
 

  

Title Page 

HSV-1 reprogramming of the host transcriptional environment 
 
 
 
 
 
 
 
 

by 
 

Sarah E. Dremel 
 

B.S., University of Minnesota Twin Cities, 2015 
 
  
 
 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of the 
 

School of Medicine in partial fulfillment 
  

of the requirements for the degree of 
 

Doctor of Philosophy 
 
 
 
 
 
 
 
 
 

University of Pittsburgh 
 

2020



 ii 

Committee Page 

UNIVERSITY OF PITTSBURGH 

 
SCHOOL OF MEDICINE 

 
 
 
 
 
 
 
 
 

This dissertation was presented 
 

by 
 
 

Sarah E. Dremel 
 
 

It was defended on 
 

March 20, 2020 
 

and approved by 
 

Jennifer Bomberger, Associate Professor, Department of Microbiology and Molecular Genetics 
 

Fred Homa, Professor, Department of Microbiology and Molecular Genetics 
 

Nara Lee, Assistant Professor, Department of Microbiology and Molecular Genetics 
 

Martin Schmidt, Professor, Department of Microbiology and Molecular Genetics 
 

Dissertation Director: Neal DeLuca, Professor, Department of Microbiology and Molecular 
Genetics 

  



 iii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by Sarah E. Dremel 
 

2020 
 
 
 

 



 iv 

Abstract 

HSV-1 reprogramming of the host transcriptional environment 
 

Sarah E. Dremel, PhD 
 

University of Pittsburgh, 2020 
 
 
 
 

Herpes Simplex Virus-1 (HSV-1) is a ubiquitous pathogen of the oral and genital mucosa.  

The 152 kilobase double stranded DNA virus employs a coordinated cascade of transcriptional 

events to efficiently generate progeny. Using Next Generation Sequencing (NGS) techniques we 

were able to determine a global, unbiased view of both the host and pathogen. We propose a model 

for how viral DNA replication results in the differential utilization of cellular factors that function 

in transcription initiation. Our work outlines the various cis- and trans- acting factors utilized by 

the virus for this complex transcriptional program. We further elucidated the critical role that the 

major viral transactivator, ICP4, plays throughout the life cycle. We found that ICP4 coated the 

viral genome early during infection, and that rather than occluding the genome, this dense binding 

was associated with recruitment of the Pol II machinery to viral promoters. ICP4 discriminately 

bound the viral genome due to the absence of cellular nucleosomes and high density of cognate 

binding sites. We posit that ICP4’s ability to recruit components of the Pol II machinery to the 

viral genome creates a competitive transcriptional environment. These distinguishing 

characteristics ultimately result in a rapid and efficient reprogramming of the host’s transcriptional 

machinery. 
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1.0 Introduction 

1.1 Pathogenesis and Human Health 

1.1.1 Herpesvirales 

In 2008 the International Committee on Taxonomy of Viruses established a new order of 

double stranded (ds) DNA viruses called Herpesvirales. This order contains three families 

differentiated by species of infection, these include: Alloherpesviridae, Herpesviridae, and 

Malacoherpesviridae. Our work focuses on the family Herpesviridae which infects mammals, birds 

and reptiles (1). The defining characteristic of all viruses classified as herpesviridae is the virion 

morphology (2). There are nine species of herpesviruses known to infect humans (Fig. 1).  

 

 

 

Figure 1 Species tree of human herpesviruses 

Phylogenetic tree is based on data from (3). Scale bar represents species divergence. 
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All of these viruses share the following characteristics: 1. Encode enzymes for DNA 

replication and nucleotide metabolism, 2. Replicate and assemble within the host nucleus, 3. Cause 

cell death at the end of productive infection, and 4. Establish latency and persist through the life 

of the host (4). There are 44 genes conserved within herpesviridae, these largely include structural 

components and the DNA replication machinery (5). From here we will focus on herpes simplex 

virus type 1 (HSV-1), an alphaherpesvirus so defined by its ability to infect a wide range of hosts, 

replicate rapidly, and establish latency in sensory ganglia (4). 

1.1.2 Pathogenesis 

HSV-1 infection has been associated with a wide range of pathologies and symptoms, 

representative of the large range of cells permissive to replication (Fig. 2). 

 

 

 

Figure 2 Complications associated with HSV-1 infection and dissemination 

*Complications are documented in immunocompromised individuals, largely within transplant recipients. 
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Individuals are typically exposed to HSV-1 before the age of 5, although the age of first 

exposure appears to be increasing. A recent analysis of data from the National Health and Nutrition 

Examination Survey determined that seroprevalance of HSV-1 ranged from 47-52% in Americans 

age 20-29, and 27-33% in Americans age 14-19. Across all age groups there was a decrease in 

HSV-1 seroprevalence from 1976 to 2010, however this trend was the most drastic in the 14-19 

age group (6). 

In immunocompetent individuals HSV-1 infection is generally asymptomatic and 

associated with lesions at the primary site of infection. Primary infection generally occurs at the 

oral or genital mucosa, with latency being established in the innervating sensory nerve—namely 

the trigeminal or sacral ganglia (7, 8). HSV-1 can then reactivate causing recurrent outbreaks at 

the site of primary infection. HSV-1 reactivation has been demonstrated in response to ultraviolet 

light, hypothermia, emotional stress, menstruation, iontophoresis, or epinephrine (4). Historically 

HSV-1 was the causative agent of oral lesions, while HSV-2 was the primary cause of genital 

lesions. In recent years, there has been a shift, in which nearly 60% of new genital herpes infection 

are caused by HSV-1 (9, 10). This may be due to an increasing age of acquiring HSV-1, leading 

to an absence of protective antibodies once the individual becomes sexually active. 

Infection can occur—although less commonly—at other locations, resulting in whitlow 

and keratitis. Herpetic whitlow is a lesion of the hands, and was quite common in dentists prior to 

the usage of gloves during examinations (11). Herpes keratitis is HSV-1 corneal infection, and an 

estimated 50,000 cases recur or emerge each year in the U.S (12). Worldwide the incidence is 

estimated to be about 10 million individuals, with 40,000 cases annually of visual impairment or 

blindness as a result (13). 
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In unique cases HSV-1 can be neurovirulent and cause severe pathogenesis. In the United 

States encephalitis occurs at an incidence of 7 out of 100,000. Herpes simplex is the largest cause 

of encephalitis, accounting for 50-75% of cases when the cause was determined (14). Herpes 

simplex encephalitis primarily occurs in children and adolescents, and is linked to genetic 

abnormalities including mutations in the genes for TLR3, TRIF, UNC93B1, and TAF3 (4). Early 

patient treatment with acyclovir drastically improves patient outcomes, although encephalitis 

remains a largely incurable disease with lasting effects (14). 

Herpes simplex possesses the ability to pass the placental barrier and thus can be passed 

from mother to fetus or newborn perinatally. If a pregnant mother acquires a new genital herpes 

infection in the last trimester the risk of transmission to the fetus is between 30-50%. Primary 

genital infection in rare cases can cause severe disease and viral dissemination, resulting in 

maternal death. In cases of recurrent genital herpes the risk of transmission to the fetus is 

significantly lower, approaching 3% (15). HSV-1 transmission to the fetus (congenital herpes) can 

result in spontaneous abortion, microcephaly, hydrocephaly and chorioretinitis (16). Herpes 

simplex transmission to the newborn (neonatal herpes) occurs in about 1 out of 3000 live births in 

the U.S. Neonatal herpes can result in encephalitis, multi-organ viral dissemination, and skin 

lesions (17, 18). 

In immunocompromised individuals HSV-1 can disseminate throughout the body. This is 

perhaps best studied in the case of transplant patients, in which herpes reactivation can cause 

encephalitis (19), esophagitis (20), upper and lower respiratory infection (21, 22), hepatitis (23), 

and colitis (24). Before prophylactic use of the antiviral, acyclovir, HSV-1 reactivated commonly 

in transplant patients with the highest observed rate (82%) in hematopoietic stem cell transplant 
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recipients (25). Resistance to acyclovir has been observed in transplant patients, and current 

estimates range from 1-14% (26, 27).  

Due to herpes simplex’ ability to infect the central nervous system (CNS) recent studies 

have investigated a possible link between the virus and development of neurologic disorders. In 

2017 a paper was published proposing a link between maternal HSV-1 and autism (28). Autism is 

a development disorder with symptoms ranging on a spectrum from severe to mild defined by 

deficits in interactions and communication, typically presenting with repetitive behaviors. Autism 

generally presents during childhood, however individuals have developed autism at ages 11, 14, 

and 31 following herpes encephalitis (29-31). It is of note that all of these documented cases 

occurred prior to 1991, and no additional cases have been published. This may be due to the use 

of acyclovir in treatment of herpes encephalitis or better diagnostic tools for autism. The cause of 

autism is unknown, although it has been proposed that early infection by a viral or microbial 

pathogen may affect development. Again this supports the possibility of HSV-1 as a cause, as the 

virus is both neurotropic and can cross the placental barrier. To date there is no work done in 

animal models linking early HSV-1 infection to behavioral changes, although these studies have 

been done with other pathogens. Additional work is required for any conclusion regarding HSV-1 

and autism.  

Perhaps more convincing, is the link between Alzheimer’s disease (AD) and recurrent 

HSV-1 infections. Research has demonstrated that HSV-1 infection can induce accumulation of 

amyloid beta deposits and hyperphosphorylated tau, both of which contribute to AD development 

(32). Current data suggests that HSV-1 is not the sole causative agents, but rather a contributor to 

the development of AD. More research is required to determine why select individuals develop 

AD, when HSV-1 is resident in more than 60% of individuals over the age of 50 (6). 
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1.1.3 Treatment 

There are multiple antiviral drugs approved by the FDA for treatment of HSV-1, these 

include acyclovir, valacyclovir, and famciclovir (Fig. 3).  

 

 

 

Figure 3 HSV-1 antivirals 

 

Acyclovir (ACV) was approved by the FDA in 1982 as Zovirax. ACV is a nucleotide 

analog with an acyclic side chain lacking a 3’ hydroxyl group (33). After uptake into infected cells 

ACV is phosphorylated by the viral thymidine kinase (tk) (34). After this event ACV is di- and tri-

phosphorylated by host cell kinases (35, 36). In its active form ACV is incorporated into actively 

replicating DNA resulting in chain termination (37, 38). ACV is a particularly effective antiviral 

for two reasons: 1. The initial phosphorylation can be performed in the absence of the virus, 

however cellular kinases are 1 million-fold less capable of the enzymatic reaction. 2. The 

triphosphorylated ACV is a preferred substrate for the viral polymerase. ACV has low oral 

bioavailability, so valaciclovir (VACV) was synthesized which is the L-valyl ester of acyclovir 
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(39). VACV has similar efficacy, but a higher bioavailability (40). Another derivative with higher 

bioavailability is famciclovir (FCV). FCV is converted in the liver from its prodrug form to 6-

deoxypencicloviv, or penciclovir (PCV) (41). PCV is an acyclic guanine derivative with a similar 

mechanism of action to ACV (42). FCV has the highest bioavailability of HSV-1 antivirals (43). 

ACV, FCV, and VCV are used to treat most cases of HSV-1. In cases of drug resistance additional 

antivirals including cidofovir, foscarnet, ganciclovir and valganciclovir are used. These antivirals 

share one major problem—they target the viral polymerase and can only inhibit HSV-1 productive 

infection. To date there are no antivirals effective at targeting the latent viral reservoir. Furthermore 

there is a rising incidence of resistance to these drugs in immunocompromised patients (44), 

indicating a need to develop a new class of antivirals. 

1.1.4 HSV Therapeutic Vectors 

In 2015, the first viral-based therapy drug was approved by the FDA. T-vec (talimogene 

laherparepvec) is an oncolytic HSV-1 based vector expressing GM-CSF. In phase III clinical trials, 

T‐Vec was approved as an intralesional treatment for advanced malignant melanoma and 

demonstrated to suppress tumor growth and prolong patient survival. Additional herpes based 

vectors are currently undergoing clinical trials for treatment of glioblastoma, and have had success 

in animal models for the treatment of various cancers, painful diabetic neuropathy, and sensory 

neuropathy. HSV-1 is an appealing viral vector for therapy treatment due to its broad cell tropism, 

including the peripheral nervous system (PNS) and CNS, low toxicity, large insert capacity, and 

long-term expression (45). 
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1.2 General Biology and HSV-1 Lifecycle 

1.2.1 Virion Structure 

Structural morphology is actually what defines the vast number of viruses contained within 

the order herpesviridae. All herpesviruses, from those infecting humans to mollusks, possess a 

linear dsDNA genome contained within a T-16 capsid surrounded by a proteinaceous tegument 

contained within a lipid envelope studded with glycoproteins (1, 2) (Fig. 4). 

 

 

 

Figure 4 HSV-1 virion structure 

Schematic for the capsid and interaction with the capsid-associated tegument complex (CATC), was based on 

(46, 47). 

 

The viral envelope is a lipid bilayer derived from the host’s trans-Golgi network (TGN) 

(48) or endosomes (49). The envelope is studded with up to 12 different glycoproteins—gB, gC, 

gD, gE, gG, gH, gI, gJ, gK, gL, gM, gN—and three nonglycosylated intrinsic membrane 

proteins—UL20, US9, and UL45. Additional proteins UL24, UL43, and UL34 may also be present 
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in the envelope (4). Inside the envelope is the tegument composed of up to 26 different proteins 

(50), notably the capsid-associated tegument complex (CATC). Five copies of the CATC surround 

and stabilize the major capsid penton at each vertex (46). Other tegument proteins do not have a 

structural role but instead exert immediate activity to promote a pro-viral host environment, these 

include ICP0, ICP4, VP16, γ34.5, and VHS (51). Located asymmetrically within the tegument is 

the capsid (52). The capsid is made up of 150 hexons (1 UL35: 6 UL19), 11 pentons (5 UL19), 

320 triplexes (1 UL38: 2 UL18), one portal protein (UL6) and the protease VP24 (UL26) (46, 47). 

Coiled tightly within the capsid is approximately one copy of the linear viral genome. The highly 

negative charge of the viral genome is believed to be at least partially neutralized by the presence 

of the basic polyamines spermidine and spermine contained within the capsid (53).  

1.2.2 Genome Structure 

HSV-1 has a 152 kilobase linear double stranded (ds) genome of high GC-content 

(approaching 70%) (54, 55) with nicks and gaps (56, 57). The genome consists of a unique long 

(UL) and unique short (US) component which are linked by a joint containing inverted repeat 

regions (Fig. 5). 

 

 

 

Figure 5 HSV-1 genome structure 

Genome structure is based on KT899744.1 assembly; Unique Long (UL), Unique Short (US), coding region 

(CDS). 
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The UL and US components can invert relative to each other, resulting in four different 

genomic isomers found at equal proportions in mature virions (58, 59). The inverted repeats or ‘a’ 

sequence is some variation of CGCTCCTCCCCC, with differences observed in sequence and 

repeat number between different lab adapted strains (60). With the exception of the genes for γ34.5 

(RL1), ORF P, ICP0 (RL2), and ICP4 (RS1) which flank the UL or US regions and have two 

copies within the genome, all other viral genes are only present in one copy. Current genome 

assemblies contain around 84 protein-coding open reading frames (ORFs), although more recent 

studies have proposed that there are upwards of 200 transcripts and ORFs (61). The viral genome 

contains a 5 kilobase (kb) noncoding (nc) transcript primarily made during latency, or the latency-

associated transcript (LAT). Studies have also indicated at least 16 miRNA’s expressed by HSV-

1 (62). To put this in reference, the cellular genome is 3.2 billion base pairs containing at least 

60,000 genes that make about 200,000 different transcripts, or 1.9x10-2 genes/kbp (Gencode v33). 

While the total size and complexity of the cellular genome is much greater, the viral genome is 

significantly more compact, with at least 0.6 genes/kbp.  

Another structural feature of the viral genome is the lack of chromatin structure. The 

cellular genome is compacted into chromatin which is facilitated by nucleosomes composed of 

two copies of each histone protein: H3, H4, H2A and H2B. 146-147 bp of the cellular genome is 

bound and wrapped around the histone octamer, which is facilitated by the basic charge of the 

histone complex (63). Nucleosomes space evenly along the genome with the linker histone H1 

bound in between (64). These structures facilitate compaction of the cellular genome into 30 nm 

fibers (65). Euchromatin refers to transcriptionally active chromatin whereas heterochromatin 

refers to transcriptional silent chromatin. The chromatin states are regulated by different post-

translational modifications on the histones composing the octamer. Generally, acetylation reduces 
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the basic charge of the histone tail altering the attraction between the nucleosome and genomic 

DNA resulting in reduced compaction. Alternatively, methylation of the core histones commonly 

on lysine or arginine residues can make the histone tail more rigid—effectively binding and 

compacting the genomic DNA. These are simplified principles and the reality is that both 

acetylation and methylation have been associated with eu- or hetero-chromatin depending on the 

residue of the histone octamer modified. Chromatin remodeling plays a major role in regulation of 

transcription, replication and DNA repair for the cellular genome (66). 

