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Abstract 

Computational Materials Design for Molecular Machinery: From Nanoporous Crystals to 

Nanoscale Racecars 

 

Kutay Berk Sezginel, PhD 

 

University of Pittsburgh, 2020 

 

 

 

 

Over billions of years of evolution, Nature mastered molecular nanotechology, manipulating 

atoms and molecules with high precision. Among them are machines that perform tasks such as 

protein synthesis (ribosomes), gene replication (DNA and RNA polymerases), transporting 

molecular cargo (kinesin and dynein), and locomotion (flagella). Today these machines serve as a 

source of inspiration for the design of artificial molecular machines (AMMs). We are now 

exploring molecular motors, actuators, and logic gates at the nanoscale just as we did at the 

macroscale in the 19th century with electric motors and combustion engines.  

Inspired by the pursuit of AMMs, this dissertation describes my research on developing 

computational methods to aid in the design of AMMs with targeted geometry and functionality. 

We first focused on the design of nanoporous crystals, developing a novel algorithm that can test 

whether two given crystalline structures can interpenetrate each other. Using this algorithm, we 

screened a database of ~6000 metal-organic frameworks (MOFs) and identified 18 hetero-

interpenetrating MOF candidates. We then found that interpenetration enhances thermal 

conductivity which is important for various applications such as adsorbent gas storage. 

Later, we developed tools to study nanoscale racecars, which are large organic molecules 

(~200-2000 Da) designed to diffuse quickly on atomically smooth surfaces. Here we developed 

both computational strategies to study their surface diffusion and tools to rapidly build hypothetical 

nanocars and assess their surface diffusion performance. We found that the surface diffusion gets 



 v 

slower with higher molecular weight and stronger molecule-surface interaction energy. We also 

suggested a geometric parameter, i.e. elevation weighted density, which we found to be useful for 

quickly ranking diffusion of different molecular designs. Our study suggests that by careful design 

of the molecular structure and selection of the appropriate surface, molecular diffusion can be 

tailored. 

In summary, we show that by developing tools and using appropriate methods we can design 

and study properties of both static and dynamic molecular machines. We hope that these studies, 

and the tools developed, will collectively help to push the frontier of knowledge (even if 

incrementally) towards the eventual building of useful AMMs. 
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1.0 A Brief History of Computational Materials Design for Molecular Machinery 

1.1 An Introduction to Molecular Machines 

 

Figure 1 Examples of artificial molecular machines.5 

 

How can we design the world’s smallest machines—machines that operate at an 

extraordinarily small scale with molecular moving parts?1 Just as experimental research on electric 

motors and combustion engines by nineteenth-century scientists led to revolutionary technologies, 

exploration of molecular motors,2 actuators,3 logic gates,4 and other molecular machines could 

lead to similarly transformative discoveries and innovations in the future. However, at present, the 

focus of computational chemistry software is on exploring various molecular phenomena, not on 

designing new molecular machines. Whereas computer-aided design (CAD) software has become 

mainstream in the design of new cars, airplanes, and other “macro” machines, CAD tools that can 

design molecular machines have yet to be developed. Developing comprehensive software for this 
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purpose might seem daunting, even impossible, but a promising starting point is to focus on the 

design of molecular components that can eventually be incorporated into molecular machines. 

The molecular machines of Nature have been a constant source of inspiration to the chemists 

which allowed them to synthesize molecular systems that can produce a type of mechanical motion 

from various external stimuli (see Figure 1).6 One of the important processes mastered by 

biological molecular machines is transporting molecular cargo: enzyme molecules are moved 

along protein filament tracks converting chemical energy into mechanical work.7 This requires 

directed motion of molecules along a track or a surface which remains extremely challenging 

because it either requires a stimuli that modulates the interaction of the molecule with the surface 

or a considerably anisotropic interaction of the molecule with the surface that result in a preferred 

directional motion along the surface.8 For this purpose, nanocars have been proposed as carrier 

molecules that can be used to transport small molecules or as building blocks to enable bottom-up 

construction of miniaturized machinery.9 Nanocars are single molecule vehicles that resemble 

macroscopic automobiles and they provide a starting point to explore more sophisticated molecular 

systems with directionally controlled motion (see Figure 2).8 

 

 

Figure 2 Examples of nanocars. (a) Light-driven motorized nanocar.10 Carborane-wheeled nanocars with (b) 

six and (c) four wheels.11 (d) Electrically driven nanocar with motorized wheels.8 (e) Fullerene wheeled 

nanocar (hypothetical).12  
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As with macroscopic machines, molecular machines are composed of both dynamic and static 

molecular structures that work together (e.g. kinesin motor proteins walking on microtubules). 

Consequently, development of new molecular machinery requires design of cooperating static and 

dynamic molecular structures. One class of solid-state material that has received considerable 

interest is metal-organic frameworks (MOFs) because of the high variety of structures that can be 

achieved by the design of metal clusters and organic linkers (see Figure 3).13–17 A wide variety of 

available building blocks enables the synthesis of many different MOFs with fascinating 

architectures and provides the opportunity for properties by design when the underlying  principles 

are well understood.18 As a result, MOFs are promising functional materials and they can be 

diverse and valuable parts for molecular machinery. 

 

 

Figure 3 Self-assembly of metal-organic frameworks. (a) Building blocks are self-assembled to form porous 

crystals. (b) A wide variety of metal nodes and organic linkers can be used as building blocks to construct 

MOFs with different geometries. 
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1.2 Artificial Molecular Machines 

Over billion years of evolution Nature mastered molecular nanotechnology, manipulating 

atoms and molecules with high precision. This allowed the evolution of complex molecular 

machines that can transfer chemical energy into mechanical energy and do continuous work to 

sustain vital cell functions.19 Among them are machines that perform tasks such as protein 

synthesis (ribosomes), gene replication (DNA and RNA polymerases), transporting molecular 

cargo (kinesin and dynein), and locomotion (flagella).19 For that reason, bridging the gap between 

macroscopic machines and synthetic molecular systems suggests great rewards.20 

Inspired by the molecular machines of Nature, scientists have been exploring molecular 

motors,2,21,22 switches,23,24 shuttles,25,26 nanocars,8–10 assemblers,27–29 logic gates,30,31 and 

tweezers.32,33 In order to produce mechanical motion, an energy input is required as a driving force. 

Many different external stimuli have been used including light,10,34–36 pH,37–39 redox,40,41 

solvents,42 and heat.25,43 However, in order to extract useful work at this scale, the thermal motion 

of the submolecular components needs to be restricted or somehow exploited. Moreover, for most 

applications mechanical motion of individual components needs to be scaled to the macroscopic 

level, requiring collective work. One crucial difference from macroscopic machines is that 

molecular machines require a bottom-up design approach, which is especially challenging. 

However, computational tools enable us to parametrically search for molecular components that 

work well together, allowing the design of AMMs for targeted applications. Utilizing 

computational tools would allow us to optimize the design of AMMs and provide guidance to 

experimental chemists. 
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1.2.1 Rotaxanes 

Mechanically interlocked molecules (such as catenanes, rotaxanes) are frequently used as 

artificial molecular machines exploiting the mechanical bonds in the structure.44 This mechanical 

bond restricts the freedom of motion to a well-defined pathway which introduces directionality to 

the motion. Rotaxane motion can be activated by different stimuli such as light, pH change or heat. 

As the energy barrier is lowered the interlocking structures switch between different configurations 

(isomers).  

 

 

Figure 4 Molecular machine structures. (a) Feringa second generation molecular motor with a (2′R)-methyl-

2,3-dihydronaphthiopyran propeller and a 2-methoxythioxanthene stator. Rotation around the double bond 

is achieved with photochemical and thermal isomerization (b) Daisy chain rotaxane model with building 

blocks deconstructed as stopper, extender, and ring. Different molecular structures are shown for each 

building block. By carefully designing the molecular structure of the building blocks properties of the 

rotaxane such as force needed to switch, stimulus, and speed can be tuned. 

 

A daisy chained rotaxane model is given in Figure 4b with building blocks deconstructed as 

stopper, extender, and ring. As seen in the figure, the extender part has two low energy states 
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shown with red and yellow. By providing energy to the system, rotaxane can be switched between 

these two states which can be used to apply force. Different molecular structures are shown in the 

figure for each building block. By carefully designing the molecular structure of the building 

blocks properties of the rotaxane such as force, stimulus, and switching speed can be tuned. 

Therefore, rotaxanes have been considered as potential building blocks for artificial muscles.45–47 

Previously, Jang and co-workers have performed a series of studies to investigate the surface 

coverage and collective motion of monolayers of bistable [2]rotaxanes on Au (111) surface48,49 

and at the air/water interface.50 In another study Kim et al. investigated the free energy barrier for 

the shuttling of the cyclophane cyclobis(paraquat-p-phenylene) (CBPQT4+) ring between 

tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP) stations of a bistable [2]rotaxane.51 

They predicted the time limiting step of the switch to be 2.1 s which was found to be compatible 

with experiments. 

1.2.2 Molecular Motors 

Molecular motors are molecules that are capable of rotary motion around a single52 or double 

bond.2,21,22 As seen in Figure 4a, the rotation around the double bond can be controlled by 

photochemical and thermal isomerization. It was shown that the rotational direction and speed of 

the molecular motor can be tuned by careful design of the structure.53 Inspired by this study, Bo 

Durbeej and co-workers have performed outstanding work to understand the rotation mechanism 

of molecular motors and they proposed new designs to accelerate the thermal steps of 

overcrowded-alkene motors using density functional theory and non-adiabatic molecular 

dynamics calculations.54–60 



 7 

1.2.3 Nanocars 

Nanocars are large organic molecules generally made up of a “chassis” with spacer functional 

groups (“wheels”) attached to it to keep it away from the surface and minimize surface adhesion 

(see Figure 2 for different nanocar structures). Most nanocars are static molecules and their motion 

is initiated by thermal activation or energizing the molecule with a scanning tunneling microscope 

(STM) tip. 9 The molecular design of the nanocar is what determines the nature of its motion.  

Initially nanocars were developed to better understand diffusion of fullerenes on metal surfaces. 

Interest in nanocar research grew to understand and control molecular motion on surfaces. Even 

dynamic nanocars with rotating wheels have been designed to achieve unidirectional motion. This 

design employed molecular motors as wheels and the rotation of the wheels was controlled by 

energizing the molecule with an STM tip, prompting isomerization of the double bonds in its 

molecular motor “wheels.” With each shot from the STM, the molecule was shown to move ~0.6 

nm.8 

Alexey V. Akimov and co-workers have performed several studies to understand the motion 

of nanocars on metal surfaces using rigid body molecular dynamics.12,61–63 They performed the 

first modeling study in collaboration with James M. Tour to provide theoretical insights to 

thermally initiated motion of nanocars.12 They employed a simplified nanocar design (see Figure 

2e) and divided the molecule into rigid fragments as four wheels and a chassis. They showed that, 

in agreement with the experimental results, the nanocar mobility was initiated at temperatures 

higher than 400 K and they observed rotational motion of the wheels at 500 K. Moreover, they 

suggested that the diffusion strongly depends on the structure and periodic properties of the 

surface. In a later study they investigated the effect of an electric field (e.g. created by the STM 

tip) on the diffusion of a nanocar using the same structure.63 In order to mimic the electric field, 
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they employed a custom charge transfer method (developed in a previous study62) and performed 

a series of rigid-body molecular dynamics simulations. They found that external electric fields can 

be used to drive nonpolar nanocars unidirectionally and rolling mechanism of the wheels is the 

dominant factor in the nanocar surface diffusion as opposed to simple hopping and sliding 

mechanism. Ganji et al. studied the motion of a carborane-wheeled nanocar on graphene/graphyne 

surfaces using density functional theory.64 They calculated the activation energy for the motion of 

the four wheeled nanocar as 17.06 and 4.38 kcal/mol for graphene and graphyne surfaces, 

respectively. Even though these studies provide very important insights to the motion of nanocars 

and the interactions between the nanocar and the surface, they do not present kinetic information 

about the diffusion process. Therefore, these methods cannot be used directly to estimate the 

timescale of diffusion. Moreover, these studies focused on elucidating the motion of nanocars 

instead of designing new nanocars with improved directionality and diffusion. 

1.2.4 Metal-Organic Frameworks 

As discussed in section 1.1, development of new molecular machinery requires design of 

cooperating static and dynamic molecular structures. Metal organic frameworks (MOFs) are 

promising candidates to be included in molecular machines or used as platforms to organize them 

thanks to their high geometric and chemical variety. They are formed by the self-assembly of metal 

clusters and organic linkers and by carefully designing these building MOFs with a wide variety 

of structures can be synthesized. Stephen J. Loeb and co-workers demonstrated that even 

molecular shuttles (based on [2]rotaxane) can be incorporated in MOFs and the interlocked 

macrocyclic wheel can undergo repetitive, translational motion along a rigid track built between 

two struts of the framework.65 This entanglement of molecular structures or frameworks is one of 
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the common methods of achieving high structural complexity in MOFs. In cases where the 

dimensionality of the structure increases, this phenomena is referred as polycatenation whereas if 

the dimensionality of the final architecture remains the same, it is called interpenetration.66 

Interpenetration is generally observed in MOFs with large pores as the entanglement of multiple 

frameworks becomes energetically more favorable and results in a more stable overall structure. 

Remarkably, several hetero-interpenetrating and polycatenated MOFs, which contain frameworks 

with different shape, topology, and chemical composition, have been synthesized already67–77; 

some even containing three distinct entangled frameworks.78,79 Figure 5a and 5b are two examples 

of hetero-interpenetration, Fig 5c is an example of polycatenation of 2D nets, and Figure 5d is a 

3D + 1D polycatenation (For more examples, the reader is referred to Refs.80–83). For homo-

interpenetration, up to 54-fold interpenetration has been reported as well.84 

 

 

Figure 5 Hetero-interpenetrating and polycatenated metal-organic frameworks with entangled frameworks 

colored individually. CCDC reference codes and associated publications are provided as follows (a) 

WEBZEK69 (b) COGCOS67 (c) EJAXOC78 (d) ATEYED.75 

 

The formation, or not, of interpenetrated networks can often be controlled either by rational 

geometric design of the structure or manipulation of experimental conditions. Deliberate 
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modification of organic ligands,85 using infinite secondary building units86,87 and choosing 

solvents with appropriate molecular size88 have been used as geometrical restraints to control 

interpenetration whereas manipulating reactant concentration and reaction temperature were used 

to control interpenetration by regulating reaction kinetics.89 Additionally, reversible 

interpenetration control was achieved by ligand removal and addition90 and anisotropic 

entanglement was realized by partial interpenetration.91 Using these experimental methods, 

advanced control of final architecture can be achieved by controlling degree of 

interpenetration92,93, reaching up to 54-fold interpenetration84, as well as modifying 

interpenetration distance to design minimally interpenetrating (interweaving) MOFs.94 Even 

though several methods have been developed to computationally design MOFs, designing 

interpenetrated MOFs, particularly hetero-interpenetrated ones, is challenging.95–97 

In this work we aim to develop computational methods that will aid the design of AMMs with 

targeted geometry and functionality. This includes molecular design and construction of AMMs 

as well as developing/identifying methods to study their performance. More specifically we aim 

to develop computational methods to design static and dynamic molecular architectures: MOFs 

and nanocars. Initially we aim to develop a computational method to design interpenetrated MOFs 

and study thermal transport properties of interpenetrated MOFs as well as flexible MOFs. Then, 

we aim to investigate different modelling strategies to estimate diffusion of nanocars on metal 

surfaces. Finally, we aim to develop computational tools to build hypothetical nanocars and assess 

their surface diffusion performances. These studies, and the tools developed, will collectively help 

to push the frontier of knowledge (even if incrementally) towards the eventual building of useful 

AMMs. 
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2.0 Discovery of Hypothetical Hetero-Interpenetrated MOFs with Arbitrarily Dissimilar 

Topologies and Unit Cell Shapes 

Interpenetration is the entanglement of multiple frameworks and it is commonly observed as 

homo-interpenetration which is the entanglement of identical metal organic frameworks (MOFs). 

Hetero-interpenetration, where two (or more) distinct frameworks entangle with one another, is 

much rarer, although several cases have been observed in recent years. Interpenetration of either 

kind (hetero or homo) greatly affects the pore characteristics (size, shape, environment, 

dimensionality) and consequently the functionality/performance of the material. Given their 

complex nature, designing interpenetrated MOFs, particularly hetero-interpenetrated ones, is 

challenging. By combining experimental techniques to control interpenetration and computational 

methods to identify candidate structures, we may soon be able to engineer materials with multiple 

interpenetrating frameworks with targeted functionalities.  

In this work, we describe an algorithm that can quickly test whether two given crystal structures 

have the potential to interpenetrate with one another. The algorithm is designed to work with any 

pair of crystal structures, regardless of the shape or size of their unit cells, and judges whether they 

can plausibly interpenetrate based on simple energetic calculations. Moreover, the algorithm tests 

different orientations and relative positions of the frameworks. Using this algorithm, we screened 

the CoRE database98, supplemented with an additional 1005 MOFs, for a total of 6014  

frameworks, which meant testing 4.3 million pairs. From those, the program outputted 1045 pairs 

that had a high likelihood of being hetero-interpenetrated structures, from which we validated 18 

candidates by manual inspection. The resulting structures, along with the source code for the 

algorithm, are provided in a GitHub repository.99  
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2.1 Methodology 

Algorithm Description. To test whether two given MOFs can interpenetrate with each other, 

we developed a method that rapidly tries different relative orientations of the two frameworks and 

reports the plausibly energetically favorable ones. It is important to remark that it is much easier 

to identify impossible orientations (where frameworks collide with each other), than to identify 

cases where interpenetration would truly be favorable. We do not account for entropy, solvent 

effects, framework flexing, etc. Our main aim was to apply this method to screening large 

databases to identify candidates for hetero-interpenetration, after which more sophisticated 

modeling, or experimentation, could be used. Since we expected most pairs of MOFs to have only 

(highly) unfavorable energetics for interpenetration, it would have been premature and inefficient 

to apply higher accuracy energetic calculations at this stage of the discovery process.  

The method tries many different orientations of two given MOFs by performing rotation and 

translation operations according to user configurable parameters. After an orientation is chosen, 

its energetic favorability is calculated based on the pairwise interactions between each atom on 

one framework with every atom on the other framework. For efficiency, we employ an energy map 

approach (see details below) that allows us to avoid repeatedly calculating interatomic distances. 

Overall, our algorithm can rapidly detect cases where interpenetration is impossible and suggest 

ones where it may be plausible. More detailed description and a flowchart of the algorithm are 

provided in Appendix A1. 
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Figure 6 Interpenetration discovery algorithm description and candidate interpenetrated MOF total void 

fraction distribution. a) Energy map generation for MOF-5. Grid points are colored from light to dark red 

according to calculated energy values. b) Single unit-cell interpenetration test procedure for two given MOFs. 

First, the unit cells are aligned. Second, one of the unit cells is rotated and then translated to a selected 

position (represented by a yellow point). For this selected orientation, energy values for each atom in the red 

unit cell are added to obtain the energy density. c) Simplified schematic for combining two unit cells into a 

supercell. The 2D supercell can be obtained by repeating the red unit cell 2 times in y and 4 times in x 

dimensions and repeating blue unit cell 3 times in both dimensions. d) Total void fraction (Vftotal) 

distribution for MOF combinations: selecting combinations with Vf
total > 1 (corresponding to ~4.28 million 

MOF combinations) and Vf
total distribution among selected combinations (ordered with increasing void 

fraction from dark to light blue). More information can be found in Appendix A1. 

 

Energy Map Generation. An energy map is a regular grid of points representing the potential 

energy inside the crystal unit cell from the perspective of an atom being inserted into that space 

(see Figure 6c). In our method, the potential energy for each point in the grid is calculated using a 

Lennard-Jones (LJ) potential (Eq. 2-1)100 with parameters taken from the Universal Force Field 

(UFF).101 Lorentz-Berthelot mixing rules were used for atoms of different types and a cut-off 

radius for interactions was set to 12 Å. 
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When an energy value is needed at a position that does not fall exactly on a grid point in the 

energy map, which is the usual case, interpolation is used. We used the trilinear interpolation 

technique, which has been commonly used by others.102,103  

Single Unit-cell Interpenetration Test. After generating the energy maps, the next step of the 

algorithm is to select an initial relative orientation for the unit cells of two given MOFs. We call 

one passive and the other active (shown as blue and red in Figure 6a, respectively). The active unit 

cell is first aligned with the passive unit cell along their respective 𝑎⃗ vectors (using the 

conventional 𝑎⃗, 𝑏⃗⃗, 𝑐, crystallographic vector notation). The active unit cell is then rotated around 

the global x, y, and z axes by increments defined by the user. Then the active unit cell is translated 

in x, y, and z directions, also by increments defined by the user, within the passive unit cell. For 

each tested orientation, an energy density, 𝜌𝑒𝑛𝑒𝑟𝑔𝑦, is calculated according to Eq. 2-2, 

 

 𝜌𝑒𝑛𝑒𝑟𝑔𝑦 =
∑ ∑ 𝑉𝐿𝐽(𝑖, 𝑗)

𝑁𝑎
𝑗=0

𝑁𝑝
𝑖=0

𝑉𝑐𝑒𝑙𝑙
 2-2 

 

where 𝑁𝑝 and 𝑁𝑎 are the number of atoms in the passive and active MOFs, i and j are atom indices 

for the passive and active MOFs, 𝑉𝐿𝐽 is the interatomic LJ potential energy, and 𝑉𝑐𝑒𝑙𝑙 is the unit 

cell volume in Å3. The energy density is calculated by adding energy values for the insertion of 

each atom in the active unit cell to the passive unit cell. The energy values are directly obtained 

from the previously calculated energy map for the passive unit cell. As energy values for each 
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atom in the active unit cell are added and divided by unit cell volume to calculate energy density, 

the energy density is checked to see whether it exceeds a threshold value. If the threshold is 

exceeded, the currently tested orientation is rejected. If the energy density stays below the 

threshold until all the atoms are added, the orientation is saved for further consideration. More 

information about the selection of the threshold value is provided in Appendix A1. 

Multiple Unit-cell Collision Test. For each saved orientation, the energy density is then 

recalculated by extending both unit cells up to the boundaries of a sphere with radius of 50 Å. This 

is performed to make sure that differences in repeating patterns of the unit cells do not cause 

overlap when they are extended multiple times. However, this is a computationally expensive 

calculation; therefore, it is only performed for the candidates that pass the single unit-cell test. It 

is possible, in principle, for collisions to occur outside of the sphere radius considered; however, 

this test narrows down the remaining candidates significantly (see Figure 8a). 

Determining Supercell Dimensions and Exporting Hypothetical Interpenetrated Crystal 

Structures. When the interpenetrating structures have different unit cell shapes, a combined unit 

cell, which we refer to as a supercell, needs to be determined (see Figure 6b). This combined unit 

cell allows both structures to repeat according to their symmetry. In order to find the supercell 

parameters, first the 𝑎⃗ + 𝑏⃗⃗ + 𝑐 vectors of the active unit cell are converted to fractional coordinates 

with respect to the crystallographic vectors of the passive unit cell. Then, for each dimension, a 

least common multiple (LCM) is calculated to determine packing coefficients for the passive unit 

cell. The tool allows for minor linear distortions to be applied to one of the unit cells to reduce the 

size of the supercell, which we typically allowed to go up to 1% (but can be configured by the user 

to be higher or lower). Multiplying the packing coefficients with the fractional coordinates of 

active unit cell gives the number of repeat units for the active unit cell. Converting either of these 
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new parameters to the Cartesian coordinate system would yield the unit cell parameters of the 

supercell. A simplified equation for the procedure is provided below, 

 

[𝑎⃗ + 𝑏⃗⃗ + 𝑐]
𝑐
= [𝐿𝐶𝑀(𝑎2,𝑓⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) + 𝐿𝐶𝑀(𝑏2,𝑓⃗⃗⃗⃗⃗⃗⃗⃗ ) + 𝐿𝐶𝑀(𝑐2,𝑓⃗⃗ ⃗⃗ ⃗⃗ ⃗)]𝑐                           2-3 

 

where subscripts c and f represent Cartesian and fractional coordinates, respectively, and subscript 

2 indicates parameters for the active unit cell. More information about supercell calculation 

including an example case can be found in Appendix A2. 

