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Abstract 

Hypoxia-induced microRNA-210 regulation of kidney development 
 

Shelby L. Hemker, PhD 
 

University of Pittsburgh, 2020 
 
 
 
 

Intrauterine growth restriction is a common pregnancy complication that is thought to arise from 

fetal hypoxia and results in reduced nephron number. This decrease in the total amount of nephrons 

(which are the functional unit of the kidney) increases an affected individual’s lifelong risk for developing 

disease, such as hypertension and chronic kidney disease. However, the mechanisms by which fetal 

hypoxia affects kidney development are poorly understood. To address this, an unbiased RNA sequencing 

approach was utilized to identify miRNAs induced by hypoxia during kidney development, of which miR-

210 was identified as the top hypoxia-induced miRNA. To further understand the functional role that 

miR-210 plays in regulating kidney development, a transgenic mouse line with a global miR-210 deletion 

was investigated. Interestingly, deletion of miR-210 resulted in a male-specific decrease in nephron 

number, which appears to be due to a combination of increased expression of lymphoid enhancer-binding 

factor-1 (an effector of Wingless-related integration site/β-catenin signaling) and caspase-8 associated 

protein 2 (effector of Fas cell surface death receptor-mediated apoptosis signaling). To understand how 

deletion of miR-210 affects kidney development in the setting of fetal hypoxia, embryonic mice were 

exposed to moderate intrauterine hypoxia. Embryos with the miR-210 deletion did not exhibit many 

differences to their wildtype littermates also exposed to hypoxia, except that they may have decreased 

ureteric bud branching. Further investigation into the mechanisms by which hypoxia-induced miR-210 

impacts kidney development during normal and hypoxic kidney development would expand our 

understanding of how hypoxic signaling impacts fetal development and risk for developing kidney 

disease. 
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1.0 Introduction 

1.1 Kidney disease is linked to low nephron number 

1.1.1 Kidney disease is prevalent and debilitating 

Chronic kidney disease (CKD) affects about 15% of American adults (1). CKD is defined 

by five stages of disease progression, each characterized by increasingly reduced kidney function 

(2). There is no cure and an individual will eventually develop end stage kidney disease (ESKD), 

at which point the kidneys are non-functional (2). Dialysis and medications can be used to replace 

kidney function long-term, but kidney transplant is currently the best treatment (3, 4). 

Unfortunately, kidney transplant still carries significant morbidity with the required long-term 

immunosuppression (5). In America, about 83% of people on the national organ donor waiting list 

are waiting for a kidney (the other 17% account for those waiting for all other organs), but only 

20% of them receive a kidney transplant (6). As the population continues to age and people are 

living longer, the number of people on the organ donor wait list is increasing but the number of 

donors is stagnant (6). In order to address this public health crisis, more needs to be understood 

about the causes and risk factors of CKD, especially since 90% of those with CKD (particularly in 

its early stages) are unaware they have it (1).  

There are many risk factors for the development of CKD, including diabetes, hypertension, 

genetic sex, and developmental abnormalities such as low nephron number (2, 7, 8). Hypertension 

is one of the most common causes of CKD (9) and about 29% of American adults have 

hypertension (1); thus, a significant portion of our population is at an increased risk for developing 

CKD. Kidneys play an important role in regulating blood pressure, and inadequate kidney function 

contributes to the development of hypertension (10-12). Thus, hypertension and CKD and 

intimately linked in their etiology, making it difficult to study their cause-effect relationship. 

Congenital anomalies of the kidney and urinary tract (CAKUT) are one of the most 

common congenital defects, with an occurrence of 3-6 per 1000 live births (13, 14). CAKUTs 

comprise a spectrum of malformations that occur in the kidney (e.g. hypoplasia, dysplasia), 
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collecting system (e.g. hydronephrosis, megaureter), bladder (e.g. ureterocele, vesicoureteral 

reflux), or urethra (e.g. posterior urethral valves) (15, 16). Many genes have been linked to 

CAKUT, but much is still unknown about the genetic causes (13, 15-17). CAKUTs are responsible 

for causing 34-59% of CKD and 31% of ESKD in children in the United States (13). Children with 

ESKD require renal replacement therapy, have a high risk of developing hypertension, and have a 

survival rate about 30 times lower than that of healthy children (13, 18, 19). Thus, CAKUTs pose 

a significant health risk, and a greater understanding of kidney development is essential for 

understanding the mechanisms underlying the pathophysiology of CAKUTs. 

1.1.2 The nephron is the functional unit of the kidney 

The kidney is responsible for salt and water homeostasis, waste excretion, drug 

metabolism, blood pressure regulation, and signaling for red blood cell production. The nephron 

begins at the glomerulus, where the fenestrated glomerular capillaries are surrounded by 

podocytes, which allow small molecules (e.g. protein <70kDa, amino acids, sugar, ions) to pass 

through into the proximal convoluted tubule. The proximal tubule is the workhorse of the nephron, 

performing most of the ion and protein reabsorption, which are then transported to the basal side 

of the polarized proximal tubule epithelial cells and exported to the peritubular capillaries. The 

filtrate then passes through the loop of Henle and the distal convoluted tubule, both responsible 

for more water and salt reabsorption. The filtrate then goes through its final step of concentration 

in the collecting duct, which then transports the urine through the papilla to the ureter and, finally, 

to the bladder for excretion. Figure 1 shows an overview of gross kidney and nephron structure. 

Humans develop, on average, 1 million nephrons, but the actual number that form may 

range from 100,000 to 1.5 million (20-22). Nephron number is established during development, 

thus no new nephrons form after nephrogenesis has ended (23). Healthy human kidneys lose about 

half their functional nephrons between their 20s and 70s (24). Since the average human is born 

with an excess of nephrons, this loss often does not result in any significant pathology (25). 

However, humans with less nephron endowment are at an increased risk for developing pathology 

with aging (24), and for developing disease in general (e.g. cardiovascular, metabolic, and kidney) 

(20, 26). Kidneys have the capacity to raise their filtration rate in response to stimuli, termed the 
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renal reserve (27). The hyperfiltration theory states that a low nephron number results in 

hypertrophy of the remaining glomeruli to compensate for fewer glomeruli and to maintain normal 

kidney function (28, 29). Overtime, this hypertrophy becomes unsustainable and results in nephron 

loss and leads to the development of disease (29-31).  
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Figure 1: Overview of the kidney and nephron 

The functional unit of the adult kidney (left) is the nephron (right). The renal capsule is the 
fibrous outer layer of the kidney providing a tough barrier and resistance to trauma. The large renal 
artery enters near the papilla and then branches to form smaller arteries and capillaries (both 
glomerular and peritubular). The glomerulus is where the blood is filtered for waste and small 
molecules to pass through the proximal tubule, loop of Henle, distal convoluted tubule, and the 
collecting duct, where concentrated urine is transported to the papilla, ureter, and then the bladder 
for excretion. Most nephrons are in the cortex, with short loops of Henle, but there are also 
juxtamedullary nephrons with longer loops of Henle.  
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1.1.3 Overview of kidney development 

Mammalian kidney development occurs in a process defined by three stages: the 

pronephros, mesonephros, and metanephros. In mammals, the pronephros and mesonephros are 

transient structures and the metanephros is the final structure, forming the final adult kidney (32). 

Kidney development starts at embryonic day 8.0 (E8.0) in mice and gestational day 22 (GD22) in 

humans, when the non-functional pronephros—which is the first kidney structure to form—forms 

from the intermediate mesoderm (33). A portion of intermediate mesoderm cells form a short rod 

of cells that grow caudally and undergo a mesenchymal-to-epithelial transition (MET) to form the 

pronephric duct (a.k.a. nephric duct) (34). Soon after forming, the cranial end of the nephric duct 

undergoes apoptosis and the caudal end is used for development of the mesonephros (35, 36).  

The mesonephros—the second kidney to form—forms at E9.0 in mice (GD24 in humans) 

and contains about 18 pairs of tubules that are split into distinct cranial and caudal sets (34, 37, 

38). The cranial nephrons are believed to develop as outgrowths from the nephric duct and form 

rudimentary glomeruli and branched tubules that connect to the nephric duct at 4-6 sites (39). The 

caudal nephrons form at E9.0 from condensed nephrogenic cord cells that undergo MET to form 

a renal vesicle that elongates into a S-shaped body (37, 40). The caudal pairs make up the bulk of 

the mesonephros and are made of primitive unbranched tubules that do not connect to the nephric 

duct (34). At E14.5, the mesonephros begins degenerating in a caudal to cranial direction, and by 

24 hours almost all of the tubules have undergone apoptosis (39, 40). Males retain some cranial 

tubules for development of the epididymal ducts of the testis (37). 

In mice, the metanephric kidney—the final form of the kidney—will begin forming around 

E10.5, progress through birth at E18.5, and continue until postnatal day 3 (P3) (34, 41). While in 

humans, the metanephric kidney begins forming around GD 36 and its development ends before 

birth, around 36 weeks of gestation (32, 38). Metanephric kidney development begins when signals 

from the ureteric bud, which buds from the caudal nephric duct, stimulate condensing of the 

metanephric mesenchyme into a “cap” of nephron progenitors around the ureteric bud tips (42, 

43). Concurrently, signals from the metanephric mesenchyme induce branching of the ureteric bud 

to generate the collecting duct system (44, 45). Nephron progenitors have the capacity to self-

renew or differentiate, undergoing a mesenchymal to epithelial transition (MET) to form the renal 

vesicle (46). The renal vesicles sequentially develop to form comma- and S-shaped body structures 
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as nephrogenesis proceeds (46). The proximal end of the developing nephron becomes the 

glomerulus, while the distal end fuses with the collecting duct, to form the functional nephron (46). 

Nephron number is partly determined by the balance of nephron progenitor self-renewal versus 

differentiation, thus no new nephrons are formed after the nephron progenitor pool has been 

depleted (41, 47). The amount of ureteric branching also contributes to determining nephron 

number (48, 49). Branching morphogenesis is an exponential growth process (50). Since kidney 

development proceeds exponentially, the majority of nephrons are formed in later stages of kidney 

development, which in mice is postnatally from P1 to P3 (41, 51). 

 

 

Figure 2: Overview of metanephric kidney development 

The metanephric kidney forms when the ureteric bud (UB) protrudes out from the 
mesonephric duct into the metanephric mesenchyme. Some of this mesenchyme condenses around 
UB tips (light green), forming a cap of nephron progenitors (NP; light blue). These cells can either 
self-renew or undergo a mesenchymal to epithelial transition, forming the pretubular aggregate, 
which differentiates into the renal vesicle (RV; dark green), the first epithelial nephron structure. 
This RV will further develop into the comma-shaped body (CSB; dark green), S-shaped body 
(SSB; dark green), and finally the mature nephron. Meanwhile, reciprocal interactions between the 
NP and UB signal for UB branching to form the collecting duct system of the mature kidney. The 
uncondensed mesenchyme makes up the stroma (dark blue) of the kidney and gives rise to a variety 
of cells surrounding the nephron. The renal vasculature (red) develops in conjunction with nephron 
development, with perfused vessels starting near the UB induction site and extending to the RV.   
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1.1.4 Hypoxia is an important factor during kidney development 

Kidney development normally occurs in a relatively hypoxic environment (physiological 

hypoxia) (52-55). However, pathological hypoxia (lower than normal oxygen concentration or 

prolonged hypoxia) is detrimental to development (52, 53, 56). Intrauterine hypoxia is caused by 

a variety of factors, which can be maternal (e.g. smoking, environmental pollutants, diet), placental 

(e.g. placental insufficiency), or fetal (e.g. anemia, cardiac defects) in origin (56). Indeed, placental 

insufficiency is a common pregnancy complication that results in pathological fetal hypoxia, and 

subsequent intrauterine growth restriction (IUGR) (57, 58). Fetal hypoxia results in abnormal 

kidney development, including aberrant protein expression, nephron deficit, and abnormal 

collecting duct patterning (59-63).  

IUGR results in low nephron number (64), and is associated with an increased life-long 

risk for developing disease (65). One explanation is the “developmental origins of adult disease”—

also known as the “Barker hypothesis”—which proposes that the increased risk for disease is due 

to fetal adaptations for survival under malnourishment (66). However, the nephron deficit is not 

the only cause for development of renal-related disease. For example, IUGR is also thought to 

increase the risk for hypertension due to dysregulation by the sympathetic nervous system, and 

thus, the observed hypertension may not necessarily be due to the nephron number deficit (67, 68).  

Nephron progenitors reside in physiological hypoxia, and their differentiation is linked 

with renal blood flow and oxygenation (69). Hypoxia inducible factors (HIFs)—which govern the 

main cellular responses to hypoxia to promote survival—are expressed throughout kidney 

development (54, 70). HIFs are a family of transcription factors that bind to hypoxia-responsive 

elements (HREs) in the promoters of target genes (56, 71). HIFs are heterodimers, composed of 

an oxygen-sensitive α-subunit, of which there are three (Hif1α, Hif2α, and Hif3α), and a 

constitutively expressed β-subunit, known as Hif1β, thus, HIFs are referred to by their α-subunit 

number (56). Little is known about Hif3α, and the current consensus is that is largely acts as a 

negative regulator of the other Hifα-subunits (52). Hif1α has increased expression in nephron 

progenitors and plays more of a role in their development than Hif2α (72). In HEK293 cells Hif1α, 

but not Hif2α, stimulates glycolytic gene expression (73). Glycolysis is an important regulator of 

nephron progenitor cell fate, with a high glycolytic flux promoting self-renewal and inhibition of 
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glycolysis promoting differentiation (74). Deletion of the endogenous HIF inhibitor, Von Hippel-

Lindau protein (VHL), from nephron progenitors results in a nephron deficit that is caused by 

impaired nephron progenitor differentiation due to dysregulation of metabolism (75). Together, 

these data support a mechanistic link between fetal hypoxia and low nephron number. 

1.1.5 Sexual dimorphism in kidney development and disease 

In humans, females have about 15% fewer nephrons than males (21, 76). A similar 

difference is observed in mice (60, 77). Gene expression analysis of adult mouse and human 

normal and diseased kidneys show that there are distinct differences between the sexes (78-80). 

Analysis of adult rat kidneys also shows differential estrogen receptor expression (81). Despite the 

mild decrease in nephron number, females are protected from most kidney injuries and diseases 

for unclear reasons (79, 82-84). However, once reproductive senescence is reached, females lose 

the protective effect of estrogen (85, 86). Thus, nephron number may not be an accurate predictor 

of risk for kidney and cardiovascular disease in pre-menopausal females (60, 82, 87). The renal 

sympathetic nervous system has been implicated as a mechanistic link between IUGR and risk for 

developing hypertension in males and females (88, 89). Interestingly, androgen receptor blockade 

differentially regulates blood pressure in growth-restricted versus ovarian-deficient female rats 

(90). Thus, our understanding of sex-specific differences in prenatal programming of hypertension 

and kidney disease is increasing, but much still has yet to be investigated (91). 

There are also sex-specific differences in kidney development in response to intrauterine 

hypoxia. In mice, male and female offspring exposed to moderate prenatal hypoxia and (untreated 

females) had about 25% fewer nephrons than untreated males, suggesting a male-specific 

reduction in nephrons after prenatal hypoxia (60). Both hypoxia-exposed males and females were 

more susceptible to salt-induced cardiac fibrosis, but renal fibrosis was exacerbated by high salt in 

only the male offspring (60). Further, prenatal hypoxia resulted in a male-specific disruption of 

collecting duct patterning, resulting in a urine concentrating defect (61). Other insults during 

kidney development have also been found to result in sex-specific effects on kidney development 

and risk for disease. One study investigated the adverse effects of angiotensin II blockade during 

kidney development in rats (84). Both male and female rats exhibited an increase in blood pressure 
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and decrease in nephron number, but only the males showed an increase in renal pathology (84). 

Maternal corticosterone exposure during murine kidney development resulted in male-specific 

adverse renal outcomes (92). The mechanisms regulating these sex-specific differences in kidney 

development are poorly understood. 

1.2 Genetic regulation of kidney development 

1.2.1 Genetic markers of nephron progenitor cells 

Nephron progenitor cells surround the ureteric bud tips and have the capacity to self-renew 

or differentiate to form the nephron. Several genes have been found to play a role in regulating the 

development and activity of these cells. In early metanephric development, Spalt like transcription 

factor 1 (Sall1) is expressed in the metanephric mesenchyme surrounding the ureteric bud and is 

required for ureteric bud invasion (93). Similarly, Odd-skipped related transcription factor 1 (Osr1) 

demarcates a multi-potent population of intermediate mesoderm that undergoes progressive 

restriction to an Osr1-dependent nephron progenitor compartment (94). Osr1 acts downstream of 

and interacts synergistically with Sine oculis homeobox homolog 2 (Six2) to maintain nephron 

progenitor cells during kidney organogenesis (95). Six2 is a transcription factor that is specifically 

expressed in nephron progenitors in the kidney and regulates their capacity to self-renew (43, 96). 

Six2 is expressed in all nephron progenitor cells and is downregulated as they are induced to begin 

the differentiation process (97). Eyes absent homolog 1 (Eya1) is expressed in the condensing 

mesenchymal cells around the ureteric bud, serving as a marker for all nephron progenitor cells 

(98, 99). Eya1 is required for both kidney formation and Six2 expression (100). Further, Eya1 

interacts with Six2 and Proto-oncogene c-Myc (c-Myc) to regulate expansion of the nephron 

progenitor pool during nephrogenesis (101); and c-Myc plays a role in maintaining nephron 

progenitor self-renewal (102).  

Some of the identified genetic markers also identify subsets of nephron progenitor cell 

types. Cbp/p300 interacting transactivator with Glu/Asp rich carboxy-terminal domain 1 (Cited1) 

is a transcriptional co-activator that is specifically expressed in the self-renewing portion of 



 10 

nephron progenitors (103). There is a clear distinction between Cited1+ and Cited1- cells that 

discriminates between non-induced and induced nephron progenitors, respectively (97). Thus, 

Cited1+ nephron progenitors are considered self-renewing, while Cited1- nephron progenitors are 

considered to be primed for differentiation. Double PHD fingers 3 (Dpf3) and Mesenchyme 

homeobox 1 (Meox1) mark a subset of nephron progenitors that are both Cited1+ and Six2+, but 

does not overlap with all of the Cited1+ nephron progenitors (97). Dpf3 and Meox1 mark a subset 

of nephron progenitors that do not have as much proliferative capacity—since the Cited1+ cells 

closest to the fork of the ureteric bud tips are the most naïve—but are not yet primed for 

differentiation, providing further insight into the role of compartmentalization of the nephron 

progenitor cells (104). 

1.2.2 Wnt/β-catenin signaling pathway 

The canonical Wingless-related integration site (Wnt)/β-catenin pathway signaling is 

important at multiple steps for nephrogenesis. In brief, secretion of Wnt-protein ligands leads to 

activation of β-catenin. Activated β-catenin translocates to the nucleus, where it complexes with 

the Lymphoid enhancer-binding factor 1 / Transcription factor (Lef1/Tcf) family proteins to 

upregulate expression of target genes which mediate the downstream effects of active Wnt/β-

catenin signaling.  

Canonical Wnt/β-catenin signaling is both necessary and sufficient for initiating and 

maintaining nephron progenitor induction (105). Wnt family member 9b (Wnt9b) is expressed in 

the ureteric bud to induce nephron progenitors to undergo MET (106). The induced nephron 

progenitor cells initiate Wnt family member 4 (Wnt4) expression, leading to formation of the 

pretubular aggregate (107, 108). Wnt4 induces Lef1 expression, making Lef1 a readout for 

canonical Wnt signaling activation (104). Upon activation, β-catenin complexes with Lef1 and Tcf 

to induce nephron progenitor differentiation (109). Low levels of β-catenin signaling promote 

nephron progenitor renewal, while high levels promote their differentiation (110). Interestingly, 

sustained β-catenin activation also blocks MET (105). Thus, β-catenin activation must be carefully 

controlled to promote proper nephrogenesis. 
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After MET and formation of the renal vesicle, Wnt9b also induces expression of Fibroblast 

growth factor 8 (Fgf8) (106), which is required in nascent nephrons (111). When Fgf8 is deleted, 

the nascent nephrons do not express Wnt4 and Lim homeobox 1 (Lhx1; which marks the distal 

renal vesicle (112)) and nephrogenesis does not progress to the S-shaped body phase (111, 113). 