During productive infection, HSV-1 has a mechanism by which it prevents assembly and 

binding of cellular nucleosomes on the viral genome, this is indicated by the following evidence: 

i. HSV-1 virions do not contain histones (67-69), ii. viral genomes are not bound by nucleosomes 

after nuclear entry (69-73), and iii. cellular histones are excluded from replication compartments 

(74-76). This may be due to the short time from when the viral genome enters the nucleus prior to 

host cell death (12-24 hours), and the amount of time required for histone turnover and nascent 

nucleosome assembly. Or this may be due to the direct actions of viral tegument proteins, ICP0, 

VP16, and ICP4, to combat chromatinization (77). The exact contribution of these factors remains 

to be explored. Compared to the host in which 75-90% of the genome is packaged in nucleosomes, 

the viral genome serves as a unique model to study the other 10-25% and examine cellular 

processes in the absence of chromatin structural dynamics. Our studies discussed in Chapter 2 and 

3 reinforce this idea. 

1.2.3 Productive Infection 

HSV-1 undergoes lytic, or productive, infection at the site of primary infection which is 

typically the oral or genital mucosa. During productive infection, the virus undergoes a tightly 
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ordered life cycle and within 12 to 24 hours produces thousands of viral progeny and results in 

death of the host cell (Fig. 6). 

 

 

 

Figure 6 HSV-1 productive life cycle 

Schematic of the viral life cycle in fibroblasts; Kinetic classes are colored with immediate early (IE) in yellow, 

early (E) in green, leaky late (L1) in teal, and true late (L2) in purple. 

1.2.3.1 Viral Entry and Trafficking 

HSV-1 has a wide host and tissue tropism and has been shown in lab settings to infect mice, 

rabbits, guinea pigs, and canine kidney cells. This is likely due to the virus’ ability to utilize a 

number of different entry receptors and mechanisms of entry. HSV-1 expresses up to 12 different 
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glycoproteins and of these only gD, gH, gL, and gB are essential for viral entry in cell culture and 

animal models of infection (78, 79). These glycoproteins are key in coordinating the steps of 

attachment: 1. gB and gC attach to host surface heparan sulfate. 2. gD binds to host nectin-1, herpes 

virus entry mediator, or 3-O-sulfated heparan sulfate. This binding event alters the conformation 

of gD so that it now binds the heterodimeric glycoprotein, gH/gL. 3. In complex with gH/gL, gB 

mediates entry to the host cell. The host attachment molecule that gD binds to appears to decide 

the method of entry, whether it be endocytosis or fusion (80). Studies have identified more 

specialized role for some of the other “nonessential” glycoproteins, for instance gK promotes 

membrane fusion in neurons (81), and gC and gG promote apical entry of polarized epithelial cells 

(82, 83). 

After either membrane fusion or endocytosis, viral tegument proteins are released into the 

cytoplasm. Some tegument proteins remain associated with the capsid and traffic to the nucleus, 

while other tegument proteins traffic independently. Capsid trafficking is mediated by the 

microtubule network using the motor adaptor, dynein (84, 85). Capsids travel from the periphery 

to the centrosome by minus-end directed transport, switching to plus-end directed transport to 

arrive at the nucleus (86, 87). The viral genome is ejected through the nuclear pore complex, which 

requires host importin-beta (88-90) and cleavage of the CATC component, UL36 (91). A recent 

study found that the ionic and temperature conditions present in native host cells facilitates 

efficient ejection of the HSV-1 genome into the nucleus (92). The US end of the genome is ejected 

first from the capsid (93). Unlike other viruses, the HSV-1 capsid does not dissolve during delivery 

of the viral genome as empty capsids have been visualized docked at nuclear pore complexes (94, 

95). 
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1.2.3.2 Evasion of Nuclear Restriction Factors 

After the viral genome enters the nucleus, ICP0 acts within the first hour of infection to 

overcome host cell intrinsic defense mechanisms. Successful host restriction results in quiescent 

infection where the viral genome is maintained and transcriptionally silent. This prevents 

production of multiple virus encoded proteins which act to directly inhibit innate immune sensing, 

host translation, and transcription. Thus, quiescently infected cells can signal to neighboring cells 

and prevent HSV-1 spread. Host restriction is largely conferred by components of nuclear domain 

10 (ND10) or promyelocytic leukemia nuclear (PML) bodies, including PML, SP100, DAXX, 

ATRX, and HIRA (96). These host proteins are shown to respond within an hour of viral nuclear 

entry. In the absence of ICP0 these structures sequester the viral genome and severely reduce the 

incidence of productively replicating HSV-1 genomes (97). 

ICP0 is an IE protein that encodes a U3 ubiquitin ligase (98), and is essential for viral 

replication at low but not high multiplicity of infection (MOI). At a low MOI with an ICP0 null 

mutant, many infected cells enter into a quiescent state in which there is a significantly reduced 

viral gene expression (96). These viral genomes can be de-repressed by delivery in trans of ICP0 

(99), and to a lesser extent ICP4, VP16 (100-102) or histone deacetylase (HDAC) inhibitors (103). 

Addition of the proteasome inhibitor MG132 prevents ICP0 from reactivating the quiescent viral 

genome, suggesting that the E3 ubiquitin ligase activity is critical to ICP0 function (104). Many 

cellular factors have been identified as targets of ICP0’s E3 ubiquitin ligase activity including 

PML, Sp100, DNA protein kinase, CENP-C, CENP-A, ATRX, and IFI-16 (105-111).  

As discussed above in section 1.2.2, during productive infection the HSV-1 genome lacks 

nucleosomes or characteristics of cellular chromatin. The ability of HDAC inhibitors to rescue 

ICP0 null quiescent viral genomes suggests that ICP0 plays a direct role in preventing nucleosome 
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assembly (103, 112, 113). There are currently two proposed mechanisms by which ICP0 

ameliorates heterochromatization of the viral genome. First ICP0 may induces degradation of a 

host protein in this pathway via it’s U3 ubiquitin ligase activity. Second ICP0 may associate and 

inhibit activity of various host chromatin remodelers. ICP0 has been shown to complex with 

HDAC5, HDAC6, HDAC7 (114) and the REST/CoREST complex (115, 116).  

1.2.3.3 Overview of Pol II Transcription 

HSV-1 utilizes the host RNA Polymerase II (Pol II) machinery for viral transcription (117). 

We will briefly discuss the basic steps in Pol II transcription (Fig. 7). 

 

 

 

Figure 7 Overview of Pol II transcription 



 16 

First the TFIID complex is recruited to specific cis-elements in the core promoter. TFIID 

is comprised of the TATA-binding protein (TBP) and up to 11 different TAFs. The TBP 

component binds to TATA boxes and the TAFs bind to other motifs including the initiator element 

(Inr). Binding of TFIID distorts the DNA helix near the TATA box, which aids in binding and 

assembly of additional Pol II transcription factors, including TFIIA and TFIIB. Pol II is recruited 

through protein-protein interactions and positioned relative to the TSS by DNA-bound GTFs, 

namely TFIIB and TFIID. This complex is termed the pre-initiation complex (PIC) and it is 

composed of TFIID, TFIIA, TFIIB, TFIIF, TFIIE, TFIIJ, TFIIH, and Pol II. Additional activators 

and enhancers such as the Mediator complex are also critical components of the PIC. After the PIC 

is formed, Pol II begins transcription. It is believed that most GTF’s absent DNA binding ability 

dissociate from the promoter at this point. Pol II synthesizes approximately 20-60 nucleotides (nt) 

before pausing. This is termed proximal promoter stalling, and is not relieved until the C-terminal 

domain (CTD) of Pol II is phosphorylated by elongation factors including TFIIH, CDK9/P-TEFb. 

Now that the CTD has been phosphorylated Pol II proceeds with transcription (118-120). This is 

a general overview of Pol II transcription, however most of these core GTF’s have been identified 

as critical for viral transcription—with the exception of TFIIA, which appears to be function 

redundantly to ICP4 (121, 122). 

1.2.3.4 Transcriptional Cascade 

Like other DNA viruses HSV-1 coordinates a transcriptional cascade ensuring coordinated 

and efficient transcription of at least 80 viral proteins (123-125). Briefly the gene classes are: 

immediate early (IE or α), early (E or β), and late (L or γ).  

IE proteins were classified as those expressed in the absence of de novo viral protein 

synthesis. There are five IE proteins and their expression peaks 2-4 hpi (126). ICP0 plays a role in 
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counteracting host intrinsic defenses and chromatin formation as discussed above. ICP4 has a 

critical role in E and L gene transcription as discussed in section 1.2.3.6 (127). ICP22 plays an 

essential role in promoting Pol II elongation at later times during infection (128). ICP27 promotes 

viral mRNA 3’ processing (129), and is reported to also function in mRNA export and inhibition 

of host splicing. ICP47 localizes to the cytoplasm where it binds host TAP1/TAP2 and inhibits 

antigen presentation on the cell surface (130). 

E proteins were classified as those expressed in the presence of functional alpha proteins 

before DNA replication. E protein expression peaks 6-12 hpi. E proteins include all components 

of the DNA replication machinery, classically this includes: UL2, UL5, UL8, UL9, UL12, UL23, 

UL29, UL30, UL39, UL40, UL42, UL50, and UL52 (4). 

L proteins were classified as those expressed in the presence of functional alpha proteins 

after DNA replication. Late proteins were further delineated as leaky late (γ1 or L1) and true late 

(γ2 or L2) based on whether genome replication increases expression or is absolutely required. L 

protein expression peaks 10-15 hpi. L proteins include the structural, packaging, and assembly 

components of the virion. 

1.2.3.5 VP16-Mediated Transcription 

IE genes are transcribed immediately after delivery of the viral genome to the nucleus and 

this is largely due to the activating role of VP16. VP16 (UL48) is a L1 gene that encodes a 

transcriptional activator (131, 132). VP16 is delivered from the viral tegument to the cytosol where 

it complexes with HCF-1 and then travels to the nucleus (133). HCF-1 is a member of the host cell 

factor family and was first identified in complex with VP16 (134-136). Work since then has found 

that in uninfected cells HCF-1 plays a critical role in control of the cell cycle (137, 138). In the 

nucleus, the VP16-HCF-1 heterodimer binds OCT1 (also called POU2F1). OCT1 is a member of 
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the POU transcription factor family and binds the octamer motif ATTTGCAT to activate 

transcription (139). In the context of HSV-1 infection, OCT1 mediates binding of the complex to 

promoter elements containing TAATGARAT elements; where R is A or G (140, 141). These 

TAATGARAT elements are contained exclusively within the viral IE promoters, where VP16 

robustly recruits the cellular GTFs, SP1, TFIIB, TFIIH, and TFIID (142). VP16 may also play a 

role in preventing chromatinization of the incoming viral genome, as VP16 has been shown to 

recruit chromatin remodelers including CBP, p300, and the SWI-SNF complex (BRG-1, BRM) 

(77).  

1.2.3.6 ICP4-Dependent Transcription 

ICP4 is the main viral transcriptional activator, and is essential for transcription of E and 

L genes (143-145). ICP4 is known to form dimers or multimers on DNA, each form has a different 

affinity and specificity for binding (146, 147). Namely at high concentrations ICP4 multimerizes 

on dsDNA sequence-nonspecifically (148). At low concentrations ICP4 binds sequence-

specifically to the motif 5′ATCGTCNNNNYCGRC-3’ (149). ICP4 interacts with a number of 

cellular general transcription factors (GTFs), including components of TFIID, TFIIH, Mediator, 

CPSF, and the chromatin remodelers SWI-SNF, NURD, and Ino80 (150-152), facilitating their 

recruitment to the viral genome through its DNA binding activity (151, 153, 154). Recruitment of 

these transcription factors facilitates PIC formation on viral promoters, activating robust 

transcription (122, 155). 

1.2.3.7 DNA Replication-Dependent Transcription 

While both E and L genes are activated in an ICP4-dependent manner, L genes are not 

efficiently transcribed or expressed until after viral DNA replication has started. The exact reason 
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for this requirement is still not known. Unlike other viruses, HSV-1 does not encode a late gene 

specific trans activating factor. Additionally, there is still no evidence of a repressive factor bound 

to the viral genome prior to replication.  

One model proposes that a component of the viral DNA replication machinery serves a 

dual function and is continuously required for late gene transcription. Numerous interactions have 

been demonstrated between the core DNA synthesis components and cellular factors.  For instance, 

the viral polymerase holoenzyme was reported to interact with cdc2, topoisomerase IIa, HCF-1, 

Asf1b, hsp90 and Fen-1 (156-160). These factors may aid in recruitment of the Pol II machinery 

to the viral genome. Whether recruitment of any of these factors is essential to late gene 

transcription remains to be tested. 

Prior studies identified promoter differences between E and L genes, however they focused 

on select examples from each gene class, which have not been broadly applied. The canonical E 

gene, thymidine kinase (UL23 or tk), possesses upstream promoter elements (UPEs), namely, two 

GC-boxes and a CAAT box, which are critical for robust transcription in the absence of DNA 

replication. Deletion of these promoter elements resulted in tk being expressed with a L1 gene 

phenotype (161, 162). Other UPE’s may be responsible for activation of other E genes, although 

this remains to be studied. 

1.2.3.8 Viral DNA Replication 

There are seven essential viral proteins required for HSV-1 DNA replication: DNA 

polymerase holoenzyme (UL30/UL42), helicase-primase complex (UL5/UL8/UL52), single 

stranded DNA (ssDNA) binding protein (ICP8), and origin binding protein (UL9). Excepting UL9 

these six components are conserved in herpesviridae. The production of concatemeric viral 

genomes supports a rolling circle model of synthesis (163), however a recombination based 
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mechanism may also be viable (164-167). We will describe what is currently known about the 

mechanism of viral DNA replication (Fig. 8).  

 

 

 

Figure 8 Model of HSV-1 DNA replication 

 

First, the origin binding protein (OBP) and ssDNA binding protein bind to the origin of 

replication and distort the double helix (168, 169). Current lines of evidence suggest that based on 
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the rate of DNA replication, multiple origins must be firing simultaneously during replication 

(164). The HSV-1 genome contains three origins of replication (ori): OriS which is present in two 

copies and located in the repeat regions adjacent to ICP4, and OriL which is located in the UL 

region between UL29 and UL30 (170, 171). Both origins contain an AT-rich region flanked by 

binding sites for the origin binding protein (OBP). The OBP has been demonstrated in vitro to 

function as a nucleoside triphosphatase, DNA helicase, and nonspecific ssDNA binding protein 

(166, 167). The OBP also possesses sequence specific binding for repeated GTTCGCAC sites, 

contained within the viral origins (172). ICP8 has been shown to preferentially bind ssDNA, and 

to a lesser degree duplex DNA and single stranded oligos (173, 174). ICP8 has also been shown 

to destabilize double helixes (175, 176). Experiments using temperature sensitive (ts) mutants 

demonstrated that the OBP is not continuously required for ongoing DNA replication. This 

indicates that at some point DNA replication likely becomes origin independent (177). 

Second, the helicase-primase complex is recruited to the distorted helix of the origin. 

Studies determined that the OBP interacts with UL8, and ICP8 contacts UL5, UL8, and UL52. 

These contacts facilitate recruitment of the helicase-primase complex to the distorted DNA helix. 

Once bound to the origin, the helicase-primase complex further unwinds the duplex DNA and 

synthesizes RNA primers at the nascent replication fork (166, 167). In vitro assays suggest that 

the helicase primase complex must be present as a dimer or higher-order structure for optimal 

primase activity (178). 

Third, the viral polymerase holoenzyme binds to the replication fork where it catalyzes 

concurrent leading and lagging strand synthesis. Recruitment of the DNA polymerase requires 

that the helicase primase complex have actual primase activity, suggesting that either the active 

conformation of the helicase primase complex or the actual RNA primer itself are critical for 
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efficient recruitment. Recent work has demonstrated that the DNA polymerase is capable of 

catalyzing concurrent leading and lagging strand synthesis (179). 

