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Covariate-driven factorization by thresholding for multi-block data

Xing Gao, PhD

University of Pittsburgh, 2020

Multi-block data, where multiple groups of variables from different sources are observed

for a common set of subjects, are routinely collected in many areas of science. Methods for

joint factorization of such multi-block data are being developed to explore the potentially

joint variation structure of the data. While most of the existing work focuses on delineating

joint components, shared across all data blocks, from individual components, which is only

relevant to a single data block, we propose to model and estimate partially-joint components

across some, but not all, data blocks. If covariates, with potential multi-block structures, are

available, then the components are further modeled to be driven by the covariate information.

To estimate such a covariate-driven, block-structured factor model, we propose an iterative

algorithm based on thresholding, by transforming the problem of signal segmentation into a

grouped variable selection problem. The proposed factorization provides accurate estimation

of individual and (partially) joint structures in multi-block data, as confirmed by simulation

studies. In two real multi-block data sets from genomics and image analysis, we demonstrate

that the estimated block structures facilitate easy interpretation of the major factors.

Keywords: Data integration; Factorization; Individual and joint variation extraction; Multi-
block data decomposition; Principal component analysis; Supervised data decomposition.
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1.0 Introduction

1.1 Background and relevant work

In modern data analysis, it becomes increasingly relevant to analyze multiple sets of

data observed for a common set of samples. As a motivating example, the Cancer Genome

Atlas (TCGA) project [34] collects multiple aspects of genomic information, such as gene

expression, methylation and copy number variation, for a common set of patients. These

heterogeneous datasets, or data blocks, may possess common signals. It has been of interest

to segment the common signals in multiple blocks of genomic data as a form of low-rank

approximation [4, 8, 18, 21, 37, 38].

Principal Component Analysis (PCA) is a well-known method in dimension reduction to

learn about data variation pattern among the variables by using a small number of compo-

nents. However, PCA only applies to one single data set and seeks for a linear combination

of all variables. It is not able to effectively select important variables and further to separate

joint and individual variations for an integrated multi-block data set. Sparse principal com-

ponent analysis (SPCA) [39] incorporates elastic net with PCA to provide sparse loadings

in its modified principal components. JIVE [21] extended from PCA and was proposed as

a promising framework to study the individual and joint variation patterns across multiple

data blocks. However, as pointed out by [4], there are cases that JIVE cannot separate such

variation patterns as it defines for multi-block data. As an improvement, Angle-based Joint

and Individual Variation Explained (AJIVE) [4] was proposed to capture the full-joint and

individual variation patterns by measuring the principal angles among the score subspaces

of the data blocks. Additionally, COBE [37] follows JIVE alike method that factorizes each

data matrix in a multi-block data set into full-joint and individual structure. It provides an

iterative algorithm to extract such structures from a quadratic optimization problem, which

also provides a framework for better extraction of common components that reflect full-joint

structures in multi-block data when these structures are actually weak [37]. GIPCA [38]

is another method that uses an iterative algorithm to study the full-joint and individual
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relationship among variables in high-dimensional multi-block data, which allows for different

types of data sources in multi-block data.

Other than these methods, as CCA [10] can work to address linear associations among

variables from two data sets, some other methods extended from CCA that aim to learn

variations among multiple data sets are also developed. Kettenring [15] developed an it-

erative procedure to find the canonical variables across multiple data sets by optimizing

some function related to the correlation matrix. Such canonical variables helps to reveal

the full-joint variation structure among these variables for multi-block data. An application

and extension of this multi-set CCA [15] is discussed in [3] to address the variation patterns

across multi-block FMRI and EEG data. Yoon et al. [36] introduced a truncated latent

Gaussian copula model and uses a sequential LASSO [31] approach to find the canonical

variables with sparsity for two sets of data without assumptions on the data types.

All methods above are unsupervised learning that do not consider any relevant supervi-

sion information that my possibly drive variation patterns in the primary data matrices. To

incorporate available supervision information, Supervised Integrated Factor Analysis (SIFA)

[18] is proposed for the decomposition of multi-block data by involving covariates to reveal

the full-joint and individual variation patterns using a small number of factors. Supervised

Singular Value Decomposition (SupSVD) [19] and reduced rank regression (RRR) [13] also

consider the effect of supervision information in revealing the low rank structure of the pri-

mary data. However, SupSVD and RRR do not allow for multiple collections of data from

different aspects for either the main data set or the supervision data set. Sparse reduced

rank regression (SRRR) [2] improves RRR by considering predictor variable selection. But in

terms of identifying group variation structures, [2, 13, 19] can only capture the full-joint vari-

ation structure for a concatenated multi-block data set. For the other methods mentioned

above, while they are successful at the low-rank estimation of multi-block data when there are

only full-joint and/or individual variation, none of these methods considers the partial-joint

variation. Because of these major drawbacks, the interpretability of the variation patterns

from these methods are still circumscribed.

While most of the previous work is focused on delineating the common signal, jointly re-

lated across all data blocks, from block-specific, individual signals, there has been a growing

2



need to model a partially-joint common signal across some data blocks. SLIDE [8] is among

the few attempts to model a partially joint structure without utilizing any supervision in-

formation; see also [22, 23] in the chemometrics literature. Group factor analysis (GFA) [16]

that extends CCA to more than two sets can also identify the structural sparsity in its factor

loadings, which can be used to reveal individual and partial joint variations. In line with

these efforts, in the thesis, we propose a linear factorization of multiple data blocks with

factors that are either fully joint, partially joint or individual. While [8, 22, 23] consider gen-

eral block-wise structures in data blocks, we in addition incorporate additional information

into the factorization. The auxiliary information, or covariates, is a potential driving factor,

supervising the components [cf. [18, 19]]. This enables decomposing factor scores into the

part relevant to the covariates and the part due to unknown sources, which in turn facilitates

more detailed exploration of the association patterns among data blocks and identification

of major drivers for common signals. The covariates can be clinical variables such as age,

sex, ethnicity and pathologic stage of subjects. The covariates also consist of data blocks

recording omics profiles such as single-nucleotide polymorphism (SNP) data. That is, the

supervising covariate data set can also be block-wise structured and even high-dimensional.

1.2 Toy data example

Figure 1 shows a toy data example of the data structure we consider. Denote for Yk

the kth data block of size n × pk. By concatenating these data blocks Y = [Y1,Y2,Y3],

a signal, or an additive linear component, is modeled as uvT , where v is the p × 1 loading

vector (p =
∑3

k=1 pk), u is the collection of n scores, further decomposed by u = Xβ + f ,

where the covariate matrix X contains additional information. The distinction between

the fully joint, partially joint and individual components is given by the zero patterns in

vT = (vT(1),v
T
(2),v

T
(3)). For example, if only v(1) is non-zero, then the score u is only relevant

to the first data block, and we call such a signal the individual component. Likewise, if both

v(1) and v(2) are non-zero, while v(3) = 0, then the component is partially joint across the

first two blocks.
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Figure 1: A toy data example. The concatenated three-block data matrix Y = [Y1,Y2,Y3]

is decomposed into four components: YT =
∑4

j=1 vju
T
j + ET , where v1u

T
1 is a fully joint

component, v2u
T
2 is a partially joint component, v3u

T
3 and v4u

T
4 are two individual compo-

nents.
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Segmentation of common signals from potentially individual signals comes with a few

challenges. First, without proper restrictions on the loading vectors and other parameters, a

common signal can be exactly represented by a collection of individual signals, as previously

observed in [18]. Second, introducing partially joint components sharply increases the model

complexity. For K data blocks, there are 2K − 1 types of components, including K types

of individuals, 1 fully joint and 2K − K − 2 partially joint components. We circumvent

the model complexity issue by not specifically modeling the types of association patterns.

Rather, we use a simple covariate-driven factor model and convert the problem of common

signal segmentation into a (grouped) variable selection problem. The identifiability issue is

then easily handled.

Note that for K data blocks, a loading vector v corresponding to a partially joint, or

individual, component can be seen as block-wise sparse. If not all variables in a block is

relevant, then the loadings v are not only block-wise sparse but also variable-wise sparse.

With the above potential sparsity in mind, we devise a thresholding-based estimation scheme

in the estimation of v, while keeping ‖v‖ = 1. We also allow the case where the covariate

matrix X has several blocks of variables. Since the coefficient β in u = Xβ + f is equipped

with a block structure, we regularize β to potentially have block-wise sparsity as well as

variable-wise sparsity.

All in all, we propose a COvariate-driven, Block-wise Structured (COBS, for short)

factorization of concatenated multi-block data, and an estimating algorithm. The inclusion of

potentially-supervising covariate X makes the low-rank decomposition more interpretable. In

particular, block-wise sparse β, together with block-wise sparse v, identifies which covariate

blocks are related to which primary data blocks. The proposed method facilitates exploration

of multi-block data in revealing the major patterns of association among data blocks and

identifying the main drivers of each signal.

In our numerical studies, the proposed method shows superior performances in correctly

segmenting (partially) joint signals than some competitors [4, 8, 18, 19], and in the esti-

mation of the factor loadings and coefficients. The proposed method is further utilized in

exploring a TCGA breast cancer data set [12] and an image-feature data set [25]. In these

real data examples, we demonstrate that the segmented components by the COBS factoriza-
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tion have insightful interpretation facilitated by the estimated block structure and the effect

of covariates, and that the signals driven by covariates stand out in the factorization.
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2.0 Model

In this section, we outline the data situation we have in mind. Suppose there are K blocks

of data, each with pk variables, all observed for a common sample of size n. These blocks

are referred to as primary data blocks, and denoted by Yk, k = 1, . . . , K. The concatenated

data set of size n × p is Y = [Y1, · · · ,YK ], where p =
∑K

k=1 pk. Throughout, we assume

that Y are column-centered. A linear, structured factor model for the concatenated data is

Y =
∑r

j=1 ujv
T
j + E, where the n-vector of scores uj is the unobserved factor scores, while

the loading vector vTj = (vTj(1), . . . ,v
T
j(K)) characterizes the effect of the jth factor to each

data blocks. We call it structured as the interpretation of a component depends on the block

structure of vj. This simple model encompasses many methodologies in the literature of

multi-source data integration. As an instance, the method of Joint and Individual Variation

(JIVE, for short) proposed by [21] and [4] assumes the linear factor model, but with a

restriction that for each j, vj(k)s are either all non-zero, or at most one vj(k) is non-zero,

corresponding to joint or individual variations, respectively. We eliminate such a restriction,

and allow vj to have any pattern of block-wise zeros.

In particular, a vj with only one non-zero vj(k) is an individual component, whose factor

only affects the kth data block. Any vj with ‖vj(k)‖ > 0 for all k is interpreted as a

full-joint component, whose factor jointly affects variations in all K blocks of data. All

other block-wise zero patterns in vj correspond to partial-joint components. For example,

vj = (vTj(1),v
T
j(2), 0 . . . , 0) corresponds to the component, partially joint across the first two

blocks.

When covariates are available, their relation to the primary data Y is modeled through

the factor scores uj. Suppose there are G groups of variables in the covariate matrix X. We

write each by Xg, g = 1, . . . , G, so that X = [X1, · · · ,XG] and let

uj =
G∑
g=1

Xgbj(g) + fj = Xbj + fj. (2.1)
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Here, bTj = (bTj(1), . . . ,b
T
j(G)) is the coefficient vector, and fj is an unknown random source

for the jth factor score. The decomposition (2.1) was used in [19] for the single covariate

block case, i.e., G = 1.

We note that the roles of primary data blocks and covariate data blocks can be partially

or entirely interchanged, depending on the specific goals of analysis. For example, in the

analysis of TCGA breast cancer we present in Section 5.1, the three primary data blocks (GE,

Meth, CNV) are factorized with supervision from the cancer subtypes. One may otherwise

indicate the role of the CNV data block, taking only GE and Meth data blocks as primary

and using CNV and subtypes as two blocks of covariate matrix. This enables the joint

factorization of GE and Meth data blocks, potentially driven by the signals in CNV (and

also by subtypes).

Putting it altogether, the primary data matrix is decomposed into

Y = [Y1, · · · ,YK ] = (XB + F)VT + E (2.2)

=
r∑
j=1

uj(v
T
j(1), . . . ,v

T
j(K)) + E,

where V = (v1, . . . ,vr) is the p× r matrix of loading vectors, B = (b1, . . . ,br) is the q × r

matrix of coefficients, and F = (f1, . . . , fr) is the n× r matrix of random factors. We assume

that the rows of F are independent with each other, and have mean zero and covariance

matrix ΣF . The noise matrix E consists of independent mean-zero random noises with

variance σ2
0, and E and F are independent.