High-throughput Screening. For high-throughput screening, the CoRE MOF database 

created by Chung and co-workers98 has been used. This database was created by analyzing the 

CCDC database104 to select MOFs and making them suitable for molecular simulations. This 

included removing solvent molecules and resolving issues with partially occupied atoms when 

necessary. In addition to the structures in that database, 1005 additional MOFs were provided to 

us by Dr. Yongchul G. Chung. The additional MOF structure files were obtained using the same 

methodology as used for the original CoRE MOF database. The database only consists of 3D 

MOFs therefore only 3D + 3D interpenetrated structures are considered in this study. However, 

our algorithm can test interpenetration/catenation of structures with any given dimensionality. 

Selecting MOF Combinations. To eliminate MOF combinations that are physically incapable 

of interpenetration based purely on the fraction of space each framework occupies, only MOF pairs 

whose individual void fractions sum to greater than one were considered (when the sum is less 

than one, we know with certainty that there is not enough empty space for one MOF to 

accommodate the other). See Figure 6d. 
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Other Screening Parameters. For the screening of the MOF database, we selected a set of 

algorithm parameters that we estimated would yield a high enough number of successful trials in 

a reasonable amount of time. Twenty-four different rotational orientations were considered per 

pair of MOFs for each position in the energy grid. The orientations were determined as all the 

possible 90-degree rotations around x, y, and z axes. To limit the memory requirements for the 

energy maps, we used UFF parameters for C, H, O, and N atoms and the most common 7 metal 

atoms in the database, whereas for the rest of the atoms, dummy parameters were used. In theory, 

by using our tool, it is possible to discover interpenetrated structures from the CoRE MOF database 

that were not found in this reported screening run. The screening study here was performed to 

make an initial estimate for possible interpenetrations rather than rigorously exploring every 

possible orientation for every pair of MOFs considered. More information about MOF 

combination selection and analysis of candidate structures are given in Appendix A3. 

2.2 Results and Discussion 

Experimental Comparison. First, we validated the algorithm by “predicting” experimentally 

synthesized interpenetrated structures. For that purpose, we considered one homo-interpenetration 

case and one hetero-interpenetration case. MOF-5 was selected as a test case for validating the 

algorithm in predicting simple homo-interpenetration. To test the algorithm, we used a non-

interpenetrated MOF-5 structure as input and compared the output structure with the 

experimentally synthesized interpenetrated MOF-5.  
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Figure 7 Experimental comparison of predicted MOFs. a) Comparison of XRD patterns of predicted 

interpenetrated MOF-5 and experimentally synthesized MOF-5; (b) schematic for interpenetration of MOF-

5; (c) Comparison of XRD patterns of predicted interpenetrated WEBZEK and experimentally synthesized 

WEBZEK; (d) schematic for interpenetration of WEBZEK. 

 

As seen in Figure 7a, the x-ray diffraction patterns for the predicted and experimental structure 

fit nearly perfectly. Moreover, the surface area for the predicted structure was calculated as 769.5 

m2/g, which is in the range of experimentally reported values between 600 – 1300 m2/g.105 We 

also tested the algorithm for a 3D/3D hetero-interpenetrated tetragonal Cd-MOF69 and observed a 

good match between predicted and experimental x-ray patterns as presented in Figure 7c. 

Comparisons with other MOFs are provided in Appendix A4. 

High-throughput Screening. Initially, energy maps were generated for all the 6014 MOFs, 

and then single-unit cell interpenetration tests were performed for the selected 4.3 million MOF 

pairs. Among these, 262,664 of the pairs resulted in favorable interpenetrations. These pairs were 

then subjected to multiple unit-cell collision tests which narrowed down the combinations to 1045 

(see Figure 8a). The resulting 1045 MOFs were examined in detail, and it was found out that all 

of the pairs were formed from a set of 113 MOFs. In this set, 46 of the structures turned out to be 



 19 

MOF-5 degenerate structures that had different CCDC codes. By excluding pairs of degenerate 

MOFs (which consisted mainly of MOF-5), only 33 MOF pairs remained as actual hetero-

interpenetrated candidates. Among these pairs, 18 of them were confirmed as unique hetero-

interpenetrated structures by visual inspection (see Figure 8b). All structures can be accessed from 

Ref106. 

 

 

Figure 8 Number of MOF combinations selected at different steps in the analysis: (a) percentage of MOF 

combinations selected with respect to previous data set; (b) percentage distribution of homo and hetero 

interpenetration in MOF combinations that passed the extended unit cell test (here degenerate structures 

with different names are not considered as homo-interpenetration); (c) Overall structure discovery 

distribution of MOF combinations given in both axes with increasing void fraction (Vftotal). Crystallographic 

information files (cif) for all structures can be accessed from IPMOF GitHub repository.99 

 

In order to get an overall picture of pairs that yielded one or more interpenetration 

configurations (262,664 pairs total), a histogram was created (Figure 8c). In both x and y axes, 

MOFs have been sorted by increasing void fraction and bins were colored according to number of 

pairs with one or more configurations. The white area corresponds to the region of pairs that were 

eliminated due to lack of empty space in the frameworks. The circular boundary between the white 
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and colored regions represents where Vf,1 + Vf,2 = 1.  As expected, the increase in void fraction of 

both MOFs tends to increase the possibility of interpenetration. 

 

Table 1 Structural and crystallographic information for six hetero-interpenetrating MOF candidates. 

  MOF Pair Formula LCMa Distortionb SupercellParametersc  Vf
d 

1 
AXUBAW (IRMOF-18)  C72H72O26Zn8 [1, 1, 1] 

1.11 % [18.112, 18.112, 18.112] [60, 60, 60] 0.29 
NODTIL (MOF-5)  C48H24O26Zn8 [1, 1, 1] 

2 
IZEPAF C288H144O156Cr36 [43, 43, 43] 

2.89 % [1226.36, 1226.36, 1226.36] [90, 90, 90] 0.68 
WUHDAG ( NU-1104)  C240H130N12O32Zr6 [42, 42, 42] 

3 
UQOFOX (PCN-528)  C96H56N40Mn6 [23, 1, 1] 

1.58 % [47.815, 20.550, 20.550] [90, 90, 90] 0.63 
VEHJUP C108H36O72Zn22 [22, 1, 1] 

4 
LEHXUT 

C408H216N24O120Cu

24 
[1, 1, 1] 

0.13 % [37.163, 37.163, 37.163] [60, 60, 60] 0.49 

XAMDUM02 (CuBTC)  C72H24O48Cu12 [2, 2, 2] 

5 
LURRIA (NOTT-116)  C432H192O96Cu24 [1, 1, 1] 

0.11 % [36.536, 36.536, 36.536] [60, 60, 60] 0.61 
MIBQAR06 (MOF-5)  C48H24O26Zn8 [2, 2, 2] 

6 
HABRAF (PCN-68)  C432H192O96Cu24 [1, 1, 1] 

0.87 % [37.291, 37.291, 37.291] [60, 60, 60] 0.56 
HANHAH (ZnBTC)  C72H24O48Zn12 [2, 2, 2] 

a Least common multiplier values for the extension of unit cell to generate supercell. 1 % tolerance was used to 

calculate these values. 

b Cell distortion is calculated by summing how much interatomic distances are scaled in each a, b, c direction of the 

unit cell. 

c The unit cell parameters for the calculated supercell given as [a, b, c] in Å and [alpha, beta, gamma] in degrees. 

d Void fraction (Vf) are calculated using RASPA. For MOF pairs 2 and 3 smaller supercells are generated by 

increasing the tolerance. Supercells that combine single unit cell of each MOF was generated with 4.15 % and 4.08 

% cell distortion for pairs 2 and 3 respectively. 

 

Of the 18 hetero-interpenetrated structures we confirmed by visual inspection, six examples 

are shown in Figure 9, along with additional crystal structure information in Table 2.1. In 

determining the supercell parameters, a maximum tolerance of 1% in each a, b, and c direction of 

the cell was used. For that reason, the total cell distortion is always less than 3%. For four of the 

MOF pairs, the supercell size was relatively small. However, for two MOF pairs, the supercells 

were much larger. These huge supercells are not well suited for molecular simulations, but we 

discovered that by allowing a mere 4% distortion, these two supercells could be reduced to the size 

of a single unit cell of one of the MOFs from the pair. 
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Figure 9 Some of the candidate hetero-interpenetrated structures discovered in this study: (a) 1 AXUBAW107 

[blue] + NODTIL108 [red], (b) 2 IZEPAF109 [blue] + WUHDAG110 [red], (c) 3 UQOFOX111 [blue] + 

VEHJUP112 [red], (d) 4 LEHXUT113 [blue] + XAMDUM02114 [red], (e) 5 LURRIA115 [blue] + MIBQAR06116 

[red], (f) 6 HABRAF117 [blue] + HANHAH118 [red]. 

 

Since MOFs can undergo structural changes, due to their flexible nature119, it is not out of the 

question that the frameworks and unit cell sizes may adjust slightly to accommodate hetero-

interpenetration. Given a successful synthesis, this suggests that interpenetration of similar 

frameworks with functionalized linkers can be possible. Combining multiple linkers into an 

interpenetrated structure can be a way of attaining multifunctional materials. 

2.3 Conclusion 

Here we presented a novel algorithm that can quickly test whether two given crystal structures 

have the potential to interpenetrate with one another and shared its source code. We used this 

algorithm to discover candidate homo- and hetero-interpenetrated MOFs, however our algorithm 

is designed to work with any pair of crystal structures, regardless of the shape or size of their unit 

cells. We believe interpenetrated MOFs may have promise in various applications that make use 

of their complex internal geometry. Moreover, in the case of hetero-interpenetration, the use of 

two distinct frameworks might yield materials with intriguing dual-functionality properties. For 
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example, there may be applications where different metal sites, from different individual 

frameworks, could catalyze different reaction steps. We hope this study will facilitate the discovery 

of hetero-interpenetrated MOF structures and motivate finding novel applications for their use. 
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3.0 Rational Design of Metal-Organic Frameworks for Improved Thermal Transport 

In practice, the usefulness of metal-organic frameworks (MOFs) for many gas storage 

applications depends on their ability to rapidly dissipate the heat generated during the exothermic 

adsorption process. Since the adsorption capacities of MOFs are reduced at higher temperatures, 

the exothermic process of gas adsorption can limit the rate at which tank-filling, separations, or 

other processes can be performed.120 Thus, studying design principles for thermal transport in 

MOFs is critical for allowing these materials to reach their full potential for gas storage and 

separations applications.121 In this section, we investigate the effects of interpenetration and 

framework flexibility on thermal transport.  

 

3.1 Thermal Transport in Interpenetrated Metal-Organic Frameworks 

MOFs can be precisely designed to have a wide variety of architectures which can allow tuning 

their thermal conductivity. MOFs with particularly high void fractions are often capable of having 

interpenetrated or interwoven structures as discussed in Section 1.82,106 Interpenetrating 

frameworks provide parallel pathways for thermal transport. The effect of thermal coupling 

between frameworks, however, has so far been uncertain. In the present work, we use molecular 

dynamics (MD) simulations to investigate thermal transport in a variety of doubly interpenetrated 

MOFs. To isolate the effects of interpenetration from other structural parameters, a simple cubic 

idealized framework was considered. Effects of pore structure on thermal conductivity have been 

reported elsewhere.122 We find interpenetration yields a system thermal conductivity 

approximately equal to the sum of the two independent frameworks, which can be used as a “rule 

of thumb” for design purposes. We show that both the strength and range of interactions between 
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constituent frameworks play a significant role in framework mobility as well as framework 

coupling which can result in deviation from this relationship. To account for deviations from this 

general rule, we present equations that can be used as guidelines for predicting thermal 

conductivity in doubly interpenetrated MOF structures. 

3.1.1 Methodology 

 

Figure 10 (a) Idealized porous crystal (8 × 8 × 8 cubic unit cells). (b) Bonding arrangement for a single unit 

cell using Morse potentials (red bonds are modeled more strongly than blue bonds). (c) Doubly 

interpenetrated unit cell with framework depicted as red and blue (initial frameworks in each simulation are 

5 Å apart in each dimension. (d) Different interpenetration configurations based on cubic IRMOF series125: 

metal center distribution with BPDC linker (IRMOF-9) and PDC linker (IRMOF-13) representing less and 

more bulky linkers, respectively. Color scheme is as follows: Zn (blue spheres), O (red spheres), C (gray 

spheres). 

 

We used an idealized cubic MOF structure inspired by MOF-5 to better understand parameters 

that affect thermal transport, as we had done in prior studies122,123 (see Figure 10a). The idealized 

interpenetrated MOF allows us to study the effect of framework interactions parametrically which 

would not be possible in a real interpenetrated MOF.  We use two-body bonded interactions 

between atoms within each of interpenetrated structures, modeled using the Morse potential (see 
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Figure 10b).124 The force field parameters were chosen so that the thermal conductivity of the 

simple cubic structure with a pore size of 1 nm was of the same order as a typical MOF (~1 W/mK). 

The interpenetrated structure is generated by creating a copy of the idealized structure and 

translating it 5 Å in each dimension which corresponds to the maximal distance between 

frameworks (see Figure 10c). All thermal conductivity predictions were done using the Green-

Kubo approach and equilibrium molecular dynamics (MD) simulations (LAMMPS126). More 

simulation details including force field parameters are provided in Appendix B1. 

The non-bonded interactions between interpenetrating frameworks were modeled by a 

Lennard-Jones potential where 𝜀 is the depth of the potential well and 𝜎 is the distance at which 

the interatomic potential is zero (see Eq. 2-1). A range of 𝜀 values between 0.01 – 1 kcal/mol and 

𝜎 values between 1 – 6 Å were chosen to systematically understand the effects of framework 

interactions on thermal transport. Then, an 𝜀 value of 0.105 kcal/mol (corresponding to a carbon 

atom in UFF101) and 𝜎 values of 3.5 Å and 4.5 Å were selected to represent different 

interpenetration configurations for further analysis. The 𝜎 influences framework mobility where a 

value of 3.5 Å allows interpenetrating frameworks to “freely” translate relative to each by 2 Å in 

each direction, while a 𝜎 value of 4.5 Å models interpenetrated frameworks that are “locked in” 

and whose distance from each other remains constant. These configurations can be imagined as, 

for example, isoreticular MOFs with more or less bulky ligands (see IRMOF-13 vs. IRMOF-9 in 

Figure 10d) that correspond to frameworks that are “locked in” or “free”, respectively. 

3.1.2 Results and Discussion 

Framework interaction dependency of constituent position and thermal conductivity. The 

effect of inter-framework interactions on thermal conductivity and framework mobility was 
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investigated by calculating thermal conductivity and MSD for a wide range of ε and σ values (see 

Figure 11). On average, the thermal conductivity for the interpenetrated framework was found to 

be around 1.6 W/mK which is approximately double that of the single framework (0.82 W/mK). 

Consequently, this led us to explore the idea that the thermal conductivity of the interpenetrating 

frameworks can be predicted by a simple linear combination rule: 

 

𝑘𝐼𝑃 = 𝑘1 + 𝑘2                                                              3-1 

 

where kIP, k1, and k2 are the thermal conductivities of the interpenetrating framework, single 

framework 1 and single framework 2, respectively. In order to understand the conditions under 

which this relationship holds, percentage error for predicting thermal conductivity using Eq. 3-1 

was calculated (Figure 11b). As seen in Figure 11a and 11b the thermal conductivity is relatively 

constant in the region 0.01 < ε < 0.2 kcal/mol and 1 < σ < 4.5 Å. However, increasing ε above 0.1 

kcal/mol decreases thermal conductivity for σ values lower than 4.5 Å as apparent from the dark 

blue region in Figure 11a. This low thermal conductivity region described by 1.5 ≤ σ ≤ 4.5 Å and 

0.1 ≤ ε ≤ 1.0 corresponds to increased coupling of the frameworks, which likely leads to higher 

phonon scattering rates introduced by the interactions between two frameworks. We then modified 

Eq. 3-1 by adding a coupling constant (γ) that depends on the interframework interactions as 

follows: 

 

𝑘𝐼𝑃 = (𝑘1 + 𝑘2)(1 − 𝛾)                                                    3-2 
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Figure 11 Effect of framework interaction on thermal conductivity and framework mobility in terms of 

forcefield parameters. For each plot, each bin represents a simulation with corresponding ε and σ values. The 

black bins on the upper right-hand side are for simulations where high repulsive forces caused frameworks to 

collapse. (a) Thermal conductivity (W/m K). (b) Thermal conductivity prediction error (%) for 

interpenetrated framework using the relationship in Eq. 3-1. (c) Coupling constant (γ). (d) Thermal 

conductivity prediction error (%) for interpenetrated framework using the relationship in Eq. 3-2. (e) Mean 

squared displacement, MSD (Å2). Derivation of Eq. 3-2 and the full equation of the coupling constant is 

provided in Appendix B1.  

 

We defined individual coupling constants for σ and ε as 𝛾 = 𝛾𝜀𝛾𝜎 and derived equations to 

represent the coupling seen for the region 1.5 ≤ σ ≤ 4.5 Å and 0.1 ≤ ε ≤ 1.0. As seen in Figure 11c 

the coupling constant was modeled to increase linearly with ε and change quadratically with σ 

between 0 – 0.25. Including the coupling constant in Eq. 3-2 decreases the average error for the 

whole interaction range from 13.9 % to 7.8 % (Fig 11d). We limited the region of the coupling 

constant because we believe the deviations seen from Eq. 3-1 outside this region are not related to 

framework coupling. It can be seen in Figure 11a that increasing σ above 4.5 Å increases the 
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system thermal conductivity especially at higher ε values. This increase is a result of stronger 

interactions between frameworks providing better thermal transport pathways. As for σ < 1.5 Å 

we observe very high framework mobility (Figure 11e) which is attained to unphysically low 

repulsive forces causing frameworks to slide through each other. 

 

 

Figure 12 Effect of interpenetration interaction on framework distances during simulation. Framework 

interactions are modeled using Lennard-Jones potential. (a) σ: 3.5 Å and (b) σ: 4.5 Å with varying ε values in 

kcal/mol shown in figure. Grid size: 6 Å and bin size: 1 Å (c) ε: 0.105 kcal/mol and varying σ values shown in 

figure. Grid size: 12 Å and bin size: 2 Å (d) Framework distances are measured according to middle red atom 

with reference to corner atoms of the surrounding blue framework. 5 Å × 5 Å × 5 Å cube shown as dashed 

box in 2 dimensions. The yellow-red bins represent the position of the other framework. (e) Time spent in 

given location are given in percentage. Color scale is limited to 50 % of simulation time for clarity. All results 

are for x and y directions from a single run. More information about the framework mobility calculations are 

provided in Appendix B1. 

 

Framework mobility is also significantly affected by the force field parameters as evident from 

the MSD shown in Figure 11e. In addition to MSD, the framework mobility was investigated by 
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calculating the relative distance between reference atoms selected from interpenetrating 

frameworks (see Figure 12). The relative distance of one corner atom of the second framework 

(Figure 12d shown in red) to the 8 corner atoms of the surrounding first framework (Figure 12d 

shown in blue) were calculated from MD trajectories. The resulting 2D histograms given in Figure 

12 show where the framework spends time during the simulation. The effect of ε is shown in Figure 

12a for σ 3.5 Å and Figure 12b for σ 4.5 Å and the effect of σ is shown in Figure 12c. 

Generally, σ is inversely related to the total area the frameworks can translate relative to each 

other whereas ε is directly related with the amount of time frameworks spend in a given 

configuration. Consequently, MSD is generally higher at lower ε and σ values. Above σ value of 

4 Å, the frameworks are tightly locked therefore any change in force field parameters do not reflect 

directly on the MSD. Below 4 Å, however, MSD increases with decreasing σ as seen in Figure 

11e. For lower σ values, there are multiple potential wells in between the frameworks. As a result, 

frameworks reside in different potential wells during each run and can jump between wells during 

simulation (see Figure 12a). With increasing ε, the energy barrier to jump between potential wells 

increases and frameworks become more closely coupled. Depending on the initial velocities, 

frameworks are trapped (for the duration of the simulation) in a position relative to each other 

(Figure 12c). For low ε values, however, frameworks easily move relative to each other (Figure 

12a). Given an infinite simulation time, the average distance between frameworks should 

correspond to optimal distance since, by symmetry, each corner would be visited equally many 

times resulting in complete sampling of the configuration space. 

For low σ values, the frameworks have increased mobility as the amount of space they can 

translate with respect to each other with the same energy penalty is increased. This is also 

complemented by the MSD (Figure 11e) where the displacement generally increases towards 
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lower σ values. For σ ≥ 2 Å increasing ε slightly decreases MSD since fewer potential wells are 

visited during a simulation. The high MSD for σ < 2 Å is due to frameworks sliding through each 

other since interatomic distances within a framework are 3.3 Å. In this region increasing ε 

decreases the MSD as the interaction strength is increased. However, these extraordinary 

framework interactions are not expected to be observed in real MOFs. 

 

 

Figure 13 Effect of atomic mass on thermal conductivity (a) Single MOF (b) Free interpenetration (σ: 3. 5 Å) 

Dashed lines are equations shown in the figure. (c) Parity plot for predicted (Eq. 3-1) and simulated thermal 

conductivities for “free” and “locked” interpenetrated MOFs for different masses. For interpenetrated 

structures, atomic mass of the second framework (M2) is modified whereas first framework atoms are always 

chosen as Ar (M1~40 Da). Error bars represent one standard deviation of uncertainty. 

 

Mass dependency of thermal conductivity. Initially thermal conductivities for a single 

framework were investigated for different atomic masses between 4 to 200 Da (i.e., changing the 

mass of every atom in the framework, see Figure 13). As seen in Figure 13a, thermal conductivity 

as a function of atomic mass shows a 1/√𝑀 relation. As previously shown by others,127 this is 

because frequency and group velocity of acoustic phonons in the lattice scales as 1/√𝑀 whereas 

the mean free path and specific heat do not change considerably with mass. We then investigated 

interpenetrated frameworks, where the atomic mass of one of the frameworks was changed and 
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the other kept constant. We found the same relationship to hold for both “free” and “locked” 

interpenetration (Figure 13b). 

Moreover, thermal conductivity values for the interpenetrated framework is approximately the 

sum of thermal conductivity of individual frameworks. For instance, thermal conductivity for 

individual frameworks made of atoms that have masses of either, 39.95 Da (Ar), or 83.80 Da (Kr), 

have thermal conductivities of 0.83 W/mK and 0.57 W/mK, respectively. Summing their 

individual thermal conductivities gives 1.40 W/m K, which is between 1.49 and 1.34 W/m K given 

by the interpenetrated frameworks having σ values of 4.5 Å and 3.5 Å respectively. As shown in 

Figure 13c, the predicted thermal conductivities (using Eq. 3-1) for different masses match closely 

with simulated thermal conductivity values. This suggests that a linear combination of single-

framework thermal conductivities is a good model for the conductivities of interpenetrated 

frameworks, even when their corresponding masses are different.  

3.1.3 Conclusion 

The work presented here shows that, based on MD simulations, doubly interpenetrated MOFs 

will have thermal conductivity approximately the sum of the constituent frameworks. For rare 

cases where frameworks are not maximally interpenetrating and interframework attraction is high, 

the effect of coupling might result in lower thermal conductivity than the sum of individual 

frameworks. This suggests that the nature of interpenetration is quite important for thermal 

conductivity. We show that the decrease in thermal conductivity can be approximated by 

calculating a coupling factor using force field parameters (σ and ε) that define interframework 

interactions. For interactions described by 0.01 < ε < 0.1 kcal/mol and 1 < σ < 4.5 Å the effect of 

coupling was found to be minimal. 
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We believe these results provide important insights into the gas adsorption application of 

interpenetrated MOFs especially for small gasses such as H2. The inclusion of additional 

frameworks could increase storage capacity of the gas by increasing adsorption sites and provide 

additional thermal transport pathways which allows the generated heat to dissipate more quickly. 
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3.2 Thermal Transport in Flexible Metal-Organic Frameworks 

There is considerable recent interest in the use of so-called “breathing” porous crystals for a 

wide range of gas adsorption and separations applications, such as for improved natural gas fuel 

tanks in cars.128–134 These crystals, as mostly exemplified by metal−organic frameworks (MOFs), 

have pores that are flexible and can undergo reversible phase transformations in response to 

external stimuli such as host−guest interactions, temperature, and pressure.135–137 Particularly, the 

pores can expand considerably when loaded with gas molecules. Unlike rigid porous crystals, 

flexible porous crystals show step-shaped gas uptake behavior that make them inherently more 

practical for pressure/temperature-swing adsorption/separations, working with smaller 

pressure/temperature differences and much higher working capacities.129 Without considering 

transient thermal effects, the mechanisms of phase transitions in breathing crystals have been 

extensively investigated.138–141,128,142,143 However, an often overlooked challenge in using porous 

materials for gas storage is that the process of gas adsorption (or desorption) generates (or 

consumes) significant amounts of heat. For rapid loading, this leads to sharp temperature spikes,144 

which inhibits further adsorption of gas and largely mitigates the benefits of using a porous 

adsorbent in the first place. Similarly, for rapid unloading, the sharp temperature drop exacerbates 

the stranded gas problem as the gas molecules are more likely to condense onto the pore walls. 

