a fixed number of updates. Next, we describe how Joplin

initializes (Section 5.4.2) and enforces policies (Section 5.4.3) with cross-volume support

and user delegation. Our minimal enclave implementation uses a Lua-based Datalog

interpreter to evaluate policies, and employs several caches to speed up authorization

requests (Section 5.4.4). The prototype provides efficient revocation, mandatory access

logging, and can be readily deployed on any SGX client machine.

(B3) We evaluate Joplin using several case studies and filesystem workloads (Section 5.5).

The former explores how a user could share a collection of files using our declarative

policy language, whereas the latter measures the latency and memory use under different

scenarios, as well as the end-to-end impact on top of Dropbox. Results show that our

implementation can efficiently enforce declarative policies, and has policy maintenance

overheads that scale with the number of users and policies. For up to 25,000 policies,

the Joplin enclave can evaluate and refresh its internal access control state in the order

of milliseconds. These results imply that administrators and data owners can protect

files without significant performance degradation on typical workloads.

102

As years go by, there has been an exponential growth in the financial and societal costs of

cloud security incidents on service providers and users alike; unfortunately, legal regulations

have had limited impact in curtailing these cloud data breaches. By offering a cheap and

convenient access to large amounts of highly-available storage, the trend of increased user

adoption of cloud-based file sharing services is bound to persist, event at the risk to data

ownership and user privacy. In this dissertation, we want to provide a practical security

tool that is easy to install and use, such that users can employ across storage platforms.

Furthermore, users do not need to place any trust on the service provider, other than providing

data storage and availability. Both NeXUS and Joplin demonstrates that individuals and

organizations can manage their files on existing storage platforms using rich access control

primitives, without requiring any external party or changes on the server. Their enclaves are

self-contained, have a small Trusted Computing Base (TCB), and can be setup to manage

multiple volumes for cross-domain collaboration. Through our implementation and evaluation,

we improve the user privacy on these cloud-based services using only mass market trusted

hardware already present on modern user machines. Overall, our client-side design and

implementation provides a solid foundation for developing user-centric and decentralized

policy enforcement using modern trusted hardware.

7.2 FUTURE WORK

The growing adoption of trusted hardware technology by major vendors can fundamentally

transform how we design secure systems. Given that seamless privacy-preserving computation

is the foundation of our approach, we see the following avenues for future work:

Applicability to other distributed systems. Although our current work pertains to se-

cure file sharing, our client-side architecture could be adapted to protect other distributed

applications. Our deployment model targets situations whereby sensitive data is com-

pletely generated on the client and the server mainly provides storage. Specifically, the

server returns data to the client after performing very little data processing, such that

sensitive user data can be modified without disrupting the server’s operation. Example

103

client-server applications include key-value stores, messaging, and even web services.

However, each scenario has a unique request-response pattern when accessing remote data,

as well as imposes particular memory and processing requirements. As a result, these

factors have to be taken into account when designing a practical and scalable system.

For example, the hierarchical organization of filesystems require traversing the parent

directories before fetching the target file; this may not the case for key-value stores that

has a flat namespace.

Alternative Client-server Architecture. Adopting a client-side approach facilitates user

deployment across storage platforms, but this has several drawbacks including, coarse

data access, high network latency, and lack of support for concurrent access. As shown by

the NeXUS benchmarks, this results in significant performance overheads on metadata-

intensive workloads (e.g., writing inside a large directory). Although users of typical

file sharing services are largely unaffected in their daily use, these overheads limit the

applicability of our approach where performant and highly-granular data access is required.

Alternatively, as trusted hardware support on the cloud continues to grow, we consider a

different architecture that splits the computation between client–server enclaves. The

client will still be responsible for access control and managing the encryption keys, but can

temporarily share key material with a server-side counterpart to decrypt large datasets on

demand. The server-side enclave never persists any secret key material, but can decrypt

sensitive content to fulfill metadata intensive operations. For example, when listing a

directory, the server-side enclave could collect all the file information in advance and send

it to the client via a secure channel. Due to data proximity, this approach is significantly

faster than downloading the individual files on the client. Furthermore, the server-side

enclave could provide stronger security guarantees, such as oblivious data access with an

ORAM controller and rollback protection using a global monotonic counter.

Richer Authorization and Obligation support. Another direction for future work is to

extend our ABAC authorization model to support more complex relationships between

attributes, such as hierarachies and constraints. A richer policy language will be required

to capture these relations. As for usage control, our taxonomy in Chapter 5 lists all the

applicable obligations within our client-side architecture. In addition to mandatory access

104

logging, we could implement other usage scenarios such as automatically deleting sensitive

information from the cloud using data retention policies. Also, given the availability

server-side enclave, an alternative architecture could provide access to global user context

information (e.g., the number of users online).

105

BIBLIOGRAPHY

[1] U. Security and E. C. (SEC), “Form s-1: Registration statement - dropbox,
inc.” https://www.sec.gov/Archives/edgar/data/1467623/000119312518055809/
d451946ds1.htm, 02 2018.

[2] S. Wodinsky, “Google drive is about to hit 1 billion users.” https://www.theverge.com/
2018/7/25/17613442/google-drive-one-billion-users, 07 2018.

[3] F. Lardinois, “Google updates drive with a focus on its business users.”
https://techcrunch.com/2017/03/09/google-drive-now-has-800m-users-and-
gets-a-big-update-for-the-enterprise/, 03 2018.