For the special case of no covariate, or B = 0, our model (2.2) includes that of [8], [21],

and [37]. If partial-joint components are not allowed in (2.2), then it is the model used in

[18].

We now put an identifiability condition for the parameters θ = (V,B,ΣF , σ
2) of (2.2).

Let Fθ(Y) be the distribution of Y, parameterized by θ. We say the model parametrized

by θ is identifiable if Fθ1(Y) = Fθ2(Y) implies θ1 = θ2. Note that the rows of Y are

independent with each other but are not identically distributed, due to the covariates. Write

SX = XTX/n.

8



Proposition 1. Suppose that the number of components r is fixed, and the covariate matrix

X is treated fixed. Assume that for any θ = (V,B,ΣF , σ
2) the following conditions are

satisfied:

(i) V has orthogonal columns, i.e. VTV = Ir.

(ii) BTSXB + ΣF is a diagonal matrix with r distinct and positive diagonal values, in de-

scending order.

(iii) The q × q matrix SX is of full rank.

Then, the parameter θ of (2.2) is identifiable. If only conditions (i) and (ii) are satisfied,

then θX = (V,XB,ΣF , σ
2) is identifiable.

A proof of Proposition 1 is deferred to Appendix.

The identifiability condition given in (i)—(iii) are not restictive. Conditions (i) and (iii)

are commonly imposed respectively for linear dimension reduction and regression settings.

In Condition (ii), we allow the covariate effect and the random effects be interwined in any

form, and ΣF is not required to be diagonal.

Our condition encourages the loadings to be driven by the covariates XB, if BTSXB is

much larger than ΣF . In such a case, Xbi is nearly orthogonal to Xbj for 1 ≤ i < j ≤ r. On

the other hand, if ΣF is larger than BTSXB, then ΣF should be close to a diagonal matrix.

Note that one may impose the condition of diagonal ΣF (with distinct diagonal values), in

place of Condition (ii) of Proposition 1. Under such a situation, the corresponding model

parameters are still identifiable [19].

In the next section, we assume diagonal ΣF but without the restriction of distinct values,

for interpretability and clarity of presentation. The estimation scheme under the general ΣF

is discussed in the appendix.
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3.0 Estimation

While our model includes the joint and individual components, the distinction is not

explicit at (2.2). Instead of explicitly modeling all types of components, we use a data-

driven approach in segmenting the full joint, partially joint and individual components from

the primary data blocks. Our algorithm is based on an iterative thresholding of the loading

vectors, aiming at both block-wise sparsity and variable-wise sparsity.

3.1 General strategy

By writing (2.2) for each observation vector, we have

yi = V(BTxi + fi) + ei

=
r∑
j=1

vj(b
T
j xi + fij) + ei, i = 1, . . . , n, (3.1)

where yTi , f
T
i ,x

T
i , and eTi are respectively the ith row of Y, F, X and E, and bj is the

jth column of B. To facilitate the estimation and prediction of the random factor fi, we

assume normality for fi and ei. In particular, ei ∼ Np(0, σ
2
0Ip) and fi ∼ Nr(0,ΣF ), where

ΣF = diag(σ2
1, . . . , σ

2
r), independently for all i.

We propose a sequential estimation of (vj,bj) for j = 1, . . . , r, for its computational

efficiency. The choice of r can be from some existing rank selection methods in learning

of PCA, such as using the elbow of cumulative scree plot by choosing the percentage of

variance explained or using the sequential test for the skewness of squared residual scores

that is proposed in [14]. With rank r selected, we will introduce a sequential approach to

estimate the parameters layer by layer. For estimation of (v1,b1), we merge the remaining

r − 1 components with the error term, and write yi = v1(bT1 xi + fi1) + e′i from which we

obtain estimates v̂1, b̂1 and predictions f̂i1. Given the first J − 1 predicted components

ûij = b̂Tj xi + f̂ij and estimates v̂j (for j = 1, . . . , J − 1), the Jth component is estimated

10



with the rank-1 model y
[J ]
i := yi −

∑J−1
j=1 v̂jûij = v(bTxi + fi) + e′i. The estimation of

ΣF and σ2
0 is important not only for interpretation but also for the estimation of v and b,

and prediction of fij. We use the normal model in the estimation of ΣF and σ2
0 for each

component. Our approach is an analog of the sequential definition of principal components

(maximizing the variance of the projected), or the deflation algorithm [24] for sparse PCA.

Since the columns of V are in the decreasing order of the “variances” BTSXB + ΣF , the

estimated V also satisfy the identifiability condition.

In the next section, an iterative thresholding algorithm is presented for the estimation

with the rank-1 model.

3.2 Estimation for rank-1 model

With the normality assumption and the constraint vTv = 1, the -2 log-likelihood function

of the rank-1 model yi = v(bTxi+fi)+ei, i = 1, . . . , n, or Y = (Xb+ f)vT +E, is simplified

to

`(b,v, σ2
f , σ

2
0) =

1

σ2
e

(
‖Y −XbvT‖2

F −
σ2
f

σ2
f + σ2

e

‖Yv −Xb‖2
2

)
+ c(σ2

e , σ
2
f ), (3.2)

where c(σ2
e , σ

2
f ) = n log[2π(σ2

e)
p−1(σ2

f + σ2
e)]. Our approach is to iteratively update each

of (v,b, σ2
e , σ

2
f ), while others fixed. The block-wise and variable-wise sparsity in vT =

(vT(1), . . . ,v
T
(K)) and bT = (bT(1), . . . ,b

T
(G)) will be controlled by a set of tuning parameters

(αv, λv, αb, λb). The role of the tuning parameters will be discussed below.

Given b, σ2
e , σ

2
f , minimizing ` with respect to v is equivalent to

max
v
‖Yv + Xb̃‖2

2 subject to vTv = 1, (3.3)

where b̃ = σ2
e/σ

2
fb. To incorporate the block structure, one would attempt to regularize

(3.3) by adding sparsity-inducing constraints or penalizing terms. However, the resulting

optimization problems become unwieldy, because (3.3) is already unconventional. The ob-

jective function F (v) = ‖Yv + Xb̃‖2
2 is convex on the convex hull of the feasible region,

but we wish to maximize rather than minimize. As a result, there are typically a few local
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maxima and many inflection points of F (v) on the feasible region. Proposition 2 below

transforms the unconventional multivariate optimization problem into a simple univariate

optimization problem, which can be solved efficiently by, e.g., a bisection method. It provides

the globally optimal solution ṽ of (3.3).

Proposition 2. Let Y = LDRT be the singular value decomposition of Y, where D is

the diagonal matrix with positive singular values d1, . . . , dN , for some N ≤ min(n, p). Let

z = (z1, . . . , zN)T = LTXb̃.

(i) If z = 0, then the solution of (3.3) is the first right singular vector of Y.

(ii) If zi 6= 0 for any i = 1, . . . , N , then ṽ = RD(t̃IN − D2)−1z is the solution of (3.3),

where t̃ is the unique root of
∑N

i=1
d2i z

2
i

t−d2i
= 1, located on (t1, t2) for t1 = d2

1 + d1z1 and

t2 = d2
1 + (

∑N
i=1 d

2
i z

2
i )

1/2.

In Proposition 2, we assumed that di’s are distinct and zi’s are either all zero or all

nonzero, which are true if Y is sampled from a continuous distribution.

To incorporate the block structure, we threshold the solution ṽT = (ṽT1 , . . . , ṽ
T
K) of

(3.3) twice, for variable-wise sparsity and block-wise sparsity. The level of thresholding is

controlled by the tuning parameters αv, λv. The parameter αv ∈ [0, 1] indicates whether

we seek only block-wise sparse structure (αv = 0) or both block-wise and variable-wise

sparse loadings (αv > 0). The parameter λv ≥ 0 controls the overall degrees of sparsity in

the estimate of v. Larger values of λv lead to more sparse group-wise structure, which in

turn entails more frequent identification of individual and partially-joint components. Given

(αv, λv), we set the thresholds by γ1 = αvλv and γ2 = (1 − αv)λv (for variable-wise and

block-wise thresholding, respectively). For any γ ≥ 0 and m, define the soft-thresholding

function sγ : Rm → Rmby taking the ith element of sγ(c) as sign(ci) max{|ci| − γ, 0}. Let

vk,∗ =
ck
‖ck‖

sγ2(‖ck‖), ck = sγ1(ṽk), (3.4)

for k = 1, . . . , K. The doubly thresholded vT∗ = (vT1,∗, . . . ,v
T
K,∗) is the solution of minx

1
2
‖x−

ṽ‖2 + γ1‖x‖1 + γ2‖x‖2,1, where ‖x‖2,1 =
∑K

k=1 ‖xk‖2 with the partition of x given by the

prescribed block structure. The thresholding (3.4) will only keep sufficiently large ṽks as

non-zero, producing loading vectors for individual or partially joint components.
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To ensure that the loading vector has the unit norm, we set v̂ = v∗/‖v∗‖.

Given v, minimizing ` with respect to b is equivalent to minimize ‖Yv−Xb‖2
2. Since it

is now equivalent to a regression problem of regressing Yv onto X, our update for b is the

solution of the sparse group lasso regression problem [29] of minimizing

1

2n
‖Yv −Xb‖2

2 + αbλb‖b‖1 + (1− αb)λb‖b‖2,1. (3.5)

The tuning parameter λb ≥ 0 controls the overall degrees of sparsity in b̂. We set

αb = 0 for strictly block-wise sparse coefficient, and αb = 1 when there is only one block

in X. Choosing αb ∈ (0, 1) results in both block-wise and variable-wise sparse coefficient

estimates.

To obtain the solution b̂ of (3.5), we use the r package SGL [28] if αb > 0 or glmnet

[6] if αb = 0.

Given (v,b), we set σ̂2
e and σ̂2

f as the minimizers of `, which are given by

σ̂2
e =
‖Y −XbvT‖2

F − ‖Yv −Xb‖2
2

n(p− 1)
, σ̂2

f =
‖Yv −Xb‖2

2

n
− σ̂2

e . (3.6)

To summarize, to estimate the parameters θ = (v,b, σ2
e , σ

2
f ) of the rank-1 model, we

begin with an initial value θ(0) and iteratively update the elements v, b and (σ2
e , σ

2
f ) as

described above, until the changes in θ(t) are small enough. The initial value θ(0) is obtained

for any given v(0), as the updates for b, σ2
e , σ

2
f only depend on a given v. We set v(0) as the

first sample principal component direction of Y.

Moreover, with the rank-one estimates of b, v, σ2
f , σ

2
e achieved and under the model

assumptions described in Chapter 2, we will also be able to predict the random effect f

given primary data Y and supervision information X. More specifically, the elements in f

are i.i.d. normal with mean 0 and variance σ2
f [denoted as fi ∼ N (0, σ2

f ), for i = 1, . . . , n].

Each observation row of the primary data Yi given Xi and fi follows a multivariate normal

distribution: Yi|(Xi, fi) ∼ Np(XibvT + fiv
T , σ2

eIp), where Yi and Xi are ith rows of Y and

X respectively, fi is a random factor for the ith observation, for i = 1, . . . , n. Thus it can be

shown that for i = 1, . . . , n the joint distribution of (Yi, fi) given Xi are i.i.d.

(Yi, fi)|Xi ∼ Np+1

[(
XibvT 0

)
,

 σ2
eIp + σ2

fvvT σ2
fv

σ2
fv

T σ2
f

].
13



Then, it can also be found that

E(fi|Yi,Xi) =
σ2
f

σ2
f + σ2

e

(Yiv −Xib). (3.7)

As the n samples are i.i.d., then given the rank-one estimates b̂, v̂, σ̂2
f , σ̂

2
e , the predictor of

f is

f̂ = E(f |Y,X) =
σ̂2
f

σ̂2
f + σ̂2

e

(Yv̂ −Xb̂). (3.8)

From this, the predictor of u = Xb + f is

û = Xb̂ + f̂ = (σ̂2
f + σ̂2

e)
−1(σ̂2

fYv̂ + σ̂2
eXb̂). (3.9)

Algorithm 1: One-Layer Iteration:

Input: Primary data Y, and block index vector GY ; Supervision information X,

and group index vector GX ; Tuning parameters (αb, αv, λb, λv) .