Efficient thermal transport can reduce this effect by facilitating heat dissipation. In this regard, 

previous studies have investigated thermal transport in rigid MOFs using atomistic modeling145–

151 and experiments.152–155 Whereas the thermal effects of adsorption in rigid porous crystals are 

now somewhat understood, the more complicated thermal behavior of flexible porous crystals, 

which show even greater promise for many applications, has not been studied at all.   
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In this work, we study thermal conductivity of idealized breathing porous crystals. We perform 

molecular dynamics (MD) simulations on a series of idealized model structures representing 

porous crystals at different stages of pore expansion and apply the Green-Kubo method to predict 

their thermal conductivities with and without adsorbed gas. We find that upon pore expansion, 

with increasing pore volume, while thermal conductivity parallel to the direction of change 

increases, while thermal conductivity in the other directions remains unchanged. We observe that, 

similar to our previous studies,148,149 the presence of adsorbed gases reduce thermal conductivity. 

However, the reduction is less pronounced when the pores are in the fully contracted state. 

3.2.1 Methodology 

We use idealized structures with pores tilted at various angles, as shown in Figure 14. We start 

with a 40-degree tilt angle to represent the closed form going up to a cubic pore with 90-degree 

tilt angle to represent the open form with 10-degree increments. This breathing model was adapted 

from our idealized cubic structure described in prior work. The simple cubic lattice structure is 

built using 7 atoms per unit cell. As depicted in Figure 14a, we define two-body bonded and three-

body angular interactions between atoms, which are modeled using harmonic potentials. To 

determine meaningful spring constants for the potentials we screened spring constants between 1 

- 10 kcal/mol for the 90° structure. We picked the parameters that resulted in a thermal conductivity 

of  ~1 W/m K and a simulation box volume that is within 5% of the ideal volume (see Appendix 

B2 for the force field parameters used). For all angle bending potentials, we used an equilibrium 

angle of 180° except for the angles containing corner atoms, for which we use different equilibrium 

angles (90°, 80°, 70°, 60°, 50° and 40°). 
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Figure 14 Cross-sectional view of the idealized simple cubic structure and the harmonic bonds and angles 

used in the potential.  (b) Complete simulation box of the idealized simple cubic structure with pores filled 

with adsorbates at 5 molecules / nm3 density. (c) The idealized structures tilted at different angles to generate 

different stages of transition from contracted to expanded pores. 2 x 2 x 2 unit cell of the idealized structure 

at (d) 90°, (e) 70°, and (f) 50° tilt angles. 

 

To investigate the effect of adsorbed gas on thermal transport, for all structures, a gas density 

of 5 molecules / nm3 was used. As the volume of the simulation box is changed with angle, the 

initial number of molecules were adjusted accordingly. For each angle different gas molecule 

configurations were generated, however for the same angle same initial configuration was used for 

different simulations using a different initial velocity distribution. The gas is methane, which is 

modeled as a point particle with force field parameters given in Appendix B2.  

All thermal conductivity predictions were done using the Green-Kubo approach156 and 

equilibrium molecular dynamics (MD) simulations. All simulations were carried out at a 

temperature of 300 K and atmospheric pressure using a time step of 1 fs. The partial enthalpy terms 
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required to analyze multicomponent systems were implemented as discussed in Refs.157 The MD 

simulations were performed using a version of Large-scale Atomic/Molecular Massively Parallel 

Simulator (LAMMPS)158 software which has the correct implementation of heat flux for many-

body potentials.159 Periodic boundary conditions were applied in all directions. To gain further 

insight into the thermal conductivity predictions, we also calculated the corrected diffusivity of 

gas molecules within the porous crystals, which is associated with the gas mobility.160 The 

corrected diffusivity is based on a Green-Kubo relation and is defined as the time integral of the 

center of mass velocity autocorrelation function for the gas component. Details of the Green-Kubo 

calculations for both thermal conductivity and diffusivity along with samples of the associated 

autocorrelation functions and their integrals are provided in Appendix B2. 

3.2.2 Results and Discussion 

The thermal conductivities of the structures at different stages of expansion were first predicted 

without any adsorbed gas. As shown in Figure 15a, thermal conductivity in the y direction, which 

is the only direction where the box length changes (see Figure 14c), increases as the pore is 

expanded (tilt angle increases to 90°). However, thermal conductivities in the x and z directions 

remain unchanged. This trend is likely due to the fact that bonds become less effective in 

transferring heat in the y-direction when tilted. In the absence of gas, these bonds are the means of 

transporting heat through the atomic vibrations (i.e., phonons) in a dielectric solid. Supporting this 

argument, as shown in Figure 15b, thermal conductivity scaled by sin(α)-3 becomes nearly constant 

(α is the tilt angle). 
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Figure 15 (a) Thermal conductivity vs tilt angle. (b) Thermal conductivity in the y-direction scaled with 

sin(α)-3 vs tilt angle. 

 

To further shed light on the effect of pore contraction on thermal transport, thermal 

conductivity was decomposed into the contributions from different interatomic potentials (bond 

and angle). The decomposition was made possible by the Green-Kubo method, where forces and 

energies from any potential can be separately treated in the equation. Figure 16 shows the 

contributions from bond and angle potentials on the overall thermal conductivity. It is observed 

that overall, the angle contribution is much smaller than the bond contribution. Interestingly, the 

decrease of overall thermal conductivity for smaller angles is due to the decrease of the bond 

contribution. This further confirms the reason mentioned earlier, that is: the thermal conductivity 

in any direction depends on how bonds are aligned in that direction. For the structure with 90°, the 

thermal conductivity is the highest because the bonded atoms are parallel to the y-axis; while for 

smaller angles bonds are tilted from y-axis. 
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Figure 16 Thermal conductivity contribution from bond and angle potentials in a) x and b) y directions. z 

direction not depicted as the results were almost identical to the x direction.  

 

We then predicted the thermal conductivity of the porous materials loaded with gas at a density 

of 5 molecules/nm3. The results are plotted in Figure 17. Like the case without gas, thermal 

conductivity in the y-direction decreases as the pores contract. However, the decrease in thermal 

conductivity is not as significant. With gas present in the pores, the thermal conductivity for the 

structure with 40° tilt angle is approximately half of its value at 90° tilt angle. However, for the 

structures without gas, the thermal conductivity of the structure with 40° tilt angle is almost 20% 

of its value for the structure with 90° tilt angle.  
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Figure 17 (a) Thermal conductivity of gas loaded structures vs the angle which resembles the stage of 

expansion. (b) y-direction thermal conductivity of the gas loaded structure scaled by sin(α)-2 vs angle. 

 

Next, we address the relative effect of adsorbed gas on thermal conductivity of porous crystals 

at various stages of contraction. As shown in Figure 18a, the overall thermal conductivity is 

significantly decreased upon loading structures with gas; a phenomenon previously observed in 

our studies.148,149,161 Except for the fully contracted pores (i.e., 40° tilt angle), thermal conductivity 

of gas loaded structures is 25% of that of the structures without gas. At fully contracted state (40°), 

the thermal conductivity of the gas loaded structure is 50% of that without gas. The observed 

weaker effects from gas-crystal collisions on the thermal transport in contracted system compared 

to other systems is likely due to the already shorter intrinsic lifetimes of phonons.  
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Figure 18 (a) Ratio of thermal conductivity for gas loaded and empty crystals at different stages of pore 

expansion. (b) Corrected gas diffusivity for gas loaded crystals at different stages of pore expansion. 

 

The other important parameter that could affect the rate of gas adsorption in the pores during 

expansion is the gas diffusion through pores. To better understand the gas molecule dynamics 

inside the pores, we calculated corrected gas diffusivities, which are plotted in Figure 9b. The 

diffusivities in x and y directions are nearly constant. However, in the z direction, the only direction 

where the pore cross sectional area changes with changing angle, the diffusivity increases with 

pore expansion. This is due to the pore expansion which allows higher gas mobility in z direction. 

It shows that during gas adsorption, upon pore expansion, the diffusion of gas molecules into pores 

would be facilitated. 

3.2.3 Conclusion 

With the purpose of understanding heat transfer in breathing porous crystals, we studied a 

series of idealized model systems using molecular dynamics simulations. We investigated the 

effect of pore expansion on thermal conductivity with and without adsorbed gases. We showed 
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that, in the direction that pore changes, the thermal conductivity of empty porous crystals increases 

with expansion. In contrast, the thermal conductivity in other directions do not change with pore 

expansion. Our study also reveals that the presence of gases decreases thermal conductivity in all 

states of pores, with the lowest effect on the fully contracted pores. Lastly, we show that the gas 

diffusion increases during pore expansion, leading to easier transport of gas. 
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4.0 Computational Methods for Rational Design of Nanocars and Modeling Their Diffusion 

on Metal Surfaces 

4.1 Modeling Surface Diffusion of Large Organic Molecules 

Understanding and controlling molecular motion on surfaces is essential for the bottom-up 

construction of nanoscale machines.162–165 Such machines are commonly utilized in cells to 

transport molecular cargo: enzyme molecules are moved along protein filament tracks converting 

chemical energy into mechanical work.7 A class of artificial molecular machines, nanocars, have 

been studied to understand and control molecular motion on metal surfaces. From the initial design 

with fullerene wheels in 2005166 to more advanced designs with rotatable molecular wheels,8 

various strategies have been employed to achieve better control over the diffusion process.9,10,167 

More recently in 2017, the world’s first ever nanocar race was organized where six teams raced 

their molecular machines on a 100 nm track.168 As highlighted by the contestants, molecular design 

played a crucial role in controlling the motion of the nanocar.169–171 Although, substantial effort 

has been put into understand key features that affect nanocar diffusion, only a limited number of 

molecular designs have been tried so far and a thorough understanding of the relevant design 

parameters is still lacking. As discussed by the competitors as well as the organizers of the nanocar 

race, a better understanding of the key features that affect nanocar motion is required and 

computational methods can be helpful for this purpose.169,170 A key question, also asked when 

designing “macrocars,” is how to add weight while maintaining or increasing speed (i.e., the 

diffusion coefficient)? 
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In the broadest definition, nanocars are simply large molecules designed to have fast surface 

diffusion (with or without external stimuli). Previously, several experimental studies were 

employed to study the diffusion of large molecules on metal surfaces. Several strategies have been 

shown to greatly influence diffusion such as molecular functionalization164,172 and manually 

adjusting the orientation of the molecule with respect to the substrate lattice by a scanning 

tunneling microscope (STM) tip.163 Schunack et al. studied the diffusion of decacylene (DC) 

and hexa-tert-butyldecacyclene (HtBDC) using time-resolved STM images and found out that 

long jumps spanning multiple lattice spacings were the dominant type of diffusion as opposed to 

conventional surface diffusion described by random jumps between nearest neighbor sites. 

Moreover, they demonstrated that the molecular diffusion rate can be tailored by raising the 

molecule from the surface by tert-butyl spacer groups resulting in a diffusion constant higher by 4 

orders of magnitude. Similarly Sun et al. studied the influence of tert-butyl spacer groups on the 

mobility of organic molecules on a Cu(110) surface.172 Conversely, they found that adding tert-

butyl groups lowered the mobility of the molecule even compared to a higher molecular weight 

molecule. In their case tert-butyl group changed the adsorption geometry and locked the molecule 

to the surface highlighting the importance of the relation between the molecular 3D shape and 

surface geometry. Otero et al. investigated the diffusion of Violet Lander (VL, C108H104) on 

Cu(110) and showed that they can change the diffusion coefficient by two orders of magnitude by 

switching between different surface orientations.163 They achieved this by manipulating the 

molecular orientation with respect to the substrate lattice using STM. In the immobile 

configuration the VL molecule locks to the surface and it is kinetically stabilized at low 

temperature, which emphasizes the importance of considering the complementarity between the 

molecular and surface geometry. 
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Although these strategies discovered by trial-and-error, such as inserting tert-butyl spacers, are 

useful, a more systematic investigation of surface diffusion as a function of structure is needed to 

improve future nanocar designs. Akimov and co-workers have performed several studies to 

understand the motion of nanocars on metal surfaces using rigid body molecular dynamics.12,61–63 

They employed a simplified nanocar design and divided the molecule into rigid fragments as four 

wheels and a chassis. They showed that, in agreement with experimental results, nanocar mobility 

was initiated at temperatures higher than 400 K and they observed rotational motion of the wheels 

at 500 K. In a later study they investigated the effect of an electric field (e.g. created by the STM 

tip) on the diffusion of the same structure.63 In order to mimic the electric field, they employed a 

custom charge transfer method (developed in a previous study62) and performed a series of rigid-

body molecular dynamics simulations. They found that external electric fields can be used to drive 

nonpolar nanocars unidirectionally and that the rolling mechanism of the wheels is the dominant 

factor in the nanocar surface diffusion as opposed to a simple hopping and sliding mechanism. 

Ganji et al. studied the motion of a carborane-wheeled nanocar on graphene/graphyne surfaces 

using density functional theory.64 They calculated the activation energy for the motion of the four 

wheeled nanocar as 17.06 and 4.38 kcal/mol for graphene and graphyne surfaces, respectively. 

Even though these studies provide important insights on the motion of nanocars and their 

interactions with the surface, they focus on qualitatively explaining the motion rather than 

quantifying it by estimating a diffusion coefficient. Therefore, these methods cannot be used 

directly to estimate the timescale of diffusion and rank molecules. Moreover, these studies focused 

on elucidating the motion of nanocars instead of understanding how structure affects diffusion, 

which could be helpful to design better nanocars. 
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Figure 19 Molecular structures used in this study with chemical names where abbreviations and chemical 

formulae are given in brackets: (a) p-carborane173 [pC, C2H12B10]; (b) fullerene174 [C60, C60] (c) 4-trans-2-

(pyrid-4-yl-vinyl) benzoic acid175 [PVBA, C14H11O2N]; (d) (Z)-1,6-di(napthalen-2-yl)hexa-3-en-1,5-diyne172 

[DNHD, C26H16]; (e) (Z)-1,6-bis-(4-(tert-butyl)phenyl)hexa-3-en-1,5-diyne172 [BtPHD, C26H28]; (f) 

tetrakis(phenylethynyl)ethane172 [TPEE, C34H20]; (g) decacylene164 [DC, C36H18]; (h) hexa tert-butyl 

decacylene164 [HtBDC, C60H66]; and (i) violet lander163 [VL, C108H104]. Color scheme is as follows: C (black), N 

(blue), O (red), B (pink), H (light gray). 

 

In this work, we investigated the diffusion of 9 large organic molecules on a Cu (110) surface 

(see Figure 19). We chose these molecules to represent a wide variety of molecular geometries 

and to be able to compare our findings with available experimental studies of their motion 

(references for the studies are provided in the Figure 19 caption). We used classical molecular 

dynamics (MD) simulations and estimated self-diffusion coefficients by calculating mean squared 

displacement. We found that even though the correct timescales of diffusion cannot be achieved 

with typical MD simulations (i.e., without rare-event sampling techniques), we can still obtain 

certain useful information, such as the preferential crystallographic directions for diffusion on the 

surface. To obtain diffusion coefficients within the same orders of magnitude as experimental 

measurements, we then employed umbrella sampling and the weighted histogram analysis method 

(WHAM)176 to estimate free energy barriers for diffusion. Using the free energy profiles, we 

estimated hopping rates and self-diffusion coefficients using a transition state theory (TST) 

approach. We found that by tuning the surface-molecule interaction energetics and employing the 

TST method we can obtain activation energies and self-diffusion coefficients that are in good 
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agreement with experimentally observed values. Both methods predict the fastest and slowest 

molecules to be the same, however, the individual rankings varied slightly between different 

methods. Overall, we find that to optimize speed for a given molecular weight minimizing the 

molecule-surface interaction by elevating the body of the molecule with spacer functional groups 

is a good strategy, which is supported by empirical observations from past nanocar racers. To 

quantify this we proposed a metric, named elevation-weighted-density, to quickly rank molecular 

designs. Furthermore, we reiterate that the complementarity between the molecular design and 

surface geometry is crucial. 

4.1.1 Methodology 

Structure generation. We selected a total of 9 molecules, namely: p-carborane;173 C60;174 

PVBA;175 DNHD;172 BtPHD;172  TPEE;172 decacylene;164 hexa tert-butyl decacylene;164 and violet 

lander163 (see Figure 19) to represent a wide variety of molecular geometries and to compare our 

findings with available experimental studies of their motion. Molecular geometries were optimized 

using Kohn-Sham density functional theory at BP86-D3/ Def2-SVP177–179 level of theory as 

implemented in ORCA.180 The Cu (110) surface was generated using ASE181 slab builder tool to 

a size of 39.1 x 41.5 x 5.5 Å and 1400 atoms (see Figure 20a).  

Molecular Dynamics. Molecular dynamics (MD) simulations in the NVT ensemble at 300 K 

were performed with a timestep of 1 fs for a total of 10 ns using LAMMPS.126 20 set of simulations 

were performed with different initial velocity distributions to improve statistical sampling. For 

each molecule, the center of mass was calculated at every 1 ps which was used to calculate the 

mean squared displacement (MSD) to estimate the self-diffusion coefficient. A periodic simulation 

box of 39.1 x 41.5 X 40 Å was used for all simulations. The Cu (110) surface was placed at the 



 47 

bottom of the simulation box and the molecule was placed in the middle and 5 Å above the surface 

(see Figure 20). The surface atom positions were fixed during the simulations and nonbonded 

interactions between Cu atoms were neglected. All molecules were modelled as rigid bodies and 

a Lennard-Jones potential was used to model vdW interactions with a cut-off radius of 12.5 Å. The 

force field parameters were adopted from universal force field (UFF) 101 and the Cu atom epsilon 

value was changed to 0.125 kcal/mol (instead of the original 0.05 kcal/mol) to increase surface 

adsorption energy (see Appendix C1 for all parameters used). Rigid body approximation was used 

to simplify the model and make it easier to tune the vdW interaction energy between the molecule 

and the surface. Furthermore, the main intention of modeling in this study is to provide a method 

to quickly screen candidate molecular geometries, therefore computational cost of the method was 

reduced with this approach. As a result, configurational changes within the molecule due to surface 

adhesion were neglected. The effects of this assumption are further discussed in the results and 

discussion section. More information about calculation of the self-diffusion coefficients are given 

in Appendix C2. 

 

 

Figure 20 Simulation setup for HtBDC. (a) Top view - molecules are placed in the center of a 39.1 x 41.5 Å Cu 

(110) surface. (b) Side view - each molecule is placed 5 Å above the surface. (c) For TST calculations the unit 

cell of a Cu (110) surface is divided into 1131 grid points (29 points in [𝟏𝟏̅𝟎] and 39 points in [𝟎𝟎𝟏] 

directions) with a step size of 0.1 Å. 3.597 x 2.543 (d) Representative free energy barrier for the diffusion of 

HtBDC molecule in [𝟏𝟏̅𝟎] direction obtained from WHAM analysis (more simulation details in Appendix C). 
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Transition State Theory. As the diffusion of large molecules are quite slow and time scales 

cannot be achieved with traditional MD simulations, we employed umbrella sampling and 

weighted histogram analysis method (WHAM)176 to calculate free energy barriers for diffusion. 

We divided the orthogonal unit cell of a Cu (110) surface using 0.1 Å grid spacing for both [11̅0] 

and [001] directions (see Figure 20c). For each point on the surface (1131 total), we placed the 

molecule at that point and constrained its motion in [11̅0] and [001] directions in separate 

simulations using a spring with a constant of 200 kcal/mol. The motion in the direction 

perpendicular to the surface was not constrained. We then let the molecule sample different 

configurations using the same simulation setup described above for the MD simulations with rigid 

molecules and a fixed surface. However, this time we scaled the mixed LJ epsilon parameter 

between the surface and molecule atoms by 10 to further increase the adsorption energy in order 

to better approximate the experimentally observed activation energy of diffusion. Using WHAM 

analysis and Boltzmann averaging we finally obtained a free energy barrier for diffusion in both 

[11̅0] and [001] directions. A representative energy barrier is provided in Figure 20d. After 

obtaining periodic free energy barriers we used dynamically corrected transition state theory 

method by Dubbeldam et al.182 to calculate the hopping rate (𝑘𝐴→𝐵) and estimate self-diffusion 

coefficient (𝐷𝑆). More details are given in Appendix C3. 

4.1.2 Results and Discussion 

We first investigated the diffusion of the molecules using classical MD simulations for the two 

primary directions of the Cu (110) surface namely, [001] and [11̅0] (see Figure 20c). Per the 

surface geometry, it is energetically more favorable to diffuse along the [11̅0] direction compared 

to [001] as highlighted by experimental studies.163,164,172,174,175  
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Figure 21 Diffusion coefficient calculated using MD simulations in [𝟎𝟎𝟏] and [𝟏𝟏̅𝟎] directions: (a) molecular 

weight vs 𝑫[𝟎𝟎𝟏] (b) vdW energy vs 𝑫[𝟎𝟎𝟏] (c) elevation weighted density vs 𝑫[𝟎𝟎𝟏] (d) molecular weight vs 

𝑫[𝟏𝟏̅𝟎] (e) vdW energy vs 𝑫[𝟏𝟏̅𝟎] (f) elevation weighted density vs 𝑫[𝟏𝟏̅𝟎]. 

 

In Figure 21, self-diffusion coefficients calculated from MD simulations are given for both 

directions. Overall, the diffusion coefficient gets smaller with larger molecular weight and higher 

surface adhesion as the attraction between the surface and the molecule increases for both primary 

directions investigated (Figure 21a – d). However, it is also evident that not all molecules follow 

this relation directly, such as the PVBA molecule suggesting that the molecular geometry plays an 

important role in the diffusion. Furthermore, for all molecules the diffusion coefficient in [11̅0] 

direction was higher than [001] direction in good agreement with experimental 

observations.163,164,172,174,175 For the BtPHD molecule the addition of tert-butyl groups resulted in 

a slower diffusion compared to TPEE, and DNHD molecules and TPEE molecule was found to be 

slower than DNHD in agreement with Sun et al.172 However, addition of tert-butyl groups in 



 50 

HtBDC molecule didn’t results in a faster diffusion compared to the DC molecule as reported by 

Schunack et al.164 Even though, in agreement with the experiments, we observed strong anisotropic 

diffusion for both of these molecules, our calculations did not rank these molecules the same way: 

DC molecule was found to be faster in our calculations than HtBDC molecule as opposed to 

Schunack et al. This difference in ranking might be caused by the assumed rigid geometry in our 

simulations, because whereas the tert-butyl spacers in HtBDC are likely to undergo configurational 

change as they interact with the surface which might increase or decrease the diffusion according 

to the complementarity of the final geometry with the surface. In the case of BtPHD vs TPEE 

adding tert-butyl groups decreased the diffusion whereas in DC vs HtBDC tert-butyl addition 

resulted in a faster diffusion according to experimental observations. This suggests that to get a 

better representation of the adsorption geometry configurational changes might need to accounted, 

however they neglected by the rigid approximation. Furthermore, the calculated diffusion 

coefficients for DC and HtBDC are in the range of 10-5 cm2/s which is approximately eight orders 

of magnitude higher than the experimentally observed values. This implies that the vdW 

interaction energy between the molecules and the surface is likely to be severely underestimated 

in our model. Even though we increased the UFF epsilon parameters five-fold to amplify surface 

adsorption energy, a further increase is required to approximate experimental energetics. However, 

estimating diffusion via classical MD simulations with such high interaction energies, without 

using a rare-event sampling technique, would be computationally infeasible. As the experimentally 

observed hopping events are very rare, it would require excessive computational time to have 

statistically significant hopping events during the simulations. However, even though the absolute 

timescale of the diffusion coefficients does not represent the experimental conditions, the relative 
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ranking of diffusion across the 9 molecules, as well as their diffusion along different 

crystallographic directions can be usefully investigated. 