Thus, Lhx1 expression is downstream of Wnt4 and Fgf8.  

Canonical Wnt/β-catenin signaling is also required for ureteric branching (114). 

Suppression of β-catenin signaling inhibits ureteric branching (115). Wnt family member 11 

(Wnt11)-mediated signaling cooperates with Ret proto-oncogene / Glial derived neurotrophic 

factor (Ret/Gdnf) signaling to regulate ureteric branching (116).  

1.2.3 Notch signaling pathway 

The Notch signaling pathway is required for the formation of all nephron segments and 

primes nephron progenitors for differentiation (117). In brief, the ligands and receptors are 

expressed on the surface of neighboring cells and upon ligand binding, the receptor undergoes a 

series of proteolytic cleavages, releasing its intracellular domain, which translocates to the nucleus 

to upregulate expression of Notch target genes. In mammals, there are four receptors (Notch1-4) 

and five ligands (Delta like (Dll) 1, 3, and 4; and Jagged (Jag) 1 and 2). Notch1 and Notch2 are 

both involved in regulating kidney development, but Notch2 is the major receptor responsible for 

nascent nephron development (118). Jagged1 is one of the major Notch receptor ligands important 

in kidney development and is expressed by nascent nephron structures, particularly in the cells 

closest to the ureteric bud tip (109, 112, 118). Dll1 is the other major ligand involved in kidney 

development and is also expressed in the differentiated nephron structures (119). 

Notch signaling promotes nephrogenesis by downregulating Six2 (120). Notch regulates 

nephron segmentation, and is particularly important for formation of the S-shaped body (119). Hes 

related family bHLH transcription factor with YRPW motif 1 (Hey1) is a downstream marker of 

Notch signaling, is expressed in all nascent nephron structures (121), and is required for proximal 

nephron (glomerulus and proximal tubule) formation (122). Several studies show there is crosstalk 

between Wnt and Notch signaling pathways and they often act synergistically (123). Notch 
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pathway activation can replace the requirement for Wnt4 and Wnt9b in regulating the MET of 

nephron progenitors (124). 

1.3 microRNA-210 is induced in hypoxia 

1.3.1 miRNA biogenesis and function 

microRNAs (miRNAs) are short (~22 nucleotide) non-coding RNA molecules that fine-

tune gene expression. miRNA genes can be intragenic (intronic) or intergenic (mono- or poly-

cistronic) and are transcribed by RNA Polymerase II (RNAPII) into primary miRNA (pri-miRNA). 

This pri-miRNA is processed in the nucleus by the Microprocessor complex, which is made up of 

Drosha ribonuclease type III (Drosha) and its cofactor DiGeorge syndrome critical region 8 

(Dgcr8), into stem-loop precursor miRNA (pre-miRNA). Pre-miRNA is then exported to the 

cytoplasm by Exportin-5. In the cytoplasm, Dicer1 ribonuclease type II (Dicer1) then processes 

pre-miRNA into a small miRNA duplex, made of the mature guide and the complementary 

passenger miRNA strands, which can be either the 5p or 3p strands. The duplex is then loaded 

onto an Argonaute protein to form the RNA-induced silencing complex (RISC) and the passenger 

strand quickly dissociates and is often degraded. RISC scans mRNAs for complementary matches 

to the miRNA 6-8 nucleotide seed sequence (which are usually in the 3’ untranslated region 

(UTR)) and will either repress translation of the mRNA target or cause it to degrade. This is 

summarized in Figure 3. 
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Figure 3: microRNA biogenesis and function 

RNA Polymerase II (RNAPII) transcribes microRNA (miRNA) genes into primary 
miRNA (pri-miRNA). Then the Microprocessor complex (Drosha/Dgcr8) makes pre-miRNA, 
which is then exported to the cytoplasm. Dicer processing makes the miRNA duplex of guide and 
passenger strands, which are then loaded into RNA-induced silencing complex (RISC). The 
passenger strand dissociates and degrades, leaving RISC to scan mRNAs for complementary 
matches to the guide miRNA seed sequence and will either lead to mRNA degradation or 
translation repression. 

1.3.2 miRNAs in kidney development 

Developing embryonic tissues have different miRNA expression profiles (125, 126), and 

recently our laboratory identified miRNAs expressed in E15.5 mouse nephron progenitors (127). 

Several studies have implicated various miRNAs in the development of CAKUTs (128, 129). In 

order to determine the roles of miRNAs in kidney development, several groups have created cell-

type specific deletions of Dicer, which is responsible for creating the mature miRNA molecule. 

Conditional Dicer deletions have been created for nephron progenitors, renal stroma, ureteric 
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epithelium, podocytes, proximal tubules, and juxtaglomerular cells (130-140). Dicer deletion in 

mouse nephron progenitor cells results in their premature depletion due to increased apoptosis 

(138). Loss of Dicer in the renal stroma results in impairment of nephron progenitor differentiation 

as well as vascular development (133, 137). Ureteric bud deletion of Dicer results in marked renal 

cysts, and hypoplasia appearing to result from early termination of branching morphogenesis (132, 

139). Further, Drosha and Dgcr8 knockout models also show that loss of miRNAs results in 

abnormal kidney development (141, 142). Deletion of specific miRNAs has also been found to 

induce a kidney development phenotype. For example, deletion of the miR-17~92 cluster in 

nephron progenitors resulted in a decrease in nephron number and renal function in adult mice 

(143, 144). Together, these data show that miRNAs are important for multiple aspects of kidney 

development.  

1.3.3 miR-210 regulation 

MicroRNA-210 (miR-210) is the most consistently induced miRNA in hypoxia and is often 

referred to as the “master hypoxamir” (145-147). miR-210-3p, the dominant strand, has been found 

to regulate a variety of genes involved in cell cycle progression, angiogenesis, metabolism, DNA 

damage response, and apoptosis (148). Several of its targets have functions related to processes 

important in kidney development, such as the angiogenesis inhibitor Ephrin a3 (Efna3) (149-152); 

the pro-apoptotic Caspase-8 associated protein 2 (Casp8ap2) (153, 154); the pro-proliferation and 

renal vesicle marker Fibroblast growth factor receptor-like 1 (Fgfrl1) (152, 155-157); and the 

Wnt/β-catenin signaling transcription factor Transcription factor 7-like 2 (Tcf7l2) (158). In 

addition to its inhibition of Tcf7l2, miR-210 has also been shown to inhibit β-catenin expression 

of which it has a potential binding site in the transcript’s 3’UTR (159). miR-210 has also been 

implicated in activation of Notch signaling pathway (160), however the mechanism of this 

regulation is unknown. In the setting of ovarian cancer, miR-210 inhibition promotes EMT (161), 

which has interesting implications for nephrogenesis, where nephron progenitors undergo the 

opposite process, MET.  

Both HIF1 and HIF2 bind to the hypoxia response element (HRE) in the miR-210 promoter 

to upregulate its expression in hypoxia (152, 162-164). HIF-dependent regulation of miR-210 is 
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the most studied, but a few other transcription factors have been implicated in regulating miR-210 

expression. In hypoxic cardiomyocytes, miR-210 is upregulated through Akt- and p53-dependent 

pathways to exert cytoprotective effects (165). miR-210 is induced by Nuclear factor kappa b 

subunit 1 (Nfκb1) in female, but not male placentas, due to increased tumor-necrosis factor-alpha 

(TNFα) (166). Further, there is evidence from CHiP-seq data that Six2 binds upstream of miR-210 

in mouse E16.5 nephron progenitors (167).  

1.3.4 miR-210 in kidney 

Most of the studies investigating miR-210 in kidney have focused on renal cell carcinomas 

(RCCs), which are commonly caused by deleterious mutations in VHL (168). miR-210 expression 

is promoted in clear cell RCCs (ccRCCs) due to both increased hypoxia, which is a common 

feature of tumors, and inactivation of VHL (168-170). The hypoxic environment of renal cancer 

tumors induces Hif1 and Hif2 up-regulation, which then increase miR-210 expression (164). 

Expression of miR-210 is linked to centrosome amplification in RCCs, which contributes to the 

development of aneuploidy, and suggests that miR-210 plays a role in the early stages of 

tumorigenesis (171). Increased miR-210 levels are linked to poor prognosis of ccRCC, suggesting 

that it may be a useful prognostic biomarker (172).  

In addition to its potential role as a biomarker in RCCs, miR-210 may be a biomarker for 

other kidney-related diseases. High plasma levels of miR-210 after acute kidney injury is 

associated with mortality (173). Low miR-210 levels in urine are associated with acute rejection 

of kidney transplants (174). Additionally, miR-210 is a potential biomarker for fetal hypoxia 

(which is detrimental for kidney development) from pregnancies with pre-eclampsia and during 

labor (175-177). 

There are a few studies looking specifically at miR-210 in the kidney. miR-210 expression 

is increased in rat models of both systemic and kidney hypoxia and protects against hypoxia-

induced apoptosis in HK-2 cells by targeting Hif1α (178). Upregulation of miR-210 promotes 

VEGF signaling pathway-mediated renal angiogenesis under in vivo and in vitro 

ischemia/perfusion injury (179). Further, overexpression of miR-210 in proximal tubule cells 

damages them and promotes a metabolic shift from oxidative phosphorylation to anaerobic 
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glycolysis (180). In regards to kidney development, our group recently published that expression 

of miR-210-3p is increased in E15.5 mouse nephron progenitors compared to whole kidney (127). 

Together, these data show that miR-210 is induced in hypoxia and is implicated in kidney 

development and disease. 
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2.0 Transcriptome of Hypoxic Kidney Development 

2.1 Introduction 

Embryonic development occurs in a “physiological hypoxia” of 1-10% O2, with the desired 

physiological oxygen concentration varying depending on tissue type and developmental stage 

(53). Several studies have found that ~5% O2 is the best culturing condition for developing 

embryos and tissue cultures (53, 181, 182). Kidney explant organ cultures have been used for 

several decades to study the mechanisms regulating kidney development as an ex vivo model for 

kidney development. In this model,  embryonic kidneys are dissected and transferred to a filter 

that is suspended over culture medium and can be kept in a cell culture incubator for several days 

(183); however, the majority of these studies have been conducted in 21% O2 culturing conditions. 

Recently, studies have shown that kidney explants should be cultured at 5% O2 to better mimic the 

in vivo conditions of kidney development (53, 181, 182). Oxygen levels around 1% are considered 

more optimal for stem and progenitor cells, but oxygen levels below 1% are considered 

“pathologically hypoxic” for stem and progenitor cells (53). While  1% O2 is beneficial for stem 

cells, it is considered as pathological hypoxia for differentiated cells of the developing tissue (53).  

Kidney development normally occurs in a hypoxic environment, but the exact levels of 

oxygen in different spatial locations of the developing tissue have not been identified (55, 69, 72). 

Little is known about how different levels of oxygen affect gene expression in the developing 

kidney. To investigate the role of hypoxia on gene expression in an unbiased fashion in early 

kidney development, RNA sequencing was used to analyze both mRNA and miRNA gene 

expression in mouse kidney explants cultured in different oxygen levels: pathological hypoxia (1% 

O2), physiological hypoxia (5% O2), and hyperoxia (21% O2).   
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2.2 Methods 

2.2.1 Mouse strains 

All animals were housed in the vivarium at the Rangos Research Center at the UPMC 

Children’s Hospital of Pittsburgh (Pittsburgh, PA, USA) and all animal experiments were carried 

out in accordance with the policies of the Institutional Animal Care and Use Committee at the 

University of Pittsburgh. CD1 time-mated pregnant females were ordered from Charles River 

Laboratories, Inc (Wilmington, MA, USA). The day of the plug was considered embryonic day 

0.5 (E0.5). 

2.2.2 Model of ex vivo kidney development in different oxygen conditions 

Embryos from wildtype CD1 time-mated pregnant females were collected on embryonic day 12.5 

(E12.5). Embryos were placed in cold HyClone™ Dulbecco's Phosphate Buffered Saline, Modified (PBS) 

under a Leica S6E dissection microscope and L2 light source (Buffalo Grove, IL, USA). Their kidneys 

were then dissected and placed on cell culture inserts (0.4μm pore membrane; Corning) in MULTIWELL™ 

12 well plates, notched (Becton Dickinson and Company). For each embryo, one kidney was placed in one 

well plate and the contralateral kidney was placed in a separate plate. 9-12 embryonic kidneys were placed 

on each membrane and suspended over 500μL of media composed of Advanced Dulbecco's Modified Eagle 

Medium (DMEM; Thermo Fisher Scientific, Grand Island, NY, USA) with 10% fetal calf serum and 

1:10,000 penicillin and streptomycin. 2 kidneys were placed on a separate membrane for immunostaining 

(see below). 

Each well plate was then cultured at 37oC with 5% CO2 in either 1% or 21% O2 for 3 days. This 

process was repeated to culture embryonic kidneys in 5% and 21% O2. A hypoxia chamber (hypoxic 

glovebox, model AC100 CO2 controller, oxygen controller, and humidified incubation box; Coy Laboratory 

Products, Inc., Grass Lake, MI, USA) was used to culture kidneys in 1% and 5% O2 while a Forma™ Series 

II Water Jacketed CO2 Incubator (Thermo Fisher Scientific) was used to culture kidneys in 21% O2. 

After the 3-day organ culture incubation, the culture media was removed and replaced with 

PBS to rinse the kidney explants. Forceps were used to transfer the kidney explants into 150μL 

Qiazol Lysis Reagent (Qiagen, Hilden, Germany) for storage at -80oC. The tissues were 
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homogenized using the Fisherbrand™ Disposable Pestle System (Thermo Fisher Scientific) and 

the Qiagen miRNeasy Mini Kit was then used to purify RNA. RNA purity and concentration were 

determined with the NanoDrop® ND-1000 Spectrophotometer (Thermo Fisher Scientific). 

An overview of this protocol is depicted in Figure 4. 

 

 

Figure 4: Overview of kidney explant organ culture in different oxygen conditions 

First, kidneys were dissected from E12.5 embryos, placing one kidney for culturing in 
either 1% or 5% O2 and the other for culturing in 21% O2. Kidneys were suspended above media 
using transwell inserts and cultured for 3 days in 1%, 5%, or 21% O2. All kidneys from each well 
(approximately 9) were pooled and transferred to Qiazol for RNA isolation. N ≥ 5 pooled kidney 
explant samples per oxygen condition. 

2.2.3 Immunostaining of kidney explants 

After the 3-day organ culture incubation (as described above), the culture media was 

removed and replaced with PBS to rinse the kidney explants. A scalpel was used to cut the 

membrane with the kidney explants and the membrane was placed in a clean well of a 24-well 

plate and fixed with 100% ice cold methanol for 10min at -20oC. Methanol was removed and the 

explants were rinsed with PBS. Explants were then permeabilized with PBS-T (PBS + 0.1% 

Tween-20) and blocked with 1% BSA (bovine serum albumin) / PBS-T. Explants were then 

incubated with primary antibodies (1:200 Rabbit α-Six2 (Proteintech, Rosemont, IL, USA) and 
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1:50 Monoclonal Mouse α-pan-cytokeratin (pCK) (Sigma Aldrich, St. Louis, MO, USA)) 

overnight at 4oC. Primary antibodies were rinsed with PBS-T and then incubated with secondary 

antibodies (1:200 anti-rabbit-594 and 1:200 anti-mouse-488 (both Jackson ImmunoResearch 

Laboratories, West Grove, PA, USA)) overnight at 4oC. Secondary antibodies were rinsed with 

PBS-T and were then mounted on Leica Biosystems Surgipath® X-tra® pre-cleaned micro slides 

and ProLong™ Gold antifade reagent with DAPI (Invitrogen, Carlsbad, CA, USA). The sections 

were then imaged using a Leica DM 2500 microscope (Buffalo Grove, IL, USA) and Qcam Fast 

1394 camera (Teledyne Qimaging, Surrey, BC, Canada) and the images were analyzed and 

prepared using Adobe Photoshop (San Jose, CA, USA). 

 

2.2.4 qPCR analysis of mRNA expression in kidney explants 

Total RNA was isolated using the Qiagen miRNeasy Mini Kit, as per the manufacturer’s 

instructions. cDNA was synthesized from total RNA using SuperscriptTM III First-Strand Synthesis 

System (Thermo Fisher Scientific), as per the manufacturer’s instructions. qPCR was performed 

in a 96 well C100 Thermal Cycler (Bio-Rad, Hercules, CA, USA) using Sso Advanced SYBR 

Green Master Mix (Thermo Fisher Scientific). The list of primers used in these experiments is 

shown in Table 1. Expression levels were normalized to the endogenous control (Rn18S) and 

analyzed using the 2-∆∆C
T method (184). 
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Table 1: Primers used for qPCR 

Gene Forward Reverse Product Size (bp) 
Cited1 GTCTCCAGGTCTTACCACCGA GCAGAGATGGCCACGTGTAT 155 
Eya1 GGAATGCTATTATGAGGTAGAA ATCCTTGTTGACACTTGAC 158 
Fgf8 GCTAATTGCCAAGAGCAACG GGTAGTTGAGGAACTCGAAGC 245 

Fgfrl1 TCAACTACACTCTCATCATCA GGTCTGGTCATCCTTCAT 242 
Lef1 AGCTTGTTGAAACCCCAGAC TTTTTGGAAGTCGGCGCTTG 160 
Ldha TGTCTCCAGCAAAGACTACTGT GACTGTACTTGACAATGTTGGGA 155 

Meox1 CACACCGTTGAGTTGAAG TCAGAGTCCTTGGAGAAC 150 
c-Myc CAGCGACTCTGAAGAAGAGCAAG GGGTTTGCCTCTTCTCCACAG 71 
Rn18S GACAGGATTGACAGATTGATAG CCAGAGTCTCGTTCGTTA 114 
Slc2a1 ACTTCATTGTGGGCATGTGC TCGGGTGTCTTGTCACTTTG 196 

Six2 GCAGGACTCCATACTCAA GATACCGAGCAGACCATT 215 
Vegfa AGCAGATGTGAATGCAGACCA CACAGTGAACGCTCCAGGAT 127 
Wnt4 TGGGAAGGTGGTGACACAAG TGACCACTGGAAGCCCTGT 166 

2.2.5 Statistical analysis 

2-way ANOVA with Tukey correction was used to determine statistical significance of 

qPCR results: *P ≤ 0.05 and **P ≤ 0.01. All statistical analyses were performed using Prism 8 

software package (GraphPad Software, Inc., La Jolla, CA, USA). 

2.2.6 mRNA-sequencing 

mRNA sequencing (mRNA-seq) was performed by TUCF Genomics (Tufts University, 

Boston, MA) using the Illumina HiSeq 2500 System rapid run mode. The mRNA library was 

prepared using polyA selection with the Ovation® RNA-Seq System (NuGEN Technologies, Inc.). 

mRNA-seq was then performed using 150bp paired end sequencing with 40-50 million reads per 

sample. 

mRNA-seq quality control assessment, read alignment, and differential expression analysis 

was then performed by Andrew Clugston (Dr. Dennis Kostka Laboratory, Department of 

Developmental Biology and Dr. Jacqueline Ho Laboratory, Department of Pediatrics, University 

of Pittsburgh, PA). mRNA-seq sample read quality was assessed using FastQC (v0.11.4) (185). 