Output: b̂, v̂, σ̂e, σ̂f , and û

1 Set initial parameters v[0], b[0], σ
2
e[0], and σ2

f [0];

2 while ‖v[i+1] − v[i−1]‖1 ≥ tolerance and ‖b[i+1] − b[i]‖1 ≥ tolerance do

3 Given (b[i+1], v[i], σ
2
e[i], and σ2

f1[i]), apply Proposition 2 and thresholding to get

v[i+1];

4 Given (b[i], v[i], σ
2
e[i], and σ2

f1[i]), apply sparse group lasso [29] to equation 3.5 to

get b[i+1];

5 Given (b[i+1], v[i+1], σ
2
e[i], and σ2

f1[i]), obtain σ2
e[i+1] from equation 3.6;

6 Given (b[i+1], v[i+1], σ
2
e[i+1], and σ2

f1[i]), obtain σ2
f1[i+1] from equation 3.6;

7 Set i← i+ 1.

8 end

9 Given final estimates b̂, v̂, σ̂e, σ̂f , obtain û from equation 3.9
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3.3 Multi-layer estimation

Suppose that we have estimates (v̂j, b̂j) and the predictors ûj for j = 1, . . . , J − 1 in the

general model (3.1). For the estimation of the Jth component, we subtract the first J − 1

components from Y,

Y[J ] = Y −
J−1∑
j=1

ûjv̂
T
j ,

and treat Y[J ] as the primary data block. The algorithm in Section 3.2 is then applied to

the rank-1 model Y[J ] = (Xb + f)vT + E′, from which we obtain (v̂J , b̂J , ûJ).

We estimate r layers of components, where r is pre-specified, or is determined to be J−1

if, at the estimation of Jth rank-1 model, the thresholding (3.4) results in v̂∗ = 0.

While sequentially estimating the r layers, we have temporarily obtained σ̂2
e , which esti-

mates the variance of e′ij that varies from layer to layer. Thus, from the full model with r

components, and with (v̂j, b̂j) plugged in, we estimate σ2
0 and ΣF = diag(σ2

1, . . . , σ
2
r) by the

maximum likelihood estimates σ̂2
0 = (n(p−r))−1‖YV̂⊥‖2

F , where V̂⊥ is the p×(p−r) matrix

formed by an orthonormal basis of the null space of V̂, and σ̂2
j = n−1‖Yv̂j −Xb̂j‖2 − σ̂2

0,

for j = 1, . . . , r.

3.4 Choice of tuning parameters

In our estimating algorithm, the parameters (αb, λb, αv, λv) play important roles in the

identification of the block structure and also in the variable selection. In particular, larger

λv will lead to more frequent identification of individual and partially joint components. The

algorithm with too small λv will not identify any individual components.

Searching the best tuning parameter (αb, λb, αv, λv) in the four dimensional space is

computationally infeasible. We resort to fix the parameters αb and αv as a pre-specified

balance between block-wise sparsity and variable-wise sparsity. We allow λb and λv to be

different for each rank-1 estimation (cf. Section 3.2). To choose the tuning parameters λb, λv,

we utilize the Bayesian information criterion (BIC) [27], assuming the normal model.
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As discussed in [40], utilizing BIC tends to choose the true sparse model if the true

model is sparse. Since we implicitly assume that the true V is block-wise sparse, we thrive

for selecting sparse models rather than maximizing a prediction accuracy.

Our definition of BIC for λ = (λb, λv), evaluated for each rank-1 model is as follows. Let

θ̂(λ) = (b̂, v̂, σ̂2
f , σ̂

2
e) be the estimated parameters of the rank-1 model, with λ. Recall that

`(θ) is the −2 log-likelihood evaluated at θ (3.2). We set

BIC(λ) :=
`{θ̂(λ)}
np

+
ω(p,n)

np
d̂f{θ̂(λ)},

where np is the number of observations in the concatenated data blocks, d̂f{θ̂(λ)} is the

number of non-zero elements of b̂ and v̂, and ω(p, n) = log(np). If the dimensionality of the

primary data p is deemed high, we use ω(p, n) = 6(1 + δ)log(np), as suggested by [7], for a

small value of δ.

For each layer, in the estimation of the corresponding rank-1 model, the BIC is evaluated

for a grid for λ. We choose λ with the smallest BIC(λ).
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4.0 Simulation studies

In this section, we numerically compare the performance of our proposal with competing

methods. Our method will be referred to as COBS, a short name for COvariate-driven Block-

wise Sparse factorization. We consider several competing methods from different literature

aspects. In matrix decomposition for dimension reduction literature, we compare with the

usual principal component analysis, given by the singular value decomposition (SVD) of

the concatenated matrix Y, the angle-based JIVE (AJIVE) estimation of [4], the structural

learning and integrative decomposition (SLIDE) [8], the supervised SVD [19], and supervised

integrated factor analysis (SIFA) of [18]. In multivariate linear regression, we compare with

both reduced-rank regression (RRR) [13] and sparse reduced-rank regression (SRRR) [2] for

their coverage in using supervision information for dimension reduction, where SRRR also

allows for sparsity in estimating the coefficients for variable selection. We also compare with

the group factor analysis [16] in terms of the high-dimension factor model. These methods

will be utilized in the estimation of the factor loadings V and, if feasible, in the estimation

of the coefficient matrix B.

4.1 Simulation settings

For comprehensive comparisons, we not only consider the “COBS” models in Section 2,

but also consider data situations following the models suggested in SIFA and JIVE. From

the model (3.1), only allowing joint and individual components in V results in a SIFA model.

If, in addition, B = 0, then the model corresponds to a JIVE model.

Throughout, we assume that there are K = 4 equal-sized blocks of primary variables

with both low-dimension and high-dimension application. For low-dimensional simulation,

each block consists of pk = 25 variables (k = 1, . . . , 4) from a sample of size n = 500. For

high-dimensional simulation, each block consists of pk = 100 variables (k = 1, . . . , 4) with

sample size n = 200. The number of components is r = 4. The n × q covariate matrix X
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consists of randomly sampled standard normal variates, and we assume that there are G = 4

groups of equal size qg = 10 (g = 1, . . . , 4). Furthermore, ei ∼ Np(0, Ip) and fi ∼ N4(0,ΣF )

are independent. For each scenario below, we consider two values of ΣF , relatively large or

small. In both cases, we set ΣF diagonal.

The three data situations we consider are dictated by V and B.

(a) COBS. The loading matrix V(a) = [v1, . . . ,v4] consists of the loadings producing two

individuals (v1 and v2), one partial-joint (v3) and a full-joint component. : The q ×

r coefficient matrix B(a) is also block-wise and variable-wise sparse and is the block-

diagonal matrix B(a) = diag(5b,−4b,−3b, 2b) where b = (1, 1, 1, 0, . . . , 0)T . Note that

in this setting, the individual and partially joint components have greater variances than

the full-joint component.

(b) SIFA. The loading matrix V(b) = [v1, . . . ,v4] has a fully joint component v1 (correspond-

ing to the largest variance), and three individual components. The coefficient matrix B(b)

is the same as B(a) in the situation (a).

(c) JIVE. We set V(c) = V(b) and B(c) = 0 so that neither a partially joint component nor

a covariate effect is present. Even though there is no connection to the primary data, X

is still available.

See the appendix for detailed data generating process.

In applying the proposed estimation algorithm, COBS, to the simulated data, we set

the number of components r = 4 to be the true value. For the tuning parameters, we set

αb = αv = 0.2, and choose λb and λv by the BIC. For situation (c), the model parameter

B(c) = 0 is in principle not known, so B(c) is estimated as well. Our algorithm does fit

B̂ ≈ 0. Fitting a SIFA model requires pre-specifying the numbers of joint and each individual

components. We supply the true numbers. For situation (a), the partial joint v3 is considered

as a full-joint component for SIFA. To apply AJIVE, the number of “signal” components in

each data block must be supplied. The true values are supplied for AJIVE as well. Note that

the methods of SVD and SupSVD are simply applied to the concatenated data, assuming

the true number of components r = 4 is known.
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4.2 Evaluation criteria

The performances of the competing methods are evaluated by the following.

To compare the quality of subspace learning, we use the largest principal angle and the

Grassmannian distance between the column spaces of V and V̂. We refer to [35] for a

discussion on distances between linear subspaces. Let 0 ≤ d1 ≤ . . . ≤ dr be the singular

values of VT V̂ , where V (or V̂) is any orthonormal basis of V (or V̂, respectively). The

principal angles are θi = arccos di. The largest principal angle and the Grassmanian distance

are then ∠P (V, V̂) = θ1(180/π) and dG(V, V̂) =
√∑r

i=1 θ
2
i .

To measure the quality of block identification, we introduce a permuted Hamming dis-

tance l(V, V̂) with respect to the given block structure. Assuming both matrices are of size

p× r, let SV be the K × r matrix whose (k, j)th element is 1 if vj(k) is non-zero, and is 0 if

vj(k) = 0. The Hamming distance between SV and SV̂ is the entrywise 1-norm of SV − SV̂,

which is the number of misidentified blocks in V̂, compared to V. Since different methods

have different identifiability conditions for V, it is possible that an estimate V̂ is estimating

a column-permuted V. Thus, we define l(V, V̂) = minΠ |SV − SV̂Π|, where the minimum is

taken over all r × r permutation matrices Π, and | · | is the entrywise 1-norm.

We also use the squared Frobenius norm for V−V̂ and B− B̂. The use of the Frobenius

norm requires that r = r′, where r is the dimension of V and r′ is the dimension of V̂.

4.3 Simulation results

For each of situations (a)—(c) and for each choice of ΣF (either large or small variance),

we have simulated n = 500 independent sample for high-dimensional cases and n = 200 in-

dependent sample for low-dimensional cases. We applied all competing methods to estimate

V and, if feasible, B. This is repeated for 100 times, and the results are summarized in

Tables 1 to 4. Overall, we confirm that our estimators V̂ and B̂ are among the closest to

the true V and B, compared with the competing estimators.

In particular, the accuracy of the subspace learning by COBS is best among all methods
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SVD AJIVE SupSVD SIFA COBS

(a) COBS

+ Large var

∠P (V, V̂) 6.44 (0.46) 19.77 (21.63) 6.40 (0.45) 67.90 (35.50) 2.43 (0.59)

dG(V, V̂) 0.16 (0.01) 0.38 (0.40) 0.16 (0.01) 1.32 (0.69) 0.05 (0.01)

l(V, V̂) 8.00 (0.00) 4.13 (1.37) 8.00 (0.00) 2.00 (0.00) 0.30 (0.58)

‖V − V̂‖2
F 0.08 (0.04) 8.08 (1.01) 0.33 (0.22) 5.55 (3.16) 0.01 (0.01)

‖B− B̂‖2
F - - 16.88 (12.90) 205.14 (116.37) 1.47 (0.65)

(b) SIFA

+ Large var

∠P (V, V̂) 6.54 (0.43) 3.31 (0.39) 6.51 (0.43) 3.30 (0.38) 1.70 (0.54)

dG(V, V̂) 0.16 (0.01) 0.09 (0.01) 0.16 (0.01) 0.09 (0.01) 0.04 (0.01)

l(V, V̂) 9.00 (0.00) 0.00 (0.00) 9.00 (0.00) 0.00 (0.00) 0.20 (0.65)

‖V − V̂‖2
F 0.08 (0.04) 8.60 (3.87) 0.33 (0.28) 0.01 (0.00) 0.01 (0.02)

‖B− B̂‖2
F - - 17.25 (15.62) 0.97 (0.28) 1.66 (1.09)

(c) JIVE

+ Large var

∠P (V, V̂) 14.27 (1.12) 8.50 (0.75) 14.30 (1.15) 8.59 (0.76) 5.49 (1.99)

dG(V, V̂) 0.38 (0.02) 0.23 (0.02) 0.38 (0.02) 0.23 (0.02) 0.13 (0.03)

l(V, V̂) 9.00 (0.00) 0.00 (0.00) 9.00 (0.00) 0.00 (0.00) 0.44 (1.03)

‖V − V̂‖2
F 0.40 (0.25) 7.92 (4.07) 0.45 (0.28) 0.06 (0.01) 0.11 (0.27)

‖B− B̂‖2
F - - 2.92 (0.39) 0.01 (0.03) 0.05 (0.06)

