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LONGITUDINAL MULTIVARIATE NORMATIVE COMPARISONS AND ACCURACY 

IMPROVEMENT METRICS FOR COMPETING ENDPOINTS

Zheng Wang, PhD

University of Pittsburgh, 2020

Motivated by the Multicenter AIDS Cohort Study (MACS), we are interested in developing meth-

ods to address several challenges in analyzing the data. The objectives of the research include 

developing dementia classification procedures from longitudinal data to control family-wise error, 

modeling covariates effects on time to dementia, and evaluating the improvement of diagnostic 

accuracy when including a new biomarker in the model.

In order to properly define an event of interest, we adapt the cross-sectional multivariate nor-

mative comparison (MNC) method, which controls family-wise error by accounting for the inter-

correlations among all covariates, to a longitudinal setting. Longitudinal MNC is constructed based 

on multivariate mixed effects models when hypothesis testing happens by the conclusion of study.

In practice, patients may require visit-by-visit classification. Prompt feedback can guide treat-

ments for longer survival. We propose to modify longitudinal MNC statistics to build visit-by-visit 

test statistics. Then, based on predicted number of visits from survival model and Poisson re-

gression, we can apply Bonferroni-type correction to control family-wise error for this prospective 

classification scenario.

Lastly, we examine a new biomarker’s contribution to diagnostic accuracy for competing-risk 

outcomes. The net reclassification improvement (NRI) and the integrated discrimination improve-

ment (IDI) were originally proposed to characterize accuracy improvement in predicting a binary 

outcome, when new biomarkers are added to regression models. These two indices have been 

extended from dichotomous outcomes to multi-categorical and survival outcomes. We extend the 

NRI and IDI to competing-risk outcomes, by adopting the definitions of the two indices for multi-
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category outcomes. The “missing” category due to independent censoring is handled through the

inverse probability weighting.

Keywords: Competing risks; Cumulative incidence function; Family-wise error rate; In-

tegrated discrimination improvement; Multivariate mixed-effect model; Net reclassification im-

provement.
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1.0 GENERAL INTRODUCTION

In medical research, subjects are often followed up with physical and (or) mental evaluations over

time. The researchers and clinicians may be interested in identifying the onset of some diseases,

and evaluating how treatment affects the risks of onset along with other demographic and clinical

variables. Furthermore, when a new biomarker is introduced into study, it is often of interest to

know whether it will improve the diagnosis of the disease so that patients with higher risks will be

treated more aggressively. The first step of establishing effective analysis is giving proper definition

of event of interest. Then an appropriate modeling procedure can be used to relate these covariates

with the events of interest, which can be further utilized to investigate the accuracy improvement

over the course of variable additions.

For example, in the Multicenter AIDS Cohort Study (MACS), subjects will be periodically

measured by their brain cognitive domain functioning as well as other characteristics. These brain

cognitive domain functioning scores will provide clinicians with useful information about how a

subject’s cognitive functioning evolves longitudinally and when they have developed mild cogni-

tive impairment and dementia. After the event of interest such as dementia is properly identified,

one may want to examine how covariates and treatment affect the time to dementia. Naturally,

death is a competing risk preventing dementia from being observed, and a competing risks sur-

vival model is helpful in evaluating the association between covariates and risks. On top of this,

when a new biomarker is introduced to the study, researchers are interested in knowing whether

this biomarker will improve diagnostic accuracy of dementia. Motivated by the MACS data, in this

thesis we are developing methods to specifically address these practical problems.

First, to properly make a dementia classification, it is crucial to take family-wise error into

account. Huizenga et al. (2007) proposed the cross-sectional multivariate normative comparisons

(MNC) to control family-wise error by accounting for the inter-correlation among multiple domain
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scores and making hypothesis testing on all domains simultaneously. However, in a longitudinal 

setting where covariates are recorded multiple times, applying the cross-sectional MNC at each 

visit will still inflate family-wise error rate due to multiple testing over all visits. We thus extend 

the cross-sectional MNC method to a longitudinal setting by taking into account multiple testing 

over different domains and repeated measures.

Approaches to addressing family-wise error inflation vary, depending on different research 

purposes in practice. If classification is desired after a study concludes or when researchers have 

collected sufficient number of visits for classification decisions, number of visits is fixed for each 

patient. We propose to use multivariate linear mixed effects model to characterize longitudinal 

multivariate data (Fieuws and Verbeke, 2004; Fang et al., 2006). With estimated parameters from 

the mixed model, a longitudinal MNC procedure is proposed by adapting cross-sectional MNC 

method to repeated multivariate measures to control the overall family-wise error rate. We will 

also show that a permutation test is appropriate when the data fail to satisfy the multivariate normal 

assumption.

On the other hand, clinicians might want to give prompt feedback to patients at each visit based 

on all the historical data up to that visit. Using MACS as an example, subjects are carefully moni-

tored, and prompt interventions are provided if subjects’ cognitive scores are far from normal. The 

problem is also closely related to Just-in-Time Adaptive Interventions (JITAIs), in which subjects 

are monitored over time and interventions are determined at each measurement based on solely the 

historical data (Klasnja et al., 2015; Nahum-Shani et al., 2018). However, few literature related to 

family-wise error control was found for this type of problems. Most existing procedures, such as 

Bonferroni (Bonferroni, 1936; Dunn, 1959, 1961) and Benjamini-Hochberg-Yekutiele procedure 

(Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001) do not work, because number of 

visits for each patient is unknown at the beginning of the study or during the study.

The only relevant works that we found come from the online testing literature. The α-investing 

rule, proposed by Foster and Stine (2008) and developed by Aharoni and Rosset (2013), exhibited 

the ability to control false discovery rate in an online multiple hypothesis testing scenario when 

number of tests is unknown and potentially infinite. However, the α-investing rule only takes into 

account historical testing results, and does not differentiate among subjects with different testing 

frequency. During an ongoing clinical study, historical data provide useful information about how
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many visits a subject may have left. Therefore, we propose to use some frequency model to predict 

number of visits each subject will have. At the same time, we will introduce a dynamic procedure 

based on Bonferroni correction. As for visit-by-visit test statistic, we propose to modify previously 

mentioned longitudinal MNC method so that visit-by-visit test statistics are independent for the 

same subject and power can be preserved.

After the events of interest are properly defined, one may want to evaluate how covariates 

impact the risks associated. In the example of the MACS, when clinicians are concerned about 

the event of cognitive impairment, patients may die before such an event can be observed, and the 

event time may be competing-risk censored by death. Popular competing risks modeling strategies 

include applying Cox proportional hazard regression (Cox, 1972) to each cause, and using Fine-

Gray’s subdistribution hazard model (Fine and Gray, 1999). The former approach draws upon a 

familiar Cox model, where the parameters can be interpreted as the log hazard ratio. The latter is 

popular as it directly evaluates how covariates affect CIFs. However, the sum of estimated 

CIFs from the Fine and Gray model across all events may exceed one, causing difficulty in 

interpreting covariate effects. Gerds et al. (2012) proposed a logistic risk regression model in a 

competing risks setting. Due to its multinomial nature, the sum of event probabilities and survival 

probability at any given time point is strictly equal to one. The covariate effects can be explained 

as the changes in log odds ratio between event probability and survival probability, though the 

estimation procedure is not readily available in existing packages. Cubic B-spline functions 

defined by De Boor (2001) is flexible to be applied to the logistic risk regression model to 

approximate baseline multinomial logistic functions, and we can implement the maximum 

likelihood estimator of the logistic risk regression model in R and SAS.

Last but not least, after events are properly defined and appropriate survival model is estab-

lished, introducing a new biomarker into the statistical model may change the risks associated with 

events of interests. Therefore, clinicians want to know whether including this new biomarker might 

help separate those who will develop the event of interest by a certain time point from those who 

will not. The proper discrimination can lead to different treatment strategies. The net reclassifica-

tion improvement (NRI) and the integrated discrimination improvement (IDI) were originally pro-

posed to characterize accuracy improvement in predicting a binary outcome, when new biomarkers 

are added to regression models (Pencina et al., 2011; Uno et al., 2013). These two indices have
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been extended from dichotomous outcomes to multi-categorical and survival outcomes (Li et al.,

2013b). Working on the MACS study where the onset of cognitive impairment is competing-risk

censored by death, we extend the NRI and the IDI to competing risk outcomes, by using CIFs

to quantify cumulative risks of competing events, and adopting the definitions of the two indices

for multi-category outcomes. The “missing” category due to independent censoring is handled

through the inverse probability weighting. Various competing risks models are considered, such as

the Fine and Gray (Fine and Gray, 1999), multistate (Cox, 1972; Cheng, 2009), and multinomial

logistic models (Gerds et al., 2012). Procedures of estimation for the NRI and the IDI with their

asymptotic distribution from competing risks data are presented, and a bias-corrected and acceler-

ated bootstrap (Efron, 1987) method are applied for inference of the IDI in light of the difficulty

in establishing a general variance estimator across competing-risks survival models. However,

Demler et al. (2017) pointed out that variance estimators based on U-statistic theory will fail if the

model is under the null hypothesis. We adopt their remedial measures to handle the degeneracy in

the NRI and the IDI under the null, and will validate the theoretical results and the robustness of

their remedial method through simulation studies.

The rest of the proposal is organized as follows. Chapter 2 and 3 will introduce two approaches

to control family-wise error in identifying disease onset based on longitudinal data. In Chapter 2,

multivariate linear mixed effects model with time effect and dependency structure will be used

for testing subject’s cognitive status when cognitive impairment classification happens by the con-

clusion of study. Then in Chapter 3, we propose a family-wise error controlling procedure when

cognitive impairment classification is desired at every visit, such that patients will get prompt re-

sults back and treatments can be prescribed on time. Last but not least, in Chapter 4 we extend the

NRI and IDI to competing-risk survival outcomes, and elaborate inferential procedures for the ex-

tended metrics. Simulation studies are carried out in each chapter to demonstrate the effectiveness

of our methods. Then, we will apply proposed methods to the MACS to illustrate how they should

be applied for real data, followed by some discussions and future work.
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2.0 LONGITUDINAL MULTIVARIATE NORMATIVE COMPARISON

2.1 INTRODUCTION

Classification plays an important role in many fields of medical science. For example, identify-

ing participants with cognitive impairment will enable clinicians to provide patients with proper

treatments. Several methods of counting the number of domains with abnormal cognitive func-

tioning scores Antinori et al. (2007); Gisslén et al. (2011) have been used in the fields of HIV and

Alzheimer’s Disease, despite the evidence that these methods are associated with inflated family-

wise error rate (FWER). In order to control FWER at a pre-determined level and correct for inter-

correlations among multiple cognitive domains, Huizenga et al. Huizenga et al. (2007) developed

the so-called Multivariate Normative Comparison (MNC) method which specifically takes the co-

variance of the domain scores into consideration. Let X i denote a vector of q cognitive domains

measured for participant i . The healthy control group contains n participants, and their sample

mean and sample covariance matrix of the q domain scores are denoted as µ̂c and Ψ̂c . If each

vector of q domain scores is independent and identically distributed over a multivariate normal

distribution for every participant, one could build an F -statistic for testing cognitive impairment

for a certain individual:

n(n −q)

(n +1)(n −1)q
(X i − µ̂c )T Ψ̂c

−1
(X i − µ̂c ) ∼ F (q,n −q).

In principle, the MNC method can effectively control FWER in impairment classification as

long as the data follow a multivariate normal distribution Su et al. (2015); Wang et al. (2019). In

practice, participants may visit the same clinician or institution multiple times. For example, if

participants come to an Alzheimer Disease Research Center (ADRC) with memory complaints or

5



concerns on cognition, they will be followed roughly annually and their cognitive functioning will 

be assessed repeatedly over time. If the MNC is employed at each visit and participants are tested 

at a pre-specified α level, the resulting FWER of being categorized as cognitively impaired would 

be greatly inflated for failing to account for multiple testing over repeated visits. Moreover, an F 

distribution may not be a good approximation of the test statistic when the assumption of multi-

variate normality is not satisfied in real data. Here we propose two longitudinal MNC procedures 

that specifically take into account multiple tests over repeated measures.

One natural way to approach the longitudinal data is to utilize a multivariate linear mixed ef-

fects (MLME) model. Reinsel Reinsel (1982a) established theories for multivariate longitudinal 

models with repeated measures when data are balanced and parameters are unrestricted. Heitjan 

and Sharma Heitjan and Sharma (1997) further considered an autoregressive error structure for 

longitudinal data and estimated the parameters with the maximum likelihood approach. Fang et 

al. Fang et al. (2006) introduced a modified expectation-maximization (EM) algorithm to make it 

feasible to estimate unknown parameters in a MLME model with constrained intercepts. Fieuws 

and Verbeke Fieuws and Verbeke (2004) studied how the associations between different responses 

evolve over time and jointly modeled two responses by allowing a dependence structure among 

the random terms in the model. They further proposed to model longitudinal outcomes in a pair-

wise fashion for computation efficiency when too many outcome variables are considered Fieuws 

and Verbeke (2006). Verbeke et al. Verbeke et al. (2014) gave a rather comprehensive review of 

development in multivariate longitudinal analysis, and pointed out that joint modeling is preferred 

over univariate modeling to answer research questions about associations among various outcomes 

over time. Hout et al. proposed a longitudinal MLME model with change-point predictors for 

non-linear trends van den Hout et al. (2015).

Here, we start by assuming a multivariate normal distribution for longitudinal domain scores, 

and use the MLME to obtain the mean function and covariance structure of domain scores from 

healthy controls. Under multivariate normality, a testing procedure based on χ2 is then proposed 

to classify cognitive status for each participant. However, multivariate normality is often difficult 

to assume for collected data. If the dependency structure is not sufficiently specified or  the data 

fail to follow a multivariate normal distribution, the χ2 procedure may still have an inflated family-

wise error. Therefore, we propose a permutation test for our proposed test statistic which is robust
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against distribution assumptions.

The rest of the chapter is organized as following. Modeling and testing procedures are detailed

in Section 2.2. Then, in Section 2.3 some simulation studies are carried out 1) when multivariate

normal distribution is satisfied, and 2) when the assumption is not satisfied. We will illustrate

in Section 2.4 how to use MLME and the χ2 and permutation tests for neuropsychological data

collected from the Multicenter AIDS Cohort Study (MACS). Finally, we will conclude with some

discussions on interpretation of the MNC and future work.

2.2 LONGITUDINAL MULTIVARIATE NORMATIVE COMPARISONS

2.2.1 Testing Procedure Based on χ2

Assume there are n participants enrolled in a healthy group which is used as the reference, and

each participant has q cognitive domains tested over mi total visits during the study. Domain test

scores are usually normalized so that a multivariate normal distribution holds for each visit. Let

Yi j k , i = 1, ...,n; j = 1, ..., q ;k = 1, ...,mi denote the tested score of participant i for domain j over

k-th visit. Considering that scores of a single domain assessed across mi visits are correlated with

each other, and scores of two different domains from the same participant are correlated, we model

Yi j k using a MLME model:

Yi j k =β j 0 +β j 1ti k +β j 2t 2
i k +β j 3t 3

i k +νi j +δi k +εi j k . (2.1)

Here we use q polynomial functions of degree 3 to describe the changes in the mean domain scores

over time, and can add higher order terms if necessary. Alternatively, the B-spline technique can

be used to approximate the true mean domain scores over time Bloxom (1985); De Boor (2001);

Shumaker (2007); Rutherford et al. (2015); Harrell (2015). εi j k is assumed to be independent and

identically distributed (i.i.d.) normal N (0,σ2), which is specific to each observation or measure-

ment. Similarly, δi k , which represents the visit-specific effect, is also assumed to be i.i.d. normal

N (0,θ2). Because different domain functions tend to be correlated with each other for the same par-

ticipant, νi = (νi 1, ..,νi q )ᵀ is assumed to be N (0,Σ), where Σ= [ρsr ], s,r = 1, ..., q . Generally, the
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symmetric matrix Σ could be left unspecified, or assumed to have the structure of auto-regression

or compound symmetry.

All unknown parameters can be estimated from an MLME modelFang et al. (2006); Fieuws

and Verbeke (2004), which are denoted as β̂ j 0, β̂ j 1, β̂ j 2, β̂ j 3, j = 1, . . . , q, ρ̂sr , s,r = 1, . . . , q , θ̂2, and

σ̂2. For participant d to be tested, we take all q domain scores observed over md visits, and stack

them into a single vector

U d = (Yd11, ...,Yd q1,Yd12, ...,Yd q2, ...,Yd1md , ...,Yd qmd )ᵀ. (2.2)

From the linear mixed effects model in (2.1), the estimated mean vector of U d is written as

µ̂d = (β̂10 + β̂11td1 + β̂12t 2
d1 + β̂13t 3

d1, β̂20 + β̂21td1 + β̂22t 2
d1 + β̂23t 3

d1, . . . , β̂q0 + β̂q1td1 + β̂q2t 2
d1 +

β̂q3t 3
d1, . . . , β̂10 + β̂11tdmd + β̂12t 2

dmd
+ β̂13t 3

dmd
, . . . , β̂q0 + β̂q1tdmd + β̂q2t 2

dmd
+ β̂q3t 3

dmd
)ᵀ, which is

of length qmd . Further, based on the covariance matrix structured in this model, we can estimate

the covariance matrix for U d as Ψ̂d = [τsr ], s,r = 1, ..., qmd . Each element in Ψd corresponds

to the covariance between a pair Yd j1k1 and Yd j2k2 , which can be estimated as ρ̂ j1 j2 + θ̂2I{k1 =
k2}+ σ̂2I{ j1 = j2,k1 = k2}, with domain indexes 1 ≤ j1, j2 ≤ q , visit indexes 1 ≤ k1,k2 ≤ md and I{·}
being an indicator function.

Under the assumption of multivariate normal distribution for all observations measured over

time, we now propose an extended longitudinal multivariate normative comparison (LMNC) statis-

tic for testing whether the d-th participant has impaired cognition:

Td = (U d − µ̂d )ᵀΨ̂−1
d (U d − µ̂d ) ∼χ2

qmd
, (2.3)

which can be modified to an F test when number of participants is small in the healthy control

group. For participant d , if we are generally concerned about whether this participant has cogni-

tive functions with observations either too high or too low, we will use (1−α) quantile of χ2
qmd

as the threshold for the significance level α. In practice, clinicians are usually more interested in

screening for cognitive impairment with extremely low scores. One can conduct a statistical test

considering the direction of domain scores by rejecting the null hypothesis if participant d’s mea-

sured distance Td exceeds the (1−2α) quantile of χ2
qmd

and U
′
d 1qmd < µ̂′

d 1qmd , where 1qmd is the

qmd -vector of ones.
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2.2.2 Permutation Testing

In practice, multivariate normality may not hold for the recorded measurements, and the test statis-

tic in (2.3) might not follow an χ2 distribution. In such case, the Td statistic in (2.3) can still serve 

as a distance measure of individual scores to the norm, although we need to develop a new method 

to find the critical value for the test statistic without relying on a particular parametric distribution. 

We propose the innovative use of a permutation test to find such a  critical value for each partici-

pant. Care should be taken in administrating a permutation test. In order that a test statistic from a 

permuted sample is comparable to the one from the original data, the permutation should respect 

the covariance structure of νi . Meanwhile, as the test statistic depends on the number of total visits 

md completed by the d-th participant, the permutation test should be done in a way specific to md .

For example, the covariance structure in Model (2.1), Σ = [ρsr ], s,r = 1, . . . , q , is set to be 

compound symmetric, where ρss = ρr r for s,r = 1, . . . , q , and ρsr = ρut for s,r,u, t = 1, . . . , q and s 6= 

r,u 6= t . The compound symmetry is a reasonable covariance structure when all cognitive domain 

scores in the reference group have been standardized and their errors can be assumed to follow an 

identical distribution.