There are additional viral factors that function in DNA synthesis, including a thymidine 

kinase (UL23), ribonucleotide reductase (UL39/UL40), deoxyuridine triphosphatase (UL50), 

alkaline nuclease (UL12), and uracil-DNA glycosylase (UL2). However, none of these genes are 

essential for either DNA replication or late gene transcription in cell culture (167). 

1.2.3.9 Packaging and Assembly 

Production of infectious progeny is detectable starting around 6 hpi. Capsid assembly and 

genome packaging occur within the nucleus. The capsid is composed of the six proteins UL6, 

UL18, UL19, UL26, UL35, and UL38 as described in 1.2.1. DNA packaging occurs in pre-

assembled viral capsids. The viral genes UL6, UL15, UL17, UL25, UL28, UL32, and UL33 are 

all essential for DNA packaging (180). Among these genes is the portal protein found at one vertex 

of the capsid, which is composed of 12 copies of UL6. The terminase complex, UL15, UL28, and 

UL33, is responsible for cleaving the viral genome sequence specifically. UL17 and UL25 are 

components of the CATC complex and are critical for capsid assembly and structure during 

packaging (46). Data suggests that UL32 may play a role in ensuring capsids localize to the 

appropriate nuclear region for packaging (181). 

Viral DNA replication produces conjoined genomes that need to be cleaved during 

packaging so that mature virions contain one copy of the linear genome. Two specific cleavage 

signals, pac1 and pac2 are contained within the tandem repeat regions, or ‘a’ sequence (182). DNA 

encapsidation likely starts at the UL end of the genome and finishes at the US end (93). The 

terminase complex is responsible for recognizing the cleavage signals and ensuring that a single 

linear copy of the genome is within each capsid. 
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Recent work found the DNA packaging and capsid assembly components UL17, UL18, 

UL19, UL25, UL26, and UL38 enriched away from nascent replication forks in viral genomes. 

This is consistent with the observation that active replication is not required for DNA packaging 

(183). In contrast UL6, the portal protein, was one of the most abundant proteins found at the 

replication fork of nascent viral genomes (164). This result may be indicative of a role for UL6 in 

directing the viral genome to the capsid for packaging.  

Envelopment is still controversial, as the virion must exit the nucleus, acquire a 

glycoprotein studded envelope and finally be released from host cells. We will discuss the most 

likely model. First the mature capsid buds through the nuclear membranes where it is enveloped 

and then de-enveloped. This is supported by the envelope composition of mature virions, which 

best matches the lipid composition of the TGN or endosomes (48, 49). After exiting the nucleus 

the virus buds through the TGN network to acquire its final envelope studded with viral 

glycoproteins. Tegument proteins are likely acquired in the cytosol prior to envelopment in the 

TGN. Finally, enveloped virions exit the cell via exocytosis, mimicking how the TGN membrane 

is recycled and fused with the plasma membrane (184). 

1.3 Rationale 

Viruses have evolved unique mechanisms to invade hosts, alter cellular pathways, and 

redirect host factors for viral processes. These mechanisms are only beginning to emerge as recent 

technical advancements provide unbiased, comprehensive tools to investigate viral genome-

protein interactions. We investigated how herpes simplex virus type 1 (HSV-1) alters the nuclear 

environment to manipulate host processes, namely the Pol II transcription machinery. We found 



 24 

that HSV-1 utilizes specific promoter elements and trans-acting viral factors to promote robust 

viral transcription, at the expense of the host. These virus-host interactions are essential to facilitate 

the rapid pace of HSV-1 productive infection. 

In Chapter 2 we will discuss how viral DNA replication drastically alters the transcriptional 

landscape and kinetically delineates viral transcription. 

In Chapter 3 we will discuss how ICP4 interacts with host GTF’s and contributes to a shift 

in favor of viral transcription at the expense of the host. 
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2.0 Genome replication affects transcription factor binding mediating the cascade of 

Herpes Simplex Virus transcription 

The following study was published January 17, 2017 in PLoS Pathogens. “Replication-

Coupled Recruitment of Viral and Cellular Factors to Herpes Simplex Virus Type 1 Replication 

Forks for the Maintenance and Expression of Viral Genomes” by Jill A. Dembowski, Sarah E. 

Dremel, and Neal A. DeLuca. Copyright © 2020, PLoS. Reproduced here under the terms of the 

Creative Commons CC BY license. 

The following study was published February 26, 2019 in PNAS. “Genome replication 

affects transcription factor binding mediating the cascade of herpes simplex virus transcription” 

by Sarah E. Dremel and Neal A. DeLuca. Copyright © 2020, National Academy of Sciences. 

Reproduced here under the terms of the Creative Commons CC BY license. 

2.1 Project Summary 

In herpes simplex virus type 1 (HSV-1) infection, the coupling of genome replication and 

transcription regulation has been known for many years; however, the underlying mechanism has 

not been elucidated. We performed a comprehensive transcriptomic assessment and factor-binding 

analysis for Pol II, TBP, TAF1, and SP1 to assess the effect genome replication has on viral 

transcription initiation and elongation. The onset of genome replication resulted in the binding of 

TBP, TAF1, and Pol II to previously silent late promoters. The viral transcription factor, ICP4, 

was continuously needed in addition to DNA replication for activation of late gene transcription 
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initiation. Furthermore, late promoters contain a motif that closely matches the consensus initiator 

element (Inr), which robustly bound TAF1 post-replication. Continued DNA replication resulted 

in reduced binding of SP1, TBP, and Pol II to early promoters. Therefore, the initiation of early 

gene transcription is attenuated following DNA replication. Herein, we propose a model for how 

viral DNA replication results in the differential utilization of cellular factors that function in 

transcription initiation, leading to the delineation of kinetic class in HSV-productive infection. 

2.2 Importance 

Nuclear-replicating DNA viruses employ a common strategy of coupling late gene 

transcription to genome replication. The mechanism by which genome replication facilitates 

nascent transcription is unknown. We performed RNA-Seq and ChIP-Seq for Pol II, TBP, TAF1, 

and SP1 to quantitatively assess transcription initiation and elongation across the viral genome. 

The onset of replication permanently altered genomic accessibility and, with the aid of ICP4, 

facilitated binding of initiation factors to previously silenced promoters. Continued replication 

precluded binding of transcription factors to promoters active prior to DNA replication. The results 

provide a model for the mechanism of the transcription switch in HSV infection, which may be 

applicable to other nuclear-replicating DNA viruses. 



 27 

2.3 Introduction 

The genome of Herpes simplex virus I (HSV-1) is 152 kb of linear double-stranded DNA, 

containing three origins of replication and over 90 unique ORFs (170, 171, 185, 186). Genome 

replication and transcription occur in the host cell nucleus. HSV-1 encodes its own genome 

replication machinery (187), and viral gene products augment the RNA Polymerase II (Pol II) 

machinery of the cell for the transcription of the genome (117). Viral transcription is incredibly 

robust, allowing a single infecting virus to produce progeny between 4 and 6 h postinfection, 

culminating in ∼1,000 infectious progeny per cell within 18 h.  

The HSV-1 transcriptional cascade was originally defined by adding cyclohexamide (123), 

canavanine (124), and phosphonoacetic acid (125) to infected cells and assessing peptide and, 

later, RNA accumulation. These experiments defined immediate early (IE or α), early (E or β), and 

late (L or γ) genes as those expressed in the absence of de novo viral protein synthesis, in the 

presence of functional alpha proteins before DNA replication, and after genome replication, 

respectively. Late genes were further delineated as leaky late (L1) and true late (L2) based on 

whether genome replication increases the rate of synthesis or initiates synthesis. α gene promoters 

possess promoter elements, which bind the viral tegument protein, VP16, activating their 

transcription (131, 132, 140, 141). ICP4 is the product of an α gene that is required for the 

transcription of viral E and L genes (143, 145, 188). A canonical E gene, thymidine kinase (UL23 

or tk), contains upstream promoter elements (UPEs), namely, two GC-boxes and a CAAT box 

(161), which bind the cellular transcription factors SP1 and NF1, respectively (161, 162). A 

prototypic L2 gene, glycoprotein C (UL44 or gC), consists of a TATA box and an initiator (Inr) 

sequence located near the start site of transcription, the latter of which is important for robust 
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transcription and ICP4 activation (189-192). How this gene architecture is coordinated with 

genome replication to produce the observed cascade of gene expression is unknown.  

We wanted to determine the transcriptional changes associated with viral genome 

replication. We report a comprehensive assessment of how genome replication alters the viral 

transcriptional landscape and facilitates a shift in transcript production. Our results lead us to 

propose a model of the viral transcriptional cascade which provides insight into a mechanism used 

by DNA viruses to coordinate efficient virion production. 

2.4 Results 

2.4.1 Dependence of Late Viral Transcription on Genome Replication 

To investigate the coupling of viral transcription to replication, we carried out RNA-Seq 

in Vero cells infected with wild-type HSV-1 (strain KOS). An inhibitor of viral genome 

replication, acyclovir (ACV), was added at 0, 2, 3, 4, or 6 hpi. DNA and RNA was harvested at 12 

hours post infection (hpi) to compare the relative abundance of viral genomes and transcripts as a 

function of time of inhibition of viral DNA synthesis. The control was harvested at 12 hpi without 

the addition of ACV.  
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Figure 9 Initial rounds of replication are sufficient to alter late and early gene transcription 

Vero cells infected with HSV-1 and treated with acyclovir (ACV) at 0, 2, 3, 4, or 6 hpi. Error bars are the 

standard deviation of biological duplicates. A-B, D-E. PolyA-selected RNA-Seq. A-B. mRNA abundance of 

UL44 and UL23, y-axes values are mapped reads per million total reads per kilobase (MR/MTR/Kb). D. 

Reads mapped to the viral or host genome as a percentage of total reads. C. Viral genomes produced by 2 

million infected cells, quantified by qPCR. E. Reads mapped to a region of the HSV-1 genome, y-axes values 

are MR/MTR. Viral coding sequence (CDS) are indicated, color coded by gene class with E as green, leaky 

late (L1) as blue, and true late (L2) as purple. 

 

When ACV was added prior to the onset of genome replication, 0 and 2 hpi, we observed 

no accumulation of the true late gene UL44 (glycoprotein C, gC) (Fig. 9A). By comparison the 

canonical early gene UL23 (thymidine kinase, tk) reached the greatest abundance in these samples 

(Fig. 9B). When ACV was added at 3 hpi we measured approximately one round of genome 

replication (Fig. 9C), which coincided with a doubling in the abundance of viral transcripts, from 

11% to 20% of total mRNA (Fig. 9D). Consistent with these data, we observed transcription of gC 

(Fig. 9A) and other true late genes (Fig. 9E, Supplemental Fig. 1) in samples treated with ACV at 

3 hpi. Additional genome replication resulted in increased accumulation of leaky and true late 
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transcripts (Supplemental Fig. 1), consistent with Jones and Roizman, 1979. These data show that 

continuing rounds of genome replication are not required for transcription of viral true late genes. 

Thus the initial rounds of viral DNA replication are sufficient to alter the transcriptional landscape 

of HSV-1 genomes enough to activate late gene and alter early gene transcription. 

 

2.4.2 Classification of Viral DNA Replication-Dependent Transcripts. 

We performed a global analysis to obtain a data set of genes in each class as a prelude to 

determining what molecular features distinguish early and late genes. We infected human 

fibroblast (MRC5) cells with wild-type HSV-1 (KOS) and a UL30 C-terminal truncation mutant, 

∆C1216. UL30 encodes the viral DNA-dependent DNA polymerase (193). The C-terminal tail of 

UL30 was shown to be essential for interaction with the processivity factor, UL42 (194). In the 

absence of this interaction, HSV genome replication is inhibited (195). We assessed genome 

replication and transcriptional activity for this mutant and wild-type virus.  
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Figure 10 Replication dependence of viral transcripts.  

MRC5 cells were infected with WT HSV-1 and ∆C1216. (A) PolyA-selected RNA-Seq data as mapped reads 

per million total reads per kilobase (MR/MTR/KB) or log2 fold-change of WT over ∆C1216. (B) Number of 

viral genomes per cell. (C) RNA-Seq reads mapping to the viral or cellular genome as a percentage of total 

reads. 

 

As expected, there was no genome replication in ∆C1216-infected cells (Fig. 10B). 

Consistent with previous studies, thymidine kinase and single-stranded DNA-binding protein 

(UL29) accumulated to higher levels in ∆C1216-infected cells. By the end of the time course 

almost all other viral transcripts were produced more robustly in wild-type infection, reaching 50% 

of total RNA sampled, compared with only ∼12% in ∆C1216 (Fig. 10C). We clustered viral 
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transcripts based on their accumulation in the presence and absence of genome replication (Fig. 

10A). Twenty-three genes were excluded from classification, as their reads were present at very 

low levels (<2,000 MR/MTR/KB) in all samples analyzed. Forty-six viral genes were classified 

strictly as either E, L1, or L2. As expected, the E gene class encompassed proteins with a role in 

genome replication and maintenance. All other transcripts were classified as dependent on genome 

replication. These more closely defined gene classes (Table 1) were used for all further analyses. 

 

Table 1 Classification of viral genes bases on DNA replication dependence 

 

 

2.4.3 Viral Replication Facilitates Preinitiation Complex Formation on Previously Silent 

Promoters. 

We infected MRC5 cells with wild-type HSV-1 in the presence or absence of an inhibitor 

of viral replication, ACV. Infected cells were harvested at 4 hpi, and ChIP-Seq was performed for 

Pol II, TATA-binding protein (TBP), and transcription initiation factor TFIID subunit 1 (TAF1). 

Using these data, we were able to assess transcription factor dynamics in conditions optimal for 

either E or L gene transcription. ChIP-Seq reads mapped to previously characterized viral 

promoters demonstrated that each factor was positioned relative to its respective binding element 

(Supplemental Fig. 2). 
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To quantitatively compare inhibited (+ACV) and uninhibited (−ACV) samples we had to 

account for viral genome replication. Quantification of input samples provided the relative 

amounts of viral genomes present in each condition (∼30-fold higher in −ACV) (Fig. 11A). 

 

 

 

Figure 11 Initiation complex formation as a function of genome replication 

MRC5 cells were infected with HSV-1 in the presence (+ACV) or absence (−ACV) of acyclovir and ChIP-Seq 

for TBP, TAF1, and Pol II was performed. All data are normalized to the amount of factor per viral genome 

(“Relative Occupancy”). (A) Viral genomes quantified as input reads mapped to the viral genome per total 

cellular and viral mapped reads (Viral MR/Total MR). Error bars represent SD. (B) TBP and TAF1 

promoter occupancy. Each point is a distinct promoter. (C) Pol II occupancy heat maps for viral loci. 

Transcription start region (TSR) indicates the main Pol II promoter peak. (D) Overlay of Pol II (black), TBP 

(gray), and TAF1 (blue) binding mapped to viral UL42-UL50 loci. 

 



 34 

We used this ratio to normalize each immunoprecipitated (IP) sample for the amount of 

factor per genome. We call this measurement relative factor occupancy and quantified all ChIP-

Seq data in the same way. To assess preinitiation complex formation, we quantified relative factor 

occupancy on viral promoters. In the absence of DNA replication (+ACV) there was a complete 

absence of TBP, TAF1, and Pol II on L2 gene promoters. By comparison, in the presence of DNA 

replication (−ACV) there was a severe reduction in TBP, TAF1, and Pol II on E gene promoters 

(Supplemental Fig. 3). As expected, L1 genes displayed an intermediate phenotype, with initiation 

factors bound in both conditions but a greater amount in the presence of replication (Fig. 11B-C). 

This trend is quite visible when looking at UL50, UL48, and UL44 as strong examples of E, L1, 

and L2 genes, respectively (Fig. 11D). These results suggest DNA replication alters promoter 

accessibility to cellular transcription factors involved in the initiation of transcription. 

2.4.4 A Single Duplication Alters Genomic Accessibility. 

Next, we assessed the extent of genome replication required to alter viral transcription 

dynamics. This was to determine whether the transcriptional shift was due to an immediate cis-

effect of DNA replication or an increase in genome number titrating out a repressive factor. MRC5 

cells were infected with wild-type HSV-1 for 2, 3, and 4 hpi, and ChIP-Seq for Pol II, TBP, and 

TAF1 was performed (Supplemental Fig. 4). HSV-1 genome replication starts between 2.5 and 3 

hpi, so each time point represents a different replication state: 2 hpi (pre-replication), 3 hpi (1–2 

genome duplications), and 4 hpi (3–4 genome duplications) (Fig. 12A).  
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Figure 12 A single round of genome replication immediately alters cellular initiation factor binding 

MRC5 cells were infected with HSV-1 for 2, 3, or 4 h, and ChIP-Seq for TBP, TAF1, and Pol II was 

performed. All data are normalized to the amount of factor per viral genome (“Relative Occupancy”).  (A) 

Viral genomes quantified as input reads mapped to the viral genome per total cellular and viral mapped 

reads (Viral MR/Total MR). Error bars represent SD. (B) TBP and TAF1 promoter occupancy. Each point is 

a distinct promoter. (C) Pol II occupancy heat maps for viral loci. Transcription start region (TSR) indicates 

the main Pol II promoter peak. 