RRR SRRR SPCA GFA SLIDE

(a) COBS

+ Large var

∠P (V, V̂) 7.14 (0.53) 7.14 (0.53) 5.43 (0.46) 11.11 (0.84) 14.00 (1.96)

dG(V, V̂) 0.17 (0.01) 0.17 (0.01) 0.13 (0.01) 0.28 (0.02) 0.25 (0.03)

l(V, V̂) 8.00 (0.00) 8.00(0.00) 8.00(0.00) 3.02 (1.52) 0.01 (0.10)

‖V − V̂‖2
F 0.05 (0.01) 0.05 (0.01) 0.07 (0.04) 7.72 (2.08) 6.89 (1.37)

‖B− B̂‖2
F 3.57 (0.87) 3.24 (0.85) - - -

(b) SIFA

+ Large var

∠P (V, V̂) 7.25 (0.56) 7.25 (0.56) 5.29 (0.43) 9.69 (0.66) 8.96 (0.40)

dG(V, V̂) 0.17 (0.01) 0.17 (0.01) 0.12 (0.01) 0.27 (0.02) 0.17 (0.01)

l(V, V̂) 9.00 (0.00) 9.00 (0.00) 9.00 (0.00) 5.04(1.36) 0.00 (0.00)

‖V − V̂‖2
F 0.05 (0.01) 0.05 (0.01) 0.07 (0.04) 8.06 (1.79) 6.85 (3.69)

‖B− B̂‖2
F 3.64 (0.77) 3.31 (0.75) - - -

(c) JIVE

+ Large var

∠P (V, V̂) 51.11 (9.48) 51.10 (9.46) 12.89 (1.10) 13.44 (1.10) 9.30 (2.33)

dG(V, V̂) 1.31 (0.14) 1.31 (0.14) 0.34 (0.02) 0.37 (0.03) 0.24 (0.04)

l(V, V̂) 9.00 (0.00) 9.00 (0.00) 9.00 (0.00) 5.86 (1.32) 0.01 (0.10)

‖V − V̂‖2
F 3.84 (1.18) 3.84 (1.18) 0.37 (0.25) 8.04 (2.03) 4.62 (1.93 )

‖B− B̂‖2
F 3.82 (0.38) 3.75 (0.37) - - -

Table 1: High-dimensional results one. n = 500, p = 100. Large variances in unknown

source. The means (standard deviations) of evaluation criteria, from 100 repetitions, are

presented in the table. The bold number indicates the best result.
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SVD AJIVE SupSVD SIFA COBS

(a) COBS

+ Small var

∠P (V, V̂) 7.29 (0.55) 23.38 (21.97) 7.17 (0.51) 89.27 (4.18) 2.66 (0.70)

dG(V, V̂) 0.17 (0.01) 0.47 (0.43) 0.17 (0.01) 1.74 (0.10) 0.06 (0.01)

l(V, V̂) 8.00 (0.00) 3.92 (1.45) 8.00 (0.00) 2.00 (0.00) 0.05 (0.22)

‖V − V̂‖2
F 0.08 (0.04) 7.96 (0.92) 0.53 (0.32) 7.65 (0.42) 0.00 (0.00)

‖B− B̂‖2
F - - 22.80(16.76) 282.32 (11.41) 0.64 (0.17)

(b) SIFA

+ Small var

∠P (V, V̂) 7.30 (0.63) 3.71 (0.52) 7.21 (0.61) 3.68 (0.51) 1.75 (0.52)

dG(V, V̂) 0.17 (0.01) 0.10 (0.01) 0.17 (0.01) 0.10 (0.01) 0.04 (0.01)

l(V, V̂) 9.00 (0.00) 0.00 (0.00) 9.00 (0.00) 0.00 (0.00) 0.16 (0.61)

‖V − V̂‖2
F 0.08 (0.05) 8.04 (3.87) 0.59 (0.39) 0.01 (0.00) 0.01 (0.02)

‖B− B̂‖2
F - - 25.63 (19.22) 0.30 (0.09) 0.93 (1.07)

(c) JIVE

+ Small var

∠P (V, V̂) 35.97 (4.25) 20.72 (1.81) 38.65 (8.18) 20.00 (1.75) 16.78 (4.30)

dG(V, V̂) 0.91 (0.06) 0.55 (0.04) 0.95 (0.12) 0.54 (0.04) 0.42 (0.08)

l(V, V̂) 9.00 (0.00) 0.00 (0.00) 9.00 (0.00) 0.00 (0.00) 2.54 (1.63)

‖V − V̂‖2
F 1.50 (0.72) 2.65 (0.78) 1.58 (0.68) 0.30 (0.04) 0.75 (1.16)

‖B− B̂‖2
F - - 1.23 (0.15) 0.00 (0.01) 0.00 (0.00)

RRR SRRR SPCA GFA SLIDE

(a) COBS

+ Small var

∠P (V, V̂) 7.30 (0.51) 7.30 (0.51) 6.25 (0.54) 11.85 (0.85) 14.89 (3.64)

dG(V, V̂) 0.17 (0.01) 0.17 (0.01) 0.14 (0.01) 0.29 (0.02) 0.27 (0.06)

l(V, V̂) 8.00 (0.00) 8.00 (0.00) 8.00 (0.00) 3.55 (1.65) 0.03 (0.22)

‖V − V̂‖2
F 0.04 (0.01) 0.04 (0.01) 0.07 (0.04) 7.90 (2.13) 6.60 (1.55)

‖B− B̂‖2
F 1.23 (0.29) 1.05 (0.29) - - -

(b) SIFA

+ Small var

∠P (V, V̂) 7.37 (0.62) 7.37 (0.62) 6.01(0.66) 10.03(0.70) 8.66 (0.36)

dG(V, V̂) 0.17 (0.01) 0.17 (0.01) 0.14 (0.01) 0.27 (0.02) 0.17 (0.01)

l(V, V̂) 9.00 (0.00) 9.00 (0.00) 9.00 (0.00) 4.87 (1.14) 0.00 (0.00)

‖V − V̂‖2
F 0.04 (0.01) 0.04 (0.01) 0.07 (0.05) 7.89 (2.21) 5.89 (2.98)

‖B− B̂‖2
F 1.23 (0.33) 1.05 (0.32) - - -

(c) JIVE

+ Small var

∠P (V, V̂) 82.73 (5.25) 82.75 (5.22) 34.59 (4.33) - 21.65 (6.56)

dG(V, V̂) 2.26 (0.13) 2.26 (0.13) 0.87 (0.06) - 0.55 (0.11)

l(V, V̂) 9.00 (0.00) 9.00 (0.00) 9.00 (0.00) - 0.12 (0.42)

‖V − V̂‖2
F 6.11 (0.65) 6.11 (0.65) 1.40 (0.73) - 4.24 (1.10)

‖B− B̂‖2
F 2.23 (0.12) 2.20 (0.12) - - -

Table 2: High-dimensional results two. n = 500, p = 100. Small variances in unknown

source. The means (standard deviations) of evaluation criteria, from 100 repetitions, are

presented in the table. The bold number indicates the best result.
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SVD AJIVE SupSVD SIFA COBS

(a) COBS

+ Large var

∠P (V, V̂) 20.30 (1.30) 60.42 (12.59) 20.24 (1.30) 24.52 (15.74) 11.04 (1.72)

dG(V, V̂) 0.50 (0.02) 1.21 (0.23) 0.49 (0.02) 0.53 (0.29) 0.23 (0.03)

l(V, V̂) 8.00 (0.00) 2.00(0.00) 8.00(0.00) 2.00 (0.00) 0.03 (0.22)

‖V − V̂‖2
F 0.39 (0.12) 8.02 (3.13) 1.12 (0.62) 0.86 (1.65) 0.06 (0.02)

‖B− B̂‖2
F - - 48.2 (31.90) 23.94 (64.36) 3.48 (1.69)

(b) SIFA

+ Large var

∠P (V, V̂) 20.33 (1.20) 10.35 (0.87) 20.25 (1.19) 10.31 (0.85) 5.96 (1.17)

dG(V, V̂) 0.50 (0.02) 0.28 (0.01) 0.50 (0.02) 0.28 (0.01) 0.15 (0.02)

l(V, V̂) 9.00 (0.00) 0.00 (0.00) 9.00 (0.00) 0.00 (0.00) 0.01 (0.10)

‖V − V̂‖2
F 0.38 (0.15) 8.16 (3.81) 0.99 (0.51) 0.08 (0.01) 0.07 (0.39)

‖B− B̂‖2
F - - 41.44 (24.43) 2.20 (0.57) 6.45 (23.60)

(c) JIVE

+ Large var

∠P (V, V̂) 41.47 (3.31) 25.98 (1.50) 41.82 (3.42) 25.89 (1.48) 23.82 (14.59)

dG(V, V̂) 1.14 (0.05) 0.71 (0.03) 1.14 (0.05) 0.71 (0.03) 0.59 (0.25)

l(V, V̂) 9.00 (0.00) 0.00 (0.00) 9.00 (0.00) 0.00 (0.00) 0.17 (0.71)

‖V − V̂‖2
F 1.94 (0.73) 8.66 (3.85) 2.17 (0.78) 0.51 (0.05) 1.13 (1.72)

‖B− B̂‖2
F - - 11.13 (1.31) 0.03 (0.05) 1.63 (1.27)

RRR SRRR SPCA GFA SLIDE

(a) COBS

+ Large var

∠P (V, V̂) 22.08 (1.57) 22.06 (1.58) 17.72 (1.81) 21.99 (1.20) 20.95 (1.29)

dG(V, V̂) 0.53 (0.02) 0.53 (0.02) 0.43 (0.04) 0.50 (0.02) 0.42 (0.02)

l(V, V̂) 8.00 (0.00) 8.00(0.00) 8.00(0.00) 7.99 (0.10) 0.00 (0.00)

‖V − V̂‖2
F 0.34 (0.05) 0.34 (0.05) 0.32 (0.13) 7.75 (1.83) 5.18 (1.42)

‖B− B̂‖2
F 11.23 (2.45) 9.12 (2.37) - - -

(b) SIFA

+ Large var

∠P (V, V̂) 22.09 (1.44) 22.07 (1.43) 15.29 (1.51) 14.41 (0.57) 10.58 (0.73)

dG(V, V̂) 0.53 (0.02) 0.53 (0.02) 0.39 (0.03) 0.42 (0.02) 0.29 (0.01)

l(V, V̂) 9.00 (0.00) 9.00 (0.00) 9.00 (0.00) 8.88 (0.36) 0.00 (0.00)

‖V − V̂‖2
F 0.34 (0.05) 0.34 (0.05) 0.27 (0.15) 8.21 (2.11) 5.49 (2.29)

‖B− B̂‖2
F 10.93 (2.38) 8.83 (2.29) - - -

(c) JIVE

+ Large var

∠P (V, V̂) 76.30 (8.28) 76.34 (8.24) 36.41 (4.46) 27.75 (1.52) 25.91 (1.47)

dG(V, V̂) 2.09 (0.14) 2.09 (0.14) 0.97 (0.07) 0.68 (0.04) 0.71 (0.03)

l(V, V̂) 9.00 (0.00) 9.00 (0.00) 9.00 (0.00) 9.87 (0.37) 0.00 (0.00)

‖V − V̂‖2
F 5.72 (0.81) 5.73 (0.82) 1.35 (1.03) - 4.39 (0.92)

‖B− B̂‖2
F 19.76 (1.30) 18.50 (1.20) - - -

Table 3: Low-dimensional results one. n = 200, p = 400. Large variances in unknown source.