As the test statistic distribution varies by md , different thresholds are needed for each unique 

md observed from the testing group. Suppose there are M distinct numbers of visits in the testing 

group. We take M bootstrap samples, one for each unique number of visits. The following pro-

cedure details how permutation tests should be done for all of the participants in the testing group 

who have m total number of visits. We first take a  bootstrap sample of the desired number N  of 

participants with replacement (say 5,000) from the healthy control group. Then, we remove the

time effect (i.e. β̂ j 0+β̂ j 1ti k +β̂ j 2t 2
i k +β̂ j 3t 3

i k
from model (2.1)) to obtain participant-specific errors

over time for participant i from the bootstrap sample, 1 ≤ i ≤ N . Next, to carry out the permutation 

test for each participant in the bootstrap sample, we consider errors of each domain function across 

all visits as a whole column. As a result, the multivariate longitudinal measures can be organized 

into a matrix of q-domain columns and mi -visit rows. Then, we permute these q columns within 

the same participant so that this compound symmetric covariance structure will be sustained after 

each permutation.

For each participants i in the bootstrap sample, we sample m visits with replacement to repre-
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sent the bootstrapped sample errors with the number of visits matching with that of those par-

ticipants to be tested. The bootstrapped sample errors from the m visits can be stacked in a

similar way as in equation (2.2) to a vector V i = (Ei 11, ...,Ei q1,Ei 12, ...,Ei q2, ...,Ei 1m , ...,Ei qm)ᵀ.

Then, we calculate the bootstrap test statistic for the rearranged error sample from participant

i as Ti = (V i )ᵀΦ̂−1
mi

V i . However, the covariance structure Φmi used here is not the same as Ψ

from equation (2.3), given that we draw errors with replacement for m times at the visit level

within participant i . Φmi is a mq × mq matrix. For domain indexes 1 ≤ j1, j2 ≤ q and visit

indexes 1 ≤ k1,k2 ≤ m, its element can be estimated as ρ̂ j1 j2 + θ̂2
(
I{k1 = k2}+m−1

i I{k1 6= k2}
)+

σ̂2
(
I{ j1 = j2,k1 = k2}+m−1

i I{ j1 = j2,k1 6= k2}
)
, where I is an indicator function. This covariance

matrix Φmi cannot be inverted when m > 1 and the participant we bootstrapped has only one visit

(mi = 1). As a result, we will exclude participants with only one visit from the healthy control (ref-

erence) group when the permutation test is administered after longitudinal modeling. Considering

that the number of participants with only one visit is small in a longitudinal setting, this exclusion

seems to have a minimal impact on the MACS sample that we use.

With a sufficient number of permutation tests conducted, the (1−α) quantile specific to m

visits can be found among all Ti I
{
(V i )ᵀ1qm < 0

}
, i = 1, . . . , N , to serve as the critical value. Thus,

we relax the assumptions that the test statistic follows a χ2 distribution and that the upper tails and

the lower tails of the domain scores are symmetric. Participant d with total md = m visits will

be classified as cognitively impaired if their test statistic exceeds this critical value and Uᵀ
d 1qm <

µ̂ᵀ1qm .

2.3 SIMULATION ANALYSIS

We ran a series of simulation studies to evaluate the performance of the proposed procedures.

Given that the MACS data analyses in Section 2.4 involve 6 cognitive domains, in the simulation

studies we also considered q = 6 hypothetical domains. We first generated longitudinal multivariate

data following the multivariate normal distribution with several forms of polynomial mean func-

tions over time. The testing procedure based on χ2 was evaluated by FWER over different levels of

α. Then, we considered data that do not follow multivariate normality to evaluate the performance
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of the proposed permutation test. Two forms of data were examined. One type was generated from

multivariate t distributions with symmetric but heavier tails than normal distributions. The other

was generated by transforming Gamma distributions to get negative skewness.

We carried out 1,000 simulations for each scenario. For each simulation, we generated longitu-

dinal scores for 1,000 participants supposedly from the healthy control group, and generated longi-

tudinal scores for another 1,000 participants independently as the test group. For each participant,

we simulated survival time from an exponential distribution with mean 30 years and censored at

15 years. Since participants in the MACS were tested semiannually (around 0.5 year between any

consecutive two visits) or biannually on their cognitive performance Miller et al. (1990); Becker

et al. (2014), the time between any consecutive two visits was assumed to follow independent and

uniform (0,1) distribution with the first visit at time 0. We continued to simulate visits until the

accumulated visit times exceeded the censored survival time for the i th participant. The number

of visits at the last visit before the boundary was recorded as mi .

In practice, one might be interested in determining whether cognitive functions are significantly

better in one group compared to another. Thus, we examined and compared various testing groups

with different visit frequencies and mean functions under alternatives and under the null. Detailed

simulation specification and results are described below.

2.3.1 Multivariate Normal Distribution

After the set of visits mi was generated for participant i , six domain scores were simulated from

the multivariate normal distribution at each visit. The covariance matrix for U i was specified as

following. We set σ2 = 30, θ2 = 10, ρsr = 20, for s = r , and ρsr = 60, for s 6= r with s,r = 1, ...,6.

Each element for covariance matrix can then be computed. Diagonal elements are σ2 +θ2 +ρ11 =
100. Covariance of different cognitive domains at the same visit is θ2 +ρ12 = 30. Covariance of

the same cognitive domains at different visits is ρ11 = 60. The rest elements are ρ12 = 20.

We considered four types of polynomial mean functions over time. For the constant trend, all

six cognitive domains are assumed to have mean 50 at any given t . For the linear trend, the first

three cognitive domains are set to have means 50−0.3t , and the other three have means 50−0.5t .

For the quadratic trend, the first three cognitive domains have means 50− 0.02t 2 + 0.1t , and the
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other three have means 50−0.15t 2 +0.2t . Lastly, for the cubic trend, the first three have means

50−0.001t 3 +0.05t 2 +0.3t and the rest have means 50−0.0015t 3 +0.07t 2 +0.6t .

The mvrnorm from the R library MASSwas then used to generate longitudinal cognitive errors

following the multivariate normal distribution with means 0 and the covariance matrix as described

above. The mean polynomial functions with the four forms (see above) were added to the errors

to represent the simulated longitudinal cognitive scores. For the healthy control group, the lmer

from the library lme4 was used to implement model (2.1). Without assuming any prior knowledge

of the true longitudinal mean trend, cubic polynomial functions were used to describe the mean

functions for all four sets of data. For each type of mean functions, the test statistics were then

computed for 1,000 testing participants using the sample mean and covariance matrix obtained

from the corresponding healthy control group. The χ2 tests were conducted for each simulated

dataset at different levels of α (from 0.001 to 0.1), and the average FWER was computed based

on 1,000 simulations for each type of mean functions. Figure 1 illustrates the obtained FWERs of

the LMNC χ2 test across all α levels. The estimated FWERs are denoted by the black solid lines,

and the nominal α levels are denoted by gray dash lines. The two lines are almost identical under

the four mean trends. The LMNC χ2 test seems to have exact FWER when domain scores follow

multivariate normal distributions and the underlying means and covariance structure are correctly

specified.

2.3.2 Multivariate t and Gamma Distributions

Real data often violate multivariate normal distributions. Skewness and heavy tails are often ob-

served. In this simulation setting, we considered the same four mean functions described in Section

2.3.1, but non-normal errors were used in simulations. One set of errors has symmetric heavy tails

from multivariate t distributions, and the other set has negative skewness transformed from corre-

lated Gamma distributions.

We generated longitudinal random errors from multivariate t distributions with 5, 25 and 50

degrees of freedom. The covariance matrix for the error terms was assumed to follow the same

structure as described in Section 2.3.1, and the means of the errors were set at 0. The rmt from

the library csampling was used for multivariate t random error generation. Then we added four
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Figure 1: The LMNC χ2 test when data follow multivariate normal distribution
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polynomial mean trends to the simulated random errors to represent observed longitudinal scores 

with heavy symmetric tails.

Next, a gamma distribution was utilized to simulate data with negative skewness. In order to 

comply with certain covariance structure, i.e. compound symmetric, we first generated longitudi-

nal multivariate normal errors ςi j k , j = 1, ...,6,k = 1, ...,mi for participant i with the zero means. 

The covariance matrix from Section 2.3.1 divided by 100 was used here. Then we considered three 

different gamma distribution designs. For the first one, we calculated 70 − Γ−1(Φ(ςi j k )) as our 

negative skewed errors, where Γ is the cumulative distribution function (CDF) of the gamma 

distribution with shape of 4 and scale of 5 and Φ is the CDF of the standard normal distribution. 

For the second design, we calculated 100 −Γ−1(Φ(ςi j k )) as our negative skewed errors, where we 

assumed shape of 25 and scale of 2 for the gamma distribution. For the third design, we used 150 

−Γ−1(Φ(ςi j k )) as our negative skewed errors, where the gamma distribution has shape of 100 and 

scale of 1. The same longitudinal mean functions from Section 2.3.1 were again added to the 

simulated errors to obtain observed longitudinal cognitive domain scores with negative skewness. 

All three designs have baseline scores with mean 50 and variance 100.

For each scenario we generated longitudinal cognitive domain scores for 1,000 participants 

from the healthy control group and scores for the other 1,000 as the test group. Other simulation 

setups are the same as those from Section 2.3.1. To implement the permutation test, we first fit 

an MLME with cubic polynomial terms to data from the healthy control group as specified in 

Model (2.1) and obtained the estimates for the mean trends and the covariance matrix. Then, for 

each unique number of visits M observed in the test group, we bootstrapped 5,000 participants 

with replacement (N=5,000). For each participant, we subtracted the estimated mean trend from 

their longitudinal scores. The resulting errors were rearranged randomly as illustrated in Section 

2.2.2, and then added back to the estimated mean trend to get permuted participant’s scores. The 

α-th quantile was found among these 5,000 test statistics to serve as the threshold for cognitive 

impairment classification in the test group. After 1,000 simulations, summarized FWERs at various 

levels of α are shown in Figure 2 for data generated from multivariate t distributions and in Figure 

3 for data generated from gamma distributions. For comparison, we also carried out the testing 

procedure based on χ2 to examine how FWERs are controlled relative to different α levels. Their 

FWERs at various levels of α are also shown in respective figures.
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Figure 2: The LMNC χ2 and permutation tests when data follow multivariate t distributions

(permutation test when df=5 overlapped with the nominal α line)
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Figure 3: The LMNC χ2 and permutation tests when data are transformed from Gamma

distributions
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When multivariate normality does not hold, the FWER based on the χ2 procedure can be

greatly inflated, as shown in Figures 2 and 3 where the three black curves denoting the FWERs

from the χ2 test are way above the empirical α levels denoted by the gray broken dash lines. More-

over, the inflation seems more drastic at smaller levels of α. On the other hand, the permutation

test can successfully guard FWER at or below any pre-determined level as illustrated in Figures 2

and 3. Since the permutation test was carried out on the error terms, this suggests that Model 1 still

works well in capturing the mean functions even when the data do not follow multivariate normal.

Another interesting phenomenon about the permutation test that we observed from the plots is that

FWER will be smaller compared to α when the multivariate t distribution has less heavy tailedness

and the gamma distribution has less skew. In other words, when the data move closer to normal-

ity, the permutation test becomes more conservative. Though the conservativeness of permutation

tests has been observed in early work Berger (2000), our permutation test is more complicated and

the dependency on the skewness of the data requires further investigation. Therefore, it remains

important to check the normality of data before determining whether the χ2 or permutation test

should be used when applying the LMNC for classification.

2.3.3 Comparing Groups under Different Visit Frequencies

In this section, we examined the power and the FWER of the proposed tests under different settings

of visit frequency for the test group. The MACS study, which inspired us to develop the LMNC

method, followed seronegative and seropositive participants at roughly the same frequency. Thus

the two comparison groups have similar distributions for the numbers of visits as shown later

in Section 2.4. However, this may not hold when a new study with certain treatment/condition

is tested against an old study, because various factors can contribute to significant differences

in visit frequencies. Even within the same study, participants from different cohorts may have

different follow-up visits. Therefore, we carried out the following numerical studies to examine

how different visit frequencies affect FWER as well as power if comparison between groups is

desired. Four different designs were considered for the test group by changing mean survival time

and censoring time:

1. Survival time follows exponential distribution with mean 30 years and is censored at 15 years
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(median visit number 28);

2. Survival time follows exponential distribution with mean 50 years and is censored at 15 years

(median visit number 29);

3. Survival time follows exponential distribution with mean 30 years and is censored at 10 years

(median visit number 19);

4. Survival time follows exponential distribution with mean 30 years and is censored at 25 years

(median visit number 42).

Here for the healthy control group, we adopted the same multivariate t setting with 5 degrees

of freedom and the same quadratic mean trend from Section 2.3.1. Under the first design the test

and control groups have an identical visiting frequency. To evaluate the FWER under the null, we

generated 1,000 participants following the same mean trend and covariance structure as the test

group at each simulation. The only difference is the survival time observed and subsequent visit

frequency. To examine power under alternatives, we assumed the first, third and fifth cognitive

domains of the test group to have mean trends of 50− 0.02t 2 and the rest cognitive domains to

have mean trends of 30−0.04t 2. As the two sets of domain scores had quite different means, we

lowered the dependence in our covariance structure by setting σ2 = 60, θ2 = 10, ρsr = 5, for s = r ,

and ρsr = 25, for s 6= r with s,r = 1, ...,6. Therefore, covariance of different cognitive domains

at the same visit is θ2 +ρ12 = 15. Covariance of the same cognitive domains at different visits is

ρ11 = 25. The remaining elements are ρ12 = 5. Again, we considered the four different designs of

visit frequencies for the test group and 1,000 participants were simulated for each design at every

simulation run.

At each simulation for every participant, both the χ2-test and the permutation test based on

5,000 permutations were used for cognitive impairment classification. One thousand simulations

were implemented and summarized in Figure (4). From the graph under the null hypothesis, we

can see that frequency-specific permutation test can effectively control FWER at per-determined

α level for all different survival time designs. Because data do not follow multivariate normal

distribution, using the χ2-test will inflate FWER and the inflation in cognitive impairment differs

with various survival time designs and visit frequencies. Not surprisingly, the χ2-test has more

power than the permutation test under alternative hypotheses. Although close, groups with much

different visit number distributions may have different power using permutation test. Therefore,
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Figure 4: The LMNC χ2 test and permutation test when multivariate t data have different visit

frequencies

it is important to make sure that the visit number distributions are comparable when comparison

between groups is desired.

2.4 APPLICATION TO THE MULTICENTER AIDS COHORT STUDY

We applied the proposed LMNC to the neuropsychological (NP) data that were collected from

an ongoing Multicenter AIDS Cohort Study. The MACS study has been administered by the

University of Pittsburgh, Johns Hopkins University, Northwestern University and the University of

California at Los Angeles Kingsley et al. (1987); Kaslow et al. (1987). Since its first enrollment in

1984, the MACS has recruited more than 7,000 men who have sex with men (MSM), either infected

with HIV or at risk for infection at study entry. participants have been regularly interviewed and

examined semiannually about a broad range of variables including their age, depressive symptoms,

sexual activity, substance use, cognitive functioning and physical measurements. HIV infection
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negatively impacts patients’ brain, and the effect of HIV on brain functioning was found to be less

drastic after the highly active antiretroviral therapy (HAART) became available in early 1990’s.

In a MACS NP substudy, participants have been repeated tested on a NP test battery assessing

six cognitive domains which included learning, motor speed & coordination, speed of information

processing, memory, working memory & attention, and executive functioning Farinpour et al.

(2003); Popov et al. (2019). As of October 2017, some participants had more than 20 years of

longitudinal NP data. This provides a unique opportunity to examine how cognitive impairment

compares between those infected with HIV and those not infected in the HAART era.

At each NP visit, the battery of tests was administrated, and these test scores were summarized

by T-scores which were calculated from regression models adjusting for education, race/ethnicity,

age, and number of tests administrated, and standardized to have mean 50 and standard deviation

of 10. Then, summary T-scores were obtained from taking the arithmetic mean of all T-scores in

each domain, except for motor speed & coordination domain, where the lowest T score is used.

As a result, assuming multivariate normal distribution on the MACS NP data is of concern for the

motor domain score which tends to be negatively skewed. Thus, permutation may work better for

cognitive impairment classification to control FWER at a pre-determined level.

In this analysis, we focus on visits where participants had all six cognitive domain scores

available, and include 3,701 participants who have at least one such visit. Among participants

included in this analysis, 1,667 were seronegative (279 having one visit), while 2,034 were infected

with HIV (328 having one visit) at the study entry. Those not infected with HIV serve as the

“healthy” control group, representing HIV-uninfected MSM. Because motor speed & coordination

domain used the lowest T score instead of the average, we can see from Figure 5 that baseline motor

domain score for seronegative participants failed to follow a normal distribution. The LMNC using

the χ2-test may be of concern and the permutation test should be considered. For both seropositive

and seronegative groups, we calculated the number of participants for each total visit frequency

and plotted them by group in Figure 5. The Kolmogorov-Smirnov test shows that the visit number

distributions do not differ (p = 0.90), and the visit frequencies are comparable between the two

groups. Thus, the LMNC permutation test is expected to work well in this application.

Specifically, we first fit the model described in (2.1) with cubic mean trends in the healthy con-

trol group. After estimates were obtained, both the χ2 test and permutation test were applied to data
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Figure 5: Q-Q plot of baseline motor score in the seronegative group and visit frequencies of two

serostatus groups

0.00 0.02 0.04 0.06 0.08 0.10

0.
00

0.
05

0.
10

0.
15

0.
20

alpha

P
ro

po
rt

io
n 

of
 c

og
ni

tiv
e 

im
pa

ir
m

en
t

Seronegative with chisq test
Seropositive with chisq test
Seronegative with permutation test
Seropositive with permutation test
Proportion of Cog. Imp. = alpha

Figure 6: Comparing proportion of cognitive impairment in seronegative and seropositive groups

in the MACS

21



Table 1: Mean scores of six cognitive domains for seronegative and seropositive groups at

different visit

Cognitive

Domain
Motor Executive Speed Learning Memory

Working

Memory

Visit 1
Seronegative 47.12 49.81 49.92 49.67 49.90 49.64

Seropositive 46.73 49.77 49.25 49.71 49.98 49.40

Visit 4
Seronegative 45.86 50.17 50.45 49.33 49.04 48.99

Seropositive 45.79 49.31 49.33 48.96 49.04 48.36

Visit 10
Seronegative 48.14 53.14 51.25 50.94 50.74 51.86

Seropositive 48.26 51.93 51.00 52.41 52.38 51.51
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from the healthy control group across different levels of α. For both tests, 5-fold cross validation

was used to test cognitive impairment among those not infected with HIV. The results are shown

in Figure 6. The first thing we can see is that the permutation test (N=100,000) can effectively

control FWER at pre-determined α levels. By contrast, the χ2 test would have inflated the family-

wise error when the data fail to follow multivariate normal distribution but the model is sufficiently

specified. We also applied both the permutation test and the χ2 test to data from seropositive men.

The results are also shown in Figure 6. The permutation test identified about the same proportion

of seropositive men with cognitive impairment as in the seronegative group across αs. Meanwhile,

the χ2 test identified a much higher proportion of cognitively impaired men in the seropositive

group than in the seronegative group. This has serious clinical and research implications. Not only

would the χ2 test identify more people with cognitive impairment in seronegative and seroposi-

tive groups, but also wrong conclusions might be drawn about the relationship between serostatus

and cognitive impairment during the HAART era. By contrast, the permutation test shows that

the association between cognitive impairment and HIV infection becomes insignificant, leading

to the conclusion that people infected with HIV can enjoy equally healthy cognitive functioning

after being properly treated with cART. To further support this conclusion, Table 1 shows the mean

scores of all six cognitive domains for both seronegative and seropositive groups at the first visit

(100% participants), the forth visit (50% participants) and the tenth visit (15% participants). We

can see that, relative to standard deviation of 10, the score differences are very small between the

two groups. A wrong conclusion would be drawn if a method failing to control family-wise error,

like the χ2 test in this case, is used otherwise.

