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Abstract

Synchronization and locking in oscillators with flexible periods

Mariya Alisa Savinov, BPhil

University of Pittsburgh, 2020

Upon interaction with a stimulus sequence, an oscillator may assume the stimulus’ pe-

riod via a process called entrainment. Standard models of entrainment assume that the

oscillator has a fixed natural period and, thus, a limited range of periods to which it can en-

train. However, experiments have shown that some oscillating systems have flexible periods;

that is, the period of the oscillator can be changed due to external stimuli, and this period

persists when the stimulus is discontinued. Studying this type of coordination, Loehr et al.

(2011) showed that the synchronization of pianists with a metronome can be described by a

nonlinear oscillator model that is quantitatively described using a circle map of phase and

period with sinusoidal coupling terms. Here we introduce two variants, termed the multi-

plicative and additive forced oscillator models, so-called based on their period descriptions.

Unlike the Loehr et al. model, these models include a preferred period, as most biological

oscillating systems will oscillate at a fixed natural period when not experiencing driving or

damping forces. This study focuses on the stability of points of N:M locking, a complex type

of entrainment in which the phase of a model rotates N times in response to M stimuli.

Locking types investigated here are 1:1, 1:2, 2:3, along with their reciprocals. We identify

numerous parameter regimes of multi-stability, and how such regions evolve with changes in

preferred period elasticity. Such multi-stability is not generally possible without a malleable

period. The basins of attraction of the various types of N:M locking are investigated, with

observations of fractal behavior and remarks on how the domains of attraction depend on

coupling and elasticity parameters. Finally, we compare and contrast the multiplicative and

additive models with other models of synchronization and beat-keeping.
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1.0 Introduction

1.0.1 Background

Neural oscillations occur when interactions between cells in the central nervous sys-

tem (neurons) produce repetitive activity. The synchronization of neurons across the brain,

in various regions and at various frequencies, is vital to healthy brain behavior and informa-

tion flow [1]. Neural oscillations are thought to play a key role in processing information and

memory [2], and they can even be used as indicators of neurological disorders such as epilepsy

or Parkinson’s disease, which are characterized by abnormal neural activity [3]. These os-

cillations are also responsible for many other important global behaviors in organisms. For

example, sleep cycles and the body’s master-circadian clock are the result of the synchro-

nization of suprachiasmatic nuclei neurons, which are circadian oscillators that operate on

a day-night cycle with high activity during the day [1]. In addition, neural oscillations can

be indirectly observed in both animals and humans in actions that involve rhythmic motor

behavior, such as walking, breathing, or even playing an instrument. Many such actions re-

quire coordination with external stimuli (sensorimotor synchronization), particularly those

relating to music performance and dance [4]. For example, musicians must synchronize their

actions with cues from conductors, metronome beats, or other players. Also, dancers must

move in synchrony with musical beats, which requires them to generate temporal expecta-

tions [4]. Most studies aiming to understand human beat generation and synchronization

have focused on the coordination of simple periodic actions with rhythmic sequences (i.e.,

tapping to music or discrete sequences). Only recently have studies have been conducted

to examine the opposite type of synchronization: the coordination of complex rhythms with

simple sequences, i.e. music being played to a metronome [14]. Such studies are relevant to

our understanding of musical or rhythmic performance. Another type of coordination that

is of interest in such contexts is the coordination of complex rhythms with complex rhythms,

such as in duet piano performance and ensemble performance [15, 16, 17, 18]. Such musical

performance requires more complex levels of synchronization and antiphase coordination, so
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it is important to study models which exhibit such complex properties.

Various studies have been conducted to examine and explain the coordination of simple

periodic actions with rhythmic sequences. It has been shown that people’s intention, atten-

tion, and awareness all impact how well they can tap to musical sequences with temporal

variability [8, 9]. Also, it has been observed that listeners’ coordination of tapping with

performed music is impacted by microstructure variations in performance such as timing,

intensity, and articulation [5]. The interonset interval (IOI, i.e. stimulus period) range of

synchronization for tapping to a metronome has been noted to lie roughly at 100 msec to

1800 msec; the lower limit is reached primarily by musically trained participants, and is a

result of both biomechanical limits and the auditory integration window length [4]. Further,

it seems that anti-phase tapping has a larger minimum IOI compared to the minimum IOI

for in-phase tapping, which makes sense because anti-phase tapping is regarded as more

challenging [4].

Two primary types of models have been developed to explain sensorimotor synchroniza-

tion, some aiming to address properties like those mentioned: error correction models and

entrainment (i.e. oscillator) models. Error correction models are based on the idea that the

error in the current tap is utilized to adjust the timing of the next tap. A common model

utilizes a (phase) correction equation where some α proportion of the expected asynchrony

an is corrected at each step [4, 6].

tn+1 = tn − α(an) + Tn

Here, tn is the expected time of the nth tap occurring, Tn is the expected timekeeper period

just before the nth tap, and an is the expected asynchrony between the nth tap and nth

tone [4, 6]. Though most studies investigating sensorimotor synchronization utilize such

error correction models without period correction, there have been studies which utilize a

two-way error correction model that includes both phase corrections and period corrections

[7]. In the case of Mates (1993), the linear phase correction and linear period correction

processes are separate, with phase correction depending on detection of asynchrony and

period correction on the difference in periods when comparing to the stimulus [7]. Many
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error correction models use linear terms, but it has been noted that nonlinearity in phase

error correction models more accurately reflects phase responses to perturbations [4].

The exclusion of period adaptation terms has been a common theme in entrainment

models as well (to be discussed in the following section) [14]. Entrainment models suggest

the existence of oscillators, such as those neural oscillations discussed before, to explain coor-

dination and synchronization. Many computational entrainment models, featuring nonlinear

terms, have been developed to explain the coordination of periodic actions with rhythmic

sequences; these models utilize networks of coupled oscillators, each described at least by

their phase [10, 11]. However, entrainment models can also be used to explain the opposite

type of synchronization: rhythmic sequences with periodic stimuli.

Aside from error correction and entrainment models, there have been studies which

use other formulations to explain beat perception and musical coordination. For example,

Bayesian (probabilistic) models have been utilized to analyze the processes behind music

analysis and predictive note patterns [12]. Bose et al., on the other hand, utilized a neu-

romechanistic model to suggest how neuronal networks learn and retain the period and phase

of a stimulus [13]. Bose et al.’s neuromechanistic framework operates in the 125 msec to 2000

msec range, which includes the majority of the IOI range which characterizes sensorimotor

synchronization [4, 13]. From here, in discussing the synchronization of complex rhythms

with simple sequences, we will focus on entrainment models.

1.0.2 Standard Oscillator Model

Consider an oscillator with a natural period T . The phase of this oscillator φ(t) =
t

T
mod 1 gives a measure of the oscillator’s progress through its cycle, where φ is relative to

some 0 point (see Fig.1). In the absence of any stimuli, the oscillator will complete a full cycle

every T time units without variation. If, however, the oscillator receives a stimulus at time

s ∈ [0, T ], the cycle will not be completed at time T but rather at some time T ′(s). After

this point T ′(s), in the absence of additional stimuli, the oscillator will return to completing

cycles in intervals of time length T (see Fig.2). However, if the stimulus is periodic, the

oscillator may assume the same period via a process called entrainment. Entrainment is
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φ(t)

t

0.5

-0.5

Figure 1: Visual of how an oscillator’s phase φ(t), relative to some 0, varies with time t:

φ(t) =
t

T
mod [−0.5,0.5]1, where T is the oscillator’s natural period.

Figure 2: In the absence of stimuli, the oscillator will complete cycles in intervals of T time

units, as indicated by the lines at points 0, T , 2T , and 3T . If, however, the oscillator receives

a stimulus at s ∈ [0, T ] time units, as shown by the block on the stimulus line, the oscillator’s

cycles of offset. The next cycle is completed at time T ′(s), and then it continues to oscillate

at period T in the absence of additional stimuli, as shown by the dotted lines.
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closely related to error correction, discussed above. We can model the oscillator’s response

to a periodic stimulus of period Pn = tn+1− tn using a circle map, where tn is the onset time

of stimulus event n. The timing difference between the system and stimulus is given by the

relative phase θ. θn gives the relative phase representing the phase φ of the oscillator when

an external stimulus event n occurs. From here, we refer to θn as simply the phase, though

it is important to note that this is relative to the stimulus, not some 0 point.

Here, denoted by “θ mod [−0.5,0.5] 1”, we take θ ∈ [−0.5, 0.5], such that a negative phase

θ < 0 means the oscillator is late (relative to the stimulus event it was predicting) and a

positive phase θ > 0 means the model is early (see Fig.1 for how θ varies with time t). Let

θn and θ̂n be the phases of the oscillator right before and after the nth stimulus. These two

phases are related by the following equation set, where the second equation defines the phase

response curve: 
θn = θ̂n−1 +

Pn−1
T

θ̂n = θn + ∆(θn)

Thus we retrieve the standard entrainment model (1.1), where ∆(θn) defines the coupling

between the oscillator and stimulus [19].