As molecular weight and vdW energy do not give a complete picture of diffusion we also 

propose a structural parameter, named elevation weighted density, based on molecular adsorption 

geometry. The calculation of this parameter is discussed in Appendix C4. As seen in Figure 21e 

and 21f the self-diffusion coefficients get smaller as the elevation weighted density increases. 

Moreover, compared to molecular weight there seems to be less outliers to this almost linear 

decrease. One reason might be that this parameter includes effect of both molecular weight and 

surface geometry. 

 

 

Figure 22 (a) Elevation weighted density calculation schematic for HtBDC. Starting from the bottom most 

part of the molecule, number of atoms are counted with 0.05 Å discrete steps and using a cut-off radius of 1 

Å. (b) Plot of number of atoms with increasing elevation from the surface, i.e. elevation weighted density 

curve. (c) Side view of VL molecule on metal surface. (d) Elevation weighted density curve for VL molecule. 

 

With the purpose of capturing the realistic time scale of diffusion, we calculated free energy 

barriers for the diffusion along the [001] and [11̅0] directions and estimated self-diffusion 

coefficients (see Figure 23). The activation energies for the average free energy profiles are given 

in Figure 23b and 23e for [001] and [11̅0] directions, respectively. As seen in the figure, the free 

energy barrier for diffusion is almost four times higher for the [001] direction compared to the 
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[11̅0] direction supporting experimental observed anisotropic diffusion.163,164,172,174,175 

Consequently, this higher energy barrier results in a smaller diffusion coefficient for the [001] 

direction as seen in Figure 23a and 23d. By definition of TST, the self-diffusion coefficient is 

exponentially related to the energy barrier, therefore the diffusion coefficients calculated here span 

across a much higher range (8 orders or magnitude for [11̅0] and 40 orders of magnitude for [001] 

directions). As a result, the anisotropy of diffusion is much higher compared to results obtained 

from MD simulations. Overall, similar to MD simulations the diffusion coefficients get smaller 

and the activation energies get higher with increasing molecular weight. We find that even though 

the individual rankings of diffusion coefficients were not identical between the two methods, both 

methods predicted the fastest and slowest molecules to be PVBA, and VL, respectively. 

Furthermore, ranking between DNHD, TPEE, and BtPHD molecules were found to be the same 

as in MD simulations in agreement with the experimental findings meaning addition of tert-butyl 

groups slowed surface diffusion. This also applied to DC and HtBDC molecules where addition 

of tert-butyl groups again resulted in slower diffusion for the HtBDC molecule in line with the 

MD simulations but opposing experimental observations. As rigid body approximation was also 

employed in TST simulations it is somewhat expected to see the same ranking with this method. 

We believe more sophisticated methods that account for the intramolecular reconfiguration during 

surface adhesion should be employed for more sensitive ranking. Alternatively, multi rigid body 

simulations or coarse graining methods could also be useful for this purpose. 
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Figure 23 Transition state theory results: (a) molecular weight vs 𝑫[𝟎𝟎𝟏] (b) molecular weight vs free energy 

barrier in [𝟎𝟎𝟏] direction (c) elevation weighted density vs. free energy barrier in [𝟎𝟎𝟏] direction (d) 

molecular weight vs 𝑫[𝟏𝟏̅𝟎] (e) molecular weight vs. free energy barrier in [𝟏𝟏̅𝟎] direction (e) elevation 

weighted density vs. free energy barrier in [𝟏𝟏̅𝟎] direction. 

 

As the team with the fastest molecule in the nanocar race, Simpson et al. highlighted several 

key features to improve velocity, maneuverability and function of nanocars: 1) using low 

molecular weight nanocars to decrease surface adhesion and make it easier to deposit under 

vacuum, 2) using large enough wheels to lift the chassis off the surface and using as few wheels 

as possible to minimize surface attraction, 3) having rigid chassis and short axles to prevent the 

chassis from sagging towards the surface to again minimize surface-chassis attraction.170 Overall, 

the key factor improving diffusion for a given molecular weight is to minimize surface attraction 

by rational molecular design. We believe elevation weighted density is a good quick estimate of 

nanocar performance as it takes into account the key features highlighted by these nanocar racers. 

By definition, it takes both molecular weight and molecular geometry into account. Moreover, as 
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the calculation is performed on the surface adsorption geometry the configurational changes of the 

molecule is also introduced. This is supported by the linear correlation between elevation weighted 

density and free energy barrier of diffusion for both directions as seen in Figure 23c and 23e. 

4.1.3 Conclusion 

In summary, we employed classical MD simulations and TST calculations to predict surface 

diffusion of large organic molecules. We found that using a relatively simple and computationally 

inexpensive calculation i.e. rigid body MD simulations, it is possible to estimate the relative 

diffusion between different molecules. Moreover, we showed that the diffusion gets slower with 

higher molecular weight and stronger molecule-surface interaction energy. We suggested a 

geometric parameter, i.e. elevation weighted density, which can be easily calculated using the 

surface adsorption geometry of the molecules. We show that this parameter could be used to 

quickly rank diffusion of different molecular designs. Furthermore, we show that it is possible to 

employ a more computationally expensive transition state theory (TST) approach to estimate the 

timescale of diffusion. This includes increasing vdW interactions between the molecule and the 

surface and calculating free energy barrier for diffusion with umbrella sampling of rigid MD 

simulations. Overall, as highlighted by nanocar racers we suggest minimizing the surface adhesion 

energy is a good strategy to improve diffusion for a given molecular weight. One way to achieve 

this is to elevate the bulk of the molecule from the surface by using various molecular components 

(e.g. wheels). 

Careful design of the molecular structure and selection of the appropriate surface can enable 

precise manipulation of the molecular diffusion. We believe these tools can be used to advance 

design of molecular structures to control their motion and play an important role in the design of 



 55 

nanocars. Large screening studies can be employed and molecular designs can be ranked quickly 

using elevation weighted density or quick rigid MD simulations. After identifying promising 

designs, more rigorous calculations can be performed to rank different molecular designs more 

accurately. 
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4.2 Nanocar Builder Tool 

With the purpose of designing new nanocars we developed a nanocar builder tool integrated 

with Avogadro 2 molecular visualizer.183  Using the builder, nanocars can be assembled from a 

collection of chassis and wheel molecular components. Metal slabs with arbitrary size and 

geometry can be built and the nanocar can be placed on a metal surface. Finally, a LAMMPS158 

Molecular Dynamics configuration file can be exported to study diffusion of the nanocar on the 

metal surface. We believe this builder complements our efforts in developing a robust method to 

estimate surface diffusion of nanocars. We hope current nanocar designs can be improved through 

computational studies by applying the methods highlighted in Section 4.1 to the hypothetical 

nanocars generated using this software package. 

4.2.1 Methodology 

Initially a set of wheel and chassis molecular components were selected from previously 

studied nanocar molecules.9 The molecular geometries were optimized using Kohn-Sham density 

functional theory at BP86-D3/ Def2-SVP level of theory as implemented in ORCA.180 The current 

release of the nanocar library includes 12 wheel molecules and 4 chassis molecules as shown in 

Figure 24. 

Then, available software packages were assessed for the user interface and Avogadro stood 

out with a large userbase with over one million downloads and a new user-friendly Python plug-

in interface which enables easy integration of custom workflows into a molecular visualizer. 
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Figure 24 Nanocar builder plug-in library: (a) wheel molecules; (b) chassis molecules. Using the plug-in users 

can select a chassis molecule, connect wheels, build a metal surface, and setup an MD simulation 

configuration for LAMMPS software.  

 

As the nanocar building process requires extensive geometric operations, a complementary 

Python package (Ångström184) was developed to accommodate that. To build a metal surface 

ASE181 surface builder was integrated in the plug-in and a custom LAMMPS writer was developed 

to setup rigid MD simulations using Universal Force Field101 parameters. During the development, 

the MolSSI best practices were adopted including version control, unit testing and coverage, code 

styling, continuous integration and full documentation. A video and written tutorial for the nanocar 

builder is available from the GitHub repository.185 Users can easily follow instructions on the web 

site to install Avogadro with the nanocar builder plug-in and start building. A screenshot of the 

plug-in can be seen in Figure 25. Below is a quick summary of the nanocar building process. 
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Figure 25 A screenshot of the nanocar builder Avogadro 2 plug-in. After installation a “Nanocar” menu 

appears under the build option which can be used to add chassis molecules, connect wheel molecules, add a 

custom metal surface, and export LAMMPS configuration files. 

 

4.2.2 How to Build a Nanocar? 

The nanocar building process starts by adding a chassis molecule. Then, wheels are connected 

either covalently or mechanically (interlocking) to the selected atoms of the chassis molecule. 

After all the wheels are connected then a custom metal surface is built and placed parallel to the 

chassis of the nanocar (see Figure 26). Lastly, a LAMMPS configuration file can be generated to 

test drive the nanocar with MD simulations. 
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Figure 26 A nanocar molecule placed on a Au (110) surface built using the nanocar builder: (a) side view and 

(b) top view. Surface is approximately 5 nm x 5 nm and the nanocar molecule is approximately 1 nm in 

length. 

 

Currently, we are working towards implementing the builder as a Python library to enable 

automated building of nanocars. Moreover, with the addition of parametric building blocks such 

as variable length chassis or variable size wheels, structural parameters that affect diffusion of 

nanocars can be studied. Another feature we are working on is setting up multibody MD 

simulations by grouping chassis and wheel molecular components as separate rigid bodies that are 

bonded together. Previous work by Akimov et al. has shown that experimentally observed wheel 

rotation can be simulated using this approach.12  

With the upcoming 2nd International Nanocar Race, our nanocar builder can be used to improve 

nanocar designs by understanding how the molecular components of the nanocar affect the 

diffusion behavior. We believe the tools developed in this work will collectively help to push the 

frontier of knowledge (even if incrementally) towards the eventual building of useful AMMs. 
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Appendix A Discovery of Hypothetical Hetero-Interpenetrated MOFs 

Appendix A.1 Algorithm Description 

The algorithm tests whether two given crystal structures with any topology can theoretically 

interpenetrate each other. For two given unit cells, different orientations of the unit cells are 

checked for collisions and any favorable orientations are reported. Our main aim was to screen a 

large database to identify new interpenetrated structures therefore we needed a method that would 

rapidly identify possible interpenetration candidates. Moreover, we knew most of the combinations 

would be unfavorable for interpenetration therefore using a high accuracy model would result in 

wasting computer time. For that reason, we developed the “IPMOF” algorithm to rapidly identify 

which MOF pairs can possibly interpenetrate each other. 

Initially, two MOFs are selected and one of them is designated as passive and the other as 

active (see Appendix Figure 5). For the passive MOF, an energy map is generated to calculate 

energy penalty associated with interpenetrating it with the active MOF. Secondly, different 

orientations of active MOF are tested by moving and rotating the structure. We did not consider 

improper rotation while testing different orientations. An energy density is calculated for each 

orientation and if the energy density is below the selected threshold value orientation is saved. 

After all orientations are tested, most favorable ones are identified according to energy densities. 

This initial test is referred as single unit-cell test since it only considers interpenetration 

between single unit cells of two given MOFs. However, it is possible to observe atomic collisions 

in repeating unit cells even if there were no collisions in the single unit cells. For MOF pairs which 

pass the single unit cell test, multiple unit-cell collision test is performed to make sure that 
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differences in repeating patterns of the unit cells do not cause overlap when they are extended 

multiple times. Next step is to generate a supercell for the interpenetrating MOFs, which allows 

both structures to repeat according to their symmetry. After this step is complete a structure file 

for the hypothetical interpenetrated MOF is generated. 

The algorithm is provided here (https://github.com/kbsezginel/IPMOF) where detailed 

documentation is also included for the software. In addition, detailed examples on how to use the 

algorithm are also provided in Jupyter notebooks. We tried to make it as easy as possible for others 

to use our software in order to help the community explore new interpenetrated materials. 

Following the documentation, it is relatively easy to perform simulations on a personal laptop with 

minimum programming experience. Our aim here was to make sure our algorithm can be beneficial 

for both experimental and computational scientists. Moreover, we provided the candidate 

structures discovered in this study with extensive structural and crystallographic information as 

well as references to publications in which the MOFs used in this study were reported. 

https://github.com/kbsezginel/IPMOF
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Appendix Figure 1 Flowchart for IPMOF algorithm. Algorithm and its documentation with examples are 

provided here:  https://github.com/kbsezginel/IPMOF. 
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Appendices contain supplementary or illustrative material or explanatory data too lengthy to 

be included in the text or not immediately essential to the reader’s understanding of the text. 

Energy Map Generation. The energy map is defined as a regular grid of points representing 

the interatomic potential energy of the unit cell (see Appendix Figure 2). The potential energy for 

each point in the grid is calculated using Lennard-Jones potential100 and Universal Force Field101 

(UFF) parameters with Lorentz-Berthelot mixing rules and a cut-off radius of 12 Å. 

 

 

 

 

 

 

 

Appendix Figure 2 Energy map schematic for MOF-5. Each red point represents grid points 1 Å apart in 3 

dimensions. For each point potential energy is calculated using Lennard-Jones equation.  

 

In Appendix Figure 3 energy map generation process for MOF-5186 is provided. As expected, 

empty regions in the unit cell are lower in energy (shown in dark red) and atomically crowded 

regions are higher in energy (light red). The energy map shown below is calculated using UFF 

parameters of a carbon atom which provides energetic information for inserting a carbon atom to 

any location in the unit cell. Each type of atom results in a different energy value for the grid points 

of the energy map, therefore the energy map array consists of 3D coordinates as well as different 

energy values for each type of atom used in the calculation of the energy map. 
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For high throughput screening energy values for various atom types are required to test 

interpenetration. However, this would result in having tens of energy values for each position in 

the energy map. To avoid having large energy map files force field parameters were simplified to 

only include total 11 atom types and consequently 11 energy values for each position in energy 

map. 

 

 

Appendix Figure 3 Energy map generation process for MOF-5. The potential energy increases from dark red 

to light red. 

 

Force Field Parameters. Lennard-Jones equation is used to estimate interatomic potentials 

(Eq. 2-1) where ε and σ values used for atoms are listed below and r is the distance between atoms 

in Å. The resulting energy is in K.kB units (0.0083144621 kJ/mol). 

As mentioned in section A1, for high throughput screening, energy values for various atom 

types are required to test interpenetration. This would be computationally expensive and the 

generated energy map files would take a lot of space. However, all MOFs are composed of organic 

linkers and metal cluster which suggests that almost all MOFs will have C, H, O, N atoms and one 

or more metal atoms. Making use of this information we decided to use a simplified force field by 

only considering actual UFF parameters for 10 atoms and assigning dummy force field parameters 

for the rest. In this way, we only needed to calculate 11 different energy values for each position 
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in the energy map instead of almost a hundred. In addition to C, H, O, N atoms for organic linkers 

we identified the 6 most frequent metal atoms in the database (Appendix Figure 4). 

 

Appendix Table 1 Force field parameters used in this study 

Atom σ (Å) ε/kB (K) 

C 3.430851 52.87336 

Cd 2.53728 114.8107 

Co 2.558661 7.049781 

Cu 3.113691 2.517779 

H 2.571134 22.15645 

Mg 2.691405 55.89469 

Mn 2.637951 6.546225 

N 3.260689 34.74535 

Ni 2.524807 7.553337 

O 3.118146 30.21335 

Zn 2.461553 62.44092 

Dummy 3 30 

 

 

 

 

Appendix Figure 4 Number of MOFs with given metal type observed in the database 
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Algorithm Parameters. We defined several algorithm parameters to introduce flexibility for 

various crystal structure pairs. 

 

 

Appendix Figure 5 Interpenetration process for two cubic MOFs. Blue framework is the passive framework 

and red framework is the active framework. The active framework is first rotated and then translated to next 

point depicted by the yellow point. 

 

Grid size: The grid size if defined as the distance between grid points of the energy map in 

each dimension. The energy map is generated as a 3D rectangular grid that surrounds the unit cell. 

For high-throughput screening we used grid size of 1 Å for the generation of energy map. 

Interpolation: When an energy value is needed at a position that does not fall exactly on a 

grid point in the energy map, which is the usual case, interpolation is used. For high-throughput 

screening we used trilinear interpolation which approximates the value of a point in a regular grid 

linearly using data in the lattice points. 

Cut-off distance: The cut-off distance used in the calculation of interatomic potentials. Any 

atom pair that are further away from this distance were assumed to have no interaction. For high-

throughput screening cut-off distance was taken as 12 Å. 

Extension cut-off distance: The extension cut-off distance is used to determine the number 

of extension that will be performed on the unit cell for multiple unit cell collision test. For a given 

distance the unit cell is extended in each dimension to make sure that it covers an area at least the 
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size of a sphere with radius of that distance. For high-throughput screening extension cut-off was 

taken as 50 Å. 

Rotational freedom: The increments of rotation performed on the active unit cell to obtain 

different orientations. For high-throughput screening only 90° rotations were considered. 

Rotational limit: The number of times a rotation is performed for same initial coordinate. For 

high-throughput screening all possible 90° rotations (24 total) were performed for each point. 

Energy limit: There are three types of energy limit defined in the algorithm: atom energy limit, 

structure energy limit, and energy density limit. The energy limit parameter affects the allowed 

contact distance between the frameworks, therefore using high energy limits may results in 

unphysical contact distances. 

- Atom energy limit is the maximum allowed energy for insertion of a single atom. 

- Structure energy limit is the maximum allowed energy for insertion of a collection of atoms 

that constitute the active structure. It is calculated by summing the insertion energies for 

each atom in the unit cell. 

- Energy density limit is similar to structure energy limit however it is divided by the unit 

cell volume to make it more comparable among different structures. For unit cells with 

different sizes constituting different number of atoms we chose to have a universal energy 

limit scaled by the volume of the cell. The energy density, 𝝆𝒆𝒏𝒆𝒓𝒈𝒚, is calculated according 

to Eq. A-1, 

 

 𝜌𝑒𝑛𝑒𝑟𝑔𝑦 =
∑ ∑ 𝑉𝐿𝐽(𝑖, 𝑗)

𝑁𝑎
𝑗=0

𝑁𝑝
𝑖=0

𝑉𝑐𝑒𝑙𝑙
 A-1 
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where Np and Na are number of atoms in active and passive MOFs; i and j are atom indices 

for passive and active MOFs; VLJ is interatomic potential (Lennard-Jones) energy, and Vcell 

is unit cell volume in Å3. 

There are additional algorithm parameters available for user to manipulate how the structures 

are generated, how the data is reported etc. however these parameters do not affect the 

interpenetration. More information on algorithm parameters can be found in algorithm 

documentation. 

 

 

Appendix Figure 6 Algorithm parameters with values used in this study shown in parenthesis. Energy density 

limit of 0.1 K.kB/Å3 corresponds to 0.83144621 J/mol Å3. 
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For the high-throughput screening of the MOF database we selected a set of simulation 

parameters that we believe would yield a good amount of successful trials in a reasonable amount 

of time. In theory, it is possible to discover interpenetrated structures that were not found in this 

screening. Our aim in this study was to introduce a new method that allows testing whether two 

given periodic structures can interpenetrate each other. The screening study performed here was 

performed to make an initial estimate for possible interpenetrations rather than exploring the whole 

possible orientations for two given MOFs. 

Appendix A.2 Generating Unit Cell for Interpenetrating Structures 

Calculating Supercell Parameters. The lattice parameters for the combined unit cell are 

calculated by several geometric operations: 

1. First [111] vector for the active unit cell is converted to fractional coordinates using lattice 

vectors of passive unit cell. In other words, the [111] vector of passive unit cell is converted 

to coordinate system of the passive unit cell. This vector represents how active unit cell repeats 

in terms of the passive unit cell. To make sure both unit cells repeat symmetrically in a 

supercell we need to calculate new lattice parameters. 

2. The lattice parameters are calculated by finding the least common integer multiple for each 

dimension of the fractional [111] vector. This gives the number of repeats required for the 

active unit cell. Multiplying these with fractional coordinates of [111] vector gives number of 

repeats required for the passive unit cell. 
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3. The unit cells are aligned and repeated (extended) according to calculated parameters and the 

supercell is generated using the supercell parameters which can be calculated by multiplying 

number of repeats for passive unit cell with its original unit cell parameters. 

 

 

Appendix Figure 7 Example case for supercell parameters calculation 

 

Since lattice parameters have high resolution (4,5 significant figures) the combined unit cells 

would generally become huge and impractical. To avoid that we allowed the active unit cell to 

tolerate lattice parameter changes up to 1%. This allows us to constrain the combined unit cell to 

100 repeats for any of the unit cells. Moreover, to make sure the active unit cell conserves its 

symmetry, we scaled the positions of the atoms according to adjustment we made to the lattice 

parameters. For example, if the a vector is enlarged by 0.3% then all distances in that direction are 

multiplied by 1.003. 
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Cell Distortion. The cell distortion is defined as the scaling required to perfectly combine unit 

cells with a selected tolerance. Cell distortion is calculated by summing percent change in atomic 

coordinates for each vector of the unit cell. This means with a given 1% tolerance the total cell 

distortion is less than or equal to 3%. For the calculation of supercell parameters 1% tolerance was 

used to ensure low cell distortion. However, candidate structures with very large supercells were 

not generated. It is possible to increase the tolerance and obtain a smaller supercell. For void 

fraction calculations reported in the manuscript, two of the candidate structures were generated 

using 2% tolerance which resulted in a much smaller supercell with a total of ~4% cell distortion. 

Example Jupyter notebook for supercell generation is provided in the GitHub repository 

(github.com/kbsezginel/IPMOF). 

Appendix A.3 High-throughput Screening 

Database Selection. For high-throughput MOF database created by Chung and co-workers98 

has been used. In addition to the structures proposed in this study, 1005 additional MOFs were 

added to the final database (total 6014 MOFs). The additional MOFs have been generated using 

the same methodology explained in that study.  

MOF Combination Selection. To eliminate MOF combinations that are physically capable of 

resulting in interpenetration, only MOF combinations that have a total void fraction bigger than 

1.0 are considered. To explain this better, we can imagine a unit cell of a MOF as a glass of water 

where the atoms in the unit cell would be analogous to water in glass (Appendix Figure 8). We 

can also imagine interpenetration as combining these two glasses of water into a single glass (or 

single unit cell). Thus, to have enough space for interpenetration the total water amount in the 

https://github.com/WilmerLab/IPMOF
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glasses should be less than 100 % or in the MOF case the total void fraction of the MOFs should 

be bigger than 1.0. 

 

 

Appendix Figure 8 Analogy for MOF combination selection. The interpenetrating MOFs must have enough 

empty space in their unit cell so when they form a single unit cell there is enough space for both frameworks. 

This can be imagined as filling two glasses of water into a single glass. In order to avoid overflowing the 

glasses should have enough empty space. 

 

The total possible combinations correspond to combination of two of 6014 which comes to 

around 18.1 million combinations. When the physically impossible combinations are eliminated 

the total number of combinations come down to around 4.28 million which is a little less than 

quarter of total possible combinations. 

 

(
6014
2
) = ~18.1 𝑚𝑖𝑙𝑙𝑖𝑜𝑛

𝑉𝑓1+𝑉𝑓2 >1.0
→         ~4.3 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 

 

Void Fraction Calculation. The void fraction of the MOFs is this study are calculated using 

RASPA 2187, a general purpose classical simulation package that can be used for the simulation of 

molecules in gases, fluids, zeolites, aluminosilicates, metal-organic frameworks, carbon nanotubes 

and external fields. https://github.com/numat/RASPA2 

https://github.com/numat/RASPA2
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Analysis of Candidate Structures. Initially single unit-cell interpenetration tests were 

performed for ~4.3 million MOF pairs and ~6% of these pairs resulted in favorable orientations. 

The extended unit-cell test on these MOF pairs resulted in a total of 1045 MOF pairs which were 

identified as candidate interpenetrating structures (Appendix Figure 9).  