The mRNA-seq data files were trimmed using Trim Galore (v0.4.0) (186). Paired-end read 
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alignment of transcripts to the Mus musculus genome assembly MGSCv37 (mm9) (187) was 

performed using the STAR software package (188). Reads were annotated using the 

GenomicAlignments (189) R package with annotations from the Ensembl database (190). 

Differential expression of mRNA transcript between the different oxygen culturing conditions was 

performed using the DESeq2 R package (191). An FDR of 0.05 was used to determine significantly 

differentially expressed genes of interest. An overview of this pipeline is outlined in Figure 5.  

 

 

Figure 5: mRNA-seq analysis pipeline 

The mRNA-seq FastQ data files were analyzed for their read quality using FastQC. The 
FastQ files were trimmed using Trim Galore and mapped to the mm9 genome using STAR. The 
mapped reads were annotated using GenomicAlignments with the Ensembl database. Differential 
gene expression was then determined using DESeq2. Data and figure prepared by Andrew 
Clugston (Dr. Dennis Kostka, Department of Developmental Biology; Dr. Jacqueline Ho 
Laboratory, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA). 

2.2.7 smRNA-sequencing 

small-RNA sequencing (smRNA-seq) was performed by TUCF Genomics using the 

TruSeq Nano DNA Library Prep Kit (Illumina). smRNA-seq was then performed using 50bp 

single end sequencing with 10-15 million reads per sample. 

smRNA-seq quality control assessment, read alignment, and differential expression 

analysis was then performed by Andrew Clugston (Dr. Dennis Kostka Laboratory, Department of 

Developmental Biology, and Dr. Jacqueline Ho Laboratory, Department of Pediatrics, University 

of Pittsburgh, PA). smRNA-seq sample read quality was assessed using FastQC (v0.11.4) (185). 
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The smRNA-seq data files were trimmed using Cutadapt (v1.1) (192) and aligned to the Mus 

musculus genome assembly MGSCv37 (mm9) (187) using Bowtie (v1.1.2) (1). Identification and 

quantification of known and potential novel miRNAs was performed using miRDeep2 (v2.0.0.7) 

(6) and known miRNA sequences were downloaded from the miRbase database (193). Differential 

expression of miRNA transcript between the different oxygen culturing conditions was performed 

using the DESeq2 R package (191). An FDR of 0.05 was used to determine significantly 

differentially expressed miRNAs of interest. An overview of this pipeline is outlined in Figure 6. 

 

 
 

Figure 6: smRNA-seq analysis pipeline 

The smRNA-seq FastQ data files were analyzed for their read quality using FastQC. The 
FastQ files were trimmed using Cutadapt and mapped to the mm9 genome using miRDeep2, which 
used Bowtie1. The mapped reads were annotated using miRDeep2, which used Quantifier using 
miRbase for known miRNA information. Differential gene expression was then determined using 
DESeq2. Data and figure prepared by Andrew Clugston (Dr. Dennis Kostka, Department of 
Developmental Biology; Dr. Jacqueline Ho Laboratory, Department of Pediatrics, University of 
Pittsburgh, Pittsburgh, PA). 
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2.3 Results 

2.3.1 Kidney explant organ cultures in varying oxygen levels 

In order to further understand the role hypoxia plays in regulating kidney development, 

kidneys were cultured in different oxygen concentrations: 1% (pathological hypoxia), 5% 

(physiological hypoxia), and 21% (hyperoxia). E12.5 kidneys from CD-1 wildtype embryos were 

dissected and one kidney was cultured in either 1% or 5% O2 and the other kidney in 21% O2 for 

three days (Figure 4). To validate the ex vivo kidney explant model, two kidneys per litter and 

oxygen condition were stained for the nephron progenitor marker Six2 and the ureteric bud marker 

pCK (194) and showed that the explants’ nephron progenitors differed between oxygen conditions 

(Figure 7). In 1% O2, the nephron progenitor cells are loosely organized into caps around the 

ureteric bud tips (Figure 7A). As the oxygen levels increase, the nephron progenitor cells are 

organized more tightly in caps around the ureteric bud tips in 5% (Figure 7B) and 21% O2 (Figure 

7C).  

To further validate the model, qPCR analysis of expression of various markers was 

performed (Figure 8). Six2 expression was increased in kidneys cultured in 1% O2, compared to 

21% O2 (Figure 8A). Expression of other nephron progenitor markers (Cited1, Meox1, and Eya1) 

was not different between oxygen conditions (Figure 8A). Analysis of expression of various 

markers for differentiation of developing nephron structures (Wnt4, Lef1, Fgf8, and Fgfrl1) 

showed no differences between kidneys cultured in different oxygen conditions (Figure 8B). 

Analysis of expression of various genes induced in hypoxia (c-Myc, Ldha, Slc2a1, and Vegfa) 

showed increased expression of Ldha, Slc2a1, and Vegfa in kidneys cultured in 1% compared to 

21% O2 as well as increased expression of Ldha and Vegfa in 1% compared to 5% O2 cultures 

(Figure 8C). 
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Figure 7: Immunostaining shows differing cap mesenchyme structure between different oxygen conditions 

(A-C) Immunostaining for nephron progenitor marker Six2 (red) and ureteric bud marker 
pCK (green) in E12.5 kidneys explants cultured for three days in (A) 1%, (B) 5%, and (C) 21% 
O2. N ≥ 5 kidney explants per oxygen condition. 
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Figure 8: qPCR validation of hypoxia model 

(A-C) qPCR analysis of expression of (A) nephron progenitor, (B) differentiation, and (C) 
hypoxia markers in kidney explants cultured in 1%, 5%, and 21% O2. RNA expression was 
normalized to Rn18S. Error bars ± SEM, *P<0.05, **P<0.01, 2-way ANOVA with Tukey 
correction, N ≥ 4 pooled kidney explant samples per oxygen condition. 

B 
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2.3.2 mRNA sequencing sample analysis 

Principal component analysis (PCA) plots, which cluster samples according to inherent 

variations stemming from differences in sequence counts between samples, showed one of the low 

O2 samples (specifically “1% 7/13B”) is an outlier (Figure 9A). The PCA plot with the outlier 

sample omitted showed expected distribution between samples (Figure 9B). All analysis of the 

kidney explants was then performed without the outlier sample. 

 

 

Figure 9: PCA shows outlier sample 

(A) PCA plot of mRNA-seq samples of kidney explants cultured in low (1%; red), normal 
(5%; green), and high (21%; blue) O2. (B) PCA plot of mRNA-seq samples of kidney explants 
cultured in low, normal, and high O2 with outlier sample omitted. N ≥ 3 pooled kidney explant 
samples per oxygen condition. Data and graphs prepared by Andrew Clugston (Dr. Dennis Kostka, 
Department of Developmental Biology; Dr. Jacqueline Ho Laboratory, Department of Pediatrics, 
University of Pittsburgh, Pittsburgh, PA). 

 
 
The normalized library sizes of the mRNA-seq reads from the kidney explants cultured in 

different oxygen conditions showed at least 12 million reads per sample (Figure 10A). The sample 

distance heatmap—which depicts how different samples are to each other—showed proper 

segregation of the samples based on their different culturing conditions (Figure 10B). The minus 

average plots—which are used to visualize the intensity-dependent ratio of raw gene expression 

data—depicted the amount of significantly differentially expressed genes in red (Figure 10C-E). 

Note that there are minimal differences of gene expression when comparing the 5% and 21% O2 
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culture conditions (Figure 10E); however the transcriptional differences are greater when 

comparing 1% and 5% O2 (Figure 10C) and even higher when comparing 1% and 21% O2 (Figure 

10D) cultures. Since the 5% O2 cultures are physiologically hypoxic, all further analysis was 

conducted with the 1% to 5% O2 comparison to exclude potential effects of presumed hyperoxia. 
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Figure 10: mRNA-seq read anlysis 

(A) Normalized library size of each kidney explant sample. (B) The number of differences 
in normalized counts between each sample is shown as a shade of blue, where darker hues indicate 
similarity and lighter hues indicate differences. Note outlier sample has been removed from 
analysis. (C-E) Scatter plots showing the total number of counts of each gene (x-axis) versus the 
fold change in its expression between (C) low (1%) and normal (5%), (D) low (1%) and high 
(21%), and (E) normal (5%) and high (21%) O2 samples. Genes with an FDR ≤ 0.05 are shown in 
red. N ≥ 2 pooled kidney explant samples per oxygen condition. Data and graphs prepared by 
Andrew Clugston (Dr. Dennis Kostka, Department of Developmental Biology; Dr. Jacqueline Ho 
Laboratory, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA). 
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2.3.3 mRNA sequencing analysis of differential gene expression 

The heatmap of the top 100 differentially expressed genes showed a clear difference in 

expression levels in kidney explants from 1% O2 cultures compared to the ones from 5% and 21% 

O2 cultures (Figure 11A). Looking at the top 20 genes, there was up-regulation of several genes 

involved in the hypoxia response: genes involved in 1) metabolism (Slc2a3, Pdk1, Pgk1, Ppp1r3c, 

Slc2a1, Ak4, Pfkf3b, Slc16a3, and Hk2); 2) HIF regulation (Ero1l, P4ha1, and Wsb1); 3) apoptosis 

(Bnip3); and 4) kidney development (Igfbp2) (Figure 11B).  

Analysis of the full gene list (of top differentially expressed genes when comparing 1% 

and 5% O2 cultures with an FDR ≤ 0.05) using Ingenuity Pathway Analysis (Qiagen) showed that 

that top five pathways activated in 1% O2 kidney cultures were glycolysis, gluconeogenesis, 

sucrose degradation, atherosclerosis signaling, and HIF1 signaling. The up-regulation of genes 

involved in anaerobic energy production was expected (74) and upregulated cholesterol signaling 

fits with the recent finding of its role in regulating nephron progenitor self-renewal and 

differentiation (Saifudeen ASN Kidney Week 2019, unpublished). The observed HIF1 signaling 

up-regulation serves as a nice internal control (56). 
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Figure 11: Top differentially expressed genes in kidneys cultures in 1%, 5%, and 21% O2 

(A) Heatmap of top 100 differentially expressed genes in kidney explants cultured in low 
(1%), normal (5%), and high (21%) O2. (B) Heatmap of top 20 differentially expressed genes, with 
gene names noted on the left. Blue is up-regulation and orange is down-regulation. N ≥ 2 pooled 
kidney explant samples per oxygen condition. Data and heatmaps prepared by Andrew Clugston 
(Dr. Dennis Kostka, Department of Developmental Biology; Dr. Jacqueline Ho Laboratory, 
Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA). 

 

2.3.4 small-RNA sequencing sample analysis 

The PCA plot of the smRNA-seq data with the outlier sample (determined in the mRNA-

seq analysis) omitted showed expected distribution between samples (Figure 12A). The 

normalized library sizes of the smRNA-seq reads from the kidney explants cultured in different 

oxygen conditions showed at least 7 million reads per sample (Figure 12B). The sample distance 

heatmap showed proper segregation of the samples based on their different culturing conditions 

(Figure 12C). Thus, analysis of the smRNA-seq was then performed without the outlier sample. 

The minus average plots depicted the amount of significantly differentially expressed genes in red 

(Figure 12D-F). Unlike the mRNA-seq, the smRNA-seq analysis showed notable differences of 

gene expression when comparing the 5% and 21% O2 culture conditions (Figure 12F), however 

the transcriptional differences were still greater when comparing 1% and 5% O2 (Figure 12D) and 

1% and 21% O2 (Figure 12E) cultures.  
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Figure 12: smRNA-seq read analysis 

(A) PCA plot of smRNA-seq samples of kidney explants cultured in low (1%; red), normal 
(5%; green), and high (21%; blue) O2 with outlier sample omitted. (B) Normalized library size of 
each kidney explant sample. (C) The number of differences in normalized counts between each 
sample is shown as a shade of blue, where darker hues indicate similarity and lighter hues indicate 
differences. (D-F) Scatter plots showing the total number of counts of each gene (x-axis) versus 
the fold change in its expression between (D) low (1%) and normal (5%), (E) low (1%) and high 
(21%), and (F) normal (5%) and high (21%) O2 samples. Genes with an FDR ≤ 0.05 are shown in 
red. N ≥ 2 pooled kidney explant samples per oxygen condition. Data and graphs prepared by 
Andrew Clugston (Dr. Dennis Kostka, Department of Developmental Biology; Dr. Jacqueline Ho 
Laboratory, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA). 
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2.3.5 smRNA sequencing analysis of differential expression 

When using DESeq2 to compare differential expression between the 1% and 5% O2 

cultures, there were 13 differentially expressed miRNAs with an FDR ≤ 0.05 (Figure 13A). 

Notably, miR-210, the master hypoxamir (147), was the top up-regulated miRNA in 1% O2 

cultures. Surprisingly miR-210-5p, which is the passenger strand, is reported instead of the guide 

strand miR-210-3p. Further analysis of this result suggested that miRDeep2 reported both strands 

of miRNA-210 as the same strand (-5p), instead of reporting the -3p and -5p strands separately 

(Figure 14A-C). This result occurred using several different settings for running the miRDeep2 

program. To confirm that miR-210-3p was being expressed in these samples, the analysis of 

miRNA reads was performed using an alternative method that relies on the Rsubread package for 

alignment (195) (instead of miRDeep2), which identified miRNA transcripts by counting how 

many align to their footprint in the genome (Figure 14D). Then, the miR-210 read results were 

analyzed using DESeq2, which show that both miR-210-5p and miR-210-3p were increased in the 

1% O2 cultures compared to the 5% and 21% O2 cultures, with miR-210-3p exhibiting much higher 

expression, as expected (Figure 14E). Analysis of the heatmap comparing low and normal oxygen 

culture miRNA expression produced using the Rsubread analysis places both miR-210-3p and 

miR-210-5p as the top differentially expressed miRNAs (Figure 13C) and lists many of the same 

miRNAs as those in (Figure 13A).  

The number of significantly differentially expressed miRNAs increased greatly when 

comparing 1% and 21% O2 cultures (Figure 13B). The top differentially expressed miRNAs from 

these conditions were also compared using the Rsubread analysis and produced a similarly long 

list (Figure 13D). Since the 5% O2 cultures are physiologically hypoxic, further analysis was 

conducted with the miRNAs from the 1% to 5% O2 comparison to produce more stringent results. 
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Figure 13: Top differentially expressed miRNAs in kidneys cultured in 1%, 5%, and 21% O2 

(A-B) Heatmap of top differentially expressed miRNAs (identified using miRDeep2; FDR 
≤ 0.05) in kidney explants cultured in low (1%), normal (5%), and high (21%) O2, when differential 
expression analysis is done comparing (A) low and normal and (B) low and high oxygen cultures. 
(C-D) Heatmap of top differentially expressed miRNAs (identified using Rsubread; FDR ≤ 0.05) 
in kidney explants cultured in low, normal, and high oxygen, when comparing (C) low and normal 
and (D) low and high oxygen cultures. Gene names noted on the left. Blue is up-regulation and 
orange is down-regulation. N ≥ 2 pooled kidney explant samples per oxygen condition. Data and 
heatmaps prepared by Andrew Clugston (Dr. Dennis Kostka, Department of Developmental 
Biology; Dr. Jacqueline Ho Laboratory, Department of Pediatrics, University of Pittsburgh, 
Pittsburgh, PA). 
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Figure 14: Analysis of miR-210 guide versis passenger strand expression 

(A-C) Line code for the miRDeep2 analysis showing that (A) miRDeep2 was instructed to 
look for both miR-210 strands and that (B) reads aligned for both sequences, but (C) the reads were 
reported as only miR-210-5p. (D) The miRNA transcripts from 1%, 5%, and 21% O2 cultures were 
aligned using Rsubread to their footprints in the genome in order to differentiate between the 
miRNA strands. (E) DESeq2 analysis of both miR-210 strands showed very little miR-210-5p 
expression in the samples and significantly higher miR-210-3p expression in 1% O2 cultures. N ≥ 
2 pooled kidney explant samples per oxygen condition. Data and Figures prepared by Andrew 
Clugston (Dr. Dennis Kostka, Department of Developmental Biology; Dr. Jacqueline Ho 
Laboratory, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA). 
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2.3.6 miRNA-mRNA target pair analysis 

Ingenuity Pathway Analysis was used to compare the list of differentially expressed 

mRNAs with the list of differentially expressed miRNAs between the kidneys cultured in 1% and 

5% O2, producing a list of miRNA-mRNA target pairs. There was little overlap of genes being 

targeted by multiple miRNAs with differential expression, suggesting that these miRNAs play 

distinct roles in regulating hypoxic gene expression. This list of paired genes was then analyzed 

using DAVID (196) to identify common themes for hypoxia-specific transcriptional changes. The 

top ten GO terms (i.e. most common functional roles of genes regulated by miRNAs in hypoxic 

kidney development) are listed in Table 2. Not surprisingly, the top gene functions of these 

miRNA-mRNA pairs included those involved in signaling, substrate transport, and development. 

The top ten KEGG Pathways involved in the miRNA-mRNA pairs affected by hypoxia are listed 

in Table 3. There is a clear representation of genes involved in metabolism, which makes sense 

since cells need to be able to quickly change their metabolism to meet the different energy demands 

of a hypoxic environment.  

 
Table 2: GO term analysis of miRNA-mRNA target pairs in hypoxic kidney development 

GO Term # of Genes P-Value 
Transcription, DNA-templated 47 0.0079 

Transport 46 0.0070 
Multicellular organ development 31 0.0030 

Ion transport 23 0.00045 
Transmembrane transport 15 0.0040 

Sodium ion transport 9 0.0013 
Liver development 8 0.0012 

Cation transport 6 0.0081 
Response to glucose 6 0.011 

Regulation of macrophage activation 3 0.0076 
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Table 3: KEGG pathway analysis of miRNA-mRNA target pairs in hypoxic kidney development 

KEGG Pathway # of Genes P-Value 
AMPK signaling pathway 10 0.0006 
Biosynthesis of antibiotics 10 0.019 

Ras signaling pathway 10 0.028 
Lysosome 7 0.027 

Central carbon metabolism in cancer 6 0.0067 
Glucagon signaling pathway 6 0.040 
Glycolysis / Gluconeogenesis 5 0.035 

Circadian rhythm 4 0.020 
Fructose and mannose metabolism 4 0.025 

Glycine, serine and threonine metabolism 4 0.038 

2.4 Conclusion 

Ex vivo analysis of gene expression during early nephrogenesis in different oxygen 

conditions revealed stark differences. Pathological hypoxia promoted gene expression consistent 

with that of nephron progenitors (i.e. Hif1α-mediated hypoxia response and anaerobic glycolysis). 

Nephron progenitors utilize glycolysis, promoting self-renewal, while switching to oxidative 

phosphorylation promotes their differentiation (74). Further, these findings are consistent with a 

genetic mouse model of pathological hypoxic gene expression, where Hif1α is constitutively 

expressed in nephron progenitors, resulting in increased glycolysis and inhibited differentiation 

(75). The metabolic gene expression changes observed in the pathological hypoxia organ cultures 

are consistent with an inhibition of nephrogenesis (197); however few significant changes in 

differentiation markers were observed in the 1% O2 cultures, suggesting that the phenotype of 

inhibition of differentiation may take a few more days of hypoxic insult to manifest.  

These data show that while not many miRNAs respond to pathological hypoxia in kidney 

development, the few that do have a significant effect on regulating expression. Consistent with 

other studies, miR-210 was the top miRNA upregulated in hypoxia (147). When looking at the 

miRNA-mRNA target pairs, these data suggest that the developing kidney uses a handful of 

miRNAs to regulate signaling and metabolic pathways important in survival under pathological 

hypoxia. The developing kidney’s limited energy capacity under hypoxic conditions could help 
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explain how IUGR and fetal hypoxia contribute to the development of a smaller kidney with fewer 

nephrons. 