θn+1 = θn +
Pn
T

+ ∆(θn) (1.1)

In terms of frequency, (1.1) can be rewritten as follows, where Ωn defines the forcing frequency

and ω defines the oscillator frequency:

θn+1 = θn +
ω

Ωn

+ ∆(θn) (1.2)

This standard model has been utilized to describe various forced oscillator systems. A

continuous (in time) version of (1.2), with ∆(θn) = α sin(2πθ), was utilized by Saigusa

et al. to describe the periodic entrainment of the plasmodium of Physarum polycephalum

(an acellular slime mold) to its environmental conditions [20]. When exposed suddenly to

cold and dry environmental conditions, the system, a network of weakly coupled oscillators,

exhibits a drastic reduction in locomotion speed. Each oscillator in the network is described

by
∂θ

∂t
= ω + αH(t) sin(2πθ) + ξ (1.3)
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where ξ is noise and H(t) = 1 in the presence of a stimulus and H(t) = 0 under normal

conditions. This model exhibits two particular qualities of the P. polycephalum that were

experimentally identified: period memorization and recall [20]. Period memorization and

recall are valuable qualities of forced oscillators as they are related to learning and memory.

Such standard models of entrainment (1.1) assume that the oscillator has a fixed natural

period and, thus, a limited range of periods to which it can entrain [19]. However, experi-

ments have shown that some oscillating systems are able to change their periods [14], and

this phenomena has been observed in certain species of fireflies, which exhibit a free-running

period [23]. Moreover, some models of coordination have shown that both period and phase

adjustment are required to maintain entrainment with temporally variable sequences [10].

A variant of the standard model, which adds period variability, has been used to describe

the synchronization of a cell cycle Tn to the cellular circadian clock (an example of periodic

forcing of a nonlinear oscillator found in biology) [22]. Mosheiff et al. utilized a “kicked

cell cycle” model described below, where tn represents the birth time of a cell, Tn is the cell

cycle duration, Tosc is the forcing period, and ξn is noise. Unlike the standard model (1.1),

an additional dimension is added as a result of the memory term Tn−1. There is room for

the period to vary in each generation, which is unlike both the standard model (1.1) and the

Saigusa et al. model (1.3).

tn+1 = tn + τ0(1− γ) + γTn−1 + k sin(
2πtn
Tosc

) + ξn

Here, τ0 is the intrinsic cell-cycle period, k is the strength of cell cycle to circadian oscillator

coupling, and γ defines mother-daughter coupling. Note that ξn is noise, so we will ignore it

for now (ξn = 0). Then, this description of the cell cycle can be rewritten in terms of phase

θn =
tn
Tosc

to equation (1.4):

θn+1 = θn +
τ0
Tosc

(1− γ) + γ(θn − θn−1) + k̃ sin(2πθn) (1.4)

A key additional term, aside from the memory component γ(θn− θn−1), which separates the

Mosheiff et al. model (1.4) from the standard model (1.1) is the term
τ0
Tosc

(1−γ). This term

defines the impact of the natural period of oscillation for the cell, with (1 − γ) relating to

6



Stimulus

Oscillator

time

time

2:3 locking

Figure 3: At the end of every rotation, the oscillator “fires”, as indicated in the top line by

blocks which are initially at some intrinsic period. Once the stimulus is introduced (bottom

line), the oscillator synchronizes to a state where it fires twice for three stimuli triggers. This

adjusts the oscillator’s period and allows it to achieve a state of 2:3 locking.

elasticity. If γ = 1, the model can entrain to any stimulus period Tosc; however, a γ 6= 1

results in a stiffer system about its intrinsic cell-cycle period τ0.

The model suggests that, dependent upon the choices of parameters, coupling to the

circadian clock can either increase or decrease variability in the cell-cycle duration of a

population of cells [22]. More importantly, for low forcing amplitudes k, this model (1.4)

exhibits Arnold tongues, which are zones of stable locking, particularly those which are

beyond 1:1. The existence and stability of N:M locking, a complex form of entrainment in

which the phase θn rotates N times for M stimuli, is desired for models with a variable period.

Fig. 3 shows an example of how an oscillator reaches a state of 2:3 locking, where it “fires”

at each completion of a rotation and thus completes two rotations for three stimuli.
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1.0.3 Loehr et al. oscillator model

Studying the coordination of complex rhythms with simple sequences, Loehr et al.

investigated pianists’ responses when playing simple rhythmic pieces to varying metronome

sequences [14]. Generally, the sequence would begin at a stable IOI and then, partway

through the sequence, the IOI would increase or decrease linearly at a scale of 1% or 3% of

the initial IOI. Asymmetric asynchrony measurements were observed when comparing the

sequences which increased to those which decreased. This asynchrony best described by a

nonlinear discrete oscillator model [14]. The Loehr et al. model shares certain properties

of neural oscillations, and, unlike standard models (1.1), this oscillator has the ability to

change its period of oscillation as well as shift its timing.

The Loehr et al. oscillator (1.5) is quantitatively described using a circle map defined by

phase θn and period pn, where n is a particular event (i.e. a metronome beat). The stimulus

period is defined as the interonset interval IOIn, equivalent to Pn in the standard model

(1.1) (Pn = tn+1 − tn, where tn is the onset time of an event n).
θn+1 = θn +

Pn
pn
− α

2π
sin(2πθn) mod [−0.5,0.5] 1

pn+1 = pn(1 +
β∗

2π
sin(2πθn))

(1.5)

This model utilizes two sinusoidal coupling terms: α, the phase coupling strength, and β∗,

the period adaptation strength, between the oscillator and stimulus sequence. As previously

described, θ is taken modulus 1 and normalized to be in [−0.5, 0.5] so that θn < 0 means

the stimulus event n occurred before the model’s prediction and θn > 0 means that the

stimulus event n occurred after the model’s prediction. If θn = 0, then the model is perfectly

synchronized with the stimulus. The intuition behind the period coupling term
β

2π
sin 2πθn

is that if the oscillator’s prediction is early (θn > 0), it lengthens its period (and vice versa,

if the oscillator is late, it shortens its period) in order to try to both period and phase lock

with the stimulus sequence.

This study focuses on the analysis of two oscillator models which are based on the Loehr

et al. model (1.5). Utilizing numerical and analytical techniques, in the next few sections

we focus on the stability of fixed points of N:M locking, with particular interest in 1:1, 1:2,

2:1, 2:3, and 3:2 locking.
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2.0 Forced Oscillator Models

The Loehr et al. oscillator model (1.5) is different from standard models of entrainment

(1.1) because it has a free-running period. Also, this adaptable period does not feature a

preferred period component. Many biological systems have a natural, preferred period at

which they will oscillate in the absence of external stimuli. The model (1.5) is also unusual

compared to (1.1) because the period coupling term is multiplied by the oscillator’s period

pn, making the coupling strength at each step proportional to pn. To address these differences

from standard models, we propose two variations of the Loehr et al. oscillator model, with

the following period descriptions:


A : pn+1 = pn(1 +

β∗

2π
sin(2πθn)) + δ(P̃ − pn)

B : pn+1 = pn +
β∗

2π
sin(2πθn) + δ(P̃ − pn)

A is the multiplicative model, and B is the additive model. Note that when δ = 0, the

multiplicative model A is defined exactly as the Loehr et al. oscillator model (1.5). In A

and B, P̃ is the natural period of the oscillator. The elasticity δ determines the effect of

P̃ , such that a larger δ corresponds to a stiffer system. It is important to note that the

same β∗ will have vastly different effects on A and B, due to the period coupling term in the

multiplicative model
pnβ

∗

2π
sin(2πθn) depending on the magnitude of pn. In order to properly

compare the variations, it is necessary to scale by P̃ to a reference frame in which the period

coupling terms are of the same magnitude.

Therefore, instead of pn, consider a circle map described by a period scaled relative to

the preferred period: qn =
pn

P̃
. For the additive model B, the period coupling term becomes

β = β∗/P̃ , while for the multiplicative model β = β∗. The interonset interval is also scaled,

such that P̂n =
Pn

P̃
. Thus, when P̂n = 1, the stimulus interonset interval equals the preferred

9



period of the oscillator model, P̃ . In full, the multiplicative model is defined as:
θn+1 = θn +

P̂n
qn
− α

2π
sin(2πθn) mod [−0.5,0.5]1

qn+1 = qn(1 +
β

2π
sin(2πθn)) + δ(1− qn)

(2.1)

The additive model is defined, then, as:
θn+1 = θn +

P̂n
qn
− α

2π
sin(2πθn) mod [−0.5,0.5]1

qn+1 = qn +
β

2π
sin(2πθn) + δ(1− qn)

(2.2)

For this study, α and β are positive parameters within the range [0, 2], as otherwise the

maps may become non-invertible and large coupling factors are not desirable. δ is typically

kept small (close to zero), as large δ would not give the systems enough freedom to entrain

beyond values close to their preferred period.

10



3.0 1:1 Locking – Fixed Points and Stability Conditions

Recall that N:M locking is a form of synchronization in which the phase θn of an oscillator

rotates N times for M stimuli (see Fig. 3 for an example). When in a stable state of N:M

locking, an oscillator model will have a period that is roughly a fraction M/N of the stimulus

period P̂ , and will exhibit a rotation number of roughly N/M . For the multiplicative model

(2.1) and the additive model (2.2), we focus on determining the stability of fixed points of 1:1,

1:2, 2:1, 2:3, and 3:2, with emphasis on how the stability conditions depend on parameters

α, β, δ, and the stimulus period P̂ . Analytical methods are primarily used for the δ = 0.0

cases, and numerical software xppaut (AUTO function) [24] is used otherwise.