2.5 DISCUSSIONS

From the numerical studies, we can see that our proposed LMNC method can effectively control

FWER. Multivariate normality is a key assumption in using the χ2 test for cognitive impairment

classification. When such an assumption is not satisfied by data or the model in use does not fully

address random effects, the permutation test can still guard FWER at a pre-determined level.

The MNC method specifically takes inter-correlations among domain scores into account, and
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may lead to different results as some existing methods that are used in AIDS research. As an

example, we only consider two cognitive domains at a single visit. Suppose that the variance of

two domain scores is 1 and the correlation is 0.5, and both mean cognitive scores are zero. The

participant having cognitive scores of (−1,−2) will have a larger p value than the one with scores

(0,−2). This is contrary to the intuition that the first participant seems to have more extreme scores.

However, the correlation between two domains is high. Thus, the scores (0,−2) from the second

participant is more unusual than (−1,−2) under the strong positive correlation, and consequently,

the second participant has a longer “distance” from the means, after inversely “weighted” by the

covariance matrix. If the correlation between two domains is set to be zero, then the first participant

will have a smaller p value. Therefore, the MNC results may not be consistent with some existing

ad-hoc diagnoses methods such as counting number of domains with scores 1 or 1.5 standard

deviations below the means Antinori et al. (2007); Gisslén et al. (2011).

This paradox also exists in a longitudinal setting. For illustration purpose, let us assume that

only one cognitive domain is tested, with a mean of 0 and variance of 1. The correlation between

any two visits is 0.5. One participant with the domain score tested at two visits as (0,−2) will have a

larger p value than another participant with the domain score tested at three visits as (0,0,−2). This

is also against the intuition as the first participant seems to have worse cognition earlier. However,

the second participant has longer records of being “normal”, so the “distance” from the means is

also larger after weighted by the inverse covariance matrix. Consequently, the second participant

has a smaller p value. If domain scores are independent among all visits, the p value for the

second participant would be larger, because of more visits and larger degree of freedom when

performing the χ2 test. This may serve as an explanation to why we observed higher power under

a higher visit frequency design, even through they follow the same mean trends. To generalize our

proposed method to groups with very different visit number distributions, further efforts should

be made to improve our proposed permutation test. Nevertheless, our proposed LMNC method

provides insights into how “abnormal” domain scores may be, which could be missed by naive

methods ignoring inter-correlations among domain scores and repeated visits.
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3.0 DYNAMIC ARRAYED COMPARISON

3.1 INTRODUCTION

Motivated by the Multicenter AIDS Cohort Study (MACS), researchers in psychiatry and brain sci-

ence fields are often interested in cognitive impairment classification with family-wise error rate

(FWER) under control. Such classification can further guide treatments on these patients infected

with HIV to effectively prolong their life expectancy. Given normalized neuropsychological scores

collected from a battery of tests across several cognitive brain domains, existing popular methods

use t tests on each domain separately (Antinori et al., 2007; Gisslén et al., 2011). This approach

fails to control family-wise error by not taking into account inter-correlations among all brain do-

mains. Huizenga et al. (2007) introduced a method called the Multivariate Normative Comparison

(MNC) by incorporating the covariance structure in the test statistic.

For patient i , we assume q cognitive brain domains are tested and normalized neuropsycho-

logical scores are summarized into a vector of Xi . Patients are separated into a healthy group of

size n for reference and a testing group which can be of a disease population in need of particular

attention for treatment. If Xi follows identical multivariate normal distribution N (µ,Ψ) indepen-

dently, mean and covariance matrix in healthy control can be estimated by µ̂ and Ψ̂. Then we can

construct an F -statistic to test whether subject i from the testing group has impaired cognition

n(n −q)

(n +1)(n −1)q
(X i − µ̂)ᵀΨ̂−1

(X i − µ̂) ∼ F (q,n −q).

Under the assumption that cognitive brain domain scores follow multivariate normal distribution,

the MNC method will control family-wise error effectively at a pre-determined level. Su et al.

(2015) and Wang et al. (2019) have studied and demonstrated the effectiveness of the MNC with
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cross-sectional neuropsychological data collected among AIDS patients. However, patients may 

visit the same doctor more than once so that their cognitive status is closely monitored. In order 

to extend the MNC method from cross-sectional data to a longitudinal setting, we proposed in 

Chapter 2 a longitudinal MNC (LMNC) method by modeling multiple neuropsychological scores 

with a multivariate linear mixed effects (MLME) model. Correlations among different brain do-

mains and across all visits within the same subject are explicitly considered within the model. A 

permutation procedure is used when the model cannot sufficiently explain the data. For research 

purposes, we often carry out analysis after all necessary information has been collected and look at 

data retrospectively. Therefore, the longitudinal MNC method is adequate for providing cognitive 

impairment classification with proper control of family-wise error.

In practice, this is probably not enough, especially when treatment should be prescribed in 

the early stage of cognitive decline. In other words, patients cannot wait until the end of study 

to know their cognitive status. Rather classification of impaired cognition should be done fluidly 

at each visit. This will have practical use in Just-in-Time Adaptive Interventions (JITAIs) which 

track health status on mobile device (Klasnja et al., 2015; Nahum-Shani et al., 2018). Proper 

identification of departures from normal health can lead to effective treatments. For an ongoing 

study like the MACS, the 30-year history of data can give us insight about participants’ behaviors, 

such as how their cognitive functions change over time, how long they might survive, and how 

frequently they visit research centers.

Reinsel (1982b) built theoretical foundations for MLME model for the analysis of multiple 

responses with repeated measures and unrestricted parameters. Heitjan and Sharma (1997) then 

studied multiple correlated series and proposed a linear model with autoregressive error structure to 

be estimated by maximum likelihood method. Fieuws and Verbeke (2004, 2006) jointly modeled 

multiple longitudinal responses with certain dependence structure specified in the model. Fang 

et al. (2006) further considered a modified expectation-maximization approach to estimate MLME 

parameters with constraints on intercepts. In the review of multivariate longitudinal analysis, Ver-

beke et al. (2014) mentioned that longitudinal correlations among multiple outcomes can be better 

addressed by joint modeling.

In an ongoing study, we assume we have collected sufficient data from the same or similar 

cohort. Using survival analysis and frequency modeling techniques, such as cox proportional
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hazard regression and Poisson regression, we can predict how many visits each subject will have.

MLME model will be used to characterize longitudinal cognitive domain scores while accounting

for inter-correlations among various cognitive domains and repeated measures for the same subject.

A test statistic can be built from MLME estimations for each subject. We can then apply correction

procedures to control family-wise error.

We will organize the rest of the chapter as following. In Section 3.2, frequency prediction

and MLME models will be formulated. Then, we will construct test statistics for dynamic arrayed

comparisons (DAC) and the Bonferroni-type adaptive procedure. Permutation test will be consid-

ered when data do not follow multivariate normal distributions. In Section 3.3, numerical studies

will be carried out to examine the performance of the proposed tests. Applications of DAC to a

neuropsychological substudy in the MACS are shown in Section 3.4. In the end of this chapter, we

will conclude with some discussions on the performance of DAC and future work.

3.2 FAMILY-WISE ERROR CONTROLLING PROCEDURE

3.2.1 Dynamic Arrayed Comparison Based on χ2

Before starting to identify cognitive impairment prospectively, we assume certain information has

been collected from the same or a similar cohort in history. Following the notation from Chapter

2, n subjects enrolled in a healthy reference group and was evaluated on q cognitive domains over

mi visits. Cognitive domain j is measured as Yi j k , i = 1, ...,n; j = 1, ..., q ;k = 1, ...,mi for subject

i at k-th visit. A multivariate normal distribution is assumed on cognitive scores since they are

generally normalized in practice. Within the same subject, the MLME model is used for cognitive

functions from different domains over time with a covariance structure capturing dependences

among cognitive domains and repeated measures for different visits. Thus we have:

Yi j k =β j 0 +β j 1ti k +β j 2t 2
i k +β j 3t 3

i k +νi j +δi k +εi j k . (3.1)

Here we use q polynomial functions of degree 3 to characterize the mean cognitive scores over

time. If desired, polynomials with a higher degree can be added. The B-spline technique, besides
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polynomial, can also approximate the true average cognitive scores over time (Bloxom, 1985;

De Boor, 2001; Shumaker, 2007; Rutherford et al., 2015; Harrell, 2015). We assume εi j k , rep-

resenting random error from each observation, to be independent and identically distributed fol-

lowing normal N (0,σ2). We also assume δi k , which are errors specific for each visit, to follow

independent and identical normal N (0,θ2). Due to the inter-correlations among various cognitive

domains for the same subject, νi = (νi 1, ..,νi p )ᵀ is assumed to follow multivariate normal N (0,Σ),

where Σ= [ρsr ], s,r = 1, ..., q . The structure of covariance matrix depends on research designs and

data collected, and can be unspecified, auto-regressive or compound symmetric.

Fang et al. (2006) and Fieuws and Verbeke (2004) provided estimation procedures used to

estimate unknown parameters from the MLME model. Estimated parameters are denoted as

β̂ j 0, β̂ j 1, β̂ j 2, β̂ j 3, j = 1, . . . , q, ρ̂sr , s,r = 1, . . . , q , θ̂2, and σ̂2. Assuming subject d is tested, we take

all q cognitive scores observed over md visits, and stack them into md vectors

U d
ω = (Yd11, ...,Yd q1,Yd12, ...,Yd q2, ...,Yd1ω, ...,Yd pω)ᵀ,ω= 1, ...,md . (3.2)

From the MLME model in (3.1), the estimated mean vector of U d
ω is written as µ̂d

ω = (β̂10+β̂11td1+
β̂12t 2

d1+β̂13t 3
d1, β̂20+β̂21td1+β̂22t 2

d1+β̂23t 3
d1, . . . , β̂q0+β̂q1td1+β̂q2t 2

d1+β̂q3t 3
d1, . . . , β̂10+β̂11tdω+

β̂12t 2
dω + β̂13t 3

dω, . . . , β̂q0 + β̂q1tdω + β̂q2t 2
dω + β̂q3t 3

dω)ᵀ, which is of length qω. Moreover, from

the covariance matrix specified in this model, we can estimate the covariance matrix for U d
ω as

Ψ̂
d
ω = [τsr ], s,r = 1, ..., qω. Each element inΨd

ω corresponds to the covariance between a pair Yd j1k1

and Yd j2k2 , which can be estimated as ρ̂ j1 j2 + θ̂2I{k1 = k2}+ σ̂2I{ j1 = j2,k1 = k2}, with domain

indexes 1 ≤ j1, j2 ≤ q , visit indexes 1 ≤ k1,k2 ≤ω and I{·} being an indicator function.

With the assumption of multivariate normal distribution on q longitudinal cognitive function-

ing scores, we stated in Chapter 2 that the LMNC test statistic for subject d at visit ω is

Gd
ω = (U d

ω− µ̂d
ω)ᵀ(Ψ̂

d
ω)−1(U d

ω− µ̂d
ω) ∼χ2

qω,ω= 1, ...,md , (3.3)

which can be further adjusted to an F test when we only have a small number of subjects in the

healthy control group. In order to construct a DAC test statistic to be used for cognitive impairment

identification at each visit ω, we use the difference between consecutive LMNC test statistics and

set Sd
ω =Gd

ω−Gd
ω−1 for 2 ≤ω≤ md and Sd

1 =Gd
1 . We can show that they are independent from each

28



other. Without loss of generality, denote X ω = Uω−µω = (X ᵀ
ω−1,W ᵀ

ω)ᵀ for ω ≥ 2 and X 1 = W 1.

The covariance matrix of X ω is

Ψω =
Ψω−1 ∆ω

∆ᵀ
ω Φω

 ,ω≥ 2,

with Ψ1 =Φ1. Then for ω≥ 2,

Sω =Gω−Gω−1

= X ᵀ
ωΨ

−1
ω X ω−X ᵀ

ω−1Ψ
−1
ω−1X ω−1

= X ᵀ
ω−1Ψ

−1
ω−1∆ωΘ

−1
ω ∆

ᵀ
ωΨ

−1
ω−1X ω−1 −2X ᵀ

ω−1Ψ
−1
ω−1∆ωΘ

−1
ω W ω+W ᵀ

ωΘ
−1
ω W ω,

where Θω =Φω−∆ᵀ
ωΨ

−1
ω−1∆ω. We also know from properties of multivariate normal distribution

that X ω−1, with covariance Ψω−1, and W ω−∆ᵀ
ωΨ

−1
ω−1X ω−1, with covariance Θω, are independent.

Therefore,

X ᵀ
ω−1Ψ

−1
ω−1X ω−1 =Gω−1(

W ω−∆ᵀ
ωΨ

−1
ω−1X ω−1

)ᵀ
Θ−1
ω

(
W ω−∆ᵀ

ωΨ
−1
ω−1X ω−1

)
= X ᵀ

ω−1Ψ
−1
ω−1∆ωΘ

−1
ω ∆

ᵀ
ωΨ

−1
ω−1X ω−1 −2X ᵀ

ω−1Ψ
−1
ω−1∆ωΘ

−1
ω W ω+W ᵀ

ωΘ
−1
ω W ω

= Sω ∼χ2
q .

As a result, we can claim DAC test statistics {Sd
ω,ω= 1, ...,md } are independent.

If md is known, we can construct visit-by-visit testing procedures easily and apply the Bonfer-

roni or Banjamini-Hochberg procedure to control family-wise error rate (Bonferroni, 1936; Ben-

jamini and Hochberg, 1995; Benjamini and Yekutieli, 2001). In order to identify cognitive im-

pairment for subject d at visit ω, we will use (1− 2αd
ω) quantile of χ2

q as the threshold for the

significance level α while 1ᵀ
qωX̂

d
ω < 1ᵀ

q(ω−1)X̂
d
ω−1 when ω > 1 or 1ᵀ

q X̂
d
1 < 0, since clinicians are

more interested in screening subjects with lower cognitive scores after adjusting for previous ones.

However, md is generally unknown for a prospective study.
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3.2.2 Frequency Prediction

Given that we have observed some data with respect to our interested population in an ongoing

study, the difficulty of unknown md can be addressed by using some frequency model to estimate

the expected number of visits each patient will have based on their baseline characteristics and

historical data H . One may first use a survival modeling approach to predict the mean residual

lifetime (T̂ ) of each patient and then use Poisson regression to predict the frequency of visiting

during a unit of time (Λ̂). For example, we assume that the survival time follows a proportional

hazards model

λ(t |Z 1) =λ0(t )exp(βᵀZ 1), (3.4)

and that the number of visits per time unit follows a log-linear model

log(Λ|Z 2) = γ0 +γᵀ
1 Z 2, (3.5)

where covariate vectors Z 1 and Z 2 can be completely different or share some predictors. Com-

monly used techniques like (partial) maximum likelihood estimation can be used to obtain the

estimates β̂, γ̂0 and γ̂1, and the Nelson-Aalen type estimator can be computed for λ̂0(t ). As a

result, the product of the expected survival time

T̂i =
∫

exp{−Λ̂0(t )eβ̂
ᵀ

Z 1i }d t

and the expected frequency at a unit of time

Λ̂i = exp(γ̂0 + γ̂ᵀ
1 Z 2i )

can be used to predict the number of visits, i.e., N̂i = T̂i Λ̂i for subject i . We assume N̂i is an

unbiased estimator for subject’s expected number of future visits. The nearest integer greater than

N̂i is used if the prediction is a decimal number and it is denoted by dN̂i e. Based on the estimated

expected number of visits, we propose a Bonferroni-type adaptive procedure on controlling family-

wise errors. We are interested in identifying first significant cognitive impairment in general and

will stop after the first null rejection.
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3.2.3 Bonferroni-type Adaptive Procedure

The Bonferroni procedure seems to be a natural choice in controlling family-wise error with ex-

pected number of visits known (Bonferroni, 1936; Dunn, 1959, 1961). If a uniform 1
dN̂ei

α is applied

to every visit, the subjects who have fewer visits than expected will have a much smaller family-

wise error than those who have more visits than expected. Therefore, we propose a new procedure

to control family-wise error rate, where subjects having more visits than expected will be subject

to more stringent testing. We define Mi to be the actual number of visits for subject i , which is

unknown at the beginning of the study. For subject i at any visit 1 ≤ j ≤ Mi , if j ≤ dN̂i e, the p

value at this visit is compared with C (dN̂i e− j+1)
dN̂i e2 α. When j > dN̂i e, the p value is compared with

C
dN̂i e2α. C is chosen to be 2cdN̂i e2

dN̂i e(dN̂i e+1)
. When c = 1 and under the null hypothesis H0 that subject is

not impaired cognitively at any visit, we have

P
(
identified cognitive impairment during the study | Z1i , Z2i , H0,HS

)
=1−

∞∏
j=1

[
1−P

(
identified cognitive impairment at visit j | Z1i , Z2i , H0,HS

)]
=1−E

[
Mi∏
j=1

(
1−α

(
C (dN̂i e− j +1)

dN̂i e2
I
(

j ≤ dN̂i e
)+ C

dN̂i e2
I
(

j > dN̂i e
))) | Z1i , Z2i , H0,HS

]

≤1−
dN̂i e∏
j=1

(
1−αC (dN̂i e− j +1)

dN̂i e2

)
≤α,

where I(·) is an indicator function. The first equation is valid because of the independence of

DAC test statistics. The second last inequality establishes because of Jensen’s inequality and N̂i

is assumed to be an unbiased estimator of E [Mi ] = Ni . We can choose c to be a greater number

adaptively such that power is improved with family-wise error rate strictly controlled. However, if

number of visits is small, the loss of power under independent tests is expected to be small even

with c = 1. Alternatively, we can also replace expected mean survival T̂i with median survival time,

which is supposedly smaller as a survival time distribution is often right skewed. Median survival

time is easier to estimate and will tend to have less stringent family-wise error while controlled at

a pre-determined level.
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3.2.4 Permutation Test

Generally, it can be hard to justify multivariate normal distribution for recorded data and the testing

procedure may fail to follow an χ2 distribution. Intuitively, the test statistic can still measure the

departure from the norm, while there is no known distribution to use in finding thresholds. Here,

we propose an innovative use of permutation tests to obtain a series of critical values for the test

statistics over time, when we cannot assume multivariate normality.

First, we bootstrap B (i.e. 10,000) participants from the study with replacement. For the

b-th participant bootstrapped, we will remove the time effect obtained from model (3.3) (i.e.

β̂ j 0+ β̂ j 1tbk + β̂ j 2t 2
bk + β̂ j 3t 3

bk) to obtain subject-specific errors over Mb visits. Under the assump-

tion that the covariance matrix Σ = [ρsr ], s,r = 1, ..., q characterizing cognitive domains follows a

compound symmetry structure, we can permutate the errors in the following way without disrupt-

ing the covariance structure. We rearrange the errors as a matrix with Mb rows representing all

visits and q columns representing all cognitive domains. We permutate the columns in whole and

then premutate the rows in whole to preserve the assumed structure.

Then, based on the permutated errors, we obtain an error vector as

V b = (Eb11, ...,Ebq1,Eb12, ...,Ebq2, ...,Eb1Mb , ...,EbqMb )ᵀ.

The DAC test statistics can be calculated as {Sb
ωI

{
(Eb1ω, ...,Ebqω)ᵀ1qm < 0

}
,ω= 1, ..., Mb} without

assuming any specific error distributions. Pooling them together after B bootstraps, we can cal-

culate any α0 based on the predicted number of visits from models (3.5) and (3.4). The (1−α0)

quantile may serve as a critical value. Participant d at the ω-th visit will be identified as cognitively

impaired if this visit-specific test statistic exceeds this critical value while 1ᵀ
qωX̂

d
ω < 1ᵀ

q(ω−1)X̂
d
ω−1

when ω> 1 or 1ᵀ
q X̂

d
1 < 0.