[4] Dropbox, “Celebrating half a billion users.” https://blogs.dropbox.com/dropbox/
2016/03/500-million/, 2016.

[5] Reuters, “Personal cloud market 2019 global analysis, segments, size, share, in-
dustry growth and recent trends by forecast to 2023.” https://www.reuters.com/
brandfeatures/venture-capital/article?id=72896, 1 2019.

[6] CNBC, “Credit reporting firm Equifax says data breach could potentially affect
143 million US consumers.” https://www.cnbc.com/2017/09/07/credit-reporting-
firm-equifax-says-cybersecurity-incident-could-potentially-affect-143-
million-us-consumers.html, 2017.

[7] S. Media, “Data breach exposes about 4 million Time Warner Cable customer
records.” https://www.scmagazine.com/data-breach-exposes-about-4-million-
time-warner-cable-customer-records/article/686592/, 2017.

[8] Privacy Rights ClearingHouse, “Data Breaches.” https://www.privacyrights.org/
data-breaches, 2017.

[9] “Dropbox hack leads to leaking of 68m user passwords on the inter-
net.” https://www.theguardian.com/technology/2016/aug/31/dropbox-hack-
passwords-68m-data-breach, 08 2016.

106

https://www.sec.gov/Archives/edgar/data/1467623/000119312518055809/d451946ds1.htm
https://www.sec.gov/Archives/edgar/data/1467623/000119312518055809/d451946ds1.htm
https://www.theverge.com/2018/7/25/17613442/google-drive-one-billion-users
https://www.theverge.com/2018/7/25/17613442/google-drive-one-billion-users
https://techcrunch.com/2017/03/09/google-drive-now-has-800m-users-and-gets-a-big-update-for-the-enterprise/
https://techcrunch.com/2017/03/09/google-drive-now-has-800m-users-and-gets-a-big-update-for-the-enterprise/
https://blogs.dropbox.com/dropbox/2016/03/500-million/
https://blogs.dropbox.com/dropbox/2016/03/500-million/
https://www.reuters.com/brandfeatures/venture-capital/article?id=72896
https://www.reuters.com/brandfeatures/venture-capital/article?id=72896
https://www.cnbc.com/2017/09/07/credit-reporting-firm-equifax-says-cybersecurity-incident-could-potentially-affect-143-million-us-consumers.html
https://www.cnbc.com/2017/09/07/credit-reporting-firm-equifax-says-cybersecurity-incident-could-potentially-affect-143-million-us-consumers.html
https://www.cnbc.com/2017/09/07/credit-reporting-firm-equifax-says-cybersecurity-incident-could-potentially-affect-143-million-us-consumers.html
https://www.scmagazine.com/data-breach-exposes-about-4-million-time-warner-cable-customer-records/article/686592/
https://www.scmagazine.com/data-breach-exposes-about-4-million-time-warner-cable-customer-records/article/686592/
https://www.privacyrights.org/data-breaches
https://www.privacyrights.org/data-breaches
https://www.theguardian.com/technology/2016/aug/31/dropbox-hack-passwords-68m-data-breach
https://www.theguardian.com/technology/2016/aug/31/dropbox-hack-passwords-68m-data-breach

[10] A. Charlton, “iCloud accounts at risk of brute force attack as hacker exploits ’painfully
obvious’ password flaw.” https://www.ibtimes.co.uk/icloud-accounts-risk-brute-
force-attack-hacker-exploits-painfully-obvious-password-flaw-1481623.

[11] Wired, “Was it ethical for dropbox to share customer data with scientists?.” https:
//www.wired.com/story/dropbox-sharing-data-study-ethics/, 07 2018.

[12] ZDNet, “Yet another trove of sensitive US voter records has leaked.”
http://www.zdnet.com/article/yet-another-trove-of-sensitive-of-us-voter-
records-has-leaked/, 2017.

[13] A. Technica, “Dropbox disables old shared links after tax returns end up on google.”
https://arstechnica.com/information-technology/2014/05/dropbox-disables-
old-shared-links-after-tax-returns-end-up-on-gooogle/, 5 2014.

[14] “Dropbox terms of service.” https://www.dropbox.com/terms, 04 2018.

[15] “Google terms of service.” https://policies.google.com/terms.

[16] Microsoft, “Microsoft services agreement.” https://www.microsoft.com/en-us/
servicesagreement, March 2018.

[17] W. C. Garrison, A. Shull, S. Myers, and A. J. Lee, “On the practicality of cryptographi-
cally enforcing dynamic access control policies in the cloud,” in Security and Privacy
(SP), 2016 IEEE Symposium on, pp. 819–838, IEEE, 2016.

[18] G. Brose, Access Control, pp. 2–7. Boston, MA: Springer US, 2011.

[19] Z. Qin, H. Xiong, S. Wu, and J. Batamuliza, “A survey of proxy re-encryption for secure
data sharing in cloud computing,” IEEE Transactions on Services Computing, 2016.

[20] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for fine-
grained access control of encrypted data,” in Proceedings of the 13th ACM conference
on Computer and communications security, pp. 89–98, Acm, 2006.

[21] E. Geron and A. Wool, “CRUST: Cryptographic Remote Untrusted Storage without
Public Keys,” International Journal of Information Security, vol. 8, no. 5, pp. 357–377,
2009.