 

Consistent with the results of Fig. 11, there was a complete absence of transcription factors 

on L2 promoters prereplication and a severe reduction of transcription factors on E promoters post 

replication (Fig. 12B-C). L2 promoter occupancy initiated between 2 and 3 hpi. These data suggest 

genome replication had an immediate cis-effect on the accessibility of L2 gene promoters to 

transcription factors. Conversely, diminished E gene promoter occupancy was not observed until 

4 hpi. Thus, genome replication must immediately alter the form or state of the viral genome. This 

alteration resulted in a global increase in viral promoter accessibility to cellular factors. 
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2.4.5 SP1 Preferentially Binds to the Viral Genome Pre-replication. 

SP1 has been previously shown to bind and activate the viral E gene, thymidine kinase 

(161, 162). To investigate if SP1 is globally responsible for activation of E genes we performed 

ChIP-Seq for SP1 on MRC5 cells infected with wild-type HSV-1 for 2 and 4 h.  

 

 

 

Figure 13 Genome replication alters the binding of SP1 to viral promoters  

MRC5 cells were infected with HSV-1 for 2 or 4 h, and ChIP-Seq for Pol II and SP1 was performed. All data 

are normalized to the amount of factor per viral genome (“Relative Occupancy”).  (A) Pol II (black) and SP1 

(gray) binding mapped to the viral genome. Distinct SP1 peaks were highlighted with red arrows; if the peak 

was located within a viral promoter the gene is annotated above. (B) SP1 promoter occupancy. Each point is a 

distinct promoter. (C) Pol II (black) and SP1 (gray) binding mapped to UL29 (E gene), UL27 (L1 gene), and 

UL44 (L2 gene). 
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Pre-replication we observed numerous distinct SP1 promoter peaks binding to 100% of IE 

genes, 71% of E genes, 22% of L1 genes, and 0% of L2 genes (Fig. 13A-B). We noted a severe 

reduction in SP1 binding at 4 hpi, with only the IE genes ICP4 and ICP0 retaining strong binding 

(Fig. 13A-B). We noted that promoters bound by SP1 had decreased Pol II occupancy between 2 

and 4 hpi, while promoters always lacking an SP1 peak did not experience this decrease (Fig. 13C). 

This global decrease in SP1 binding at 4 hpi may be due to a previously identified phosphorylation 

event of SP1 occurring at the same time during infection (196). Alternatively, the amount of SP1 

in the cell may be limiting, or the very act of genome replication precludes SP1 binding. 

 

2.4.6 Differential TFIID Promoter Context Preferred After Replication. 

We observed variation in the relative amplitude and shape of TAF1 peaks, with early genes 

exhibiting weak, broad binding. Genes with a weak TAF1 peak include UL23, UL39, UL50, UL2, 

and UL12. These promoters still possessed distinct, strong TBP and Pol II binding. To assess 

whether this binding phenotype was sequence-specific we performed motif discovery to predict 

TBP- and TAF1-binding motifs. We then determined consensus TATA boxes and Inr elements for 

each gene class (Supplemental Table 1). We noted little difference in TATA box motifs between 

the different gene classes (Fig. 14A).  
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Figure 14 Analysis of TFIID-binding sites in E and L promoters 

MRC5 cells were infected with HSV-1 for 2 or 6 h, and ChIP-Seq for Pol II, TBP, and TAF1 was performed. 

All data are normalized to the amount of factor per viral genome. Probability plot of (A) TATA box and 

Initiator elements delineated by gene class. Human consensus is given in gray box. (B) Overlay of Pol II 

(black), TBP (gray), and TAF1 (blue) binding mapped to viral loci. Viral core promoters are outlined, with 

the TATA box in orange and Inr in blue. Deviations from motif consensus are highlighted in red. 

Experimentally determined transcription start sites are indicated as “+1” (197-199). 

 

On an individual gene basis, TATA boxes matching the consensus, TATAW, were more 

robustly transcribed. There was a distinct deviation in Inr motifs between the gene classes, with L 

genes more closely matching the consensus sequence BBCA+1BW (200) (Fig. 14A). Unlike the 

consensus motif, E genes favored adenosine at positions 1 and 2. Promoters containing strong Inr, 

such as UL44 and UL48, were more robustly transcribed post-replication (Fig. 14B). Genes 

without a canonical Inr sequence had weak and broad TAF1 peaks. We posit that TAF1 is present 

in TFIID for all viral promoters; however, the stronger the Inr element, the increased affinity of 

TAF1 for the Inr, the stronger the cross-linking, and subsequent peak. 
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The TAF1 ChIP-Seq data in pre-replication conditions are indicative of a high level of 

nonspecific binding (Supplemental Fig. 3-4). As this was consistently present between biological 

duplicates and only present in 2 hpi or +ACV samples we suspect that this is not an artifact. 

Because this was not seen with TBP, this signal may represent TAF1 binding independent of 

TFIID at this time. This remains to be studied. 

 

2.4.7 Continuous Requirement for ICP4 in Viral Transcription. 

ICP4 is the major viral transcriptional protein and is required for production of E genes 

(145). We wanted to determine whether ICP4 is always critical for viral transcription, even after 

L transcription has been licensed by genome replication. We utilized a temperature-sensitive 

mutant of ICP4 (tsKos), in which a single point mutation makes the protein unstable and incapable 

of DNA binding at elevated temperature. MRC5 cells were infected with tsKos and incubated 

either at the permissive temperature (P), shifted from permissive to nonpermissive temperature at 

4 hpi (S), or nonpermissive temperature (N).  
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Figure 15 ICP4 is continuously required for transcription after the onset of genome replication 

MRC5 cells were infected with tsKos and grown at permissive conditions (P), shifted up from permissive to 

nonpermissive conditions at 4 hpi (S), or nonpermissive conditions (N). (A) UL42 (L1 gene) and UL44 (L2 

gene) mRNA copies per microgram total cellular RNA. Number of viral genomes per cell. Error bars 

represent the SD of biological duplicates. (B and C) ChIP-Seq for Pol II was performed on P, S, and N 

samples at 6 hpi. All data are normalized to the amount of factor per viral genome. (B) Pol II traces mapped 

to ICP4 (IE gene), UL42 (L1 gene), and UL44 (L2 gene) loci. y axes are 0–7500. (C) Pol II promoter 

occupancy. Each point is a distinct promoter. (D) Images of infected Vero cultures grown for 6 hpi. Pearson 

correlation test was performed on the red and green intensity profiles. 

 

Immunofluorescence of infected samples at 6 hpi demonstrates an absence of nuclear ICP4 

in shifted and nonpermissive conditions (Fig. 15D). We measured viral genome replication and 

mRNA accumulation for two genes robustly transcribed from 4 to 8 hpi (Fig. 15A). Infected cells 
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grown entirely at nonpermissive temperature lacked genome replication and transcription. Infected 

cells grown entirely at permissive temperature underwent genome replication and transcription 

similar to wild-type kinetics. Infected cells shifted from permissive to nonpermissive temperature 

at 4 hpi immediately halted transcription after the shift. By comparison, genome replication 

continued after shift at a similar rate to samples grown at permissive temperature. Thus, even after 

the onset of DNA replication, ICP4 was essential for continued transcription. To determine which 

transcriptional stage ICP4 controls we performed Pol II ChIP-Seq on permissive samples, shifted 

up at 4 hpi, and nonpermissive samples harvested at 6 hpi (Fig. 15B-C). In shifted-up cells there 

was a complete absence of Pol II bound to viral promoters of E and L genes. Similarly, in 

nonpermissive conditions, Pol II was absent from viral promoters, with the exception of IE genes. 

Thus, ICP4 is critical for formation of a preinitiation complex and is continuously required for 

robust transcription of E and L genes. 
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2.5 Supplemental Figures 

 

 

Supplemental Figure 1 Viral transcription kinetics as a function of genome replication inhibition 

Vero cells were infected with wild-type HSV-1 at an MOI of 10 PFU/cell and acyclovir (ACV) was added at 0, 

2, 3, 4, or 6 hpi. Total RNA was collected at 12 hpi and polyA-selected RNA-Seq was performed. Data is the 

average of biological duplicates. Values plotted are mRNA abundance, mapped reads per million total reads 

per kilobase (MR/MTR/Kb), or the log2 fold change of samples treated with ACV over the control untreated 

sample. 
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Supplemental Figure 2 General transcription factors bind their respective binding elements 

MRC5 cells were infected with HSV-1 for 4 hours and ChIP-Seq for Pol II, TBP, and TAF1 was performed. 

All data is normalized to the amount of factor per viral genome, represented as relative factor occupancy. 

Data is the average of two biological replicates. Traces mapped to the UL44 locus. On the right is a zoomed in 

promoter view with the TATA box and Initiator element (Inr) underlined, the transcript starts at the first C 

of the Inr element. 
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Supplemental Figure 3 Transcription factor binding in presence and absence of viral genome replication 

MRC5 cells were infected with HSV-1 in the presence (+ACV) or absence (-ACV) of acyclovir for four hours 

and ChIP-Seq for TBP, TAF1, and Pol II was performed. All data is normalized to the amount of factor per 

viral genome, represented as relative factor occupancy. Data is the average of two biological replicates. Viral 

genes are annotated below, color coded for gene classes with IE (yellow), E (green), L1 (blue), and L2 

(purple). 
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Supplemental Figure 4 Transcription factor binding at different stages of genome replication  

 MRC5 cells were infected with HSV-1 for 2, 3, 4 or 6 hours and ChIP-Seq for TBP, TAF1, and Pol II was 

performed. All data is normalized to the amount of factor per viral genome, represented as relative factor 

occupancy. Data is the average of two biological replicates. Viral genes are annotated below, color coded for 

gene classes with IE (yellow), E (green), L1 (blue), and L2 (purple). 
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Supplemental Table 1 Motif Discovery 

Annotated positions and sequences of TATA boxes and Initiator elements (relative to KT899744.1 reference). 
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Supplemental Figure 5 Synchronicity of productive viral infection 

A) Example replicate TAF1 ChIP-Seq data for KOS at 4 hpi. B) Overlay of traces from part A. C) 

Normalized bigwig files were analyzed in 50 bp bins using multiBigwigSummary. These bins were compared 

between experimental replicates using a Pearson’s correlation analysis. 

2.6 Discussion 

Our findings provide a global mechanism by which HSV-1 genome replication controls 

transcription. Due to the sensitivity and specificity of the approaches used, we were able to make 

conclusions regarding the transcriptional activity or priming of individual viral promoters. 

Specifically, it should be noted that the majority of transcriptional events take less time and occur 

earlier in infection than previously assumed. Transcription for most viral genes has at least been 

initiated by 3 hpi and decreases by 4 hpi. This trend continues and is ever more drastic at 6 hpi. 

Since data were quantified as transcription factor occupancy per genome, this suggests a 

segregation in genome function. Recent work from the N.A.D. laboratory following prelabeled 

viral genomes found the genome to be associated with transcription factors at 3 hpi and that by 6 

hpi the genome was predominantly associated with packaging and assembly factors (153). 

Furthermore, replication forks were more enriched for transcription factors than previously 

replicated DNA (164). These data lead us to conclude that before genome replication there is little 

segregation of function, most genomes are actively transcribed. We propose that after two rounds 

of genome replication there is a functional coupling, in which newly synthesized genomes are 

actively transcribed, whereas “older” genomes begin the assembly and packaging process. This 

functional coupling results in efficient virion production from 5 to 18 hpi. 



 49 

Our data have allowed us to propose how promoter architecture and genome replication 

determine transcriptional kinetics. Before replication the genome exists in a state that is not 

accessible to general transcription factors (GTF) on L2 promoters. What is not clear at present is 

why the viral chromatin at this time does not allow for TFIID and, hence, Pol II binding on 

promoters just containing TBP/TAF1-binding sites. Perhaps the restrictive chromatin is due to 

histone presence, or a specific distribution of viral and cellular genome-binding proteins. Before 

replication, initiation complexes form only on promoters containing UPEs, i.e., TAATGARAT 

sites, GC-boxes, and CAAT-boxes, and thus they are robustly transcribed. As expected, we 

observed SP1 binding to the promoters of most IE and E genes before replication. Select L1 genes 

were also transcribed at this time, likely due to upstream promoter elements. In these conditions, 

robust transcription does not require an Inr element. We posit that early during infection, the 

relatively high density of ICP4 on the viral genome results in the recruitment of TFIID to viral 

promoters lacking a strong initiator element (122, 150, 152), which have been rendered accessible 

by the function of upstream activators. We believe this allows for stable TFIID binding to 

promoters with weak or nonexistent Inr elements, facilitating robust E gene transcription and some 

leaky L1 gene transcription. 

At the onset of genome replication there is an immediate alteration to the structure of the 

viral genome, such that promoters from all genes classes had an increase in Pol II promoter 

occupancy. This alteration and the presence of ICP4 was critical for the shift to robust viral 

transcription. As the number of viral genomes increases, promoters possessing initiator elements 

that make strong TAF1 contacts are favored. Most L genes robustly recruited TAF1 and possessed 

strong Inr elements matching the consensus motif, BBCABW. We propose that the increase in 

viral genomes reduces the relative concentrations of GTFs, such as SP1, TFIIA, TFIID, and ICP4. 
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Ultimately, the relative decrease in host GTFs and absence of Inr elements resulted in attenuation 

of E gene transcription. Viral genome numbers continued to increase, resulting in prolonged robust 

L gene transcription, despite the average transcriptional activity per genome being decreased. 

We believe our findings elucidate the major mechanisms by which HSV-1 controls 

transcription. Our study found that a single round of genome replication permanently altered the 

transcriptional landscape of HSV-1. The alteration facilitated an increase in genome accessibility 

to RNA Pol II, TBP, and TAF1. Our results suggest that genome replication was itself responsible 

for promoting this shift, rather than titration of a factor. This mechanism acted as the switch 

necessary to promote a global increase in viral transcription and initiate synthesis of previously 

silent promoters. In this way, synthesis of genes required for later stages of the life cycle, i.e., 

capsid assembly and egress, is not initiated until sufficient production of earlier viral gene products 

and recruitment of essential cellular factors. This general mechanism could explain the coupling 

of genome replication and nascent transcription for other viruses which undergo nuclear DNA 

replication. This allows for an initial “colonization” stage of infection before a massive wave of 

proliferation, also rendering the infection less detectable to host defense mechanisms before virion 

production. 

2.7 Materials and Methods 

Cells and Viruses. MRC5 (human fetal lung) or Vero (African green monkey kidney) cells 

were obtained from and propagated as recommended by ATCC. Viruses used in this study include 

mutants ∆C1216 and tsKos and wild-type KOS. Mutants were made using BAC two-step red-

mediated recombination (201-203). To generate the UL30 C-terminal truncation mutant (∆C1216), 
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the cassette TAGTTAACTAG, containing a premature termination codon in all three reading 

frames and an HpaI restriction site, was inserted after the codon for alanine 1216 of the UL30 

ORF. This UL30 truncation mutant has previously been characterized in vitro (194, 195). The tsK 

mutant (204) was generated in KOS background as previously described (205) with the following 

alteration to the ICP4 ORF: alanine to valine at position 475 by mutating the C to T and G to A. 

 

Viral Infection. MRC5 or Vero cells were infected with 10 PFU per cell. Virus was 

adsorbed in TBS for one hour at room temperature. Viral inoculum was removed, and cells were 

washed quickly with TBS before adding 2% FBS media. Infected samples were incubated at 37oC. 

If designated 100 µM acyclovir was added to infected cultures after adsorption (0 hpi). For tsKos, 

infected samples were incubated either at permissive (33.5oC) or nonpermissive (39.6oC) 

temperature. 

 

RNA-Sequencing. 2x106 MRC5 cells were infected as described above. RNA was 

harvested from cultures at 2, 3, 4, 6, 8, 12, or 24 hpi using the Ambion RNAqueous-4PCR kit. 