3.0.1 1:1 locking – Multiplicative Model

The multiplicative model (2.1) in the δ = 0.0 case is simply a period scaled version of

the Loehr et al. model. To determine fixed points of 1:1 locking, we consider the case in

which the forcing period is time-independent (i.e., P̂n = P̂ . A fixed point (θ̄, q̄) of 1:1 locking

should satisfy the following criteria:


θ̄ = θ̄ +

P̂

q̄
− α

2π
sin(2πθ̄)− 1

q̄ = q̄(1 +
β

2π
sin(2πθ̄))

There are two solutions to this equation set: (θ̄, q̄) = (0, P̂ ) and = (1/2, P̂ ). We can

determine the stability of these fixed points by linearizing (2.1) about the fixed point (θ̄, q̄),

to find the Jacobian:

J1,δ=0 =

 1− α cos(2πθ̄) − P̂
q̄2

q̄β cos(2πθ̄) 1 +
β

2π
sin(2πθ̄)

 (3.1)

11



Generally, for such a Jacobian, stability requires that the determinant ∆1,δ=0 and trace τ1,δ=0

of J1 satisfy the Jury stability criterion 3.2 [25].|∆| < 1

|τ | < ∆ + 1

(3.2)

Utilizing these conditions, one can show that, in order for the 1:1 fixed point (0, P̂ ) to be

stable, α and β must satisfy:

0 < α− β < 2 (3.3)

Note all of the parameters are positive and real, so we omit the additional condition 0 < β.

The (1/2, P̂ ) fixed point, on the other hand, is always unstable, as stability requires β be

negative.

The above result (3.3) is a bit peculiar, as intuition would suggest that a larger β should

‘increase’ the stability of 1:1 locking in the oscillator model. However, α − β > 0 indicates

that the value of α limits which values β can assume. Numerical findings agree with this

stability condition found analytically.

Now, let us consider a fixed point of (θ̄, q̄) of the multiplicative model (2.1) when δ is

nonzero. For small δ, we expect that any stability conditions should agree with the δ = 0

case (3.3). Assuming again that the forcing period is time-independent, a fixed point of 1:1

locking (θ̄, q̄) must satisfy:
θ̄ = θ̄ +

P̂

q̄
− α

2π
sin(2πθ̄)− 1

q̄ = q̄(1 +
β

2π
sin(2πθ̄)) + δ(1− q̄)

Rearranged, (θ̄, q̄) must satisfy:
1

2π
sin(2πθ̄) =

δ(P̂ − 1)

βP̂ + δα

q̄ =
βP̂/α + δ

β/α + δ

(3.4)

These conditions imply that the existence of a fixed point depends on

|δ(P̂ − 1)

βP̂ + δα
| < 1

2π

12



As such, in order for 1:1 locking to exist for the case of non-zero δ, the stimulus period P̂

and parameters α, β, δ must satisfy:

P̂ >
δ(2π − α)

2πδ + β

P̂ <
δ(2π + α)

2πδ − β
when

β

2πδ
< 1

P̂ >
δ(2π + α)

2πδ − β
when

β

2πδ
> 1

Notice if
β

2πδ
> 1, there is no upper limit on P̂ for which fixed points of 1:1 locking exist. This

parameter condition can easily be satisfied when δ is small as compared to β. Moreover, when

δ = 0, these conditions indicate that any parameter set will yield 1:1 locking, as expected

for a model with no preferred period (δ = 0.0). Note also that if β = 0, we revert to the

conditions for a circle map with an intrinsic period and phase coupling.

We can simplify the conditions of (3.4) in the limit of small δ. Approximating δ to be

close to 0, a 1:1 locking fixed point (θ̄, q̄) should satisfy:
1

2π
sin(2πθ̄) =

δ(P̂ − 1)

βP̂

q̄ = P̂ (1− δα

β
) +

δα

β

Notice that as δ −→ 0, q̄ −→ P̂ and sin(2πθ̄) −→ 0 or 1/2, which are exactly the fixed

points in the δ = 0 case discussed previously.

For a fixed point (θ̄, q̄) of 1:1 locking (in the nonzero δ case) of the multiplicative model

(2.1), one can determine stability once again through linearization:

J1 =

 1− α cos(2πθ̄) − P̂
q̄2

βq̄ cos(2πθ̄) 1 +
β

2π
sin(2πθ̄)− δ

 (3.5)

Note that as δ −→ 0, J1 −→ J1,δ=0 (3.1), as expected. Approximating for δ near zero, J1 is

approximately:

J1 ≈

 1− α − 1

P̂
(1− 2αδ

βP̂
(1− P̂ ))

β(P̂ +
αδ

β
(1− P̂ ) 1− δ

P̂
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Relating once more back to J1,δ=0(0, P̂ ), given by (3.1), J1 is simply:

J1 ≈ J1,δ=0 +

 0
2αδ

βP̂
(1− P̂ )

αδ(1− P̂ ) − δ
P̂


This reinforces that as δ −→ 0, J1 −→ J1,δ=0.

The stability of 1:1 fixed points for the multiplicative model (2.1) in the approximation

of small δ requires that the trace and determinant satisfy (3.2). Thus, in order for (θ̄, q̄) (for

small δ) to be stable, the parameters must satisfy the following condition:

0 < α− β + δ/P̂ − αδ < 2 (3.6)

As δ −→ 0, we recover the stability conditions (3.3) of the (0, P̄ ) fixed point for the multi-

plicative model in the δ = 0 case.

3.0.2 1:1 locking – Additive Model

Consider the additive model (2.2) in the simplest case: when δ = 0.0. Considering the

case when the forcing period is time-independent (i.e., P̂n = P̂ ), a fixed point of 1:1 locking

(θ̄, q̄) for (2.2) would satisfy the following criteria:
θ̄ = θ̄ +

P̂

q̄
− α

2π
sin(2πθ̄)− 1

q̄ = q̄ +
β

2π
sin(2πθ̄)

Similarly to the multiplicative model, the two solutions to this equation set are (θ̄, q̄) = (0, P̂ )

and = (1/2, P̂ ). Linearizing about a fixed point, we find that the system Jacobian is:

J2,δ=0 =

 1− α cos(2πθ̄) − P̂
q̄2

β cos(2πθ̄) 1

 (3.7)

The stability of (θ̄, q̄) is dependent upon the determinant and trace satisfying (3.2). For

the 1:1 locking fixed point (0, P̂ ), given that the parameters are positive, we find that the

condition for stability is:

0 < α− β/P̂ < 2 (3.8)
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The other 1:1 fixed point of the additive model for δ = 0 case is (θ̄, q̄) = (1/2, P̂ ). Due to

the condition of the parameters being positive, this fixed point is always unstable.

Now, consider the nonzero δ case of the additive model (2.2). A 1:1 fixed point (θ̄, q̄)

must satisfy: 
θ̄ = θ̄ +

P̂

q̄
− α

2π
sin(2πθ̄)− 1

q̄ = q̄ +
β

2π
sin(2πθ̄) + δ(1− q̄)

Given the above, and that sin(2πθ̄) ∈ [−1, 1], the stimulus period P̂ must satisfy the following

conditions for fixed points of 1:1 locking to exist for the additive model:

(1− 1

2π
α)(1− β

2πδ
) < P̂ < (1 +

1

2π
α)(1 +

β

2πδ
)

As δ −→ 0, the range of stimulus periods for which locking can occur ranges from 0 to

∞–this agrees with the δ = 0.0 case of the additive model, which has no preferred period.

Moreover, this range of locking shows very effectively that α and β both increase the range

of possible stimuli to which the additive oscillator model can entrain to. This is exactly what

we expect to occur as you increase the magnitude of (positive) phase and period coupling

terms.

For small δ (i.e., close to zero), we can approximate the conditions on fixed points (θ̄, q̄)

of 1:1 locking to: 
q̄ = P̂ (1 +

δα

β
(1− P̂ ))

1

2π
sin(2πθ̄) = − δ

β
(1− P̂ )

(3.9)

These conditions imply that the existence of a fixed point depends on

| δ
β

(1− P̂ )| < 1

2π

This suggests that the range of P̂ for which 1:1 locking can occur (in the case of small δ) is:

1− β

2πδ
< P̂ < 1 +

β

2πδ

Notice that as δ −→ 0, the lower and upper limits of locking for P̂ approach −∞ and

+∞, respectively, as we would expect for an oscillator with no preferred period. However,

contrasting this with the conditions found previously suggests that, when δ is small, the
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range of 1:1 locking depends almost entirely on the ratio of the period coupling strength β

to the preferred period elasticity term δ. This is peculiar, but numerical results will agree

with the following findings that are based upon the same approximation.