[22] A. L. Ferrara, G. Fuchsbauer, and B. Warinschi, “Cryptographically enforced rbac,”
in Computer Security Foundations Symposium (CSF), 2013 IEEE 26th, pp. 115–129,
IEEE, 2013.

[23] Y. Tang, P. P. Lee, J. C. Lui, and R. Perlman, “Fade: Secure overlay cloud storage
with file assured deletion,” in International Conference on Security and Privacy in
Communication Systems, pp. 380–397, Springer, 2010.

107

https://www.ibtimes.co.uk/icloud-accounts-risk-brute-force-attack-hacker-exploits-painfully-obvious-password-flaw-1481623
https://www.ibtimes.co.uk/icloud-accounts-risk-brute-force-attack-hacker-exploits-painfully-obvious-password-flaw-1481623
https://www.wired.com/story/dropbox-sharing-data-study-ethics/
https://www.wired.com/story/dropbox-sharing-data-study-ethics/
http://www.zdnet.com/article/yet-another-trove-of-sensitive-of-us-voter-records-has-leaked/
http://www.zdnet.com/article/yet-another-trove-of-sensitive-of-us-voter-records-has-leaked/
https://arstechnica.com/information-technology/2014/05/dropbox-disables-old-shared-links-after-tax-returns-end-up-on-gooogle/
https://arstechnica.com/information-technology/2014/05/dropbox-disables-old-shared-links-after-tax-returns-end-up-on-gooogle/
https://www.dropbox.com/terms
https://policies.google.com/terms
https://www.microsoft.com/en-us/servicesagreement
https://www.microsoft.com/en-us/servicesagreement

[24] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu, “Plutus: Scalable
secure file sharing on untrusted storage.,” in Fast, vol. 3, 2003.

[25] W. Wang, Z. Li, R. Owens, and B. Bhargava, “Secure and efficient access to outsourced
data,” in Proceedings of the 2009 ACM Workshop on Cloud Computing Security, CCSW
’09, (New York, NY, USA), pp. 55–66, ACM, 2009.

[26] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh, “Sirius: Securing remote untrusted
storage.,” in NDSS, vol. 3, pp. 131–145, 2003.

[27] T. Alves, “Trustzone : Integrated hardware and software security,” 2004.

[28] I. SGX, “Intel Software Guard Extensions Programming Reference,” 2017. https:
//software.intel.com/en-us/sgx-sdk.

[29] V. Costan and S. Devadas, “Intel sgx explained.,” IACR Cryptology ePrint Archive,
vol. 2016, p. 86, 2016.

[30] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hardware extensions for
strong software isolation,” in 25th {USENIX} Security Symposium ({USENIX} Security
16), pp. 857–874, 2016.

[31] D. Lee, D. Kohlbrenner, S. Shinde, D. Song, and K. Asanović, “Keystone: A framework
for architecting tees,” arXiv preprint arXiv:1907.10119, 2019.

[32] S. Contiu, R. Pires, S. Vaucher, M. Pasin, P. Felber, and L. Réveillère, “Ibbe-sgx:
Cryptographic group access control using trusted execution environments,” 2018 48th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), pp. 207–218, 2018.

[33] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee, “Obliviate: A data oblivious file system
for intel sgx,” 2018.

[34] R. Krahn, B. Trach, A. Vahldiek-Oberwagner, T. Knauth, P. Bhatotia, and C. Fetzer,
“Pesos: Policy enhanced secure object store,” 2018.

[35] D. Burihabwa, P. Felber, H. Mercier, and V. Schiavoni, “Sgx-fs: Hardening a file
system in user-space with intel sgx,” in 2018 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), pp. 67–72, IEEE, 2018.

[36] S. Sasy, S. Gorbunov, and C. W. Fletcher, “Zerotrace: Oblivious memory primitives
from intel sgx,” 2017.

[37] M. Bailleu, J. Thalheim, P. Bhatotia, C. Fetzer, M. Honda, and K. Vaswani,
“{SPEICHER}: Securing lsm-based key-value stores using shielded execution,” in 17th
{USENIX} Conference on File and Storage Technologies ({FAST} 19), pp. 173–190,
2019.

108

https://software.intel.com/en-us/sgx-sdk
https://software.intel.com/en-us/sgx-sdk

[38] J. Daemen and V. Rijmen, “The design of rijndael: Aes - the advanced encryption
standard,” 2002.

[39] K. Akdemir, M. Dixon, W. Feghali, P. Fay, V. Gopal, J. Guilford, E. Ozturk, G. Wolrich,
and R. Zohar, “Breakthrough aes performance with intel aes new instructions,” White
paper, June, p. 11, 2010.

[40] S. Gueron and Y. Lindell, “Gcm-siv: Full nonce misuse-resistant authenticated encryp-
tion at under one cycle per byte,” in ACM Conference on Computer and Communications
Security, 2015.

[41] D. A. McGrew and J. Viega, “The galois/counter mode of operation (gcm),” 2005.

[42] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures
and public-key cryptosystems,” Communications of the ACM, vol. 21, no. 2, pp. 120–126,
1978.

[43] V. S. Miller, “Use of elliptic curves in cryptography,” in Conference on the theory and
application of cryptographic techniques, pp. 417–426, Springer, 1985.

[44] E. B. Barker, L. Chen, A. Roginsky, A. T. Vassilev, and R. Davis, “Recommendation
for pair-wise key establishment schemes using discrete logarithm cryptography,” 2007.