As we have pointed out in Section 3.2.3, the factor c, which is used to control how much we can

spend α, can be set at 1 under multivariate normal distribution, because the independence of tests

guarantees the loss of power is small. However, this independence becomes questionable when the

multivariate normal distribution cannot be justified. As a result, c should be adjusted to preserve

power while controlling family-wise error. Cross-validation can be used here for determining an

appropriate c value. We first randomly divide the healthy reference group by several folds. For
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each fold, we apply the MLME model to the rest of participants and calculate DAC test statistics for

this fold. Then permutation test statistics are built from the healthy reference group leaving out the

fold to be tested. Putting the DAC test statistics together with their corresponding permutation test

statistics, an iterative process is used to determine an appropriate c value such that the family-wise

error rate is controlled just around the pre-determined level.

3.3 NUMERICAL STUDIES

Here, we ran some simulation studies to assess how the proposed DAC method works under vari-

ous distribution assumptions. As described in Section 3.4, the MACS study evaluates 6 cognitive

domains regularly among participants, so we also considered q = 6 cognitive domains in our sim-

ulations. First, longitudinal multivariate data were generated with various forms of mean score

functions over time. When a multivariate normal distribution was assumed, the DAC testing pro-

cedure based on χ2 was evaluated by family-wise error over various levels of α. Otherwise, the

permutation testing procedure was used to evaluate DAC. Multivariate t and Gamma distributions

were considered for non-normal errors with heavier tails or skewness.

For these simulations, we assumed 1,000 participants have had their cognitive functioning

tested in the past and they can serve as the healthy controls. At the same time, we generated

longitudinal scores for 1,000 more subjects as the testing group assuming they will enroll in the

study in the future. For each participant in the healthy control and testing groups, we first simulated

their enrollment time uniformly over 20 years. Their survival time follows a Weibull distribution

with five covariates,

log(T ) =β0 +
5∑

i=1
βi zi +σW,

where W was generated from the standard extreme value distribution. This error distribution gives

the proportional hazard interpretations for all covariates. We set β0 = 3, β1 = β2 = β3 = β4 = 0.2,

β5 =−0.2 and σ= 0.1. Covariates are independently generated. z1-z4 follow the standard normal

distribution and z5 follows a uniform (0,1) distribution. Participants were assumed to be censored

at year 20 for both historical and newer cohorts.

Based on the time in the study, each visit time was generated such that the time between two
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studies follows independent exponential distribution with the first visit happening at time 0. The

hazard rate follows Poisson regression from equation (3.5). We used the same five covariates were

used, and set γ0 = 0, γ1 = γ2 = γ3 = γ4 = 0.1, and γ5 = −0.1. At all the visit times, 6 cognitive

domain scores were generated from different multivariate distributions as detailed below. One

thousand simulations were carried out for each scenario.

As we have mentioned in Section 3.2.4, it’s important to determine an appropriate c value to

relax the thresholds and to preserve power. At the same time, study designs or participants might

have an impact on the study duration and visit frequency in the future. Therefore, we examined

various scenarios, where the duration of the prospective study changes, or when participants visit

the study more and less frequently. FWER and power were examined under the null and the

alternative, respectively. The details of each simulation and results are described below.

3.3.1 Multivariate Normal Distribution

After obtaining the number of visits mi for participant i , we generated six domain scores from

the multivariate normal distribution at each visit. For the covariance matrix U i
mi

, we set σ2 = 30,

θ2 = 10, ρsr = 60, for s = r , and ρsr = 15, for s 6= r with s,r = 1, ...,6. Covariance of different

cognitive domains at the same visit is θ2 +ρ12 = 25. Covariance of the same cognitive domains at

different visits is ρ11 = 60. The rest elements are ρ12 = 15.

Four forms of polynomial mean trends were considered. For the constant trend, all six cog-

nitive domains are assumed to have mean 50 at any given t . For the linear trend, the first three

cognitive domains are set to have means 50 − 0.6t , and the other three have means 50 − 0.8t .

For the quadratic trend, the first three cognitive domains have means 50− 0.08t 2 + 0.2t , and the

other three have means 50−0.06t 2 +0.1t . Lastly, for the cubic trend, the first three have means

50−0.008t 3+0.08t 2+0.55t and the rest have means 50−0.007t 3+0.06t 2+0.55t . The mvrnorm

from the R library MASSwas then used to simulate longitudinal cognitive errors following the mul-

tivariate normal distribution with means 0 and the covariance matrix U i
mi

. The mean polynomial

functions mentioned above were then added to the errors to represent the generated longitudinal

cognitive scores.

lmer from the library lme4, coxph from the library survival, and glm were used to
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implement models (3.1), (3.4) and (3.5). The MLME, which is used for modeling mean scores, has

cubic polynomial functions specified without assuming the true polynomial functions are known.

At various levels of α (from 0.001 to 0.1), χ2 tests were conducted for each simulated subject in

the newer cohort. Results based on 1,000 simulations are summarized in Figure 7. The estimated

FWERs are denoted by the black solid lines, and the nominal α levels are denoted by gray dash

lines. The DAC χ2 test can have FWER controlled below the pre-determined level when domain

scores follow a multivariate normal distribution and we can correctly model the visit frequency and

multiple longitudinal domain scores. As expected, the departures of the FWERs from the nominal

level re small. The FWERs of four scenarios are around 0.046 when α= 0.05.

3.3.2 Multivariate t and Gamma Distributions

In practice, multivariate normal distributions can be difficult to justify and real data may present

skewness and heavy tails. Here, we considered two sets of non-normal errors. One set follows

multivariate t distributions for heavy tails, while the other set present negative skewness from

correlated Gamma distributions. The same four mean trends from Section 3.3.1 are used here.

To simulate longitudinal scores with heavy tails, multivariate t distributions with 5, 25 and 50

degrees of freedom were used. The rmt from the library csampling was used for multivariate t

random error generation. Means of the random errors were set to 0, and the covariance matrix used

here is the same as U i
mi

from Section 3.3.1. The four polynomial score trends were then added to

the generated errors as the observed longitudinal scores.

To simulate longitudinal scores with negative skewness, gamma distributions were used. Since

we have considered a special covariance structure, i.e. compound symmetric, we transformed lon-

gitudinal multivariate normal errors to get correlated gamma errors. We first simulated multivariate

standard normal errors ςi j k , j = 1, ...,6,k = 1, ...,mi with means 0 and covariance U i
mi

/100 from

Section 3.3.1. Three gamma distribution designs were considered. The first one took transforma-

tion of 70−Γ−1(Φ(ςi j k )), where Γ is the cumulative distribution function (CDF) of the gamma

distribution with shape of 4 and scale of 5 and Φ is the CDF of the standard normal distribution.

For the second design, we used 100−Γ−1(Φ(ςi j k )) as our negative skewed errors, where Γ has

shape of 25 and scale of 2. We calculated 150−Γ−1(Φ(ςi j k )) for the third design, where Γ has
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Figure 7: The DAC χ2 test when data follow a multivariate normal distribution
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shape of 100 and scale of 1. Each score error has mean of 0 and variance of 100. The four poly-

nomial score trends were again added to the generated scores to represent measured longitudinal

domain scores with negative skewness.

For each setting, survival time and visit frequency were generated in the same way as men-

tioned at the beginning of Section 3.3. We assumed 1,000 participants have been measured in the

historical healthy control group, while 1,000 more participants were going to enroll in the new

study and get tested. As described in Section 3.2.4, the proposed permutation test was used here.

We bootstrapped 10,000 participants from the historical healthy control with replacement. For

each participant selected, we got the longitudinal errors by subtracting estimated means from the

original scores. Then we rearranged the errors, added back the longitudinal mean scores and got

a series of DAC test statistics. After repeating 10,000 times, visit-by-visit classification of cogni-

tive impairment is done in the newer cohort with respective quantiles from these permutation test

statistics as the thresholds. The results of FWER at various α levels after 1,000 simulations for

multivariate t and correlated gamma distributions are summarized in Figure 8 and 9, respectively.

As a comparison, results from the DACs with χ2 tests are also shown in the figures to illustrate

how well permutation tests did in controlling FWER.

When multivariate normality cannot be justified as shown in Figure 8 and 9, the FWER based

on DAC with χ2 test can be greatly inflated. Illustrated by the black curves, FWER inflation is

smaller when the multivariate t distribution has less heavier tails or when the gamma distribution

is less skewed. When the permutation test is used instead, FWER can be strictly controlled below

any pre-specified α level. This conservativeness has been observed by other work (Berger 2000),

and we can relax the thresholds by increasing the factor c through cross-validation as described in

Section 3.2.4, so that FWER is adjusted around the pre-determined level. In Section 3.3.3, we will

discuss how we can adjust the value of c for power analysis.

3.3.3 Different Number of Visits and Power Analysis

In practice, not just multivariate normality is often violated by collected measurements, but also

a future study design may change as compared with historical ones, such as in study duration

and visit frequency. For example, in the MACS study, there were several enrollment waves as
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Figure 8: The DAC χ2 and permutation tests when data follow multivariate t distributions
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Figure 9: The DAC χ2 and permutation tests when data are transformed from Gamma

distributions (permutation test when shape=25 and when shape=100 overlapped)
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time goes and we have more participants enrolling in this study in the later cohort. If we use

data collected prior to today, which is of more than 30-year record, we may want to follow up

20 or 40 more years for future participants. At the same time, the MACS proposed some study

design changes, so participants visit the centers less frequently than in 1990s. In this section, we

examined the FWER and the power of the proposed DAC method under settings of different study

durations and visit frequencies in the newer cohort. Five different designs were evaluated for the

newer testing group by changing the study duration (survival distribution remains the same as in

the previous two sections) and the visit frequencies through Poisson regression parameters. For

historical healthy control group, the survival time and visit frequency remain the same as in the

previous two sections. The distributions of five covariates remain the same as above. Here are the

five settings in the newer cohort:

1. Original: In the Weibull model used for survival time, we set β0 = 3, β1 =β2 =β3 =β4 = 0.2,

β5 = −0.2 and σ = 0.1. Participants enroll uniformly until we end the study in 20 years. In

the Poisson model used for visit frequency Λ, we set α0 = 0, α1 = α2 = α3 = α4 = 0.1, and

α5 =−0.1.

2. Shorter Study: Same as setting (1), except we would end the study in 10 years.

3. Longer Study: Same as setting (1), except we would end the study in 30 years.

4. Less Visits: Same as setting (1), except we divided the visit frequency Λ by 2.

5. More Visits: Same as setting (1), except we multiplied the visit frequency Λ by 2.

Multivariate t with 5 degrees of freedom was used here to generate longitudinal scores in the

historical healthy control group and in the testing group from the prospective study. For both

groups under the null, the setup is the same as in Section 3.3.2. We first simulated the number

of visits based on each scenario of survival and visit frequency. Then we generated multivariate

t errors, which were added with quadratic mean trends from Section 3.3.1. For the testing group

under the alternative, the setup is the same except for mean trends. We specified first three cognitive

domains to have means 20−0.08t 2, and the other three to have means 50−0.1t 2. One thousand

participants were assumed to have enrolled in the historical study, and 1,000 participants were

expected to enroll in the new study. As mentioned in Section 3.2.4 and shown in Figure 8, the

FWER is conservative with the permutation test and cross-validation can be used to determine an
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appropriate factor c used for thresholds. After 5-fold cross-validation on 1,000 simulations, we

determined that c = 2.0. In prediction of number of visits within the newer study, we assumed

policy changes had already been known, such as when the study ends and how often the frequency

of visits changes. The results of FWER and power with the permutation test (10,000 times) after

1,000 simulations under five cases are shown in Figure 10.

As illustrated in Figure 10, different study durations or visit frequencies have an impact on

FWER and power. Less visits in the newer study, originated from a shorter study period or lower

visit requirements, seem to have inflated FWER and larger power. However, the FWER inflation

is in general small and cases (2)-(5) are quite different from case (1). Thus, it remains important

to make sure the visit frequency does not deviate too much from the historical study. At the same

time, factor c used to relax the thresholds can be increased or reduced slightly based on researchers’

understanding of how study policy changes the visit frequency in the future.

3.4 APPLICATION TO THE MULTICENTER AIDS COHORT STUDY

Here, the proposed DAC method was applied to the neuropsychological (NP) sub-study data col-

lected from the Multicenter AIDS Cohort Study (MACS), which is an ongoing study with first

enrollment happening in 1984. The MACS has been administered by John Hopkins University,

Northwestern University, The University of California at Los Angeles and the University of Pitts-

burgh (Kingsley et al., 1987; Kaslow et al., 1987). More than 7,000 who have sex with men (MSM)

have been recruited in the study. Participants were either infected with HIV or at risk for infection

enrollment. They have been regularly interviewed and examined about a wide range of variables,

such as drug use, depressive symptoms, age, sexual disorder, cognitive functioning and physical

measurements. Participants’ cognitive functioning is negatively impacted by HIV infection. How-

ever, highly active antiretroviral therapy (HAART) was found to have positive effects on cognitive

functioning among people infected with HIV since its first availability in early 1900’s. Participants

in the NP substudy have been regularly evaluated with a NP test battery for six cognitive domains,

including motor speed & coordination, speed of information processing, executive functioning,

learning, memory, and working memory & attention (Farinpour et al., 2003; Popov et al., 2019).
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These test scores provide a rare opportunity to assess, in the HAART era, how those infected with 

HIV and those without differ in terms of cognitive impairment.

The MACS has four enrollment waves starting at 1984, 1987, 2001 and 2010. We took the first 

two pre-HAART cohorts as our historical data, and looked at the latest two cohort data prospec-

tively to examine how cognitive impairment is developing over time after HARRT. During each 

NP visit, a battery of tests was carried out, and collected scores were summarized by T-scores, 

which were computed from regression models adjusting for ethnicity, education, age and number 

of tests administered. The T-scores have mean 50 and standard deviation of 10. For motor speed & 

coordination, the lowest T score is used for summary, while the other five use the arithmetic mean 

of all T-scores in each specific domain as summary T-scores. The multivariate normal distribution 

assumption on NP data from the MACS is of concern, because the summary T-scores in motor 

speed & coordination are very skewed. Consequently, the permutation test may work better for 

identifying cognitive impairment with FWER controlled at a pre-specified level.

For this analysis, only the participants with complete scores on six cognitive domains were 

included. We used participants prior to 2001 as the historical cohort for visit-by-visit cognitive 

impairment classification starting 2 001. Prior to 2001, 1,231 were infected with HIV, while 870 

were not. Five-fold cross-validation on the 870 participants without HIV infection was used to find 

an appropriate factor c to relax the thresholds on testing. For each fold, we used Cox proportional 

hazard regression to model the survival and Poisson regression to model the visit frequency on the 

rest participants. For survival modeling, participants were censored at 4 years past the last NP visit 

or 2001, whichever is earlier, if death was not observed or death happened beyond 4 years past 

the last NP visit or 2001. Covariates of Cox regression included CD4+ cell count along with its 

quadratic transformation, age at first NP visit, Center for Epidemiologic Studies Depression (CES-

D) score, hepatitis C status, four testing centers, and HIV serostatus. For Poission regression, we 

included quadratic transformation, age at first NP v isit, four testing centers, and HIV serostatus 

as covariates. MLME was applied to the rest participants without HIV infection to estimate the 

mean trends and covariance structure. Based on the frequency prediction and MLME results, 

we treated each fold as if they were newer cohort and conducted visit-by-visit classification of 

cognitive impairment using DAC and the permutation test. After summarizing the rates from 5 

folds on healthy controls from the historical study, we found that we can relax the factor c to 1.4
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while keeping FWER around the pre-specified level. The results shown in Figure 11 are based on

this cross-validated c of 1.4.

Then, we applied DAC to these participants enrolled from 2001, where 803 were infected with

HIV and 796 were not. However, due to study policy changes, participants on average halved their

frequencies to the NP substudy since 2001. Given this knowledge, we also halved the predicted

frequencies for these participants. We anticipated that the study would conclude at 2017, and

truncated the predicted survival times by 2017. The results are also shown in Figure 11 using

the permutation test and the factor c of 1.4 from cross-validation. First, we can observe that the

newer cohorts have significantly more people with cognitive impairment identified compared with

the historical healthy control. Second, since 2001, the impairment rates between seronegative

and seropositive group are not significantly different if we set α= 0.05. This is consistent with the

findings from Wang et al. (2019) and Chapter 2. Table 2 shows the mean scores for all six cognitive

domains at visits when participants were evaluated around the same time. Because participants

were measured at a half frequency in the newer cohort due to policy changes since 2001, the

number of visits reflects this in Table 2. Across three comparison points, we can see that domains

scores form the newer cohort are generally lower than the historical seronegative group, while

motor speed & coordination exhibits significant difference and this difference increases as time

progresses. However, seronegative and seropositive participants in this newer cohort do not seem

to differ that much .

3.5 DISCUSSION

LMNC proposed in Chapter 2 considered a research setting, where data has been collected and

we only need one diagnosis for each patient by looking retrospectively. As a comparison, the

proposed DAC method is more practical, in a way that we can provide visit-by-visit diagnosis to

the patients. This can encourage participation of preventive care or enable doctors to prescribe

treatments on time. Not just for identifying cognitive impairment, the DAC method, along with the

LMNC method, has a broad application in classification, as long as measurements collected are of

longitudinal nature.
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Table 2: Mean scores of six cognitive domains for seronegative and seropositive groups at

comparable times

Group (visit, %

available)
Motor Executive Speed Learning Memory

Working

Memory

Seronegative

(historical, visit 1,

100%)

48.06 50.18 50.45 51.08 51.31 49.28

Seronegative (newer,

visit 1, 100%)
46.10 49.41 49.34 48.12 48.35 50.04

Seropositive (newer,

visit 1, 100%)
46.11 49.17 48.42 48.78 48.78 50.00

Seronegative

(historical, visit 5,

46%)

50.34 52.12 51.11 50.98 51.02 51.08

Seronegative (newer,

visit 3, 68%)
44.04 49.42 49.54 48.39 48.54 49.10

Seropositive (newer,

visit 3, 72%)
44.21 47.99 48.31 48.57 48.21 48.74

Seronegative

(historical, visit 9,

16%)

50.51 54.72 52.21 52.29 51.45 52.55

Seronegative (newer,

visit 5, 44%)
42.81 50.06 50.14 48.68 48.85 47.94

Seropositive (newer,

visit 5, 53%)
42.78 48.57 48.40 48.41 48.64 46.92
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The proposed DAC method can effectively control FWER. Multivariate normality is an impor-

tant assumption for the χ2 test, although FWER is slightly lower than the pre-determined level.

When such an assumption is violated, permutation test can also control FWER as shown in the

simulation studies. It remains crucial to select an appropriate factor to relax the thresholds while

keeping FWER under control. Cross-validation is a good way to exploit data collected from the

historical healthy control group and set up this factor, but it doesn’t generalize well to the newer

study when study duration or visit frequency changes due to new study protocol. As a result, re-

searchers need to decide whether they want to adjust such factor and how much if they do before

conducting the DAC method.
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4.0 QUANTIFYING DIAGNOSTIC ACCURACY IMPROVEMENT OF NEW

BIO-MARKERS FOR COMPETING RISK OUTCOMES

4.1 INTRODUCTION

For clinicians, introducing a new biomarker into a statistical model may change the risks associ-

ated with various outcomes of interest, and subsequently may influence treatment decisions. Risk

prediction algorithms using statistical modeling are among the most popular tools to evaluate sig-

nificance of biomarkers. Although effect size and statistical significance are important, they do not

provide direct information on the contribution of new biomarkers to diagnostic accuracy. For the

latter, we are interested in evaluating the improvement in correctly “classifying” patients into sev-

eral outcome categories, such as dementia, death and “nonevent,” with the additional information

from new biomarkers. In contrast, risk prediction algorithms typically attempt to predict the risks

associated with each outcome in the course of time.