For the additive model, δ 6= 0, the stability of a fixed point (θ̄, q̄) of 1:1 locking will

depend on qualities of the Jacobian:

J2 =

 1− α cos(2πθ̄) − P̂
q̄2

β cos(2πθ̄) 1− δ

 (3.10)

As expected, as δ −→ 0, J2 −→ J2,δ=0. For small δ, utilizing the conditions on fixed points

(θ̄, q̄) given by (3.9), J2 is approximately:

J2 ≈

 1− α − 1

P̂
(1− 2αδ

β
(1− P̂ ))

β 1− δ


which, in terms of J2,δ=0, is

J2 ≈ J2,δ=0 +

 0 +
2αδ

βP̂
(1− P̂ )

0 −δ


This emphasizes again that J2 = J2,δ=0 when δ = 0. In order for (θ̄, q̄) to be a stable

fixed point of 1:1 locking, the trace and determinant must satisfy (3.2). These conditions

equivalently become: 0 < β/P̂ + αδ(3− 2/P̂ )

0 < α− β/P̂ − αδ(3− 2/P̂ ) + δ < 2

(3.11)

We see once again that if δ −→ 0, (3.11) approaches the stability conditions (3.8). In

addition, if we take P̂ = 1, we see conditions similar to the multiplicative model stability

results (3.6):

0 < α− β − αδ + δ < 2
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3.0.3 1:1 Locking – xppaut AUTO

The boundaries of fixed point stability can be confirmed numerically through the use

of xppaut AUTO. We fix the stimulus period to P̂ = 1, so that it is exactly the preferred

period, and set the preferred period elasticity term δ to 0.0, 0.01, 0.1. We then vary α and

β to find the Hopf bifurcations which match analytical findings (3.6) and (3.11). The figures

of the numerical results are omitted, as there were no unexpected stability regions and all

findings agreed with analytic results.
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4.0 1:2 Locking – Fixed Points and Stability Conditions

For higher levels of locking, it is challenging to determine stability conditions through

analytic means, as the exact values of fixed points become dependent on parameter choices

(α, β, δ). For N:M locking, we expect to see 2M fixed points, with scaled periods of roughly

q̄ ≈M/N . For many choices of N:M locking, if δ = 0.0, fixed points exist for any parameter

set (α, β); however, when δ 6= 0, for each α there is a minimum (and at times maximum) β

at which fixed points exist. As such, analytical focus will be on the δ = 0.0 case of both the

multiplicative (2.1) and additive (2.2) models. The boundaries of existence and stability for

when δ 6= 0 will be found numerically. We will also turn focus to the special case of P̂ = 1

for all remaining analytical results.

4.0.1 1:2 locking – Multiplicative Model δ = 0.0

In the case of δ = 0.0 for the multiplicative oscillator model, there are four fixed points

of 1:2 locking. (0,2) and (1/2,2) are fixed points which exist regardless of parameter choice;

the other two fixed points are specific to the choice of coupling parameters α and β. When

iterated at a fixed point, the multiplicative model’s phase and scaled period (θn, qn) will

oscillate between the two fixed points of a given pair. To analytically determine the stability

of the fixed point pair (0, 2) and (1/2, 2), consider the product of the Jacobian J1 (3.5) at

both points:

J1(0, 2)× J1(1/2, 2) =

 1− α −1

4

2β 1

×
 1 + α −1

4

−2β 1


Resulting in the total Jacobian:

 1− α2 +
1

2
β −1

2
+

1

4
α

2αβ 1− 1

2
β
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Stability requires that the trace and determinant satisfy (3.2). As such, the conditions for

stability of the fixed point pair (0,2) and (1/2,2) are given by:


2α2 − 4 < αβ − 1

4
β2

0 < α− 1

4
β

0 < α2 − αβ +
1

4
β2 < 2

(4.1)

4.0.2 1:2 Locking – Additive Model δ = 0.0

In the case of δ = 0.0 for the additive oscillator model (2.2), there are four fixed points

of 1:2 locking. (0,2) and (1/2,2) are fixed points which exist regardless of parameter choice,

similar to the multiplicative model above. The other two fixed points are specific to the

choice of coupling parameters α and β. When iterated at a fixed point, the additive model’s

phase and scaled period (θn, qn) will oscillate between the two fixed points of a given pair.

To analytically determine the stability of the fixed point pair (0, 2) and (1/2, 2), we consider

the product of the Jacobian J2 (3.10) at both points:

J2(0, 2)× J2(1/2, 2) =

 1− α −1

4

β 1

×
 1 + α −1

4

−β 1


Resulting in the total Jacobian:

 1− α2 +
1

4
β −1

2
+

1

4
α

αβ 1− 1

4
β


Stability requires that the trace and determinant satisfy (3.2). As such, the conditions for

stability of the fixed point pair (0,2) and (1/2,2) are given by:


2α2 − 4 <

1

2
αβ − 1

16
β2

0 < α− 1

8
β

0 < α2 − 1

2
αβ +

1

16
β2 < 2

(4.2)
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4.0.3 1:2 Locking – xppaut AUTO

Recall that for δ = 0.0, there are fixed points of 1:2 locking for all coupling parameter

choices α, and β. However, this is not the case for δ 6= 0.0. Moreover, the four fixed points,

when they exist, are completely dependent upon the choice of α and β (in comparison, when

δ = 0.0, there is a fixed point pair (0,2),(1/2,2) that is independent of parameter choice).

For the nonzero δ case in both the additive and multiplicative models, we rely on numerical

software xppaut to find the boundaries of existence and stability. Limit points signify the

boundaries of existence, and Hopf bifurcations determine stability boundaries. Fig. 4 shows

two specific examples of such points, and their effects, when you vary one parameter (α or β)

and observe the effect on the fixed point (represented by its phase θ value). Finally, branch

points determine when stability switches between the fixed point pairs–this is particularly

relevant when we look at cases where we know the stability of one pair analytically, but not

the other.

For δ = 0.0, 0.01, 0.1, Fig. 5 shows the numerical results, with shaded regions which

represent parameters (β, α) for which stable fixed points exist. Note that below the limit

point curves, no fixed points exist. In the δ = 0.0 case, branch points divide the regions

which were predicted analytically from solely numerical results (as we did not analytically

predict the stability of the fixed point pair which depends upon the choice of α and β). Thus,

we see that numerical methods prove just as necessary for the δ = 0.0 case as the non-zero

δ case (see top-left plot in Fig. 5).

To detail exactly which curves were expected analytically, we need simply rewrite the

stability conditions (4.1) as:


β 6= 2α

β < 4α

−2
√

4− α2 + 2α < β < 2
√

4− α2 + 2α

These three inequalities exactly define the two rightmost Hopf-bifurcations and branch point

shown in the top-left subplot of Fig. 5. Similarly, for the δ = 0.0 additive model case, (4.2)
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Additive Model, 2:3 locking, β=1.2, δ =0.01

β

Multiplicative Model, 3:2 locking, α=0.8, δ =0.01

α

fix
ed

 p
oi

nt
s θ

fix
ed

 p
oi

nt
s θ

Figure 4: One-parameter plots (θ v. β or α) showing how the stability and value of fixed

points’ phase θ changes when varying a locking parameter. Red lines represent unstable fixed

points, while green lines represent stable fixed points. Black points mark either limit points

or Hopf bifurcations. In the top plot, the left point is a limit point, and the right point is a

Hopf bifurcation. In the bottom plot, the rightmost two points are Hopf bifurcations, and

the leftmost point is a limit point.
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can be rewritten in the form:
β 6= 4α

β < 8α

−4
√

4− α2 + 4α < β < 4
√

4− α2 + 4α

These curves exactly define the two rightmost Hopf-bifurcations and branch point shown in

the top-right subplot of Fig. 5.

22



Figure 5: Multi-parameter (β v. α) plots showing the stability and existence boundaries of

1:2 locking in the multiplicative and additive models as curves in (β,α) space. Red curves

represent Hopf bifurcations, black curves represent limit points, and blue curves are branch

points. Shaded regions represent parameter sets which have stable fixed points. The darker

shade of regions in the δ = 0.0 case represents that these are regions which were identified

analytically as well as numerically.
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5.0 2:1 Locking – Fixed Points and Stability Conditions

5.0.1 2:1 Locking – Multiplicative Model δ = 0.0

For 2:1 locking, the multiplicative oscillator model has two fixed points: (θ̄, q̄)=(0,1/2)

and (θ̄, q̄)=(1/2,1/2). Stability of the fixed points can be found by looking at J1, given by

(3.5), at (0,1/2) and (1/2,1/2):

J1(0, 1/2) =

 1− α −4
β

2
1

 J1(1/2, 1/2) =

 1 + α −4

−β
2

1


Requiring that the determinant and trace satisfy (3.2), the condition for stability of (0,1/2)

becomes: {
0 < α− 2β < 2 (5.1)

Note that here, we exclude conditions that are already satisfied by β > 0 and α > 0. The

fixed point (1/2,1/2), on the other hand, is always unstable, because it requires a negative

β for stability.

5.0.2 2:1 Locking – Additive Model δ = 0.0

For 2:1 locking, the additive oscillator model has two fixed points, similar to the mul-

tiplicative model: (0,1/2) and (1/2,1/2). Stability of these fixed points depends upon the

trace and determinant of J2 (given by (3.10)) at (0,1/2) and (1/2,1/2):

J2(0, 1/2) =

 1− α −4

β 1

 J2(1/2, 1/2) =

 1 + α −4

−β 1


Given the constraints that the trace and determinant must satisfy (3.2) in order to have a

stable 2:1 fixed point, α and β must satisfy the following conditions for (0,1/2) to be a stable

fixed point:

0 < α− 4β < 2 (5.2)
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Note again that conditions requiring α > 0 and β > 0 are omitted, as this is already satisfied

by the choice of parameters. The fixed point (1/2,1/2), on the other hand, is always unstable,

because the system requires a negative period coupling term β for stability.