[45] J.-E. Ekberg, K. Kostiainen, and N. Asokan, “The untapped potential of trusted
execution environments on mobile devices,” IEEE Security & Privacy, vol. 12, no. 4,
pp. 29–37, 2014.

[46] N. Sumrall and M. Novoa, “Trusted computing group (tcg) and the tpm 1.2 specification,”
in Intel Developer Forum, vol. 32, 2003.

[47] S. M. Kim, J. Han, J. Ha, T. Kim, and D. Han, “Enhancing security and privacy of
tor’s ecosystem by using trusted execution environments.,” in NSDI, pp. 145–161, 2017.

[48] P.-L. Aublin, F. Kelbert, D. O’Keeffe, D. Muthukumaran, C. Priebe, J. Lind, R. Krahn,
C. Fetzer, D. M. Eyers, and P. R. Pietzuch, “Libseal: revealing service integrity violations
using trusted execution,” in EuroSys, 2018.

[49] S. Shinde, D. Le Tien, S. Tople, and P. Saxena, “Panoply: Low-tcb linux applications
with sgx enclaves,” National University of Singapore, Tech. Rep, 2016.

[50] J. Lind, O. Naor, I. Eyal, F. Kelbert, P. Pietzuch, and E. G. Sirer, “Teechain: Reducing
Storage Costs on the Blockchain With Offline Payment Channels,” pp. 125–125, 2018.

[51] B. Li, N. Weichbrodt, J. Behl, P.-L. Aublin, T. Distler, and R. Kapitza, “Troxy:
Transparent access to byzantine fault-tolerant systems,” in 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pp. 59–70, IEEE,
2018.

109

[52] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-Ruiz, and
M. Russinovich, “Vc3: Trustworthy data analytics in the cloud using sgx,” in Security
and Privacy (SP), 2015 IEEE Symposium on, pp. 38–54, IEEE, 2015.

[53] Intel, “Intel(R) Software Guard Extensions for Linux* OS.” https://github.com/
intel/linux-sgx, 2018.

[54] I. Anati, F. McKeen, S. Gueron, H. Haitao, S. Johnson, R. Leslie-Hurd, H. Patil,
C. Rozas, and H. Shafi, “Intel software guard extensions (intel sgx),” in Tutorial at
International Symposium on Computer Architecture (ISCA), 2015.

[55] Intel, “Intel R©SGX Commercial Use Licence.” https://software.intel.com/en-us/
sgx/commercial-use-license-request.

[56] N. Weichbrodt, P.-L. Aublin, and R. Kapitza, “sgx-perf: A performance analysis tool
for intel sgx enclaves,” in Proceedings of the 19th International Middleware Conference,
pp. 201–213, ACM, 2018.

[57] M. Taassori, A. Shafiee, and R. Balasubramonian, “Vault: Reducing paging overheads in
sgx with efficient integrity verification structures,” in ACM SIGPLAN Notices, vol. 53,
pp. 665–678, ACM, 2018.

[58] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-sgx: A practical library os for unmodi-
fied applications on sgx,” in 2017 USENIX ATC, 2017.

[59] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind, D. Muthuku-
maran, D. O’Keeffe, M. L. Stillwell, et al., “Scone: Secure linux containers with intel
sgx,” in 12th USENIX Symp. Operating Systems Design and Implementation, 2016.

[60] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from an untrusted
cloud with haven,” ACM Transactions on Computer Systems (TOCS), vol. 33, no. 3,
p. 8, 2015.

[61] C. Soriente, G. Karame, W. Li, and S. Fedorov, “Replicatee: Enabling seamless
replication of sgx enclaves in the cloud,” in 2019 IEEE European Symposium on
Security and Privacy (EuroS&P), pp. 158–171, IEEE, 2019.

[62] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer, A. Gervais, A. Juels, and
S. Capkun, “{ROTE}: Rollback protection for trusted execution,” in 26th {USENIX}
Security Symposium ({USENIX} Security 17), pp. 1289–1306, 2017.

[63] F. Brasser, S. Capkun, A. Dmitrienko, T. Frassetto, K. Kostiainen, U. Müller, and A.-R.
Sadeghi, “Dr. sgx: hardening sgx enclaves against cache attacks with data location
randomization,” arXiv preprint arXiv:1709.09917, 2017.

[64] T. Frassetto, D. Gens, C. Liebchen, and A.-R. Sadeghi, “Jitguard: hardening just-in-
time compilers with sgx,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pp. 2405–2419, ACM, 2017.

110

https://github.com/intel/linux-sgx
https://github.com/intel/linux-sgx
https://software.intel.com/en-us/sgx/commercial-use-license-request
https://software.intel.com/en-us/sgx/commercial-use-license-request

[65] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler, H. Tang, and
C. A. Gunter, “Leaky cauldron on the dark land: Understanding memory side-channel
hazards in sgx,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pp. 2421–2434, ACM, 2017.

[66] G. Chen, W. Wang, T. Chen, S. Chen, Y. Zhang, X. Wang, T.-H. Lai, and D. Lin,
“Racing in hyperspace: Closing hyper-threading side channels on sgx with contrived
data races,” in 2018 IEEE Symposium on Security and Privacy (SP), pp. 178–194,
IEEE, 2018.