Most studies investigating miRNAs in hypoxia focus on cancer and ischemia-reperfusion 

injury (163, 169, 198-201). While some of these studies are performed in kidney, renal cancer and 

renal injury have expression profiles that are very different from the genes expressed during 

development. Few of the miRNAs identified in these studies were also identified in the developing 

kidney cultures. Thus, this panel of hypoxia-induced miRNAs during kidney development provide 

a platform for future work investigating each miRNA’s role in pathologically hypoxic kidney 

development. This study lends novel insight into the mechanisms regulating impaired nephron 

formation from intrauterine hypoxia during kidney development. 
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3.0 miR-210 in Kidney Development 

3.1 Introduction 

Kidney development takes place in a physiologically hypoxic environment (55, 69, 72). 

Pathological hypoxia during kidney development impairs kidney development (56), but the 

mechanisms regulating this are poorly understood. miR-210 is the top miRNA induced in 

pathologically hypoxic kidney development (Figure 13) and has been shown to be the most 

consistently induced miRNA in hypoxia (147). miR-210 expression at E15.5 is higher in nephron 

progenitors compared to whole kidney (127). However, the expression pattern and functional role 

of miR-210 during kidney development is unknown.  

Thus, to piece together the puzzle of how hypoxic expression changes affect kidney 

development, looking at the top upregulated miRNA in hypoxia is an intriguing first step. Mice 

with a global deletion of miR-210 were assayed for a kidney development defect in order to 

investigate the role of miR-210 during kidney development. 

3.2 Methods 

3.2.1 Mouse strains 

CD-1 time-mated pregnant females were ordered from Charles River Laboratories, Inc. 

Global miR-210 knockout males (202, 203) were crossed to female C57Bl/6J wildtype mice from 

The Jackson Laboratory (Bar Harbor, ME, USA) to generate heterozygous mice. These 

heterozygous breeding pairs produced wildtype (control) and miR-210 knockout littermates for 

analysis. Animals were genotyped using genomic DNA isolated from tail clipping by PCR with 

the following primers: 0.5μM F1 5’-AGACAGGCCTGCTTGTAGGA-3’; 0.5μM R 5’-

TCAGGAGGTGGGTCCTGTAG-3’; and 1μM F2 5’-GGTCACTGCCAGGACTACGT-3' 
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(wildtype PCR product is 250bp and knockout product is 500bp). miR-210 HRE heterozygous 

mice (knockout mouse model, unpublished, obtained from our collaborator Xin Huang, formerly 

of the Department of Obstetrics, Gynecology, and Reproductive Sciences, University of 

Pittsburgh, Pittsburgh, PA) were generated in the same way and offspring were genotyped using 

the following primers: 0.5μM F1 (for knockout) 5’-CGCGTTCCTTTCGGCTT-3’; 0.5μM F2 (for 

wildtype) 5’-CACCGCGCGTTCCTTTCTGCACGT-3’; and 0.5μM R 5’-TGCCTGGAGAGT 

TATGAGTTCC-3’. All animals were housed in the vivarium at the Rangos Research Center at 

the UPMC Children’s Hospital of Pittsburgh and all animal experiments were carried out in 

accordance with the policies of the Institutional Animal Care and Use Committee at the University 

of Pittsburgh. 

3.2.2 Isolation of nephron progenitors using positive-selection MACS 

Nephron progenitors were isolated from E14.5 and P0 kidneys using magnetic-activated 

cell sorting (MACS) as previously published (167, 204). Briefly, up to 24 CD-1 mouse kidneys 

were dissected and pooled from an individual litter, then the outer layers of cortical cells were 

digested into a single cell suspension using a mixture of collagenase A and pancreatin. Cell 

suspensions were then mixed with magnetic beads biotinylated to α-Itgα8 antibodies (a cell 

surface protein expressed on nephron progenitors (167) (R&D Systems, Minneapolis, MN, USA)) 

using the DSB-X Biotin Protein Labeling Kit (Thermo Fisher Scientific). Bead-bound nephron 

progenitor cells were immobilized by a DynaMagTM-2 Magnet (Thermo Fisher Scientific) then 

washed, released, and resuspended. Total RNA was isolated from a fraction containing 

approximately 400,000 cells using the Qiagen miRNeasy Mini Kit, as per the manufacturer’s 

instructions. Enrichment of nephron progenitors relative to surrounding cell types was confirmed 

in each sample by real-time quantitative PCR (qPCR) (see below). 

3.2.3 qPCR for miRNA expression analysis 

Total RNA was isolated from flash-frozen kidneys using the Qiagen miRNeasy Mini Kit, 

as per the manufacturer’s instructions. U6 snRNA (RT001973), miRNA-210-3p (RT00512), and 
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miRNA-210-5p (RT462444) cDNAs were generated with the TaqMan® MicroRNA Reverse 

Transcription Kit (Thermo Fisher Scientific) according to the manufacturer’s instructions. 

Expression of mature miRNA was detected by qPCR performed in a 96 well C100 Thermal cycler 

(Bio-Rad) using FAM1 TaqMan® Universal PCR Master Mix with no AmpErase® UNG (Applied 

Biosystems, Foster City, CA, USA). Expression levels were normalized to the endogenous control 

(U6 snRNA) and analyzed using the 2-∆∆C
T method (184). 

3.2.4 Size measurements 

At the time of sacrifice, kidneys were photographed with a scale bar using a Qimaging 

QICAM Fast 1394 camera coupled to a Leica M165FC Stereo Microscope, using QCapture 

software. ImageJ software (https://imagej.nih.gov/ij/) was utilized to determine kidney length in 

each digital image. Kidney and mouse body masses were measured using a digital platform scale 

(Summit Series Analytical Balance SI-234, Denver Instrument, Bohemia, NY, USA). 

3.2.5 Paraffin-embedding of kidneys 

Kidneys were dissected and fixed in 4% PFA/PBS for 1-4hr at 25oC or overnight at 4oC. 

The kidneys were then transferred to Biopsy Tru-Tek® cassettes (Thermo Fisher Scientific) and 

submerged in 70% ethanol (Decon Labs., Inc., King of Prussia, PA, USA). The kidneys were then 

paraffinized using a Tissue-Tek® VIP® tissue processor (Sakura Finetek, Torrance, CA, USA). 

In short, the program first dehydrates the kidneys using an increasing ethanol gradient, followed 

by treatment with xylene (Thermo Fisher Scientific), and lastly treatment with Leica Surgipath® 

Blue Ribbon paraffin. See Table 4 for timing of protocol steps for paraffin embedding for 

embryonic (i.e. E16-P4 kidneys) and adult (i.e. P30 and 3-month). These paraffinized kidneys were 

then embedded in blocks for sectioning using the Leica EG 1160. 

 

 

 

https://imagej.nih.gov/ij/
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Table 4: Tissue processing protocols 

  Time (min) 
Step Solution Embryonic Adult 

1 70% Ethanol 5 20 
2 95% Ethanol 3 10 
3 95% Ethanol 5 10 
4 100% Ethanol 5 10 
5 100% Ethanol 5 10 
6 100% Ethanol 5 10 
7 Xylene 10 30 
8 Xylene 10 30 
9 Paraffin 5 30 

10 Paraffin 5 30 
11 Paraffin 10 30 

3.2.6 Hematoxylin and eosin staining 

Paraffin-embedded kidneys were sectioned at 4μm using a Microm HM 325 microtome 

(Waldorf, Germany) and placed on Surgipath® X-tra® Pre-cleaned micro slides (Leica). To stain 

the sections, first, excess paraffin was removed with xylene and washed with 100% ethanol. The 

sections were then rehydrated with water and stained with Hematoxylin 1 (Richard-Allan 

Scientific, San Diego, CA, USA), to mark nuclei. The sections were then washed with water, 

treated with Clarifier™ (Thermo Fisher Scientific) to reduce background hematoxylin staining, 

followed by another wash, and then treatment with Shandon™ Bluing Reagent (Thermo Fisher 

Scientific), to increase the blue staining of hematoxylin. The sections were again washed with 

water, followed by dehydration with 95% ethanol, and then were placed in Eosin-Y (Richard-Allan 

Scientific), to stain the cytoplasm. The eosin was then washed with 100% ethanol and then xylene. 

Dry, stained sections were then mounted in Cytoseal™ 280 (Richard-Allan Scientific) with a 

FisherFinest® Premium cover glass slip (Fisher Scientific, Hampton, NH, USA). The sections 

were then imaged using a Leica DM 2500 microscope and Qimaging Qcam Fast 1394 camera and 

the images were analyzed and prepared using Adobe Photoshop. 
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3.2.7 Nephron number estimation at P30 

Kidneys were harvested from mice at postnatal day 30 (P30), fixed in 4% 

paraformaldehyde in PBS (PFA/PBS) and serially sectioned at 4μm. Slides every 100μm (26 

sections) were stained with hematoxylin and eosin. A pair of consecutive sections out of every 26 

sections was analyzed using a Walcom drawing tablet (Walcom, Portland, OR, USA) and 

Stereoinvestigator version 9.04 software, using a physical fractionator probe (MBF Bioscience, 

Williston, VT, USA). The total glomerular number (𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) was calculated using the following 

equation: 

𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =
Σ𝑄𝑄−

2
𝑥𝑥
𝐴𝐴
𝑎𝑎

 𝑥𝑥
1

𝐴𝐴𝐴𝐴𝐴𝐴
 

where 𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is the total of glomeruli in the entire kidney, Σ𝑄𝑄−  is the total number of 

glomeruli appearing and disappearing between two consecutive sections, 𝐴𝐴 is the grid size 

(1000x1000), 𝑎𝑎  is the counting frame size (800x800), and 1/𝐴𝐴𝐴𝐴𝐴𝐴 is the reciprocal of the section-

sampling fraction (the number of sections advanced between section pairs; 26). This was 

performed as described in (205). 

3.2.8 Histopathological analysis of 3-month kidneys 

3-month-old kidneys were fixed in 4% PFA/PBS and embedded in paraffin (see above). 

For morphological analysis, the Rangos Histology Core at UPMC Children’s Hospital of 

Pittsburgh sectioned kidneys at 4μm and performed H&E, Period Acid Schiff, and Trichrome 

staining. The sections were then imaged using a Leica DM 2500 microscope and Qimaging Qcam 

Fast 1394 camera and the images were analyzed and prepared using Adobe Photoshop. 

3.2.9 Renal function analysis at 3-months 

3-month-old mice were placed in metabolic cages overnight to collect urine. Blood was collected 

via cardiac puncture at the time of sacrifice into Microtainer® SSTTM tubes (BD Biosciences). The blood 
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collection tubes were centrifuged to separate out serum. Frozen serum was sent to the Kansas State 

Veterinary Diagnostic Laboratory (Manhattan, KS, USA) to assay blood urea nitrogen and creatinine levels. 

Urine albumin/creatinine ratio was assayed using the Exocell Albuwell M and Creatinine Companion kits 

(Philadelphia, PA, USA) as per manufacturer’s instructions. Sample absorbance was measured using the 

SpectraMax® i3 plate reader (Molecular Devices, San Jose, CA, USA). 

3.2.10 Immunofluorescent staining of kidney sections 

Paraffin-embedded kidneys were sectioned at 4μm using a Microm HM 325 microtome 

and placed on Leica Surgipath® X-tra® Pre-cleaned micro slides. Sections were then 

deparaffinized using xylene, rehydrated through decreasing ethanol concentrations (i.e. 100%, 

70%, 50%), and permeabilized in PBS-T. Then antigen retrieval was performed by boiling in 

10mM sodium citrate pH 6.0 buffer or Trilogy (Cell Marque, Rocklin, CA, USA). Sections to be 

stained using the Tyramide Signal Amplification Kit (PerkinElmer, Waltham, Ma, USA) were 

treated with 3% H2O2 to inhibit endogenous peroxidase activity. Sections were then blocked with 

either 3% bovine serum albumin (BSA) or 5% normal donkey serum (NDS) in PBS-T. Sections 

were incubated overnight with primary antibody, washed with PBS-T, incubated with secondary 

antibody, washed again with PBS-T, incubated with 1:5000 4′,6-diamidino-2-phenylindole, 

washed with PBS-T, and then mounted in Fluoro Gel with DABCOTM (Electron Microscopy 

Science, Hatfield, PA, USA). Primary antibodies were visualized either by staining with 

fluorescence-conjugated secondary antibodies or by horseradish peroxidase-conjugated antibodies 

followed by TSA-Plus Cyanine 5 or Fluorescein antibodies, as per the manufacturer’s instructions. 

Some sections were co-stained with fluorescein- or rhodamine-labeled Dolichos Biflorus 

Agglutinin (DBA; 1:100), both purchased from Vector Laboratories (Burlingame, CA, USA), to 

visualize the ureteric bud epithelium / collecting duct system. Immunostaining was visualized with 

a Leica DM2500 microscope and photographed with a Leica DFC 7000T camera using LAS X 

software. The list of antibodies and their dilutions used is shown in Table 5. 
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Table 5: Antibodies used for immunofluorescent staining 

Target Dilution Company Animal Source 
Primary Antibodies 

𝛼𝛼-c-Casp3 1:100 Cell Signaling Technologies Rabbit 
𝛼𝛼-β-Cat Active 1:100 Cell Signaling Technologies Rabbit 
𝛼𝛼-β-Cat Total 1:80 Cell Signaling Technologies Rabbit 
𝛼𝛼-Emcn 1:50 Santa Cruz Biotechnology Monoclonal Rat 
𝛼𝛼-Jag1 1:100 Cell Signaling Technologies Rabbit 
𝛼𝛼-Lef1 1:100 Cell Signaling Technologies Rabbit 
𝛼𝛼-Ncam1 1:100 Sigma Aldrich Monoclonal Mouse 
𝛼𝛼-pHH3 1:100 Sigma Aldrich Rabbit 
𝛼𝛼-Six2 1:100 Proteintech Rabbit 
𝛼𝛼-Wt1 1:100 Thermo Fisher Scientific Rabbit 

Secondary Antibodies 
𝛼𝛼-Mouse-488 1:100 Jackson ImmunoResearch Laboratories Donkey 
𝛼𝛼-Mouse-594 1:100 Jackson ImmunoResearch Laboratories Donkey 
𝛼𝛼-Rabbit-488 1:100 Jackson ImmunoResearch Laboratories Donkey 
𝛼𝛼-Rabbit-594 1:100 Jackson ImmunoResearch Laboratories Donkey 
𝛼𝛼-Rabbit-HRP 1:100 Sigma Aldrich Goat 

*Note: Cell Signaling Technologies, Danvers, MA, USA; Santa Cruz Biotechnology, Dallas, TX, USA 

3.2.11 qPCR for mRNA expression analysis 

As described in Chapter 2, except that Actb was used as the endogenous control. Primers 

used in these experiments are shown in Table 1 and Table 6.  

  



 46 

Table 6: Primers used for qPCR (2) 

Gene Forward Reverse Product Size (bp) 
Actb GGCTGTATTCCCCTCCATCG CCAGTTGGTAACAATGCCATGT 154 

Casp3 TGACTTCCTGTATGCTTACT TTGCCACCTTCCTGTTAA 161 
Casp8ap2 GAGCTTCCGTCTCAGGACAAA GCCGTAATGTTTCACGTCATTC 135 

Cited1 GTCTCCAGGTCTTACCACCGA GCAGAGATGGCCACGTGTAT 155 
Efna3 GTTCACCATGTACAGCACGTA GGAACAGCTCCAATCAGCA 143 
Fgf8 GCTAATTGCCAAGAGCAACG GGTAGTTGAGGAACTCGAAGC 245 
Hey1 AAGTCGCCAGTAAGTCAG GTTCGTAATCACTACCTCAATT 174 
Jag1 GTCTCCAGGTCTTACCACCGA GCAGAGATGGCCACGTGTAT 144 
Lef1 AGCTTGTTGAAACCCCAGAC TTTTTGGAAGTCGGCGCTTG 160 
Lhx1 CTACATCATAGACGAGAACAAG TCATTACTACCACCTTCCTTAT 198 
Ret ACACTCAGCACTCCTCTA AGCATTCTCAGCCACATAA 224 
Six2 GCAGGACTCCATACTCAA GATACCGAGCAGACCATT 215 
Sox9 AAGGAAGGAAGGAAGGAAG AGGCACAGTGAATGTTCTA 201 

Vegfr2 GAGAGGTGCTGCTTAGAT GAGAGTAGAGTCAACACATTC 164 
Wnt4 TGGGAAGGTGGTGACACAAG TGACCACTGGAAGCCCTGT 166 

3.2.12 Western blot analysis of protein expression 

Kidneys were harvested from P0 or P2 pups and dissociated in RIPA buffer (20mM Tris-

HCl pH7.5; 150 mM NaCl; 1% Triton X-100; 1% sodium deoxycholate, and 1% SDS) using the 

Sonic Dismembrator Model 100 (Fisher Scientific). The protein concentration of extracts was 

determined using the PierceTM BCA Protein Assay Kit (Thermo Fisher Scientific), as per 

manufacturer’s instructions, and the SpectraMax® i3 plate reader (Molecular Devices). 10μg, 

20μg, or 40μg from each sample was run on a reducing 8%, 10%, or 12% SDS-PAGE gel or on a 

4-20% Mini-PROTEAN® TGXTM Precast protein gel (Bio-Rad) and blotted to an ImmunoBlot 

polyvinylidene difluoride membrane (Bio-Rad) using a Trans-Blot SD Semi-Dry Transfer Cell 

(Bio-Rad). The list of antibodies used is shown in Table 7. The signals were developed on CL-

XposureTM Film (Thermo Fisher Scientific) using either the PierceTM ECL Western Blotting 

Substrate (Thermo Fisher Scientific), PierceTM ECL Plus Western Blotting Substrate (Thermo 

Fisher Scientific), or SuperSignalTM West Femto Maximum Sensitivity Substrate (Thermo Fisher 

Scientific). Densitometric analysis of bands was performed using Image J software. 
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Table 7: Antibodies used for Western blot 

Target Dilution Company Animal Source 
Primary Antibodies 

𝛼𝛼-β-Act 1:5000 Cell Signaling Technologies Rabbit 
𝛼𝛼-c-Casp8 p18 1:1000 Santa Cruz Biotechnology Rabbit 
𝛼𝛼-Hif-1𝛼𝛼 1:250 Novus Biologicals Monoclonal Mouse 
𝛼𝛼-Jag1 1:1000 Cell Signaling Technologies Rabbit 
𝛼𝛼-Lef1 1:1000 Cell Signaling Technologies Rabbit 
𝛼𝛼-Six2 1:1200 Proteintech Rabbit 
𝛼𝛼-β-Tub 1:1000 Sigma Aldrich Monoclonal Mouse 
𝛼𝛼-𝛼𝛼/β-Tub 1:1000 Cell Signaling Technologies Rabbit 

Secondary Antibodies 
𝛼𝛼-Mouse-HRP 1:3000 Cell Signaling Technologies Horse 
𝛼𝛼-Rabbit-HRP 1:4000 or 1:8000 for 𝛼𝛼-Six2 Sigma Aldrich Goat 

*Note: Novus Biologicals, Centennial, CO, USA 

3.2.13 MitoSOX analysis of mitochondrial function 

Kidneys were dissected from P1 miR-210 WT, HET, and KO mice. The kidneys were 

broken into small pieces with a razor and then placed in 500μL 0.3% collagenase in PBS. Kidneys 

were incubated with collagenase for 10min at 37oC with agitation. The homogenized tissue was 

run through 18G then 25G needles to further break up tissue. The cell suspension was transferred 

to a 50mL tube with 5mL of 2% FBS (fetal bovine serum) in PBS and centrifuged for 5min at 500 

g. The supernatant was removed and the cells were resuspended in 500μL 2% FBA/PBS. Cells 

were counted using a hemocytometer, resuspended to 1 x 106 cells, and stained with 5mM 

MitoSOXTM Red Mitochondrial Superoxide Indicator (Thermo Fisher Scientific) for 15 minutes 

at 37oC per manufacturer’s guidelines. Cells were analyzed on a BD LSRFORTESSA cell analyzer 

(BD Biosciences, San Jose, Ca, USA) through the Flow Cytometry Core at the Rangos Research 

Center located at the UPMC Children’s Hospital of Pittsburgh. Mean fluorescent intensity was 

determined using FlowJo software (v10.1; Becton, Dickinson and Company, Franklin Lakes, NJ, 

USA).  
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3.2.14 qPCR analysis of mitochondrial number 

DNA from P0 kidneys was isolated using Qiagen DNA Easy Blood and Tissue Kit, as per 

manufacturer instructions. To determine the amount of mitochondrial and nuclear DNA, Co1 and 

Ndufv1 expression levels were analyzed, respectively. qPCR was performed in a 96 well C100 

Thermal Cycler (Bio-Rad) using Sso Advanced SYBR Green Master Mix (Thermo Fisher 

Scientific). Primers for mitochondrial DNA gene Co1 (F 5’-TGCTAGCCGCAGGCATTAC-3’ 

and R 5’-GGTGCCCAAAGAATCAGAAC-3’) and nuclear gene Ndufv1 (F 5’-

CTCCCACTGGCCTCAAG-3’ and R 5’-CCAAAACCCAGTGATCCAGC-3’) were used. 