To investigate accuracy improvement over the course of variable additions for binary outcomes,

the commonly used Receiver Operating Characteristic (ROC) curve and its corresponding Area

Under the Curve (AUC) were shown to be insensitive to detecting the added values of new mark-

ers (Greenland and O’Malley, 2005; Pepe et al., 2004; Ware, 2006), and novel indicators were

developed to complement the AUC measure (Pencina et al., 2008), such as the net reclassification

improvement (NRI) and the integrated discrimination improvement (IDI). The NRI is the improve-

ment in classification rates of disease categories by the “new” model which incorporates additional

markers over those by the “old” model without the additional markers. On the other hand, the IDI

quantifies the improvement in the integrated sensitivity minus that of specificity over all possible

cutoff values, from the model without new biomarkers to the model with new biomarkers. Both

indices have become popular in medical fields and been extended from categorical outcomes to
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survival outcomes (Pencina et al., 2011; Uno et al., 2013).

However, there are few works in quantifying accuracy improvement for competing risks out-

comes. Shi et al. (2014b) were among the first to consider accuracy improvement for competing

risks, where the population is divided into two groups at a fixed time point – the “disease” group in-

cluding subjects who have developed the event of interest, and the “healthy” group including those

who have not had any event and those who have experienced competing events. Such a definition

of the “healthy” group, which is in line with the augmented “at-risk” set in a popular regression

model by Fine and Gray (1999) for competing risks data, is reasonable if competing events are not

of interest, and those who have developed competing events are more or less similar to those who

have not failed yet. However, there are many situations where we would like to separate subjects

with competing events from those without any events. As an example, the Multicenter AIDS Co-

hort Study (MACS) involves two endpoints, death and dementia, where the age of dementia onset

may be competing-risk censored by death. When the dementia onset is of concern, it does not

seem appropriate to group those subjects who died with those who were alive and stayed healthy.

Ideally they could be treated as separate categories in evaluation of accuracy improvement.

Li et al. (2013b) proposed reclassification statistics for assessing improvements in diagnostic

accuracy for multi-level outcomes. Here we specifically consider how the definitions of the NRI

and the IDI for multi-category outcomes can be extended to the competing risks setting, where

one event prevents others from occurring. The detailed definitions are given in Sections 4.2.2 and

4.2.3 for two competing risks outcomes. One issue with estimating the adapted NRI and IDI is

that independent censoring often occurs in additional to competing risks censoring, and a subject’s

disease status may not be determinable if this subject was censored before the time of interest. As

detailed in Sections 4.2.2 and 4.2.3, the “missingness” due to censoring can be overcome by using

the method of inverse probability of censoring weighting.

Demler et al. (2017) have evaluated the feasibility of establishing U-statistics theory under dif-

ferent assumptions for changes in the NRI and the IDI. If the models are under the alternative, both

the NRI and the IDI are non-degenerate and variance estimators based on the U-statistics theory

should work, though some adjustments are needed for the IDI. The bootstrap technique is valid

under this situation. On the other hand, if the null model is the true model, and it is nested within

the alternative model, both the NRI and the IDI are degenerate and the theoretical formulas for
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estimating their variance do not apply. This raises special concerns in practice, because, in eval-

uating the accuracy improvement associated with new biomarkers, we are comparing the “new”

model with the additional variables and the “old” model without them. Since these two models are

nested, the degeneracy of the NRI and the IDI under the null should be and can be remedied as

suggested by Demler et al. (2017), which will be evaluated later via extensive simulations.

Though the focus of this project is to evaluate diagnostic accuracy, it remains crucial to select a

proper regression model to distinguish all survival outcomes and identify covariate effects on each

outcome at different time points. In this work, we adopted three models, the proportional hazards

regression, Fine-Gray’s model (Fine and Gray, 1999) and the multinomial logistic risk regression

model (Gerds et al., 2012). Three simulation designs were considered in Section 4.3. For each of

these three models, two data designs were examined, with and without added covariate improving

diagnostic accuracy. In Section 4.4, we applied both NRI and IDI estimators to the MACS data for

assessing whether including a new biomarker, CD4 cell count, would improve predictive ability

over the old model. Some discussions are given in Section 4.5.

4.2 METHODS

4.2.1 Notation

In a competing-risk setting, there are two or more types of events. To simplify the notation, only

two types are considered here, which are denoted as ε = 1,2, though the proposed methods can

be naturally extended to more than two competing events. Let T be the time to first event from

either type. With two competing events, we can define three categories according to their disease

status at a fixed time point t0. For the i-th subject, if Ti ≤ t0 and εi = 1, the subject belongs to

the first category; if Ti ≤ t0 and εi = 2, the subject belongs to the second category; otherwise the

subject is in the third category of being “healthy.” In practice there is often independent censoring

C . Hence X = min(T ;C ) and the combined cause indicator η= I (T ≤C )ε are observed. Let z1, a

p-dimension vector, denote conventional predictors and let z2, a q-dimension vector, denote new

biomarkers. The data consist of
{

Xi ,ηi , z i 1, z i 2|i = 1, ...,n
}
. In the sequel we denote the “old”
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model with conventional markers as M1 and the “new” model with both conventional and new

markers as M2.

An extension of the NRI in Li et al. (2013b) for a K-level categorical outcome D is:

S =
K∑

k=1
ωk P

{
p̂k (M2) = max p̂(M2), p̂k (M1) 6= max p̂(M1)|D = k

}
−

K∑
k=1

ωk P
{

p̂k (M2) 6= max p̂(M2), p̂k (M1) = max p̂(M1)|D = k
}

,

where ωk is a weight function for the k-th category of the outcome, and
∑

k ωk = 1, and p̂k (Mm)

is the estimated probability of the outcome from the k-th category based on the model Mm for

m = 1,2. p̂ = (p̂1, p̂2, p̂3). When there are only two categories K = 2, and the weights are ωk = 1/2

for k = 1,2, then the S is equivalent to the NRI given in Pencina et al. (2008). Li et al. (2013b) also

proposed an extension of the IDI based on the relationship between the IDI and the increase in the

coefficient of determination R2 from the “old” multinomial logistic model to the “new” one with

additional markers. That is, R =∑K
k=1ωk

{
R2

k (M2)−R2
k (M1)

}
, where ωk is again a weight function

for the k-th category of the outcome, and R2
k (Mm) is the coefficient of determination from Mm ,

m = 1,2. Again when K = 2 and ωk = 1/2, the multi-category IDI reduces to the original IDI in

Pencina et al. (2008).

4.2.2 Net Reclassification Improvement for Competing Outcomes

Without loss of generality, we consider competing outcomes with three categories. For model

Mm ,m = 1,2, define pk (Mm , t0) = P (T ≤ t0,ε = k|Mm), for k = 1,2, and p3(Mm , t0) = P (T >
t0|Mm). Three categories are defined in Section 4.2.1. A well-calibrated regression model such

as the multi-state Cheng et al. (1998), Fine and Gray (1999), and Gerds et al. (2012) models can

be used. For each subject i , we obtain the estimators p̂1i (Mm , t0), p̂2i (Mm , t0), p̂3i (Mm , t0), and

p̂ = (p̂1, p̂2, p̂3). The NRI for multi-category outcomes can thus be extended to the competing-risk

setting at any t0 > 0:

S(t0) =
K∑

k=1
ωk P

{
p̂k (M2, t0) = max p̂(M2, t0), p̂k (M1, t0) 6= max p̂(M1, t0)|D = k

}
−

K∑
k=1

ωk P
{

p̂k (M2, t0) 6= max p̂(M2, t0), p̂k (M1, t0) = max p̂(M1, t0)|D = k
}

.

(4.1)

51



One complication in estimating S(t0) with censored competing risks data is that not every

subject status is available. For example, some subjects may have been censored before t0, and

hence their disease status cannot be determined. Therefore, those subjects whose disease status

can be decided based on the observed pair (Xi ;ηi ) should be properly weighted to account for

those subjects with “missing” disease status due to censoring. Thus, we propose the following

estimator of the NRI at any time point t0 as:

Ŝ(t0) = ∑
k=1,2

[
ωk

∑n
i=1(h+

i ,k (t0)−h−
i ,k (t0))∑n

i=1 I
{

Xi ≤ t0,ηi = k
}

/Ĝ(Xi−)

]
+ω3

∑n
i=1(h+

i ,3(t0)−h−
i ,3(t0))∑n

i=1 I {Xi > t0}/Ĝ(t0)
,

h+
i ,k (t0) = I

{
p̂1i (M2, t0) = max p̂(M2, t0), p̂1i (M1, t0) 6= max p̂(M1, t0), Xi ≤ t0,ηi = k

}/
Ĝ(Xi−),

h−
i ,k (t0) = I

{
p̂1i (M2, t0) 6= max p̂(M2, t0), p̂1i (M1, t0) = max p̂(M1, t0), Xi ≤ t0,ηi = k

}/
Ĝ(Xi−),

h+
i ,3(t0) = I

{
p̂3i (M2, t0) = max p̂(M2, t0), p̂3i (M1, t0) 6= max p̂(M1, t0), Xi > t0

}
/Ĝ(t0),

h−
i ,3(t0) = I

{
p̂3i (M2, t0) 6= max p̂(M2, t0), p̂3i (M1, t0) = max p̂(M1, t0), Xi > t0

}
/Ĝ(t0),

where ωk ,k = 1,2,3, are weight functions for the three disease categories and can be simply set to

be 1/3 if there is no prior on the categories, and Ĝ is the Kaplan-Meier estimator of the censoring

survival function. For each category k = 1,2,3, h+
i ,k (t0) is an indicator function whether the “old”

model M1 makes a wrong prediction on Category k for the i -th subject while the “new” M2

correctly identifies it. Conversely, h−
i ,k (t0) indicates whether the “new” model changes a right

prediction from the “old” model.

The consistency and asymptotic normality of Ŝ(t0) are given in Appendix A, and variance

estimate can be obtained from the influence function provided by equation A.1. Estimated variance

is inversely related with
p

N , where N is sample size.

4.2.3 Integrated Discrimination Improvement for Competing Outcomes

We first define the time-dependent IDI for competing risks outcomes by adapting its definition for

multi-category outcomes proposed by Li et al. (2013b). The IDI for multi-category outcomes is

defined to be a weighted sum of variability explained, which is increase of coefficient of determi-

nation R2
k (Mm), k = 1,2,3..., by the “new” model, m = 2, over the “old” model, m = 1. R2

k (Mm) is
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closely connected to the probabilities of each category, so we extend the IDI for competing risks

outcomes at time t0 as:

R(t0) =
K∑

k=1
ωk

{
R2

k (M2, t0)−R2
k (M1, t0)

}
, (4.2)

where ωk are again some weight functions. The estimation of the IDI at time t0 involves the eval-

uation of R2
k (Mm , t0), which is the proportion of variability in the k-th category that is explained

by model Mm , for m = 1,2 and k = 1,2. Without any covariates, we estimate the probability

of falling into the k-th category by π̂k (t0), where π̂k (t0) = n̂k (t0)/(n̂1(t0)+ n̂2(t0)+ n̂3(t0)), with

n̂k (t0) = ∑n
i=1 I

{
Xi ≤ t0,ηi = k

}
/Ĝ(Xi−),k = 1,2 and n̂3(t0) = ∑n

i=1 I {Xi > t0}/Ĝ(t0). Hence the

variance without any model is π̂k (t0)(1−π̂k (t0)). With model Mm ,m = 1,2, the variance can be es-

timated by 1
n

∑n
i=1

{
p̂ki (Mm , t0)− p̂k (Mm , t0)

}2
, where p̂k (Mm , t0) = 1

n

∑n
i=1 p̂ki (Mm , t0). There-

fore, we propose the following estimator of the IDI at time t0:

R̂(t0) =
3∑

k=1

ωk

nπ̂k (t0){1− π̂k (t0)}

n∑
i=1

[{
p̂ki (M2, t0)− p̂k (M2, t0)

}2 −
{

p̂ki (M1, t0)− p̂k (M1, t0)
}2

]
.

Appendix B shows the asymptotic property of R̂(t0). Based on equation B.1, we can estimate

the influence function I F∗∗(Xi ,ηi , Mi , t0) to compute its variance estimate using the sample. How-

ever, the IDI estimator relies on the estimated probabilities from a particular competing-risk model,

and asymptotic variance will change if another model is used. Some competing-risk models have

well-defined influence functions I Fp̂ki , while others do not have explicit forms. As a result, it is

difficult to obtain an explicit form of variance estimation for the IDI with various competing-risk

models of choice. Bootstrap procedure provides an alternative way for inference purposes. Con-

fidence interval can be constructed from bootstrap standard error assuming asymptotic normality

or by selecting percentiles from bootstrapped sample, but the skewness and bias of bootstrap dis-

tribution may lead to misleading results. Thus, we propose to use a bias-corrected and accelerated

(BCa) bootstrap procedure to obtain confidence intervals for the IDI, which correct the skewness

and the bias of the bootstrap distribution (Efron, 1987; Efron and Tibshirani, 1993). Shi et al.

(2014b) has shown BCa bootstrap performs better than the former two. By conducting BCa boot-

strap, we first bootstrap the original sample to obtain difference between median of estimators from

bootstrapped sample and original estimator from original sample. Then we use jackknife approach

to calculate the acceleration factor for measuring skewness. By the end, percentiles are calculated
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based on the bias-correction factor and acceleration parameter, so we can obtain the confidence

intervals of the IDI estimator R̂(t0) (Efron and Tibshirani, 1993).

As suggested by Blanche et al. (2013), independent censoring assumption is restrictive in prac-

tice, while assuming conditional independence of censoring given biomarkers may make the ex-

tended NRI and IDI more general, since risk of censoring can be correlated with biomarkers.

Consequently, the Kaplan-Meier estimator Ĝ used for inverse probability of censoring weighting

in equations (4.2.2) and (4.2.3) can be replaced with a conditional survival estimator (Blanche

et al., 2013). However, asymptotic theory will become much more complex and BCa bootstrap

can be used for inferential purposes.

There are certain limitations of the proposed NRI and IDI. The purpose is to evaluate the effect

of new biomarkers on diagnostic accuracy rather than the competing-risk model itself. As a result,

model diagnostics are important before applying the NRI and IDI. Pencina et al. (2011) suggested

cross-validation (CV) can be applied to account for over-optimism of the model. The probabilities

of each outcome is computed from cross-validated sample, which can then be used to calculate

the NRI and IDI. In the simulation studies, we are going to examine how cross-validation impacts

these two measures. Due to the complexity of asymptotic theory with CV, we propose to use BCa

bootstrap for obtaining confidence intervals for proposed estimators.

4.3 SIMULATION STUDIES

In practice, we usually do not know the “right” model, and there is a chance that we could pick a

reasonable yet incorrect model for our data. Thus, we need to evaluate the impact of model choices

on the performance of accuracy improvement evaluation with new biomarkers included. Here, we

first designed three different sets of data with respect to three popular competing-risk models,

including multi-state, Fine and Gray, and multinomial logistic models, to examine the proposed

estimators for the extended NRI and IDI in competing risks settings. Three covariates were used

in all three designs, where Z1 and Z3 were generated from standard normal distribution, truncated

at ±3.5 to prevent extreme values, and Z2 was generated from a Bernoulli (0.7) distribution. The

three cases of data were simulated as follows:
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Case 1. We simulated the event time from a Weibull model with three covariates,

log(T ) =β0 +β1Z1 +β2Z2 +β3Z3 +σW,

where W was generated from the standard extreme value distribution. This error distribution gives

the proportional hazard interpretations for all covariates. We set β0 = 2.5, β1 = 0.05, β2 = −0.05,

β3 = 0.15 and σ = 0.2. Since the coefficient for the new marker β3 is three times the size of the

coefficients β1 and β2 for two conventional predictors, we expect that the “new” model including

Z1, Z2 and Z3 would have improved predictive ability over the “old” model that only uses Z1 and

Z2. The cause indicators, k = 1,2, were generated with equal probability. The censoring time was

simulated from a uniform [2,31] distribution, resulting in about 30% censoring, and from a uniform

[1,21] with 50% censoring.

Case 2. We used a simulation design similar to the one proposed by Fine and Gray (1999) in

this case. The subdistribution for cause 1 is defined by

F1(t |Z) = 1−
[

1−p
{
1−exp

(− (t/20)5)}]exp(β11 Z1+β12 Z2+β13 Z3)
,

with a mass of 1−p when t is at ∞ and all covariates are zeros. When a uniform random num-

ber exceeds F1(∞|Z), subjects are assumed to experience the cause 2 event with the conditional

probability

P (T ≤ t |ε= 2,Z) = 1−exp
(
−exp(β21Z1 +β22Z2 +β23Z3)(t/20)5

)
.

We set β11 = 0.2, β12 =−0.5, β13 = 1, β21 = 0.02, β22 =−0.05, β23 = 0.1, and p = 0.65. Including

Z3 in the model, besides Z1 and Z2, is expected to improve prediction over the one not including

Z3. The censoring distribution follows uniform [10,37.5] and uniform [7,29.5] with 30% and 50%

censoring.

Case 3. We considered a multinomial logistic regression model as suggested by Gerds et al.

(2012) in this case. Define Fk (t , Z ) = P (T ≤ t ,ε= k|Z ) , k = 1,2. For cause k, logistic-transformed

probabilities were set as

log{Fk (t )/(1−F1(t )−F2(t ))} =µ(t )+β1Z1 +β2Z2 +β3Z3, t > 0,
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where µ(t ) was set to be t −11, β1 = 0.5, β2 = 0.5 and β3 = 1. Since β3 is twice the size of β1

and β2, we expect the new model including Z3 would have a better predictive ability than the old

one using only Z1 and Z2. The event time was simulated by inverting the survival probability, and

cause indicators were assigned with equal probabilities. Independent censoring time was simulated

from a uniform [0,32] distribution for 30% censoring and from a uniform [0,29.2] distribution for

50% censoring.

In light of Demler et al. (2017), we also want to examine the robustness of the inferential

procedures for the NRI and the IDI under the null, where adding the new biomarker into “old”

model doesn’t improve the predictive ability. Thus, we consider the following three scenarios:

Case 4. Similar to Case 1, we set β0 = 2.5, β1 = 0.25, β2 = −0.05, β3 = 0 and σ = 0.2.

Censoring time was simulated from uniform [3, 32] for 30% censoring, and from uniform [1, 21]

for 50% censoring.

Case 5. Similar to Case 2, we set β11 = 0.2, β12 = −0.5, β13 = 0, β21 = 0.02, β22 = −0.05,

β23 = 0, and p = 0.65. The censoring distributions followed a uniform [10,39] distribution for the

30% censoring case and from uniform [7,30] for 50% censoring.

Case 6. Similar to Case 3, we set β1 = 3, β2 = 1 and β3 = 0. Independent censoring time was

simulated from uniform [0, 32] for 30% censoring and from uniform [0, 29.2] for 50% censoring.

Figure 12 shows the survival curves of each case. For Cases 1, 2 and 3, true NRI and IDI are

difficult to obtain because probabilities depend on covariate values. 1,000 samples of size 1,000

without censoring is used to simulate true values. Under Cases 4, 5 and 6, we expect that the pre-

dictive ability of the “new” model would not be improved. Thus the true NRI and IDI are zero. For

each simulation case, we generated 1,000 samples of size 400, and applied all three models without

CV, Cox’s proportional hazard model, Gerds’ multinomial logistic risk regression, and Fine-Gray’s

subdistribution hazard model. Probabilities p̂ for each cause k = 1,2 and survival k = 3 at chosen

time points were obtained with each model and then used for the NRI and the IDI calculation.