The means (standard deviations) of evaluation criteria, from 100 repetitions, are presented

in the table. The bold number indicates the best result.
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SVD AJIVE SupSVD SIFA COBS

(a) COBS

+ Small var

∠P (V, V̂) 22.6 (1.62) 60.33 (11.43) 22.28 (1.57) 73.64 (26.90) 13.16 (2.38)

dG(V, V̂) 0.54 (0.02) 1.20 (0.20) 0.53 (0.20) 1.47 (0.53) 0.27 (0.04)

l(V, V̂) 8.00 (0.00) 2.00(0.00) 8.00 (0.00) 2.00(0.00) 0.00 (0.00)

‖V − V̂‖2
F 0.41 (0.12) 8.39 (3.24) 1.67 (0.98) 5.99 (2.65) 0.07 (0.02)

‖B− B̂‖2
F - - 62.69 (43.21) 223.25 (104.49) 1.20 (0.24)

(b) SIFA

+ Small var

∠P (V, V̂) 22.35 (1.43) 11.43 (0.98) 22.00 (1.39) 11.23 (0.97) 6.67 (1.15)

dG(V, V̂) 0.54 (0.02) 0.31 (0.01) 0.53 (0.02) 0.30 (0.01) 0.17 (0.02)

l(V, V̂) 9.00 (0.00) 0.00 (0.00) 9.00 (0.00) 0.00 (0.00) 0.00 (0.00)

‖V − V̂‖2
F 0.43 (0.12) 7.32 (4.17) 1.61 (0.80) 0.09 (0.01) 0.04 (0.04)

‖B− B̂‖2
F - - 59.33(33.69) 0.63 (0.17) 2.05 (3.16)

(c) JIVE

+ Small var

∠P (V, V̂) 83.48 (4.67) 70.65 (10.06) 84.77 (3.59) 60.37 (8.66) 83.48 (4.92)

dG(V, V̂) 2.32 (0.10) 1.87 (0.20) 2.37 (0.10) 1.64 (0.14) 2.30 (0.11)

l(V, V̂) 9.00 (0.00) 1.50(1.97) 9.00 (0.00) 0.00 (0.00) 8.09 (1.64)

‖V − V̂‖2
F 5.86 (0.61) 7.50 (2.66) 6.00 (0.59) 2.55 (0.40) 6.06 (0.76)

‖B− B̂‖2
F - - 10.31 (1.40) 0.03 (0.05) 0.53 (0.56)

RRR SRRR SPCA GFA SLIDE

(a) COBS

+ Small var

∠P (V, V̂) 22.58 (1.60) 22.53 (1.59) 19.85 (2.18) 23.96 (1.50) 23.17 (1.60)

dG(V, V̂) 0.54 (0.02) 0.54 (0.02) 0.46 (0.04) 0.54 (0.02) 0.46 (0.03)

l(V, V̂) 8.00 (0.00) 8.00 (0.00) 8.00 (0.00) 8.00 (0.00) 0.00 (0.00)

‖V − V̂‖2
F 0.31 (0.03) 0.31 (0.03) 0.31 (0.11) 8.21 (1.77) 4.94 (1.24)

‖B− B̂‖2
F 3.98 (0.86) 2.84 (0.79) - - -

(b) SIFA

+ Small var

∠P (V, V̂) 22.31 (1.42) 22.26 (1.41) 15.29 (1.51) 14.95 (0.65) 11.54 (0.95)

dG(V, V̂) 0.54 (0.02) 0.54 (0.02) 0.39 (0.03) 0.44 (0.01) 0.31 (0.01)

l(V, V̂) 9.00 (0.00) 9.00 (0.00) 9.00 (0.00) 8.84(0.49) 0.00 (0.00)

‖V − V̂‖2
F 0.31 (0.03) 0.31 (0.02) 0.27 (0.15) 7.90 (2.14) 5.10 (2.20)

‖B− B̂‖2
F 4.04 (0.81) 2.88 (0.77) - - -

(c) JIVE

+ Small var

∠P (V, V̂) 87.40 (1.96) 87.41 (1.99) 84.42 (3.84) - 34.81 (8.25)

dG(V, V̂) 2.74 (0.07) 2.74 (0.07) 2.40 (0.10) - 0.61 (0.16)

l(V, V̂) 9.00 (0.00) 9.00 (0.00) 9.00 (0.00) - 11.94 (0.34)

‖V − V̂‖2
F 7.24 (0.31) 7.24 (0.30) 6.05 (0.66) - -

‖B− B̂‖2
F 16.45 (1.12) 15.28 (1.00) - - -

Table 4: Low-dimensional results one. n = 200, p = 400. Small variances in unknown source.

The means (standard deviations) of evaluation criteria, from 100 repetitions, are presented

in the table. The bold number indicates the best result.
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for most cases, as confirmed by smaller principal angles ∠P (V, V̂) (in degrees) and dG(V, V̂).

The only exception is under low-dimensional setting scenario (c) with small variances in

unknown source. This situation has the smallest signal strength among all cases. Thus most

of methods failed in this situation. The failure of AJIVE and SIFA in Scenario (a) is expected

since the partially joint structure is not allowed in their estimating procedures. This results

in a misidentification of noisy directions as a v̂, and the large values in the principal angles.

The permuted Hamming distance l(V, V̂) measures the quality of block structure identi-

fication. Overall SLIDE provides the best group identification as its method mostly focuses

on group structure retrieving. But our method is also accurate in identifying the structures

most of the time. For Scenario (a), both high-dimentional and low-dimensional, only up to

6% of time, at most 1 block is misidentified and pretty perfect identification for the rest.

The signal variances in (c) are much smaller than those in (a) and (b), and the block identi-

fication quality of COBS deteriorates. The (Sup)SVD, (Sparse) Reduced-Rank Regression,

and Sparse PCA do not reflect any group structure (Sparse PCA works for variable selection

but not group selection), and all components are treated as full-joint components. Note

also that for SIFA and AJIVE we have supplied the exact number of joint and individual

components, thus good performances of those methods in Scenarios (b) and (c) in terms of

the block identification are expected. On the other hand, in Scenario (a), these methods

completely fail in identifying the partially joint structure.

In terms of the squared loss, ‖V − V̂‖2
F , COBS also provides the best estimates. Small

squared loss indicates that not only the column spaces of V and V̂ are close but also the

order of components in V̂ is well-identified according to the identifiability conditions we

imposed in Proposition 1. Although SLIDE is perfect in group identification overall, but

it tends to deviate from true order of the components. We also remark that the implicit

models of SIFA and AJIVE assume larger variances in joint components than in individual

components, which is not the case in Scenario (a). In (a), v̂1 of SIFA and AJIVE are in fact

estimators of either v3 or v4, resulting in large squared loss.

While COBS provides more accurate estimates of B than SupSVD and SIFA, we note

that in Scenario (c) with large samples, even from the pure noise X, independent with the

primary data, COBS accurately provides XB̂ ≈ 0.
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5.0 Real data application

The proposed COBS factorization is applied in the exploration of multi-source genomic

data and of multi-modal image-feature data.

5.1 TCGA breast cancer data

The breast cancer data set we use is a part of TCGA project [34], and contains multiple

aspects of genetic information on a common set of subjects. In particular, the measurements

for each subjects are grouped into the gene expression (GE), methylation (Me) and copy

number variation (CNV). The goal of the analysis is to reveal the underlying variation

patterns across these multiple sets of genetic data, potentially driven by the subtypes of

breast cancer.

The data are preprocessed as done in [12]. This gives three blocks of variables (5125 genes

(variables) for GE, 5036 for Me and 6115 for CNV) for a common sample of size n = 770.

We further reduce dimensions by filtering in 200 genes with the largest standard deviations

in each block, and form the primary multi-block data Y = (YGE,YMe,YCNV)T of size n×p,

where p = 600. The primary multi-block data set is then scaled to have zero mean and

unit standard deviation. The cancer subtypes play the role of the covariate. There are five

subtypes: Basal (133), Her2 (51), LumA (394), LumB (161), and Normal (31), where the

class sizes are also given in the parenthesis. The rows of the covariate matrix X are binary;

(1, 0, 0, 0, 0) if the corresponding subject is labelled Basal, (0, 1, 0, 0, 0) for Her2, and so on.

The proposed COBS algorithm is sequential in the sense that the rank-1 components are

sequentially estimated. Specifying the overall rank of the signal, r in (2.2), is not necessary

in probing the major structure of the multi-block data, which typically appears in the first

few components with large variances.

We set αv = 0 (that is, we only seek block-wise sparsity) for demonstration. Other

choices of αv provide similar results for this data set, as detailed in the appendix. The tuning

25



parameter λv determines the group structure, and is chosen by the BIC. Since there is one

block of covariates, we fixed αb = 1, and λb is chosen by the BIC for the first component,

which is then used for all subsequent layers. We highlight a few results from the COBS

factorization on this dataset.

First, the identified block structure reveals that the first few components are either

individual or partially joint. The block structure is reflected in the non-zero patterns of the

loadings. For illustration, the estimated loadings of the first five components are

V̂1:5 =


V̂1,GE 0 0 0 V̂5,GE

V̂1,Me 0 V̂3,Me 0 V̂5,Me

0 V̂2,CNV 0 V̂4,CNV 0

 . (5.1)

The first component represents a partially joint variation among GE and Me. The second

component is an individual pattern in CNV only. Not shown in (5.1) is that the variance

of the first factor is further decomposed into the covariate effect, explaining about 85%,

and the unknown factor effect, explaining 15%, while the second factor is mostly about the

unknown factor with 90% of the variance. This is further demonstrated in the scatterplot of

the estimated scores of the first two components; see Fig. 2.

The scatterplot is appended by the bij estimates in B̂ and its confidence interval, obtained

by [32]. As expected, the subtypes are main drivers of the variation in the first component,

with significantly different bi1’s. In the second component, the subtypes are not significantly

different.

Analyzing the pattern in (5.1) also reveals that GE and Me blocks are more related

with each other than with the CNV block. The correlation network for the variables in

respective blocks, contained in the appendix, confirms that variables in CNV have only

weak associations to the variables in GE and Me.

Additionally, we decompose the total variation in the primary data into the variation

due to the signal and noise. For this, we estimated r = 62 components, which covers about

80% of the total variance, and the analysis of variance is from all 62 components combined.

The variation in the signal is decomposed into the effect of each subtype and the unknown

factor effect. See Table 5. While the covariate explains less than 30% of total variation in
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Figure 2: The first two component scores of the breast cancer data. Component 1 scores

are mainly driven by the covariate effect, affecting the GE and Me blocks of variables.

Component 2 scores are mostly from unknown factors, affecting the CNV block of variables.

Also shown is the estimates B with 95% confidence intervals.
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Basal Her2 LumA LumB Normal Total

Gene

Expression

Supervision 60.43% 7.78% 18.74% 9.80% 3.25% 26.84%

Unknown - - - - - 41.98%

Noise - - - - - 31.18%

Methylation

Supervision 55.60% 2.98% 10.66% 20.11% 10.65% 12.19%

Unknown - - - - - 46.67%

Noise - - - - - 41.14%

CNV

Supervision 17.29% 30.33% 16.84% 29.72% 5.81% 7.97%

Unknown - - - - - 79.30%

Noise - - - - - 12.73%

Overall: Supervision: 15.67% Unknown: 55.98% Noise: 28.35%

V̂

Table 5: TCGA breast cancer data: The proportion of variance explained proportion in 

terms of each component (i.e., supervision, unknown sources, and noise) in COBS model for 

each individual block and the overall multi-block data (Sum to 1 in terms of the “Total” 

for each block and “Overall” for the concatenated multi-block data sets). The variation in 

supervision part is further separated into different tumor subtype for each block.

each block, the mean effect of Basal explains most of the variation for the GE and Me block. In 

the CNV block, the mean effects of Her2 and LumB stand out, but they are dwarfed by the 

variation from unknown sources.

Next, we present more results by comparing COBS with other competing methods, such 

as SLIDE, AJIVE, GFA, SupSVD, and SIFA for the analysis of breast cancer data. We 

divide the data into half training and half testing. 50% of each cancer subtypes is sampled 

from the original samples. For subtypes with odd number samples, we round the number up. 

This results in ntrain = 387 and ntest = 383. Using the training set, we apply each method 

to get the new variation directions V̂ 
train. Then the testing primary data is projected onto

train, called the testing score (i.e., YtestV̂ 
train). All the comparisons are based on the testing 

score from each method.

We firstly sort the testing score components by their variances in descending order.
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COBS SLIDE AJIVE GFA SupSVD SIFA

Comp. 1 72.73 76.21 65.20 64.07 71.95 69.75

Comp. 2 63.84 69.04 52.55 62.32 55.20 42.61

Comp. 3 42.63 44.71 42.80 53.73 46.16 37.01

Comp. 4 33.22 41.84 29.55 41.84 39.45 31.99

Comp. 5 28.31 41.47 28.64 35.07 31.40 31.69

Table 6: The variances of the testing score YtextV̂train for the top 5 components that have

the largeset variances from each method.

One remark is that the group structures of the top 5 components from COBS follow the

same pattern as the structure shown in 5.1. Table 6 summarizes the variances of the top

5 components from each method. For the first two components, SLIDE, AJIVE, GFA,

SupSVD and SIFA all have larger variances from full-joint structures. With group structure

identification considered, COBS still performs noticeably well.