5.0.3 2:1 Locking – xppaut AUTO

Recall that for δ = 0.0, there are two points of 2:1 locking for all coupling parameter

choices α, and β. However, this is not the case for δ 6= 0.0. Moreover, the two fixed points,

when they exist, are completely dependent upon the choice of α and β (in comparison, when

δ = 0.0, the fixed points’ existence is independent of the parameters). For the nonzero δ case

in both the additive and multiplicative models, we rely on numerical software xppaut to find

the boundaries of existence and stability. Limit points provide the boundaries of existence,

and Hopf bifurcations determine stability boundaries. We expect the shape of the parameter

region to be more distorted with larger δ, but to still retain some of the δ = 0.0 shape.

For δ = 0.0, 0.01, 0.1, Fig. 5 shows the numerical results, with emphasis on shaded

regions which represent parameters (β, α) for which stable fixed points exist. Note that

below the limit point curves, no fixed points exist. As expected, the larger δ results in

smaller regions of parameter existence and a distortion in the original triangular shape of

the δ = 0.0 regions given by (5.1) and (5.2).
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Figure 6: Multi-parameter (β v. α) plots showing the stability and existence boundaries

of 2:1 locking in the multiplicative and additive models as curves in (β,α) space. Red

curves represent Hopf bifurcations, and black curves represent limit points. Shaded regions

represent parameter sets which have stable fixed points. The darker shade of regions in the

δ = 0.0 case represents that these are regions which were identified analytically as well as

numerically.
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6.0 3:2 Locking – Fixed Points and Stability Conditions

The multiplicative (2.1) and additive (2.2) oscillator models have four fixed points of

3:2 locking. Two of these fixed points are independent of parameter choice: (0,2/3) and

(1/2,2/3). At a steady state of 3:2 locking, the models’ phase and scaled period (θn, qn) will

oscillate between the two fixed points of a given pair. However, note that at most one of the

pairs of the fixed points, if any, is stable for a given parameter choice.

6.0.1 3:2 Locking – Multiplicative Model δ = 0.0

For the multiplicative model, determining the stability of the (0,2/3) and (1/2,2/3) fixed

point pair requires us to linearize about both points and compute the product of Jacobians,

similarly to when determining the stability of pairs of 1:2 locking fixed points. Evaluating

J1, given by (3.1), at this fixed point pair results in:

J1(0, 2/3)× J1(1/2, 2/3) =

 1− α −9

4
2

3
β 1

×
 1 + α −9

4

−2

3
β 1


Thus, the final Jacobian is:  1− α2 +

3

2
β −9

2
+

9

4
α

2

3
αβ 1− 3

2
β


In order for the fixed point pair (0,2/3) and (1/2,2/3) to be stable, the above Jacobian’s

determinant and trace must satisfy (3.2). Rearranging and simplifying these conditions

shows us that the (0,2/3), (1/2,2/3) fixed points of 3:2 locking are stable if α and β satisfy:
2α2 − 4 < 3αβ − 9

4
β2

0 < α− 3

4
β

0 < α2 − 3αβ +
9

4
β2 < 2

(6.1)
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6.0.2 3:2 Locking – Additive Model δ = 0.0

Recall that the additive model also features four fixed points, including a pair of which

is parameter independent for which we will analytically determine stability. The stability of

the (0,2/3) and (1/2,2/3) can be found through analysis similar to the multiplicative model

case, where we linearize about both points and find the product of the Jacobians. Evaluating

J2, given by (3.7), at this fixed point pair gives:

J2(0, 2/3)× J2(1/2, 2/3) =

 1− α −9

4

β 1

×
 1− α −9

4
2

3
β 1


Thus, the final Jacobian is:  1− α2 − 9

4
β −9

2
− 9

4
α

αβ 1 +
9

4
β


In order for the fixed point pair (0,2/3) and (1/2,2/3) to be stable, the above Jacobian’s

determinant and trace must satisfy (3.2). These conditions can be simplified to the following

three inequalities: 
2α2 − 4 <

9

2
αβ − 81

16
β2

0 < α− 9

8
β

0 < α2 − 9

2
αβ +

81

16
β2 < 2

(6.2)

6.0.3 3:2 Locking -xppaut auto

Recall that for δ = 0.0, there are fixed points of 3:2 locking for all coupling parameter

choices α, and β. However, this is not the case for δ 6= 0.0. Moreover, the four fixed points,

when they exist, are completely dependent upon the choice of α and β (in comparison, when

δ = 0.0, there is a fixed point pair (0,2/3),(1/2,2/3) that is independent of parameter choice).

For the nonzero δ case in both the additive and multiplicative models, we rely on numerical

software xppaut to find the boundaries of existence and stability. Limit points provide the

boundaries of existence, and Hopf bifurcations determine stability boundaries.
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For δ = 0.0, 0.01, 0.1, Fig. 7 shows the numerical results, with emphasis on shaded

regions which represent parameters (β, α) for which stable fixed points exist. Note that

below and between particular limit point curves, no fixed points exist. In the δ = 0.0 case,

branch points divide the regions which were predicted analytically from solely numerical

results (as we could not predict the stability of the fixed point pair which depended upon

the choice of α and β). Thus, we see once again that numerical methods prove just as

necessary for the δ = 0.0 case as the non-zero δ case (see top-left subplot in Fig. 7).

To detail exactly which curves were expected analytically for the multiplicative model

when δ = 0.0, we need simply rewrite the stability conditions (6.1) as follows:


β 6= 2

3
α

β <
4

3
α

−2

3

√
4− α2 +

2

3
α < β <

2

3

√
4− α2 +

2

3
α

These curves, put together, describe the darker shaded region shown in Fig. 7, top-left corner.

Similarly, for the additive model δ = 0.0, (6.2) is equivalent to:


β 6= 4

9
α

β <
8

9
α

−4

9

√
4− α2 +

4

9
α < β <

4

9

√
4− α2 +

4

9
α

These curves outline the region shown in Fig. 7, top-right corner.

For 3:2 locking, we see in Fig. 7 exactly how increasing δ leads to changes in parameter

regions of stable fixed points. As δ increases, the regions where fixed points exist get smaller,

requiring larger β than in smaller δ cases for the same α. Further, there seems to be a general

shift away from α = 0, β = 0, such that the regions of stable 3:2 fixed points require both a

large β and large α for larger δ. For example, when δ = 0.1 for the additive model (bottom

left of Fig. 7), α must be larger than 1.8 and β must be larger than 0.5. Such large values for

the phase coupling strength are not desirable, but are clearly required to achieve 3:2 locking

for a model with a ‘strong’ preferred period.
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Figure 7: Multi-parameter (β v. α) plots showing the stability and existence boundaries of

3:2 locking in the multiplicative and additive models as curves in (β,α) space. Red curves

represent Hopf bifurcations, black curves represent limit points, and blue curves are branch

points. Shaded regions represent parameter sets which have stable fixed points. The darker

shade of regions in the δ = 0.0 case represents that these are regions which were identified

analytically as well as numerically.
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Note also, that for the multiplicative model when δ = 0.01 and α = 0.8, varying β from

0 to 2 gives the same limit point and Hopf bifurcation found in the one parameter plot in

Fig. 4. This further verifies the numerical results found here.
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7.0 2:3 Locking – xppaut AUTO

2:3 locking is uniquely different than all the prior cases for two reasons. First, steady

states of 2:3 locking appear as oscillations between a set of three fixed points, with a total of

six fixed points when a given parameter allows for the existence of fixed points of 2:3 locking.

The more important unique nature of 2:3 locking appears, however, in the fact that, even

in the δ = 0.0 case, not all parameter choices feature fixed points of 2:3 locking. Further,

no fixed point values are parameter independent, so we rely solely on numerical methods to

determine the stability of this type of locking for all δ cases of the multiplicative (2.1) and

additive (2.2) models.

Fig. 8 shows the numerically determined boundaries of existence (limit point curves) and

stability (Hopf bifurcation curves). An important feature of the oscillator models is clear

here for the δ = 0.0 and δ = 0.01 cases: in order to achieve a steady state of 2:3 locking, one

or both of the coupling parameters must be ‘large’ (large as compared to 0.5 for example).

In addition, the regions of parameters for which stable 2:3 locking states exist are smaller in

comparison to those found for 1:1 or 1:2 locking. In addition, increasing δ further shrinks

the stable parameter regions, and these regions occur at larger β and/or α than the regions

for smaller δ. This last aspect is especially clear from the fact that no stable fixed points of

2:3 locking exist for the additive model when δ = 0.1 (as denoted by the absence of the plot,

as it would show nothing). Even for the multiplicative model, when δ = 0.1 the parameter

region for steady states is incredibly small, requiring β to exceed 1.7 for all applicable α.

Note also, that for the additive model when δ = 0.01 and β = 1.2, varying α from 1 to

2 gives the same limit point and Hopf bifurcation found in the one parameter plot in Fig. 4.