Total RNA was quantified using the Agilent RNA 6000 Nano Kit. RNA-Seq libraries were 

generated from 2 µg RNA using NEBNext Poly(A) mRNA Magnetic Isolation Module and 

NEBNext Ultra Directional RNA Library Prep Kit for Illumina (NEB #E7490 and #E7420). 

Libraries were quantified using the Agilent DNA 7500 Kit, and samples were mixed together at 

equimolar concentration. Illumina HiSeq 2500 was carried out at the Tufts University Core 

Facility. 
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ChIP-Sequencing. Confluent MRC5 cells were infected as described above. ChIP-Seq 

was performed as described previously (128), with the exception of performing seven LiCl washes 

on immunoprecipitation mixtures. For TBP, TAF1, and Pol II IP approximately 5x107 infected 

cells were applied to each antibody. For SP1 IP 7x107 infected cells were applied. Samples were 

immunoprecipitated with 25 µg of the following antibodies: Pol II 4H8 (AbCam #ab5408) Pol II 

8WG16 (AbCam #ab817), TBP (AbCam #ab51841), TAF1 (SantaCruz #sc-735), or SP1 

(SantaCruz #sc-17824). 2-20 ng of each sample was used to create sequencing libraries using the 

NEBNext Ultra II DNA Library preparation kit (NEB #E7103S). Libraries were quantified using 

the Agilent DNA 7500 Kit, and samples were mixed together at equimolar concentration. Illumina 

HiSeq 2500 was carried out at the Tufts University Core Facility. 

 

Immunofluorescence. 1.7 x 105 Vero cells were infected as described above. Coverslips 

were fixed at 6 hpi with 3.7% paraformaldehyde. Cellular DNA was stained with 1:2000 Hoescht, 

and immunofluorescence was carried out using rabbit anti-ICP4 (n15, 1:500), mouse anti-ICP8 

(ab20194, 1:200), Goat anti-mouse and anti-rabbit Alexa Fluor 488 and 594-conjugated secondary 

antibodies (Santa Cruz, 1:500). Images were taken using an Olympus Fluoview FV1000 confocal 

microscope. 

 

Data Analysis. Data was uploaded to the Galaxy web platform, and we used the public 

server at usegalaxy.org to analyze the data (206). RNA-Seq Data was aligned using HISAT2 to 

the HSV-1 strain KOS genome (KT899744.1) or human genome (hg38) (207). FeatureCounts was 

performed using the KT89974.1 CDS as the reference GFF (208). Raw counts were normalized as 

mapped reads per million total reads per kilobase (MR/MTR/Kb). Bam files were visualized using 
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DeepTools bamcoverage to generate bigwig files (209). Transcripts were classified using the 

maximum RNA abundance value from the time course, with the following values used for 

delineation:  

E Genes: KOS Max ≥1500; ∆C1216 Max ≥1500; Log2 Fold Change (KOS/C1216) Max≤2.5 

L1 Genes: KOS Max ≥1500; ∆C1216 Max ≥150; Log2 Fold Change (KOS/C1216) Max≥1 

L2 Genes: KOS Max ≥1500; ∆C1216 Max ≤900; Log2 Fold Change (KOS/C1216) Max≥2 

 

ChIP-Seq Data was aligned using Bowtie2 to the HSV-1 strain KOS genome 

(KT899744.1) or human genome (hg38) (210). Bam files were visualized using DeepTools 

bamcoverage with a bin size of 1 to generate bigwig files. Data was viewed in IGV viewer and 

exported as EPS files. Bigwig files were related as the amount of factor bound per viral genome, 

called “relative factor occupancy” which was calculated as 

𝐼𝐼𝐼𝐼 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝐼𝐼𝐼𝐼 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅+𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅+𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�

 . This normalization method was performed for 

all ChIP-Seq data and then biological duplicates were averaged. Reproducibility of biological 

replicates was assessed using a Pearson’s correlation analysis (Supplemental Fig. 5). Promoter 

occupancy was quantified using MapBed (211) with a reference bed file of viral promoters (Table 

S3). Viral genes without visible Pol II peaks in any conditions were excluded from analysis, these 

include: UL14, UL15, UL28, UL33, UL43, and US5. Viral promoter regions were defined 

manually using Pol II ChIP-Seq data. The center of each transcript’s Pol II peak was annotated, 

and the promoter region was designated as +125 to -125 bp from this peak. Robust, distinct 

promoters from each class were used as the plotted examples. α includes ICP4, ICP0, ICP27, 

ICP22, ICP47. E includes UL23, UL29, UL39, UL40, UL50. L1 includes UL18, UL19, UL27, 

UL31, UL35, UL42, UL48, US6, US7, US10. L2 includes UL10, UL25, UL36, UL38, UL44, 
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UL47, UL49A, US2, US11. Pol II occupancy heat maps were generated from normalized bigwig 

files using computeMatrix and plotHeatmap (209). To define transcripts we set the 5’ and 3’ 

bounds as 100 bp upstream of the Pol II promoter peak and 10 bp downstream of the KT899744.1 

CDS end locus, with a bin size of 10 bp.  

TATA boxes and Initiator elements were predicted based on sequence and ChIP-Seq 

positioning constraints. TATA boxes were first determined by looking for AT-rich elements 

approximately 35 bp upstream of the center of the TBP ChIP-Seq peak. This positioning 

requirement was determined based on mutagenesis confirmed TATA elements, e.g. UL44 and 

UL23. Initiator elements were determined by scanning for the best Inr consensus (BBCABW) 

match (200) downstream of the previously determined TATA box. If no “CA” was present 20-30 

bp downstream of the TATA box, no Inr was annotated. See summary of data in Table S2. 

Probability plots were generated using WebLogo (212). 

 

qPCR Quantification of viral DNA and mRNA. 2x106 MRC5 cells were infected as 

described above. RNA and DNA was harvested from replicate cultures at 2, 4, 6, and 8 hours post 

infection. DNA was harvested by removing supernatant and adding 0.2 mL DNA extraction buffer 

[0.5% SDS, 400µg/mL proteinase K, 100 mM NaCl]. Samples were incubated at 37oC for 12-18 

hours and heat inactivated for 30 minutes at 65oC. DNA was serial diluted 1:1000 and measured 

using qPCR with primers specific to viral gC and cellular GAPDH. Standard curves were 

generated using purified KOS DNA and purified human DNA. Viral genomes per cell was 

calculated as 𝒈𝒈𝒈𝒈 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 #
𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 # 𝟐𝟐⁄

. RNA was isolated using the Ambion RNAqueous-4PCR kit. cDNA 

was generated from 500 ng total RNA, as quantified using the Agilent RNA 6000 Nano Kit. RNA 

was reverse transcribed with 20 units Riboguard RNase inhibitor, 0.5 pmols oligo(dT) primer, 100 
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units MMLV-HP reverse transcriptase, 10 mM dithiothreitol, 2.5 mM dNTPs, and 1x reaction 

buffer (Epicentre cat no. RT80125K and RG90910K). RNA and oligo(dT) were first incubated at 

85oC for 3 minutes and then incubated on ice for 2 minutes during which remaining reaction 

components were added. The entire reaction was incubated at 65oC for 2 minutes and then 37oC 

for 1 hour. To heat inactivate components the cDNA was incubated at 85oC for 5 minutes. cDNA 

was diluted 1:100 and quantified using qPCR with primers specific to viral gC and UL42. Standard 

curves were generated using purified KOS. Viral mRNA accumulation was calculated as 

𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 # × 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅
𝟎𝟎.𝟓𝟓µ𝒈𝒈 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝑹𝑹𝑹𝑹𝑹𝑹

. Primers used in this study include: UL42 ds F 

(GTCCCGCCGCTCCAGAC), UL42 ds R (CTTGCTTCTCCGGTCGGG), GAPDH F 

(CAGAACATCATCCCTGCCTCTACT), GAPDH R (GCCAGTGAGCTTCCCGTTCA), gC ds 

3 F (GTGACGTTTGCCTGGTTCCTGG), and gC ds 3 R (GCACGACTCCTGGGCCGTAACG). 

 

Data Availability. 

All data are publicly accessible in the SRA database (SRP172751, SRP172780, 

SRP172782, and SRP172783). 
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3.0 Herpes simplex viral nucleoprotein creates a competitive transcriptional environment 

facilitating robust viral transcription and host shut off 

The following study was published October 22, 2019 in eLife. “Herpes simplex viral 

nucleoprotein creates a competitive transcriptional environment facilitating robust viral 

transcription and host shut off” by Sarah E. Dremel and Neal A. DeLuca. Copyright © 2020, eLife 

Sciences Publications Ltd. Subject. Reproduced here under the terms of the Creative Commons 

CC BY license. 

3.1 Project Summary 

Herpes simplex virus-1 (HSV-1) replicates within the nucleus coopting the host’s RNA 

Polymerase II (Pol II) machinery for production of viral mRNAs culminating in host 

transcriptional shut off. The mechanism behind this rapid reprogramming of the host 

transcriptional environment is largely unknown. We identified ICP4 as responsible for preferential 

recruitment of the Pol II machinery to the viral genome. ICP4 is a viral nucleoprotein which binds 

double-stranded DNA. We determined ICP4 discriminately binds the viral genome due to the 

absence of cellular nucleosomes and high density of cognate binding sites. We posit that ICP4’s 

ability to recruit not just Pol II, but also more limiting essential components, such as TBP and 

Mediator, create a competitive transcriptional environment. These distinguishing characteristics 

ultimately result in a rapid and efficient reprogramming of the host’s transcriptional machinery, 

which does not occur in the absence of ICP4. 
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3.2 Importance 

ICP4 is the major viral transactivator of HSV-1, it is required for efficient transcription of 

early (E) and late (L) genes and production of viral progeny. We demonstrate that the virus relies 

on ICP4’s scaffolding ability to prioritize recruitment of the Pol II machinery at the expense of the 

host. This facilitates the rapidly progressing infection while limiting the extent to which the host 

can respond to viral challenge. We also found that ICP4 at high concentrations bound sequence 

nonspecifically to naked or accessible host and viral DNA. What implications or effects this may 

have on host transcription require further investigation. We propose that ICP4 functions in place 

of traditional cellular chromatin, and allows for the robust recruitment of cellular transcription 

factors specifically to the viral genome. 

3.3 Introduction 

Like most DNA viruses, the genome of Herpes simplex virus-1 (HSV-1) is transcribed by 

RNA Polymerase II (Pol II) (117). Its approximately 85 genes (170, 185, 186) are transcribed in a 

temporally coordinated sequence, such that their protein products are expressed at the appropriate 

time in the life cycle of the virus (123, 124). Immediate early (IE) gene products enable the 

efficient expression of early (E) and late (L) genes. The protein products of E genes are mostly 

involved in DNA replication. DNA replication and IE proteins enable the efficient transcription of 

L genes, which encode the structural components of the virus. DNA replication licenses L 

promoters, enabling the binding of core Pol II transcription factors, thus activating the initiation 

of L transcription (213). This entire transcriptional cascade is observed within 3 hour (h) post entry 
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(153, 213), culminating in production of the first viral progeny between 4 and 6 h post-infection 

(hpi). To accomplish this robust and rapidly changing program of transcription, the viral genome 

must compete with the vastly larger cellular genome for numerous Pol II transcription factors, in 

addition to mediating the possible constraints of cellular histones. 

A major component of this cascade is the IE protein Infected Cell Polypeptide 4 (ICP4) 

(214). ICP4 is essential for viral growth because it promotes efficient transcription of viral E and 

L genes (143-145). Thus, in the absence of ICP4, E and L proteins are poorly expressed, IE proteins 

are overproduced, DNA replication does not occur, and there is no detectable viral yield (215). 

ICP4 was first shown to bind to DNA cellulose made from salmon sperm DNA (148). Faber and 

Wilcox (1986) later showed ICP4 has sequence-specific DNA binding activity. ICP4 interacts with 

a number of cellular general transcription factors (GTFs), predominantly components of TFIID 

and the Mediator complex (150-152), facilitating their recruitment to the viral genome through its 

DNA binding activity (151, 153, 154). ICP4 is synthesized early in infection, binds to the viral 

genome located at ND10 structures (216), and remains associated with the genome throughout all 

phases of infection (153). Therefore, ICP4 has the potential to influence events occurring on the 

viral genome from a time when genome number is at a minimum, and ICP4 expression is peaking, 

through a time when genome numbers are greatly elevated by replication. 

Studies have also shown that epigenetic modulation of histones associated with the viral 

genome early in infection can affect productive viral infection (77, 217). However, we have shown 

that the abundance of histones is relatively low or absent, and that ICP4 is one of the most abundant 

proteins on viral genomes during productive infection (75). In this study, we set out to determine 

the relationship between ICP4 and histones binding to the viral and cellular genomes, and the 

consequences for viral and cellular transcription. We propose that ICP4 is a major component of 
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viral nucleoprotein, which functions in place of traditional cellular chromatin, and allows for the 

robust recruitment of cellular transcription factors specifically to the viral genome. 

3.4 Results 

3.4.1 ICP4 binding is altered by viral genome replication.  

Given the central role of ICP4 in viral gene transcription at all stages of infection, we were 

interested in how ICP4 interacts with the virus genome as the number exponentially increases, as 

a consequence of replication. We infected human fibroblast (MRC5) cells with wild-type HSV-1 

(KOS) for 2, 4, and 6 hpi and performed ChIP-Seq for ICP4. Each time point represents a different 

replication state: 2 hpi (prereplication), 4 hpi (3-4 genome duplications), 6 hpi (5-6 genome 

duplications) (Fig. 16A).  
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Figure 16 ICP4 binding at key points in the viral life cycle 

MRC5 cells were infected with HSV-1 for 2, 4, or 6 h, and ChIP-Seq for ICP4 was performed. (A) 

Quantification of viral genomes, measured as Input sample viral mapped reads (MR), normalized for 

sequencing depth or Total Reads (TR). Samples were normalized to two hpi, which was set as 1. (B) 

Quantification of ICP4 binding per viral genome measured as viral MR from ICP4 immunoprecipitation (IP) 

per viral MR from Input. (C–D) All data was normalized for sequencing depth and viral genome number 

using input ChIP-Seq reads. Viral ORFs are indicated, color coded by gene class with IE as yellow, E as 

green, leaky late (L1) as blue, and true late (L2) as purple. Find Individual Motif Occurrences (FIMO) 

identified genome sequences matching the consensus motif in F are indicated in red. (E) Intersection of 

MACS2 identified ICP4 occupied regions. (F) ICP4 consensus binding motif. 
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To quantitatively compare samples, we had to account for viral genome replication. Input 

samples provided the relative number of viral genomes present at each time point. We used this 

ratio to normalize immunoprecipitated (IP) sample for the amount of factor per genome. Early 

during infection (2h) ICP4 densely coated the viral genome (Fig. 16B-C). Viral genome replication 

decreased the amount of ICP4 bound per genome (Fig. 16A-B) resulting in a pattern containing 

sharper peaks. By 6 hpi ICP4 binding was retained exclusively on strong ICP4 binding motifs (Fig. 

16C). Some of the retained binding sites were those previously established as having an inhibitory 

effect on the gene promoter bound, including ORF P, ICP4, and LAT (Fig. 16D). A closer analysis 

of ICP4 peaks demonstrated that the location and number of high confidence occupied sites did 

not alter significantly throughout infection (Fig. 16E). Instead the amount of ICP4 bound between 

distinct peaks decreased as genome number increased (Fig. 16C-D). 

Although ICP4 exhibited a dense binding pattern at early times (2 hpi), with relatively 

broad, overlapping peaks we were able to determine high confidence binding sites. The final sites 

were consistent between biological replicates. We analyzed 100 bp extensions from the summits 

of the peaks seen at all 3 times (Fig. 16E) for motif discovery. DTSGKBDTBNHSG was the only 

motif discovered (Fig. 16F), where D is A, G, T; S is C or G; K is G or T; B is C, G, T; H is A, C, 

T. This binding motif is similar to that previously discovered using in vitro techniques, 

RTCGTCNNYNYSG (218).  

These results demonstrate that ICP4 binds to specific sites, but also coats the genome early 

in infection forming a type of nucleoprotein.  Due to mass action, ICP4-nucleoprotein changes as 

infection proceeds, limiting binding to predominantly strong cognate binding sites as the number 

of genomes increase due to replication.  
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3.4.2 ICP4 stabilizes GTF binding promoting cooperative preinitiation complex (PIC) 

assembly.  