Expression levels were normalized to the endogenous control (Actb) and analyzed using the 2-∆∆C
T 

method (184). 

3.2.15 in situ hybridization analysis of RNA expression 

Kidneys were harvested from P2 pups and fixed in 4% PFA/PBS overnight at 4oC. The 

kidneys were rinsed with PBS, incubated with 30% sucrose/PBS overnight at 4oC, embedded in 

optimal cutting temperature compound (OCT) (Scigen Scientific Inc., Carson, CA, USA), and 

stored at -80 oC. The OCT-embedded kidneys were sectioned at 10-12mm using the Microm HM 

550 cryo-tome (Thermo Fisher Scientific) and affixed to Fisherbrand® Superfrost Plus 

Microscope Slides, Precleaned (Thermo Fischer Scientific). The sections were fixed in fresh 4% 

PFA/PBS for 10min, rinsed with PBS, and permeabilized with 15μg/mL Proteinase K for 10min. 

The sections were rinsed with PBS and refixed with 4% PFA/PBS for 5min. The sections were 

acetylated for 10min in a solution of 1.5% Triethanolamine, 0.02M hydrochloric acid, and 0.375% 

acetic anhydride. The sections were rinsed with PBS and blocked with hybridization buffer (50% 

formamide, 1.3X standard saline citrate (SSC) pH 4.5, 5mM EDTA pH 8.0, 50mg/mL yeast tRNA, 

0.2% Tween-20, 0.5% CHAPS, 100mg/mL Heparin) for 2hr. The Wnt9b Digoxigenin-labelled 

probe (prepared as in (144) with forward primer 5’-GTCTTTGCCAAGTCTGCCTC-3’ and 

reverse primer 5’-CGATGTTAATACGACTCACTATAGGGGC-3’) was diluted 1:250 in 

hybridization buffer and heated at 80oC for 5min, before incubating the sections with the probe 

solution at 68oC overnight. The sections were rinsed with 0.2X SSC and NTT (0.15M NaCl, 0.1M 
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Tris pH 7.5, 0.1% Tween-20) and then blocked with 5% heat inactivated sheep serum in 2% 

blocking reagent (Roche, Basel, Switzerland)/NTT for 2hr. Sections were then incubated with 

1:2500 anti-Digoxigenin-AP antibody (Roche) in 1% heat inactivated sheep serum in 2% blocking 

reagent/NTT at 4oC overnight. Sections were rinsed with NTT and NTTML (0.15M NaCl, 0.1M 

Tris pH 9.5, 0.1% Tween-20, 50mM MgCl2, and 2mM Levamisole) then incubated with BM 

Purple (Roche) at room temperature until color developed (~48hrs). The sections were rinsed with 

PBS, fixed with 4%PFA/PBS with 0.2% glutaraldehyde for 1hr, rinsed, and mounted in Cytoseal™ 

280 (Richard-Allan Scientific, San Diego, CA, USA). The sections were visualized with a Leica 

DM2500 microscope and photographed with a Leica DFC 7000T camera using LAS X software. 

3.2.16 Semi-quantitative analysis of differentiation 

To estimate the number of Lef1 and Jag1 staining for differentiating structures, kidney 

sections stained with Lef1 or Jag1 were imaged around the whole kidney section (9-14 images per 

section) and the number of Lef1- or Jag1-positive differentiating structures was quantified per 

image using Image J. This semi-quantitative analysis was performed in a blinded manner. 

3.2.17 Nephron number estimation at P2 

Kidneys were harvested from mice at P2, fixed in 4% PFA/PBS and serially sectioned at 

4μm. Slides every 40μm (10 sections) were stained with an antibody for Wilms tumor 1 (Wt1), 

which marks glomeruli (206), using the Vector® DAB kit (Vector Laboratories, Burlingame, CA, 

USA) as per manufacturer’s instructions. A pair of consecutive sections out of every 10 sections 

was analyzed using a Walcom drawing tablet (Walcom, Portland, OR, USA) and 

Stereoinvestigator version 9.04 software, using a physical fractionator probe (MBF Bioscience, 

Williston, VT, USA). The total glomerular number (𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) was calculated using the following 

equation: 

𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =
Σ𝑄𝑄−

2
𝑥𝑥
𝐴𝐴
𝑎𝑎

 𝑥𝑥
1

𝐴𝐴𝐴𝐴𝐴𝐴
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where 𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is the total of glomeruli in the entire kidney, Σ𝑄𝑄−  is the total number of glomeruli 

appearing and disappearing between two consecutive sections, 𝐴𝐴 is the grid size (600x600), 𝑎𝑎  is 

the counting frame size (400x400), and 1/𝐴𝐴𝐴𝐴𝐴𝐴 is the reciprocal of the section-sampling fraction 

(the number of sections advanced between section pairs; 10). This was performed as described in 

(205, 207). 

3.2.18 Semi-quantitative analysis of ureteric branching 

To estimate the number of ureteric branch tips, kidney sections stained with DBA were 

imaged around the whole kidney section (9-14 images per section) and the number of DBA-

positive ureteric tips was quantified per image using Image J. This semi-quantitative analysis was 

performed in a blinded manner. 

3.2.19 Semi-quantitative analysis of proliferating nephron progenitors 

To estimate the number of proliferating cells, kidney sections were stained for pHH3 expression. 

Nephron progenitors were visualized by co-staining with α-Six2 antibodies. Stained sections were imaged 

around the whole kidney section (9-14 images per section) and the percentage of pHH3-positive nephron 

progenitor cells per image was quantified using ImageJ. This semi-quantitative analysis was performed in 

a blinded manner. 

3.2.20 Semi-quantitative analysis of apoptotic cells 

To estimate the number of apoptotic cells, kidney sections were stained for cleaved 

Caspase-3 (c-Casp3) expression. Nephron progenitors were visualized by co-staining with α-Six2 

antibody. Differentiated developing nephron structures were visualized by co-staining with α-Jag1 

antibody. Stained sections were imaged around the whole kidney section (9-14 images per section) 

and the percentage of c-Casp3-positive nephron progenitor cells or developing nephron structure 
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cells per image was quantified using ImageJ. This semi-quantitative analysis was performed in a 

blinded manner. 

3.2.21 Statistical analysis 

All experiments were performed with at least three biological replicates collected from 

multiple litters. Mann-Whitney U test and two-way ANOVA with Tukey correction were used to 

determine statistical significance where applicable: *P ≤ 0.05; **P ≤ 0.01; and ***P ≤ 0.001. All 

statistical analyses were performed using Prism 8 software package (GraphPad Software, Inc.). 

3.3 Results 

3.3.1 miR-210 expression throughout kidney development 

To determine if there is differential expression of miR-210 during kidney development, its 

expression was measured in early (E14.5), mid (P0), and late (P2) nephrogenesis. Kidneys from 

CD-1 wildtype mice were dissected and all from one litter were pooled and nephron progenitors 

from the pooled kidney homogenates were isolated using MACS with magnetic beads conjugated 

to streptavidin and biotinylated α-Itgα8 antibodies. RNA expression was analyzed in whole kidney 

and isolated nephron progenitors using qPCR. miR-210-3p expression in whole kidney was low in 

E14.5 kidneys but increased about 5-fold by P0 (Figure 15A). While not statistically significant, 

a similar trend of increased miR-210-3p expression in isolated nephron progenitors was observed 

(Figure 15B). miR-210-3p expression was only significantly increased from E14.5 to P0 when 

comparing expression in whole kidney, suggesting that its expression increases in multiple cell 

compartments during kidney development. Unfortunately, assessment of the localized pattern of 

miR-210 expression in developing kidney tissue was using in situ hybridization was not possible 

(data not shown). As expected, since it is the passenger strand and readily degraded, miR-210-5p 

expression was undetectable (data not shown). To investigate expression in another mouse strain, 
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kidneys from P0 and P2 C57Bl/6 male and female mice (strain more commonly used for kidney 

development research) were analyzed for miR-210-3p expression. There were no significant 

differences between male and female P0 and P2 kidneys, but there was highly variable expression 

at P0 that suggests higher expression than at P2 (Figure 15C). It is possible that miR-210-3p 

expression decreases from P0 to P2 due to further development of the renal vasculature, thus 

decreasing hypoxia-induced gene expression. 

 

 
Figure 15: miR-210 expression peaks at P0 

(A) qPCR analysis of miR-210-3p expression in CD1 E14.5 and P0 kidneys. (B) qPCR 
analysis of miR-210-3p expression in CD1 E14.5 and P0 MACS-isolated nephron progenitors. (C) 
qPCR analysis of miR-210-3p expression in P0 and P2 WT male and female kidneys from miR-
210 HET matings. RNA expression was normalized to U6 snRNA. Error bars ± SEM, **P<0.01, 
(A-B) Mann-Whitney U test, (A) N ≥ 3 kidneys per embryonic age, (B) N ≥ 3 pooled kidneys from 
one litter per embryonic age, (C) 2-way ANOVA with Tukey correction, N ≥ 3 kidneys per 
embryonic age. Samples in (A) and (B) prepared by Andrew Clugston (Dr. Dennis Kotska, 
Department of Developmental Biology; Dr. Jacqueline Ho Laboratory, Department of Pediatrics, 
University of Pittsburgh, Pittsburgh, PA) (208) 

3.3.2 miR-210 knockout mouse model 

Then the function of miR-210 in kidney development was investigated using a mouse 

knockout model. In collaboration with Dr. Yoel Sadovsky and Dr. Xin Huang (Department of 

Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA), the 

global miR-210 knockout (KO) model (202) was obtained and miR-210 KO expression validated 

in P2 male and female kidneys (Figure 16).  
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Figure 16: miR-210 knockout model validation 

qPCR analysis of miR-210-3p expression in P2 miR-210 WT and KO male and female 
kidneys, normalized to U6 snRNA expression. **P<0.01, Error bars ± SEM, Mann-Whitney U 
test. N ≥ 3 kidneys per embryonic age and genotype. (208) 

3.3.3 miR-210 KO sex-specific nephron deficit 

Nephron number is determined during kidney development by a variety of factors, 

including the balance of nephron progenitor self-renewal versus differentiation. Thus, the major 

readout of determining if a gene mutation results in abnormal kidney development is an alteration 

in nephron number. miR-210 is expressed in whole kidney and nephron progenitors throughout 

kidney development, thus it may play a role in regulating nephron number. 

To test the overall effect of miR-210 deletion on kidney development, the physical 

disector/fractionator combination method (205) was used to determine nephron number at 

postnatal day 30 (P30). Representative images of hematoxylin and eosin (H&E) staining of male 

(Figure 17A-B) and female (Figure 17C-D) paraffin-embedded kidneys showed no gross tissue 

pathology. Male miR-210 KO mice had an approximately 35% reduction in nephron number 

compared to miR-210 WT male mice (Figure 17E). There was an approximately 28% reduction 

in nephron number of both miR-210 WT and KO female mice compared to miR-210 WT male 

mice, but no difference between WT and KO females. This decrease in nephron number did not 

coincide with gross changes in glomerular size ((Figure 17A-D). The kidney:body mass ratio was 

not affected by global miR-210 KO (Figure 17F), which suggests that the reduction in nephron 
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number is not due to an overall effect of the gene deletion on development. At P30, miR-210 KO 

mice did not have reduced body mass, but female WT and KO mice did (Figure 18A). When 

comparing kidney mass and length, miR-210 KO females had a decrease in both compared to male 

KO (Figure 18B-C). 
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Figure 17: Decreased nephron number in miR-210 KO mice 

(A-D) Representative images of H&E stained sections for miR-210 (A,C) WT and (B,D) 
KO (A-B) male and (C-D) female mice used for glomerular counting. Glomeruli are marked with 
black arrows. (E) Nephron number of male and female miR-210 WT and KO mice at P30. (F) 
Kidney:body mass ratio for male and female miR-210 WT and KO mice at P30. (E-F) 
Representative images of H&E stained sections for female miR-210 WT and KO mice. **P<0.01, 
***P<0.001, Error bars ± SEM, 2-way ANOVA with Tukey correction. N ≥ 4 per genotype and 
sex. (208) 
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Figure 18: Gross phenotype of miR-210 KO mice 

(A) Kidney mass of miR-210 WT and KO male and female mice at P30. (B) Body mass. 
(C) Kidney length. *P<0.05, **P<0.01, Error bars ± SEM, 2-way ANOVA with Tukey correction. 
N ≥ 4 per genotype and sex. (208) 

3.3.4 Decrease in nephron number from miR-210 deletion is not dependent on HIF during 

normoxic kidney development 

Since both Six2 and HIF are important factors that regulate kidney development and bind 

the miR-210 promoter, it is important to determine how much of the miR-210-mediated decrease 

in nephron number is due to HIF-dependent regulation of miR-210. Thus, a mouse model with a 

global deletion of the HRE in the miR-210 promoter was obtained (miR-210 HRE KO mouse 

model, unpublished, provided by Xin Huang, formerly of the Department of Obstetrics, 

Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA). In this model, 

all regulation of miR-210 at its promoter is preserved except for that performed by HIF. As with 

the miR-210 knockout model, the physical disector/fractionator combination method (205) was 

used to determine nephron number in miR-210 HRE knockout model at postnatal day 30 (P30). 

Neither the male nor female miR-210 HRE KO mice had a nephron deficit (Figure 19A). 

Representative images of H&E staining of male (Figure 19B-C) and female (Figure 19E-F) P30 

kidney sections showed no gross tissue pathology. However the kidney:body mass ratio was 

decreased in male KO mice, compared to WT (Figure 19D), which may be a result of several WT 

males with low body mass, but normal kidney size (Figure 19G-I). Thus, miR-210 may be 

regulated by other transcription factors in addition to HIF during kidney development to ensure 

normal nephron number formation. It is also possible that these miR-210 HRE KO mice would be 

more susceptible to a nephron deficit when exposed to intrauterine hypoxia. 
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Figure 19: Nephron number in miR-210 HRE KO mice 

(A-D) Representative images of H&E stained sections miR-210 HRE (A,C) WT and (B,D) 
KO (A-B) male and (C-D) female mice used for glomerular counting. Glomeruli are marked with 
black arrows. (E) Nephron number of male and female miR-210 HRE WT and KO mice at P30. 
(F) Kidney:body mass ratio. (G) Kidney length. (H) Kidney mass. (I) Body mass. *P<0.05, 
**P<0.01, Error bars ± SEM, 2-way ANOVA with Tukey correction. N ≥ 4 per genotype and sex. 
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3.3.5 3-month miR-210 KO kidneys have normal function and histology  

Since the miR-210 KO mice had a 35% reduction in nephron number, kidney histology and 

function were assessed at 3-months of age to determine if the nephron deficit increased risk for 

development of renal pathology with age. Trichome and PAS staining of male and female miR-

210 WT and KO kidneys showed normal tissue histology (Figure 20A-H). That is, there is no 

increase in fibrosis in KO mice (Figure 20A-D) and the tubular lumens and basement membranes 

are intact (Figure 20E-H). As expected, WT and KO females had smaller body mass than WT and 

KO males (Figure 20I). However, there was no difference in kidney size nor the body to kidney 

mass ratio (Figure 20J-K). Serum analysis of kidney function, as measured by blood urea nitrogen 

and creatinine levels, showed no differences (Figure 20L-M). The urine albumin to creatinine 

ratio showed no difference in kidney function (Figure 20N). Together, this suggests that miR-210 

KO mice did not exhibit any signs of compromised kidney function or disease at 3-months of age. 

However, 3 months is still a young age and the 35% nephron deficit is relatively mild. Aging the 

mice further to 12-months-old or stressing the mice (e.g. high-salt diet, ischemia-reperfusion 

injury) might be required to determine if KO mice have a sex-specific increased risk for developing 

kidney disease.  
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Figure 20: 3-month-old miR-210 WT and KO kidney histology and renal function are normal 

(A-D) Trichrome staining of 3-month-old (A-B) male and (C-D) female miR-210 (A,C) 
WT and (B,D) KO mice. (E-H) PAS staining of (E-F) male and (G-H) female miR-210 (E,G) WT 
and (F,H) KO mice. (I) Body mass. (J) Kidney mass. (K) Kidney:body mass ratio. (L) Blood urea 
nitrogen levels. (M) Serum creatinine levels. (N) Urine albumin/creatinine ratio. 
*P<0.05,**P<0.01, ***P<0.001, Error bars ± SEM, 2-way ANOVA with Tukey correction. N ≥ 
3 per genotype and sex. (208) 
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3.3.6 Kidney development at E16 is unaffected by miR-210 KO 

Since miR-210 expression peaks at P0, kidney development was first assessed at E16 (two 

days before). H&E staining showed no difference between WT and KO tissue histology in male 

and female kidneys (Figure 21). Immunostaining for nephron progenitor marker Six2 and nephron 

progenitor marker and developing nephron structure marker Ncam (209) showed similar 

expression patterns in male WT and KO kidneys (Figure 22A-B). Immunostaining for Six2 and 

the Notch ligand Jag1 (expressed in differentiated nephron structures) showed normal expression 

in male WT and KO kidneys (Figure 22C-D). Thus, kidney development appears unaffected by 

miR-210 deletion at E16. 

 

 
Figure 21: E16 miR-210 KO kidneys have normal histology 

(A-D) H&E staining of E16 (A-B) male and (C-D) female miR-210 (A,C) WT and (B,D) 
KO kidneys. Glomeruli are marked with black arrows. N ≥ 2 per genotype and sex. 
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Figure 22: E16 male kidneys have normal expression of kidney development marker 

(A-B) Immunofluorescent staining for nephron progenitor marker Six2 (red) and nephron 
progenitor and developing nephron structure marker Ncam (green) in E16 male (A) WT and (B) 
KO kidneys. (C-D) Immunofluorescent staining for Six2 (red) and developing nephron structure 
marker and Notch signaling ligand Jag1 (green) in E16 male (C) WT and (D) KO kidneys. N ≥ 2 
per genotype. 