 

 

Appendix Figure 9 Number of MOF pairs in different steps of high-throughput screening 

 

Further analysis of these MOF pairs showed that most of these structures were homo-

interpenetrated due to degenerate MOFs in the database. Total 113 MOFs were identified to form 

1045 candidate structures and among these 113, 46 of them were found to be MOF-5 degenerate 

structures. Among the 1045 candidate structures, 1012 of them were identified as homo-

interpenetrating where 92 of them were determined as pairs with same CCDC reference codes and 

922 of them were determined as pairs of degenerate MOFs under different reference codes. 33 

hetero-interpenetrating candidates were examined and 15 of them were found to be duplicate pairs 

resulting in 18 unique pairs of hetero-interpenetrating MOFs (see Appendix Figure 10). Among 

the hetero-interpenetrating candidates following topologies were observed: pcu+pcu, the+tbo, 
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ftw+ftw, tbo+ntt, scu+tfe, reo-e+ftw, gee+ftw, ntt+pcu, tbo+pcu. More information about all 

MOFs and all candidate structures are provided in Ref106. 

 

 

Appendix Figure 10 Analysis of candidate structures to find hetero-interpenetrated pairs (Starting from 

1,045 candidates that passed the extended collision test, 90 of them were pairs of same MOFs according to 

their CSD reference codes [Step I]. From the remaining 955 candidates, pairs of MOFs that have different 

reference codes but are degenerate structures (922) are removed [Step II]. Remaining 33 candidates were 

inspected manually by comparing chemical formulas, crystallographic information and visually examining 

image renders of MOFs [Step III]. 15 more candidates were removed and 18 candidates were presented as 

hetero-interpenetrated candidate MOFs. 

 

For candidate hetero-interpenetrated structures, supercells were calculated with 1% distortion 

tolerance and cif files were generated. The candidates which resulted in unpractically large 

supercells were generated with higher tolerance resulting in higher cell distortion. The candidate 
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crystallographic information files (cif) are provided in GitHub repository 

(github.com/kbsezginel/IPMOF). In addition to regular structure files each candidate also has a 

colored version (for easy visual inspection) where each atom in the interpenetrating frameworks 

are replaced with carbon and oxygen atom for passive and active MOFs respectively. 

Additionally, experimental synthesis procedure and chemical composition of the 18 candidate 

structures were analyzed. Metal centers and organic linkers that compose each MOF are presented 

below with crystallographic information. 

 

 

  

https://github.com/WilmerLab/IPMOF
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Appendix Table 2 Chemical composition information for 18 hetero-interpenetrating MOF candidates 

# Candidate Formula* Supercell Linker 1 Linker 2 

1 

AXUBAW 

[IRMOF-18] 

+ 

NODTIL 

[IRMOF-1]  

ZnTMBDC 

[C72H72O26Zn8] 

+ 

ZnBDC 

[C48H24O26Zn8] 

[1 1 1] 

+ 

[1 1 1] 

D: 1.1072 

 

 

2 

BAZGAM 

[MOF-399] 

+ 

SEMNIJ 

[NU-110] 

CuBBC 

[C360H216Cu12O48] 

+ 

Cu L 

[C624H288Cu24O96] 

[1 1 1] 

+ 

[1 1 1] 

D: 1.7241 

  

3 

HABQUY 

[PCN-610] 

+ 

VEBHUG 

[IRMOF-20] 

CuTTEI 

[C480H192Cu24O96] 

+ 

ZnTTDC 

[C48H12O26S12Zn8] 

[8 8 22] 

+ 

[49 49 45] 

D: 2.3537 

  

4 

HABRAF 

[PCN-68] 

+ 

HANHAH 

[ZnBTC] 

CuPTEI 

[C432H192Cu24O96] 

+ 

ZnBTC 

[C72H24O48Zn12] 

[1 1 1] 

+ 

[2 2 2] 

D: 0.8743 

  

5 

HABRAF 

[PCN-68] 

+ 

XADDIR 

[CuBTC] 

CuPTEI 

[C432H192Cu24O96] 

+ 

CuBTC 

[C72H24Cu12O48] 

[1 1 1] 

+ 

[2 2 2] 

D: 0.2717 

  

6 

IZEPAF 

[MIL-hypo-1] 

+ 

WUHDAG 

[NU-1104] 

CrBDC 

[C288H144Cr36O156] 

+ 

ZrPor-PTP 

[C240H130N12O32Zr6] 

[43 43 43] 

+ 

[42 42 42] 

D: 2.8926 

  

7 

JUTCUW 

+ 

PIYZAZ 

[Cd(CN)2] 

+ 

[Cd(C2)2] 

[1 1 1] 

+ 

[1 1 1] 

D: 1.9544 
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Appendix Table 2 continued 

 

 

8 

KOZQEX 

[DUT-75] 

+ 

WUHCUZ 

[NU-1103] 

CuCPCDC 

[C252H120Cu18N12O72] 

+ 

ZrPy-PTP 

[C228H118O32Zr6] 

[1 1 1] 

+ 

[1 1 1] 

D: 0.7444 

 

 

9 

LEHXUT 

+ 

XAMDUM02 

[CuBTC] 

CuBBC 

[C408H216Cu24N24O120] 

+ 

CuBTC 

[C72H24Cu12O48] 

[1 1 1] 

+ 

[2 2 2] 

D: 0.1275 

  

10 

LURRIA 

[PCN-68] 

+ 

MIBQAR06 

[IRMOF-1] 

CuPTEI 

[C432H192Cu24O96] 

+ 

ZnBDC 

[C48H24O26Zn8] 

[1 1 1] 

+ 

[2 2 2] 

D: 2.3519 

D: 0.1149 

 

 

11 

PEVPUD 

[IRMOF-1] 

+ 

XAMDUM04 

[CuBTC] 

ZnBDC 

[C48H24O26Zn8] 

+ 

CuBTC 

[C72H24Cu12O48] 

[1 1 1] 

+ 

[1 1 1] 

D: 2.3791 

D: 2.9419 

 

 

12 

PIBNUK 

[ZnTATB] 

+ 

PIBPIA 

[CdTATB] 

ZnTATB 

[C192H96N24O48Zn12] 

+ 

CdTATB 

[C192H96Cd12N24O48] 

[43 43 43] 

+ 

[42 42 42] 

D: 2.8962 

 

 

13 

TEQPEM 

[IFMC-28] 

+ 

VEBHUG 

[IRMOF-20] 

ZnDMTDC 

[C60H36O26S12Zn8] 

+ 

ZnTTDC 

[C48H12O26S12Zn8] 

[1 1 1] 

+ 

[3 3 1] 

D: 0.1337 
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Appendix Table 2 continued 

14 

TOVGAO 

[PCN-228] 

+ 

JOZWIG02 

[NU-1102] 

ZrTCP-1 

[C216H124N12Ni3O32Zr6] 

+ 

ZrPor-PP 

[C216H130N12O32Zr6] 

[1 1 1] 

+ 

[1 1 1] 

D: 0.1516 

  

15 

UQOFOX 

[PCN-528] 

+ 

VEHJUP 

MnTTPP 

[C96H56Mn6N40] 

+ 

Zn3,4 BTC 

[C108H36O72Zn22] 

[23 1 1] 

+ 

[22 23 1] 

D: 1.5778 

D: 1.1833 

  

16 

VETSUK 

[POST-

65(Co)] 

+ 

HEXVEM 

[mesoMOF-1] 

CoHMTT 

[C576H432Cl12Co26O144] 

+ 

CuTATAB 

[C192H120Cu12N48O48] 

[1 1 1] 

+ 

[1 1 1] 

D: 1.2227 

  

17 

VETTAR 

[POST-65(Ni)] 

+ 

HEXVEM 

[mesoMOF-1] 

NiHMTT 

[C576H432Cl12Ni26O96] 

+ 

CuTATAB 

[C192H120Cu12N48O48] 

[1 1 1] 

+ 

[1 1 1] 

D: 0.7567 

  

18 

RUTNOK 

[IRMOF-76] 

+ 

VEJHEZ 

[MMPF-4] 

Zn L0 

[C69H45N6O13Zn4] 

+ 

ZnTDCPP 

[C156H60N12O50Zn19] 

[1 1 1] 

+ 

[1 1 1] 

D: 0.7355 

  

Notes:  

- The red color represents the MOFs which can also homo-interpenetrate. The candidates where both MOFs are 

black in color are more likely to form hetero-interpenetration since in theory both MOFs don’t interpenetrate with 

themselves. 

- The formulas are just simplification of metal types and linkers. Even though two MOFs have the same metal type 

and linker (e.g. UQOFOX and HANHAH) they could have different structures. 

- Supercell column has information on number of extensions required to form supercell for each of the MOFs. (e.g. 

[1 1 1] + [2 2 2] means MOF1 needs to be extended to [1 1 1] and MOF needs to be extended to [2 2 2] in x, y, z 

dimensions to form the supercell). The D value gives the distortion for supercell in percentage. 

- Hashed bonds imply 90 degree rotations around the bonding axis. 
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Appendix A.4 Comparison with Literature 

Comparison of Candidate Structures. An example comparison of results between our 

method and another method proposed by Kwon et al.188 is provided. In their work, Kwon and co-

workers developed an algorithm that can identify interpenetration of MOFs with orthogonal unit 

cells. They used their algorithm to screen the CoRE98 database and provided a list of 113 

candidates in Table S2 of their Supplementary Information. Comparing this list with our 

candidates list, we found out that 16 candidates included MOFs that weren’t present in our database 

of 6014 MOFs. From the rest of 97 candidates, 45 of them were also present in the candidate list 

we provided. For the 52 candidates remaining, our calculations didn’t find any interpenetrating 

pairs due to our selection of simulation parameters. 

In the database used in this study, almost all MOFs are reported in their primitive unit cell. For 

cases where we are testing interpenetration of MOFs with non-orthogonal unit cells, 90-degree 

rotations may be insufficient to find the interpenetration. In the study by Kwon et al. they first 

converted all primitive unit cells of orthogonal MOFs to their conventional orthogonal cells and 

tested interpenetration after that. If we were to do the same before running interpenetration tests, 

90-degree rotations would be sufficient to find the same pairs as well. However, using primitive 

unit cells, smaller rotational increments are necessary to find the interpenetrating configurations. 

It is important to point out that the frameworks obtained depend not just on the method, but also 

the parameters used. In this paper, we have described a rather general method, and as a 

demonstration we show results we obtained from choosing a particular set of parameters. Any 

reader can use our code, which we make freely available, and change the parameters to better suit 

their interests. Below we show how some additional structures were found by adding using smaller 

rotational increments. 
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Appendix Figure 11 Candidate interpenetrating MOF pairs identified using 30-degree rotations. Same pairs 

are also present in the list provided by Kwon et al.188 CCDC104 reference codes for the MOF pairs are given 

below structures separated by an underscore. The first name corresponds the gray framework and second 

name corresponds to the red framework. 

 

We performed interpenetration tests for three MOF pairs from the list by Kwon et al. and we 

obtained interpenetrated structures for [HABRAF_NIBJAK], [HEXVEM_VEBHUG], and 

[ADATEG_BAZGAM] using 30-degree rotations (see Appendix Figure 11).  These MOF pairs 

were not identified in the original screening since they have trigonal unit cells where the 

interpenetrated configuration cannot be obtained using 90-degree rotations without 

orthogonalizing the unit cells. 

Comparison of Experimental Hetero-Interpenetrated Structures. In addition to 

WEBZEK189 provided in the article, hetero-interpenetration test was performed for 5 more MOFs 

using the algorithm. The crystal structure files were downloaded from the CCDC104 database and 

the interpenetrating frameworks were separated. Then for each MOF the algorithm was ran using 

interpenetrating layers and resulting structures with lowest energy density were selected. Using 

the cif files provided by the algorithm X-ray diffraction (XRD) patterns were generated using 

Mercury190 software. Moreover, the experimental XRD patterns were gathered from each study 
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and results were compared. Both XRD patterns and visual inspection confirmed the high similarity 

between predicted and experimental structure. Here unit cell images and XRD patterns for these 5 

MOFs are provided (Appendix Figures 12 - 16). In each figure, the XRD pattern with black line 

at the bottom is for prediction and the other color at the top is for experimental result. The yellow 

and blue boxes point out the subtle differences between structures and arrows show the directional 

difference. The interpenetrating frameworks are colored in gray and red for visual aid. 

 

 

Appendix Figure 12 Hetero-interpenetration test for COGCOS67 (a) Structure comparison (b) XRD pattern 

comparison 

 

 

Appendix Figure 13 Hetero-interpenetration test for ETAXAS72 (a) Structure comparison (b) XRD pattern 

comparison 
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Appendix Figure 14 Hetero-interpenetration test for TIVYED74 (a) Structure comparison (b) XRD pattern 

comparison 

 

 

Appendix Figure 15  Hetero-interpenetration test for PELQII68 (a) Structure comparison (b) XRD pattern 

comparison 

 

 

Appendix Figure 16 Hetero-interpenetration test for UNAZIT71 (a) Structure comparison (b) XRD pattern 

comparison 



 83 

Appendix B Computational Methods and Supplementary Results for Thermal 

Conductivity of MOFs 

Appendix B.1 Thermal Transport in Interpenetrated MOFs 

Idealized Structure Generation. The ideal MOF structure is designed to have a cubic unit 

cell with a lattice constant of 10 Å consisting of 4 atoms in each side 3.3 Å apart from each other 

(see Appendix Figure 17). As evident from the inter-atomic distances, each atom site is modeled 

as a cluster of atoms with the mass of Ar (39.95 Da). The ideal MOF structure is inspired by 

IRMOF-1. 

The interpenetrated structure is generated by creating a copy of the idealized structure and 

translating it 5 Å in each dimension which corresponds to maximal distance between frameworks. 

For each simulation, this initial configuration was used with a cubic simulation box of 80 Å 

containing 3584 and 7168 atoms for the single and interpenetrated structures, respectively. 

Force Field Parameters for the Idealized Structure. The bonded interactions for idealized 

MOFs were modeled using Morse potential (see Appendix Figure 17). The equilibrium distances 

(r0) were calculated according to the lattice constant (10 Å). For interpenetrated structures same 

potential parameters were used for individual frameworks. These parameters were chosen such 

that the structure would be stable and it would have a thermal conductivity of the same order as 

the typical MOFs (~0.8 W/mK). 
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Appendix Figure 17 Bonded interactions for the idealized porous framework. Morse potential were used to 

model bonded interactions for the two types of bonds defined (depicted in green and yellow). The Morse 

potential parameters for these bonds are given. 

 

The nonbonded interaction between interpenetrated frameworks were modeled using Lennard-

Jones (LJ) potential (see Eq. 2-1) where epsilon (ε) is the depth of the potential well and sigma (σ) 

is the distance at which the interatomic potential is zero. The LJ potential energy function was 

plotted for varying σ and ε values in Appendix Figure 18. As seen in Appendix Figure 18a 

increasing σ shifts the potential well width and position. This effects the interpenetration by 

changing the optimal distance between frameworks. As seen in Appendix Figures 18b and 18c 

increasing ε values changes the depth of the potential well. This affects the likeliness of finding 

frameworks at the optimal distance at given time. At very low σ and ε the potential well almost 

disappears which causes interpenetrating frameworks to slide through each other. The interatomic 

distance in frameworks are 3.3 Å and for σ lower than approximately 1.5 Å the frameworks start 

to slide which artificially increases framework mobility. 
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Appendix Figure 18 Lennard-Jones potential for a) varying σ values and ε: 50 K.kB b) varying ε values for σ: 

3.5 Å c) varying ε values for σ: 4.5 Å. In all plots the variable increases from red to blue as shown in legends. 

 

Force Field Parameters for IRMOF-1. The force field parameters for IRMOF-1 was 

assigned from Universal Force Field (UFF)101 and the topology analysis was performed using the 

TherMOF Python package (see Appendix D). A periodic cubic simulation box (a = 51.664 Å) was 

used for each simulation using the same simulation procedure with idealized MOFs (see Section 

B2). The potentials used for IRMOF-1 simulations are provided in Appendix Table 3. 

Additionally, LAMMPS input files containing all force field parameters for both interpenetrated 

and non-interpenetrated IRMOF-1 are provided in the TherMOF GitHub repository.191  

Molecular Dynamics Simulation Details. Equilibrium molecular dynamics simulations using 

LAMMPS126 software package have been performed to calculate thermal conductivity. The 

thermal flux has been recorded in NVE ensemble for 1x106 timesteps after initialization in NVT 

(3x105) and NVE (3x105) ensembles, respectively. A time step of 1.0 fs was used for all idealized 

MOF simulations. Thermal conductivity was predicted using the Green-Kubo method which 

relates thermal conductivity to the instantaneous heat flux.192,193 For each idealized MOF structure, 

10 simulations were run with different initial velocity distributions (using different seed numbers) 

and thermal flux was recorded in 3 directions (x, y, and z). The thermal conductivity was calculated 

for all 10 simulations and 3 directions separately and averaged for statistical sampling totaling 30 
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samples for each structure. For IRMOF-1, 5 individual simulations with different seed numbers 

were run with a time step of 0.5 fs and the same procedure as idealized MOFs. Recording the 

thermal flux in 3 directions (x, y, and z), thermal conductivity was calculated as an average of 15 

samples for both interpenetrated and non-interpenetrated IRMOF-1. Example input files for 

LAMMPS simulations are provided in project GitHub repository.191 

 

Appendix Table 3 Potential used for IRMOF-1 interactions 

Interaction Potential 

Non-bonded 
 

Bonded 
 

Angle  

 

Dihedral 
 

Improper 

 
 

 

Framework Coupling on Thermal Conductivity. The thermal conductivity for an 

interpenetrated MOF can be estimated as the sum of the thermal conductivities of individual 

frameworks. However, at higher ε and moderate σ values it was observed that the thermal 

conductivity of the interpenetrating framework is lower than the sum of individual frameworks. 

As a result, a simple predictive equation is proposed which includes a coupling constant (γ) that 

describes the change of thermal conductivity with framework interaction: 
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𝑘𝐼𝑃 = (𝑘1 + 𝑘2)(1 − 𝛾)                                                     B-1 

 

where kIP is the thermal conductivity of the interpenetrated framework and k1 and k2 are the thermal 

conductivities of the individual interpenetrating frameworks. The coupling constant, γ, is a 

function of σ and ε values used for approximating interframework interactions using Lennard Jones 

potential (see Eq. 2-1). We define the coupling constant as a product of the individual coupling 

constants of σ and ε as: 

 

𝛾 = 𝛾𝜎𝛾𝜀                                                                   B-2 

 

For ε, a linear equation is formulated with the following boundary conditions: 

 

𝜀𝑚𝑖𝑛 < 𝜀 < 𝜀𝑚𝑎𝑥 

𝜀 = 𝜀𝑚𝑖𝑛        → 𝛾𝜀 = 0 

𝜀 = 𝜀𝑚𝑎𝑥       → 𝛾𝜀 =  𝛾𝜀
𝑚𝑎𝑥 

 

where εmin, εmax and γε
max are the lower and upper boundaries for ε coupling and the maximum 

contribution of ε to the overall coupling constant, respectively. In this study εmin and εmax were 

selected as the ε value of carbon atom in UFF (0.1 kcal/mol) and maximum ε used for 

interframework interactions (1.0 kcal/mol). Using the boundary conditions, the following step 

function is derived for γε (see Appendix Figure 19a): 
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𝛾𝜀(𝜀) = { 

0                                           𝜀 < 𝜀𝐶
 𝛾𝜀 
𝑚𝑎𝑥(𝜀−𝜀𝐶)

𝜀𝑚𝑎𝑥−𝜀𝐶
          𝜀𝐶 < 𝜀 < 𝜀𝑚𝑎𝑥

0                                      𝜀 > 𝜀𝑚𝑎𝑥

                                    B-3 

 

For σ, a quadratic equation was formulated with the following boundary conditions: 

 

𝑑𝑚𝑖𝑛 < 𝜎 < 𝑑𝑚𝑎𝑥 

𝜎 = 𝑑𝑚𝑎𝑥                    → 𝛾𝜎 = 0 

𝜎 = 𝑑𝑚𝑖𝑛                     → 𝛾𝜎 = −0 

𝜎 =
𝑑𝑚𝑖𝑛 + 𝑑𝑚𝑎𝑥

2
    →  𝛾𝜎 =  𝛾𝜎

𝑚𝑎𝑥 

 

where dmin, dmax, and γσ
max are the lower and upper boundaries for σ coupling and the maximum 

contribution of σ to the overall coupling constant, respectively. In this study dmin and dmax were 

selected as 1.5 and 4.5 Å, respectively. We observed that dmin corresponds well with the half of the 

minimum interatomic distance (3.33 Å) and dmax corresponds well with the half of the maximum 

interframework distance (8.67 Å). Using the boundary conditions, the following step function is 

derived for γσ (see Appendix Figure 19b): 

 

𝛾𝜎(𝜎) = {

0                                                                                 𝜎 < 𝑑𝑚𝑖𝑛
4 𝛾𝜎

𝑚𝑎𝑥

2𝑑𝑚𝑖𝑛𝑑𝑚𝑎𝑥−𝑑𝑚𝑖𝑛
2 −𝑑𝑚𝑎𝑥

2 (𝜎 − 𝑑𝑚𝑖𝑛)(𝜎 − 𝑑𝑚𝑎𝑥)    𝑑𝑚𝑖𝑛 < 𝜎 < 𝑑𝑚𝑎𝑥

 0                                                                                 𝜎 > 𝑑𝑚𝑎𝑥

            B-4 
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Appendix Figure 19 Coupling constant profile for different coupling constant limits. a) ε coupling constant 

(γε) profile for changing limits (γεmax). b) σ coupling constant (γσ) profile for changing limits (γσmax). 

 

 

Appendix Figure 20 Thermal conductivity prediction error (%) for interpenetrated framework using the 

relationship in Eq. B-1 for a range of σ (γσ
max) and ε (γε

max) coupling constant limits. Minimum average error 

(7.8 %) was found for γσmax: 0.498 and γεmax: 0.889. 
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The maximum contributions of σ (γσ
max) and ε (γε

max) to the coupling constant can be optimized 

by minimizing the average prediction error of Eq. B-1. The average error of Eq. B-1 for varying 

γσ
max and γε

max were calculated for all range of interframework interactions considered in this study 

(see Appendix Figure 20). The lowest average error was found to be 7.8% with γσ
max = 0.498 and 

γε
max = 0.889. 

Relative Distance Between Interpenetrating Frameworks. The relative distance of one 

corner atom of the second framework (Appendix Figure 21 shown in red) to the 8 corner atoms of 

the surrounding first framework (Appendix Figure 21 shown in blue) were calculated from MD 

trajectories. The calculation was done for a single unit cell selected from the center of the 

simulation box. Using this calculation, the relative position of interpenetrating frameworks were 

analyzed as shown in the manuscript. 

 

 

Appendix Figure 21 Interpenetrated idealized MOF structure where entangled frameworks are colored in 

blue and red. The zoomed in single unit cell shows atoms used to calculate the relative distance between 

frameworks in 2D. In 3D the distance between the red atom in the middle and all 8 corner atoms, identical to 

a body centered cubic configuration, is calculated for each 1000 timesteps of MD trajectories. 
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Mean Squared Displacement. Mean squared displacement (MSD) was calculated by 

averaging the distance of a given atom to a reference position using the equation below: 

 

                 < 𝑑𝑖
2 > =

1

𝑁
∑𝑑𝑖(𝑡)

2

𝑁

𝑡=1

  B-5 

 

where 𝑑𝑖(𝑡) is the distance of atom 𝑖 from its position at 𝑡 = 0 and 𝑁 is the number of timesteps. 

Consequently 𝑑𝑖(𝑡) is calculated as: 

 

𝑑𝑖(𝑡) = √[𝑥𝑖(𝑡) − 𝑥𝑖(0)]2 + [𝑦𝑖(𝑡) − 𝑦𝑖(0)]2 + [𝑧𝑖(𝑡) − 𝑧𝑖(0)]2                  B-6 

 

The calculation was performed for the interpenetrating framework atoms separately to see 

whether the displacement is same for each framework. As expected, the MSD were almost 

identical for each simulation. 

The MSD is calculated using the therMOF Python library for a wide range of force field 

parameters that describe framework interactions and reported in the manuscript. MSD was 

observed to increase towards low σ and ε values. This suggests that when the framework 

interactions are weaker and the distance between framework atoms are higher the framework 

mobility is increased. 