Given this result, we perform hierarchical clustering by using the Euclidean distance and

Ward’s minimum variance method [26, 33], based on the first two components that have the

largest variances from each method. To evaluate the performance of the clustering result,

we use the Adjusted-Rand Index [11] to assess the cross-tabulation of the cluster groups (C)

and the true group labels (L). The ARI is defined as:

ARI =

∑C
c=1

∑L
l=1

(
Ncl

2

)
−NCNL/

(
N
2

)
(NC +NL)/2−NCNL/

(
N
2

) , (5.2)

where C and L indicate cluster groups and true group labels accordingly, Ncl is the num-

ber of observations that is clustered in group c with true label l, NC =
∑C

c=1

(
Nc·
2

)
, and

NL =
∑L

l=1

(
N·l
2

)
. The closer the ARI to 1, the better the group cluster is. We use the

mclust::adjustedRandIndex() [5] in R to calculate the ARI. The ARI from each method is,

COBS 0.37, SLIDE 0.26, GFA 0.29, AJIVE 0.24, SupSVD 0.34, and SIFA 0.04. It turns

out the ARI of all methods did not present good enough clusters. It is understandable here
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Figure 3: The Calinski-Harabasz Index of cumulative number of components from different

methods. It presents that COBS factorization has the advantage for group separation with a

smaller number of components. But SLIDE also performs comparably well in terms of CHI.

because of the large overlap between LumA and LumB subtypes, and also the small test

samples in Normal and Her2 subtypes. But based on this, COBS still performs relatively

better than the other methods in seperating LumA/LumB and Basal, which also agrees with

the score scatters shown in Figure 2.

Moreover, for the illustration of the group separation of the testing score, we have ex-

tracted r = 10 components from each method, and computed the Calinski-Harabasz Index

(CHI) [1], proportional to the ratio of sum of squares between groups (covariate effect) and

the sum of squares of the residuals (unknown factor effects), cumulatively with the number

of components. Figure 3 presents that the components from COBS factorization tends to

have larger values of CHI, better group separation of the breast cancer subtypes, when the

number of components is small.
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5.2 Image-feature analysis of melanocytic lesions

In histopathology, digital image analysis of melanocytic lesions is often summarized by

image features [25]. These image features are naturally grouped into color-related features

and shape-related features, among others. Each skin slide results in multiple values of the

features, and in this data example, we use the mean and standard deviation of each feature,

computed from the image-feature data of size n = 348, as discussed in [25]. There are 18

features (variables) related to color, resulting in two blocks of variables called Mean-Color

and Sd-Color ; 13 shape-related features give additional two blocks, Mean-Shape and Sd-

Shape. Each observation is labeled either nevi or melanoma, and we use this information as

a covariate.

The data set has four blocks of variables, with block sizes 18, 18, 13 and 13. Each variable

is transformed so that their distributions are approximately standard normal. The COBS

factorization is applied with λb = 0, i.e., the ordinary least square for the estimation of B,

as there is only one binary variable for the covariate. Aiming at both the identification of

the block structure and variable selection (within each block), we set αv = 0.5. The tuning

parameter λv is chosen by the BIC.

The result of analysis is summarized in Table 7, for the first six estimated components.

The proposed method not only identifies mostly partial-joint components but also selects a

few variables in each block. Note that since Mean-Color and Sd-Color (or Mean-Shape and

Sd-Shape) are computed from the same features, it is expected that they are often coupled.

We have further compared the COBS factorization with some of the competing meth-

ods, as discussed in Chapter 4 and in breast cancer data analysis. We also sort the score

components by their variances in descending order from each method. Table 8 presents

the five components with the largest variances. Through investigation of the results, we

find that SLIDE, AJIVE, GFA, SupSVD and SIFA all provide largest variance from fully-

joint components, however COBS has largest variance in its original first component that is

partially-joint between Mean-Shape and Sd-Shape.

Additionally, the degrees of separation of the two groups (nevi and melanoma) are com-

pared, since this binary information is used as a covariate in fitting COBS, SIFA, and

31



Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 Comp. 6

Mean-Color 0 5 12 11 6 6

Sd-Color 0 5 8 10 11 3

Mean-Shape 11 0 2 4 0 5

Sd-Shape 5 0 0 0 0 2

Table 7: The numbers of non-zero loadings, counted for each block and each component,

from the analysis of melanoma data are shown to reveal the block structure identification

and variable selection result. Mean-Color and Sd-Color blocks have each 18 variables and

the other two blocks have 13 variables each.

COBS SLIDE AJIVE GFA SupSVD SIFA

8.22 8.89 7.34 9.30 9.77 10.77

6.08 7.86 6.00 6.95 6.09 4.60

5.52 7.20 4.37 6.69 5.88 4.52

4.29 6.47 4.37 5.63 4.10 4.44

3.90 5.21 4.06 4.52 3.99 3.97

Table 8: Variances in descending order of five score components for each method.

SupSVD. For this, we have extracted r = 13 components (for 80% of total variation), and

computed the CH Index from each component and also from the cumulative components

output from COBS. The CHI is also computed in such two ways from component scores

estimated from the other methods. Figure 4 illustrates the sorted CHI in descending order

for each method and Figure 5 is the CHI for the cumulative components output from each

method (AJIVE and SIFA output full-joint components in the beginning). In Figure 4,

SLIDE and GFA are better in terms of the first component that has the largest CHI but all
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Figure 4: The CH-Index of each single component. SLIDE and GFA are better with the top

component. All the other methods perform relevant similar to each other.

Figure 5: The CH-Index of cumulative components. AJIVE seems to be overall better in

distinguishing melanoma and nevi in this situation.
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the other methods are pretty similar to each other. But contrarily, GFA does not perform

well in Figure 5. Similar situation happens for AJIVE and SIFA, where AJIVE and SIFA are

better compared with the other methods in Figure 5 but they do not stand out in Figure 4.

In both figures, COBS and SupSVD maintain relevant stable performance in distingushing

Melanoma and Nevi, with COBS performs slightly better.

We conclude from Table 8, Figure 4 and Figure 5 together, that COBS performs overall

well in identifying the group variation structures. At the meantime, COBS explains larger

variances in the primary multi-block data and distinguishes the skin melanocytic lesions

through structural score components.
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6.0 Restricted maximum likelihood estimation in COBS

In this chapter, we will discuss another method, restricted maximum likelihood (ReML)

[9], to estimate the variances (i.e., σ2
e and ΣF ) in COBS model 2.2 and then compare with the

estimates in equation 3.6 that are calculated based on MLE. ReML estimates are commonly

used in linear models to produce unbiased estimates for the variance terms. In the first section

we will introduce how to apply ReML in COBS model to estimate σ2
e and the elements in

ΣF . Then we will then show that ReML estimates for COBS are unbiased, however the MLE

elements in ΣF as equation 3.6 are biased.

6.1 ReML estimates in COBS

The idea in ReML is to maximize a modified likelihood function that is free from the

mean in the original distribution so that the estimates will not be biased due to the degree

of freedom in the estimator. So we will apply this idea into COBS model. Without loss of

generality, the ReML estimates are derived from the full model 2.2 with rank r, since the

rank-one model will just be a special case by setting r = 1.

Consider the full model 2.2 and the assumptions regarding to the unknonwn source F

and error E disucussed in Chapter 2. We know that each row of Y given X is multivariate

normal with mean E(Yi|Xi) = XiBVT and covariance Σ = σ2
eIp+VΣFVT , for i = 1, . . . , n.

To make it easier to derive ReML next, we rewrite the distribution of Y given X in the

matrix normal distribution format as

Y ∼MVN
(

XBVT , In,Σ
)
≡ vec(Y) ∼ Nnp

(
vec(XBVT ), In ⊗ Σ

)
,

where vec(Y) means the vectorization of the rows in Y given supervision data X, and ⊗

indicates the Kronecker product. The original log-likelihood function of Y depends on the

mean part XBVT . ReML is to maximize the log-likelihood function of the error contrast

term SY for S such that SX = 0. We define S as a full rank matrix with dimension k × n.
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Then based on the distribution of Y, we can write the matrix normal distribution of SY as

SY ∼MVN
(

0,SST ,Σ

)
, so that the -2 log-likelihood function of SY is

`
(
θ(Σ)

)
= k log(|Σ|) + trace[Σ−1(SY)T (SST )−1(SY)] + c(S),

where c(S) = np log(2π) + p log(|SST |).

We derive S from the eigen-decomposition of In −H, where H is the hat matrix H =

X(XTX)−1XT . With full-rank X, In −H is idempotent with rank n − q. The eigenvalues

of In −H will be either 1 or 0. We define ST as the first k = n− q eigen-vectors where the

corresponding eigenvalues are 1. Then it follows that STS = In −H and SST = Ik. And we

have shown in chapter 3 that |Σ| = (σ2
e)
p
∏r

j=1(1+
σ2
j

σ2
e
) and Σ−1 = 1

σ2
e
Ip−

∑r
j=1

σ2
j

σ2
e(σ2

e+σ2
j )

vjv
T
j .

Then the -2 log-likelihood function of SY can be further derived as

`
(
θ(Σ)

)
=

trace[YT (In −H)Y]

σ2
e

−
r∑
j=1

trace[
σ2
j

σ2
e(σ

2
e + σ2

j )
(Yvj)

T (In −H)(Yvj)]

+ k(p− r) log(σ2
e) + k

r∑
j=1

log(σ2
e + σ2

j ) + c, (6.1)

where c = np log(2π) + p log(k), k = n − q. Taking partial derivatives w.r.t σ2
e and σ2

j for

j = 1, . . . , r from equation 6.1, the ReML estimates are

σ̂2
e[ReML] =

trace[YT (In −H)Y]−
∑r

j=1 trace[(Yvj)
T (In −H)(Yvj)]

k(p− r)

σ̂2
j[ReML] =

trace[(Yvj)
T (In −H)(Yvj)]

k
− σ̂2

e[ReML] (6.2)

To apply ReML estimates above in COBS for the rank-one model, we substitute equation

3.6 with equation 6.2 setting r = 1 at each layer in the rank-one model as described in section

3.2. In terms of the full model, we can directly update σ2
e and elements in ΣF using equation

6.2 after we have all layers updated.
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6.2 ReML vs. MLE in COBS

In this section, we will show that ReML estimates for the variances in COBS are unbiased.

Before we start the proof, we need to clarify the distribution of Yvj, j = 1, . . . , r first, that

Yvj is normally distributed with mean XB and variance σ2
e + σ2

j . It follows that:

E(trace[YT (In −H)Y]) = trace[E(YT (In −H)Y)]

= trace[E(Y)T (In −H)E(Y)] + trace[(In −H)⊗ Σ]

= 0 + k trace(Σ)

= kp σ2
e + k

r∑
j=1

σ2
j (6.3)

and

E(trace[(Yvj)
T (In −H)(Yvj)]) = trace

[
E[(Yvj)

T (In −H)(Yvj)]

]
= 0 + trace[(In −H)(σ2

e + σ2
j )]

= k(σ2
e + σ2

j ). (6.4)

Thus,

E(σ̂2
e[ReML]) =

kpσ2
e + k

∑r
j=1 σ

2
j −

∑r
j=1 k(σ2

e + σ2
j )

k(p− r)
= σ2

e (6.5)

E(σ̂2
j[ReML]) =

k(σ2
e + σ2

j )

k
− σ2

e = σ2
j , j = 1, . . . , r. (6.6)

All ReML Estimates for COBS are clearly unbiased for either rank-one model or the full

model.

In Section 3.2 equation 3.6, the estimation of the variances follows the MLE scheme

at each layer. Since there is no closed form solution for b at each layer, we will discuss a

special case where b̂ = (XTX)−1XTYv that is estimated from maximizing the unpenalized

likelihood function treating v as given. Under this special case, σ̂2
f shown in equation 3.6

is biased but σ̂2
e is unbiased. To clarify the notation, here v indicates the rank-one model

parameter, which is equivalent as vj in the full model. We will show the biasedness of σ̂2
f

for the rank-one model here.
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Plugging b̂ = (XTX)−1XTYv into equation 3.6, we have

σ̂2
e =
‖Y −HYvvT‖2

F − ‖Yv −HYv‖2
2

n(p− 1)
, σ̂2

f =
‖Yv −HYv‖2

2

n
− σ̂2

e . (6.7)

We still find the expection of the numerators first.