3.3.7 Kidney development appears normal at P0 in miR-210 KO 

To investigate the effect of miR-210 deletion at the timepoint its expression increases 

during kidney development (i.e. P0), kidney development was assayed at P0. H&E staining 

showed normal histology in WT and KO male (Figure 23A-B) and female (Figure 24A-B) 

kidneys. Immunofluorescent staining for Six2 and Ncam showed a normal expression pattern in 

both WT and KO male (Figure 23C-D) and female (Figure 24C-D) kidneys. Further, Western 

blot analysis of Six2 expression in male kidneys showed no difference between WT and KO 

(Figure 23I,K). Analysis of Wnt/β-catenin signaling showed a normal expression pattern of its 

canonical downstream effector Lef1 (which is expressed in the differentiated nephron structures) 

in WT and KO male (Figure 23E-F) and female (Figure 24E-F) kidneys. Immunostaining for 
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Jag1 showed no expression differences between WT and KO male (Figure 23G-H) and female 

(Figure 24G-H) kidneys. Western blot analysis of Jag1 expression in male kidneys showed no 

differences between WT and KO (Figure 23I-J). Thus, kidney development appears unaffected 

by miR-210 deletion at P0. 
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Figure 23: Kidney development is normal in P0 males 

(A-B) H&E staining of P0 (A) WT and (KO) male kidneys. Glomeruli are marked with 
black arrows. (C-D) Immunofluorescent staining for nephron progenitor marker Six2 (red) and 
nephron progenitor and developing nephron structure marker Ncam (green) in (C) WT and (D) 
KO kidneys. (E-F) Immunofluorescent staining for Wnt/β-catenin signaling marker Lef1 (red) and 
ureteric bud marker DBA (green) in (E) WT and (F) KO kidneys. (G-H) Immunofluorescent 
staining for Six2 (red) and Notch signaling ligand Jag1 (green) in (G) WT and (H) KO kidneys. 
(I-K) Western blot analysis of (J) Jag1 and (K) Six2 expression, normalized to β-Act. Error bars ± 
SEM, Mann-Whitney U test. N ≥ 3 per genotype. (208) 



 64 

 
 

Figure 24: Kidney development is normal in P0 females 

(A-B) H&E staining of P0 (A) WT and (KO) female kidneys. Glomeruli are marked with 
black arrows. (C-D) Immunofluorescent staining for nephron progenitor marker Six2 (red) and 
nephron progenitor and developing nephron structure marker Ncam (green) in (C) WT and (D) 
KO kidneys. (E-F) Immunofluorescent staining for Wnt/β-catenin signaling marker Lef1 (red) and 
ureteric bud marker DBA (green) in (E) WT and (F) KO kidneys. (G-H) Immunofluorescent 
staining for Six2 (red) and Notch signaling ligand Jag1 (green) in (G) WT and (H) KO kidneys. N 
≥ 3 per genotype. (208) 
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3.3.8 HIF expression is unaffected in miR-210 KO P0 kidneys 

Since there is a regulatory feedback loop between HIF and miR-210 (178, 210, 211), Hif1α 

expression could be perturbed by deletion of miR-210 at the peak of miR-210 expression during 

kidney development (i.e. P0). Western blot analysis of its expression in male and female WT and 

KO P0 kidneys showed no differences (Figure 25). Thus, deletion of miR-210 had no significant 

effect on Hif1α expression. 

 

 

Figure 25: Hif1α expression is unaffected in P0 miR-210 KO kidneys 

(A) Representative images of Western blot for Hif1α and α/β-Tub in P0 miR-210 WT and 
KO kidneys. (B-C) Quantification of expression of Hif1α normalized to α/β-Tub in (B) male and 
(C) female kidneys. Error bars ± SEM, Mann-Whitney U test. N ≥ 3 per genotype and sex. 
Experiments performed by Dr. Kasey Cargill (formerly of Dr. Sunder Sims-Lucas Laboratory, 
Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA). 

3.3.9 Mitochondria are unaffected in miR-210 KO in P0 and P1 kidneys 

Since miR-210 inhibits aerobic respiration by targeting several genes important for 

mitochondrial metabolism (148), mitochondria in miR-210 KO kidneys were assayed. 

Mitochondrial function was unaffected in male and female miR-210 KO P1 kidneys (Figure 26A). 

Further, analysis of mitochondrial number showed no difference between WT and KO male P0 

kidneys (Figure 26B). Together, these data suggest that mitochondria number and function are 

unaffected by miR-210 deletion. 
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Figure 26: Metabolism is unaffcted by miR-210 KO 

(A) Mitosox analysis of mitochondrial function as measured by ROS production in P1 miR-
210 WT, HET, and KO kidneys. Error bars ± SEM, 2-way ANOVA with Tukey correction.  (B) 
Assay of mitochondrial number through qPCR analysis of the mitochondrial DNA to nuclear DNA 
ration in male P0 WT and KO kidneys. Error bars ± SEM, Mann-Whitney U test. N ≥ 3 per 
genotype and sex. Experiments performed by Dr. Kasey Cargill (formerly of Dr. Sunder Sims-
Lucas Laboratory, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA). 

3.3.10 Kidney development in P2 male kidneys is affected by miR-210 KO 

Since there was no apparent phenotype by P0 and about 50% of mouse nephrons form after 

birth (41, 51), kidney development was then assessed at P2. H&E staining showed normal 

histology of WT and KO male (Figure 27A-B) and female (Figure 29A-B) kidneys. 

Immunostaining for nephron progenitor markers Six2 and Ncam showed a normal expression 

pattern in both WT and KO male (Figure 27C-D) and female (Figure 29C-D) kidneys. qPCR 

analysis of expression of differentiation markers Fgf8 and Lhx1 suggested increased expression of 

the latter in KO male kidneys (Figure 27I). Interestingly, Lhx1 is thought to function downstream 

of Fgf8 as nephron progenitors form pre-tubular aggregates and then renal vesicles (46, 97, 212). 

Expression of these genes was not affected in KO female kidneys (Figure 29I). 

Immunostaining for Wnt/β-catenin signaling marker Lef1 showed a normal expression 

pattern in both WT and KO male (Figure 27E-F) and female (Figure 29E-F) kidneys. Semi-

quantitative analysis of the number of Lef1-positive developing nephron structures showed no 

significant difference between WT and KO male kidneys (Figure 27N). qPCR analysis showed 

no difference in Wnt4 expression but did show increased expression of Lef1 (Figure 27I). Note 
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that Wnt4 is upstream of both Lef1 and Lhx1 (46, 97, 212), so their increase in expression occurs 

downstream of Wnt4. Western blot analysis of Lef1 protein expression corroborated this finding 

(Figure 27J-K). This increase in Lef1 expression does not appear to be due to increased expression 

in the peri-ureteric bud stroma (Figure 31A-B). Furthermore, in situ hybridization for Wnt9b 

(which is critical in inducing nephron formation) showed a normal ureteric bud tip expression 

pattern in both WT and KO male kidneys (Figure 31C,D), and immunostaining for total and active 

β-catenin showed no overt spatial differences in their expression patterns between male WT and 

KO kidneys (Figure 28A-D). qPCR analysis of female kidneys showed no difference in either 

Wnt4 or Lef1 (Figure 29I). Together, these data suggest that there is increased Wnt/β-catenin 

signaling in P2 KO male kidneys, which has been associated with impaired nephron formation 

(105, 213), although the spatial localization of components of this signaling pathway are preserved. 

Since Notch signaling is required for priming nephron progenitors for differentiation (117), 

its activation in P2 kidneys was assayed. Immunostaining for Notch pathway ligand Jag1 showed 

a normal expression pattern in both WT and KO male (Figure 27E-F) and female (Figure 29E-

F) kidneys. Semi-quantitative analysis of the number of Jag1-positive developing nephron 

structures showed no difference between WT and KO male kidneys (Figure 27O). qPCR analysis 

of Jag1 and Hey1 (the latter a downstream Notch signaling target) showed no difference between 

WT and KO in either male (Figure 27I) or female (Figure 29I) kidneys. Western blot analysis 

showed decreased Jag1 expression in male KO kidneys (Figure 27L-M). Together, these data 

suggest that while there is less Notch ligand expression in P2 male KO kidneys, the downstream 

activation of Notch signaling is not affected by deletion of miR-210 in the whole kidney. 
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Figure 27: Dysregulation of differentiation markers in P2 male miR-210 KO kidneys 

(A-B) H&E staining of P2 (A) WT and (KO) male kidneys. Glomeruli are marked with 
black arrows. (C-D) Immunofluorescent staining for nephron progenitor marker Six2 (red) and 
developing nephron structure marker Ncam (green) in (C) WT and (D) KO kidneys. (E-F) 
Immunofluorescent staining for Wnt/β-catenin signaling marker Lef1 (red) and ureteric bud 
marker DBA (green) in (E) WT and (F) KO kidneys. (G-H) Immunofluorescent staining for Notch 
signaling ligand Jag1 (red) and DBA (green) in (G) WT and (H) KO kidneys. (I) qPCR analysis 
of expression of differentiation markers, normalized to Actb expression. (J-K) Western blot 
analysis of Lef1 expression, normalized to β-Act. (L-M) Western blot analysis of Jag1 expression, 
normalized to β-Tub. (N-O) Semiquantitative analysis of developing nephron structures that are 
positive for (N) Lef1 and (O) Jag1. *P<0.05, Error bars ± SEM, Mann-Whitney U test. N ≥ 3 per 
genotype. (208) 
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Figure 28: Expression of total and active β-catein in P2 male kidneys 

(A-B) Immunofluorescent staining of total protein expression of Wnt/β-catenin signaling 
transducer β-catenin (red) and ureteric bud tip marker DBA (green) in P2 (A) WT and (B) KO 
male kidneys. White asterisks mark renal vesicles. (C-D) Immunofluorescent staining of active 
protein expression of Wnt/β-catenin signaling transducer β-catenin (red) and ureteric bud tip 
marker DBA (green) in P2 (C) WT and (D) KO male kidneys. N ≥ 3 mice per genotype. (208) 
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Figure 29: Expression of differentiation markers is normal in P2 females 

(A-B) H&E staining of P2 (A) WT and (KO) female kidneys. Glomeruli are marked with 
black arrows. (C-D) Immunofluorescent staining for nephron progenitor marker Six2 (red) and 
developing nephron structure marker Ncam (green) in (C) WT and (D) KO kidneys. (E-F) 
Immunofluorescent staining for Wnt/β-catenin signaling marker Lef1 (red) and ureteric bud 
marker DBA (green) in (E) WT and (F) KO kidneys. (G-H) Immunofluorescent staining for Notch 
signaling ligand Jag1 (red) and DBA (green) in (G) WT and (H) KO kidneys. (I) qPCR analysis 
of expression of differentiation markers, normalized to Actb expression. Error bars ± SEM, Mann-
Whitney U test. N ≥ 3 per genotype. (208) 
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3.3.11 Nephron number not different at P2 

Aberrant Wnt signaling results in impaired nephron progenitor differentiation (105) and 

was observed in male KO kidneys by P2. Thus, nephron number was examined at P2 to investigate 

the timing of the nephron deficit. Semi-quantitative analysis of the number of Lef1- and Jag1-

positive developing nephron structures showed no significant differences between male WT and 

KO kidneys (Figure 27N-O). To perform a more robust analysis, the “gold standard” the physical 

disector/fractionator combination method (205) was used to quantify nephron number. No 

difference in Wt1-positive glomeruli was observed in WT and KO male and female P2 kidneys 

(Figure 30). Thus, the nephron deficit must not become apparent until after P2. 

 

 

Figure 30: No difference in nephron number at P2 

Nephron number of P2 male and female WT and KO kidneys. Error bars ± SEM, 2-way 
ANOVA with Tukey correction. N ≥ 4 per genotype and sex. Experiment performed by Andrew 
J. Bodnar (Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA). 

3.3.12 Ureteric epithelium is normal at P2  

Ureteric branching contributes to the determination of nephron number (214). Thus, altered 

ureteric epithelium development could contribute to the 35% nephron deficit observed in male KO 

kidneys. Analysis of expression of the Wnt/β-catenin signaling ligand expressed by the ureteric 
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bud tips Wnt9b showed no difference in expression between P2 WT and KO male kidneys (Figure 

31C-D). qPCR analysis of the ureteric development makers Ret and Sox9, both of which mark the 

ureteric bud tips and are important for regulating ureteric branching (215) showed no difference 

in expression between WT and KO male (Figure 31E) and female (Figure 31G) P2 kidneys. 

Semi-quantitative analysis of the number of DBA-positive ureteric tips in P2 kidneys showed no 

difference between WT and KO male (Figure 31F) and female (Figure 31H) P2 kidneys. 

Together, these data suggest that miR-210 deletion does not impact ureteric branching. 
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Figure 31: Ureteric development appears normal at P2 

(A-B) Immunofluorescent staining for Wnt/β-catenin signaling marker Lef1 (red) and 
ureteric bud marker DBA (green) in P2 male (A) WT and (B) KO kidneys. (C-D) in situ 
hybridization for Wnt/β-catenin signaling ligand Wnt9b in P2 male (C) WT and (D) KO kidneys. 
(E,G) qPCR analysis of ureteric tip epithelium markers Ret and Sox9, normalized to Actb 
expression, in P2 WT and KO (E) male and (G) female kidneys. (F,H) Quantification of the 
number of DBA-positive ureteric bud tips in P2 WT and KO (F) male and (H) female kidneys. 
Error bars ± SEM, Mann-Whitney U test. N ≥ 3 per genotype and sex. (208) 
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3.3.13 Renal vasculature is normal at P2 

Since renal oxygenation contributes to regulating the balance of nephron progenitor self-

renewal versus differentiation (69) and miR-210 promotes angiogenesis, largely through inhibition 

of Efna3, an inhibitor of angiogenesis (149, 216, 217), deletion of miR-210 could affect renal 

vasculature growth, and subsequently nephron number. Immunostaining for the vascular marker 

Emcn (218) and nephron progenitor and podocyte marker Wt1 (219) showed a normal expression 

pattern in WT and KO male (Figure 32A-B,E-F) and female (Figure 32C-D,G-H) P2 kidneys. 

Development of the glomerular vasculature also appeared normal (Figure 32I-L). qPCR analysis 

of vascular marker Vegfr2 (220) and Efna3 showed no differences between WT and KO male 

(Figure 32M) and female (Figure 32N) P2 kidneys. Thus, development of the renal vasculature 

does not appear to be affected by miR-210 deletion. 
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Figure 32: Renal vasculature development is normal at P2 

(A-D) Immunofluorescent staining of endothelial marker Emcn (green) in P2 (A, C) WT 
and (B, D) KO (A-B) male and (C-D) female kidneys. (E-L) Immunofluorescent staining of 
nephron progenitor and podocyte makers Wt1 (red) in (E, G, I, K) WT and (F, H, J, L) KO (E-F, 
I-J) male and (G-H, K-L) female kidneys. (I-L) Zoomed view of glomeruli. (M-N) qPCR analysis 
of expression of endothelial marker Vegf2 and anti-angiogenic miR-210 target gene Efna3 in P2 
(M) male and (N) female kidneys, normalized to Actb expression. Error bars ± SEM, Mann-
Whitney U test. N ≥ 3 per genotype and sex. (208) 
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3.3.14 Nephron progenitor proliferation is normal at P2 

A shift in the balance of nephron progenitor self-renewal versus differentiation results in 

decreased nephron number (109, 221). miR-210 has been shown to regulate various genes involved 

in cell cycle regulation (148, 222). Thus, miR-210 KO kidneys could have a nephron deficit from 

altered nephron progenitor proliferation. To investigate this, immunostaining for nephron 

progenitor marker Six2 and proliferation marker pHH3 was performed in male (Figure 33A-B) 

and female (Figure 33D-E)  P2 kidneys. Semi-quantitative analysis of the percentage of 

proliferating nephron progenitors showed no differences between WT and KO males (Figure 33C) 

and females (Figure 33F). Western blot analysis of Six2 expression in male P2 kidneys showed 

no difference between WT and KO (Figure 33G-H). qPCR analysis of Six2 and self-renewing 

nephron progenitor marker Cited1 showed no difference in expression between WT and KO male 

(Figure 33I) and female (Figure 33J) P2 kidneys. Together, these data suggest that miR-210 

deletion does not impact nephron progenitor proliferation. 
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Figure 33: Nephron progenitor proliferation is normal at P2 

(A-B) Immunofluorescent staining of male (A) WT and (B) KO P2 kidneys for nephron 
progenitor marker Six2 (red) and proliferation marker pHH3 (green). (C) Quantification of the 
percentage of pHH3-positive nephron progenitors in male kidneys. (D-E) Immunofluorescent 
staining of female (D) WT and (E) KO kidneys for Six2 (red) and pHH3 (green). (C) 
Quantification of the percentage of pHH3-positive nephron progenitors in female kidneys. (G-H) 
Western blot analysis of Six2 expression in P2 male kidneys, normalized to β-Act. (I-J) qPCR 
analysis of nephron progenitor markers Cited1 and Six2 in P2 (I) male and (J) female WT and KO 
kidneys, normalized to Actb expression. Error bars ± SEM, Mann-Whitney U test. N ≥ 4 per 
genotype and sex. (208) 
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3.3.15 Pro-apoptotic gene expression is increased in P2 miR-210 KO male kidneys 

Apoptosis is a normal developmental process, and miRNAs are an important regulator of 

apoptosis during kidney development (137, 138, 143, 223, 224). miR-210 is known to inhibit the 

expression of multiple pro-apoptotic genes (148). Thus, apoptotic signaling was investigated in 

KO mice to determine if it played a role in the nephron deficit. Immunostaining for nephron 

progenitor marker Six2 and active apoptotic signaling marker cleaved Casp3 (c-Casp3) (225) 

showed no difference in the percentage of apoptotic nephron progenitors in WT and KO male 

(Figure 34A-C) and female (Figure 34E-G) P2 kidneys. However, there did appear to be more 

apoptotic cells in KO male kidneys at the bottom of the cap mesenchyme, where nephron 

progenitors undergo MET to begin differentiating into the nephron (Figure 34B). To determine if 

there were more apoptotic cells in the early differentiating nephrons, immunostaining for Jag1 and 

c-Casp3 was performed on P2 WT and KO male kidneys (Figure 34I-J). Quantification of these 

samples showed no significant difference in the percentage of c-Casp3- and Jag1-double positive 

cells in the developing nephron structures between WT and KO kidneys (Figure 34K). It is 

possible that a combination of more Six2-positive and Jag1-positive cells are dying in male KO 

kidneys, which would contribute to the observed nephron deficit.  

To assay apoptosis in the whole kidney, qPCR analysis of pro-apoptotic markers was 

performed. Casp8ap2 is part of the Fas death receptor and binds pro-Casp8, which it activates 

upon Fas-L binding (226, 227). Activated Casp8 (p18) then activates Casp3 to transduce the pro-

apoptotic signal to the cell (224, 226). qPCR analysis of pro-apoptotic and miR-210 target 

Casp8ap2 (153, 154) showed increased expression in KO male P2 kidneys (Figure 34D), but no 

difference in female kidneys (Figure 34H). Expression of Casp3 was unchanged in male (Figure 

34D) and female (Figure 34H) kidneys. Western blot analysis of pro-apoptotic Casp8 (225) in 

male P2 kidneys showed increased expression of is full-length protein pro-Casp8 but no difference 

in the amount of the activated p18 subunit (Figure 34L-N). While significantly increased 

expression of active apoptotic signaling was not observed, the increased expression of Casp8ap2 

and pro-Casp8 suggests that KO cells are primed for apoptotic signaling. 
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Figure 34: Increased expression of Casp8ap2 and pro-Casp8 in P2 male KO kidneys 

(A-B) Immunofluorescent staining of male (A) WT and (B) KO P2 kidneys for nephron 
progenitor marker Six2 (green) and apoptosis marker c-Casp3 (red). (C) Quantification of the 
percentage of c-Casp3-positive nephron progenitors in male kidneys. White arrows indicate c-
Casp3-positive cells at the bottom of the cap mesenchyme. Inset showed magnified image of cap 
mesenchyme. (D,H) qPCR analysis of pro-apoptotic miR-210 target gene Casp8ap2 and pro-
apoptotic Casp3 in (D) male and (H) female kidneys, normalized to Actb expression. (E-F) 
Immunofluorescent staining of female (E) WT and (F) KO kidneys for Six2 (red) and c-Casp3 
(green). White arrows indicate c-Casp3-positive cells at the bottom of the cap mesenchyme. Inset 
showed magnified image of cap mesenchyme. (G) Quantification of the percentage of c-Casp3-
positive nephron progenitors in female kidneys. (I-J) Immunofluorescent staining of male (I) WT 
and (J) KO P2 kidneys for differentiating nephron structure marker Jag (green) and c-Casp3 (red). 
White arrows indicate c-Casp3-positive cells at the bottom of the cap mesenchyme. Inset showed 
magnified image of differentiating nephron structure. (K) Quantification of the percentage of c-
Casp3-positive differentiated cells in male kidneys. (L-N) Western blot analysis of (M) inactive 
full length pro-Casp8 and (N) active cleaved Casp8 p18 expression in P2 male kidneys, normalized 
to β-Act. *P<0.05, Error bars ± SEM, Mann-Whitney U test. N ≥ 4 per genotype and sex. (208) 
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3.3.16 Cessation of nephrogenesis is normal in miR-210 KO 

About 50% of mouse nephrons form postnatally and since new nephron formation occurs 

exponentially, an early end to nephrogenesis could result in a significant decrease in nephron 

number (41, 51). To test for an early cessation of nephrogenesis, P3 and P4 kidneys were assayed. 