Cox regression and Fine-Gray’s model estimate the CIF for each cause separately, while Gerds’

model estimates CIFs for both causes simultaneously. We built confidence intervals (CIs) for the

NRI based on (A.1) and and compare it with the CIs using biased-corrected accelerated (BCa)

bootstrapping. For the IDI, we also calculated the CIs using BCa bootstrapping. Simulation was

run in R, where packages survival, lme4 and cmprsk were used for competing risks model-
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Figure 12: Probability of each cause for all six cases in simulation study
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ing.The simulation results for the NRI and the IDI from cases 1, 2 and 3 under 30% censoring, in

which model predictive ability should improve with the “new” marker, are shown in Table 3 and 4,

respectively. Table 6 and 7 summarize the simulation results for the NRI and the IDI under cases

4, 5 and 6 with 30% censoring, when the added covariate does not improve prediction accuracy.

For the Tables 3, 4, 6 and 7, results from correct models are given in bold. Under alternative

hypothesis when the added covariate improves predictability, true means S and R were calculated

using 1,000 samples with size 1,000. Under null, true means S and R are 0. 1,000 samples with

size 200 or 400 each was used to calculate the sample means Ŝ, R̂ and empirical standard error SE.

Mean of estimated standard deviations SDŜ was outputted by NRI formula provided. Coverage

rate CRŜ=(count of true NRI entering the intervals [Ŝ−1.96SDŜ , Ŝ+1.96SDŜ])/1,000. Each sample

was bootstrapped 1,000 times, and the mean of 1,000 bootstrap standard deviations is denoted as

BSD. Coverage rate BCR=(count of true value entering the 95% BCa bootstrap intervals)/1,000.

From Table 3 and 4, we first notice that, for both NRI and IDI, estimated Ŝ and R̂ on average

are very close to true values S and R, with the correct model for a specific data design. The average

standard deviations of the estimated NRIs based on formula (A.1) approximate the empirical stan-

dard errors closely. The 95% CIs based on asymptotic normality and estimated standard deviation

cover the true values about 95% times, though the coverage rates are a bit lower than 95% at some

time. One possible reason is the use of approximation from Taylor’s expansion, and our formula-

based asymptotic variance could underestimate the true variance of the proposed NRI estimators

in this situation. Nevertheless, when models are specified correctly, the results are very good in

general. Similar to the NRI, IDI estimators are close to their true values when models are correc-

tively specified, average bootstrap standard deviations are comparable to empirical standard errors,

and coverage rates are around 95% using BCa bootstrap CIs. As the censoring rate increases from

30% to 50% and sample size decreases from 400 to 200 (results shown in Tables S1, S3 and S5 in

the supplementary material), standard errors of both NRI and IDI estimators increase but similar

coverage rates are observed.

However, despite the appealing interpretation of covariate effects on cumulative incidence

functions, Fine and Gray’s model does not guarantee the sum of all cause probabilities is equal

to one. So, proposed standard deviation estimation for the NRI often underestimates. The un-

derestimation is worse for the IDI estimators when Fine and Gray is mis-used in predicting event
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probabilities. Table 5 presents the results from the IDI and incremental AUC (IAUC) that were 

proposed by Shi et al. (2014b) under the same settings as in Table 3 and 4. The methods from Shi 

and others (2014) lump the competing events with healthy controls together, and can lead to the 

wrong conclusion of no effect of the added covariate on competing outcomes as shown in Case 2, 

despite the fact that the new marker is clearly related to competing outcomes.

Similar conclusions are observed from Table 6 and 7. Even though the true underlying data 

are from the null and both NRI and IDI are degenerate, the probabilities of covering zero are 

high for both the NRI’s formula-based CIs and the IDI’s BCa bootstrap CIs. Demler et al. (2017) 

suggested to “un-nest” the models by including independent weak predictors in both models such 

that they are no longer nested. As a result, we added independent and non-informative noises from 

the standard normal distribution as additional covariates into both models. The coverage rates are 

improved for the NRI estimation by un-nesting the models, except for Fine and Gray’s model for 

its design that the sum of all cause probabilities is not equal to one. However, by un-nesting the 

models, bias would be introduced into the IDI estimation, which might lead to lower coverage rates 

of CIs. Thus, we chose to simply use the original BCa bootstrapping procedure instead. Results 

for the null hypothesis under 50% censoring and with 200 sample size are summarized in Tables 

9-20 from Appendix C. The same patterns are observed.

Results from cross-validation when models are corrected specified are shown in Tables 21 and 

22 from Appendix C. Under the alternative, the true NRI values, except for Fine and Gray’s model 

with improper probabilistic design, are smaller than the ones without cross-validation, which is 

consistent to Pencina et al. (2011). The coverage rates of cross-validated NRI with BCa bootstrap 

are relatively low.So, a better bootstrap procedure or explicit asymptotic theory can be further 

explored. The performance of BCa bootstrap of the IDI with CV is satisfactory, except for Gerds 

model, where B-spline technique is used for model approximation and later time points suffer 

from more censoring. As for Cox regression and Fine and Gray’s model, the IDI is close to the one 

without CV. This means probabilities estimated from CV did not change much, while the small 

change made huge difference for outcomes to be recategorized.
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Table 3: Simulation details for the NRI under alternative (30% censoring, 400 sample size)

Cox Regression Fine Gray Gerds
S(11) S(12) S(13) S(11) S(12) S(13) S(11) S(12) S(13)

Weibull
(Case 1)

S .114 .100 .126 .114 .100 .126 .114 .100 .126
Ŝ .112 .105 .125 .068 .105 .100 .108 .104 .121

SEŜ .027 .030 .031 .027 .029 .033 .025 .030 .031
SDŜ .024 .030 .030 .016 .028 .026 .024 .030 .030
CRŜ .935 .944 .943 .346 .926 .754 .930 .945 .937

BCRŜ .918 .898 .899 .621 .869 .855 .910 .896 .904

S(20) S(21) S(22) S(20) S(21) S(22) S(20) S(21) S(22)

Fine Gray
(Case 2)

S .109 .127 .123 .109 .127 .123 .109 .127 .123
Ŝ .114 .131 .127 .115 .128 .126 .121 .132 .126

SEŜ .035 .033 .028 .038 .035 .030 .035 .033 .030
SDŜ .032 .029 .025 .033 .032 .026 .032 .028 .025
CRŜ .919 .911 .902 .911 .918 .909 .907 .886 .873

BCRŜ .908 .900 .905 .910 .898 .914 .882 .914 .912

S(9) S(10) S(11) S(9) S(10) S(11) S(9) S(10) S(11)

Gerds
(Case 3)

S .209 .189 .169 .209 .189 .169 .209 .189 .169
Ŝ .208 .193 .176 .065 .143 .165 .205 .186 .172

SEŜ .027 .031 .031 .029 .028 .029 .028 .031 .031
SDŜ .025 .027 .030 .015 .020 .027 .026 .027 .030
CRŜ .924 .897 .933 0 .435 .933 .929 .920 .937

BCRŜ .914 .918 .897 .019 .757 .894 .912 .898 .889
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Table 4: Simulation details for the IDI under alternative (30% censoring, 400 sample size)

Cox Regression Fine Gray Gerds
R(11) R(12) R(13) R(11) R(12) R(13) R(11) R(12) R(13)

Weibull
(Case 1)

R .109 .106 .099 .109 .106 .099 .109 .106 .099
R̂ .110 .108 .100 .018 .025 .034 .101 .092 .079

SER̂ .016 .016 .015 .005 .006 .008 .017 .016 .016
BSDR̂ .017 .016 .016 .007 .008 .010 .018 .017 .016
BCRR̂ .953 .952 .946 0 0 .008 .935 .873 .810

R(20) R(21) R(22) R(20) R(21) R(22) R(20) R(21) R(22)

Fine Gray
(Case 2)

R .151 .158 .165 .151 .158 .165 .151 .158 .165
R̂ .128 .137 .144 .148 .155 .162 .035 .045 .055

SER̂ .020 .021 .022 .020 .021 .021 .014 .015 .016
BSDR̂ .021 .022 .023 .021 .021 .022 .015 .017 .017
BCRR̂ .661 .730 .781 .946 .946 .950 .012 .002 .002

R(9) R(10) R(11) R(9) R(10) R(11) R(9) R(10) R(11)

Gerds
(Case 3)

R .288 .271 .251 .288 .271 .251 .288 .271 .251
R̂ .266 .251 .234 .034 .045 .058 .289 .272 .252

SER̂ .026 .024 .023 .007 .008 .010 .020 .018 .018
BSDR̂ .027 .024 .023 .010 .011 .012 .023 .020 .019
BCRR̂ .512 .606 .732 0 0 0 .947 .958 .949
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Table 5: Simulation details for the IDI and IAUC from Shi et al. (2014b) when the added

covariate improves predictability (30% censoring). Results for each case were obtained with

correct models specified. 1,000 samples with size 400 each was used to calculate the empirical

standard error SE and sample means ÎDI and �IAUC.

Weibull (Case 1) Fine Gray (Case 2) Gerds (Case 3)

time 11 12 13 20 21 22 9 10 11

Cause 1

ÎDI .097 .099 .096 -.00007 -.00003 -.00008 .267 .253 .236

SEÎDI .032 .033 .034 .002 .001 .002 .041 .039 .038

�IAUC .359 .382 .411 .0007 -.0002 .0005 .688 .679 .674

SE�IAUC .080 .084 .099 .017 .012 .015 .053 .058 .067

time 11 12 13 20 21 22 9 10 11

Cause 2

ÎDI .098 .101 .097 -.00006 -.000003 -.000003 .269 .253 .235

SEÎDI .031 .032 .034 .001 .001 .002 .042 .041 .041

�IAUC .362 .387 .413 -.0001 .0004 -.001 .690 .682 .671

SE�IAUC .077 .085 .098 .009 .011 .016 .053 .059 .069
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Table 6: Simulation details for the NRI under null (30% censoring, 400 sample size)

Cox Regression Fine Gray Gerds
S(11) S(12) S(13) S(11) S(12) S(13) S(11) S(12) S(13)

Weibull
(Case 4)

Ŝ .005 .005 .005 .005 .004 .003 .004 .004 .004
SEŜ .015 .015 .015 .013 .015 .015 .015 .015 .016
SDŜ .013 .014 .014 .010 .013 .015 .014 .014 .015
CRŜ .915 .919 .939 .845 .918 .940 .931 .949 .935

CRunnest
Ŝ

.949 .941 .945 .913 .933 .957 .940 .927 .933
BCRŜ .855 .845 .834 .835 .860 .868 .842 .817 .859

S(20) S(21) S(22) S(20) S(21) S(22) S(20) S(21) S(22)

Fine Gray
(Case 5)

Ŝ .005 .004 .002 .005 .004 .002 .006 .004 .002
SEŜ .016 .015 .012 .015 .015 .011 .016 .016 .011
SDŜ .014 .014 .010 .013 .013 .010 .014 .014 .010
CRŜ .915 .934 .891 .913 .913 .897 .916 .919 .918

CRunnest
Ŝ

.939 .946 .951 .946 .955 .952 .937 .942 .959
BCRŜ .902 .908 .882 .903 .917 .898 .889 .872 .901

S(9) S(10) S(11) S(9) S(10) S(11) S(9) S(10) S(11)

Gerds
(Case 6)

Ŝ .005 .005 .005 .004 .007 .005 .005 .006 .006
SEŜ .016 .016 .016 .010 .015 .016 .018 .017 .016
SDŜ .015 .015 .015 .006 .011 .014 .015 .015 .015
CRŜ .915 .922 .933 .709 .856 .907 .769 .783 .786

CRunnest
Ŝ

.938 .945 .946 .856 .889 .935 .945 .947 .945
BCRŜ .818 .836 .827 .732 .831 .868 .819 .836 .857
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Table 7: Simulation details for the IDI under null (30% censoring, 400 sample size)

Cox Regression Fine Gray Gerds
R(11) R(12) R(13) R(11) R(12) R(13) R(11) R(12) R(13)

Weibull
(Case 4)

R̂ .002 .002 .002 .002 .002 .002 .002 .002 .002
SER̂ .002 .003 .003 .003 .003 .003 .002 .002 .002

BSDR̂ .004 .004 .005 .004 .005 .005 .004 .004 .004
BCRR̂ .962 .947 .953 .897 .903 .909 .955 .957 .955

R(20) R(21) R(22) R(20) R(21) R(22) R(20) R(21) R(22)

Fine Gray
(Case 5)

R̂ .002 .003 .003 .002 .002 .002 .0004 .0007 .0009
SER̂ .003 .003 .003 .002 .002 .003 .0006 .0008 .001

BSDR̂ .004 .005 .005 .004 .004 .004 .001 .001 .002
BCRR̂ .864 .857 .842 .776 .773 .755 .865 .872 .870

R(9) R(10) R(11) R(9) R(10) R(11) R(9) R(10) R(11)

Gerds
(Case 6)

R̂ .003 .003 .003 .002 .002 .002 .002 .002 .002
SER̂ .003 .003 .003 .003 .003 .004 .002 .002 .003

BSDR̂ .005 .005 .005 .004 .005 .005 .004 .004 .004
BCRR̂ .953 .927 .932 .910 .907 .905 .960 .943 .935
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4.4 APPLICATION TO THE MULTICENTER AIDS COHORT STUDY

We applied the NRI and IDI methods to data obtained by the MACS. It is an ongoing study of

homosexual and bisexual men at risk for or infected with HIV, recruited from four institutions in

Baltimore, Chicago, Pittsburgh and Los Angeles (Kingsley et al., 1987; Kaslow et al., 1987). The

data used for this analysis were gathered between April 2,1984 and April 8, 2017. Each participant

underwent a clinical examination semi-annually, and neuropsychological testing approximately

every two years (however, see Miller et al. (1990); Becker et al. (2014) for details) until they

drop out of the study voluntarily or die. The current analysis utilizes the data from a substudy

of the legacy effect of HIV on cognitive impairment, which contains 2,783 HIV seropositive men

(Farinpour et al., 2003).

Individuals with HIV disease have historically been at risk for cognitive impairment. The

MACS measured cognitive functions over time with a battery of neuropsychological (NP) tests

which were summarized by T scores in six cognitive domains: working memory & attention,

learning, motor speed & coordination, executive functioning, speed of information processing,

and memory. We adopted the Multivariate Normative Comparison (MNC) method to define ab-

normality in cognition as in Huizenga et al. (2007) and Wang et al. (2019). Time to impairment

was defined as the interval between study entry and the first visit where the six domain scores

were deemed abnormal by the MNC method. Those subjects who were impaired at their first visit

were excluded from the analyses. Though cognitive impairment and death could be thought of as

semi-competing risks where death may censor impairment but not vice versa, we treated them as

competing risks data by defining the events as cognitive impairment and death without impairment.

If a subject died after the last complete NP visit and no cognitive impairment was detected, his time

to impairment was competing-rick censored by death. Otherwise, subjects were censored at their

last visit.

In the presence of competing-risk censoring, techniques such as Cox regression, Gerds’ model,

and Fine-Gray’s model can be used to identify potential risk factors affecting cognition after the

onset of HIV infection. However, these methods do not directly quantify the relative importance

a factor is in predicting who might develop impairment, who might die, or who might be alive

and disease free after a fixed time interval. Here we apply the NRI and the IDI treating CD4+
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cell count as the “new” biomarker (with both linear and quadratic terms to account for nonlinear-

ity when modeling cognitive impairment) to examine whether the inclusion of this variable will 

yield a better prediction. In the Legacy substudy (Popov et al., 2019), three other predictors – age, 

center for epidemiologic studies depression scale, and recruitment cohort (before or after 2001) –

were found to be significantly related to cognitive impairment and were treated here as conven-

tional predictors. All four predictors were measured at study entry. Final analysis included 1,972 

seropositive subjects who had at least one visit with complete cognitive tests and the information 

on four predictors.

Within this subsample, 553 men were classified with cognitive impairment using the MNC 

method (28.0%), 597 died during follow-up without any cognitive impairment (30.3%), and 822 

were censored by the “end” (at the data freeze) of the study (41.7%). Time to event or time in the 

study ranged from 5 months to 33 years. We examined the performance of CD4+ cell count and its 

quadratic transformation as the “new” biomarkers in predicting health status at 10 and 12 years 

since the start of the study with a proportional hazard model, Fine-Gray’s model, and Gerds’ 

model, using both NRI and IDI. The two events, cognitive impairment and death without cognitive 

impairment, were again modeled separately with Cox’s model or Fine-Gray’s model, and they 

were modeled simultaneously in the Gerds model. 5-fold cross-validation was used to compute the 

probabilities of both events and survival at selected time. Based on the predicted probabilities of 

both events p̂1 and p̂2 and predicted survival p̂3 that were calculated from the three models at 10 

and 12 years, we computed the values of the NRI and IDI. For IDI, 10,000 bootstrap samples were 

used to produce 95% BCa bootstrap CIs. In order to select the most suitable regression model, we 

also computed cause-specific Brier scores (Schoop et al., 2011a) from in-sample probabilities, 

which also uses the method of inverse probability of censoring weighting on competing risk. The 

results are summarized in Table 8.

In Table 8 we can see that the estimated NRI and IDI and their 95% CIs are comparable across 

the three different models. Among the three models, Cox regression has the lowest Brier scores 

for both events at 10 and 12 years, suggesting that Cox regression is the most suitable competing 

risks model for our data. Moreover, from the Cox-Snell residual plots shown in Fig. 1, we can 

see that Cox regression provides a good overall fit to the MACS data, as the cumulative hazards of 

Cox-Snell residuals for both events go through a straight line with slope 1.
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From the Cox regression model the estimated NRIs at 10 and 12 years since the start of the

study are .037 and .084 with 95% CIs [.023, .052] and [.068, .101] respectively. The estimated

IDIs are .049 and .060 with 95% BCa CIs [.039, .065] and [.048, .078]. Because the 95% CIs

of both NRI and IDI do not include zero, we conclude that including the CD4+ cell counts in

competing risks models increases the accuracy of predicting cognitive impairment and death after

10 and 12 years in the study. More specifically, the probabilities of correctly predicting health

status (impairment, death, or neither) for a subject after 10 and 12 years of observation improves

by 3.7% and 8.4%, by simply incorporating CD4+ cell counts with its quadratic transformation

into the model. Also, the variability explained by the predictive model is increased by 4.9% and

6.0% for events at 10 and 12 years with the addition of the CD4+ counts.

However, some participants withdrew from the legacy study and died many years afterwards.

If a subject died more than 4 years after his last NP visit, he may have experienced cognitive im-

pairment between his last NP visit and death. As a sensitivity analysis, we censored such subjects

four years after their last NP visit, assuming cognition stayed relatively stable over two consecu-

tive NP visits (about 4 years as scheduled). In this way, 553 men were classified with cognitive

impairment using the MNC method (28.0%), 425 died within 4 years after the last NP visit without

any cognitive impairment (21.6%), and 994 were censored either at their last study visit or 4 years

following the last NP exam, whichever was first (50.4%). Using the Cox regression model, the

estimated NRIs at 10 and 12 years since the start of the study are .101 and .109 with 95% con-

fidence intervals [.083, .119] and [.091, .127] respectively. The estimated IDIs are .095 and .100

with 95% BCa confidence intervals of [.084, .137] and [.086, .143]. Again, these findings suggest

that including CD4+ cell counts in competing risks models can increase prediction accuracy of

death and cognitive impairment after 10 and 12 years in the study.

4.5 DISCUSSION

We have demonstrated here the good practical performance of the extended NRI and IDI in compet-

ing risks settings. Although a CI for the IDI can be efficiently constructed based on the asymptotic

linear representation for a well-studied regression model, the BCa bootstrap method serves as a
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flexible alternative when a model is relatively new and its theoretical properties are less known.

When the added variables have no effect on the events and models to be compared are nested, Dem-

ler et al. (2017) showed that the theory based on U-statistics fails. Still, the CIs for the NRI based

on asymptotic normality and the BCa bootstrap CIs for the IDI seem to have satisfactory coverage

as demonstrated by simulations. After un-nesting the models, the CI for the NRI is improved.