[67] S. Chandra, V. Karande, Z. Lin, L. Khan, M. Kantarcioglu, and B. Thuraisingham,
“Securing data analytics on sgx with randomization,” in European Symposium on
Research in Computer Security, pp. 352–369, Springer, 2017.

[68] J. Seo, B. Lee, S. M. Kim, M.-W. Shih, I. Shin, D. Han, and T. Kim, “Sgx-shield:
Enabling address space layout randomization for sgx programs.,” in NDSS, 2017.

[69] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and C. Fetzer, “Varys: Protecting
{SGX} enclaves from practical side-channel attacks,” in 2018 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 18), pp. 227–240, 2018.

[70] G.-J. Ahn, “Discretionary access control,” in Encyclopedia of Database Systems, 2009.

[71] R. S. Sandhu, “Lattice-based access control models,” Computer, vol. 26, no. 11, pp. 9–19,
1993.

[72] D. Ferraiolo, J. Cugini, and D. R. Kuhn, “Role-based access control (rbac): Features and
motivations,” in Proceedings of 11th annual computer security application conference,
pp. 241–48, 1995.

[73] M. Lorch, S. Proctor, R. Lepro, D. Kafura, and S. Shah, “First experiences using xacml
for access control in distributed systems,” in Proceedings of the 2003 ACM workshop on
XML security, pp. 25–37, ACM, 2003.

[74] V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller, and K. Scarfone,
“Guide to attribute based access control (abac) definition and considerations,” NIST
Special Publication, vol. 800, p. 162, 2014.

[75] X. Jin, R. Krishnan, and R. S. Sandhu, “A unified attribute-based access control model
covering dac, mac and rbac,” in DBSec, 2012.

[76] X. Zhang, Y. Li, and D. Nalla, “An attribute-based access matrix model,” in SAC, 2005.

[77] P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter, “Enterprise privacy
authorization language (epal),” IBM Research, 2003.

[78] D. Servos and S. L. Osborn, “Hgabac: Towards a formal model of hierarchical attribute-
based access control,” in FPS, 2014.

111

[79] M. Y. Becker, C. Fournet, and A. D. Gordon, “Secpal: Design and semantics of a
decentralized authorization language,” Journal of Computer Security, vol. 18, no. 4,
pp. 619–665, 2010.

[80] D. R. Kuhn, E. J. Coyne, and T. R. Weil, “Adding attributes to role-based access
control,” Computer, vol. 43, no. 6, pp. 79–81, 2010.

[81] X. Jin, R. Sandhu, and R. Krishnan, “Rabac: role-centric attribute-based access control,”
in International Conference on Mathematical Methods, Models, and Architectures for
Computer Network Security, pp. 84–96, Springer, 2012.

[82] J. Park and R. Sandhu, “The ucon abc usage control model,” ACM Transactions on
Information and System Security (TISSEC), vol. 7, no. 1, pp. 128–174, 2004.

[83] J. Park and R. Sandhu, “Towards usage control models: Beyond traditional access
control,” in Proceedings of the Seventh ACM Symposium on Access Control Models and
Technologies, SACMAT ’02, (New York, NY, USA), pp. 57–64, ACM, 2002.

[84] R. Sandhu and J. Park, “Usage control: A vision for next generation access control,”
in International Workshop on Mathematical Methods, Models, and Architectures for
Computer Network Security, pp. 17–31, Springer, 2003.

[85] A. Lazouski, F. Martinelli, and P. Mori, “Usage control in computer security: A survey,”
Computer Science Review, vol. 4, no. 2, pp. 81–99, 2010.

[86] F. Kelbert and A. Pretschner, “A fully decentralized data usage control enforcement
infrastructure,” in International Conference on Applied Cryptography and Network
Security, pp. 409–430, Springer, 2015.

[87] A. Lazouski, G. Mancini, F. Martinelli, and P. Mori, “Architecture, workflows, and
prototype for stateful data usage control in cloud,” in 2014 IEEE Security and Privacy
Workshops, pp. 23–30, IEEE, 2014.

[88] F. Kelbert and A. Pretschner, “Data usage control for distributed systems,” ACM
Transactions on Privacy and Security (TOPS), vol. 21, no. 3, p. 12, 2018.

[89] F. Kelbert, “Data usage control for the cloud,” in 2013 13th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing, pp. 156–159, May 2013.

[90] F. Kelbert and A. Pretschner, “Decentralized distributed data usage control,” in Cryp-
tology and Network Security (D. Gritzalis, A. Kiayias, and I. Askoxylakis, eds.), (Cham),
pp. 353–369, Springer International Publishing, 2014.

[91] A. Pretschner, M. Hilty, and D. Basin, “Distributed usage control,” in Communications
of the ACM, p. 39, 2006.

112

[92] R. B. Lee, “Hardware-enhanced access control for cloud computing,” in Proceedings of
the 17th ACM symposium on Access Control Models and Technologies, pp. 1–2, ACM,
2012.

[93] J. Crampton, “Cryptographic enforcement of role-based access control,” in FAST 2010,
2010.

[94] A. J. Aviv, S. G. Choi, T. Mayberry, and D. S. Roche, “Oblivisync: Practical oblivious
file backup and synchronization,” arXiv preprint arXiv:1605.09779, 2016.

[95] B. Insider, “Google Drive now hosts more than 2 trillion files.” http:
//www.businessinsider.com/2-trillion-files-google-drive-exec-prabhakar-
raghavan-2017-5, 2017.