We wanted to investigate how the formation of ICP4-nucleoprotein affects the transcription 

factor landscape across the viral genome. We compared the binding of ICP4, Pol II, TATA-binding 

protein (TBP), SP1, Med1, and Med23 in ICP4 null (n12) and wild-type (WT) HSV-1 infected 

human fibroblasts at 2.5 hpi by ChIP-Seq (Supplemental Fig. 6). In all Pol II IP’s we used an 

antibody which preferentially binds to phospho S5 of the C-terminal domain repeat region. This 

post-translational modification is associated with Pol II found on mRNA promoters and splice 

sites.  
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Figure 17 ICP4 recruitment of host Pol II machinery to viral promoters 

MRC5 cells were infected with an ICP4 null mutant (n12) or HSV-1 (WT) for 2.5 h and ChIP-Seq for ICP4, 

Pol II, TBP, SP1, Med1, and Med23 was performed. All data was normalized for sequencing depth and viral 

genome number using input ChIP-Seq reads. Viral ORFs are indicated, color coded by gene class with IE as 

yellow, E as green, leaky late (L1) as blue, and true late (L2) as purple. (A) Fold change of n12 over WT 

aligned to the viral genome. Loci with greater binding in n12 or WT are colored in green or red, respectively. 

(B) ChIP-Seq reads normalized per viral genome and aligned to canonical IE, E, and L1 genes. 

 

In n12 infection, we observed a decrease in binding for all the factors to most viral 

promoters, with the exception of IE genes (Fig. 17A-B), where there was an increase in binding.  

There were detectable, although highly reduced, peaks of TBP and SP1 binding to the UL23 

promoter in the absence of ICP4. It has been previously shown that these sites are functional in the 

n12 background reflecting the basal binding activity of TBP and SP1 (219) (Fig. 17B). Similar to 

UL23 we observed TBP and SP1 bound to selective E promoters in the absence of ICP4, namely 

UL23, UL29, UL39, and UL50 (Supplemental Fig. 6).  

There were a relatively small number of reads in the ICP4 ChIP of n12 (Fig. 17A, 

Supplemental Fig. 6). As ICP4 is an essential viral protein, we prepared stocks of n12 in an ICP4 

complementing cell line. ICP4 is packaged into the tegument of virions (220), which results in 

packaging of wild type ICP4 into n12 virions (153). The reads in the ICP4 ChIP of n12 are most 

likely due to ICP4 packaged in the virion.  While the ultimate source of these reads is not clear at 

present, the amount of binding of ICP4 from the virion to DNA is not sufficient to promote 

transcription complexes on viral early and late genes. 

Med1 and Med23 bound the viral genome with an almost identical pattern (Supplemental 

Fig. 6, Fig. 17), indicating they are parts of the Mediator complex bound early during viral 

infection. In WT infected cells, the binding of Mediator concentrated near the starts sites of ICP4-
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induced viral genes. However, the Mediator complex also densely coated the viral genome, 

resembling the ICP4 binding pattern. This dense coating was completely absent on early and late 

genes in n12 infection, demonstrating this phenotype is not an artifact of the IP. We suspect this 

reflects the fact that ICP4 and Mediator interact.  

In the absence of ICP4, the binding of Pol II was reduced the most compared to the other 

transcription factors (Fig. 17A). This magnified difference is likely a result of the cooperative 

nature of Pol II recruitment requiring multiple protein-protein interactions. In summary ICP4 was 

required for robust recruitment of all GTF’s tested, cooperatively recruiting Pol II to E and L 

promoters (Fig. 17B). The difference between n12 and WT shows the extent by which ICP4 

mediated recruitment and bolstered the frequency of PIC assembly. IE promoters retained robust 

GTF recruitment via an independent mechanism involving a complex consisting of Oct-1, HCF 

and VP16 binding to TAATGARAT promoter elements (221-223). 

3.4.3 Genome-bound ICP4 does not affect accessibility. 

Part of the mechanism of ICP4 action in the recruitment of GTFs to the genome may 

involve a role in the exclusion of repressive chromatin. To address this hypothesis, we investigated 

the relationship between presence of ICP4, the abundance of histones, and the accessibility of the 

genome. We used ChIP-Seq to compare the binding of ICP4, Pol II, and histone H3 in n12 and 

WT HSV-1 infected human fibroblasts at 2 hpi (Fig. 18).  
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Figure 18 ICP4 dependence of viral genome accessibility and Histone H3 binding 

MRC5 cells were infected with an ICP4 null mutant (n12) or HSV-1 (WT) and harvested prior to genome 

replication. (A) ChIP-Seq for ICP4, Pol II, H3 and B–D) ATAC-Seq was performed. All data was normalized 

for sequencing depth and viral genome number using input ChIP-Seq reads. (C) Quantitative analysis of 

ATAC-Seq data, measuring the relative tagmentation enrichment for the virus or host as compared to 

expected. (D) Histogram plot of ATAC-Seq fragment size for reads mapped to the viral (red) or cellular 

(black) genome. Mononucleosome protected fragments are approximately 180–250 bp. 

 

We found in both WT and n12 infection that the number of H3 reads mapped to the viral 

genome was 100-fold less than ICP4, and the pattern was nearly identical to input reads (Fig. 18A), 

with R2 correlations of 0.0004 and 0.02 (Supplemental Fig. 7). These data demonstrated H3 

binding to the viral genome was minimal and not reproducible. Furthermore, H3 binding was still 

minimal in the absence of ICP4 (n12). This was not due to technical issues as the number and 

quality of H3 reads mapped to the cellular genome for the same samples was approximately 10 

million with R2 correlations of ≥0.97 (Supplemental Fig. 8). We saw a similar trend with 

H3K4me3, H3K27ac, H3K9me3, and H3K27me3 reads mapped to the viral genome (Fig. 

Supplemental Fig. 7-9).  

Although H3 binding to the viral genome was similar in WT and n12 infection, we could 

not rule out the role of an alternative protein occluding the genome. To investigate genomic 

accessibility, we performed ATAC-Seq. Human fibroblasts were infected with WT and n12 HSV-

1 at an MOI of 10 pfu/cell and collected prior to the onset of genome replication. Quantification 

of ChIP-Seq input reads allowed us to determine that the approximate number of genomes per cell 

in WT and n12 infection was 169 and 254, respectively (Fig. 18C). This value is consistent with 

infecting at an MOI of 10 pfu/cell and an approximately particle to pfu ratio of 20-30. We 

normalized ATAC-Seq traces to adjust for sequencing depth and input genome number. We 
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observed even tagmentation in both conditions (Fig. 18B) absent the nucleosomal laddering visible 

on the cellular genome (Fig. 18D). Quantification of ATAC-Seq reads determined that the viral 

genome in n12 and WT was 2.2 and 2-fold more accessible than the cellular genome (Fig. 18C). 

As we harvested samples pre-replication, we expect that a significant portion of viral genomes are 

defective and will not undergo replication. Our ATAC-Seq data is thus an average of tagmentation 

for defective and active viral genomes. For this reason, we expect our accessibility calculation is 

an underestimate. We conclude that the viral genome was much more accessible than the cellular 

genome, and this increased accessibility was not ICP4-dependent. ICP4 binding and GTF 

recruitment, not viral genome accessibility, was responsible for robust GTF binding. 

3.4.4 ICP4 binds to cellular transcription start sites (TSS) early during infection. 

Immunofluorescence (IF) studies of HSV-1 infection depict colocalization of ICP4 with 

EdC-labeled viral genomes and exclusion from dense areas of cellular chromatin (75). This 

phenomenon is so well established that ICP4 is largely used in IF studies as a proxy for HSV-1 

genomes. To ascertain if ICP4 also binds to the cellular genome, we aligned our ICP4 ChIP-Seq 

data from 2, 4, and 6 hpi to the cellular genome. ICP4 bound to the cellular genome in a manner 

quite distinctive from the pattern observed on the viral genome.  
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Figure 19 ICP4 binds cellular promoters during early infection 

MRC5 cells were infected with HSV-1 for 2, 4, or 6 h, and ChIP-Seq for ICP4 was performed. Data was 

aligned to the human genome (hg38) and normalized for cellular genome sampling. (A) Representative region 

of the cellular genome. ICP4 binding motifs are indicated in red. (B, D) Sequencing data centered + /- 1 

kilobase from the transcription start site (TSS) of cellular mRNAs. (C) Sequencing data scaled from mRNA 

TSS to the transcription end site (TES). (E) Intersection of MACS2 identified ICP4 occupied regions. (F) Top 

10 enriched Reactome groups for genes (n = 2190) with ICP4 bound at the promoter at 2 hr. 

 

ICP4 only bound in distinct peaks around cellular transcription start sites (TSS) of a subset 

of cellular genes (Fig. 19A-D). These genes grouped ontologically to common housekeeping 

functions including pathways related to chromatin, transcription, and metabolism (Fig. 19F). This 

binding reduced from 2 to 4 hpi, and became negligible at 6 hpi (Fig. 19A-B). At 2 hpi ICP4 bound 

to the cellular genome at 5,727 sites (Fig. 19E) or 0.002 peaks per kbp, whereas ICP4 bound to the 
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viral genome at 122 sites (Fig. 16E) or 0.8 peaks per kbp. Similar we found a much greater density 

of ICP4 binding motifs present in the viral genome (2 motifs/kbp) than the cellular genome (0.02 

motifs/kbp). We observed ICP4 binding peaks that did not localize at an ICP4 binding consensus 

(Fig. 19A) suggesting that ICP4 may associate with the cellular genome by an alternative 

mechanism. We conclude that ICP4 bound to the cellular genome early during infection, when the 

relative concentration of ICP4 to viral genomes is still quite high. The amount of ICP4 on the 

cellular genome quickly dropped off as viral genome number increased and ICP4 preferentially 

bound to the viral genome. 

3.4.5 ICP4 binding is restricted to accessible regions of the cellular genome. 

Since ICP4 bound to a subset of cellular genes near mRNA start sites (Fig. 19), We 

hypothesized that ICP4 only bound to accessible regions of the cellular genome. To test this 

hypothesis, we performed ChIP-Seq for ICP4, Pol II, Histone H3 (H3), euchromatic markers 

H3K4-trimethyl (H3K4me3) and H3K27-acetyl (H3K27ac), and heterochromatic marker H3K9-

trimethyl (H3K9me3) and H3K27-trimethyl (H3K27me3) on MRC5 cells that were infected with 

HSV for 2 h.  
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Figure 20 Association between cellular ICP4 binding and chromatin 

MRC5 cells were uninfected or infected with HSV-1 for 2 h. All data were aligned to the human genome 

(hg38) and normalized for sequencing depth. (A, C–D) ChIP-Seq data for ICP4, Pol II, H3, H3K4me3, 

H3K27acetyl, H3K9me3, and H3K27me3. (B) ATAC-Seq data. (A–B) Sequencing data centered + /- 1 

kilobase from the TSS of cellular mRNAs. Data was stratified for ICP4 binding using K-means clustering. (C) 

Spearman correlation analysis, limited to cellular transcripts. (D) Intersection of MACS2 peaks, analyzed as 

number of intersecting peaks or Jaccard statistic. 
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Cellular TSS were stratified using k-means clustering as high and low ICP4 binding (Fig. 

20A). TSS with high ICP4 binding were also bound by Pol II and adjacent to euchromatic markers. 

TSS with low ICP4 binding were associated with only heterochromatic markers. Furthermore, 

genes clustered as high ICP4 binding had higher tagmentation frequency when assessed using 

ATAC-Seq (Fig. 20B). The data was mapped for representative cellular genes in Supplemental 

Fig. 10. We quantified the relationship between ICP4 and cellular chromatin in Fig. 20C-D. We 

found that the binding pattern of ICP4 was directly related (Spearman coefficient ≥0.5) to Pol II 

and cellular euchromatin, clustering as most similar to H3K27ac and H3K4me3 (Fig. 20C). The 

heterochromatic markers, H3K9me3 and H3K27me3, clustered together, and were not correlated 

(Spearman coefficient ~0) to ICP4 or cellular chromatin. These results were corroborated by 

analysis of distinct peaks called using MACS (Fig. 20D). Interestingly, ICP4 bound regions had 

little overlap with their cognate binding motifs (Fig. 20D). A closer analysis of the actual genomic 

region where each factor bound, revealed that 82% of ICP4 bound regions were within 1 kb of a 

promoter (Supplemental Fig. 11). By comparison only 10% of ICP4 predicted binding motifs were 

within 1 kb of a promoter. Furthermore, the euchromatic regions of the cellular genome that were 

occupied by ICP4 in infected cells were also euchromatic in uninfected cells, indicating that ICP4 

does not globally promote open chromatin in these regions of the genome (Fig. 20A-B). These 

data support a model in which ICP4 is able to bind nonspecifically to accessible regions of the 

cellular genome, namely active promoters, early in infection when the relative concentration of 

ICP4 is high.  



 73 

3.4.6 ICP4 mediates depletion of Pol II on cellular promoters 

We observed depletion in Pol II binding to cellular promoters with infection (Fig. 20A). 

This observation is consistent with prior studies, which assessed HSV-1 infection post-replication 

at 3, 4, or 6 hpi (73, 224, 225). As we harvested samples prior to the onset of genome replication 

(2 hpi) we hypothesized that ICP4, which is produced immediately upon viral infection was 

responsible. First, we determined the effect of ICP4 on cellular promoters before the onset of 

genome replication. We mock-infected or infected fibroblasts at 10 pfu/cell with WT or ICP4-null 

(n12) HSV-1 for 2 h. 
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Figure 21 The role of ICP4 in Pol II loss on host promoters 

MRC5 cells were (A-B) uninfected or infected with n12 or WT HSV-1 and harvested prior to genome 

replication or C-D) infected with tsKos and grown at permissive conditions (P), shifted up from permissive to 

nonopermissive conditions at four hpi (S), or nonpermissive conditions (N). (A–D) ChIP-Seq for Pol II was 

performed. Data was aligned to the human genome (hg38) and normalized for cellular genome sampling. 

ChIP-Seq data was aligned to cellular promoters + /- 1 kilobase from TSS. The average signal for each 

condition plotted as a line graph. 

 

 We observed depletion of Pol II occupancy on cellular mRNA promoters only in WT 

infection (Fig. 21A-B). Thus we concluded that ICP4 was required for depletion of Pol II from 

host mRNA promoters, and this effect was independent of viral genome copy number. 

We then assessed whether ICP4 was continuously required for cellular Pol II depletion, 

namely if ICP4 was still essential even after the onset of genome replication. We used a 

temperature sensitive ICP4 mutant (tsKos), in which growth at nonpermissive temperature 
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(39.6oC) results in loss of ICP4 in the nucleus (213). We infected fibroblasts with tsKos grown at 

permissive conditions (P), shifted up from permissive to nonpermissive conditions at 4 hpi (S), or 

nonpermissive conditions (N). In this system we can separate the role of ICP4 in Pol II depletion, 

from ICP4’s requirement in E and L transcription and viral genome replication. Infected cells were 

harvested at 4 or 6 hpi and Pol II ChIP-Seq was performed. We used nonpermissive conditions as 

a surrogate to mock-infection, as we just established that Pol II depletion does not occur in n12 

infection (Fig. 21A-B). We observed significant depletion of Pol II from cellular promoters in 

permissive and shifted samples (Fig. 21C-D). Pol II depletion was not directly related to viral 

genome copy number. tsKos shifted up had the highest number of viral genomes present, but did 

not reach the same level of cellular Pol II depletion as cells grown at permissive temperature for 

the same length of time. These data suggest that the viral genome is not solely responsible for 

preferential recruitment of cellular Pol II. Instead ICP4 bound to the viral genome is required for 

depletion of Pol II from cellular promoters. These results suggest a model in which genome 

replication facilitates host Pol II depletion when the relative number of ICP4 to viral genomes is 

high (2h). As the number of ICP4 bound viral genomes increased, we observed a corresponding 

decrease in Pol II on host promoters.  
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3.5 Supplemental Figures 
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Supplemental Figure 6 GTF recruitment to the viral genome in the presence and absence of ICP4 

MRC5 cells were infected with an ICP4 null mutant (n12) or HSV-1 (WT) for 2.5 h and ChIP-Seq for ICP4, 

Pol II, TBP, SP1, Med1, and Med23 was performed. All data was normalized for sequencing depth and viral 

genome number using input ChIP-Seq reads. Viral ORFs are indicated, color coded by gene class with IE as 

yellow, E as green, L1 as blue, and L2 as purple. y-axes were A) maintained the same between IP’s or B) 

maximized for each trace to aid in visualization. 
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Supplemental Figure 7 Analysis of Viral ChIP-Seq data quality 

Normalized viral aligned bigwig files were assessed using MultiBigwigSummary in 50 bp bins. The values 

within these bins were plotted for biological replicates and a linear regression analysis was performed. 
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Supplemental Figure 8 Analysis of Cellular ChIP-Seq data quality 

Normalized cellular aligned bigwig files were assessed using MultiBigwigSummary in 10,000 bp bins. The 

values within these bins were plotted for biological replicates and a linear regression analysis was performed. 