In this work we have considered three reasonable competing risks models. However, one can

use any other semiparametric or parametric models such as Scheike et al. (2008) and Cheng (2009).

The limitation of the extended NRI and IDI is that they are model dependent and are not robust

against model mis-specification. As a result, it remains important to select a proper predictive

model before examining diagnostic accuracy improvement over the course of variables’ addition.

Metrics, such as the Brier score, are useful in choosing the most appropriate model for the data.

Competing endpoints are common in biomedical research, although they are often neglected in

analysis. The extended NRI and IDI for competing events provide alternative and straightforward

interpretations of the importance of new biomarkers on top of conventional factors. They also

serve as more unifying metrics than model coefficients such as hazards ratio or odds ratio, since the

latter depend on the types and the scales of covariates. Moreover, this is in line with recent debate

about moving away from statistical significance of 0.05 level (Wasserstein et al., 2019). Instead

of simply looking at p values for the added variables in a regression model, one can assess the

contribution of additional risk factors in prediction through interval estimates of the IDI and NRI.

Thus, the extended NRI and IDI for multiple competing endpoints might be useful in screening

and selecting covariates in high dimensional settings.
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Figure 13: Cox-Snell residual plots for the MACS data with Cox regression
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Table 8: NRI and IDI results for the MACS data at times 10 and 12 years. Competing risk

censoring by death occurred when subjects died without cognitive impairment.

Model Time NRI IDI
Brier Score with Event

Cognitive Impairment Death

Cox Regression

t=10
.037 .049

.096 .132
[.023, .052] [.039, .065]

t=12
.084 .060

.107 .154
[.068, .101] [.048, .078]

Gerds

t=10
.024 .050

.100 .166
[.011, .038] [.040, .068]

t=12
.070 .055

.113 .202
[.054, .086] [.044, .074]

Fine and Gray

t=10
.024 .030

.096 .133
[.014, .034] [.022, .041]

t=12
.069 .038

.107 .156
[.055, .084] [.028, .051]
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APPENDIX A. THE ASYMPTOTIC THEORY OF NRI

We now establish the asymptotic normality of Ŝ(t0), starting with introducing more notation.

Ŝ(t0) =ω1

∑n
i=1(h+

i ,1(t0)−h−
i ,1(t0))∑n

i=1 I
{

Xi ≤ t0,ηi = 1
}

/Ĝ(Xi−)
+ω2

∑n
i=1(h+

i ,2(t0)−h−
i ,2(t0))∑n

i=1 I
{

Xi ≤ t0,ηi = 2
}

/Ĝ(Xi−)
+

ω3

∑n
i=1(h+

i ,3(t0)−h−
i ,3(t0))∑n

i=1 I {Xi > t0}/Ĝ(t0)
.

For k = 1,2

h+
i ,k (t0) = I

{
p̂1i (M2, t0) = max p̂(M2, t0), p̂1i (M1, t0) 6= max p̂(M1, t0), Xi ≤ t0,ηi = k

}/
Ĝ(Xi−),

h−
i ,k (t0) = I

{
p̂1i (M2, t0) 6= max p̂(M2, t0), p̂1i (M1, t0) = max p̂(M1, t0), Xi ≤ t0,ηi = k

}/
Ĝ(Xi−),

h+
i ,3(t0) = I

{
p̂3i (M2, t0) = max p̂(M2, t0), p̂3i (M1, t0) 6= max p̂(M1, t0), Xi > t0

}
/Ĝ(t0),

h−
i ,3(t0) = I

{
p̂3i (M2, t0) 6= max p̂(M2, t0), p̂3i (M1, t0) = max p̂(M1, t0), Xi > t0

}
/Ĝ(t0).

For each category k = 1,2,3, h+
i ,k (t0) is an indicator function of whether the “old” model M1

makes a wrong prediction on category k for i -th subject while the “new” M2 correctly identi-

fies it. Conversely, h−
i ,k (t0) indicates whether the “new” model changes a right prediction from

the “old” model. Let QX (t ) = P (Xi > t ), and define the martingale of the censoring time C as

MCi (t ) = I {ηi = 0, Xi ≤ t }−∫ t
0 I {Xi ≥ u}dΛC (u), where ΛC (·) is the cumulative hazard function of

C . For k = 1,2 and the third “healthy” category, we define fi ,k (t0) = I
{

Xi ≤ t0,ηi = k
}/

G(Xi−) and

fi ,3(t0) = I {Xi > t0}/G(t0). For k = 1,2,3, define h+/−
k (t0) = Eh+/−

i ,k (t0), fk (t0) = E fi ,k (t0), where the

expectation is with respect to T , C , and covariates Z . Let M̂C be the estimator defined by plugging

in the usual Nelson-Aalen estimator of the cumulative hazard function of the censoring time C and

let ĥ+/−
i ,k , f̂i ,k be defined by plugging in the Kaplan-Meier estimator Ĝ(·), if applicable. Define

ĥ+/−
k (t0) = 1

n

n∑
i=1

ĥ+/−
i ,k (t0), f̂k (t0) = 1

n

n∑
i=1

f̂i ,k (t0), Ŝ(t0) =
3∑

k=1
ωk

ĥ+
k (t0)− ĥ−

k (t0)

f̂k (t0)
.
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Since G(t0) in h+/−
i ,3 (t0) and fi ,3(t0) will be canceled out, we redefine h+/−

i ,3 (t0) and fi ,3(t0) by

multiplying G(t0). Following Blanche et al. (2013), the Martingale representation of the Kaplan-

Meier estimator of the censoring survival function (Hung and Chin-Tsang, 2010; Andersen et al.,

1993) entails that:

sup
t

pn(Ĝ(t )−G(t ))+ G(t )p
n

n∑
i=1

∫ t

0

d MCi (u)

QX (u)

= op (1).

By Taylor’s expansion (Serfling, 1980),

sup
t0

pn
(
ĥ+

k (t0)−h+
k (t0)

)−[ p
n

n(n −1)

n∑
i=1

n∑
j 6=i

h+
i ,k (t0)

{
1+

∫ Xi

0

d MC j (u)

QX (u)

}
−h+

k (t0)

]= op (1),

for k = 1,2. Similar results hold for ĥ−
k (t0),k = 1,2. Moreover,

sup
t0

pn
(

f̂k (t0)− fk (t0)
)−[ p

n

n(n −1)

n∑
i=1

n∑
j 6=i

fi ,k (t0)

{
1+

∫ Xi

0

d MC j (u)

QX (u)

}
−Fk (t0)

]= op (1).

When k = 3, again we have

sup
t0

pn
(
ĥ+

3 (t0)−h+
3 (t0)

)− 1p
n

n∑
i=1

(
h+

i ,3(t0)−h+
3 (t0)

)= 0,

sup
t0

pn
(

f̂3(t0)− f3(t0)
)− 1p

n

n∑
i=1

(
fi ,3(t0)− f3(t0)

)= 0.

Then Ŝ(t0) can be further formulated using Taylor’s expansion:

sup
t

pn
(
Ŝ(t0)−S(t0)

)− p
n

n(n −1)

n∑
i=1

n∑
j 6=i

Ψi j (t0)

= op (1),

where

Ψi j (t0) =
2∑

k=1
ωk

{
I Fh+

k (t0) − I Fh−
k (t0)

fk (t0)
− h+

k (t0)−h−
k (t0)

f 2
k (t0)

I F fk (t0)

}

=
2∑

k=1
ωk

{[
h+

i ,k (t0)−h−
i ,k (t0)− fi ,k (t0)

fk (t0)

(
h+

k (t0)−h−
k (t0)

)](
1+

∫ Xi

0

d MC j (u)

QX (u)

)}/
fk (t0)

+ω3

{
h+

i ,3(t0)−h−
i ,3(t0)− fi ,3(t0)

f3(t0)

(
h+

3 (t0)−h−
3 (t0)

)}/
f3(t0),
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and I F denotes the influence function (Hampel et al., 1986) of each estimator respectively. By Há-

jek’s projection principle, the following Hoeffding’s decomposition (van der Vaart, 1998; Serfling,

1980) holds:
p

n

n(n −1)

n∑
i 6= j

Ψi j (t0) = 1p
n

n∑
i=1

I F (Xi ,ηi , t0)+op (1).

Given Martingale’s properties (Kalbfleisch and Prentice, 2002), we also know that

E
[

I F (Xi ,ηi , t0)
]
= 0.

Let M̂C be the estimator by plugging in the usual Nelson-Aalen estimator of the cumulative hazard

function of the censoring time C . ĥ+/−
k , F̂k , ĥ+/−

i ,k , and f̂i ,k were defined as above. Q̂X is the

estimate of Q using the empirical distribution of X . Plugging in these estimators to estimate Ψi j ,

we compute I F (Xi ,ηi , t0) as

ˆI F (Xi ,ηi , t0) = 1

n −1

n∑
i=1

n∑
j 6=i

[
Ψ̂i j (t0)+ Ψ̂j i (t0)

]
. (A.1)
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APPENDIX B. THE ASYMPTOTIC THEORY OF IDI

The IDI at time t0 is estimated as:

R̂(t0) =
3∑

k=1

ωk

nπ̂k (t0){1− π̂k (t0)}

n∑
i=1

[{
p̂ki (M2, t0)− p̂k (M2, t0)

}2 −
{

p̂ki (M1, t0)− p̂k (M1, t0)
}2

]
.

Without any covariates, we estimate the probability of falling into the k-th category by π̂k (t0),

where π̂k (t0) = n̂k (t0)/(n̂1(t0)+ n̂2(t0)+ n̂3(t0)), with n̂k (t0) =∑n
i=1 I

{
Xi ≤ t0,ηi = k

}
/Ĝ(Xi−),k =

1,2 and n̂3(t0) =∑n
i=1 I {Xi > t0}/Ĝ(t0). Hence the variance without any model is π̂k (t0)(1−π̂k (t0)).

With model Mm ,m = 1,2, the variance can be estimated by 1
n

∑n
i=1

{
p̂ki (Mm , t0)− p̂k (Mm , t0)

}2
,

where p̂k (Mm , t0) = 1
n

∑n
i=1 p̂ki (Mm , t0).

Define πk = En̂k /n, for k = 1,2,3. Analogous to the arguments in Section (A), we have, for

k = 1,2,

sup
t0

pn
(
π̂k (t0)−πk (t0)

)
−

{ p
n

n(n −1)

n∑
i=1

n∑
j 6=i

ni ,k (t0)
(
1+

∫ Xi

0

d MC j (u)

QX (u)

)
−πk (t0)

}= op (1),

sup
t0

pn
(
π̂3(t0)−π3(t0)

)
−

{ p
n

n(n −1)

n∑
i=1

n∑
j 6=i

ni ,3(t0)
(
1+

∫ t0

0

d MC j (u)

QX (u)

)
−π3(t0)

}= op (1).

Let

Qi j ,k (t0) = ni ,k (t0)

(
1+

∫ Xi

0

d MC j (u)

QX (u)

)
−πk (t0),k = 1,2

Qi j ,3(t0) = ni ,3(t0)

(
1+

∫ t0

0

d MC j (u)

QX (u)

)
−π3(t0).
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When covariates are involved, the variance that is explained by model Mm ,m = 1,2, is given as

D̂k(m) = 1
n

∑n
i=1

{
p̂ki (Mm , t0)− p̂k (Mm , t0)

}2
. D̂k(m) can be rewritten as

D̂k(m) =
1

n

n∑
i=1

{
p̂ki (Mm , t0)−pki (Mm , t0)+pki (Mm , t0)− p̂k (Mm , t0)

}2

= 1

n

n∑
i=1

[{
p̂ki (Mm , t0)−pki (Mm , t0)

}2 +
{

pki (Mm , t0)− p̂k (Mm , t0)
}2

+2
{

p̂ki (Mm , t0)−pki (Mm , t0)
}{

pki (Mm , t0)− p̂k (Mm , t0)
}]

.

Let Dk(m) = ED̂k(m). By taking Taylor’s expansion, it’s easy to get the asymptotic linear represen-

tation for D̂k(m). For k = 1,2,3:

sup
t0

∣∣∣∣pn(D̂k(m) −Dk(m))−
p

n

n

n∑
i=1

[
2
(
pki (Ml , t0)−pk (Mm , t0)

)
I Fp̂ki

+(
pki (Mm , t0)−pk (Mm , t0)

)2 −Dk(m)

]∣∣∣∣= op (1), m = 1,2,

where I Fp̂ki is the influence function (Hampel et al., 1986) that is specific to the estimated CIF

from a particular competing risks model, and will be discussed again in the following paragraph.

Denote Bki (m)(t0) = (
p̂ki (Mm , t0)−pk (Mm , t0)

)2 −Dk(m). By Taylor’s expansion:

sup
t0

∣∣∣∣∣pn
(
R̂(t0)−R(t0)

)− p
n

n(n −1)

n∑
i 6= j

Ψ∗∗
i j (t0)

∣∣∣∣∣= op (1),

where

Ψ∗∗
i j (t0) =

3∑
k=1

ωk

{
Bki (2) −Bki (1)

πk (t0)
(
1−πk (t0)

) + Qi j ,k (t0)
(
Dk(2) −Dk(1)

)(
2πk (t0)−1

)
π2

k (t0)
(
1−πk (t0)

)2

}
.

By Hájek’s projection principle , the following Hoeffding decomposition (van der Vaart, 1998;

Serfling, 1980) holds:
p

n

n(n −1)

n∑
i=1

n∑
j 6=i

Ψ∗∗
i j (t0) = 1p

n

n∑
i=1

I F∗∗(Xi ,ηi , Mi , t0)+op (1),

where

I F∗∗(Xi ,ηi , Mi , t0) = E
(
Ψ∗∗

i j (t0)+Ψ∗∗
j i (t0)

∣∣∣(Xi ,ηi , Mi )
)

(B.1)

and E
[

I F∗∗(Xi ,ηi , Mi , t0)
]
= 0. Using the same procedure from the previous proof, we can also

estimate I F∗∗(Xi ,ηi , Mi , t0) using the sample.
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APPENDIX C. SUPPLEMENTAL TABLES FOR SECTION 4.3

For the supplemental tables, results from correct models are given in bold. Under alternative

hypothesis when the added covariate improves predictability, true means S and R were calculated

using 1,000 samples with size 1,000. Under null, true means S and R are 0. 1,000 samples with

size 200 or 400 each was used to calculate the sample means Ŝ, R̂ and empirical standard error SE.

Mean of estimated standard deviations SDŜ was outputted by NRI formula provided. Coverage

rate CRŜ=(count of true NRI entering the intervals [Ŝ−1.96SDŜ , Ŝ+1.96SDŜ])/1,000. Each sample

was bootstrapped 1,000 times, and the mean of 1,000 bootstrap standard deviations is denoted as

BSD. Coverage rate BCR=(count of true value entering the 95% BCa bootstrap intervals)/1,000.
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Table 9: Simulation details for the NRI under alternative (50% censoring, 400 sample size)

Cox Regression Fine Gray Gerds
S(11) S(12) S(13) S(11) S(12) S(13) S(11) S(12) S(13)

Weibull
(Case 1)

S .114 .100 .126 .114 .100 .126 .114 .100 .126
Ŝ .113 .106 .124 .089 .107 .119 .109 .105 .117

SEŜ .030 .036 .038 .027 .033 .040 .030 .035 .038
SDŜ .028 .035 .036 .022 .033 .034 .027 .035 .036
CRŜ .930 .933 .933 .725 .945 .903 .925 .945 .909

BCRŜ .908 .888 .905 .867 .892 .910 .918 .908 .897

S(20) S(21) S(22) S(20) S(21) S(22) S(20) S(21) S(22)

Fine Gray
(Case 2)

S .109 .127 .123 .109 .127 .123 .109 .127 .123
Ŝ .116 .131 .126 .112 .125 .125 .120 .131 .126

SEŜ .041 .038 .034 .042 .040 .036 .038 .037 .034
SDŜ .038 .035 .030 .039 .037 .032 .038 .033 .030
CRŜ .915 .915 .908 .933 .935 .906 .934 .918 .887

BCRŜ .892 .899 .930 .912 .921 .934 .896 .907 .934

S(9) S(10) S(11) S(9) S(10) S(11) S(9) S(10) S(11)

Gerds
(Case 3)

S .209 .189 .169 .209 .189 .169 .209 .189 .169
Ŝ .206 .189 .176 .126 .156 .159 .208 .187 .172

SEŜ .031 .036 .037 .028 .029 .034 .032 .035 .034
SDŜ .028 .031 .036 .022 .026 .033 .030 .032 .036
CRŜ .911 .923 .940 .110 .756 .928 .917 .936 .950

BCRŜ .914 .912 .912 .357 .880 .918 .927 .921 .916
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Table 10: Simulation details for the IDI under alternative (50% censoring, 400 sample size)

Cox Regression Fine Gray Gerds
R(11) R(12) R(13) R(11) R(12) R(13) R(11) R(12) R(13)

Weibull
(Case 1)

R .109 .106 .099 .109 .106 .099 .109 .106 .099
R̂ .110 .108 .101 .035 .048 .066 .096 .087 .075

SER̂ .018 .018 .018 .010 .013 .017 .018 .018 .017
BSDR̂ .021 .020 .018 .012 .014 .016 .021 .019 .018
BCRR̂ .965 .959 .928 .002 .081 .622 .911 .859 .825

R(20) R(21) R(22) R(20) R(21) R(22) R(20) R(21) R(22)

Fine Gray
(Case 2)

R .151 .158 .165 .151 .158 .165 .151 .158 .165
R̂ .131 .140 .148 .146 .153 .160 .037 .046 .055

SER̂ .023 .024 .025 .024 .024 .025 .016 .016 .017
BSDR̂ .026 .027 .028 .025 .025 .025 .019 .020 .020
BCRR̂ .757 .816 .856 .921 .925 .924 .021 .008 .006

R(9) R(10) R(11) R(9) R(10) R(11) R(9) R(10) R(11)

Gerds
(Case 3)

R .288 .271 .251 .288 .271 .251 .288 .271 .251
R̂ .282 .267 .250 .089 .113 .143 .288 .270 .251

SER̂ .028 .026 .025 .017 .020 .023 .022 .021 .021
BSDR̂ .033 .031 .029 .020 .022 .023 .028 .025 .023
BCRR̂ .634 .802 .911 0 0 .031 .911 .956 .957
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Table 11: Simulation details for the NRI under null (50% censoring, 400 sample size)

Cox Regression Fine Gray Gerds
S(11) S(12) S(13) S(11) S(12) S(13) S(11) S(12) S(13)

Weibull
(Case 4)

Ŝ .006 .005 .006 .006 .005 .005 .006 .005 .006
SEŜ .018 .017 .018 .017 .017 .018 .017 .018 .018
SDŜ .015 .016 .017 .013 .016 .017 .016 .017 .017
CRŜ .897 .934 .922 .882 .915 .926 .920 .927 .921

CRunnest
Ŝ

.943 .950 .945 .916 .943 .938 .937 .940 .964
BCRŜ .857 .884 .871 .840 .891 .881 .831 .809 .851

S(20) S(21) S(22) S(20) S(21) S(22) S(20) S(21) S(22)

Fine Gray
(Case 5)

Ŝ .007 .006 .004 .005 .005 .007 .006 .003 .002
SEŜ .020 .019 .014 .018 .020 .014 .020 .020 .014
SDŜ .018 .018 .013 .017 .018 .013 .018 .018 .013
CRŜ .907 .933 .893 .919 .911 .882 .904 .921 .895

CRunnest
Ŝ

.929 .958 .952 .941 .959 .952 .933 .953 .948
BCRŜ .857 .888 .903 .891 .888 .899 .879 .874 .892

S(9) S(10) S(11) S(9) S(10) S(11) S(9) S(10) S(11)

Gerds
(Case 6)

Ŝ .005 .006 .005 .006 .008 .007 .005 .005 .006
SEŜ .019 .018 .018 .016 .017 .018 .019 .018 .018
SDŜ .016 .016 .017 .011 .014 .016 .017 .017 .017
CRŜ .904 .920 .923 .808 .878 .909 .911 .922 .904