[96] Cisco, “Cisco global cloud index: Forecast and methodology, 2016–2021 white
paper cisco global cloud index: Forecast and methodology, 2016–2021 white pa-
per.” www.cisco.com/c/en/us/solutions/collateral/service-provider/global-
cloud-index-gci/white-paper-c11-738085.html, 11 2018.

[97] D. Goltzsche, S. Rüsch, M. Nieke, S. Vaucher, N. Weichbrodt, V. Schiavoni, P.-L.
Aublin, P. Cosa, C. Fetzer, P. Felber, et al., “Endbox: Scalable middlebox functions
using client-side trusted execution,” in 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pp. 386–397, IEEE, 2018.

[98] M. Russinovich, “Azure confidential computing.” https://azure.microsoft.com/en-
us/blog/azure-confidential-computing/, 5 2018.

[99] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: a distributed sandbox
for untrusted computation on secret data,” in 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), 2016.

[100] K. E. Fu, Group sharing and random access in cryptographic storage file systems. PhD
thesis, Massachusetts Institute of Technology, 1999.

[101] S. Myers and A. Shull, “Practical revocation and key rotation,” in Cryptographers’
Track at the RSA Conference, pp. 157–178, Springer, 2018.

[102] S. Gueron and Y. Lindell, “Gcm-siv: Full nonce misuse-resistant authenticated encryp-
tion at under one cycle per byte,” in Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, 2015.

[103] The OpenAFS Foundation, Inc. https://www.openafs.org/, 2018.

[104] B. K. R. Vangoor, V. Tarasov, and E. Zadok, “To {FUSE} or not to {FUSE}: Perfor-
mance of user-space file systems,” in 15th {USENIX} Conference on File and Storage
Technologies ({FAST} 17), pp. 59–72, 2017.

113

http://www.businessinsider.com/2-trillion-files-google-drive-exec-prabhakar-raghavan-2017-5
http://www.businessinsider.com/2-trillion-files-google-drive-exec-prabhakar-raghavan-2017-5
http://www.businessinsider.com/2-trillion-files-google-drive-exec-prabhakar-raghavan-2017-5
www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://azure.microsoft.com/en-us/blog/azure-confidential-computing/
https://azure.microsoft.com/en-us/blog/azure-confidential-computing/
https://www.openafs.org/

[105] Z. Li, C. Wilson, Z. Jiang, Y. Liu, B. Y. Zhao, C. Jin, Z.-L. Zhang, and Y. Dai, “Efficient
batched synchronization in dropbox-like cloud storage services,” in ACM/IFIP/USENIX
International Conference on Distributed Systems Platforms and Open Distributed Pro-
cessing, pp. 307–327, Springer, 2013.

[106] Z. Li, C. Jin, T. Xu, C. Wilson, Y. Liu, L. Cheng, Y. Liu, Y. Dai, and Z.-L. Zhang,
“Towards network-level efficiency for cloud storage services,” in Proceedings of the 2014
Conference on Internet Measurement Conference, pp. 115–128, ACM, 2014.

[107] J. B. Djoko, J. Lange, and A. J. Lee, “Nexus: Practical and secure access control on
untrusted storage platforms using client-side sgx,” in 2019 49th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pp. 401–413,
June 2019.

[108] P. G. Lopez, M. Sanchez-Artigas, S. Toda, C. Cotes, and J. Lenton, “Stacksync: Bringing
elasticity to dropbox-like file synchronization,” in Proceedings of the 15th International
Middleware Conference, pp. 49–60, ACM, 2014.

[109] J. Chen, K. Li, J. Xu, Q. Zhang, et al., “Authenticated key-value stores with hardware
enclaves,” arXiv preprint arXiv:1904.12068, 2019.

[110] S. Shinde, S. Wang, P. Yuan, A. Hobor, A. Roychoudhury, and P. Saxena, “Besfs: Mech-
anized proof of an iago-safe filesystem for enclaves,” arXiv preprint arXiv:1807.00477,
2018.

[111] S. Contiu, S. Vaucher, R. Pires, M. Pasin, P. Felber, and L. Réveillère, “Anonymous and
confidential file sharing over untrusted clouds,” arXiv preprint arXiv:1907.06466, 2019.

[112] M. Blaze, “A cryptographic file system for unix,” in Proceedings of the 1st ACM
conference on Computer and communications security, pp. 9–16, ACM, 1993.

[113] G. Cattaneo, L. Catuogno, A. Del Sorbo, and P. Persiano, “The design and implementa-
tion of a transparent cryptographic file system for unix.,” in USENIX Annual Technical
Conference, FREENIX Track, no. 1-880446, pp. 10–3, 2001.

[114] C. P. Wright, M. C. Martino, and E. Zadok, “Ncryptfs: A secure and convenient
cryptographic file system.,” in USENIX Annual Technical Conference, General Track,
pp. 197–210, 2003.

[115] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur, J. Howell,
J. R. Lorch, M. Theimer, and R. P. Wattenhofer, “Farsite: Federated, available, and
reliable storage for an incompletely trusted environment,” ACM SIGOPS Operating
Systems Review, vol. 36, 2002.

[116] J. Li, M. N. Krohn, D. Mazieres, and D. E. Shasha, “Secure untrusted data repository
(sundr).,” in OSDI, vol. 4, pp. 9–9, 2004.