 80 

 



 81 

Supplemental Figure 9 Epigenetic markers on the viral genome 

MRC5 cells were infected with an ICP4 null mutant (n12) or HSV-1 (WT) for 2 hr and ChIP-Seq for ICP4, 

Pol II, H3, H3K4me3, H3K27acetyl, H3K9me3, and H3K27me3 was performed. All data was normalized for 

sequencing depth and viral genome number using input ChIP-Seq reads. Viral ORFs are indicated, color 

coded by gene class with IE as yellow, E as green, L1 as blue, and L2 as purple. y-axes were (A) maintained 

the same between IP’s or (B) maximized for each trace to aid in visualization. 
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Supplemental Figure 10 Epigenetic markers on the host genome during early infection 

MRC5 cells were uninfected or infected with HSV-1 for 2 h, and ChIP-Seq for ICP4, Pol II, H3, H3K4me3, 

H3K27acetyl, H3K9me3, and H3K27me3 was performed. Data was aligned to the human genome (hg38) and 

normalized for sequencing depth. 
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Supplemental Figure 11 Binding location of ICP4 relative to epigenetic markers and binding motifs 

MRC5 cells were infected with HSV-1 for 2 h, and ChIP-Seq for ICP4, Pol II, H3, H3K4me3, H3K27acetyl, 

H3K9me3, and H3K27me3 was performed. Data was aligned to the human genome (hg38). IP peaks 

consistent between biological duplicate experiments were determined using MACS2. ChIPSeeker assessment 

of bound regions for each set of IP peaks. 

3.6 Discussion 

ICP4 as a sink for general transcription factors 

ICP4 is synthesized shortly after the viral genome enters the nucleus and remains 

associated with the genome through all phases of infection. Our data demonstrated that ICP4 bound 

promiscuously to the viral genome prior to DNA replication. At this time point, the relative 

concentration of ICP4 to viral genomes was relatively high which likely promoted multimerization 

on DNA through ICP4-ICP4 interactions (147). We observed a similar phenotype for ICP4’s 

interaction partner, Mediator (151, 152). Components of Mediator bound generally to the viral 

genome, concentrating near viral TATA boxes. Additional protein-Mediator interactions likely 

contribute to this distribution. This is a unique recruitment phenotype for Mediator which binds 

exclusively at cellular TSS via multiple protein-protein interactions. In the absence of ICP4, these 

interactions were not sufficient to support Mediator binding to the viral genome. With the 

exception of Mediator recruitment to IE promoters which does not require ICP4 and reflects the 

activity of VP16 (131, 132). Similarly, we observed a 2 to 10-fold decrease in recruitment of Pol 

II, TBP, and SP1 to viral E and L promoters without ICP4. This minimal level of recruitment is 

insufficient to support transcription, which explains why only IE transcripts are efficiently 

transcribed in the absence of ICP4. 
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ICP4-dependent GTF recruitment was not due to a global accessibility change. In the 

absence of ICP4 the viral genome remained absent of histones and had little change in 

tagmentation frequency. This is most likely due to the action of ICP0, which is an IE protein 

expressed in the absence of ICP4 and has been shown to preclude histones from the genome (112, 

113). We posit that ICP4’s ability to interact and recruit Mediator and TFIID generally to the viral 

genome creates a local concentration gradient. Ultimately this increases the incidence of Pol II 

transcription machinery recruitment to the viral genome, which is stabilized by contact with 

additional protein-DNA, protein-protein interactions. Our observation that ICP4 coats the viral 

genome, a unique recruitment phenotype for a protein that functions in GTF recruitment likely 

reflects the architecture of the viral genome. The condensed organization of the HSV genome 

results in overlap of viral promoters and ORFS, with little to no unused coding space. For these 

reasons, it may be advantageous for ICP4 to generally and dynamically bind to the viral genome. 

It is also possible that the relatively high density of ICP4 on the viral genome prior to DNA 

replication may serve to repress transcription of the true late promoters, which only contain binding 

sites for the core GTFs. It has been shown that ICP4 binding can impose an increased dependence 

on DNA replication for expression from relatively simple promoters (226, 227). These data 

demonstrated the critical role ICP4 serves as a general viral transcription factor, essential for 

activation and continued transcription of E and L genes. 

 

ICP4 differentiates between the viral and cellular genome 

ICP4 possesses the ability to bind to double stranded DNA independent of sequence, an 

ability that is facilitated by ICP4 oligomerization on the genome. At early time points, when the 

relative concentration of ICP4 to the viral genome was high, we observed promiscuous ICP4 
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binding. This coating phenotype provides an explanation for why no specific binding sites on the 

genome affect the ability of ICP4 to activate transcription (161, 228). Instead the high density of 

ICP4 binding motifs on the viral genome aggregate to create a global affinity for ICP4. 

Early during infection, we also observed binding of ICP4 to cellular promoters, a novel 

observation. ICP4 bound promoters of genes which grouped ontologically to common 

housekeeping functions including pathways related to chromatin, transcription, and metabolism. 

Furthermore, we found that ICP4 specifically bound where there was an absence of histones, 

adjacent to euchromatic markers. ICP4 did not alter the chromatic markers of the promoters it 

bound to, rather ICP4 bound regions which were also accessible in the absence of infection. This 

likely reflects ICP4’s ability to bind naked double-stranded DNA in a sequence independent 

manner. This ability is promoted by ICP4 multimerization (147), which is likely why we see the 

binding early during infection. The GTF’s present on these cellular promoters, namely TFIID and 

Mediator complex, may further stabilize ICP4 binding at these promoters via their well-

characterized interactions (150-152). 

The consequences, if any, of this binding for the transcription of specific cellular genes 

remains to be determined. The binding of ICP4 to the cellular genome was greatly diminished by 

four hpi, which corresponded to 3–4 viral genome duplications. At this time point we also observed 

a decrease in ICP4 coating the viral genome. However, ICP4 still bound abundantly, concentrating 

adjacent to strong cognate binding sites. This is most likely due to replication of the viral genome 

producing more ICP4 binding targets. Simple mass action results in binding to predominantly 

higher affinity sites. We propose that the binding preference of ICP4 for the viral genome is due 

to the 100-fold higher density of cognate binding sites and absence of cellular histones. 
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ICP4 as both viral transcription factor and chromatin 

HSV-1 productive infection generates 1,000–10,000 viral progeny per infected cell within 

a 24 h window. To facilitate this rampant transcriptional shift HSV-1 manipulates host Pol II 

machinery to prioritize viral mRNAs. By six hpi viral mRNA’s comprise almost 50% of the total 

mRNA present in the host nucleus (213). Furthermore, binding of Pol II to cellular promoters 

dramatically decreases upon HSV-1 infection (224, 225). A recent study concluded that viral 

replication compartments efficiently enrich Pol II into membraneless domains (73). Herein we 

identified the viral factor responsible for coopting the host Pol II machinery. 

McSwiggen et al. proposed this phenomenon was dependent on the absence of 

nucleosomes which made the viral genome 100-fold more accessible than the cellular genome. 

While we agree that this accessibility is critical for viral infection, we believe it is essential for 

ICP4 binding. Similar to cellular chromatin, ICP4 coats the viral genome throughout productive 

infection (Fig. 22).  
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Figure 22 Model for ICP4 function. 

ICP4 preferentially binds to the more accessible viral genome recruiting cellular transcription factors 

preferentially to the viral genome, thus activating the virus and inhibiting cellular transcription. 

 

However, ICP4 also functions to scaffold Pol II transcription machinery to the viral 

genome. We demonstrated that Pol II depletion from cellular promoters was dependent on the 

number of ICP4 bound viral genomes. We propose that one or more components of the PIC, such 

as the ICP4 binding partners TFIID and Mediator, are limiting and ICP4 recruits these factors to 

the viral genome. As the number of viral genomes bound by ICP4 increases, the limiting PIC 

components no longer contacts cellular promoters. Ultimately this results in decreased Pol II 

occupancy on host promoters, preventing cellular transcription. This mechanism is essential to 

facilitate the rapidly progressing infection while limiting the extent to which the host can respond 

to viral challenge. 
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3.7 Materials and Methods 

Cells and viruses 

Vero (African green monkey kidney) and MRC5 (human fetal lung) cells were obtained from and 

propagated as recommended by ATCC. Viruses used in this study include n12 (229), tsKos (213) 

and KOS (230). n12 virus stocks were prepared and titered in a Vero-based ICP4 complementing 

cell line, E5. E5 cells were generated by stable transfection of Vero cells with ICP4 gene encoded 

on pK1-2 (GenBank Nucleotide JQ407535.1). E5 cells originate from a single colony, confirmed 

for its ability to complement the n12 virus and Western Blot assessed ICP4 expression (229). KOS 

virus stocks were prepared and titered in Vero cells. tsKos virus stocks were prepared and tittered 

in Vero cells at permissive temperature (33.5°C). All cells are regularly tested for the presence of 

mycoplasma contamination. Cells used in this study were mycoplasma free. 

 

Antibodies 

The following antibodies were used: Pol II 4H8 specific to phospho S5 of the C-terminal domain 

repeat region (AbCam #ab5408), TBP (AbCam #ab51841), SP1 (SantaCruz #sc-17824), Med23 

(BD Pharmingen #550429), Med1 (Bethyl #A300-793A), H3K4me3 (Abcam #ab12209), 

H3K27me3 (AbCam #ab6002), H3K27acetyl (AbCam #ab4729), H3K9me3 (AbCam 

#ab176916), H3 (AbCam #1791), and ICP4 58S (derived from hybridomas-ATCC HB8183). 

 

Viral infection 

MRC5 cells were infected with 10 PFU per cell. Virus was adsorbed in tricine-buffered saline 

(TBS) for 1 hr at room temperature. Viral inoculum was removed, and cells were washed quickly 
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with TBS before adding 2% FBS media. Infected samples were incubated at 37°C unless otherwise 

specified. 

 

ChIP-Sequencing 

Infected cells were treated with 5 mL of 25% formaldehyde for 15 min at room temperature, 

followed by 5 mL of 2.5 M glycine. All following steps were performed at 4°C unless otherwise 

stated. Cultures were washed with TBS and scraped into 50 mL of FLB [5 mM 1,4-

Piperazinediethanesulfonic acid (PIPES) pH 8, 85 mM KCl, 0.5% Igepal CA-630, 1x Roche 

protease inhibitor cocktail]. Cells were pelleted by low-speed centrifugation, resuspended in 1.1 

mL RIPA buffer [1x phosphate-buffered saline (PBS), 0.5% sodium deoxycholate, 0.1% sodium 

dodecyl sulfate (SDS), 1x Roche protease inhibitor cocktail]. Sample was sonicated for 6 intervals 

of 30 s with a Sonics Vibra-Cell VCX 130 sonicator equipped with a 3 mm microprobe and 

pelleted at 2000 x g for 15 min. 50 µl was stored as an input control, and the remainder was divided 

equally to use in immunoprecipitations (IP). 2−4 × 107 MRC5 cells were applied per IP. Samples 

were immunoprecipitated with 25 µg (TBP, SP1), or 10 µg (Pol II, H3K4me3, H3K27me3, 

H3K27ac, H3K9me3, H3) antibody. Antibody was previously bound to 50 µL of Dynabeads M280 

sheep anti-mouse IgG beads, or Dynabeads M280 sheep anti-rabbit IgG beads in 5% bovine serum 

albumin (BSA) 1x PBS overnight. DNA samples were bound to the antibody-bead complex 

overnight rotating. The IP mixtures were washed seven times with LiCl wash buffer [100 mM 

Tris-HCl buffer pH 7.5, 500 mM LiCl, 1% Igepal CA-630, 1% sodium deoxycholate] and once 

with Tris-EDTA (TE) buffer. Beads were resuspended in IP elution buffer [1% SDS, 0.1M 

NaHCO3] and incubated at 65°C for 2 hr 900 rpm. Input aliquot was suspended in IP elution buffer. 

Input and IP samples were incubated at 65°C 900 rpm overnight. The samples were extracted with 
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phenol-chloroform-isoamyl alcohol (25:24:1) and with chloroform-isoamyl alcohol (24:1) and 

then purified using Qiagen PCR cleanup columns. Each sample was quantified using a Qubit 2.0 

fluorometer (Invitrogen) and 2–20 ng was used to create sequencing libraries using the NEBNext 

Ultra II DNA Library preparation kit (NEB #E7103S). Libraries were quantified using the Agilent 

DNA 7500 Kit, and samples were mixed together at equimolar concentration. Illumina HiSeq 2500 

single-end 50 bp sequencing was carried out at the Tufts University Core Facility. 

 

ATAC-Sequencing 

We adapted the protocol from Buenrostro et al. (2013). Briefly, 2 million MRC5 cells were plated 

into 60 mm dishes and allowed to grow overnight. Cells were infected as described above. 

Uninfected and n12 infected cells were harvested at four hpi. WT HSV-1 infected cells were 

harvested pre-replication at two hpi. Infected samples were washed once with chilled TBS and 

lysis-1 buffer [10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2]. Samples were incubated 

with 2 mL lysis-2 buffer [10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% Igepal CA-

630] for 3 min on ice. Cells were gently resuspended and dounced until nuclei were visible via 

trypan blue staining. Nuclei were spun at 500 g for 10 min at 4°C and resuspended in lysis-1 buffer. 

250 µL (5 × 105 cells) was transferred to an epindorf tube and spun at 500 g for 10 min at 4°C. 

Nuclei were resuspended in 22 µL buffer TD (Illumina Catalog No. 15027866) 2.5 µL TDE1 

(Illumina Catalog No. 15027865) and 22.5 µL water and incubated at 37°C for 30 min gently 

shaking. DNA was purified using the MinElute PCR purification kit (Qiagen Cat No./ID: 28004). 

PCR amplification was performed for 8–14 total cycles. Libraries were quantified using the 

Agilent DNA 7500 Kit, and samples were mixed together at equimolar concentration. Sequencing 

was carried out at the Tufts University Core Facility, Illumina HiSeq 2500 single-end 50 bp 
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sequencing was carried out for replicate 1, Illumina Mid-Output NextSeq was carried out for 

replicates 2 and 3. 

 

Data analysis 

 

ChIP-Seq 

Data was uploaded to the Galaxy web platform, and we used the public server at usegalaxy.org to 

analyze the data (206). Data was first aligned using Bowtie2 (210) to the human genome (hg38), 

and then unaligned reads were mapped to the HSV-1 strain KOS genome (KT899744.1). Bam files 

were visualized using DeepTools bamcoverage (231) with a bin size of 1 to generate bigwig files. 

Data was viewed in IGV viewer and exported as EPS files. Bigwig files were normalized for 

sequencing depth and genome quantity. Mapped reads were multiplied by the ‘norm factor’ which 

was calculated as the inverse of 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑇𝑇𝑇𝑇𝑇𝑇)

×

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑇𝑇𝑇𝑇𝑇𝑇 𝑜𝑜𝑜𝑜 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑇𝑇𝑇𝑇𝑇𝑇

×  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑇𝑇𝑇𝑇𝑇𝑇. ChIP-Seq experiments were 

repeated for a total of 2 to 4 biological replicates. The normalized bigwig files were averaged 

between replicates. Heatmaps and gene profiles were generated using MultiBigwigSummary (231) 

on normalized cellular bigwig files to all UCSC annotated mRNAs. Gene profiles and heatmaps 

were plotted using plotProfile and plotHeatmap (231). Spearman correlation analysis was 

performed using deeptools plotCorrelation on multiBigwigSummary limited to cellular transcripts 

(231). 
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Peak calling 

Viral peaks were called using MACS2 call peak (232), pooling treatment and control files for each 

condition. Due to the small size of the viral genome (151974 bp) we could not use the shifting 

model option (--nomodel). To offset the dense binding of ICP4 we used a fixed background lambda 

as local lambda for every peak region and a more sophisticated signal processing approach to find 

subpeak summits in each enriched peak region (--call-summits). 

Cellular peaks were called using MACS2 (232). We first removed non-uniquely mapped 

sequences with SAMtools, filter SAM or BAM for a minimum MAPQ quality score of 20 (233). 