Thermodynamics. Thermodynamic data including temperature, pressure, total energy, pair 

energy, and molecular energy were recorded for each simulation in each 1000 timesteps. Each bin 

in the histogram represents average of 10 runs of MD simulations with 2.3 million timesteps. 
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Appendix Figure 22 2D histograms for thermodynamic data recorded during framework interaction 

parametric screening. All energy in kcal/mol. 

 

The temperature is randomly distributed among interaction parameters with no apparent trend. 

This suggests the system is properly relaxed in each simulation and temperature was kept mostly 

constant with approximately ± 3 °C deviation. The pressure is mostly similar among interaction 

parameters except for two regions corresponding to higher ε and σ values. The high-pressure region 

is observed for σ > 5 Å and ε > 0.1 kcal/mol which have high repulsion forces. The low-pressure 

region is defined by 3 < σ < 5 Å and 0.2 < ε < 1.0 kcal/mol. The total energy is defined as the sum 

of molecular energy and pair energy. As seen in Appendix Figure 22 the pair energy dominates 

the total energy and both show similar trends with pressure. 

Appendix B.2 Thermal Transport in Flexible MOFs 

The atomic positions for the idealized MOFs were adapted from the idealized cubic MOF 

model mentioned in Appendix B1. In order to model framework breathing we define two-body 
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bonded and three-body angular interactions between atoms, which are modeled using harmonic 

potentials (see Figure 14). To determine meaningful spring constants for the potentials we screened 

spring constants between 1 - 10 kcal/mol for the 90° structure with increments of 1 kcal/mol for 

both two-body bonded and three-body angular harmonic potentials (see Appendix Figure 23). As 

seen in Appendix Figure 23a the thermal conductivity increases at higher spring constants, 

especially for angular potential. For bonded potential, this increase seems to be maximized around 

6 kcal/mol and then levels of with further increase. 

 

 

Appendix Figure 23 2D histograms for change in (a) thermal conductivity (W/mK) and (b) simulated box 

volume to idealized box volume ratio (%) as a function of spring constants for two-body bonded and three-

body angular harmonic potentials.  

 

As the idealized structure is relaxed during the MD simulation in the NPT ensemble the 

simulation box size is changed compared to the initial configuration. This change is influenced by 

the spring constants used for the bonded and angle potentials as they determine the final geometry 

of the structure. Here we calculated the average box size during the NPT ensemble and plotted is 
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as a function of spring constant for two-body bonded and three-body angular harmonic potentials. 

As seen in Appendix Figure 23b the simulation box size increases compared to initial (ideal) box 

size at higher angular spring constants and lower bonded spring constants. Overall, the simulated 

box size is relatively close to the ideal box size.  

 

 

Appendix Figure 24 2D histograms for change in thermal conductivity (W/mK) due to (a) bonds and (b) 

angles as a function of spring constants for two-body bonded (x-axis) and three-body angular (y-axis) 

harmonic potentials.  

 

Furthermore, we isolated the contribution of bonded and angular harmonic potentials to 

thermal conductivity and investigated the effect of spring constants of these potentials to thermal 

conductivity. As seen in Appendix Figure 24, bonded potentials contribute considerably more to 

the overall thermal conductivity compared to angle potentials. Overall, the thermal conductivity 

shows similar behavior for both of these potentials as observed in Appendix Figure 23. 

As we investigated the heat current autocorrelation functions we realized not all these spring 

constants were resulting in converged simulations to estimate accurate thermal conductivities. As 
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seen in Appendix Figure 25b the average thermal conductivity change during the simulation time 

needs to flatten in order to estimate the overall thermal conductivity accurately. To check for that 

we calculated the absolute slope of a linear fit to the last 150 ps of the autocorrelation window (see 

the red line in Appendix Figure 25b) of all averaged thermal conductivity vs time curves for all 

the spring constants considered. As this slope gets closer to zero it means that the fit region gets 

flatter which is an indication of thermal conductivity convergence. In Appendix Figure 25a, the 

slope of these fits (i.e. convergence) is given as a function of spring constants for bonded and 

angular potentials. As the spring constant for both bonded and angular potentials increase, the 

convergence seems to get worse.  

 

 

Appendix Figure 25 (a) 2D histogram for the thermal conductivity convergence as a function of spring 

constants for two-body bonded (x-axis) and three-body angular (y-axis) harmonic potentials. (b) Average 

thermal conductivity vs simulation time for the idealized structure with a bonded potential spring constant of 

6 kcal/mol and angular potential spring constant of 5 kcal/mol. “k” stands for overall thermal conductivity, 

“k_bond” and “k_angle” are the contributions of bonded and angular potentials to the thermal conductivity, 

respectively. “k_est” is the estimated thermal conductivity (0.99 kcal/mol) calculated by averaging the last 150 

ps of the time dependent thermal conductivity curve.  
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With further investigation the spring constant for the bonded potential was selected as 6 

kcal/mol and the spring constant for the angular potential was selected as 5 kcal/mol. These 

parameters were selected by considering the proximity of the estimated thermal conductivity to 1 

W/mK, the proximity of the simulated box volume to ideal box volume and finally the thermal 

conductivity convergence. Overall, the aforementioned parameter set gave the best results. 

Adding Adsorbate Molecules to Idealized Structures. The idealized structures were 

populated with single site adsorbates at a density of 5 molecules/nm3 using Packmol software.194  

All the gas molecules were randomly distributed in the simulation box making sure none of them 

overlapped with the framework atoms or each other. A 5 Å tolerance was used to make sure 

molecules were not added to the edges of the box and all gas molecules were placed at least 4 Å 

apart from each other and the framework atoms. For each tilt angle considered, same initial 

positions of gas molecules were used with different initial velocities. Total number of atoms in the 

simulation box and the number of adsorbate atoms for each tilt angle is in Appendix Table 4. 

 

Appendix Table 4 Total number of atoms and total number of adsorbate molecules for simulation setups with 

different tilt angles 

Tilt angle (°) Total # atoms # Adsorbates 

40 5229 1645 

50 5545 1961 

60 5801 2217 

70 5989 2405 

80 6105 2521 

90 6144 2560 

 

 

The nonbonded interaction for the gas molecules were modeled using a Lennard-Jones 

potential with mixed force field parameters given in Appendix Table 5. 
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Appendix Table 5 Force field parameters for a Lennard-Jones potential modeling vdW interactions of gas 

molecules 

Interaction Epsilon (kcal/mol) Sigma (Å) 

MOF – Gas 0.429 3.73 

Gas – Gas 0.294 3.73 
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Appendix C Calculating Surface Diffusion of Large Molecules 

Appendix C.1 Force Field Parameters 

All molecules were assumed to be rigid and the Cu (110) surface atom positions were fixed 

during all simulations (including both MD and TST). Only vdW interactions between the molecule 

and surface were considered using a Lennard-Jones potential with a cut-off radius of 12.5 Å as 

implemented in LAMMPS126 software package. The force field parameters were adopted from 

Universal Force Field (UFF)101 and Lorenz-Berthelot mixing rules were applied. For classical MD 

simulations the parameters were used without change, however, for TST simulations all mixed 

parameters were scaled by 10 (see Appendix Table 6 below for all parameters used). 

 

Appendix Table 6 Simulation parameters used in this study to calculate vdW energy using a Lennard-Jones 

potential. All parameters are for pairs of atoms where the epsilon values are in kcal/mol and sigma values are 

in Å. 

 
MD TST 

Element 

Pair 

Epsilon 

(kcal/mol) 

Sigma 

(Å) 

Epsilon 

(kcal/mol) 

Sigma 

(Å) 

Cu - B 0.15 3.376 1.5 3.376 

Cu - C 0.115 3.272 1.15 3.272 

Cu - H 0.074 2.842 0.74 2.842 

Cu - N 0.093 3.187 0.93 3.187 

Cu - O 0.087 3.116 0.87 3.116 
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Appendix C.2 Calculating Diffusion Coefficient from Rigid Body Molecular Dynamics 

Simulations 

For each molecule, the center of mass was calculated at every 1 ps and was used to calculate 

mean squared displacement (MSD) to estimate diffusion coefficient. The MSD is calculated using 

the relation below: 

 

           𝑀𝑆𝐷 = 〈(𝑥 − 𝑥0)
2〉 =

1

𝑁
∑[𝑥𝑛(𝑡) − 𝑥𝑛(0)]

2

𝑁

𝑖

 C-1 

 

where N is the number of particles to be averaged (in our case since there is only one molecule N 

becomes 1), xn(0)  is the reference position, and xn(t) is the position at time t. Calculating MSD 

with respect to different reference times, we can plot MSD vs τ (Appendix Fig 26a). Repeating this 

for multiple runs to improve sampling we can then get an average MSD vs τ and using Einstein’s 

relation we can calculate self-diffusion coefficient using the relation below: 

 

                𝑀𝑆𝐷 = (2𝑛𝐷)𝜏 + 𝑏  C-2 

 

where n is the dimensionality of motion, D is the self-diffusion coefficient, τ is the time delta, and 

b is the constant to the linear fit (see Appendix Figure 26b). 
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Appendix Figure 26 (a) Mean squared displacement (MSD) vs time delta (τ) for 20 molecular dynamics 

simulations in [𝟏𝟏̅𝟎] direction for HtBDC molecule. (b) Average of all MSD vs τ curves and a linear fit 

between 1.5 ns – 5.0 ns to calculate self-diffusion coefficient. The R-squared value for the fit as well as the 

diffusion coefficient are given in the legend. 
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Appendix Figure 27 (a) Averaged mean squared displacement (MSD) vs time delta (τ) for 20 molecular 

dynamics simulations in [𝟏𝟏̅𝟎] direction. A linear fit between 1.5 ns – 5.0 ns was used to calculate self-

diffusion coefficient. The R-squared value for the fit as well as the diffusion coefficients are given in the 

legend and the molecule names are given in the title. 
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Appendix Figure 28 (a) Averaged mean squared displacement (MSD) vs time delta (τ) for 20 molecular 

dynamics simulations in [𝟎𝟎𝟏] direction. A linear fit between 1.5 ns – 5.0 ns was used to calculate self-

diffusion coefficient. The R-squared value for the fit as well as the diffusion coefficients are given in the 

legend and the molecule names are given in the title. 
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Appendix C.3 Transition State Theory 

As the diffusion of large molecules are quite slow and time scales cannot be achieved with 

classical MD simulations, we further increased adsorption energy by increasing LJ epsilon 

parameter of the surface atom and employed umbrella sampling and weighted histogram analysis 

method (WHAM)176 to calculate free energy barriers for diffusion. We developed a Python 

wrapper for the WHAM implementation by Grossfield et al.195 for this study which is freely 

available on GitHub.196  

For the umbrella sampling, we divided the orthogonal unit cell of a Cu (110) surface (3.597 x 

2.543 Å) using 0.1 Å grid spacing with two additional grid points on the edges of the cell resulting 

in 29 points in [11̅0] and 39 points in [001] directions (1131 total). For each point on the surface, 

we placed the molecule at that point and constrained its motion in [11̅0] and [001] directions in 

separate simulations using a spring with a constant of 200 kcal/mol. The motion in the direction 

perpendicular to the surface was not constrained.  

For a given direction, periodic free energy barriers were calculated for each parallel pathway. 

For [11̅0] direction 39 parallel paths were considered with 29 points in each path. For each of 

these paths the transition state energy was estimated and for a given direction overall transition 

state energy was calculated using a Boltzmann average.  

Using one dimensional transition state theory, hopping rate between these points were 

calculated using the equation below: 

 

                 𝑘𝐴→𝐵 = 𝜅√
𝑘𝐵𝑇

2𝜋𝑀
×

𝑒−𝛽𝐹(𝑞
∗)

∫ 𝑒−𝛽𝐹(𝑞)𝑑𝑞
  C-3 
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where 𝑘𝐴→𝐵 is hopping rate from state A to B, 𝜅 is transmission coefficient, 𝑘𝐵 is Boltzmann 

constant, 𝑇 is temperature, 𝑀 is mass of the molecule, 𝐹(𝑞) is free energy at position 𝑞 where * 

denotes the transition state position and 𝛽 = 1 𝑘𝐵⁄ 𝑇.182 In this study the transmission coefficient 

𝜅 was assumed to be 1. After calculating hopping rate, self-diffusion coefficient can be estimated 

using the relation below: 

 

                  𝐷𝑆 =
1

2𝑛
× 𝑘𝐴→𝐵 × 𝜆

2  C-4 

 

where 𝑛 is dimensionality and 𝜆 is hopping length. As diffusion coefficient was calculated 

separately for each direction, dimensionality was taken as 1. 
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Appendix Figure 29 Free energy barriers and self-diffusion coefficients for each molecule and each umbrella 

sampling paths for the two primary crystallographic directions. Red and blue points correspond to results for 

[𝟎𝟎𝟏], and [𝟏𝟏̅𝟎] directions, respectively. The dashed line represents the Boltzmann averaged value for the 

overall diffusion in that direction.  The molecule name, crystallographic direction and variable names are 

given in the title.  



 106 

Appendix C.4 Elevation Weighted Density 

 

Appendix Figure 30 Elevation weighted density curves for the nine molecules used in this study 

 

As discussed in Section 4.1, we calculated elevation weighted density for each molecule 

according their orientation with respect to the surface. This calculation was done by counting the 

number of atoms within a selected cut off-distance (1 Å) as we discretely move up from the surface 

(with a step size of 0.05 Å) until we reach a distance of 12 Å. The resulting distance vs number of 

atoms graphs are plotted for each molecule in Appendix Figure 30 below. 
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In order to calculate a scalar value from the curves in Appendix Figure 30, each point from 

z=0 to z=12 was scaled exponentially to reach zero at z=12, where z is the elevation in Å. An 

exponential decay equation was used for the scaling and the constants were chosen to make sure 

the scaling reaches to zero at the cut-off radius. The elevation weighted density equation form is 

given below: 

 

                    ∑𝑁𝑧[𝑎(1 − 𝑏)
𝑧]

𝑟𝑐

𝑧=0

 C-5 

 

where rc is the cut-off radius taken as 12 Å, Nz is the number of atoms for a given elevation z, a, 

and b are the constants of the exponential decay equation which were taken as 0.376 and 0.4, 

respectively. 
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Appendix D Software Packages Developed 

In this section, we highlight the software development efforts for this dissertation. Numerous 

packages were developed and made available with open source licenses on GitHub. When 

developing these packages, we made sure to use best software practices as much as possible. These 

include creating proper documentation, employing unit tests, using continuous integration and 

version control. Here we list some of the more developed packages and briefly explain their 

functionality. 

Appendix D.1 Ångstrom: a Python Package for Molecular Architecture and Visualization 

 

 

Ångström is a Python package for geometric molecular operations, molecular visualization and 

animations. The purpose of Ångström is to be a lightweight and easily integrable package. This 

way it can be easily included in various simulation packages. Ångström offers high quality 

molecular visualization from the command-line. It provides easy integration with visualization 

software such as Blender, OpenBabel, VMD for producing images and animations as well nglview 
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Python packes for visualization in Jupyter notebooks. Ångström is available from: 

https://github.com/kbsezginel/angstrom. 

Appendix D.2 Nanocar Builder Avogadro Plug-in 

 

 

As discussed in Section 4.2 nanocar builder is a plug-in for Avogadro 2 molecular visualization 

software. Using this plug-in, nanocar molecules can be assembled from a collection of chassis and 

wheel molecular components. Metal slabs with arbitrary size and geometry can be built and the 

nanocar can be placed on a metal surface. Finally, a LAMMPS158 Molecular Dynamics 

configuration file can be exported to study diffusion of the nanocar on metal surfaces. Detailed 

installation and usage instructions (including a video tutorial) are provided on the GitHub page: 

https://github.com/kbsezginel/nanocar-avogadro. 

https://github.com/kbsezginel/angstrom
https://github.com/kbsezginel/nanocar-avogadro
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Appendix D.3 IPMOF: a Python Package for Discovering Interpenetrated MOFs 

 

 

As introduced in Section 2, IPMOF tests whether two given MOFs can interpenetrate each 

other by rapidly trying different relative orientations of the two frameworks and reports the 

plausibly energetically favorable ones. The algorithm tries many different orientations of two 

given MOFs by performing rotation and translation operations according to user configurable 

parameters. After an orientation is chosen, its energetic favorability is calculated based on the 

pairwise interactions between each atom on one framework with every atom on the other 

framework. Overall, IPMOF can rapidly detect cases where interpenetration is impossible, and 

suggest ones where it may be plausible. Detailed installation and usage instructions and the 

software are available from: https://github.com/kbsezginel/IPMOF. 

Appendix D.4 TherMOF: a Python Package for Investigating Thermal Transport in MOFs 

TherMOF library can be used to initialize, run, and analyze simulation results to investigate 

thermal transport in porous crystals. This package was used in Section 3 to investigate thermal 

conductivity of interpenetrating and flexible MOFs. Detailed installation and usage instructions, 

https://github.com/kbsezginel/IPMOF


 111 

representative simulation setup files and the software are available from: 

https://github.com/kbsezginel/thermof. 

 

 

Appendix D.5 Moleidoscope (Molecular Kaleidoscope) 

 

 

 

A key challenge in chemistry is to design molecules with given shapes and sizes comprising 

many components. One approach to designing structures with such a large number of components 

is to leverage the typically highly symmetrical nature of supramolecular structures. 

“Moleidoscope” interactively applies point group symmetry operations to generate hypothetical 

supramolecular structures in silico. Starting with a simple organic compound, the molecule is 

replicated using mirror operations, and by selecting multiple mirrors (3D planes), prisms can be 

https://github.com/kbsezginel/thermof
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formed to have multiple copies of the molecule oriented symmetrically. Moreover, as is the case 

with kaleidoscope, by rotating these mirrors even more copies can be obtained with many different 

symmetries. Software and installation instructions are available from: 

https://github.com/kbsezginel/Moleidoscope. 

Appendix D.6 Tutorials for Computational Chemistry Tools and Scientific Visualization 

 

In addition to software packages highlighted here, tutorials for using other computational 

chemistry tools and scientific visualization have been put together. These include Python scripts 

for chemical file conversion and manipulation, tutorials for writing Avogadro plug-ins, and 

tutorials for using RASPA, LAMMPS, OpenBabel, EQeq, Packmol, and HostDesigner. These are 

available from: https://github.com/kbsezginel/chem-tools-tutorials. Furthermore, additional 

tutorials and examples for using matplotlib Python plotting library and different molecular 

visualization tools are available from: https://github.com/kbsezginel/visualization. 

 

 

  

https://github.com/kbsezginel/Moleidoscope
https://github.com/kbsezginel/chem-tools-tutorials
https://github.com/kbsezginel/visualization


 113 

Bibliography 

1. Browne, W. R. & Feringa, B. L. Making molecular machines work. Nat Nano 1, 25–35 

(2006). 

2. Eelkema, R. et al. Molecular machines: Nanomotor rotates microscale objects. Nature 440, 

163–163 (2006). 

3. Juluri, B. K. et al. A Mechanical Actuator Driven Electrochemically by Artificial Molecular 

Muscles. ACS Nano 3, 291–300 (2009). 

4. Collier, C. P. et al. Electronically Configurable Molecular-Based Logic Gates. Science 285, 

391–394 (1999). 

5. Van Noorden, R. & Castelvecchi, D. World’s tiniest machines win chemistry Nobel. Nature 

News 538, 152 (2016). 

6. Zhang, Q. & Qu, D.-H. Artificial Molecular Machine Immobilized Surfaces: A New Platform 

to Construct Functional Materials. ChemPhysChem 1–11 (2016). 

7. Carter, N. J. & Cross, R. A. Mechanics of the kinesin step. Nature 435, 308 (2005). 

8. Kudernac, T. et al. Electrically driven directional motion of a four-wheeled molecule on a 

metal surface. Nature 479, 208–211 (2011). 

9. Shirai, Y., Morin, J.-F., Sasaki, T., Guerrero, J. M. & Tour, J. M. Recent progress on 

nanovehicles. Chemical Society Reviews 35, 1043–1055 (2006). 

10. Chiang, P.-T. et al. Toward a light-driven motorized nanocar: Synthesis and initial imaging 

of single molecules. Acs Nano 6, 592–597 (2011). 

11. Morin, J.-F., Sasaki, T., Shirai, Y., Guerrero, J. M. & Tour, J. M. Synthetic Routes toward 

Carborane-Wheeled Nanocars. J. Org. Chem. 72, 9481–9490 (2007). 

12. Akimov, A. V., Nemukhin, A. V., Moskovsky, A. A., Kolomeisky, A. B. & Tour, J. M. 

Molecular Dynamics of Surface-Moving Thermally Driven Nanocars. J. Chem. Theory 

Comput. 4, 652–656 (2008). 

13. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The Chemistry and Applications 

of Metal-Organic Frameworks. Science 341, 1230444 (2013). 

14. Long, J. R. & Yaghi, O. M. The pervasive chemistry of metal–organic frameworks. Chemical 

Society Reviews 38, 1213–1214 (2009). 



 114 

15. Kitagawa, S. Metal–organic frameworks (MOFs). Chemical Society Reviews 43, 5415–5418 

(2014). 

16. Zhou, H.-C., Long, J. R. & Yaghi, O. M. Introduction to Metal–Organic Frameworks. Chem. 

Rev. 112, 673–674 (2012). 

17. Cui, Y. et al. Metal–organic frameworks as platforms for functional materials. Accounts of 

chemical research 49, 483–493 (2016). 

18. Lu, W. et al. Tuning the structure and function of metal–organic frameworks via linker 

design. Chemical Society Reviews 43, 5561–5593 (2014). 

19. Alberts, B. Molecular biology of the cell. (Garland science, 2017). 

20. Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial Molecular 

Machines. Chem. Rev. 115, 10081–10206 (2015). 

21. Kassem, S. et al. Artificial molecular motors. Chemical Society Reviews (2017) 

doi:10.1039/C7CS00245A. 

22. Kistemaker, J. C. M., Štacko, P., Visser, J. & Feringa, B. L. Unidirectional rotary motion in 

achiral molecular motors. Nat Chem 7, 890–896 (2015). 

23. Yang, W., Li, Y., Liu, H., Chi, L. & Li, Y. Design and Assembly of Rotaxane-Based 

Molecular Switches and Machines. Small 8, 504–516 (2012). 

24. Feringa, B. L., van Delden, R. A., Koumura, N. & Geertsema, E. M. Chiroptical molecular 

switches. Chemical Reviews 100, 1789–1816 (2000). 

25. Murakami, H., Kawabuchi, A., Matsumoto, R., Ido, T. & Nakashima, N. A multi-mode-

driven molecular shuttle: photochemically and thermally reactive azobenzene rotaxanes. 

Journal of the American Chemical Society 127, 15891–15899 (2005). 

26. Bissell, R. A., Córdova, E., Kaifer, A. E. & Stoddart, J. F. A chemically and electrochemically 

switchable molecular shuttle. Nature 369, 133 (1994). 

27. Lewandowski, B. et al. Sequence-specific peptide synthesis by an artificial small-molecule 

machine. Science 339, 189–193 (2013). 

28. Kassem, S. et al. Stereodivergent synthesis with a programmable molecular machine. Nature 

549, 374 (2017). 

29. Bo, G. et al. An artificial molecular machine that builds an asymmetric catalyst. Nature 

nanotechnology 13, 381 (2018). 

30. Prasanna de Silva, A. & McClenaghan, N. D. Proof-of-principle of molecular-scale 

arithmetic. Journal of the American Chemical Society 122, 3965–3966 (2000). 



 115 

31. Magri, D. C., Brown, G. J., McClean, G. D. & de Silva, A. P. Communicating chemical 

congregation: a molecular AND logic gate with three chemical inputs as a “lab-on-a-

molecule” prototype. Journal of the American Chemical Society 128, 4950–4951 (2006). 

32. Klärner, F.-G. & Kahlert, B. Molecular tweezers and clips as synthetic receptors. Molecular 

recognition and dynamics in receptor- substrate complexes. Accounts of chemical research 

36, 919–932 (2003). 

33. Yurke, B., Turberfield, A. J., Mills Jr, A. P., Simmel, F. C. & Neumann, J. L. A DNA-fuelled 

molecular machine made of DNA. Nature 406, 605 (2000). 

34. Ceroni, P., Credi, A. & Venturi, M. Light to investigate (read) and operate (write) molecular 

devices and machines. Chemical Society Reviews 43, 4068–4083 (2014). 

35. Silvi, S., Venturi, M. & Credi, A. Light operated molecular machines. Chemical 

Communications 47, 2483–2489 (2011). 