H&E staining showed no difference in tissue histology between WT and KO male P3 (Figure 

35A-B) and P4 (Figure 35C-D) kidneys. Immunostaining for Six2 and Ncam showed normal 

expression in WT and KO in P3 (Figure 35E-F) and the end of Six2 expression P4 (Figure 35G-

H) kidneys, which indicates no difference in the timing of nephrogenesis cessation. 

Immunostaining for Wnt/β-catenin signaling marker Lef1 showed a normal expression pattern in 

WT and KO P3 (Figure 35I-J) and P4 (Figure 35K-L) kidneys. Immunostaining for Notch 

signaling ligand Jag1 showed a normal expression pattern in WT and KO P3 (Figure 35M-N) and 

P4 (Figure 35O-P) kidneys. Together, these data suggest that deletion of miR-210 does not affect 

the timing of the cessation of nephrogenesis, nor the localized expression pattern of Wnt and Notch 

signaling pathways at P3 and P4. 
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Figure 35: Nephrogenesis ends by P4 in miR-210 WT and KO male kidneys 

(A-D) H&E staining of (A-B) P3 and (C-D) P4 (A, C) WT and (B, D) KO male kidneys. 
Black arrowheads indicate glomeruli. (E-H) Immunofluorescent staining of nephron progenitor 
marker Six2 (red) and developing nephron structures marker Ncam (green) in (E-F) P3 and (G-H) 
P4 (E, G) WT and (F, H) KO kidneys. (I-L) Immunofluorescent staining of Wnt/β-catenin 
signaling marker Lef1 (red) and ureteric epithelium marker DBA (green) in (I-J) P3 and (K-L) P4 
(I, K) WT and (J, L) KO kidneys. (M-P) Immunofluorescent staining of Notch signaling ligand 
Jag1 (red) and DBA (green) in (M-N) P3 and (O-P) P4 (M, O) WT and (N, P) KO kidneys. N ≥ 3 
per genotype. (208) 
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3.4 Conclusion 

Global deletion of miR-210 results in a male-specific decrease in nephron number. This 

observed decrease in nephron number could be due to several factors, including 1) altered nephron 

progenitor differentiation, 2) decreased ureteric branching, 3) decreased vasculature development, 

4) decreased nephron progenitor proliferation, 5) increased apoptosis, or 6) early termination of 

nephrogenesis. These data suggest that the nephron deficit is due to a combination of increased 

Wnt signaling (i.e. increased Lef1 expression) and increased expression of the pro-apoptotic 

Casp8ap2 and pro-Casp8. However, it is important to consider that some of the assays 

investigating other factors contributing to nephron number development may not have been 

sensitive enough to pick up on subtle changes.  

The sex-specific difference in nephron number in wildtype animals is consistent with prior 

observations in both humans and mice that females have fewer nephrons compared to males (60, 

76). It has been reported that there are differences in sex-related changes in nephron number in 

different inbred mouse strains (77). However, the observation of a nephron deficit in male, but not 

female, miR-210 knockout mice may be the first description of a sex-specific functional role for a 

miRNA in kidney development. Deletion of miR-210 was found to have no significant effect on 

mouse placental development during both normoxic and hypoxic pregnancies (202). However, this 

study did not analyze the sexes separately. In humans, female placentas from overweight and obese 

mothers had increased miR-210 expression compared to males (166). miR-210 has also been 

identified as a potential biomarker for pre-eclampsia (175, 176). Recently, a sex-specific role for 

a miRNA in adult kidneys was identified, where female rats with a miR-146b-5p deletion had 

exacerbated renal hypertrophy after 5/6 nephrectomy (228). Thus, it is possible that in an injurious 

setting (e.g. hypertension, hypoxia) miR-210 responds in a sexually dimorphic manner.   

Interestingly, a sex-specific difference in nephron number similar to that of miR-210 

deletion was observed in a model of moderate intrauterine hypoxia (which would be predicted to 

induce miR-210 expression), where hypoxia-exposed males had about 25% fewer nephrons than 

untreated males (60). Prolonged prenatal hypoxia has also been shown to result in a male-specific 

disruption of collecting duct patterning through altered Wnt/β-catenin and retinoic acid signaling, 

which resulted in a urine concentrating defect (61). Taken together, this raises the question of 

whether both over- and under-expression of miR-210 could result in a nephron deficit in a sex-
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specific manner. For example, both over- and under-activity of β-catenin signaling in nephron 

progenitors results in fewer nephrons due to an inability to either proceed to the renal vesicle stage, 

or undergo mesenchymal to epithelial transition, respectively (105, 213). 

Canonical Wnt signaling is necessary for the commitment of nephron progenitors to 

undergo a mesenchymal to epithelial transition and form the renal vesicle (229). Lef1 forms a 

transcriptional complex with Tcf that inhibits expression of Wnt pathway genes until β-catenin is 

activated, translocated to the nucleus, and complexes with Lef1/Tcf, to increase expression of 

target genes (230). It has previously been shown that miR-210-3p targets Tcf7l2 (158) and that 

increased expression of miR-210-3p results in down-regulation of Ctnnb1, the β-catenin transcript 

(159). In the miR-210 KO kidneys, there is increased expression of Lef1, a marker of increased β-

catenin activity, and overexpression of β-catenin has previously been shown to result in early 

depletion of the nephron progenitor pool (105). Lhx1, which is downstream of Wnt signaling, acts 

in several steps of nephrogenesis and is important in renal vesicle patterning and tubule 

morphogenesis (46, 212). The increase in Lhx1 expression in miR-210 knockout mice is further 

evidence suggesting that loss of miR-210 expression results in increased Wnt signaling. Together, 

this suggests that during nephrogenesis miR-210-3p fine-tunes Wnt/β-catenin activation to 

promote normal nephron number formation.  

Furthermore, deletion of miR-210 results in the increased expression of its pro-apoptotic 

target, Casp8ap2. Other studies have shown that miR-210 targets Casp8ap2 for degradation to 

promote stem cell survival after ischemic preconditioning (153) and to protect human umbilical 

vein endothelial cells against oxidative stress (154). Under normal conditions, Casp8ap2 promotes 

S-phase progression and histone biosynthesis (231-233). Upon Fas receptor activation, Casp8ap2 

translocates to the cytoplasm to promote apoptosis through the Fas receptor death-inducing 

signaling complex (226, 234) as well as through activating the mitochondrial apoptotic pathway 

(235). Proper regulation of apoptosis is essential for normal kidney development (224), and part 

of this regulation is carried out by miRNAs (138, 223). We show a male-specific increase of 

Casp8ap2 in miR-210 KO kidneys, which has previously been reported to have increased 

expression in males compared to females in developing mouse lung tissue (236). These data 

suggest that loss of miR-210-mediated regulation of the pro-apoptotic Casp8ap2 transcript is one 

piece of the regulatory puzzle contributing to a sex-specific decrease in nephron number; although 

it remains unclear in which developmental compartment this occurs. 
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4.0 In Vivo Hypoxic Kidney Development  

4.1 Introduction 

Intrauterine hypoxia results in impaired kidney development, but the mechanisms behind 

this are poorly understood (56). The previous chapters show that miR-210 is induced in ex vivo 

pathologically hypoxic kidney development and is required for normal nephron number 

development in male mice. Thus, the miR-210 knockout mouse model was used with an in vivo 

intrauterine hypoxia model to investigate the role it may play in regulating kidney development in 

response to intrauterine hypoxia. 

4.2 Methods 

4.2.1 Mouse strains 

Mice heterozygous for the global miR-210 deletion were the same as those used in (202). 

In collaboration with these authors, embryos were collected at E17.5 and the authors analyzed 

placenta, while the kidneys were collected and analyzed by myself, as described below. All other 

animals (Six2-Cre-GFP; VHLflx/flx mice, which have a nephron progenitor-specific deletion of the 

negative regulator of Hifα-subunits, as described in (75)) were housed in the vivarium at the 

Rangos Research Center at the UPMC Children’s Hospital of Pittsburgh (Pittsburgh, PA, USA) 

and all animal experiments were carried out in accordance with the policies of the Institutional 

Animal Care and Use Committee at the University of Pittsburgh.  
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4.2.2 FACS-isolation of GFP-positive nephron progenitors 

Kidneys were dissected from E17.5 embryos from Six2-Cre-GFP; VHLflx/flx breedings 

(mice as described in (75)). Kidneys were checked for fluorescent green nephron progenitors using 

a Leica DM 2500 microscope and Qimaging Qcam Fast 1394 camera. Fluorescent kidneys from 

the same embryo were pooled and placed in PBS on ice (one pair of non-fluorescent kidneys were 

also processed for the blank control). The kidneys were broken into small pieces with a razor and 

then placed in 500μL 0.3% collagenase in PBS for incubation for 10min at 37oC with agitation. 

The homogenized tissue was run through 18G then 25G needles to further break up tissue. The 

cell suspension was transferred to a 50mL tube with 5mL of 2% FBS (fetal bovine serum) in PBS 

and centrifuged for 5min at 500 g. The supernatant was removed and the cells were resuspended 

in 500μL 2% FBS/PBS. The UPMC Children’s Hospital of Pittsburgh Flow Core used a FACSAria 

II machine (BD Biosciences) to isolate the GFP-positive nephron progenitors into 250μL Qiazol 

(Qiagen). Total RNA was then isolated using the Qiagen miRNeasy Mini Kit. 

4.2.3 Model of in vivo intrauterine hypoxia 

Pregnant females heterozygous for miR-210 deletion were housed at either 21% or 12.5% 

O2, the latter to model intrauterine hypoxia, from E12.5 to E17.5. See Figure 36 for overview. 
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Figure 36: Overview of model of intrauterine hypoxia 

Mice heterozygous for the miR-210 deletion were bred. At E12.5, pregnant females were 
either placed in a hypoxia chamber with 12.5% O2, to model intrauterine hypoxia, or kept at 21% 
O2. At E17.5, embryonic kidneys were dissected for analysis. N ≥ 3 litters per oxygen condition. 

 

4.2.4 qPCR analysis of miRNA expression 

As described in Chapter 3.2.3. 

4.2.5 Paraffin-embedding of kidneys 

As described in Chapter 3.2.5 

4.2.6 Hematoxylin and eosin staining of kidney sections 

As described in Chapter 3.2.6. 
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4.2.7 Immunofluorescent staining of kidney sections 

As described in Chapter 3.2.10. 

4.2.8 qPCR analysis of mRNA expression 

As described in Chapter 2.2.4. See Table 1, Table 6, and Table 8 for primers used. 

 
Table 8: Primers used for qPCR (3) 

Gene Forward Reverse Product Size (bp) 
Calb ATGATCAGGATGGCAACGGA GTTCGGTACAGCTTCCCTCC 160 
Dpf3 TGAGAAGAGAAGTTGTAGCA TCAAGGACACCACAGTTC 207 

Foxd1 TGTGGAGAACTTTACTGCTA AAATAGATGGACCCTCTGAG 234 
Nphs1 AGGGTCGGAGGAGGATCGAA GGGAAGCTGGGGACTGAAGT 141 
Nphs2 GACCAGAGGAAGGCATCAAGC GCACAACCTTTATGCAGAACCAG 123 
Osr1 ACTGATGAGCGACCTTAC TTGTGAGTGTAGCGTCTT 174 
Pdxl CCTCCAGGCCCCAGCA CCCAGCTTCATGTCACTGACT 364 

Raldh2 CTCACATCGGCATAGACA GTAGTCCAAGTCAGCATCT 155 
Synpo CTCACCACGGCTATCTGCCAGA TGGTATGGCTGCTGCTTGG 65 
Vegfr1 AGAGGTATCAGAGCAGAAC GCATCTCACTAGAGGAACT 196 

4.2.9 Statistical analysis 

As described in Chapter 3.2.20. 
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4.3 Results 

4.3.1 miR-210 expression is induced in a genetic model of pathological hypoxia  

Recently, the effect of constitutive HIF expression in nephron progenitors (Six2-Cre; VHL-

floxed mouse model) on kidney development was demonstrated (75). In short, overexpression of 

HIF (mimicking intrauterine hypoxia) resulted in decreased nephron number, mainly due to 

dysregulation of metabolism (75). Cargill et al. (75) showed that when HIF is overexpressed in 

nephron progenitors, there is decreased expression of Lef1, which matches with our finding that 

deletion of miR-210 resulted in increased Lef1 expression (Figure 27E-F,I,J-K). To investigate 

how constitutive HIF expression in nephron progenitors affects miR-210 expression, GFP+ 

nephron progenitors in Six2-VHL+/- (Control) and Six2-VHL-/- (KO) kidneys were isolated using 

FACS. qPCR analysis showed ~20-fold increase in miR-210 expression in HIF-overexpressing 

(VHL Knockout) nephron progenitors, compared to Control nephron progenitors (Figure 37). 

 

 
Figure 37: Upregulation of miR-210-3p in Six2-VHL-/- nephron progenitors 

qPCR analysis of miR-210-3p expression, normalized to U6 snRNA, in E17 Six2-VHL+/- 
(Control) and Six2-VHL-/- (Knockout) FACS-isolated GFP-positive nephron progenitors. 
**P<0.01, Error bars ± SEM, Mann-Whitney U test. N ≥ 5 per genotype. Animals provided by the 
Dr. Sunder Sims-Lucas Laboratory (Department of Pediatrics, University of Pittsburgh, 
Pittsburgh, PA). 
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4.3.2 miR-210 expression is not affected by an environmental model of pathological hypoxia  

To model moderate intrauterine hypoxia, pregnant dams were housed in 12.5% O2 from 

E12 (two days after kidney development begins) to E17 (mid-nephrogenesis, one day before birth), 

at which point embryos were collected for expression analysis (Figure 36). qPCR analysis showed 

no significant increase in miR-210 expression in whole kidneys (Figure 38). However, the 

localized expression was not analyzed, so there may be cell-specific changes in miR-210 

expression that this assay cannot detect. 
 

 
Figure 38: miR-210-3p expression is not affected in E17 kidneys from hypoxic pregnancies 

qPCR analysis of miR-210-3p expression, normalized to U6 snRNA, in E17 kidneys from 
normoxic and hypoxic pregnancies. Error bars ± SEM, Mann-Whitney U test. N ≥ 3 kidneys per 
oxygen condition. 

4.3.3 Intrauterine hypoxia induces Six2 expression in WT kidneys at E17 

H&E staining showed normal kidney histology in WT normoxic (Figure 39A) and hypoxic 

(Figure 39C) pregnancies. Immunostaining for nephron progenitor markers Six2 and Ncam 

(which also marks the developing nephron structures) showed a normal expression pattern in 

kidneys from normoxic (Figure 39B) and hypoxic (Figure 39D) pregnancies. qPCR analysis was 

performed to analyze expression of several genes involved in kidney development (Figure 39E-

H). Of all nephron progenitor markers analyzed (Cited1, Eya1, Osr1, Six2, Meox1, Dpf3), only the 
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expression of Six2 was increased in hypoxia (Figure 39E). Analysis of developing nephron 

structure (Lef1, Fgfrl1, Fgf8, Wnt4, Jag1; Figure 39F), glomerular (Nphs1, Nphs2, Pdxl, Synpo 

(237); Figure 39G), ureteric (Calb (215); Figure 39H), and stromal (Foxd1, Raldh2 (238); Figure 

39H) markers showed no differential expression between kidneys from normoxia and hypoxic 

pregnancies. Thus, moderate intrauterine hypoxia has a mild effect on expression of genes 

involved in regulating kidney development at E17. 
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Figure 39: Kidney development at E17 from normoxic and hypoxic pregnancies 

(A,C) H&E staining of E17 WT kidneys from normoxic and hypoxic pregnancies. (B,D) 
Immunofluorescent staining for nephron progenitors (Six2, red) and nephron progenitors and 
developing nephron structures (Ncam, green). (E-H) qPCR analysis of (E) nephron progenitor 
markers, (F) renal vesicle markers, (G) glomeruli markers, and (H) ureteric epithelium marker 
(Calb) and stroma markers (Foxd1, Raldh2). RNA expression was normalized to Rn18S. *P<0.05, 
Error bars ± SEM, Mann-Whitney U test. N ≥ 4 kidneys per oxygen condition. 
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4.3.4 Expression of Vegfr2 is decreased in intrauterine hypoxia at E17 

Immunostaining for endothelial cell marker Emcn (218) and podocyte marker Wt1 (239) 

showed a normal expression pattern in kidneys from both normoxic (Figure 40A-B) and hypoxic 

(Figure 40C-D) pregnancies. qPCR analysis of genes involved in renal vasculature development 

(Vegfa, Vegfr1, Vegfr2, Efna3 (240)) showed decreased expression of Vegfr2 in kidneys from 

hypoxic pregnancies (Figure 40E). These data suggest a mild effect of moderate intrauterine 

hypoxia on renal vasculature development at E17. 

 

 

Figure 40: Renal vasculature development at E17 from normoxic and hypoxic pregnancies 

(A,C) Immunofluorescent staining for microvasculature marker Emcn (green) in E17 WT 
kidneys from (A) normoxic and (C) hypoxic pregnancies. (B,D) Expression of podocyte marker 
Wt1 (red) and Emcn (green). (E) qPCR analysis of renal vasculature markers normalized to Rn18S 
expression. *P<0.05, Error bars ± SEM, Mann-Whitney U test. N ≥ 4 per oxygen condition. 