We determined the approximate extension size for each IP using MACS2 predictd, and averaging 

the size estimate between replicates. We ran MACS2 call peak for individual replicates and pooled 

samples with no shifting model (--nomodel). To determine high confidence peaks present in each 

MACS2 output we used Galaxy Operate on Genomic Intervals, Join. Peak intersection was 

analyzed for intersection size and jaccard statistic using JaccardBed (231). ChIPseeker was run on 

MACS2 outputs to assess the cellular regions bound in each condition (234). 

 

Motif discovery 

Bedtools Multiple Intersect (211) was used to compare the MACS2 output for ICP4 IP at 2, 4, and 

6 hr. A BED file was generated for regions + /- 100 bp from the summits of each identified peak. 

Peaks in common between all three experimental conditions were used to generate a fasta file 

using GetFastaBed (211) Peaks present in all three time points were submitted to MEME 

v.4.11.1.0 for motif analysis (235). The consensus sequence in Figure 16 had the most significant 

E-value, and was the only motif found in more than five peaks. 
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Correlation analysis 

To assess quality and reproducibility of data we assessed normalized bigwig files for each IP 

replicate. For cellular and viral alignments we ran MultiBigwigSummary (231) with a bin size of 

10,000 and 50 bp, respectively. Raw bin counts were plotted and a linear regression analysis was 

performed (Supplemental Fig. 7-8). 

 

ATAC-Seq 

Data was first aligned using Bowtie2 (210) to the human genome (hg38), and then unaligned reads 

were mapped to the HSV-1 strain KOS genome (KT899744.1) with the following parameters: –

no-unal –local –very-sensitive-local –nodiscordant –no-mixed –contain –overlap –dovetail –

phred33. Approximate fragment size for paired end read data was determined from mapped bam 

files using CollectInsertSizeMetrics (Broad Institute, Picard). Bam files were visualized using 

DeepTools bamcoverage (231) with a bin size of 1 to generate bigwig files. Data was viewed in 

IGV viewer and exported as EPS files. Cellular bigwig files were normalized for sequencing depth, 

the y-axes values are mapped reads per billion total reads. Viral bigwig files were further 

normalized per viral genome copy number, see Table 3C. The y-axes values are mapped reads per 

billion total reads per viral genome copy number. The normalized bigwig files were averaged 

between three biological replicates. Heatmaps and gene profiles were generated using 

MultiBigwigSummary (231) on normalized cellular bigwig files to all UCSC annotated mRNAs. 

Gene profiles and heatmaps were plotted using plotProfile and plotHeatmap (231). To calculate 

the percentage of total DNA corresponding to the virus or host in n12 and WT HSV-1 infection, 

we utilized ChIP-Seq input reads. We calculated the average percentage of total reads which 

mapped to either the virus or host in four biological replication ChIP-Seq samples. We used this 
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value to calculate the number of viral genomes contained within each nucleus. This value was used 

to determine the tagmentation enrichment observed relative to the actual amount of genome 

content present. 
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4.0 Summary and Discussion 

4.1 Summary of Thesis 

The transcriptional cascade of HSV-1 has been known since the 1970’s, however studies 

investigating transcriptional dynamics have focused on select transcripts that typify each of the 

kinetic classes, i.e. thymidine kinase, glycoprotein C, glycoprotein D. Additional in vitro work has 

elucidated some of the core differences in Pol II transcription of viral and cellular genes. Recent 

NGS advancements allowed us to investigate the transcriptional environment in primary cells 

throughout HSV-1 infection. Thus we were able to determine a global unbiased view of both the 

host and pathogen.  

We propose a model for how viral DNA replication results in the differential utilization of 

cellular factors that function in transcription initiation, delineating the kinetics of HSV-1 

transcription. SP1 bound to robustly transcribed viral IE and E genes prior to viral genome 

replication. Other viral promoters were silenced, absent PIC recruitment. After a single genome 

duplication, the viral genome possessed enhanced recruitment of the PIC to all viral promoters. 

SP1 binding to the viral genome decreased after 3-4 rounds or replication, coinciding with a 

decreased rate of early gene transcription. We determined that genes highly transcribed later during 

infection possessed a canonical Inr with stable TAF1 binding and robust PIC recruitment.  

Our work elucidated the critical role that ICP4 plays throughout the viral life cycle. We 

determined ICP4 discriminately binds the viral genome due to the absence of cellular nucleosomes 

and high density of cognate binding sites. We posit that ICP4’s ability to recruit not just Pol II, but 

also more limiting essential components, such as TBP and Mediator, create a competitive 
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transcriptional environment. These distinguishing characteristics ultimately result in a rapid and 

efficient reprogramming of the host’s transcriptional machinery, which does not occur in the 

absence of ICP4. 

4.2 General Discussion 

Transcription dynamics associated with viral genome replication. 

We determined that the act of viral genome replication is not permanently coupled to late 

gene transcription. Instead initial rounds of genome replication are sufficient to license late gene 

transcription. We then used ChIP-Seq to assess Pol II PIC formation on the viral genome in the 

presence and absence of genome replication. We found that the viral genome appeared in a 

repressive state, prior to the onset of replication as evidenced by the limited number of PIC’s on 

viral promoters. After a single round of replication, we found formation of PIC’s on previously 

silenced viral promoters (L2 genes). We also found that genome replication enhanced formation 

of PIC’s on promoters which were previously active (E and L1 genes). Our data demonstrated that 

the viral genome achieved peak transcriptional activity at 3 hpi, or after a single genome 

duplication. Later during infection, 6 hpi, the transcriptional activity per genome sharply 

decreased. We believe this demonstrates that late during infection only a subset of viral genomes 

are transcriptionally active, whereas others undergo replication and packaging. This model is 

supported by additional work from our lab, in which nascent viral DNA adjacent to replication 

forks was greatly enriched for cellular GTF’s including Mediator, Integrator, Pol II, and TFIID. In 

contrast nascent DNA farther away from replication forks was enriched for viral packaging 

components including the portal protein, UL6 (164). This may be a mechanism by which the virus 
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partitions different genomes to efficiently coordinate their use as templates for transcription, or 

replication, or substrate for packaging. 

 

Transcriptional silencing of early genes late during infection. 

HSV-1 early gene transcription begins pre-replication, with transcription rates peaking 

around 4 hpi. This is distinct from L1 gene transcription which begins pre-replication, with 

transcription rates peaking around 6-8 hpi. E gene peptides actually reach higher levels of synthesis 

in infected cells where replication has been inhibited by addition of ACV or PAA. Our findings 

suggest two reasons for the decrease in E gene transcription. 

First, we found that the cellular enhancer, SP1, which activates many E genes was no longer 

bound at these promoters at 4 hpi, or after 3-4 genome duplications. Our lab has previously 

determined that SP1 is phosphorylated around 4 hpi during HSV-1 infection (196), we posit that 

this phosphorylation event may be responsible for the decrease in SP1 binding to the viral genome. 

Alternatively the amount of SP1 may be limiting and additional rounds of genome replication 

titrate out the amount of SP1 to below the amount required to enhance E gene promoters. We 

would like to note that there were E and L1 genes, which were not bound by SP1, but still had 

robust PIC recruitment. These include UL2, UL12, UL30, UL34, US4, US6, US7, US8. We would 

expect that PIC recruitment to these gene promoters is facilitated prior to genome replication by 

other cellular enhancers, such as NF1 (162). This requires further investigation. 

Second, we observed a significant deviation in the Inr of E genes from the canonical 

BBCA+1BW. Using our ChIP-Seq data for TBP, and TAF1, the respective binding partners of 

TATA boxes and Initiator elements, we were able to call motifs with greater confidence as they 

were limited by the relative distance from their binding partner. We noted that viral transcripts 
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produced late during infection possessed canonical Inr elements and enriched TAF1 binding. We 

propose that strong contact between TAF1 and the viral promoter becomes critical later during 

infection to stabilize PIC complex and for this reason E gene transcription decreases later during 

infection.  

Early during infection TAF1 did not form strong distinct binding peaks on the viral 

genome. This may represent a dynamic recruitment of TAF1 to viral promoters stabilized by 

protein-protein interactions rather than direct interaction with cis-binding elements. ICP4 has been 

shown to interact directly with TAF1 recruiting the TFIID complex (150-152). We showed that 

ICP4 densely coats the genome also early during infection. Thus we hypothesize that ICP4 may 

be responsible for the sequence nonspecific interaction of TAF1 with the viral genome. We showed 

that the amount of ICP4 bound to the genome decreases later during infection with ICP4 

predominantly bound to cognate binding motifs. This may be the reason why canonical Inr 

elements are now required for TAF1 recruitment. Further studies using an ICP4 C-terminal 

truncation mutant (n208), which lacks the ability to multimerize (147), are necessary. If our 

hypothesis is correct we would expect TAF1 binding to be limited to initiator elements or ICP4 

motifs, as ICP4 can no longer multimerize and coat the viral genome.  

 

ICP4-dependent activation of E and L gene transcription 

Using ChIP-Seq we assessed ICP4 binding dynamics on the viral genome. We found that 

ICP4 coated the viral genome early during infection, and that rather than occluding the genome, 

this coating phenotype was associated with recruitment of the Pol II machinery to viral E and L 

promoters. ICP4 binding was enriched at the following motif: DTSGKBDTBNHSG (Fig. 16F), 
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where D is A, G, T; S is C or G; K is G or T; B is C, G, T; H is A, C, T. The ICP4 binding motif 

was littered densely throughout the viral genome with 2 motifs per Kbp. 

We queried whether the act of genome replication altered requirements for ICP4. Using a 

temperature sensitive mutant, we were able to selectively deplete ICP4 after the start of genome 

replication. We found that in the absence of ICP4, even with continued genome replication, there 

was no recruitment of Pol II to E or L gene promoters. Our studies demonstrated that ICP4 is 

always essential for E and L gene transcription and that this is due to ICP4’s role in recruiting and 

stabilizing the PIC. This makes sense in light of our additional work demonstrating that in the 

absence of ICP4, Pol II, TBP, Sp1, and Mediator were not recruited to the viral genome. These 

results are consistent with previous work from our lab showing that ICP4 interacts with and recruits 

various components of the Pol II machinery including: Mediator, TFIID, TFIIH, elongation factors 

(CDK9, SUPT5H, SUPT6h), CPSF, SWI-SNF, Nurd, Ino80 (152, 153). Although ICP4 interacts 

with various chromatin remodelers, we did not observe chromatinization of the viral genome in 

the absence of ICP4. Meaning ICP4 acts to recruit and scaffold, not to affect genomic accessibility 

or chromatinization  

 

Mechanism of ICP4 binding to the viral genome 

ICP4 possesses the ability to bind nonspecifically to double stranded DNA However in 

immunofluorescence experiments ICP4 colocalizes almost exclusively with viral pre- and 

replication compartments. In our ChIP-Seq data we found that ICP4 bound to the promoters of 

select host housekeeping genes early during infection. This binding occurred independent of ICP4 

binding motifs and was correlated with euchromatic markers, namely H3K4me3 and H3K27acetyl. 

Using ATAC-Seq we determined that the viral genome was not bound by host nucleosomes. 
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Furthermore we found no evidence of histone H3 binding. We concluded that early during 

infection ICP4 bound indiscriminately to “naked” or accessible DNA, whether that is the viral 

genome or open regions of host chromatin. Later during infection, ICP4 is at a relatively lower 

concentration and can no longer multimerize. This caused ICP4 to preferentially bind the viral 

genome due to the higher incidence of ICP4 binding motifs, ~100-fold more motifs/kbp than the 

cellular genome. Reduced ICP4 binding to the cellular genome late during infection may also be 

a result of host heterochromatization, this remains to be studied. 

 

ICP4 mediates HSV-1 host transcriptional shut off 

Recent work has highlighted HSV-1’s ability to coopt the host Pol II machinery at the 

expense of cellular transcription (73, 224, 225). Due to it’s role in viral Pol II recruitment, we 

expected that ICP4 would be required for reduction of Pol II on host promoters. We found that 

early during infection with an ICP4 null mutant there was no decrease in host Pol II recruitment. 

This was in contrast to a 1.5-fold reduction in Pol II recruitment to host promoters after wild-type 

infection. We again used a temperature sensitive mutant to selectively deplete ICP4 later during 

infection after the onset of genome replication. We found that ICP4 was always required for 

reduction of Pol II on host promoters, independent of the number of viral genomes present. Thus 

we propose a model in which ICP4 binds to the viral genome and promotes recruitment of Pol II 

and associated transcription factors to the viral genome. As the amount of ICP4 is in excess to viral 

genomes early during infection we observe a dependence upon replication, simply because it 

increases the number of ICP4 bound genomes. However later during infection when ICP4 becomes 

limited relative to the viral genome, additional rounds of genome replication do not affect Pol II 

recruitment to cellular promoters. Here we investigated Pol II depletion from host promoters. 
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However due to ICP4’s role in recruiting a variety of Pol II GTF’s including TFIID, TFIIH, and 

Mediator, we expect that these factors are also depleted from host promoters during infection.  
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5.0 Future Directions 

We present an updated understanding of the basic transcriptional requirements and 

mechanisms that occur during HSV-1 productive infection. Our findings elucidate current gaps in 

knowledge that require further work to address: 

 

1. How does the viral genome change after replication? 

Our findings clearly indicate a shift in the form of the viral genome from repressive to 

permissive after a single round of genome replication. As only one genome duplication is required 

for this change, it is highly unlikely that genome replication titrates out a repressive factor. 

Furthermore, we found that the viral genome was not bound by host nucleosomes or histone H3. 

IF studies from our lab have also demonstrated exclusion of Histone H1 from replication 

compartments (75). This leads us to propose epigenetic modification of the viral genome itself. 

The host genome has been shown to be epigenetically modified via methylation of cytosine or 

adenine, these modified bases include 5-methylcytosine (5-mC), 5-hydroxymethylcytosine (5-

hmC), 5-formylcytosine (5-fC), 5-carboxylcytosine (5-caC), and N6-methyladenine (6-mA) (236). 

The genome of another herpesvirus, EBV, was shown to be heavily methylated inside mature 

virions, approaching 15% (237). Early studies found that the HSV-1 genome contained 5-mC at 

4-9 hpi, but that mature virions did not contain methylated DNA (238). This study was performed 

over 40 years ago, and use of recent techniques such as affinity capture or bisulfite conversion 

followed by NGS may be more sensitive.  
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2. Does the DNA replication machinery directly enhance late gene transcription? 

There are seven essential viral proteins required for HSV-1 DNA replication: DNA 

polymerase holoenzyme (UL30/UL42), helicase-primase complex (UL5/UL8/UL52), single 

stranded DNA binding protein (ICP8), and origin binding protein (UL9).  Excepting UL9, these 

six components are conserved in all known herpesviruses (166, 167). It is possible that a 

component of the viral DNA replication machinery serves a dual function and is continuously 

required for late gene transcription. These factors may aid in recruitment of the Pol II machinery 

to the viral genome. For instance, the viral polymerase holoenzyme was reported to interact with 

cdc2, topoisomerase IIa, HCF-1, Asf1b, hsp90 and Fen-1 (156-160). 

We partially addressed this hypothesis by inhibiting the viral polymerase with ACV and 

assessing late gene transcription. We found that ACV addition after the onset of replication did 

not inhibit continued late gene transcription. ACV is incorporated into nascent DNA and causes 

chain termination along with stalled replication forks (38). Although genome replication is stalled 

in this circumstance, the replication machinery may still associate with the viral genome 

sufficiently to serve as a scaffold for factors essential to late gene transcription. To address this 

hypothesis one would need to specifically deplete each component of the DNA replication 

machinery after the onset of genome replication and assess late gene transcription. We attempted 

to perform these experiments using preexisting temperature sensitive mutants. We found using 

tsA1 that ICP8 was not required for late gene transcription after the onset of replication. We were 

unable to make conclusions regarding the other replication components due to limitations of the 

temperature sensitive mutants.  
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3. What effect does ICP4 binding the cellular genome have? 

We observed binding of ICP4 to euchromatic host promoters early during infection. We do 

not know what impact this binding event has on cellular transcription. Due to ICP4’s role in 

recruiting various GTF’s we hypothesize that ICP4 binding may transiently increase the 

transcription rate of these genes. When looking at RNA-Seq data sets which are a measure of 

mRNA abundance, we were not able to see any impact on the levels of ICP4 targeted transcripts. 

This is likely due to the short length of time which ICP4 interacts with host transcripts (~2 hours). 

Any impact ICP4 has on transcription is drowned out, considering the bulk of genes that ICP4 

targeted are housekeeping genes which have constitutively high levels of abundance. This would 

need to be assessed using rate-determining techniques such as 4SU-Seq. Further investigation 

should also be done to determine the direct impact of ICP4 on host promoters outside the context 

of viral infection. 
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