36. Berna, J. et al. Macroscopic transport by synthetic molecular machines. Nature materials 4, 

704 (2005). 

37. Badjić, J. D., Balzani, V., Credi, A., Silvi, S. & Stoddart, J. F. A molecular elevator. Science 

303, 1845–1849 (2004). 

38. Tuncel, D., Özsar, Ö., Tiftik, H. B. & Salih, B. Molecular switch based on a cucurbit [6] uril 

containing bistable [3] rotaxane. Chemical Communications 1369–1371 (2007). 

39. Nguyen, T. D. et al. Construction of a pH-driven supramolecular nanovalve. Organic letters 

8, 3363–3366 (2006). 

40. Zhao, Y.-L. et al. A redox-switchable α-cyclodextrin-based [2] rotaxane. Journal of the 

American chemical society 130, 11294–11296 (2008). 

41. Bruns, C. J. et al. Redox switchable daisy chain rotaxanes driven by radical–radical 

interactions. Journal of the American Chemical Society 136, 4714–4723 (2014). 

42. Zhang, Z., Han, C., Yu, G. & Huang, F. A solvent-driven molecular spring. Chemical Science 

3, 3026–3031 (2012). 

43. Klajn, R., Browne, K. P., Soh, S. & Grzybowski, B. A. Nanoparticles that “remember” 

temperature. Small 6, 1385–1387 (2010). 

44. Stoddart, J. F. The chemistry of the mechanical bond. Chemical Society Reviews 38, 1802–

1820 (2009). 

45. Bruns, C. J. & Stoddart, J. F. Rotaxane-based molecular muscles. Accounts of chemical 

research 47, 2186–2199 (2014). 



 116 

46. Iwaso, K., Takashima, Y. & Harada, A. Fast response dry-type artificial molecular muscles 

with [c2] daisy chains. Nature chemistry 8, 625–632 (2016). 

47. Goujon, A. et al. Bistable [c 2] Daisy Chain Rotaxanes as Reversible Muscle-like Actuators 

in Mechanically Active Gels. Journal of the American Chemical Society 139, 14825–14828 

(2017). 

48. Jang, S. S. et al. Structures and properties of self-assembled monolayers of bistable [2] 

rotaxanes on Au (111) surfaces from molecular dynamics simulations validated with 

experiment. Journal of the American Chemical Society 127, 1563–1575 (2005). 

49. Jang, Y. H., Jang, S. S. & Goddard, W. A. Molecular dynamics simulation study on a 

monolayer of half [2] rotaxane self-assembled on Au (111). Journal of the American 

Chemical Society 127, 4959–4964 (2005). 

50. Jang, S. S. et al. Molecular dynamics simulation of amphiphilic bistable [2] rotaxane 

Langmuir monolayers at the air/water interface. Journal of the American Chemical Society 

127, 14804–14816 (2005). 

51. Kim, H. et al. Free energy barrier for molecular motions in bistable [2] rotaxane molecular 

electronic devices. The Journal of Physical Chemistry A 113, 2136–2143 (2009). 

52. Kelly, T. R., De Silva, H. & Silva, R. A. Unidirectional rotary motion in a molecular system. 

Nature 401, 150 (1999). 

53. Vicario, J., Meetsma, A. & Feringa, B. L. Controlling the speed of rotation in molecular 

motors. Dramatic acceleration of the rotary motion by structural modification. Chemical 

Communications 5910–5912 (2005). 

54. Fang, C., Oruganti, B. & Durbeej, B. Computational study of the working mechanism and 

rate acceleration of overcrowded alkene-based light-driven rotary molecular motors. RSC 

Advances 4, 10240–10251 (2014). 

55. Oruganti, B., Fang, C. & Durbeej, B. Computational design of faster rotating second-

generation light-driven molecular motors by control of steric effects. Physical Chemistry 

Chemical Physics 17, 21740–21751 (2015). 

56. Oruganti, B., Wang, J. & Durbeej, B. Computational Insight to Improve the Thermal 

Isomerisation Performance of Overcrowded Alkene-Based Molecular Motors through 

Structural Redesign. ChemPhysChem 17, 3399–3408 (2016). 

57. Wang, J., Oruganti, B. & Durbeej, B. Light-driven rotary molecular motors without point 

chirality: a minimal design. Physical Chemistry Chemical Physics 19, 6952–6956 (2017). 

58. Oruganti, B., Wang, J. & Durbeej, B. Quantum chemical design of rotary molecular motors. 

International Journal of Quantum Chemistry 118, e25405 (2018). 



 117 

59. Wang, J. & Durbeej, B. Toward Fast and Efficient Visible-Light-Driven Molecular Motors: 

A Minimal Design. ChemistryOpen 7, 583–589 (2018). 

60. Wang, J. & Durbeej, B. Molecular motors with high quantum efficiency and visible-light 

responsiveness: Meeting two challenges in one design. Computational and Theoretical 

Chemistry 1148, 27–32 (2019). 

61. Konyukhov, S. S. et al. Rigid-body molecular dynamics of fullerene-based nanocars on 

metallic surfaces. Journal of chemical theory and computation 6, 2581–2590 (2010). 

62. Akimov, A. V., Williams, C. & Kolomeisky, A. B. Charge transfer and chemisorption of 

fullerene molecules on metal surfaces: application to dynamics of nanocars. The Journal of 

Physical Chemistry C 116, 13816–13826 (2012). 

63. Akimov, A. V. & Kolomeisky, A. B. Unidirectional rolling motion of nanocars induced by 

electric field. The Journal of Physical Chemistry C 116, 22595–22601 (2012). 

64. Ganji, M. D., Ahangari, M. G. & Emami, S. M. Carborane-wheeled nanocar moving on 

graphene/graphyne surfaces: van der Waals corrected density functional theory study. 

Materials Chemistry and Physics 148, 435–443 (2014). 

65. Zhu, K., O’keefe, C. A., Vukotic, V. N., Schurko, R. W. & Loeb, S. J. A molecular shuttle 

that operates inside a metal–organic framework. Nature chemistry 7, 514 (2015). 

66. Proserpio, D. M. Topological crystal chemistry: Polycatenation weaves a 3D web. Nat Chem 

2, 435–436 (2010). 

67. Guo, X.-G., Yang, W.-B., Wu, X.-Y., Lin, L. & Lu, C.-Z. 3D/3D Hetero-Interpenetrating 

Diamondoid Framework and Homo-Interpenetrating pcu Network by a One-Pot Reaction. 

Eur. J. Inorg. Chem. 2014, 2481–2485 (2014). 

68. Zhang, M.-D. et al. Chiral 3D/3D hetero-interpenetrating framework with six kinds of 

helices, 3D polyrotaxane and 2D network via one-pot reaction. CrystEngComm 15, 227–230 

(2012). 

69. Xu, H. et al. An unprecedented 3D/3D hetero-interpenetrated MOF built from two different 

nodes, chemical composition, and topology of networks. CrystEngComm 14, 5720–5722 

(2012). 

70. Wen, L., Cheng, P. & Lin, W. Mixed-motif interpenetration and cross-linking of high-

connectivity networks led to robust and porous metal–organic frameworks with high gas 

uptake capacities. Chemical Science 3, 2288 (2012). 

71. Yao, X.-Q. et al. Chiral and Porous Coordination Polymers Based on an N-Centered 

Triangular Rigid Ligand. Crystal Growth & Design 11, 231–239 (2011). 

72. Lee, H.-J. et al. Controlled assembly of an unprecedented 2D + 3D interpenetrated array of 

(4,4)-connected and pcu topologies. CrystEngComm 13, 4814–4816 (2011). 



 118 

73. Hou, L., Zhang, J.-P. & Chen, X.-M. Two Metal-Carboxylate Frameworks Featuring 

Uncommon 2D + 3D and 3-Fold-Interpenetration: (3,5)-Connected Isomeric hms and gra 

Nets. Crystal Growth & Design 9, 2415–2419 (2009). 

74. Carlucci, L., Ciani, G., Maggini, S. & Proserpio, D. M. A New Polycatenated 3D Array of 

Interlaced 2D Brickwall Layers and 1D Molecular Ladders in [Mn 2 (bix) 3 (NO 3 ) 4 ]·2CHCl 

3 [bix = 1,4-bis(imidazol-1-ylmethyl)benzene] That Undergoes Supramolecular 

Isomerization upon Guest Removal. Crystal Growth & Design 8, 162–165 (2008). 

75. Carlucci, L., Ciani, G. & Proserpio, D. M. A new type of entanglement involving one-

dimensional ribbons of rings catenated to a three-dimensional network in the nanoporous 

structure of [Co(bix)2(H2O)2](SO4)·7H2O [bix = 1,4-bis(imidazol-1-ylmethyl)benzene]. 

Chem. Commun. 380–381 (2004) doi:10.1039/B314322H. 

76. Sasa, M., Tanaka, K., Bu, X.-H., Shiro, M. & Shionoya, M. Spontaneously Resolved Chiral 

Interpenetrating 3-D Nets with Two Different Zinc Coordination Polymers. J. Am. Chem. 

Soc. 123, 10750–10751 (2001). 

77. Carlucci, L., Ciani, G. & Proserpio, D. M. Three-dimensional architectures of intertwined 

planar coordination polymers: the first case of interpenetration involving two different 

bidimensional polymeric motifs. New J. Chem. 22, 1319–1321 (1998). 

78. Carlucci, L., Ciani, G., Proserpio, D. M. & Rizzato, S. New architectures from the self-

assembly of MIISO4 salts with bis(4-pyridyl) ligands. The first case of polycatenation 

involving three distinct sets of 2D polymeric (4,4)-layers parallel to a common axis. 

CrystEngComm 5, 190–199 (2003). 

79. Carlucci, L. & Ciani, G. An unprecedented triply interpenetrated chiral network of ‘square-

planar’metal centres from the self-assembly of copper (II) nitrate and 1, 2-bis (4-pyridyl) 

ethyne. Chemical Communications 1837–1838 (1998). 

80. A. Blatov, V., Carlucci, L., Ciani, G. & M. Proserpio, D. Interpenetrating metal–organic and 

inorganic 3D networks: a computer-aided systematic investigation. Part I. Analysis of the 

Cambridge structural database. CrystEngComm 6, 378–395 (2004). 

81. Baburin, I. A., Blatov, V. A., Carlucci, L., Ciani, G. & Proserpio, D. M. Interpenetrating 

metal-organic and inorganic 3D networks: a computer-aided systematic investigation. Part II 

[1]. Analysis of the Inorganic Crystal Structure Database (ICSD). Journal of Solid State 

Chemistry 178, 2452–2474 (2005). 

82. Gong, Y.-N., Zhong, D.-C. & Lu, T.-B. Interpenetrating metal–organic frameworks. 

CrystEngComm 18, 2596–2606 (2016). 

83. Wang, Z.-L., Fang, W.-H. & Yang, G.-Y. The first three-fold interpenetrated framework with 

two different four-connected uniform nets of 6 6 dia and new chiral 8 6 mdf networks. 

Chemical Communications 46, 8216–8218 (2010). 



 119 

84. Wu, H., Yang, J., Su, Z.-M., Batten, S. R. & Ma, J.-F. An exceptional 54-fold interpenetrated 

coordination polymer with 103-srs network topology. Journal of the American Chemical 

Society 133, 11406–11409 (2011). 

85. Farha, O. K., Malliakas, C. D., Kanatzidis, M. G. & Hupp, J. T. Control over catenation in 

metal− organic frameworks via rational design of the organic building block. Journal of the 

American Chemical Society 132, 950–952 (2009). 

86. Rosi, N. L., Eddaoudi, M., Kim, J., O’Keeffe, M. & Yaghi, O. M. Infinite Secondary Building 

Units and Forbidden Catenation in Metal-Organic Frameworks. Angew. Chem. Int. Ed. 41, 

284–287 (2002). 

87. Deng, H. et al. Large-pore apertures in a series of metal-organic frameworks. science 336, 

1018–1023 (2012). 

88. Song, F., Wang, C., Falkowski, J. M., Ma, L. & Lin, W. Isoreticular chiral metal− organic 

frameworks for asymmetric alkene epoxidation: tuning catalytic activity by controlling 

framework catenation and varying open channel sizes. Journal of the American Chemical 

Society 132, 15390–15398 (2010). 

89. Rankine, D., Avellaneda, A., Hill, M. R., Doonan, C. J. & Sumby, C. J. Control of framework 

interpenetration for in situ modified hydroxyl functionalised IRMOFs. Chemical 

Communications 48, 10328–10330 (2012). 

90. Choi, S. B. et al. Reversible Interpenetration in a Metal–Organic Framework Triggered by 

Ligand Removal and Addition. Angewandte Chemie International Edition 51, 8791–8795 

(2012). 

91. Ferguson, A. et al. Controlled partial interpenetration in metal–organic frameworks. Nat 

Chem 8, 250–257 (2016). 

92. Reineke, T. M., Eddaoudi, M., Moler, D., O’keeffe, M. & Yaghi, O. Large Free Volume in 

Maximally Interpenetrating Networks: The Role of Secondary Building Units Exemplified 

by Tb2 (ADB) 3 [(CH3) 2SO] 4⊙ 16 [(CH3) 2SO] 1. Journal of the American Chemical 

Society 122, 4843–4844 (2000). 

93. Long, D.-L. et al. Anion Control over Interpenetration and Framework Topology in 

Coordination Networks Based on Homoleptic Six-Connected Scandium Nodes. Chemistry-

A European Journal 11, 1384–1391 (2005). 

94. Chen, B., Eddaoudi, M., Hyde, S., O’keeffe, M. & Yaghi, O. Interwoven metal-organic 

framework on a periodic minimal surface with extra-large pores. Science 291, 1021–1023 

(2001). 

95. Wilmer, C. E. et al. Large-scale screening of hypothetical metal–organic frameworks. Nature 

Chemistry 4, 83–89 (2012). 



 120 

96. Colón, Y. J., Gómez-Gualdrón, D. A. & Snurr, R. Q. Topologically Guided, Automated 

Construction of Metal–Organic Frameworks and Their Evaluation for Energy-Related 

Applications. Crystal Growth & Design 17, 5801–5810 (2017). 

97. D. Allendorf, M. & Stavila, V. Crystal engineering, structure–function relationships, and the 

future of metal–organic frameworks. CrystEngComm 17, 229–246 (2015). 

98. Chung, Y. G. et al. Computation-Ready, Experimental Metal–Organic Frameworks: A Tool 

To Enable High-Throughput Screening of Nanoporous Crystals. Chem. Mater. 26, 6185–

6192 (2014). 

99. Sezginel, K. B. Discovering interpenetration in MOFs. (2018). 

100. Lennard-Jones, J. E. Cohesion. Proc. Phys. Soc. 43, 461 (1931). 

101. Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A. & Skiff, W. M. UFF, a full 

periodic table force field for molecular mechanics and molecular dynamics simulations. J. 

Am. Chem. Soc. 114, 10024–10035 (1992). 

102. Kim, J., Martin, R. L., Rübel, O., Haranczyk, M. & Smit, B. High-Throughput 

Characterization of Porous Materials Using Graphics Processing Units. J. Chem. Theory 

Comput. 8, 1684–1693 (2012). 

103. Halder, P., Maurya, M., Jain, S. K. & Singh, J. K. Understanding adsorption of CO2, N2, 

CH4 and their mixtures in functionalized carbon nanopipe arrays. Phys. Chem. Chem. Phys. 

18, 14007–14016 (2016). 

104. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. The Cambridge Structural 

Database. Acta Cryst B, Acta Cryst Sect B, Acta Crystallogr B, Acta Crystallogr Sect B, Acta 

Crystallogr B Struct Crystallogr Cryst Chem, Acta Crystallogr Sect B Struct Crystallogr 

Cryst Chem 72, 171–179 (2016). 

105. Hafizovic, J. et al. The inconsistency in adsorption properties and powder XRD data of MOF-

5 is rationalized by framework interpenetration and the presence of organic and inorganic 

species in the nanocavities. Journal of the American Chemical Society 129, 3612–3620 

(2007). 

106. Sezginel, K. B., Feng, T. & Wilmer, C. E. Discovery of hypothetical hetero-interpenetrated 

MOFs with arbitrarily dissimilar topologies and unit cell shapes. CrystEngComm 19, 4497–

4504 (2017). 

107. Rowsell, J. L. C., Millward, A. R., Park, K. S. & Yaghi, O. M. Hydrogen Sorption in 

Functionalized Metal−Organic Frameworks. J. Am. Chem. Soc. 126, 5666–5667 (2004). 

108. Allen, C. A. & Cohen, S. M. Exploration of Chemically Cross-Linked Metal–Organic 

Frameworks. Inorg. Chem. 53, 7014–7019 (2014). 



 121 

109. Mellot-Draznieks, C., Dutour, J. & Férey, G. Computational Design of Hybrid Frameworks: 

Structure and Energetics of Two Me3OF3{-O2C-C6H4-CO2-}3 Metal-Dicarboxylate 

Polymorphs, MIL-hypo-1 and MIL-hypo-2. Z. anorg. allg. Chem. 630, 2599–2604 (2004). 

110. Wang, T. C. et al. Ultrahigh Surface Area Zirconium MOFs and Insights into the 

Applicability of the BET Theory. J. Am. Chem. Soc. 137, 3585–3591 (2015). 

111. Liu, D. et al. A Reversible Crystallinity-Preserving Phase Transition in Metal–Organic 

Frameworks: Discovery, Mechanistic Studies, and Potential Applications. J. Am. Chem. Soc. 

137, 7740–7746 (2015). 

112. Hao, X.-R. et al. Remarkable solvent-size effects in constructing novel porous 1,3,5-

benzenetricarboxylate metal–organic frameworks. CrystEngComm 14, 5596–5603 (2012). 

113. Zheng, B., Yang, Z., Bai, J., Li, Y. & Li, S. High and selective CO2 capture by two 

mesoporous acylamide-functionalized rht-type metal–organic frameworks. Chem. Commun. 

48, 7025–7027 (2012). 

114. Graham, A. J., Tan, J.-C., Allan, D. R. & Moggach, S. A. The effect of pressure on Cu-btc: 

framework compression vs. guest inclusion. Chem. Commun. 48, 1535–1537 (2012). 

115. Yan, Y. et al. Metal−Organic Polyhedral Frameworks: High H2 Adsorption Capacities and 

Neutron Powder Diffraction Studies. J. Am. Chem. Soc. 132, 4092–4094 (2010). 

116. Lock, N. et al. Elucidating Negative Thermal Expansion in MOF-5. J. Phys. Chem. C 114, 

16181–16186 (2010). 

117. Yuan, D., Zhao, D., Sun, D. & Zhou, H.-C. An Isoreticular Series of Metal–Organic 

Frameworks with Dendritic Hexacarboxylate Ligands and Exceptionally High Gas-Uptake 

Capacity. Angewandte Chemie International Edition 49, 5357–5361 (2010). 

118. Larsen, R. W., Miksovska, J., Musselman, R. L. & Wojtas, L. Ground- and Excited-State 

Properties of Zn(II) Tetrakis(4-tetramethylpyridyl) Pophyrin Specifically Encapsulated 

within a Zn(II) HKUST Metal–Organic Framework. J. Phys. Chem. A 115, 11519–11524 

(2011). 

119. Schneemann, A. et al. Flexible metal–organic frameworks. Chemical Society Reviews 43, 

6062–6096 (2014). 

120. Zhang, H., Deria, P., K. Farha, O., T. Hupp, J. & Q. Snurr, R. A thermodynamic tank model 

for studying the effect of higher hydrocarbons on natural gas storage in metal–organic 

frameworks. Energy & Environmental Science 8, 1501–1510 (2015). 

121. Mason, J. A., Veenstra, M. & Long, J. R. Evaluating metal–organic frameworks for natural 

gas storage. Chemical Science 5, 32–51 (2014). 

122. Babaei, H., McGaughey, A. J. & Wilmer, C. E. Effect of pore size and shape on the thermal 

conductivity of metal-organic frameworks. Chemical Science 8, 583–589 (2017). 



 122 

123. Babaei, H. & Wilmer, C. E. Mechanisms of heat transfer in porous crystals containing 

adsorbed gases: Applications to metal-organic frameworks. Physical review letters 116, 

025902 (2016). 

124. Morse, P. M. Diatomic molecules according to the wave mechanics. II. Vibrational levels. 

Physical Review 34, 57 (1929). 

125. Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and 

their application in methane storage. Science 295, 469–472 (2002). 

126. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. Journal of 

computational physics 117, 1–19 (1995). 

127. Che, J., Çağın, T., Deng, W. & Goddard III, W. A. Thermal conductivity of diamond and 

related materials from molecular dynamics simulations. The Journal of Chemical Physics 

113, 6888–6900 (2000). 

128. Schneemann, A. et al. Flexible metal–organic frameworks. Chem. Soc. Rev. 43, 6062–6096 

(2014). 

129. Mason, J. A. et al. Methane storage in flexible metal–organic frameworks with intrinsic 

thermal management. Nature 527, 357–361 (2015). 

130. Raatikainen, K. & Rissanen, K. Breathing molecular crystals: halogen- and hydrogen-bonded 

porous molecular crystals with solvent induced adaptation of the nanosized channels. Chem. 

Sci. 3, 1235–1239 (2012). 

131. Wang, Z. et al. Soft Porous Crystal Based upon Organic Cages That Exhibit Guest-Induced 

Breathing and Selective Gas Separation. J. Am. Chem. Soc. 141, 9408–9414 (2019). 

132. Serre, C., Millange, F., Surblé, S. & Férey, G. A Route to the Synthesis of Trivalent 

Transition-Metal Porous Carboxylates with Trimeric Secondary Building Units. Angewandte 

Chemie International Edition 43, 6285–6289 (2004). 

133. Férey, G. et al. A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes 

and Surface Area. Science 309, 2040–2042 (2005). 

134. Barthelet, K., Marrot, J., Riou, D. & Férey, G. A Breathing Hybrid Organic–Inorganic Solid 

with Very Large Pores and High Magnetic Characteristics. Angewandte Chemie International 

Edition 41, 281–284 (2002). 

135. C. Serre, C. Mellot-Draznieks, S. Surblé, N. Audebrand, Y. Filinchuk, G. F. Role of Solvent-

Host Interactions That Lead to Very Large Swelling of Hybrid Frameworks. Science 315, 

1828–1831 (2007). 

136. Liu, Y. et al. Reversible Structural Transition in MIL-53 with Large Temperature Hysteresis. 

J. Am. Chem. Soc. 130, 11813–11818 (2008). 



 123 

137. Yot, P. G. et al. Large breathing of the MOF MIL-47(VIV) under mechanical pressure: a 

joint experimental–modelling exploration. Chem. Sci. 3, 1100–1104 (2012). 

138. Loiseau, T. et al. A Rationale for the Large Breathing of the Porous Aluminum Terephthalate 

(MIL-53) Upon Hydration. Chemistry – A European Journal 10, 1373–1382 (2004). 

139. Neimark, A. V., Coudert, F.-X., Boutin, A. & Fuchs, A. H. Stress-Based Model for the 

Breathing of Metal−Organic Frameworks. J. Phys. Chem. Lett. 1, 445–449 (2010). 

140. Vanduyfhuys, L. et al. Thermodynamic insight into stimuli-responsive behaviour of soft 

porous crystals. Nat Commun 9, 1–9 (2018). 

141. Boutin, A. et al. Breathing Transitions in MIL-53(Al) Metal–Organic Framework Upon 

Xenon Adsorption. Angewandte Chemie International Edition 48, 8314–8317 (2009). 

142. Yue, Y. et al. A Flexible Metal–Organic Framework: Guest Molecules Controlled Dynamic 

Gas Adsorption. J. Phys. Chem. C 119, 9442–9449 (2015). 

143. Salles, F. et al. Molecular Dynamics Simulations of Breathing MOFs: Structural 

Transformations of MIL-53(Cr) upon Thermal Activation and CO2 Adsorption. Angewandte 

Chemie International Edition 47, 8487–8491 (2008). 

144. Wieme, J. et al. Thermal Engineering of Metal–Organic Frameworks for Adsorption 

Applications: A Molecular Simulation Perspective. ACS Appl. Mater. Interfaces (2019) 

doi:10.1021/acsami.9b12533. 

145. Huang, B. L., McGaughey, A. J. H. & Kaviany, M. Thermal conductivity of metal-organic 

framework 5 (MOF-5): Part I. Molecular dynamics simulations. International Journal of 

Heat and Mass Transfer 50, 393–404 (2007). 