E(‖Y −HYvvT‖2
F ) = E[trace(Y −HYvvT )T (Y −HYvvT )]

= E[trace(YTY −YTHYvvT )]

= E[trace(YTY)]− E[trace
(
(Yv)TH(Yv))

)
]

= trace((XbvT )T (XbvT )) + trace(In ⊗ Σ)

− trace((Xb)T (Xb))− trace(H(σ2
e + σ2

j ))

= n(pσ2
e + σ2

f )− q(σ2
e + σ2

f ) (6.8)

and

E(‖Yv −HYv‖2
2) = E[(Yv −HYv)T (Yv −HYv)]

= E[(Yv)T (Yv)− (Yv)TH(Yv)]

= E
(
trace[(Yv)T (In −H)(Yv)]

)
= (n− q)(σ2

e + σ2
f ) (6.9)

Then it follows that

E(σ̂2
e) =

n(pσ2
e + σ2

f )− q(σ2
e + σ2

f )− (n− q)(σ2
e + σ2

f )

n(p− 1)
= σ2

e (6.10)

E(σ̂2
f ) =

(n− q)(σ2
e + σ2

f )

n
− σ2

e = σ2
f −

q

n
(σ2

e + σ2
f ). (6.11)

So in this special case, the MLE of σ2
f for rank-one model is biased and the MLE of σ2

e

remains unbiased. This special case can also be generalized to full-rank model estimation

as the equation to estimate the elements σ2
j , j = 1, . . . , r in ΣF given B̂ = (XTX)−1XTYV

follows same format as what we have shown above. Refer to section 3.3 for the details of

multi-layer estimation for COBS model.

Overall, we conclude that ReML can be an alternative method for COBS variances

estimation. Without relying on the mean part, the estimates from the error contrast part

in COBS model are all unbiased, which is also an advantage over the use of MLE of the

variances.
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7.0 Summary

We have introduced a covariate-driven, block-wise structured factorization for integrative

analysis of multi-block data. Unlike most other low-rank factorization method in literature,

our conceived model is flexible to incorporate any form of block structure, especially the

partially joint components. The data-driven distinction between full-joint, partial-joint and

individual structures by thresholding is seen to work well in simulation studies and real data

analysis. We in addition incorporate covariate effects which potentially drive the segmented

factors. The proposed algorithm is computationally efficient for moderately large dataset.

This leaves the development of a more efficient algorithm suitable for ultra-high dimensional

data blocks as a future topic of investigation. Finally, an important question we have not

discussed is whether the identified block structure is really there. Inference on the COBS

factorization involves two important sub-questions of 1) selection consistency of the block-

wise structure and 2) post-selection inference of B and V. These types of questions are

primarily being answered in the context of regression [30], but have not been addressed in

the integrative dimension reduction context, as observed by [20]. Theoretical tools developed

for sparse PCA [17] and the usual lasso estimator may be used to provide the consistency,

post-selection test procedures and intervals for the coefficients and loadings.
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Appendix A Technical details

A.1 Proofs of propositions 1 and 2

Proof of Proposition 1.

Take any two parameter-set θ1 = (V1,B1,Σ1, τ
2
1 ) and θ1 = (V2,B2,Σ2, τ

2
2 ) and assume

that Fθ1(Y) = Fθ1(Y). We will verify θ1 = θ2 if Conditions (i)—(iii) hold. The equality of the

distributions implies that (a) Eθ1(Y) = Eθ2(Y) and (b) Eθ1trace(YYT ) = Eθ2trace(YYT )

among others. These in turn leads that, from (a),

XB1V
T
1 = XB2V

T
2 , (A.1)

and from (b)

V1

[
BT

1 SXB1 + Σ1

]
VT

1 + τ 2
1 Ip = V2

[
BT

2 SXB2 + Σ2

]
VT

2 + τ 2
2 Ip. (A.2)

The uniqueness of eigenvalue decomposition of symmetric matrices, together with Condi-

tion (i) leads that τ 2
1 = τ 2

2 and span(V1) = span(V2) from ( A.2). Moreover, the sets of

eigenvalues of M1 = BT
1 SXB1 + Σ1 and M2 = BT

2 SXB2 + Σ2 must be equal. By Condi-

tion (ii), both the eigenvalues of M1 and M2 are exactly their diagonal values. Since these

eigenvalues are distinct and in a particular order, we have V1 = V2. Then, ( A.1) becomes

XB1 = XB2. (Thus, without assuming Condition (iii), XB is identifiable.) Replacing XB1

by XB2 in M1 = M2 gives Σ1 = Σ2. Finally, by Condition (iii), XTX is invertible. Thus

XTXB1 = XTXB2 leads that B1 = B2.
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Proof of Proposition 2.

Write Y = LDRT for the singular value decomposition of Y, Here, L is the n×N matrix

consisting of orthogonal columns, where N ≤ min(n, p) is the number of positive singular

values, and D = diag(d1, . . . , dN) with di > di+1 assumed. Then,

max
v
‖Yv + Xb̃‖2

2 = max
v
‖DRTv + LTXb̃‖2

2 + ‖(In − LLT )Xb̃‖2
2

= max
w
‖w + z‖2

2 + c

= max
w

N∑
i=1

(wi + zi)
2 + c (A.3)

where z = LTXb̃, w = DRTv ∈ RN satisfying wTD−2w =
∑N

i=1w
2
i /d

2
i ≤ 1 and c is a

constant.

Note that the feasible region for w is an ellipsoid whose principal axes are along the

coordinate axes. If z = 0, then w̃ = (d1, 0, . . . , 0)T is the maximizer. We now assume

zi > 0 for all i = 1, . . . , N without loss of generality. An inspection of ( A.3) leads that the

maximizer ŵ should satisfy ŵi ≥ 0 for all i and wTD−2w = 1. Introducing the Lagrange

multiplier t, the maximizer w̃ of ( A.3) with the constraint wTD−2w = 1 is a stationary

point of A(w, φ) =
∑N

i=1(wi + zi)
2 − t(

∑N
i=1w

2
i /d

2
i − 1). The first order condition gives

zi =

(
t

d2
i

− 1

)
wi,

for all i. The maximizer wi is then wi = d2
i zi/(t− d2

i ), for a t. Since both zi and wi have the

same sign, we have t
d2i
− 1 > 0 for all i, which in turn leads to t > d2

1. The desired t is the

root of

h(t) =
N∑
i=1

w2
i

d2
i

− 1 =
N∑
i=1

d2
i z

2
i

t− d2
i

− 1,

on t > d2
i . Since h′(t) < 0, h is strictly decreasing, and for t1 = d2

1 + d1z1 and t2 =

d2
1 + (

∑N
i=1 d

2
i z

2
i )

1/2, h(t1) > 0 > h(t2). Thus the unique root t̃ is located on (t1, t2). The

maximizer w̃ = (w̃i) is w̃i = d2
i zi/(t̃− d2

i ).

The maximizer ṽ is then ṽ = RD−1w̃.
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A.2 Estimating algorithm for general ΣF

In the main article, we have only discussed the estimation of COBS factorization under

the special case ΣF = diag(σ2
1, . . . , σ

2
r). We discuss the modification of the algorithm to the

general ΣF case. To obtain the general ΣF estimate, we only need to replace σ2
j estimation

in Section 3.3.

Recall that with the condition ΣF = diag(σ2
1, . . . , σ

2
r), from the full model with r com-

ponents, and with (v̂j, b̂j) plugged in, we estimate σ2
0 and ΣF = diag(σ2

1, . . . , σ
2
r) by the

maximum likelihood estimates. These are given by σ̂2
0 = (n(p − r))−1‖YV̂⊥‖2

F , where V̂⊥

is the p × (p − r) matrix formed by an orthonormal basis of the null space of V̂, and

σ̂2
j = n−1‖Yv̂j −Xbj‖2 − σ̂2

0, for j = 1, . . . , r.

For the general Σf case, the negative log-likelihood function with (v̂j, b̂j) plugged in is

proportional to

`(Σf , σ
2
0) = n log(2π|Σ|) +

n∑
i=1

(yi − xiB̂V̂T )Σ−1(yi − xiB̂V̂T )T ,

where Σ = σ2
0Ip + V̂ΣfV̂

T . The minimizer of ` is then

σ̂2
0 =(n(p− r))−1‖YV̂⊥‖2

F ,

Σ̂f =V̂T (S0 − σ̂2
0Ip)V̂,

where S0 = n−1YTY.

A.3 Derivation of major equations

A.3.1 Derivation of equation 3.2: the -2 log-likelihood function

Under COBS model assumptions, the log-likelihood function is

L[Y(b,v, σ2
e , σ

2
e)|X]) = logP (Y1,Y2, ...Yn|b1,v, σ

2
e , σ

2
f )

= −n
2

log(2π|Σ|)− 1

2

n∑
i=1

(Yi −XibvT )Σ−1(Yi −XibvT )T , (A.4)
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where Σ = σ2
eIp + σ2

fvvT .

Under the constraint ‖v‖2
2 = 1,

|Σ| = det(σ2
eIp + σ2

fvvT ) = (σ2
e)
p det(Ip +

σ2
f

σ2
e

vvT )

= (σ2
e)
p det(1 +

σ2
f

σ2
e

vTv) = (σ2
e)
p−1(σ2

f + σ2
e),

and

Σ−1 =
1

σ2
e

Ip −
σ2
f1

σ2
e(σ

2
f1 + σ2

e)
vvT .

Therefore, it can be found that

(Yi −XibvT )Σ−1(Yi −XibvT )T

=
1

σ2
e

(Yi −XibvT )(Yi −XibvT )T −
σ2
f

σ2
e(σ

2
f + σ2

e)
(Yiv −Xib)(Yiv −Xib)T

Hence,

n∑
i=1

(Yi −XibvT )Σ−1(Yi −XibvT )T

=
1

σ2
e

‖Y −XbvT‖2
F −

σ2
f

σ2
e(σ

2
f + σ2

e)
‖Yv −Xb‖2

2.

Thus, the log-likelihood function A.4 is simplified as

L[Y(b,v, σ2
e , σ

2
e)|X]

= −n
2

log[2π(σ2
e)
p−1(σ2

f + σ2
e)]−

1

2σ2
e

‖Y −XbvT‖2
F +

σ2
f

2σ2
e(σ

2
f + σ2

e)
‖Yv −Xb‖2

2.

(A.5)

The -2 log-likelihood function is then expressed as

`(b,v, σ2
f , σ

2
0) =

1

σ2
e

(
‖Y −XbvT‖2

F −
σ2
f

σ2
f + σ2

e

‖Yv −Xb‖2
2

)
+ c(σ2

e , σ
2
f ), (A.6)

where c(σ2
e , σ

2
f ) = n log[2π(σ2

e)
p−1(σ2

f + σ2
e)].
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A.3.2 Derivation of equation 3.3: minimize ` w.r.t. v

To minimize the -2 log-likelihood function w.r.t. v given the other parameters fixed, we

minimize the following objective function under the constraint ‖v‖2
2 = 1:

F (v) = ‖Y −XbvT‖2
F −

σ2
f

σ2
f + σ2

e

‖Yv −Xb‖2
2

= −
σ2
f

σ2
f + σ2

e

n∑
i=1

‖Yi·v‖2
2 − 2(1−

σ2
f

σ2
f + σ2

e

)
n∑
i=1

[(Yi·v)(Xi·b)]

+ (‖v‖2
2 −

σ2
f

σ2
f + σ2

e

)
n∑
i=1

(Xi·b)2 1

2σ2
e

n∑
i=1

‖Yi·‖2
2

= −
σ2
f

σ2
f + σ2

e

‖Yv +
σ2
e

σ2
f

Xb‖2
2 + ‖Xb‖2

2‖v‖2
2 + C0(Y,X,b, σ2

e , σ
2
f )

‖v‖22=1
== −

σ2
f

σ2
f + σ2

e

‖Yv +
σ2
e

σ2
f

Xb‖2
2 + C1(Y,X,b, σ2

e , σ
2
f ), (A.7)

where C0 and C1 are functions free of v and can be ignored. Thus, minimizing F (v) w.r.t.

v is equivalent to the problem

max
v
‖Yv + Xb̃‖2

2 subject to vTv = 1,

where b̃ = σ2
e/σ

2
fb.