(Note that the fixed points in the α < 1 region are excluded, because this is a different fixed

point pair than the one tracked in Fig. 4). This further verifies the numerical results found

here.
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Figure 8: Multi-parameter (β v. α) plots showing the stability and existence boundaries of

3:2 locking in the multiplicative and additive models as curves in (β,α) space. Red curves

represent Hopf bifurcations and black curves represent limit points. Shaded regions represent

parameter sets which have stable fixed points.
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8.0 Multi-locking parameter regions

The analytical and numerical results can be summarized by Fig. 9, which shows colored

parameter regions indicating different types of stable N:M locking. Here, 1:1 locking is shown

in light purple, 2:1 locking is shown in red, 1:2 locking is shown in green, 3:2 locking is shown

in blue, and 2:3 locking is shown in yellow.

While it is not unexpected that an oscillator with no preferred period (δ = 0.0) may have

large regions of multi-locking (particularly for α ∈ (1.2, 1.6)), it is significant that even for

δ = 0.01 (increasing the preferred period elasticity term), there are large regions in which

four of the five kinds of N:M locking exist with stable steady states. Moreover, these regions

have fairly acceptably small β values, with α ∈ (0.6, 1.6). As δ increases to 0.1, however,

few such regions of multi-locking remain, and only for large α and β. It is significant,

however, that even in the δ = 0.1 case, the multiplicative model does still have parameter

regimes with four states of stable N:M locking, regardless of the large parameter α,β sizes.

A comparison to consider as a result of Fig. 9 is that, for a given δ, there are larger regions

of multilocking for the multiplicative model than the additive model. This seems to suggest

that the description given by the multiplicative model is more ideal if complex entrainment

is desired, though such a statement would require knowledge of the basins of attraction of

these steady states.

It remains to determine what the basins of attraction look like, as well as their properties,

for various α and β combinations, particularly those within multi-locking regions. The basins

of attraction will give us an understanding of how typical it is for the oscillator models to

reach a particular final steady state from an arbitrary initial condition.
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Figure 9: Parameter (α, β) regions for which the multiplicative and additive models exhibit

stable fixed points of N:M locking. In these plots, green is 1:2 locking, yellow is 2:3 locking,

purple is 1:1 locking, blue is 3:2 locking, and red is 2:1 locking.
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Figure 10: Final rotation number for the multiplicative model for initial conditions such that

θ0 ∈ (−0.5, 0.5) and q0 ∈ (0.01, 3.0). The entire space is dominated by convergence to the

1:1 locking state.
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Figure 11: Final rotation number for the initial conditions such that θ0 ∈ (−0.5, 0.5) and

q0 ∈ (0.01, 3.0). Here, we see states of 1:2, 1:1, 3:2, and 2:1 locking for the multiplicative

model (left) and 1:2, 1:1, and 3:2 locking for the additive model (right).
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9.0 Basins of Attraction

Recall that Fig. 9 shows the (α, β) parameter regions for which stable N:M locking states

(1:1, 1:2, 2:1, 2:3, 3:2) exist (for a given δ and a forcing period P̂ = 1). While these models

can exhibit other types of locking, we do not expect N:M locking with N ≥ 3, M ≥ 3 to

appear until larger α and β combinations, due to the qualities of the 2:3 locking parameter

regions in Fig. 9. The final states of the multiplicative (2.1) and additive (2.2) oscillator

models, however, not only depend on the parameters α, β, δ, and P̂ , but also the initial

conditions (θ0, q0). Given an initial (θ0, q0) and n many iterations, the model may converge

to a state of N:M locking, a quasi-periodic state, some periodic orbit, or not converge. We can

characterize the final state by the rotation number limn→∞ θn/n, when θn is allowed to run

free (eliminating mod [−0.5,0.5]1). If the oscillator is in a state of N:M locking after sufficient

iterations, the rotation number for the given initial conditions should be approximatelyN/M .

However, if the model is in a quasi-periodic state, it may appear to have a rotation number

N/M despite not being a stable periodic state of N:M locking. Thus, it is necessary to also

check the periodicity of final states. For all the figures depicting rotation numbers (Figs. 10-

18), a 400x400 grid of initial condition points is utilized, with n = 4000 iterations. Each IC

point (θ0, q0) is then colored according to whether the final state is periodic and its rotation

number (θ4000/4000) falls within the desired N:M locking regions. Periodicity is determined

by whether at least two points (θn,qn) of the final ten iterations being equal within 10−10.

If the rotation number r ∈ [0.45, 0.55], the point is marked as 1:2 locking. If r ∈ [0.6, 0.7],

the point is marked as 2:3 locking. If r ∈ [0.95, 1.05], the point is marked as 1:1 locking.

If r ∈ [1.45, 1.55], the point is marked as 3:2 locking. Finally, if r ∈ [1.95, 2.05], the point

is marked as 2:1 locking. Changing this tolerance of ≈ 0.05 slightly does not significantly

impact the overall shapes of the basins of attraction for all shown figures (Figs. 10-18).

First, consider a region where only one type of locking has stable steady states: the

multiplicative oscillator model for when δ = 0.1, α = 0.6, and β = 0.2. Here, of the types

of locking investigated, only 1:1 locking fixed points are limiting points of trajectories. As

such, it is expected that the domain of attraction of this 1:1 fixed point should be large–i.e.,
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when starting at various initial points (θ0, q0), after sufficient time the trajectory should

converge to a point (θ, q) close to (0, 1) (the exact value of this fixed point is given in section

3.1, equation (3.4)). Iterating the model at various initial conditions θ0 ∈ (−0.5, 0.5) and

q0 ∈ (0.01, 3), Fig. 10 shows that, in fact, the domain of attraction is the whole 400x400

point space. This is exactly what we expect for a parameter set in which only 1:1 locking

is stable (though higher levels of locking may be exhibited for larger q, such as for example

1:5 locking, where q ≈ 5, out of the range of this figure).

In regions of multi-locking, it becomes increasingly important to determine the domains

of attraction for fixed points of 1:1, 1:2, 2:1, 2:3, and 3:2 locking. When at a fixed point

of N:M locking, the scaled period of an oscillator model should be q ≈ M/N (as opposed

to the rotation number, which is ≈ N/M). As such, in regions of multi-locking, we expect

limits of trajectories corresponding to N:M locking should occur in a neighborhood around

q0 = M/N . For example, consider the multiplicative model (2.1) and additive model (2.2)

when α = 0.6 and β = 0.2 with δ = 0.0. Fig. 9 indicates that the multiplicative model

should exhibit stable 1:1, 2:1, 1:2, and 3:2 locking and the additive model should exhibit

stable 1:1, 1:2, and 3:2 locking. However, without looking at the domains of attraction, it

is unclear exactly what initial conditions will result in such final states. Iterating at various

initial conditions (θ0, q0), Fig. 11 shows that in the approximate range q0 ∈ (0.4, 2.3), the

multiplicative and additive oscillator models converge to exactly the states indicated by

Fig. 9. Around q0 = 0.5, the multiplicative model converges to 2:1 locking. In a small region

near q0 = 0.66, the multiplicative model converges to 3:2 locking. The largest domain of

attraction is 1:1 locking, which is not centered at q0 = 1, but includes it. Finally, near

q0 = 2.0, the multiplicative model converges to 1:2 locking. Similar regions occur for the

additive model, with the domain of attraction of 1:1 locking being dominant and of 3:2 being

the smallest. Therefore, as expected, the domains of attraction for stable N:M locking states

occur in neighborhoods around q0 ≈ M/N . However, what we could not predict were how

large these regions would be. Though it is not surprising that 1:1 locking may be dominant

in both models, the domain of attraction for 3:2 locking is incredibly small, making it a state

that cannot be reached by the models unless the oscillator already begins close to this state

in terms of its initial period q0.
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In the above case (Fig. 11), the domains of attraction appear connected, continuous,

and fairly smooth on their boundaries. Consider instead the case where α = 1.75, β = 0.4

(as such, α is large, and β is small). Further, vary δ to be 0.0, 0.01, 0.1. Fig. 12 shows

the domains of attraction for these various cases, with the multiplicative model in the left

column, the additive model in the right column, and δ increasing with each subsequent row.

The first visual difference with Fig. 11 is that the domains of attraction have boundaries

which are dependent both on q0 as well as θ0. Meaning, consider for example the 1:1 locking

domain of attraction of the additive model with δ = 0.01 (pink region in the bottom-right

plot in Fig. 12). Some θ0 have a larger maximum q0 for which the system converges to

its 1:1 fixed point (for example, θ0 = −0.2 has a larger max(q0) than θ0 = 0.2). Another

difference in the characteristics of the domains of attraction is that for a fixed θ0, the domain

is discontinuous–other types of N:M locking fracture the domain, either at the border or even

within. For example, for the additive model when δ = 0.01 (bottom-right plot in Fig. 12),

the domain of attraction of 2:3 locking can be found what looks to be “within” the domain

of attraction of 1:1 locking.