114

[117] M. Backes, C. Cachin, and A. Oprea, “Lazy revocation in cryptographic file systems,”
in Security in Storage Workshop, 2005. SISW’05. Third IEEE International, pp. 11–pp,
IEEE, 2005.

[118] E. Stefanov, M. van Dijk, A. Juels, and A. Oprea, “Iris: A scalable cloud file system
with efficient integrity checks,” in Proceedings of the 28th Annual Computer Security
Applications Conference, pp. 229–238, ACM, 2012.

[119] M. T. Goodrich, C. Papamanthou, R. Tamassia, and N. Triandopoulos, “Athos: Efficient
authentication of outsourced file systems,” in International Conference on Information
Security, pp. 80–96, Springer, 2008.

[120] H. Jin, H. Jiang, K. Zhou, R. Wei, D. Lei, and P. Huang, “Full integrity and freshness
for outsourced storage,” in 2015 15th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, pp. 362–371, IEEE, 2015.

[121] D. Ferraiolo, D. R. Kuhn, and R. Chandramouli, Role-based access control. Artech
House, 2003.

[122] X. Zhang, F. Parisi-Presicce, R. Sandhu, and J. Park, “Formal model and policy
specification of usage control,” ACM Trans. Inf. Syst. Secur., vol. 8, pp. 351–387, Nov.
2005.

[123] D. Servos and S. L. Osborn, “Current research and open problems in attribute-based
access control,” ACM Comput. Surv., vol. 49, pp. 65:1–65:45, 2017.

[124] M. S. Artigas, C. Cotes, M. R. Rodríguez, and P. G. López, “Stacksync: Attribute-based
data sharing in file synchronization services,” Concurrency and Computation: Practice
and Experience, vol. 30, 2018.

[125] K. Yang, X. Jia, and K. Ren, “Attribute-based fine-grained access control with efficient
revocation in cloud storage systems,” in Proceedings of the 8th ACM SIGSAC Symposium
on Information, Computer and Communications Security, ASIA CCS ’13, (New York,
NY, USA), pp. 523–528, ACM, 2013.

[126] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and fine-grained
data access control in cloud computing,” in Infocom, 2010 proceedings IEEE, pp. 1–9,
Ieee, 2010.

[127] A. J. Lee, M. Winslett, and K. J. Perano, “Trustbuilder2: A reconfigurable framework for
trust negotiation,” in IFIP International Conference on Trust Management, pp. 176–195,
Springer, 2009.

[128] T. H. Noor, Q. Z. Sheng, S. Zeadally, and J. Yu, “Trust management of services in cloud
environments: Obstacles and solutions,” ACM Computing Surveys (CSUR), vol. 46,
no. 1, p. 12, 2013.

115

[129] Y. Chunxiao, W. Zhongfu, F. Yunqing, et al., “An attribute-based delegation model
and its extension,” Journal of Research and Practice in Information Technology, vol. 38,
no. 1, p. 3, 2006.

[130] R. S. Sandhu and P. Samarati, “Access control: principle and practice,” IEEE commu-
nications magazine, vol. 32, no. 9, pp. 40–48, 1994.

[131] R. Ramakrishnan and J. D. Ullman, “A survey of deductive database systems,” The
journal of logic programming, vol. 23, no. 2, pp. 125–149, 1995.

[132] A. Pretschner, M. Hilty, F. Schütz, C. Schaefer, and T. Walter, “Usage control en-
forcement: Present and future,” IEEE Security & Privacy, vol. 6, no. 4, pp. 44–53,
2008.

[133] M. Hilty, D. Basin, and A. Pretschner, “On obligations,” in European Symposium on
Research in Computer Security, pp. 98–117, Springer, 2005.

[134] F. Martinelli, P. Mori, A. Saracino, and F. Di Cerbo, “Obligation management in
usage control systems,” in 2019 27th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP), pp. 356–364, IEEE, 2019.

[135] N. Li, H. Chen, and E. Bertino, “On practical specification and enforcement of obliga-
tions,” in Proceedings of the second ACM conference on Data and Application Security
and Privacy, pp. 71–82, ACM, 2012.

[136] H. Liang and M. Li, “Bring the missing jigsaw back: Trustedclock for sgx enclaves,” in
Proceedings of the 11th European Workshop on Systems Security, p. 8, ACM, 2018.

[137] The Programming Language Lua. https://www.lua.org/, 2019.

[138] John D. Ramsdell. https://sourceforge.net/projects/datalog/, 2019.

[139] J. Nielsen, Usability engineering. Elsevier, 1994.

[140] Y.-Y. Chen, P. A. Jamkhedkar, and R. B. Lee, “A software-hardware architecture for
self-protecting data,” in Proceedings of the 2012 ACM conference on Computer and
communications security, pp. 14–27, ACM, 2012.