A.3.3 Derivation of the minimization problem of ` w.r.t. b

To minimize the -2 log-likelihood function w.r.t. b given the other parameters fixed, we

begin with the objective function ‖Y − XbvT‖2
F −

σ2
f

σ2
f+σ2

e
‖Yv − Xb‖2

2. By the properties

of Frobenius Norm: ‖A‖2
F = tr(AAT ), for any orthogonal matrix W such that WTW =

WWT = I, we have ‖AW‖2
F = tr(AWWTAT ) = ‖A‖2

F .

Then, define

W =
(
v v⊥2 v⊥3 ... v⊥p

)
, such that vTW =

(
1 0 0 ... 0

)
.
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This implies

‖Y −XbvT‖2
F = ‖YW −XbvTW‖2

F

= ‖
(
Yv Yv⊥2 ... Yv⊥p

)
−
(
Xb1 0 ... 0

)
‖2
F

= ‖Yv −Xb‖2
2 + ‖X

(
v⊥2 v⊥3 ... v⊥p

)
‖2
F . (A.8)

Therefore, the objective function is equivalent to the form

[1−
σ2
f

σ2
f + σ2

e

]‖Yv −Xb‖2
2 + ‖X

(
v⊥2 ... v⊥p

)
‖2
F

=
σ2
e

σ2
f + σ2

e

‖Yv −Xb‖2
2 + ‖X

(
v⊥2 ... v⊥p

)
‖2
F . (A.9)

Terms free of b can be ignored, and the minimization of the -2 log-likihood function ` w.r.t

b is equivalent to the minimization of ‖Yv−Xb‖2
2, which then can be considered as a linear

regression problem of regressing Yv onto X.
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Appendix B Additional details of simulation studies

In this section, we provide more details about data generating process with respect to

the three simulation settings discussed in Section 4.1.

(a) COBS

Multi-block data Y is generated from the COBS model Y = (XB + F)VT + E. The

coefficient matrix B and the loading matrix V follows the setting shown in Section 4.1. In

particular, we set

V(a) =


v1(1) 0 0 v4(1)

0 v2(2) 0 v4(2)

0 0 v3(3) v4(3)

0 0 v3(4) v4(4)

 .

In this setting, the first block of the supervision information is related to the variation

direction in the first block. Similarly, the second block of X picks the individual variation in

the second block of Y. The third loading vector indicates the partial-joint variation across

the third and fourth blocks in Y, which is picked by the third group of X. The last group

of X is associated the full-joint variation across all data blcoks in Y. Under COBS setting,

we consider two different scenarios by setting ΣF relatively large and small to discuss how

the variances from unknown sources can affect the estimates. For larger variances, we set

ΣF = diag(10, 8, 6, 4) corresponding to the result (a) in table 1 and 3. For smaller variances,

we set ΣF = diag(2.5, 2, 1.5, 1) that corresponds to result (a) in table 2 and 4.

To apply SVD and SupSVD with data from COBS model, we supply the true intrinsic

rank r = 4. To apply AJIVE, we set the intrinsic rank in each block for its required initial

setting as r = (2, 2, 2, 2). To apply SIFA, the rank of the joint component is r0 = 2 and the

individual ranks are r1 = 1, r2 = 1, r3 = r4 = 0.

(b) SIFA

The loading matrix V(b) = [v1, . . . ,v4] has a fully joint component v1 (corresponding to
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the largest variance), and three individual components:

V(b) =


v1(1) v2(1) 0 0

v1(2) 0 v3(2) 0

v1(3) 0 0 v4(3)

v1(4) 0 0 0

 .

Note that the fourth data block has no individual component. The coefficient matrix B(b) is

the same as B(a) in the situation (a).

Under SIFA model, each data set in the multi-block data Y is generated from Yk =

Jk+Ak+Ek = U0V
T
0,k+UkV

T
k +Ek, where the joint and individual factors are from the linear

model U0 = XB0+F0 and Uk = XBk+Fk. Here we set k = 1, . . . , 4, which indicates the four

blocks in data Y. Then the coefficient matrix B is formed as (B0,B1, . . . ,B4) and loading

matrix V is formed as (V0,V1, . . . ,V4). Each row of F0 and Fk will follow a multivariate

normal distribution with mean 0 and covariance matrix ΣF0 and ΣFk
respectively.

To make sure that data sets can be compatible with the application of COBS and AJIVE,

we will set B4 = 0, V4 = 0, and ΣF4 = σ2
f4

= 0, which means that there is no individual

pattern existing in the fourth data block. For the other columns in B and V, we will follow

the setting in COBS as described above and also in section 4.1.

We also adopt two different scenarios of the variances from unknown sources by setting

larger variances scenario (correspoding to (b) in table 1 and 3) as ΣF0 = σ2
f0

= 10, ΣF1 =

σ2
f1

= 8, ΣF2 = σ2
f2

= 6, ΣF3 = σ2
f3

= 4, ΣF4 = σ2
f4

= 0, and smaller variances scenario

(correspoding to (b) in table 2 and 4) as ΣF0 = σ2
f0

= 2.5, ΣF1 = σ2
f1

= 2, ΣF2 = σ2
f2

= 1.5,

ΣF3 = σ2
f3

= 1, ΣF4 = σ2
f4

= 0.

To fit SVD, SupSVD, and COBS with data genrated from SIFA, we set the intrinsic

rank for Y as r = 4. To fit AJIVE, the intrinsic rank in each block for initial setting is

r = (2, 2, 2, 1). For SIFA, the joint signal has rank r0 = 1 and the individual signals have

ranks r1 = 1, r2 = 1, r3 = 1, r4 = 0.

(c) JIVE

We notice that SIFA is a generalized model from JIVE by incorporating covariates. In

this sense, we generate multi-block data Y following most of the SIFA setting above but only
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need to change B = 0 so that to remove the supervision information. This will also gurantee

that the simulated data will be compatible with the other methods. Similar to the setting

in SIFA, we set V4 = 0, and ΣF4 = σ2
f4

= 0 to rule out individual pattern in the fourth data

block. Without the auxiliary covariates, the variation pattern in Y will all come from the

random factor F. We will also adopt same scenarios of ΣF ’s as in SIFA above to compare

how the variance in this random factor will affect the results from each methods. Result (c)

in table 1 and 3 is from larger ΣF ’s setting and (c) in table 2 and 4 is from smaller ΣF ’s.

Under JIVE setting, the rank selections for each method are also the same as in SIFA

above. That is, we use rank r = 4 to apply SVD, SupSVD, and COBS. The intrinsic rank

in each block for initial setting in AJIVE is r = (2, 2, 2, 1). For SIFA, the rank for joint

variation pattern is r0 = 1 and the individual ranks are r1 = 1, r2 = 1, r3 = 1, r4 = 0.
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Appendix C Additional results from real data application

In this chapter, we provide more results from the application of COBS on breast cancer

data and the image feature analysis.

C.1 TCGA breast cancer data

In section 5.1 we discussed the results by fixing αv = 0, which means we only consider

group identification in estimating V. The group structures are shown in equation 5.1. Here

we compare the results with two other different settings as αv = 0.5 and αv = 1. The tuning

parameter λv is chosen by BIC. We still fix (αb, λb) = (1, 0.0025).

Figure 6 shows the top five layers of V̂ under two new different settings of αv. The group

identifications are the same as in equation 5.1 (with αv = 0), except the fifth component.

But they all present stronger association between gene expression and methylation, than the

association with CNV. With αv = 1, we no longer seek block-wise sparsity. This results

in capturing negligible amount of signals in, e.g., one small loading in GE for v2. Ignoring

such loadings of small magnitude, the estimated loading matrix is indeed quite close to that

under αv = 0 setting. Figure 7 and figure 8 are the scatterplots of the estimated scores

of the first two components with αv = 0.5 and αv = 1 correspondingly. They both clearly

show similar pattern as in figure 2 in the main manuscript but just up to sign changes in

the second component. Similar patterns in these results indeed prove that component 1 is

majorly driven by the covariates that affects the gene expression and methylation variables,

while the component 2 is mainly from unknown scores that affect copy number variation

variables.

Additionally, as discussed in previous sections, it has been seen that genes in gene ex-

pression and methylation have a stronger connection compared with the connection with

copy number variation. Thus, by constructing the correlation networks among the genes,

we can check if there is any biological relationship among the three data blocks. We select
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(a) Top five layers of V̂ under setting αv = 0.5. (b) Top five layers of V̂ under setting αv = 1.

Figure 6: Variable and group realizations in V̂ for the top five layers. Variable indices 1-

200 correspond to gene expression (GE), 201-400 to methylation (Me), and 401-600 to copy

number variation (CNV).
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Figure 7: The first two component scores of the breast cancer data under the setting αv = 0.5.
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Figure 8: The first two component scores of the breast cancer data under the setting αv = 1.
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10 genes in each data block that have the largest loadings from the first component (corre-

sponding to gene expression and methylation) and second component (corresponding to copy

number variation) to construct the correlation networks with the multi-block data Y under

each setting (i.e., αv = 0, αv = 0.5, and αv = 1) as in Figure 9. The correlation networks

clearly show that genes in gene expression and methylation are correlated with each other

more significantly compared with CNV. However, the genes in CNV are more correlated

with each other compared with the correlation in gene Expression or methylation. The three

correlation networks present same selected genes and correlation significance, which again

prove the connections among these genes in associated with the variation directions across

gene expression and methylation are stronger than the connections with CNV.

We also decompose the total variation in the multi-block data Y into variation into

different effect in COBS model under both setting αv = 0.5 and αv = 1 as shown in table 9

and 10 respectively. Similar conclusion can also be addressed here that Basal tumor explains

most of the variation in gene expression and methylation data block. But Her2 and LumB

explain more variation in CNV. With all three choices of αv, a large portion of the variance

is still hidden in the unknown sources which may be of interest in future. And the noise

takes larger portion under αv = 1 compared with the other two choices due to more sparse

estimates in V̂ under this setting. Overall we can see different choices of αv can produce

similar interpretation of the results for the breast cancer data analysis.
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(a) Genes are selected underset-
ting αv = 0.

(b) Genes are selected underset-
ting αv = 0.5.

(c) Genes are selected underset-
ting αv = 1.

Figure 9: Correlation networks among gene expression (genes selected from component 1),

methylation (genes selected from component 1), and CNV genes (genes selected from com-

ponent 2). Blue indicates positive correlation. Red indicates negative correlation. Thickness

indicates the magnitude of the correlation and color depth indicates the significance of the

correlation.
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Basal Her2 LumA LumB Normal Total

Gene

Expression

Supervision 62.34% 6.45% 17.90% 10.06% 3.25% 25.63%

Unknown - - - - - 21.44%

Noise - - - - - 52.93%

Methylation

Supervision 57.26% 3.58% 11.57% 18.28% 9.31% 12.86%

Unknown - - - - - 34.19%

Noise - - - - - 52.95%

CNV

Supervision 20.28% 27.95% 16.76% 28.77% 6.24% 7.72%

Unknown - - - - - 74.03%

Noise - - - - - 18.25%

Overall: Supervision: 15.41% Unknown: 43.22% Noise: 41.37%

Table 9: TCGA breast cancer data with αv = 0.5: The proportion of variance explained

proportion in terms of each component (i.e., supervision, unknown sources, and noise) in

COBS model for each individual block and the overall multi-block data (Sum to 1 in terms

of the “Total” for each block and “Overall” for the concatenated multi-block data sets). The

variation in supervision part is further separated into different tumor subtype for each block.

55



Basal Her2 LumA LumB Normal Total

Gene

Expression

Supervision 61.87% 6.35% 18.10% 10.21% 3.47% 26.71%

Unknown - - - - - 20.08%

Noise - - - - - 53.21%

Methylation

Supervision 58.12% 3.50% 11.37% 17.74% 9.27% 13.14%

Unknown - - - - - 33.08%

Noise - - - - - 53.78%

CNV

Supervision 17.49% 25.51% 17.86% 32.13% 7.01% 9.30%

Unknown - - - - - 70.30%

Noise - - - - - 20.40%

Overall: Supervision: 16.38% Unknown: 41.15% Noise: 42.47%

Table 10: TCGA breast cancer data with αv = 1: The proportion of variance explained

proportion in terms of each component (i.e., supervision, unknown sources, and noise) in

COBS model for each individual block and the overall multi-block data (Sum to 1 in terms

of the “Total” for each block and “Overall” for the concatenated multi-block data sets). The

variation in supervision part is further separated into different tumor subtype for each block.
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