4.3.5 Intrauterine hypoxia does not affect kidney development in miR-210 KO by E17 

After establishing how WT kidneys respond to moderate intrauterine hypoxia, how 

deletion of miR-210 affects kidney development in hypoxia was next investigated. H&E staining 

showed normal histology in WT (Figure 41A) and KO (Figure 41C) kidneys from hypoxic 

pregnancies. Immunostaining for Six2 and Ncam showed a normal expression pattern in WT 
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(Figure 41B) and KO (Figure 41D) kidneys from hypoxic pregnancies. qPCR analysis was 

performed to analyze expression of several genes involved in kidney development (Figure 41E-

H). None of the nephron progenitor markers analyzed (Cited1, Eya1, Osr1, Six2, Meox1, Dpf3) 

showed differences in expression (Figure 41E). Note that Six2 expression was increased in WT 

hypoxic pregnancies (Figure 39E) and loss of miR-210 expression did not affect Six2 expression 

in hypoxia (Figure 41E). Analysis of developing nephron structure (Lef1, Fgfrl1, Fgf8, Wnt4, 

Jag1; Figure 41F), glomerular (Nphs1, Nphs2, Pdxl, Synpo; Figure 41G), and stromal (Foxd1, 

Raldh2; Figure 41H) markers showed no differential expression between kidneys from normoxia 

and hypoxic pregnancies. qPCR analysis of expression did show decreased levels of the ureteric 

marker Calb in KO kidneys exposed to intrauterine hypoxia (Figure 41H), suggestive of decreased 

ureteric branch tips. Thus, deletion of miR-210 in the setting of moderate intrauterine hypoxia does 

not have much impact on expression of kidney development markers at E17. 
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Figure 41: Hypoxic does not affect miR-210 kidney development at E17 

(A,C) H&E staining of E17 (A) WT and (C) KO kidneys from hypoxic pregnancies. (B,D) 
Immunofluorescent staining for nephron progenitors (Six2, red) and developing nephron structures 
(Ncam, green). (E-H) qPCR analysis of (E) nephron progenitor markers, (F) renal vesicle markers, 
(G) glomeruli markers, and (H) ureteric epithelium marker (Cal) and stroma markers (Foxd1, 
Raldh2). RNA expression was normalized to Rn18S. **P<0.01, Error bars ± SEM, Mann-Whitney 
U test. N ≥ 6 per genotype. 
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4.3.6 Intrauterine hypoxia does not affect miR-210 KO renal vasculature by E17 

Immunostaining for Emcn and Wt1 showed a normal expression pattern in both WT 

(Figure 42A-B) and KO (Figure 42C-D) hypoxic pregnancies. qPCR analysis of genes involved 

in renal vasculature development (Vegfa, Vegfr1, Vegfr2, Efna3) showed no difference in 

expression of Vegfr2 in WT and KO kidneys from hypoxic pregnancies (Figure 42E). Thus, loss 

of miR-210 does not have any further effect on Vegfr2 expression in hypoxia. 

 

 

Figure 42: Hypoxia does not affect renal vasculature developmet in miR-210 KO at E17 

(A,C) Immunofluorescent staining for microvasculature marker Emcn (green) in E17 (A) 
WT and (C) KO kidneys from hypoxic pregnancies. (B,D) Expression of podocyte marker Wt1 
(red) and Emcn (green). (E) qPCR analysis of renal vasculature markers normalized to Rn18S 
expression. *P<0.05, Error bars ± SEM, Mann-Whitney U test. N ≥ 6 per genotype. 

4.4 Conclusion 

Analysis of nephrogenesis at E17 from pregnancies complicated by moderate hypoxia 

(12.5% O2) from E12.5 to E17 suggests several ways that hypoxia results in abnormal kidney 

development. The increased Six2 expression suggests that there are more nephron progenitors, 

which could be caused by increased proliferation or their failure to differentiate, or that the nephron 

progenitors express higher levels of Six2. Overexpression of Six2 inhibits nephron progenitor 
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differentiation (96); and Six2 must be down regulated for differentiation to proceed (97). Thus, 

increased Six2 expression induced by moderate hypoxia during pregnancy could contribute to 

decreased nephron number. Decreased Vegfr2 expression in hypoxia suggests an inhibition of 

proper renal vasculature development, which can contribute to decreased nephron number and 

abnormal glomerular development (69, 241). These data coincide with the findings in Chapter 2, 

suggesting a promotion of nephron progenitor self-renewal versus differentiation in pathological 

hypoxia. 

Loss of miR-210 expression did not change expression of these genes at this timepoint, 

suggesting that it does not play a role in regulating their expression in moderate intrauterine 

hypoxia. These data show that in vivo intrauterine moderate hypoxia does not result in an 

acceleration (i.e. observable at E17 vs P2) of the miR-210 deletion phenotype observed in Chapter 

3. Thus, miR-210 does not appear to play a significant role in hypoxic embryonic kidney 

development. However, all analysis was done without separation of males and females (Chapter 4 

was performed chronologically before Chapter 3); thus, there may be subtle changes in gene 

expression in males that are drowned out by pooled analysis with female kidneys. Males and 

females differ in their response to IUGR when assessing blood pressure, kidney function, and 

glucose homeostasis (91, 242). Future analysis of this model should be conducted with sexual 

dimorphism of kidney development and injury response in mind. 

Pathological fetal hypoxia results in decreased blood flow to the developing kidney (64). 

The nephrogenic zone where the nephron progenitors reside has low vascularization (243). Blood 

flow and oxygenation are important drivers of nephron progenitor differentiation (69). There is 

likely decreased vascularization of the nephrogenic zone in pathological hypoxic pregnancies, 

which would inhibit differentiation, due to preferential redirection of blood flow to other organs 

(e.g. heart, brain) (57, 64). In the wildtype model, decreased Vegfr2 expression was observed in 

the embryos from hypoxic pregnancies, indicative of impaired real vasculature development. In 

the setting of pathological fetal hypoxia, less development of the renal vasculature is expected to 

occur (56). IUGR results in endothelial dysfunction, increasing risk for development of 

cardiovascular and kidney disease (e.g. hypertension) (244). While nephrogenesis ends by P4 in 

mice, kidney vasculogenesis continues past this timepoint, to ensure that the growing nephrons 

receive proper vascularization (245). Impaired kidney development due to pathological hypoxia 

may also include impaired vascular development, contributing to lifelong risk for vascular-related 
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diseases. This study was not able to quantify vascular development using fluorescence 

microangiography (as in (69)), but would be an interesting avenue for future studies. 

Expression of Calb is decreased in miR-210 knockout embryos compared to wildtype 

littermates from hypoxic pregnancies. This is suggestive of decreased ureteric branching, which 

can contribute to a decrease in nephron number (47). It has been previously reported that 

intrauterine hypoxia results in kidney defects that are associated with suppression of ureteric β-

catenin signaling (115). Calb is a marker of urethelium, but does not lend insight into a functional 

defect, as analysis of Ret or Sox9 would (215). Since this study did not further investigate a 

branching defect, future studies could assay expression of genes regulating ureteric branching (e.g. 

Gdnf/Ret pathway, Wnt/β-catenin signaling) and quantify branching morphogenesis in miR-210 

KO kidneys from hypoxic pregnancies.  
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5.0 Future Directions and Implications 

5.1 Transcriptome of hypoxic kidney development 

5.1.1 Future experiments 

Chapter 2 identified many mRNAs and miRNAs that are affected by pathological hypoxia 

during early kidney development in an unbiased fashion. Investigation of their functional roles 

would be the next step of this project. The DAVID analysis of the target pairs suggested several 

genes that would be interesting to investigate further and a literature search of these mRNAs and 

miRNAs would determine which would be interesting to investigate functionally for their role in 

hypoxic kidney development. For example, miRNAs that have been shown to regulate genes 

involved in pathways important in kidney development (e.g. Wnt/β-catenin, Notch, Bmp).  

One aspect would be validation of miRNA-mRNA target pairs suggested by the Ingenuity 

Pathways Analysis (IPA). Some of these miRNA-mRNA pairs have already been validated as 

targets, since IPA includes experimentally validated pairs as well as databases of predicted pairs. 

The luciferase reporter gene assay could be used to validate the predicted binding sites of miRNA-

mRNA target pairs of interest (246). Then the next step would be to perform an ex vivo assay for 

functional targeting, which would entail treating the kidney explant organ cultures with a miRNA 

mimic and antagomir and then measuring the expression of the target mRNA(s) as well as changes 

in the development of the kidney explants (247-249). This analysis could also be eventually 

performed in vivo to investigate the possibility of mimics or antagomirs in clinical applications of 

pathological hypoxia to correct the adverse phenotypic changes in kidney development (250, 251).  

While much research has been conducted investigating the role of various protein-coding 

genes in kidney development and hypoxia, little is known about miRNAs in this context. Thus, 

further investigation of the miRNAs induced in pathologically hypoxic kidney development would 

be useful. In situ hybridization using Locked Nucleic Acid-modified oligonucleotide probes for 

specific miRNAs could be used to identify localized expression of the miRNAs of interest in 
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kidney explants cultured in different oxygen conditions (252). Functional analysis of miRNAs 

during kidney development could be performed using mice with specific miRNAs deleted in a 

global or cell-specific manner (203). Since these miRNAs are altered in conjunction with each 

other, it would be useful to study the effect of their loss of expression using multiple knockout 

models (i.e. miR-210 and miR-154 double knockout). This analysis would be performed in the 

same manner as the investigation of the effect of global deletion of miR-210 on kidney 

development, as outlined in Chapter 3. In short, the first step would be to determine if there is a 

nephron number difference at P30, and if found, analysis of kidney development across different 

stages of nephrogenesis to determine the timing of the onset of changes in gene expression to cause 

the phenotype. 

5.1.2 Global implications 

Physiological hypoxia is an important process throughout development, including kidney, 

and pathological hypoxia poses a significant health threat (56). Thus, further understanding of the 

mechanisms of how pathological hypoxia adversely impacts kidney development is essential. 

miRNAs are increasingly being recognized as important regulators in kidney development and 

disease (253-257). miRNAs are being investigated as biomarkers, targets, and therapeutics for 

disease (258). In fact, miR-210 has been identified as a potential biomarker for fetal hypoxia (177), 

pre-eclampsia (175, 176), acute kidney injury (173), clear cell renal cell carcinoma (172), and renal 

transplant rejection (174). This study provides a framework for future studies to investigate the 

potential of these hypoxia-induced miRNAs to be used in clinical applications related to 

pathological hypoxia-related diseases.  
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5.2 miR-210 in kidney development  

5.2.1 Future experiments 

Chapter 3 showed that there is a male-specific nephron deficit when miR-210 is deleted. 

Analysis of the timing of this nephron deficit showed that the gene expression changes become 

apparent by P2, but there was no significant difference in the number of glomeruli at P2. Thus, the 

nephron deficit occurs between P2 and P4, which is suggested by the variance in nephron number 

of P2 miR-210 male KO kidneys. Further analysis of the timing of the onset of the deficit would 

be useful to better understand how male mice are affected by the miR-210 deletion as well as 

comparing this to the determination of nephron number in female mice. To investigate this, 

nephron counting (i.e. Wt1-positive glomeruli) in male and female mice at P3 and P4 could be 

performed as well as stereological counting of Jag1-positive structures at P2, P3, and P4, since the 

data reported in Chapter 3 includes stereological nephron number analysis at P2 and only semi-

quantitative analysis of developing nephron structures, lacking Wt1-positive glomeruli, was 

performed. Analysis of the timing of cessation of nephrogenesis did not show clear differences, 

but there may be more subtle differences. Combined with increased apoptosis and Wnt signaling, 

cessation a half-day early could contribute to a 35% nephron deficit. To investigate this, samples 

could be collected at half-day intervals (i.e. P3, P3.5, P4) and analyzed for nephron progenitor 

pool depletion and developmental pathway marker expression. Another way to address the amount 

of nephron progenitors at P3 would be to perform whole-mount immunostaining to quantify Six2-

positive nephron progenitors. Further, this whole-mount immunostaining could be performed with 

immunostaining for Calb-positive ureteric bud tips and analysis of the number of ureteric bud tips 

(i.e. branching morphogenesis deficit) as well as the number of Six2-positive cells around each 

Calb-positive ureteric bud tip could be performed.  

Chapter 3 suggested an increase in apoptosis of differentiating nephron progenitor/pre-

tubular aggregate cells in male miR-210 KO kidneys by P2. Separate analysis of apoptotic nephron 

progenitors and differentiated nephron structures showed no significant differences in either cell 

type, but there could be a difference when analyzing cells at the point of differentiation. To 

investigate this finding, analysis of apoptotic cells at the bottom of the cap mesenchyme should be 
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conducted. Careful co-immunostaining, confocal imaging, and quantification of Six2-positive 

nephron progenitors, Ncam-positive nascent nephrons and nephron progenitors, and c-Casp3-

positive apoptotic cells could be performed to address this question. Unlike the individual stains 

for Six2 and Jag1, which cannot distinguish differentiating cells and proximity to the cap 

mesenchyme, respectively, in this assay the amount of apoptotic cells that are Six2-positive and 

cells that are Six2-negative but Ncam-positive near the bottom of the cap mesenchyme would be 

counted. Thus, measuring the amount of apoptosis occurring during the differentiation process. 

Further analysis of Fas-receptor-mediated apoptosis signaling would also be useful to confirm if 

it is increased when miR-210 is deleted.  

The increase in Lef1 expression in male miR-210 KO kidneys by P2 suggests increased 

activation of Wnt signaling pathway. Previous studies implicate miR-210 in regulation of Tcf7l2 

as well as Ctnnb1 (the β-catenin transcript) (158). Validation of targeting of these genes using the 

luciferase reporter gene assay in kidney cells (246) would shed light on the mechanism by which 

miR-210 deletion affects Wnt signaling during kidney development. The in situ hybridization for 

Wnt9b and immunostaining for total and active β-catenin show no differences in localized 

expression, but these assays did not quantify expression levels. While Western blots can quantify 

expression changes, they cannot address cell-specific/localized expression differences. Thus, 

another avenue to investigate miR-210’s involvement in the Wnt pathway is using nephron 

progenitor cell cultures. Isolated miR-210 wildtype and knockout nephron progenitors could be 

treated with Wnt agonists (e.g. BIO (259)) and antagonists (e.g. ICG-001 (260)) to investigate their 

self-renewal and differentiation potential (109, 144, 204). Treatment of the miR-210 knockout 

nephron progenitors with Wnt antagonist should result in them being more like wildtype cells. 

Similarly, treatment of wildtype nephron progenitors with Wnt agonist should result in knockout 

cell-like phenotype. Further, the knockout nephron progenitors would be expected to be more 

susceptible to treatment with Wnt agonist, since miR-210 is antagonistic to the pathway’s 

activation.  

The sex-specific nephron number deficit observed in miR-210 knockout mice is similar to 

that observed in a model of prenatal hypoxia (60). This study found that at 12 months of age, both 

sexes exposed to hypoxia were more susceptible to high-salt diet-induced cardiac fibrosis, but only 

the hypoxia-exposed male mice were susceptible to salt-induced kidney fibrosis (60). This study 

and the findings in Chapter 3 match with what is known about sex-specific differences in 
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individuals with IUGR (91, 242). Thus, investigation of the miR-210 knockout model in regard to 

decreased kidney health with aging and its response to a high-salt diet (i.e. analyzing kidney 

function and fibrosis at 4, 6, and 12 months) would be useful in understanding the genes involved 

in sex-specific differences in aging and hypertension. Further, nephron number analysis of 

ovariectomized (method as described in (261)) female miR-210 wildtype and knockout mice would 

determine the role of sex hormones in miR-210-dependent regulation of kidney development. In 

addition, analysis of these female ovariectomized mice regarding their risk for developing 

hypertension would further lend insight to the role of sex-dependent miR-210 regulation. 

5.2.2 Global implications 

IUGR and decreased nephron number are associated with an increased risk for developing 

disease, in a sex-dependent manner (76, 87, 242). However, little is known about how these sex-

specific differences occur during kidney development. This study showed that hypoxia-induced 

miR-210 is involved in this sex-specific regulation of kidney development, which is the first 

miRNA to be identified as having a sex-specific impact on nephron number. Thus, it appears that 

miR-210 is important for regulating gene expression in physiologically hypoxic kidney 

development (i.e. normal kidney development).  

Wnt/β-catenin signaling is an important regulator of the balance of nephron progenitor self-

renewal versus differentiation (262), which is a major factor determining nephron number (47). 

Previous research has shown that nephron progenitors cultured in hypoxia had reduced Wnt 

signaling, disrupting their balance of self-renewal versus differentiation (197); in utero hypoxia 

suppresses ureteric β-catenin signaling (115); and miR-210 has previously been implicated in 

regulating the Wnt pathway (158, 263). These data, along with this study, suggest that miR-210 is 

plays a role in the hypoxic regulation of the Wnt signaling pathway during kidney development. 

Proper regulation of Wnt signaling is an important factor when culturing nephron progenitor cells 

ex vivo as well as in the development of kidney organoid cultures (144, 204, 264, 265). Further 

investigation into the mechanism of miR-210-mediated Wnt/β-catenin signaling regulation would 

increase our understanding of the complex nephrogenesis process.  
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Apoptosis is a normal developmental process, and miRNAs are an important regulator of 

apoptosis during kidney development (137, 138, 143, 223, 224). Chapter 3 adds to what is known 

about the role that miR-210 plays in regulating apoptosis. miR-210 has been shown to inhibit 

apoptosis during hypoxia (149, 153, 154, 266-268). The miR-210 target Casp8ap2, which Chapter 

3 showed is specifically increased in male miR-210 KO kidneys, has increased expression in males 

compared to females in developing mouse lung tissue (236). Thus, this study shows the role that 

miR-210 plays in regulating apoptosis in a sex-specific manner in the physiological hypoxia during 

kidney development. It has previously been shown that increased apoptosis of nephron progenitors 

results in a nephron deficit (138, 223). The data in Chapter 3 show that miR-210 is another 

regulator of apoptosis during kidney development that is required to maintain normal nephron 

number development. 

5.3 In vivo hypoxic kidney development 

5.3.1 Future experiments 

Chapter 4 showed no major differences in the miR-210 knockout model to hypoxia by E17. 

However, Chapter 3 showed that the miR-210 knockout mice do not exhibit changes in kidney 

development gene expression until P2. Thus, it is possible that there is a difference in the knockout 

model’s response to intrauterine hypoxia at a later timepoint. To investigate this, the in vivo 

hypoxia model analysis (as in Chapter 4) could be performed at P0 and P2. Analysis of nephron 

number and signaling pathway activation as in Chapter 3 could also be conducted as a comparison 

to the normoxic miR-210 knockout phenotype. Relatedly, the findings in Chapter 3 show a sex-

specific difference during kidney development in the miR-210 knockout model, so analysis of its 

response to hypoxic insult during pregnancy should be conducted with the sexes separated. 

Chapter 3 showed a 35% nephron deficit in the miR-210 knockout male mice, and a 28% 

nephron deficit in wildtype and knockout females, similar to that observed a model of prenatal 

hypoxia (60). The kidney development marker expression analysis performed in Chapter 4 

suggests that the miR-210 knockout mice from hypoxic pregnancies may have altered ureteric 
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branching development, which could result in a nephron deficit. Thus, analysis of nephron number 

at P30 in male and female miR-210 wildtype and knockout mice from hypoxic pregnancies could 

be performed to address this possibility.  

Recently, a mouse model with a Tet-on construct that can be used to induce overexpression 

of miR-210 was created (269). This mouse could be used to determine the effect that miR-210 

overexpression has on kidney development, compared to hypoxia-induced miR-210 

overexpression, as observed in the Six2-VHL-/- and hypoxia chamber models in Chapter 4. Analysis 

of nephron number and expression of key genes involved in regulating kidney development in this 

overexpression model would lend insight to the role miR-210 plays in the hypoxia response by 

comparing these results to those produced with hypoxia models. This study would also be a useful 

comparison to the findings of Chapter 3, to determine how loss-of-function of miR-210 compares 

to its gain-of-function in the setting of kidney development.  

5.3.2 Global implications 

Several studies have investigated how fetal hypoxia impacts kidney development (60-62, 

75, 115, 197); and miR-210 has recently been implicated as a biomarker for acute fetal hypoxia 

(177). This study is the first to look at the role of miR-210 in the kidney’s response to fetal hypoxia. 

While few differences were identified, further investigation of the effect of miR-210 deletion in 

the setting of fetal hypoxia would increase understanding of how it impacts nephron number 

development. Decreased expression of the ureteric bud marker Calb in hypoxia-exposed miR-210 

knockout embryonic kidneys suggests a link between miR-210 and hypoxia-induced suppression 

of Wnt signaling (115). Studying the overexpression of miR-210 during kidney development 

would also increase our understanding of what role it plays in regulating fetal responses to hypoxia.  
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