116

https://www.lua.org/
https://sourceforge.net/projects/datalog/

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Cryptographic primitives and their respective key sizes
	2. NeXUS Filesystem API. The arguments typically include the directory path(s), and file name(s).
	3. Latency(s) for copying PDFs and videos.
	4. Database benchmark results on AFS.
	5. Joplin Administrative ABAC commands
	6. Predicates in Joplin's predicate language

	LIST OF FIGURES
	1. Encrypted file synchronization setting model
	2. Client requesting straff.txt file from the server
	3. Isolated Execution. The enclave (grey) has a separate stack, heap, and code sections that are independent of the untrusted portion.
	4. SGX Remote Attestation example for simple ECDH key exchange. The enclave quote contains the client-generated nonce and both public ECDH keys. In the end, both the client and enclave generate the shared key K.
	5. ABAC
	6. Reference monitor Architecture
	7. Different architectures for enabling SGX security in a client-server environment. Each architecture shows a different combination of enclave location and enclave provenance.
	8. Architecture of a typical cryptographic filesystem. Encrypted file data are protected by a lockbox, which are in turn cryptographically restricted to authorized users.
	9. NeXUS architecture.
	10. Authenticated user view. Directory traversal by NeXUS to present the plain contents of the user's data files.
	11. Metadata Layout. The encryption key is protected with the volume rootkey, which is only accessible within the enclave.
	12. User Authentication with NeXUS enclave
	13. Key Exchange protocol diagram for Owen sharing his NeXUS volume rootkey with Alice.
	14. Metadata update after writing to bar/cake.c (right). After propagating the MAC values to the root dirnode, the root MAC and version are then stashed locally.
	15. Microbenchmarks comparing file and directory operations.
	16. Copying 150 MP3s at different directory depths.
	17. Git cloning of Redis and Julia.
	18. Taxonomy of Obligations from prior work focusing on Applicability and Implementation pretschner2008usage. Black circles can be readily supported by Joplin.
	19. Joplin High-Level Design
	20. Joplin Metadata Structures.
	21. Joplin Microbenchmarks.
	22. Latency on top of Dropbox

	DEDICATION
	ACKNOWLEDGEMENTS
	1.0 INTRODUCTION
	1.1 Current Approaches
	1.2 Challenges
	1.3 Approach and Contributions
	1.4 Roadmap

	2.0 BACKGROUND
	2.1 Cryptographic Preliminaries
	2.1.1 Encryption and Hashing
	2.1.2 Symmetric and Asymmetric Encryption
	2.1.3 Cryptographic Notation

	2.2 Trusted Execution Environments
	2.3 Intel Software Guard Extensions
	2.3.1 Isolated Execution
	2.3.2 Sealed Storage
	2.3.3 Remote Attestation
	2.3.4 SGX Limitations

	2.4 Access and Usage Control
	2.4.1 Traditional Access Control
	2.4.2 Attribute-Based Access Control
	2.4.3 Usage Control

	3.0 SYSTEM AND THREAT MODEL
	4.0 NEXUS
	4.1 Introduction
	4.2 Background and Protection Model
	4.2.1 SGX Design Space
	4.2.2 Cryptographic Filesystem Design
	4.2.2.1 Strawman Construction
	4.2.2.2 Practical Implications

	4.2.3 Our Approach

	4.3 System Design
	4.3.1 Design Goals
	4.3.2 High-Level Architecture
	4.3.3 Filesystem Interface
	4.3.3.1 Metadata Structures
	4.3.3.2 Metadata Encryption
	4.3.3.3 Metadata Traversal
	4.3.3.4 Virtual Filesystem Operations

	4.3.4 Authentication and User Sharing
	4.3.4.1 User Sharing

	4.3.5 Access Control
	4.3.6 Rollback Protection
	4.3.6.1 Verifying Metadata
	4.3.6.2 Updating Metadata

	4.4 Implementation
	4.4.1 AFS Implementation
	4.4.2 FUSE Filesystem
	4.4.3 Consistency Considerations
	4.4.4 Optimizations

	4.5 Evaluation
	4.5.1 Microbenchmarks
	4.5.2 Macrobenchmarks
	4.5.3 Rollback Protection Overhead
	4.5.4 Bulk Metadata Operations
	4.5.5 Revocation Estimates
	4.5.6 Comparing FUSE Overhead
	4.5.7 Takeaway Discussion

	4.6 Related Work
	4.6.1 SGX-Enabled Storage
	4.6.2 Cryptographic Filesystems

	4.7 Conclusions

	5.0 JOPLIN
	5.1 Introduction
	5.2 Background and Related Work
	5.2.1 Attribute-Based Access Control
	5.2.2 Usage Control
	5.2.3 Decentralized Policy Management
	5.2.4 Hardware-Assisted Access Control

	5.3 System Design
	5.3.1 Design goals
	5.3.2 Client-side Approach
	5.3.3 ABAC Model
	5.3.4 Policy Language
	5.3.5 Support for Obligations
	5.3.6 High-Level Architecture

	5.4 Implementation
	5.4.1 Metadata
	5.4.2 System Initialization
	5.4.3 Enforcing Access Policies
	5.4.3.1 Preprocessing
	5.4.3.2 Evaluation

	5.4.4 Implementation Details
	5.4.4.1 Cache management

	5.5 Evaluation
	5.5.1 Use cases
	5.5.1.1 Case study 1
	5.5.1.2 Case study 2

	5.5.2 Performance
	5.5.2.1 Microbenchmarks
	5.5.2.2 End-to-end Latency

	5.5.3 Takeaway Discussion

	5.6 Conclusions

	6.0 SECURITY ANALYSIS
	6.1 Confidentiality and Integrity
	6.2 Authorization: Access to keys
	6.3 Attacking the Filesystem Structure
	6.4 Forward and Backward Secrecy

	7.0 SUMMARY AND FUTURE WORK
	7.1 Summary
	7.2 Future work

	BIBLIOGRAPHY