146. Zhang, X. & Jiang, J. Thermal Conductivity of Zeolitic Imidazolate Framework-8: A 

Molecular Simulation Study. J. Phys. Chem. C 117, 18441–18447 (2013). 

147. Wang, X. et al. Anisotropic Lattice Thermal Conductivity and Suppressed Acoustic Phonons 

in MOF-74 from First Principles. J. Phys. Chem. C 119, 26000–26008 (2015). 

148. Babaei, H. & Wilmer, C. E. Mechanisms of Heat Transfer in Porous Crystals Containing 

Adsorbed Gases: Applications to Metal-Organic Frameworks. Phys. Rev. Lett. 116, 025902 

(2016). 

149. Babaei, H., McGaughey, A. J. H. & Wilmer, C. E. Effect of pore size and shape on the thermal 

conductivity of metal-organic frameworks. Chem. Sci. 8, 583–589 (2016). 

150. Babaei, H., Mcgaughey, A. J. H. & Wilmer, C. E. Transient Mass and Thermal Transport 

during Methane Adsorption into the Metal−Organic Framework HKUST-1. ACS Appl. 

Mater. Interfaces 10, 2400–2406 (2018). 



 124 

151. Sezginel, K. B., Asinger, P. A., Babaei, H. & Wilmer, C. E. Thermal Transport in 

Interpenetrated Metal–Organic Frameworks. Chem. Mater. 30, 2281–2286 (2018). 

152. Huang, B. L. et al. Thermal conductivity of a metal-organic framework (MOF-5): Part II. 

Measurement. International Journal of Heat and Mass Transfer 50, 405–411 (2007). 

153. Liu, D. et al. MOF-5 composites exhibiting improved thermal conductivity. International 

Journal of Hydrogen Energy 37, 6109–6117 (2012). 

154. Ming, Y. et al. Thermophysical properties of MOF-5 powders. Microporous and Mesoporous 

Materials 185, 235–244 (2014). 

155. Cui, B. et al. Thermal Conductivity of ZIF-8 Thin-Film under Ambient Gas Pressure. ACS 

Appl. Mater. Interfaces 9, 28139–28143 (2017). 

156. Schelling, P. K., Phillpot, S. R. & Keblinski, P. Comparison of atomic-level simulation 

methods for computing thermal conductivity. Phys. Rev. B 65, 144306 (2002). 

157. Babaei, H., Keblinski, P. & Khodadadi, J. M. Equilibrium molecular dynamics determination 

of thermal conductivity for multi-component systems. Journal of Applied Physics 112, 

054310 (2012). 

158. Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of 

Computational Physics 117, 1–19 (1995). 

159. Boone, P., Babaei, H. & Wilmer, C. E. Heat Flux for Many-Body Interactions: Corrections 

to LAMMPS. J. Chem. Theory Comput. 15, 5579–5587 (2019). 

160. Maginn, E. J., Bell, A. T. & Theodorou, D. N. Transport diffusivity of methane in silicalite 

from equilibrium and nonequilibrium simulations. J. Phys. Chem. 97, 4173–4181 (1993). 

161. Babaei, H., DeCoster, M. E., Jeong, M., Hassan, Z. M., Islamoglu, T., Baumgart, H., 

McGaughey, A. J. H., Engelbert, R., Farha, O. K., Hopkins, P. E., Malen, J. A. & Wilmer, C. 

E. Observation of reduced thermal conductivity in a metal-organic framework due to the 

presence of adsorbates. 

162. Rosei, F. et al. Organic Molecules Acting as Templates on Metal Surfaces. Science 296, 328–

331 (2002). 

163. Otero, R. et al. Lock-and-key effect in the surface diffusion of large organic molecules probed 

by STM. Nature Materials 3, 779–782 (2004). 

164. Schunack, M. et al. Long jumps in the surface diffusion of large molecules. Physical review 

letters 88, 156102 (2002). 

165. Rosei, F. et al. Properties of large organic molecules on metal surfaces. Progress in Surface 

Science 71, 95–146 (2003). 



 125 

166. Shirai, Y., Osgood, A. J., Zhao, Y., Kelly, K. F. & Tour, J. M. Directional control in thermally 

driven single-molecule nanocars. Nano Letters 5, 2330–2334 (2005). 

167. Joachim, C. & Rapenne, G. Molecule Concept Nanocars: Chassis, Wheels, and Motors? ACS 

Nano 7, 11–14 (2013). 

168. Castelvecchi, D. Drivers gear up for world’s first nanocar race. Nature News 544, 278 (2017). 

169. Rapenne, G. & Joachim, C. The first nanocar race. Nat. Rev. Mater 2, 17040 (2017). 

170. Simpson, G. J., García-López, V., Petermeier, P., Grill, L. & Tour, J. M. How to build and 

race a fast nanocar. Nature Nanotechnology 

https://www.nature.com/articles/nnano.2017.137 (2017) doi:10.1038/nnano.2017.137. 

171. Pawlak, R. & Meier, T. Fast and curious. Nature Nanotechnology 12, 712–712 (2017). 

172. Sun, Q. et al. Controlling on-surface molecular diffusion behaviors by functionalizing the 

organic molecules with tert-butyl groups. Appl. Phys. Lett. 103, 013103 (2013). 

173. Lavasani, S. M. H., Pishkenari, H. N. & Meghdari, A. A closer look at the motion of p-

carborane on gold surface. in Manipulation, Automation and Robotics at Small Scales 

(MARSS), International Conference on 1–6 (IEEE, 2016). 

174. Weckesser, J., Barth, J. V. & Kern, K. Mobility and bonding transition of 

${\mathrm{C}}_{60}$ on Pd(110). Phys. Rev. B 64, 161403 (2001). 

175. Weckesser, J., Barth, J. V. & Kern, K. Direct observation of surface diffusion of large organic 

molecules at metal surfaces: PVBA on Pd(110). J. Chem. Phys. 110, 5351–5354 (1999). 

176. Kumar, S., Rosenberg, J. M., Bouzida, D., Swendsen, R. H. & Kollman, P. A. The weighted 

histogram analysis method for free-energy calculations on biomolecules. I. The method. 

Journal of computational chemistry 13, 1011–1021 (1992). 

177. Perdew, J. P. Density-functional approximation for the correlation energy of the 

inhomogeneous electron gas. Phys. Rev. B 33, 8822–8824 (1986). 

178. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected 

density functional theory. Journal of Computational Chemistry 32, 1456–1465 (2011). 

179. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and 

quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical 

Chemistry Chemical Physics 7, 3297–3305 (2005). 

180. Neese, F. The ORCA program system. Wiley Interdisciplinary Reviews: Computational 

Molecular Science 2, 73–78 (2012). 

181. Larsen, A. H. et al. The atomic simulation environment—a Python library for working with 

atoms. J. Phys.: Condens. Matter 29, 273002 (2017). 



 126 

182. Dubbeldam, D., Beerdsen, E., Vlugt, T. J. H. & Smit, B. Molecular simulation of loading-

dependent diffusion in nanoporous materials using extended dynamically corrected transition 

state theory. The Journal of chemical physics 122, 224712 (2005). 

183. Hanwell, M. D. et al. Avogadro: an advanced semantic chemical editor, visualization, and 

analysis platform. Journal of cheminformatics 4, 17 (2012). 

184. Sezginel, K. B. Ångström, a Python package for basic molecular operations with minimal-

dependency: kbsezginel/angstrom. (2018). 

185. Sezginel, K. B. Nanocar builder Avogadro 2 plug-in. (2018). 

186. Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally 

stable and highly porous metal-organic framework. Nature 402, 276–279 (1999). 

187. Dubbeldam, D., Calero, S., Ellis, D. E. & Snurr, R. Q. RASPA: molecular simulation 

software for adsorption and diffusion in flexible nanoporous materials. Molecular Simulation 

42, 81–101 (2016). 

188. Kwon, O., Park, S., Zhou, H.-C. & Kim, J. Computational prediction of hetero-

interpenetration in metal–organic frameworks. Chem. Commun. 53, 1953–1956 (2017). 

189. Xu, H. et al. An unprecedented 3D/3D hetero-interpenetrated MOF built from two different 

nodes, chemical composition, and topology of networks. CrystEngComm 14, 5720–5722 

(2012). 

190. Macrae, C. F. et al. Mercury CSD 2.0 – new features for the visualization and investigation 

of crystal structures. J Appl Cryst, J Appl Crystallogr 41, 466–470 (2008). 

191. Sezginel, K. B. TherMOF. 

192. Schelling, P. K., Phillpot, S. R. & Keblinski, P. Comparison of atomic-level simulation 

methods for computing thermal conductivity. Physical Review B 65, 144306 (2002). 

193. Babaei, H., Keblinski, P. & Khodadadi, J. M. Equilibrium molecular dynamics determination 

of thermal conductivity for multi-component systems. Journal of Applied Physics 112, 

054310 (2012). 

194. Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: a package for 

building initial configurations for molecular dynamics simulations. Journal of computational 

chemistry 30, 2157–2164 (2009). 

195. Grossfield, A. WHAM: the weighted histogram analysis method”, version 2.0.9. 

196. Sezginel, K. B. Python wrapper for Weighted Histogram Analysis Method as implemented 

by Grossfield et al. (2019). 

 


	Title Page
	Committee Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Preface
	1.0 A Brief History of Computational Materials Design for Molecular Machinery
	1.1 An Introduction to Molecular Machines
	Figure 1 Examples of artificial molecular machines.5
	Figure 2 Examples of nanocars. (a) Light-driven motorized nanocar.10 Carborane-wheeled nanocars with (b) six and (c) four wheels.11 (d) Electrically driven nanocar with motorized wheels.8 (e) Fullerene wheeled nanocar (hypothetical).12
	Figure 3 Self-assembly of metal-organic frameworks. (a) Building blocks are self-assembled to form porous crystals. (b) A wide variety of metal nodes and organic linkers can be used as building blocks to construct MOFs with different geometries.

	1.2 Artificial Molecular Machines
	1.2.1 Rotaxanes
	Figure 4 Molecular machine structures. (a) Feringa second generation molecular motor with a (2′R)-methyl-2,3-dihydronaphthiopyran propeller and a 2-methoxythioxanthene stator. Rotation around the double bond is achieved with photochemical and thermal ...

	1.2.2 Molecular Motors
	1.2.3 Nanocars
	1.2.4 Metal-Organic Frameworks
	Figure 5 Hetero-interpenetrating and polycatenated metal-organic frameworks with entangled frameworks colored individually. CCDC reference codes and associated publications are provided as follows (a) WEBZEK69 (b) COGCOS67 (c) EJAXOC78 (d) ATEYED.75



	2.0 Discovery of Hypothetical Hetero-Interpenetrated MOFs with Arbitrarily Dissimilar Topologies and Unit Cell Shapes
	2.1 Methodology
	Figure 6 Interpenetration discovery algorithm description and candidate interpenetrated MOF total void fraction distribution. a) Energy map generation for MOF-5. Grid points are colored from light to dark red according to calculated energy values. b) ...

	2.2 Results and Discussion
	Figure 7 Experimental comparison of predicted MOFs. a) Comparison of XRD patterns of predicted interpenetrated MOF-5 and experimentally synthesized MOF-5; (b) schematic for interpenetration of MOF-5; (c) Comparison of XRD patterns of predicted interpe...
	Figure 8 Number of MOF combinations selected at different steps in the analysis: (a) percentage of MOF combinations selected with respect to previous data set; (b) percentage distribution of homo and hetero interpenetration in MOF combinations that pa...
	Table 1 Structural and crystallographic information for six hetero-interpenetrating MOF candidates.
	Figure 9 Some of the candidate hetero-interpenetrated structures discovered in this study: (a) 1 AXUBAW107 [blue] + NODTIL108 [red], (b) 2 IZEPAF109 [blue] + WUHDAG110 [red], (c) 3 UQOFOX111 [blue] + VEHJUP112 [red], (d) 4 LEHXUT113 [blue] + XAMDUM021...

	2.3 Conclusion

	3.0 Rational Design of Metal-Organic Frameworks for Improved Thermal Transport
	3.1 Thermal Transport in Interpenetrated Metal-Organic Frameworks
	3.1.1 Methodology
	Figure 10 (a) Idealized porous crystal (8 × 8 × 8 cubic unit cells). (b) Bonding arrangement for a single unit cell using Morse potentials (red bonds are modeled more strongly than blue bonds). (c) Doubly interpenetrated unit cell with framework depic...

	3.1.2 Results and Discussion
	Figure 11 Effect of framework interaction on thermal conductivity and framework mobility in terms of forcefield parameters. For each plot, each bin represents a simulation with corresponding ε and σ values. The black bins on the upper right-hand side ...
	Figure 12 Effect of interpenetration interaction on framework distances during simulation. Framework interactions are modeled using Lennard-Jones potential. (a) σ: 3.5 Å and (b) σ: 4.5 Å with varying ε values in kcal/mol shown in figure. Grid size: 6 ...
	Figure 13 Effect of atomic mass on thermal conductivity (a) Single MOF (b) Free interpenetration (σ: 3. 5 Å) Dashed lines are equations shown in the figure. (c) Parity plot for predicted (Eq. 3-1) and simulated thermal conductivities for “free” and “l...

	3.1.3 Conclusion

	3.2 Thermal Transport in Flexible Metal-Organic Frameworks
	3.2.1 Methodology
	Figure 14 Cross-sectional view of the idealized simple cubic structure and the harmonic bonds and angles used in the potential.  (b) Complete simulation box of the idealized simple cubic structure with pores filled with adsorbates at 5 molecules / nm3...

	3.2.2 Results and Discussion
	Figure 15 (a) Thermal conductivity vs tilt angle. (b) Thermal conductivity in the y-direction scaled with sin(α)-3 vs tilt angle.
	Figure 16 Thermal conductivity contribution from bond and angle potentials in a) x and b) y directions. z direction not depicted as the results were almost identical to the x direction.
	Figure 17 (a) Thermal conductivity of gas loaded structures vs the angle which resembles the stage of expansion. (b) y-direction thermal conductivity of the gas loaded structure scaled by sin(α)-2 vs angle.
	Figure 18 (a) Ratio of thermal conductivity for gas loaded and empty crystals at different stages of pore expansion. (b) Corrected gas diffusivity for gas loaded crystals at different stages of pore expansion.

	3.2.3 Conclusion


	4.0 Computational Methods for Rational Design of Nanocars and Modeling Their Diffusion on Metal Surfaces
	4.1 Modeling Surface Diffusion of Large Organic Molecules
	Figure 19 Molecular structures used in this study with chemical names where abbreviations and chemical formulae are given in brackets: (a) p-carborane173 [pC, C2H12B10]; (b) fullerene174 [C60, C60] (c) 4-trans-2-(pyrid-4-yl-vinyl) benzoic acid175 [PVB...
	4.1.1 Methodology
	Figure 20 Simulation setup for HtBDC. (a) Top view - molecules are placed in the center of a 39.1 x 41.5 Å Cu (110) surface. (b) Side view - each molecule is placed 5 Å above the surface. (c) For TST calculations the unit cell of a Cu (110) surface is...

	4.1.2 Results and Discussion
	Figure 21 Diffusion coefficient calculated using MD simulations in [𝟎𝟎𝟏] and [𝟏,𝟏.𝟎] directions: (a) molecular weight vs ,𝑫-[𝟎𝟎𝟏]. (b) vdW energy vs ,𝑫-[𝟎𝟎𝟏]. (c) elevation weighted density vs ,𝑫-[𝟎𝟎𝟏]. (d) molecular weight vs ,𝑫-[�..
	Figure 22 (a) Elevation weighted density calculation schematic for HtBDC. Starting from the bottom most part of the molecule, number of atoms are counted with 0.05 Å discrete steps and using a cut-off radius of 1 Å. (b) Plot of number of atoms with in...
	Figure 23 Transition state theory results: (a) molecular weight vs ,𝑫-[𝟎𝟎𝟏]. (b) molecular weight vs free energy barrier in [𝟎𝟎𝟏] direction (c) elevation weighted density vs. free energy barrier in [𝟎𝟎𝟏] direction (d) molecular weight vs ,𝑫...

	4.1.3 Conclusion

	4.2 Nanocar Builder Tool
	4.2.1 Methodology
	Figure 24 Nanocar builder plug-in library: (a) wheel molecules; (b) chassis molecules. Using the plug-in users can select a chassis molecule, connect wheels, build a metal surface, and setup an MD simulation configuration for LAMMPS software.
	Figure 25 A screenshot of the nanocar builder Avogadro 2 plug-in. After installation a “Nanocar” menu appears under the build option which can be used to add chassis molecules, connect wheel molecules, add a custom metal surface, and export LAMMPS con...

	4.2.2 How to Build a Nanocar?
	Figure 26 A nanocar molecule placed on a Au (110) surface built using the nanocar builder: (a) side view and (b) top view. Surface is approximately 5 nm x 5 nm and the nanocar molecule is approximately 1 nm in length.



	Appendix A Discovery of Hypothetical Hetero-Interpenetrated MOFs
	Appendix A.1 Algorithm Description
	Appendix Figure 1 Flowchart for IPMOF algorithm. Algorithm and its documentation with examples are provided here:  https://github.com/kbsezginel/IPMOF.
	Appendix Figure 2 Energy map schematic for MOF-5. Each red point represents grid points 1 Å apart in 3 dimensions. For each point potential energy is calculated using Lennard-Jones equation.
	Appendix Figure 3 Energy map generation process for MOF-5. The potential energy increases from dark red to light red.
	Appendix Table 1 Force field parameters used in this study
	Appendix Figure 4 Number of MOFs with given metal type observed in the database
	Appendix Figure 5 Interpenetration process for two cubic MOFs. Blue framework is the passive framework and red framework is the active framework. The active framework is first rotated and then translated to next point depicted by the yellow point.
	Appendix Figure 6 Algorithm parameters with values used in this study shown in parenthesis. Energy density limit of 0.1 K.kB/Å3 corresponds to 0.83144621 J/mol Å3.

	Appendix A.2 Generating Unit Cell for Interpenetrating Structures
	Appendix Figure 7 Example case for supercell parameters calculation

	Appendix A.3 High-throughput Screening
	Appendix Figure 8 Analogy for MOF combination selection. The interpenetrating MOFs must have enough empty space in their unit cell so when they form a single unit cell there is enough space for both frameworks. This can be imagined as filling two glas...
	Appendix Figure 9 Number of MOF pairs in different steps of high-throughput screening
	Appendix Figure 10 Analysis of candidate structures to find hetero-interpenetrated pairs (Starting from 1,045 candidates that passed the extended collision test, 90 of them were pairs of same MOFs according to their CSD reference codes [Step I]. From ...
	Appendix Table 2 Chemical composition information for 18 hetero-interpenetrating MOF candidates

	Appendix A.4 Comparison with Literature
	Appendix Figure 11 Candidate interpenetrating MOF pairs identified using 30-degree rotations. Same pairs are also present in the list provided by Kwon et al.188 CCDC104 reference codes for the MOF pairs are given below structures separated by an under...
	Appendix Figure 12 Hetero-interpenetration test for COGCOS67 (a) Structure comparison (b) XRD pattern comparison
	Appendix Figure 13 Hetero-interpenetration test for ETAXAS72 (a) Structure comparison (b) XRD pattern comparison
	Appendix Figure 14 Hetero-interpenetration test for TIVYED74 (a) Structure comparison (b) XRD pattern comparison
	Appendix Figure 15  Hetero-interpenetration test for PELQII68 (a) Structure comparison (b) XRD pattern comparison
	Appendix Figure 16 Hetero-interpenetration test for UNAZIT71 (a) Structure comparison (b) XRD pattern comparison


	Appendix B Computational Methods and Supplementary Results for Thermal Conductivity of MOFs
	Appendix B.1 Thermal Transport in Interpenetrated MOFs
	Appendix Figure 17 Bonded interactions for the idealized porous framework. Morse potential were used to model bonded interactions for the two types of bonds defined (depicted in green and yellow). The Morse potential parameters for these bonds are given.
	Appendix Figure 18 Lennard-Jones potential for a) varying σ values and ε: 50 K.kB b) varying ε values for σ: 3.5 Å c) varying ε values for σ: 4.5 Å. In all plots the variable increases from red to blue as shown in legends.
	Appendix Table 3 Potential used for IRMOF-1 interactions
	Appendix Figure 19 Coupling constant profile for different coupling constant limits. a) ε coupling constant (γε) profile for changing limits (γεmax). b) σ coupling constant (γσ) profile for changing limits (γσmax).
	Appendix Figure 20 Thermal conductivity prediction error (%) for interpenetrated framework using the relationship in Eq. B-1 for a range of σ (γσmax) and ε (γεmax) coupling constant limits. Minimum average error (7.8 %) was found for γσmax: 0.498 and ...
	Appendix Figure 21 Interpenetrated idealized MOF structure where entangled frameworks are colored in blue and red. The zoomed in single unit cell shows atoms used to calculate the relative distance between frameworks in 2D. In 3D the distance between ...
	Appendix Figure 22 2D histograms for thermodynamic data recorded during framework interaction parametric screening. All energy in kcal/mol.

	Appendix B.2 Thermal Transport in Flexible MOFs
	Appendix Figure 23 2D histograms for change in (a) thermal conductivity (W/mK) and (b) simulated box volume to idealized box volume ratio (%) as a function of spring constants for two-body bonded and three-body angular harmonic potentials.
	Appendix Figure 24 2D histograms for change in thermal conductivity (W/mK) due to (a) bonds and (b) angles as a function of spring constants for two-body bonded (x-axis) and three-body angular (y-axis) harmonic potentials.
	Appendix Figure 25 (a) 2D histogram for the thermal conductivity convergence as a function of spring constants for two-body bonded (x-axis) and three-body angular (y-axis) harmonic potentials. (b) Average thermal conductivity vs simulation time for th...
	Appendix Table 4 Total number of atoms and total number of adsorbate molecules for simulation setups with different tilt angles
	Appendix Table 5 Force field parameters for a Lennard-Jones potential modeling vdW interactions of gas molecules


	Appendix C Calculating Surface Diffusion of Large Molecules
	Appendix C.1 Force Field Parameters
	Appendix Table 6 Simulation parameters used in this study to calculate vdW energy using a Lennard-Jones potential. All parameters are for pairs of atoms where the epsilon values are in kcal/mol and sigma values are in Å.

	Appendix C.2 Calculating Diffusion Coefficient from Rigid Body Molecular Dynamics Simulations
	Appendix Figure 26 (a) Mean squared displacement (MSD) vs time delta (τ) for 20 molecular dynamics simulations in [𝟏,𝟏.𝟎] direction for HtBDC molecule. (b) Average of all MSD vs τ curves and a linear fit between 1.5 ns – 5.0 ns to calculate self-di...
	Appendix Figure 27 (a) Averaged mean squared displacement (MSD) vs time delta (τ) for 20 molecular dynamics simulations in [𝟏,𝟏.𝟎] direction. A linear fit between 1.5 ns – 5.0 ns was used to calculate self-diffusion coefficient. The R-squared value...
	Appendix Figure 28 (a) Averaged mean squared displacement (MSD) vs time delta (τ) for 20 molecular dynamics simulations in [𝟎𝟎𝟏] direction. A linear fit between 1.5 ns – 5.0 ns was used to calculate self-diffusion coefficient. The R-squared value f...

	Appendix C.3 Transition State Theory
	Appendix Figure 29 Free energy barriers and self-diffusion coefficients for each molecule and each umbrella sampling paths for the two primary crystallographic directions. Red and blue points correspond to results for [𝟎𝟎𝟏], and [𝟏,𝟏.𝟎] directio...

	Appendix C.4 Elevation Weighted Density
	Appendix Figure 30 Elevation weighted density curves for the nine molecules used in this study


	Appendix D Software Packages Developed
	Appendix D.1 Ångstrom: a Python Package for Molecular Architecture and Visualization
	Appendix D.2 Nanocar Builder Avogadro Plug-in
	Appendix D.3 IPMOF: a Python Package for Discovering Interpenetrated MOFs
	Appendix D.4 TherMOF: a Python Package for Investigating Thermal Transport in MOFs
	Appendix D.5 Moleidoscope (Molecular Kaleidoscope)
	Appendix D.6 Tutorials for Computational Chemistry Tools and Scientific Visualization

	Bibliography