It is difficult, however, from the given figures to determine whether the regions themselves

are connected, due to the mesh grid being of a limited size. To investigate this, take the case

of the additive model when α = 1.75, β = 0.4, and δ = 0.01 as it was shown in Fig. 12. Let

us vary q0, instead, from 0.01 to 0.5 in 400 evenly spaced points, “zooming in” on the region

of 2:1 locking which, due to low resolution, looks disconnected in Fig. 12. Increasing the

resolution, the top plot in Fig. 13 indicates that the additive model exhibits fractal behavior

at the boundaries of domains of attraction. Moreover, extending θ0 periodically suggests

that the domain of attraction may be connected, though it would take a plot of incredibly

high resolution (compared to 400x400) to investigate this. Magnifying the highlighted region

(white border), which encloses initial conditions q0 ∈ (0.2, 0.23) and θ0 ∈ (−0.2,−0.17), the

right top plot of Fig. 13 shows that the region continues to appear fractal. Notice also that

there are points throughout the region which are associated with rotation numbers of 3:2 and

1:1 locking. Finally, we can magnify once more on the region where q0 ∈ (0.210, 0.215) and

θ ∈ (−0.186,−0.181), seen in the bottom plot of Fig. 13, to see that the fractal appearance

continues. One aspect of the bottom plot of Fig. 13 which is not clear is what the black
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Figure 12: Final rotation number when varying the initial conditions such that θ0 ∈

(−0.5, 0.5) and q0 ∈ (0.01, 3.0). Though many of the rotation number regions, corresponding

to basins of attraction, were predicted by Fig.9, there are four regions that were unexpected.

For the multiplicative model, δ = 0.0, rotation numbers corresponding to 3:2 locking (blue)

and 1:2 locking (green) were not predicted; upon investigation, these regions correspond to

6:4 locking and 2:4 locking. For the additive model, δ = 0.0, rotation numbers corresponding

to 1:2 locking (green) were not predicted; upon investigation, this region is 2:4 locking. And,

finally, for the multiplicative model, δ = 0.01, rotation numbers corresponding to 3:2 locking

(blue) were not predicted; this region corresponds to 6:4 locking.
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colored regions mean in this particular plot–in particular, whether these regions represent

a type of locking not investigated, or if those parameter sets are not periodic in their final

state. Upon investigation, we find that, particularly within the bulls-eye portion of the

bottom plot of Fig. 13, much of the region which does not end in 2:1 locking ends in a state

of 5:2 locking (with a rotation number in the range [2.45, 2.55]), as seen in Fig. 14.

In other cases, the connectivity of the domains of attraction appear more obvious. Con-

sider the parameter set α = 0.8, β = 0.35, and δ = 0.01 for both the additive and multi-

plicative models: Fig. 15 shows the domains of attraction for these cases. Focusing on 1:1

and 2:3 locking, keeping periodicity of θ in mind, the domains appear connected in Fig. 15,

though for a fixed θ0 or q0, there are discontinuities, such that when varying q0 linearly, the

final state oscillates between 1:1 and 1:2 locking.

In Fig. 12, Fig. 13, and Fig. 15, the domains of attraction appear fractal in nature,

which can particularly be seen in Fig. 12 but is also evident in the 2:1 and 3:2 locking

regions of Fig. 15. This fractal behavior is particularly apparent for the additive model

when α = 0.8, β = 1.9, which features 1:2 and 2:3 stable locking in the δ = 0.0 and δ = 0.01

cases. Fig. 16 shows how, though some portions of the domains of attraction are continuous

and connected, there is a great deal of fractal behavior, particularly for 2:3 locking in the

δ = 0.01 case. In addition, on the right hand side, extending θ periodically would once again

show a connectivity of the regions of 1:2 and 2:3 locking (though, once again, this does not

say that such regions are generally connected, especially considering the fractal behavior on

the left hand side).

So far, the only cases we have looked at are where at least one of α or β is small (as in,

< 1). Fig. 11, in comparison with later figures, seems to suggest that when α or β is large,

the domains of attraction become increasingly ‘distorted’ in shape and fractured to exhibit

fractal behavior. This is supported by Fig. 17, which shows the multiplicative and additive

models in the case of α = 0.9, β = 0.2, and δ = 0.0, 0.01. Here, there is minimal fractal

behavior (primarily seen in the 2:1 case), and the domains of attraction seem to primarily

depend upon q0 rather than θ0 otherwise. However, to contrast, consider the case when α and

β are both large (> 1); in particular, let α = 1.8, β = 1.48, and δ = 0.0, 0.01, 0.1. Fig. 18

shows how all of the domains of attraction of stable N:M locking are incredibly distorted

41



2:1

3:2

1:1

2:3

1:2

2:1

3:2

1:1

2:3

1:2

2:1

3:2

1:1

2:3

1:2

Figure 13: Final rotation number for various initial condition (θ0, q0) ranges. Compared

to Fig. 12, the plot on the top shows a higher resolution image for initial conditions q0 ∈

(0.01, 0.5) and θ0 ∈ (−0.5, 0.5). Similarly, the plot on the bottom shows a higher resolution

image for initial conditions q0 ∈ (0.2, 0.23) and θ0 ∈ (−0.2,−0.17). White boxes highlight

the regions being magnified
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Figure 14: Final rotation number for various initial condition (θ0, q0) with θ0 ∈

[−0.186,−0.181] and q0 ∈ [0.210, 0.215]. The plot is identical to Fig. 13, except that an

additional white region is colored for initial conditions whose final states are 5:2 locking.
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Figure 15: Final rotation number for initial conditions such that θ0 ∈ (−0.5, 0.5) and q0 ∈

(0.01, 3.0) for the multiplicative (left) and additive (right) models.
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Figure 16: Final rotation number when varying the initial conditions such that θ0 ∈

(−0.5, 0.5) and q0 ∈ (0.01, 3.0).

in shape (as compared to Fig. 17) and feature fractal behavior at either the boundaries or

throughout large sections.

Fig. 12 and Fig. 18 have phase coupling terms α close to one another; there are also two

additional similarities between these cases beyond the value of α. Both of these cases feature

domains of attraction which were not predicted by Fig. 9–meaning that there is a periodic

state with a rotation number that corresponds to N : M locking but may not in fact be a

state of N:M locking. In Fig. 12, the multiplicative model for δ = 0.0 exhibits what appears

to be 3:2 (blue) and 1:2 (green) locking final stable states–however, when choosing a test

point within the regions, it becomes evident that these are in fact domains of attraction for

states of 6:4 and 2:4 locking. We know this because the final periodic state features a set of

4, not 2, fixed points. Since the rotation number only depends on the fraction of N to M ,

6:4 and 3:2 locking will appear identical in such plots intended to illuminate the basins of

attraction. In addition, through this same method of test points, we find that Fig. 12 shows

the domain of attraction for 2:4 locking for the additive model (δ = 0.0) and the domain

44



of attraction for 6:4 locking for the multiplicative model (δ = 0.01). For the parameter

set α = 1.8, β = 1.48, several unexpected regions corresponding to 1:2 were found, in fact

found to be either period doubling case (2:4) or quadrupling case (4:8). Generally, these

unexpected regions which are domains of attraction of
aN

aM
, a an integer, are found for cases

of large α, as in Fig. 12 and Fig. 18.
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Figure 17: Final rotation number when varying initial conditions such that θ0 ∈ (−0.5, 0.5)

and q0 ∈ (0.01, 3.0) for the multiplicative (left) and additive (right) oscillator models.
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Figure 18: Final rotation number when varying initial conditions such that θ0 ∈ (−0.5, 0.5)

q0 ∈ (0.01, 3.0). Though many of the rotation number regions, corresponding to basins of

attraction, were predicted by Fig.9, there were four unexpected regions. For the multiplica-

tive and additive models, δ = 0.0 and = 0.01, rotation numbers corresponding to 1-2 locking

(green) were not expected. Upon investigation, the multiplicative cases correspond to 2:4

locking, the additive case with δ = 0.0 corresponds to 2:4 locking, and the additive case with

δ = 0.01 corresponds to 4:8 locking.
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10.0 Discussion

Recall that more recent oscillator models of synchronization include period adaptation

terms (unlike the standard model (1.1)) in order to account for an oscillator’s ability to change

its period and maintain the beat after a stimulus is discontinued. This added dimension in

period or frequency can include a period coupling term and/or preferred period elasticity.

However, there are also models of entrainment or beat-keeping that are not centered around

the idea of an oscillator (or error correction). The various models, though at times designed

to understand different systems, have similar overarching themes and properties.

Recall that Mosheiff et al. described the entrainment of a cell cycle Tn to the cellular

circadian clock Tosc by a second order phase equation (1.4):

θn+1 = θn +
τ0
Tosc

(1− γ) + γ(θn − θn−1) + k̃ sin(2πθn)

Here, τ0 is the intrinsic cell-cycle period, k is the coupling between the cell cycle and circadian

oscillator, and γ defines mother-daughter (cell) coupling. Phase is given by θn =
tn
Tosc

where

tn is the birth time of a cell (see section 1.0.2). The nonlinearity of the model was provided

a mechanism for an inequality observed in experiments [22].