CRunnest
Ŝ

.948 .950 .946 .900 .920 .942 .929 .954 .948
BCRŜ .863 .860 .859 .803 .825 .867 .846 .863 .879
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Table 12: Simulation details for the IDI under null (50% censoring, 400 sample size)

Cox Regression Fine Gray Gerds
R(11) R(12) R(13) R(11) R(12) R(13) R(11) R(12) R(13)

Weibull
(Case 4)

R̂ .003 .003 .003 .003 .003 .004 .002 .003 .003
SER̂ .003 .003 .004 .004 .004 .005 .003 .003 .003

BSDR̂ .006 .006 .007 .006 .007 .008 .005 .006 .006
BCRR̂ .964 .957 .947 .943 .941 .927 .958 .958 .953

R(20) R(21) R(22) R(20) R(21) R(22) R(20) R(21) R(22)

Fine Gray
(Case 5)

R̂ .003 .004 .004 .003 .003 .004 .0006 .0008 .001
SER̂ .003 .004 .004 .003 .004 .004 .0007 .001 .001

BSDR̂ .006 .007 .007 .005 .006 .006 .002 .002 .003
BCRR̂ .905 .883 .874 .823 .807 .785 .865 .872 .870

R(9) R(10) R(11) R(9) R(10) R(11) R(9) R(10) R(11)

Gerds
(Case 6)

R̂ .003 .004 .004 .003 .003 .004 .002 .003 .003
SER̂ .004 .004 .004 .004 .004 .005 .003 .003 .004

BSDR̂ .008 .008 .008 .008 .007 .008 .005 .006 .006
BCRR̂ .964 .946 .948 .960 .959 .946 .969 .961 .948
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Table 13: Simulation details for the NRI under alternative (30% censoring, 200 sample size)

Cox Regression Fine Gray Gerds
S(11) S(12) S(13) S(11) S(12) S(13) S(11) S(12) S(13)

Weibull
(Case 1)

S .114 .100 .126 .114 .100 .126 .114 .100 .126
Ŝ .111 .105 .122 .073 .104 .093 .108 .106 .117

SEŜ .038 .042 .043 .037 .041 .046 .039 .043 .046
SDŜ .035 .041 .042 .024 .038 .036 .035 .041 .041
CRŜ .914 .945 .932 .546 .922 .759 .908 .948 .905

BCRŜ .906 .895 .903 .772 .852 .848 .900 .892 .895

S(20) S(21) S(22) S(20) S(21) S(22) S(20) S(21) S(22)

Fine Gray
(Case 2)

S .109 .127 .123 .109 .127 .123 .109 .127 .123
Ŝ .118 .130 .127 .114 .127 .124 .121 .131 .126

SEŜ .048 .043 .040 .050 .048 .043 .046 .042 .037
SDŜ .044 .041 .036 .046 .044 .038 .044 .040 .035
CRŜ .915 .917 .908 .915 .920 .908 .928 .935 .918

BCRŜ .878 .899 .921 .889 .903 .911 .882 .906 .933

S(9) S(10) S(11) S(9) S(10) S(11) S(9) S(10) S(11)

Gerds
(Case 3)

S .209 .189 .169 .209 .189 .169 .209 .189 .169
Ŝ .209 .192 .180 .081 .145 .168 .208 .191 .175

SEŜ .040 .044 .043 .044 .040 .041 .039 .043 .044
SDŜ .036 .038 .042 .022 .030 .037 .036 .039 .042
CRŜ .917 .905 .933 .061 .645 .920 .931 .923 .933

BCRŜ .915 .898 .892 .226 .816 .874 .924 .909 .979

81



Table 14: Simulation details for the IDI under alternative (30% censoring, 200 sample size)

Cox Regression Fine Gray Gerds
R(11) R(12) R(13) R(11) R(12) R(13) R(11) R(12) R(13)

Weibull
(Case 1)

R .109 .106 .099 .109 .106 .099 .109 .106 .099
R̂ .115 .113 .106 .021 .028 .037 .100 .092 .080

SER̂ .025 .024 .023 .008 .010 .013 .026 .025 .024
BSDR̂ .027 .026 .025 .013 .014 .016 .028 .026 .025
BCRR̂ .961 .965 .969 .004 .019 .137 .937 .916 .898

R(20) R(21) R(22) R(20) R(21) R(22) R(20) R(21) R(22)

Fine Gray
(Case 2)

R .151 .158 .165 .151 .158 .165 .151 .158 .165
R̂ .131 .141 .149 .148 .156 .163 .124 .135 .146

SER̂ .029 .030 .032 .030 .030 .031 .027 .028 .030
BSDR̂ .034 .035 .036 .031 .031 .032 .030 .031 .033
BCRR̂ .854 .877 .893 .959 .950 .947 .800 .855 .897

R(9) R(10) R(11) R(9) R(10) R(11) R(9) R(10) R(11)

Gerds
(Case 3)

R .288 .271 .251 .288 .271 .251 .288 .271 .251
R̂ .288 .272 .254 .038 .049 .062 .294 .277 .258

SER̂ .037 .035 .033 .011 .014 .016 .029 .027 .026
BSDR̂ .049 .044 .041 .018 .020 .021 .035 .032 .031
BCRR̂ .789 .822 .873 0 0 0 .971 .976 .961
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Table 15: Simulation details for the NRI under null (30% censoring, 200 sample size)

Cox Regression Fine Gray Gerds
S(11) S(12) S(13) S(11) S(12) S(13) S(11) S(12) S(13)

Weibull
(Case 4)

Ŝ .007 .006 .006 .006 .006 .006 .007 .008 .007
SEŜ .023 .022 .022 .020 .023 .024 .022 .024 .023
SDŜ .019 .020 .021 .016 .020 .023 .020 .021 .022
CRŜ .886 .893 .908 .838 .889 .937 .901 .899 .927

CRunnest
Ŝ

.964 .931 .941 .903 .929 .962 .938 .939 .946
BCRŜ .834 .855 .840 .822 .842 .868 .853 .826 .857

S(20) S(21) S(22) S(20) S(21) S(22) S(20) S(21) S(22)

Fine Gray
(Case 5)

Ŝ .009 .007 .006 .009 .006 .005 .009 .008 .006
SEŜ .024 .024 .019 .024 .024 .019 .027 .025 .020
SDŜ .022 .023 .017 .021 .021 .016 .023 .024 .018
CRŜ .899 .923 .903 .890 .902 .851 .904 .923 .890

CRunnest
Ŝ

.939 .954 .953 .923 .952 .942 .937 .944 .939
BCRŜ .873 .880 .882 .863 .862 .862 .849 .869 .875

S(9) S(10) S(11) S(9) S(10) S(11) S(9) S(10) S(11)

Gerds
(Case 6)

Ŝ .007 .007 .007 .006 .008 .007 .007 .008 .008
SEŜ .025 .024 .022 .017 .021 .022 .024 .024 .023
SDŜ .020 .021 .021 .010 .015 .020 .021 .021 .021
CRŜ .874 .898 .913 .659 .803 .876 .866 .890 .896

CRunnest
Ŝ

.813 .837 .861 .640 .844 .857 .925 .917 .924
BCRŜ .914 .918 .897 .019 .757 .894 .827 .840 .834
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Table 16: Simulation details for the IDI under null (30% censoring, 200 sample size)

Cox Regression Fine Gray Gerds
R(11) R(12) R(13) R(11) R(12) R(13) R(11) R(12) R(13)

Weibull
(Case 4)

R̂ .005 .005 .005 .004 .004 .005 .004 .004 .005
SER̂ .005 .006 .006 .005 .006 .007 .005 .005 .005

BSDR̂ .010 .011 .011 .009 .010 .011 .008 .009 .009
BCRR̂ .974 .963 .960 .927 .922 .917 .884 .912 .918

R(20) R(21) R(22) R(20) R(21) R(22) R(20) R(21) R(22)

Fine Gray
(Case 5)

R̂ .005 .005 .006 .004 .004 .005 .005 .005 .005
SER̂ .005 .005 .006 .004 .004 .005 .005 .005 .006

BSDR̂ .009 .010 .011 .007 .008 .009 .009 .009 .009
BCRR̂ .896 .892 .883 .800 .793 .774 .832 .834 .828

R(9) R(10) R(11) R(9) R(10) R(11) R(9) R(10) R(11)

Gerds
(Case 6)

R̂ .006 .006 .006 .004 .004 .005 .004 .004 .004
SER̂ .007 .007 .007 .005 .006 .007 .004 .004 .004

BSDR̂ .013 .012 .013 .009 .010 .011 .009 .009 .009
BCRR̂ .976 .972 .971 .923 .916 .909 .909 .906 .910
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Table 17: Simulation details for the NRI under alternative (50% censoring, 200 sample size)

Cox Regression Fine Gray Gerds
S(11) S(12) S(13) S(11) S(12) S(13) S(11) S(12) S(13)

Weibull
(Case 1)

S .114 .100 .126 .114 .100 .126 .114 .100 .126
Ŝ .111 .107 .117 .090 .105 .111 .109 .108 .117

SEŜ .043 .049 .052 .039 .045 .055 .044 .050 .054
SDŜ .040 .048 .051 .032 .045 .047 .039 .048 .050
CRŜ .930 .939 .928 .794 .940 .877 .912 .937 .906

BCRŜ .908 .892 .905 .881 .888 .888 .911 .893 .897

S(20) S(21) S(22) S(20) S(21) S(22) S(20) S(21) S(22)

Fine Gray
(Case 2)

S .109 .127 .123 .109 .127 .123 .109 .127 .123
Ŝ .122 .131 .128 .109 .123 .124 .123 .130 .126

SEŜ .054 .055 .049 .056 .056 .053 .054 .049 .044
SDŜ .051 .050 .044 .053 .053 .048 .051 .047 .042
CRŜ .929 .920 .918 .924 .923 .924 .930 .940 .927

BCRŜ .883 .885 .909 .891 .900 .917 .878 .927 .931

S(9) S(10) S(11) S(9) S(10) S(11) S(9) S(10) S(11)

Gerds
(Case 3)

S .209 .189 .169 .209 .189 .169 .209 .189 .169
Ŝ .208 .194 .180 .135 .159 .164 .210 .193 .177

SEŜ .047 .049 .051 .041 .042 .049 .045 .049 .053
SDŜ .041 .045 .051 .032 .038 .046 .041 .045 .050
CRŜ .924 .925 .942 .399 .836 .929 .923 .921 .927

BCRŜ .908 .891 .902 .700 .878 .892 .909 .896 .889
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Table 18: Simulation details for the IDI under alternative (50% censoring, 200 sample size)

Cox Regression Fine Gray Gerds
R(11) R(12) R(13) R(11) R(12) R(13) R(11) R(12) R(13)

Weibull
(Case 1)

R .109 .106 .099 .109 .106 .099 .109 .106 .099
R̂ .114 .113 .106 .040 .053 .071 .098 .090 .079

SER̂ .029 .028 .028 .016 .019 .026 .029 .028 .027
BSDR̂ .035 .033 .032 .021 .023 .027 .033 .031 .029
BCRR̂ .966 .968 .966 .130 .374 .800 .933 .913 .899

R(20) R(21) R(22) R(20) R(21) R(22) R(20) R(21) R(22)

Fine Gray
(Case 2)

R .151 .158 .165 .151 .158 .165 .151 .158 .165
R̂ .135 .145 .154 .149 .156 .164 .126 .138 .150

SER̂ .033 .035 .036 .034 .034 .036 .031 .033 .035
BSDR̂ .044 .045 .048 .037 .037 .040 .036 .038 .042
BCRR̂ .899 .927 .942 .941 .950 .951 .853 .897 .934

R(9) R(10) R(11) R(9) R(10) R(11) R(9) R(10) R(11)

Gerds
(Case 3)

R .288 .271 .251 .288 .271 .251 .288 .271 .251
R̂ .305 .290 .273 .096 .119 .149 .292 .276 .257

SER̂ .043 .040 .038 .026 .029 .034 .034 .031 .031
BSDR̂ .044 .040 .035 .033 .034 .037 .047 .042 .040
BCRR̂ .764 .830 .882 .001 .013 .239 .956 .967 .965
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Table 19: Simulation details for the NRI under null (50% censoring, 200 sample size)

Cox Regression Fine Gray Gerds
S(11) S(12) S(13) S(11) S(12) S(13) S(11) S(12) S(13)

Weibull
(Case 4)

Ŝ .008 .007 .008 .009 .009 .006 .008 .007 .007
SEŜ .024 .025 .026 .023 .026 .029 .027 .026 .027
SDŜ .022 .023 .025 .020 .023 .027 .024 .025 .027
CRŜ .871 .898 .902 .848 .884 .911 .877 .923 .923

CRunnest
Ŝ

.952 .950 .950 .923 .923 .944 .935 .946 .952
BCRŜ .855 .864 .866 .846 .863 .853 .836 .853 .867

S(20) S(21) S(22) S(20) S(21) S(22) S(20) S(21) S(22)

Fine Gray
(Case 5)

Ŝ .011 .011 .008 .011 .006 .007 .012 .009 .008
SEŜ .030 .032 .026 .029 .029 .024 .032 .031 .026
SDŜ .028 .029 .022 .027 .028 .023 .028 .029 .022
CRŜ .896 .903 .866 .903 .922 .885 .889 .893 .875

CRunnest
Ŝ

.935 .953 .948 .931 .949 .944 .935 .937 .939
BCRŜ .864 .876 .877 .872 .874 .885 .870 .863 .886

S(9) S(10) S(11) S(9) S(10) S(11) S(9) S(10) S(11)

Gerds
(Case 6)

Ŝ .007 .008 .008 .009 .009 .008 .008 .009 .008
SEŜ .029 .028 .027 .023 .026 .025 .028 .027 .026
SDŜ .024 .024 .025 .016 .020 .023 .025 .024 .025
CRŜ .860 .877 .897 .761 .832 .867 .870 .882 .902

CRunnest
Ŝ

.952 .944 .955 .892 .923 .947 .929 .942 .939
BCRŜ .814 .826 .856 .778 .812 .852 .822 .843 .851
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Table 20: Simulation details for the IDI under null (50% censoring, 200 sample size)

Cox Regression Fine Gray Gerds
R(11) R(12) R(13) R(11) R(12) R(13) R(11) R(12) R(13)

Weibull
(Case 4)

R̂ .006 .007 .007 .006 .007 .008 .006 .006 .006
SER̂ .007 .008 .009 .008 .008 .009 .006 .007 .007

BSDR̂ .015 .016 .017 .013 .014 .015 .012 .013 .014
BCRR̂ .987 .987 .983 .934 .921 .916 .867 .881 .900

R(20) R(21) R(22) R(20) R(21) R(22) R(20) R(21) R(22)

Fine Gray
(Case 5)

R̂ .007 .008 .008 .006 .007 .008 .006 .006 .006
SER̂ .007 .008 .009 .006 .007 .008 .006 .007 .007

BSDR̂ .014 .015 .016 .011 .012 .013 .012 .012 .015
BCRR̂ .931 .921 .918 .851 .841 .824 .792 .796 .803

R(9) R(10) R(11) R(9) R(10) R(11) R(9) R(10) R(11)

Gerds
(Case 6)

R̂ .008 .008 .008 .006 .007 .008 .005 .006 .006
SER̂ .008 .009 .009 .009 .010 .011 .006 .006 .007

BSDR̂ .023 .022 .023 .014 .015 .016 .013 .013 .014
BCRR̂ .990 .986 .987 .945 .930 .920 .887 .894 .911
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Table 21: Simulation details under cross-validation for the NRI and IDI under alternative with all

results are from the correct models (400 sample size)

30% Censoring
Weibull (Case 1) Fine Gray (Case 2) Gerds (Case 3)

S(11) S(12) S(13) S(20) S(21) S(22) S(9) S(10) S(11)

NRI
S .107 .099 .128 .114 .128 .124 .187 .173 .164
Ŝ .100 .107 .126 .122 .128 .130 .181 .164 .159

SEŜ .028 .034 .034 .037 .036 .032 .032 .031 .032
BSDŜ .031 .036 .036 .040 .039 .035 .034 .034 .035
BCRŜ .842 .828 .840 .881 .872 .858 .774 .805 .813

R(11) R(12) R(13) R(20) R(21) R(22) R(9) R(10) R(11)

IDI
R .109 .107 .099 .151 .158 .164 .281 .267 .240
R̂ .111 .109 .101 .148 .155 .162 .292 .262 .225

SER̂ .017 .016 .016 .021 .021 .022 .021 .021 .026
BSDR̂ .017 .017 .016 .021 .021 .022 .023 .023 .025
BCRR̂ .955 .954 .937 .942 .934 .931 .951 .903 .816

50% Censoring
Weibull (Case 1) Fine Gray (Case 2) Gerds (Case 3)

S(11) S(12) S(13) S(20) S(21) S(22) S(9) S(10) S(11)

NRI
S .107 .099 .128 .114 .128 .124 .187 .173 .164
Ŝ .096 .106 .124 .126 .128 .128 .181 .163 .159

SEŜ .032 .039 .040 .045 .042 .038 .038 .038 .039
BSDŜ .036 .043 .044 .048 .048 .045 .039 .041 .043
BCRŜ .826 .828 .846 .814 .879 .886 .774 .778 .803

R(11) R(12) R(13) R(20) R(21) R(22) R(9) R(10) R(11)

IDI
R .109 .107 .099 .151 .158 .164 .281 .267 .240
R̂ .112 .110 .103 .147 .154 .161 .290 .259 .222

SER̂ .019 .018 .018 .023 .024 .024 .024 .024 .027
BSDR̂ .021 .020 .019 .025 .025 .025 .030 .027 .028
BCRR̂ .958 .965 .932 .935 .944 .946 .934 .870 .826
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Table 22: Simulation details under cross-validation for the NRI and IDI under null with all results

are from the correct models (400 sample size)

30% Censoring
Weibull (Case 4) Fine Gray (Case 5) Gerds (Case 6)

S(11) S(12) S(13) S(20) S(21) S(22) S(9) S(10) S(11)

NRI
Ŝ .001 .0008 .001 -.0006 -.0008 -.001 .0008 -.0002 -.0005

SEŜ .017 .018 .019 .016 .016 .012 .019 .020 .020
BSDŜ .019 .020 .021 .020 .021 .017 .022 .022 .021
BCRŜ .747 .750 .789 .811 .811 .807 .743 .689 .713

R(11) R(12) R(13) R(20) R(21) R(22) R(9) R(10) R(11)

IDI
R̂ .003 .003 .003 .002 .003 .003 -.004 -.003 -.002

SER̂ .002 .002 .003 .002 .002 .003 .021 .021 .020
BSDR̂ .004 .004 .005 .004 .004 .004 .026 .025 .025
BCRR̂ .888 .871 .878 .606 .581 .543 .743 .750 .772

50% Censoring
Weibull (Case 4) Fine Gray (Case 5) Gerds (Case 6)

S(11) S(12) S(13) S(20) S(21) S(22) S(9) S(10) S(11)

NRI
Ŝ .0007 .0002 .0007 -.0005 -.002 -.002 .002 .003 .003

SEŜ .019 .020 .021 .021 .021 .016 .003 .003 .003
BSDŜ .023 .024 .025 .026 .028 .024 .004 .004 .005
BCRŜ .758 .760 .774 .776 .824 .845 .862 .844 .850

R(11) R(12) R(13) R(20) R(21) R(22) R(9) R(10) R(11)

IDI
R̂ .004 .004 .004 .003 .004 .005 .003 .003 .004

SER̂ .003 .004 .004 .003 .003 .004 .003 .003 .003
BSDR̂ .006 .007 .007 .005 .006 .006 .006 .006 .007
BCRR̂ .908 .885 .874 .622 .578 .537 .874 .868 .898
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