It is not immediately apparent perhaps how this second order phase equation relates to

either the multiplicative or additive models described here. However, we can generate an

analogous description of phase θn+1 = f(θn, θn−1) for the multiplicative and additive models

by introducing small perturbations and rearranging terms to eliminate the period component

qn+1. When looking at the Mosheiff et al. model (1.4), the only apparent coupling term to

the circadian oscillator (forcing stimulus) is k̃ = k/Tosc: the forcing amplitude of the cellular

circadian clock. As such, we set β = 0 in the additive and multiplicative models, making

them equivalent, and determine the following second order equation for phase:

θn+1 = θn + δP̂ + (1− δ)(θn − θn−1)−
αδ

2π
sin(2πθn) (10.1)

Comparing (1.4) and our models (10.1) directly, we can identify how parameters of the

Mosheiff et al. model (mother-daughter coupling term γ, cell cycle to circadian clock coupling
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k, intrinsic cell-cycle period τ0, and forcing period Tosc) are analogous to parameters of the

additive and multiplicative models (phase coupling term α, preferred period elasticity δ,

scaled forcing period P̂ = IOIn/P̃ ):
1− γ ∼ δ

k

Tosc
∼ −αδ

2π

IOIn/P̃ ∼ τ0/Tosc

(10.2)

As such, 1−γ, where γ is mother-daughter coupling, relates to the preferred period elasticity

term. Since an inverted relationship is used for relating the intrinsic period and forcing pe-

riod (3rd equivalence relation in (10.2)), a larger γ results in the model being more resistant

to entraining to the forcing period Tosc. In addition, the relations in (10.2) draw a compar-

ison between coupling terms with the stimulus: the cell cycle-circadian clock coupling k is

proportional to the the multiplicative/additive phase coupling term α (but also the preferred

period elasticity δ). It is not quite so important how exactly the parameters translate, but

there is sufficient similarity to directly compare the results and implications of both models.

In terms of properties and results, there are several similarities between the multiplica-

tive/additive models and the Mosheiff et al. kicked cell cycle model, beyond just their

nonlinearity and order. First, both models exhibit periodic and quasi-periodic regions, and,

more importantly, the models both feature large parameter regions of higher dimensional

locking (specifically, period n (i.e., 1:n) locking [22]). However, in our models, when β is

set to zero, much of the higher dimensional N : M locking is lost for nonzero δ (see Fig. 9.

This speaks to, perhaps, the lack of a direct correspondence in parameters, particularly

when comparing the coupling terms between the oscillator and its stimulus. In addition, the

original Mosheiff et al. model (1.4) includes noise at each n, and they showed that, even in

the presence of high noise, some fixed points beyond 1:1 locking were retained (i.e. these

features were robust to noise) [22]. It would be interesting, as such, to see how robust the

multiplicative and additive models’ properties are if some stochastic dynamics are added,

since most biologically realistic systems feature noise in their inputs.

Oscillator models are a common dynamical systems approach to synchronization studies,

such as here and in Mosheiff et al., but recall that Bose et al. utilized a neuro-mechanistic
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approach to understanding entrainment [13]. They modeled beat perception by considering

dynamics which originate from the behavior of a “beat generator neuron” (BG), modeled

by a leaky integrate and fire model. The BG learns the period and timing of the stimulus

through an internal parameter Ibias that regulates the BG’s excitability. Two learning rules,

a period learning rule LRT and a phase learning rule LRφ, affect Ibias in order to “teach”

the sequence to the BG. Simulations showed that both rules are necessary for entrainment

with zero phase to occur, which is what we would also expect of the multiplicative and

additive models. However, what makes Bose et al.’s model unique in comparison with the

models used here is that the stimulus-model coupling is both nonlinear and non-periodic. In

particular, the period of the BG leaky integrate and fire model is given by:

T = τ loge(
Ibias

Ibias − 1
)

where τ is the membrane time constant. Most entrainment models utilize coupling terms

that are periodic, in contrast with Bose et al. [13]. The multiplicative and additive models,

the Saigusa et al. model (1.3), and also the Mosheiff et al. model (1.4) all feature sinusoidal

coupling terms. Moreover, the non-periodic nature of the dynamics of the BG neuron mean

that it will never converge to a periodic orbit when receiving stationary stimuli (IOIn = T ∗,

corresponding to the case where P̂n = P̂ ), quite unlike the models presented here (2.1), (2.2).

The discrete nature of the learning rules LRφ and LRT means that the final rhythm of the

oscillator upon “synchronization” is not exact.

Despite the neuromechanistic model and oscillator models operating other fairly different

mechanisms, there are some properties which are exhibited by both. Period memorization

and synchronization-continuation are two properties common in biological oscillators, such

as the P. polycephalum mentioned below. The standard oscillator model (1.1), operating

individually (not in a network), has neither property, as it has no mechanism for maintaining

the stimulus period and will revert to some natural period T̂ if the stimulus is discontinued.

Conversely, the multiplicative and additive models, when there is no preferred period δ = 0.0,

learn the stimulus period and are able to maintain it after the stimulus is discontinued. The

Bose et al. model also exhibits this ability to learn and maintain a new frequency [13].
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Additionally, both the Bose et al. model and, at the very least, the Loehr et al. (multi-

plicative, δ = 0.0) models both exhibit asymmetry in response to tempo conditions. Loehr

et al. conducted experiments that investigated how musicians respond to tempo changes,

and found that they respond better to decreasing than increasing tempos. This asymmetry

was predicted by the multiplicative oscillator model [14]. However, the Bose et al. model

predicts that beat generator mechanisms adapt better to increasing tempos rather than de-

creasing. It is difficult to say whether the experiments conducted by Loehr et al. necessarily

support the oscillator model’s asymmetry, as musicians are often trained for decreasing their

tempo rather than increasing [14]. The sign of the asymmetry is not as relevant, for it could

be adjusted by slightly redefining intrinsic dynamics or parameters. We did not investigate

the predicted asynchrony of the additive model, so this would be something to investigate in

the future, particularly in comparison with the multiplicative and neuromechanistic models.

Moreover, it would be valuable to determine how the asymmetry is impacted by the various

parameters, especially for nonzero δ.

One property, however, that the neuromechanistic model is not designed for is N:M

locking states. Both the multiplicative and additive models have large parameter regions

which can exhibit at least 2, at times 5 (of 5 investigated), different types of complex N:M

entrainment. The neuromechanistic model is designed to learn and behave in a 1:1 state, so it

does not account for biological oscillating systems’ ability to perform N:M locking. However,

as some such systems involve networks of oscillators (ex: neuronal oscillators), it remains to

understand whether N:M locking can be achieved at the network level. For example, Large

and Palmer considered a computational model which is a system of oscillators with different

periods, organized in a metrical structure to entrain to some global musical rhythm stimulus

[10]. Same as in the additive and multiplicative models, Large and Palmer use oscillators with

flexible periods, and add a temporal receptive field which restricts the time window during

which an oscillator can adjust its phase. They posited that, since musical rhythms consist

of various parts at different periodic modes, that is necessary to utilize multiple oscillators

at different periods to track different period components [10]. The period adaptation term

utilized by Large and Palmer does not include a natural period, and is formulated like the
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multiplicative model, in that the period coupling is multiplied by the period at event n:

pn+1 = pn(1 + f(θn))

where f(θn) is the period coupling term which includes a coupling strength, periodic depen-

dence on θn, an expectation parameter, and the temporal restriction.

One could construct a comparison to the work by Large and Palmer [10] by considering

a network of oscillators with period descriptions which are closer to the additive and mul-

tiplicative models (2.2), (2.1) presented here. Adding a preferred period to the oscillators

may help in entrainment, depending upon their distribution; for example, oscillators with

intrinsic periods close to the stimulus could entrain 1:1, while others N:M depending on the

ratios of intrinsic to forcing period. In Large and Palmer’s network, the hierarchical structure

automatically categorizes the input events, though a looser structure and coupling scheme

may permit certain oscillators to operate at points of N:M locking. In addition, it would be

advantageous to understand how Large and Palmer’s network behaves with an alternative

period description (additive).

When the oscillators operate in a coupled network of oscillators, we expect that only

specific conditions or methods of coupling would allow for steady states of N:M locking at

global levels (ex: weakly coupled, coupling to only particular neighbors, etc.). This would

certainly be of interest to investigate going forward, in order to draw more comparisons with

more biologically motivated models of oscillating biological systems. Recent work by Kim

et al. investigated N:M locking (i.e., mode locking) in a neural network of nonlinear oscil-

lators at a range of distinct periods experiencing periodic forcing. Specifically, they utilize

a gradient frequency neural network to determine the stability of fixed points of harmonic

and subharmonic locking (N:1 and 1:M locking), and found that the model explains some

nonlinear components to human auditory processing [26]. As such, going forward, we would

like to investigate how the multiplicative (2.1) and additive (2.2) oscillator models behave

in networks, with particular attention drawn the the structure and strength of coupling and

the distribution and strength of intrinsic periods.

52



Overall, the multiplicative and additive oscillator models share some of the universal

properties of neural oscillators, so by studying their properties we improve our understand-

ing of synchronization, particularly in the contexts of beat tracking and musical rhythm

interpretation. Both feature large parameter regions of stable multi-locking, which, for those

beyond 1:1, decrease in size as the preferred period elasticity δ increases, with 1:1 locking

tending to dominate the initial condition ranges investigated. As the locking parameters α

and β increase, the basins of attraction become more ‘distorted’, where (for a desired final

N : M locking state) the range of possible initial scaled periods q0 for a chosen initial phase

θ0 may differ wildly between the possible choices of θ0. For larger locking parameters, we see

fractal behavior at the boundaries and at times throughout the basins of attraction. Many of

the results suggest some sort of connectivity when θ is extended periodically, but this cannot

be verified due to the fractal behavior previously noted. Finally, these models suggest that a

stronger intrinsic period of an oscillator leads to an inability to entrain at complex intervals

(N:M locking) unless the period and phase coupling terms are large.
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